
The LIR Space Partitioning System
applied to the Stokes Equations

Vom Fachbereich Informatik der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

M. Sc. Sven Linden

Datum der wissenschaftlichen Aussprache: 06.11.2014

Dekan: Prof. Dr. Klaus Schneider
1. Berichterstatter: Prof. Dr. Hans Hagen
2. Berichterstatter: Prof. Dr. David Adalsteinsson

D (386)

Danksagung

An dieser Stelle möchte ich meinem Doktorvater Prof. Hagen und meinem Be-
treuer Dr. Wiegmann für die Unterstützung und die zahlreichen Gespräche
danken. Ohne sie wäre diese Arbeit nicht möglich gewesen. Sie ermöglichten
mir sämtliche Ideen, egal wie ausgefallen sie waren, zu implementieren und zu
analysieren. Dennoch haben sich mich einige Male wieder zurück auf einen
sinnvollen Weg geführt, wenn ich zu besessen von einem Ansatz war. Für
die zahlreichen Diskussionen und Denkanstöße während meines Auslandsaufen-
thalts möchte ich mich bei Prof. David Adalsteinsson bedanken.

Ebenfalls möchte ich mich bei dem Fraunhofer ITWM, der International Re-
search Training Group 1131 und der Math2Market GmbH für die wissenschaftliche,
finanzielle und organisatorische Unterstützung der letzten 3 Jahre bedanken.

Meiner Familie bin ich zutiefst dankbar für die nötige moralische Unterstützung.
Sie hatten immer ein offenes Ohr für meine Sorgen und haben mir in jeder
Lebenssituation Beistand geleistet.

Zu guter Letzt möchte ich meinen Freunden für die zahlreichen Ablenkun-
gen, sozialen Ereignisse und tiefgründigen Gespräche während meiner kreativen
Phasen danken.

Zusammenfassung

Diese Arbeit befasst sich mit zwei Themen: Räumliche Gebietszerlegung und
die Simulation von kriechenden Strömungen in repräsentativen Volumina.

Im ersten Teil stellen wir ein neuartiges Verfahren zur multi-dimensionalen
Gebietszerlegung [24] vor. Diese Baumstruktur vereinigt die Vorteile des Oc-
trees [19] und des KD-trees [4] ohne dessen Nachteile. Sie erlaubt lokale Verfei-
nerung, Parallelisierung und Erhaltung mathematisch günstiger Eigenschaften.
Die Baumstruktur wird über eine topologische Algebra, basierend auf der Men-
ge der drei Symbole A = {L, I,R}, konstruiert und LIR-Baum genannt. Die
Menge der Nachfolger wird beschränkt, so dass jeder innere Knoten die Eigen-
schaft der Partition der Einheit erfüllt. Unsere Methode erlaubt die Benutzung
von Splines um wissenschaftliche Größen, wie z.B. Geschwindigkeit oder Druck,
zu komprimieren oder zu rekonstruieren. Wir präsentieren einen Generator zur
Konstruktion eines Baums der Voxel Geometrien repräsentiert. Die Gebietszerle-
gung wird dabei als Programmiergerüst für numerische Fragestellungen benutzt.
Diese Arbeit ist motivert durch die mathematisch günstige Repräsentation von
riesigen Voxel Geometrien. Diese Geometrien können aus mehreren Milliarden
Voxeln bestehen und treten im Kontext großer repräsentativer Volumina (REV)
[23] auf.

Im zweiten Teil stellen wir einen neuartigen Ansatz zur Anordnung von
Druck- und Geschwindigkeitsvariablen für die Lösung der Stokes Gleichungen
vor. Die Grundidee unserer Methode besteht darin, dass jede Zelle, unabhängig
von ihren Nachbarzellen, ein gegebenes physikalisches Gesetz erfüllen kann. Dies
wird erreicht durch Spaltung der Geschwindigkeitsvariablen zu einer links- und
rechtsseitig konvergierenden Komponente. In jeder Zelle kann ein kleines lineares
Gleichungssystem aufgestellt werden, dass die Impuls- und Massenerhaltungs-
gleichungen beschreiben. Diese Formulierung erlaubt die Benutzung des Gauß-
Seidel Algorithmus zur Lösung des globalen Gleichungssystems. Der LIR-Baum
wird für die Gebietszerlegung und Konstruktion einer initialen Diskretisierung
benutzt. Zusätzlich stellen wir ein Verfahren vor, dass das aktuelle Geschwin-
digkeitsfeld benutzt um die Baumstruktur lokal zu verfeinern zur Erhöhung der
numerischen Genauigkeit an benötigten Stellen. Wir benutzen keine bestehen-
den Methoden wie den SIMPLE Algorithmus [27], Lattice-Boltzmann Metho-
den [18] oder Explizite-Sprung Methoden [36], da sie für regelmäßige Gitter
gedacht sind. Andere CFD Ansätze extrahieren Oberflächen und konstruieren
ein Tetraeder-Netz. Daher können sie ebenfalls nicht direkt mit der vorgestell-
ten Datenstruktur benutzt werden. Unsere Diskretisierung konvergiert gegen
die analytische Lösung unter Gitterverfeinerung. Wir folgern eine hervorragen-
de Perfomanz in Bezug auf Rechenzeit und Speicherbedarf in Geometrien mit
einer hohen Porosität. In Geometrien mit einer niedrigen Porosität erhalten wir
eine gute Perfomanz in Bezug auf Speicherbedarf.

Abstract

We consider two major topics in this thesis: spatial domain partitioning which
serves as a framework to simulate creep flows in representative volume elements.

First, we introduce a novel multi-dimensional space partitioning method
[24]. A new type of tree combines the advantages of the Octree [19] and the
KD-tree [4] without having their disadvantages. We present a new data struc-
ture allowing local refinement, parallelization and proper restriction of transition
ratios between nodes. Our technique has no dimensional restrictions at all. The
tree’s data structure is defined by a topological algebra based on the symbols
A = {L, I,R} that encode the partitioning steps. The set of successors is re-
stricted such that each node has the partition of unity property to partition
domains without overlap. With our method it is possible to construct a wide
choice of spline spaces to compress or reconstruct scientific data such as pres-
sure and velocity fields and multidimensional images. We present a generator
function to build a tree that represents a voxel geometry. The space partition-
ing system is used as a framework to allow numerical computations. This work
is triggered by the problem of representing, in a numerically appropriate way,
huge three-dimensional voxel geometries that could have up to billions of voxels.
These large datasets occure in situations where it is needed to deal with large
representative volume elements (REV) [23].

Second, we introduce a novel approach of variable arrangement for pressure
and velocity to solve the Stokes equations. The basic idea of our method is
to arrange variables in a way such that each cell is able to satisfy a given
physical law independently from its neighbor cells. This is done by splitting
velocity values to a left and right converging component. For each cell we can
set up a small linear system that describes the momentum and mass conservation
equations. This formulation allows to use the Gauß-Seidel algorithm to solve
the global linear system. Our tree structure is used for spatial partitioning of
the geometry and provides a proper initial guess. In addition, we introduce a
method that uses the actual velocity field to refine the tree and improve the
numerical accuracy where it is needed. We developed a novel approach rather
than using existing approaches such as the SIMPLE algorithm [27], Lattice-
Boltzmann methods [18] or Exlicit jump methods [36] since they are suited for
regular grid structures. Other standard CFD approaches extract surfaces and
creates tetrahedral meshes to solve on unstructured grids thus can not be applied
to our datastructure. The discretization converges to the analytical solution
with respect to grid refinement. We conclude a high strength in computational
time and memory for high porosity geometries and a high strength in memory
requirement for low porosity geometries.

Contents

1 Introduction 1

2 The LIR Space Partitioning System 4
2.1 Introduction . 4
2.2 Related Work . 5
2.3 Alphabet . 5
2.4 Algebraic Structures . 8
2.5 Space Partitioning System . 9

2.5.1 Interval Partitioning . 10
2.5.2 Unity System . 11

2.6 The Oracle Tree . 12
2.6.1 Oracles . 12
2.6.2 Ternary Oracle . 13
2.6.3 LIR-Oracle . 14

2.7 Partition Determination . 16
2.8 Neighborhood Retrieval . 16
2.9 Input Function . 17
2.10 Iterative Refinement . 18
2.11 Results . 19

2.11.1 Generated Fiberglass . 19
2.11.2 Tree Comparison . 20
2.11.3 Number of Children . 20
2.11.4 Error Analysis . 21

3 Solving the Stokes Equation 24
3.1 Governing Equations . 24

3.1.1 Stokes Equations . 24
3.1.2 Effective Permeability . 25

3.2 Related Work . 26
3.3 Conservation Law based Cellular Structure 27

3.3.1 Cells . 27
3.3.2 Variable Arrangement . 28
3.3.3 Neighborhood Evaluation 29
3.3.4 Discretized Differential Operators 30

3.4 Solving Single Cell Systems . 33
3.4.1 Stokes Block System . 33
3.4.2 Gauß-Seidel for Block Linear Systems 35

3.5 Refinement Rules . 36

i

Contents

3.5.1 Maximum Neighbor Size Ratio 36
3.5.2 Difference Reduction . 36

3.6 Parallelization . 38
3.7 Splines . 39

3.7.1 Piece-wise constant Spline 40
3.7.2 Subdivision Spline . 40

3.8 Termination . 41
3.9 Results . 41

3.9.1 The Geometries . 42
3.9.2 Convergence Analysis . 47
3.9.3 Convergence Speed . 50
3.9.4 Parallelization . 57
3.9.5 Speed . 59
3.9.6 Memory . 61

4 Conclusions 62

ii

List of Figures

1.1 Filtration simulation with particles inside a fiber geometry 1

2.1 Two-dimensional partitions of unity 7
2.2 Three-dimensional partitions of unity 7
2.3 Intent of the alphabet A and its generalization 11
2.4 Different effects of Ξ applied to the same initial domain 11
2.5 Construction of an oracle-tree . 13
2.6 Example of a ternary-tree . 14
2.7 Example of a vector-tree . 14
2.8 Example of a LIR-tree . 15
2.9 Memory layout of a cell in 64 bit 16
2.10 Domain and direction of analysis for the edges 18
2.11 Fibrous material . 20
2.12 Different views of a fiberglass medium 20
2.13 Cut through the fiberglass . 21
2.14 LIR-tree with ζ0 . 21
2.15 LIR-tree with ζ1 . 21
2.16 3D-View of the LIR-tree . 21
2.17 Number of nodes used by the different trees 22
2.18 Number of children distribution 22

3.1 Variable arrangement for pressure and velocity 28
3.2 Discretization of the Laplacian 32
3.3 Discretization of the pressure gradient 32
3.4 Discretization of the divergence 32
3.5 Example of two-dimensional variable arrangement 34
3.6 Edge analysis for difference reduction 37
3.7 Parallelization scheme . 39
3.8 Outline of the solver . 42
3.9 Sphere inside a unit box . 44
3.10 Fiber microstructure . 45
3.11 Sandstone Carbonate . 46
3.12 Berea Sandstone . 47
3.13 Relative errors with respect to the exact solutions 49
3.14 Relative permeability error with respect to the number of cells . 50
3.15 0. and 1. refinement on sphere geometry 51
3.16 6. and 14. refinement on sphere geometry 52
3.17 25. and 43. refinement on sphere geometry 53

iii

List of Figures

3.18 0. and 1. refinement on fiber geometry 54
3.19 2. and 3. refinement on fiber geometry 55
3.20 Convergence speed for sphere geometries 56
3.21 Convergence speed for fiber geometries 58
3.22 Parallelization of building and solving 59

iv

List of Tables

2.1 Number of unique and equivalent partitions of unity for n ∈ N. . 6

3.1 Computational resources used in our experiments 43
3.2 Permeabilites for different sphere diameters and regular grid sizes 48
3.3 Permeabilites for different sphere diameters and LIR-tree grid sizes 48
3.4 Parallelization of building and solving 57
3.5 Comparison of different solvers 60
3.6 Composition of computational time 60
3.7 Composition of memory requirements 61

v

Nomenclature

η Viscosity constant

C Cells

E Edges

G Tree

X Nodes

B Set of intervals

f Oracle

ι Modifier function

Ω Vector oracle

φ Unity system

ψ Input function

Υ Ternary oracle

ξ Interval partitioning system

A Ternary alphabet

I Identity symbol

L Left symbol

P Partitions of unity

p Pressure variable

R Right symbol

u Velocity variable

vi

Chapter 1

Introduction

Figure 1.1: Filtration simulation with
particles inside a fiber geometry

Simulation of materials received great
attention in the last decades. Ex-
pensive and time-consuming construc-
tion of prototypes used in real experi-
ments can be replaced by virtual ma-
terial design and simulation of physical
equations. Numerical simulations are
suited for material engineering. They
can be accomplished in a short amount
of time and are considerably cheaper
than real experiments. The spatial
size of simulated domains can range
from nanometer- to meter-scale. En-
gineers are interessted in effective ma-
terial properties (e.g. permeability) of
virtual materials or computed tomogra-
phies. In addition, point-wise quanti-
ties such as velocity or pressure are in-
teresting to gain a better understand-
ing of physical behaviors. Automated
parameter studies with respect to vir-
tual material generation are possible to
construct materials with desired prop-
erties. Therefore, engineers need sim-
ulation tools that fits into their work-
flow and supports them to increase the
quality and properties of manufactured
products.

In this work, we focus on the sta-
tionary Stokes equations which is a sim-
plification of the general Navier-Stokes
equations where velocity and pressure are considered. Numerical computations
allow to determine the effective permeability tensor for heterogeneous porous
media. The Stokes equations are valid in slow flow regimes thus restrict to
certain applications. An important research area can be found in geoscience.

1

The complex pore structure inside different kinds of ground guides physical
behaviors and is a challenge for numerical solvers. Typically, porosity is low
and geometric information is retrieved from computed tomographies. Another
important application area are manufactured filter elements, e.g. for automo-
bile industry. In that context, fiber geometries are from greater interest and
engineers want to do parameter studies with respect to fiber distribution and
orientations. In contrast to geoscience, filter elements tend to high porosity
environments. Figure 1.1 shows simulated particles inside a fiber geometry.

Challenging for numerical flow solvers are huge geometries described by up
to billions of voxel. Therefore, efficient memory approaches and fast algorithms
are needed to satisfy these requirements. Numerical simulation can be split into
two different aspects: space partitioning and solving of a linear system that
describes the Stokes equations.

Space partitioning considers the way of partition a given domain such that
it can be used to arrange variables in numerical applications. The efficient
representation of billions of cells is a great challenge and requires enormous
computational resources. Regular grid structures in a higher dimensional set-
tings hit the wall very quickly. Therefore, adaptive space partitioning is needed
to solve that problem. Sophisticated approaches can be used to provide higher
accuracy at regions where it is needed. Moreover, the way of partitioning should
reflect features in physical quantities of flow simulations. Memory efficiency is
a very important aspect and parallelization is also needed to utilize huge com-
putational resources.

Velocity and pressure variables have to be arranged by an adaptive data
structure such that we can establish a linear system that describes the Stokes
equations. The linear system should have properties that allows its solution
without auxiliary variables due to the restrictive memory requirements. In
addition, a single iteration step towards its solution should be very cheap to
satisfy given time-constraints.

The described challenges imply the following objectives of this work:
First, the development and implementation of a memory efficient and high

performance data structure that is able to represent huge voxel geometries in
a numerically suited way. The data structure should serve as a framework to
solve partial differential equations in computational fluid dynamics.

Second, the development and implementation of a very fast, stable and suffi-
ciently accurate numerical solver for the Stokes equations that can be generalized
to solve the (Navier)-Stokes-(Brinkman) equations.

We claim to solve these tasks by just using a ternary alphabet used in an
elegant way.

2

Chapter 2

The LIR Space Partitioning
System

Abstract

We introduce a novel multi-dimensional space partitioning method [24]. A new
type of tree combines the advantages of the Octree [19] and the KD-tree [4]
without having their disadvantages. The data structure allows local refinement,
parallelization and proper restriction of transition ratios between leafs. Our
technique has no dimensional restrictions at all. The tree’s data structure is de-
fined by a topological algebra based on the symbols A = {L, I,R} that encode
the partitioning steps. The set of successors is restricted such that each cell has
the partition of unity property to partition domains without overlap. With our
method it is possible to construct a wide choice of spline spaces to compress or
reconstruct scientific data such as pressure and velocity fields and multidimen-
sional images. We present a generator function to build a tree that represents a
voxel geometry. The space partitioning system is used as a framework to allow
numerical computations. This work is triggered by the problem of representing,
in a numerically appropriate way, huge three-dimensional voxel geometries that
could have up to billions of voxels.

2.1 Introduction

The goal of this work is to introduce and apply a novel mathematical model to
partition n-dimensional domains. We give a detailed definition and description
of the theoretical background and the algorithms. The space partitioning is
done by a tree that can be seen as a hybrid of an Octree and a KD-tree. We
combine the advantages while avoiding the disadvantages.

The basic idea of the tree is the definition of a ternary alphabet. This
alphabet is applied recursively and dimensionally independently to a system of
functions. We abstract from the geometrical properties and define an algebraic
approach to efficiently partition domains and evaluate functions recursively.
Evaluation and computation as well as proofs on these trees can be done by

2.2. Related Work

structural induction.
The tree can be used to compress geometries as well as scalar and multi-

dimensional fields. It is possible to access different kinds of information and
operators that are influenced by the structure of the tree, e.g. interpolation
schemes, differential operators, subsets of the given domain and neighborhoods
of cells. In this work we focus on voxel geometries. But it is also possible to
partition different kinds of sets. In many applications it is a disadvantage if the
tree degenerates in a single direction. Therefore we introduce a non-degenerative
input function that analyses voxel geometries.

2.2 Related Work

There are many different kinds of space partitioning methods. Regular grids are
an easy commonly used way to discretize the two- and three-dimensional space.
They allow an efficient alignment of the data in the memory and enables the
user to easily formulate discretized differential operators. Data can be accessed
in constant time, but the disadvantage of the regular grids is that the require-
ments for computational effort and memory grows at least with the power of the
dimension. It is also not easy to describe smooth boundaries, e.g. the interfaces
in two-phase flows and between different materials in solid mechanics.

A way to treat this problem is to use a body-fitted mesh of tetrahedra. But
a mesh of tetrahedra requires a lot of overhead, e.g. you have to store posi-
tions, normal vectors and topological information. This overhead significantly
decreases the number of cells that can be stored and processed.

Another way to treat this problem is to use an Octree [19] [20]. A disad-
vantage of the Octree is the limited choice of partitioning. You have just the
choice to do no partitioning or to partition simultaneously in all dimensions.
Therefore one is forced to increase the number of cells even in directions where
it is not necessary. But the Octree is an important data structure in numerical
mathematics. It received attention in isogeometric analysis [12] [13] within the
last years.

The latter issue is addressed by the KD-tree [4]. It is able to increase the
number of cells just in one direction. But a KD-tree is not well suited to use for
numerical calculations as it is designed for partitioning point clouds. Another
problem is the high number of interior nodes in higher dimensional settings.

A detailed description of the Octree and KD-tree can also be found in [28]
and [29] covering the latest developments and applications. The model we de-
scribe in this chapter avoids the disadvantages of the KD-tree and Octree and
combines their advantages.

2.3 Alphabet

For a one-dimensional finite interval there exist three choices: no partitioning,
partition and take the left part of the interval, or partition and take the right
part of the interval. Similar to partitioning there exist three choices for embed-
ding intervals: no embedding, embed to the left or embed to the right. These
choices are used to define the alphabet:

5

2.3. Alphabet

Definition 1. A is called the alphabet defined by

A := {L, I,R} (2.1)

and contains three symbols that denote: L - left, I - identity and R - right. L
and R are interpreted as complementary symbols and I as neutral symbol. We
introduce a unary minus operator defined by

−L := R −R := L − I := I (2.2)

that is also used vector-wise.

Definition 2. The bold notation is used to see the symbols in A as sets by

A := {L, I,R} (2.3)

with the symbol sets

L := {L} I := {L,R} R := {R} (2.4)

and to introduce the conversion

v = (v1, · · · , vn) ∈ An ⇔ v = v1 × · · · × vn ∈ In. (2.5)

Definition 3. The set of vectors of symbols defined by

P := {p ⊆ An :
⋃
v∈p

v = In ∧ ∀ v,w∈p
v 6=w

v ∩w = ∅} (2.6)

denotes all sets of vectors that are partitions of unity. The sets in P are the
basis to construct the LIR-tree.

Definition 4. We use Sn to denote the symmetric group and {1,−1}n as se-
lective inversion. Let p, q ∈ P be two partitions of unity. p ∼ q means they are
equivalent with respect to rotation and inversion. That is

p ∼ q ⇔ ∃(s,h)∈Sn×{1,−1}n{h · (vsi)
n
i=1 : v ∈ p} = q (2.7)

then P/∼ describes the set of equivalence classes.

Table 2.1 shows the number of different unique and equivalent partitions of
unity. Figure 2.1 and Fig. 2.2 illustrate a choice of partitions of unity for the
two- and three-dimensional case. The number of different partitions grows very
fast but is small until n = 4.

Table 2.1: Number of unique and equivalent partitions of unity for n ∈ N.

n 1 2 3 4 5

|P | 3 8 154 89512 71319425714
|P/∼| 2 4 15 434 > 100000

6

2.3. Alphabet

Figure 2.1: 8 unique and 4 equivalent partitions of unity exist for the two-
dimensional case. The last two partitions with two elements in the first row
belong to the same equivalence class and the partitions with three elements in
the second row belong to the same equivalence class.

1 3 12 6 24

3 6 8 12 24

12 6 24 12 1

Figure 2.2: 154 unique and 15 equivalent partitions of unity exist for the three-
dimensional case. For a better visibility we use bold entities representing the
different parts. The bold squares represent a vector of symbols with two identity
symbols, a bold line represents a vector with one identity and a bold circle
represents a vector with zero identity symbols. The numbers inside the cubes
denote the cardinality of the equivalence classes.

7

2.4. Algebraic Structures

2.4 Algebraic Structures

In this section we introduce binary relations and operators. These are used to
formulate algebraic structures. We introduce finite abelian groups and fields
that allow to use basic calculation rules. The proofs of the following theorems
can be done by checking the small finite number of elements, e.g. commutativity
is implied by symmetric evaluation tables.

Definition 5. We define a binary plus and multiplication operator

+ : A×A→ A · : A×A→ A (2.8)

for symbols in A by the evaluation tables

+ L I R

L R L I
I L I R
R I R L

· L I R

L R I L
I I I I
R L I R

Let a, b ∈ A then a + b yields the neutral symbol for different complementary
symbols and inverts for same complementary symbols. a · b yields L for different
complementary symbols and R for same complementary symbols.

Theorem 1. (A,+, ·) is a finite field.

• (A,+) is an abelian group with neutral element I

• (I, ·) is an abelian group with involution and multiplicative identity R

• The distributive property applies for addition and multiplication

Definition 6. The bold notation allows set-wise relations. Let a, b ∈ A then

a ⊆ b :⇔ a ⊆ b (2.9)

a ∩ b :⇔ a ∩ b 6= ∅ (2.10)

In addition, we introduce the parallel and orthogonal relation defined by

a ‖ b :⇔ (a = I ⇔ b = I) (2.11)

a ⊥ b :⇔ (a = I ⇔ b ∈ I) (2.12)

Vectors v, w ∈ An are parallel iff identity symbols are at the same position. They
are orthogonal iff identity and complementary symbols are at different positions.

Definition 7. We use the parallel relation to define the equivalence classes

A := A/‖ = {{I}, I} An :=

n∏
i=1

A (2.13)

These axis aligned sets of vectors are a subset of partitions of unity, i.e. An ⊂ P .

Corollary 1. Let a ∈ A and a ∈ A then

a/⊥ = {b ∈ A : a ⊥ b} ∈ A (2.14)

a/⊥ = {b ∈ A : ∀a∈aa ⊥ b} ∈ A (2.15)

8

2.5. Space Partitioning System

Definition 8. For A we define the binary plus operator

+ : A× A→ A (2.16)

by the evaluation table

+ {I} I

{I} {I} I
I I {I}

where we split vectors at unequal splits and merge at equal splits. Let v, d ∈ An

then vector-wise addition is defined by

v + d =

n∏
i=1

vi + di (2.17)

where we add individual equivalence classes.

Theorem 2. (A,+) is an abelian group with involution and neutral element
{I}.

Corollary 2. Let a, b ∈ A then a/⊥+ b/⊥ = (a + b)/⊥.

Example 1. The two equivalence classes

v = {(L, I, I), (R, I, I)} (2.18)

d = {(L, I, L), (L, I,R), (R, I, L), (R, I,R)} (2.19)

yield the sum
v + d = {(I, I, L), (I, I, R)} (2.20)

with the graphical representation

+ =

where we merge in x-direction and split in z-direction.

2.5 Space Partitioning System

Partitioning (or embedding) of sets can be described in a recursive way. Sets
of functions that are indexed by the alphabet describe how the partitioning is
done. A symbol or a vector of symbols represents the choice of partitioning
function. Composition of such functions can be described by words of symbols
or vectors of words, respectively.

Definition 9. The set of words of complementary symbols is given by the word
monoid (I∗, ·, I). The identity symbol is the neutral element, i.e. the empty word
and · is the concatenation of words. The ∗ operator constructs the set of all finite
words. The definition is used to induce a unique representation for partitioned
domains. Let w ∈ Ik be a word, then a minus operator for words is defined
by −w := (−wn−i+1)ni=1 such that complementary symbols are inverted and the
order is reversed.

9

2.5. Space Partitioning System

Definition 10. Let D be a set and fA = {fL, fR, fI} be a set of functions such
that fa∈A : D→ D. Then we introduce the notation

fw∈Ik := fwk
◦ · · · ◦ fw1

(2.21)

for the lower and the upper index to denote recursive applications, i.e. compo-
sition of functions where w is a word of symbols. A set of functions described
in that way is called a system. A vector-wise system of functions arises from

fv∈An : Dn → Dn x 7→ fv1(x1)× · · · × fvn(xn) (2.22)

to describe the set of functions fAn .

2.5.1 Interval Partitioning

In this work we focus on interval partitioning and use it for voxel geometries.
Therefore, we define intervals and a corresponding interval partitioning sys-
tem. Partitioning and embedding of intervals can be merged into a group.
Figure 2.3 illustrates multi-dimensional and recursive application of symbols to
a two-dimensional interval.

Definition 11. We use the set of all intervals given by

B := {b = [bL, bL] : (bL, bR) ∈ R2} (2.23)

to define the combined system

ξAA := {ξLL , ξLI , ξLR, ξIL, ξII , ξIR, ξRL , ξRI , ξRR} (2.24)

such that ξa∈Ab∈A : B → B where ξLA = {ξLL , ξLI , ξLR} denotes the system of parti-
tioning

ξLL(b) =

[
bL,

bL + bR
2

]
ξLR(b) =

[
bL + bR

2
, bR

]
(2.25)

with the neutral system ξIA = {ξIL, ξII , ξIR} which is defined by

ξLI (b) = ξIL(b) = ξII (b) = ξIR(b) = ξRI (b) = b (2.26)

and ξRA = {ξRL , ξRI , ξRR} denotes the system of embedding intervals defined by

ξRL (b) = [2bL − bR, bR] ξRR(b) = [bL, 2bR − bL] (2.27)

The composition of multi-dimensional interval partitioning functions is defined
by

Ξ := {ξqw : q ∈ I∗ ∧ w ∈ I∗×n} (2.28)

Theorem 3. (Ξ, ◦) is a group.

Proof. It is sufficient to show the existence of the neutral and inverse elements.
ξa∈II = ξIa∈A is the neutral function with different notations. Let ξqw ∈ Ξ then

ξ−q−w ∈ Ξ is the inverse function.

10

2.5. Space Partitioning System

I

L R

RLL LR

R

IL

L

L

R RL

I

RR

IL

LR

LL

LL

LR

LL

LL

RL

LR

RL

LL

RR

LR

RR

An

I
∗

I
∗×n

Figure 2.3: Intent of the alphabet A and its generalization to an n-dimensional
domain and recursive application. L denotes left in x-direction and bottom in
y-direction while R denotes right in x-direction and top in y-direction. The red
lines indicate the partitioning in the first level and the blue lines indicate the
partitioning in the second level.

ξR(L,I) ξ
L
(L,I)

ξL(R,L)

ξRL
(RR,II)

Figure 2.4: Effects of Ξ on the cyan colored domain: ξR(L,I) embeds to the left,

ξL(L,I) restricts to the left, ξL(R,L) restricts to the bottom right corner and ξRL(RR,II)

defines the right neighbor domain.

Example 2. The vectors (L,L), (I,R) ∈ A2 applied to b ∈ B2 yield

ξLL(L,LR)(b) =

 ξLL([bL,L, bL,R])
×

ξLLLR([bR,L, bR,R])

 =

 [bL,L,
1
2bL,L + 1

2bL,R]
×

ξLR([bR,L,
1
2bR,L + 1

2bR,R])

 (2.29)

=

 [bL,L,
1
2bL,L + 1

2bL,R]
×

[3
4bR,L + 1

4bR,R,
1
2bR,L + 1

2bR,R]

 (2.30)

Vectors of words describe how interval partitioning is done. They can be
understood as a set of instructions that point to a sub-interval with respect to
an initial interval. The combination of embedding and partitioning ξRLvv with
v ∈ An corresponds to the v-neighbored domain. Figure 2.4 illustrates the
application of different vectors of words to the same initial domain.

2.5.2 Unity System

In addition to the interval partitioning system we present a minimal system of
functions with domain and codomain in A.

11

2.6. The Oracle Tree

Definition 12. The set of functions φA := {φL, φR, φI} with

φa∈A : A→ A (2.31)

defined by the table

A φL φI φR

L I L L
I L I R
R R R I

is called unity system. The composition of unity functions is defined by

Φ := {φw : w ∈ I∗×n}.

Theorem 4. (Φ, ◦) is a group with neutral function φI . Inverse element can
be obtained by ¬.

2.6 The Oracle Tree

In this section we introduce a formalism to define tree structures. The approach
is used in a recursive way to generate trees of higher order. Different kinds of
trees are described that can be used for diverse applications.

2.6.1 Oracles

We define tree structures by structural induction with a function that maps the
current location, i.e. the node to a set of succeeding edges. These function
are called oracles and are motivated by the memory layout of trees inside the
computational memory.

Definition 13. Let (X,+) be a monoid with the generator set 0 6∈ T ⊆ X. The
generator set is used to define the generator function

f : X → P(T) = {U : U ⊆ T} (2.32)

where the elements of X are mapped to a subset of the generator set (P denotes
the power set). Then we define the tree that is constructed with respect to f by

G = (X , E) X ⊆ X E ⊆ X × X (2.33)

such that there exists a root node 0 ∈ X . We construct a tree by structural
induction such that

x ∈ X ⇒ ∀t∈f(x)x+ t ∈ X ∧ (x, x+ t) ∈ E . (2.34)

We also introduce the notation X (f) and E(f) to denote nodes and edges, re-
spectively. The generator function f generates a tree and is called an oracle if
and only if every node has exactly one predecessor except the root node, i.e.

(y, x) ∈ E(f)⇒ 0 6= x (2.35)

0 6= x ∈ X (f)⇒ ∃!(y, x) ∈ E(f). (2.36)

The leafs of the tree are denoted by C or C(f), respectively.

We use the definition of oracles to construct trees using the symbols in A or
vectors of symbols, respectively. An example for the general case is shown in
Fig. 2.5.

12

2.6. The Oracle Tree

0

t0

t0 + t2 t0 + t3

t1

t1 + t4 · · ·

℧(0) = {t0, t1}

℧(t0) = {t2, t3} ℧(t1) = {t4, · · · }

Figure 2.5: Construction of an oracle-tree. The oracle function returns the edges
to succeeding nodes. The nodes are defined by adding preceding edges.

2.6.2 Ternary Oracle

In many situations we want to be able to deal with arbitrary sets of vectors,
e.g. partitions of unity or overlapping sets of vectors to store data. The number
of different vectors and the number of sets of vectors is determined by the
dimension. We introduce the ternary oracle and the range oracle that are suited
to efficiently represent and access arbitrary subsets of An.

Definition 14. A ternary oracle Υ is defined by the word monoid (A∗, ·, ε)
such that

Υ : A∗ → P(A) (2.37)

where all leafs are at level n, i.e.

∀v ∈ X (Υ) v ∈ An ⇒ Υ(v) = ∅ (2.38)

The set of all ternary oracles is denoted by Υ.

The ternary oracle is used to describe subsets of An efficiently. Since the
number of different partitions of unity is small until n = 4 (see Table 2.1)
we use a look-up table in the implementation to eliminate any overhead in
computational time and memory. An example of a ternary tree with three
levels is shown in Fig. 2.6.

Definition 15. Let j, k ∈ N with j ≤ k ≤ n be the minimum and maximum
number of identities then we define the range-oracle Υk

j ∈ Υ by

Υk
j : A∗ → P(A) (2.39)

v ∈ Am 7→ {L,R : n−m > j − |v|} ∪ {I : |v| < k} (2.40)

where we use the count operator for identity symbols

|v| := |{i ∈ N : vi = I}| (2.41)

The range-oracles are a subset of the ternary oracle and the vectors denoted by

V kj := {v ∈ An : j ≤ |v| ≤ k} ⊂ X (Υk
j)

13

2.6. The Oracle Tree

L R

L
I

I R

I

L R

Figure 2.6: Example of a ternary-
tree encoding vectors in A3.

L

R

L

L

R

I

L

L

L

R

R

L

R

R

L

L

I

R

R

L

L

I

R

I

Figure 2.7: Example of a vector-tree
encoding vectors of words in I∗×2.

are the corresponding leaf nodes. The tree constructed by Υk
j is called range-tree

and allows the representation of vertices, edges, faces or other higher dimen-
sional entities in a cuboid. We use the abbreviation Vj = V jj for sets of vectors
with the same number of identities.

Since the structure of a range tree is fixed and known at compilation time we
can eliminate any overhead similar to the ternary tree. An important application
of the range-tree is store neighborhoods of nodes such that we can access a
neighbor by a vector v ∈ An.

2.6.3 LIR-Oracle

In this section we describe a tree structure called vector-tree that uses vectors
of symbols for construction of a tree that represents a set of vectors of words.
By restriction to partitions of unity we finally get the LIR-tree.

Definition 16. Let n ∈ N then a vector-oracle Ω is defined by the vector of
words monoid (I∗×n, ·, I) where · is the vector-wise concatenation of words and
I the vector of empty words such that

Ω : I∗×n → P(An).

The set of all vector-oracles is denoted by Ω.

Definition 17. By restricting the set of successors it is possible to introduce
the partition of unity property. Therefore, the LIR-oracle is defined by

ΩP : I∗×n → P

such that ΩP constructs a vector tree and satisfies the partition of unity property
in each node. The set of all LIR-oracles is denoted by ΩP . The trees that can
be constructed by LIR-oracles are called LIR-trees.

An example of a small vector-tree with two levels is shown in Fig. 2.7. A
larger example of a LIR-tree with a corresponding domain can be seen in Fig. 2.8.
This domain is partitioned using the interval partitioning system.

In our basic implementation we use the memory layout shown in Fig. 2.9 for
the nodes in a LIR-tree. A node is split into a type and an index. The type can
either point into a look-up table for partitions of unity or indicates a material.
If the type indicates a material then the cell is a leaf and the index points to the
corresponding data entity. In the other case the index points to the first child
cell. The number of remaining child nodes can be determined by the type.

14

2.6. The Oracle Tree

1 4 1 2

3 3 1 2

2 4 1 2

1 3 1 2

L R

L R

I

w0 =

(
I

I

)

Ω(w0) = {v1, v2, v3}

1 2

1 2

1 2

1 2

L R

I I

w3 =

(
R

I

)

Ω(w3) = {v11, v12}

1

1

1

1
w11 =

(
RL

I

)

Ω(w11) = ∅

2

2

2

2
w12 =

(
RR

I

)

Ω(w12) = ∅

1 4

3 3
L

I

R

L R L

w1 =

(
L

L

)

Ω(w1) = {v4, v5, v6}

1
w4 =

(
LL

LL

)

Ω(w4) = ∅
4

w6 =

(
LR

LL

)

Ω(w6) = ∅

3 3
w5 =

(
L

LR

)

Ω(w5) = ∅

2 4

1 3
L R

L R L R

w2 =

(
L

R

)

Ω(w2) = {v7, v8, v9, v10}

2
w7 =

(
LL

RL

)

Ω(w7) = ∅
4

w8 =

(
LR

RL

)

Ω(w8) = ∅

1
w9 =

(
LL

RR

)

Ω(w9) = ∅
3

w10 =

(
LR

RR

)

Ω(w10) = ∅

v1

v4 v6

v5

v3

v11

v12

v2

v7
v8

v9 v10

Figure 2.8: Example of a LIR-tree that is defined by the set of nodes X (ΩP) =
{w0, · · · , w12} and the set of links E(ΩP) = {(w0, w1), · · · , (w3, w12)}. Note that
the ternary trees are realized by a look-up table and do not occupy memory.
The numbers inside the rectangles illustrate the domain and the corresponding
data that is partitioned. The red lines show how the domains are partitioned
and the red dotted lines show the links between nodes.

15

2.7. Partition Determination

type index

8 bit 56 bit

Figure 2.9: Memory layout of a cell in 64 bit. The type indicates either a
partition of unity or a leaf. The index either points to the start of the child
nodes or a data entity.

2.7 Partition Determination

Definition 18. The one-dimensional edges can be represented by the range tree
Υ1

1 ∈ Υ with the set of edge vectors E := V1. We assign a binary value to each

edge, i.e. S := Bn·2n−1

with B = {0, 1}. We use S to determine and modify
appropriate partitions to build a tree. A one represents that the corresponding
edge has to be split. A zero represents that an edge may or may not be split.

Let p ∈ P be a partition of unity and s ∈ S. If no vector of p contains a
split then p is conform to s. We define a function ψ that takes a partition and
return a zero where ever an edge is a subset of a vector of p:

ψ : P → S p 7→

({
0 if ∃v∈pe ⊆ v

1 else

)
e∈E

. (2.42)

with E := V n−1
n−1 . The inverse function of ψ is defined by the ψ−1 function that

takes a s ∈ S and returns a partition p ∈ P that is conform to s and has a
minimum number of vectors.

ψ−1 : S → P s 7→ arg min{|p| : p ∈ P ∧ ¬ψ(p) ∧ s = 0} (2.43)

where ∧ and ¬ denote bit-wise operators. Since the minimum partition is not
unique, ψ−1 returns an arbitrary conforming partition that is minimal.

Similar to the ternary- and range-tree we use a look-up table for the evalu-
ation of ψ and ψ−1 in our implementation. That way we get a O(1) runtime-
complexity.

2.8 Neighborhood Retrieval

Most tree processing algorithms want to have access to its neighbor nodes.
Therefore we provide an efficient way of neighborhood retrieval such that the
time complexity is independent with respect to the depth of the tree. In this
section, we use the range tree and introduce a traversal operation to determine
successive neighborhoods of nodes.

A neighbor of an interval decomposition function in the direction given by
v ∈ An can be defined by the composition ξRLvv . Let Ω ∈ ΩP be a LIR-tree,
k ∈ N be a number of steps and (wi ∈ An)ki=1 an ordered set of vectors such

that ∀kj=1

∑j
i=1 w

i ∈ X (Ω). We assume that an algorithm travelled k steps from

I to
∑k
i=1 w

i through nodes of Ω. Let 0 < r ∈ N then the algorithm stores the

vector of words to the r to n dimensional neighbors of
∑j
i=1 w

i in a set of range
trees. These neighbors are defined by

wjv = max{w ∈ X (Ω) : ξRLvv ◦ ξLwj
I

⊆ ξLw}

16

2.9. Input Function

for each v ∈ V nr . Let wk+1 ∈ Ω(wkI) be the next step of the algorithm then
wk+1
I = wkIw

k+1 denotes the next location in the tree. The succeeding neighbors

of wk+1
I are defined by

wk+1
v = max{w ∈ X (Ω) : ξRLvv ◦ ξLwk+1

I

⊆ ξLw} (2.44)

Since wkd ∈ X (Ω) with the corresponding neighbor vector d = −v2(v + wk+1)
we can precise the upper search bound by

wk+1
v = max{w ∈ X (Ω) : ξRLvv ◦ ξLwk+1

I

⊆ ξLw ⊆ ξLwk
d
} (2.45)

Thus, we can determine wk+1
v by travelling through the tree from wkd .

This way we can retrieve neighbors by using the neighbors of the parent cell
and are independent with respect to the global depth of the tree, i.e. we do not
have to climb up and down the tree. If the neighborhood retrieval consumes a
considerable amount of computational time it is possible to store pre-determined
neighborhoods to improve the performance.

2.9 Input Function

In this section we describe an oracle that constructs a (non-degenerative) tree
until a given threshold for partitioning is reached. It is also possible to use
overlapping sets to increase the number of cells at interfaces.

Let t ∈ Rn be a vector of real numbers that denote the limit for partitioning.
Then we define the function

ϑ : B→ S b 7→ (ei = I ⇒ |bi| > ti)e∈E (2.46)

that uses an interval and determines possible edges which are candidates to be
split with respect to t.

The basic idea of the actual input function is to split edges where the corre-
sponding segments of voxels contain different values. A segment of voxels is a
finite straight chain of voxels that is used for analysis, see Fig. 2.10. We assume
that ω : Rn → D is a given function that returns the type of material at each
x ∈ Rn where D denotes the domain of material. Then the next part of the
input function is defined by

θ : B→ S b 7→

(
∃x, y ∈ b

{
ω(x) 6= ω(y)

xi 6= yi ⇒ ei = I

)
e∈E

(2.47)

Let k ∈ R be a range that describes the overlap of analysis. The final input
function is a composition of ϑ and θ defined by

ζk : B→ S b 7→ ϑ(b) ∧ θk([bL − k, bR + k]) (2.48)

We also suggest multiplication of the parameter k. The corresponding tree is
constructed by the oracle

ΩP (w) := ψ−1(ζk(ξLw(b)))

where we assume that b ∈ B is the initial domain we want to partition.

17

2.10. Iterative Refinement

Figure 2.10: The colored regions illustrate the domain and direction of analysis
for the edges. In the left and center case we use ζ0 and in the right case we
use ζ1. A color component shows the edges and its domains of analysis. The
direction of the arrow corresponds to i in Eqn. 2.46.

2.10 Iterative Refinement

Iterative tree refinement can be described as a sequence of oracles (Ωi ∈ ΩP)i∈N.
Assume we are given a sequence of modifier functions ιi : Ci → S that return
splits for each leaf of the LIR-tree described by Ωi. There are two ways of
iterative tree refinement: degenerative and non-degenerative. Therefore, we
have to describe both ways that can be used for different requirements.

Definition 19 (Degenerative Refinement). We define the degenerative sequence
of oracles

Ωi+1(w) =

{
ψ−1(ιi(w)) if w ∈ C ∧ ιi(w) 6= 0

Ωi(w) else
(2.49)

such that Ωi ∈ ΩP . We allow modifications only at the leafs of trees.

Degenerative refinement is recommended for geometry analysis and sub-
division splines where numerical properties are non-critical. Non-degenerative
refinement is important for increasing numerical stability but requires a more
complex set-up. First, we describe how splits are merge within parent nodes.

Definition 20. Let v ∈ An then we define merge of splits by

σv : S → S s 7→

 ∨
d‖e∧v⊇e

sd

e∈E

(2.50)

such that we merge parallel edges that are subset of v.

We use merging of splits to generalize arbitrary modifier functions by their
child sets of vectors.

Definition 21 (Generalized Modifier Function). Let ι : C → S be a modifier
function then we use recursion to define the generalized modifier function

ι̂ : X → S w 7→

{∨
v∈Ω(w) σv(ι(wv)) if Ω(w) 6= ∅

ι(w) else
(2.51)

18

2.11. Results

The domain is extended from leafs to nodes by merging embedded splits of chil-
dren.

Finally, we are able to describe non-degenerative refinement by using gener-
alized modifier functions.

Definition 22 (Non-Degenerative Refinement). Let ι̂i : Ci → S be a sequence of
generalized modifier functions then we define the sequence of non-degenerative
oracles by

Ωi+1(w) =

Ωi(w) if w ∈ Ci ∧ ι̂i(w) = 0

ψ−1(ι̂i(w)) if w ∈ Ci ∧ ι̂i(w) 6= 0

Ωi(ldr) else

(2.52)

The second cases occurs at the leafs describes by Ωi where ι̂i returns a split.
The following sub-trees are considered by the third case. If w 6∈ Ci then we can
describe the word by w = lvr with l ∈ Ci, v ∈ An and r ∈ I∗×n such that
ι̂i(l) 6= 0 and v ∈ ψ−1(ι̂i(l)). The corresponding location in the predecessor tree
can be described by ldr ∈ Ci with d ∈ Ωi(l) such that v ⊆ d.

Let ΩP (w) = ψ−1(ζk(ξLw(b))) ∈ ΩP be an oracle defined by the geometry
analysis described in Sec. 2.9 then we can build that tree by degenerative refine-
ment with the sequence of modifier functions ιi(w) = ζk(ξLw(b)). There exists a
final iteration m ∈ N such that Ωk = ΩP for each m < k ∈ N.

2.11 Results

In the last section we show the results of experiments where we applied the
LIR-tree to a complex dataset and compare it to the Octree and KD-tree. In
our research we focus on voxel geometries, especially on fiber geometries, see
Fig. 2.11. Therefore we chose a complex generated fiberglass dataset for our
experiments. We restrict to a three-dimensional context since the LIR-tree is
designed for higher dimensional partitioning.

2.11.1 Generated Fiberglass

For our experiments we generated a very complex fiberglass dataset with the
GeoDict software suite [35]. The dataset is an approximation to a High-Efficiency
Particulate Air (HEPA) filter medium. HEPA filters are composed of randomly
arranged fibers on the micrometer scale.

In the highest resolution the dataset is represented by 400×400×4000 voxels
that can either be empty or solid. The fibers have a solid-volume-fraction of
8%. In general they have an anisotropic spatial orientation that is isotropic in
(x, y)-plane and layered in z-direction, see Fig. 2.12. A two-dimensional cut
through the dataset is shown in Fig. 2.13. We use the input function with ζ0,
see Fig. 2.14. An overlapping input function is used in Fig. 2.15 to illustrate the
behavior. A three-dimensional view of the tree structure is shown in Fig. 2.16.
The partitioning is done by ξLv with v ∈ An where we modified the center to
meet the voxel boundaries. In addition, we degenerate the tree first until a cubic
spatial domain is given.

19

2.11. Results

Figure 2.11: 3d fibrous material used as porous media model and as composite
material models proposed in [31] and implemented in the GeoDict software [35].

Figure 2.12: 2D views of a fiberglass medium from [35]: (x,y)-view, (y,z)-view.

2.11.2 Tree Comparison

The Octree and KD-tree are special LIR-trees generated by restriction of P by

Poct = {∅, I3} P ikd = {∅, {v ∈ A3 : vi ∈ I ∧ vj 6=i = I}} (2.53)

Figure 2.17 shows that the general LIR-tree has fewer nodes for each voxellength
compared to the Octree and KD-tree. In fact, the LIR-tree has the interior cell
complexity of the Octree and the leaf cell complexity of the KD-tree. Numer-
ous experiments showed that on average the LIR-tree has at least two times
fewer nodes compared to other trees in the three-dimensional case. We are in-
terested in efficient numerically suited representations rather then pure binary
data compression. Hence, the LIR-tree is an efficient method for that purpose.

2.11.3 Number of Children

In the next experiment we investigate the distribution of the number of children.
Figure 2.18 shows the distribution for the fiberglass example. It turns out that
in most cases a partitioned cell has two, three or four children. The cases of two
and three children are changing their places with respect to the voxel length due

20

2.11. Results

Figure 2.13: Cut through fiberglass. Figure 2.14: LIR-tree with ζ0.

Figure 2.15: LIR-tree with ζ1. Figure 2.16: 3D-View of the LIR-tree.

to the non-cubic dataset. On average they make up 25% of the partitions. A
five children partition occurs in 10% of the cases while the six, seven and eight
children partitions occur in up to 4% of the cases.

2.11.4 Error Analysis

In our last experiment we used the highest resolution of the fiberglass as ref-
erence and compared a lower resolved LIR-tree with respect to the number of
incorrect voxels and volume defect. Figure 2.18 shows that the relative error
has linear correlation to the voxellength. But it also shows that the relative
error has a quadratic correlation to the number of leafs. Hence, it makes sense
to use the number of leafs to investigate convergence orders instead of the voxel-
length. The error of the volume is lower compared to the total error. That is an
important property in situations where the same mass leads to same behaviors.

21

2.11. Results

0
2
4
6
8
10
12
14
16
18
20

1 2 3 4 5 6 7 8 910
Voxellength [10−7m]

N
o
d
es

[1
07
]

Interior

LIR

KD

Oct

0
2
4
6
8
10
12
14
16
18
20

1 2 3 4 5 6 7 8 910
Voxellength [10−7m]

N
o
d
es

[1
07
]

Leafs

LIR

KD

Oct

0
2
4
6
8
10
12
14
16
18
20

1 2 3 4 5 6 7 8 910
Voxellength [10−7m]

N
o
d
es

[1
07
]

Total

LIR

KD

Oct

Figure 2.17: Number of nodes used by the LIR-tree, KD-tree and Octree. The
interior, leaf and total number of nodes are considered.

0

10

20

30

40

1 2 3 4 5 6 7 8 910
Voxellength [10−7m]

C
h
il
d
re
n
[%

]

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

1 3 5 7
Voxellength [10−7m]

E
rr
or

[%
]

total

volume

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40
Leafs [106]

E
rr
or

[%
]

total

volume

Figure 2.18: Left: Number of children distribution. Center and right: Incorrect
voxel values and volume defect with respect to voxellength and number of leafs.

22

Chapter 3

Solving the Stokes Equation

Abstract

We introduce a novel approach of variable arrangement for pressure and velocity
to solve the Stokes equations. The basic idea of our method is to arrange
variables in a way such that each cell is able to satisfy a given physical law
independently from its neighbor cells. This is done by splitting velocity values
to a left and right converging component. For each cell we can set up a small
linear system that describes the momentum and mass conservation equations.
Theses formulation allows to use the Gauß-Seidel algorithm to solve the global
linear system. The LIR-tree is used for spatial partitioning of the geometry and
provides a proper initial guess. In addition, we introduce a method that uses
the actual velocity field to refine the tree and improve the numerical accuracy
where it is needed. The discretization converges to the analytical solution with
respect to grid refinement. Our method is compared to other state of the art
solvers. We conclude a high strength in computational time and memory for
high porosity geometries and a high strength in memory requirement for low
porosity geometries.

3.1 Governing Equations

The Navier-Stokes equations describe the motion of newtonian fluids. They
are named after Claude Louis Henri Navier and George Gabriel Stokes. More
specifically, the Navier Stokes equations describe the momentum conservation.
Together with the mass conservation, energy conservation and state equation we
get a system of non-linear partial differential equations of second order. They
are the fundamental base of computational fluid dynamics.

3.1.1 Stokes Equations

The Stokes equations are a simplification of the general Navier-Stokes equations.
They are used when the fluid velocity is very slow, i.e. the Reynolds number is
low (Re � 1).

3.1. Governing Equations

The influence of temperature is neglected and a constant density is assumed.
Therefore, we consider only the pressure and velocity of a fluid. We also restrict
to the steady state case where no unsteady acceleration is present. The convec-
tive acceleration is also omitted in the formulation.

A typical application area of the Stokes equations is geophysics. It is also
used in the oil industry to simulate the motion of oil in porous media. Another
important application area is research of filter media. In that area people are
interested in homogenized material constants, e.g. permeability. The perme-
ability tensor can be determined by applying axis aligned pressure drops in all
spatial directions.

Definition 23 (Stokes Equation). Let Ω ⊂ Rn be a domain such that all cor-
responding leaf nodes are either subset of Ω (computational domain) or subset
of −Ω (solid domain), i.e.

∀w∈X (Ω)ξw(D) ⊆ Ω ∨ ξw(D) ⊆ −Ω (3.1)

where Ω ⊆ b ∈ B denotes the embedding box. Then we define the two variables

u : Ω→ Rn velocity (3.2)

p : Ω→ R pressure (3.3)

The Stokes equation is then defined by

η∇2u−∇p+ f = 0 momentum conservation (3.4)

∇ · u = 0 mass conservation (3.5)

u|∂Ω = 0 no slip condition (3.6)

where η ∈ R+ describes the viscosity constant. In the following sections we use
the abbreviation ξw := ξw(D).

3.1.2 Effective Permeability

Engineers and researcher are interested in homogenized material constants and
laws. The linear relation between velocity and pressure through porous medium
is described by Darcy’s Law.

Definition 24 (Darcy’s Law). Darcy’s law describes the flow of a fluid sub-
stance through a porous medium. It is defined by

η · u = −K · ∇p (3.7)

where K is a tensor. The law was introduced by Henry Darcy based on experi-
ments. There are three possible configurations:

• Isotropic - the tensor is diagonal with equal entries

• Orthotropic - the tensor is diagonal but with different entries

• Anisotropic - the tensor is symmetric such that spatial directions are cou-
pled

25

3.2. Related Work

The effective permeability of a representative volume element in the three-
dimensional case is described by the tensor

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 ∈ R3×3 (3.8)

The tensor K can be determined by the application of three axis aligned pressure
drops and evaluation of the corresponding mean velocity, e.g. the coefficients in
x-direction are given by

η · u =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 ·
f0

0

 (3.9)

There are two ways to determine the mean velocity for a given pressure drop.
Let k ∈ N be the number of voxels and v be the voxellength in x-direction. Then
we can apply a volume force defined by f =

pdrop
k·v . The second way is to add or

subtract the pressure drop pdrop whenever we access a periodic neighbor in left
or right direction, respectively.

3.2 Related Work

The Stokes equations can be solved in numerous ways. There exist analytical
solutions for slow stokes flows around periodic arrays of spheres with different
alignments. These can be approximated by a series described in [30] for the two-
and three-dimensional case. We use the tree-dimensional solution for simple
cubic arrays of spheres to verify our algorithm.

For arbitrary complex geometries we have to use numerical method. We
refer to three numerical methods to solve the Stokes equations. That are

• Semi implicit methods for pressure linked equations

• Explicit-Jump immersed interface method

• Lattice-Boltzmann methods

The Semi implicit methods for pressure linked equations (SIMPLE) are used
in computational fluid dynamics to solve the Navier-Stokes equations. For the
Stokes equation the method is decomposed into the following steps: guess a
pressure field, solve the momentum conservation equation, correct the pressure
field with respect to the mass conservation equation and correct the velocity
field. These steps are iterated until a specified termination condition is reached.
Relaxation parameters for velocity and pressure have to be given that can ei-
ther be used to accelerate the convergence or to stabilize divergent behavior.
The method can used for complex geometries due to the low memory require-
ment. There exist several enhancement of the original algorithm, e.g. SIMPLE-
Corrected (SIMPLEC), SIMPLE-Revised (SIMPLER), or SIMPLE-FFT.

Explicit-Jump immersed interface method (EJ) is a very fast finite difference
method to solve partial differential equations [37]. It can be used to solve the
Stokes equations on binarized microstructures. Velocity and pressure values
are considered in all cells of a regular grid even in the solid phase. Additional

26

3.3. Conservation Law based Cellular Structure

fictitous forces are applied on the interfaces to satisfy the no-slip boundary
condition. The fast convergence rate is achieved by using the Fast Fourier
Transformation (FFT) on four Poisson problems. The memory requirements
are very low and also depend on the surface area of the interface. The method
is designed for geometries with high porosity. An implementation of the Explicit-
Jump method with simplified boundary conditions is shown in [36].

The Lattice Boltzmann methods (LB) can also be used to solve the Navier-
Stokes equations. It is based on molecular dynamics and solves the Lattice-
Boltzmann equation rather than solving Navier-Stokes equations itself. The
Lattice-Boltzmann equation describes interactions between particles. The flow
is simulated with collision models such as Bhatnagar-Gross-Krook. The method
allows to include different models to simulate different kinds of physical be-
haviors, e.g. thermal properties in fluids. The method has low memory and
computational requirement per cell.

We do not use the referred methods on the LIR-tree since they are designed
for regular grids and not suited for adaptive discretizations. Another reason
for that decision is the expensive neighborhood retrieval that has to be done
multiple times per iteration. Thus, we introduce a novel approach of solving
the Stokes equations with block linear systems such that the number of neigh-
borhood retrivals is minimized.

3.3 Conservation Law based Cellular Structure

In this section we describe a novel approach of variable arrangement to solve
partial differential equations. Since we restrict our work to flow simulations we
depict the velocity and pressure variable arrangement for LIR-trees. We also
provide a discretization for the Laplacian, gradient and divergence operator
term as well.

The fundamental idea of variable arrangement in a LIR-tree is that each
cell has to be able to satisfy a given (physical) law, e.g. the Stokes equations.
For that equations a cell has to be able to satisfy the conserve momentum and
mass. The crucial part of that given equations is the mass conservation. The
staggered and the collocated variable arrangement is not able to satisfy the mass
conservation for each cell independently. Therefore, a single cell in a tree stores
two velocity values for each direction at the face and a pressure value in the
center. As a consequence a regular grid would have two velocity values for each
location such that we have a left converging and a right converging value. In
fact, we use the equivalence classes in An to describe variable arrangement.

3.3.1 Cells

The leafs of a LIR-tree are called cells and they are the places of computation.
Therefore, we introduce a notation for the set of cells and its corresponding sets
of neighbor cells.

Definition 25 (Cells). Data is stored in the cells of a LIR-tree. Let Ω ∈ Ω
then cells are nodes w ∈ X (Ω) such that Ω(w) = ∅, i.e. the set of children is
empty. In addition, the domain of the cell has to be inside non-solid. The set

27

3.3. Conservation Law based Cellular Structure

pwu
(L,I)
w u

(R,I)
w

u
(I,L)
w

u
(I,R)
w

p̃
(L,I)
wũ

(L,I),(L,I)
w

ũ
(L,I),(I,L)
w

ũ
(L,I),(I,R)
w

p̃
(R,I)
w ũ

(R,I),(R,I)
w

ũ
(R,I),(I,L)
w

ũ
(R,I),(I,R)
w

p̃
(I,L)
w

ũ
(I,L),(I,L)
w

ũ
(I,L),(L,I)
w ũ

(I,L),(R,I)
w

p̃
(I,R)
w

ũ
(I,R),(I,R)
w

ũ
(I,R),(L,I)
w ũ

(I,R),(R,I)
w

|ξ̃
(L,I)
w |0

|ξw|0 |ξ̃
(R,I)
w |0

|ξ̃
(I,R)
w |1

|ξw|1

|ξ̃
(I,L)
w |1

Figure 3.1: Variable arrangement for pressure and velocity.

of cells for Ω is denoted by

C(Ω) := {w ∈ X (Ω) : Ω(w) = ∅ ∧ ξw ⊆ Ω} (3.10)

In the following we also use the abbreviation C := C(Ω).

Definition 26 (Neighborhood Cells). Let Ω ∈ Ω and w ∈ C a cell then the
corresponding set of neighbor cells in v ∈ An direction is defined by

Cvw := {q ∈ C : ∀i∈NξL
i

(−v)i ◦ ξ
RL
vv ◦ ξw ∩ ξq 6= ∅} (3.11)

In the following sections we also use the abbreviation D := Vn−1 and D :=
Vn−1/‖ for the set of parallel face vectors. In addition, we define the sets of left
and right neighbors by

CLw :=
⋃
v∈DL

Cvw Cw :=
⋃
v∈D
Cvw CRw :=

⋃
v∈DR

Cvw (3.12)

where we consider the left neighbor vectors DL = D∩{L, I}n and right neighbor
vector DR = D ∩ {I,R}n.

3.3.2 Variable Arrangement

The main idea of variable arrangement in a LIR-tree is that vector variables
have a left and a right converging value for direction in a cell.

28

3.3. Conservation Law based Cellular Structure

Definition 27 (Variables). Let w ∈ C be a cell then its variables consist of 2n
velocity value located on the faces and one pressure value located in the center:

uw ∈ Rn × Rn (uw)w∈C = u ∈ R|C|·2n velocity (3.13)

pw ∈ R (pw)w∈C = p ∈ R|C| pressure (3.14)

(uw, pw) = cw ∈ R2n+1 (cw)w∈C = c ∈ R|C|·(2n+1) cell values (3.15)

For velocity these left and right values can be seen as flow entering and leaving
the cell, respectively.

Definition 28 (Location). Let b ∈ B be an interval and v ∈ An be a vector
then we define two projection operator ↓v and ↑v. The first operator is defined
by

[bL, bR] ↓L= bL [bL, bR] ↓I=
1

2
(bL + bR) [bL, bR] ↓R= bR (3.16)

and maps the interval to an interior location pointed by v. The second operator
maps to the opposing location and is defined by

[bL, bR] ↑L= bR [bL, bR] ↑I=
1

2
(bL + bR) [bL, bR] ↑R= bL (3.17)

These operators are used to point at the center of edges, faces and the interval
itself. They can describe the location of velocity and pressure variables inside a
cell.

3.3.3 Neighborhood Evaluation

Computations inside a cell often requires values also at the neighbors. In nu-
merous experiments we found out that more complex methods of interpolating
values for the neighbors (e.g. B-Splines) do not significantly increase the quality
of the result. But they increase the computational time significantly. Therefore,
we just average neighbor values and use linear interpolation.

Definition 29 (Size Determination). Let w ∈ C be a cell and v ∈ An be a
neighbor direction then we average the sizes of neighboring cells by

ξ̃vw :=
1

|Cvw|
∑
q∈Cvw

ξq (3.18)

The addition and multiplication of space partitioning functions is done by adding
or multiply the left and right boundary vectors, respectively. In the case of solid
neighbor nodes, i.e. Cvw = ∅ we can also use ξ̃vw = ξRLvv ◦ ξw for that neighbor.
Let v ∈ An then we define the volume evaluation operator by

|ξ|v :=

n∏
i=1
vi=I

|ξ|i (3.19)

where we consider directions that are split. These sizes are used to discretize
differential operators.

29

3.3. Conservation Law based Cellular Structure

Definition 30 (Value Determination). In the same way, let w ∈ C be a cell
and v ∈ An be a neighbor direction then we average the values of neighboring
cells by

x̂vw =
1

|Cvw|
∑
q∈Cvw

xq (3.20)

to define a representative value x̂vw. Averaging of neighbor values is denoted by
the ·̂ operator. We increase the numerical accuracy by linear interpolation to
the desired planes of the originating cell size. Let w ∈ C be a cell, v ∈ An be a
neighbor direction and d ∈ d ∈ D a variable location of the variable x. Then all
vectors t ∈ d that are parallel to d are used for linear interpolation defined by

x̃v,dw =
∑
t‖d

|[ξw ↓d, ξ̃vw ↑t]|d
|ξ̃vw|d

· x̂v,tw (3.21)

The ·̃ operator applied to variables is used to determine appropriate representa-
tive neighbor values used in our discretization.

A flow can be induced by a pressure drop at periodic neighbor cells in flow
direction. In that case value determination x̃ has to add a constant pressure
drop accordingly.

The advantage of averaging sizes and values is alignment in the memory.
That allows the usage of vectorized instructions in modern CPUs. As a conse-
quence we sacrifice accuracy to gain more computational speed. If the accuracy
is not sufficient in a certain region of the domain then we rely on refinement of
the tree.

3.3.4 Discretized Differential Operators

At this point we know how to evaluate neighbor values and sizes for a given
cell inside the LIR-tree. These values are used to discretize partial differential
operators. For the Stokes equation we have to discretize the Laplacian and
divergence for velocities and the gradient for the pressure. We present a gen-
eral derivation and interpolation operator that can be used to discretize more
complex differential operators.

Definition 31 (Derivation operator). We introduce a general derivation op-
erator for k-dimensional variables embedded to a n-dimensional domain along
equivalence classes. Let v ∈ An and {l, r} = d ∈ D where v denotes the variable
and d a specified direction. Without loss of generality, we assume that l ∈ DL

and r ∈ DR. Then we define the derivation operator

∂d : R|C|·|v| → R|C|·|v+d| (3.22)

x 7→

xv+r
w −xv+l

w

|ξw|d if v + l ∈ v ∧ v + r ∈ v

2
x̃r,v+l
w −xv+l

w

|ξw+ξ̃rw|d
if v + l ∈ v ∧ v + r 6∈ v

2
xv+r
w −x̃l,v+r

w

|ξ̃lw+ξw|d
if v + l 6∈ v ∧ v + r ∈ v

(w,v)∈C×(v+d)

(3.23)

The generalization to d ∈ An is done by consecutive composition. The gradient
operator arises from D defined by

∇ = (∂d)d∈D (3.24)

30

3.3. Conservation Law based Cellular Structure

This operator also used to discretize the Laplace and divergence operators.

Definition 32 (Interpolation operator). In order to move variable positions to
other points inside a cell we define the interpolation operator

�d : R|C|·|v| → R|C|·|v+d| (3.25)

x 7→

xv+r
w +xv+l

w

2 if v + l ∈ v ∧ v + r ∈ v
|ξw|dx̃r,v+l

w +|ξ̃rw|dx
v+l
w

|ξw+ξ̃rw|d
if v + l ∈ v ∧ v + r 6∈ v

|ξ̃lw|dx
v+r
w +|ξw|dx̃l,v+r

w

|ξ̃lw+ξw|d
if v + l 6∈ v ∧ v + r ∈ v

(w,v)∈C×(v+d)

(3.26)

Similar to the derivation operator, we introduce a gradient-like vector operator
along spatial directions defined by

� = (�d)d∈D (3.27)

These operators can be composed with derivation operators, e.g. �∇.

Definition 33 (Gradient). The gradient of pressure is discretized by the general
gradient operators and reduces to

∇p = (∇wp)w∈C ∈ R|C||D| (3.28)

such that

∇wp =

2
p̃rw−pw
|ξw+ξ̃rw|d

if v = r

2
pw−p̃lw
|ξ̃lw+ξw|d

else

v∈{l,r}=d∈D

(3.29)

for a cell w ∈ C. The pressure value in the center yields a pressure gradient
value for each face center.

Definition 34 (Laplacian). Let w ∈ C be a cell inside a LIR-tree then and
v ∈ An be a vector that identifies a position on the face of a cell we discretize
the Laplacian for velocities by

∇2u =
(
∇2
wu
)
w∈C ∈ R|C||D| (3.30)

such that

∇2
wu =

 ∑
{l,r}=d∈D

2

|ξ̃lw+ξw|d

(
ur
w−u

l
w

|ξw|d −
ũl,r
w −ũ

l,l
w

|ξ̃lw|d

)
if v = l

2

|ξw+ξ̃rw|d

(
ũr,r
w −ũ

r,l
w

|ξ̃rw|d
− ur

w−u
l
w

|ξw|d

)
if v = r

2
|ξw|d

(
ũr,v
w −u

v
w

|ξw+ξ̃rw|d
− uv

w−ũ
l,v
w

|ξ̃lw+ξw|d

)
else

v∈D

(3.31)

The first two cases consider parallel neighbors where the last case considers
orthogonal neighbor values.

Definition 35 (Divergence). Let w ∈ C be a cell then we discretize the diver-
gence for velocities by

∇ · u = ((∇·)wu)w∈C ∈ R|C| (3.32)

31

3.3. Conservation Law based Cellular Structure

u
(I,R)
wũ

(L,I),(I,R)
w ũ

(R,I),(I,R)
w

u
(L,I)
w u

(R,I)
w ũ

(R,I),(R,I)
w

Figure 3.2: Two cases of the Laplacian with continuity condition.

pw p̃
(R,I)
w

Figure 3.3: Pressure gradient.

u
(L,I)
w u

(R,I)
w

u
(I,L)
w

u
(I,R)
w

Figure 3.4: Divergence.

such that

(∇·)wu =
∑

{l,r}=d∈D

urw − ulw
|ξw|d

(3.33)

where we sum up the discretized derivations. Note that no neighbor values are
used to satisfy the mass conservation.

Definition 36 (Continuity). In order to ensure a continuous velocity field we
introduce the continuity condition defined by

Mv,d
w,q ∈ R|↔ :=

Mv,v
w,w −

∑
p∈Cvw

Mv,−v
w,p if w = q ∧ d = v ∈ D

0 if q ∈ Cvw ∧ −d = v ∈ D
Mv,d
w,q else

(3.34)

The coefficients of opposing neighbor velocity values are moved to the cell w. The
continuity operators enforces left and right converging components to converge
to (approximately) the same values.

Definition 37 (No Slip). The no-slip condition is enforced by replacing certain
momentum equations by equality equations. If a velocity values lives on the
empty-solid interface then its corresponding momentum equation is replaced by
an equation that sets its value to zero, i.e.

Mv,d
w,q ∈ R|∂Ω=0 :=

Mv,d
w,q if Cvw 6= ∅

1 if v = d

0 else

(3.35)

and for vectors, i.e.

fvw|∂Ω=0 :=

{
fvw if Cvw 6= ∅
0 else

(3.36)

The notation |∂Ω=0 can be applied to a matrix and a vector.

32

3.4. Solving Single Cell Systems

3.4 Solving Single Cell Systems

The main idea of solving a partial differential equation with a LIR-tree is defining
a local linear system for each cell. That linear system has to be discretized such
that a cell can satisfy the PDE itself without changing neighbor values. Hence
the global linear system can be seen as block linear system. These blocks have
to be regular at the diagonal such that the linear system is block-diagonally
dominant. That kind of describing a PDE with a block-wise matrix is called
single cell system.

3.4.1 Stokes Block System

Definition 38 (Block System Matrix). Let w, q ∈ C then a block is defined as

Mw,q ∈ R(2n+1)2 that can be gathered to a matrix of blocks, i.e.

M =
(
Mw,q ∈ R(2n+1)2

)
(w,q)∈C2

∈ R(|C|·(2n+1))2 (3.37)

We use the notation Mw to denote the row block vector for the cell w. M is
called the block system matrix.

Definition 39 (Block Linear System). The Stokes equation is discretized by
gathering the discretizations for each differential operator to blocks, i.e.

M · c =

(
∇2u−∇p
∇ · u

)∣∣∣∣∂Ω=0

↔
=

(
∇2
wu−∇wp
(∇·)wu

∣∣∣∣∂Ω=0

↔

)
w∈C

= (3.38)

= f =
(
fw|∂Ω=0

)
w∈C

(3.39)

where f ∈ R|C|·(2n+1) is a given right hand side.

Theorem 5. Let w ∈ C a cell then its block Mw,w is regular, i.e. the inverse
block M−1

w,w such that Mw,w ·M−1
w,w = 1 exists.

Example 3. Let n = 2 then we get the two-dimensional Stokes equation. For
simplicity we set all cell sizes and the dynamic viscosity constant to one. We also
assume periodic boundary conditions for the cells at the border of the domain.
The variable arrangement for the two-dimensional case and a regular grid like
LIR-tree is illustrated in figure 3.5. The top right region is solid and introduces
no-slip boundary conditions for the bottom left and top left cells.

The block equation for the bottom left cell (L,L) ∈ C is defined by

−4 1 −1
1 −4 1

−4 1 −1
1 −4 1

−1 1 −1 1

 ·

u

(L,I)
(L,L)

u
(R,I)
(L,L)

u
(I,L)
(L,L)

u
(I,R)
(L,L)

p(L,L)

 =

b
(L,I)
(L,L)

b
(R,I)
(L,L)

b
(I,L)
(L,L)

b
(I,R)
(L,L)

b
(I,I)
(L,L)

(3.40)

33

3.4. Solving Single Cell Systems

pL,L

u
L,I
L,L

u
R,I
L,L

u
I,L
L,L

u
I,R
L,L

pR,L

u
L,I
R,L

u
R,I
R,L

u
I,L
R,L

u
I,R
R,L

pL,R

u
L,I
L,R

u
R,I
L,R

u
I,L
L,R

u
I,R
L,R

Figure 3.5: Variable arrangement for pressure and velocity values in the two-
dimensional case.

with the right hand side

b
(L,I)
(L,L)

b
(R,I)
(L,L)

b
(I,L)
(L,L)

b
(I,R)
(L,L)

b
(I,I)
(L,L)

=

−u(L,I)

(R,L) − u
(L,I)
(L,R) − u

(L,I)
(L,R) − p(R,L) − f

(L,I)
(L,L)

−u(R,I)
(R,L) − u

(R,I)
(L,R) − u

(R,I)
(L,R) + p(R,L) − f

(R,I)
(L,L)

−u(I,L)
(R,L) − u

(I,L)
(R,L) − u

(I,L)
(L,R) − p(L,R) − f

(I,L)
(L,L)

−u(I,R)
(R,L) − u

(I,R)
(R,L) − u

(I,R)
(L,R) + p(L,R) − f

(I,R)
(L,L)

0

 (3.41)

The block matrix has the inverse block matrix

M−1
(L,L),(L,L) =

1

60

−13 −7 3 −3 −15
−7 −13 −3 3 15
3 −3 −13 −7 −15
−3 3 −7 −13 15
−15 15 −15 15 75

 (3.42)

The block system matrix has the following appearance

−4 1 −1 1 1 2
1 −4 1 1 −1 2

−4 1 −1 2 1 1
1 −4 1 2 1 −1

−1 1 −1 1
1 −1 −4 1 −1

1 1 1 −4 1
1

1
−1 1 −1 1

1
1

1 1 −4 1 −1
1 −1 1 −4 1

−1 1 −1 1

34

3.4. Solving Single Cell Systems

that can also be written in the compact form

M =

 M(L,L),(L,L) M(L,L),(R,L) M(L,L),(L,R)

M(R,L),(L,L) M(R,L),(R,L) 0
M(L,R),(L,L) 0 M(L,R),(L,R)

 =

 M(L,L)

M(R,L)

M(L,R)

 (3.43)

The diagonal blocks M(R,L),(R,L) and M(L,R),(L,R) for the cells (R,L) and
(L,R) contain equality equations introduced by the no-slip boundary conditions.

In numerous experiments with different kinds of data we found that the
number of different blocks is limited and considerably less than the number of
cells, i.e.

{Mw,w ∈ R2n+1 : w ∈ C} � |C| (3.44)

Therefore, the performance can be improved by using precomputed inverted
diagonal and sparse neighbor blocks. In our implementation we used that ap-
proach for cells that reached the limit of space partitioning.

3.4.2 Gauß-Seidel for Block Linear Systems

If a diagonal invertible block system matrix is given then we can use the Gauß-
Seidel algorithm as iterative solver. It is also possible to use the Jacobi algorithm
so solve block linear systems. But due to the slower convergence and higher
memory requirement we restrict to the Gauß-Seidel algorithm.

Definition 40 (Gauß-Seidel with Relaxation for BLS). Let M = (Mq,w ∈
Rk2)w,q∈C ∈ Rk2·|C|2 be a diagonally dominant and invertible block system matrix
with the corresponding linear system M · c = f then we can derive the Gauß-
Seidel algorithm for w ∈ C with

Mw · c =
∑
q∈C

Mw,q · cq = fw (3.45)

where the value cw can be extracted as

Mw · c = Mw,w · cw +
∑
q∈CLw

Mw,q · cq +
∑
q∈CRw

Mw,q · cq = fw (3.46)

The iterative approach is given by

ĉi+1
w = M−1

w,w ·

fw − ∑
q∈CLw

Mw,q · ci+1
q −

∑
q∈CRw

Mw,q · ciq

 (3.47)

where we restrict to neighbor cells. The proceeding value ci+1
w is defined by

ci+1
w = (1− α) · ciw + α · ĉi+1

w (3.48)

with the relaxation parameter α ∈ (0, 2) ⊂ R.

In numerous experiments the following Krylov subspace methods have been
considered: Biconjugate gradient stabilized method (BiCGStab), Generalized
minimal residual method (GMRES), Conjugate Gradient Squared (CGS). But
in the context of block linear systems they provide no significant advantages over
the Gauß-Seidel algorithm. The opposite is true. The memory requirements are
higher and the convergence behavior is too unstable. In many cases convergence
could not be obtained.

35

3.5. Refinement Rules

3.5 Refinement Rules

The input function described in section 2.9 is used as an initial guess for the
tree structure, i.e.

Ω0(w) = ψ−1(ζk(ξLw(b))). (3.49)

But after some Gauß-Seidel iterations we can use the actual velocity field to
refine the tree and improve the accuracy where it is needed. Therefore, we
use iterative refinement. The initial guess may already have numerical adverse
properties, e.g. the cell size ratio between neighboring cells.

3.5.1 Maximum Neighbor Size Ratio

The preservation of a maximal neighbor size ratios increases the numerical sta-
bility and accuracy. Therefore, we introduce a iterative modifier function that
converges a given tree structure until a specified maximal ratio is given.

Definition 41 (Size Ratio preservation). Let k ∈ N be a threshold then we
define the modifier function ι by

ι : I∗×n → S (3.50)

w 7→

 ∨
e⊆v∈D

∃q∈Cvwe
|q|i − |w|i > k

e∈S
ei=I

(3.51)

w 7→

 ∨
e⊆v∈D

∃q∈Cvwe
|ξw|e/⊥ > k · |ξq|e/⊥

e∈S
ei=I

(3.52)

that returns splits for a cell w if there exists neighbor cell with exceeded size ratio.
The first implementation uses the length of words and the second implementation
considers actual cell sizes. We suggest k = 1 for the first and k = 3 for the
second approach.

Before numerical calculations takes place the initial tree is modified by the
presented neighbor size ratio preservation. These operations are computation-
ally expensive and should be done once after geometry analysis. Additional
refinement approaches should includes the preservation of neighbor size ratio
implicitly. Thus, we describe the set of edges that are allowed to be split by

Esplit = {(w, e) ∈ C × E : ∀ni=1ei = I ⇒ (|ξw|i > t ∧ |ξw|i ≥ |ξq∈Cw |i)} (3.53)

where t is the limit of partitioning, see Section 2.9. The additional condition
considering the cell size preserves the cell size ratio between neighboring cells.
This restriction allows to easily formulate refinement algorithms with that prop-
erty.

3.5.2 Difference Reduction

We introduce a difference reduction approach for refinement that uses the ac-
tual solution (e.g. velocity field) to predict where a higher numerical accuracy

36

3.5. Refinement Rules

Figure 3.6: Edge analysis for difference reduction. The dashed entity denotes
the analyzed edge. In parallel direction the upper vertical velocity values of the
neighbors and the horizontal velocity values of the cell itself are considered.

is needed. The basic idea of solution dependent refinement is to use value dif-
ferences between neighboring cells. We split a cell if its values differs more than
a certain threshold with respect to the values of the neighbor cells. The cell size
is also taken into account. We assume that we have to increase the accuracy
where the value difference is high. The aim of that method is to reduce the
overall value differences.

Definition 42. Let x be the variable we want to use for refinement (e.g. ve-
locity) where the position of its values in each cell are defined by Vk. Then we
define the modifier function

ι : I∗×n → S (3.54)

w 7→

({
λw,e > α ·maxλ if (w, e) ∈ Esplit
0 else

)
e∈E

(3.55)

where we use the auxiliary values defined by

λw,e = max

{
|xvw − xdw| : v, d ∈ Vk ∧ v ‖ d ∧ v, d ∩ e
|x̃v,dq − xdw| : d ∈ Vk ∧ e ⊥ v ∧ e ⊆ d

(3.56)

For each edge e ∈ E we consider the neighbor cells in orthogonal directions. If
there exist values at the positions e ⊆ d that differ more than a certain threshold
then the edge is split. We also consider values in parallel positions inside w that
intersects e. The threshold is based on the maximum over all differences maxλ
and the coefficient α.

The question remains how to choose the coefficient α. We require to control
the number of cells generated for each refinement. Therefore, we allow to specify
a desired number of cells and introduce an approach to determine a suited
coefficient α.

Definition 43. Let c ∈ N be the desired number of cells and γ ∈ N be a growth
factor (e.g. γ = 1

2) then we aim to increase the number of cells by

h = min(γ · |Ci|, c)− |Ci| (3.57)

An approximation to that requirement is to choose α such that

|{(w, e) ∈ Esplit : λw,e > α}| = h (3.58)

37

3.6. Parallelization

This can be accomplished by using histograms [0,maxλ] ⊂ R. Let k ∈ N then
we define the vector (E isplit ∈ N)ki=1 by

E isplit =

∣∣∣∣{(w, e) ∈ Esplit :
i− 1

k
maxλ < λw,e ≤

i

k
maxλ

}∣∣∣∣ (3.59)

Histograms allow to find a suited coefficient easily by

α =
1

k
min

i ∈ N :

k∑
j=i

Ejsplit < h

 (3.60)

In our experiments the approach of determining the coefficient α converges to
a LIR-tree such that the desired number of cells is approximated. That property
allows to analyse the behavior of our method with respect to the number of cells
in addition to the cell size.

We also tried to use the pressure field to improve the structure of the tree.
But our experiments showed that using the pressure field introduces clutter.
Therefore, we stick to the velocity field. Moreover, gradient based refinement is
not suited to improve the accuracy where it is needed.

3.6 Parallelization

In the context of large scale datasets, parallelization is a very important topic
in numerical mathematics. In this section we give an overview to parallelize the
Gauß-Seidel algorithm.

The first levels in the LIR-tree partition the computational domain into
macroblocks. Hence, the input function based on the geometry is modified such
that the first levels in the LIR-tree yield a regular grid of macroblocks. Figure
3.7 depict the dependencies between macroblocks that are needed to gain a
well-formed Gauß-Seidel algorithm.

In this context, Ω ⊂ Ω is the sub-tree describing the first levels that are
parallelized. Let w ∈ C be a macroblock in the jw-th iteration step then we
can do the Gauß-Seidel step if each left neighbor in Cvw is in the same or one
iteration ahead. That depends on whether the neighbor is a perodic neighbor,
i.e.

∀
q∈CLw

{
jq > jw if ξRLvv (ξw(b)) ⊆ b

jq = jw else
(3.61)

As a consequence, threads are working on different iterations asynchronous.
Boundaries of macroblocks are sent after processing and not on demand. If the
computation is done on a shared memory machine then there is no need of data
duplication for the boundaries.

Let m ∈ N be the number of threads and b ∈ B be the computational
domain. Then we need at least k = m macro blocks per direction that can be
processed in parallel for the two-dimensional case. For the the three-dimensional

case we need k =
⌈√

1
4 + 2m− 1

2

⌉
macro blocks. We introduce the three oper-

ators

dke2 := 2d
log(k)
log(2) e bkc2 := 2b

log(k)
log(2) c bke2 := arg min

x∈{bkc2,dke2}
|k − x| (3.62)

38

3.7. Splines

j + 1 j + 1 j j

j + 1 j j j

j + 1 j j j

j j j j

Figure 3.7: Parallelization scheme for the Gauß-Seidel algorithm. Squares rep-
resent macro blocks and the blue arrows indicate their dependencies. Three
parallel threads are working on the macro blocks highlighted in red. The num-
bers inside the squares show the current iteration.

that quantize to upper or low powers of two, respectively. Then we define the

auxiliary domain c = min |b|
dke2 where we use the upper power of two from k. The

domain c describes the regular grid of macro blocks. We quantize to the nearest
power of two by ĉ = [bcLe2, bcRe2]. Finally, the modifier function that construct
an appropriate parallelized grid Ω is given by

ι : I∗×n → S w 7→
(
|ξw (̂c)|i >

1

2
max |ξw (̂c)| ∧ |ξw (̂c)|i > 1

)
e∈E
ei=I

(3.63)

The first term splits in elongated directions first. This is an important property
since most geometries are not cubic.

The advantage of this parallelization approach is the small number of global
synchronizations. In addition, sequential and parallel processing yield the exact
same result for each cell. A synchronization of all threads is only needed after
a given number of iterations. After synchronization there is a chance to do
refinement on the LIR-tree and to check if a specified termination condition is
reached.

3.7 Splines

After solving the Stokes equations there is a need for retrieving a velocity and
pressure value for each point in the computational domain. Important applica-
tions areas are:

• Visualization for analysis and advertisement

• Feature extraction

39

3.7. Splines

• Tracking (e.g. particles)

Therefore, we introduce a pice-wise constant and a smooth representation for
the flow and pressure field.

3.7.1 Piece-wise constant Spline

In order to analyse the behavior of the iterative solution process it is useful to
look at the raw data. Thus, we can use piece-wise constant functions to get an
insight to the data.

Definition 44 (Piece-wise constant functions). A simple approach for defining
a velocity field in Rn and a scalar pressure field in R for a LIR-tree is using
pice-wise constant functions

uv∈D : x ∈ ξw(v∈v)(B) 7→ uvw (3.64)

p : x ∈ ξw(B) 7→ pw (3.65)

where we assign variable values to their corresponding domain.

3.7.2 Subdivision Spline

To get a deeper insight to the data one can also use a smoothed version. In this
section we present smooth G1 steady approximation that can be applied to the
velocity and pressure field. The basic idea is to use a recursive taylor series.
Assume we want to use Ω0 ∈ ΩP as initial data for approximation.

Definition 45. Then the sequence of oracles defined by the modifier function

ιj = ϑlj l0 = 2max(dlog |bi|/ log 2e)ni=1 lj+1 =
lj
2

(3.66)

with the increasing thresholds such that Ω0 converges to a regular grid. The
threshold sequence li ensures that the largest cell are split first.

Corollary 3. There exists a k ∈ N such that for each i ≥ k the trees are equal,
i.e.

lim
i∈N

Ωi ∈ ΩP = Ωi = Ωk (3.67)

The limit always exists and all cell sizes are equal, that is

∀i≥k∀w,q∈Ci |ξw| = |ξq| (3.68)

Definition 46. Let (Ωi ∈ ΩP)i∈R be a sequence of oracles for the variable x.
Let w ∈ Cj∈N be the origin cell such that Ωj(w) = ∅ and Ωj+1(w) 6= ∅. Let
v ∈ Ωj+1(w) a child vector for the next iteration j + 1 then the value for the
child cell wv ∈ Cj+1 at position d ∈ d ∈ An is defined by

xdj+1,wv = xdj,w + (ξwv − ξw) ↓d ·�j,w∇j,wxj (3.69)

We use first terms of the taylor series with the origin ξw ↓d and discretized
derivations. The coefficients are determined from the cell sizes.

Theorem 6. The subdivision spline is a G1 steady approximation.

Proof. We know that the initial tree converges to a regular grid. Hence, un-
til that point we can see the subdivision scheme as control point generation.
On that point we subdivide regular grids with straight interpolation between
neighbor cells.

40

3.8. Termination

3.8 Termination

At this point we know how to refine the discretization defined by a LIR-tree
to converge to the analytical solution and how to solve the block linear system
defined by the actual discretization. However the question still remains in which
order refinement and solving should take place. The order affects the termina-
tion condition as well. In this section we describe an approach to control the
refine and solution process.

Let i ∈ N be the solver iteration number and (l, r) = v ∈ D be the direction
where the apply a force or a pressure difference, respectively. Then

ûji =
1

2|D|
∑
w∈C

(uri,w + uli,w)|ξw(D)| (3.70)

defines the mean velocity along that direction. It is reasonable to check the
termination condition after a given number of iterations. Therefore, let h ∈ N
be a check-interval then the relative difference to the previous considered mean
velocity is given by

ti =

∣∣∣∣∣ û
j
i − û

j
i−h

ûji−h

∣∣∣∣∣ (3.71)

These values are also called tolerances and used to decide wether the solution
of the current discretization is found.

Let (ji ∈ N)i∈N be a sequence with ji+1 = ji∨ji+1 = ji+1 then Ωji describes
the schedule of refinement. Similar, we define the refine-tolerance

ri =
||Ci| − |Ci−1||
|Ci−1|

(3.72)

where i describes the refinement iteration number.
Let 0 < εsol ∈ R be a given tolerance. If no refinement is used then ti < εsol

is a suited termination condition. Otherwise we introduce a converge-first order.
Let 0 < εref ∈ R and εkeep ∈ N. In converge-first order refinement is done if the
current tolerance ti is below the given threshold εref, i.e.

ji+1 =

{
ji + 1 if ti < εref ∧ rji ≥ εkeep

ji else
(3.73)

Refinement is done until the number of cells that have been introduced or re-
moved is below the threshold εkeep. The termination condition is reached if
ti < εsol and rji < εkeep, i.e. we found an optimal discretization and its corre-
sponding solution.

3.9 Results

In this section we describe experiments where we applied the LIR-tree and the
LIR-solver on different kinds of datasets to analyze numerical properties. That
are convergence of:

• Conservation law based cellular structure to analytical solutions

41

3.9. Results

Input

Parallel grid generation

Geometry analysis

Enforce maximum size ratio

Gauß-Seidel iterations

Difference reduction Refinement?

Termination?

Output

No

Yes

No

Yes

Figure 3.8: Outline of the solver. The initial guess for the discretization is
constructed by the parallel grid generation, geometry analysis and the maximum
neighbor size ratio condition. The Block-Gauß-Seidel is used for a number of
iterations. Then there is a chance for refinement or termination.

• Refinement to analytical solutions

• Gauß-Seidel for block linear systems

Computational aspects are of greater importance too. We investigate the fol-
lowing properties

• Parallelization

• Runtime

• Memory requirements

that have to be concerned in the context of large geometries. We get an inside to
the mentioned aspects by applying different geometries. Table 3.1 lists different
computational resources that we used in our experiments where performance is
considered. The sketch in Fig. 3.8 shows the outline of the whole algorithm.

3.9.1 The Geometries

First, we introduce four geometries used in our experiments. That are

42

3.9. Results

Name CPU Clock rate Cores Memory

Hermes Intel(R) Xeon(R) 3.0 GHz 8 16 GB
Hannover Intel(R) Xeon(R) X5690 3.46 GHz 24 96 GB

Golem AMD Opteron(tm) 6282 SE 2.6 GHZ 64 512 GB

Table 3.1: Computational resources used in our experiments

• periodic arrays of spheres

• generated fiber microstructure

• computed tomography scans of sandstone carbonate

• computed tomography scans of berea sandstone

The geometries are suited for different kind of analysis.

Arrays of Spheres

A widely accepted geometry for convergence analysis are periodic arrays of
spheres. They are used to show convergence of a method to known analytical
solutions. It can also be used for the Stokes equations where we know the
permeability with respect to varying diameters, see [30]. We use a unit cube
with periodic boundary condition where a sphere with given diameter is located
at the center. The interior of the sphere is assumed be solid. Figure 3.9 shows
a sphere inside a unit box with a diameter of χ = 0.5 and a spatial resolution
of 128 voxel per direction.

Fiber Microstructure

The next dataset is a computer generated fiber microstructure. The geometry
has similar properties to the one we used in section 2.11.1. The dataset con-
sists of two different types (10µm and 6µm diameter) of fibers in micrometer
scale. The distribution count of both types is 50%. The fiber orientation is
anisotropic distributed but more isotropic in x− y direction. The porosity with
approximately 92% is very high. We have an analytical description of the geom-
etry. Therefore, we can use a high resolution instance for convergence analysis.
The fiber structure can be used to measure computational performance as well.
Figure 3.10 shows two- and three-dimensional cuts through the datasets.

Sandstone Carbonate

The underlying structure of the sandstone carbonate dataset is a very com-
plex pore network with many connections and dead ends. The pores are dis-
tributed inhomogeneous. That property can be challenging for parallelization.
The porosity value of 18% is very low, in contrast to the fiber microstructure.
The dataset is used to analyize the performance of our approach compared to
other methods. The geometry is challenging for the LIR-tree due to the large
boundary area. Figure 3.9 shows different views of the datasets and reveals its
complex nature. The dataset is given as a 7503 binary voxel geometry with a
voxellength of 2.99µm

43

3.9. Results

Figure 3.9: Unit box with a spherical obstacle in 2D (upper left) and 3D (upper
right). The sphere has a diameter of χ = 0.5 and a resolution of 128 voxel per
direction. The centered images show velocity and pressure drop from left to
right. The bottom images show velocity and pressure toward the view plane.

44

3.9. Results

Figure 3.10: Different views of a fiber microstructure. The center left image
shows a cut along the y− z-plane and the center right image shows a cut along
the x − y-plane. Red fibers have 10µm diameter and green fibers have 6µm
diameter. The bottom images show velocity and pressure drop from bottum to
top.

45

3.9. Results

Figure 3.11: Different views of a computed tomography scan of sandstone car-
bonate. The centered images show a cut through the voxel geometry in y − z-
plane and x − z-plane. The complex pore structure forms a large number of
labyrinths for flow simulations. The bottom images show velocity and pressure
drop from bottom to top for a small part of the geometry.

46

3.9. Results

Figure 3.12: Different views of a computed tomography scan of Berea sandstone.
The left image shows a cut through the voxel geometry in y−z-plane. The right
image shows a three dimensional view that reveals the complex nature of the
dataset.

Berea Sandstone

The complexity of Berea sandstone is very similar to the previous sandstone
carbonate. The interior structure is a network of pores with a low porosity.
The dataset is also given as computed tomography scan and well mentioned in
literature, see [1] and [2]. The geometry has a resolution of 720×720×1024 voxels
with a voxellength of 0.74µm and a low porosity of 18%. The visual appearance
of the geometry and the corresponding solution fields are very similar to the
sandstone carbonate. Fig. 3.12 shows different view of the Berea sandstone
dataset.

3.9.2 Convergence Analysis

In this section we show that our method to solve the Stokes equations converges
to the analytical solution with respect to decreasing cell sizes. We analyize the
convergence behavior with respect to the effective permeability.

For periodic arrays of spheres we know the exact permeability with respect
to different diameters. We consider the values given in [30] as exact solution.

In our first experiment we used a regular grid represented by the LIR-tree and
the tolerance εsol = 10−6 with a check interval of 100 as termination condition.
Sphere diameters from 0.1 to 1.0 and a viscosity of η = 1 were considered.

Table 3.2 shows the computed permeabilities with respect to different sphere
diameters and regular grid sizes and Fig. 3.13 shows the corresponding relative
errors to the exact solution. A first order convergence behavior is clearly visible.
The two coarse grids are sufficiently accurate to get an intuition of the real
effective permeability.

47

3.9. Results

χ 32 64 96 128

0.1 1.30564 0.905443 0.886617 0.901776
0.2 0.379663 0.377878 0.379734 0.378741
0.3 0.20027 0.206559 0.205385 0.207009
0.4 0.121694 0.121754 0.122561 0.12226
0.5 0.0720238 0.0732844 0.0740099 0.0740499
0.6 0.0441904 0.0441682 0.044089 0.0442098
0.7 0.0246388 0.0249431 0.0249371 0.0249993
0.8 0.0129482 0.0129733 0.0130692 0.013085
0.9 0.00595013 0.00607539 0.0060988 0.00609873

1 0.00244752 0.002478 0.00249463 0.00248944

[30]

0.9112
0.3822
0.2081
0.1233

0.07467
0.04450
0.02525
0.01320

0.006153
0.002520

Table 3.2: Permeabilites for different sphere diameters χ and regular grid sizes
from 323 to 1283 voxels. The right table considers the exact solutions.

χ 32 64 96 128

0.1 1.31418 0.908414 0.886001 0.896216
0.2 0.384652 0.378452 0.377504 0.377788
0.3 0.203219 0.206371 0.206478 0.205842
0.4 0.12373 0.121762 0.121647 0.121613
0.5 0.0725093 0.0736114 0.0737264 0.0741953
0.6 0.0443653 0.0437755 0.04366 0.0440202
0.7 0.0249182 0.0250236 0.024754 0.0249736
0.8 0.0130624 0.0130361 0.0129964 0.0130453
0.9 0.00602412 0.00611886 0.00605846 0.00605128

1 0.00245001 0.00246954 0.00243877 0.00246438

[30]

0.9112
0.3822
0.2081
0.1233

0.07467
0.04450
0.02525
0.01320

0.006153
0.002520

Table 3.3: Permeabilites for different sphere diameters χ and LIR-tree grid sizes
from 32 to 128 voxels. The right table considers the exact solutions.

48

3.9. Results

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Diameter

E
rr
or

= 32

= 64

= 128

Figure 3.13: Relative errors with respect to the exact solutions for different
sphere diameters and grid sizes. First order convergence for a regular grid
structure is clearly visible.

In the second experiment we used the general LIR-tree with the additional
parameters εsol = εref = εkeep = 10−7 for refinement. The voxels per direction
are used as limit of space partitioning. The desired number of cells is set ac-
cording to a regular grid but with a slow growth rate, i.e. γ = 1

4 . We used the
diameters χ ∈ {0.2, 0.5, 0.8} to show different behaviors.

Table 3.3 shows the computed permeabilites with respect to different sphere
diameters and limits of space partitioning where we used the LIR-tree restricted
to An ⊆ P and no difference reduction is used. The permeability matches really
well for a small number of cells. Figure 3.14 show the relative permeability error
with respect to the number of cells where the LIR-tree with degenerative and
non-degenerative refinement is used. The permeability convergences to perme-
ability of the regular grid solution thus converges to the analytical solution with
respect to the number of cells. But we observed a non-monotone convergence
behavior, see χ = 0.2. The error behavior becomes more stable with increasing
diameters, i.e. interface area. In praxis, 2 − 5 refinements are suggested for
an optimal tradeoff between computational effort and numerical accuracy. We
observed that the quality of the solution strongly dependents on the refinement
approach. The LIR-tree provides a good approximation of the effective per-
meability even with a very small number of cells depending on the geometric
complexity.

The evolution of refinement for a flow around a sphere with diameter χ = 0.2
is shown in Fig. 3.15-3.17. The evolution of refinement for a flow around the
fiber geometry is show in Fig. 3.18 and Fig. 3.18. The topology of the flow is
revealed more clearly after each refinement. Therefore, researchers can study the
behavior of flows inside different materials by visualizations of the tree structure.

To conclude, our discretization of the Stokes equations converges to the
analytical solution with respect to the effective permeability. The regular grid

49

3.9. Results

0

0.02

0.04

0.06

0.08

0.10

0.12

103 104 105 106 107
Cells

E
rr
or

= 0.2

= 0.5

= 0.8

Figure 3.14: Relative permeability error with respect to the number of cells.
The growth of cells has been slowed down to point out the behavior. For the
dashed curves we used a degenerative refinement while for the solid curves we
used non-degenerative refinement.

and the LIR-tree provide a first-order convergence with a good approximation
using a small number of cells. The solution based non-degenerative refinement
can be used to reveal the topology of flows and increases the numerical accuracy
where it is needed. Moreover, our method provides a maximum of accuracy for
a specified number of cells that are allowed to be used.

3.9.3 Convergence Speed

In this section we consider the number of iterations that are required to solve the
Stokes equations. The number of iterations is dependent on the given geometry
and the number of cells. Therefore, we restrict to the sphere and fiber geometry
and compare the regular grid to the LIR-tree under grid refinement.

First, we consider a sphere with diameter χ = 0.5 and use the computations
with the same parameters from the previous section. We compare the regu-
lar grid against the LIR-tree discretization with two different limits of space
partitioning.

Figure 3.20 shows the convergence speed with respect to the number of
iterations. We observed that the LIR-tree discretizations needs far less iterations
to solve the problem than the regular grid. The intended effective permeability
is reached and the tolerance decreases very fast. This can be explained by fast
information traversal through larger cells. The number of cells is almost doubled
after each refinement step until the desired number of cells is approximated.
Notice that the tolerance may be increased by an order of magnitude after
refinement due to the different linear system.

In the second experiment we used the fiber geometry introduced in Sec. 3.9.1
with two different resolutions. The termination parameters are εsol = 10−5,

50

3.9. Results

Initial geometry

First refinement

Figure 3.15: Flow around a sphere with radius χ = 0.2 in X-direction

51

3.9. Results

6. Refinement

14. Refinement

Figure 3.16: Flow around a sphere with radius χ = 0.2 in X-direction

52

3.9. Results

25. Refinement

43. Refinement

Figure 3.17: Flow around a sphere with radius χ = 0.2 in X-direction

53

3.9. Results

Initial geometry

First refinement

Figure 3.18: Flow around a fiber geometry in Z-direction

54

3.9. Results

Second refinement

Third refinement

Figure 3.19: Flow around a fiber geometry in Z-direction

55

3.9. Results

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30
Iterations [102]

P
er
m
ea
b
il
it
y

= LIR64

= LIR128

= REG64

= REG128

10−6

10−5

10−4

10−3

10−2

10−1

100

101

0 5 10 15 20 25 30
Iterations [102]

T
ol
er
an

ce

= LIR64

= LIR128

= REG64

= REG128

0

20

40

60

80

100

120

0 5 10 15 20 25 30
Iterations [102]

C
el
ls

[1
03
]

= LIR64

= LIR128

Figure 3.20: Convergence speed of our method for a sphere with χ = 0.5 with
respect to the number of iterations. We compared the regular grid and the
LIR-tree discretization with 64 and 128 voxels per direction.

56

3.9. Results

Task Threads 1 2 4 8 16 32 64

Build
Time [s] 703 371 195 110 64 44 31
Speedup 1.0 1.9 3.6 6.4 11 16 22.7

Solve
Time [s] 1592 857 426 226 129 77 50
Speedup 1.0 1.9 3.7 7 12.3 20.7 31.8

Table 3.4: Speedup and time for building and solving with respect to the number
of threads. We used the Golem-computer with a 64 core CPU.

εref = 10−3 and εkeep = 0.05 with the check interval 50.
Similar to the previous experiment, Fig. 3.21 shows the convergence speed

with respect to the number of iterations. With a regular grid 1850 iterations
for the lower resolution and 4900 iterations for the higher resolution are needed.
The LIR-tree needs 150 before refinement and 350 iterations in total for the
lower resolution and 400 iterations for the higher resolution. The evolution of
the permeability is more stable and less iterations are needed than for the sphere
geometry.

To conclude, the LIR-tree converges much faster than a regular grid with
respect to the number of iterations. Of course, this advantages depends on the
complexity of the geometry, particularly in the presence of large cell sizes. It is
also very important to choose the termination parameter εsol and the refinement
parameters εref, εkeep carefully. We found that εkeep = 0.05, εref = 10 · εsol are
appropriate choices. After each refinement, tolerance increases but drops off
fast again. Our approach of threshold determination for difference reduction
yield a good approximates for a given desired number of cells.

3.9.4 Parallelization

Parallelization of algorithms has become increasingly important in the last years.
There are two kinds of parallelization, these are thread-parallelism on shared
memory computers and parallelization across computer networks. In our work
we focus primarily on thread-parallelism due to the increasing interest in shared
memory computers. But we claim that our methods are applicable on computer
networks.

The computed tomography scan of sandstone carbonate is used measure
parallel scaleability. The inhomogeneous pore structure causes an inhomoge-
neous cell distribution and makes parallelization more challenging. We use the
Golem-computer due to the high number of CPUs but want to emphasize that
the clock rate is reduced automatically when using a higher number of threads.

Table 3.4 and its Fig. 3.22 show that building the initial LIR-tree scales
efficiently with respect to the number of threads. We suppose that building
scales less than solving due to the intensive memory access caused by geometry
analysis.

Table 3.4 and its Fig. 3.22 also show that our method of solving the Stokes
equations scales very efficiently with respect to the number of threads. A 64
core CPU increases the performance by a factor of almost 32. We suppose that
this behavior can be explained by the short memory distances for neighborhood
retrieval.

57

3.9. Results

0

0.0005

0.0010

0.0015

0 250 500 750 1000
Iterations

P
er
m
ea
b
il
it
y

= LIR128

= LIR256

= REG128

= REG256

10−6

10−5

10−4

10−3

10−2

10−1

100

101

0 250 500 750 1000
Iterations

T
ol
er
an

ce

= LIR128

= LIR256

= REG128

= REG256

0

20

40

60

80

100

120

140

160

180

200

0 250 500 750 1000
Iterations

C
el
ls

[1
04
]

= LIR128

= LIR256

Figure 3.21: Convergence speed of our method for a fiber geometry with respect
to the number of iterations. We compared the regular grid and the LIR-tree
discretization for 128 and 256 voxels per direction.

58

3.9. Results

1

10

19

28

37

46

55

64

1 10 19 28 37 46 55 64
Threads

S
p
ee
d
u
p

Build

Solve

Figure 3.22: Speedup for building and solving with respect to the number of
threads.

To conclude, the presented methods scales very efficiently with respect to the
number of threads even for inhomogeneous geometries. Thus, we are prepared
for large scale datasets.

3.9.5 Speed

The performance of a solver is a key factor in the context of big data. The total
computational time can be used to compare our method to other approaches
rather than comparing the number of iterations. Different datasets are applied
to three other solvers mentioned in Sec. 3.2. In addition, we describe the com-
position of the computational time for our method.

In that experiment we used the sandstones and the fiber geometry. The
Hermes-computer with 8 threads, the Golem-computer with 16 threads and the
Hannover-computer with 24 threads serve as computational resources for the
three other available solvers and our method. Termination conditions are εSOL =
10−4 for the fiber geometry and εSOL = 10−3 for the sandstone geometries. The
sandstones are very challenging datasets for our method due to the complex
labyrinth structure. Numerous thin tunnels prevent the generation of large
cells. Thus, we can not profit from fast spatial information propagation. In that
case we have to show that our method has comparable runtimes, i.e. negligible
overhead caused by the LIR-tree.

Table 3.5 shows the comparison of the different solvers with respect to re-
spect to the main permeability, time and memory consumption and time after
reaching the termination condition. The permeabilities are very close for the
fiber geometry. Since the EJ and EFV solvers work on the same linear system
the results have to be almost equal. The LB solver has the biggest runtime for
both geometries. The EJ solver and our method have a very low runtime for
the fiber geometry due to the large regions with same material properties. Our

59

3.9. Results

Geometry Aspect EJ EFV LB LIR

Fibers
PermXX [10−3m2] 1.706 1.705 1.697 1.692

Runtime [min] 19 90 330 3
Memory [GB] 1.67 2.24 12 0.10− 0.27

Sandstone
PermZZ [10−13m2] 7.665 8.013 8.27

Runtime [min] 120 390 150
Memory [GB] 37 168 3.3− 10

Berea
PermZZ [10−13m2] 1.368 1.349

Runtime [min] 540 137
Memory [GB] 43 2.9− 9.8

Table 3.5: Comparison of different solvers with respect to permeability in flow-
direction, time and memory consumption.

Geometry Retrieval Averaging System Gauß

Fibers 50 29 14 7
Sandstone 56 23 14 7

Table 3.6: Composition of computational time in percentage for fibers and sand-
stone carbonate.

method can profit from the small number of cells and a low iteration count.
These results hold for high porosity geometries but are different for low porosi-
ties. In that context the EFV solver and our methods have the lowest runtime.
The permeabilites differ more for the sandstone carbonate due to the lax termi-
nation condition. Although the geometry analysis is not able to create a major
number of large cells our method can compete with the EFV solver. This is a
result of sophisticated optimizations and the use of precomputed tensors and
block linear systems for regular neighborhoods.

The total computational time of our method is made of different tasks. These
are in order

1. Building the initial tree structure based on geometric analysis

2. Iterative solving and refinement

• Neighborhood retrieval

• Averaging neighbor values

• Formulation of local linear systems

• Solving of the local linear systems by Gauß algorithm

3. Spline based construction of a regular grid and write-out to a destination

For most geometries the distribution of time consumption is almost equal.
Table 3.6 shows the composition of the computational time for solving and
refining while solving the two different datasets. Neighborhood retrieval is the
most expensive task followed by the determination of representative neighbor
values. The formulation of block linear systems and its solution by an adjusted

60

3.9. Results

Geometry LIR-tree Neighborhood Variables

Fibers 12MB 171MB 58MB
Sandstone 555MB 6.5GB 2.2GB

Table 3.7: Composition of memory requirements.

Gauß-algorithm takes the least amount of time. Thus, it is very beneficial to
eliminate neighbor retrieval by precomputed neighborhoods.

To summarize the computational speed analysis, the presented method is
very fast and has its strengths in high porosity geometries where it can exploit
fast information traversal through large cells. In addition, the smaller number
of cells compared to regular grids decreases the runtime per iteration. In low
porosity environment our method still has similar runtime requirements due to
intense optimizations. The memory requirements are low since we do not store
values at solid voxels.

3.9.6 Memory

Memory efficiency is an important topic due to the cubic increasing number of
cells. The size of local memory is a limiting factor for large geometries. Again,
we use the sandstone carbonate and the fiber dataset to compare the memory
requirement to other solvers. We also state the general memory requirements
of our method.

The description of our method in chapter 3 shows that we just use the cell
centered pressure and face centered velocity variables. We do not need any gloa-
bel auxiliary variables by using the block Gauß-Seidel algorithm. The method
does not require additional memory for threaded-parallelization by using the
parallelization scheme described in sec. 3.6. The memory layout described in
sec. 2.6.3 allows a faster neighbor retrievals due to the short memory distance.

Table 3.5 shows the memory requirements for different methods when solv-
ing the Stokes equations for the examples mentioned in Sec. 3.9.5. Our method
needs significantly less memory than the others. In a high porosity geome-
try the LIR-tree needs up to 20 times less memory whereas in a low porosity
geometry the LIR-tree needs 10 times less memory. The two different memory
specification for the LIR-tree arises from the optional neighborhood storage that
increases the memory consumption by a factor of three.

Table 3.7 show the distribution of memory consumption for our method. On
average, the LIR-tree itself needs 20% of the total memory. This is due to the
memory layout described in Fig. 2.9. The most memory consuming part of our
method is to store the cell neighborhoods. Since our implementation allows to
enable and disable that feature, the user can choose a memory requirement and
computational speed trade-off.

In almost all geometries our method needs much less memory compared to
the other methods. On average, our implementation needs 10 times less memory
and the user can decide to sacrifice more memory for speed. In high porosity
geometries our methods provides the best compression ratios.

61

Chapter 4

Conclusions

In this work we considered two major objects. The development of a memory
efficient and numerically suited representation of large voxel geometries and the
application in computational fluid dynamics to solve the Stokes equations.

We presented a novel space partitioning system based on a ternary alphabet.
Recursive and dimensional application to systems of functions leads to a tree
structure that combines the advantages of the Octree and the KD-tree without
having their disadvantages. This is also achieved by using different types of
look-up tables and compile-time generated data structures.

We compared the LIR-tree to the Octree and KD-tree and observed that the
LIR-tree needs at most half the number of cells in a three dimensional context.
This is due to the fact that the LIR-tree is a generalization and can use more
sophisticated methods to analyze and decompose the geometry. The LIR-tree
has the interior cell complexity of the Octree and the leaf complexity of the KD-
tree. Numerous experiments showed that in a three dimensional context most of
the partitioned cells have 2-4 children. For convergence analysis it makes sense
to take the number of cells into account in addition to the spatial length.

In the second part, we introduced a novel approach of variable arrangement
for pressure and velocity to solve the Stokes equations. The basic idea of our
method is to arrange variables in a way such that each cell is able to satisfy a
given physical law. We formulate a small local linear system where the matrix
is called block. These local linear systems describe the momentum and mass
conservation and allows to include no-slip boundary condition by equation re-
placement. Since the blocks are invertible the Gauß-Seidel algorithm can be
used to solve the global block linear system. This formalism makes it very easy
to discretize and solve partial differential equations considered in computational
fluid dynamics. In addition, we presented several approaches of refinment to in-
crease the numerical accuracy where it is needed. The threshold determination
attempts to find an optimal discretization with respect to a given number of
cells.

Our method of variable arrangement converges to the analytical solution
with respect to the effective permeability. This is valid both for the regular grid
and the LIR-tree discretization. The LIR-tree allows to specify a given number
of cells that can be used for the computation. A higher number of cells lead to
a better accuracy but requires more iterations and memory. Therefore, the user
can set a trade-off between computational effort and numerical accuracy.

62

The LIR-tree discretization converges much faster than a regular grid with
respect to the number of iterations in the presence of large cells. The termina-
tion parameters have to be chosen carefully to avoid unnecessary computations.
After each refinement of the LIR-tree the tolerance increases for the first sub-
sequent iterations and then decreases fast again. Histogram based threshold
determination allows to specify a desired number of cells such that our ap-
proach of refinement optimizes with respect to that restriction. The specified
number of cells can be reached after a few iterations.

The presented methods scale efficiently in the context of parallel computing
and allows to deal with large datasets. The parallelization scheme has a low
number of global synchronization where different threads can work on different
iterations.

In terms of computational speed, our method is very fast and has its strengths
in high porosity geometries where it can exploit the fast information traversal
through large cells. The smaller number of cells compared to regular grids de-
creases the runtime per iteration. In low porosity environment our method still
has similar runtime requirements due to intense optimizations. The use of pre-
computed block tensors and matrices allows to eliminate introduced overhead
in regular neighborhoods.

In almost all geometries our method needs much less memory compared to
the other methods. On average, our implementation needs 10 times less memory
and the user can decide to sacrifice more memory for speed. In high porosity
geometries our methods provides the best compression ratios.

63

Lebenslauf

Persönliche Daten

Vor- und Zuname: Sven Linden
Anschrift: Buchenlochstraße 43

67663 Kaiserslautern
E-Mail: linden@itwm.fhg.de
Geburtsdatum und -ort: 17.08.1984 in Wittlich
Familienstand: ledig

Schulische Ausbildung

1991–1995 Grundschule Büchel
1995–2001 Realschule Cochem
2001–2004 Technisches Gymnasium Wittlich

Studium

2005–2008 Bachelor of Science, TU Kaiserslautern
Schwerpunkt: Computergrafik
Titel: Flächenextraktion aus zeit-dynamischen PAR3-EGFP getag-

gten Volumina des Auges von Danio rerio
2008–2010 Master of Science, TU Kaiserslautern
Schwerpunkt: Geometrische Modellierung und Technomathematik
Titel: Hexaeder- und Tetraederunterteilungen für die Simulation

von Flüssigkeiten

Berufliche Erfahrungen

2007–2013 Studentische Hilfskraft, Fraunhofer ITWM
Software Entwicklung für GeoDict (GUI, Visualisierung)

seit 2013 Studentische Hilfskraft, Math2Market GmbH
Software Entwicklung für GeoDict (GUI, Visualisierung)

2008–2008 Studentische Hilfskraft, TU Kaiserslautern
Betreuer der Vorlesung Software Entwicklung 2

64

Bibliography

[1] H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm,
F. Krzikalla, M. Lee, C. Madonna, M. Marsh, T. Mukerji, E. H. Saenger,
R. Sain, N. Saxena, S. Ricker, A. Wiegmann, and X. Zhan. Digital rock
physics benchmarks—Part I: Imaging and segmentation. Computers &
Geosciences, 50(0):25 – 32, 2013. Benchmark problems, datasets and
methodologies for the computational geosciences.

[2] H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm,
F. Krzikalla, M. Lee, C. Madonna, M. Marsh, T. Mukerji, E. H. Saenger,
R. Sain, N. Saxena, S. Ricker, A. Wiegmann, and X. Zhan. Digital rock
physics benchmarks—part II: Computing effective properties. Computers
& Geosciences, 50(0):33 – 43, 2013. Benchmark problems, datasets and
methodologies for the computational geosciences.

[3] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[4] J. L. Bentley. K-d trees for semidynamic point sets. In Proceedings of
the sixth annual symposium on Computational geometry, SCG ’90, pages
187–197, New York, NY, USA, 1990. ACM.

[5] H. H. Chen and T. S. Huang. A Survey of Construction and Manipulation
of Octrees. CVGIP, 43(3):409–431, September 1988.

[6] L. Cheng and A. Wiegmann. Finite Volume Flow Solver on 3D Images. 6th
International Conference on Porous Media & Annual Meeting, Milwaukee,
USA, 27-30 May, 2014.

[7] L. Cheng, A. Wiegmann, and S. Rief. SIMPLE-FFT for flow computations
in low porosity µCT images. 5th International Conference on Porous Media
& Annual Meeting, Czech Republic, 21-24 May, 2013.

[8] W. K. Chow and Y. L. Cheung. Comparison of the Algorithms Piso and
Simpler for Solving Pressure-Velocity Linked Equations in Simulating Com-
partmental Fire. Numerical Heat Transfer Part A - Applications, 31:87–
112, January 1997.

[9] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced Aspect Ratio
Trees: Combining the Advantages of k-d Trees and Octrees. J. Algorithms,
38(1):303–333, 2001.

i

Bibliography

[10] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics.
Springer London, Limited, 2002.

[11] M. S. Floater, T. Lyche, M. L. Mazure, K. Mørken, and L. L. Schumaker,
editors. Mathematical Methods for Curves and Surfaces - 8th Interna-
tional Conference, MMCS 2012, Oslo, Norway, June 28 - July 3, 2012,
Revised Selected Papers, volume 8177 of Lecture Notes in Computer Sci-
ence. Springer, 2014.

[12] D. R. Forsey and R. H. Bartels. Hierarchical B-spline refinement. SIG-
GRAPH Comput. Graph., 22(4):205–212, June 1988.

[13] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis
for hierarchical splines. Computer Aided Geometric Design, 29(7):485 – 498,
2012. Geometric Modeling and Processing 2012.

[14] I. Ginzburg and K. Steiner. Lattice Boltzmann model for free-surface flow
and its application to filling process in casting . Journal of Computational
Physics, 185(1):61 – 99, 2003.

[15] F. H. Harlow and J. E. Welch. Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids,
8(12):2182–2189, 1965.

[16] D. Hietel, K. Steiner, and J. Struckmeier. A finite-volume particle method
for compressible flows. Mathematical Models and Methods in Applied Sci-
ences, 10(09):1363–1382, 2000.

[17] G. M. Hunter. Efficient computation and data structures for graphics. PhD
thesis, Princeton, NJ, USA, Princeton, NJ, USA, 1978.

[18] T. Inamuro. Lattice Boltzmann methods for viscous fluid flows and for
two-phase fluid flows . Fluid Dynamics Research, 38(9):641 – 659, 2006.
Recent Topics in Computational Fluid Dynamics.

[19] C. L. Jackins and S. L. Tanimoto. Oct-trees and Their Use in Representing
Three-Dimensional Objects. CGIP, 14(3):249–270, November 1980.

[20] C. L. Jackins and S. L. Tanimoto. Quad-Trees, Oct-Trees, and K-Trees:
A Generalized Approach to Recursive Decomposition of Euclidean Space.
PAMI, 5(5):533–539, September 1983.

[21] D. S. Jang, R. Jetli, and S. Acharya. Comparison of the piso, simpler, and
simplec algorithms for the treatment of the pressure-velocity coupling in
steady flow problems. Numerical Heat Transfer, 10(3):209–228, 1986.

[22] D. Jeulin. Morphology and effective properties of multi-scale random sets:
A review. Comptes Rendus Mécanique, 340(4–5):219 – 229, 2012. Recent
Advances in Micromechanics of Materials.

[23] T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination
of the size of the representative volume element for random composites:
statistical and numerical approach. International Journal of Solids and
Structures, 40(13–14):3647 – 3679, 2003.

ii

Bibliography

[24] S. Linden, A. Wiegmann, and H. Hagen. The LIR Space Partitioning
System Applied to Cartesian Grids. In Floater et al. [11], pages 324–340.

[25] R. A. Lorentz. Multivariate Birkhoff Interpolation. Lecture Notes in Math-
ematics. Springer, 1992.

[26] W. Niethammer. The SOR method on parallel computers. Numerische
Mathematik, 56(2-3):247–254, 1989.

[27] S. V. Patankar. Numerical heat transfer and fluid flow. Taylor & Francis,
1980.

[28] H. Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric Mod-
eling). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[29] H. Samet and A. Kochut. Octree approximation and compression methods.
In 3DPVT, pages 460–469. IEEE Computer Society, 2002.

[30] A. S. Sangani and A. Acrivos. Slow flow through a periodic array of spheres.
International Journal of Multiphase Flow, 8(4):343 – 360, 1982.

[31] K. Schladitz, S. Peters, D. R. Bitzer, A. Wiegmann, and J. Ohser. Design
of acoustic trim based on geometric modeling and flow simulation for non-
woven. Computational Materials Science, 38(1):56 – 66, 2006.

[32] G. Thömmes, J. Becker, M. Junk, A. K. Vaikuntam, D. Kehrwald, A. Klar,
K. Steiner, and A. Wiegmann. Numerical investigation of a combined
lattice Boltzmann-level set method for three-dimensional multiphase flow.
International Journal of Computational Fluid Dynamics, 23(10):687–697,
2009.

[33] R. F. Tobler. The rkd-Tree: An Improved kd-Tree for Fast n-Closest Point
Queries in Large Point Sets. in Proceedings of Computer Graphics Inter-
national 2011 (CGI 2011), 2011.

[34] J. P. Van Doormaal and G. D. Raithby. Enhancements of the SIMPLE
Method for Predicting Incompressible Fluid Flows. Numerical Heat Trans-
fer, 7(2):147–163, 1984.

[35] A. Wiegmann. GeoDict: Geometric Models and PreDictions of Properties.
http://www.geodict.com, 2001. Virtual material laboratory.

[36] A. Wiegmann. Computation of the permeability of porous materials from
their microstructure by FFF-Stokes. Fraunhofer ITWM, 2007.

[37] A. Wiegmann and K. P. Bube. The Explicit-Jump Immersed Interface
Method: Finite Difference Methods For PDE With Piecewise Smooth So-
lutions. SIAM J. Numer. Anal, 37:827–862, 1997.

[38] A. Wiegmann and A. Zemitis. EJ-HEAT: A fast explicit jump harmonic
averaging solver for the effective heat conductivity of composite materials.
Fraunhofer ITWM, 2006.

iii

