
Virtual Reality Methods for Research in

the Geosciences

Vom Fachbereich Informatik der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Inf. Rolf Westerteiger

Datum der wissenschaftlichen Aussprache: 10.07.2014

Dekan: Prof. Dr. Klaus Schneider

Vorsitzender des Prüfungsausschusses: Prof. Dr. Klaus Schneider

1. Berichterstatter: Prof. Dr. Hans Hagen

2. Berichterstatter: Prof. Dr. Bernd Hamann

3. Berichterstatter: Prof. Dr. Christoph Garth

D (386)

c© Copyright 2014

by Rolf Westerteiger

Acknowledgements

I would like to use this space to thank the people who have advised and supported

me both on a professional and personal level during my research.

First of all, I am grateful for the support of my advisors Andreas Gerndt, Bernd

Hamann and Hans Hagen. Andreas Gerndt offered me the chance to stay at the

German Aerospace Center in Braunschweig for three and a half years to conduct a

majority of my research under his supervision and support. I want to thank Bernd

Hamann for his continuous support, not only during my research visits to Davis

but also during my time spent in Germany. And last but not least, I would like to

thank Hans Hagen for allowing me to conduct my research in a productive interna-

tional and interdisciplinary environment as a member of the International Research

Training Group ”Visualization of Large and Unstructured Data Sets - Applications

in Geospatial Planning, Modeling, and Engineering” (IRTG 1131).

I would like to thank Klaus Gwinner of the German Aerospace Center in Berlin for

his collaboration and advice with respect to the geological study of Mars as well as

associated technologies and data products.

Considering my work in Davis, California on the topics of fault retro-deformation

as well as ocean visualization, I would like to thank Tracy Compton, Eric Cowgill,

Gregory Streletz, Oliver Kreylos, Geoffrey Gebbie, Howard J. Spero and Louise

Kellogg for providing geoscientific knowledge and especially Tony Bernardin for his

collaboration from the computer science side.

Furthermore, I would like to thank all my friends and colleagues for their intellectual

and personal support, especially Christian Wagner and Fang Chen.

Last but not least, I want to thank the members of my family for always being there

for me, especially during the more stressful and difficult times.

Zusammenfassung

In der vorliegenden Arbeit untersuche ich inwieweit die Geowissenschaften durch

Methoden der virtuellen Realität (VR) unterstützt werden können. Dazu habe

ich immersive, kollaborative Visualisierungssyteme sowie virtuelle Werkzeuge zur

Datenanalyse entwickelt. Die dabei aufgetretenen technischen Herausforderungen

lege ich dar und präsentiere geeignete Lösungsansätze.

Zur Visualisierung grosser digitaler Terrain-Modelle (DTMs) in einer immersiven

VR-Umgebung werden geeignete Terrain-Rendering Algorithmen benötigt. Zum

einen erfordert die realistische Darstellung der Planeten-Krümmung aus grosser

Höhe eine sphärische Darstellung der Oberfläche, zum anderen muss dabei stets eine

interaktive Bildfrequenz garantiert werden um eine Desorientierung des Benutzers zu

vermeiden. Um virtuelle Vermessungwerkzeuge in dieser Umgebung bereitstellen zu

können wird zudem eine Datenstruktur benötigt, welche sich sowohl für die Visual-

isierung als auch zur Berechnung geometrischer Eigenschaften wie etwa Höhenprofile

oder Volumina eignet. Um diesen Anforderungen gerecht zu werden, habe ich einen

neuartigen Terrain-Rendering Algorithmus entwickelt, welcher auf einer gekachelten

Quadtree-Unterteilung der HEALPix-Kugelparametrisierung basiert. Die Effizienz

und Bildqualität des Systems untersuche ich anhand eines 500 GiB grossen Daten-

satzes, welcher die Mars-Oberfläche repräsentiert.

In Anbetracht der aktuellen Entwicklung preisgünstiger, flexibler Fernerkundungsplat-

formen wie etwa Quadcopter scheint es unausweichlich, dass diesen Systemen eine

wichtige Rolle in zukünftigen Katastrophenschutz-Anwendungen zufallen wird. Die

zeitnahe Bereitstellung aktueller dreidimensionaler Lageinformationen bei einem

Unglücksfall und deren Präsentation in einer VR-Umgebung könnte dabei zur raschen,

kollaborativen Entscheidungsfindung beitragen. Bei einer grossen Mehrheit der in

der Literatur vorgestellten Terrain-Rendering Algorithm ist jedoch eine aufwendige

Vorverarbeitung der Eingangsdaten notwendig, bevor diese präsentiert werden können.

Um diese Problematik zu bewältigen, entwickelte ich ein verteiltes Visualisierungs-

System, welches diese Daten auf Anfrage in kurzer Zeit verarbeitet. Das System

besteht aus einem Rendering-Frontend, welches die dreidimensionale Darstellung

übernimmt, sowie einem Backend, bestehend aus einem kleinen Cluster, welcher für

die Datenkonvertierung verantwortlich ist. Dabei kommt ein auf Grafikkarten im-

plementierter Algorithmus zum Einsatz um Fernerkundungsdaten in das HEALPix-

Koordinatensystem zu projezieren.

Bei der Untersuchung geologischer Phänomene stellt deren räumliche Vermessung

einen wichtigen Arbeitsschritt dar. Um solche Messungen in einer VR-Umgebung

zu ermöglichen ist es notwendig, geeignete Eingabegeräte und Interaktionsmeta-

phern (”virtuelle Werkzeuge”) bereitzustellen. Diese Werkzeuge sollten trotz der

perspektivischen Wahrnehmung eine exakte räumliche Positionierung ermöglichen

sowie entsprechend der verfügbaren Daten-Auflösung akkurate Ergebnisse liefern.

Die Interaktivität der Darstellung sollte dabei während des Messprozesses stets

beibehalten werden. Ich habe dazu einen Satz virtueller Werkzeuge zur Messung von

Höhenprofilen sowie von Volumina entwickelt, welche auf Grundlage der auch zur

Visualisierung verwendeten HEALPix-Datenstruktur arbeiten. Zur Selektion von

Oberflächenkoordinaten wurde eine strahlbasierte Interaktion implementiert. Der

eigentliche Messvorgang ist als Hintergrundprozess ausgelegt, welcher die Datenba-

sis in der höchsten verfügbaren Auflösung verwendet um genaue Messergebnisse zu

garantieren.

Geologische Störungen sind Brüche in der Erdkruste entlang derer ein Versatz von

Gestein beobachtet wird. Die Bestimmung der Richtung und Distanz solcher Ver-

schiebungen ist ein wichtiger Aspekt geologischer Forschung. Traditionell werden

hierfür (digitalisierte) Landkarten in Draufsicht herangezogen. Diese werden, etwa

mit Bildverabeitungssoftware, entlang der vermuteten Störungslinie aufgetrennt und

die beiden Fragmente per Parallelverschiebung gegeninander versetzt mit dem Ziel

die Kontinuität der durch die Störung versetzten Oberflächenmerkmale wieder-

herzustellen. Die dazu notwendige Verschiebung stellt schliesslich eine Hypothese für

die Gesamtverschiebung entlang der Störung dar. In der vorliegenden Arbeit zeige

ich, dass eine solche Herangehensweise durch die Einschränkung auf eine senkrechte

Ansicht zu einer Akzeptanz fehlerhafter Hypothesen führen kann, da sie keine Rück-

sicht auf die dreidimensionale Struktur der Topographie nimmt. Zur Bewältigung

dieses Problems entwickelte ich einen Deformationsalgorithmus, welcher es erlaubt

innerhalb einer dreidimensionalen Terrain-Visualisierung eine Störungslinie einzuze-

ichnen und die Landschaft entlang der Linie interaktiv zu deformieren. Die drei-

dimensionale Visualisierung erlaubt dabei die Untersuchung einer hypothetischen

Rekonstruktion aus beliebigen Blickwinkeln, wodurch die Warhscheinlichkeit einer

Fehlinterpretation verringert wird. Interaktivität in Bezug auf alle Parameter wird

durch eine Implementation auf der Grafikkarte geẅahrleistet.

Die Wissenschaft der Paläozeanographie beschäftigt sich mit der prähistorischen En-

twicklung der Ozeane. Eine Schlüsselrolle fällt dabei den sogenannten Kernbohrung-

sexperimenten zu, welche stichprobenartig die Zusammensetzung des Meeresgrundes

erfassen. Der schichtartige Aufbau der gewonnenen Kernproben korreliert mit der

zeitlichen Entwicklung der Sedimentkonzentrationen des Ozeans am Ort der Ent-

nahme. Aus diesen Daten wiederrum die zeitliche Entwicklung der Ozeanströmung

zu rekonstruieren stellt jedoch ein schwieriges inverses Problem dar. Um die En-

twickung numerischer Modelle der Ozeanströmung zu unterstützen habe ich ein

Visualisierungssystem entwickelt, welches sowohl Primärdaten aus Kernbohrexperi-

menten als auch die daraus durch numerische Simulation vorhergesagten zeitabhängi-

gen Strömungsfelder simultan darstellt. Die Erde erscheint dabei als Globus in

einer VR-Umgebung, wobei die Zusammensetzung von Bohrkernen unter Verwen-

dung einer Billboard-Technik visualisiert wird während das Strömungsfeldes durch

animierte Line-Integral-Convolution (LIC) dargestellt wird. Zuätzlich können inter-

aktiv virtuelle Partikel in das Strömungsfeld eingegeben werden um Transportwege

und deren Korrelation mit den gemessenen Sedimentablagerungen zu untersuchen.

Abstract

In the presented work, I evaluate if and how Virtual Reality (VR) technologies can

be used to support researchers working in the geosciences by providing immersive,

collaborative visualization systems as well as virtual tools for data analysis. Techni-

cal challenges encountered in the development of theses systems are identified and

solutions for these are provided.

To enable geologists to explore large digital terrain models (DTMs) in an immersive,

explorative fashion within a VR environment, a suitable terrain rendering algorithm

is required. For realistic perception of planetary curvature at large viewer altitudes,

spherical rendering of the surface is necessary. Furthermore, rendering must sustain

interactive frame rates of about 30 frames per second to avoid sensory confusion of

the user. At the same time, the data structures used for visualization should also be

suitable for efficiently computing spatial properties such as height profiles or volumes

in order to implement virtual analysis tools. To address these requirements, I have

developed a novel terrain rendering algorithm based on tiled quadtree hierarchies

using the HEALPix parametrization of a sphere. For evaluation purposes, the system

is applied to a 500 GiB dataset representing the surface of Mars.

Considering the current development of inexpensive remote surveillance equipment

such as quadcopters, it seems inevitable that these devices will play a major role

in future disaster management applications. Virtual reality installations in disaster

management headquarters which provide an immersive visualization of near-live,

three-dimensional situational data could then be a valuable asset for rapid, collab-

orative decision making. Most terrain visualization algorithms, however, require a

computationally expensive pre-processing step to construct a terrain database. To

address this problem, I present an on-the-fly pre-processing system for cartographic

data. The system consists of a frontend for rendering and interaction as well as a dis-

tributed processing backend executing on a small cluster which produces tiled data

in the format required by the frontend on demand. The backend employs a CUDA

based algorithm on graphics cards to perform efficient conversion from cartographic

standard projections to the HEALPix-based grid used by the frontend.

Measurement of spatial properties is an important step in quantifying geological

phenomena. When performing these tasks in a VR environment, a suitable input

device and abstraction for the interaction (a “virtual tool”) must be provided. This

tool should enable the user to precisely select the location of the measurement

even under a perspective projection. Furthermore, the measurement process should

be accurate to the resolution of the data available and should not have a large

impact on the frame rate in order to not violate interactivity requirements. I have

implemented virtual tools based on the HEALPix data structure for measurement

of height profiles as well as volumes. For interaction, a ray-based picking metaphor

was employed, using a virtual selection ray extending from the user’s hand holding

a VR interaction device. To provide maximum accuracy, the algorithms access the

quad-tree terrain database at the highest available resolution level while at the same

time maintaining interactivity in rendering.

Geological faults are cracks in the earth’s crust along which a differential movement

of rock volumes can be observed. Quantifying the direction and magnitude of such

translations is an essential requirement in understanding earth’s geological history.

For this purpose, geologists traditionally use maps in top-down projection which

are cut (e.g. using image editing software) along the suspected fault trace. The

two resulting pieces of the map are then translated in parallel against each other

until surface features which have been cut by the fault motion come back into

alignment. The amount of translation applied is then used as a hypothesis for the

magnitude of the fault action. In the scope of this work it is shown, however,

that performing this study in a top-down perspective can lead to the acceptance

of faulty reconstructions, since the three-dimensional structure of topography is not

considered. To address this problem, I present a novel terrain deformation algorithm

which allows the user to trace a fault line directly within a 3D terrain visualization

system and interactively deform the terrain model while inspecting the resulting

reconstruction from arbitrary perspectives. I demonstrate that the application of

3D visualization allows for a more informed interpretation of fault reconstruction

hypotheses. The algorithm is implemented on graphics cards and performs real-time

geometric deformation of the terrain model, guaranteeing interactivity with respect

to all parameters.

Paleoceanography is the study of the prehistoric evolution of the ocean. One of the

key data sources used in this research are coring experiments which provide point

samples of layered sediment depositions at the ocean floor. The samples obtained

in these experiments document the time-varying sediment concentrations within

the ocean water at the point of measurement. The task of recovering the ocean

flow patterns based on these deposition records is a challenging inverse numerical

problem, however. To support domain scientists working on this problem, I have

developed a VR visualization tool to aid in the verification of model parameters

by providing simultaneous visualization of experimental data from coring as well

as the resulting predicted flow field obtained from numerical simulation. Earth is

visualized as a globe in the VR environment with coring data being presented using

a billboard rendering technique while the time-variant flow field is indicated using

Line-Integral-Convolution (LIC). To study individual sediment transport pathways

and their correlation with the depositional record, interactive particle injection and

real-time advection is supported.

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Motivation . 3

1.2 Virtual reality . 4

1.3 Geovisualization . 5

1.3.1 Digital map representations 6

1.3.2 Geographic information systems 7

1.3.3 Terrain rendering . 8

1.4 Fault retro-deformation . 10

1.5 Flow visualization . 11

1.6 Related work . 12

1.6.1 Terrain visualization . 12

1.6.2 Pre-processing of raster maps 14

1.6.3 Spatial analysis in VR . 15

1.6.4 Fault retro-deformation . 16

1.6.5 Ocean flow visualization . 19

i

2 Spherical Terrain Rendering using the hierarchical HEALPix grid 21

2.1 Introduction . 21

2.2 Related work . 23

2.3 Approach . 24

2.3.1 Data resampling . 24

2.3.2 Rendering . 27

2.3.3 Frustum culling . 27

2.3.4 LoD rendering . 28

2.3.5 Data streaming . 30

2.3.6 Rasterization . 30

2.3.7 Imagery overlay . 31

2.4 Results . 33

2.5 Conclusion and future work . 34

3 Remote GPU-Accelerated Online Pre-processing of Raster Maps

for Terrain Rendering 36

3.1 Introduction . 36

3.2 Related work . 37

3.3 Pre-processing framework . 40

3.3.1 Data representation . 41

3.3.2 Off-line database construction 41

3.3.3 GPU-accelerated resampling 43

3.3.4 On-line approach . 44

3.4 Results . 46

3.4.1 Raw resampling performance 46

3.4.2 Off-line pre-processing . 47

ii

3.4.3 On-line pre-processing . 47

3.5 Conclusion . 49

4 Spatial Analysis of Terrain in Virtual Reality 50

4.1 Related work . 52

4.2 Interaction . 53

4.3 Data structure . 54

4.4 Algorithms . 55

4.4.1 Height profile . 55

4.4.2 Volume measurement . 57

4.5 Results . 58

4.6 Conclusion and future work . 59

5 Interactive Retro-Deformation of Terrain for Reconstructing 3D

Fault Displacements 61

5.1 Related work . 63

5.2 Fault Model . 66

5.3 Visualizing planar fault displacement 68

5.4 Visualizing segmented fault displacement 69

5.4.1 Definition of influence zones 70

5.4.2 Displacement algorithm . 71

5.4.3 Graben reconstruction . 72

5.5 Results . 73

5.5.1 San Andreas Fault . 73

5.5.2 Noctis Labyrinthus (Mars) . 76

5.5.3 Practical impact . 77

5.5.4 Performance . 77

iii

5.6 Conclusion and future work . 78

6 Exploration of Time-dependent Paleoceanographic Flow Data in

Virtual Reality 83

6.1 Introduction . 83

6.2 Related work . 85

6.3 Virtual reality integration . 86

6.4 User interface . 87

6.5 Data visualization . 88

6.5.1 Flow visualization . 89

6.5.2 Particle tracing . 90

6.5.3 Visualization of coring data 91

6.6 Results . 91

6.7 Future work . 92

7 Conclusion 94

References 97

Biographical Information 102

List of publications 103

iv

List of Figures

1.1 VR systems used in this work . 4

2.1 Embedding of high-res into low-res DEM (left: HRSC, right: MOLA) 25

2.2 Distance-dependent LoD selection . 29

2.3 Shading vs. Texturing . 32

2.4 Merging multiple imagery nodes into single texture (∆h = 1) 32

2.5 Comparison of triangulations at north pole 33

2.6 Visual quality and rendering performance at different LoD-thresholds

(left: shaded DEM, right: DEM textured with high-res B/W channel

(∆h = 2)) . 35

3.1 The HEALPix hierarchical sphere tessellation. All cells on a given

subdivision level have equal area and their coordinates can be com-

puted using a closed formula. 41

3.2 Coordinate systems involved in the resampling process 42

3.3 Embedding of a high-resolution DEM (HRSC) into a low-resolution

DEM (MOLA). Arrows indicate dataset boundaries. 43

3.4 Illustration of distributed on-the-fly processing 45

3.5 Top-down view of Valles Marineris showing convergence of image res-

olution. 48

v

3.6 a) Average delay between the front-end issuing a tile request and

receiving the data. b) Valles Marineris on Mars using both MOLA

and HRSC datasets, composited on the fly. Image resolution: 1920×
1200 pixels, 26.5 million triangles. Starting from an empty cache,

image quality converges within 30 seconds. 49

4.1 Fault network on Mars next to Valles Marineris 50

4.2 Accurate placement of profile lines in VR 54

4.3 Simultaneous display of profile graph 55

4.4 The HEALPix hierarchical sphere tessellation 56

4.5 Measuring the volume of Olympus Mons 58

5.1 Left: Real-time deformation of a terrain model as fault parameters are

changed. Right: Application of the system to reconstruct a graben

structure on Mars (top: present-day state, bottom: reconstruction

hypothesis). 61

5.2 Fault model and kinematics of typical displacements. 67

5.3 Surface mesh is cut and re-tessellated along the fault, triangles repre-

senting the fault plane are inserted (blue and orange) and the moving

block (right) is displaced. 68

5.4 Exploring incremental reconstructions of a feature offset by ≈280 m

(red arrows). A shutter ridge appears at ≈175 m (circled in orange),

implying a formation age of the alluvial fan (circled in blue). 70

5.5 (a) The moving block is segmented into influence zones by boundary

planes which bisect the angle between fault line segments. (b) A

mesh vertex v is advected until it has travelled a distance equal to

the desired offset. 71

5.6 Placing multiple fault lines to reconstruct a graben. 73

vi

5.7 Reconstruction of an offset channel. (a) plan view present day, (b)

plan view reconstructed, (c) oblique view reveals obstructing topog-

raphy, (d) applying dip component to compensate. 80

5.8 Interactively reconstructing a section of the San Andreas fault. Views

for all panels are oblique and approximately to the south. Top:

present-day overview of the fault section. The orange box highlights

the site which was reconstructed in Figure 5.7. The fault trace is

indicated by the green polyline. The circles represent additional sites

that were found to exhibit connected channels due to the ≈80 m re-

construction. Bottom: top panels for each vertical pair (left and right)

show present-day geometry of offset channels (red arrows). The bot-

tom panels of the pair show how the connectivity of the channels is

restored after the retro-deformation (indicated by alignment of the

red arrows). 81

5.9 Interactive reconstruction of a graben on Mars. Top-left: Fault scarps

marked in blue and red. Right side of image shows region where ter-

rain has collapsed. Top-center: Cross-sectional view of the graben

from inside the collapse. Height profile (orange) along the rim of

the collapse shows elevation difference in graben region. Top-right:

Traced the foothill of the fault scarps on both sides of the graben.

Bottom-left: Rotating the fault planes (blue) to match the slope of

the fault scarps. Bottom-center: Cross-sectional view after recon-

struction. Bottom-right: Top-down view after reconstruction. Note

reconnection of intersecting fault line (orange). 82

5.10 Scaling behavior: Relation between number of fault segments and

rendering time in Mars top-down view. 82

6.1 Visualization of surface currents using line integral convolution and

color-coded temperature. The user interface supports VCR-style con-

trols for time navigation as well as spatial cropping functionality, vi-

sualization of deposition records and interactive particle tracing. . . . 84

6.2 Interaction with the parameter dialog in a CAVE using a pick-ray. . . 87

vii

6.3 Visualization of flow at the ocean surface (depth zero) using LIC. Flow

orientation is indicated by animation while color indicates velocity

magnitude (blue < white < red). 89

6.4 Constraining the visualization to a region of interest reveals flow be-

havior in depth. Note the coarse approximation of bathymetry, which

is generated from the set of those simulation grid cells which are

marked as having no data. 90

6.5 Interactive particle injection in the vicinity of an eddy (vortex). As

the particles are advected by the flow, their trails (pathlines) are

visualized in yellow. 91

6.6 Billboard visualization of deposition records. 92

6.7 Analysis of conservation of seawater properties along the simulated

flow using particle tracing. Billboards indicate isotope concentrations

for Holocene δ13C (red), LGM δ13C (black), Holocene δ18O (blue) and

LGM δ18O (yellow). 93

viii

List of Tables

5.1 Rendering performance. 78

ix

Chapter 1

Introduction

This work represents my research on geovisualization in virtual reality environments

with the purpose of supporting the geosciences. The software solutions I have de-

veloped for this purpose include a terrain visualization system with tools for naviga-

tion and spatial analysis as well as a software package for visualizing and exploring

time-variant three-dimensional prehistoric ocean flow models. My contributions as

detailed in the following chapters are:

• Chapter 2 demonstrates a novel terrain rendering system based on the spher-

ical HEALPix coordinate system, which subdivides the surface of a sphere

into 12 curvilinear patches. My system performs coordinate conversion be-

tween HEALPix and euclidean coordinates in realtime during rendering on

the graphics processor (GPU). Compared to other approaches to spherical

terrain rendering, this solution requires a significantly lower memory footprint

and a lower implementation complexity by performing most computations in

a 2D domain.

• Chapter 3 is concerned with accelerating the preprocessing of terrain data for

interactive visualization, which is anticipated to become a time-critical part of

the visualization pipeline in future crisis management applications where live

3D data is collected by small autonomous drones to support rescue efforts.

To accelerate the processing of geo-data, I have developed a distributed, GPU

2 Introduction

based system which consists of an interactive terrain visualization on a fron-

tend workstation as well as a number of backend processing nodes. Instead

of loading terrain tiles from disk, the frontend requests the tile content from

the backend which converts the source data (georeferenced raster maps) to

the HEALPix coordinate system on the fly, enabling rapid 3D visualization of

unprocessed maps such as terrain models or imagery.

• Chapter 4 extends the terrain rendering system described in chapter 2 by in-

troducing virtual tools for spatial analysis. An intuitive interface is provided to

measure height profiles and volumes of topographical features such as canyons,

mountains or craters. I demonstrate how the HEALPix-based representation

of Digital Terrain Models permits efficient computation of these geometric

properties using the highest resolution data available while still maintaining

interactivity in rendering which is important to maintain immersion in a vir-

tual reality environment.

• Chapter 5 introduces a 3D system for retro-deformation of geological faults

within an interactive terrain visualization. Faults are discontinuities in the

planetary crust along which a differential movement of rock volumes can be

observed. Geologists are interested in measuring the direction and magnitude

of these translations. For this purpose, they take advantage of the fact that

geographical features such as riverbeds are cut and displaced along with the

crust when intersected by a fault. The traditional workflow to determine fault

offsets begins with a digital top-down map of the affected region, which is sub-

sequently cut along the (suspected) fault line using an image editor. The two

resulting map fragments are then shifted with respect to each other until the

offset features come back into alignment. The system I have developed allows

scientists to perform this retro-deformation process interactively within a 3D

terrain visualization. Using this system, I demonstrate that the established

2D approach can lead to faulty reconstructions because it does not consider

the 3D implications of the deformation.

• Chapter 6 describes a system for the visualization of three-dimensional, time-

dependent prehistoric ocean flow models. These flow models are obtained by

1.1 Motivation 3

numeric simulation based on present-day data such as sediment depositions at

the ocean floor. To support oceanographers in solving this challenging inverse

problem and verify the simulated flow models, I have integrated several visu-

alization techniques to correlate the primary data from drill experiments with

the resulting numerical model. Using a spherical virtual globe as a context

geometry, Line-Integral Convolution (LIC) and interactive particle advection

are used to visualize the flow model while a billboard technique using bar

charts indicates sediment concentration at documented drill sites. The visu-

alization system is implemented in a CAVE environment in order to promote

collaborative investigation of the data.

1.1 Motivation

Flat maps are the medium by which geoscientific data is traditionally presented.

Geographic information systems have simplified the creation and interactive inter-

rogation of these maps but are still very much focussed on presenting data in a

flat projection. This top-down perspective clearly has advantages because it can

be rendered efficiently, avoids occlusion of topography (with the exception of over-

hanging walls, caves, etc.) and, by careful choice of a map projection, allows for the

preservation of a certain subset of geometric properties.

A major disadvantage of this approach is that even though domain scientists are

trained in interpreting these representations, they are still an abstraction and do

not correspond to the intuitive perception of a person standing on the ground and

surveying a site.

The research question I would like to address with this work is whether interactive,

three-dimensional visualizations in virtual reality environments can be beneficial in

supporting the interpretation and analysis of geoscientific data.

In the following, the concepts of virtual reality, geovisualization, fault retro-deformation

and flow visualization will be introduced briefly, focussing on those aspects which

are relevant within the scope of this work.

4 Introduction

1.2 Virtual reality

(a) Powerwall at German Aerospace Center (b) CAVE at UC Davis

Figure 1.1: VR systems used in this work

Virtual reality (VR) research is concerned with the development of hardware and

software interfaces that provide an immersive perception of a computer-generated

3D scene, blurring the distinction between reality and artificial imagery. The degree

of immersion that can be achieved with a specific VR setup depends on the display

and interaction devices provided by the environment.

As far as display systems are considered, stereoscopic visualization is frequently

considered a minimum requirement for VR, as exemplified by a desktop computer

with a suitable monitor and shutter glasses. At the other end of the spectrum one

finds the so-called CAVE (Cave Automatic Virtual Environment), which is a room

where each wall is a projection surface displaying a stereoscopic image. By covering

most or all of the user’s visual field, a high degree of immersion can be achieved.

For my VR research concerning terrain visualization at the German Aerospace Cen-

ter, a so-called stereoscopic Powerwall was used, which is a high-resolution display

offering stereoscopic visualization (using shutter glasses) as well as head-tracking.

Head-tracking allows the visualization system to adapt the viewing frustum of the

virtual camera to the position of the observer, which produces a parallax effect

when the user moves. This improves immersion by increasing 3D perception beyond

what is possible with stereoscopic vision alone. The ocean flow visualization was

evaluated within a 4-sided CAVE environment provided by the KeckCAVES at UC

1.3 Geovisualization 5

Davis (figure 1.1). Note that due to the use of modern VR software toolkits, these

applications can be readily ported between different VR hardware environments.

Considering interaction devices, at the low end of the spectrum one can find the

3D space-mouse for desktop systems. More immersive interaction is possible with

handheld 6-degrees-of-freedom (6DOF) manipulators, which can be used as an ex-

tension of the user’s hand to point at or grab objects in the VR environment. At the

forefront of research are so-called markerless tracking systems such as the Kinect

camera, which support interaction by gesture interpretation, without requiring the

user to wear or carry any equipment. For the VR applications in this work, I used

a so-called flystick, which is a 6DOF manipulator with a set of buttons, used here

for navigation, selecting surface points for spatial analysis or injecting particles into

the ocean flow field.

1.3 Geovisualization

The geosciences are concerned with understanding phenomena such as geological

processes, atmospheric systems or ocean currents which pertain to Earth or other

planetary bodies. Geovisualization is the application of scientific visualization and

information visualization techniques to support the interpretation of the geospatial

data gathered in these fields.

Historically, hand-drawn maps were the primary medium used for this purpose.

Map creation has been substantially simplified through the development of remote

sensing technology as well as software packages for map creation and interrogation,

so-called Geographic Information Systems (GIS).

Interpretation of maps is complicated by the fact that they project a spherical, three-

dimensional surface into a two-dimensional plane. Due to this projection, not all

geometric relationships which exist in reality can be preserved in the resulting map.

For this reason, projections are carefully chosen in order to preserve those geometric

properties which are considered important for the specific application domain, such

as distances, angles and areas in order to make measurements of these properties on

the map consistent with reality.

6 Introduction

1.3.1 Digital map representations

Digital maps can have different representations depending on the physical quantity

being encoded, the mode of acquisition and the intended application. If a map stores

elevation of the topography it is referred to as a Digital Elevation Model (DEM).

The two most common representations for digital maps are triangulated irregular

networks (TINs) and raster maps.

TINs are two-dimensional meshes consisting of non-overlapping triangles. The ver-

tices store both a geographic location as well as the value of the measured quantity at

that location. The triangulation then induces a (linear) interpolation of that quan-

tity in the space between the vertices. TINs are most commonly used to represent

DEMs, storing an elevation value for each vertex. In this case a three-dimensional

triangle mesh of the surface can be readily obtained by displacing the 2D mesh along

the third dimension according to the elevation values.

This TIN representation of DEMs arises naturally from input given as point clouds,

from which a well-behaved triangle mesh can be computed using Delaunay trian-

gulation. Point clouds, in turn, are the native representation for data gathered by

remote sensing techniques such as (terrestrial) laser scanning, which exhibit varying

sample density due to the effects of shadowing and perspective distortion.

An advantage of TIN-DEMs is that they can be simplified to represent areas with

low curvature with a lower sample density, reducing the required storage space. A

disadvantage is that 2D coordinates for each vertex as well as the topology of the

triangulation have to be stored explicitly.

Besides TINs, another common representation are so called raster maps. A raster

map consists of a two-dimensional array of values storing the quantity being en-

coded on a uniform grid. Raster maps are accompanied by a georeference, which

consists of an affine transformation represented by a homogenous matrix as well

as coefficients for a standard map projection, which is (in the general case) a non-

linear mapping between the 2D plane and geographic coordinates. The georeference

assigns a geographic coordinate to each cell of the sample grid.

Raster maps have the advantage that only the sample values need to be stored for

each grid location, as the geographic location is given implicitly by the storage index

1.3 Geovisualization 7

of the sample as well as the georeference. The disadvantage is that, as opposed to

TINs, sample density can not be adjusted adaptively.

Imagery is almost always represented using raster maps, for example by storing a

red, green, blue tuple for each grid cell in the case of real color imagery. Raster

representations are a natural choice in this case because imaging techniques such as

aerial photography or satellite-mounted line-scanners in push broom configuration

exhibit relatively uniform sample coverage.

Note that nowadays DEMs are frequently acquired using a process called photogram-

metry, in which imagery of the same location obtained from different angles is corre-

lated to obtain 3D models. The required imagery can be gathered e.g. by a satellite

in a single pass over the location if multiple camera systems are mounted at different

angles with respect to the ground.

1.3.2 Geographic information systems

Geographic information systems (GIS) are software packages which support the

creation, visualization and analysis of geographical data which is most frequently

represented using maps in top-down perspective.

A common GIS application is the creation of so-called vector maps which use 2D

geometry to describe features. These can be created e.g. by direct land surveying or

by by using aerial imagery as reference. Linear features such as streets or riverbeds

can be described using piecewise linear curves (poly-lines), while features with two-

dimensional extent can be represented using polygons which trace their boundaries.

Additionally, GIS frequently provide spatial analysis tools for measuring geometric

quantities such as distance, area or height profiles along a line. The terrain visualiza-

tion system developed within the scope of this work implements a subset of spatial

analysis tools in order to study how these can be integrated into a VR environment

(see chapter 4).

8 Introduction

1.3.3 Terrain rendering

Three-dimensional terrain rendering is a well-established field of research. The goal

is to produce a perspective rendering of the three-dimensional topography described

by a DEM data set, often overlaid (textured) with associated imagery. Maintain-

ing interactive frame rates when rendering large terrain models is one of the core

challenges in this field.

The majority of modern terrain rendering algorithms use GPU acceleration to ras-

terize geometry, while some use CPU-based approaches such as ray-casting. The

architectural limitation faced by these approaches is that data which is not located

within primary memory (GPU or host RAM) can only be accessed with very large

latencies. Furthermore, data sets are often orders of magnitudes larger than the

capacity of the RAM, making it impossible to rasterize the entire data content at

interactive frame rates.

A solution to this problem can be found when considering two properties which are

given in the majority of 3D visualization pipelines:

1. Perspective projection: In accordance with human vision, elements of the

3D scene which are located closer to the observer position appear at a greater

magnification than more distant parts of the scene.

2. Raster output devices: The majority of output devices such as LCD mon-

itors and projectors use a 2D pixel raster with finite spatial resolution to

display the final image. This implies that details in scene geometry smaller

than a certain scale are not noticeable due to the discretization involved in

rasterization.

From 2 it follows that geometric detail with a screen-space resolution higher than

the pixel raster can be considered redundant as it can not be resolved by the output

device. However, due to 1 the screen-space resolution of geometry depends on it’s

distance to the observer.

These observations motivate so-called Level-of-Detail rendering approaches, which

dynamically adapt geometric detail based on observer distance. This adaptation

1.3 Geovisualization 9

is driven by a metric which selects a resolution level for each (visible) part of the

terrain. Conservative approximations can be used to guarantee that the screen-space

geometric resolution matches or exceeds the display resolution to ensure faithful

reproduction of the terrain model without incurring excessive rendering workload.

For performance reasons, terrain models are usually represented using multi-resolution

data structures on secondary storage. Two classes can be distinguished: regular and

adaptive representations. Regular representations are based on hierarchies of regular

grids, for example given by quad-tree subdivision. Regular grids containing a fixed

number of samples, as opposed to individual samples, are usually stored within each

node of such a tree for performance reasons. These grids are referred to as tiles.

Regular schemes have the advantage that point coordinates do not have to be stored

as they are implied by the storage order of elevation samples. Adaptive meshes, on

the other hand, triangulate the surface based on an error metric, which requires

a smaller amount of sample points in flat areas but necessitates storage of 3D co-

ordinates for each point. Compression techniques are often applied to reduce this

storage overhead.

Modern Level-of-Detail rendering approaches scale well enough to allow exploration

of large, high-resolution terrain models all the way from global to sub-meter scale. At

low observer altitudes, a planar approximation of the planetary surface is sufficient

for this purpose. To obtain a realistic reproduction of topography at global scales

(for high observer altitudes), however, planetary curvature has to be taken into

account.

Spherical terrain rendering algorithms address this problem by rendering topography

as a deformation of the surface of a sphere or ellipsoid. This requires a projection

which establishes a mapping between the two-dimensional parameter space of the

algorithm and points on the sphere.

Geographical coordinates (latitude, longitude) are frequently used for this purpose.

Advantages are efficient conversion to and from euclidean coordinates as well as

interoperability with existing systems due to the fact that the majority of map data

is referenced in geographical coordinates. A major disadvantages is that a uniform

sampling in the geographical coordinate space does not translate to a uniform sam-

10 Introduction

pling of the sphere. This effect can be observed on a globe with grid lines: Lines

of constant longitude converge towards the poles, which results in long, skinny grid

cells. This behaviour hints at another problem: At the location of the poles (±90◦

latitude), the projection exhibits so-called singularities. At these points the longi-

tude component of the geographical coordinate becomes undefined. Due to these

issues, terrain rendering algorithms based on geographical coordinates often exhibit

sampling and/or rendering artifacts in the vicinity of the poles.

It can be shown that any continuous mapping from the 2D plane to the surface of a

sphere suffers from such singularities. To avoid these singularities, some approaches

subdivide the surface into a set of patches. Hierarchical sampling grids are then

defined for each patch by applying a subdivision scheme recursively. For example,

a platonic solid can be used as the starting point and the subdivision rule refines

each face of the solid by inserting it’s midpoint and extruding it to the surface of

the sphere. A disadvantage of defining the coordinate system through subdivision

is that there is no explicit closed formula relating points in parameter space to their

geographical coordinates, which complicates rendering and querying the database

for measurements.

In chapter 2, I will present a novel terrain rendering algorithm based on the HEALPix

[GHB+05] grid. In the HEALPix scheme, which was originally developed to repre-

sent full-sky astronomical observations, the surface of a sphere is decomposed into

a set of 12 curvilinear patches. Each patch is then hierarchically subdivided using

a quadtree to form a Level-of-Detail data structure suitable for interactive terrain

rendering. For performance reason, tree nodes store tiles of 255 × 255 elevation or

color samples which are uploaded to GPU memory. During rendering, a custom

GPU shader applies the HEALPix projection formula to convert tile coordinates

into euclidean space to obtain a spherical visualization of the topography.

1.4 Fault retro-deformation

Faults are planar fractures in the planetary crust along which a differential movement

of rock volumes can be observed. Two fundamental types of faults are distinguished:

1.5 Flow visualization 11

strike-slip faults with mostly horizontal movement and dip-slip faults with predom-

inantly vertical movement. In order to help understand the historical evolution of

topography, geologists are interested in quantifying the orientation and amount of

translation along a fault.

Traditionally, these translations are estimated by measuring, on a map, the offsets

between surface features which have been intersected and displaced by the fault.

In chapter 5, I demonstrate that these reconstructions based on a top-down map

perspective can lead to incorrect hypotheses and propose a retro-deformation system

which augments an existing visualization package by providing tools to perform these

reconstructions in a true 3D environment to avoid false interpretations. The system

was applied to a section of the San Andreas Fault (a strike-slip fault) in California

as well as to a Graben structure (a pair of dip-slip faults) on Mars.

1.5 Flow visualization

Flow visualization is another important field of research in scientific visualization.

Understanding complex flow phenomena has become a necessity in many engineering

disciplines such as aircraft and car design. Modern flow simulations are often time-

variant and three-dimensional, posing additional challenges for visualizations with

respect to avoiding visual clutter and enabling efficient, interactive exploration.

Within the geosciences, there are several areas of research which are concerned with

flow phenomena, such as climate research, plate tectonics and oceanography. Palaeo-

ceanography, in particular, considers the historic evolution of ocean flow patterns.

Scientists perform drill experiments on the ocean floor in order to extract so-called

core samples, which record the accumulated deposition of sediment at their location.

These deposits are the result of sediment material settling down to the ocean flow

after being transported along with the ocean currents, potentially for a long time.

In order to reconstruct the configuration of prehistoric ocean currents, scientists

analyze these core samples and apply inverse numerical methods in order to obtain

a time-variant flow field which is consistent with these observations. To support

12 Introduction

the verification of these flow models against the gathered data, I have developed a

virtual reality based visualization system.

The system can be used both in desktop and CAVE environments and enables explo-

ration of time-variant 3D flow data parametrized on the globe. Established methods

of flow visualization such as cut planes with animated line-integral-convolution (LIC)

as well as interactive particle tracing are supported and original sediment record data

can be overlaid for reference. VCR-style controls (play, pause, forward/backward)

are provided to explore the data along the time axis.

1.6 Related work

The following section documents how my research is related to other scientific pub-

lications in the fields of terrain visualization, pre-processing of terrain data, spatial

analysis in VR environments, fault retro-deformation and visualization of ocean flow

models.

1.6.1 Terrain visualization

Interactive terrain rendering is a well-established area of research. As computing

paradigms shifted over the decades, algorithms have adapted to exploit the charac-

teristics of the hardware of the day. Early approaches such as ROAM [DWS+97],

introduced by Duchaineau et al., perform triangle-level adaptation of the rendered

geometry on the CPU to minimize geometric complexity before rasterization. These

strategies have become prohibitively expensive on modern hardware which provides

very high rasterization bandwidth using GPUs but suffers from relatively slow CPU

performance and bus bandwidths.

Due to these developments, more recent solutions try to optimize batching of the

geometry by treating blocks of geometry as opaque entities which are rasterized as

a whole. Levenburg’s CABTT algorithm [Lev02] extended classical triangle bin-tree

algorithms by processing batches of geometry bounded by a triangular patch instead

1.6 Related work 13

of individual triangles. These patches are uploaded to GPU memory and re-used

for multiple frames to reduce CPU workload and bus traffic.

The P-BDAM algorithm [CGG+03] of Cignoni et al. uses a similar type of batching

but uses adaptive triangulations within each patch, which are precomputed off-line.

Spherical rendering is realized by using curved patches. Distributed pre-processing

is enabled by subdividing the surface of the sphere into block that can be processed

independently.

The Geometry Clipmaps [LH04] scheme by Losasso and Hoppe uses a set of nested

regular grids which decrease in resolution with increasing distance from the viewer.

Temporal coherence in viewer movement is exploited by introducing a toroidal in-

dexing schemes which allows to minimize the per-frame cost of updates on the GPU

as new data is being loaded.

Spherical Clipmaps [CH06] extend this scheme to spherical rendering by representing

the planet’s hemisphere which faces the viewer using a set of circular rings. However,

due to low accuracy of the tan−1 function on the GPU, this method can produce

visible cracks in the final triangulation. Furthermore, compared to the original

scheme, vertices are no longer centered on actual height field samples. Due to

the additional interpolation required, the data is essentially low-pass filtered when

rendering.

Crusta [BCK+11] is a terrain rendering framework which uses a 30-sided polyhedron

as base geometry, whose faces are recursively subdivided using a quadtree. It is

therefore conceptually similar to my approach as presented in chapter 2, however

due to the purely recursive formulation of this geometric construction there is no

analytical mapping between parametric and Euclidean coordinates. This prohibits

performing this projection on the GPU and requires computation and storage of

Euclidean vertex coordinates for individual tiles. Storing these 3-tuples for each

sample at runtime produces memory overhead compared to my approach which only

requires the scalar height, as the parametric coordinates are implicit and evaluated

on the GPU.

Google Earth is a popular tool for exploring the surface of Earth using data streamed

over the internet, which performs well even over low-bandwidth internet connections

14 Introduction

and provides a high degree of interactivity. However, the system suffers from degen-

erate triangulations close to the north and south pole, leading to visible artifacts.

1.6.2 Pre-processing of raster maps

Planetary-Scale Terrain Composition [KLJ+09] by Kooima et al. is an unconven-

tional approach for real-time composition of unregistered raster maps which defers

traditional resampling to the rendering phase. A mipmap representation of the data

being loaded is required, however. During rendering, sphere geometry is generated

on the fly using iterative subdivision of a base icosahedron. The maximum depth

of this subdivision is determined by a LOD heuristic, depending on viewer position.

Finally, vertices are displaced along their normals according to height values stored

in the input datasets, which are uploaded to the GPU as textures.

Vertices of the triangle mesh being subdivided contain spherical coordinates as well

as normals. Depending on whether an intersecting data set uses spherical or polar

projection, either spherical coordinates or normals are used as texture coordinates

to sample a mipmap representation of the original raster image. Mesh vertices

must be displaced and colored accordingly. This texture look-up is efficient, as

texture coordinates have already been computed at that point. The computation

of texture coordinates, however, is computationally expensive. Due to numerical

instability, the spherical coordinates can not be computed in a closed form but have

to be maintained as the subdivision progresses. To generate spherical coordinates

for newly interpolated vertices, the haversine geodesic midpoint method is used.

This method is computationally expensive, especially considering that it has to be

evaluated once for every vertex in every frame.

My online pre-processing system presented in chapter 3 is similar in that it re-

samples any given data onto a singularity-free grid. Instead of using an implicit

subdivision scheme, we apply the HEALPix [GHB+05] parametrization. HEALPix

has an explicit projection formula which is computationally cheap to evaluate and

maps between parameter space and spherical coordinates. This allows for indepen-

dent immediate projection of grid vertex positions at any refinement level, enabling

highly parallel GPU based resampling. In my online pre-processing approach, this

1.6 Related work 15

resampling is only performed once as tiles are being generated. These tiles are then

cached by the front-end visualization system.

Lambers et al. [LK10] have presented a system to generate view-dependent geometry

on the fly to allow for visualization of fully dynamic datasets. The GPU-based per-

frame generation of this triangulation is computationally expensive, however, and

does not guarantee interactivity. Treib et al. [TRAW12] use a compressed wavelet

representation for terrain data which is visualized at interactive rates using GPU-

based ray-casting. The chosen representation allows for efficient real-time editing

of terrain. A quad-tree topology is used for the multi-resolution data structure,

however tree nodes contain only the (compressed) differences to their parent nodes

as opposed to storing absolute height values. When the terrain is modified at a given

resolution level, changes are propagated through the quadtree. To populate coarse

resolution levels, the affected subtree is recomputed using a bottom-up construction

process starting from the modified tiles. To propagate downwards in the tree, editing

operations are recorded and applied on-the-fly to finer nodes as they are loaded into

GPU memory. In my system, data being inserted into the tree is always represented

as leaf nodes, hence only upward propagation is necessary. This is likewise achieved

by updating the tree using iterative downsampling, starting from affected leaf nodes.

GPU algorithms have also been used for pre-processing remote sensing data. Thomas

et al. described a system [TKR+08] for GPU-based orthorectification, which is a

process to remove perspective distortions in imagery to produce a top-down view of

uniform scale. In their approach, imagery obtained from an oblique perspective is

projected in real-time onto an existing DEM to produce a corrected orthophoto us-

ing a technique related to shadow mapping. In the work presented here it is assumed

that the input data is already available as orthophotos. In an actual crisis manage-

ment scenario, one could imagine coupling both approaches to obtain a pipeline for

immediate visualization of live remote sensing data.

1.6.3 Spatial analysis in VR

Publications about spatial analysis in VR include a study by Kreylos et al. [KBB+06],

which examines the efficacy of performing scientific analyses within VR environ-

16 Introduction

ments. Cartography is given as an example, and from preliminary results, the

authors conclude that mapping performance in their VR environment is higher com-

pared to performing the same task within in a desktop GIS. Navigation within the

terrain data set is performed by grabbing and manipulating the terrain using a

6DOF manipulator.

In the work presented here I have used a different navigation approach by moving

the camera instead. This allows for a higher degree of immersion, as it is more

similar to the user actually being present at the target site.

Not all data structures used by spherical terrain rendering systems are capable

of supporting efficient spatial analysis queries. For example, the Crusta system

by Bernardin et al. [BCK+11] and the Planetary Scale Composition approach by

Kooima et al. [KLJ+09] use implicitly defined coordinate systems. A random point

query against these data structures would require testing the boundary of each

traversed node within the subdivision hierarchy for intersection with the given point.

Our software extends my previous work on terrain visualization [WGH11], which

used a data structure based on the HEALPix coordinate system by Górski et al. to

provide spherical rendering while avoiding artifacts due to coordinate singularities.

At the same time, this data structure is well suited for interactive spatial analysis,

as it provides a closed projection formula relating geographic points to parametric

(database) coordinates.

1.6.4 Fault retro-deformation

The method traditionally used to visualize retro-deformation is based on cutting and

displacing 2D maps (orthoimages) according to measured offsets between displaced

surface markers, as exemplified by Frankel et al. [FBD+07]. A disadvantage of the

2D representation is that it can lead to ambiguities in the interpretation of such

reconstructions as is demonstrated in section 5.5.

Zielke and Arrowsmith [ZA12] presented the LaDiCaoz tool for semi-automatic lat-

eral (strike-slip) fault offset computation based on digital elevation maps (DEMs).

In this system the user draws a fault trace onto a hillshaded image in plan view.

1.6 Related work 17

The system then samples the elevation on both sides of the fault trace to produce a

pair of height profiles. Keeping one side fixed, the algorithm laterally displaces the

other profile to find the offset which provides the best match according to a distance

metric. While this automation can reduce the time to find plausible fault offsets,

the system supports only lateral offsets and provides only limited means for visual

confirmation of such hypotheses. Results can only be visualized in plan view, which

has the same drawbacks as the approach described previously. Furthermore, the au-

thors report that because the algorithm requires all input data to be represented in

memory, input DEMs can not be larger than about 108 grid points, which translates

to a file size of 200 MiB for a typical 16 bit per sample representation. Larger files

can be loaded but have to be downsampled in the process. In my approach, the

underlying terrain renderer implements Level-of-Detail rendering and data stream-

ing to overcome this limitation. This allows users performing a reconstruction to

watch nearby marker sites for alignment at native resolution even for very large

(e.g., > 60 GiB) datasets.

An interesting geometric construction to describe the structural deformations due

to fault movements was presented by Egan et al. [EKB+99]. However, the method

has only been applied to small models and is not practical for deforming large DEM

meshes interactively.

3D GeoModeller is a software package for recovering the subsurface fault configura-

tion based on primary geological observations such as drill hole experiments, seismic

and gravimetric data. Using geophysical inverse theory and a human-in-the-loop ap-

proach, the software attempts to reconstruct the most probable fault configuration

consistent with the sparse observations that are available. The system focuses on

recovering the present day subsurface fault geometry and does not consider the time

evolution of fault slip, however. The functionality my solution provides to recover

fault geometries from their surface expression could potentially be used to constrain

and refine geological models constructed with this software.

Numerical simulations of faulting mechanics, which is a frictional contact problem,

have been explored extensively [Bir78, XMM07]. Based on volume mesh represen-

tations of fault planes and rock layers (strata), static finite element (FE) models

are able to simulate stress distribution in the Earth’s crust. In recent years, these

18 Introduction

approaches have been extended to simulate fault motion by using dynamic FE mod-

els [LL06]. However, while FE methods are useful to validate individual hypotheses

about fault geometry or material composition in the subsurface, they are too com-

putationally intensive for interactive simulation of faulting in 3D space.

Van Aalsburg et al. [VAYK+10] have demonstrated a system to interactively edit

fault maps in a virtual reality (VR) environment. Their work focuses on using VR

methods to improve perception of surface features and enable users to create better

maps of large fault networks, which can then be used as input to FEM based solvers.

While my system also provides functionality to trace fault lines directly on top of

a DEM visualization, our goal is interactively simulating the retro-deformation of

these faults to measure and verify offset parameters.

Mesh deformation techniques which use control points or handles to control the

deformation of an existing object are well established in geometric modeling lit-

erature [SP86, Coq90, BK05]. A common goal in many of these approaches is to

localize the influence of control points to provide intuitive control about the defor-

mation. The design of my kinematic model is based on a similar notion, namely

that trajectories of points close to a fault line segment should be tangential to the

segment.

Von Funk et al. [vFTS06] presented an interactive mesh deformation technique that

transforms the vertices of a triangle mesh by GPU-based pathline integration along a

synthetic vector field that can be manipulated using different modeling metaphors.

My displacement strategy can likewise be cast as vector field integration on an

implicit field which is constant within the influence zones of the individual fault line

segments.

Correa et al. [CS07] have demonstrated an interesting approach to rendering de-

formed meshes using a signed distance map representation and ray-casting. The

necessary warping function for fault-retro-deformation could certainly be computed

procedurally, but an implementation would essentially imply development of an ef-

ficient ray-casting based terrain render. This is complicated by the fact that the

actual path of the rays is only computed on the GPU, which would require random

access to the underlying level-of-detail representation.

1.6 Related work 19

Bruyns et al. [BSM+02] provided a survey on existing interactive mesh cutting meth-

ods and categorize them according to how the cut path is defined, whether inter-

sected primitives are simply removed or re-tessellated and by the number of new

primitives generated during re-meshing. In their categorization, my system uses a

cut path defined by a template (the fault line). Intersected primitives are re-meshed

and the number of newly generated primitives is minimal - new vertices are only

inserted at the intersection points between the fault line and the terrain geometry.

Following the survey, the authors present a VR system which uses collision detection

and haptic feedback to simulate surgery using a virtual scalpel. The performance of

this system is based on the assumption that cutting happens incrementally as prim-

itives are intersected by the scalpel. Under this assumption, it would be difficult to

enable interactive modification of the cut path, as is possible with my approach.

Another surgery simulation system was presented in [SSE04], in which triangle

meshes that intersect with a virtual scalpel are split and re-tessellated and a tri-

angulation of the cutting plane is added to represent the exposed tissue. Free-form

deformations are then applied to the sub-meshes on either side of the incision to

simulate tissue behavior. My approach transforms the terrain mesh in a similar way

by cutting triangles along a fault line, adding a triangulation of the fault plane and

applying a deformation to the geometry on one side of the cut.

1.6.5 Ocean flow visualization

[NMG+96] have presented a VR-integrated in-situ visualization system for ocean

flow simulations. Specifically, their system generates a low-resolution 2D model of

the Sea of Japan, allowing the user to change simulation parameters on a front-end

VR system and obtain an updated solution on the fly from a cluster. In the ap-

plication scenario presented here, however, any change of parameters would require

a re-computation of the entire time-dependent 3D flow field, making interactive

parameter space exploration infeasible.

LIC, introduced by [CL93], is a well-established technique for visualizing flow on

surfaces. By integrating a noise texture along the flow direction, a dense texture

is computed which indicates flow direction at any point of the surface. I have

20 Introduction

implemented a GPU-based version of the algorithm, as described by [HWSE99],

using 3D textures to represent the flow field. Since static LIC does not convey flow

orientation, I have chosen an animated variant by convolving the grayscale values

with a phase-shifted sinusoidal kernel as described in [WGP97].

[SBK07] demonstrated interactive particle tracing using GPGPU techniques. Even

though this approach would certainly be applicable here, a more simple CPU-based

scheme was used here as the performance proved to be sufficient.

The CAVE, introduced by [CNSD+92], is a highly immersive virtual reality envi-

ronment consisting of a room whose walls serve as projection surfaces for interactive

stereoscopic imagery. My system is designed to be usable both in desktop and CAVE

environments.

Chapter 2

Spherical Terrain Rendering using

the hierarchical HEALPix grid

2.1 Introduction

Three-dimensional visualization of terrain is a well-studied problem with a history

of algorithmic approaches. However, most of these solutions assume a ”flat-earth”

model, where topography is mapped to a plane. This is acceptable as long as the

viewer is close to the surface but breaks down at distances where planetary curvature

becomes relevant. Spherical terrain rendering aims to solve this problem by repre-

senting the planetary surface as a spheroid, which allows for terrain visualization at

any scale.

Naive approaches to spherical terrain rendering frequently represent the whole sur-

face within a two-dimensional coordinate system. However, any 2D parametriza-

tion of the sphere exhibits so-called coordinate singularities, which lead to visible

sampling and/or rendering artifacts. For example, in the canonical geographic co-

ordinates (latitude / longitude), singular points appear at ±90 ◦ latitude (north and

south pole).

To avoid these singularities, a 3D parametrization must be used. One class of

approaches tessellates the sphere into a small set of contiguous patches and uses a

2D parametrization on each patch, effectively forming a 3D coordinate system with

22 Spherical Terrain Rendering using HEALPix

one integer and two real-valued coordinates. In this chapter I propose using the

HEALPix [GHB+05] indexing scheme to represent terrain data, which decomposes

the sphere into 12 curvilinear quadrilateral patches of equal area. These are then

uniformly subdivided as necessary to form a sampling grid for representing geological

data on the sphere. A particularly attractive property of HEALPix in this context is

that all grid cells on a given subdivision level represent an equal area on the sphere.

My contribution is a 3D terrain rendering system based on the HEALPix param-

eterization. I demonstrate that this choice of coordinate system avoids degenerate

geometry produced by other solutions using geographical coordinates. Furthermore,

I show that interactive frame rates can be achieved by performing the HEALPix

projection in real-time on GPU during rendering. This fact allows for a reduced

memory footprint as well as a much simpler implementation compared to other

systems which construct and maintain triangulations on CPU, since my approach

operates primarily in the 2D domain of the HEALPix parameter space.

To enable Level-of-Detail rendering a multi-resolution database structure based on a

set of quadtrees is used. A subset of these trees is kept in GPU memory and updated

as the viewer moves by loading data in the background (data streaming). This visible

subset is triangulated on-the-fly for rendering, using a GPU implementation of the

HEALPix projection formulae to produce a spherical rendering.

In the following, I will present other work related to spherical terrain rendering.

This is followed by a description of the data structure used by my system as well as

an efficient transformation algorithm to convert geological data sets into this storage

scheme. The actual rendering algorithm for DEMs which is based on a top-down

traversal of this data structure is subsequently described, including aspects of LoD

selection, frustum culling, triangulation of tiles and background data streaming.

This algorithm is then extended to also support the visualization of high-resolution

imagery draped on top of the DEM.

The system is applied to the interactive exploration of Mars, using a hybrid of

MOLA (NASA) and HRSC (German Aerospace) data sets. While HRSC is of higher

resolution than MOLA, it does not yet provide full coverage of Mars (as of 2011).

To obtain the benefits of each data source, I have chosen to integrate both data

2.2 Related work 23

sets into a single database, demonstrating that the storage scheme can efficiently

capture both at their native resolution.

In Section 5.5 we present our results using these data and give performance mea-

surements to substantiate the interactivity claim. In the final section, some areas of

further research are identified, focusing on aspects of performance and image quality.

2.2 Related work

Geometry Clipmaps [LH04] is a planar terrain rendering approach using rectan-

gular, concentric rings of geometry centered around the viewer which decrease in

resolution with increasing distance. The algorithm exploits temporal coherence in

viewer movement by minimizing per-frame data structure updates using toroidal

addressing.

Spherical Clipmaps [CH06] extend this scheme to spherical rendering by representing

the planet’s hemisphere which faces the viewer using a set of circular rings. However,

due to low accuracy of the tan−1 function on the GPU, this method can produce

visible cracks in the final triangulation. Furthermore, compared to the original

scheme, vertices are no longer centered on actual height field samples. Due to

the additional interpolation required, the data is essentially low-pass filtered when

rendering.

Crusta [BCK+11] is a terrain rendering framework which uses a 30-sided polyhedron

as base geometry, whose faces are recursively subdivided using a quadtree. It is

therefore conceptually similar to our approach, however due to the purely recursive

formulation of this geometric construction there is no analytical mapping between

parametric and Euclidean coordinates. This prohibits performing this projection on

the GPU and requires computation and storage of Euclidean vertex coordinates for

individual tiles. Storing these 3-tuples for each sample at runtime produces memory

overhead compared to my approach which only requires the scalar height, as the

parametric coordinates are implicit and evaluated on the GPU.

Google Earth is a popular tool for exploring the surface of Earth using data streamed

over the internet, which performs well even over low-bandwidth internet connections

24 Spherical Terrain Rendering using HEALPix

and provides a high degree of interactivity. However, the system suffers from degen-

erate triangulations close to the north and south pole, leading to visible artifacts.

See Section 5.5 for a visual comparison with the triangulations generated by my

system.

2.3 Approach

To represent locations on the sphere, the HEALPix framework uses a tessellation into

12 curvilinear quadrilateral patches with associated parametric (u, v) coordinates in

[0, 1]2. For sampling and data storage, the authors suggest using a hierarchy of

uniform (in parametric coordinates) grids for each patch [GHB+05]. Samples are

stored in quadtree order to optimize locality.

As the given application scenario requires merging multiple data sets of different

resolutions, I have decided to use an explicit quadtree structure for each patch to

allow for local grid refinement. For performance reasons, each node stores tiles

of 255 × 255 samples, drastically reducing tree height and management overhead.

Neighboring tiles overlap by one sample at their shared boundary, which incurs a

small storage overhead but allows for C0 continuous rendering without needing to

reference neighboring data.

While the leaf nodes of the tree contain data resampled at the native input resolution,

the inner nodes store subsampled representations of their children, forming a multi-

resolution data structure suitable for LoD-rendering (see 2.3.2).

2.3.1 Data resampling

Digital Elevation Models (DEMs) are frequently represented as georeferenced raster

data. These data sets consist of a 2D matrix of height values (the raster data) as

well as a so-called georeference which associates sample locations with their corre-

sponding geographic location.

To transform a given data set to the quadtree database format described previously,

a bottom-up construction process is used. First, an optimal tree depth (resolution)

2.3 Approach 25

Figure 2.1: Embedding of high-res into low-res DEM (left: HRSC, right: MOLA)

is chosen to faithfully represent the input data. Then the subset of leaf nodes at

this level which potentially intersect the data is identified. These nodes are then

populated by resampling the raster input and finally the inner nodes are computed

by downsampling. Note that the whole process is repeated for each base patch.

The choice of tree depth depends on the resolution of the input data. Due to the

equal area property of HEALPix, the grid resolution for a given subdivision level is

constant everywhere on the sphere. To faithfully represent the input data, the tree

depth d should be chosen so that the sample density of the leaf nodes is at least as

high as the native resolution of the input data.

Each of the high-resolution raster maps in the HRSC data set cover only a small

fraction of the planetery surface. Therefore the set of leaf nodes to consider in

resampling should be limited to a subset which is likely to intersect the data. To ap-

proximate this set, the boundary curve of each raster map is computed by projecting

each boundary pixel location to geographic coordinates (using the supplied georef-

erence) and then to HEALPix coordinates. Then, each leaf node which intersects

the axis-aligned box (in HEALPix coordinates) around these points is considered in

turn.

26 Spherical Terrain Rendering using HEALPix

For each of the selected leaf nodes, the system iterates over all of the 255 × 255

sample positions, projecting each first to geographic and then to raster coordinates.

Bilinear interpolation within the raster data is used to compute the resampled value.

After all intersecting leaf nodes have been populated in this manner, the inner nodes

of the tree are derived by iterative downsampling until the contents of the root node

have been obtained.

Note that raster data sets can designate a special NODATA value, which is assigned

to samples having no meaningful measurement. If any of the four input samples

used in bilinear interpolation contain this value, the resulting interpolated sample

is also marked as NODATA. This value is also assigned if the sampling coordinate

(after projection) is not within the bounds of the raster image. If all samples of a

node contain NODATA values after resampling, the node is not stored at all.

To support merging multiple data sets, it is also possible to insert data into an exist-

ing quadtree database. Already existing nodes are combined with newly generated

ones by replacing their sample values. However if an incoming pixel is marked as

NODATA, the previous value is kept. This treatment is required because the actual

definition domain of many data sets is much smaller than their sampling support,

with the difference areas being filled with NODATA samples. Using this scheme it is

possible to insert sparse high-resolution data into an existing low-res DEM database

as shown in Figure 3.3.

The construction process can be trivially parallelized over the 12 base patches, as the

quadtrees are mutually independent. By running 12 instances of the construction

tool (possibly on different machines), limiting each instance to only consider tiles

within the associated base patch, a database file is generated for each. These are then

merged using another tool. While this is not optimal in terms of speed up (mainly

due to the required I/O for merging the databases), it is sufficient to generate the

hybrid MOLA and HRSC databases in a single day.

The input data sets have a size of 2 GiB for the MOLA DEM, 24 GiB for the HRSC

DEM, 54 GiB for red, green and blue channels (HRSC) and 386 GiB for the high

resolution B/W nadir channel (HRSC), for a total size of 466 GiB. This data is

processed to a set of five databases (DEM, R, G, B, B/W) with a total size of 1.7

TiB.

2.3 Approach 27

2.3.2 Rendering

To render the terrain representation, each of the 12 base-patch quadtrees is recur-

sively traversed in top-down fashion. Recursion stops at a tree node in any of three

cases:

1. The node (and all of it’s children) are outside of the viewing frustum and

therefore invisible. Recursion returns without rendering.

2. The node is sufficiently subdivided to meet the screen space quality require-

ments (see 2.3.4). The node is rendered and recursion returns.

3. The LoD heuristic decides that further refinement is necessary, however the

immediate child nodes are not in memory. In this case, the background I/O

thread is instructed to load the four child nodes from disk and the current

node is rendered as a placeholder until that data is available.

These cases are tested for in the order given. If none of these occur, recursion

continues with the four children of the node being considered. This rendering process

is stateless in the sense that no information is kept about the set of nodes rendered

in the previous frame, minimizing management complexity. Nodes visited during

rendering are kept in memory, however. In the following, the individual components

of this architecture will be described in detail.

2.3.3 Frustum culling

Frustum culling is a technique to eliminate geometry which is located outside of

the field-of-view of the camera and therefore guaranteed not to be visible. For

performance reasons, bounding geometries are usually employed as proxy objects for

this visibility test. Specifically, we follow the classical approach of maintaining an

axis-aligned bounding box for each node which is resident in memory. In computing

this bounding box, minimum and maximum height values within the node as well

as any user-specified height exaggeration factor have to be considered.

28 Spherical Terrain Rendering using HEALPix

Given the geometry of the view frustum, which is a pyramid truncated by two

parallel planes, and the extents of the node’s bounding box, the separating axis

theorem is used to test the two bodies for intersection. This theorem states that,

given two convex shapes, an axis exists onto which their projections are separate

(non-intersecting) iff they are not intersecting.

When testing two polygonal meshes A and B for intersection, the set of axes which

need to be tested in this manner is small. Specifically, only the set of face normals

and the cross products of all pairs of edges where one edge is taken from A and the

other is taken from B need to be considered (see [GLM96]). If the projections of A

and B onto any of these axes do not intersect, the original meshes do not intersect

either.

The advantage of using axis-aligned bounding boxes is that the set of projection axes

is constant for a given view-frustum as the set of face normals and edge directions

of the bounding boxes are always the three canonical axes. Therefore, it needs to

be computed only once per frame. Furthermore, the bounds of the projection of the

view frustum onto this set of axes can likewise be pre-computed, accelerating the

test.

2.3.4 LoD rendering

Level-of-Detail rendering takes advantage of the limited resolution of raster displays

by reducing geometric complexity depending on the apparent size of the geometry on

the screen, which in turn depends on viewer distance and camera perspective. In the

visualization of large data sets, LoD techniques are often mandatory to bring render-

ing performance to interactive levels. A conservative approach using the screen-space

area of bounding boxes was implemented, which is described in the following.

One of the goals of the LoD scheme used in this work is being able to guaran-

tee maximum visual fidelity. When rendering polygon meshes, this translates into

maintaining a geometric resolution of about one vertex per pixel when rasterizing.

As the quadtree data-structure only allows for a selection between discrete resolu-

tion levels, the strategy is to refine nodes during rendering until at least this level

of resolution is reached. However, computing the exact pixel-coverage of a node’s

2.3 Approach 29

Figure 2.2: Distance-dependent LoD selection

geometry requires similar effort as rendering this geometry. Instead, the bounding

boxes associated with resident nodes are used as a proxy to obtain an upper bound

for the screen-space area occupied by a node, as described in the following.

In order to estimate the number of pixels occupied by a node on the screen, the node’s

bounding box vertices are projected into screen space using the same projection and

modelview matrices as used during rendering. Then for each of the six faces of the

bounding box the signed area is computed. If the area of a face is negative, it is

facing away from the viewer and ignored. All the positive areas are summed up to

give the total screen area of the box in pixels, which is always greater or equal to

the pixel area of the actual geometry if it were rasterized.

Finally, the estimated pixel area is compared with the number of mesh vertices,

which is constant and equal to the number of height samples per node (255 × 255).

If it is smaller, the subdivision level is adequate for the current view and the node

is rendered. Otherwise, the recursion continues and the heuristic is applied again to

the children.

As a guaranteed resolution of one vertex per pixel is excessive in most use-cases, a

user-selectable scaling factor is provided which specifies the desired average number

30 Spherical Terrain Rendering using HEALPix

of vertices per pixel. Empirical studies suggest that a choice of 0.2 provides high

visual quality while maintaining good interactive performance.

Figure 2.2 shows how tree nodes close to the viewer are rendered at a high resolution

which decreases with distance. Note that in this example the pixel area threshold

was chosen very large for illustration purposes.

2.3.5 Data streaming

In order to guarantee interactivity, it is mandatory to perform slow disk operations

asynchronously. For each database, a separate I/O thread is maintained which

performs these operations concurrently with the render thread. A job queue is

used to store read-requests while a result queue contains the loaded data. If during

rendering the LoD heuristic decides to refine a node but it’s children are not yet in

memory, a request is posted onto this queue to load the four child nodes. The I/O

thread takes jobs out of this queue and processes them, appending the loaded data

to the result queue.

At the beginning of each frame, before starting the actual rendering traversal, the

render thread inspects the result queue and inserts any newly loaded nodes into

the in-memory quadtree. These nodes are then available for subsequent rendering.

This strategy restricts access to the quadtree to the render thread, reducing the

complexity of thread synchronization, which is only required for shared access to

the job and result queues.

2.3.6 Rasterization

Individual nodes are rendered using triangle meshes interpolating the height field.

Each node represents a square sub-region in the parameter space of its associated

HEALPix patch. The coordinates of individual mesh vertices are derived by equidis-

tant interpolation within this region. For rendering, mesh vertices are projected to

geographic coordinates (latitude / longitude) using the HEALPix formulae. These

coordinates are then combined with the corresponding height samples (radii) to form

polar coordinates which are eventually converted to Euclidean coordinates.

2.3 Approach 31

Storing a triangle mesh in Euclidean coordinates for each resident node would be

expensive, however. By performing the coordinate conversion on the GPU, we com-

pute sample locations on the fly, reducing memory usage by two-thirds.

My approach uses a single 2D proxy mesh which is a uniform tessellation of the

[0, 1]2 unit square as well as a per-node texture containing height samples. The

vertex shader implements the following four steps to transform this proxy mesh to

the final geometry:

1. Transform mesh to proper sub-region in parameter space

2. Convert parametric coordinates to geographic

3. Read height values out of texture and generate polar coordinates

4. Convert to Euclidean coordinates

Note that texture coordinates are centered on the height samples (texels), which

guarantees that the sample points are interpolated by the geometry.

To implement shading, normal vectors are estimated using central differencing of the

height field. To avoid analytical computation of the u, v direction vectors necessary

for the normal estimation, they are evaluated at the corners of a patch and passed

to the shader, which interpolates them across the patch.

2.3.7 Imagery overlay

In the following the approach previously presented for rendering DEMs is extended

to incorporate imagery. Imagery data is processed in the same way as DEMs, pro-

ducing parallel quadtree databases. The advantage of not combining DEM and

imagery into a single database is that both can be arbitrarily mixed and matched

at runtime.

In the rendering traversal, DEM and imagery database nodes are now visited in

parallel. A straightforward approach to render each pair of data is extending the

vertex shader to assign vertex colors from the imagery texture. However, this is not

32 Spherical Terrain Rendering using HEALPix

(a) Shaded DEM (wireframe vs. opaque) (b) DEM with high-res BW imagery

Figure 2.3: Shading vs. Texturing

Figure 2.4: Merging multiple imagery nodes into single texture (∆h = 1)

sufficient due to the fact that imagery data is often of higher resolution than the

DEM. These additional levels of resolution are never displayed in this scheme, as

the visualization is constrained by the DEM resolution.

Therefore, I have chosen a different approach as illustrated in Figure 2.4. Let ∆h

be a parameter which specifies the maximum resolution difference between a DEM

node and the corresponding imagery. During rendering, the DEM and imagery tree

are traversed in parallel as described above. However, instead of displaying the

imagery node at the same resolution level as the DEM node, recursion into the

imagery database continues to collect all child nodes of degree ∆h. The imagery

data so obtained is then merged into a single large texture. Figure 2.4 shows an

example for ∆h = 1. Regular (fragment stage) texture mapping is then used to

provide additional visual detail without increasing geometric primitive count.

2.4 Results 33

The selection of which databases to display can be made at runtime. To simplify

switching to another set of channels, the resident tiles are simply deleted from mem-

ory which results in the rendering traversal (re-)loadind any nodes required for the

current view, which usually takes less than a second.

2.4 Results

(a) Google Earth (b) Our system

Figure 2.5: Comparison of triangulations at north pole

Figure 2.5 shows the triangulation quality in the vicinity of the poles, comparing

Google Earth to our approach. Google Earth produces a bad triangulation consisting

of long, skinny triangles due to an obvious coordinate singularity at the pole. In

contrast, using a uniform sampling of the parametric HEALPix coordinates yields a

well-behaved triangulation consisting of equal-area triangles with good aspect ratios.

Figure 2.6 shows the surface of Mars, visualized at different LoD-thresholds. Window

size is 1024 × 768 pixels in each case. While rendering performance is not fully

interactive at a threshold of 1.0 (min. 1 triangle per pixel), visual quality at 0.2 is

not noticeably worse while providing interactive frame rates. The fact that adding

imagery textures does not significantly affect these results indicates that performance

is limited by GPU geometry processing performance.

While image quality degradation is obvious when comparing the shaded DEMs at

thresholds 0.2 and 0.01, it is hardly noticeable when the same geometries are com-

34 Spherical Terrain Rendering using HEALPix

pared with imagery texturing. Therefore, very low LoD-thresholds can be used when

imagery is present, resulting in highly interactive frame rates.

2.5 Conclusion and future work

I have presented an interactive terrain rendering architecture using the HEALPix

coordinate system to provide spherical rendering without singularities. By perform-

ing critical computations on the GPU, both memory consumption and management

complexity are reduced compared to other schemes.

Possible future extensions including incorporation of LiDAR data by using scattered

data interpolation schemes to resample data to our uniform grids, locally refining

the tree depending on sample spacing.

Using the same rendering scheme as for high-resolution imagery, normal mapping

could be implemented to provide additional visual detail at low LoD-thresholds.

These normal maps could be computed at runtime using the subtrees of the visible

DEM node set.

2.5 Conclusion and future work 35

(a) LoD-threshold 0.005, 105 fps (b) 113 fps

(c) LoD-threshold 0.01, 75 fps (d) 77 fps

(e) LoD-threshold 0.2, 24 fps (f) 26 fps

(g) LoD-threshold 1.0, 9 fps (h) 10 fps

Figure 2.6: Visual quality and rendering performance at different LoD-thresholds
(left: shaded DEM, right: DEM textured with high-res B/W channel (∆h = 2))

Chapter 3

Remote GPU-Accelerated Online

Pre-processing of Raster Maps for

Terrain Rendering

3.1 Introduction

Interactive three-dimensional terrain visualization has become accessible to a wide

audience due to the development of advanced rendering algorithms which can guar-

antee interactivity at very high resolutions. With the emergence of inexpensive

remote sensing platforms such as quadcopters, future challenges will include the in-

tegration and visualization of changing data collected from multiple sources such as

situation information necessary for disaster management or public security.

Rendering algorithms typically require data to be represented using specific multi-

resolution data structures, which encode elevation models and imagery redundantly

at multiple different resolution levels. The rendering algorithm typically selects a

suitable level at runtime as a function of screen resolution and current view per-

spective. Due to the static nature of most terrain datasets, the computational effort

for pre-processing remote sensing data into this format is usually not considered

critical.

3.2 Related work 37

My contributions include a GPU algorithm to accelerate the conversion of raster

maps into a multi-resolution data structure as well as a distributed, online pre-

processing framework which applies this algorithm to enable rapid visualization of

raster maps within a 3D terrain visualization system. Composition of multiple,

potentially overlapping mixed-resolution raster maps is performed on the fly. A

quad tree hierarchy on top of the HEALPix [GHB+05] sphere tessellation was used

as reference data structure. The benefit of this approach is a significant reduction

in turn-around time required to visualize remote sensing data stored in standard

raster formats.

For benchmarking purposes, both the Mars Orbiter Laser Altimeter (MOLA) [SZF+01]

and High Resolution Stereo Camera (HRSC) [GSP+10] datasets were used. The

MOLA mission has provided a global Digital Elevation Model (DEM) of Mars with

a resolution of 460m per pixel for a dataset size of 2.0 GiB. The HRSC datasets,

which cover about 33% of the surface of Mars, include a high-resolution DEM at an

average resolution of 90m per pixel (23.2 GiB) consisting of 1161 individual raster

files.

Both datasets were merged into a single database using HRSC data wherever avail-

able and MOLA data to fill the gaps. This database was computed on-the-fly and

visualized within an interactive spherical terrain rendering system.

3.2 Related work

Interactive terrain rendering is a well-established area of research. Terrain visu-

alization systems are usually coupled to specific data structures. As computing

paradigms shifted over the decades, algorithms have adapted to exploit the charac-

teristics of the hardware of the day. Early approaches such as ROAM [DWS+97],

introduced by Duchaineau et al., perform triangle-level adaptation of the rendered

geometry on the CPU to minimize geometric complexity before rasterization. These

strategies have become prohibitively expensive on modern hardware which provides

very high rasterization bandwidth using GPUs but suffers from relatively slow CPU

performance and bus bandwidths.

38 Online Pre-processing of Raster Maps

Due to these developments, more recent solutions try to optimize batching of the

geometry by treating blocks of geometry as opaque entities which are rasterized as

a whole. Levenburg’s CABTT algorithm [Lev02] extended classical triangle bin-tree

algorithms by processing batches of geometry bounded by a triangular patch instead

of individual triangles. These patches are uploaded to GPU memory and re-used

for multiple frames to reduce CPU workload and bus traffic.

The P-BDAM algorithm [CGG+03] of Cignoni et al. uses a similar type of batching

but uses adaptive triangulations within each patch, which are precomputed off-line.

Spherical rendering is realized by using curved patches. Distributed pre-processing

is enabled by subdividing the surface of the sphere into block that can be processed

independently.

The Geometry Clipmaps [LH04] scheme by Losasso and Hoppe uses a set of nested

regular grids which decrease in resolution with increasing distance from the viewer.

Temporal coherence in viewer movement is exploited by introducing a toroidal in-

dexing schemes which allows to minimize the per-frame cost of updates on the GPU

as new data is being loaded. The data structure being used to represent terrain is

a pre-filtered mipmap pyramid on a regular grid.

Planetary-Scale Terrain Composition [KLJ+09] by Kooima et al. is an unconven-

tional approach for real-time composition of unregistered raster maps which defers

traditional resampling to the rendering phase. A mipmap representation of the data

being loaded is required, however. During rendering, sphere geometry is generated

on the fly using iterative subdivision of a base icosahedron. The maximum depth

of this subdivision is determined by a LOD heuristic, depending on viewer position.

Finally, vertices are displaced along their normals according to height values stored

in the input datasets, which are uploaded to the GPU as textures.

Vertices of the triangle mesh being subdivided contain spherical coordinates as well

as normals. Depending on whether an intersecting data set uses spherical or polar

projection, either spherical coordinates or normals are used as texture coordinates

to sample a mipmap representation of the original raster image. Mesh vertices

must be displaced and colored accordingly. This texture look-up is efficient, as

texture coordinates have already been computed at that point. The computation

of texture coordinates, however, is computationally expensive. Due to numerical

3.2 Related work 39

instability, the spherical coordinates can not be computed in a closed form but have

to be maintained as the subdivision progresses. To generate spherical coordinates

for newly interpolated vertices, the haversine geodesic midpoint method is used.

This method is computationally expensive, especially considering that it has to be

evaluated once for every vertex in every frame.

My system is similar in that the given map data is resampled data onto a singularity-

free grid. Instead of an implicit subdivision scheme, however, the HEALPix [GHB+05]

sphere parametrization is used. HEALPix has an explicit projection formula which

is computationally cheap to evaluate and maps between parameter space and spher-

ical coordinates. This allows for independent evaluation of grid vertex positions at

any refinement level, enabling highly parallel GPU based resampling. In the online

pre-processing approach, this resampling is only performed once as tiles are being

generated. These tiles are then cached by the front-end visualization system.

In the Crusta [BCK+11] terrain rendering system, a rhombic triacontahedron is used

as base geometry, which is iteratively subdivided in a similar fashion as in [KLJ+09].

For each of the 30 base faces, a quadtree is used as a hierarchical multi-resolution

representation. Each tree node stores a tile of 64 × 64 samples for efficient batch-

ing in rendering. Data is re-sampled onto the leaf node grid vertices in an off-line

pre-processing step and inner nodes are computed by iterative downsampling. As

in [KLJ+09], the implicit subdivision scheme makes direct sample addressing com-

putationally expensive.

My approach is similar in that it uses a quadtree to define a hierarchy on top of a

sphere tessellation. The chosen HEALPix tessellation uses 12 curvilinear patches to

represent the sphere. However, as the HEALPix scheme has an explicit projection

formula, coordinate transformations can be evaluated explicitly and are therefore

suited for massively parallel evaluation on GPU.

Lambers et al. [LK10] have presented a system to generate view-dependent geometry

on the fly to allow for visualization of fully dynamic datasets. The GPU-based per-

frame generation of this triangulation is computationally expensive, however, and

does not guarantee interactivity. Treib et al. [TRAW12] use a compressed wavelet

representation for terrain data which is visualized at interactive rates using GPU-

based ray-casting. The chosen representation allows for efficient real-time editing

40 Online Pre-processing of Raster Maps

of terrain. A quad-tree topology is used for the multi-resolution data structure,

however tree nodes contain only the (compressed) differences to their parent nodes

as opposed to storing absolute height values. When the terrain is modified at a given

resolution level, changes are propagated through the quadtree. To populate coarse

resolution levels, the affected subtree is recomputed using a bottom-up construction

process starting from the modified tiles. To propagate downwards in the tree, editing

operations are recorded and applied on-the-fly to finer nodes as they are loaded into

GPU memory. In my system, data being inserted into the tree is always represented

as leaf nodes, hence only upward propagation is necessary. This is likewise achieved

by updating the tree using iterative downsampling, starting from affected leaf nodes.

GPU algorithms have also been used for pre-processing remote sensing data. Thomas

et al. described a system [TKR+08] for GPU-based orthorectification, which is a

process to remove perspective distortions in imagery to produce a top-down view of

uniform scale. In their approach, imagery obtained from an oblique perspective is

projected in real-time onto an existing DEM to produce a corrected orthophoto us-

ing a technique related to shadow mapping. In the work presented here it is assumed

that the input data is already available as orthophotos. In an actual crisis manage-

ment scenario, one could imagine coupling both approaches to obtain a pipeline for

immediate visualization of live remote sensing data.

3.3 Pre-processing framework

In the following I will characterize the input data used in my approach, describe

the structure of the output database and present an algorithm to construct this

database. Subsequently, a GPU implementation of the same algorithm is introduced

which is then applied to implement an on-line pre-processing framework. Using this

framework, data tiles can be generated on-the-fly by a backend GPU cluster for

immediate visualization on a frontend rendering workstation.

3.3 Pre-processing framework 41

Figure 3.1: The HEALPix hierarchical sphere tessellation. All cells on a given
subdivision level have equal area and their coordinates can be computed using a
closed formula.

3.3.1 Data representation

The input data format expected by my framework are geo-referenced raster DEMs

(Digital Elevation Maps). These raster images consist of a regular grid of height

values as well as a so-called georeference which is a projection that associates sample

coordinates with physical locations on the planetary surface.

For the output coordinate system I have chosen the HEALPix grid as it uniformly

samples the sphere which allows for artifact-free spherical rendering without coordi-

nate singularities. This is achieved by tessellating the sphere into a set of 12 curvilin-

ear base patches which are uniformly subdivided to form a grid hierarchy [GHB+05].

A quad tree subdivision scheme is applied on top of this hierarchical grid to obtain

a multi-resolution database suitable for Level-of-Detail terrain rendering as well as

for representing sparse and mixed-resolution datasets. A forest of 12 quad trees

represents the base patches and each tree node stores a tile of 255× 255 samples for

efficient batching in database management and rendering.

3.3.2 Off-line database construction

In the following I will describe the resampling process which converts a set of raster

maps to a terrain database. This requires selecting a quad tree subdivision depth

which adequately samples the input raster maps. Considering the tiling used in my

42 Online Pre-processing of Raster Maps

approach, the ground area of a single sample at tree depth d for a spherical planet

of radius r is given by

Ad =
4πr2

12 · 2542 · 4d
,

which is constant everywhere due to the HEALPix equal-area property. For raster

maps, the area represented by an input pixel is usually given. To preserve data

resolution, a depth d has to be chosen such that the sample size is equal or small

than this value.

The construction process then performs two passes over the given data. In the first

pass, the boundary polygon of each raster map is projected to the HEALPix coor-

dinate system to determine the set of intersected leaf nodes. Output file locations

are assigned to nodes at this point to optimize the data layout for rendering. Note

that this pass requires little I/O as only file header information is required.

GeographicHEALPix

(0,0)

(1,1)

Patch

(0,0)

Tile Raster

(0,0)

(w,h)NODATA samples
(255,255)

Figure 3.2: Coordinate systems involved in the resampling process

In the second pass, each raster map is loaded sequentially and the intersecting leaf

nodes are populated. To compute sample values for each node, each sample coordi-

nate pair is first converted from parametric HEALPix space to geographic coordi-

nates. These geographic coordinates are then converted to pixel coordinates within

the input raster image, according to the provided georeference (compare Figure 3.2).

The image is then sampled using bilinear interpolation. Note that all coordinate sys-

tem conversions are performed at double precision as single precision is not sufficient

to encode distinct points on the surface at or below meter-scale [KLJ+09].

Note that datasets can assign a special NODATA value to samples which do not

have a meaningful value. This is often the case near the boundaries of a raster map

when the actual support is not rectangular in shape. These NODATA values are

3.3 Pre-processing framework 43

propagated in interpolation and for sample coordinate outside of the raster image

extents, NODATA values are produced as well.

Figure 3.3: Embedding of a high-resolution DEM (HRSC) into a low-resolution
DEM (MOLA). Arrows indicate dataset boundaries.

Nodes which already exist in the database are loaded and composited with newly

generated data. Each existing sample is replaced by the new sample, unless that

new sample was marked as NODATA. This implies that the composition result

depends on the order in which input files are processed. Maps which are processed

later in the sequence take precedence and replace already existing data. Therefore,

care must be taken that data is specified in corresponding order from coarse to fine

resolution. This could easily be automated, however, since the sample resolution of

each dataset is given as header information. Figure 3.3 demonstrates the result of

combining HRSC with MOLA DEMs.

After producing the finest level of the hierarchy in this manner, the inner nodes of

each quad tree are generated by successive downsampling of the leaf nodes.

3.3.3 GPU-accelerated resampling

To accelerate the resampling process described above, I have developed a GPU

implementation using the CUDA framework. As before, raster images are processed

sequentially. Large images which do not fit into GPU memory are first subdivided

into chunks which are then transformed individually.

44 Online Pre-processing of Raster Maps

For processing, each chunk and the associated georeference is uploaded to GPU

memory and the set of intersecting tiles is produced. For performance reason, tiles

are processed in batches of 64 elements. For each batch, tile coordinates are uploaded

and a CUDA kernel is executed which performs projection and resampling. Kernel

execution and downloading of result tiles to CPU memory are overlapped using

CUDA streams, which allows finished data to be transferred as other tiles are still

being processed.

As in the CPU implementation, all coordinate conversions are performed using dou-

ble precision arithmetic, which was not feasible on early CUDA implementations

that suffered from very low double-precision performance. On current hardware

generations, however, double-precision arithmetic is efficient and achieves half of

the single-precision bandwidth. After tile generation and downloading, the tree is

populated by iterative downsampling as before. This is still executed on CPU, as it

is a relatively inexpensive operation.

3.3.4 On-line approach

To eliminate the turn-around time for visualizing raster maps, I have developed

an on-line approach in which tiles needed for visualization are generated on-the-fly

by a distributed pre-processing back-end (Figure 3.4). In contrast to the previous

hierarchical construction scheme, which used iterative downsampling to produce

inner nodes, the online scheme uses point sampling to directly compute sample

values for inner nodes.

To enable the cluster nodes to answer random queries in short time, the datasets

to be visualized are loaded into host RAM when the system is started. To optimize

memory utilization, input files are distributed equally (by size) across all cluster

nodes. As the input files are loaded they are subdivided into chunks and tile coverage

for each chunk is computed.

When all data is loaded, the cluster nodes start receiving requests from the front-

end. Tile requests which are not covered by any loaded chunk generate an empty

reply message. All other requests are handled using the GPU resampling algorithm.

To generate a tile it is necessary that the corresponding chunk is resident in GPU

3.3 Pre-processing framework 45

BackendFrontend

LoD scheme
requests tile

Find overlapping local files

Resample files onto tile

Compose
received tiles

Insert tile into
visible set

Node 0 Node 1 Node 2 Node 3

Samples with data

NODATA samples

Figure 3.4: Illustration of distributed on-the-fly processing

memory. However, replacing the currently loaded chunk is expensive because it

involves copying the data over a relatively slow bus.

To minimize this paging of chunks, a set of outstanding tile requests is maintained.

These tile requests are grouped by the chunk they refer to and each group is pro-

cessed as a batch. Tiles which are intersected by multiple chunks are included in

each corresponding batch. For these tiles, the resulting data is composed as de-

scribed in 3.3.2. After processing all outstanding requests, resulting tiles are sent to

the rendering front-end and the process is repeated with the set of requests which

have been received asynchronously in the meantime.

Once the front-end has received a reply by each cluster node for a given request, it

composes the data received and incorporates it into the visible set of tree nodes.

46 Online Pre-processing of Raster Maps

3.4 Results

For benchmarking, I used a machine equipped with a dual Intel Xeon X5670 hexacore

processor with hyper-threading, resulting in 24 “virtual” cores, as well as 48 GiB

of host RAM and a NVIDIA Quadro 6000 GPU with six GiB of memory. The

cluster used for on-line pre-processing consists of four machines of the same hardware

configuration.

3.4.1 Raw resampling performance

Resampling performance was measured using the set of 1173 HRSC archival DEMs

[GSP+10] with a total size of 23.2 GiB. Out of these, 12 files (80 MiB) had to

be excluded as they use stereographic projection, which was not supported by my

CUDA kernel at that time. Using the formula given in 3.3.2, I have chosen a quad

tree depth of d = 8.

For each input file, the intersecting tile set was computed and all tiles at the finest

resolution were generated, measuring total CPU and GPU implementation runtimes

for tile generation only. The CPU resampling kernel was parallelized using OpenMP

to make full use of all available CPU cores.

The CPU implementation required a total time of 52 minutes in tile generation

while the GPU implementation completed the same workload in 2 minutes, of which

15 seconds were required for data upload. Download of results was not measured

separately but is included in the given time. The GPU implementation therefore

achieved a speed-up factor of 27.9 for resampling and downloading of results and

24.7 when including the time required for uploading input data.

This result is explained by the fact that the GPU architecture is well-suited for

the problem since samples can be evaluated in parallel. For implicitly defined grids

as in [KLJ+09] and [BCK+11] this would not be the case. Furthermore, the

kernel exhibits a high arithmetic density due to the multiple coordinate system

transformations involved for each sample.

3.4 Results 47

3.4.2 Off-line pre-processing

To measure the impact the improvements have in an actual application, a quad tree

representation of the same dataset was constructed on external storage, producing

a 120 GiB database. The CPU-based construction required 101 minutes while the

GPU variant required 59 minutes, a 70% performance increase. Disk I/O was iden-

tified as a bottleneck as a significant fraction of the time (about 50 minutes) was

spent waiting for I/O completion.

3.4.3 On-line pre-processing

To demonstrate on-line pre-processing of mixed resolution datasets, the input dataset

used previously was extended by the MOLA MEG128 data, which is two GiB in size.

A tree depth of five was chosen for this data.

The data files (26 GiB total) were distributed about equally among the four cluster

nodes. The start up time required for all server processes was 70 seconds. The

additional time then required to provide a coarse initial rendering (at tree depth

0) was measured to be about ten seconds. This is explained by the fact that the

root nodes of the hierarchy contain all map chunks. Therefore each chunk had to

be uploaded in turn to generate the root nodes.

However, performance improved once the initial levels of the tree had been generated

and cached by the front-end. See Figure 3.5 for a timeline of convergence for the

first four levels in a top-down view of Valles Marineris. Figure 3.6(a) shows the

average time the front-end needed to wait for a requested tile, depending on tree

depth, collected during an extended browsing session.

Because tree nodes contain a fixed number of height samples and the LoD scheme

employed by the front-end attempts to maintain a fixed ratio between number of

triangles and screen pixels, the number of visible nodes is approximately constant.

As the viewer moves closer to the planetary surface, however, the number of visible

chunks decreases and requests for tiles deeper in the tree are serviced faster as paging

is reduced.

48 Online Pre-processing of Raster Maps

(a) Resolution level 0 (after 9.9 seconds) (b) Resolution level 1 (8.27 seconds later)

(c) Resolution level 2 (4.72 seconds later) (d) Resolution level 3,(3.03 seconds later)

Figure 3.5: Top-down view of Valles Marineris showing convergence of image reso-
lution.

Statistics revealed an average batch size of 27 tiles, meaning that for every 27 tiles

produced one chunk had to be uploaded. Uploading a single chunk took 0.23 seconds

on average, while resampling of all tiles in a batch required only 0.017 seconds. Bus

bandwidth is therefore clearly a bottleneck in this system.

Considering the speed-up factor established in 3.4.1, the CPU implementation would

be expected to require 0.47 seconds for processing a batch, which is still almost twice

the time needed by the GPU solution. The break-even point of similar performance

would then be expected at 13 tiles per batch.

3.5 Conclusion 49

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 w

a
it

 t
im

e
[s

]

Node depth

(a) (b)

Figure 3.6: a) Average delay between the front-end issuing a tile request and receiv-
ing the data. b) Valles Marineris on Mars using both MOLA and HRSC datasets,
composited on the fly. Image resolution: 1920 × 1200 pixels, 26.5 million triangles.
Starting from an empty cache, image quality converges within 30 seconds.

3.5 Conclusion

I have presented a GPU-based approach to pre-process geo-referenced raster maps

for spherical terrain rendering. Furthermore, the algorithm was extended to an on-

line pre-processing scheme which enables interactive visualization of large datasets

within minutes.

Key to my approach is the assumption that the input data is resident in host

RAM. Constructing pre-filtered mipmaps of the input files on external storage as

in [KLJ+09] would increase startup time of the system but allow for out-of-core

visualization of larger datasets. Mipmap generation can be expected to be fast as it

requires only linear I/O, as opposed to construction of a quad tree database.

Chapter 4

Spatial Analysis of Terrain in

Virtual Reality

Figure 4.1: Fault network on Mars next to Valles Marineris

Measuring the geometric properties of topographic features is an important sub-task

in cartography. Due to the widespread availability of remote sensing data such as

Digital Terrain Models (DTMs), these measurements are nowadays almost exclu-

51

sively carried out in a desktop environment using Geographic Information Systems

(GIS). Most GIS are limited to a top-down perspective which can lead to ambigu-

ities in interpreting topography. Domain experts have reported, for example, that

certain features like crater rims or mountain foothills covered by sediment can be

difficult to locate accurately in traditional systems, but are more readily identifiable

when using 3D visualization.

My contribution as detailed in this chapter is a virtual reality (VR) system for

the spatial analysis of Digital Terrain Models (DTMs) based on an existing terrain

rendering framework [WGH11]. I demonstrate that the hierarchical level-of-detail

data structure used for rendering does support efficient implementation of analysis

operators. As an example, I have implemented virtual tools for measuring height

profiles and the volume of surface features such as mountains or craters.

Height profiles are an important geoscientific tool to help understand the morphology

of predominantly linear surface features such as canyons, river beds or seismic faults

(see Figure 5.6). A height profile is a cross-sectional representation of topography

produced by sampling elevation along a given profile line. A common approach to

analyze surface features is to place multiple profile lines at different significant points

along a feature and to compare them within a single 2D plot.

The volume of surface features is an important quantity used in geoscientific reason-

ing, for example when trying to account for the volume of rock ejected from a crater

during impact. Volume computation requires the definition of the 2D integration

domain as well as a zero level surface. The signed volume (positive for mountains,

negative for craters) is then computed by integrating the height difference between

the elevation model and the zero level surface within the 2D footprint.

Using stereoscopic rendering and head tracking, our system improves depth per-

ception of the measurement footprint lines with respect to the terrain, allowing for

accurate placement. The system was applied to the surface of Mars using a DTM

composed of Mars Orbiter Laser Altimeter (MOLA) [SZF+01] data by NASA as well

as High Resolution Stereo Camera (HRSC) [GSP+10] data by German Aerospace

Center (DLR).

52 Spatial Analysis of Terrain

As a reference data set I have used the high-resolution HRSC data set which provides

a DTM of Mars with a resolution of about 50m per pixel. As the data capture

and processing is still ongoing, only approximately 30% of the planetary surface

is currently covered by HRSC. To provide a global model, the gaps in the HRSC

model were filled by using the older MOLA data set by NASA, which provides a

resolution of about 500m per pixel. The resulting composite multi-resolution data

set is augmented by high resolution black and white imagery provided by the HRSC

mission (12.5m per pixel). Note that the additional imagery is not considered by the

spatial analysis operators but is used to provide visual cues for the user in identifying

features.

4.1 Related work

Related literature includes the work by Kreylos et al. [KBB+06], which examines

the efficacy of performing scientific analyses within VR environments. Cartography

is given as an example, and from preliminary results, the authors conclude that

mapping performance in their VR environment is higher compared to performing

the same task within in a desktop GIS. Navigation within the terrain data set is

performed by grabbing and manipulating the terrain using a 6DOF manipulator.

In the work presented here I have used a different navigation approach by moving

the camera instead. This allows for a higher degree of immersion, as it is more

similar to the user actually being present at the target site.

Not all data structures used by spherical terrain rendering systems are capable

of supporting efficient spatial analysis queries. For example, the Crusta system

by Bernardin et al. [BCK+11] and the Planetary Scale Composition approach by

Kooima et al. [KLJ+09] use implicitly defined coordinate systems. A random point

query against these data structures would require testing the boundary of each

traversed node within the subdivision hierarchy for intersection with the given point.

My software extends my previous work on terrain visualization [WGH11], which

used a data structure based on the HEALPix coordinate system by Górski et al. to

provide spherical rendering while avoiding artifacts due to coordinate singularities.

4.2 Interaction 53

At the same time, this data structure is well suited for interactive spatial analysis,

as it provides a closed projection formula relating geographic points to parametric

(database) coordinates.

4.2 Interaction

For interaction, a flystick is used to control a virtual pick-ray. Similar to the mapping

system by Kreylos et al. [KBB+06], I have implemented separate navigation and

analysis modes which the user can switch between using a button on the flystick.

For navigation, both a trackball and a free flight metaphor are provided. At plane-

tary scales, the trackball metaphor was found to be an intuitive method for quickly

navigating to sites of interest by grabbing a point on the planet and rotating it to

a new position. Flying, on the other hand, is an immersive navigation metaphor

useful to examine mostly linear features such as canyons or fault lines. The travel

direction is determined by the orientation of the pick-ray. Additionally, a small

analog joystick integrated in the flystick (“coolie hat”) is used to provide pitch and

yaw control.

Using the pick-ray, profile lines can be drawn directly onto the surface. Figure 4.2

shows the interactive placement of fault lines as the user manipulates the end point

using the pick ray. As the profile line is swept across the topography it is updated in

real time. The resulting 2D plots can be visualized within the system (Figure 4.3) or

exported in standard formats for further analysis, e.g. using spreadsheet software.

To measure the volume of a surface feature, the user defines its footprint by drawing

a polygon (Figure 4.5). The average surface height along the polygon defines the

zero level for the subsequent integration, which executes concurrently with rendering

in order to maintain interactivity.

The benefit of using Virtual Reality in this application is the accurate placement of

height profiles and feature footprint polygons with respect to topography, enabled

by stereoscopic rendering and head tracking.

54 Spatial Analysis of Terrain

Figure 4.2: Accurate placement of profile lines in VR

4.3 Data structure

As described in [WGH11], the data structure used is based on the HEALPix [GHB+05]

tessellation (Figure 4.4), which decomposes the sphere into 12 curvilinear patches.

Our terrain rendering framework represents a digital terrain model using one quad

tree for each of these patches. Tree nodes contain tiles of 255 × 255 height samples

to allow for triangle batching in rendering.

The HEALPix coordinate system has two properties which make it particularly

useful for spatial analysis: The equal-area property guarantees that all samples

on a given resolution level (tree depth) represent the same physical area on the

surface, which simplifies integration. Furthermore, it has a closed projection formula

relating geographic and parametric coordinates. Compared to systems which use

implicitly defined coordinates, for example by hierarchical subdivision of a platonic

solid, HEALPix allows for more efficient point queries against the database.

4.4 Algorithms 55

Figure 4.3: Simultaneous display of profile graph

4.4 Algorithms

The analysis algorithms which are presented in the following share the same level-

of-detail database which is used by the underlying terrain renderer. Height profile

and volume measurements are implemented using point and region queries against

a quad tree, respectively. In both cases, selection of surface points is realized by

using CPU based ray-casting to test the pick-ray against the visible subset of the

hierarchical DTM.

4.4.1 Height profile

To compute a height profile, the DTM is sampled equidistantly along a line segment

between two given geographic points. At planetary scales, where curvature becomes

significant, the notion of a line segment as the shortest path between a pair of points

has to be generalized to great circle segments, which are the shortest paths between

56 Spatial Analysis of Terrain

Figure 4.4: The HEALPix hierarchical sphere tessellation

two points on a spherical surface. A parametrization of the great circle segment

connecting two points is given by spherical interpolation.

Note that while the end points of the profile line are specified in geographic coor-

dinates, spherical interpolation uses three-dimensional euclidean coordinates. The

intermediate sample positions are converted back to geographic coordinates.

To generate the height profile, each sample position is then converted to parametric

HEALPix space. The quad tree selected by the coordinate is then traversed re-

cursively to determine the leaf node containing the query point. Note that in the

current implementation, this traversal is limited to the visible set, which is the sub-

tree currently available in memory according to the level-of-detail metric employed

by the terrain renderer.

The height value at the query point is then obtained by sampling the tile of height

samples stored with the leaf node using bilinear interpolation.

As a profile line is being manipulated, the topography is sampled at 200 equidistant

points along the line in each frame to provide an interactive feedback of the height

4.4 Algorithms 57

profile. Once the user accepts the position of the profile line, the system samples

the topography again at a higher resolution (1000 samples) to improve the accuracy

of the final result.

4.4.2 Volume measurement

For volume measurement, the given footprint polygon is first converted to parametric

HEALPix space. A region query is then executed against the quad tree, recursively

visiting all tree nodes which intersect the polygon.

When encountering a leaf node, the tile of 255 × 255 samples is tested against the

polygon and those samples which intersect the polygon are integrated. This process

is accelerated by using a scan line algorithm which considers each row of samples in

turn. The footprint of a single row, which is a line segment in HEALPix space, is

intersected with the polygon to obtain a set of intervals which are located within the

polygon. The difference between each height sample and the zero level is computed

and scaled by the surface area covered by the sample to obtain a volume contribution.

This is simplified by the fact that due to the equal-area property of the HEALPix

parametrization, the surface area represented by a given sample depends only on

the depth within the tree and is independent of the geographic location.

Note that in the volume integration tool, unlike in height profile sampling, the

tree traversal does not stop at the currently visible set of nodes. Instead, the on-

disk database is traversed down to the finest level of resolution available to provide

maximum accuracy.

To maintain interactivity, the integration was implemented to execute in parallel

with the main render loop. A breadth-first traversal is used in which an active set of

tree nodes to be loaded is maintained in memory. This set initially only contains the

root node. Once a node has been loaded, the four child nodes are tested against the

boundary polygon. Those child nodes which are found to intersect the polygon are

added to the active set and scheduled to be loaded by the I/O thread. Leaf nodes

which do not have any children are integrated into the total volume as described

above. The volume computation is finished once the active set is empty.

58 Spatial Analysis of Terrain

To further improve interactivity, the number of nodes which are visited per frame can

be limited. Empirical studies suggest that expanding 4 nodes per frame is sufficient

to maintain good interactivity while still providing results within a short time frame

(multiple seconds), even for large integration domains (e.g. Olympus Mons).

4.5 Results

The system was benchmarked on a workstation equipped with an Intel Xeon E5520

quad-core CPU, 24 GiB of RAM and a NVIDIA Quadro 6000 GPU. All examples

were rendered at full-screen resolution of 1920× 1200 pixels. In a full-screen view of

Valles Marineris an idle frame rate of 68 fps was achieved for terrain rendering alone.

While dragging profile lines across the canyon the system maintained interactivity

at 38 fps.

Figure 4.5: Measuring the volume of Olympus Mons

Figure 4.5 shows a view of Olympus Mons which was rendered at 69 fps. During

volume computation, which took 10 seconds, performance dropped to still interac-

tive levels at 40 fps. For illustration purposes, the visited leaf nodes of the terrain

4.6 Conclusion and future work 59

database are outlined in blue. The difference in sizes between these nodes is ex-

plained by the fact that Olympus Mons is represented by mixed resolution data

(MOLA and HRSC). A total of 1106 leaf nodes were integrated which required

loading 274 MiB of data. A volume of 2.67 × 106 km3 was measured which is in

close agreement with literature [WGJS81].

4.6 Conclusion and future work

I have described a system for spatial analysis of digital terrain models in virtual

reality environments. Using a large digital terrain model of Mars, I have demon-

strated that existing level-of-detail data structures which are designed for terrain

visualization can be used to sample height profiles interactively and perform vol-

ume measurements of very large surface features in a short amount of time while

maintaining interactive navigation. The benefit of using virtual reality technology

for these tasks was the superior perception of the location of measurements with

respect to the topography being examined.

In future work, I would like to improve immersion by simulating a walk on the

surface of Mars and providing more intuitive tools to enable virtual land surveying.

One challenge that was identified during this study is that even high-resolution

HRSC imagery does not sufficiently resolve features on the scale of a human, which

implies that the ground below and in the close vicinity of the user would appear very

blurry due to excessive magnification of the available imagery. This situation could

be improved by introducing artificial detail, for example using normal maps based

on procedurally generated noise. Care must be taken in this approach, however, to

avoid distorting the actual data content.

Furthermore, I would like to examine whether haptic feedback can improve percep-

tion of topography. A desktop-based Phantom Omni device, for example, could be

used for probing small to medium sized linear features such as the fault networks

shown in Figure 5.6. Using the device for point selection in spatial analysis could

be beneficial, as the perception of height and slope discontinuities might improve

identification of the natural boundary of a surface feature such as the rim of a crater.

60 Spatial Analysis of Terrain

From a technical point of view it would be straightforward to provide contact infor-

mation for a single point using a point query against the database. Haptic feedback,

however, requires a much higher update rate (e.g. 5kHz) than interactive rendering

which might pose additional challenges.

Chapter 5

Interactive Retro-Deformation of

Terrain for Reconstructing 3D

Fault Displacements

The present day topography of terrestrial planets is the accumulated result of a

history of geological transformations. These processes leave observable marks on

the landscape that are expressions of their interaction with the planetary surface.

Geologists are interested in isolating and quantifying individual processes as well

as determining the chronological sequence of their influence to help reconstruct the

time line of geological evolution. Of particular interest to this goal are faults, which

Figure 5.1: Left: Real-time deformation of a terrain model as fault parameters are
changed. Right: Application of the system to reconstruct a graben structure on
Mars (top: present-day state, bottom: reconstruction hypothesis).

62 Interactive Fault Retro-Deformation

are fracture surfaces within the planetary crust. Where these fractures intersect the

surface, they form characteristic fault lines.

Individual earthquakes produce differential motion within the crust which can dis-

place landforms a few centimeters to several meters along a fault line. Because

these offsets are often well-expressed in topography, they serve as valuable anchor-

points for unraveling the complexity of multiple interacting processes. To illustrate

this phenomenon, consider a fault cutting across a river bed which is actively being

eroded by a stream. As the two volumes of rock on opposing sides of the fault expe-

rience differential motion, the evolution of the river bed can be modified, halted, a

new bed can be created or a combination of these effects can occur. Thus, distinct

landforms are produced at different times, each recording a different amount of offset

from which the time-evolution of the fault can be inferred.

Estimation of fault parameters is typically performed using a topographic map by

identifying pairs of corresponding landforms which have been cut and displaced by

the fault. The intersection points of these segments with the fault surface are called

piercing points. The displacement accumulated along the fault since the feature has

been cut can be quantified by the vector between these piercing points. A common

approach to visualizing the pre-faulting state of the topography is to apply image

editing software to raster maps. The map image is cut along the fault line and the

two blocks are displaced according to the measured offset. This two-dimensional

(2D) approach is limited, however, because it cannot properly convey the three-

dimensional component of the displacement behavior.

My contribution is an interactive software system for modeling fault displacements

within a 3D terrain visualization system where 3D navigation can properly reveal

the spatial relation between fault geometries and the affected landscape. The terrain

geometry is sliced along fault planes which approximate the fracture interface. The

two resulting terrain blocks can then be interactively displaced relative to each

other, which allows for a human-in-the-loop exploration of fault parameters by giving

instant visual feedback on their effect on the topography. The demonstrated system

enables geologists to:

5.1 Related work 63

1. explore the continuous evolution of a given retro-deformation rather than only

its initial and final expression

2. visualize the 3D implications of the retro-deformation from any perspective to

identify topographic variations not seen in a 2D plan-view

3. interactively perform three-dimensional oblique slip reconstructions by allow-

ing arbitrary relative motion on the fault plane

The fault simulation framework presented in this work was implemented within two

different terrain rendering systems: The Crusta Virtual Globe [BCK+11], which was

used for the San Andreas study, as well as in another spherical terrain rendering

system [WGH11] which was used for the Mars reconstructions. As all geometric

operations are performed in shader programs which execute late in the rendering

pipeline, porting the approach to both systems was straightforward.

Section 5.1 provides an overview of current methodology for exploring terrain retro-

deformation. Section 5.2 describes our kinematic model for a single fault segment

and Section 5.3 the resulting real-time visualization algorithm. In Section 5.4 we

extend both the model and the visualization to incorporate a piece-wise linear seg-

mented approximation to simulate curved fault geometries. We demonstrate the

efficacy of our approach in Section 5.5 by applying it to parts of the San Andreas

fault in northern California as well as to a graben structure in the Noctis Labyrinthus

region on Mars.

5.1 Related work

The method traditionally used to visualize retro-deformation is based on cutting and

displacing 2D maps (orthoimages) according to measured offsets between displaced

surface markers, as exemplified by Frankel et al. [FBD+07]. A disadvantage of the

2D representation is that it can lead to ambiguities in the interpretation of such

reconstructions as is demonstrated in Section 5.5.

Zielke and Arrowsmith [ZA12] presented the LaDiCaoz tool for semi-automatic lat-

eral (strike-slip) fault offset computation based on digital elevation maps (DEMs).

64 Interactive Fault Retro-Deformation

In this system the user draws a fault trace onto a hillshaded image in plan view.

The system then samples the elevation on both sides of the fault trace to produce a

pair of height profiles. Keeping one side fixed, the algorithm laterally displaces the

other profile to find the offset which provides the best match according to a distance

metric. While this automation can reduce the time to find plausible fault offsets,

the system supports only lateral offsets and provides only limited means for visual

confirmation of such hypotheses. Results can only be visualized in plan view, which

has the same drawbacks as the approach described previously. Furthermore, the

authors report that because the algorithm requires all input data to be represented

in memory, input DEMs can not be larger than about 108 grid points, which trans-

lates to a file size of 200 MiB for a typical 16 bit per sample representation. Larger

files can be loaded but have to be downsampled in the process. In our approach,

the underlying terrain renderer applies Level-of-Detail rendering and data stream-

ing to overcome this limitation. This allows users performing a reconstruction to

watch nearby marker sites for alignment at native resolution even for very large

(e.g., > 60 GiB) datasets.

An interesting geometric construction to describe the structural deformations due

to fault movements was presented by Egan et al. [EKB+99]. However, the method

has only been applied to small models and is not practical for deforming large DEM

meshes interactively.

3D GeoModeller is a software package for recovering the subsurface fault configura-

tion based on primary geological observations such as drill hole experiments, seismic

and gravimetric data. Using geophysical inverse theory and a human-in-the-loop ap-

proach, the software attempts to reconstruct the most probable fault configuration

consistent with the sparse observations that are available. The system focuses on

recovering the present day subsurface fault geometry and does not consider the time

evolution of fault slip, however. The functionality which my system provides to

recover fault geometries from their surface expression could potentially be used to

constrain and refine geological models constructed with this software.

Numerical simulations of faulting mechanics, which is a frictional contact problem,

have been explored extensively [Bir78, XMM07]. Based on volume mesh represen-

tations of fault planes and rock layers (strata), static finite element (FE) models

5.1 Related work 65

are able to simulate stress distribution in the Earth’s crust. In recent years, these

approaches have been extended to simulate fault motion by using dynamic FE mod-

els [LL06]. However, while FE methods are useful to validate individual hypotheses

about fault geometry or material composition in the subsurface, they are still too

computationally intensive for interactive simulation of faulting in 3D space.

Van Aalsburg et al. [VAYK+10] have demonstrated a system to interactively edit

fault maps in a virtual reality (VR) environment. Their work focuses on using VR

methods to improve perception of surface features and enable users to create better

maps of large fault networks, which can then be used as input to FEM based solvers.

While my system also provides functionality to trace fault lines directly on top of

a DEM visualization, our goal is interactively simulating the retro-deformation of

these faults to measure and verify offset parameters.

Mesh deformation techniques which use control points or handles to control the

deformation of an existing object are well established in geometric modeling lit-

erature [SP86, Coq90, BK05]. A common goal in many of these approaches is to

localize the influence of control points to provide intuitive control about the defor-

mation. The design of my kinematic model is based on a similar notion, namely

that trajectories of points close to a fault line segment should be tangential to the

segment.

Von Funk et al. [vFTS06] presented an interactive mesh deformation technique that

transforms the vertices of a triangle mesh by GPU-based pathline integration along a

synthetic vector field which can be manipulated using different modeling metaphors.

My displacement strategy can likewise be cast as vector field integration on an

implicit field which is constant within the influence zones of the individual fault line

segments.

Correa et al. [CS07] have demonstrated an interesting approach to rendering de-

formed meshes using a signed distance map representation and ray-casting. The

necessary warping function for fault-retro-deformation could certainly be computed

procedurally, but an implementation would essentially imply development of an ef-

ficient ray-casting based terrain render. This is complicated by the fact that the

actual path of the rays is only computed on the GPU, which would require random

access to the underlying level-of-detail representation.

66 Interactive Fault Retro-Deformation

Bruyns et al. [BSM+02] provided a survey on existing interactive mesh cutting meth-

ods and categorize them according to how the cut path is defined, whether inter-

sected primitives are simply removed or re-tessellated and by the number of new

primitives generated during re-meshing. In their categorization, my system uses a

cut path defined by a template (the fault line). Intersected primitives are re-meshed

and the number of newly generated primitives is minimal - new vertices are only

inserted at the intersection points between the fault line and the terrain geometry.

Following the survey, the authors present a VR system which uses collision detection

and haptic feedback to simulate surgery using a virtual scalpel. The performance of

this system is based on the assumption that cutting happens incrementally as prim-

itives are intersected by the scalpel. Under this assumption, it would be difficult to

enable interactive modification of the cut path, as is possible with my approach.

Another surgery simulation system was presented in [SSE04], in which triangle

meshes that intersect with a virtual scalpel are split and re-tessellated and a tri-

angulation of the cutting plane is added to represent the exposed tissue. Free-form

deformations are then applied to the sub-meshes on either side of the incision to

simulate tissue behavior. My approach transforms the terrain mesh in a similar way

by cutting triangles along a fault line, adding a triangulation of the fault plane and

applying a deformation to the geometry on one side of the cut.

5.2 Fault Model

As illustrated in Figure 5.2, the standard model for faults [TM92] approximates the

geometry of the associated rock fracture with a single plane. This partitions the

crust into two rigid blocks for which the relative motion is restrained to a linear

displacement parallel to this fault plane. The corresponding displacement vector is

called slip.

To match geoscientific terminology, this slip vector is decomposed into so-called

strike and dip components. The strike is the projection of the slip onto the locally

horizontal plane and relates to the azimuthal component of the displacement whereas

5.2 Fault Model 67

Crust extension

Slip

Strike-slip case

Dip-slip (normal) Dip-slip (reverse)

Crust shortening

Slip

Slip

Fault plane

Dip
angle

Strike

Dip

Strike
angle

North
Slip

Figure 5.2: Fault model and kinematics of typical displacements.

the dip is the projection of the slip onto the vertical plane and relates to the slope

component.

Faults are typically classified based on their strike and dip such that faults with

predominantly horizontal slip are categorized as strike-slip, while vertically dominant

cases are referred to as dip-slip. The latter are further subdivided into normal and

reverse faults. A normal fault is characterized by the hanging wall moving downward

relative to the footwall, exposing rocks which were previously located underneath

the surface. Normal faults can also occur as parallel pairs, in which case the enclosed

block of land which is downthrown is referred to as a graben. The opposite case to

normal faults are so-called reverse faults. These are characterized by the hanging

wall moving upward and are accompanied by a shortening of the crust.

In my system, fault geometry is defined by tracing fault lines directly on the visu-

alized topography. While specifying the dip angle using a slider, the resulting fault

planes are visualized to support the user in matching the slope of a fault scarp.

68 Interactive Fault Retro-Deformation

5.3 Visualizing planar fault displacement

In the following we shall consider the case of a planar fault with a single fault plane,

which is the approximation generally used in practice. In the kinematic model I have

chosen, the fault plane bisects the terrain into a fixed and a moving fault block. The

moving block experiences a constant linear translation which is the superposition of

displacements in the fault strike- and dip-directions. The strike direction is given

by the orientation of the fault line while the dip direction corresponds to motion

along the slope of the fault plane, perpendicular to both strike direction and plane

normal. The amount of displacement in each direction is adjusted using two sliders,

which allows the user to explore the continuum of possible offsets while observing

the correspondences between landforms on opposing sides of the fault plane. Note

that within this model, canceling out the effects of fault motion is equivalent to

simulating the forward progression of a fault with reversed displacement directions.

Figure 5.3: Surface mesh is cut and re-tessellated along the fault, triangles repre-
senting the fault plane are inserted (blue and orange) and the moving block (right)
is displaced.

To apply this model to a triangle mesh and maintain the solid appearance of the

individual fault blocks, it is necessary to bisect the mesh along the fault plane and

close the resulting holes in both sub-meshes (Figure 5.3). Bisecting the mesh requires

re-meshing of all triangles which are intersected by the fault plane, producing three

sub-triangles each. In order to close the resulting holes at the interface of the two

sub-meshes, a tessellation of the new mesh boundary is generated, which is a subset

5.4 Visualizing segmented fault displacement 69

of the fault plane. For each segment of the mesh-plane intersection curve, a triangle

is produced which connects the segment with the point on the fault plane closest

to the planet’s center. This triangle is duplicated with opposite vertex ordering to

provide correct, front-facing surfaces on both fault blocks. The triangles are colored,

as the exposure of the interface due to translation can provide valuable indicators for

the geologist (see Section 5.5). Finally, the strike and dip displacement translation

is applied to those triangles associated with the moving block.

To allow for interactive modification of all fault parameters, including the fault line

geometry, I have chosen to implement these operations as part of the rendering

pipeline by using a geometry shader. Note that a straightforward implementation

of these geometric manipulations can easily lead to artifacts, as the large difference

in scale between the planet’s radius and individual triangle sizes leads to numerical

instabilities due to cancellation effects when using single-precision arithmetic. In

tile based terrain rendering systems, these problems can be avoided, however, by

performing all operations in a coordinate system local to the tile currently being

rendered. The final translation which moves the patch to its world space coordinates

can in this case be absorbed into the model-view transformation.

To ensure high visual fidelity of those parts of terrain that are shifted into view by

the applied translations, it is necessary to adapt the level-of-detail metric used by

the underlying terrain rendering scheme to compute the necessary terrain resolution.

For schemes which (recursively) evaluate the screen-space projected area of terrain

patches, each patch can be tested against the fault plane and if it is found to be

contained in the moving block, the translation can be considered in the evaluation

of the LoD-metric by applying it to the bounding volume being considered. For

patches which are being intersected by the fault plane, the maximum screen area

for both the original and translated position of the patch should be used instead.

5.4 Visualizing segmented fault displacement

In contrast to the standard model, naturally occurring fractures are often non-planar

and can exhibit slight curvature at large scales. In the following, the kinematic

70 Interactive Fault Retro-Deformation

(a) present-day (b) intermediate (c) reconstructed

Figure 5.4: Exploring incremental reconstructions of a feature offset by ≈280 m (red
arrows). A shutter ridge appears at ≈175 m (circled in orange), implying a formation
age of the alluvial fan (circled in blue).

model for planar faults described in Section 5.3 is extended to a piecewise planar

formulation to enable simulation of these cases by allowing curved fault traces to be

approximated using multiple planar fault segments. Based on the assumption that

points close to the fault curve should move tangentially to it, I define a displacement

field that is tangential to offset surfaces of each fault plane. This field is constructed

by subdividing the moving block into disjunct zones of constant displacement direc-

tion. Subsequently, the deformation algorithm is extended to implement the refined

model in real-time using a ray-casting scheme.

5.4.1 Definition of influence zones

With each fault plane I associate a zone of influence within which fault displacement

occurs strictly parallel to the plane. Between each pair of influence zones, a boundary

plane is introduced which explicitly represents the zone interface. These boundary

planes bisect the angle between the neighboring fault planes (Figure 5.5(a)).

For the first and last fault plane, the boundary plane corresponding to the missing

neighbor is omitted, which implies that the influence zones extend indefinitely in

that direction. If only a single fault line segment is specified, its influence zone

equals the half-space defined by the fault plane which is equivalent to the planar

model.

5.4 Visualizing segmented fault displacement 71

Fi
xe

d
 b

lo
ck

M
o
v
in

g
 b

lo
ck

Fault plane
Boundary plane

(a) Segmentation

zi

zi+1

zi+2

zi+3v'

di

di+3

di+1

di+2

bi+1

bi+2

bi+3

fi

fi+1

fi+2

fi+3

v

(b) Displacement algorithm

Figure 5.5: (a) The moving block is segmented into influence zones by boundary
planes which bisect the angle between fault line segments. (b) A mesh vertex v is
advected until it has travelled a distance equal to the desired offset.

5.4.2 Displacement algorithm

In the following I will present a modified displacement scheme (Figure 5.5(b)) which

supports segmented fault lines. Let zi be the influence zone bounded by the fault

plane fi as well as the pair (bi, bi+1) of boundary planes. Furthermore, let di be a

unit vector parallel to the corresponding fault line segment.

The algorithm begins by classifying each mesh vertex according to the influence

zone within which it is located. The influence zone is determined by perfoming a

signed distance test against the triplet of planes bounding each zone. The mesh is

then cut and closed as in the planar case by intersecting each triangle within a zone

zi against the corresponding fault plane fi.

Vertices within the moving block are then advected parallel to the fault line by the

user-specified positive strike-slip offset s. A vertex v within a zone zi travels in direc-

tion di until it leaves the zone, which occurs at the intersection with the boundary

plane bi+1. To obtain the distance t to this point we compute the intersection of

the ray (v, di) with bi+1. If this distance is larger than s, the vertex is translated

72 Interactive Fault Retro-Deformation

along di by s and the algorithm ends. Otherwise, the vertex v is advanced to the

intersection point, the remaining offset distance s is decreased by t and the process

is repeated with the next zone zi+1.

Note that since vertices always move parallel to fault line segments, they can never

intersect the fault planes fi. Furthermore, for positive strike-slip offsets, vertices

always visit the influence zones in increasing order, therefore only the boundary

planes bi+1 needs to be considered for intersection. In the case of negative offsets,

zones are visited in decreasing order and the planes bi are tested instead.

The requirement to conditionally generate new geometry again suggests implement-

ing this algorithm using geometry shaders. However, as geometry shaders operate

on individual primitives, vertices shared by multiple triangles would be processed

redundantly. In order to avoid this overhead, the computation of the initial influ-

ence zone as well as the advection step was instead performed once per vertex using

a vertex shader, passing the result (the zone index) to the geometry shader. For

the majority of triangles that are not intersected by any fault plane, the geometry

shader can simply pass these values through to the next pipeline stage. For inter-

sected triangles, newly generated vertices still have to be advected by the geometry

shader, however.

5.4.3 Graben reconstruction

The displacement algorithm allows for the simulation of multiple faults, given that

the resulting influence zones (compare Figure 5.5(a)) do not intersect. This enables

the reconstruction of graben, which are depressed regions bounded by a pair of

parallel normal faults (Figure 5.6). This application requires, however, that the

surrounding upland is defined as moving blocks while the depressed region is kept

fixed.

5.5 Results 73

Graben reconstruction

Fault lines

Slip

Moving blocks

Slip

Figure 5.6: Placing multiple fault lines to reconstruct a graben.

5.5 Results

In the following, I will demonstrate the results obtained while applying the system

to two different data sets. The first one is a subset of the data gathered by the B4

LiDAR project which represents a ≈ 100 km long segment of the San Andreas Fault.

The data was processed to a raster DEM at ≈ 1 m resolution and transformed into

a 5.2 GiB hierarchical database for Crusta.

The second example uses the full HRSC [GSP+10] level 4 archival dataset which

provides a DEM of one third of the surface of Mars at an average resolution of 90 m

(24 GiB) as well as grayscale imagery at a resolution of 16.5 m (386 GiB). These

were processed to level-of-detail databases with a size of 121 GiB for the DEM and

410 GiB for the imagery, respectively.

5.5.1 San Andreas Fault

The San Andreas Fault (SAF) is a 1,300 km-long, active, right-slip fault that defines

the boundary between the Pacific and North American plates. I will demonstrate

the utility of my approach by mapping and retro-deforming a section of the SAF

located within the Mojave Desert, north of Los Angeles in southern California.

74 Interactive Fault Retro-Deformation

In particular, the system capabilities mentioned in the introduction will be justified

with a set of remote geologic investigations done along the fault section: recon-

structing both strike and dip offset of a stream channel; discovering multiple offset

reconstructions through effective multi-scale retro-deformation; and inferring the

probable age at which an alluvial fan could have formed through 3D exploration of

intermediate reconstructions.

3D strike and dip reconstruction (Figure 5.7). 3D visualization of the fault

displacement can produce important insights for the interpretation of a hypothetical

reconstruction. Panel 5.7(a) shows a plan view of a stream channel, flowing towards

the bottom of the image, which has been offset by a fault, as indicated by a sudden

right step in the stream channel where it crosses the fault. Panel 5.7(b) presents

a hypothetical reconstruction undoing the offset achieved by applying a left-lateral

strike-slip displacement of ≈80 m. Note that equivalent results can be obtained using

established methods of cutting and re-arranging orthoimages. Using 3D navigation,

however, the user can produce an oblique view of the site (Panel 5.7(c)) which re-

veals that the reconstruction is incomplete. In particular, it reveals a topographic

high that is clearly visible due to the exposure of the blue-colored fault plane. The

presence of this blue plane indicates that further geological processes must have been

involved to explain the height difference. One potential explanation is the presence

of a dip-slip component to the fault, compensating for the vertical offset. Applying a

dip-slip offset of ≈5 m to compensate yields the result shown in Panel 5.7(d). As the

dip-slip component of the reconstructed channel is restored, some sections along the

fault might no longer align in terms of vertical displacement. However, this can be

considered geologically reasonable for two reasons: 1) there can be localized dip-slip

movement along the fault, and 2) sections of the fault adjacent to a retro-deformed

channel represent different times in history. Thus, a topographic high further east

could be eroded during the time it takes for the slip along the fault to displace it to

the reconstructed location. Such considerations are key to geologic studies and can

be interactively explored with the proposed system.

5.5 Results 75

Multi-scale retro-deformation. In a typical session with the system, a geologist

would: 1) map the trace of the fault along a significant portion of the study area

using our multi-segmented representation; 2) identify a single landform that appears

offset at a detailed scale; 3) restore that feature which globally retro-deforms the

terrain along the entire mapped section; and 4) subsequently explore the landscape,

alternating between overview and detailed scales, in search for other markers along

the fault which would also have been restored in support of the initial reconstruction.

To demonstrate this approach, consider the effects of the previous reconstruction on

nearby topography. The top panel in Figure 5.8 gives an overview of a segment of

the San Andreas fault with the site previously reconstructed (Figure 5.7) highlighted

(orange box). Close examination of the deformed terrain along the fault trace re-

vealed other sites which were reconnected due to the applied offset, two of which

(circled) are shown in detail in the bottom panels in their pre- and post-offset state.

These observations provide strong visual evidence for a plausible offset distance that

was initially only locally justified. Note that these findings would be difficult to re-

produce using traditional image editing software because the size of an orthoimage

required to adequately represent the terrain at a detailed scale everywhere along the

segment would be prohibitively large.

Inferring geologic history (Figure 5.4). For an offset reconstruction to be

both reasonable and complete, geologists must be able to describe the sequence

of geologic events that occurred during formation and progressive displacement of

the offset landform. The ability to interactively evaluate intermediate steps dur-

ing interactive retro-deformation is critical in establishing such a geologic history.

Panels 5.4(a) and 5.4(c) show a right offset channel at present-day and a predicted

reconstruction (≈280 m), respectively. Panel 5.4(b) shows an intermediate step of

the retro-deformation as observed during interactive exploration. In this view an

uphill facing topographic high (blue surface in the figure) is found to block the uphill

stream channel. This denotes a time in history at which sediment in the channel was

able to pool up against the ridge, thus creating an alluvial fan which can be seen in

the present day. By taking into consideration both the average slip rate along the

SAF and the offset distance at which this shutter ridge forms, a potential age for

76 Interactive Fault Retro-Deformation

the formation of this alluvial fan can be determined.

5.5.2 Noctis Labyrinthus (Mars)

Products of tectonic activity can be observed on all terrestrial planets in the solar

system. Strike-slip faults are not as prominent as they are on Earth, however, where

they are often linked to plate tectonics. Faults on Mars [GP10], for example, are

almost exclusively of the dip-slip (normal) type, even though evidence for strike-slip

faults exists [AHZI08].

The Noctis Labyrinthus region of Mars is located at the western termination of the

Vallis Marineris canyon system. It is a complex network of canyons and plateaus

formed by grabens and landslides. Figure 5.9 shows a graben structure in which the

surface was displaced along a pair of dip-slip faults with sub-parallel orientation. The

resulting fault scarps, which dip toward the center of the graben in a V-shape, are

marked on each side of the graben (top-left). This site also features a collapse on the

right hand side which produces a cliff that intersects the graben. This coincidence

allows for a unique cross-sectional view along the graben (top-right), which clearly

shows the elevation difference produced by faulting.

To reconstruct this graben, a pair of segmented fault lines is drawn in a top-down

view by tracing the foothill of both normal faults (top-right). Using an oblique per-

spective, the dip-angle of the fault planes is then set to match the slope of the fault

scarps (bottom-left). This is supported by visualizing the fault plane orientation

(blue) along each fault line segment as the planes are rotated. Going back to the

cross-sectional view, the retro-deformation is then performed by applying increas-

ingly larger dip-slip offsets until the valley of the graben is lifted up to match the

elevation of the surrounding upland (bottom-center). The top-down view of the re-

constructed result (bottom-right) reveals the simultaneous reconnection of another

linear fault intersecting the graben (orange), which supports the reconstruction hy-

pothesis. A dip angle of ≈ 36◦ and an offset of ≈ 800 m along dip was measured,

which corresponds to a vertical elevation difference of ≈ 470 m between valley and

upland.

5.5 Results 77

5.5.3 Practical impact

Geoscience experts who applied the system to study segments of the San Andreas

fault reported that using the retro-deformation tool to perform geologic reconstruc-

tions significantly improves upon the traditional image editing and other 2D ap-

proaches such as LaDiCaoz [ZA12] by making it possible to see the full 3D geometry

of the reconstructed site during restoration, thus evaluating the feasibility of the re-

construction and understanding the detailed sequence of erosional and depositional

events predicted by the reconstruction. The tool has proven essential for identifying

and evaluating potential landform offsets by allowing the geoscientists to interac-

tively restore one offset while simultaneously watching for other features to become

aligned. Analysis of large swaths of LiDAR data is possible using Crusta because it

supports interactive visualization of large (e.g., > 60 GiB) datasets. As such, using

the retro-deformation tool with Crusta enables rapid characterization of the range of

offset magnitudes permitted at a given site, and thus can be used to quantitatively

evaluate the offset uncertainty.

The system was essential for a specific research project along the San Andreas fault,

enabling geoscientists to remotely discover, evaluate and reconstruct a total of 60

offsets along a 100 km long section of the fault represented by a ≈ 3.4 GiB DEM

dataset. These offsets range from 20 to 261 m and largely infill a number of gaps

in previously reported data. The discovery of so many new potential slip-rate sites

along this long-studied section of the fault represents a major advance and created

important opportunities for resolving several long-standing disputes over the slip

rate and mechanics of this important fault system.

5.5.4 Performance

The system was benchmarked on a workstation equipped with an Intel Xeon E5520

quad-core CPU, 24 GiB of RAM and a NVIDIA Quadro 6000 GPU. All examples

were rendered at full-screen resolution of 1920 × 1200 pixels. Measurement results

shown in Table 5.1 demonstrate that interactivity was maintained in both applica-

tion examples for scene complexities larger than 1 triangle per pixel.

78 Interactive Fault Retro-Deformation

Table 5.1: Rendering performance.

Figure # triangles (million) frames/second
SAF, overview 3.3 40

SAF, zoomed in 2.9 50
Mars, top-down 4.6 32

Mars, cross-section 5.1 28

Figure 5.10 shows the scaling behavior with respect to the number of fault line seg-

ments, measured in the top-down view of the Mars example by gradually extending

a linear fault line. When using up to 16 line segments performance stayed approx-

imately constant. Beyond this number performance decreased in a linear fashion.

While the initial plateau seems be to be a hardware dependent artifact, the subse-

quent linear behavior can be explained by the fact that the algorithm we presented

has linear complexity with regard to the number of fault segments. For the examples

presented here only a maximum of 14 fault plane segments was ever used, there-

fore we believe that this decrease in rendering performance is not of much practical

relevance.

5.6 Conclusion and future work

I have presented a system for interactive retro-deformation of faulted topography

within a 3D terrain visualization system. The technique maintains interactivity

by performing all computationally expensive transformations in real-time on the

GPU, leveraging geometry shader programs to handle topological changes in the

transformed mesh. To simulate nonplanar faults, I have constructed a kinematic

model and implemented it on the GPU using a ray-casting approach.

Using the system, fault displacements can be estimated rapidly in a human-in-the-

loop scheme, where topography is examined for the alignment of displaced surface

features as the terrain is interactively displaced. By showing an oblique view of a

feature which has previously been reconstructed in a plan view, I have demonstrated

5.6 Conclusion and future work 79

that 2D approaches are limited as they cannot convey all geometric implications of

a given reconstruction.

To show the efficacy of the technique, it was applied to segments of the San Andreas

fault, demonstrating the restoration process of a single surface feature displaced by

a strike-slip fault. By fixing this offset and inspecting several nearby marker sites,

additional visual evidence for a correct reconstruction could be found. Further-

more, I have demonstrated the retro-deformation of a graben on Mars which had

been formed by a pair of dip-slip faults. Again, the reconstruction hypothesis was

supported by the reconnection of a nearby marker site.

Note that for curved faults, a fault block whose linear motion is obstructed by a

fault segment curving towards the block would in reality be expected to produce a

vertical component of motion, resulting in crustal shortening as it is pushed upwards

over the blocking segment. In the opposite case where the fault curves away from the

moving block, crustal extension would be expected. These effects are not currently

captured by the kinematic model for curved faults.

Concerning future research possibilities, I would like to refine the kinematic formu-

lation to account for this crustal shortening and extension in response to curves in

the trajectory of a slip-strike fault. Furthermore, I want to explore the possibility of

simulating large networks of intersecting faults, which is expected to require spatially

limiting the influence of individual faults as well as the application of acceleration

structures to improve the performance of spatial queries. Furthermore, it could be

considered to incorporate the LaDiCaoz [ZA12] approach to semi-automatically pro-

vide the user with a set of plausible fault offsets, the consequences of which could

then be explored interactively using our system.

80 Interactive Fault Retro-Deformation

(a) (b)

(c) (d)

Figure 5.7: Reconstruction of an offset channel. (a) plan view present day, (b) plan
view reconstructed, (c) oblique view reveals obstructing topography, (d) applying
dip component to compensate.

5.6 Conclusion and future work 81

Figure 5.8: Interactively reconstructing a section of the San Andreas fault. Views
for all panels are oblique and approximately to the south. Top: present-day overview
of the fault section. The orange box highlights the site which was reconstructed in
Figure 5.7. The fault trace is indicated by the green polyline. The circles represent
additional sites that were found to exhibit connected channels due to the ≈80 m
reconstruction. Bottom: top panels for each vertical pair (left and right) show
present-day geometry of offset channels (red arrows). The bottom panels of the pair
show how the connectivity of the channels is restored after the retro-deformation
(indicated by alignment of the red arrows).

82 Interactive Fault Retro-Deformation

Figure 5.9: Interactive reconstruction of a graben on Mars. Top-left: Fault scarps
marked in blue and red. Right side of image shows region where terrain has collapsed.
Top-center: Cross-sectional view of the graben from inside the collapse. Height
profile (orange) along the rim of the collapse shows elevation difference in graben
region. Top-right: Traced the foothill of the fault scarps on both sides of the graben.
Bottom-left: Rotating the fault planes (blue) to match the slope of the fault scarps.
Bottom-center: Cross-sectional view after reconstruction. Bottom-right: Top-down
view after reconstruction. Note reconnection of intersecting fault line (orange).

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 30 40 50 60

F
ra

m
e

tim
e

[s
]

Number of fault plane segments

Figure 5.10: Scaling behavior: Relation between number of fault segments and
rendering time in Mars top-down view.

Chapter 6

Exploration of Time-dependent

Paleoceanographic Flow Data in

Virtual Reality

Palaeoceanography is the study of the history of the oceans, including the evolution

of ocean currents. Sediments which are transported along these currents eventually

settle on the ocean floor, forming a deposition record which can be sampled using

drilling or coring techniques. By studying the composition of the extracted sam-

ples, scientists attempt to infer the historical flow patterns which have produced

these observations, which is a challenging inverse problem with a set of uncertain

parameters and boundary conditions. I have developed a stereoscopic visualization

system for interactive exploration of global, time-dependent flow datasets in com-

bination with deposition records. The purpose of the software is to enable domain

experts to analyze the output of ocean flow simulations and support the refinement

of numerical methods and the validation of parameter choices.

6.1 Introduction

The flow patterns of the Earth’s oceans change over long time scales. Sediments

which record seawater properties fall through the water column and form layered

84 Exploration of Paleoceanographic Flow Data

Figure 6.1: Visualization of surface currents using line integral convolution and color-
coded temperature. The user interface supports VCR-style controls for time navi-
gation as well as spatial cropping functionality, visualization of deposition records
and interactive particle tracing.

depositions on the ocean floor. Scientists use coring techniques to obtain samples at

select points and analyze their composition in order to improve our understanding

of the involved transport processes. Recovering the history of flow patterns based

on these sparse samplings of the deposition record is an underdetermined inverse

problem, however. Consequently, there is no unique solution unless one selects

values for additional constraints and boundary parameters which are uncertain.

Due to this uncertainty, scientists require visualization tools to support the analysis

of simulation results to determine whether they agree with the original observations.

My contribution is an interactive visualization system (Figure 6.1) which produces

spherical renderings of time-varying simulated global flow data in a desktop or vir-

tual reality (VR) environment. Line integral convolution (LIC) is used to visualize

flow direction on surfaces of constant depth, latitude or longitude or any combination

thereof, allowing users to obtain cross-sectional views of flow behavior.

Sediment or isotope concentration data from coring or drilling experiments can be

overlaid using a billboard metaphor. Massless virtual particles can be interactively

injected at any point in the flow field to, for example, verify the trajectories pre-

dicted by the flow field against observed sediment concentrations. Scalar quantities

6.2 Related work 85

such as temperature or salinity can be visualized simultaneously using color-coding

(heatmaps).

The system was developed to support validation of future prehistoric flow models

in a project supported by the U.S. National Science Foundation. For evaluation

purposes, we used simulation results produced by [TT07] which represent the last

21, 000 years at a resolution of 10 years per timestep. The flow field as well as a

scalar temperature field at each timestep is given on a uniform latitude-longitude

grid with a resolution of 2.5 degrees and 20 non-uniformly spaced depth layers at

each grid point.

6.2 Related work

[NMG+96] presented a VR-integrated in-situ visualization system for ocean flow

simulations. Specifically, their system generates a low-resolution 2D model of the

Sea of Japan, allowing the user to change simulation parameters on a front-end VR

system and obtain an updated solution on the fly from a cluster. In the application

presented here, however, any change of parameters would require a re-computation

of the entire time-dependent 3D flow field, making interactive parameter space ex-

ploration infeasible.

LIC, introduced by [CL93], is a well-established technique for visualizing flow on

surfaces. By integrating a noise texture along the flow direction, a dense texture

is computed which indicates flow direction at any point of the surface. I have

implemented a GPU-based version of the algorithm, as described by [HWSE99],

using 3D textures to represent the flow field. Since static LIC does not convey flow

orientation, we apply an animated variant by convolving the grayscale values with

a phase-shifted sinusoidal kernel as described in [WGP97].

[SBK07] demonstrated interactive particle tracing using GPGPU techniques. Even

though this approach would be applicable here, I have chosen to implement a simpler

CPU-based integration scheme as the performance proved to be sufficient.

The CAVE, introduced by [CNSD+92], is a highly immersive virtual reality envi-

ronment consisting of a room whose walls serve as projection surfaces for interactive

86 Exploration of Paleoceanographic Flow Data

stereoscopic imagery. My system is designed to be usable both in desktop and CAVE

environments.

6.3 Virtual reality integration

Development of visualization applications for VR environments can be challenging

due to the vast number of possible hardware configurations, from a simple desktop

workstation up to a CAVE environment, a room whose three to six walls serve as

projection surfaces for stereoscopic images. A similar range exists for input devices.

In a desktop setup, a 3D space-mouse is often found, which is functionally similar to a

joystick but is able to capture translation and rotation on three axes each, resulting

in six degrees of freedom (a so-called 6-DOF device). Such table-top devices are

not practical in larger environments where users are standing and walking around,

however. Here, so-called flysticks are frequently employed. These handheld devices

capture the positions and the orientation of the user’s hand, again supporting six

degrees of freedom.

Software development is complicated further by the fact that most large display sys-

tems use multiple front-end rendering nodes to produce output images. This implies

that an efficient visualization system should be a distributed program which exe-

cutes in parallel on these nodes. To help manage the complexity of interfacing with

a wide range of input and output devices as well as handle state synchronisation be-

tween distributed application instances, so-called VR toolkits were developed. These

hide the specific hardware configuration of the target environment from application

developers by managing display transformations and providing abstraction layers

for input devices. I have chosen the VRUI toolkit (Virtual Reality User Interface),

developed by [Kre08], which also contains functionality for creating graphical user

interfaces (GUIs) to control visualization parameters.

6.4 User interface 87

Figure 6.2: Interaction with the parameter dialog in a CAVE using a pick-ray.

6.4 User interface

The user interface of the application consists of a parameter dialog as well as intuitive

metaphors for direct interaction with a virtual globe. In a desktop environment,

the parameter dialog appears as a regular, 2D window using the mouse cursor as

an interaction device. Within a CAVE, however, the dialog is projected into a

plane which can be placed anywhere in the virtual space. A so-called pick-ray

extending from a handheld flystick is used to point at and manipulate dialog elements

(Figure 6.2).

At the top of the parameter dialog, a slider is provided to browse and select individ-

ual timesteps and VCR-style controls can be used to toggle automatic playback at

a selectable speed. Using a set of five sliders, the flow visualization can be cropped

to a specific box-shaped region of interest. Color-coding of surface textures is con-

trolled by a drop-down menu which selects a data source as well as a pair of sliders

to chose the scalar value interval which is mapped to blue and red, respectively.

If tabular data from drilling or coring is available, drop-down menus are provided

to select a set of up to four columns which are visualized simultaneously.

88 Exploration of Paleoceanographic Flow Data

Apart from manipulating controls in the parameter dialog, the flystick can also be

used to directly interact with the virtual globe. When the user presses and holds

a button while pointing at the globe, it becomes attached to the flystick, following

any movement and rotation of the user’s hand. This is intuitively described as a

‘fork’ metaphor, due to the manipulated object behaving as if the user had stuck a

fork into it.

Particle seeding is another functionality which exploits the unique visualization and

input capabilities of the CAVE environment. As the user shares the 3D virtual

world with the virtual globe, it is possible to position the globe at the center of the

room. The user can walk around the globe and reach into the water volume to inject

particles at any point in the 3D flow field.

6.5 Data visualization

Our system assumes that all input data (vector and scalar field data) are given

in NetCDF format and represented on a latitude-longitude-depth grid with uni-

form spacing for the geographical coordinates and arbitrary spacing for depth. All

computations are performed in this spherical coordinate system and geometry is

transformed to Euclidean coordinates just prior to rendering to obtain a spherical

virtual globe representation. Depth coordinates are exaggerated by a factor of 300 to

compensate for the large difference between the Earth’s radius and the depth of the

ocean and to obtain some visual separation between adjacent depth layers. Those

simulation grid cells which do not contain any data are displayed as solid geometry

to provide a coarse approximation of landmasses and bathymetry for orientation

purposes.

Coring or drilling data is expected to be in tabular CSV format with columns specify-

ing latitude and longitude coordinates of the drill site and any number of additional

columns containing measured scalar concentration values.

6.5 Data visualization 89

Figure 6.3: Visualization of flow at the ocean surface (depth zero) using LIC. Flow
orientation is indicated by animation while color indicates velocity magnitude (blue
< white < red).

6.5.1 Flow visualization

Two-dimensional LIC was implemented as the primary method to visualize the flow

field. Given an arbitrary surface geometry, this technique can visualize the flow

component tangential to the surface by convolving (‘smearing’) a grayscale noise

texture along the flow. The resulting texture can be colored in order to convey

additional scalar data, such as flow velocity or temperature.

LIC computation is performed in a GPU shader program, which allows all visualiza-

tion parameters to be changed interactively. For this purpose, the flow and scalar

fields for the current time step are maintained within GPU memory as a 3D tex-

ture. Field data at non-integer time steps is approximated by linear interpolation

to provide smooth animation during playback at any speed.

Data at the surface are visualized by using a spherical shell corresponding to a depth

of zero as input for the LIC algorithm (Figure 6.3). The radius of this sphere can

be changed using a slider to explore the flow at different depths. When a region

of interest is selected, the sphere surface is cropped to a sector corresponding to

the selected longitude-latitude intervals. The boundary of this sector is closed by

inserting four bounding rectangles. All five exposed surfaces are textured using the

90 Exploration of Paleoceanographic Flow Data

Figure 6.4: Constraining the visualization to a region of interest reveals flow behavior
in depth. Note the coarse approximation of bathymetry, which is generated from
the set of those simulation grid cells which are marked as having no data.

LIC algorithm which results in a cross-sectional view, revealing 3D flow behavior in

depth (Figure 6.4).

6.5.2 Particle tracing

While the LIC method provides a good overview of the flow field topology at the

current time step, it produces too much visual clutter to follow individual ocean

circulation pathways. To enable users to isolate pathways of interest, we have im-

plemented real-time particle tracing. Massless particles can be injected anywhere

within the 3D volume and their trajectory can be observed as they are advected

by the flow field (Figure 6.5). At any point in time, particles are advected by the

flow field at the currently visible time step. This implies that the meaning of the

resulting particle trajectories depends on whether time animation is enabled or not.

When paused, the particles travel through a static flow field and form so-called

streamlines. This is a valid approximation when assuming that particle travel time

is small relative to the time interval between two time-steps (10 years in the refer-

ence dataset). Otherwise, when animation is enabled, the particle trails are called

pathlines and record the trajectory of a particle being advected as the ocean flow

patterns change.

6.6 Results 91

Figure 6.5: Interactive particle injection in the vicinity of an eddy (vortex). As the
particles are advected by the flow, their trails (pathlines) are visualized in yellow.

6.5.3 Visualization of coring data

Particle tracing can be used to visualize sediment transport by seeding particles at

a source site and observing their trajectory. To help verify the transport pathways

against deposition records, sediment concentrations from core sample databases can

be quantitatively visualized using a billboard technique. Bar charts representing up

to four columns of the data are rendered at the location of each drill site. Each chart

is projected onto a rectangle, a so-called billboard, which is dynamically oriented

towards the user for maximum legibility (Figure 6.6). Billboards for sites which are

beyond the horizon are culled (omitted from rendering), using smooth blending of

transparency to avoid disturbing popping artifacts.

6.6 Results

Figure 6.7 illustrates how the different visualization components work together. The

flow field at the ocean surface is visualized using LIC and color-coded according

to velocity. The coring data shown represents isotope concentrations within core

92 Exploration of Paleoceanographic Flow Data

Figure 6.6: Billboard visualization of deposition records.

samples, which are dominated by shells of benthic foraminifera which live along the

seafloor. These are buried by falling sediments, providing a timeline in form of a

layered deposition. The given data captures concentrations of δ13C and δ18O in the

Holocene and during the last glacial maximum (LGM) period.

Particles were injected in the vicinity of two coring sites which exhibit a similar iso-

tope distribution. The particle trails (yellow) converge and become parallel, passing

through two other sites which also show a similar distribution fingerprint. This

observation suggests a potential correlation between the simulated flow field and

measured isotope concentrations.

6.7 Future work

The system presented here is a work in progress which evolves with the needs of

domain scientists working on numerical models of the prehistoric ocean. In the

context of this project, work is being done to create a forward-simulation model for

sediment transport which advects scalar quantities along a flow field, producing a

6.7 Future work 93

Figure 6.7: Analysis of conservation of seawater properties along the simulated flow
using particle tracing. Billboards indicate isotope concentrations for Holocene δ13C
(red), LGM δ13C (black), Holocene δ18O (blue) and LGM δ18O (yellow).

global scalar field of predicted sediment concentrations. I expect that the presented

system will be useful to verify results generated by this model.

When visualizing core samples using the billboard technique, clusters of nearby drill

sites currently result in visual clutter due to their billboards obscuring each other.

This could be prevented by ‘exploding’ these clusters of billboards and connecting

each to the location of the drill site by a line.

The current requirement to load the entire data set to be visualized into RAM when

starting the system leads to a limitation in the size of data that can be handled.

Future flow will certainly be too large to be handled in this fashion and a data

streaming approach where only data within an interval around the currently selected

time step is maintained in memory will be required.

Chapter 7

Conclusion

In the presented work I have documented my research into the application of virtual

reality (VR) methods to support geoscientific research. This includes both the

development and implementation of suitable visualization and interaction metaphors

as well as the evaluation of their impact in the application domain.

I have demonstrated a novel terrain visualization algorithm using a quad-tree tiling

of the HEALPix coordinate system, whose properties allow it to support not only

efficient rendering but also measurements of spatial properties. A shader-based

implementation of the projection between HEALPix and euclidean space guarantees

a simple structure of the high-level rendering algorithm by restricting most geometric

operations to the 2D plane. The system was applied to a 500GiB dataset of Mars

and studies of both performance and image quality at varying quality levels were

performed.

A distributed pre-processing system was then introduced which performs efficient

on-the-fly data conversion between standard map formats and the hierarchical Level-

of-Detail representations required for interactive terrain visualization. The conver-

sion algorithm executes on a backend cluster of machines equipped with GPUs and

produces tile data required by a rendering frontend on demand. Potential applica-

tions of the presented system include future disaster management scenarios in which

sensor platforms provide near-live three-dimensional coverage of the situation.

95

To provide geologists with virtual tools for quantification of topographic features

discovered within a VR session, a pick-ray based interaction scheme was imple-

mented. Scientists can either measure height profiles by specifying a line on the

ground or determine volumes of features (e.g. mountains or craters) by specifying

a polygonal footprint indicating the integration domain. The equal-area property

of the HEALPix hierarchical grid and the locality-preserving nature of the quadtree

scheme are exploited to obtain simple and efficient query algorithms.

Furthermore, I have presented a human-in-the-loop system for reconstructing ge-

ological fault offsets which uses a deformation model to visualize the reversal of

fault processes within an existing terrain rendering system. The approach is inter-

active with respect to all parameters, which allows users to explore the continuum

of translations leading up to a reconstruction. The neighborhood of a fault trace

can be inspected at any scale to search for surface features providing evidence for

or against a successful reconstruction. It was shown that by performing these re-

constructions in a 3D terrain visualization as opposed to the traditional top-down

perspective, ambiguous interpretations can be avoided as the deformed topography

can be examined from any perspective.

The last application domain addressed within this work is palaeoceanography. I

have developed a VR-integrated visualization system for time-dependent, global 3D

flow fields as produced by models of the prehistoric ocean. The system’s purpose

is to help oceanographers validate those numerical models by providing simultane-

ous visualization of the primary data from coring experiments as well as the flow

fields predicted from that data through simulation. Using a globe representation

within a CAVE-environment, sediment concentrations obtain through coring are

visualized using a billboard technique while the flow vector field is illustrated us-

ing line-integral-convolution (LIC). To examine transportation pathways and their

correlation with measured sediment concentrations, particles can be interactively

injected into the 3D flow field at any point using a flystick input device.

In summary, my contributions presented in this work include immersive, interactive

VR solutions for visualization, exploration and analysis of geoscientific datasets. For

this purpose, I have introduced data structures suitable both for interactive visu-

alization and analysis and have presented methods for accelerated construction of

96 Conclusion

these structures using GPU technology and distributed processing. I have demon-

strated that, in contrast to desktop interfaces, VR techniques can lead to more

accurate interpretation of features due to stereoscopic 3D visualization combined

with free navigation.

When considering how VR techniques could be established as part of everyday geo-

scientific workflows, it quickly becomes clear that not every problem can be efficiently

solved in VR. A number of common tasks such as creation of vector maps based on

arial photography would certainly not benefit from 3D visualization and are better

executed in a traditional 2D desktop environment. Key to the acceptance of VR

methods, then, is the seamless interoperability between (existing) desktop systems

and VR environments. To give an example scenario, assume that a user identifies

an ambiguous terrain feature within a desktop GIS system. Ideally, he or she could

then, with the press of a button, load the data into a CAVE environment and meet

there with other colleagues to analyse and discuss the finding in a collaborative set-

ting. Enabling this kind of impromptu access to VR technology is an open technical

challenge in most application fields.

Bibliography

[AHZI08] Jeffrey C. Andrews-Hanna, Maria T. Zuber, and Steven A. Hauck II.
Strike-slip faults on mars: Observations and implications for global
tectonics and geodynamics. J. Geophys. Res., 113:E08002, 2008.

[BCK+11] Tony Bernardin, Eric Cowgill, Oliver Kreylos, Christopher Bowles, Pe-
ter Gold, Bernd Hamann, and Louise Kellogg. Crusta: A new vir-
tual globe for real-time visualization of sub-meter digital topography
at planetary scales. Computers & Geosciences, 37(1):75–85, 2011. Vir-
tual Globes in Science.

[Bir78] Peter Bird. Finite element modeling of lithosphere deformation: The
zagros collision orogeny. Tectonophysics, 50(2-3):307–336, 1978.

[BK05] Mario Botsch and Leif Kobbelt. Real-time shape editing using radial
basis functions. In Computer Graphics Forum, pages 611–621, 2005.

[BSM+02] Cynthia D. Bruyns, Steven Senger, Anil Menon, Kevin Montgomery,
Simon Wildermuth, and Richard Boyle. A survey of interactive mesh-
cutting techniques and a new method for implementing generalized in-
teractive mesh cutting using virtual tools. The Journal of Visualization
and Computer Animation, 13(1):21–42, 2002.

[CGG+03] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Fed-
erico Ponchio, and Roberto Scopigno. Planet–sized batched dynamic
adaptive meshes (p-bdam). In Proceedings IEEE Visualization, pages
147–155, Conference held in Seattle, WA, USA, October 2003. IEEE
Computer Society Press.

[CH06] Malte Clasen and Hans-Christian Hege. Terrain rendering using spher-
ical clipmaps. In EuroVis, pages 91–98, 2006.

[CL93] Brian Cabral and Leith Casey Leedom. Imaging vector fields using line
integral convolution. In Proceedings of the 20th annual conference on

98 BIBLIOGRAPHY

Computer graphics and interactive techniques, SIGGRAPH ’93, pages
263–270, New York, NY, USA, 1993. ACM.

[CNSD+92] Carolina Cruz-Neira, Daniel J Sandin, Thomas A DeFanti, Robert V
Kenyon, and John C Hart. The cave: audio visual experience automatic
virtual environment. Communications of the ACM, 35(6):64–72, 1992.

[Coq90] Sabine Coquillart. Extended free-form deformation: A sculpturing tool
for 3d geometric modeling. SIGGRAPH Comput. Graph., 24:187–196,
September 1990.

[CS07] Carlos D. Correa and Deborah Silver. Programmable shaders for de-
formation rendering. In GH ’07: Proceedings of the 2007 ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages
89–96, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics As-
sociation.

[DWS+97] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Mille,
Charles Aldrich, and Mark B. Mineev-weinstein. Roaming terrain:
Real-time optimally adapting meshes. In IEEE Visualization, pages
81–88, 1997.

[EKB+99] S. S. Egan, S. Kane, T. S. Buddin, G. D. Williams, and D. Hodgetts.
Computer modelling and visualisation of the structural deformation
caused by movement along geological faults. Computers & Geosciences,
25(3):283–297, 1999.

[FBD+07] Kurt L. Frankel, Katherine S. Brantley, James F. Dolan, Robert C.
Finkel, Ralph E. Klinger, Jeffrey R. Knott, Michael N. Machette,
Lewis A. Owen, Fred M. Phillips, Janet L. Slate, and Brian P. Wernicke.
Cosmogenic 10be and 36cl geochronology of offset alluvial fans along
the northern death valley fault zone: Implications for transient strain
in the eastern california shear zone. J. Geophys. Res., 112(B6):B06407,
2007.

[GHB+05] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen,
M. Reinecke, and M. Bartelmann. Healpix: A framework for high-
resolution discretization and fast analysis of data distributed on the
sphere. The Astrophysical Journal, 622(2):759, 2005.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: a hierarchical
structure for rapid interference detection. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’96, pages 171–180, New York, NY, USA, 1996. ACM.

BIBLIOGRAPHY 99

[GP10] M. P. Golombek and R. J. Phillips. Mars tectonics. In Planetary Tec-
tonics, pages 183–232. Cambridge University Press, 2010.

[GSP+10] K. Gwinner, F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel,
R. Schmidt, J. Oberst, R. Jaumann, and C. Heipke. Topography of mars
from global mapping by hrsc high-resolution digital terrain models and
orthoimages: Characteristics and performance. Earth and Planetary
Science Letters, 294(3-4):506 – 519, 2010.

[HWSE99] Wolfgang Heidrich, Rüdiger Westermann, Hans-Peter Seidel, and
Thomas Ertl. Applications of pixel textures in visualization and realistic
image synthesis. In Proceedings of the 1999 symposium on Interactive
3D graphics, pages 127–134. ACM, 1999.

[KBB+06] Oliver Kreylos, Gerald Bawden, Tony Bernardin, Magali I. Billen,
Eric S. Cowgill, Ryan D. Gold, Bernd Hamann, Margarete Jadamec,
Louise H. Kellogg, Oliver G. Staadt, and Dawn Y. Sumner. Enabling
scientific workflows in virtual reality. In Proceedings of the 2006 ACM
international conference on Virtual reality continuum and its applica-
tions, VRCIA ’06, pages 155–162, New York, NY, USA, 2006. ACM.

[KLJ+09] R. Kooima, J. Leigh, A. Johnson, D. Roberts, M. SubbaRao, and T.A.
DeFanti. Planetary-scale terrain composition. IEEE Transactions on
Visualization and Computer Graphics, 15(5):719–733, sept.-oct. 2009.

[Kre08] Oliver Kreylos. Environment-independent VR development. In Proceed-
ings of the 4th International Symposium on Advances in Visual Com-
puting, ISVC ’08, pages 901–912, Berlin, Heidelberg, 2008. Springer.

[Lev02] Joshua Levenberg. Fast view-dependent level-of-detail rendering using
cached geometry. In Proceedings of the conference on Visualization ’02,
VIS ’02, pages 259–266, Washington, DC, USA, 2002. IEEE Computer
Society.

[LH04] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain render-
ing using nested regular grids. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, pages 769–776, New York, NY, USA, 2004. ACM.

[LK10] Martin Lambers and Andreas Kolb. Dynamic terrain rendering. 3D
Research, 1:1–8, 2010. 10.1007/3DRes.04(2010)01.

[LL06] Q. Li and M. Liu. Geometrical impact of the san andreas fault on stress
and seismicity in california. Geophysical Research Letters, 33, 2006.

100 BIBLIOGRAPHY

[NMG+96] S. Nations, R. Moorhead, K. Gaither, S. Aukstakalnis, R. Vickery, Jr.
Couvillion, W.C., D.N. Fox, P. Flynn, A. Wallcraft, P. Hogan, and
O.M. Smedstad. Interactive visualization of ocean circulation models.
In Visualization ’96. Proceedings., pages 429–432, Nov 1996.

[SBK07] M. Schirski, C. Bischof, and T. Kuhlen. Interactive exploration of large
data in hybrid visualization environments. In Eurographics Symposium
on Virtual Environments, pages 69–76. The Eurographics Association,
2007.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of
solid geometric models. SIGGRAPH Comput. Graph., 20:151–160, Au-
gust 1986.

[SSE04] Guy Sela, Sagi Schein, and Gershon Elber. Real-time incision simu-
lation using discontinuous free form deformation. In Stéphane Cotin
and Dimitris N. Metaxas, editors, Medical Simulation, volume 3078 of
Lecture Notes in Computer Science, pages 114–123. Springer Berlin /
Heidelberg, 2004. 10.1007/978-3-540-25968-8 13.

[SZF+01] D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O.
Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally,
W. B. Banerdt, T. C. Duxbury, M. P. Golombek, F. G. Lemoine, G. A.
Neumann, D. D. Rowlands, O. Aharonson, P. G. Ford, A. B. Ivanov,
C. L. Johnson, P. J. McGovern, J. B. Abshire, R. S. Afzal, and X. Sun.
Mars Orbiter Laser Altimeter: Experiment summary after the first year
of global mapping of Mars. Journal of Geophysical Research, 106:23689–
23722, October 2001.

[TKR+08] U. Thomas, F. Kurz, D. Rosenbaum, R. Mueller, and P. Reinartz. GPU-
based orthorectification of digital airborne camera images in real time.
In Proceedings of the XXI ISPRS Congress, 2008.

[TM92] R.J. Twiss and E. M. Moores. Structural geology. W. H. Freeman, 1992.

[TRAW12] Marc Treib, Florian Reichl, Stefan Auer, and Rüdiger Westermann.
Interactive editing of gigasample terrain fields. Computer Graphics Fo-
rum, 31(2.2):383–392, 2012.

[TT07] O. Timm and A. Timmermann. Simulation of the last 21000 years
using accelerated transient boundary conditions. Journal of Climate,
20(17):4377–4401, 2007.

BIBLIOGRAPHY 101

[VAYK+10] Jordan Van Aalsburg, M. Burak Yikilmaz, Oliver Kreylos, Louise H.
Kellogg, and John B. Rundle. Interactive editing of digital fault models.
Concurrency and Computation: Practice and Experience, 22(12):1720–
1731, 2010.

[vFTS06] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector
field based shape deformations. In ACM SIGGRAPH 2006 Papers,
SIGGRAPH ’06, pages 1118–1125, New York, NY, USA, 2006. ACM.

[WGH11] Rolf Westerteiger, Andreas Gerndt, and Bernd Hamann. Spherical Ter-
rain Rendering using the hierarchical HEALPix grid. In VLUDS’11,
pages 13–23, 2011.

[WGJS81] S. S. C. Wu, P. A. Garcia, R. Jordan, and F. J. Schafer. Topographic
map of Olympus Mons. LPI Contributions, 441:287, 1981.

[WGP97] R. Wegenkittl, E. Groller, and W. Purgathofer. Animating flow fields:
rendering of oriented line integral convolution. In Computer Animation
’97, pages 15–21, Jun 1997.

[XMM07] H. L. Xing, A. Makinouchi, and P. Mora. Finite element modeling of
interacting fault systems. Physics of The Earth and Planetary Interi-
ors, 163(1-4):106–121, 2007. Computational Challenges in the Earth
Sciences.

[ZA12] Olaf Zielke and J Ramon Arrowsmith. LaDiCaoz and LiDARimager–
MATLAB GUIs for LiDAR data handling and lateral displacement
measurement. Geosphere, 8(1):206–221, 2012.

BIOGRAPHICAL INFORMATION

PERSONAL DETAILS

Name Rolf Westerteiger
Date of birth August 23, 1981
Place of birth Koblenz, Germany
Nationality German

EDUCATION

04/2008 – present PhD student at the Department of Computer Science, Computer
Graphics and HCI Group, University of Kaiserslautern, Germany

04/2008 – present Member of the International Research Training Group (IRTG) “Vi-
sualization of Large and Unstructured Data Sets - Applications in
Geospatial Planning, Modeling, and Engineering”

08/2009 – 03/2013 Dissertation project at DLR (German Aerospace Center), Braun-
schweig, Germany

10/2012 – 12/2012 Research visit at the University of California, Davis, U.S.A.
02/2011 – 04/2011 Research visit at the University of California, Davis, U.S.A.
09/2010 – 11/2010 Research visit at the University of California, Davis, U.S.A.
10/2001 – 04/2008 Study of Computer Science at the University of Kaiserslautern,

Germany
Degree: Diplom-Informatiker (Dipl.-Inf.) (Grade point average 1.2)
Master Thesis: ”“Extraction and Tracking of PAR3-EGFP marked
Cell Nuclei of the Eye of Danio Rerio””

1992 – 2001 Max-von-Laue Gymnasium, Koblenz, Germany

WORK EXPERIENCE

04/2008 – 03/2009 Internship at ”Procaess GmbH”, Landau, Germany
07/2007 – 09/2007 Bachelor thesis project: “Distributed Implementation of an Explicit-

Jump Solver for Effective Heat Conductivity” at Fraunhofer ITWM,
Kaiserslautern, Germany

12/2003 – 12/2007 Research assistant at Fraunhofer ITWM, Kaiserslautern

List of publications

[WCB+12] Rolf Westerteiger, Tracy Compton, Tony Bernadin, Eric Cowgill, Klaus
Gwinner, Bernd Hamann, Andreas Gerndt, and Hans Hagen. Interactive Retro-
Deformation of Terrain for Reconstructing 3D Fault Displacements. Visu-
alization and Computer Graphics, IEEE Transactions on, 18(12):2208–2215, 2012.

[WCG+12] Rolf Westerteiger, Fang Chen, Andreas Gerndt, Bernd Hamann, and Hans
Hagen. Remote GPU-Accelerated Online Pre-processing of Raster Maps
for Terrain Rendering. In VR/AR, pages 143–153, 2012.

[Wes10] Rolf Westerteiger. Cartography of mars in a virtual reality environment.
In VLUDS’10, pages 100–110, 2010.

[WGH11] Rolf Westerteiger, Andreas Gerndt, and Bernd Hamann. Spherical Terrain
Rendering using the hierarchical HEALPix grid. In VLUDS’11, pages 13–23,
2011.

[CCWB11] Tracy Compton, Eric Cowgill, Rolf Westerteiger, and Tony Bernardin. Off-
set Landforms Record the Holocene History of Fault Slip Along the Mo-
jave Section of the San Andreas Fault. In AGU Fall Meeting Abstracts, vol-
ume 1, page 2325, 2011.

[KHW+09] Aaron Knoll, Younis Hijazi, Rolf Westerteiger, Mathias Schott, Charles
Hansen, and Hans Hagen. Volume ray casting with peak finding and dif-
ferential sampling. Visualization and Computer Graphics, IEEE Transactions
on, 15(6):1571–1578, 2009.

[KWH12] Aaron Knoll, Rolf Westerteiger, and Hans Hagen. An Evaluation of Peak
Finding for DVR Classification of Biological Data. In Visualization in
Medicine and Life Sciences II, pages 91–106. Springer, 2012.

