
A Bicriteria Approach to Robust Optimization∗

André Chassein† and Marc Goerigk

Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany

Abstract

The classic approach in robust optimization is to optimize the solu-
tion with respect to the worst case scenario. This pessimistic approach
yields solutions that perform best if the worst scenario happens, but also
usually perform bad on average. A solution that optimizes the average
performance on the other hand lacks in worst-case performance guarantee.

In practice it is important to find a good compromise between these
two solutions. We propose to deal with this problem by considering it
from a bicriteria perspective. The Pareto curve of the bicriteria problem
visualizes exactly how costly it is to ensure robustness and helps to choose
the solution with the best balance between expected and guaranteed per-
formance.

Building upon a theoretical observation on the structure of Pareto solu-
tions for problems with polyhedral feasible sets, we present a column gen-
eration approach that requires no direct solution of the computationally
expensive worst-case problem. In computational experiments we demon-
strate the effectivity of both the proposed algorithm, and the bicriteria
perspective in general.

Keywords Robust optimization; Column Generation; Minimum Cost Flow
Problem; Bicriteria Optimization; Linear Programming.

1 Introduction

Robust and stochastic optimization are paradigms for optimization under uncer-
tainty, that have been receiving increasing attention over the last two decades.
Optimization under uncertainty means that the exact parameters that describe
the optimization problem are not known exactly and can only be estimated. In
contrast to stochastic optimization, where one assumes to have enough knowl-
edge to estimate the probability distribution of the input data, robust optimiza-
tion deals with problems without any or only very few information about the
underlying distributions. In robust optimization one defines an uncertainty set
that describes all possible realizations of the input data. This can be done, for

∗Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Com-
mand, USAF, under grant number FA8655-13-1-3066. The U.S Government is authorized to
reproduce and distribute reprints for Governmental purpose notwithstanding any copyright
notation thereon.
†Corresponding author. Email: chassein@mathematik.uni-kl.de

1

example, by defining a finite set of different scenarios for the parameter values,
but also continuous uncertainty sets are possible. The aim is to find a solu-
tion that is feasible for all realization of input data and yields also the best
performance if the worst possible realization has occurred.

This approach follows a pessimistic point of view and, hence, it is not sur-
prising that optimizing only the worst case performance yields in most cases a
solution that performs poor in the average case, what makes the solution un-
practical for many applications. Even though it is not really clear what the
average realization of the data is, as there is no information about the distri-
bution of data available, a lot of effort has been put into the development of
robustness concepts that reduce the conservatism of the solution and give a
better performance in the average case.

Several approaches to overcome this conservatism have been proposed. Fol-
lowing the ideas of Ben-Tal and Nemirovski [4] it is a matter of choosing the
right uncertainty set to get a solution that performs good in the average case
and in the worst case. Bertsimas and Sim [8] introduce a parameter Γ that
allows to control the conservatism of a solution. Fischetti [10] proposes to iden-
tify a nominal scenario and to demand from the robust solution a performance
guarantee for this scenario. For general surveys on robust optimization, we refer
to [2, 3, 7, 11]. In this paper, we take a simpler and more direct approach to
relax the conservatism of a solution: We propose to include the average-case
performance as an objective function, thus resulting in a bicriteria problem.

A frequently used assumption is that the objective function of the optimiza-
tion problem is certain, as every objective function can be represented as a
constraint by using the epigraph transformation. While this is a valid method,
it has the drawback that feasibility and performance guarantee are mixed into
one criterion, what is questionable for most practical problems. Therefore, we
focus in this paper explicitly on problems that are affected by uncertainty only
in the objective function. This can be done by restricting the set of feasible
solutions to solutions that are feasible for all possible parameter values. We de-
fine the bicriteria optimization problem with the two objective functions average
and worst case performance, and the set of optimal solutions of this problem as
the average case–worst case curve (AC–WC curve). We argue that the AC–WC
curve is a valuable tool to assess the trade-off between average and worst-case
performance, and should play a vital role within a robust decision making pro-
cess. Note that we do not start with an uncertain multi-criteria problem, as
considered in [9, 12]. Instead, we begin with an uncertain single-objective prob-
lem and extend it to a robust bicriteria problem.

To compute the AC–WC curve, we make algorithmic use of the observation
that a robust solution can be interpreted as a special point on the Pareto curve
with respect to a multi-criteria problem where every possible scenario outcome
leads to its own objective (see [2, 13]). To the best of our knowledge, this is the
first time that this observation is used.

The paper is organized as follows. In Section 2 we introduce basic definitions
and notations that are used throughout the paper. In Section 3 we show a
theoretical result that allows us to develop a column generation approach to
compute the AC–WC curve. We evaluate different experiments in Section 4.
The first experiments compares the new developed column generation approach
to compute the AC–WC curve with a straightforward approach. The second

2

experiment uses an approximation algorithm from the literature to approximate
the AC–WC curve. The gains that can be obtained by using the AC–WC curve
instead of only considering the average and worst case solutions are shown in
the third experiment, and in the last experiment we use the AC–WC curve to
directly compare the performance of two frequently used robustness concepts
from the literature. For all experiments we use the minimum cost flow problem
as a benchmark. We conclude the paper and point to further research questions
in Section 5.

2 Notation and Definitions

Many optimization problems (P) can be solved efficiently with specialized com-
binatorial algorithms. Another way to solve them is to use their linear program-
ming formulation (LP) and solve this formulation with a linear programming
solver. We consider linear programs of the form

min cTx

s.t. Ax = b (LP)

x ≥ 0

where x ∈ RN are the decision variables. The uncertainty is introduced by an
uncertainty set U . A frequently used uncertainty set is the interval uncertainty,

which is given as a hyperrectangle U =×N
i=1[ci, ci]. It is a standard assumption

that the average scenario is given by the midpoint of the interval ĉ = 0.5(c+ c).
A second important kind of uncertainty are discrete uncertainty sets of the form
U = {c1, . . . , cn} that specify n different cost vectors for the objective function
for each scenario. Denote by ĉ = 1

n

∑n
i=1 ci the average cost vector, assuming

a uniform probability distribution. If any other probability distribution p is
available, where pi is the probability that scenario i is realized, and one is
interested in optimizing the expected value, the cost vector ĉ(p) =

∑n
i=1 pici

can be used instead. As there is no structural difference between these two
cases, we will deal in the following only with vectors ĉ that implicitly assume
that every scenario is equally likely. We assume in this chapter to have discrete
uncertainty to be able to exploit the discrete structure of U . Using this notation,
the average case optimization problem (AC) has the form

min ĉTx

s.t. Ax = b (AC)

x ≥ 0

Note that solving problem (AC) has the same computational complexity as
solving the original problem (LP). In general, this does not hold for the worst-
case (robust) optimization problem (WC) that looks as follows

min z

s.t. cTk x ≤ z k = 1, . . . , n (WC)

Ax = b

x ≥ 0

3

Both problems (AC) and (WC) are tractable, as they are formulated as linear
programs. However, starting from combinatorial optimization problems, prob-
lem (WC) may not yield an integral solution anymore; in particular, the robust
counterpart for most combinatorial optimization problems with discrete scenar-
ios is NP-hard [2]. Both optimization goals – the average case as well as the
worst case – are important criteria to evaluate. But in most cases these two
functions are contradicting. A good performance in the average case often has
to be paid with worse performance in a single scenario and vice versa: good
performance in the worst case objective leads to a bad performance in the aver-
age case. A common approach to deal with contradicting objective functions is
to translate the problem into a multiobjective optimization problem. Applied
to our situation this yields a bicriteria optimization problem (BILP) with the
two objective functions average and worst case performance.

vec−min (z, ĉTx)

s.t. cTk x ≤ z k = 1, . . . , n (BILP)

Ax = b

x ≥ 0

Note that in most cases there is not a single solution that optimizes problem
(BILP). On the contrary, it is rather common that there are many solutions
that can all be seen as optimal solutions for problem (BILP). A common
approach to solve such a multiobjective optimization problem is to compute
the set of all solutions that are Pareto efficient. A solution x is called Pareto
efficient if there exists no solution y that performance in every objective function
as least as good as x and is strictly better in at least one objective function. The
Pareto front of an multiobjective optimization problem is obtained by mapping
all Pareto efficient solutions of the problem into the multiobjective space with
the corresponding objective functions. We define the AC–WC curve as the
Pareto front of problem (BILP).

3 Computing the AC–WC Curve

The set of Pareto efficient solutions of a convex bicriteria optimization problem
can be computed effectively, e.g., by the SANDWICH algorithm [14]. This
algorithm basically solves a sequence of one dimensional optimization problems
that have as objective function a weighted sum of the two objective functions of
the bicriteria problem. Hence, for the problem types under consideration, only
linear programs need to be solved. We call this approach the straightforward
approach. The drawback of the straightforward approach is that problems of
the type (WC) needs to be solved and the original problem structure of problem
(P) is lost. In the next chapter we show how we can overcome this drawback.
We explain the theoretical principles that allow us to compute the AC–WC
curve without solving problems that have the same structure as problem (WC).
Instead, we only need to solve problems that maintain the structure of the
original problem (P), and one additional linear master program with easily
solvable structure. This has the practical advantage that specialized algorithms
for problems of type (P) can be reused.

4

3.1 Dantzig-Wolfe Decomposition in the Objective Space

In [2] it is shown that the set of efficient solutions to the problem

vec−min (cT1 x, . . . , c
T
nx)

s.t. Ax = b

x ≥ 0

contains an optimal solution to (WC). Following a similar idea, we introduce a
second multiobjective optimization problem besides problem (BILP). It uses
the same constraints as problem (LP) but the objective function is lifted into the
multidimensional objective space. So, we get a (n+1)−dimensional optimization
problem (MOLP)

vec−min (cT1 x, . . . , c
T
nx, ĉ

Tx)

s.t. Ax = b (MOLP)

x ≥ 0

Denote by PMO and PBI the set of all Pareto efficient solutions of problems
(MOLP) and (BILP), respectively. We arrive at the following first observation.

Lemma 3.1. PBI ⊆ PMO

Proof. Let x be an arbitrary element of PBI . Hence, for all solutions x′ of
problem (BILP) with ĉTx′ < ĉTx follows that the worst case performance of
x′ is worse than that of x, i.e. ∃k : cTk x

′ > cTk x. We assume that x 6∈ PMO.
It is trivial that x is feasible for (MOLP), hence, there must exist a solution

x′′ of (MOLP) with cTi x
′′ ≤ cTi x for i = 1, . . . , n and ĉTx′′ ≤ ĉTx where

at least one inequality is strict. Summing up over all scenarios we get that
ĉTx′′ = 1

n

∑n
i=1 c

T
i x
′′ < 1

n

∑n
i=1 c

T
i x = ĉTx. As x′′ is feasible for (BILP) it

follows from the efficiency property of x that ∃k : cTk x
′′ > cTk x, which yields a

contradiction.

We use in the following the assumption that the set of feasible solutions
X = {x ∈ RN | Ax = b, x ≥ 0} is bounded. Therefore, there exists a finite set
X ′ = {x′1, . . . , x′s} of corners of X such that X = conv{X ′}, where conv denotes
the convex hull of a set of points.

Lemma 3.2. PMO ⊆ conv{PMO ∩ X ′}

Proof. Let x be an arbitrary element of PMO. As x ∈ X it follows that ∃I ⊆
{1, . . . , s}, λ ∈ R|I|>0 : x =

∑
j∈I λjx

′
j and

∑
j∈I λj = 1. Assume that ∃k ∈ I :

x′k /∈ PMO. From this follows that it must exist an other feasible solution x̂k
that dominates x′k, i.e. cTi x̂k ≤ cTi x′k for i = 1, . . . , n and ĉT x̂k ≤ ĉTx′k where at
least one inequality is strict. As λk > 0 it follows that x̂ =

∑
j∈I\{k} λjx

′
j+λkx̂k

dominates x, which is a contradiction. Therefore, the assumption was wrong and
it holds that ∀i ∈ I : x′i ∈ PMO. Hence, it follows that {x′j | j ∈ I} ⊆ PMO∩X ′.
Therefore, x ∈ conv{{x′j | j ∈ I}} ⊆ conv{PMO ∩ X ′}.

We define the set of Pareto efficient corners of the polyhedron by P ′MO =
PMO ∩X ′ and the linear map C(x) = (cT1 x . . . cTnx ĉ

Tx)T . The next lemma is
a direct consequence of Lemma 3.1 and Lemma 3.2.

5

Lemma 3.3. C(PBI) ⊆ conv{C(P ′MO)}

Proof. C(PBI) ⊂ C(PMO) ⊂ C(conv(P ′MO)) = conv(C(P ′MO)).
The first and second step follows from Lemma 3.1 and Lemma 3.2 and the last
step uses the linearity of map C.

Next consider the parametric problem (λ − ACWC) (λ ∈ [0, 1]) that tries
to optimizes the average and worst case performance simultaneously.

min λĉTx+ (1− λ)z

s.t. cTk x ≤ z k = 1, . . . , n (λ−ACWC)

Ax = b

x ≥ 0

Observation 3.4. The AC−WC curve can be computed by solving a sequence
of (λ−ACWC) problems, where λ ∈ [0, 1].

To see that Observation 3.4 holds we refer to [14]. The authors of this
paper deal with the approximate computation of the Pareto front of bicri-
teria optimization problems. They define the algorithms SANDWICH and
ε−SANDWICH that can be used to compute the complete Pareto front of a
bicriteria problem respectively only a set that approximates this Pareto front.
As the exact description of SANDWICH and ε−SANDWICH are rather long
we refer to [14] for more information. The only important observation for our
theoretical result is that the application of these algorithms in our context leads
to a sequence of (λ−ACWC) problems.

The main idea is to translate problem (λ−ACWC) into the objective space.
We use variables a and z, where a represents the average case and z the worst
case performance.

min λa+ (1− λ)z

s.t. yn+1 = a

yi ≤ z i = 1, . . . , n

y ∈ C(PBI)

Note that we do not change the optimal solution of the problem if we re-
place C(PBI) by the set conv{C(P ′MO)}, as C(PBI) ⊂ conv{C(P ′MO)} due
to Lemma 3.3 and optimal solutions must be contained in C(PBI).

min λa+ (1− λ)z

s.t. yn+1 = a

yi ≤ z i = 1, . . . , n

y ∈ conv{C(P ′MO)}

Assume that we would know the set C(P ′MO) = {y1, . . . , yr} completely then

6

we can reformulate the problem in the following way.

min λa+ (1− λ)z

s.t. ŷ =

r∑
i=1

αiy
i

r∑
i=1

αi = 1

ŷn+1 = a

ŷi ≤ z i = 1, . . . , n

α ≥ 0

Introducing slack variables and removing the superfluous variable ŷ we get the
parameterized master program (λ−M).

min λa+ (1− λ)z

s.t.


−1
...
−1

0
...
0

1
. . .

1

y11
...
y1n

. . .

yr1
...
yrn

0 −1 0 y1n+1 . . . yrn+1

0 0 0 1 . . . 1





z
a
s1
...
sn
α1

...
αr


=


0
...
0
0
1

 (λ−M)

(z, a, α, s) ≥ 0

Note that the linear program (λ−M) might contain exponential many variables
but we can still solve it to optimality by using column generation. In column
generation one does not solve (λ −M) directly instead one solves a restricted
problem that contains only a subset of all columns and adds columns if they have
negative reduced costs. If no columns with negative reduce cost exist anymore
the problem is solved to optimality. For a successful application of the column
generation idea it is necessary that one can find columns with negative reduced
costs very fast. It is easy to see that the problem of finding the column with
the smallest reduced cost value is an original problem of type (P). This result
combined with Theorem 3.4 gives the main theorem of the section.

Theorem 3.5. The AC−WC curve can be computed by solving linear programs
of the form (λ−M) and instances of the original problem (P).

3.2 Algorithmic Details

In this section we discuss the benefits and the drawbacks of solving (λ −M)
using column generation instead of (λ − ACWC) directly as linear programs.
The most obvious benefit is the fact that the original problem structure (P)
remains preserved. Hence, the column generation approach is especially useful
if there exists specialized algorithms for problem (P) that allow to solve (P)
faster than it could be solved by linear programming solvers (e.g., one can use

7

the network simplex algorithm to solve uncertain network flow problems). But
note that it is necessary to solve several problems of type (P) to solve a single
(λ −M) problem – for every column we generate in the master program, we
need to solve one subproblem. To solve (λ− ACWC) directly we have only to
solve a single linear program.

The drawback that the column generation approach needs to generate prob-
ably a lot of columns to solve problem (λ−M) can be compensated by the fact
that columns that are generated to solve (λ−M) can be reused in the master
program to solve another problem (λ̃−M). This makes the column generation
approach valuable for computing the AC–WC curve, as in the SANDWICH al-
gorithm a probably long sequence of these problems (λ−M) needs to be solved
for different values of λ.

In the case where computation time is limited and, therefore, one cannot
compute the complete AC–WC curve, another benefit from the column gen-
eration approach can be obtained. If the SANDWICH algorithm is stopped
prematurely, an incomplete set of Pareto efficient solutions is provided by the
algorithm. Using the column generation approach one can still try to gener-
ate some additional Pareto efficient solutions by solving the remaining (λ−M)
problems heuristically using only the columns that were generated so far. Note
that the heuristic solution of (λ−M) needs almost no additional computation
time.

The performance of the column generation method depends heavily on the
number of scenarios. Whereas one additional scenario increases the dimension
of the multidimensional projection that is used in the column generation frame-
work by one, the additional scenario can be represented by only one additional
inequality in the linear programming formulation of (λ−ACWC). Hence, one
can expect the column generation approach to perform relatively well for a small
number of scenarios and relatively badly for a large number of scenarios.

4 Experiments

4.1 Setup and Instances

As a benchmark for the following experiments we use the minimum cost flow
problem [1] on randomly generated graphs. An instance of the minimum cost
flow problem is described by the quadruple (G, c, u, b), where G = (V,A) is
a directed graph, ca is the cost of sending one unit of flow over arc a ∈ A,
ua is the capacity of flow that can be sent over arc a ∈ A, and bv is the
supply/demand of node v ∈ V . The goal is to find a flow with minimal costs
that fulfills the capacity constraints on all arcs as well as the supply and the
demand constraints of every node. This well-known problem can be stated as
the following linear program

min
∑
a∈A

caxa

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V

0 ≤ xa ≤ ua ∀ a ∈ A

8

The instances for the minimum cost flow problems are generated randomly. We
consider two types of instances: One with discrete uncertainty, and one with
interval-based uncertainty. The instances R with discrete cost scenarios are
described by six parameters R-N -p-n-cmax-umax-bmax. The number of nodes is
given by N . We create an arc between two arbitrary nodes with probability p.
The number of different scenarios is given by n. The costs cj(a) of an arc a in
scenario j are generated by the formula

cj(a) =

{
Y · cmax ·

(
j
n

)2
, if D ≤ 1

2

Y · cmax ·
(
n−j
n

)2
, else

∀a ∈ A, j = 1, . . . , n

where Y and D are independent and uniformly distributed in [0, 1]. We use
this formula to generate a cost structure with varying spreads, which increases
the size of the Pareto front. The capacity ua of an arc a is set to umax for all
arcs. The supply/demand bv of a node v is chosen uniformly from the interval
[−bmax, bmax], except for the supply/demand bvN = −

∑
v 6=vN bv of the last node

vN . Note that the choice of bvN is necessary to get a feasible minimum cost flow
instance.

The instances I with interval uncertainty for the arc costs are also described
by six parameters I-N -p-var-cmax-umax-bmax. The parameters N, p, umax, and
bmax are used in the same way as for R instances to generate the arcs and their
capacities as well as the nodes and their corresponding demands/supplies. The
average costs ĉ(a) of an arc a are chosen uniformly at random from the interval
[0, cmax]. Next, the worst case cost c(a) of an arc a are chosen uniformly at
random from the interval [ĉ(a), ĉ(a)(1 + var)].

All experiments were conducted on an Intel Core i5-3470 processor, running
at 3.20 GHz, 8 GB RAM under Windows 7. The linear and quadratic programs
are solved with CPLEX version 12.6. The minimum cost flow problems are
solved with the network simplex algorithm of the LEMON graph library version
1.3.1. Algorithms were implemented with Microsoft Visual C++ 2010 Express.

4.2 Computation of the AC–WC curve

4.2.1 Exact Computation

In this section we want to compare the straightforward implementation of the
SANDWICH algorithm to compute the AC–WC curve with the version we have
introduced in this paper that is based on column generation. We compare the
times needed for both algorithms to compute the complete AC–WC curve.

In the first experiment we fix the graph type and vary the number of scenarios
and in the second experiment we fix the number of scenarios and vary the
number of nodes in the graph. The values are averaged over 10 runs per instance.

9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 3 4 5 6 7

C
om

pu
ta

tio
n

tim
es

Number of scenarios

R−300−0.05−x−1000−100−100

Straightforward approach
Column Generation

(a) All graphs are of the type R-300-0.05-x-1000-100-100. The x-axis
shows the different number of scenarios and the y-axis the time (in
seconds) needed to compute the complete AC–WC curve.

 0

 20

 40

 60

 80

 100

 120

 100 200 300 400 500 600 700

C
om

pu
ta

tio
n

tim
es

Number of nodes

R−x−0.05−4−1000−100−100

Straightforward approach
Column Generation

(b) All graphs are of the type R-x-0.05-4-1000-100-100. The x-axis
shows the different number of nodes and the y-axis the time (in sec-
onds) needed to compute the complete AC–WC curve.

Figure 1: Comparison of computation times.

Discussion. The results of the first experiment, shown in Figure 1(a), confirm
that the column generation approach outperforms the straightforward approach
if the number of scenarios is small. Additional experiments suggest that if the
number of scenarios exceeds a certain amount, the straightforward approach
may become the better alternative. It is interesting to note that the computa-
tion time decreases for the straightforward approach if the number of scenarios
increases. This is explained by the observation that an increasing amount of
scenarios can lead to a decreasing number of Pareto efficient solutions.

The second experiment (Figure 1(b)) confirms that the column genera-
tion approach outperforms the straightforward approach if the instance size
increases, assumed that the number of scenarios is small.

10

4.2.2 Approximate Computation

As the number of Pareto efficient points is not polynomially bounded in the in-
put size, the exact computation of the AC–WC curve might be an unreasonable
approach. This problem can be resolved in practice by computing not all Pareto
efficient points but only a subset of them.

Denote by P the set of all points of the AC–WC curve. We call a set S ⊆ P
an ε−AC–WC curve if ∀ p ∈ P ∃s ∈ S : sac ≤ (1 + ε)pac and swc ≤ (1 + ε)pwc.

For any practical application one should be able to choose an appropriate ε
such that the ε−AC–WC curve is sufficient. Note that there exists efficient algo-
rithms to compute the ε−AC–WC curve. We use the ε−SANDWICH algorithm
[14] that is very similar to the SANDWICH algorithm. The only difference
is the choice of the weights used for the weighted sum computations, roughly
speaking. We used the column generation method to solve the weighted sum
problems that have to be solved during the execution of the ε−SANDWICH
algorithm.

We did three different experiments. In the first experiment we bound the
running time of the ε−SANDWICH algorithm by a multiple of the time needed
to compute the average and worst case solution. In the second experiment we
bound the number of iterations used in the ε−SANDWICH algorithm. In the
last experiment we stopped the generation of new columns after 5 steps of the
algorithm and solved all remaining weighted sum problems only approximately
by solving the restricted master program. Note that the set consisting only of
the average and worst case solution is also an ε−AC–WC curve for an ε that is
sufficiently large. The values are averaged over 10 runs per instance.

Approximation guarantee ε 0 % 50 % 100 % 500 % 1000 %
R-300-0.05-4-1000-100-100 1.16e-01 3.50e-02 8.78e-03 1.16e-04 1.83e-05
R-400-0.05-4-1000-100-100 1.28e-01 3.83e-02 7.68e-03 2.32e-04 3.74e-05
R-500-0.05-4-1000-100-100 1.31e-01 4.41e-02 1.18e-02 3.30e-04 6.82e-05
R-1000-0.05-10-1000-100-100 5.38e-02 2.22e-02 5.57e-03 1.12e-04 1.46e-05
R-1000-0.05-20-1000-100-100 1.18e-02 3.32e-03 1.54e-03 2.27e-05 5.32e-06
R-1000-0.05-40-1000-100-100 9.87e-03 7.82e-03 4.07e-03 2.96e-04 8.66e-05

Table 1: The numbers in the columns give the approximation guarantee ε of the
ε−AC–WC curve that can be obtained in x% of the time needed to compute
the average and worst case solution.

Approximation guarantee ε 0 1 5 10 100
R-300-0.05-4-1000-100-100 1.16e-01 5.12e-02 2.87e-03 8.07e-04 6.16e-06
R-400-0.05-4-1000-100-100 1.28e-01 5.48e-02 3.27e-03 8.50e-04 7.50e-06
R-500-0.05-4-1000-100-100 1.31e-01 4.98e-02 3.24e-03 7.02e-04 8.43e-06
R-1000-0.05-10-1000-100-100 5.38e-02 2.61e-02 1.40e-03 3.93e-04 3.51e-06
R-1000-0.05-20-1000-100-100 1.18e-02 6.47e-03 3.20e-04 8.20e-05 1.02e-07
R-1000-0.05-40-1000-100-100 9.87e-03 4.30e-03 3.07e-04 8.97e-05 7.48e-07

Table 2: The numbers in the columns give the approximation guarantee ε of the
ε−AC–WC curve that can be obtained within x steps of the ε−SANDWICH
algorithm.

11

Approximation guarantee ε After 5 steps Improved guarantee
R-300-0.05-4-1000-100-100 2.87e-03 1.88e-03
R-400-0.05-4-1000-100-100 3.72e-03 2.49e-03
R-500-0.05-4-1000-100-100 3.24e-03 2.31e-03
R-1000-0.05-10-1000-100-100 1.40e-03 7.26e-04
R-1000-0.05-20-1000-100-100 3.20e-04 2.25e-04
R-1000-0.05-40-1000-100-100 3.07e-04 2.39e-04

Table 3: The numbers in the first column give the approximation guarantee ε of
the ε−AC–WC curve that can be obtained within 5 steps of the ε−SANDWICH
algorithm. The second column gives the improved guarantee after additional
solutions are computed using the already generated columns of the master pro-
gram.

Discussion. The second column in Table 1 and Table 2 describe how well
the AC–WC curve is approximated by the set that consists only of the average
and worst case solution. We observe that an increasing number of scenarios
improves the approximation guarantee of the average and worst case solution.
This emphasizes the observation that the size of the AC–WC curve decreases
with an increasing number of scenarios. We observe in general that already
relatively few steps of the ε− SANDWICH algorithm suffice to get a ε−AC–
WC curve with good approximation guarantee. Note especially the values for ε
in Table 1. They indicate that the time needed to compute a sufficiently good
ε−AC–WC curve is in the same order as the time needed to compute the average
and worst case solution. In a practical setting this means that whenever one
is able to compute the average and the worst case solution of a problem, one
should also be able to compute an ε−AC–WC curve that provides on the one
hand clear insight in the different trade-offs between average and worst case
objective and on the other hand a rich set of alternative solutions where the
decision maker can choose from.

The last experiment (Table 3) shows a benefit of using the column generation
method for generating a ε−AC–WC curve. The already generated columns can
be used to compute additional solutions that can improve the approximation
guarantee considerably. Note that the computational effort to compute these
additional solutions is almost for free as no further instances of the original
problem (P) needs to be solved.

4.3 Properties of the AC–WC curve

In the first part of this section we show how the AC–WC curve can be used
to find compromise solutions that are reasonable for the average and the worst
case objective. In the second part we compare two common robustness concepts
and measure how they perform in comparison with the AC–WC curve.

4.3.1 Gains by using the AC–WC curve

In this section we compare the trade-offs between the average case and the worst
case solution. We use the AC–WC curve to answer the questions: Allowing the
worst case value to increase, by how much can we decrease the average case
value? And vice versa: Allowing the average case value to increase, by how

12

much decreases the worst case value? The numbers in the tables are averaged
over 100 runs per instance.

Higher WC performance +0.1 % +1.0 % +5.0 % +10 %
R-200-0.05-2-1000-100-100 99.80 98.06 91.34 84.94
R-200-0.05-3-1000-100-100 99.88 98.86 95.26 92.48
R-200-0.05-4-1000-100-100 99.90 99.08 96.43 94.42
R-200-0.05-5-1000-100-100 99.92 99.32 97.58 96.34
R-200-0.05-6-1000-100-100 99.92 99.35 97.99 97.17
R-300-0.05-2-1000-100-100 99.77 97.72 89.81 82.37
R-300-0.05-3-1000-100-100 99.83 98.39 93.25 89.24
R-300-0.05-4-1000-100-100 99.88 98.89 95.62 93.21
R-300-0.05-5-1000-100-100 99.90 99.06 96.46 94.46
R-300-0.05-6-1000-100-100 99.92 99.26 97.32 95.87

Table 4: The numbers in the columns give the average case performance of
a solution that has a x% higher worst case performance than the worst case
solution. The average case performance of the worst case solution is normalized
to 100.

Higher AC performance +0.1 % +1.0 % +5.0 % +10 %
R-200-0.05-2-1000-100-100 98.63 95.46 89.99 86.06
R-200-0.05-3-1000-100-100 96.93 91.70 85.15 81.75
R-200-0.05-4-1000-100-100 96.62 89.65 79.52 75.46
R-200-0.05-5-1000-100-100 95.96 88.58 80.92 79.95
R-200-0.05-6-1000-100-100 95.79 89.01 83.60 83.32
R-300-0.05-2-1000-100-100 98.72 96.12 91.44 88.06
R-300-0.05-3-1000-100-100 97.08 92.86 87.40 84.03
R-300-0.05-4-1000-100-100 96.42 89.20 77.74 71.96
R-300-0.05-5-1000-100-100 95.81 88.83 79.64 76.00
R-300-0.05-6-1000-100-100 96.04 88.54 79.63 77.86

Table 5: The numbers in the columns give the worst case performance of a
solution that has a x% higher average case performance than the average case
solution. The worst case performance of the average case solution is normalized
to 100.

Discussion. The most obvious observation by comparing Tables 4 and 5 is
the fact that almost all numbers of Table 4 are bigger than the corresponding
numbers of Table 5. This yields to the following statement. Increasing the
worst case performance of the average case solution is cheaper than increasing
the average case performance of the worst case solution.

Small increases in the average case performance of the average case solution
guarantee in most cases already considerably decreases in the worst case per-
formance. But also an increase in the worst case performance of x% can lead
to average case reductions that are above x%. Note that an increasing number
of scenarios reduces this positive effect.

13

4.3.2 Comparison with Other Robustness Concepts

In contrast to the other experiments where we assumed to have a discrete un-
certainty set, we consider in this section interval uncertainty. This kind of
uncertainty is typical if the data is obtained, e.g., by measurements. Also more
general versions of uncertainty sets are studied in the literature, e.g. polyhedral
or ellipsoidal uncertainty sets [5]. The other concepts are important if the val-
ues of the parameters are correlated and, therefore, a hyperrectangle is not the
correct form for the uncertainty set.

The problem with interval uncertainty or continuous uncertainty sets in
general is often that protecting against the complete set might give an over-
conservative solution that performs bad in the average case. Therefore, re-
searchers have tried to find robustness concepts that improve the average case
performance of the solution and still give a rather good protection against most
realizations of the uncertainty set.

Note that most robustness concepts normally only deal with uncertainty
in the constraints and not in the objective function, as it is claimed that the
objective function can be represented by a constraint.

The goal of this section is to compare two different robustness approaches
that define a parameter that helps the modeler to control the conservatism
of the solution with the AC–WC curve. We analyze if the transformation of
an uncertain objective to an uncertain constraint has undesired side effects.
As benchmark problem we use the minimum cost flow problem on randomly
generated graphs.

Γ−Robustness. The concept of Γ−robustness was introduced by Bertsimas
and Sim [8]. They motivate their concept by the observation that the situation
where all parameters take their worst case value simultaneously should be rather
unlikely. Hence, they propose to use a parameter Γ that defines an upper bound
for the number of parameters that can deviate from their nominal value.

The application of the Γ-robustness concept to the minimum cost flow prob-
lem leads to the following linear program

min
∑
a∈A

ĉaxa + pa + Γz

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = b(v) ∀ v ∈ V

(ca − ĉa)xa ≤ pa + z ∀ a ∈ A
0 ≤ xa ≤ ua ∀ a ∈ A
0 ≤ pa ∀ a ∈ A
0 ≤ z

Controlling parameter Γ allows the modeler to control the conservatism of the
solution. If Γ is chosen to be 0, z can be chosen arbitrary large in an optimal
solution and, therefore, pa = 0 ∀a ∈ A. In this case the objective function
is equal to the average case objective function ĉTx. If, on the other hand, Γ
is chosen to be as large as the number of uncertain parameters, z = 0 in an
optimal solution and pa = (ca − ĉa)xa ∀a ∈ A. Hence, the objective function is
equal to the worst case objective function cTx.

14

Ω−Robustness. The second concept was proposed by Ben-Tal and Nemirovski
[6]. We call it Ω−robustness as the problems are parameterized by Ω. The main
idea of the concept is to include chance constraints to deal with possible con-
straint violations. For a feasible solution of the Ω–robust problem might exist
some parameter realization such that the solution is infeasible for the original
problem. However, the probability that such a parameter realization happens
should be small under the assumption that the parameters are distributed sym-
metrically and independently. Before one can solve the robust counterpart one
has to specifies a value κ that defines a bound for the probability of constraint
violation. Ben-Tal and Nemirovski showed how the probability constraint can
be relaxed by a second order cone constraint. The value κ is then replaced by
Ω =

√
−2ln(κ). The application of the Ω-robustness concept to the minimum

cost flow problem leads to the following quadratically constraint program

min
∑
a∈A

caxa − (ca − ĉa)za + Ωq

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = b(v) ∀ v ∈ V

∑
a∈A

(ca − ĉa)2z2a ≤ q2

0 ≤ za ≤ xa ≤ ua ∀ a ∈ A
0 ≤ q

Ignoring the relation between Ω and κ one can interpret Ω as a parameter
that can be used to control the conservatism of the solution. If Ω is set to 0,
za = xa ∀a ∈ A in an optimal solution and, hence, the objective function is
equal to the average case objective function ĉTx. On the other hand for large
enough values for Ω, za = 0 ∀a ∈ A in an optimal solution and, therefore, the
objective function is equal to the worst case objective function cTx.

Hence, we see that the parameter Ω plays a similar role for Ω−robustness
as Γ for Γ−robustness.

Experiment description For every instance we generate 5 graphs and com-
pute for each the AC–WC curve. We define the Γ\Ω−curves as all points that
are generated by the Γ\Ω−robustness concept if Γ\Ω is integral. To compute the
Γ\Ω−curves we set Γ\Ω = 0 and compute the solution of the Γ\Ω−robustness
concept. Next, we increase both parameters by 1 and resolve the problem. We
repeat this process until an optimal solution of the worst case problem is found.
For every solution found so far we compute the average and worst case perfor-
mance and compare it to the AC–WC curve. As the AC–WC curve is a Pareto
front of minimization problems it is clear that all points of the Γ\Ω−curves
must lie on or above the AC–WC curve.

To measure the distance between the AC–WC curve and the Γ\Ω−curves we
use two different measures. First we choose the solution of the AC–WC curve
that minimizes the sum of average and worst case performance. We call this
solution in the following the ac − wc solution. Next, we select the points from
the Γ\Ω−curves that have the same average case performance as the ac − wc
solution and compare the worst case performance of these points with the worst

15

case performance of the ac − wc solution. We repeat this step and compare
the average case performances if we require equal worst case performance. The
values obtained by this computation indicate how close the Γ\Ω−curves is to
the center of the AC–WC curve.

As second measure we use a more pessimistic measurement to represent
the maximum distance between the Γ\Ω−curves and the AC–WC curve. Ev-
ery point of the Γ\Ω−curves could become a point of the AC–WC curve if it
would be scaled by a factor of 1

(1+ε) for large enough ε. For every point of the

Γ\Ω−curves we compute the smallest ε such that the scaled version of the point
belongs to the AC–WC curve. To measure the furthest distance between the
curves we take the maximum over all such computed ε’s.

Γ Ω
Increased WC\AC Same AC Same WC Same AC Same WC
I-100-0.05-1-1000-100-100 102.2 102.2 101.2 102.1
I-200-0.05-1-1000-100-100 103.5 103.0 101.9 102.8
I-300-0.05-1-1000-100-100 102.7 102.7 101.5 102.6
I-400-0.05-1-1000-100-100 103.0 102.7 101.8 102.7
I-500-0.05-1-1000-100-100 103.2 103.1 101.6 103.1

Table 6: Comparison of the ac−wc solution with the Γ\Ω−curves. The numbers
in the columns with label Same AC give the worst case value of the solution
of the Γ\Ω−curve that has the same average case performance as the ac − wc
solution. The number in the columns with label Same WC are defined vice
versa. The corresponding performance of the ac− wc solution is normalized to
100.

Maximum ε used to scale Γ Ω
I-100-0.05-1-1000-100-100 0.029 0.012
I-200-0.05-1-1000-100-100 0.037 0.018
I-300-0.05-1-1000-100-100 0.032 0.014
I-400-0.05-1-1000-100-100 0.034 0.016
I-500-0.05-1-1000-100-100 0.037 0.017

Table 7: Scaling a point of the Γ\Ω− curves by 1
(1+ε) may generate a point

of the AC–WC curve. The number in the columns give the smallest ε such
that every scaled point of the corresponding Γ\Ω− curves lies below or on the
AC–WC curve.

Discussion. Assume that instead of computing the AC–WC curve one would
rely on Γ\Ω−robustness. If one is asked to provide a solution that has a certain
average case or worst case performance one would provide in most cases a solu-
tion that is strictly dominated by a point of the AC–WC curve. The resulting
loss is given in Table 6 where the ac−wc solution defines the demanded average
or worst case performance. We see that if a fixed worst case value is required
both robustness concepts perform almost equally. But if a certain average case
value is demanded the Γ−robustness concept provides a solution that is worse
in the worst case as the solution provided by the Ω−robustness concept.

16

The second measure, shown in Table 7, indicates how far the Γ\Ω−curves
can deviate from the AC–WC curve. It is obvious that the Ω−curve sticks
rather close to the AC–WC curve compared to the Γ−curve.

We conjecture that the relatively bad performance of the Γ−robustness con-
cept in this experiment is due to the fact that the underlying minimum cost flow
problem tends to generate solutions that are rather dense and the Γ−robustness
on the contrary is more effective for problems with sparse solutions.

We plot the Γ\Ω−curves and the AC–WC curve for the instances I-400-0.05-
1.0-1000-100-100 and I-500-0.05-1.0-1000-100-100 in Figures 2 and 3 to visualize
the last statements. Note that both robustness concepts generate solutions that
are strictly dominated by the worst case solution.

Furthermore, the computation time of the Ω−curve is considerably longer
than for the Γ−curve which is in turn also considerably longer than for the AC–
WC curve. The presented figures are both highly surprising and representative
for other instances. They underline the value for the AC–WC perspective in
the decision process for a practitioner.

 2020

 2030

 2040

 2050

 2060

 2070

 2080

 2090

 2100

 2110

 2120

 2130

 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480

W
C

AC

AC-WC curve
Γ - curve
Ω - curve

Figure 2: The AC–WC curve and the Γ\Ω− curves for an graph of type I-400-
0.05-1.0-1000-100-100. The axis are scaled by 1000.

5 Conclusions and Future Research

In this paper we considered optimization problems with convex feasibility sets
and uncertainty in the objective function. To deal with the uncertainty we
propose to consider the problem as a bicriteria optimization problem with the
two objectives average and worst case performance. We call the Pareto front of
the resulting optimization problem the AC–WC curve. We develop a column
generation approach that can be combined with existing methods from the lit-
erature to compute the AC–WC curve efficiently. The experiments are used to
emphasize our statements.

17

 2880

 2900

 2920

 2940

 2960

 2980

 3000

 3020

 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

W
C

AC

AC-WC curve
Γ - curve
Ω - curve

Figure 3: The AC–WC curve and the Γ\Ω− curves for an graph of type I-500-
0.05-1.0-1000-100-100. The axis are scaled by 1000.

Firstly, the new developed algorithm is effective, especially for a small num-
ber of scenarios. Secondly, the time needed to compute an approximate version
of the AC–WC curve, that should suffice completely in practice, is of the same
magnitude as the time needed to compute the average and the worst case so-
lution. Thirdly, the AC–WC curve provides valuable information for a decision
maker and allows him to choose the solution that gives the best trade-off be-
tween average and worst case performance in his situation.

In the last experiment we recall two famous robustness concepts from lit-
erature and use the AC–WC curve to compare them. We observe that the
approach suggested by Ben-Tal and Nemirovski is closer to the AC–WC curve
than the approach suggested by Bertsimas and Sim. But both approaches reveal
a considerable gap to the AC–WC curve.

For future research it is interesting to investigate the AC–WC curve of more
complex problems that have discrete feasibility sets. Another interesting ques-
tion is whether the observed gap between common robustness concepts and the
AC–WC curve can be re-observed for problems that have a certain objective
function but uncertain constraints.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[2] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max re-
gret versions of combinatorial optimization problems: A survey. European
Journal of Operational Research, 197(2):427 – 438, 2009.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Prince-
ton University Press, Princeton and Oxford, 2009.

18

[4] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics
of Operations Research, 23(4):769–805, 1998.

[5] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear pro-
grams. Operations Research Letters, 25:1–13, 1999.

[6] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming
problems contaminated with uncertain data. Mathematical Programming,
88:411–424, 2000.

[7] D. Bertsimas, D. Brown, and C. Caramanis. Theory and applications of
robust optimization. SIAM Review, 53(3):464–501, 2011.

[8] D. Bertsimas and M. Sim. The price of robustness. Operations research,
52(1):35–53, 2004.

[9] M. Ehrgott, J. Ide, and A. Schöbel. Minmax robustness for multi-
objective optimization problems. European Journal of Operational Re-
search, 239(1):17 – 31, 2014.

[10] M. Fischetti and M. Monaci. Light robustness. In Robust and online
large-scale optimization, volume 5868 of Lecture Note on Computer Sci-
ence, pages 61–84. Springer, 2009.

[11] M. Goerigk and A. Schöbel. Algorithm engineering in robust optimization.
Technical report, Preprint-Reihe, Institut für Numerische und Angewandte
Mathematik, Universität Göttingen, 2013. Submitted.

[12] J. Ide and E. Köbis. Concepts of efficiency for uncertain multi-objective
optimization problems based on set order relations. Mathematical Methods
of Operations Research, 80(1):99–127, 2014.

[13] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications.
Kluwer Academic Publishers, 1997.

[14] G. Ruhe and B. Fruhwirth. ε-Optimality for bicriteria programs and its
application to minimum cost flows. Computing, 44(1):21–34, 1990.

19

