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Abstract: We consider the problem of finding efficient locations of surveillance cameras, where we distinguish
between two different problems. In the first, the whole area must be monitored and the number of cameras
should be as small as possible. In the second, the goal is to maximize the monitored area for a fixed number of
cameras. In both of these problems, restrictions on the ability of the cameras, like limited depth of view or range
of vision are taken into account. We present solution approaches for these problems and report on results of
their implementations applied to an authentic problem. We also consider a bicriteria problem with two objectives:
maximizing the monitored area and minimizing the number of cameras, and solve it for our study case.
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Introduction

Surveillance by cameras is one of the main tools in order to increase civil security. The efficiency of their usage is highly
depending on their location. In this paper we focus on the camera location problem for public events, where crowds of people
gather in one place. The main objectives which organizers have to achieve when locating these cameras is to maximize the area
coverage and to minimize the costs (which can be assumes to be proportional to the number of cameras).

In the following we consider two different tasks: monitoring the whole area with a minimum number of cameras and
monitoring the largest possible part of the area with a fixed number of cameras. As a starting point we take one problem from
computational geometry - the art gallery problem [11]. We consider different solution approaches, developed from the art
gallery problem and set cover problem models. Restricting properties of the cameras, such as limited depth of view, limited
range of vision, etc. are taken into account. We also go further and consider the bicriteria problem, in which we maximize the
monitored area and minimize the number of cameras.

1. Background

The well-known art gallery problem is originally motivated by the real life problem of guarding an art gallery and answering
the following question: How many points (guards) in a polygon (art gallery) are needed, so that for every point in the polygon
there is at least one guard who can see this point. A point is said to have a guard if a line segment from this point to the guard
does not leave the polygon. Clearly, this problem can also be applied to the camera location problem.

There are some variations of the art gallery problem, including those that differ in guards’ types. We distinguish the
following:

e Vertex guards: the cameras can be placed only at the corner points of the area.

e Perimeter guards: the cameras can be placed everywhere on the boundary of the area.

e Point guards: the cameras can be placed everywhere in the area.

In the case of perimeter guards or point guards, one can also distinguish between the discrete and continuous case. In the

discrete case the possible locations for guards are predefined and their number is finite. In the continuous case we have an
infinite number of possible locations which consist of topologically connected pieces.

* This work was partially supported by BMBF grant 13N12826.
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1.1 Upper bounds

There are different approaches to solving an art gallery problem. One can find for example an upper bound of the minimum
number of guards. Fisk proved in [7], that for a simple polygon with n vertices at most | 5] vertex guards are sufficient
and sometimes necessary. In order to show that, one must first find a triangulation of the polygon, which is a polygonal
decomposition into a set of non-intersecting triangles. Then the triangle vertices must be colored by means of three colors, so
that no two adjacent vertices share the same color. Since the dual graph to the triangulation is a tree, in order to find a valid
coloring, one can start with a triangle corresponding to one of the leaves in the dual graph and then continue with adjacent
triangles. Each color class is a valid guard set. A polygon triangulation can be done in O(nlogn) time and the coloring in O(n)
[8], which gives us in total O(nlogn) time complexity.

This upper bound for a minimum number of guards is valid only for guards which can see in any direction, i.e. have a 360°
range of vision. There are some attempts to solve the problem for guards with range of vision of 180° ([1], [12]). The best
known result is presented in [12] and states that the minimum number of point guards with range of vision equal to 180° is, as
in the previous case, | 5]. The problem is solved by dividing the polygon with good cuts into smaller polygons. A cut, that
decomposes a polygon with n edges into two polygons with n; and n; edges, is called good cut, if it satisfies the following
condition:

The authors showed that any polygon with n edges either contains a good cut, or can be monitored with at most |5 | point
guards with range of vision of 180°.

1.2 Exact solutions for vertex guard problem

An exact way to solve the problem with vertex guards is to decompose the polygon into visibility cells ([5]) and then solve a set
cover problem. A visibility cell in a simple polygon P is a maximally connected subset of P with the property that each point in
a cell is seen by the same set of vertices of P. Two points in a polygon see each other if a line segment connecting these point
lies in the polygon and does not cross its boundary. In figure 1 an example of a polygonal decomposition into visibility cells is
presented. The idea of the decomposition technique is the following: from each potential guard vertex p shoot a ray through
every vertex v seen by p and take a line segment from v until the point where the ray hits the boundary of P.
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Figure 1. Polygon decomposition into visibility cells.

After this decomposition into visibility cells is performed, a set of visible cells is assigned to each vertex and the problem
can be solved as a set cover problem defined as follows: Given a set U of some elements and a set S of n sets whose union equals
U, identify the smallest subset of S whose union equals U. Using the polygon of figure 1 with its visibility cells decomposition
as example, we can define the set U as the set of all cells, i.e. U = {1,2,3,4,5,6,7,8,9,10} and the following assignment of
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visible cells to each vertex as the set S

Vi {17 27 5, 6, 77 97 10} = Sl,
vo {1,2, 3, 4,56, 7,8, 9, 10} := S,
v | 3,4,5 6,7, 8,9, 10} := S,
va {1,2, 3, 4,5, 6,7, 10} = S,
vs {1,2, 3, 4,5 6,7, 8,9, 10} := Ss,
ve {1,2,3, 56 89 }:= S,
v { 2.3, 4 67,89 }:=5,
vs {1,2, 3,4,5 6,7 8,9, 10} := Ss.

Obviously it holds U = U?:l S;. However here we need only one set S», S5 or Sg in order to cover the whole U. This can be
interpreted as follows: only one guard at one of the vertices v,, vs or vg is needed in order to monitor the whole polygon.

The set cover problem is known to be NP-hard [9] such that its exact solution may take prohibitively long. It is therefore
usually solved by approximate algorithms or heuristics, e.g. the following greedy heuristic: In each iteration a current solution
is extended by adding one vertex from which the largest number of not yet monitored cells can be seen. The same approach,
consisting of decomposition into visibility cells and solving set cover problem, can also be applied to any discrete problem
without restricting only to vertex guards, i.e. when there are beside vertices some other points where the guards can be located.

The determination of the set of a polygon’s visibility cells takes O(n*logn) [5] time and the exact solution of the set cover
problem takes O(m2"), where m is the number of visibility cells. The greedy heuristic runs in O(mn) time [6]. Therefore the
exact algorithm for solving the vertex art gallery problem runs in O(m2") time, whereas the greedy solution can be found in
O(n’logn +mn).

When it comes to the problem to place a fixed number of guards so that the largest area is monitored, one can again use the
greedy heuristic: In each iteration a new guard is placed at a vertex, from where the largest part of the not monitored area is
seen. One can also use this approach for solving the previous problem, where the whole area was to be monitored, and get
similar results. The disadvantage here is that we have to compute areas of all visibility cells, which increases the running time.
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Figure 2. Induced segments on polygon boundary.

Most of the results presented in the literature only deal with discrete problems. To the best of our knowledge, there is just
one publication [10] on the optimal placement of the guards solving the perimeter problem for one guard. The idea of the
solution is to decompose the polygon boundary into induced segments, which are obtained similarly to visibility cells: from
each potential guard vertex p shoot a ray through every vertex v seen by p and take the point where the ray hits the boundary of
P. These segments have the property, that the visibility polygons for the points on the same segment are closely related. In
figure 2 the decomposition of a polygon boundary into induced segments is presented. Consider segment (v7, p). One can see a
visibility polygon, i.e. a polygon consisting of visible cells, for a vertex v;. The authors of [10] showed, that when moving
along an induced segment the visibility polygon gains some and looses other triangular areas. To solve a problem for placing a
guard on an induced segment one must solve a linear fractional problem, each summand of which corresponds to one of the
variable triangles. The algorithm iterates over the segments and then the guard is chosen from the solutions on segments. The
running time for the algorithm is O(n*loghlogn) for the approximation to b bits of accuracy.
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1.3 Guards as cameras

For the original art gallery problem the following assumptions on guards are made: they have unlimited range of vision (360°),
they have unlimited depth of field. These requirements on cameras are rather unrealistic and make the model not suitable for
real-life problems.

In [3] another approach with dropped assumption on the depth of view was introduced. The authors also performed the
decomposition of the polygon, but now with some predefined grid (see figure 3a). Then an assignment of cells to vertices or
some other guard candidates is done. This time a cell is visible for a guard if the segment from the guard to the midpoint of the
cell lies in the polygon and if the length of the segment is less than or equal to the given depth of field (figure 3b).
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(a) Polygon decomposition with a fixed grid. (b) Depth of field for a camera at vertex v;.

Figure 3. Approach for finding optimal locations for cameras with limited depth of field.

The idea of limiting the range of vision was presented in [4]. The authors considered the case of cameras with 90° range
of vision and calculated the visible cells for the following cameras positions: 0° —90°, 45° — 135°, 90° — 180° etc. For our
tests, presented in the following section, we used a similar idea. For a vertex angle of 90° and camera range of view of 35° we
considered the camera positions 0° — 35°, 27.5° — 62.5° and 55° — 90° (figure 4).

\

Figure 4. Possible coverage for a guard with 35° range of vision at a corner with an angle of 90°.

2. Bicriteria problem formulation

Now we consider a problem of finding a set of Pareto optimal solutions for the problem with two conflicting objective functions.
On one hand the goal is to maximize the monitored area S, on the other hand the amount of cameras N must minimized due to
limited budget. So the problem has the following form:

maxS, minN

One of the methods to solve multicriteria optimization problems, in particular bicriteria problems, is to use €-constraint method
[2]. In this method only one of the objectives is optimized and the others become constraints. In our case we transform to
constraint the objective which minimizes number of cameras since it always takes only integer values. So we start with solving
the problem for 1 camera and then continue until at some point the monitored area can not be maximized. So we have:

max S
st. N<eg ¢€e=1,2,...
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(a) Map of the job fair area. (b) Polygon with 24 cameras of 360°.

Figure 5. Job fair area.

3. Case study of a job fair

We implemented the presented algorithms and ran them for a real life problem, the job fair in a given area for which the map
was available. On this map we fitted a polygon with 85 edges, which is presented in figure Sa.

We start by analyzing the situation for 360° cameras. The upper bound for the minimum number of cameras for monitoring
the whole job fair polygon with n = 85 edges is | 5| = 28. With the help of our implemented algorithm (triangulation and
coloring) we obtained however a smaller number of cameras for the job fair: in figure 5b one can see a possible assignment of
24 cameras at the corner points of the area.

A better solution we got after decomposing the polygon into visibility cells and applying the greedy heuristic. In figure
6 one can see the obtained solution with 11 cameras. We also found the optimal solution by solving the NP-hard set cover
problem exactly. The algorithm took much more time and the optimal solution contains 10 cameras that monitor the whole
polygon.

We also calculated the solution for the case, where the goal is to monitor the largest part of the area with 1, 2 or 3 cameras.
The results are the following: if one wants to locate a camera at the best vertex of the polygon then more than half of the area is
monitored (see figure 7a). With 3 cameras even 88% of the area can be monitored (figure 7c¢).

For cameras with 180° range of view, we obtained, for the problem of monitoring the whole area, a solution with exactly
|55 | = 28 cameras (see figure 8).
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Figure 6. Polygon with 11 cameras of 360°.
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(a) 1 camera: 55% covered. (b) 2 cameras: 75% covered. (c) 3 cameras: 88% covered.

Figure 7. Monitoring the polygon with 1, 2 and 3 cameras.
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Figure 8. Polygon with 28 cameras of 180°.
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(see figure 9c).

For cameras with limited depth of view we solved the problem of covering the most part of the area. With 2 cameras, that
have also limited range of vision, for example 140°, we get a comparable coverage result by adding one camera to the solution

have range of vision of 360°, we achieve a covering of 69% of the area (see figure 9a). Under the assumption that the cameras
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(c¢) 3 cameras of 140°:
51% covered.

71% covered.
Figure 9. Monitoring the polygon with cameras with limited depth of field.

improvement in the monitoring area.

We also found a Pareto frontier for the cameras with limited range of vision (140°) and depth of view (see figure 10).
Using this frontier, one can decide at which point additional cameras or additional costs for this cameras make no sufficient
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Figure 10. Pareto frontier for the problem with two conflicting objectives.
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Conclusion

For the problem of finding optimal locations for surveillance cameras we adapted different approaches presented in the literature.
Some of them are focused on getting an upper bound of the minimum number of cameras, which can dramatically differ
from the optimal solution. The solution by means of set cover problem shows the best results even with help of heuristics.
Decomposition of the polygon into grid cells can be obtained much easier and faster than the visibility cell decomposition,
moreover it gives an opportunity to solve the problem under different assumptions on cameras capabilities. The presented
bicriteria approach finds a set of Pareto optimal solutions for the problem with two conflicting objective functions: monitoring
of the largest area and minimization of the number of surveillance cameras.
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