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Abstra
t

We 
onsider a Dar
y 
ow model with saturation-pressure relation extended with a

dynami
 term, namely, the time derivative of the saturation. This model was proposed

in works [1℄, [9℄, [10℄. We restri
t ourself to one spatial dimension and stri
tly positive

initial saturation. For this 
ase we transform the initial-boundary value problem into


ombination of ellipti
 boundary-value problem and initial value problem for abstra
t

Ordinary Di�erential Equation. This splitting is rather helpful both for theoreti
al

aspe
ts and numeri
al methods.



1 Introdu
tion

We 
onsider two phase 
ows in porous media. They o

ur in various pra
ti
al tasks,

like unsaturated groundwater 
ow, oil re
overy. The aim of mathemati
al approa
h

here is to predi
t the saturation pro�les if initial pro�les and boundary 
onditions

are known. For terminology, de�nitions and theory of 
ow through porous media we

refer to [11℄,[12℄. Basi
 notations were taken like in [1℄.

S(t; x) is the level of saturation of a wetting phase (S 2 [0; 1℄). We assume that

wetting and nonwetting phases are water and air respe
tively. � is the porosity of

the porous medium. Typi
ally the relation for the pressure di�eren
e in the phases is

used

p

n

� p

w

= P (S) (1)

where p

n

is the pressure in the air (we assume that it has a 
onstant value of atmo-

spheri
 pressure) and p

w

the pressure in the wetting phase. P (S) is assumed to be

a known bounded de
reasing fun
tion on the water saturation, with P (1) = 0. The

hydrauli
 
ondu
tivity K(S) is a known nonnegative in
reasing fun
tion.

The di�erential equation des
ribing dynami
s of unsaturated 
ow is obtained by


ombining mass 
onservation of water

�

�S

�t

+ div ~q = 0

with expression for the 
ux q from the Dar
y's law

~q = K(S)(� gradp

w

+ �~g) = K(S)(gradP (S) + �~g) (2)

where � is the water density and ~g = (�g; 0; 0). The result is the Ri
hard's equation:

�

�S

�t

= � div [K(S)(gradP (S) + �~g)℄ (3)

In [1℄, [9℄, [10℄ the authors suggested a modi�ed expression for (1):

p

n

� p

w

= P (S)� L

�S

�t

; (L > 0) (1

0

)

This lead to nonstandard Dar
y 
ow model

~q = K(S)(� gradp

w

+ �~g) = K(S)

�

grad

�

P (S)� L

�S

�t

�

+ �~g

�

(2

0

)

and modi�ed Ri
hard's equation:

�

�S

�t

= � div [K(S)(gradP (S) + �~g)℄ + div

�

K(S)L grad

�S

�t

�

(3

0

)

We restri
t ourself to the 
ase of one spatial dimension where the main equation (3')

be
omes

�

�S

�t

= �

�

�x

�

K(S)

�

�P (S)

�x

� �g

��

+

�

�x

�

K(S)L

�

2

S

�x�t

�

(4)

S = S(t; x) - saturation, t 2 � = (0; T ), x 2 
 = (0; l).

Let

F (S) = K(S)

�

�P (S)

�x

� �g

�

= K(S)

�

P

0

(S)

�S

�x

� �g

�

(5)

1



To 
omplete the problem (4) we need to add initial and boundary 
onditions.

Initial 
onditions: S(0; x) is given.

Boundary 
onditions. We will deal with two types of B.C.

B.C.1: a 
ux is zero on boundaries K(S)L

�

2

S

�x�t

� F (S) = 0, x = 0; l.

B.C.2: S(t; 0), S(t; l) are given for all t 2 [0; T ℄. We will use only the simplest 
ase:


onstant values of S on the boundary.

2



2 General Aspe
ts

2.1 Another formulation of problem (4)

It is 
onvenient to rename u(t; x) =

�S

�t

(t; x). Another form of equation (4) with

variables u and S:

�

�

�x

�

K(S)L

�u

�x

�

+ �u = �

�

�x

F (S) (6)

With boundary 
onditions:

B.C.1 : K(S)L

�u

�x

� F (S) = 0, x = 0; l

B.C.2 : S(t; 0) = S

l

, S(t; l) = S

r

, u(t; 0) = 0, u(t; l) = 0.

Assume that S is known for some t. Then we have an ellipti
 equation on u(t; �):

L

1

u+ u = �L

2

S where L

1

u, L

1

u+ u are ellipti
. It is possible to use well developed

theory of se
ond order ellipti
 equations to get existen
e and some properties of

solution operator a
ting on S. If S(x) > 0 for all x then operators are stri
tly

ellipti
 (K(0) = 0 - no ellipti
ity).

For given S > 0 equation (6) is ellipti
 with respe
t to u and we 
an use existen
e,

uniqueness results for ellipti
 equations

Weak solution approa
h: multiplying (6) by test fun
tion v(x) and integrating by

parts on 
:

Z




K(S)L

�u

�x

�v

�x

dx�

Z

�


K(S)L

�u

�x

v d� +

Z




�uv dx =

Z




F (S)

�v

�x

dx�

Z

�


F (S)v d�

(7)

Boundary 
ondition 1: Zero 
ux means that boundary integrals together are zero.

We 
an use fun
tional spa
e H

1

(
) =W

1;2

(
).

Boundary 
ondition 2: Constant values on the boundary S(t; 0) = S

l

, S(t; l) = S

r

,

u(t; 0) = 0, u(t; l) = 0. We 
an use fun
tional spa
e H

1

0

(
) = W

1;2

0

(
) for Diri
hlet

problem.

Let V = H

1

(
) for B.C.1 and V = H

1

0

(
) for B.C.2. Weak formulation for the

ellipti
 problem (6): Find u 2 V su
h that for any v 2 V

a(u; v) + (u; v)

�;0

= l(v) (8)

where a(u; v) =

R




K(S)L

�u

�x

�v

�x

dx, (u; v)

�;0

=

R




�uv dx, l(v) =

R




F (S)

�v

�x

dx

Assumptions

1: S(x)

a:e

� S

�

> 0) K(S) � K(S

�

) = �[S℄ > 0;

2: � 2 L

1

(
); 1 � � � �

0

> 0

3: K;KP

0

� Lips
hitz 
ontinuous, bounded :

(9)

jK(S

1

)�K(S

2

)j � L

K

jS

1

� S

2

j; jK(S

1

)P

0

(S

1

)�K(S

2

)P

0

(S

2

)j � L

KP

0

jS

1

� S

2

j:

a(u; v) + (u; v)

�;0

is a symmetri
 bilinear fun
tional. We 
an 
he
k V -ellipti
ity

and 
ontinuity of this fun
tional:

(E) a(u; u) + (u; u)

�;0

� �[S℄L













�u

�x













2

0

+ �

0

kuk

2

0

� minf�[S℄L; �

0

gkuk

2

1

= E[S℄kuk

2

1

where E[S℄ > 0 - ellipti
ity 
onstant.

(C) ja(u; v) + (u; v)

�;0

j � kKk

1

L













�u

�x













0













�v

�x













0

+ kuk

0

kvk

0

� Ckuk

1

kvk

1

3



where C > 0 - 
ontinuity 
onstant.

l = l[S℄ 2 V

0

- adjoint spa
e for V . l(v) is a linear bounded fun
tional on V .

jl[S℄(v)j =

�

�

�

�

�

�

Z




K(S)P

0

(S)

�S

�x

�v

�x

dx�

Z




K(S)�g

�v

�x

dx

�

�

�

�

�

�

�

� kKP

0

k

1













�S

�x













0













�v

�x













0

+ �gkKk

1

�(
)













�v

�x













0

�

� (kKP

0

k

1

kSk

1

+ �gkKk

1

�(
)) kvk

1

kl[S℄k

V

0

� kKP

0

k

1

kSk

1

+ �gkKk

1

�(
) (10)

From [3, Lemma 3.18, part a) p. 97℄ we 
an get existen
e-uniqueness results: The

problem (8) has unique solution u 2 V and

kuk

V

�

1

E[S℄

kl[S℄k

V

0

=

1

E[S℄

sup

v 6=0;v2V

jl[S℄(v)j

kvk

1

:

We 
an introdu
e a solution operator A : H

1

(
)! V .

u = A(S) - a unique solution of problem (8) 
orresponding to S. In terms of A, (4)


an be written in a form:

u =

dS

dt

= A(S); S(0) = S

0

; S(t) 2 H

1

(
) 8t 2 � (11)

We don't know exa
tly the domain of de�nition for A, but at least it 
ontains all

fun
tions S 2 H

1

that are bounded away from zero: 9 
onstant S

�

> 0 that S(x) � S

�

almost everywhere.

Let U

b

= fS 2 H

1

(
) : kS � S

0

k

1

� bg a neighborhood of S

0

.

In one dimensional 
ase we 
an use embedding H

1

(
) to the spa
e of 
ontinuous

bounded fun
tions C

B

(
) with supremum norm (see [2, p. 97℄):

a)If 
 has 
one property, mp = 2 > n = 1 then W

m;p

=W

1;2

(
)! C

B

(
)

b)If 
 has strong lo
al Lips
hitz property, mp = 2 > n = 1 > (m � 1)p = 0 then

W

m;p

=W

1;2

(
)! C

0;�

(

�


), 0 < � � m� (n=p) (for example � = 1=2)

In one dimension 
ase see [5, p. 31℄

From these results we need: u 2 H

1

(
)) u 2 C(
) and ess sup

x2


juj � C

B

kuk

1

If the initial value is bounded away from zero: S

0

(x) � S

0�

> 0 a.e. then there

exist b and S

�

> 0 that: 8S 2 U

b

, S � S

�

a.e.; in other words, U

b

is bounded away

from zero.

Boundedness of U

b

: kSk

1

� kS

0

k

1

+ b.

Also there exist 
onstants �, E that �[S℄ � �, E[S℄ � E.

Remark In our 
ase S is saturation and we also need to have S � 1. And if S

0

< 1

then at the same way we 
an 
hoose ball U

b

bounded away from 1. (but we will not

mention it expli
itly).

2.2 Properties of A(S)

A1. A(S) is bounded on U

b

.

From (10): kA(S)k

1

= kuk

1

�

1

E

(kKP

0

k

1

(kS

0

k

1

+ b) + �gkKk

1

�(
)) = B

4



For any S 2 U

b

: kA(S)k

1

� B.

A2. A(S) is Lips
hitz 
ontinuous on U

b

:

kA(S

1

)�A(S

2

)k

1

� L

A

kS

1

� S

2

k

1

8S

1

; S

2

2 U

b

:

u

1

= A(S

1

), u

2

= A(S

2

). a(u; v), l(v) depend on S,

Æ

a[S℄(u; v) =

Z




K(S)L

�u

�x

�v

�x

dx; l[S℄(v) =

�

F (S);

�v

�x

�

0

:

a[S

1

℄(u

1

; v) + (u

1

; v)

�;0

= l[S

1

℄(v);

a[S

2

℄(u

2

; v) + (u

2

; v)

�;0

= l[S

2

℄(v)

8v 2 V:

a[S

1

℄(u

2

; v) + (u

2

; v)

�;0

=

Z




K(S

1

)L

�u

2

�x

�v

�x

dx+

Z




�u

2

v dx =

= l[S

2

℄(v)�

Z




[K(S

2

)�K(S

1

)℄L

�u

2

�x

�v

�x

dx

Substitute a[S

1

℄(u

1

; v) + (u

1

; v)

�;0

= l[S

1

℄(v)

a[S

1

℄(u

2

�u

1

; v)+(u

2

�u

1

; v)

�;0

= l[S

2

℄(v)� l[S

1

℄(v)+

Z




[K(S

1

)�K(S

2

)℄L

�u

2

�x

�v

�x

dx

= l[S

2

℄(v)� l[S

1

℄(v) + l[S

1

; S

2

; u

2

℄(v) = L(v)for any v 2 V :

So u

2

� u

1

is a solution of a[S

1

℄(u

2

� u

1

; v) + (u

2

� u

1

; v)

�;0

= L(v), where L(v) is a

linear bounded fun
tional on V .

kA(S

2

)�A(S

1

)k

1

= ku

2

� u

1

k

1

� kLk

V

0

=E (12)

and we have to estimate kLk

V

0

= sup

v2V;kvk

V

=1

jL(v)j.

kLk

V

0

� kl[S

2

℄� l[S

1

℄k

V

0

+ kl[S

1

; S

2

; u

2

℄k

V

0

(13)

a) estimation for l[S

1

; S

2

; u

2

℄(v) =

R




[K(S

1

)�K(S

2

)℄L

�u

2

�x

�v

�x

dx:

Æ jK(S

1

(x))�K(S

2

(x))j � L

K

jS

1

(x)�S

2

(x)j

a:e

� L

K

C

B

kS

1

�S

2

k

1

= C

B

1

kS

1

�S

2

k

1

- embedding to C

B

(
).

jl[S

1

; S

2

; u

2

℄(v)j � C

B

1

LkS

1

� S

2

k

1

k

�u

2

�x

k

0

k

�v

�x

k

0

� C

B

1

LkS

1

� S

2

k

1

ku

2

k

1

kvk

1

ku

2

k � B ) kl[S

1

; S

2

; u

2

℄k

V

0

� C

B

1

LBkS

1

� S

2

k

1

(14)

�

b) estimation for l[S

2

℄� l[S

2

℄:

Æ

jl[S

2

℄(v)� l[S

1

℄(v)j = jhF (S

2

);

�v

�x

i

0

� hF (S

1

);

�v

�x

i

0

j =

5



=

�

�

�

�

�

�

Z




K(S

2

)

�

P

0

(S

2

)

�S

2

�x

� �g

�

�v

�x

dx �

Z




K(S

1

)

�

P

0

(S

1

)

�S

1

�x

� �g

�

�v

�x

dx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Z




�

K(S

2

)P

0

(S

2

)

�S

2

�x

�v

�x

�K(S

1

)P

0

(S

1

)

�S

1

�x

�v

�x

�

dx

�

�

�

�

�

�

+

+

�

�

�

�

�

�

Z




�g (K(S

1

)�K(S

2

))

�v

�x

dx

�

�

�

�

�

�

= jI

1

j+ jI

2

j

Let �rst integral be I

1

, se
ond - I

2

. Next we will use embedding H

1

to C

B

jI

2

j � �gC

B

1

kS

1

� S

2

k

1

�(
)kvk

1

jI

1

j �

�

�

�

�

�

�

Z




[K(S

2

)P

0

(S

2

)�K(S

1

)P

0

(S

1

)℄

�S

2

�x

�v

�x

dx

�

�

�

�

�

�

+

+

�

�

�

�

�

�

Z




K(S

1

)P

0

(S

1

)

�

�S

2

�x

�

�S

1

�x

�

�v

�x

dx

�

�

�

�

�

�

�

jKP

0

(S

1

)�KP

0

(S

2

)j � L

KP

0

jS

1

� S

2

j, C

B

2

= L

KP

0

C

B

� C

B

2

kS

2

� S

1

k

1

kS

2

k

1

kvk

1

+ kKP

0

k

1

kS

2

� S

1

k

1

kvk

1

�

�

C

B

2

(kS

0

k

1

+ b) + kKP

0

k

1

�

kS

2

� S

1

k

1

kvk

1

:

kl[S

2

℄� l[S

1

℄k

V

0

�

�

C

B

2

(kS

0

k

1

+ b) + kKP

0

k

1

+ �gC

B

1

�(
)

�

kS

1

� S

2

k

1

(15)

� Altogether (12),(13),(14), (15) give:

kA(S

2

)�A(S

1

)k

1

�

�

C

B

2

(kS

0

k

1

+ b) + kKP

0

k

1

+ �gC

B

1

�(
) + C

B

1

LB

�

kS

2

�S

1

k

1

=E

kA(S

2

)�A(S

1

)k

1

� L

A

kS

2

� S

1

k

1

) A(S) - Lips
hitz 
ontinuous on U

b

�

A3. A(S) 
onserves smoothness

We have already shown that for S 2 H

1

, A(S) 2 H

1

. It seems that this is also

(formal) true for other 
lasses of smooth fun
tions, for example H

k

, C

k

(It is really,

not formally true when the 
orresponding regularity theorems are valid). We 
an


ompare A(S) with �

1

�

�

�x

F (S) from Ri
hard's equation:

�S

�t

= �

1

�

�

�x

F (S):

�

�x

F (S) de
reases smoothness of S, for example C

k

to C

k�2

, H

k

to H

k�2

. On the

other hand

�

�x

F (S) 
an be expli
itly 
al
ulated from (5) and A(S) 
an be obtained

only by solving an ellipti
 equation.

6



2.3 On the well-posedness of (11)

Now we 
an 
ompare (11) with Ordinary Di�erential Equation: y

0

= f(t; y(t)),

y(0) = y

0

. To have lo
al existen
e and uniqueness of the solution of ODE we need

boundedness and Lips
hitz 
ontinuity of f(t; y)on y in some domain D around initial

point (0; y

0

) (for instan
e D = f(t; y) : jy � y

0

j < b, jtj < Tg). jf(t; y)j � B in D,

jf(t; y

1

)� f(t; y

2

)j � Ljy

1

� y

2

j for (t; y

1

); (t; y

2

) 2 D. To prove the existen
e of ODE

one 
an 
onstru
t a sequen
e y

k

(t): y

0

(t) = y

0

,

y

k+1

(t) = y

0

+

Z

t

0

f(�; y

k

(�)) d�;

that stays in D for t from some interval [0; T ℄ and 
onverges to solution y(t) that

satis�es the integral form of ODE:

y(t) = y

0

+

Z

t

0

f(�; y(�)) d�:

To prove uniqueness, the Gronwall's lemma 
an be used.

In our 
ase properties A1,A2 are similar to 
orresponding properties of f(t; y) in

ODE 
ase. We 
an follow the ODE existen
e proof trying to �t it with our 
ase. So

let 
onsider a sequen
e: S

0

(t) = S

0

,

S

k+1

(t) = S

0

+

Z

t

0

A(S

k

(�)) d� (16)

The integral in (16) we will 
onsider as Riemann integral in a Bana
h spa
e E. see

[4, x38 pp 304-306, x39℄ for details. Some properties from [4℄ that we will expli
itly

use:

Def 1 Let y(t) 2 E 8t 2 [0; T ℄. y(t) is 
alled 
ontinuous in [0; T ℄ if 8t 2 [0; T ℄:

ky(t+ h)� y(t)k

E

! 0 when h! 0. Notation: y 2 C([0; T ℄! E).

Def 2 Derivative of y(t) at the point t:

d

dt

y(t) = lim

h!0

1

h

[y(t+ h)� y(t)℄

if the limit exists in the sense of E.

Y1. If y(t) has a derivative at the point t, then y(t) is 
ontinuous at the point t.

Y2. If y(t) is Lips
hitz 
ontinuous in [0; T ℄ (L.C.) (9 
onstant L

y

> 0 su
h that

8t

1

; t

2

2 [0; T ℄: ky(t

1

)� y(t

2

)k

E

� L

y

jt

1

� t

2

j), then y(t) is 
ontinuous in [0; T ℄.

Y3. If y(t) is 
ontinuous in [0; T ℄, then ky(t)k

E

is a 
ontinuous real fun
tion from

C([0; T ℄! R) and

R

t

0

ky(�)k

E

d� is well de�ned.

Y4. If y(t) is 
ontinuous in [0; T ℄, then the integral

R

t

0

y(�) d� is well de�ned in E.

Moreover:













Z

t

0

y(�) d�













E

�

Z

t

0

ky(�)k

E

d� (17)

Y5. If y(t) is 
ontinuous in [0; T ℄, 
 2 (0; T ), then

Z

T

0

y(�) d� =

Z




0

y(�) d� +

Z

T




y(�) d�:

Y6. If y(t) is 
ontinuous in [0; T ℄, then the fun
tion Y (t) =

R

t

0

y(�) d� is di�erentiable

in [0; T ℄, and thus

d

dt

Y (t) = y(t).

7



Y7. If the fun
tion Y (t) possesses a 
ontinuous derivative with respe
t to t,

d

dt

Y (t) = y(t), then

Z

t

0

y(�) d� = Y (t)� Y (0):

E = H

1

(
) and k � k

E

= k � k

1

when the opposite is not expli
itly mentioned.

2.3.1 On lo
al existen
e

Our goal now is to show that for some T > 0 (11) has unique solution in C([0; T ℄! H

1

)

that 
ontinuously depends on initial data in C([0; T ℄! H

1

) provided S

0

is bounded

away from zero. Our plan is to show that sequen
e fS

n

g

1

n=0

from (16) is well de�ned

(Steps 1-3) and 
onverges (Step 4) to S(t) - a solution of

S(t) = S

0

+

Z

t

0

A(S(�)) d�; (18)

(Step 5) and this implies that S(t) is also a solution of (11) (Step 6).

Remark Here we 
onsider

dS

dt

is in the sense of Def 2 in (11).

When S

0

(x) � S

0�

> 0 then we 
an 
hoose appropriate U

b

with 
onstants b, B,

L

A

. Now we 
an determine T > 0:

T < minf1=L

A

; b=Bg (19)

For ea
h element of sequen
e fS

n

g

1

n=0

from (16) we have to show

a) That S

n

(t) is well de�ned element in H

1

for all t 2 [0; T ℄.

b) For all t 2 [0; T ℄, S

n

(t) stays in U

b

� H

1

.


) S

n

(t) is Lips
hitz 
ontinuous in [0; T ℄ with 
onstant B.

We will use indu
tion in three steps: Step 1 for S

0

(t), Step 2 for S

1

(t) - indu
tion's

base and Step 3 indu
tion's hypothesis from S

n

(t) to S

n+1

(t) (step 3 is similar to

step 2).

Step 1. S

0

(t) = S

0

8t 2 [0; T ℄.

a) S

0

(t) 2 H

1

, 8t 2 [0; T ℄.

b) S

0

(t) 2 U

b

, 8t 2 [0; T ℄.


) S

0

(t) has (L.C.) property with 
onstant B: 8t

1

; t

2

2 [0; T ℄

kS

0

(t

1

)� S

0

(t

2

)k

1

= k0k

1

� Bjt

1

� t

2

j

Step 2. S

1

(t) = S

0

+

R

t

0

A(S

0

(�)) d�

a) From A2, properties b) and 
) for S

0

(t) we 
an get 8t

1

; t

2

2 [0; T ℄:

kA(S

0

(t

1

))�A(S

0

(t

2

))k

1

� L

A

kS

0

(t

1

)� S

0

(t

2

)k

1

� L

A

Bjt

1

� t

2

j:

It means that A(S

0

(t)) has (L.C.) property, hen
e is integrable and S

1

(t) 2 H

1

,

8t 2 [0; T ℄.

b) Using Y4 for A(S

0

(t)), b) for S

0

(t)), A1

kS

1

(t)� S

0

k

1

=













Z

t

0

A(S

0

(�)) d�













1

�

Z

t

0

kA(S

0

(�))k

1

d� � Bt � BT < b

or S

1

(t) 2 U

b

: 8t 2 [0; T ℄.


) To obtain (L.C.) property for S

1

(t) we useY5, Y4 for A(S

0

(t)), A1: 8t

1

; t

2

2 [0; T ℄

kS

1

(t

1

)� S

1

(t

2

)k

1

=













Z

t

1

t

2

A(S

0

(�)) d�













1

�

Z

t

1

t

2

kA(S

0

(�))k

1

d� � Bjt

1

� t

2

j
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Step 3. Suppose that for S

n

a),b),
) are valid:

a) S

n

(t) 2 H

1

, 8t 2 [0; T ℄

b) S

n

(t) 2 U

b

, 8t 2 [0; T ℄


) (L.C) kS

n

(t

1

)� S

n

(t

2

)k

1

� Bjt

1

� t

2

j, 8t

1

; t

2

2 [0; T ℄

We need to show that a),b),
) are also valid for S

n+1

(t) = S

0

+

R

t

0

A(S

n

(�)) d�

To do this we 
an apply the same arguments like in Step 2:

a)

kA(S

n

(t

1

))�A(S

n

(t

2

))k

1

� L

A

kS

n

(t

1

)� S

n

(t

2

)k

1

� L

A

Bjt

1

� t

2

j

A(S

n

(t)) is (L.C)) integrable ) S

n+1

(t) 2 H

1

, 8t 2 [0; T ℄.

b) S

n+1

(t) 2 U

b

, 8t 2 [0; T ℄ sin
e

kS

n+1

(t)� S

0

k

1

=













Z

t

0

A(S

n

(�)) d�













1

�

Z

t

0

kA(S

n

(�))k

1

d� � Bt � BT < b


) 8t

1

; t

2

2 [0; T ℄

kS

n+1

(t

1

)� S

n+1

(t

2

)k

1

=













Z

t

1

t

2

A(S

n

(�)) d�













1

�

Z

t

1

t

2

kA(S

n

(�))k

1

d� � Bjt

1

� t

2

j:

So we 
an de�ne a sequen
e fS

n

g

1

n=0

in H

1

(
).

Step 4. Now we will investigate a 
onvergen
e of this sequen
e.

S

n+1

(t) = S

0

+

n

X

k=0

(S

k+1

(t)� S

k

(t))

kS

k+1

(t)� S

k

(t)k

1

=













Z

t

0

A(S

k

(�)) d� �

Z

t

0

A(S

k�1

(�)) d�













1

=

=













Z

t

0

[A(S

k

(�)) �A(S

k�1

(�))℄ d�













1

�

Fun
tion [A(S

k

(t))�A(S

k�1

(t))℄ is Lips
hitz 
ontinuous on [0; T ℄ as a sum of Lips
hitz


ontinuous fun
tions and we 
an use Y4. [S

k

(t)� S

k�1

(t)℄ is also (L.C.). From Y3:

kS

k

(t)� S

k�1

(t)k

1

approa
hes it's maximal value on [0; T ℄.

�

Z

t

0

kA(S

k

(�)) �A(S

k�1

(�))k

1

d� �

Z

t

0

L

A

kS

k

(�)� S

k�1

(�)k

1

d� �

� L

A

t max

t2[0;T ℄

kS

k

(t)� S

k�1

(t)k

1

� L

A

T max

t2[0;T ℄

kS

k

(t)� S

k�1

(t)k

1

� :::

::: � (L

A

T )

k

max

t2[0;T ℄

kS

1

(t)� S

0

(t)k

1

� (L

A

T )

k

b

from (19): L

A

T < 1

1

X

k=0

kS

k+1

(t)� S

k

(t)k

1

�

1

X

k=0

(L

A

T )

k

b <1

We have shown that S

n

(t) 
onverges in H

1

(
) uniformly on [0; T ℄ to some fun
tion

S(t). Let us show that S(t) also has properties a), b), 
).

a) 8t: lim

n!1

S

n

(t) = S(t) in H

1

(
), uniformly on t 2 [0; T ℄.
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b) U

b

- 
losed ) S(t) 2 U

b

, 8t 2 [0; T ℄


) Æ

kS(t

1

)� S(t

2

)k

1

� kS(t

1

)� S

n

(t

1

) + S

n

(t

1

)� S

n

(t

2

) + S

n

(t

2

)� S(t

2

)k

1

�

For any � we 
an �nd N that for n > N , 8t 2 [0; T ℄ kS(t)� S

n

(t)k

1

< "

� kS(t

1

)� S

n

(t

1

)k

1

+ kS

n

(t

1

)� S

n

(t

2

)k

1

+ kS

n

(t

2

)� S(t

2

)k

1

� Bjt

1

� t

2

j+ 2"

" 
an be 
hosen arbitrary small ) kS(t

1

)� S(t

2

)k

1

� Bjt

1

� t

2

j 8t 2 [0; T ℄. �

Step 5. Our task is to verify (18)

Æ First: A(S(t)) is (L.C.), sin
e 8t

1

; t

2

2 [0; T ℄

kA(S(t

1

))�A(S(t

2

))k

1

� L

A

kS(t

1

)� S(t

2

)k

1

� L

A

Bjt

1

� t

2

j

and we 
an integrateA(S(t)) on t. Moreover

R

t

0

A(S

n

(�)) d� 
onverges to

R

t

0

A(S(�)) d�

in H

1

(
) uniformly on t 2 [0; T ℄:













Z

t

0

A(S

n

(�)) d� �

Z

t

0

A(S(�)) d�













1

=













Z

t

0

[A(S

n

(�)) �A(S(�))℄ d�













1

�

[A(S

n

(t)) � A(S(t))℄ { (L.C.) on t as a sum of (L.C.) fun
tions; S

n

(t) ! S(t) when

n!1, uniformly on t 2 [0; T ℄.

�

Z

t

0

kA(S

n

(�))�A(S(�))k

1

d� � L

A

Z

t

0

kS

n

(�)�S(�)k

1

d� � L

A

T"

n

! 0; n!1

)

Z

t

0

A(S

n

(�)) d� �!

Z

t

0

A(S(�)) d�; n!1

S(t) � S

n

(t) = S

0

+

Z

t

0

A(S

n�1

(�)) d� �! S

0

+

Z

t

0

A(S(�)) d�; n!1

8t 2 [0; T ℄, uniformly in t And we have (18). �

Step 6. A(S(t)) is 
ontinuous on [0; T ℄. From (18) and Y6 we have (11)

We 
an summarize Steps 1-6: If the initial data is bounded away from zero then

U

b


an be 
hosen. It determines the 
onstants b; B; L

A

, and T from (19). Then for

t 2 [0; T ℄ one 
an 
onstru
t S(t) a solution of (11).

Remark We always had initial data at t = 0 and time interval [0; T ℄. It was not a

restri
tion and if the solution is known at some time moment t

0

, then we 
an 
onsider

S(t

0

) = S

0

as initial data and look for solution at [t

0

; t

0

+ T ℄.

2.3.2 On lo
al uniqueness, 
ontinuous dependen
e on initial data

Suppose

~

S(t) is 
ontinuous and satis�es (18) at t 2 [0;

~

T ℄. And S

0

is bounded away

from zero. Then we 
an 
hoose neighborhood U

b

with 
onstants b; B; L

A

. For this U

b

we 
an �nd T from (19).

U1. The fun
tion

~

S(t) stays inside U

b

while t 2 [0;minfT;

~

Tg℄.

Æ Assume it is not true and there is t

�

� T;

~

T that k

~

S(t

�

) � S

0

k

1

= b and k

~

S(t) �

S

0

k

1

< b for t 2 [0; t

�

) (we 
an �nd t

�

be
ause k

~

S(t)� S

0

k

1

is 
ontinuous). Then

for all t 2 [0; t

�

℄ using that S(t) 2 U

b

and (19) we 
an estimate:

k

~

S(t

�

)� S

0

k

1

�

Z

t

�

0

kA(

~

S(�))k

1

d� � Bt

�

� BT < b

10



And we have 
ontradi
tion with de�nition of t

�

. �

Now assume that we have two solutions

~

S(t) and S(t) of (11) at t 2 [0;

~

T ℄, with

~

S(t

0

) = S(t

0

) = S

0

- bounded away from zero. We 
an 
hoose U

b

around S

0

> 0 with


onstants b; B; L

A

; T from (19) but not greater than

~

T . From U1,

~

S(t), S(t) stays

inside U

b

while t 2 [t

0

; t

0

+ T ℄. Using that

d

~

S

dt

;

dS

dt

are in the sense of Def 2, from Y1

we 
an 
on
lude that

~

S(t); S(t) are 
ontinuous in [0; T ℄. Then A(

~

S(t)); A(S(t)) are


ontinuous in [0; T ℄. From Y7 we 
on
lude that

~

S(t), S(t) satisfy (18) at [0; T ℄. Then

S(t)�

~

S(t) =

Z

t

t

0

[A(S(�)) �A(

~

S(�))℄ d�

[A(S(t)) � A(

~

S(t))℄ is a 
ontinuous fun
tion on [0; T ℄. From Y4, A2 we obtain an

integral estimation:

kS(t)�

~

S(t)k

1

�

Z

t

t

0

kA(S(�))�A(

~

S(�))k

1

d� � L

A

Z

t

t

0

kS(�)�

~

S(�)k

1

d�

Lemma(Gronwall) (see[6℄, p.5) Assume that for t 2 [t

0

; t

0

+ a℄

�(t) � Æ

1

+ Æ

2

Z

t

t

0

 (�)�(�) d�

where �(t);  (t) � 0 are 
ontinuous at [t

0

; t

0

+ a℄, Æ

1

; Æ

2

> 0. Then for t 2 [t

0

; t

0

+ a℄:

�(t) � Æ

1

exp

�

Æ

2

Z

t

t

0

 (�) d�

�

:

Corollary. If Æ

1

= 0, then �(t) = 0 at [t

0

; t

0

+ a℄.

In our 
ase �(t) = kS(t)�

~

S(t)k

1

- 
ontinuous (from Y3),  (t) = 1, Æ

2

= L

A

, Æ

1

= 0,

a = T . From the Corollary we 
on
lude that S(t) =

~

S(t) at t 2 [t

0

; t

0

+ T ℄.

So we have the lo
al uniqueness.

Gronwall's Lemma 
ould be used to show the 
ontinuous dependen
e from initial

data. Now assume that we have U

b

, b; B; L

A

; T like before, S(t) is a solution of (11)

on [0; T ℄, S(0) = S

0

. Continuous dependen
e on initial data for S(t) means that for

any " > 0 it is possible to �nd Æ > 0 that for all t 2 [0; T ℄, kS(t) �

~

S(t)k < " where

~

S(t) is a solution of (11) with initial data

~

S(0) =

~

S

0

and kS

0

�

~

S

0

k

1

< Æ.

Æ We know that kS(t) � S

0

k

1

� BT < b. If Æ < b � BT then it is possible to show

that

~

S(t) stays inside U

b

.

Æ Like before, in U1, k

~

S(t

�

)� S

0

k

1

= b, k

~

S(t)� S

0

k < b for t 2 [0; t

�

)

k

~

S(t

�

)� S

0

k � k

~

S

0

� S

0

k+

Z

t

�

0

kA(

~

S(�))k

1

d� < b�BT +BT = b

and 
ontradi
tion implies that

~

S(t) stays inside U

b

for t 2 [0; T ℄).�

For given " > 0 let Æ < minfb�BT; "

�

= exp(L

A

T )g then

S(t)�

~

S(t) = S

0

�

~

S

0

+

Z

t

0

[A(S(�)) �A(

~

S(�))℄ d�

kS(t)�

~

S(t)k

1

� kS

0

�

~

S

0

k

1

+

Z

t

0

kA(S(�)) �A(

~

S(�))k

1

d�
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� kS

0

�

~

S

0

k

1

+ L

A

Z

t

0

kS(�)�

~

S(�)k

1

d�

Using Gronwall's lemma with Æ

1

= kS

0

�

~

S

0

k

1

, Æ

2

= L

A

, �(t) = kS(t)�

~

S(t)k

1

, a = T ,

 (t) = 1 we get:

kS(t)�

~

S(t)k

1

� kS

0

�

~

S

0

k

1

e

L

A

t

< " 8t 2 [0; T ℄ �

And this means 
ontinuous dependen
e on initial data for solution S(t) on [0; T ℄.

2.3.3 Expansion of the solution until it rea
hes zero.

Fun
tion S

0

is bounded away from zero if there is a positive 
onstant S

�

that S

0

(x) � S

�

almost everywhere; or in other words there is a 
onstant S

�

> 0 su
h that �fx 2


 : S

0

(x) < S

�

g = 0. Opposite: fun
tion rea
hes zero if for any positive 
onstant S

�

,

�fx 2 
 : S

0

(x) < S

�

g > 0.

In ODE a solution y(t) existing on [0; T ℄ 
an be 
ontinued until it leaves domain D

with "regular" properties of f(t; y) (in D f(t; y) is 
ontinuous, Lips
hitz 
ontinuous on

y). The "last" point (T; y(T )) being inside D 
an be used as a "new" initial point, and

this pro
edure 
an be applied several times. In our 
ase it is also possible to 
ontinue

from the point (T; S(T )), sin
e S(T ) staying inside U

b

(from U1, S(T ) is bounded

away from zero and we 
an �nd "new" U

b

for S

(1)

0

= S(T ).) Let use a new notation

with T

0

= 0, S

(0)

0

= S

0

, T is substituted by �T

1

, T

1

= T

0

+�T

1

, S

(1)

0

= S(T

1

) and

so on . . . :

T

0

= 0

S

(0)

0

= S

0

�T

1

T

1

S

(1)

0

�T

2

T

2

S

(2)

0

: : :

T

n

S

(n)

0

�T

n

T

n+1

S

(n+1)

0

: : : (20)

In the previous dis
ussion, the most important point was that there exists some

T > 0 from (19), provided S

0

> 0 but the 
hoi
e of U

b

and T was not �xed. Here

we need to �x them to ex
lude, for example, mean-less 
hoi
e of �T

n

in (20) with

�T

n

= minfb

n

=B

n

; 1=L

(n)

A

g=n

2

.

Remark The optimal 
hoi
e is not our purpose.

Let us use the following notation:

d[S℄ = ess inf

x2


S(x); �(d) = inf

s2[d;1℄

K(s); �[S℄ = �(d[S℄); d

n

= d[S

(n)

0

℄ (21)

We know that �T

n

> 0 for all n 2 N (be
ause of U1 and S(T

n

) � d

n

> 0), but �T

n

may be
ome smaller and smaller when n!1. If T

�

= sup

n

T

n

= lim

n!1

T

n

<1 then

for t � T

�

we 
annot de�ne a solution S(t) by the sequen
e (20). Our purpose is to

estimate �T

n

from below in order to 
larify the situation with T

�

.

Determination of one possible pro
ess (20).

n 2 N. S(T

n

) = S

(n)

0

� d

n

> 0. Let b

n

= d

n

=2C

B

then 8S 2 U

b

n

, a.e:

jS(x)� S

(n)

0

(x)j � C

B

kS � S

(n)

0

k

1

� C

B

b

n

=

d

n

2

;

jS(x)j � jS

(n)

0

(x)j � jS

(n)

0

(x)� S(x)j � d

n

�

d

n

2

=

d

n

2

> 0:

) d[S℄ �

d

n

2

8S 2 U

b

n

.

On the other hand we do not want to have b

n

too large, so let

b

n

=

1

2C

B

minfd

n

; 1g (22)

12



U

b

n

is de�ned. For given U

b

n

we 
an 
hoose

�T

n

= 0:9minf1=L

(n)

A

; b

n

=B

n

g < minf1=L

(n)

A

; b

n

=B

n

g: (23)

To estimate �T

n

from below we need to estimate the positive 
onstants L

(n)

A

, B

n

, b

n

;

two �rst from above and the last from below.

(21) implies that �(d) is monotone: " � d

n

) �(") � �(d

n

). Then 8S 2 U

b

n

,

�[S℄ = �(d[S℄) � �(d

n

=2)) estimation of the ellipti
ity 
onstant for U

b

n

from below:

E

n

= inf

S2U

b

n

E[S℄ = inf

S2U

b

n

minf�[S℄L; �

0

g � min

�

�

�

d

n

2

�

L; �

0

�

:

From A1:

B

n

=

�

kKP

0

k

1

(kS

(n)

0

k

1

+ b

n

) + �gkKk

1

�(
)

�.

E

n

: (24)

Remark We need to take into a

ount a possibility: kS

(n)

0

k

1

! 1 when n ! 1,

but we 
an 
ontrol this by the 
hoi
e of b

n

from (22):

kS

(n)

0

k

1

+ b

n

� kS

(n�1)

0

k

1

+ b

n�1

+ b

n

� ::: � kS

(0)

0

k

1

+

n

X

k=0

b

k

� kS

(0)

0

k

1

+

n+ 1

2C

B

:

Dependen
e B

n

on n has the form B

n

� (�

1

n+�

2

)=E

n

, where positive 
onstants �

1

,

�

2


an be expressed from (24).

L

(n)

A

=

�

L

KP

0

C

B

(kS

0

k

1

+ b) + kKP

0

k

1

+ �gL

K

C

B

�(
) + L

K

C

B

LB

n

�Æ

E

n

: (25)

In simpli�ed form (with positive 
onstants �

1

, �

2

, �

3

, �

1

, �

2

whi
h do not depend

on n):

L

(n)

A

�

�

�

1

n+ �

2

+ �

3

(�

1

n+ �

2

)=E

n

�Æ

E

n

:

For the sequen
e of stri
tly positive numbers d

n

we 
an distinguish two possibilities:

1) d

n

� " > 0 for all n or 2) lim inf

n!1

d

n

= 0.

1) In the �rst 
ase

E

n

� minf�("=2)L; �

0

g = E

"

> 0;

B

n

� (�

1

n+ �

2

)=E

"

, L

(n)

A

� (


1

n+ 


2

)=E

"

, b

n

� "=2C

B

.

�T

n

= 0:9minf1=L

(n)

A

; b

n

=B

n

g � 0:9min

�

E

"




1

n+ 


2

;

"

2C

B

(�

1

n+ �

2

)

�

Beginning from some number n

0

one from fE

"

=(


1

n+


2

); "=2C

B

(�

1

n+�

2

)g is always

smaller than another,

T

�

=

1

X

n=0

�T

n

�

1

X

n=n

0

�T

n

� min

(

1

X

n=n

0

0:9E

"




1

n+ 


2

;

1

X

n=n

0

0:9 "

2C

B

(�

1

n+ �

2

)

)

=1:

both rows do not 
onverge. In this 
ase T

�

=1 and we 
an 
ontinue the solution til

any positive value t.

2) In the se
ond 
ase the solution "rea
hes zero". When d(S) = 0, the equation (6)

loses ellipti
ity, and for su
h S, operator A(S) may be unde�ned. We 
an determine
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the solution S(t) on [0; T

�

) by sequen
e (20), but we do not know if T

�

is �nite or

not (it may also be in�nite like in the �rst 
ase).

In both 
ases the solution S(t) 
an be determined on [0; T

�

) by in�nite pro
ess

(20). In ea
h segment [T

n

; T

n+1

℄, the solution S(t) is unique ) S(t) is unique on

[0; T

�

). For any given t 2 [0; T

�

), the solution S(t) depends 
ontinuously on initial

value S

0

(there exists �nite number n that T

n

> t and we 
an apply 
ontinuous

dependen
e on ea
h segment [T

k�1

; T

k

℄, beginning from the last k = n : : : 1.)

In the 
ase 2) we have analogy with ODE 
ase when a solution leaves domain of

"good" properties of f(t; y).

Remark We need to mention that S being a saturation 
annot be greater than 1 {

another 
riti
al boundary with whi
h we may deal in a same way like with 0: T

�

=1

or S "rea
hes" the 
riti
al boundaries (0 or 1).

2.3.4 Solution as a fun
tion of two variables x and t.

Until now we were dealing with the abstra
t fun
tion S 2 C([0; T ℄! H

1

(
)). In this

se
tion we are going to �nd some properties of the solution as a "normal" fun
tion of

two variables to obtain in some way a 
onne
tion between (11) and (6).

Let y 2 C([0; T ℄! H

1

(
)) and I be an embedding operator fromH

1

(
) to C

B

(
).

Iy 2 C([0; T ℄ ! C

B

(
)) We will also 
onsider that I : H

1

(
) ! C

B

(
)

T

H

1

(
), in

other words Iy(t) 2 H

1

, Iy(t) = y(t) in H

1

and for example A(Iy(t)) = A(y(t)).

So 8t, y(t) being a fun
tion from H

1

(
) has a 
ontinuous representative y(t; �) :=

Iy(t) 2 C

B

T

H

1

. y(t; x) is a real fun
tion from t and x. In every point x 2 
 it is

uniquely de�ned.

In the se
tion "Another formulation . . . " the spa
e C

B

(
) was already mentioned.

C

B

(
) is a Bana
h spa
e of bounded 
ontinuous fun
tions (not ne
essarily uniformly


ontinuous) under the norm

kyk

C

B

= sup

x2


jy(x)j

Remark In one dimensional 
ase more regular C(

�


) 
an be used instead of C

B

(
).

C1. y(t; x) is 
ontinuous on [0; T ℄�
.

Æ (t; x) 2 [0; T ℄�
. B

r

(x) � 
 - a ball with 
enter x and some positive radius r.

For any " > 0 exists Æ < r that:

a) ky(t

1

; �)� y(t; �)k

1

< "=2C

B

when jt

1

� tj < Æ

) sup

x2


jy(t

1

; x)� y(t; x)j � C

B

ky(t

1

; �)� y(t; �)k

1

< "=2:

b) y(t; x) is 
ontinuous in x: jy(t; x

1

)� y(t; x)j < "=2 when jx

1

� xj < Æ.

For all (t

1

; x

1

): jx

1

� xj < Æ, jt

1

� tj < Æ:

jy(t

1

; x

1

)� y(t; x)j � jy(t

1

; x

1

)� y(t; x

1

)j+ jy(t; x

1

)� y(t; x)j < "=2 + "=2 = "�

C2. y(�) 2 C

�

[0; T ℄! H

1

(
)

�

Then Iy(�) 2 C ([0; T ℄! C

B

(
)) and

I

Z

t

0

y(�) d� = �

Z

t

0

Iy(�) d�

Remark The Integral in the right hand side is in the sense of the Bana
h spa
e

E = C

B

(
) for whi
h properties Y1{Y7 are also valid. Integrals in C

B

we will mark

by � before the integral.

Æ a) I-
ontinuous, y(�) 2 C

�

[0; T ℄! H

1

(
)

�

) Iy(�) 2 C ([0; T ℄! C

B

(
)). Then
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exists �

R

t

0

Iy(�) d� .

b)I { linear )

I(

X

i

y(�

i

)��

i

) =

X

i

Iy(�

i

)��

i

:

Right side tends to

R

t

0

Iy(�) d� . Sin
e I is 
ontinuous the left side tends to I

R

t

0

y(�) d� �

Consider S 2 C

�

[0; T ℄! H

1

�

a solution of (11). It satis�es (18).

From C2: IS(�) 2 C ([0; T ℄! C

B

),

IS(t) = IS

0

+ �

Z

t

0

IA(S(�)) d�:

Using IA(S(�)) 2 C ([0; T ℄! C

B

) and Y6 we 
an 
on
lude that 8t 2 [0; T ℄, IS(t) is

di�erentiable in the sense of C

B

and Def 2 (is marked by *):

�

d

dt

IS(t) = IA(S(t)) = IA(IS(t)):

A fun
tion of two variables S(t; �) := IS(t) is 
ontinuous on (t; x) from C1. Exis-

ten
e of �

d

dt

IS(t) implies existen
e of 
lassi
al partial derivative from S(t; x) on t:

�

�t

S(t; �) = �

d

dt

IS(t). Hen
e,

�

�t

S(t; x) = IA(S(t; �))(x): (26)

Moreover,

�

�t

S(t; x) is 
ontinuous sin
e the right hand side is 
ontinuous on [0; T ℄�
.

We 
an summarize properties of S(t; x):

C3. S(t; x) - is 
ontinuous on [0; T ℄� 
 and S(t; �) is 
ontinuous on [0; T ℄ in H

1

(
)

(S(�; �) 2 C

�

[0; T ℄! H

1

(
)

�

).

C4. Exists (
ontinuous)

�

�t

S(t; x) on [0; T ℄�
 and

�

�t

S(t; �) 2 H

1

(
).

C5. S(t; x) satis�es (26), S(0; x) = IS

0

(x) � d[S

0

℄ > 0 and it looks possible to say

that S(t; x) is a weak solution on x of (6) (in the variational sense).

Assume that fun
tion

~

S(t; x) satis�es C3,C4,C5. We are going to show that

~

S(t; x) has to be equal to S(t; x) de�ned before.

Remark Existen
e of

�

�t

~

S may be insuÆ
ient for existen
e of �

d

dt

~

S,

d

dt

~

S.

Æ From C3 we know that

~

S(t; �) is 
ontinuous in H

1

. So A(

~

S(t; �)), IA(

~

S(t; �)) are

also 
ontinuous in H

1

and C

B

(while d[

~

S(t; �)℄ > 0). Continuity of

�

�t

~

S(t; x) 
an be

obtained as 
onsequen
e of C5, previous senten
e and C1 (it is not ne
essary to have

it in C2 as a 
ondition). D(t) =

R

t

0

A(

~

S(�; �)) d� is well de�ned in H

1

.

ID(t) = �

Z

t

0

IA(

~

S(�; �)) d�

C5

= �

Z

t

0

�

�t

~

S(�; �) d� is well de�ned in C

B

We need to show that ID(t)(x) =

~

S(t; x) �

~

S(0; x) (in other words that �

d

dt

~

S exists

and

�

�t

~

S = �

d

dt

~

S)

Æ Assume it is not true:

ID(t)(x

0

) 6=

~

S(t; x

0

)�

~

S(0; x

0

) = � �

Z

t

0

�

�t

~

S(�; x

0

) d�:

Last integral exists in R sin
e

�

�t

~

S(t; x) is 
ontinuous on [0; T ℄�
. �� { integral in R.

Let us

jID(t)(x

0

)� � �

Z

t

0

�

�t

~

S(�; x

0

) d� j = ": (27)
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Then from integral de�nitions in R and C

B

we 
an 
on
lude that there is Æ > 0 su
h

that for ea
h partition T of [0; t℄ with ��

i

< Æ,

�

�

�

�

�

X

i

�

�t

~

S(�

i

; x

0

)��

i

� � �

Z

t

0

�

�t

~

S(�; x

0

) d�

�

�

�

�

�

<

"

2

;

�

�

�

�

�

X

i

�

�t

~

S(�

i

; x

0

)��

i

� ID(t)(x

0

)

�

�

�

�

�

�
















X

i

�

�t

~

S(�

i

; �)��

i

� ID(t)
















C

B

<

"

2

:

and we have 
ontradi
tion with (27) � So

�

Z

t

0

IA(

~

S(�; �)) d� =

~

S(t; �)�

~

S(0; �) =

~

S(t; �)� IS

0

:

From C3, there is only one fun
tion

~

S(t) 2 H

1

, that I

~

S(t) =

~

S(t; �), and

~

S(t) satis�es

(18). Then

~

S(t) is a solution of (11), but it must be unique. So

~

S(t) = S(t), )

~

S(t; �) = S(t; �) �.

Remark C3 
an be rather strong 
ondition for 
ontinuous fun
tion S(t; x).

We 
an summarize all what we tried to obtain in this se
tion in the following:

Suppose the assumptions (9) are satis�ed. Then there is T

�

> 0, �nite or in�nite

su
h that for any 
onstant T < T

�

, on [0; T ℄ there exists a unique solution S(t) of

(11) in H

1

that 
ontinuously depends on initial data S

0

. T

�


an be estimated from

below by �T

1

from (23, equality). This solution 
an be 
onsidered as a fun
tion of

two variables S(t; x) = IS(t)(x) that satis�es C3, C4, C5 and there is no other

fun
tion of two variables

~

S(t; x) that satis�es C3, C4, C5.

We 
annot establish further 
onne
tion with (4).
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3 Numeri
al methods

In this se
tion our main task is �nding the numeri
al methods for (4). For simpli
ity

we will deal only with homogeneous boundary 
onditions B.C.1 and B.C.2 for one

dimension problem, like in the previous se
tion. Instead of doing dis
retization of

(4) we will do numeri
s for (11) or the intermediate form (6), assuming that this

substitution is reasonable. We are going to use similarity of (11) with ODE 
ase.

The operator A(S) gives a solution u of ellipti
 problem (6) for known S. Let

A

h

(S

h

) be a numeri
 approximation of A(S). So A

h

(S

h

) gives a numeri
 solution of

ellipti
 problem (6) in 
 for 
orresponding boundary 
ondition and known S

h

. And

it is possible to use �nite element and �nite di�eren
e methods to approximate A(S).

In �nite element approa
h, S

h

2 H

1

h

, A

h

: H

1

h

! V

h

, where V

h

and H

1

h

are �nite

dimension subspa
es of Hilbert spa
es V and H

1

. (We remind that V = H

1

(
) for

B.C.1 and V = H

1

0

(
) for B.C.2, 
 = (0; l)).

Using �nite di�eren
e s
hemes we have some grid G in 
,

G = fx

i

2 
 i = 1; : : :mg. Then S

h

2 R

m

and A

h

: R

m

! R

m

.

Assume that we have some numeri
al approximation A

h

: W

h

! U

h

� W

h

,

no matter what W

h

, U

h

are, what boundary 
ondition we have and whi
h numeri


method we use for A

h

.

Consider following analog of (11):

d

dt

S

h

(t) = A

h

(S

h

(t)); S

h

(t) 2 W

h

; S

h

(0) = S

0

h

: (28)

This equation is similar to ODE

d

dt

y(t) = f(t; y(t)), y(0) = y

0

or to System of ODE

d

dt

�x(t) =

�

f(t; �x(t)), �x(0) = �x

0

.

Remark We 
an introdu
e a dependen
e of A

h

on t. In the 
ase of homogeneous

boundary 
onditions and 
oeÆ
ients in (6) that depend only on S and x, it is only a

formalism and A

h

(S

h

; t) = A

h

(S

h

). But in more general problems A

h

depends on t.

There are many numeri
al methods known for ODE, and many of them 
an be

employed for (28).

Let us 
onsider an equidistant grid in t with some step �t and following notations:

t

0

= 0, t

j+1

= t

j

+�t, S

j

h

= S

h

(t

j

), j = 0 : : :N , �t = T=N .

Example 1 Runge-Kutta methods.

S

j+1

h

= S

j

h

+�t

p

X

k=1

b

k

A

k

A

1

= A

h

(S

j

h

; t

j

), A

2

= A

h

(S

j

h

+�ta

21

A

1

; t

j

+ 


2

�t), . . .

A

p

= A

h

 

S

j

h

+�t

p�1

X

k=1

a

pk

A

k

; t

j

+ 


p

�t

!

:

Constants a

lk

, 


k

, b

k

determine the Runge-Kutta method.

Euler method p = 1

S

j+1

h

= S

j

h

+�tA

h

(S

j

h

; t

j

): (29)

Improved Euler method p = 2

S

j+1

h

= S

j

h

+�tA

h

�

S

j

h

+

�t

2

A

h

(S

j

h

; t

j

); t

j

+

�t

2

�

: (30)
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Euler-Cau
hy method p = 2

S

j+1

h

= S

j

h

+�t

h

A

h

(S

j

h

; t

j

) +A

h

�

S

j

h

+�tA

h

(S

j

h

; t

j

); t

j

+�t

�i

=2: (31)

Fourth order Runge-Kutta method p = 4

S

j+1

h

= S

j

h

+�t

�

1

6

A

1

+

1

3

A

2

+

1

3

A

3

+

1

6

A

4

�

(32)

A

1

= A

h

(S

j

h

; t

j

); A

2

= A

h

�

S

j

h

+

1

2

�tA

1

; t

j

+

1

2

�t

�

;

A

3

= A

h

�

S

j

h

+

1

2

�tA

2

; t

j

+

1

2

�t

�

; A

4

= A

h

�

S

j

h

+�tA

3

; t

j

+�t

�

:

Example 2 The multi-step method.

S

j+p

h

= S

j+q

h

+�t

p

X

k=0

b

k

A

h

(S

j+k

h

; t

j+k

)

where p, q, b

k

k = 0; : : : ; p are parti
ular method's parameters.

Remark It is also possible to use impli
it s
hemes for ODE.

One approa
h for 
onstru
ting a numeri
al method for (4) is to 
ombine some

numeri
 method for Ellipti
 Boundary Value problem with some numeri
al method

for Ordinary Di�erential Equation. Both 
hoi
es 
an be rather independent from ea
h

other.

Next we will dis
uss a 
ombination of Euler method in "t - dire
tion" with ab-

stra
t �nite element method in "x - dire
tion"; des
ribe one implementation of �nite

element method for A

h

(S) where V

h

is a spa
e of pie
e-wise linear fun
tions; des
ribe

another approximation A

h

(S) from �nite di�eren
es approa
h. At the end we present

some 
omputational experiment results for di�erent 
onstants L > 0, two types of ho-

mogeneous boundary 
onditions B.C.1, B.C.2; 
omparison with results for Ri
hard's

equation (L = 0) and 
omparison the results for the same problem but obtained on

nested sequen
e of grids.

3.1 Finite elements { Euler method

For the most simplest method we will try to get 
onvergen
e. The operator A was

de�ned in H

1

by variational approa
h. So it is natural to use �nite element method

to get it's approximation A

h

(S).

Assume that we have a di�erential problem (11) with S

0

bounded away from zero.

We 
an 
hoose U

b

with 
onstants b; B; L

A

; C; E like before. Let S(t) be a solution of

(11) on [0; T ℄, where T is from (19) for 
hosen U

b

. S(t) lies inside U

b

not near than

b�BT from the boundary �U

b

.

Assume that we have a sequen
e of �nite dimensional subspa
es fV

h

g, where every

next element 
ontains all previous; parameter h is one from a monotone de
reasing

sequen
e fh

k

g, lim

k!1

h

k

= 0. When h

k

! 0, the dimension of V

h

k

in
reases and they

exhaust all V (8" > 0;8u 2 V 9V

h

from the sequen
e that: inf

v

h

2V

h

ku� v

h

k

1

< " ).

To get approximation u

h

= A

h

(S

h

) of u = A(S

h

) by �nite element method for


hosen V

h

, we need to �nd u

h

2 V

h

that (see (8)):

a

�

[S

h

℄(u

h

; v

h

) = a[S

h

℄(u

h

; v

h

) + (u

h

; v

h

)

0;�

= l[S

h

℄(v

h

) 8v

h

2 V

h

18



dim V

h

= d. v

1

: : : v

d

{ basis in V

h

.

To �nd u

h

=

P

d

i=1

u

i

h

v

i

; we have to solve a linear algebrai
 system of equations:

d

X

i=1

a

�

[S

h

℄(v

i

; v

j

)u

i

h

= l[S

h

℄(v

i

); j = 1 : : : d; (33)

with positive de�nite matrix fa

�

[S

h

℄(v

i

; v

j

)g

ij

provided a

�

[S

h

℄ is V -ellipti
. So the

approximate solution u

h

exists for all S

h

2 U

b

� H

1

.

The di�eren
e between approximate and exa
t solutions 
an be estimated with

the help of Cea lemma (see [5℄ p. 54 or [3℄ part b, p.118):

ku� u

h

k

V

�

C

E

inf

v

h

2V

h

ku� v

h

k

V

; u = A(S

h

); u

h

= A

h

(S

h

); S

h

2 U

b

\ V

h

:

Remark It is diÆ
ult to expe
t that we 
an �nd V

h

uniformly 
losed to the set

A(U

b

) = fu = A(S

h

) : S

h

2 U

b

g when h! 0, in other words that for any " > 0 exists

V

h

that 8u 2 A(U

b

), inf

v2V

h

ku� vk

V

< ".

Some notations:

S

j

h

= S

h

(t

j

) � approximate solution at time t

j

:

S

j

= S(t

j

) � exa
t solution at time t

j

:

�

j

= S

j

� S

j

h

� error of approximation.

S

j

; S

j

h

;�

j

2 H

1

(
).

S

j+1

= S

j

+

Z

t

j+1

t

j

A(S(�)) d� � S

j

+A(S

j

)�t

kS

j+1

� S

j

�A(S

j

)�tk

1

= k

Z

t

j+1

t

j

�

A(S(�)) �A(S

j

)

�

d�k

1

�

�

Z

t

j+1

t

j

kA(S(�))�A(S

j

)k

1

d� � L

A

B

(t

j+1

� t

j

)

2

2

(34)

we used kA(S(�))� A(S

j

)k

1

� L

A

kS(�)� S

j

k

1

� L

A

Bj� � t

j

j:

The Euler method: S

j+1

h

= S

j

h

+�tA

h

(S

j

h

).

Remark S

j

h

2 V

h

+ S

0

h

for all j.

A

h

(S

j

h

) = A(S

j

h

)+e

j

h

, e

j

h

is an error of �nite element method, and 
an be estimated

by Cea lemma. Due to the diÆ
ulties noti
ed in the last remark, we would like to

�nd V

h

uniformly 
losed to A(S(t)), where S(t) is exa
t solution.

For some small "

1

> 0, let divide [0; T ℄ into l parts by points �

i

= i�� , i = 0 : : : l,

and �� � "

1

/ 2L

A

B. Then

kA(S(t))�A(S(�

i

))k

1

� L

A

kS(t)� S(�

i

)k

1

� L

A

Bjt� �

i

j < L

A

B�� �

"

1

2

(35)

where t 2 [0; T ℄, �

i

is the nearest point to t (�� is not the same with �t in Euler

method). l is a �nite number ) we 
an 
hoose V

h

su
h that

max

i=0:::l

inf

v

h

2V

h

kA(S(�

i

))� v

h

k

1

<

"

1

2

: (36)
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(36) are also true for all elements from fV

h

g that follow the 
hosen subspa
e (be
ause

V

h

k

� V

h

k+1

).

Together (35), (36) give inf

v

h

2V

h

kA(S(t))� v

h

k

1

< "

1

for all t 2 [0; T ℄.

We 
an estimate e

j

h

:

ke

j

h

k

1

= kA(S

j

h

)�A

h

(S

j

h

)k

1

�

C

E

inf

v

h

2V

h

kA(S

j

h

)� v

h

k

1

�

exists v

�

h

2 V

h

that kA(S

j

)� v

�

h

k

1

< "

1

)

�

C

E

�

kA(S

j

h

)�A(S

j

)k

1

+ kA(S

j

)� v

�

h

k

1

�

�

C

E

(L

A

k�

j

k

1

+ "

1

): (37)

Now we 
an estimate the error �

j+1

from �

j

:

�

j+1

= S

j+1

� S

j+1

h

= S

j+1

� S

j

h

�A(S

j

h

)�t� e

j

h

�t =

= S

j+1

� S

j

�A(S

j

)�t+ S

j

+A(S

j

)�t� S

j

h

�A(S

j

h

)�t� e

j

h

�t:

k�

j+1

k

1

� kS

j+1

�S

j

�A(S

j

)�tk

1

+kS

j

�S

j

h

k

1

+�tkA(S

j

)�A(S

j

h

)k

1

+�tke

j

h

k

1

�

From (34) we estimate the �rst term, from (37) the last.

� L

A

B

�t

2

2

+ k�

j

k

1

+�tL

A

k�

j

k

1

+�t

C

E

(L

A

k�

j

k

1

+ "

1

) =

= k�

j

k

1

�

1 +�tL

A

(1 +

C

E

)

�

+�t

�

L

A

B

�t

2

+

C

E

"

1

�

= �k�

j

k

1

+�tD:

where � = 1 +�tL

A

(1 +

C

E

) > 1, D = L

A

B

�t

2

+

C

E

"

1

.

x

j

= k�

j

k

1

; x

j+1

� �x

j

+�tD:

The initial error x

0

= kS

0

�S

0

h

k

1

is zero if we know the exa
t value of S

0

2 H

1

(then

we 
an S

0

h

:= S

0

, in this 
ase S

j

h

2 V

h

+S

0

). It is not ne
essary to take approximation

S

0

h

from some H

1

h

.

Now 
onsider that exa
t initial fun
tion S

0

2 H

1

is unknown, the measured value

~

S

0

2 H

1

has a measurement error e

M

= kS

0

�

~

S

0

k

1

. Additionally, if it is 
onvenient

to use fun
tions from H

1

h

instead of H

1

, then we have an approximation error e

A

=

k

~

S

0

� S

0

h

k

1

. (It 
an be 
onvenient sin
e integrals in a

�

[S

h

℄ may be too 
ompli
ated

when S

h

2 V

h

+ S

0

h

, for arbitrary S

0

h

2 H

1

).

Remark It is not ne
essary to have either V

h

= H

1

h

for B.C.1 (V = H

1

) or V

h

� H

1

h

for B.C.2 (V = H

1

0

); it 
an be so only if 
onvenient.

x

0

= kS

0

� S

0

h

k

1

� e

A

+ e

M

= e

x

j+1

� �x

j

+�tD, everything is positive. Let y

0

= x

0

, y

j+1

= �y

j

+�tD.

fy

j

g is an upper boundary for x

j

, for all j: y

j

� x

j

.

y

1

= �y

0

+�tD, y

2

= �

2

y

0

+ ��tD +�tD. For arbitrary j 2 f0; : : :Ng:

y

j

= �

j

y

0

+ �

j�1

�tD + : : :+�tD = �

j

y

0

+�tD

j�1

X

i=0

�

i

= �

j

y

0

+�tD

�

j

� 1

�� 1

:
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�

N

=

�

1 +�tL

A

�

1 +

C

E

��

N

=

�

1 +

L

A

T (1 + C=E)

N

�

N

� e

L

A

T (1+C=E)

= C

1

:

�t

��1

= [L

A

(1 + C=E)℄

�1

= C

2

x

j

� y

j

� y

N

� C

1

x

0

+ C

2

(C

1

� 1)D = O("

1

+ e+�t):

And for any " > 0 there exist so small "

1

, e, �t that k�

j

k

1

< " for all j = 0 : : :N .

"

1


an be made arbitrary small for suÆ
iently large V

h

from fV

n

g. And we assume

that measurement error e

M

and approximation error e

A


an be made arbitrary small

or even zero.

The last thing: if the given " is larger than b� BT , then " := b� BT . We need

this to guarantee that S

j

h

stays in U

b

to use properties of A(S).

Remark Convergen
e in h is without order, in �t { �rst order.

Remark It seems not reasonable to try to get higher order in �t for other Runge-

Kutta method using the same means. We have only Lips
hitz 
ontinuity on A(S(t)),

we do not know if

d

dt

A(S(t)) exists and we 
annot get better integral approximation

in (34) than the se
ond order. For instan
e jxj is a Lips
hitz 
ontinuous, but not

di�erentiable fun
tion on [�h; h℄ and integral approximations give only O(h

2

) error,

not O(h

3

).

3.2 One possible A

h

(S) by �nite element method.

In the previous se
tion spa
es fV

h

g were not spe
i�ed. Here we 
hoose V

h

as a spa
e

of 
ontinuous fun
tions, linear between grid points x

i

, x

i

= ih, i = 0 : : : n, h = l=n.

The standard basis in H

1

h

is:

 

i

=

8

<

:

1

h

(x� x

i�1

) if x 2 [x

i�1

; x

i

℄

�

1

h

(x� x

i+1

) if x 2 [x

i

; x

i+1

℄

0 otherwise

i = 1 : : : n� 1:

And additionally two fun
tions:

 

0

=

�

�

1

h

(x � x

1

) ; x 2 [x

0

; x

1

℄

0 otherwise

;  

n

=

�

1

h

(x� x

n�1

) ; x 2 [x

n�1

; x

n

℄

0 otherwise

When we have B.C.1 then we use V

h

= H

1

h

with basis v

i

=  

i�1

, i = 1 : : : d, d = n+1.

For B.C.2 V

h

� H

1

h

has basis v

i

=  

i

, i = 1 : : : d, d = n�1. In general A

h

: H

1

! V

h

,

but we will use only A

h

: H

1

h

! V

h

: if the initial fun
tion S

0

h

2 H

1

h

hen
e all other

approximate solutions S

j

h

be from S

0

h

+ V

h

� H

1

h

.

To �nd a value u

h

= A

h

(S

h

) we need to solve a System of Linear Algebrai


Equations (33) with positive de�nite matrix fa

ij

g and right hand side ve
tor b,

a

ij

= a

�

[S

h

℄(v

i

; v

j

), b

i

= l[S

h

℄(v

i

), i; j 2 f1 : : : dg. Our purpose here is to simplify

expressions for a

ij

and b

i

using formulas for v

i

and pie
e-wise linearity of S

h

2 H

1

h

.

Then we 
an denote S

i

= S

h

(x

i

). S

h

(x) is uniquely de�ned by these numbers. Also

u

i

= u

h

(x

i

).

To 
over both boundary 
onditions we will 
al
ulate a

ij

= a

�

[S

h

℄( 

i

;  

j

), b

i

=

l[S

h

℄( 

i

), i; j = f0 : : : ng. This matrix 
oin
ides with those for B.C.1; the matrix for

B.C.2 
ould be obtained by deleting rows and 
olumns with number 0 and n.

First we noti
e that matrix fa

ij

g is tridiagonal, symmetri
 (ji�jj > 1)  

i

 

j

� 0,

d 

i

dx

d 

j

dx

� 0.)

d 

i

dx

d 

i

dx

=

�

1

h

2

on [x

i�1

; x

i+1

℄

0 otherwise

i = 1 : : : n� 1:
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for i = 0 and i = n this expression is true while x 2 (0; l).

d 

i

dx

d 

i�1

dx

=

�

�

1

h

2

on [x

i�1

; x

i

℄

0 otherwise

i = 1 : : : n:

d 

i

dx

d 

i+1

dx

=

�

�

1

h

2

on [x

i

; x

i+1

℄

0 otherwise

i = 0 : : : n� 1:

 

i

 

i

=

8

<

:

1

h

2

(x � x

i�1

)

2

x 2 [x

i�1

; x

i

℄

1

h

2

(x� x

i+1

)

2

x 2 [x

i

; x

i+1

℄

0 otherwise

i = 1 : : : n� 1:

for i = 0 and i = n the last expression is true while x 2 (0; l).

 

i

 

i�1

=

�

�

1

h

2

(x� x

i�1

)

2

+

1

h

(x� x

i�1

) x 2 [x

i�1

; x

i

℄

0 otherwise

i = 1 : : : n:

 

i

 

i+1

=

�

�

1

h

2

(x � x

i+1

)

2

�

1

h

(x� x

i+1

) x 2 [x

i

; x

i+1

℄

0 otherwise

i = 0 : : : n� 1:

We remind the integral expressions for a

�

[S

h

℄, l[S

h

℄:

a

ij

= a

�

[S

h

℄( 

i

;  

j

) =

l

Z

0

K(S

h

(x))L

d 

i

dx

d 

j

dx

dx+

l

Z

0

� 

i

 

j

dx

b

i

= l[S

h

℄( 

i

) =

l

Z

0

F (S

h

(x))

d 

i

dx

dx =

l

Z

0

K(S

h

(x))

�

�P (S

h

(x))

�x

� �g

�

d 

i

dx

dx

Integrands are not zero only on a small interval with the length h or 2h. For a

ii

for

i = 1 : : : n� 1:

a

ii

=

L

h

2

x

i+1

Z

x

i�1

K(S

h

(x)) dx +

x

i

Z

x

i�1

�(x)

(x � x

i�1

)

2

h

2

dx+

x

i+1

Z

x

i

�(x)

(x � x

i+1

)

2

h

2

dx (38)

It is 
onvenient to denote:

r

q

i

=

1

h

q+1

h

Z

0

�(x

i

+ y)y

q

dy; i = 0 : : : n� 1; q = 1; 2 (39)

l

q

i

=

1

h

q+1

0

Z

�h

�(x

i

+ y)y

q

dy; i = 1 : : : n; q = 1; 2 (40)

H(s) =

s

Z

0

K(x) dx -monotone in
reasing fun
tion (41)

�(x) � 0 ) r

q

i

� 0 8q 2 Z

+

, l

q

i

� 0 when q is even and l

q

i

� 0 when q is odd.

Remark r

2

i

and l

2

i

give some kind of average of �(x)=2 to the right and left from x

i

.

The se
ond element of (38) is equal to r

2

i�1

,the third l

2

i+1

.
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We 
hose that S

h

belongs to H

1

h

. So S

h

is linear on ea
h segment [x

i

; x

i+1

℄. For

some 
onstants a, b, 
, d we 
an 
al
ulate integral

b

Z

a

K(
x+ d) dx =

1




b

Z

a

K(
x+ d) d(
x + d) =

H(
b+ d)�H(
a+ d)




Let 
 = (S

i+1

� S

i

)=h, d = S

i

� x

i

(S

i+1

� S

i

)=h,

K

i

=

1

h

x

i+1

Z

x

i

K(S

h

(x)) dx

then

K

i

=

(

K(S

i

) if S

i

= S

i+1

H(S

i+1

)�H(S

i

)

S

i+1

�S

i

otherwise

(42)

a

ii

=

L

h

(K

i�1

+K

i

) + (r

2

i�1

+ l

2

i+1

)h; i = 1 : : : n� 1 (43)

a

00

=

L

h

K

0

+ l

2

1

h; a

nn

=

L

h

K

n�1

+ r

2

n�1

h: (44)

For other elements

a

ii+1

= �

L

h

2

x

i+1

Z

x

i

K(S

h

(x)) dx �

x

i+1

Z

x

i

�(x)

�

(x � x

i+1

)

2

h

2

+

x� x

i+1

h

�

dx

a

ii+1

= �

L

h

K

i

� (l

2

i+1

+ l

1

i+1

)h; i = 0 : : : n� 1 (45)

a

ii�1

= �

L

h

K

i�1

+

x

i

Z

x

i�1

�(x)

�

�

(x� x

i�1

)

2

h

2

+

x� x

i�1

h

�

dx =

a

ii�1

= �

L

h

K

i�1

� (r

2

i�1

� r

1

i�1

)h; i = 1 : : : n (46)

b

i

=

x

i+1

Z

x

i�1

K(S

h

(x))P

0

(S

h

(x))

dS

h

dx

d 

i

dx

dx� �g

x

i+1

Z

x

i�1

K(S

h

(x))

d 

i

dx

dx

Previous expression 
an be divided into four integrals: I

1

+ I

2

� �g(I

3

+ I

4

).

I

1

=

x

i

Z

x

i�1

K(S

h

(x))P

0

(S

h

(x))

dS

h

dx

1

h

dx =

1

h

x

i

Z

x

i�1

K(S

h

)P

0

(S

h

(x))dS

h

(x) =

=

G(S

h

(x

i

))�G(S

h

(x

i�1

))

h

=

G(S

i

)�G(S

i�1

)

h

where

G(s) =

Z

s

0

K(x)P

0

(x)dx -monotone de
reasing fun
tion (47)

23



Remark Linearity of S

h

(x) was not used.

I

2

= �

G(S

i+1

)�G(S

i

)

h

:

I

3

=

x

i

Z

x

i�1

K(S

h

(x))

1

h

dx = K

i�1

; I

4

= �K

i

b

i

= �

G(S

i+1

)� 2G(S

i

) +G(S

i�1

)

h

+ �g(K

i

�K

i�1

) (48)

b

0

= �

G(S

1

)�G(S

0

)

h

+ �gK

0

; b

n

=

G(S

n

)�G(S

n�1

)

h

� �gK

n�1

(49)

So we obtained expressions for a

ij

and b

i

: (43,44,45,46,48,49) with the help of

(39,40,41,42,47). To show that it 
ould be treated as a feasible approximation of (6)

we divide a

ij

and b

i

by h and rewrite the liner equations in a form:

�

1

h

�

K

i

L

u

i+1

� u

i

h

�K

i�1

L

u

i

� u

i�1

h

�

+ l

2

i+1

(u

i

� u

i+1

) + r

2

i�1

(u

i

� u

i�1

)+

+r

1

i�1

u

i�1

� l

1

i+1

u

i+1

= �

�

G(S

i+1

)� 2G(S

i

) +G(S

i�1

)

h

2

� �g

K

i

�K

i�1

h

�

(50)

For i = 1 : : : n� 1. Additionally for i = 0; n:

�K

0

L

u

1

� u

0

h

+ l

2

1

(u

0

� u

1

)h� l

1

1

u

1

h = �

G(S

1

)�G(S

0

)

h

+ �gK

0

(51)

K

n�1

L

u

n

� u

n�1

h

+ r

2

n�1

(u

n

� u

n�1

)h+ r

1

n�1

u

n�1

h =

G(S

n

)�G(S

n�1

)

h

� �gK

n�1

(52)

Let us 
ompare (50) with (6):

�

1

h

�

K

i

L

u

i+1

� u

i

h

�K

i�1

L

u

i

� u

i�1

h

�

� �

�

�x

�

K(S)L

�u

�x

�

(x

i

);

l

2

i+1

(u

i

� u

i+1

) = l

2

i+1

u

i

� u

i+1

h

h � l

2

i+1

du

dx

h � 0; r

2

i�1

(u

i

� u

i�1

) � 0;

r

1

i�1

=

�

1

h

2

Z

h

0

y dy = �

1

=2; l

1

i+1

= ��

2

=2

where �

1

2 [ min

[x

i�1

;x

i

℄

�(x); max

[x

i�1

;x

i

℄

�(x)℄, �

2

2 [ min

[x

i

;x

i+1

℄

�(x); max

[x

i

;x

i+1

℄

�(x)℄ )

r

1

i�1

u

i�1

� l

1

i+1

u

i+1

=

�

1

u

i�1

+ �

2

u

i+1

2

� �(x

i

)u(x

i

);

�

�

G(S

i+1

)� 2G(S

i

) +G(S

i�1

)

h

2

�

� �

d

2

dx

2

G(S

h

(x

i

)) =

= �

d

dx

�

G

0

(S

h

(x

i

))

dS

h

dx

(x

i

)

�

= �

d

dx

�

K(S

h

(x

i

))P

0

(S

h

(x

i

))

dS

h

dx

(x

i

)

�

;

�g

K

i

�K

i�1

h

� �g

d

dx

K(S

h

(x

i

)):
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Some remarks on implementation.

I1. Constants r

q

i

, i = 0 : : : n � 1, l

q

i

, i = 1 : : : n, q = 1; 2 
an be 
al
ulated on
e, a

priory and then used many times.

I2 In general 
ase, whereH(s), G(s), s 2 [0; 1℄ 
annot be represented as a 
ombination

of elementary fun
tions, we have a typi
al interpolation problem. A possible approa
h

is to 
al
ulate H(s

i

), G(s

i

) in suÆ
iently many number of points with high a

ura
y

by some quadrature formula for integrals; between them - interpolation by some simple

fun
tion on ea
h segment [s

i

; s

i+1

℄. The simplest 
ases are linear interpolation:

H(s) � H(s

i

) +

H(s

i+1

)�H(s

i

)

s

i+1

� s

i

(s� s

i

); s 2 [s

i

; s

i+1

℄

or the Taylor expansion: (s

i

is the nearest point to s)

H(s) � H(s

i

) +H

0

(s

i

)(s� s

i

) = H(s

i

) +K(s

i

)(s� s

i

):

I3 The matrix fa

ij

g is tridiagonal, symmetri
, positive de�nite, but may have no

diagonal dominan
e. To solve it we 
an use, for instan
e, sweep method [7℄, p. 61 for

diagonally dominant 
ase or p. 86 for general 
ase. Ea
h 
al
ulation A

h

(S

h

) needs

O(n) operations.

3.3 Another possible A

h

(S) by �nite di�eren
e method.

In �nite element method the basis equation was (8). Choosing �nite di�eren
e

method, we approximate the ellipti
 di�erential equation (6), where S is known and

u is unknown.

Let grid be uniform, with step h.

B:C:1 G

1

= fx

i

: x

i

= (i� 1=2)h; i = 1 : : : n; h = l=ng;

B:C:2 G

2

= fx

i

: x

i

= ih; i = 0 : : : n; h = l=ng:

(53)

x

i+1=2

= x

i

+ h=2, x

i�1=2

= x

i

� h=2.

To obtain a di�eren
e s
heme we use integro-interpolation method: we integrate

the equation (6) on [x

i�

1

2

; x

i+

1

2

℄, for B.C.1 i = 1 : : : n and i = 1 : : : n� 1 for B.C.2:

�

�

K(S(x))L

du

dx

(x)

�

x=x

i+

1

2

x=x

i�

1

2

+

Z

x

i+

1

2

x

i�

1

2

�(x)u(x) dx =

= �

�

K(S(x))

�

P

0

(S(x))

dS

dx

(x) � �g

��

x=x

i+

1

2

x=x

i�

1

2

(54)

We have to approximate this equation using only values in grid points.

Z

x

i+

1

2

x

i�

1

2

�(x)u(x) dx � �

i

u(x

i

)h;

where �

i

= �(x

i

) or

�

i

=

1

h

Z

x

i+

1

2

x

i�

1

2

�(x) dx

It is also possible to use in the approximation neighbour values u

i�1

, u

i+1

(if they

exists in 
).
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Other di�erential expressions are taken at the point x

i�

1

2

. To approximate them

we will use values at x

i�1

and x

i

.

Case 1. x

i�1

= x

i

� h =2 [0; l℄ is a
tual only for B.C.1, when x

i�

1

2

= 0. But in this


ase the 
ux is known at this point from the boundary 
ondition (homogeneous 
ase

- 
ux f

l

is zero):

�

K(S)L

du

dx

�K(S)

�

P

0

(S)

dS

dx

� �g

��

x=x

i�

1

2

=0

= f

l

Case 2. x

i�1

2 [0; l℄. For suÆ
iently smooth fun
tions

K(S(x

i�

1

2

)) = K(

S

i�1

+S

i

2

) +O(h

2

);

du

dx

(x

i�

1

2

) =

u

i

�u

i�1

h

+O(h

2

)

P

0

(S(x

i�

1

2

)) = P

0

(

S

i�1

+S

i

2

) +O(h

2

);

dS

dx

(x

i�

1

2

) =

S

i

�S

i�1

h

+O(h

2

):

(55)

For x

i+

1

2

the situation is very similar.

Di�eren
e s
heme: Let us substitute the 
ontinuous expressions in (54) by

approximations from (55) and divide both sides by h. We will get a di�eren
e s
heme

in a following form:

�

1

h

�

K

i+

1

2

L

u

i+1

� u

i

h

�K

i�

1

2

L

u

i

� u

i�1

h

�

+ �

i

u

i

=

= �

1

h

�

K

i+

1

2

�

P

0

i+

1

2

S

i+1

� S

i

h

� �g

�

�K

i�

1

2

�

P

0

i�

1

2

S

i

� S

i�1

h

� �g

��

; (56)

where

K

i+

1

2

= K

�

S

i

+ S

i+1

2

�

; P

0

i+

1

2

= P

0

�

S

i

+ S

i+1

2

�

i = 2 : : : n� 1 for B.C.1 and i = 1 : : : n� 1 for B.C.2.

Approximation of the boundary 
onditions:

B.C.1:

�K

1+

1

2

L

u

2

� u

1

h

+ �

1

u

1

h = �f

l

�K

1+

1

2

�

P

0

1+

1

2

S

2

� S

1

h

� �g

�

(57)

K

n�

1

2

L

u

n

� u

n�1

h

+ �

n

u

n

h = f

r

�K

n�

1

2

�

P

0

n�

1

2

S

n

� S

n�1

h

� �g

�

(58)

B.C.2:

u

0

= u

l

; u

n

= u

r

; S

0

= S

l

; S

n

= S

r

(59)

(in homogeneous 
ase u

l

= u

r

= 0). If S(0; t) = S

l

(t), S(l; t) = S

r

(t) are given then

u

l

(t) =

d

dt

S

l

(t), u

r

(t) =

d

dt

S

r

(t).

Order of approximation

We are going to show that (56) approximates (6) and also (57),(58) or (59) approxi-

mate the 
orresponding boundary 
onditions with the se
ond order.

Æ Assume that fun
tions u and S are suÆ
iently smooth and satisfy (6) and B.C.1 or

B.C.2 (that 
an be non-homogeneous). Their Taylor expansions:

u

i�1

= u

i

�u

0

i

h+u

00

i

h

2

2

�u

000

i

h

3

6

+O(h

4

); S

i�1

= S

i

�S

0

i

h+S

00

i

h

2

2

�S

000

i

h

3

6

+O(h

4

):
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Hen
e

S

i�1

� S

i

2

= �S

0

i

h

2

+ S

00

i

h

2

4

+O(h

3

);

u

i�1

� u

i

h

= �u

0

i

+ u

00

i

h

2

� u

000

i

h

2

6

+O(h

3

) = u

+

� u

�

+O(h

3

);

K

i�

1

2

= K

�

S

i�1

+ S

i

2

�

= K

�

S

i

+

S

i�1

� S

i

2

�

=

= K(S

i

) +K

0

(S

i

)

�

�S

0

i

h

2

+ S

00

i

h

2

4

�

+

K

00

(S

i

)(S

0

i

h)

2

8

+O(h

3

) = K

+

�K

�

+O(h

3

):

Using these formulas we 
an rewrite [. . . ℄ in the left side of (56):

1

h

[: : :℄ =

1

h

�

(K

+

+K

�

)L(u

+

+ u

�

)� (K

+

�K

�

)L(�u

+

+ u

�

) +O(h

3

)

�

=

1

h

[2K

+

Lu

+

+ 2K

�

Lu

�

+O(h

3

)℄ =

where

K

+

= K(S

i

) +K

0

(S

i

)S

00

i

h

2

4

+K

00

(S

i

)(S

0

i

)

2

h

2

8

; u

+

= u

00

i

h

2

;

K

�

= K

0

(S

i

)S

0

i

h

2

; u

�

= u

0

i

+ u

000

i

h

2

6

:

In [. . . ℄ we 
are only elements with order of h less than 3:

=

1

h

[K(S

i

)Lu

00

i

h+K

0

(S

i

)S

0

i

Lu

0

i

h+O(h

3

)℄ =

d

dx

�

K(S(x))L

du

dx

(x)

�

x=x

i

+O(h

2

)

�

i

u

i

= �(x)u(x) j

x=x

i

+O(h

2

) - depends on the 
hoi
e of �

i

.

Now the right hand side. For the analogy with the left side [. . . ℄, we denote:

~

K(x) = K(x)P

0

(x). Then the Right Side of (56) is:

R.S = �

1

h

�

~

K

i+

1

2

S

i+1

� S

i

h

�

~

K

i�

1

2

S

i

� S

i�1

h

�

+ �g

K

i+

1

2

�K

i�

1

2

h

We already know the �rst element (we did very similar for u, K), for the se
ond we

use the Taylor expansion upstairs:

K

i+

1

2

�K

i�

1

2

h

= K

0

(S

i

)S

0

i

+O(h

2

) =

d

dx

K(S(x)) j

x=x

i

+O(h

2

)

Returning from

~

K to K, P

0

, we write the di�erential approximation

R.S = �

d

dx

�

K(S(x

i

))P

0

(S(x

i

))

dS

dx

(x

i

)

�

+ �g

d

dx

K(S(x

i

)) +O(h

2

)

So the s
heme (56) approximates (6) with se
ond order. Now we investigate the

boundary 
ondition approximation.

B.C.2: (59) are exa
t, order: O(h

k

) for any k.

B.C.1: (58) is similar to (57), we will show the order of (57). u, S - known smooth

fun
tions, we 
an introdu
e a smooth 
ux fun
tion:

f(x) = K(S(x))L

du

dx

(x)�K(S(x))

�

P

0

(S(x))

dS

dx

(x) � �g

�
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Exa
t boundary 
ondition { known 
ux: f(0) = f

l

. We know that

K

1+

1

2

L

u

2

� u

1

h

�K

1+

1

2

�

P

0

1+

1

2

S

2

� S

1

h

� �g

�

= f(x

1+

1

2

) +O(h

2

)

We 
an rewrite (57) in a form:

f

l

= ��

1

u

1

h+ f(x

1+

1

2

) +O(h

2

) (57:1)

Using Taylor expansion: f(x

1+

1

2

) = f(0) + f

0

(0)h+O(h

2

)

f

l

= ��

1

u

1

h+ f(0) +

d

dx

f(0)h+O(h

2

) (57:2)

In terms of 
uxes equation (6) is: �(x)u(x) =

d

dx

f(x). We 
annot use it at the point

x = 0 but it is true for x = 0+, all positive points from some small neighbourhood

of 0.

f

l

= ��

1

u

1

h+ f(0) + �(0)u(0)h+O(h

2

) (57:3)

�

1

u

1

� �(0)u(0) = O(h), �nally we have the se
ond order of approximation:

f

l

= f(0) +O(h

2

) (57:4)

� One 
an expe
t a se
ond order of 
onvergen
e.

On solvability and implementation

Obtained SLAE has tridiagonal matrix fa

ij

g with diagonal domination:

a

ii

=

1

h

2

(K

1+

1

2

+K

1�

1

2

) + �

i

= ja

ii�1

j+ ja

ii+1

j+ �

i

> ja

ii�1

j+ ja

ii+1

j

also for boundary 
onditions: B.C.1 a

11

> ja

12

j, a

nn

> ja

nn�1

j;

B.C.2 a

00

= 1 > ja

01

j = 0, a

nn

= 1 > ja

nn�1

j = 0. The sweep method ([7℄, p. 61)


an be used to solve the system. It needs O(n) operations.

We 
an 
ombine this �nite di�eren
e s
heme or �nite element method from previ-

ous se
tion or some other method for ellipti
 problem (6) with some numeri
al method

for Ordinary Di�erential Equation. The interesting question is what resulting order

will have this 
ombination. Suppose the method in "x dire
tion" gives O(h

q

) error and

the method in "t dire
tion" is of p-th order. Our hypothesis is that the 
ombination

may have O(h

q

+�t

p

) error.

We 
ombined the �nite di�eren
e method dis
ussed above with Euler, Improved

Euler, Cau
hy-Euler and Fourth Order Runge-Kutta methods for ODE. Next se
tion

we report about results obtained in 
omputational experiments.
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4 Computational Experiment

To solve Initial Value Problem (4), we implemented:

in "x dire
tion" the �nite di�eren
e method (56) with (57),(58) and (59);

in "t dire
tion" Runge-Kutta type methods (29),(30), (31),(32). We used these nu-

meri
al methods for solving several IVP with homogeneous boundary 
onditions B.C.1

or B.C.2 (
onstant values S

l

, S

r

):

IVP1. l = 0:1; B.C.1; Initial value:

S(0; x) = 2

�

x� l=2

l

�

+ 0:1

IVP2. l = 0:1; B.C.2; Initial value { the same like in IVP1

IVP3. l = 0:1; B.C.1;

S(0; x) = 0:5 exp

(

�100

�

x�

2

3

l

l

�

2

)

IVP4. l = 0:1; B.C.2; Initial value { the same like in IVP3

We remark that initial values for IVP1 { IVP4 are smooth and bounded away from

0 and 1.

IVP5. l = 0:1; B.C.2: S(t; 0) = 1, S(t; l) = 0:5; Initial value:

S(0; x) =

8

<

:

0:2 x 2 [0; l=4℄

0:5 x 2 [l=4; l=2℄

2jx� 3l=4j x 2 [l=2; l℄

This problem has diÆ
ulties: dis
ontinuity of initial value, the fun
tion rea
hes zero

at the point x = 3l=4.

Other fun
tions and parameters that were used:

K(S) = K

0

S

3

; with K

0

= 0:015;

P (S) =

p

1

2

3

� p

1

(S � 1=2)

3

� p

2

(S � 1); with p

1

= 5:0; p

2

= 0:1

� 2 (0; 1) { some 
onstant, doesn't depend on x. (In spite of non-physi
al meaning

we set � = 1. For other � we 
an divide the fun
tion K on it, K := K=�).

Ea
h problem IVP1 { IVP5 we 
al
ulated using the dis
ussed methods for sev-

eral positive 
onstants L 2 L

�

= f0:0001; 0:001; 0:01; 0:1; 1:0g. The reason for su
h


hoi
e was not only the 
omparison of numeri
al solutions for di�erent L, but also we

wanted to 
ompare them with the "limit 
ase" { Ri
hard's equation. The well-known

Ri
hard's equation

�

�S

�t

= �

�

�x

F (S) = �

�

�x

�

K(S)

�

�P (S)

�x

� �g

��

(60)


an be obtained from (4) by setting formally L = 0. A numeri
al algorithm that

was used for Ri
hard's equation we des
ribe in the next se
tion. We remark that the


ondition L > 0 is important for all methods that we implemented for (4), and for

Ri
hard's equation we have to use another method.
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Figures 1-5 present saturation pro�les S(t

k

; x) at sele
ted time moments t

k

for

IVP1 { IVP5. Ea
h 
olor 
orresponds to some value of parameter L:

red � L = 0; blue � L = 0:0001; green � L = 0:001;

magenta � L = 0:01; 
yan � L = 0:1; bla
k � L = 1:0:

Ea
h line has a 
orresponding number (it is near the line and has the same 
olor)

whi
h means t

k

. It was 
onvenient to divide results for some IVP into two pi
tures.

The upper 
ontains results for L = 0 and the smallest L: L = 0:0001, L = 0:001. Red

lines were plotted �rst, then blue and green lines. For IVP1 { IVP4 they are rather


losed to ea
h other so the red was 
overed by blue �rst and then the green 
overs red

and blue. In this 
ase time t

k

is printed on
e in red for red, blue and green lines. The

initial value S(0; x) is the same for all L. It was plotted in the upper pi
ture with red


olor. In the lower pi
ture it is possible to see the di�eren
e between di�erent L > 0.

For ea
h L it has 3-4 pro�les. Next we give the 
ontent of �gures more pre
ise with

order in whi
h lines were plotted.

IVP1 Figure 1

Upper pi
ture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

green(0:001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

Lower pi
ture:

1)bla
k(1:0) t 2 f0:2; 1:0; 5:0g; 2)magenta(0:01) t 2 f0:2; 1:0; 5:0g;

3)
yan(0:1) t 2 f0:2; 1:0; 5:0g; 4)green(0:001) t 2 f0:2; 1:0; 5:0g;

5)blue(0:0001) t 2 f0:2; 1:0; 5:0g:

IVP2 Figure 2

Upper pi
ture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

green(0:001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

magenta(0:01) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5g

Lower pi
ture:

1)bla
k(1:0) t 2 f1:0; 2:0; 3:0; 5:0; 10:0g;

2)
yan(0:1) t 2 f0:6; 1:0; 1:4; 2:0g; 3)magenta(0:01) t 2 f0:2; 0:6; 1:0g:

IVP3 Figure 3

Upper pi
ture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

green(0:001) t 2 f0:2; 0:4; 0:6; 0:8; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0g

Lower pi
ture:

1)bla
k(1:0) t 2 f0:2; 1:0; 5:0g; 2)
yan(0:1) t 2 f0:2; 1:0; 5:0g;

3)magenta(0:01) t 2 f0:2; 1:0; 5:0g; 4)green(0:001) t 2 f0:2; 1:0; 5:0g;

5)blue(0:0001) t 2 f0:2; 1:0; 5:0g:
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IVP4 Figure 4

Upper pi
ture:

red(0:0) t 2 f0:0; 0:2; 0:4; 0:6; 1:2; 2:0; 5:0; 10:0g

blue(0:0001) t 2 f0:2; 0:4; 0:6; 1:2; 2:0; 5:0; 10:0g

green(0:001) t 2 f0:2; 0:4; 0:6; 1:2; 2:0; 5:0; 10:0g

Lower pi
ture:

1)bla
k(1:0) t 2 f0:2; 1:2; 5:0g; 2)
yan(0:1) t 2 f0:2; 1:2; 5:0g;

3)magenta(0:01) t 2 f0:2; 1:2; 5:0g; 4)green(0:001) t 2 f0:2; 1:2; 5:0g;

5)blue(0:0001) t 2 f0:2; 1:2; 5:0g:

IVP5 Figure 5

Upper pi
ture:

red(0:0) t 2 f0:01; 0:03; 0:05; 0:1; 0:2; 0:4; 0:6; 1:0; 2:0g

blue(0:0001) t 2 f0:01; 0:03; 0:05; 0:1; 0:2; 0:4; 0:6; 1:0; 2:0g

green(0:001) t 2 f0:01; 0:03; 0:05; 0:1; 0:2; 0:4; 0:6; 1:0; 2:0g

red(0:0) t 2 f0:0g

Lower pi
ture:

1)green(0:001) t 2 f0:01; 0:5; 2:0g; 2)bla
k(1:0) t 2 f1:0; 2:0; 10:0g;

3)
yan(0:1) t 2 f0:2; 1:0; 3:0g; 4)magenta(0:01) t 2 f0:04; 0:08; 0:5; 2:0g:

Figures 1,2 were obtained by Cau
hy-Euler, �gures 3,4 by Improved Euler methods

with 270 grid points in [0; l℄ for B.C.1 and 240 grid points for B.C.2. To obtain Figure 5

we used 480 points in [0; l℄ and Cau
hy-Euler method. Red lines (numeri
al solution

for the Ri
hard's equation) were obtained by following method with 200 points in x.

Time steps �t were di�erent for di�erent L. We remark only that for smaller L > 0

we need smaller time step (for example from green to blue { approximately 10 times

smaller), when the 
al
ulated pro�le is non-smooth with high frequen
y os
illations

then de
reasing �t may 
hange the situation to more regular.

4.1 Algorithm for Ri
hard's equation

For the Ri
hard's equation we use the same grid as for �nite di�eren
e method from

previous se
tion (53). Boundary 
onditions:

B.C.1: F (S(0)) = 0, F (S(l)) = 0; (L = 0 also in boundary 
onditions)

B.C.2: S(t; 0) = S

l

, S(t; l) = S

r

.

Integrating over [x

i�

1

2

; x

i+

1

2

℄�[t

j

; t

j+1

℄ (60) and dividing by h�t we 
an get a balan
e

equation:

1

h

Z

x

i+

1

2

x

i�

1

2

�

S(t

j+1

)� S(t

j

)

�t

dx = �

1

�t

Z

t

j+1

t

j

1

h

K(S)

�

�P (S)

�x

� �g

�

�

�

�

�

x

i+1=2

x

i�1=2

dt

We approximate integrals using quadrature formulas: left integral - a 
entral point

formula, right integral - two points formula at t

j

, t

j+1

with weight � = 0:5:

�

i

S

j+1

i

� S

j

i

�t

= �

"

�

F

j+1

i+1=2

� F

j+1

i�1=2

h

+ (1� �)

F

j

i+1=2

� F

j

i�1=2

h

#

; x

i

2 (0; l);

(61)
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only for B.C.2 we additionally have S

0

= S

l

, S

n

= S

r

,

F

k

i+1=2

=

(

K

�

S

k

i

+S

k

i+1

2

� h

P (S

k

i+1

)�P (S

k

i

)

h

� �g

i

; if x

i+1=2

2 (0; l)

0 if x

i+1=2

2 �(0; l)

The se
ond 
ondition is never satis�ed with B.C.2. In B.C.1 
ase we have zero 
ux

boundary 
ondition at this point, that's why it is zero. This s
heme is impli
it. To

obtain an approximate solution at a new time step S

j+1

we need to solve a nonlinear

algebrai
 system of equations with number of unknowns equal to number of equations.

We 
an rewrite (61) in more 
onvenient for iterations form:

S

j+1

i

= S

j

i

+

�t

h

�

��F

i

(S

j+1

) + (1� �)�F

i

(S

j

)

�

; x

i

2 (0; l);

S

j+1

0

= S

l

; S

j+1

n

= S

r

additionally for B.C.2

(62)

where

�F

i

(S

k

) = (F

k

i+1=2

� F

k

i�1=2

)

In Ve
tor form (62) looks:

S

j+1

= R(S

j+1

; S

j

)

We used the following iteration pro
ess to �nd S

j+1

:

S

(0)

= S

j

; : : : ; S

(p+1)

= R(S

(p)

; S

j

);

until kS

(p+1)

� S

(p)

k

1

< � at some p � P ) S

j+1

:= S

(p+1)

otherwise (kS

(P )

� S

(P�1)

k

1

� �) redu
e �t and begin the iteration pro
ess again

using the same S

j

and new �t.

4.2 Comparison of results obtained on di�erent grids

The se
ond test that we 
an apply to the numeri
al methods is a numeri
al estimation

of 
onvergen
e order. We use here some simple variant of Ri
hardson's extrapolation

method (see for example [8℄, Ch 6, p. 267). Let us 
onsider a sequen
e of uniform

grids (53) embedded one to another

G

1

� G

2

� : : : � G

I

su
h that 
orresponding parameter h

i

(distan
e between nodes) de
reases in k times

from grid G

i

to G

i+1

: h

i

= kh

i+1

, k 2 Z. Assume that we have some numeri
al

method with supposed order of 
onvergen
e O(h

q

+�t

p

). Choosing some time step

�t

i

we 
an 
al
ulate an approximate solution S

i

at the points of time grid T

i

� [0; T ℄

for ea
h grid G

i

using this method. It is 
onvenient to 
hoose �t

i

, T

i

in su
h way

that exists not empty interse
tion T =

T

i

T

i

. Then we 
an 
ompare solutions S

i

at

points (x; t) 2 G

1

� T (sin
e G

1

� T � G

i

� T

i

). Convergen
e of the method means

that jS

i

(x; t) � S(x; t)j for (x; t) 2 G

1

� T be
omes smaller when i in
reases. When

we have order (q; p) then

E

i

(t) = kS

i

(x; t) � S(x; t)k

G

1

� C

1

h

q

i

+ C

2

�t

p

i

;

where S is exa
t solution. Assuming that k

q

(�t

i+1

)

p

� (�t

i

)

p

and doing formally

the same pro
edure for i+ 1 we will get:

E

i+1

(t) = kS

i+1

(x; t)� S(x; t)k

G

1

�

1

k

q

(C

1

h

q

i

+ C

2

�t

p

i

) �

1

k

q

E

i

(t): (63)
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We don't know S(x; t), on G

1

� T but we 
an substitute S by S

I

{ a numeri
al

solution obtained on the �nest grid G

I

. So let S := S

I

and we 
an 
al
ulate E

i

(t) at

all points t 2 T for i = 1 : : : I � 1 From (63) we have approximate equalities:

E

i

(t)=E

i+1

(t) � k

q

(64)

We use two E

i

(t) due to di�erent norms:

E

1

i

(t) = max

x2G

1

jS

i

(x; t) � S

I

(x; t)j or E

1

i

(t) =

1

jG

1

j

X

x2G

1

jS

i

(x; t)� S

I

(x; t)j:

We expe
t that having a 
orre
t supposition about order (q; p) and using the method

for solving di�erent "smooth" problems we will have E

i

=E

i+1

around k

q

. This pro-


edure proves nothing it 
an only give an assuran
e that the predi
ted order is right

(if (64) is rather a

urate) or wrong (if (64) is "too bad").

In our 
ase we used

G

1

{G

5

(I = 5, k = 3) for B.C.1 with f30; 90; 270; 810; 2430g points in [0; l℄,

G

1

{G

7

(I = 7, k = 2) for B.C.2 with f30; 60; 120; 240; 480; 960; 1920g points in [0; l℄.

The grid T in "t dire
tion" 
onsists of several points (usually 9) from the time interval

where the solution essentially 
hanges. Mostly 5 �rst points were with small intervals

between them and then, additionally, 4 points with intervals 5 times larger. We have

four methods in "t" dire
tion: Euler [E℄ (29), Improved Euler [IE℄(30), Cau
hy-Euler

[CE℄(31) and Runge-Kutta 4-th order [RK4℄(32). Our hypotheses are that these

methods have order (q; p): (2; 1), (2; 2), (2; 2), (2; 4).

(q; p) = (2; 2): h

i+1

= h

i

=k, �t

i+1

= �t

i

=k;

(q; p) = (2; 4): h

i+1

= h

i

=k, �t

i+1

� �t

i

=

p

k (to rea
h exa
tly t

j+1

2 T from t

j

2 T

we 
an determine �t

i+1

from

�t

i+1

= (t

j+1

� t

j

)

��

?

?

?

y

p

k

t

j+1

� t

j

�t

i

?

?

?

y

+ 1

�

� �t

i

=

p

k

# � # - the nearest smallest integer.

We did the test des
ribed before for the following 
ases

IVP1, IVP2 were 
al
ulated by CE method for L from L

�

;

IVP3, IVP4 were 
al
ulated by IE method for L from L

�

;

IVP3, IVP4 were 
al
ulated by RK4 method for L 2 f0:0001; 0:001; 0:01g;

Next there are typi
al results that we obtained. G

1


ontains 30 points, jG

1

j = 30.

Ea
h row 
orresponds to some time moment t 2 T . Ea
h 
olumn has some number i

and 
ontains 
omparison S

i

with S

i+1

(30=90 � i = 1; 90=270 � i = 2; 270=810 � i = 3; 30=60 � i = 1;

60=120 � i = 2; 120=240 � i = 3; 240=480 � i = 4; 480=960� i = 5):

An element of the tables for some t 2 T , i 2 f1; : : : I � 2g is a pair

�

E

1

i

(t)=E

1

i+1

(t) ; E

1

i

(t)=E

1

i+1

(t)

�

:

The information atta
hed to ea
h table 
ontains the problem's label, the method, L,

boundary 
ondition type, total number of grids I , expe
ted value k

2

and two numbers

max

t2T

E

1

I�1

(t); max

t2T

E

1

I�1

(t):
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time 30/90 90/270 270/810

0.2 14.4 13.1 10.7 9.9 10.1 10.0

0.4 16.4 13.3 8.8 8.9 10.1 10.0

0.6 12.6 11.1 10.0 9.2 10.1 10.1

0.8 10.8 9.6 10.9 9.6 10.1 10.1

1.0 9.8 8.6 11.5 10.0 10.1 10.1

2.0 6.8 9.2 10.7 10.0 10.1 10.1

3.0 7.1 8.8 11.0 10.2 10.1 10.1

4.0 6.4 6.7 10.2 9.8 10.4 10.1

5.0 15.2 16.4 8.8 9.2 10.1 10.1

IVP1

Cau
hy-Euler

L=0.0001

B.C.1

I = 5, k

2

= 9

4.857916e-05

5.560761e-06

time 30/60 60/120 120/240 240/480 480/960

0.1 3.3 3.2 4.1 4.2 4.2 4.1 4.2 4.2 5.0 5.0

0.2 5.3 5.4 3.7 3.8 4.1 4.1 4.2 4.2 5.0 5.0

0.3 5.6 4.6 3.6 3.9 4.0 4.1 4.2 4.2 5.0 5.0

0.4 5.4 4.5 3.7 3.9 4.0 4.1 4.2 4.2 5.0 5.0

0.5 5.2 4.6 3.8 4.0 4.0 4.1 4.2 4.2 5.0 5.0

0.6 5.0 4.5 3.9 4.0 4.0 4.1 4.2 4.2 5.0 5.0

0.7 4.8 4.6 4.0 4.1 4.1 4.1 4.2 4.2 5.0 5.0

0.8 4.7 4.7 4.0 4.1 4.1 4.1 4.2 4.2 5.0 5.0

0.9 4.7 4.9 4.1 4.2 4.1 4.1 4.2 4.2 5.0 5.0

1.0 5.0 5.4 4.0 4.1 4.1 4.1 4.2 4.2 5.0 5.0

1.1 5.4 5.4 4.2 4.2 4.1 4.1 4.2 4.2 5.0 5.0

1.2 9.5 6.9 4.3 4.3 4.1 4.1 4.2 4.2 5.0 5.0

IVP2

Cau
hy-Euler

L=0.0001

B.C.2

I = 7, k

2

= 4

3.685478e-05

4.675827e-06

time 30/90 90/270 270/810

0.2 8.4 8.9 9.1 9.1 10.0 10.0

0.4 9.4 8.7 9.1 9.1 10.0 10.0

0.6 9.4 8.9 9.1 9.1 10.0 10.0

0.8 9.3 9.0 9.1 9.1 10.0 10.0

1.0 8.8 9.0 9.1 9.1 10.0 10.0

2.0 9.3 9.2 9.1 9.1 10.0 10.0

3.0 30.0 19.9 14.3 9.7 10.2 10.0

4.0 15.4 17.1 8.8 9.1 10.0 10.0

5.0 5.9 5.6 10.4 10.5 10.0 10.1

IVP3

Runge-Kutta 4

L=0.01

B.C.1

I = 5, k

2

= 9

5.262730e-05

3.144243e-06

time 30/60 60/120 120/240 240/480 480/960

0.2 4.3 3.9 4.1 4.0 4.1 4.0 4.2 4.2 5.0 5.0

0.4 3.9 4.1 4.0 4.0 4.0 4.1 4.2 4.2 5.0 5.0

0.6 4.0 4.0 4.0 4.0 4.1 4.0 4.2 4.2 5.0 5.0

0.8 3.9 4.1 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

1.0 4.1 4.0 4.0 4.0 4.1 4.1 4.2 4.2 5.0 5.0

2.0 3.6 3.9 3.8 4.0 4.0 4.0 4.2 4.2 5.0 5.0

3.0 3.8 3.9 3.9 3.9 4.0 4.0 4.2 4.2 5.0 5.0

4.0 3.9 3.9 3.9 4.0 4.0 4.0 4.2 4.2 5.0 5.0

5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

IVP4

Runge-Kutta 4

L=0.01

B.C.2

I = 7, k

2

= 4

5.275495e-06

9.851936e-07
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time 30/90 90/270 270/810

0.2 8.9 8.9 9.1 9.1 10.0 10.0

0.4 8.8 8.9 9.1 9.1 10.0 10.0

0.6 8.8 8.9 9.1 9.1 10.0 10.0

0.8 8.8 8.9 9.1 9.1 10.0 10.0

1.0 8.8 8.8 9.1 9.1 10.0 10.0

2.0 8.7 8.8 9.1 9.1 10.0 10.0

3.0 8.9 8.9 9.1 9.1 10.0 10.0

4.0 8.9 8.8 9.1 9.1 10.0 10.0

5.0 8.9 8.8 9.1 9.1 10.0 10.0

IVP3

Improved Euler

L=1.0

B.C.1

I = 5, k

2

= 9

2.234108e-06

8.420502e-07

time 30/60 60/120 120/240 240/480 480/960

0.2 4.0 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

0.4 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

0.6 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

0.8 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

1.0 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

2.0 3.9 3.9 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

3.0 3.9 4.0 4.0 4.0 4.0 4.0 4.2 4.2 5.0 5.0

4.0 3.8 3.9 3.9 4.0 4.0 4.0 4.2 4.2 5.0 5.0

5.0 3.7 3.8 3.8 3.9 4.0 4.0 4.2 4.2 5.0 5.0

IVP4

Improved Euler

L=1.0

B.C.2

I = 7, k

2

= 4

1.359211e-06

5.124769e-07

The numeri
al data seem to be 
onsistent with expe
ted value k

2

2 f9; 4g And the

�nite di�eren
e method (56),(57), (58),(59) 
ombined with IE, CE, RK4 has a good


han
e to be of order O(h

2

+�t

2

), O(h

2

+�t

2

), O(h

2

+�t

4

).

Remarks The initial �t

1

was 
hosen suÆ
iently small to have a "smooth" numeri
al

solutions for all i = 1 : : : I .

In IVP5 we have an opposite situation. It seems that the methods don't have

high order for this problem, whi
h has dis
ontinuous initial value.

All algorithms were implemented in ANSI C 
ode. Pi
tures were printed using

MATLAB.
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5 Con
lusion

We 
onsider initial-boundary value problem with modi�ed Ri
hard"s equation sug-

gested in [1℄, [9℄ in one dimensional spatial 
ase and two types of boundary 
ondi-

tions: zero 
ux or given, 
onstant in time values on the boundary. This problem was

transformed into another form, namely initial value problem with Abstra
t Ordinary

Di�erential Equation, using a solvability of ellipti
 boundary value problem (weak

solvability by variational approa
h). We used deep similarity of this form with ODE

in R to show lo
al existen
e, uniqueness and 
ontinuous dependen
e on initial data

provided the initial data is bounded away from zero. Like in ODE 
ase a lo
al solution


an be extended at least while it is bounded away from zero and one. This solution

being an abstra
t fun
tion on x at ea
h time moment t is also a 
ontinuous fun
tion

on variables x and t and has a 
ontinuous partial derivative in t.

We have also used the AODE form in order to obtain numeri
al methods for mod-

i�ed Ri
hard's equation: we 
ombined some numeri
al method for ellipti
 boundary-

value problem ("x dire
tion") with some numeri
al method for ODE ("t dire
tion")

and the 
hoi
e of the methods 
an be rather independent from ea
h other. For el-

lipti
 problem we des
ribed in details two possibilities by �nite element approa
h

and �nite di�eren
e approa
h. In "t dire
tion" we 
an 
hoose for example expli
it

Runge-Kutta type methods like Euler, Improved Euler, Cau
hy-Euler and Runge-

Kutta 4th order methods. Finite element method is a natural numeri
al method for

variational approa
h that was used in AODE form. We used this 
onne
tion to show

the 
onvergen
e of Finite element { Euler method.

Four 
ombinations, namely the �nite di�eren
e method (that has a se
ond order of

approximation) in "x dire
tion" with four already mentioned methods in "t dire
tion",

were implemented in ANSI C program. Numeri
al results, obtained on the nested

sequen
e of grids for smooth initial fun
tions bounded away from zero, have showed

that the last three methods have se
ond order in "x" and 2nd, 2nd, 4th orders in "t"

respe
tively.

The modi�ed Ri
hard's equation with stri
tly positive 
onstant parameter L has

one additional term, the highest derivative has one order more 
omparing with stan-

dard Ri
hard's equation. If L = 0, formally, then the �rst equation be
omes equal

to the se
ond. The mentioned numeri
al methods are unde�ned for this 
ase, but for

small positive L (on the same "good" initial fun
tions used in the previous test) the ob-

tained results were rather 
losed to the numeri
al results obtained for Ri
hard's equa-

tion. In some sense the modi�ed Ri
hard's equation in
ludes the standard Ri
hard's

equation. Another aspe
t for 
omparison of these two equations 
an be the similar-

ity of the form in whi
h the Ri
hard's equation is written with AODE form: time

derivative in the left hand side and an operator that a
ts on fun
tions as they would

have had only dependen
e on x in the right hand side. The right hand side operator

is more regular for the AODE form.

We used the restri
ted 
ase in order to have more simple situation. It may be

possible to generalize the problem to a more 
ompli
ated one with non-homogeneous

boundary 
onditions, 
oeÆ
ients depending on more variables or even introdu
e ad-

ditional terms and 
onsider multidimensional 
ase.
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Figure 1: IVP1
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Figure 3: IVP3
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Figure 4: IVP4
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