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Abstract

As the complexity of embedded systems continuously rises, their development becomes more and
more challenging. One technique to cope with this complexity is the employment of virtual
prototypes. The virtual prototypes are intended to represent the embedded system’s properties
on different levels of detail like register transfer level or transaction level. Virtual prototypes
can be used for different tasks throughout the development process. They can act as executable
specification, can be used for architecture exploration, can ease system integration, and allow
for pre- and post-silicon software development and verification. The optimization objectives for
virtual prototypes and their creation process are manifold. Finding an appropriate trade-off
between the simulation accuracy, the simulation performance, and the implementation effort is a
major challenge, as these requirements are contradictory.

In this work, two new and complementary techniques for the efficient creation of accurate and
high-performance SystemC based virtual prototypes are proposed: Advanced Temporal Decou-
pling (ATD) and Transparent Transaction Level Modeling (TTLM). The suitability for industrial
environments is assured by the employment of common standards like SystemC TLM-2.0 and
IP-XACT.

Advanced Temporal Decoupling allows for cycle accurate simulation results in the context of Sys-
temC TLM-2.0 temporal decoupling. In ATD, accesses to shared resource are managed by
Temporal Decoupled Semaphores (TDSems) which are integrated into the modeled shared re-
sources. The set of TDSems assures the correct execution order of shared resource accesses and
incorporates timing effects resulting from shared resource access execution and resource conflicts.
ATD facilitates modeling of a wide range of resource and resource access properties like preempt-
able and non-preemptable accesses, synchronous and asynchronous accesses, multiport resources,
dynamic access priorities, interacting and cascaded resources, and user specified schedulers prior-
itizing simultaneous resource accesses.

Transparent Transaction Level Modeling focuses on the efficient creation of virtual prototypes by
reducing the implementation effort and consists of a library and a code generator. The TTLM
library adds a layer of convenience functions to ATD comprising various application programming
interfaces for inter module communication, virtual prototype configuration and run time informa-
tion extraction. The TTLM generator is used to automatically generate the structural code of
the virtual prototype from the formal hardware specification language TP-XACT.

The applicability and benefits of the presented techniques are demonstrated using an image pro-
cessing centric automotive application. Compared to an existing cycle accurate SystemC model,
the implementation effort can be reduced by approximately 50% using TTLM. Applying ATD, the
simulation performance can be increased by a factor of up to five while retaining cycle accuracy.
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1. Introduction

For decades, the market demand for new applications in the electronic sector has been significant.
In times of social media, smart phones, and autonomous driving cars [Mar10| a further growing
market demand on electronic devices seems to be probable.

The trend for miniaturization in semiconductor manufacturing led to nanometer scale structure
sizes. In 1965, Gordon Moore [Moo65| observed, that the number of transistors contained in
integrated circuits doubles every eighteen months. Even though the doubling period tends to be
extended to a three year period [ITR11b|, the exponential growth of the number of transistors
per integrated circuit is still valid.

These advances in semiconductor technology enable single chip implementations of complex de-
signs like wireless communication chips and Multi Processor System-on-Chips (MPSoCs). Due to
the rising complexity of such systems, their development becomes more and more challenging. As
the system development productivity is not able to keep pace with the semiconductor production
capabilities, the so called “hardware design gap” arises [[TR11a].
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Figure 1.1.: Design Gap in Hardware and Software Design [ITR11a]: system development productivity
does not keep pace with advances in semiconductor production technology due to the lack
of efficient design methodologies.

Besides the discrepancy between the technology capabilities and the hardware design productivity,
Figure 1.1 depicts another design gap which is called the “hardware including software design
gap” [ITR11al. As the amount of software needed to efficiently employ the available hardware
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capabilities increases, the overall design gap grows further. As nowadays a large part of the
software development process relies on the availability of the underlying hardware, the increasing
amount of software prolongs the time-to-market which is a crucial factor. Figure 1.2 shows a
conventional design flow consisting of a sequential set of design phases each depending on the
outcome of the previous one. This is especially the case for the majority of the software design
phase which depends on the preceding completion of the hardware design.

System HW HW SW SW System

Cemeert Design Design Verification Design Verification Verification

Figure 1.2.: Conventional system design flow (according to [CAT09]). The design flow consists of a
sequence of design phases each depending on the outcome of the previous design phase.

1.1. Virtual Prototyping

A technique to cope with the design gaps is the utilization of Virtual Prototypes (VPs). A virtual
prototype is a computer-simulation model of an electronic product, component, or system [Gro(1]
and represents hardware and software properties. These properties may comprise the functionality,
the architecture, the timing aspects, and the power consumption. Depending on the intended use
of the VP, the amount of available details for each property varies. These levels of available details
are denoted as abstraction levels [GAGS09|. The higher the abstraction level, the lower the model
complexity as irrelevant details are omitted. Besides reducing the implementation effort, the
abstraction in general has a positive impact on the simulation performance of the model [CAT09].

Compared with physical prototypes, virtual prototypes provide a set of benefits. The implementa-
tion cost and effort of abstract virtual prototypes is lower and thus virtual prototypes are available
early within the design process [Gro0l]. As virtual prototypes are implemented as a computer
based simulation, they provide a high observability, controllability, flexibility, repeatability, and
comprehensive automation capabilities. Additionally, virtual prototypes can be easily duplicated
and distributed.

Virtual prototypes can be used throughout the entire design flow. Especially during early design
phases, the high abstraction levels of virtual prototypes leave a wide design space [JS05] which in
turn is beneficial for tasks like early performance estimation and architecture exploration. After
the system design has reached a stable state, the virtual prototype can facilitate the hardware
and software development. In contrast to the sequential nature of the conventional design flow,
the usage of virtual prototypes enables the parallelization of hardware and software development
as shown in Figure 1.3.

During the hardware design phase the virtual prototype can be used as an executable specification
accompanying the textual hardware specification derived from the system design process. Instead
of describing the hardware behavior using text documents, the executable specification “behaves”
like the intended hardware and thus can serve as a demonstrator and a basis for discussions
during the refinement process. Additionally, the executable specification can be reused as a
golden reference during the hardware verification phase.

10
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Figure 1.3.: Virtual prototype enabled system design flows allow for parallel hardware and software
development leading to a significant improvement concerning time-to-market (according
to [CATO09]). The usage scenarios of the virtual prototypes are annotated to each design
phase.

At the same time, the virtual prototype can be used as an execution platform for pre-silicon
software development. The software execution can either be done using a processor model, an
Instruction Set Simulator (ISS) or by directly integrating the software source code into the vir-
tual prototype implementation. In the first and the second case, the software is cross-compiled
for the target system and executed on the ISS or on the processor model which represent the
micro-architectural properties of the target CPU on a higher level of detail. In the third case,
the micro-architectural properties are omitted and the software is compiled for the host CPU
architecture, hence this approach is denoted as host compiled software execution. Besides the
software development, the virtual prototype can be used for software verification. Even in case
the physical hardware is already available, verification can benefit from the lower bring-up times
and higher availability of the virtual prototype compared to the physical hardware prototype.

During the system integration and verification phase, the virtual prototype can be used as a
system integration platform which is progressively substituted by the physical hardware imple-
mentation. This step typically necessitates mixed abstraction level simulation or co-emulation
techniques [Kirl1].

The optimization objectives for virtual prototypes and their creation process are manifold and
partially contradictory. Therefore, the creation of a virtual prototype involves finding a trade-off
between the achievable simulation timing accuracy, the simulation performance and the required
implementation effort. In this work, a novel simulation technique which allows for improved
simulation performance while retaining high simulation timing accuracy and a design flow which
allows for the reduction of the implementation effort are proposed.

1.2. Outline

In Chapter 2 an overview of the state of the art is presented starting with a short introduction
of the abstraction levels, design aspects, and hardware structure specification languages relevant
for electronic system design. Next, the concept of the discrete event simulation technique is
described, which is a wide-spread model of computation for virtual prototypes of digital hardware.

11
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Subsequently, the Transaction Level Modeling (TLM) [IEE11] technique is presented, including
an overview of the TLM variants and implementation techniques. The chapter also outlines the
contradictory optimization objectives which are to be considered during the creation of Transaction
Level Models: simulation timing accuracy, simulation performance, and modeling efficiency.

The Advanced Temporal Decoupling (ATD) approach that is a major novelty proposed in this
thesis is presented in Chapter 3. ATD mitigates the conflict between the simulation timing
accuracy of shared resource accesses and the simulation performance. This is accomplished by
replacing the fixed data granularity used in common Transaction Level Models by a dynamically
varying data granularity. The dynamic variation is achieved by exploiting the look-ahead feature
arising from the temporal decoupling mechanism [IEE11] to calculate a time budget available for
the execution of each transaction. The calculated time budget is as low as needed to allow for
cycle accurate mutual exclusive shared resource accesses and as large as possible to achieve high
simulation performance.

The Transparent Transaction Level Modeling (TTLM) methodology that is the second major
novelty proposed in this thesis is presented in Chapter 4. TTLM allows for the reduction of
the implementation effort and expert knowledge required for the creation of SystemC TLM-2.0
compliant virtual prototypes. The TTLM Library provides easy to use application program-
ming interfaces for purposes like inter-module communication, runtime configuration, runtime
information extraction, and the incorporation of the Advanced Temporal Decoupling simulation
mechanism. The TTLM Generator can be used to automatically create the structural code of the
virtual prototype from IP-XACT and therefore allows for the integration of the virtual prototype
creation with established digital hardware and hardware dependent software design flows.

In Chapter 5 the simulation performance improvement achievable by ATD and the modeling effort
reduction facilitated by the TTLM concept are analyzed using a virtual prototype of the automo-
tive Night Vision system [Rob05]. The ATD and TTLM based virtual prototype is compared to
a preexisting cycle accurate virtual prototype [Ban09].

Chapter 6 concludes this work and provides an outlook of possible extensions of the ATD and
TTLM concepts.

12



2. State of the Art and Related Work

2.1. Electronic System Design Aspects and Abstraction Levels

The top-down design flow of electronic systems involves the consideration of different design as-
pects like the system’s behavior, the architecture which decomposes the system into a set of
components and the physical placement and dimensions of those components. The behavioral as-
pect describes the functionality of the system in terms of what the system does and it is the central
aspect at the beginning of the top-down system development process. In the course of the design
process, the system’s architecture evolves taking various facets like suitability for the intended
functionality and costs into account. Section 2.2 gives an overview of specification languages
appropriate for the description of the hardware architecture. KEspecially for high level virtual
prototyping which focuses on behavioral and architectural specification, the physical aspects are
secondary. Figure 2.1 shows the Y-Chart which illustrates the design aspects and abstraction
levels [DG90].

System

Behavior Architecture

Register Transfer

v
Physical

Figure 2.1.: The Y-Chart illustrates the three system design aspects behavior, architecture, and physical
in conjunction with a set of abstraction levels [DG90]. Virtual prototypes are typically used
on functional level, register transfer level, and on transaction level, which is an intermediate
level between functional and register transfer level [MCGO35].

The system can be represented at different abstraction levels ranging from system level to circuit
level. The stepwise transition from higher abstraction levels to lower abstraction levels is denoted
as refinement. To support the refinement process, virtual prototypes can be used and implemented
at different abstraction levels.

13
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Especially during the concept phase, the system is specified at the functional level. At this
level, only the system’s intended behavior and the incorporated algorithms and functionalities
are present which can be modeled e.g. as a set of communicating sequential processes [BHR84].
The communication between these processes takes place using shared variables and function calls.
Hardware aspects like a concrete architecture, the resulting timing, and power consumption are
omitted.

The transaction level is an intermediate level between the functional level and the register trans-
fer level (RTL) [MCGO5]. This level extends the functional level by basic hardware structure
information in the form of a set of interconnected modules each containing processes representing
the modules behavior. Transaction level models provide a promising trade-off between imple-
mentation effort, simulation accuracy, and simulation performance suitable to fulfill the needs of
virtual prototyping [CAT09]. A commonly used design language for transaction level models is
SystemC TLM-2.0 [IEE11|. More details on transaction level modeling variants and techniques
are presented in Section 2.4.

At the register transfer level (RTL), the system is described using combinational logic changing
the system’s state over time. The communication is implemented using dedicated signals. The
current state of the system is stored in registers and might change at clock cycle boundaries. Due
to the comprehensive hardware awareness of this abstraction level, RTL descriptions are used to
synthesize the final hardware. Commonly used design languages for register transfer level models
are VHDL [IEE09]|, Verilog [IEE06|, and SystemVerilog [IEE12].

2.2. Hardware Architecture Specification

Architectural information arises from the partitioning of the system and includes component
structure and interface specifications. It can be incorporated at various steps throughout the
design process such as the integration of Intellectual Properties (IPs) during platform assembly,
the creation of hardware components, and the development of low level software. To enable the
(partial) automation of the mentioned tasks, the architectural information has to be captured
using machine readable formats [BM10]. The automation provides benefits such as a reduced
implementation effort and a reduced implementation error rate.

Models like SystemRDL [Acc09], SpectaReg [PDT13], and IDesignSpec [Agnl3] focus on the
definition of register structures of memory mapped peripherals. The register structure is typically
defined in a hierarchical way. The entire address space provided by the peripheral is divided into
multiple register files. Each register file is composed of a set of registers. These registers in turn

consist of fields logically grouping related bits.

In addition to the register specification capabilities of the mentioned languages, IP-XACT [IEE10]
provides means to specify supplementary component structure aspects like bus interfaces and sig-
nal ports. Furthermore, IP-XACT facilitates the composition of components and hierarchical
system descriptions by providing netlisting features like component instantiations and intercon-
nections. In addition, IP-XACT supports the abstraction level concept by providing mechanisms

14
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to specify component interconnections at different levels of abstraction e.g. at “wire” and “trans-
actional” level.

As IP-XACT is maintained as an IEEE standard [IEE10], allows for a comprehensive machine
readable specification of hardware architecture aspects, and provides extendability via vendor
extensions, the format is the basis for many different design step automation approaches.

2.3. Discrete Event Simulation in SystemC

The Discrete Event Simulation (DES) technique is widely used for the simulation of digital
hardware systems and employed by languages like VHDL [IEE09|, Verilog [IEE06] and Sys-
temC [IEE11]|. In DES, there are two equivalent approaches to model the behavior of a system
denoted as event-scheduling approach and process-interaction approach respectively |[Fis01]. In
SystemC, the event-scheduling approach can be implemented using SC_METHODs triggered by
events whereas the process-interaction approach can be implemented using SC_THREADs. When
using the process-interaction approach, each independent course of action is represented by a
distinct thread. Each thread consists of an ordered set of statements which are executed in a
sequential way. Sequential execution implies that in general at any given wall clock time, the
thread is executing exactly one statement of the set of its statements. However, as the simulation
time is only advanced by calling the wait (<time>) function, all statements belonging to one

block surrounded by wait (<time>) calls occur simultaneously in simulation time.

Hardware-inherent parallelism is represented incorporating multiple threads which might be log-
ically grouped in a set of modules. Interaction between threads can take place in various ways
including explicit synchronization and data exchange. Explicit synchronization can be achieved
using event notifications and reactions on notified events. Data exchange between threads re-
siding in the same module can be done using signals or local (volatile) variables in combination
with explicit synchronization mechanisms. To exchange data between threads residing in different
modules, designated communication channels can be incorporated.

In Figure 2.2 a simplified state chart of the SystemC kernel implementing DES is given. The
simulation progress consists of multiple timed notification cycles each being one turn in the timed
notification loop [IEE11]. A timed notification cycle starts with the simulation of the entire activity
at the current global simulation time. This entails the sequential processing of all triggered
methods and all runable threads. A thread becomes runable either after a previously defined
waiting time has elapsed or after a discrete event awaited by the thread gets notified. During the
execution of a triggered method or a runable thread, other events might be notified to occur
at simulation times equal or greater to the current global simulation time. To preserve the
causality in case of events that are notified to occur at the current simulation time in a simulator
implementation independent way, the delta notification loop mechanism is used [IEE11].

One turn of the delta notification loop is denoted as a delta cycle and is composed of three
phases named evaluate phase, update phase, and notify phase respectively. The evaluate phase
comprises the processing of all events that are known to occur at the current simulation time before
the delta cycle was started. The execution order of these events depends on the implementation

15
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start of simulation incl. initialization

no pending activity at current time

(

/ simulate activity at current \

global simulation time

evaluate

timed notification cycle advance global
(timed notification loop) simulation time

delta cycle
(delta notification loop)

(current time = max. simulation time) ||
(no runable threads && no future event occurrences)

end of simulation

Figure 2.2.: Discrete Event Simulation modalities. In DES, computation takes place at distinct points in
global simulation time determined by the occurrence of at least one event. For each timed
notification cycle all occurring events are processed during an arbitrary amount of delta
cycles. After the simulation state is settled meaning that there is no pending activity at
current time, the global simulation time is advanced to the time of the next simulation event
occurrence and the next timed notification cycle is started.

of the simulator and must not influence the simulation result. To accomplish this claim for the
simulation of RTL models, the effect of signal assignments taking place during the evaluate phase
is deferred to the following update phase to provide consistent data for all threads reading from
the same signals during the current evaluate phase. During the update phase, the signal values
are updated and signal change events are triggered. During the notification phase, events that
are to occur in the following delta cycle are triggered causing all sensitive methods and threads
waiting for these events to become runable.

The notification phase concludes the delta cycle. If there are processes that have become runable
during the notification phase, the next delta cycle is started. Otherwise, the current timed no-
tification cycle ends by advancing the global simulation time to the nearest time of any pending
timed event occurrence. Additionally, threads that are waiting for the occurrence of at least one
of these events are made runable.

Figure 2.3 illustrates the stepwise progress of the global simulation time in DES consisting of
an arbitrary number of delta cycles per timed notification cycle. In contrast to other models of
computation the simulation time step width in DESs is not necessarily constant.
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arbitrary number of delta cycles per
simulation time instant

current delta cycle

>/ future timed event(s)

l global simulation time

U ) current simulation time
~

timed notification cycles

Figure 2.3.: Simulation time progress in DES. After all delta cycles belonging to one timed notification
cycle have been processed, the global simulation time is advanced to the nearest time of any
pending timed event occurrence.

2.4. Transaction Level Modeling (TLM)

At transaction level, the computational tasks and communication sequences are separated [CGO03,
Mey05]. According to the process-interaction approach of DES, the computational tasks can be
implemented using a set of processes or threads. This allows to represent hardware and software
components of a system in a common manner leaving a wider design space by deferring the de-
termination of the implementation technology [JS05]. In contrast to signal based communication
used at register transfer level, the inter-thread communication at transaction level takes place
using transactions traversing abstract communication fabrics. A transaction represents a logi-
cally delimited interaction occurrence between a sending unit called initiator and a receiving unit
denoted as target.

In the following, transaction level model variants, implementation techniques, and optimization
objectives are presented.

2.4.1. Variants

Transaction level models can be categorized in various ways [MCGO5|. The timing aspects of
computational and communication tasks can be represented on a broad accuracy spectrum ranging
from fully untimed omitting any notion of time to clock cycle accurate. The data granularity varies
from application packets to bus words.

Application packets are typically used in functional models where both data size and semantic
depend on the requirements of the high level algorithm. A popular example for application packets
are video frames in video processing applications. If the level of detail achieved by the utilization
of application packets is insufficient, application packets can be divided into smaller pieces like
bus packets. Bus packets represent data portions transferred en bloc over a bus model. A typical
example for bus packets are burst transfers. The size of a bus packet is jointly determined
by the implementation details of the computing algorithms and the capabilities of the modeled
hardware architecture (e.g. bus). The highest data granularity is achieved using one bus word per
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transaction. Bus words are data portions atomically transferred over the communication fabric.
The size of one bus word is typically defined by the data bus width.

Based on these data granularity and timing accuracy gradings, a set of TLM variants can be
defined as shown in Figure 2.4 [MCGO05|. This set comprises the following TLM variants in
increasing timing accuracy order.

Data Granularity

A

TLM-PVT TLM-CA
bus words O

TLM-PV TLM-PVT
bus packets O

Func. Model,

application packets | o

untimed approximately  cycle accurate  Timing Accuracy
timed

Figure 2.4.: Transaction Level Modeling Variants Overview [MCGO05]: TLM variants arise from the com-
parison of transaction data granularity and achievable timing accuracy.

e TLM - Programmer’s View [MCGO5| (TLM-PV) models lack any notion of time but preserve
functional and causal dependencies between events occurring during simulation. Together
with the fact, that basic hardware architecture information is present, TLM-PV models are
suitable for high level algorithm and software development. Due to the low data granularity
of application and bus packets, the simulation speed of this kind of model is typically high.

e TLM - Programmer’s View with Timing [MCGO05| (TLM-PVT) models extend the preceding
modeling variant by a basic amount of timing information representing the time consumption
of behavioral and / or communicational procedures. Hence, this modeling variant is suitable
for early performance estimation tasks and lower level software development. The data
granularity typically ranges from bus packet to bus word size. The simulation speed varies
depending on the actual data granularity.

e TLM - Cycle Accurate [MCGO5] (TLM-CA) models provide cycle accurate timing informa-
tion taking resource contention effects into account. In general, this requires the fragmenta-
tion of the transferred data into bus word sized transactions resulting in reduced simulation
performance. Because of the exhaustive timing accuracy of cycle accurate models, these
models can be used for precise performance estimation, driver software development for
timing critical peripherals and the validation of register transfer level models.

18
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2.4.2. Implementation Techniques

Independently of the chosen TLM variant and the appropriate data granularity, the transaction
processing is implemented using one of the following techniques defined by the SystemC TLM-2.0
standard [IEE11]. Basically, these techniques differ in the number of available transaction pro-
cessing phases resulting in a varying amount of function calls used to conduct one arbitrarily sized
transaction.

2.4.2.1. Approximately-timed Style

Using the approximately-timed style, each transaction passes a set of phases. The set of available
phases depends on the employed communication protocol. The SystemC TLM-2.0 base protocol
defines four phases namely begin request, end request, begin _response, and end _response. The
lifecycle of each transaction can be implemented by one to four function calls. The approximately-
timed implementation shown in Figure 2.5 uses two function calls to process a single transaction.

Initiator transaction phase
t(?
f =1, + AL, request | wait(Az, ) ol

| | notify
} return | | event

begin_request

end_request
L=t +AL wait(Ar, )

) wait(event)

|
;
|
ty=t,+ Al ’95P°"Se) ! call wait(At, )
|
|

notify
event return

t,=t,+At, wait(At, )

global simulation time

begin_response

end_response

Figure 2.5.: Approximately-timed TLM style [IEE11]. When using the return path, one transaction is
typically conducted using one function call from initiator to the target (request) and a reverse
function call (response). Typically, each of the function calls comprises an event notification
triggering the destination thread.

The first function call from the initiator to the target represents the interaction request where
the invocation of the function states the begin request. The phase transition to end request
takes place using the return path. The request typically leads to an event notification triggering
the process contained in the target module to process the transaction. After the request has
been processed by the target, the response is transferred using the second function call from the
target to the initiator. Similar to the request, the response starts with the function invocation
(begin _response) and ends with the return statement (end response) and typically leads to an-
other event notification triggering the initiator’s thread. It should be noticed that not all phase
transitions are mandatory allowing for early completion of transactions.
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Typically each phase transition is accompanied by a call to the wait(time) function which mimics
the time consumption that has occurred during the preceding phase. Each wait(time) call increases
the global simulation time resulting in four timing points per transaction.

2.4.2.2. Loosely-timed Style

If two timing points per transaction are sufficient in terms of the desired simulation timing ac-
curacy, the loosely-timed style can be used. Figure 2.6 shows the message sequence chart of the
loosely-timed transaction implementation.

Initiator
t()

t,=t,+At, wait(Az, )

initiate

global simulation time

finish wait(Az, )

Figure 2.6.: Loosely-timed TLM style [IEE11]. Each transaction is conducted using one function call
from the initiator to the target resulting in two timing points per transaction.

Each transaction is represented by exactly one function call. The transaction is started by the
initiator on invocation of the function and is ended by the return of the function. Similar to the
approximately-timed style, the transaction’s start and end points are accompanied by a call to
the wait(time) function. The first wait(time) call represents the initiator’s time consumption in
advance of the transaction. The second wait(time) call indicates the duration of the transaction.

In approximately timed or loosely timed models the simulation time consumption of each thread
can be classified into four simulation time consumption states as shown in Figure 2.7.

Each thread starts in the self contained execution state. In this state, the thread executes its
functionality which can not be influenced by other parts of the system. In case the further progress
of the thread depends on the occurrence of an event, the state waiting for event occurrence is
entered. After the corresponding event has been notified, the thread returns to the self contained
execution state.

In case the thread attempts to access any shared resource, the next state depends on the availability
of the accessed resource. If the resource is currently unavailable, the blocked due to resource
contention state is entered and any further processing of the thread is deferred until the resource
becomes available. Otherwise, the interacting with shared resource state is entered and the
communication can take place. In case another thread having a higher priority attempts to access
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Figure 2.7.: Simulation time consumption state chart for approximately timed or loosely timed threads.

the same resource, the current thread might get preempted depending on the capabilities of the
shared resource. In this case, the blocked due to resource contention state is revisited until
the resource contention has disappeared. After the interaction is finished, the thread returns to
the self contained execution state.

2.4.2.3. Loosely-timed Style with Temporal Decoupling

Calls to the wait(time) function provoke a context switch between simulation threads [IEE11]
and thus they are costly in terms of simulation performance. Therefore, the goal of the temporal
decoupling mechanism is to reduce the number of wait(time) calls to speed up the simulation.
This is achieved by aggregating the simulation time consumption of each simulation thread using
a local simulation time offset. Figure 2.8 illustrates the temporal decoupling mechanism spanning
two transactions.

As the temporal decoupling mechanism extends the loosely-timed style, each transaction is repre-
sented by exactly one function call from the initiator to the target. In contrast to the conventional
loosely-timed style, the transaction’s start and end point are not accompanied by wait(time) calls.
Instead, the local simulation time offset of the transaction is annotated to the function call and
consumed all at once at some later point in simulation. Effectively, this means that the simulation
threads are allowed to run ahead in simulation time resulting in a temporal decoupling of these
threads. This effect is often denoted as local time warp [IEE11].

Due to the absence of context switches and the cooperative multitasking scheme of SystemC, the
execution of concurrent threads is deferred. This might result in simulation errors like out-of-
order execution of transactions or disregarded mutual exclusive access to shared resources. Thus,
explicit care has to be taken by the designer to avoid data dependency violations by manually
employing synchronization mechanisms.
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Figure 2.8.: Temporal Decoupling Concept [IEE11]. To reduce the number of context switches provoked
by calling the wait(time) function, the time consumption of multiple transactions is ag-
gregated using a local simulation time offset and consumed at a later point in simulation.
Thereby, the simulation threads are allowed to run ahead in simulation time resulting in a
temporal decoupling of the involved simulation threads.

2.4.3. Optimization Objectives of TLM implementations

For a valuable incorporation of transaction level models in virtual prototyping of digital hardware,
the transaction level models have to meet a set of requirements [MCGO05].

e Timing Accuracy: to gather reliable timing estimations from virtual prototypes, a high
timing accuracy for transaction level models is required. Especially, for the development of
real-time applications, the achieved timing accuracy of the utilized models is crucial.

e Simulation Performance: particularly for pre-silicon software development where a consid-
erable amount of software has to be executed upon the virtual prototype, a high simulation
performance is desirable to reduce turnaround times and allow for efficient software debug-

ging.

e Modeling Efficiency: as the time-to-market gain achieved by the incorporation of virtual pro-
totypes directly depends on the time of their availability, the creation of virtual prototypes
and therein contained transaction level models has to be efficient.

As these optimization objectives are partially contradictory, the creation of transaction level mod-
els incorporates finding a suitable trade-off. Figure 2.9 illustrates this trade-off by depicting the
degree of requirement fulfillment for different transaction level modeling styles. This set com-
prises the cycle accurate (TLM-CA), approximately-timed (TLM-AT), loosely-timed (TLM-LT)
and loosely-timed style with temporal decoupling (TLM-LT + TD). The actual values for these
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metrics depend on the characteristic of the modeled system and various other factors. Thus, only
trends are given.

Timing
Accuracy
i1
I - = TLM-CA
|
! ‘| ...... TLM-AT
,' 3 — “TLM-LT
IR
i % — - -TLM-LT+TD
A K

Modeling Simulation
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Figure 2.9.: The TLM optimization objectives Modeling Efficiency, Timing Accuracy, and Simulation
Performance are achieved in varying extent depending on the applied modeling style. Cycle
accurate models (TLM-CA) provide extensive timing accuracy at a low simulation perfor-
mance and modeling efficiency. Approximately-timed models (TLM-AT) provide higher
simulation performance and modeling efficiency but lower timing accuracy. Loosely-timed
models (TLM-LT) provide the highest modeling efficiency, high simulation performance but
further reduced timing accuracy. Loosely-timed models with temporal decoupling (TL.M-LT
-+ TD) provide the best simulation performance and a high modeling efficiency at the cost
of poor timing accuracy.

The timing accuracy is affected by the amount of timing details modeled by the designer. Further-
more, the timing accuracy is limited by the simulation modalities of SystemC TLM-2.0. Especially
the data granularity used in non-cycle accurate transaction level modeling styles restricts the tim-
ing resolution and the resulting timing accuracy [MCGO05, SD07|. Transactions exceeding the
atomic time unit of the modeled hardware are denoted as non-atomic transactions and are mainly
used in approximately- and loosely-timed transaction level models. The reason for the timing in-
accuracy caused by the simulation modalities is, that the preemption of non-atomic transactions in
case of resource contention is not supported inherently. This implies that potential preemptions
occurring in the real system are disregarded in the simulation model. If high timing accuracy
is required, a common approach is to increase the data granularity by precautionary partition
non-atomic transactions into multiple atomic transactions. The atomic transactions are trans-
ferred successively allowing for interruptions at the borders of atomic transactions. Effectively,
this results in a cycle accurate modeling style.

The simulation performance of discrete event simulations mainly depends on the amount of events
occurring per simulated time [Ulr68]. As the size and the operational state of the modeled system
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typically influence the number of events per simulated time, the simulation performance is affected
by the characteristics of the modeled system. In addition, the simulation performance is influenced
by the modeling style and the resulting ratio of simulated functionality per simulation event.
Especially for transaction level models this ratio results from the chosen data granularity. This
means, if the data granularity is reduced, the transaction size and the simulation performance
are rising. The simulation performance of non-cycle accurate transaction level models having low
data granularity exceeds the simulation performance of cycle accurate transaction level models by
some orders of magnitude [SD09, GAGS09].

2.4.4. Increasing the Modeling Efficiency

The modeling efficiency is influenced by various factors like the availability of modeling libraries,
modeling tools and the skills and experience of the designer. Modeling libraries contain ready-to-
use components like processor, bus, and peripheral models to compose virtual prototypes and /
or elements simplifying the creation of custom components.

2.4.4.1. Modeling Libraries

In |Ban09] a SystemC based library focusing on communication centric tasks is presented. The
most important part of the library is the module adapter class. Module adapters are used to
automatically transfer application packets by partitioning them into atomic transactions which
are successively transferred. Thereby mechanisms like out-of-order and read / read-response ac-
cesses are supported. Similarly, the TLM+ library provides means to easily transfer “complex
information structures” [EEST10] between components of the virtual prototype. In contrast to
the module adapter library, the TLM+ library omits the partitioning of the “complex informa-
tion structures” and transfers the information using a single function call. This allows for “faster
simulation runs” [EEST10] at the cost of simulation accuracy. The concept of convenient library el-
ements providing communication capabilities is pursued by the TLM-module-adapters presented
in |Ker09]. The TLM-module-adapters encapsulate SystemC TLM-2.0 specific communication
code by providing convenient read and write methods. Especially for the creation of target mod-
ules, the SystemC Modeling Library 2 [Syn11| (SCML2) [Synll] provides valuable means for mod-
eling memory mapped peripherals and their register structure. The GreenSocket|Grel2] library
is compatible to the SystemC TLM-2.0 sockets and facilitates the usage of extensions allowing to
augment the payload with additional user defined information.

Besides the previously mentioned modeling libraries aiming at the simplification of the creation
process of custom components, there are component libraries for various purposes and domains.
A modeling library containing ready-to-use ARM processor models is available at [ARM13].
In [TUV13], a library containing analogue and mixed-signal building-blocks is presented. Es-
pecially for the development of software for embedded systems, an open library “of processor and
behavioral models” as well as “APIs for building [..] processors, peripherals and platforms” is pro-
vided at [Impl4]. Another library of commercially available components can be found at [TLM14].
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2.4.4.2. Modeling Tools and Design Automation

To further leverage the benefits of modeling libraries, tools can be employed to automate design
tasks. Especially for hardware architecture centric tasks like the generation of structural compo-
nent code for different design artifacts and target languages, IP-XACT is frequently incorporated
as the central data source.

In [PWBL11], the authors present a Perl based framework for the generation of VHDL entity dec-
larations from IP-XACT component descriptions. The generation of transaction level component
models is shown in [Cadll]. In [vHAKV11] the creation of transaction level models is extended
by the automatic creation of verification software, used for reset tests, accesses tests, and address
tests for the generated registers.

Another use case of IP-XACT in system design is the support of IP integration. In [KvdWdK™08|
an overview of IP-XACT based industrial IP integration flows is given. In [XDM10] and [LBCT10]
two IP integration flows are presented which allow for the automated assembly of IP components
to virtual prototypes. The authors of [ZBBR09] present an IP integration methodology based on
the generation of tailor-made adapters which are used to map different bus protocols to a generic
bus protocol. The authors of [AEG'10] present an integration methodology based on a library of
parameterizable IP cores suitable for the creation of communication circuits.

The previously mentioned works utilize the information stored in [P-XACT to partially automate
design steps like the generation of component code. The other direction is followed by the authors
of [LTdS11]. They present an approach to populate data from virtual prototypes to IP-XACT by
extracting structural information from SystemC models which therefore have to be assembled of
specific coding constructs recognizable by the employed code parser.

Besides the mentioned IP-XACT based tools, there are various commercial tools available enabling
the creation of virtual prototypes partially based on proprietary mechanisms (e.g. [Cad13, Men13,

Synl13]).

2.4.5. Handling the Trade-Off between Accuracy and Simulation Performance
2.4.5.1. Simulation Performance Improvement Techniques
Parallel Execution of SystemC Models

The SystemC reference implementation only allows for a sequential execution of simulation threads
resulting in a dissipation of processing resources on multicore host CPUs. There are various
approaches aiming to overcome the shortcoming of idle host processing capabilities [GMPCMO09].
One technique to enable parallel execution of SystemC models is to use one dedicated SystemC
kernel instance per host CPU core each simulating a part of the model [SKR09|. This approach
requires a preceding model partitioning step which is either done manually [PVSL11] or in an
automated way |[HBHTO08|. Communication spanning multiple partitions has to be implemented
using common inter process communication mechanisms like shared memory or sockets. As these

inter process communication mechanisms imply a significant processing overhead, beneficial model
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partitioning resulting in minimum communication occurrences across partition boarders is crucial.
Instead of using multiple SystemC kernel instances, a single parallelized SystemC kernel instance
utilizing multiple host CPUs can be used [MMGP10, Jonll, SLPH10, CCZ06].

In addition, there are several approaches utilizing Graphic Processing Units (GPUs) instead of
CPUs for the parallel execution of SystemC models. In [NPJS10] and [VCBF12] code transforma-
tion based techniques are presented which allow for the execution of RTL code or dataflow centric
SystemC code on General Purpose Graphic Processing Units (GPGPUs) using the Compute Uni-
fied Device Architecture (CUDA) [NVI13].

Trace driven Simulation Acceleration

Besides performance improvements achieved by the parallel model execution, there are approaches

“record of the execution of a computer

using traces to speed up the simulation. A trace is a
program, showing the sequence of instructions executed” [IEE90|. The traces are used to re-
place frequently simulated portions of complex system behavior by abstract representations. The
traces can either be extracted from high level system descriptions using symbolic search tech-
niques [GHT12| or recorded from lower level cycle accurate models which have been executed

previously [PMG™10].

2.4.5.2. Timing Accuracy Improvement Techniques

For the sake of high simulation performance, transaction level models are often implemented with
low data granularity using non-atomic transactions resulting in timing errors due to disregarded
resource conflicts and neglected transaction preemptions. There are various techniques to reduce

the extent of these timing errors.

Accuracy Alteration

Especially for employment in temporal decoupled transaction level models, the SystemC TLM-2.0
standard [IEE11]| provides the global quantum mechanism which limits the offset between the
global simulation time and the thread’s local simulation time. Low global quantum values result
in an improved timing accuracy at the cost of simulation performance, high global quantum values
speed up the simulation at the cost of timing accuracy. To take advantage of this concept, the
designer can incorporate the quantum keeper utility class [[EE11]. However, even for very low
quantum values, the global quantum mechanism can not guarantee the absence of simulation
timing errors caused by temporal decoupling.

Besides this mechanism provided by the SystemC standard, there are some alternative approaches
allowing the alteration of the simulation timing accuracy. In [RK08| an adaptive accuracy switch-
ing technique for arbitrating bus models is presented. Transactions traversing the bus model are
withheld until the estimated end time of the transaction is reached. To estimate the transaction’s
end time, it is assumed, that no preemption occurs. When the global simulation time reaches
the estimated end time and no preemption by a higher priority transaction has been requested,
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the current transaction is atomically conducted. Otherwise, the transaction is split up allowing
for cycle accurate bus transaction implementation. Due to the proposed preemption detection
mechanism, transactions arrive late at the target.

In [BSS07], a methodology for run-time accuracy switching is presented. Different techniques for
channels and modules are combined. Multiple channel models having different abstraction levels
are combined within a multilevel channel providing a unified outer interface. At runtime, the
appropriate channel model can be selected to either provide high simulation performance or high
timing accuracy. The accuracy switching of modules is done by temporarily disconnecting the
computation module from the clock distribution system and other global synchronization signals.
Thereby, synchronization is reduced to an user defined extent accepting a loss in timing accuracy.

Analytical and Statistical Resource Contention Analysis

These approaches have in common, that the probability of resource conflict occurrences and
their influence on the simulated time are estimated at model creation time. Analytic approaches
typically use formal component models which either depend on the determinism of the application
and the platform [CKTO03] or aim at the calculation of worst case execution times [SHRE09]| being
an over estimation of the actual resource contention effects.

In statistical approaches resource characteristics, resource utilization, and resource contention
effects are approximated incorporating statistical methods [Bob07, BPT07, ANMDO07]|. Alterna-
tively, the data can be extracted from previous simulation runs [LRDO01]. During the simulation,
the gathered information is employed to estimate the timing effects of resource contentions.

Postponed Transaction Timing Correction in case of Resource Conflicts

To reduce the timing errors resulting from disregarding preemptions of non-atomic transactions,
the “postponed transaction timing correction in case of resource conflicts” mechanism can be used.
Using this approach, non-atomic transactions are processed in a non-preemptable way, temporarily
assuming that no preemption takes place. In addition, these approaches comprise mechanisms to
automatically detect resource conflicts afterwards. In case a contention is detected, the simulation
time of the affected initiator thread is updated postponed to the processing of the corresponding
transaction [SD07].

Using this technique, the timing errors resulting from resource conflicts can be reduced while
avoiding the simulation performance degrading precautionary partitioning of non-atomic transac-
tions into atomic ones. But, as the non-atomic transactions are processed in a non-preemptive
way, this approach may lead to data dependency violations between transaction fragments of
interleaving transactions.

In [SBR11] the so-called Quantum Giver applies the postponed transaction timing correction
approach to temporal decoupled models introducing several distinct and alternating simula-
tion phases denoted as simulation phase, synchronization phase, and scheduling phase respec-
tively. During the simulation phase, all runable initiators are executed and “all transactions
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issued by an initiator are completed immediately, meaning without synchronizing with other pro-
cesses” [SBR11]. During the synchronization and scheduling phase, the initiator’s local quantum
values available during the following simulation phase are calculated taking resource contention
occurrences into account. Additionally, resume events used to wake up the corresponding initiator
threads are scheduled.

The processing of a transaction by one resource might lead to the occupation of other resources
as it is the case for bus transactions which are routed to other resources. These dependencies
between resources are essential for simulation accuracy and must not be disregarded. In [EEST10]
this issue is addressed using an external statically defined data dependency table specifying which
additional resources are required to complete a transaction processed by another resource. For
this task, a Domain Specific Language (DSL) is used.

In |[LCHO8| the multiple alternating simulation phase concept is used to enable temporal decou-
pling and postponed timing correction for the simulation of cycle accurate transaction level models.
During the virtual synchronization simulation phase, the functionality of all initiator modules is
executed. Each master module has a local clock cycle counter and is allowed to run ahead of the
global simulation time. The initiator’s execution is preempted if a data dependency is detected to

querying a user provided data dependency table, which specifies memory regions used by multiple
initiators. During the cycle count reconstruction phase, the local clock cycle counters of initiators
affected by resource conflicts are updated.

The postponed timing correction mechanism is not limited to hardware modeling but can also
be applied to Real Rime Operating System (RTOS) and software task models where CPUs are
treated as shared resources [ZMG09, ZM08|. In this work, the software tasks and interrupt service
routines are divided into segments. The functionality of each segment is executed atomically and
the CPU time consumption of the segment is annotated using a CONSUME_CPU_TIME (<t ime>)
function. This function models the CPU time consumption of the already executed software
segment using the notification of a timed event at the estimated end time of the software segment.
In case the software segment is interrupted by a higher priority task, the notification of the timed
event is delayed accordingly. A similar approach is presented in [RG12].

2.5. Challenges and Proposed Solution

Especially for virtual prototype use cases like the development of safety critical embedded systems,
driver software development for timing critical peripherals, and verification of RTL code, a realistic
timing representation is essential and timing errors arising from simulation modalities have to
be avoided. The employment of cycle accurate transaction level models is not suitable as the
partitioning of non-atomic transactions into atomic transactions and their successive execution
implies a negative impact on the simulation performance. Figure 2.10 (a) illustrates the cycle
accurate implementation of a simple example system. The example system consists of the low
priority thread T'h; and the high priority thread The each attempting to transfer interleaved
three word sized application packets to a single shared resource. According to the cycle accurate
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implementation paradigm, the application packets are divided into three successively transferred
bus words.

The previously presented simulation performance improvement techniques apparently allow to
speed up the simulation of cycle accurate transaction level models, but entail some shortcomings.

The parallel execution of cycle accurate models implicates the following drawbacks:

e Due to the computational overhead required for synchronization between the host CPUs, the
achieved simulation performance improvement factor lags behind the number of additional
CPUs used for the parallel simulation |[HBHTO0S|.

e Many techniques used to cope with this scalability problem have a negative impact on the
simulation timing accuracy [Jonll, PVSL11|.

e The simulation performance improvement factor heavily depends on the characteristics of
the modeled system like the ratio between computational and communicational tasks. In
case of a low ratio between computational and communicational tasks even a simulation
slowdown compared to the execution on a single core is possible [SKR09].

e An additional model partitioning step resulting in equalized computational tasks per host
CPU and minimized communicational tasks spanning partition borders is required. This
increases the required modeling effort [PVSL11].

The trace driven simulation acceleration requires additional models implemented at higher or
lower abstraction levels resulting in an increased modeling effort [PMG™10].

The employment of non-cycle accurate transaction level models as shown in Figure 2.10 (b) to
overcome the low simulation performance of cycle accurate transaction level models implies sim-
ulation timing errors. The simulation timing errors arise from disregarding mutual exclusive
access to shared resources and disregarding transaction preemption. The previously presented
timing accuracy improvement techniques promise simulation timing error reduction while re-
taining high simulation performance but entail different shortcomings depending on the actual
concept. The global quantum mechanism [[EE11| can not guarantee cycle accuracy even for
low quantum values. The other approaches either implicate simulation errors like late arriving
transactions [RKO08| or require distinct models for each accuracy grade implying additional im-
plementation effort [BSS07|. Analytical and statistical resource contention analysis approaches
require additional effort for resource contention estimation at model creation time and often result
in over estimations [SHREO09| or do not provide cycle accurate timing results due to statistical
approximations [Bob07, BPT07, ANMDO07].

The postponed timing correction in case of resource contention mechanism as shown in Fig-
ure 2.10 (¢) reduces the timing errors arising from formerly disregarded resource contention ef-
fects but does not eliminate them. In addition, this mechanism results in a mismatch between
the actual transaction execution and the pretended timing and hence lacks support for data
dependencies between interleaved transactions [LMGS12, SD07|. Furthermore, the support for
inter-resource dependencies like resources accessing other resources during transaction processing
is limited and resource access timing calculations are occasionally restricted to specifying fixed
data rates [EEST10].
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Figure 2.10.: Applying TLM implementation alternatives to a simple example system. The simple ex-
ample system consists of two threads (Th; and Ths) performing interleaved three word
sized non-atomic transactions on a single shared resource.

Therefore, a simulation technique which is devoid of timing errors resulting from the simulation
modalities but still provides a high simulation performance is required. In Chapter 3 a SystemC
based simulation and modeling technique denoted as Advanced Temporal Decoupling (ATD) is
proposed. Advanced Temporal Decoupling provides a set of benefits compared to other established
simulation techniques:

e ATD allows for the cycle accurate simulation of mutual exclusive shared resource accesses
in the context of temporal decoupling. The simulation timing accuracy achievable by ATD
exceeds the simulation timing accuracy resulting from the “postponed timing correction in
case of resource conflicts” approach [SD07, EEST10, SBR11].

e ATD provides comprehensive resource and resource access property support. This includes
preemption of resource accesses, synchronous and asynchronous resource accesses, and inter-
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resource dependencies.

e ATD uses optimal size for processed shared resource access fragments. Thereby, the fragment
size is as low as needed to achieve cycle accurate simulation results and as large as possible
to achieve high simulation performance. Compared to the fixed and atomic transaction
size used in conventional cycle accurate TLM models, this allows for improved simulation
performance.

Besides extensive timing accuracy and a high simulation speed, a design flow allowing for the
creation of virtual prototypes with low modeling effort is an important requirement in industrial
environments. The ease of modeling is influenced by the overall amount of code needed for the
creation of a virtual prototype and the availability of appropriate modeling libraries and tools.
To enable high versatility and vendor independence, the design flow has to be based on industry
standards.

In Chapter 4 a modeling design flow denoted as Transparent Transaction Level Modeling (TTLM)
is presented. This design flow consists of a modeling library providing a set of convenience func-
tions and an accompanying code generator. The transparent transaction level modeling library
provides means for encapsulating SystemC, TLM-2.0, and ATD specific communication code and
provides a set of programming interfaces for various purposes. This allows the designer to focus on
the implementation of the actual functionality of the system without requiring SystemC expert
knowledge. The transparent transaction level generator is capable of generating the structure
of virtual prototypes including the register architecture and the netlist from an IP-XACT spec-
ification. Thereby, the generator considers the concepts of ATD and provides variant handling
features.

The combination of Advanced Temporal Decoupling and Transparent Transaction Level Modeling
forms a framework for the efficient creation of accurate and high-performance virtual prototypes.
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3. Advanced Temporal Decoupling (ATD)

3.1. Fundamental Concept

In the following, the fundamental concept of Advanced Temporal Decoupling (ATD) [HPBG13|
will be presented. As already shown, the utilization of conventional non-cycle accurate transaction
level models might lead to simulation errors like disregarded mutual exclusive resource accesses and
disregarded transaction preemption resulting in erroneous transaction timing. One of the main
reasons for these timing errors is the fact, that the data granularity of the transactions has to be
determined by the designer at model construction time and hence is fixed at model execution time.
Along with the non-interruptibility of transactions due to the cooperative multitasking scheme of
the SystemC kernel, this leads to the mentioned timing errors.

In contrast, ATD exploits the look-ahead feature inherent to the temporal decoupling mechanism
of SystemC TLM-2.0 to achieve optimal data granularity by providing means to vary the data
granularity at runtime. Thereby, optimal data granularity means, that the size of the processed
transactions is as small as needed for cycle accuracy and as large as possible for high simulation
performance. This is achieved using the simulation modalities shown in Figure 3.1. The ATD
simulation modalities are based on and are backward compatible to SystemC simulation modalities
illustrated in Figure 2.2. This allows the cooperative usage of ATD aware modules in combination
with plain SystemC modules within one simulation.

The ATD simulation modalities consist of two alternating simulation phases denoted as temporal
decoupled thread execution phase and transaction processing phase, respectively. The temporal
decoupled thread execution phase corresponds to the entirety of delta cycles belonging to one
timed notification cycle of the SystemC simulation modalities. During this phase the global sim-
ulation time remains constant. In accordance to conventional temporal decoupling, all simulation
threads are allowed to run ahead increasing their respective local simulation time and issuing
application packet sized transactions which are to be executed by shared resources. Each thread
is suspended when reaching a statement comprising inbound data dependency. The transactions
issued by the simulation threads are not executed immediately, but are aggregated by Temporal
Decoupled Semaphores (TDSems) instead. Temporal decoupled semaphores are integrated into
shared resources and assure the correct transaction execution order, mutual exclusive resource
accesses, and handle timing effects arising from resource contention and transaction preemption.
The aggregation of these transactions does not entail any SystemC event notification. Therefore,
the issued transactions are not reflected within the global SystemC event queue.

After all runable threads have been executed during the temporal decoupled thread execution
phase, there is no more pending activity at the current global simulation time and the transaction
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temporal decoupled

thread b h transaction processing phase
read execution phase start of simulation incl. initialization |

\ no pending activity at current time

/ simulate activity at current x

global simulation time

transactions caused
activity at current time

evaluate

delta cycle
(delta notification loop)

timed notification cycle no pending activity
(timed notification loop) at current time

advance global
simulation time

(current time = max. simulation time) ||
(no runable threads && no future event occurrence)

end of simulation

Figure 3.1.: ATD simulation modalities: the ATD simulation modalities extend the SystemC simulation
modalities by an additional state denoted as advance time notification which is entered prior
to advancing the global simulation time and corresponds to the transaction processing phase.

processing phase is started using the advance time notification' mechanism. The advance time
notification state is added to the SystemC simulation modalities and is entered at the end of
the last delta cycle of a timed notification cycle just before the global simulation time advances.
During the transaction processing phase, the pending shared resource accesses are processed in
the correct temporal order starting with the shared resource access having the lowest start time.
As the start times of all pending transactions are known, the amount of time available for the
processing of each transaction can be computed and considered during the transaction processing
to allow for the preemption of transactions. The amount of simulation time available for the
processing of each transaction is denoted as time budget. Due to the cooperative multitasking
scheme of SystemC, the preemption of the shared resource access execution after the time budget
has elapsed can not be enforced. Instead, the knowledge about the time budget enables the
designer to implement cycle accurate transaction preemption.

After all transactions have been processed, the global simulation time is advanced to the time of
the next SystemC event and the simulation continues with the next temporal decoupled thread
execution phase. In case delta events arose during the transaction processing phase causing
activity at the current time, the temporal decoupled thread execution phase is reentered without
advancing the global simulation time to allow the newly created activity at current time to be
processed.

!The implementation of the advance time notification mechanism is shown in Section A.1
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Using this simulation mechanism, the virtual prototype is conceptually divided into an indepen-
dent and a reactive simulation part. The independent simulation part comprises all simulation
threads each running ahead in simulation time leaving a sequence of interaction attempts. The
reactive simulation part comprises transaction processing functions used to process the pend-
ing shared resource accesses with optimal data granularity by exploiting the timing information
gathered from the interaction attempt sequences.

In the following, the ATD simulation modalities are applied to the simple example system intro-
duced in Section 2.5. The simple example system consists of two threads performing interleaved
three word sized non-atomic transactions on a single shared resource. Figure 3.2 (a) shows the
simulation state of the simple example system at the end of the first temporal decoupled thread
execution phase. The threads Thy and Thsy have been executed up to their local simulation times
tiocal, and tiocal,, respectively. Both local simulation times are ahead of the global simulation time
tgiobai- The shared resource accesses denoted as SRA; and SRA; have been registered at the
T DSem taking their respective start times into account. At this stage, a time span ranging from
tglobal to the lowest local simulation time of any thread (fjocq, in Figure 3.2 (a)) has emerged,
where the behavior of all threads composing the independent simulation part is known. Thus, the
state of the system at the end of this time span only depends on the timing and results of the
currently unprocessed shared resource accesses starting within this time span.

Th Th Th, Th,
(low prio) IDSem (high prio) (low prio) e (high prio)
T T
} tgluba/ }
SRA, | SR4, 1
registered only V} i
3 SRA, ! SRA,
}‘ registered only i i
! | |
i l‘[oca/l i } }
| | } |
| |
| | } ;
| | |
| | U ocat, |
I I I !
| | | |
? ? ? ‘
tglobal
(a) After the first temporal decoupled thread execu- (b) After the first transaction processing phase: as
tion phase: the threads have been running ahead the start times of all pending shared resource ac-
of the global simulation time tgiopa1 registering cesses have become known during the temporal
shared resource accesses (SRA; and SRA>) at the decoupled thread execution phase, the SRAs can
temporal decoupled semaphore T'DSem. be processed with optimal data granularity.

Figure 3.2.: Applying Advanced Temporal Decoupling to the simple example system.

Figure 3.2 (b) shows the result of the ATD-based processing of the simple example which is
identical to the result of the cycle accurate implementation shown in Figure 2.10 (a). The execution
of the pending shared resource accesses starts with the partial execution of the three word sized
SRA;. As the start time of SRAs is already known to be two words after the start time of the
first shared resource access, the time budget for the execution of SRA; equals the amount of time
needed to process two out of three words. The time budget for the following execution of SRA, is
not limited as there are no higher priority shared resource accesses. Thus, all three words of SRAs
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are processed without interruption. After SRA5 is finished, SRA; is resumed and completes the
processing of the pending shared resource accesses. The time consumption of the shared resource
access processing is assigned to the thread, which issued the corresponding shared resource access.

In contrast to the cycle accurate implementation, the data granularity of the ATD based imple-
mentation is not fixed to bus word sized transactions. Instead, the data granularity is dynamically
adapted using the time budget mechanism. Thereby, application packet sized transactions can be
divided into multiple, not necessarily equal sized transactions. Therefore, it can be said that the
resulting package sizes are as small as needed to achieve cycle accuracy and as large as possible
to achieve a high simulation speed. In case there are no interfering SRAs this can be seen as a
kind of automatic “fast-forward” mode.

In the following, the different aspects of the Advanced Temporal Decoupling concept will be pre-
sented in more detail. At first, in-depth descriptions of the thread model, shared resource accesses,
and temporal decoupled semaphores are given. Afterwards, a description of their collaboration
during the temporal decoupled thread execution phase and the transaction processing phase is

presented.

3.2. Thread Model

As stated in Section 2.3, one possibility to model hardware inherent parallelism in a Discrete
Event Simulation is the employment of the process-interaction approach [FisO1|. Thereby, a set
of threads is used, each executing a sequence of instructions representing the functionality of the
corresponding portion of the virtual prototype. The thread execution semantics used in ATD
differ from the thread execution semantics used in conventional non temporal decoupled models.
However, the ATD implementation ensures the conformance of the ATD based thread execution
semantics with the conventional non temporal decoupled thread execution semantics.

3.2.1. ATD based Thread Execution Semantics

One of the main goals of temporal decoupling is to improve the simulation performance by reducing
the number of context switches compared to conventional non temporal decoupled execution.
Therefore, it is desirable to progress the state and the local simulation time of the currently
executed thread as far as possible without suspension. This voids the equality of the simulation
time between the different simulation processes belonging to the virtual prototype. Simulation
processes having lower local simulation times than the currently executed thread are denoted as
trailing simulation processes. The inequality of the simulation time renders the internal state of
trailing simulation processes undefined if an interaction between a temporal decoupled thread and
a trailing simulation process occurs. For instance, if a temporal decoupled thread attempts to
access a trailing shared resource, it can not be determined, if the state interacting with shared
resource can be entered directly or if the state blocked due to resource contention has to
be entered due to a potential unavailability of the resource.
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Therefore, the simulation time consumption state chart used for the conventional non temporal
decoupled thread execution presented in Figure 2.7 on page 21 is substituted by the simulation
time consumption state chart suitable for ATD based thread execution shown in Figure 3.3. The
objective of ATD is to ensure the conformance of these execution models while still allowing for

temporal decoupling.

get local time notify event

[ /I

self contained execution start waiting for an event

waiting for event
without pending SRAs occurrence
( event gets notified

request interaction request interaction Q

comprising inbound not comprising inbound [!event_requested ] [ event_requested ]
data dependency data dependency
local simulation self contained execution request interaction
time invalid with pending SRAs @ not comprising inbound
\ data dependency

request interaction
comprising inbound
data dependency

get local |notify start waiting for an event /
\ time event event_requested = true

~.  four synchronization

2\

~—V V. points used in ATD
suspend thread force synchronization
by waiting for its trv: wait Event
resumeEvent entry: wait(resumeEvent) Y,

Figure 3.3.: Simulation time consumption state chart for ATD based thread execution. As the temporal
decoupled thread execution renders the current state of trailing simulation processes unde-
fined, the processing of the interactions has to be deferred until the internal state of the
trailing simulation processes is determined during synchronization taking place in the force
synchronization state.

Compared to the conventional non temporal decoupled case, the initial self contained execution
state is split into two states denoted as self contained execution without pending SRAs
and self contained execution with pending SRAs, respectively. The initial state of the
ATD thread model is the self contained execution without pending SRAs state which
corresponds to the self contained execution state of the conventional non temporal decoupled
thread model. The waiting for event occurrence state and the transitions from and to the
self contained execution without pending SR As state are retained. As interaction attempts
with trailing simulation processes have to be deferred due to the currently unknown state of
the trailing simulation process, the interaction is only requested. This is done by registering a
shared resource access at the temporal decoupled semaphore which is integrated into the trailing
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simulation process. If the further behavior of the currently executed thread depends on the result
of the requested interaction, an inbound data dependency exists. As SystemC does not provide
checkpoint and rollback mechanisms, the temporal decoupling has to be stopped in case such a
synchronization point is reached. This is achieved by entering the force synchronization state
which suspends the temporal decoupled thread to allow the trailing simulation processes to catch
up in simulation time and the internal state of the trailing simulation processes to become valid.

If a requested interaction does not comprise inbound data dependency as it might be the case
for write accesses to shared resources, the temporal decoupled execution of the thread can be
continued without suspension and the state self contained execution with pending SRAs is
entered. As the duration of the interaction is currently unknown, it must be temporarily disre-
garded leading to the invalidity of the local simulation time of the current thread. The invalidity
of the local simulation time during the self contained execution with pending SRAs state
implies the need for additional synchronization points for example in case a reading access to the
local simulation time occurs as illustrated by the get local time transition in Figure 3.3. Fur-
thermore, synchronization is required in case the thread attempts to notify an event or starts to
wait for the occurrence of an event. Table 3.1 summarizes the four synchronization points used

in ATD.

e request interaction with trailing simulation process comprising inbound data dependency
(e.g. read from a shared resource or local volatile variable)

e get local simulation time!

e notify event!

e start waiting for an event!

lonly in case there are pending SRAs

Table 3.1.: Set of synchronization points used in ATD.

3.2.2. Implementation

The thread implementation used in ATD augments the SC_THREAD implementation provided by
SystemC. Each SC_THREAD participating in the ATD based simulation is extended by an object
of the ThreadDescriptor class provided by ATD. Figure 3.4 shows the simplified class diagram
of the ThreadDescriptor class.

ThreadDescriptor

localTime : sc_core::sc_time
resumeEvent : sc_core::sc_event

Figure 3.4.: Simplified ThreadDescriptor class diagram.

The localTime stores the thread’s current local simulation time required for the temporal
decoupled simulation. The replacement of the global simulation time by multiple local simu-
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lation times each associated to one thread requires the adaption of the wait (<time>) and
sc_time_stamp () functions to operate on the local simulation times instead of the global sim-
ulation time. The timing APT of the Transparent Transaction Level Modeling (TTLM) library
presented in Section 4.2.2 provides the ttlm: :sc_ttlm_module class which is derived from

the sc_module class and comprises appropriate versions of the mentioned functions.

The resumeEvent is used to implement the synchronization after reaching a synchronization
point. In case the force synchronization state is entered, the thread is suspended waiting for the
occurrence of its resume event. As long as the resume event has not been notified, it is not reflected
within the SystemC kernel internal event queue and therefore does not influence the value returned
by sc_time_to_pending_activity (). In this case, the corresponding synchronization point
is denoted as a non-influencing synchronization point. The notification of the resume event will
take place during the transaction processing phase (refer to Section 3.6) after all interactions
requested by this thread have been processed and the occurrence time of the resume event has been
calculated. The notification causes the resume event to be part of the SystemC kernel internal
event queue which might limit the value returned by sc_time_to_pending_activity ().
Therefore, the synchronization point is denoted as an influencing synchronization point. The
corresponding thread will become runable after the global simulation time has advanced to the
calculated time of the resume event occurrence.

In case ATD is used in conjunction with the TTLM library, the synchronization points do not
need to be added by the designer as they are integrated into the corresponding library elements.

3.3. Shared Resource Access (SRA)

The interaction between an initiating instance like a simulation thread and a shared resource is
denoted as SRA. The SRA execution is not accomplished during the execution of the correspond-
ing thread. Instead, the execution of the SRAs is deferred to one of the following transaction
processing phases allowing to achieve optimal data granularity.

Despite of this deferment, the results of the ATD based simulation have to correspond to the
simulation results that would be achieved when using the conventional non temporal decoupled
simulation mechanism. Therefore, a comprehensive set of SRA execution modalities is required.

3.3.1. Execution Modalities

Figure 3.5 gives an overview of the SRA execution modalities. SRAs can either be processed in a
synchronous or asynchronous way and are either preemptable or non-preemptable. Additionally,
the processing of an SRA might lead to subordinate interactions with other resources. In this
case, the concerned resources are denoted as cascaded resources. Any combination of the SRA
execution modalities is supported.

In case of a synchronous access as shown in Figure 3.5 (a), the thread T'h is blocked after registering
the SRA until the SRA execution has finished and awaits the resource’s response. In case of
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(a) Synchronous execution: Th is blocked until the (b) Asynchronous ezecution: Th remains unblocked
SRA execution has finished and awaits the re- after issuing the SRA.

source’s response.

Th Th Th Th
(low plrio) TDSem (high pzrio) (low plrio) TDSem (high pzrio)
SRA, | SRA,
SRA,
_ (cont’d) { & 4
(¢) Preemptable erecution: the preemptable low pri- (d) Non-preemptable execution: the non-preemptable
ority SRA; issued by Th; is interrupted by higher low priority SRA;: issued by Thi defers the exe-
priority SRAs issued by Ths and resumed at a cution of the higher priority SRA; issued by Ths.
later point.
Th TDSem, TDSem,
SRA,

(e) Cascaded resources: the execution of SRA; leads to the creation of the nested SRA,. There is no limitation

on the number of subsequent interactions resulting from the processing of a single SRA and on the nesting

depth.

Figure 3.5.:

Overview of supported shared resource access execution modalities. The actual processing
modalities may differ as the suspension of the corresponding threads only depends on the
existence of an inbound data dependency. However, ATD re-establishes the correct execution
modalities during the transaction processing phase.
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an asynchronous access as shown in Figure 3.5 (b), Th does not get blocked after the SRA
registration [Man09]. Instead, the execution of the threads functionality is resumed immediately.
In other words: asynchronous SRAs cause parallelism as the functionality of the shared resource
triggered by the SRA and the behavior of the issuing thread are processed simultaneously. As
shown in Section 3.2.1 the ATD based thread execution semantic differs from the conventional
non temporal decoupled thread execution semantic. The suspension of a thread due to resource
interaction only depends on the existence of an inbound data dependency. This means, if a
synchronous SRA does not comprise inbound data dependency, the simulation thread does not
get suspended. Instead, the thread (re-)enters the self contained execution with pending
SR As state rendering its local simulation time invalid. The synchronous SRA execution semantic
of the shared resource access is re-established during the transaction processing phase after the
synchronous SRA has been processed.

In case of the preemptable execution as show in Figure 3.5 (c), the low priority SRA; is preempted
by the higher priority SRAs. The number of preemptions per SRA execution is not limited. In
case of the non-preemptable execution as shown in Figure 3.5 (d) the low priority SRA; does not
get preempted. Instead, the execution of the higher priority SRA, is deferred until the execution
of SRA; is finished. As the ATD simulation is based on SystemC which implements a cooperative
multitasking execution model [IEE11], preemption can not be enforced by the simulation kernel.
For this reason, preemption has to be implemented by the designer employing the time budget
mechanism.

As the communication in embedded systems can span multiple resources, ATD supports the
concatenation of SRAs by allowing the registration of child SRAs during the transaction processing
phase. Figure 3.5 (e) shows a simple example of such cascaded resource accesses. Thread Th
accesses T'DSemy by issuing SRA;. The execution of SRA; leads to the nested SRA, registered
at T'DSemsy. ATD assures that all timing effects arising from the execution of nested SRAs or
resource contentions occurring at any of the cascaded resources are considered. Furthermore,
ATD does neither impose any limitation on the number of interactions taking place during the
processing of a single SRA nor on the nesting depth of cascaded resource accesses.

3.3.2. Shared Resource Access Lifecycle

The SRA execution modalities result in the shared resource access lifecycle shown in Figure 3.6.

The state SRA registered is entered after the shared resource interaction has been requested
either by a thread during the temporal decoupled thread execution phase or by a superior SRA
during the transaction processing phase. The rest of the SRA lifecycle transitions only take
place during the transaction processing phase. In case the SRA is selected to be the next one
to be executed, the state SRA executing is entered and the processing of the transaction takes
place. In case the resource supports transaction preemption, the transaction processing involves
the consideration of the time budget. If the transaction duration exceeds the time budget, the
transaction is partially processed only. After the partial processing has taken place, the state
of the SRA changes to SRA preempted until the resource contention has disappeared and
the SRA is selected to be the next one to be executed again. In case of cascaded resources,
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interaction request by thread or superior SRA (e.g. cascaded resources)

SRA registered

SRA is selected to be the next to be executed

preemption occurred
SRA executing SRA preempted

\ |
SRA was selected to be the next to be executed

execution completed

[pending child SRAs exist]
[no pending child SRAs exist]

SRA deleted \ | child SRAs pending
|
\

\ } all pending child SRAs have been finished |

Figure 3.6.: SRA lifecycle. The execution of the SRA takes place during the transaction processing phase
and might lead to the registration of child SRAs. In case the child SRAs do not comprise
inbound data dependency, the parent SRA might be completed before the child SRAs have
been processed. If there are pending child SRAs, the parent SRA enters the child SRAs
pending state.

the SRA execution might lead to the registration of subordinate transactions at other shared
resources. Similar to threads being only suspended in case of an inbound data dependency during
the temporal decoupled thread execution phase, the execution of SRAs might be completed before
all subordinate transactions have been processed. In this case, the SRA enters the child SRAs
pending state. After the SRA and all possibly existing subordinate SRAs have been completed,
the state SRA deleted is entered and the SRA is removed.

3.3.3. Implementation

SRAs are characterized by a set of attributes as shown in the simplified class diagram given in
Figure 3.7. The startTime attribute contains the preliminary start time of the SRA which
is determined when the registration of the SRA takes place. During the transaction processing
phase, the start time attribute might be increased due to the execution of preceding pending SRAs
issued by the same SRA source. The start time also might be increased due to the contention of
the accessed shared resource caused by other shared resource accesses which is detected during
the transaction processing phase. As the start time might only be increased by the mentioned
effects, the initial value determined by the SRA source is a lower bound for the actual SRA
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SRA
startTime : sc_core::sc_time
endTime : sc_core::sc_time

priority : priority_t
isAsync : boolean
userData : T_userData_t

p_TDSem : TDSem x

p_parent : SRATreeNode x*

childList : List[SRATreeNode x*]
preemptionList : List [preemption_t]
state : SRAState_t

Figure 3.7.: Simplified SRA class diagram.

start time. The endTime attribute represents the end time of the SRA which is determined
during the transaction processing phase. The priority can be used to determine the processing
order of simultaneous accesses. The scheduling policy used to determine the processing order of
simultaneous SRAs pending at the same shared resource can be defined by the designer. For more
details refer to Section 3.4. The isAsync flag determines whether, the SRA is to be processed in
an asynchronous or a synchronous way. The data which is to be processed during SRA execution
can be passed to the SRA executor using the userData attribute. The data type is determined
by the T_userData_t template parameter. For SystemC TLM-2.0 based shared resources, the
user data typically is of type t1lm: :t1lm_generic_payload.

Beside the previous attributes deduced from the SRA registration, there are additional attributes
required for the SRA management during the transaction processing phase. The p_TDSem at-
tribute points to the TDSem instance integrated into the accessed shared resource. p_parent
points to the SRA source being the simulation process which registered the SRA. This might
either be a thread or a superior SRA executed by a cascaded shared resource. To support the
polymorphism of the SRA source, the ThreadDescriptor and SRA classes have a common
base class named SRATreeNode. The childList attribute contains pointers to all SRAs issued
during the execution of the current SRA. In conjunction with p_parent, this attribute is used to
implement the SRA tree (refer to Section 3.4.2.1). The preemptionList contains an ordered
set of previously occurred preemptions of the current SRA which can be used for debugging and
tracing purposes. Each preemption occurrence is represented by a pair of preemptionTime
and resumeTime attributes. The state attribute contains the SRA’s current state within its
lifecycle as shown in Figure 3.6.
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3.4. Temporal Decoupled Semaphore (TDSem)

One of the purposes of conventional semaphores is the assurance of mutual exclusive shared
resource access for individual threads in parallel applications [Dij65]. Threads attempting to access
the shared resource try to get a lock on the semaphore. On success, the thread holding the lock has
exclusive access to the shared resource. Other threads attempting to access the shared resource
while it is locked are suspended and have to wait until the resource becomes available again. In
ATD, shared resource accesses are managed using Temporal Decoupled Semaphores (TDSems)
which are integrated into the shared resources. TDSems provide mutual exclusive shared resource
access functionality in temporal decoupled SystemC TLM-2.0 models. In contrast to conventional
semaphores, TDSems do not block temporal decoupled threads that attempt to get access to the
shared resource. Instead of getting a lock on the TDSem, temporal decoupled threads access
shared resources by registering future SRAs at the TDSem integrated in the corresponding shared

resource.

3.4.1. Shared Resource Access Registration

The SRA registration takes place using the registerAccess_1f interface shown in Figure 3.8.

«interface»
registerAccess_if

registerAccess (delay : sc_time, priority : priority_t,

userData : T_userData_t, isAsync : boolean)

Figure 3.8.: Interface used for SRA registration.

The delay parameter specifies the start time of the SRA. In case the SRA is registered by a
thread during the temporal decoupled thread execution phase, the start time is relative to the
local simulation time of the thread and corresponds to the delay parameter used in conventional
SystemC TLM-2.0 models. In case the SRA is registered by a superior SRA during the transaction
processing phase, the start time is relative to the start time of the superior SRA. The remaining
parameters priority, userData and isAsync are stored in the newly created SRA object
and are processed during the transaction processing phase.

The algorithm used for the registration of SRAs is shown in Listing 3.1. The number of pend-
ing SRAs registered by one thread without synchronization taking place can be limited by the
SRAguantum- This is done to reduce the amount of memory required for the simulation as the
SRA registration leads to a deep copy of the user data. This deep copy is required to preserve the
user data for processing during the transaction processing phase in case the temporal decoupled
thread reuses the user data container to register further SRAs. In contrast to the global time
quantum used in TLM-LT simulations [IEE11], the value of SRAyuntum does not influence the
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create SRA object

add SRA to corresponding SRA tree //refer to Section 3.4.2.1

add SRA to corresponding SRA matrix cell //refer to Section 3.4.2.2

if (number of pending SRAs registered by thread Th;) > SRAuantum
Th;—>sync ()

Listing 3.1: SRA registration during SRA creation phase.

simulation accuracy. Instead, the SRAuantum provides a trade-off between the number of context
switches and the memory footprint of the simulation.

3.4.2. Shared Resource Access Management

3.4.2.1. Shared Resource Access Tree

SRA trees are used to efficiently manage cascaded resource accesses by reflecting parent-child
relationships between SRAs and threads. Figure 3.9 shows an exemplary SRA tree.

Th, — thread =root element  level =0
______ | I
I I I
SRA, SRA4,., SRA, level = 1
allready currently
completed |asynchronous synchronous pending
SRA,., SRA,,, SRA, level = 2
| \
|
level > 2
| active SRA eve

simulated time

Figure 3.9.: Exemplary SRA tree used for inter-SRA dependency management. Asynchronous SRAs are
indicated by an arrow pointing to the asynchronous SRA, synchronous SRAs don’t have an
arrow.

There is one SRA tree 7%T per simulated thread Th;. Each thread Th; is the root element of
its SRA tree (level 0 element). Each tree element contains an arbitrary sized list of SRAs issued
by this tree element during its execution. Level 1 elements are directly created by Th; during the
temporal decoupled thread execution phase, higher level elements originate from SRAs and are
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created during the transaction processing phase. The list of SRAs registered by the parent SRA
tree element p is denoted as child list ,cl and defined as

pcl = {x c ThiT\:c has been registered by p}

pclis a strictly weak ordered set of SRA elements sorted by the SRA start time ¢4+ in ascending
order. The strict weak ordering by the ascending start time results from the sequential processing
of the parent element p and reflects the causality between successive child elements denoted as
inter-child causality:

Lemma 3.4.1 Inter-child causality:

pCI [’L] -tstart < pCl [’L + 1] -tstart (0 < 1< |pC1| - ].)

Due to the deferment of the SRA execution to the transaction processing phase, the inter-child
causality has to be assured by the ATD implementation. Similar, the ATD implementation has
to assure the causality between the parent element p and its child elements ,cl, stating that the
start time of all child elements is greater than or equal to the start time of the p element:

Lemma 3.4.2 Parent child causality:

Vo € pCl C Plstart < Tlstart

As ATD supports synchronous and asynchronous resource accesses, any child list may contain
synchronous and asynchronous elements. In Figure 3.9, asynchronous SRAs are marked with an
arrow pointing to the respective asynchronous SRA. The subset of synchronous child SRAs , synccl
is defined as

psync€l = {x € pel|z is to be executed in synchronous way }

Concerning synchronous SRAs, there are additional constraints regarding the end time .4 of the
SRA. The start time of the next synchronous or asynchronous SRA within the same child list has
to be greater than or equal to the synchronous SRA’s end time:

Lemma 3.4.3 synchronous child exclusivity:

Vo € pamecl 1 Zdeng < pel{(z. < position in pel >) 4+ 1] Lopart
In addition, all synchronous SRAs have to be finished before the parent element p is finished:

Lemma 3.4.4 synchronous child inclusion by parent:

Vo € p,syncCl i Tdend < Plend

As SRA trees consist of threads and SRAs, both ThreadDescriptor and SRA classes inherit
from the SRATreeNode class, which provides a common interface implemented by all SRA tree
elements. Figure 3.10 shows a simplified class diagram. The addChild(..) and getParent ()
functions are used to build up the SRA tree and to navigate towards the root of the SRA tree,
respectively. The abstract incrementEndTime (..) function is used during the transaction
processing phase to propagate the time consumption after an SRA has been processed.
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SRATreeNode

addChild(p_child : SRA x)

getParent () : SRATreeNode =*
incrementEndTime (time : sc_time)=0
ThreadDescriptor SRA

Figure 3.10.: Simplified SRATreeNode base class diagram.

3.4.2.2. Shared Resource Access Matrix

The SRA matrix is used to detect and handle resource contention and is shown in Figure 3.11.
Each column corresponds to one simulated thread T'h; whereas each row corresponds to one
temporal decoupled semaphore T'DSem;. Each cell corresponds to the set ThiSRATDgemj which
contains all pending SRAs registered by the thread T'h; or any of its child SRAs at the temporal
decoupled semaphore T'DSem;.

Th
TDSem {
Th0 ‘ Thl Th2 e Thl. dynamically spawned threads...
IT'DSem,
TDSem,

TDSem ; .

SRA ., ""SRA

TDSem §

Figure 3.11.: SRA Matrix used for resource contention detection.

As the structure of the simulation model is fixed, in the sense that resources can not be added
dynamically during simulation, the number of rows remains unchanged during the simulation. In
contrast, the number of columns can be extended during simulation by dynamically spawning
threads.

The set of all SRAs registered at T'DSem; is defined as

The
SRATDSemj = U SRATDSem]-
0<z<|Th]|
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Similarly, the set of all SRAs registered by thread Th; or any of its child SRAs is defined as

ThiSRA = U ™SRArpSem,
0<z<|TDSem|

The filling of the SRA matrix primarily takes place during the temporal decoupled thread execu-
tion phase described in Section 3.5. The resource contention detection and handling takes place
during the transaction processing phase described in Section 3.6.

3.4.3. Implementation

Figure 3.12 shows the simplified class diagram of the TDSem class which implements the
registerAccess_if interface.

«interface»
registerAccess_if

TDSem

atomicTimePortion : sc_time
P_SRAExecutor : SRAExecutor_1if<T_userData_t> =
p_scheduler : SchedulingPolicy_if =

Figure 3.12.: Simplified TDSem class diagram.

The atomicTimePortion attribute specifies the minimum amount of time available for the non
interruptible processing of preemptable SRAs which have the same start time. Typically, this
amount of time corresponds to one clock period of the clock domain the resource belongs to. The
atomicTimePortion will be used during the transaction processing phase for calculating the
time budget (see Section 3.6.3).

The execution of pending SRAs is done calling the p_SRAExecutor, which has to be implemented
by the designer adhering to the SRAExecutor_if interface shown in Figure 3.13.

The pSRA parameter of the SRAExecutor_1if points to the SRA which is to be processed.
The duration parameter is used to return the amount of simulation time consumed for the
processing of the SRA. The timeBudget parameter specifies the amount of time available for
the processing of the SRA without getting in conflict with any successive SRA. This informa-
tion can be used to implement the preemption of SRAs. The calculation of the time budget
is described in 3.6.3. The return value is used to indicate whether the SRA processing has
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«interfacey
SRAExecutor if

executeSRA (pSRA : SRA<T_userData_t> %, duration : sc_time ¢,
timeBudget : const sc_time &): executeSRAReturnValue_t

Figure 3.13.: SRAExecutor_if class diagram.

«interface»
SchedulingPolicy_ if

selectNextSRA (pSRAList : List[SRA<T_userData_t> x] «):
SRA<T_userData_t> =«

Figure 3.14.: SchedulingPolicy if class diagram.

been completed (SRA_EXECUTION_OK) or has been preempted due to insufficient time budget
(SRA_EXECUTION_PREEMPTED).

The p_scheduler attribute of the TDSem class points to the user defined scheduler which is
invoked in case there are multiple SRAs having the same start time or resume time after a preemp-
tion has occurred. The user defined scheduler implements the SchedulingPolicy_if interface
shown in Figure 3.14. The pSRAList is created during the next SRA selection procedure of the
transaction processing phase described in Section 3.6.2 and contains the set of SRAs having the
same start time or resume time after preemption. The implementation of the selectNext SRA
function has to return one of the list entries according to the intended scheduling policy. The
ATD implementation provides a default priority based scheduling policy.

3.5. Temporal Decoupled Thread Execution Phase

During the temporal decoupled thread execution phase, all runable threads are executed according
to the ATD based thread execution semantic presented in Section 3.2.1. Thereby, occurring
shared resource accesses are registered by temporal decoupled semaphores and processed during
the transaction processing phase.

Due to the differences between the ATD based thread execution semantic and the conventional

non temporal decoupled thread execution semantic,, special care has to be taken considering
deadlocks.
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3.5.1. Deadlock detection

A deadlock characterizes a constellation of a set of concurrent threads, where “each [thread| in the
set is waiting for an event that only another [thread] in the set can cause” [Tan09]. For a deadlock
to exist, all of the following four conditions must hold [CEST1]:

1. resources are granted exclusively to the requesting thread

2. resources can not be forcibly removed from the corresponding thread

3. threads may acquire additional resources while holding exclusive access to other resources
4

. a circular chain of threads exists where each thread has been granted exclusive access to at
least one resource that is requested by another thread

As stated in Section 2.4.2.3 conventional temporal decoupled simulation might lead to erroneously
disregarding mutual exclusive access to shared resources. This neglects the first condition for a
deadlock to occur. Therefore, conventional temporal decoupled simulation might lead to unde-
tected deadlocks.

As ATD adopts the concept of temporal decoupling, a detection mechanisms for deadlocks is
required. To allow for cycle accurate simulation results, ATD does neither change the execution
order of the shared resource accesses compared to the behavior of the real system, nor their
start and end times with respect to the simulation time. For simulation performance reasons
and to allow for the cycle accurate simulation of preemptions of the shared resource accesses, the
processing of the shared resource accesses is deferred with respect to the wall clock time to the
transaction processing phase. This means, that ATD does not add deadlocks to the behavior of
the modeled system.

As the purpose of temporal decoupled semaphores is to provide mutual exclusive access to shared
resources, the first condition is satisfied. Even though ATD supports preemptable resource ac-
cesses, the preemption can not be forced by the SystemC kernel but has to be implemented by
the designer by adhering to the calculated time budget and cooperatively aborting the processing
of the shared resource access. Hence, the second condition is fulfilled, too. The third condition is
fulfilled due to the support of cascaded resources stating that the processing of a shared resource
access might lead to subsequent accesses to other shared resources. To check whether a deadlock
is present, the deadlock detection algorithm shown in Listing 3.2 is executed each time a cascaded
SRA gets registered. This algorithm checks whether a circular chain of resource accesses exists. In
case a circular chain of resource accesses is found, the forth condition is fulfilled and the existence
of a deadlock is proven.

The temporal decoupled semaphore which is integrated into the shared resource that is to be
accessed during the execution of an SRA is denoted as T'DSemges;. The shared resource which
conducts the access is denoted as T'DSemg,.. The deadlock detection algorithm starts by call-
ing the checkForDeadlock (..) member function of the T'DSemg,. object. This function
inspects the respective parent element p of all SRAs currently pending at T'DSemg,.. In case
p is a synchronous SRA, it is checked whether the temporal decoupled semaphore which exe-
cuted p matches T'DSemg.s. If this is the case, a circular shared resource access dependency is
detected proving the existence of a deadlock. In case p has been executed on another temporal
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TDSemg.. = resource which attempts to access TDSemges
TDSemgest = resource which is to be accessed during SRA execution
TDSemgy..checkForDeadlock (T'DSemges:)

boolean TDSem: :checkForDeadlock (I'DSemges:) |
Vo € SRATDSemSTC {
while (x.p is a synchronous SRA) {

if (z.p.<accessed TDSem> == TDSemges)
return true // DEADLOCK DETECTED!

else
return z.p.<accessed TDSem™> .checkForDeadlock (T'DSemgest)

x = x.p // climb up SRA tree

}

return false

Listing 3.2: ATD deadlock detection algorithm.

decoupled semaphore than T'DSemg.st, a deadlock comprising more than two temporal decoupled
semaphores might still exist. Therefore, the checkForDeadlock (. .) function of the temporal
decoupled semaphore on which p has been executed (x.p.<accessed TDSem™>) is called. This
procedure is repeated traversing towards the SRA tree root until an asynchronous SRA or the
root element is reached.

Figure 3.15 shows a simple scenario where a deadlock comprising two temporal decoupled sema-
phores arises. The threads T'hy and T'hs have registered the synchronous shared resource accesses

Th, TDSem, TDSem, Th,
: SRA,
i SRA, SRA,
} d
l DEADLOCK
TDSem. i attempt to register SRA4, o TDSem,,,,

1

Figure 3.15.: Deadlock detection example. The registration of SRA4 at T'DSems closes the circular
resource dependency and leads to a deadlock.

SRA; and SRAs at the temporal decoupled semaphores T'DSemy and T DSems, respectively.
The execution of SRAs has led to the registration of the synchronous SRAz at TDSem;. The
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registration of the synchronous SRA4 at T'DSems during the execution of SRA; results in a
deadlock. When applying the deadlock detection algorithm during the registration of SRA4,
T DSem; corresponds to T'DSemgy. and T'DSems corresponds to T'DSemgest. The set of pending
SRAs registered at T'DSemyg,. comprises SRAs only which has been issued by SRAs which in
turn corresponds to x.p. As x.p has been executed on T'DSems which corresponds to T'DSemges;
the condition in Line 8 of Listing 3.2 holds and the circular resource dependency is detected as
expected.

3.5.2. Transition to the Transaction Processing Phase

At the end of the temporal decoupled thread execution phase, all runable threads have been
executed and are either waiting for the occurrence of an event or have reached a synchronization
point. As the duration of pending SRAs is temporarily disregarded during the temporal decoupled
thread execution phase, the current value of the local time t;,., of each thread is a lower bound
for the actual simulation time of the corresponding thread. The local simulation time of a thread
will become valid after all of its SRAs have been processed. As the global simulation time £ gopq;
remains unchanged during the temporal decoupled thread execution phase, it can be guaranteed
that the local simulation time of all threads is greater than the global simulation time #gopa
returned by sc_core: :sc_time_stamp ():

VeeTh :  x.tica > tgiobal

The synchronization points hit by threads executed during the current temporal decoupled thread
execution phase are all in a non-influencing state as the corresponding resume events have not
been notified, yet. As the resume events associated to non-influencing synchronization points
are not contained in the event queue of the SystemC scheduler, the time to pending activity t,,
returned by sc_core::sc_time_to_pending_activity () is not affected by threads that
have reached a synchronization point during the current temporal decoupled thread execution
phase. As SRAs are not reflected in the global SystemC event queue, this leads to a situation
where pending SRAs having a start time within the ¢,, time interval might exist. The set of these
SRAs is defined as

SRAlstart<tsc_ev — {.’E S SRA’.T.tsmrt < tSCiev} where tSCiev = tglobal + tpa

and will be processed during the following transaction processing phase.

3.6. Transaction Processing Phase

3.6.1. Overview

During the transaction processing phase, all pending SRAs which have a start time lower than
tsc ev are processed in the correct temporal order. This section gives an overview of the trans-
action processing phase and its main algorithm which is shown in Listing 3.3. The four main
functions of this algorithm are presented in dedicated sections.
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while (SRAtstart<tSC76v 7& @) {

SRApert = selectNextSRA(..) // refer to Section 3.6.2
thudget = calculateTimeBudget (..) // refer to Section 3.6.3
result = executeSRA (SRApecst, tduration: tbudget)

SRA eyt - incrementEndTime (tquration) // refer to Section 3.6.4
if (result == SRA_EXECUTION_PREEMPTED) {
SRAert.state = SRA preempted
}
if (result == SRA_EXECUTION_OK) {
if (SRAnencl#0) {
SRA;est.-State = child SRAs pending
} else {
SRApeqt-p.remove(SRApeyt) // refer to Section 3.6.5

}

Listing 3.3: Main algorithm of the transaction processing phase.

The main algorithm consists of a while loop which is executed as long as there are pending shared
resource accesses having a start time lower than tg5c ¢,. At first, the shared resource access which
is to be processed next is identified. This SRA is denoted as SRAcpt. SRApert 1s selected from
SR A!start<tsc_ev yging the selection algorithm presented in Section 3.6.2. Additionally, the time
budget tyyqqet is calculated which specifies the amount of simulation time that can be consumed
by the SRA execution without getting in conflict with successive SRAs. The algorithm used for
calculating the time budget is presented in Section 3.6.3.

Following to these preparatory steps, SRAne.t is executed and the processing duration tgy,ation
is determined. The execution takes place calling the p_SRAExecutor of the corresponding
temporal decoupled semaphore. After the execution of SRA,..; has been completed, tguration
is incorporated by calling the incrementEndTime function of SRA,c+ which is described in
Section 3.6.4.

Finally, the current SRA state is updated (see SRA lifecycle in Figure 3.6). In case the execution
of SRA eyt returned SRA_EXECUTION_PREEMPTED, the state of the SRA is changed to SRA
preempted and the unprocessed part of SRA,..¢ remains in SRAstart<tsc_ev and will be pro-
cessed after the preempting SRA has been processed. In case the execution of SRA;¢.+ has been
completed, which is indicated by the return value SRA_EXECUTION_OX, the further simulation
course depends on the amount of child SRAs contained in the child list of SRA,c.. If the child
list contains at least one unprocessed SRA, the state of SRA,c;: is changed to child SRAs
pending and SRA,¢;+ remains within its SRA tree. Otherwise, SRA; .t is removed according
to the algorithm described in Section 3.6.5. In case the last SRA issued by the current thread is
removed, the resume event of the current thread is notified allowing the thread to leave the force
synchronization of the ATD thread execution semantics shown in Figure 3.3. For simulation
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runtime efficiency reasons, the actual ATD implementation merges some of these algorithms.

3.6.2. Next SRA Selection

The algorithm used to select SRA;e. consists of two steps. During the first step, all SRAs that
could safely be executed without violating the inter-child causality, the parent child causality,
the synchronous child exclusivity, and the synchronous child inclusion by parent Lemmata (see
Section 3.4.2.1) are selected from the set of SRA trees and are aggregated in the set SRA .y nabie-
During the second step, SRApez+ 18 selected from this set involving the user defined scheduler if
required.

Aggregation of SRA, ,,qble

To simplify matters, at first a set of SRA trees is assumed, where each SRA tree consists of
synchronous SRAs only, hence Lemmata 3.4.1 to 3.4.4 hold without limitation. To comply with
the execution semantics of conventional non temporal decoupled threads stating that at any given
time each thread executes exactly one of its statements, at most one of the synchronous SRA tree
elements comes into consideration for being added to SRA . uap1e- Due to the inter-child causality
stated in Lemma 3.4.1, the child SRAs contained within one child list have to be processed in
temporal order. Combining this requirement concerning the temporal order with the synchronous
child exclusivity stated in Lemma 3.4.3, only the earliest SRA of the child list being the left most
element might be added to SRA, nape- Due to the synchronous child inclusion by parent rule
stated in Lemma 3.4.4, child elements have to be processed before preempted parent elements are
resumed. The algorithm suitable for the aggregation of SRA ., ape from a set of SRA trees only
consisting of synchronous SRAs is shown in Listing 3.4. The algorithm starts at the root element
of each tree and recursively descends to the left most leaf level element of each SRA tree which is
then added to SRA . papie if the start time 4,4 of this element is lower than ts¢ eo.

In contrast to synchronous SRAs, Lemmata 3.4.3 and 3.4.4 do not hold in case of asynchronous
SRAs. This means, that asynchronous SRAs neither inhibit the execution of sibling SRAs nor in-
hibit the execution of the issuing SRA tree element and therefore temporarily allow for parallelism
controlled by the issuing element. Effectively, asynchronous SRAs span new SRA subtrees embed-
ded into the original SRA tree which are to be processed in a parallel manner. This means, that
an SRA tree congisting of synchronous and asynchronous SRAs can be conceptually divided into
multiple SRA subtrees at asynchronous SRA boundaries. Each resulting SRA subtree consists of
synchronous SRAs only and is either rooted on a thread or on an asynchronous SRA. Therefore,
for each subtree there is at most one SRA which might be added to SRA - The algorithm
used for the aggregation of SRA, ;e from a set of SRA trees containing asynchronous SRAs is
shown in Listing 3.5.

Similar to the algorithm suitable for SRA trees consisting of synchronous SRAs only, this algo-
rithm descends towards the left most element of the SRA tree. In case an asynchronous SRA
is reached, the algorithm descends into the corresponding subtree and additionally traverses the
sibling elements of the asynchronous SRA until a synchronous SRA is reached (Lines 10-15). All
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aggregate SRA unape () {
foreach Thi
getRunableSRAs (T’“T. rootElement)

// only suitable for SRA trees consisting of synchronous SRAs only!
getRunableSRAs (SRATreeNode) {
if (this-tstart<tSC_ev) {
if (el #0) |
getRunableSRAs(thiscl. first)
}
if (,el=0) {
SRA, nable -add (this)

}

Listing 3.4: SRA, nahe aggregation algorithm suitable for SRA trees consisting of synchronous SRAs
only.

SRAs reached during this procedure which are either leaf level elements or have been preempted
and have no more synchronous and unfinished child SRAs are added to SRA .,ape (Lines 16-18).

In the following, this algorithm is demonstrated using the exemplary SRA tree shown in Fig-
ure 3.16. The SRA tree consists of four SRA (sub)trees rooted on SRA;, SRAs, SRA7, and Th,
respectively. Due to the inter-child causality stated in Lemma 3.4.1, SRA3 and SRAs must not
be added to SRA, nabie as their corresponding synchronous siblings SRAs and SRA4 have not
been completed, yet. Starting from the SRA tree root, the algorithm traverses the child list of Th
and descends into the SRA sub tree rooted on SRA;. As this SRA sub tree contains synchronous
SRAs only, the left most leaf level element being SRA, is added to SRA ., hape. Next the algo-
rithm traverses to SRA> and descends to the leaf level asynchronous SRA7 which is added to
SRA, aple- As the child list of SRAg does not contain any unfinished synchronous SRAs, it is
added to SRA,.able, £00.

Selection of SRA,c.t

After the aggregation of SRA,ape has been completed, the further course of the transaction
processing phase depends on the number of elements contained in this set. If the set is empty, as
it is the case if the time of the next SystemC event is lower than the start time of any pending
SRA, the transaction processing phase is concluded and the simulation resumes with the following
temporal decoupled thread execution phase.

In case SRA, ynabie 18 not empty, the elements of the set are sorted by their start time g4 in
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aggregate SRAunapie () {
foreach ThiT ¢
getRunableSRAs (ThiT. rootElement)

//suitable for SRA trees containing synchronous and asynchronous SRAs
getRunableSRAs (SRATreeNode) {
if (this-tstart < tSC_ev) {
if (pel #0) |
i=20
do {
getRunableSRASs(thiscl [7])
} while (iniscl[i + +] is to be executed in asynchronous way)
}
if (el =0) |1 ((psyncunfinisheacl = 0) && (this.state = preempted)) {
SRA, nable - 2dd (this)

}

Listing 3.5: getRunableSRAs implementation suitable for SRA trees containing synchronous and
asynchronous SRAs.

ascending order. The lowest start time of all SRAs contained in SRA,.napie 15 denoted as teqt-
The subset of all SRAs starting at . is denoted as SRAnest:

SR Anest — {x c SRArunable’x'tSt&rt = tnea;t} (31)

Additionally, all elements of SRA!et are grouped by their associated temporal decoupled
semaphore. The subset of elements contained in SRA®e=t which are registered at the same
temporal decoupled semaphore T'DSem; is denoted as SRAtT“BTg em;*

SRATF ., = {2 € SRA"!|z.<accessed TDSem> = T'DSem; } (3.2)

After this segmentation procedure, SRA . napie can be divided as illustrated in Figure 3.17. The
procedure of selecting SRA .+ is concluded by choosing SRA ¢+ from SRA%‘% em, In case the

number of elements contained in SRA%ILBZSZ em, exceeds one, SRA,..+ is selected calling the user
defined scheduler of T'DSem; using the SchedulingPolicy_1if interface shown in Figure 3.14.

3.6.3. Time Budget Calculation

The time budget being the amount of simulation time available for the processing of SRA,cqt
without getting in conflict with any pending SRA or any SystemC event is calculated considering
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Th
[ |
] | | V]
synchronous SRA
SRA, SRA, SRA, i
I
l—\—L| asynchronous SRA
SRA, SRA, SRA,
prohibited due to
\ inter-child causality
SRA subtree spanned
SRA runable ——l_] SRA7 by asynchronous SRA

simulated time >

Figure 3.16.: SRA, ., ,.b aggregation example.

the classification of SRA, nape arising during the selection of SRA,c:. Due to the Defini-
tions 3.1 and 3.2, the following condition always holds:

SRAT S Sem, ‘ < ’SRAt”m (3.3)

S ‘ SRArunable

Depending on the number of elements contained in these sets, the time budget varies according to
the algorithm shown in Listing 3.6 where ¢;,,,;+ denotes the second lowest start time of all elements
contained in SRA,.abie-

In case all SRAs having the start time #,.,¢ are registered at the same T'DSem;, the condition
in Line 1 holds and the time budget depends on the existence of runable SRAs having a start
time greater than t,.,:. If there are no runable SRAs having a start time greater than t,e.¢, the
time budget is limited by the time of the next SystemC kernel event occurrence taking place at
tsc ev- Otherwise, the time budget is limited by the second lowest start time #;;,;;. In case the
SRAs contained in SRA! <=t are registered at different temporal decoupled semaphores, the time
budget is limited to the atomicTimePortion of T'DSem; being the smallest non-interruptible
time portion. Typically this time portion equals to the clock period of the clock domain the
corresponding temporal decoupled semaphore belongs to.

The presented time budget calculation algorithm is restrictive. According to that algorithm,
the time budget is limited by any event contained in the global SystemC event list and by any
pending SRA. Thereby, it does not matter if the pending SRAs which limit the time budget are
to be executed on the same shared resource as SRA,c;; or on different shared resources. The
restrictive time budget calculation policy allows for a cycle accurate simulation of preemptions
of SRA; et resulting from the future execution of pending SRAs on a different shared resource.
Figure 3.18 illustrates this situation.

Each of the two threads has registered a SRA at a separate TDSem during the temporal decoupled
thread execution phase. As the future execution of SRA,cpqing might lead to the creation of
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SRA ... ordered by £, in ascending order
A

| SRA "

i tn&’.\'l

i SRATDSemJ
1 1 [l 1 | .
| . | —»
| | | |

tglobal tnexl tlimit tSCiev

Figure 3.17.: Segmentation of SRA . apie: SRA nabie 18 sorted by ascending start time tg4q.¢. The
subset of SRAs having the lowest start time ¢,.,; is denoted as SRA =*. The second
lowest start time is denoted as tj;,,;+ and might influence the time budget available for the
execution of SRA,cut. SRA%’:‘B%ij denotes the subset of SRAs which have the lowest start,
time ¢yeqz¢ and which are registered at the same temporal decoupled semaphore T'DSem;.

Th, TDSem, TDSem, Th,
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Figure 3.18.: Motivation for the restrictive time budget calculation policy. The time budget tyuaget
available for the execution of SRA,c; is limited by the start time of SRApcnding as the
execution of SRApending might lead to the creation of SRA, cempting Which might in turn
preempt SRA, c.t-

SRApreempting Wwhich might in turn preempt the execution of SRA,c., the time budget available
for the execution of SRA;cy¢ is precautionary limited by the start time of SRA,cnding.

3.6.4. Timing Adjustment

After the execution of SRA, .t is finished, the resulting duration tgy,qtion has to be incorporated.
The timing adjustment procedure is started by calling the incrementEndTime (tguration) func-
tion of SRA e+ This function is declared within the SRATreeNode class and implemented by
the SRA and ThreadDescriptor classes, respectively (see Figure 3.10). Listing 3.7 shows the
algorithm implemented by the incrementEndTime function of the SRA class. At first, the end
time attribute of the SRA is incremented by tgyuration- Next, all siblings are delayed by tguration-
The set of siblings comprises all unprocessed SRAs contained within the same child list than the
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if [SRAf,,, | - [SRAM| |
// => all SRAs having the start time lpe,+ are registered at TDSemj:
if ‘SRAtnem SRA unabie| {

// => all SRAs contained in SRA,, e have the same start time tpeqt

em]‘

tbudget — tSC_ev — tnext
} else {
// => as SRA, nale contains SRAs having a start time greater than
// tnext, the time budget is limited by tiimit:
tbudget = Limit — Tneat
}
} else {
// => as there are SRAs having the start time tpe,+ which have been
// registered at a different temporal decoupled semaphore,
// toudget 1s limited to the atomicTimePortion of TDSem;:
thudget = TDSem;.atomicTimePortion

}

Listing 3.6: Time budget calculation algorithm based on the classification of SRA ., qpie arising during
the selection of SRA,cq¢-

current SRA. In case the SRA is to be executed in a synchronous way, the duration of SRA,c.¢ is
propagated towards the SRA tree root by recursively calling the incrementEndTime function
of the respective parent element. This leads to the prolongation of the parent element and a delay
of the parent’s siblings. The recursive duration propagation towards the SRA tree root ends if
either the root element or an asynchronous SRA is reached. In case the root element of the SRA
tree is reached, the local simulation time t;,.q; of that thread is incremented by tgyration as shown
in Listing 3.8

In case the SRA execution duration tgyrqtion €xceeds the time budget, which might be the case for
non-preemptable resource accesses, it has to be checked whether there are overlapping SRAs at
any of the corresponding temporal decoupled semaphores at any level within the SRA tree. This is
done by calling the shiftOverlappingSRAs function of the corresponding temporal decoupled
semaphore. This function iterates over the set of currently pending SRAs contained within the
SRA matrix row associated to the corresponding temporal decoupled semaphore SRA1pgem; and
calls the shift SRADueToResourceContention function of each overlapping SRA passing the
overlapping time t,yeriap-

At first, the overlapping SRA and all its siblings are delayed by t,yeriap- Next, the overlapping time
is propagated towards the root element of the SRA tree the overlapping SRA belongs to. This is
done by calling the incrementEndTime function of the parent element of the overlapping SRA
which in turn entails the check for overlapping SRAs for all parent elements of the overlapping
SRA.

In the following, the timing adjustment procedure is demonstrated using the exemplary simulation
constellation shown in Figure 3.19 (a). The considered system consists of two threads and three
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Th, TDSem, TDSem, TDSem; Th,

! ! |

| | 1 ‘

i i ! S RAm’xI SRA2 1

. SR4 s |

1 SRA i 1

} 3 tbudget 1

| Lduration |

. overlap SRA4 1

- |

SRA, 1

| 1

(a) Simulation constellation right after the processing of SRA3 has taken place. The timing adjustment procedure
is used to propagate the duration tquration and the overlapping time toperiap to the affected SRAs and threads.
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T 1: incrementEndTime (tdm‘an.gn)

(b) Communication diagram of the timing adjustment procedure. At first, tquration 1S propagated towards the
SRA tree root Thi. Next, the overlapping time foyeriap is propagated towards the SRA tree root Tho.
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(¢) Simulation constellation after timing adjustment procedure is finished. The non-preemptive execution of SRA3
affected both threads.

Figure 3.19.: Timing adjustment procedure example.
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SRA: :incrementEndTime (fguration) |
tend = tend T tduration
YV € siblings {
x.delaySRA (tauration)
}
if (!'this->isAsync) {
// recursion towards SRA tree root:
p_parent—->incrementEndTime ({quration)
}
// call shiftOverlappingSRAS (tepq) which checks if overlapping SRAs
// exist and calls shiftSRADueToResourceContention (toperiap) for all
// overlapping SRAs
pTDSem->shiftOverlappingSRAS (tend)

Listing 3.7: incrementEndTime implementation of the SRA class.

ThreadDescriptor: :incrementEndTime ({4uration) 1

tiocal = tiocal T tduration

Listing 3.8: incrementEndTime implementation of the ThreadDescriptor class.

temporal decoupled semaphores. During the preceding simulation course, both threads have
been executed during the temporal decoupled thread execution phase and have registered SRA;
at TDSemy and SRA, at T'DSemg, respectively. Furthermore, both SRAs have already been
processed during the current transaction processing phase. The SRA execution took place in a
non-preemptable way ignoring the time budget and led to the registration of SRA3, SRA4, and
SRAs at TDSems. Afterwards, SRA3 has been selected as SRA, ¢ and the time budget tyyqget
for its execution has been calculated. Figure 3.19 (a) shows the simulation constellation right
after the non-preemptable processing of SRAj3 has taken place resulting in the duration tgy,ation-

Figure 3.19 (b) shows the communication diagram of the timing adjustment procedure which is
initiated by calling the incrementEndTime function of SRA3 passing tguration- At first, SRA;
is prolonged and then the local simulation time of T'h; is increased by tguration- 1This is done by
recursively calling the incrementEndTime function of the parent elements of SRAj3 (steps 1.1
and 1.1.1). Next, T'DSemy is advised to shift all overlapping SRAs (step 1.2). As SRA4 overlaps,
the SRA is shifted due to resource contention by the overlapping time t,yepiqp (step 1.2.1). The
shifting of SRA, results in delaying SRAs which is the only sibling (step 1.2.1.1). Additionally,
toverlap 15 Propagated towards Thy (steps 1.2.1.2 and 1.2.1.2.1).

Figure 3.19 (c) shows the result of the timing adjustment procedure. The execution duration
tauration of SRA3 has been added to SRA; and Thy. The overlapping time f,yeriap has been
propagated within the SRA tree containing the overlapping SRA,.
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SRA: :shiftSRADueToResourceContention (foperlap) |
this—>delaySRA (toveriap)
YV € siblings {
x.delaySRA (toperiap)
}
// call incrementEndTime (toperiap) ©f parent, which in turn recurses
towards root of SRA tree containing the overlapping SRA

p_parent->incrementEndTime ({operiap)

Listing 3.9: Algorithm used to propagate timing effects arising from resource contention.

Special care has to be taken in case the overlapping SRA is not the first element of a child list. In
this case the delay caused by the overlapping is marked as preliminary as the earlier sibling of the
overlapping SRA is still pending and its execution duration is not yet known. After the earlier
sibling has been executed, the overlapping time is reevaluated and the timing of the overlapping
SRA is adjusted accordingly.

3.6.5. SRA Deletion

After the execution of SRA,c;+ has been completed and the timing adjustment procedure is
finished, the SRA is removed from the SRA management data structures. This is done by calling
the remove (SRApe:¢) function of the parent element of SRA; .. In case the parent element
of SRA ezt is an SRA as well, the appropriate algorithm for the deletion of SRAc,; is shown in
Listing 3.10.

SRA: :remove (child) {

remove child from corresponding SRA matrix cell

this€l.delete (child)

if ((gyscl ==0) && (state == child SRAs pending)) {
// all child SRAs of this SRA have been processed
// => remove this one as well:
state = SRA deleted
p_parent->remove (this)

}

Listing 3.10: remove (child) implementation of the SRA class. In case the last pending SRA of the
parent’s child list is removed and the parent is in state child SRAs pending, the SRA
deletion continuous towards the SRA tree root.

At first, the SRA,cqt is removed from the corresponding SRA matrix cell. After that, SRAcqt
is deleted from the child list of the parent SRA. In case the child list is now empty and the
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parent SRA is in state child SRAs pending waiting for the completion of its child SRAs, the
state of the parent SRA is changed to SRA deleted following the SRA lifecycle presented in
Figure 3.6. Additionally, the SRA deletion progresses towards the SRA tree root by calling the
remove (this) function of the parent’s parent element and the corresponding SRA tree branch

is successively removed.

Listing 3.11 shows the remove (child) function of the ThreadDescriptor class which is
called in case the SRA deletion reaches the root element of the SRA tree. As before, the child

ThreadDescriptor: :remove (child) {
remove child from corresponding SRA matrix cell
this€l.delete (child)
if (thisCI == @) {
resume_event .notify(tjocal — tgiobal)

}

Listing 3.11: remove (child) implementation of the ThreadDescriptor class. In case the last
pending SRA is removed, the resume event is notified to occur at tj,.; and the thread
will be resumed after 4014, has caught up.

element is removed from the corresponding SRA matrix cell and from the child list of the thread.
In case the child element has been the last pending SRA issued by this thread, the child list of
the thread becomes empty. If this is the case, the synchronization point hit by the thread during
a preceding temporal decoupled thread execution phase is turned from the non-influencing state
into the influencing state by notifying the thread’s resume event to occur at tjocqi — tgiobar- In this
way, the thread will again take part in the temporal decoupled thread execution phase starting
after the global simulation time has caught up to the thread’s local simulation time.

3.7. Basic Benchmarks

In the following, the simulation performance improvement achievable by ATD compared to cycle
accurate transaction level modeling is investigated using the simple example system presented
in Section 3.1. The example consists of two threads accessing a single shared resource. During
each iteration, each thread transmits one application packet consisting of an adjustable number of
words. As shown in Figure 3.20, the high priority application packet issued by thread Tho starts
two clock cycles after the low priority application packet issued by thread Th;.

Listings B.1 and B.2 on pages 110 113 show the conventional cycle accurate transaction level
modeling and the ATD based implementation of the simple example system, respectively. The
threads used in the conventional cycle accurate transaction level modeling implementation trans-
fer the application packets on a word-by-word basis. The arbitration procedure is done using
an additional arbitrate () thread, which selects the highest priority one word sized packet.
Subsequently, the selected one word sized packet is processed and the duration is applied calling
sc_core::walt (CLOCK_PERIOD).
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Figure 3.20.: The simple ATD benchmark system allows the variation of the number of words per appli-
cation packet and the number of iterations ATD threads are allowed to run ahead without
suspension.

The threads used in the ATD based implementation transfer their application packets en-bloc.
Due to the time budget calculation mechanism provided by ATD, the PreemptiveExecutor is
able to vary the data granularity of the application packet processing to achieve high simulation
speed and optimal data granularity for cycle accurate behavior. Additionally, the ATD based
implementation makes use of temporal decoupling by allowing each thread to execute multiple
iterations without suspension. The maximum number of pending SRAs and thus the number of
iterations executed without suspension is defined by the value of the SRA uantum-

In the following, the simulation performance implications of different influencing factors are an-
alyzed. At first, the effect of temporal decoupling on the performance of the ATD based im-
plementation is investigated by varying the SRAguantum. The number of words per application
packet is fixed to three words leading to a preemption of the low priority access by the higher
priority access after the first two words of the low priority access have been processed. Figure 3.21
shows the relative speed up achieved by the ATD implementation compared to the TLM-CA
implementation.

In case temporal decoupling is disabled forcing the threads to suspend after each SRA registration
by using a SRAquantum of one, a performance improvement of approximately 66% is achieved. The
speed up rises to approximately 80% if the SRAguantum is chosen between two and five allowing
temporal decoupling for up to five iterations. In contrast to inaccurate conventional temporal
decoupled models, the speed up does not increase monotonously with the extend of temporal
decoupling. Instead, the speed up achieved by ATD decreases if the SRAjuantum is increased
above five. This is due to an increasing number of SRAs which have to be updated during
the timing adjustment procedure. Therefore, the SRAuantuwm does not only limit the memory
footprint of the simulation but can also be used to achieve optimal performance by avoiding a
performance penalty due to too many pending SRAs.

After investigating the implications of the SRAquantum, the effect of the application packet size
is analyzed. Figure 3.22 shows the number of application packets processed per second (wall
clock time) contrasting the conventional TLM-CA implementation and the ATD implementation.
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ATD speed up compared to TLM-CA
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B ATD (sync after <SRA quantum> app. packets) TLM-CA

Figure 3.21.: ATD benchmark: three words per application packet and a varying SRAguantum-

Thereby, the number of words per application packet is varied starting from single word sized
application packets ranging to ten words per application packet. The ATD implementation is
shown twice using different SRA g antum values. Setting the SRAgyantum value to one effectively
disables temporal decoupling and forces the synchronization after each application packet. As
shown before, setting the SRAjyantum value to three allows for the highest simulation performance.

The simulation time needed to process a fixed number of application packets using the conventional
TLM-CA implementation grows approximately linearly with the number of words per application
packet. This leads to a monotonous decrease of the number of application packets processed per
second (wall clock time). In contrast the simulation performance of the ATD implementation
is hardly influenced by the number of words per application packet but mainly depends on the
amount of application packet preemptions occurring. A suitable indicator for the amount of
occurring preemptions is the quotient of the average size of the actually processed application
packets compared to the average size of the application packets registered by the simulation
threads. If no preemption occurs as it is the case in this example for application packets consisting
of less than three words, this quotient equals to one. If preemption is provoked by increaging the
number of words per application packet, the quotient decreases and the simulation performance
of the ATD based implementation is reduced.

Even for single word-sized application packets where there might not be any preemption at all, the
ATD implementation achieves a better performance than the TLM-CA implementation. This is
because ATD substitutes the global simulation time by local simulation times associated to each
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Figure 3.22.: ATD Benchmark: varying number of words per application packet. TLM-CA simulation
performance continuously decreases with the number of words per application packet. ATD
simulation performance generally depends on the amount of preemptions.

thread superseding the context switches entailed by calling sc_core: :sc_wait (<time>).

Besides the simple example system covered in this section, the performance improvement achiev-
able by ATD is further investigated using an industrial application presented in Chapter 5.
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4. Transparent Transaction Level Modeling

Besides extensive timing accuracy and high simulation speed provided by the ATD concept, a
design flow allowing for the efficient creation of virtual prototypes is an important requirement
in industrial environments. The Transparent Transaction Level Modeling (TTLM) methodology
proposed by the author in [HBPG12, RROT12] aims at the efficient creation of SystemC, TLM,
SCML2 [Synl11], and ATD based virtual prototypes.

4.1. TTLM Design Flow

The efficient creation entails different aspects like the reduction of the implementation effort
and the reduction of the amount of expert knowledge required for the creation of the virtual
prototype. Additionally, the efficient creation of virtual prototypes depends on the available level
of automation regarding validation and implementation tasks and the capabilities to collaborate
with existing digital hardware design flows. The TTLM design flow shown in Figure 4.1 addresses
these aspects.

The first step of the design flow is the formal specification of the hardware structure. This step is
done by the designer. The structure of the components of the virtual prototype is defined using
IP-XACT component descriptions and includes the interfaces of the components and the hierar-
chically structured memory maps of memory mapped target components. The structure of the
virtual prototype is defined by instantiating and connecting the previously defined components
using an IP-XACT design description. In contrast to a natural language based informal specifi-
cation, IP-XACT represents a formal specification of the hardware structure. This allows for an
automated validation of the specification and for an automated transformation into various design
artifacts required during the development of digital hardware and hardware dependent software.

The TTLM Generator (see Section 4.3) is used to create the source code for the hardware struc-
ture of virtual prototypes based on the IP-XACT specification. The generated hardware structure
includes module stubs for each component of the virtual prototype and a top level design file repre-
senting the netlist. The generated code comprises elements of different SystemC based modeling
libraries. In case ATD is enabled using the TTLM generator configuration, temporal decou-
pled semaphores are automatically integrated into the corresponding shared resources. After the
hardware structure has been generated, the designer implements the functionality of the hardware
components. This can be done making use of the capabilities provided by the TTLM Library. The
TTLM Library provides a set of convenience functions to simplify the implementation of different
functionalities like the inter-component communication, the incorporation of the ATD simulation
mechanism, the virtual prototype configuration, and the extraction of runtime information.
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Figure 4.1.: TTLM design flow overview. The structure of the virtual prototype is derived from IP-XACT
and assembled of SystemC, ATD, TTLM, and SCML2 [Synl1] library elements using the
TTLM Generator. The functionality of the virtual prototype components is implemented
by the designer making use of the convenience classes provided by the TTLM library.

4.2. Transparent Transaction Level Modeling Library

The objective of the TTLM library is to provide simple Application Programming Interfaces
(APIs) which can be used to easily implement different functionalities required to build up virtual
prototypes. This reduces the amount of source code which is to be implemented by the designer.
Additionally, the expert knowledge required for the creation of SystemC based virtual prototypes
is reduced as commonly used and complex code fragments are encapsulated within the library.
This allows the designer to focus on the implementation of the functionality of the components.

To achieve this objective, the TTLM library combines a set of established libraries like SystemC
TLM-2.0, the SystemC Modeling Library 2 [Syn11] (SCML2) [Syn11], the TLM Module Adapter
library [Ker09] and the unitized approach [KBR09| with the ATD approach presented in Chapter 3.
Figure 4.2 shows the basic structure of TTLM enabled virtual prototype components.

The functional description of the component’s behavior is surrounded by a set of four APIs
each having a distinct purpose. The inter-component communication APT is used to accomplish
the communication between different components of the virtual prototype in a SystemC TLM-2.0
compliant way and provides different means to ease the implementation of the initiator-side as well
as the target-side communication end points. The configuration API enables changing component
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Figure 4.2.: Basic TTLM component structure. The TTLM library provides four distinct APIs for dif-
ferent purposes allowing the designer to focus on the functionality of the component.

parameters at runtime while the logging API provides means to extract runtime information. The
timing API represents the user interface towards the advanced temporal decoupling class library.

4.2.1. Inter-Component Communication API

The implementation of the inter-component communication in conventional loosely-timed Sys-
temC TLM-2.0 models is time-consuming and comprises various tasks. Table 4.1 summarizes the
estimated effort required for the implementation of an inter-component communication in a con-
ventional loosely-timed SystemC TLM-2.0 model containing a single initiator [Ayn08a, Ayn08b].

The implementation comprises tasks designated to the virtual prototype structure like socket in-
stantiation and binding as well as tasks designated to communication occurrences like payload
object creation, assembly, transfer, processing, and memory management. The implementation
effort depends on several factors like the number of interconnection hops, the number of target
components connected to each interconnect and the number of registers contained within each
target module. Even in case of a simple virtual prototype containing one initiator only, approx-
imately 76 Source Lines of Code (SLoC) are required to implement a conventional loosely-timed
SystemC TLM-2.0 based inter-component communication.

The inter-component communication API of the TTLM library provides means to reduce the
implementation effort required to implement the data transfer between different components of
a SystemC TLM-2.0 based virtual prototype. The communication API consists of dedicated
communication APIs for initiator-side and target-side communication.

4.2.1.1. Initiator-side Communication
Figure 4.3 gives an overview of the initiator-side communication API. There are two APIs build

upon each other and denoted as explicit and implicit initiator-side communication APIs, allowing
to implement the functionality of the component in two different ways.
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task H approx. SLoC remarks ‘
socket instantiation 2 - |hops| 1 initiator 4+ 1 target socket per hop
socket binding 3 - |hops| to modules and to complement socket
payload object creation 2 memory manager recommended
memory management 2 + 2 - |hops| acquire and release payload

payload object assembly 9 set attributes like address, data, ...
payload object transfer > hops (0 + 3 - [targets|) | includes basic payload routing

payload object processing
on target side:

~ validation || 27 | check attributes like address, data, ...
address decoding 5+ 3 - |registers]|
command decoding 11 read, write, ignore
response handling 2 to 26 7 SystemC TLM-2.0 response codes
’ lower bound H 76 ‘ |hops| = [targets| = |registers| = 1
|hops| = number of hops the transaction traverses
[targets| = number of target components connected to the interconnect
[registers| — number of registers of the target

Table 4.1.: Estimation of the inter-component communication implementation effort for a conventional
loosely-timed SystemC TLM-2.0 model containing one initiator. The effort is estimated based
on [Ayn08a, Ayn08b| and measured in Source Lines of Code (SLoC).

Explicit initiator-side Communication API

The explicit initiator-side communication API is provided by the tt1lm: :MasterSocket class
shown in Figure 4.4. The ttlm: :MasterSocket is based on the master_module_socket
contained in the TLM Module Adapter library [Ker09]. Similar to the master_module_socket,
the explicit TTLM initiator-side communication API provides read (..) and write (..) func-
tions. These functions can be used to transfer arbitrary data using a single function call by
specifying the destination or source address, the data buffer and the delay parameter. For fea-
tures like the byte enable and streaming control (p_byteEnable, byteEnableLength, and
streamingWidth) default values are provided to allow for a simple usage in case these SystemC
TLM-2.0 features are not required.

Table 4.2 compares the features of the tt1lm: :MasterSocket, the master_module_socket,
and the initiator_socket class provided by the SCML2 library.

Each of these initiator sockets allows to transfer the data by specifying at least the destination
address, the data buffer, and the delay parameter required for a conventional temporal decoupled
simulation. The ttlm: :MasterSocket as well as the SCML2 initiator_socket provide a
C++ template parameter for the type attribute of the data parameter and therefore do neither
require manual transaction size calculation nor the explicit type conversion of the data which is to
be transmitted. In this case, the numElements parameter of the tt1m: :MasterSocket allows
to initiate transfers of arrays comprising multiple objects of the same data type. The automatic
payload object memory management improves the simulation performance by managing a pool
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Figure 4.3.: Initiator-side communication overview.

The implicit communication API consists of

ttlm::RemoteVariables and uses the explicit communication API. Both APIs can be
used to accomplish SystemC TLM-2.0 compliant communication.

|
:BUSWIDTH
ttlm: :MasterSocket
MasterSocket (useApproximatelyTimed bool = false)
template <typename TYPE>
read (address const sc_dt::uint64 &, p_data TYPE *,
delay sc_time &, p_byteEnable const unsigned char » = NULL,
byteEnablelLength const unsigned int = 0,
numElements const unsigned int = 1,
streamingWidth unsigned int = 0): tlm::tlm_response_status
template <typename TYPE>
write (address const sc_dt::uint64 &, p_data const TYPE =,
delay sc_time &, p_byteEnable const unsigned char = = NULL,
byteEnablelLength const unsigned int = 0,
numElements const unsigned int = 1,
streamingWidth unsigned int = 0): tlm::tlm_response_status

Figure 4.4.: Simplified MasterSocket class diagram.

of transaction objects as suggested by the TLM standard [IEE11]|. If the optional payload ID
extension is enabled, an unique ID is automatically added to each payload object to enable the

traceability of the transactions.

Besides using the conventional loosely-timed modeling style, the TTLM MasterSocket can be

configured to automatically transfer the data using the approximately-timed style by setting the

useApproximatelyTimed constructor parameter. If the approximately-timed style is enabled,

the communication takes place using the SystemC TLM-2.0 base protocol [IEE11] presented in
Section 2.4.2. Thereby, the TTLM MasterSocket implementation automatically handles the
base protocol phase transitions. The SCML2 initiator_socket allows to transfer the data

using the approximately-timed style too, but requires the designer to implement the required
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feature TTLM TLM Module Adapter SCML2
MasterSocket | master module_ socket | initiator socket

read / write interface X X b'e

data type template

payload object mem- X X

ory management

payload ID extension X X

approximately-timed X manual

TLM support implementation
required

ATD support p'e

Table 4.2.: Initiator socket feature overview comparing TTLM MasterSocket, TLM Module Adapter
master_module_socket [Ker09] and SCML2 initiator_socket [Synll].

phase trangitions and to manually call the corresponding SystemC TLM-2.0 interfaces provided
by the initiator_socket.

To allow for an ATD based simulation, the TTLM MasterSocket includes the ATD synchro-
nization point required for reading access from a trailing shared resource. In case ATD is enabled
and the read (..) function is called, the MasterSocket registers the reading access at the

corresponding TDSem and the current thread is suspended waiting for the reading access to be
finished.

Implicit initiator-side Communication API

When using the read (..) and write (..) function calls provided by the explicit initiator-side
communication API, the source code of the component’s functional description explicitly reflects
the communication occurrences. In case this is undesired or in case the source code describing
the behavior of the component shall be reused requiring minimal code adaption only, the implicit
initiator-side communication API can be used. The implicit initiator-side communication API
is based on a set of remote variables. The remote variables are based on the unitized approach
presented in [KBRO09| as shown in Figure 4.5.

The unitized class maps a comprehensive set of object accesses and operations to appropriate
read(..) and write (..) function calls using C+-+ operator overloading. Thereby, various
constructors like the default and copy constructors and operators like assignment operators with
or without arithmetic operations as well as increment and decrement operators are handled.
The remote variables forward any object access which has been caught by the unitized class to
the explicit initiator-side communication API. This results in the creation of SystemC TLM-2.0
compliant transactions.

In Listing 4.1 a simple example of the remote variable usage is shown. In Line 3 and Line 7 the
ttlm: :MasterSocket and the ttlm: :RemoteVariable are instantiated. In Line 12 a value
is written to the remote variable, which implicitly leads to a call to the write (..) function of
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| TYPE !
L - - - =
unitized
read (value : TYPE &)const
write (value : const TYPE &)
i e ‘
} BUSWIDTH, TYPE :

ttlm: :RemoteVariable

RemoteVariable (p_masterSocket : ttlm::MasterSocket<BUSWIDTH> «x,

address : const sc_dt::uint64 &)
read (value : TYPE &)const //forwards access to p_masterSocket
write(value : const TYPE &) //forwards access to p_masterSocket

Figure 4.5.: Simplified RemoteVariable class diagram. The ttlm::RemoteVariable class is derived
from the unitized class presented in [KBR09].

// the masterSocket provides the explicit initiator-side

// communication API used by the remote variable(s)

ttlm: :MasterSocket<32> masterSocket;

// implicit initiator-side communication API remote variable:

// accessing r_varl leads to read or write accesses to address 0x100
// utilizing the masterSocket

ttlm: :RemoteVariable<32, int> r_varl (&masterSocket, 0x100);

© 00 ~1 O Ot = W N

— = = =
= W N = O

// exemplary functional code

int varl;
r_varl = 42; // implicitly calls write(..) function of masterSocket
varl = r_varl; // implicitly calls read(..) function of masterSocket

Listing 4.1: Using the implicit initiator-side communication APIT.

the master socket, which in turn leads to a SystemC TLM-2.0 compliant transfer. The data is
written to the address specified during the instantiation of the remote variable. Similarly, the
read access shown in Line 13 leads to a reading access from the corresponding address.

The example shown in Listing 4.1 demonstrates that in case the tt1lm: :RemoteVariables of
the implicit initiator-side communication APT are used, the functional code does not reflect the
communication occurrences explicitly. Instead, the communication occurrences are concealed by
operations involving remote variable objects. This simplifies the reuse of the functional code,
as only the declaration of memory mapped structs and variables are to be replaced by remote
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variables.

To reduce the implementation effort for using the implicit initiator-side communication APT in
virtual prototypes comprising a considerable amount of memory mapped peripheral components,
the TTLM generator can be configured to automatically create remote variable maps (see Sec-
tion 4.3.2). These remote variable maps consist of multiple remote variables and represent the
memory map structure of each peripheral component. They can be incorporated on the initiator-
side to allow for a remote variable based access to the corresponding registers and bitfields.

4.2.1.2. Target-side Communication

Figure 4.6 gives an overview of the target-side communication API. Similar to the initiator-side

Target

thread | optional

v v v v v v A 4 h 4 h 4 -1 based on register and bitfield
| | callbacks

scml2::memory

IZS ttlm::TargetSocket
|
|
|

contains TDSem to ensure mutual exclusive access
during advanced temporal decoupled simulation

CBO| [CBO| [CBOJ [CBO| [CBO| |CBO| |[CBO| |CBO| |CB () %memorymappedcommunication

Figure 4.6.: Target-side communication overview.

communication API, the target-side communication API consists of two layers. The lower layer
consists of an ATD enabled ttlm::TargetSocket, whereas the higher layer is represented
by a memory map structure consisting of registers and bitfields. The ttlm: :TargetSocket
class is based on the t1lm_utils::simple_target_socket class contained in the SystemC
TLM-2.0 utility library and provides a plain SystemC TLM-2.0 transport interface. In contrast
tothe t1lm_utils::simple_target_socket, the ttlm::TargetSocket integrates a tem-
poral decoupled semaphore. If ATD is enabled, the integrated temporal decoupled semaphore
ensures mutual exclusive shared resource accesses during a temporal decoupled simulation. There-
fore, the b_transport (..) function is re-implemented to pass the incoming application pack-
ets to the temporal decoupled semaphore instead of immediately passing it to the user im-
plemented b_transport (..) function. Additionally, the executeSRA (..) function of the
ttlm::TargetSocket is implemented to incrementally pass possibly interleaved application
packet fragments to the user implemented transport function of the target component. In this
way, the ttlm: : TargetSocket accomplishes dynamic application packet fragmentation adher-
ing to the time budget calculated by the ATD mechanism. The fragment size is determined on a

constant time per word basis:

tbudget -‘

ragmentSize =
frag {TDSem.atomicTimePortion
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To ease the modeling of memory mapped target components, the target-side communication API
makes use of the memory map related elements provided by the SCML2 [Synll1] library. These
elements comprise the memory, memory alias, register, and bitfield classes and are used to create
the register and bitfield structure of the memory mapped target component. Thereby, SCML2
supports an automated address and bitfield decoding including the management of accesses span-
ning multiple registers and / or bitfields. Optionally, a user defined functionality can be added
to each register or bitfield using read and write callback functions, which are invoked in case the
corresponding register or bitfield is accessed during a TLM transfer.

To reduce the coding effort required for the implementation of memory mapped target components,
the TTLM Generator (see Section 4.3) allows for an automatic generation of the memory map
related SCML2 code based on an IP-XACT component description.

4.2.2. Timing API enabling ATD integration

The usage of the timing API is optional and is only required in case TTLM is used in conjunction
with ATD. The timing API allows for the integration of timing related ATD concepts. As shown
in Chapter 3, the simulation time handling in ATD differs from the simulation time handling used
in a conventional SystemC simulation. In ATD, the global simulation time is replaced by a set of
local simulation times each associated to one simulation thread. Additionally, the consumption of
local simulation time does not comprise a synchronization point superseding the context switch
occurring during the time consumption in a conventional SystemC simulation. Furthermore, the
processing of SRAs is deferred which renders the local simulation time of the issuing thread invalid.
Therefore, a synchronization is required when reaching statements which depend on the validity
of the local simulation time like it is the case for the last three synchronization points shown in
Table 3.1 on page 37. To adapt the simulation time handling according to the ATD thread
execution semantics, the TTLM Timing API provides three utility classes shown in Figure 4.7.

The ttlm::sc_ttlm_module and ttlm::sc_ttlm_event classes replace the corresponding
classes of the SystemC library. The sc_ttlm_module class overrides the wait (<time>) func-
tion to increase the local simulation time of the calling thread without suspending the thread.
Furthermore, an implementation of the sc_time_stamp () function is provided which returns
the current local simulation time of the calling thread instead of the global simulation time.
Additionally, the sc_time_stamp () function comprises an ATD synchronization point which
suspends the calling thread in case there are pending SRAs registered by that thread. This allows
the pending SRAs to be processed and thereby the local simulation time of the thread to be-
come valid. Similarly, the wait (<event>) function implemented in the sc_ttlm_module and
the notify (<time>) function implemented in the sc_ttlm_event class suspend the calling
thread in case there are pending SRAs registered by that thread.

The localVolatileVariable utility class can be used during ATD simulation to exchange
data between threads which might reside within the same module. Therefore, the utility class
integrates a temporal decoupled semaphore to ensure read and write accesses to occur in the
correct temporal order and at the intended global simulation time. Similar to the remote variable
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sc_core: :sc_module sc_core: :sc_event

TTLM Timing API

ttlm: :sc_ttlm module

ttlm::sc_ttlm event

//override wait (..)functions , , ,
//override notify(..)functions

//provide sc_time_stamp () function

ttlm: :localVolatileVariable

user_defined _module

Figure 4.7.: Simplified TTLM Timing API class diagram. The utility classes tt1lm: :sc_ttlm_module
and ttlm::sc_ttlm_event override the wait (..) and notify(..) functions of
their respective SystemC parent classes to comply with the ATD semantics. The
ttlm::localVolatileVariable class can be used to implement ATD compliant data
exchange between local threads.

class provided by the implicit initiator-side communication API, the localVolatileVariable
class is based on the unitized approach [KBR09] and hence can be used like a conventional variable.

To make use of the ATD concept in the context of TTLM, the timing API has to be incor-
porated by deriving the user_defined_module from the ttlm::sc_ttlm_module class
instead of the sc_core::sc_module class. When using the TTLM generator, this can be
achieved by enabling ATD in the TTLM generator configuration (see Section 4.3.2). Additionally,
all sc_core: :sc_event occurrences have to be replaced by ttlm: :sc_ttlm_event.

4.2.3. Virtual Prototype Configuration API

The virtual prototype configuration API can be used to change parameter values without requiring
the re-compilation of the virtual prototype. Figure 4.8 shows an example of the configuration API
usage. The parameter values are stored in an external data source and loaded on simulation
start-up using a global configuration object. The TTLM library provides a connector to use
IP-XACT design description files as an external data source. The TP-XACT design description
files are used to define the netlist of the virtual prototype and thereby allow for the specification
of <spirit:configurableElementValue> objects for each component instance contained
within the design.
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There are two ways of accessing the parameter values from the virtual prototype implementa-
tion. The first and explicit way is calling the getParameter (..) interface implemented by
the global configuration object (see Appendix A.2 for a detailed description). Alternatively, the
ttlm::Parameter<TYPE> utility class, which is based on the unitized approach [KBR09], pro-
vides implicit parameter value access. Similar to the local volatile variables and to the remote
variables, the parameter objects can be accessed like conventional variables and automatically
obtain the parameter value from the external data source.

IP-XACT

<spirit:configurableElementValues>
<spirit:configurableElementValue
spirit:referenceID="“imageSizeX"“>640
</spirit:configurableElementValue>
<spirit:configurableElementValue
spirit:referenceID="imageSizeY"“>480
</spirit:configurableElementValue>
</spirit:configurableElementValues>

external
data source

global configuration object

|
parameter objects
| getParameter (..)
|
*********** |

T |
SystemC (imageSizeX) (imageSizeY)
//instantiate Parameter objects:
ttlm::Parameter<int> imageSizeX (&gConf, this->name (), “picSizeX"“);
ttlm::Parameter<int> imageSizeY (&gConf, this->name(), “picSizeY");
for (int x = 0; x < imageSizeX; x++) //implicit access to external data source

{
for (int y = 0; y < imageSizeY; y++) //implicit access to external data source
manipulatePixel (x, V);

}

Figure 4.8.: Virtual prototype configuration example. The parameter values are stored in an ex-
ternal data source like an IP-XACT design description file and can be accessed either
using the getParameter (..) interface of the global configuration object or by using
ttlm: :Parameter objects.

4.2 4. Runtime Information Extraction

The TTLM library provides different utilities to ease the aggregation of runtime information during
virtual prototype execution. Textual information can be extracted using simple C++ preprocessor
macros. Especially for the extraction of ATD related runtime information, the runtime information
extraction API provides the ttlm: :Profiler utility class. In case ATD is used and the ATD
profiling is enabled by defining the ENABLE_PROFILING preprocessor symbol, the profiler gathers
runtime information for offline analysis. Thereby, the following information can be extracted.

e the overall number of SRAs issued by each thread
e the overall utilization time and utilization ratio of each resource

e the utilization time and utilization ratio of each resource itemized by the accessing thread
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e the number of deadlocks detected by the ATD deadlock detection algorithm described in
Section 3.5.1

e for SRAs where T_userData_t matches t1m: :t1lm_generic_payload the following
statistics are provided itemized by the accessed resource and the simulation thread which
directly or indirectly registered the SRA

— number of registered transactions itemized by the number of words per transaction
— average number of words per registered transaction
— number of processed transactions itemized by the number of words per transaction

— average number of words per processed transaction

4.3. Transparent Transaction Level Modeling Generator

The TTLM generator reduces the implementation effort and expert knowledge required for the
creation of a virtual prototype as major parts of the SystemC, SCML2, ATD, and TTLM related
code is generated automatically. The TTLM generator operation is based on the formal specifi-
cation of the structure of the virtual prototype in terms of a set of IP-XACT descriptions. The
information contained in the formal specification is transformed into the SystemC based structure
of the virtual prototype composed of ATD, TTLM, and SCML2 objects.

The TTLM generator is based on the Eclipse Modeling Framework (EMF) [EF13a| and the
Xpand2, Xtend, and Check technology initially published by OpenArchitectureWare [Opel3].
Figure 4.9 gives an overview of the architecture of the TTLM generator. The IP-XACT com-
ponent and design descriptions of the structure of the virtual prototype are transformed into
an EMF model. This EMF model adheres to an EMF meta-model representing the IP-XACT
schema [Accl3]. Before the transformation takes place, the content of the IP-XACT descriptions
represented by the EMF model is validated against an extended set of IP-XACT wvalidation rules
as shown in Section 4.3.1. In case the IP-XACT descriptions comply to the extend IP-XACT
validation rules, the transformation is started. The details of the transformation are presented in
Section 4.3.2.

The benefits of using a code generator operating on a formal specification like IP-XACT are
manifold. The employment of IP-XACT allows for an easy integration of the TTLM design flow
into existing digital hardware design flows by reusing the IP-XACT descriptions. This results
in IP-XACT being the central data source for digital hardware design, virtual prototyping, and
driver software development.

4.3.1. Automated IP-XACT Validation

The automated IP-XACT validation improves the efficiency of the creation of a virtual prototype
by revealing many specification errors at an early design stage. This reduces the debugging and
error treatment effort at subsequent design stages. The validation applied by the TTLM generator
exceeds usual compliance checks against the IP-XACT schema and comprises the validation of
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Figure 4.9.: TTLM generator overview. The IP-XACT component and design descriptions are validated
using an extended IP-XACT validation rule set. Then, they are transformed into the struc-
tural code of an SystemC, TTLM, ATD, and SCML2 based virtual prototype. For each
IP-XACT component description a set of SystemC artifacts is generated depending on the
TTLM generator configuration.
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more sophisticated requirements like the unambiguity and completeness of memory map elements.
These additional checks are defined in a set of extended IP-XACT validation rules.

The extended IP-XACT validation rules are implemented using the Check [Opel3| syntax. List-
ing 4.2 exemplifies the validation of the unambiguity of register names within each address block.
The first line of the check statement specifies the context or object type to which this check is
to be applied and the corresponding severity level if the check fails. In this example, the check
is applied to address block objects. The second line determines the error message which is to be
displayed in case the check fails. The third line defines the condition which must be fulfilled to
successfully pass the check. The unambiguity of object names is checked for a variety of IP-XACT

context index::AddressBlockType ERROR
"register names are not unique: " + this.register.name

this.register.name.toSet () .size == this.register.name.size

4

Listing 4.2: Extended IP-XACT validation rule example: unambiguity check for address block names.

objects including memory map objects like address blocks, registers, bit fields, bus interfaces, as
well as component instances and interconnection names used in the top level design specification.

Besides the checks assuring the unambiguity of object names, there are various other checks.
One other class of checks verifies the existence of referenced IP-XACT objects. Thereby, objects
contained within other ITP-XACT files which are referenced using Vendor, Library, Name, and
Version [IEE10] (VLNV) identifiers as well as references to objects residing within the same IP-
XACT file like memory maps and address spaces referenced from bus interfaces are checked.
Especially for memory maps extensive checks are applied. These memory map checks validate the
absence of overlapping address blocks, registers, and bitfields as well as the sufficiency of the range
attribute of address blocks to include all subordinate register addresses. Additionally, the validity
of the callback types which are to be generated as part of the target side communication API for
each memory map element is checked. Besides the mentioned checks, interconnection attributes
like matching buswidths, the unambiguity of routing address ranges, and the interconnection of
matching interface types like master interfaces to slave interfaces are validated.

4.3.2. SystemC Artifact Generation

After the validation of the IP-XACT description has been successfully completed, the generation
of the virtual prototype artifacts is started. The TTLM code generation is integrated into an
Eclipse [EF13b] based Bosch SystemC development environment and is based on the Modeling
Workflow Engine (MWE) which is used to process the Xpand2 [Opel3| virtual prototype arti-
fact templates. The configuration of the TTLM generation process is done using the graphical

configuration user interface shown in Figure 4.10.

On the left side of the T'TLM generator configuration window, different features can be enabled
which are to be included into the generated code like logging statements executed upon memory
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Figure 4.10.: The Graphical TTLM Generator Configuration interface allows for the selection of features

and artifacts the generated virtual prototype structure consists of.

map object accesses, ATD support, and variant management support. On the right side of the

window, the SystemC artifacts which are to be generated for each IP-XACT component description

can be selected. Thereby, six component related SystemC file types are available.

The Base Header file contains the class declaration of the base class of a component. The
base class contains the SystemC, ATD, and TTLM related code required to implement the
structure of the component including its communication interfaces and the SCML2 based
memory maps. The Base Header file does not need to be edited by the designer.

The Base Implementation file contains the definition of the base class functions of the
component. This includes the code required to setup the communication interfaces and the
SCML2 based memory map. Similar to the Base Header file, this file does not need to be
edited by the designer.

The User Header file contains the class declaration of the user class of the component. This
class is derived from the base class and declares the functions which are to be implemented by
the designer. In case the component entails memory mapped register structures accessible
via a communication channel, this file contains the declarations of the callbacks of the
memory mapped target-side communication API (see Section 4.2.1.2).

The User Implementation file contains the definition of the user class functions of the
component and is to be edited by the designer to implement the functionality of the com-
ponent making use of the TTLM APIs presented earlier.

The Memory Map Header file is supposed to be used for driver software development
and contains preprocessor macros representing relevant memory map element properties like
register addresses and reset values as well as bitfield attributes.

The Remote Variable Map file contains a class consisting of multiple remote variables
representing the register structure of memory mapped target components. This class can be
used as an implicit initiator-side communication API and allows for a register and bitfield
name based access to target components.
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Component Structural Code

The separation of the structural component code into base and user classes reduces the complexity
of the code exposed to the designer as the SystemC, SCML2, ATD, and TTLM related structural
code is concealed within the base class. This allows the designer to focus on the implementation of
the functionality of the component. In case a new generation of the structural code is required due
to changes in the IP-XACT description, the functionality which has already been implemented is
preserved by using protected regions.

By default, the base class is derived from the sc_core::sc_module class. In case ATD is
enabled during TTLM generation, the base class inherits from tt1lm: :sc_ttlm_module. This
enables the TTLM Timing API described in Section 4.2.2 which replaces the wait (<time>),
wait (<event>), and sc_time_stamp () functions by ATD compliant versions.

The communication interfaces of the component are instantiated in the base class. Thereby,
sc_in and sc_out signal ports as well as transaction level interfaces are supported. The
data type of the signal ports depends on the <spirit:qualifier> defined in the IP-XACT
abstraction definition used for the corresponding interface. In case <spirit:isClock> or
<spirit:isReset> is set to “true”’, the data type is set to sc_time or bool, respectively.
If neither <spirit:isClock> nor <spirit:isReset> is set to “true”, the data type is set to
sc_uint. In this case, the width of the vector is specified by the <spirit:width> attribute
of the IP-XACT abstraction definition.

Initiator-side transactional interfaces are implemented using the ttlm: :MasterSocket class,
which provides the explicit initiator-side communication API. Target side transactional inter-
faces are implemented using the tt1lm: : TargetSocket class. In case an IP-XACT component
description contains a memory map which is referenced from the corresponding bus interface defi-
nition, a scml2: :t1m2_gp_target_adapter is used to connect the socket to the hierarchical
SCML2 memory map structure. The hierarchical SCML2 memory map structure is created by
applying the IP-XACT to SCML2 mapping shown in Table 4.3.

To attain unambiguous names for the SCML2 objects, all names of hierarchically superior IP-
XACT memory map objects are concatenated to fully qualified names (FQNs). The access right
to the memory map objects is specified using the <spirit:access> attribute, which can be
applied at any hierarchy level of the memory map. The access rights to child elements are inherited
from the parent element but can be overridden by specifying a different access right type at a
hierarchically subordinate level. If the access rights are restricted, the TTLM generator creates
calls to the set_disallow _read_access(..) and set _disallow write_ access(..)
functions for the corresponding memory map element accordingly.

To add user defined functionality to the created memory map elements, SCML2 provides the
possibility to register callback functions at the memory map elements at each hierarchical level.
Similar to the inheritance of the access type, the selected callback type is inherited towards the leaf
level elements of the memory map including the possibility to override the inherited callback type
at hierarchically subordinate levels. The creation of the callbacks by the TTLM generator can be
configured by adding the IP-XACT code shown in Listing 4.3 to the <spirit:parameters>
section of the corresponding memory map element.
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IP-XACT | SCML2
<spirit:memoryMap> scml2: :memory
| <spirit:name> |  name of the scml2: :memory object |
<spirit:addressBlock> scml2: :memory_alias
| <spirit:name> |  name suffix of the scml2: :memory_alias object |
<spirit:baseAddress> offset attribute of scml2: :memory_alias construc-
tor
<spirit:range> size attribute of scml2: :memory_alias constructor
<spirit:width> transformed into appropriate datatype template argu-

ment of scml2: :memory, scml2: :memory_alias,
scml2::reqg, and scml2::bitfield

<spirit:access> call to set_disallow_[read|write]_access(..)
<spirit:register> scml2::reg
| <spirit:name> |  name suffix of the scml2: :reqg object |
<spirit:addressOffset> offset attribute of scml2: : reg constructor
+ <spirit:baseAddress>
<spirit:access> callto set_disallow_ [read|write]_ access(..)
<spirit:reset> call to initialize (..) function of scml2::reg
<spirit:field> scml2::bitfield
| <spirit:name> |  name suffix of the scml2::bitfield object |
<spirit:bitOffset> offset attribute of scml2::bitfield constructor
<spirit:bitWidth> size attribute of scml2: :bitfield constructor
<spirit:access> callto set_disallow_ [read|write]_access(..)

Table 4.3.: IP-XACT to SCML2 mapping used for the generation of TTLM target component memory
maps.

<spirit:parameter>
<spirit:name>callback</spirit:name>
<spirit:value>callback type</spirit:name>
</spirit:parameter>

Listing 4.3: Configuring the callback type using an IP-XACT parameter.

Thereby, the callback_type can be selected from the following list.

e read: create callbacks for all hierarchically subordinate memory map elements executed
upon read accesses

e write: create callback for all hierarchically subordinate memory map elements executed
upon write accesses

e read-write: create callbacks for all hierarchically subordinate memory map elements
executed upon read or write accesses

e none: disable the callback generation in case a different callback type is specified at a
hierarchically superior level.
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The resulting callback functions are declared in the user header file. The user implementation file
contains default implementations created by the TTLM generator implementing the appropriate

bool component_name: :memory _map_element_FQON_[read|write]CB (
addressBlock width dependent_data_type& value, sc_time& delay) {
// functionality which is to be executed before value is
// [read from | written to] the memory map element:
// <— to be implemented by the designer

// memory access:

// [read value from | write value to] the SCML2 memory map element:
[ value = xp_memory_map_element_FQON; |

*p_memory_map_element_FQON = value; |

// functionality which is to be executed after memory access took
// place:

// <— to be implemented by the designer
return true;

Listing 4.4: Structure of the generated callbacks.

which is to be executed before the memory access takes place like range checks for write accesses
or just-in-time calculations of values during reading accesses can be implemented in Line 5. In
case the memory access shall be inhibited for example due to a failing check during a write access,
the memory access can be aborted by returning false. The functionality which is to be executed
after the memory access took place like for example the post processing of the written data can be
implemented in Line 14. In combination with the simulation threads, the memory map element
callbacks are the main place to implement user defined functionality. The generation of memory
map element callbacks can be suppressed by enabling the corresponding checkbox of the TTLM
generator configuration.

Memory Map based Variant Management

To simplify the unified development of virtual prototypes representing device families, the TTLM
generator supports a memory map based variant management. The variant specific structure
of the memory map can be configured by adding the ITP-XACT code shown in Listing 4.5 to
the <spirit:parameters> section of the corresponding memory map elements. Thereby, the
list_of_variant_identifiers is a comma separated list of arbitrary variant identifiers.

In case the variant management support is enabled using the TTLM generator configuration, a
header file containing an enumeration of the available variant identifiers is generated for each
component. Additionally, the generated SCML2 memory map code is capable of representing
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<spirit:parameter>
<spirit:name>AvailabelOnVariants</spirit:name>
<spirit:value>list_of variant_identifiers</spirit:name>
</spirit:parameter>

Listing 4.5: Configuring a variant specific memory map structure using IP-XACT parameters.

each available variant by instantiating and configuring the appropriate memory map elements
which belong to the currently selected variant at simulation start-up. This allows for a flexible
configuration of the virtual platform by selecting the appropriate variant of each component.
The selection of the desired variant takes place during component instantiation in the top level

SystemC file (see corresponding paragraph on page 85).

Memory Map Header File and Remote Variable Map for Driver Software Develop-

ment

To ease the driver software development for memory mapped target components, the TTLM
generator is capable of transforming the IP-XACT memory map information into memory map
header files and remote variable maps which can be used as the equivalent implicit initiator-side
communication API of the memory map of the target component. The memory map header files
contain C preprocessor definitions representing the address block and register addresses as well
as the bit field positions, bit field masks, and reset values. In combination with an additional
offset representing the base address of the target component within the global memory map,
the address block and register addresses can be used in conjunction with the explicit initiator-
side communication API. The bitfield related constants can be used for bit wise logic and shift

operations required to access and manipulate single bitfield values.

The remote variable maps can be used to accompany C type declarations commonly used for
driver software development which reflect the register structure of memory mapped peripherals.
Listing B.3 on page 114 shows the structure of the C type declarations. For each register type
a bitfield structure and a union are declared (see Lines 2 to 12). This allows the register to be
accessed in its entirety or via the contained bitfields. The memory map layout type is declared as
shown in Lines 17 to 21. Using these type declarations, the embedded software is able to access
the registers using the code shown in Listing 4.6.

The remote variable map shown in Listing B.4 on page 114 consists of C++ classes which corre-
spond to the C type declarations commonly used for driver software development shown in List-
ing B.3. For each register type a remote register class is generated containing unitized [KBR09|
based member objects. Similar to the unions contained in the C type declaration, these member
objects allow the register to be accessed in its entirety or via the contained bitfields (see lines 8
to 17). These objects map any access to the TTLM MasterSocket which in turn generates
SystemC TLM-2.0 compliant communication packets (see Lines 20 to 50). The class shown in
lines 66 to 78 assembles the remote register classes to form the remote variable map according
to the memory map. When using the remote variable map instead of the C type declarations,
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// use pointer of declared C type, pointing to the base address of the
// memory mapped peripheral:
componentName_MemMap_st xp_component =

(componentName_MemMap_st «)base_address of memory mapped peripheral

p_component->registerl_u.as_u32 = 42 // register access
p_component—->registerl_u.as_s.bitfieldl = 42 // bitfield access

Listing 4.6: Using a pointer of the declared C type to access the registers of the memory mapped
peripheral.

only the declaration and initialization of the p_component pointer of the example shown in
Listing 4.6 needs to be changed according to Listing 4.7. The remaining driver software code
typically remains unchanged.

ttlm: :masterSocket<32> socket;
// use pointer to the generated remote variable map to access the
// memory mapped peripheral:
componentName_RemoteVariableMap_st *p_component =

new componentName_RemoteVariableMap_st (&socket, base_address

ofmemory mapped component)

// functional code remains unchanged:
p_component—->registerl_u.as_u32 = 42 // register access
p_component—->registerl_u.as_s.bitfieldl = 42 // bitfield access

Listing 4.7: Using the generated remote variable map to access the registers of the memory mapped
peripheral.

The remote variable map can be thought of as an automatically generated implicit to explicit
initiator-side communication API mapping and can be employed for a host-compiled execution
of low level software like hardware drivers as part of a virtual prototype. Compared to the
software execution on an ISS, a host-compiled execution provides a significantly higher simulation
speed [Gerl0].

Top Level SystemC File

The top level SystemC file is used to instantiate and interconnect the previously generated com-
ponents to form the virtual prototype. The required information is extracted from the IP-XACT
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design description. The instantiated components are connected by binding the corresponding
TTLM sockets and by using signals to connect the corresponding ports.

In case the variant management support is enabled during TTLM generation, the component
instantiation contained in the top level SystemC file is extended to allow for the selection of
the desired variant of each component instance. Thereby, the currently selected variant of each
component instance is not specified within the SystemC code but within the TP-XACT de-
sign description file. This is done by adding the IP-XACT code shown in Listing 4.8 to the
<spirit:configurableElementValues> list of the corresponding component instance.

<spirit:configurableElementValue spirit:referenceld="selectedVariant">
variant_name

</spirit:configurableElementValue>

Listing 4.8: Component instance variant selection in IP-XACT design description file.

Within the top level SystemC file shown in Listing 4.9, the variant information is retrieved using
the TTLM Virtual Prototype Configuration API presented in Section 4.2.3. At first, the TTLM
Virtual Prototype Configuration API is set up (see Lines 4 to 6). In Lines 10 and 12, the variant
string retrieved from the IP-XACT design description via the TTLM parameter is converted to
the componentName_var type and passed to the constructor of the component.

#include "componentName_variants.h"

// setup TTLM Virtual Prototype Configuration API:

ttlm: :IPXACTConfig gConf ("<path to IP-XACT design_ file>.xml");

ttlm: :Parameter<std::string> instanceName_var_parameter (&gConf,
"instanceName", "selectedVariant");

// fetch selected variant from IP-XACT design description:

componentName_var instanceName_var (instanceName_var_parameter) ;

// component instantiation:

componentName *p_instanceName = new componentName ("instanceName",
instanceName_var) ;

Listing 4.9: Top level SystemC file including component variant management support.

This variant selection technique allows for the configuration of the currently selected component
variants in the IP-XACT design description file and neither requires a new generation nor a
recompilation of the virtual prototype.
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4.4. Implementing a simple Virtual Prototype using TTLM

In the following, the implementation effort reduction and usability improvement achievable by
the TTLM design flow is demonstrated. Therefore, the TTLM design flow is employed for the
creation of a virtual prototype of a simple example system. Figure 4.11 shows the architecture
of the system. The system consists of a Timer component connected to a Testbench component
via a generic bus connection consisting of a TLM connection and a clock connection. The Timer
component contains a single register returning the current timer value upon read access.

generic bus generic bus
, master slave
/ interface interface \
\
/ \
enericBus_TLM_Bus meRelE3 () f
Testbench [3 g — Timer
S im0 | beurxentvalue |
genericBus_clock Y
genericBus_ /
TLMAndClock /
abstraction

Figure 4.11.: Architecture of the simple example system.

According to the TTLM design flow shown in Figure 4.1, the system architecture is specified
using a set of IP-XACT descriptions. Compared to the manual implementation of the structure
using SystemC, the specification of the structural aspects using TP-XACT is much more efficient.
This is because the formal semantic of IP-XACT is limited to the structural aspects of digital
hardware reducing the implementation choices and thus the error-proneness for a given task.
Additionally, this limitation allows for extensive IP-XACT editing tool support ranging from
code completion to graphical memory map editors. As shown in Section 4.3.1 the tool support
might also comprise IP-XACT validation, which automatically reveals many specification errors
of the structural aspects at an early design stage. Listing B.5 on page 116 shows the IP-XACT
component description of the timer component. According to the IP-XACT standard, the Timer
component is identified by a Vendor, Library, Name, and Version [IEE10| (VLNV) identifier (see
Lines 3 to 6). The generic bus slave interface of the Timer component is specified in Lines 7 to 16
by referencing the appropriate IP-XACT bus definition and abstraction definition. The referenced
abstraction definition contains a TLM interface denoted as genericBus  TLM Bus and a clock
port denoted as genericBus_clock. The generic bus slave interface is used to provide access to the
registers contained in the memory map of the Timer Component. The memory map is specified
in Lines 17 to 38 and contains the specification of the currentvalue register shown in Lines 25
to 35. The configuration of the TTLM memory mapped target-side communication API which is
to be created by the TTLM generator is shown in Lines 29 to 34. According to Listing 4.3, the
I[P-XACT parameter tag is used to advice the TTLM generator to create a read callback which
is called upon a read access to the address of the corresponding register.

After the specification of the system architecture has been completed, the TTLM generator is
used to create the structural code of the Testbench and Timer components as well as the top level
SystemC file containing the instantiation and interconnection of the components. The result of the
TTLM generator employment is exemplified in Listings B.6 to B.9. The listings show the generated
structural code of the Timer component separated into header files and implementation files for the
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base class and the user class. Table 4.4 lists the Timer component related implementation tasks
automatically carried out by the TTLM generator and provides references to the corresponding
source code lines.

automated implemen- timer base.h| timer base.cpp| timer.h timer.cpp
tation task Listing B.6 Listing B.7 Listing B.8 | Listing B.9
module infrastructure Lines 21-28 Lines 9-14 Lines 7-14 Lines 3-4
communication interfaces Lines 33-35 Line 16
clock handling Lines 30-31 Lines 3-7, 22-24
Mmemory map
| instantiation || Lines 44-46 | Lines29-30 | [ ]
| initialization || [ Lines 1920 | [ |
| connection to communi- | Lines 48-49 | Lines 26-27 | | |
cation interface
register callback function Lines 37-41 Line 32 Lines 16-20 | Lines 6-23

Table 4.4.: Timer component related implementation tasks carried out by the TTLM generator.

In case ATD is enabled during the code generation, the base class of the Timer and the Testbench
components are derived from the ttlm::sc_ttlm _module class enabling the TTLM timing
API. This allows for the incorporation of the ATD simulation mechanism.

After the structural code has been generated, the functionality of the components is implemented
by the designer. In case of the basic Timer component, this functionality comprises only a single
line of code embedded into the read callback function of the currentvValue register (see List-
ing B.9 Line 16). This statement is used to perform the just-in-time calculation of the current
timer value when a read access to this register takes place.

The implementation of the functionality of the Testbench is shown in Listing B.10. The automat-
ically generated base class and the user class header files of the Testbench have been skipped, as
they are similar to the corresponding files of the Timer component and do not need to be edited by
the designer. In Lines 20 and 21 the explicit initiator-side communication APT is used to read the
current timer value by issuing a SystemC TLM-2.0 compliant read access to the corresponding reg-
ister of the Timer component. The same behavior can be achieved using the implicit initiator-side
communication API as shown in Line 23. The SystemC TLM-2.0 compliance can be checked by
integrating the SystemC TLM-2.0 base protocol checker [Ayn13] into the genericBus_ TLM Bus
connection. After the current timer value has been read, the Testbench thread waits for ten clock
periods (see Line 25). As the Testbench module is derived from the ttlm::sc_ttlm_module
class which enables the TTLM timing API, calling the wait (<time>) function does not suspend
the thread but increments its local simulation time according to the ATD semantics.

Table 4.5 summarizes the characteristics of the implementation of the simple example system. The
specification of the architecture consists of 105 IP-XACT tags, which are transformed into 218
logical SLoC'. To implement the SystemC TLM-2.0 compliant data transfer, only 12 additional

'In this work, the logical Source Lines of Code (SLoC) have been quantified using the Metriculator Eclipse
plugin [met13].
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SLoC are required resulting in an overall SLoC number of 230. The fraction of generated code for
this simple example system is 94.8% but heavily depends on the complexity of the functionality

of the components.

’ implementation characteristic H value ‘

number of IP-XACT tags 105
logical SLoC of structural code 218
overall logical SLoC 230
fraction of generated code 94.8%

Table 4.5.: Implementation characteristics of the simple example system.

In the following section, the efficiency improvement achievable by the TTLM design flow is demon-

strated using the automotive Night Vision system.
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5. Application and Evaluation

In this chapter, the simulation performance improvement achievable by incorporating the Ad-
vanced Temporal Decoupling simulation technique as well as the implementation effort reduction
achievable by employing the Transparent Transaction Level Modeling methodology are analyzed.
Both methodologies are applied during the creation of a virtual prototype of the Night Vision
system [Rob05]. The Night Vision system is a well-established driver assistance system for pre-
mium segment cars [Dai08]. In Section 5.1, a short overview of the Night Vision functionality
and system architecture is given. This includes the presentation of a preexisting cycle accurate
virtual prototype published in [Ban09]. This virtual prototype is used as a reference for the com-
parison of the results of the ATD and TTLM based virtual prototype presented in Section 5.2.
The evaluation results contrasting both virtual prototypes are presented in Section 5.3.

5.1. Night Vision System and Preexisting Virtual Prototype

The objective of the Night Vision system is to improve the visibility of obstacles at challenging
lighting conditions especially at night. Figure 5.1 gives an overview of the Night Vision system
architecture as presented in [Rob05, Ban09].

~

Near-
— % Infrared :
Displa
Lamp Isplay

(integrated into cockpit)

Front View
Near-
Infrared
Camera

raw image Night Vision ECU enhanced image

N Near-
— @ Infrared
Lamp

Figure 5.1.: Night Vision System Architecture (according to [Rob05, Ban09]). The front view near-
infrared (NIR) camera captures a raw image of the scenery in front of the car which is
illuminated by near-infrared lamps. The raw image is transferred to and processed by the

Night Vision Electronic Control Unit (ECU). Finally, the enhanced image is transferred to
the display which is integrated into the cockpit of the car.
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Near-infrared lamps emitting light invisible for the human eye are used to illuminate the scenery
in front of the car. The front view near-infrared camera captures a raw image at a constant frame
rate comprising the near-infrared (NIR) and the visible spectrum. The raw image is transferred to
the Night Vision Electronic Control Unit (ECU). The Night Vision ECU processes the raw image
using a set of specific Night Vision algorithms. The enhanced image is transferred to the display
which is integrated into the cockpit of the car.

The Night Vision ECU provides the following hardware features [Ban09]:

e dedicated FPGA used for the reception of the raw image from the camera, for basic video
processing algorithms, and for the transfer of the enhanced image to the display,

e MPC5200 [Fre06] microcontroller containing a PowerPC [Fre94] CPU operated at 396 MHz
having a 32 bit address bus and data bus. The CPU is used for complex video processing
algorithms,

e PowerPC instruction cache and data cache having a size of 16 kB each,

e data cache supports modified-exclusive-invalid coherency protocol,

e 64 bit wide 60X Local Bus [Fre05] (XLB) processor bus [Fre05] operated at 132 MHz,

e Direct Memory Access (DMA) controller for CPU independent data transfers,

e 2x 8 MByte of external SDRAM, one connected to the FPGA and one to the PowerPC.

In [Ban09] a preexisting virtual prototype of the Night Vision system is presented which focuses on
the simulation of the Night Vision ECU. The front view near-infrared (NIR) camera is emulated
using a stub module which loads *.bmp image files and transfers them as a raw image stream
to the Night Vision ECU model. The display is emulated using a graphics library bringing the

enhanced image to the screen of the simulation host.

The preexisting virtual prototype is based on the module adapter methodology which is presented
in [Ban09], too. The module adapters are intelligent communication sockets, which provide means
to transfer arbitrarily sized application packets in a cycle accurate way. Therefore, the arbitrarily
sized application packets are automatically divided into multiple bus word sized packets which
are in turn transferred from the initiator module to the target module. Even though the mod-
ule adapters are not based on the SystemC TLM-2.0 standard, the interfaces provided by the
module adapters correspond to the abstraction levels commonly used in TLM (see Section 2.4.1).
The interface used to connect the module adapter to the functional description of the module is
comparable to the TLM - Programmer’s View [MCGO05] (TLM-PV) abstraction level. The inter-
face related to the lower abstraction level is used to conduct the module-to-module communication
based on bus word sized packets and is comparable to the TLM - Cycle Accurate [MCGO05]| (TLM-
CA) abstraction level. To influence the timing aspects of the module-to-module communication,

a set of communication timing parameters is provided.

Figure 5.2 shows the hardware architecture of the Night Vision ECU as implemented in the
preexisting virtual prototype. The virtual prototype is divided into the FPGA subsystem and
the PowerPC subsystem. The FPGA subsystem contains the camera FIFO and display link
communication controllers, which are used to receive the raw image data from the NIR camera
and to transfer the enhanced image to the display, respectively. The FPGA memory is connected
via the FPGA bus and serves as a temporary storage for the raw and enhanced images. The
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FPGA subsystem is connected to the PowerPC subsystem via a 32 bit wide PCI bus using the
PCI to FPGA and XLB to PCI bus bridges.

Night Vision ECU

FPGA Subsystem PowerPC Subsystem

Front View | Camera Bus Bridge Bus Bridge Data PowerPC
NIR Camera [ FIFO K& peitorrea FTE ETE xistope S cahe FE Core
(16 kByte)

M

DMA
Controller 1

Display FPGA DMA PowerPC
Link Ep= Memory < Controller 2 gig Ea= Memory
L (8 MByte) (8 MByte)

32 Bit 32 Bit 64 Bit

FPGA Bus
PCI Bus
XLB Bus

N

Display K}

Figure 5.2.: Simplified block diagram of the Night Vision ECU architecture (based on [Ban09]). The
FPGA subsystem which is used for basic video processing and data transfer is connected to
the PowerPC subsystem via a PCI bus.

The main part of the PowerPC subsystem is the PowerPC core, which executes complex Night
Vision video processing algorithms. To allow for a high conformance between the virtual prototype
and the physical implementation of the Night Vision ECU, the original source code of the Night
Vision algorithms as used in the series product is integrated into the PowerPC core model. This
source code is executed in a host-compiled way, omitting the microarchitectural aspects of the
PowerPC core. This includes the instruction cache and the instruction memory. In addition, the
realtime operating system is omitted as it implies a negligible performance penalty of less than
5% according to measurements performed using the physical implementation of the Night Vision
ECU [Ban09]. To mimic the time consumption which would arise from the execution of the Night
Vision algorithms on a physical PowerPC Core or on a PowerPC ISS, the corresponding time
consumption is either emulated using the module adapters or directly annotated to the original
source code using wait (<time>) statements. The PowerPC core is connected to the 16 kByte
sized, four way set associative data cache model. The PowerPC memory contains a set of frame
buffers for the raw and enhanced images and is connected via the XLB bus. The PowerPC
subsystem is completed by two DMA controller models representing the two channels of the DMA

controller used in the physical microcontroller.

Each Night Vision frame is processed according to the five steps illustrated in Figure 5.3.

1. Camera to FPGA memory: The NIR camera sends the raw image data at a constant
frame rate {prame rate- The camera FIFO buffers this data and performs basic video pro-
cessing algorithms. The raw image data and the results of the basic Night Vision video
processing algorithms are transferred to the FPGA memory.

2. FPGA memory to PowerPC memory: After tpMAl offset has elapsed and a significant
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1. Camera to FPGA memory
2. FPGA memory to PowerPC memory _}
3. Night Vision algorithms

4. PowerPC memory to FPGA memory

5. FPGA memory to display
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Figure 5.3.: Interleaved Night Vision frame processing (according to [Ban09]).

amount of the data belonging to one raw frame has been received from the NIR camera, the
data transfer to the PowerPC subsystem is started. Therefore, the DMA controller 1 is used
to copy the raw image data and the results of the basic video processing algorithm from the
FPGA memory to the PowerPC memory via the FPGA bus, the PCI to FPGA bus bridge,
the PCI bus, and the XLB bus.

. Night Vision algorithms: After the raw image data and the results of the basic video
processing algorithms have been copied to the PowerPC memory, the complex Night Vision
video processing takes place. The raw image data is processed by a set of three Night Vision
algorithms which are sequentially executed on the PowerPC core. The execution time of two
Night Vision algorithms is constant, whereas the execution time of the third Night Vision
algorithm depends on the content of the raw image frame [Ban09]. The resulting enhanced
image is stored in the PowerPC memory.

. PowerPC memory to FPGA memory: After the Night Vision processing is finished,
the enhanced image frame is transferred from the PowerPC memory to the FPGA memory
using the DMA controller 2.

. FPGA memory to display: The transfer of the enhanced image frame to the display
is started at tpisplay Link offset after the transfer of the enhanced image to the FPGA
memory has been started. The display link module fetches the enhanced image frame from
the FPGA memory and transfers it to the display.

The overall processing time of one frame is denoted as trrame processing: As shown in Figure 5.3,

the five Night Vision processing steps in parts temporally overlap. Especially, this is the case for
the frame transfer from the NIR camera to the FPGA memory and the transfer from the FPGA
memory to the PowerPC memory. Similarly, the frame output to the display is started before the

DMA based transfer of the enhanced image from the PowerPC memory to the FPGA memory

is completed. As this temporal overlapping inherently occurs during the processing of a single

frame, it is denoted as intra-frame overlapping hereafter.
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As the time between two consecutive frames ¢ Frame_rate 18 lower than tprame processing, the pro-
cessing of consecutive frames temporally overlaps as well. For example, the execution of the Night
Vision algorithms for frame N temporally overlaps with the transfer of the raw image data of frame
N + 1 from the NIR camera to the FPGA memory, as well as with the transfer of the enhanced
image data of frame N — 1 from the FPGA memory to the display. The temporal overlapping of
processing steps belonging to different frames is denoted as inter-frame overlapping.

5.2. ATD and TTLM based Virtual Prototype

The recent ATD and TTLM based virtual prototype of the Night Vision system is used to eval-
uate the simulation performance improvement achievable by ATD and the implementation effort
reduction achievable by TTLM.

The recent virtual prototype has been created using the TTLM design flow presented in Sec-
tion 4.1. Figure 5.4 shows the structure of this virtual prototype which has been generated from
a set of IP-XACT artifacts and equals to the structure of the preexisting virtual prototype. In
contrast to the preexisting virtual prototype, the structural code of the recent virtual prototype
uses a SystemC TLM-2.0 compliant communication infrastructure.

Night Vision ECU
FPGA Subsystem PowerPC Subsystem
N
Front View Bus Bridge Bus Bridge Data PowerPC
NIR Camera = = PCl to FPGA E XLB to PCI gig Cache Core
(16 kByte)
2 g g
o DMA m
& 5 T8 controller 1 @
a a X
[T
: Display FPGA DMA PowerPC
DEpEY | g Link == Memory << Controller 2 == Memory
L (8 MByte) L L (8 MByte)
32 Bit 32 Bit 64 Bit

@ Simulation Thread v Temporal Decoupled Semaphore

Figure 5.4.: Architecture of the ATD and TTLM based Night Vision ECU virtual prototype. To allow
for an ATD based simulation, the shared resources contain temporal decoupled semaphores.

To allow for an ATD based simulation, the TTLM timing API as presented in Section 4.2.2 is
incorporated by enabling the ATD support during TTLM generation. As a result, all modules
of the recent virtual prototype are derived from the ttlm::sc_ttlm_module class instead of
the sc_core: :sc_module class. In addition, all shared resources which are either accessible
via multiple target sockets or allow for asynchronous resource accesses contain temporal decou-
pled semaphores. Remarkably, neither the FPGA memory nor the PowerPC memory contain a
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temporal decoupled semaphore. This is because both memories only comprise one target socket
and only allow for synchronous accesses. Additionally, the memory modules are only accessible
via the corresponding buses which are in turn shared resources containing a temporal decoupled
semaphore which ensures mutual exclusive access to the corresponding bus and the connected
memory too.

Similar to the preexisting virtual prototype, the PowerPC core module of the ATD and TTLM
based virtual prototype contains a simulation thread executing the original source code of the
Night Vision algorithms as used in the series product. As this source code is executed in a host-
compiled way, an appropriate source code instrumentation is required to redirect the memory
accesses arising from the software to the bus interface of the PowerPC core module. To achieve
this redirection, the implicit initiator side communication API provided by the TTLM library is
used (see Section 4.2.1.1).

Besides the simulation thread contained in the PowerPC core module, there are four additional
simulation threads each implementing an independent course of action of the Night Vision system.
The threads contained in the camera FIFO and in the display link modules are used to implement
the raw image transfer to the FPGA memory and the enhanced image transfer to the display,
respectively. Similar to the preexisting virtual prototype, the transfer from the NIR camera is
emulated by using a stub module loading a *.bmp file and the transfer to the display is emulated
redirecting the enhanced image data to the simulation host screen. The threads contained in the
DMA controllers are used to implement the data transfers between the FPGA memory and the
PowerPC memory. The control flow between these simulation threads is implemented using the
ATD enabled ttlm: :sc_ttlm event class.

The described deployment of the temporal decoupled semaphores and the simulation threads
results in the eight-by-five shaped SRA matrix with an overall number of 40 cells shown in Fig-
ure 5.5. The architecture of the Night Vision system inhibits the usage of 18 matrix cells as
no communication channels from the module containing the corresponding thread to the module
containing the corresponding TDSem are available. For example, none of the threads contained
in the camera FIFO and display link modules can access the TDSems contained in the PowerPC
subsystem. Even though the Night Vision system architecture allows for accesses from the corre-
sponding thread to the corresponding slave, 5 of the matrix cells remain unused by the application.
Therefore, only 17 out of the 40 matrix cells are actually used by the application.

The five simulation threads imply a set of five SRA trees. As many of the algorithms executed
during the ATD transaction processing phase traverse the SRA trees towards the SRA tree root,
the height of the SRA trees has a direct impact on the overall simulation performance. The SRA
trees associated to the threads of the camera FIFO and the display link modules have a height of
one. This is because the FPGA memory which is the only shared resource used by these threads is
accessible directly without requiring cascaded resource accesses. The SRA trees belonging to the
threads contained in the DMA controllers have a height of three as accesses to the FPGA bus and
the FPGA memory involve traversing the PCI bus and the PCI to FPGA bus bridge. The height
of the SRA tree belonging to the thread of the PowerPC core module is five and is only used to
its full extent during the configuration of the PCI to FPGA bus bridge which takes place during
system power up. After the system power up procedure is finished, the thread of the PowerPC

95



Application and Evaluation

Th
read Camera FIFO | DMA 1 | DMA 2 | PowerPC Core | Display Link
TDSem

FPGA Bus & Memory
Bus Bridge PCI to FPGA
PCI Bus

Bus Bridge XLB to PCI
XLB Bus & Memory
Data Cache

DMA 1

DMA 2

- = the architecture of the virtual prototype inhibits access (e.g. no communication link available)

— the application does not make use of the accessibility provided by the architecture

— accesses take place

Figure 5.5.: SRA Matrix of the Night Vision application.

core primarily accesses the PowerPC memory via the data cache and the XLB bus resulting in a
SRA tree height of two.

5.3. Evaluation Results

5.3.1. Implementation effort reduction

In this section, the reduction of the implementation effort achievable by the employment of the
TTLM methodology is investigated. According to [Ban09|, the creation of the module adapter
based preexisting virtual prototype of the Night Vision system and all of its contained modules
required six months approximately. This includes the code required for the structure of the Night
Vision system and its contained modules as well as the code required for the implementation of
the corresponding functionality.

The creation of the ATD and TTLM based virtual prototype approximately required three months.
Thereby, the implementation effort needed for the creation of the functionality is only reduced
slightly, whereas the implementation effort for the creation of the structural code is reduced
considerably. The slight effort reduction concerning the implementation of the functionality arises
from the different data transfer technique used in ATD compared to the module adapter approach.
The module adapters are designed to split up the arbitrarily sized application packets sent by the
initiator into multiple bus words, which are successively transferred and eventually need to be
merged on target-side. In contrast, in ATD the application packets are not split up automatically,
superseding the merging of the received data on target-side.

The implementation effort reduction concerning the structural code arises by the usage of the
TTLM generator. As shown in Table 5.1, the structural aspects of the Night Vision system
including the memory maps and the interconnection of all modules are described using a set of
1145 IP-XACT tags. Using the TTLM code generator, the IP-XACT descriptions are transformed
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into 2392 logical SLoC' of structural SystemC, TTLM, SCML2, and ATD code. Considering the
overall logical SLoC of 5110, this results in a fraction of 46.8% of generated code.

implementation characteristic

ATD and TTLM based

preexisting virtual

virtual prototype prototype
number of IP-XACT tags 1145 n.a.
logical SLoC of structural code 2392 n.a.
overall logical SLoC 5110 6961
fraction of generated code 46.8% 0%

overall implementation duration

~ 3 months

~ 6 months [Ban09|

Table 5.1.: Comparison of the implementation characteristics of the virtual prototypes of the Night Vision
system.

Besides the virtual prototype of the Night Vision system, the TTLM generator has been success-
fully used for various other virtual prototypes. The number of IP-XACT tags required for the
specification of the structural aspects of these virtual prototypes varied from a few hundred up to
approximately 38.000 IP-XACT tags.

5.3.2. Simulation performance improvement

In this section, the simulation performance improvement of the virtual prototype of the Night
Vision system achievable by ATD is investigated?. As shown in Section 3.7, the simulation per-
formance improvement achievable by using ATD depends on various factors. One of these factors
is the value of the SRAuantum, Which specifies the maximum number of pending SRAs per simu-
lation thread before synchronization is forced. To achieve the highest simulation performance the
SRA uantum value has been set to three.

Besides the freely selectable value of the SRAguantum, there are other factors which depend on
the characteristics of the implemented virtual prototype like the size of the resulting SRA matrix
and the respective heights of the SRA trees. Furthermore, the size of the application packets
registered by the threads has a significant impact on the simulation performance. According to the
ATD semantics, application packets might only be disaggregated into multiple smaller application
packets but multiple application packets are not aggregated to one larger application packet.
Thus, the size of the application packets registered by the threads determines the maximum size
of the application packets processed as a whole. In turn, this limits the achievable simulation
speed up compared to the cycle accurate simulation of the preexisting virtual prototype.

In the following, the simulation runtime for each of the five processing steps of the Night Vision
system is analyzed. To increase the accuracy of the simulation time measurement, the host CPU
intensive emulation of the display module using a graphics library is deactivated. According to
Figure 5.3, the transfer of each frame from the camera to the FPGA memory partially overlaps

'In this work, the logical Source Lines of Code (SLoC) have been quantified using the Metriculator Eclipse
plugin [met13].
2Both virtual prototypes have been executed using the simulation host characteristics shown in Appendix C.
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with the execution of the Night Vision algorithms of the previous frame. Similarly, the transfer
of the current frame from the FPGA memory to the display partially overlaps with the execution
of the Night Vision algorithms of the successive frame. To temporarily eliminate the interference
between the execution of the Night Vision algorithms for one frame and the data transfers of the
adjacent frames, the inter-frame overlapping is removed by increasing the time interval between
two consecutive frames tprame rate to a value larger than tprame processing- Figure 5.6 (a) com-
pares the simulation runtime (wall clock time) required by the preexisting virtual prototype and
the ATD and TTLM based virtual prototype for each of the Night Vision processing steps. Due
to the still occurring intra-frame overlapping caused by the temporally overlapping data transfers
from and to the FPGA memory, the sum of the simulation runtimes (wall clock time) required
for each processing step is larger than the overall simulation runtime (wall clock time) required
for the processing of a single frame. Figure 5.6 (b) shows the speed up factor achievable by ATD
compared to the cycle accurate implementation of the preexisting virtual prototype.

The raw image frame delivered by the camera consists of 640 x 480 pixels where each pixel
is represented by two bytes. This results in 153600 words having 32 bits each which are to be
transferred to the FPGA memory. This transfer takes place using data blocks comprising 32 FPGA
bus words. The execution of this procedure takes 2.78s3 using the preexisting virtual prototype
and 0.04s using the ATD and TTLM based virtual prototype. The significant difference between
these durations results from the fact, that in case of the preexisting virtual prototype each word of
each 32 word sized data block is transferred separately entailing various context switches between
the threads contained in the involved module adapters. In case of the ATD and T'TLM based
virtual prototype, each data block is treated as one preemptable SRA. Especially during the time
before the frame transfer from the FPGA memory to the PowerPC memory is started, there is no
further independent course of action. Thus, the time budget for the transfer of each data block is
not limited and each data block is transferred en bloc. After the frame transfer from the FPGA
memory to the PowerPC memory has been started, access conflicts to the FPGA bus occur. These
conflicts have to be resolved by the TDSem integrated in the FPGA bus. The ATD based transfer
of the raw image frame from the camera to the FPGA memory results in a simulation runtime
reduction factor of 63.1 compared to the cycle accurate implementation used in the preexisting
virtual prototype.

The DMA based transfer of the raw image and the results of the basic Night Vision video algo-
rithms from the FPGA memory to the PowerPC memory takes place using data blocks consisting
of 128 bytes each. This results in a data block size of 32 words on the 32 bit wide FPGA and
PCI buses and a data block size of 16 words on the 64 bit wide XLB bus. The comparison of the
durations resulting from the execution of this procedure using the preexisting virtual prototype
(2.39s) and the ATD and TTLM based virtual prototype (0.04s) results in a simulation runtime
reduction factor of 56.9.

The execution of the Night Vision algorithms requires the longest simulation time. Using the
preexisting virtual prototype, the execution of the Night Vision algorithms takes 7.38s in contrast

n this work, simulation runtimes have been quantified using clock_gettime (CLOCK_PROCESS_CPUTIME_ID,
..) |get14], which allows for high resolution CPU time measurement. To mitigate the effect of simulation
runtime deviations between multiple executions of the same simulation, the average simulation runtime of ten
simulation runs are presented.
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Figure 5.6.: Simulation performance comparison without inter-frame overlapping.
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to 2.05s required by the ATD and TTLM based virtual prototype. During this phase, the majority
of transactions takes place between the PowerPC core and the data cache. As each of the data
cache accesses caused by the Night Vision software comprises a single word only, the simulation
runtime reduction achievable by ATD only results from the temporal decoupled execution of the
thread contained in the PowerPC core module. Besides the transactions between the PowerPC
core and the data cache, communication takes place between the data cache and the PowerPC
memory in case of a data cache miss. Each cache line of the data cache contains 64 bytes of
data. In combination with the 64 bit data bus width of the XLB bus, loading or storing a data
cache line leads to eight word sized burst transfers between the data cache and the PowerPC
memory. Similar to the burst transfers occurring during the frame transfer from the camera to
the FPGA memory and from the FPGA memory to the PowerPC memory, the simulation of the
burst transfers resulting from the data cache misses can be accelerated by ATD. Despite of the
low average transaction size during the execution of the Night Vision algorithms, the simulation
runtime reduction factor is still 3.6.

Similar to the transfer of the raw image from the FPGA memory to the PowerPC memory, the
DMA based transfer of the enhanced image from the PowerPC memory to the FPGA memory
takes place using a DMA buffer size of 128 bytes. The enhanced image consists of 800 x 400 pixels
where each pixel is represented by one byte instead of two bytes as it is the case for the raw image.
Therefore, only 40000 words on the XLB bus and 80000 words on the FPGA and PCI buses need
to be transferred. The DMA buffer size of 128 bytes results in a data block size of 32 words on the
FPGA and PCI buses and 16 words on the XLB bus. Due to the lower amount of data which is
to be transferred, the required simulation time is lower than the simulation time required for the
transfer of the raw image. This step takes 0.89s using the preexisting virtual prototype and 0.02s
using the ATD and TTLM based virtual prototype, resulting in a simulation runtime reduction
factor of 37.3.

The transfer of the enhanced image from the FPGA memory to the display via the FPGA bus
and the display link module takes place using data blocks consisting of 64 bytes resulting in burst
transfers of 16 FPGA bus words each. This transfer requires 0.4s of simulation runtime using
the preexisting virtual prototype and 0.02s using the ATD and TTLM based virtual prototype.
Similar to the simulation runtime reduction of the other data transfer intensive Night Vision steps,
the simulation runtime reduction factor of this last step is high (19.9).

Overall, the simulation of the processing of a single frame without the interference caused by the
inter-frame overlapping using the preexisting virtual prototype requires 11.5s (wall clock time).
In contrast, the simulation of the processing of the same frame using the ATD and TTLM based
virtual prototype requires 2.14s (wall clock time) only. Thus, the overall simulation runtime
reduction factor is 5.4. This simulation speed up results from the high acceleration of block based
data transfers as well as the temporal decoupled execution of single word transactions achievable

by ATD.

After comparing the simulation performance of the virtual prototypes of the Night Vision at frame
repetition times longer than the frame processing time, the effects of the inter-frame overlapping
are investigated. Therefore, the offset between the start times of the frame transfers of adjacent
frames from the NIR camera to the FPGA memory tFrame_rate 15 Teset to its original value.
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Figure 5.7.: Simulation performance comparison taking inter-frame overlapping into account.
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Figure 5.7 (a) shows the simulation runtimes per processing step in case the inter-frame overlapping
occurs. Figure 5.7 (b) shows the resulting simulation runtime reduction factors.

Due to the resulting pipelined frame processing, the transfer of the current frame from the camera
to the FPGA memory and the transfer from the FPGA memory to the display in parts temporally
overlaps with the execution of the Night Vision algorithms of the adjacent frames on the PowerPC
core. Therefore, the simulation time required for the concurrently executed processing of the Night
Vision algorithms of the adjacent frames is partially contained in the measured simulation time
required for the transfers of the current frame.

Besides the influence of the concurrent execution of the Night Vision algorithms of the adjacent
frames, the pipelined frame processing caused by the inter-frame overlapping has another effect on
the simulation performance. According to Section 3.6, the calculation of the time budget requires
the consideration of the time of the next SystemC event and the start times of any pending SRAs
to allow for full cycle accuracy. In case of the Night Vision prototype, the implementation of the
shared resource allows for the preemption of the current SRA. Therefore, many unnecessary SRA
execution interruptions occur caused by SRAs and events resulting from the processing of another
frame.

The temporal overlapping of the execution of the Night Vision algorithms with the data transfers
from the camera to the FPGA memory and from the FPGA memory to the display of adjacent
frames as well as the reduction of the average time budget available for the transfer of the data
blocks during those frame transfers, have a negative impact on the simulation performance. The
simulation runtime required for the transfer from the camera to the FPGA memory rises from
2.78s to 6.78s for the preexisting virtual prototype and from 0.04s to 0.76s for the TTLM and
ATD based virtual prototype. For the transfer from the FPGA memory to the display, the
simulation runtimes are increased from 0.4s to 7.25s and from 0.02s to 1.64s, respectively. The
simulation runtime reduction factors of the frame transfers are reduced from 63.1 to 8.9 and from
19.9 to 4.4, respectively. The overall simulation runtime per frame rises from 11.5s to 23.36s for
the preexisting virtual prototype and from 2.14s to 4.64s for the ATD and TTLM based virtual
prototype. The overall simulation runtime reduction factor is therefore reduced from 5.4 to 5.0.
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Due to the exponential growth of the number of transistors which can be integrated into a single
chip [Moo65] and in consequence the rising complexity of today’s electronic systems, the devel-
opment of electronic systems becomes more and more challenging. This requires the employment
of new efficiency-raising design methods like virtual prototyping. The creation of a virtual proto-
type requires finding a suitable trade-off between partially contradictory optimization objectives
including simulation timing accuracy, simulation performance, and modeling efficiency.

6.1. Conclusion and Discussion

In this work, a framework for the efficient creation of accurate and high-performance virtual
prototypes has been presented. This framework consists of two techniques denoted as Advanced
Temporal Decoupling (ATD) and Transparent Transaction Level Modeling (TTLM). The ATD
simulation methodology presented in Chapter 3 allows for a cycle accurate shared resource access
management in the context of temporal decoupling. As shown in Sections 3.7 and 5.3.2, the
simulation performance achievable by an ATD based virtual prototype is significantly higher than
the simulation performance achievable by a virtual prototype based on conventional cycle accurate
TLM. To achieve this simulation performance advantage, the ATD processing strategy for shared
resource accesses fundamentally differs from the shared resource access processing strategy used
in conventional cycle accurate TLM models. In conventional cycle accurate TLM models, shared
resource accesses are typically implemented using sequences of atomic and single bus word sized
transactions. The atomic transactions are successively arbitrated and processed by the shared
resource allowing for the preemption of the shared resource accesses at atomic transaction borders.
In ATD, the shared resource accesses do not need to be divided into atomic transactions. Instead,
the shared resource accesses are registered at temporal decoupled semaphores. The temporal
decoupled semaphores exploit the look-ahead arising from the temporal decoupled simulation
to calculate the time budget available for the processing of the shared resource access before
preemption occurs. In case the time required to entirely process a shared resource access exceeds
the time budget, the time budget can be used to implement cycle accurate preemption. As a result
of ATD, the size of the processed shared resource access fragments is as small as needed to obtain
cycle accurate simulation results and as large as possible to allow for high simulation performance.
Thereby, ATD provides comprehensive support of shared resource and shared resource access
properties including the preemption of shared resource accesses, synchronous and asynchronous
shared resource accesses, and inter-resource dependencies.

The TTLM design flow presented in Chapter 4 allows for the efficient creation of virtual proto-
types. This design flow consists of a modeling library providing a set of convenience functions and
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an accompanying code generator. The TTLM library provides means for encapsulating SystemC,
TLM-2.0, and SCML2 specific communication code. Additionally, the TTLM library provides a
set of programming interfaces for the integration of the ATD simulation technique, for runtime
configuration, and for runtime information extraction. The employment of these programming
interfaces allows the designer to focus on the implementation of the functionality of the virtual
prototype without requiring SystemC expert knowledge. The TTLM generator is capable of gen-
erating the structural code of the virtual prototype including the register architecture and the
top-level netlist. The required information is retrieved from a set of IP-XACT models represent-
ing a formal specification of the structural aspects of the virtual prototype. The resulting model
is compliant to the SystemC standard in general and to the SystemC TLM-2.0 standard in par-
ticular [IEE11]. Therefore, they can be used in combination with models implemented without
ATD or TTLM.

Similar to the classification of the conventional TLM modeling styles shown in Figure 2.9 on
page 23, the classification of the ATD and TTLM based virtual prototypes is shown in Figure 6.1.
As the actual values for the shown metrics heavily depend on the characteristics of the modeled
system, only a qualitative classification is given.

Timing

Accuracy

TLM-CA
TLM-AT
TLM-LT
TLM-LT + TD
——ATD & TTLM

Modeling Simulation
Efficiency Performance

Figure 6.1.: Qualitative comparison of ATD and TTLM with conventional TLM modeling styles.

The simulation timing accuracy of ATD enabled models exceeds the simulation timing accuracy
achievable by approximately-timed (TLM-AT), loosely-timed (TLM-LT), and temporal decoupled
loosely-timed TLM models (TLM-LT + TD) and is equal to the timing accuracy achievable by
cycle accurate TLM models (TLM-CA). Depending on the characteristics of the modeled system,
the simulation performance of ATD enabled models can be significantly higher than the simulation
performance achievable by TLM-CA. However, ATD enabled models in most cases will be slower
than TLM-LT and TLM-LT + TD models. Due to the implementation effort reduction achievable
by the incorporation of the TTLM library and the TTLM generator, the modeling efficiency can
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be raised substantially regardless to which TLM modeling style it is compared to.

Besides the benefits of ATD and TTLM compared to conventional TLM modeling styles, there
are some challenges and limitations when incorporating these methods. The usage of the TTLM
generator and the virtual prototype configuration API provided by the TTLM library requires
knowledge about IP-XACT which allows for the formal specification of structural aspects of digital
hardware.

The application of ATD to legacy models requires code changes. For instance, the syntax and
semantic of the executeSRA (..) function required for the implementation of ATD enabled
shared resources differs from the syntax and semantic of the (n)b_transport (..) function
used in conventional TLM modeling styles. Especially it is required to incorporate the time budget
calculated by ATD to implement the preemption of shared resource accesses. Besides the changes
concerning the interfaces used for the implementation of shared resource accesses, ATD relies on
the existence of the advance time notification interface which has to be provided by the underlying
SystemC kernel. The advance time notification is used for the separation of the temporal decoupled
thread execution phase and the transaction processing phase. Although there is a non-intrusive
method to implement the advance time notification interface (see Appendix A.1), the SystemC
kernel needs to be adapted in order to achieve the best simulation performance when using ATD.

As shown in Sections 3.7 and 5.3.2, the simulation performance improvement achievable by ATD
depends on the characteristics of the modeled system. To achieve a high simulation performance
when using ATD, the size of the shared resource accesses requested by an initiator has to be
maximized. The larger the size of the shared resource accesses, the larger the size of the shared
resource access fragments which can be executed en bloc in case sufficient time budget is available.
If the size of the shared resource accesses is low, there is no possibility to process large shared
resource access fragments en bloc and the simulation performance will only slightly outrun the
simulation performance achievable by a conventional cycle accurate TLM model. The differences
of the simulation runtime reduction between the processing of the Night Vision algorithms and
the data transfer centric steps shown in Figure 5.6 (b) on page 99 illustrates the impact of a
low shared resource access size on the simulation performance. However, the achievement of
cycle accurate simulation results is not compromised by the size of the shared resource accesses
requested by the initiator. Instead, cycle accuracy is guaranteed by ATD without any additional
user implementation required.

Besides the impact of a low shared resource access size, the simulation performance achievable by
ATD depends on the time budget available for the processing of pending shared resource accesses.
The time budget calculation mechanism presented in Section 3.6.3 is restrictive. As shown in
Figure 3.18, the restrictive time budget calculation policy even allows for the cycle accurate
simulation of preemptions resulting from the future execution of pending SRAs on different shared
resources. However, the restrictive time budget calculation policy increases the number of SRA
processing interruptions. In case the later execution of pending SRAs does not lead to the creation
of SRAs which will preempt the currently executed SRA, these interruptions are unnecessary. Even
though these unnecessary interruptions of the SRA processing have no impact on the simulation
timing accuracy, they have a negative impact on the simulation performance.
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6.2. Future Work

To overcome the negative simulation performance impact of the restrictive ATD time budget
calculation algorithm presented in Section 3.6.3, further application specific knowledge could be
taken into account during the calculation of the time budget. Considering the example shown
in Figure 3.18 on page 57, it might be the case that the creation of a SRA during the future
execution of a pending SRA which will preempt the currently executed SRA is precluded. As
shown in the SRA matrix of the ATD and TTLM based virtual prototype of the Night Vision
system (see Figure 5.5 on page 96), this preclusion can result from architectural limitations like
the absence of appropriate communication channels. One possible extension of the ATD concept
would be to automatically take these architectural limitations into account during the calculation
of the time budget by ignoring the start times of pending SRAs which definitely can not lead to
the preemption of the currently executed SRA.

Besides the possible influence of the architectural aspects on the time budget calculation, appli-
cation specific characteristics leading to an increased time budget could be taken into account.
Therefore, ATD might be extended by an additional API allowing the designer to provide addi-
tional information about the characteristics of the available shared resources. For example, the
APT might allow the classification of the shared resources into reacting and non-reacting shared
resources. Accesses to reacting shared resources might lead to cascaded shared resource accesses,
whereas accesses to non-reacting shared resources will not lead to cascaded shared resource accesses
and therefore do not need to be considered during the time budget calculation. In addition, the
API might allow the classification of the shared resources into preemptable and non-preemptable
shared resources. In case SRA, ¢z 18 to be executed on a non-preemptable shared resource, the
time budget calculation might be omitted.

A further simulation performance improvement might be achieved by the parallelization of the
execution of the simulation threads during the temporal decoupled thread execution phase using
one of the techniques presented in the first paragraph of Section 2.4.5.1. As the set of synchro-
nization points defined for the ATD based thread execution semantics (see Table 3.1 on page 37)
is a subset of the synchronization points required in conventional TLM models, ATD reduces the
amount of required synchronization compared to conventional TLM models and therefore allows
for a more efficient parallel execution of the simulation threads.
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A.1. Advance Time Notification Interface

ATD depends on the invocation of the AdvanceTimeNotification_if by the underlying
simulator. This interface comprises following abstract function

virtual void onAdvanceTime (const sc_time &timeOfNextEvent) = 0;

There are two alternative implementations for the invocation of this interface. The “delta-cycle
hopping” implementation is shown in the following listing

// modules constructor:
SC_THREAD (AdvanceTimeNotifier) ;

// delta-cycle hopping thread:
void AdvanceTimeNotfier (void)
{
while (true) {
if ((!sc_pending activity_at_current_time()) &&
(sc_time_to_pending_ activity () > 0)) {
onAdvanceTime (sc_time_to_pending_activity()+sc_time_stamp());
wait (sc_time_to_pending_activity())
} else ({
wait (SC_ZERO_TIME) ;

This implementation incorporates an SC_THREAD which is resumed during each delta cycle and
checks for pending activity at current simulation time. If there is pending activity at current
simulation time the thread reschedules itself to the next delta cycle. If there is no pending activity
at current simulation time, it invokes the Advance Time Notification Interface and waits until time
of next event. Using this approach, the SystemC library remains unchanged. Unfortunately, there
are some shortcomings of the “delta-cycle hopping” approach:

e it is very inefficient as it incorporates one additional context switch per delta cycle
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e the number of AdvanceTimeNotifier threads is limited to one per simulation

Alternatively, the invocation of the Advance Time Notification Interface can be integrated into
the SystemC library. This is done by replacing

if( m_runnable->is_empty () ) {
// no more runnable processes
break;

in notification phase of sc_simcontext: :crunch (bool) function by

if ( m_runnable->is_empty () ) {
// no more runnable processes
onAdvanceTime (sc_time_to_pending_activity()+sc_time_stamp());

if (( m_runnable->is_empty () ) && (m_delta_events.size() == 0)) {
// no threads have become runable during onAdvanceTime call
break;
}
}
Additionally, thedo .. while(..) loopattheend of sc_simcontext::simulate (const

sc_times&) function has to be removed.

A.2. Get Parameter Interface

template <class TYPE>
bool Config::getParameter (const std::string instanceName, const
std::string parameterName, TYPE &value);

The getParameter interface is part of the TTLM configuration API and is used to obtain
parameter values from an external data source. The instanceName parameter specifies the
name of the netlist instance which provides the parameter defined by parameterName. The
value parameter contains the parameter value as obtained from the external data source.
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B. Code Listings

B.1. ATD Benchmark

For simulation host characteristics see Appendix C. To reduce the printed code size and to elimi-
nate the processing overhead of the TLM sockets, the decomposition into multiple modules con-
nected by TLM sockets has been omitted.

Conventional TLM-CA Implementation of Simple Example System

#define PROGRAMM_CYCLES 20000000
#define CLOCK_PERIOD sc_core::sc_time (50, sc_core::SC_NS)

class Access {

public:
tlm::tlm_generic_payload xdata;
int priority;

bi

class TLM_CA : public sc_core::sc_module {
public:
SC_HAS_PROCESS (TLM_CA) ;
TLM_CA (sc_module_name mn, int wordsPerAppPacket) : sc_module (mn) {
m_noOfWordsPerApplicationPacket = wordsPerAppPacket;
SC_THREAD (thread0) ;
SC_THREAD (threadl) ;
SC_THREAD (arbitrate);
p_payload0 = new tlm::tlm_generic_payload;
p_payloadl = new tlm::tlm_generic_payload;
buffer0 0;
bufferl = 0;
dataCounter0 =

~

dataCounterl

~.

void threadO () {
for (int cycle = 0; cycle < PROGRAMM_CYCLES; cycle++) {

sc_core::wait (2«CLOCK_PERIOD); // initial delay

for (unsigned int i = 0; i < m_noOfWordsPerApplicationPacket; i++) {
buffer0 = dataSend0++;
p_payloadO->set_data_length(1l);
p_payloadO->set_data_ptr ( (unsigned char x)&buffer0);
accessResourcebyThread0l (p_payload0,0);

}

if (m_noOfWordsPerApplicationPacket < 3) {
sc_core: :wait (2«CLOCK_PERIOD) ;
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sc_core::wait ();

void threadl () {

for (int cycle = 0; cycle < PROGRAMM_CYCLES; cycle++)
sc_core::wait (4xCLOCK_PERIOD); //initial delay

{

for (unsigned int i = 0; i < m_noOfWordsPerApplicationPacket;

bufferl=dataSendl++;
p_payloadl->set_data_length(1l);

p_payloadl->set_data_ptr((unsigned char x)é&bufferl);

accessResourcebyThreadl (p_payloadl, 1) ;

}
if (m_noOfWordsPerApplicationPacket >= 3) {

i++)

{

sc_core::wait ((m_noOfWordsPerApplicationPacket - 2)*CLOCK_PERIOD);

}

sc_core::wait ();

void arbitrate() {

boost::container::1ist<Access *>::iterator it;
while (true) {
sc_core::wait (m_receivedTransaction_ev);

while (accessList.size () != 0) {
Access xhighestPrioAccess = accessList.front ();
for (it = accesslist.begin(); it != accessList.end(); it++)

if (highestPrioAccess—>priority < (xxit) .priority)

highestPrioAccess = (*it);
}
//mimic work
if (highestPrioAccess->priority == 1) {

{

memcpy (&dataRcvl, highestPrioAccess—>data->get_data_ptr (), sizeof (unsigned long long));

m_threadlGranted_ev.notify();
} else {

memcpy (&dataRcv0, highestPrioAccess—>data->get_data_ptr (), sizeof (unsigned long long));

m_thread0Granted_ev.notify();
}
//mimic duration of the above data processing
sc_core: :wait (CLOCK_PERIOD) ;
accessList.remove (highestPrioAccess) ;

void accessResourcebyThreadO (tlm_generic_payload * data,

Access xnewAccess = new Access;
newAccess->data = data;
newAccess->priority = prio;
accessList.push_back (newAccess) ;
m_receivedTransaction_ev.notify();
sc_core::wait (m_threadOGranted_ev) ;

void accessResourcebyThreadl (tlm_generic_payload * data,

Access *newAccess = new Access;
newAccess—->data = data;
newAccess->priority = prio;
accessList.push_back (newAccess) ;
m_receivedTransaction_ev.notify();
sc_core::wait (m_threadlGranted_ev) ;
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101 boost::container::list<Access %> accessList;
102 unsigned int m_noOfWordsPerApplicationPacket;
103 sc_core::sc_event m_receivedTransaction_ev;
104 sc_core::sc_event m_threadOGranted_ev;

105 sc_core::sc_event m_threadlGranted_ev;

106 sc_core::sc_event m_programmCycleFinished_ev;
107 tlm::tlm_generic_payload *p_payload0;

108 tlm::tlm_generic_payload *p_payloadl;

109 unsigned long long buffer0;
110 unsigned long long bufferl;

111 unsigned long long dataSend0;
112 unsigned long long dataSendl;
113 unsigned long long dataRcv0;
114 unsigned long long dataRcvl;
115 };

Listing B.1: TLM-CA implementation of the simple example system.

ATD based Implementation of Simple Example System

1 #define PROGRAMM_CYCLES 20000000

2 #define CLOCK_PERIOD sc_core::sc_time (50, sc_core::SC_NS)

3

4 class ATD : public ttlm::sc_ttlm module ({

5 public:

6 typedef unsigned long long BUFFER_t[1000];

7

8 SC_HAS_PROCESS (ATD) ;

9 ATD (sc_core::sc_module_name mn, unsigned int SRAQuantum, unsigned int
noOfWordsPerApplicationPacket) : sc_ttlm_module (mn), m_exec(this), m_TDSem("TDSem",
&m_exec) {

10 SC_THREAD (thread0) ;

11 SC_THREAD (threadl) ;

12 m_TDSem.setClockPeriod (CLOCK_PERIOD) ;

13 m_noOfWordsPerApplicationPacket = noOfWordsPerApplicationPacket;

14 p_payloadPool = new tlm::tlm_generic_payload[2 * m_SRAQuantum];

15 p_bufferPool = new BUFFER_t[2 * m_SRAQuantum];

16 dataCounter0 = 0;

17 dataCounterl = 0;

18 }

19

20 void threadO () {

21 for (int cycle = 0 ; cycle < PROGRAMM_CYCLES; cycle++) {

22 tlm::tlm_generic_payload *p_payload = &p_payloadPool[cycle % m_SRAQuantum];

23 unsigned long long *p_buffer = p_bufferPool[cycle % m_SRAQuantum];

24 for (unsigned int i = 0; i < m_noOfWordsPerApplicationPacket; i++) {

25 p_buffer[i] = dataCounterO0++;

26 }

27 p_payload->set_data_ptr ((unsigned char «)p_buffer);

28 p_payload->set_data_length (sizeof (unsigned long long) * m_noOfWordsPerApplicationPacket);

29 // register access starting 2 clock periods later and advance local time of thread0:

30 m_TDSem.registerAccess (2xCLOCK_PERIOD, 0,p_payload);

31 if (m_noOfWordsPerApplicationPacket < 3) {

32 wait (2xCLOCK_PERIOD) ;

33 }

34 }

35 }

36

37 void threadl () {
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for (int cycle = 0 ; cycle < PROGRAMM_CYCLES; cycle++) {

o

tlm::tlm_generic_payload xp_payload = &p_payloadPool[cycle % m_SRAQuantum + m_SRAQuantum];
unsigned long long *p_buffer = p_bufferPool[cycle % m_SRAQuantum + m_SRAQuantum];
for (unsigned int i = 0; i < m_noOfWordsPerApplicationPacket; i++) {

p_buffer[i] = dataCounterl++;
}
p_payload->set_data_ptr ((unsigned char x)p_buffer);
p_payload->set_data_length (sizeof (unsigned long long) * m_noOfWordsPerApplicationPacket);
// register access starting 4 clock periods later and advance local time of threadl:
m_TDSem.registerAccess (4xCLOCK_PERIOD, 1, p_payload);
if (m_noOfWordsPerApplicationPacket >= 3) {

wait (CLOCK_PERIOD+ (m_noOfWordsPerApplicationPacket - 2));

template <class T_userData_t>

class PreemptiveExecutor : public ttlm::SRAExecutor_if<T_userData_t> {
public:

PreemptiveExecutor (ATD % parent) {

Vi

mp_parent = parent;

ttlm::executeSRAReturnValue_t executeSRA (ttlm::SRA<T_userData_t> *pSRA, sc_core::sc_time

}

&duration, const sc_core::sc_time &timeBudget) {
tlm::tlm _generic_payload xp_payload = (tlm::tlm_generic_payload =*)pSRA->getUserDatal();
duration = CLOCK_PERIOD * ceil (p_payload->get_data_length() / sizeof (unsigned long long));
unsigned int processedWords = ceil (min (timeBudget.value (), duration.value()) /

CLOCK_PERIOD.value());

//mimic work...
if (pSRA->getPriority() == 0) {

memcpy (buffer0, p_payload->get_data_ptr(),processedWords x sizeof (unsigned long long));
} else ({

memcpy (bufferl,p_payload->get_data_ptr(),processedWords x sizeof (unsigned long long));
}
if (duration > timeBudget) {

duration = timeBudget;

p_payload->set_data_length (p_payload->get_data_length() - processedWords x

sizeof (unsigned long long));
p_payload->set_data_ptr ((unsigned char ) ( (unsigned long long
*)p_payload->get_data_ptr () + processedWords));

return ttlm::SRA_EXECUTION_PREEMPTED;
}
return ttlm::SRA_EXECUTION_OK;

BUFFER_t buffer0;
BUFFER_t bufferl;
ATD* mp_parent;

PreemptiveExecutor<tlm::tlm_generic_payload *> m_exec;
ttlm::TDSem<tlm::tlm_generic_payload *> m_TDSem;
unsigned int m_noOfWordsPerApplicationPacket;
unsigned int m_SRAQuantum;

unsigned long long dataCounter0;

unsigned long long dataCounterl;
tlm::tlm_generic_payload xp_payloadPool;

BUFFER_t *p_bufferPool;

Listing B.2: ATD based implementation of the simple example system.
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B.2. Remote Variable Map Listings

1 // registerl layout
2 typedef volatile struct {
3 u32_t bitfieldl : bitfieldl_width ;
4 u32_t bitfield2 : bitfield2 _width ;
5 e
6 } registerl_st;
7
8 // union type allowing bit field and entire register accesses
9 typedef volatile union {
10 u32_t as_u32; // access entire register
11 registerl_st as_s; // access via bit fields
12} registerl_ut;
13
14 // further register structs and unions here
15
16 // memory map layout
17 typedef volatile struct ({
18 registerl_ut registerl_u;
19 register2_ut register2_u;
20 C.
21 '} componentName_MemMap_st;
Listing B.3: C type definition allowing the structured memory map access in embedded software or ISS-
based simulations of driver software.
1 // registerl layout
2 class RemRegisterl_ut {
3 private:
4 registerl_ut m_value; // see see Listing B.3 for C register type declaration
5 sc_dt::uint64 m_address; // register address
6 ttlm::MasterSocket<32> xmp_sock; // master socket to be used to access the component
7
8 protected:
9 struct RemRegisterl_ut_as_s { // bitfield declarations: similar to TTLM remote variables
10 UnitizedMember<RemRegisterl_ut, u32_t> bitfieldl;
11 UnitizedMember<RemRegisterl_ ut, u32_t> bitfield2;
12 e
13 bi
14
15 public:
16 UnitizedMember<RemRegisterl_ut, u32_t> as_u32;
17 RemRegisterl_ut_as_s as_s;
18

19 protected:
20 // as_u32

21 inline void read_as_u32 (u32_t& value) {

22 mp_sock->read (m_address, &m_value.as_u32);
23 value = m_value.as_u32;

24 }

25 inline void write_as_u32 (const u32_t& value) {
26 m_value.as_u32 = value;

27 mp_sock->write (m_address, &m_value.as_u32);
28 }

29

30 // as_s.bitfieldl

31 inline void read_as_s_bitfieldl (u32_t& value) {
32 mp_sock->read (m_address, &m_value.as_u32);
33 value = m_value.as_s.bitfieldl;
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}

inline void write_as_s_bitfieldl (const u32_t& value) {
m_value.as_s.bitfieldl = value;
mp_sock->write (m_address, &m_value.as_u32);

// as_s.bitfield2

inline void read_as_s_bitfield2 (u32_t& value) {
mp_sock->read (m_address, &m_value.as_u32);
value = m_value.as_s.bitfield2;

}

inline void write_as_s_bitfield2 (const u32_t& value) {
m_value.as_s.bitfield2 = value;
mp_sock->write (m_address, &m_value.as_u32);

public:
// constructor takes pointer to ttlm::MasterSocket and address of the register
inline RemRegisterl_ut (ttlm::MasterSocket<32> *p_sock, sc_dt::uint64 address) {
as_u32.registerReadWWrite (this, &RemRegisterl_ut::read_as_u32,
&RemRegisterl_ut::write_as_u32);
as_s.bitfieldl.registerReadWrite (this, &RemRegisterl_ut::read_as_s_bitfieldl,
&RemRegisterl_ut::write_as_s_bitfieldl);
as_s.bitfield2.registerReadWrite (this, &RemRegisterl_ut::read_as_s_bitfield2,
&RemRegisterl_ut::write_as_s_bitfield2);

mp_sock = p_sock;
m_address = address;
}
bi

// further register layouts here

// remote variable map layout

class componentName_RemoteVariableMap_st {

public:
// remote register class instances:
RemRegisterl_ut registerl_u;
RemRegister2_ut register2_u;

// constructor takes pointer to ttlm::MasterSocket and base address of the component
componentName_RemoteVariableMap_st (ttlm::MasterSocket<32> xp_sock, sc_dt::uint64 baseAddress)

registerl_u(p_sock, baseAddress + registerl_offset)
register2_u(p_sock, baseAddress + register2 offset)

{}
bi

Listing B.4: UnitizedMember class is based on the unitized approach [KBR09] and allows the registration
of read(..) and write (..) functions (see lines 54 to 57) which are called in case the
UnitizedMember object is accessed.]Remote variable map accompanying plain C type
definition allowing structured memory map access in host-compiled execution of driver
software in the context of virtual prototyping. The UnitizedMember class is based on
the unitized approach [KBR09] and allows the registration of read(..) and write(..)
functions (see lines 54 to 57) which are called in case the UnitizedMember object is
accessed.
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B.3. TTLM Example

<?xml version="1.0" encoding="UTF-8"?>
<spirit:component xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd">
<spirit:vendor>Robert_Bosch_GmbH</spirit:vendor>
<spirit:library>demo</spirit:library>
<spirit:name>Timer</spirit:name>
<spirit:version>1.0</spirit:version>
<spirit:busInterfaces>
<spirit:busInterface>
<spirit:name>genericBus</spirit:name>

<spirit:busType spirit:version="1.0" spirit:library="demo" spirit:name="genericBus"

spirit:vendor="Robert_Bosch_GmbH"/>
<spirit:abstractionType spirit:version="1.0" spirit:library="demo"
spirit:name="genericBus_TLMAndClock" spirit:vendor="Robert_Bosch_GmbH"/>
<spirit:slave>
<spirit:memoryMapRef spirit:memoryMapRef="MMI1"></spirit:memoryMapRef>
</spirit:slave>
</spirit:busInterface>
</spirit:busInterfaces>
<spirit:memoryMaps>
<spirit:memoryMap>
<spirit:name>MMI</spirit:name>
<spirit:addressBlock>
<spirit:name>ABI</spirit:name>
<spirit:baseAddress>0</spirit:baseAddress>
<spirit:range>4</spirit:range>
<spirit:width>32</spirit:width>
<spirit:register>
<spirit:name>currentValue</spirit:name>
<spirit:addressOffset>0</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:parameters>
<spirit:parameter>
<spirit:name>callback</spirit:name>
<spirit:value>read</spirit:value>
</spirit:parameter>
</spirit:parameters>
</spirit:register>
</spirit:addressBlock>
</spirit:memoryMap>
</spirit:memoryMaps>
</spirit:component>

Listing B.5: IP-XACT component description of the Timer module of the TTLM example.

#ifndef _ TIMER_BASE_H
#define _ TIMER_BASE_H

#include "systemc.h"

#include "tlm.h"

#include "scml2.h"

// for bit field callbacks

#include "scml2/bitfield_callback_functions.h"

#include "TTLMAdapter.h"
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#include "logging.h"

#include "timer_memory_maps.h"
#include "timer_variants.h"

using namespace sc_core;
using namespace sc_dt;
using namespace std;

lst:class Timer_base: public ttlm::sc_ttlm module {
public:

//

SC_HAS_PROCESS (Timer_base);

// constructor
Timer_base (sc_core::sc_module_name name) ;
virtual ~Timer_base();

// clock change handler
virtual void genericBus_clock_changeHandler () ;

//Communication Ports
ttlm::TargetSocket<32> genericBus_TLM_ Bus;
sc_in<sc_core::sc_time> genericBus_clock;

/ * %
* Callback function
* Started on read access to Timer__ MM1__ABl__currentValue (address 0).

*/
virtual bool Timer_ MM1__ABl__ currentValue_readCB (unsigned int& value, const unsigned ints&
byteEnables, sc_core::sc_time& delay) = 0;
protected:

// SCML2 memory regions, register, and bitfields
scml2::memory<unsigned int> Timer_ MMl _memory;
scml2::reg<unsigned int> xp_Timer_MM1__ABl__currentValue;

//SocketAdapter:
scml2::tlm2_gp_target_adapter<32> targetSocketAdaptergenericBus_TLM_Bus;
bi

#endif //___TIMER_BASE_H

Listing B.6: “timer_base.h”: header file of the timer base class. This file is completely generated by the
TTLM generator and does not need to be edited by the designer.

#include "timer_base.h"

//clock change handlers:

void Timer_base::genericBus_clock_changeHandler () {
//update TargetSocket timePerWord:
genericBus_TLM_Bus.setClockPeriod(genericBus_clock.read());

Timer_base::~Timer_base () {
delete p_Timer_ MM1__ABl__currentValue;

Timer_base::Timer_base (sc_core: :sc_module_name name)
sc_ttlm_module (name)
// Socket initialisation
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16 , genericBus_TLM_Bus ("genericBus_TLM_Bus")
17 , targetSocketAdaptergenericBus_TLM_Bus ("TargetSocketAdaptergenericBus_TLM_Bus",
genericBus_TLM_Bus)

18

19 // setup scml2 memory objects

20 , Timer_ MM1_memory ("Timer__ MM1_memory", MEM__TIMER__MM1__SIZE >> 2)

21 |

22 // register clock change handler

23 SC_METHOD (genericBus_clock_changeHandler);

24 sensitive << genericBus_clock;

25

26 // connect targetSocketAdapters to corresponding memory structure:

27 targetSocketAdaptergenericBus_TLM_Bus (Timer__ MM1_memory) ;

28

29 //setup SCML2 memory structure:

30 p_Timer_ MM1__ABl__ currentValue = new scml2::reg<unsigned
int> ("Timer__ MM1__AB1__currentValue", Timer__ MM1_memory,
REG__TIMER__MM1__AB1__CURRENTVALUE__OFFSET >> 2);

31 scml2::set_disallow_write_access (xp_Timer__ MM1__ABl__ currentValue);

32 scml2::set_read_callback (xp_Timer__MM1__ABI__currentValue,
SCML2_CALLBACK (Timer__ MM1__ABl__ currentValue_readCB), scml2::SELF_SYNCING) ;

33 1}

Listing B.7: “timer base.cpp”™ implementation file of the timer base class. This file is completely
generated by the TTLM generator and does not need to be edited by the designer.

1 /*PROTECTED REGION ID (Timer_h) ENABLED START=*/

2 #ifndef _ TIMER_H

3 {#define _ TIMER_H

4 // include base class

5 #include "timer_base.h"

6

7 class Timer: public Timer_base {

8 public:

9 SC_HAS_PROCESS (Timer);

10

11 // constructor

12 Timer (sc_core::sc_module_name name) ;

13 // Empty virtual destructor, required for some compilers

14 virtual ~Timer (void) { }

15

16 / *

17 * Callback function.

18 * Started on read access to Timer_ MM1__ _ABl__ currentValue (address 0).

19 */

20 virtual bool Timer_ MM1__ ABl__ currentValue_readCB (unsigned int& value, const unsigned intg&
byteEnables, sc_core::sc_time& delay);

21 };

22 $#endif //__TIMER_H
23 /+*PROTECTED REGION END=*/

Listing B.8: “timer.h”: header file of the timer user class. This file can be edited by the designer. Manual
changes are preserved using a protected region (see Lines 1 and 23).

1 /+*PROTECTED REGION ID(Timer_cpp) ENABLED STARTx*/

2 #include "timer.h"

3 Timer::Timer (sc_core::sc_module_name name) : Timer_base (name) {
4 )

5

6 / * %
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* Callback function.

* started on read access to Timer_ MM1__ ABl__ currentValue (address 0)

*/

bool Timer::Timer_MM1__ABl__currentValue_readCB (unsigned int& value,

const unsigned int& byteEnables, sc_core::sc_time& delay) {
SC_LOG_DEBUG (name (), "Timer__MM1__AB1__currentValue_readCB called ");
//implement functionality which is to be executed before memory access takes place

*p_Timer__MMI1__ABI___currentValue = (sc_time_stamp () + delay) / genericBus_clock.read();

//do memory access:
value = xp_Timer__ MM1__ABl__ currentValue;

//implement functionality which is to be executed after memory access took place

return true;

}

/*PROTECTED REGION END=*/

Listing B.9: “timer.cpp”: implementation file of the timer user class. The functionality implemented by

the designer is printed in italics (see Line 16). The rest of the code is generated by the
TTLM generator.

/*PROTECTED REGION ID (Testbench_cpp) ENABLED START*/
#include "testbench.h"
#include "timer_memory_maps.h"

// constructor
Testbench: :Testbench (sc_core::sc_module_name name)
Testbench_base (name) {

SC_THREAD

(run) ;

void Testbench::run() {

//implement functionality here:

int currentValue_explicit;
ttlm::RemoteVariable<32, int>

currentValue_implicit (§genericBus_TLM Bus,REG_TIMER _MMI1__ABl1___CURRENTVALUE__ OFFSET);
sc_core::sc_time clockPeriod = sc_core::sc_time(10,sc_core::SC_NS);
genericBus_clock.write (clockPeriod);

while (true) {
// explicit initiator-side communication API:
genericBus_TLM Bus.read (REG__TIMER _MMI___ABI__CURRENTVALUE__ OFFSET, &currentValue_explicit);
SC_LOG_DEBUG ("Testbench", "currentTimer value = " << currentValue_ explicit);

// implicit initiator-side communication API:

SC_LOG_DEBUG ("Testbench", "currentTimer value = " << currentValue implicit);
// non blocking wait provided by sc_ttlm_module class (TTLM timing API):
wait (10  clockPeriod);

}
wait () ;

}

/*PROTECTED REGION END=*/

Listing B.10: “testbench.cpp” implementation file of the testbench user class. The functionality

implemented by the designer is printed in italics (see Lines 13 to 26). The rest of the
code is generated by the TTLM generator.
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C. Simulation Host Characteristics

All performance measurements presented in this work have been conducted using the following
host system:

Hardware

HP 7800 workstation

2 x Intel Xeon E5620 quadcore (2,4 GHz per core, hyperthreading)
96 GB DDR3 RAM

2 x 300 GB SAS HDD (15000 rpm), HW-RAID level 0

Software

e OS: Linux 3.2.0-60-generic Ubuntu Server 12.04 LTS 64 Bit

e Compiler: GCC version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntub)

e SystemC v2.3 kernel configuration command for quick thread usage:
— 64 bit: ./configure --enable-shared=no —--disable-async-updates
— 32 bit: ./configure —--enable-shared=no --disable-async-updates

——host 1386-1linux —--build i1386-1linux —--target 1i386-linux
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Glossary

checkpoint A point in a computer program at which program state, status, or results are checked
or recorded [TEE90]

delta cycle simulation mechanism used in DES to simulate interdependent coincident simulation
events

delta event event that is to occur at the same time as the notification happens. Delta events are
processed in the following delta cycle

design flow Decomposition of the design process into a number of phases, e.g. requirements
definition, specification, architecture design, mapping, software design, hardware design,
and integration |[Kro03|

formal specification a specification written in a formal notation, often for use in proof of
correctness [IEE90].

global quantum maximum amount of simulation time after which a synchronization is forced

when using quantum keeper

host-compiled execution Technique to execute software upon a virtual prototype. In contrast
to execute the software using an ISS, the source code of the software is integrated into
the virtual prototype and compiled for the host architecture.

inbound data dependency data dependency towards the currently executed thread inhibiting
its further execution as data provided by an external resource is required.

initiator unit initiating a transaction in transaction level modeling

IP-XACT standard structure for packaging, integrating, and reusing IP within tool flows [IEE10)]

local time warp timing effect where the local simulation time of a simulation thread is greater
than the global simulation time. This might occur in temporal decoupled transaction
level simulations [IEE11]

non-atomic transaction transaction carrying data spanning multiple atomic time units

quantum keeper mechanism provided by SystemC standard to limit the offset between global
simulation time and a thread’s local simulation time to reduce the effect of simulation
errors occurring in temporal decoupled simulations [IEE11]

resume event Event exclusively associated to one thread which is used to implement synchro-
nization in ATD
rollback restore the state of a program to a state previously recorded at a checkpoint
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Glossary Glossary

SRA matrix data structure used for resource contention detection and handling. Each row of
this matrix is associated to exactly one TDSem and each column to one thread. Each cell
contains an ordered set of SRAs registered at the corresponding TDSem by the associated
thread denoted as SRA7h, TDSem; -

SRA tree rooted tree data structure used for maintaining inter SRA dependencies. There is one
SRA tree per thread and the root element of each SRA tree corresponds to one thread.

synchronization point class of thread activities comprising data dependencies. To avoid data
dependency violations, temporal decoupling has to stop at synchronization points

influencing synchronization point A synchronization point is denoted as an in-
fluencing synchronization point after the resume event of the corresponding
thread has already been notified and therefore influences the value returned by
sc_time_to_pending_activity (). The notification of the resume event takes place
during the transaction processing phase after all pending SRAs of that thread have been
processed.

non-influencing synchronization point A synchronization point is denoted as a
non-influencing synchronization point before the resume event of the correspond-
ing thread is notified and therefore does not influence the value returned by

sc_time_to_pending activity ().

target unit receiving and processing a transaction in transaction level modeling
temporal decoupling simulation technique that allows simulation threads to run ahead in simu-
lation time. Temporal decoupling can be use in SystemC TLM-2.0 loosely-timed modeling
style [IEE11]
thread A single path of execution through a program, a dynamic model, or some other represen-
tation of control flow [Kro03]
time budget amount of simulation time available for the processing of each transaction in Ad-
vanced Temporal Decoupling
TLM Transaction Level Modeling [IEE11]
approximately-timed SystemC TLM-2.0 modeling style which allows finer grained trans-
action timing modeling by introducing transaction phases [ITEE11]
loosely-timed SystemC TLM-2.0 modeling style which allows temporal decoupling. Each
transaction is modeled using a single function call [IEE11]
trace A record of the execution of a computer program, showing the sequence of instructions
executed [..] [IEE9O]
transaction logically delimited interaction occurrences between a sending unit called initiator
and a receiving unit denoted as target

virtual prototype computer-simulation model of a final product, component, or system [Gro01]

word A sequence of bits or characters that is stored, addressed, transmitted, and operated on as

a unit within a given computer [IEE90].

132



Acronyms

API Application Programming Interface
ATD Advanced Temporal Decoupling

CPU Central Processing Unit
CUDA Compute Unified Device Architecture

DES Discrete Event Simulation
DMA Direct Memory Access
DSL Domain Specific Language

ECU Electronic Control Unit
EMF Eclipse Modeling Framework

FPGA field programmable gate array
FQN fully qualified name

GPGPU General Purpose Graphic Processing Unit
GPU Graphic Processing Unit

IP Intellectual Property
ISS Instruction Set Simulator

MEI modified-exclusive-invalid
MPSoC Multi Processor System-on-Chip
MWE Modeling Workflow Engine

NIR near-infrared
OS operating system
PCI peripheral component interconnect

RTL register transfer level
RTOS Real Rime Operating System

SCML2 SystemC Modeling Library 2 [Synll]
SLoC Source Lines of Code
SR A Shared Resource Access

TDSem Temporal Decoupled Semaphore
TLM-CA TLM - Cycle Accurate [MCGO05]
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Acronyms

Acronyms

TLM-PV TLM - Programmer’s View [MCGO05]
TLM-PVT TLM - Programmer’s View with Timing [MCGO05|
TTLM Transparent Transaction Level Modeling

VLNV Vendor, Library, Name, and Version [IEE10]
VP Virtual Prototype

XLB 60X Local Bus [Fre05]
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