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Abstract

Mechanised reasoning systems and computer algebra systems have apparently
different objectives. Their integration is, however, highly desirable, since in many
formal proofs both of the two different tasks, proving and calculating, have to be
performed. Even more importantly, proof and computation are often interwoven and
not easily separable. In the context of producing reliable proofs, the question how
to ensure correctness when integrating a computer algebra system into a mechanised
reasoning system is crucial. In this contribution, we discuss the correctness prob-
lems that arise from such an integration and advocate an approach in which the
calculations of the computer algebra system are checked at the calculus level of the
mechanised reasoning system. This can be achieved by adding a verbose mode to the
computer algebra system which produces high-level protocol information that can be
processed by an interface to derive proof plans. Such a proof plan in turn can be
expanded to proofs at different levels of abstraction, so the approach is well-suited for
producing a high-level verbalised explication as well as for a low-level machine check-
able calculus-level proof. We present an implementation of our ideas and exemplify
them using an automatically solved extended example.

Changes in the criterion of ‘rigour of the
proof’ engender major revolutions in math-
ematics

H. Poincaré, 1905



1 Introduction

The dream of machine assistance in doing mathematics by far predates the advent of elec-
tronic computers: it is at least as old as the invention of the first working mechanical
calculators by Schickard (1623), Pascal (1642), and Leibniz (1671). Although the technical
realisation was quite restricted in the seventeenth century, the dream already then went far
beyond performing the fundamental operations of arithmetic for relatively small numbers.
Leibniz himself already had the idea to use such a calculator for proving mathematical
theorems. He wanted to develop a lingua characteristica universalis and a corresponding
calculus ratiocinator, whose alleged purpose was to solve mathematical and everyday prob-
lems stated in the lingua universalis by mere calculations ( “calculemus” [Lei, Lei86]). This
dream has inspired philosophers and logicians over the centuries, it can be seen as a driv-
ing force behind the rapid development of logic, starting with the works of Boole [Boo54]
and Frege [Fre79] in the last century. In the first part of our century, mechanical calcu-
lators were perfected and their development has come to an end. The computer and the
development of high-level languages were prerequisites for the mechanisation of logic as
well as for the realisation of mechanical symbolic calculations, we could witness in the last
forty years. Of course none of the two fields, neither Mechanised Reasoning nor Computer
Algebra, is imaginable without the underlying foundation of mathematical logic or the
mathematical study of symbolic calculations (leading to such algorithms and methods as
the determination of the GCD or the GauBian elimination).

In the remainder of this introduction we briefly summarise key points of mechanised
reasoning systems as well as of computer algebra systems. By its nature, such a short
description has to abstract from many details and oversimplify the historic development.

1.1 Mechanised Reasoning Systems

Mechanised Reasoning Systems (for short MRS in the following) can be considered as an
attempt to realise Leibniz’ dream of a calculus ratiocinator (at least partially, for instance
for a formal application area like mathematics). The emergence of MRS heavily relies on
the vehement development of modern logic starting with Boole [Boo54] and Frege [Fre79]
and continued by the epochal work in the first third of this century (compare [WRI10,
G6d30, Her30, Gen35] in order to mention only some of the main works). This theoretical
work was continued in early artificial intelligence (AI) research with the implementation
of inference machines, which were among the first existing Al systems [NSS57].

A theorem-proving system may be built with various purposes in mind. One goal is the
construction of an autonomous theorem prover, whose strength achieves or even surpasses
the ability of human mathematicians. Another may be to build a system where the user
derives the proof, with the system guaranteeing its correctness. A third purpose might be
the modelling of human problem-solving behaviour on a machine, that is, cognitive aspects
are the focus.

Advanced theorem proving systems often try to combine the different goals, since they
can complement each other in an ideal way. Let us roughly divide existing theorem-



proving systems into three categories: machine-oriented theorem provers, proof checkers,
and human-oriented (plan-based) theorem provers.

By machine-oriented theorem provers we mean theorem provers based on computa-
tional logic theories such as resolution, paramodulation, or the connection method, that is,
systems based upon some computer-oriented inference system. The main break-through
in this branch of automated reasoning can be seen as the invention of the resolution prin-
ciple [Rob65] by which the search spaces involved with proof search in a calculus could
drastically be reduced. The most important aspect at the calculus is that it replaces non-
deterministic instantiation of variables by algorithmic unification. Modern systems derive
their strength from their ability to maintain and manipulate very large search spaces.
Their strength can be truly remarkable, but the general complexity results demonstrate
clearly that no algorithm can be constructed to practically solve arbitrary tasks (even
propositional logic is in a class that is generally considered intractable).

Interactive proof checking and proof development systems have been built with the
aim of achieving a new standard of rigour in mathematical proof. As pointed out by de
Bruijn, the developer of one of the earliest systems, AUTHOMATH, only a small part of
mathematical literature today is absolutely flawless. To improve this situation, interactive
proof checkers have been developed that carry out the meticulous final checking. In more
recent systems like NUPRL [Con86], ISABELLE [Pau90], and imps [FGT90], a lot of attention
has been paid to the user. In particular, these systems are no longer mere interactive proof
checkers but normally incorporate some human-oriented proof techniques that are encoded
and represented in so-called tactics, first used in LcF [GMWT79]. Tactics are programs that
manipulate the current state of the proof not only by the application of a single calculus
step, but by a whole series of such steps. In this way one user interaction, namely the
call of a single tactic, results in a sequence of steps. In all these systems, the proof is
essentially found by the user with a little help from the machine, rather than vice versa: a
lot of machine support with a little (conceptual) help from the user.

Human-oriented theorem-proving systems have attracted growing attention after the
initial enthusiasm for machine-oriented theorem provers died down and the limitations
of later systems became more apparent. With such systems (e.g. MUSCADET [Pas89)]),
one tries to model the dynamic search process for a proof as well. A particular way
for achieving this goal is to extend tactics to so-called methods by adding specifications.
Intuitively speaking, a method contains a piece of knowledge for solving or simplifying
problems or transforming them into a form that is easier to solve. Specifications of methods
essentially consist of pre- and postconditions for the method to allow connecting them to
proof plans. These proof plans are the basic elements of a more general planning framework
(e.g. CIAM [BvHHS90, BSvH'93]). The reasoning power of such plan-based systems is not
derived from a (theoretically) complete underlying reasoning calculus, but relies on domain-
specific problem solving knowledge. Incidently, theoretical completeness of the methods is
of minor importance practically. What matters is, whether a problem solver, either human
or computer, has the necessary domain-specific problem solving knowledge that offers the
chance to solve the problem with a reasonable amount of search. Since such domain-specific
knowledge is inevitably limited for non-trivial domains and hence practically incomplete, a
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declarative approach to representing methods that enables a mechanical modification and
adaptation to novel tasks has been developed [HKRS94].

Normally all these systems do not exist in a pure form anymore, and in some systems
like our own 2-MKRP system [HKK"94] it is explicitly tried to combine the reasoning power
of automated theorem provers as logic engines, the specialised problem solving knowledge
of the proof planning mechanism, and the interactive support of tactic-based proof devel-
opment environments. We think that the combination of these complementary approaches
inherits more the advantages than the drawbacks, because for most tasks domain-specific
as well as domain-independent problem-solving know-how is required and for difficult task
more often than not an explicit user-interaction should be provided. While such an ap-
proach seems to be general enough to cope with any kinds of proofs, it neglects the fact
that for many mathematical fields, the everyday work of mathematicians does only par-
tially consist in proving theorems. Calculation plays an equally important role. In some
cases the tasks of proving theorems and calculating simplifications of certain terms can
be separated from each other, but very often the tasks are interwoven and inseparable.
In such cases an interactive theorem proving environment will only provide rather poor
support to a user. Although theoretically any computation can be reduced to theorem
proving, this is not practical for non-trivial cases, since the search spaces are intractable.
For much of these tasks, however, no search is necessary at all, since there are numerical
or algebraic algorithms that can be used. If we think of Kowalski’s equation “Algorithm =
Logic + Control” [Kow79], general purpose procedures do not (and can not) provide the
control for doing a concrete computation.

1.2 Computer Algebra Systems

A principal motivation for building the first computers was to facilitate the myriads of
numerical computations that were necessary during World War II in particular in order to
decode secret messages. But the pioneers like Turing and von Neumann, clearly saw that
the possible applications are much broader. With the development of high-level computer
languages such as LispP, it became quite easy to implement symbolic algorithms for the
manipulation of algebraic expressions like the multiplication of polynomials, or the deriva-
tion and integration of functions. Early Computer Algebra Systems (CAS for short) have
developed from collections of such algorithms and data structures [Hea87].

Abstractly spoken, the main objective of a CAS can be viewed in the simplification of an
algebraic expression or the determination of a normal form. Today there is a broad range
of such systems, ranging from very generally applicable systems to a multitude of systems
designed for specific applications. Unlike to MRS, CAS are used by many mathematicians
as a tool in their everyday work, they are even widely applied in sciences, engineering and
economics. Their high academic and practical standard reflects the fact that the study
of symbolic calculation has long been an established and fruitful sub-field of mathematics
that has developed the mathematical theory and tools. Today many algorithms are added
directly by the mathematically trained specialists without any deviation over software
engineers. This guarantees a fast information flow. In addition, many advanced systems
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have reached a user friendliness that it is not only possible to use the systems without
being a software engineer, but that it is also possible to easily add new algorithms without
knowing much of the internal details of the system. Some mathematical theories are
theoretically and algorithmically very well understood like the theory of Grobner bases
such that they can be successfully applied in areas that seem on the first view not directly
related like geometrical theorem proving.

Most modern systems [Wol91, CGG92, Dav92| have in common that the algebraic al-
gorithms are integrated in a very comfortable graphical user interface that includes formula
editing, visualisation of mathematical objects and even programming languages. As in the
case of MRS the representation languages of CAS differ from system to system, which
complicates the integration of such systems as well as the cooperation between them. This
deficiency has been attacked in the OpenMath initiative [AvLS95], in which one strives for
a standard of the CAS communication protocols. Currently the main emphasis is laid on
standardising the syntax and the computational behaviour of the mathematical objects,
while their properties are not considered. That means there is no explicit representa-
tion format for theorems, lemmata and proofs. Some specific systems allow to specify
mathematical domains and theories. For instance in systems like MUPAD [Fuc96] or Ax-
10M [Dav92], computational behaviour can be specified by attaching types and axiomati-
sations to mathematical objects; but this also falls short of a comprehensive representation
of all relevant mathematics.

As one of its possible application areas, CAS have been successfully applied to prove
mathematical theorems and indeed theorem proving can theoretically be reduced to sym-
bolic computation (and as Goédel has shown, even to numerical computation). This is
highly successful for certain areas like geometric theorem proving [Wan91, Ueb95], but it
is not practical for the general case.

Not only the fact that a mutual simulation of the tasks of an MRS and a CAS can
be quite inefficient, but more that the daily work of mathematicians is about proving and
calculating points to the integration of such systems, since mathematicians want to have
support in both of their main activities. Indeed two independent systems can hardly cover
their needs, since in many cases the tasks of proving and calculating are hardly separable.

In the next section we will further motivate the integration of mechanised reasoning
systems and computer algebra systems and discuss possible ways of their integration. In
Section 3 we advocate a particular approach built on top of the proof planning paradigm
and describe the implementation of a prototype. Finally in Section 4 we illustrate the
approach by an extended example.

2 Syntheses of Reasoning and Calculation

In this section we again motivate the integration of mechanised reasoning and computer
algebra, furthermore we describe some of the most prominent attempts of integrating CAS
and MRS in the next subsection. The second subsection is devoted to the philosophy of
mathematics, since it has a great influence on the architecture of systems that support



mathematicians in their work. This fact has led—to our knowledge—to more discussions
in the field of mechanised reasoning than in that of computer algebra. This may be due to
the fact that it directly affects the very sensible notions of proof, truth, and correctness.
Since it also directly affects the possible syntheses of mechanised reasoning systems and
computer algebra systems, we give a short, simplified recapitulation of this discussion.
Then we adopt one of the philosophical positions and show how the basic features of
our own MRS meets this position and describe the main problems that arise from any
integration of a CAS into such an MRS. We conclude this section by relating the existing
approaches to the philosophy of mathematics and give an alternative approach to such an
integration.

2.1 Motivation and Related Approaches

Traditional MRS are very weak, when it comes to computation with mathematical ob-
jects. In contrast, CAS manipulate highly optimised representations of the objects and are
therefore very useful for solving subgoals in mathematical deduction. Thus they should
be part of any mathematical assistant system used for verifying intuitive mathematical
proofs. Moreover, looking into mathematical textbooks reveals that for many areas nei-
ther computation nor purely logical deduction dominate proofs. Consequently several
experiments on combining CAS and MRS have been carried out recently. As pointed out
by Buchberger [Buc96] the integration problem is still unsolved, but it can be expected
that a successful combination of these systems will lead to “a drastic improvement of the
intelligence level” of such support systems. We give a short description of some of these ex-
periments and roughly categorise them into three categories with respect to the treatment
of proofs that is adopted.

In the attempts belonging to the first category (see e.g. [CZ92, BHC95]) one essentially
trusts that the CAS properly work, hence their results are directly incorporated into the
proof. All these experiments are at least partly motivated by achieving a broader ap-
plicability range of formal methods and this objective is definitively achieved, since the
range of mathematical theorems that can be formally proved by the system combinations
is much greater than that provable by MRS alone. However, CAS are very complex pro-
grams and therefore only trustworthy to a limited extent, so that the correctness of proofs
in such a hybrid system can be questioned. This is not only a minor technical problem,
but will remain unsolved for the foreseeable future since the complexity (not only the code
complexity, but also the mathematical complexity) does not permit a verification of the
program itself with currently available program verification methods. Conceptually, the
main contribution of such an integration is the solution of the software-engineering prob-
lem how to pass the control between the programs and translating results forth and back.
While this is an important subproblem, it does not seem to cover the full complexity of
the interaction of reasoning and computation found in mathematical theorem proving.

The second category [HT93a| is more conscious about the role of proofs, and only
uses the CAS as an oracle, receiving a result, whose correctness can then be checked
deductively. While this certainly solves the correctness problem, this approach only has



a limited coverage, since even checking the correctness of a calculation may be out of
scope of most MRS, when they don’t have additional information. Indeed from the point
of applicability, the results of the CAS help only in cases, where the verification of a
result has a lower complexity than its discovery, such as prime factorisations, solving
equations, or symbolic integration. For other calculations, such as symbolic addition or
multiplication of polynomials and differentiation, the verification is just as complex as
the calculation itself, so that employing the CAS does not speed up the proof construction
process. Typically in longer calculations such as solving a minimisation problem both types
of sub-calculations are contained. While this should provide at least some hints to an MRS
for the construction of a proof, it is normally not trivial to separate the different parts. In
an alternative approach that formally respects correctness, but essentially trusts CAS, an
additional assumption standing for the CAS is introduced, so that essentially formulae are
derived that are proved modulo the correctness of the computer algebra system at hand
(see e.g. [HT93b]).

A third approach of integrating computer algebra systems into a particular kind of
mechanised reasoning system, consists in the meta-theoretic extension of the reasoning
system as proposed for instance in [BM81, How88| and been realised in NUPRL [Con86]. In
this approach a constructive mechanised reasoning system is basically used as its own meta-
system, the constructive features are exploited to construct a correct computer algebra
system and due to bridge rules between ground and meta-system it is possible to integrate
the so-built CAS that it can be directly used as a component. The theoretical properties
of the meta-theoretic extension guarantee that if the original system was correct then the
extended system is correct too. This method is from the viewpoint of correctness most
appealing, although the assumption that the original system must be correct can hardly be
expected to be true for any non-trivial system. A disadvantage compared to the other two
approaches is that it is not possible to employ an existing CAS, but that it is necessary
to (re)implement one in the strictly formal system given by the basic MRS. Of course
this is subject to the limitations posed by the (mathematical and software engineering)
complexities mentioned above.

The main problem of integrating CAS into MRS without violating correctness require-
ments is that CAS are generally highly optimised towards maximal speed of computation
but not towards generating explanations of the computations involved. In most cases, this
is dealt with by meta-theoretic considerations why the algorithms are adequate. This lack
of explanation makes it not only impossible for the average user to understand or convince
himself of the correctness of the computation, but leaves any MRS essentially without any
information why two terms should be equal. This is problematic, since computational er-
rors have been reported even for well-tested and well-established CAS. From the reported
categories of approaches only the last one seriously addresses this problem.

Before introducing our own approach we will use the next subsection to discuss some
philosophical aspects of proof and correctness, which directly influence basic architecture
decisions of our work.



2.2 The Notion of Proof and Correctness

Mathematics generally enjoys the prestige of being the correct scientific discipline par
excellence. This reputation comes from the requirement that every claim must be justified
by a rigorous proof. The ultimate goal of many MRS is to support mathematicians in the
task of constructing such a proof. This is not trivial, since in traditional mathematical
practice, proofs are not given in terms of single calculus rules but at a level of abstraction
that conveys the main ideas. This procedure is based on the conviction that a detailed
logic-level proof could be generated if necessary, which, however, would be too boring.
In addition, most mathematicians have no interest in “formal” (logical-level) proofs. The
correctness of their relatively informal proofs is usually guaranteed by a social process of
critical reviewing. It turns out nevertheless that this social process often fails to reach its
goal: in most cases this is only caused by minor and reparable errors, but from time to
time a false theorem is assumed to have been proved. The history of Euler’s polyhedron
theorem is a well-known story of such repeated falsification and patching [Lak76]. The
development of mathematical logic and in particular of automated reasoning systems can
be viewed as an attempt to achieve a new quality of correctness. The philosophy behind
this enterprise lies in the belief that a meticulous machine guarantees the correctness by
carrying out only correct deduction steps on a calculus level.

There are essentially two different views of proofs, the realist’s (also called Platonist)
and the nominalist’s [Pel91]. A realist accepts abstract properties of proofs, in particular
he/she is satisfied with the evidence of the existence of a proof in order to accept the truth
of a theorem. A proof for a nominalist, on the other hand, makes only sense with respect to
a particular calculus, hence he/she only accepts concrete proofs formulated in this calculus.
The advantage of adopting the realist position is that reasoning systems can be built (and
meta-theoretically extended) without bothering about the concrete construction of proofs!.
The advantage of the nominalist position is that it preserves the tradition that proofs
can be communicated: The nominalist position guarantees the correctness of machine
generated proofs without violating an essential of the traditional notion of proof, namely
the possibility to communicate them. Furthermore explicit proofs can be checked by simple
proof checkers and this seems currently to be the only way to ensure the correctness of
proofs generated by large computing systems, which are inevitably error-prone.

In accordance with the two philosophical positions there are two possible ways to use
an MRS: as trustworthy black box (trustworthy, for instance, since there are a lot of meta-
arguments, why the system works properly) or as a system that produces communicable and
checkable proofs. Please note that essentially all three categories of approaches enumerated
in subsection 2.1 are of the first kind, that is, they assume the trustworthiness of the CAS
and/or the MRS. A partial exception is the practically not feasible variant of the second
category, were proofs using computer algebra calculation have to be completed by the MRS

"However, not that if the metatheory is constructive itself, such as in [ASG96], then the meta-level
proof of soundness of the extensions (such as decision procedures) can be used to extract a transformation
procedure of object level proofs, that can in turn be used to complete the gaps left by the decision
procedures



before being accepted, as well as the third one, which can relatively easily be extended to
produce detailed proofs.

2.3 The Proof Development Environment {2-MKRP

In our own MRS, the 2-MKRP-system to be described in the following, we advocate the
stricter nominalist approach (the second approach described in the previous subsection).
The main reason for this is the reliability argument. Clearly, the sheer size of the systems
involved prohibits to come up with provably correct MRS, but in particular makes it
impossible to add different systems to an MRS like an external CAS without giving up any
correctness requirement.

In the Q-MKRP proof development environment [HKK*94], a human user can apply
different integrated tools to manipulate a proof tree, which stores the current partial natural
deduction proof. In particular, new pieces of proof can be added by calling so-called
methods, programs that store some proof information, by inserting facts from a data base,
or by calling some external automated theorem prover (see Figure 1). Furthermore the user
can call the Proverb system for the generation of an abstract proof that can be verbalised.
Finally, there is the possibility to call a computer algebra system as we will describe in the
rest of the paper.

Since the correctness of the different components (in particular of the external ones)
cannot be guaranteed, the final proof has to be checked by a simple verifier equipped with
a fixed set of natural deduction rules. The soundness of the overall system only relies on
the correctness of this checker and the correctness of the natural deduction rules. The
price we have to pay for this is that in our approach each component must protocol its
results in some universal format (in our case, a variant of Gentzen’s calculus NK of natural
deduction). If this is not the case, e.g., for automated theorem provers based on resolution,
a transformation into the natural deduction formalism must be carried out. To summarise
our view of proofs, in 2-MKRP for any theorem an explicit proof has to be constructed so
that on the one hand it can be checked by a proof checker, on the other hand the system
provides support to represent this proof in a high-level form that is easily readable by
humans. Neither the process of generating proofs nor that of checking them is replaced by
the machine but only supported. If a human mathematician want to see a proof, he/she
can do so on an appropriate level of abstraction.

We are not going to present (2-MKRP in great detail, most of its components are quite
standard and are not important for the purpose of this paper. A main component, which
is important for the integration of computer algebra into {2-MKRP is its planning compo-
nent. The entire process of theorem proving in (2-MKRP can be viewed as an interleaving
process of proof planning, method execution (the plan operators are called methods and
essentially are tactics plus specifications) and verification. In particular, this model as-
cribes a problem-solver’s reasoning competence to the existence of methods together with
a planning mechanism that uses these methods for proof planning.

To understand the basics of the proof planning process, please remember that the goal
of proof planning is to fill gaps in a given partial proof tree by forward and backward rea-
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Figure 1: Architecture of (-MKRP

soning [HKKR94] (proof plans were first introduced by Bundy see [BVHHS90, BSvH93]).
Thus from an abstract point of view the planning process is the process of exploring the
search space of planning states that is generated by the plan operators in order to find a
complete plan (i.e. for a linear planner, a sequence of instantiated plan operators) from a
given nitial state to a terminal state.

Specifically a planning state contains a subset of proof lines which are formulated in
Gentzen’s natural deduction (ND for short) calculus in the current partial proof that
correspond to the boundaries of a gap in the proof. This subset can be divided into open
lines (that must be proved to bridge the gap) and support lines (that can be used as
premises to bridge it). The initial planning state consists of all lines in the initial problem;
the assumptions are the support lines and the conclusion is the only open line. The terminal
planning state is reached when there is no more open line in the planning state.

Once a complete proof plan is found, all methods (i.e. their tactics) in the proof plan are
successively executed in order to construct a calculus level proof. The verification phase,
which follows the application of the methods, may result in a recursive call to the planner
or in backtracking. While a recursive call refines a plan and models hierarchical planning,
the backtracking rejects the plan and calls the proof planner in order to find an alternative
one.

The most interesting component in our declarative hierarchical approach to proof plan-
ning is that of a method, an operator for plan construction. Formally, a method is defined
as a 6-tuple with the components:
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Declarations: A signature that declares the meta-variables used in the method,
Premises: Schemata of proof lines which are used by this method to prove the conclusions,

Constraints: Additional restrictions on the premises and the conclusions, which cannot be
formulated in terms of proof line schemata,

Conclusions: Schemata of proof lines which this method is designed to prove,

Declarative Content: A piece of declarative knowledge interpreted by the procedural con-
tent. This slot is currently restricted to schemata of partial proofs,

Procedural Content: Either a standard procedure interpreting the declarative content, or
a special purpose inference procedure.

Method
Declarations
Speci- Premises Declar-
fication Constraints ative
Part
Conclusions
Declarative
Content
Tactic P
Procedural DU dﬁ)r(;ﬁ_
Content Part

Two examples of methods are displayed in the section on the extended example, Sec-
tion 4.

2.4 Integrating Computations into Explicit Proofs

If we take the idea of generating explicit proofs seriously also for computations and do not
want to give up the nominalist paradigm, we can neither just take existing systems nor
follow the approach of meta-theoretic extensions, since {2-MKRP is a classical proof system
and does not use constructive logic). On the other hand we cannot forgo using them even
in cases, where the verification of a calculation is much easier than the calculation itself
(e.g., integration of functions); the computation needed for verifying alone is in many cases
still much too complicated to be automatically checked without any guidance. For instance
even the proof for the binomial formula (z + y)*> = 2? + 2zy + y? (a trivial problem for
any computer algebra system) needs more then 70 single steps in the natural deduction
calculus?. Thus using theorem provers or rewriting systems to find such proofs can produce

2Proofs of this length are among the hardest ever found by totally automatic theorem provers without
domain-specific knowledge.
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unnecessarily large search spaces and thus absorb valuable resources. On the other hand
such proofs show a remarkable resemblance to algebraic calculations themselves and suggest
the use of the CAS not only to instantly compute the result of the given problem, but also
to guide a proof in the way of exploiting the implicit knowledge of the algorithms. We
propose to do this extraction of information not by trying to reconstruct the computation
in the MRS after the result is generated—as we have seen, even in case of a trivial example
for a CAS this may turn out to be a very hard task for an MRS—but rather to extend the
CAS algorithm itself so that it produces some logically usable output alongside the actual
computation.

Our approach is to use the mathematical knowledge implicit in the CAS to extract
proof plans that correspond to the mathematical computation in the CAS. So essentially
the output of a CAS should be transferable into a sequence of tactics, which presents a high-
level description for the proof of correctness of the computation the CAS has performed.
Note that this does not prove general correctness of the algorithms involved, instead it only
gives a proof for a particular instance of computation. The high-level description can then
be used to produce a readable explanation or evaluated to check the proof. If we want to
check the whole derivation, these proof plans can then be expanded into detailed natural
deduction proofs. The decision to extract proof plans rather than concrete proofs from the
CAS is essential to the goal of being verbose without transmitting too much detail.

For our purpose, we need different modes, in which we can use the CAS. Normally,
during a proof search, we are only interested in the result of a computation, since the
assumption that the computation is correct is normally justified for established CAS. When
we want to understand the computation—in particular, in a successful proof—we need a
verbose mode of the CAS that gives enough information to generate a high-level description
of the computation in terms of the mathematics involved. How this can be achieved is
described in the next section in detail.

3 SAPPER

In this section we describe SAPPER (System for Algorithmic Proof Plan Extraction and
Reasoning), which integrates a prototypical Computer Algebra System into a proof plan-
based mechanised reasoning system. The system is kept generic, but for the concrete inte-
gration we have used the Q-MKRP-system as MRS and a self-written CAS, called u-CAs.
As mentioned in the previous section, for the intended integration it is necessary to aug-
ment the CAS with mathematical information for a verbose mode in order to achieve the
proposed integration at the level of proofs. The pu-CAs-system is very simple and can
at the moment only perform basic polynomial manipulations and differentiation, but it
suffices for demonstrating the feasibility of our approach. Clearly, for a practical system
for mathematical reasoning, a much more developed system like Maple [CGG'92], Re-
duce [Hea87], or Mathematica [Wol91] has to be integrated. Enriching such a large CAS
with a corresponding verbose mode for producing additional protocol information, would
of course require a considerable amount of work.
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Figure 2: Interface between (2-MKRP and Computer Algebra Systems

3.1 Architecture

The SAPPER system can be seen as a generic interface for connecting (2-MKRP with one or
several Computer Algebra Systems (see Figure 2). An incorporated CAS is treated as a
slave to 2-MKRP which means that only the latter can call the first one and not vice versa.
From the software engineering point of view, (2-MKRP and the CAS are two independent
processes while the interface is a process providing a bridge for communication. Its role is
to automate the broadcasting of messages by transforming output of one system into data
that can be processed by the other?.

Unlike other approaches (see [GPT94, HC95| for example) we do not want to change
the logic inside our prover. In the same line, we do not want to change the computational
behaviour of the computer algebra algorithms. In order to achieve this goal the trace
output of the algorithm is kept as short as possible. In fact most of the computations for
constructing a proof plan is left to the interface. The proof plans can directly be imported
into {2-MKRP.

3This is an adaptation of the general approach on combining systems in [CMP91].
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This makes the integration independent of the particular systems, and indeed all the
results below are independent of the CAS employed and make only some general assump-
tions about the MRS (such as being proof plan-based). Moreover, the interface approach
helps us to keep the CAS free of any logical computation, for which such a system is not
intended anyway. Finally, the interface minimises the required changes to an existing CAS,
while maintaining the possibility of using the CAS stand-alone. The only requirement we
make for integrating a particular CAS is that it has to produce enough protocol informa-
tion so that a proof plan can be generated from this information. The proof plan in turn
can be expanded by the MRS into a proof verifying the concrete computation.

The interface itself can be roughly divided into two parts; the translation part, and the
plan-generator. The first performs syntax translations between 2-MKRP and a CAS in both
directions while the latter only transforms verbose output of the CAS to {2-MKRP proof
plans. Clearly only the translation part depends on the particular CAS that is invoked.

For the translations a collection of data structures—called abstract CAS*—is provided
each one referring to a particular connected CAS (or just parts of one). The main purpose
of these structures is to specify function mappings, relating a particular function of 2-MKRP
to a corresponding CAS-function and the type of its arguments. Furthermore it provides
functionality to convert the given arguments of the mapped (2-MKRP function to CAS
input. In the same fashion it transforms results of algebraic computations back into data
that can be further processed by (2-MKRP. These syntax transformations are implemented
by two generic functions, one for each direction of data flow. The single methods for each
function are selected according to the type of objects send to and returned from the CAS.
It is possible to expand the translation unit generically by simply adding new abstract
CAS and methods for the two translation functions. The functionality in this part of our
interface offers us the possibility of connecting any CAS as a black box system, as in the
first approach we have described in Section 2.1. For instance, we may want to do use a
very efficient system without verbose mode for proof search as black box system, and then
another less efficient system with verbose mode for the actual proof construction, once it
is clear what the proof should look like.

The plan-generator solely provides the machinery for our main goal, the proof plan
extraction. Equipped with supplementary information on the proof by {2-MKRP it records
the output produced by the particular algebraic algorithm and converts it into a proof
plan. Here the requirements of keeping the CAS side free of logical considerations and on
the other hand of keeping the interface generic seem conflicting at the first glance. However
this conflict can be solved by giving both sides of the interface access to a data base of
mathematical facts formalising the mathematics behind the particular CAS algorithms.
Conceptually, this data base together with the mappings governing the access, provides
the semantics of the integration of (2-MKRP with a particular CAS. Thus expanding the
plan-generator is simply done by expanding the database by adding new tactics.

Such a database is needed independently of the usage in the integration of CAS by the

“In a reimplementation of SAPPER we would use the well-established OPEN MATH protocol [AvLS95]
as a lingua franca on the CAS side.
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proof planner for storing and structuring the definitions, theorems, proofs, and methods
of a given mathematical domain. In fact, to 2-MKRP the mathematics behind the CAS
algorithms is just another special domain. The data-base is structured in a hierarchical
system of theories and sub-theories. Such a theory is a collection of definitions, type
information and axioms, theorems, and lemmata derivable from these axioms. Moreover it
contains methods, tactics, etc. usable by various kinds of proof planners (including the plan-
generator for a particular CAS). In this setting an -MKRP proof plan obtains a natural
hierarchy corresponding to the structure of the theories. In particular, the hierarchical
structure of this data-base is a valuable source for guiding the search for proof plans.

While Q2-MKRP itself can access the complete database, SAPPER’s plan-generator in the
interface is only able to use tactics and lookup hypotheses of a theory (cf. Figure 2). The
CAS does not interact with the data base at all: it only has to know about it and references
the logical objects (methods, tactics, theorems or definitions) in the verbose mode. This
verbose information of the CAS is returned as strings consisting of the name of the object
and its appropriate arguments. Thus knowledge about the data base is compiled a priori
into the algebraic algorithms in order to document their calculations.

3.2 A First Example of the Integration

As a first example of the integration we consider the case of extracting proof plans from
a recursive algorithm for adding polynomials. Even though this algorithm is quite trivial
from the CAS point of view, we present it here, since it sheds some light on the spirit of
the integration.

Let us now take a look at the different representations of a polynomial p in the variables
Ti1yewne, Tyt

n

€1, Enp.

p = E aixll...xT”
=1

The logical language of (2-MKRP is a variant of the simply typed A-calculus, so the poly-
nomials are represented as A-expression where the formal parameters xi,...,x, are A-
abstracted (mathematically, p is a function of 7 arguments):

P AT AT (+ (ko (x (T 1 €1,) 7)) -+ (k0 (x (T m1e1,) -+ 0)),

For the notation, we use a prefix notation; the symbols +, * and 1 denote binary functions
for addition, multiplication and exponentiation on the rationals. In this representation,
we can use [(-reduction for the evaluation of polynomials, but we have to define a special
function for polynomial addition for any arity 7.

In u-CAs, we use a variable dense, expanded representation as an internal data-struc-
ture for polynomials (as described in [Zip93| for instance). Thus every monomial is rep-
resented as a list containing its coefficient together with the exponents of each variable.
Hence we get the following representation for p:

p: ((Oln €1n"'€rn)"'(041 611"'67"1))
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Let us now turn to the actual pu-CAs algorithm for polynomial addition. This simple
algorithm adds polynomials p and g by a case analysis on the exponents® with recursive

calls to itself. So let p = _Z ozt and ¢ = Z /Bz ol

algorithm in the jth component of p and the kth component of ¢ in a Lisp-like pseudo-code
in Figure 3. Intuitively, the algorithm proceeds by ordering the monomials, advancing the
leading monomial either of the first or the second arguments; in the case of equal exponents,
the coefficients of the monomials are added.

. We have presented the

(poly-add (p q)
(: (elj e eTj)(flk oo fm))
(tactic mono-add)
(cons-poly (a + ﬁk)xl e Ty

€r; m fli f’l‘z
(poly-add 5 izt Y By ))
i=j+1 i=k+1

(> (elj o 'eTj)(flk ot f"'k))

(tactic pop- first)
(cons-poly ozjxl ey

(po:l-y add E al‘%‘l PP xﬁrl Z ﬂll.{ll .. './,CZT?’))
i=j+1 i=k

(< (elj T e?“j)(flk o ka))
(tactic pop-second)

€1 e
(cons-poly [rxy* -« xz*

n . P m R "
(poly-add Y gz} a3 Bl al)))
=7 i=k+1

Figure 3: Polynomial addition in pu-CAS.

Obviously, the only expansions of the original algorithm needed for the verbose mode
are the additional (tactic ...) statements®. They just produce the additional output by
returning keywords of tactic names to the plan-generator and do not have any side effects.
In particular, the computational behaviour of the algorithm does not have to be changed
at all.

If we apply this algorithm to the simple polynomials

p:=32>+22+5 g:=5x34+x+2

5We employ the intuitive well-ordering on the exponents and thus make use of the operators >, <,=
in an intuitive sense.

60bserve that in this case, the called tactics do not need any additional arguments, since our plan-
generator in the interface keeps track of the position in the proof and thus knows on which monomials the
algorithm works when returning a tactic. This way we need not to be concerned what form a monomial
actually has during the course of the algorithm.
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we obtain the following verbose output:
(pop-second, pop-first, mono-add, mono-add)

First the cubic monomial from ¢ (the second argument) and then the quadratic one
from p (the first argument) are raised, since they only appear in one argument, and finally
the remaining monomials are summed up.

In this simple case, each of the verbose keywords directly corresponds to a tactic with
the same name, so the verbose output directly represents a proof plan for polynomial
addition of the concrete polynomials p and gq.

Let us now take a look at the pop-second tactic to understand its logical content. The
tactic itself describes a reordering in a sum that looks in the general case as follows:

(a+B+c)=(0b+(a+c) (1)

For the current example we can view a and c as arbitrary polynomials and b as a monomial
of rank greater than that of the polynomial a. It is now obvious that the behaviour of
pop-second is determined by the pattern of the sum it is applied to. If in equation (1)
the polynomial ¢ does not exist, pop-second is equivalent to a single application of the
law of commutativity. Otherwise, like in our example, the tactic performs a series of
commutativity and associativity steps. In the example the tactic can be expanded in two
steps. First we have a one step inference with pop-second corresponding to two lines in
our proof. (In the actual proofs, the terms are embedded in contexts of course.)

((32% + 2z +5) + (52 + z + 2))
5z + ((3z* + 2z +5) + (z + 2))) (pop-second)

Expanding this plan adds two intermediate lines to the proof which then reflects the
single step applications of the laws of commutativity and associativity.

((3z* + 2z + 5) + (52* + z + 2))

(32 + 2z + 5) + 52°) + (z + 2)) (associativity)
((52% + (322 + 22 + 5)) + (z + 2)) (commutativity)
(5% + ((32% + 22 +5) + (v + 2))) (associativity)

Finally to receive the complete calculus level proof for the computation step described
by the pop-second tactic we further expand all three justifications of the above lines.
This leads to a sequence of eliminations of universally quantified variables in the corre-
sponding hypothesis, the axioms of commutativity and associativity. In our example the
commutativity axiom would be transformed in the following fashion:

Vavb.(a+b) = (b+ a) (HYP)
Vb, ((32% + 22+ 5) + b) = (b+ (32% + 2z + 5)) (VE (32% + 2z +5))
((3z% + 2z +5) + 523) = (5z® + (32? + 2z + 5)) (VE 5z°)

Altogether this single application of the pop-second-tactic is equivalent to a calculus-
level proof of 11 inference steps. The overall proof of this trivial polynomial addition has
a length of 47 single step. As the proof itself is rather boring we omit presenting it here
and refer to the more elaborated and interesting example in Section 4.
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3.3 Refinements, and Problems of the Basic Idea

In order to keep the communication overhead low and improve the structure of proofs,
the verbose output and the resulting proof plan should be hierarchically structured. For
instance an algorithm that calls sub-procedures can represent these calls explicitly in a
verbose output of call-cas but run the sub-algorithm themselves in quiet mode. Thus,
during the expansion of the corresponding proof plan, the CAS is called on the appropri-
ate subproblems, allowing the generation of further sub-proof-plans, and so on. This very
simple mechanism allows to map the natural hierarchical (modular) structure of the algo-
rithm onto the proof plan, which then contains levels of abstraction ranging from a single
step (completely trusting the computation of the CAS) over intermediate levels to a full
ND proof. Moreover, since the proof plan expansion is only carried out by need, the user
can select the level up to which he/she wants to expand the proof and which calculations
he/she feels comfortable with.

We have tested proof plan extraction from simple recursive and iterative CAS algo-
rithms, where it works quite well. However, more complicated schemes like divide-and-
conquer algorithms (e.g. the polynomial multiplication of Karatsuba and Ofman [KO63])
cannot be adapted to our approach so easily. Highly elaborated and efficient algorithms
in systems like Mathematica [Wol91] or Maple [CGGT92] might be hard to augment with
verbose modes. However, even if it proves impossible to extract verbose information that
is valuable at the conceptual, mathematical level, it is always possible to reserve these
elaborated techniques for the quiet mode used in proof discovery, and use more basic
algorithms for the proof extraction phase. It may even be, that algorithms using elab-
orated data-structures and calculation schemes can contribute internal information that
improves informed runs of simpler algorithms. It furthermore would be desirable to make
use of sophisticated type systems and axiom specifications in System like Aziom [Dav92]
or MuPAD [Fuc96] to return domain specific tactics in the verbose output.

4 Extended Example

In this section we present an example that cannot easily be solved by either a mechanised
reasoning system or a computer algebra system, but that needs the combined efforts of
two systems of each kind. The concrete task at hand is to minimise the costs for running a
machine while producing a certain product. This example serves our purposes for several
reasons. Firstly, it allows us to show the interaction of proof planning and the extraction of
proof plans from calculations. Secondly, the mathematics involved is simple enough to be
fully explained (only simple polynomial manipulations are necessary). Thirdly, it is a real-
world example, the problem is a slightly varied version of a minimisation problem from a
masters examination in economics at the Universitit des Saarlandes, Saarbriicken| WiW89).
In the following we solve this problem using our SAPPER-system. First we present the
problem.

Problem: The output of a machine can range over a certain interval, the interval I =
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[1,7]. The cost of the product prod is determined by the costs of water and electricity for
producing prod, which are given by the functions

o 7= (4d® — 184+ 7T7) - o 7, = (0.5d*> — 1.5d + 0.5) L%

prod prod

and the prices for water and electricity

o p=0524 o py =2+
Determine the output d in I of the machine such that the total costs are minimal. [ ]

In order to solve this problem, we obviously need a theory for the formalisation of this
problem that can handle both numerical parts and denomination of cost functions. For
this purpose we apply the theory of optimisation problems in economy that provides a
type v of units and a type k of costs. v covers the different units of denominations—in
our example [ (for volume), kWh (for work), prod (for the number of products) and DM
(for the price)—while the cost-type k can intuitively be understood as that of pairs of real
numbers and units. Cost functions are determined by a real function and a pair of units
(read as input/output units) and are therefore of type k — k. Note, that just as in the
real world, addition (&) multiplication (®) and comparison of costs and cost functions is
defined as that of their real parts with respect to the denominations. For these calculations
we have the axioms CF1 and CF2. If two denominations differ, we can relate them by their
prices, for this purpose we use axiom P.

CF1 cf(fiu,v)®cflg,u,v) = cf(f+g,u,0)
CF2  cf(fiu,v)®@cflg,v,w) = cf(f-g,u,w)
P price(f,u,v) = cf(g,v,w) = cf(f-g,u,w)
Optimisation is formalised by a predicate Opt on a cost function cf(f, DM, prod) and an
interval I that is true, whenever f has a total minimum on 1.
O Opt(cf(f, DM, prod),I) < Jx. TotMin(z, f, I)
Thus we can state the problem as the following formula’

T HF Opt(lef(Ad4d® — 18d + 7,1, prod) & cf (Ad.0.5d*> — 1.5d + 0.5, kWh, prod)], [1,7])

7Actually the formalisation of the problem is not fully correct, since the examiner is not only interested
in the proof that there exists such an z, but he/she wants to know the value of = as well as a proof that
this value fits the requirements. Obviously, such an answer cannot be obtained from the formula here, but
only from a proof that is constructive for the variable z, where we can extract a witness term. This is no
problem for a CAS nor for an MRS based on constructive logic, but for a traditional MRS based on classical
logic, the proof construction process has to be refined to guarantee constructivity for z. Note that the
arguments, why the witness for £ meets the requirements can still be classical and non-constructive. For
-MKRP this means that the proof planner may only use methods in our proof plan that are constructive to
get the wanted answer as presented here and not a non-constructive abstract argument. Finally note that
this phenomenon is another argument in favour of the nominalist point of view. A realist may find himself
in the position, that he/she is convinced (by meta-theoretic arguments) of the existence of a (constructive)
proof, but in fact without one from which to extract a term witness to answer the exam question.
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where H is a set of hypotheses that are needed for the complete proof (11 of these hy-
potheses are needed only for the polynomial manipulations of the CAS) and for instance
the price axioms®

price(\d.0.5,DM,1)  price(\d.2, DM, kWh)

The planner solves the problem, by generating a high-level proof plan consisting of
methods from it’s domain specific method base on economics exam questions®.

We are going to outline this process by describing its major steps. In particular, we
will demonstrate how the proof planner of (2-MKRP and the Computer Algebra component
of the SAPPER-system interact, and make explicit, on which entries of a mathematical

data-base this interaction depends. The planner finds the following simple proof plan:

Mult-by-Price
Mult-by-Price
Add-by-Denom
Optimise

5 TotMin-Rolle

=W N =

where the first three methods compute the actual cost function by adjusting the denomina-
tions and adding. Method 4 uses Axiom O for optimisation. As the example only contains
polynomials of degree two, the planner selects a method TotMin-Rolle (cf. Figure 5) for
finding total minima that makes implicit use of Rolle’s theorem

Let f be a polynomial of degree two, then f has a total minimum x € [a,b], iff
f has a minimum at x and furthermore f(a) > f(x) < f(b).

Formally we get the following equivalence:
TotMin TotMin(z, f, [a,b]) < (z € [a,b] A Min(z, f) A (f(z) < f(a) A f(z) < f(D))))

Note that the proof of Rolle’s theorem has to be accessible in the current theory, and
furthermore, the data-base has to contain a formal proof in order to ensure correctness.

Now let us take a closer look at some of the methods in order to get a feeling of how
this initial proof plan can be expanded. In Figures 4 and 5 we have given slightly simplified
presentations of the Mult-by-Price and TotMin-Rolle method!.

The declaration slot of the method simply defines the meta-variables used in the body
of the method. The premises, conclusions, and the constraint describe the applicability
of the method. In the example of Mult-by-Price, for instance, line L, has to be present
and to be an open subgoal, while L; and L3 are lines that can be used in order to infer

8The formalisation allows arbitrary rational functions, but we only need constant ones here.

9Questions for certain standard exams are a good example for a very restricted mathematical domain,
since the proofs and calculations involved are highly standardised. Therefore finding the proof plan in this
example is not a big problem for -MKRP.

10We have especially adjusted the syntax of the constraint in a way that is more comprehensive for the
reader.
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Method : Mult-by-Price
Ll) LQ; L3a L4: prln

Declarations | Hy, Hy, H3: list(prin) Ji: just
frg,v,w,I,¢,¢" 1, 4" variable
Premises Ly, ®L;

¥ < (2ndarg(termocc(cf, ¢)) # DM — termocc(cf, ¢))
g < Lstarg(¢)) v« 2ndarg(y)) w « 3rdarg(v))

V' cf(g- f, DM, w)

¢’ + replace(y’, ¢, ¢)

Conclusions | S,

Constraint

) Hj +price(f, DM, v) (
Declarative (Ly) Hy,Hy Fef(g,v,w) =1 (
Content (Ls) Hj FOpt(¢', I) (Call-CAS)
(Ls) Hy  FOpt(¢,1) (

Procedural

schema — interpreter
Content P

Figure 4: The Mult-by-Price method

L4. Ly has to be given already, whereas L3 is generated by the application of the method
(indicated by the @). Since the method is intended to prove Lj, after the application of
the method, this line can be deleted from the current planning state (we indicate this by
the ©). In the constraint slot further applicability criteria are described.

The tactic part of the method plays its role not in the planning phase but in the
execution phase. It consists of the procedural content, which consists for our examples of a
schema-interpreter, which essentially inserts the declarative content (using the bindings
made in the planning phase) at the correct place in the current partial proof tree. In the
concrete example the lines L; through L4 are inserted (Note that we adopted a linearised
version of ND proofs as introduced in [And80]).

In order to understand to which piece of actual proof these methods evaluate, we have to
examine the declarative content and the bindings performed in particular in the constraint.
The constraint of the Mult-by-Price-method states a rather simple computation: if in
the cost function of our optimisation problem has a denomination other than DM, it is
multiplied with the appropriate price. The multiplication of the real parts is carried out
by the CAS and the corresponding cost function is constructed. As this point is crucial for
understanding the working scheme of a method we will view the bindings in the constraint
step by step: When applied to the current plan the method is matched with the open
goals of the planning state. The first pass of the planner yields that L, can be matched
with our theorem T. Thus our cost function [cf(\d.4d? — 18d + 7,1, prod) & cf(A\d.0.5d* —
1.5d+ 0.5, kWh, prod)] is bound to the metavariable ¢. By binding its arguments to g, v, w
and matching line L; we receive the numerical part of price in f. Afterwards the new
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cost function is computed (according to axiom P) in ¢’ and finally ¢’ contains the result of
replacing the old cost function in ¢ by 7/'. Hence in the first plan step the value cost function
stored in ¢' is [cf ((Ad-4d*—18d+7-1d.0.5, DM, prod)@®c f (Ad-0.5d*—1.5d+0.5, kWh, prod)).

With all these metavariables instantiated the subproof contributed by the Mult-by-
Price-method consists of lines L, and L3 in the declarative content. Here we observe that
L, results from applying the price-axiom P (which is fetched from the database) to line
L. Furthermore note that in L3 we have a call to the CAS as a justifying method for the
line. This means that at this point in the proof plan the CAS is called in order to compute
the product of price and original cost function. The line resulting from this calculation is
then used as the new open subgoal in the planning state.

To preserve space we will not present the next two methods of our proof plan as ex-
tensively as the Mult-by-Price-method. Add-by-Denom is very similar to Mult-by-Price
and applies axiom CF1 inside the optimisation function Opt to compute the final cost
function. In its course the CAS is called once to perform a polynomial addition. Then the
Optimise-method simply introduces the definition for the Opt function of axiom O.

Far more interesting than these two methods is the TotMin-Rolle-method as it contains
a different example for the use of a CAS in 2-MKRP. Again the presentation of the method
in Figure 5 is simplified.

The TotMin-Rolle method is applied at a stage of the proof where the actual minimum
of the cost function has to be introduced. This task is fulfilled within the constraint of
the method. The computewith CAS statement actually calls the CAS in quiet mode to
compute the minimum of the function ¢ and store it in the metavariable y. In our example
the minimum of the cost function is at y = 2 and the ND-line of the form

9
Jz. TotMin(z, Az. (322 + (—12z + 5)), [1,7])
will be transformed by eliminating the existentially quantified variable:
9
TotMin(2, Az. (3z% + (—12z + §)), [1,7])

The rest of the proof plan is devoted to proving that the result actually a total minimum.
This is done by using the definition for TotMin from above which must be applicable in
the database and furthermore by using the definitions for minimum and interval which
correspond to line L; and Ly in the method TotMin-Rolle. These definitions are intro-
duced in lines Ly through L;; by applying them to the correct assertions given in lines L;
through Lg. This is expressed by the justifications in the corresponding lines; for instance
the justification of line Lj states that we can infer y € [a, 8] from the lines L5 and Lg
with the definition of interval in line L.

A closer look at the justifications of lines L3 through Lg reveals that these contain
methods themselves. Lines L3 and L, again depend on calculations of the CAS which
computes the first and second derivative of our cost function. The justifications Simplify
correspond to a method performing basic arithmetic simplifications and comparisons.
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Method : TotMin-Rolle
L17 L27 L3a L4a L5a L6a L77 L81 L97 LlOa Lll: prln

Declarations | Hy, Hy, H3: list(prin) Ji, Jo: just
a,b, f,x: variable Y, ¢, a, B: term
Premises L, Ly

degree(¢) = 2
y < compute with CAS(minimum, ¢)
Conclusions | SL;,

Constraint

(Ll) H1 }—Vf.Vx. (f’(.’L') =0A (Jl)
f"(z) > 0) = Min(z, f)
(L) HyFVa.Vb.Vi.z € [a,b] & (J2)
(a<zxzAz<b)
(Ls) Hsk¢'(y)=0 (Call-CAS)
(Ly) Hsk¢"(y) >0 (Call-CAS)
Declarative (Ls) HsFa<y (Simplify)
Content (L¢) HsFy<p (Simplify)
(L7)  HzFo(y) < o(e) (Simplify)
(L) Hs+o(y) < 6(5) (Simpliy)
(Ly)  HstMin(y, ¢) (L1(L3Ls))
(Lo) H3ty € o, b] (L2(Ls Le))
(LH) H3 F TOtMlIl(y, ¢, [O,/, ﬁ]) (TOtMiD(L7L8L9L1()))
(L12) H3 Fdaz. TOtMiIl(.’L‘, ¢, [Oé, ﬁ]) (El[ L11)
Procedural .
Content schema — interpreter

Figure 5: The TotMin-Rolle method

Consisting of only 5 methods the above proof plan gives the impression of a small proof.
But expanding the plan into a partially grounded ND proof gives it a length of 90 lines,
containing lines justified by the CAS. By rerunning the CAS in verbose-mode on the CAS-
justifications and extracting proof plans, the proof can be expanded to a more detailed
proof plan containing an account of the mathematics behind the calculations. This proof
plan already contains 135 plan steps and—if the user does not feel comfortable with the
level of detail yet—can then be expanded to a calculus-level ND proof of length 354. Note
that even this proof is not a stand-alone proof of the minimisation theorem, but depends
on the proofs of a number of lemmata from a data-base. Furthermore, in these proofs
the simplification of ground arithmetic expressions is not expanded, for instance, into a
representation involving zero and the successor function either, which would be necessary
to obtain a detailed logic-level proof.
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5 Conclusion

In this work we reported on an experiment of integrating a computer algebra system into
the interactive proof development environment (2-MKRP, not only at the system level, but
also at the level of proofs. The motivation for such an integration is the need for a support
of a human user when his/her proofs contain non-trivial computations. Unfortunately, we
could not use a standard CAS for the integration, since such a system provides answers,
but no justifications, which turned out to be essential in an environment that is built to
construct communicable and checkable proofs.

In order to achieve a solution that is compatible with such a strong requirement, we
have adopted a generic approach, where the only requirement for the CAS is that it has
a verbose mode for the generation of communicable and checkable proofs. Since we want
to achieve the two goals simultaneously, namely to have high-level descriptions of the
calculations of the CAS for communicating them to human users as well as low-level ones
for a mechanical checking, we represent the protocol information in form of high-level
hierarchical proof plans, which can be expanded to the desired detail. Fully expanded
proof plans correspond to natural deduction proofs which can be mechanically checked. In
the case that the CAS has made a mistake the proof checker can detect it on this level.
The usefulness of the integration can already be seen in the case of our simple u-CAs.
After the integration we are able to prove optimisation problems which were out of reach
without such a support.

The general idea and the fundamentals of the integration of a CAS into an MRS is
independent from the concrete interactive proof development environment (2-MKRP and the
concrete computer algebra system p-CAS. It can be realised in any tactic-based system and
with any CAS that can protocol its calculations in form of tactics. Moreover, the interface
provides not only the opportunity of reusing tactics for several algorithms and systems,
but also to compute more than one plan for a subproof or to plan subproofs separately.
Set in a distributed system architecture one could think of working on a proof in {2-MKRP
interactively, while at the same time subproofs of this very proof are planned on a different
machine. It would also be possible to use various algorithms for the same computation, for
instance, one as a fast and efficient algorithm that is not suitable for knowledge extraction
while searching for a proof. Afterwards, when actually documenting the whole proof a less
efficient but more verbose algorithm can provide a complete proof plan.

Such an interface and protocol has turned out to be straightforward for simple iterative
and recursive algorithms but may yield problems for more complicated schemes like divide-
and-conquer. Such problems and possible solutions are currently a matter of research.
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