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Abstract

Designing good test rigs for fatigue life tests is a common task in the auto-
motive industry. The problem to find an optimal test rig configuration and
actuator load signals can be formulated as a mathematical program. We in-
troduce a new optimization model that includes multi-criteria, discrete and
continuous aspects. At the same time we manage to avoid the necessity to
deal with the rainflow-counting (RFC) method. RFC is an algorithm, which
extracts load cycles from an irregular time signal. As a mathematical func-
tion it is non-convex and non-differentiable and, hence, makes optimization
of the test rig intractable.

The block structure of the load signals is assumed from the beginning.
It highly reduces complexity of the problem without decreasing the feasible
set. Also, we optimize with respect to the actuators’ positions, which makes
it possible to take torques into account and thus extend the feasible set. As
a result, the new model gives significantly better results, compared with the
other approaches in the test rig optimization.

Under certain conditions, the non-convex test rig problem is a union of
convex problems on cones. Numerical methods for optimization usually need
constraints and a starting point. We describe an algorithm that detects each
cone and its interior point in a polynomial time.

The test rig problem belongs to the class of bilevel programs. For every
instance of the state vector, the sum of functions has to be maximized. We
propose a new branch and bound technique that uses local maxima of every
summand.
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Zusammenfassung

Das Entwerfen guter Prüfstände für Ermüdungstests ist eine häufige Aufga-
be in der Automobilindustrie. Das Problem, optimale Prüfstandskonfigura-
tionen und Lastsignale für Aktoren zu finden, kann als mathematisches Opti-
mierungsproblem formuliert werden. Wir führen ein neues Optimierungsmo-
del ein, das multikriterielle, diskrete und kontinuierliche Aspekte hat. Dabei
vermeiden wir die Notwendigkeit, die Rainflow-counting-Methode (RFC) zu
verwenden. RFC ist ein Algorithmus, der Lastzyklen aus irregulären Zeitrei-
hen extrahiert. Betrachtet man ihn als eine mathematische Funktion, so ist
diese weder konvex noch differenzierbar und macht daher die Prüfstandsop-
timierung ist daher schwer zu bewältigen.

Wir nehmen durchweg an, dass die Lastsignale eine Blockstruktur haben.
Dies reduziert die Komplexität des Problems stark ohne die zulässige Menge
zu verkleinern. Außerdem optimieren wir bezüglich der Aktorenposition, was
erlaubt. Drehmomente mit einzubeziehen und die zulässige Menge zu erwei-
tern. Als Folge davon erzielt das neue Model wesentlich bessere Ergebnisse,
verglichen mit anderen Ansätzen zur Prüfstandsoptimierung.

Unter bestimmten Umständen ist das nicht-konvexe Prüfstandsproblem
eine Vereinigung von konvexen Problemen auf Kegeln. Numerische Optimie-
rungsmethoden brauchen in der Regel Randbedingungen und einen Start-
punkt. Wir beschreiben einen Algorithmus, der in polynomialer Zeit die ein-
zelnen Kegel erkennt und jeweils einen inneren Punkt generiert.

Das Prüfstandsproblem gehört zu der Klasse von Bilevel-Optimierungs-
problemen. Für jede Instanz eines Zustandsvektors muss die Summe von
Funktionen maximiert werden. Wir schlagen eine neue branch-and-bound-
Technik vor, die die lokalen Maxima jedes Summanden nutzt.
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Chapter 1

Introduction

Education: the path from cocky ignorance to
miserable uncertainty.

Mark Twain

Durability is one of the most important physical properties of vehicle
components. The natural procedure to assess their structural damage is the
test drive, but it is expensive, takes a lot of time and can be done only after
the whole automobile is assembled. One of the possible ways to make the
tests cheaper and faster is to use the test rigs, in which actuators create load
signals to emulate the real test drive damage.

The goal of this work is to formulate and treat numerically an opti-
mization problem that allows to design test rigs capable of approximating
fatigue damage at several chosen hot spots, assuming that the loading signal
is cyclic and consists of several blocks of constant amplitude and mean. We
are going to study several models under different assumptions, varying in
optimization parameters. The most general problem considers attachment
point for fixation to the test rig, number and attachment points of the ac-
tuators, actuators alignment parameters, numbers of cycles and amplifying
parameters of each actuator in every block.

Thesis structure

The chapter 2 starts with a brief description of fatigue damage calculation
and criteria that can be used to assess the quality of the test. We consider a
component that has several attachments for either an actuator or a fixation
to the test rig. Hot spots, where we want to assess reference damage values,
are predefined and given. Fig. 1.1 shows an example of such a component.
The mathematical program that allows to find an optimal design of the test
rig will be derived and verified.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Geometry of the component

The chapter 3 contains the analysis of the single level formulation of the
test rig model. Convexity of the damage function will be proven. Also it
will be shown that under certain assumptions the test rig problem is a union
of convex optimization problems on polyhedral cones. In order to detect
such cones, we will present an efficient algorithm and prove its worst case
polynomial time complexity.

In the chapter 4 the most generic formulation of the test rig problem
will be considered. It belongs to the class of bilevel programs, since every
instance of the state vector, which includes alignment parameters and applied
forces, defines a one-dimensional inner maximization problem at each hot
spot. We will propose a new branch-and-bound technique, which exploits
the knowledge of the extrema of each summand to find the global maximum
of the sum effectively. Convergence of the algorithm will be proven and its
running time will be tested and compared with the running time of DIRECT
algorithm.

Next, the regularity of the outer program will be studied. It is not convex
in general, but we can convert the problem into a DC program. Also dif-
ferentiability of the problem will be shown and the gradient with respect to
all state variables, including alignment parameters, will be found. The pos-
sibility to solve the test rig problem by derivative-based global optimization
methods will be demonstrated.

In the chapter 5 the bilevel formulation of the problem will be solved nu-
merically for two components in order to address several important questions
about the test rig design.

Remark 1.0.1. All computations in the current work were done on a Fe-
dora 20 desktop with Intel Core i5-520M dual-core CPU and 4GB of RAM.



Chapter 2

Modeling

Let us start with a brief description of fatigue damage calculation and criteria
that can be used to assess the quality of the test. We consider a component
that has several attachments for either an actuator or a fixation to the test
rig. Hot spots, where we want to assess reference damage values, are prede-
fined and given. Finally, the mathematical program that allows to find an
optimal design of the test rig will be derived and studied.

2.1 Damage Computation

The behavior of materials under repeated stresses or strains is usually re-
ferred to as fatigue. The formal definition of the process is currently provided
by the American Society for Testing and Materials [2].

Definition 2.1.1. Fatigue is the process of progressive localized permanent
structural change occurring in a material subjected to conditions that pro-
duce fluctuating stresses and strains at some point or points and that may
culminate in cracks or complete fracture after a sufficient number of fluctu-
ations.

Fatigue damage calculation is a quite challenging task that requires a
number of assumptions, simplifications, approximations as well as empirical
data. Fortunately, a hierarchy of models for the damage computation exists.
Here we provide a brief overview of basic fatigue computation to describe
necessary tools for later damage approximation and optimization.

2.1.1 Stress vector

Mechanical stress can be thought of as a measure of the intensity level of
internal forces in a material. The fatigue damage models consider surface
stresses, which are completely described by the two normal components σxx,
σyy and a shear stress σxy in a two-dimensional setting. Fig. 2.1 shows the
directions of all components.

3



4 CHAPTER 2. MODELING

σxx

σyy

σxx

σyy

σxy

σxy

σxy

σxy

Figure 2.1: Cross section under stress in R2

The normal stress components σxx and σyy are directed orthogonally to
the cross section and, hence, correspond to the compression or the tension of
the material. The shear stress σxy, on the other hand, acts along the cross
section. We combine all components in a stress vector σ = [σxx, σyy, σxy]

T .

2.1.2 Uniaxial constant fully reversed loading

The simplest damage model considers a uniaxial constant fully reversed sig-
nal, when a single force is acting on the surface element and oscillates about
zero. Later it can be extended to cope with more general stress signals.

Definition 2.1.2. A stress vector σ = [σxx, σyy, σxy]
T is called uniaxial, if

it can be represented as σ = σei for i = 1, . . . , 3, or multiaxial otherwise.

A uniaxial stress loading history is a scalar signal that can be random,
steady or periodic. Fig. 2.2 shows an example of a periodic loading with a
constant amplitude and zero mean.

σ

t

σf

−σf

(a) Single cycle

σ

t

σf

−σf

(b) Constant loading

Figure 2.2: Uniaxial fully reversed loading
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Definition 2.1.3. Fully reversed cycle (Fig. 2.2a) is a stress-strain cycle that
has a zero mean value. The amplitude σf of such cycle is a fully reversed
stress.

Fatigue life of the component under a periodic loading can be described
quantitavely in terms of the number of cycles at different amplitudes.

Definition 2.1.4. Fatigue life N(σf ) is a number of fully reversed cycles
with an amplitude σf a component can survive without failure, i.e. fracture
or crack.

The S-N curve [40], also known as a Wöhler curve, maps the fully reversed
stress σf to the fatigue life N . The curve can be derived, applying the
constant uniaxial fully reversed loading until the component fails.

Although the S-N curve is a very powerful tool, it is not convenient to use
the test data directly in practice. Basquin [4] approximated the S-N curve
with a power functionN(σf ) = σ−kf with a positive k. The two-slope Basquin
model’s distinguishes between low and high cycle fatigue [40], hence achieves
a better approximation:

N(σf ) = Ns

{
(σf/σs)

−k1 for σf ≤ σs,
(σf/σs)

−k2 for σf ≥ σs,
(2.1)

where parameters Ns, σs, k1, k2 depend highly on the component geometry
and its material.

Remark 2.1.5. One should remember that the frequency and mean of the
stress-strain signal as well as temperature, component geometry, material
properties, surface finish and corrosion affect durability of the component,
see [40], and influence parameters of Basquin’s model, defined by Eq. (2.1).

The number of cycles N needed to fail is given by the S-N curve for each
amplitude σf . Miner [29] suggested that a constant loading signal with n
cycles contributes d = n/N portion of total damage. If d is greater than 1,
then the component fails. We introduce a quantity g(σf ), which denotes a
portion of damage induced by a single fully reversed cycle. The following
definition uses the Basquin’s model of S-N curve.

Definition 2.1.6. Damage curve g(σf ) : R+
0 7→ R+

0 is a mapping between
stress amplitude σf of a single stress-strain cycle and a fracture of damage
it produces:

g(σf ) :=
1

N(σf )
=

1

Ns

{
(σf/σs)

k1 for σf ≤ σs,
(σf/σs)

k2 for σf ≥ σs,
(2.2)

where k1, k2 > 2.
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Fig. 2.3 shows an example of a one-slope damage curve g, when k1 = k2,
and a two-slope curve, when k1 6= k2. Both curves are continuous and strictly
monotonically increasing, although the two-slope curve is not differentiable
at σs.

g

σσs

Figure 2.3: One-slope (gray) and two-slope (dashed) damage curves

Corollary 2.1.7. Damage d under uniaxial constant fully reversed loading
can be computed using the following formula:

d(n, σf ) = ng(σf ), (2.3)

where n is the number of cycles in the stress signal and σf is the signal
amplitude.

Equation (2.3) models only a simple case, but it can be used to describe
much more complicated situations that we will consider in the following
sections.

2.1.3 Uniaxial constant general loading

Mean stress magnitude σm of a constant loading signal as in Fig. 2.4 affects
fatigue life of a component. When σm is positive, then the stress is compres-
sive and it increases the damage produced by the signal. If σm is negative,
then the stress is tensile and, in general, decreases the damage.

σ

t

σ1 = σm + σa

σ2 = σm − σa

σm

Figure 2.4: Stress-strain cycle with nonzero mean
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There are several models that correct mean stress effects by mapping stress
amplitude σa and mean σm to the corresponding fully reversed stress σf (σa, σm),
discussed in [40]. Gerber’s equation approximates experimental data with
parabola, but appears to predict compressive mean stress damage incor-
rectly. Goodman’s relation and its modifications provide much better results,
although they are based on linear interpolation:

σa
σf

+
σm
σu

= 1, (2.4)

where σu is the ultimate tensile strength. Fuchs [12] developed a more general
and precise model to correct mean stress effects, see [40] for more details.

Remark 2.1.8. In this work we define the mean stress correction, depending
on the turning points (local minima and maxima) of the stress-strain cycle
σ1 and σ2 rather then on the amplitude σa = |σ1 − σ2|/2 and the mean
σm = (σ1 + σ2)/2 to simplify the notation.

Definition 2.1.9. Mean stress correction is a function h(σ1, σ2) : R2 7→ R+
0

that maps the turning points of the stress cycle σ1 and σ2 to the correspond-
ing fully reversed stress amplitude σf that produces the same damage.

Remark 2.1.10. A fully reversed stress-strain cycle always has turning
points σ1 = −σ2 and hence h(σ1,−σ1) = |σ1|. Also h is symmetric, i.e.
h(σ1, σ2) = h(σ2, σ1).

Example 2.1.11. One of the variants of the Goodman correction (2.4) is
given by the following relation:

h(σ1, σ2) =


σa σu
σu + σa

for σm ∈ (−σu,−σa]

σa σu
σu − σm

for σm ∈ [−σa, σu)

(2.5)

where the amplitude σa = |σ1 − σ2|/2 and the mean σm = (σ1 + σ2)/2.
Isolines of the modified Goodman stress correction σf in Fig. 2.5 are

piecewise linear functions that change their slope after the pulsating tension
condition is achieved, i.e. values of the stress-strain cycle are non-positive
and hence σm = −σa. Tensile mean stresses do not have any influence for
σm < −σa in this particular model. On the other hand mean stress influence
is beneficial for σm > −σa.
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σm

σa

σf3

σf2

σf1

σu−σu

Figure 2.5: Isolines of the modified Goodman equation, corresponding to
the values σf1, σf2 and σf3

Given a method to calculate fully reversed stress for a cycle with arbitrary
mean and amplitude it becomes possible to apply Equation 2.3.

Corollary 2.1.12. Damage d in case of constant uniaxial loading signal with
the turning points σ1 and σ2 can be obtained by the following relation:

d = ng(h(σ1, σ2)), (2.6)

where g is a damage curve, h is a mean stress correction and n is a number
of cycles in the signal.

We have briefly discussed how tensile or compressive mean stresses affect
produced damage and how to calculate damage when we have three degrees
of freedom, namely amplitude and mean of the loading signal and number
of cycles in it.

2.1.4 Uniaxial block general loading

Damage computation becomes much trickier in case of variable loading. Let
us consider a block stress signal that consists of several blocks with constant
amplitude and mean values. Fig. 2.6 shows an example of a signal with 3
blocks.

σ

t

n1 = 4 n2 = 3 n3 = 5

Figure 2.6: Block loading
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Palmgren [34] and later Miner [29] suggested that the damage produced
by such a block signal is equal to the sum of damages, produced by each
block:

d =

B∑
b=1

db, (2.7)

where B is the number of blocks, db is the damage by block b = 1, . . . , B.
The Palmgren-Miner damage accumulation rule is linear and predicts failure,
when d ≥ 1.

Corollary 2.1.13. Damage d in case of uniaxial block loading signal with B
blocks can be computed using the Palmgren-Miner accumulation rule (2.7):

d =
B∑
b=1

nbg(h(σ1,b, σ2,b)), (2.8)

where g is a damage curve, h is mean stress correction, vectors nb, σ1,b and
σ2,b contain numbers of cycles and the turning points for the stress-strain
cycles in block b = 1, . . . , B.

Remark 2.1.14. Palmgren-Miner accumulation rule does not take the order
of the generated stresses into account, so that the overall damage in Fig 2.7a
and Fig. 2.7b are equal, which is not true in general.

σ

t

σf1

σf2

(a)

σ

t

σf1

σf2

(b)

Figure 2.7: Order effect

There are nonlinear fatigue models [40] that include stress order. How-
ever, in the case of random loading they predict fatigue damage with the
same accuracy as the Palmgren-Miner rule [32, 40].

2.1.5 Multiaxial block general loading

The aim of the multiaxial loading analysis is to convert the stress vector σ
into a corresponding scalar uniaxial stress σ and then calculate fatigue as
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above. The methods to assess the stress can be empirical [13, 15] or using
the stress invariants, mesoscopic properties, energy based criteria, etc [42].

In this work we concentrate on the critical plane approach. It is widely
used in industry and reflects the physical nature of the fatigue damage [40],
since cracks and fractures nucleate on specific planes. The idea is to consider
a plane, on which the failure is the quickest.

Definition 2.1.15. A scalar stress σ(α) at a given material point is the
normal stress component of the multiaxial stress σ = [σxx, σyy, σxy]

T acting
on the critical plane c(α):

σ(α) = c(α)Tσ, (2.9)

where the critical plane c(α), passing through the material point, is a plane,
defined by Mohr’s equation [35]:

c(α) = [1 + cosα, 1− cosα, 2 sinα]/2 (2.10)

Remark 2.1.16. The "classical" stress tensor is a symmetrical matrix with
only six components, namely, σxx, σyy, σzz, σxy, σxz, σyz in the global
coordinate system:

Σ =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz


Since we are interested only in surface stresses, the axes are rotated so that
the new axis z is normal to the surface element. In this direction the com-
ponents σzz, σxz, σyz are negligible, so we only get three tensor components
σ = (σxx, σyy, σxy)

T or in the matrix form:

Σ =

[
σxx σxy
σxy σyy

]
(2.11)

The coordinate system xy of the surface element can be rotated again by an
angle γ clockwise using the rotation matrix R(γ):

R(γ) =

[
cos γ sin γ
− sin γ cos γ

]
The normal stress component of the transformed stress matrix in Eq. (2.11)
is the first element of the resulting stress:

σ = (R(γ)ΣRT (γ))1,1 (2.12)

=
σxx
2

(1 + cos 2γ) +
σyy
2

(1− cos 2γ) + σxy sin 2γ

If we substite α = 2γ and write expression (2.12) as a scalar product, we
obtain Mohr’s equation (2.9)–(2.10).
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We are looking for the plane, in which the fracture happens first. Hence,
it maximizes the cumulative damage:

d = max
α

B∑
b=1

d(σ(α)) (2.13)

Combining the Eq. with the model for the uniaxial block general load-
ing (2.8), we get the following result.

Corollary 2.1.17. Damage d in case of multiaxial block loading signal with B
blocks can be computed using the critical plane approach (2.9):

d = max
α

B∑
b=0

nbg(h(c(α)Tσ1,b, c(α)Tσ2,b)), (2.14)

where g is a damage curve, h is mean stress correction, vectors nb, σ1,b and
σ2,b contain numbers of cycles and the turning points for the stress-strain
cycles in block b = 1, . . . , B.

2.1.6 Multiaxial irregular loading

The arbitrary loading signal can be converted into the block loading, using
the rainflow counting method, proposed by Endo et al. [10, 11]. The rain-
flow counting is an iterative algorithm that extracts the stress-strain cycles
from the series of succesive turning points. The extensive description of the
algorithm and its modifications can be found in [19].

Remark 2.1.18. Real service loads are irregular and, hence, the rainflow
counting method is indispesible to damage computation. However, test rig
can generate block loading using the hydraulic actuators, which neglects
the necessity to use the rainflow counting algorithm in the optimization
of the applied loading, reduces the number of parameters of the signal to
the number of cycles and the turning points for the stress-strain cycles in
every block only, instead of considering enormous time-series of the turning
points. Thus, optimization with the block signal is more structured, easier
to implement in the test rig and has nicer mathematical properties.

2.1.7 General damage computation

We provided all necessary tools for the damage computation in the most gen-
eral case, namely, multiaxial irregular loading. At first the vector stress time-
series σt (Fig. 2.8a) is converted into the scalar time-series σt(α) (Fig. 2.8b)
using the critical plane c(α). After applying the rainflow counting to ex-
tract stress-strain cycles (Fig. 2.8c) with the turning points σ1,b and σ2,b for
b = 1, . . . , B, it becomes possible to calculate the equivalent fully reversed
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cycles amplitudes σf,b = h(σ1,b, σ2,b) with the mean stress correction func-
tion (Fig. 2.8d). The amplitude of every cycle is mapped to its damage value
db = g(σf,b) by the damage function. Finally, according to the Palmgren-
Miner rule, the cumulative damage of the loading signal is the sum of each
stress-strain cycle contributions, i.e. d = d1 + . . .+ dB.

a) b)

c)d)

critical plane

rainflow
counting

mean stress
correction

Figure 2.8: Damage calculation workflow

Remark 2.1.19. Damage calculation is usually performed for several equally
spaced critical plane angles α1, . . . , αW , where the number of planes W is
often [27] 12, 18 or 36.

We discussed how to get damage values from the stress signal. Next
section is devoted to the stress computation from the parameters of the
test rig. These parameters will be used as optimization variables in the
mathematical program.

2.2 Stress Computation

Eq. (2.14) allows to calculate damage in case of multiaxial block loading
given turning points of stress-strain cycles. Computation of the stress vectors
depends on many parameters of the test rig including the placement and
alignment of actuators and the choice of fixation and loading signals applied
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in every block. In this section, we formulate these notions and provide a
damage model that suits for optimization.

2.2.1 Equilibrium equation

We first define load, attachment and mount point. After that we will derive
a load equilibrium equation for a chosen configuration of the test rig.

Definition 2.2.1. An attachment is a place, where the component can be
either fixed or an actuator can be installed. Let A + 1 be the number of
attachments. Each attachment is characterized by its spatial coordinates ai
for i = 0, . . . , A.

Definition 2.2.2. A load li is a vector, which aggregates force fi and mo-
ment mi, acting in the attachment i for i = 0, . . . , A:

li = [fi;mi] = [fxi , f
y
i , f

z
i ,m

x
i ,m

y
i ,m

z
i ]
T

Lemma 2.2.3. Let the component with A attachments be fixed at the mount
point 0. Assume that every other attachment i ∈ {1, . . . , A} has an actuator
installed, which generates a load li. Then the reaction load l0 at the mount
point can be written as:

l0 = −
A∑
i=1

[
I3 0
Ri I3

]
︸ ︷︷ ︸

=:Di

li (2.15)

where the matrix Ri ∈ R3×3 is defined by

Ri :=

 0 −r3
i r2

i

r3
i 0 −r1

i

−r2
i r1

i 0

 (2.16)

and the lever ri := ai − a0.

Proof. The reaction force f0 at the mount point 0 balances the forces fi for
i = 1, . . . , A, generated by the actuators.

f0 +

A∑
i=1

fi = 0 (2.17)

The same is valid for the moments equilibrium, taking into account not
only the moments of the actuators, applied directly at the attachments, but
also the moments, which appear due to the forces fi with the corresponding
levers ri.

m0 +
A∑
i=1

mi +
A∑
i=1

ri × fi = 0, (2.18)
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where ri is a vector from a0 to ai.
Let us expand the expression for the moments ri × fi:

ri × fi = fxi ri ×

 1
0
0

+ fyi ri ×

 0
1
0

+ fzi ri ×

 0
0
1


= fxi

 0
r3
i

−r2
i

+ fyi

 −r3
i

0
r1
i

+ fzi

 r2
i

−r1
i

0


=

 0 −r3
i r2

i

r3
i 0 −r1

i

−r2
i r1

i 0

 fi =: Ri fi (2.19)

Eq. (2.19) is used to formulate both forces (2.17) and moments (2.18) balance
equations in terms of loads li:

l0 =

[
f0
m0

]
= −

A∑
i=1

[
fi

mi + ri × fi

]

= −
A∑
i=1

[
fi

mi +Ri fi

]
= −

A∑
i=1

[
I3 0
Ri I3

]
li,

which proves the formula (2.15) for the reaction load li.

2.2.2 Unit load stresses

Here we describe stress calculation for a chosen configuration given unit load
stresses.

Definition 2.2.4. A unit load stress σij(x) : R3 7→ R3 at the spot x is a
stress vector generated by the unit load ej for j = 1, . . . , 6, acting in the
attachment i ∈ {0, . . . , A}.

Definition 2.2.5. A unit load stress matrix Si(x) := [σi1(x), . . . ,σi6(x)] :
R3 7→ R3×6 encapsulates all unit load stresses in the spot x, generated by
the unit forces acting in the attachment i ∈ {0, . . . , A}.

The unit load stress matrices Si(xk) for every attachment i ∈ {0, . . . , A}
at each hot spot xk are given as the result of a finite element simulation per-
formed on an unconstrained component using the inertia relief method [19].

Theorem 2.2.6. The stress vector σ(x) under assumptions of Lem. 2.2.3
has the following form:

σ(x) =
A∑
i=1

(
Si(x)− S0(x)Di

)
li, (2.20)
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where Si(x) are unit load stress matrices for corresponding attachments and
Di are defined as in Eqs. (2.15), (2.16).

Proof. The stress can be written as a linear combination of unit load stresses:

σ(x) =
A∑
i=0

6∑
j=1

li,j σij(x) =
A∑
i=0

Si(x) li

= S0(x) l0 +

A∑
i=1

Si(x) li (2.21)

Substitute Eq. (2.15) for the reaction load in Eq. (2.21) to prove the state-
ment.

2.2.3 Load parametrization

The alignment of actuators is not changing during the test, but the applied
forces can be different for each block. Therefore we parametrize the load
vector l as the product p l(τ ), where p and τ are the following parameters:

1. p ∈ R - applied force that can be set for each actuator in every block
separately

2. τ ∈ RT - alignment parameters that are specified only once for each
actuator and remain immutable during the test.

Definition 2.2.7. An alignment function l(τ ) : RT 7→ R6 is a continuously
differentiable function that maps alignment parameters τ ∈ RT to load l,
where T is the number of alignment variables for the selected model (see
Example 2.2.9).

Corollary 2.2.8. The stress vector σ(x) under assumptions of Lem. 2.2.3
with load parameters pi and τi for the actuators i = 1, . . . , A has the following
form:

σ(x) =
A∑
i=1

pi Bi(x) l(τi), (2.22)

where the matrix Bi(x) = Si(x) − S0(x)Di contains stresses generated by
both actuators load and the reaction load of the mounted attachment.

Example 2.2.9 (Extender). An actuator, installed in the attachment di-
rectly, can only apply forces, no moments. We can generate an additional
torque if we use an extender E as a lever (Fig. 2.9) and then apply force F
to its free end.

E(r, φ, θ) = [r sin θ cosφ, r sin θ sinφ, r cos θ]T

F (φ′, θ′) =
[
sin θ′ cosφ′, sin θ′ sinφ′, cos θ′

]T (2.23)
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where r, φ and θ are the length, the azimuth and the inclination of the
extender E, respectively, and φ′ and θ′ are the azimuth and inclination of
the force vector F .

E(r, φ, θ)

F
(φ
′ , θ

′ )

Figure 2.9: Extender installed in the attachment

Hence the resulting applied load can be expressed in the following form:

l(
[
r, φ, θ, φ′, θ′

]
) =

[ (
F TE

/
|E|2

)
E

E × F

]
(2.24)

Thus, the direction function in case of using extenders is given by Eqs. (2.23),
(2.24) and depends on alignment variables τ = [r, φ, θ, φ′, θ′] ∈ R5.

2.2.4 Damage simulation

The combination of the damage model defined by Eq. (2.14) and the stress
model defined by Eq. (2.22) yields the formulas to compute damage values
from the parameters of the test rig.

Corollary 2.2.10. Damage d in case of multiaxial arbitrary mean stress
signal with B blocks, generated by the actuators i = 1, . . . , A with the align-
ment parameters τi and the applied forces p1,bi and p2,bi, corresponding to
the turning points of the stress-strain cylces in block b = 1, . . . , B, can be
computed as follows:

d = max
α

B∑
b=1

nbg [h(σ1,b(α), σ2,b(α))] , (2.25)

σj,b = c(α)T
A∑
i=1

pj,bi Bi l(τi), for j = 1, 2, (2.26)

where g is a damage curve, h is a mean stress correction and l is an alignment
function.

We finish the description of the physical model of the fatigue damage.
Eqs. (2.25)–(2.26) fully describe the general damage computation that we
will use in the optimization later.
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2.3 Optimization Model

So far we have described all necessary components of the stress and damage
simulation. Finally, we formulate an optimization problem and discuss what
state variables, criteria and constraints it may have.

2.3.1 Optimization criterion

The quality of the damage approximation can be improved by minimizing
the functional

f =
d

dref
+
dref

d
, (2.27)

where dref is the reference damage value, that was acquired from FEM sim-
ulation using real-world load signals.

f

dr 2r 3rr
2

r
3

Figure 2.10: Quality criterion

Remark 2.3.1. The functional f considers the ratio of the achieved damage
and the reference damage rather than the difference, which is closer to the
logarithmic behavior of the fatigue life (see Fig. 2.10). In addition it treats
underestimation and overestimation of the ratio in a similar way.

2.3.2 State variables

The component that we intend to test, is mounted to the test rig and has A
actuators installed. Let the loading signal consist of B blocks. Then we have
the following continuous variables:

• p1,b, p2,b ∈ RA for b = 1, . . . , B – applied forces in block b, corre-
sponding to the first and second turning points of the load cycle in
block b. The vector p̄ = [p1,1,p2,1, . . . ,p1,B,p2,B] ∈ R2AB summarizes
the applied forces.

• τi ∈ RT for i = 1, . . . , A – alignment parameters for each active ac-
tuator i. The vector τ̄ = [τ1, . . . , τA] ∈ RAT collects all alignment
variables.
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Let us introduce the state vector z = [p̄, τ̄ ] ∈ RA(2B+T ) that aggregates all
load optimization parameters.

Remark 2.3.2. One could also take into account where the attachments
with the mounts and where active actuators are. This would add further
discrete variables to our model. However, there are not so many possibilities
to vary the configuration of the test rig due to the low number of attachments
and often there is only one obvious choice or few reasonable choices which
are easy to enumerate.

2.3.3 Target functional

Let K denote the number of given hot spots xk with reference damage val-
ues drefk and the corresponding damage quality criterion fk for k = 1, . . . ,K.
We want to achieve the best quality of damage approximation at all hot spots,
but there does not always exist a solution that minimizes every criterion fk
for k = 1, . . . ,K simultaneously. Hence the test rig optimization problem is
a multi-criteria minimization problem and we should look for Pareto optimal
solutions [28], which are characterized by the fact that none of the criteria
can be improved without worsening at least one of the others. Therefore, we
use the criterion (2.27) to formulate the multi-criteria problem, depending
on the load parameters z:

min
z

[f1(z), . . . , fK(z)], (2.28)

fk(z) =
dk(z)

drefk
+

drefk
dk(z)

, (2.29)

where fk models the quality of the damage approximation at a hot spot xk
and damage dk(z) is produced by multiaxial arbitrary mean loading signal
described above by the Eqs. (2.25)–(2.26):

dk(z) = max
αk

B∑
b=1

nbg [h(σ1,kb(αk, z), σ2,kb(αk, z))] , (2.30)

σj,kb(αk, z) = c(αk)
Tσj,kb(p̄, τ̄ ), (2.31)

σj,kb(p̄, τ̄ ) =
A∑
i=1

pj,bi Bki l(τi), for j = 1, 2, (2.32)

where the state vector z = [p̄, τ̄ ].

Remark 2.3.3. In general, there is no unique optimal solution in the multi-
criteria setup. Instead we have the Pareto set, i.e. the set of Pareto-optimal
solutions, which is usually of infinite size. These solutions can be obtained
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by an appropriate scalarization of the vector of criteria to a single new crite-
rion [28]. This yields a non-linear program, which can be solved by standard
techniques. In this work the multi-criteria problem (2.28) is scalarized us-
ing linear no-preference scalarization (each of the hot spots has the same
importance) to concentrate on the properties of the nonlinear optimization:

min
z
F (z)

F (z) =

K∑
k=1

fk(z) (2.33)

Although the target functional of the minimization problem is described
by Eqs. (2.29)–(2.33), we need to provide constraints to set the problem.

2.3.4 Constraints and bounds

State variables in the test rig problem cannot be infinite and should be
bounded to have a real world meaning. So we impose box constraints on the
applied forces p1,b, p2,b in each block b = 1, . . . , B as well as on actuators
alignment variables τi for every attachment i = 1, . . . , A:

−pmax ≤ pj,b ≤ pmax ∈ RA

τmin
i ≤ τi ≤ τmax

i ∈ RT (2.34)

Note, that either positive or negative forces pj,b can be applied and only
the absolute value is bounded by pmax. Also we provide constraints for the
components of the stress vectors σj,kb:

− eσmax ≤ σj,kb ≤ eσmax ∈ R3 (2.35)

Contradictory constraints can lead to an empty feasible set, when there exists
no state vector satisfying all constraints simultaneously.

Theorem 2.3.4. The feasible set of the optimization problem Eqs. (2.28)–
(2.33) is nonempty, bounded and convex.

Proof. The optimization parameters p̄ and τ̄ are linearly bounded by (2.34)
from above and below and the stress constraints (2.35) are linear, hence the
feasible set is convex and bounded. The applied powers vector p̄ = 0 belongs
to the feasible set, since all vector stresses σj,kb(0, τ̄ ) = 0 and, therefore,
satisfy the inequalities (2.35).

Eqs. (2.28)–(2.33) provide a feasible formulation of the test rig optimiza-
tion problem. The next section is devoted to the validation of the model by
studying the behaviour of a simple cases.
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2.4 Single Hotspot Solution

Previously, we combined all necessary tools in one complicated nonlinear
optimization program, defined by Eqs. (2.28)–(2.33). In this section we
check, whether the derived model’s behaviour is acceptable and realistic.
The validation of the model is done by considering solutions of the simple
two-dimensional case with only one hot spot, one actuator and a constant
fully reversed loading. The unit load stresses are computed by solving the
linear elasticity equation with the finite element method. The reference dam-
age field is generated from randomly created sequence of applied powers. We
analyze this model both theoretically and numerically.

2.4.1 Two-dimensional model

Assume, that the number of hotspots K = 1 and damage approximation is
done by a single actuator, generating the fully reversed constant loading, i.e.
the number of blocks in the signal B = 1 and stress-strain cycles have zero
mean. Selected assumptions simplify the general test rig problem (2.28)–
(2.33) as follows:

min
p,τ

f(p, τ), (2.36)

f(p, τ) =
d(p, τ)

dref
+

dref

d(p, τ)
, (2.37)

d(p, τ) = nmax
α

g
(
p |c(α)TB l(τ)|

)
, (2.38)

where the matrix B ∈ R3×2 contains two stress vectors, corresponding to the
applied unit loads fx and fy, the function g is a damage curve (see Def. 2.1.6)
and c(α) denotes the critical plane normal (see Def. 2.1.15):

c(α) = [1 + cosα, 1− cosα, 2 sinα]/2 (2.39)

The constants dref and n are the reference damage to achieve and the number
of stress-strain cycles in the loading signal. The alignment function l(τ) does
not take the moments mx and my into account, so, it balances only the ratio
of the unit forces fx and fy:

l(τ) = [sin τ, cos τ ]T (2.40)

The number of optimization parameters is, hence, reduced to only two:

• p ∈ [0, pmax] – applied force for the actuator

• τ ∈ [0, 2π] – angle of the actuator
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The problem (2.36)–(2.38) belongs to the class of bilevel programs, i.e. for
every instance of the outer state variables p and τ we have to solve an inner
maximization problem with respect to α. In this particular case the bilevel
formulation can be converted to the single level program by solving the inner
problem analytically.

2.4.2 Single level formulation

The original formulation (2.36)–(2.38) can be simplified, if we get rid of the
inner maximization problem. Luckily, it is possible in this case.

The critical plane optimization program for the fixed outer variables p
and τ reads as follows:

max
α

d(α), (2.41)

d(α) = g
(
p |c(α)Tσ|

)
, (2.42)

where the stress vector σ = B l(τ). The physical meaning of d(α) here is the
damage, induced by a single stress-strain cycle in loading signal.

Theorem 2.4.1. The following holds for the critical plane optimization prob-
lem (2.41)–(2.42):

max
α

d(α) = g

(
1

2
p max{|d1|, |d2|}

)
where the constants d1 and d2 are defined as:

d1 := σ1 + σ2 +
√

(σ1 − σ2)2 + 4σ2
3

d2 := σ1 + σ2 −
√

(σ1 − σ2)2 + 4σ2
3

Proof. The monotonicity of the damage curve g and positivity of applied
power p yields the expression:

max
α

d(α) = max
α

g
(
p |c(α)Tσ|

)
= g

(
p max

α
|c(α)Tσ|

)
(2.43)

Let us define the function q(α) := c(α)Tσ and find its extrema. We differ-
entiate q(α) and substitute the critical plane normal definition Eq.(2.39) to
get the equation:

q′(α) = c′(α)Tσ =
1

2
(σ2 − σ1) sinα+ σ3 cosα = 0 (2.44)

Eq. (2.44) has two roots:

α1 = arctan (A/B ), (2.45)
α2 = arctan (A/B ) + π, (2.46)
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where A := 2σ3 and B := σ1 − σ2. Hence, the maximum is given by the
absolute value of either q(α1) or q(α2). Let us expand the definition of q(α)
and write it in terms of A and B for convenience.

q(α) = c(α)Tσ = 0.5 [σ1 + σ2 + (σ1 − σ2) cosα+ 2σ3 sinα]

= 0.5 [σ1 + σ2 +B cosα+A sinα]

= 0.5

[
σ1 + σ2 +B cosα

(
1 +

A

B
tanα

)]
(2.47)

Substitute the expression (2.45) and (2.46) for the local optimal points α1

and α2 in (2.47):

q1,2 = 0.5

σ1 + σ2 ±
B√

1 + A2

B2

(
1 +

A2

B2

)
= 0.5

[
σ1 + σ2 ±

√
B2 +A2

]
= 0.5

[
σ1 + σ2 ±

√
(σ1 − σ2)2 + 4σ2

3

]
(2.48)

Combining the result (2.43) and the formula (2.48) for the extrema of the
function q(α) := c(α)Tσ, we prove the statement.

Lemma 2.4.2. The alignment function l(τ) = [sin τ, cos τ ]T for τ ∈ [0, 2π]
in problem (2.36)–(2.38) can be restricted to a semicircle for τ ∈ [τ0, τ0 + π]
without decreasing the feasible set.

Proof. It is enough to prove that d(p, τ) = d(p, τ + π):

d(p, τ) = nmax
α

g
(
p |c(α)TB l(τ)|

)
,

= nmax
α

g
(
p | − c(α)TB l(τ + π)|

)
= d(p, τ + π),

using the fact that [sin τ, cos τ ]T = −[sin(τ + π), cos(τ + π)]T .

Remark 2.4.3. We have complete freedom to choose τ0 of our interest. The
following theorems give an idea, how to do that.

Lemma 2.4.4. For the stress vector σ(τ) = B l(τ) with the alignment func-
tion l(τ) = [sin τ, cos τ ]T the sum of first two components σ1(τ) + σ2(τ) is
non-negative, if one of the following statements holds:

1. B11 + B21 > 0 and τ ∈ [τ0, τ0 + π],

2. B11 + B21 < 0 and τ ∈ [τ0 + π, τ0 + 2π],

where τ0 = − arctan [(B12 + B22)/(B11 + B21) ].
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Proof. Consider the sum of the first two stress components:

σ1(τ) + σ2(τ) = (B11 + B21) sin τ + (B12 + B22) cos τ = 0 (2.49)

We get two solutions of Eq. (2.49):

τ1 = − arctanB/A =: τ0,

τ2 = − arctanB/A+ π = τ0 + π,

where the constants A := B11 + B21 and B := B12 + B22. The roots τ0 and
τ0 + π define intervals [τ0, τ0 + π] and [τ0 + π, τ0 + 2π], but we do not know,
where σ1(τ) +σ(τ) is non-negative. We calculate the expression at τ0 + π/2
to check its sign:

σ1(τ + π/2) + σ2(τ + π/2) = A cos τ0 −B sin τ0

= A cos τ0 (1 +B2/A2)

= A
√

1 +B2/A2

= sgnA
√
A2 +B2

Hence σ1(τ) +σ(τ) is non-negative on the interval [τ0, τ0 +π], when sgnA =
sgn(B11 + B21) ≥ 0, which proves the statement of the lemma.

Theorem 2.4.5. For the critical plane optimization problem (2.41)–(2.42)
with the stress vector σ(τ) = B l(τ) and the alignment function l(τ) =
[sin τ, cos τ ]T the following holds:

d(p, τ) = ng

(
p

2

∣∣∣∣σ1(τ) + σ2(τ) +
√

(σ1(τ)− σ2(τ))2 + 4σ2
3(τ)

∣∣∣∣) ,
if one of the statements below is true:

1. B11 + B21 > 0 and τ ∈ [τ0, τ0 + π],

2. B11 + B21 < 0 and τ ∈ [τ0 + π, τ0 + 2π],

where τ0 = − arctan [(B12 + B22)/(B11 + B21)].

Proof. From the Theorem 2.4.1 we know, that

max
α

d(p, τ) = n g

(
1

2
p max{|d1(τ)|, |d2(τ)|}

)
where the functions d1(τ) and d2(τ) are defined as:

d1 = σ1(τ) + σ2(τ) +
√

(σ1(τ)− σ2(τ))2 + 4σ2
3(τ)

d2 = σ1(τ) + σ2(τ)−
√

(σ1(τ)− σ2(τ))2 + 4σ2
3(τ)

Obviously, |d1(τ)| ≥ |d2(τ)|, when σ1(τ)+σ2(τ) is non-negative. Lemma 2.4.4
provides the desired conditions.
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Remark 2.4.6. The above theorem combined with Lemma 2.4.2 makes
it possible to forget about the critical plane maximization problem in the
formulation (2.36)–(2.38).

Corollary 2.4.7. The optimization problem (2.36)–(2.38) is equivalent to
the following one:

min
p,τ

f(p, τ), (2.50)

f(p, τ) =
d(p, τ)

dref
+

dref

d(p, τ)
, (2.51)

d(p, τ) = ng (p|σf (τ)|) , (2.52)

σf (τ) =
1

2

(
σ1(τ) + σ2(τ) +

√
(σ1(τ)− σ2(τ))2 + 4σ2

3(τ)

)
, (2.53)

σ(τ) = B [sin τ, cos τ ]T , (2.54)

where the state variables have box constraints:

p ∈ [0, pmax],

τ ∈ [τ0, τ0 + π] , if B11 + B21 > 0

τ ∈ [τ0 + π, τ0 + 2π] , if B11 + B21 < 0

τ0 = − arctan [(B12 + B22)/(B11 + B21) ] (2.55)

Theorem 2.4.8. If the scalar stress σf (τ∗) 6= 0 for a fixed direction τ∗, then
the model (2.50)–(2.54) has the following minimum point:

p∗ = min

{
pmax,

1

|σf (τ)|
g−1

(
dref

n

)}
, (2.56)

where g−1 is the inverse of the damage curve g.

Proof. The KKT necessary optimality conditions [5] for the problem (2.50)–
(2.54) read as follows:(

1

dref
− dref

d(p)

)
ng′(p|σf (τ)|) |σf (τ)|+ λ1 − λ2 = 0 (2.57)

λ1(p− pmax) = 0 (2.58)
λ2 p = 0 (2.59)

λ1, λ2 ≥ 0 (2.60)

where λ1 and λ2 are Lagrangian multipliers. Considering different index sets
of active constraints of the system (2.57)–(2.60), we get the minimizer:
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Case 1. If λ1 = 0 and λ2 = 0, then the resulting equation d(p) = dref, com-
bined with the damage formula 2.52, leads to the following minimum
point:

p∗1 =
1

|σf (τ)|
g−1

(
dref

n

)
, (2.61)

where p∗1 is, obviously, non-negative, but it can be greater than pmax
and, hence, infeasible.

Case 2. If λ1 = 0 and λ2 6= 0, then the optimum is attained at p∗2 = pmax.

Case 3. If λ1 6= 0 and λ2 = 0, then the force p∗3 and the damage d(p∗3) are
both equal to zero. Thus, the target functional f(p∗3, τ

∗) is infinite.

Therefore, the combination of cases 1 and 2 proves the theorem.

We have successfully converted the original bilevel problem (2.36)–(2.38)
into the single-level formulation (2.50)–(2.54) that can be solved, using The-
orem 2.4.8 for a discretized set of angles τ . Before solving the problem we
have to generate the stress matrix B and the reference damage dref.

2.4.3 Numerical Results

This section is devoted to the numerical investigation of the optimization
problem behaviour with the example of two components. We calculate unit
load stresses from the linear elasticity equation and generate reference dam-
age field from a randomly created sequence of applied powers. Choosing a
spot with the maximal reference damage as a hot spot, we get all necessary
data to solve the optimization problem.

Unit load stresses computation

Based on [39], we make a brief description of the elasticity equation and its
weak formulation to compute unit load stresses for two elastic bodies.

Strong formulation Deformation of the linearly elastic body Ω, fixed on
Γ0 ⊂ ∂Ω under the load acting on Γ ⊂ ∂Ω is described by the equations of
linear elasticity in 2D:

div σ(u(x)) = 0, (2.62)
σ(u(x))n(x) = β(x) on Γ, (2.63)

u(x) = 0 on Γ0, (2.64)

where u := (u, v) ∈ R2 is the displacement of a point x relative to its origin,
β ∈ R2 is the stress acting on the boundary Γ and σ(u(x)) ∈ R2×2 is the
stress tensor, which satisfies Hooke’s law:

σ = 2µε+ λtr(ε)I2, (2.65)
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where λ and µ are Lamé parameters and ε ∈ R2×2 is the strain tensor,
indicating the ratio of the change in length of the component to its original
length [31]:

ε =
1

2
((∇u)T +∇u) =

1

2

[
2∂xu ∂yu+ ∂xv

∂yu+ ∂xv 2∂yv

]
(2.66)

Remark 2.4.9. Eq. (2.65) implies the formula for the stress tensor compo-
nents:[

σxx σxy
σxy σyy

]
=

[
∂xu(2µ+ λ) + λ∂yv µ(∂yu+ ∂xv)

µ(∂yu+ ∂xv) ∂yv(2µ+ λ) + λ∂xu

]
(2.67)

Weak formulation The finite element method needs a variational for-
mulation, so, we multiply the linear elasticity equation (2.62) with the test
function v, that satisfies the homogeneous boundary condition v = 0 on Γ0

and then integrate, using the Green’s formula and the expression for the
strain tensor (2.66):

0 =

∫
Ω

div σv dx =

∫
∂Ω

vTσnds−
∫
Ω

σ(u) : ∇v dx

=

∫
Γ

vTβ −
∫
Ω

σ(u) : ε(v) dx

=

∫
Γ

vTβ −
∫
Ω

λ(tr(ε)I) : ε(v) + 2µε(u) : ε(v) dx

=

∫
Γ

vTβ − λ
∫
Ω

divu div v dx− 2µ

∫
Ω

ε(u) : ε(v) dx (2.68)

The weak formulation (2.68) can be solved with FEM. In this work we use
FreeFEM++ solver [16].

Unit load stresses Let us split the boundary Γ, where the load is applied,

into several attachments Γi, such that Γ =
A⋃
i=1

Γi and Γi∩Γj = ∅. Therefore,

Eq. (2.68) can be rewritten:

A∑
i=1

∫
Γi

vTβi − λ
∫
Ω

divu div v dx− 2µ

∫
Ω

ε(u) : ε(v) dx = 0 (2.69)

We are not particularly interested in the displacements u, but rather in the
stress tensors σ(u). That means we need to solve the weak formulation
(2.69) and then apply Eq. (2.67) to evaluate the tensors.
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Corollary 2.4.10. Since the component is already fixed at Γ0, the unit load
stresses solutions σ(x,β) for the surface traction β1 = [1, 0] and β2 = [0, 1]
applied at the boundary Γj(x) correspond to the first and the second columns
of the stress matrices Bj(x,β) in the node x for the jth actuator, i.e.:

Bj(x) = (σj(x,β1),σj(x,β2)). (2.70)

Eq. (2.70) allows us to calculate the unit load stress matrices, solving the
elasticity equation for different boundary conditions.

Example 2.4.11. We consider the qualitative behavior of two components,
namely, angle bar (see Fig. 2.11a) and countertop bar (see Fig. 2.11b). Both
components have two attachments Γ1 and Γ2 and they are fixed at Γ0.

Γ1

Γ2

Γ0 Ω

(a) Angle bar

Γ1

Γ2

Γ0

Ω

(b) Countertop bar

Figure 2.11: Cross sections of considered steel bars

We take the Lamé parameters of steel λ = 1.07051 · 1011 N/m2 and
µ = 7.75194 · 1010 N/m2 and rescale the magnitude of β to 0.02. These
parameters are valid for both components.

The displaced mesh with the color map, showing the scalar stress field,
generated by the different unit load cases, consists of 714 triangles for the
angle bar (see Fig. 2.12a–2.15b) and 403 triagles for the countertop bar (see
Fig. 2.16a–2.19b). The displacement u is multiplied by 108 for the angle bar
and 107 for the countertop bar for better perception.
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Figure 2.12: Scalar stress field σTe for β1 = [1, 0]T and β1 = [−1, 0]T
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Figure 2.13: Scalar stress field σTe for β1 = [0, 1]T and β1 = [0,−1]T
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Figure 2.14: Scalar stress field σTe for β2 = [1, 0]T and β2 = [−1, 0]T

0

1

2

3

4

5

0 1 2 3 4 5

−9 −6 −3 0 3 6 9 12

0

1

2

3

4

5

0 1 2 3 4 5

−10 −5 0 5 10

Figure 2.15: Scalar stress field σTe for β2 = [0, 1]T and β2 = [0,−1]T
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Figure 2.16: Scalar stress field σTe for β1 = [1, 0]T and β1 = [−1, 0]T
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Figure 2.17: Scalar stress field σTe for β1 = [0, 1]T and β1 = [0,−1]T
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Figure 2.18: Scalar stress field σTe for β2 = [1, 0]T and β2 = [−1, 0]T
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Figure 2.19: Scalar stress field σTe for β2 = [0, 1]T and β2 = [0,−1]T
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Reference damage generation

In the previous section we discussed the unit load stresses calculation, but
we still need the reference damage values to collect all necessary data for
optimization.

The randomly generated multiaxial block general loading (for details, see
Section 2.1.5 and Eqs. (2.25)–(2.26)), created by two actuators, is used to
mimic the real world loading signals:

dref = max
w=1,...,W

B∑
b=1

nbg [h(σ1,b(α), σ2,b(α))] , (2.71)

σj,b = c(
2πw

W
)T (pj,b1 B1 l(τb1) + pj,b2 B2 l(τb2)) , for j = 1, 2, (2.72)

where B is the number of blocks, τb1 and τb2 are angles of the forces pj,b1
and pj,b2, applied at the corresponing boundary. Both forces and angles are
randomly generated for each block b = 1, . . . , B, using a uniform distribution.
The critical plane optimization is discrete, i.e. we choose maximal damage
among W = 18 planes as in [27]. The damage curve g(σg) has one slope:

g(σf ) = 10−6 ( |σf |/75)5 (2.73)

and mean stress correction h(σ1, σ2) is defined as follows:

h(σ1, σ2) =

{
0.7σa for σa < −σm
σa + 0.3σm for σa ≥ −σm

(2.74)

where σa = |σ1 − σ2|/2 and σm = (σ1 + σ2)/2 are the amplitude and mean
of the stress-strain cycle respectively. Detailed description and physical
meaning of the functions g and h can be found in Sections 2.1.2 and 2.1.3.

We define pmax = 12 for both components and B = 1012 for the angle
bar and B = 1010 for the countertop bar. Figs. 2.20a and 2.21a show the
results of the reference damage generation.
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Figure 2.20: Reference damage field dref(x)
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Figure 2.21: Reference damage field dref(x)

Thus, the reference damage field for each polygon was computed. Each
component has its spot with the maximal damage (see Figs. 2.20b and 2.21b).
These spots are chosen as the hot spots for the optimization.
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Results In this section we use previously calculated unit load stresses,
reference damages and hot spots to solve the optimization problem (2.50)–
(2.52). We apply the Theorem 2.4.8 to find the optimal applied force p∗v for
the discretized range of actuator’s angles τv for v = 1, . . . , 180. Then we
choose the solution (p∗v, τv) that minimizes the target functional f(p, τ).

Angle bar The minimum f∗ = 2.0 was reached, using the single actuator,
attached at the boundary Γ1, i.e. the reference damage dref was successfully
approximated (see Fig. 2.22b). At the same time, Fig. 2.22a shows that the
component was fractured close to the fixation Γ0.
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(b)

Figure 2.22: Achieved damage field d(x)

Countertop bar Similarly, the minimum f∗ = 2.0 was reached, using the
single actuator, attached at the boundary Γ1 (see Fig. 2.23b), but now the
component failed away from the fixation Γ0, because the chosen hot spot
was very close to it.
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Figure 2.23: Achieved damage field d(x)

The results indicate that the single hot spot model with the constant fully
reversed loading can provide acceptable damage approximation only in the
neighborhood of the chosen hot spot even for simple geometries. Therefore,
we should use more difficult models with several actuators, hot spots, blocks
in the stress-strain signal and impose more constraints on the stress and
damage values.

2.5 Conclusion

In this chapter we derived the test rig bilevel optimization problem that con-
sists of the fatigue damage model for multiaxial block general loading signal,
the method to compute stress vectors, corresponding to the turning points
of the signal, and criterion, evaluating quality of the damage approximation
at each hot spot.

We studied the properties of the model in the simplest case of a test rig
with one hot spot and a single actuator, generating a constant fully reversed
loading signal. As expected, the numerical investigation demonstrates real-
istic reference damage field, but poor approximation quality outside the hot
spot neighborhood. That implies validity of the general model, although it
also shows that we should avoid using simplified versions of the optimiza-
tion model, since it does not provide suitable approximation quality even for
ordinary geometries.
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Chapter 3

Single Level Optimization

In the previous chapter we have described the test rig model and tested
its validity. The derived optimization problem (2.28)–(2.33) belongs to the
class of bilevel programs, since for each instance of the state vector we have
to solve the inner optimization problem, finding a plane, where the fatigue
damage is maximal. However, for some applications it is not necessary. If the
hot spot is located at the seam-welded joints, then the angle of the critical
plane is known in advance [26].

Assumption 3.0.1. The critical plane angles are known at each hot spot k =
1, . . . ,K, i.e. for every state vector z and the following inner maximization
problem:

dk(z) = max
α

dk(z, α)

a solution α∗k is given and constant.

Global optimization problems are often convex with respect to a subset
of the state variables, while the rest are fixed. The general test rig problem
is not convex, but we can gain some useful properties, if we fix the align-
ment of each actuator. After that we can solve more regular problems for a
discretized set of feasible alignment parameters.

Assumption 3.0.2. The alignment variables τi for every actuator i =
1, . . . , A are given and immutable.

This chapter contains the analysis of the test rig model under the As-
sumptions 3.0.1 and 3.0.2. Convexity of the damage function is proven. It
allows to convert the problem into a DC (difference convex) program. Also
we show that the test rig problem is a union of convex optimization problems
on polyhedral cones, if it generates fully reversed constant loading. In order
to detect such cones, a new algorithm is presented and proven to have worst
case polynomial time complexity.

37
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3.1 Model

Under the Assumptions 3.0.1 and 3.0.2 the general test rig problem (2.28)–
(2.33) has predefined alignment parameters τi for actuators i = 1, . . . , A
and critical plane angles αk for hot spots k = 1, . . . ,K. Thus, we need to
optimize only the applied forces p̄ = [p1,1,p2,1, . . . ,p1,B,p2,B] ∈ R2AB. The
problem is reduced to the following form:

min
p̄

K∑
k=1

dk(p̄)

drefk
+

drefk
dk(p̄)

(3.1)

dk(p̄) =

B∑
b=1

nbg [h(σ1,kb(p̄), σ2,kb(p̄))] , (3.2)

σj,kb(p̄) = pTj,b sk for j = 1, 2, (3.3)

where drefk > 0 denote the reference damage values, nb > 0 are the num-
bers of stress-strain cycles per block and the vectors sk ∈ RA already
include unit load stresses, critical planes and alignment parameters, i.e.
sk,i = c(αk)

TBki l(τi). The function g : R+
0 7→ R+

0 is the damage curve:

g(σf ) :=
1

Ns

{
(σf/σs)

k1 for σf ≤ σs,
(σf/σs)

k2 for σf ≥ σs,
(3.4)

where k1, k2 > 2 and h : R2 7→ R+
0 is the Goodman mean stress correction:

h(σ1, σ2) =

{
(1−M)σa for σa < −σm
σa +Mσm for σa ≥ −σm

(3.5)

where σa = |σ1 − σ2|/2 and σm = (σ1 + σ2)/2 are the amplitude and mean
of the stress-strain cycle respectively and the slope M < 1 is positive. De-
tailed description and physical meaning of these functions can be found in
Sections 2.1.2 and 2.1.3.

3.1.1 Damage function convexity

In this section we discuss the properties of the damage function d(p̄) that
we are using in the optimization problem (3.1)–(3.3):

d(p̄) =

B∑
b=1

nbg [h(σ1,b(p̄), σ2,b(p̄))] , (3.6)

Finally, we prove that convexity and monotonicity of g imply convexity of the
damage function. This important result can be used to convert the problem
into DC program and, hence, apply more effective methods to solve it.

Since d(p̄) is a composition of several functions, we would like to recall
some simple operations that preserve convexity, based on [7].
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Lemma 3.1.1. If f1 and f2 are convex functions then their pointwise max-
imum f , defined by

f(x) = max {f1(x), f2(x)}

with dom f = dom f1 ∩ dom f2, is also convex.

Lemma 3.1.2. A piecewise-affine function f(x) with L regions,

f(x) = max{aT1 x+ b1, . . . ,a
T
Lx+ bL}

is convex since it is the pointwise maximum of affine functions.

Lemma 3.1.3. Suppose f : Rn 7→ R, A ∈ Rn×m, and b ∈ Rn. Define
g : Rm 7→ R by

g(x) = f(Ax+ b)

with dom g = {x | Ax+ b ∈ dom f}. Then if f is convex, so is g.

Lemma 3.1.4. A nonnegative weighted sum of convex functions,

f(x) = ω1f1(x) + . . .+ ωLfL(x)

is convex.

Lemma 3.1.5. Suppose g : Rk 7→ R and hi : Rn 7→ R for i = 1, . . . , k.
Define f : Rn 7→ R by

f(x) = g(h(x)) = g(h1(x), . . . , hk(x))

with domh = Rn and dom g = Rk. Then f is convex if g is convex and
non-decreasing in each argument, and hi are convex for i = 1, . . . , k.

We prove convexity of the Goodman mean stress correction h with respect
to the turning points σ1 and σ2. It is the only missing link to prove convexity
of the damage function.

Lemma 3.1.6. Goodman mean stress correction h(σ1, σ2), defined by Eq. (3.5),
is a pointwise maximum of linear functions

h(σ1, σ2) = 0.5 max{(1−M) (σ1 − σ2), (1 +M)σ1 − (1−M)σ2,

(1−M) (σ2 − σ1), (1 +M)σ2 − (1−M)σ1} (3.7)

and, thus, convex.

Proof. Consider the Formula (3.5):

h(σ1, σ2) =
1

2

{
(1−M) |σ1 − σ2| for |σ1 − σ2| < −(σ1 + σ2)
|σ1 − σ2|+M(σ1 + σ2) for |σ1 − σ2| ≥ −(σ1 + σ2)
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and expand the modulus |σ1 − σ2|:

h(σ1, σ2) =
1

2


(1−M) (σ1 − σ2) for σ1 ≥ σ2 and σ1 ≤ 0
(1−M) (σ2 − σ1) for σ1 ≤ σ2 and σ2 ≤ 0
(1 +M)σ1 − (1−M)σ2 for σ1 ≥ σ2 and σ1 ≥ 0
(1 +M)σ2 − (1−M)σ1 for σ1 ≤ σ2 and σ2 ≥ 0

We get a piecewise linear function with four regions, depicted on Fig. 3.1.

σ1

σ2 0

(1 − M)(σ2 − σ1)

(1 − M)(σ1 − σ2)

(1 + M)σ2 − (1 − M)σ1

(1 + M)σ1 − (1 − M)σ2

Figure 3.1: Domain of the Goodman mean stress correction h(σ1, σ2)

Introduce the function f(σ1, σ2) as follows:

f(σ1, σ2) = 0.5 max{(1−M) (σ1 − σ2), (1 +M)σ1 − (1−M)σ2,

(1−M) (σ2 − σ1), (1 +M)σ2 − (1−M)σ1}

The function f(σ1, σ2) is convex by Lemma 3.1.2, since it is a pointwise
maximum of linear functions. It remains to prove that f and h are equal at
each point (σ1, σ2).

Consider the case, when σ1 ≥ σ2 and σ1 ≤ 0. Obviously, h(σ1, σ2) =
0.5 (1−M)(σ1−σ2). The following inequalities hold for the function f(σ1, σ2):

(1−M) (σ1 − σ2) ≥ (1−M) (σ2 − σ1) for σ1 ≥ σ2

(1 +M)σ1 − (1−M)σ2 ≥ (1 +M)σ2 − (1−M)σ1 for σ1 ≥ σ2

(1−M) (σ1 − σ2) ≥ (1 +M)σ1 − (1−M)σ2 for σ1 ≤ 0

Therefore, the functions h and f are equal for σ1 ≥ σ2 and σ1 ≤ 0. The
other cases can be proven analogously.
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Theorem 3.1.7. Damage model d(p1,1, . . . ,p2,B):

d(p1,1, . . . ,p2,B) =
B∑
b=1

nbg(h(pT1,bs,p
T
2,bs)) (3.8)

is convex, if the damage curve g is convex and non-decreasing.

Proof. Lemma 3.1.6 states the convexity of the Goodman mean stress correc-
tion h(σ1, σ2). The composition of the convex function with the affine map-
ping is convex by Lemma 3.1.3, hence, the function h̄(p1,p2) := h(pT1 s,p

T
2 s)

is also convex. A non-negative weighted sum of scalar compositions of non-
decreasing and convex function g with convex h̄ is convex, according to
Lemma 3.1.4 and Lemma 3.1.5.

The damage curve g, defined by Eq. (3.4), is a continuous piecewise
monomial function with positive coefficients and non-negative domain, so it
is non-decreasing. But is it really convex like we assumed in the theorem
above? The answer is yes when k1 ≤ k2 and no otherwise. In the latter case,
we can convexify it in the neighborhood of σs.

Lemma 3.1.8. The continuous piecewise monomial function f(t) with pa-
rameters k1 > k2 > 0:

f(t) =

{
tk1 for t ≤ 1,
tk2 for t ≥ 1,

(3.9)

can be convexified by the following continuously differentiable function:

f̄(x) =


tk1 for t ≤ l,
a1(t− l) + a0 for l ≤ t ≤ r,
tk2 for t ≥ r,

(3.10)

where the parameters l, r, a0 and a1 are defined by

a0 = lk1

a1 = k1l
k1−1

l =

(
k1

k2

) k2
k2−k1

(
k1 − 1

k2 − 1

) 1−k2
k2−k1

r =

(
k1

k2

) k1
k2−k1

(
k1 − 1

k2 − 1

) 1−k1
k2−k1

Proof. We have to solve the system of 4 equations that include conditions of
the continuity of f(t) and f ′(t) at the points l and r to find the coefficients:

a0 = lk1 (3.11)

a0 + a1(r − l) = rk2 (3.12)

a1 = k1l
k1−1 (3.13)

a1 = k2r
k2−1 (3.14)
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Substitute Eqs. (3.11), (3.13) and (3.14) in (3.12) and get the following
system:

a0 = lk1 (3.15)

a1 = k1l
k1−1 (3.16)

k1l
k1−1 = k2r

k2−1 (3.17)

lk1(k1 − 1) = rk2(k2 − 1) (3.18)

Solution of the Eqs. (3.17) and (3.18) with respect to l and r yields the
desired result. The function f̄(t) is continuously differentiable and convex
by construction.

Corollary 3.1.9. The function f̄ in Lemma 3.1.8 has a convex recipro-
cal 1

/
f̄ .

Proof. The reciprocal of f̄ is a piecewise function:

1
/
f̄(x) =


t−k1 for t ≤ l,
1/(a1(t− l) + a0) for l ≤ t ≤ r,
t−k2 for t ≥ r,

(3.19)

or equivalently, since k1 > k2:

1
/
f̄(x) = max

{
t−k1 , t−k2 , 1/(a1(t− l) + a0)

}
(3.20)

which is convex by Lemma 3.1.1.

Corollary 3.1.10. The functions f and f̄ in Lemma 3.1.8 have the following
distance:

‖f − f̄‖∞ = 1− k1l
k1−1 − lk1(1− k1), (3.21)

where ‖ · ‖∞ is the supremum norm.

Proof. The difference δ(t) := f(t) − f̄(t) is non-negative, continuous and
equal to zero for t ∈ [ 0, l ]∪ [ r,∞ ). Therefore, we consider only the intervals
[l, 1] and [1, r]. On the interval t ∈ [l, 1] the difference δ(t) is increasing, since

δ(t) = f(t)− f̄(t) = tk1 − a1(t− l)− a0

= tk1 − tk1l
k1−1 − lk1(1− k1).

Hence, the maximum is attained at the boundary:

max
t∈[l,1]

δ(t) = δ(1) = 1− k1l
k1−1 − lk1(1− k1), (3.22)

Analogously, the difference δ(t) is decreasing for t ∈ [1, r]. Consequently, the
distance ‖f − f̄‖∞ = δ(1) and that proves the statement.
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g

σfσsl r

Figure 3.2: Original f(t) (dashed) and convexified f̄(t) (gray)

Fig. 3.2 shows the original function f(t) and its approximated version f̄(t).
Now we can apply the results above to convexify the damage curve d(σf ).

Theorem 3.1.11. The damage curve g(σf ) with k1 > k2 can be convexified
by the following continuously differentiable function:

ḡ(σf ) :=
1

Ns
f̄(σf/σs ), (3.23)

where f̄ is defined by Eq. (3.10) and ‖g − ḡ‖∞ = N−1
s ‖f − f̄‖∞.

Proof. The result follows immediately from the Lemma 3.1.8 and Corol-
lary 3.1.10, if we notice that the damage curve g(σf ) is nothing else but a
rescaled function f(t), so that g(σf ) = Ns

−1f(σf/σs ).

We proved convexity of the damage function, reformulating the Good-
man mean stress correction as a pointwise maximum of linear functions and
convexifying the damage curve. Next, we are going to apply this impor-
tant result to construct a DC decomposition of the model (3.1)–(3.3), thus,
simplifying the global optimum search.

3.1.2 DC decomposition

Most of the global optimization problems are NP-hard, so for all methods
there will always be some instances, which cannot be solved effectively. This
in turn implies that we have to analyze properties of real-world problems and
invent or select tailor-made algorithms to minimize the computational time.
Sometimes it is possible to show that the problem belongs to an existing
class of programs, whose solution methods are well-known.

DC (difference convex) programming constitutes an important part of
non-convex optimization, since it can be not only theoretically studied, but
more importantly widely applied. We define DC functions formally, based
on [18], and then convert the model (3.1)–(3.3) to the DC program.
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Definition 3.1.12. Let C be a convex subset of Rn. A real-valued function
f : C 7→ Rn is called DC on C, if there exist two convex functions ψ,
φ : C 7→ Rn such that f can be expressed in the form

f(x) = ψ(x)− φ(x). (3.24)

Each representation of the form (3.24) is called a DC decomposition of f .
An optimization problem with DC target functional and DC constraints is
called a DC program.

Lemma 3.1.13. Suppose dk(x) are convex and non-negative for k = 1, . . . ,K
and the parameters rk are positive, then the functional F , defined by

F =
K∑
k=1

(dk(x)− rk)2 (3.25)

has the following DC decomposition:

F = ψ(x)− φ(x) (3.26)

ψ(x) =

K∑
k=1

(
d2
k(x)− r2

k

)
(3.27)

φ(x) = 2

K∑
k=1

dk(x)rk (3.28)

where the functions ψ and φ are convex.

Proof. Obviously, F (x) ≡ ψ(x) − φ(x). Functions d2
k(x) are convex by

Lemma 3.1.5, since they are compositions of the convex and non-decreasing
function y2 for y ≥ 0 and convex function dk(x). Hence, ψ(x) and φ(x)
are nonnegative sums of convex functions. Therefore, they are convex by
Lemma 3.1.4.

Corollary 3.1.14. If the damage curve g is convex and non-decreasing, then
the test rig problem (3.1)–(3.3) can be converted to a DC program, choosing
a squared distance as a quality criterion:

min
p̄

K∑
k=1

(
dk(p̄)− drefk

)2
(3.29)

dk(p̄) =

B∑
b=1

nbg [h(σ1,kb(p̄), σ2,kb(p̄))] , (3.30)

σj,kb(p̄) = pTj,b sk for j = 1, 2, (3.31)
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Proof. According to Theorem 3.1.7, the damage functions dk(p̄) are convex
for k = 1, . . . ,K. Therefore, the target functional in Eq. (3.29) has a DC
decomposition by Lemma 3.1.13.

Corollary 3.1.14 allows the use of DC global optimality conditions and
faster algorithms [25, 33] for the test rig problem with the discretized set of
feasible alignment parameters.

3.1.3 Fully reversed constant loading

In this section we study a special case of the test rig problem (3.1)–(3.3),
when the loading is constant and fully reversed, i.e. the number of blocks in
the signalB = 1 and p1 = −p2 and, hence, h(σ1,k, σ2,k) = h(−pT2 sk,pT2 sk) =
|pT2 sk|. Therefore, the original problem reduces to:

min
p

K∑
k=1

(
ng(|pT sk|)

drefk
+

drefk
ng(|pT sk|)

)
(3.32)

Next, we consider convexity properties of the simplified test rig problem (3.32)
and represent it as a union of convex optimization programs.

Lemma 3.1.15. If the damage curve g(x) and its reciprocal 1/g(x) are
convex for x > 0, then the problem (3.32) is locally convex everywhere except
the hyperplanes xTsk = 0, i.e. when p ∈ {p ∈ Rn |pTsk 6= 0, k = 1, . . . ,K}.

Proof. Convexity of the damage curve and its reciprocal yields convexity of
their nonnegative weighted sum fk(x) by Lemma 3.1.4:

fk(x) =
ng(x)

drefk
+

drefk
ng(x)

, (3.33)

since the constants n and drefk are strictly positive. The composition of fk(x)
with the linear function pTsk or −pTsk is locally convex for p such that
pTsk 6= 0, according to Lemma 3.1.3. The target functional in Eq. (3.32) is
the sum of locally convex functions fk(|pTsk|) and that proves the statement.

Theorem 3.1.16. If we use the convexified damage curve ḡ, defined in The-
orem 3.1.11, then the problem (3.32) is locally convex everywhere except the
hyperplanes xTsk = 0, i.e. when p ∈ {p ∈ Rn |pTsk 6= 0, k = 1, . . . ,K}.

Proof. Convexity of ḡ(σf ), combined with the convexity of its reciprocal
1/ḡ(σf ) by Lemma 3.1.9, yields the local convexity of the target function
by Lemma 3.1.15.
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Corollary 3.1.17. If we use the convexified damage curve ḡ, defined in
Theorem 3.1.11, then the problem (3.32) is a union of convex optimization
programs on polyhedral cones, generated by the intersection of K hyperplanes
pTsk = 0, passing through the origin.

Proof. The target functional tends to infinity, when pTsk → 0 for any k ∈
{1, . . . ,K}, since ḡ(0) =∞. Hence, the domain of the problem is split by the
hyperplanes pTsk = 0 into conic subdomains, where the target functional
is convex, according to the Theorem 3.1.16. Thus, the global optimization
problem can be considered as a union of local problems.

We showed that the global optimization problem (3.32) is a union of local
problems on cones. Actual numerical solution of the problem needs polyhe-
dral description of each cone, i.e. linear constraints that support it, and a
good starting point inside. The next section is devoted to the derivation of
the algorithm, that can detect all possible cones and starting points

3.2 Cone Generation

There is a problem that arises in global optimization problems when the
target functional is finite and convex in all regions except hyperplanes sharing
a common point. This implies that the target function is convex in all
polyhedral cones defined by the intersection of half-spaces. Best practices
include converting a non-convex problem into a union of convex ones, which
can be easily solved by almost any local optimization method if a starting
point and respective constraints are provided.

This section presents a fast algorithm that determines all proper poly-
hedral cones in RN generated by intersections of M hyperplanes, passing
through the origin. In addition, the respective interior points are deter-
mined.

Definition 3.2.1. Let ai ∈ RN for i = 1, . . . ,M . A collectionM(A) gener-
ated by matrix A = [a1, . . . ,aM ]T is defined as

M(A) =
{
B | B = diag(s)A, s = (±1, . . . ,±1) ∈ RM

}
,

where the function diag(s) : RM 7→ RM×M maps the vector s to the corre-
sponding diagonal matrix so that [diag(s)]ii = si.

Definition 3.2.2. A polyhedral cone generated by matrix A ∈ RM×N is
given by

cone(A) = {x ∈ RN | Ax ≥ 0}

Definition 3.2.3. cone(A) is called proper, if int cone(A) 6= ∅.

Remark 3.2.4. Obviously, |M(A)| = 2M , but not all elements of M(A)
generate proper cones. That motivates to define the following collection.
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Definition 3.2.5. A collection Mp(A) generated by matrix A ∈ RM×N is
defined as

Mp(A) = {B | B ∈M(A), s.t. cone(B) is proper}

Definition 3.2.6. A cone-point pair collection Υ(A) generated by matrix
A ∈ RM×N is defined as follows:

Υ(A) = {(Ak,xk) | Ak ∈Mp(A), xk ∈ int cone(Ak), Ak1 6= Ak2 for k1 6= k2}

Remark 3.2.7. A cone-point pair collection Υ(A) is symmetric, i.e. if
(B,x) ∈ Υ(A), then (−B,−x) ∈ Υ(A).

The objective is to develop an algorithm that locates a cone-point pair
collection Υ(A) generated by the given matrix A. This problem is equivalent
to finding all proper cones, generated by intersections of planes aTi x = 0 for
i = 1, . . . ,M .

Assumption 3.2.8. Matrix A has full rank. Vectors aj define different
planes, i.e.:

aj1
‖aj1‖

6= ±aj2
‖aj2‖

for j1 6= j2

We shall consider three different cases, that might appear in this problem.

3.2.1 Case M = N

Theorem 3.2.9. If A ∈ RN×N , then under Assumption 3.2.8 a cone-point
pair collection Υ(A) is defined by the following formula:

Υ(A) =
{

(diag(s)A, A−1s) | s = (±1, . . . ,±1) ∈ RN
}

Proof. Assumption 3.2.8 guarantees, that in this caseMp(A) =M(A). Let
us consider a matrix B(s) = diag(s)A and a point x(s) = A−1s with si = ±1
for i = 1, . . . ,M , then the following is true:

B(s)x(s) = diag(s)AA−1s = 1 > 0 (3.34)

The inequality (3.34) implies that cone(B(s)) is proper, since x(s) is an
interior point of the cone. Thus, the cone-point pair (B(s),x(s)) ∈ Υ(A)
and that proves the statement.

Remark 3.2.10. The proof of Theorem 3.2.9 can also be explained geomet-
rically. If we take polyhedral cone C(s), generated by extreme rays siei for
i = 1, . . . , N :

C(s) =

{
N∑
i=1

λisiei | λi > 0 for i = 1, . . . , N

}
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where the unit vectors e1, . . . , eN form an orthonormal basis of RN and si =
±1, then vector s ∈ intC(s). The interior points s = (±1, . . . ,±1)T ∈ RN
are vertices of a hypercube. If we perform an affine transformation of this
cube, according to extreme rayswi for i = 1, . . . , N , we obtain interior points
of cones, generated by extreme rays siwi. Fig. 3.3 shows example of such
transformation in R2.

e1

e2

s1

s2

s3

s4

a1

a2v/‖v‖

w1

w2

w1 +w2

w1 −w2

−w1 +w2

−w1 −w2

Figure 3.3: Illustration of Theorem 3.2.9 in R2

Let us consider a matrix B = [b1, . . . , bM ]T ∈M(A), s.t. B = diag(s)A.
The extreme rays wi are found by calculating the intersections of planes
bTi x = 0 for i = 1, . . . , N with a plane vTx = 1, where vTbi 6= 0. So we
have to solve the following linear equation:

Qiwi = ei, (3.35)

where Qi = [b1, . . . , bi−1,v, bi+1, . . . , bN ]T . For example define a vector
v ∈ RN as follows:

v :=
N∑
i=1

bi =
N∑
i=1

siai (3.36)

Matrix Qi in Eq. (3.35) can be decomposed to Qi = PiA, where the matrix Pi
is defined as:

Pi =


s1

. . .
s1 · · · si · · · sN

. . .
sN

 (3.37)

Substitute (3.37) in (3.35):

wi = Q−1
i ei = (PiA)−1ei = A−1si ei (3.38)
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The internal point x can be calculated as the sum of extreme rays wi using
the expression (3.38):

x =

N∑
i=1

wi = A−1
N∑
i=1

siei = A−1s (3.39)

Hence, we arrived to the same cone-point pair (B,x) as in Theorem 3.2.9.

Algorithm and complexity

Since matrix inversion requires at most O(N3) time and each of 2N−1 execu-
tions of the for loop has two matrix-vector multiplications O(2N2), in total
the Algorithm 1 will require O(2NN2 +N3) time [14].

Algorithm 1: Y = GenerateConePointPairsNN(A)
Input: A ∈ RN×N under Assumption 3.2.8
Output: Y , s.t. Y ∪ −Y = Υ(A)
Ainv = A−1

Y = ∅
for i = 1 to 2N−1 do

construct new vector s = (±1, . . . ,±1, 1)
append (diag(s)A,Ainv s) to Y

Remark 3.2.11. Note, that the Algorithm 1 generates only half of the the
elements of the cone-point pair collection Υ(A). According to Corollary 3.2.7
the second half of the elements are point reflections of the cone-point pairs
we generated.

3.2.2 Case M < N

Theorem 3.2.12. If A ∈ RM×N and M < N , then under Assumption 3.2.8
a cone-point pair collection Υ(A) is given by

Υ(A) =
{

(diag(s)A, U(AU)−1s) | s = (±1, . . . ,±1) ∈ RM
}
,

where the columns of matrix U ∈ RN×M form an orthonormal basis of the
row space of A.

Proof. Let u1, . . . ,uM be an orthonormal basis of the M -dimensional sub-
space, spanned by vectors a1, . . . ,aM .

Define a matrix U = [u1, . . . ,uM ] ∈ RN×M and a matrix D = AU .
Rows of D are coordinates of the respective rows of A in the basis U . Based
on Theorem 3.2.9 we get a cone-point pair collection for the matrix D:

Υ(D) =
{

(diag(s)D, D−1s) | s = (±1, . . . ,±1) ∈ RM
}

(3.40)
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In the original basis the cone-point pair collection (3.40) has the following
form:

Υ(A) =
{

(diag(s)A, UD−1s) | s = (±1, . . . ,±1) ∈ RM
}

(3.41)

Eq. (3.41) shows, how to calculate all cone-point pairs, generated by matrix
A ∈ RM×N with M < N , using its row space.

Algorithm and complexity

In order to find a basis of the row space of matrix A, one can use Gram-
Schmidt orthogonalization process, but it has poor numerical properties,
which was illustrated in [14]. In our implementation we use Householder
QR-decomposition, which requires O(N2M −NM2 +M3/3) flops [14]. We
have to multiply an N×M matrix by the inverse of anM×M matrix, calcu-
lating matrix T in the Algorithm 2, which takes O(M3 +M2N) operations.
Since every execution of the for loop has two matrix-vector multiplications
O(2MN), in total the Algorithm 1 requires O(2MMN + MN2 + 4M3/3)
operations.

Algorithm 2: Y = GenerateConePointPairsSmallM(A)
Input: A ∈ RM×N , where M < N , under Assumption 3.2.8
Output: Y , s.t. Y ∪ −Y = Υ(A)
// orthonormal matrix Q = [q1, . . . , qN ] ∈ RN×N
Q = HouseholderQRDecomposition(AT ) // Q ∈ RN×N
// columns of U form basis of the row space of A
U = [q1, . . . , qM ] // U ∈ RN×M
T = U(AU)−1 // T ∈ RN×M
Y = ∅
for i = 1 to 2M−1 do

construct new vector s = (±1, . . . ,±1, 1)
append (diag(s)A, T s) to Y

3.2.3 Case M > N

Even in R3 the explicit formula for the number of cones, not to mention a
formula for the interior points, is not that obvious. For example we have
three orthogonal planes in Fig. 3.4 and different outcomes after adding one
more plane. We get either 12 cones as in Fig. 3.4a or 14 cones as in Fig. 3.4b.
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(a) 12 cones (b) 14 cones

Figure 3.4: Cones, generated by intersection of 4 planes

Ho and Zimmerman [17] studied the number of regions, cut by a set of hy-
perplanes in general position, which gives us an upper bound for the number
of proper cones and could be used to analyze the worst-case complexity.

Definition 3.2.13. A set H ofM hyperplanes in RN is said to be in general
position if for each k, 0 ≤ k ≤ N , no k+1 members of H contain a common
(N − k)-dimensional affine subset of RN .

If the hyperplanes are in general position, then the space is split into as many
nonempty regions as possible.

Theorem 3.2.14 (Ho, Zimmerman). The number of regions CN (M), cut
by M hyperplanes in RN in general position all contain a common point,
equals to:

CN (M) = 2

N−1∑
k=0

(
M − 1

k

)
(3.42)

Remark 3.2.15. A set of hyperplanes aT1 x = 0, . . . ,aTMx = 0 does not have
to be in general position, which implies |Υ(A)| ≤ CN (M).

We are interested not only in the number of proper cones, but in their
polyhedral description and interior points. In order to generate all cone-point
pairs Υ(A) we can solve 2M−1 linear feasibility problems of type:

find x, s.t. [±a1, . . . ,±aM−1,aM ]Tx > 0, (3.43)

but this approach has exponential running time complexity with respect
to the number of hyperplanes M . Also, most of the problems, defined in
(3.43) are infeasible according to Theorem 3.2.14. We call this approach
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naive throughout the rest of this paper. A better approach would use The-
orem 3.2.9 to pregenerate first 2N−1 cone-point pairs and then take each
hyperplane aTi x = 0 for i = N + 1, . . . ,M and check, if it splits any of
pregenerated cones. We describe this algorithm and study its complexity
theoretically and experimentally in the following sections.

Algorithm

The idea of the algorithm is to utilize Theorem 3.2.9 and Algorithm 1 to gen-
erate first 2N−1 cone-point pairs Υ([a1, . . . ,aN ]T ) and generate pairs induc-
tively for each new arriving plane ai inductively for i = N+1, . . . ,M . Every
pair (B,x0) ∈ Y serves as a root of a binary tree. For a plane normal p such
that pTx0 ≥ 0, we check, whether cone([B;−pT ]) is proper by solving a cor-
responding linear feasibility problem, looking for a vector xnew ∈ int cone(B)
such that pTxnew < 0. If it is proper and the node is a leave, then we add
two children ([B;pT ],x0) and ([B;−pT ],xnew). If it is proper, but the node
has children, then we try to split each of them.

Algorithm 3: Y = GenerateConePointPairsBigM(A)
Input: A ∈ RM×N , where M > N , under Assumption 3.2.8
Output: Y , s.t. Y ∪ −Y = Υ(A)
// define binary tree node
NODE ≡ {cone-point pair (B,x), NODE left, NODE right}
// generate 2N−1 first cones
Y = GenerateConePointPairsNN([a1, . . . ,aN ]T )
// matrix to store inequality description of cones
P = ∅
foreach (B,x) in Y do

// initialize the tree
T = NODE((B,x), NULL, NULL)
remove (B,x) from Y
P = ∅
// split the cone Bx ≥ 0 with planes aN+1, . . . , aM
for i = N + 1 to M do

SplitCone(T , ai, P ) // see Algorithm 4

append generated pairs of T to Y

Remark 3.2.16. To reduce storage complexity in Algorithm 3 we store
matrix B only in the root node, all other nodes store only added vectors. To
store inequality representation of the cones we use matrix P .
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Algorithm 4: SplitCone(NODE, p, P)
Input: NODE - node of a binary tree, which stores pair (B,x)

p ∈ RN - plane candidate to split cone(B)
P - matrix of the current cone

// define p and pnew so, that pTx ≥ 0 and pTnewx ≤ 0
if pTx ≥ 0 then

pnew = −p
else

pnew = p
p = −p

// check if the cone([P ;B; pTnew]) is proper
is_proper, xnew = SolveLinearFeasibility([P ; NODE.B; pTnew])
if is_proper then

if NODE.left == NULL then
NODE.left = NODE((pT ,x), NULL, NULL)
NODE.right = NODE((pTnew,xnew), NULL, NULL)

else
SplitCone(NODE.left, p, [P ;B])
SplitCone(NODE.right, p, [P ;B])

Example 3.2.17. We would like to illustrate the algorithm with a two-
dimensional example. Assume, four plane normals a1, . . . ,a4 ∈ R2 are given.
The goal is to find every proper cone, supported by the planes.

Step 1. Consider first two planes aT1 x = 0 and aT2 x = 0, depicted in
Fig. 3.5. If a1 and a2 are linearly independent, we can use the Algorithm 1
to generate first two cone-point pairs ([a1,a2],x1) and ([a1,−a2],x2). The
roots of two binary trees are initialized with the pairs.

aT
1 x

aT
2 x

x2x1

[a1,a2]
x1

[a1,−a2]
x2

Figure 3.5: Cone-point pairs, generated by a1,a2. Gray stripes indicate
positive half-spaces.

Step 2. Fig. 3.6 shows the next plane aT3 x = 0 and we want to test,
whether it splits the cone([a1,a2]T ). Thus, we compute the product aT3 x1.
Since it is positive, the cone is split if and only if the linear feasibility problem
[a1,a2,−a3]Tx > 0 has a solution. If it was negative, we would search a
vector x̂, such that [a1,a2,a3]T x̂ > 0.
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aT
1 x

aT
2 x

x2x1

[a1,a2]
x1

[a1,−a2]
x2

aT
3 x [a1,a2]

x1

x3

[a1,a2,a3]
x1

[a1,a2,−a3]
x3

[a1,a2]
x1

[a1,−a2]
x2

Figure 3.6: Cone-point pairs, generated by a1,a2,a3. Gray stripes indicate
positive half-spaces.

The linear feasibility solver returns x3 ∈ int cone([a1,a2,a3]T ). Since
the root is a leave, i.e. does not have children, we append two nodes
with the cone-point pairs ([a1,a2,a3],x1) and ([a1,a2,−a3],x3) to the first
tree. Analogously, consider the second tree. The sign of a3x2 is also pos-
itive, but the solver returns the certificate of infeasibility for the problem
[a1,−a2,−a3]x > 0, so the cone is not split by the plane aT3 x = 0. We
proceed to the next plane.

Step 3. Consider the plane a4x = 0, shown in Fig. 3.7. Following the
same procedure as in Step 2, we determine that it splits the cone, generated
by a1 and a2. Recursively, we repeat the procedure for cones in the left and
right node till we get to the leaves.

aT
1 x

aT
2 x

x2x1

[a1,a2]
x1

[a1,−a2]
x2

aT
3 x

x3

[a1,a2,a3]
x1

[a1,a2,−a3]
x3

aT
4 x

x4

[a1,a2,a3,−a4]
x1

[a1,a2,a3,a4]
x4

Figure 3.7: Cone-point pairs, generated by a1,a2,a3,a4. Gray stripes
indicate positive half-spaces.

As one can observe in Fig. 3.7, the union of the leaves of both trees
contains the cone-point pairs, generated by the plane normals a1, . . . ,a4.

3.2.4 Linear Feasibility Problem

The main ingredient of the procedure SplitCone, listed in Algorithm 4, is
the function SolveLinearFeasibility(A), that computes interior point xnew of
cone(A) or proves, that cone(A) is not proper.

There are several well-known approaches to find interior points of cone(A).
The simplex method of Dantzig has exponential worst-case complexity [24],
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relaxation methods of Agmon [1], Motzkin and Shoenberg [30] do not detect
infeasibility, ellipsoid method of Khachiyan [23] has polynomial time com-
plexity, but it is too slow and difficult to implement compared to the interior
point method of Karmarkar [22].

Recently Chubanov [8] presented a promising projection algorithm that
considers linear system with non-negativity constraints:

D y = 0, y ≥ 0, (3.44)

where the matrix D ∈ Rm×n. The algorithm finds a positive feasible solution
y > 0 or proves that there are no such solutions. Chubanov proved that
running time of the algorithm is bounded by O(n4 + n3Lmin), where the
value Lmin is bounded by a polynomial in the size of A.

Roos [37] proposed an improvement of Chubanov’s method. In this paper
we will use the Chubanov-Roos method, but any polynomial time method
that detects infeasibility can be plugged in our algorithm.

Problem 3.2.18. The problem of finding an interior point of a cone(A)
can be rewritten as a system (3.44) to fit into Chubanov’s method to find a
strictly positive solution of the system, such that

[A,−A,−I]y = 0, (3.45)

where y := [x+,x−, z] ∈ (0,∞)2N+M . Then vector x+ − x− lies in the
interior of cone(A).

3.2.5 Complexity

Previously we have fully described the algorithm to generate cone-point pairs
inductively. In this section we will provide a polynomial bound on the num-
ber of calls of the function SolveLinearFeasibility(A), which is the most time-
consuming part of the Algorithm 3.

Lemma 3.2.19. Let set of H of M − 1 hyperplanes in RN be in general
position all contain 0. Then the maximal number of regions AN (M) added
by one more hyperplane, containing zero, equals to:

AN (M) = 2
N−2∑
k=0

(
M − 2

k

)
(3.46)

Proof. The statement of the Lemma 3.2.19 follows directly from the Theo-
rem 3.2.14:

AN (M) = CN (M)− CN (M − 1) = 2

N−1∑
k=0

(
M − 1

k

)
−
(
M − 2

k

)

= 2

N−2∑
k=0

(
M − 2

k

)
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Theorem 3.2.20. The number of calls to the linear feasibility problems
solver in Algorithm 3 for an input A ∈ RM×N s.t. M > N is bounded
by O((M −N)2N−1 +MN ).

Proof. The Algorithm 3 generates 2N−1 cones for vectors a1, . . . ,aN as
described in Section 3.2. Then it iteratively considers each row ai for
i = N + 1, . . . ,M of the matrix A. Let L = M − N denote the number
of planes to consider and let Ki for i = 1, . . . , L be the number of calls to the
function SolveLinearFeasibility for the added vector aN+i in the worst-case:

K1 = 2N−1

K2 = 2N−1 +AN (N + 1)/2

. . .

KL = 2N−1 +AN (N + 1)/2 + . . .+AN (N + L− 1)/2

Total number of calls K equals to:

K =

L∑
i=1

Ki = 2N−1L+
1

2

L−1∑
k=1

k AN (N + L− k) (3.47)

Let’s consider the second term in equation (3.47):

1

2

L−1∑
k=1

k AN (N + L− k) =

N−2∑
i=0

L−1∑
k=1

k

(
N + L− k − 2

i

)

=
N−2∑
i=0

(
N + L− 1

i+ 2

)
− N + 2L− 2 + i(L− 1)

(i+ 2)

(
N − 1

i+ 1

)
≤

N−2∑
i=0

(
N + L− 1

i+ 2

)
≤ (N + L)N (3.48)

We use the inequality (3.48) in the expression (3.47) to obtain the following
bound:

K ≤ 2N−1L+ (N + L+ 2)N = 2N−1(M −N) + (M + 2)N (3.49)

That proves the statement of the theorem.

Remark 3.2.21. Theorem 3.2.20 implies that the number of solutions of
linear feasibility problems 3.2.18 in the Algorithm 3 is polynomially bounded
with respect to the number of planes M for fixed dimension of the space
N . This is a good result, compared to the naive approach which has to
solve 2M−1 linear feasibility problems to achieve the goal and hence grows
exponentially when M increases.
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3.2.6 Numerical Results

We have implemented Chubanov’s projection algorithm [8] with Roos’ im-
provement [37] in C++ for solving homogeneous linear feasibility problems.
This solver is used by both the inductive Algorithm 3 and the naive ap-
proach, described in the Section 3.2.3. We launch each case for randomly
generated matrices A ∈ RM×N where M > N . The elements of each matrix
were uniformly randomly chosen in the interval [−10, 10].
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Figure 3.8: Performance comparison

In Figure 3.8 we show the average running time of the Algorithm 3 and
the naive algorithm over 100 launches for randomly generated matrices. In
Table 3.1 we collect running time of our algorithm and the factor which
shows how much faster the presented algorithm is than the naive approach.

One can see that the inductive Algorithm 3 is substantially faster when
the number of N -dimensional planes M is big enough which fully coincides
with the results of the Theorem 3.2.20.
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Table 3.1: Performance of Algorithm 3

N = 3 N = 4 N = 4 N = 6

M time, s. factor time, s. factor time, s. factor time, s. factor

4 0.0025 1.1 — — — — — —
5 0.0089 1.4 0.0113 1.1 — — — —
6 0.0121 2.5 0.0496 1.2 0.0234 1.2 — —
7 0.0338 3.5 0.1311 1.9 0.1017 1.5 0.0456 1.3
8 0.0560 4.8 0.2853 2.2 0.3460 1.5 0.2425 1.3
9 0.0899 7.4 0.5647 3.2 0.8127 2.1 0.7896 1.4

10 0.2155 11.5 1.0894 4.3 1.8012 2.6 2.1884 1.8
11 0.3391 22.6 1.3633 8.6 4.0579 3.3 4.8817 2.3
12 0.5273 32.3 2.3754 10.0 6.1179 5.0 11.1282 2.6
13 0.7374 51.9 3.2025 18.0 11.1997 7.0 19.6711 3.9
14 0.7783 105.2 5.4289 23.0 15.7726 10.6 39.0665 4.7

We have derived explicit formulas for cone-point pairs when the number of
planes M is less than or equal to the dimension of the space N . We used
the Formula 3.2.9 for the M = N case to generate first the 2N−1 cones
when M > N . We, then, constructed an algorithm that splits these cones
inductively. We showed that inductive generation of cone-point pairs is much
more effective than the naive approach.

3.3 Conclusion

In this chapter we considered a special case of the test rig problem, when all
of the critical plane angles are known, so that there is no need to optimize
them. We proved that the damage function is convex, if we use the damage
curve with k1 = k2 or the convexified the damage curve for k1 > k2. This
result was used to find the DC decomposition of the target function.

Also, we proved that the problem with fully reversed constant loading
is locally convex, if the damage curve g(σf ) and its reciprocal 1/g(σf ) are
convex. It was shown that in this case the non-convex test rig problem can be
converted into a union of convex optimization problems on polyhedral cones,
generated by hyperplanes, passing through origin. A method for defining
representations and interior points of such cones was constructed. It includes
analytical formulas for the cases, when the number of planes M is less or
equal than the dimension N . For M > N , a recursive algorithm using
a homogeneous linear feasibility solver was designed and proven to have a
polynomial worst case complexity. Also, it had impressive running time,
compared with the existing approach. This method provides starting points
and respective constraints for all convexity regions of the problem. Hence, we
can use fast local optimization solvers e.g. [41] to solve the global problem.



Chapter 4

Bilevel Optimization

In the previous chapter we studied a special case of the test rig prob-
lem (2.29)–(2.33), assuming that the critical planes are known and the align-
ment parameters are fixed. Although this can happen in practice, it is not
valid for all applications. Thus, the properties of the general test rig problem
have to be studied.

The problem mentioned above belongs to the class of bilevel programs,
since every instance of the state vector, which includes alignment parameters
and applied forces, defines a one-dimensional inner maximization problem at
each hot spot.

Hence, the discussion is divided into two parts. At first the inner problem
with and without fully reversed loading assumption is considered. In both
cases the sum of functions d(α) = d1(α) + . . .+ dB(α) has to be maximized.
The global maximum of the sum d cannot be found so easily, although the
local maximum points can be computed analytically for every di(α). We
propose a new branch-and-bound technique, which exploits the knowledge
of the extrema of each summand di to find the global maximum effectively.
Convergence of the algorithm is proven and its running time is tested and
compared with the running time of DIRECT algorithm.

Next, the regularity of the outer program is studied. It is not convex
in general, but we can discretize the set of alignment parameters of each
actuator to gain convexity of the damage function, therefore, converting the
problem to a DC program. Hence, the following assumption is made.

Assumption 4.0.1. The alignment variables τi are given and immutable
for every actuator i = 1, . . . , A.

Also differentiability of the problem is shown and the gradient with re-
spect to all state variables, including alignment parameters, is found. We
arrive at a conclusion that we can solve the problem by derivative-based
global optimization methods.

59
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4.1 Model

The general test rig problem (2.28)–(2.33) approximates the reference dam-
age values drefk > 0, generating a loading signal with B blocks. The state vec-
tor z = [p̄; τ̄ ] includes applied forces p̄ = [p1,1,p2,1, . . . ,p1,B,p2,B] ∈ R2AB

and alignment parameters τ̄ = [τ1, . . . , τA] ∈ RAT for actuators i = 1, . . . , A.

min
z

K∑
k=1

dk(z)

drefk
+

drefk
dk(z)

(4.1)

dk(z) = max
αk

B∑
b=1

nbg [h(σ1,kb(αk, z), σ2,kb(αk, z))] , (4.2)

σj,kb(αk, z) = c(αk)
Tσj,kb(p̄, τ̄ ), (4.3)

σj,kb(p̄, τ̄ ) =
A∑
i=1

pj,bi Bki l(τi), for j = 1, 2, (4.4)

where nb > 0 are number of stress-strain cycles per block, Bki ∈ R3×6 con-
tain stresses, generated by both actuators load and the reaction load of the
mounted attachment, l : RT 7→ R6 is the alignment function, c : R 7→ R3

denotes the critical plane normal (see Def. 2.1.15):

c(α) = [1 + cosα, 1− cosα, 2 sinα]/2 (4.5)

The function g : R+
0 7→ R+

0 is the damage curve:

g(σf ) :=
1

Ns

{
(σf/σs)

k1 for σf ≤ σs,
(σf/σs)

k2 for σf ≥ σs,
(4.6)

and h : R2 7→ R+
0 is the Goodman mean stress correction:

h(σ1, σ2) =

{
(1−M)σa for σa < −σm
σa +Mσm for σa ≥ −σm

(4.7)

where σa = |σ1 − σ2|/2 and σm = (σ1 + σ2)/2 are the amplitude and mean
of the stress-strain cycle respectively and the slope M < 1 is positive. De-
tailed description and physical meaning of these functions can be found in
Sections 2.1.2 and 2.1.3.

Now, when the model is fixed and the functions it uses are defined, we
can analyze the problem (4.1)–(4.4). Since it has two nested levels, we study
them separately, starting with the inner one.
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4.2 Inner Problem

For every instance of vector z we have the unconstrained global critical
plane optimization problem (4.2)–(4.4) at every hot spot k. Let us rewrite
the target functional to shorten notation:

max
α

d(α) (4.8)

d(α) =

B∑
b=1

db(α) (4.9)

db(α) = nbg
[
h(c(α)Tσ1,b, c(α)Tσ2,b)

]
, (4.10)

We can restrict our optimization to interval α ∈ [0, 2π], because the plane
c(α) is periodic and so is the target d(α).

Remark 4.2.1 (Fully reversed loading). If the test rig generates fully re-
versed loading, i.e. σ1,b = −σ2,b =: σb, then Eq. (4.10) has the following
form:

max
α

d(α) (4.11)

d(α) =
B∑
b=1

db(α) (4.12)

db(α) = nbg(|c(α)Tσb|), (4.13)

since h(c(α)Tσb,−c(α)Tσb) = |c(α)Tσb|.

Next, several methods to solve the general critical plane optimization
problem (4.8)–(4.10) and its fully reversed variation (4.11)–(4.13) will be
discussed.

4.2.1 Simple Branch and Bound

In the critical plane optimization problem (4.8)–(4.10) the sum of the func-
tions db(α) has to be maximized. Even though the local maxima of every
summand can be found analytically, this is not true for the sum. There-
fore, global optimization methods e.g. branch and bound (BnB) have to
be used. BnB algorithms are global optimization methods that refine lower
and upper bounds for the optimum, splitting the domain. Unfortunately,
most of the procedures, calculating these bounds, do not utilize knowledge
of the problem’s underlying structure effectively. In this section we propose
a BnB technique that uses local maxima of every db to divide the domain
into several subdomains and then bounds the maximum of d, applying the
following lemma.
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Definition 4.2.2. A Locmaxx∈X f(x) is the set of all local maximum points
of the function f(x) in the domain X.

Lemma 4.2.3. If db(α) : [l, r] 7→ R for b = 1, . . . , B are continuous functions
in the closed and bounded interval [l, r], then the global maximum of the
sum d(α) = d1(α) + . . .+ dB(α) has the following bounds:

max{d(l), d(r)} ≤ max
α∈[l,r]

d(α) ≤
B∑
b=1

max {db(l), db(r)} (4.14)

if Locmax
α∈[l,r]

db(α) = Locmax
α∈{l,r}

db(α) for b = 1, . . . , B.

Proof. Obviously, the maximum of a function in the closed domain X is
greater or equal than the maximum on the boundary ∂X, since the feasible
set is extended. Therefore, the first part of the inequality (4.14) is valid:

max{d(l), d(r)} ≤ max
α∈[l,r]

d(α)

The functions db(α) attain their maximum values on the boundary, hence:

max
α∈[l,r]

d(α) ≤
B∑
b=1

max
α∈[l,r]

db(α) ≤
B∑
b=1

max {db(l), db(r)} ,

which proves the lemma.

Algorithm

In this section we provide the pseudocode for the Simple BnB algorithm that
finds global maximum of the function d = d1 + . . .+ dB on the interval [l, r]
with the tolerance ε. An object that represents intervals has four attributes:
left – left end of a segment, right – right end of a segment, lower – lower
bound of d(α) on the interval and upper – upper bound of d(α) on the
interval.

The intervals are contained in the max-priority queue I, keyed on the
upper attribute. It supports two operations:

• Insert(I, z) – inserts the element z into the set I

• Extract-Max(I) – removes and returns the element of I with the
largest key

For more details about priority queues, their complexity and possible imple-
mentations see [9].
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Algorithm 5: d∗ = SimpleBnB(linit, rinit, ΦLB, ΦUB, ε)
Input: [linit, rinit] – initial interval
Φlb(l, r) = max{d(l), d(r)} – lower bound function
Φub(l, r) =

∑
b=1,...,B max{db(l), db(r)} – upper bound function

ε – tolerance
Output: d∗ = maxα∈[l,r] d1(α) + . . .+ dB(α)

X = {l, r} // initial grid
// find local maxima of each summand db(α)
for b = 1 to B do X = X ∪ Locmaxα∈[l,r] db(α)

X = Sort(X)
L = −∞ // lower bound for the global maximum
U = −∞ // upper bound for the global maximum
// define interval node
NODE ≡ {left, right, lower, upper}
// add intervals and bounds to the priority queue I
I = ∅
for i = 1 to |X| − 1 do

z = NODE(Xi, Xi+1,Φlb(Xi, Xi+1),Φub(Xi, Xi+1))
if z.lower ≥ L then L = z.lower
if z.upper ≥ U then U = z.upper
if z.upper − z.lower ≥ ε then

Insert(I, z)

// split intervals with maximal upper bound
while U − L ≥ ε do

z = Extract-Max(I)
if z.upper > L then

mid = (z.left+ z.right)/ 2
// interval midpoint
// consider left subinterval
y = NODE(z.left,mid,Φlb(z.left,mid),Φub(z.left,mid))
if y.lower ≥ L then L = y.lower
if y.upper ≥ U then U = y.upper
if y.upper − y.lower ≥ ε AND y.upper > L then

Insert(I, y)
// consider right subinterval
y = NODE(mid, z.right,Φlb(mid, z.right),Φub(mid, z.right))
if y.lower ≥ L then L = y.lower
if y.upper ≥ U then U = y.upper
if y.upper − y.lower ≥ ε AND y.upper > L then

Insert(I, y)

return L
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We would like to illustrate the algorithm with a simple example. Fig. 4.1
shows the target function, decomposed into two summands.

0 2π

Figure 4.1: Sum (black) of a function with two local maxima (red) and a
function with one local maximum (blue)

Algorithm 5 begins its search, computing the local maxima of the sum-
mands and using them to split the original interval into four subintervals
(Fig. 4.2).

0 2π

Figure 4.2: The interval [0, 2π] is split into four parts

The lower and upper bounds of the target function for every interval are
calculated using Lemma 4.2.3. Fig. 4.3 depicts them as sides of rectangles.
Global bounds L and U are maxima of the lower and upper bounds for every
interval.

L

U

0 2π

Figure 4.3: Lower and upper bounds of the target function for the intervals

If an interval has an upper bound smaller than L or the difference of its
bounds is less than the given tolerance, it is pruned. Fig. 4.3 shows removed
regions for the initial grid. The remaining interval is, then, divided into
halves and the bounds are updated (Fig. 4.4).
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L

U

0 2π

Figure 4.4: Bounds after the first refinement and pruned regions (gray)

U

L

0 2π

Figure 4.5: Bounds after the second refinement and pruned regions (gray)

U

L

0 2π

Figure 4.6: Bounds after the third refinement and pruned regions (gray)

Figs. 4.4–4.6 show, which subintervals are pruned and how the bounds
are updated after several iterations of the algorithm. Observe that |U − L|
monotonically decreases. In the next section we analyze convergence of the
algorithm.
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Convergence

Lemma 4.2.3 states that the functions Φlb(l, r) and Φub(l, r) defined by

Φlb(l, r) = max {d(l), d(r)} , (4.15)

Φub(l, r) =

B∑
b=1

max {db(l), db(r)} , (4.16)

are bound functions of the global maximum of the sum d(α) = d1(α) + . . .+
dB(α) over the interval [l, r], if there are no local maxima of a summand db
for b = 1, . . . , B in the interior. In order for the BnB algorithm to converge
in a finite number of steps, the functions Φlb(l, r) and Φub(l, r) should satisfy
conditions of the following theorem [3].

Theorem 4.2.4. The BnB algorithm that finds the global maximum of a
function d(α) : R 7→ R over the interval [linit, rinit], converges in a finite
number of steps, if the difference between the upper and lower bounds uni-
formly converges to zero as the length of any subinterval [l, r] goes to zero:

∀ ε > 0 ∃ δ(ε) > 0 such that
∀ [l, r] ⊂ [linit, rinit], r − l < δ ⇒ Φub(l, r)− Φlb(l, r) ≤ ε

where Φlb(l, r) and Φub(l, r) are bound functions:

Φlb(l, r) ≤ max
α∈[l,r]

d(α) ≤ Φub(l, r) (4.17)

for any interval [l, r].

Algorithm 5 uses local maxima of each db to split the initial interval
[linit, rinit] into disjoint subsets, where the bound functions (4.15)–(4.16) are
valid. Hence, we have to show only the uniform convergence in Theorem 4.2.4
to prove that Simple BnB comes to the end in a finite number of steps.

Lemma 4.2.5. If the functions db(α) for b = 1, . . . , B are continuous on
the closed interval [linit, rinit], then the difference between bound functions
functions Φlb(l, r) and Φub(l, r), defined by Eq. (4.15)–(4.16), is uniformly
continuous on [linit, rinit].

Proof. Continuity of the functions db(α) on a compact set [linit, rinit] for
b = 1, . . . , B implies their uniform continuity, i.e.,

∀ ε > 0 ∃ δb = δb(ε) > 0 such that
∀x1, x2 ∈ [linit, rinit], |x1 − x2| < δb ⇒ |db(x1)− db(x2)| ≤ ε

The function d(α) = d1(α) + . . . dB(α) is the sum of continuous functions,
hence, it is also continuous and even uniformly continuous on [linit, rinit] with
δsum = δsum(ε) > 0.
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Let us fix ε > 0 and choose δ = min{δ1(ε), . . . , δB(ε), δsum(ε)}. Suppose
x1, x2 ∈ [linit, rinit] and |x1 − x2| < δ, then the absolute value between the
bound functions Φlb(l, r) and Φub(l, r) can be bounded from above:

|Φub(l, r)− Φlb(l, r)| =
B∑
b=1

max {db(x1), db(x2)} −max {d(x1), d(x2)} ,

=
1

2

∣∣∣ B∑
b=1

(db(x1) + db(x2) + |db(x1)− db(x2)|)

− d(x1)− d(x2)− |d(x1)− d(x2)|)
∣∣∣

=
1

2

∣∣∣∣∣
B∑
b=1

|db(x1)− db(x2)| − |d(x1)− d(x2)|

∣∣∣∣∣
≤ 1

2

B∑
b=1

|db(x1)− db(x2)|+ 1

2

∣∣∣∣∣
B∑
b=1

db(x1)−
B∑
b=1

db(x2)

∣∣∣∣∣
≤ εB

which proves the lemma.

Lemma 4.2.3 and 4.2.5 provide all necessary conditions for Theorem 4.2.4.
Hence, Simple BnB (Algorithm 5) converges to the global maximum in a
finite number of steps.

Local maxima

Simple BnB algorithm starts with splitting the initial interval into disjoint
subintervals, having no local maxima of db(α) for b = 1, . . . , B in their inte-
rior. Therefore, before Algorithm 5 can be applied to solve the critical plane
optimization problems (4.8)–(4.10) and its fully reversed variation (4.11)–
(4.13), all local maximum points of every summand have to be found ana-
lytically. In this section we provide necessary formulas for all cases of the
damage function db(α).

Lemma 4.2.6. The following holds:

a1 cosx+ a2 sinx = b1 sin(x+ b2) (4.18)

where b1 =
√
a2

1 + a2
2 and b2 = arccos (a2/b1 ) sgn a1.
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Proof. Using the sine of sum identity, Eq.(4.18) can be transformed into

b1 sin(x+ b2) = b1 (sin b2 cosx+ cos b2 sinx)

= b1 sin (arccos (a2/b1 )) cosx+ a2 sinx

=
√
a2

1 + a2
2 sgn a1

√
1− a2

2

a2
1 + a2

2

cosx+ a2 sinx

= sgn a1|a1| cosx+ a2 sinx

Substitute sgn a1|a1| = a1 to prove the statement.

Lemma 4.2.7. Scalar stress σ(α) = c(α)Tσ, where c(α) is the critical plane
normal, defined by Eq. (4.5), can be written in the following form:

σ(α) = c(α)Tσ = q1(σ) sin(α+ q2(σ)) + q3(σ) (4.19)

where qi(σ) are components of the function q : R3 7→ R3, defined by

q(σ) =

 q1(σ)
q2(σ)
q2(σ)

 =

 √
(σ1 − σ2)2/4 + σ2

3

arccos (σ3/A) sgn(σ1 − σ2)
(σ1 + σ2)/2

 (4.20)

Proof. Substitute the critical plane normal Eq. (4.5) into the scalar stress
σ(α) = c(α)Tσ to get the following:

σ(α) = c(α)Tσ(α) =
σ1 − σ2

2
cosα+ σ3 sinα+

σ1 + σ2

2
(4.21)

Identity (4.18), applied to Eq. (4.21), proves the statement.

Theorem 4.2.8. If g : R+
0 7→ R+

0 is monotonically non-decreasing and n is
positive, then the function d(α) = ng(|σ(α)|), where σ(α) = c(α)Tσ, has the
following local maximum points:

Locmax
α∈[0,2π]

d(α) =


{
π
2 − q2

}
, if q3 − q1 ≥ 0,{

3π
2 − q2

}
, if q3 + q1 ≤ 0,{

π
2 − q2,

3π
2 − q2

}
, else,

(4.22)

where parameters q = q(σ) are defined by Eq. (4.20).

Remark 4.2.9. Local maximum points in Eq. (4.22) do not always belong
to the interval [0, 2π], but we can always translate them if necessary, since
the function d(α) is periodic with the period equal to 2π. Here and below,
it is assumed, that the local maximum points have already been translated.
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Proof. The function g is monotonically non-decreasing on R+
0 . Hence, the

composition ng(|σ(α)|) has the same set of local maximum points as |σ(α)|.
First-order optimality condition, using Formula (4.19), reads as follows:

|σ(α)|′ = |q1 sin(α+ q2) + q3|′ = q1 cos(α+ q2) sgnσ(α) = 0 (4.23)

Eq. (4.23) has two solutions:

α1 =
π

2
− q2 (4.24)

α2 =
3π

2
− q2 (4.25)

The parameter q1 is always positive by construction. If q3 − q1 ≥ 0, then
σ(α) ≥ 0 for all α. Hence, in this case α1 is the only maximum point of
|σ(α)|. Analogously, when q3 + q1 ≤ 0, then σ(α) ≤ 0 everywhere and α2 is
the only maximum point. If the function σ(α) changes its sign, then both
α1 and α2 belong to Locmax

α∈[0,2π]
|σ(α)|.

Corollary 4.2.10. If g : R+
0 7→ R+

0 is monotonically non-decreasing and n
is positive, then the function d(α) = ng(|σ(α)|), where σ(α) = c(α)Tσ, has
the following global maxima:

• if q3 ≥ 0, then d∗ = ng(q1 + q3) and α∗ = π
2 − q2

• if q3 ≤ 0, then d∗ = ng(q1 − q3) and α∗ = 3π
2 − q2

where parameters q = q(σ) are defined by Eq. (4.20).

Proof. The corollary can be proved by computing d(α) for local maximum
points α∗ ∈ Locmax

α∈[0,2π]
|σ(α)| in Theorem 4.2.8.

Theorem 4.2.11. If g : R+
0 7→ R+

0 is monotonically non-decreasing and
n is positive, h : R2 7→ R+

0 is Goodman mean stress correction, defined by
Eq. (4.7), then the function d(α) = ng[h(σ(α), ξ(α))], where σ(α) = c(α)Tσ
and ξ(α) = c(α)T ξ, has the following local maximum points:

1. α∗1 = π
2 − q

diff
2 , if qdiff1 ≥ −qdiff3 and σ(α∗1) ≤ 0

2. α∗2 = 3π
2 − q

diff
2 , if qdiff1 ≥ qdiff3 and ξ(α∗2) ≤ 0

3. α∗3 = π
2 − q

left
2 , if qdiff1 cos(qdiff2 − qleft2 ) ≥ −qdiff3 and σ(α∗3) ≥ 0

4. α∗4 = π
2 − q

right
2 , if qdiff1 cos(qdiff2 − qright2 ) ≤ −qdiff3 and ξ(α∗4) ≥ 0



70 CHAPTER 4. BILEVEL OPTIMIZATION

where the parameters qdiff, qleft and qdiff are defined by Eq. (4.20):

qdiff = q[ (σ − ξ)/2] (4.26)

qleft = q[ (σ(1 +M)− ξ(1−M))/2] (4.27)

qright = q[ (ξ(1 +M)− σ(1−M))/2] (4.28)

Proof. The function g is monotonically non-decreasing on R+
0 . Hence, the

composition ng[h(σ(α), ξ(α))] has the same set of local maximum points as
h(σ(α), ξ(α)).

Consider Goodman mean stress correction, defined by Eq. (4.7):

h(σ(α), ξ(α)) =
1

2

{
(1−M) |σ − ξ| for |σ − ξ| < −(σ + ξ)
|σ − ξ|+M(σ + ξ) for |σ − ξ| ≥ −(σ + ξ)

and expand the modulus |σ − ξ|:

h(σ(α), ξ(α)) =
1

2



(1−M) (σ(α)− ξ(α))
for σ(α)− ξ(α) ≥ 0 and σ(α) ≤ 0

(1−M) (ξ(α)− σ(α))
for σ(α)− ξ(α) ≤ 0 and ξ(α) ≤ 0

(1 +M)σ(α)− (1−M)ξ(α)
for σ(α)− ξ(α) ≥ 0 and σ(α) ≥ 0

(1 +M)ξ(α)− (1−M)σ(α)
for σ(α)− ξ(α) ≤ 0 and ξ(α) ≥ 0

(4.29)

The difference (σ(α)− ξ(α))/2 between the turning points σ(α) and ξ(α)
can be decomposed, using Eq. (4.19):

(σ(α)− ξ(α))/2 = c(α)T (σ − ξ)/2 = qdiff1 sin(α+ qdiff2 ) + qdiff3 , (4.30)

where qdiff = q[ (σ − ξ)/2]. Analogously, decompose the remaining parts of
the piecewise function h:

(1 +M)σ(α)− (1−M)ξ(α) = qleft1 sin(α+ qleft2 ) + qleft3 , (4.31)

(1 +M)ξ(α)− (1−M)σ(α) = qright1 sin(α+ qright2 ) + qright3 , (4.32)

where qleft = q[(1 +M)σ− (1−M)ξ]. and qright = q[(1 +M)ξ− (1−M)σ].
Substitute Eqs. (4.30)–(4.32) in Eq. (4.29) and differentiate h(σ(α), ξ(α))
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with respect to α:

h′(α) =



(1−M) qdiff1 cos(α+ qdiff2 )

for qdiff1 sin(α+ qdiff2 ) ≥ −qdiff3 and σ(α) ≤ 0

−(1−M) qdiff1 cos(α+ qdiff2 )

for qdiff1 sin(α+ qdiff2 ) ≥ −qdiff3 and ξ(α) ≤ 0

qleft1 cos(α+ qleft2 )

for qdiff1 sin(α+ qdiff2 ) ≥ −qdiff3 and σ(α) ≥ 0

qright1 cos(α+ qright2 )

for qdiff1 sin(α+ qdiff2 ) ≤ −qdiff3 and ξ(α) ≥ 0

(4.33)

By solving the first-order optimality conditions h′(α) = 0, we get local max-
ima for each of four regions and, hence, prove the statement.

Theorems 4.2.8 and 4.2.11 provide formula to compute local maxima
of each summand db(α) for b = 1, . . . , B of the target functionals in the
critical plane optimization problem (4.8)–(4.10) and its fully reversed vari-
ation (4.11)–(4.13). This is necessary to ensure convergence of Simple BnB
(Algorithm 5) to the global optimum in a finite number of steps, according to
Theorem 4.2.4 and Lemmas 4.2.3 and 4.2.5. The question is whether Simple
BnB is fast enough to compete with the existing methods.

4.2.2 DIRECT Algorithm

DIRECT is a derivative-free global optimization algorithm, modification of
the Lipschitzian approach, e.g. Shubert algorithm [38]. In this section we
describe the key ideas of the method, based on [21].

It is assumed that the function d(α) is Lipschitz continuous in the interval
[linit, rinit], i.e. there exists a constant K such that

|d(α1)− d(α2)| ≤ K|α1 − α2|, (4.34)

for any α1, α2 ∈ [linit, rinit]. Hence, if the Lipschitz function d(α) is evaluated
at the midpoint m = (l + r)/2 of any closed interval [l, r] ⊂ [linit, rinit], then
d(α) satisfies the inequalities:

d(α) ≤ d(m)−K(α−m) for α ≤ m (4.35)
d(α) ≤ d(m) +K(α−m) for α ≥ m (4.36)

Fig. 4.7 shows linear bounds, defined by Eqs. (4.35)–(4.36).
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(α
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l rm

Figure 4.7: Upper bound with center-point sampling

The linear bounds can attain their highest value only at the endpoints l
and r, hence, the upper bound is given by

max
α∈[l,r]

d(α) ≤ d(m) +K(r − l)/2 (4.37)

Center-point sampling can be maintained, if in the branching step the in-
terval [l, r] is divided into three equal subintervals [l, l+ (r − l)/3], [l+ (r −
l)/3, l + 2(r − l)/3] and [l + 2(r − l)/3, r], since in this case the point m
becomes the midpoint of the second subinterval and only two function val-
ues have to be computed. The branching step partitions the interval into
many. The order in which subintervals are chosen and considered, has to
be specified. The basic idea of DIRECT is to select a subset of potentially
optimal intervals and sample each of them.

Definition 4.2.12. Suppose that the interval [linit, rinit] is partitioned into
intervals [li, ri] with midpoints mi, for i = 1, . . . , I. Let ε > 0 be a positive
constant, and the dmax be the current best function value. Interval j is said
to be potentially optimal if there exists some rate-of-change constant K̃ > 0
such that

d(mj) + K̃[ (rj − lj)/2] ≥ d(mi) + K̃[ (ri − li)/2] for i = 1, . . . , I

d(mj) + K̃[ (rj − lj)/2] ≥ dmax + ε|dmax|

The first condition requires the interval to be on the upper right of the
convex hull of the dots (Fig. 4.8). The second condition forces the upper
bound for the interval to exceed the current best solution.

Remark 4.2.13. The set of potentially optimal intervals can be identified
in O(m′) time, where m′ is the number of distinct interval lengths (abscissas
in Fig. 4.8).
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d(α)

(r − l)/2

d(mj) + K(rj − lj)/2

(rj − lj)/2

slope K

Figure 4.8: Representation of subintervals and corresponding function
values by dots

In a standard branch-and-bound algorithm the most promising intervals
with the largest upper bound would be selected, partitioned and pruned,
if their upper bound is lower then the current best function value dmax.
BnB stops, when the difference between the upper and lower bounds for
the maximum are below the given tolerance. If the pruning is skipped, the
stopping criterion is changed to a limit on the number of iterations and at
every step we select only potentially optimal intervals, then the Lipschitz
constant K does not have to be known anymore.

Remark 4.2.14. DIRECT is guaranteed [21] to converge to the globally op-
timal function value if the target function is continuous in the neighborhood
of a global optimum.

Two promising deterministic methods to solve the critical optimization
problem (4.8)–(4.10) were described above. A comparison of the methods in
terms of CPU time continues the chapter.

4.2.3 Numerical Results

For this study, Simple BnB algorithm was written in C++. The imple-
mentation of DIRECT method was provided by an open-source nonlinear
optimization library NLopt [20]. In order to benchmark the performance of
both algorithms, 100000 randomly generated instances of each problem were
solved and the average CPU time is compared.

The critical plane optimization problem (4.8)–(4.10) takes as an input
two stress vectors σ1,b ∈ R3 and σ2,b ∈ R3 for every block b = 1, . . . , B.
Its fully reversed variation (4.11)–(4.13) needs only one vector σb ∈ R3 per
block. The elements of the input were uniformly randomly chosen in the
interval [−100, 100] and the number of stress-strain cycles nb is fixed at
30000. The damage curve g(σf ), defined by Eq. (4.6), is initialized with the
parameters Ns = 106, σs = 80 and k1 = k2 = 5. The Goodman mean stress
correction (Eq. (4.7)) has the slope M = 0.3.
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Figure 4.9: Performance comparison of Simple BnB (dotted) and
DIRECT (solid) for the critical plane optimization problem (4.8)–(4.10)

0

3.5×10−8

7×10−8

tim
e,

s.

1 2 3 4 5 6 7 8 9 10
no. blocks B

ε = 10−2

0

3×10−8

6×10−8

9×10−8

1.2×10−7

1.5×10−7

tim
e,

s.

1 2 3 4 5 6 7 8 9 10
no. blocks B

ε = 10−3

0

1×10−7

2×10−7

3×10−7

4×10−7

tim
e,

s.

1 2 3 4 5 6 7 8 9 10
no. blocks B

ε = 10−4

0

2×10−7

4×10−7

6×10−7

8×10−7

1×10−6

tim
e,

s.

1 2 3 4 5 6 7 8 9 10
no. blocks B

ε = 10−5

Figure 4.10: Performance comparison of Simple BnB (dotted) and
DIRECT (solid) for the fully reversed loading variation (4.11)–(4.13)
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Figs. 4.9, 4.10 show the average CPU time of Simple BnB and DIRECT
for different tolerance values ε and number of blocks B in the loading signal.
As can be seen in Fig. 4.9, the critical plane optimization problem (4.8)–
(4.10) benefits from using Simple BnB method only for low tolerance ε ∈
[10−3, 10−2], when B ≤ 7, and for high tolerance ε ∈ [10−5, 10−4], when
B ≤ 4. Fig. 4.10 shows that Simple BnB algorithm becomes less effective
for the fully reversed variation (4.11)–(4.13). At the same time, the running
time of DIRECT stays approximately the same, since the algorithm has a
limit on the number of iterations. Therefore, it is likely that sometimes the
method terminates before the global solution was found.
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0.4

0.5

% failures
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no. block B

(a) General loading
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(b) Fully reversed loading

Figure 4.11: Failure rate of the algorithms for ε = 10−2 (gray),
ε = 10−3 (dotted), ε = 10−4 (dashed), ε = 10−4 (black)

As one can observe in Fig. 4.11a, the failure rate of DIRECT algorithm
for the general loading is relatively low and slowly increases with the number
of blocks B. It is not sensitive to the parameter ε. However, in case of fully
reversed signal (see Fig. 4.11b) percentage of failures is immense for low
number of blocks. This can be explained by the fact, that the summands
db(α) have only one or two peak-like maxima, according to Theorem 4.2.8. If
the center-point sampling misses the neighborhood of the needed maximum,
then selection of potentially optimal intervals in DIRECT algorithm can
lead to the exploration of wrong part of the domain. The method would
have eventually converged and found the global solution, if the limit on
the number of iterations were higher. Observe that the failure rate rapidly
decreases in the first part of Fig. 4.11b, since there becomes more summands
and, therefore, the maxima of the sum are likely to stop resembling peaks.

The results suggest to use Simple BnB to find global maximum of the
critical plane optimization problem and its fully reversed variation for B > 1,
if the solution has to be found in 100%. Otherwise, one can apply DIRECT
algorithm for large number of blocks B to speed up the process. The triv-
ial case of the constant loading with a single block B = 1 can be solved
analytically, using the Theorems 4.2.8 and 4.2.11.
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4.2.4 Equidistant grid

In engineering applications the critical optimization problem maxα∈[0,2π] d(α)
is usually discretized, so that the function d is computed for every point of
an equidistant grid [27] and then the maximum is selected. In this section
we study deviation of such approximate solution from the exact maximum
in case of constant fully reversed loading (Eqs. (4.11)–(4.13)) with one-slope
damage curve g(σf ) = (σf/σs )k /Ns:

max
α∈[0,2π]

d(α) (4.38)

d(α) = ν|c(α)Tσ|k, (4.39)

where ν = n/
(
Ns σ

k
s

)
is a positive constant. Let us rewrite the damage d(α)

in Eq. (4.38) using Lemma 4.2.7:

d(α) = ν|q1(σ) sin(α+ q2(σ)) + q3(σ)|k, (4.40)

where qi(σ) are components of the function q : R3 7→ R3 is defined by

q(σ) =

 q1(σ)
q2(σ)
q2(σ)

 =

 √
(σ1 − σ2)2/4 + σ2

3

arccos (σ3/A) sgn(σ1 − σ2)
(σ1 + σ2)/2

 (4.41)

We study this special case to provide a lower bound on the maximum devi-
ation for more general cases.

Lemma 4.2.15. The exact solution of the problem (4.38)–(4.40) has the
following maximum deviation from the discrete solution:

E = max
α∈[0,2π]

d(α)− max
i=0,...,N

d(αi),

= ν

(
(q1 + |q3|)k − (q1 cos

δ

2
+ |q3|)k

)
, (4.42)

where the finite sequence αi = iδ for i = 0, . . . , N generates an equidistant
grid with the step δ = 2π/N .

Proof. According to Corollary 4.2.10, the problem (4.38)–(4.39) has the
global maximum point at α∗ = π/2 − q2 if q3 ≥ 0 or at α∗ = 3π/2 − q2

if q3 ≤ 0 with the following target function value:

max
α∈[0,2π]

d(α) = ν(q1 + |q3|)k (4.43)

Suppose the grid is fine enough, so that the discrete solution is in the δ-
neighborhood of the global maximum point α∗:

max
i=0,...,N

d(αi) = max {d(αi∗), d(αi∗+1)} (4.44)
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where αi∗ = bα∗/δ c δ. Reflectional symmetry of the function d(α) at α∗

implies that the deviation is maximized, when α∗ is in the middle of the
interval [αi∗ , αi∗+1], i.e. αi∗ = α∗ − δ/2. Therefore, the deviation E takes
the following form:

E = max
α∈[0,2π]

d(α)− max
i=0,...,N

d(αi),

= ν(q1 + |q3|)k −max {d(αi∗), d(αi∗+1)}
= ν(q1 + |q3|)k − d(α∗ + δ/2)

= ν(q1 + |q3|)k − ν |q1 sin(α∗ + δ/2 + q2) + q3|k

= ν(q1 + |q3|)k − ν (q1 sin(α∗ + δ/2 + q2) + |q3|)k

Substitute the global maximum point α∗ = π/2−q2 to prove the lemma.

The deviation E in Lemma 4.2.15 depends on the stress vector σ. Next,
the instance of σ that satisfies the box constraints (2.35) and maximizes
E(σ) is derived. Hence, we have to solve the following problem:

max
σ

E(σ) (4.45)

E(σ) = g(q1(σ) + |q3(σ)|)− g(q1(σ) cos
δ

2
+ |q3(σ)|)), (4.46)

g(x) = νxk, (4.47)

q1(σ) =
√

(σ1 − σ2)2/4 + σ2
3 (4.48)

q3(σ) = (σ1 + σ2)/2 (4.49)

−eσmax ≤ σ ≤ eσmax (4.50)

The solution leads to the formula to compute maximum possible deviation of
the exact solution of the problem (4.38)–(4.40) from the discrete one, given
the maximal stress σmax.

Lemma 4.2.16. The function Ẽ(x, y)

Ẽ(x, y) = g(x+ y)− g(εx+ y), (4.51)

where g is defined by Eq. (4.47) and ε < 1, is non-decreasing in each argu-
ment and convex for x, y ∈ R+

0 .

Proof. First, we prove that the function Ẽ(x, y) is non-decreasing in each
argument x, y ∈ R+

0 by looking at its gradient:

∇Ẽ =

[
g′(x+ y)− εg′(εx+ y)
g′(x+ y)− g′(εx+ y)

]
,
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Since x+y ≥ εx+y and g′ is monotonically increasing, the gradient ∇Ẽ ≥ 0
and, therefore, the function Ẽ is non-decreasing in x and y. Convexity of Ẽ
with respect to [x; y] is proved by checking the positive definiteness of the
Hessian matrix ∇2Ẽ:

∇2Ẽ =

[
g′′(x+ y)− ε2g′′(εx+ y) g′′(x+ y)− εg′′(εx+ y)
g′′(x+ y)− εg′′(εx+ y) g′′(x+ y)− g′′(εx+ y)

]
The statement follows from Sylvester’s criterion and monotonicity of g′′.

Lemma 4.2.17. The functions q1(σ) and |q3(σ)|, defined by Eq. (4.49)–
(4.50), are convex.

Proof. The function |q3(σ)| = |(σ1 + σ2)/2| is an absolute value of a plane
and, hence, convex by Lemma 3.1.3. The Hessian matrix of q1(σ) has the
following form:

∇2q1(σ) =
1

4q3
1(σ)

 σ2
3 −σ2

3 (σ2 − σ1)σ3

−σ2
3 σ2

3 (σ1 − σ2)σ3

(σ2 − σ1)σ3 (σ1 − σ2)σ3 (σ1 − σ2)2

 (4.52)

The eigenvalues of the Hessian
{

0, 0, (σ1 − σ2)2 + 2σ2
3

}
are non-negative,

which means it is positive semidefinite and q1(σ) is convex.

Theorem 4.2.18. The function E(σ), defined by Eq. (4.46), is convex.

Proof. The function E(σ) is a composition of Ẽ(x, y), which is convex non-
decreasing in each argument according to Lemma 4.2.16, and convex func-
tions q1(σ) and |q3(σ)| by Lemma 4.2.17. Therefore, Lemma 3.1.5 proves
the statement.

Corollary 4.2.19. The target functional E(σ) of the problem (4.45)–(4.50)
attains its maximum at σ∗ = [σmax, σmax,−σmax]:

E(σ∗) = ν [σmax]k
(

2k − (1 + cos δ/2))k
)
. (4.53)

Proof. The problem (4.45)–(4.50) is a maximization problem of the convex
function E(σ) over the convex set. Hence, the maximum is attained at
the boundary. Since the feasible set is the cube −eσmax ≤ σ ≤ eσmax,
the search can be restricted to its vertices. Hence, there are 8 candidates.
The symmetry of the functions E(σ), q1(σ) and |q3(σ)| reduces the number
to only 2 vertices. Therefore, comparing the target functional E at the
points σ1 = [σmax, σmax, σmax] and σ2 = [σmax,−σmax, σmax], we prove the
corollary.
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Remark 4.2.20. For the stress vector σ∗ the maximum of the critical plane
optimization problem d(α∗) = ν(2σmax)k and, hence, the relative deviation
E(σ∗)/d(α∗) does not depend on σmax. Fig. 4.12 shows the relative error
for different values of the damage curve parameter k and number of nodes
in the equidistant grid N .
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Figure 4.12: Relative error for k = 3 (gray), k = 5 (dotted), k = 7 (dashed)
and k = 9 (solid)

The number of planes N , used in industry [27, 40], usually equals 8, 12,
18, 24, 30, 36. As one can observe in Fig. 4.12, the relative error for such grid
can be large, therefore, it has to be refined or global optimization methods
should be used.

In this section the solution methods for the inner problem of the bilevel
test rig problem (4.1)–(4.4) were discussed. Simple BnB algorithm was pre-
sented and compared with DIRECT method. Both of them converge to
the global optimum. Simple BnB always terminates its search in the ε-
neighborhood of the exact solution. Although DIRECT algorithm can be
faster for some instances of the problem, it does not provide any certificate
for optimality, so the limit on the number of iterations should be adjusted.
Also the usual approach to maximize the damage, considering a finite num-
ber of planes, i.e. discretizing the problem, was studied. We showed that
the number of planes has to be dramatically increased to get close to the
optimum for all possible input vectors. Therefore, applications, demanding
high precision, have to obsolete this method.

4.3 Outer problem

In this section we discuss regularity of the outer problem and prove that it is
continuous and differentiable under certain conditions. Let us recapitulate
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the outer part of the general test rig problem (4.1)–(4.4) for a single criterion:

min
z
F (z), (4.54)

F (z) =
d(z)

dref
+

dref

d(z)
, (4.55)

d(z) = max
α∈[0,2π]

d(α,z), (4.56)

d(α,z) =
B∑
b=1

nbg [h(σ1,b(α,z), σ2,b(α,z))] , (4.57)

where the reference damage values d(z) are positive and the state vector
z = [p̄; τ̄ ] includes both applied forces p̄ = [p1,1,p2,1, . . . ,p1,B,p2,B] ∈ R2AB

and alignment parameters τ̄ = [τ1, . . . , τA] ∈ RAT for actuators i = 1, . . . , A.
First, convexity of the damage function d(z) = d([p̄; τ̄ ]) with respect

to applied forces p̄ is proven. This property can be used to reformulate
the problem as a DC program for every fixed alignment τ̄ , using the same
decomposition as in Section 3.1.2.

Theorem 4.3.1. Damage function d(z) = maxα∈[0,2π] d(α, [p̄; τ̄ ]), defined
by Eqs. (4.56)–(4.57), is convex with respect to p̄, if the damage curve g is
convex and non-decreasing.

Proof. The function d(α,z) is convex for every fixed angle α by Theo-
rem 3.1.7. Therefore, d(z) is a pointwise maximum of convex functions
d(α,z) and, hence, convex according to Lemma 3.1.1.

The following theorems provide conditions for continuity and differentia-
bility of the target functional F (z).

Theorem 4.3.2 (Continuity). Let A be compact and function f(α,x) be
continuous with respect to α ∈ A ⊂ R and x ∈ X ⊆ RN in the neighborhood
of x0 and α ∈ A. Then function

f̃(x) = max
α∈A

f(α,x) (4.58)

is also continuous at the point x0.

Proof. See [36] for details.

Theorem 4.3.3 (Differentiability). Let f(α,x) and ∂αf(α,x) be continu-
ously differentiable with respect to α ∈ A ⊂ R and x ∈ X ⊆ RN . Also
suppose, that there exists a neighborhood V of x0, where the argument of the
maximum

α(x) := arg max
α∈A

f(α,x) ∈ int(A)
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is unique for each x ∈ V and ∂2
αf(α(x0),x0) 6= 0. Then the function f̃(x),

defined in Theorem 4.3.2 is differentiable at x0.

Proof. One way to prove differentiability of f̃(x) is to prove existence and
continuity of its partial derivatives at x0:

∂f̃

∂xi
(x0) = lim

h→0

f̃(x0)− f̃(x0 + hei)

h

= lim
h→0

f(α0,x0)− f(αh,x0 + hei)

h

= lim
h→0

f(α0,x0)− f(α0,x0 + hei)

h

+ lim
h→0

f(α0,x0 + hei)− f(αh,x0 + hei)

h
, (4.59)

where αh := arg maxα∈A f(α,x0 + hei). Now we consider the first term in
Eq. (4.59). From the differentiablility of f(α,x) with respect to x it follows,
that

lim
h→0

f(α0,x0)− f(α0,x0 + hei)

h
=

∂f

∂xi
(α0,x0) (4.60)

The second term can be rewritten, using the Taylor expansion

lim
h→0

f(α0,x0 + hei)− f(αh,x0 + hei)

h
= lim

h→0

α0 − αh
h

∂αf(α0,x0 + hei)

(4.61)

Since ∂αf(α,x) is continuous w.r.t. x and, moreover α0 ∈ int(A), then

lim
h→0

∂αf(α0,x0 + hei) = ∂αf(α0,x0) = 0

The function ∂αf(α,x) is continuously differentiable with respect to x and
α and ∂2

αf(α0,x0) 6= 0, so we can apply the Implicit function theorem.
Hence, there exists an open set Ux 3 x0 and an open set Uα 3 α0, and
a unique continuously differentiable function a(x) : Ux 7→ Uα, such that
αh = a(x0 +hei) for small enough h, when x0 +hei ∈ Uα. That gives us the
boundedness of limh→0(α0 − αh)/h in Eq. (4.59) and hence the expression
Eq. (4.61) has the following form:

lim
h→0

α0 − αh
h

∂αf(α0,x0 + hei) = a′(x0) ∂αf(α0,x0) = 0 (4.62)

So, combining Eq. (4.60) and Eq. (4.62), we get the derivative of g(x) with
respect to xi:

∂g

∂xi
(x0) =

∂f

∂xi
(α0,x0), (4.63)

which is continuously differentiable. Therefore, f̃(x) is also differentiable.
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Theorem 4.3.4. The damage function d(z), defined by Eqs. (4.56)–(4.57),
has the following gradient at z0:

∇d(z0) = ∇zd(α∗, z0), (4.64)

if the function d(α,z) satisfies conditions of Theorem 4.3.3 at z0 and α∗ is
a solution of the inner problem maxα∈[0,2π] d(α,z0).

Proof. The gradient of d(z) at z0 has the following form:

∇d(z0) = ∇zd(α∗, z0) + ∂αd(α∗, z0)∇α(z0), (4.65)

where the partial derivative ∂αd(α∗, z0) equals to zero, because d(α,z0) is
periodic with respect to α and the maximum point α∗ of a differentiable
function on an open set is a stationary point according to Fermat’s theorem.
The gradient ∇α(z0) is finite by Theorem 4.3.3. Therefore, the second term
in Eq. (4.64) can be neglected.

Theorem 4.3.4 makes it possible to use derivative-based methods to find
extrema of the outer part of the test rig problem (4.54)–(4.57). These local
solutions can be exploited by a global optimization algorithm, e.g. multi
level single linkage [6], to ensure convergence.

4.4 Conclusion

In this chapter bilevel formulation of the test rig problem was considered.
In the inner part the sum of the functions has to be maximized. We derived
formulas for local maximum points of every summand and used this infor-
mation to develop a new branch-and-bound algorithm. Later it was proven
to converge and showed good computational time, compared to DIRECT al-
gorithm. Also we found that the worst case relative error for the discretized
solution, commonly applied in industry, could achieve 10% and more, de-
pending on the damage curve parameters. Consequently, this method should
be used only with a very fine grid or replaced by an approach that guarantees
ε-optimal solution, if an application demands high precision.

For the outer part we proved convexity of the damage function with
respect to applied forces, if the alignment parameters of each actuator are
fixed. That implies, that the test rig problem can be decomposed into a union
of DC programs. Also we showed, that the target functional is continuous
and differentiable and provided the formula for its gradient. Therefore, it
can be solved by derivative-based global optimization methods.



Chapter 5

Numerical Investigation

We intend to answer several important questions. Can the model (2.28)–
(2.33) find a good approximation of reference damages at the hot spots? Is
optimization necessary with respect to all state variables or can we vary only
applied forces p1,b and p2,b in each block b = 1, . . . , B and fix the alignment
parameters τi of the actuator i = 1, . . . , A? Does a fully reversed loading
signal provide appropriate results? How many blocks should the loading
signal have? Do the extender moments play an important role in the overall
result? The algorithms mentioned in the chapter 4 help us to address these
questions numerically.

5.1 Problem

5.1.1 Model

The general test rig problem, defined by Eqs. (2.28)–(2.33), approximates
the reference damage values drefk > 0 at K hot spots, generating a load-
ing signal with B blocks. The state vector z = [p̄; τ̄ ] includes applied
forces p̄ = [p1,1,p2,1, . . . ,p1,B,p2,B] ∈ R2AB and alignment parameters
τ̄ = [τ1, . . . , τA] ∈ RAT for actuators i = 1, . . . , A.

min
z

1

K

K∑
k=1

dk(z)

drefk
+

drefk
dk(z)

− 2 (5.1)

dk(z) = max
αk

B∑
b=1

nbg [h(σ1,kb(αk, z), σ2,kb(αk, z))] , (5.2)

σj,kb(αk, z) = c(αk)
Tσj,kb(p̄, τ̄ ), (5.3)

σj,kb(p̄, τ̄ ) =

A∑
i=1

pj,bi Bki l(τi), for j = 1, 2, (5.4)

83
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where nb > 0 are number of stress-strain cycles per block, Bki ∈ R3×6 con-
tain stresses, generated by both actuators load and the reaction load of the
mounted attachment, l : RT 7→ R6 is the alignment function, defined by
Eq. (2.24), c : R 7→ R3 denotes the critical plane normal (see Def. 2.1.15).

The function g : R+
0 7→ R+

0 is the damage curve:

g(σf ) :=
1

Ns

{
(σf/σs)

k1 for σf ≤ σs,
(σf/σs)

k2 for σf ≥ σs,
(5.5)

and h : R2 7→ R+
0 is the Goodman mean stress correction:

h(σ1, σ2) =

{
(1−M)σa for σa < −σm
σa +Mσm for σa ≥ −σm

(5.6)

where σa = |σ1 − σ2|/2 and σm = (σ1 + σ2)/2 are the amplitude and mean
of the stress-strain cycle respectively and the slope M < 1 is positive. De-
tailed description and physical meaning of these functions can be found in
Sections 2.1.2 and 2.1.3. The state z and the components of the stress vectors
σj,kb are bounded as in Section 2.3.4.

5.1.2 Number of cycles

The number of stress-strain cycles per block nb for b = 1, . . . , B are integer
parameters of the test rig problem (5.1)–(5.4). They can be relaxed and
used as the state variables in order to extend the feasible set. After the
optimization procedure they have to be rounded and, of course, the goal
must be recomputed.

5.1.3 Methods

Derivative information makes it possible to use the multi level single linkage
method [6] for global optimization with the interior-point method [41] for
local searches. The inner critical plane problem, defined by Eq. (5.2), is
solved by Simple BnB algorithm, discussed in Section 4.2.1. The solvers
were implemented in C++ using an external library IPOPT [41] for local
optimization routine.

5.1.4 Critical spots

A solution z∗ of the problem (5.1)–(5.4) allows us to find an optimal loading
signal, producing the best feasible approximation for damage values drefk atK
hot spots, but this does not imply that the component cannot have extremely
high damage, exceeding a given threshold, at some other node. We call such
node a critical spot and its occurrence indicates that the component will fail
there. Let us discuss several ways to deal with the critical spots:
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1. Damage approximation at all spots of the component. All nodes can be
considered as hot spots, making optimization computationally expensive,
but removing possible critical spots.

2. Adaptive optimization extending damage approximation. After the opti-
mal signal for the set of K hot spots is found, we use it to compute the
damage at every other node of the mesh. If there are critical spots, we
add the one with maximal damage to the criteria of the original problem
and optimize for the set of K + 1 hot spots. This approach will converge
because there is a finite number of nodes and in the worst case it will use
all of them.

3. Adaptive optimization imposing constraints. After optimization and de-
tection of the critical spot with maximal damage as in approach 2 is
finished, we add a constraint on the stresses and damage at this spot.

Approach 1 guarantees the absence of the critical spots, but target value and
gradient are extremely expensive to calculate, hence optimization process is
very slow and Pareto front approximation and navigation are impossible
due to the great number of criteria. Approach 2 is faster, but it changes
the number of hot spots thus making multi-criteria optimization impossible
again. Approach 3 is the fastest and the most flexible, since it keeps the
number of criteria constant and increases the number of considered spots
only if necessary. Thus multi-criteria optimization described is possible.

5.2 Component A

The component in Fig. 5.1 has four attachments. It is fixed in the central
attachment and three actuators are installed in the remaining ones. Artificial
loading signals, generated by the three actuators with randomly varying
alignment, are used to compute reference damage field as in Section 2.1.7.
The mesh contains 17256 quadrangles eight of which are selected as hot
spots.

Figure 5.1: Damage field and hot spots (red)
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The computation of the reference damages and optimal damages has to
employ the same model and parameters. In the current study we use the
one-slope damage curve g(σ) with paramaters k1 = k2 = 5, σs = 80 and
Ns = 106 in Eq. (5.5) and the Goodman correction h(σ1, σ2), defined by
Eq. (5.6), with M = 0.3.

5.2.1 Powers and cycles

The more optimization parameters are introduced, the larger the feasible
set is, the better solution we should expect, although the use of all avail-
able variables requires longer computational time, not to mention the more
complicated implementation. The importance of particular state variables
is checked numerically. Fig. 5.2 shows that when the actuator alignment
parameters τi are fixed, there is no significant difference, whether we opti-
mize only with respect to applied forces p1,b and p2,b with number of cycles
in each block nb = nmax or whether we also vary nb. As can be seen in
Fig. 5.2, optimal values become noticeably lower when we include alignment
parameters into consideration.

The target function monotonically decreases with respect to the number
of blocks B in the loading signal. A great number of blocks makes both the
inner (5.2) and the outer (5.1)–(5.4) optimization problems more computa-
tionally expensive. Therefore, we want to keep B as small as possible.
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Figure 5.2: Target function values for different blocks: optimized applied
forces (gray), applied forces and cycles (dashed), applied forces, cycles and

alignment (dashed).

The target function does not change significantly when B > 3. Although
this behavior might depend on reference signal and damage distribution and
component geometry, we recommend using three blocks in the load signal as
a starting point of the test signal design.
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5.2.2 Mean stress correction

The damage model uses stress signals with arbitrary amplitude and mean in
each block, which extends our search space, but involves correction function
and doubles the number of applied force variables. We want to check whether
it is possible to achieve good approximation with fully reversed signal, i.e.
when p1,b = −p2,b. In this case properties of the mean stress correction func-
tion imply that h(σ1,−σ1) = |σ1| and hence damage computation Eq. (5.2)
becomes:

dk(z) = max
αk

B∑
b=1

nbg(|c(αk)T
A∑
i=1

pbi Bki l(τi)|),

Consequently, the inner optimization problem becomes easier to solve, since
it has less local maxima (see Section 4.2.1 for details).
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(a) Optimized applied forces with mean
stress correction (solid) and without
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Figure 5.3: Target function values with and without mean stress correction.

From Fig. 5.3 it can be seen that the target values increased by 16%–49%
in case of fixed alignment of the actuators (see Fig. 5.3a) and by 59%–276%
in general case when B > 1 (see Fig. 5.3b), compared to arbitrary mean
stress loading. This clearly indicates the necessity of using the mean stress
correction methods. The number of cycles in a block does not have much
influence on the results.

5.2.3 Forces and moments

Here we want to check numerically if the moments applied at the attachments
affect the quality of the damage approximation. Therefore, we optimize two
alignment models. One has alignment parameters τ = [r, φ, θ, φ′, θ′] and
varies both moments and forces as in Example 2.2.9. Another varies only
forces, i.e. r = 1, φ = φ′ and θ = θ′.
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Figure 5.4: Target function values: optimized forces and moments (solid),
only forces (dashed).

Examining the results of the optimization (Fig. 5.4) it can be seen that
including moments in the model makes the target values at least 10 times
smaller and hence the damage approximation at the hot spots becomes much
better.

5.2.4 Relative error

Up to now, we have studied only values of the target function, but we are
more interested in deviation of achieved damage dk from the reference drefk
at every hot spot k.

x1 x2 x3 x4 x5 x6 x7 x8

−5

0

5

·10−4

hotspots

re
la

tiv
e

er
ro

r

Figure 5.5: Relative damage error d
/
dref − 1 at the hot spots

Let us have a close look at the relative damage error (d− dref)
/
dref .

Solution of the optimization problem (5.1)–(5.4) with B = 3 and obtained
minimal value 6.5 ·10−08 is shown in Fig. 5.5. Relative error at the hot spots
does not exceed 0.06%, which can be considered a very good approximation.
Hence, the proposed model proved to find an appropriate test rig design.

The reference damage values were approximated at only 8 hot spots.
Meanwhile, the component can fail at one of the 17458 spots that were
not considered in the test rig problem. The critical spot with the damage,
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exceeding 106, was found after the entire damage field was calculated. This
indicates that the adaptive optimization, discussed in Section 5.1.4, has to
be applied.
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Figure 5.6: Adaptive optimization imposing constraints

Fig. 5.6a shows that the target function monotonically increases with
the number of critical spots. Such behavior can be explained by the fact
that each new critical spot adds a new constraint and, hence, decreases the
feasible set. From Fig. 5.6b it can be seen that 19 constraints were sufficient
to make the damage at all 17256 elements of the mesh below the specified
threshold. This happens due to the continuity of the stress vector field of
the component. Convergence of the maximal damage in Fig. 5.6b is not
monotonic, since the test rig parameters can be adjusted in such a way that
the damage decreases at the already added critical spots, but increases at
some other spot. The geometry of the component affects such convergence.

The final result of the adaptive optimization is shown in Fig. 5.7. The
minimal value equals 0.883658. This is considerably higher, compared to
the result in Fig. 5.5, but it has a physical meaning, since the damage was
approximated at the hot spots and the component did not fail anywhere else.
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Figure 5.7: Relative damage error d
/
dref − 1 at the hot spots
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5.3 Component B

The component in Fig. 5.8 has seven attachments. It is fixed in the central
attachment and three actuators are installed. The mesh contains 21105
polygons ten of which are selected as hot spots. In this section we use
exactly the same methodology to consider Component B as was used for
Component A.

Figure 5.8: Geometry of the component

5.3.1 Powers and cycles

The importance of particular state variables is checked numerically. Fig. 5.9
shows that optimal values become noticeably lower when we include align-
ment parameters into consideration. Also, there is no significant improve-
ment, when the number of cycles in each block are optimized.
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Figure 5.9: Target function values for different blocks: optimized applied
forces (gray), applied forces and cycles (dashed), applied forces, cycles and

alignment (dashed).
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The target function monotonically decreases with respect to the number
of blocks B in the loading signal, but it does not change significantly when
B > 3. Therefore, the behavior of the minimum for Component B in Fig. 5.9
fully coincides in a qualitative sense with the one of Component A in Fig. 5.2.

5.3.2 Mean stress correction

From Fig. 5.10 it can be seen that the target values increased by 14.8%–
17.8% in case of fixed alignment of the actuators (see Fig. 5.10a) and by
95.7%–198.3% in general case when B > 1 (see Fig. 5.10b), compared to
arbitrary mean stress loading.
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(a) Optimized applied forces with mean
stress correction (solid) and without
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Figure 5.10: Target function values with and without mean stress
correction.

As for Component A, it can be concluded that the use of the mean stress
correction methods and, hence, general loading is necessary to achieve good
approximation. The number of cycles in a block does not have much influence
on the results.

5.3.3 Forces and moments

The dependency of the damage approximation quality, when the moments
are applied at the attachments, is checked in this section. Fig. 5.11 shows
that including moments in the model makes the target values at least 2 times
smaller and hence the damage approximation at the hot spots becomes much
better.
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Figure 5.11: Target function values: optimized forces and moments (solid),
only forces (dashed).

5.3.4 Relative error

Solution of the optimization problem (5.1)–(5.4) with B = 3 and obtained
minimal value 0.16 is shown in Fig. 5.12. Relative error at x7 exceeds 130%.
Since the damage was overestimated, it is acceptable for the application.
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Figure 5.12: Relative damage error d
/
dref − 1 at the hot spots

The reference damage values were approximated at only 10 hot spots,
but the component can fail at one of the other 21095 spots. The calculation
of the entire damage field shows that there are no critical spots with the
damage exceeding the specified threshold. This indicates that the adaptive
optimization, discussed in Section 5.1.4, is not needed. From Fig. 5.12 it can
be seen that the approximation quality for Component B is comparable to
the final result for Component A in Fig. 5.7.
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Conclusion

This thesis substantially contributes to designing good test rigs for fatigue
life. In this study, we have presented an optimization problem that allows to
find the best design of the test rig, capable of approximating fatigue damages
at the hot spots generated by the block load signals. Mathematically this test
rig design is a multi-criteria global bilevel continuous minimization problem,
that can be solved using derivative-based methods such as multi level single
linkage. The main contributions of this thesis concern:

• overview, classification of fatigue damage calculation and derivation of
the mathematical program that allows to find an optimal design of the
test rig;

• theoretical and numerical analysis of a special case of a test rig with
one hot spot and a single actuator, generating a constant fully reversed
loading signal; test rig model validation, considering solutions for two-
dimensional specimens;

• theoretical analysis of the single level formulation of the test rig prob-
lem (SLTR); proof of the damage function convexity with respect to
applied forces, if the alignment parameters of each actuator are fixed;
DC decomposition of the target functional; representation of the non-
convex SLTR as a union of convex optimization problems on polyhedral
cones, generated by hyperplanes, passing through origin;

• efficient recursive algorithm for defining representations and interior
points of polyhedral cones, generated by hyperplanes, passing through
origin; proof of the polynomial worst case complexity with respect to
the number of hyperplanes; CPU time benchmark;

• theoretical analysis of the bilevel formulation of the test rig problem
(BLTR); proof of the damage function convexity with respect to ap-
plied forces, if the alignment parameters of each actuator are fixed;

93



94 CHAPTER 6. CONCLUSION

DC decomposition of the target functional; regularity properties of the
BLTR;

• new branch-and-bound algorithm that exploits local maximum points
of every summand to maximize the sum efficiently. Convergence proof
and application to the critical plane problem, compared to DIRECT
algorithm.

• worst case relative error for the discretized solution of the critical plane
problem, commonly applied in industry;

• numerical solution of the BLTR for two specimens.

Through extensive numerical studies we may draw several conclusions:

• optimization with respect to alignment parameters of the actuators is
crucial for the quality of the damage approximation

• introducing moments, applied at the attachments, dramatically im-
proves test rig design, which means that torques play an important
role and thus the installation of extenders at the attachments is rec-
ommended.

• numbers of stress-strain cycles in each block of loading signal can be
fixed at the maximal allowed level without significant change in the
overall result

• fully reversed block loading does not provide acceptable quality of ap-
proximation. Thus arbitrary mean block loading and stress correction
methods such as Goodman or Gerber curves have to be used.

• load signals should have at least three blocks to achieve appropriate
results

Further studies may consider robustness of the problem, sensitivity analysis,
different models of damage computation and more real-world examples.
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