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Abstract

We consider a network flow problem, where the outgoing flow is re-
duced by a certain percentage in each node. Given a maximum amount
of flow that can leave the source node, the aim is to find a solution that
maximizes the amount of flow which arrives at the sink.

Starting from this basic model, we include two new, additional aspects:
On the one hand, we are able to reduce the loss at some of the nodes; on
the other hand, the exact loss values are not known, but may come from
a discrete uncertainty set of exponential size.

Applications for problems of this type can be found in evacuation
planning, where one would like to improve the safety of nodes such that
the number of evacuees reaching safety is maximized.

We formulate the resulting robust flow problem with losses and im-
provability as a mixed-integer program for finitely many scenarios, and
present an iterative scenario-generation procedure that avoids the inclu-
sion of all scenarios from the beginning. In a computational study using
both randomly generated instance and realistic data based on the city of
Nice, France, we compare our solution algorithms.

Keywords: network flow; flow with losses; robust optimization; network
design

1 Introduction

Network flow with losses (and also gains) is a well-known and fruitful object of
study, see, e.g., [0ld01, Rad98, Way99]. Applications can typically be found,
e.g., in telecommunication networks, electrical networks, exchange markets, ma-
chine loading, lot-sizing or the boolean satisfiability problem.

Also the field of evacuation planning has seen rising interest in the appli-
cation of operations research models to help the decision maker assessing a
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critical situation, and making the right choices to potentially safe lives, see,
e.g., [OMHO09, LKN11]. For general overviews, we refer to [HT01, AGO06].
Also, network flows are a standard modeling technique in the field, see, e.g.,
[CFS82, Yam96, CHTSS].

In this paper, we extend the concept of flows with losses to also include
improvability (i.e., the amount of loss can be reduced at a limited number of
nodes) as well as robustness (i.e., the exact amount of loss is not known exactly).
Both model extensions are motivated by applications in evacuation planning.

As an example, we consider the situation that several evacuees need to leave
an endangered region on foot (e.g., after an earthquake or a flooding strikes an
urban area). Depending on the path they choose, they face different estimated
degrees of dangerousness, which lead to the potential death of evacuees. Such
a situation can be captured as a network flow with losses, where the number of
evacuees reaching safety is to be maximized (see [NNL114]).

From a short-term perspective, security forces can be used to reduce the
risk in the network (e.g., by extinguishing fires with the help of airplanes, or
by removing debris) during an evacuation. From a long-term perspective, the
structural safety of an endangered area can be improved (e.g., by stabilizing
buildings with a relatively high probability of collapse during an earthquake),
which will also result in a reduced risk value during an emergency.

Furthermore, as risk values are only an estimation, they are considered as
being uncertain. We present a robust optimization approach with network im-
provability to include both these points.

In the following, we present some further literature in which related aspects
are analyzed.

The basic idea of the well-known “Contraflow”-setting is to make better use
of the given infrastructure in the case of an evacuation. As an example, if a
highway has two lanes entering the endangered area, and two lanes leaving the
endangered area, it makes sense to reverse at least one of the two entering lanes
to facilitate the outgoing flow. The contraflow problem has been considered by
[XLW10, XT11] an many others. Similar to our setting, the lane reversal may be
interpreted as the distribution of improvements in the network, where the num-
ber of such improvements is bounded. However, in our setting, improvements
are not on arc capacities, but on vertex safety instead.

There are several papers considering network improvement problems (such
as [SK98, KMNT98, DNW04, 0Z07, DLG11, LM13, CLZ06]). However, the
problem of improving vertex safety has not been considered yet.

Regarding the field of robust optimization as a means to handle optimization
problems affected by uncertainty, we refer to the surveys [KY97, ABV09, BS04,
BS03, BTGN09] and [GS13].

Contributions and overview. In Section 2, we introduce the nominal
(i.e., non-uncertain) max flow problem with losses and improvements, which
we use to model pedestrian movements during an evacuation. This model is
extended to include uncertainty in Section 3, where we also present an iterative
solution algorithm. As already the nominal problem is NP-hard, we also consider
heuristic solution approaches in Section 4, and compare these algorithms in a
computational study in Section 5. Section 6 concludes the paper and points out
further research directions.



2 Flow with Losses and Improvability

2.1 Flow with Losses

Let a directed graph G = (V, A) be given. We start with considering the max-
imum flow problem, where in each vertex i € V, the flow leaving node i is
multiplied with a fixed factor p; € [0,1]. Given a bound on the value of out-
flow of a (super-)source, the flow with losses (FL) problem is to find the largest
possible amount of flow entering a (super-)sink.

The problem can be easily modeled as a linear program using the variables
fi; to denote the flow along arc (7, j) € A. Let s € V denote the source node, and
t € V the sink node. We write V' := V'\ {s,t}. Furthermore, let S € RT denote
the maximum amount of flow leaving the source node, and let the capacity of
each arc (4,7) € A be denoted as u;; € R*.

The flow with losses problem can then be formulated as:

(FL) max Z fit (1)

(i,t)eA
s.t. Z fsi < S (2)
(s,i)€EA
pi Y. fi= >, fik vjiev’ (3)
(i,5)€A (4,k)eA
0 < fij < ugy V(i,j) € A (4)

The objective function (1) is to maximize the amount of flow entering the sink
t. Constraint (2) ensures that at most S evacuees leave the source s, while
Constraints (3) are a modification of the usual flow constraints, capturing the
relative loss of flow in each node. Finally, Constraints (4) ensure that arc ca-
pacities u;; are respected.

In evacuation planning, the model can be used to calculate the percentage of
pedestrian evacuees that could reach safe places, starting from an endangered
region. Nodes can correspond to street crossings or important points along
a street, and arcs to streets or street sections connecting these points. Note
that this model follows a macroscopic point of view, i.e., individual or selfish
behaviour of evacuees is ignored. Thus, a resulting optimal solution may be
considered as a upper bound on the actual percentage of evacuees reaching
safe places, which is only attainable if every evacuee acted according to the
system optimum. Typically, macroscopic optimization results are complemented
with microscopic simulation results to give a more realistic description of an
emergency situation (see [HHK™11]).

2.2 Flow with Losses and Improvability

We now extend the simple model (FL) to include possible improvements on
the vertices. We assume that along with the loss p; at every node i € V', we
are also given an amount of possible improvement p;, where p; + p; < 1. The
improvement of any node i has costs ¢;, and there is a budget B on the total
possible improvement costs. We denote the problem as FLI (flow with losses
and improvements).



To model FLI as a mathematical program, we start with the following non-
linear model:

(i,t)eA

st. Y, fa<S (6)
(s,i)€A
Z cjz; < B (7)
jev’
(pj +0iz) Y. fis= > Ffi vjieV’ (8)

(i,7)€EA (J,k)eA

0 < fij < ugj V(i,j) € A (9)
2 €{0,1} VjieV’ (10)

As before, the objective function (5) models the number of evacuees entering
the safety node, while Constraint (6) bounds the number of evacuees leaving the
start node. We use new binary variables z; to model if node 7 € V' is improved
or not. Thus, Constraint (7) is a knapsack-constraint on the spendable budget.
Finally, Constraints (8) model the loss of flow along the nodes, where the loss
factor is p; + p;, if 7 is improved, and p; otherwise.

We linearize the products z; f;; to gain a mixed-integer linear program. To
this end, we introduce additional variables h; := Z(i7 jeAZi fij- The resulting
model is then the following;:

(FLI)  max Y fu (11)
(i,t)EA
Y fi<S (12)
(s,0)€EA
Z CjZj <B (13)
jev
hj S MZj V] € V’ (14)
hy< Y fi vjev (15)
(i,4)€A
pi >, fiythihi= Y fir VjieV (16)
(i.)€A (Gk)eA
0 < fij < ugj Y(i,7) € A (17)
z; € {0,1} vjeVv (18)
hj =20 vjieV (19)

The new Constraints (14) and (15) model that h; = >Z; . c 4 fi; if and only
if z; = 1. To this end, M must be a large enough constant (e.g., M >
maX;cy Z(i,j)eA Usjj sufﬁces).

Note that due to Constraint (13), one can easily show weak NP-completeness
of FLI by a reduction from the one-dimensional knapsack problem, where we use
one node for each item. Each node has p; = 0 and p; equal to the profit of that
item. Each node has also a size ¢; and the overall size of the knapsack is equal



to B. However, we can even show strong NP-completeness via the 3-partition
problem. A proof is given in Appendix A

Theorem 1. The decision problem of FLI is strongly NP-complete.

3 Robust Flows

We now extend the FLI problem to include uncertainty in the loss values p;.
The motivation is to better model that these values can only be estimates, and
will never reflect the actual risk on a vertex. Instead, we assume to know only
an uncertainty set 4 C RIVI that contains all possible realizations of p.

We have to decide where to put our improvement resources before we know
the realization of p. Then, the actual scenario becomes revealed and the evacuees
take the best possible route with respect to our improvements, and the scenario.
Following a worst-case approach, the question is: Where should we put the
improvements, so that the evacuee flow is maximal in the worst case that may
happen?

3.1 Finite Uncertainty Sets

We first consider the case of a finite set of scenarios U/ = {p',...,p"}, and
write N := {1,..., N}. We assume that p¥ + p; < 1foralli € V, k € N. The
resulting robust two-stage problem can be modeled in the following way:

: k
(RFLI) max min Z i (20)
(i,t)eA
> th<s VEeN (21)
(s,i)€A
Z CjZj <B (22)
jev’
hf < Mz; VieVi keN (23)
W< >tk VieVikeN (24)
(i,j)EA
PN rEapht= Y fe VieVikeN (25
(i,J)EA (J,k)eA
0 < £ < ui V(i,j) € A keN  (26)
z € {0,1} VieVv' (27)
hE >0 VieV keN (28)

We shall also write RFLI(I4/) when the uncertainty set underlying this formu-
lation needs to be specified.

For every scenario k € A/, we introduce a new set of flows f*, h¥, which
depend on the risk of the respective scenario. The minimum in the objective
function can be removed by writing

max «



a< Y fh Vk e N
(i,t)eA
(21-28)

instead. Note that we may consider only the variables z (i.e., the improvements)
as decision variables; then, to evaluate the objective val(z), one needs to solve a
nominal FLI problem for every scenario to determine the resulting worst-case.

3.2 Bounded Uncertainty Sets
3.2.1 Model

We now extend the previous model by considering more realistic uncertainty
sets. For every loss value p;, an interval of possible outcomes [p ,p;] is given.
However, as it would be too pessimistic to assume that the worst-case 2 happens
at all nodes simultaneously, we follow the spirit of [BS04] and bound the number
of vertices that may deviate from their best-case p;. We model this as the
following uncertainty set:

U=UK) = ([Blvﬁ] X ... X [B|V|’T)|V\Dm{p€le ‘ #{ieV:ip, <p} < K}

As before, we assume p,; +p; < 1. Here, K € N is a parameter that can be used
to control the degree of conservatism of a solution. For K = n, the uncertainty
set U becomes the Cartesian product of intervals, resulting in a large possible
set of outcomes. A resulting robust solution will have a relatively small nominal
objective value, but a high degree of robustness. For K = 0 on the other hand,
the uncertainty set U becomes a best-case singleton, meaning that uncertainty is
ignored and a nominal FLI problem needs to be solved. It is in the hands of the
practitioner to find a value for K that suits the application, and the outcomes
of multiple alternatives may be compared.

Note that when writing RFLI(U/) directly as a mixed-integer program like
(20-28), one would require infinitely many constraints and variables. However,
whenever we have p, < p; for a loss parameter, we may as well assume that
p; = p., as such a scenario would always dominate any scenario with less risk.
This makes it possible to enumerate all relevant scenarios.

Lemma 2. RFLI(U) can be solved by solving a problem RFLIUY), where US| =
\%
(%)
That is, we can reduce the bounded uncertainty set to a finite uncertainty
set, which contains all possible scenarios where K nodes are “bad” and the

others are “good”. As this number grows exponentially, a better option to solve
RFLI is required.

3.2.2 Evaluating a solution

We first consider the following subproblem: Given a fixed choice of improve-
ments z, which scenario p € U is responsible for the worst output flow? We may
model this question as an optimization problem over the losses p.

WC(z) := min f*(p)



pi =D + (p, — D)wi + Pizi VieV’

eV’
w; € {0,1} VieV’
pi >0 vie V'

We decide for each node ¢ if it is “bad” with the help of the binary variable
w;. We would like to make a choice in a way that f*(p) is as small as possible,
where f*(p) denotes the optimal outflow under scenario p. This is itself simply
a flow with losses problem.

fi(p) :=max Y fu (29)

(i,t)€A
Y fa<S (30)

(i,8)€EA
Dj Z fij = Z fik vieV’ (31)

(i,5€A) (4,k)eA

0 < fij < uyy V(i,j) € A (32)
Note that using “>” in Constraint (31) instead of “=“ does not change the

optimal solution of the flow with losses problem. To integrate the computation
of f*(p) into WC(z), we dualize the problem and get:

min Z Ui Q5 + Sp

(i,7)€A

@ij +% — 0+ xs(9)8 = xe(4) v(i,j) € A
a;; >0 V(i,j) € A
B=>0

v >0 vie V'
Vs =7 =0

where

0 else

We now use this dual formulation to rewrite WC/(z).

min Z uija; + SPB
(i,j)eA
Z w; < K
i€V
aij +% = (B; + (p; = By)w; +5525)7; + xs(DB 2 x:(7)  V(i,j) € A
ai; >0 V(i,j) € A
B=>0
v =0 Vie V'

PYs:’Yt:O



w; € {0,1} VieV

Due to the product w;~;, this is a non-linear program (note that z is fixed, and
the product z;7; is linear here). Substituting v, = w;7; yields

min Z uijou; +SB (33)
()€
> wi <K (34)
eV
aij + % = (B + 0527 + B — Py + xs (D)8 = xi(4) V(i j) € A (35)
Yi < Vie V' (36)
vl < Muw; Vie V' (37)
i >0 V(i,j) e A (38)
8>0 (39)
ViV =0 Vie V' (40)
Ys =7 =0 (41)
w; € {0,1} Vie V' (42)

where M is a constant large enough (H(i7j)EAB;1 suffices).

4 Solution Algorithms

4.1 Scenario Generation

Using formulation (33-42) for WC(z), we can evaluate the objective value for
a choice of improvements z and also produce a scenario w where this objective
value is attained. In the following, this is used as part of a solution algorithm.

We start with any finite scenario set U° C U, e.g., U° = () or U° = {p}.
Solving RFLI(U?) yields some solution for the improvements z° and an objective
value OBJY. Solving W(C'(z°) determines a new scenario given by w® and an
objective value WCP. Setting U* := U°U{w"} gives a new scenario set that can
be used to determine the next choice of improvements, which is then iteratively
repeated.

The algorithm stops with an improvement z*, when the objective value of
the worst-case problem WC/(z*) equals the objective value of RFLI({U¥). As
each problem RFLI(U*) for a scenario set U* C U is a relaxation of the problem
RFLI(U), the optimal objective value of each solution z* is an upper bound
on the optimal objective value of problem RFLI(U). Therefore, optimality is
proved when the worst-case objective equals the estimated upper bound.

The algorithm is summarized as Algorithm 1.

Note that the values OBJ* are monotonically decreasing, being the optimal
objective values to problems that have increasingly more constraints and vari-
ables. However, their actual objective values WC* are not necessarily monoton-
ically increasing. Figure 1 provides an example for a typical run of Algorithm 1.
Encircled are solutions which are better than solutions from previous iterations.



Algorithm 1 (Exact Algorithm for RFLI(I/))

Require: An instance of RFLI(U).
1 k<0
2: UY + {p}
3: Solve RFLI(U¥). Let z* be the resulting solution for the improvements, and
OBJ* the resulting objective value.
4: Solve WC/(2*). Let p* be the resulting scenario, and WCF¥ the resulting
objective value.

5. if OBJ* = WC* then
6: return Optimal improvements z* and objective value OB.J*.
7: else
8: UL Uk U {p*y}
9: k<+—k+1
10: Goto 3
11: end if
2
18 g
16 :
2 14t :
8
8 12t g
1 . 4
Of
08 1
06 ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14

Iteration

Figure 1: Example run of Algorithm 1. Optimality is reached when OB.J* and
WC* coincide.

4.2 Bounding the Scenario Set

Note that problem (33-42) to compute the objective value of a choice of im-
provements has O(]A|) many variables and O(]A|) many constraints. Problem
(20-28) however has in the kth iteration O(k|A|) many variables and O(k|A|)
many constraints. Thus, while the computation time to solve W(C'(z) stays
roughly the same over all iterations, the solution time for RFLI(U) increases
with increasing iteration number of Algorithm 1.

Therefore, if there was some method to remove redundant scenarios from 4",
computation times will improve. To this end, we consider the following variant
of Algorithm 1: Let L € N be an algorithm parameter that controls the desired
size of U*. When a scenario p* is added to U* in Step 8 of the algorithm, we
check if [4¥| < L — 1. If this is the case, the scenario is included as usual. If,
however, |{*| = L (i.e., the desired scenario set size is reached), we first choose
and remove a scenario from U*.



If L is chose too small, this may result in a cycling of the solution algorithm.
To prevent this, we save all scenarios that have been generated in the solution

process so far in an additional set & . If a scenario is generated twice (i.e.,

pk e Hkil), we increase the parameter L by one.

Concerning the choice which scenario should be removed from the current
uncertainty set, different approaches would be possible. In the end, every such
approach will lead to an optimal solution of RFLI(l/), but will have an impact
on computation times.

In the following, we use the strategy to remove a scenario p? € U for which
Z(i}t)eA /7, is maximal in the most recent solution of the RFLI problem. In
other words, the scenario is removed which allows the largest amount of flow
to reach the sink. However, due to the max-min structure of the objective
function, an optimal solution of RFLI does not necessarily maximize the flow
in every scenario. To ensure this, a lexicographic objective function of the form

maxoz—i—sz Z Z’fg

kEN (i,t)eA

is used, with 1 > ¢ > 0.

4.3 Artificial Scenarios

As the nominal problem FLI is already NP-hard and the robust version fur-
ther increases its computational difficulty, we now introduce heuristic solution
approaches.

Note that to evaluate a choice of improvements z, the mixed-integer program
WC(z) needs to be solved. This renders heuristic procedures ineffective, which
rely on the evaluation of many solutions (e.g., local search or genetic algorithms).

Instead, we aim at the solution of one FLI problem with a single scenario
p € RVl that “represents” the whole uncertainty set & appropriately. It is not
necessary that p is an actually possible scenario, i.e., p ¢ U is possible. While
this problem can be solved comparatively fast, its quality depends on how p is
determined.

We consider the following cases:

1. We set p = Ap+ (1 — A)p for some constant A € [0,1]. This includes the
best-case scenario p = p, and the worst-case scenario p = p.

2. As a special case of this convex combination, we use a value for A that
depends on K and n. If one expects “bad” nodes to be randomly uniformly
distributed, then the expected loss is given as p = Ap + (1 — A\)p with
A= K/n.

3. Finally, assumption that “bad” nodes are uniformly distributed may be
too optimistic, given that only nodes are relevant which actually carry
some flow. FEstimating that in a graph with n nodes, only y/n nodes
have a flow which is larger than zero, we get the more pessimistic value
A =min{1, K/y/n}. If the graph class is known, such an estimate may be
further refined.

Any of the above approaches yield a heuristic set of improvements z. To
evaluate these solutions, a problem W(C/(z) still needs to be solved. For large

10



instances, this evaluation may take more computation time than for finding the
improvements.

5 Experiments

We present two sets of experiments. In the first one, we use randomly generated
grid graphs to evaluate the algorithms presented in this paper. In the second
experiment, we use realistic data based on the city of Nice, France, to compare
our heuristic approaches.

All experiments were conducted on a computer with a 16-core Intel Xeon
E5-2670 processor, running at 2.60 GHz with 20MB cache, and Ubuntu 12.04.
Mixed-integer programs were solved using Gurobi v. 5.5 using C++ programs
compiled with gcc v. 4.5.4. and flag -O3. For the first experiment, 4 processors
were used per algorithm, and the complete experiment was conducted four times
to remove solver variance in solution times. For the second experiment, all 16
processors were used. Reported computation times always refer to wall clock
measurements.

5.1 Random Instances

Instances. We created 7 sets Z,, £ = 3,...,9 of random instances to compare
our solution algorithms for the RFLI problem. Each graph is a grid of size £ x ¢,
where evacuees start in the lower left corner and need to reach the upper right
corner. S is always equal to 100, B and K are chosen uniformly randomly from

{1,...,£}. Arc capacities are generated in {1,...,100}, and we generate losses
p, € [0.001,0.999], p; € [p,, 1], and p; € [0,1 —p;] (in this order). Improvement
costs ¢; are chosen randomly from [0.5,1.5]. For each £ = 3,...,9, we generated

20 such instances (i.e., a total of 140 instances).

Setting. Every instance is solved using the iterative Algorithm 1, and its
variant with bounded desired uncertainty size from Section 4.2 with L = 5
and L = 10. When referring to these solutions, we write OPT-F (“F” like
“full”), OPT-5, and OPT-10, respectively. Furthermore, we determine heuris-
tic solutions using artificial scenarios as described in Section 4.3 with A €
{0.00,0.25,0.50,0.75,1.00, K/n, K/+/n}. We refer to these solutions as W ().

We record the objective value and the computation time for each of these
algorithms.

Results. We summarize our results in Tables 1, 2, 3 and 4.

The average relative objective value of the heuristic algorithms is compared
in Table 1. We normalized values such that 1.00 corresponds to an optimal solu-
tion, e.g., the value 0.96 in the top left corner of the table means that on average
over the 20 instances of size 3 x 3, the best-case solution reaches an objective
value that is 96% of the optimal objective value. Generally, the quality of the
heuristic solutions declines with increasing instance size. Furthermore, for the
considered instances, the “more robust” solutions (i.e., A € {0.75,1.00, K//n})
tend to perform better. These three algorithms perform similarly, with no clear
indicator which should be preferred in general.
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Instance | W(0.00) W(0.25) W(0.50) W(0.75) W(1.00) W(K/n) W(K//n)
Zs 0.96 0.98 0.99 0.97 0.99 0.93 0.99
I 0.89 0.91 0.92 0.93 0.95 0.90 0.93
s 0.89 0.90 0.92 0.94 0.93 0.88 0.89
Ts 0.76 0.76 0.83 0.89 0.88 0.75 0.85
I 0.80 0.81 0.83 0.83 0.84 0.80 0.85
Ts 0.78 0.78 0.79 0.82 0.81 0.78 0.82
Ty 0.73 0.73 0.83 0.82 0.83 0.74 0.84

Table 1: Average relative objective value.

Instance | W(0.00) W(0.25) W(0.50) W(0.75) W(1.00) W(K/n) W(K/y/n)
Is 0.02 0.02 0.02 0.02 0.02 0.02 0.02
T4 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Is 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Ts 0.10 0.09 0.09 0.10 0.11 0.10 0.11
Iz 0.18 0.16 0.17 0.16 0.27 0.17 0.23
Is 0.69 0.77 0.77 0.70 0.66 0.73 0.66
Ty 1.96 1.89 1.22 1.67 1.90 2.00 1.67

Table 2: Average computation times in seconds for heuristics (total).

Also considering the average computation times of these heuristics as pre-
sented in Table 2, results are very similar. All algorithms require the solution
of one RFLI problem, and one worst-case problem for the evaluation.

While these computation times scale well with the problem size, this is not
the case for the iterative solution algorithms, see Table 3. We report computa-
tion times for the lower bound problems WC'(z) and the upper bound problems
RFLI separately. As these results indicate, most computation time is spent
solving the increasingly difficult RFLI problems.

Comparing the three exact solution methods, we find that the bounding the
desired uncertainty size does generally not help to decrease computation times.
As expected using this variant, the number of iterations increases (see Table 4),
while the computation time per iteration can be reduced in most cases.

A direct comparison of computation times between OPT-F and OPT-5 for
instances where OPT-F needs at least 6 upper bound iterations is shown in Fig-
ure 2. Please note the double-log scale. While the reduced desired uncertainty
size is able to improve some computation times, it is slightly worse on most of

LB UB Total
Instance | OPT-F OPT-5 OPT-10 | OPT-F OPT-5 OPT-10 | OPT-F OPT-5 OPT-10
I3 0.02 0.01 0.01 0.02 0.02 0.02 0.04 0.03 0.03
Za 0.03 0.03 0.03 0.05 0.04 0.04 0.08 0.07 0.07
Zs 0.08 0.08 0.08 0.18 0.17 0.17 0.26 0.25 0.25
Ts 0.46 0.56 0.45 2.69 2.64 2.44 3.15 3.20 2.89
I 2.03 2.78 2.04 14.41 18.29 13.93 16.44 21.07 15.97
Is 9.49 14.59 10.73 153.89  192.99 180.56 163.38  207.58 191.29
Zo 47.56 98.39 66.94 370.96  884.88 521.70 418.53  983.27 588.64

Table 3: Average computation times in seconds for exact algorithms.
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#UB Time per UB
Instance | OPT-F OPT-5 OPT-10 | OPT-F OPT-5 OPT-10
Is 2.05 2.05 2.05 0.01 0.01 0.01
Zs 2.30 2.30 2.30 0.02 0.02 0.02
Is 3.15 3.15 3.15 0.05 0.05 0.05
Ts 5.25 6.20 5.30 0.30 0.22 0.27
Iz 6.00 7.48 6.10 1.29 1.09 1.21
Is 8.85 12.90 10.00 12.90 10.24 12.70
Ty 7.70 12.15 8.90 24.63 26.58 24.29

Table 4: Average number of upper bound subproblems and computation times
per problem in seconds.

the instances. Here, future research may focus on better strategies to determine
the scenario that should be removed in each iteration.
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Figure 2: Comparison of computation times in seconds for OPT-F and OPT-5.

Summarizing these results, we find that exact computation times for the
considered grid instances do not scale well with the instance size, as both the
required number of iterations and the solution time per iteration increase. The
heuristic algorithms scale well with the instance size and yield results within
around 80% of an optimal solution for the more conservative scenario estimates.

5.2 Realistic Instances

Instances. We now consider problem instances which are based on real-world
data modeling the city of Nice, France. The city is situated in a seismically active
region, and has encountered several earthquakes and tsunamis in its history.
Figure 3 shows the underlying graph, which is generated from OpenStreetMap
data. We used 500 nodes and 1124 edges.

To generate loss values, we used seismic simulation data from [L+14] that
simulates an earthquake with similar characteristics as the Ligure earthquake
of 1887 with a magnitude of approximately 6.9My,. Based on these simulation
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results, loss values were estimated corresponding to the expected damage to
infrastructure. Figure 4 shows the level of damages considering the Ligure
earthquake scenario.

The population data come from the French National Institute for Statistics
and Economic Studies (INSEFE) who estimate the population of each city includ-
ing Nice and the repartition of the population over the area. Their estimation
can also take into account foreigners during holidays.

In order to know the population impacted by the earthquake scenario, the
population repartition given for the city of Nice by INSEFE in 2011 is mapped
with the Ligure damages scenario, e.g., Figure 4 in order to know the number
of persons that have to be evacuated. We consider a set of 17 starting points
form where evacuees can have informations as their affectation shelters and the
safest way to reach them.

The shelter locations are outside the endangered areas (i.e. area in red) In
this case of study, we consider 7 of them near the living places that have to be
evacuated and each of them has a capacity.

No data regarding the costs to improve the safety of locations was available.
We therefore generated random values from [0.5, 1.5] per node corresponding to
“unit improvement costs”, e.g., 10,000 Euros.

Figure 3: Graph for Nice.

Setting. We consider the two scenario sets U(10) (i.e., only 2% of all nodes
may have their worst-case loss value) and the more conservative set (50) (i.e.,
10% of nodes). We solved these instances heuristically using A € {0.00, 0.50, 1.00,
K/n, K/+/n} for varying improvement budget B € [10, 30]. To limit computa-
tion times, we imposed a timelimit of 120 seconds for each lower bound problem.
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Figure 4: Ligure damages scenario for Nice

Results. We compare the heuristic objective values for K = 10 and K = 50
in Figures 5(a) and 5(b), respectively. While the more optimistic estimates
A =0.00 and A = K/n outperform the others for K = 10, this is turned around
for K = 50. Overall, the value A\ = K/y/n provides a good compromise choice
for both settings. Computation times for the upper bound problems were in the
order of a few seconds, while the lower bound problems always required the full
120 seconds available.
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Figure 5: Heuristic objective values for varying improvement budget B.

Using computational results as presented in Figure 5, the planner is pro-
vided a helpful tool to decide two questions: Firstly, how many evacuees can be
estimated to reach shelter locations under different degrees of damage severe-
ness? Using our population data, estimates lie between ~ 2500 and ~ 4200
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evacuees. Secondly, what is the safety gain by increasing the spending on se-
curity measures? These results indicate between 8 evacuees per improvement
unit for the heavy-damage case, and around 15 evacuees per improvement for
the light-damage case. These results may serve as indicators to better prepare
for an emergency situation.

6 Conclusion

In this paper we contributed to the current literature on network flow evacuation
planning models, by introducing a new evacuation model that includes losses
along nodes, improvability, and uncertainty. As the scenario set and thus the
model is of exponential size, it cannot be solved directly using a mixed-integer
programming solver. We therefore developed an algorithm that iteratively in-
creases the problem size by finding the worst-case scenario for the current (par-
tial) solution.

In computational experiments we compared the performance of variants for
the iterative algorithm to heuristic approaches using only a single scenario. Both
randomly generated and realistic instances based on the city of Nice, France,
were used.

References

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Minmax and minmax
regret versions of combinatorial optimization problems: A survey.
European Journal of Operational Research, 197(2):427 — 438, 2009.

[AGO6] N. Altay and W. G. Green III. OR/MS research in disaster op-
erations management. FEuropean Journal of Operational Research,

175(1):475 — 493, 2006.

[BS03] D. Bertsimas and M. Sim. Robust discrete optimization and network
flows. Mathematical Programming Series B, 98:2003, 2003.

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations
Research, 52(1):35-53, 2004.

[BTGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization.
Princeton University Press, Princeton and Oxford, 2009.

[CFS82]  L.G. Chalmet, R.L. Francis, and P.B. Saunders. Network models
for building evacuation. Fire Technology, 18(1):90-113, 1982.

[CHT88] W. Choi, H.W. Hamacher, and S. Tufekci. Modeling of building
evacuation problems by network flows with side constraints. Euro-
pean Journal of Operational Research, 35(1):98 — 110, 1988.

[CLZ06] A.M. Campbell, T. J. Lowe, and L. Zhang. Upgrading arcs to mini-
mize the maximum travel time in a network. Networks, 47(2):72-80,
2006.

16



[DLG11]

[DNW04]

[GS13]

[HHK*11]

[HTO01]

[KMN+9g]

[KY97]

[L*14]

[LKN11]

[LM13]

B. Dilkina, K. J. Lai, and C. P. Gomes. Upgrading shortest paths in
networks. In T. Achterberg and J. C. Beck, editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 6697 of Lecture Notes in Computer
Science, pages 76-91. Springer Berlin Heidelberg, 2011.

I. Demgensky, H. Noltemeier, and H.-C. Wirth. Optimizing cost
flows by edge cost and capacity upgrade. Journal of Discrete Algo-
rithms, 2(4):407 — 423, 2004. The 26th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2000).

M. Goerigk and A. Schobel. Algorithm engineering in robust opti-
mization. Technical report, Preprint-Reihe, Institut fr Numerische
und Angewandte Mathematik, Universitt Gottingen, 2013. Submit-
ted.

H.W. Hamacher, S. Heller, W. Klein, G. Koster, and S. Ruzika.
A sandwich approach for evacuation time bounds. In R. D. Pea-
cock, E. D. Kuligowski, and J. D. Averill, editors, Pedestrian and
Evacuation Dynamics, pages 503-513. Springer US, 2011.

H. W. Hamacher and S. A. Tjandra. Mathematical modeling of evac-
uation problems: A state of the art. In Pedestrian and Evacuation
Dynamics (Schreckenberg, M. and Sharma, S. D. eds), 1964:227—
266, 2001.

S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S.S.
Ravi. Network improvement problems. Network Design: Connec-
tivity and Facilities Location, AMSDIMACS Volume Series in Dis-
crete Mathematics and Theoretical Computer Science, 40:247-268,
1998.

P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Ap-
plications. Kluwer Academic Publishers, 1997.

A. Lemoine et al. Pligurian earthquake: Seismic and tsunami sce-
nario modeling, from hazard to risk assessment towards evacuations
planning. In Proceedings of the Second FEuropean Conference on
Earthquake Engineering and Seismology, 2014.

G. Lammel, H. Kliipfel, and K. Nagel. Risk minimizing evacuation
strategies under uncertainty. In R. D. Peacock, E. D. Kuligowski,
and J. D. Averill, editors, Pedestrian and Evacuation Dynamics,
pages 287—-296. Springer US, 2011.

Y. Lin and K. Mouratidis. Best upgrade plans for large road
networks. In M. A. Nascimento, T. Sellis, R. Cheng, J. Sander,
Y. Zheng, H.-P. Kriegel, M. Renz, and C. Sengstock, editors, Ad-
vances in Spatial and Temporal Databases, volume 8098 of Lecture
Notes in Computer Science, pages 223-240. Springer Berlin Heidel-
berg, 2013.

17



[NNL*14] I. A. Ndiaye, E. Neron, A. Linot, N. Monmarche, and M. Go-
erigk. A new model for macroscopic pedestrian evacuation planning
with safety and duration criteria. Transportation Research Procedia,
2(0):486 — 494, 2014. The Conference on Pedestrian and Evacua-
tion Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The
Netherlands.

[O1d01] J. D. Oldham. Combinatorial approximation algorithms for gener-
alized flow problems. Journal of Algorithms, 38(1):135 — 169, 2001.

[OMHO09] S. Opasanon and E. Miller-Hooks. The safest escape problem. Jour-
nal of the Operational Research Society, 60:1749-1758, 2009.

[0Z07] F. Ordez and J. Zhao. Robust capacity expansion of network flows.
Networks, 50(2):136-145, 2007.

[Rad9g] T. Radzik. Faster algorithms for the generalized network flow prob-
lem. Mathematics of Operations Research, 23(1):69-100, 1998.

[SK98] S. Schwarz and S.O. Krumke. On budget-constrained flow improve-
ment. Information Processing Letters, 66(6):291 — 297, 1998.

[Way99] K. D. Wayne. Generalized Mazimum Flow Algorithms. PhD Thesis.
Cornell University, New York, United States, 1999.

[XLW10] C. Xie, D.-Y. Lin, and S. T. Waller. A dynamic evacuation network
optimization problem with lane reversal and crossing elimination
strategies. Transportation Research Part E: Logistics and Trans-
portation Review, 46(3):295 — 316, 2010.

[XT11] C. Xie and M. A. Turnquist. Lane-based evacuation network op-
timization: An integrated lagrangian relaxation and tabu search
approach. Transportation Research Part C: Emerging Technologies,
19(1):40 — 63, 2011.

[Yam96] T. Yamada. A network flow approach to a city emergency evacuation
planning. International Journal of Systems Science, 27(10):931-936,
1996.

A Proof of Theorem 1

Theorem 3. FLI is strongly NP-complete, even if ¢; =1 for alli € V.

Proof. Given a decision instance of FLI, it requires a polynomial number of
operations to verify each constraint in order to answer Yes or No. Therefore,
FLI is in NP.

To show NP-hardness, we consider the 3-partition problem, which is known
as strongly NP-hard: Given a (multi)set M of 3N natural numbers a; with
B/4 < a; < B/2 for all ¢ = 1,...,3N, where B := 1/NZ?£1ai. Find a
partition of M into N sets My,..., My such that the sum of numbers a; in
each set is equal to B.
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Given an instance of 3-partition, we create an instance of FLI in the following
way:

There is a source node s where N B evacuees start. Additionally, there is
one node v; for each ¢ = 1,...,3N, one node vj, for each k = 1,..., N, nodes
v foreachi=1,...,3N and k=1,..., N, and one sink node t.

We have p; = 1 and p; = 0 for all nodes v; and v}; and p;x = 0, pir, = 1 for
all nodes v}

Furthermore, there are arcs from s to v; for all i = 1,...,3N with capacity
a;; arcs from v; to v}; and from v}, to v}, with capacity a; for alli =1,...,3N
and k =1,...,N; and arcs from v}, to ¢t with capacity B for all k =1,...,N.
An example is presented in Figure 6.

U1

V3N

Figure 6: FLI problem built from 3-partition instance.

The improvement costs ¢; are equal to 1 for all nodes, and the improvement
budget equals N. We have that there exists a 3-partition if and only if the FLI
problem has a solution with objective value N B.

To see this, let a 3-partition be given. If value a; is in set M}y, then we
improve node v};, meaning the a; units of flow can go from v; to v}. As we have
a 3-partition, there is exactly one possible path between every pair of nodes v;
and v}, and the total inflow in the nodes v, equals B. Thus, we have a choice
of improvements that yields a flow with value NB.

On the other hand, let an optimal solution to the FLI instance with value
N B be given. As N B units of flow start from s, there is no loss in the network.
This means that for every node v;, i = 1,...,3N, there is exactly one improved
node v}, (as there needs to be at least one such node to prevent loss, and
the improvement budget enforces that not more than one such node can be
improved). The node improvements can thus be considered as a partitioning of
the elements aq,...,asy into N sets. As each node v,; has B units of outgoing
flow, this partition is a 3-partition with equal sums.
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