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Abstract

The sink location problem is a combination of network flow and location prob-
lems: From a given set of nodes in a flow network a minimum cost subset W has
to be selected such that given supplies can be transported to the nodes in W .
In contrast to its counterpart, the source location problem which has already
been studied in the literature, sinks have, in general, a limited capacity. Sink
location has a decisive application in evacuation planning, where the supplies
correspond to the number of evacuees and the sinks to emergency shelters.

We classify sink location problems according to capacities on shelter nodes,
simultaneous or non-simultaneous flows, and single or multiple assignments of
evacuee groups to shelters. Resulting combinations are interpreted in the evac-
uation context and analyzed with respect to their worst-case complexity status.

There are several approaches to tackle these problems: Generic solution
methods for uncapacitated problems are based on source location and modifica-
tions of the network. In the capacitated case, for which source location cannot
be applied, we suggest alternative approaches which work in the original net-
work. It turns out that latter class algorithms are superior to the former ones.
This is established in numerical tests including random data as well as real world
data from the city of Kaiserslautern, Germany.

Keywords: network location, sink location, network flows

1. Introduction

In recent years there has been an increasing number of natural as well as
man made disasters. A crucial aspect of the preparedness to such events is the
choice of shelter locations such that everyone who has to be evacuated can be
accommodated. However, one must also take into consideration the traffic that
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will result from evacuees going from the affected area to their designated shelter.
The amount of traffic has a big influence on the duration of the evacuation
process. Due to the importance of the best possible choice for shelter locations,
this topic has been the subject of some researcher papers during the last years.

Clearly, shelter location is not the only decision which influences the out-
come of an evacuation plan. The collection points for people relying on public
transportation have to be chosen, the public and private traffic from the en-
dangered zone has to be directed to the chosen shelters, the evacuees have to
be supplied with medicine, food, water, a place to rest, and more once they
reach their shelter, emergency forces must be able to enter the endangered zone
in order to eliminate the reason for the evacuation, etc. These aspects will be
part of a decision support system we are developping in the DSS Evac Logistic
project1. The ultimate goal of our research is an integrated model, which solves
all subproblems simultaneously. To reach this goal we follow in this paper an
approach in which some problems are treated in a integrative fashion while oth-
ers are dealt with sequentially to make sure that our model can be solved in
reasonable computing times.

An overview on the modeling of evacuations from given evacuation gath-
ering points (sources) to given evacuation shelters (sinks) can be found in the
paper by Hamacher and Tjandra[6] which focuses on the evacuation process
itself. A paper which puts emphasis on the choice of shelter locations instead
of the evacuation process is the one by Sherali et al.[15]. They build a complex
model which incorporates capacities, staff ressource and other opening restric-
tion on shelters. The evacuation process itself is modeled as a network flow with
congestion-related travel times and the objective is to minimize the total travel
time. This is one of the first quite realistic models. However, it is also too com-
plex to solve so that one has to rely on heuristics. Even more realistic models
have been given in the last years, for example by Kongsomsaksakul et al.[10]
and Ng et al.[2] who both introduced a bilevel model in which in a first step
a central authority chooses a number of shelters in order to minimize the total
travel time, and in a second step the evacuees decide to which shelter and which
way they travel. This model increases the realism but also the computational
complexity. In order to overcome these computational problems we suggest a
simpler model that can be solved fast and has sufficient modeling capabilities
for real-world evacuation problems.

We model the evacuation problem as a sink location problem in a given
network with edge capacities. These capacities model the maximal amount of
traffic that can pass a road. Each of the nodes has a given number of evacuees
that will individually find their way to shelter locations. The shelter locations
have to be chosen among a set of admissible sinks. After these sinks have been
chosen the stream of evacuees can be modeled as a network flow starting at the
given nodes going to the chosen sinks. This flow must not only respect the edge
capacities but also capacities given by the number of evacuees each shelter can

1see http://projets.li.univ-tours.fr/dssvalog/
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hold. The objective is to minimize the opening costs for the shelters/sinks.
While the sink location problem is interesting in its own right, its usefulness

for any decision support system in evacuation planning is obvious. To the best
of our knowledge the diploma thesis of Kissel[9] was the first work to analyze
this problem. There are, however, two papers which deal with similar problems.
The first one is by Mamada et al.[11]. Their problem is to find a single sink in
a tree such that the supply of all nodes can be discharged to the sink as fast
as possible. For the discharging process they consider dynamic network flows.
A second paper that is not restricted to the placement of a single sink is by
Fujishige et al.[4]. They wish to pick a number of sinks, or in their context
roots, such that each vertex set is covered by a single sink or each vertex is
covered by a vertex dependent number of sinks. However, they do neither
consider capacities on the edges nor on the chosen sinks.

Our model is closely related to another network location problem, the source
location problem. In the source location problem we are given a network with
edge capacities and wish to place sources on the nodes such that the demand
of every node can be satisfied. Here the demand is satisfied if there exists a
flow from one or all of the chosen sources to each node of the given demand
which respects the edge capacities. The amount of flow that a source can emit
is not bounded. If we drop the capacity constraint on the sinks in our model,
then the sink location model is equivalent to a source location problem since we
can simply reverse the flow direction and possibly the orientation of the edges
if some or all edges of the graph are directed. We will give original references to
the different types of source location in the corresponding subsection of Section
3. For a detailed overview on source location we refer to the thesis of Poetranto
Groß[12] and an unpublished paper by Turner et al.[21] which also deals with
dynamic source location.

The idea of source location problems has also been applied to disaster pre-
paredness. For example, Rawls and Turnquist[13] propose a model for a priori
positioning of goods to supply evacuees in the case of disasters with medicine,
food, etc. Their model is quite detailed but the time to compute a solution is
too high even for small instance sizes.

Our paper is structured as follows: In Section 2 different types of sink loca-
tion problems are formally introduced and their interrelations are discussed. We
highlight their applicability to evacuation planning. The following Section 3 con-
tains solution methods based on existing algorithms for source location whereas
Section 4 contains new solution methods and complexity results. Section 5 de-
scribes the computational setup of our experiments in which we compare our
two solution approaches from Section 3 as well as the new approaches from Sec-
tion 4. These experiments will then be analyzed in Section 6 showing that our
algorithms perform significantly better than those that already exist for source
location and far better than general integer programming solvers. The paper is
concluded in Section 7 by summarizing the results of this paper and indicating
directions for future research.
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2. Sink Location Models

In sink location problems we are interested in finding a set of sinks such
that a given supply inside a network can be discharged while capacities of the
edges as well as the sinks are respected. Such a set is called a (sink) cover.
Let G = (V,E) be an undirected graph. Further, let u(e) denote the capacity
of edge e ∈ E, a(v) the supply of node v ∈ V , k(v) the capacity of v ∈ V if
it is chosen as a sink, and c(v) the cost incurred for chosing v ∈ V as a sink.
There are different types of sink location problems depending on the type of
cover: Single or plural, non-simultaneous or simultaneous, and independent or
additive sink cover. These types will be defined in the following subsections.

In general, a solution to a sink location problem consists of a set W ⊆ Vp,
where Vp is a given set of candidate nodes for the location of sinks, in short,
perrmitted sinks, along with a set of flows fv : E → R≥ from v to W for all
v ∈ V . Each of these flows is characterized by

excessv(w) =
∑
u∈V

fv(u,w)−
∑
u∈V

fv(w, u)


= −a(v), if w = v

= 0, if w /∈W ∪ {v}
≥ 0, if w ∈W

(1)

for v /∈W ,

excessv(w) =
∑
u∈V

fv(u,w)−
∑
u∈V

fv(w, u)


≥ −a(v), if w = v

= 0, if w /∈W
≥ 0, if w ∈W \ {v}

(2)

for v ∈W , and ∑
w∈W

excessv(w) = 0 (3)

2.1. Cover Types

In the single sink location problem the supply of each node must be dis-
charged to a single sink whereas in the plural sink location problem the supply
may be discharged to all sinks.

Definition 1. Every solution (W, (fv)v∈V ) of (1, 2, 3) is called a plural sink
cover. If for each v ∈ V there exists a sink wv ∈W such that excessv(wv) = a(v)
then the solution is also called a single sink cover.

Depending on whether capacities on the arcs are considered separately for
each of the flows fv, v ∈ V, in Definition 1 or together with all the other flows
f ′v, v′ ∈ V , we distinguish between non-simultaneous and simultaneous covers:

Definition 2. A solution (W, (fv)v∈V ) is called a non-simultaneous sink cover
if fv(e) ≤ u(e) for all edges e ∈ E. It is called a simultaneous sink cover if in
addition to that it holds that

∑
v∈V fv(e) ≤ u(e).
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Similarly the sink capacities k(w), w ∈W can either be considered for each
of the flows fv, v ∈ V independent of the others or in an additive fashion.

Definition 3. A solution (W, (fv)v∈V ) is called an independent sink cover if
for all w ∈ W and all v ∈ V it holds that excessv(w) ≤ k(w). If additionally∑

v∈V excessv(w) ≤ k(w) holds for all w ∈ W then the solution is also called
additive sink cover. If k(w) =∞ for all w ∈ Vp, W is an uncapacitated solution.

• | • | •

1 - single

n - plural

max - non-simultaneous∑
- simultaneous

0 - uncapacitated

max - independent∑
- additive

Figure 1: Classification Scheme

Figure 1 shows the 3-position scheme •|•|• which we use in this paper to
classify the different types of sink location problems obtained by all combina-
tions of Definitions 1, 2, and 3. In this paper we will focus on such combinations
which can be interpreted as versions of shelter location problems (see Table 1).

Obviously, the combinations not presented in this paper are nevertheless
interesting in their own right: When the flows are considered simultaneously
and the sink capacities separately, then the flow fv of some node v ∈ V has to
be distinguished from the flow fv′ of any other node v′ ∈ V, v′ 6= v. Similarly,
if the supply cannot be split among several sinks and the flow is considered
simultaneously, then these flows have to be distinguished as well. Thus, these
combinations require the use of multi-commodity network flows. In this paper
we will only analyze problems which can be modeled using single-commodity
network flows as only these are applicable to evacuation planning. However, we

Sink Edge Sink Classification
Assignment Capacity Capacity Scheme

single non-simultaneous independent 1|max|max
single non-simultaneous additive 1|max|

∑
plural non-simultaneous independent n|max|max
plural non-simultaneous additive n|max|

∑
plural simultaneous additive n|

∑
|
∑

Table 1: Types of Sink Location Problems
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also have first results for the other problem types. These results will be part of
the forthcoming PhD thesis [7].

2.2. Application to Evacuation Planning

The different cover types introduced in the previous subsection can be ap-
plied to various evacuation scenarios.

Example 4. A no-notice incident in the city requires the immediate evacuation
of a city district. Several safe spots have to be chosen where the people from the
affected district can go to. Depending on the type of incident they will either
stay at these safe spots until they can return to their homes or at a later point
in time they are taken to other, more comfortable shelters where they can stay
for a longer time. The choice of the safe spots can be modelled as a plural,
simultaneous, additive sink location problem:

• people from one block can go to any safe spot → plural cover

• all people will leave the district immediately → simultaneous cover

• people accumulate at the safe spots and do not disappear → additive cover

In a less chaotic situation with upfront notice (e.g., defusing of a bomb)
the authorities dealing with the evacuation might be able to evacuate the city
district block by block. In this case the network flows need not be considered
simultaneously.

Furthermore, the authorities might decide to evacuate every individual block
to a single shelter which would require the use of single cover models. This
simplifies the evacuation process, however, it might require the use of more
shelters compared to plural cover models.

3. Adaptations from Source Location Algorithms

In this section we focus on classes of capacitated sink location problems which
can be formulated as source location problems, thus being solvable by algorithms
from the literature for the latter class of problems. Obviously, this holds for un-
capacitated sink location problems, since they are equivalent to source location
problems (which are by definition also uncapacitated) and switching the roles
of sources and sinks will work. This is even true for directed networks, if we
reverse the direction of all arcs in the network. In the first part we will extend
this observation to classes of capacitated sink location problems by a straigh-
forward, but very useful modification of the network. This part also serves as a
brief review of the source location literature. In the second part we show how
algorithms for source location problems can be adapted to solve some of the
sink location problems in the original network.
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3.1. Known Algorithms Applied to Modified Network

The idea of node doubling is to eliminate capacities on the nodes by creating
additional edges with capacities. Let G = (V,E) be the given graph with edge
capacities u, node capacities k, node costs c and permitted nodes Vp ⊂ V . We
create a new network consisting of a graph G′ = (V ′, E′) with edge capacities
u′ and permitted nodes V ′p as follows: Let the nodes in V be numbered such
that Vp = {v1, . . . , vk} and let v′i denote a copy of node vi. We set V ′ =
{v1, . . . , vn, v

′
1, . . . , v

′
k} and E′ = E ∪ {(v1, v

′
1), . . . , (vk, v

′
k)}. The capacities of

the edges are defined as

u(e) =

{
u(e), if e ∈ E
k(i), if e = (vi, v

′
i) ∈ E′ \ E

and the set of permitted nodes is V ′p = {v′1, . . . , v′k}. The node costs are defined
as c(v′i) = c(vi) for v′i ∈ V ′p and c(v′i) = 0 for vi ∈ V ′ \ V ′p .

Clearly, the 1|max|0 sink location problem is equivalent to the single source
location problem, the n|max|0 sink location problem is equivalent to the plural
source location problem, and the n|

∑
|0 sink location problem is equivalent

to the simultaneous source location problem. Thus, after doubling the nodes
we can apply the algorithms that were originally developed for source location
problems. Furthermore, this shows that the computational complexities of these
problems are the same as the complexities of the corresponding source location
problems, since the number of nodes and edges inG′ is at most 2|V | and |E|+|V |,
respectively.

In the following paragraphs we give a short review of the results on source
location and reformulate the known algorithms in the sink location setting as it
is applicable in the shelter location problem. It should be noted that the input
of all algorithms in this subsection is the modified network G′ = (V ′, E′)

3.1.1. Single Source Location Problem

Tamura et al.[16–19] introduced the single source location problem and devel-
opped an O(nM(n,m)) algorithm where M(n,m) denotes the time complexity
of computing a maximal flow. Initially, the algorithm was only applicable to
uniform cost and uniform capacity instances but in the following papers they
were able to transfer the algorithm to arbitrary cost and arbitrary capacity
instances. Their algorithm is based on so-called minimal deficient sets.

Definition 5. Let X ⊆ V . Then X is a deficient set if Val(u, v) < a(u) for all
u ∈ X and v ∈ V \X. It is called minimal if no proper subset of X is deficient.

The idea of their algorithm is to pick one node of minimal cost from each
minimal deficient set. This algorithm can be applied to the 1|max|0 sink location
problem (see Algorithm 1).
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Algorithm 1 Exact Algorithm for the 1|max|0 Sink Location Problem

1: Compute the set of minimal deficient sets X .
2: if Vp is no 1|max|max sink cover then
3: STOP There exists no 1|max|max sink cover.
4: else
5: W ← ∅
6: for every minimal deficient set X do
7: vi ← arg min{c(vj) : vj ∈ X ∩ Vp}
8: W ←W ∪ {vi}
9: end for

10: end if

3.1.2. Plural Source Location Problem

Tamura et al.[18, 19] introduced the plural source location problem. Their
polynomial solution algorithms where later improved by Ito et al.[22] and Arata
et al.[3] to a time complexity of O(nM(n,m)) for a greedy type algorithm and
to O(n(m+ n log n)) for an algorithm based on maximum adjacency orderings.
However, these algorithms are only applicable to instances where the sources
can be ordered in a specific way. NP-hardness for the general problem was
initially shown by Arata et al.[3], and Sakashita et al.[14] showed that it is even
NP-hard in the strong sense. The adaptation of the O(nM(n,m))-algorithm
to the n|max|0 sink location problem is stated as Algorithm 2.

Algorithm 2 Exact Algorithm for the n|max|0 Sink Location Problem

Require: a(v1) ≤ . . . ≤ a(vk) and c(v1) ≥ . . . ≥ c(vk)
1: if Vp is no n|max|max sink cover then
2: STOP There exists no n|max|max sink cover.
3: else
4: W ← Vp
5: for i = 1, . . . , k do
6: if W \ {vi} is a plural sink cover then
7: W ←W \ {vi}
8: end if
9: end for

10: end if

3.1.3. Simultaneous Source Location Problem

The simultaneous source location has been considered in detail by Andreev
et al.[1]. They give an O(logA)-approximation (A is the sum of demands) and
show that this approximation ratio is best possible. Moreover, they propose
algorithms which find solutions exceeding the given edge capacities by at most
a constant factor. Algorithm 3 states the resulting O(A)-approximation for the
n|
∑
|0 sink location problem. Here acov(S) is for any S ⊆ Vp the demand that
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can be covered by using only nodes in S as sinks.

Algorithm 3 Approximation for the n|
∑
|0 Sink Location Problem

1: W ← ∅
2: if acov(Vp) < A then
3: STOP There exists no n|

∑
|
∑

sink cover.
4: else
5: while acov(W ) < A do

6: v ← arg minv∈Vp\W
c(v)

acov(W∪{v})−acov(W )

7: W ←W ∪ {v}
8: end while
9: end if

In the computation of the minimum in Step 6 of Algorithm 3 we do not
recompute all flow values in each iteration. Instead we keep a list of the remain-
ing nodes sorted by their ratio. We recompute only the flows that are needed
to get the right value for the best ratio and update the list ordering until the
just computed ratio is still the best ratio. This approach is feasible since the
ratios will only worsen as S grows. The algorithm can be applied to the plural,
simultaneous, uncapacitated sink location problem.

3.2. Modified Algorithms Applied to Original Network

In contrast to the first subsection, we will work in the original network in the
following subsection. Instead of modifying the network we propose changes that
can be made to the existing source location algorithms in order to make them
applicable for capacitated sink location problems. Consequently, the input of
the algorithms which are described subsequently, is always the original network
G = (V,E) and not G′ = (V ′, E′) as in the first subsection.

3.2.1. Single, Non-Simultaneous, IndependentSink Location Problem

Since cost and sink capacity do not play any role in the definition of minimal
deficient sets, we propose the following adaption of Step 7 in Algorithm 1:

7: vi ← arg min{c(vj) : vj ∈ X ∩ Vp and k(vj) ≥ ã}
After this modification we can use the algorithm to solve the capacitated single
Sink Location Problem due to the following theorem[9].

Theorem 6. W is a capacitated single sink cover if for each minimal deficient
set X there exists an w ∈W ∩X such that k(W ) ≥ maxx∈X a(x).

Proof. Due to the equivalence of uncapacitated single source and single sink
problems, we can conclude from Tamura et al.[16–19]: W is an (uncapacitated)
sink cover if and only if W ∩X 6= ∅ for all minimal deficient sets X of G. W is
feasible for the capacitated problem if and only if there exists some w ∈W ∩X
such that k(W ) ≥ maxx∈X a(x).

9



3.2.2. Plural, Non-Simultaneous, Independent Sink Location Problem

For the plural Sink Location Problem we can easily adapt Algorithm 2 by
extending Step 6 to include a capacity check. This check is done in the unca-
pacitated cases by adding a supersource S and edges between the nodes in W
and S with infinite capacity. If these capacities are changed to u(w, S) = k(w)
for all w ∈W , then the feasibility check is again equivalent to the solution of a
maximal flow problem. The validity of the modified Algorithm 2 thus follows.

3.2.3. Plural, Simultaneous Sink, Additive Location Problem

In Algorithm 3 for the simultaneous Sink Location Problem we only have to
adapt Step 6, where in the computation of each acov(W ∪ {v}) a flow problem
needs to be solved. Similarly to the plural Sink Location Problem we add
capacitated edges for each chosen sink to guarantee a valid cover in each step
of the algorithm.

4. Complexity and Algorithms for New Types of Sink Location Prob-
lems

The adaptions in the previous section relied on the fact that the edge ca-
pacities and sink capacities were both considered in the same fashion: addi-
tive/simultaneous or independent/non-simultaneous. Both, the 1|max|

∑
and

the n|max|
∑

sink location problem do not have this property and are, thus,
not equivalent to any of the source location problems. In this section we give
complexity results and heuristic solution methods for these two problems.

4.1. Single, Non-Simultaneous, Additive Sink Location Problem

In contrast to the independent case, the following result shows that it is
unlikely that we will be able to solve this problem in polynomial time.

Theorem 7. The 1|max|
∑

and the 1|
∑
|
∑

sink location problem are NP-hard.

Proof. We show that any instance of the partition problem can be reduced to a
single, additive sink location problem. Let an instance of the partition problem
be given by items 1, . . . , n with sizes a1, . . . , an. A solution to the partition
problem is a subset S ⊆ N = {1, . . . , n} fulfilling∑

i∈S
ai =

∑
i∈N\S

ai. (4)

We construct a graph G = (V,E) with vertex set V = {v1, . . . , vn, vS , vT }
and edge set E = {(vi, vS) : i ∈ N} ∪ {(vi, vT ) : i ∈ N}. Let the edge capacities
be u(e) = A :=

∑
i∈N ai and the sink capacities k(vS) = k(vT ) = 1

2A and
k(vi) = 0 for all i ∈ N . The supply of the nodes vi is a(vi) = ai, i = 1, . . . n,
and a(vS) = a(vT ) = 0. The graph is shown in Figure 2.

Since the edge capacities are chosen very large, it does not matter whether
we consider a simultaneous or a non-simultaneous flow. A feasible solution to
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v0 v1 v2 · · · vn−1 vn

vS

vT

a(vi) = ai
c(vi) = 0
k(vi) = 0

a(vS) = 0
c(vS) = 1
k(vS) = A

2

a(vT ) = 0
c(vT ) = 1
k(vT ) = A

2

u(e) = A

u(e) = A

Figure 2: Reduction from Partition to Sink Location

the single, additive sink location problem must choose vS as well as vT as sink.
Furthermore, it must assign each of the vi to one of the two sinks. Let S denote
the index set of the nodes assigned to vS and T the index set of those nodes
assigned to vT . Then the solution is feasible if and only if

∑
i∈S a(vi) ≤ 1

2A and∑
i∈T a(vi) ≤ 1

2A. Since
∑

i∈N a(vi) = A this is only possible if
∑

i∈S a(vi) =
1
2A =

∑
i∈T a(vi). Thus, the single, additive sink location problem has a feasible

solution if and only if the partition problem has a feasible solution.

Due to the close relation to bin packing, especially to variable sized bin
packing, we suggest Algorithm 4 based on the best fit heuristic (see [8]).

Algorithm 4 Heuristic for the 1|max|
∑

Sink Location Problem

Require: a(v1) ≥ . . . ≥ a(vk)
1: if Vp is no 1|max|

∑
sink cover then

2: STOP There exists no 1|max|
∑

sink cover.
3: else
4: S ← ∅
5: rem(v)← k(v), v ∈ Vp
6: for i = 1, . . . , k do
7: if there is a v ∈ S with rem(v) ≥ a(vi) and Val(vi, v) ≥ a(vi) then
8: v ← arg minv∈S{rem(v) : rem(v) ≥ a(vi)}
9: else

10: v ← arg maxv∈Vp\S

{
k(v)
c(v) : k(v) ≥ a(vi) and Val(vi, v) ≥ a(vi)

}
11: S ← S ∪ {v}
12: end if
13: rem(v)← rem(v)− a(vi)
14: end for
15: end if
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If a source can be assigned to an already chosen sink then it is assigned to
the sink with the smallest remaining capacity. If it cannot be assigned to an
already chosen sink than a new sink is chosen which has the best capacity to
cost ratio and to which the source can be assigned.

4.1.1. Plural, Non-Simultaneous, Additive Sink Location Problem

Since the plural, non-simultaneous, independent sink location problems is
already strongly NP-hard[14], this remains true for the plural, non-simultaneous,
additive sink location problems.

Theorem 8. The n|max|
∑

sink location problem is strongly NP-hard.

Proof. Obviously every plural source location problem can be written as a plu-
ral, non-simultaneous, additive sink location problem by choosing sink capacities
as

∑
v∈V a(v). Since the plural source location problem is strongly NP-hard, the

plural, non-simultaneous, additive sink location problem is strongly NP-hard as
well.

On the other hand, the n|max|
∑

sink location problem also has a strong
relation to the n|

∑
|
∑

sink location problems.

Theorem 9. The modification of Algorithm 3 given in Subsection 3.2.3 can be
extended to an O(A)-approximation for the n|max|

∑
sink location problem.

Proof. Let an instance of the plural, non-simultaneous, additive sink location
problem be given by an undirected graph G = (V,E), a set Vp of admissable
sinks, edge capacities u(e), supplies a(v), node capacities k(v), and costs c(v).
Our aim is to create a new big graph which has a copy of G for each node, thus,
separating the flow for each source, and connect these copies such that the sink
capacities are considered simultaneously.

For this, create n copies G(i) = (V (i), E(i)) of G and build a new (directed)
graph G̃ = (Ṽ , Ã) with vertex set

Ṽ =

n⋃
i=0

V (i) ∪ {s, t} ∪ Vp (5)

and arc set

Ã =

n⋃
i=0

A(i) ∪As ∪At (6)

A(i) = {(u, v) if (u, v) ∈ E or (v, u) ∈ E} (7)

As = {(s, v(i)
i ) for i = 1, . . . , n} (8)

At = {(v(i)
p , vp) for vp ∈ Vp} (9)

To complete the plural, simultaneous, additive sink location instance, we set
all nodes supplies to 0 except for node s which has supply

∑
v∈V a(v). The
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capacity of arcs in A(i) are equal to the edge capacities in the original graph,

the arc capacities of (s, v
(i)
i ) ∈ As are equal to a(vi), and those of (v

(i)
p , vp) ∈ At

are ∞. The set of admissable sinks is Ṽp = Vp, the costs for opening one of

these sinks vp ∈ Ṽp is c(vp) and the capacity is k(vp).
Every solution to this instance has an equivalent solution for the plural,

non-simultaneous, additive sink location problem in the original graph G.
Note that although we stated algorithm 3 only for undirected graph it can

also be applied to directed graphs with the same performance guarantee.

An example for the transformation from plural, non-simultaneous, additive
to plural, simultaneous, additive sink location is given in Figure 3.

5. Setup of Computational Tests

In this section we will describe the setup for our random tests and also for
some realistic tests based on data from the city of Kaiserslautern.

5.1. Random Experiments

At first a random tree with n nodes is created. Then every edge that is
not contained in the tree is created with probability p. We call a graph that is
created in this way a connected G(n, p) graph.

Initially, we created the edge capacities, node capacities, node costs, and
node supplies as random values drawn uniformly from a given interval. However,
we observed that using this routine, nearly every minimal deficient set consisted
only of a single node except for one set which consisted of a lot of nodes. The
reason for this behavior is the following: Assume the network is given with edge
capacities and we wish to find node supplies such that there are some minimal
deficient sets that consist of more than one node. Then the supply of the nodes
in this set must be

1. large enough such that it cannot be discharged to a node outside the
minimal deficient set, but on the other hand,

2. small enough such that it can be discharged to a different node inside the
minimal deficient set.

As long as all edges are created with the same probability and also have the
same expected capacity, these two conditions have a very low probability to be
met at the same time. That is why those nodes that did not meet the first
condition were part of the big minimal deficient set, whereas those nodes that
did not meet the second condition formed their own single element minimal
deficient sets.

Therefore, we do not create the data independently at random. Instead, we
use the following setup: At first, we randomly create a partition of the node
set into k connected components V1, . . . , Vk. We would like to have a high
probability that each of these components in the end forms a minimal deficient
set. Let v be a node in component Vi and let δi denote the number of edges

13
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(c) Transformed Network

Node Supply Capacity Cost

s 10 - -
v1 - 5 5
v2 - 6 5
v3 - 7 6

v
(j)
i - - -

(d) Transformed Data

Solid arcs and edges without label
have capacity 3 and dashed arcs
without label have infinite capac-
ity.

Figure 3: Transformation from Plural, Non-Simultaneous, Additive to Plural, Simultaneous,
Additive Sink Location
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n k p

10 {2} {0.1, 0.2, 0.3, 0.4, 0.5}
20 {2, 4, 5} {0.1, 0.2, 0.3, 0.4, 0.5}
50 {2, 5, 10, 15} {0.1, 0.2, 0.3, 0.4, 0.5}
100 {2, 5, 10, 25} {0.1, 0.2, 0.3, 0.4, 0.5}
200 {2, 5, 10, 25, 50} {0.1, 0.2, 0.3, 0.4, 0.5}
500 {2, 5, 10, 25, 50, 100} {0.1, 0.2, 0.3, 0.4, 0.5}
1000 {2, 5, 10, 25, 50, 100, 250} {0.1, 0.2, 0.3, 0.4, 0.5}

Table 2: Parameter Settings

going out of component Vi and ∆i the set of these edges. Then the supply
a(v) of v is chosen randomly in [1, δiU ], the capacity k(v) is the supply a(v)
plus a number chosen randomly between 1 and δiU . Finally, the cost c(v) of
node v is chosen randomly in [1, U ]. For edges that have both nodes in different
components, we choose a capacity randomly in [1, U − 1]. These capacities will
be small compared to the edge capacities inside the components. An edge from

v to u with u, v ∈ Vi has capacity randomly distributed in
[
1, 2a(v)+a(u)

p(|Vi|−1)

]
.

We thus obtain for the expected values E of the random quantities

E[a(v)] =
1 + δiU

2
,

E[u(Vi, V \ Vi)] =
∑

(u,v)∈∆i

1 + U − 1

2
=
δiU

2
, and

E[u(v, Vi \ {v})] = E

 ∑
u∈Vi\{v}:(v,u)∈E

1 + 2a(v)+a(u)
p(|Vi|−1)

2

 ≥ p(|Vi| − 1)

2
+ a(v).

Hence, it will most likely not be possible to discharge the supply of a node to a
node outside its component and, on the other hand, the capacities of the edges
inside the component are large enough to discharge the supply to a different
node. Using this data generation in the single sink setting we get several minimal
deficient sets with more than one element on the one hand, and on the other
hand the data is still chosen in such a way that the initial components are only
approximations of the minimal deficient sets that come out in the end.

We ran tests on the parameter settings shown in Table 2. U is always set to
10000. For each parameter setting we created ten instances.

5.2. Real World Tests

As a realistic example we consider the evacuation of the city of Kaiser-
slautern, Germany. As underlying network we use open street map data2. The

2see http://www.openstreetmap.de/
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capacities of the roads - given in vehicles per hour - are set to 6000 for mo-
torways, 4500 for primary roads, 3000 for secondary roads, 1800 for tertiary,
residential, and unclassified roads, and 900 for living streets. The values have
been taken from MATSim3 and have proven to be realistic for West European
countries. As supplies we use the number of inhabitants which were provided by
the city of Kaiserslautern. We assume that 25% of the population will require
accomodation in specifically designated shelters and public transportation, 15%
only accomodation but no public transportation, and 60% will leave the city
and stay with friends or family (self-contained evacuees). The shelters for those
relying on public transportation are not chosen by our model but by a differ-
ent model which integrates the location of these shelters and the evacuation by
buses[5]. As possible shelters we choose the 20 biggest gymnasiums in Kaiser-
slautern. The capacities of these gymnasiums were again provided by the city
of Kaiserslautern and are available on the internet4. The cost to open a shelter
is chosen approximately proportional to its size with a slightly lower cost for
bigger gymnasiums. In order to deal with the self-contained evacuees, we create
artificial shelters at the main roads leaving the city. A person that leaves the
city to stay with family or friends in case of an evacuation is then modelled as
a flow unit going to one of these artificial shelters. The opening costs for these
shelters are 0 but their capacities are chosen in such a way that only the given
60% of the evacuees can go to these shelters.

We consider four different scenarios. Two examples with a small evacuation
radius of 500m and two examples with a larger evacuation radius of 1000m.
Two different locations for the evacuation are analyzed: One in the city cen-
tre of Kaiserslautern and one in the residential zone close to the university of
Kaiserslautern. Of course, shelters lying in the evacuation zone are not available
in our experiments.

6. Computational Results

The computations were all done on a compute server with a 16-core Intel
Xeon E5-2670 processor with 2.60 GHz and 20MB cache, 96 GM RAM and
Ubuntu 12.04. All codes were written in C++ using gcc v. 4.6.3 with compile
flag -O3. The integer programming formulations were solved using the MIP
solver Cplex version 12.45, the flow computations including the flow equivalent
tree computations were done using the LEMON library6. All computations were
pinned to a single core and a memory limit of 8 GB was set.

6.1. Random Experiments

Often, in comparisons between heuristics and general IP solvers, the inter-
mediate results of the IP solvers are ignored. As the following discussion shows,

3see http://www.matsim.org/
4see http://www.kaiserslautern.de/leben in kl/freizeit und sport/sporthallen/index.html
5see http://www.cplex.com
6see http://lemon.cs.elte.hu
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Figure 4: Color Scheme for Heatmap Diagrams

we do not agree with this approach.
In Figure 5(a) we present a comparison between exact solutions delivered

by Cplex and solutions obtained from our Algorithm 3 for the n|
∑
|
∑

problem.
For each instance our algorithm finds a solution with objective value C3 after
time T3 and Cplex finds a solution with objective value CCplex after time TCplex.
In order to compare the different instances with each other we compute the time
ratio T3

TCplex
and the objective ratio C3

CCplex
. If only our algorithm finds a feasible

solution, then we set both ratios to 0, If both, Cplex and our algorithm find no
solution we set both ratios to 1, and if only Cplex finds a feasible solution then
we set both ratios to the maximal value depicted in the diagram. We collect
the solutions of all instances in one diagram. Since the number of solutions is
large we use a heatmap type of diagram. The color scheme for these diagrams
is given in Figure 4.

In Figure 5(a) you can see that our approximation compares very good to
Cplex in terms of objective value as it always finds a solution with objective value
at most 1.5 times the value that Cplex finds. Furthermore a lot of instances are
either solved much faster by our algorithm than by Cplex (yellow spot around
(0.0, 1.0)) or in the same time (red spot around (1.0, 1.0)).

However this diagram does not tell the whole truth as Cplex finds several
solutions during its branch and bound. In Figure 5(b) all incumbent solutions
are plotted. Compared to 5(a) we see new green regions:

• dark green spot around (1.0, 0.2) (∼ 5% of all solutions)

These (bad) incumbent solutions are found pretty fast by cplex. Since our
approximation is pretty fast for almost all instances, these bad incumbent
solutions give a point with a time ratio close to 1.0 and a low objective
ratio.

• green spots around (t, 1.0) for t > 1.0 (∼ 10% of all solutions)

These (good) incumbent solutions are also found reasonably fast. If our
approximation algorithm is also that fast or faster then we get a point
on the dark line between (0.0, 1.0) and (1.0, 1.0). However, for several
instances our algorithm also takes its time which results in the new spots
at (t, 1.0) for t > 1.0.

• light green spots around (t, 0.2) for t > 1.0 (∼ 5% of all solutions)

The solutions corresponding to these spots are, again, solutions that cplex
finds very fast. However, they have a bad objective value compared to our
approximation.
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Figure 5: Comparison of Cplex Solutions with Algorithm 3 for n|
∑

|
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Figure 6: Comparison of Cplex Solutions with Algorithm 1 for 1|max|max Problems applied
to the Original Graph
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Figure 7: Comparison of Cplex Solutions with Algorithm 2 for n|max|max Problems applied
to the Original Graph

Whereas Figure 5(a) suggested that our approximation is fast and yields very
good solutions, Figure 5(b) shows that in fact there are also a few instances
where our approximation is (significantly) slower than Cplex.

In contrast to this approximation the exact algorithms for the 1|max|max
and the n|max|max problem perform very good: Figures 6 and 7 show that even
if we consider all incumbent solutions of Cplex, our algorithms still perform
much better in terms of objective value and computational time.

In order to compare our adapted algorithms applied to the original network
to the original algorithms applied to the node-doubled network we use a different
heatmap diagram in Figure 8. In the upper rows all instances that are solved
to optimality by both approaches are shown, whereas for the instances in the
lower row only our adapted algorithm finds a solution. In the individual rows we
show a heatmap of the time ratio between the adapted algorithm and the original
algorithm. One can see that for all three problem types 1|max|max, n|max|max,
and n|

∑
|
∑

our adapted algorithms perform better in general. However, for
the 1|max|max and the n|

∑
|
∑

problems there are also a lot of instances for
which our adapted algorithms are not faster and even a few instances where
our adapted algorithms are in fact a little slower than the existing algorithms.
In contrast to this our adapted algorithm for the n|max|max problem is much
faster for most instances and there are even some instances where our adapted
algorithm finds a solution in the given time bound of 15 min whereas the original
algorithm applied to the node doubled network is not able to find this solution
in the given time.

The fact that this improvement in running time for the 1|max|max and
n|
∑
|
∑

problem is not very high is not unexpected since on the one hand our
adapted algorithms do not reduce the computational complexity, and on the
other hand the number of flow computations in the node doubled network is
seemingly not the bottleneck of the computation, at least for the size instances
that we considered. For the n|max|max problem we need to compute several
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Figure 8: Comparison of Adapted Algorithms with Original Algorithms applied to the Node-
Doubled Graph

flows in each iteration to check if we still have a valid cover. Therefore, for
this type of problem doubling the nodes does increase the computation time
significantly.

Algorithm 4 for the 1|max|
∑

problem performs even better: The computa-
tion times are extremely small because after the all-pairs-flow computation no
more flow computations are required. In contrast Cplex takes its time even at
finding only a feasible solution. Therefore, in the heat diagram in Figure 9 most
points lie very close to the vertical axis.
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Figure 9: Comparison of Cplex Solutions with Algorithm 4 for 1|max|
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Figure 10: Comparison of Cplex Solutions with the algorithm described in Theorem 9 for
n|max|

∑
Problems

Unfortunately, the modifications of Algorithm 3 given in Theorem 9 result in
a dramatic increase in memory requirements. As you can see in Figure 10 this
algorithm in general does not find better solutions than Cplex. There are a few
instances where our algorithm is faster, but there is about the same number of
instances where our algorithm aborts due to the memory limit of 8GB (yellow
dot around (1.5,2.5)).

6.2. Real World Tests

In Figure 11 we show the solutions for our real world instances. We con-
sidered the situation in which all people in the endangered region have to be
evacuated immediately. Thus, we chose the n|

∑
|
∑

problem type. The exits
to the motorway and to streets leaving the closer vicinity of Kaiserslautern are
marked by orange nodes. The people staying at relatives or friends during the
evacuation will go to these exits. The red nodes mark the shelter locations that
are chosen by our algorithm, and the blue nodes are possible shelters that are
not chosen. The intensity of the traffic on the roads is highlighted via a heatmap
where green means small amount of traffic compared to the street capacity and
read means traffic amount (almost) equal to the street capacity.

For both small radius instances you can see that only two shelters are needed
to accomodate all evauees. Although our algorithm does not consider distances
by design, it seems that close shelters are preferred: Those shelters that are
closer to the endangered area are significantly smaller and would require to
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open at least two more shelters. In the large radius instances, more shelters are
needed. They are not all chosen as close as possible, this is due to the need for
larger shelters.

For both small radius instances the set of chosen shelters is the same. Simi-
larly, in the large radius instances both solutions share 6 shelter locations and
the non-shared 4 other locations lie either close to the university or the city
center. Thus, it suffices to maintain a relatively small number of shelters and,
yet, still be prepared for an evacuation no matter what part of the city has to
be evacuated.

When you look at the heatmap you can see that the road leaving the city to
the south west is at its upper capacity for both large radius instances and carries
heavy traffic even in the small radius university instance. Also the western
as well as the eastern access road to the motorway sees some heavy traffic.
Especially in the large radius university instance you can see that this will
probably result in traffic jams inside and close to the endangered area.

7. Conclusion and Future Research

We have introduced the sink location problems in its different variants: sin-
gle and plural, independent and additive, non-simultaneous and simultaneous
covers. Although some of the sink location problems are equivalent to source
location problems as far as computational complexity is concerned, we have
shown that algorithms adapted to the sink location setting are much faster
than applying node doubling and using algorithms from source location. For
those problems that do not have an equivalent source location problem we have
given new algorithms. In Table 3 an overview on the computational complexity
of the different types of sink location is given. New results from this paper are
highlighted in bold font.

Sink Sink Edge Computational
Assignment Capacity Capacity Complexity

single indep. non-sim. O(nM(n,m)) [16–19]
single additive non-sim. NP-hard (Theorem 7)
plural indep. non-sim. strongly NP-hard [3, 14]
plural additive non-sim. strongly NP-hard (Theorem 8)
plural additive sim. strongly NP-hard [1]

Table 3: Computational Complexity of Sink Location Problems

We compared all algorithms to the commercial integer programming solver
Cplex. It turns out that the combinatorial algorithms perform, in general,
better than Cplex. Only for the n|

∑
|
∑

and the n|max|
∑

problem there is a
significant but still low number of instances where Cplex performs better than
our algorithms.
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As mentioned at the end of Section 2 there are other sink location models
that require multicommodity network flows. Although they do not have an
obvious practical application they might be of theoretical interest. Results for
these problems will be presented in the forthcoming PhD thesis of Heßler[7].

For source location there are also approaches to incorporate travel times or
distances into the problem, see for example the diploma thesis of Turner [20]. It
is worthwhile to consider dynamic network flows instead of static network flows
for sink location as well. In fact, this would increase the realism of our models
for evacuation planning considerably, since evacuation time is an important
aspect of the evacuation. Whether these dynamic problems are still solvable in
reasonable time will be the subject of future work.
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