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Abstract

Abstract. A new algorithm for optimization problems with three objective functions is
presented which computes a representation for the set of nondominated points. This rep-
resentation is guaranteed to have a desired coverage error and a bound on the number of
iterations needed by the algorithm to meet this coverage error is derived. Since the repre-
sentation does not necessarily contain nondominated points only, ideas to calculate bounds
for the representation error are given. Moreover, the incorporation of domination during the
algorithm and other quality measures are discussed.

1 Introduction

This article addresses multiple objective optimization problems which can be concisely stated as

(MOP) min (f1(x), . . . , fp(x))

s. t. x ∈ X ⊆ Rn

with f = (f1, . . . , fp) : X −→ Rp. More precisely, we focus on the case p = 3 and our algorithm
is applicable to general mathematical programming problems with three objective functions for
which the problem

(P 1
ε1,ε2) lex min (f3(x), f2(x), f1(x))

s. t. x ∈ X
l1 ≤ f1(x) ≤ ε1
l2 ≤ f2(x) ≤ ε2
l3 ≤ f3(x) (≤ u3)

 =: f(x) ∈ B(l, u)(ε1,ε2,u3)

can be solved, e. g. using an appropriate black-box solver.

Since three objective functions are to be optimized simultaneously, the notion of optimality has
to be specified.

Definition 1:
A feasible solution x∗ ∈ X of MOP is called efficient and its image f(x∗) ∈ Y := f(X) is called
nondominated, if there does not exist another solution x̄ ∈ X with fi(x̄) ≤ fi(x

∗), i = 1, . . . , p,
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and f(x̄) 6= f(x∗). The set of all efficient and nondominated solutions are denoted by XE and
YN , and they are called the efficient set and nondominated set, respectively.

The ideal, nadir and anti-ideal point are defined as

yIi := min
x∈X

fi(x), yNi := max
x∈XE

fi(x) and yAIi := max
x∈X

fi(x) ∀i = 1, . . . , p ,

respectively.

The following notation allows comparisons between two vectors u, v ∈ Rp based on the compo-
nentwise ordering.

u 5 v :⇔ ui ≤ vi ∀i = 1, . . . , p

u ≤ v :⇔ u 6= v and ui ≤ vi ∀i = 1, . . . , p .

Using the binary relation 5 on Rp, we define the cone Rp= := {x ∈ Rp : x = 0}. 3

Our algorithm utilizes cuboids—referred to as boxes in the sequel—in R3 to bound the nondomi-
nated set of the optimization problem at hand. A box B(l, u) can be defined by

B(l, u) = l + R3
= ∩ u− R3

= =
{
y ∈ R3 : l 5 y 5 u

}
,

i. e. it is unambiguously described by specifying its “lower, left corner” l ∈ R3 and its “upper, right
corner” u ∈ R3. For some arbitrary norm ‖ · ‖ on R3, the metric or distance ‖l− u‖ is referred to
as the corner point distance or also distance of the corner points of the box B(l, u).

In practice, it is often not easy nor desirable to compute an exact description of YN , since this
set typically includes a very large or even infinite number of points. Hence, many research ar-
ticles focus on the computation of a representation of YN consisting of a discrete set of points,
referred to as representative points. A survey of methods for computing a representation of YN
can be found e. g. in (Ruzika and Wiecek, 2005). A representation Rep is in the broadest sense
understood as any substitute for the nondominated set. However, for the sake of fast and accurate
decision making, such a representation should come with some quality guarantees ensuring that
the nondominated set YN is represented appropriately. For discrete representations, the following
four quality measures can be used to assess the quality of a representation.

Definition 2:
Let YN denote the nondominated set of some multiple objective optimization problem (MOP).
Let Rep ⊂ Rp denote a representation of the nondominated set.

a) The coverage error of the representation is defined as

max
y∈YN

min
z∈Rep

‖z − y‖.

b) The uniformity of the representation is defined as

min
y,ŷ∈Rep
y 6=ŷ

‖y − ŷ‖.

c) The cardinality of the representation is defined as the cardinality of Rep, i. e |Rep| .

d) The representation error of the representation is defined as

max
z∈Rep

min
y∈YN

‖y − z‖.

3

The first three measures were proposed by Sayın (2000) and the representation error was intro-
duced in (Ruzika, 2007). The coverage error quantifies how accurate the representation represents
the whole nondominated set. The uniformity measures the minimal distance between two different
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representative points, which quantifies the diversity of the representation. A low cardinality could
be of interest to the decision maker and if the representation does not only consist of nondom-
inated points, the representation error denotes the largest distance of a representative point to
its closest nondominated point. Note that these quality measures are conflicting by nature. For
instance, the smaller the coverage error, the larger the cardinality of the representation.

Since our algorithm relies on boxes in R3, recently published approaches also using boxes in the
context of multiple objective programming shall briefly reviewed in the following.

Laumanns et al. (2006) as well as the follow-up work of Dhaenens et al. (2010), Kirlik and Sayın
(2014) and Boland et al. (2014a) do not compute a representation of the nondominated set but
aim at finding the exact nondominated set. Their method fixes one coordinate, projects the
p-dimensional outcome space onto the remaining (p − 1)-dimensional space and partitions the
projection by means of boxes into a grid. Then, this grid is used to search for new nondominated
points by solving ε-constraint subproblems (Chankong and Haimes, 1983). The grid is updated
adaptively until the nondominated set is found completely. Laumanns et al. (2006) notice that
also a heuristic can be derived to get a representation of the nondominated set. In contrast to
Laumanns et al. (2006), Dhaenens et al. (2010) apply a partitioning directly in the p-dimensional
outcome space and suggest to calculate the true nadir point as described in the article (Ehrgott
and Tenfelde-Podehl, 2003) in a first phase which also yields some intermediate solution points.
These solution points are used to determine an initial grid in a lower dimensional projected sub-
space. Later, Dächert and Klamroth (2013) improve the splitting of the boxes used in (Dhaenens
et al., 2010) and propose a generic algorithm (not necessarily using ε-constraint problems but also
e. g. augmented weighted Tchebycheff problems) which can also find the whole nondominated set
for problems with three objectives while the outcome space is decomposed into relevant boxes.
Recently, Boland et al. (2014b) proposed another method for finding all nondominated points for
integer programs with three objectives. They use so-called L-shapes and rectangles to partition
a two-dimensional projected search space. Moreover, they evaluate experimentally the represen-
tation quality with the help of the hypervolume indicator if the algorithm is stopped before all
nondominated points are found. All these algorithms use only dominance information and in-
formation about the calculated points to split boxes and to guide the search. The considered
subproblems either have no lower bound in the fixed coordinate or no lower bound at all (besides
the ideal point). These methods do not aim at and are not capable for bounding and controlling
the coverage error accurately during the running time; a bound on the number of iterations needed
for a predefined desired coverage error is not provided.

Besides these methods, the algorithm of Barichard and Hao (2003) which uses evolutionary con-
cepts considers union of boxes containing the nondominated set. Without solving any problem
they first bisect the initial box and all resulting boxes according to a selected objective until they
have reached the maximal population size. After that, they try to instantiate each box (with an
unspecified instantiation procedure) and then remove dominated boxes, which reduces the current
population. The procedure is repeated until the number of (not deleted) instantiated boxes has
reached the given maximal population size. The execution of this algorithm can be very expensive,
since the division of the boxes is made independently (a priori) of the found solutions. Moreover,
they do not use the coverage error but the cardinality of the representation as stopping criterion.

Our Contribution

We extend the Box-Algorithm proposed by Hamacher et al. (2007) for two objectives to the case of
three objectives. Besides dominance information stemming from the ordering relation 5 in R3 as
well as information about optimality and feasibility of the lexicographic ε-constraint problem, our
algorithm chooses iteratively appropriately placed ε-constraints to subdivide the outcome space
and to reduce the coverage error. Moreover, also the lower bounds of the considered boxes are
modified such that a partition of the remaining unexplored region into non-overlapping boxes is
obtained. The aim of our algorithm is not to enumerate all nondominated solutions but to compute
a representation of YN while reducing the coverage error. Therefore, the upcoming ε-constraint
problems in our algorithm cannot be limited to one fixed first coordinate which is minimized, the
algorithm has to choose the appropriate first coordinate and thereby the appropriate subdivision
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of boxes, i. e. the two ε-constraints, adaptively in each iteration. Since lower bounds are used for
the boxes, optimal solutions of the ε-constraint subproblems might be dominated. However, in the
end, the unexplored space will be reduced and a subdivision of boxes containing the nondominated
set with desired accuracy will be received, for which representative points can be calculated (see
completion steps). A straightforward extension of (Hamacher et al., 2007) could use the volume
of the boxes as a stopping criterion. This stopping condition can also be implemented in our new
algorithm, and the needed analogue results for three objectives are also proven. However, since
we experienced that the volume of boxes is not a robust and reliable quality measure, as lower-
dimensional boxes would get an empty volume and boxes with two huge sides and one very small
side would not be penalized, the focus in this document lies on the coverage error introduced
in (Sayın, 2000). Furthermore, it will also be explained how the other quality measures, i. e.
cardinality and uniformity, can be treated in the theoretical analysis of the algorithm. Since the
new algorithm can produce dominated representative points, the representation error could be
greater than 0.

The remainder of this article is organized as follows. The construction of the initial box and
subsequently, the update step, i. e. the subdivision of the remaining unexplored search region after
a new point has been found, are presented in Section 2. In Section 3, the subdivision is analyzed
theoretically. Completion steps for getting a representation as desired are described in Section
4. In Section 5, ideas for bounding the value of the representation error are outlined. Different
extensions and improvements for our algorithm are mentioned in Section 6.

2 Initialization and Update Step

The algorithm is initialized with a starting box B(l0, u0) with lower bound l0 and upper bound
u0. When choosing the initial lower and upper bounds l0 and u0, we require that YN ⊆ B(l0, u0).
The ideal point yI is an obvious candidate for the lower bound l0. For the upper bound u0, either
an acceptable upper bound from the decision maker, the anti-ideal point yAI , the nadir point yN

computed by the technique described by Ehrgott and Tenfelde-Podehl (2003) or a problem-specific
upper bound can be used.

After the initialization and during the execution of the algorithm, every box consists of edges
which are parallel to the coordinate axis.

Suppose a box B(l, u)—referred to as the current box—is chosen in some iteration due to some
selection rule (e. g. the box with the biggest corner point distance). It is described in the following
how the representation is refined locally, i. e. in the area contained within this current box.

First, the two longest edges of the current box are determined and one ε-constraint problem is
solved with ε-constraints bisecting these two longest edges. Depending on the coordinate axis
which are parallel to these two longest edges, we refer to this ε-constraint problem either as
(P 1
ε1,ε2), (P 2

ε1,ε3), or (P 3
ε2,ε3).

(P 2
ε1,ε3) lex min (f2(x), f1(x), f3(x))

s. t. x ∈ X
f(x) ∈ B(l, u)(ε1,u2,ε3)

(P 3
ε2,ε3) lex min (f1(x), f3(x), f2(x))

s. t. x ∈ X
f(x) ∈ B(l, u)(u1,ε2,ε3)

Here, the value of εi is chosen as

εi = li +
ui − li

2

for i = 1, 2, 3.

Without loss of generality, we may assume for the subsequent exposition of our ideas that the first
subproblem (P 1

ε1,ε2) applies.
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Proposition 3: Let z∗ be the outcome of an optimal solution of (P 1
ε1,ε2). Then there is no y ∈

YN \ {z∗} such that

y ∈ B(z∗, u) ∪B

l,
ε1ε2
z∗3

 \B
 l1z∗2

z∗3

 ,

z∗1ε2
z∗3

 .

Proof:
The setB(z∗, u) is dominated by z∗ and the setB

l,
ε1ε2
z∗3

\B
 l1z∗2

z∗3

 ,

z∗1ε2
z∗3

 cannot contain

a feasible outcome since this contradicts optimality of z∗ for the lexicographic subproblem. �

Example 4:
We consider an initial box with l = 0 and u = (12, 10, 10)

T
. We solve subproblem (P 1

ε1,ε2) with

ε1 = 6 and ε2 = 5. Suppose the invoked subproblem has returned the point z∗ = (2, 3, 4)
T

.
Then, due to Proposition 3, the two regions

B

2
3
4

 ,

12
10
10

 and B

0,

6
5
4

 \B
0

3
4

 ,

2
5
4


do not contain unknown nondominated points and can thus be excluded from further consideration.
These two sets are depicted in Figure 1 in light and dark gray color, respectively.

Figure 1: Excluded Regions for Example 4.

3

Excluding the two regions introduced in Proposition 3 from the current box B(l, u), the remaining
subset of the current box can be subdivided into new boxes the collection of which contains
YN ∩B(l, u). The search space is thus reduced. The boxes of the remaining subset of the current
box are located in each quarter of the current box (induced by the two ε-constraints).
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These different quarters of the current box are denoted by

Q1,1 := B

l,
ε1ε2
u3

 , Q1,2 := B

 ε1
l2
l3

 ,

u1ε2
u3

 ,

Q1,3 := B

ε1ε2
l3

 , u

 , Q1,4 := B

l1ε2
l3

 ,

ε1u2
u3

 .

where the first subscript index refers to the number of problem (P 1
ε1,ε2) and the second simply

enumerates the quarters.

The subdivision of B(l, u) into boxes is not unique. Although other subdivisions are eligible, the
following is used (note that the subsequent analysis applies to alternative subdivisions as long
as each box is completely contained in a quarter and does not overlap with another box under
consideration). The newly obtained boxes are

B1,1 := B

 l1z∗2
z∗3

 ,

z∗1ε2
u3

 , B1,2 := B

 l1l2
z∗3

 ,

ε1z∗2
u3


for Q1,1,

B1,3 := B

ε1l2
l3

 ,

u1ε2
z∗3

 , B1,4 := B

ε1l2
z∗3

 ,

u1z∗2
u3


for Q1,2,

B1,5 := B

ε1ε2
l3

 ,

u1u2
z∗3


for Q1,3, and

B1,6 := B

l1ε2
l3

 ,

ε1u2
z∗3

 , B1,7 := B

 l1ε2
z∗3

 ,

z∗1u2
u3


for Q1,4.

The corresponding quarters Q2,i and Q3,i, i = 1, . . . , 4, and subdivisions B2,j and B3,j , j =
1, . . . , 7, for the subproblems

(
P 2
ε1,ε3

)
and

(
P 3
ε2,ε3

)
, respectively, are defined analogously.

In Figure 2, the unexplored region and the subdivision for Example 4 is depicted.

Remark 5:
• If the point z∗ is located on the boundary of the current box, the subdivision should be

further adjusted such that the resulting boxes do not overlap. Since these modifications are
in principle trivial but would lengthen the exposition of the algorithm, the focus here is on
the case that z∗ is in the interior of the current box.
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Figure 2: Unexplored Region

• If the lower bound constraints in the considered subproblems are omitted, it is not guaran-
teed to find a solution lying in the desired box, since for example the point (ε1, l2, l3)T in
box B1,3 dominates every point in the boxes B1,4 and B1,5 w. r. t. the scalarization prob-
lem. Therefore, the additional lower bound constraints for the objectives are necessary to
guarantee that the obtained solution is located in the desired box.
Since the considered point (ε1, l2, l3)T dominates every point of the current box with first
coordinate greater than or equal to ε1 w. r. t. a considered subproblem in the boxes B1,3, B1,4

or B1,5, also every other partition in that unexplored region of the current box into boxes
can lead to such difficulties. Similar issues can be observed for the remaining unexplored
region of the current box, i.e. with first coordinate less than or equal to ε1.

3

3 Properties of the Subdivision

After problem (P 1
ε1,ε2) was solved for the current box B(l, u), the box is subdivided into the seven

new boxes B1,1 to B1,7 defined as above for the quarters Q1,1 to Q1,4. This step is repeated until
the corner point distances of all boxes have reached a value of at most δC . Nevertheless, the
computed representative points are not guaranteed to be nondominated. Yet, due to feasibility
and the structure of the subproblem (P 1

ε1,ε2), the following result is obtained:

Lemma 6: YN ∩B(l, u) ⊆
7⋃
i=1

B1,i

Proof:
Follows directly from Proposition 3. �

An analogous result as in (Hamacher et al., 2007) about the reduction of the volume of the boxes
after an update step can be proven:
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Observation 7:
If a box B0 := B(l, u), after solving the corresponding subproblem, is divided into the seven new
boxes, each box B1,i, i = 1, . . . , 7 fulfills

V ol(B1,i) ≤ 1

4
· V ol(B0)

where V ol(B1,i) measures the three-dimensional volume of box B1,i. In particular, for three
quarters two pairs of boxes can be found, namely the two lying in the same quarter, where the
combined volume fulfills this formula. 3

The next lemma is about the total volume of the boxes B1,1 to B1,7 in view of the volume of the
box B0 := B(l, u):

Lemma 8:
7∑
i=1

V ol(B1,i) ≤ 3

4
· V ol(B0)

Proof:
The volume of the boxes Blex := B

l,
ε1ε2
z∗3

 and Bdom := B (z∗, u) are cut off fulfilling

V ol(Blex) + V ol(Bdom) ≥ V ol(Blex) + V ol

B
ε1ε2

z∗3

 , u


= V ol

Blex +

ε1 − l1ε2 − l2
0

+ V ol

B
ε1ε2

z∗3

 , u


= V ol

B
ε1ε2

l3

 ,

u1u2
z∗3

+ V ol

B
ε1ε2

z∗3

 , u


= V ol(Q1,3)

where Blex +

ε1 − l1ε2 − l2
0

 denotes the box after shifting Blex in direction

ε1 − l1ε2 − l2
0

.

Hence, we get

7∑
i=1

V ol(B1,i) = V ol(B0)−
(
V ol(Blex) + V ol(Bdom)

)
≤ V ol(B0)− V ol(Q1,3) =

3

4
· V ol(B0) . �

The Box-Algorithm for three objectives is stated as a pseudo-code description in Algorithm 1.

Algorithm 1 A posteriori algorithm (for three objectives, coverage)

Input: A multiple objective optimization problem with three objectives, δC > 0
Output: A subdivision B fulfilling Theorem 9 and an incomplete representation Rep (see com-

pletion steps for completion)
1: S ← ∅
2: Rep← ∅
3: B ← ∅
4: Compute the starting box B(l0, u0)
5: if ‖l0 − u0‖∞ > δC then
6: S ← {B(l0, u0)}
7: else
8: B ← {B(l0, u0)}
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Algorithm 1 A posteriori algorithm (for three objectives, coverage) – continued

9: while S 6= ∅ do // stopping criterion
10: Choose the box B(y1, y2) ∈ S with maximal distance ‖y1 − y2‖∞ // selection rule
11: S ← S\{B(y1, y2)}
12: l← y1, u← y2

13: if min{u1 − l1, u2 − l2} ≥ u3 − l3 then

14: Solve (P 1
ε1,ε2) with εi = li +

ui − li
2

, i = 1, 2, and obtain optimal solution z∗

15: Bi := B(yB
i

l , yB
i

u ) := B1,i ∀i = 1, . . . , 7

16: Qi := B(yQil , yQiu ) := Q1,i ∀i = 1, . . . , 4
17: else if min{u1 − l1, u3 − l3} ≥ u2 − l2 then

18: Solve (P 2
ε1,ε3) with εi = li +

ui − li
2

, i = 1, 3, and obtain optimal solution z∗

19: Bi := B(yB
i

l , yB
i

u ) := B2,i ∀i = 1, . . . , 7

20: Qi := B(yQil , yQiu ) := Q2,i ∀i = 1, . . . , 4
21: else // min{u2 − l2, u3 − l3} ≥ u1 − l1
22: Solve (P 3

ε2,ε3) with εi = li +
ui − li

2
, i = 2, 3, and obtain optimal solution z∗

23: Bi := B(yB
i

l , yB
i

u ) := B3,i ∀i = 1, . . . , 7

24: Qi := B(yQil , yQiu ) := Q3,i ∀i = 1, . . . , 4

25: if z∗ 6= NULL then // z∗ ∈ Y
26: Rep← Rep ∪ {z∗}
27: for i ∈ {1, . . . , 7} do

28: if ‖yBil − yB
i

u ‖∞ > δC then
29: S ← S ∪ {Bi}
30: else if Bi 6= ∅ then
31: B ← B ∪ {Bi}
32: else // z∗ = NULL
33: for i ∈ {2, 3, 4} do

34: if ‖yQil − yQiu ‖∞ > δC then
35: S ← S ∪ {Qi}
36: else if Qi 6= ∅ then
37: B ← B ∪ {Qi}

Finiteness, a bound on the complexity as well as correctness of the algorithm are proven in the
following.

Theorem 9: Algorithm 1 terminates in finitely many steps. It outputs a collection of boxes
containing all nondominated points. Each of theses boxes can be equipped with a representative
point. The representation has a coverage error of at most δC (w. r. t. ‖ · ‖∞). More precisely, the

algorithm performs at most O

((
L

δC

)2·log2(7)
)

many iterations, where L is the distance of the

corner points of the initial box B(l0, u0), i. e. L := ‖l0 − u0‖∞.

Proof:
Due to the construction of the boxes, a subdivision is obtained which contains YN at each state
of the algorithm (see Lemma 6). The stopping criterion of the algorithm guarantees that the
coverage error of the representation is at most δC if the algorithm terminates. Thus, it suffices to
show the termination of the algorithm.

The functioning of the algorithm can be represented by a tree, where each node corresponds to
a box in some iteration. More precisely, the root node of the tree corresponds to the initial box
and after the first iteration (independently of the subproblem considered) this box is substituted
by at most seven new boxes which will be then represented by at most seven child nodes of the
father node. Finiteness of the algorithm corresponds to a bounded height of the corresponding
tree which will be shown in the following.
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Let B(y1, y2) be a box corresponding to some node of the tree in an arbitrary but odd level greater
than or equal to 3.1 Let B(w1, w2) and B(v1, v2) be the boxes corresponding to its father and
grandfather nodes, respectively. Consider now the iteration in which the box corresponding to the
grandfather node is processed. Without loss of generality let problem (P 1

ε1,ε2) be called, i. e.

v23 − v13 ≤ min
i=1,2
{v2i − v1i } ≤ max

i=1,2,3
{v2i − v1i } = ‖v1 − v2‖∞,

resulting in boxes including the box B(w1, w2). Due to the special ε-constraints in the subproblem
and the definition of the boxes, it holds

max
i=1,2
{w2

i − w1
i } ≤

‖v1 − v2‖∞
2

(1)

and still w2
3 − w1

3 ≤ ‖v1 − v2‖∞.

Claim: ‖y1 − y2‖∞ ≤
‖v1 − v2‖∞

2

Proof:
Case 1: w2

3 − w1
3 ≤
‖v1 − v2‖∞

2
=⇒ ‖y1 − y2‖∞ ≤ ‖w1 − w2‖∞ ≤

‖v1 − v2‖∞
2

.

Case 2: w2
3 − w1

3 >
‖v1 − v2‖∞

2
=⇒ ‖v1 − v2‖∞

2
< w2

3 − w1
3 ≤ ‖v1 − v2‖∞

(1)
=⇒ Subproblem

(P 2
ε1,ε3) or (P 3

ε2,ε3) was called when the box B(w1, w2) was considered. =⇒ Due to the special

ε-constraints it follows ‖y1 − y2‖∞ ≤
‖v1 − v2‖∞

2
and the claim is proven. ♦

This means that an arbitrary box B(y1, y2) corresponding to a node in level 2k−1 (k ∈ N) fulfills

‖y1 − y2‖∞ ≤
L

2k−1
.

Hence, if k ≥ log2

(
L

δC

)
+ 1 then ‖y1 − y2‖∞ ≤ δC is induced and therefore each box at level

2 ·
⌈

log2

(
L

δC

)⌉
+ 1, fulfills the stopping criterion which shows boundedness of the height of the

tree.

Moreover, the tree can have at most

2·dlog2( L

δC
)e∑

i=0

7i =
72·dlog2( L

δC
)e+1 − 1

6
∈ O

((
L

δC

)2·log2(7)
)

nodes and, correspondingly, the number of iterations of the algorithm is bounded by the same
term. �

If a representation with coverage error w. r. t. an arbitrary p-norm ‖ · ‖p, 1 ≤ p ≤ ∞ is desired,
Algorithm 1 can still be used to obtain such a representation. However, δC has to be chosen
sufficiently small. A rule how δC can be chosen, is induced by the following (well-known) lemma.

Lemma 10: Let 1 ≤ p <∞ and n ∈ N then it holds:

‖x‖p ≤ n
1
p · ‖x‖∞ for all x ∈ Rn

In particular, if ‖x‖∞ ≤ δC , then ‖x‖p ≤ n
1
p · δC .

Proof:
Let i0 := arg max

i=1,...,n
|xi|, then it follows

‖x‖p =

 n∑
i=1

|xi|p︸︷︷︸
≤|xi0 |p


1
p

mon. incr.
≤ (n · |xi0 |p)

1
p = n

1
p · |xi0 | = n

1
p · ‖x‖∞ �

1The level of the root node is 1, its children are on level 2 and so on.
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4 Completion Steps

After termination of the algorithm, a subdivision of the nondominated set in terms of a collection
of boxes is obtained. There does not necessarily need to exist a representative point in each box
of the subdivision. If the representative points computed do not suffice the needs of the decision
maker, four possibilities to repair this issue are suggested:

1. For each box B(l, u) of the subdivision an additional subproblem, e. g. (P 1
ε1,ε2) with ε1 := u1

and ε2 := u2, is solved such that either this box can be deleted due to infeasibility or a new
representative point of this box is identified. The enlarged set Rep is then outputted to the
decision maker.

2. The subdivision is presented to the decision maker who will choose some box of interest
B(l, u) and only one additional subproblem corresponding to the chosen box with ε1 := u1
and ε2 := u2 is solved. Additionally, the boxes where a part of them dominates the chosen
box or the outcome found by the subproblem could be considered.

3. The decision maker is asked for one or several points of interest after the initial box is
presented. Then, all distances from the desired points to these boxes are calculated and
the boxes with minimal distance or all with k-minimal distances (i. e. the minimal, second
minimal,. . . , k-th minimal) to each desired point are saved and for each such box B(l, u)
only one additional subproblem is solved with ε1 := u1 and ε2 := u2.

4. The decision maker is questioned for a desired number of points, some filtering procedure for
reducing the set of boxes to a subset with desired number guaranteeing some quality feature
is applied (see e.g. Steuer and Harris (1980)), for each of these boxes a representative point
is calculated and presented to the decision maker.

If the first completion step is used, a representation with accuracy δC is obtained. The second,
third and fourth completion steps are better suited in an interactive variant of our algorithm.

Definition 11:
After Algorithm 1 has terminated and the first completion step was applied, the output Rep is
then called complete representation. 3

Let Rep be a complete representation and let RepN denote all points of Rep which are not
dominated by any other point in this set. Obviously, deleting points could change the coverage
error of the representation. Yet, the following quality guarantee for the set RepN can be derived.

Corollary 12: Let Rep be a complete representation with coverage error less than or equal to δC

(w. r. t. ‖ · ‖∞) for the considered problem. Then it is

YN ⊆
(
RepN − (δC , δC , δC)T

)
+ R3

=.

Proof:
Let y ∈ YN . Due to the coverage property, there exists z ∈ Rep with ‖y−z‖∞ ≤ δC which implies

z − (δC , δC , δC)T 5 y.

If z 6∈ RepN , then there exists ẑ ∈ RepN with ẑ ≤ z fulfilling

ẑ − (δC , δC , δC)T 5 y. �

Remark 13:
Clearly, the first completion step could also be incorporated in the presented algorithm, namely
if the boxes are not added to the list B of processed boxes when they have reached the desired
precision but after they are investigated the next time with a subproblem described in the first
completion step. 3
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5 Representation Error

It is noted above that the resulting representation could contain dominated points. Therefore, the
representation error

max
z∈Rep

min
y∈YN

‖z − y‖

(for ‖ · ‖ := ‖ · ‖p for some 1 ≤ p ≤ ∞) can be positive. In this section we are interested in
how the representation error can be approximated or bounded from above for a given complete
representation Rep with coverage error less than or equal to δC (w. r. t. some norm ‖ · ‖).
Definition 14:
Let B be the last subdivision (covering the whole set YN ) obtained from Algorithm 1. Let z ∈ Rep.
Then we define Bz := {B ∈ B : B ∩

(
z − R3

≥
)
6= ∅∧ z 6∈ int(B)}, where int(B) denotes the interior

of a box B. If Bz 6= ∅ we call z a critical representative point. 3

A critical representative point is a candidate for a dominated point since the expression

B ∩
(
z − R3

≥
)
6= ∅

for some box B ∈ B is a necessary condition for YN ∩
(
z − R3

≥
)
6= ∅. Note that there is no need

to check the box containing z in its interior, since in this case z was found in the completion step
and z is then locally nondominated w. r. t. this box.

Proposition 15:

max
z∈Rep

min
y∈YN

‖z − y‖ ≤ min

{
max
z∈Rep

max
B(l,u)∈Bz

‖l − z‖, max
z∈Rep

max
ẑ∈BRep

δC
(z−R3

≥)
‖z − ẑ‖+ δC

}

where BRep
δC

(z−R3
≥) :=

{
y ∈ Rep : ∃ỹ ∈ z − R3

≥ ∧ ‖y − ỹ‖ ≤ δC
}

and max
B(l,u)∈Bz

‖l− z‖ returns the

value 0 if Bz = ∅.

Proof:
Let z ∈ Rep be an arbitrary representative point. Then we immediately get

min
y∈YN

‖z − y‖ ≤ max
B(l,u)∈Bz

‖l − z‖ ,

since for a box B(l, u) the distance ‖l−z‖ is an upper bound for the distance of any point contained
in B(l, u) and dominating z. Hence, the first upper bound is proven.

We define y∗ := arg min
y∈YN∩(z−R3

≥)

‖z − y‖ (assuming existence) and zy
∗

:= arg min
z̃∈Rep

‖z̃ − y∗‖, then it

follows

min
y∈YN

‖z − y‖ ≤ ‖z − y∗‖ = ‖z − y∗ + zy
∗
− zy

∗
‖

≤ ‖z − zy
∗
‖+ ‖y∗ − zy

∗
‖ ≤ ‖z − zy

∗
‖+ δC

≤ max
ẑ∈BRep

δC
(z−R3

≥)
‖z − ẑ‖+ δC . �

Remark 16:
• For ‖ · ‖ = ‖ · ‖∞ the second upper bound in Proposition 15 can be substituted with

max
z∈Rep

max
ẑ∈Rep∩(z+(δC ,δC ,δC)T−R3

≥)
‖z − ẑ‖+ δC .

• Another method to approximate the representation error is to use for example Benson’s
method (see Ehrgott (2005)) for all critical representative points, which returns some non-
dominated point dominating the current critical point (if existent). The maximum over all
distances between the critical points and the corresponding found nondominated points, will
also serve as an upper bound to the representation error.
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• Moreover, the representation error could be forced to be zero, if some filtering procedure
is applied after the calculation of the representation, which identifies all dominated points
and deletes them afterwards. This could also be done for example with the help of Ben-
son’s method which will additionally give a replacement point dominating the deleted point.
However, this filtering technique could destroy the accuracy since points representing a box
having a “nondominating part” could be deleted, but, taking replacement points into ac-
count, a result similar to Corollary 12 could still be proven.

3

6 Extensions of the Box-Algorithm

The basic concept of the Box-Algorithm can be equipped with several improvements and extensions
which may be reasonable in appropriate settings and circumstances. The following proposals are
thus facultative.

If a discrete optimization problem (MOP) with three integer-valued objective functions is con-
sidered, in each iteration the unexplored region can be shrunk even further using the integrality
property of feasible solutions and their images.

6.1 Incorporating Domination during the Algorithm

The Box-Algorithm uses the concept of domination only locally: after an optimal solution of the
lexicographic ε-constraint subproblem was found, the part of the current box being dominated
by the image of this solution is neglected from further consideration. However, this solution also
dominates points outside the current box. This observation can help to reduce the number of
boxes significantly without loosing performance.

Hence, the step in the algorithm is considered where a new (feasible) outcome z∗ in the currently
considered box is found (cf. lines 14, 18 and 22 in Algorithm 1). It is natural to use this solution
to define the notion of dominated boxes (see also Barichard and Hao (2003)).

Definition 17:
In an arbitrary iteration in Algorithm 1, after a solution z∗ in some line 14, 18 or 22 was found,
a box B(l, u) ∈ B ∪ S is called dominated by z∗ if z∗ 5 l. 3

Hence, a dominated box cannot contain points of interest since all possible points in the box are
dominated by the found solution z∗. Then, right after the solution z∗ was found, before line 26,
we execute Algorithm 2 as a subroutine which considers the lists S of unexplored boxes and B of
finished boxes and deletes all boxes dominated by z∗. Additionally, before adding a new box B to
S or B in lines 29, 31, 35 and 37, Algorithm 3 is executed as a subroutine which first investigates
the set Rep and checks if the new box is already dominated.

Algorithm 2 Deletion of dominated boxes - Part 1

Input: A solution point z∗

1: for B(l, u) ∈ B ∪ S do
2: if z∗ 5 l then
3: Delete B(l, u)

Algorithm 3 Deletion of dominated boxes - Part 2

Input: A box B(l, u)
1: for z ∈ Rep do
2: if z∗ 5 l then
3: Delete B(l, u)

On the other hand, during the algorithm, also partially dominated boxes could be obtained.
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Definition 18:
In an arbitrary iteration in Algorithm 1, after a solution z∗ in some line 14, 18 or 22 was found,
a box B(l, u) ∈ B ∪ S is called partially dominated by z∗ if z∗ 65 l but z∗ 5 u. 3

In this case a specific subset of a partially dominated box B(l, u) can be deleted, namely the box

B
(
z∗,proj := (max{l1, z∗1}, max{l2, z∗2}, max{l3, z∗3})

T
, u
)

where the left corner point z∗,proj is called the B(l, u)-projection of z∗. For practical reasons,
to avoid cutting off only very small portions, some threshold for partially dominance (e.g. 20 %)
can be defined for which it is worth to delete this portion from further considerations. Partially
dominance is incorporated in Algorithm 1 analogously to domination with appropriately modified
subroutines.

6.2 Other Quality Measures

Another quality measure is the previously mentioned concept of uniformity. The Box-Algorithm
can be modified to address this measure as well. To this end, let 0 < δU ≤ δC be given. The aim
is a representation Rep fulfilling

min
y,ŷ∈Rep
y 6=ŷ

‖y − ŷ‖∞ ≥ δU . (2)

It is assumed that δU ≤ δC , since otherwise the coverage property could be violated. Again, the
step in the algorithm is considered in which a new (feasible) outcome z∗ is obtained (cf. lines
14, 18 and 22 in Algorithm 1). Due to (2) the following region should be deleted from further
investigation

{z ∈ R3 : ‖z − z∗‖∞ ≤ δU} = B

z∗1 − δUz∗2 − δU
z∗3 − δU

 ,

z∗1 + δU

z∗2 + δU

z∗3 + δU

 . (3)

This box has now to be incorporated in the current update step in a straight forward way which
will result in another subdivision and, furthermore, the lists of all unexplored boxes S and finished
boxes B have to be investigated and the boxes B(l, u) overlapping with box (3) have to be updated
appropriately.

If the quality measure “cardinality” should be incorporated, the algorithm can be aborted if the
desired cardinality is reached, i.e. an additional stopping criterion corresponding to the desired
cardinality has to be added to line 9 in Algorithm 1. Obviously, this could violate the desired
coverage property since the different quality measures tend to be contradicting. In this case,
however, the coverage error of the currently obtained representation can be computed by looking
at the last obtained subdivision.

7 Conclusion and Future Research

A new algorithm for optimization problems with three objective functions was introduced. This
algorithm generates a collection of cuboids comprising the nondominated set. At termination,
this collection together with some computed points is guaranteed to meet some specified coverage
property. Besides the derivation of some properties, an iteration bound to reach the desired
coverage error, bounds for the representation error and ideas for possible extensions are presented.

A selection rule not with respect to distance values but with respect to some dominance relation
which is able to combine the coverage property with the quality guarantee from Corollary 12 is
under current research. Another open question addresses the choice of a more suitable subproblem:
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this subproblem should “check” for a given box B(l, u) if B(l, u)∩YN 6= ∅ and if so, such a point in
this intersection should be computed. In other words, it is desirable to solve the following problem
efficiently

(P̂ 1
ε1,ε2) lex min (f3(x), f2(x), f1(x))

s. t. x ∈ XE

f(x) ∈ B(l, u)(ε1,ε2,u3)

This formulation (P̂ 1
ε1,ε2) has the disadvantage that the efficient set is assumed to be known in

advance, which contradicts the fact that a representation of YN should be computed.

However, the condition x ∈ XE can also be expressed implicitly with the help of a bilevel optimiza-
tion problem, where the lower-level problem checks whether the current point is nondominated. A
similar idea for checking efficiency of a proper face for linear problems was used in (Sayın, 1996).
Here, this idea is incorporated for general problems in the lower-level of the scalarization problem

(P̂ 1,bilevel
ε1,ε2 ) min

x
zx (4a)

s. t. x ∈ X (4b)

f(x) ∈ B(l, u)(ε1,ε2,u3) (4c)

zx := max
x̃

3∑
i=1

fi(x)− fi(x̃) (4d)

s. t. x̃ ∈ X (4e)

f(x̃) 5 f(x) (4f)

which defines a so called min-max problem, a special case of a bilevel optimization problem where
the lower-level and upper-level objective functions coincide.

If subproblem (P̂ 1,bilevel
ε1,ε2 ) is feasible, the objective value is, due to constraint (4f), always non-

negative. If the optimal objective value (assuming existence) attains the value 0, the correspond-
ing x ∈ X defines a nondominated point in B(l, u)(ε1,ε2,u3), otherwise it can be implied that
YN ∩B(l, u)(ε1,ε2,u3) = ∅.
Due to its bilevel structure, this problem is hard to solve and since such problems should be
solved repeatedly as subproblems in the Box-Algorithm, we decided to investigate the simpler
subproblem (P 1

ε1,ε2), which can be solved using standard black-box solver (like CPLEX). Yet, this
bilevel idea is a promising approach and will be pursued in the future.
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Dächert, K. and Klamroth, K. (2013). A linear bound on the number of tricriteria optimization
problems. Technical report, Bergische Universität Wuppertal.

Dhaenens, C., Lemesre, J., and Talbi, E. (2010). K-PPM: A new exact method to solve multi-
objective combinatorial optimization problems. European Journal of Operational Research,
200(1):45–53.

Ehrgott, M. (2005). Multicriteria optimization. Springer, Berlin [u.a.], 2. edition.

Ehrgott, M. and Tenfelde-Podehl, D. (2003). Computation of ideal and Nadir values and implica-
tions for their use in MCDM methods. European Journal of Operational Research, 151(1):119–
139.

Hamacher, H. W., Pedersen, C. R., and Ruzika, S. (2007). Finding representative systems for
discrete bicriterion optimization problems. Operations Research Letters, 35(3):336–344.

Kirlik, G. and Sayın, S. (2014). A new algorithm for generating all nondominated solutions
of multiobjective discrete optimization problems. European Journal of Operational Research,
232(3):479–488.

Laumanns, M., Thiele, L., and Zitzler, E. (2006). An efficient, adaptive parameter variation scheme
for metaheuristics based on the epsilon-constraint method. European Journal of Operational
Research, 169(3):932–942.

Ruzika, S. (2007). On Multiple Objective Combinatorial Optimization. PhD thesis, Technische
Universität Kaiserslautern.

Ruzika, S. and Wiecek, M. (2005). Approximation Methods in Multiobjective Programming.
Journal of Optimization Theory and Applications, 126(3):473–501.

Sayın, S. (1996). An algorithm based on facial decomposition for finding the efficient set in multiple
objective linear programming. Operations Research Letters, 19(2):87–94.

Sayın, S. (2000). Measuring the quality of discrete representations of efficient sets in multiple
objective mathematical programming. Mathematical Programming, 87(3):543–560.

Steuer, R. E. and Harris, F. W. (1980). Intra-set point generation and filtering in decision and
criterion space. Computers & Operations Research, 7(1–2):41–53.


	Introduction
	Initialization and Update Step
	Properties of the Subdivision
	Completion Steps
	Representation Error
	Extensions of the Box-Algorithm
	Incorporating Domination during the Algorithm
	Other Quality Measures

	Conclusion and Future Research

