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1
I N T R O D U C T I O N

One of the main problems in finance nowadays is a problem of pric-
ing exotic derivatives, for example barrier, Asian, basket, window and
other options. Typically pricing of such options involves some numer-
ical approximation techniques, as there exists no closed form formu-
lae for them. In this thesis we investigate Monte Carlo (MC) methods
and in particular the Multilevel Monte Carlo (MLMC) approach as
one of the most promising techniques. We propose an extension of
the classic MLMC estimate, and also take a look at the MLMC idea
from a new angle.

However, we should add that application of the forthcoming meth-
ods is not restricted to the financial area. In general they can be ap-
plied to any other problems that target estimation of an expectation
of a functional of an stochastic differential equation (SDE) solution.

In the introduction we start with a brief explanation of the pric-
ing problem [42]. Section 1.1.1 introduces several important option
contract types, while examples of typical models can be found in Sec-
tion 1.1.2. As the pricing is not a unique example of application of
the MC methods, this will be done omitting some details. The intro-
duction will serve as a motivation and linkage to the more general
problem of the estimation of an expectation of a functional of a SDE
solution. The linkage and formulation of the general problem will be
given in Section 1.1.3.

In Section 1.2 we introduce basics of the MC methods and talk
about the MC estimation in the SDE settings. This includes defini-
tion of the most basic discretisation schemes and their properties. An
idea of the advanced MLMC technique is brought up and discussed
in Section 1.3

The introduction concludes with Section 1.4.1, that explains the fur-
ther structure of the thesis. Moreover the reader can find there some
notational convention that is used later in the text.

1.1 option pricing problem

An increasing number of complex derivatives is traded every day on
stock exchanges all over the world. This creates a huge demand for
advanced mathematical methods and models to price them. As a con-
sequence the pricing problem is one of the most important problems
in applied mathematics.

In this section, we present the main ideas of stock price modelling
and option pricing. Mainly we will be following the book of Korn

1



2 introduction

et al. [45], where this problem is discussed in the MC estimation set-
tings.

1.1.1 Examples of Some Options Contracts

Options are derivative contracts, meaning that their payoff depends
on a performance of an underlying asset. There exist options on eq-
uities, bonds, currencies, commodities, such as oil, metals, etc. In this
thesis we will be talking about pricing options written on a stock or
commodities.

There exist two important groups of option contracts:

• plain vanilla options: European call and put options;

• exotic options.

The first group are actively traded on an organised exchange floors,
e.g. the Chicago Board Options Exchange. These contracts are typi-
cally standardised and their prices are agreed via market mechanism.
On a contrary the exotic options are typically traded over-the-counter
and their prices are subject to individual agreement. Therefore pric-
ing these exotic options will be a key motivation for a forthcoming
discussions.

1.1.1.1 Plain Vanilla Options

The most basic contracts are European call and put:

european call option is a contract that gives its holder the right
to buy a certain fixed amount of an asset at a specified future
time for an already agreed price;

european put option is a contract that gives its holder the right
to sell a certain fixed amount of an asset to the writer of the
option at a specified future time for an already agreed price.

In both cases the agreed price is called a strike price and the specified
future time is called a maturity time.

Remark 1. There exists an American type of call and put contracts.In gen-
eral, the American type of a contract means that its holder can execute her
right of selling/buying at any time up to maturity, while in the case of a
European type contract it is possible only at the maturity time.

We are not considering this type of options here, as MC approaches to price
this options are essentially different to the case of European contracts [29].

european call option

A European call on one share of a stock gives its holder the right
to buy this share at time t = T for the strike price K > 0, which was
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fixed at time t = 0. Hence, if the final share price S (T) exceeds K, the
holder of the option buys the share for a price of K and can then sell
it immediately at the market for the price of S (T). This makes a gain
of S (T) − K for the contract holder. On the other hand, if S (T) < K,
the rational holder does not execute his right to buy the share for the
price K. As a consequence, in this case, there is no gain from holding
the option. Combining the two cases leads to a final payment of

B (S) = (S (T) −K)+

obtained by the holder at the maturity.

european put option

The holder of a European put has the right to sell one share at time
t = T for the price K > 0. Similarly to the case of a European call,
it can be shown that the possession of the European put leads to a
payment of

B (S) = (K− S (T))+

at the maturity.

1.1.1.2 Examples of Exotic Options

We proceed further by introducing some important exotic options. In
particular we give an example of a path independent exotic option
the basket option, and two examples of path dependent Asian and
barrier options. Further details and examples can be found in e.g. [45]
or [32].

An absence of closed form formulae for an option price is a typical
problem of almost all exotic options. Therefore some numerical meth-
ods are required to calculate or at least approximate their price. In
particular in this thesis we investigate MC methods to approximate a
price of such products.

asian option

Asian options have the feature that their payoff depends on aver-
aging over the time of the price of a stock. Therefore counterparts of
such a contract are protected against short term market “manipula-
tions”, that might occur close to maturity. Here we will consider a
continuous fixed-strike average call option with the following payoff

B (S) =

(
1

T

∫T
0

S (t)dt−K

)+

.
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We should add that there exist other types of Asian options [45].
Indeed in real traded contracts the continuous-time averaging is re-
placed by discretised versions, e.g. average daily closing prices during
some period of time.

basket option

The payment of a basket option depends on an average performance
of a basket of stock prices. For instance a European basket call has a
final payment of

B (S) =

(
d∑
i=1

wiSi (T) −K, 0

)+

with
d∑
i=1

wi = 1 ,

for a basket of d stocks weighted by the weights wi. This options are
typically written on baskets consistent of different types of underly-
ing assents.

barrier option

Another example of popular path dependent option is barrier op-
tions. Their payoff depends on the fact of either hitting or not hitting
some pre-specified barrier(s) during the life time of a contract. Basic
examples of one sided barrier options are the knock-out barrier option
given by the final payments

Bdoc (S) = (S (T) −K)+ I{S(t)>H,∀t∈[0,T ]} down-and-out call

Buoc (S) = (S (T) −K)+ I{S(t)<H,∀t∈[0,T ]} up-and-out call

where K > 0 is the strike and H > 0 the barrier of the option. Analo-
gously, one introduces down-and-out and up-and-out put options. Also
there exist four knock-in barrier option (for details see e.g. [45]).

Remark 2. The prices of aforementioned in and out barrier options are
linked via an ‘in-out parity”, thus it is sufficient to price only out-options [45].

Moreover in case of the BS model (see Section 1.1.2) there exxists formulae
for price of the one sided barrier options [61].

In general, there are a lot of other barrier options, for instance two
sided barrier options or window options, i.e. barrier options with
time varying barriers. Moreover, similarity to Asian options, very of-
ten barrier options are based on discrete barrier crossing events, e.g.
monitoring of the daily closing prices.

1.1.2 Modelling

In this section we explain the basics of a stock price modelling and
define some important models. When we look at an evolution of a
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stock price over time we recognise certain remarkable features. They
all lead to an obvious ingredient for models: the Brownian motion
W (t), for definition and properties consult at [37]. One of the first
ideas was to model a stock price evolution using a geometric Brown-
ian motion proposed by Samuelson in [62]. The main breakthrough in
the modelling came in the 1970s when the famous Black-Scholes (BS)
formulae for the price of European call options and put options were
developed by Black and Scholes [10] and by Merton [57].

Nowadays, there exist arguments for considering models for stock
prices or interest rates that allow for non-continuous changes, so-
called jumps. However we restrict ourselves to the case where the
underlying driving uncertainty is modelled by a Brownian motion. In
many situations, this makes the analysis of the corresponding prob-
lems tractable and suitable for efficient numerics.

Modern modelling approaches typically assume that an underlying
stock follows some SDE. The models typically have to satisfy at least
the two following requirements:

• existence of closed form formulae for vanilla options or efficient
technique to compute their prices;

• they should be able to capture at least some of the aspects of a
real market behaviour.

The first requirement is essentially crucial as the pricing of an exotic
option consists of the two steps:

1. model calibration to market prices of actively traded vanilla op-
tions (or sometimes other liquid securities), this step defines
values of the model’s parameters;

2. using the model with the calibrated parameters find a price of
the exotic option.

We continue our introduction with the BS model. In the sequel we
present examples of some modern advanced models, e.g. the Heston
model [35].

1.1.2.1 Black-Scholes Model

We present the BS model in the most basic one-dimensional setting. It
models the dynamics of a stock price as a geometric Brownian motion

S (t) = S (0) e(µ−
1
2σ
2)t+σW(t) ,

where µ is a drift and σ a volatility of the stock. Equivalently, this
dynamic can be represented in the form of the corresponding SDE

dS (t) = µS (t)dt+ σS (t)dW (t) .
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Modern pricing theory [20] tells us that under suitable conditions a
fair price of a derivative with a final payoff B can be calculated as an
expectation of the discounted payoff under the equivalent martingale
measure (EMM), i.e.

C = E
(
e−rTB (S)

)
,

where r is a riskless interest rate and T is time to maturity. Moreover
using the Girsanov Theorem (see e.g. [37]) we can rewrite the BS SDE
under the EMM as

dS (t) = rS (t)dt+ σS (t)dW (t) , (1)

and the corresponding solution is of the following form

S (t) = S (0) e(r−
1
2σ
2)t+σW(t) . (2)

It is very important that the EMM evaluations are independent from
the physical measure defined by µ. This is one of the reasons that the
BS theory became so popular in finance.

Another reason is the existence of the famous BS formulae that give
prices of the plain vanilla options in the closed form [10]. As we al-
ready pointed out, this is important for efficient parameter calibration
to the real market data (for details see e.g. [45]).

However the BS model has an essential drawback: it assumes the
volatility to be constant for all maturities and strike prices, what is not
the case at modern markets. Therefore there exists a serious demand
for models that can capture a non-constant volatility and some other
so-called stylised facts [16].

1.1.2.2 Advanced Models

During the 1980s the imperfections of the BS model became clear. The
two main streams began to develop:

• the class of local volatility models, started by Dupire [23] (for
more general theory see e.g. [26]);

• the class of stochastic volatility models, e.g. the Heston model [35]
or the SABR model [31].

Both streams aim to explain the non-constant volatility, i.e. the inten-
sity of the price fluctuations (also known as volatility clustering [16]).
Recently some techniques to combine both concepts into hybrid stochastic-
local volatility models were developed, for instance [60] or [34].

There is another trend in the modern modelling that incorporates
jump behaviour into a stock modelling, for instance Bates considers
extension of the Heston model with jumps [8]. However models with
jumps are out of the scope of this thesis. Moreover MC methods for
these models are more sophisticated as they involve simulation of
jumps (for an overview see e.g. [55]).

In the upcoming paragraph we will give a brief introduction to the
Heston model.
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heston model

The Heston model [35] is given through a two-dimensional SDE,
that has the following form under an EMM

dS (t) = rS (t)dt+
√
V (t)S (t)dWS (t) , (3a)

dV (t) = κ (θ− V (t))dt+ σ
√
V (t)dWV (t) , (3b)

where WS and WV are correlated driving Brownian motions with
correlation ρ. The model for the stock price S is similar to the BS
model, but in addition the volatility of the stock V is modelled as a
Cox-Ingersoll-Ross (CIR) process [17]. Both stock price S and volatil-
ity V processes are coupled via correlated Brownian drivers, what
reflects the volatility clustering effect observed on markets, i.e. a big
stock price leads to a smaller fluctuation and vice versa. The param-
eter θ is the long-term limit of the volatility V and called a mean
reversion level or a long-term variance. In addition the parameter κ de-
termines the speed of reversion and a volatility of volatility (or vol-of-vol)
is defined by a value of the parameter σ.

Similarly to the BS model a main reason for the success of the He-
ston model is the existence of semi-closed formulae for the prices of
the plain vanilla options [4]. Moreover these formulae are comple-
mented by computation techniques, e.g. Fast Fourier Transform [52]
or Fourier-Cosine expansion [24], that allow effective calibration.

Then under suitable conditions a price of a derivative with a final
payoff B can be calculated as an expectation of the discounted payoff
under EMM

C = E
(
e−rTB (S)

)
,

where r is a riskless interest rate, T is the time to maturity and S is a
solution of Equation 3.

Remark 3. By the construction the volatility process V is always non-
negative. Moreover if its parameters fulfil the so-called Feller condition ,
i.e., σ2 < 2κθ, the process is strictly positive [25]. Also this condition plays
a crucial role for the quality of discretisation schemes (see e.g. [2] or [21] and
references therein).

One should keep in mind that this property is often violated on real mar-
kets, see e.g. [15]. On top of that the Heston model is exposed to a moment
explosion [5].

1.1.3 Pricing As A Numerical Problem

To summarise we draw a link between the pricing model and the
more general problem of an estimation of an expectation of a func-
tional of an SDE solution.



8 introduction

Modern modelling approaches typically assume that an underlying
stock(s) is modelled by some well defined d-dimensional SDE

dS(t) = a (t,S (t))dt+ σ (t, s (t))dW (t) S (0) = s0 , (4)

driven by an m-dimensional Brownian motion under an EMM.

Remark 4. Note that some of “stocks” modelled by SDE (4) can be non-
tradable, as e.g. volatility V in the Heston model.

Moreover we should clearly state that we are leaving out an important
question of a market completeness [42].

By the well definedness of SDE (4) we mean that it possesses a
unique solution, what can be assured for instance by the conditions
of the following theorem.

Theorem 1 (Existence and uniqueness of a solution for SDE). Let the
coefficients a(t, x), σ(t, x) of the SDE (4) be continuous functions satisfying
both a Lipschitz and a growth condition

‖a(t, x) − a(t,y)‖+ ‖σ(t, x) − σ(t,y)‖ 6 K ‖x− y‖

‖a(t, x)‖2 + ‖σ(t, x)‖2 6 K2
(
1+ ‖x‖2

)
for all t > 0, x,y ∈ Rd and constant K > 0 (‖·‖ denotes the Euclidean
norm of suitable dimension).

Then there exists a continuous, strong solution (S(t),Ft)t>0 of SDE (4)
such that

E‖S(t)‖2 6 CeC T
(
1+ ‖x‖2

)
∀t ∈ [0, T ]

for some constant C = C(K, T) and T > 0. Further, S is unique up to
indistinguishability, i.e. if Y would be another solution of Equation 4 then
we would have

P (S(t) = Y(t),∀t > 0) = 1.

More results on existence and uniqueness of a solution for SDEs
can be found in Section 4.5 of [39].

Under suitable conditions a price of a derivative with a final payoff
B is an expectation of the discounted payoff under EMM

C = E
(
e−rTB (S)

)
,

where r is a riskless interest rate and T is time to maturity. For exam-
ple the price of an Asian call option with maturity T and strike price
K is equal to

C = E

(
e−rT

(
1

T

∫T
0

S (t)dt−K

)+)
,
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where S is a solution of SDE (4).
Typically in the case of exotic options this expectation does not have

a closed form formula and has to be computed using some numerical
techniques. Therefore the pricing problem can be seen as a problem
of estimating an expectation of a functional of an SDE solution. This
problem can be solved using numerical methods, e.g. MC methods,
Quasi Monte Carlo (QMC) methods, using Feynman-Kac Representa-
tion Theorem [37] the problem can be represented in form of partial
differential equation (PDE) that is subject to numerical solution, Bi-
nomial Trees (for overview see e.g. [43]), numerous approximation
methods, etc.

In this thesis we discuss application of the MC methods to the pric-
ing problem. The choice of the MC methods is motivated by their rel-
ative flexibility and generality. In particular they can be used to price
any European option contract, including multi-asset options, which
typically can be handled only by the MC methods. On the other hand
the MC algorithms are known for their relatively low convergence
rate and a long run time. But with the development of powerful com-
putational tools as e.g. computer-clusters or their philosophical coun-
terparts dedicated accelerators [56] this problem becomes less and
less vivid.

1.2 monte carlo

This section is dedicated to a short overview on MC methods. We be-
gin with the most basic settings and then proceed to the MC methods
for SDEs, as they correspond to the option pricing problem.

1.2.1 Basics of Monte Carlo Method

The MC methods are targeting a problem of the estimation of an
expectation

E (X)

of some random variable X. The basis of the MC approximation is
the idea of simulating (Xi)i=1,2,...,N, N independent identically dis-
tributed (i.i.d.) realisations of the random variable X, and approxi-
mating E (X) by their average

X̄ =
1

N

N∑
i=1

Xi . (5)

This approximation is justified by Kolmogorov’s Strong Law of Large
Numbers.
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Theorem 2 (Kolmogorov’s Strong Law of Large Numbers). Let (Xn), n ∈
N, be a sequence of integrable real-valued i.i.d. random variables. Then

X̄N :=
1

N

N∑
i=1

Xi
a.s.−→ E (X1) as N→∞ .

It can be shown that the MC estimator (5) is unbiased, i.e. E
(
X̄
)
=

E (X1). However this usually will not be the case in an SDE setting
in general and in forthcoming parts of this thesis in particular. Unbi-
asedness of an estimator ensures that it is correct in the mean, though
it does not tell how good is the estimate in the absolute value. There-
fore we measure a statistical error by a variance of an estimate. This
choice of error can be justified by the Central Limit Theorem.

Theorem 3 (Central Limit Theorem). Let (Xn) n ∈ N be a sequence
of integrable real-valued i.i.d. random varianles with finite variance σ2 :=

Var (X1) and expectation m := E (X1). Then the normalised and centred
sum of Xi convergences in distribution to a standard normal distribution,
i.e. ∑N

i=1 Xi −mN

σ
√
N

D−→ N (0, 1) as N→∞ .

From the Central Limit Theorem it follows that for large values ofN
the MC estimator (5) is approximately N

(
E (X) , Var

(
X̄
))

distributed.
Then using the asymptotic distribution of the estimator asymptotic
confidence intervals for X̄ can be constructed [45]. Moreover their

length is proportional to
√

Var
(
X̄
)
, i.e. square root of the statistical

error.

1.2.2 Monte Carlo In SDE Settings

Very often in financial mathematics in order to price some derivative
an expected value of a functional of a solution of an SDE has to be
computed. For instance the price of Asian call option with maturity
T and strike price K is of the form of

C = E

(
e−rT

(
1

T

∫T
0

S (t)dt−K

)+)
,

where S is modelled as a solution of some SDE, e.g. the BS SDE under
EMM

dS (t) = rS (t)dt+ σS (t)dW (t) , t ∈ [0, T ] .

The MC approach from Section 1.2.1 suggests to draw i.i.d. realisa-
tions of

e−rT

(
1

T

∫T
0

S (t)dt−K

)+

(6)
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and average them.
However we cannot directly simulate (6), as there exist no closed

form representation for the integral of S over time. As a consequence
it has to be approximated, e.g. using trapezoidal rule [18], what intro-
duces a bias error.

Moreover in the case of the Heston model there exists no closed
form solution of SDE (3). Therefore we cannot directly simulate the
stock price process S even on a discrete time grid and it has to be
approximated using some discretisation scheme, what leads to a biased
estimate.

To summarise we can give at least two cases leading to a biased
estimate:

• an option under consideration is path dependent, e.g. Asian
options, barrier options, etc. ;

• a model SDE has no closed form solution, e.g. the Heston model.

Existence of a bias error and the necessity to approximate a solution
of the SDE differentiate MC estimation in an SDE settings from the
most basic case of Section 1.2.1. This particularities we will discuss in
the sequel of this section.

plain monte carlo estimate

Discretisation schemes necessary to approximate a solution of an
SDE can be regarded as a straightforward generalisation of discreti-
sation schemes for ordinary differential equations (ODEs) [18]. Some
examples of discretisation schemes will be introduced later in Sec-
tion 1.2.2.1 and for the time being let us denote a numerical approxi-
mation of a process S as Ŝ.

Then plain MC estimate of E (g (S)) is defined as

Ê =
1

N

N∑
j=1

g
(
Ŝj
)

, (7)

where Ŝ1, Ŝ2, . . . , ŜN are i.i.d. realisations of the discretisation scheme
Ŝ.

1.2.2.1 Discretisation Schemes

Let us briefly introduce the two most popular discretisation schemes
for SDEs. For more details we refer to the book of Kloeden and
Platen [39] . Note in this thesis we consider only equidistant schemes.

euler scheme

The Euler scheme for SDEs can be regarded as a straightforward
generalisation of the Euler scheme for ODEs [18]. It is motivated by
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the Itô-Taylor expansion [37] in the similar way as the Euler scheme
for ODEs by the Taylor expansion. In general, this approach even
leads to a whole class of methods. For simplicity, we will define this
scheme for a one-dimensional SDE only. A multi-dimensional version
of the Euler scheme can be found in e.g. [45].

Definition 1 (Euler Discretisation Scheme). Let n be the number of
equidistant discretisation steps and ∆t = T/n, then for a one-dimension
SDE

dS(t) = a(t,S(t))dt+ σ(t,S(t))dW(t) , S(0) = s0 ∈ R,

we approximate a realisation of S with its discretised version Ŝn according
to the iterative Euler scheme defined as

Ŝn (t0) = s0 ,

Ŝn (ti+1) = Ŝ
n (ti) + a

(
ti, Ŝn (ti)

)
∆t+ σ

(
ti, Ŝn (ti)

)
∆W (ti) ,

for i = 0, 1, 2, ...,n− 1, where ti = i ∆t and
(
∆W(tj)

)
j=0,1,...,n−1 are i.i.d.

normal random variables with zero mean and variance ∆t, i.e. ∆W(tj) ∼√
∆t N(0, 1).

Remark 5. Defined Euler scheme is a discrete approximation of path of a
solution of the corresponding SDE. To obtain a continuous approximation
one typically takes linear interpolation between discrete points [39].

However, sometimes, e.g. in the case of a barrier options pricing [30], it is
beneficial to assume that in between the approximation follows a Brownian
bridge (for definition and properties see [37]) construction.

Now we will present some results on a convergence of the Euler
scheme.

Definition 2 (Strong Convergence of a discretisation scheme). We say
that a discretisation scheme for the SDE (4) converges strongly on [0, T ]
to the solution S of the SDE, if for the final time T we have

lim
n→∞E

∣∣S(T) − Ŝn(T)∣∣ = 0 .

A strongly convergent scheme is said to have convergence rate α if for
asome constant C and n0 ∈N we have

∀n > n0 E
∣∣S(T) − Ŝn(T)∣∣ 6 C 1

nα
.

We begin with a well-known result on a strong convergence of the
Euler scheme [39].

Theorem 4 (Strong convergence of the Euler scheme). Under the as-
sumption of Theorem 1 (i.e. Lipschitz coefficients and linear growth condi-
tions on the coefficients of the SDE) and additionally

‖a(t, x) − a(l, x)‖+ ‖σ(t, x) − σ(l, x)‖ 6 K(1+ ‖x‖)|t− l|
1
2
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for some suitable constant K , the Euler scheme converges strongly with a
convergence rate of 1/2, i.e. for some constant C and n0 ∈N we have

E
∣∣S(T) − Ŝn(T)∣∣ 6 Cn−1/2 ∀n > n0 .

Even more, if we define the “continuous” Euler approximation Ŝn as the
process equal to the Euler scheme process on the discretisation grid and lin-
early interpolated in between, then we have

E

(
sup
06t6T

∣∣S(t) − Ŝn(t)∣∣) < Cn−1/2 .

The later uniform convergence result is important for applications
in finance, that involve computation of a price of a path-dependent
option as for example barrier options.

As in the option pricing we are interested in estimating expecta-
tions of a function of an SDE solution, we also study a weak conver-
gence property of the scheme.

Definition 3 (Weak Convergence of a discretisation scheme). We say
that a numerical scheme for the SDE (4) converges weakly on [0, T ] to the
solution S of the SDE with respect to (w.r.t.) the class of functions H, if we
have

∀g ∈ H , lim
n→∞

∣∣E (g(Ŝn(T)))− E (g(S(T)))
∣∣ = 0 .

A weakly convergent scheme w.r.t. the class H is said to have convergence
rate α if for some constant C and n0 ∈N we have

∀g ∈ H , ∀n > n0 ,
∣∣E (g(Ŝn(T)))− E (g(S(T)))

∣∣ 6 C 1

nα
.

This type of convergence is much weaker, but allows us to consider
a much wider class of numerical schemes. A weak convergence re-
sult [39] for the Euler scheme and the class of polynomial functions
can be read as:

Theorem 5 (Weak Convergence of the Euler Scheme). If we have Lip-
schitz continuous and polynomially bounded autonomous coefficients func-
tions a(x) and σ(x), which are in C4P (i.e. they are four times differentiable
and together with their derivatives are at most polynomially growing) then
the Euler scheme is weakly convergent with a convergence rate of one with
respect to the class H of all polynomials, i.e. we have∣∣E (g(Ŝn(T)))− E (g(S(T)))

∣∣ = O (n−1
)

as n→∞
for any polynomial g.
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milstein scheme

The Milstein scheme is the next order scheme obtained via the
Itô-Taylor expansion [39]. Therefore it assumes differentiability of a
volatility coefficient σ. If this is the case than the Milstein scheme can
be defined as:

Definition 4 (Milstein Discretisation Scheme). Let n be the number of
equidistant discretisation steps and ∆t = T/n, then for an one-dimension
SDE

dS(t) = a(t,S(t))dt+ σ(t,S(t))dW(t) , S(0) = s0 ∈ R,

we approximate a realisation of S with its discretised version Ŝn according
to the iterative Milstein scheme defined as

Ŝn (t0) = s0 ;

Ŝn (ti+1) = Ŝ
n (ti) + a

(
ti, Ŝn (ti)

)
∆t+ σ

(
ti, Ŝn (ti)

)
∆W (ti)

+
1

2
σ
(
ti, Ŝn (ti)

)
σ′
(
ti, Ŝn (ti)

) (
(∆W (ti))

2 −∆t
)

;

for i = 0, 1, 2, ...,n− 1, where ti = i ∆t and
(
∆W(tj)

)
j=0,1,...,n−1 are i.i.d.

normal random variables with zero mean and variance ∆t, i.e. ∆W(tj) ∼√
∆t N(0, 1).

We state a theorem on a strong convergence behaviour of the Mil-
stein scheme given in [45].

Theorem 6 (Strong convergence of the Milstein scheme). In addition
to the assumptions of Theorem 1 and Theorem 4, let σ (t, s) ∂σ(t,s)∂x satisfy
the conditions on the coefficients of Theorem 4. If further we have that a ∈
C1,1 and σ ∈ C1,2 then the Milstein scheme converges strongly with a
convergence rate one, i.e. for some constant C and n0 ∈N we have

E
∣∣S(T) − Ŝn(T)∣∣ 6 Cn−1 ∀n > n0 .

Thus, under extra assumptions the Milstein exhibits a significantly
better rate of a strong convergence compare to the Euler scheme.
However it has not got any improvement w.r.t. a weak convergence or-
der, i.e. the Milstein scheme has a weak convergence order of one [39].
On the first glance this suggests to use the Euler scheme, as it is sim-
pler than the Milstein. Though, under appropriate assumptions the
Milstein scheme outperforms the Euler, when pathwise approxima-
tions are needed. Moreover due to the bigger rate of a strong con-
vergence it has a great advantage in case of the MLMC estimate (see
Section 1.3).

Remark 6. A generalisation of the Milstein scheme to a multi-dimensional
case is not straightforward. It involves computations of double stochastic in-
tegrals, what can be done analytically only in some cases [45]. Hence this
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integrals should be approximated numerically, what makes the scheme ineffi-
cient.

Giles and Szpruch in [27] propose to use so-called Antithetic MLMC
technique to avoid computation of the aforementioned integrals.

some remarks

Very often instead of approximation of a stock process S, one uses
the Itô formula to obtain SDE for ln (S) and approximate solution
of the later SDE by some discretisation scheme. This transformation
helps to avoid problem with negative values of Ŝ that can occur dur-
ing approximation of the original SDE. Also it often leads to a smaller
absolute values of a bias error [55].

If we evaluate the payoff of a barrier option based on a discrete ap-
proximation Ŝn, we systematically overestimate or underestimate the
option price. This happens due to a discrete monitoring, i.e. we check
if the price has crossed the barrier only in discrete times ti = i∆t for
i = 0, 1, . . . ,n. To overcome this problem we suggest to use the Brow-
nian bridge technique [30] or the barrier shifting approach [13]. Note,
both approaches do not eliminate a bias error induced by a discrete
scheme approximation.

The volatility process V in the Heston model (3) is non-negative, but a
straightforward application of the Euler scheme to this process leads
to negative values of V̂ . Various techniques were proposed to deal
with this problem. We refer to an overview article [53] and some re-
cent advances [3].

The assumptions of the theorems on strong and weak convergences
of the Euler and Milstein schemes are quite strong. In some case they
can be either relaxed or substituted by some others, especially in the
case of a weak convergence. We direct the reader to [39], [36], series
of papers by Kurtz and Protter ([46], [48], [47]) and reference therein.

1.2.2.2 Errors and Computational Cost

To measure performance of MC estimate we define its computational
cost (CC) and error. A comparison of different MC method will be
done by comparing their CC expressed in terms of the error.

monte carlo errors in sde settings
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Application of discretised or approximated solution of SDE makes
MC estimate biased. Therefore in the SDE settings an error of an
estimate is measured by a mean square error (MSE)

MSE
[
Ê
]
:= E

(
Ê− E (P)

)2
,

where E (P) is value of interest or equivalently by a root mean square
error (RMSE) defined as rMSE :=

√
MSE.

This error measure can be decomposed into two components:

• statistical error;

• bias error induced by inexact approximation.

For instance in the case of the plain MC estimate (7) this can be done
as follows:

MSE
[
Ê
]
= E

(
Ê− E

(
Ê
)
+ E

(
Ê
)
− E (P)

)2
= E

(
Ê− E

(
Ê
))2

+
(
E
(
Ê
)
− E (P)

)2
= Var

(
Ê
)︸ ︷︷ ︸

stat. error

+
(

E
(
Ê
)
− E (P)︸ ︷︷ ︸

bias

)2

=
1

N
Var

(
g
(
Ŝ
))

+
(
E
(
g
(
Ŝn
))

− E (g (S))
)2

.

Remark 7. Indeed this MSE decomposition can be obtained for all estimates,
that are linear combinations of some plain MC estimates.

The MSE decomposition, in particular, means that both errors should
be controlled simultaneously and consistent. The number of simu-
lated paths N should be increased to decrease statistical error, while
increasing number of discretisation steps n will lead to a smaller bias.

computational cost of estimate

First, we define the CC of a discretisation scheme to be (asymptoti-
cally) proportional to the number of discretisation steps, i.e.

C.C.
[
Ŝn
]
� n .

As typically n � 1, CC of evaluation of a functional g can be ne-
glected, what immediately implies that

C.C.
[
g
(
Ŝn
)]
� n .

Then in case of the plain MC estimate (7) the CC should be multi-
plied by the number of simulated paths N, i.e.

C.C.
[
Ê
]
� N C.C.

[
g
(
Ŝn
)]
� N n . (8)

Remark 8. There exist another definitions of a CC, e.g. proportional to a
number of simulated pseudo-random variables. However they are all build
in a way to reflect computer run time.
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Equation 8 implies that simultaneous control of bias and statistical er-
rors by enlargement of n and N correspondingly leads to increasing
CC of an estimate. Therefore this control should be done in an opti-
mal way, what have been first studied by Duffie and Glynn in [22].
In particular, the optimal relation between n and N depends on an
order of weak convergence of the applied scheme Ŝn.

1.3 multilevel monte carlo

The idea of the MLMC estimate was first developed by Heinrich in
[33]. However it has been applied not in the SDE settings. Then half
a decade later the MLMC method was redeveloped and popularised
by Giles after publishing his seminal paper [28].

The MLMC method extends idea of the Statistical Romberg (SR)
approach by Kebaier [38]. Instead of using one scheme with n dis-
cretisation points the MLMC method suggests to use a sequence of
schemes Ŝl with different numbers of discretisation points.

To be more precise without loss of generality we can assume that
n = ML discretisation points for a fixed M and some integer L are
sufficient to obtain the desired bias accuracy of the plain MC estimate.
Let us denote

ni =M
i for i = 0, 1, . . . ,L ,

and consider

Ŝn0 , Ŝn1 , . . . , ŜnL

as a sequence of approximations of the SDE solution based on differ-
ent numbers of points. Then, E

(
g
(
ŜnL

))
, that is in the focus of the

plain MC estimate, can be represented as a telescopic sum

E
(
g
(
ŜnL

))
= E

(
g
(
Ŝn0

))︸ ︷︷ ︸
=:D0

+

L∑
i=1

E
(
g
(
Ŝni
)
− g

(
Ŝni−1

))︸ ︷︷ ︸
=:Di

, (9)

where Di are called levels. The MLMC algorithm approximates each
of these levels with independent plain MC estimates. This leads to
the following form of the Multilevel Monte Carlo estimate

Ê =
1

N0

N0∑
j=1

g
(
Ŝn0j

)
+

L∑
i=1

1

Ni

Ni∑
j=1

(
g
(
Ŝnij

)
− g

(
Ŝ
ni−1
j

))
. (10)

It is important that within level approximations Ŝni−1j and Ŝnij are
based on the same simulated Brownian paths.

The CC of simulating Di replication is increasing. On the other
hand the variance of Di is typically decreasing for increasing i. In the
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classical settings this is due to the strong convergence of the discreti-
sation scheme. To be more precise under conditions of Theorem 10.2.2
form [39] we have that

E
(
Ŝn (T) − S (T)

)2 � n−1 .

Let us consider a Lipschitz payoff g, what in particular implies that

Var
(
g
(
Ŝn
)
− g (S)

)
6 E

(
g
(
Ŝn
)
− g (S)

)2
6 c2 E

(
Ŝn (T) − S (T)

)2 � n−1 , (11)

where c is the Lipschitz constant. Further elementary transformations
yield

Var
(
g
(
Ŝni
)
− g

(
Ŝni−1

))
= Var

(
g
(
Ŝni
)
− g (S) + g (S) − g

(
Ŝni−1

))
6

(√
Var

(
g
(
Ŝni
)
− g (S)

)
+
√

Var
(
g
(
Ŝni−1

)
− g (S)

))2
.

(12)

Hence the variance of the levels decays w.r.t. level propagation, i.e.
combining Equation 11 and Equation 12

Var
(
g
(
Ŝni
)
− g

(
Ŝni−1

))
� n−1

i−1 , if ni > ni−1 . (13)

Note, to obtain this behaviour it is important to use the same Brown-
ian paths a within level.

Remark 9. The above considerations explain the importance of a strong
convergence, which seems to be useless in the plain MC setting. Moreover
an order of a strong convergence defines CC of the MLMC estimate (see
Theorem 7).

This levels variance decay behaviour is exploited by the MLMC
idea: Smaller variance makes less repetitions Ni necessary to reach
the same level of the statistical error. Finally, the MLMC algorithm
aims at reducing the overall CC by optimally distributing the work-
load over all levels (see [28] or Chapter 2 of this thesis).

The main advantage of the MLMC is summarised in the follow-
ing so-called Complexity Theorem [28], that shows the improvement
on CC compared to the plain MC. Below we present a simplified and
adopted to our notations version of the Complexity Theorem.

Theorem 7 (Complexity Theorem). Let g (S) denote a functional of the
solution of SDE (4) for a given Brownian pathW (t), and let g

(
Ŝni
)

denote
the corresponding approximation using a numerical discretisation with ni =
Mi steps.

If there exist positive constants α > 0.5, β, c1, c2, c3 such that

i) E
(
g
(
Ŝn
)
− g (S)

)
6 c1 n−α,
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ii) Var (Di) 6 c2 n
−β
i ,

iii) C.C. [Di] 6 c3 ni,

then there exists a positive constant c4 such that for any ε < e−1 there are
values L and Ni for which the Multilevel Monte Carlo estimator (10) has a
mean square error with bound

MSE
[
Ê
]
= E

(
Ê− E (P)

)2
6 ε2

with a computational cost C.C. with bound

C.C.
[
Ê
]
6


c4 ε

−2 if β > 1 ,

c4 ε
−2 (ln (ε))2 if β = 1 ,

c4 ε
−2−(1−β)/α if 0 < β < 1 .

Remark 10. Note, the Complexity Theorem is given in non-constructive
way. To give an example of an SDE, functional and scheme we propose for
instance to think about the BS SDE (1), European call option and the Euler
scheme. Then assumption i) is proven by Talay and Tubaro in [63] with
α = 1. Assumption ii) with β = 1 is an implication of the considerations
leading to Equation 13 and assumption iii) is an implication of the Euler
scheme construction.

For a constructive version in spirit of the Central Limit Theorem see [1].

We would like to conclude by summarising the MLMC idea into
two points.

• The telescopic sum property (9), that ensures correctness of re-
sult in the mean

• and the level variance decay (13)

are the main building blocks of the MLMC estimate.

1.4 thesis structure

Here we briefly explain what the reader can find in the imminent
parts of this thesis and introduce notations we will be using in the
future.

1.4.1 Structure

The rest of this thesis consists of the two chapters.
Chapter 2 is addressed to make a deep investigation of the MLMC

method. In particular we take an optimisation view at the estimate.
Rather than fixing the number of discretisation points ni to be a geo-
metric sequence, we are trying to find an optimal set up for ni such
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that for a fixed error the estimate can be computed within a minimal
time.

In Chapter 3 we propose to enhance the MLMC estimate with the
weak extrapolation technique. This technique helps to improve order
of a weak convergence of a scheme and as a result reduce CC of
an estimate. In particular we study high order weak extrapolation
approach, which is know not be inefficient in the standard settings.
However, a combination of the MLMC and the weak extrapolation
yields an improvement of the MLMC.

1.4.2 Notation Convention

In this thesis we will use the following notation convention. Very
often we will be talking about an (numerical) approximation scheme
P̂n, that approximates P . By this notation we usually mean

P̂n = g
(
Ŝn
)

and P = g (S) ,

where Ŝn is a discretisation scheme for some process S, e.g. the Eu-
ler or Milstein scheme (see Section 1.2.2). The functional g will be
typically equal to the discounted payoff of an option, e.g.

gb (S) = e−T (S (T) −K)+ I{S(t)>H,∀t∈[0,T ]}

for the barrier down-and-out call with maturity T , strike K and barrier
H. Also it might be some modification of the payoff functional, e.g.
the shifting barrier technique suggests to use lifted up barrier H̃ in
approximation (for details see [13])

g̃b (S) = e−T (S (T) −K)+ I{S(t)>H̃,∀t∈[0,T ]}

and then

P̂n = g̃b
(
Ŝn
)

and P = gb (S) .

In the rest of the thesis we will not be specifying an exact discretisa-
tion scheme. Instead we will require an approximation P̂m to possess
some properties, as for example C.C.

[
P̂m
]

of the scheme expressed
in terms of m. This approach is motivated by the formulation of the
Complexity Theorem 7.
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In the classic MLMC settings one considers a sequence of approx-
imations with ni discretisation steps, where ni follows a geomet-
ric progression. However there exists no justification for this choice.
Therefore we are doing a step back and consider a multilevel con-
struction (17) without fixing numbers of discretisation points to be a
geometric sequence. Instead we are trying to find an optimal set up
for ni such that for a fixed error the estimate has a smallest possible
CC.

As a result we justify the geometric progression choice. Moreover
an optimal common ratio M will raise as a by-product of our con-
siderations. Additionally, we will confirm a multiple control variate
interpretation [45] of the MLMC estimate.

2.1 multilevel construction

Let P̂m be some approximation scheme of P based on m equidistant
discretisation points (see Section 1.4.2 or Section 2.2.1 for examples).
Moreover let this scheme possess the following properties:

• boundedness of variance

Var
(
P̂n
)
<∞ ∀n ∈N; (14)

• “strong convergence”

Var
(
P− P̂n

)
� n−β (15)

for some β > 0;

• CC is asymptotically proportional to γ degree polynomial in
terms of the number of discretisation points

C.C.
[
P̂n
]
� nγ (16)

for some γ > 0.

The above assumptions are quite standard and, in particular, are
similar to the one from the Complexity Theorem 7 for the classic
MLMC. In the meanwhile there is no assumption regarding an order
of weak convergence of the scheme. Also assumption (14) can be de-
rived from assumption (15) for P with a bounded variance, but we
would like to keep it explicit.

21
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For the later we are interested in estimating

E
(
P̂n
)

for a fixed and given in advance n, rather then estimating E (P) itself,
and an unbiased estimator will be constructed an (asymptotically)
optimal way.

Remark 11. Such an estimator might be needed if, for instance,

• the number of discretisation points n corresponding to an “appropri-
ate” bias error of the scheme P̂n is known in advance;

• E
(
P̂n
)

yields an “acceptable” upper or lower bound of a product price
for known in advance n;

• E
(
P̂n
)

is an exact price of the product itself (e.g. discrete Asian op-
tions);

• n is chosen in advance due to computation latency requirements or
any other computation system constrain.

multilevel construction estimate

For some sequence of schemes P̂ni with increasing numbers of dis-
cretisation points ni

n0 < n1 < . . . < nL−1 < nL = n

we define a multilevel constructed (MLC) estimate Ê as

Ê =
1

N0

N0∑
j=1

P̂n0j +

L∑
i=1

1

Ni

Ni∑
j=1

(
P̂nij − P̂

ni−1
j

)
. (17)

The summands on the right hand side (RHS) of Equation 17

Ŷi =

 1
N0

∑N0
j=1 P̂

n0
j for i = 0;

1
Ni

∑Ni
j=1

(
P̂nij − P̂

ni−1
j

)
for i = 1, 2, . . . ,L ,

are independent and called levels. The telescopic sum property

E
(
Ê
)
= E

(
P̂n0

)
+

L∑
i=1

(
E
(
P̂ni
)
− E

(
P̂ni−1

))
= E

(
P̂n
)

ensures that the MLC (17) is an unbiased estimate of E
(
P̂n
)
.

On the one hand the form of this estimate is quite general. On the
other it is similar to the classic MLMC or can be seen as a multi-step
extension of the SR estimate by Kebaier [38]. Furthermore as for the
MLMC and the SR it is crucial that schemes P̂ni and P̂ni−1 within a
level are based on the same Brownian motion.
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optimality

By optimality we mean that the MLC estimate (17) has got a (asymp-
totically) minimal CC for a fixed statistical error. This will be achieved
by an optimal choice of

• numbers of the simulated paths on each level

Ni ∈N for i = 0, 1, . . . ,L ,

• numbers of the discretisation points for each scheme

ni ∈N for i = 0, 1, . . . ,L− 1 ,

• number of the levels

L .

More precisely we will solve the following minimisation problem

C.C.
[
Ê
]
→ min

s.t. Var
(
Ê
)
= ε2 . (18)

Remark 12. Alternatively we can consider the MLC estimate that for a
fixed CC has got a minimal statistical error, i.e.

Var
(
Ê
)
→ min

s.t. C.C.
[
Ê
]
= cost .

Both optimisation problems are closely related. The optimal values of num-
bers of the discretisation points ni and of number of the levels L coincide for
them. Moreover the optimal value of the alternative problem will be equal
to ε2 if cost is equal to the optimal value of Problem 18 and the optimal
numbers of the simulated paths Ni coincide.

2.1.1 Optimisation

This section is dedicated to the solution of Problem (18). The prob-
lem will be solved through the sequence of three minimisation sub-
problems:

1. find the optimal numbers of simulated paths for each level

Ni ∈N for i = 0, 1, . . . ,L ,

that minimise C.C.
[
Ê
]

under a constraint of Var
(
Ê
)
= ε2;

2. find the optimal numbers of discretisation steps for each scheme

ni ∈N for i = 0, 1, . . . ,L− 1 ,

that minimise optimal value of C.C.
[
Ê
]

from the above prob-
lem;
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3. find an optimal number of levels

L ,

that minimises the optimal value of C.C.
[
Ê
]

from the above
problem.

If ni, Ni and L are treated as real numbers these sub-problems can
be solved in an analytical form.

Solution of the firs sub-problem can be found in [28], but it is done
rather in spirit of Remark 12. The second sub-problem (or similar) has
already been studied by Marxen in [55] for a fixed in advance L. Its
solution leads to the so-called multi-step SR method as an extension
of the original SR method by Kebaier.

We solve minimisation Problem (18) as if ni, Ni and L were real
numbers. To emphasise this we will use overlines with ni, Ni and L
if they are assumed to be real, i.e. we write n̄i, N̄i and L̄ where ap-
plicable. There is an essential gap between continuous optimisation
and its integer counterpart that prevents optimality arguments to be
brought from one problem to the other and vice versa. Hence the
following optimisation considerations are not strictly rigorous. Nev-
ertheless the cautious reader should not be concerned, as the final
result on CC of the MLC estimate will be given in a mathematically
accurate way in Section 2.1.3.

In the following we first prepare the set up for our optimisation
problem. Then we present solutions of the sub-problems and discuss
their implications. Detailed steps of the solutions are technical and,
thus, postponed to Appendix A.

set up

Let us quantify CC and the variance of the MLC estimate (17). From
the form of the MLC estimator (17) it directly follows that

Var
(
Ê
)
=

1

N0
Var

(
P̂n0

)
+

L∑
i=1

1

Ni
Var

(
P̂ni − P̂ni−1

)
=

L∑
i=0

N−1
i Vi , (19)

where

Vi =

{
Var

(
P̂n0

)
for i = 0 ,

Var
(
P̂ni − P̂ni−1

)
for i = 1, 2, . . . ,L .
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As a number of levels L is usually small (in applications it is typically
less than 10) CC of summation across the levels is asymptotically
negligible, thus we obtain that

C.C.
[
Ê
]
= N0 C.C.

[
P̂n0

]
+

L∑
i=1

Ni C.C.
[
P̂ni − P̂ni−1

]
=

L∑
i=0

NiCi , (20)

where

Ci =

{
C.C.

[
P̂n0

]
for i = 0 ,

C.C.
[
P̂ni − P̂ni−1

]
for i = 1, 2, . . . ,L .

Using assumptions (14), (15) and (16) on the scheme P̂m we express
Ci and Vi in terms of the numbers of discretisation points ni. First of
all it is easy to obtain the following upper and lower bounds for Vi

Vi = Var
(
P̂ni − P̂ni−1

)
= Var

(
P̂ni − P + P− P̂ni−1

)
= Var

(
P̂ni − P

)
+ 2Cov

(
P̂ni − P,P− P̂ni−1

)
+ Var

(
P− P̂ni−1

)
⇓

Vi 6

(√
Var

(
P− P̂ni

)
+
√

Var
(
P− P̂ni−1

))2
Vi >

(√
Var

(
P− P̂ni

)
−
√

Var
(
P− P̂ni−1

))2
.

As ni > ni−1, under the assumption (15) Var
(
P− P̂ni−1

)
asymptoti-

cally dominates Var
(
P− P̂ni

)
and, thus,

Vi = Var (Pni − Pni−1) � n−β
i−1 for i = 1, 2, . . . ,L .

Morover we assume that Var
(
P̂n0

)
� 1, as it converges to the Var [P],

e.g. due to assumption (15) and
(
Var

(
P̂n0

))2
6
(
Var

(
P̂n0 − P

))2
+

(Var (P))2. Hence

Vi �

{
1 for i = 0 ,

n
−β
i−1 for i = 1, 2, . . . ,L .

(21)

Assumption (16) on CC of the scheme directly gives

Ci �

{
n
γ
0 for i = 0 ,

n
γ
i +n

γ
i−1 for i = 1, 2, . . . ,L .

(22)

Furthermore nγi asymptotically dominates nγi−1 implying that

Ci � nγi . (23)
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optimal numbers of simulated paths

On the first step we determine the numbers of simulated paths
on each level N̄i that minimise computational effort to obtain the
estimate with the statistical error equal to ε2.

First we solve this problem in the general settings, i.e. involving
only Ci and Vi. Using representations (19) and (20) for Var

(
Ê
)

and
C.C.

[
Ê
]

correspondingly it reads as

L∑
i=0

NiCi → min

s.t.
L∑
i=0

N−1
i Vi = ε

2 .

If the Ni are treated as a real numbers, this problem can be solved
using the Lagrange multiplier optimisation technique (see e.g. [14]).
Detailed steps of the solution may be found in Section A.1.

This yields the optimal numbers of simulated paths

N̄i =

∑L
i=0

√
Ci · Vi

ε2

√
Vi
Ci

. (24)

and the minimal CC of the MLC estimate is

C.C.
[
Ê
]
=

(
L∑
i=0

√
CiVi

)2
ε−2 . (25)

In particular, under our assumptions combining (21) and (23) in
Equation 24 and Equation 25 we obtain

N̄i �


n
γ/2
0 +

∑L
i=1n

γ/2
i n

−β/2
i−1

ε2
n
−γ/2
0 for i = 0 ,

n
γ/2
0 +

∑L
i=1n

γ/2
i n

−β/2
i−1

ε2

(
n
−γ/2
i n

−β/2
i−1

)
for i = 1, 2, . . . ,L .

and the corresponding CC

C.C.
[
Ê
]
�

(
n
γ/2
0 +

L∑
i=1

n
γ/2
i n

−β/2
i−1

)2
ε−2 . (26)

It is worth to comment that a spread of the computational effort
across levels is proportional to

C.C.
[
Ŷi
]
∼
√
CiVi .

Hence it depends on a mutual relation between the rate of Vi’s decay
and the rate of Ci’s growth. Moreover it will turn out that this relation
has an essential impact on CC of the MLC.
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optimal numbers of discretisation points

Further we are minimising the CC of the estimate w.r.t. the num-
bers of discretisation points n0,n1, . . . ,nL−1. To do so it suffices to
solve(

n
γ/2
0 +

L∑
i=1

n
γ/2
i n

−β/2
i−1

)2
→ min ,

as the ε−2 term on the RHS of Equation 26 is independent from ni.
Note, the number of points for the finest discretisation nL is fixed to
be n and not subject to minimisation. While we agreed to treat ni as
real numbers, the continuous optimisation technique can be applied.
Here we present the solution and comment on it (more details can be
found in Section A.2).

For the sake of notational simplicity we define

a :=
β

γ
and b :=

(
β

γ

) 2
γ

.

Then the optimal numbers of discretisation points

n̄i =


n
i+1
L+1

L if a = 1 ,

b

(i+1)(aL+1−1)−(L+1)(ai+1−1)
(aL+1−1) (a−1) n

ai+1−1
aL+1−1

L if a 6= 1 ,

(27)

and the corresponding minimised CC reads as

C.C.
[
Ê
]
�



(
(L+ 1)n

1
L+1

γ
2

L

)2
ε−2 if a = 1 ,

(
aL+1−1
aL+1−aL

a

(
1

(a−1)−
(L+1)

aL+1−1

)
n

a−1
aL+1−1

γ
2

L

)2
ε−2 if a 6= 1 .

(28)

Also it can be shown that for the optimal n̄i we have

n̄i =

{
n̄0n̄i−1 if a = 1 ,

b−in̄ai−1 if a 6= 1 .

This recursive relation implies that in general the optimal sequence
of n̄i does not obey a geometric progression rule (see Figure 1), while
this is the case for the MLMC.
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Figure 1: Optimal n̄i for nL = 4096, L = 4, γ = 1 and different values of β
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optimal number of levels

During the last step we minimise CC w.r.t. the number of levels L,
i.e.

C.C.
[
Ê
]
→ min ,

where C.C.
[
Ê
]

as defined in Equation 28. Thus to find an optimal L
we have to minimise the function G

G (L) �



(
(L+ 1)n

1
L+1

γ
2

L

)2
if a = 1 ,

(
aL+1−1
aL+1−aL

a

(
1

(a−1)−
(L+1)

aL+1−1

)
n

a−1
aL+1−1

γ
2

L

)2
if a 6= 1 .

(29)

This problem can be solved analytically for L being treated as real
number (for details see Section A.3).

Defining

R :=

 e
2
γ if γ = β ,(
γ
β

) 2
γ−β

if γ 6= β ,
(30)

the optimal number of levels is given as

L̄ = log[R] (nL) − 1 . (31)

For this choice of L̄ the optimal numbers of discretisation points n̄i
take an elegant form of the geometric progression with the common
ratio R

n̄i = R
i+1 . (32)

Moreover they obey the following recursive relation

n̄i = R
−1 n̄i+1 (33)

and the corresponding CC is asymptotically equal to

C.C.
[
Ê
]
�


(
e ln

(
n
γ
2

L

))2
ε−2 if γ = β ,(

a
a
a−1

a−1

)2(
n
γ−β
2

L − 1

)2
ε−2 if γ 6= β .

Note, for a fixed γ the optimal common ration R is a decreasing func-
tion of β implying that for schemes with a slow strong convergence
of an order β < 1 the optimal value of R takes significantly bigger val-
ues compared to the case of a fast convergent schemes (see Figure 2).
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Figure 2: Optimal common ratio R for γ = 1 and different values of β.

Moreover it is very important that R is independent of nL and ε, but
depends on the properties of an approximation scheme.

The optimal number of levels L is probably the most sensitive to
a rounding issue, since it typically takes small values. However the
function G (L) is strictly decreasing for L ∈

(
0, L̄
)

and strictly increas-
ing for L ∈

(
L̄,+∞). Therefore an optimal solution of the correspond-

ing integer minimisation problem will be either
⌊
L̄
⌋

or
⌈
L̄
⌉
.

2.1.2 MLC Algorithm

As the values of n̄i, N̄i and L̄ are not necessarily integer, in this section
we present their integer counterparts, that should be used in the MLC
algorithm.

In the first place the number of levels L should be chosen as

L = argmin
(
G (L) | L ∈

{⌊
L̄
⌋

,
⌈
L̄
⌉})

, (34)

where the function G is as defined in Equation 29. In general, the L
is no longer equal to L̄, thus the numbers of discretisation points n̄i
should be chosen according to Equation 27. Besides we propose to
round them to obtain integer ni

ni = round {n̄i} . (35)

Remark 13. Although the above choice of ni is the most intuitive one, there
exist other reasonable options. For instance, being inspired by the recurrent
representation (33), the numbers of discretisation points can be chosen to
follow a decreasing geometric progression (up to rounding). Namely

ni = round
{
R−(L−i) nL

}
,
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where R is the optimal common ratio given by Equation 30.

According to Equation 24 the optimal numbers of simulated paths
depends on Vi and Ci. As Vi are not known in advance , they have
to be estimated on the fly. Then combining the expression (22) for Ci
with Equation 24 gives

Ni =



⌈√
n
γ
0V0+

∑L
i=1

√
(nγi +n

γ
i−1)Vi

ε2

√
V0
n
γ
0

⌉
for i = 0 ,

⌈√
n
γ
0V0+

∑L
i=1

√
(nγi +n

γ
i−1)Vi

ε2

√
Vi

n
γ
i +n

γ
i−1

⌉
for i = 1, . . . ,L .

(36)

To estimate Vi on the fly we propose to use a semi-adaptive algorithm
in style of the adaptive MLMC algorithm [28].

Then we summarise our suggestions in Algorithm 1.

Algorithm 1 Multilevel Constructed Estimate

Input: ε and nL
Output: Ê

1: define optimal L using Equation 34

2: define optimal n0, . . . ,nL−1 using Equation 35

3: estimate V0, . . . ,VL using an initial Nl = 104 samples
4: define optimal N0, . . . ,NL using Equation 36

5: evaluate extra samples at each level as needed for new Ni
6: calculate Ê according to Equation 17

Remark 14. In general there exit sets of nL, γ and β for which the above
procedure gives degenerate optimal ni, e.g. ni = ni−1 for some i or n0 = 0.
However in applications this procedure is usually well-defined.

2.1.3 Computational Cost of the MLC estimate

In this section we give a main result on CC of the MLC Algorithm 1.

Proposition 1. Let P denote a functional of the solution of some stochastic
differential equation driven by Brownian motion, and let P̂m be some ap-
proximating discretisation scheme with m equidistant discretisation points.

Moreover let for some positive constants β,γ, cc and cv the discretisation
scheme P̂m is such that ∀m ∈N

i) C.C.
[
P̂m
]
6 ccmγ,

ii) Var
(
P− P̂m

)
6 cvm−β,

iii) Var
(
P̂m
)
6 cv.
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Then for nL > R2 and sufficiently small ε there exists a choice of Ni, ni
and L such that the unbiased MLC estimate of E

(
P̂nL

)
Ê =

1

N0

N0∑
j=1

P̂n0j +

L∑
i=1

1

Ni

Ni∑
j=1

(
P̂nij − P̂

ni−1
j

)
,

has a statistical error

Var
(
Ê
)
6 ε2

and a bounded computational cost

C.C.
[
Ê
]
6


C ε−2 if γ < β ,

C ( ln (nL))
2 ε−2 if γ = β ,

Cn
γ−β
L ε−2 if γ > β ,

for some constant C independent of nL and ε.

The proof relies on the choice of Ni, ni and L from Section 2.1.2.
However it is rather technical, thus, given in the appendix (see Sec-
tion A.4). Note, the requirement of ε to be sufficiently small is rather
technical and usually satisfied in applications. It is imposed to ensure
that for all levels the numbers of simulated paths Ni computed ac-
cording to Equation 36 are at least greater or equal than 1. Moreover
we consider nL such that the optimal number of levels (34) is at least
greater or equal than 1, otherwise it is advisable to use the plain MC
estimate instead.

The result of Proposition 1 is in line with the Complexity Theorem 7

for the MLMC. For instance, CC of the estimate is bounded regardless
of nL if γ < β, what corresponds to an asymptotically negligible CC
of an extra level of the MLMC in this case. Moreover the spread of
computational effort across levels of the MLC estimate is defined by
γ and β in the similar to the MLMC way:

• if γ < β, more effort is assigned to starting levels;

• if γ = β, effort is almost uniformly spread;

• if γ > β, more effort is assigned to last levels.

We will continue the discussion on the relation of the MLC to the
MLMC in Section 2.3.
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Remark 15. The constant C obtained in the proof of Proposition 1 is very
conservative and by far not tight. Moreover for a big enough nL and a small
enough ε it is expected to be about

C ≈



cccv

(
Rγ/2 +

√
(1+R−γ)(Rβ−1)

a2−a

)2
if γ < β ,

cccv
(
e2 − e−2

)
γ2

4 if γ = β ,

cccv
(1+R−γ)(Rβ−1)

(a−1)2
if γ > β ,

for the choice of Ni, ni and L according to (36), (35), (34) correspondingly
(for a justification see Section A.4).

2.1.4 Comment on the Structural Result

In general to obtain a multilevel estimator with CC that is bounded
as in Proposition 1 it is sufficient that

• n̄i are elements of a geometric progression with some common
ratio r > 1;

• and L̄ is the logarithm of nL w.r.t. the base r.

However the constant C will be bigger, but still independent of nL
and ε. Also it can be proven for the choice of ni as given in Remark 13.

An important by-product of the optimisation is

• the optimal common ratio R,

that minimises the constant C. This can be seen as a generalisation
of the optimal M for the MLMC derived in Section 4.1 of [28]. We
would like to stress it again: the optimal common ratio is independent
from errors and depends only on the properties of an approximation
scheme.

Selection of an appropriate starting level is another important is-
sue that has an impact on CC of the multilevel methods [55]. Our
optimisation approach also gives notion of the optimal starting level.
Though it has got practical drawbacks (for details see following re-
mark).

Remark 16 (On The Optimal Starting Level). According to our findings
n̄0 is equal to R1 > 1, meanwhile in the MLMC method it is chosen to
be M0 = 1. This is explained by the simplification of our assumptions on
values of V0 and V1. To be more precise for n̄0 = 1

V0 = cv and V1 = cvn̄
−β
0 = cv ,

while

C0 = ccn̄
γ
0 = cc and C1 = ccn̄

γ
1 � cc .
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Then, as V0 = V1 while C0 � C1, this choice a priory cannot be optimal
under our assumptions. However in applications it often happens that V0 �
V1 and, thus, the optimal choice of n̄0 could be less than R.

This effect can be incorporated in the solution of the optimisation Prob-
lem (18) and will lead to the notion of an optimal starting level. Under the
assumption of Var

(
P̂m − P

)
≈ cvm−β the optimal n̄i and L̄ will be

L̄ = log[R]

(
ĉ
1
β nL

)
− 1 ,

n̄i = ĉ
− 1
β Ri+1 ,

where

ĉ =
Var

(
P̂n0

)
cv

.

Note, the optimal common ratio R is the same and still is independent of nL,
ε and the aforementioned constants.

However this finding has got serious practical drawbacks for a practical
application. In particular

• the constant ĉ depends on the unknown in advance cv and Var
(
P̂n0

)
,

and furthermore the last constant depends on the solution itself;

• optimality essentially relies on the fact that Var
(
P̂m − P

)
≈ cvm−β,

what is sometimes not the case (e.g. for barrier options under the Hes-
ton model approximated by the Euler scheme [55]).

As the recursive relation n̄i−1 = R−1n̄i still holds and R depends only on γ
and β, the first drawback can be eliminated by computing an estimator back-
wards, i.e. starting from the last levels and estimating unknown constants
on the fly.

2.2 mlc as variance reduction

The first application on the MLC is a direct estimation of

E
(
P̂n
)

.

In such a setting the MLC estimate can be seen as an optimal multi-
step control variate variance reduction technique. The reason is that
ni, Ni and L are chosen to minimise the variance of the estimate for a
fixed CC (see Remark 12). To measure the improvement we introduce
a speed up of the MLC compared to the plain MC algorithm yielding
an estimate with the same statistical error ε2

speed up =
C.C. [“plain MC”]

C.C. [“MLC”]
.
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As CC of the plain MC estimator is equal to ccnLVar
(
P̂nL

)
ε−2,

under the assumptions of Proposition 1 it holds that

speed up >


C̃ n

γ
L if γ < β ,

C̃ n
γ
L

(
ln
(
n
γ
L

))−2 if γ = β ,

C̃ n
β
L if γ > β ,

for some positive constant C̃ independent of nL and ε. Hence the
speed up increases (upto log-terms) polynomially in nL with a degree
of min {γ,β}.

Remark 17. Note, the above constant C̃ is equal to

C̃ = C−1ccVar
(
P̂nL

)
,

where C is as in Remark 15. Then under the assumptions of Proposition 1
the constant C̃ is expected to be about

C̃ ≈



Var(P̂nL)
cv

(
Rγ/2 +

√
(1+R−γ)(Rβ−1)

a2−a

)−2

if γ < β ,

Var(P̂nL)
cv

1
e2−e−2

4
γ2

if γ = β ,

Var(P̂nL)
cv

(a−1)2

(1+R−γ)(Rβ−1)
if γ > β ,

for a big enough nL and a small enough ε.

2.2.1 Numerical Example

We illustrate the speed up effect by analysing the numerical perfor-
mance of MLC Algorithm 1. As a show case we price arithmetic dis-
crete Asian call option averaged over daily closings (see Section 1.1.1.2)
in the one dimensional BS model (see Section 1.1.2.1) with

today’s price of asset S0 = 1 ,

riskless interest rate r = 0.02 ,

volatility σ = 0.25 .

In general the MC methods might be not the best numerical technique
in this setting (for alternatives see e.g. [44] and references therein).

We make use of the closed form (2) of a solution S to the BS SDE (1).
Then the numerical approximation P̂m is defined as

P̂m := e−rT

(
1

m

m∑
i=1

S

(
T

m
i

)
−K

)+

,
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L n0 n1 n2 n3 n4

4 4 16 67 283 1260

Table 1: Optimal ni and L

γ β R n1/n0 n2/n1 n3/n2 n4/n3

1 2 4 4.0 ≈ 4.2 ≈ 4.2 ≈ 4.5

Table 2: Commom ratio

where S is a solution of the BS SDE. Note, that for nL = 252T the
approximation P̂n is an exact discounted payoff of the arithmetic dis-
crete Asian call option averaged over daily closings with maturity T
and strike K. Therefore we are interested in estimation of E

(
P̂nL

)
.

In this case CC of the approximation P̂m is proportional to m, i.e.
γ = 1 in the notations of Proposition 1, and the rate of variance decay
β is equal to 2 (see Figure 3a).

First we analyse pricing of the option with time to maturity T = 5y

and strike K = 100. In particular nL = 1260 and the price of such a
product is approximately 13.96.

The optimal configuration of ni and L as chosen by the MLC Algo-
rithm 1 is presented in Table 1. Note it is infeasible to chose ni to be
equal to the optimal continuous solutions n̄i. However Table 2 sug-
gests that ni are close to a geometric progression with the common
ratio R = 4.

On Figure 3a we plot variances Vi and Var
(
P̂ni
)
. The spread of
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Figure 3: Performance of the MLC

computational effort across the levels, i.e. C.C.
[
Ŷi
]
, is showed on

Figure 3b. As expected more computational effort is assigned to the
starting levels because β > γ. Moreover the MLC is about 120-times
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T (y) 0.25 0.5 0.75 1 2 3 4 5

# of days (nL) 63 126 189 252 504 756 1008 1260

speed up 7 13 19 25 53 73 95 119

Table 3: Speed up of the MLC compare to the plain MC

faster than the plain MC method, while Remark 17 predicts 180-times
speed up.

In general, the speed up depends on a value of nL. In Table 3 we
compare speed ups for different times to maturity T given.

As the approximation P̂m depends on T , what we are doing is
not a comparison of the MLC computing E

(
P̂m
)

for a different m.
However this still confirms an expected linear increase of the speed
up with increasing nL (see Figure 4).
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2.3 mlc as the classic mlmc

Here we are showing the way the MLC and the classic MLMC are
related. First we will explain how Proposition 1 leads to the Complex-
ity Theorem 7 for the MLMC. Then we present the way to construct
the adaptive MLMC algorithm [28] from the MLC algorithm. As a
by-product we obtain a new interpretation of the adaptive MLMC
algorithm in the character of an unbounded search problem.

To take into account a bias error we assume that the approximation
scheme P̂m has an order of week convergence α > 0, i.e.∣∣E (P) − E

(
P̂m
)∣∣ 6 cbm−α (37)

for some positive constant cb > that is independent from m. Then it
directly follows that the choice of

nL =

⌈(
c−1b ε

)− 1
α

⌉
(38)
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ensures that the bias error of E
(
P̂nL

)
is less than ε. Moreover under

the assumptions of Proposition 1, there exists an MLC estimate Êwith
the statistical error less than ε2 such that its CC is bounded by

C.C.
[
Ê
]
6


C ε−2 if γ < β ,

C ( ln (nL))
2 ε−2 if γ = β ,

Cn
γ−β
L ε−2 if γ > β .

Then if nL is chosen according to Equation 38, the MSE decomposi-
tion into the sum of a statistical error and squared bias (see Remark 7)
implies that

MSE
[
Ê
]
= Var

(
Ê
)
+
(
E (P) − E

(
P̂nL

))2
6 ε2 + ε2 = 2ε2

and the corresponding CC of the estimate Ê is bounded by

C.C.
[
Ê
]
6


C̄ ε−2 if γ < β ,

C̄ ε−2 (ln (ε))2 if γ = β ,

C̄ ε−2−
γ−β
α if γ > β .

This CC bound is in agreement with the generalised Complexity The-
orem for the MLMC [55] and in particular for γ = 1 is identical to the
one from the Complexity Theorem 7.

bias error and unbounded search

According to Equation 38 to chose the appropriate nL we should
know the constant cb, which is a priori unknown . Hence, the follow-
ing search problem has to be solved

nL = min
{
m ∈N , s.t.

∣∣E (P) − E
(
P̂m
)∣∣ 6 ε} . (39)

This problem can be regarded as the well-known unbounded search
problem. It was first introduced and studied by Bentley and Yao [9]
(for a general introduction to the class of the search problems see
[40]). The problem can be seen as searching for a key in an ordered
table of infinite size. To give an exact formulation of the problem we
define the key function F : N→ {0, 1}

F (i) =

{
0 for i < n ,

1 for i > n .

The aim of the unbounded search is to determine n using primitive
operations of evaluation F and comparing its value to 0 or 1.

In our setting the key function F is defined as

F (i) = I
(∣∣E (P) − E

(
P̂i
)∣∣ 6 ε) .
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It is well-defined under the assumption of a monotonic decay of the
bias error of the scheme P̂m. This link explains the unbounded search
nature of the problem (39).

Bentley and Yao in [9] gave a lower bound for the cost, measured
by the number of comparisons, of unbounded search algorithms and
proposed an almost optimal algorithm for this problem. The almost
optimal algorithm consists of a sequence of the binary search algo-
rithms. The first binary search algorithm began with determining m,
s.t. 2m−1 6 n 6 2m− 1 by successively evaluating F

(
2i − 1

)
and then

it is complemented by the classic binary search within 2m−1 elements.
This motivates us to apply this idea to the problem 39. Namely,

by successively evaluating I
(∣∣∣E (P) − E

(
P̂R

l
)∣∣∣ 6 ε) determine L, s.t.

RL−1 6 nL 6 RL− 1 and then set nL to be RL. In the case of a scheme
with a smooth first order weak convergence the bias entering the
aforementioned indicator can be approximated (see [28] Section 4.2)
by ∣∣∣E (P) − E

(
P̂R

l
)∣∣∣ ≈ 1

R2 − 1

∣∣∣E(P̂Rl)− R−1E
(
P̂R

l−1
)∣∣∣ .

Hence, I
(∣∣∣E (P) − E

(
P̂R

l
)∣∣∣ 6 ε) can be heuristically substituted by

I
(∣∣∣E(P̂Rl)− R−1E

(
P̂R

l−1
)∣∣∣ 6 (R2 − 1) ε) .

Further E
(
P̂R

l
)

is approximated using the MLC estimate. Also in
this setting

• E
(
P̂R

l−1
)

is approximated by a sample mean of the level before
last one;

• the approximation of E
(
P̂R

l+1
)

adds one extra level to the com-

putation of E
(
P̂R

l
)

and reuses its samples.

Then by omitting binary search for nL with in RL−1, . . . ,RL − 1 we
are getting rid of any extra CC of the MLC estimate that has the MSE
less than 2ε2.

This approach leads to the adaptive MLMC algorithms (see [28]
Section 5) proposed by Giles. Therefore this algorithms can be inter-
preted as a combination of the (asymptotically) optimal multi-step
control variate estimate MLC with the (upto constants) optimal un-
bounded search algorithm.
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We continue to consider a problem of estimation of an expected value
of a functional of the solution of an SDE using the MC methods. In
particular this formulation reflects the problem of numerical pricing
of exotic options (see Section 1.1.1.2).

We further stick to the assumption that some approximation scheme
should be used (see Section 1.2.2 for examples). As a consequence an
overall MSE of an estimate consist of two components:

• statistical error;

• bias error induced by an inexact discretisation scheme.

Moreover MSE can be decomposed into a sum of the aforementioned
components (see Section 1.2.2.2), namely

MSE
[
Ê
]
= Var

(
Ê
)︸ ︷︷ ︸

stat. error

+
(

E
(
Ê
)
− E (P)︸ ︷︷ ︸

bias

)2
.

This in particular means that both errors should be controlled simul-
taneously and consistent. For instance in the case of the plain MC
estimate the number of simulated paths should be increased to de-
crease the statistical error, while increasing the number of discretisa-
tion steps leads to a smaller bias. However these both straightforward
controls lead to substantial increase of CC of the estimate, thus they
should be done in an optimal way (see e.g. [22]). On the contrary
there exist error reduction techniques, that reduce errors with a mi-
nor impact on CC of the estimate, e.g. variance reduction techniques
dealing with statistical error and weak extrapolation methods improv-
ing bias error convergence. General surveys on existing variance and
bias reduction techniques can be found in e.g. [45] or [29].

In Chapter 2 we argued that the MLMC approach can be seen as
a multi-step control variate variance reduction. While it is proven to
be an effective variance reduction, it does not target reduction of a
bias error. Therefore the MLMC estimator will be taken as a base and
enhanced with a weak extrapolation bias reduction technique.

Weak extrapolation methods are well known bias reduction tech-
niques for the MC method in the SDE setting.

Remark 18. There exist alternatives for speeding up bias error convergence.
For instance

• schemes with faster bias convergence;

41
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• schemes with fast strong convergence in the MLMC settings, as in the
case of β > 1 a rate of bias convergence has no influence on the CC of
the estimate (see the Complexity Theorem 7).

However schemes with higher orders of bias or strong convergence might
be unavailable or, which is often the case, are more sophisticated from the
implementation point of view [53]. Moreover they might be unsuitable for
an efficient hardware implementation (see [56] and references therein), what
seems to be a very recent trend [49].

In the SDE setting weak extrapolation was first proposed and jus-
tified by Talay and Tubaro in [63]. The main idea is to linearly ex-
trapolate the bias error using two approximation schemes with n

and 2n discretisation points. Under appropriate assumptions on the
bias convergence it is possible to construct high order weak extrapola-
tion (HOWE) approximations, e.g. quadratic, cubic and so forth. How-
ever a straightforward extension based on schemes with n, 2n, 3n, . . .
discretisation points has essential drawbacks that prevent it from be-
ing used in applications [29]. In particular they lead to explosion of
variance of the estimate and as a consequence enormous CC [59].

In this chapter the HOWE methods are applied to enhance the
MLMC estimate proposed in [28]. This merge of the HOWE and the
MLMC constructions circumvents the aforementioned drawbacks of
the HOWE. We will show that if the bias error admits a power se-
ries expansion in terms of the number of discretisation points, CC to
achieve an RMSE of ε for the extended estimate can be reduced to at
least

O
(
ε−(2+o(1))

)
regardless of the speed of variance decay with increasing levels. This
result might be seen as a special case of the Complexity Theorem 7

for a scheme with “infinite” order of weak convergence. However,
in contrast to the plain MLMC the extended estimate relies on the
weighted sum for the HOWE rather than on the telescopic sum. The
reduction of the CC can be explained by a faster bias decay with
increasing maximal number of levels.

Debrabant and Rößler in [19] also consider HOWE technique in
the MLMC settings. However they applied it to directly to an discrete
approximation of a solution of the SDE. In contrast, we extrapolate a
functional of the solution. The linear extrapolation in the case of the
plain MLMC has been already studied in the seminal paper [28], but
results on HOWE applied on the level of functionals were missing in
the literature until the very resent and independent result by Lemaire
and Pagès [51].

This chapter is build in the following way. We first give a brief
recall of the weak extrapolation methods, and afterwards adapt the
HOWE to the MLMC settings. In the sequel we define the weak ex-
trapolation multilevel (WEML) estimate, describe the corresponding
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algorithm and prove the CC theorem. Numerical results presented in
Section 3.5 support our findings and illustrate the saving of the com-
putational effort. On the other hand they also show some limitations
of the WEML application.

3.1 weak extrapolation

In this section we briefly recall the idea of the classic Talay-Tubaro
(TT) weak extrapolation [63]. The second part of the section is dedi-
cated to the discussion of the HOWE estimate and its drawbacks. In
Section 3.1.3 we collect some theoretical results justifying the applica-
tion of the weak extrapolation technique.

3.1.1 Linear Talay-Tubaro Extrapolation

The TT approach is a Richardson type extrapolation (see e.g. [18]). It
uses linear extrapolation based on two estimates based on the same
scheme but with n and 2n discretisation points to obtain an estimate
with higher order of a weak convergence.

To be more precise let P̂m be some approximation scheme based on
m equidistant discretisation points (see Section 1.2.2.1) that approxi-
mates P. Moreover let for this scheme hold

E (P) − E
(
P̂n
)
= C n−1 +O

(
n−2

)
, (40)

for some constant C independent from n. In particular this means
that the scheme has first order weak convergence. Also this implies
that the convergence is smooth in the number of discretisation points.
Talay and Tubaro first derived necessary conditions on the underly-
ing SDE and functional, such that representation (40) holds for the
Euler discretisation scheme. In Section 3.1.3 we recall the main result
from [63] and present a brief survey on similar results.

Due to the weak convergence of the scheme our ultimate goal is to
approximate E (P) by E

(
P̂∞). Relation (40) implies that E

(
P̂n
)

as a
function of n−1 is affine upto a second term

E
(
P̂n
)
≈ E (P) −C n−1 .

This motivates the application of linear extrapolation based on ap-
proximations with n and 2n discretisation points to extrapolate the
E
(
P̂∞) value. Linear extrapolation directly gives the so-called Talay-

Tubaro scheme

E
(
P̂∞) ≈ E

(
2 P̂2n

)
− E

(
P̂n
)

,

that has second order weak convergence, i.e.

E
(
2P̂2n − P̂n

)
− E (P) = O

(
n−2

)
.
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Consequentially the Talay-Tubaro estimate based on this scheme is de-
fined as

Ē =
1

N

N∑
j=1

(
2P̂2nj − P̂nj

)
,

and has a bias error of the order two in contrast to first order of the
corresponding plain MC estimator.

Remark 19. An alternative construction of the TT scheme can be seen as
an attempt to eliminate the leading term in the bias error by combining
approximations with n and 2n discretisation points. To be more precise writ-
ing Equation 40 for approximations with n and 2n discretisation points we
obtain

E (P) − E
(
P̂n
)
= Cn−1 +O

(
n−2

)
, (41)

E (P) − E
(
P̂2n

)
= C (2n)−1 +O

(
n−2

)
. (42)

Then by doubling Equation 42 and subtracting it from Equation 41 we derive
the same TT scheme

E (P) − E
(
2P̂2n − P̂n

)
= O

(
n−2

)
,

that has second order of weak convergence.

By the result of Duffie and Glynn [22] on an optimal choice of the
number of simulated paths, N should be proportional to n4 for the
TT estimate. Therefore CC of the estimate with RMSE of ε is reduced
from O

(
ε−3

)
for the plain MC to O

(
ε−2.5

)
for the TT estimate due

to the faster order of bias convergence.

Remark 20. It is advisable to uses consistent Brownian increments to sim-
ulate P̂n and P̂2n as this typically reduces variance of the TT scheme. How-
ever the effect depends on a correlation between approximations [29].

3.1.2 Classic High Order Weak Extrapolation

Under appropriate assumptions on bias error expansion the weak
extrapolation idea can be extended to obtain schemes with higher or-
ders of weak convergence. However we will see that a straightforward
generalisation has essential drawbacks.

Let for an approximating scheme P̂n expansion (40) hold for higher
orders of n−1, i.e.

E (P) − E
(
P̂n
)
=

N−1∑
i=1

ci
1

ni
+O

(
1

nN

)
(43)

for some positive integer N and real constants ci, that are indepen-
dent of n. Typically power-like expansion (43) is proven in full details
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for N = 2. However, under additional technical assumptions it can be
shown for larger values of N or even for all positive integers. Also in
some applications it still holds despite unavailable theoretical justifi-
cation.

In what follows we present the straightforward extension of the
weak extrapolation approach and recall some results form [63] and
[59]. We consider an approximation scheme for N different numbers
of discretisation points, i.e.

P̂n, P̂2n, P̂3n, . . . , P̂Nn

for some positive integer n. The Nth order HOWE scheme takes the
form of a weighted sum of these base approximations

N∑
i=1

λNi P̂
in ,

where λNi are real extrapolation weights independent of n. The weights
are obtained as solution of the system of equations established in the
spirit of Remark 19 (details can be found in [59]) and take the follow-
ing form

λNi = (−1)N−i iN

i! (N− i)!
.

This choice of the weights leads to the HOWE scheme with Nth order
of weak convergence, i.e.

E (P) − E

(
N∑
i=1

λNi P̂
in

)
= O

(
n−N

)
.

As a consequence the high order weak extrapolation estimate, defined as

Ē =
1

M

M∑
j=1

λNi P̂
in
j ,

has the bias error of an order N.
Analogously to the TT estimator case, the errors and CC trade

off [22] yields an optimal choice of the number of simulated paths
M ∼ n2N. Hence, the HOWE estimate with RMSE of ε has CC of
O
(
ε−(2+1/N)

)
. As a result if expansion (43) holds for any positive

integer N, it is theoretically possible to construct a HOWE estimate
with CC that has an order arbitrary close to 2.

drawbacks of the classic howe

However the HOWE approach in the above form has essential
drawbacks that prevent it from being used in practice. Here we present
and discuss at least some of them.
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N 2 3 4 5∑ (
λNi
)2

5 ≈ 37 ≈ 312 ≈ 2916

Table 4: Values of a squared sum of the extrapolation weights

The first problem is a rapid increase of CC of simulating a replica-
tion of

∑N
i=1 λ

N
i P̂

in with increasing order N. To illustrate this let us
assume that CC of P̂m is linear in m, i.e.

C.C.
[
P̂m
]
� m .

This leads to

C.C.

[
N∑
i=1

λNi P̂
in

]
� nN

(N+ 1)

2
.

In particular, already for a quadratic extrapolation, i.e. N = 3, CC is
6-times larger compared to the plain MC simulations.

The second reason and probably the most crucial one is an “ex-
plosion” of the scheme’s variance Var

(∑N
i=1 λ

N
i P̂

in
)

. In the case of

an independent implementation of P̂in and under some regularity
requirements this variance grows asymptotically proportionally to a
squared sum of the extrapolation weights

Var

(
N∑
i=1

λNi P̂
in

)
→ Var (P)

N∑
i=1

(
λNi
)2

.

Then due to a rapid growth of the weights

N∑
i=1

(
λNi
)2

>
(
λNN
)2

=

(
NN

N!

)2
→∞ ,

the variance of the scheme tends to infinity with increasing N. Even
for a relatively small N the squared sum takes quite tremendous val-
ues, see Table 4. As a consequence the number of simulations M
needed to keep up with a pre-fixed statistical error

Var
(
Ē
)
=

Var
(∑N

i=1 λ
N
i P̂

in
)

M
6 stat. error

will proportionally “explode” leading to an enormous growth of CC
of the estimate.

In [59] Pagès partially eliminates this problems using consistent
Brownian increments for schemes P̂j·n. However our forthcoming ap-
proach circumvents this problem in a more efficient way.
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3.1.3 Literature Survey

We recall the seminal result of Talay and Tubaro on weak convergence
of the Euler scheme.

Proposition 2. Let the coefficient functions a and σ of the SDE

dS (t) = a (t,S (t))dt+ σ (t,S (t))dW (t) , t ∈ (0, T ]

driven by a Brownian motion W and the function g be in C∞. Further, let
g satisfy the following growth condition:

∃s, c > 0 s.t. ∀x ∈ Rd |g(x)| 6 c(1+ |x|s) .

Then, with Ŝn being the discretised version of S obtained by the Euler
scheme, there exists a constant C independent of n, such that we have

E
(
g
(
Ŝn (T)

))
− E (g (S (T))) = C

1

n
+O

(
1

n2

)
.

The requirements on the functions g, a and σ can be substantially
relaxed, e.g. to g being a bounded measurable function and a and σ
satisfying a condition of an elliptic type [7].

In [6] Bally and Talay established convergence of a density of the
Euler scheme at the terminal time toward S (T). Kurtz and Protter
studied a weak convergence in series of papers [46], [48] and [47])
under different assumptions on the SDE coefficients.

Sharp rates of a weak convergence were also established in case
of some path dependent options and the Euler scheme, e.g. Asian
options [50] or barrier options [30]. However the assumptions therein
are typically not satisfied, for instance in [30] the barrier domain D

is assumed to have a smooth enough boundary, what is often not the
case for barrier options. Though these results tell what behaviour we
might expect.

3.2 weak extrapolation mlmc

In this section we adopt and apply the HOWE into the MLMC setting.
This combination not only eliminates the aforementioned drawbacks,
but also reduces CC of the MLMC estimate. It turns out that the
extrapolation weights are bounded for schemes with n,n2,n3, . . . dis-
cretisation points. Further, under appropriate assumptions, the vari-
ance of the estimate is controlled due to the level’s variance decay.

3.2.1 HOWE in MLMC settings

Let us consider an approximation scheme forN+ 1 different numbers
of discretisation points

P̂n0 , P̂n1 , P̂n2 , . . . , P̂nN ,
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where ni = nMi for some positive integers n and M > 1. In con-
trast to the considered HOWE the numbers of discretisation points
ni follow a geometric progression, as they do the MLMC settings.
Based on these approximations we construct a (N+ 1)th order weak
extrapolation scheme

N∑
i=0

λNi P̂
ni , (44)

where λNi are the real extrapolation weights independent of n.

finding extrapolation weights

Following the idea of Remark 19 we by eliminate the first N terms
in the bias error. This will lead to a system of equation for λNi . The
idea is similar to the one proposed in [59], but the solution of the
system is slightly more sophisticated.

To be more general we assume that the bias has a power series
expansion in terms of nα, i.e.

E (P) − E
(
P̂n
)
=

N+1∑
j=1

cj
1

njα
+ o

(
1

n(N+1)α

)
(45)

for some positive integer N, real constants ci and rate α > 0, that are
all independent of the number of discretisation points n. It directly
follows that for i = 0, 1, . . . ,N

E (P) = E
(
P̂ni
)
+

N∑
j=1

(
cj

1

njαMijα

)

+ cN+1
1

(nMi)
(N+1)α

+ o

(
1

(nMi)
(N+1)α

)
.
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This can be equivalently represented in the following matrix form

E (P)
...

E (P)
...

E (P)


=



E
(
P̂n0

)
...

E
(
P̂ni
)

...

E
(
P̂nN

)


+A ·



c1
1
nα

...

ci
1
njα
...

cN
1
nNα



+
cN+1

n(N+1)α
·



1+ o (1)
...

1
Mi(N+1)α + o

(
1

Mi(N+1)α

)
...

1
MN(N+1)α + o

(
1

MN(N+1)α

)


,

(46)

where A is (N+ 1)-by-N matrix defined as

A =



1 . . . 1 . . . 1
1
M1α . . . 1

M1jα . . . 1
M1Nα

... . . .
... . . .

...
1
Miα . . . 1

Mijα . . . 1
MiNα

... . . .
... . . .

...
1

MNα . . . 1
MNjα . . . 1

MNNα


=

[
1

Mijα

]
06i6N, 16j6N

.

Let us define a co-vector of the weights λN ∈
(
RN+1

)∗
λN =

(
λN0 , λN1 , . . . , λNN

)
Then we aim to find weights, such that by left multiplication of Equa-
tion 46 with λN

1. all leading n−jα terms for j 6 N are eliminated from the RHS
of the equation, i.e.

λN ·A = 0 ; (47)

2. and the left hand side (LHS) is equal to E [P], i.e.

λN · 1 = 1 , (48)

where 1 = (1, 1, . . . , 1)∗ ∈ RN+1.

Identities (47) and (48) ensure that

E (P) =

N∑
i=0

λNi E
(
P̂ni
)

+
cN+1

n(N+1)α

N∑
i=0

λNi

(
1

MiNα
+ o

(
1

MiNα

))
.



50 weak extrapolation and mlmc

Moreover they can be combined into a system of linear equations

λN · Ã = e∗1 , (49)

where e∗1 = (1, 0, . . . , 0) ∈
(
RN+1

)∗, and Ã is a matrix concatenation

Ã = [1 A] =

[
1

Mijα

]
06i6N, 06j6N

.

The system of linear equations (49) admits a closed form solution

λNN−j = (−1)j
(

j∏
i=1

1

Miα − 1

) (
N−j∏
i=1

Miα

Miα − 1

)
. (50)

The detailed derivation of the solution can be found in appendix Sec-
tion B.1.

bias of howe

We summarise our result on the residual bias error of the newly
proposed HOWE scheme in the following proposition.

Proposition 3. Let P̂m be an approximation scheme, such that its bias error
admits power series expansion (45).

Then for ni = nMi and λNi as in Equation 50 we have∣∣∣∣∣E (P) − E

(
N∑
i=0

λNi P̂
ni

)∣∣∣∣∣ = cN+1
1

n(N+1)αM
(N+1)N

2 α

+ o

(
1

n(N+1)αM
(N+1)N

2 α

)
,

for n→∞.

The proof of the proposition follows from the construction of the
weights and its details can be found in appendix Section B.2. Note
the residual bias term does not “explode” and even turns out to be
smaller than expected n−(N+1)α.

3.2.2 Weak Extrapolation Multilevel Monte Carlo

To combine the HOWE and the MLMC we will rewrite the weighted
sum (44) as a sum of levels with appropriate weights. Let us define

κNi =

N∑
j=i

λNj , (51)
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in particular, κN0 = 1 and κNN = λNN. Then the HOWE sum (44) can be
represented as

N∑
i=0

λNi P̂
ni = P̂n0 +

N∑
i=1

κNi
(
P̂ni − P̂ni−1

)
,

what gives an alternative formulation of the HOWE estimate

Ẽ =
1

N0

N0∑
j=1

P̂n0j +

N∑
i=1

κNi
1

Ni

Ni∑
j=1

(
P̂nij − P̂

ni−1
j

)
. (52)

This estimator is similar to the MLMC sum of levels, but enhanced
with the weights κNi . Analogously to the MLMC it is crucial to use
consistent Brownian increments inside each level, and the levels should
be simulated independently.

On the contrary to the straightforward HOWE (see Section 3.1.2)
the weights κNj do not “explode” under mild assumption. They are in-
deed bounded for all N and we formalise this in the following propo-
sition.

Proposition 4. Let κNj be defined as in Equation 51 , where λNj are given
by Equation 50.

Then, if Mα > 2, we have that ∀N ∈N

0 < κNi < κ
N
N for i = 0, 1, . . . ,N− 1 .

Moreover κNN is monotonously increasing in N and

κNN → C <∞ as N→∞ .

The proof is rather technical and is given in appendix Section B.3.
As the common ratio M is of our choice, we tacitly assume that for
the rest of this chapter it is chosen such that Mα > 2.

Remark 21. As κNN is the upper bound for all weights we would like to
discus its asymptotic behaviour for N going to infinity.

From the proof of Proposition 4 it follows that

κNN ↗ f (Mα) <∞ as N→∞ ,

where

f (x) =

∞∏
i=1

xi

xi − 1
.

Note that f is well-defined and is a particular case of the q-Pochhammer
Symbol (see e.g. [41]). As a consequence the leading weight κNN is bounded
by

Mα

Mα − 1
6 κNN 6 f (Mα) ,
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Figure 5: Upper and Lower Bounds for κNN

N κNN κNN−1 κNN−2 κNN−3 κNN−4 κNN−5 κNN−6

1 1.3333 1

2 1.4222 0.9778 1

3 1.4448 0.9707 1.0004 1

4 1.4505 0.9689 1.0005 1.0000 1

5 1.4519 0.9684 1.0005 1.0000 1.0000 1

6 1.4522 0.9683 1.0005 1.0000 1.0000 1.0000 1

Table 5: Example of approximate values of κN for M = 4, α = 1 and differ-
ent values of N.

where the lower bound is equal to κ11. For the sake of notational simplicity
we denote the upper bound by κ∞∞, i.e. κ∞∞ = f (Mα).

On Figure 5 we plot the upper and lower bounds of κNN as a function of
Mα. It can be seen that the leading weight κNN takes moderate values. As
the weights have an impact on the variance of an estimate, we illustrate an
example of their possible values in Table 5 to give the reader feeling about
their impact.

Further we propose to substitute the plain MC estimator of E
(
P̂n0

)
in (52) by the MLMC. This is motivate motivated by the finding of
Chapter 2 and in particular Proposition 1.

Without loss of generality let n be some power of M. Then by
redefining ni = Mi for i = 0, 1, . . . ,L, we rewrite the HOWE es-
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timate (52) as a combination of the MLMC estimator with HOWE
based on the N finest discretisation schemes

Ẽ =
1

N0

N0∑
j=1

P̂n0 +

L−N∑
i=1

1

Ni

Ni∑
j=1

(
P̂ni − P̂ni−1

)
︸ ︷︷ ︸

plain MLMC

+

L∑
i=L−N+1

κNi−(L−N)

1

Ni

Ni∑
j=1

(
P̂ni − P̂ni−1

)
︸ ︷︷ ︸

HOWE based on N finest schemes

. (53)

As the coarsest scheme used for the HOWE has n = ML−N discreti-
sation points Proposition 3 implies that

E (P) − E
(
Ẽ
)
= O

(
1

M(L−N)(N+1)αM
(N+1)N

2 α

)
. (54)

There still remains the question:“How many levels should be used
for the HOWE within estimate (53) ?”. From Table 5 we can notice
that the values of κNN−i do not differ much for different N. Therefore
for a fixed L,M andNi we reasonably assume that the choice ofN has
a minor influence on the variance of the estimate and hence on CC of
the estimate for a fixed statistical error. Meanwhile Equation 54 im-
plies that N has a great impact on an order of bias error convergence.
This suggests to choose N such that it maximises the order of the bias
convergence. Solving

α

(
(L−N) (N+ 1) +

(N+ 1)N

2

)
→ max

for positive integer N we obtain the optimal values of

N∗ = L or N∗ = L− 1 .

For the sake of consistence in the later we assume that N∗ = L, but
the similar consideration can be replicated for N∗ = L− 1.

Thus we should build the HOWE based on the all levels. This leads
to the weak extrapolation multilevel MC estimate

Ê =
1

N0

N0∑
j=1

P̂n0 +

L∑
i=1

κLi
1

Ni

Ni∑
j=1

(
P̂ni − P̂ni−1

)
. (55)

From Equation 54 it follows that the bias error of this estimate is equal
to

E (P) − E
(
Ẽ
)
= O

(
1

M
(L+1)L
2 α

)
.

Note, it turns out that the bias error is controlled by increasing the
order of weak extrapolation rather then increasing the number of dis-
cretisation points for the coarsest grid.
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Remark 22. Sometimes in applications the bias expansion assumption (45)
might hold only starting from some n > 1. For instance this is the case
for the Euler scheme and barrier options (see numerical example in Sec-
tion 3.5.1.5). Then the HOWE estimator could be applied omitting some of
the starting levels, e.g. the modified WEML estimator could look like

Ê =
1

N0

N0∑
j=1

P̂n0+
1

N1

N1∑
j=1

(
P̂n1 − P̂n0

)
+

+

L∑
i=2

κL−1i−1

1

Ni

Ni∑
j=1

(
P̂ni − P̂ni−1

) .

3.3 numerical algorithm

To give a final algorithm we have to specify the numbers of paths
Ni for each level, such that the WEML estimate (55) has the targeted
statistical error ε2. Using the optimality results of Section 2.1.1, in
particular Equation 24, we obtain

Ni =


∑L
j=0

√(
κLj

)2
Vjnj

ε2

√(
κLi
)2
Vi

ni

 , (56)

where Vl defined as

Vi =

{
Var

(
P̂n0

)
for i = 0 ,

Var
(
P̂ni − P̂ni−1

)
for i = 1, 2, . . . ,L .

This choice ensures that the WEML estimate has a statistical error
less or equal to the targeted one, while CC of the estimate is (modulo
rounding) as small as possible.

We summarise the proposed approach in Algorithm 2. Note, in

Algorithm 2 Weak Extrapolation Multilevel Monte Carlo

Input: ε and L
Output: Ê

1: estimate V0, . . . ,VL using an initial Nl = 104 samples
2: define optimal N0, . . . ,NL using Equation 56

3: evaluate extra samples at each level as needed for new Ni
4: calculate Ê according to Equation 55

contrast to the classic MLMC there exists no efficient stopping heuris-
tic. As a consequence the number of levels L should be given by
some oracle. In particular it should be chosen such that the bias error
matches the statistical one.
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3.4 computational cost theorem

In this section we formulate and prove a CC theorem for the WEML
estimate (55). This will be done in the spirit of the Complexity Theo-
rem 7 for the MLMC estimate.

Theorem 8 (Computational Cost Theorem). Let P be a functional of
the solution of some SDE driven by Brownian motion. Further let P̂m be a
numerical approximation based on m equidistant discretisation points, such
that for some positive constants β,γ, cc and cv the following holds ∀m ∈N

i) C.C.
[
P̂m
]
6 ccm ,

ii) Var
(
P− P̂m

)
6 cvm−β ,

iii) Var
(
P̂m
)
6 cv .

Moreover let the bias error of the approximation P̂n admit a power series
expansion to an arbitrary order with bounded coefficients. I.e. there exist real
coefficients ci such that for ∀N,n ∈N

E (P) − E
(
P̂n
)
=

N∑
i=1

ci
1

niα
+O

(
1

n(N+1)α

)
,

and ∃c > 0 such that for ∀i ∈N, |ci| < c .
Then there exists a choice of Ni and L for which the WEML estimate

Ê =
1

N0

N0∑
j=1

P̂n0j +

L∑
i=1

κLi
1

Ni

Ni∑
j=1

(
P̂nij − P̂

ni−1
j

)
,

where ni = Mi for M such that Mα > 2, has a mean square error with
bound

MSE
[
Ê
]
= E

(
Ê− E (P)

)2
6 ε2 ,

and for a sufficiently small ε computational cost of the estimate is bounded
by

C.C.
[
Ê
]
6


Cε−2 if β > 1 ,

Cε−2 ln
(
ε−1

)
if β = 1 ,

∀δ > 0 Cε−2−δ if β < 1 ,

where the constant C is independent of ε.

Note, the requirement of ε to be sufficiently small is rather technical
and is usually satisfied in applications. It is imposed to ensure that
at each level at least one replication should be simulated to meet the
targeted statistical error.
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mlmc weml

C.C.
[
Ê
]

identical identical

Var
(
Ê
)

ε2 6 (κ∞∞)2ε2
bias

(
Ê
)

� M−αL � M−α
L(L+1)
2

Table 6: Comparison of WEML and MLMC estimates

Before proceeding to the proof we would like to compare this re-
sult to the Complexity Theorem 7 for the MLMC. The most essential
improvement corresponds to the case of β < 1. In particular the CC
rate can be as close as possible to 2, what is the lower bound for
such problems, see [58]. Moreover it is independent of α, what is not
the case for the MLMC. This could be explained as application of a
scheme with the “infinite” order of weak convergence in the setting
of the Complexity Theorem 7. In the case of β = 1 CC of the WEML
drops in log-terms compared to the MLMC. In the renaming case of
β > 1 CC of both estimates are asymptotically equal. However we still
might be better off in terms of a constant, for numerical comparisons
see Section 3.5.

To explain where the benefit comes from, let us have a brief look
at the bias and statistical errors for WEML and MLMC estimates. We
use the same number of levels L and the numbers of paths Ni for
both WEML and MLMC estimates, what ensures that both estimates
have identical CC. Moreover let Ni be chosen such that the MLMC
estimate has statistical error of ε2. Then while the variances of both
estimates differ by a constant independent for targeted accuracy, the
bias error converges essentially faster for the WEML estimate, see
Table 6. As a consequence we need less levels to obtain the required
bias error. The improved bias convergence explains the reduction of
CC of the WEML estimate proven in Theorem 8.

Nevertheless the WEML estimate has clear advantages in terms
of CC, its application is still limited due to some drawbacks. First
of all the WEML approach strongly relies on the bias expansion as-
sumption, that is not always satisfied. For example in the case of the
Euler scheme it is satisfied for call options under the BS model and
breached for call options under the Heston model (see Section 3.5).
Furthermore the WEML lacks an effective stopping criterion, while
MLMC has one. As a consequence the number of levels should be
chosen using some meta information. However this can be done on
the fly and should not be specified in advance.
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Proof of the Computational Cost Theorem. According to the MSE decom-
position (see Section 1.2.2.2)

MSE
[
Ê
]
= Var

(
Ê
)
+
(

E
(
Ê
)
− E (P)

)2
it is sufficient to show that both squared bias error and statistical error
are less or equal to half of ε2, i.e.∣∣E (Ê)− E (P)

∣∣ 6 1√
2
ε and Var

(
Ê
)
6
1

2
ε2 ,

to prove that

MSE
[
Ê
]
6 ε2 .

In the following the bias error will be bounded by an appropriate
choice of the number of levels L, while the variance will be controlled
by a choice of the numbers of simulated paths Ni.

We first explain how to chose L, such that the squared bias error is
less or equal to half of ε2. Proposition 3 compounded by the bound-
edness of the bias expansion coefficients implies that∣∣E (Ê)− E (P)

∣∣ 6 cbM−αL
2

2

for some consonant cb > independent form ε. Then, by choosing L

L =


√√√√2 ln

(√
2cbε−1

)
α ln (M)


we guarantee that∣∣E (Ê)− E (P)

∣∣ 6 ε√
2

.

In the later we will use the following elementary bounds of L√√√√2 ln
(√
2cbε−1

)
α ln (M)

6 L <

√√√√2 ln
(√
2cbε−1

)
α ln (M)

+ 1 , (57)

and the proven below Corollary 1.

Corollary 1. ∀δ > 0 , ∃0 < ε∗ < 1 such that ∀ε < ε∗ holds

M

√
2 ln(

√
2cbε

−1)
α ln(M) 6 ε−δ .

Proof of corollary. Let us consider the quadratic function q

q (x) := δ2x2 −
2 ln (M)

α
x−

2 ln (M) ln
(√
2cb

)
α
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for positive x. As the main coefficient of the quadratic function q is
positive there exists x∗ such that

∀x > x∗, q (x) > 0 .

Then substituting x by ln
(
ε−1

)
we obtain that

∀ε < e−x∗ , δ2
(
ln
(
ε−1

))2
> (ln (M))2

2 ln
(√
2cbε

−1
)

α ln (M)
.

For ε < ε∗ := min
{
e−x

∗
, 1
}

by taking the square root and then the
exponent from both sides of the inequality we prove the assertion

∀ε < ε∗, ε−δ >M

√
2 ln(

√
2cbε

−1)
α ln(M) .

Combining inequality (57) and Corollary 1 we derive that for any
δ > 0 there exists an ε∗1 > 0 such that

∀ε < ε∗1, ML < M

√
2 ln(

√
2cbε

−1)
α ln(M) +1

6Mε−δ . (58)

Furthermore, for δ = 2 this implies that

∀ε < ε∗2,
L∑
i=0

Mi =
ML+1 − 1

M− 1
6

M2

M− 1
ε−2 . (59)

The variance of the estimate can be bounded as

Var
(
Ê
)
=

1

N0
Var

(
P̂n0

)
+

L∑
i=1

(
κLi
)2 1
Ni

Var
(
P̂ni − P̂ni−1

)
6 (κ∞∞)2

(
1

N0
Var

(
P̂n0

)
+

L∑
i=1

1

Ni
Var

(
P̂ni − P̂ni−1

))
,

where the last inequality is an implication of Proposition 4 and Re-
mark 21. Also

Var
(
P̂ni − P̂ni−1

)
=Var

(
P− P̂ni

)
+ Var

(
P− P̂ni−1

)
+

+ 2Cov
(
P̂ni − P,P− P̂ni−1

)
6

(√
Var

(
P− P̂ni

)
+
√

Var
(
P− P̂ni−1

))2
.

Then combined with the assumption of the theorem this yields

Vi = Var (Pni − Pni−1) 6 cv
(
1+Mβ/2

)2
M−βi .
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Hence

Var
(
Ê
)
6 Cv

L∑
i=0

N−1
i M−βi ,

where the constant

Cv = (κ∞∞)2 cv
(
1+Mβ/2

)2
is independent of ε, Ni and L. At the same time CC of the estimate
can be bounded as

C.C.
[
Ê
]
6 cc

(
N0n0 +

L∑
i=0

Ni (ni +ni−1)

)
6 2cc

L∑
i=0

Ni M
i .

In the following we will specify numbers of simulationsNi on each
level, such that the statistical error of the estimate is less or equal to
half of ε2. For this choice of Ni we will derive an upper bound for
CC of the estimate. To proceed further we have to distinguish between
three cases depending on the speed of the strong convergence:

I) β = 1 ;

II) β > 1 ;

III) β < 1 .

i) case β = 1

We set Ni =
⌈
2Cvε

−2 (L + 1)M−i
⌉

, what directly implies that

Var
(
Ê
)
6
1

2
ε2 .

Hence the MSE of the estimate is less or equal to ε2 . As

Ni 6 2Cvε
−2 (L + 1)M−i + 1 ,

for ε < ε∗2 Equation 59 gives an upper bound for CC

C. C.
[
Ê
]
6 4Cvccε

−2
L∑
i=0

(L + 1) + 2cc

L∑
i=0

Mi

6 4Cvccε
−2 (L + 1)2 + 2ccε

−2M2 (M − 1)−1 .
(60)

Using inequality (57) we derive that

(L + 1)2 <


√√√√ 2 ln

(√
2cbε−1

)
α ln (M)

+ 2


2

6 2

 2 ln
(√

2cbε
−1
)

α ln (M)
+ 4


=
4 ln

(
ε−1

)
α ln (M)

+
4 ln

(√
2c
)

α ln (M)
+ 8 . (61)
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Then if we define

C := max

 16Cvcc

α ln (M)
, 4Cvcc

 4 ln
(√

2 c
)

α ln (M)
+ 8

 +
2ccM

2

M − 1

 ,

Equation 60 and Equation 61 yield the assertion, i.e. let ε∗ = min
{
ε∗2, e−1

}
then

∀ε < ε∗ , C.C.
[
Ê
]
6 Cε−2 ln

(
ε−1

)
.

ii) case β > 1

The choice of

Nl =

⌈
2Cvε

−2
(
1 −M− β−1

2

)−1
M−i β+1

2

⌉
together with a formula for an infinite sum of a decaying geometric
progression, imply that

Var
(
Ê
)
6
1

2
ε2
(
1 −M− β−1

2

) L∑
i=0

M−i β−1
2

6
1

2
ε2
(
1 −M− β−1

2

) (
1 −M− β−1

2

)−1
=
1

2
ε2 .

Therefore the MSE of the estimate is less or equal than ε2 . On the
other hand as

Ni 6 2Cvε
−2
(
1 −M− β−1

2

)−1
M−i β+1

2 + 1 ,

the CC can be bounded as

C. C.
[
Ê
]
6
2Cvccε

−2

1 −M− β−1
2

L∑
i=0

M−i β−1
2 + 2cc

L∑
i=0

Mi . (62)

The formula for an infinite sum of decaying geometric progression
implies that

L∑
i=0

M−i β−1
2 6

(
1 −M− β−1

2

)−1
,

while according to Equation 59

∃ε∗ , s.t. ∀ε < ε∗
L∑
i=0

Mi 6
M2

M − 1
ε−2 .

Then putting these inequalities into Equation 62 we derive the asser-
tion, i.e.

∀ε < ε∗ , C. C.
[
Ê
]
6 C ε−2 ln

(
ε−1

)
,

for the constant C

C = max

 2Cvcc(
1 −M− β−1

2

)2 ,
2ccM

2

M − 1

 .
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iii) case β < 1

Choose Ni to be

Nl =

⌈
2Cvε

−2ML 1−β2

(
1−M− 1−β

2

)−1
M−iβ+12

⌉
.

Then the variance of the estimate can be bounded by

Var
(
Ê
)
6
1

2
ε2M−L 1−β2

(
1−M− 1−β

2

) L∑
i=0

Mi 1−β2 .

Using the formula for an infinite sum of a geometric progression it
can be shown that

L∑
i=0

Mi 1−β2 =ML 1−β2

L∑
i=0

M−i 1−β2 6ML 1−β2

(
1−M− 1−β

2

)−1
.

(63)

Hence

Var
(
Ê
)
6
1

2
ε2 ,

what implies that the MSE of the estimate is less or equal to ε2. Mean-
while the CC of the estimate in such a case can be bounded as

C.C.
[
Ê
]
6 2Cvccε

−2 ML 1−β2

1−M− 1−β
2

L∑
i=0

Mi 1−β2 + 2cc

L∑
i=0

Mi

6 2Cvccε
−2 ML(1−β)(

1−M− 1−β
2

)2 + 2cc

L∑
i=0

Mi ,

where the later step is justified by inequality (63). Making use of
(58) and (59) we obtain that for any δ > 0 there exists an ε∗ =

min
{
ε∗1, ε∗2

}
> 0 such that ∀ε < ε∗

ML(1−β) 6M1−βε−δ and
L∑
i=0

Mi 6
M2

M− 1
ε−2 .

Hence

∀δ > 0 ∃ε∗ > 0 s.t. ∀ε < ε∗, C.C.
[
Ê
]
6 Cε−(2+δ) ,

where the constant C is equal to

C := max

 2CvccM
1−β(

1−M−β−1
2

)2 ,
2ccM

2

M− 1

 .
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3.5 numerical performance analysis

In this section we discuss the numerical performance of the WEML
estimate for different models and option types. In all case we first
numerically test bias expansion assumption (45) and then compare
performance of the WEML algorithms to the MLMC algorithm.

In this analysis we consider two models

• the BS model (see Section 1.1.2.1);

• the Heston model (see Section 1.1.2.2);

and focus on the following European options (see Section 1.1.1 for
definitions):

• call options;

• digital options (see e.g. [45] for a definition);

• one-sided barrier options;

• Asian options.

We will see below that a full analysis will only be given in the cases
of call, digital and Asian options under the BS model. Note that these
cases cover the whole range of different rates of strong convergences.
In particular, Asian options exhibit fast strong convergence with β =

2 , call options − moderate with β = 1 and digital options − slow
with β = 1/2. In the rest cases assumption (45) is either not fulfilled
(e.g. the Heston model with the Euler full truncation scheme [53]) or
it is not clear if it is fulfilled or not (e.g. barrier options in the BS
model).

power series bias expansion

To verify correctness of a power series bias expansion (45) we study
bias convergence of the HOWE schemes (44) of different orders. Let
us briefly explain how it will be done and introduce some notations.

We begin with the plain approximation scheme for n discretisation
points, which we denote by

E0n = P̂n .

An order of the bias convergence of this scheme should indicate the
first term in the expansion (45). To be more precise, if assumption (45)
holds, the bias error

bias0n = E
(
E0n
)
− E (P) = E

(
P̂n
)
− E (P)
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should behave as

bias0n � n−α .

In particular, such a behaviour would imply that

bias0n
bias02n

≈ 2α .

Thus, we are checking if the bias of the scheme exhibits this converg-
ing behaviour.

As the values of bias0n cannot be obtained in an analytical form,
they have to be approximated numerically. This will be done via the
MC methods, i.e.

bias
0

n = Ē0n − E (P) ,

where Ē0n is an MC estimate of E0n and E (P) is assumed to be know
either due to a closed form formula (e.g. European call option in the
BS model) or via a good quality approximation (e.g. Asian option in
the BS model).

We continue by studying the bias error of the first order extrapola-
tion schemes, i.e. the HOWE scheme (44) for M = 2 and N = 1

E1n = λ10P̂
n + λ11P̂

2n .

Then if assumption (45) holds, according to Proposition 3 the bias
error bias1n = E

(
E1n
)
− E (P) should behave as

bias1n � n−2α .

Thus the order of the bias convergence of this scheme indicates the
second term in the bias expansion. Morover such a behaviour would
imply that

bias1n
bias12n

≈ 22α .

Analogously to bias0n we will use an MC estimate of E1n to approxi-
mate

bias
1

n = Ē1n − E (P) .

Using these approximation we check if the bias has the expected be-
haviour.
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We repeat this procedure with the second order extrapolation scheme,
i.e. the HOWE scheme (44) for M = 2 and N = 2

E2n = λ20P̂
n + λ21P̂

2n + λ22P̂
4n

to find the next term in the bias expansion. Analogously, under as-
sumption (45) Proposition 3 yields that

bias2n = E
(
E2n
)
− E (P) � n−3α

and thus

bias2n
bias22n

≈ 23α .

Then approximating bias2n by bias
2

n = Ē2n − E (P) where Ē2n is an MC
estimate of E2n, we check this convergence.

The procedure can be continued with the further HOWE scheme,
but we are typically stopping at this point, as on the one hand this
is usually sufficient to make a conclusion about the assumption (45)
and on the other hand any further test take enormous run time.

Remark 23.

• The MC estimates of E1n and E2n have the form of the combination of
the HOWE and the classic MLMC estimator (53).

• To carry out the bias analysis estimates of biasin should be computed
with an error

errn =

√
Var

(
bias

i

n

)
,

that is at least a magnitude less then the bias in order to have relabel
confidence intervals for bias

i

n.

• Moreover in the case of the second order HOWE estimates the bias
takes very small values. For instance in the case of a call option under
the BS model already bias

2

8 = 0.0009, while the corresponding error
err8 = 0.0003 and computation time is equal to 10 hours. Then to
obtain bias

2

8 with an error of a magnitude less we will need at least
41 day. This explains the lack of data in our tests and their long run
time.

3.5.1 Black Scholes Model

We start with the BS model for the following set of parameters

S0 = 100 , r = 0.02 , σ = 0.2 .

In the most cases we use the Euler discretisation scheme applied to
the stock SDE (1). Note that this indeed not the bast approach, as a
solution of the BS SDE is known in a closed form (see Section 1.1.2.1).
We are doing this on purpose to study biased estimates.
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3.5.1.1 Call Option

We consider a European call option with maturity T = 1 and strike
K = 120, which has a true value of

C = 2.5469 .

power series bias expansion

First we check if the power series bias expansion (45) holds. The
results of this studies are summarised in Table 7. Additionally the
reliable estimations are visualised on Figure 6, where we plot the
bias errors of the Euler scheme, the first order and the second order
extrapolation schemes against the number of discretisation points n
in a log-log scale.
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Figure 6: Bias convergence of the Euler scheme (BS model and call option)

According to Talay and Tubaro [63] we are expecting the bias power
expansion (45) to be fulfilled for α = 1. The “bias

0

n/bias
0

2n” row of
Table 7a indicates that the bias error of the Euler scheme has an or-
der of convergence one, i.e. α = 1. However the “bias

2

n/bias
2

2n” and
“bias

2

n/bias
2

2n” rows of Table 7b and Table 7c correspondingly are not
so convincing, as for a big n the values therein are not necessary close
to 4 and 8 correspondingly. This is explained by relatively small ac-
curacies of the bias

1

n and bias
2

n estimates for a big n, see the “errn”
rows. Nevertheless the first three values in the “bias

1

n/bias
1

2n” row of
Table 7b suggest that the bias has an order of convergence 2. More-
over the first value in the “bias

2

n/bias
2

2n” row of Table 7c seems to
indicate that the bias has an order of convergence 3. Thus we con-
clude by assuming that assumption (45) is fulfilled for α = 1.
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n 4 8 16 32 64 128 256

Ē0n 2.4131 2.4817 2.5147 2.5310 2.5390 2.5429 2.5450

bias
0

n −0.133 −0.065 −0.032 −0.016 −0.007 −0.004 −0.002
bias

0
n

bias
0
2n

2.0523 2.0253 2.0163 2.0201 1.9743 2.0452

errn 0.0003 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003

(a) Bias convergence of the Euler scheme

n 4 8 16 32 64 128 256

Ē1n 2.5575 2.5503 2.5478 2.5472 2.5470 2.5469 2.5469

bias
1

n 0.0106 0.0033 0.0009 0.0002 0.0001 0.0000 0.0000
bias

1
n

bias
1
2n

3.1649 3.8068 3.6810 2.0498 11.7703 0.4482

errn 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

(b) Bias convergence of the first order HOWE

n 4 8 16 32 64 128 256

Ē2n 2.5538 2.5478 2.5470 2.5469 2.5470 2.5469 2.5469

bias
2

n 0.0069 0.0009 0.0001 0.0000 0.0001 −0.0000 0.0000
bias

2
n

bias
2
2n

7.6828 11.4332 4.4280 0.2750 −3.6496 −1.7070

errn 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

(c) Bias convergence of the second order HOWE

Table 7: Bias convergence for the Euler scheme (BS model and call option)

weml and mlmc

Now we compare performance of the WEML to the MLMC esti-
mate. On Figure 7 we plot the RMSE against CC of the WEML and
the MLMC estimates in a log-log scale. The speed up of the WEML
compared to the MLMC is presented in Table 8 .

rMSE 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

speed up 1.6 1.8 2.3 2.6 3.3 3.7 4.7

Table 8: Speed up of WEML compared to MLMC (BS model and call option)

The fact that the CC graphs on Figure 7 have almost the same slope
is in agreement with the results of Theorem 8 and the Complexity
Theorem 7 for β = 1. In particular, the theory predicts the CC of the
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Figure 7: CC vs. RMSE (BS model and call option)

WEML and the MLMC estimates to differ in a log-term only, what
leads to the moderately increasing speed up in Table 8.

3.5.1.2 Digital Call Option

We consider a European digital call option with maturity T = 1 and
strike K = 80 scaled up by 100, which has a true value of

C = 85.0546 .

power series bias expansion

The results of checking the assumption (45) are summarised in Ta-
ble 9. The reliable estimations therein are visualised on Figure 8 by
plotting the bias errors of the Euler scheme, the first order and the sec-
ond order extrapolation schemes against the number of discretisation
points n in a log-log scale.

Due to Bally and Talay [7] it is expected that the bias power expan-
sion (45) is fulfilled for α = 1. The “bias

0

n/bias
0

2n” row of Table 9a in-
dicates that the bias error of the Euler scheme has an order of conver-
gence one, i.e. α = 1. Though the “bias

2

n/bias
2

2n” and “bias
2

n/bias
2

2n”
rows of Table 9b and especially Table 9c are not so convincing, as
for a big n the values therein are not necessary close to 4 and 8 cor-
respondingly, what is happening due to small relative accuracies of
the bias

1

n and bias
2

n estimates. However the first two values in the
“bias

1

n/bias
1

2n” row of Table 9b suggest that the bias has an order of
convergence 2. The first value in the “bias

2

n/bias
2

2n” row of Table 9c
might be seen as a weak evidence for the bias to have an order of
convergence 3. As a result we say that assumption (45) is fulfilled for
α = 1.
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Figure 8: Bias convergence of the Euler scheme (BS model and digital op-
tion)

weml and mlmc

To compare performance of the estimates we plot the RMSE against
CC of the WEML and the MLMC estimates on Figure 9 in a log-log
scale. Moreover in Table 8 we present the speed up of the WEML

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
6

10
8

10
10

10
12

10
14

rMSE

co
m

p.
co

st

 

 
MLMC
WEML

Figure 9: CC vs. RMSE (BS model and digital option)

compared to the MLMC.
As β = 0.5 the Complexity Theorem 7 and Theorem 8 predict the

CC of the WEML to be almost a half an order better than the CC of
the MLMC estimate. This is confirmed by a difference in the slopes of
the CC graphs on Figure 9. Moreover the WEML algorithm is signifi-
cantly faster than the MLMC algorithm for small errors (see Table 10)
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n 4 8 16 32 64 128

Ē0n 84.7933 84.9087 84.9785 85.0162 85.0352 85.0445

bias
0

n −0.2614 −0.1459 −0.0761 −0.0384 −0.0194 −0.0101
bias

0
n

bias
0
2n

1.7916 1.9164 1.9814 1.9775 1.9240

errn 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

(a) Bias convergence of the Euler scheme

n 4 8 16 32 64 128

Ē1n 84.9281 85.0244 85.0478 85.0536 85.0545 85.0543

bias
1

n −0.1265 −0.0302 −0.0068 −0.0010 −0.0001 −0.0003
bias

1
n

bias
1
2n

4.1889 4.4410 6.8008 7.7415 0.4460

errn 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

(b) Bias convergence of the first order HOWE

n 8 16 32 64 128

Ē2n 85.0592 85.0554 85.0552 85.0548 85.0544

bias
2

n 0.0046 0.0007 0.0006 0.0002 0.0002
bias

2
n

bias
2
2n

6.2728 1.2229 3.1740 0.8724

errn 0.0004 0.0004 0.0004 0.0004 0.0004

(c) Bias convergence of the second order HOWE

Table 9: Bias convergence for the Euler scheme (BS model and digital option)

3.5.1.3 Asian Call Option

We consider a European Asian call option with maturity T = 1 and
strike K = 100, which has a true value of

c ≈ 5.0510 .

Remark 24. This reference value is obtained via the MLMC algorithm with
rMSE = 0.00002.

Note, instead of the plain MC estimation of the starting level E
(
P̂1
)

of
the MLMC estimator we use its exact value. It can be computed via a BS
type formula [45], because in the case of the trapezoidal integration rule

P̂1 = e−rT
(
1

2
(S (0) + S (T)) −K

)+

,

where S (T) is log-normally distributed. This idea leads to substantial sav-
ings in terms of CC. In general, it might be extended to some other options
as well, e.g. barrier options.
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rMSE 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

speed up 1.3 1.8 3.8 5.1 10.6 14.4 29.7

Table 10: Speed up of WEML compared to MLMC (BS model and digital
option)

The payoff of an Asian options involves an integral over time of the
price of a stock, which is approximated numerically by a trapezoidal
rule [18]∫T

0

S (t)dt ≈ S̄n :=

n∑
i=1

Ŝn((i− 1)∆t) + Ŝn(i∆t)

2
∆t ,

where Ŝn is the Euler scheme with n discretisation points. Hence,

P̂n = e−rT
(
1

T
S̄n −K

)+

.

power series bias expansion

Unfortunately the power series bias expansion (45) is not satisfied
in this case. Even more the “bias

0

n/bias
0

2n” row of Table 11 indicates
that the bias error of the Euler scheme does not converges as any
power of n−1. And Figure 10 suggests that the bias behaves as

bias0n �
1

ne−an

for some a > 0. As a result even the first order weak extrapolation

n 4 8 16 32

Ē0n 5.0138 5.0432 5.0499 5.0511

bias
0

n 0.0372 0.0078 0.0011 0.0001
bias

0
n

bias
0
2n

4.7882 7.2125 14.5507

errn 0.0001 0.0001 0.0001 0.00001

Table 11: Bias convergence for the Euler scheme (BS model and Asian op-
tion)

scheme cannot be constructed and, in particular, this explains unreli-
ability of the weak extrapolation in this setting mentioned in [28].
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Figure 10: Bias convergence of the Euler scheme (BS model and Asian op-
tion): n bias plot

3.5.1.4 Asian Call Option and Exact Price Simulations

To overcome the above problem we make use of a closed form solu-
tion of the BS SDE. Then the integral over time of the price of a stock
will be approximated numerically by the trapezoidal rule [18]∫T

0

S (t)dt ≈ S̄n :=

n∑
i=1

S((i− 1)∆) + S(i∆)

2
∆ , for ∆ =

T

n
,

where S is a solution (2) of the BS SDE (1). Hence,

P̂n = e−rT
(
1

T
S̄n −K

)+

.

We consider the same European Asian call option with maturity
T = 1 and strike K = 100, which has a true value of

C ≈ 5.0510 .

power series bias expansion

The results of checking assumption (45) are summarised in Table 12.
Note, in this case we only consider the first order HOWE scheme. On
Figure 11 we plot some estimated bias errors of the Euler scheme, the
first order and the second order extrapolation schemes against the
number of discretisation points n in a log-log scale.

As we simulate process S exactly and the trapezoidal integration
rule has an error of the second order [18] the bias power expan-
sion (45) is expected to be fulfilled with α = 2. The values in the
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Figure 11: Bias convergence of the Euler scheme (BS model and Asian op-
tion)

“bias
0

n/bias
0

2n” row of Table 12a are all about 4, what confirms our
expectations. Moreover the first two values in the “bias

1

n/bias
1

2n” row
of Table 12b are about 16 suggesting that the bias has an order of con-
vergence 4. Then we say that assumption (45) is fulfilled with α = 2.

weml and mlmc

To compare performance of the estimates we plot the RMSE against
CC of the WEML and the MLMC on Figure 12 in a log-log scale and
present the speed up in Table 13.

For β = 2 according to the Complexity Theorem 7 and Theorem 8

CC of the WEML and the MLMC differs only in a constant. This
explains the same slopes of the CC graphs on Figure 12 and the speed
up that is uniform in RMSE (see Table 13).

3.5.1.5 Single Barrier Option

We consider a European down and out call option with maturity T =

1, strike K = 100 and barrier B = 90, which has a true value of

C = 7.3004 .

The exact price of the option is obtained via a closed form formula [61].
We approximate the barrier option payoff by means of the Euler
scheme Ŝn and barrier cross monitoring on the discretisation points
of Ŝn.



3.5 numerical performance analysis 73

n 2 4 8 16 32 64

Ē0n 4.9112 5.0165 5.0424 5.0488 5.0505 5.0509

bias
0

n −0.1398 −0.0345 −0.0086 −0.0022 −0.0005 −0.0001
bias

0
n

bias
0
2n

4.0531 4.0213 3.8897 4.4848 5.3510

errn 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001

(a) Bias convergence of the Euler scheme

n 2 4 8 16 32 64

Ē1n 5.0623 5.0516 5.0510 5.0509 5.0510 5.0510

bias
1

n 0.0113 0.0006 0.0000 −0.0001 0.0000 0.0000
bias

1
n

bias
1
2n

19.4358 18.9150 0.4867 1.2740 1.2026

errn 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001

(b) Bias convergence of the first order HOWE

Table 12: Bias convergence for the Euler scheme (BS model and Asian op-
tion)

rMSE 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

speed up 1.9 1.9 1.9 1.9 1.9 1.9 1.9

Table 13: Speed up of WEML compared to MLMC (BS model and Asian
option)

power series bias expansion

We summarise investigation of the power series bias expansion (45)
in Table 14. The reliable estimations therein are visualised on Fig-
ure 13, where we plot the bias errors of the Euler scheme, the first
order and the second order extrapolation schemes against the num-
ber of discretisation points n in a log-log scale.

It is known [30] that barrier options exhibit a slower order of weak
convergence 0.5. In particular the “bias

0

n/bias
0

2n” row of Table 14a
indicates that the bias error has an order of convergence 0.5, as values
therein starting form n = 16 are all around

√
2 ≈ 1.4142. Further the

“bias
1

n/bias
1

2n” values for n > 16 (see Table 14b) suggest that we gain
a half of order, i.e. the next term in the bias expansion is n−1. Thus if
the expansion (45) holds, α = 0.5. However the bias

2

16/bias
2

32 value in
Table 14c seems to indicate that the next order of the bias expansion
is 2. Note, the rest values of Table 14c are of a bad quality, as the
error errn is relatively high. As a result the bias seems to converge
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Figure 12: CC vs. RMSE (BS model and Asian option)
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Figure 13: Bias convergence of the Euler scheme (BS model and barrier op-
tion)

smoothly. Although, does not satisfy assumption (45) in the usual
meaning, as the first orders in the bias expansion are n−1/2, n−1 and
n−2.

The HOWE scheme can be adopted to this bias expansion by find-
ing corresponding weights. Therefore we can construct an appropri-
ate WEML estimator, but this is out of the scope for this thesis.

Remark 25. In some cases the n−1/2 term appearing in the bias expansion
can be eliminated by using advanced techniques [30], as e.g.

• the barrier shifting [13];

• the Brownian bridge [30].

As a consequence the original WEML approach might be applied to price
barrier options.
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n 8 16 32 64 128

Ē0n 8.2783 8.0555 7.8697 7.7204 7.6062

bias
0

n 0.9778 0.7551 0.5692 0.4199 0.3057
bias

0
n

bias
0
2n

1.2950 1.3266 1.3556 1.3735

errn 0.0002 0.0002 0.0002 0.0001 0.0001

(a) Bias convergence of the Euler scheme

n 8 16 32 64 128

Ē1n 7.6555 7.5176 7.4204 7.3605 7.3309

bias
1

n 0.3551 0.2172 0.1200 0.0600 0.0304
bias

1
n

bias
1
2n

1.6349 1.8102 1.9981 1.9732

errn 0.0003 0.0003 0.0003 0.0003 0.0003

(b) Bias convergence of the first order HOWE

n 8 16 32 64 128

Ē2n 7.3552 7.3798 7.3228 7.3013 7.3016

bias
2

n 0.0548 0.0794 0.0224 0.0008 0.0011
bias

2
n

bias
2
2n

0.6903 3.5475 26.5369 0.7422

errn 0.0003 0.0003 0.0003 0.0001 0.0001

(c) Bias convergence of the second order HOWE

Table 14: Bias convergence for the Euler scheme (BS model and barrier op-
tion)

3.5.2 Heston Model

We continue with the Heston model for the following set of parame-
ters

S (0) = 100 , r = 0.02 , ρ = −0.8 ,

V (0) = 0.1 , κ = 3 , θ = 0.16 , σ = 0.4 .

Note, this set of the parameters fulfils the Feller condition (see Sec-
tion 1.1.2.2). We use the Euler discretisation scheme applied to the
Heston SDE (3). To ensure positivity the volatility CIR process simu-
lations we use the full truncation approach [53].

As we will see below for the above approximation scheme the bias
power expansion (45) does not hold even for call options.
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Remark 26. The breach of the bias expansion (45) might be caused by many
reasons, just to name some heuristic full truncation approach to simulation
of a CIR process, non Lipschitz coefficients of the Heston SDE (3), etc.

To overcome this problem one can think of “log”-price simulations, some
other techniques to simulate a CIR process [53] or even exact simulations [12],
which are known to be slow, but combined with the WEML might be effi-
ciently used.

3.5.2.1 Call Option

We consider a European call option with maturity T = 1 and strike
K = 100, which has a true value of

C = 15.4300 .

power series bias expansion

In Table 15 we present estimated values of the bias error, that are
also plotted on Figure 14. The values of “bias

0

n/bias
0

2n” for n = 4 and
n = 8 might be interpreted as indicator for a second order weak con-
vergence, but this is impossible. Otherwise the “bias

0

n/bias
0

2n” row of
Table 15 rather indicates that bias error convergence is irregular for
n under investigation. Hence, the power series bias expansion (45)
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Figure 14: Bias convergence of the Euler scheme (Heston model and call
option)

is not satisfied. As a result even the first order weak extrapolation
method cannot be applied in this setting.
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n 4 8 16 32 64 128

Ē0n 15.4014 15.4218 15.4283 15.4295 15.4292 15.4291

bias
0

n 0.0286 −0.0082 −0.0017 −0.0005 −0.0008 −0.0009
bias

0
n

bias
0
2n

3.4833 4.8290 3.4205 0.6152 0.9086

errn 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003

Table 15: Bias convergence for the Euler scheme (Heston model and call op-
tion)





A
O P T I M I S AT I O N

a.1 optimal numbers of simulated paths

We use the Lagrange multiplier optimisation technique [14] to solve
the following problem

L∑
i=0

NiCi → min

s.t.
L∑
i=0

N−1
i Vi = ε

2 .

The corresponding Lagrange function Λ is equal to

Λ (N0,N1, . . . ,NL, λ) =
L∑
i=0

NiCi + λ

(
L∑
i=0

N−1
i Vi − ε

2

)
.

Then
∂Λ

∂Ni
= Ci − λViN

−2
i

implies that stationary point satisfy

Ni = λ
−1/2C

−1/2
i V

1/2
i .

Substituting Ni with the above expression in the constraint we obtain
that

λ1/2
L∑
i=0

C
1/2
i V

1/2
i = ε2 ,

what implies that

λ1/2 =
ε2∑L

i=0C
1/2
i V

1/2
i

.

Hence,

Ni =

∑L
i=0

√
CiVi

ε2

√
Vi
Ci

and the corresponding CC is equal to

C.C. [E] =

(
L∑
i=0

√
CiVi

)2
.

Remark 27. Note, we omit checking second-order sufficient conditions for
optimality, as this solution is known to be optimal, see e.g. [55].

79
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a.2 optimal numbers of discretisation point for each

scheme

Instead of solving the original problem of(
n
γ/2
0 +

L∑
i=1

n
γ/2
i n

−β/2
i−1

)2
→ min

we are considering

f = n
γ/2
0 +

L∑
i=1

n
γ/2
i n

−β/2
i−1 → min ,

that has the same point of optimum.
The gradient of the objective function f is of the following form

∂f

∂n0
=
γ

2
n
γ
2−1

0 −
β

2
n
γ
2

1 n
−β
2−1

0 ,

∂f

∂ni
=
γ

2
n
γ
2−1

i n
−β
2

i−1 −
β

2
n
−β
2−1

i n
γ
2

i+1 for i = 1, 2, . . . ,L− 1 .

Then the first order condition can be written as

n
γ+β
0 =

(
β

γ

)2
n
γ
1 ,

n
γ+β
i =

(
β

γ

)2
n
γ
i+1n

β
i−1 for i = 1, 2, . . . ,L− 1 . (64)

a.2.1 Solving System of Equations for ni

Defining

a =
β

γ
and b =

(
β

γ

) 2
γ

we can rewrite the system of equations (64) as

n
γ+β
0 =

(
β

γ

)2
n
γ
1 ⇒ n1 n

−a
0 = b−1 n0

n
γ+β
1 =

(
β

γ

)2
n
γ
2 n

β
0 ⇒ n2 n

−a
1 = b−1 n1 n

−a
0

n
γ+β
2 =

(
β

γ

)2
n
γ
3 n

β
1 ⇒ n3 n

−a
2 = b−1 n2 n

−a
1

n
γ+β
3 =

(
β

γ

)2
n
γ
4 n

β
2 ⇒ n4 n

−a
3 = b−1 n3 n

−a
2

· · · · · · · · ·
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n
γ+β
i =

(
β

γ

)2
n
γ
i+1 n

β
i−1 ⇒ ni+1 n

−a
i = b−1 ni n

−a
i−1

· · · · · · · · ·

n
γ+β
L−3 =

(
β

γ

)2
n
γ
L−2 n

β
L−4 ⇒ nL−2 n

−a
L−3 = b

−1 nL−3 n
−a
L−4

n
γ+β
L−2 =

(
β

γ

)2
n
γ
L−1 n

β
L−3 ⇒ nL−1 n

−a
L−2 = b

−1 nL−2 n
−a
L−3

n
γ+β
L−1 =

(
β

γ

)2
n
γ
L n

β
L−2 ⇒ nL n

−a
L−1 = b

−1 nL−1 n
−a
L−2

Then starting form the first equation we substitute the RHS of each
equation with the LHS of the previous that gives the following system
equations with immediate implications

n1 n
−a
0 = b−1 n0 ⇒ n1 = b

−1 n0 n
a
0

n2 n
−a
1 = b−2 n0 ⇒ n2 = b

−2 n0 n
a
1

n3 n
−a
2 = b−3 n0 ⇒ n3 = b

−3 n0 n
a
2

n4 n
−a
3 = b−4 n0 ⇒ n4 = b

−4 n0 n
a
3

· · · · · · · · ·

ni+1 n
−a
i = b−(i+1) n0 ⇒ ni+1 = b

−(i+1) n0 n
a
i

· · · · · · · · ·

nL−2 n
−a
L−3 = b

−(L−2) n0 ⇒ nL−2 = b
−(L−2) n0 n

a
L−3

nL−1 n
−a
L−2 = b

−(L−1) n0 ⇒ nL−1 = b
−(L−1) n0 n

a
L−2

nL n
−a
L−1 = b

−L n0 ⇒ nL = b−L n0 n
a
L−1 (65)

Going backwards (i.e. starting with the last equation) through the
above system we express ni in terms of n0

ni = b
−
∑i−1
j=0 ((i−j)aj) n

∑i
j=0 a

j

0 . (66)

For the later we have distinguish between two case

• a = 1 ,

• a 6= 1 .

a.2.1.1 Case of a = 1

As b = 1, Equation 66 gives that

n0 = n
1
L+1

L ,

Moreover the system of equations (65) implies that

ni =
ni+1
n0

.

Hence,

ni = n
i+1
L+1

L for i = 0, 1, . . . ,L− 1 .
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a.2.1.2 Case of a 6= 1

Note, that

i∑
j=0

aj =
ai+1 − 1

a− 1
,

as the sum of a geometric progression. Moreover differentiating the
formula for a sum of a geometric progression we first derive that

i∑
j=1

(
j

(
1

a

)j−1)
=

d
d 1a

 i∑
j=0

(
1

a

)j =
d

d 1a

((
1
a

)i+1
− 1

1
a − 1

)

=
i
(
1
a

)i+1
− (i+ 1)

(
1
a

)i
+ 1(

1
a − 1

)2 ,

and thus

⇒ ai−1
i∑
j=1

(
j

(
1

a

)j−1)
=
ai+1 − (i+ 1) a+ i

(a− 1)2
.

Then rewriting (66) as

ni = b
−ai−1

∑i
j=1

{
j ( 1a)

j−1
}
n

∑i
j=0 a

j

0 ,

and plugging in the above expressions for the sums we obtain

ni = b
−
ai+1−(i+1) a+i

(a−1)2 n
ai+1−1
a−1

0 .

In particular, we can express n0 as function of nL

nL = b
−
aL+1−(L+1) a+L

(a−1)2 n
aL+1−1
a−1

0

⇒ n0 = b
1
a−1−

L+1
aL+1−1 n

a−1
aL+1−1

L .

As a consequence

ni = b

(i+1) (aL+1−1)−(L+1) (ai+1−1)
(aL+1−1) (a−1) n

ai+1−1
aL+1−1

L .

a.2.2 Value at Optima

Note that the system (64) implies that

n
γ/2
i+1 n

−β/2
i =

1

a
n
γ/2
i n

−β/2
i−1 for i = 1, 2, . . . ,L− 1 .

Hence

f = n
γ/2
0 +

L∑
i=1

n
γ/2
i n

−β/2
i−1 = n

γ
2

0

L∑
j=0

(
1

a

)j
,
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and in particular

f =

 (L+ 1) n
γ
2

0 if a = 1 ,
( 1a)

L+1
−1

1
a−1

n
γ
2

0 if a 6= 1 .

Then substituting n0 with the findings of the previous section we
obtain

f =

 (L+ 1)n
1
L+1

γ
2

L if a = 1 ,
aL+1−1
aL+1−aL

a

(
1
a−1−

(L+1)

aL+1−1

)
n

a−1
aL+1−1

γ
2

L if a 6= 1 .
(67)

Remark 28. Note that the objective function f is a posynomial. Then
using techniques of the geometric programming [11], and in particular
log-exponent transformation, it can be shown that f has an unique global
minimum.

As a consequence the stationary point found in the above considerations
is the global minimum of the objective function f.

a.3 optimal number of levels

Treating L as a real number we will solve

G (L)→ min ,

where the objective function G is as defined in Equation 29. In the
following we distinguish between two case: a = 1 and a 6= 1.

Case of a = 1

We will consider the equivalent problem of

f = (L+ 1)n
1
L+1

γ
2

L → min .

As the derivative of the objective function is equal to

f′ = n
1
L+1

γ
2

L + (L+ 1)n
1
L+1

γ
2

L

−γ ln (nL)

2 (L+ 1)2

=
1

2
n

1
L+1

γ
2

L

(
2−

γ

L+ 1
ln (nL)

)
,

the first order condition implies that

L =
γ

2
ln (nL) − 1 .

Hence,

ni = n
i+1
L+1

L =

(
n

1
ln(nL)
L

) i+1
γ/2

=
(
e2/γ

)i+1
,
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and moreover

ni =
(
e2/γ

)
ni−1 .

And the corresponding

C.C.
[
Ê
]
�
(
e
γ

2
ln (nL)

)2
.

Moreover as

f′′ =
d

dL

(
1

2
n

1
L+1

γ
2

L

(
2−

γ

L+ 1
ln (nL)

))
= −

γ

4
n

1
L+1

γ
2

L

ln (nl)

(L+ 1)2

(
2−

γ

L+ 1
ln (nL)

)
+
1

2
n

1
L+1

γ
2

L

γ ln (nL)

(L+ 1)2

=
1

2
n

1
L+1

γ
2

L

γ ln (nL)

(L+ 1)2

(
−1+

1

2

γ ln (nL)

L+ 1
+ 1

)
=
1

4
n

1
L+1

γ
2

L

γ2 (ln (nL))
2

(L+ 1)3
> 0

for positive L and nL > 1. The objective function f is convex on this
domain. Hence the above found stationary point is the unique global
minimum of f. Furthermore the function f does not have any other
local minimums.

Case of a 6= 1

Analogously to the previous case, the original problem is substituted
by

f =
aL+1 − 1

aL+1 − aL
a

(
1
a−1−

(L+1)

aL+1−1

)
n

a−1
aL+1−1

·γ2
L → min .

For the sake of notation convenience we define

X =
aL+1 − 1

aL+1 − aL
,

Y = a

(
1
a−1−

(L+1)

aL+1−1

)
,

Z = n
a−1

aL+1−1
·γ2

L .

Then the derivative of the objective function is equal to

f′ = X′YZ+XY′Z+XYZ′ .

In the following we calculate derivatives of X, Y, Z and combine them
at the very last step.

d
dL

(X) =
ln (a)

aL+1 − aL
.
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d
dL

(Y) = Y ln (a)
d

dL

(
1

a− 1
−

(L+ 1)

aL+1 − 1

)
= Y ln (a)

(L+ 1) ln (a) aL+1 − aL+1 + 1

(aL+1 − 1)
2

.

d
dL

(Z) = Z ln (nL) (a− 1)
γ

2

d
dL

(
1

aL+1 − 1

)
= Z ln (nL) (a− 1)

γ

2

(
−

ln (a)aL+1

(aL+1 − 1)
2

)
.

Then combining all together we obtain

f′ = YZ ln (a)

(
1

aL+1 − aL

+
aL+1 − 1

aL+1 − aL
(L+ 1) ln (a)aL+1 − aL+1 + 1

(aL+1 − 1)
2

−
aL+1 − 1

aL+1 − aL
ln (nL) (a− 1)

γ

2

aL+1

(aL+1 − 1)
2

)

= YZ ln (a)
1

(aL+1 − aL)

(
1+

(L+ 1) ln (a) aL+1

aL+1 − 1

− 1− ln (nL) (a− 1)
γ

2

aL+1

aL+1 − 1

)

= YZ ln (a)
aL+1

(
(L+ 1) ln (a) − ln (nL) (a− 1)

γ
2

)
(aL+1 − 1) (aL+1 − aL)

Then the first order condition implies that

L =
(a− 1)γ

2 ln (a)
ln (nL) − 1 .

For this choice of L

ni = b

(i+1) (aL+1−1)−(L+1) (ai+1−1)
(aL+1−1) (a−1) n

ai+1−1
aL+1−1

L

=
(
b

1
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)i+1 (
b
L+1
a−1
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aL+1−1 n
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L

=
(
b

1
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)i+1 (
b
γ ln(nL)
2 ln(a)

)− ai+1−1
aL+1−1

n
ai+1−1
aL+1−1

L

=
(
b

1
a−1

)i+1 (
eln(nL)

)− ai+1−1
aL+1−1 n

ai+1−1
aL+1−1

L

=
(
b

1
a−1

)i+1
= Ri+1 .
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Using nγ/2i n
−β/2
i−1 = a

1
a−1a−i we obtain the corresponding

C.C.
[
Ê
]
�

(
n
γ/2
0 +

L∑
i=1

n
γ/2
i n

−β/2
i−1

)2
=

(
a

1
a−1

L∑
i=0

a−i

)2

= a
2
a−1

(
a−L−1 − 1

a−1 − 1

)2
=

(
a

a
a−1

a− 1

)2(
n

(1−a)γ
2

L − 1

)2
.

Note that for ∀nL > R2

• f′ < 0 for L ∈
(
0, (a−1)γ
2 ln(a) ln (nL) − 1

)
;

• f′ > 0 for L ∈
(
(a−1)γ
2 ln(a) ln (nL) − 1,+∞) .

Hence the above found stationary point is the unique global mini-
mum of f. Moreover the function f does not have any other local
minimums.

a.4 computational cost of the mlc estimate

Proof of Proposition 1 on the CC of the MLC estimate. As the values of the
numbers of simulated pathsNi, given by Equation 36, are bigger than

∑L
i=0

√
n
γ
i Vi

ε2

√
n
−γ
i Vi

 >

∑L
i=0

√
n
γ
i Vi

ε2

√
n
−γ
i Vi ,

the solution of the continuous optimisation problem, feasibility of the
optimal solution ensures that

Var
(
Ê
)
6 ε2 .

Further we will establish bounds for the CC of the estimate.

C.C.
[
Ê
]
=

L∑
i=0

NiCi 6
L∑
i=0

{(∑L
i=0

√
CiVi

ε2

√
Vi
Ci

+ 1

)
Ci

}

=

L∑
i=0

Ci + ε
−2

(
L∑
i=1

√
CiVi

)2
.

Note that for a fixed nL the ni and L are fixed and thus Ci and Vi as
well. Then for sufficiently small ε

L∑
i=0

Ci 6 ε
−2

(
L∑
i=1

√
CiVi

)2
.

As a result

C.C.
[
Ê
]
6 2ε−2

(
L∑
i=1

√
CiVi

)2
. (68)
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In the following we will derive a bound for
(∑L

i=1

√
CiVi

)2
.

As

Var (Pni − Pni−1) 6
(√

Var (P− Pni) +
√

Var (P− Pni−1)
)2

,

under the assumption of the proposition we obtain that

Vi 6

 cv for i = 0 ,

cv

(
n
−β/2
i +n

−β/2
i−1

)2
for i = 1, 2, . . . ,L .

Moreover the assumption on CC of the scheme implies that

Ci 6

{
cc n

γ
0 for i = 0 ,

cc
(
n
γ
i +n

γ
i−1

)
for i = 1, 2, . . . ,L .

Then using the following inequality√
n
γ
i +n

γ
i−1 6 n

γ/2
i +n

γ/2
i−1 ,

we can establish that(
L∑
i=1

√
CiVi

)2
6 cccv

(
n
γ
2

0 +

L∑
i−1

(
n
γ
2

i +n
γ
2

i−1

)(
n
−β
2

i +n
−β
2

i−1

))2
.

As ni is increasing w.r.t. i and γ, β are positive(
L∑
i=1

√
CiVi

)2
6 16cccv

(
n
γ
2

0 +

L∑
i−1

n
γ
2

i n
−β
2

i−1

)2
.

To make use of the optimisation results we bound
(∑L

i=1

√
CiVi

)2
in terms of the “continuous” n̄i. Then using

n̄i − 1 6 ni 6 n̄i + 1

we derive(
L∑
i=1

√
Ci Vi

)2
6 16 cc cv

(
(n̄0 + 1)

γ
2 +

L∑
i−1

(n̄i + 1)
γ
2 (n̄i−1 − 1)

−β
2

)2

6 16 cc cv 2
γ+β

(
n̄
γ
2

0 +

L∑
i=1

n̄
γ
2

i n̄
−β
2

i−1

)2
.

The results obtained during the optimisation, in particular Equation 67,
imply that(

L∑
i=1

√
Ci Vi

)2
6 16 cc cv 2

γ+β (f (L))2 , (69)
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where f defined as in Equation 67

f (L) =

 (L+ 1)n
1
L+1

γ
2

L if a = 1 ,
aL+1−1
aL+1−aL

a

(
1
a−1−

(L+1)

aL+1−1

)
n

a−1
aL+1−1

γ
2

L if a 6= 1 .

As f (L) has only local minimum and

log[R] (nL) − 2 = L̄− 1 6 bLc 6 L̄ 6 dLe 6 L̄+ 1 = log[R] (nL)

it follows that

f (L) 6 max
{
f
(
L̄− 1

)
, f
(
L̄+ 1

)}
.

In the following we have to distinguish between tow cases.

case of a = 1

First, let us deal with f
(
L̄ + 1

)
f
(
L̄ + 1

)
=
( γ
2

ln (nL) + 1
)
n

1
ln(nL)+2/γ
L 6

( γ
2

ln (nL) + 1
)
n

1
ln(nL)
L

6 e
( γ
2

ln (nL) + 1
)

.

On the other hand

f
(
L̄ − 1

)
=
( γ
2

ln (nL) − 1
)
n

1
ln(nL)−2/γ
L .

As nL > R2 = e4/γ implies that 2/ ln (nL) > 1/ (ln (nL) − 2/γ)

it holds that

f
(
L̄ − 1

)
6
( γ
2

ln (nL) − 1
)
n

2
ln(nL)
L

6 e2
( γ
2

ln (nL) − 1
)

.

Hence,

f (L) 6 e2
( γ
2

ln (nL) + 1
)

.

Then plugging it into Equation 69 and combining with Equation 68

we derive

C. C.
[
Ê
]
6 32ε−2cccv2

γ+β (f (L))2

6 C̃
( γ
2

ln (nL) + 1
)2
ε−2 .

Furthermore for nL > R2

C. C.
[
Ê
]
6 C (ln (nL))

2 ε−2 ,

what proves the assertion in the case of β = γ.
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case of a 6= 1

Note that f (L) can be rewritten as

f (L) =
aL+1 − 1

aL+1 − aL
a

(
1
a−1−

(L+1)

aL+1−1

)
n

a−1
aL+1−1

γ
2

L

=
a

a
a−1

a − 1

(
a−L−1 − 1

) (
a−L−1 n

β−γ
2

L

) 1

aL+1−1

. (70)

We begin with f
(
L̄+ 1

)
by noting that

aL =
(
a
β−γ
2 ln(a)

)ln(nL)
= n

β−γ
2

L .

Then Equation 70 can be transformed as

f
(
L̄+ 1

)
=
a

a
a−1

a− 1

nγ−β2L
a

− 1

 a
1

1−aL+1

=
a

a
a−1

a− 1

(
n
γ−β
2

L − a

)
a

aL+1

1−aL+1

=
a

a
a−1

a− 1

(
n
γ−β
2

L − a

)
a

a n

β−γ
2

L

1−a n

β−γ
2

L

=
a

a
a−1

a− 1

(
n
γ−β
2

L − a

)
a

n

β−γ
2

L

a−1−n

β−γ
2

L .

Moreover for nL > R2

a

n

β−γ
2

L

a−1−n

β−γ
2

L 6 1

and thus

f
(
L̄+ 1

)
6
a

a
a−1

a− 1

(
n
γ−β
2

L − a

)
.

On the other hand in the case of f
(
L̄− 1

)
aL+1 = a−1alog[R](nL) = a−1n

β−γ
2

L .
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Then Equation 70 takes the following form

f
(
L̄− 1

)
=
a

a
a−1

a− 1

(
a n

γ−β
2

L − 1

)
a

1

aL+1−1

=
a

a
a−1

a− 1

(
n
γ−β
2

L − a−1
)
a

aL+1

aL+1−1

=
a

a
a−1

a− 1

(
n
γ−β
2

L − a−1
)
a

a−1 n

β−γ
2

L

a−1 n

β−γ
2

L
−1

=
a

a
a−1

a− 1

(
n
γ−β
2

L − a−1
)
a

n

β−γ
2

L

n

β−γ
2

L
−a .

Moreover for nL > R2 the last multiplier can be bounded as

a

n

β−γ
2

L

n

β−γ
2

L
−a 6 max

{
a2,a−1

}
and thus

f
(
L̄− 1

)
6 max

{
a2,a−1

} a a
a−1

a− 1

(
n
γ−β
2

L − a−1
)

.

Hence,

f (L) 6 max
{
a2,a−1

} a
a
a−1

a− 1
max

{
n
γ−β
2

L − a−1, n
γ−β
2

L − a

}
Then according Equation 68 and Equation 69

C.C.
[
Ê
]
6 32ε−2cccv2

γ+β (f (L))2

6 C̃

(
max

{
n
γ−β
2

L − a−1, n
γ−β
2

L − a

})2
ε−2 .

If a > 1 for nL > R2

C.C.
[
Ê
]
6 C̃

(
a−n

γ−β
2

L

)2
ε−2

6 C ε−2 ,

what proves the assertion in the case of β > γ. On the other hand in
the case of a < 1 for nL > R2

C.C.
[
Ê
]
6 C̃

(
n
γ−β
2

L − a−1
)2
ε−2

6 C nγ−βL ε−2 ,

what proves the assertion in the case of β < γ.
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justification of the remark on the constant C

Here we justify the expression of the constant C given in Remark 15.
To simplify consideration we assume that the choices of ni , Ni and L
coincide with their continuous optimal counterparts. First of all note
that (

n
−β/2
i − n

−β/2
i−1

)2
6 Var

(
P̂ni − P̂ni−1

)
6
(
n

−β/2
i − n

−β/2
i−1

)2
.

The lower bound corresponds to the case of perfect negative correla-
tion and upper to perfect positive correlation. For the later we assume
that variance is equal to the geometric average of these bounds

Var
(
P̂ni − P̂ni−1

)
≈
√(

n
−β/2
i −n

−β/2
i−1

)2 (
n
−β/2
i +n

−β/2
i−1

)2
= n−β

i−1 −n
−β
i .

In particular,

C.C.
[
Ê
]
= ε−2

(
L∑
i=0

√
CiVi

)2

6 ε−2cccv

(
n
γ/2
0 +

L∑
i=1

√(
n
γ
i−1 +n

γ
i

) (
n
−β
i−1 −n

−β
i

))2
.

Then using the optimal ni = R−(L−i)nL from (32) we derive

L∑
i=1

√(
n
γ
i−1 +n

γ
i

) (
n
−β
i−1 −n

−β
i

)
=

=
√
(1+ R−γ) (Rβ − 1)

L∑
i=1

n
γ−β
2

i

=
√
(1+ R−γ) (Rβ − 1)n

γ−β
2

L

L∑
i=1

(
R
γ−β
2

)−L+i
=
√
(1+ R−γ) (Rβ − 1)n

γ−β
2

L

L∑
i=1

(
R
γ−β
2

)−L+i
In the following we distinguish between two cases: γ = β and γ 6= β.

case of γ = β

L∑
i=1

√(
n
γ
i−1 + n

γ
i

) (
n

−β
i−1 − n

−β
i

)
= L

√
(1 + R−γ) (Rβ − 1)

= L
√
Rγ − R−γ
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Keeping in mind that R = e2/γ , n0 = R and L = log[R] (nL) − 1

we can obtain

CC
[
Ê
]
6 ε−2 cc cv

(
Rγ/2 +

√
Rγ − R−γ · L

)2
= ε−2 cc cv

(
e +

√
e2 − e−2 · L

)2
= ε−2 cc cv

(
e2 − e−2

) log[R] (nL) +

√
e2

e2 − e−2
− 1

2

= ε−2 cc cv
(
e2 − e−2

) ln
(
n
γ
2

L

)
+

√
e2

e2 − e−2
− 1

2

case of γ 6= β

L∑
i=1

√(
n
γ
i−1 + n

γ
i

) (
n

−β
i−1 − n

−β
i

)
=

=
√

(1 + R−γ) (Rβ − 1)n
γ−β
2

L

L∑
i=1

(
R
γ−β
2

)−L+i

=
√

(1 + R−γ) (Rβ − 1)n
γ−β
2

L

L−1∑
i=0

(
R
β−γ
2

)i

=
√

(1 + R−γ) (Rβ − 1)n
γ−β
2

L

(
R
β−γ
2

)L
− 1

R
β−γ
2 − 1

Keeping in mind that a = β/γ, R =
(
γ
β

) 2
γ−β

, n0 = R and L =

log[R] (nL) − 1 we can derive

L∑
i=1

√(
n
γ
i−1 + n

γ
i

) (
n

−β
i−1 − n

−β
i

)
=

=
√

(1 + R−γ) (Rβ − 1)n
γ−β
2

L

aL − 1

a − 1

=

√
(1 + R−γ) (Rβ − 1)

a − 1
n
γ−β
2

L

(
a−1 n

β−γ
2

L − 1

)
=

√
(1 + R−γ) (Rβ − 1)

a − 1

(
a−1 − n

γ−β
2

L

)
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Then putting this into the expression for CC we obtain

C. C.
[
Ê
]
6 ε−2 cc cv

(
n
γ/2
0 +

L∑
i=1

√(
n
γ
i−1 + n

γ
i

) (
n

−β
i−1 − n

−β
i

))2

6 ε−2 cc cv

(
Rγ/2 +

√
(1 + R−γ) (Rβ − 1)

a − 1
·
(
a−1 − n

γ−β
2

L

))2

6 ε−2 cc cv
(1 + R−γ)

(
Rβ − 1

)
(a − 1)2

×

(
n
γ−β
2

L − a−1 + (a − 1)

√
Rγ

(1 + R−γ) (Rβ − 1)

)2
.





B
W E A K E X T R A P O L AT I O N A N D M L M C A P P E N D I X

b.1 solving system of equations λn

Here we show how the system of equations (49) can be solved.

Remark 29. In the classic HOWE settings of Section 3.1.2, the correspond-
ing system of equations is solved [59] using properties of Vandermonde ma-
trices [54].

To solve this problem we consider it as a problem of an exact poly-
nomial fit. We consider the polynomial

p(x) = λN0 + λN1 x
1 + λN2 x

2 + . . . + λNNx
N =

N∑
i=0

λNi x
i (71)

and the problem of its exact fit to the set of points{
(1 , 1) ;

(
1

M1α
, 0
)

;
(

1

M2α
, 0
)

; . . . ;
(

1

MNα
, 0
)}

.

Then by construction the coefficients λNi of the fitted polynomial and
the solution of the the system of equations (49) coincide.

The fitting problem can be solved using the Lagrange’s interpola-
tion formula [18], what yields

p(x) =

(
x − 1

M1α

) (
x − 1

M2α

)
. . .
(
x − 1

MNα

)(
1 − 1

M1α

) (
1 − 1

M2α

)
. . .
(
1 − 1

MNα

) ,

and after elementary transformation an equivalent form

p(x) =

(
M1αx − 1

) (
M2αx − 1

)
. . .
(
MNαx − 1

)
(M1α − 1) (M2α − 1) . . . (MNα − 1)

. (72)

From representation (72) we directly obtain

λN0 =
(−1) (−1) . . . (−1)

(M1α − 1) (M2α − 1) . . . (MNα − 1)

= (−1)N
N∏
i=1

1

Miα − 1

and

λNN =
M1αM2α . . . MNα

(M1α − 1) (M2α − 1) . . . (MNα − 1)

=

N∏
i=1

Miα

Miα − 1
.
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Further collecting coefficients with all (N − 1)th degree x-terms in
Equation 72 we derive λNN−1 as

λN−1 =
1∏N

i=1 (M
iα − 1)

N∑
i=1

−

N∏
j=1

j 6=i

Mjα


=

1∏N
i=1 (M

iα − 1)

−

N∏
j=1

Mjα

 N∑
i=1

1

Miα

= −
1

Mα − 1

N−1∏
i=1

Miα

Miα − 1
.

This suggests that the general form of the extrapolation coefficient
reads as

λN−j = (−1)j
j∏
i=1

1

Miα − 1

N−j∏
i=1

Miα

Miα − 1
. (73)

However this requires proof of the correctness this solution. It can be
given using a formula for the determinant of a Vandermonde matrix,
for details see [51].

b.2 bias of the howe scheme

Proof of Proposition 3 on the bias of the HOWE scheme. Representation (46)
and Equation 47 imply that the first non-vanishing term of the error
has the following form

cN+1

n(N+1)α

N∑
i=0

λni M
−i(N+1)α =

cN+1

n(N+1)α
p
(
M−(N+1)α

)
,

where p is the polynomial defined in Section B.1. Then using repre-
sentation (72) of the polynomial p we derive the first term of the bias
error as

cN+1

n(N+1)α

N∑
i=0

λni M
−i(N+1)α =

cN+1

n(N+1)α
(−1)N

N∏
i=1

1

Miα

= (−1)N cN+1
1

n(N+1)αM
(N+1)N

2 α
.

It remains to show that the remaining terms are of o-small of the
above expression. In particular using representation (46) and repre-
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sentation (72) of the polynomial p we show that an absolute value of
the this term can be bounded as∣∣∣∣∣ cN+2

n(N+2)α

N∑
i=0

λni M
−i(N+2)α

∣∣∣∣∣ = ∣∣∣ cN+2

n(N+2)α
p
(
M−(N+2)α

)∣∣∣
=

∣∣∣∣∣ cN+2

n(N+2)α
(−1)N

M(N+1)α − 1

Mα − 1

N+1∏
i=2

1

Miα

∣∣∣∣∣
= |cN+2|

1

n(N+2)α

M(N+1)α − 1

Mα − 1

1

M
(N+3)N

2 α

< |cN+2|
1

n(N+2)αM
(N+1)N

2 α

Mα

Mα − 1
.

Hence,

cN+2

n(N+2)α

N∑
i=0

λni M
−i(N+2)α = o

(
1

n(N+1)αM
(N+1)N

2 α

)
,

as n→∞, what yields the assertion.

b.3 boundedness of the weights κN

Proof of Proposition 4 on the boundedness of the weights κN . First note that

1

M(N−i)α − 1

∣∣λNi+1 ∣∣ = M(i+1)α

M(i+1)α − 1

∣∣λNi ∣∣ for i = 0 , 1 , . . . ,N − 1 .

Hence for M such that Mα > 2 holds∣∣λNi ∣∣ < ∣∣λNi+1 ∣∣ for i = 0 , 1 , . . . ,N − 1 , (74)

i.e. for a fixed N absolute values of λNi monotonously increase with
i.

Further we prove that λNN → C < ∞ as N → ∞. Note,

ln
(
λNN
)
= −

N∑
i=1

ln
(
1 −

1

Miα

)
.

Then

ln (1 − x) = −x + o (−x) and M−iα → 0

imply that

∃N∗ ∈ N s.t. ∀i > N∗ ln
(
1 −

1

Miα

)
> −

1

Miα
−

1

Miα
= −2

1

Miα
.

Hence,

ln
(
λNN
)
6 −

N∗∑
i=1

ln
(
1 −

1

Miα

)
+ 2

N∧N∗∑
i=N∗

1

Miα
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and, thus ∀N ∈ N

λNN 6 e
−
∑N∗
i=1 ln

(
1− 1

Miα

)
e
2
∑N
i=1

1

Miα 6 e
−
∑N∗
i=1 ln

(
1− 1

Miα

)
e

2
1−M−α .

Then, as λNN < λLL for N < L, the monotone convergence theorem
implies that λNN → C < ∞ as N → ∞.

Now let us prove the main assertion of the proposition, i.e.

0 < κNi < κ
N
N for i = 0, 1, . . . ,N− 1 .

Note that κNN = λNN > 0 and κN0 = 1 by definition. Alternating signs
of λNi and inequality (74) imply that

λNN−2j + λ
N
N−2j+1 < 0 and λNN−2j−1 + λ

N
N−2j > 0

for j = 1, 2, . . . , dN/2e and j = 0, 1, . . . , bN/2c correspondingly. Then
representing κNN−i as

κNN−i =



∑i/2
j=1

(
λNN−2j + λ

N
N−2j+1

)︸ ︷︷ ︸
<0

+ λNN for even i ,

λNN−i︸ ︷︷ ︸
<0

+
∑bi/2c
j=1

(
λNN−2j + λ

N
N−2j+1

)︸ ︷︷ ︸
<0

+ λNN for odd i ,

we obtain that

κNN−i < κ
N
N = λNN for i = 1, 2, . . . ,N− 1 .

On the other hand κNN−i can be represented as

κNN−i =


λNN−i︸ ︷︷ ︸
>0

+
∑i/2−1
j=0

(
λNN−2j−1 + λ

N
N−2j

)︸ ︷︷ ︸
>0

for even i ,

∑bi/2c
j=0

(
λNN−2j−1 + λ

N
N−2j

)︸ ︷︷ ︸
>0

for odd i ,

thus

κNN−i > 0 for i = 1, 2, . . . ,N− 1 .
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