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1. INTRODUCTION

Beside uncontroled proliferation of cells, tumor growth and
cancer invasion are also characterized by alterations of the
microenvironment in which they take place. The latter can
be directly influenced by the cancer cells, e.g., by the pro-
teins they secrete (ECM components, proteases, etc.) or
can in turn have an impact on the dynamics of the neo-
plastic tissue, see e.g., [2]. A characteristic of invasive
tumors is hypoxia, which results from an imbalance be-
tween oxygen supply and its consumption. Tumors have
an extremely high energy demand for accomplishing the
processes related to migration and proliferation and they
satisfy this need by reinforced glycolysis, leading to acidi-
fication of their surroundings [3]. The adaptive advantages
for metastatic progression conferred by dysregulated pH in-
clude degradation of normal tissue and alkalinization of the
tumor cells’ cytosol, with subsequent proliferation enhance-
ment accompanied by polarization and directed migration,
see e.g., [4].
Starting with the work of Gatenby & Gawlinski [5], math-
ematical models have been proposed for the description of
tumor cell invasion conditioned by acidosis. Most of them
reconsider the model in [5] and possibly extend it, e.g., to
account for vascular and avascular growth of multicellular
tumor spheroids [6]. The settings involve reaction-diffusion
equations for the densities of cancer cells and of normal
cells, coupled with an equation for the concentration of ex-
tracellular protons, see also [7, 8]. All of these models,
however, are set on the macroscopic scale of cell popula-
tions, whereas the microscopic, subcellular level is known
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to significantly influence (and even control) the macroscale
behavior, e.g., by the intracellular proton dynamics, as men-
tioned above. Multiscale models offer a means for integrat-
ing detailed subcellular and individual information to allow
predictions on the tumor level and they have also been used
in a broader context, see e.g., [1, 9, 10] for two-scale models
or [11–14] for settings involving several scales.

2. MODEL

The model introduced in [1] to characterize acid-mediated
tumor invasion involved on the microscopic scale the intra-
cellular proton dynamics. Thereby, the influence of proton
extrusion by increase of acidity in the extracellular space
was described by partial differential equations written on
the macroscale for the densities of cancer cells and of nor-
mal cells, along with a reaction-diffusion equation for the
concentration of extracellular protons, hence making the
connection with the subcellular level. Cancer cells were
found to bias their motion according to the pH gradient in
their surroundings [15, 16]; the extracellular acidity is be-
lieved to boost the invasiveness and metastatic ability of
cancer. This motivated in [1] the introduction of a corre-
sponding taxis term in the equation for tumor cells. Hav-
ing described in this way the spread of cancer, the next
step would be to model therapy relying on the informations
about tumor acidity and extent of invasion.
There exists, however, experimental evidence that the low
extracellular pH (pHe) and the gradients between intracel-
lular (pHi) and pHe significantly influence the response
of tumors to various treatments like radiotherapy and
chemotherapy [17–22]. This suggests that a tumor is het-
erogeneous with respect to the treatment sensitivity of its
constituent cells, depending on the local level of hypoxia:
for instance, the latter is detrimental for radiotherapy, for
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which oxidation of the radiation-induced DNA free radicals
is necessary for the subsequent apoptotic processes [23].
Also, in response to nutrient deprivation due to hypoxia, the
rate of cancer cell proliferation decreases, but chemothera-
peutic drugs are more effective against proliferating cells.
We propose therefore to consider two subpopulations of
cancer cells: those responding to treatment (we will de-
note with a(t,x) their density function), and those exhibit-
ing an enhanced resistance against therapy (represented in
our model by the function q(t,x)). The latter are supposed
to be the cells living in a low pHe environment, while those
with a higher pHe are the more sensitive ones. Along with
these two types of cancer cells our model also includes the
evolution of normal cell density n(t,x) and the dynamics
of intracellular y and extracellular h(t,x) protons.
In the therapy strategy we propose here we follow a three-
fold aim: to reduce the peritumoral acidosis, to enhance
the sensitivity of tumor cells to treatment, and to degrade
the neoplastic tissue by chemo and radiotherapy, applied
successively (the latter) or in a concurrent way (sensitivity
enhancement by proton buffering and chemotherapy). The
alkalinization could be achieved, e.g., by oral administra-
tion of bicarbonate [24] or trisodium citrate [25], which can
increase the pHe of tumors without notably influencing the
blood or healthy tissue pH. Systemic buffering is modelled
below in (2) by a decay term in the equation for h, depend-
ing on the (time-varying) applied dosis dc.
Many different ways have been proposed for the sensitiza-
tion of tumor cells to therapy. Most chemotherapeuticals
are weak acids or alkalines, hence they are neutralized in
the acidic tumor microenvironment. However, this draw-
back can be overcome for instance by pretreatment with
proton pump inhibitors, which reverts chemoresistance of
several cancer cells to drugs like e.g., cisplatin, vinblastine,
5-fluorouracil, and doxorubicin and further increases the re-
sponse of drug-sensitive cells to anticancer agents [20, 26];
other approaches using the same idea of increasing intracel-
lular acidosis e.g., by inhibiting carbonic anhydrases were
studied and/or reviewed in [27–30]. Moreover, intracellular
acidification was shown to be cytotoxic to tumor cells, see
e.g., [31], thus one can also achieve cell killing by apply-
ing such therapy. The influence of chemoterapeutic agents
is modeled below by terms of the form jκj(dc)Cj(θj ,m),
with j ∈ {a, q, n}, and depending on the cytotoxic drug
concentration m. Thereby, the effect of treatment is ex-
pected to depend on the sensitivity of cancer cells, which
in turn should be proportional to the dosis dc applied for
the systemic buffering. Eventually, radiotherapy –described
with terms of the form jΓjRj(αj , dr), with j ∈ {a, q, n}
and dr denoting the time-dependent radiation dosis– will
lead to enhanced depletion of cancer cells, favorized by
the pre-treatment including alkalinization and cytotoxicity.
As an example, we present here a treatment approach with
buffering simultaneous to chemotherapy, followed by radio-
therapy. If needed, alkalinization can also be applied before
or only partially simultaneously to chemotherapy, before ir-

radiation and after chemotherapy, etc.
With the coefficient functions (thereby Dq , M , k1, b, ν, ω1,
ω2, ω3 and the carrying capacityKn of normal cells are pos-
itive constants andC0,H0, Y0 denote the reference carrying
capacity of cancer cells and the reference concentrations of
extra- and intracellular protons, respectively)

ϕ(a, q, n) :=
Dq

1+
(a+q)n
C0Kn

, f(a, q, h) := Mq

1+
(a+q)h
C0H0

,

µc(y) := k1
1+ y

Y0

, Kc(h) := C0 + bh,

g(a+ q) := ν(a+q)

1+ a+q
C0

, Θ(y, h) := ω1y

1+ y2

Y 2
0
+ω2h2

− ω3h

1+ y2

Y 2
0

(1)
our model then takes the following form:

∂ta = µc(y)a

(
1− a+ q

Kc(h(·, t− τ))
− η1

n

Kn

)
︸ ︷︷ ︸

proliferation

+γ(dc)q − λa− aΓaRa(αa, dr)

−aκa(dc)Ca(θa,m),

∂tq = ∇ · (ϕ(a, q, n)∇q)︸ ︷︷ ︸
nonlinear diffusion

−∇ · (f(a, q, h)∇h)︸ ︷︷ ︸
taxis

+λa− γ(dc)q − qΓqRq(αq, dr)

−qκq(dc)Cq(θq,m),

∂tn = −δnhn+ µnn
(

1− η2 a+q
Kc(h(·,t)) −

n
Kn

)
−nΓnRn(αn, dr)− nκnCn(θn,m),

∂th = Dh∆h+ Θ(y, h)− σcdch

∂ty = −Θ(y, h)− αy + g(a+ q),

∂tm = −ρm+ vm(t),

(2)

where a + q gives the total tumor cell density. All equa-
tions are set in (0, T ) × Ω, where Ω ⊂ RN is a bounded
domain with smooth boundary and N ≤ 3. Concerning
the spatial spread of cancer cells, they are assumed to dif-
fuse and their motion to be biased by the pH-gradient in
their environment (following [15, 16] the latter was called
in [1] pH-taxis). The nonlinear diffusion is influenced by
the densities of tumor cells and of normal tissue, and is de-
scribed by the diffusion coefficient ϕ(a, q, n). The function
f(a, q, h) represents the pH-tactic sensitivity of the moving
cancer cells. Precise forms of ϕ and f are given in (1). In
view of the “go-or-grow” dichotomy [32–34], we assume
that only the non-proliferating cells are moving, and these
are those which are less sensitive to therapy (hence in our
notation the q cells). For the tumor cell proliferation we
consider logistic growth with crowding; the carrying capac-
ityKc (a concrete form of which is given in (1)) is supposed
to depend on the acidosis in the tumor microenvironment,
hence we take it to be a function of the extracellular proton
concentration h. The time delay expresses the fact that the
adaptation of carrying capacity to the surrounding pH is not
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instantaneous. Relying on experimental evidence [35–37],
we also consider a growth rate µc depending on the intra-
cellular acidity, and choose it to cope with the observation
that an alkaline cytosol is favorable to cell proliferation [38]
(see (1) for a concrete form).
As we are primarily interested in the effects of acidosis on
the tumor cells, the equation for the normal cells merely
includes them in the terms involving the interaction with
the cancerous tissue, i.e. in the degradation term modeling
acidity induced apoptosis (with the constant decay rate δn)
and in the crowding term restricting proliferation. The ex-
tracellular proton buffering is supposed not to directly affect
the normal tissue in a relevant way; its effects are rather in-
direct, by the nonlinear coupling of the equation for n with
the equations for the tumor cells and the extracellular pro-
tons. The function γ(dc) and the constant λ ≥ 0 represent
transition rates between a-cells and q-cells.
For the concrete choices of the functions modeling treat-
ment we refer to (3) for radiotherapy and (4) for chemother-
apy. The nonnegative coefficients Γj and κj are the corre-
sponding death rates.

Rj(αj , dr) =

{
0, for t 6∈ radiotherapy
1− S(αj , dr), for t ∈ radiotherapy

(3)
where j ∈ {a, q, n} and “radiotherapy” denotes the set
of times at which ionizing radiation is applied to the pa-
tient. Further, S(αj , dr) = exp(−αjdr − βjd

2
r) models

the survival fraction of each subpopulation a, q or n af-
ter the application of radiotherapy with a dosis dr (in Gy),
hence we adopted the linear quadratic (LQ) model [39–41],
which in spite of its shortcomings [42–44] is still the stan-
dard choice in radiation treatments. Thereby, αj represents
lethal lesions produced by a single radiation track (they are
linearly related to the dose: αjdr, cell kill per Gy), while
βj characterizes lethal lesions produced by two radiation
tracks (quadratically related to the dose: βjdr, cell kill per
Gy2). The relevant parameter in the LQ model is actually
the radiation sensitivity αj

βj
, which correlates to the cell cy-

cle length: late responding tissues with a slow cell cycle
have a small αj

βj
ratio, while it is large for early responding,

highly aggressive cancers [45]. In clinical practice the total
dose dr is given in N fractions of size d̂r, hence

S(αj , dr) = exp(−N(αj d̂r + βj d̂
2
r))

= exp(−αjdr(1 + d̂r/(αj/βj))).

For the chemotherapy description we consider the functions

Cj(θj ,m) =

{
0, for t 6∈ chemotherapy
1− exp(−θjm), for t ∈ chemotherapy ,

(4)
where analogously as before j ∈ {a, q, n} and “chemother-
apy” denotes the set of times at which a cytotoxic agent is
administered. The chemotherapeutic effect depends on the

concentration m of the applied drug, while θj represents its
depletion efficiency for the population j of cells.
The proton dynamics involves the evolution of both intra-
cellular protons of concentration y and their extracellular
counterparts with concentration h. As we are only inter-
ested in the spatiality w.r.t. the macroscale, only h is dif-
fusing. Due to the very small size of protons the diffu-
sion coefficient can be assumed constant. In the absence
of treatment and production by tumor cells, the reaction
terms in the equations for y and h are due only to ion
transport through the cell membrane. Thus, Θ(y, h) de-
notes the decay term for intracellular H+ due to membrane
transporters (e.g., NDCBE: Na+ dependent Cl−-HCO−3 ex-
changer, NHE: Na+ and H+ exchanger, and AE: anion ex-
changer), production by aerobic glycolysis (possibly de-
pending on microenvironmental vascularization), and in-
tracellular buffering. The function g(a + q) represents a
source term due to the production (with saturation) by can-
cer cells. In order to maintain an advantageous intracel-
lular pH, cancer cells upregulate proton extrusion through
membrane transporters, leading to acidosis of the tumor en-
vironment. The concentration of extracellular protons H+

is a macroscopic quantity explicitly depending on time and
position. It is produced the same way the intracellular pro-
tons decay, by transport through the cell membrane. In our
model it decays with a rate σc due to systemic buffering in-
duced by administration of bicarbonate with a dose dc. We
refer to (1) for concrete choices of these functions and to
[9] for more details about the modeling of proton dynamics
in (2). Finally, the evolution of the cytotoxic drug (we con-
sider here doxorubicin) of concentration m is influenced by
the way it is made available at the tumor site (vm(t) is the
amount of doxorubicin injected per day per litre of body
volume) and by the drug’s decay with a rate ρ ≥ 0. All
constants involved in the model are nonnegative.
The equations (2) are supplemented with adequate initial
and boundary conditions. For the latter we make the same
choice as in [1] and assume no flux of cells or protons
through the boundary of the domain of interest:

∂nq = ∂nh = 0 on ∂Ω× (0, T ). (5)

3. GLOBAL EXISTENCE

The local and global existence for (2) in the weak sense
according to [1, Definition 3.1] is given in the following
theorem.

Theorem 1 Let Ω ⊂ RN be a bounded domain with smooth
boundary, N ∈ {1, 2, 3}, τ > 0, and assume that (1)
is fulfilled. Furthermore, suppose that γ(dc), Rj(αj , dr),
Cj(θj ,m), κj(dc), dc, and vm are nonnegative functions of
time belonging toL∞((0,∞)) such that γ(dc(t)) ≥ γ0 > 0
for all t ≥ 0. If the initial data are nonnegative functions
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satisfying

a0, q0, n0, y0,m0 ∈ C0(Ω̄), h0 ∈ C0([−τ, 0];W 1,q(Ω)),

n0 ≤ Kn, y0 ≤ Y0 in Ω̄, δ ≤ h0 ≤ H0 in Ω̄× [−τ, 0]

with some q ∈ (N + 2,∞) and δ > 0, then there exists
T > 0 and a weak solution to (2), (5) in (0, T )× Ω.

If in addition c0 ∈ Cβ(Ω̄) holds with some β ∈ ( 1
N+2 , 1),

then this weak solution is unique.

If we choose ϕ(a, q, n) :=
Dq

1+ qn
C0Kn

, then a weak solution

to (2), (5) exists globally in time.

The proof of this result parallels the one from [1, Theo-
rem 3.2] and relies on deducing appropriate estimates and
compactness properties for regularizations of (2). The main
additional difficulty is the splitting of the cancer cells into
the two subpopulations a and q. As a is proliferating and q
is migrating, the proof of estimates for q inL∞loc((0,∞)×Ω)
allowing to conclude the global existence (see [1, Lem-
mas 3.5 and 3.6]) is possible by suitable combinations of
estimates involving a, q, and a+ q, if the diffusivity ϕ does
not depend on a. A corresponding global result remains
open for ϕ from (1), in view of the lack of appropriate lower
bounds for ϕ in presence of the transition between a and q.

4. NUMERICAL RESULTS

Before solving the model system (2) numerically, the nondi-
mensionalization is made for the purpose of computational
convenience. To this end, the dimensionless variables are
taken as follows:

ã = a
C0
, q̃ = q

C0
ñ = n

Kn
, h̃ = h

H0
,

ỹ = y
Y0

x̃ = x
L , t̃ = t

T , φ = t
χT , m̃ = θam,

where L is the reference length scale and T is the reference
time unit, while χ and θa are some positive scaling con-
stants.

The model in the nondimensionalized form becomes

∂ta = k1
1+ya

(
1− a+q

Kc(h(·,t−τ)) − η1n
)
− λa

+(γ0 + γ1dc)q − ΓaaRa(αa, dr)

−a(κa0 + κa1dc)Ca(θa,m),

∂tq = ∇ ·
(

Dq

1+(a+q)n∇q
)
−∇ · ( Mq

1+(a+q)h∇h)

+λa− (γ0 + γ1dc)q
−ΓqqRq(αq, dr)
−q(κq0 + κq1dc)Cq(θq,m),

∂tn = −δnhn+ µnn
(

1− η2 a+q
Kc(h(·,t)) − n

)
−ΓnnRn(αn, dr)− nκnCn(θn,m),

∂th = Dh∆h+ γhy
1+y2+αhh2 − βhh

1+y2 − σcdch,

∂φy = − γyy
1+y2+αhh2 +

βyh
1+y2 − αy + ρ(a+q)

1+(a+q) ,

∂tm = −ρm+ θavm(t)

(6)

The equations (6) are then supplemented with the initial
conditions (Figure 1) and the boundary conditions (5). Here
we assume that 70% of the cancer cells are less sensitive.
In order to illustrate the qualitative behaviour we solve the
mathematical model numerically using an explicit-implicit
finite difference scheme as the one used in [10]. During the
simulations we fixed the following parameters:

χ = 0.01, Dq = 2 ∗ 10−4, M = 8 ∗ 10−6, k1 = 10−1,

µn = 10−1, η1 = 0.35, η2 = 0.05, γ0 = 0.055,

λ = 0.076.
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FIG. 1: Initial conditions. c := a+ q denotes the total cancer cell
density.

The treatment schedule considered here involves three
weeks of buffering combined with chemotherapy followed
by seven weeks of radiotherapy (with no irradiation during
weekends) [47]. For the chemotherapy we use the recom-
mended dosage for doxorubicin and assume that the amount
(mg) injected per day per litre of body (vm) is 2.3869 [46].
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FIG. 2: Evolution of cancer cells, normal cells and exterior pro-
tons at different times for combined buffering and chemotherapy
(3 weeks) followed by radiotherapy (7 weeks)
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FIG. 3: Before the weekend of the 4th week (setting of FIG. 2)
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FIG. 4: Evolution of cancer cells, normal cells and exterior pro-
tons at different times for chemotherapy (3 weeks) followed by
radiotherapy (7 weeks), but without buffering

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
After the weekend (4th week)

x

 

 
a
q
n
h
c

FIG. 5: After the weekend of the 4th week (setting of FIG. 2)
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The initial drug concentration is assumed to be zero. Fol-
lowing [46], the drug efficacy coefficients for both types of
cancer cells are taken to be 1.8328, whereas for the normal
cells we choose a 10 times smaller value, since the drug is
supposed to be less effective for normal cells. For the ra-
diotherapy we fixed the ratio αa/βa = 10, corresponding
to a head and neck cancer [39] and considered smaller fixed
ratios for the less sensitive cancer cells (αq/βq = 0.7) and
for the normal cells (αn/βn = 0.1). We also used in the
simulations a total dosis not exceeding 61, 2Gy + 5%, ac-
cording to the standard treatment protocol [47].
Figure 2 illustrates the case with systemic buffering, while
Figure 4 shows the case with only chemo and radiotherapy,
without cell sensitization via proton reduction. The former
strategy leads to an enhanced therapeutical outcome. The
effect of weekend breaks during the radiotherapy is exem-
plified in Figures 3 and 5. This pausing in the radiation-
induced cell killing allows the normal, but also the tumor
cells to recover (to a certain extent) and usually leads to a
prolongement of the overall treatment time. This behavior
is also confirmed by our model.

5. DISCUSSION

We considered in this paper a multiscale setting for acid-
mediated tumor invasion relying on the model in [1]. The
present model supplementary involves treatment, thereby
explicitly accounting for tumor heterogeneity w.r.t. the sen-
sitivity of cancer cells to therapy. Such selective behavior is
due to a plethora of causes, however here it is considered to
be inflicted by the local acidity in the tumor microenviron-
ment [17–21]. Reducing acidosis in the peritumoral region
has been found not only to enhance the tumor’s response
to both chemo and radiotherapy, see, e.g., [19, 25, 26, 48],
but also to alleviate invasiveness [3, 6, 24]. With our model
accounting for two different types (according to their sensi-

tivity) of cancer cells interacting with the normal tissue and
conditioned by the dynamics of intra- and extracellular pro-
tons, we propose a mathematical framework for verifying
these assertions. Reducing extracellular acidosis increases
the sensitivity of tumor cells, thus enhancing the ratio of
sensitive, hence proliferating (and rather non-motile) neo-
plastic tissue in detriment of the less sensitive (but more
mobile) cancer cells. The transition rate between the two
tumor cell types then obviously depends on the dosis of the
proton buffering substance (e.g., bicarbonate) and so does
the therapy efficiency. The numerical simulations confirm
the biological observations: the therapeutic impact is aug-
mented through extracellular proton buffering and the inva-
sion is implicitly reduced.
There are, of course, many different therapy combinations
possible, including successive and/or concurrent ones. The
best choice would represent an interesting, however quite
complicated optimum problem, which is even more diffi-
cult to solve as long as no reliable datasets are available
and most parameters still have to be taken from different
literature sources. The model presented here offers one
way of describing the micro-macro dynamics involved in
the highly complex process of cancer invasion and deple-
tion by some therapeutical approach. It can be further re-
duced, while still preserving its two-scale features, e.g., by
renouncing some of the parameters or simplifying the diffu-
sion and/or taxis coefficients, according to which particular
issue of the problem is being investigated.
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