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Abstract

We consider a Darcy flow model with saturation-pressure relation extended with a
dynamic term, namely, the time derivative of the saturation. This model was proposed
in works [1], [9], [10]. We restrict ourself to one spatial dimension and strictly positive
initial saturation. For this case we transform the initial-boundary value problem into
combination of elliptic boundary-value problem and initial value problem for abstract
Ordinary Differential Equation. This splitting is rather helpful both for theoretical
aspects and numerical methods.



1 Introduction

We consider two phase flows in porous media. They occur in various practical tasks,
like unsaturated groundwater flow, oil recovery. The aim of mathematical approach
here is to predict the saturation profiles if initial profiles and boundary conditions
are known. For terminology, definitions and theory of flow through porous media we
refer to [11],[12]. Basic notations were taken like in [1].

S(t,x) is the level of saturation of a wetting phase (S € [0,1]). We assume that
wetting and nonwetting phases are water and air respectively. ¢ is the porosity of
the porous medium. Typically the relation for the pressure difference in the phases is
used

pn_pw:P(S) (1>
where p,, is the pressure in the air (we assume that it has a constant value of atmo-
spheric pressure) and p,, the pressure in the wetting phase. P(S) is assumed to be
a known bounded decreasing function on the water saturation, with P(1) = 0. The
hydraulic conductivity K (S) is a known nonnegative increasing function.

The differential equation describing dynamics of unsaturated flow is obtained by
combining mass conservation of water

oS
(25% +divg=0
with expression for the flux ¢ from the Darcy’s law

= K(5)(—gradpw + pg) = K(5)(grad P(S5) + pg) (2)

2y

where p is the water density and § = (—g,0,0). The result is the Richard’s equation:

08 R -
652 = — div [K(5) (grad P(5) + pg)] (3)
In [1], [9], [10] the authors suggested a modified expression for (1):
08
pn—pa=P(8) L5, (L>0) (1)
This lead to nonstandard Darcy flow model
L S . oS ,
¢ = K(S)(~gradpy + pg) = K(S) |grad | P(S) = Lo | + g (2)
and modified Richard’s equation:
¢%—f = —div [K(S)(grad P(S) + pg)] + div { ((S)L grad aaf] (3"

We restrict ourself to the case of one spatial dimension where the main equation (3’)
becomes

6% =2 [k (B - )] + 2 [k 05] 0
i: S(t,x) - saturation, t € I = (0,T), x € Q@ = (0,1).
et
F8) = K(5) (T30~ pa) = K(5) (P(S) 5 — o) 5)



To complete the problem (4) we need to add initial and boundary conditions.
Initial conditions: S(0,z) is given.

Boundary conditions. We will deal with two types of B.C.

B.C.1: a flux is zero on boundaries K(S)L% —F(S)=0,2=0,l.

B.C.2: 5(¢,0), S(t,1) are given for all t € [0,T]. We will use only the simplest case:

constant values of S on the boundary.



2 General Aspects

2.1 Another formulation of problem (4)

It is convenient to rename wu(t,x) = %(t,x). Another form of equation (4) with
variables u and S: 9 o 9
u
-— |K —F
o KOG +ou =5 F(S ©)

With boundary conditions:
B.C.1: K(S)L%%: — F(S)=0,z=0,l
B.C2: S(t,0)=S5;, S(1)=S, u(t0) =0, ull) =

Assume that S is known for some ¢. Then we have an elliptic equation on (¢, -):
Liyu+u = —LsS where Liu, Liu + u are elliptic. It is possible to use well developed
theory of second order elliptic equations to get existence and some properties of
solution operator acting on S. If S(x) > 0 for all # then operators are strictly
elliptic (K(0) = 0 - no ellipticity).

For given S > 0 equation (6) is elliptic with respect to u and we can use existence,
uniqueness results for elliptic equations

Weak solution approach: multiplying (6) by test function v(z) and integrating by
parts on :

Ou Qv K ou B
/I (S)La—a—d /x(S)La—xvdo—l—/qﬁuvdx—/ dx—/F Yo do
Q Q

Q a9
(7)

Boundary condition 1: Zero flux means that boundary integrals together are zero.
We can use functional space H*(2) = WH2(Q).

Boundary condition 2: Constant values on the boundary S(¢,0) = S, S(¢,1) = S,
u(t,0) = 0, u(t,1) = 0. We can use functional space H(Q) = W *(Q) for Dirichlet
problem.

Let V = H'(Q) for B.C.1 and V = H}(Q) for B.C.2. Weak formulation for the
elliptic problem (6): Find u € V such that for any v € V

a(u,v) + (u,v)p,0 = 1(v) (8)
where a(u, v) f] )LO% B dy, (uv¢o—f¢uvdxl fF S)%e du
Assumptlons
1. S@) > 8, >0= K(S) > K(S,) = u[S] > 0;

2. peL®N),1>¢> ¢y >0 (9)
3. K,KP'— Lipschitz continuous, bounded :

|K(S1) — K(S2)| < Lg|S1 — Sa|, |K(S1)P'(S1) — K(S2)P'(S2)| < Lgpi|S1 — Sal.

a(u,v) + (u,v) 0 is a symmetric bilinear functional. We can check V-ellipticity
and continuity of this functional:

ou |

oz, + gollulls = min{u[S]L, go}Hlullf = E[S]llull}

(E) atu.u) + (w000 2 HSIL|

where E[S] > 0 - ellipticity constant.

ou
ox

ov

(€) Ja(w,v) + (w,0)p, -

+ llullollvllo < Cllulllvllx

'OOL‘
0

0



where C' > 0 - continuity constant.
I =1[S] € V' - adjoint space for V. l(v) is a linear bounded functional on V.

9S8 dv v
_ - A - ov <
U[S](v)] / K(S)P(8)5- 50 de / K(S)pg5e de <
Q Q
oS v v
< IEP| 2] |22 Koo |22 <
< 1P |52 | 52|, -+ pottonon | 52| <
< (K P (oo 1Sl + pgll K |oot(£2)) [J0]]1
NSl < K P lISHh + pgll K [|ooe(€2) (10)

From [3, Lemma 3.18, part a) p. 97] we can get existence-uniqueness results: The
problem (8) has unique solution v € V' and

S R U 1 [5]
lellv = Zg ISl = g7 e el

We can introduce a solution operator A : H*(Q2) — V.
u = A(S) - a unique solution of problem (8) corresponding to S. In terms of A, (4)
can be written in a form:

ds 1
== (9), S(0) = So, Stye H(Q) Viell (11)

We don’t know exactly the domain of definition for A, but at least it contains all
functions S € H'! that are bounded away from zero: 3 constant S, > 0 that S(x) > S,
almost everywhere.

Let Uy = {S € HY(Q) : ||S — So|l1 < b} a neighborhood of S.

In one dimensional case we can use embedding H'(Q2) to the space of continuous
bounded functions Cp () with supremum norm (see [2, p. 97]):
a)If  has cone property, mp =2 >n = 1 then W™? = WH2(Q) — Cp(Q)
b)If © has strong local Lipschitz property, mp =2 >n =1 > (m — 1)p = 0 then
Wwmr = Wh(Q) — C%MQ), 0 < XA <m — (n/p) (for example A = 1/2)
In one dimension case see [5, p. 31]

From these results we need: u € HY(Q) = u € C(Q) and esssup |u| < C8|Ju||;

€Q

If the initial value is bounded away from zero: Sp(x) > Sox > 0 a.e. then there
exist b and S, > 0 that: VS € Uy, S > S, a.e.; in other words, U, is bounded away
from zero.

Boundedness of Up: [|S]|1 < ||Soll1 + b.

Also there exist constants p, E that p[S] > u, E[S] > E.

Remark In our case S is saturation and we also need to have S < 1. And if Sy < 1
then at the same way we can choose ball U, bounded away from 1. (but we will not
mention it explicitly).

2.2 Properties of A(S)

Al. A(S) is bounded on Us.

1

From (10): [JAS)|1 = |lul|l1 < B (I

KPS0l + ) + pgll K llops(2) = B



For any S € Up: ||A(S)|1 £ B.
A2. A(S) is Lipschitz continuous on Uj:

||A(Sl> — A(Sg)”l < LAHSl — SQHl VS1,85 € Uy.

= A(S1), uz = A(S2). a(u,v), I(v) depend on 9,
Q

1SN0y ey,

a[S1](uz,v) + (u2,v)g,0 = /I& (S1) L%@d +/¢uzvdx =
Q

Ouy 0
= {[S5](v) — /[A (S2) — K (sﬁh%a_zd
Q
Substitute a[S1](u1,v) + (u1,v)0 = 1[S1](v)
8uz 61}
alS1](ug —u1,v) + (u2 —u1,v)g 0 = [[So](v) = [S1](v) + [ [K(S1) — K(S2) ]La_%d
Q

= 1[Ss](v) = I[S1](v) + {[S1, S2,uz2](v) = L(v)for any v € V.

So uy — uy is a solution of a[S1](ua2 — u1,v) + (u2 — u1,v)¢,0 = L(v), where L(v) is a
linear bounded functional on V.

14(S2) — A(SDIl = [fuz — wally < L]y /E (12)
and we have to estimate ||L||y =  sup  |L(v)].
veV,||lv||lv=1
L]y < 1LS2] = USa]llvr + lU[S1, Sz, ua]llv- (13)
a) estimation for I[S1, Sa, u2|(v) = [[K(S1) — K Sz)]L%’;2 g—; dz:
Q

o |K(S1(x)) = K(S2(2))| < Li|Si(x) = S2(x)| < LxCP||Sy—Sally = CP|S1 — Sl
- embedding to Cp(12).

(9u2

151, 8, ws] (v)] < CPLIISL = Sl [ 5= ||o|| ||o<0 L[Sy = Sa|lufJull1]lv]h

lusll B = [[I[S1, Sz, uo]llve < CPLB||S) = 5:la (14)

b) estimation for {[S2] — I[S2]:

S2)(e) ~ 1821(0)] = (52, 5000 — (F(51), 3000l =



852 81) 851 81)
_ ~ ) ! _ _ - ! _
= /I&(Sg) <P (SZ)—aw g) gy dx /I&(Sl) <P (Sl)—ﬁx pg) 9 de| <
Q

Q

851 81)
< e ! ez e ! et g
< /(]X(SQ)P (52) Oz ]X(51>P (Sl) O ax> dx|+
Q

. 0
+| [ o (S) - K(S2)) 51 de| = 1]+ o
Q

Let first integral be I, second - I. Next we will use embedding H* to Cp

|I2] < pgCL||S1 — Sall1()]]v]]y

+

IN

. 89Sy 08, &
/A (S1)P'(S:) (8—; - 8—;> 8—idx

|KP’(81) — I(PI(SZN < LKPI|51 — S2|, OZB = LKPIOB

< CPN1S2 = SillillSellullvlly + 1K P'||sol|S2 = Stllillvlh
< (CE(IS°l + b) + IKP[|oo) 1152 = Stllllv]ly-
10[S2] — 1[S1]llve < (CF (1%l + b) + 1K P'||so + pgCP () 151 — Sally - (15)
o Altogether (12),(13),(14), (15) give:

1A(S2)=A(SD I < (CF (IS llx +b) + 1K P'|low + pgCY 1(Q) + CLLB) [|S2 =S|I/ E

|A(S2) — A(S)ll1 < LallS2 — Stils

= A(S) - Lipschitz continuous on Uj e
A3. A(S) conserves smoothness
We have already shown that for S € H!, A(S) € H!. It seems that this is also
(formal) true for other classes of smooth functions, for example H*, C* (It is really,
not formally true when the corresponding regularity theorems are valid). We can
compare A(S) with —%%F(S) from Richard’s equation:
i8] 10
ot ¢8xF(S)’
2 F(S) decreases smoothness of S, for example C* to C*=2, H* to H*=2. On the
other hand ;—wF(S ) can be explicitly calculated from (5) and A(S) can be obtained
only by solving an elliptic equation.



2.3 On the well-posedness of (11)

Now we can compare (11) with Ordinary Differential Equation: y' = f(¢,y(t)),
y(0) = yo. To have local existence and uniqueness of the solution of ODE we need
boundedness and Lipschitz continuity of f(¢,y)on y in some domain D around initial
point (0,yo) (for instance D = {(¢,y) : |y —yo| < b, |t| < T}). |f(t,y)| < B in D,
|f(t,y1) — f(t,y2)| < Llyr —y2| for (t,y1), (t,y2) € D. To prove the existence of ODE
one can construct a sequence yi(£): yo(t) = yo,

t
WH®:%+AfhWWWﬂ

that stays in D for ¢t from some interval [0,7] and converges to solution y(¢) that
satisfies the integral form of ODE:

t
y(t>=yo+/0 f(r,y(r))dr.

To prove uniqueness, the Gronwall’s lemma can be used.

In our case properties A1,A2 are similar to corresponding properties of f(¢,y) in
ODE case. We can follow the ODE existence proof trying to fit it with our case. So
let consider a sequence: Sp(t) = So,

t
Seir(t) = So + /0 A(Si(r)) dr (16)

The integral in (16) we will consider as Riemann integral in a Banach space E. see
[4, §38 pp 304-306, §39] for details. Some properties from [4] that we will explicitly
use:

Def 1 Let y(t) € E V¢t € [0,T]. y(t) is called continuous in [0,77] if V¢ € [0,T7]:
ly(t +R) — y(t)||z — 0 when h — 0. Notation: y € C([0,T] — E).

Def 2 Derivative of y(t) at the point ¢:

%y@ = lim %[y(t +h) —y(t)]

if the limit exists in the sense of E.

Y1. If y(¢) has a derivative at the point ¢, then y(t) is continuous at the point ¢.
Y2. If y(¢) is Lipschitz continuous in [0,T] (L.C.) (3 constant L, > 0 such that
Vi1, t2 € [0,T): |ly(t1) — y(t2)lle < Lylt1 — ta2]), then y(¢) is continuous in [0, 7.

Y3. If y(t) is continuous in [0,T7], then |ly(t)||g is a continuous real function from
C([0,T] = R) and [, |ly(7)|| dr is well defined.

Y4. If y(t) is continuous in [0,T], then the integral fot y(7)dr is well defined in E.

Moreover: ; ;
‘/yme < [ Wl ar )
0 E 0

Y5. If y(t) is continuous in [0,T], ¢ € (0,T), then

/OTy(T) dr = /Ocy(T) dr + /CTy(T) dr.

Y6. If y(t) is continuous in [0, T, then the function Y (¢) = fot y(7) dr is differentiable
in [0,T7], and thus %Y(t) = y(t).




Y7. If the function Y (¢) possesses a continuous derivative with respect to t,
%Y(t) = y(t), then

/0 y(r)dr =Y (t) — Y(0).

E=HYQ) and || || = || - || when the opposite is not explicitly mentioned.

2.3.1 On local existence

Our goal now is to show that for some 7" > 0 (11) has unique solution in C([0,7] — H?')
that continuously depends on initial data in C'([0,7] — H') provided Sy is bounded
away from zero. Our plan is to show that sequence {S,} %, from (16) is well defined
(Steps 1-3) and converges (Step 4) to S(t) - a solution of

= So +/0 A(S(7)) dr, (18)

(Step 5) and this implies that S(f) is also a solution of (11) (Step 6).
Remark Here we consider C[ljf is in the sense of Def 2 in (11).
When So(z) > Sp. > 0 then we can choose appropriate U, with constants b, B,

L 4. Now we can determine 7" > O:
T <min{l/L4,b/B} (19)

For each element of sequence {S,} >, from (16) we have to show
a) That S, (t) is well defined clement in H! for all ¢ € [0, 7.

b) For all t € [0,T], Sp(t) stays in U, C H*.

¢) Sy (t) is Lipschitz continuous in [0, 7] with constant B.

We will use induction in three steps: Step 1 for So(t), Step 2 for S1(¢) - induction’s
base and Step 3 induction’s hypothesis from S, (¢) to Sp11(t) (step 3 is similar to
step 2).

Step 1. So(t) =Sy Vt e [O,T]

a) So(t) € HY, Vte[0,T).

b) So(t) € Uy, Vte[0,T].

¢) So(t) has (L.C.) property with constant B: Vit;,ts € [0,7]

[1So(t1) — So(t2)|lr = |01 < Blt1 — ta]

Step 2. S1(t) = 5o +f0 (1)) dr
a) From A2, properties b) and c) for Sp(t) we can get Vi1, ts € [0,T]:

|A(So(t1)) — A(So(t2))]l1 < LallSo(t1) — So(t2)ll1 < LaBlty — ta].

It means that A(Sy(t)) has (L.C.) property, hence is integrable and S;(t) € H!,
vt € [0,T].
b) Using Y4 for A(So(t)), b) for Sp(t)), Al

[ s

or Sy(t) € Up: Vt € [0,T].
c¢) To obtain (L.C.) property for S;(t) we use Y5, Y4 for A(Sy(t)), Al: Vi1, t2 € [0,T]

151 (t) — Solly =

t
7| < [ s dr < Br< BT <
1 0

" A(So(r)) dr

[2)

t1
S/IM@WﬂmwSBM—mI

1 t2

H&ﬁﬁ—&@Mh:’




Step 3. Suppose that for S, a),b),c) are valid:
a) Sy(t) € H, Vvt € 0,T]
b) S, (t) € Uy, Vt € [0,T)
C) (LC) ||Sn(t1) — Sn(t2>||1 < Bltl — t2|7 Vi, to € [O,T]
We need to show that a),b),c) are also valid for Sp4+1(t) = Sp + fot A(Sp(7))dr
To do this we can apply the same arguments like in Step 2:
a

)

1A(Sn(t1)) = A(Sn(t2))ll1 < LallSn(t1) = Su(t2)ll < LaBlty — ts]

A(Sn( )) is (L.C)= integrable = S,,1(t) € H', Vt € [0,T].
b) S,+1(t) € Uy, Vt € [0,T] since

1Sn+1(t) — Sollr =

/||A T dr < Bt < BT <b

c) Vti,ty € 10,7

1 A(S, (1)) dr

[2)

11
s/ A(Su() L dr < Blts — tal.

1 t2

1S () = S ()]l = \

So we can define a sequence {S,} >, in H'(Q).
Step 4. Now we will investigate a convergence of this sequence.

Sn-‘,—l( ) So + Z Sk+1 Sk( ))

1Sk41(8) = Se(®)l = /OA(SIc(T))dT_/O A(Sk-1(7)) dr

:‘ /0 [A(Sx(r)) — A(Sk_1(r)]dr

Function [A(S(t))— A(Sk—1(t))] is Lipschitz continuous on [0, 7] as a sum of Lipschitz
continuous functions and we can use Y4. [Si(t) — Sk—1(t)] is also (L.C.). From Y3:
ISk (t) — Sk—1(t)|l1 approaches it’s maximal value on [0, T1.

<

1

t
/ A(Sk(r) — A(Spr (7 >>||1dr§/ LallSk(r) — Spoa (7)lls dr <
0
< — _ < — _ <
< Lat g [184(0) = Su 1 (0l < LaT g [1S4(6) = Sea ()] <
< (LaT)* max |1S1(t) — So(®)l < (LaT)*b
t€[0,T

from (19): LaT <1

ZHSk—H = Se(®)|h <Z (LAT)*b < 00
k=0

We have shown that S,,(t) converges in H!(Q) uniformly on [0,T] to some function
S(t). Let us show that S(¢) also has properties a), b), ).
a) Vt: lim Sp(t) = S(t) in HY(Q), uniformly on ¢ € [0, 7.

n—oo



b) Up - closed = S(t) € Uy, Vt € (0,7
c) o

1S(t1) — S(t2)llr < |IS(t1) = Sn(tr) + Su(t1) — Su(ta) + Sn(t2) — S(t2)]l1 <
For any € we can find N that for n > N, Vt € [0,T] ||S(t) — Sn(t)|1 < ¢
<IS(t) = Sn(t)llr + [1Sn(t1) — Sn(t2)lls + [|Sn(t2) — S(t2)|ly < Bty — ta] + 2¢

¢ can be chosen arbitrary small = [|S(¢1) — S(t2)||1 < Blt1 —t2| Vt € [0,T]. o
Step 5. Our task is to verify (18)
o First: A(S(t)) is (L.C.), since Vi1, t2 € [0,7]

|A(S(t1)) — A(S(t2))lln < LallS(t1) — S(t2)|[1 < LaBlt; —to]

and we can integrate A(S(t)) on ¢. Moreover fot A(Sp (7)) dr converges to fot A(S())dr
in H*(Q) uniformly on t € [0,T]:

‘ 1 ‘

0
[A(S,(t)) — A(S(¢))] — (L.C.) on t as a sum of (L.C.) functions; S,(t) — S(t) when
n — oo, uniformly on ¢ € [0,17.

<
1

/0 [A(S, () — A(S(r)] dr

/t A(Sn(r)) dr — /Ot A(S(r)) dr

< /0 JA(S, (7)) —A(S(T)||]1 dr < LA/O [|Sn(T)=S(T)||1 dr < LsTen, -0, n— o0

:>/0 A(Sn(r))dr—>/0 A(S(7))dr, n—

S(t) «— Sp(t) = So + /tA(Snl(T)) dr —s So + /t AS(r))dr,  n— oo

V¢ € [0, T], uniformly in ¢ And we have (18). o

Step 6. A(S(¢)) is continuous on [0,T]. From (18) and Y6 we have (11)

We can summarize Steps 1-6: If the initial data is bounded away from zero then
U, can be chosen. It determines the constants b, B, L4, and T from (19). Then for
t € [0, 7] one can construct S(t) a solution of (11).

Remark We always had initial data at ¢ = 0 and time interval [0,T]. It was not a
restriction and if the solution is known at some time moment tg, then we can consider
S(to) = So as initial data and look for solution at [tg,to + 7.

2.3.2 On local uniqueness, continuous dependence on initial data

Suppose S(t) is continuous and satisfies (18) at ¢ € [0,7]. And Sy is bounded away
from zero. Then we can choose neighborhood U, with constants b, B, L4. For this U,
we can find T from (19).

U1. The function S(t) stays inside Uy while ¢ € [0, min{7, T}].

o Assume it is not true and there is t, < T,T that ||S(t.) — Solly = b and [|S(t) —
Sollh < b fort €[0,t,) (we can find t, because ||S(t) — So||; is continuous). Then
for all ¢ € [0, t.] using that S(t) € Uy and (19) we can estimate:

Ty 5
19(t.) = Soll < / IAGS(r)|l1 dr < Bt. < BT <b
0

10



And we have contradiction with definition (~)f ty. ® B
Now assume that we have two solutions S(t) and S(t) of (11) at ¢t € [0,T], with

S(to) = S(to) = So - bounded away from zero. We can choose Uy around Sy > 0 with
constants b, B, L4; T from (19) but not greater than 7. From U1, S(t), S(¢) stays

inside Uy while ¢ € [to, to + T']. Using that ‘fl—f, % are in the sense of Def 2, from Y1
we can conclude that S(t),S(t) are continuous in [0,T]. Then A(S(t)), A(S(t)) are

continuous in [0, T]. From Y7 we conclude that S(t), S(t) satisfy (18) at [0,T]. Then

S(t) - §(t) = / [A(S(r)) — AGS(r))]dr

to

[A(S(t)) — A(S(t))] is a continuous function on [0,7]. From Y4, A2 we obtain an
integral estimation:

1S(t) = S(@)lh < ||A(S(T>>_A(S(T»HldeLA/t 1S(r) = S(r)lls dr

to

Lemma(Gronwall) (see[6], p.5) Assume that for ¢ € [tg,to + a]

¢
o) <1 +02 | Y(m)o(r)dr
to

where ¢(t),1(t) > 0 are continuous at [to,to + a], 01,02 > 0. Then for ¢ € [tg,to + a]:

o(t) < 01exp ((52 t: P(T) dT> .

Corollary. If §; =0, then ¢(t) =0 at [to,?o + al.

In our case ¢(t) = ||S(t) — S(t)||1 - continuous (from Y3), (¢
a = T. From the Corollary we conclude that S(t) = S(t) at t
So we have the local uniqueness.

Gronwall’s Lemma could be used to show the continuous dependence from initial
data. Now assume that we have Uy, b, B, L4, T like before, S(t) is a solution of (11)
on [0,T7, S(0) = Sp. Continuous dependence on initial data for S(t) means that for
any ¢ > 0 it is possible to find § > 0 that for all ¢ € [0,T7], ||S(t) — S(t)|| < & where
S(t) is a solution of (11) with initial data S(0) = S and ||So — So||, < 4.

o We know that ||S(¢) — Sol|l1 < BT < b. If 6 < b— BT then it is possible to show
that S(t) stays inside Up.
o Like before, in U1, ||S(t.) — So|l1 = b, ||S(t) — So|| < b for t € [0, 1)

):1752:-[414751:07
€ [to,to+T].

b R
15(t.) = Soll < 150 — Soll + / AGS(m) Iy dr < b— BT + BT = b
0

and contradiction implies that S(t) stays inside Uy for t € [0,77]).e
For given € > 0 let § < min{b — BT,c*/exp(LaT)} then

S(t) — 5(t) = So — 5o + / [A(S(r) - AGS(r))] dr
1S(5) = S0l < 1150 = Solls + / IA(S(r) — A ()l dr

11



t
<10 = Solls + LA/ 1S(r) = S(r) | dr
0

Using Gronwall’s lemma with &; = ||So— So|l1, 02 = La, ¢(t) = ||S(t) = S®)||1,a =T,
P(t) =1 we get:

1S@) = S(E)|l < ||So — Soll1eX4" < & YVt e [0,T] e

And this means continuous dependence on initial data for solution S(t) on [0,T].

2.3.3 Expansion of the solution until it reaches zero.

Function Sy is bounded away from zero if there is a positive constant S, that Sp(x) > S,
almost everywhere; or in other words there is a constant S. > 0 such that u{z €
: So(z) < S.} =0. Opposite: function reaches zero if for any positive constant S,
p{zr € Q: So(x) < S.}>0.

In ODE a solution y(t) existing on [0, T'] can be continued until it leaves domain D
with "regular” properties of f(t,y) (in D f(t,y) is continuous, Lipschitz continuous on
y). The "last” point (T, y(T)) being inside D can be used as a "new” initial point, and
this procedure can be applied several times. In our case it is also possible to continue
from the point (7, 5(T)), since S(T) staying inside U, (from U1, S(T) is bounded
away from zero and we can find "new” U, for Sél) = S(T).) Let use a new notation
with To = 0, S{”) = So, T is substituted by ATy, Ty = Tp + ATy, SSV = S(T}) and
soon ...:

TO = 0 T1 T2 Tn Tn+1
AT ATy oy oo (AT, 20
S =5, T s T sy S5 S5ty 20)

In the previous discussion, the most important point was that there exists some
T > 0 from (19), provided Sy > 0 but the choice of U, and T was not fixed. Here
we need to fix them to exclude, for example, mean-less choice of AT}, in (20) with
AT, = min{b, /By, 1/L"}/n2.
Remark The optimal choice is not our purpose.

Let us use the following notation:

diS) = essinf S(z), p(d) = inf K(s), plS]=p(dS), da=dISi"] (1)

T seld,
We know that AT,, > 0 for all n € N (because of Ul and S(T},) > d,, > 0), but AT,
may become smaller and smaller when n — oco. If 7" =sup 1, = 1i_>m T, < oo then
n o0

n
for t > T we cannot define a solution S(¢) by the sequence (20). Our purpose is to
estimate AT, from below in order to clarify the situation with 7.
Determination of one possible process (20).

n€N. S(T,) =SS > d, > 0. Let b, = dy,/2C then VS € Uy, , ace:

[S) = S5 (@) < CPIIS — S5l < OPhy = 2,
(n) (n) dn _ dn
1S()] > 155" (@) - IS5 (@) = S(@)] > dy = 2 = 2 >0,
= d[S]> L VS eUy,.
On the other hand we do not want to have b, too large, so let
b, = 1 min{d,, 1} (22)

208
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Up,, is defined. For given Uy, we can choose

AT, = 0.9min{1/L% b,/B,} < min{1/L" b,/B,}. (23)

To estimate AT, from below we need to estimate the positive constants L(:) , By, by;
two first from above and the last from below.

(21) implies that pu(d) is monotone: ¢ < d,, = p(e) < p(d,). Then VS € Us,,
u[S] = p(d[S]) > u(d,/2) = estimation of the ellipticity constant for Uy, from below:

. . . . dy,
E, = sgbfbn E[S] = sgbfbn min{u[S]L, ¢o} > min {,u <?> L,(;SO} .

From A1l:
By = (1K P loc (IS5 111 + bu) + p9ll K llocst()) / B (24)

Remark We need to take into account a possibility: ||S(()") i = oo when n — oo,
but we can control this by the choice of b,, from (22):

n+1
208"

1SS+ br < 1SS ™1 + b1 + b < e < USE M+ 3 b < 1SS +
k=0

Dependence B,, on n has the form B,, < (8'n+ %)/E,, where positive constants 3%,
3% can be expressed from (24).

LYY = (Lgp CP(|Sl1 +b) + | K P'||oo + pgLicCPu(Q) + L CPLB,) | En. (25)

In simplified form (with positive constants a!, a?, a3, 3!, 3? which do not depend
on n):

LE:) < (ozln +a® +a3(fin+ 52)/En)/En
For the sequence of strictly positive numbers d,, we can distinguish two possibilities:

1)d, >e>0foralln or 2) liminfd, = 0.

n—o0

1) In the first case
E,, > min{u(e/2)L, o} = E- > 0,

B, < (B'n+B)/E., LY <('n+42)/E.,  by>¢e/208.

_ - (n) i = :
AT, =09 min{l/L}",b,/Bn} > O’gmm{»yln + 27 208(Bin + 32) }

Beginning from some number ng one from {E. /(yin++2),2/2CB (8 n+5?)} is always
smaller than another,

> > ) = 09E & 09¢
T = AT, > AT, > — — % = 0.
nZ:;) B n;o B mln {7127;0 71” + 72 n;o 203(61” + 52) } ~

both rows do not converge. In this case 7" = oo and we can continue the solution til
any positive value .

2) In the second case the solution "reaches zero”. When d(S) = 0, the equation (6)
loses ellipticity, and for such .S, operator A(S) may be undefined. We can determine
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the solution S(t) on [0,7) by sequence (20), but we do not know if 7™ is finite or
not (it may also be infinite like in the first case).

In both cases the solution S(¢) can be determined on [0,7*) by infinite process
(20). In each segment [Tp,,Tyy1], the solution S(t) is unique = S(t) is unique on
[0,7*). For any given t € [0,7*), the solution S(t) depends continuously on initial
value Sp (there exists finite number n that Tj, > t and we can apply continuous
dependence on each segment [T}_1, 7], beginning from the last k =n...1.)

In the case 2) we have analogy with ODE case when a solution leaves domain of
"good” properties of f(t,y).

Remark We need to mention that S being a saturation cannot be greater than 1 —
another critical boundary with which we may deal in a same way like with 0: T* = oo
or S "reaches” the critical boundaries (0 or 1).

2.3.4 Solution as a function of two variables x and t.

Until now we were dealing with the abstract function S € C([0,7] — H*(f2)). In this
section we are going to find some properties of the solution as a "normal” function of
two variables to obtain in some way a connection between (11) and (6).

Lety € C([0,7] — H'(Q2)) and I be an embedding operator from H!(Q) to Cp(Q).
Iy € C([0,T] — Cp()) We will also consider that I: H'(2) — Cp(Q) (N H'(Q), in
other words Iy(t) € H', Iy(t) = y(t) in H' and for example A(Iy(t)) = A(y(t)).

So Vt, y(t) being a function from H!(Q) has a continuous representative y(t,-) :=
Iy(t) € Cg N H!. y(t,z) is a real function from ¢ and z. In every point = € Q it is
uniquely defined.

In the section ” Another formulation . ..” the space Cg({2) was already mentioned.
Cp(Q) is a Banach space of bounded continuous functions (not necessarily uniformly
continuous) under the norm

lyllcs = sup [y(z)]
zeQ

Remark In one dimensional case more regular C'(Q2) can be used instead of C'z(Q2).
C1. y(t, x) is continuous on [0,T] x .

o (t,z) € [0,T] x Q. By(x) C - a ball with center 2 and some positive radius r.
For any £ > 0 exists 6 < r that:

a) ly(ti,-) —y(t, )| <e/2Cp when [t; —t| < &

= suply(t, @) = y(62)l < Cully(h,) =yl )l < &/2.
€T
b) y(t,x) is continuous in z: |y(t,21) — y(t,z)| < /2 when |z, — 2| < 4.
For all (t1,21): |21 — 2| <0, |t —t] <4
ly(tr, z1) —y(t, )| < ly(tr, @) =yt a)| + |y(t 1) —y(t,2)] <e/2+e/2 =ce

C2. y(-) € C ([0,T] — H*()) Then Iy(-) € C([0,T] — Cp(f?)) and

I/Oty(r)drz*/ot[y(r)dr

Remark The Integral in the right hand side is in the sense of the Banach space
E = Cp () for which properties Y1-Y7 are also valid. Integrals in C'z we will mark
by * before the integral.

o a) I-continuous, y(-) € C ([0,T] - H*(Q)) = Iy(-) € C([0,T] = Cp(Q)). Then
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exists *fot Ty(r)dr.
b)I — linear =

I(Z y(ri)Ar) = Z Iy(m)Ar;.

Right side tends to fot Iy(r)dr. Since I is continuous the left side tends to [ fo T)dr e
Consider S € C ([0,T] — H") a solution of (11). It satisfies (18).
From C2: IS(-) € C([0,T] — Cp),

IS(t) = ISy + */t TA(S(r)) dr.

Using TA(S(:)) € C([0,T] = Cp) and Y6 we can conclude that Vt € [0,T], I5(t) is
differentiable in the sense of Cp and Def 2 (is marked by *):

*%IS(t) = TA(S(t)) = TA(IS(1)).

A function of two variables S(t,-) := IS(¢) is continuous on (¢,z) from C1. Exis-
tence of x4 1S(t) implies existence of classical partial derivative from S(t,z) on ¢:
23(t,) = *—IS( ). Hence,
gS(t,x) =TA(S(t,))(x). (26)
Moreover, 2-5(t, ) is continuous since the right hand side is continuous on [0, 77 x €.
We can summarize properties of S(t, x):
C3. S(t,z) - is continuous on [0,7] x © and S(¢,-) is continuous on [0,T] in H'(Q)
(S(-,-) € C ([0,T] — H*())).
C4. Exists (continuous) 2S(t,z) on [0,T] x Q and 25(t,-) € H*(Q).
C5. S(t,x) satisfies (26), S(0,2) = ISp(x) > d[So] > 0 and it looks possible to say
that S(t,x) is a weak solution on x of (6) (in the variational sense).

Assume that function S(t,) satisfies C3,C4,C5. We are going to show that
S(t, ) has to be equal to S(t,x) defined before.
Remark Existence of 8 S may be insufficient for existence of 5 , %5
o From C3 we know that S(t,-) is continuous in H'. So A(S ( ), [A( S(t,-)) are
also continuous in H' and Cp (while d[S(t,-)] > 0). Continuity of -2 S(t x) can be
obtained as consequence of C5 prev1ous sentence and C1 (it is not necessary to have

it in C2 as a condition). fo )) d7 is well defined in H*.
e cs ('O ¢ . .
ID(t) =% ITA(S(r,))dr = = ES(T, -ydr is well defined in Cp
0 0
We need to show that ID(t)(x) = S(t,x) — S(0,z) (in other words that *%S’ exists

and %S = *—S)

o Assume it is not true:
t
ID(t)(z0) # S(t,xz0) — S(0,20) = * */ %5’(7, xg) dr.
0

Last integral exists in R since %S(t, x) is continuous on [0, 7] x Q. ** — integral in R.
Let us

ID(t)(w0) — % */0 %S(T, 2o)dr| = . 27)
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Then from integral definitions in R and Cp we can conclude that there is § > 0 such
that for each partition 7 of [0,¢] with A7 < 6,

Zﬁé(v )A-_**/tﬁé( ) d
i 6t Tis L0 Ti o 6t T,20 T

<€
27

Tl,l‘o)ATl — ID(t)(xo) TZ,' YJAT; — ID(t) <

Cp

N ™

and we have contradiction with (27) e So
¢
. / TA(S(r,-)) dr = §(t,) = §(0,-) = §(¢,-) — ISo.
0

From C3, there is only one function S(t) € H', that IS(t) = S(t, ) an
(18). Then S(t) is a solution of (11), but it must be unique. So S(t
S(t,-) =S(t,-) e.

Remark C3 can be rather strong condition for continuous function S(¢, ).

We can summarize all what we tried to obtain in this section in the following:
Suppose the assumptions (9) are satisfied. Then there is T* > 0, finite or infinite
such that for any constant 7' < T™, on [0,7] there exists a unique solution S(¢) of
(11) in H! that continuously depends on initial data Sp. T* can be estimated from
below by AT from (23, equality). This solution can be considered as a function of
two variables S(t,x) = IS(t)(z) that satisfies C3, C4, C5 and there is no other
function of two variables S(¢,x) that satisfies C3, C4, C5.

We cannot establish further connection with (4).

d S(t) satisfies
() = S(t), =
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3 Numerical methods

In this section our main task is finding the numerical methods for (4). For simplicity
we will deal only with homogeneous boundary conditions B.C.1 and B.C.2 for one
dimension problem, like in the previous section. Instead of doing discretization of
(4) we will do numerics for (11) or the intermediate form (6), assuming that this
substitution is reasonable. We are going to use similarity of (11) with ODE case.

The operator A(S) gives a solution u of elliptic problem (6) for known S. Let
A"(S}) be a numeric approximation of A(S). So A"(S,) gives a numeric solution of
elliptic problem (6) in Q for corresponding boundary condition and known Sj;. And
it is possible to use finite element and finite difference methods to approximate A(S).

In finite element approach, S, € H}, A" : H} — V},, where V), and H} are finite
dimension subspaces of Hilbert spaces V and H'. (We remind that V = H'(Q) for
B.C.1 and V = H}(Q) for B.C.2, Q = (0,1)).

Using finite difference schemes we have some grid G in €2,

G={x;€Q i=1,...m}. Then S, € R™ and A" : R™ — R™.

Assume that we have some numerical approximation A" : W, — U, C W,,
no matter what Wj,, Uy are, what boundary condition we have and which numeric
method we use for A",

Consider following analog of (11):

%Sh(t) = AMSh(t),  Su(t) € Wh,  Sk(0) = SP. (28)

This equation is similar to ODE Ly(t) = f(t,y(t)), y(0) = yo or to System of ODE

FE(t) = f(t,2(1)), ©(0) = To.
Remark We can introduce a dependence of A" on t. In the case of homogeneous
boundary conditions and coefficients in (6) that depend only on S and z, it is only a
formalism and A"(Sy,t) = A"(S}). But in more general problems A" depends on t.
There are many numerical methods known for ODE, and many of them can be
employed for (28).
Let us consider an equidistant grid in ¢ with some step At and following notations:
=0,/ =t + At, S = Su(tV),j=0...N, At =T/N.
Example 1 Runge-Kutta methods.

p
ST =S+ ALY by
k=1

Ay = AMS] ), Ay = AM(S] + Atasi Ay, 0 + e A), ...

p—1
Ap = Ah (Si + At Z apkAk, tj + CpAt> .
k=1

Constants ajx, ¢k, by determine the Runge-Kutta method.
Euler method p =1

SIth = 57 + AtA"(S],t). (29)
Improved Euler method p = 2
. . C At AN
SIth = 8 + ArA" (sg + 7Ah(52,tj),tj + 7) . (30)
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Euler-Cauchy method p = 2
SITH = 8]+ At [AM(S], ) + AF (8] + Atal (s, ¢), 0 + At)] /2. (31)
Fourth order Runge-Kutta method p =4

; ; 1 1 1 1
Si+1 == SiL + At <6A1 + §A2 + §A3 + 6A4> (32)

Ay = AMSE 1), Ay = A" (S]+ LAtAL U + SAL),
Ag = AP (S]+ SAEA, U + SAL), Ag = AP (S] + Atdy, ¥ + At).

Example 2 The multi-step method.

'4
SITP =SP4 ALY b AN TR
k=0

where p, q, by kK =0,...,p are particular method’s parameters.

Remark It is also possible to use implicit schemes for ODE.

One approach for constructing a numerical method for (4) is to combine some
numeric method for Elliptic Boundary Value problem with some numerical method
for Ordinary Differential Equation. Both choices can be rather independent from each
other.

Next we will discuss a combination of Euler method in "t - direction” with ab-
stract finite element method in ”x - direction”; describe one implementation of finite
element method for A"(S) where V}, is a space of piece-wise linear functions; describe
another approximation A”(S) from finite differences approach. At the end we present
some computational experiment results for different constants L > 0, two types of ho-
mogeneous boundary conditions B.C.1, B.C.2; comparison with results for Richard’s
equation (L = 0) and comparison the results for the same problem but obtained on
nested sequence of grids.

3.1 Finite elements — Euler method

For the most simplest method we will try to get convergence. The operator A was
defined in H' by variational approach. So it is natural to use finite element method
to get it’s approximation A"(S).

Assume that we have a differential problem (11) with Sy bounded away from zero.
We can choose U, with constants b, B, L4, C, E like before. Let S(t) be a solution of
(11) on [0,T], where T is from (19) for chosen U,. S(t) lies inside Uy not near than
b — BT from the boundary oUy.

Agsume that we have a sequence of finite dimensional subspaces {V},}, where every
next element contains all previous; parameter h is one from a monotone decreasing
sequence {hy}, kl;r& hr = 0. When h; — 0, the dimension of V}, increases and they

exhaust all V' (Ve > 0,Vu € V 3V}, from the sequence that: 1161% llu —wvplls < e ).
Vh h

To get approximation up = A"(S,) of u = A(S,) by finite element method for
chosen V},, we need to find up, € V3, that (see (8)):

a*[Sh](uh,vh) = a[Sh](uh,vh) + (uh,vh)(w = l[Sh](vh) Vvh S Vh
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dimVy =d. vy...vq — basis in Vj.
To find uy, = Z‘Z:l u},v;, we have to solve a linear algebraic system of equations:

d
Za*[Sh](vi,vj)uﬁl = 1[Sh](vs), j=1...4d, (33)

i=1
with positive definite matrix {a*[Si](vi,vj)}i; provided a*[Sy] is V-elliptic. So the
approximate solution wuj, exists for all S, € U, C H'.

The difference between approximate and exact solutions can be estimated with
the help of Cea lemma (see [5] p. 54 or [3] part b, p.118):

c .
[|Ju—wup|ly < Eng/ [lw = vpl|v, uw=A(SL), up= Ah(Sh), Sy € Uy N Vy.

Remark It is difficult to expect that we can find V;, uniformly closed to the set
A(Up) = {u= A(Sp) : Sh € Up} when h — 0, in other words that for any € > 0 exists
V3, that Yu € A(Up), 1En£ lu —olly <e.

veVy

Some notations:

SI = Su(t/) — approximate solution at time #/.
SI = S?) — exact solution at time #7.
Al = ST S;  — error of approximation.

59,87, A7 € HY(Q).
tj+1

Sitt = g +/ A(S(r))dr ~ S7 + A(S7)At

t

i+l

||S9FL — 89 — A(SH AL = || y [A(S(1)) = A(S7)] dr], <

gt , (911 — )2
<[ IAGE) - Al dr < Lap— -
)
we used ||A(S(7)) — A(S)|l1 < LallS(7) — S?||1 < LaB|T — ]

The Euler method: Si'H = S,{ + AtAh(S,{).
Remark SfL € Vi, + S) for all j.

Ah (Sfl) = A(Sfl) —l—efl, ei is an error of finite element method, and can be estimated
by Cea lemma. Due to the difficulties noticed in the last remark, we would like to
find V}, uniformly closed to A(S(t)), where S(t) is exact solution.

For some small &; > 0, let divide [0, 7] into { parts by points 7, = iA7,i=0...1,
and AT < e1/2L4B. Then

(34)

I1A(S(8) — A(S(7)ll < LallS(#) = S(7i)lls < LaBlt — 7| < LABAT < %1 (35)

where ¢t € [0,T], 7; is the nearest point to ¢ (A7 is not the same with At in Euler
method). [ is a finite number = we can choose V}, such that

max inf [ A(S(7:)) - onlh < 5 (36)
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(36) are also true for all elements from {V}} that follow the chosen subspace (because
th C th+1 )
Together (35), (36) give 12%/ JA(S(t)) — vl < &1 forall t € [0,T].
Vh h

We can estimate efl:
i j h(qi ¢ . j
lenllh = 1JA(S;) — A*(Sp)ll < — inf [|A(S,) —vnll <
E VR EVy
exists vf € V}, that ||A(S7) —vil1 <e1 =

(LallA?[ly + &) (37)

&=l Q

< S (14(5]) — A+ 14(S7) vl ) <

Now we can estimate the error A/T1 from AJ:
AT = gitl gt — GitL _§T  A(ST)At — €] At =
= SITL - SI — A(SH)At+ ST + A(ST)At — S] — A(S])At — €] At.
AT < 574 = ST — A(ST) AL, +]157 = Si 1+ AtIA(S) — A(S) s + Atlle] s <
From (34) we estimate the first term, from (37) the last.

At? . . C .
SLaB—-+ |A7]]1 + AtLal|AY]]y + AtE(LAIINIh +e1) =

. c At C :
= A7), (1 +AtLA(L+ E)> + At (LAB7 + Egl> = a||A7||, + AtD.

vvhereoz:1—|—AtLA(1—|—%)>17 D:LAB%‘F%EL
wj =A< aw; + AtD.

The initial error zg = ||S% — SY||; is zero if we know the exact value of S® € H! (then
we can S9 := S°, in this case S] € Vj, +5°). It is not necessary to take approximation
SY from some H}.

Now consider that exact initial function S® € H! is unknown, the measured value
S0 ¢ H' has a measurement error ey = ||S® — 5°||;. Additionally, if it is convenient
to use functions from H ,1L instead of H', then we have an approximation error e4 =
1S° — S2||;. (It can be convenient since integrals in a*[Sy] may be too complicated
when S;, € V,, + S}, for arbitrary Sp € H').

Remark It is not necessary to have either Vj, = H} for B.C.1 (V. = HY) or V}, C H}
for B.C.2 (V = H}); it can be so only if convenient.

2o=|1S" =S <esatem=ce
zj+1 < axj + AtD, everything is positive. Let yo = o, yj+1 = ay; + AtD.

{y;} is an upper bound@ry for x;, for all j: y; > x;.
y1 = ayo + AtD, ys = oy + aAtD + AtD. For arbitrary j € {0,...N}:

j—1 j
. . . . . -1
y;j =a’yo +adYAtD + ... 4+ AtD = ol yp +AtDZa’ =y —|—AtDa .
o —
=0
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N N
oV = <1 + AtLa <1 + %)) = <1 i LAT(1];|[— C/E)> < LaTO+C/E) _

A =LA+ C/E) T =G
z; <y; <ynv < Cizg+ C2(Ch —1)D = O(e1 + e + At).

And for any € > 0 there exist so small €7, e, At that ||AJ||; < e forall j =0...N.
€1 can be made arbitrary small for sufficiently large V}, from {V;,}. And we assume
that measurement error ej; and approximation error e4 can be made arbitrary small
or even zero.

The last thing: if the given ¢ is larger than b — BT, then ¢ := b — BT. We need
this to guarantee that Sy stays in U to use properties of A(S).
Remark Convergence in h is without order, in At — first order.
Remark It seems not reasonable to try to get higher order in At for other Runge-
Kutta method using the same means. We have only Lipschitz continuity on A(S(t)),
we do not know if %A(S (t)) exists and we cannot get better integral approximation
in (34) than the second order. For instance |z| is a Lipschitz continuous, but not
differentiable function on [—h, h] and integral approximations give only O(h?) error,
not O(h?).

3.2 One possible A"(S) by finite element method.

In the previous section spaces {V}, } were not specified. Here we choose V}, as a space
of continuous functions, linear between grid points «;, ¢; = th, i =0...n, h =1/n.
The standard basis in Hj is:

%(Z — .Ti_1> if xe€ [Zi_l,l’i]
W = —%(x—xH_l) it @€ [z, 2ip) i=1...n—1.
0 otherwise

And additionally two functions:

0 otherwise ’ - 0 otherwise

1/)0:{ —%(95—951) , T € [xo, 1] . _{ %(w—xn_l) & € [Tp_1,%n]

When we have B.C.1 then we use V;, = H}L with basisv; = ;1,1 =1...d,d=n+1.
For B.C.2 V,, C Hj hasbasisv; =¢;,i=1...d,d =n—1. In general A, : H* — V},,
but we will use only Ay, : Hi — Vj: if the initial function Sp € Hj hence all other
approximate solutions Sj be from SO +V;, C H}.

To find a value up, = A"(S,) we need to solve a System of Linear Algebraic
Equations (33) with positive definite matrix {a;;} and right hand side vector b,
aij = a*[Sp](vi,v5), by = I[Sk](vs), i,5 € {1...d}. Our purpose here is to simplify
expressions for a;; and b; using formulas for v; and piece-wise linearity of S € H ,1L
Then we can denote S; = Sp(x;). Sp(x) is uniquely defined by these numbers. Also
u; = up(a;).

To cover both boundary conditions we will calculate a;; = a*[Sp](¥i,¢5), b; =
[[Sh](¥s), 3,5 = {0...n}. This matrix coincides with those for B.C.1; the matrix for
B.C.2 could be obtained by deleting rows and columns with number 0 and n.

First we notice that matrix {a;; } is tridiagonal, symmetric (|i—j| > 1 = ¢,30; = 0,

%%:)
de dx — 7

didi [ 55 on [ri1,ig]
de de 0 otherwise
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for i = 0 and ¢ = n this expression is true while « € (0,1).

dpidpior [ —7r on w1, i=1 n
de dx 0 otherwise )
di; d¢i+1 _ —hl—z on [$i7$i+1] .
dr dr 0  otherwise 0=0...n—1
m(r—xi1)? @ € [y, 1]
Vit = (@ —wig1)? @ € [, 2ig1] i=1...n—1.

0 otherwise

for i = 0 and i = n the last expression is true while z € (0,1).

1 2,1
o )t (- wi) x € [T, ] .
"/)z"/)zfl - { 0 otherwise t=1...n.
Yitbiey = —(@ = xip1)? = (@ = zip1) @ € [24,0441] =0 -1
eritl 0 otherwise T

We remind the integral expressions for a*[Sh], I[Sh]:

l l
dip
iy = a* Sul(wnvy) = [ K(Su@)L G 2 de+ [ vy da
0

0

X

! !
—115ul0v0) = [ F(Su) G de = [ wesan (PEGED < gy ) B
0 0

Integrands are not zero only on a small interval with the length h or 2A. For a;; for
1=1...n—1:

Ti41 Ti41

aii:% / K(Sy(x))dx + / oz x, ) dx—l— / o(z xH_l) dx (38)

Ti—1

It is convenient to denote:

1 .
rf:hq+1/¢(wi+y)yqdy, i=0...n—1, ¢=1,2 (39)
. 0
lfzﬁ/qﬁ(wﬁy)yqdy, i=1...n, ¢=1.2 (40)
“h
s
H(s) = / K(z)dx -monotone increasing function (41)

0

dx) >0=r!>0VqeZy, ! >0 when ¢ is even and I <0 when ¢ is odd.
Remark r? and [? give some kind of average of ¢(x)/2 to the right and left from ;.
The second element of (38) is equal to r7_, the third I7
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We chose that S}, belongs to H,i So Sp, is linear on each segment [x;, ;1]

some constants a, b, ¢, d we can calculate integral

b
/Ix cr+d)d

Let ¢ = (Si+1 — Sl>/h, d= Sz - xi(Si-&-l - Sl)/hv

H(cb+d)y— H(ca+d)

<3||—l

b
/K(cw +d)d(cx +d) =

K, =— / I&y(Sh(l‘))dl‘

z;
then

H(Si41)=H(Si)  1porwise
Sit1—Si

K = { ]X’(Si> if Sl = Si+1
L .
A5 = E(]X’i_l —I—[\/'i) +(T1271 ~|—li2+1>h, t=1...n—1

L L
oo = E](O + l%h, App = E]{n_l + Tiilh.

For other elements

Tit1 Tit1
L - T — X 2 xr—T;
Gii+1 = ~ 55 / K(Sh(x)) da — / o(x) [( h;l) + 5 L da
o L2 o - _
Qii+1 = hhz (liJrl + li+1)h7 1=0...n—-1
L. ki T —xi_1)? x— a4
Aii—1 = —E]Xi—l + / o(x) {—( W2 ) + . 1] de =
Aji—1 = —EKi—l —(ri, —ri)h, i=1...n
b dSy dv v )
b= [ K(Su@)P(Sh) Gt G de =g [ K(Su) G d

Previous expression can be divided into four integrals: Iy + Is — pg(I5 + I4).

Zq

h=/K%MW%W)% h/A& '(Sn(x))dSn (x) =

Ti—1 Ti—1

a1,
d

G(Sh(xi)) = G(Sh(xi-1)) _ G(Si) — G(Si-1)

h h

where .
G(s) = / K(z)P'(z)dx -monotone decreasing function
0

23

For

(45)

(46)

(47)



Remark Linearity of Sp(x) was not used.

G(Sir1) = G(S)

L=- 3

T

1
I3 = / K(Sh(x))ﬁ der = K;_1, Iy =—-K;

i —2 I3 71— - -
bi _ _G(S +1> G}(LS ) + G(S 1) _I_pg([\/i _ Ai—l) (48)
G(S1) — G(S G(Sy) — G(Sh— .
by — _w +pgKe. by = Z5n) . G-t _ ok (49)

So we obtained expressions for a;; and b;: (43,44,45,46,48,49) with the help of
(39,40,41,42,47). To show that it could be treated as a feasible approximation of (6)
we divide a;; and b; by h and rewrite the liner equations in a form:

1 s o )
7 KJ/W - KilL%] 17y (s — i) + 7y (u — w1+
G(Si+1) — 2G(S;) + G(S;— K;— K;_
Hrigtion = it = — [ (i) h(2 )+ G —pg=" 5 = (50)

Fori=1...n — 1. Additionally for i = 0, n:

~KoL™ 0 4 B (up —wi)h — Lugh = —w +p9Ko  (51)
A’n_lL% UV S LY G(Sy) —hG(sn_1> ek,
(52)

Let us compare (50) with (6):

1 Uj41 — Ug U; — Uj—1 19} ou
—o KL K L - | K(S) D | (24);
h{ h S } 8:17[(8) 3&7}(90)
. 5 Ui — U du
lf+1(ui — uH_l) = lf+1lTH1h ~ l$+1d—h ~ 07 r?_l(ui — ui_l) ~ O;
X
1 ¢1 " 1
ri1 = 2 o ydy = ¢1/2, liv, = —¢2/2

where ¢; € [ min _¢(z), max ¢(x)], ¢2 €[ min ¢(x), max ¢(x)] =

i1, Ti1,a5] [Ti,@i41] [€i,zit1]

Grui—1 + Patliq1

2

_ |:G(S¢+1) —2G(S;) + G(S;-1)
B2

~ oz )u(z:);

1 1
riaUio1 = i i =

d2
:| [~ —@G(Sh(l‘l)) =

dsy, d dSh

— |6 T | =~ K (S P S T )

K;— K

Py n

d .
~ pg K (Sh(2i))-
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Some remarks on implementation.
I1. Constants rf, i =0...n—1,1], i =1...n, ¢ = 1,2 can be calculated once, a
priory and then used many times.
I2 In general case, where H(s), G(s), s € [0, 1] cannot be represented as a combination
of elementary functions, we have a typical interpolation problem. A possible approach
is to calculate H(s;), G(s;) in sufficiently many number of points with high accuracy
by some quadrature formula for integrals; between them - interpolation by some simple

function on each segment [s;, s;+1]. The simplest cases are linear interpolation:

H(si+1) — H(si)

Si+1 — 8§

H(s) ~ H(s;) + (s — si), s € [si, Sit1]

or the Taylor expansion: (s; is the nearest point to s)
H(s) = H(s;)+ H'(s;)(s — 5;) = H(s;) + K(s:)(s — s4).

I3 The matrix {a;;} is tridiagonal, symmetric, positive definite, but may have no
diagonal dominance. To solve it we can use, for instance, sweep method [7], p. 61 for
diagonally dominant case or p. 86 for general case. Each calculation A"(S}) needs
O(n) operations.

3.3 Another possible A"(S) by finite difference method.

In finite element method the basis equation was (8). Choosing finite difference
method, we approximate the elliptic differential equation (6), where S is known and
u is unknown.

Let grid be uniform, with step h.

BC1 Gi={z;: x;=(0—-1/2)h, i=1...n, h=I/n},

B.C2 Gy={z;: = =ih, i=0...n, h=1I/n} (53)

J7i+1/2 =x; + h/2, »%'71/2 =T — h/2
To obtain a difference scheme we use integro-interpolation method: we integrate
the equation (6) on [#;_1,%; 1], for BC1li=1...nandi=1...n—1for B.C.2:

i—3

_ {K(S(x))Lj—Z(ag)} :i + / _+ ()u(z) de =
= - [y (P @ -p)| (54)

z:wii%

We have to approximate this equation using only values in grid points.
.l‘i+%
[ dula) do ~ duuenh,
€T .

where ¢; = ¢(z;) or
1 [Ti+d
@:E/wv t ¢(x) dz

i— L

2

It is also possible to use in the approximation neighbour values wu;_1, u;11 (if they
exists in ).
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Other differential expressions are taken at the point x,_ 1 To approximate them
we will use values at x;_; and z;.
Case 1. i1 = x; — h ¢ [0,1] is actual only for B.C.1, when z; 1 = 0. But in this

case the flux is known at this point from the boundary condition (homogeneous case
- flux f; is zero):

K(S>LZ_Z — K(9) (P’(S)% - pg)]w:w' =fi

Case 2. z;_1 € [0,!]. For sufficiently smooth functions

K(S(w;_1) = K(ZE5) + 0(h?),  2(x,_y) = “5=2 + O(h?) (55)
P'(S(z,_1)) = P'(3=555%) 1 0(h?), 2 (w,_y) = 25752 + O(h?)

For Tig1 the situation is very similar.

Difference scheme: Let us substitute the continuous expressions in (54) by
approximations from (55) and divide both sides by h. We will get a difference scheme
in a following form:

L Uil — Uy o, U — Wil
3[Rt e

. ' Sl — Sl - S@ - Sif
Kiys (E#%% - P!J> - Ky <Pil Tl - Pgﬂ ) (56)

Kz’+l:K<M>» P, =P (M)

} + diu; =

[N

where

2 2 (anF) 2

t=2...n—1forB.C.landi=1...n—1 for B.C.2.
Approximation of the boundary conditions:

B.C.1:
. Uy — U . Sy — S
~Ky L2t pruh = —fi — Ky ( T pg) (57)
- Up — Up—1 _ -~ i Sn - Snfl
Ky L + dnunh = fr—K, 1 (P”%T - pg> (58)
B.C.2:
up = uy, Up = Up; So =5, Sp =15, (59)

(in homogeneous case u; = u, = 0). It S(0,¢) = S;(t), S(I,t) = S,.(¢t) are given then
w(t) = L3,(t), up(t) = £5,.(t).

Order of approximation
We are going to show that (56) approximates (6) and also (57),(58) or (59) approxi-
mate the corresponding boundary conditions with the second order.
o Assume that functions u and S are sufficiently smooth and satisfy (6) and B.C.1 or
B.C.2 (that can be non-homogeneous). Their Taylor expansions:

l " h2 nr h3 4 l " h2 m h3 4
Uijr] = uiiuih-i—ui 7:i:ui E-l—O(h ), Sit1 = Szﬂ:Slh-i-Sl 7:‘:81 F—’—O(h )
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Hence

S gty s;'hzz L o),
w = du + u;'g + u;”hg +O0(h?) = uy £u_ + O(h?),
Ky =K (75’*1; S") =K <Si + 75’*12_ Si) -
= K(S;) + K'(S:) (iS;g + S;'}?) + %(Séh)z +0(h*) =Ky £ K+ O(h?).
Using these formulas we can rewrite [...] in the left side of (56):
%[. L= % [(Ki + K )L(uy +u_) — (Ky — K_)L(—uq +u_) + O(h®)]
= %[2K+Lu+ +2K_Lu_ + O(h*)] =
where
K, =K(S;) + K'(Si)Sl’v'%z + I&"’(Si)(S£)2%2, uy =uf'l,
K_=K'(S;)siL, u_ = uj+ u;”%z.
In [...] we care only elements with order of h less than 3:
1. " . P 3 d [, du 9
= E[A (Si)Lu; h + K'(S;)S;Lujh + O(h?)] = e {I& (S(x))L%(x)] . + O(h®)

diu; = ¢(x)u(w) |p=s, +O(h?) - depends on the choice of ;.
_ Now the right hand side. For the analogy with the left side [...], we denote:
K(z) = K(x)P'(x). Then the Right Side of (56) is:

Ll Simi—5 & . Si = Si—1 Kiyy — K,

— _ | Pl Y 2 i-3
R.S_—h K1 3 i1 A ]—I—pg n

We already know the first element (we did very similar for u, K), for the second we
use the Taylor expansion upstairs:
K. ..-K, 1 ) d )
—R T = K (S)S]+ O(h) = K (S()) lo—s, +O(R)
Returning from K to K, P', we write the differential approximation

RS = 20 | K(S(e0))P/(S(r0)) o (1) + py - K (S(a0)) + O(1?)
So the scheme (56) approximates (6) with second order. Now we investigate the
boundary condition approximation.

B.C.2: (59) are exact, order: O(h*) for any k.

B.C.1: (58) is similar to (57), we will show the order of (57). w, S - known smooth
functions, we can introduce a smooth flux function:

Ldu

du ds
dzr

fe) = K(SILE ) = K(S(2) (P(S@) P (0) = po)
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Exact boundary condition — known flux: f(0) = f;. We know that

- Uy — U - 52 —Sl .
[\1+%LT - ]‘1-5-% ( 1I+%T - pg) = f(xl-&-%) +0(h?)

We can rewrite (57) in a form:
Ji=—¢1urh+ f(z,11) +O(h?) (57.1)

Using Taylor expansion: f(z; 1) = f(0) + f'(0)h + O(h?)

fi = —buuh+ F(0) + - FO)h+O() (57.2)

In terms of fluxes equation (6) is: ¢(z)u(z) = < f(x). We cannot use it at the point
x = 0 but it is true for £ = 04, all positive points from some small neighbourhood
of 0.

fi = —évuh + £(0) + $(0)u(0)h + O() (57.3)

d1ur — ¢(0)u(0) = O(h), finally we have the second order of approximation:
fr = f(0) +O(h*) (57.4)

e One can expect a second order of convergence.
On solvability and implementation
Obtained SLAE has tridiagonal matrix {a;;} with diagonal domination:

1 -
aii = 75 (K + K1) + 6 = [asi1 |+ |asia | + ¢ > |aii—1]| + [aii |

h 3

also for boundary conditions: B.C.1 a1 > |a12|, Gnn > |@nn—1l;

B.C2 ago =1 > |aoi| =0, ann =1 > |ann—1] = 0. The sweep method ([7], p. 61)
can be used to solve the system. It needs O(n) operations.

We can combine this finite difference scheme or finite element method from previ-
ous section or some other method for elliptic problem (6) with some numerical method
for Ordinary Differential Equation. The interesting question is what resulting order
will have this combination. Suppose the method in ”x direction” gives O(h?) error and
the method in 7t direction” is of p-th order. Our hypothesis is that the combination
may have O(h? + AtP) error.

We combined the finite difference method discussed above with Euler, Improved
Euler, Cauchy-Euler and Fourth Order Runge-Kutta methods for ODE. Next section
we report about results obtained in computational experiments.
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4 Computational Experiment

To solve Initial Value Problem (4), we implemented:

in ”x direction” the finite difference method (56) with (57),(58) and (59);

in 7t direction” Runge-Kutta type methods (29),(30), (31),(32). We used these nu-
merical methods for solving several [VP with homogeneous boundary conditions B.C.1
or B.C.2 (constant values S;, S):

IVP1. [ =0.1; B.C.1; Initial value:

S(0,2) =2 (”’ _ll/2> +0.1

IVP2. [ = 0.1; B.C.2; Initial value — the same like in IVP1
IVP3. [ =0.1; B.C.1;

z—21\°
S(O,x):O.Sexp{—lOO( l3> }

IVP4. [ = 0.1; B.C.2; Initial value — the same like in IVP3

We remark that initial values for IVP1 — IVP4 are smooth and bounded away from
0 and 1.

IVP5. [ =0.1; B.C.2: S(t,0) =1, S(¢,1) = 0.5; Initial value:

0.2 x €[0,1/4]
S(0,x) = 0.5 x€[1/4,1/2]
2 —31/4] x € 1/2,1]

This problem has difficulties: discontinuity of initial value, the function reaches zero
at the point « = 31/4.
Other functions and parameters that were used:

K(S) = K¢S%, with Ky =0.015,
b .
P(S) = 2—§ —p1(S—1/2)> —pa(S—1), with p, =50, ps=0.1

¢ € (0,1) — some constant, doesn’t depend on x. (In spite of non-physical meaning
we set ¢ = 1. For other ¢ we can divide the function K on it, K := K/¢).

Each problem IVP1 — IVP5 we calculated using the discussed methods for sev-
eral positive constants L € L* = {0.0001,0.001,0.01,0.1,1.0}. The reason for such
choice was not only the comparison of numerical solutions for different L, but also we

wanted to compare them with the ”limit case” — Richard’s equation. The well-known
Richard’s equation

can be obtained from (4) by setting formally L = 0. A numerical algorithm that
was used for Richard’s equation we describe in the next section. We remark that the
condition L > 0 is important for all methods that we implemented for (4), and for
Richard’s equation we have to use another method.
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Figures 1-5 present saturation profiles S(t,x) at selected time moments ¢ for
IVP1 - IVP5. Each color corresponds to some value of parameter L:

red - L=0, blue — L =0.0001, green — L =0.001,
magenta — L =0.01, cyan — L =0.1, black — L =1.0.

Each line has a corresponding number (it is near the line and has the same color)
which means t;. It was convenient to divide results for some IVP into two pictures.
The upper contains results for L = 0 and the smallest L: L = 0.0001, L = 0.001. Red
lines were plotted first, then blue and green lines. For IVP1 — IVP4 they are rather
closed to each other so the red was covered by blue first and then the green covers red
and blue. In this case time ¢y is printed once in red for red, blue and green lines. The
initial value S(0, ) is the same for all L. It was plotted in the upper picture with red
color. In the lower picture it is possible to see the difference between different L > 0.
For each L it has 3-4 profiles. Next we give the content of figures more precise with
order in which lines were plotted.

IVP1 Figure 1

Upper picture:

red(0.0) t € {0.0,0.2,0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,10.0}
blue(0.0001) ¢ € {0.2,0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,10.0}
green(0.001) ¢ € {0.2,0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,10.0}

Lower picture:

)black(1.0) ¢ €{0.2,1.0,5.0},  2)magenta(0.01) ¢ € {0.2,1.0,5.0},
3)cyan(0.1) t € {0.2,1.0,5.0}, 4)green(0.001) ¢ € {0.2,1.0,5.0},
5)blue(0.0001) ¢ € {0.2,1.0,5.0}.

IVP2 Figure 2
Upper picture:

red(0.0) t €{0.0,0.2,0.4,0.6,0.8,1.0,1.2, 1.5}
blue(0.0001) ¢ € {0.2,0.4,0.6,0.8,1.0,1.2,1.5}
green(0.001) ¢ € {0.2,0.4,0.6,0.8,1.0,1.2,1.5}
magenta(0.01) ¢ € {0.2,0.4,0.6,0.8,1.0,1.2,1.5}

Lower picture:

1)black(1.0) ¢ € {1.0,2.0,3.0,5.0,10.0},
2)cyan(0.1) ¢ € {0.6,1.0,1.4,2.0}, 3)magenta(0.01) ¢ € {0.2,0.6,1.0}.

IVP3 Figure 3
Upper picture:

red(0.0) t € {0.0,0.2,0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,10.0}
blue(0.0001) ¢ € {0.2,0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,10.0}
green(0.001) ¢ € {0.2,0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,10.0}

Lower picture:

1)black(1.0) ¢ € {0.2,1.0,5.0}, 2)cyan(0.1) ¢ € {0.2,1.0,5.0},
3)magenta(0.01) ¢ € {0.2,1.0,5.0}, 4)green(0.001) ¢ € {0.2,1.0,5.0},
5)blue(0.0001) ¢ € {0.2,1.0,5.0}.
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IVP4 Figure 4
Upper picture:

red(0.0) t € {0.0,0.2,0.4,0.6,1.2,2.0,5.0,10.0}
blue(0.0001) ¢ € {0.2,0.4,0.6,1.2,2.0,5.0,10.0}
green(0.001) ¢ € {0.2,0.4,0.6,1.2,2.0,5.0,10.0}

Lower picture:

)black(1.0) ¢ € {0.2,1.2,5.0}, 2)eyan(0.1) ¢ € {0.2,1.2,5.0},
3)magenta(0.01) ¢ € {0.2,1.2,5.0}, 4)green(0.001) ¢ € {0.2,1.2,5.0},
5)blue(0.0001) ¢ € {0.2,1.2,5.0}.

IVP5 Figure 5
Upper picture:

red(0.0) t € {0.01,0.03,0.05,0.1,0.2,0.4,0.6,1.0,2.0}
blue(0.0001) ¢ € {0.01,0.03,0.05,0.1,0.2,0.4,0.6,1.0,2.0}
green(0.001) ¢ € {0.01,0.03,0.05,0.1,0.2,0.4,0.6,1.0,2.0}
red(0.0) t € {0.0}

Lower picture:

1)green(0.001) ¢ € {0.01,0.5,2.0}, 2)black(1.0) ¢t € {1.0,2.0,10.0},
3)cyan(0.1) t € {0.2,1.0,3.0}, 4)magenta(0.01) ¢ € {0.04,0.08,0.5,2.0}.

Figures 1,2 were obtained by Cauchy-Euler, figures 3,4 by Improved Euler methods
with 270 grid points in [0, {] for B.C.1 and 240 grid points for B.C.2. To obtain Figure 5
we used 480 points in [0,!] and Cauchy-Euler method. Red lines (numerical solution
for the Richard’s equation) were obtained by following method with 200 points in .
Time steps At were different for different L. We remark only that for smaller L > 0
we need smaller time step (for example from green to blue — approximately 10 times
smaller), when the calculated profile is non-smooth with high frequency oscillations
then decreasing At may change the situation to more regular.

4.1 Algorithm for Richard’s equation

For the Richard’s equation we use the same grid as for finite difference method from
previous section (53). Boundary conditions:

B.C.1: F(5(0)) =0, F(S(l)) =0; (L =0 also in boundary conditions)

B.C.2: S(t,0) =5, S(t,1) = S,.

Integrating over [w;_y, ;1] x[t?, /7] (60) and dividing by hAt we can get a balance

—1
2

equation:
1 [%+y S —s@) 1 71 [9P(S) Tiki/z
E/z._l ¢—At dv = _E/ﬂ EA (S) { pe —pg} . dt

We approximate integrals using quadrature formulas: left integral - a central point
formula, right integral - two points formula at ¢;, t;11 with weight o = 0.5:

Fit, — FIt] Fl o, —F)
o i+1/2 . i—1/2 + (1 . Oé) i+1/2 - i—1/2

T
A VI

) T; € (Oal)a

(61)
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only for B.C.2 we additionally have Sy = .5;, S, = S,

. (SE+SE P(SF ) P(SF .
ok = K ( +2 +1) |: ( +131 (57) _pg] . if Tij1)s € (0,1)
1/ if J7i+1/2 S 8(0,1)

The second condition is never satisfied with B.C.2. In B.C.1 case we have zero flux
boundary condition at this point, that’s why it is zero. This scheme is implicit. To
obtain an approximate solution at a new time step S7T! we need to solve a nonlinear
algebraic system of equations with number of unknowns equal to number of equations.
We can rewrite (61) in more convenient for iterations form:

ST = 8] + &L [aAF;(S7H) + (1 — ) AF;(S9)], 2 € (0,0),

: ) 62
it =5, Sitl =38, additionally for B.C.2 (62)

where
AF(S*) = (Fi’fH/2 - Fi’il/z)
In Vector form (62) looks:
Sitl = R(SIHL, 59)
We used the following iteration process to find Si+!:

50 — Si 7S(p-S-l) — R(s(p),sj),

until || S®PH) — SP)|| < e at some p < P = §itl .= g+l
otherwise (||S¥) — S(FP=1 || > ¢) reduce At and begin the iteration process again
using the same S7 and new At.

4.2 Comparison of results obtained on different grids

The second test that we can apply to the numerical methods is a numerical estimation
of convergence order. We use here some simple variant of Richardson’s extrapolation
method (see for example [8], Ch 6, p. 267). Let us consider a sequence of uniform
grids (53) embedded one to another

GlcG*c...cq!

such that corresponding parameter h; (distance between nodes) decreases in k times
from grid G* to G*1: h; = kh;y1, k € Z. Assume that we have some numerical
method with supposed order of convergence O(h? + AtP). Choosing some time step
At; we can calculate an approximate solution S; at the points of time grid 7; C [0, 7]
for each grid G* using this method. It is convenient to choose At;, 7; in such way
that exists not empty intersection 7 = [)7;. Then we can compare solutions S; at

points (z,t) € G x T (since G* x T C G* x T;). Convergence of the method means
that |S;(z,t) — S(x,t)| for (x,t) € G x T becomes smaller when i increases. When
we have order (¢, p) then

Ei(t) = 1Si(z,t) — S(@,t)llgr ~ C1h{ + C2A8,
where S is exact solution. Assuming that k?(At;41)? ~ (At;)? and doing formally
the same procedure for i + 1 we will get:

1 1
Ei1(t) = ||Sixa (2, t) = Sz, t)]|lar ~ E(Clh;? + CoAt]) ~ ﬁEi(ﬂ- (63)
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We don’t know S(z,t), on G* x T but we can substitute S by S! — a numerical
solution obtained on the finest grid Gf. So let S := S! and we can calculate E;(t) at
all points t € T fori =1...1 — 1 From (63) we have approximate equalities:

E;i(t)/Eit1(t) =~ Kk (64)

We use two E;(t) due to different norms:

EX(t) = gICIéELGX|S i(x,t) — Sy(z,t)] or E} |G1| Z |Si(x,t) — Si(z,t)|.

z€EG!

We expect that having a correct supposition about order (g, p) and using the method
for solving different ”smooth” problems we will have F;/E;;1 around k?. This pro-
cedure proves nothing it can only give an assurance that the predicted order is right
(if (64) is rather accurate) or wrong (if (64) is "too bad”).

In our case we used
G'-G® (I =5, k = 3) for B.C.1 with {30, 90,270,810, 2430} points in [0, ],
G'-G" (I =7,k =2) for B.C.2 with {30, 60,120,240, 480, 960, 1920} points in [0, ].
The grid 7 in "t direction” consists of several points (usually 9) from the time interval
where the solution essentially changes. Mostly 5 first points were with small intervals
between them and then, additionally, 4 points with intervals 5 times larger. We have
four methods in "t” direction: Euler [E] (29), Improved Euler [IE](30), Cauchy-Euler
[CE](31) and Runge-Kutta 4-th order [RK4](32). Our hypotheses are that these
methods have order (¢,p): (2,1), (2,2), (2,2), (2,4).
(q,p) = (2,2): hi+1 = hl/k, Ati—i—l = Ati/k;
(q,p) = (2,4): hiy1 = hi/k, Atiy1 ~ At;/VE (to reach exactly t/*! € T from t/ € T
we can determine At;; from

Aty = (1 = tﬂ/(lx/ﬁ%l + 1> ~ AtV

J - | - the nearest smallest integer.
We did the test described before for the following cases
IVP1, IVP2 were calculated by CE method for L from L*;
IVP3, IVP4 were calculated by IE method for L from L*;
IVP3, IVP4 were calculated by RK4 method for L € {0.0001,0.001,0.01};
Next there are typical results that we obtained. G' contains 30 points, |G| = 30.
Each row corresponds to some time moment ¢ € 7. Each column has some number i
and contains comparison S; with S; ;1

(30/90 ~i =1, 90/270~i=2, 270/810~i=3; 30/60~i=1,
60/120 ~ i =2, 120/240 ~i =3, 240/480 ~i=4, 480/960 ~i=>5).

An element of the tables for some t € 7,4 € {1,...I — 2} is a pair

[E°(0)/EX (1), Ej () Eiyy ()] -

The information attached to each table contains the problem’s label, the method, L,
boundary condition type, total number of grids I, expected value k? and two numbers

E El (¢
max 121 (t), max 1)
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time | 30/90 90/270 270/810

02 [144 131 [107 99 [101 100 | jypy

04 164 13388 89| 101 100 | (oo pe

06 |126 111|100 9.2 |10.0 101 | HR

08 |108 9.6 |109 9.6 [101 101 |

L0 |98 86115 100101 101 70 5 o

20 |68 92[107 100|101 101 |, oo "o

30 | 7188|110 102 [ 100 101 | i

40 |64 67102 98104 10.1

50 | 152 164 (88 92 [101 10.1
time | 30/60 | 60/120 | 120/240 | 240/480 | 480/960
01 |33 32|41 42|42 4142 4250 50
02 |53 54|37 38|41 41]42 42|50 5.0
03 |56 46|36 39|40 41|42 42|50 5.0]|IVP2
04 |54 45|37 39|40 41|42 42|50 5.0 | Cauchy-Euler
05 |52 46|38 40|40 41|42 42|50 5.0 | L=0.0001
06 |50 45|39 40|40 41|42 42|50 50|B.C2
07 |48 46|40 41|41 41]42 42|50 50| I=7k =4
08 |47 47]40 41|41 41[42 42|50 50 | 3.685478¢-05
09 |47 49|41 42|41 4142 42|50 50 | 4.675827¢-06
10 |50 54|40 41|41 41|42 42|50 5.0
11 |54 54|42 42|41 41|42 42|50 50
12 |95 69|43 43|41 41|42 42|50 5.0

time | 30/90 90/270 270/810

02 |84 89091 91]100 100

04 |94 87|91 91100 10.0 glize_Kum .

06 |94 89|91  91|100 100 | 7E0

08 |93 90|91  91[100 100 |7

L0 |88 90|91  9.1[100 100 | ;% 5

20 [93 92[91 91100 10.0 ’

5.262730e-05

30 300 199|143 9.7 102 100 | ;7 000

40 |154 17188 91100 100 |~

50 |59 56104 105|100 10.1
time | 30/60 | 60/120 | 120/240 | 240/480 | 480/960
02 |43 3941 4041 4042 42[50 50| 1ypy
04 39 41[40 40|40 41142 42|50 50 | po0 0,
06 |40 40|40 40|41 40 (42 42|50 50| 7 E0
08 |39 41|40 40|40 40|42 42|50 50|55
L0 [ 41 40|40 40|41 41|42 42|50 50| ;7 5
20 |36 39|38 40|40 40|42 42|50 50| o0
30 |38 3939 39|40 40|42 4250 50| jollo 07
40 |39 39(39 40|40 40|42 42|50 50
50 |40 40|40 40|40 40|42 42|50 5.0
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time | 30/90 | 90/270 | 270/810

02 |89 89|91 91]100 100

04 |88 89|91 91100 100 %E;fove 1 Eulor

06 |88 89|91 9.1/100 10.0| '/

08 |88 89|91 91100 100|554

L0 [ 88 88|91 901|100 100| 7% 5

20 |87 88]9.1 91100 100 | .0 0 "

30 |89 89191 9.1|100 10.0| "o D

40 |89 88|91 91100 10.0

50 |89 88[91 91100 100
time | 30/60 | 60/120 | 120/240 | 240/480 | 480/960
02 [40 4040 40 [40 40 [42 42[50 50 | ;ypy
04 |39 40|40 40|40 40|42 42150 50|y o
06 |39 40|40 40|40 40|42 4250 50| 17
08 |39 40|40 40|40 40|42 42|50 50|37
L0 39 40|40 40|40 40|42 42|50 50| =0 5
20 |39 3940 40|40 40|42 42[50 50|05 "
30 |39 40|40 40|40 40|42 4250 50|70
40 |38 39(39 40|40 40|42 42|50 50|
50 |37 38|38 39|40 40|42 42|50 5.0

The numerical data seem to be consistent with expected value k? € {9,4} And the
finite difference method (56),(57), (58),(59) combined with IE, CE, RK4 has a good

chance to be of order O(h? + At?), O(h? + At?), O(h? + At?).

Remarks The initial A¢; was chosen sufficiently small to have a ”smooth” numerical
solutions for all i =1...1.
In IVP5 we have an opposite situation. It seems that the methods don’t have
high order for this problem, which has discontinuous initial value.
All algorithms were implemented in ANSI C code. Pictures were printed using
MATLAB.
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5 Conclusion

We consider initial-boundary value problem with modified Richard”s equation sug-
gested in [1], [9] in one dimensional spatial case and two types of boundary condi-
tions: zero flux or given, constant in time values on the boundary. This problem was
transformed into another form, namely initial value problem with Abstract Ordinary
Differential Equation, using a solvability of elliptic boundary value problem (weak
solvability by variational approach). We used deep similarity of this form with ODE
in R to show local existence, uniqueness and continuous dependence on initial data
provided the initial data is bounded away from zero. Like in ODE case a local solution
can be extended at least while it is bounded away from zero and one. This solution
being an abstract function on = at each time moment ¢ is also a continuous function
on variables x and t and has a continuous partial derivative in t.

We have also used the AODE form in order to obtain numerical methods for mod-
ified Richard’s equation: we combined some numerical method for elliptic boundary-
value problem (”x direction”) with some numerical method for ODE ("t direction”)
and the choice of the methods can be rather independent from each other. For el-
liptic problem we described in details two possibilities by finite element approach
and finite difference approach. In 7t direction” we can choose for example explicit
Runge-Kutta type methods like Euler, Improved Euler, Cauchy-Euler and Runge-
Kutta 4th order methods. Finite element method is a natural numerical method for
variational approach that was used in AODE form. We used this connection to show
the convergence of Finite element — Euler method.

Four combinations, namely the finite difference method (that has a second order of
approximation) in ”x direction” with four already mentioned methods in ”t direction”,
were implemented in ANSI C program. Numerical results, obtained on the nested
sequence of grids for smooth initial functions bounded away from zero, have showed
that the last three methods have second order in ”x” and 2nd, 2nd, 4th orders in ”t”
respectively.

The modified Richard’s equation with strictly positive constant parameter L has
one additional term, the highest derivative has one order more comparing with stan-
dard Richard’s equation. If L = 0, formally, then the first equation becomes equal
to the second. The mentioned numerical methods are undefined for this case, but for
small positive L (on the same ”good” initial functions used in the previous test) the ob-
tained results were rather closed to the numerical results obtained for Richard’s equa-
tion. In some sense the modified Richard’s equation includes the standard Richard’s
equation. Another aspect for comparison of these two equations can be the similar-
ity of the form in which the Richard’s equation is written with AODE form: time
derivative in the left hand side and an operator that acts on functions as they would
have had only dependence on z in the right hand side. The right hand side operator
is more regular for the AODE form.

We used the restricted case in order to have more simple situation. It may be
possible to generalize the problem to a more complicated one with non-homogeneous
boundary conditions, coefficients depending on more variables or even introduce ad-
ditional terms and consider multidimensional case.
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Figure 1: IVP1
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