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Abstrat

We onsider a Dary ow model with saturation-pressure relation extended with a

dynami term, namely, the time derivative of the saturation. This model was proposed

in works [1℄, [9℄, [10℄. We restrit ourself to one spatial dimension and stritly positive

initial saturation. For this ase we transform the initial-boundary value problem into

ombination of ellipti boundary-value problem and initial value problem for abstrat

Ordinary Di�erential Equation. This splitting is rather helpful both for theoretial

aspets and numerial methods.



1 Introdution

We onsider two phase ows in porous media. They our in various pratial tasks,

like unsaturated groundwater ow, oil reovery. The aim of mathematial approah

here is to predit the saturation pro�les if initial pro�les and boundary onditions

are known. For terminology, de�nitions and theory of ow through porous media we

refer to [11℄,[12℄. Basi notations were taken like in [1℄.

S(t; x) is the level of saturation of a wetting phase (S 2 [0; 1℄). We assume that

wetting and nonwetting phases are water and air respetively. � is the porosity of

the porous medium. Typially the relation for the pressure di�erene in the phases is

used

p

n

� p

w

= P (S) (1)

where p

n

is the pressure in the air (we assume that it has a onstant value of atmo-

spheri pressure) and p

w

the pressure in the wetting phase. P (S) is assumed to be

a known bounded dereasing funtion on the water saturation, with P (1) = 0. The

hydrauli ondutivity K(S) is a known nonnegative inreasing funtion.

The di�erential equation desribing dynamis of unsaturated ow is obtained by

ombining mass onservation of water

�

�S

�t

+ div ~q = 0

with expression for the ux q from the Dary's law

~q = K(S)(� gradp

w

+ �~g) = K(S)(gradP (S) + �~g) (2)

where � is the water density and ~g = (�g; 0; 0). The result is the Rihard's equation:

�

�S

�t

= � div [K(S)(gradP (S) + �~g)℄ (3)

In [1℄, [9℄, [10℄ the authors suggested a modi�ed expression for (1):

p

n

� p

w

= P (S)� L

�S

�t

; (L > 0) (1

0

)

This lead to nonstandard Dary ow model

~q = K(S)(� gradp

w

+ �~g) = K(S)

�

grad

�

P (S)� L

�S

�t

�

+ �~g

�

(2

0

)

and modi�ed Rihard's equation:

�

�S

�t

= � div [K(S)(gradP (S) + �~g)℄ + div

�

K(S)L grad

�S

�t

�

(3

0

)

We restrit ourself to the ase of one spatial dimension where the main equation (3')

beomes

�

�S

�t

= �

�

�x

�

K(S)

�

�P (S)

�x

� �g

��

+

�

�x

�

K(S)L

�

2

S

�x�t

�

(4)

S = S(t; x) - saturation, t 2 � = (0; T ), x 2 
 = (0; l).

Let

F (S) = K(S)

�

�P (S)

�x

� �g

�

= K(S)

�

P

0

(S)

�S

�x

� �g

�

(5)

1



To omplete the problem (4) we need to add initial and boundary onditions.

Initial onditions: S(0; x) is given.

Boundary onditions. We will deal with two types of B.C.

B.C.1: a ux is zero on boundaries K(S)L

�

2

S

�x�t

� F (S) = 0, x = 0; l.

B.C.2: S(t; 0), S(t; l) are given for all t 2 [0; T ℄. We will use only the simplest ase:

onstant values of S on the boundary.

2



2 General Aspets

2.1 Another formulation of problem (4)

It is onvenient to rename u(t; x) =

�S

�t

(t; x). Another form of equation (4) with

variables u and S:

�

�

�x

�

K(S)L

�u

�x

�

+ �u = �

�

�x

F (S) (6)

With boundary onditions:

B.C.1 : K(S)L

�u

�x

� F (S) = 0, x = 0; l

B.C.2 : S(t; 0) = S

l

, S(t; l) = S

r

, u(t; 0) = 0, u(t; l) = 0.

Assume that S is known for some t. Then we have an ellipti equation on u(t; �):

L

1

u+ u = �L

2

S where L

1

u, L

1

u+ u are ellipti. It is possible to use well developed

theory of seond order ellipti equations to get existene and some properties of

solution operator ating on S. If S(x) > 0 for all x then operators are stritly

ellipti (K(0) = 0 - no elliptiity).

For given S > 0 equation (6) is ellipti with respet to u and we an use existene,

uniqueness results for ellipti equations

Weak solution approah: multiplying (6) by test funtion v(x) and integrating by

parts on 
:

Z




K(S)L

�u

�x

�v

�x

dx�

Z

�


K(S)L

�u

�x

v d� +

Z




�uv dx =

Z




F (S)

�v

�x

dx�

Z

�


F (S)v d�

(7)

Boundary ondition 1: Zero ux means that boundary integrals together are zero.

We an use funtional spae H

1

(
) =W

1;2

(
).

Boundary ondition 2: Constant values on the boundary S(t; 0) = S

l

, S(t; l) = S

r

,

u(t; 0) = 0, u(t; l) = 0. We an use funtional spae H

1

0

(
) = W

1;2

0

(
) for Dirihlet

problem.

Let V = H

1

(
) for B.C.1 and V = H

1

0

(
) for B.C.2. Weak formulation for the

ellipti problem (6): Find u 2 V suh that for any v 2 V

a(u; v) + (u; v)

�;0

= l(v) (8)

where a(u; v) =

R




K(S)L

�u

�x

�v

�x

dx, (u; v)

�;0

=

R




�uv dx, l(v) =

R




F (S)

�v

�x

dx

Assumptions

1: S(x)

a:e

� S

�

> 0) K(S) � K(S

�

) = �[S℄ > 0;

2: � 2 L

1

(
); 1 � � � �

0

> 0

3: K;KP

0

� Lipshitz ontinuous, bounded :

(9)

jK(S

1

)�K(S

2

)j � L

K

jS

1

� S

2

j; jK(S

1

)P

0

(S

1

)�K(S

2

)P

0

(S

2

)j � L

KP

0

jS

1

� S

2

j:

a(u; v) + (u; v)

�;0

is a symmetri bilinear funtional. We an hek V -elliptiity

and ontinuity of this funtional:

(E) a(u; u) + (u; u)

�;0

� �[S℄L









�u

�x









2

0

+ �

0

kuk

2

0

� minf�[S℄L; �

0

gkuk

2

1

= E[S℄kuk

2

1

where E[S℄ > 0 - elliptiity onstant.

(C) ja(u; v) + (u; v)

�;0

j � kKk

1

L









�u

�x









0









�v

�x









0

+ kuk

0

kvk

0

� Ckuk

1

kvk

1

3



where C > 0 - ontinuity onstant.

l = l[S℄ 2 V

0

- adjoint spae for V . l(v) is a linear bounded funtional on V .

jl[S℄(v)j =

�

�

�

�

�

�

Z




K(S)P

0

(S)

�S

�x

�v

�x

dx�

Z




K(S)�g

�v

�x

dx

�

�

�

�

�

�

�

� kKP

0

k

1









�S

�x









0









�v

�x









0

+ �gkKk

1

�(
)









�v

�x









0

�

� (kKP

0

k

1

kSk

1

+ �gkKk

1

�(
)) kvk

1

kl[S℄k

V

0

� kKP

0

k

1

kSk

1

+ �gkKk

1

�(
) (10)

From [3, Lemma 3.18, part a) p. 97℄ we an get existene-uniqueness results: The

problem (8) has unique solution u 2 V and

kuk

V

�

1

E[S℄

kl[S℄k

V

0

=

1

E[S℄

sup

v 6=0;v2V

jl[S℄(v)j

kvk

1

:

We an introdue a solution operator A : H

1

(
)! V .

u = A(S) - a unique solution of problem (8) orresponding to S. In terms of A, (4)

an be written in a form:

u =

dS

dt

= A(S); S(0) = S

0

; S(t) 2 H

1

(
) 8t 2 � (11)

We don't know exatly the domain of de�nition for A, but at least it ontains all

funtions S 2 H

1

that are bounded away from zero: 9 onstant S

�

> 0 that S(x) � S

�

almost everywhere.

Let U

b

= fS 2 H

1

(
) : kS � S

0

k

1

� bg a neighborhood of S

0

.

In one dimensional ase we an use embedding H

1

(
) to the spae of ontinuous

bounded funtions C

B

(
) with supremum norm (see [2, p. 97℄):

a)If 
 has one property, mp = 2 > n = 1 then W

m;p

=W

1;2

(
)! C

B

(
)

b)If 
 has strong loal Lipshitz property, mp = 2 > n = 1 > (m � 1)p = 0 then

W

m;p

=W

1;2

(
)! C

0;�

(

�


), 0 < � � m� (n=p) (for example � = 1=2)

In one dimension ase see [5, p. 31℄

From these results we need: u 2 H

1

(
)) u 2 C(
) and ess sup

x2


juj � C

B

kuk

1

If the initial value is bounded away from zero: S

0

(x) � S

0�

> 0 a.e. then there

exist b and S

�

> 0 that: 8S 2 U

b

, S � S

�

a.e.; in other words, U

b

is bounded away

from zero.

Boundedness of U

b

: kSk

1

� kS

0

k

1

+ b.

Also there exist onstants �, E that �[S℄ � �, E[S℄ � E.

Remark In our ase S is saturation and we also need to have S � 1. And if S

0

< 1

then at the same way we an hoose ball U

b

bounded away from 1. (but we will not

mention it expliitly).

2.2 Properties of A(S)

A1. A(S) is bounded on U

b

.

From (10): kA(S)k

1

= kuk

1

�

1

E

(kKP

0

k

1

(kS

0

k

1

+ b) + �gkKk

1

�(
)) = B

4



For any S 2 U

b

: kA(S)k

1

� B.

A2. A(S) is Lipshitz ontinuous on U

b

:

kA(S

1

)�A(S

2

)k

1

� L

A

kS

1

� S

2

k

1

8S

1

; S

2

2 U

b

:

u

1

= A(S

1

), u

2

= A(S

2

). a(u; v), l(v) depend on S,

Æ

a[S℄(u; v) =

Z




K(S)L

�u

�x

�v

�x

dx; l[S℄(v) =

�

F (S);

�v

�x

�

0

:

a[S

1

℄(u

1

; v) + (u

1

; v)

�;0

= l[S

1

℄(v);

a[S

2

℄(u

2

; v) + (u

2

; v)

�;0

= l[S

2

℄(v)

8v 2 V:

a[S

1

℄(u

2

; v) + (u

2

; v)

�;0

=

Z




K(S

1

)L

�u

2

�x

�v

�x

dx+

Z




�u

2

v dx =

= l[S

2

℄(v)�

Z




[K(S

2

)�K(S

1

)℄L

�u

2

�x

�v

�x

dx

Substitute a[S

1

℄(u

1

; v) + (u

1

; v)

�;0

= l[S

1

℄(v)

a[S

1

℄(u

2

�u

1

; v)+(u

2

�u

1

; v)

�;0

= l[S

2

℄(v)� l[S

1

℄(v)+

Z




[K(S

1

)�K(S

2

)℄L

�u

2

�x

�v

�x

dx

= l[S

2

℄(v)� l[S

1

℄(v) + l[S

1

; S

2

; u

2

℄(v) = L(v)for any v 2 V :

So u

2

� u

1

is a solution of a[S

1

℄(u

2

� u

1

; v) + (u

2

� u

1

; v)

�;0

= L(v), where L(v) is a

linear bounded funtional on V .

kA(S

2

)�A(S

1

)k

1

= ku

2

� u

1

k

1

� kLk

V

0

=E (12)

and we have to estimate kLk

V

0

= sup

v2V;kvk

V

=1

jL(v)j.

kLk

V

0

� kl[S

2

℄� l[S

1

℄k

V

0

+ kl[S

1

; S

2

; u

2

℄k

V

0

(13)

a) estimation for l[S

1

; S

2

; u

2

℄(v) =

R




[K(S

1

)�K(S

2

)℄L

�u

2

�x

�v

�x

dx:

Æ jK(S

1

(x))�K(S

2

(x))j � L

K

jS

1

(x)�S

2

(x)j

a:e

� L

K

C

B

kS

1

�S

2

k

1

= C

B

1

kS

1

�S

2

k

1

- embedding to C

B

(
).

jl[S

1

; S

2

; u

2

℄(v)j � C

B

1

LkS

1

� S

2

k

1

k

�u

2

�x

k

0

k

�v

�x

k

0

� C

B

1

LkS

1

� S

2

k

1

ku

2

k

1

kvk

1

ku

2

k � B ) kl[S

1

; S

2

; u

2

℄k

V

0

� C

B

1

LBkS

1

� S

2

k

1

(14)

�

b) estimation for l[S

2

℄� l[S

2

℄:

Æ

jl[S

2

℄(v)� l[S

1

℄(v)j = jhF (S

2

);

�v

�x

i

0

� hF (S

1

);

�v

�x

i

0

j =

5



=

�

�

�

�

�

�

Z




K(S

2

)

�

P

0

(S

2

)

�S

2

�x

� �g

�

�v

�x

dx �

Z




K(S

1

)

�

P

0

(S

1

)

�S

1

�x

� �g

�

�v

�x

dx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Z




�

K(S

2

)P

0

(S

2

)

�S

2

�x

�v

�x

�K(S

1

)P

0

(S

1

)

�S

1

�x

�v

�x

�

dx

�

�

�

�

�

�

+

+

�

�

�

�

�

�

Z




�g (K(S

1

)�K(S

2

))

�v

�x

dx

�

�

�

�

�

�

= jI

1

j+ jI

2

j

Let �rst integral be I

1

, seond - I

2

. Next we will use embedding H

1

to C

B

jI

2

j � �gC

B

1

kS

1

� S

2

k

1

�(
)kvk

1

jI

1

j �

�

�

�

�

�

�

Z




[K(S

2

)P

0

(S

2

)�K(S

1

)P

0

(S

1

)℄

�S

2

�x

�v

�x

dx

�

�

�

�

�

�

+

+

�

�

�

�

�

�

Z




K(S

1

)P

0

(S

1

)

�

�S

2

�x

�

�S

1

�x

�

�v

�x

dx

�

�

�

�

�

�

�

jKP

0

(S

1

)�KP

0

(S

2

)j � L

KP

0

jS

1

� S

2

j, C

B

2

= L

KP

0

C

B

� C

B

2

kS

2

� S

1

k

1

kS

2

k

1

kvk

1

+ kKP

0

k

1

kS

2

� S

1

k

1

kvk

1

�

�

C

B

2

(kS

0

k

1

+ b) + kKP

0

k

1

�

kS

2

� S

1

k

1

kvk

1

:

kl[S

2

℄� l[S

1

℄k

V

0

�

�

C

B

2

(kS

0

k

1

+ b) + kKP

0

k

1

+ �gC

B

1

�(
)

�

kS

1

� S

2

k

1

(15)

� Altogether (12),(13),(14), (15) give:

kA(S

2

)�A(S

1

)k

1

�

�

C

B

2

(kS

0

k

1

+ b) + kKP

0

k

1

+ �gC

B

1

�(
) + C

B

1

LB

�

kS

2

�S

1

k

1

=E

kA(S

2

)�A(S

1

)k

1

� L

A

kS

2

� S

1

k

1

) A(S) - Lipshitz ontinuous on U

b

�

A3. A(S) onserves smoothness

We have already shown that for S 2 H

1

, A(S) 2 H

1

. It seems that this is also

(formal) true for other lasses of smooth funtions, for example H

k

, C

k

(It is really,

not formally true when the orresponding regularity theorems are valid). We an

ompare A(S) with �

1

�

�

�x

F (S) from Rihard's equation:

�S

�t

= �

1

�

�

�x

F (S):

�

�x

F (S) dereases smoothness of S, for example C

k

to C

k�2

, H

k

to H

k�2

. On the

other hand

�

�x

F (S) an be expliitly alulated from (5) and A(S) an be obtained

only by solving an ellipti equation.

6



2.3 On the well-posedness of (11)

Now we an ompare (11) with Ordinary Di�erential Equation: y

0

= f(t; y(t)),

y(0) = y

0

. To have loal existene and uniqueness of the solution of ODE we need

boundedness and Lipshitz ontinuity of f(t; y)on y in some domain D around initial

point (0; y

0

) (for instane D = f(t; y) : jy � y

0

j < b, jtj < Tg). jf(t; y)j � B in D,

jf(t; y

1

)� f(t; y

2

)j � Ljy

1

� y

2

j for (t; y

1

); (t; y

2

) 2 D. To prove the existene of ODE

one an onstrut a sequene y

k

(t): y

0

(t) = y

0

,

y

k+1

(t) = y

0

+

Z

t

0

f(�; y

k

(�)) d�;

that stays in D for t from some interval [0; T ℄ and onverges to solution y(t) that

satis�es the integral form of ODE:

y(t) = y

0

+

Z

t

0

f(�; y(�)) d�:

To prove uniqueness, the Gronwall's lemma an be used.

In our ase properties A1,A2 are similar to orresponding properties of f(t; y) in

ODE ase. We an follow the ODE existene proof trying to �t it with our ase. So

let onsider a sequene: S

0

(t) = S

0

,

S

k+1

(t) = S

0

+

Z

t

0

A(S

k

(�)) d� (16)

The integral in (16) we will onsider as Riemann integral in a Banah spae E. see

[4, x38 pp 304-306, x39℄ for details. Some properties from [4℄ that we will expliitly

use:

Def 1 Let y(t) 2 E 8t 2 [0; T ℄. y(t) is alled ontinuous in [0; T ℄ if 8t 2 [0; T ℄:

ky(t+ h)� y(t)k

E

! 0 when h! 0. Notation: y 2 C([0; T ℄! E).

Def 2 Derivative of y(t) at the point t:

d

dt

y(t) = lim

h!0

1

h

[y(t+ h)� y(t)℄

if the limit exists in the sense of E.

Y1. If y(t) has a derivative at the point t, then y(t) is ontinuous at the point t.

Y2. If y(t) is Lipshitz ontinuous in [0; T ℄ (L.C.) (9 onstant L

y

> 0 suh that

8t

1

; t

2

2 [0; T ℄: ky(t

1

)� y(t

2

)k

E

� L

y

jt

1

� t

2

j), then y(t) is ontinuous in [0; T ℄.

Y3. If y(t) is ontinuous in [0; T ℄, then ky(t)k

E

is a ontinuous real funtion from

C([0; T ℄! R) and

R

t

0

ky(�)k

E

d� is well de�ned.

Y4. If y(t) is ontinuous in [0; T ℄, then the integral

R

t

0

y(�) d� is well de�ned in E.

Moreover:









Z

t

0

y(�) d�









E

�

Z

t

0

ky(�)k

E

d� (17)

Y5. If y(t) is ontinuous in [0; T ℄,  2 (0; T ), then

Z

T

0

y(�) d� =

Z



0

y(�) d� +

Z

T



y(�) d�:

Y6. If y(t) is ontinuous in [0; T ℄, then the funtion Y (t) =

R

t

0

y(�) d� is di�erentiable

in [0; T ℄, and thus

d

dt

Y (t) = y(t).
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Y7. If the funtion Y (t) possesses a ontinuous derivative with respet to t,

d

dt

Y (t) = y(t), then

Z

t

0

y(�) d� = Y (t)� Y (0):

E = H

1

(
) and k � k

E

= k � k

1

when the opposite is not expliitly mentioned.

2.3.1 On loal existene

Our goal now is to show that for some T > 0 (11) has unique solution in C([0; T ℄! H

1

)

that ontinuously depends on initial data in C([0; T ℄! H

1

) provided S

0

is bounded

away from zero. Our plan is to show that sequene fS

n

g

1

n=0

from (16) is well de�ned

(Steps 1-3) and onverges (Step 4) to S(t) - a solution of

S(t) = S

0

+

Z

t

0

A(S(�)) d�; (18)

(Step 5) and this implies that S(t) is also a solution of (11) (Step 6).

Remark Here we onsider

dS

dt

is in the sense of Def 2 in (11).

When S

0

(x) � S

0�

> 0 then we an hoose appropriate U

b

with onstants b, B,

L

A

. Now we an determine T > 0:

T < minf1=L

A

; b=Bg (19)

For eah element of sequene fS

n

g

1

n=0

from (16) we have to show

a) That S

n

(t) is well de�ned element in H

1

for all t 2 [0; T ℄.

b) For all t 2 [0; T ℄, S

n

(t) stays in U

b

� H

1

.

) S

n

(t) is Lipshitz ontinuous in [0; T ℄ with onstant B.

We will use indution in three steps: Step 1 for S

0

(t), Step 2 for S

1

(t) - indution's

base and Step 3 indution's hypothesis from S

n

(t) to S

n+1

(t) (step 3 is similar to

step 2).

Step 1. S

0

(t) = S

0

8t 2 [0; T ℄.

a) S

0

(t) 2 H

1

, 8t 2 [0; T ℄.

b) S

0

(t) 2 U

b

, 8t 2 [0; T ℄.

) S

0

(t) has (L.C.) property with onstant B: 8t

1

; t

2

2 [0; T ℄

kS

0

(t

1

)� S

0

(t

2

)k

1

= k0k

1

� Bjt

1

� t

2

j

Step 2. S

1

(t) = S

0

+

R

t

0

A(S

0

(�)) d�

a) From A2, properties b) and ) for S

0

(t) we an get 8t

1

; t

2

2 [0; T ℄:

kA(S

0

(t

1

))�A(S

0

(t

2

))k

1

� L

A

kS

0

(t

1

)� S

0

(t

2

)k

1

� L

A

Bjt

1

� t

2

j:

It means that A(S

0

(t)) has (L.C.) property, hene is integrable and S

1

(t) 2 H

1

,

8t 2 [0; T ℄.

b) Using Y4 for A(S

0

(t)), b) for S

0

(t)), A1

kS

1

(t)� S

0

k

1

=









Z

t

0

A(S

0

(�)) d�









1

�

Z

t

0

kA(S

0

(�))k

1

d� � Bt � BT < b

or S

1

(t) 2 U

b

: 8t 2 [0; T ℄.

) To obtain (L.C.) property for S

1

(t) we useY5, Y4 for A(S

0

(t)), A1: 8t

1

; t

2

2 [0; T ℄

kS

1

(t

1

)� S

1

(t

2

)k

1

=









Z

t

1

t

2

A(S

0

(�)) d�









1

�

Z

t

1

t

2

kA(S

0

(�))k

1

d� � Bjt

1

� t

2

j

8



Step 3. Suppose that for S

n

a),b),) are valid:

a) S

n

(t) 2 H

1

, 8t 2 [0; T ℄

b) S

n

(t) 2 U

b

, 8t 2 [0; T ℄

) (L.C) kS

n

(t

1

)� S

n

(t

2

)k

1

� Bjt

1

� t

2

j, 8t

1

; t

2

2 [0; T ℄

We need to show that a),b),) are also valid for S

n+1

(t) = S

0

+

R

t

0

A(S

n

(�)) d�

To do this we an apply the same arguments like in Step 2:

a)

kA(S

n

(t

1

))�A(S

n

(t

2

))k

1

� L

A

kS

n

(t

1

)� S

n

(t

2

)k

1

� L

A

Bjt

1

� t

2

j

A(S

n

(t)) is (L.C)) integrable ) S

n+1

(t) 2 H

1

, 8t 2 [0; T ℄.

b) S

n+1

(t) 2 U

b

, 8t 2 [0; T ℄ sine

kS

n+1

(t)� S

0

k

1

=









Z

t

0

A(S

n

(�)) d�









1

�

Z

t

0

kA(S

n

(�))k

1

d� � Bt � BT < b

) 8t

1

; t

2

2 [0; T ℄

kS

n+1

(t

1

)� S

n+1

(t

2

)k

1

=









Z

t

1

t

2

A(S

n

(�)) d�









1

�

Z

t

1

t

2

kA(S

n

(�))k

1

d� � Bjt

1

� t

2

j:

So we an de�ne a sequene fS

n

g

1

n=0

in H

1

(
).

Step 4. Now we will investigate a onvergene of this sequene.

S

n+1

(t) = S

0

+

n

X

k=0

(S

k+1

(t)� S

k

(t))

kS

k+1

(t)� S

k

(t)k

1

=









Z

t

0

A(S

k

(�)) d� �

Z

t

0

A(S

k�1

(�)) d�









1

=

=









Z

t

0

[A(S

k

(�)) �A(S

k�1

(�))℄ d�









1

�

Funtion [A(S

k

(t))�A(S

k�1

(t))℄ is Lipshitz ontinuous on [0; T ℄ as a sum of Lipshitz

ontinuous funtions and we an use Y4. [S

k

(t)� S

k�1

(t)℄ is also (L.C.). From Y3:

kS

k

(t)� S

k�1

(t)k

1

approahes it's maximal value on [0; T ℄.

�

Z

t

0

kA(S

k

(�)) �A(S

k�1

(�))k

1

d� �

Z

t

0

L

A

kS

k

(�)� S

k�1

(�)k

1

d� �

� L

A

t max

t2[0;T ℄

kS

k

(t)� S

k�1

(t)k

1

� L

A

T max

t2[0;T ℄

kS

k

(t)� S

k�1

(t)k

1

� :::

::: � (L

A

T )

k

max

t2[0;T ℄

kS

1

(t)� S

0

(t)k

1

� (L

A

T )

k

b

from (19): L

A

T < 1

1

X

k=0

kS

k+1

(t)� S

k

(t)k

1

�

1

X

k=0

(L

A

T )

k

b <1

We have shown that S

n

(t) onverges in H

1

(
) uniformly on [0; T ℄ to some funtion

S(t). Let us show that S(t) also has properties a), b), ).

a) 8t: lim

n!1

S

n

(t) = S(t) in H

1

(
), uniformly on t 2 [0; T ℄.
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b) U

b

- losed ) S(t) 2 U

b

, 8t 2 [0; T ℄

) Æ

kS(t

1

)� S(t

2

)k

1

� kS(t

1

)� S

n

(t

1

) + S

n

(t

1

)� S

n

(t

2

) + S

n

(t

2

)� S(t

2

)k

1

�

For any � we an �nd N that for n > N , 8t 2 [0; T ℄ kS(t)� S

n

(t)k

1

< "

� kS(t

1

)� S

n

(t

1

)k

1

+ kS

n

(t

1

)� S

n

(t

2

)k

1

+ kS

n

(t

2

)� S(t

2

)k

1

� Bjt

1

� t

2

j+ 2"

" an be hosen arbitrary small ) kS(t

1

)� S(t

2

)k

1

� Bjt

1

� t

2

j 8t 2 [0; T ℄. �

Step 5. Our task is to verify (18)

Æ First: A(S(t)) is (L.C.), sine 8t

1

; t

2

2 [0; T ℄

kA(S(t

1

))�A(S(t

2

))k

1

� L

A

kS(t

1

)� S(t

2

)k

1

� L

A

Bjt

1

� t

2

j

and we an integrateA(S(t)) on t. Moreover

R

t

0

A(S

n

(�)) d� onverges to

R

t

0

A(S(�)) d�

in H

1

(
) uniformly on t 2 [0; T ℄:









Z

t

0

A(S

n

(�)) d� �

Z

t

0

A(S(�)) d�









1

=









Z

t

0

[A(S

n

(�)) �A(S(�))℄ d�









1

�

[A(S

n

(t)) � A(S(t))℄ { (L.C.) on t as a sum of (L.C.) funtions; S

n

(t) ! S(t) when

n!1, uniformly on t 2 [0; T ℄.

�

Z

t

0

kA(S

n

(�))�A(S(�))k

1

d� � L

A

Z

t

0

kS

n

(�)�S(�)k

1

d� � L

A

T"

n

! 0; n!1

)

Z

t

0

A(S

n

(�)) d� �!

Z

t

0

A(S(�)) d�; n!1

S(t) � S

n

(t) = S

0

+

Z

t

0

A(S

n�1

(�)) d� �! S

0

+

Z

t

0

A(S(�)) d�; n!1

8t 2 [0; T ℄, uniformly in t And we have (18). �

Step 6. A(S(t)) is ontinuous on [0; T ℄. From (18) and Y6 we have (11)

We an summarize Steps 1-6: If the initial data is bounded away from zero then

U

b

an be hosen. It determines the onstants b; B; L

A

, and T from (19). Then for

t 2 [0; T ℄ one an onstrut S(t) a solution of (11).

Remark We always had initial data at t = 0 and time interval [0; T ℄. It was not a

restrition and if the solution is known at some time moment t

0

, then we an onsider

S(t

0

) = S

0

as initial data and look for solution at [t

0

; t

0

+ T ℄.

2.3.2 On loal uniqueness, ontinuous dependene on initial data

Suppose

~

S(t) is ontinuous and satis�es (18) at t 2 [0;

~

T ℄. And S

0

is bounded away

from zero. Then we an hoose neighborhood U

b

with onstants b; B; L

A

. For this U

b

we an �nd T from (19).

U1. The funtion

~

S(t) stays inside U

b

while t 2 [0;minfT;

~

Tg℄.

Æ Assume it is not true and there is t

�

� T;

~

T that k

~

S(t

�

) � S

0

k

1

= b and k

~

S(t) �

S

0

k

1

< b for t 2 [0; t

�

) (we an �nd t

�

beause k

~

S(t)� S

0

k

1

is ontinuous). Then

for all t 2 [0; t

�

℄ using that S(t) 2 U

b

and (19) we an estimate:

k

~

S(t

�

)� S

0

k

1

�

Z

t

�

0

kA(

~

S(�))k

1

d� � Bt

�

� BT < b

10



And we have ontradition with de�nition of t

�

. �

Now assume that we have two solutions

~

S(t) and S(t) of (11) at t 2 [0;

~

T ℄, with

~

S(t

0

) = S(t

0

) = S

0

- bounded away from zero. We an hoose U

b

around S

0

> 0 with

onstants b; B; L

A

; T from (19) but not greater than

~

T . From U1,

~

S(t), S(t) stays

inside U

b

while t 2 [t

0

; t

0

+ T ℄. Using that

d

~

S

dt

;

dS

dt

are in the sense of Def 2, from Y1

we an onlude that

~

S(t); S(t) are ontinuous in [0; T ℄. Then A(

~

S(t)); A(S(t)) are

ontinuous in [0; T ℄. From Y7 we onlude that

~

S(t), S(t) satisfy (18) at [0; T ℄. Then

S(t)�

~

S(t) =

Z

t

t

0

[A(S(�)) �A(

~

S(�))℄ d�

[A(S(t)) � A(

~

S(t))℄ is a ontinuous funtion on [0; T ℄. From Y4, A2 we obtain an

integral estimation:

kS(t)�

~

S(t)k

1

�

Z

t

t

0

kA(S(�))�A(

~

S(�))k

1

d� � L

A

Z

t

t

0

kS(�)�

~

S(�)k

1

d�

Lemma(Gronwall) (see[6℄, p.5) Assume that for t 2 [t

0

; t

0

+ a℄

�(t) � Æ

1

+ Æ

2

Z

t

t

0

 (�)�(�) d�

where �(t);  (t) � 0 are ontinuous at [t

0

; t

0

+ a℄, Æ

1

; Æ

2

> 0. Then for t 2 [t

0

; t

0

+ a℄:

�(t) � Æ

1

exp

�

Æ

2

Z

t

t

0

 (�) d�

�

:

Corollary. If Æ

1

= 0, then �(t) = 0 at [t

0

; t

0

+ a℄.

In our ase �(t) = kS(t)�

~

S(t)k

1

- ontinuous (from Y3),  (t) = 1, Æ

2

= L

A

, Æ

1

= 0,

a = T . From the Corollary we onlude that S(t) =

~

S(t) at t 2 [t

0

; t

0

+ T ℄.

So we have the loal uniqueness.

Gronwall's Lemma ould be used to show the ontinuous dependene from initial

data. Now assume that we have U

b

, b; B; L

A

; T like before, S(t) is a solution of (11)

on [0; T ℄, S(0) = S

0

. Continuous dependene on initial data for S(t) means that for

any " > 0 it is possible to �nd Æ > 0 that for all t 2 [0; T ℄, kS(t) �

~

S(t)k < " where

~

S(t) is a solution of (11) with initial data

~

S(0) =

~

S

0

and kS

0

�

~

S

0

k

1

< Æ.

Æ We know that kS(t) � S

0

k

1

� BT < b. If Æ < b � BT then it is possible to show

that

~

S(t) stays inside U

b

.

Æ Like before, in U1, k

~

S(t

�

)� S

0

k

1

= b, k

~

S(t)� S

0

k < b for t 2 [0; t

�

)

k

~

S(t

�

)� S

0

k � k

~

S

0

� S

0

k+

Z

t

�

0

kA(

~

S(�))k

1

d� < b�BT +BT = b

and ontradition implies that

~

S(t) stays inside U

b

for t 2 [0; T ℄).�

For given " > 0 let Æ < minfb�BT; "

�

= exp(L

A

T )g then

S(t)�

~

S(t) = S

0

�

~

S

0

+

Z

t

0

[A(S(�)) �A(

~

S(�))℄ d�

kS(t)�

~

S(t)k

1

� kS

0

�

~

S

0

k

1

+

Z

t

0

kA(S(�)) �A(

~

S(�))k

1

d�

11



� kS

0

�

~

S

0

k

1

+ L

A

Z

t

0

kS(�)�

~

S(�)k

1

d�

Using Gronwall's lemma with Æ

1

= kS

0

�

~

S

0

k

1

, Æ

2

= L

A

, �(t) = kS(t)�

~

S(t)k

1

, a = T ,

 (t) = 1 we get:

kS(t)�

~

S(t)k

1

� kS

0

�

~

S

0

k

1

e

L

A

t

< " 8t 2 [0; T ℄ �

And this means ontinuous dependene on initial data for solution S(t) on [0; T ℄.

2.3.3 Expansion of the solution until it reahes zero.

Funtion S

0

is bounded away from zero if there is a positive onstant S

�

that S

0

(x) � S

�

almost everywhere; or in other words there is a onstant S

�

> 0 suh that �fx 2


 : S

0

(x) < S

�

g = 0. Opposite: funtion reahes zero if for any positive onstant S

�

,

�fx 2 
 : S

0

(x) < S

�

g > 0.

In ODE a solution y(t) existing on [0; T ℄ an be ontinued until it leaves domain D

with "regular" properties of f(t; y) (in D f(t; y) is ontinuous, Lipshitz ontinuous on

y). The "last" point (T; y(T )) being inside D an be used as a "new" initial point, and

this proedure an be applied several times. In our ase it is also possible to ontinue

from the point (T; S(T )), sine S(T ) staying inside U

b

(from U1, S(T ) is bounded

away from zero and we an �nd "new" U

b

for S

(1)

0

= S(T ).) Let use a new notation

with T

0

= 0, S

(0)

0

= S

0

, T is substituted by �T

1

, T

1

= T

0

+�T

1

, S

(1)

0

= S(T

1

) and

so on . . . :

T

0

= 0

S

(0)

0

= S

0

�T

1

T

1

S

(1)

0

�T

2

T

2

S

(2)

0

: : :

T

n

S

(n)

0

�T

n

T

n+1

S

(n+1)

0

: : : (20)

In the previous disussion, the most important point was that there exists some

T > 0 from (19), provided S

0

> 0 but the hoie of U

b

and T was not �xed. Here

we need to �x them to exlude, for example, mean-less hoie of �T

n

in (20) with

�T

n

= minfb

n

=B

n

; 1=L

(n)

A

g=n

2

.

Remark The optimal hoie is not our purpose.

Let us use the following notation:

d[S℄ = ess inf

x2


S(x); �(d) = inf

s2[d;1℄

K(s); �[S℄ = �(d[S℄); d

n

= d[S

(n)

0

℄ (21)

We know that �T

n

> 0 for all n 2 N (beause of U1 and S(T

n

) � d

n

> 0), but �T

n

may beome smaller and smaller when n!1. If T

�

= sup

n

T

n

= lim

n!1

T

n

<1 then

for t � T

�

we annot de�ne a solution S(t) by the sequene (20). Our purpose is to

estimate �T

n

from below in order to larify the situation with T

�

.

Determination of one possible proess (20).

n 2 N. S(T

n

) = S

(n)

0

� d

n

> 0. Let b

n

= d

n

=2C

B

then 8S 2 U

b

n

, a.e:

jS(x)� S

(n)

0

(x)j � C

B

kS � S

(n)

0

k

1

� C

B

b

n

=

d

n

2

;

jS(x)j � jS

(n)

0

(x)j � jS

(n)

0

(x)� S(x)j � d

n

�

d

n

2

=

d

n

2

> 0:

) d[S℄ �

d

n

2

8S 2 U

b

n

.

On the other hand we do not want to have b

n

too large, so let

b

n

=

1

2C

B

minfd

n

; 1g (22)
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U

b

n

is de�ned. For given U

b

n

we an hoose

�T

n

= 0:9minf1=L

(n)

A

; b

n

=B

n

g < minf1=L

(n)

A

; b

n

=B

n

g: (23)

To estimate �T

n

from below we need to estimate the positive onstants L

(n)

A

, B

n

, b

n

;

two �rst from above and the last from below.

(21) implies that �(d) is monotone: " � d

n

) �(") � �(d

n

). Then 8S 2 U

b

n

,

�[S℄ = �(d[S℄) � �(d

n

=2)) estimation of the elliptiity onstant for U

b

n

from below:

E

n

= inf

S2U

b

n

E[S℄ = inf

S2U

b

n

minf�[S℄L; �

0

g � min

�

�

�

d

n

2

�

L; �

0

�

:

From A1:

B

n

=

�

kKP

0

k

1

(kS

(n)

0

k

1

+ b

n

) + �gkKk

1

�(
)

�.

E

n

: (24)

Remark We need to take into aount a possibility: kS

(n)

0

k

1

! 1 when n ! 1,

but we an ontrol this by the hoie of b

n

from (22):

kS

(n)

0

k

1

+ b

n

� kS

(n�1)

0

k

1

+ b

n�1

+ b

n

� ::: � kS

(0)

0

k

1

+

n

X

k=0

b

k

� kS

(0)

0

k

1

+

n+ 1

2C

B

:

Dependene B

n

on n has the form B

n

� (�

1

n+�

2

)=E

n

, where positive onstants �

1

,

�

2

an be expressed from (24).

L

(n)

A

=

�

L

KP

0

C

B

(kS

0

k

1

+ b) + kKP

0

k

1

+ �gL

K

C

B

�(
) + L

K

C

B

LB

n

�Æ

E

n

: (25)

In simpli�ed form (with positive onstants �

1

, �

2

, �

3

, �

1

, �

2

whih do not depend

on n):

L

(n)

A

�

�

�

1

n+ �

2

+ �

3

(�

1

n+ �

2

)=E

n

�Æ

E

n

:

For the sequene of stritly positive numbers d

n

we an distinguish two possibilities:

1) d

n

� " > 0 for all n or 2) lim inf

n!1

d

n

= 0.

1) In the �rst ase

E

n

� minf�("=2)L; �

0

g = E

"

> 0;

B

n

� (�

1

n+ �

2

)=E

"

, L

(n)

A

� (

1

n+ 

2

)=E

"

, b

n

� "=2C

B

.

�T

n

= 0:9minf1=L

(n)

A

; b

n

=B

n

g � 0:9min

�

E

"



1

n+ 

2

;

"

2C

B

(�

1

n+ �

2

)

�

Beginning from some number n

0

one from fE

"

=(

1

n+

2

); "=2C

B

(�

1

n+�

2

)g is always

smaller than another,

T

�

=

1

X

n=0

�T

n

�

1

X

n=n

0

�T

n

� min

(

1

X

n=n

0

0:9E

"



1

n+ 

2

;

1

X

n=n

0

0:9 "

2C

B

(�

1

n+ �

2

)

)

=1:

both rows do not onverge. In this ase T

�

=1 and we an ontinue the solution til

any positive value t.

2) In the seond ase the solution "reahes zero". When d(S) = 0, the equation (6)

loses elliptiity, and for suh S, operator A(S) may be unde�ned. We an determine
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the solution S(t) on [0; T

�

) by sequene (20), but we do not know if T

�

is �nite or

not (it may also be in�nite like in the �rst ase).

In both ases the solution S(t) an be determined on [0; T

�

) by in�nite proess

(20). In eah segment [T

n

; T

n+1

℄, the solution S(t) is unique ) S(t) is unique on

[0; T

�

). For any given t 2 [0; T

�

), the solution S(t) depends ontinuously on initial

value S

0

(there exists �nite number n that T

n

> t and we an apply ontinuous

dependene on eah segment [T

k�1

; T

k

℄, beginning from the last k = n : : : 1.)

In the ase 2) we have analogy with ODE ase when a solution leaves domain of

"good" properties of f(t; y).

Remark We need to mention that S being a saturation annot be greater than 1 {

another ritial boundary with whih we may deal in a same way like with 0: T

�

=1

or S "reahes" the ritial boundaries (0 or 1).

2.3.4 Solution as a funtion of two variables x and t.

Until now we were dealing with the abstrat funtion S 2 C([0; T ℄! H

1

(
)). In this

setion we are going to �nd some properties of the solution as a "normal" funtion of

two variables to obtain in some way a onnetion between (11) and (6).

Let y 2 C([0; T ℄! H

1

(
)) and I be an embedding operator fromH

1

(
) to C

B

(
).

Iy 2 C([0; T ℄ ! C

B

(
)) We will also onsider that I : H

1

(
) ! C

B

(
)

T

H

1

(
), in

other words Iy(t) 2 H

1

, Iy(t) = y(t) in H

1

and for example A(Iy(t)) = A(y(t)).

So 8t, y(t) being a funtion from H

1

(
) has a ontinuous representative y(t; �) :=

Iy(t) 2 C

B

T

H

1

. y(t; x) is a real funtion from t and x. In every point x 2 
 it is

uniquely de�ned.

In the setion "Another formulation . . . " the spae C

B

(
) was already mentioned.

C

B

(
) is a Banah spae of bounded ontinuous funtions (not neessarily uniformly

ontinuous) under the norm

kyk

C

B

= sup

x2


jy(x)j

Remark In one dimensional ase more regular C(

�


) an be used instead of C

B

(
).

C1. y(t; x) is ontinuous on [0; T ℄�
.

Æ (t; x) 2 [0; T ℄�
. B

r

(x) � 
 - a ball with enter x and some positive radius r.

For any " > 0 exists Æ < r that:

a) ky(t

1

; �)� y(t; �)k

1

< "=2C

B

when jt

1

� tj < Æ

) sup

x2


jy(t

1

; x)� y(t; x)j � C

B

ky(t

1

; �)� y(t; �)k

1

< "=2:

b) y(t; x) is ontinuous in x: jy(t; x

1

)� y(t; x)j < "=2 when jx

1

� xj < Æ.

For all (t

1

; x

1

): jx

1

� xj < Æ, jt

1

� tj < Æ:

jy(t

1

; x

1

)� y(t; x)j � jy(t

1

; x

1

)� y(t; x

1

)j+ jy(t; x

1

)� y(t; x)j < "=2 + "=2 = "�

C2. y(�) 2 C

�

[0; T ℄! H

1

(
)

�

Then Iy(�) 2 C ([0; T ℄! C

B

(
)) and

I

Z

t

0

y(�) d� = �

Z

t

0

Iy(�) d�

Remark The Integral in the right hand side is in the sense of the Banah spae

E = C

B

(
) for whih properties Y1{Y7 are also valid. Integrals in C

B

we will mark

by � before the integral.

Æ a) I-ontinuous, y(�) 2 C

�

[0; T ℄! H

1

(
)

�

) Iy(�) 2 C ([0; T ℄! C

B

(
)). Then
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exists �

R

t

0

Iy(�) d� .

b)I { linear )

I(

X

i

y(�

i

)��

i

) =

X

i

Iy(�

i

)��

i

:

Right side tends to

R

t

0

Iy(�) d� . Sine I is ontinuous the left side tends to I

R

t

0

y(�) d� �

Consider S 2 C

�

[0; T ℄! H

1

�

a solution of (11). It satis�es (18).

From C2: IS(�) 2 C ([0; T ℄! C

B

),

IS(t) = IS

0

+ �

Z

t

0

IA(S(�)) d�:

Using IA(S(�)) 2 C ([0; T ℄! C

B

) and Y6 we an onlude that 8t 2 [0; T ℄, IS(t) is

di�erentiable in the sense of C

B

and Def 2 (is marked by *):

�

d

dt

IS(t) = IA(S(t)) = IA(IS(t)):

A funtion of two variables S(t; �) := IS(t) is ontinuous on (t; x) from C1. Exis-

tene of �

d

dt

IS(t) implies existene of lassial partial derivative from S(t; x) on t:

�

�t

S(t; �) = �

d

dt

IS(t). Hene,

�

�t

S(t; x) = IA(S(t; �))(x): (26)

Moreover,

�

�t

S(t; x) is ontinuous sine the right hand side is ontinuous on [0; T ℄�
.

We an summarize properties of S(t; x):

C3. S(t; x) - is ontinuous on [0; T ℄� 
 and S(t; �) is ontinuous on [0; T ℄ in H

1

(
)

(S(�; �) 2 C

�

[0; T ℄! H

1

(
)

�

).

C4. Exists (ontinuous)

�

�t

S(t; x) on [0; T ℄�
 and

�

�t

S(t; �) 2 H

1

(
).

C5. S(t; x) satis�es (26), S(0; x) = IS

0

(x) � d[S

0

℄ > 0 and it looks possible to say

that S(t; x) is a weak solution on x of (6) (in the variational sense).

Assume that funtion

~

S(t; x) satis�es C3,C4,C5. We are going to show that

~

S(t; x) has to be equal to S(t; x) de�ned before.

Remark Existene of

�

�t

~

S may be insuÆient for existene of �

d

dt

~

S,

d

dt

~

S.

Æ From C3 we know that

~

S(t; �) is ontinuous in H

1

. So A(

~

S(t; �)), IA(

~

S(t; �)) are

also ontinuous in H

1

and C

B

(while d[

~

S(t; �)℄ > 0). Continuity of

�

�t

~

S(t; x) an be

obtained as onsequene of C5, previous sentene and C1 (it is not neessary to have

it in C2 as a ondition). D(t) =

R

t

0

A(

~

S(�; �)) d� is well de�ned in H

1

.

ID(t) = �

Z

t

0

IA(

~

S(�; �)) d�

C5

= �

Z

t

0

�

�t

~

S(�; �) d� is well de�ned in C

B

We need to show that ID(t)(x) =

~

S(t; x) �

~

S(0; x) (in other words that �

d

dt

~

S exists

and

�

�t

~

S = �

d

dt

~

S)

Æ Assume it is not true:

ID(t)(x

0

) 6=

~

S(t; x

0

)�

~

S(0; x

0

) = � �

Z

t

0

�

�t

~

S(�; x

0

) d�:

Last integral exists in R sine

�

�t

~

S(t; x) is ontinuous on [0; T ℄�
. �� { integral in R.

Let us

jID(t)(x

0

)� � �

Z

t

0

�

�t

~

S(�; x

0

) d� j = ": (27)
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Then from integral de�nitions in R and C

B

we an onlude that there is Æ > 0 suh

that for eah partition T of [0; t℄ with ��

i

< Æ,

�

�

�

�

�

X

i

�

�t

~

S(�

i

; x

0

)��

i

� � �

Z

t

0

�

�t

~

S(�; x

0

) d�

�

�

�

�

�

<

"

2

;

�

�

�

�

�

X

i

�

�t

~

S(�

i

; x

0

)��

i

� ID(t)(x

0

)

�

�

�

�

�

�











X

i

�

�t

~

S(�

i

; �)��

i

� ID(t)











C

B

<

"

2

:

and we have ontradition with (27) � So

�

Z

t

0

IA(

~

S(�; �)) d� =

~

S(t; �)�

~

S(0; �) =

~

S(t; �)� IS

0

:

From C3, there is only one funtion

~

S(t) 2 H

1

, that I

~

S(t) =

~

S(t; �), and

~

S(t) satis�es

(18). Then

~

S(t) is a solution of (11), but it must be unique. So

~

S(t) = S(t), )

~

S(t; �) = S(t; �) �.

Remark C3 an be rather strong ondition for ontinuous funtion S(t; x).

We an summarize all what we tried to obtain in this setion in the following:

Suppose the assumptions (9) are satis�ed. Then there is T

�

> 0, �nite or in�nite

suh that for any onstant T < T

�

, on [0; T ℄ there exists a unique solution S(t) of

(11) in H

1

that ontinuously depends on initial data S

0

. T

�

an be estimated from

below by �T

1

from (23, equality). This solution an be onsidered as a funtion of

two variables S(t; x) = IS(t)(x) that satis�es C3, C4, C5 and there is no other

funtion of two variables

~

S(t; x) that satis�es C3, C4, C5.

We annot establish further onnetion with (4).
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3 Numerial methods

In this setion our main task is �nding the numerial methods for (4). For simpliity

we will deal only with homogeneous boundary onditions B.C.1 and B.C.2 for one

dimension problem, like in the previous setion. Instead of doing disretization of

(4) we will do numeris for (11) or the intermediate form (6), assuming that this

substitution is reasonable. We are going to use similarity of (11) with ODE ase.

The operator A(S) gives a solution u of ellipti problem (6) for known S. Let

A

h

(S

h

) be a numeri approximation of A(S). So A

h

(S

h

) gives a numeri solution of

ellipti problem (6) in 
 for orresponding boundary ondition and known S

h

. And

it is possible to use �nite element and �nite di�erene methods to approximate A(S).

In �nite element approah, S

h

2 H

1

h

, A

h

: H

1

h

! V

h

, where V

h

and H

1

h

are �nite

dimension subspaes of Hilbert spaes V and H

1

. (We remind that V = H

1

(
) for

B.C.1 and V = H

1

0

(
) for B.C.2, 
 = (0; l)).

Using �nite di�erene shemes we have some grid G in 
,

G = fx

i

2 
 i = 1; : : :mg. Then S

h

2 R

m

and A

h

: R

m

! R

m

.

Assume that we have some numerial approximation A

h

: W

h

! U

h

� W

h

,

no matter what W

h

, U

h

are, what boundary ondition we have and whih numeri

method we use for A

h

.

Consider following analog of (11):

d

dt

S

h

(t) = A

h

(S

h

(t)); S

h

(t) 2 W

h

; S

h

(0) = S

0

h

: (28)

This equation is similar to ODE

d

dt

y(t) = f(t; y(t)), y(0) = y

0

or to System of ODE

d

dt

�x(t) =

�

f(t; �x(t)), �x(0) = �x

0

.

Remark We an introdue a dependene of A

h

on t. In the ase of homogeneous

boundary onditions and oeÆients in (6) that depend only on S and x, it is only a

formalism and A

h

(S

h

; t) = A

h

(S

h

). But in more general problems A

h

depends on t.

There are many numerial methods known for ODE, and many of them an be

employed for (28).

Let us onsider an equidistant grid in t with some step �t and following notations:

t

0

= 0, t

j+1

= t

j

+�t, S

j

h

= S

h

(t

j

), j = 0 : : :N , �t = T=N .

Example 1 Runge-Kutta methods.

S

j+1

h

= S

j

h

+�t

p

X

k=1

b

k

A

k

A

1

= A

h

(S

j

h

; t

j

), A

2

= A

h

(S

j

h

+�ta

21

A

1

; t

j

+ 

2

�t), . . .

A

p

= A

h

 

S

j

h

+�t

p�1

X

k=1

a

pk

A

k

; t

j

+ 

p

�t

!

:

Constants a

lk

, 

k

, b

k

determine the Runge-Kutta method.

Euler method p = 1

S

j+1

h

= S

j

h

+�tA

h

(S

j

h

; t

j

): (29)

Improved Euler method p = 2

S

j+1

h

= S

j

h

+�tA

h

�

S

j

h

+

�t

2

A

h

(S

j

h

; t

j

); t

j

+

�t

2

�

: (30)
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Euler-Cauhy method p = 2

S

j+1

h

= S

j

h

+�t

h

A

h

(S

j

h

; t

j

) +A

h

�

S

j

h

+�tA

h

(S

j

h

; t

j

); t

j

+�t

�i

=2: (31)

Fourth order Runge-Kutta method p = 4

S

j+1

h

= S

j

h

+�t

�

1

6

A

1

+

1

3

A

2

+

1

3

A

3

+

1

6

A

4

�

(32)

A

1

= A

h

(S

j

h

; t

j

); A

2

= A

h

�

S

j

h

+

1

2

�tA

1

; t

j

+

1

2

�t

�

;

A

3

= A

h

�

S

j

h

+

1

2

�tA

2

; t

j

+

1

2

�t

�

; A

4

= A

h

�

S

j

h

+�tA

3

; t

j

+�t

�

:

Example 2 The multi-step method.

S

j+p

h

= S

j+q

h

+�t

p

X

k=0

b

k

A

h

(S

j+k

h

; t

j+k

)

where p, q, b

k

k = 0; : : : ; p are partiular method's parameters.

Remark It is also possible to use impliit shemes for ODE.

One approah for onstruting a numerial method for (4) is to ombine some

numeri method for Ellipti Boundary Value problem with some numerial method

for Ordinary Di�erential Equation. Both hoies an be rather independent from eah

other.

Next we will disuss a ombination of Euler method in "t - diretion" with ab-

strat �nite element method in "x - diretion"; desribe one implementation of �nite

element method for A

h

(S) where V

h

is a spae of piee-wise linear funtions; desribe

another approximation A

h

(S) from �nite di�erenes approah. At the end we present

some omputational experiment results for di�erent onstants L > 0, two types of ho-

mogeneous boundary onditions B.C.1, B.C.2; omparison with results for Rihard's

equation (L = 0) and omparison the results for the same problem but obtained on

nested sequene of grids.

3.1 Finite elements { Euler method

For the most simplest method we will try to get onvergene. The operator A was

de�ned in H

1

by variational approah. So it is natural to use �nite element method

to get it's approximation A

h

(S).

Assume that we have a di�erential problem (11) with S

0

bounded away from zero.

We an hoose U

b

with onstants b; B; L

A

; C; E like before. Let S(t) be a solution of

(11) on [0; T ℄, where T is from (19) for hosen U

b

. S(t) lies inside U

b

not near than

b�BT from the boundary �U

b

.

Assume that we have a sequene of �nite dimensional subspaes fV

h

g, where every

next element ontains all previous; parameter h is one from a monotone dereasing

sequene fh

k

g, lim

k!1

h

k

= 0. When h

k

! 0, the dimension of V

h

k

inreases and they

exhaust all V (8" > 0;8u 2 V 9V

h

from the sequene that: inf

v

h

2V

h

ku� v

h

k

1

< " ).

To get approximation u

h

= A

h

(S

h

) of u = A(S

h

) by �nite element method for

hosen V

h

, we need to �nd u

h

2 V

h

that (see (8)):

a

�

[S

h

℄(u

h

; v

h

) = a[S

h

℄(u

h

; v

h

) + (u

h

; v

h

)

0;�

= l[S

h

℄(v

h

) 8v

h

2 V

h

18



dim V

h

= d. v

1

: : : v

d

{ basis in V

h

.

To �nd u

h

=

P

d

i=1

u

i

h

v

i

; we have to solve a linear algebrai system of equations:

d

X

i=1

a

�

[S

h

℄(v

i

; v

j

)u

i

h

= l[S

h

℄(v

i

); j = 1 : : : d; (33)

with positive de�nite matrix fa

�

[S

h

℄(v

i

; v

j

)g

ij

provided a

�

[S

h

℄ is V -ellipti. So the

approximate solution u

h

exists for all S

h

2 U

b

� H

1

.

The di�erene between approximate and exat solutions an be estimated with

the help of Cea lemma (see [5℄ p. 54 or [3℄ part b, p.118):

ku� u

h

k

V

�

C

E

inf

v

h

2V

h

ku� v

h

k

V

; u = A(S

h

); u

h

= A

h

(S

h

); S

h

2 U

b

\ V

h

:

Remark It is diÆult to expet that we an �nd V

h

uniformly losed to the set

A(U

b

) = fu = A(S

h

) : S

h

2 U

b

g when h! 0, in other words that for any " > 0 exists

V

h

that 8u 2 A(U

b

), inf

v2V

h

ku� vk

V

< ".

Some notations:

S

j

h

= S

h

(t

j

) � approximate solution at time t

j

:

S

j

= S(t

j

) � exat solution at time t

j

:

�

j

= S

j

� S

j

h

� error of approximation.

S

j

; S

j

h

;�

j

2 H

1

(
).

S

j+1

= S

j

+

Z

t

j+1

t

j

A(S(�)) d� � S

j

+A(S

j

)�t

kS

j+1

� S

j

�A(S

j

)�tk

1

= k

Z

t

j+1

t

j

�

A(S(�)) �A(S

j

)

�

d�k

1

�

�

Z

t

j+1

t

j

kA(S(�))�A(S

j

)k

1

d� � L

A

B

(t

j+1

� t

j

)

2

2

(34)

we used kA(S(�))� A(S

j

)k

1

� L

A

kS(�)� S

j

k

1

� L

A

Bj� � t

j

j:

The Euler method: S

j+1

h

= S

j

h

+�tA

h

(S

j

h

).

Remark S

j

h

2 V

h

+ S

0

h

for all j.

A

h

(S

j

h

) = A(S

j

h

)+e

j

h

, e

j

h

is an error of �nite element method, and an be estimated

by Cea lemma. Due to the diÆulties notied in the last remark, we would like to

�nd V

h

uniformly losed to A(S(t)), where S(t) is exat solution.

For some small "

1

> 0, let divide [0; T ℄ into l parts by points �

i

= i�� , i = 0 : : : l,

and �� � "

1

/ 2L

A

B. Then

kA(S(t))�A(S(�

i

))k

1

� L

A

kS(t)� S(�

i

)k

1

� L

A

Bjt� �

i

j < L

A

B�� �

"

1

2

(35)

where t 2 [0; T ℄, �

i

is the nearest point to t (�� is not the same with �t in Euler

method). l is a �nite number ) we an hoose V

h

suh that

max

i=0:::l

inf

v

h

2V

h

kA(S(�

i

))� v

h

k

1

<

"

1

2

: (36)
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(36) are also true for all elements from fV

h

g that follow the hosen subspae (beause

V

h

k

� V

h

k+1

).

Together (35), (36) give inf

v

h

2V

h

kA(S(t))� v

h

k

1

< "

1

for all t 2 [0; T ℄.

We an estimate e

j

h

:

ke

j

h

k

1

= kA(S

j

h

)�A

h

(S

j

h

)k

1

�

C

E

inf

v

h

2V

h

kA(S

j

h

)� v

h

k

1

�

exists v

�

h

2 V

h

that kA(S

j

)� v

�

h

k

1

< "

1

)

�

C

E

�

kA(S

j

h

)�A(S

j

)k

1

+ kA(S

j

)� v

�

h

k

1

�

�

C

E

(L

A

k�

j

k

1

+ "

1

): (37)

Now we an estimate the error �

j+1

from �

j

:

�

j+1

= S

j+1

� S

j+1

h

= S

j+1

� S

j

h

�A(S

j

h

)�t� e

j

h

�t =

= S

j+1

� S

j

�A(S

j

)�t+ S

j

+A(S

j

)�t� S

j

h

�A(S

j

h

)�t� e

j

h

�t:

k�

j+1

k

1

� kS

j+1

�S

j

�A(S

j

)�tk

1

+kS

j

�S

j

h

k

1

+�tkA(S

j

)�A(S

j

h

)k

1

+�tke

j

h

k

1

�

From (34) we estimate the �rst term, from (37) the last.

� L

A

B

�t

2

2

+ k�

j

k

1

+�tL

A

k�

j

k

1

+�t

C

E

(L

A

k�

j

k

1

+ "

1

) =

= k�

j

k

1

�

1 +�tL

A

(1 +

C

E

)

�

+�t

�

L

A

B

�t

2

+

C

E

"

1

�

= �k�

j

k

1

+�tD:

where � = 1 +�tL

A

(1 +

C

E

) > 1, D = L

A

B

�t

2

+

C

E

"

1

.

x

j

= k�

j

k

1

; x

j+1

� �x

j

+�tD:

The initial error x

0

= kS

0

�S

0

h

k

1

is zero if we know the exat value of S

0

2 H

1

(then

we an S

0

h

:= S

0

, in this ase S

j

h

2 V

h

+S

0

). It is not neessary to take approximation

S

0

h

from some H

1

h

.

Now onsider that exat initial funtion S

0

2 H

1

is unknown, the measured value

~

S

0

2 H

1

has a measurement error e

M

= kS

0

�

~

S

0

k

1

. Additionally, if it is onvenient

to use funtions from H

1

h

instead of H

1

, then we have an approximation error e

A

=

k

~

S

0

� S

0

h

k

1

. (It an be onvenient sine integrals in a

�

[S

h

℄ may be too ompliated

when S

h

2 V

h

+ S

0

h

, for arbitrary S

0

h

2 H

1

).

Remark It is not neessary to have either V

h

= H

1

h

for B.C.1 (V = H

1

) or V

h

� H

1

h

for B.C.2 (V = H

1

0

); it an be so only if onvenient.

x

0

= kS

0

� S

0

h

k

1

� e

A

+ e

M

= e

x

j+1

� �x

j

+�tD, everything is positive. Let y

0

= x

0

, y

j+1

= �y

j

+�tD.

fy

j

g is an upper boundary for x

j

, for all j: y

j

� x

j

.

y

1

= �y

0

+�tD, y

2

= �

2

y

0

+ ��tD +�tD. For arbitrary j 2 f0; : : :Ng:

y

j

= �

j

y

0

+ �

j�1

�tD + : : :+�tD = �

j

y

0

+�tD

j�1

X

i=0

�

i

= �

j

y

0

+�tD

�

j

� 1

�� 1

:
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�

N

=

�

1 +�tL

A

�

1 +

C

E

��

N

=

�

1 +

L

A

T (1 + C=E)

N

�

N

� e

L

A

T (1+C=E)

= C

1

:

�t

��1

= [L

A

(1 + C=E)℄

�1

= C

2

x

j

� y

j

� y

N

� C

1

x

0

+ C

2

(C

1

� 1)D = O("

1

+ e+�t):

And for any " > 0 there exist so small "

1

, e, �t that k�

j

k

1

< " for all j = 0 : : :N .

"

1

an be made arbitrary small for suÆiently large V

h

from fV

n

g. And we assume

that measurement error e

M

and approximation error e

A

an be made arbitrary small

or even zero.

The last thing: if the given " is larger than b� BT , then " := b� BT . We need

this to guarantee that S

j

h

stays in U

b

to use properties of A(S).

Remark Convergene in h is without order, in �t { �rst order.

Remark It seems not reasonable to try to get higher order in �t for other Runge-

Kutta method using the same means. We have only Lipshitz ontinuity on A(S(t)),

we do not know if

d

dt

A(S(t)) exists and we annot get better integral approximation

in (34) than the seond order. For instane jxj is a Lipshitz ontinuous, but not

di�erentiable funtion on [�h; h℄ and integral approximations give only O(h

2

) error,

not O(h

3

).

3.2 One possible A

h

(S) by �nite element method.

In the previous setion spaes fV

h

g were not spei�ed. Here we hoose V

h

as a spae

of ontinuous funtions, linear between grid points x

i

, x

i

= ih, i = 0 : : : n, h = l=n.

The standard basis in H

1

h

is:

 

i

=

8

<

:

1

h

(x� x

i�1

) if x 2 [x

i�1

; x

i

℄

�

1

h

(x� x

i+1

) if x 2 [x

i

; x

i+1

℄

0 otherwise

i = 1 : : : n� 1:

And additionally two funtions:

 

0

=

�

�

1

h

(x � x

1

) ; x 2 [x

0

; x

1

℄

0 otherwise

;  

n

=

�

1

h

(x� x

n�1

) ; x 2 [x

n�1

; x

n

℄

0 otherwise

When we have B.C.1 then we use V

h

= H

1

h

with basis v

i

=  

i�1

, i = 1 : : : d, d = n+1.

For B.C.2 V

h

� H

1

h

has basis v

i

=  

i

, i = 1 : : : d, d = n�1. In general A

h

: H

1

! V

h

,

but we will use only A

h

: H

1

h

! V

h

: if the initial funtion S

0

h

2 H

1

h

hene all other

approximate solutions S

j

h

be from S

0

h

+ V

h

� H

1

h

.

To �nd a value u

h

= A

h

(S

h

) we need to solve a System of Linear Algebrai

Equations (33) with positive de�nite matrix fa

ij

g and right hand side vetor b,

a

ij

= a

�

[S

h

℄(v

i

; v

j

), b

i

= l[S

h

℄(v

i

), i; j 2 f1 : : : dg. Our purpose here is to simplify

expressions for a

ij

and b

i

using formulas for v

i

and piee-wise linearity of S

h

2 H

1

h

.

Then we an denote S

i

= S

h

(x

i

). S

h

(x) is uniquely de�ned by these numbers. Also

u

i

= u

h

(x

i

).

To over both boundary onditions we will alulate a

ij

= a

�

[S

h

℄( 

i

;  

j

), b

i

=

l[S

h

℄( 

i

), i; j = f0 : : : ng. This matrix oinides with those for B.C.1; the matrix for

B.C.2 ould be obtained by deleting rows and olumns with number 0 and n.

First we notie that matrix fa

ij

g is tridiagonal, symmetri (ji�jj > 1)  

i

 

j

� 0,

d 

i

dx

d 

j

dx

� 0.)

d 

i

dx

d 

i

dx

=

�

1

h

2

on [x

i�1

; x

i+1

℄

0 otherwise

i = 1 : : : n� 1:
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for i = 0 and i = n this expression is true while x 2 (0; l).

d 

i

dx

d 

i�1

dx

=

�

�

1

h

2

on [x

i�1

; x

i

℄

0 otherwise

i = 1 : : : n:

d 

i

dx

d 

i+1

dx

=

�

�

1

h

2

on [x

i

; x

i+1

℄

0 otherwise

i = 0 : : : n� 1:

 

i

 

i

=

8

<

:

1

h

2

(x � x

i�1

)

2

x 2 [x

i�1

; x

i

℄

1

h

2

(x� x

i+1

)

2

x 2 [x

i

; x

i+1

℄

0 otherwise

i = 1 : : : n� 1:

for i = 0 and i = n the last expression is true while x 2 (0; l).

 

i

 

i�1

=

�

�

1

h

2

(x� x

i�1

)

2

+

1

h

(x� x

i�1

) x 2 [x

i�1

; x

i

℄

0 otherwise

i = 1 : : : n:

 

i

 

i+1

=

�

�

1

h

2

(x � x

i+1

)

2

�

1

h

(x� x

i+1

) x 2 [x

i

; x

i+1

℄

0 otherwise

i = 0 : : : n� 1:

We remind the integral expressions for a

�

[S

h

℄, l[S

h

℄:

a

ij

= a

�

[S

h

℄( 

i

;  

j

) =

l

Z

0

K(S

h

(x))L

d 

i

dx

d 

j

dx

dx+

l

Z

0

� 

i

 

j

dx

b

i

= l[S

h

℄( 

i

) =

l

Z

0

F (S

h

(x))

d 

i

dx

dx =

l

Z

0

K(S

h

(x))

�

�P (S

h

(x))

�x

� �g

�

d 

i

dx

dx

Integrands are not zero only on a small interval with the length h or 2h. For a

ii

for

i = 1 : : : n� 1:

a

ii

=

L

h

2

x

i+1

Z

x

i�1

K(S

h

(x)) dx +

x

i

Z

x

i�1

�(x)

(x � x

i�1

)

2

h

2

dx+

x

i+1

Z

x

i

�(x)

(x � x

i+1

)

2

h

2

dx (38)

It is onvenient to denote:

r

q

i

=

1

h

q+1

h

Z

0

�(x

i

+ y)y

q

dy; i = 0 : : : n� 1; q = 1; 2 (39)

l

q

i

=

1

h

q+1

0

Z

�h

�(x

i

+ y)y

q

dy; i = 1 : : : n; q = 1; 2 (40)

H(s) =

s

Z

0

K(x) dx -monotone inreasing funtion (41)

�(x) � 0 ) r

q

i

� 0 8q 2 Z

+

, l

q

i

� 0 when q is even and l

q

i

� 0 when q is odd.

Remark r

2

i

and l

2

i

give some kind of average of �(x)=2 to the right and left from x

i

.

The seond element of (38) is equal to r

2

i�1

,the third l

2

i+1

.
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We hose that S

h

belongs to H

1

h

. So S

h

is linear on eah segment [x

i

; x

i+1

℄. For

some onstants a, b, , d we an alulate integral

b

Z

a

K(x+ d) dx =

1



b

Z

a

K(x+ d) d(x + d) =

H(b+ d)�H(a+ d)



Let  = (S

i+1

� S

i

)=h, d = S

i

� x

i

(S

i+1

� S

i

)=h,

K

i

=

1

h

x

i+1

Z

x

i

K(S

h

(x)) dx

then

K

i

=

(

K(S

i

) if S

i

= S

i+1

H(S

i+1

)�H(S

i

)

S

i+1

�S

i

otherwise

(42)

a

ii

=

L

h

(K

i�1

+K

i

) + (r

2

i�1

+ l

2

i+1

)h; i = 1 : : : n� 1 (43)

a

00

=

L

h

K

0

+ l

2

1

h; a

nn

=

L

h

K

n�1

+ r

2

n�1

h: (44)

For other elements

a

ii+1

= �

L

h

2

x

i+1

Z

x

i

K(S

h

(x)) dx �

x

i+1

Z

x

i

�(x)

�

(x � x

i+1

)

2

h

2

+

x� x

i+1

h

�

dx

a

ii+1

= �

L

h

K

i

� (l

2

i+1

+ l

1

i+1

)h; i = 0 : : : n� 1 (45)

a

ii�1

= �

L

h

K

i�1

+

x

i

Z

x

i�1

�(x)

�

�

(x� x

i�1

)

2

h

2

+

x� x

i�1

h

�

dx =

a

ii�1

= �

L

h

K

i�1

� (r

2

i�1

� r

1

i�1

)h; i = 1 : : : n (46)

b

i

=

x

i+1

Z

x

i�1

K(S

h

(x))P

0

(S

h

(x))

dS

h

dx

d 

i

dx

dx� �g

x

i+1

Z

x

i�1

K(S

h

(x))

d 

i

dx

dx

Previous expression an be divided into four integrals: I

1

+ I

2

� �g(I

3

+ I

4

).

I

1

=

x

i

Z

x

i�1

K(S

h

(x))P

0

(S

h

(x))

dS

h

dx

1

h

dx =

1

h

x

i

Z

x

i�1

K(S

h

)P

0

(S

h

(x))dS

h

(x) =

=

G(S

h

(x

i

))�G(S

h

(x

i�1

))

h

=

G(S

i

)�G(S

i�1

)

h

where

G(s) =

Z

s

0

K(x)P

0

(x)dx -monotone dereasing funtion (47)
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Remark Linearity of S

h

(x) was not used.

I

2

= �

G(S

i+1

)�G(S

i

)

h

:

I

3

=

x

i

Z

x

i�1

K(S

h

(x))

1

h

dx = K

i�1

; I

4

= �K

i

b

i

= �

G(S

i+1

)� 2G(S

i

) +G(S

i�1

)

h

+ �g(K

i

�K

i�1

) (48)

b

0

= �

G(S

1

)�G(S

0

)

h

+ �gK

0

; b

n

=

G(S

n

)�G(S

n�1

)

h

� �gK

n�1

(49)

So we obtained expressions for a

ij

and b

i

: (43,44,45,46,48,49) with the help of

(39,40,41,42,47). To show that it ould be treated as a feasible approximation of (6)

we divide a

ij

and b

i

by h and rewrite the liner equations in a form:

�

1

h

�

K

i

L

u

i+1

� u

i

h

�K

i�1

L

u

i

� u

i�1

h

�

+ l

2

i+1

(u

i

� u

i+1

) + r

2

i�1

(u

i

� u

i�1

)+

+r

1

i�1

u

i�1

� l

1

i+1

u

i+1

= �

�

G(S

i+1

)� 2G(S

i

) +G(S

i�1

)

h

2

� �g

K

i

�K

i�1

h

�

(50)

For i = 1 : : : n� 1. Additionally for i = 0; n:

�K

0

L

u

1

� u

0

h

+ l

2

1

(u

0

� u

1

)h� l

1

1

u

1

h = �

G(S

1

)�G(S

0

)

h

+ �gK

0

(51)

K

n�1

L

u

n

� u

n�1

h

+ r

2

n�1

(u

n

� u

n�1

)h+ r

1

n�1

u

n�1

h =

G(S

n

)�G(S

n�1

)

h

� �gK

n�1

(52)

Let us ompare (50) with (6):

�

1

h

�

K

i

L

u

i+1

� u

i

h

�K

i�1

L

u

i

� u

i�1

h

�

� �

�

�x

�

K(S)L

�u

�x

�

(x

i

);

l

2

i+1

(u

i

� u

i+1

) = l

2

i+1

u

i

� u

i+1

h

h � l

2

i+1

du

dx

h � 0; r

2

i�1

(u

i

� u

i�1

) � 0;

r

1

i�1

=

�

1

h

2

Z

h

0

y dy = �

1

=2; l

1

i+1

= ��

2

=2

where �

1

2 [ min

[x

i�1

;x

i

℄

�(x); max

[x

i�1

;x

i

℄

�(x)℄, �

2

2 [ min

[x

i

;x

i+1

℄

�(x); max

[x

i

;x

i+1

℄

�(x)℄ )

r

1

i�1

u

i�1

� l

1

i+1

u

i+1

=

�

1

u

i�1

+ �

2

u

i+1

2

� �(x

i

)u(x

i

);

�

�

G(S

i+1

)� 2G(S

i

) +G(S

i�1

)

h

2

�

� �

d

2

dx

2

G(S

h

(x

i

)) =

= �

d

dx

�

G

0

(S

h

(x

i

))

dS

h

dx

(x

i

)

�

= �

d

dx

�

K(S

h

(x

i

))P

0

(S

h

(x

i

))

dS

h

dx

(x

i

)

�

;

�g

K

i

�K

i�1

h

� �g

d

dx

K(S

h

(x

i

)):
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Some remarks on implementation.

I1. Constants r

q

i

, i = 0 : : : n � 1, l

q

i

, i = 1 : : : n, q = 1; 2 an be alulated one, a

priory and then used many times.

I2 In general ase, whereH(s), G(s), s 2 [0; 1℄ annot be represented as a ombination

of elementary funtions, we have a typial interpolation problem. A possible approah

is to alulate H(s

i

), G(s

i

) in suÆiently many number of points with high auray

by some quadrature formula for integrals; between them - interpolation by some simple

funtion on eah segment [s

i

; s

i+1

℄. The simplest ases are linear interpolation:

H(s) � H(s

i

) +

H(s

i+1

)�H(s

i

)

s

i+1

� s

i

(s� s

i

); s 2 [s

i

; s

i+1

℄

or the Taylor expansion: (s

i

is the nearest point to s)

H(s) � H(s

i

) +H

0

(s

i

)(s� s

i

) = H(s

i

) +K(s

i

)(s� s

i

):

I3 The matrix fa

ij

g is tridiagonal, symmetri, positive de�nite, but may have no

diagonal dominane. To solve it we an use, for instane, sweep method [7℄, p. 61 for

diagonally dominant ase or p. 86 for general ase. Eah alulation A

h

(S

h

) needs

O(n) operations.

3.3 Another possible A

h

(S) by �nite di�erene method.

In �nite element method the basis equation was (8). Choosing �nite di�erene

method, we approximate the ellipti di�erential equation (6), where S is known and

u is unknown.

Let grid be uniform, with step h.

B:C:1 G

1

= fx

i

: x

i

= (i� 1=2)h; i = 1 : : : n; h = l=ng;

B:C:2 G

2

= fx

i

: x

i

= ih; i = 0 : : : n; h = l=ng:

(53)

x

i+1=2

= x

i

+ h=2, x

i�1=2

= x

i

� h=2.

To obtain a di�erene sheme we use integro-interpolation method: we integrate

the equation (6) on [x

i�

1

2

; x

i+

1

2

℄, for B.C.1 i = 1 : : : n and i = 1 : : : n� 1 for B.C.2:

�

�

K(S(x))L

du

dx

(x)

�

x=x

i+

1

2

x=x

i�

1

2

+

Z

x

i+

1

2

x

i�

1

2

�(x)u(x) dx =

= �

�

K(S(x))

�

P

0

(S(x))

dS

dx

(x) � �g

��

x=x

i+

1

2

x=x

i�

1

2

(54)

We have to approximate this equation using only values in grid points.

Z

x

i+

1

2

x

i�

1

2

�(x)u(x) dx � �

i

u(x

i

)h;

where �

i

= �(x

i

) or

�

i

=

1

h

Z

x

i+

1

2

x

i�

1

2

�(x) dx

It is also possible to use in the approximation neighbour values u

i�1

, u

i+1

(if they

exists in 
).
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Other di�erential expressions are taken at the point x

i�

1

2

. To approximate them

we will use values at x

i�1

and x

i

.

Case 1. x

i�1

= x

i

� h =2 [0; l℄ is atual only for B.C.1, when x

i�

1

2

= 0. But in this

ase the ux is known at this point from the boundary ondition (homogeneous ase

- ux f

l

is zero):

�

K(S)L

du

dx

�K(S)

�

P

0

(S)

dS

dx

� �g

��

x=x

i�

1

2

=0

= f

l

Case 2. x

i�1

2 [0; l℄. For suÆiently smooth funtions

K(S(x

i�

1

2

)) = K(

S

i�1

+S

i

2

) +O(h

2

);

du

dx

(x

i�

1

2

) =

u

i

�u

i�1

h

+O(h

2

)

P

0

(S(x

i�

1

2

)) = P

0

(

S

i�1

+S

i

2

) +O(h

2

);

dS

dx

(x

i�

1

2

) =

S

i

�S

i�1

h

+O(h

2

):

(55)

For x

i+

1

2

the situation is very similar.

Di�erene sheme: Let us substitute the ontinuous expressions in (54) by

approximations from (55) and divide both sides by h. We will get a di�erene sheme

in a following form:

�

1

h

�

K

i+

1

2

L

u

i+1

� u

i

h

�K

i�

1

2

L

u

i

� u

i�1

h

�

+ �

i

u

i

=

= �

1

h

�

K

i+

1

2

�

P

0

i+

1

2

S

i+1

� S

i

h

� �g

�

�K

i�

1

2

�

P

0

i�

1

2

S

i

� S

i�1

h

� �g

��

; (56)

where

K

i+

1

2

= K

�

S

i

+ S

i+1

2

�

; P

0

i+

1

2

= P

0

�

S

i

+ S

i+1

2

�

i = 2 : : : n� 1 for B.C.1 and i = 1 : : : n� 1 for B.C.2.

Approximation of the boundary onditions:

B.C.1:

�K

1+

1

2

L

u

2

� u

1

h

+ �

1

u

1

h = �f

l

�K

1+

1

2

�

P

0

1+

1

2

S

2

� S

1

h

� �g

�

(57)

K

n�

1

2

L

u

n

� u

n�1

h

+ �

n

u

n

h = f

r

�K

n�

1

2

�

P

0

n�

1

2

S

n

� S

n�1

h

� �g

�

(58)

B.C.2:

u

0

= u

l

; u

n

= u

r

; S

0

= S

l

; S

n

= S

r

(59)

(in homogeneous ase u

l

= u

r

= 0). If S(0; t) = S

l

(t), S(l; t) = S

r

(t) are given then

u

l

(t) =

d

dt

S

l

(t), u

r

(t) =

d

dt

S

r

(t).

Order of approximation

We are going to show that (56) approximates (6) and also (57),(58) or (59) approxi-

mate the orresponding boundary onditions with the seond order.

Æ Assume that funtions u and S are suÆiently smooth and satisfy (6) and B.C.1 or

B.C.2 (that an be non-homogeneous). Their Taylor expansions:

u

i�1

= u

i

�u

0

i

h+u

00

i

h

2

2

�u

000

i

h

3

6

+O(h

4

); S

i�1

= S

i

�S

0

i

h+S

00

i

h

2

2

�S

000

i

h

3

6

+O(h

4

):
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Hene

S

i�1

� S

i

2

= �S

0

i

h

2

+ S

00

i

h

2

4

+O(h

3

);

u

i�1

� u

i

h

= �u

0

i

+ u

00

i

h

2

� u

000

i

h

2

6

+O(h

3

) = u

+

� u

�

+O(h

3

);

K

i�

1

2

= K

�

S

i�1

+ S

i

2

�

= K

�

S

i

+

S

i�1

� S

i

2

�

=

= K(S

i

) +K

0

(S

i

)

�

�S

0

i

h

2

+ S

00

i

h

2

4

�

+

K

00

(S

i

)(S

0

i

h)

2

8

+O(h

3

) = K

+

�K

�

+O(h

3

):

Using these formulas we an rewrite [. . . ℄ in the left side of (56):

1

h

[: : :℄ =

1

h

�

(K

+

+K

�

)L(u

+

+ u

�

)� (K

+

�K

�

)L(�u

+

+ u

�

) +O(h

3

)

�

=

1

h

[2K

+

Lu

+

+ 2K

�

Lu

�

+O(h

3

)℄ =

where

K

+

= K(S

i

) +K

0

(S

i

)S

00

i

h

2

4

+K

00

(S

i

)(S

0

i

)

2

h

2

8

; u

+

= u

00

i

h

2

;

K

�

= K

0

(S

i

)S

0

i

h

2

; u

�

= u

0

i

+ u

000

i

h

2

6

:

In [. . . ℄ we are only elements with order of h less than 3:

=

1

h

[K(S

i

)Lu

00

i

h+K

0

(S

i

)S

0

i

Lu

0

i

h+O(h

3

)℄ =

d

dx

�

K(S(x))L

du

dx

(x)

�

x=x

i

+O(h

2

)

�

i

u

i

= �(x)u(x) j

x=x

i

+O(h

2

) - depends on the hoie of �

i

.

Now the right hand side. For the analogy with the left side [. . . ℄, we denote:

~

K(x) = K(x)P

0

(x). Then the Right Side of (56) is:

R.S = �

1

h

�

~

K

i+

1

2

S

i+1

� S

i

h

�

~

K

i�

1

2

S

i

� S

i�1

h

�

+ �g

K

i+

1

2

�K

i�

1

2

h

We already know the �rst element (we did very similar for u, K), for the seond we

use the Taylor expansion upstairs:

K

i+

1

2

�K

i�

1

2

h

= K

0

(S

i

)S

0

i

+O(h

2

) =

d

dx

K(S(x)) j

x=x

i

+O(h

2

)

Returning from

~

K to K, P

0

, we write the di�erential approximation

R.S = �

d

dx

�

K(S(x

i

))P

0

(S(x

i

))

dS

dx

(x

i

)

�

+ �g

d

dx

K(S(x

i

)) +O(h

2

)

So the sheme (56) approximates (6) with seond order. Now we investigate the

boundary ondition approximation.

B.C.2: (59) are exat, order: O(h

k

) for any k.

B.C.1: (58) is similar to (57), we will show the order of (57). u, S - known smooth

funtions, we an introdue a smooth ux funtion:

f(x) = K(S(x))L

du

dx

(x)�K(S(x))

�

P

0

(S(x))

dS

dx

(x) � �g

�
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Exat boundary ondition { known ux: f(0) = f

l

. We know that

K

1+

1

2

L

u

2

� u

1

h

�K

1+

1

2

�

P

0

1+

1

2

S

2

� S

1

h

� �g

�

= f(x

1+

1

2

) +O(h

2

)

We an rewrite (57) in a form:

f

l

= ��

1

u

1

h+ f(x

1+

1

2

) +O(h

2

) (57:1)

Using Taylor expansion: f(x

1+

1

2

) = f(0) + f

0

(0)h+O(h

2

)

f

l

= ��

1

u

1

h+ f(0) +

d

dx

f(0)h+O(h

2

) (57:2)

In terms of uxes equation (6) is: �(x)u(x) =

d

dx

f(x). We annot use it at the point

x = 0 but it is true for x = 0+, all positive points from some small neighbourhood

of 0.

f

l

= ��

1

u

1

h+ f(0) + �(0)u(0)h+O(h

2

) (57:3)

�

1

u

1

� �(0)u(0) = O(h), �nally we have the seond order of approximation:

f

l

= f(0) +O(h

2

) (57:4)

� One an expet a seond order of onvergene.

On solvability and implementation

Obtained SLAE has tridiagonal matrix fa

ij

g with diagonal domination:

a

ii

=

1

h

2

(K

1+

1

2

+K

1�

1

2

) + �

i

= ja

ii�1

j+ ja

ii+1

j+ �

i

> ja

ii�1

j+ ja

ii+1

j

also for boundary onditions: B.C.1 a

11

> ja

12

j, a

nn

> ja

nn�1

j;

B.C.2 a

00

= 1 > ja

01

j = 0, a

nn

= 1 > ja

nn�1

j = 0. The sweep method ([7℄, p. 61)

an be used to solve the system. It needs O(n) operations.

We an ombine this �nite di�erene sheme or �nite element method from previ-

ous setion or some other method for ellipti problem (6) with some numerial method

for Ordinary Di�erential Equation. The interesting question is what resulting order

will have this ombination. Suppose the method in "x diretion" gives O(h

q

) error and

the method in "t diretion" is of p-th order. Our hypothesis is that the ombination

may have O(h

q

+�t

p

) error.

We ombined the �nite di�erene method disussed above with Euler, Improved

Euler, Cauhy-Euler and Fourth Order Runge-Kutta methods for ODE. Next setion

we report about results obtained in omputational experiments.
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4 Computational Experiment

To solve Initial Value Problem (4), we implemented:

in "x diretion" the �nite di�erene method (56) with (57),(58) and (59);

in "t diretion" Runge-Kutta type methods (29),(30), (31),(32). We used these nu-

merial methods for solving several IVP with homogeneous boundary onditions B.C.1

or B.C.2 (onstant values S

l

, S

r

):

IVP1. l = 0:1; B.C.1; Initial value:

S(0; x) = 2

�

x� l=2

l

�

+ 0:1

IVP2. l = 0:1; B.C.2; Initial value { the same like in IVP1

IVP3. l = 0:1; B.C.1;

S(0; x) = 0:5 exp

(

�100

�

x�

2

3

l

l

�

2

)

IVP4. l = 0:1; B.C.2; Initial value { the same like in IVP3

We remark that initial values for IVP1 { IVP4 are smooth and bounded away from

0 and 1.

IVP5. l = 0:1; B.C.2: S(t; 0) = 1, S(t; l) = 0:5; Initial value:

S(0; x) =

8

<

:

0:2 x 2 [0; l=4℄

0:5 x 2 [l=4; l=2℄

2jx� 3l=4j x 2 [l=2; l℄

This problem has diÆulties: disontinuity of initial value, the funtion reahes zero

at the point x = 3l=4.

Other funtions and parameters that were used:

K(S) = K

0

S

3

; with K

0

= 0:015;

P (S) =

p

1

2

3

� p

1

(S � 1=2)

3

� p

2

(S � 1); with p

1

= 5:0; p

2

= 0:1

� 2 (0; 1) { some onstant, doesn't depend on x. (In spite of non-physial meaning

we set � = 1. For other � we an divide the funtion K on it, K := K=�).

Eah problem IVP1 { IVP5 we alulated using the disussed methods for sev-

eral positive onstants L 2 L

�

= f0:0001; 0:001; 0:01; 0:1; 1:0g. The reason for suh

hoie was not only the omparison of numerial solutions for di�erent L, but also we

wanted to ompare them with the "limit ase" { Rihard's equation. The well-known

Rihard's equation

�

�S

�t

= �

�

�x

F (S) = �

�

�x

�

K(S)

�

�P (S)

�x

� �g

��

(60)

an be obtained from (4) by setting formally L = 0. A numerial algorithm that

was used for Rihard's equation we desribe in the next setion. We remark that the

ondition L > 0 is important for all methods that we implemented for (4), and for

Rihard's equation we have to use another method.
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Figures 1-5 present saturation pro�les S(t

k

; x) at seleted time moments t

k

for

IVP1 { IVP5. Eah olor orresponds to some value of parameter L:

red � L = 0; blue � L = 0:0001; green � L = 0:001;

magenta � L = 0:01; yan � L = 0:1; blak � L = 1:0:

Eah line has a orresponding number (it is near the line and has the same olor)

whih means t

k

. It was onvenient to divide results for some IVP into two pitures.

The upper ontains results for L = 0 and the smallest L: L = 0:0001, L = 0:001. Red

lines were plotted �rst, then blue and green lines. For IVP1 { IVP4 they are rather

losed to eah other so the red was overed by blue �rst and then the green overs red

and blue. In this ase time t

k

is printed one in red for red, blue and green lines. The

initial value S(0; x) is the same for all L. It was plotted in the upper piture with red

olor. In the lower piture it is possible to see the di�erene between di�erent L > 0.

For eah L it has 3-4 pro�les. Next we give the ontent of �gures more preise with

order in whih lines were plotted.

IVP1 Figure 1

Upper piture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

green(0:001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

Lower piture:

1)blak(1:0) t 2 f0:2; 1:0; 5:0g; 2)magenta(0:01) t 2 f0:2; 1:0; 5:0g;

3)yan(0:1) t 2 f0:2; 1:0; 5:0g; 4)green(0:001) t 2 f0:2; 1:0; 5:0g;

5)blue(0:0001) t 2 f0:2; 1:0; 5:0g:

IVP2 Figure 2

Upper piture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

green(0:001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

magenta(0:01) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

Lower piture:

1)blak(1:0) t 2 f1:0; 2:0; 3:0; 5:0; 10:0g;

2)yan(0:1) t 2 f0:6; 1:0; 1:4; 2:0g; 3)magenta(0:01) t 2 f0:2; 0:6; 1:0g:

IVP3 Figure 3

Upper piture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

green(0:001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

Lower piture:

1)blak(1:0) t 2 f0:2; 1:0; 5:0g; 2)yan(0:1) t 2 f0:2; 1:0; 5:0g;

3)magenta(0:01) t 2 f0:2; 1:0; 5:0g; 4)green(0:001) t 2 f0:2; 1:0; 5:0g;

5)blue(0:0001) t 2 f0:2; 1:0; 5:0g:
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IVP4 Figure 4

Upper piture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 1:2; 2:0; 5:0; 10:0g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 1:2; 2:0; 5:0; 10:0g

green(0:001) t 2 f0:2; 0:4; 0:6; 1:2; 2:0; 5:0; 10:0g

Lower piture:

1)blak(1:0) t 2 f0:2; 1:2; 5:0g; 2)yan(0:1) t 2 f0:2; 1:2; 5:0g;

3)magenta(0:01) t 2 f0:2; 1:2; 5:0g; 4)green(0:001) t 2 f0:2; 1:2; 5:0g;

5)blue(0:0001) t 2 f0:2; 1:2; 5:0g:

IVP5 Figure 5

Upper piture:

red(0:0) t 2 f0:01; 0:03; 0:05; 0:1; 0:2; 0:4; 0:6; 1:0; 2:0g

blue(0:0001) t 2 f0:01; 0:03; 0:05; 0:1; 0:2; 0:4; 0:6; 1:0; 2:0g

green(0:001) t 2 f0:01; 0:03; 0:05; 0:1; 0:2; 0:4; 0:6; 1:0; 2:0g

red(0:0) t 2 f0:0g

Lower piture:

1)green(0:001) t 2 f0:01; 0:5; 2:0g; 2)blak(1:0) t 2 f1:0; 2:0; 10:0g;

3)yan(0:1) t 2 f0:2; 1:0; 3:0g; 4)magenta(0:01) t 2 f0:04; 0:08; 0:5; 2:0g:

Figures 1,2 were obtained by Cauhy-Euler, �gures 3,4 by Improved Euler methods

with 270 grid points in [0; l℄ for B.C.1 and 240 grid points for B.C.2. To obtain Figure 5

we used 480 points in [0; l℄ and Cauhy-Euler method. Red lines (numerial solution

for the Rihard's equation) were obtained by following method with 200 points in x.

Time steps �t were di�erent for di�erent L. We remark only that for smaller L > 0

we need smaller time step (for example from green to blue { approximately 10 times

smaller), when the alulated pro�le is non-smooth with high frequeny osillations

then dereasing �t may hange the situation to more regular.

4.1 Algorithm for Rihard's equation

For the Rihard's equation we use the same grid as for �nite di�erene method from

previous setion (53). Boundary onditions:

B.C.1: F (S(0)) = 0, F (S(l)) = 0; (L = 0 also in boundary onditions)

B.C.2: S(t; 0) = S

l

, S(t; l) = S

r

.

Integrating over [x

i�

1

2

; x

i+

1

2

℄�[t

j

; t

j+1

℄ (60) and dividing by h�t we an get a balane

equation:

1

h

Z

x

i+

1

2

x

i�

1

2

�

S(t

j+1

)� S(t

j

)

�t

dx = �

1

�t

Z

t

j+1

t

j

1

h

K(S)

�

�P (S)

�x

� �g

�

�

�

�

�

x

i+1=2

x

i�1=2

dt

We approximate integrals using quadrature formulas: left integral - a entral point

formula, right integral - two points formula at t

j

, t

j+1

with weight � = 0:5:

�

i

S

j+1

i

� S

j

i

�t

= �

"

�

F

j+1

i+1=2

� F

j+1

i�1=2

h

+ (1� �)

F

j

i+1=2

� F

j

i�1=2

h

#

; x

i

2 (0; l);

(61)

31



only for B.C.2 we additionally have S

0

= S

l

, S

n

= S

r

,

F

k

i+1=2

=

(

K

�

S

k

i

+S

k

i+1

2

� h

P (S

k

i+1

)�P (S

k

i

)

h

� �g

i

; if x

i+1=2

2 (0; l)

0 if x

i+1=2

2 �(0; l)

The seond ondition is never satis�ed with B.C.2. In B.C.1 ase we have zero ux

boundary ondition at this point, that's why it is zero. This sheme is impliit. To

obtain an approximate solution at a new time step S

j+1

we need to solve a nonlinear

algebrai system of equations with number of unknowns equal to number of equations.

We an rewrite (61) in more onvenient for iterations form:

S

j+1

i

= S

j

i

+

�t

h

�

��F

i

(S

j+1

) + (1� �)�F

i

(S

j

)

�

; x

i

2 (0; l);

S

j+1

0

= S

l

; S

j+1

n

= S

r

additionally for B.C.2

(62)

where

�F

i

(S

k

) = (F

k

i+1=2

� F

k

i�1=2

)

In Vetor form (62) looks:

S

j+1

= R(S

j+1

; S

j

)

We used the following iteration proess to �nd S

j+1

:

S

(0)

= S

j

; : : : ; S

(p+1)

= R(S

(p)

; S

j

);

until kS

(p+1)

� S

(p)

k

1

< � at some p � P ) S

j+1

:= S

(p+1)

otherwise (kS

(P )

� S

(P�1)

k

1

� �) redue �t and begin the iteration proess again

using the same S

j

and new �t.

4.2 Comparison of results obtained on di�erent grids

The seond test that we an apply to the numerial methods is a numerial estimation

of onvergene order. We use here some simple variant of Rihardson's extrapolation

method (see for example [8℄, Ch 6, p. 267). Let us onsider a sequene of uniform

grids (53) embedded one to another

G

1

� G

2

� : : : � G

I

suh that orresponding parameter h

i

(distane between nodes) dereases in k times

from grid G

i

to G

i+1

: h

i

= kh

i+1

, k 2 Z. Assume that we have some numerial

method with supposed order of onvergene O(h

q

+�t

p

). Choosing some time step

�t

i

we an alulate an approximate solution S

i

at the points of time grid T

i

� [0; T ℄

for eah grid G

i

using this method. It is onvenient to hoose �t

i

, T

i

in suh way

that exists not empty intersetion T =

T

i

T

i

. Then we an ompare solutions S

i

at

points (x; t) 2 G

1

� T (sine G

1

� T � G

i

� T

i

). Convergene of the method means

that jS

i

(x; t) � S(x; t)j for (x; t) 2 G

1

� T beomes smaller when i inreases. When

we have order (q; p) then

E

i

(t) = kS

i

(x; t) � S(x; t)k

G

1

� C

1

h

q

i

+ C

2

�t

p

i

;

where S is exat solution. Assuming that k

q

(�t

i+1

)

p

� (�t

i

)

p

and doing formally

the same proedure for i+ 1 we will get:

E

i+1

(t) = kS

i+1

(x; t)� S(x; t)k

G

1

�

1

k

q

(C

1

h

q

i

+ C

2

�t

p

i

) �

1

k

q

E

i

(t): (63)
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We don't know S(x; t), on G

1

� T but we an substitute S by S

I

{ a numerial

solution obtained on the �nest grid G

I

. So let S := S

I

and we an alulate E

i

(t) at

all points t 2 T for i = 1 : : : I � 1 From (63) we have approximate equalities:

E

i

(t)=E

i+1

(t) � k

q

(64)

We use two E

i

(t) due to di�erent norms:

E

1

i

(t) = max

x2G

1

jS

i

(x; t) � S

I

(x; t)j or E

1

i

(t) =

1

jG

1

j

X

x2G

1

jS

i

(x; t)� S

I

(x; t)j:

We expet that having a orret supposition about order (q; p) and using the method

for solving di�erent "smooth" problems we will have E

i

=E

i+1

around k

q

. This pro-

edure proves nothing it an only give an assurane that the predited order is right

(if (64) is rather aurate) or wrong (if (64) is "too bad").

In our ase we used

G

1

{G

5

(I = 5, k = 3) for B.C.1 with f30; 90; 270; 810; 2430g points in [0; l℄,

G

1

{G

7

(I = 7, k = 2) for B.C.2 with f30; 60; 120; 240; 480; 960; 1920g points in [0; l℄.

The grid T in "t diretion" onsists of several points (usually 9) from the time interval

where the solution essentially hanges. Mostly 5 �rst points were with small intervals

between them and then, additionally, 4 points with intervals 5 times larger. We have

four methods in "t" diretion: Euler [E℄ (29), Improved Euler [IE℄(30), Cauhy-Euler

[CE℄(31) and Runge-Kutta 4-th order [RK4℄(32). Our hypotheses are that these

methods have order (q; p): (2; 1), (2; 2), (2; 2), (2; 4).

(q; p) = (2; 2): h

i+1

= h

i

=k, �t

i+1

= �t

i

=k;

(q; p) = (2; 4): h

i+1

= h

i

=k, �t

i+1

� �t

i

=

p

k (to reah exatly t

j+1

2 T from t

j

2 T

we an determine �t

i+1

from

�t

i+1

= (t

j+1

� t

j

)

��

?

?

?

y

p

k

t

j+1

� t

j

�t

i

?

?

?

y

+ 1

�

� �t

i

=

p

k

# � # - the nearest smallest integer.

We did the test desribed before for the following ases

IVP1, IVP2 were alulated by CE method for L from L

�

;

IVP3, IVP4 were alulated by IE method for L from L

�

;

IVP3, IVP4 were alulated by RK4 method for L 2 f0:0001; 0:001; 0:01g;

Next there are typial results that we obtained. G

1

ontains 30 points, jG

1

j = 30.

Eah row orresponds to some time moment t 2 T . Eah olumn has some number i

and ontains omparison S

i

with S

i+1

(30=90 � i = 1; 90=270 � i = 2; 270=810 � i = 3; 30=60 � i = 1;

60=120 � i = 2; 120=240 � i = 3; 240=480 � i = 4; 480=960� i = 5):

An element of the tables for some t 2 T , i 2 f1; : : : I � 2g is a pair

�

E

1

i

(t)=E

1

i+1

(t) ; E

1

i

(t)=E

1

i+1

(t)

�

:

The information attahed to eah table ontains the problem's label, the method, L,

boundary ondition type, total number of grids I , expeted value k

2

and two numbers

max

t2T

E

1

I�1

(t); max

t2T

E

1

I�1

(t):
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time 30/90 90/270 270/810

0.2 14.4 13.1 10.7 9.9 10.1 10.0

0.4 16.4 13.3 8.8 8.9 10.1 10.0

0.6 12.6 11.1 10.0 9.2 10.1 10.1

0.8 10.8 9.6 10.9 9.6 10.1 10.1

1.0 9.8 8.6 11.5 10.0 10.1 10.1

2.0 6.8 9.2 10.7 10.0 10.1 10.1

3.0 7.1 8.8 11.0 10.2 10.1 10.1

4.0 6.4 6.7 10.2 9.8 10.4 10.1

5.0 15.2 16.4 8.8 9.2 10.1 10.1

IVP1

Cauhy-Euler

L=0.0001

B.C.1

I = 5, k

2

= 9

4.857916e-05

5.560761e-06

time 30/60 60/120 120/240 240/480 480/960

0.1 3.3 3.2 4.1 4.2 4.2 4.1 4.2 4.2 5.0 5.0

0.2 5.3 5.4 3.7 3.8 4.1 4.1 4.2 4.2 5.0 5.0

0.3 5.6 4.6 3.6 3.9 4.0 4.1 4.2 4.2 5.0 5.0

0.4 5.4 4.5 3.7 3.9 4.0 4.1 4.2 4.2 5.0 5.0

0.5 5.2 4.6 3.8 4.0 4.0 4.1 4.2 4.2 5.0 5.0

0.6 5.0 4.5 3.9 4.0 4.0 4.1 4.2 4.2 5.0 5.0

0.7 4.8 4.6 4.0 4.1 4.1 4.1 4.2 4.2 5.0 5.0

0.8 4.7 4.7 4.0 4.1 4.1 4.1 4.2 4.2 5.0 5.0

0.9 4.7 4.9 4.1 4.2 4.1 4.1 4.2 4.2 5.0 5.0

1.0 5.0 5.4 4.0 4.1 4.1 4.1 4.2 4.2 5.0 5.0

1.1 5.4 5.4 4.2 4.2 4.1 4.1 4.2 4.2 5.0 5.0

1.2 9.5 6.9 4.3 4.3 4.1 4.1 4.2 4.2 5.0 5.0

IVP2

Cauhy-Euler

L=0.0001

B.C.2

I = 7, k

2

= 4

3.685478e-05

4.675827e-06

time 30/90 90/270 270/810

0.2 8.4 8.9 9.1 9.1 10.0 10.0

0.4 9.4 8.7 9.1 9.1 10.0 10.0

0.6 9.4 8.9 9.1 9.1 10.0 10.0

0.8 9.3 9.0 9.1 9.1 10.0 10.0

1.0 8.8 9.0 9.1 9.1 10.0 10.0

2.0 9.3 9.2 9.1 9.1 10.0 10.0

3.0 30.0 19.9 14.3 9.7 10.2 10.0

4.0 15.4 17.1 8.8 9.1 10.0 10.0

5.0 5.9 5.6 10.4 10.5 10.0 10.1

IVP3

Runge-Kutta 4

L=0.01

B.C.1

I = 5, k

2

= 9

5.262730e-05

3.144243e-06

time 30/60 60/120 120/240 240/480 480/960

0.2 4.3 3.9 4.1 4.0 4.1 4.0 4.2 4.2 5.0 5.0

0.4 3.9 4.1 4.0 4.0 4.0 4.1 4.2 4.2 5.0 5.0

0.6 4.0 4.0 4.0 4.0 4.1 4.0 4.2 4.2 5.0 5.0

0.8 3.9 4.1 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

1.0 4.1 4.0 4.0 4.0 4.1 4.1 4.2 4.2 5.0 5.0

2.0 3.6 3.9 3.8 4.0 4.0 4.0 4.2 4.2 5.0 5.0

3.0 3.8 3.9 3.9 3.9 4.0 4.0 4.2 4.2 5.0 5.0

4.0 3.9 3.9 3.9 4.0 4.0 4.0 4.2 4.2 5.0 5.0

5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

IVP4

Runge-Kutta 4

L=0.01

B.C.2

I = 7, k

2

= 4

5.275495e-06

9.851936e-07
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time 30/90 90/270 270/810

0.2 8.9 8.9 9.1 9.1 10.0 10.0

0.4 8.8 8.9 9.1 9.1 10.0 10.0

0.6 8.8 8.9 9.1 9.1 10.0 10.0

0.8 8.8 8.9 9.1 9.1 10.0 10.0

1.0 8.8 8.8 9.1 9.1 10.0 10.0

2.0 8.7 8.8 9.1 9.1 10.0 10.0

3.0 8.9 8.9 9.1 9.1 10.0 10.0

4.0 8.9 8.8 9.1 9.1 10.0 10.0

5.0 8.9 8.8 9.1 9.1 10.0 10.0

IVP3

Improved Euler

L=1.0

B.C.1

I = 5, k

2

= 9

2.234108e-06

8.420502e-07

time 30/60 60/120 120/240 240/480 480/960

0.2 4.0 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

0.4 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

0.6 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

0.8 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

1.0 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

2.0 3.9 3.9 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

3.0 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

4.0 3.8 3.9 3.9 4.0 4.0 4.0 4.2 4.2 5.0 5.0

5.0 3.7 3.8 3.8 3.9 4.0 4.0 4.2 4.2 5.0 5.0

IVP4

Improved Euler

L=1.0

B.C.2

I = 7, k

2

= 4

1.359211e-06

5.124769e-07

The numerial data seem to be onsistent with expeted value k

2

2 f9; 4g And the

�nite di�erene method (56),(57), (58),(59) ombined with IE, CE, RK4 has a good

hane to be of order O(h

2

+�t

2

), O(h

2

+�t

2

), O(h

2

+�t

4

).

Remarks The initial �t

1

was hosen suÆiently small to have a "smooth" numerial

solutions for all i = 1 : : : I .

In IVP5 we have an opposite situation. It seems that the methods don't have

high order for this problem, whih has disontinuous initial value.

All algorithms were implemented in ANSI C ode. Pitures were printed using

MATLAB.
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5 Conlusion

We onsider initial-boundary value problem with modi�ed Rihard"s equation sug-

gested in [1℄, [9℄ in one dimensional spatial ase and two types of boundary ondi-

tions: zero ux or given, onstant in time values on the boundary. This problem was

transformed into another form, namely initial value problem with Abstrat Ordinary

Di�erential Equation, using a solvability of ellipti boundary value problem (weak

solvability by variational approah). We used deep similarity of this form with ODE

in R to show loal existene, uniqueness and ontinuous dependene on initial data

provided the initial data is bounded away from zero. Like in ODE ase a loal solution

an be extended at least while it is bounded away from zero and one. This solution

being an abstrat funtion on x at eah time moment t is also a ontinuous funtion

on variables x and t and has a ontinuous partial derivative in t.

We have also used the AODE form in order to obtain numerial methods for mod-

i�ed Rihard's equation: we ombined some numerial method for ellipti boundary-

value problem ("x diretion") with some numerial method for ODE ("t diretion")

and the hoie of the methods an be rather independent from eah other. For el-

lipti problem we desribed in details two possibilities by �nite element approah

and �nite di�erene approah. In "t diretion" we an hoose for example expliit

Runge-Kutta type methods like Euler, Improved Euler, Cauhy-Euler and Runge-

Kutta 4th order methods. Finite element method is a natural numerial method for

variational approah that was used in AODE form. We used this onnetion to show

the onvergene of Finite element { Euler method.

Four ombinations, namely the �nite di�erene method (that has a seond order of

approximation) in "x diretion" with four already mentioned methods in "t diretion",

were implemented in ANSI C program. Numerial results, obtained on the nested

sequene of grids for smooth initial funtions bounded away from zero, have showed

that the last three methods have seond order in "x" and 2nd, 2nd, 4th orders in "t"

respetively.

The modi�ed Rihard's equation with stritly positive onstant parameter L has

one additional term, the highest derivative has one order more omparing with stan-

dard Rihard's equation. If L = 0, formally, then the �rst equation beomes equal

to the seond. The mentioned numerial methods are unde�ned for this ase, but for

small positive L (on the same "good" initial funtions used in the previous test) the ob-

tained results were rather losed to the numerial results obtained for Rihard's equa-

tion. In some sense the modi�ed Rihard's equation inludes the standard Rihard's

equation. Another aspet for omparison of these two equations an be the similar-

ity of the form in whih the Rihard's equation is written with AODE form: time

derivative in the left hand side and an operator that ats on funtions as they would

have had only dependene on x in the right hand side. The right hand side operator

is more regular for the AODE form.

We used the restrited ase in order to have more simple situation. It may be

possible to generalize the problem to a more ompliated one with non-homogeneous

boundary onditions, oeÆients depending on more variables or even introdue ad-

ditional terms and onsider multidimensional ase.
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Figure 1: IVP1
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Figure 3: IVP3
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Figure 4: IVP4
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