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“You have to take risks. We will only understand the miracle of life fully when we allow

the unexpected to happen.”

Paulo Coelho





Abstract

Monte Carlo simulation is one of the commonly used methods for risk estimation on

financial markets, especially for option portfolios, where any analytical approximation

is usually too inaccurate. However, the usually high computational effort for complex

portfolios with a large number of underlying assets motivates the application of variance

reduction procedures. Variance reduction for estimating the probability of high portfolio

losses has been extensively studied by Glasserman et al. A great variance reduction is

achieved by applying an exponential twisting importance sampling algorithm together

with stratification. The popular and much faster Delta-Gamma approximation replaces

the portfolio loss function in order to guide the choice of the importance sampling density

and it plays the role of the stratification variable. The main disadvantage of the proposed

algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes

in risk factors.

Hence, our main goal is to keep the main advantage of the Monte Carlo simulation,

namely its ability to perform a simulation under alternative assumptions on the distri-

bution of the changes in risk factors, also in the variance reduction algorithms. Step

by step, we construct new variance reduction techniques for estimating the probability

of high portfolio losses. They are based on the idea of the Cross-Entropy importance

sampling procedure. More precisely, the importance sampling density is chosen as the

closest one to the optimal importance sampling density (zero variance estimator) out

of some parametric family of densities with respect to Kullback - Leibler cross-entropy.

Our algorithms are based on the special choices of the parametric family and can now

use any approximation of the portfolio loss function. A special stratification is devel-

oped, so that any approximation of the portfolio loss function under any assumption of

the distribution of the risk factors can be used. The constructed algorithms can eas-

ily be applied for any distribution of risk factors, no matter if light- or heavy-tailed.

The numerical study exhibits a greater variance reduction than of the algorithm from

Glasserman et al. The use of a better approximation may improve the performance of

our algorithms significantly, as it is shown in the numerical study.

The literature on the estimation of the popular market risk measures, namely VaR and

CVaR, often refers to the algorithms for estimating the probability of high portfolio

losses, describing the corresponding transition process only briefly. Hence, we give a

consecutive discussion of this problem. Results necessary to construct confidence in-

tervals for both measures under the mentioned variance reduction procedures are also

given.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Why Market Risk Management?

In this thesis we concentrate on the problem of measuring a special kind of financial risk,

called the market risk. Such a risk is associated with changes in the value of a financial

position due to unforeseen changes in the value of underlying risk factors. As a result

of the market economics development, many financial institutions around the world are

exposed to such a risk. These include banks, institutions that deal with numerous risky

financial instruments, asset managers and investors. A regular person often takes some

market risk by deciding to buy a property or to save for a later day. It is therefore of

a great importance to understand and measure risks arising from adverse movements

in the prices of the financial instruments. Despite a young age of the risk management

field, the literature shows a wide variety of the different methods for quantifying and

controlling market risk. We refer an interested reader to Alexander (2008a,b,c,d), Dowd

(2002), Hull (2012a), McNeil et al. (2005) for a general overview of the corresponding

techniques and tools. There is, however, quite an obvious need in further research on

how to measure the market risk correctly and precisely, as many financial crises have

demonstrated.

1.1.2 What are the popular Market Risk measures?

During the last few decades there have been intensive discussions on how financial in-

stitutions should evaluate risk. Improvements are continuously being sought to oblige

financial institutions to cover taken risks by providing the regulatory capital. There is

1



2 Chapter 1. Introduction

no chance to eliminate the possibility of a financial institution failing, but the proba-

bility of default for a particular institution can be set to be small. By doing this, the

governments hope to create a stable economic environment. Hence the regulations have

played a major role in the development of risk measurement techniques.

The modern era of the bank regulation began in late 1980s with the 1988 Basel Accord,

known now as Basel I. Nowadays there are considerations of implementing an improved

modification of this document, known as Basel III. For those, who are interested in the

evolution of the bank regulations we suggest to read Hull (2012a) and literature cited

there in.

According to the implemented regulations, almost all financial institutions now use some

form of Value-at-Risk (VaR) as a measure of risk. VaR measures the worst expected

loss over a given time horizon at a given confidence level (see Jorion (2001)). More

precisely, losses greater than VaR are suffered only with a specified small probability.

We give a more rigorous mathematical definition of VaR later in Section 5.1. The greatest

advantage of VaR is that it summarizes the total exposure of an investment with respect

to market risk in a single, easy to understand number. No doubt this explains why VaR

has become an industry standard in finance for quantifying and controlling the risk of a

portfolio of securities.

There are, however, many disadvantages of the use of VaR. Perhaps the most striking

problem of VaR, is that it does not satisfy all desired properties of a risk measure. The

notion of the coherent risk measure, which satisfies all axioms that a ’good’ risk mea-

sure should have, is first introduced by Artzner et al. (1999). As it is not the topic of

this thesis to compare or investigate the particular risk measures and their properties,

we refer an interested reader to Artzner et al. (1999) for the original definitions of the

coherent risk measures and to Alexander (2008d), McNeil et al. (2005) for other mate-

rial regarding the definition of a coherent risk measure and some examples, as well as

counterexamples. At this point we merely remark that VaR fails to satisfy the property

of sub-additivity (see Artzner et al. (1999)), namely it can not be guaranteed that the

VaR of a combined position will not be greater than the sum of the VaR of positions

individually considered. This is a great disadvantage, as for some reasons (see Dowd

(2002)):

• If risks are sub-additive, then adding risks together would give us an overestimate

of combined risk, which can be used as a conservative estimate of a total risk.

Otherwise, the sum of risks is useless as a total risk measure;

• If regulators use non-sub-additive risk measures to set capital requirements, a

financial institution might tend to break risks up to reduce its capital requirements.
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This is because the sum of the capital requirements then can be less than the total

capital requirement.

Another drawback of VaR is that it tells us nothing about the size of the losses in the

event that VaR is exceeded.

The information about the average level of loss, given that the VaR is exceeded, can be

achieved from another market risk measure called Conditional Value-at-Risk (CVaR).

Artzner et al. (1999) suggest CVaR as an alternative to VaR which satisfies the axioms

of coherent risk measure. This measure has become less popular than VaR because it is

harder to understand and estimate. There are a number of variants on the CVaR with a

variety of names, such as expected tail loss (ETL), tail conditional expectation (TCE),

worst conditional expectation (WCE) and expected shortfall (ES) (see McNeil et al.

(2005)). They all coincide for continuous loss distributions, which is the case in this

thesis. The precise mathematical definition of CVaR is given in Section 5.1.

1.1.3 How to estimate popular Market Risk measures?

There are basically three main approaches of estimating VaR, which can also be applied

for estimation of CVaR. These are variance-covariance or parametric approach, historical

simulation and Monte Carlo (MC) simulation. More information about all these meth-

ods an interested reader can find in Alexander (2008d), Dowd (2002), Jorion (2001),

McNeil et al. (2005). Here, we briefly give an overview of these methods emphasizing

on their strong and week points.

We start with variance-covariance approach which is usually based on the assumption

of Gaussian distributed changes in risk factors. Under this assumption it is possible to

determine the distribution of the portfolio losses. The problem of estimating the VaR

then becomes a simple problem of estimating the quantile.

Historical simulation is a simple approach that requires relatively few assumptions about

the distribution of the changes in risk factors. It rather uses the historical information

about the past changes in risk factors to construct the distribution of a potential future

portfolio loss, out of which a simple percentile is taken as a VaR estimation. The

distribution of losses is constructed by evaluating the losses under the actual changes in

the risk factors during each of the last, say N , periods.

The MC simulation methodology is very similar to the historical simulation. The main

difference is that instead of taking observed changes in risk factors over the last N

periods, they are generated under some chosen distribution that is believed to adequately
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capture the real market. The distribution of losses is constructed by evaluating them

under the generated changes in the risk factors. VaR is then determined from this

distribution in a similar way.

The variance-covariance method has one clear advantage, that it is quick and easy to

compute. However, it has very limited applicability for several reasons. First of all it

is suitable only for linear portfolios or instruments with very small holding period, as it

uses the linearisation of the portfolio which otherwise can be too unreliable. The second

problem is an assumption of Gaussian distributed changes in risk factors. It is well

known, that more heavy-tailed distributions seem to fit the behavior of many markets

better than the normal distribution (see Hull (2012a)). Moreover, an assumption that all

historic data, including possibly complex dependencies between risk factors, are captured

by the covariance matrix is very limited, not mentioning the difficulty of their estimation.

Both simulation methods overcome most of the problems of the variance-covariance

method. They are extremely effective when any analytical approach is too unreliable.

Besides, they are good at dealing with path-dependency, heavy-tails, non-linearity, op-

tionality and multidimensionality. Historical simulation, in particular, is maybe the

most popular tool for many financial institutions due to its ease of implementation and

reporting. Its great advantage compared to MC method is that it does not require any

assumption about the distribution of the changes in risk factors. Historical simulation

takes information about underlying distribution from the past data. This is, however,

also a big disadvantage, in particular, when the past data is not complete or does not

represent the future market movements in a reliable manner. Although, such a data is

usually used for estimation of the parameters of assumed distribution for MC method-

ology, it is very easy to carry out a simulation under alternative assumptions in case of

MC method in contrast to historical simulation.

MC simulation is, therefore, maybe the most flexible tool not only for market risk

estimation, but also for a wide variety of other applications in finance. It is often a

method of a last resort when any analytic solution or approximation does not work,

or when other numerical methods fail. Its greatest disadvantage lies in the amount

of time necessary to resolve the problem with required precision, especially in case of

market risk estimation, when the revaluation of complex pricing models takes usually

too much time. Good variance reduction procedures have been, therefore, a focus of

recent research in order to speed up MC simulation, keeping the accuracy at the desired

level. The current thesis deals with the development of efficient and flexible variance

reduction procedures for estimating market risks. At first, such procedures are developed

in a more general framework, therefore, they can also have a particular value in other

financial applications.
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1.2 Outline

As we already mentioned, MC simulation often is the method of choice in many applica-

tions of finance. In case of market risk estimation, MC methods involve a high number

of usually time-costly portfolio revaluations. There are basically two possible ways to

speed up MC simulation, either to reduce the time necessary for portfolio revaluation

by applying some approximation or to reduce the number of simulations (and hence

revaluations) necessary for a specified precision by reducing the variance of an estima-

tor. Because an approximation of the portfolio losses may not always yield an accurate

VaR estimates (see e.g. Glasserman et al. (2002)), we find the second approach more

promising. Hence, we are interested in a good variance reduction procedure in order to

speed up MC estimation.

Variance reduction procedures have been a focus in the recent research of many authors.

Among them we would like to point out the research of Glasserman et al. (2000a,b).

The variance reduction techniques are presented there in case of Gaussian distributed

changes in risk factors. A substantial variance reduction rate, often of more than two

orders of magnitude, is achieved by using an exponential twisting (see Section 2.1.1)

combined with stratification (see Section 2.2) based on the Delta-Gamma approxima-

tion (see Section 3.1.2) of the loss function. The corresponding method is called Im-

portance Sampling with Stratification (ISS) algorithm (see Sections 4.2.1 and 4.2.2).

This approach is quite easy to understand and implement. However, it has very limited

applicability for few reasons. First of all, this method is based on the explicitly known

distribution of the Delta-Gamma approximation, which is found under the assumption

of Gaussian distributed changes in risk factors (see Section 3.3.1). In the case of general

distributions it might not be that easy or even not possible. But, even if it is possible to

derive the distribution of Delta-Gamma approximation in other cases, the exponential

twisting method is restricted to light-tailed densities (see Section 2.1.1). As changes

in risk factors on real financial markets typically have heavy tails (see Hull (2012a)),

ISS algorithm is generalized by Glasserman et al. (2002) to cover multivariate Student

t-distribution. This, however, gives a slightly more difficult modification of ISS algo-

rithm also based on the exact distribution of the Delta-Gamma approximation. Such a

distribution is found by Glasserman et al. (2002) and is presented in Section 3.3.2.

Summarizing the above mentioned research of Glasserman et al., a substantial variance

reduction rate is achieved in two special cases of Gaussian and Student t-distributed

changes in risk factors. As we mentioned before, the main advantage of MC simulation

compared to historical simulation lies in the ability to carry out simulation under alter-

native assumptions of the distribution of the changes in risk factors without an extra
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adaptation. However, it seems to be hard to generalize the ISS algorithm for other dis-

tributions due to the limited applicability of the exponential twisting and the necessity

to derive the distribution of the Delta-Gamma approximation.

The main purpose of this thesis is to derive a unique tool for variance reduction in the

context of market risk estimation. It should be easy to implement and understand. For

that purpose we present all methods involved in our successful implementation process.

It should also have the flexibility of the MC simulation, i.e. without an extra adaptation

of the algorithm, the user should be able to use the method for any distribution of

changes in risk factors, especially heavy-tailed distributions. Moreover, our algorithm

should give at least the same variance reduction rate as already known methods in the

cases for which they are developed.

The main idea of using an approximation of the portfolio losses to guide the selection

of an effective importance sampling distribution, that samples risk factors so that large

losses occur more often, is borrowed from Glasserman et al. In order to achieve desired

flexibility, one of the most recent importance sampling methods, namely Cross-Entropy

(CE) method (see Section 2.1.2), is used. This method has been successfully applied in

many application areas, however, up to our knowledge, not for market risk estimation.

A substantial variance reduction rate of the ISS algorithm can mainly be thankful to the

stratification part, that is possible only for a known distribution of the Delta-Gamma

approximation. Therefore, in Section 4.3.1 we suggest a simple, but very efficient variant

of stratification. This special stratification does not involve any information about the

distribution of the approximation of the portfolio loss function, hence, gives us an extra

flexibility of using any kind of approximation. As the numerical study in Chapter 6

shows, the precision of the Delta-Gamma approximation can be improved, leading to

an increase in the variance reduction rate of the corresponding algorithms. For further

increase in the performance of the proposed algorithms, in Section 4.4, we improve the

choice of the importance sampling density by using an approximation to an optimal

importance sampling density (see Section 2.1).

The new approach, developed in this thesis, has the following characteristics.

1. It is a flexible approach:

• it can be applied for any type of distribution of the risk factors, no matter

light- or heavy-tailed,

• any approximation of the portfolio loss function can be used,

• special stratification does not involve an extra adaptation of the algorithm

for different approximations of the portfolio losses,
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• original stratification still can be applied in cases when it is possible.

2. It is highly efficient, as numerical study in Chapter 6 shows:

• it outperforms the ISS algorithm in all examples and sometimes significantly,

• alternatives to Delta-Gamma approximation can significantly increase the

variance reduction rate,

• any improvement of the ISS algorithm can also be applied here, hence, gen-

erally, it has at least the same performance.

3. It is slightly more complicated than ISS in implementation, but all tools necessary

for a successful implementation process are presented here.

The first ideas of using the CE importance sampling method together with a special

stratification are introduced in the publication of mine (see Pupashenko (2014)). Further

improvements of the algorithm by using an approximation to the optimal importance

sampling density, as well as improved special stratification are presented in the joint

work with R. Korn (see Korn and Pupashenko (2014)).

The rest of the thesis is organized as follows. Chapter 2 gives a general overview of the

variance reduction approaches that became useful in particular applications of market

risk estimation, namely importance sampling and stratification methods. In Chapter 3

we consider some approximations of the portfolio loss function which we further use in

the numerical study. Similarly to the ISS algorithm our approach originally estimates

the probability of high portfolio losses. This is a more general problem than estimating

the VaR or CVaR and can also be applied in many other applications. Sections 4.1.1,

4.1.2, 4.2.1 and 4.2.2 give an overview of the methods introduced by Glasserman et al.

The rest of the sections in Chapter 4 are devoted to a step by step construction of the

new approaches and contain algorithms of all developed methods. The Appendices A

and B give an overview of helpful methods for the implementation of the corresponding

algorithms. In Chapter 5 we start from the definitions of VaR and CVaR in Section

5.1. Then, in Section 5.2 we discuss how to perform the variance reduction of VaR

and CVaR estimation with the help of the algorithms introduced in Chapter 4. The

confidence intervals of the corresponding estimates are also discussed in Section 5.3.3.

Chapter 6 performs a deep numerical study in light- and heavy-tailed cases in order to

compare the performance of the new approaches with those given by Glasserman et al.

Pricing formulas, necessary for the corresponding examples are given in Appendix C.

Finally, Chapter 7 concludes.





Chapter 2

Variance Reduction of Monte

Carlo simulation

As we already mentioned in Chapter 1, the main disadvantage of the MC simulation

method is its slow convergence. A high number of simulations is necessary in order

to resolve the problem with the required precision. In case of market risk estimation

this problem becomes even more crucial because of the, usually time-costly, portfolio

revaluations.

The aim of the variance reduction is to produce an alternative estimator to MC with

much smaller standard deviation of the error. Then, achieving the desired accuracy in

resolving the problem requires smaller number of simulations, and, therefore, less time.

One should, however, carefully develop such alternative estimators in the sense, that an

additional effort in setting up and performing a variance reduction approach should be

less significant than the corresponding reduction in variance. More precisely, one should

always question himself, whether it is worth using a variance reduction in a particular

application or not.

One of the most effective and widely applicable technique for variance reduction of MC

simulation is control variates method. It takes advantage of correlation with an auxiliary

variable, for which the quantity of interest is known or can be easily estimated. In

the context of the probability of high portfolio losses estimation an approximation of

the loss function can play the role of such an auxiliary variable. The corresponding

variance reduction based on the Delta-Gamma approximation and control variates is

given by Glasserman (2004). We have tried to apply the control variate in the context

of our new methods, also in combination with other variance reduction approaches.

However, similar to control variates based method from Glasserman (2004), we achieved

variance reduction rate significantly smaller then of ISS or our methods. Therefore, we

9
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do not present methods based on control variates here. Besides, this method showed a

deterioration of performance with the decrease of the VaR level.

Another method, which is typically used in rare event simulations, namely importance

sampling, reduces variance by changing the probability measure of the generated quan-

tity in such a way, that the event of interest occurs more often. The correct estimator

is then achieved with the help of the so called likelihood ratio factors.

Finally, stratification reduces the variance by sampling and estimating the required

quantity from different parts of some partition of the sample space. The sample can

then be reallocated, to reduce the variance in the parts where it is largest.

In this chapter we give a general overview of importance sampling and stratification

methods. Their combination showed a great variance reduction in a number of appli-

cations and, as numerical study in Chapter 6 shows, also for market risk estimation.

Here we bring together the material from the books of Asmussen and Glynn (2007),

Chan and Kroese (2012), Chan et al. (2011), Glasserman (2004), Korn et al. (2010) and

Rubinstein and Kroese (2004, 2008). Since the corresponding theory is a standard ma-

terial of most of these books, we will often not explicitly refer to the literature.

Before coming directly to variance reduction procedures, we start here with a formulation

of the MC method for estimating the mean of some measurable real-valued function of

a random vector. The following applies to the whole thesis:

Assumption 2.1. A parametric absolutely continuous case is considered. More pre-

cisely, the random vector of interest has the joint density from some parametric family

of densities.

In order to determine a set of consistent notations, during this chapter by X we denote a

random vector from Assumption 2.1 and by G = {f(x; v),v ∈ V} its parametric family

of densities. The joint density of X is denoted as f(x; u) by fixing the original vector

parameter u.

We are interested in estimating the following mean:

l = E[H(X)] =

∫
H(x)f(x; u)dx, (2.1)

for some measurable real-valued function H.

Definition 2.2. By generating a sample X1, . . . ,XN of independent identically dis-

tributed random vectors (often simply called sample) with joint density f(x; u) and
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some natural number N , an unbiased MC estimator of l is defined as follows:

l̂ =
1

N

N∑
i=1

H(Xi). (2.2)

For further reading regarding MC estimator we refer to Korn et al. (2010).

2.1 Importance Sampling

Importance sampling attempts to reduce the variance by changing the probability mea-

sure under which the underlying random vector is generated. The main idea is to change

the corresponding distribution in such a way, that the values which contribute the most

(and are, therefore, most ’important’) to the quantity of interest have higher probability.

For every probability density g(x) such that the following holds true:

g(x) = 0⇒ H(x)f(x; u) = 0, (2.3)

we have the following representation of the mean of interest:

l = E[H(X)] =

∫
H(x)f(x; u)dx =

=

∫
H(x)

f(x; u)

g(x)
g(x)dx = Eg

[
H(X)

f(X; u)

g(X)

]
,

where Eg denotes the expectation w.r.t. the density g(x).

Definition 2.3. By generating a sample X1, . . . ,XN of independent identically dis-

tributed random vectors with joint density g(x), which is called importance sampling

density, and some natural number N , an unbiased importance sampling estimator of l

is defined as follows:

l̂ =
1

N

N∑
i=1

H(Xi)
f(Xi; u)

g(Xi)
. (2.4)

The ration of densities f(x;u)
g(x) is called likelihood ratio.

Clearly, the above procedure leaves us a huge amount of freedom, i.e. we can choose

any density function g(x) which satisfies (2.3). Therefore, the next question arises, how

to chose the important sampling density so that the importance sampling estimator has

smaller variance than the MC estimator? Since both estimators are unbiased, instead of

comparing their variances it suffices to compare second moments. The second moment



12 Chapter 2. Variance Reduction of Monte Carlo simulation

of the importance sampling estimator reads as follows:

Eg

[(
H(X)

f(X; u)

g(X)

)2
]

= E
[
H2(X)

f(X; u)

g(X)

]
. (2.5)

It is clear, that depending on the choice of g(x), it might be larger or smaller than

the second moment E
[
H2(X)

]
of the MC estimator. Therefore, successful variance

reduction with the help of importance sampling procedure lies in the art of selecting

an effective importance sampling density. The following theorem gives the best possible

change of measure in a special case under which the variance of an importance sampling

estimator is minimized.

Theorem 2.1. Consider the special case in which the function H(x) is nonnegative.

Define the density g∗(x) in the following way

g∗(x) =
H(x)f(x; u)

l
. (2.6)

Then the importance sampling estimator (2.4) under the choice of the importance sam-

pling density g(x) = g∗(x) provides a zero-variance (smallest possible variance) estima-

tor of l. The density g∗(x) is, hence, called optimal importance sampling density.

Proof. Note, that in the case of a nonnegative function H(x) the function g∗(x) is indeed

density with normalizing constant l according to (2.1).

Since H(x)f(x;u)
g∗(x) ≡ l is a constant regardless of x, the importance sampling estimator

(2.4) is also a constant, namely l̂ = l. Such an estimator obviously has zero-variance.

In general, the implementation of the optimal importance sampling density g∗(x) as per

(2.6) is problematic, because we do not know its normalizing constant l. This is the value

we are actually trying to estimate. However, in a special case, there are some methods

for sampling from such a density without knowledge of the normalizing constant. These

methods are time-consuming and not highly precise, but they help in the derivation

of our methods. Such a special case is described in the Remark 2.2. Corresponding

sampling methods are called Markov Chain Monte Carlo (MCMC) methods and are

briefly presented in Appendix A. For more information on these methods we refer an

interested reader to, e.g., Gilks et al. (1995).

Remark 2.2. If H(x) is an indicator function of some set, then the optimal importance

sampling density is the original density conditioned on the set. More general, when

H(x) = IA(G(x)) for some set A from the range (set of outputs) of some function G(x),

then the optimal importance sampling density is precisely the conditional density of X

given G(X) ∈ A (assuming that P(G(X) ∈ A) > 0).
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An immediate consequence of the Remark 2.2, is that the importance sampling density

should approximate the corresponding conditional density. This, in particular, means

that, under the importance sampling density, the event {G(X) ∈ A} should be more

likely than under the original density.

We, further, present some easy and popular methods on how to obtain an importance

sampling density, that became useful in deriving the variance reduction procedures for

market risk estimation discussed in this thesis. We use (and, therefore, present) all these

methods only for estimating the special case of an expectation according to the following

assumption.

Assumption 2.4. Further in this chapter we are interested in estimating the mean

(2.1) in the special case of the function H,

H(x) = I(γ,+∞)(G(x)),

for some real level γ and real-valued function G. In this case the problem of estimating

the mean (2.1) simplifies to the following problem of estimating the tail probability:

l = P(G(X) > γ). (2.7)

2.1.1 Exponential Twisting method

The main idea of the following procedure is to find the importance sampling change

of measure among the exponential changes of measure. This explains the name of the

method. In order to define this change of measure, we first present some extra material.

We indicate Glasserman (2004), Korn et al. (2010) as the most descriptive references on

the exponential twisting.

Definition 2.5. For any vector θ of the same dimension as a random vector X the

function

φ(θ) = E[eθ
TX] =

∫
eθ

Txf(x; u)dx

is called moment generating function.

Definition 2.6. For any vector θ of the same dimension as a random vector X the

function

φ̂(θ) = E[eiθ
TX] = φ(iθ)

is called characteristic function.

Definition 2.7. For any vector θ of the same dimension as a random vector X the

function

ψ(θ) = logE[eθ
TX] = log φ(θ)
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is called cumulant generating function.

Let Θ = {θ : ψ(θ) <∞} and suppose that Θ is nonempty. For each θ ∈ Θ, set

fθ(x; u) = eθ
Tx−ψ(θ)f(x; u). (2.8)

Definition 2.8. Each fθ(x; u) from (2.8) is a probability density, and the family

{fθ(x; u),θ ∈ Θ} is called exponential family of densities. The transformation from

f(x; u) to fθ(x; u) is called exponential twisting or exponential tilting or simply expo-

nential change of measure.

The cumulant generating function ψ(θ) carries important information about the ex-

ponential change of measure fθ(x; u). In particular, ∇ψ(θ) is the mean of fθ(x; u).

Indeed:

∇ψ(θ) =
∇φ(θ)

φ(θ)
=

E[Xeθ
TX]

E[eθ
TX]

= E[Xeθ
TX−ψ(θ)] = Eθ[X],

where Eθ is the expectation w.r.t. the density fθ(x; u). Therefore, exponential twisting

with parameter θ shifts the mean of X to the vector ∇ψ(θ). When such a vector

can easily be calculated, an appropriate mean shift can guide our choice of the twisting

parameter θ, and therefore importance sampling density, to achieve a successful variance

reduction.

In the special case of our interest (under Assumption 2.4) it is possible to derive an

appropriate choice of the twisting parameter. The corresponding parameter is chosen

such that the variance of the exponential twisting estimator (the importance sampling

estimator (2.4) with exponential change of measure (2.8)) is minimized. It is equivalent

to the minimization of the second moment of an estimator due to unbiasedness. But fist

we have to adapt the notations to the problem (2.7).

Now, for real parameter θ, by φ(θ), φ̂(θ) and ψ(θ) we denote the moment generating,

characteristic and cumulant generating functions of the random variable G(X) in a

similar way to Definitions 2.5, 2.6 and 2.7. Similarly to (2.8), the exponential change of

measure in this case is defined as

fθ(x; u) = eθG(x)−ψ(θ)f(x; u). (2.9)

for each θ ∈ Θ = {θ : ψ(θ) <∞}.

Instead of minimizing directly the second moment of an exponential twisting estimator

in this case, it is easier to minimize its upper bound under the assumption of a positive

twisting parameter θ (twisting parameter is under our choice, therefore, we can assume
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that it is positive),

Eθ
[
e−2θG(X)+2ψ(θ)I(γ,+∞)(G(X))

]
= E

[
e−θG(X)+ψ(θ)I(γ,+∞)(G(X))

]
≤ e−θγ+ψ(θ).

The minimum of the upper bound e−θγ+ψ(θ) is achieved by minimizing ψ(θ)− θγ w.r.t.

θ. Since the function ψ(θ) is convex (general property of cumulant generating function),

the minimum is a root of the following equation:

ψ′(θ) = γ,

which corresponds to the shift of the mean to the level γ.

In order to implement the exponential twisting algorithm, we have to sample from

the exponential change of measure (2.9). The choice of the corresponding sampling

procedure depends on the function G, which is given by the particular application.

2.1.2 Cross - Entropy and Variance Minimization method

In this section we discuss the main ideas behind one of the most recent importance

sampling procedures, namely CE algorithm. This method derives its name from the

Kullback-Leibler cross-entropy, which is used as a measure of ’distance’ between two

densities. Such a measure is not a distance in a formal way, because, for example, it is

not symmetric, as one can easily see from (2.10). The main advantage of using such a dis-

tance, as we will see, is that the corresponding importance sampling algorithm often has

simple and explicit solutions for the involved optimization problems. Many other poten-

tial measures of distance are being applied in a similar setting by Pupashenko (2011). A

comparison of the methods, however, showed obvious advantages of the Kullback-Leibler

cross-entropy in the derivation of the CE importance sampling algorithm. Among the

literature on CE algorithm we would like to emphasize on Rubinstein and Kroese (2004,

2008) where authors give a descriptive derivation of the method, as well as examples of

different applications in which it has been successfully applied.

Definition 2.9. The Kullback-Leibler cross-entropy between two densities g(x) and

h(x) is defined as follows:

D(g, h) =

∫
g(x) log

g(x)

h(x)
dx =

∫
g(x) log g(x)dx−

∫
g(x) log h(x)dx. (2.10)

By Jensen’s inequality for the convex function ’− log(·)’ the following holds true,

D(g, h) = Eg
[
− log

h(Y)

g(Y)

]
≥ − logEg

[
h(Y)

g(Y)

]
= − log 1 = 0,
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where the random vector Y is assumed to have density g(x) and Eg denotes the expecta-

tion w.r.t. this density. Therefore, D(g, h) ≥ 0, with equality if and only if g(x) = h(x)

for all x. For more details see, e.g. Rubinstein and Kroese (2008).

The main idea of the CE algorithm is to choose the importance sampling density with

the minimum Kullback-Leibler cross-entropy to the optimal importance sampling density

g∗(x) from (2.6). If the optimization is performed over all possible densities, then the

solution is g∗(x) itself, which is useless from practical point of view as described in

Section 2.1. The idea of the CE algorithm is to restrict the choice of the importance

sampling density by optimizing only over the parametric family G = {f(x; v),v ∈ V} of

the original density f(x; u).

We remind the reader, that we deal with the special case of estimating the tail proba-

bility according to Assumption 2.4. In such a case there exists a special modification of

the CE algorithm, in literature also called adaptive, multi-level or CE method for rare

event simulation (see Rubinstein and Kroese (2004)). In this chapter we review par-

ticularly this modification and, for simplicity, call it CE algorithm. The corresponding

minimization problem of interest reads in such a case as follows:

min
v∈V
D(g∗(·), f(·; v)),

where under Assumption 2.4 we have:

g∗(x) =
I(γ,+∞)(G(x))f(x; u)

l
. (2.11)

Definition 2.10. In the setting of CE algorithm, the vector parameter v is called

reference parameter, and the solution to the above stated minimization problem, denoted

as v∗, is called an optimal reference parameter.

If we assume that the optimal reference parameter v∗ is known, the corresponding CE

estimator is then an importance sampling estimator (2.4) with importance sampling

density being f(x; v∗). In order to define the CE algorithm, it is left to describe how to

find an optimal reference parameter.

Using the definition of Kullback-Leibler cross-entropy (2.10) and the definition of the

optimal importance sampling density g∗(x) from (2.11), the above minimization prob-

lem:

min
v∈V
D(g∗(·), f(·; v)) = min

v∈V

(∫
g∗(x) log g∗(x)dx−

∫
g∗(x) log f(x; v)dx

)
,
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can be easily simplified to the following maximization problem:

max
v∈V

∫
I(γ,+∞)(G(x))f(x; u) log f(x; v)dx =

= max
v∈V

Eu

[
I(γ,+∞)(G(X)) log f(X; v)

]
.

In order to define an adaptive updating of the reference parameter it is useful to even

further modify the optimization problem in the following way:

max
v∈V

Ew

[
I(γ,+∞)(G(X))W (X; u,w) log f(X; v)

]
,

where

W (x; u,w) =
f(x; u)

f(x; w)

is a likelihood ration of densities f(x; u) and f(x; w).

In most situations, the above optimization problem is hard to solve analytically as it

might be hard or impossible to find the corresponding expectation. However, in order

to estimate the optimal reference parameter one can use the following optimization

stochastic counterpart for some natural number M :

max
v∈V

1

M

M∑
i=1

I(γ,+∞)(G(Xi))W (Xi; u,w) log f(Xi; v), (2.12)

where X1, . . . ,XM is a sample from density f(x; w). According to Rubinstein and Kroese

(2004), in typical applications the function under maximization (w.r.t. the argument v)

in (2.12) is convex and differentiable w.r.t. v, in which case the solution to (2.12) can

be readily obtained by solving (w.r.t. v) the following system of equations:

1

M

M∑
i=1

I(γ,+∞)(G(Xi))W (Xi; u,w)∇ log f(Xi; v) = 0. (2.13)

The advantage of such an approach is that the solution to (2.13) can be often obtained

analytically. In particular, this happens for the so called exponential family of densities

(see Rubinstein and Kroese (2004, 2008)). It is not important to understand the def-

inition of this family, we rather mention here, that exponential families include many

common distributions, such as the normal, exponential, gamma, chi-squared, beta, Pois-

son and many others.

An estimate, achieved from (2.12) or (2.13) gives us a procedure of a reference parameter

update in order to estimate the optimal reference parameter. More precisely, we start

from w = u, then estimate v̂ via (2.12) or (2.13) and plug it in the same estimators again
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as w. This procedure continues until some stopping criterion is reached (for details see

Rubinstein and Kroese (2004, 2008)).

Remark 2.3. It is important to understand that the quality of the optimal reference

parameter estimator via (2.12) or (2.13) depends on the sample size M , which from

the time efficiency point of view should be kept as small as possible. Therefore, if the

probability of an event {G(X) > γ} is small under the density f(x; w) (this is usually

the case especially for the starting parameter w = u), most of summands in (2.12) or

(2.13) are zeros, leading to a high variance of the reference parameter estimate. In order

to keep sample size M small, an adaptive updating of the level in parallel with updating

the reference parameter is introduced by Rubinstein and Kroese (2004, 2008).

The CE algorithm is initialized by the choice of a not very small rarity parameter ρ

(typically between 0.01 and 0.1) and by setting w = u. Next, an intermediate level

smaller than the original γ is defined, such that under the density f(x; w) = f(x; u),

the probability of G(X) greater then this level is at least ρ. Under such an intermediate

level a reference parameter is estimated. The estimated reference parameter is then taken

as w and the procedure is repeated until the intermediate level reaches the original level

γ. In other words, in each iteration step, the CE algorithm consists first of updating the

level and then updating the reference parameter. For more details on both phases we

refer the reader to Rubinstein and Kroese (2004, 2008). We further summarize all said

above in the following CE algorithm:

Algorithm 2.1 (CE).

1. Define v̂0 = u and set j = 1. Fix input parameters ρ, M and N .

2. Generate a sample X1, ...,XM from the density f(x; v̂j−1) and compute the sample

(1− ρ)− quantile γ̂j of a sample G(X1), ..., G(XM ). If γ̂j > γ, set γ̂j = γ.

3. Using the same sample X1, ...,XM , find an estimate from the adaptive optimization

problem in the form of (2.12) or (2.13),

max
v∈V

1

M

M∑
i=1

I(γ̂j ,∞)(G(Xi))W (Xi; u, v̂j−1) log f(Xi; v), (2.14)

and denote the solution as v̂j.

4. If γ̂j < γ, set j = j + 1 and reiterate from step 2, else set an optimal reference

parameter estimate v̂∗ = v̂j and proceed with step 5.
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5. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(γ,∞)(G(Xi))W (Xi; u, v̂
∗), (2.15)

where X1, ...,XN is a sample generated from the density f(x; v̂∗).

Remark 2.4. As we mentioned at the beginning of this chapter, the additional effort

for setting up and performing a variance reduction approach (in case of Algorithm 2.1

these are steps 1-4) should be kept as small as possible. The corresponding efficiency

of the CE algorithm depends, therefore, on the choice of the rarity parameter ρ and the

sample size M for the reference parameter update. The rarity parameter influences the

number of iterations of steps 2-4. If ρ is chosen to be large, then the intermediate level

γ̂j converges slowly towards the true level γ, leading to a higher number of iterations.

If it is chosen to be small, the optimization problem (2.14) has more zero summands,

forcing us to increase the sample size M . Therefore, ρ is usually chosen between 0.01

and 0.1. Moreover, if the probability under estimation l is not very small (larger than

0.001), then the value of 0.1 is preferred.

The sample size N is responsible directly for the accuracy of the estimator l̂, whereas

the sample size M is responsible for the accuracy of the optimal reference parameter

estimator. Therefore, usually a much smaller sample size M should be chosen than the

final sample size N . Our choices on the corresponding parameters in particular examples

are discussed in Chapter 6.

As we already mentioned before, the main advantage of CE algorithm is that the

optimization problem (2.14) can be often solved analytically. In some applications,

where this is not the case, the so called Variance Minimization algorithm (VM) (see

e.g. Rubinstein and Kroese (2004, 2008)) can become more handy. VM algorithm is

very similar to CE algorithm. It only differs in the step of the reference parameter up-

date. The optimization problem for the CE reference parameter update is based on the

minimization of the Kullback-Leibler cross-entropy to the optimal importance sampling

density. VM algorithm minimizes the variance of the importance sampling estimator di-

rectly. More precisely, according to (2.5) the parametric variance minimization problem

reads as follows:

min
v∈V

Eu

[
I(γ,+∞)(G(X))W (X; u,v)

]
.

Similarly to CE algorithm, in order to define an adaptive updating of the reference

parameter the following modification is helpful:

min
v∈V

Ew

[
I(γ,+∞)(G(X))W (X; u,v)W (X; u,w)

]
.
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For some natural number M , the corresponding optimization stochastic counterpart can

be written as:

min
v∈V

1

M

M∑
i=1

I(γ,+∞)(G(Xi))W (Xi; u,v)W (Xi; u,w), (2.16)

where X1, . . . ,XM is a sample from density f(x; w). The analogue to (2.13) is, therefore,

of the form:

1

M

M∑
i=1

I(γ,+∞)(G(Xi))∇W (Xi; u,v)W (Xi; u,w) = 0. (2.17)

This all summarizes in VM algorithm, which can be achieved from Algorithm 2.1 by

substituting the corresponding reference parameter update rules (2.12) and (2.13) with

(2.16) and (2.17) respectively. In more details,

Algorithm 2.2 (VM).

1. Define v̂0 = u and set j = 1. Fix input parameters ρ, M and N .

2. Generate a sample X1, ...,XM from the density f(x; v̂j−1) and compute the sample

(1− ρ)− quantile γ̂j of a sample G(X1), ..., G(XM ). If γ̂j > γ, set γ̂j = γ.

3. Using the same sample X1, ...,XM , find an estimate from the adaptive optimization

problem in the form of (2.16) or (2.17),

min
v∈V

1

M

M∑
i=1

I(γ̂j ,∞)(G(Xi))W (Xi; u,v)W (Xi; u, v̂j−1), (2.18)

and denote the solution as v̂j.

4. If γ̂j < γ, set j = j + 1 and reiterate from step 2, else set an optimal reference

parameter estimate v̂∗ = v̂j and proceed with step 5.

5. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(γ,∞)(G(Xi))W (Xi; u, v̂
∗), (2.19)

where X1, ...,XN is a sample generated from the density f(x; v̂∗).

Remark 2.4 applies also to Algoritm 2.2. For a comparison of the CE and VM methods

we refer to Chan et al. (2011), where authors conclude that both methods prescribe the

same importance sampling parameters, at least asymptotically.



Chapter 2. Variance Reduction of Monte Carlo simulation 21

2.1.3 Improved Cross - Entropy method

CE algorithm is a flexible adaptive importance sampling procedure that has been suc-

cessfully applied to a wide variety of applications. However, Chan and Kroese (2012)

mentioned, that in some high dimensional settings, CE algorithm may give unreliable

results. This is due to the so called degeneracy of the likelihood ratio estimator problem,

which appears in the reference parameter update step (2.12), (2.13), (2.16) or (2.17).

This problem is a tendency of the likelihood ratio to attain a very skewed distribution

with a concentration in values close to zero, but also attaining very large values with

a small, but non-zero probability (see Rubinstein and Kroese (2008)). It can be solved

by increasing the sample size M necessary for the reference parameter update step,

however, leading to a substantial increase of the computational time, especially in high

dimensions. A first attempt on how to deal with the curse of dimensionality of the likeli-

hood ratios in the CE algorithm is made by Rubinstein and Glynn (2009). We, however,

are more interested in simpler and more efficient variations of the CE algorithm, whose

performance does not suffer from the increase in the dimension of the problem, namely

the Improved Cross-Entropy (ICE) algorithm, that is given by Chan and Kroese (2012).

In this section we briefly present this method.

The ICE method is motivated by the investigation, that an estimator v̂∗ obtained from

CE algorithm is not a good estimator of v∗ in some high dimensional settings. Therefore,

instead of solving the reference parameter update step (2.12), (2.13),(2.16) or (2.17)

sequentially to obtain v̂∗, an alternative estimator is considered. The proposed estimator

does not involve any likelihood ratio (hence can not suffer from the degeneracy of the

likelihood ratio estimator problem), and can be obtained in one step.

Recall that the optimal reference parameter v∗ is originally a solution to the following

problem,

max
v∈V

Eu

[
I(γ,+∞)(G(X)) log f(X; v)

]
.

The corresponding estimator v̂∗ of the optimal reference parameter v∗ can be directly

achieved from the corresponding sample counterpart:

max
v∈V

1

M

M∑
i=1

I(γ,+∞)(G(Xi)) log f(Xi; v),

for some natural number M and sample X1, . . . ,XM from the density f(x; u). The

reason why this is not practical and why an adaptive procedure in the CE algorithm

is proposed, is that this estimator has high variance due to the fact that most of the

indicators in the sum are zeros. However, one can overcome this difficulty by drawing

a sample from an optimal importance sampling density g∗(x). Assuming that this is
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possible, the corresponding maximization problem of the estimator takes the form:

max
v∈V

1

M

M∑
i=1

I(γ,+∞)(G(Xi))
f(Xi; u)

g∗(Xi)
log f(Xi; v),

and can be further simplified as follows:

max
v∈V

1

M

M∑
i=1

log f(Xi; v),

where X1, . . . ,XM is a sample from the density g∗(x). The main advantage of this

optimization problem is that it does not involve any indicator function or likelihood

ratio. Hence, beside a substantial computational saving in high-dimensional settings, it

gives a more robust and numerically stable solution. Generating draws from optimal

importance sampling density g∗(x) (conditional density) requires additional effort in

setting the algorithm, as well as extra computational time, but with the advent of

MCMC methods this problem is well studied. For a review of useful MCMC methods

for sampling from the conditional distribution we refer the reader to Appendix A.

All said above summarizes to the following ICE algorithm:

Algorithm 2.3 (ICE).

1. Fix input parameters M and N .

2. Generate a sample X1, ...,XM from the density g∗(x) given by (2.11) by means of

some chosen MCMC method.

3. Using this sample, find an estimate from the optimization problem,

max
v∈V

1

M

M∑
i=1

log f(Xi; v), (2.20)

and denote the solution as v̂∗.

4. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(γ,∞)(G(Xi))W (Xi; u, v̂
∗), (2.21)

where X1, ...,XN is a sample generated from the density f(x; v̂∗).

Authors in Chan and Kroese (2012) suggest the Gibbs sampler (see e.g. Gilks et al.

(1995)) as MCMC method for sampling from the conditional density. This method

needs to be adjusted for different models of the changes in risk factors. For the case of



Chapter 2. Variance Reduction of Monte Carlo simulation 23

Student t-distributed changes in risk factors it is done in Chan and Kroese (2012). In

order to achieve the desired flexibility for our methods, we have slightly modified step 2

in Algorithm 2.3. Some more flexible MCMC methods are proposed in Appendix A.

2.2 Stratification

The main principle underlying stratification (in literature also called stratified sampling)

is to subdivide the set of possible outcomes of H(X) in smaller subsets that mirror the

properties of H(X) as much as possible (see Glasserman (2004), Korn et al. (2010)).

The indicator of such properties does not have to be the same random variable H(X).

We denote it as some other random vector Y, which has to satisfy the Assumption 2.11.

Assumption 2.11. The random vector Y satisfies:

• the probability distribution of Y is known and easy to calculate,

• it is easy to sample H(X) conditional on Y.

Definition 2.12. Such a random vector Y, that satisfies Assumption 2.11, is called

stratification variable.

In order to formulate the stratification procedure one has to define for some natural

number K the strata A1, . . . , AK to be disjoint subsets of all possible outcomes of the

random vector Y, such that P(Y ∈
⋃K
i=1Ai) = 1. Then the mean under estimation

(2.1) can be written as follows:

l = E[H(X)] =
K∑
i=1

P(Y ∈ Ai)E[H(X)|Y ∈ Ai] =
K∑
i=1

piE[H(X)|Y ∈ Ai], (2.22)

where pi = P(Y ∈ Ai) are known by Assumption 2.11.

In order to define the stratified estimator via (2.22) it is left to estimate K different con-

ditional expectations E[H(X)|Y ∈ Ai] by the MC method with sample sizes N1, . . . , NK ,

correspondingly. More precisely the estimator reads as follows:

l̂ =

K∑
i=1

pi
1

Ni

Ni∑
j=1

H(Xij), (2.23)

where (Yij ,Xij), j = 1, . . . , Ni is a sample generated from the conditional distribution

of (Y,X) given Y ∈ Ai for i = 1, . . . ,K. For the ease of comparison with the MC

estimator (2.2) we assume that N = N1 + . . .+NK .
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Definition 2.13. The corresponding set of sample sizes N1, . . . , NK for each stratum

A1, . . . , AK , such that N = N1 + . . .+NK , is called allocation.

It should be clear now, that the use of the stratification (2.23) involves the following

issues:

• choosing the stratification variable Y, the number of strata K, strata A1, . . . , AK ,

and the allocation N1, . . . , NK ,

• sampling from the conditional distribution of (Y,X) given Y ∈ Ai for i = 1, . . . ,K.

The choice of the stratification variable, the number of strata and strata itself depends

highly on the particular application and is later discussed in this thesis in certain al-

gorithms. Regarding sampling from a conditional distribution we refer the reader to

Appendix A. Further in this section we give some examples of an allocation, such that

a usually substantial variance reduction rate is achieved.

First, we need to introduce some more notations across this section. For Xij having the

distribution of X given Y ∈ Ai for i = 1, . . . ,K, let

µi = E[H(Xij)] = E[H(X)|Y ∈ Ai],

σ2
i = Var[H(Xij)] = Var[H(X)|Y ∈ Ai].

We first show, that the estimator (2.23) is unbiased, because

E[l̂] =
K∑
i=1

pi
1

Ni

Ni∑
j=1

E[H(Xij)] =
K∑
i=1

piµi = E[H(X)] = l,

where we have used the Bayes’ formula for expectations for a collection of mutually

exclusive and exhaustive events A1, . . . , AK .

Due to the conditional independence of subestimators, the variance of the stratified

estimator (2.23) is

Var[l̂] =

K∑
i=1

p2
i

1

N2
i

Ni∑
j=1

Var[H(Xij)] =

K∑
i=1

p2
i

σ2
i

Ni
=

K∑
i=1

pi
Ni
piσ

2
i .

The variance of the MC estimator (2.2) with the same total sample sizeN = N1+. . .+NK

equals Var[H(X)]/N and, due to the Bayes’ formula for variances of the collection of

mutually exclusive and exhaustive events A1, . . . , AK , satisfies the following:

Var[H(X)]

N
=

E[Var[H(X)|Y]] + Var[E[H(X)|Y]]

N
≥ E[Var[H(X)|Y]]

N
=

K∑
i=1

1

N
piσ

2
i ,
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with a strict inequality if E[Var[H(X)|Y]] is not almost surely constant. In such a case,

clearly an allocation of the form Ni = Npi, under the assumption that all Ni are natural

numbers, corresponds to a stratification with variance strictly smaller than the one of

the MC method. Such an allocation is called proportional allocation. For more details

on the stratification we again refer to Glasserman (2004), Korn et al. (2010).





Chapter 3

Approximations of the Portfolio

Loss function

As mentioned in Section 1.1, the MC algorithm for market risk estimation is often a

method of choice for complex non-linear portfolios, that usually contain a lot of different

options. These portfolios are, therefore, of particular interest for the algorithms proposed

in Chapter 4. The main problem of the MC method in such a case is that for high

precision it involves a great number of time-costly portfolio revaluations. Therefore, the

variance reduction approaches presented in Chapter 2 are mandatory. Although they

may be applied directly to the problem, the additional effort in setting up an estimator

may be huge because of the same necessity of a large number of time-costly portfolio

revaluations. Therefore, as we already mentioned in Section 1.2, instead of using the

variance reduction methods directly, an approximation of the portfolio loss function is

used in order to guide the selection of an importance sampling density. In this chapter

we further present some approximations of the portfolio losses, which became popular,

especially for option portfolios.

We start by introducing some notations, which apply also to the following chapters.

First, we fix the starting time t. By S = S(t) we denote a d-dimensional vector of market

prices and rates (risk factors) at time t. We keep the simple notation S, omitting t, for

starting prices, because the starting time t is fixed. Since we are interested in portfolio

losses over some time, by ∆t we denote the risk-measurement horizon and by ∆S the

corresponding change in market prices over this horizon, i.e. from time t to time t+ ∆t.

By V (S, t) we denote the portfolio value at time t and market price S at the same time

t. Since we are interested in the losses over the time horizon ∆t only, the intermediate

values of the portfolio are not important, and the final value of the portfolio at time

t+ ∆t is hence denoted by V (S + ∆S, t+ ∆t). The corresponding portfolio losses over

27
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the time horizon ∆t are written via changes in portfolio value ∆V (simplified notation

of ∆V (∆S,∆t)) and denoted by

L(∆S,∆t) = −∆V (∆S,∆t) = V (S, t)− V (S + ∆S, t+ ∆t).

In general, the portfolio loss is a function of two parameters: the vector ∆S and the time

horizon ∆t. However, in the case of market risk estimation, the time horizon is usually

fixed, hence the simplified notation L(∆S) is often used when the dependency on the

time horizon does not have to be shown. We should also note that ∆S is a random

vector and, therefore, L(∆S) is random.

A very simple idea is used behind all approximations mentioned in this chapter. A

common Taylor series expansion is a good approximation to any function, so also for

the changes in portfolio value ∆V . The portfolio loss function simply represents the

negative changes in the portfolio value ∆V . All approximations given here are Taylor

series expansions until the specific order. The Taylor series expansion for the portfolio

value V (S+ ∆S, t+ ∆t) around the starting vector (S, t) can be written in the following

form:
∞∑

m0=0

∞∑
m1=0

. . .

∞∑
md=0

∆tm0∆Sm1
1 . . .∆Smdd

m0!m1! . . .md!

∂m0+m1+...+mdV (S, t)

∂tm0∂Sm1
1 . . . ∂Smdd

. (3.1)

One should note, that the term with all mi = 0 is simply V (S, t). Therefore, it is easy

to get a series expression for ∆V or L(∆S,∆t) out of (3.1).

In the following sections we present some approximations commonly used in applications

of market risk estimation. The Greek letters in their names denote the fact that these

approximations are based on the derivatives of the portfolio values. These derivatives

are usually termed by Greek letters and called, therefore, Greeks. There is a wide variety

of literature on Greeks and their explicit formulas for some options. Because, with the

help of mathematical programming languages, it is easy to implement such derivatives,

we do not present or use these formulas in this thesis. For more information about these

approximations and Greeks we refer an interested reader to Glasserman (2004), Hull

(2012a,b).
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3.1 Classical approximations

3.1.1 Delta approximation

This approximation is based on the first derivative w.r.t. time and first derivatives w.r.t.

the risk factors, more precisely

∆V ≈ ∂V (S, t)

∂t
∆t+

d∑
i=1

∂V (S, t)

∂Si
∆Si. (3.2)

First derivative of the portfolio w.r.t. changes in risk factors is called Delta. Second

summand in (3.2) is a sum of Deltas w.r.t. each underlying risk factor. This explains

the name Delta for this approximation.

Although this approximation is simple and easy to compute, there is, however, an obvious

drawback, especially for option portfolios, which are of a particular interest in this

thesis. Delta approximation is a linear function of the changes in risk factors, therefore

it is not a good approximation for the losses of portfolios containing options that are

highly nonlinear. Besides, the numerical study in Glasserman et al. (2000a,b) showed

inefficiency of using such an approximation. One has, therefore, to include some higher

derivatives w.r.t. underlying risk factors. This is the matter of the next section.

3.1.2 Delta - Gamma approximation

In this section we give maybe the most popular approximation used for portfolios with

options. The following approximation is called Delta-Gamma approximation, because it

extends the Delta approximation (3.2) by adding second order derivatives w.r.t. changes

in risk factors. Such derivatives are called Gamma. The corresponding approximation

reads as follows:

∆V ≈ ∂V (S, t)

∂t
∆t+

d∑
i=1

∂V (S, t)

∂Si
∆Si +

1

2

d∑
i,j=1

∂2V (S, t)

∂Si∂Sj
∆Si∆Sj . (3.3)

This approximation has a particular value in this thesis. It is a key approximation

for variance reduction methods introduced by Glasserman (2004), Glasserman et al.

(2000a,b, 2002). We review these methods in Sections 4.1.1, 4.1.2, 4.2.1 and 4.2.2. In

contrast to the methods introduced by us, the corresponding methods from Glasserman

(2004), Glasserman et al. (2000a,b, 2002) involve some additional investigation of the
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Delta-Gamma approximation in particular cases. More precisely, under some assump-

tions on the distribution of the underlying risk factors, the distribution of the Delta-

Gamma approximation is derived explicitly. We present the corresponding results in

Section 3.3 (see e.g. Glasserman (2004)).

Since the algorithms developed in this thesis are flexible in the sense that any approx-

imation of the portfolio loss function can be used, we further give some more approxi-

mations, which we later use in the tests in Chapter 6. In some examples, a significant

improvement compared to a classical Delta-Gamma approximation is achieved.

3.1.3 Charm - Speed approximation
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Figure 3.1: Comparison of Delta-Gamma and Charm-Speed approximations against
actual portfolio losses in 1000 randomly generated scenarios for a portfolio of short 10
ATM calls, 10 ATM puts, 10 assets with correlation 0.3, 0.1 years maturity, Gaussian

changes in risk factors (for details on the portfolio see Chapter 6).

A simple way to improve the Delta-Gamma approximation is to add some higher oder

derivatives of the Taylor series expansion. Ederington and Guan (2007) investigated,

whether any third order derivatives are important in explaining changes in prices of

complex nonlinear portfolios. The authors conclude that, while Gamma is usually the
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most important, several other higher order derivatives can considerably improve the ap-

proximation. As one can conclude from the numerical study in Chapter 6, the Charm-

Speed approximation introduced in the following can lead to a significant improvement

compared to the Delta-Gamma approximation, without significant extra costs. A com-

parison of these two approximations for a portfolio of short 10 ATM calls and 10 ATM

puts with 0.1 years maturity on 10 assets with correlation 0.3 (for details on portfolio

see Chapter 6) is plotted against actual portfolio losses in the Figure 3.1.

Our investigations on a wide variety of portfolios showed that the best improvement of

the Delta-Gamma approximation is achieved by adding second cross derivatives w.r.t.

time and third derivatives w.r.t. the changes in risk factors. Such derivatives are called

Charm and Speed correspondingly, explaining the name of the approximation. The

corresponding approximation reads as follows:

∆V ≈ ∂V (S, t)

∂t
∆t+

d∑
i=1

∂V (S, t)

∂Si
∆Si +

d∑
i=1

∂2V (S, t)

∂Si∂t
∆Si∆t+

+
1

2

d∑
i,j=1

∂2V (S, t)

∂Si∂Sj
∆Si∆Sj +

1

6

d∑
i,j,k=1

∂3V (S, t)

∂Si∂Sj∂Sk
∆Si∆Sj∆Sk. (3.4)

3.2 Modified approximations

In the next two sections we are going to present the improved Delta-Gamma and Charm-

Speed approximations based on the modification given by Rakotondratsimba (2009).

Such a modification is valid for portfolios with valuation formula, whose explicit depen-

dency on the time can be expressed via the time left to maturity (final payment time,

end of the contract). Among such portfolios are options based portfolios, in particular

all portfolios from examples in Chapter 6. In order to make it more rigorous, we need

some more notations.

For simplicity, we assume that the portfolio consists of options with the same maturity

time T . Then, the portfolio value at time t and market price S at the same time t can

be denoted as:

V (S, t) ≡ V (S;T − t) ≡ V (S, t, T ),

where V (S, t) is the notation from Section 3.1, V (S;T −t) is the notation that shows the

explicit dependency on the time left to maturity T − t, and V (S, t, T ) is the notation to

emphasize the maturity T . According to these notations, the final value of the portfolio
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at time t+ ∆t is hence denoted by:

V (S + ∆S, t+ ∆t) ≡ V (S + ∆S;T −∆t− t) ≡

≡ V (S + ∆S, t+ ∆t, T ) ≡ V (S + ∆S, t, T −∆t),

where the last equality shows the main advantage of the dependency on time via the

time left to maturity. V (S + ∆S, t, T −∆t) denotes the portfolio value at time t with

asset price S + ∆S and maturity T −∆t.

Using these notations, the corresponding changes in the portfolio value ∆V can be

written as follows,

∆V (∆S,∆t) = V (S + ∆S;T −∆t− t)− V (S;T − t) =

= V (S;T −∆t− t)− V (S;T − t) + V (S + ∆S;T −∆t− t)− V (S;T −∆t− t) =

= V (S, t, T −∆t)− V (S, t, T ) + V (S + ∆S, t+ ∆t)− V (S, t+ ∆t) =

= R(S, t, T,∆t) + [V (S + ∆S, t+ ∆t)− V (S, t+ ∆t)],

where R(S, t, T,∆t) = V (S, t, T − ∆t) − V (S, t, T ) is the difference of prices of two

options at time t and market price S at the same time t with maturities T −∆t and T

respectively. This term is deterministic and easy to compute.

In order to achieve an approximation, the second term V (S+ ∆S, t+ ∆t)−V (S, t+ ∆t)

now can be written in the Taylor series expansion w.r.t. the vector parameter of changes

in risk factors and not time, as it does not change. This explains an advantage of the

modified approximations compared to the classical ones: modified approximation is

exact w.r.t. time. One can understand it as applying Taylor series expansion with all

partial derivatives w.r.t. t up to infinite order. It should be also mentioned, that the

form of the modified approximation is very close to the classical one, therefore, it is

easy to adopt the implemented classical approximations for the purpose of computing

the modified one. Besides, usually smaller time costs are necessary in order to compute

such an approximation compared to the classical one.

3.2.1 Modified Delta - Gamma approximation

In this section we present a modified Delta-Gamma approximation, which is achieved

with the help of a second order Taylor series expansion w.r.t. the changes in risk factors

of V (S + ∆S, t+ ∆t) around the starting vector S. The argument t+ ∆t is fixed here.
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Figure 3.2: Comparison of Delta-Gamma and Modified Delta-Gamma approximations
against actual portfolio losses in 1000 randomly generated scenarios for a portfolio
of short 10 ATM down-and-out calls, 5 ATM puts, 10 uncorrelated assets, 0.1 years
maturity, Gaussian changes in risk factors (for details on the portfolio see Chapter 6).

More precisely, the approximation reads as follows:

∆V ≈ R(S, t, T,∆t) +
d∑
i=1

∂V (S, t+ ∆t)

∂Si
∆Si +

1

2

d∑
i,j=1

∂2V (S, t+ ∆t)

∂Si∂Sj
∆Si∆Sj , (3.5)

where R(S, t, T,∆t) = V (S, t, T −∆t)−V (S, t, T ) under the notations from Section 3.2.

A comparison of the Delta-Gamma and this approximation for a portfolio of short 10

ATM down-and-out calls and 5 ATM puts with 0.1 years maturity on 10 uncorrelated

assets (for details on portfolio see Chapter 6) is plotted against actual portfolio losses

in the Figure 3.2.

3.2.2 Modified Charm - Speed approximation

Similarly to Section 3.2.1, a modified Charm-Speed approximation is achieved with

the help of a third order Taylor series expansion w.r.t. the changes in risk factors of

V (S + ∆S, t + ∆t) around the starting vector S. The argument t + ∆t is fixed here.
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More precisely, the approximation reads as follows:

∆V ≈ R(S, t, T,∆t) +

d∑
i=1

∂V (S, t+ ∆t)

∂Si
∆Si +

1

2

d∑
i,j=1

∂2V (S, t+ ∆t)

∂Si∂Sj
∆Si∆Sj +

+
1

6

d∑
i,j,k=1

∂3V (S, t+ ∆t)

∂Si∂Sj∂Sk
∆Si∆Sj∆Sk, (3.6)

where R(S, t, T,∆t) = V (S, t, T −∆t)−V (S, t, T ) under the notations from Section 3.2.

3.3 Explicit distribution of Delta-Gamma approximation

In this section we present the derivation of the explicit distribution of the Delta-Gamma

approximation in two cases - multivariate normal and Student t-distributed changes in

risk factors. Both derivation can be found in Glasserman (2004). They are crucial for

the IS and ISS algorithms in both cases presented in Chapter 4.

3.3.1 Multivariate Gaussian case

We start here form the following assumption, under which the distribution of the Delta-

Gamma approximation (3.3) is found in, e.g., Glasserman (2004):

Assumption 3.1. The underlying change in the risk factors ∆S has a d-dimensional

multivariate normal distribution (see e.g. Anderson (2003)) with zero mean vector, i.e.

∆S ∼ Nd(0,ΣS).

For the following discussion it is useful to rewrite approximation (3.3) in matrix form:

∆V ≈ ∂V (S, t)

∂t
∆t+ δT∆S +

1

2
∆STΓ∆S, (3.7)

where

δi =
∂V (S, t)

∂Si
, Γij =

∂2V (S, t)

∂Si∂Sj
,

are first and second derivatives of V evaluated at (S, t).

In order to simplify the derivation of the distribution of the Delta-Gamma approxima-

tion, some more modification of its expression are done. First, under Assumption 3.1, it

is helpful to express the correlated normals ∆S ∼ Nd(0,ΣS) via independent normals

Z ∼ Nd(0, I) by setting,

∆S = CZ, with CCT = ΣS .
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Under a special choice of the matrix C, the Delta-Gamma approximation for losses

L(∆S,∆t) = −∆V in terms of Z becomes (see Glasserman (2004)):

L(CZ) ≈ a+ bTZ + ZTΛZ = a+

d∑
i=1

(biZi + λiZ
2
i ) = Q(Z),

with a = −∂V (S,t)
∂t ∆t, b = −CTδ and Λ = diag(λi) = −1

2CTΓC. The special choice of

the matrix C is necessary in order to achieve the diagonalized matrix Λ. Since ΣS is a

covariance matrix, it can be expressed via ΣS = C̃C̃
T

by the Cholesky decomposition.

Then, the matrix −1
2C̃

T
ΓC̃ is symmetric and can, therefore, be represented as:

−1

2
C̃
T
ΓC̃ = UΛUT ,

for some diagonal matrix Λ of eigenvalues and orthogonal matrix U (UUT is the identity

matrix) of eigenvectors. Finally, C = C̃U (see Glasserman (2004)).

With the help of the moment generating and characteristic functions (see definitions

in Section 2.1.1), the distribution of the Delta-Gamma approximation Q = Q(Z) is

expressed via the inversion integral of the form (see Glasserman (2004)):

P(Q ≤ x)− P(Q ≤ x− y) =
1

π

∫ ∞
0

Re

(
φ̂(u)

[
eiuy − 1

iu

]
e−iux

)
du, (3.8)

where the cumulant generating function of Q is of the following form:

ψ(θ) = aθ +
1

2

d∑
i=1

(
θ2b2

i

1− 2θλi
− log(1− 2θλi)

)
, (3.9)

for all θ satisfying maxi θλi <
1
2 . To find P(Q ≤ x) one should choose y large enough so

that P(Q ≤ x− y) ≈ 0, see Glasserman (2004), Glasserman et al. (2000a,b).

3.3.2 Multivariate Student t-case

Similar to Section 3.3.1, we present here the exact distribution of the Delta-Gamma

approximation (3.3) under the the following assumption (see e.g. Glasserman (2004)):

Assumption 3.2. The underlying change in the risk factors ∆S has a d-dimensional

multivariate Student t-distribution (see e.g. Anderson (2003)) with zero mean vector,

i.e. ∆S ∼ td(ν,0,ΣS).

The matrix form of the Delta-Gamma approximation (3.7) does not depend on the

distribution of the changes in risk factors, therefore, also applies here. Now, in order to



36 Chapter 3. Approximations of the Portfolio Loss function

derive the distribution of the Delta-Gamma approximation under Assumption 3.2, it is

useful to express the Student t random vector ∆S ∼ td(ν,0,ΣS) via standard Normal

random vector Z ∼ Nd(0, I):

∆S =
CZ√
Y/ν

,

where CCT = ΣS and Y ∼ χ2
ν is a chi-squared distributed random variable with ν

degrees of freedom and independent of the vector Z. For the same purposes as in

Section 3.3.1, the matrix C is chosen in the same special way as described in Section

3.3.1. Then, the Delta-Gamma approximation for losses L(∆S,∆t) = −∆V in terms of

Z becomes (see Glasserman (2004)):

L

(
CZ√
Y/ν

)
≈ a+

bTZ√
Y/ν

+
ZTΛZ

Y/ν
= a+

d∑
i=1

(
bi

Zi√
Y/ν

+ λi
Z2
i

Y/ν

)
= Q(Z, Y ),

with the same notations as in Section 3.3.1. Here we also have to write the dependence

of the approximation on the random variable Y .

Glasserman (2004) suggests to use another representation of the Delta-Gamma approxi-

mation in this case, that he called indirect Delta-Gamma approximation. More precisely,

for the fixed real value x, the following function is defined:

Qx(Z, Y ) = (Q(Z, Y )− x)(Y/ν) = (a− x)(Y/ν) +

d∑
i=1

(
bi
√
Y/νZi + λiZ

2
i

)
.

Then the distribution of the Delta-Gamma approximation under Assumption 3.2 can be

expressed as:

P(Q(Z, Y ) < x) = P(Qx(Z, Y ) < 0).

As mentioned in Glasserman (2004), the random variable Qx(Z, Y ) is easier to work

with.

Conditional on Y , the approximation Qx(Z, Y ) has a similar form as the Delta-Gamma

approximation for the Gaussian case, but with other coefficients (see Section 3.3.1),

therefore, using the expression for the cumulant generating function in the case (3.9)

the following holds true:

E[eθQx(Z,Y )|Y ] = exp

{(
(a− x)θ/ν +

1

2

d∑
i=1

θ2b2
i /ν

1− 2θλi

)
Y

}
d∏
i=1

1√
1− 2θλi

,

for all θ satisfying maxi θλi <
1
2 .
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If the coefficient of Y in the above expression is denoted by a(θ), more precisely:

a(θ) = (a− x)θ/ν +
1

2

d∑
i=1

θ2b2
i /ν

1− 2θλi
,

then the above conditional expectation can be written in the form:

E[eθQx(Z,Y )|Y ] = ea(θ)Y
d∏
i=1

1√
1− 2θλi

.

This expression helps in the derivation of the moment generating function of the random

variable Qx(Z, Y ) (see Glasserman (2004)):

φx(θ) = E[eθQx(Z,Y )] = E[E[eθQx(Z,Y )|Y ]] = (3.10)

= E[ea(θ)Y ]
d∏
i=1

1√
1− 2θλi

= (1− 2a(θ))−ν/2
d∏
i=1

1√
1− 2θλi

,

for all θ satisfying maxi θλi <
1
2 and a(θ) < 0.5, where in the last equality we have used

the moment generating function of the chi-squared distributed random variable Y ∼ χ2
ν

with ν degrees of freedom. One should note, that the dependence on the value x is made

here through a(θ).

According to Glasserman (2004), the expression (3.10) of the moment generating func-

tion of the random variable Qx(Z, Y ) is used to define the corresponding characteristic

function according to the Definition 2.6. With the help of such a characteristic function,

the probability P(Qx(Z, Y ) < 0) is defined via inversion integral (3.8), thus giving the

value of the probability P(Q(Z, Y ) < x).

As Glasserman (2004) mentions, the calculation of the distribution of the Delta-Gamma

approximation in this case is less efficient than in the Gaussian case of the Section 3.3.1.

This is because, calculating the P(Q(Z, Y ) < x) at each point x involves a separate

inversion integral (3.8), since it depends on the value x. This might be an issue, if we

need the distribution of the Delta-Gamma approximation in many different points.





Chapter 4

Variance Reduction of the

Probability of High Portfolio

Losses

The purpose of the thesis is to develop a new flexible and easy tool for an efficient

estimation of the market risk measures. Following the research of Glasserman et al.,

in this chapter we, however, start from a slightly more general problem of variance

reduction of the probability of high portfolio losses estimation. Such a quantity can be

expressed as a mean, and is, therefore, easier to work with. Moreover, it can be also

used in other applications of finance. Later, in Chapter 5, we discuss the corresponding

transformation from the probability of high portfolio losses to VaR and CVaR, therefore

developing the variance reduction procedures for the estimation of these market risk

measures.

In order to describe the problem in more details, we first introduce notations consistent

with those given in Chapter 3. First, we fix the time t at which the market risk measures

are estimated. This time is also used as a starting time for the portfolio valuation and

for the sake of simplicity is often omitted. Market risk measures are usually calculated

over some time horizon, which is fixed and denoted by ∆t. Again, for simplicity of

notations we often omit it, when the explicit dependency is not important. Market

risk is associated with unforeseen changes in risk factors over the corresponding time

horizon ∆t, which we denote by the d-dimensional random vector ∆S. To define the

losses over this time horizon we also need do define starting values of the risk factors,

which are given and fixed, and denoted by a d-dimensional vector S = S(t). By V (S, t)

and V (S+∆S, t+∆t) we denote the portfolio value at time t and t+∆t respectively. The

random portfolio loss over the time horizon ∆t is denoted by L = L(∆S) = L(∆S,∆t)

39
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and defined as:

L(∆S) = −∆V (∆S,∆t) = V (S, t)− V (S + ∆S, t+ ∆t).

Any approximation of the portfolio losses is also a function of the random vector ∆S

and is denoted by Q = Q(∆S) = Q(∆S,∆t). Also, in this notation, we often omit the

fixed time horizon ∆t.

The following assumption is crucial in the development of the variance reduction proce-

dures for high portfolio losses estimation:

Assumption 4.1. Revaluation time of the approximation Q is negligible in comparison

to the time necessary to revalue the portfolio L.

Assumption 4.1 cannot be made more rigorous, as it highly depends on the implemen-

tation of the application, the dimension and the complexity of the portfolio. According

to numerical tests in Chapter 6, we expect, that an approximation should be calculated

at least 100 − 1000 times faster than the portfolio loss. This is the case for portfolios

considered in our numerical study in Chapter 6. Since those portfolios are quite simple,

we expect the speed-up rate in real applications to be even higher. We would like to

mention, that under optimal implementation, the time consumption of the revaluation

of an approximation Q is fixed, as it is usually a polynomial. The portfolio loss revalu-

ation depends on the corresponding products and, potentially, can be extremely heavy

in calculation. The underlying dimension is the same in both cases (for Q and L), but

for an approximation Q it can even be reduced (see e.g. Albanese et al. (2002)).

Under Assumption 4.1, an approximation Q can significantly reduce the additional effort

in setting up a variance reduction procedure without loss of efficiency. Hence, this makes

the corresponding alternative estimators useful in practice. Even if such an approxima-

tion is not accurate, numerical results in Chapter 6 show only a little deterioration of the

performance compared to the original loss function. The approximation Q, therefore,

is used to guide the choice of the importance sampling change of measure for variance

reduction procedures.

We now define the quantity, for which the variance reduction procedures are developed:

l = P(L(∆S) > x), (4.1)

for some fixed and known level x.

We remind the reader that, under Assumption 2.1, the density function of the changes

in risk factors ∆S is denoted by f(x; u), with fixed original vector parameter u, out of

the family of densities G = {f(x; v),v ∈ V} parametrized by v.
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The MC estimator (2.2) under these notations reads as follows:

l̂ =
1

N

N∑
i=1

I(x,+∞)(L(∆Si)),

where ∆S1, . . . ,∆SN is a sample of independent identically distributed random vectors

with joint density f(x; u).

Such a probability l fits into Assumption 2.4, therefore, the variance reduction proce-

dures presented in Chapter 2 can be applied. Similar to the research of Glasserman

et al., in Section 4.1 we start from applying the importance sampling procedures for

the approximation Q in order to find an appropriate change of measure, which is fur-

ther used in the importance sampling estimator for the original losses. By applying

additionally an original stratification in Section 4.2 we improve the variance reduction

even further. Sections 4.1.1, 4.1.2, 4.2.1 and 4.2.2 present algorithms from Glasserman

(2004), Glasserman et al. (2000a,b, 2002). The light-tailed case of multivariate Gaussian

distributed changes in risk factors is considered in Sections 4.1.1 and 4.2.1, whereas the

heavy-tailed case of a multivariate Student t-distribution is given in Sections 4.1.2 and

4.2.2. Any other model of changes in risk factors in the context of market risk estimation

is not covered by the literature. Ideas of other methods introduced in the rest of the

Sections 4.1 and 4.2 are presented in the publication of mine Pupashenko (2014). Some

improvements and detailed explanation of these methods are, however, first given here.

For the desired flexibility of the algorithms an easy and efficient special stratification,

first introduced in my joint work with R. Korn in Korn and Pupashenko (2014), is

presented in details in Section 4.3.1. The corresponding modification of the algorithms

is further developed in the remainder of the Section 4.3.

An extra improvement of the efficiency of the new algorithms is achieved by improv-

ing the importance sampling part in Section 4.4. Here we develop an improved ver-

sion of the algorithms, which are first presented in my joint paper with R. Korn in

Korn and Pupashenko (2014). Section 4.5 summarizes and compares all algorithms from

Chapter 4 with regard to the time consumption.

4.1 Importance Sampling based algorithms

In this section we develop variance reduction algorithms based only on different im-

portance sampling procedures. They are important in developing further methods by

applying additional stratification. Besides, in the numerical study in Chapter 6, the

difference in performance is showed.
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Numerical study in Chapter 6 shows approximately the same performance for all meth-

ods given in this section. The algorithms presented in Sections 4.1.1 and 4.1.2 are de-

veloped in Glasserman (2004), Glasserman et al. (2000a,b, 2002). The algorithms from

Sections 4.1.3 and 4.1.4 are direct consequences of the theory from Sections 2.1.2 and

2.1.3. However, in the context of market risk estimation, they are first applied in the

paper of mine (Pupashenko (2014)) and here. The main advantage of these new methods

is, that they can use any function of the changes in risk factors Q which approximates the

original loss function L in order to guide the choice of the importance sampling change

of measure. These also include the original loss function L, that gives the best precision

of an approximation (exact approximation), but is much less time efficient according

to Assumption 4.1. Only in the case of an extremely inaccurate approximation Q, the

methods based on the original loss function L show better performance (for details, see

Chapter 6).

4.1.1 Exponential twisting importance sampling: Gaussian case

In this section we present the variance reduction method for the estimation of the prob-

ability of high portfolio losses based on the exponential twisting in the case of Gaussian

changes in risk factors, i.e. under Assumption 3.1. The corresponding method is de-

veloped in Glasserman (2004), Glasserman et al. (2000a,b) and is called Importance

Sampling (IS) algorithm.

According to Glasserman (2004), Glasserman et al. (2000a,b), under Assumption 3.1,

the correlated changes in risk factors ∆S are modeled via independent normals Z ∼
Nd(0, I) in the following way (see Section 3.3.1):

∆S = CZ,

where the matrix C is chosen is such a way, that CCT = ΣS and the Delta-Gamma

approximation can be written as (for details on how to choose such a matrix see Section

3.3.1):

L(∆S) = L(CZ) ≈ Q(Z) = a+
d∑
i=1

(biZi + λiZ
2
i ),

under the notations from the Section 3.3.1.

Since we perform the exponential twisting for the approximation Q(Z), in order to keep

notations consistent, in this section we treat Z as original changes in risk factors, denot-

ing its density by f(x; u) as before. This can be done simply by applying a composition
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of portfolio loss function and its Delta-Gamma approximation together with the func-

tion ∆S(Z) = CZ. The original parameter u corresponds then to the identity matrix,

since Z ∼ Nd(0, I).

It is important to note, that the IS algorithm in this section is restricted to the Delta-

Gamma approximation expressed in the form above. Assumption 3.1 is crucial here,

since an explicit form of the distribution of the Delta-Gamma approximation is found

in this case (see Section 3.3.1). Hence, along this section, the role of the approximation

Q is played only by the Delta-Gamma approximation.

Figures 3.1 and 3.2 illustrate a strong correlation of the exact and approximate losses

in the corresponding examples. Because of the Assumption 4.1, it is worth performing

an importance sampling to estimate P(Q(Z) > x). The achieved change of measure is,

therefore, also a good candidate as an importance sampling change of measure for the

original estimate l in (4.1). Hence, an exponential twisting is first applied to estimate

the probability P(Q(Z) > x).

The importance sampling density is then achieved by the exponential change of measure

(2.9) with G(X) being Q(Z):

fθ(x; u) = eθQ(x)−ψ(θ)f(x; u),

where ψ(θ) denotes a cumulant generating function of Q(Z) and, under Assumption 3.1,

is given by (3.9).

The parameter θ is chosen in order to minimize the variance of the importance sampling

estimator of P(Q(Z) > x) under the above mentioned exponential change of measure.

It is given as the root of the following equation (see Section 2.1.1):

ψ′(θ) = Eθ[Q(Z)] = x.

We should also remind, that the exponential change of measure is defined only for those

θ, for which ψ(θ) <∞. In our case this condition is satisfied if maxi λiθ <
1
2 .

Assuming an optimal choice of the parameter θ according to the above mentioned equa-

tion, the corresponding exponential change of measure is then applied to estimate the

original probability l in (4.1):

l = P(L(CZ) > x) = Eθ
[
e−θQ(Z)+ψ(θ)I(x,+∞)(L(CZ))

]
.
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Again, due to unbiasedness, instead of investigating the variance, we can consider only

a second moment of the form:

Eθ
[
e−2θQ(Z)+2ψ(θ)I(x,+∞)(L(CZ))

]
= E

[
e−θQ(Z)+ψ(θ)I(x,+∞)(L(CZ))

]
,

which is small if θ > 0 (under our choice) and Q is large whenever L > x, which is the

case due to their correlation.

As we mentioned at the end of Section 2.1.1, in order to define the IS algorithm based

on the exponential twisting and Delta-Gamma approximation, it is only left to define

how to sample from the achieved exponential change of measure. For that purpose it is

enough here to derive the distribution of Z under this exponential change of measure.

In Glasserman et al. (2000b) is shown that, under the exponential change of measure,

the vector Z still has multivariate normal distribution, but with a new mean vector and

covariance matrix, that depend on the parameter θ and the Delta-Gamma approxima-

tion. More precisely, under fθ(x; u) holds Z ∼ Nd(µ(θ),Σ(θ)), where Σ(θ) is a diagonal

matrix with diagonal entries σ2
i (θ),

µi(θ) =
θbi

1− 2λiθ
, σ2

i (θ) =
1

1− 2λiθ
, i = 1, . . . , d. (4.2)

This gives a simple procedure of sampling from the exponential change of measure.

Recall that, in order to define the exponential change of measure, we require maxi θλi <
1
2 , which is important for the correctness of the above defined covariance matrix.

All said above summarizes in the following IS algorithm for the case of Gaussian dis-

tributed changes in risk factors, i.e. under Assumption 3.1:

Algorithm 4.1 (IS: Gaussian case).

1. For the changes in risk factors ∆S ∼ Nd(0,ΣS) calculate the decomposition of the

covariance matrix ΣS = CCT , such that the Delta-Gamma approximation takes

the form:

Q(Z) = a+

d∑
i=1

(biZi + λiZ
2
i ),

for Z ∼ Nd(0, I) (see Section 3.3.1). Fix input parameter N .

2. Denote by θ > 0 the positive solution to the equation:

ψ′(θ) = x,

such that maxi θλi <
1
2 , where ψ(θ) is the cumulant generating function of Q(Z)

and is given by (3.9).
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3. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(x,∞)(L(CZi))e
−θQ(Zi)+ψ(θ), (4.3)

where Z1, ...,ZN is a sample generated from the density Nd(µ(θ),Σ(θ)) with mean

vector and diagonal covariance matrix given by (4.2).

One should note, that the solution to the equation ψ′(θ) = x in step 2 of Algorithm

4.1 has to be found numerically, and in a high-dimensional setting it might become

challenging. By the dimension we do not mean the dimension of the parameter θ which is

always one. We rather mean the dimension of the changes in risk factors, which influence

the expression of the function ψ(θ) and makes its evaluation more time consuming.

4.1.2 Exponential twisting importance sampling: Student t-case

This section is very similar to Section 4.1.1. Here we present the variance reduction

method for the estimation of the probability of high portfolio losses based on the ex-

ponential twisting in the case of Student t-distributed changes in risk factors, i.e. un-

der Assumption 3.2. The corresponding method is developed in Glasserman (2004),

Glasserman et al. (2002) and is called Importance Sampling (IS) algorithm. We should

note, that the name of this algorithm is the same as in Section 4.1.1, and we differ them

only by the distribution of the changes in risk factors. In the numerical study in Chapter

6 it is rather clear, which version of the IS algorithm is used.

According to Glasserman (2004), Glasserman et al. (2002), under Assumption 3.2, the

Student t-distributed changes in risk factors ∆S are modeled via independent normals

Z ∼ Nd(0, I) and the chi-squared distributed random variable Y ∼ χ2
ν with ν degrees of

freedom, that is independent of the vector Z, in the following way (see Section 3.3.2):

∆S =
CZ√
Y/ν

,

where the matrix C is chosen in such a way, that CCT = ΣS and the Delta-Gamma

approximation can be written as (for details on how to choose such a matrix see Section

3.3.1):

L(∆S) = L

(
CZ√
Y/ν

)
≈ Q(Z, Y ) = a+

d∑
i=1

(
bi

Zi√
Y/ν

+ λi
Z2
i

Y/ν

)
,

under the notations from Sections 3.3.1 and 3.3.2.
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As already mentioned in Section 3.3.2, in the Student t-case it is easier to work with

the indirect Delta-Gamma approximation Qx(Z, Y ) for some fixed real value x instead

of working with Q(Z, Y ) directly. This is given by (see Section 3.3.2):

Qx(Z, Y ) = (a− x)(Y/ν) +

d∑
i=1

(
bi
√
Y/νZi + λiZ

2
i

)
,

under the notations from Sections 3.3.1 and 3.3.2. The role of the fixed real value x here

is played by the level x from the probability of interest (4.1), therefore, it is denoted

accordingly.

Similarly to Section 3.3.1, the importance sampling density is achieved by the exponen-

tial change of measure (2.9) with G(X) being Qx(Z, Y ):

fθ(x, y; u) = eθQx(x,y)−ψx(θ)f(x, y; u),

where ψx(θ) denotes the cumulant generating function of Qx(Z, Y ) and, under Assump-

tion 3.2, can easily be achieved from (3.10) and Definition 2.7. The notation of the

original density f(x, y; u) can be understood as a familiar notation f(x̃; u) with x̃ being

the vector that consists of the vector x extended by the value y.

The corresponding exponential change of measure is then applied to estimate the original

probability l in (4.1):

l = P

(
L

(
CZ√
Y/ν

)
> x

)
= Eθ

[
e−θQx(Z,Y )+ψx(θ)I(x,+∞)

(
L

(
CZ√
Y/ν

))]
.

Due to unbiasedness of the estimator, instead of investigating the variance, we can

consider only the second moment of the form:

Eθ

[
e−2θQx(Z,Y )+2ψx(θ)I(x,+∞)

(
L

(
CZ√
Y/ν

))]
=

= E

[
e−θQx(Z,Y )+ψx(θ)I(x,+∞)

(
L

(
CZ√
Y/ν

))]
,

which is small if −θQx(Z, Y ) + ψx(θ) is small whenever L

(
CZ√
Y/ν

)
> x.

As already mentioned in Section 4.1.1, when L

(
CZ√
Y/ν

)
> x we often have Q(Z, Y ) > x

and thus Qx(Z, Y ) > 0. Hence, in order to keep −θQx(Z, Y ) + ψx(θ) small, under the

choice of the positive parameter θ > 0, the value of ψx(θ) should be small. Glasserman

(2004), Glasserman et al. (2002) define, therefore, the optimal choice of the parameter
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θ to be the positive root of the following equation:

ψ′x(θ) = Eθ[Qx(Z, Y )] = 0.

This correspond to the familiar choice of the exponential twisting parameter according

to Eθ[Q(Z, Y )] = x (see Sections 2.1.1 and 4.1.1).

Similarly to Section 4.1.1, in order to define the IS algorithm based on the exponential

twisting and Delta-Gamma approximation it is only left to define how to sample from

the achieved exponential change of measure. For that purpose, it is enough here to

derive the distribution of the vector Z and variable Y under this exponential change of

measure. With the help of such simulated quantities the approximation and the losses

are evaluated accordingly. One should also note, that under the original measure, the

vector Z and the variable Y are independent. This, however, is not the case under the

exponential change of measure.

In Glasserman et al. (2002) is shown, that under exponential change of measure, the

vector Z conditional on Y has multivariate normal distribution Nd(µ(θ, Y ),Σ(θ)) with

mean vector µ(θ, Y ) and diagonal covariance matrix Σ(θ) with diagonal entries σ2
i (θ)

given by:

µi(θ, Y ) =
θbi
√
Y/ν

1− 2λiθ
, σ2

i (θ) =
1

1− 2λiθ
, i = 1, . . . , d. (4.4)

Under the exponential change of measure, the random variable Y has the gamma dis-

tribution Γ
(
ν
2 ,

2
1−2a(θ)

)
with shape parameter ν/2 and scale parameter 2/(1 − 2a(θ)),

where a(θ) is defined in Section 3.3.2.

This all gives a simple procedure of sampling from the exponential change of measure.

More precisely, the variable Y is generated first from the gamma distribution, and then is

used to change the mean and the covariance matrix of the normally distributed vector Z,

that is further generated. Recall that, in order to define exponential change of measure,

we require maxi θλi <
1
2 and a(θ) < 0.5, which is important for the correctness of the

above defined distributions.

All said above summarizes in the following IS algorithm for the case of Student t-

distributed changes in risk factors, i.e. under Assumption 3.2:

Algorithm 4.2 (IS: Student t-case).

1. For the changes in risk factors ∆S ∼ td(ν,0,ΣS) calculate the decomposition of the

covariance matrix ΣS = CCT , such that the indirect Delta-Gamma approximation
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takes the form:

Qx(Z, Y ) = (a− x)(Y/ν) +

d∑
i=1

(
bi
√
Y/νZi + λiZ

2
i

)
,

for Z ∼ Nd(0, I) and Y ∼ χ2
ν , that is independent of the vector Z (see Section

3.3.2). Fix input parameter N .

2. Denote by θ > 0 the positive solution to the equation:

ψ′x(θ) = 0,

such that maxi θλi <
1
2 and a(θ) < 0.5, where ψx(θ) = log φx(θ) is the cumulant

generating function of Qx(Z, Y ) and is given via (3.10) with a(θ) defined in Section

3.3.2.

3. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(x,∞)

(
L

(
CZi√
Yi/ν

))
e−θQx(Zi,Yi)+ψx(θ), (4.5)

where, given the sample Y1, ..., YN generated from the density Γ
(
ν
2 ,

2
1−2a(θ)

)
, the

vectors Zi are generated from the densities Nd(µ(θ, Yi),Σ(θ)) for i = 1, . . . , N with

mean vector and diagonal covariance matrix given by (4.4).

Similarly to the Algorithm 4.1, the solution to the equation ψ′x(θ) = 0 in step 2 of

Algorithm 4.2 has to be also found numerically.

4.1.3 Cross - Entropy importance sampling

In this Section we present the variance reduction method for the estimation of the

probability of high portfolio losses based on the CE algorithm from the Section 2.1.2.

According to our knowledge, this algorithm has not been applied before in the application

of the market risk estimation. Our choice of this method is explained by the ability

to apply it for any distribution of the changes in risk factors, no matter if heavy- or

light-tailed. Besides, in contrast to the IS algorithm from Sections 4.1.1 and 4.1.2, the

derivation of this method does not involve any exact form of the distribution of the

approximation of the loss function or its characteristic function. This gives us an extra

flexibility in the choice of the approximation function, which theoretically can now also

be chosen to be exact, i.e. simply a portfolio loss function. First, we applied the CE
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algorithm in the context of the market risk estimation in the paper of mine (Pupashenko

(2014)).

Similarly to previous algorithms, we first apply the CE algorithm (see Section 2.1.2)

to some function Q(∆S) of the changes in risk factors which approximates the original

loss function L(∆S). The optimal reference parameter, found together with the corre-

sponding change of measure, is used to construct the importance sampling estimator

of the probability l from (4.1). For practical reasons, Assumption 4.1 has also to be

satisfied. In such a case we call the corresponding algorithm the Approximate Cross-

Entropy (ACE) algorithm. It can easily be achieved from Algorithm 2.1 by substituting

the level γ by the level x and the function G by the function Q in steps 1-4 (choice of

the optimal reference parameter) and by the function L in step 5 (importance sampling

estimator). The role of the random vector X now is played by the vector of the changes

in risk factors ∆S.

All said above summarizes in the following ACE algorithm under Assumption 4.1:

Algorithm 4.3 (ACE).

1. Define v̂0 = u and set j = 1. Fix input parameters ρ, M and N .

2. Generate a sample ∆S1, ...,∆SM from the density f(x; v̂j−1) and compute the

sample (1 − ρ)− quantile x̂j of the sample Q(∆S1), ..., Q(∆SM ). If x̂j > x, set

x̂j = x.

3. Using the same sample ∆S1, ...,∆SM , find an estimate from the adaptive opti-

mization problem in the form of (2.12) or (2.13),

max
v∈V

1

M

M∑
i=1

I(x̂j ,∞)(Q(∆Si))W (∆Si; u, v̂j−1) log f(∆Si; v), (4.6)

and denote the solution as v̂j.

4. If x̂j < x, set j = j + 1 and reiterate from step 2, else set an optimal reference

parameter estimate v̂∗ = v̂j and proceed with step 5.

5. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗), (4.7)

where ∆S1, ...,∆SN is a sample generated from the density f(x; v̂∗).

As we already mentioned before, the original portfolio loss function L, theoretically, can

also be used as an approximation Q. In this case Assumption 4.1 is, however, violated,
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making such an approach useless in practice. But, in order to investigate the influence of

the quality of the approximation on the variance reduction rate, the Full Cross-Entropy

(FCE) algorithm is introduced here. This method is a simple CE algorithm applied

directly to the problem of the estimation of the probability of high portfolio losses (4.1).

As the numerical study in the Chapter 6 shows, in the most situations, only a little

improvement in performance can be achieved by using the original loss instead of its

approximation.

The FCE algorithm is achieved by substituting the function Q in Algorithm 4.3 by the

function L, more precisely:

Algorithm 4.4 (FCE).

1. Define v̂0 = u and set j = 1. Fix input parameters ρ, M and N .

2. Generate a sample ∆S1, ...,∆SM from the density f(x; v̂j−1) and compute the

sample (1 − ρ)− quantile x̂j of the sample L(∆S1), ..., L(∆SM ). If x̂j > x, set

x̂j = x.

3. Using the same sample ∆S1, ...,∆SM , find an estimate from the adaptive opti-

mization problem in the form of (2.12) or (2.13),

max
v∈V

1

M

M∑
i=1

I(x̂j ,∞)(L(∆Si))W (∆Si; u, v̂j−1) log f(∆Si; v), (4.8)

and denote the solution as v̂j.

4. If x̂j < x, set j = j + 1 and reiterate from step 2, else set an optimal reference

parameter estimate v̂∗ = v̂j and proceed with step 5.

5. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗), (4.9)

where ∆S1, ...,∆SN is a sample generated from the density f(x; v̂∗).

We should note, that the optimal reference parameter estimation involves M multiplied

by the number of the iterations j of the revaluation of the portfolio loss function. This

is obviously extremely computationally heavy. In the numerical study in Chapter 6,

the number of iterations is often 4. Together with the choice of M = 10000 it involves,

therefore, 40000 revaluations of the portfolio. This is approximately the same time as

necessary in order to achieve the MC estimator with the sample size of N = 40000.
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4.1.4 Improved Cross - Entropy importance sampling

This section is related to applying ICE algorithm from Section 2.1.3 to the prob-

lem of estimating the probability of high portfolio losses. This is already done in

Chan and Kroese (2012), but for the credit risk application, which differs from the mar-

ket risk estimation of our interest. According to our knowledge, in the application of the

market risk estimation, this algorithm is first applied here. As one can conclude from

the name, this is an improved version of the CE algorithm. As already mentioned in

Section 2.1.3, it is introduced in order to deal with the degeneracy of the likelihood ratio

estimator problem. Since, in the context of market risk estimation we usually deal with

not very small probabilities (near 0.01), we do not expect to face this problem. But,

for completeness of our investigation, it is important to apply the ICE algorithm and

compare it to the CE method.

Similarly to Section 4.1.3, the ICE algorithm (see Section 2.1.3) is first applied to some

function Q(∆S) of the changes in risk factors which approximates the original loss func-

tion L(∆S). The optimal reference parameter found, together with the corresponding

change of measure, is used to construct the importance sampling estimator of the prob-

ability l from (4.1). In such a case we call the corresponding algorithm the Approximate

Improved Cross-Entropy (AICE) algorithm. It can easily be achieved from the Algo-

rithm 2.3 by substituting the level γ by the level x and the function G by the function

Q in steps 1-3 (choice of the optimal reference parameter) and by the function L in step

4 (importance sampling estimator). The role of the random vector X now is played by

the vector of the changes in risk factors ∆S.

All said above summarizes in the following AICE algorithm under Assumption 4.1:

Algorithm 4.5 (AICE).

1. Fix input parameters M and N .

2. Generate a sample ∆S1, ...,∆SM from the density

g∗(x) =
I(x,+∞)(Q(x))f(x; u)

P(Q(∆S) > x)
,

with the help of the methods from Appendix A.

3. Using this sample find an estimate from the optimization problem,

max
v∈V

1

M

M∑
i=1

log f(∆Si; v), (4.10)

and denote the solution as v̂∗.
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4. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗), (4.11)

where ∆S1, ...,∆SN is a sample generated from the density f(x; v̂∗).

For the same reasons as in Section 4.1.3, the Full Improved Cross-Entropy (FICE)

algorithm is introduced here. This method is a simple ICE algorithm applied directly

to the problem of the estimation of the probability of high portfolio losses (4.1). Again,

according to the numerical study in the Chapter 6, in most situations, only a little

improvement in performance can be achieved by using the original losses instead of its

approximation. But it can be done only with significant extra time costs, since the

optimal reference parameter estimator involves some portfolio revaluations.

FICE algorithm is achieved by substituting the function Q in the Algorithm 2.3 by the

function L, more precisely:

Algorithm 4.6 (FICE).

1. Fix input parameters M and N .

2. Generate a sample ∆S1, ...,∆SM from the density

g∗(x) =
I(x,+∞)(L(x))f(x; u)

l
,

with the help of the methods from Appendix A.

3. Using this sample find an estimate from the optimization problem,

max
v∈V

1

M

M∑
i=1

log f(∆Si; v), (4.12)

and denote the solution as v̂∗.

4. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗), (4.13)

where ∆S1, ...,∆SN is a sample generated from the density f(x; v̂∗).

All approaches, based on CE and ICE algorithms, estimate the same optimal reference

parameter, but they use different estimators. According to the numerical study in
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Chapter 6, they all give similar variance reduction rate in all examples considered there.

The choice of the particular method is a matter of taste.

4.2 Importance Sampling with Stratification based algo-

rithms

In this section we apply stratification to the algorithms from Section 4.1. As the nu-

merical study in Chapter 6 shows, it gives significant extra variance reduction compared

to the methods based only on the importance sampling. Since all importance sam-

pling algorithms introduced in Section 4.1 show approximately the same performance,

as mentioned there, the same stratification leads to the same improvement of all these

methods.

In order to perform stratification, a stratified variable with known distribution should be

introduced (see Section 2.2). Glasserman (2004), Glasserman et al. (2000a,b, 2002) use

the Delta-Gamma approximation of the changes in risk factors as such a variable, whose

distribution is found in two cases: of Gaussian and of Student t-distributed changes in

risk factors (see Section 3.3). An algorithm based on the exponential twisting together

with such a stratification (for both cases), called Importance Sampling with Stratification

(ISS) algorithm, is given by Glasserman (2004), Glasserman et al. (2000a,b, 2002). This

algorithm is presented in Section 4.2.1 for the Gaussian case and in Section 4.2.2 for the

Student t-case.

Since, the CE and ICE based algorithms from Sections 4.1.3 and 4.1.4 are introduced

here to build a flexible approach of measuring the probability of high portfolio losses

under any model of changes in risk factors, stratification is not of particular interest

for them. A special stratification, that does not involve a knowledge of the distribution

of the stratified variable, is introduced instead in Section 4.3.1. In Section 4.2.3 we,

however, apply stratification to the CE and ICE based algorithms. But, since applying

the stratification leads potentially to the same performance as for the ISS algorithm, we

do not perform the numerical study for these algorithms.

4.2.1 Exponential twisting with original Stratification: Gaussian case

In this section we present the ISS algorithm in the case of Gaussian changes in risk factors

from Glasserman (2004), Glasserman et al. (2000a,b). It is based on the IS algorithm

combined with stratification. The Delta-Gamma approximation Q = Q(Z), introduced

in Section 3.3.1, is used as a stratified variable.
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In such a case, stratification consists of the following two steps (see Section 2.2):

• for some chosen number of strata K, the strata A1, . . . , AK and the allocation

N1, . . . , NK have to be defined,

• the mechanism of sampling from the conditional distribution of (Q(Z), L(CZ))

given Q(Z) ∈ Ai for i = 1, . . . ,K should be found.

Before considering these two steps in more details, we have to adjust the stratified

estimator (2.23), which is simply a sample counterpart of the relation (2.22). Applying

stratification to the IS algorithm is, therefore, achieved by substituting E and H(X) in

(2.22) by Eθ and e−θQ(Z)+ψ(θ)I(x,+∞)(L(CZ)) respectively, more precisely:

l = Eθ
[
e−θQ(Z)+ψ(θ)I(x,+∞)(L(CZ))

]
=

=

K∑
i=1

piEθ
[
e−θQ(Z)+ψ(θ)I(x,+∞)(L(CZ))|Q(Z) ∈ Ai

]
,

where pi = Pθ(Q(Z) ∈ Ai) have to be known by Assumption 2.11.

The latter requires the knowledge of the distribution of the Delta-Gamma approxi-

mation Q = Q(Z) under Pθ, i.e. when Z has the density fθ(x; u) (or equivalently

Z ∼ Nd(µ(θ),Σ(θ)), see Section 4.1.1). The parameter θ is an exponential twisting

parameter achieved in step 2 of Algorithm 4.1.

Let us remind, that the distribution of Q in case of Gaussian changes in risk factors is

given by the inversion integral (3.8) with the help of the cumulant generating function

ψ of the form (3.9). In Glasserman (2004), Glasserman et al. (2000a,b) the cumulant

generating function of Q, under exponential change of measure defined by the twisting

parameter θ, is given by:

ψθ(u) = logEθ[euQ(Z)] = logE[euQ(Z)eθQ(Z)−ψ(θ)] = ψ(θ + u)− ψ(θ). (4.14)

The analogue to (3.8) looks then as:

Pθ(Q ≤ x)− Pθ(Q ≤ x− y) =
1

π

∫ ∞
0

Re

(
φ̂θ(u)

[
eiuy − 1

iu

]
e−iux

)
du, (4.15)

with φ̂θ(u) = eψ(θ+iu)−ψ(θ). To find Pθ(Q ≤ x) one should choose y large enough so that

Pθ(Q ≤ x− y) ≈ 0, see Glasserman (2004), Glasserman et al. (2000a,b).

Now, we can return to the two steps in performing the stratification. The number of

strata K is taken as an input parameter of the ISS algorithm. The strata A1, . . . , AK
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are chosen by Glasserman (2004), Glasserman et al. (2000a,b) to be a partition of the

real line of equal probabilities for Q = Q(Z) under Pθ, more precisely they are given by

the points ai, such that Ai = (ai−1, ai) and the following holds true:

Pθ(Q(Z) ∈ A1) = . . . = Pθ(Q(Z) ∈ AK) =
1

K
.

Such points ai for i = 0, . . . ,K are then defined as:

a0 = −∞, Pθ(Q(Z) ≤ ai) =
i

K
for i = 1, . . . ,K − 1, aK = +∞. (4.16)

An arbitrary choice of the allocation finalizes the first step. It can not be used as an input

parameter, since e.g. proportional allocation (see Section 2.2) requires the knowledge of

the strata, which are defined along the algorithm.

In the second step, it is easier to sample Z given Q(Z) ∈ Ai and evaluate (Q(Z), L(CZ))

rather than sample (Q(Z), L(CZ)) given Q(Z) ∈ Ai directly. The procedure of sampling

Z given Q(Z) ∈ Ai is, therefore, necessary. In Section 2.2 we referred the reader to

Appendix A on the methods for sampling from the conditional densities. One of those

methods has a particular value in the ISS algorithm. The algorithm by Glasserman

(2004), Glasserman et al. (2000a,b) uses the brute-force acceptance-rejection method

along the lines (see Appendix A.1). Its main disadvantage of the low acceptance rate

(and therefore wasting time on simulating unnecessary values) is not that crucial here,

because we need conditional samples of Z given that Q(Z) falls in all strata, which in

the union give the whole real line. This means that, if the simulated value of Z given

Q(Z) ∈ Ai is rejected, then it is accepted as Z given Q(Z) ∈ Aj for some other j 6= i.

The algorithm starts to waste the samples only when the corresponding sample of Z

given Q(Z) ∈ Aj is full according to the defined allocation. But the total number of

wasted samples is not significant. This procedure in general case is described via the

modification of Algorithm A.1, namely the Algorithm A.2.

All said above summarizes in the following ISS algorithm for the case of Gaussian dis-

tributed changes in risk factors, i.e. under Assumption 3.1:

Algorithm 4.7 (ISS: Gaussian case).

1. For the changes in risk factors ∆S ∼ Nd(0,ΣS) calculate the decomposition of the

covariance matrix ΣS = CCT , such that the Delta-Gamma approximation takes

the form:

Q(Z) = a+
d∑
i=1

(biZi + λiZ
2
i ),

for Z ∼ Nd(0, I) (see Section 3.3.1). Fix input parameters N and K.
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2. Denote by θ > 0 the positive solution to the equation:

ψ′(θ) = x,

such that maxi θλi <
1
2 , where ψ(θ) is the cumulant generating function of Q(Z)

and is given by (3.9).

3. Define the strata Ai = (ai−1, ai), i = 1, . . . ,K via (4.16). Fix the allocation

N1, . . . , NK , such that N = N1 + . . .+NK .

4. Estimate the probability l using the stratified estimator (2.23) in the form

l̂ =
K∑
i=1

1

K ·Ni

Ni∑
j=1

I(x,∞)(L(CZij))e
−θQ(Zij)+ψ(θ), (4.17)

where Zi1, . . . ,ZiNi for i = 1, . . . ,K are the samples generated from the condi-

tional densities Z ∼ Nd(µ(θ),Σ(θ)) given Q(Z) ∈ Ai (according to the brute-force

acceptance-rejection method along the lines (see Algorithm A.2)). The mean vector

and the diagonal covariance matrix are given by (4.2).

The brute-force acceptance-rejection method along the lines (see Algorithm A.2) simu-

lates Z from the unconditional density Nd(µ(θ),Σ(θ)) and evaluates Q(Z). The vector

Z is then assigned to the stratum Ai such that Q(Z) ∈ Ai. It is done until all strata

are full according to the allocation N1, . . . , NK . If no more samples are necessary for a

particular stratum, Z is simply discarded.

As we already mentioned before, the last step of the algorithm potentially generates much

more values Zij than the given sample size N for the estimator l̂. But, as mentioned

in Glasserman (2004), executing these extra steps takes far less time than the portfolio

revaluation step. The corresponding analysis is given in Glasserman et al. (2000b).

4.2.2 Exponential twisting with original Stratification: Student t-case

In this section we present the ISS algorithm in the case of Student t-distributed changes

in risk factors from Glasserman (2004), Glasserman et al. (2002). It is based on the

IS algorithm combined with stratification. The procedure of applying the stratification

is very similar to Section 4.2.1. The only difference is that the indirect Delta-Gamma

approximation Qx = Qx(Z, Y ), introduced in Section 3.3.2, is used as a stratified vari-

able. The distribution of the indirect Delta-Gamma approximation under the exponen-

tial change of measure is, therefore, required. This is derived in Glasserman (2004),
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Glasserman et al. (2002) similarly to the Gaussian case, i.e. via cumulant generating

functions (see (4.14)).

More precisely, the cumulant generating function of the indirect Delta-Gamma ap-

proximation Qx(Z, Y ) under the exponential change of measure is given by u 7−→
ψx(θ + u) − ψx(θ), where ψx(θ) = log φx(θ) is the cumulant generating function of

Qx(Z, Y ) under the original measure and is given via (3.10). The analogue to (4.15)

can then easily be written for Qx, giving the formula for calculating the distribution

of the indirect Delta-Gamma approximation. This can further be used in order define

the strata in an analogous way to (4.16). More precisely, the strata Ai = (ai−1, ai),

i = 1, . . . ,K are given by the points ai, such that:

a0 = −∞, Pθ(Qx(Z, Y ) ≤ ai) =
i

K
for i = 1, . . . ,K − 1, aK = +∞, (4.18)

where Pθ denotes the probability measure under the exponential change of measure.

All said above summarizes in the following ISS algorithm for the case of Student t-

distributed changes in risk factors, i.e. under the Assumption 3.2:

Algorithm 4.8 (ISS: Student t-case).

1. For the changes in risk factors ∆S ∼ td(ν,0,ΣS) calculate the decomposition of the

covariance matrix ΣS = CCT , such that the indirect Delta-Gamma approximation

takes the form:

Qx(Z, Y ) = (a− x)(Y/ν) +
d∑
i=1

(
bi
√
Y/νZi + λiZ

2
i

)
,

for Z ∼ Nd(0, I) and Y ∼ χ2
ν , that is independent of the vector Z (see Section

3.3.2). Fix input parameter N and K.

2. Denote by θ > 0 the positive solution to the equation:

ψ′x(θ) = 0,

such that maxi θλi <
1
2 and a(θ) < 0.5, where ψx(θ) = log φx(θ) is the cumulant

generating function of Qx(Z, Y ) and is given via (3.10) with a(θ) defined in the

Section 3.3.2.

3. Define the strata Ai = (ai−1, ai), i = 1, . . . ,K via (4.18). Fix the allocation

N1, . . . , NK , such that N = N1 + . . .+NK .
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4. Estimate the probability l using the stratified estimator (2.23) in the form

l̂ =

K∑
i=1

1

K ·Ni

Ni∑
j=1

I(x,∞)

(
L

(
CZij√
Yij/ν

))
e−θQx(Zij ,Yij)+ψx(θ), (4.19)

where given the sample Yi1, ..., YiNi for i = 1, . . . ,K generated from the density

Γ
(
ν
2 ,

2
1−2a(θ)

)
, the vectors Zij are generated from the conditional densities Z ∼

Nd(µ(θ, Yij),Σ(θ)) for j = 1, . . . , Ni given Qx(Z, Yij) ∈ Ai (according to the brute-

force acceptance-rejection method along the lines (see Algorithm A.2)). The mean

vector and the diagonal covariance matrix are given by (4.4).

According to the brute-force acceptance-rejection method along the lines (see Algorithm

A.2), the last step in Algorithm 4.8 may be explained easier as follows. We first generate

Y from the density Γ
(
ν
2 ,

2
1−2a(θ)

)
. Then, given this value, we simulate Z from the

density Nd(µ(θ, Y ),Σ(θ)). For these value of Y and of the vector Z we find i, such

that Qx(Z, Y ) ∈ Ai. Then we denote Yi1 = Y and Zi1 = Z. We continue sampling and

denote the next value Y and vector Z such that Qx(Z, Y ) ∈ Ai by consequent numbers,

e.g. Yi2 = Y and Zi2 = Z. We perform such a simulation until we fill all the strata, i.e.

we get the samples of values Yi1, ..., YiNi and vectors Zi1, . . . ,ZiNi for i = 1, . . . ,K. It

is important to understand, that each simulated vector Zij depends on the previously

simulated value Yij , and they are accepted to the stratum only together. It can be

also understood as applying the brute-force acceptance-rejection method to the vector

Z extended by the value Y .

4.2.3 Original and improved Cross - Entropy with original Stratifica-

tion

In this section we show how to apply stratification to the ACE, FCE, AICE and FICE

algorithms introduced in Sections 4.1.3 and 4.1.4. Similarly to Sections 4.2.1 and 4.2.2,

the approximation Q(∆S) plays the role of the stratified variable. It can differ from

the approximation function used in ACE, FCE, AICE and FICE algorithms in order to

estimate the optimal reference parameter (as you might remember, in the FCE and FICE

algorithms the approximation function is the original loss function, which, obviously, can

not be used as a stratified variable). The knowledge of the distribution of the stratified

variable restricts the choice of the approximation and the model of the changes in risk

factors. In the cases of Gaussian and Student t-distributed changes in risk factors, the

distribution of the Delta-Gamma approximation is found explicitly (see Sections 3.3.1

and 3.3.2). In these two cases the original stratification is applied to the IS algorithm
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(see Sections 4.2.1 and 4.2.2). In a similar way, in both cases, it can be applied to the

ACE, FCE, AICE and FICE algorithms here.

Due to the interest in developing a flexible approach of estimating the probability of

high portfolio losses under any model of the changes in risk factors, applying the orig-

inal stratification to the ACE, FCE, AICE and FICE algorithms is of little interest.

Therefore, we only briefly describe here how to apply an extra stratification to these

algorithms. The analogues to the ISS algorithms are introduced in Section 4.3 and are

based on the special stratification introduced in Section 4.3.1.

ACE, FCE, AICE and FICE first estimate the optimal reference parameter v̂∗, and then,

in the last step, use the corresponding change of measure to estimate the probability

of interest with the help of the importance sampling estimator. In order to addition-

ally apply stratification, the steps of the optimal reference parameter estimation stay

unchanged. Therefore, we assume, that the estimate v̂∗ is found.

The stratification consists then of the following two steps (for more details see Sections

2.2 and 4.2.1):

• In order to define the strata A1, . . . , AK , the distribution of the approximation

Q(∆S) under the density f(x; v̂∗) should be found

• the mechanism of sampling from the conditional distribution of (Q(∆S), L(∆S))

given Q(∆S) ∈ Ai for i = 1, . . . ,K should be found.

The second step is very similar to the situation of ISS algorithm and is discussed in

details in Sections 4.2.1 and 4.2.2. The first step should be done extra. We only note

that the distribution of the approximation Q(∆S) under the density f(x; v̂∗) can be

found in a similar way as for the ISS algorithm.

After strata Ai = (ai−1, ai), i = 1, . . . ,K are defined in a similar way to Sections

4.2.1 and 4.2.2, the corresponding estimator based on CE or ICE importance sampling,

together with stratification, is defined as:

l̂ =

K∑
i=1

1

K ·Ni

Ni∑
j=1

I(x,∞)(L(∆Sij))W (∆Sij ; u, v̂
∗),

where ∆Si1, ...,∆SiNi for i = 1, . . . ,K are the samples generated from the conditional

density f(x; v̂∗) given Q(∆S) ∈ Ai (according to the brute-force acceptance-rejection

method along the lines (see Algorithm A.2)).
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4.3 Importance Sampling with special Stratification based

algorithms

As already mentioned in Section 4.2, the stratification applied there should be modified

in order to bring flexibility to our new algorithms. Of course, it should be done in a

way, as to achieve as higher variance reduction rate as possible. The corresponding

modification to the stratification algorithm, here called special stratification, is done

in Section 4.3.1 and is further applied to the ACE and AICE algorithms in Sections

4.3.2 and 4.3.3, respectively. We should note, that there is no interest in applying the

special stratification to IS algorithm, since this algorithm is developed only in two cases

of changes in risk factors (see Assumptions 3.1 and 3.2), where the original stratification

is also developed. The special stratification can easily be applied to FCE and FICE

algorithms in a similar way, but is also not of a particular interest here due to their time

consuming steps for the estimation of the reference parameter.

4.3.1 Special Stratification

In this section we develop the special stratification in the case of estimating the proba-

bility of high portfolio losses (4.1). The corresponding idea is first applied in the paper

of mine Pupashenko (2014). It is further improved in my joint paper with R. Korn,

Korn and Pupashenko (2014). Here we give a more detailed discussion on the develop-

ment of this procedure.

Under Assumption 4.1, the approximation Q(∆S) is a good candidate to be a stratified

variable (that was the choice in the previous sections). However, as it might be hard or

even impossible to derive the distribution of the approximation Q(∆S) for any distribu-

tion of the changes in risk factors ∆S, Assumption 2.11, which is crucial in developing

the stratified estimator (see (2.23)), may be violated. The main problem lies here in the

knowledge of the probabilities of Q falling in a particular stratum. In order to build a

flexible algorithm, the special stratification is based, therefore, on the MC estimation of

these probabilities.

In the general case of the stratification for the estimation of the mean (2.1), the cor-

responding stratified estimator (2.23) under the notations from Chapter 2 takes the

form:

l̂ =

K∑
i=1

p̂i
1

Ni

Ni∑
j=1

H(Xij), (4.20)

where p̂i are MC estimators of the probabilities pi = P(Y ∈ Ai).
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First, we should mention, that the variance of the estimator (4.20) depends on the

variances of the estimators p̂i and is larger than the variance of the estimator (2.23).

In order to keep the variance of (4.20) as close as possible to (2.23) (therefore achieve

the same variance reduction rate), the sample size used to estimate all probabilities p̂i

should be set as high as possible. It is, however, restricted by the extra time costs,

which have to be kept as small as possible. In general, according to Assumption 4.1, it

is possible to use large sample sizes in estimating p̂i. One should, however, keep in mind,

that the total time costs are also influenced by the number of probabilities to estimate

K (the number of strata).

In order to make the problem more clear, let us consider a simple example. Assume,

that the stratified estimator (4.20) is achieved by using a total sample size of losses

N = N1 + . . . + NK , where K is the number of strata. Assume also that, according

to Assumption 4.1, the approximation Q can be calculated 100 times faster than the

loss function L. Then, if we want, for example, to spend twice more time for the

estimator (4.20) compared to (2.23), we approximately have the total sample size 100 ·N
of revaluations of the approximation Q in estimating the probabilities p̂i. If we have

decided to use K = 50 strata, this means, that each MC estimator of the probabilities

p̂i is based on the sample of the size 2 ·N . This might even lead to the variance of each

separate probability p̂i being larger than the variance of the estimator (2.23), making

the method useless in practice. This simple example motivates us to use as few strata as

possible, which in turn reduces the variance reduction rate (compared to large number

of strata), unless the strata and their allocation are chosen in a special way.

Our investigation in Korn and Pupashenko (2014), Pupashenko (2014) shows, that the

best compromise between the speed and the performance of the special stratification in

the case of estimating the probability of high portfolio losses is achieved by splitting the

real line into three intervals in a special way. More precisely, for the loss function L, its

approximation Q and the level x, we define two values:

y = y(x) = inf
x∈R∆S

{Q(x)|L(x) > x} , z = z(x) = sup
x∈R∆S

{Q(x)|L(x) < x} , (4.21)

where R∆S is the support of the distribution of the changes in risk factors ∆S. In general,

both values y and z depend on the level x which is, however, fixed in the context of the

probability of high portfolio losses estimation (4.1). Therefore, all over Chapter 4 they

are also fixed for each loss function L and its approximation Q.

The following remark holds for the rest of the section:

Remark 4.1. Since we deal with the case of continuous distributions (see Assumption

2.1), it is not important whether we use strict inequalities or not.
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The value y is chosen in such a way, that the following implication holds true (by the

definition of inf):

L(x) > x⇒ Q(x) > y, for all x ∈ R∆S,

which is equivalent to:

Q(x) ≤ y ⇒ L(x) ≤ x, for all x ∈ R∆S. (4.22)

In other words this means that, whenever the approximation falls below the level y, the

loss falls below the level x. This means, that the bottom right quadrant between the ver-

tical line at x and the horizontal line at y does not contain any points (L(∆S), Q(∆S)),

see Figure 4.1.
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Figure 4.1: Level y for Delta-Gamma approximation against actual portfolio losses in
1000 randomly generated scenarios for a portfolio of short 10 ATM down-and-out calls,
10 uncorrelated assets, 0.1 years maturity, Gaussian changes in risk factors, probability

nearly 1% (for details on the portfolio see Chapter 6).

Similarly, the value z is chosen in such a way, that the following implication holds true

(by the definition of sup):

L(x) < x⇒ Q(x) < z, for all x ∈ R∆S,



Chapter 4. Variance Reduction of the Probability of High Portfolio Losses 63

which is equivalent to:

Q(x) ≥ z ⇒ L(x) ≥ x, for all x ∈ R∆S. (4.23)

In other words this means that, whenever the approximation falls above the level z, the

loss falls above the level x. This means, that the top left quadrant between the vertical

line at x and the horizontal line at z does not contain any points (L(∆S), Q(∆S)), see

Figure 4.2.
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Figure 4.2: Level z for Delta-Gamma approximation against actual portfolio losses in
1000 randomly generated scenarios for a portfolio of short 10 ATM down-and-out calls,
10 uncorrelated assets, 0.1 years maturity, Gaussian changes in risk factors, probability

nearly 1% (for details on the portfolio see Chapter 6).

The strata is then defined as a partition into three intervals:

A1 = (−∞, y], A2 = (y, z), A3 = [z,+∞). (4.24)

In order to get the maximum performance out of the stratification with the strata given

by (4.24), we have to define an optimal allocation. Summarizing the above said, the
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value of the indicator I(x,∞)(L(∆S)) is known, if Q(∆S)) /∈ (y, z). More precisely:

I(x,∞)(L(∆S)) =

0, if Q(∆S)) ≤ y,

1, if Q(∆S)) ≥ z.

This leads to the zero variance of the estimators in the strata A1 = (−∞, y] and

A3 = [z,+∞). Now it is logical not to use any sample for strata A1 and A3, since

the corresponding estimators are actually known constants. Therefore, the optimal al-

location for the strata given by (4.24) is defined in such a way, that the whole sample

of size N is allocated to the stratum A2 = (y, z), i.e. N1 = 0, N2 = N,N3 = 0. The

corresponding interval of interest (y, z) is given in Figure 4.3.
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Figure 4.3: Levels y and z for Delta-Gamma approximation against actual portfolio
losses in 1000 randomly generated scenarios for a portfolio of short 10 ATM down-and-
out calls, 10 uncorrelated assets, 0.1 years maturity, Gaussian changes in risk factors,

probability nearly 1% (for details on the portfolio see Chapter 6).

Remark 4.2. Note, that the stratification does not have to be defined via exact values

of y and z. A wider region between y1 ≤ y and z1 ≥ z can be used. This gives the

advantage of not solving the optimizations (4.21) precisely. Of course, as narrower the

interval (y, z), that better the performance of the special stratification. But the influence

is not crucial in the neighborhoods of the original levels.
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The stratified estimator in the context of estimating the probability of high portfolio

losses in the ideal situation of known distribution of the approximation Q takes the form:

l̂ = P(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si)) + P(Q(∆S) ≥ z), (4.25)

where (∆S1, . . . ,∆SN ) is a sample from the conditional density f(x; u) of ∆S, given

that Q(∆S) ∈ (y, z), which can be achieved by the methods given in Appendix A.

The corresponding special stratification, in a more general case, when the distribution

of the approximation Q is not given explicitly, is achieved from (4.25) by substituting

the probabilities P(Q(∆S) ∈ (y, z)) and P(Q(∆S) ≥ z) with their MC estimators:

l̂ = P̂(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si)) + P̂(Q(∆S) ≥ z), (4.26)

where (∆S1, . . . ,∆SN ) is a sample from the conditional density f(x; u) of ∆S, given

that Q(∆S) ∈ (y, z), which can be achieved by the methods given in Appendix A.

As one can see, the special stratification (4.26) involves an extra estimation of two

probabilities P(Q(∆S) ∈ (y, z)) and P(Q(∆S) ≥ z), or equivalently P(Q(∆S) > y)

and P(Q(∆S) ≥ z), that should be done independently. As mentioned above, one

should control the time necessary for this extra estimation by using sample sizes for the

corresponding MC estimators as small as possible, however, keeping them as large as

possible in order to achieve the variance of the estimator (4.26) as close as possible to

the variance of the estimator (4.25).

Remark 4.3. In order to improve the speed of the estimator (4.26) one can think of

improving the speed of the estimators P̂(Q(∆S) > y) and P̂(Q(∆S) ≥ z) by applying

some variance reduction procedures to them. Although, assuming that the level y is

large (it depends on the level x and the approximation Q and is large, whenever x is

large and the approximation Q is good enough), these probabilities are similar to the

probability of high portfolio losses, one should keep in mind, that they do not involve

the loss function and, therefore, do not face similar problems of the heavy set up of the

importance sampling estimator. We suggest to use flexible importance sampling tool,

namely the CE algorithm. It can be applied directly in the form of the FCE algorithm

(see Algorithm 4.4) by substituting the function L by Q in the whole algorithm. One

should also note, that there is no gain in applying any stratification, since, generally,

there is no good candidate of the stratified variable for the approximation Q(∆S).

We now make the procedure of controlling the variance of the estimator (4.26) more

rigorous. We assume, that the sample size N (number of the total revaluations of
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the loss function L) is fixed in both estimators (4.25) and (4.26). By p̂1(m1 · N) and

p̂2(m2 · N) we denote the estimators P̂(Q(∆S) ∈ (y, z)) and P̂(Q(∆S) ≥ z), achieved

by some MC or variance reduction algorithm with sample sizes m1 · N and m2 · N ,

respectively. The multipliers m1 and m2 control the variance of the corresponding

estimators (and therefore of the estimator (4.26)) and the extra time necessary to achieve

estimator (4.26) in comparison to the estimator (4.25). By l̂0 we denote the common

term 1
N

∑N
i=1 I(x,∞)(L(∆Si)), which does not depend on m1 or m2. The estimator (4.26)

then takes the form:

l̂ = p̂1(m1 ·N)l̂0 + p̂2(m2 ·N).

We use the variance reduction factor r (ratio of the variance of the MC method to the

corresponding variance of the improved method, see Chapter 6) of the estimator (4.25)

as a reference. We assume, that by applying the estimator (4.26) we want to achieve

the variance reduction factor of approximately δ · r for some δ ∈ (0, 1), which should be

close to 1. Under this assumption, the variance of the estimator (4.26), denoted here by

Var[l̂], should be equal to:

Var[l̂] =
P2(Q(∆S) ∈ (y, z))Var[l̂0]

δ
,

where the nominator is a variance of the estimator (4.25). This variance can be written

as (due to the unbiasedness of the MC estimator p̂1(N)):

Var[l̂] =
E[p̂2

1(N)]Var[l̂0]

δ
.

In order to achieve such variance, we find necessary multipliers m1 and m2. The variance

Var[l̂] can be written as (due to the mutual independence of p̂1(m1 ·N), p̂1(m2 ·N) and

l̂0):

Var[l̂] = E[p̂2
1(m1 ·N)]Var[l̂0] + Var[p̂1(m1 ·N)](E[l̂0])2 +

+ Var[p̂1(m1 ·N)]Var[l̂0] + Var[p̂2(m2 ·N)] ≈

≈ E[p̂2
1(N)]Var[l̂0] + Var[p̂1(m1 ·N)](E[l̂0])2 + Var[p̂2(m2 ·N)],

where the third summand in the equality can be neglected, and the first summand is

the variance of the estimator (4.25). In order to follow the above assumption on the

variance reduction factor, the following condition should, therefore, be satisfied:

E[p̂2
1(N)]Var[l̂0]

1− δ
δ

= Var[p̂1(m1 ·N)](E[l̂0])2 + Var[p̂2(m2 ·N)].
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Hence, we choose multipliers m1 and m2 such, that the following holds true:

E[p̂2
1(N)]Var[l̂0]

1− δ
2δ

= Var[p̂1(m1 ·N)](E[l̂0])2,

E[p̂2
1(N)]Var[l̂0]

1− δ
2δ

= Var[p̂2(m2 ·N)].

Note, that for MC or importance sampling method (e.g. CE), the variances of the

probability estimators p̂1(m1 ·N) and p̂1(m2 ·N) satisfy:

Var[p̂1(m1 ·N)] =
Var[p̂1(N)]

m1
, Var[p̂2(m2 ·N)] =

Var[p̂2(N)]

m2
.

Then, the choice of the multipliers m1 and m2 is done via the following estimators:

m̂1 =
2δ

1− δ
Var[p̂1(N)]l̂20

p̂2
1(N)Var[l̂0]

,

m̂2 =
2δ

1− δ
Var[p̂2(N)]

p̂2
1(N)Var[l̂0]

. (4.27)

This means, that in order to define the multipliers m1 and m2, such that the variance

reduction factor of the estimator (4.26) is approximately δ times the variance reduction

factor of the estimator (4.25) (i.e. according to (4.27)), we first perform the estimator

(4.26) with sample sizes N for all involved estimators and then we evaluate the necessary

information and plug it in (4.27). To finalize the estimator (4.26) we need to generate

extra samples of ∆S of the sizes (m1 − 1) ·N and (m2 − 1) ·N , and reevaluate at these

samples the approximation Q in order to reestimate the probabilities P̂(Q(∆S) ∈ (y, z))

and P̂(Q(∆S) ≥ z). This does not involve any extra revaluation of the portfolio loss

function L.

Remark 4.4. In the case that we do not want to perform the special stratification with

both levels y and z, but just with one of them, the corresponding multipliers m1 and m2

should be adjusted accordingly. One of them should be set to 0 and the second should be

halved. For example, if we want to divide the real line only into two parts by defining

the level y, we need to estimate only the probability P(Q(∆S) > y), that corresponds to

setting m2 = 0 and halving m1.

In order to make the special stratification easy for the user to implement, we suggest

in Appendix B the method of the multi-dimensional optimization over the large space,

which showed to be the most practical in the numerical study (see Chapter 6) for eval-

uating the levels y and z from (4.21). These evaluations involve the revaluation of the

portfolio loss function, but it is not crucial, as the number of revaluations is often small

(100-1000 in the numerical study in Chapter 6). Besides, as our numerical study in

Chapter 6 shows, the total time for calculating the special strata is comparable to the
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time necessary to calculate 40 strata according to the ISS algorithm (as they involve

optimization with inversion integral evaluations).

In further sections we apply the special stratification in both modifications, when the

distribution of the approximation Q is known according to (4.25) and when it is not

known according to (4.26).

4.3.2 Cross - Entropy with special Stratification in Ideal setting

In this section we improve the performance of the ACE algorithm (see Algorithm 4.3)

by applying the special stratification in the ideal setting of known distribution of the

approximation Q in the form (4.25). In order to do this, we first have to adjust the

final estimator. In Section 4.2 it was done in the following order: we first applied

the importance sampling and then performed stratification to the modified expectation

under different changes of measure. For the case of special stratification it is easier to

perform the special stratification first, and then to apply the importance sampling for

the part which is under estimation. More precisely, by the law of total probability, the

probability of interest can be decomposed according to the special stratification in the

following way:

l̂ = P(L(∆S) > x) = P((L(∆S) > x) ∩ (Q(∆S) ≤ y)) +

+ P((L(∆S) > x) ∩ (Q(∆S) ∈ (y, z))) + P((L(∆S) > x) ∩ (Q(∆S) ≥ z)).

Due to the choice of the levels y and z it can be simplified in the following way:

l̂ = P((L(∆S) > x) ∩ (Q(∆S) ∈ (y, z))) + P(Q(∆S) ≥ z).

In order to apply the importance sampling to the first summand (the second is known

and stays unchanged), we have to represent it in terms of the expectation:

l̂ = E[I(x,∞)(L(∆S))I(y,z)(Q(∆S))] + P(Q(∆S) ≥ z).

Now, the importance sampling can be applied to the expectation part on the right hand

side in the standard way. One should, however, keep in mind, that the importance

sampling should be performed not w.r.t. the classical change of measure, but w.r.t. the

conditional change of measure given that Q(∆S) ∈ (y, z).

Now we come directly to the formulation of the algorithm, which we call the Approximate

Cross-Entropy with Stratification in Ideal setting (ACESI) algorithm:

Algorithm 4.9 (ACESI).
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1. Define v̂0 = u and set j = 1. Fix input parameters ρ, M and N .

2. Generate a sample ∆S1, ...,∆SM from the density f(x; v̂j−1) and compute the

sample (1 − ρ)− quantile x̂j of the sample Q(∆S1), ..., Q(∆SM ). If x̂j > x, set

x̂j = x.

3. Using the same sample ∆S1, ...,∆SM , find an estimate from the adaptive opti-

mization problem in the form of (2.12) or (2.13),

max
v∈V

1

M

M∑
i=1

I(x̂j ,∞)(Q(∆Si))W (∆Si; u, v̂j−1) log f(∆Si; v), (4.28)

and denote the solution as v̂j.

4. If x̂j < x, set j = j + 1 and reiterate from step 2, else set the optimal reference

parameter estimate v̂∗ = v̂j and proceed with step 5.

5. Compute the levels y and z according to (4.21).

6. Estimate the probability l using the special stratified estimator (4.25) in the form

l̂ = Pv̂∗(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) +

+ Pu(Q(∆S) ≥ z), (4.29)

where ∆S1, ...,∆SN is a sample generated from the conditional density f(x; v̂∗)

of ∆S, given that Q(∆S) ∈ (y, z), which can be achieved by methods given in

Appendix A.

Remark 4.5. The ACESI algorithm (Algorithm 4.9) is restricted to the case when the

distribution of the approximation Q is known. Following the study of this work, this

obliges us to use the Delta-Gamma approximation in the case of either Gaussian or

Student t-distributed changes in risk factors (see Section 3.3).

4.3.3 Cross - Entropy with special Stratification

A more general algorithm based on the combination of the ACE algorithm and the

special stratification in the form (4.26), named the Approximate Cross-Entropy with

Stratification algorithm (ACES), can be achieved from ACESI algorithm (Algorithm 4.9)

by estimating the probabilities Pv̂∗(Q(∆S) ∈ (y, z)) and Pu(Q(∆S) ≥ z) as described

in Section 4.3.1.

We should note, that in contrast to Section 4.3.1, the probability Pv̂∗(Q(∆S) ∈ (y, z))

is given under the change of measure. Therefore it is useless to apply the variance
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reduction procedures in order to estimate this probability. Instead, we simply apply the

MC algorithm. We denote the MC estimator of this probability with sample size m1 ·N
by p̂1(m1 ·N), for some positive number m1 (notation similar to Section 4.3.1).

From the other side, the probability Pu(Q(∆S) ≥ z) is given under the original density

and is often small (if z is large, which is the case for large x and good enough approx-

imation Q). Hence, the variance reduction procedure can be very helpful. As already

mentioned in Section 4.3.1, the CE algorithm (FCE algorithm with L substituted by Q,

see Algorithm 4.4) is the method of our choice. The first reason is that it is flexible and

easy. The second reason is that the estimate of the optimal reference parameter found

in ACESI algorithm (the same parameter as in ACES algorithm, see Algorithms 4.9 and

4.10) can be used as an estimate of the optimal reference parameter for estimation of the

probability Pu(Q(∆S) ≥ z). We denote CE estimator of this probability with sample

size m2 · N by p̂2(m2 · N), for some positive number m2 (notation similar to Section

4.3.1).

We remind the reader that the performance of the ACES algorithm depends on the

multipliers m1 and m2 of the corresponding probabilities estimators. These parameters

are defined according to the procedure described in Section 4.3.1. This means, that they

are set such that the variance reduction factor of the ACES algorithm is approximately

δ times the variance reduction factor of the ACESI algorithm, for some δ ∈ (0, 1) defined

by the user.

All said above summarizes in the following Aproximate Cross-Entropy with Stratification

(ACES) algorithm:

Algorithm 4.10 (ACES).

1. Define v̂0 = u and set j = 1. Fix input parameters ρ, δ, M and N .

2. Generate a sample ∆S1, ...,∆SM from the density f(x; v̂j−1) and compute the

sample (1 − ρ)− quantile x̂j of the sample Q(∆S1), ..., Q(∆SM ). If x̂j > x, set

x̂j = x.

3. Using the same sample ∆S1, ...,∆SM , find an estimate from the adaptive opti-

mization problem in the form of (2.12) or (2.13),

max
v∈V

1

M

M∑
i=1

I(x̂j ,∞)(Q(∆Si))W (∆Si; u, v̂j−1) log f(∆Si; v), (4.30)

and denote the solution as v̂j.

4. If x̂j < x, set j = j + 1 and reiterate from step 2, else set the optimal reference

parameter estimate v̂∗ = v̂j and proceed with step 5.
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5. Compute the levels y and z according to (4.21).

6. Generate a sample ∆S1, ...,∆SN from the conditional density f(x; v̂∗) of ∆S given

that Q(∆S) ∈ (y, z) (by methods given in Appendix A). Set m1 = 1 and m2 = 1.

7. Calculate the MC estimate p̂1(m1 ·N) of the probability Pv̂∗(Q(∆S) ∈ (y, z)).

8. Calculate the CE estimate p̂2(m2 ·N) of the probability Pu(Q(∆S) ≥ z).

9. Estimate the probability l using the special stratified estimator (4.26) in the form

l̂ = p̂1(m1 ·N)
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) + p̂2(m2 ·N), (4.31)

where ∆S1, ...,∆SN is the sample from the step 6. Denote also by l̂0 the following

term:

l̂0 =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗).

10. Calculate m1 and m2 by (see (4.27)):

m1 =
2δ

1− δ
Var[p̂1(N)]l̂20

p̂2
1(N)Var[l̂0]

,

m2 =
2δ

1− δ
Var[p̂2(N)]

p̂2
1(N)Var[l̂0]

.

and perform steps 7-9 again.

In the last step, the term l̂0 does not have to be revaluated, therefore, no extra loss

revaluations are involved.

Remark 4.6. The ACES algorithm (see Algorithm 4.10) can be easily modified in such

a way, that the multipliers m1 ≥ 1 and m2 ≥ 1 are taken as input parameters. In

such a case, there is no need to define the input parameter δ. Besides, step 10 is, then,

redundant.

Remark 4.7. In contrast to the ACESI algorithm, any approximation function Q can

be used in the ACES algorithm. This is because no information about the function Q,

except its revaluation, is involved.

Remark 4.8. Although by Assumption 4.1 the approximation Q is significantly faster

to revaluate than the portfolio loss function L, for large multipliers, the advantage can

vanish. Hence, as we already mentioned in Section 4.3.1, one should find a compromise

between the performance, defined by the multipliers m1 and m2, and the time necessary to

perform step 10. By Remark 4.6, one can always set an upper limit for these multipliers.
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4.3.4 Improved Cross - Entropy with special Stratification in Ideal

setting

In this section we apply the special stratification in the ideal setting of know distribution

of the approximation Q in the form (4.25) to the AICE algorithm (see Algorithm 4.5).

Since the AICE algorithm is different from ACE only in estimating the optimal reference

parameter, the so called Approximate Improved Cross-Entropy with Stratification in

Ideal setting (AICESI) algorithm, is easily achieved from Algorithm 4.9:

Algorithm 4.11 (AICESI).

1. Fix input parameters M and N .

2. Generate a sample ∆S1, ...,∆SM from the density

g∗(x) =
I(x,+∞)(Q(x))f(x; u)

P(Q(∆S) > x)
,

with help of methods from Appendix A.

3. Using this sample find an estimate from the optimization problem,

max
v∈V

1

M

M∑
i=1

log f(∆Si; v), (4.32)

and denote the solution as v̂∗.

4. Compute the levels y and z according to (4.21).

5. Estimate the probability l using the special stratified estimator (4.25) in the form

l̂ = Pv̂∗(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) +

+ Pu(Q(∆S) ≥ z), (4.33)

where ∆S1, ...,∆SN is a sample generated from the conditional density f(x; v̂∗) of

∆S given that Q(∆S) ∈ (y, z), which can be achieved by methods given in Appendix

A.

All remarks of Section 4.3.2 apply here.
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4.3.5 Improved Cross - Entropy with special Stratification

Similarly to Section 4.3.4, the AICE algorithm (see Algorithm 4.5) combined with

the special stratification in the form (4.26), named the Approximate Improved Cross-

Entropy with Stratification (AICES) algorithm, can be easily achieved from the Algo-

rithm 4.10:

Algorithm 4.12 (AICES).

1. Fix input parameters δ, M and N .

2. Generate a sample ∆S1, ...,∆SM from the density

g∗(x) =
I(x,+∞)(Q(x))f(x; u)

P(Q(∆S) > x)
,

with help of methods from Appendix A.

3. Using this sample find an estimate from the optimization problem,

max
v∈V

1

M

M∑
i=1

log f(∆Si; v), (4.34)

and denote the solution as v̂∗.

4. Compute the levels y and z according to (4.21).

5. Generate a sample ∆S1, ...,∆SN from the conditional density f(x; v̂∗) of ∆S given

that Q(∆S) ∈ (y, z) (by methods given in Appendix A). Set m1 = 1 and m2 = 1.

6. Calculate the MC estimate p̂1(m1 ·N) of the probability Pv̂∗(Q(∆S) ∈ (y, z)).

7. Calculate the CE estimate p̂2(m2 ·N) of the probability Pu(Q(∆S) ≥ z).

8. Estimate the probability l using the special stratified estimator (4.26) in the form

l̂ = p̂1(m1 ·N)
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) + p̂2(m2 ·N), (4.35)

where ∆S1, ...,∆SN is the sample from step 5. Denote also by l̂0 the following

term:

l̂0 =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗).
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9. Calculate m1 and m2 by (see (4.27)):

m1 =
2δ

1− δ
Var[p̂1(N)]l̂20

p̂2
1(N)Var[l̂0]

,

m2 =
2δ

1− δ
Var[p̂2(N)]

p̂2
1(N)Var[l̂0]

.

and perform steps 6-8 again.

All remarks of Section 4.3.3 apply here with the corresponding references to the correct

step numbers.

4.4 Algorithms based on approximation of the Optimal

Importance Sampling density with Stratification

In the following sections we improve the performance of the methods given in Section

4.3 by improving the importance sampling part. Due to the purpose of a flexible al-

gorithm, according to all said before, our choice of the importance sampling method

is the CE algorithm. The ICE algorithm has the same purpose as the CE algorithm,

namely to estimate the optimal reference parameter v∗, which minimizes the Kullback-

Leibler cross-entropy between the optimal importance sampling density g∗(x) and the

parametric family of densities G = {f(x; v),v ∈ V} of the original density f(x; u) (see

Section 2.1.2). Hence, if we forget for the moment about the stratification, the quality

of the estimate of the optimal reference parameter v∗, together with the chosen family

of densities G = {f(x; v),v ∈ V} for optimization play the main role in the performance

of the importance sampling part of the ACESI, ACES, AICESI and AICES algorithms

from Section 4.3. Even if the optimal reference parameter is very well estimated, we can

see from Figure 4.4, that the shape of the CE (or ICE) algorithms is not even close to

the shape of the optimal importance sampling density g∗(x).

The idea of the new importance sampling algorithm is very simple and is first presented

in my joint paper with Ralf Korn (see Korn and Pupashenko (2014)). Here we give,

however, a more detailed derivation of the method, together with different variants of

it. We chose the family of densities for the change of measure closer to the shape of

the optimal importance sampling density g∗(x). The shape of the optimal importance

sampling density g∗(x), i.e. with the support bounded from the left by the level x, can

be thankful to the fact that it is a conditional density of the changes in risk factors,

given that the losses exceed the level x. As we already mentioned before, generally,

we can sample from such a density, but it is time inefficient due to the portfolio loss



Chapter 4. Variance Reduction of the Probability of High Portfolio Losses 75

revaluations. Therefore, the first idea to overcome this problem is to use a much faster

approximation Q instead. The family of densities parametrized by the parameter v then

looks like:
I(x,+∞)(Q(x))f(x; v)

Pv(Q(∆S) > x)
.

The problem of using this family as the change of measure in the importance sampling

algorithm lies in the violation of (2.3). In more details, if the loss exceeds the level x, the

approximation Q is not necessary larger than the level x, and the density on which we

divide in the importance sampling estimator (2.4) is zero in this case. This problem can

be solved by adjusting the above mentioned family of densities by introducing another

level y, such that, whenever L(∆S) > x, the inequality Q(∆S) > y holds true. This can

be done with help of already introduced level y in the Section 4.3.1, defined by (4.21).

The adjusted family of densities parametrized by the parameter v then looks like:

g∗Q(x,v) =
I(y,+∞)(Q(x))f(x; v)

Pv(Q(∆S) > y)
. (4.36)

One should also note that the density g∗Q(x,v) is a conditional density of ∆S with

density f(x; v) given that Q(∆S) > y. One can sample from such densities by one of

the methods from Appendix A. Moreover, these methods do not need the estimation of

the probability Pv(Q(∆S) > y).

The next step is borrowed from the CE algorithm. We find the optimal reference parame-

ter v∗ such, that the density g∗Q(x,v∗) has the minimum Kullback-Leibler cross-entropy

to the optimal importance sampling density g∗(x), given by (2.11) with G = L and

γ = x. This means, that the parameter v∗ is given by the solution to the following

optimization problem:

min
v∈V
D(g∗, g∗Q(·; v)).

Such a density found for a particular portfolio is drawn in Figure 4.4. One can see, that

it is much closer to the optimal importance sampling density than the corresponding

change of measure under the CE algorithm.

Similarly to the CE algorithm, we need to simplify the above minimization problem:

min
v∈V
D(g∗(·), g∗Q(·; v)) = min

v∈V

(∫
g∗(x) log g∗(x)dx−

∫
g∗(x) log g∗Q(x; v)dx

)
in the following way:

max
v∈V

∫
I(x,+∞)(L(x))f(x; u) log

I(y,+∞)(Q(x))f(x; v)

Pv(Q(∆S) > y)
dx =

= max
v∈V

Eu

[
I(x,+∞)(L(∆S)) log

f(∆S; v)

Pv(Q(∆S) > y)

]
,
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Original density
CE density
New density
Optimal density
Level y
Level x

Figure 4.4: Estimated densities of losses under the original, CE, new importance
sampling and optimal importance sampling densities in 500000 randomly generated
scenarios for a portfolio of short 10 ATM calls, 5 ATM puts, 10 uncorrelated assets, 0.1
years maturity, Gaussian changes in risk factors, probability nearly 1% (for details on

the portfolio see Chapter 6).

where we have used the fact, that I(y,+∞)(Q(x)) = 1 if I(x,+∞)(L(x)) = 1, otherwise the

whole function under integral is zero.

Since we start sampling from the density g∗Q(x,u), for which the event of interest is

not of small probability, there is no need to perform an update step for the reference

parameter given in the CE algorithm. It can be seen as an analogue to the idea of

the ICE algorithm, where we sample first from the density similar to g∗Q(x,u) and then

estimate the optimal reference parameter directly. Therefore, the above maximization

problem reads as follows:

max
v∈V

E∗u,Q

[
I(x,+∞)(L(∆S))

f(∆S; u)

g∗Q(∆S; u)
log

f(∆S; v)

Pv(Q(∆S) > y)

]
,

where E∗u,Q means the expectation w.r.t. the density g∗Q(x; u). Since Pu(Q(∆S) > y)

involved in the density g∗Q(x; u) does not depend on the maximization parameter v, it
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can be simplified even further:

max
v∈V

E∗u,Q
[
I(x,+∞)(L(∆S)) log

f(∆S; v)

Pv(Q(∆S) > y)

]
.

The corresponding sample counterpart for estimating the solution of the above CE max-

imization problem reads as follows:

max
v∈V

1

M

M∑
i=1

I(x,+∞)(L(∆Si)) log
f(∆Si; v)

Pv(Q(∆S) > y)
, (4.37)

where (∆S1, . . . ,∆SM ) is a sample from the density g∗Q(x; u).

We should mention, that because Pv(Q(∆S) > y) depends on the parameter v w.r.t.

which we optimize, we can not get rid of it in the above optimization. Hence, the

main advantage of the CE algorithm compared to, e.g., the VM algorithm, namely

the often exact solution to the above optimization problem (see Section 2.1.2), vanishes.

Therefore, as an alternative, we give here also the corresponding derivation of the optimal

reference parameter estimator in the case of the VM approach, which looks as follows

(see Section 2.1.2):

min
v∈V

Eu

[
I(x,+∞)(L(∆S))

f(∆S; u)

g∗Q(∆S; v)

]
=

= min
v∈V

Eu

[
I(x,+∞)(L(∆S))

f(∆S; u)

f(∆S; v)
Pv(Q(∆S) > y)

]
=

= min
v∈V

E∗u,Q

[
I(x,+∞)(L(∆S))

f(∆S; u)

g∗Q(∆S; u)

f(∆S; u)

f(∆S; v)
Pv(Q(∆S) > y)

]
=

= min
v∈V

E∗u,Q
[
I(x,+∞)(L(∆S))

f(∆S; u)

f(∆S; v)
Pv(Q(∆S) > y)

]
.

The corresponding sample counterpart for estimating the solution of the above VM

minimization problem reads as follows:

min
v∈V

1

M

M∑
i=1

I(x,+∞)(L(∆Si))W (∆Si; u,v)Pv(Q(∆S) > y), (4.38)

where (∆S1, . . . ,∆SM ) is a sample from the density g∗Q(x; u).

Remark 4.9. Both optimizations (4.37) and (4.38), that are necessary to find an es-

timate of the optimal reference parameter in the context of the new algorithm, involve

M revaluations of the portfolio loss function L. But this sample size M can be set to be

small (in our numerical study in Chapter 6 it is around 100-1000), because under the

density g∗Q(x; u) the probability P(L(∆S) > x) is not small, and most of the indicators
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in the corresponding sums in (4.37) or (4.38) are not zeros. One should also mention,

that in contrast to the FICE algorithm, sampling from the density g∗Q(x; u) does not in-

volve any portfolio revaluations and can be done efficiently with the help of the methods

presented in Appendix A.

4.4.1 Approximate Optimal Importance Sampling algorithm in Ideal

setting

In this section we give the precise formulation of the new method based on the new

importance sampling algorithm presented at the beginning of Section 4.4. Here we deal

with the ideal situation of known distribution of the approximation Q. Similarly to

Section 4.3.2, such an ideal situation restricts the choice of the approximation Q to the

Delta-Gamma approximation in the case of either Gaussian or Student t-distributed

changes in risk factors (see Section 3.3). The corresponding algorithm is called Approx-

imate Optimal Importance Sampling in Ideal setting (AOISI) algorithm.

This algorithm is based on the change of measure corresponding to the density g∗Q(x; v̂∗)

given by (4.36), where v̂∗ is an estimate of the optimal reference parameter, that is found

from one of the optimization problems, either the CE optimization (4.37) or the VM

optimization (4.38).

The importance sampling estimator (2.4) then reads as follows:

l̂ =
1

N

N∑
i=1

I(x,+∞)(L(∆Si))
f(∆Si; u)

g∗Q(∆Si; v̂
∗)

=

= Pv̂∗(Q(∆S) > y)
1

N

N∑
i=1

I(x,+∞)(L(∆Si))W (∆Si; u, v̂
∗),

where (∆S1, . . . ,∆SN ) is a sample from the density g∗Q(x; v̂∗).

In the ideal situation the probability Pv̂∗(Q(∆S) > y) from the importance sampling

estimator, as well as the probability Pv(Q(∆S) > y) from the optimal reference param-

eter estimators (4.37) and (4.38), are known. Therefore, we can now come directly to

the formulation of the corresponding algorithm:

Algorithm 4.13 (AOISI).

1. Fix input parameters M and N .

2. Compute the level y according to (4.21).

3. Generate a sample ∆S1, ...,∆SM from the density g∗Q(x; u) given by (4.36) with

the help of the methods from Appendix A.
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4. Using this sample find an estimate from one of the optimization problems (4.37)

or (4.38) and denote the solution as v̂∗.

5. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ = Pv̂∗(Q(∆S) > y)
1

N

N∑
i=1

I(x,+∞)(L(∆Si))W (∆Si; u, v̂
∗), (4.39)

where ∆S1, ...,∆SN is a sample generated from the density g∗Q(x; v̂∗) by means of

the methods given in Appendix A.

4.4.2 Approximate Optimal Importance Sampling algorithm

In this section we extend the AOISI algorithm to the general case of an unknown dis-

tribution of the approximation Q. For that purpose, similarly to the idea of the special

stratification (see Section 4.3.1), the probability Pv̂∗(Q(∆S) > y) involved in the impor-

tance sampling estimator as well as the probability Pv(Q(∆S) > y) from the optimal

reference parameter estimators (4.37) and (4.38), have to be estimated by means of MC

or some variance reduction method. Since all these probabilities are given not under the

original density with parameter u, the use of the variance reduction may be inefficient.

Therefore we stop our choice on applying the simple MC estimator. The corresponding

algorithm is called Approximate Optimal Importance Sampling (AOIS) algorithm.

The MC estimator of the probability Pv̂∗(Q(∆S) > y) influences the variance of the final

estimator directly (situation similar to Section 4.3.1), therefore, has to be estimated by

MC simulation with sample size m · N for some multiplier m introduced in a similar

way to the special stratification. The AOISI algorithm serves the role of the reference

estimator here. This means, that the multiplier m is defined in such a way, that the

variance reduction factor of the AOIS algorithm is approximately the variance reduction

factor of the AOISI algorithm multiplied by some input parameter δ ∈ (0, 1) (see Section

4.3.1). We denote the corresponding estimator P̂v̂∗(Q(∆S) > y) in the similar way to

Section 4.3.1, i.e. by p̂(m ·N). According to Remark 4.4, the multiplier m can easily be

found by:

m̂ =
δ

1− δ
Var[p̂(N)]l̂20

p̂2(N)Var[l̂0]
, (4.40)

with the same notation for l̂0 and the only difference, that the underlying sample of ∆Si

is generated from other density.

On the other hand, the probability Pv(Q(∆S) > y) does not influence the variance

reduction rate directly, rather the quality of the optimal reference parameter estimator
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achieved by either (4.37) or (4.38). It can be estimated with some sample size K (more

on it shortly). But one should notice, that this probability has to be estimated for all

parameters v simultaneously. If we use a classical MC estimator, this means a separate

sample of size K for each parameter v, which is highly inefficient. Instead, we modify

the estimator by applying a sort of importance sampling estimator with the change of

measure being described by the density g∗Q(x; u). More precisely:

Pv(Q(∆S) > y) = Ev[I(y,+∞)(Q(∆S))] = E∗u,Q

[
I(y,+∞)(Q(∆S))

f(∆Si; v)

g∗Q(∆Si; u)

]
=

= E∗u,Q[I(y,+∞)(Q(∆S))W (∆S; v,u)Pu(Q(∆S) > y)] =

= Pu(Q(∆S) > y) · E∗u,Q[W (∆S; v,u)],

where the last equality holds true, since under the density g∗Q(x; u), the indicator under

expectation I(y,+∞)(Q(∆S)) is a constant and equals to 1.

Since the constant Pu(Q(∆S) > y) does not influence the optimizations (4.37) and

(4.38), the following estimator of the probability Pv(Q(∆S) > y) is proposed:

1

K

K∑
i=1

W (∆Si; v,u),

where (∆S1, . . . ,∆SK) is a sample from the density g∗Q(x; u), achieved by one of the

methods from Appendix A. This estimator, obviously, uses only one sample of size K

for estimating all the probabilities Pv(Q(∆S) > y) simultaneously.

The optimizations (4.37) and (4.38) take now the following forms - CE variant:

max
v∈V

1

M

M∑
i=1

I(x,+∞)(L(∆Si)) log
f(∆Si; v)

1
K

∑K
j=1W (∆SM+j ; v,u)

, (4.41)

and VM variant:

min
v∈V

1

M

M∑
i=1

I(x,+∞)(L(∆Si))W (∆Si; u,v)
1

K

K∑
j=1

W (∆SM+j ; v,u), (4.42)

where (∆S1, . . . ,∆SM ,∆SM+1, . . . ,∆SM+K) is a sample from the density g∗Q(x; u).

Remark 4.10. The sample size K does not have to be large, it can be considerably

smaller than the sample size N for the estimator of the probability of high portfolio

losses. It can be simply chosen to be equal to the sample size M .

All said above summarizes in the following algorithm:

Algorithm 4.14 (AOIS).
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1. Fix input parameters δ, M , K and N .

2. Compute the level y according to (4.21).

3. Generate a sample (∆S1, . . . ,∆SM+K) from the density g∗Q(x; u) given by (4.36)

with the help of the methods from Appendix A.

4. Using this sample find an estimate from one of the optimization problems (4.41)

or (4.42) and denote the solution as v̂∗.

5. Generate a sample ∆S1, ...,∆SN from the density g∗Q(x; v̂∗) by means of the meth-

ods given in Appendix A. Set m = 1.

6. Calculate the MC estimate p̂(m ·N) of the probability Pv̂∗(Q(∆S) > y).

7. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ = p̂(m ·N)
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗), (4.43)

where ∆S1, ...,∆SN is the sample from step 5. Denote also by l̂0 the following

term:

l̂0 =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗).

8. Calculate m by (see (4.40)):

m =
δ

1− δ
Var[p̂(N)]l̂20

p̂2(N)Var[l̂0]
.

and perform steps 6-7 again.

In the next two sections we improve the AOISI and AOIS algorithms by applying the

special stratification from Section 4.3.1. It is somehow tricky, since in these cases we deal

with the support being not the whole real line, but with support bounded from the left

by the level y. This can be either understood, as we stratify the interval [y,∞) instead

of the real line by defining the level z, or as we already have performed the stratification

with one level y and we want to divide the real line further by introducing the level z.

4.4.3 Approximate Optimal Importance Sampling with Stratification

algorithm in Ideal setting

In this section we apply the special stratification from Section 4.3.1 to the AOISI algo-

rithm, i.e. in the ideal setting, when the distribution of the approximation Q is known.
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As we already mentioned in previous sections, there is no need to perform special strat-

ification with both levels y and z, since the support of the density we are sampling from

is already above the level y. Therefore, the special stratification in this case is done

via the partition in two strata, (y, z) and (z,∞), achieved by introducing the level z by

(4.21).

The procedure of estimating the optimal reference parameter is the same. The way of

adjusting the final estimator is very similar to Section 4.3.2. The only difference is that

here we deal with the change of measure g∗Q(x; v̂∗) instead of f(x; v̂∗). If we denote by

P∗v̂∗,Q the probability measure w.r.t. the density g∗Q(x; v̂∗), then the corresponding final

estimator looks as follows:

l̂ = P∗v̂∗,Q(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗)Pv̂∗(Q(∆S) ≥ y) +

+ Pu(Q(∆S) ≥ z),

where ∆S1, ...,∆SN is a sample generated from the conditional density g∗Q(x; v̂∗) of ∆S,

given that Q(∆S) ∈ (y, z), which can be achieved by methods given in Appendix A.

The latter one can be further simplified, since the following holds true (by definition of

the conditional probabilities):

P∗v̂∗,Q(Q(∆S) ∈ (y, z)) =
Pv̂∗(Q(∆S) ∈ (y, z))

Pv̂∗(Q(∆S) ≥ y)
.

The final estimator then takes the form:

l̂ = Pv̂∗(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) + Pu(Q(∆S) ≥ z).

All said above summarizes in the following algorithm which we call Approximate Optimal

Importance Sampling with Stratification in Ideal setting (AOISSI) algorithm:

Algorithm 4.15 (AOISSI).

1. Fix input parameters M and N .

2. Compute the levels y and z according to (4.21).

3. Generate a sample ∆S1, ...,∆SM from the density g∗Q(x; u) given by (4.36) with

the help of the methods from Appendix A.

4. Using this sample find an estimate from one of the optimization problems (4.37)

or (4.38) and denote the solution as v̂∗.
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5. Estimate the probability l using the importance sampling estimator (2.4) in the

form

l̂ = Pv̂∗(Q(∆S) ∈ (y, z))
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) +

+ Pu(Q(∆S) ≥ z), (4.44)

where ∆S1, ...,∆SN is a sample generated from the conditional density g∗Q(x; v̂∗)

of ∆S, given that Q(∆S) ∈ (y, z), which can be achieved by means of the methods

given in Appendix A.

4.4.4 Approximate Optimal Importance Sampling with Stratification

algorithm

In this section we extend the AOISSI algorithm to the general case of unknown dis-

tribution of the approximation Q in a similar way to Section 4.4.2. The procedure

of estimating the probability Pv(Q(∆S) > y) from the reference parameter estimators

(4.37) and (4.38) for all parameters v simultaneously is the same here and is described

by the estimators (4.41) and (4.42). With respect to the estimators of the probabilities

Pv̂∗(Q(∆S) ∈ (y, z)) and Pu(Q(∆S) ≥ z) we refer the reader to Section 4.3.1. The

corresponding estimators involve the calculation of the multipliers m1 and m2 in order

to achieve the variance reduction factor, approximately the variance reduction factor of

AOISSI multiplied by some input parameter δ ∈ (0, 1). These estimators, as well as

the formula for the multipliers, can be taken directly from the AICES algorithm (see

Algorithm 4.12), since the same probabilities are involved there.

The following algorithm, called the Approximate Optimal Importance Sampling with

Stratification (AOISS) algorithm then reads as follows:

Algorithm 4.16 (AOISS).

1. Fix input parameters δ, M and N .

2. Compute the levels y and z according to (4.21).

3. Generate a sample ∆S1, ...,∆SM+K from the density g∗Q(x; u) given by (4.36) with

the help of the methods from Appendix A.

4. Using this sample find an estimate from one of the optimization problems (4.41)

or (4.42) and denote the solution as v̂∗.
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5. Generate a sample ∆S1, ...,∆SN from the conditional density g∗Q(x; v̂∗) of ∆S

given that Q(∆S) ∈ (y, z) (by methods given in Appendix A). Set m1 = 1 and

m2 = 1.

6. Calculate the MC estimate p̂1(m1 ·N) of the probability Pv̂∗(Q(∆S) ∈ (y, z)).

7. Calculate the CE estimate p̂2(m2 ·N) of the probability Pu(Q(∆S) ≥ z).

8. Estimate the probability l using the special stratified estimator (4.26) in the form

l̂ = p̂1(m1 ·N)
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗) + p̂2(m2 ·N), (4.45)

where ∆S1, ...,∆SN is the sample from step 5. Denote also by l̂0 the following

term:

l̂0 =
1

N

N∑
i=1

I(x,∞)(L(∆Si))W (∆Si; u, v̂
∗).

9. Calculate m1 and m2 by (see (4.27)):

m1 =
2δ

1− δ
Var[p̂1(N)]l̂20

p̂2
1(N)Var[l̂0]

,

m2 =
2δ

1− δ
Var[p̂2(N)]

p̂2
1(N)Var[l̂0]

.

and perform steps 6-8 again.

Remark 4.11. One can notice, that the estimator (4.45) in the AOISS algorithm looks

exactly like the estimators (4.31) and (4.35) in the ACES and AICES algorithms, re-

spectively. The main difference is that the parameter v̂∗ is different, and that the sample

∆S1, ...,∆SN is achieved here from the conditional density g∗Q(x; v̂∗) of ∆S, given that

Q(∆S) ∈ (y, z), whereas in the algorithms ACES and AICES it is a sample from the

conditional density f(x; v̂∗) of ∆S, given that Q(∆S) ∈ (y, z).

4.5 Summary

In this section we review all methods introduced in the previous sections of Chapter

4. We compare the times necessary to prepare the final estimator by referring to the

approximate number of revaluations of the approximation Q and the loss function L.

The optimizations are usually also time consuming, therefore, we also include them in

the analysis. We assume, that the probability of interest is estimated with the number

N of revaluations of the portfolio loss function in all methods.
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In Chapter 4 we introduced the following algorithms, which we combine according to

their variance reduction rate (see the numerical study in Chapter 6):

No variance reduction: MC.

Importance sampling variance reduction: IS, ACE, FCE, AICE and FICE.

Importance sampling with stratification variance reduction: ISS, ACESI,

ACES, AICESI and AICES.

Further improved variance reduction: AOISI, AOIS, AOISSI and AOISS.

The flexible algorithms (any approximation Q of the loss function L can be used, no

distribution of Q is involved) with acceptable time necessary to set up the final estimator

are ACE, AICE, ACES, AICES, AOIS and AOISS.

The following algorithms use the portfolio loss function in order to estimate the reference

parameter: FCE, FICE, AOISI, AOIS, AOISSI and AOISS. Therefore, in the cases when

there is no good enough approximation and other methods fail to give any variance

reduction, these methods can be used. The AOIS and AOISS algorithms are the most

useful in such cases, since they involve the lowest number of portfolio revaluations in

the set up of the importance sampling density.

Now we go through all algorithms mentioned above and we record the most time con-

suming steps (heavy multidimensional optimizations, large samples of the approximation

Q revaluation and, especially, the number of the portfolio losses revaluations):

MC: No extra time costs.

IS: One multidimensional optimization with inversion integral, which involves the

revaluation of Q only.

ACE: M multiplied by the number of iterations (usually 4) of evaluations of Q. Op-

timization is often done via an explicit solution.

FCE: M multiplied by the number of iterations (usually 4) of evaluations of L. Opti-

mization is often done via an explicit solution.

AICE: Sample of size M from the conditional density by MCMC method, involving

revaluations of Q.

FICE: Sample of size M from the conditional density by MCMC method, involving

revaluations of L.
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ISS: K+ 1 - multidimensional optimizations with inversion integral, which involve the

revaluation of Q only (K is the number of strata, in the numerical study of e.g.

Glasserman (2004) chosen to be 40).

ACESI: M multiplied by the number of iterations (usually 4) of evaluations of Q.

Optimization is often done via an explicit solution. Levels y and z involve a small

number (100-1000) of Q and L revaluations.

ACES: M multiplied by the number of iterations (usually 4) of evaluations of Q.

Optimization is often done via an explicit solution. Levels y and z involve a

small number (100-1000) of Q and L revaluations. Extra sample of the total size

(m1 +m2) ·N of revaluations of Q.

AICESI: Sample of size M from the conditional density by MCMC method, involving

revaluations of Q. Levels y and z involve a small number (100-1000) of Q and L

revaluations.

AICES: Sample of size M from the conditional density by MCMC method, involving

revaluations of Q. Levels y and z involve a small number (100-1000) of Q and L

revaluations. Extra sample of the total size (m1 +m2) ·N of revaluations of Q.

AOISI: Level y involves a small number (100-1000) of Q and L revaluations. Sample

of small size (100-1000) from the conditional density by MCMC method, involving

revaluations of Q and the same number of evaluations of L for optimization.

AOIS: Level y involves a small number (100-1000) of Q and L revaluations. Sample

of small size (100-1000) from the conditional density by MCMC method, involv-

ing revaluations of Q and the same number of evaluations of L for optimization.

Extra sample of size K from the conditional density by MCMC method, involving

revaluations of Q. Extra sample of the total size m ·N of revaluations of Q.

AOISSI: Levels y and z involve a small number (100-1000) of Q and L revaluations.

Sample of small size (100-1000) from the conditional density by MCMC method,

involving revaluations of Q and the same number of evaluations of L for optimiza-

tion.

AOISS: Levels y and z involve a small number (100-1000) of Q and L revaluations.

Sample of small size (100-1000) from the conditional density by MCMC method,

involving revaluations of Q and the same number of evaluations of L for optimiza-

tion. Extra sample of size K from the conditional density by MCMC method,

involving revaluations of Q. Extra sample of the total size (m1 +m2) ·N of reval-

uations of Q.
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One should note that sampling from the conditional densities by the HITRO algorithm

given in Appendix A is quite fast and usually involves less then 7 revaluations of the

involved density function (see Karawatzki et al. (2005)). The sample size M is often

taken smaller than the sample size N . Under Assumption 4.1, the revaluation of Q

takes much less time than the revaluation of L. The total sum of the multipliers in the

methods, where they are involved, are given in different examples in the numerical study

in Chapter 6.

Now let us consider the corresponding time consumptions of all methods mentioned

above for some particular choice of the parameters (similar to the numerical study in

Chapter 6). We assume that N = 100000 and we set M = 10000, K = 1000 (for AOIS

and AOISS algorithms), the number of Q and L revaluations is 100 for each value y and

z. We also assume that for the AOISI, AOIS, AOISSI and AOISS algorithms we use a

sample of size 100 from the conditional density (each involves the revaluation of L and

Q). Besides, we assume the worst case of 7 revaluations of the corresponding density

function in the HITRO algorithm and the number of 4 iterations in each CE based

algorithm. Moreover, we assume, according to Assumption 4.1, that the approximation

Q is 100 times faster than the portfolio loss function L. Then, the preparation steps of

the importance sampling estimator in the corresponding algorithms have the following

number of revaluations in terms of the loss function (e.g. 100 revaluations of Q is the

same as 1 revaluation of L):

MC: 0 revaluations of L, 0% of the time spent for the final estimator (100000 revalu-

ations of L).

IS: Not comparable, approximately 0.5% according to the numerical study.

ACE: 400 revaluations of L, 0.4% of the time spent for the final estimator.

FCE: 40000 revaluations of L, 40% of the time spent for the final estimator.

AICE: 700 revaluations of L, 0.7% of the time spent for the final estimator.

FICE: 70000 revaluations of L, 70% of the time spent for the final estimator.

ISS: Approximately 1% according to the numerical study (40 strata).

ACESI: 602 revaluations of L, 0.6% of the time spent for the final estimator.

ACES: 602 + 1000(m1 + m2) revaluations of L, (m1 + m2 + 0.6)% of the time spent

for the final estimator.

AICESI: 902 revaluations of L, 0.9% of the time spent for the final estimator.



88 Chapter 4. Variance Reduction of the Probability of High Portfolio Losses

AICES: 902 + 1000(m1 +m2) revaluations of L, (m1 +m2 + 0.9)% of the time spent

for the final estimator.

AOISI: 808 revaluations of L, 0.8% of the time spent for the final estimator.

AOIS: 878 + 1000m revaluations of L, (m + 0.9)% of the time spent for the final

estimator.

AOISSI: 909 revaluations of L, 0.9% of the time spent for the final estimator.

AOISS: 979 + 1000(m1 +m2) revaluations of L, (m1 +m2 + 1)% of the time spent for

the final estimator.

Besides the variance reduction factors, which we present in the numerical study in Chap-

ter 6, it is always important to compare the extra time spent in order to set up the

corresponding algorithm, as it is done above.



Chapter 5

Variance Reduction of

Value-at-Risk and Conditional

Value-at-Risk

Chapter 4 was devoted to the derivation of flexible and efficient tools in order to estimate

the probability of high portfolio losses. But such a quantity is not a usual market risk

measure. As we already mentioned in Chapter 1, VaR and CVaR have become very

popular market risk measures in all financial institutions. Therefore, it is important to

construct variance reduction procedures that estimate these quantities directly. This

can be done with the help of the algorithms for the estimation of the probability of high

portfolio losses, and is the goal of this chapter.

In Section 5.1 we start from the rigorous mathematical definitions of VaR and CVaR.

Section 5.2 is devoted to the adjustment of the variance reduction procedures from

Chapter 4 to the problem of VaR and CVaR estimation. In Section 5.3 we perform

an asymptotic analysis of the corresponding estimators and describe the procedure of

constructing confidence intervals. Finally, Section 5.4 summarizes the procedure for the

transition from the estimation of the probability of high portfolio losses to the problem

of estimating VaR and CVaR.

5.1 Value-at-Risk and Conditional Value-at-Risk definitions

We already mentioned in Chapter 1, that VaR measures the worst expected loss over

a given time horizon at a given confidence level. The information about the average

level of loss, given that VaR is exceeded, can be achieved using CVaR. In this section we

89
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give more rigorous mathematical definitions for these risk measures for continuous dis-

tributions (see Assumption 2.1) as given in, e.g., Pflug (2000), Rockafellar and Uryasev

(2000, 2002), Trindade et al. (2007).

Under the same notations from Chapters 3 and 4, we denote here by F(x) = P(L ≤ x)

the cumulative distribution function of the portfolio losses L. Then, we can formulate

the following definition (see e.g. Trindade et al. (2007)):

Definition 5.1. The portfolio VaR with confidence level α ∈ (0, 1), denoted by vα, is

defined as the α-quantile of the cumulative distribution function F(x), i.e.:

vα = F−1(x) = inf{x : F(x) ≥ α} = inf{x : P(L > x) ≤ 1− α}. (5.1)

In practice, the confidence level α typically lies between 95% and 99.9%.

As we already mentioned in Section 1.1.2, there are different variants of CVaR which,

however, coincide for continuous loss distributions, which is the case here (see Assump-

tion 2.1). Further, we give the definitions of the most useful among them. Trindade et al.

(2007) defines CVaR as follows:

Definition 5.2. The portfolio CVaR with confidence level α ∈ (0, 1), denoted by cα, is

defined as:

cα =
1

1− α

∫ 1

α
vβdβ. (5.2)

Pflug (2000) shows, that CVaR can also be defined as:

Definition 5.3. The portfolio CVaR with confidence level α ∈ (0, 1), denoted by cα, is

defined as:

cα = inf
t∈R

{
t+

1

1− α
E[L− t]+

}
, (5.3)

where [·]+ denotes the nonnegative part.

Trindade et al. (2007) also show the following definition:

Definition 5.4. The portfolio CVaR with confidence level α ∈ (0, 1), denoted by cα, is

defined as:

cα = vα +
1

1− α
E[L− vα]+. (5.4)

Finally, Rockafellar and Uryasev (2000) define CVaR as ES or TCE of the form:

Definition 5.5. The portfolio CVaR with confidence level α ∈ (0, 1), denoted by cα, is

defined as:

cα = E[L|L ≥ vα]. (5.5)
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All these definitions have their advantages. The definition of CVaR in the form (5.3)

can be used to find VaR and CVaR simultaneously. The parameter t, at which the right

hand side of (5.3) is minimized, is exactly VaR. This has its particular value when it

is hard to decide which market risk measure to use (VaR or CVaR). The definition of

CVaR in the form (5.4) is useful, e.g., when we want to investigate the asymptotics of

CVaR, having already derived the asymptotics of VaR. The definition of CVaR in the

form (5.5) is used by Glasserman et al. (2002) in order to apply the ISS algorithm for

CVaR estimation.

5.2 Value-at-Risk and Conditional Value-at-Risk estima-

tion

There is a various literature on MC and variance reduction procedures in the con-

text of estimating VaR and CVaR. It is, however, not consecutive and not complete.

Serfling (1980) has first developed MC estimators and their asymptotics for VaR and

CVaR. Later, Glasserman (2004), Glasserman et al. (2000b), Glynn (1996) investigated

the MC, IS and ISS estimators and their asymptotics for VaR only. Glasserman et al.

(2002) looked at the IS estimator together with the asymptotics for CVaR. Hong and Liu

(2011), Sun and Hong (2009, 2010) made a more complete investigation of MC and IS

estimators and their asymptotics for both VaR and CVaR. However, only the authors

in Chu (2010), Chu and Nakayama (2012) made a complete investigation of the MC, IS

and ISS algorithms with their asymptotics, but only for VaR. In Section 5.2 we give a

consecutive development of all variance reduction estimators from Chapter 4 for both

market risk measures, namely VaR and CVaR. We further analyze their asymptotics in

Section 5.3, and construct there the confidence intervals.

5.2.1 Monte Carlo simulation

In this chapter we introduce the MC estimator of VaR and CVaR. We start from VaR

estimation. We first remind the reader the form of the MC estimator:

P̂(L(∆S) ≤ x) = F̂N (x) =
1

N

N∑
i=1

I(−∞,x)(L(∆Si)),

where ∆S1, . . . ,∆SN is a sample of independent identically distributed random vectors

with joint density f(x; u). Using one sample ∆S1, . . . ,∆SN , the whole distribution

function F is estimated (for all values x simultaneously) by the empirical distribution

function F̂N .
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Glynn (1996) suggests another, more efficient estimator of the empirical distribution

function, which is even more convenient in the context of our investigation, since it

involves the probability of high portfolio losses:

P̂(L(∆S) ≤ x) = F̂N (x) = 1− 1

N

N∑
i=1

I(x,+∞)(L(∆Si)), (5.6)

where ∆S1, . . . ,∆SN is a sample of independent identically distributed random vectors

with joint density f(x; u).

Since VaR is a quantile of the cumulative distribution function of the portfolio loss,

many authors suggest the order statistics estimator for VaR (see e.g. Chu (2010),

Chu and Nakayama (2012), Hong and Liu (2011), Serfling (1980), Sun and Hong (2009)),

which does not depend on the form of the estimator of the empirical distribution func-

tion:

v̂α = L([N ·α]),

where L(1) ≤ . . . ≤ L(N) denote the ordered statistics that are obtained from the sample

L(∆S1), . . . , L(∆SN ). This estimator is, however, not convenient for the purpose of

extending the estimator to the variance reduction procedures.

An alternative estimator is achieved via an inverse of the empirical distribution function

in the form (5.6) (see e.g. Glasserman (2004), Glasserman et al. (2000b), Glynn (1996),

Sun and Hong (2010)):

v̂α = inf{x : F̂N (x) ≥ α} = inf{x :
1

N

N∑
i=1

I(x,+∞)(L(∆Si)) ≤ 1− α}. (5.7)

Glasserman (2004) mentions that, applying the piecewise linear interpolation to the em-

pirical distribution function before taking the inverse, produces generally more accurate

quantile estimates.

In regard to the estimator for CVaR, Glasserman et al. (2002) suggests to use the defini-

tion of CVaR according to (5.5), which we find, however, inconvenient for our purpose of

further investigation of the different variance reduction procedures together with their

asymptotics. Instead, we follow the research of Hong and Liu (2011), Sun and Hong

(2009, 2010) and define the following estimator of CVaR, which is based on the defini-

tion of CVaR according to (5.4):

ĉα = v̂α +
1

N · (1− α)

N∑
i=1

[L(∆Si)− v̂α]+, (5.8)
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where ∆S1, . . . ,∆SN is a sample of independent identically distributed random vectors

with joint density f(x; u).

We further use the MC estimator v̂α of VaR in the form (5.7) and the MC estimator ĉα of

CVaR in the form (5.8). In order to extend these MC estimators to the variance reduction

procedures from Chapter 4, we have to look at the final estimators. In the notations of

this chapter, we omit the dependency on the vector of the changes in risk factors, simply

denoting by Li the generated losses, by Qi the generated approximations (also stratified

variables), by LRi the likelihood ratio terms in corresponding importance sampling or

importance sampling with original or special stratification based algorithms, by pi the

probabilities for the strata under the corresponding measure and by p̂i their estimators

from the corresponding algorithms. One should only take care about the probability

measure under which the corresponding changes in risk factors are generated and under

which the corresponding probabilities are calculated or estimated. We group the final

estimators in the simplified notations, according to their types, in the following way:

Type 1: IS, ACE, FCE, AICE, FICE

P̂(L > x) =
1

N

N∑
i=1

I(x,+∞)(Li)LRi. (5.9)

Type 2: ISS, ACESI without z, AICESI without z, AOISI

P̂(L > x) =

K∑
i=1

pi
1

Ni

Ni∑
j=1

I(x,+∞)(Lij)LRij . (5.10)

Type 3: ACESI with z, AICESI with z, AOISSI

P̂(L > x) = p1
1

N

N∑
i=1

I(x,+∞)(Li)LRi + p2. (5.11)

Type 4: ACES without z, AICES without z, AOIS

P̂(L > x) = p̂1
1

N

N∑
i=1

I(x,+∞)(Li)LRi. (5.12)

Type 5: ACES with z, AICES with z, AOISS

P̂(L > x) = p̂1
1

N

N∑
i=1

I(x,+∞)(Li)LRi + p̂2. (5.13)
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We should note that the estimator (5.9) of type 1 is covered by the type 2. More precisely,

the estimator (5.9) can be achieved from the estimator (5.10) by setting K = 1 and,

hence, p1 = 1. Therefore, we skip the consideration of the type 1 below. We have

also separated the type 3 from the type 2 and the type 5 from the type 4, because the

estimator for CVaR can not be achieved by the special stratification with the level z,

but only with the level x (see Section 5.2.2).

The type 2 estimator, which covers the importance sampling, the importance sampling

with stratification and the importance sampling with special stratification in ideal set-

ting without upper level z is considered in Section 5.2.2. The type 3 estimator, which

covers the importance sampling with special stratification in ideal setting is considered

in Section 5.2.3. The type 4 estimator, which covers the importance sampling with spe-

cial stratification without upper level z is considered in Section 5.2.4. Finally, the type 5

estimator, which covers the importance sampling with special stratification is considered

in Section 5.2.5.

5.2.2 Importance Sampling with original Stratification

In this section we derive the estimators for VaR and CVaR for the variance reduction

procedures according to the type 2 estimator from Section 5.2.1. In order to do that,

we first have to modify the corresponding MC estimators (5.7) and (5.8):

v̂α = inf{x :

K∑
i=1

pi
1

Ni

Ni∑
j=1

I(x,+∞)(Lij)LRij ≤ 1− α}. (5.14)

ĉα = v̂α +
1

1− α

K∑
i=1

pi
1

Ni

Ni∑
j=1

[Lij − v̂α]+LRij . (5.15)

The estimator (5.14) for VaR can be found in, e.g., Chu (2010), Chu and Nakayama

(2012), Glasserman et al. (2000b), whereas the estimator (5.15) for CVaR, in the case

of the importance sampling estimator only (without the stratification), can be found in

Hong and Liu (2011), Sun and Hong (2009, 2010).

Glasserman et al. (2000b) mention, that in order to perform the optimization in (5.14),

one has to perform the variance reduction algorithm for different values x around the

true, but unknown, value vα of VaR. Since the set up of the corresponding change of

measure and stratification depends on the level x, it has to be performed many times

(for each value x separately). This is, however, inconvenient, as the number of such

levels x may be large. Instead, the change of measure and the stratified parameters

of the particular variance reduction procedure are constructed only for one value x in
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the neighborhood of the true value vα (this value can be either a rough estimate of VaR

obtained, say, by the MC method, or some good guess, if any information about the true

VaR is given). One should, therefore, take care in choosing this level x, such that the

corresponding variance reduction procedure works for the estimation of the probability

of high portfolio losses P(L > x̃) for a range of values x̃.

Glasserman et al. (2000b) show the robustness of the IS algorithm when the exponential

change of measure is constructed for the level x, but the probability of high portfolio

losses P(L > x̃) for a range of values x̃ is estimated. Besides, they mention that the

variance reduction of the IS and ISS algorithms for the estimation of the probability of

high portfolio losses P(L > x) for the level x in the neighborhood of the true value vα

of VaR carries over to VaR estimation.

In the case of CVaR estimation in the form (5.15), the same result holds. Either the

same change of measure as for the estimation of VaR can be used to estimate CVaR, or

the new change of measure for the level x = v̂α can be performed.

With regard to the IS, ACE, FCE, AICE, FICE and ISS algorithms, there is no restric-

tion on the choice of the level x for which the change of measure is constructed, such

that the probability of high portfolio losses P(L > x̃) can be estimated for a range of

values x̃. With regard to the algorithms that involve the special stratification either in

the ideal or in the general setting, we have to take more care. The problem is, that the

special stratification levels y and z from (4.21) depend on the level x and are chosen in

a special way, such that (see Section 4.3.1):

Q(x) ≤ y ⇒ L(x) ≤ x, for all x ∈ R∆S,

and

Q(x) ≥ z ⇒ L(x) ≥ x, for all x ∈ R∆S.

Hence, if we want to estimate the probability of high portfolio losses P(L > x̃) for a

range of values x̃1 ≤ x̃ ≤ x̃2, the following has to hold for the levels of the special

stratification y = y(x) and z = z(x), chosen in advance for some fixed value x in the

same range (x̃1, x̃2):

Q(x) ≤ y ⇒ L(x) ≤ x̃, for all x ∈ R∆S and all x̃ ∈ (x̃1, x̃2),

and

Q(x) ≥ z ⇒ L(x) ≥ x̃, for all x ∈ R∆S and all x̃ ∈ (x̃1, x̃2).

This does not hold, in particular, for x̃ < x in the first implication and for x̃ > x in the

second implication.
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Thanks to Remark 4.2, the special stratification can be defined via a wider interval than

the interval (y(x), z(x)), such that the above implications hold true. In order to build

such a wider interval, we first show the monotonicity of the levels y(x̃) and z(x̃) as

functions of x̃. More precisely, for x̃1 ≤ x̃ the following holds true:

y(x̃1) = inf
x∈R∆S

{Q(x)|L(x) > x̃1} ≤ inf
x∈R∆S

{Q(x)|L(x) > x̃} = y(x̃),

and for x̃ ≤ x̃2 the following holds true:

z(x̃) = sup
x∈R∆S

{Q(x)|L(x) < x̃} ≤ sup
x∈R∆S

{Q(x)|L(x) < x̃2} = z(x̃2).

Due to this monotonicity, for all x̃ ∈ (x̃1, x̃2), we have that (y(x̃), z(x̃)) ⊂ (y(x̃1), z(x̃2)),

and, hence, the following implications hold true:

Q(x) ≤ y(x̃1)⇒ L(x) ≤ x̃1 < x̃, for all x ∈ R∆S and all x̃ ∈ (x̃1, x̃2),

and

Q(x) ≥ z(x̃2)⇒ L(x) ≥ x̃2 > x̃, for all x ∈ R∆S and all x̃ ∈ (x̃1, x̃2).

All said above gives us the following procedure of estimating VaR with the help of the

methods based on the special stratification:

1. Estimate roughly the neighborhood of the true VaR: vα ∈ (x̃1, x̃2).

2. Find the importance sampling change of measure based on the level x being the

middle of this interval, i.e. x = (x̃1 + x̃2)/2.

3. Perform the variance reduction procedure based on the importance sampling to-

gether with the special stratification defined by the levels y(x̃1) and z(x̃2). The

corresponding strata partition is demonstrated in the Figure 5.1.

The estimation of CVaR is slightly different. First of all, assuming that VaR is already

estimated, it does not involve the range of the levels at which the estimator is per-

formed (no optimization is involved). Therefore, it is enough to perform the importance

sampling together with any stratification for the level given by the estimate v̂α of VaR.

Another problem, however, appears while using the special stratification in the estima-

tion of CVaR. We remind the reader, that the main advantage of the special stratifica-

tion is that the function I(x,∞)(L(∆S)) is a constant and known, if Q(∆S) /∈ (y, z). In

the case of CVaR, the corresponding indicator function is substituted by the function

[L(∆S)− v̂α]+, whose value is fixed and known only if Q(∆S) ≤ y but not if Q(∆S) ≥ z.
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Figure 5.1: Wider range from y(x1) to z(x2) for some x1 < x < x2 for Delta-Gamma
approximation against actual portfolio losses in 1000 randomly generated scenarios
for a portfolio of short 10 ATM down-and-out calls, 10 uncorrelated assets, 0.1 years
maturity, Gaussian changes in risk factors, probability nearly 1% (for details on the

portfolio see Chapter 6).

Therefore, only the special stratification without the level z should be used in order to

estimate CVaR. This is the reason, why we have separated ACESI, AICESI, ACES and

AICES algorithms for the cases with the special stratification based on both levels y and

z, and the special stratification based only on the level y. The type 2 estimator (5.10),

in particular, can be used in order to estimate CVaR.

5.2.3 Importance Sampling with special Stratification in Ideal setting

In this section we are interested in the estimators for VaR and CVaR for the variance

reduction procedures according to the type 3 estimator from Section 5.2.1. As mentioned

in Section 5.2.2, CVaR can not be estimated for such variance reduction algorithms,

because of the level z in the special stratification. With regard to VaR, we first have to

modify the corresponding MC estimator (5.7):

v̂α = inf{x : p1
1

N

N∑
i=1

I(x,+∞)(Li)LRi + p2 ≤ 1− α}. (5.16)
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The estimator (5.16) for VaR can be found in Pupashenko (2014) in a slightly modified

form. The whole theory about the choice of the importance sampling change of measure

and the levels of the special stratification is the same as in Section 5.2.2.

5.2.4 Importance Sampling with special Stratification without upper

level

In this section we derive the estimators for VaR and CVaR for the variance reduction

procedures according to the type 4 estimator from Section 5.2.1. This is achieved by

the simple modification of the corresponding estimators (5.14) and (5.15) from Section

5.2.2:

v̂α = inf{x : p̂1
1

N

N∑
i=1

I(x,+∞)(Li)LRi ≤ 1− α}. (5.17)

ĉα = v̂α +
1

1− α
p̂1

1

N

N∑
i=1

[Li − v̂α]+LRi. (5.18)

The whole theory about the choice of the importance sampling change of measure and

the levels of the special stratification is the same as in Section 5.2.2.

5.2.5 Importance Sampling with special Stratification

In this section we derive the estimator for VaR for the variance reduction procedures ac-

cording to the type 5 estimator from Section 5.2.1. As mentioned in Section 5.2.2, CVaR

can not be estimated for such variance reduction algorithms because of the level z in the

special stratification. In order to estimate VaR, we have to modify the corresponding

estimator (5.16) from Section 5.2.3:

v̂α = inf{x : p̂1
1

N

N∑
i=1

I(x,+∞)(Li)LRi + p̂2 ≤ 1− α}. (5.19)

The whole theory about the choice of the importance sampling change of measure and

the levels of the special stratification is the same as in Section 5.2.2.

5.3 Estimator analysis

After we have defined the variance reduction estimators for VaR and CVaR in Section

5.2, we should analyze their asymptotics. The most striking among them are the con-

sistency (convergence of the estimator to its true value) and the asymptotic normality
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(the limiting distribution of the difference of the estimator and its true value is normally

distributed), for definitions see Billingsley (1995), Serfling (1980). In particular, the

asymptotic normality can be used in order to construct the confidence intervals, which

we do in Section 5.3.3.

The literature gives an intensive study of the asymptotics of MC and different vari-

ance reduction procedures for VaR, as well as for CVaR. Among them we would like to

mention Chu (2010), Chu and Nakayama (2012), Glasserman (2004), Glasserman et al.

(2000b, 2002), Hong and Liu (2011), Sun and Hong (2009, 2010). None of these litera-

ture, however, gives a complete study of the problem for both VaR and CVaR. Besides,

they, of course, do not include the new variance reduction algorithms derived in Chapter

4. Therefore, we give here the consecutive study of the corresponding asymptotics of

the VaR and CVaR estimators of all types of the variance reduction procedures given in

Section 5.2.1.

5.3.1 Asymptotics of Monte Carlo simulation

In this section we give the asymptotic results for the MC estimators of VaR and CVaR.

The consistency and the asymptotic normality of the MC estimators (5.7) and (5.8) have

been studied in, e.g., Glasserman (2004), Serfling (1980), Trindade et al. (2007). But

we present here a more general result based on the Bahadur (Bahadur (1966)) and the

Bahadur-Ghosh (Ghosh (1971)) representations of the quantile, studied in Chu (2010),

Chu and Nakayama (2012), Hong and Liu (2011), Sun and Hong (2009, 2010).

We first start from the asymptotics for VaR given by (5.7), which is derived in Chu

(2010), Chu and Nakayama (2012). We further assume the following:

Assumption 5.6. The cumulative distribution function F is differentiable at vα and

f(vα) > 0, where f denotes in this section the density function of the portfolio losses L

(do not confuse the notation with the density of the changes in risk factors, where we

usually make an explicit dependency on the parameter).

The following assumption is crucial in the proof of the Bahadur representation (see

Bahadur (1966)):

Assumption 5.7. The second derivative of the cumulative distribution function F is

bounded in the neighborhood of vα.
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VaR is a quantile estimator, for which, under Assumptions 5.6 and 5.7, the following

Bahadur representation holds true (see Bahadur (1966)):

v̂α = vα −
(1− α)− 1

N

∑N
i=1 I(vα,+∞)(Li)

f(vα)
+A′N ,

where almost surely (a.s.):

A′N = O(N−3/4(logN)1/2(log logN)1/4) as N →∞,

where A′N = O(g(N)) a.s. means, that there exists a set of probability 1, such that

for each ω from this set there exits a constant c(ω) such that |A′N | ≤ c(ω)g(N) for N

sufficiently large (see Billingsley (1995), Serfling (1980)). Kiefer (1967) improves the

rate of the convergence of A′N even further by proving a.s. the following:

A′N = O(N−3/4(log logN)3/4) as N →∞.

This asymptotic representation of the MC estimator for VaR can be found in Chu

(2010), Chu and Nakayama (2012), Hong and Liu (2011), Sun and Hong (2009, 2010),

but only Chu (2010), Chu and Nakayama (2012) develop a weaker form of the Bahadur

representation, namely the Bahadur-Ghosh representation (see Ghosh (1971)). In more

details, for some sequence αN = α−O(N−1/2), under only Assumption 5.6, the Bahadur-

Ghosh representation for a quantile looks like:

v̂αN = vα −
(1− αN )− 1

N

∑N
i=1 I(vα,+∞)(Li)

f(vα)
+AN , (5.20)

where AN satisfies:
√
NAN

P→ 0 as N →∞,

where
P→ denotes the convergence in probability (see Billingsley (1995), Serfling (1980)).

The Bahadur and the Bahadur-Ghosh representations of the MC estimator (5.7) of VaR

give a speed at which this estimator converges to the true value. Besides, as proven

in Chu (2010), Chu and Nakayama (2012), they have two important consequences, the

consistency (by the Law of Large Numbers, see e.g. Billingsley (1995), Serfling (1980)):

v̂α
a.s.→ vα as N →∞,

v̂αN
P→ vα as N →∞, (5.21)

where
a.s.→ means the a.s. convergence or the convergence with probability 1 (see Billingsley
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(1995), Serfling (1980)), and the asymptotic normality (by Slutsky’s lemma and the Cen-

tral Limit Theorem, see e.g. Billingsley (1995), Serfling (1980)):

√
N(v̂α − vα)

D→ N1

(
0,

Var[I(vα,+∞)(L)]

f2(vα)

)
as N →∞,

√
N(v̂αN − vα)

D→ N1

(
0,

Var[I(vα,+∞)(L)]

f2(vα)

)
as N →∞, (5.22)

where
D→ denotes the convergence in distribution (see Billingsley (1995), Serfling (1980)).

There are various ways to prove the strong consistency and the asymptotic normality of

the MC estimator (5.7) of VaR, presented in, e.g., Glasserman (2004), Serfling (1980),

Trindade et al. (2007), but we find the most advanced one the one presented here, given

by (5.20), (5.21) and (5.22). As mentioned in Chu (2010), Chu and Nakayama (2012),

the main advantage of the Bahadur-Ghosh representation (5.20) is that it further sim-

plifies the derivation of the confidence intervals (see Section 5.3.3).

The main difference between the Bahadur and the Bahadur-Ghosh representations is

that the result from Ghosh (1971) requires weaker assumptions, but the result from

Bahadur (1966) gives an additional information about the exact rate of convergence of

the last term A′N .

We further continue with the same analysis of the MC estimator (5.8) of CVaR, de-

veloped in Hong and Liu (2011), Sun and Hong (2009, 2010) with the help of only the

Bahadur representation. In this case, the authors do not face problems as for VaR,

therefore they do not need to apply the weaker Bahadur-Ghosh representation. Under

the same Assumptions 5.6 and 5.7, the following Bahadur representation for the MC

estimator (5.8) of CVaR holds true:

ĉα = cα +

([
vα +

1

1− α
1

N

N∑
i=1

[Li − vα]+

]
− cα

)
+BN , (5.23)

where BN a.s. satisfies:

BN = O(N−1 logN) as N →∞.

The corresponding strong consistency and the asymptotic normality hold true:

ĉα
a.s.→ cα as N →∞, (5.24)

√
N(ĉα − cα)

D→ N1

(
0,

Var[[L− vα]+]

(1− α)2

)
as N →∞. (5.25)
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5.3.2 Asymptotics of Variance Reduction procedures

In this section we extend the asymptotic theory to the variance reduction procedures

from Chapter 4 for VaR, according to Chu (2010), Chu and Nakayama (2012), and for

CVaR, according to Hong and Liu (2011), Sun and Hong (2009, 2010).

Again, we start from the VaR estimation, for which all four types 2-5 of the variance

reduction procedures (see Section 5.2.1) can be applied. The type 2 estimator covers the

importance sampling and the importance sampling with stratification variance reduc-

tion algorithms, for which the Bahadur-Ghosh representation is proven in Chu (2010),

Chu and Nakayama (2012) under Assumptions 5.6 and 5.8:

Assumption 5.8. For each stratum i assume, that there exist ε > 0 and δ > 0 such

that the expectation of I(vα−δ,∞)(Lij)LR
2+ε
ij under the importance sampling change of

measure is finite.

The Bahadur-Ghosh representation for the importance sampling with original stratifi-

cation estimator (5.14) of VaR looks as follows:

v̂αN = vα −
(1− αN )−

∑K
i=1 pi

1
Ni

∑Ni
j=1 I(vα,+∞)(Lij)LRij

f(vα)
+AN , (5.26)

where AN satisfies:
√
NAN

P→ 0 as N →∞.

The corresponding consistency of the estimator and the asymptotic normality read as

follows:

v̂αN
P→ vα as N →∞, (5.27)

√
N(v̂αN − vα)

D→ N1

(
0,

∑K
i=1 p

2
i
N
Ni

Var[I(vα,+∞)(Li)LRi]

f2(vα)

)
as N →∞. (5.28)

Note that, since the partition in the stratification part is fixed, the ratios N
Ni

can be

treated as constants, which sum up to 1.

These results can be extended to the type 3 variance reduction procedure in the straight-

forward way. In particular, the Bahadur-Ghosh representation for the importance sam-

pling with special stratification in ideal setting estimator (5.16) of VaR takes the form:

v̂αN = vα −
(1− αN )− p1

1
N

∑N
j=1 I(vα,+∞)(Li)LRi − p2

f(vα)
+AN , (5.29)

where AN satisfies:
√
NAN

P→ 0 as N →∞.
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The corresponding consistency of the estimator and the asymptotic normality read as

follows:

v̂αN
P→ vα as N →∞, (5.30)

√
N(v̂αN − vα)

D→ N1

(
0,
p2

1Var[I(vα,+∞)(L)LR]

f2(vα)

)
as N →∞. (5.31)

Now we want to extend the above stated results for the type 2 estimator to the type 4

estimator, and the result for the type 3 estimator to the type 5 estimator. In both cases,

the difference in the estimators lies in the use of the estimators p̂1 and p̂2 instead of the

fixed values p1 and p2. Moreover, according to the algorithms from Chapter 4, the MC

algorithm is used for the estimation of the probability p̂1 = Pv̂∗(Q ∈ (y, z)) under the

corresponding change of measure:

1

m1 ·N

m1·N∑
i=1

I(y,z)(Qi),

and the CE algorithm is used for estimation of the probability p̂2 = Pu(Q ≥ z) under

the original measure:

1

m2 ·N

m2·N∑
i=1

I(z,∞)(Qi)LRi,

where y and z are the levels of the special stratification.

In order to do the proofs similar to Sun and Hong (2010), one has to state an assumption

on the estimators p̂1 and p̂2 similar to Assumption 5.8:

Assumption 5.9. Assume, that there exist ε > 0 and δ > 0 such that the expectation

of I(y−δ,z+δ)(Qi) and the expectation of I(z−δ,∞)(Qi)LR
2+ε
i , both under the importance

sampling change of measure, are finite.

The corresponding asymptotic result for the type 2 estimator can then be easily extended

to the type 4 estimator, and the type 3 to the type 5 estimator for the worst case of

m1 = 1 and m2 = 1 (otherwise the sample sizes in estimators p̂1 and p̂2 are even larger

than N).

More precisely, the Bahadur-Ghosh representation for the importance sampling with

special stratification without upper level estimator (5.17) of VaR, under Assumptions

5.6, 5.8 and 5.9, takes the form:

v̂αN = vα −
(1− αN )− p̂1

1
N

∑N
i=1 I(vα,+∞)(Li)LRi

f(vα)
+AN , (5.32)
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where AN satisfies:
√
NAN

P→ 0 as N →∞.

The corresponding consistency of the estimator and the asymptotic normality read as

follows:

v̂αN
P→ vα as N →∞, (5.33)

√
N(v̂αN − vα)

D→ N1

(
0,

Var[p̂1I(vα,+∞)(L)LR]

f2(vα)

)
as N →∞. (5.34)

In order to show the Bahadur-Ghosh representation (5.32) from (5.26), it suffices to

prove that:
√
N

(p1 − p̂1) 1
N

∑N
i=1 I(vα,+∞)(Li)LRi

f(vα)

P→ 0 as N →∞,

which can be easily done, under Assumptions 5.6, 5.8 and 5.9, in a similar way to the

proof of Lemma 2 in Sun and Hong (2010).

Similarly, the Bahadur-Ghosh representation for the importance sampling with special

stratification estimator (5.19) of VaR, under Assumptions 5.6, 5.8 and 5.9, can be easily

achieved from (5.29) by showing the following:

√
N

(p1 − p̂1) 1
N

∑N
i=1 I(vα,+∞)(Li)LRi + (p2 − p̂2)

f(vα)

P→ 0 as N →∞,

again in a straightforward way similarly to the proof of Lemma 2 in Sun and Hong

(2010).

The Bahadur-Ghosh representation then takes the form:

v̂αN = vα −
(1− αN )− p̂1

1
N

∑N
j=1 I(vα,+∞)(Li)LRi − p̂2

f(vα)
+AN , (5.35)

where AN satisfies:
√
NAN

P→ 0 as N →∞.

The corresponding consistency of the estimator and the asymptotic normality read as

follows:

v̂αN
P→ vα as N →∞, (5.36)

√
N(v̂αN − vα)

D→ N1

(
0,

Var[p̂1I(vα,+∞)(L)LR+ p̂2]

f2(vα)

)
as N →∞. (5.37)

In the next step we move to the asymptotic theory of the estimation of CVaR. We

remind the reader, that only the variance reduction methods of the types 1, 2 and 4

can be applied in the estimation of CVaR. We start here from the type 1 estimator

of the variance reduction procedures, that covers the importance sampling algorithm,
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for which the Bahadur representation is proven in Hong and Liu (2011), Sun and Hong

(2009, 2010) under Assumptions 5.6, 5.7, 5.8 and 5.10:

Assumption 5.10. The likelihood ratio is bounded in the neighborhood of vα.

Note, that in the case of the importance sampling algorithm without stratification, the

number of strata in Assumptions 5.8 and 5.10 is simply taken to be 1.

The importance sampling estimator (5.15) of CVaR (importance sampling with strati-

fication estimator with one stratum) allows the following Bahadur representation (see

Hong and Liu (2011), Sun and Hong (2009, 2010)):

ĉα = cα +

([
vα +

1

1− α
1

N

N∑
i=1

[Li − vα]+LRi

]
− cα

)
+BN , (5.38)

where BN satisfies:
√
NBN

P→ 0 as N →∞.

The corresponding consistency of the estimator and asymptotic normality read as fol-

lows:

ĉα
P→ cα as N →∞, (5.39)

√
N(ĉα − cα)

D→ N1

(
0,

Var[[L− vα]+LR]

(1− α)2

)
as N →∞. (5.40)

Analogously to the asymptotic theory for VaR, the Bahadur representation (5.38), the

consistency (5.39) and the asymptotic normality (5.40) of the importance sampling es-

timator (5.15) of CVaR can be easily extended to the importance sampling with strati-

fication estimator (5.15).

More precisely, the Bahadur representation for the importance sampling with stratifica-

tion estimator (5.15) of CVaR takes the form:

ĉα = cα +

vα +
1

1− α

K∑
i=1

pi
1

Ni

Ni∑
j=1

[Lij − vα]+LRij

− cα
+BN , (5.41)

where BN satisfies:
√
NBN

P→ 0 as N →∞.

The corresponding consistency of the estimator and asymptotic normality read as fol-

lows:

ĉα
P→ cα as N →∞, (5.42)

√
N(ĉα − cα)

D→ N1

(
0,

∑K
i=1 p

2
i
N
Ni

Var[[Li − vα]+LRi]

(1− α)2

)
as N →∞. (5.43)
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Again, since the partition in the stratification part is fixed, the ratios N
Ni

can be treated

as constants, which sum up to 1.

Finally, the Bahadur representation for the importance sampling with special stratifi-

cation without upper level estimator (5.18) of CVaR can be achieved from (5.41) under

Assumptions 5.6, 5.7, 5.8 and 5.10 in a similar way to VaR, i.e. by showing that:

√
N

1

1− α
(p1 − p̂1)

1

N

N∑
i=1

[Li − vα]+LRi
P→ 0 as N →∞,

in a similar way to the proof of Lemma 2 in Sun and Hong (2010).

The Bahadur representation then takes the form:

ĉα = cα +

([
vα +

1

1− α
p̂1

1

N

N∑
i=1

[Li − vα]+LRi

]
− cα

)
+BN , (5.44)

where BN satisfies:
√
NBN

P→ 0 as N →∞.

The corresponding consistency of the estimator and asymptotic normality read as fol-

lows:

ĉα
P→ cα as N →∞, (5.45)

√
N(ĉα − cα)

D→ N1

(
0,

Var[p̂1[L− vα]+LR]

(1− α)2

)
as N →∞. (5.46)

In order to summarize, the Bahadur-Ghosh and Bahadur representations, the consis-

tency and the asymptotic normality of the estimators from Chapter 4, combined by the

types from Section 5.2.1, are given by:

Type 1 and type 2: (5.26), (5.27) and (5.28) for the estimator (5.14) of VaR and

(5.41), (5.42) and (5.43) for the estimator (5.15) of CVaR

Type 3 (5.29), (5.30) and (5.31) for the estimator (5.16) of VaR

Type 4 (5.32), (5.33) and (5.34) for the estimator (5.17) of VaR and (5.44), (5.45) and

(5.46) for the estimator (5.18) of CVaR

Type 5 (5.35), (5.36) and (5.37) for the estimator (5.19) of VaR

5.3.3 Confidence intervals

In this section we construct the confidence intervals for all estimators of VaR and CVaR.

The asymptotic normality that results from Sections 5.3.1 and 5.3.2 help us to do this
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in the standard way. More precisely, assume that some estimator θ̂ of the unknown

parameter θ, achieved with the sample size N , is asymptotically normal with the variance

σ2:
√
N(θ̂ − θ) D→ N1(0, σ2).

Then, the β confidence interval (usually β is close to 1) for the large sample size N is

given by the following endpoints:

θ̂ ± z(1−β)/2
σ√
N
, (5.47)

where 1−Φ(z(1−β)/2) = (1− β)/2 with Φ(·) being the cumulative distribution function

of the standard normal random variable N1(0, 1).

Usually, in practice, we do not know the variance σ2. But, if we substitute σ in the

confidence interval (5.47) by some consistent estimator σ̂, the corresponding confidence

interval remains asymptotically valid:

θ̂ ± z(1−β)/2
σ̂√
N
. (5.48)

Hence, in order to construct the confidence intervals for the VaR and CVaR estimators

from Section 5.2, one has to construct consistent estimators for the variances in the

corresponding asymptotic normality results of Sections 5.3.1 and 5.3.2.

We further summarize the involved variances of the asymptotic normality results for

MC and the variance reduction algorithms of VaR and CVaR estimators, which we

again group by the type of the estimator (see Section 5.2.1):

MC:

VaR variance from (5.22):
Var[I(vα,+∞)(L)]

f2(vα)
,

and CVaR variance from (5.25):
Var[[L− vα]+]

(1− α)2
.

Type 1 and type 2:

VaR variance from (5.28):

∑K
i=1 p

2
i
N
Ni

Var[I(vα,+∞)(Li)LRi]

f2(vα)
,

and CVaR variance from (5.43):

∑K
i=1 p

2
i
N
Ni

Var[[Li − vα]+LRi]

(1− α)2
.

Type 3:

VaR variance from (5.31):
p2

1Var[I(vα,+∞)(L)LR]

f2(vα)
.
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Type 4:

VaR variance from (5.34):
Var[p̂1I(vα,+∞)(L)LR]

f2(vα)
,

and CVaR variance from (5.46):
Var[p̂1[L− vα]+LR]

(1− α)2
.

Type 5:

VaR variance from (5.37):
Var[p̂1I(vα,+∞)(L)LR+ p̂2]

f2(vα)
.

The role of θ̂ in the confidence intervals for VaR is played by v̂αN with αN = α −
O(N−1/2), and in the confidence intervals for CVaR by ĉα.

The variances for CVaR, as well as the numerators of the variances for VaR, can be easily

estimated by the corresponding sample counterparts in parallel with the estimator itself.

The problem appears with the denominators of the variances for VaR, which contain

the value of the density function f at VaR. As mentioned in, e.g., Glasserman (2004),

the estimation of this function is complicated, and another approach for constructing

the confidence intervals is proposed. In more details, one can divide the whole sample

into smaller subsamples (batches), compute the VaR estimate from each batch, and

form a confidence interval based on the sample variance of the estimates across these

batches. This method has, however, a crucial drawback. In order to achieve an accurate

confidence interval, a large sample size is often required.

The authors in Chu (2010), Chu and Nakayama (2012), construct the consistent esti-

mator for the corresponding density function. In particular, the Bahadur-Ghosh repre-

sentation of VaR with the perturbed parameter αN = α − O(N−1/2) is a key step in

developing this estimator. This is the reason, why it is important to use the Bahadur-

Ghosh representation for VaR, but for CVaR, the Bahadur representation suffices.

Further, we state the results from Chu (2010), Chu and Nakayama (2012), with regard

to the estimation procedure of f(vα). First note, that:

1

f(vα)
=

d

dp
F−1(p)

∣∣∣
p=vα

.

Hence, the authors in Chu (2010), Chu and Nakayama (2012), suggest the finite-difference

estimators (see Glasserman (2004)) for 1
f(vα) and prove their consistency using the

Bahadur-Ghosh representation:

√
N

c
(v̂α − v̂αN ),

√
N

2c
(v̂α′N − v̂αN ),
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r∑
j=1

wj

√
N

cj
(v̂α − v̂αN (j)),

r∑
j=1

wj

√
N

2cj
(v̂α′N (j) − v̂αN (j)),

where αN = α− c√
N

and α′N = α+ c√
N

for some constant c > 0, and αN (j) = α− cj√
N

and

α′N (j) = α+
cj√
N

for some constants cj > 0 and some weights wj such that
∑r

j=1wj = 1

for some integer r.

Each of these estimators can be used in order to construct the asymptotically valid

confidence intervals.

5.4 Summary

In this section we want to summarize the process of transition from the estimation of

the probability of high portfolio losses to the estimation of VaR and CVaR.

First of all, it is important to remind the reader, that all estimators of the probability of

high portfolio losses, i.e. the probability that losses exceed some known and fixed level

x, are based on the change of measure and the choice of the strata that depend on this

level x. But, in order to estimate VaR and then CVaR, it is required to estimate the

probability of high portfolio losses in some neighborhood of the true VaR vα. In order

to do it efficiently, the change of measure and the strata are constructed only once for

some fixed level x in the middle of the corresponding neighborhood. As mentioned in

Glasserman (2004), Glasserman et al. (2000a,b, 2002), the variance reduction under this

fixed change of measure of the estimation of the probability P(L > x) is carried over to

the estimation of the probability P(L > y) for all y in the neighborhood of x. Therefore,

we can expect, that the variance reduction rates of the estimation of the probability

P(L > x) are approximately the same as the variance reduction rates of the estimation

of the probability P(L > y) for all y in the neighborhood of x.

Now, looking at the variances of the corresponding estimators of VaR and CVaR (see

Section 5.3.3) for all variance reduction algorithms, one can conclude, that they are

proportional to the variances of the corresponding estimators of the probability of high

portfolio losses P(L > vα). This implies, that the variance reduction rate of estimating

the probability of high portfolio losses P(L > vα) is carried over to the estimation of

the market risk measures VaR and CVaR. Besides, according to the above said, this

variance reduction rate is approximately the same as the one achieved in the estimation

of the probability P(L > x), where the level x is the one for which the change of measure
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and the strata are constructed. A similar result is discussed in e.g. Glasserman (2004),

Glasserman et al. (2000a,b, 2002).



Chapter 6

Numerical examples

In this chapter we perform an in-depth numerical study in order to examine our new

variance reduction algorithms on different realistic portfolios, first in the light-tailed

case in Section 6.1 and then in the heavy-tailed case in Section 6.2. In order to com-

pare our new algorithms with the IS and ISS algorithms given by Glasserman (2004),

Glasserman et al. (2000a,b, 2002), we use the same set of portfolios as tested in, e.g.,

Glasserman et al. (2000b). Besides, these portfolios are constructed in such a way, that

they cover a wide variety of different characteristics. This is done in order to exam-

ine the effect of the portfolio on the performance of the particular variance reduction

algorithms.

We first should note that the numerical study is done directly to the problem of estimat-

ing the probability of high portfolio losses. The first reason for this is that this is exactly

the quantity tested by Glasserman (2004), Glasserman et al. (2000a,b, 2002). Besides,

none of these papers cover the VaR and CVaR estimation for both IS and ISS algorithms

simultaneously. The second reason is that the variance reduction rate of estimating the

probability of high portfolio losses is carried over to the estimation of VaR and CVaR,

as discussed in Section 5.4. Besides, the process of transition from the estimation of the

probability of high portfolio losses to the estimation of VaR and CVaR is well described

in Chapter 5 and is easy to implement, given that the variance reduction algorithms

from Chapter 4 are already implemented.

We should also note, that all portfolios tested in the following are quite simple compared

to the portfolios on real financial markets. But, as already mentioned in Glasserman et al.

(2002), the simple portfolios give a good indication of the variance reduction rate, even

if more complex portfolio revaluation procedures were used. This is because the great-

est computational gain from the variance reduction algorithms is obtained in cases,

111
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where the revaluation is extremely time consuming (see Assumption 4.1), e.g. for finite-

difference methods, trees or even simulations.

For all new algorithms which are based on some approximation, except the classical

Delta-Gamma approximation, we often use the modified Delta-Gamma, Charm-Speed

and the modified Charm-Speed approximation (see Chapter 3). By improved approxima-

tion we always mean one of these four approximations, which gives the best performance.

The user is, however, not restricted to these four approximations and can use any other

approximation, if he or she believes that it fits the portfolio loss function better.

6.1 Light - tailed case

In this section we examine the light-tailed case, i.e. the case when the underlying changes

in risk factors are assumed to have a multivariate normal distribution, see Assumption

3.1.

6.1.1 Setup of the example

We assume 250 trading days in a year and a continuously compounded annual risk free

interest rate of 5%. Both the real and the risk-neutral rates of return are assumed to be

equal. For each case, losses over 10 days are investigated, i.e. ∆t = 0.04. All assets have

initial values of 100 and are modeled as geometric Brownian motions with an annual

volatility of σ = 0.3. In order to make it consistent with Assumption 3.1, the standard

deviation of the changes in risk factors ∆Sj should be given by Sjσ
√

∆t, which gives

the covariance matrix ΣS .

The following portfolios are considered:

(a.1) Short 10 at-the-money (ATM) calls and 5 ATM puts on each of the 10 uncorrelated

assets, all options having a 0.1 years maturity.

(a.2) Same as (a.1) but with the maturity being half a year.

(a.3) Long 10 ATM calls and 5 ATM puts on each of 10 uncorrelated assets, all options

having a 0.1 years maturity.

(a.4) Same as (a.3) but with the maturity being half a year.

(a.5) Same as (a.1) but with the number of puts increased so that b = 0 in the Delta-

Gamma approximation (see Section 3.3.1).
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(a.6) Short 10 ATM calls and 10 ATM puts on each of 100 uncorrelated assets, all

options having a 0.1 years maturity.

(a.7) Same as (a.6) but with the correlation of distinct assets set to 0.2.

(b.1) Short 10 ATM calls on each of the 10 uncorrelated assets, all options having a 0.1

years maturity.

(b.2) Short 10 ATM down-and-out calls on each of the 10 uncorrelated assets, the barrier

is set to 95.

(b.3) Short 10 ATM down-and-out calls and 5 ATM puts on each of the 10 uncorrelated

assets.

(b.4) Same as (b.3) but with the number of puts increased so that b = 0 in the Delta-

Gamma approximation (see Section 3.3.1).

(b.5) Short 10 ATM down-and-out calls and 5 ATM cash-or-nothing puts on each of the

10 uncorrelated assets, the cash value is set to 100.

(b.6) Same as (b.5) but with the number of cash-or-nothing puts increased so that b = 0

in the Delta-Gamma approximation (see Section 3.3.1).

The at-the-money (ATM) option means, that an option’s strike price is identical to the

price of the underlying security, i.e. the strike price in all portfolios is equal to 100.

Portfolios (a.1) - (a.7), (b.1) contain continuous payoffs, where the approximations work

quite well, while portfolios (b.2) - (b.6) contain discontinuous payoffs with approxima-

tions performing quite poor. Note also, that all these portfolios are based on options,

therefore, the modified approximations from Chapter 3 can be applied.

All option prices are calculated by the Black-Scholes formula or its extensions. We refer

an interested reader to Appendix C for a description of all involved options and their

pricing formulas. There is a certain inconsistency in using these formulas for the nor-

mal distribution directly, but this is the choice of Glasserman (2004), Glasserman et al.

(2000a,b), and as mentioned there, it is very common in practice.

The level x is usually chosen such that the probability of high portfolio losses P(L > x)

is 5%, 1% or 0.3%.

The total sample size is set to N = 120000 in order to achieve precise estimates of

the variance reduction rates and compare them to the results from other papers. The

variance reduction rates are given in Section 6.1.3 via the so called variance reduction

factors, which are the ratios of the variance of the MC estimate (no variance reduction)
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to the variance of the estimators obtained by the corresponding variance reduction algo-

rithm. Thus, the larger variance reduction factor means larger variance reduction rate,

and, therefore, better performance of the corresponding variance reduction algorithm.

The sample size for the parameter update in all CE based algorithms is chosen to be

M = 10000 (it can be, however, often reduced to 1000 without loss of performance).

Since the probability P(L > x) of interest varies around 1% and in practice is usually

not smaller than 0.1%, the rarity parameter ρ in all CE based algorithms is chosen to

be 0.1.

The 40 equally partitioned and equally allocated strata are chosen for the ISS method

as it is done in Glasserman (2004), Glasserman et al. (2000a,b).

The special strata is achieved by the simulated annealing algorithm (see Appendix B)

with the maximum number of iterations set to 100 per stratum. This means, that the

evaluation of each level y and z of the special stratification involves 100 revaluation of the

portfolio loss function, as well as 100 revaluations of the much faster approximation. The

parameter δ for the calculation of the corresponding multipliersm orm1 andm2 is chosen

to be 0.9 (90% of performance of the ideal algorithms). The multipliers themselves are

calculated according to the algorithm and their sum (either m or m1 +m2) is presented

in the results.

Finally, the parameter K for the AOIS and AOISS algorithms is chosen to be 1000.

We should note, that the choice of these parameters is similar to the example in Section

4.5, where the comparison of the time necessary for corresponding set-up of the variance

reduction algorithm is given.

6.1.2 Choice of the parametric family for CE based algorithms

All new algorithms from Chapter 4 are based on the importance sampling change of

measure, which is the closest one, out of some parametric family of densities, to the

optimal importance sampling density. The performance and ease of these algorithms

depends mainly on the choice of the corresponding parametric family, which from one

point of view should be wide, but from another point of view should be easy to handle in

the corresponding optimizations of the optimal reference parameter estimator. There-

fore, in order to apply our new variance reduction algorithms efficiently, one has to take

care in the choice of the parametric family of densities. In the general case it is very

hard to give guidance on the choice of this family, but from the particular examples

one can achieve a first impression on this problem. Therefore, here, in the scope of the
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light-tailed example from Section 6.1.1 (as well for the heavy-tailed example from Sec-

tion 6.2.1, later in Section 6.2.2) we emphasize on the main principles of the successful

choice of the parametric family.

The first, and obvious, principle is that the parametric family should contain the original

density of the changes in risk factors, which under Assumption 3.1 is a d-dimensional

multivariate normal distribution with zero mean vector, i.e. ∆S ∼ Nd(0,ΣS). The

first idea about the parametric family is simply a d-dimensional multivariate normal

distribution Nd(µ,Σ) parametrized by the mean vector µ and the covariance matrix Σ.

In this case, the reference parameter to be estimated consists of the d-dimensional vector

parameter µ and the d× d covariance matrix Σ. Recall the system of equations (2.13)

which appear in the reference parameter update step. It involves the gradient of the

joint density function w.r.t. the parameter we are searching for. Such a system becomes

decoupled and is, therefore, much easier to solve, if we have the mutually independent

normals (i.e. the diagonal covariance matrix). Besides, it would involve much less

parameters to estimate (only the diagonal elements of the covariance matrix). This

can be done, if we modify the original density of ∆S to the density with the diagonal

covariance matrix. And it can be easily done by expressing the correlated normals

∆S ∼ Nd(0,ΣS) via independent normals Z ∼ Nd(0, I) by setting,

∆S = CZ, with CCT = ΣS ,

with the special choice of the matrix C discussed in Section 3.3.1. The independent

normals Z ∼ Nd(0, I) then can be treated as the changes in risk factors by adjusting the

portfolio loss and the approximation functions accordingly (by taking the superposition

of the corresponding function and the function ∆S(Z) = CZ). This gives us an op-

portunity to define the parametric family of the changes of measure by Nd(µ, diag(σ2))

parametrized by the d-dimensional mean vector µ and the d-dimensional variance vector

σ2, where diag(σ2) means the matrix with diagonal elements taken from the vector σ2,

all other elements being zeros.

We further provide the exact solution (main advantage of the corresponding reference

parameter update step in the CE based algorithms) to the system of equations (2.13)

under the above defined choice of the parametric family. For simplicity of notations

we forget about the matrix C and assume, that the changes in risk factors ∆S have

the standard normal distribution Nd(0, I). Under the above mentioned choice of the

parametric family, the vector parameter v is a concatenation of the vectors µ and σ2.

Moreover, due to the choice of the diagonal covariance matrix, the joint density f(Xi; v)

is a product of marginal densities N1(µj ,σ
2
j ) for j = 1, . . . , d (do not get confused

between indexes i and j, the index i is responsible for sample indexing, and the index j
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is responsible for indexing the d-dimensional vectors). The system (2.13) then becomes

decoupled and reads as follows:
1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi; u,w)

∂ log f(Xij ;µj ,σ
2
j )

∂µj
= 0,

1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi; u,w)

∂ log f(Xij ;µj ,σ
2
j )

∂σ2
j

= 0,

for j = 1, . . . , d, where Xij denotes the j-th coordinate of the vector Xi and f(·;µj ,σ2
j )

is the density of the normal distribution N1(µj ,σ
2
j ).

The next step is to derive the partial derivatives ∂ log f(x;µ,σ2)
∂µ and ∂ log f(x;µ,σ2)

∂σ2 , which is

a standard material of any statistical book (see, e.g., Anderson (2003)):

∂ log f(x;µ, σ2)

∂µ
=
x− µ
σ2

,

∂ log f(x;µ, σ2)

∂σ2
=

(x− µ)2 − σ2

2σ4
.

The above system of equations can be simplified by plugging in the partial derivatives:
1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi; u,w)(Xij − µj) = 0,

1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi; u,w)((Xij − µj)

2 − σ2
j ) = 0,

for j = 1, . . . , d.

Finally, its solution after rearranging reads as follows:
µj =

1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi;u,w)Xij

1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi;u,w)

,

σ2
j =

1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi;u,w)(Xij−µj)2

1
M

∑M
i=1 I(γ,+∞)(G(Xi))W (Xi;u,w)

,

for j = 1, . . . , d.

6.1.3 Results

In this section we present the results for the light-tailed example from Section 6.1.1

and discuss them in the following. We first remind the reader the set of the variance

reduction algorithms which we examine here:

Importance sampling variance reduction: IS, ACE, FCE, AICE and FICE.

Importance sampling with stratification variance reduction: ISS, ACESI,

ACES, AICESI and AICES.
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Further improved variance reduction: AOISI, AOIS, AOISSI and AOISS.

Since, the estimator of CVaR can be done with the help of the new algorithms based on

the special stratification with only one level y (see Section 5.2), we often differ ACESI,

ACES, AICESI and AICES algorithms with and without the level z. Note, that the

variants of the AOISSI and AOISS algorithms without z are given explicitly by AOISI

and AOIS algorithms respectively.

x l̂ IS ACE AICE ISS ACESI AICESI AOISSI

(a.1) 130 5.0% 7.0 7.2 7.2 28.9 19.5 19.9 25.0
196 1.1% 22.5 23.5 23.8 71.2 61.8 63.2 89.0
260 0.3% 71.1 73.7 75.5 182.7 144.6 148.7 259.4

(a.2) 120 5.3% 7.6 7.8 8.0 85.8 71.2 74.3 69.3
185 1.0% 29.8 31.2 31.3 289.1 201.9 207.3 205.0
208 0.5% 52.5 54.7 55.6 484.3 328.7 339.3 348.8

(a.3) 136 1.0% 39.7 42.0 42.3 60.9 48.0 48.7 80.2
(a.4) 153 1.0% 41.3 47.0 47.4 241.2 294.1 298.0 235.5
(a.5) 141 4.7% 6.3 6.3 6.2 13.7 10.6 10.6 17.8

207 1.1% 16.6 16.4 16.6 28.8 25.9 26.3 44.8
236 0.5% 28.5 29.0 28.0 45.7 45.7 44.7 79.2

(a.6) 545 1.0% 27.3 23.0 26.0 47.4 29.8 34.1 47.0
(a.7) 1827 1.0% 11.3 4.0 4.6 24.1 19.3 22.8 66.1

(b.1) 265 1.0% 30.7 32.9 33.3 162.5 214.3 221.1 212.6
(b.2) 308 1.1% 25.1 17.3 17.9 45.5 45.7 50.2 73.0
(b.3) 248 1.1% 14.3 7.0 7.3 17.3 11.3 11.8 33.2
(b.4) 308 1.0% 7.3 6.6 6.5 8.4 7.4 7.2 34.0
(b.5) 771 1.1% 20.3 19.1 19.4 29.7 20.9 21.1 32.2
(b.6) 165 1.0% 0.9 0.8 0.6 1.0 0.9 0.6 10.8

Table 6.1: Variance reduction factors in the light-tailed case for the Delta-Gamma
approximation

We now start from the Delta-Gamma approximation Q used in all variance reduction

algorithms, since the IS and ISS algorithms are restricted to this choice of the approxima-

tion function. Besides, it is the most common approximation used in practice, therefore,

it is important to examine our new algorithms first on this approximation. Table 6.1

gives the variance reduction factors for the IS, ACE, AICE, ISS, ACESI, AICESI and

AOISSI algorithms. For now we ignored the FCE and FICE algorithms due to their

heavy set-up of the importance sampling change of measure (we compare these algo-

rithms to ACE and AICE later in Table 6.2). We also ignored the ACES, AICES and

AOISS algorithms, since their variance reduction rates are simply the variance reduc-

tion rates of ACESI, AICESI and AOISSI algorithms respectively, multiplied by some
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input parameter δ ∈ (0, 1) (given by the user and is 0.9 in our numerical study) due

to their construction. It is more important to investigate the sum of the multipliers m

or m1 + m2 involved in all these algorithms, which we do later in Tables 6.3 and 6.4.

Finally, we ignored the AOISI and AOIS algorithms, since they are based on the reduced

special stratification (without level z). The influence of the level z on the corresponding

algorithms is tested later in Tables 6.3 and 6.4.

From Table 6.1 we can immediately conclude, that the performance of the IS, ACE and

AICE algorithms is approximately the same. This is not a surprise, since they all are

based on the similar importance sampling change of measure. The parametric families

of the candidates to the importance sampling density in the cases of ACE and AICE

(means and variances) are wider than in the case of the IS (twisting parameter θ) algo-

rithms, therefore, the first two algorithms usually outperform the latter one, however,

insignificantly. In the case when the Delta-Gamma approximation is not precise enough

(examples (b.2) - (b.6)) the IS algorithm outperforms the ACE and AICE algorithms,

seams to be, because the optimal reference parameter estimator of the ACE and AICE

algorithms is more sensitive to the quality of the approximation. This is, however, not

crucial for our new algorithms, because of their flexibility, i.e. the ability to apply some

improved approximation. For example, in the case of the portfolio (b.3) (the largest

difference in the performance), ACE and AICE have variance reduction factor 20.5 for

the modified Delta-Gamma approximation and even outperform the IS algorithm.

We further compare ACE and AICE with the FCE and FICE algorithms in Table 6.2.

We use the advantage of the ACE and AICE algorithms to use any approximation of

the portfolio loss function and give the results for the improved approximation.

One can conclude, that there is no significant difference between the ACE, AICE, FCE

and FICE algorithms, unless there exists no good enough approximation. The most

interesting portfolio is (b.6), where most of the algorithms even fail to give any variance

reduction (see also Table 6.1). The successful variance reduction is achieved only by

the FCE, FICE (not very useful in practice) and the AOISSI (hence also AOISI, AOIS

and AOISS) algorithms. Let us have a look at the quality of the Delta-Gamma and the

modified Delta-Gamma approximations, see Figure 6.1.

It is not really satisfactory, in the sense that the values of the portfolio losses can highly

deviate from the values of the corresponding approximation. The situation gets even

worse in the case of the Charm-Speed and the modified Charm-Speed approximations,

see e.g. Figure 6.2.

As one can conclude from Table 6.1, the algorithms based on the importance sampling

only (without any kind of stratification) perform in the most situations significantly
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x l̂ ACE FCE AICE FICE

(a.1) 130 5.0% 7.2 7.1 7.2 7.2
196 1.1% 23.5 22.8 23.8 23.3
260 0.3% 74.4 73.5 75.5 74.5

(a.2) 120 5.3% 8.0 7.8 8.0 7.9
185 1.0% 31.4 30.6 31.6 31.1
208 0.5% 55.6 54.3 56.0 54.7

(a.3) 136 1.0% 52.7 59.6 53.4 60.3
(a.4) 153 1.0% 47.0 46.0 47.4 46.2
(a.5) 141 4.7% 6.6 6.5 6.6 6.6

207 1.1% 17.9 18.0 18.0 18.2
236 0.5% 31.6 31.6 31.8 32.0

(a.6) 545 1.0% 25.7 25.5 27.4 28.0
(a.7) 1827 1.0% 10.5 10.7 12.5 12.9

(b.1) 265 1.0% 32.9 32.2 33.3 32.4
(b.2) 308 1.1% 27.8 27.6 28.3 27.9
(b.3) 248 1.1% 20.8 22.1 21.4 22.4
(b.4) 308 1.0% 15.3 19.5 15.5 19.6
(b.5) 771 1.1% 22.9 18.4 23.2 20.9
(b.6) 165 1.0% 1.5 8.7 1.3 7.1

Table 6.2: Variance reduction factors: comparison of ACE and AICE with improved
approximation against the FCE and FICE algorithms in the light-tailed case

worse than the same algorithms but with extra stratification. Because of this, we do not

test the IS, ACE, AICE, FCE, FICE methods further, emphasizing on the fact that it

is worth performing an extra stratification to any importance sampling algorithm.

The next step is to investigate the influence of the level z of the special stratification on

the performance of our new algorithms and to give the sum of the multipliers involved

in the ACES, AICES, AOIS and AOISS algorithms (variance reduction rate of these

algorithms is simply the variance reduction rate of the ACESI, AICESI, AOISI and

AOISSI algorithms respectively, multiplied by δ, which is chosen in our study to be 0.9).

In Table 6.3 we investigate the algorithms based on the full special stratification and

in Table 6.4 those which are based on the special stratification without the level z (the

corresponding algorithms can be easily modified by setting z =∞). Both tables involve

only the Delta-Gamma approximation.

From Tables 6.3 and 6.4 one can observe that, the higher the variance reduction for a

particular portfolio, the larger the sum of the multipliers is. For example, consider the

portfolio (a.1) with level x = 260 in Table 6.3. We can observe, that the AOISSI algo-

rithm significantly outperforms the ACESI and AICESI algorithms, but with the cost
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Figure 6.1: Comparison of Delta-Gamma and Modified Delta-Gamma approximations
against actual portfolio losses in 10000 randomly generated scenarios for the portfolio

(b.6) in the light-tailed case (for details on the portfolio see Section 6.1.1).

of a higher value of the multipliers. This is expected, since the multipliers control the

variance of the corresponding estimators of the probabilities of strata (roughly speak-

ing, they destroy the variance reduction rate of the corresponding variance reduction

algorithm in comparison to the same variance reduction algorithm in the ideal setting),

which should become smaller if the variance of the corresponding variance reduction

algorithm in ideal setting becomes smaller.

If we compare Table 6.3 with Table 6.4, we can see, that the latter one has smaller

multipliers, again because of the smaller variance reduction rate (variance reduction

factors of the algorithms based on the special strata with two levels are larger than the

variance reduction factors of the same algorithms based on the special strata without

level z).

In Chapter 4 we have mentioned, that the multipliers influence the time necessary to

set-up the corresponding variance reduction algorithm, and, therefore, should be kept

as small as possible. On the other hand, as concluded from the numerical study (see

Tables 6.3 and 6.4), a better performance of the variance reduction procedures involves

larger multipliers. We also have mentioned, that the variance reduction algorithms that

involve these multipliers, can be easily modified, so that the multipliers play the role of
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Figure 6.2: Comparison of Delta-Gamma and Charm-Speed approximations against
actual portfolio losses in 10000 randomly generated scenarios for the portfolio (b.6) in

the light-tailed case (for details on the portfolio see Section 6.1.1).

the input parameters. This means, that we can easily achieve a compromise between

the speed of the corresponding variance reduction algorithms and their performance.

The final observation about the multipliers is that their value, generally, decreases as

the level x increases (see portfolios (a.1), (a.2) and (a.5)). The rate of decrease is higher

in the case of the full special stratification.

Let us now conclude about the influence of the second level z of the special stratification

on the performance of the corresponding algorithms. A first observation from Tables 6.3

and 6.4 is that this influence vanishes as level x increases (see portfolios (a.1), (a.2) and

(a.5)). This is because, as we already mentioned before, the multipliers value for the

algorithms with special stratification without level z decreases slower than the one of the

same algorithms, based on the full special stratification (and as we already mentioned,

the multiplier value reflects the performance of the corresponding variance reduction

algorithm).

The final and very important observation from Tables 6.3 and 6.4 is that the second

level z of the special stratification has smaller effect on the AOISSI (and, therefore,
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x l̂ ACESI ACES m AICESI AICES m AOISSI AOISS m

(a.1) 130 5.0% 19.5 17 19.9 17 25.0 32
196 1.1% 61.8 13 63.2 14 89.0 34
260 0.3% 144.6 6 148.7 6 259.4 24

(a.2) 120 5.3% 71.2 123 74.3 130 69.3 139
185 1.0% 201.9 67 207.3 69 205.0 90
208 0.5% 328.7 57 339.3 60 348.8 83

(a.3) 136 1.0% 48.1 2 48.7 2 80.2 4
(a.4) 153 1.0% 294.1 77 298.0 78 235.5 72
(a.5) 141 4.7% 10.6 6 10.6 6 17.8 19

207 1.1% 25.9 4 26.3 4 44.8 13
236 0.5% 45.7 4 44.7 4 79.2 11

(a.6) 545 1.0% 29.8 3 34.1 3 47.0 5
(a.7) 1827 1.0% 19.3 11 22.8 14 66.1 93

(b.1) 265 1.0% 214.4 67 221.1 69 212.6 87
(b.2) 308 1.1% 45.7 11 50.2 13 73.0 17
(b.3) 248 1.1% 11.2 2 11.8 3 33.2 5
(b.4) 308 1.0% 7.4 2 7.2 2 34.0 6
(b.5) 771 1.1% 20.9 2 21.1 2 32.2 3
(b.6) 165 1.0% 0.9 2 0.6 2 10.8 2

Table 6.3: Variance reduction factors in the light-tailed case for the Delta-Gamma
approximation and full special stratification together with the sums of the multipliers

m = m1 +m2 for the corresponding algorithms not in the ideal setting

on AOISS) algorithm than on the ACESI and AICESI (and, therefore, on ACES and

AICES) algorithms, but again with the cost of a larger value of the multiplier.

Next step in our numerical study is to test different approximations from Chapter 3.

The variance reduction factors for our new algorithms in the case of the Delta-Gamma

approximation are given in Table 6.1. We further present the variance reduction factors

for our new algorithms in the case of the modified Delta-Gamma approximation in Ta-

ble 6.5, in the case of the Charm-Speed approximation in Table 6.6 and in the case of

the modified Charm-Speed approximation in Table 6.7. In these tables we present the

results for the ACESI algorithm only (we do not investigate AICESI anymore), since, as

all previous tables showed, it performs approximately as the AICESI algorithm. Among

the ACESI and AICESI algorithms we have chosen ACESI, since its performance is

usually slightly worse than the performance of the AICESI algorithm (we choose the

worst case). We also include in these tables the variant of ACESI with the special strat-

ification without level z, and the AOISI algorithm (variant of AOISSI with the special

stratification without level z), because they are important for the further estimation of

CVaR.
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x l̂ ACESI ACES m AICESI AICES m AOISSI AOISS m

(a.1) 130 5.0% 12.2 6 12.4 6 23.4 27
196 1.1% 41.9 6 42.9 6 86.1 31
260 0.3% 133.8 5 137.5 5 259.0 24

(a.2) 120 5.3% 14.5 8 14.9 9 49.3 82
185 1.0% 57.1 7 58.2 7 167.9 63
208 0.5% 100.4 7 103.2 7 292.3 60

(a.3) 136 1.0% 47.6 2 48.1 2 79.8 4
(a.4) 153 1.0% 78.8 7 79.7 7 165.9 37
(a.5) 141 4.7% 9.8 5 9.8 5 17.8 19

207 1.1% 25.4 4 25.7 4 44.8 13
236 0.5% 45.0 3 44.0 3 79.2 11

(a.6) 545 1.0% 28.5 2 32.5 3 46.6 5
(a.7) 1827 1.0% 8.9 3 10.2 3 60.8 91

(b.1) 265 1.0% 60.6 7 61.9 7 175.0 62
(b.2) 308 1.1% 19.6 2 20.4 2 42.4 5
(b.3) 248 1.1% 7.4 2 7.8 2 28.7 3
(b.4) 308 1.0% 7.3 2 7.1 2 34.0 6
(b.5) 771 1.1% 20.4 2 20.7 2 32.1 3
(b.6) 165 1.0% 0.8 2 0.6 2 10.8 2

Table 6.4: Variance reduction factors in the light-tailed case for the Delta-Gamma
approximation and special stratification without z together with the multipliers m for

the corresponding algorithms not in the ideal setting

It is hard to see any pattern in all four approximations from Tables 6.1, 6.5, 6.6 and

6.7. Different algorithms for the same portfolio might perform best for different ap-

proximations. For example, in the case of portfolio (a.5) with level x = 236, the best

performance of the ACESI algorithm is achieved by the modified Charm-Speed approx-

imation (variance reduction factor of 77.5), but the best performance of the AOISSI

algorithm is achieved by the Charm-Speed approximation (variance reduction factor of

110.8). We can only notice, that the modified versions of both, the Delta-Gamma and

the Charm-Speed approximations, work better for portfolios with discontinuous pay-offs,

namely (b.2)-(b.6).

We further use the main advantage of the new algorithms, namely their flexibility in

working with any approximation function, and present Table 6.8, which compares the

ISS algorithm with our new algorithms based on the improved approximation (the one

which gives the best variance reduction rate for a particular portfolio and algorithm

among four recently mentioned approximations). The approximation used for the ISS

algorithm is, of course, the Delta-Gamma approximation.
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x l̂ ACESI (no z) ACESI AOISI AOISSI

(a.1) 130 5.0% 15.5 18.1 27.4 27.8
196 1.1% 47.8 55.4 81.0 81.8
260 0.3% 145.0 150.6 236.2 236.5

(a.2) 120 5.3% 15.4 70.1 61.3 78.6
185 1.0% 59.9 209.8 199.6 235.7
208 0.5% 106.4 314.5 348.8 393.6

(a.3) 136 1.0% 54.5 182.8 71.4 145.1
(a.4) 153 1.0% 74.1 459.7 181.4 340.3
(a.5) 141 4.7% 14.1 14.6 22.0 22.1

207 1.1% 36.7 37.2 50.7 50.7
236 0.5% 66.7 67.4 96.6 96.6

(a.6) 545 1.0% 59.1 60.6 65.8 67.0
(a.7) 1827 1.0% 37.5 107.1 137.1 145.8

(b.1) 265 1.0% 64.7 117.2 138.5 148.5
(b.2) 308 1.1% 36.8 81.5 84.5 97.6
(b.3) 248 1.1% 31.3 38.5 58.5 59.6
(b.4) 308 1.0% 22.7 23.0 49.5 49.5
(b.5) 771 1.1% 29.0 29.2 31.0 31.1
(b.6) 165 1.0% 1.5 1.5 9.2 9.2

Table 6.5: Variance reduction factors in the light-tailed case for the modified Delta-
Gamma approximation

The first and obvious conclusion after having a look at Tables 6.1 and 6.8 is that the

variance reduction rate of the new algorithms can be significantly improved, if some

better approximation is used instead of the Delta-Gamma approximation. Another

direct observation is that the ISS algorithm has been outperformed by the AOISSI

algorithm for all portfolios and by the AOISI algorithm in all portfolios except (a.4),

where the difference is actually not crucial.

One can expect, that the AOISSI algorithm should perform, in general, better than the

ACESI algorithm, due to the improved parametric family of densities among which an

importance sampling density is chosen. But this is apparently not the case, see e.g.

portfolios (a.2)-(a.4). In order to investigate this exceptional behavior of the AOISSI

algorithm, we present a few plots of the corresponding estimated importance sampling

densities before performing any stratification and the corresponding quality of the used

approximation.

We first take the portfolio (a.4) for which, according to Table 6.8, ACESI has signifi-

cantly outperformed the AOISSI algorithm (variance reduction factor of 459.7 against

340.3). Both results are achieved by using the modified Delta-Gamma approximation.
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x l̂ ACESI (no z) ACESI AOISI AOISSI

(a.1) 130 5.0% 13.2 16.0 38.5 38.7
196 1.1% 41.5 47.0 112.2 112.5
260 0.3% 131.3 152.5 342.8 343.5

(a.2) 120 5.3% 15.1 299.8 118.1 304.3
185 1.0% 56.3 695.5 317.1 644.3
208 0.5% 100.0 1121.5 547.9 1014.4

(a.3) 136 1.0% 56.5 70.8 94.2 100.7
(a.4) 153 1.0% 60.6 309.3 95.9 224.3
(a.5) 141 4.7% 11.9 13.9 27.3 27.4

207 1.1% 32.2 33.8 66.8 66.8
236 0.5% 57.3 59.0 116.2 116.2

(a.6) 545 1.0% 36.6 38.9 67.9 68.3
(a.7) 1827 1.0% 30.1 61.9 208.2 209.3

(b.1) 265 1.0% 56.4 169.3 198.9 225.4
(b.2) 308 1.1% 24.0 28.4 33.1 36.1
(b.3) 248 1.1% 13.6 14.3 24.4 25.9
(b.4) 308 1.0% 7.4 7.4 49.0 49.0
(b.5) 771 1.1% 5.5 6.7 24.0 25.8
(b.6) 165 1.0% 1.3 1.3 9.2 9.2

Table 6.6: Variance reduction factors in the light-tailed case for the Charm-Speed
approximation

As we can see from Figure 6.3, the quality of this approximation in the case of the

portfolio (a.4) is very good and the interval (y, z) of the special stratification is narrow.

This, from our point of view, is the reason why the ACESI algorithm has performed

better than AOISSI. It can only be confirmed by looking at Figure 6.4, where the im-

portance sampling densities of the ACESI and AOISSI algorithms are drawn. Obviously,

the importance sampling density of the AOISSI algorithm (blue line) approximates the

optimal importance sampling density (red line) significantly better than the importance

sampling density of the ACESI algorithm (green line). It also can be seen by comparing

the variance reduction factors of the ACESI algorithm based on the special stratification

without the level z and the variance reduction factor of the AOISI algorithm, namely

78.8 against 181.4. Removing the stratification in the ACESI algorithm will make its

performance even worse.

We further take the portfolio (a.7), where the AOISSI algorithm has now outperformed

the ACESI algorithm (variance reduction factor of 209.3 against 107.1, see Table 6.8),

and perform the same analysis. We first plot the Charm-Speed approximation in Figure

6.5, which is involved in both results. The quality of this approximation is not bad either.
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x l̂ ACESI (no z) ACESI AOISI AOISSI

(a.1) 130 5.0% 14.8 15.0 32.7 32.7
196 1.1% 42.7 43.3 90.6 90.6
260 0.3% 124.7 125.7 262.7 262.7

(a.2) 120 5.3% 15.7 231.8 116.8 230.6
185 1.0% 60.0 589.9 331.5 543.2
208 0.5% 104.8 961.7 548.0 870.8

(a.3) 136 1.0% 38.8 125.5 67.8 125.9
(a.4) 153 1.0% 55.0 279.3 82.9 210.0
(a.5) 141 4.7% 16.1 17.5 26.1 26.2

207 1.1% 44.0 44.8 64.6 64.7
236 0.5% 76.8 77.5 110.8 110.8

(a.6) 545 1.0% 54.8 58.2 61.7 65.3
(a.7) 1827 1.0% 37.3 71.0 179.5 181.0

(b.1) 265 1.0% 65.6 103.0 169.7 175.7
(b.2) 308 1.1% 31.8 32.7 34.1 34.7
(b.3) 248 1.1% 23.9 24.3 27.4 27.6
(b.4) 308 1.0% 15.1 15.1 46.0 46.0
(b.5) 771 1.1% 7.1 7.1 24.1 24.1
(b.6) 165 1.0% 1.2 1.2 9.2 9.2

Table 6.7: Variance reduction factors in the light-tailed case for the modified Charm-
Speed approximation

But the importance sampling density of the ACESI algorithm (green line) approximates

the optimal importance sampling density (red line) (see Figure 6.6) now much worse

than in Figure 6.4. The importance sampling density of the AOISSI algorithm (blue

line) is again a good approximation to the optimal importance sampling density (red

line), see Figure 6.6.

6.2 Heavy - tailed case

In this section we test the heavy-tailed case, i.e. the case when the underlying changes in

risk factors are assumed to have a multivariate Student t-distribution, see Assumption

3.2.

6.2.1 Setup of the example

For the heavy-tailed case we basically use the same portfolios as given in Section 6.1.1

and the same choices of the parameters except some of them, on which we comment in
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x l̂ ISS ACESI (no z) ACESI AOISI AOISSI

(a.1) 130 5.0% 28.9 15.5 19.5 38.5 38.7
196 1.1% 71.2 47.8 61.8 112.2 112.5
260 0.3% 182.7 145.0 152.5 342.8 343.5

(a.2) 120 5.3% 85.8 15.7 299.8 118.1 304.3
185 1.0% 289.1 60.0 695.5 331.5 644.3
208 0.5% 484.3 106.4 1121.5 548.0 1014.4

(a.3) 136 1.0% 60.9 56.5 182.8 94.2 145.1
(a.4) 153 1.0% 241.2 78.8 459.7 181.4 340.3
(a.5) 141 4.7% 13.7 16.1 17.5 27.3 27.4

207 1.1% 28.8 44.0 44.8 66.8 66.8
236 0.5% 45.7 76.8 77.5 116.2 116.2

(a.6) 545 1.0% 47.4 59.1 60.6 67.9 68.3
(a.7) 1827 1.0% 24.1 37.5 107.1 208.2 209.3

(b.1) 265 1.0% 162.5 65.6 169.3 198.9 225.4
(b.2) 308 1.1% 45.5 36.8 81.5 84.5 97.6
(b.3) 248 1.1% 17.3 31.3 38.5 58.5 59.6
(b.4) 308 1.0% 8.4 22.7 23.0 49.5 49.5
(b.5) 771 1.1% 29.7 29.0 29.2 32.1 32.2
(b.6) 165 1.0% 1.0 1.5 1.5 10.8 10.8

Table 6.8: Variance reduction factors in the light-tailed case for improved approxi-
mation

the following.

Here, again, all assets have initial values of 100 and are modeled as geometric Brownian

motions with an annual volatility of σ = 0.3. In order to make it consistent with

Assumption 3.2, the standard deviation of the changes in risk factors ∆Sj should be

given by Sjσ
√

∆t, which gives the scaled Student t-distribution:

∆S ∼
√
ν − 2

ν
td(ν,0,ΣS),

under the corresponding choice of the covariance matrix ΣS , similar to the light-tailed

case from Section 6.1.1.

The total sample size N is taken now to be 40000, as motivated by the same choice in

the numerical study of Glasserman et al. (2002).

The options are valued by the Black-Scholes formulas and their extensions (see Appendix

C). There is, of course, inconsistency in using these formulas for the case of the Student

t-distribution, but this is the choice in Glasserman et al. (2002), and as mentioned there,

it is very common in practice.
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Figure 6.3: Quality of the modified Delta-Gamma approximation in 10000 randomly
generated scenarios for the portfolio (a.4) in the light-tailed case (for details on the

portfolio see Section 6.1.1).

6.2.2 Choice of the parametric family for CE based algorithms

As already mentioned in Section 6.1.2, the correct choice of the parametric family for

CE based algorithms plays a key role in achieving the best performance with the small-

est time costs. In Section 6.1.2 we discussed the main principles in the choice of the

parametric family on the example of normally distributed changes in risk factors. In

this section we give a similar discussion on the example of the multivariate Student

t-distributed changes in risk factors, i.e. under Assumption 3.2.

We first note, that according to Section 6.2.1, we model the changes in risk factors

according to the scaled multivariate Student t-distribution ∆S ∼
√

ν−2
ν td(ν,0,ΣS).

Similarly to Section 6.1.2, we are interested in making the system of equations (2.13)

decoupled. As one could understand from Section 6.1.2, it can be done by expressing

the changes in risk factors ∆S via a random vector with independent marginals. In the

case of the scaled Student t-distribution it can be done by using the expression:

∆S =

√
ν − 2

ν

CZ√
Y/ν

=
CZ√

Y/(ν − 2)
,
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Original density
CE density
New density
Optimal density
Level y
Level x

Figure 6.4: Comparison of ACESI and AOISSI importance sampling densities in
500000 randomly generated scenarios for the portfolio (a.4) in the light-tailed case (for

details on the portfolio see Section 6.1.1).

where CCT = ΣS and Y ∼ χ2
ν is a chi-squared distributed random variable with ν de-

grees of freedom and which is independent of the vector Z. This gives us the opportunity

to define the parametric family in a similar way to Section 6.1.2, parametrized by the

d-dimensional mean vector µ and the variance vector σ2, as well as the parameter ν.

The first improvement can be done by extending the family of densities for the random

variable Y , which is chi-squared distributed with ν degrees of freedom. This is a special

case of the gamma distributed random variable. More precisely, the scaled chi-squared

distributed random variable with ν degrees of freedom, Y
ν−2 , has the gamma distribution

Y
ν−2 ∼ Γ

(
ν
2 ,

2
ν−2

)
with the shape parameter ν/2 and the scale parameter 2/(ν − 2).

This procedure extends the parametric family by the shape and scale parameters of the

gamma distribution, which substitute the parameter ν. Along this section we denote

by s the shape parameter and by θ the scale parameter of the corresponding gamma

distribution. The original changes in risk factors correspond then to the shape parameter

s = ν/2 and the scale parameter θ = 2/(ν − 2).

If we simplify the notations similarly to Section 6.1.2 by applying the superposition

of the portfolio loss and approximation functions with the function ∆S(Z, Y ) = CZ√
Y
,
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Figure 6.5: Quality of the Charm-Speed approximation in 10000 randomly generated
scenarios for the portfolio (a.7) in the light-tailed case (for details on the portfolio see

Section 6.1.1).

where Z ∼ Nd(µ, diag(σ2)) and Y ∼ Γ(s, θ), then the random vector Z, extended by

the independent random variable Y , can be treated as the changes in risk factors.

We further provide the exact solution to the system of equations (2.13) under the above

defined choice of the parametric family, where the parameter vector v is a concatenation

of the vectors µ, σ2 and the parameters s and θ. Moreover, due to the choice of the

diagonal covariance matrix and the independent variable Y , the joint density f(Xi, Yi; v)

is a product of the marginal densities N1(µj ,σ
2
j ) for j = 1, . . . , d and Γ(s, θ). The system

(2.13) then becomes decoupled and its first d pairs of equations read as follows (the same

as in Section 6.1.2):
µj =

1
M

∑M
i=1 I(γ,+∞)(G(Xi,Yi))W (Xi,Yi;u,w)Xij

1
M

∑M
i=1 I(γ,+∞)(G(Xi,Yi))W (Xi,Yi;u,w)

,

σ2
j =

1
M

∑M
i=1 I(γ,+∞)(G(Xi,Yi))W (Xi,Yi;u,w)(Xij−µj)2

1
M

∑M
i=1 I(γ,+∞)(G(Xi,Yi))W (Xi,Yi;u,w)

,

for j = 1, . . . , d.
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Original density
CE density
New density
Optimal density
Level y
Level x

Figure 6.6: Comparison of ACESI and AOISSI importance sampling densities in
500000 randomly generated scenarios for the portfolio (a.7) in the light-tailed case (for

details on the portfolio see Section 6.1.1).

The last pair of equations for the marginal Y reads as follows:
1
M

∑M
i=1 I(γ,+∞)(G(Xi, Yi))W (Xi, Yi; u,w)∂ log f(Yi;s,θ)

∂s = 0,

1
M

∑M
i=1 I(γ,+∞)(G(Xi, Yi))W (Xi, Yi; u,w)∂ log f(Yi;s,θ)

∂θ = 0

where f(·; s, θ) is the density of the gamma distribution Γ(s, θ), parametrized by the

shape parameter s and the scale parameter θ.

The next step is to derive the partial derivatives ∂ log f(y;s,θ)
∂s and ∂ log f(y;s,θ)

∂θ , which is a

standard material of any statistical book:

∂ log f(y; s, θ)

∂s
= log

(y
s

)
− Γ′(s)

Γ(s)
,

∂ log f(y; s, θ)

∂θ
=
y − sθ
θ2

,

where Γ(s) means here the gamma function and Γ′(s) denotes its derivative. Note, that

the function Γ′(s)
Γ(s) is called the digamma function.

The solution to the above system of equations after plugging in the partial derivatives
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can be achieved through solving the second equation w.r.t. the product sθ and then

finding a zero of the first equation by means of optimization tools:
sθ =

1
M

∑M
i=1 I(γ,+∞)(G(Xi,Yi))W (Xi,Yi;u,w)Yi

1
M

∑M
i=1 I(γ,+∞)(G(Xi,Yi))W (Xi,Yi;u,w)

,

1
M

∑M
i=1 I(γ,+∞)(G(Xi, Yi))W (Xi, Yi; u,w)

(
log
(
Yis
sθ

)
− Γ′(s)

Γ(s)

)
= 0,

θ = sθ
s .

6.2.3 Results

x l̂ IS ACE AICE ISS ACESI AICESI AOISSI

(a.1) 204 5.0% 5.6 11.5 10.6 11.8 30.4 28.4 36.9
469 0.9% 21.2 58.6 56.6 34.9 113.9 143.1 148.9
719 0.3% 49.6 154.2 158.7 69.8 382.2 381.8 298.9

(a.2) 143 5.1% 6.2 8.9 8.8 13.4 200.2 242.2 213.6
311 1.0% 25.2 44.3 43.9 45.1 414.0 342.5 379.4
497 0.3% 74.6 145.5 126.0 124.4 677.0 681.4 766.6

(a.3) 149 0.9% 37.5 31.7 29.3 91.5 35.1 18.4 49.8
(a.4) 145 1.0% 24.7 40.2 42.2 43.1 261.3 193.4 249.7
(a.5) 276 5.0% 5.6 12.4 13.5 11.4 30.1 32.0 35.8

617 1.0% 18.8 59.4 53.9 29.4 107.6 111.6 77.2
1009 0.3% 53.6 190.0 188.1 71.3 412.4 401.7 259.7

(a.6) 5112 1.0% 24.5 92.8 97.6 77.4 370.5 412.4 249.7
(a.7) 5441 1.0% 16.8 50.7 56.4 30.2 95.5 234.5 299.5

(b.1) 415 1.0% 22.6 38.2 38.7 38.4 108.4 138.8 196.5
(b.2) 482 0.9% 37.2 37.4 33.7 57.2 147.8 134.9 22.1
(b.3) 518 1.0% 38.3 45.2 29.7 65.3 89.4 81.6 6.7
(b.4) 800 1.0% 31.4 9.4 31.4 56.8 35.2 39.3 42.4
(b.5) 835 1.0% 21.6 5.4 9.6 28.2 9.3 12.3 2.7
(b.6) 345 1.0% 37.6 5.3 4.7 52.6 5.9 4.9 35.1

Table 6.9: Variance reduction factors in the heavy-tailed case for the Delta-Gamma
approximation

In this section we present the results for the heavy-tailed example from Section 6.2.1 and

discuss them in the following. The process of testing is the same as in the light-tailed

case in Section 6.1.3. We first start from the analogue to Table 6.1. More precisely, in

Table 6.9 we collect the variance reduction factors of all variance reduction algorithms

based on the Delta-Gamma approximation.

The first part (portfolios with continuous pay-offs (a.1)-(a.7)) of Table 6.9 looks expected.

The variance reduction factors of the ACE and AICE algorithms are approximately the
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same, always outperforming the variance reduction factors of the IS algorithm (even

without using improved approximation), except only for the portfolio (a.3). For the

improved approximation, namely the modified Delta-Gamma approximation, the cor-

responding variance reduction factors of the ACE and AICE algorithms become 41.2

and 42.5 respectively, that is, larger than the variance reduction factor 37.5 of the IS

algorithm. This advantage of our new importance sampling algorithms can be explained

by the wider parametric family of densities among which an importance sampling den-

sity is searched. In the case of the IS algorithm this family is parametrized only by the

twisting parameter θ, whereas in the case of the ACE and AICE algorithms, the family

is parametrized by the mean vector, the diagonal covariance matrix and the shape and

scale parameters.

We further note that, as mentioned Glasserman et al. (2002), an extra stratification

has a smaller effect on the variance reduction rate in this heavy-tailed case than in the

light-tailed case. This can be also seen from Table 6.9, and can be explained by the

extra dependency between the marginal changes in risk factors, even if they are not

correlated. This problem has, however, vanished in the case of our new algorithms due

to the wide enough choice of the parametric family (extra variance reduction achieved

by the special stratification is often significant, see Table 6.9). Therefore, our new

algorithms outperform the ISS algorithm for all portfolios with continuous pay-offs even

more than in the light-tailed case and even without any improved approximation.

Much more interesting is the second part (portfolios with discontinuous pay-offs (b.2)-

(b.6)) of Table 6.9, which has become a surprise for us. It is clear, that for these

portfolios, the Delta-Gamma approximation does not fit the portfolio loss function good

enough. But the IS and ISS algorithm showed a quite good performance (at least in

comparison to the light-tailed case, where it could not give any variance reduction for

the portfolio (b.6), see Table 6.1). This is not crucial for us, because for the improved

approximation our new algorithms still outperform the IS and ISS algorithms (see Table

6.10), but it is important to understand the reason of such an unexpected behavior.

In order to do this we should have a look at the corresponding importance sampling

densities.

As a test example we chose the portfolio (b.5) for which our new algorithms show the

worst performance for both Delta-Gamma approximation and the improved one (modi-

fied Delta-Gamma approximation in this case). The importance sampling densities for

the ACESI and AOISSI algorithms are given in Figures 6.7 and 6.8 for the Delta-Gamma

and the modified Delta-Gamma approximations correspondingly. In Figure 6.7 one can

see, that neither the importance sampling density of the AOISSI algorithm (blue line),

nor the importance sampling density of the ACESI algorithm (green line), approximate
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Original density
CE density
New density
Optimal density
Level y
Level x

Figure 6.7: Comparison of ACESI and AOISSI importance sampling densities in
500000 randomly generated scenarios for the portfolio (b.5) in the heavy-tailed case for

Delta-Gamma approximation (for details on the portfolio see Section 6.1.1).

the optimal importance sampling density (red line) sufficiently good. Although the

mode (peak of the density) of the importance sampling density of the ACESI algorithm

is around the level x, the strata levels are far from this level. This might be a reason

for the poor performance of the ACESI algorithm based on the Delta-Gamma approx-

imation. The situation with the importance sampling density of the AOISSI algorithm

is even worse, again because the lower level y of the special stratification is too far from

level x, since the Delta-Gamma approximation is not good enough.

We look next at Figure 6.8 with the improved approximation, namely the modified

Delta-Gamma approximation. Things get slightly better, but, as Table 6.10 shows, the

performance of the AOISSI algorithm is still not satisfying, whereas the ACESI algorithm

performs significantly better. In order to improve these algorithms one can either find

a better approximation, or change the parametric family of densities, or increase the

samples involved in the optimal reference parameter update.

We finally use the main advantage of the new algorithms, namely their flexibility in

working with any approximation function, and present Table 6.10 in the heavy-tailed

case, similar to Table 6.8 in the light-tailed case, which compares the ISS algorithm

with our new algorithms based on the improved approximation (the one which gives the
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Original density
CE density
New density
Optimal density
Level y
Level x

Figure 6.8: Comparison of ACESI and AOISSI importance sampling densities in
500000 randomly generated scenarios for the portfolio (b.5) in the heavy-tailed case for
modified Delta-Gamma approximation (for details on the portfolio see Section 6.1.1).

best variance reduction rate for a particular portfolio and algorithm among four recently

mentioned approximations). The approximation used for the ISS algorithm is again the

Delta-Gamma approximation.

Similarly to the light-tailed case in Table 6.8, our new algorithms can be significantly

improved by using some improved approximation.

We skip the rest of the tests performed in Section 6.1.3 on the comparison of approx-

imate and full algorithms, influence of the upper level z of the special stratification on

the performance, since all the comments given there, basically, hold true here. The mul-

tipliers achieved by the ACES, AICES, AOIS and AOISS algorithms are even smaller

here than in the light-tailed case.

6.3 Results discussion

In this section we summarize the numerical results in the light- and heavy-tailed cases,

as well as simple properties, advantages and disadvantages of all variance reduction

algorithms presented in Chapter 4.
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x l̂ ISS ACESI (no z) ACESI AOISI AOISSI

(a.1) 204 5.0% 11.8 22.2 33.5 43.7 46.3
469 0.9% 34.9 96.7 122.1 132.7 148.9
719 0.3% 69.8 285.1 382.2 264.5 298.9

(a.2) 143 5.1% 13.4 17.9 200.2 106.3 213.6
311 1.0% 45.1 86.2 414.0 393.0 458.1
497 0.3% 124.4 297.5 695.2 941.3 1030.0

(a.3) 149 0.9% 91.5 44.9 121.1 65.0 94.8
(a.4) 145 1.0% 43.1 71.8 449.4 217.1 448.7
(a.5) 276 5.0% 11.4 30.3 53.9 43.7 51.2

617 1.0% 29.4 105.0 140.9 110.0 124.7
1009 0.3% 71.3 341.5 412.4 306.6 326.0

(a.6) 5112 1.0% 77.4 143.7 383.7 184.0 309.0
(a.7) 5441 1.0% 30.2 119.7 455.6 226.8 522.2

(b.1) 415 1.0% 38.4 75.4 109.5 168.9 196.5
(b.2) 482 0.9% 57.2 51.4 153.2 78.5 114.1
(b.3) 518 1.0% 65.3 88.8 188.9 97.7 138.1
(b.4) 800 1.0% 56.8 79.6 119.9 52.4 66.0
(b.5) 835 1.0% 28.2 19.7 20.4 4.6 5.0
(b.6) 345 1.0% 52.6 24.3 27.0 34.2 35.1

Table 6.10: Variance reduction factors in the heavy-tailed case for the improved
approximation

We first summarize that applying the variance reduction procedure based on the impor-

tance sampling together with stratification is worth it. As the numerical results show,

even for very simple and highly nonlinear portfolios, the variance reduction algorithms

reduce the variance by one to three orders of magnitude. Besides, the effect of the

variance reduction only increases, when the probability of interest decreases.

Let us assume for now, that we are interested only in the models of changes in risk

factors given by either Assumption 3.1 or by Assumption 3.2, because they are easy

to use in practice. Under both these assumptions there exists already the quite easy

and efficient ISS algorithm, which speeds up the MC simulation of the market risk

measures. It is highly restricted to the knowledge of the distribution of the Delta-Gamma

approximation, which is found under these both assumptions in, e.g., Glasserman (2004).

In such a situation, why would one be interested in one of the new, more complicated,

algorithms given in Chapter 4? First of all, the ACE and AICE algorithms are also

quite easy to understand and implement, and they can be improved in the same way by

applying the original stratification as in the ISS algorithm (under Assumptions 3.1 and

3.2). The extra variance reduction, achieved by applying the same stratification, should
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be approximately the same. But the ACE and AICE algorithms can be improved by

choosing a wider parametric family of densities among which the importance sampling

density is searched. For example, the performance of the ACE and AICE algorithms

is significantly higher in the heavy-tailed case, see Table 6.10. This gives an obvious

advantage to our new algorithms even in a such restricted world as the one given by

Assumptions 3.1 and 3.2.

Now assume, that we are not satisfied anymore with modeling the changes in risk fac-

tors by Assumptions 3.1 and 3.2. Then the ISS algorithm does not work. Up to our

knowledge, there is no other research regarding the variance reduction algorithms as

efficient as ISS in the context of market risk estimation. Then, there is an obvious value

of our new algorithms, that can be applied in such a situation without any complicated

adaptations.

We further guide the user to choose one particular algorithm among those given in

Chapter 4. According to the performance, it should be either ACES or AOISS in the

case of VaR estimation and either ACES with special stratification without the level z

or AOIS in the case of CVaR estimation. As the numerical study showed, none of these

algorithms dominates the other (their performance is proportional to the performance of

the ACESI, AOISI and AOISSI algorithms). There are portfolios where one algorithm

is better and portfolios where it is worse than other one.

In such a situation we suggest a user to use a combination of both algorithms, ACES

and AOISS, in the case of VaR estimation and ACES with special stratification without

the level z and AOIS in the case of CVaR estimation. This can be easily done due to

their construction. They both are CE based algorithms (the choice of the importance

sampling part) together with the special stratification (either with level z or without).

Therefore, the importance sampling change of measure can be found by both ACE and

AOIS algorithms and then the best of them is chosen (the one whose Kulback-Leibler

cross entropy to the optimal importance sampling is smaller). And then the special

stratification can be performed in a standard way.

The above stated only confirms all advantages of our new algorithms:

1. It is a highly flexible approach:

• it can be applied for any type of distribution of the risk factors, no matter

light- or heavy-tailed, with very little change in the corresponding code,

• any approximation of the portfolio loss function can be used without any

extra adaptations of the code (the user simply changes one function by the

other),
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• original stratification still can be applied in cases when it is possible (the

distribution of the approximation is easy to evaluate),

• a combination of the algorithms can be easily achieved,

• the choice of the parametric family can be easily adjusted.

2. It is highly efficient:

• it outperforms the ISS algorithm in most examples and often significantly,

• alternatives to the Delta-Gamma approximation can significantly increase the

variance reduction rate,

• any improvement of the ISS algorithm can also be applied here, hence, gen-

erally, it has at least the same performance,

• the improvement of the choice of the parametric family of densities can im-

prove the performance significantly,

• the combination of the algorithms can give the best performance between two

algorithms, by taking advantages of both of them.



Chapter 7

Conclusions

Calculating the probabilities of high portfolio losses is very important in real financial

markets. The standard MC method, unfortunately, converges very slowly. Therefore,

there is a big demand for variance reduction procedures for such an estimation.

This work guides the reader through the process of constructing new efficient and easy

algorithms for reducing the variance of the MC method for the estimation of the probabil-

ity of high portfolio losses. The idea is taken from Glasserman (2004), Glasserman et al.

(2000a,b, 2002), namely to apply an importance sampling together with stratification

procedure.

The easy and efficient ISS algorithm given by these authors is developed only for a few

models of changes in risk factors, namely for normal and Student t-distributed changes.

This does not allow the user of MC simulation to use this variance reduction algorithm

in cases of alternative assumptions, which are, actually, the main advantage of the MC

simulation algorithm.

The main accent in constructing a new algorithm is, therefore, made on the flexibility

of the algorithm. The new variance reduction procedures work, without any hard modi-

fications of the algorithms, for any distribution of the changes in risk factors, no matter

if light- or heavy-tailed. The recently introduced, but already successfully applied in

many applications, CE importance sampling algorithm has become a starting point in

our investigation. It is easy to understand and implement, and it covers all possible

models of changes in risk factors.

Based on the CE importance sampling procedure, together with the specially constructed

stratification, we have introduced the ACES and AOISS algorithms and their modifica-

tions. The numerical study has shown a better performance for both these algorithms in

most test cases, compared to the ISS algorithms. This fact makes these algorithms even
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more attractive to the user. The same numerical study, however, did not give us a unique

winner in performance among them. Therefore, we have suggested to use a combination

of both algorithms, which can be easily achieved by modifying the importance sampling

part. The appendixes give necessary tools in order to make the implementation process

of these algorithms easier.

As we already mentioned, the probability of high portfolio losses is an important quantity

in real financial markets, however, there are a few even more common measures of market

risk, namely VaR and CVaR. Up to our knowledge, there is no unique literature on how

to use the variance reduction algorithms for the estimation of the probability of high

portfolio losses in the context of VaR and CVaR estimation. Therefore, we also describe

the process of transformation of the variance reduction procedures for the estimation

of the probability of high portfolio losses to the problem of VaR and CVaR estimation.

This gives the user fast simulation procedures for the popular market risk measures.

Finally, we have investigated the asymptotics of all these variance reduction estimators

of VaR and CVaR. We have shown the consistency and the asymptotic normality of each

of them. It helped us to construct asymptotically valid confidence intervals for VaR and

CVaR estimators in the context of variance reduction.



Appendix A

Sampling from Conditional

Distribution

This appendix is related to the methods of sampling from the conditional distribution.

Generally, when the conditional distribution is not known explicitly, special procedures

are necessary. We further present two methods of sampling from the conditional density,

which became useful in the variance reduction algorithms from Chapter 4.

We first define the problem. We remind, that the random vector of interest X is ab-

solutely continuous (see Assumption 2.1) and has the density denoted by f(x; u). In

this appendix there is no need to keep the track of the parameter u, since no change of

measure is performed. Therefore, we omit it in the notations and denote the density of

the vector X simply by f(x).

For some real valued function G(x) of the vector x, of the same dimension as the random

vector of interest X, and some subset A of the real line, such that P(G(X) ∈ A) > 0, we

are interested in methods of sampling from the conditional density of X given G(X) ∈ A.

Such a conditional density can be written as:

IA(G(x))f(x)

P(G(X) ∈ A)
,

which is precisely the optimal importance sampling density under Remark 2.2. There-

fore, we often do not know the normalizing constant P(G(X) ∈ A), but all methods

below do not involve this constant.
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A.1 Brute-force acceptance-rejection method along the lines

We start with the following assumption:

Assumption A.1. We assume, that the sampling procedure from the density f(x) is

easy and known.

In this chapter we present an easy method for simulating from the conditional density

of X given G(X) ∈ A, if the simulation from the unconditional one is possible (see

Assumption A.1). This method is presented in, e.g., Glasserman (2004), and is used by

Glasserman et al. in the ISS algorithm (see Algorithms 4.7 and 4.8).

The idea of the method is very simple and is given in the following algorithm:

Algorithm A.1 (Brute-force acceptance-rejection method).

1. Sample X from the density f(x) and evaluate G(X).

2. If G(X) ∈ A, return X, else reiterate from step 1.

This algorithm is a degenerate form of the classical acceptance-rejection method (see

Glasserman (2004)) with the deterministic rejection decision instead of the randomized.

The candidate X is accepted precisely if G(X) ∈ A. The probability of acceptance on

each attempt is, therefore, P(G(X) ∈ A). The main disadvantage of this method is that,

if the probability P(G(X) ∈ A) is small, many simulations are wasted in order to achieve

just one sample from the conditional distribution. This drawback makes this method

inapplicable in many situations.

This method is of a particular value for the ISS algorithm (see Algorithms 4.7 and 4.8),

since it is used in some modified way, that makes it more practical. More precisely,

for some disjoint partition of the real line A1, . . . , AK , the samples from all conditional

densities of X given G(X) ∈ Ai, for i = 1, . . . ,K are necessary.

Assume that we are interested in samples of sizes N1, . . . , NK for each conditional density

of X given G(X) ∈ Ai, i = 1, . . . ,K, correspondingly. The brute-force acceptance-

rejection method of achieving such samples reads as follows:

Algorithm A.2 (Brute-force acceptance-rejection method for disjoint partition).

1. Initialize stratum counters ni = 0, i = 1, . . . ,K.

2. Sample X from the density f(x) and evaluate G(X).
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3. Find j such that G(X) ∈ Aj.

4. If nj < Nj, increase the counter ni ← ni + 1 and set Xjnj = X, else proceed with

step 5.

5. If all ni = Ni, i = 1, . . . ,K, return the samples Xi1, . . . ,XiNi for all i = 1, . . . ,K,

else reiterate from step 2.

The main difference of Algorithm A.2, compared to Algorithm A.1, is that we discard

the generated vector X only if it fell in the stratum which is already full. Therefore, e.g.

in the case of equiprobable strata:

P(G(X) ∈ A1) = . . . = P(G(X) ∈ AK) =
1

K
,

with equal sample sizes N1 = N2 = . . . = NK , only few generated vectors X are wasted.

This problem is discussed in more details in Glasserman et al. (2000b).

A.2 Hit - and - Run sampler with Ratio - of - Uniforms

As we already mentioned in Appendix A.1, the brute-force acceptance-rejection Algo-

rithm A.1 can not be used to sample from the conditional density with small probability

of the event P(G(X) ∈ A). In particular, in order to implement the ICE based algorithm

AICE, we need to sample from the optimal importance sampling density of the form

(see Algorithm 4.5):

g∗(x) =
I(x,+∞)(Q(x))f(x; u)

P(Q(∆S) > x)
,

where the event of conditioning Q(∆S) > x has the probability usually around 0.01.

This means that, on average, only one out of a hundred generated values is accepted,

according to Algorithm A.1. Other more efficient method has to be introduced in order

to handle such situations.

The special combination of Hit-and-Run sampler (see e.g. Gilks et al. (1995)), together

with Ratio-of-Uniforms method (see e.g. Gilks et al. (1995)), is introduced by the au-

thors in Karawatzki et al. (2005). The corresponding algorithm is called HITRO and is

defined in some variants. In the paper by Karawatzki et al. (2005) is shown, that this

algorithm is well suited to generate high dimensional vectors Y from quite arbitrary den-

sities g(x) (it is developed not only to sample from the conditional densities). Already

implemented and tested libraries in different programming languages by Leydold et al.

(2005) make the usage of this method even more attractive. In the numerical study in
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Chapter 6 we have used the corresponding package in the mathematical programming

language R Project.

Now we are going to present the HITRO algorithm from Karawatzki et al. (2005) in more

details. Since the MCMC methods are not the matter of our study, we present here only

the most important information in order to get a first impression about the method

used. An interested reader can appeal to the original paper by Karawatzki et al. (2005)

and the literature cited therein, as well as to Gilks et al. (1995), to achieve a deeper

knowledge about MCMC methods, including HITRO algorithm.

Since the HITRO algorithm is based on the Hit-and-Run sampler together with the

Ratio-of-Uniforms method, it is useful first to define both these algorithms. We start

from the Hit-and-Run sampler which is an iterative algorithm used to sample d-dimensional

random vectors with density g(x) in some fixed, but arbitrary, bounded open set S (see

Gilks et al. (1995), Karawatzki et al. (2005)). At each iteration j, the Hit-and-Run al-

gorithm first randomly samples the direction dj (a unit d-dimensional vector). Then,

the next value Yj+1 is chosen according to the full conditional distribution along the

straight line passing through Yj in the direction dj, more precisely:

Algorithm A.3 (Hit-and-Run).

1. Choose a starting d-dimensional vector Y0 ∈ S and set j = 0.

2. Generate a random direction dj uniformly on the (d+ 1)-sphere.

3. Generate λj ∈ Λj = {λ : Yj + λdj ∈ S} from the density gj(λ) defined by:

gj(λ) =
g(Yj + λdj)∫

Λj
g(Yj + udj)

du.

4. Set Yj+1 = Yj + λjdj and j = j + 1.

5. If next value is necessary, reiterate from the step 2, else stop.

The Ratio-of-Uniforms algorithm (see Gilks et al. (1995), Karawatzki et al. (2005)) is

also introduced to generate d-dimensional random vectors with density g(x). It first

generates a (d+ 1)-dimensional vector uniformly distributed over the region:

A(g) = Ar,m(g) = {(y, z) : 0 < z < rd+1
√
g(y/zr + m)},

for some r > 0 and a d-dimensional vector m. It can be done by sampling from some

minimal bounding rectangular which contains A(g) and then accept the generated vector

if it belongs to A(g). Otherwise, the next vector should be generated. Therefore,
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it is important, that the region A(g) is bounded. The achieved generated vector is

recomposed accordingly to construct the random vector from the density g(x). More

precisely, the algorithm reads as follows:

Algorithm A.4 (Ratio-of-Uniforms).

1. Fix input parameters r > 0 and m (d-dimensional vector).

2. Generate (d+ 1)-dimensional vector (U, V ) uniformly in Ar,m(g).

3. Set Y = U/V r + m.

These both methods perform very slow in high-dimensional cases and for some com-

plex density functions. The combination of these methods with some modifications is,

therefore, introduced by Karawatzki et al. (2005) in order to construct a fast and easy

sampling procedure from basically every density function. The following version of this

method, namely the HITRO-plate (see Karawatzki et al. (2005)), is of particular interest

for us (we call it simply HITRO):

Algorithm A.5 (HITRO).

1. Fix input parameters: g(x) - the density function to sample from, its mode m (d-

dimensional vector), r > 0 and the sample size N (number of generated vectors).

2. Compute gm = g(m). Set (U0, V0) = (0, 0.5) and j = 0.

3. Generate a random direction dj = (du, dv) uniformly on the (d + 1)-sphere. Set

λj0 = −|v/dv| and λj1 = |(1− v)/dv|.

4. Generate λj uniformly distributed on the interval (λj0, λj1).

5. Set (Uj+1, Vj+1) = (Uj, Vj) + λjdj.

6. Set Yj+1 = Uj+1/V
r
j+1 + m.

7. If (rd + 1) log(Vj+1) ≥ log(g(Yj+1)/gm), then set λj0 = λj if λj < 0 or λj1 = λj

otherwise and reiterate from step 4, else set j = j + 1.

8. If j < N , then reiterate from step 3, else stop.

Remark A.1. The density function g(x) need not be normalized. This means, that any

positive multiple of the density can be used in Algorithm A.5.

Remark A.2. The mode m in the input parameters can be replaced by any point c,

which represents the center of the distribution. This can be seen as choosing the vector

c such that g(c) is close to the maximum of the density.
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Since the algorithm has no restriction on the density function g(x), it can be used for

the conditional density of interest, namely:

g(x) =
IA(G(x))f(x)

P(G(X) ∈ A)
.

More precisely, according to Remark A.1, we do not need to know the constant P(G(X) ∈
A) and can use for sampling the simpler function IA(G(x))f(x). In the numerical study

in Chapter 6 we use Algorithm A.5 with r = 1 and the center instead of the mode of

the density (see Remark A.2), in order to sample from the conditional densities.

As authors in Karawatzki et al. (2005) conclude, the HITRO algorithm is simple and

easy to implement, relatively fast, and works for almost any arbitrary density function. It

is proven there, that the HITRO algorithm works optimal for distributions whose region

of acceptance is convex. This is, in particular, the case for all log-concave distributions

(see An (1995)) under the choice of the parameter r = 1. Log-concave distributions

include a wide class of distributions. Among them are the Uniform, Gaussian, Expo-

nential, Gamma, Weibull and many others. The Student t-distribution does not belong

to this family, however, it does not mean that the HITRO algorithm does not work in a

such case. The numerical study in the multidimensional Gaussian, Cauchy and Student

t-cases, given in Karawatzki et al. (2005), shows a great performance. Even in dimen-

sion 100 the number of iterations in Algorithm A.5 stays below 7, which is important

due to the heavy revaluation of the portfolio loss function.
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Simulated annealing algorithm for

multi-dimensional optimization

In this appendix we present a method for solving the multi-dimensional optimization

problem in a large space. A class of simulated annealing algorithms given by Belisle

(1992) shows a great practical value in solving some optimizations in the numerical

study in Chapter 6. This class of algorithms belongs to the class of stochastic global op-

timization methods and is a version of the Monte Carlo technique. It uses only function

values and works also for non-differentiable functions. Further, we briefly present the

simulated annealing algorithm. For more details we refer an interested reader to Belisle

(1992) and the literature cited therein.

Assume that we are interested in minimizing the real-valued function V . The simulated

annealing algorithm is a MCMC algorithm, which generates the states (X1, . . . ,XN , . . .)

in parallel to the random sequence of candidate points (Y1, . . . ,YN , . . .) and non random

sequence of positive temperatures (T1, . . . , TN , . . .). The minimum of the function V is

then calculated as a limit of the sequence (V (Xi), i ≥ 0).

If the sequences (X1, . . . ,XN ) , (Y1, . . . ,YN ) and (T1, . . . , TN ) are already constructed,

the next values of XN+1, YN+1 and TN+1 are set as follows:

XN+1 =

YN+1, with probability p(XN ,YN , TN )

XN , with probability 1− p(XN ,YN , TN )
,

where YN+1 is simulated from the Gaussian Markov kernel R(XN , ·) (R(·, ·) is a Markov

kernel if R(x, ·) is a probability measure and R(·, A) is a measurable function) with scale

proportional to the actual temperature TN , and the probability p(XN ,YN , TN ) is defined
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by:

p(x,y, t) =

exp
[
−V (y)−V (x)

t

]
, if V (y) > V (x)

1 if V (y) ≤ V (x)
,

and the temperature are decreased according to the logarithmic cooling schedule given

by Belisle (1992):

TN+1 =
T0

log
([

N
Tmax

]
∗ Tmax + e

) ,
where [·] denotes the integer part and Tmax is the maximum number of function evalu-

ations at each temperature given by the user in the input.

This algorithm can be very useful in getting to a good value on a very rough surface.

It is a standard theory of the multi-dimensional optimization, which means, that the

various mathematical packages already have it implemented. We used it as part of the

standard optimization package in the mathematical programming language R Project.



Appendix C

Options pricing formulas

In this Appendix we define the options used in the numerical study in Chapter 6 and

present their pricing formulas as given in, e.g., Hull (2012b), Korn and Korn (2001).

Since it is not the main purpose of the thesis to discuss the options in details, we present

here the material from Hull (2012b), Korn and Korn (2001) only briefly.

A call option gives the holder of the option the right to buy an asset at a certain date

(maturity) for a certain price (strike price). The put option is defined in a similar way,

but giving the right to sell the asset. By the call and the put options we mean here the

European type options, i.e. the options that can be exercised only at the maturity.

For every option contract there are basically two sides, the investor who has taken the

long position, i.e. has bought the option, and the investor who has taken the short

position, i.e. has sold (written) the option. The call and the put options, depending on

the positions have the following payoffs:

Call, long: max(ST −K, 0),

Call, short: −max(ST −K, 0) = min(K − ST , 0),

Put, long: max(K − ST , 0),

Put, short: −max(K − ST , 0) = min(ST −K, 0),

where T denotes the maturity, ST denotes the asset price at the maturity time T and

K denotes the strike price.

No matter which model is used, we assume, that the options are priced according to the

standard Black-Scholes formulas and their extensions (this is often done in practice, as
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mentioned in Glasserman (2004), Glasserman et al. (2000a,b, 2002)). We further just

give the Black-Scholes formulas for the prices of call and put options.

The call price at time t is given by:

c(t) = S0Φ(d1(t))−Ke−r(T−t)Φ(d2(t)),

and the put price at time t is given by:

p(t) = Ke−r(T−t)Φ(−d2(t))− S0Φ(−d1(t)),

where S0 denotes the starting asset price, r denotes the risk-free interest rate, Φ(x) is

the cumulative distribution function of the standard normal distribution N1(0, 1), the

value d1(t) is given by:

d1(t) =
log(S0/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

and the value d2(t) is given by:

d2(t) =
log(S0/K) + (r − σ2/2)(T − t)

σ
√
T − t

= d1(t)− σ
√
T − t,

where σ denotes the annual volatility.

We next discuss the down-and-out call, which is a particular type of the knock-out

barrier option, i.e. it is a regular call option, that ceases to exist when the underlying

asset price reaches a certain barrier level H, which is below the initial asset price. If

H ≤ K, then the down-and-out call price at time t is given by:

cdo(t) = c(t)− [S0(H/S0)2λΦ(y(t))−Ke−r(T−t)(H/S0)2λ−2Φ(y(t)− σ
√
T − t)],

where the value λ is given by:

λ =
r + σ2/2

σ2
,

and the value y(t) is given by:

y(t) =
log(H2/(S0K))

σ
√
T − t

+ λσ
√
T − t.

Finally, the cash-or-nothing put is a simple example of a binary option, i.e. it pays off

Q, if the asset price is below the strike price K and nothing if it is above the strike price
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K. The value of the cash-or-nothing put at time t is, therefore, given by:

pco(t) = Qe−r(T−t)Φ(−d2(t)),

with the same value d2(t) as for regular call and put.

For other types of options and their pricing formulas we refer an interested reader to

Hull (2012b), Korn and Korn (2001).
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J. Leydold, W. Hörmann, E. Janka, R. Karawatzki, and G. Tirler. UNU.RAN - A

Library for Non-Uniform Universal Random Variate Generation, 2005. URL http:

//statistik.wu-wien.ac.at/unuran/.

A. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts,

Techniques and Tools. Princeton University Press, 2005.

G. Pflug. Some remarks on the value-at-risk and conditional value-at-risk, chapter In

Probabilistic Constrained Optimization: Methodology and Applications, edited by S.

Uryasev, pages 272–281. Kluwer, Dordrecht, The Netherlands, 2000.

M. Pupashenko. Minimizing Variance and Cross-Entropy Importance Sampling Methods

for Rare Event Simulation. Master thesis, University of Kaiserslautern, Kaiserslautern,

August 2011.

http://epub.wu.ac.at/1400/1/document.pdf
http://ssrn.com/abstract=2402602
http://ssrn.com/abstract=2402602
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/


156 BIBLIOGRAPHY

M. Pupashenko. Variance Reduction Technique for Estimating Value-at-Risk based on

the Cross-Entropy. Journal of Mathematics and System Science, 4(1):37–48, 2014.

Y. Rakotondratsimba. Modified delta-gamma approximation, April 2009. URL http:

//ssrn.com/abstract=1395969.

R. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of

Risk, 2:21–41, 2000.

R. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions.

Journal of Banking & Finance, 26:1443–1471, 2002.

R. Rubinstein and P. Glynn. How to Deal with the Curse of Dimensionality of Likelihood

Ratios in Monte Carlo Simulation. Stochastic Models, 25(4):547–568, 2009.

R Rubinstein and D. Kroese. The Cross-Entropy Method: A Unified Approach to Com-

binatorial Optimization Monte Carlo Simultaion, and Machine Learning. Springer,

New York, 2004.

R Rubinstein and D. Kroese. Simulation and the Monte Carlo Method. John Wiley &

Sons, Inc., 2nd edition, 2008.

R. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons,

Inc., New York, 1980.

L. Sun and L. Hong. A general framework of Importance Sampling for Value-at-Risk

and Conditional Value-at-Risk. In B. Johansson A. Dunkin M. Rossetti, R. Hill and

R. Ingalls, editors, Proceedings of the 2009 Winter Simulation Conference, pages 415–

422, 2009.

L. Sun and L. Hong. Asymptotic representations for importance-sampling estimators of

value-at-risk and conditional value-at-risk. Operations Research Letters, 38:246–251,

2010.

A. Trindade, S. Uryasev, A. Shapiro, and G. Zrazhevsky. Financial prediction with

constrained tail risk. Journal of Banking & Finance, 31:3524–3538, 2007.

http://ssrn.com/abstract=1395969
http://ssrn.com/abstract=1395969


Wissenschaftlicher Werdegang 157

Wissenschaftlicher Werdegang

09.2000 - 06.2004 Allgemeine Hochschulreife an Kiew Naturwissenschaftliches

Gymnasium Nr. 145, Ukraine

09.2004 - 06.2008 Bachelor-Studium an der Nationalen Taras-Schewtschenko-

Universität Kiew, Ukraine

09.2008 - 06.2010 Master-Studium an der Nationalen Taras-Schewtschenko-

Universität Kiew, Ukraine

10.2009 - 08.2011 Master-Studium an der Technischen Universität Kaiser-

slautern

10.2011 - 07.2014 Doktorand bei Prof. Dr. Ralf Korn an der Technischen

Universität Kaiserslautern

Fachliche Veröffentlichungen
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