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Abstract

We argue that the concepts of resilience in engineering science and
robustness in mathematical optimization are strongly related. Using evac-
uation planning as an example application, we demonstrate optimization
techniques to improve solution resilience. These include a direct modelling
of the uncertainty for stochastic or robust optimization, as well as taking
multiple objective functions into account.
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1 Introduction

Resilience is a key aspect for many engineering and planning projects. De-
pending on the actual application, quite different definitions may apply. The
one which we will adapt in this paper is “the ability of a system to cope with
change” [TLO"13].

An especially dramatic change of environmental aspects occurs in human
society during man-made or natural disasters, such as terrorist attacks, floods,
hurricanes, or earthquakes. Therefore, there is an obvious need for evacua-
tion planning to increase resilience to cope with such emergencies. We consider
the field of disaster risk management (DRM) as a tool to increase resilience
in dealing with disasters. DRM is an emerging area of research with sev-
eral surveys (see, e.g., [HT01, AG06, YAMOS]) and special issues (see, e.g.,
[DGVW11, She07]) on the topic.

In this paper, we aim at giving a short introduction to different ways of
increasing the resilience using mathematical modeling and focus on the special
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case of evacuation planning. To this end, we review suitable techniques from
the field of mathematical programming, such as stochastic, robust and multiob-
jective optimization. Throughout the paper we refer to results of the research
projects REPKA and DSS-Evac-Logistic [REP14, DSS14] in which the methods
presented in this paper are put to use. The intended audience are practitioners
and planners with small background in mathematical theory.

The structure of this work is as follows: In Section 2 general modelling ap-
proaches, i.e., macro- and microscopic models and their combinations, are pre-
sented. The main part of this paper is Section 3, where we show how stochastic,
robust, and multiobjective optimization techniques can be used to increase the
resilience in evacuation planning. We conclude the discussion in Section 4.

2 Macroscopic and Microscopic Mathematical
Models

Some of the main features of resilience in the case of a disaster are preparedness
and efficient, well-designed crisis reaction measures. In both of these, math-
ematical models play a dominant role. In this section we sketch the idea of
two meta models, the macroscopic and the microscopic one, and discuss their
interdependence.

The macroscopic approach is characterized by a high level of problem ab-
straction to achieve a model that is solvable by efficient algorithms. Due to
the model simplifications and the consideration of optimal, i.e., best possible
solutions, macroscopic models are often used to produce lower bounds of objec-
tive values, e.g. the evacuation time, and to guide the evacuation planner in a
what-if analysis.

A typical aspect of many macroscopic evacuation models is to use a graph
to represent the actual street network. Figure 1 shows an example for this
process: Street crossings are represented as vertices, and streets are modeled as
edges between them. This removes aspects such as the curvature of a street. By
aggregating nodes that are close to each other (as in the case for the roundabout
in the lower right corner), the graph can be further simplified. When creating a

(a) Map data. (b) Graph model.

Figure 1: Macroscopic graph model for a part of Kaiserslautern. Map data
courtesy to OpenStreetMap.

macroscopic model, one has to carefully consider the pay-off between different



degrees of simplifications: While a highly simplified data model is tractable
by more involved optimization models, results may be meaningless, as crucial
problem aspects are neglected. If, on the other hand, a detailed data model is
used, the optimization model that can handle this data may be too simplistic
to yield satisfying results.

Microscopic models work with a smaller degree of simplification than macro-
scopic ones. In evacuation, the models are — in principle — able to include
individual properties, such as familiarity with the area from which the evac-
uation is taking place, the degree of fitness, age, etc. Obviously, the level of
detail strongly influences the time it takes to solve the resulting models. Con-
sequently, individual properties are often replaced by using distributions with
regard to the individual properties (e.g. age distributions of the group of evac-
uees). The method of choice for macroscopic models is simulation (see, for
instance, [DKSvS14]).

Macro- and microscopic models can be combined in an interactive solution
process. The output of one type of model is used as input to the other until
the output of both models is stable. The sandwich method, see [HHK'11],
is an implementation of this idea. Its name can be attributed to evacuation
models with the objective to minimize the evacuation time which is (provably)
bounded from below using macroscopic optimization, and (experimentally) from
above using microscopic simulation. One of the current research challenges is
to establish probabilities for the validity of the upper bound. The fact that
the joint output of macro+micro models is a time-window in which the actual
evacuation time can be found is of particular importance to practitioners.

3 Model Variations to Increase Resilience

In the following, we discuss how a given optimization problem may be modified
to increase the resilience of a resulting optimal solution. We exemplify this
process using a highly simplified macroscopic evacuation problem: Let a directed
graph G = (V, E) be given, modeling a street network, along with arc lengths
d;; denoting the time to traverse edge (,j). Let a single node s € V' be the
starting point of b evacuees, who need to travel to a subset of shelter nodes
{t1,...,tx} = T C V. Each shelter t; € T has a capacity u; of people it can
accommodate. What is the best possible evacuation time, given as the sum of
travel times of all evacuees?

The optimization problem can be modeled using the following network flow
formulation:

(P) min Z dijl‘ij (1)
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where x;; is a variable that denotes the amount of flow (=evacuees) along an
edge (i,j) € E. Constraint (2) ensures that all evacuees leave the starting node
s, while Constraints (3) model that an evacuee entering a node must also leave
it. Finally, Constraints (4) include the shelter capacities. We shall write F to
denote the set of feasible solutions for (P).

3.1 Uncertainty

The first step to include solution resilience is to identify the problem aspects that
might not be known exactly, or that are likely to change over time. This step
heavily depends on the actual problem application, and is a creative process.

In our problem example, many such uncertain aspects could be considered:
What if there is a different number of evacuees? What if shelter capacities are
not as expected, or shelters are damaged? What if streets are not safe to use,
or take longer to traverse than expected?

Once it is decided what kind of uncertainty should be considered, it needs
to be mathematically formalized. As an example, we might consider arc lengths
that come from an interval, and write

U={deR" :d; <dy<diV(,j) € E}.

Simply speaking, it now depends on whether a probability distribution over this
set is available, or not. In the former case, one might make use of stochastic
programming methods, while for the second case, robust optimization is appli-
cable. We discuss both approaches in the following. For the sake of clarity, the
discussion is highly simplified. We refer to the respectively provided literature
sources for an in-depth understanding of these concepts.

Making use of a known probability distribution of the set of scenarios U
amounts to stochastic optimization models. The topic is well-established with a
wealth of textbooks, see, e.g., [KW94] and [BL97], and has been the approach
of choice for several disaster management models, see, e.g., [RRHT14, SS09,
KMS84, CAAT13, TS85].

There are plenty of different sides to stochastic optimization, which we can-
not presume to explain in detail within the scope of this work. Thus, we high-
light some key aspects used in evacuation planning.

Assuming we use a finite subset of important scenarios U’ = {d*,...,d"} C
U along with probability values py, £ = 1,..., N with Zévzl pe = 1, a natural
approach is to optimize the expected performance of a solution, i.e., to solve

1N
min NZ Z dfjxij

1=1 (i,j)€E
st.xeF

which amounts to solving an optimization problem of the original type with an
average cost vector % Eé\;l dt.

Other popular approaches include two-stage methods, where a solution can
be modified once the scenario becomes known. Examples for two-stage methods
are given subsequently, when we discuss robust optimization.



A more elaborate approach is the usage of chance constraints. In this case,
we want to make sure that the evacuation can be accomplished within a given
timebound with a desired probability, e.g., we ask for a solution of

min y
st. P(clz > ) <e
e F

for a desired confidence level 1 > ¢ > 0. As chance constraints are in general
very hard to solve, robust optimization has been developed as an alternative
approach, which we will consider next.

Robust optimization has been receiving considerable attention from the re-
search community as an alternative to stochastic models over the last fifteen
years. We refer to the surveys [GS13, ABV09, BBC11] and textbooks [KY97,
BTGNO9] for a general overview on the topic.

As one generally does not assume the knowledge of a probability distribu-
tion over U, a worst-case perspective is adopted. As such a point of view holds
high appeal in situations where an expected value is not meaningful — for in-
stance, if solutions are evaluated only once (e.g., for pension fonds), or when
a high degree of security is required (e.g., airplane design) — it is well suited
for evacuation planning. This potential has been recognized by many recent
publications on robust disaster management, see, e.g., [GG14, GDT13, NW10,
CTC07, BTCMY11] to name just a few.

As is the case for stochastic optimization, there are many diverse approaches
to formulate a robust counterpart of an uncertain problem. The simplest ap-
proach to our example problem (P) would be to assume the worst-case on each
single edge, i.e., to consider the problem

min max Z dijzi; = Z dijij
(i,j)€E (i.5)€E
st.zeF

The conservatism of such an approach can be reduced by ignoring too pessimistic
scenarios, where all (or nearly all) edges have high travel times simultaneously.
Following [BS03], let I' be a parameter we choose to regulate the degree of
robustness we would like to achieve. The value of I' denotes the number of
edges that may have their worst-case length at the same time. We then solve
the less conservative problem

min I;lgaé( E dijzi; + E dijxij
ISI=T \ (i,5)€S (i,5)EE\S

st.xeF

which can be done using a dualization technique on the inner maximization
problem.

Usually more elaborate to solve are two-stage approaches, where it is pos-
sible to adapt a solution once the scenario is revealed (see, e.g., [BTGGNO3,
LLMSO09]). As an example, we consider only a finite subset of scenarios U’ =



{d',...,dN} C U, and assume that the total amount of low we can change is
restricted by a value B. Then the two-stage problem becomes

; 0,0
min Z:I?,Z}TN d;; %,
(i.5)€E
st.xeF
eF Ve=1,...,N
> ay—af|<B Ve=1,...,N
(i.5)€E

Depending on the uncertainty and the possible recovery action, there is a huge
variety of possible two-stage counterparts to consider. The right choice depends
both on the application and the computational solvability.

3.2 Conflicting Objectives

The second approach to enhance resilience in evacuation planning presented in
this paper is to consider more than one objective in the optimization process.

In the evacuation model (P), minimization of the evacuation time is the only
objective under consideration and the capacity of the shelters is treated in Con-
straint (4) as input. This objective can be improved by investing in additional
capacities. In the process of designing resilient evacuation plans, the question
will be asked to minimize the cost of such investments in addition to minimize
the evacuation time. In the resulting bi-objective optimization model we mini-
mize simultaneously the evacuation time and the investment cost for additional
capacities in the shelters:

(P-BOM):
o dr
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i=1,....k Ci¥i
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Here, y; and ¢; is for ¢ = 1,..., k the additional capacity created in shelter
t; and its non-negative unit cost for generating this additional capacity, respec-
tively.

Obviously, the previous example of two objectives can be further extended to
include more objectives which are relevant in evacuation planning, like the risk,
the number of evacuation personnel, etc., yielding the following multiobjective
optimization model



(P-MOM)

Si(z)
Minimize f(z) = f2(@) such that x € F (11)

folz)

Multiobjective optimization models in emergency planning have been pre-
sented in [SMT09], [TCHO7], [GPKM10], [AAW10], [CRTAA12] and in combi-
nation with robust optimization in [NED13]. An introduction to general multi-
objective optimization can be found in [Ehr05].

In order to find minimizers of the vector-valued objective (11), an ordering
of the Q-dimensional space R? has to be given.

The simplest one is the lexicographical ordering, where we define for two
vectors a = (ay,...,aq),b = (b1,...,bg) € R? the relation a <j; b iff a = b or
aq < by for the smallest index ¢ € {1,...,Q} such that a; # by. Accordingly,
the objectives fi(x),..., fo(z) are sorted according to their importance. An
optimal lexicographical solution z* is optimal with respect to the first objective
f1, and — if there is a choice, among all optimal solutions one is found minimizing
the second objective, etc.

There are two general approaches to solve lexicographical optimization prob-
lems: In the integrated approach, algorithms are modified internally replacing
every scalar-valued comparison by a vector-valued one using the lexicographical
ordering. In the sequential approach, one iteratively solves restricted optimiza-
tion problems, starting with the single-objective problem min{fi(z) : x € F}
and output AX;. In the g¢-th iteration, ¢ = 2,...,Q the single-objective prob-
lem min{fy(z) : * € Xy_1} is solved with output X;. By the definition of
the lexicographical ordering, the set Xy is the set of optimal lexicographical
solutions.

In the special case of the bi-objective model (P-BOM), this generic idea
can be implemented by first solving a single-objective evacuation problem of
type (P) with unlimited shelter capacities u; = 00,4 = 1,...,k. The output
is an optimal evacuation time ET,, and X; is the set of all X € F such that
Z(i,j)eE dijxij = ETop. In the second — and, due to = 2, final — iteration
we solve an additional single-objective evacuation problem of type (P) with
modified (scalar!) objective function ) ,_; , ¢y; and additional constraint
2 jyer dijTij = ETop.

Any P-MOM will have a unique optimal objective vector (albeit with, in
general, many lexicographical optimal solutions), since the lexicographical or-
dering is complete, i.e. any pair of vectors can be compared with each other.

.....

This is no longer true for the second ordering considered in this paper, the
component-wise ordering, defined for all a = (a1, ...,aq),b = (b1,...,bg) € R
by a < biff a # b and ag < by for all ¢ € {1,...,Q} with a4 # b,. As the
example a = (4,1) and b = (2, 3) shows, two vectors may be non-comparable,
i.e. neither a < b nor b < a holds.

The non-comparability is in the application of (P-MOM) to evacuation plan-
ning a desired property to reflect reality. It is, for instance, not decidable by
a mathematical model, which of the two vectors a = (4 hours, 10k Euro) or
b = (2 hours, 30k Euro) for the vector objective (evacuation time, capacity



increment cost) is preferable. In this context, resilient evacuation plans corre-
spond to solutions z € F of our model (P-MOM) which are contained in the
set Xpg, of Pareto solutions, i.e. there does not exist another y € F such that
f(y) < f(z). The set {f(z) : x € Xpgyr} of corresponding objective vectors is
called the non-dominated set Npq of (P-MOM).

ya = fa(x) € y2 = fa(x)
Y :

(a) Subdivision of starting box. (b) Representative system.

y1 = fi(z) y1 = fi(z)

Figure 2: Example of non-dominated set (thick black line) with box represen-
tation (red boxes) and representative system R = {y',...,y*} (black dots).

There are numerous ways to compute Xp,, and Nyq4. It is beyond the scope
of this short paper to even sketch all of these methods and we refer to [Ehr05] for
details. In the following we will concentrate on an idea which is currently used in
the decision support system DSS-Evac-Logistic developed by a German-French
research consortium [DSS14].

The non-dominated set N4 (which is in general of infinite cardinality) is
approximated by a finite representative system R using the box algorithm of
[HPRO7] and R is visualized in such a way that non-specialist can use the
information to make well-founded decisions towards resilient evacuation plans.

The idea of the box algorithm can easily be described using Figure 2 and
the case of bi-criteria problems. We start by solving two lexicographical prob-
lems with vector-valued objective functions (f1, f2) and (fa, f1), respectively,
and compute lexicographical optimal solutions x!, 22 and their vector-valued
objectives y' = fi(z!) and y? = fo(2?), respectively. The rectangle with corner
points y' and y? is the starting box of the algorithm and the points y' and 12
are the first ones to be included in the representative system R. At this point
and at any time of the algorithm the non-dominated set is covered by a set of
boxes , i.e. N,q is a subset of the union of these boxes, and in each box a non-
dominated solution is included in the representative system R. The algorithm
stops as soon as all boxes have a size smaller than a given threshold defined at
the beginning of the algorithm.

For any box not satisfying this criterion a line {y : y = f1(z) < €} halving
this box is added (see Figure 2(a)) and the corresponding constraint fi(z) < e
is added. After solving the resulting (scalar) optimization problem min{ fs(z) :
xz € F and fi(x) < €}, the original box decomposes into two subboxes with
cumulative size at most half of the original box. Using this iterative process, it
is possible to approximate the complete non-dominated set by a representative
system R with any required accuracy and with a worst-case complexity which
can be determined a-priori (see [HPRO7] for details).



In order to make use of this idea for non-specialists, the representative system
is fed into a database and stored in a spider diagram, see Figure 3 for an example.
Each vector-valued objective is represented as a polygon and users can search
among the solutions stored in R to find the most suitable one.

maximum waiting time

estimated costs average waiting time

number of personnel total evacuation time

shelter utilization evacuation risk

number of shelters evacuation robustness

number of buses

Figure 3: Example of a spider diagram.

4 Conclusion

We presented a short introduction to optimization methods that increase re-
silience. Using evacuation planning as an application scenario, we discussed
approaches that take uncertainty directly into account (using stochastic or ro-
bust optimization), as well as multiobjective optimization.

More details can be found in the reference section.
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