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1. Introduction

1.1. Fatigue lifetime estimation

Every year millions of automobiles are produced throughout the world. Each of these automo-

biles have hundreds to thousands of components. The reliability and safety of every automobile

component are the main objectives of vehicle design [39]. In case a key component is damaged,

automobile may break down and endanger not only the lives of its occupants but also the lives of

other people near it. Therefore, automobile component testing is of utmost importance for every

automobile manufacturing company.

In other words any component used in an automobile should not fail during its expected service

lifetime. This requirement is fulfilled when the estimated fatigue lifetime of the component is

greater than the expected service lifetime. Since Albert [2] in 1837 published the first fatigue-test

results, a lot of research has been done in the field of estimating fatigue lifetime for components

made of many different materials and surface features. For a detailed history of fatigue and

important developments in this field, see Schütz [36].

In the beginning, most of the research on fatigue lifetime estimation was based on the data obtained

from the experiments and was used for proposing models, for example, see [2, 23, 29]. This is an

expensive procedure. Every time during experiments if a component failed before the expected

service life, design changes were made and the newly designed component was tested again. This

cycle was repeated until a design that met the requirements was arrived upon. Another approach

to test the components of a vehicle is to drive the vehicles on special test tracks that have different

kinds of roads to test different aspects of a vehicle design. Testing of components in this way is

not only expensive but also time consuming.

Expensive and time consuming tests would lead to increase in the prices of the vehicles and the

time to launch a new vehicle in the market. This is not what the automobile manufacturing

companies want. It is expected that the tests should not be expensive and take less time to

complete. At the same time the results obtained should be very reliable. With the advent of

technology, testing of components has changed dramatically.

Technological advancements have led to the use of multi-body simulations for predicting the fatigue

life of the components. However, through simulations not every aspect of the component and how

it interacts with its environment can be studied. To account for these interactions and to test the

component physically, testrigs are built. The reference data for the testrigs is obtained by driving

the vehicle on test tracks and through multi-body simulations. Usually, the reference data consists

of stress time series or total damage at some points of interest on the surface of the component.

1



The points of interest are regions of high damage, observed during multi-body simulations and

are also called as hotspots.

In a testrig, a load time series is applied on the component in regions where it is in contact with

other components when assembled inside a vehicle. A load time series at any point of time consists

of forces and/or moments that are applied through actuators on the component. The outcome of

testing on testrigs should be as close as possible to the reference data. But, the number of points

where a component is in contact with other components is usually large. Constructing a testrig

which is able to apply load time series at each of these points is expensive and time consuming.

Furthermore, any changes to the design of the component would make such testrigs obsolete. To

make the testing procedure less expensive, the number of points where actuators are applying load

time series is minimized. Additionally, the total duration of testing can be reduced by decreasing

the length of the load time series applied through actuators during testing. Despite all these

simplifications the results obtained from the testrig are expected to be as close as possible to the

reference data.

Therefore, testrig problem can be looked at as an optimization problem where the objective

function is defined in such a way that it measures the closeness of the results to the reference

data and the variables to be optimized are the load time series, number of the actuators and their

locations. Testrig optimization is a relatively new branch of research.

1.2. Scope of this work

In our work we propose a testrig damage optimization problem. The approach improves upon the

testrig stress optimization problem used as a state of the art by industry experts. We assume

that the number and location of the actuators is already given so the only free parameter in the

optimization is the load time series.

In both the testrig stress optimization problem as well as the testrig damage optimization prob-

lem, we optimize the load time series for a given testrig configuration. However, in the testrig

stress optimization problem the reference data is the stress time series. So, the stress time series

computed from the load time series should be as close as possible to the reference stress time series.

The detailed behavior of the stresses as functions of time are sometimes not the most important

topic. Instead the damage potential of the stress signals are considered. Therefore, in the end we

expect that the total damage computed from the stress time series which in turn is computed as

a linear superposition of the load time series is also close to the reference damage. Since damage

is not part of the objectives in the testrig stress optimization problem the total damage computed

from the optimized load time series is not optimal with respect to the reference damage. Addi-

tionally, the load time series obtained is as long as the reference stress time series. This makes

the testing procedure relatively long. The load time series obtained as a result of the testrig stress

optimization problem are general load time series which need cycle counting algorithms and Good-

mann corrections before we get the total damage (see Section 2.4.2). The use of cycle counting

algorithms makes the damage function from the load time series non-differentiable.

To overcome the issues discussed in the previous paragraph this thesis uses block loads as building
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block for the load time series. Using block loads makes the damage differentiable with respect to

the load time series. Additionally, in some special cases it is shown that damage is convex when

block loads are used. This reduces the difficulty arising from a general load time series, as no cycle

counting algorithms are required. The differentiability of the damage from the load time series

with block loads enables us to use damage in the objective function of the testrig optimization

problem. Optimizing load time series using damage in the objective function is what we refer to

as the testrig damage optimization problem.

During every iteration of the testrig damage optimization, we have to find the maximum total

damage over all plane angles at points of interest on the surface of the component. These points

of interest are the regions of high damage computed through simulations or test track data.

The plane with the maximum total damage is also called as the critical plane. The first testrig

damage optimization problem presented uses discretization of the interval for plane angle to find

the maximum total damage at each iteration. This however is shown to give unreliable results

and makes damage function non-differentiable with respect to the plane angle. To overcome this,

the damage function for a given surface stress tensor is remodeled as Gaussian functions (see

Chapter 4). The parameters for the Gaussian functions that approximates damage are derived.

Remodeling of damage as Gaussian function gives new insights into the total damage computation

required for the optimization. In the new model, the total damage is computed as a sum of

Gaussian functions resulting from the load time series acting at each point of time. The plane

with the maximum damage is similar to the modes of the Gaussian Mixture Models (GMM). A

GMM is a parametric probability density function represented as a weighted sum of Gaussian

component densities [31].

The difference between the Gaussian approximation of damage and GMM is that the Gaussian

functions used in GMM are probability density functions which is not the case in the damage

approximation presented in this work. However, the critical planes in the damage approximation

corresponds to the modes of the GMM. Therefore, the mode finding algorithms in [7] for GMM or

methods for merging the Gaussian mixture components in [16] can be modified to be used in the

case of damage approximation. We derive conditions for a single maximum for general Gaussian

functions, similar to the ones given for the unimodality of GMM by Aprausheva et al. in [3].

By using the conditions for a single maximum we give a clustering algorithm that clusters the

Gaussian functions in the sum. Each cluster obtained through clustering is such that they give a

single maximum in the absence of other Gaussian functions of the sum. The approximate point

of maximum of the clusters is used as the starting point for a hill climbing algorithm or fixed

point equation on the original damage function to get the actual maximum total damage (see

Section 6.2). This actual maximum total damage is then used in the optimization.

We implement the methods on two example problems. The results obtained from the testrig dam-

age optimization problem using discretization is shown to be better than the results obtained from

the testrig stress optimization problem. Furthermore, the testrig damage optimization problem

using clustering approach to finding the maximum total damage is shown to take less number of

iterations and is more reliable than using discretization of the interval for the plane angle.
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1.3. Outline

This work is organized as follows. In Chapter 2, we give an overview of a testrig. We introduce the

important mathematical aspects involved in testrig optimization, i.e. computing stress time series

from load time series and then computing total damage from stress time series. In Chapter 3, we

explain the stress optimization that is the current state of the art in testrig problem. We then

give a new formulation of testrig problem, using block loads defined in Chapter 2. In the new

formulation, we use damage in the objective function unlike in the stress optimization where we

use stress in the objective function. The maximum total damage over all plane angles is computed

by discretization of the interval. We compare the results of the stress optimization and the damage

optimization for two testrig configurations for a steering knuckle. We end Chapter 3 by showing

that computing the maximum total damage by discretization of the interval for plane angles makes

the results of the optimization less reliable due to the introduction of the discretization errors.

In Chapter 4, we remodel damage as Gaussian functions such that the plane angle is the only

unknown parameter. In Chapter 5, we introduce the idea of clustering of Gaussian functions such

that each cluster has a single maximum in the absence of all other Gaussian functions. This chapter

also gives a clustering algorithm which we use in Chapter 6 to find the planes of maximum damage.

We use the new model of damage from Chapter 4 along with the clustering algorithm developed in

Chapter 5 to find the planes with maximum damage without introducing any discretization error

in the optimization. Chapter 6 ends with a comparison of the two approaches on two examples.

In Chapter 7, we recapitulate and discuss our approach, and indicate areas for future research.
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2. Mathematical formulation of testrig

optimization problem

In an automotive testrig, we want to approximate the reference damage D(ref) at different points

of a component as close as possible to the damage induced during the service life. The points

where we want to approximate the reference damage are regions of high stress also called hotspots

or critical points. We approximate the reference damage at the hotspots by applying load time

series at preselected points (also called attachment points) on the component. Load time series

are composed of loads acting on the attachment points on the component at different moments of

time. Attachment points as the name suggests are the points where the component is attached to

other components of the vehicle. When the component is assembled inside the vehicle it is at the

attachment points that different forces act.

In a testrig, the component is fixed at one of these attachment points (also called fixation point)

and at the other attachment points actuators may be installed. An actuator enables the application

of load time series at the selected attachment points. Building a testrig which is able to apply

load time series at each of these attachment points is expensive and time consuming.

Testing of vehicle components in a testrig should be as short and inexpensive as possible but at the

same time should reflect the actual damage that will be incurred in the component during service

life. To make the testing procedure less expensive we have to minimize the number of attachment

points where actuators are installed. Additionally, the total duration of testing can be reduced by

decreasing the length of the load time series applied during testing.

Keeping all this in mind this chapter introduces the idea of loads, load time series and describes

the computation of stress from load and damage from stress. In Section 2.1, we introduce the

notion of testrig configurations. In Section 2.2, we introduce the idea of loads in general and then

give a special kind of load known as a block load. The computation of stress time series from load

time series is described in Section 2.3. In Section 2.3, we also define scalar stress and prove many

of its properties which are used in Chapter 4 for approximating damage. In Section 2.4, we see

how to compute the total damage from the stress time series due to the application of the load

time series at the actuators.

2.1. Testrig configuration

The amount of damage incurred at any point of the component depends on the stress time series

at that point due to the load time series applied through the actuators. Stress time series depends
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on the attachment points where actuators are installed as well as on the magnitude of the load

time series applied through these actuators. As applying load time series at each attachment

point is expensive and time consuming, we want to be able to work with a small number of these

attachment points. At the same time we want the damage at the selected points to be as close as

possible to the reference damage D(ref ).

Let us denote by A the total number of available attachment points for fixing or installing of

actuators on the component. We denote the index of the fixation point by Af ∈ {1, 2, . . . , A} and

the index of the attachment points where actuators are installed by the set Aa ⊂ {1, 2, . . . , A}.
Additionally, we have Af ∩Aa = ∅ and na := |Aa|. For the testing of a component it is necessary

that both Af 6= ∅ and Aa 6= ∅.

At each of the attachment points a ∈ Aa we can apply forces fx, fy and fz acting along x-,

y- and z-axis respectively and angular moments mx, my and mz acting about the x-, y- and

z-axis respectively (see in Figure 2.1). The forces can lead to compressive as well as tensile

stresses which compress or elongate the component respectively. As per the convention, stresses

that are positive are tensile. Positive moments act clockwise and negative moments act counter-

clockwise. Altogether we have six possible ways in which we can interact with the component at

each attachment point in Aa.

y

x

my

mx

fy

fx

fz

mz

z

a

Figure 2.1.: An example of forces and moments at an attachment point a ∈ Aa The forces fx, fy
and fz are shown to be acting outwards, however, it is possible to have inwards forces
as well. The moments my and mz are clockwise and the moment mx is counterclock-
wise.

Again it is expensive to design a testrig where we interact in all six ways with a component at

every attachment point in Aa. Therefore, for each attachment point in Aa we choose to apply

load time series at a subset of the possible forces and moments. Keeping in mind the complexity

of the components and the corresponding testrigs, it is a general belief in the industry that we do

not want the total number of such forces and moments to exceed a value of four. The fixation

point Af along with the attachment points for the actuator Aa and the direction of forces and/or

the moments acting at these points gives us a testrig configuration.

Definition 2.1.1 (Testrig configuration). We define a testrig configuration T C as a 3-tuple

(Af , Aa,F). The first element of the tuple, Af ∈ {1, 2, . . . , A} is the index of the fixation point.
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The second element of the tuple Aa ⊂ {1, 2, . . . , A} is the set of indices of the points where actu-

ators are installed. The third element of the tuple, F := {(a,Fa)} is a set of 2-tuples where the

first element of the tuple a ∈ Aa is the point where an actuator is installed and the second element

Fa ⊂ {fx, fy, fz,mx,my,mz} gives us the directions of all the chosen forces and/or moments for

the attachment point a. Additionally, we require that Af ∩Aa = ∅.

Let us look at an example testrig configuration.

Example 2.1.2. For a component with A = 4, a valid testrig configuration T C can be given as

(1, {2, 3}, {(2, {fx, fy}), (3,mz)}). The fixation point is Af = 1. The indices of the points where the

actuators are attached are given by Aa = {2, 3}. The set of 2-tuples F = {(2, {fx, fy}), (3,mz)}
with the first tuple (2, {fx, fy}) meaning that at the attachment point with index 2, we apply

forces along the x-axis and the y-axis and the second tuple (3, {mz}) meaning that we apply

moments around the z-axis at the actuator attached at a point with index 3. There are no forces

and moments acting at the attachment point with index 4.

Now that we know what a testrig configuration T C means we can broadly state the goal of

optimization:

For any testrig configuration T C give a load time series which when applied through the actuators

in the testrig configuration T C incurs at hotspots xi, a total damage Dxi as close as possible to

the reference damage D
(ref)
xi .

However, at this point there are many open questions which need to be answered before we can

actually solve the optimization problem. We still do not know how to represent a load time series

and compute stress time series and corresponding total damage from it. In the sections that

follow we answer these questions. We begin with section 2.2 where we look at different loads and

corresponding load time series.

2.2. Load and load time series

From Section 2.1, we know how to describe different testrig configurations. In this section we look

at load and load time series. In general the type and number of loads that can be applied through

actuators at any point of time will depend on the testrig configuration T C.

Let us denote by tuple F all the forces and moments that are to be applied in a given testrig

configuration T C. Elements of F are of the form af̂ where a ∈ Aa and f̂ ∈ {fx, fy, fz,mx,my,mz}.
At any point of time, for each element in F there is a load applied on the component. So at every

point of time, the load l ∈ Rn is applied at actuators, where n = |F|. There is always a one-to-one

correspondence between the elements of F and l as highlighted in the example below:

Example 2.2.1. For the testrig configuration T C in Example 2.1.2, F is a 3-tuple (2fx , 2fy , 3mz ).

If we have a load l = (10, 20,−5)T at any point in time acting through the actuators, it implies

that the forces acting through the actuator at the attachment point with index 2 in the direction

of the x-axis and the y-axis are 10 and 20 newtons respectively. The moment about the z-axis at

attachment point with index 3 is anticlockwise with a magnitude of 5.
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Definition 2.2.2 (General load time series for testrig configuration). A load time series for a

testrig configuration T C is a matrix denoted by L ∈ Rn×N and is given as L := (l0, l1, . . . , lN−1)

where n = |F|, N is the number of points in the time series and li ∈ Rn, i ∈ {0, 1, . . . , N − 1} is

the i-th column of the general load time series L and gives the loads acting through the actuators

at the i-th point of the load time series.

Furthermore, the rows of the general load time series L denoted by l
′
j , j ∈ {1, 2, . . . , n} are the

load time series acting at the individual actuators corresponding to the j-th element of F, i.e., l
′
1

corresponds to the load time series at the actuator in the first element of F and so on. Before we

look at an example we state the assumption on the starting and end point of the load time series.

Assumption 2.2.3. We start with no loads, i.e., l0 = 0n and we end with no loads, i.e.,

lN−1 = 0n, where 0n is a vector of size n with all of its elements zero.

Example 2.2.4. An example load time series with N = 3 for T C in Example 2.1.2 can be

L =




0 10 −5 0

0 −5 10 0

0 5 7 0


 . (2.1)

We have l0 = (0, 0, 0)T , l1 = (10,−5, 7)T , l2 = (−5, 10, 5)T and l3 = (0, 0, 0)T . While the load

time series acting at the actuator installed at the attachment point with index 2 in the direction of

the x-axis is l
′
1 = (0, 10,−5, 0) and in the direction of the y-axis is l

′
2 = (0,−5, 10, 0) and similarly

the load time series acting at actuator installed at the attachment point with index 3 about the

z-axis is l
′
3 = (0, 5, 7, 0).

Another way to represent a load time series is by a line chart. A line chart is a type of chart that

displays information as a series of data points connected by straight lines. We can draw a line

chart for every force/moment at each actuator as seen in Figure 2.2 for Example 2.2.4.

t1 2 3

-5

0

5

10

(a) Line chart for l
′
1, the load

time series at the attach-
ment point with index 2
along the x-axis (2fx).

t1 2 3

-5

0

5

10

(b) Line chart for l
′
2, the load

time series at the attach-
ment point with index 2
along the y-axis (2fy ).

t1 2 3

-5

0

5

10

(c) Line chart for l
′
3, the load

time series at the attach-
ment point with index 3
about the z-axis (3mz ).

Figure 2.2.: Line charts for the rows of general load time series L as given in Example 2.2.4.

A complete load time series is defined only when we know all the n(N −2) elements of the general
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load time series L. The general load time series are much longer and may have thousands of points

thereby making the value of n(N − 2) large. Each element of the general load time series L will

be a free parameter in the optimization. If we have to work with longer load time series, then the

number of free parameters in the optimization problem becomes very large and would require a

significant amount of processing time.

To overcome this difficulty we use block loads for each actuator (see Figure 2.3). Using block

loads we can construct long load time series without significantly increasing the number of free

parameters in the optimization. We define a block load in Definition 2.2.5. Examples of block

loads are seen in Figure 2.3.

Definition 2.2.5 (Block load). A block load [ ∈ R4ν+1 is symmetric and is defined by two

parameters ` ∈ R and ν ∈ N as

[(`, ν) = (0, `, 0,−`, 0, . . . , `, 0,−`, 0︸ ︷︷ ︸
(`, 0,−`, 0) repeated ν-times

) (2.2)

where ` is the amplitude of the block load and ν is the number of times a single unit of the block

load is repeated.

Assumption 2.2.6. Although we call ` as the amplitude of the block load, we assign ` to be a

positive value if the block load reaches its maximum before its minimum and to be a negative value

when the block load reaches its minimum before its maximum.

t1 2 3 4

ℓ

-ℓ

(a) Repeating unit of a block
load, [(`, 1) with ` > 0

t4 8 12 16

ℓ

-ℓ

(b) Block load [(`, 4) with ` > 0 with unit [(`, 1) repeated
ν = 4 times.

Figure 2.3.: Block load examples for (a) ν = 1 and (b) ν = 4.

As seen in Figure 2.3, a block load is cyclic and symmetric about the axis. By symmetry we refer

to the fact that the minimum and the maximum magnitude of the repeating unit of a block load

have the same magnitude. Block loads can be applied more than once to get a longer time series

without increasing the number of free parameters in the optimization (see Figure 2.3(b)).

When using block loads we need just two parameters to define arbitrarily long load time series.

For the same length of time series, we need 4ν+1 parameters to completely define the general load

time series while only two parameters are needed to define the block load. Therefore, by using a

block load we can considerably reduce the number of free parameters in the optimization.

9



However, using a single block load in optimization may not be optimal. A load time series for each

actuator can be created using different block loads placed one after another acting as a building

unit for the load time series. We define a load time series, acting through an actuator, consisting

of only block loads as block loading B:

Definition 2.2.7 (Block loading). A block loading B ∈ RnB is defined by three parameters,

m ∈ N the number of blocks, L = (`1, `2, . . . , `m) ∈ Rm the amplitudes of the blocks and

V = (ν1, ν2, . . . , νm) ∈ Nm the number of times the single unit of block loads is repeated with

nB = 4
∑m
i=1 νi + 1 and is given as

B(m,L ,V) = ([(`i, νi)), i = 1, 2, . . . ,m. (2.3)

Assumption 2.2.8. In a block loading B more than one continuous points with a magnitude

equal to zero are coalesced together into one point.

Let us see with the help of an example the effect of Assumption 2.2.8 on the length of a block

loading B:

Example 2.2.9. If we have m = 2, L = (5, 10) and V = (2, 3). Then the block loading B using

Assumption 2.2.8 is given as

B(m,L ,V) = (0, 5, 0,−5, 0, 5, 0,−5, 0, 10,0,−10, 0, 10, 0,−10, 0, 10, 0,−10, 0) ∈ R21

and looks like the line chart in Figure 2.4. However, without Assumption 2.2.8 we have the block

loading as (0, 5, 0,−5, 0, 5, 0,−5,0,0, 10, 0,−10, 0, 10, 0,−10, 0, 10, 0,−10, 0) ∈ R22. This happens

because the block loads in Definition 2.2.5 begin and end with a point having zero magnitude.

t4 8 12 16 20

-10

-5

0

5

10

Figure 2.4.: Block loading B from Example 2.2.9.

For every element in F (i.e. for every force/moment at each attachment point in Aa), we can

give a block loading. We can redefine the general load time series L for testrig configuration T C
consisting of block loading B as Lb.

Remark 2.2.10. It is possible that the number of blocks and the number of repetitions for each

element of F are different but we can subdivide blocks such that the number of blocks and number

of repetitions of a unit block in each block loading is the same. In other words we want V to be

the same for block loadings in a load time series with block loads Lb.

Definition 2.2.11 (Load time series for a testrig configuration with block loads). A load time

series for a testrig configuration T C with block loads is a matrix denoted by Lb ∈ Rn×N . Each row
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of the matrix is given by a block loading B(m,Li,V), i = 1, 2, . . . , n where Li are the amplitude

of individual blocks for the i-th element of F, m is the number of blocks and the elements of V are

the number of times the single unit of block loads is repeated.

The loads acting through actuators at any point of time can be given as lj = (B1,j ,B2,j , . . . ,Bn,j),

j = 0, 1, 2, . . . , N where Bi,j is the load acting at the i-th element of F at the j-th point of time.

Next we see a couple of examples to better understand how everything works in the case of load

time series with block loads Lb.

Example 2.2.12. We have m = 2 with n = |F| = 3. Then the load time series with block

loads Lb consists of n = 3 rows given by the block loadings B1, B2 and B3 all having the same

number of cycles for the blocks V. We take V = (1, 2) and the amplitudes of the blocks is taken

as L1 = (5, 8), L2 = (10, 5) and L3 = (4, 4).

Now we can write down our block loadings acting at the elements of F as

B1(m,L1,V) = (0, 5, 0,−5, 0, 8, 0,−8, 0, 8, 0,−8, 0),

B2(m,L2,V) = (0, 10, 0,−10, 0, 5, 0,−5, 0, 5, 0,−5, 0) and

B3(m,L3,V) = (0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0).

Finally, the load time series with block loads Lb is given as

Lb =




0 5 0 −5 0 8 0 −8 0 8 0 −8 0

0 10 0 −10 0 5 0 −5 0 5 0 −5 0

0 4 0 −4 0 4 0 −4 0 4 0 −4 0


 (2.4)

The loads acting through the actuators at any point of time can be given as l2i = 03 for all

i = 0, 1, . . . , 6, l1 = (5, 10, 4)T , l3 = (−5,−10,−4)T , l5 = (8, 5, 4)T , l7 = (−8,−5,−4)T and so on.

Example 2.2.13. In Example 2.2.12, we saw how we get the load time series with block loads

Lb when we are given m, n, V and Li, i = 1, 2, . . . , n. However, we can go the other way round as

well, i.e., given the load time series with block loads Lb we can get all other values. Suppose we

have been given Lb as:

Lb =




0 −3 0 3 0 6 0 −6 0 7 0 −7 0 7 0 −7 0

0 7 0 −7 0 2 0 −2 0 5 0 −5 0 5 0 −5 0

0 4 0 −4 0 4 0 −4 0 4 0 −4 0 4 0 −4 0

0 9 0 −9 0 1 0 −1 0 4 0 −4 0 4 0 −4 0


 . (2.5)

Then we know that the number of rows of Lb is n which implies n = 4. The number of blocks is

m = 3 with V = (1, 1, 2) and L1 = (−3, 6, 7), L2 = (7, 2, 5), L3 = (4, 4, 4) and L4 = (9, 1, 4).

In this section, we defined a general load time series for a testrig configuration T C as L and a

load time series for testrig configuration T C with block loads as Lb. We also made a distinction

between the load time series for individual direction of forces/moments applied at an actuator and

a load time series for the complete testrig configuration at each point of time. We denoted by lj
the loads acting through all the actuators at the j-th point in the load time series. In Section 2.3,

we see how the load time series can be used to compute the stress time series at any point of the

component which in turn can be used to compute the total damage at that point.
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2.3. Stress

Computation of the total damage at a hotspot x on the surface of the component depends on the

stress time series at that point. Before we can compute the total damage at any point due to a

load time series applied through the actuators, we have to compute the stress time series at that

point. In this section, we see how to compute stress acting at any point of time on the component

due to a load l acting through the actuators at that point of time. Specifically, we only consider

the points on the surface of the component as it is well known that the fatigue cracks usually

initiate from the surface (see [20, p. 58] and [21]).

In general, stress at any point of a component can be specified by the three orthogonal normal

stresses (relative to the chosen coordinate system) σxx, σyy, σzz and three orthogonal shear stresses

σxy, σxz, σyz. However on the surface of the component only the entries σxx, σyy and σxy
are unequal to zero. The stress at any hotspot x due to load l can then be given as σx(l) =

(σx,xx(l), σx,yy(l), σx,xy(l))T . In Figure 2.5, we see the components of σx acting on a infinitesimal

material element around a hotspot x.

x

σxx

σxy

σyy

x

y

Figure 2.5.: Stress components σxx, σyy and σxy at x (considering a two-dimensional infinitesimal
material element around hotspot x). σxx and σyy are the tensile stresses and σxy is
the shear stress.

For every testrig configuration T C, we get from linear Finite Element computations a stress tensor

σ̃x ∈ R3×n with n = |F|, for every hotspot x on the surface of the component. The stress tensor

σ̃x encapsulates the application of unit loads at each force/moment and actuator combination

that is present in F. Using the principle of linear superposition as in Vecchio et al. [38], we can

then give the stress σx at hotspot x due to a load l through the actuators as

σx(l) := σ̃x · l =



σxx,x(l)

σyy,x(l)

σxy,x(l)


 . (2.6)
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Similarly, the stress time series Σx at hotspot x due to a load time series L is given as

Σx(L) = σ̃x · L =



σxx,x(li)

σyy,x(li)

σxy,x(li)


 (2.7)

where i = 0, 1, 2, . . . , N and L can be a general load time series L or a load time series with block

loads Lb.

The stress components obtained through linear superposition in Eq. (2.6) are in the coordinate

system such that the orientation of the z-axis is normal to the surface. It is however not necessary

that the maximum stress is obtained in this coordinate system. So, we are really interested to

know the stresses on the planes oriented at an angle α (referred to as plane) to the x-axis (see

Figure 2.6). Then, we can compute the maximum stress due to load a l and the plane α for which

the maximum stress is obtained. We need a means to transform the stresses to these new x′y′

planes oriented at α to the original x-axis. From Figure 2.6, it can be clearly seen that α ∈ [0, π).

x

y

x′

y′

α

Figure 2.6.: Coordinate axes x′ and y′ oriented at α to the original x-axis.

In the following discussions, we assume that we have already computed the stress σ for any given

point and load and therefore, we drop the dependence of σ on x and l. Roylance gives in [34], the

following equation for the components of the stress σ in the x′y′ coordinate axes:

σx′x′(σ, α) = σxx cos2 α+ σyy sin2 α+ 2σxy sinα cosα

σy′y′(σ, α) = σxx sin2 α+ σyy cos2 α− 2σxy sinα cosα

σx′y′(σ, α) = (σyy − σxx) sinα cosα+ σxy(cos2 α− sin2 α)

(2.8)

We want to compute the damage for the plane α which has the stress with the largest magnitude.

Using any other value of stress gives us an underestimation of the damage and the component will

fail before the estimated life. In the next result we show that for a given stress σ the maximum

absolute value of components σx′x′ and σy′y′ are the same which is more than the maximum

absolute value of σx′y′ . We therefore use without loss of generality σx′x′ for damage computation.

Theorem 2.3.1. Given stress σ, the components of stress on the coordinate axes x′y′ oriented

on a plane α to the original x-axis from Eq. (2.8) have the following properties:

(i) maxα |σx′x′(σ, α)| = maxα |σy′y′(σ, α)| and

(ii) maxα |σx′x′(σ, α)| ≥ maxα |σx′y′(σ, α)|.
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Before we prove Theorem 2.3.1, we give a result from Trigonometry which we will use for the

proof.

Lemma 2.3.2. Any linear combination of sine and cosine with same period can be written as a

single sine with the same period but with a phase shift and a different amplitude. Mathematically

this is equivalent to

y1 sinx+ y2 cosx = b sin(x+ φ)

where b cosφ = y1, b sinφ = y2 and b =
√
y2

1 + y2
2.

Proof. For proof see [14, p. 190-191]. Additionally, we know from the equation b cosφ = y1 and

b sinφ = y2 that another representation of φ is sgn(y2) cos−1
(
y1
b

)
.

Proof of Theorem 2.3.1. We transform the components of the stress σ on the x′y′ coordinate axis

so that we can use Lemma 2.3.2 to get a simpler form and then look at the maximum absolute

value. We begin by simplifying σx′x′ first

σx′x′(σ, α) = σxx cos2 α+ σyy sin2 α+ 2σxy sinα cosα

Using sin2 α = 1
2 (1− cos 2α), cos2 α = 1

2 (1 + cos 2α) and 2 sinα cosα = sin 2α we get

=
σxx
2

(1 + cos 2α) +
σyy
2

(1− cos 2α) + σxy sin 2α

Collecting cos 2α and constant terms together

=
1

2
(σxx + σyy) +

1

2
(σxx − σyy) cos 2α+ σxy sin 2α

We define â(σ) := 1
2 (σxx + σyy) and use Lemma 2.3.2 to get

= â(σ) + b(σ) sin(2α+ φ(σ)) (2.9)

where b(σ) :=
√

1
4 (σxx − σyy)2 + σ2

xy and φ(σ) := sgn(σxx − σyy) cos−1
(
σxy
b(σ)

)
. Observing that

the sine function is bounded between [−1, 1], the maximum value of |σx′x′(σ, α)| with respect to

α for a given stress σ follows directly from Eq. (2.9) as

max
α
|σx′x′ | =

{
|â(σ) + b(σ)| , if â(σ) ≥ 0

|â(σ)− b(σ)| , if â(σ) < 0
(2.10)

The steps for finding the maximum absolute value of σy′y′ are the same as for σx′x′ and after

simplification we get:

σy′y′(σ, α) = â(σ)− b(σ) sin(2α+ φ(σ))

where b(σ) and φ(σ) are the same as in Eq. (2.9). The maximum value of |σy′y′(σ, α)| with

respect to α for a given σ is

max
α
|σy′y′ | =

{
|â(σ) + b(σ)| , if â(σ) ≥ 0

|â(σ)− b(σ)| , if â(σ) < 0
(2.11)
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From Eq. (2.10) and Eq. (2.11) statement (i) of the theorem follows.

We can simplify σx′y′(σ, α) as below:

σx′y′(σ, α) = (σyy − σxx) sinα cosα+ σxy(cos2 α− sin2 α)

Using cos2 α− sin2 α = cos 2α and 2 sinα cosα = sin 2α we get

=
σyy − σxx

2
sin 2α+ σxy cos 2α

Using Lemma 2.3.2 to get

= b(σ) sin(2α+ ψ(σ))

where b(σ) is same as in Eq. (2.9) and ψ(σ) = sgn(σxy) cos−1
(
σyy−σxx

2b(σ)

)
. The maximum value

of |σx′y′(σ, α)| with respect to α is given as

max
α
|σx′y′(σ, α)| = b(σ).

Hence, if â(σ) = 0 we have maxα |σx′y′(σ, α)| = maxα |σx′x′(σ, α)| and for all other values of â(σ)

we have maxα |σx′y′(σ, α)| < maxα |σx′x′(σ, α)| .

From Theorem 2.3.1, we see that the maximum absolute value of σx′x′ and σy′y′ is equal. Without

loss of generality we proceed ahead with σx′x′ and rename it as s which denotes the scalar stress.

Definition 2.3.3. The scalar stress s for stress σ on a plane α is defined as

s(σ, α) := â(σ) + b(σ) sin (2α+ φ(σ)) . (2.12)

â(σ) can be positive as well as negative. We denote by a(σ) the absolute value of â(σ), i.e.,

a(σ) := |â(σ)|. In the next remark other representations of the scalar stress are given:

Remark 2.3.4. Other representations of s(σ, α) as defined in Eq. (2.12) are

(i) s(σ, α) =
σxx + σyy tan2 α+ 2σxy tanα

1 + tan2 α

(ii) When a load l is given then the scalar stress s can be computed as

s(σ(l), α) = n(α) · σ(l) = n(α) · σ̃ · l, (2.13)

where

n(α) :=

(
1

2
(1 + cos 2α) ,

1

2
(1− cos 2α) , sin 2α

)
. (2.14)

We use this particular representation from here onwards.
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In case of a stress time series Σ we can give a scalar stress time series S for plane α as

S(Σ, α) = n(α) ·Σ. (2.15)

In the next theorem, we prove that the scalar stress s is a periodic function and derive its period

length. We show later that the periodicity of the scalar stress s implies that the damage d is also

periodic with the same period length. Next we give a definition of a periodic function which we

use for the proof of s being periodic.

Definition 2.3.5 (Periodic function). A function f is said to be periodic with period P , (P > 0,

P ∈ R) if we have

f(x+ P ) = f(x) (2.16)

for all values of x. P is the minimal value for which condition (2.16) holds.

Theorem 2.3.6. The scalar stress s in Eq. (2.12) is periodic with period π.

Proof. From Definition 2.3.5, we know that the scalar stress s would be periodic if we can find

any P > 0 such that s(σ, α+ P ) = s(σ, α). Proceeding in this direction, we get from Eq. (2.12)

s(σ, α+ P ) = â(σ) + b(σ) sin(2(α+ P ) + φ(σ))

Using the sum formula for sines sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) we get

= â(σ) + b(σ) sin(2α+ φ(σ)) cos(2P ) + b(σ) sin(2P ) cos(2α+ φ(σ)).

Comparing like terms in s(σ, α+P ) and s(σ, α) we get cos(2P ) = 1 and sin(2P ) = 0. The values

of P that simultaneously satisfy these two equations are P = nπ, n ∈ Z. From the definition of

periodic functions, P is minimal and more than zero. Therefore, we take n = 1 to get P = π.

Hence, we have proven that indeed the scalar stress s is a periodic function and its period is

P = π.

Assumption 2.3.7. From Theorem 2.3.6 the scalar stress s is periodic with period π and therefore

without loss of generality we can assume that all points of maximum and minimum lie in the

interval [0, π) which has a width of π.

As a consequence of Theorem 2.3.6, we can now take α ∈ [0, π). We had come to the same

conclusion from Figure 2.6. The graph of scalar stress s in one period may lie completely below

the horizontal axis, completely above the horizontal axis or may cross the horizontal axis. In

Figure 2.7, we can see the three cases. Amount of damage incurred depends on the magnitude

of the scalar stress. The maximum absolute value and the minimum absolute value of the scalar

stress computation for the first two cases in Figure 2.7 is different from the third case as discussed

in the results which follow.

In the next theorem we give conditions which if satisfied, the scalar stress is either always non-

negative or always non-positive representing the cases in Figure 2.7(a) and Figure 2.7(b).

Theorem 2.3.8. For a given stress σ whenever a(σ) ≥ b(σ), one of the following conditions is

true,
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0

s(
σ
,α

)

α

(a) Sample graph for the case
s(σ, α) ≥ 0,∀α ∈ [0, π).

0

s(
σ
,α

)

α

(b) Sample graph for the case
s(σ, α) ≤ 0,∀α ∈ [0, π).

0

s(
σ
,α

)

α

(c) Sample graph for the case
when scalar stress crosses
the horizontal axis.

Figure 2.7.: Possible graphs of scalar stress s(σ, α) for α ∈ [0, π) for given stress σ.

(i) If â(σ) ≥ 0, then s(σ, α) ≥ 0,∀α ∈ R,

(ii) If â(σ) < 0, then s(σ, α) ≤ 0,∀α ∈ R.

Proof. (i) If â(σ) ≥ 0 we have a(σ) = â(σ). The scalar stress s can then be written as

s(σ, α) = a(σ) + b(σ) sin(2α+ φ).

Since, a(σ) ≥ b(σ) we get s(σ, α) ≥ 0,∀ α ∈ R.

(ii) If â(σ) < 0 we have a(σ) = −â(σ). The scalar stress s can then be written as

s(σ, α) = −a(σ) + b(σ) sin(2α+ φ).

Since, a(σ) ≥ b(σ) we get s(σ, α) ≤ 0,∀ α ∈ R.

The conditions (i) and (ii) in Theorem 2.3.8 when combined, imply that the scalar stress s is

always on one side of the horizontal axis if a(σ) ≥ b(σ). If â(σ) is non-negative, then the scalar

stress s is entirely above the horizontal axis and if â(σ) is negative, then the scalar stress s is

entirely below the horizontal axis. We give another representation of the condition a(σ) ≥ b(σ)

in terms of the components of the stress σ.

Theorem 2.3.9. The inequality σxxσyy ≥ σ2
xy holds iff a(σ) ≥ b(σ).

Proof. Using the definition of a(σ) and b(σ) the condition a(σ) ≥ b(σ) can be written as

1

2
|σxx + σyy| ≥

√
1

4
(σxx − σyy)

2
+ σ2

xy.

On squaring the two sides we get

⇔ 1

4
(σxx + σyy)2 ≥ 1

4
(σxx − σyy)

2
+ σ2

xy.
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We know (a+ b)2 − (a− b)2 = 4ab which implies

⇔ σxxσyy ≥ σ2
xy.

Proof is complete as all the relations above are if and only if relations.

Theorem 2.3.9 equips us with a condition that we can use to check if the scalar stress crosses the

axis without having to compute a(σ) and b(σ). For computing damage the magnitude of the stress

is important. It does not matter if the scalar stress is compressive or tensile, only the magnitude

is important. Next we find the maximum and the minimum value of |s(σ, α)| in case a(σ) ≥ b(σ)

for α ∈ [0, π). We will use this in the approximation of damage by Gaussian functions in Chapter

4.

Theorem 2.3.10. For fixed σ with a(σ) ≥ b(σ) and the scalar stress s as in (2.12) the maximum

value of |s(σ, α)| for α ∈ [0, π) is

s+
max(σ) = max

α
|s(σ, α)| = a(σ) + b(σ), (2.17)

at

α+
max(σ) =

{
π
4 −

φ(σ)
2 + n1π, if â ≥ 0

−π4 −
φ(σ)

2 + n1π, if â < 0
, (2.18)

and the minimum value of |s(σ, α)| is

s+
min(σ) = min

α
|s(σ, α)| = a(σ)− b(σ), (2.19)

at

α+
min(σ) =

{
−π4 −

φ(σ)
2 + n2π, if â ≥ 0

π
4 −

φ(σ)
2 + n2π, if â < 0

, (2.20)

where n1, n2 ∈ Z.

Proof. From Eq. (2.12) the scalar stress s(σ, α) is given by

s(σ, α) = â(σ) + b(σ) sin(2α+ φ(σ))

We consider the two cases â(σ) ≥ 0 and â(σ) < 0 separately:

(i) If â(σ) ≥ 0, then a(σ) = â(σ). The maximum value of |s(σ, α)| is computed as

s+
max(σ) = max

α
|a(σ) + b(σ) sin(2α+ φ(σ))|.

We have a(σ) and b(σ) are positive and do not depend on α. Additionally condition (i) in

Theorem 2.3.8 implies that the scalar stress is positive which in turn implies

s+
max(σ) = a(σ) + b(σ) max

α
sin(2α+ φ(σ)).
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The maximum value of sin(2α+ φ(σ)) is one whenever

2α+ φ(σ) =
π

2
+ 2n1π.

The maximum occurs at α+
max(σ) which results in

α+
max(σ) =

π

4
− φ(σ)

2
+ n1π

where n1 ∈ Z. Finally we get

s+
max(σ) = a(σ) + b(σ).

Analogously, the minimum value of sin(2α+ φ(σ)) is −1 whenever

2α+ φ(σ) = −π
2

+ 2n2π.

The minimum occurs at α+
min(σ) which results in

α+
min(σ) = −π

4
− φ(σ)

2
+ n2π

where n2 ∈ Z. In the end we get

s+
min(σ) = a(σ) + b(σ) min

α
sin(2α+ φ(σ)) = a(σ)− b(σ).

(ii) If â(σ) < 0, then a(σ) = −â(σ). The proof is similar to the proof of the case â(σ) ≥ 0 with

the difference that the points of the maximum and the minimum value of |s(σ, α)| in the two

cases are swapped. Condition (ii) in Theorem 2.3.8 implies that the scalar stress is negative

in this case yields

s+
max(σ) = max

α
−â(σ)− b(σ) sin(2α+ φ)

= max
α

a(σ)− b(σ) sin(2α+ φ). (2.21)

Both a(σ) and b(σ) are positive therefore the maximum value is obtained when we have

sin(2α+ φ) = −1 or when α+
max(σ) = −π4 −

φ(σ)
2 + n1π, n1 ∈ Z. Inserting sin(2α+ φ) = −1

in (2.21) we get

s+
max(σ) = a(σ) + b(σ). (2.22)

Similarly, the minimum value of |s(σ, α)| is obtained when we have sin(2α + φ) = 1 or

α+
min(σ) = π

4 −
φ(σ)

2 + n2π, n2 ∈ Z which implies

s+
min(σ) = a(σ)− b(σ).

This completes the proof.
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From Theorem 2.3.10 we have that
∣∣α+
max(σ)− α+

min(σ)
∣∣ = π

2 . This implies that if we want an

interval of width π centered around α+
max(σ) then the end points of the interval are α−min(σ).

If a(σ) < b(σ), we have for every period two points of minima with value zero and two peaks

for the absolute value of scalar stress as in Figure 2.8. In (a) and (b) we see the absolute value

of the scalar stress s when â(σ) ≥ 0 and â(σ) < 0, respectively. The scalar stress s crosses the

horizontal axis and there exist points α−min(σ) such that s(σ, α−min(σ)) = 0 (see Figure 2.8). In

the next result, we give points of minima α−min(σ).

0 α

α−
min(σ)

(a) Sample graph for s(σ, α) (black) and
|s(σ, α)| (blue) when â(σ) ≥ 0.

0 α

α−
min(σ)

(b) Sample graph for s(σ, α) (black) and
|s(σ, α)| (blue) when â(σ) < 0.

Figure 2.8.: Examples of |s(σ, α)| for α ∈ [0, π) when a(σ) < b(σ).

Lemma 2.3.11. For a fixed stress σ with a(σ) < b(σ), the scalar stress s(σ, α) from Eq. (2.12)

is zero when α = α−min(σ) where

α−min(σ) =

{
− θ2 −

φ(σ)
2 + n3π,

θ
2 −

φ(σ)
2 + π

2 + n3π,
if â(σ) ≥ 0 (2.23)

or

α−min(σ) =

{
θ
2 −

φ(σ)
2 + n4π,

− θ2 −
φ(σ)

2 + π
2 + n4π,

if â(σ) < 0 (2.24)

with θ := sin−1
(
a(σ)
b(σ)

)
and n3, n4 ∈ Z.

Proof. If â(σ) ≥ 0, we have a(σ) = â(σ). Equation (2.12) for the scalar stress s is then given as:

s(σ, α) = a(σ) + b(σ) sin(2α+ φ(σ)).

The scalar stress s is zero if

a(σ) + b(σ) sin(2α+ φ(σ)) = 0

⇒ sin(2α+ φ(σ)) = −a(σ)

b(σ)
. (2.25)

The solutions of the trigonometric equation sin(x) = y,−1 ≤ y ≤ 1 are given as x = sin−1 y+ 2nπ

and x = π− sin−1(y) + 2nπ. Using this we get the solution of the trigonometric equation in (2.25)

as

2α+ φ(σ) = −θ + 2n3π (2.26)
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and

2α+ φ(σ) = π + θ + 2n3π. (2.27)

Rewriting Eq. (2.26) and Eq. (2.27) in terms of α gives us Eq. (2.23) and completes first part of

the proof.

α−min(σ) =

{
− θ2 −

φ(σ)
2 + n3π,

θ
2 −

φ(σ)
2 + π

2 + n3π,
if â(σ) ≥ 0 (2.28)

Similarly if â(σ) < 0, we have a(σ) = −â(σ). Equation (2.12) for the scalar stress s is then given

as

s(σ, α) = −a(σ) + b(σ) sin(2α+ φ(σ)).

The scalar stress s is zero if

−a(σ) + b(σ) sin(2α+ φ(σ)) = 0

⇒ sin(2α+ φ(σ)) =
a(σ)

b(σ)
. (2.29)

Finally we get the solution to Eq. (2.29) similar to the case â(σ) ≥ 0:

α−min(σ) =

{
θ
2 −

φ(σ)
2 + n4π,

− θ2 −
φ(σ)

2 + π
2 + n4π,

if â(σ) < 0. (2.30)

This completes the proof.

The values of α−min(σ) divide each period of the scalar stress s into two intervals. If a(σ) 6= 0, the

width of one of these intervals is larger than the other. Due to the symmetry of the absolute value

of the sine function around its maxima, the midpoint of the interval I1 with larger width is the

point of maximum with a higher absolute scalar stress value. The other interval is represented by

I2. The midpoint of the interval I1 is the point of maximum α−max,1(σ) and the midpoint of the

interval I2 is the point of maximum α−max,2(σ).

The width of the interval between the values of α−min(σ) in Eq. (2.28) is

∣∣∣∣
θ

2
− φ(σ)

2
+
π

2
+ n3π −

(
−θ

2
− φ(σ)

2
+ n3π

)∣∣∣∣ =

∣∣∣∣
θ

2
+
θ

2
+
π

2

∣∣∣∣ (2.31a)

= θ +
π

2
. (2.31b)

Similarly, the width of the interval between the values of α−min(σ) in Eq. (2.30) is

∣∣∣∣−
θ

2
− φ(σ)

2
+
π

2
+ n4π −

(
θ

2
− φ(σ)

2
+ n4π

)∣∣∣∣ =

∣∣∣∣−
θ

2
− θ

2
+
π

2

∣∣∣∣ (2.32a)

We know that θ = sin−1
(
a(σ)
b(σ)

)
and a(σ) ≥ 0 and b(σ) > 0. Therefore, 0 ≤ θ ≤ π

2 , which gives

us

=
π

2
− θ. (2.32b)
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From Theorem 2.3.6, the period of scalar stress is π. The width of interval contained in between

the values of α−min(σ) in Eq. (2.28) is more than half the period length and is declared as the

interval I1. The width of the interval contained in between the values of α−min(σ) in Eq. (2.30) is

less than half the period length and is declared as the interval I2.

Theorem 2.3.12. The interval I1 with a larger width is given as

I1 =

[
α−max,1(σ)− π

4
− θ

2
, α−max,1(σ) +

π

4
+
θ

2

]
(2.33)

where α−max,1 is the midpoint of the interval I1 and the interval I2 with a smaller width is given as

I1 =

[
α−max,2(σ)− π

4
+
θ

2
, α−max,2(σ) +

π

4
− θ

2

]
(2.34)

where α−max,1 is the midpoint of the interval I2.

Proof. From Eq. (2.31) and Eq. (2.32) we see that in both cases â(σ) ≥ 0 and â(σ) < 0 the width

of interval I1 is θ + π
2 while the width of the interval I2 is π

2 − θ. The midpoints of I1 and I2 are

α−max,1(σ) and α−max,2(σ) respectively. Using the midpoints and widths of the interval we get Eq.

(2.33) and Eq. (2.34).

Now we can give the maximum absolute value of the scalar stress in the two intervals.

Theorem 2.3.13. For a fixed stress σ with a(σ) < b(σ) and the scalar stress s from (2.12), the

maximum value of |s(σ, α)| for α ∈ I1 is

s−max,1(σ) = max
α∈I1
|s(σ, α)| = a(σ) + b(σ), (2.35)

at

α−max,1(σ) =

{
π
4 −

φ(σ)
2 + n5π, if â ≥ 0

−π4 −
φ(σ)

2 + n5π, if â < 0
, (2.36)

and the maximum value of |s(σ, α)| for α ∈ I2 is

s−max,2(σ) = min
α∈I2
|s(σ, α)| = b(σ)− a(σ), (2.37)

at

α−max,2(σ) =

{
−π4 −

φ(σ)
2 + n6π, if â ≥ 0

π
4 −

φ(σ)
2 + n6π, if â < 0

, (2.38)

where n5, n6 ∈ Z.

Proof. From Eq. (2.12) the scalar stress s is given as

s(σ, α) = â(σ) + b(σ) sin(2α+ φ(σ))

We consider the two cases â(σ) ≥ 0 and â(σ) < 0 separately:
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(i) If â(σ) ≥ 0, then a(σ) = â(σ). The maximum value of |s(σ, α)| for α ∈ I1 is computed as

s−max,1(σ) = max
α∈I1
|a(σ) + b(σ) sin(2α+ φ(σ))|.

We have a(σ) and b(σ) are positive and do not depend on α. The absolute value of sine

function is symmetric about its maximum in both the intervals I1 and I2. So, the interval I1
with larger width has the peak with larger absolute value of the scalar stress. This implies

that the maximum value occurs whenever sin(2α+ φ(σ)) is one which in turn implies

2α+ φ(σ) =
π

2
+ 2n5π

The maximum occurs at the mid point α−max,1(σ) which results in

α−max,1(σ) =
π

4
− φ(σ)

2
+ n5π

where n5 ∈ Z. Finally we get

s−max,1(σ) = a(σ) + b(σ).

Similarly, the maximum value of |s(σ, α)| in the interval I2 occurs when sin(2α+φ(σ)) = −1,

2α+ φ(σ) = −π
2

+ 2n6π

The maximum occurs at the midpoint α−max,2(σ) which results in

α−max,2(σ) = −π
4
− φ(σ)

2
+ n6π

where n6 ∈ Z. In the end we get

s−max,2(σ) = |a(σ)− b(σ)| = b(σ)− a(σ).

(ii) If â(σ) < 0, then a(σ) = −â(σ). The proof is similar to the proof of the case â(σ) ≥ 0

with the difference being that the points of the maximum in the interval I1 and the points

of maximum in the interval I2 for |s(σ, α)| in this case are swapped.

s−max,1(σ) = max
α∈I1
|â(σ) + b(σ) sin(2α+ φ)

= max
α∈I1
| − a(σ) + b(σ) sin(2α+ φ)|. (2.39)

Both a(σ) and b(σ) are positive, therefore, the maximum absolute value is obtained when

sin(2α+φ) = −1 or when α−max,1(σ) = −π4 −
φ(σ)

2 +n5π, n5 ∈ Z. Inserting sin(2α+φ) = −1

in (2.39) we get

s−max,1 = a(σ) + b(σ). (2.40)
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Similarly, the maximum value of |s(σ, α)| in interval I2 is obtained when sin(2α+ φ) = 1 or

α−max,2(σ) = π
4 −

φ(σ)
2 + n6π, n6 ∈ Z which implies

s−max,2(σ) = b(σ)− a(σ).

This completes the proof.

Corollary 2.3.14. The maximum value of the absolute scalar stress |s(σ, α)| for a given stress σ

is a(σ) + b(σ).

Proof. Follows directly from Theorem 2.3.10 and Theorem 2.3.13.

In this section, we looked at computation of the scalar stress s from a load l. The points of

maximum magnitude of the scalar stress and the corresponding maximum values were derived for

the two cases a(σ) ≥ b(σ) and a(σ) < b(σ). For every period, in the case of a(σ) ≥ b(σ) there is

one maximum and one minimum. However, in the case of a(σ) < b(σ) for every period there are

two maximums and two minimums. In Section 2.4, we see how to compute the damage d from

the scalar stress s. The section also gives a comparison of the damage computation for a general

load time series L and a load time series with block loads Lb.

2.4. Damage

Damage occurs when a component is subjected to repeated loading and unloading. Microscopic

crack formation starts at the regions of high stress concentrations when these repeated loads are

above a certain threshold [18]. Over time after many repetitions of loading and unloading the

crack reaches a critical size, and the component fails suddenly [21]. Therefore, it is important to

be able to compute the damage due to these repeated loading and unloading for estimating the

fatigue life of a component.

In testrigs, we apply a load time series to mimic the actual repeated loading and unloading during

service life. When we apply a constant load time series then there is no damage incurred in the

component. For a load time series to incur damage on a component it must have turning points

(i.e. there exist points where the stress due to the load time series changes from increasing to

decreasing and vice versa).

In Section 2.4.1, we describe damage computation for the case when the load time series leads to

a stress time series with alternating stress. By alternating stress we mean that there always exist

pairs of non-zero continuous points in the time series such that the magnitude of stress above and

below the horizontal axis is the same. An example time series with alternating stress is shown in

Figure 2.9.

Section 2.4.2 describes additional steps we need to take before we can compute the damage from

a general load time series L. After these additional steps damage computation can be done as in

the case of load time series with alternating stresses. In Section 2.4.3, we show that the stress
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s1

s2

s3

-s1

-s2

-s3

0

Figure 2.9.: Example of a stress time series with alternating stress. Alternating stress s1 is repeated
twice, i.e. ν1 = 2, for s2 we have ν2 = 3 and for s3 we have ν3 = 2.

time series obtained from a load time series with block loads Lb is similar to a stress time series

with alternating stress. We modify the damage computation to take into account the properties

of block loads.

2.4.1. Damage for time series with alternating stress

For damage calculations from alternating stress values we use the linear damage accumulation rule

also called as Miner’s rule or the Palmgren-Miner linear damage hypothesis (see [23, 26]).

Definition 2.4.1 (Palmgren-Miner rule). Given a stress time series with m different alternat-

ing stress amplitudes, si ∈ R+ with Sa = (s1, s2, · · · , sm), each contributing νi cycles with

V = (ν1, ν2, . . . , νm). Palmgren-Miner rule states that if Ni is the number of cycles to failure

of a constant stress reversal si, then the total damage D is given as

D =

m∑

i=1

νi
Ni
. (2.41)

The number of cycles to failuer Ni of a constant alternating stress amplitude si are experimentally

determined and presented in the form of curves called Wöhler’s curve or S-N curves. S-N curves

are graphs of the amplitude of cyclic stress (S) against the logarithmic scale of cycles to failure

(N). S-N Curves are characteristic of the material used in the experiments and are valid for

uni-axial stress cycles with mean zero (ratio R of minimum to maximum stress as -1). Most S-N

curves have a single uniform slope k until it becomes a horizontal line for the high cycles. However,

some materials have two slopes k1 and k2 which divides the S-N curve into two regions one with

a slope k1 and another with a slope k2. In Figure 2.10, we see examples for S-N curve with one

slope and two-slopes.

By σ1 and N1, we denote the values of the stress and the corresponding number of cycles required

for failure at the point where the slope changes from a value of k1 to a value of k2 in the S-N

curve with two slopes. In general, the fatigue strength zone of the S-N curve can be described as

a straight line in the log co-ordinate system with the following equation (see [24])

Ni = ND

(
si
σD

)−k
(2.42)
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(a) S-N curve with one slope (b) S-N curve with two slopes

Figure 2.10.: Schematics of S-N Curves. The horizontal axis is the number of cycles to failure and
the vertical axis is the magnitude of the alternating stress. The linear part of the
S-N curve in (a) and the two liner parts of the S-N curve in (b) are called fatigue
strength zone.

where Ni is the number of cycles required for failure when alternating stress with amplitude si is

applied repeatedly. The exponent k determines the slope of the S-N curve in the fatigue strength

zone. The parameters ND and σD are material dependent. In case of one slope, we substitute σD
and ND by a reference stress σe and its corresponding number of cycles to failure Ne respectively.

Similarly in the case of two slopes we substitute σD = σ1 and ND = N1. In the fatigue strength

zone with a slope k1 we have k = k1 and similarly for the fatigue strength zone with a slope k2

we have k = k2.

Definition 2.4.2 (Damage for one slope). The damage d in the case of one slope with a constant

alternating stress si ∈ R contributing νi cycles is given as

d(si, νi) =
νi
Ni

Eq.(2.42)
=

νi
Ne

( |si|
σe

)k
. (2.43)

Definition 2.4.3 (Damage for two slopes). The damage d in the case of two slopes with a constant

alternating stress si ∈ R contributing νi ∈ N cycles is given as

d(si, νi) =
νi
Ni

Eq.(2.42)
=





νi
N1

(
|si|
σ1

)k1
, if |si| > σ1,

νi
N1

(
|si|
σ1

)k2
, if |si| ≤ σ1.

(2.44)

In Figure 2.11, we see the damage for the two cases for increasing value of s and ν = 1. In (a) we

see the damage for one slope with k = 5 and in (b) we see the damage for two slopes, k1 = 5 and

k2 = 15.

Using the Palmgren-Miner rule from Definition 2.4.1, the total damage is then given as

D(Sa,V) =

m∑

i=1

d(si, νi) (2.45)

where m is the number of different stress amplitudes in the stress time series, Sa has all the stress
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d

30 60 90
s

(a) Profile of damage d for stress amplitude s
with ν = 1 for one slope case with k = 5,
σe = 55, Ne = 108.

d

30 60 90
s

k2 = 15

k1 = 5

(b) Profile of damage d for stress amplitude s
with ν = 1 for two slope case with k1 = 5,
k2 = 15, σ1 = 75, N1 = 106.

Figure 2.11.: Example plots for the damage for one slope and two slopes . In (b) we see the damage
for the two slopes with solid lines and the damage for individual slopes extended with
dotted lines.

amplitudes in the time series in an order which corresponds to that of the number of repetitions

in V and the damage d is as defined in Eq. (2.43) if one slope and as defined in Eq. (2.44) if two

slopes.

Example 2.4.4. For the stress time series in Figure 2.9 with Sa = (s1, s2, s3), V = (2, 3, 2), one

slope and material properties k, σe and Ne, the total damage can be computed as

D(Sa,V) =

3∑

i=1

d(si, νi)

=
ν1

Ne

(
s1

σe

)k
+
ν2

Ne

(
s2

σe

)k
+
ν3

Ne

(
s3

σe

)k

=
1

σkeNe

(
2sk1 + 3sk2 + 2sk3

)

In the next section, we show how to compute damage for a general load time series L. We explain

additional steps that have to be taken before we can compute damage from L.

2.4.2. Damage for general load time series

The loads that a vehicle experiences in service life are given by a general load time series L and

are multi-axial, i.e., at each point of time we have the stress σ with components σxx, σyy and σxy
acting on the surface points. However, the S-N curves generated from experiments are typically for

uni-axial loading. Therefore, some transformation is needed whenever the loading is multi-axial

to give an equivalent uni-axial loading. The critical plane analysis is widely used in engineering

to account for the effects of cyclic, multi-axial load histories on the fatigue life of materials and

structures (for more details see [10, 13, 27, 37]). A critical plane is defined as a plane with the

maximum damage after the application of a load time series. In Section 2.3, we showed how to

compute scalar stress s on a particular plane α from the components σxx, σyy and σxy of the stress

σ.
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The scalar stress time series S obtained for a plane angle α and L is generally not alternating.

However, the S-N curves are best suited for cyclic alternating stresses. One way to deal with

such stress time series is to count stress cycles and then use the damage accumulation methods

on the counted cycles. The load cycles are formed by pairing the local maxima with the local

minima, using some kind of cycle counting algorithm. For several cycle counting procedures see

Collins [8].

The rainflow counting method presented by Endo in 1967 ( [12, 22]), is generally accepted as being

the best cycle counting procedure. For the definition of rainflow cycle we use the definition by

Rychlik [35]. Figure 2.12 illustrates the definition of a rainflow cycle by Rychlik. The rainflow

cycles can be identified with the help of a 4-point algorithm presented in de Jonge [9], Brokate et

al. [6] and Johannesson and Speckert [17]. The 4-point algorithm is presented in Appendix C.1.

We observe that due to the application of 4-point algorithm or any cycle counting algorithm in

general the resulting damage is non-differentiable.

Mi

m−
i

= m
rfc
i

m+
i

Figure 2.12.: The definition of rainflow cycle by Rychlik [35]. From every local maximum Mi we
try to reach above or at the same level, in the forward and the backward directions.
While doing so we try to minimize the downward excursion, i.e. we choose from m−i
and m+

i , which gives the smallest deviation from the maximum Mi and call it the

rainflow minimum mrfc
i . Then the i-th rainflow cycle is defined as (mrfc

i ,Mi).

The rainflow cycles obtained by the 4-point algorithm may not have a mean stress value of zero.

The S-N curves are obtained after substantial amount of testing for the simple case of alternating

loading and it is practically impossible to determine S-N curves for every combination of mean

and alternating stress. If the mean stress is not zero, then we need to apply corrections to get the

stress amplitude sa corresponding to the case when the mean stress is zero. A preferred correction

method is through the Goodman diagrams which is the cycles-to-failure plotted as a function of

mean stress sm and alternating stress s along lines of constant R-values, R = smin
smax

. An example

Goodman diagram is shown in Figure 2.13 and the mathematical representation is given as:

sgoodman = σfat

(
1− σm

σu

)
(2.46)

where sgoodman is the stress amplitude after applying Goodman correction, σfat is the fatigue

limit for completely reversed loading, σm is the mean stress and σu is the ultimate tensile stress.

For more details about Goodman diagrams see [25].

In Algorithm 2.4.1, we give steps to compute the total damage D for a general load time series

L on a plane α for any point on the surface. The testrig configuration T C is given through the
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σa

σm

σfat

σu

Figure 2.13.: An example Goodman diagram. The area below the curve is the region where the
material should not fail for the given mean stress.

input parameter σ̃. The material parameters are part of the damage computation function d(s, ν)

where s is the alternating stress magnitude and ν is the number of cycles of the alternating stress

s. The output of the algorithm is the damage D.

Algorithm 2.4.1: Computing total Damage D from a general load time series L on plane
α

Data: σ̃, L, α, d(s, ν)
Result: D

1 begin
2 Σ←− σ̃ · L
3 S←− n(α) ·Σ
4 Srfc,Vrfc ←− 4PointAlgorithm(S) . From Appendix C.1

5 Srfc,correcteda ←− GoodmanCorrection(Srfc)
6 i←− 1

7 while i ≤ |Srfc,correcteda | do

8 D ←− D + d(srfc,correctedi , νrfci )
9 i←− i+ 1

10 end
11 return D

12 end

In Algorithm 2.4.1, Σ ∈ R3×N is the stress time series at a given point due to a load times

series L. S ∈ RN is the scalar stress time series on the plane α. From the 4PointAlgorithm we

get all the cycles Srfc as defined by Rychlik in [35] and the number of times each cycle appears

Vrfc. Next the function GoodmanCorrection returns the magnitude of the alternating stresses as

Srfc,correcteda corresponding to each cycle in Srfc. Finally, the damage for each alternating stress

is computed with the help of the damage function d.

We observe that the damage from a general load time series L is non-differentiable due to the

cycle counting algorithm like the rainflow counting method as well as corrections of the mean

stress by the help of the Goodman diagrams. This makes it difficult to use the damage from L in

the optimization of the load time series for testrigs. In Section 2.4.3, we see that in the case of

load time series with block loads Lb, the computation of the damage is straight forward. Neither

a cycle counting algorithm nor a mean correction method is required because our block loads have

a zero mean stress and consist of alternating stresses.
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2.4.3. Damage from load time series with block loads

When using the stress time series due to a load time series with block loads Lb, the damage at

any point x ∈ R3 on the surface depends only on the amplitude `i,j , for the j-th block at the i-th

element in F and the number of cycles νj (from Remark 2.2.10 the j-th block for all the actuators

have the same number of cycles νj) of the individual block loads in Lb when using Palmgren-

Miner rule for damage accumulation. Therefore, by using a load time series with block loads

we eliminate the need for the cycle counting algorithms and do not need any corrections. Using

Remark 2.2.10, we define the load lb,j as the amplitudes of the j-th block for each force/moment

acting at actuators in Aa as

lb,j := (`1,j , `2,j , . . . , `n,j)
T (2.47)

where j ∈ {1, 2, . . . ,m}. We can define by Lb,a the matrix of amplitudes of block loads in Lb with

columns lb,j , j = 1, 2, . . . ,m as:

Lb,a := (lb,1, lb,2, . . . , lb,m) ∈ Rn×m. (2.48)

The stress due to the matrix of amplitudes Lb,a at hotspot x is computed as

Σx(Lb,a) = σ̃xLb,a = (σx(lb,1), . . . , σx(lb,m)) ∈ R3×m. (2.49)

where Σx is from Eq. (2.7). In this case Σx is a condensed time series where each point on the

time series represents the amplitude of alternating stresses at hotspot x. By Sx we denote the

magnitudes of the scalar stresses on plane α acting at the hotspot x due to all the block loads and

is the same as Sa in Eq. (2.45) and is given as:

Sx(Lb,a, α) := n(α)Σx(Lb,a) = (s (σx(lb,1), α) , . . . , s (σx(lb,m), α))T (2.50)

where s is the scalar stresses on plane α from Eq. (2.12). Then the total damage from the

amplitude matrix Lb,a due to the load time series with block loads Lb for plane α at hotspot x

and the testrig configuration T C is computed as

Dx(Lb,a,V, α) :=D(Sx(Lb,a, α)),V) (2.51a)

=D(n(α)Σx(Lb,a,V) (2.51b)

Eq. (2.7)⇒=D(n(α)σ̃xLb,a,V) (2.51c)

where σ̃x ∈ R3×n is from the testrig configuration and depends on the hotspot x and the total

damage D from Eq. (2.45). In Algorithm 2.4.2, we describe the complete process of computation

of total damage from a load time series with block loads Lb. We provide Lb,a and V to the

algorithm as these two are sufficient to describe Lb completely.

We look at an example to better understand how everything works.

Example 2.4.5. From Example 2.2.12, we get m = 2, n = 3, V = (1, 2), L1 = (5, 8), L2 = (10, 5)

and L3 = (4, 4). Now we can write the amplitudes of the j-th block applied through the actuators

lb,j as lb,1 = (5, 10, 4)T and lb,2 = (8, 5, 4)T . The matrix of amplitudes of block loads Lb,a in Lb is
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Algorithm 2.4.2: Computing total Damage D at hotspot x from a load time series with
block loads Lb on a plane α

Data: σ̃x, Lb,a, V, α, D(Sa,V)
Result: Dx

1 begin
2 Σx ←− σ̃xLb,a
3 Sa,x ←− n(α)Σx

4 Dx ←− D(Sa,x,V)
5 return Dx

6 end

given as

Lb,a =




5 8

10 5

4 4


 (2.52)

and the stress due to the matrix of amplitudes Lb,a at a hotspot x with stress tensor σ̃x is given

as

Σx(Lb,a) = σ̃x




5 8

10 5

4 4


 (2.53)

And similarly, the scalar stresses Sx on plane α due to the block loads in the load time series with

block load Lb can be computed as in Eq. (2.50), which can then be used in Eq. (2.51) to compute

the total damage at hotspot x.

Not only is it easy to compute the damage from the load time series with block loads Lb but also it

is easy to apply the block loads through actuators in an actual testrig. The number of parameters

required to specify a load time series with the same number of points is less in the case of load

time series with block loads Lb as compared to the number of parameters required to specify the

general load time series L.

In Theorem 2.4.7, we see that for any hotspot x, the total damage computation for a load time

series with block loads Lb is convex for the case of one slope. Before we state and prove Theorem

2.4.7 we give a result on convexity that is used in the proof:

Lemma 2.4.6. If q ∈ Rm, r ∈ R and η : Rm → R is convex, then the function ζ : Rm → R with

values ζ(y) = η
(
qT y + r

)
is convex.

Proof. For any y1, y2 and λ ∈ [0, 1], we have

ζ(λy1 + (1− λ)y2) = η
(
qT
(
λy1 + (1− λ)y2

)
+ r
)

= η
(
qTλy1 + qT (1− λ)y2 + (λ+ 1− λ)r

)

= η
(
λ
(
qT y1 + r

)
+ (1− λ)

(
qT y2 + r

))

η convex ⇒ ≤ λη
(
qT y1 + r

)
+ (1− λ)η

(
qT y2 + r

)

= λζ(y1) + (1− λ)ζ(y2)

Hence, composition with an affine function preserves convexity.
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Theorem 2.4.7. For a given α ∈ [0, π) and load time series with block loads Lb consisting of

amplitude matrix Lb,a and fixed number of cycles V. If the material has one slope in the S-N

curve, then the total damage Dx from Eq. (2.51) at hotspot x is convex.

Proof. In case of one slope, the total damage at a hotspot x on the plane α is given by Eq. (2.43).

Using vector of scalar stresses Sx on plane α from Eq. (2.50) the total damage is:

Dx(Lb,a,V, α) =

m∑

j=1

νj
Ne

( |s (σx(lb,j), α) |
σe

)k
=

1

Neσke

m∑

j=1

νj |n(α) · σ̃x · lb,1|k (2.55)

The scalar stress due to the j-th block loads in Lb is an affine function which maps the block ampli-

tudes to the stresses. Additionally, the powers of absolute value function |y|p is convex for p ≥ 1.

Hence, from Lemma 2.4.6, |s (σx(lb,j), α) |k is convex with k > 1. Similarly, νj |s (σx(lb,j), α) |k is

convex. Finally, the sum of convex functions is convex as well. Hence, Dx is convex if the material

has one slope.

The total damage Dx for two slopes is not convex over the entire domain. This is because of the

change in the slope at σ1 on the S-N curve. However, as in Theorem 2.4.7, it can be easily proven

that for each slope alone the total damage is convex. The convexity does not hold when we move

from one slope to the other slope.

Another formulation

We give another formulation for computing damage that us used as a free parameter in the

optimization in Chapter 3. In Eq. (2.48) we gave the amplitudes of each block load in the load

time series Lb as an amplitude matrix Lb,a. We can give another formulation for the the amplitudes

of each block load, but this time in the form of a vector. Let us denote by L̂ the amplitudes of

the block loads in the load time series Lb arranged one after another, i.e., all the j-th block loads

acting through the actuators are followed by all the (j + 1)-th block loads acting through the

actuators:

L̂ :=




lb,1
lb,2
...

lb,m




(2.56)

where lb,1 is from Eq. (2.47) and m is the number of blocks. The vector of scalar stress Ŝx at

hotspot x ∈ X from L̂ in the new formulation is given as:

Ŝx(L̂, α) = N(α)Σ̂xL̂ (2.57)

where

N(α) =




n(α) 0T3 · · · 0T3
0T3 n(α) · · · 0T3
...

...
. . .

...

0T3 0T3 · · · n(α)



m×3m

(2.58)
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and

Σ̂x =




σ̃x 03×n · · · 03×n

03×n σ̃x · · · 03×n
...

...
. . .

...

03×n 03×n · · · σ̃x




3m×nm

(2.59)

with n(α) from Eq. (2.14), 0T3 is row vector with three zeros, 03×n is matrix with all zero entries

and σ̃x is the stress tensor from Eq. (2.6). In the next result, we show that the scalar stress

vectors, Sx from Eq. (2.50) and Ŝx from Eq. (2.57) are the same.

Lemma 2.4.8. For a given load time series with block loads Lb, the scalar stress vectors Sx from

Eq. (2.50) and Ŝx from Eq. (2.57) are the same.

Proof. We know from Eq. (2.50) that each element of the scalar stress vector Sx is given as:

s(σx(lb,j), α) = n(α) · σ̃x · lb,j = n(α) · σx,j , j ∈ {1, 2, . . . ,m}. (2.60)

where stress σx,j = σ̃x · lb,j is the stress developed by the j-th block acting through all the

actuators. Similarly, we observe in Eq. (2.57) that the matrices N(α) and Σ̂x are block diagonal

matrices. Therefore, each element of the scalar stress vector Ŝ is given in exactly the same way

as the elements of Sx.

Lemma 2.4.8 implies that the total damage computed from the two scalar stress vectors will be

the same. In the case of one slope, the total damage at a hotspot x for the plane α is given by

Eq. (2.43). Using the vector of scalar stresses Ŝx on plane α, the total damage D̂x is:

D̂x(L̂,V, α) = Dx(Lb,a,V, α) =
1

Neσke

m∑

j=1

νj |n(α) · σ̃x · lb,j |k =
1

Neσke

m∑

j=1

νj |n(α) · σx,j |k (2.61)

where the total damage function Dx is from Eq. (2.55) and the number of cycles V for each block

in the load time series is fixed before the optimization. Next, we prove that the total damage is

differentiable with respect to the amplitude vector L̂ in the case of one slope.

Theorem 2.4.9. The total damage function D̂x from Eq. (2.61) is differentiable with respect to

the amplitude vector L̂ in the case of one slope.

Proof. Contribution of the j-th block load to the total damage D̂x is

νj |n(α) · σ̃x · lb,j |k

We know that |x|k is differentiable for k > 1 and a linear mapping lb,j 7→ n(α) · σ̃x · lb,j is also

differentiable. Therefore, the contribution of j-th block to the total damage is differentiable with

respect to the amplitudes of the j-th block loads lb,j in the load time series, as it is a composition

of two differentiable functions. Total damage D̂x is a sum of differentiable functions and therefore,

it is also differentiable.

The derivative of total damage with respect to amplitudes of the j-th block loads lb,j in the load
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time series can be computed by using the chain rule of differentiation. Total damage D̂x is also

convex:

Corollary 2.4.10. Given plane α and fixed number of cycles of repetitions V in the load time

series with block loads Lb. If the material has one slope in the S-N curve, then the total damage

D̂x from Eq. (2.61) at hotspot x is convex

Proof. We compute from the load time series with block loads Lb the amplitude vector L̂ and the

number of cycles of each block V. The result follows directly from Theorem 2.4.7 observing that

the vector of scalar stresses Ŝx and Sx are the same from Lemma 2.4.8.

For parameters lb,j for all j ∈ {1, 2, . . . ,m} and V fixed total damage D̂x is a trigonometric

equation in α and is therefore differentiable for α. The first derivative of the total damage D̂x

with respect to α in this case is given below:

Theorem 2.4.11. If the S-N curve has one slope and parameters L̂, V are fixed, then the first

derivative of the total damage D̂x from Eq. (2.61) with respect to α is given as

dD̂x(L̂,V, α)

dα
=

k

Neσke

m∑

j=1

νj |n(α) · σx,j |k−2 (n(α) · σx,j) (n′(α) · σx,j) (2.62)

where n′(α) = (− cos(2α), cos(2α), 2 sin(2α)).

Proof. Replacing |n(α)·σx,j | by
√

(n(α) · σx,j)
2

and taking the first derivative of the total damage

D̂x after simplification gives us the result.

This chapter described various aspects of a testrig such as testrig configurations, different types of

loads, computation of the stress and the damage. We also proved that the total damage function

is convex and differentiable in the case of materials with one slope in the S-N curve. In the next

chapter, we use these ideas and formulate two variations of testrig optimization problem. We

compare the results of the two optimization problems for two testrig configurations for a steering

knuckle of a vehicle.
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3. Testrig optimization problem

The goal of the testrig optimization is to come as close as possible to the so-called reference stresses

and/or reference damages at every hotspot xi ∈ X where X = {x1,x2, . . . ,xnh} is the set of all

hotspots. For the optimization we assume that the section forces (loads) of the component under

service loading have been either measured or calculated by multi-body simulation techniques.

From the loads we obtain reference stress signals σ(ref) ∈ R3nh×Nf , where nh is the number of

hotspots and Nf is the number of points in the reference stress time series, by using Finite Element

Analysis (FEA) and D(ref) ∈ Rnh by using damage computation from Section 2.4. In Figure 3.1,

we see a knuckle with hotspots marked with yellow dots.

Figure 3.1.: A knuckle with hotspots marked in yellow dots [1].

However, the detailed behavior of the stresses as functions of time are sometimes not the most

important topic. Instead the damage potential of the stress signals are considered. As seen

in Section 2.4, the damage computation is rather complex non-linear non-differentiable for even

simplest of cases when using general load time series L (Definition 2.2.2). In Section 3.1 we

formulate the optimization problem of finding the load time series in two ways. We describe

the measure of closeness to the reference data that is used as the objective functions in the

optimization. We also prove properties of the possible objective functions in this section. Then

Section 3.2 gives numerical results and discusses the issues arising in the optimization. In Section

3.2, we also compare the two approaches to optimizing testrigs described in Section 3.1. Finally,

we end the chapter with a discussion on some of the drawbacks of discretization in the testrig

optimization how to overcome them.

35



3.1. Optimization problem for testrigs

Before we can start doing optimization we need to be able to formulate the physical aspects of our

requirements in terms of an optimization problem. In this section, we give two different approaches

for testrig optimization problem. The first formulation is the current state of the art and we do

not directly use damage in the optimization. Instead we try to find a load time series that gives

stress time series that is as close as possible to the reference stress time series σ(ref) obtained from

FEA. We hope that the damage computed at the hotspots from the stress time series obtained

from the optimization is also close to the reference damage values at the hotspots. We name the

first formulation as stress optimization. In the second formulation we use damage directly in the

optimization but with load time series consisting of only block loads Lb (Definition 2.2.11) and

name it as damage optimization. We make the following assumption for the optimization:

Assumption 3.1.1. We have been given a testrig configuration T C (Definition 2.1.1) and we have

to find the load time series that when applied at the actuator positions in T C leads to a damage

at the hot spots as close as possible to the reference damage.

3.1.1. Stress Optimization

In this formulation of the optimization problem, the free parameters are the loads at actuators in

the given testrig configuration T C. We want to the compute loads at each point of the time series

that lead to stresses which are as close as possible to the reference stresses at the given hotspots.

Therefore, for each point of the reference stress time series we have to solve an optimization

problem. The number of points in the stress time series is Nf , so we have to solve Nf optimization

problems.

To tackle the testrig stress optimization problem the first step is to represent the search space as

a subset of the Euclidean space. From Section 2.2 we know that the load li at i-th point of time

is a n-dimensional vector

li = (li,1, li,2, . . . , li,n)
T

where li,j is the load acting at the j-th element of F (from Section 2.2) at i-th point of time. In

the next definition, we limit the design space of the applied loads to ones that make sense for the

testrig.

Definition 3.1.2. (Design space of the testrig stress optimization problem) Let lmin ≤ ll < lu ≤
lmax where lmin and lmax are the minimum and the maximum load that can be applied through

the actuators in the testrig configuration T C. We call

Dσ = {l ∈ Rn|l ∈ [ll, lu]
n}

the design space of the testrig stress optimization problem.

The optimization would want to answer with the most preferable solution out of the set of all the

feasible solutions. The set of all feasible solutions is a subset of the design space. In what follows,

every element of the design space is considered feasible whenever the magnitude of the stress due
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to the element are below some maximum stress σmax, usually the ultimate tensile strength σu of

the material used in the component. The ultimate tensile strength is the maximum stress that a

material can withstand without failing. Before we can give the definition of a feasible solution we

denote by S ∈ R3nh the stress vector consisting of stress σ (from Eq. (2.6)) at all the hotspots

when a load l is applied through actuators as:

S(X, l) :=




σ(x1, l)

σ(x2, l)
...

σ(xnh l)




(3.1)

where σ(xi, l) are the stresses due to a load l acting at the hotspots xi, i = 1, 2, . . . , nh and

X = {x1,x2, . . . ,xnh} is the set of all hotspots. We can reformulate the stress vector S as a

matrix-vector product:

Theorem 3.1.3. The stress vector S from Eq. (3.1) due to load a l at all the hotspots in X is

given as

S(X, l) = Σ̃(X) · l (3.2)

where

Σ̃(X) =




σ̃x1

σ̃x2

...

σ̃xnh



∈ R3nh×n, (3.3)

and σ̃xi from Eq. (2.6).

Proof. Using the stress σ from Eq. (2.6) and inserting into Eq. (3.1) we get

S(X, l) =




σ(x1, l)

σ(x2, l)
...

σ(xnh l)




=




σ̃x1
· l

σ̃x2 · l
...

σ̃xnh · l




=




σ̃x1

σ̃x2

...

σ̃xnh



· l = Σ̃(X) · l. (3.4)

In other words from Theorem 3.1.3 we see that each row of S is a linear superposition of load l.

Assumption 3.1.4. The i-th column of the matrix Σ̃(X) encapsulates the contribution to the

stresses developed at all the hotspots when applying a unit load at the i-th element of F. In general

we assume that the unit loads at different elements of F do not affect the hotspots in exactly the

same way. In other words the columns of the matrix Σ̃ are linearly independent.

Using Assumption 3.1.4, we can prove that matrix Σ̃(X)T Σ̃(X) is a positive definite matrix.

Lemma 3.1.5. Given a matrix Σ̃(X) as in Eq. (3.3), then the matrix Σ̃(X)T Σ̃(X) is a positive

definite matrix.
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Proof. We know from Assumption 3.1.4 that the columns of the matrix Σ̃(X) are linearly indepen-

dent. Therefore, in order to prove that the matrix Σ̃(X)T Σ̃(X) is positive semi-definite matrix we

have to show that for any non-zero column vector z ∈ Rn, zT Σ̃(X)T Σ̃(X)z is positive. However,

zT Σ̃(X)T Σ̃(X)z =
∥∥∥Σ̃(X)z

∥∥∥
2

2
> 0. Hence, Σ̃(X)T Σ̃(X) is a positive definite matrix.

Next we give the definition of the feasible set of the testrig stress optimization problem.

Definition 3.1.6 (Feasible set of the testrig stress optimization problem). For a given testrig

configuration T C, a solution l ∈ Dσ is feasible if and only if

‖S(X, l)‖∞ ≤ σmax.

The set of all feasible solutions for testrig stress optimization problem is denoted by Lσ.

Not all feasible solutions are preferable. We use objective functions to measure the preferability

of one feasible solution compared to another. In the context of stress optimization in testrig this

implies that we want the stress vector S obtained at any point of time for all the hotspots to be

as close as possible to the corresponding reference stress values. Let us denote by η a function

that measures for reference stress at any point i of the time series, its closeness with stress vector

S(X, l). If η(X, l1) < η(X, l2), then load l1 is preferable to load l2 with respect to η. The function η

is called an objective function, and the image η(Dσ) ⊂ R of the design space is called the objective

space. The optimization problem at the i-th point of the reference stress time series is then given

as

min
li∈Lσ

η(X, li). (TSOP)

A simple choice for objective function η is the square of the Euclidean norm or the 2-norm. Then

for the i-th point on the reference stress time series we get

η(X, li) =
∥∥∥σ(ref)

i − S(X, li)
∥∥∥

2

2
. (3.5)

The testrig stress optimization problem (TSOP) consists of both box constraints and inequality

constraints. Additionally, it can be easily shown that problem (TSOP) with the objective function

η from Eq. (3.5) is a convex quadratic optimization problem with both box constraints and

inequality constraints (BOINCQP):

Definition 3.1.7. A convex quadratic optimization problem with both box constraints and in-

equality constraints can be expressed in the form

minimize
1

2
yTPy + qTy + r

subject to Ay ≤ b

ui ≤ yi ≤ vi, i = 1, 2, . . . , n

(BOINCQP)

where P is a symmetric, positive definite n × n matrix, A ∈ Rm×n and ui are the lower bounds

and vi are the upper bounds on yi.

Theorem 3.1.8. The testrig stress optimization problem (TSOP) with the objective function η
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from Eq. (3.5) is a convex quadratic optimization problem with both box constraints and inequality

constraints (BOINCQP).

Proof. The only thing to prove is that the objective function η from Eq. (3.5) is convex and has

a quadratic form similar to the objective function in (BOINCQP). We can rewrite the objective

function η as shown below:

η(X, li) =
∥∥∥σ(ref)

i − S(X, li)
∥∥∥

2

2
(3.6a)

Eq.(3.2)
=

(
σ

(ref)
i − Σ̃(X)l

)T (
σ

(ref)
i − Σ̃(X)l

)
(3.6b)

Expanding the two products we get

=
(
σ

(ref)
i

)T
σ

(ref)
i −

(
σ

(ref)
i

)T
Σ̃(X)l−

(
Σ̃(X)l

)T
σ

(ref)
i +

(
Σ̃(X)l

)T
Σ̃(X)l (3.6c)

We see that both
(
σ

(ref)
i

)T
Σ̃(X)l and

(
Σ̃(X)l

)T
σ

(ref)
i are scalar and equal which simplifies to

=
(
σ

(ref)
i

)T
σ

(ref)
i − 2

(
σ

(ref)
i

)T
Σ̃(X)l +

(
Σ̃(X)l

)T
Σ̃(X)l (3.6d)

=
(
σ

(ref)
i

)T
σ

(ref)
i − 2

(
σ

(ref)
i

)T
Σ̃(X)l + lT Σ̃(X)T Σ̃(X)l (3.6e)

Equation (3.6e) has the same form as the objective function in the problem (BOINCQP) with

P = 2Σ̃(X)T Σ̃(X), q = −2
(
σ

(ref)
i

)T
Σ̃(X) and r =

(
σ

(ref)
i

)T
σ

(ref)
i . Additionally, from

Lemma 3.1.5 we have that Σ̃(X)T Σ̃(X) is positive definite matrix. Hence, the objective func-

tion η is convex.

The solution method to this convex quadratic optimization problem with both linear inequality

constraints and box constraints is already implemented in MATLAB by quadprog and is ready

to use. The quadprog method is used with the interior-point-convex algorithm. From the load

time series resulting from the optimization we compute corresponding stress time series. The

stress time series is then used to compute the total damage at the hotspots and we hope that the

computed total damage is as close as possible to the reference damage at every hotspot. We see

in Section 3.2 the results of the optimization on two testrig configurations in the case of a steering

knuckle.

In this section, we looked at testrig stress optimization problem. We showed that testrig stress

optimization problem is a special case of convex quadratic optimization problem when we choose

the objective function η as in Eq. (3.5). So far we did not involve damage directly in the

optimization. In the next section, we see how we can use damage in the optimization by the help

of block loads.
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3.1.2. Damage Optimization

In this formulation of the testrig optimization problem, we involve damage directly in the objective

function. However, when using a general load time series L, the total damage is computed from

the Algorithm 2.4.1 and the relation from load to the damage is non-differentiable due to the

cycle counting algorithms like Rainflow counting. Additionally, if the mean value of the cycles

obtained through Rainflow counting is not zero, then we have to additionally apply some form

of correction to get the equivalent stress amplitude for the case of zero mean. Therefore, general

load time series for damage optimization cannot be used with optimization algorithms that need

first or higher order derivatives.

By using a load time series with block loads Lb we eliminate the need for counting cycles as well as

corrections. Section 2.4.3 described the total damage computation on plane α at hotspot x from

the amplitude vector L̂ and number of cycles for each block load in Lb given by V as

D̂x(L̂,V, α) = D(N(α) · Σ̂x · L̂,V) =
1

Neσke

m∑

j=1

νj |n(α) · σ̃x · lb,j |k

where D is the total damage from alternating stresses from Eq. (2.45), N(α) is from Eq. (2.58)

and Σ̂x is from Eq. (2.59).

Damage computation discussed in Section 2.4.3 was for a single hotspot. When we have more than

one hotspots X = {x1,x2, . . . ,xnh} we need to compute the scalar stress from each block for every

hotspot. For every hotspot xi ∈ X we have a different stress tensor σ̃xi which maps the loads to

the stresses for that hotspot. The stress tensors σ̃xi are already given and depend only on the

testrig configuration T C used and the hotspot xi. The total damage at hotspot xi, i = 1, 2, . . . , nh
can then be computed as

D̂xi(L̂,V, α) = D(N(α) · Σ̂xi · L̂,V) =
1

Neσke

m∑

j=1

νj |n(α) · σ̃xi · lb,1|k (3.7)

In the testrig damage optimization we fix the number of cycles for the block loads V before

the optimization. We want to find the maximum total damage at each hotspot over all planes

α. For every hotspot xi the plane α∗xi which has the maximum total damage may be different.

Therefore, the only free parameters for the optimization are the elements of the amplitude vector

`ij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, where `ij is the amplitude of the j-th block load at the i-th

element of F. Again to tackle the testrig damage optimization problem the first step is to represent

the search space as a subset of the Euclidean space.

Definition 3.1.9. (Design space of the testrig damage optimization problem) Let lmin ≤ ll <

lu ≤ lmax where lmin and lmax are the minimum and the maximum load that can be applied

through the actuators in the testrig configuration T C respectively. We call

DD =
{

L̂ ∈ Rnm|`ij ∈ [ll, lu] ,∀i, j
}

the design space of the testrig damage optimization problem.

The optimization would want to answer with the most preferable solution out of the set of all
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feasible solutions. The set of all feasible solutions is a subset of the design space. In what follows,

every element of the design space is considered feasible whenever the magnitude of the maximum

stress due to the element at all the hotspots is below some maximum stress σmax as in the case

of testrig stress optimization problem. Feasible set of the testrig optimization problem is:

Definition 3.1.10 (Feasible set of the testrig damage optimization problem). For a given testrig

configuration T C, a solution L̂ ∈ DD is feasible if and only if

∥∥∥Σ̂xi · L̂
∥∥∥
∞
≤ σmax,∀xi ∈ X

where Σ̂xi is from Eq. (2.59). The set of all feasible solutions for testrig damage optimization

problem is denoted by LD.

However, not all feasible solutions are equally preferable. As in the case of testrig stress optimiza-

tion we use objective functions to measure the preferability of one feasible solution compared to

another feasible solution. In the context of testrig damage optimization this implies that we want

the maximum of the total damage D̂xi among all the planes α to be as close as possible to the

reference damage D
(ref)
xi . We look on all the planes α because the component fails along the plane

with the maximum damage. Let us denote by D̃xi the maximum total damage at hotspot xi with

respect to planes α for the amplitude vector L̂:

D̃xi

(
L̂,V

)
= max
α∈[0,π)

D̂xi

(
L̂,V, α

)
. (3.8)

Generally it is not possible that the maximum total damage at every hotspot is equal to the

reference damage at these hotspots. This forms the basis for the multi-objective nature of the

testrig damage optimization problem. Let us denote by ζi : DD → R a function that measures the

closeness of maximum total damage D̃xi at hotspot xi and reference damage D
(ref)
xi . This gives

us a vector of functions ZV :

ZV(L̂) =




ζ1

(
D

(ref)
x1 , D̃x1

(
L̂,V

))

ζ2

(
D

(ref)
x2 , D̃x2

(
L̂,V

))

...

ζnh

(
D

(ref)
x1 , D̃xnh

(
L̂,V

))




(3.9)

We have to minimize ZV in each of its component. As stated before V is fixed for each instance

of the optimization problem. The set of objective function vectors ZV(DD) is - as a subset of Rnh
- ordered by the component wise order relation:

y1 ≤ y2 =⇒ y1
i ≤ y2

i ∀i = 1, 2, . . . , nh.

However, this ordering is not total : it may occur that for some y1, y2 ∈ ZV(DD) neither y1 ≤ y2

nor y2 ≤ y1 holds. As a consequence, usually there is no single feasible solution L̂ which is best

in every objective function. Rather, there is a set of “minimal” solutions which are called Pareto

efficient.

Definition 3.1.11 (Pareto efficient in Def 2.1 in [11]). A feasible solution L̂ ∈ LD is called

Pareto efficient if there is no other L̃ ∈ LD such that ζi(L̃) ≤ ζi(L̂) for all i ∈ {1, 2, . . . , nh} and

ζj(L̂) < ζj(L̂) for some j ∈ {1, 2, . . . , nh}
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Definition 3.1.12 (weakly Pareto efficient, Def. 2.24 in [11]). A feasible solution L̂ ∈ LD is called

weakly Pareto efficient if there is no other L̃ ∈ LD such that ζi(L̃) < ζi(L̂) for all i ∈ {1, 2, . . . , nh}.

Definition 3.1.13 (Multi-objective optimization problem). Let Z : DD → Rnh . We call

Z(L̂)→ min

L̂ ∈ LD
(MOOP)

a multi-objective optimization problem, where minimizing indicates the search for Pareto efficient

solutions.

There are different ways to tackle (MOOP). Each Pareto efficient point is obtained as a solution

to a weighted-sum-of-objective-functions problem:

ZV,W (L̂) :=

nh∑

i=1

wiζi

(
D(ref)

xi , D̃xi

(
Σxi

(
L̂
)
,V
))
→ min

L̂ ∈ LD
(WSDP)

where W = (w1, w2, . . . , wnh) is the weight vector and the weights must respect the following

relations: wi ≥ 0 for all i ∈ {1, 2, . . . , nh} and

nh∑

i=1

wi = 1.

Different choices of the weight vector W leads to different Pareto efficient solutions.

So far we have not discussed about the function ζi that measures the closeness of maximum total

damage D̃xi at hotspot xi and reference damage D
(ref)
xi . From engineering point of view it is

better that the total damage D̃xi at different hotspots xi are not underestimating the reference

damage D
(ref)
xi . Underestimating reference damage would lead to overestimating fatigue life of

the component which is not desirable. Therefore, the function ζi must penalize more the damage

values at hotspots that underestimate the reference damage compared to the damage values that

overestimate the reference damage by the same amount. Keeping this in mind we define the

function ζi as:

ζi

(
D(ref)

xi , D̃xi

(
L̂,V

))
:=

D
(ref)
xi

D̃xi

(
L̂,V

) +
D̃xi

(
L̂,V

)

D
(ref)
xi

. (3.10)

The function ζi from Eq. (3.10) is in the form of 1
y + y which has the minimum value when y = 1,

i.e. D̃x1

(
L̂,V

)
= D

(ref)
x1 . We also observe that ζi penalizes the underestimation of the reference

damage more than the overestimation. In the next results we give properties of the general ζ

function

Lemma 3.1.14. Let us define a function

ζ : R+ → R, y 7→ 1

y
+ y. (3.11)

For y1, y2 ∈ R+, if we have 1 ≥ y1 > y2, then ζ(y1) < ζ(y2).
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Proof. The property stated above is true if we can show, that the function ζ is decreasing in the

interval (0, 1). A function is decreasing on an interval if the first derivative of the function is

negative on this interval. We take the first derivative of the function ζ to get

ζ ′(y) = − 1

y2
+ 1 (3.12)

For all values of y ∈ (0, 1) we see that 1
y2 > 1 and the sum − 1

y2 + 1 is negative. Therefore,

the function ζ is decreasing on the interval (0, 1). This implies that for any y1, y2 ∈ R+ with

1 ≥ y1 > y2 we have ζ(y1) < ζ(y2).

Lemma 3.1.15. The function ζ from Eq. (3.11) is increasing on the interval (1,∞).

Proof. We know that the value of 1
y2 is less than one when y > 1. Therefore, the first derivative

of the function ζ from (3.12) is positive and ζ is increasing on the interval (1,∞).

In the next result we prove that the function ζ from Eq. (3.11) is convex on the interval (0,∞).

Theorem 3.1.16. The function ζ from Eq. (3.11) is convex on the interval (0,∞).

Proof. The second derivative of the function ζ is given as

ζ ′′(y) =
2

y3
. (3.13)

Since the value of 2
y3 > 0 for all y ∈ (0,∞) therefore, the function ζ is convex on the interval

(0,∞).

The solution method to the non-linear constrained optimization problem (WSDP) is already im-

plemented in MATLAB by fmincon and is ready to use. The fmincon method is used with the

interior-point algorithm. We see in Section 3.2 the results of the optimization on a real world

example.

The following result holds for the optimal solution of the damage optimization problem (WSDP)

with objective function ZV,W :

Lemma 3.1.17. If L̂∗ ∈ LD is an optimal solution to the damage optimization problem (WSDP)

with functions ζi from Eq. (3.10) and fixed number of cycles V, then ∃i ∈ {1, 2, . . . ,m} such that

D̃xi(L̂
∗,V)

D
(ref)
xi

≥ 1 (3.14)

Proof. Let to the contrary that L̂∗ ∈ LD is an optimal solution to the damage optimization

problem (WSDP) such that @i ∈ {1, 2, . . . ,m} satisfying Eq. (3.14). This implies

∀i, D̃xi(L̂
∗,V)

D
(ref)
xi

< 1.
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Let us choose L̂ = αL̂∗, α ∈ R and α > 1. We select α such that

max

(
D̃x1

(L̂∗,V)

D
(ref)
x1

, . . . ,
D̃xnh

(L̂∗,V)

D
(ref)
xnh

)
= 1.

Therefore, we have ∀i ∈ {1, 2, . . . , nh}

1 ≥ D̃xi(L̂,V)

D
(ref)
xi

>
D̃xi(L̂

∗,V)

D
(ref)
xi

. (3.15)

This is true because if we multiply all the elements of a amplitude vector by a positive scalar

value, then the damage value changes by the k-th power of this scalar value, where k is the slope

of the part of the S-N curve which is to be used. Using Lemma 3.1.14 for Eq. (3.15) we get

∀i ∈ {1, 2, . . . , nh}

D
(ref)
xi

D̃xi(L̂,V)
+
D̃xi(L̂,V)

D
(ref)
xi

<
D

(ref)
xi

D̃xi(L̂
∗,V)

+
D̃xi(L̂

∗,V)

D
(ref)
xi

. (3.16)

This implies

nh∑

i=1

wi
D

(ref)
xi

D̃xi(L̂,V)
+
D̃xi(L̂,V)

D
(ref)
xi

<

nh∑

i=1

wi
D

(ref)
xi

D̃xi(L̂
∗,V)

+
D̃xi(L̂

∗,V)

D
(ref)
xi

. (3.17)

This is a contradiction to the optimality of L̂∗ and therefore the assumption made is not correct

and proves the result.

Next, we give an analytical representation of the maximum total damage when S-N curve has one

slope and a load time series with one block is acting through the actuators.

Lemma 3.1.18. If the number of blocks in a load time series with block load is one and S-N curve

has one slope, the value of D̃xi defined in Eq. (3.8) is given as

D̃xi

(
L̂,V

)
=

ν1

σkeNe

(
1

2

√(
σ̃1

xiL̂ + σ̃2
xiL̂
)2

+

√
1

4

(
σ̃1

xiL̂− σ̃2
xiL̂
)2

+
(
σ̃3

xiL̂
)2
)k

(3.18)

where ν1 is the number of cycles of the first and only block, σe, Ne and k depend on the material

properties.

Proof. We have one block therefore Σ̂xi ·L̂ is a column vector with three components corresponding

to σxi,xx, σxi,yy and σxi,xy respectively. If σ̃jxi represents the j-th row of the stress tensor σ̃xi

then we have σxi,xx = σ̃1
xiL̂, σxi,yy = σ̃2

xiL̂ and σxi,xy = σ̃3
xiL̂. Again from Corollary 2.3.14

we know that the maximum absolute value of scalar stress is given as a(σ) + b(σ) where a(σ) =

1
2 |σxx + σyy| = 1

2

√
(σxx + σyy)

2
and b(σ) =

√
1
4 (σxx − σyy)

2
+ σ2

xy. In the current context this

gives us

D̃xi

(
L̂,V

)
=

ν1

σkeNe

(
1

2

√(
σ̃1

xiL̂ + σ̃2
xiL̂
)2

+

√
1

4

(
σ̃1

xiL̂− σ̃2
xiL̂
)2

+
(
σ̃3

xiL̂
)2
)k

.
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3.2. Numerical results

For the damage optimization we have to compute the maximum total damage D̃xi at every hotspot

xi ∈ X for every iteration in the optimization. For more than one block in the load time series,

there is no analytical representation which we can use to do so. Therefore, we discretize the

interval [0, π) for the plane angle α into eighteen points. We compute the total damage at each of

these points. The maximum damage at these eighteen points is taken as the value of D̃xi . We do

this for each hotspot. We discuss in Section 3.3, the issues relating to computing maximum total

damage through discretization.

3.2.1. Example: Knuckle

Figure 3.2.: A knuckle [1].

The example we look at is a knuckle. A knuckle connects the steering wheel to the suspension

and wheels of the vehicle. So, we can say that a knuckle connects the steering wheel to the rest of

the vehicle, allowing the driver to direct the vehicle. As the driver turns the wheel, the motion is

transferred through the knuckles. Knuckle is one of the most often used components of a vehicle.

Therefore, precise estimation of fatigue lifetime of a knuckle is important. In Figure 3.2, we see

the knuckle which we use as the component under testing.

The knuckle in Figure 3.2 has seven possible attachment points. We use one of these attachment

point as the fixation point Af to fix the component in the testrig. We do not want the number of

force/moment n acting through the actuators to be more than three so in all the results presented

we have n = 3. The number of hotspots nh is given to be ten. The location of the ten hotspots is

given by X = {x1,x2, . . . ,x10}. We have been given the reference stress time series and the the

reference damage values for each hotspot. The reference damage values D(ref) for the hotspots

are given in Table 3.1:

The material of the knuckle has two slopes in the S-N curve. The value of the alternating stress

where the slope changes is σ1 = 74.8kPa and the corresponding value of the number of cycles
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i D
(ref)
xi

1 3.2×10−5

2 5.4×10−5

3 4.0×10−5

4 5.2×10−5

5 2.2×10−5

6 2.2×10−5

7 1.8×10−5

8 3.8×10−6

9 3.6×10−5

10 2.8×10−5

Table 3.1.: The reference damage values for the ten hotspots on the knuckle.

is N1 = 1 × 106. The ultimate tensile stress and the maximum allowed stress value is given as

σu = 190.5kPa and σmax = 190.5kPa, respectively. The slope k1 = 5 and the slope k2 = 15.

We compare the results obtained from the stress optimization problem (TSOP) and damage opti-

mization problem (WSDP) for different testrig configurations T C. At the end of this section, we

compare the results from the different instances of the testrig damage optimization problem.

Stress and Damage optimization results

There are 17400 points in the reference stress time series. Therefore, the general load time series

that is obtained from the stress optimization also has 17400 points. This is different in the case

of damage optimization. The number of points in the load time series with block loads depend

only on the number of block loads and the number of cycles of each block load. We use the

inbuilt function quadprog of MATLAB with the interior-point-convex algorithm for the stress

optimization and the inbuilt function fmincon of MATLAB with the interior-point algorithm for

the damage optimization. We see the results obtained from the stress and damage optimization

on two different configurations.

First Configuration: The first testrig configuration we consider is given as:

T C1 = (3, {2, 4, 5}, {(2, {fx}), (4, {fy}), (5, {fy})}). (3.19)

The index of the fixation point is Af = 3. We apply load time series at F = (2fx , 4fy , 5fy ), i.e.,

at the attachment point with index 2 we apply forces along the x-axis, at the attachment points

with index 4 and 5 we apply forces along the y-axis. For the damage optimization problem we

additionally fix the number of block loads m to 50, the number of cycles for each block load

νi = 5, i = 1, 2, . . . ,m and the weights wi to be all equal. The constraints on the maximum and

minimum loads that can be applied through the actuators is given as ll = −18000 Newtons and

lu = 18000 Newtons, respectively. We are also given the stress tensor σ̃xi for the ten hotspots.

For the damage optimization we used a random vector with maximum magnitude half the max-

imum allowed load lu in the testrig. All calculations are done on an Intel Core i3 CPU with

2.53 GHz and 4 GB RAM. Calculating a solution using stress optimization takes 35.67 seconds.
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Calculating a solution using damage optimization takes 148.03 second for 182 iterations. This

corresponds to an average of 0.81 second for each iteration. We see in what follows that although

the time taken for damage optimization is larger compared to the stress optimization we get better

results with damage optimization.

Since, we want to be as close as possible to the reference damage at the hotspots we compare the

results obtained from the stress optimization problem and the damage optimization problem in

terms of the maximum total damage at each hotspot in Figure 3.3. We also present the function

values ζi from Eq. (3.9) for each hotspot xi for the two optimization problems in Figure 3.4.
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Damage from (WSDP)

Figure 3.3.: Maximum total damage from the stress optimization (green) and the damage opti-
mization (brown) compared with the reference damage (blue). The horizontal axis is
the index of the hotspots and the vertical axis is the damage values on the logarithmic
scale.

In Figure 3.3, we see as expected the maximum total damage from damage optimization is closer

to the reference damage at more than half the hotspots. At the hotspot with index 2 the maximum

total damage from stress optimization is closer to the reference damage. The number of points in

the load time series with block loads Lb from damage optimization is 4
∑50
i=1 νi + 1 = 1001. We

see that with only one-seventeenth number of points in the load time series, damage optimization

gives maximum total damage which is closer to the reference damage at more than half of the

hotspots when compared with the maximum total damage from the load time series resulting from

stress optimization.

In Table 3.2, we see the magnitude of the relative error for the total maximum damage at all

the hotspots for the stress optimization and the damage optimization. We see that the maximum

magnitude of relative error in the stress optimization is higher than that in the case of damage op-

timization. This again implies that maximum total damage obtained by the damage optimization

is closer to the reference damage values.
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i
|D(ref)

xi
−Dxi |

Dxi
for (TSOP)

|D(ref)
xi

−D̃xi |
D̃xi

for (WSDP)

1 379.32 0.234
2 0.175 2.084
3 0.287 0.098
4 1.620 0.558
5 0.014 0.024
6 3.115 0.192
7 0.716 0.727
8 0.056 0.084
9 9.738 0.582
10 0.764 0.333

Table 3.2.: The relative error in damage for maximum total damage computed from the load time
series obtained as a result of the two optimization.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Figure 3.4.: Results for evaluating function ζ for the damage from the stress optimization (blue)
and the damage optimization (brown). The black horizontal line with a value of 2 is
the minimum value for the function ζ. The horizontal axis is the index of the hotspots
and the vertical axis is the values of the function ζ.

In Figure 3.4, we see that at eight out of ten hotspots the value of the function ζi is close to

its minimum value for the damage optimization. But, this is true only for five hotspots for the

stress optimization. The maximum value among the functions ζi for the damage optimization is

for hotspot with index 7 and has a value of 3.940. The maximum value among the functions ζi for

the stress optimization is for hotspot with index 1 and has a value of 380.33. Optimally we want

the value of the functions ζi to be two for all the hotspots.

In Figure 3.5, we see the load time series obtained from the stress optimization and in Figure 3.6

we see the load time series with block load obtained from the damage optimization. The general

load time series L from the stress optimization (TSOP) is very irregular and difficult to use in a

testrig when compared to the load time series with block loads Lb from the damage optimization

(WSDP) that is easier to use and has considerably small number of points. Additionally, we see

that the load time series at hotspot with index 2 resulting from the stress optimization (TSOP)

has a magnitude of 80000 Newtons which is approximately four times the maximum magnitude
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allowed in the damage optimization. The box constraint put on the amplitude of the block loads

is active only for two blocks as seen in Figure 3.6 (a).
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(a) Load time series at hotspot with index 2 acting along the x-axis.
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(b) Load time series at hotspot with index 4 acting along the y-axis.
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(c) Load time series at hotspot with index 5 acting along the y-axis.

Figure 3.5.: General load time series L obtained from stress optimization (TSOP) for testrig con-
figuration T C1 from Eq. (3.19).

One thing to point out here is that not all the points in the load time series obtained in the case

of stress optimization (TSOP) contributes to the damage contribution. This is because many of

the points are removed when computing damage using 4-Point algorithm for counting cycles in

the stress time series. In case of the load time time series with block loads obtained from damage

optimization every block load has a contribution in the total damage.

We saw for the testrig configuration T C in Eq. (3.19) that the load time series obtained as a result

of the damage optimization (WSDP) incurs damage at the hotspot that is closer to the reference
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damage at eight hotspots as compared to the damage from the load time series obtained as a

result of the stress optimization (TSOP).

Second Configuration

Next, we give results for the testrig configuration which has the best results in the context that

stress optimization fives maximum total damage value close to the reference damage values at all

except one hotspot:

T C2 = (3, {5, 4, 2}, {(5, {fx}), (4, {fy}), (2, {fz})}) (3.20)

The index of the fixation point is Af = 3. We apply load time series at F = (5fx , 4fy , 2fz ), i.e., at

the attachment point with index 5 we apply forces along the x-axis, at the attachment point with

index 4 we apply forces along the y-axis and at the attachment point with index 2 we apply forces

along the z-axis. For the damage optimization problem we additionally fix the number of block

loads m to 50, the number of cycles for each block load νi = 5, i = 1, 2, . . . ,m and the weights wi
to be all equal. The constraints on the maximum and minimum loads that can be applied through

the actuators is given as ll = −14000 Newtons and lu = 14000 Newtons. We are also given the

stress tensor σ̃xi for the ten hotspots.

For the damage optimization we used a random vector with maximum magnitude half the max-

imum allowed load lu in the testrig. All calculations are done on an Intel Core i3 CPU with

2.53 GHz and 4 GB RAM. Calculating a solution using stress optimization takes 37.49 seconds.

Calculating a solution using damage optimization takes 174.08 second for 213 iterations. This

corresponds to an average of 0.817 seconds for each iteration.

In Figure 3.7, we see that the maximum total damage at the ten hotspots resulting from the load

time series obtained through stress optimization (TSOP) and damage optimization (WSDP). In

Figure 3.8, we see the function values ζi from Eq. (3.9) for each hotspot xi for the two optimization

problems.
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Figure 3.7.: Maximum total damage from stress optimization (green) and damage optimization
(brown) compared with the reference damage (blue). The horizontal axis is the index
of the hotspots and the vertical axis is the damage values on the logarithmic scale.
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In this case as well, maximum total damage due to the load time series as a result of the damage

optimization is closer to the reference damage at six hotspots. At other hotspots, the difference

between the damages incurred by the load time series from the two optimization problems is small.

The advantage of the damage optimization is that the maximum relative error is comparatively

less for all the hotspots which is not true for the stress optimization. Again, the number of points

in the load time series with block loads Lb from damage optimization is 4
∑50
i=1 νi + 1 = 1001.

In Table 3.3, we see the magnitude of the relative error for the total maximum damage at all the

hotspots for the stress optimization and the damage optimization. Similar to the observation made

from Table 3.2, we see that the maximum magnitude of relative error in the stress optimization is

higher than that in the case of damage optimization. This implies that maximum total damage

obtained by the damage optimization is closer to the reference damage values.

i
|D(ref)

xi
−Dxi |

Dxi
for (TSOP)

|D(ref)
xi

−D̃xi |
D̃xi

for (WSDP)

1 809.078 0.042
2 0.004 0.019
3 0.862 0.410
4 3.094 1.567
5 0.072 0.021
6 0.245 0.572
7 0.590 0.635
8 0.228 0.005
9 3.125 0.803
10 0.186 0.020

Table 3.3.: The magnitude of the relative error in damage for maximum total damage computed
from the load time series obtained as a result of the two optimization. Here, Dxi

denotes the maximum total damage from the load time series resulting from the stress
optimization (TSOP) at hotspot xi.

In Figure 3.8, we see that at seven out of the ten hotspots a value close to the minimum value

of the ζ function is obtained for the damage optimization. However, this is true only for four

hotspots for the stress optimization. The maximum value among the functions ζi for the damage

optimization is for hotspot with index 7 and has a value of 3.138. The maximum value among the

functions ζi for the stress optimization is for hotspot with index 1 and has a value of 810.08. We

observe that the maximum value among the functions ζi for damage optimization is less than the

maximum value of among the functions ζi in the previous testrig configuration. This means that

the maximum relative error is smaller in this testrig configuration. But, the maximum value of ζi
for stress optimization is approximately twice the value of the maximum value of ζi in the previous

testrig configuration. However, we observe that the value of the function ζi at other hotspots is

all less than 4.5 in this testrig configuration unlike the previous testrig configuration.
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Figure 3.8.: Results for evaluating function ζ for the damage from the stress optimization (blue)
and the damage optimization (brown). The black horizontal line with a value of 2 is
the minimum value for the function ζ. The horizontal axis is the index of the hotspots
and the vertical axis is the values of the function ζ.

In Figure 3.9, we see the load time series obtained from the testrig stress optimization and in

Figure 3.10 we see the load time series with block load obtained from the damage optimization.

The general load time series L from the stress optimization (TSOP) is very similar to that obtained

in the stress optimization from the previous testrig configuration. The box constraint put on the

amplitude of the block loads is not active on any of the block loads in all the three load time series

as seen in Figure 3.10 (a).

From Table 3.2 and Table 3.3 we see that the maximum magnitude of the relative error in the

case of testrig damage optimization problem (WSDP) is very small compared to the maximum

relative error in the case of testrig stress optimization problem (TSOP). Also, the function ζi
for hotspots xi, i = 1, 2, . . . , nh, when evaluated for total maximum damage from testrig damage

optimization problem (WSDP) is closer to the minimum value of 2 in comparison to the values

of the function ζi when evaluated for the total maximum damage from testrig stress optimization

problem (WSDP). The length of the load time series obtained in the stress optimization is always

equal to the reference stress time series which usually has thousands of points, however, the length

of the load time series obtained by damage optimization depends on the number of chosen blocks

and corresponding number of cycles. The cost and time for applying the load time series through

actuators in damage optimization can be controlled which is not possible for the load time series

obtained by the stress optimization. Therefore, we see that damage optimization is a better

alternative to the stress optimization which is the current state of the art.

So far we have not investigated the effect of the number of times a unit of the block load is

repeated on the optimal objective function value resulting from the damage optimization. In the

next section we discuss this aspect of the damage optimization. We end the next section by looking

at the consequences of using discretization in finding the maximum total damage over all planes.
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3.3. Discussion

In Figure 3.11, we see the optimal value of the objective function ZV,W for load time series with

one block when ν1 is increasing. When the value of νi is increasing we see that the optimal value

of ZV,W is also increasing. This trend is also observed when we have more than one block in the

load time series. However, the slope of the curve in higher number of blocks is not as steep as

seen in Figure 3.11. Therefore, from what has been observed it is not optimal to take the value of

νi very large.

In the previous section, we gave results for the damage optimization which used discretization of

the plane angles α for finding the maximum total damage at each iteration in the optimization.

Discretization as expected leads to discretization error when computing maximum total damage.

This error is introduced at each iteration of the optimization and therefore, may lead to solutions

that do not estimate the fatigue life of the component as precisely as required. In Figure 3.12, we

see the actual total damage D̂xi on the interval [0, π) and the total damage on the 18 planes into

which we discretized the interval [0, π). In (a), we see the plots for the results presented for the

testrig configuration T C1 from Eq. (3.19) and in (b), we see the plots for the results presented for

the testrig configuration T C2 from Eq. (3.20). In both the plots we only show the total damage

for those hotspots where the discretization error is more than 3%. The discretization error could

go as high as 10%.

Therefore, we want to be able to compute the maximum total damage on the planes α as accurately

as possible. However, there is no direct method that can be used to do so. Therefore, in the next

chapter we remodel damage from a block load as Gaussian functions such that the plane angle α

is the only independent variable in the case of one slope in the S-N curve. Total damage is then

given as the sum of Gaussian functions. In Chapter 5, we derive conditions that when satisfied

the Gaussian functions in the sum leads to a single maximum. We use these conditions to give

a clustering algorithm. The clustering algorithm is used to approximate the point of maximum

total damage for each hotspot. Finally, we use the theory developed in Chapter 6 for computing

the exact maximum total damage at each iteration during the optimization.
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(a) Load time series with block loads at hotspot with index 2 acting along the x-axis.
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(b) Load time series with block loads at hotspot with index 4 acting along the y-axis.
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(c) Load time series with block loads at hotspot with index 5 acting along the y-axis.

Figure 3.6.: Load time series with block loads Lb obtained from damage optimization (WSDP) for
testrig configuration T C1 from (3.19).
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(a) Load time series at hotspot with index 5 acting along the x-axis.
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(b) Load time series at hotspot with index 4 acting along the y-axis.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−1.5

−1

−0.5

0

0.5

1
x 10

4

(c) Load time series at hotspot with index 2 acting along the z-axis.

Figure 3.9.: General load time series L obtained from stress optimization (TSOP) for testrig con-
figuration T C2 from (3.20).
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(a) Load time series with block loads at hotspot with index 5 acting along the x-axis.

0 100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

x 10
4

(b) Load time series with block loads at hotspot with index 4 acting along the y-axis.
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(c) Load time series with block loads at hotspot with index 2 acting along the z-axis.

Figure 3.10.: Load time series with block loads Lb obtained from damage optimization (WSDP)
for testrig configuration T C2 from (3.20).
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Figure 3.11.: Optimal value of objective function ZV,W for testrig configuration T C2 for load time
series with one block for different values of ν1. The horizontal axis gives the value of
ν1 and the vertical axis gives the optimal value of the objective function ZV,W .
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(a) Testrig configuration T C1
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(b) Testrig configuration T C2

Figure 3.12.: Total damage on 18 planes (dotted lines) and actual damage on the interval [0, π).
(a) plots for hotspots with index 1, 3, 4, 5, and 6 in the case of testrig configuration
T C1. (b) plots for hotspots with index 5 and 6 from the results obtained in the case
of testrig configuration T C2. We see the discretization error by taking the maximum
total damage from the 18 planes shown as dotted lines.
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4. Gaussian approximation of damage: one

slope

In the previous chapter we saw that the maximum damage computed from the discretization of the

plane angle α can introduce discretization errors. Due to the discretization errors the optimal load

time series computed by the optimization algorithm is not the actual optimal and the component

may fail before its estimated fatigue life. We discretized the plane angle α as there is no direct

method which gives the maximum damage for a given block loading. Before we can deal with the

discretization errors we must be able to represent the damage in terms of the plane angle α as the

only independent variable. In this chapter the damage is approximated by the Gaussian functions

with α as the independent variable for load time series with one block having just one cycle. Since,

we want to find the maximum damage for a given load time series with block loads it is important

that the approximation is very close to the damage in the neighborhood of its maximum.

Definition 4.0.1 (Gaussian function). A Gaussian function is defined as

fă,b̆,c̆ : R→ R, α 7→ ă exp


−

(
α− b̆
c̆

)2

 (4.1)

where ă ∈ R+ is the maximum value of fă,b̆,c̆ at α = b̆, b̆ ∈ R and c̆ ∈ R+ such that b̆± c̆√
2

are the

inflexion points of fă,b̆,c̆.

α

ă

b̆

(b̆, ă)

Figure 4.1.: General form of the graph of a Gaussian function fă,b̆,c̆.

Section 4.1 recapitulates the computation of the damage for one slope. We also see that the damage

is a periodic function with period π. In Section 4.2, the idea of approximation of damage around

the point of maximum is introduced and the parameters ă, b̆ and c̆ of the approximation are derived

while formulating a result on the quality of the approximation. In other words in Section 4.2, we

derive the approximate model for one period of damage. In Section 4.3, an approximate model for

damage for α ∈ R is developed. For more than one block load, the damage from each block can
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have different points of maximum. Keeping this in mind, Section 4.4 gives an approximation of the

damage for one block on the interval [0, π]. In Section 4.4, the interval [0, π] becomes the common

interval for the approximation of the damage for different block loads and is chosen because the

damage function is periodic with period π. The chapter concludes with the comparison of the

damage and the approximated model in Section 4.5. Numerical results are presented to show that

the error of approximation is small in the neighborhood of the maximum value.

4.1. Damage for one slope

The failure of a component starts by the formation of microscopic cracks in the high stress regions

on the surface. When these microscopic cracks reach a critical size the component suddenly fails

[21]. We therefore want to compute the damage on the surface. In this chapter we approximate

damage from a load time series with one block having just one cycle. For computing the damage

at any point x ∈ R3 on the surface due to a load time series with one block load Lb, we need to

know the stress σx = (σxx, σyy, σxy)T , at that point and the angle of the plane (α ∈ R) that we

are interested in. We know from Section 2.4.3 that the damage is computed in terms of the matrix

of amplitudes Lb,a = (lb,1) of the block loads in the load time series with block loads Lb:

Dx(Lb,a,V, α) = D(n(α)σ̃xLb,a,V) (4.2)

= D(n(α)σx(lb,1))

Eq.2.55
=

1

Neσke
ν1 |s (σx(lb,1), α)|k

where s (σx(lb,1), α) = n(α)σx(lb,1) is the scalar stress for the one and only block, k is the slope

of the S-N curve for the material, and σe is the stress at any point on the S-N curve with Ne the

corresponding number of loading cycles required for the component under loading to fail. The

parameters k, σe and Ne are material properties and are obtained from experiments.

We approximate the damage Dx for a single cycle of block load. Hence, for the development of the

model, block length do not make any difference and, therefore, we assume that ν1 = 1,V = (ν1):

Dx(Lb,a,V, α) =
1

Neσke
|s (σx(lb,1), α)|k (4.3)

From Theorem 2.3.6 we know that scalar stress s is periodic with period π, which implies from

Eq. (4.3) that damage Dx is also periodic with period π.

Assumption 4.1.1. For the approximation of damage with respect to the plane angle α we assume

that the stress vector σx(lb,1) is constant and in the development of the model drop the parameters

x and lb,1 on which stress σ and damage D depends .

We define by d̂ damage for one block with stress σ and plane angle α as

d̂(σ, α) := d(s(σ, α), 1) (4.4)

where damage from alternating stress d is given in Eq. (2.43).
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Figure 4.2 shows some sample plots for one period of damage d̂ for a block load with one cycle

in the case of one slope. The damage in (a) represents the case when s(σ, α) ≥ 0 or s(σ, α) ≤ 0

for all α, or in other words, the stress is completely on one side of the axis. From Theorem 2.3.9

the two conditions are equivalent to a(σ) ≥ b(σ). The damage d̂ has one peak in this case. The

damage in (b) represents the case a(σ) < b(σ) and has two peaks. We observe that the damage

profiles in Figure 4.2 look like a Gaussian function. For approximating the damage in (a) we need

one Gaussian function while for the damage in (b) we need two Gaussian functions.

d̂

α

(a) A sample plot of damage for a(σ) ≥ b(σ).

d̂

α

(b) A sample plot of damage for a(σ) < b(σ).

Figure 4.2.: Sample damage plots for one slope and single block with one cycle.

4.2. Approximation of the damage in the neighborhood of the

maximum

In this section, we introduce the idea of approximation of the damage, for a block load with ν = 1,

by Gaussian functions in an interval centered around the point of maximum. The requirements we

enforce on all our approximations are that they must be accurate at the points of minimum and

maximum damage in the interior of the interval of approximation and the approximation error

has to be small in the neighborhood of the maximum.

In Section 4.2.1, we look at the case when a(σ) ≥ b(σ). From Figure 4.2(a) we see that we require

one Gaussian function for the approximation of the damage. We derive the parameters of the

Gaussian function and give a result on the quality of the approximation. We do a similar analysis

in Section 4.2.2 for the case a(σ) < b(σ). From Figure 4.2(b) we see that we need two Gaussian

functions for the approximation of the damage when a(σ) < b(σ).

4.2.1. Case a(σ) ≥ b(σ)

The stress vector σ = (σxx, σyy, σxy)T is the stress induced at some point due to the application

of a load time series with a single block at the actuators. We denote by g the approximation of

damage around the maximum damage and define it as

g(σ, α) := fă(σ),b̆(σ),c̆(σ)(α) + d̆(σ), (4.5)
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where fă(σ),b̆(σ),c̆(σ) is the Gaussian function with the parameters ă, b̆ and c̆ as functions of σ and

α ∈ I :=
[
b̆(σ)− π

2 , b̆(σ) + π
2

]
. The interval I is centered around the point of maximum b̆(σ). A

Gaussian function starts decreasing to zero symmetrically on both sides as we move away from its

maximum. However, when a(σ) > b(σ) the minimum damage due to a block load is not zero on

the interval I. This difference in two functions is accounted for by using a shift parameter d̆ in

the definition of approximation function g.

The maximum damage occurs at α+
max(σ) in Eq. 2.18. When the damage and its approximation

are evaluated at α = α+
max(σ) we get

fă(σ),b̆(σ),c̆(σ)(α
+
max(σ)) + d̆(σ) =

(a(σ) + b(σ))k

σkeNe
. (4.6)

The Gaussian function fă(σ),b̆(σ),c̆(σ) has its maximum at α = b̆(σ). For the approximation to be

maximum as well, b̆(σ) must be equal to α+
max(σ). Equating b̆(σ) to α+

max(σ) from Eq. (2.18) we

get

b̆(σ) = α+
max(σ) =

{
π
4 −

φ(σ)
2 + n1π, if â(σ) ≥ 0

−π4 −
φ(σ)

2 + n1π, if â(σ) < 0
. (4.7)

This simplifies Eq. (4.6) to

ă(σ) + d̆(σ) =
(a(σ) + b(σ))k

σkeNe
. (4.8)

Then, the Gaussian function is centred around α = α+
max(σ). Additionally, in the interval I the

minimum damage occurs at α+
min(σ) with

∣∣α+
max(σ)− α+

min(σ)
∣∣ =

π

2
. (4.9)

Since, Interval I is centered around α+
max(σ) and has a width of π both the end points of the

interval I due to symmetry of the Gaussian function correspond to α+
min(σ). Since, a(σ) ≥ b(σ)

from Theorem 2.3.10 the minimum value of |s(σ, α)| is a(σ)−b(σ) which implies that the minimum

damage is (a(σ)−b(σ))k

σkeNe
. Evaluating the damage and its approximation at α = α+

min(σ) and using

Eq. (4.9) we get

ă(σ) exp

(
− π2

4c̆2(σ)

)
+ d̆(σ) =

(a(σ)− b(σ))k

σkeNe
. (4.10)

Parameters ă(σ), c̆(σ), and d̆(σ) must satisfy Eq. (4.8) and Eq. (4.10) for approximating maxi-

mum and minimum damage accurately. Figure 4.3 gives a visual representation of Eq. (4.8) and

Eq. (4.10).

In the next Theorem we investigate the quality of our approximation.

Theorem 4.2.1. Given stress vector σ = (σxx, σyy, σxy)T and ν = 1 with a(σ) ≥ b(σ). If the

approximation function g is as defined in Eq. (4.5) with parameters ă(σ), b̆(σ) and d̆(σ) satisfying

Eq. (4.7), Eq. (4.8) and Eq. (4.10), and additionally if

c̆(σ) =

√
ă(σ)σkeNe

2kb(σ)(a(σ) + b(σ))k−1
, (4.11)
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Figure 4.3.: Explanation of approximation around maximum for one slope and a(σ) ≥ b(σ).

then for α ∈
[
b̆(σ)− π

2 , b̆(σ) + π
2

]
, function g is an approximation to the damage function d̂ from

Eq. (4.4) of order 4, i.e.,

∣∣∣d̂(σ, α)− g(σ, α)
∣∣∣ = O((α− b̆(σ))4). (4.12)

Proof. For the proof we use Taylor’s expansion for the damage and the Gaussian function. From

Theorem 2.3.8, When a(σ) ≥ b(σ) then the following is true

(i) If â(σ) ≥ 0 then s(σ, α) ≥ 0,∀α ∈ [0, π),

(ii) If â(σ) < 0 then s(σ, α) ≤ 0,∀α ∈ [0, π).

From Definition 2.4.2 and Eq. (4.4), the damage for the two cases with ν = 1 is

d̂(σ, α) =
1

σkeNe

{
(â(σ) + b(σ) sin(2α+ φ(σ)))

k
, if â(σ) ≥ 0

(−â(σ)− b(σ) sin(2α+ φ(σ)))
k
, if â(σ) < 0

(4.13)

We have a(σ) = |â(σ)| which simplifies Eq. (4.13) to

=
1

σkeNe

{
(a(σ) + b(σ) sin(2α+ φ(σ)))

k
, if â(σ) ≥ 0

(a(σ)− b(σ) sin(2α+ φ(σ)))
k
, if â(σ) < 0

(4.14)

Rewriting Eq. (4.7) in terms of φ(σ) yields

φ(σ) =

{
π
2 − 2b̆(σ) + 2n1π, if â(σ) ≥ 0

−π2 − 2b̆(σ) + 2n1π, if â(σ) < 0
. (4.15)

Inserting φ(σ) from Eq. (4.15) into Eq. (4.14) and observing that sin(π2 + θ + 2n1π) = cos θ and

sin(−π2 + θ + 2n1π) = − cos θ to obtain

d̂(σ, α) =
1

σkeNe

(
a(σ) + b(σ) cos(2α− 2b̆(σ))

)k
. (4.16)
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The Taylor series expansion of the damage at b̆(σ) is given from Eq. (A.1) in Theorem A.1.1 as

d̂(σ, α) = d̂(σ, b̆(σ)) +
2kb(σ)

σkeNe
(a(σ) + b(σ))

k−1
(α− b̆(σ))2 +O

(
(α− b̆(σ))4

)
, α ∈ I. (4.17)

Damage is maximum at b̆(σ) so we can replace d̂(σ, b̆(σ)) by (a(σ)+b(σ))k

σkeNe
in Eq. (4.17) to get

d̂(σ, α) =
(a(σ) + b(σ))

k

σkeNe
+

2k (a(σ) + b(σ))
k−1

σkeNe
(α− b̆(σ))2 +O

(
(α− b̆(σ))4

)
. (4.18)

Now we want to compute the Taylor series representation of the approximation function g. We

use the Taylor series representation of the exponential function:

exp(x) =

∞∑

i=0

xi

i!
for all x. (4.19)

Replacing x by −
(
α−b̆(σ)
c̆(σ)

)2

in Eq (4.19) and inserting in the approximation function g and after

reordering we get:

g(σ, α) = ă(σ) + d̆(σ) + ă(σ)

∞∑

i=1

(−1)i
1

i!

(
α− b̆(σ)

c̆(σ)

)2i

, α ∈ I. (4.20)

Inserting the value of ă(σ) + d̆(σ) from Eq. (4.8) into Eq. (4.20) leads to

g(σ, α) =
(a(σ) + b(σ))k

σkeNe
+ ă(σ)

∞∑

i=1

(−1)i
1

i!

(
α− b̆(σ)

c̆(σ)

)2i

. (4.21)

Subtracting Eq (4.21) from Eq (4.18) yields

∣∣∣d̂(σ, α)− g(σ, α)
∣∣∣ =

(
ă(σ)

c̆(σ)2
− 2kb(σ)(a(σ) + b(σ))k−1

σkeNe

)
(α− b̆(σ))2 +O((α− b̆(σ))4)

Choosing c̆(σ) such that the term (α− b̆(σ))2 vanishes gives us Eq. (4.11).

ă(σ)

c̆(σ)2
− 2kb(σ)(a(σ) + b(σ))k−1

σkeNe
= 0

⇒ c̆(σ) =

√
ă(σ)σkeNe

2kb(σ)(a(σ) + b(σ))k−1

This completes the proof.

In Theorem 4.2.1, we proved that the Gaussian approximation g is very close to the damage d̂

in the neighborhood of the point of maximum. This is good as eventually we want to find the

point of maximum when more than one block loads are acting on the component. Hence, it is

important that error in the neighborhood of the point of maximum is small and at the same time

the ratio of maximum error to the maximum damage should also be small. In Section 4.5, we give

a comparison of the damage d̂ and the approximation function g as well as a comparison of the
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maximum error and maximum damage.

In the next lemma we give the equations to compute the parameters ă(σ) and d̆(σ) in the definition

of the approximation function g from Eq. (4.5).

Lemma 4.2.2. The parameters ă(σ) and d̆(σ) in Eq. (4.5) are given as

ă(σ) =
(a(σ) + b(σ))k − (a(σ)− b(σ))k

σkeNe

(
1− exp

(
− π2

4c̆2(σ)

)) and (4.22)

d̆(σ) =
(a(σ)− b(σ))k − (a(σ) + b(σ))k exp

(
− π2

4c̆2(σ)

)

σkeNe

(
1− exp

(
− π2

4c̆2(σ)

)) . (4.23)

Proof. The two equations, Eq. (4.8) and Eq. (4.10) have three unknowns. We can use these two

equations to give ă(σ) and d̆(σ) in terms of c̆(σ). Subtracting Eq. (4.10) from Eq. (4.8) we get a

equation in ă(σ) and c̆(σ):

ă(σ)

(
1− exp

(
− π2

4c̆2(σ)

))
=

(a(σ) + b(σ))k − (a(σ)− b(σ))k

σkeNe
. (4.24)

Rearranging Eq. (4.24) gives us Eq. (4.22) for computing ă(σ). Inserting the value of ă(σ) into

Eq. (4.8) and further simplification gives us Eq. (4.23) for computing d̆(σ).

The value of ă(σ) is always positive but the value of d̆(σ) can be positive as well as negative. An

example when d̆(σ) is negative is when a(σ) = b(σ).

The next corollary gives us an equation for computing c̆(σ).

Corollary 4.2.3. The parameter c̆(σ) in the definition of the approximation function g in Eq.

(4.5) is given as

c̆(σ) =

√√√√ (a(σ) + b(σ))k − (a(σ)− b(σ))k

2kb(σ)(a(σ) + b(σ))k−1
(

1− exp
(
− π2

4c̆2(σ)

)) (4.25)

Proof. Inserting ă(σ) from Eq. (4.22) into Eq. (4.11) gives us c̆(σ).

We can rewrite Eq. (4.25) as a product of two factors as

c̆(σ) =

√
(a(σ) + b(σ))k − (a(σ)− b(σ))k

2kb(σ)(a(σ) + b(σ))k−1

1√
1− exp

(
− π2

4c̆2(σ)

) (4.26)

The first factor in Eq. (4.26) is constant while the second factor depends on c̆(σ) itself. Such

equations are also known as fixed point equations. Since the parameters ă(σ) and d̆(σ) depend

on the parameter c̆(σ), the fixed point equation for c̆(σ) has to be solved first before parameters

ă(σ) and d̆(σ) can be computed. In order to use the approximation we have to show that there
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exists at least one solution to the Eq. (4.25). We introduce some standard definitions and results

that is used to prove that Eq. (4.25) has a unique fixed point.

Definition 4.2.4 (Fixed point). Let T : X → X be a map of a metric space to itself. A point

x0 ∈ X is called the fixed point of T if T (x0) = x0.

Definition 4.2.5 (Contraction Mapping). Let (X, d) be a complete metric space. A function

T : X → X is said to be a contraction mapping if there is a constant q with 0 ≤ q < 1 such that

d(T (x), T (y)) ≤ qd(x, y) for all x, y ∈ R

Theorem 4.2.6 (Contraction mapping theorem). Every contraction mapping has a unique fixed

point.

Proof. For proof see [4].

We use Definitions 4.2.4, Definition 4.2.5 and Theorem 4.2.6 to prove that Eq. (4.25) has a unique

fixed point for every σ. For the proof we define

T : R→ R, y 7−→ 1√
1− exp

(
− π2

4y2

) . (4.27)

The mapping T is the second factor in Eq. (4.26) replacing c̆(σ) by y. Since the mapping

T is once continuously differentiable, the smallest q to fulfill condition in Theorem 4.2.6 is

q = supy′∈R |T ′(y′)|. Therefore, q < 1 is equivalent to |T ′(y)| < 1 − ε, for all y ∈ R and

0 < ε < 1. The following lemma proves a general result that we use to show |T ′(y)| < 1− ε for all

y ∈ R and 0 < ε < 1.

Lemma 4.2.7. We have

t2 exp
(
− t2

s2p2

)

rs2p3
(

1− exp
(
− t2

s2p2

)) 3
2

<
s

rt

for all r, s, t ∈ R+ and p ∈ R.

Proof. Multiplying both the numerator and the denominator by exp
(

3t2

2s2p2

)
and further simplifi-

cation leads to

t2 exp
(
− t2

s2p2

)

rs2p3
(

1− exp
(
− t2

s2p2

)) 3
2

exp
(

3t2

2s2p2

)

exp
(

3t2

2s2p2

) =
t2 exp

(
t2

2s2p2

)

rs2p3
(

exp
(

t2

s2p2

)
− 1
) 3

2

Now using the series expansion of the exponential function to get

t2 exp
(
− t2

s2p2

)

rs2p3
(

1− exp
(
− t2

s2p2

)) 3
2

=
t2
∑∞
i=0

1
2i ·
(

t2

s2p2

)i
· 1
i!

rs2p3

(∑∞
i=1

1
i!

(
t2

s2p2

)i) 3
2
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Multiplying both the numerator and the denominator by t3

s3p3 and observing that
(

t2

s2p2

) 3
2

= t3

s3p3

yields

=
s
∑∞
i=0

1
2i ·
(

t2

s2p2

)i
· 1
i!

rt

(∑∞
i=1

1
i!

(
t2

s2p2

)(i−1)
) 3

2

Renumbering i to i− 1 in the sum in the denominator

=
s
∑∞
i=0

1
2i ·
(

t2

s2p2

)i
· 1
i!

rt

(∑∞
i=0

1
(i+1)!

(
t2

s2p2

)i) 3
2

We know that 2i ≥ (i+ 1) for all i ∈ N

<
s

rt
.

Equipped with Lemma 4.2.7 the contraction property of T follows as shown in the next result.

Theorem 4.2.8. The mapping T as defined in Eq. (4.27) is a contraction mapping.

Proof. For T to be a contraction mapping we have to show that |T ′(x)| is less than one for all

x ∈ R. The first derivative of T is given at y ∈ R by

T ′(y) =
d

dy




1√
1− exp

(
− π2

4y2

)




=
π2 exp

(
− π2

4y2

)

4y3
(

1− exp
(
− π2

4y2

)) 3
2

.

Using Lemma 4.2.7 with s = 2, p = y, r = 1 and t = π yields that the first derivative is less than
2
π for all y ∈ R. Mathematically,

T ′(y) <
2

π
< 1 for all y ∈ R⇒ sup

y∈R
|T ′(y)| ≤ 2

π
< 1.

Hence, T (y) is a contraction mapping.

Theorem 4.2.6 implies that rT is also a contraction mapping for any r ∈ (0, 1]. Next we show that

the first factor in Eq. (4.26) is less than one.

Lemma 4.2.9. For every a, b ∈ R with a ≥ b > 0 and k ∈ Z+ with k > 1 the following holds

(a+ b)k − (a− b)k
2kb (a+ b)

k−1
< 1. (4.28)
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And if k = 1 we have
(a+ b)k − (a− b)k

2kb (a+ b)
k−1

= 1

for all a ≥ b > 0.

Proof. In the case of a > b we use a telescopic sum

(a+ b)k − (a− b)k
2kb (a+ b)

k−1
=

((a+ b)− (a− b))∑k−1
i=0 (a+ b)k−1−i(a− b)i

2kb (a+ b)
k−1

(4.29a)

Simplification and factoring gives

=
2b(a+ b)k−1

∑k−1
i=0 (a+ b)−i(a− b)i

2kb (a+ b)
k−1

(4.29b)

=

∑k−1
i=0 (a+ b)−i(a− b)i

k

=
1

k

k−1∑

i=0

(
a− b
a+ b

)i

a > b⇒ <
1

k

k−1∑

i=0

1 (4.29c)

< 1.

In case a = b we get
(a+ b)k − (a− b)k

2kb (a+ b)
k−1

=
1

k
< 1.

In Lemma 4.2.9 we had an assumption that k is a positive integer. However, as k is the slope in

the S-N curve it can be any real number greater than one. In the next theorem we extend Lemma

4.2.9 for all k ∈ R and k > 1.

Theorem 4.2.10. For every a, b ∈ R with a ≥ b > 0 and k ∈ R+ with k > 1 inequality in Eq

(4.28) holds.

Proof. Let us define

T : [1,∞)→ R, k 7→ (a+ b)k − (a− b)k
2kb (a+ b)

k−1
, (4.30)

where a and b are constants. If a = b and k > 1 then T (k) = 1
k < 1 and when k = 1 we have

T (1) = 1. In Section A.2.1 we prove that T is strictly convex. Strict convexity of T implies

T (k) < tT (k1) + (1− t)T (k1 + 1)

with k1 = bkc and t = k1− k+ 1. From Lemma 4.2.9 we know that T (k1) ≤ 1 and T (k1 + 1) < 1.

Hence, T (k) < 1.

The following is true for the fixed point equation in Eq. (4.25).
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Theorem 4.2.11. Equation (4.25) has a unique fixed point.

Proof. Combining Theorem 4.2.8 and Theorem 4.2.10 we have shown that Eq. (4.26) is a contrac-

tion mapping. We can now use Theorem 4.2.6 (Contraction Mapping Theorem) to conclude that

Eq. (4.25) has a unique fixed point.

From Theorem 4.2.11 we get that there exists one unique solution to the fixed point equation in

Eq. (4.25). Additionally, we can now compute all the parameters of the approximation function

g. Now that we have a way to compute c̆(σ) we give some of its properties.

As a consequence of Theorem 4.2.10 the first factor in Eq. (4.26) lies in the interval
[

1√
k
, 1
)

for

different values of a(σ) and b(σ) with fixed k. For each point in this interval Eq. (4.25) has a

unique fixed point.

In Algorithm 4.2.1 we describe a method to compute the fixed points of equations of the form

y = ϕ(y).

Algorithm 4.2.1: Computing fixed point y for equations of the form y = ϕ(y)

Data: ϕ(y) and ε > 0
Result: y such that y = ϕ(y)

1 begin
2 y ←− 0.5
3 n←− 0
4 while |yn − yn−1| > ε and n ≤ max iter do
5 yn+1 ←− ϕ(yn)
6 n←− n+ 1

7 end
8 return yn
9 end

We can prove that, if ϕ is a contraction mapping, then Algorithm 4.2.1 converges to the unique

fixed point of the equation y = ϕ(y). We use the definition of Cauchy sequences for the proof.

Definition 4.2.12 (Cauchy sequence). Given a metric space (X, d), a sequence {yn} is Cauchy,

if for every positive real number ε > 0, there is a positive integer N such that for all positive

integers m,n > N , the distance d(ym, yn) < ε.

Theorem 4.2.13. If ϕ is a contraction mapping then the iterates yn in Algorithm 4.2.1 with ϕ(y)

and ε > 0 always converges to the unique fixed point.

Proof. Since ϕ(y) is a contraction mapping with q = supy′∈R |ϕ′(y′)| < 1, then for the sequence of

iterates {yn, n = 0, 1, 2, . . .} generated in Algorithm 4.2.1, we have:

|y2 − y1| = |ϕ(y1)− ϕ(y0)| ≤ q|y1 − y0|,

|y3 − y2| = |ϕ(y2)− ϕ(y1)| ≤ q|y2 − y1|,

. . . ,
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and

|yn − yn−1| = |ϕ(yn−1)− ϕ(yn−2)| ≤ q|yn−1 − yn−2|.

Combining the above inequalities yields:

|yn − yn−1| ≤ qn−1|y1 − y0|.

Since q < 1, qn−1 → 0 as n→∞. Therefore, we can show {yn} is a Cauchy sequence and thus it

converges to a point y∗.

We let n go to infinity on both sides of yn = ϕ(yn−1) to obtain y∗ = ϕ(y∗). Hence, y∗ is a

fixed point of ϕ. So we proved that the iterates in Algorithm 4.2.1 converges to the unique fixed

point.

Equation (4.26) is a fixed point equation and we can apply Algorithm 4.2.1 with the right hand

side of Eq. (4.26) as ϕ and y as c̆(σ). Since Eq. (4.26) is a contraction mapping, from Theorem

4.2.13 convergence to the unique fixed point is guaranteed.

From Eq. (4.25) we can also obtain the lower and upper bound for c̆(σ). We can rewrite Eq.

(4.25) as

c̆(σ) =

√√√√ (a(σ) + b(σ))k − (a(σ)− b(σ))k

2kb(σ)(a(σ) + b(σ))k−1
(

1− exp
(
− π2

4c̆2(σ)

)) , (4.31a)

Eq. (4.29)⇒ =

√√√√√
1

k

k−1∑

i=0

(
a(σ)− b(σ)

a(σ) + b(σ)

)i
1(

1− exp
(
− π2

4c̆2(σ)

)) . (4.31b)

In Eq. (4.31) we see that increasing b(σ) decreases the right hand side of the equation. The max-

imum value of the right hand side of Eq. (4.31) is obtained in the limiting case when b̆(σ)→ 0+.

Similarly, the minimum value of the right hand side of Eq. (4.31) is obtained in the limiting case

when b̆(σ) → a(σ)−. Hence, the equation for the upper and the lower bound for the parameter

c̆(σ) for the different values of k can be obtained from Eq. (4.31) in the limiting cases when

b(σ)→ 0+ and b(σ)→ a(σ)− respectively. In (4.31b) taking the limit b(σ)→ 0+ gives

c̆(σ) =
1√

1− exp
(
− π2

4c̆2(σ)

) . (4.32)

Equation (4.32) is independent of k and the unique fixed point can be computed using Algo-

rithm 4.2.1. A similar analysis for the lower bound for the limiting case b(σ)→ a(σ)− in (4.31a)

gives us

c̆(σ) =
1√

k
(

1− exp
(
− π2

4c̆2(σ)

)) . (4.33)

Again we can compute the fixed point of Eq. 4.33 using Algorithm 4.2.1.

In Figure 4.4 we see the lower and upper bound for c̆(σ) for the different values of k. We observe

that as k approaches one, the difference between the upper and the lower bound decreases. From
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Figure 4.4.: Upper and lower bounds of c̆(σ) for different values of k.

Eq. (4.33) we see that 1√
k

is a strict lower bound for c̆(σ).

In this section, we gave an approximation to the damage function in the case of one slope with

a(σ) ≥ b(σ). We derived the parameters ă, b̆, c̆ and d̆ for the approximation. In the next section

we give the approximation of the damage d̂ for the case a(σ) < b(σ).

4.2.2. Case a(σ) < b(σ)

In this case the damage profile has two peaks as seen in Figure 4.2(b). If â(σ) = 0, then both the

peaks have a value of b(σ)k

σkeNe
as from Theorem 2.3.13 we get s−max,1(σ) = b(σ) and s−max,2(σ) = b(σ).

Without loss of generality we can assume that α−max,1(σ) and α−max,2(σ) are in the interval [0, π).

We have |α−max,1(σ) − α−max,2(σ)| = π
2 . At α−max,1(σ) we have the peak with the larger value of

damage and at α−max,2(σ) we have the peak with the smaller value of damage.

From Theorem 2.3.12 the interval in which the peak with larger damage value lie is

I1 =

[
αmax(σ)− π

4
− θ

2
, αmax(σ) +

π

4
+
θ

2

)
(4.34)

and the interval in which the peak with the smaller damage value lie is

I2 =

[
αmin(σ)− π

4
+
θ

2
, αmin(σ) +

π

4
− θ

2

)
. (4.35)

Now that we have the two intervals we can give the approximation. Let g̃ denote the function

approximating the damage around the peaks:

g̃(σ, α) =

{
fă1(σ),b̆1(σ),c̆1(σ)(α) + d̆1(σ), if α ∈ I1
fă2(σ),b̆2(σ),c̆2(σ)(α) + d̆2(σ), if α ∈ I2

, (4.36)

where b̆1(σ) = α−max,1(σ), b̆2(σ) = α−max,2(σ) and fă1(σ),b̆1(σ),c̆1(σ) and fă2(σ),b̆2(σ),c̆2(σ) are Gaus-

sian functions from Definition 4.0.1.
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The function in Eq. (4.36) has 8 parameters ă1, ă2, b̆1, b̆2, c̆1, c̆2, d̆1 and d̆2 which have to be

determined before we can use the approximation in any optimization problem.

From Theorem 2.3.13, the maximum value of the absolute scalar stress on the interval I1 is

s−max,1 = a(σ) + b(σ) at α = b̆1(σ) = α−max,1(σ). Therefore, when the damage and its approxi-

mation are evaluated at α = b̆1(σ) we get

ă1(σ) + d̆1(σ) =
(a(σ) + b(σ))k

σkeNe
. (4.37)

Similarly, from Theorem 2.3.13, the maximum value of the absolute scalar stress on the interval

I2 is s−max,2 = b(σ)− a(σ) at α = b̆2(σ) = α−max,2(σ) which gives

ă2(σ) + d̆2(σ) =
(b(σ)− a(σ))k

σkeNe
. (4.38)

Finally, from Lemma 2.3.11 and Theorem 2.3.13, the scalar stress at the end points of the two

intervals I1 and I2 is zero. Inserting the end points of the intervals in the approximation function

g̃ and equating it to the damage d̂ gives us two additional equations that have to be satisfied

ă1(σ) exp

(
− (π + 2θ)2

16c̆21(σ)

)
+ d̆1(σ) = 0, (4.39)

ă2(σ) exp

(
− (π − 2θ)2

16c̆22(σ)

)
+ d̆2(σ) = 0. (4.40)

The conditions in Eq. 4.39 and Eq. 4.40 make the approximation function g̃ continuous and

differentiable at the point of minimum in the interval I1∪I2. Figure 4.5 gives a visual representation

of the intervals I1 and I2 and equations Eq. (4.37), Eq. (4.38) and Eq. (4.39).

We can rewrite φ(σ) from Theorem 2.3.13 in terms of b̆1(σ) for interval I1 as

φ(σ) =

{
π
2 − 2b̆1(σ) + 2n5π, if â ≥ 0

−π2 − 2b̆1(σ) + 2n5π, if â < 0
, (4.41)

and in terms of b̆2(σ) for interval I2 as:

φ(σ) =

{
−π2 − 2b̆2(σ) + 2n6π, if â ≥ 0

π
2 − 2b̆2(σ) + 2n6π, if â < 0

, (4.42)

where n5, n6 ∈ Z. We use the above equations in the next theorem where we give a result on the

quality of our approximation.

Theorem 4.2.14. Given the stress σ = (σxx, σyy, σxy)T with a(σ) < b(σ). If the approximation

function g̃ is defined as in Eq. (4.36) where b̆1(σ) = α−max,1(σ), b̆2(σ) = α−max,2(σ) and parameters

ă1(σ), ă2(σ), d̆1(σ) and d̆2(σ) satisfy Eq. (4.37), Eq. (4.38), Eq. (4.39), and Eq. (4.40) and

additionally, if

c̆1(σ) =

√
ă1(σ)σkeNe

2kb(σ)(a(σ) + b(σ))k−1
, (4.43)
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+ d̆1(σ)

Figure 4.5.: Explanation of approximation around maximum for one slope and a(σ) < b(σ).

and

c̆2(σ) =

√
ă2(σ)σkeNe

2kb(σ)(b(σ)− a(σ))k−1
, (4.44)

then for α ∈ I1 ∪ I2, the function g̃(σ, α) is an approximation to the damage function d̂ from Eq.

(4.4) of order 4, i.e.,

|d̂(σ, α)− g̃(σ, α)| =
{
O((α− b̆1(σ))4), α ∈ I1
O((α− b̆2(σ))4), α ∈ I2

Proof. Similar to the proof of Theorem 4.2.1, we use the Taylor’s expansion of both damage

function d̂ and its approximation function g̃ around the points of maxima.

Depending on the sign of â(σ) the intervals I1 and I2 can be further divided into two sub intervals.

If â(σ) ≥ 0 and α ∈ I1, then for the peak with the larger damage value to lie in this interval we

have b(σ) sin(2α + φ(σ)) > 0 and similarly for α ∈ I2 to have the peak with the smaller damage

value we have b(σ) sin(2α+ φ(σ)) ≤ 0. If â(σ) < 0 and α ∈ I1, then for the peak with the larger

damage value to lie in this interval we have b(σ) sin(2α + φ(σ)) ≤ 0 and for α ∈ I2 to have the

peak with the smaller damage value we have b(σ) sin(2α + φ(σ)) > 0. Using this to simplify the

absolute value of the scalar stress s in equation for the damage d̂ we get

d̂(σ, α) =
1

σkeNe





(a(σ) + b(σ) sin(2α+ φ(σ)))
k
, if α ∈ I1, â(σ) ≥ 0,

(a(σ)− b(σ) sin(2α+ φ(σ)))
k
, if α ∈ I1, â(σ) < 0,

(−b(σ) sin(2α+ φ(σ))− a(σ))
k
, if α ∈ I2, â(σ) ≥ 0,

(b(σ) sin(2α+ φ(σ))− a(σ))
k
, if α ∈ I2, â(σ) < 0.

(4.45)

We insert φ(σ) from Eq. (4.41) and Eq. (4.42) in Eq. (4.45). We know from trigonometry that
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sin(−π2 + 2α− 2b̆1(σ) + 2n5π) = cos(2α− 2b̆1(σ)) which simplifies Eq. (4.45) to

d̂(σ, α) =
1

σkeNe





(
a(σ) + b(σ) cos(2α− 2b̆1(σ))

)k
, α ∈ I1

(
b(σ) cos(2α− 2b̆2(σ))− a(σ)

)k
, α ∈ I2.

(4.46)

Next, we look at the two intervals separately. For the interval I1 the steps are exactly the same

as that in Theorem 4.2.1. We get the series representation of damage d̂(σ, α) at the point of

maximum b̆1(σ) in the interval I1 as

d̂(σ, α) =
(a(σ) + b(σ))k

σkeNe
−2kb(σ)(a(σ) + b(σ))k−1

σkeNe
(α−b̆1(σ))2+O((α−b̆1(σ))4),∀α ∈ I1 (4.47)

and the series representation of the approximation g̃(σ, α) = fă1(σ),b̆1(σ),c̆1(σ)(α) + d̆1(σ) at b̆1(σ)

on the interval I1 as

fă1(σ),b̆1(σ),c̆1(σ)(α) + d̆1(σ) = (ă1(σ) + d̆1(σ))− ă1(σ)

c̆1(σ)2
(α− b̆1(σ))2 +O((α− b̆1(σ))4)

=
(a(σ) + b(σ))k

σkeNe
− ă1(σ)

c̆1(σ)2
(α− b̆1(σ))2 +O((α− b̆1(σ))4),∀α ∈ I1

(4.48)

Subtracting approximation function g̃ in Eq (4.48) from damage d in Eq (4.47) yields for α ∈ I1
∣∣∣d̂(σ, α)− g̃(σ, α)

∣∣∣ =

(
ă1(σ)

c̆1(σ)2
− 2kb(σ)(a(σ) + b(σ))k−1

σkeNe

)
(α− b̆1(σ))2 +O((α− b̆1(σ))4)

Choosing c̆1(σ) such that the term (α− b̆1(σ))2 vanishes gives us Eq. (4.43).

On the interval I2 the damage d̂ is given as

d̂(σ, α) =

(
b(σ) cos(2α− 2b̆2(σ))− a(σ)

)k

σkeNe
, ∀α ∈ I2

=
1

σkeNe

k∑

t=0

(
k

t

)
(−a(σ))k−tb(σ)t cost(2α− 2b̆2(σ)),∀α ∈ I2

Inserting the series expansion of cos(2α− 2b̆2(σ)) and further simplifications gives us

d̂(σ, α) =
(b(σ)− a(σ))k

σkeNe
− 2kb(σ)(b(σ)− a(σ))k−1

σkeNe
(α− b̆2(σ))2 +O(α− b̆2(σ))4,∀α ∈ I2 (4.49)

and the series representation of approximation g̃(σ, α) = fă2(σ),b̆2(σ),c̆2(σ)(α) + d̆2(σ) at b̆2(σ) on

the interval I2 as

fă2(σ),b̆2(σ),c̆2(σ)(α) + d̆2(σ) = (ă2(σ) + d̆2(σ))− ă2(σ)

c̆2(σ)2
(α− b̆2(σ))2 +O(α− b̆2(σ))4

=
(b(σ)− a(σ))k

σkeNe
− ă2(σ)

c̆2(σ)2
(α− b̆2(σ))2 +O(α− b̆2(σ))4

(4.50)
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Subtracting approximation function g̃ in Eq (4.50) from damage d in Eq (4.49) yields for α ∈ I2
∣∣∣d̂(σ, α)− g̃(σ, α)

∣∣∣ =

(
ă2(σ)

c̆2(σ)2
− 2kb(σ)(a(σ) + b(σ))k−1

σkeNe

)
(α− b̆2(σ))2 +O((α− b̆2(σ))4)

Choosing c̆2(σ) such that the term (α− b̆2(σ))2 vanishes gives us Eq. (4.44).

In the next lemma we give the equations to compute the parameters ă1(σ) and d̆1(σ) in the

definition of the approximation function g̃ from Eq. (4.36).

Lemma 4.2.15. The parameters ă1(σ) and d̆1(σ) in Eq. (4.36) are given as

ă1(σ) =
(a(σ) + b(σ))k

σkeNe

(
1− exp

(
− (π+2θ)2

16c̆21(σ)

)) , (4.51)

d̆1(σ) =
(a(σ) + b(σ))k exp

(
− (π+2θ)2

16c̆21(σ)

)

σkeNe

(
1− exp

(
− (π+2θ)2

16c̆21(σ)

)) , (4.52)

where θ = a(σ)
b(σ) .

Proof. The two equations, Eq. (4.37) and Eq. (4.39) have three unknowns. We use these two

equations to give ă1(σ) and d̆1(σ) in terms of c̆1(σ). Subtracting Eq. (4.39) from Eq. (4.37) we

get a equation in ă1(σ) and c̆1(σ):

ă1(σ)

(
1− exp

(
− (π + 2θ)2

16c̆21(σ)

))
=

(a(σ) + b(σ))k

σkeNe
(4.53)

Rearranging Eq. (4.53) gives us Eq. (4.51) for computing ă1(σ). Inserting the value of ă1(σ) into

Eq. (4.39) and further simplifications gives us Eq. (4.52) for computing d̆1(σ).

In the next lemma we give the equations to compute the parameters ă2(σ) and d̆2(σ) in the

definition of the approximation function g̃ from Eq. (4.36).

Lemma 4.2.16. The parameters ă2(σ) and d̆2(σ) in Eq. (4.36) are given as

ă2(σ) =
(b(σ)− a(σ))k

σkeNe

(
1− exp

(
− (π−2θ)2

16c̆22(σ)

)) , (4.54)

d̆2(σ) =
(b(σ)− a(σ))k exp

(
− (π−2θ)2

16c̆22(σ)

)

σkeNe

(
1− exp

(
− (π−2θ)2

16c̆22(σ)

)) . (4.55)

where θ = a(σ)
b(σ) .

Proof. The two equations, Eq. (4.38) and Eq. (4.40) have three unknowns. We use these two

equations to give ă2(σ) and d̆2(σ) in terms of c̆2(σ). Subtracting Eq. (4.40) from Eq. (4.38) we
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get a equation in ă2(σ) and c̆2(σ):

ă2(σ)

(
1− exp

(
− (π − 2θ)2

16c̆22(σ)

))
=

(b(σ)− a(σ))k

σkeNe
(4.56)

Rearranging Eq. (4.56) gives us Eq. (4.54) for computing ă2(σ). Inserting the value of ă1(σ) into

Eq. (4.40) and further simplifications gives us Eq. (4.55) for computing d̆2(σ).

The next corollary gives us equation for computing c̆1(σ) and c̆2(σ).

Corollary 4.2.17. The parameters c̆1(σ) and c̆2(σ) in the definition of the approximation func-

tion g̃ in Eq. (4.36) are given as

c̆1(σ) =

√√√√ a(σ) + b(σ)

2kb(σ)
(

1− exp
(
− (π+2θ)2

16c̆21(σ)

)) , (4.57)

c̆2(σ) =

√√√√ b(σ)− a(σ)

2kb(σ)
(

1− exp
(
− (π−2θ)2

16c̆22(σ)

)) . (4.58)

Proof. Inserting ă1(σ) from Eq. (4.51) into Eq. (4.43) gives c̆1(σ) and inserting ă2(σ) from Eq.

(4.54) into Eq. (4.44) gives c̆2(σ).

Eq. (4.57) and Eq. (4.58) are fixed point equations similar to one in Eq. (4.25). In order to use

the approximate function g̃ we have to first compute c̆1(σ) and c̆2(σ). Since, these two parameters

are given by a fixed point equation we next prove that Eq. (4.57) and Eq. (4.58) have a unique

fixed point. We make use of the following result in the proof.

Lemma 4.2.18. We have √
1− y

π − 2 sin−1 y
<

1

2
√

2

for all y ∈ [0, 1).

Proof. From [28] we know that sin−1 y + cos−1 y = π
2 , which simplifies

√
1− y

π − 2 sin−1 y
=

√
1− y

2 cos−1 y

for y ∈ [0, 1). The term
√

1−y
2 cos−1 y is increasing in the interval [0, 1). The Taylor series for the term

at y = 1 is

√
1− y

2 cos−1 y
=

1

2
√

2
− 1− y

24
√

2
− 17

√
2(1− y)2

5760
+O

(
(1− y)3

)

<
1

2
√

2
.

Theorem 4.2.19. Both Eq. (4.57) and Eq. (4.58) have a unique fixed point.
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Proof. The proof is similar to the proof of Theorem 4.2.11. Let us define

T1 : R→ R, y 7→
√
a(σ) + b(σ)

2kb(σ)

1√
1− exp

(
−
(
π+2θ

4y

)2
) . (4.59)

with a real constant k > 1. Next, we show that T1 is a contraction mapping which implies that

the fixed point equation in (4.57) is also a contraction mapping. Then due to the Contraction

mapping theorem (4.57) has a unique fixed point. The first derivative of T1 is

T ′1(y) =

√
a(σ) + b(σ)

2kb(σ)

d

dy




1√
1− exp

(
− (π+2θ)2

16y2

)




=

√
a(σ) + b(σ)

2kb(σ)

(π + 2θ)2

√
exp

(
(π+2θ)2

16y2

)

16y3
(

exp
(

(π+2θ)2

16y2

)
− 1
) 3

2

We apply Lemma 4.2.7 for s = 4 , p = y, r =
√

2kb(σ)
a(σ)+b(σ) and t = π + 2θ and obtain that

T ′1(x) <

√
a(σ) + b(σ)

2kb(σ)

4

π + 2θ
for all x ∈ R.

We know that θ = sin−1
(
a(σ)
b(σ)

)
. Therefore, the term

√
a(σ)+b(σ)

2b(σ)
4

π+2θ can also be written

as
√

1+sin θ
2

4
π+2θ . It is shown in Theorem A.3.1 that the term

√
1+sin θ

2
4

π+2θ is decreasing for

θ ∈
[
0, π2

]
. The evaluation of the term at θ = 0 yields the value 4√

2π
< 1. Figure 4.6 illustrates

the term
√

1+sin θ
2

4
π+2θ on the interval

[
0, π2

]
. Since,

√
1+sin θ

2
4

π+2θ for all θ ∈
[
0, π2

]
is less than

one we get that
√

a(σ)+b(σ)
2kb(σ)

4
π+2θ is also less than one. We conclude:

T ′1(y) <

√
a(σ) + b(σ)

2kb(σ)

4

π + 2θ
< 1 for all y ∈ R⇒ sup

y′∈R
|T ′1(y′)| ≤

√
a(σ) + b(σ)

2kb(σ)

4

π + 2θ
< 1.

This proves that the fixed point equation in (4.57) is a contraction mapping.

Next we prove the contraction property for the fixed point equation (4.58). Let us define

T2 : R→ R, y 7→
√

1− t
2k

√√√√ 1

1− exp
(
− (π−2 sin−1 t)2

16y2

) (4.60)

where 0 ≤ t < 1 and k > 1 are fixed. The first derivative of T2 at y is given by

T ′2(x) =

√
1− t
2k

(π − 2 sin−1 t)2

√
exp

(
(π−2 sin−1 t)2

16y2

)

16y3
(

exp
(

(π−2 sin−1 t)2

16y2

)
− 1
) 3

2
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Figure 4.6.: Value of
√

1+sin θ
2

4
π+2θ .

We apply Lemma 4.2.7 for s = 4 , p = y, r =
√

2k
1−t and t = π − 2 sin−1 t and obtain that

<

√
1− t
2k

4

(π − 2 sin−1 t)
(4.61)

=
4√
2k

√
1− t

(π − 2 sin−1 t)
. (4.62)

To the inequality in (4.62) we may apply Lemma 4.2.18 to get

T ′2(y) <
1

2
√

2

4√
2k

<
1√
k

for all x ∈ R⇒ sup
x∈R
|T ′2(y)| ≤ 1√

k
< 1.

This proves that T2(y) is a contraction mapping and has a unique fixed point. T2(y) is the right

hand side of the fixed point equation in (4.58) for t = a(s)
b(s) and θ = sin−1 t. Hence, we have shown

that both fixed point operators are contraction mappings and have unique fixed points.

The Theorem 4.2.19 says that we can compute both c̆1(σ) and c̆2(σ) from their respective fixed

point equations. Once we have these two parameters we can proceed the computation of other

parameters.

Next we give equations solving which we get the upper and lower bound for c̆1(σ) and c̆2(σ).

After squaring and rearranging Eq. (4.57) and Eq. (4.58) we get

c̆21(σ)

(
1− exp

(
− (π + 2θ)2

16c̆21(σ)

))
=
a(σ) + b(σ)

2kb(σ)
(4.63)

and

c̆22(σ)

(
1− exp

(
− (π + 2θ)2

16c̆22(σ)

))
=
b(σ)− a(σ)

2kb(σ)
(4.64)

In Eq. (4.63) we see that increasing a(σ) increases the right hand side of the equation. The
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maximum value of c̆1(σ), for different values of k, is obtained from Eq. (4.63) in the limiting case

a(σ)→ b(σ)− as

c̆21(σ)

(
1− exp

(
− π2

4c̆21(σ)

))
=

1

k

which is similar to Eq. (4.33) for the lower bound of c̆(σ) in the case a(σ) ≥ b(σ). In the limiting

case a(σ)→ b(σ)− the value of θ is π
2 . Similarly, the lower bound for c̆1(σ) for different values of

k is obtained in the limiting case a(σ)→ 0+ from the following equation

c̆21(σ)

(
1− exp

(
− π2

16c̆21(σ)

))
=

1

2k
. (4.65)

Similarly, in Eq. (4.64) we see that increasing a(σ) decreases the right hand side of the equation.

The maximum value of c̆2(σ), for different values of k, is obtained from Eq. (4.64) in the limiting

case a(σ)→ 0+ as

c̆22(σ)

(
1− exp

(
− π2

16c̆21(σ)

))
=

1

2k
. (4.66)

It is interesting to note that Eq. (4.65) for the lower bound of c̆1(σ) has the same form as the

equation for the upper bound of c̆2(σ). The lower bound for c̆2(σ) coincides with the assumption

that c̆2(σ) has to be greater than zero. Figure 4.7 gives the lower and upper bound for c̆1(σ) and

c̆2(σ) for different values of k.
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0.2

0.4

0.6

0.8

1

c̆ 1
(σ

)
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k

Lower Bound

Upper Bound

(a) Lower and upper bounds for c̆1(σ).
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0.4

0.6

0.8

c̆ 2
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)

2 4 6 8 10 12 14 16 18 20
k

Lower Bound

Upper Bound

(b) Lower and upper bounds for c̆2(σ).

Figure 4.7.: Lower and upper bounds for c̆1(σ) and c̆2(σ) for different values of k.
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In this section, we gave an approximation to the damage function in the case of one slope with

a(σ) < b(σ). We derived the parameters ă1(σ), ă2(σ), b̆1(σ), b̆2(σ), c̆1(σ), c̆2(σ), d̆1(σ) and d̆2(σ)

for the approximation function g̃ and discussed properties of these parameters. This concludes

the section on approximation of damage around the point of maximum damage. In the next

section, we use our ideas on the approximation of the damage around the point of maximum to

approximate the damage on R.

4.3. Approximation of the damage function on R

In Section 4.2, an approximation to the damage function in the neighbourhood of the maxima

was derived. In this section, we give an approximation of damage on R. The parameters for the

approximation function are derived and their properties are discussed. Similar to the discussion

in Section 4.2 we consider two sub-cases, i.e., a(σ) ≥ b(σ) and a(σ) < b(σ). Figure 4.8 gives

example plots for four periods of damage in the case of one slope.

d

α

(a) An example plot of damage d̂ for the case
a(σ) ≥ b(σ).

d

α

(b) An example plot of damage d̂ for the case
a(σ) < b(σ).

Figure 4.8.: The damage profiles for one slope and one block extended to the real line R.

4.3.1. Case a(σ) ≥ b(σ)

Without loss of generality, we assume that the point of maximum damage b̆(σ) ∈ [0, π) because

the damage function d̂ is a periodic function with period π. The other points of maximum damage

are b̆(σ) + iπ where i ∈ Z. To approximate the damage function d̂ on R we place the Gaussian

functions one after another at b̆(σ) + iπ, for all i ∈ Z. We define the approximation of the damage

function d̂ on R as

gR : R3 × R→ R, (σ, α) 7→
∞∑

i=−∞
fă(σ),b̆(σ),c̆(σ)(α− iπ) + d̆(σ), α ∈ R (4.67)

where fă(σ),b̆(σ),c̆(σ) is a Gaussian function from Eq. (4.1) with parameters ă(σ), b̆(σ) and c̆(σ).

The parameters ă(σ) and c̆(σ) are same for all the Gaussian functions. However, the point of

maximum for the i-th Gaussian function in the sum in Eq. (4.67) is given as b̆(σ) + iπ.
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We want the approximation gR to be exact at the maxima. Consequently, the approximation in

Eq. (4.67) evaluated at α = b̆(σ) + iπ should yield the maximum damage for any i ∈ Z. We

obtain the following equation

ă(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
+ d̆(σ) =

(a(σ) + b(σ))k

σkeNe
. (4.68)

The right hand side of Eq. (4.68) is the maximum damage and the left hand side of Eq. (4.68)

is obtained by evaluating the approximation function gR at α = b̆(σ) + iπ for all i ∈ Z. Equation

(4.68) has to be satisfied for the approximation gR to be exact at the maxima. Similarly, when we

evaluate gR at α = b̆(σ) + (2i+ 1)π2 for any i ∈ Z we should get the minimum damage.

ă(σ)

∞∑

i=−∞
exp

(
− (2i+ 1)2π2

4c̆2(σ)

)
+ d̆(σ) =

(a(σ)− b(σ))k

σkeNe
. (4.69)

Again, Eq. (4.69) has to be satisfied for the approximation gR to be exact at the minima. The

condition in Eq. (4.69) implies that the approximation function is continuous and differentiable

at the points of minima.

In the next theorem, we establish an approximation of d̂ of order 4.

Theorem 4.3.1. Given the stress σ = (σxx, σyy, σxy)T with a(σ) ≥ b(σ). If gR is as defined in

Eq. (4.67) and parameters ă(σ), b̆(σ) and d̆(σ) satisfying Eq. (4.7), Eq. (4.68) and Eq. (4.69),

and additionally, if

2kb(σ)(a(σ) + b(σ))k−1

σkeNe
+
ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
= 0, (4.70)

then gR is an approximation of damage function d̂ defined in Eq. (4.4) on R of order 4, i.e.

∣∣∣d̂(σ, α)− gR(σ, α)
∣∣∣ = O((α− b̆(σ))4).

Proof. The proof is similar to the Theorem 4.2.1. The condition (4.70) is chosen such that the

term (α− b̆(σ))2 in the difference of the Taylor series expansion, around b̆(σ), of d̂ and gR can be

neglected. The Taylor series expansion of gR(σ, α) around b̆(σ) is derived in Corollary A.1.3 and

given in Eq. (A.17) as

gR(σ, α) = ă(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
+
ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
(α− b̆(σ))2

+ d̆(σ) +O((α− b̆(σ))4). (4.71)

Using equation (4.68) we rewrite gR(σ, α) as

gR(σ, α) =
(a(σ) + b(σ))k

σkeNe
+
ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
(α− b̆(σ))2

+O((α− b̆(σ))4). (4.72)
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From (4.18) we get the Taylor series of damage function d̂ as

d̂(σ, α) =
(a(σ) + b(σ))k

σkeNe
− 2kb(σ)(a(σ) + b(σ))k−1

σkeNe
(α− b̆(σ))2 +O((α− b̆(σ))4) (4.73)

Subtracting the Taylor series of gR(σ, α) from the Taylor series of d̂(σ, α) and proceeding as in

Theorem 4.2.1 leads to the result.

∣∣∣d̂(σ, α)− gR(σ, α)
∣∣∣ = − ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
(α− b̆(σ))2

− 2kb(σ)(a(σ) + b(σ))k−1

σkeNe
(α− b̆(σ))2 +O

(
(α− b̆(σ))4

)
(4.74)

For the term (α − b̆(σ))2 to vanish we choose the multiplier associated with it to be zero which

yields Eq. (4.70).

For the approximation function gR to be valid the series in Eq. (4.69) and Eq. (4.70) must converge.

We use the Comparison Test of the First Kind for proving that the series
∑∞
i=−∞ exp

(
− (2i+1)2π2

4c̆2(σ)

)

in Eq. (4.69) and series
∑∞
i=−∞ exp

(
− i2π2

c̆2(σ)

)
and series

∑∞
i=0 i

2 exp
(
− i2π2

c̆2(σ)

)
in Eq. (4.70)

converge.

Theorem 4.3.2 (Comparison Test of First Kind). Given two series
∑
ai and

∑
ci with ai, ci ≥ 0

for all i and ai ≤ ci for all i. Then, if
∑
ci is convergent then so is

∑
ai.

Proof. For details about the proof please refer [19].

Lemma 4.3.3. The series
∑∞
i=−∞ exp

(
−
(

(2i+1)π
2c̆(σ)

)2
)

in Eq. (4.69) and series

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)

and series
∑∞
i=0 i

2 exp
(
− i2π2

c̆2(σ)

)
in Eq. (4.70) are finite for all 0 < c̆(σ) <∞.

Proof. The proof for each series is shown separately.

Case I. Consider the series with elements ci = exp
(
− (8i+1)π2

4c̆2(σ)

)
, i ∈ N0. The series

∑∞
i=0 ci is a

geometric series where the first element of the series is exp
(
− π2

4c̆2(σ)

)
and the common

ratio is exp
(
− 2π2

c̆2(σ)

)
< 1. Hence, using the series sum formula for infinite geometric

series we get
∞∑

i=0

ci =
exp

(
− π2

4c̆2(σ)

)

1− exp
(
− 2π2

c̆2(σ)

)

We can rewrite the series in Eq. (4.69) as

∞∑

i=−∞
exp

(
− (2i+ 1)2π2

4c̆2(σ)

)
= 2

∞∑

i=0

exp

(
− (2i+ 1)2π2

4c̆2(σ)

)
=: 2

∞∑

i=0

ai
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where ai = exp
(
− (2i+1)2π2

4c̆2(σ)

)
for all i ∈ N0. We know that (2i + 1)2 ≥ (8i + 1) for all

i ∈ N0 which implies that ai ≤ ci. Hence, 2
∑∞
i=0 ai is absolutely convergent according

to the Comparison Test of First Kind.

Case II. We can rewrite the series
∑∞
i=−∞ exp

(
− i2π2

c̆2(σ)

)
in Eq. (4.70) as

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
= 1 + 2

∞∑

i=1

exp

(
− i2π2

c̆2(σ)

)
=: 1 + 2

∞∑

i=1

ai

where ai = exp
(
− i2π2

c̆2(σ)

)
, i ∈ N. Similar to the proof in Case I we consider the series

with elements ci = exp
(
− (3i−2)π2

c̆2(σ)

)
. The series

∑∞
i=1 ci is a geometric series where the

first element of the series is exp
(
− π2

c̆2(σ)

)
and the common ratio is exp

(
− 3π2

c̆2(σ)

)
< 1.

Hence, using the series sum formula for infinite geometric series we get

∞∑

i=1

ci =
exp

(
− π2

c̆2(σ)

)

1− exp
(
− 3π2

c̆2(σ)

)

We see that i2 ≥ 3i − 2 for all i ∈ N, which implies ai ≤ ci for all i ∈ N. Hence,

1 + 2
∑∞
i=1 ai is absolutely convergent according to the Comparison Test of First Kind.

Case III. We can rewrite the series
∑∞
i=−∞ i2 exp

(
− i2π2

c̆2(σ)

)
in Eq. (4.70) as

∞∑

i=−∞
i2 exp

(
− i2π2

c̆2(σ)

)
= 2

∞∑

i=1

i2 exp

(
− i2π2

c̆2(σ)

)
=: 2

∞∑

i=1

ai

where ai = i2 exp
(
− i2π2

c̆2(σ)

)
for all i ∈ N. We consider the series with elements ci =

exp
(
− (3i−2)π2

4c̆2(σ)

)
. The series

∑∞
i=1 ci is a geometric series where the first element of the

series is exp
(
− π2

4c̆2(σ)

)
and the common ratio is exp

(
− 3π2

4c̆2(σ)

)
< 1. Hence, using the

series sum formula for infinite geometric series we get

∞∑

i=1

ci =
exp

(
− π2

4c̆2(σ)

)

1− exp
(
− 3π2

4c̆2(σ)

)

Using induction it is easy to see that ai ≤ ci for all i ∈ N. Hence, 2
∑∞
i=1 ai is absolutely

convergent according to the Comparison Test of First Kind.

From Lemma 4.3.3 we know that the series
∑∞
i=−∞ exp

(
−
(

(2i+1)π
2c̆(σ)

)2
)

in Eq. (4.69) and series

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
and series

∑∞
i=0 i

2 exp
(
− i2π2

c̆2(σ)

)
in Eq. (4.70) are finite for all 0 < c̆(σ) <∞.

In the next lemma we give the equations to compute the parameters ă(σ) and d̆(σ) in the definition

of the approximation function gR from Eq. (4.67).

Lemma 4.3.4. The parameters ă(σ) and d̆(σ) in the definition of the approximation function gR
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in Eq. (4.67) are given as

ă(σ) =
(a(σ) + b(σ))k − (a(σ)− b(σ))k

σkeNe
∑∞
i=−∞

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

)) (4.75)

and

d̆(σ) =
(a(σ)− b(σ))k

∑∞
i=−∞ exp

(
− i2π2

c̆2(σ)

)
− (a(σ) + b(σ))k

∑∞
i=−∞ exp

(
− (2i+1)2π2

4c̆2(σ)

)

σkeNe
∑∞
i=−∞

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

)) . (4.76)

Proof. The two equations, Eq. (4.68) and Eq. (4.69) have three unknowns. We can use these two

equations to give ă(σ) and d̆(σ) in terms of c̆(σ). Subtracting Eq. (4.69) from Eq. (4.68) we get

a equation in ă(σ) and c̆(σ):

ă(σ)

( ∞∑

i=−∞

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+ 1)2π2

4c̆2(σ)

)))
=

(a(σ) + b(σ))k − (a(σ)− b(σ))k

σkeNe
.

(4.77)

Rearranging Eq. (4.77) gives us Eq. (4.75) for computing ă(σ). Inserting the value of ă(σ) into

Eq. (4.68) and further simplification gives us Eq. (4.76) for computing d̆(σ).

The next corollary gives us an equation for computing c̆(σ) in Eq. (4.67).

Corollary 4.3.5. The parameter c̆(σ) in the definition of the approximation function gR in Eq.

(4.67) is given as

c̆(σ) =



(
(a(σ) + b(σ))k − (a(σ)− b(σ))k

)∑∞
i=−∞

(
c̆2(σ)− 2π2i2

)
exp

(
− i2π2

c̆2(σ)

)

2kb(σ)(a(σ) + b(σ))k−1
∑∞
i=−∞

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

))




1
4

(4.78)

Proof. Inserting ă(σ) from Eq. (4.75) into Eq. (4.70) gives

(
(a(σ) + b(σ))k − (a(σ)− b(σ))k

)∑∞
i=−∞

(
2i2π2

c̆2(σ) − 1
)

exp
(
− i2π2

c̆2(σ)

)

c̆2(σ)
∑∞
i=−∞

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

))

+ 2kb(σ)(a(σ) + b(σ))k−1 = 0 (4.79)

Rearranging and further simplification gives Eq. (4.78), a fixed point equation in c̆(σ).

Figure 4.9 illustrates the solutions for the Eq. (4.78) for possible values of b(σ) ≤ a(σ) < σmax,

with a(σ) + b(σ) < σmax and σmax = 180, for two different values of k. Since, with increasing

index i of the sum the elements are getting exponentially smaller we only take the first 1000 terms

on both sides of zero in the summation in Eq. (4.78) without introducing large error.

In this subsection, we gave an approximation of the damage function d̂ on the real line R for the

case a(σ) ≥ b(σ). In the next section we give an approximation of the damage function on the

real line R when a(σ) < b(σ).
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(a) k = 5. (b) k = 15.

Figure 4.9.: Fixed points of equation (4.78) for k = 5 and k = 15 for b(σ) ≤ a(σ) < σmax with
a(σ) + b(σ) < σmax and σmax = 180.

4.3.2. Case a(σ) < b(σ)

Without loss of generality we assume that b̆1(σ) ∈ [0, π) and b̆2(σ) ∈ [0, π) because the damage

function d̂ from Eq. (4.4) is periodic with period π. The other peaks occur at b̆1(σ) + iπ and

b̆2(σ)+iπ, i ∈ Z. We proceed in the same way as in Subsection 4.3.1 for the case of a(σ) ≥ b(σ) to

approximate damage function d̂ from Eq. (4.4) on R. The approximation of the damage function

on R is then given as

g̃R(σ, α) =

{∑∞
i=−∞ fă1(σ),b̆1(σ),c̆1(σ)(α− iπ) + d̆1(σ), if α ∈ Î1∑∞
i=−∞ fă2(σ),b̆2(σ),c̆2(σ)(α− iπ) + d̆2(σ), if α ∈ Î2

, (4.80)

where b̆1(σ) = α−max,1(σ), b̆2(σ) = α−max,2(σ) and fă1(σ),b̆1(σ),c̆1(σ) and fă2(σ),b̆2(σ),c̆2(σ) are Gaus-

sian functions from Definition 4.0.1 and the interval Î1 is the extension of the interval I1 in Eq

(2.33) from Theorem 2.3.12 as

Î1 =

∞⋃

i=−∞

[
α−max,1(σ)− π

4
− θ

2
+ iπ, α−max,1(σ) +

π

4
+
θ

2
+ iπ

)
, (4.81)

and the interval Î2 is the extension of the interval I2 in Eq (2.34) from Theorem 2.3.12 as

Î2 =

∞⋃

i=−∞

[
b̆2(σ)− π

4
+
θ

2
+ iπ, b̆2(σ) +

π

4
− θ

2
+ iπ

)
. (4.82)

The approximation function g̃R in Eq. (4.80) has 8 parameters ă1, ă2, b̆1, b̆2, c̆1, c̆2, d̆1 and d̆2

which have to be determined before we can use the approximation in any optimization problem.

The peaks with larger damage value occurs at α = b̆1(σ) + iπ where i ∈ Z. In Theorem 2.3.13

we showed that the maximum value of the absolute scalar stress on the interval Î1 is given by

s−max,1 = a(σ) + b(σ). The approximation in Eq. (4.80) when evaluated at α = b̆1(σ) + iπ for any

i ∈ Z should give the peak with larger damage value. Evaluating the damage function d̂ and its
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approximation g̃R at α = b̆1(σ) + iπ yields

ă1(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆21(σ)

)
+ d̆1(σ) =

(a(σ) + b(σ))k

σkeNe
. (4.83)

Again, from Theorem 2.3.13, the maximum value of the absolute scalar stress on the interval

Î2 is s−max,2 = b(σ) − a(σ) at α = b̆2(σ) = α−max,2. Evaluating the damage function d̂ and its

approximation g̃R at α = b̆2(σ) + iπ yields

ă2(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆22(σ)

)
+ d̆2(σ) =

(b(σ)− a(σ))k

σkeNe
. (4.84)

Finally, from Lemma 2.3.11 and Theorem 2.3.13, the scalar stress at the limits of the the subin-

tervals in Î1 and Î2 is zero. Evaluating the damage function d̂ and its approximation g̃R at the

end points results in the following equations:

ă1(σ)

∞∑

i=−∞
exp

(
− (π4 + θ

2 + iπ)2

c̆21(σ)

)
+ d̆1(σ) = 0, (4.85)

ă2(σ)

∞∑

i=−∞
exp

(
− (π4 − θ

2 − iπ)2

c̆22(σ)

)
+ d̆2(σ) = 0. (4.86)

The conditions in Eq. (4.85) and Eq. (4.86) implies that the approximation function g̃R is

continuous and differentiable at the points of minima.

In the next Theorem we establish the quality of the approximation function g̃R from Eq. (4.80).

Theorem 4.3.6. Given stress σ = (σxx, σyy, σxy)T with a(σ) < b(σ). If the approximation

function g̃R as defined in Eq. (4.80) where b̆1(σ) = α−max,1, b̆2(σ) = α−max,2 and parameters ă1(σ),

ă2(σ), d̆1(σ) and d̆2(σ) satisfy Eq. (4.83), Eq. (4.84), Eq. (4.85) and Eq. (4.86), and additionally

if c̆1(σ) and c̆2(σ) satisfy equations

2b(σ)k(a(σ) + b(σ))k−1

σkeNe
+
ă1(σ)

c̆21(σ)

∞∑

i=−∞

(
2i2π2

c̆21(σ)
− 1

)
exp

(
− i2π2

c̆21(σ)

)
= 0 (4.87)

and
2b(σ)k(b(σ)− a(σ))k−1

σkeNe
+
ă2(σ)

c̆22(σ)

∞∑

i=−∞

(
2i2π2

c̆22(σ)
− 1

)
exp

(
− i2π2

c̆22(σ)

)
= 0, (4.88)

then for α ∈ Î1 ∪ Î2, the function g̃R(σ, α) is an approximation to the damage function d̂(σ, α)

from Eq. (4.4) of order 4, i.e.,

∣∣∣d̂(σ, α)− g̃R(σ, α)
∣∣∣ =

{
O((α− b̆1(σ))4), if α ∈ Î1
O((α− b̆2(σ))4), if α ∈ Î2

Proof. Similar to proof of Theorem 4.2.1, we use the Taylor’s expansion of both the damage

function d̂ and its approximation g̃R around the points of maxima. The condition (4.87) is chosen

such that the term (α − b̆1(σ))2 in the difference of the Taylor series expansion, around b̆1(σ),
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of d̂ and g̃R when α ∈ Î1 can be neglected. Similarly, the condition (4.88) is chosen such that

the term (α − b̆2(σ))2 in the difference of the Taylor series expansion, around b̆2(σ), of d̂(σ, α)

and g̃(σ, α)R when α ∈ I2 can be neglected. The Taylor series expansion of g̃R(σ, α) at b̆1(σ) is

derived in Corollary A.1.4 and given in Eq. (A.18) as

g̃R(σ, α) = ă1(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆21(σ)

)
+
ă1(σ)

c̆21(σ)

∞∑

i=−∞

(
2i2π2

c̆21(σ)
− 1

)
exp

(
− i2π2

c̆21(σ)

)
(α− b̆1(σ))2

+ d̆1(σ) +O((α− b̆1(σ))4), α ∈ Î1, (4.89)

and the Taylor series expansion of g̃R(σ, α) at b̆2(σ) is derived in Corollary A.1.5 and given in Eq.

(A.19) as

g̃R(σ, α) = ă2(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆22(σ)

)
+
ă2(σ)

c̆22(σ)

∞∑

i=−∞

(
2i2π2

c̆22(σ)
− 1

)
exp

(
− i2π2

c̆22(σ)

)
(α− b̆2(σ))2

+ d̆2(σ) +O((α− b̆2(σ))4), α ∈ Î2. (4.90)

The Taylor series of damage function d̂ at b̆1(σ) for the case a(σ) < b(σ) is given in Eq. (4.47) as

d̂(σ, α) =
(a(σ) + b(σ))k

σkeNe
−2kb(σ)(a(σ) + b(σ))k−1

σkeNe
(α−b̆1(σ))2+O((α−b̆1(σ))4),∀α ∈ I1 (4.91)

and the Taylor series of damage function d̂ at b̆2(σ) for the case a(σ) < b(σ) is given in Eq. (4.49)

as

d̂(σ, α) =
(b(σ)− a(σ))k

σkeNe
− 2kb(σ)(b(σ)− a(σ))k−1

σkeNe
(α− b̆2(σ))2 +O(α− b̆2(σ))4,∀α ∈ I2 (4.92)

Next, we subtract approximation function g̃R from damage d̂ for the two intervals. We then choose

the multipliers in front of the terms (α − b̆1(σ))2 and (α − b̆2(σ))2 such that these terms vanish

leading us to the conditions Eq. (4.87) and Eq. (4.88).

For simplicity reasons, let us rename the following series:

T1 :=

∞∑

i=−∞
exp

(
− i2π2

c̆21(σ)

)
T2 :=

∞∑

i=−∞
exp

(
− i2π2

c̆22(σ)

)
(4.93)

T3 :=

∞∑

i=−∞
exp

(
− (π4 + θ

2 + iπ)2

c̆21(σ)

)
, T4 :=

∞∑

i=−∞
exp

(
− (π4 − θ

2 − iπ)2

c̆22(σ)

)
. (4.94)

To be able to satisfy conditions in Eq. (4.85) and Eq. (4.86) the series T3 and T4 should all be

finite. We have already proven the absolute convergence of T1 and T2 in Lemma 4.3.3. It remains

to investigate that T3 and T4 are also finite.

Lemma 4.3.7. T3 and T4 are absolutely convergent.

Proof. We consider two series with elements given as ci = exp
(
− (24i+1)π2+(16i+4)θπ+4θ2

16c̆21(σ)

)
and

di = exp
(
−−(40i+31)π2+(16i+4)θπ+4θ2

16c̆21(σ)

)
. The series

∑∞
i=0 ci is a geometric series where the first
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element of the series is exp
(
−π2+4θπ+4θ2

16c̆21(σ)

)
and the common ratio is exp

(
− 24π2+16θπ

16c̆21(σ)

)
< 1. Hence,

using the series sum formula for infinite geometric series we get

∞∑

i=0

ci =
exp

(
−π2+4θπ+4θ2

16c̆21(σ)

)

1− exp
(
− 24π2+16θπ

16c̆21(σ)

)

Similarly, the series
∑−1
i=−∞ di is a geometric series where the first element of the series is

exp
(
− 9π2−12θπ+4θ2

16c̆21(σ)

)
and the common ratio is exp

(
− 40π2−16θπ

16c̆21(σ)

)
< 1. Hence, using the series

sum formula for infinite geometric series we get

−1∑

i=−∞
di =

exp
(
− 9π2−12θπ+4θ2

16c̆21(σ)

)

1− exp
(
− 40π2−16θπ

16c̆21(σ)

)

We can rewrite the series T3 as

T3 =:

∞∑

i=−∞
ai =

∞∑

i=0

ai +

−1∑

i=−∞
ai

where ai = exp
(
− (π4 + θ

2 +iπ)2

c̆21(σ)

)
, i ∈ Z. We see that ((24i+1)π2+(16i+4)θπ+4θ2) ≤ (π+2θ+4iπ)2

for i ∈ N0 which implies ai ≤ ci for i ∈ N0 and similarly, ai ≤ di for i = −1,−2,−3, . . .. Hence,∑∞
i=0 ai and

∑−1
i=−∞ ai is absolutely convergent according to the Comparison Test of First Kind.

The sum of two converging sequence is converging so T3 also converges absolutely.

Similarly, T4 also converges with ci = exp
(
− (40i−31)π2+(16i−4)θπ+4θ2

16c̆21(σ)

)
for i = 1, 2, 3, . . . and

di = exp
(
−−(24i−1)π2+(16i−4)θπ+4θ2

16c̆21(σ)

)
for i = 0,−1,−2, . . ..

In the next lemma we give the equations to compute the parameters ă1(σ) and d̆1(σ) in the

definition of the approximation function g̃R from Eq. (4.80).

Lemma 4.3.8. The parameters ă1(σ) and d̆1(σ) in the definition of the approximation function

g̃R from Eq. (4.80) are given as

ă1(σ) =
(a(σ) + b(σ))k

σkeNe(T1 − T3)
(4.95)

and

d̆1(σ) =
(a(σ) + b(σ))k

σkeNe
− ă1(σ)T1 (4.96)

where T1 and T3 are from Eq. (4.93) and Eq. (4.94), respectively.

Proof. The two equations, Eq. (4.83) and Eq. (4.85) have three unknowns. Subtracting Eq.

(4.85) from Eq. (4.83) we get an equation in ă1(σ) and c̆1(σ):

ă1(σ)

( ∞∑

i=−∞
exp

(
− i2π2

c̆21(σ)

)
−

∞∑

i=−∞
exp

(
− (π4 + θ

2 + iπ)2

c̆21(σ)

))
=

(a(σ) + b(σ))k

σkeNe

⇒ ă1(σ) (T1 − T3) =
(a(σ) + b(σ))k

σkeNe
. (4.97)
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Rearranging Eq. (4.97) gives us Eq. (4.95) for computing ă1(σ). We get Eq. (4.96) from Eq.

(4.83).

Next, we give the equations to compute the parameters ă2(σ) and d̆2(σ) in the definition of the

approximation function g̃R from Eq. (4.80).

Lemma 4.3.9. The parameters ă2(σ) and d̆2(σ) in the definition of the approximation function

g̃R from Eq. (4.80) are given as

ă2(σ) =
(b(σ)− a(σ))k

σkeNe(T2 − T4)
(4.98)

and

d̆2(σ) =
(b(σ)− a(σ))k

σkeNe
− ă2(σ)T2 (4.99)

where T2 and T4 are from Eq. (4.93) and Eq. (4.94), respectively.

Proof. The two equations, Eq. (4.84) and Eq. (4.86) have three unknowns. Subtracting Eq.

(4.86) from Eq. (4.84) we get an equation in ă2(σ) and c̆2(σ):

ă2(σ)

( ∞∑

i=−∞
exp

(
− i2π2

c̆22(σ)

)
−

∞∑

i=−∞
exp

(
− (π4 − θ

2 − iπ)2

c̆22(σ)

))
=

(b(σ)− a(σ))k

σkeNe

⇒ ă2(σ) (T2 − T4) =
(b(σ)− a(σ))k

σkeNe
. (4.100)

Rearranging Eq. (4.100) gives us Eq. (4.98) for computing ă1(σ). We get Eq. (4.99) from Eq.

(4.84).

The next corollary gives us equation for computing c̆1(σ) and c̆2(σ).

Corollary 4.3.10. The parameters c̆1(σ) and c̆2(σ) in the definition of the approximation func-

tion g̃R in Eq. (4.80) are given as

c̆1(σ) =




(a(σ) + b(σ))
∑∞
i=−∞

(
c̆21(σ)− 2i2π2

)
exp

(
− i2π2

c̆21(σ)

)

2kb(σ)(T1 − T3)




1
4

(4.101)

and

c̆2(σ) =




(b(σ)− a(σ))
∑∞
i=−∞

(
c̆22(σ)− 2i2π2

)
exp

(
− i2π2

c̆22(σ)

)

2kb(σ)(T2 − T4)




1
4

(4.102)

where T1, T2, T3 and T4 are from Eq. (4.93) and Eq. (4.94).

Proof. Inserting ă1(σ) from Eq. (4.95) into Eq. (4.87) gives

2b(σ)k(a(σ) + b(σ))k−1

σkeNe
+

(a(σ) + b(σ))k

σkeNe(T1 − T3)c̆21(σ)

∞∑

i=−∞

(
2i2π2

c̆21(σ)
− 1

)
exp

(
− i2π2

c̆21(σ)

)
= 0
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⇒ 2b(σ)k +
a(σ) + b(σ)

(T1 − T3)c̆21(σ)

∞∑

i=−∞

(
2i2π2

c̆21(σ)
− 1

)
exp

(
− i2π2

c̆21(σ)

)
= 0 (4.103)

Rearranging and further simplification gives Eq. (4.101), a fixed point equation in c̆1(σ).

Similarly, inserting ă2(σ) from Eq. (4.98) into Eq. (4.88) gives

2b(σ)k(b(σ)− a(σ))k−1

σkeNe
+

(b(σ)− a(σ))k

σkeNe(T2 − T4)c̆22(σ)

∞∑

i=−∞

(
2i2π2

c̆22(σ)
− 1

)
exp

(
− i2π2

c̆22(σ)

)
= 0

⇒ 2b(σ)k +
b(σ)− a(σ)

(T2 − T4)c̆22(σ)

∞∑

i=−∞

(
2i2π2

c̆22(σ)
− 1

)
exp

(
− i2π2

c̆22(σ)

)
= 0 (4.104)

Rearranging and further simplification gives Eq. (4.102), a fixed point equation in c̆2(σ).

(a) Fixed points for c̆1(σ). (b) Fixed points for c̆2(σ).

Figure 4.10.: Fixed points of Eq. (4.101) and Eq. (4.102) for k = 5, a(σ) < b(σ) < σmax with
a(σ) + b(σ) < σmax and σmax = 180.

Figure 4.10 illustrates the solutions for the Eq. (4.101) and Eq. (4.102) for possible values of

a(σ) < b(σ) < σmax, with a(σ) + b(σ) < σmax and σmax = 180, for two different values of k.

Since, with increasing index i of the sum, the summands are getting exponentially smaller we only

take the first 1000 terms on both sides of zero in the summation in Eq. (4.101) and Eq. (4.102)

without introducing large error.

This subsection gave an approximation to the damage function for α ∈ R in one slope case with

a(σ) < b(σ). We derived the parameters for the approximation function g̃R and discussed their

properties. In the next section we give an approximation to the damage function on the interval

[0, π).

4.4. Approximation of the damage on the interval [0, π)

When we have more than one block load in the load time series it is not necessary that the

damage from these block loads is centered at the same point. Therefore, it is important that we

can approximate the damage function from each block load on any interval of period π. In this

section, we give approximation of damage function d̂ on the interval [0, π). The damage from the
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block load could be shifted more towards either half of the interval [0, π) as shown in Figure 4.11

for the case a(σ) ≥ b(σ) and Figure 4.12 for the case a(σ) < b(σ).

d

0 0.5 1 1.5 2 2.5 3
α

(a) Damage shifted towards left.

d

0 0.5 1 1.5 2 2.5 3
α

(b) Damage shifted towards right.

Figure 4.11.: Possible shift of damage for a(σ) ≥ b(σ).

d

0 0.5 1 1.5 2 2.5 3
α

(a) Damage shifted towards left.

d

0 0.5 1 1.5 2 2.5 3
α

(b) Damage shifted towards right.

Figure 4.12.: Possible shift of damage for a(σ) < b(σ).

From Figure 4.12 we see that by adding one Gaussian function on each side of the Gaussian

function with centre in the interval [0, π) we can approximate the damage function d̂. It would

mean in this case that the summation index i in Eq. (4.67) and Eq. (4.80) is restricted to −1, 0

and 1 in place of −∞ to ∞.

4.4.1. Case a(σ) ≥ b(σ)

We give an approximation of the damage function d̂ in Eq. (4.4) on the interval [0, π) by restricting

the summation index in Eq. (4.67) to −1, 0 and 1 as

g[0,π) : R3 × [0, π)→ R, (σ, α) 7→
1∑

i=−1

fă(σ),b̆(σ),c̆(σ)(α− iπ) + d̆(σ), α ∈ [0, π) (4.105)

where fă(σ),b̆(σ),c̆(σ) is a Gaussian function from Eq. (4.1) with parameters ă(σ), b̆(σ) and c̆(σ).

We want the approximation g[0,π) to be exact at the maxima. Consequently, the approximation

in Eq. (4.105) evaluated at α = b̆(σ) should yield the maximum damage. We obtain the following
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equation when damage function d̂ and approximation function g[0,π) are evaluated at b̆(σ)

ă(σ)

1∑

i=−1

exp

(
− i2π2

c̆2(σ)

)
+ d̆(σ) =

(a(σ) + b(σ))k

σkeNe
, (4.106)

Equation (4.106) has to be satisfied for the approximation function g[0,π) to be exact at b̆(σ).

Similarly, when we evaluate the approximation function g[0,π) at α = b̆(σ) + π
2 we should get the

minimum damage:

ă(σ)

1∑

i=−1

exp

(
− (2i+ 1)2π2

4c̆2(σ)

)
+ d̆(σ) =

(a(σ)− b(σ))k

σkeNe
. (4.107)

Again, Eq. (4.107) has to be satisfied for the approximation g[0,π) to be exact at the minima. The

condition in Eq. (4.107) implies that the approximation function is continuous and differentiable

at the point of minimum in the interval [0, π).

In the next theorem, we establish that the function g[0,π) is an approximation of damage function

d̂ of order 4.

Corollary 4.4.1. Given the stress σ = (σxx, σyy, σxy)T with a(σ) ≥ b(σ). If g[0,π) is as defined

in Eq. (4.105) and parameters ă(σ), b̆(σ) and d̆(σ) satisfying Eq. (4.7), Eq. (4.106) and Eq.

(4.107) and additionally, if

2kb(σ)(a(σ) + b(σ))k−1

σkeNe
+
ă(σ)

c̆2(σ)

1∑

i=−1

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
= 0, (4.108)

then g[0,π) is an approximation of damage function d̂ defined in Eq. (4.4) on [0, π) of order 4, i.e.,

∣∣∣d̂(σ, α)− g[0,π)(σ, α)
∣∣∣ = O((α− b̆(σ))4).

Proof. The proof follows directly from Theorem 4.3.1 by restricting the summation index i to −1,

0 and 1.

In the next lemma we give the equations to compute the parameters ă(σ) and d̆(σ) in the definition

of the approximation function g[0,π) from Eq. (4.105).

Corollary 4.4.2. The parameters ă(σ) and d̆(σ) in the definition of the approximation function

g[0,π) in Eq. (4.67) are given as

ă(σ) =
(a(σ) + b(σ))k − (a(σ)− b(σ))k

σkeNe
∑1
i=−1

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

)) (4.109)

and

d̆(σ) =
(a(σ)− b(σ))k

∑1
i=−1 exp

(
− i2π2

c̆2(σ)

)
− (a(σ) + b(σ))k

∑1
i=−1 exp

(
− (2i+1)2π2

4c̆2(σ)

)

σkeNe
∑1
i=−1

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

)) . (4.110)
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Proof. The proof follows from Lemma 4.3.4 by restricting the summation index i to −1, 0 and

1.

The next corollary gives us an equation for computing c̆(σ) in Eq. (4.105).

Corollary 4.4.3. The parameter c̆(σ) in the definition of the approximation function g[0,π) in

Eq. (4.105) is given as

c̆(σ) =




t̃
∑1
i=−1

(
c̆2(σ)− 2π2i2

)
exp

(
− i2π2

c̆2(σ)

)

∑1
i=−1

(
exp

(
− i2π2

c̆2(σ)

)
− exp

(
− (2i+1)2π2

4c̆2(σ)

))




1
4

. (4.111)

where t̃ := (a(σ)+b(σ))k−(a(σ)−b(σ))k

2kb(σ)(a(σ)+b(σ))k−1 .

Proof. The proof follows from Corollary 4.3.5 by restricting the summation index i to −1, 0 and

1.

From the proof of Lemma 4.2.9 we know that t̃ is an element of the interval
[

1
k , 1
]
. Equation

(4.111) is a fixed point equation for c̆(σ). We can prove the existence of a fixed point of Eq.

(4.111) in terms of the Intermediate Value Theorem.

Theorem 4.4.4 (Intermediate Value Theorem). Let f ∈ C([a, b]) be a continuous function, and

assume that u ∈ [min(f(a), f(b)),max(f(a), f(b))]. Then there exists a value c ∈ [a, b] such that

f(c) = u.

Theorem 4.4.5. Equation (4.111) has a fixed point in
[

1
k , 2
]

for k ∈ R, k > 1 and t̃ ∈
[

1
k , 1
]
.

Proof. Let us define the function:

T :

[
1

k
, 2

]
7→ R, y 7→




t̃
∑1
i=−1

(
y2 − 2π2i2

)
exp

(
− i2π2

y2

)

∑1
i=−1

(
exp

(
− i2π2

y2

)
− exp

(
− (2i+1)2π2

4y2

))




1
4

− y. (4.112)

First, we observe that the denominator of T (y) is never zero which implies that T (y) has no points

of discontinuity. Next, we evaluate the function T at the interval limits:

T (2) =




t̃
∑1
i=−1

(
22 − 2π2i2

)
exp

(
− i2π2

22

)

∑1
i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (2i+1)2π2

4·22

))




1
4

− 2

= −2 +
(
1.98069t̃

) 1
4

< 0, for all t̃ ∈
[

1

k
, 1

]
.

T
(

1

k

)
=


 t̃

∑1
i=−1

(
1
k2 − 2π2i2

)
exp

(
−i2π2k2

)
∑1
i=−1

(
exp (−i2π2k2)− exp

(
− (2i+1)2π2k2

4

))




1
4

− 1

k
, (4.113)
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In Corollary A.3.5 in Section A.3.1 we prove that

T
(

1

k

)
> 0.

Since T
(

1
k

)
> 0 and T (2) < 0, the Intermediate Value Theorem tells us that T (c) = 0 for some c

in the interval
[

1
k , 2
]
. This is true for all values of k > 1 and t̆ in interval [ 1

k , 1]. This gives us

T (c) = 0⇒ c =




t̃
∑1
i=−1

(
c2 − 2π2i2

)
exp

(
− i2π2

c2

)

∑1
i=−1

(
exp

(
− i2π2

c2

)
− exp

(
− (2i+1)2π2

4c2

))




1
4

. (4.114)

Equation (4.114) gives us Eq. (4.111) when replacing c by c̆(σ). Hence, we have proven that Eq.

(4.111) has a fixed point in the interval
[

1
k , 2
]
.

Now we can compute c̆(σ) and other parameters for the approximation. We see from Eq. (4.111)

that c̆(σ) is an increasing function with respect to the t̃. Therefore, the equation for the upper

and lower bound for the parameter c̆(σ) for different values of k can be obtained from Eq. (4.111)

when t̃ = 1 and t̃ = 1
k , respectively. In Figure 4.13, we see the lower and upper bound for c̆(σ)

for different values of k. Similar to the observation made in the previous sections we can see that

the upper bound is constant with respect to k.

0
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0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

c̆(
σ
)

2 4 6 8 10 12 14 16 18 20
k

Lower Bound

Upper Bound

Figure 4.13.: Upper and lower bounds of c̆(σ) for different values of k.

In this subsection, we have developed approximation to the damage function, for the interval

[0, π), in the case of one slope, with a(σ) ≥ b(σ), by restricting the summation index i of the

approximation function developed for the case when α ∈ R. We derived the parameters ă(σ),

b̆(σ), c̆(σ) and d̆(σ) for the approximation and discussed properties of the parameters. In the

next subsection we give the approximation for the case a(σ) < b(σ).

4.4.2. Case a(σ) < b(σ)

For approximating damage on the interval [0, π) when stress σ is such that a(σ) < b(σ), we take

the same approach as in the Section 4.4.1. The summation index i in Eq. (4.80), Eq. (4.83) and
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Eq. (4.84) is restricted to −1, 0 and 1. Approximation function g̃[0,π) is defined as

g̃[0,π)(σ, α) =

{∑1
i=−1 fă1(σ),b̆1(σ),c̆1(σ)(α− iπ) + d̆1(σ), if α ∈ Ĩ1∑1
i=−1 fă2(σ),b̆2(σ),c̆2(σ)(α− iπ) + d̆2(σ), if α ∈ Ĩ2

, (4.115)

where b̆1(σ) = α−max,1, b̆2(σ) = α−max,2 and fă1(σ),b̆1(σ),c̆1(σ) and fă2(σ),b̆2(σ),c̆2(σ) are Gaussian

functions from Definition 4.0.1 and the interval Ĩ1 is the restriction of the interval Î1 in Eq. (4.81)

as

Ĩ1 = Î1 ∩ [0, π), (4.116)

and the interval Ĩ2 is the restriction of the interval Î2 in Eq. (4.82) as

Ĩ2 = Î2 ∩ [0, π), (4.117)

The approximation function g̃[0,π) has 8 parameters ă1, ă2, b̆1, b̆2, c̆1, c̆2, d̆1 and d̆2 which have to

be determined before we can use the approximation in any optimization problem.

The approximation function g̃[0,π) in Eq. (4.115) when evaluated at α = b̆1(σ) should give the peak

with maximal damage. Additionally, we have from Theorem 2.3.13 that the maximum magnitude

of the scalar stress on the interval Ĩ1 is given by s−max,1 = a(σ) + b(σ). This gives us the following

equation at α = b̆1(σ):

ă1(σ)

1∑

i=−1

exp

(
− i2π2

c̆21(σ)

)
+ d̆1(σ) =

(a(σ) + b(σ))k

σkeNe
. (4.118)

Similarly, when we evaluate g̃[0,π) at α = b̆2(σ) we get the peak with the smaller value of damage

ă2(σ)

1∑

i=−1

exp

(
− i2π2

c̆22(σ)

)
+ d̆2(σ) =

(b(σ)− a(σ))k

σkeNe
. (4.119)

At the limits of the interval Ĩ1 and Ĩ2 the damage is zero. Evaluating function g̃[0,π) at these limits

results in the following equations

ă1(σ)

1∑

i=−1

exp

(
− (π4 + θ

2 + iπ)2

c̆21(σ)

)
+ d̆1(σ) = 0, (4.120)

ă2(σ)

1∑

i=−1

exp

(
− (π4 − θ

2 − iπ)2

c̆22(σ)

)
+ d̆2(σ) = 0. (4.121)

The conditions in Eq. (4.120) and Eq. (4.121) implies that the approximation function g̃[0,π) is

continuous and differentiable at the point of minima.

In the next corollary, we establish the quality of the approximation function g̃[0,π).

Corollary 4.4.6. Given stress σ = (σxx, σyy, σxy)T with a(σ) < b(σ). If the approximation

function g̃[0,π) as defined in Eq. (4.115) where b̆1(σ) = α−max,1(σ), b̆2(σ) = α−max,2 and parameters

ă1(σ), ă2(σ), d̆1(σ) and d̆2(σ) satisfy Eq. (4.118), Eq. (4.119), Eq. (4.120) and Eq. (4.121), and
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additionally, if c̆1(σ) and c̆2(σ) satisfy equations

2b(σ)k(a(σ) + b(σ))k−1

σkeNe
+
ă1(σ)

c̆21(σ)

1∑

i=−1

(
2i2π2

c̆21(σ)
− 1

)
exp

(
− i2π2

c̆21(σ)

)
= 0 (4.122)

and
2b(σ)k(b(σ)− a(σ))k−1

σkeNe
+
ă2(σ)

c̆22(σ)

1∑

i=−1

(
2i2π2

c̆22(σ)
− 1

)
exp

(
− i2π2

c̆22(σ)

)
= 0, (4.123)

then for α ∈ Ĩ1 ∪ Ĩ2, the function g̃[0,π)(σ, α) is an approximation to the damage function d̂(σ, α)

from Eq. (4.4) of order 4, i.e.,

∣∣∣d̂(σ, α)− g̃[0,π)(σ, α)
∣∣∣ =

{
O((α− b̆1(σ))4), if α ∈ Ĩ1
O((α− b̆2(σ))4), if α ∈ Ĩ2

Proof. The proof follows directly from Theorem 4.3.6 by restricting the summation index i to −1,

0 and 1.

In the next lemma we give the equations to compute the parameters ă1(σ) and d̆1(σ) in the

definition of the approximation function g̃[0,π) from Eq. (4.115).

Lemma 4.4.7. The parameters ă1(σ) and d̆1(σ) in the definition of the approximation function

g̃[0,π) from Eq. (4.115) are given as

ă1(σ) =
(a(σ) + b(σ))k

σkeNe

(∑1
i=−1 exp

(
− i2π2

c̆21(σ)

)
−∑1

i=−1 exp

(
− (π4 + θ

2 +iπ)
2

c̆21(σ)

)) (4.124)

and

d̆1(σ) =
(a(σ) + b(σ))k

σkeNe
− ă1(σ)

1∑

i=−1

exp

(
− i2π2

c̆21(σ)

)
. (4.125)

Proof. The two equations, Eq. (4.118) and Eq. (4.120) have three unknowns. Subtracting Eq.

(4.120) from Eq. (4.118) we get an equation in ă1(σ) and c̆1(σ):

ă1(σ)

(
1∑

i=−1

exp

(
− i2π2

c̆21(σ)

)
−

1∑

i=−1

exp

(
− (π4 + θ

2 + iπ)2

c̆21(σ)

))
=

(a(σ) + b(σ))k

σkeNe
(4.126)

Rearranging Eq. (4.126) gives us Eq. (4.124) for computing ă1(σ). We get Eq. (4.125) from Eq.

(4.118).

Next, we give the equations to compute the parameters ă2(σ) and d̆2(σ) in the definition of the

approximation function g̃[0,π) from Eq. (4.115).

Lemma 4.4.8. The parameters ă2(σ) and d̆2(σ) in the definition of the approximation function
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g̃[0,π) from Eq. (4.115) are given as

ă2(σ) =
(b(σ)− a(σ))k

σkeNe

(∑1
i=−1 exp

(
− i2π2

c̆22(σ)

)
−∑1

i=−1 exp

(
− (π4−

θ
2−iπ)

2

c̆22(σ)

)) (4.127)

and

d̆2(σ) =
(b(σ)− a(σ))k

σkeNe
− ă2(σ)

1∑

i=−1

exp

(
− i2π2

c̆22(σ)

)
. (4.128)

Proof. The two equations, Eq. (4.119) and Eq. (4.121) have three unknowns. Subtracting Eq.

(4.121) from Eq. (4.119) we get an equation in ă2(σ) and c̆2(σ):

ă2(σ)

(
1∑

i=−1

exp

(
− i2π2

c̆22(σ)

)
−

1∑

i=−1

exp

(
− (π4 − θ

2 − iπ)2

c̆22(σ)

))
=

(b(σ)− a(σ))k

σkeNe
(4.129)

Rearranging Eq. (4.129) gives us Eq. (4.127) for computing ă1(σ). We get Eq. (4.128) from Eq.

(4.119).

The next corollary gives us equation for computing c̆1(σ) and c̆2(σ) in the definition of the

approximation function g̃[0,π) from Eq. (4.115).

Corollary 4.4.9. The parameters c̆1(σ) and c̆2(σ) in the definition of the approximation function

g̃[0,π) in Eq. (4.115) are given as

c̆1(σ) =




t̃1
∑∞
i=−∞

(
c̆21(σ)− 2i2π2

)
exp

(
− i2π2

c̆21(σ)

)

∑1
i=−1 exp

(
− i2π2

c̆22(σ)

)
−∑1

i=−1 exp

(
− (π4 + θ

2 +iπ)
2

c̆22(σ)

)




1
4

(4.130)

where t̃1 = a(σ)+b(σ)
2kb(σ) and

c̆2(σ) =




t̃2
∑∞
i=−∞

(
c̆22(σ)− 2i2π2

)
exp

(
− i2π2

c̆22(σ)

)

2k

(∑1
i=−1 exp

(
− i2π2

c̆22(σ)

)
−∑1

i=−1 exp

(
− (π4−

θ
2−iπ)

2

c̆22(σ)

))




1
4

(4.131)

where t̃2 = b(σ)−a(σ)
b(σ) .

Proof. Inserting ă1(σ) from Eq. (4.124) into Eq. (4.122) after rearranging and simplification gives

Eq. (4.130), a fixed point equation in c̆1(σ).

Similarly, inserting ă2(σ) from Eq. (4.127) into Eq. (4.123) after rearranging and simplification

gives Eq. (4.131), a fixed point equation in c̆2(σ).

Since a(σ) < b(σ), the value of t̃1 lies in the interval
[

1
2k ,

1
k

)
. Equation (4.130) is a fixed point

equation for c̆1(σ). We can prove the existence of fixed points of Eq. (4.130) in terms of the
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Intermediate Value Theorem.

Theorem 4.4.10. For k ∈ R, k > 1 and t̃1 ∈
[

1
2k ,

1
k

)
. The Eq. (4.130) has a fixed point in[

1
2k , 2

]
.

Proof. Let us consider a function

T1 :

[
1

2k
, 2

]
7→ R, y 7→




t̃1
∑1
i=−1

(
y2 − 2i2π2

)
exp

(
− i2π2

y2

)

k
∑1
i=−1

(
exp

(
− i2π2

y2

)
− exp

(
− (π4 + θ

2 +iπ)
2

y2

))




1
4

− y. (4.132)

First, we observe that the denominator of T1(y) is never zero which implies that T1(y) has no

points of discontinuity. Next, we evaluate the function T1 at the interval limits:

T1(2) =




t̃1
∑1
i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)

∑1
i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (π4 + θ

2 +iπ)
2

22

))




1
4

− 2 (4.133)

In Section A.3.2, we prove that T1(2) < 0 for all k > 1 and t̃1 ∈
[

1
2k ,

1
k

)
. Now we evaluate

T1

(
1

2k

)
=


 t̃1

∑1
i=−1

(
1− 8k2i2π2

)
exp

(
−22k2i2π2

)

4k2
∑1
i=−1

(
exp (−22k2i2π2)− exp

(
−22k2

(
π
4 + θ

2 + iπ
)2))




1
4

− 1

2k
(4.134)

In Corollary A.3.6, we show that T1

(
1
2k

)
> 0 for all k > 1 and t̃1 ∈

[
1
2k ,

1
k

)
. Since T1

(
1
2k

)
> 0

and T1(2) < 0, the Intermediate Value Theorem tells us that T (c) = 0 for some c in the interval[
1
2k , 2

]
. This is true for all values of k > 1 and t̃1 ∈

[
1
2k ,

1
k

)
. This gives us

T1(c) = 0⇒ c =




t̃1
∑1
i=−1

(
c2 − 2i2π2

)
exp

(
− i2π2

c2

)

k
∑1
i=−1

(
exp

(
− i2π2

c2

)
− exp

(
− (π4 + θ

2 +iπ)
2

c2

))




1
4

. (4.135)

Equation (4.135) gives us Eq. (4.130) when replacing c by c̆1(σ). Hence, we have proven that Eq.

(4.122) has a fixed point in the interval
[

1
2k , 2

]
.

Now we can compute c̆1(σ) and parameters ă1(σ) and d̆1(σ) for the approximation. The parameter

is increasing with respect to the t̃1. Therefore, the the upper and lower bound for the parameter

c̆1(σ) for different values of k can be obtained from Eq. (4.130) when t̃1 = 1
k and t̃1 = 1

2k

respectively. In Figure 4.14 we see the lower and upper bound for c̆1(σ) for different values of k.

Equation (4.123) is a fixed point equation for the parameter c̆2(σ). We can prove the existence

of fixed points using Intermediate Value Theorem similar to the proof for c̆1(σ). Now we can

compute the parameter c̆2(σ), ă2(σ) and d̆1(σ) for the approximation function g̃[0,π). Again, the

parameter c̆2(σ) is increasing with respect to the t̃2. Therefore, the equation for the upper bound

for the parameter c̆2(σ) for different values of k can be obtained from Eq. (4.131) when t̃2 = 0.5.
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Figure 4.14.: Upper and lower bounds of c̆1(σ) for different values of k.

The lower bound is given by the requirement that c̆2(σ) > 0. In Figure 4.15 we see the lower and

upper bound for the parameter c̆2(σ) for different values of k.
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Figure 4.15.: Upper and lower bounds of c̆2(σ) for different values of k.

4.4.3. Simplification of model for the case a(σ) < b(σ)

In Section 4.4.2, we gave an approximation function for damage when a load time series with

one block load was applied on the component under testing for the case a(σ) < b(σ). For the

approximation function g̃[0,π) we have to keep track of intervals Ĩ1 and Ĩ2 where the two peaks

are centered. When there are more than one block in the load time series the tracking of different

intervals becomes more complicated. As the number of blocks increase the number of overlap

between intervals from different blocks also increases. This increases the complexity during the

optimization. In this section, we simplify the approximation function g̃[0,π) such that the need for

tracking of the intervals Ĩ1 and Ĩ2 for each block is not required.

Even after the simplification of the model there is no change in how fast the damage should fall

towards its minimum value, therefore, we keep c̆1(σ) and c̆2(σ) from Section 4.4.2. We redefine

our approximation function for the damage d̂ in the case a(σ) < b(σ) on the interval [0, π) as
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below

ĝ(σ, α) =

1∑

i=−1

(
fă1(σ),b̆1(σ),c̆1(σ)(α− iπ) + fă2(σ),b̆2(σ),c̆2(σ)(α− iπ)

)
+ d̆1(σ) (4.136)

The peak with the maximal damage value occurs at α = b̆1(σ). Evaluating the approximation

function ĝ and the damage function d̂ at b̆1(σ) yields

1∑

i=−1

(
ă1(σ) exp

(
− i2π2

c̆21(σ)

)
+ ă2(σ) exp

(
− (2i+ 1)2π2

4c̆22(σ)

))
+ d̆1(σ) =

(a(σ) + b(σ))k

σkeNe
(4.137)

The peak with the smaller damage value is at α = b̆2(σ). Again, evaluating the approximation

function ĝ and the damage function d̂ at b̆2(σ) yields

1∑

i=−1

(
ă1(σ) exp

(
− (2i+ 1)2π2

4c̆21(σ)

)
+ ă2(σ) exp

(
− i2π2

c̆22(σ)

))
+ d̆1(σ) =

(b(σ)− a(σ))k

σkeNe
(4.138)

Finally, the damage function d̂ is zero at the end point of interval Ĩ1 and Ĩ2. So, we want for the

consistency that the approximation function ĝ should also be zero at the limits of the interval.

This gives us an additional equation:

1∑

i=−1

(
ă1(σ) exp

(
− (π4 + θ

2 + iπ)2

c̆21(σ)

)
+ ă2(σ) exp

(
− (π4 − θ

2 + iπ)2

c̆22(σ)

))
+ d̆1(σ) = 0 (4.139)

So we have three equations for three unknowns. Therefore, we can solve for ă1(σ), ă2(σ) and

d̆1(σ). In Figure 4.16 we compare the approximations given in this section and Section 4.4.2.
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(a) Approximated damage in red and simplified
damage in green.
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3×10−11
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(b) Error |d̂(σ, α)− g̃[0,π)(σ, α)| in blue and er-

ror |d̂(σ, α)− ĝ(σ, α)| in red.

Figure 4.16.: Comparison of g̃[0,π) and ĝ.

We see in Figure 4.16 (b) that error in the case of simplified approximation function ĝ as defined

in Eq. (4.136) on the interval [0, π) has smaller magnitude almost everywhere except in the

neighbourhood of the end points of intervals Ĩ1 and Ĩ2 when compared with the approximation

function g̃[0,π) from Eq. (4.115). We use ĝ as an approximation for the damage function d̂ when

a(σ) < b(σ).
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4.5. Numerical results and comparisons

In the previous sections we gave approximations for damage function d̂ from Eq. (4.4) for three

different intervals. The first approximation was for the interval centered around the point of

maximum damage extending π
2 on both sides. The second model was derived for the complete

real line R and finally we gave an approximation for the interval [0, π).

In this section, we compare the approximation function and the damage function for the interval

[0, π) for the two cases a(σ) ≥ b(σ) and a(σ) < b(σ) as it is the most interesting interval for us.

For comparison of the approximation function and the damage function around point of maximum

see Section B.1.

4.5.1. Case a(σ) ≥ b(σ)

We compare the actual damage d̂ and the approximation function g[0,π) for three values of the

ratio b(σ)
a(σ) . In Figure 4.17 we see the actual damage functiond̂, approximation function g[0,π) and

the error for b(σ)
a(σ) ≈ 0. In Figure 4.18 we see the actual damage functiond̂, approximation function

g[0,π) and error for b(σ)
a(σ) = 0.5. In Figure 4.19 we see the actual damage functiond̂, approximation

function g[0,π) and error for b(σ)
a(σ) = 1.
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(a) Approximation (red) and actual (blue) dam-
age.
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0 0.5 1 1.5 2 2.5 3
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(b) Error |d̂(σ, α)− g[0,π)(σ, α)|.

Figure 4.17.: Approximation in [0, π) when b(σ)
a(σ) ≈ 0.

We observe in Figure 4.17 (a), Figure 4.18 (a) and Figure 4.19 (a) that the function g[0,π) is a

good approximation of the actual damage function d̂. Furthermore, the error around the point of

maximum is small which was a requirement we had put forth on the approximation. In Table 4.1

we see the ratio of maximum damage to the maximum error for different values of the ratio b(σ)
a(σ) .

As can be seen from the Table 4.1 the ratio of maximum damage to the maximum error is always

less than 0.02. Therefore, the maximum error is small compared to the maximum damage.
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(a) Approximation (red) and actual (blue) dam-
age.
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(b) Error |d̂(σ, α)− g[0,π)(σ, α)|.

Figure 4.18.: Approximation in [0, π) when b(σ)
a(σ) = 0.5.

0

3×10−7

6×10−7

9×10−7

1.2×10−6

1.5×10−6

0 0.5 1 1.5 2 2.5 3
α

(a) Approximation (red) and actual (blue) dam-
age.
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(b) Error |d̂(σ, α)− g[0,π)(σ, α)|.

Figure 4.19.: Approximation in [0, π) when b(σ)
a(σ) = 1.

4.5.2. Case a(σ) < b(σ)

When a(σ) < b(σ) we observe two peaks. If a(σ) = 0, then both these peaks are of the same

height. We compare actual damage d̂ and approximation function ĝ from Eq. (4.136) for two

values of the ratio b(σ)
a(σ) . In Figure 4.20, we see the actual damage d̂, approximation function d̂

and the error function for b(σ)
a(σ) ≈ 0. In Figure 4.21, we see the actual damage d̂, approximation

function d̂ and error function for b(σ)
a(σ) = 0.128. The smaller the ratio b(σ)

a(σ) is, the smaller is the

difference between the heights of the two peaks. However, if the ratio is closer to one, then the

contribution of the smaller peak becomes negligible in comparison to the higher peak. This can

be observed from Figure 4.21(a), where by changing the ratio to 0.128 the peak with the smaller

height has less than half the height of the other peak which is higher.

In Table 4.2, we see the ratio of maximum damage to the maximum error for different values of

the ratio a(σ)
b(σ) . As can be seen from the Table 4.2, the ratio of maximum damage to the maximum

error is always less than 0.04. Therefore, the maximum error is comparatively small.
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Ratio b(σ)
a(σ)

|d̂(σ,α)−g[0,π)(σ,α)|
maxα∈[0,π) g[0,π)(σ,α)

0 0.0004
0.1 0.0040
0.2 0.0111
0.3 0.0121
0.4 0.0079
0.5 0.0023
0.6 0.0047
0.7 0.0095
0.8 0.0134
0.9 0.0164
1.0 0.0188

Table 4.1.: The ratio of maximum damage to the maximum error for different values of ratio b(σ)
a(σ)

in the case of a(σ) ≥ b(σ).

Ratio a(σ)
b(σ)

|d̂(σ,α)−ĝ(σ,α)|
maxα∈[0,π) ĝ(σ,α)

0 0.0360
0.1 0.0337
0.2 0.0320
0.3 0.0306
0.4 0.0293
0.5 0.0279
0.6 0.0263
0.7 0.0245
0.8 0.0225
0.9 0.0205
1.0 0.0188

Table 4.2.: The ratio of maximum damage to the maximum error for different values of ratio a(σ)
b(σ)

in the case of a(σ) < b(σ).
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(a) Approximation (red) and actual (blue) dam-
age.
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(b) Error |d̂(σ, α)− ĝ(σ, α)|.

Figure 4.20.: Approximation around maximum when a(σ)
b(σ) = 0.
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(a) Actual damage in blue and Simplified dam-
age in red.
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(b) Error |d̂(σ, α)− ĝ(σ, α)|

Figure 4.21.: Approximation in [0, π) when a(σ)
b(σ) = 0.128.

We have established an approximation of the damage function d̂ that depends only on the plane

angle α. The approximation functions in this chapter are for a load time series with one block load.

In general if we have more than one block, then for each block load we have corresponding Gaussian

functions which approximate the damage. We see in Chapter 6, that computing total damage in

case of a load time series with more than one block, we have to add all the Gaussian approximation

functions for each block load. In the next chapter we develop a clustering algorithm based on the

idea of the sum of Gaussian functions. The clustering algorithm is used to find the maximum

damage considering all plane angles α. Using the Gaussian approximation functions developed in

this chapter and Clustering algorithm developed in the next chapter we do not need to discretize

the interval of plane angle α to find the maximum damage in each iteration of optimization.
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5. Clustering of Gaussian functions

In Chapter 4 we developed a model for approximating damage for a given stress σ such that the

plane angle α is the only independent variable. In Section 2.4.3 of Chapter 2 we studied the case

when a load time series with block loads Lb is acting on the component. We also computed the

total damage as the sum of damages from each of the individual block loads in the load time

series. For the approximate damage model developed in Chapter 4, the total damage computation

is given as the sum of the Gaussian functions which approximate the damage from the individual

block loads (Section 6.1). We know that the component fails along the plane with the maximum

damage. The goal of the remodeling of damage was to find the plane α where the total damage is

maximum. The plane with the maximum damage is also referred to as the critical plane.

In this chapter we introduce the idea of clustering of Gaussian functions. This forms the basis for

finding the plane of maximum damage at different points on a component when being acted upon

by a load time series with block loads Lb in Chapter 6.

The sum of Gaussian functions is similar to the Gaussian Mixture Model (GMM). A GMM is

a parametric probability density function represented as a weighted sum of Gaussian component

densities [31]. GMM is applied in image segmentation, speaker identification and many other

fields (for applications of GMM see [15, 32, 33]). In GMM parameters are estimated from the

training data. Parameter estimation is not a concern in the case of damage approximation. We

have already given derivations and bounds for the parameters of the damage approximation in

Chapter 4.

The difference between the Gaussian approximation of damage and GMM is that the Gaussian

functions used in GMM are probability density functions which is not the case in the damage

approximation. However, the critical planes in the damage approximation corresponds to the

modes of the GMM. Therefore, the mode finding algorithms in [7] for GMM or methods for

merging the Gaussian mixture components in [16] can be modified to be used for the damage

approximation. In Section 5.1 we derive conditions for a single maxima, similar to the ones given

for the unimodality by Aprausheva et al. in [3]. In [3] Aprausheva et al. studied the GMM for

the case when the variance of all the Gaussian density functions were the same. In this chapter

we consider general Gaussian functions with each Gaussian function having a different parameter

c̆.

In Section 5.2 we describe a clustering algorithm to compute the critical plane (the plane with

the global maximum) for the sum of Gaussian functions. In general there does not exist any

method that can directly find the global maximum even in the one-dimensional case with only two

Gaussian functions. Therefore, the clustering algorithm we develop is iterative. In Section 5.3 we

give an approximate point of maximum for the sum of Gaussian functions in a cluster obtained by
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applying the clustering algorithm developed in Section 5.2. The numerical results are presented

in Section 5.4.

5.1. Sum of Gaussian functions and number of maxima

In this section we give sufficient conditions for the sum of two or more Gaussian functions to have

only one global maximum. However, it may not always be possible to have one global maximum

and therefore, at the end of this section we give bounds on the number of maxima (nm) a sum

of Gaussian functions can have when certain conditions are fulfilled. Using these conditions we

develop a clustering algorithm in Section 5.2 that groups together Gaussian functions into clusters

with each cluster being a potential local maximum.

Let us denote by G : R→ R the sum of Gaussian functions given as

G(α) =

ng∑

i=1

ăi exp


−

(
α− b̆i
c̆i

)2

 (5.1)

where ng is the number of Gaussian functions. The ith Gaussian function has parameters ăi, b̆i
and c̆i. Without loss of generality we can assume that b̆i ≤ b̆i+1 for all i < ng, otherwise we can

renumber the Gaussian functions to satisfy this ordering. We want to find α∗ for which the value

of the sum G is maximum. For α∗ to be a point of maximum it has to be a root of the following

equation

G′(α) = 0. (5.2)

Next we prove that all the roots of Eq. (5.2) always lie in-between b̆1 and b̆ng . In other words

all the maxima and minima of a sum of Gaussian functions G always lie in between the point of

maximum of the first Gaussian function and the point of maximum of the last Gaussian function

present in G.

Theorem 5.1.1. All roots of Eq. (5.2) are in the interval
[
b̆1, b̆ng

]
.

Proof. The first derivative of G is given as

G′(α) =
d

dα




ng∑

i=1

ăi exp


−

(
α− b̆i
c̆i

)2



 (5.3a)

= −2

ng∑

i=1

α− b̆i
c̆2i

ăi exp


−

(
α− b̆i
c̆i

)2

 . (5.3b)

The first derivative is always positive for all α ≤ b̆1 and it is always negative for all α ≥ b̆ng .

Hence, from Intermediate Value Theorem we know that all points which are root of Eq. (5.2) is

in the interval
[
b̆1, b̆ng

]
.

From Theorem 5.1.1 we know the interval in which all the roots of Eq. (5.2) lie. In the next step

we prove that the number of maxima in the sum of Gaussian functions G is always more than the
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number of minima. This is equivalent to proving that the number of times the graph of the first

derivative of G crosses the horizontal axis is odd.

Lemma 5.1.2. Given G as defined in Eq. (5.1), the graph of G′ crosses the horizontal axis an

odd number of times.

Proof. From Eq. (5.3b) in the proof of Theorem 5.1.1 we know that the graph of G′ is positive

for all α ≤ b̆1 and it is negative for all α ≥ b̆ng . Let us suppose that G′ crosses the α-axis an

even number of times. Then starting from being positive for α ≤ b̆1 the changes in sign gives G′
as positive for all α ≥ b̆ng . This is a contradiction to the fact that G′ is negative for all α ≥ b̆ng .

Hence, the graph of G′ crosses the horizontal axis an odd number of times.

In order to find the points of maximum we need to find the roots of the Eq. (5.2). In the next

Theorem we derive a fixed point equation for the roots of the Eq. (5.2).

Theorem 5.1.3. Equation (5.2) is equivalent to the fixed point equation

α = ϕ(α) (5.4)

where

ϕ(α) =




ng∑

i=1

b̆i
c̆2i
ăi exp


−

(
α− b̆i
c̆i

)2








ng∑

j=1

ăj exp

(
−
(
α−b̆j
c̆j

)2
)

c̆2j




−1

. (5.5)

Proof. The first derivative of G is given in Eq. (5.3b). Equating the first derivative of G to zero

gives

−2

ng∑

i=1

α− b̆i
c̆2i

ăi exp


−

(
α− b̆i
c̆i

)2

 = 0.

Collecting like terms together and rearranging gives us

⇒ α

ng∑

j=1

ăj exp

(
−
(
α−b̆j
c̆j

)2
)

c̆2j
=

ng∑

i=1

b̆i
c̆2i
ăi exp


−

(
α− b̆i
c̆i

)2

 .

Dividing both sides of the equation by the term after α on the left hand side of the equation leads

to α = ϕ(α)

⇒ α =




ng∑

i=1

b̆i
c̆2i
ăi exp


−

(
α− b̆i
c̆i

)2








ng∑

j=1

ăj exp

(
−
(
α−b̆j
c̆j

)2
)

c̆2j




−1

. (5.6)

All the fixed points of Eq. (5.4) are roots of the Eq. (5.2). We can further simplify our fixed point
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equation by defining Ψi(α) := ăi
c̆2i

exp

(
−
(
α−b̆i
c̆i

)2
)

which reduces ϕ to

ϕ(α) =

(
ng∑

i=1

b̆iΨi(α)

)


ng∑

j=1

Ψj(α)



−1

. (5.7)

For ϕ to have only one fixed point it must be a contraction mapping. For ϕ to be a contraction

mapping the first derivative of ϕ must be less than one:

ϕ′(α) < 1.

Theorem 5.1.4. We have ϕ′(α) < 1 if and only if

∑

j>i

(pij(α)− 2)Ψi(α)Ψj(α)−
ng∑

i=1

Ψ2
i (α) < 0, α ∈

[
b̆1, b̆ng

]
(5.8)

where

pij(α) = 2
(
b̆j − b̆i

)( b̆j − α
c̆2j

+
α− b̆i
c̆2i

)
. (5.9)

Proof. We compute the first derivative of ϕ as a starting point for the proof. The first derivative

of ϕ can be computed as:

d

dα
(ϕ(α)) =

d

dα



(
ng∑

i=1

b̆iΨi(α)

)


ng∑

j=1

Ψj(α)



−1



We use the quotient rule of differentiation, d
dα

(
g(α)
h(α)

)
= g′(α)h(α)−h′(α)g(α)

h2(α) , to get

d

dα
(ϕ(α)) =




ng∑

i=1

−2b̆i(α− b̆i)
c̆2i

Ψi(α)

ng∑

j=1

Ψj(α)

+

ng∑

j=1

2(α− b̆j)
c̆2j

Ψj(α)

ng∑

i=1

b̆iΨi(α)






ng∑

j=1

Ψj(α)



−2

(5.10)

For ng ≥ j > i collecting the ijth term from the numerator of the derivative gives us

2

(
− b̆i(α− b̆i)

c̆2i
− b̆j(α− b̆j)

c̆2j
+
b̆i(α− b̆j)

c̆2j
+
b̆j(α− b̆i)

c̆2i

)
Ψi(α)Ψj(α). (5.11)

In other cases when j = i we get that the iith terms are all zero. After rearranging and simplifi-

cation of the terms in Eq. (5.11) we get the ijth term as

2
(
b̆j − b̆i

)( b̆j − α
c̆2j

+
α− b̆i
c̆2i

)
Ψi(α)Ψj(α) = pij(α)Ψi(α)Ψj(α). (5.12)
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Inserting Eq. (5.12) for the numerator of the term in the right hand side of Eq. (5.10) reduces

the first derivative to the form

d

dα
(ϕ(α)) =


∑

j>i

pij(α)Ψi(α)Ψj(α)






ng∑

j=1

Ψj(α)



−2

(5.13)

For ϕ to be a contraction mapping the first derivative in Eq. (5.13) has to be less than one on the

interval
[
b̆1, b̆ng

]
. From Eq. (5.13) this leads to the following inequality:


∑

j>i

pij(α)Ψi(α)Ψj(α)






ng∑

j=1

Ψj(α)



−2

< 1

Multiplying both sides by
(∑ng

j=1 Ψj(α)
)2

leads to

∑

j>i

pij(α)Ψi(α)Ψj(α) <




ng∑

j=1

Ψj(α)




2

Collecting terms on left hand side gives us the result:

∑

j>i

(pij(α)− 2)Ψi(α)Ψj(α)−
ng∑

j=1

Ψ2
j (α) < 0

This completes the proof.

We see later that the value of pij(α) is very important for the number of maxima in G. In the

next Lemma we look at some of the properties of pij(α). We show that pij is a linear function in

α and further show that it is increasing or decreasing depending on which of the parameters c̆i or

c̆j is larger.

Lemma 5.1.5. Following statements are true for pij(α) with j > i

(i) pij(α) is a linear function in α,

(ii) when c̆i > c̆j then pij(b̆i) > pij(b̆j) and

(iii) when c̆j > c̆i then pij(b̆j) > pij(b̆i).

(iv) For α ∈
[
b̆i, b̆j

]
we have

pij(α) ∈
[

2
(
b̆j − b̆i

)2

min

(
1

c̆2i
,

1

c̆2j

)
, 2
(
b̆j − b̆i

)2

max

(
1

c̆2i
,

1

c̆2j

)]
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Proof. (i) We can rewrite pij(α) in Eq. (5.9) as below

pij(α) =
2
(
b̆j − b̆i

)

c̆2i c̆
2
j

(
c̆2j − c̆2i

)
α+

2
(
b̆j − b̆i

)

c̆2i c̆
2
j

(
c̆2i b̆j − c̆2j b̆i

)
. (5.14)

We see that Eq. (5.14) is linear in α.

(ii) From Eq. (5.14) we see that when c̆i > c̆j the slope
dpij(α)
dα < 0 for all α and therefore pij(α)

is a decreasing function. Hence, pij(b̆i) > pij(b̆j) because b̆j > b̆i.

(iii) Similarly, when c̆j > c̆i then the slope in Eq. (5.14) is positive and therefore pij(α) is an

increasing function. Hence, pij(b̆j) > pij(b̆i) because b̆j > b̆i.

(iv) Since pij(α) is linear in α from (i), inserting the end points of the interval
[
b̆i, b̆j

]
in the Eq.

(5.9) leads to:

pij

(
b̆i

)
=

2
(
b̆j − b̆i

)2

c̆2j
and pij

(
b̆j

)
=

2
(
b̆j − b̆i

)2

c̆2i
.

Which gives us the interval.

In the next Corollary we give the first sufficient condition for a single maximum for the sum of

Gaussian functions G.

Corollary 5.1.6. If pij(α) ≤ 2 on the interval
[
b̆1, b̆ng

]
for all j > i then the sum of Gaussian

functions G as given in Eq. (5.1) has a single maximum.

Proof. When pij(α) ≤ 2 on the interval
[
b̆1, b̆ng

]
for all j > i then from Eq. (5.8) in Theorem

5.1.4 we know that the first derivative of ϕ is less than one which implies that ϕ is a contraction

mapping. From the Contraction mapping theorem we know that ϕ has a unique fixed point which

implies that there is only one root of Eq. (5.2). Therefore, from Lemma 5.1.2 we know that G has

only one maximum.

When c̆i = c̆j then pij(α) corresponds to the square of Mahalanobis distance in the case of GMM.

Condition in Corollary 5.1.6 is very restrictive and may not be usually possible to satisfy even if

there is a unique fixed point for Eq. (5.4). Additionally, computing pij(α) for all ng ≥ j > i and

α ∈
[
b̆1, b̆ng

]
is time consuming and not very efficient. In the next results we give conditions for

single maximum when ng = 2 for different cases.

Corollary 5.1.7. For ng = 2 it is sufficient to have p12(α) ≤ 2 on the interval
[
b̆1, b̆2

]
for G to

have a single maximum.

Proof. Follows directly from Corollary 5.1.6.

From Remark iv we can check p12 at the end points and if the value at the end points is less then

two we have p12(α) ≤ 2 on the interval
[
b̆1, b̆2

]
. In the next result we see that we do not need to

compute pij at all if we want pij to be less than some value t on the interval
[
b̆i, b̆j

]
.
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Lemma 5.1.8. Any two Gaussian functions have pij(α) ≤ t on the interval
[
b̆i, b̆j

]
iff

b̆j − b̆i ≤
√
t

2
min (c̆i, c̆j) (5.15)

Proof. We first prove the ‘⇒’ direction. We know pij(α) ≤ t on the interval
[
b̆i, b̆j

]
. So, the

maximum value of pij on this interval is also less than t. Using (iv) from Lemma 5.1.5 we get

2
(
b̆j − b̆i

)2

max

(
1

c̆2i
,

1

c̆2j

)
≤ t

We know that for every z, y > 0 we have max(z2, y2) = (max(z, y))
2

which gives

⇔
(
b̆j − b̆i

)2
(

max

(
1

c̆i
,

1

c̆j

))2

≤ t

2
(5.16)

Since both sides of the inequality in (5.16) are positive we take the square root and observe that

b̆j > b̆i to get

⇔
(
b̆j − b̆i

)
max

(
1

c̆i
,

1

c̆j

)
≤
√
t

2

We know that max
(

1
c̆i
, 1
c̆i

)
= 1

min(c̆i,c̆j)
, which gives us

⇔
(
b̆j − b̆i

) 1

min (c̆i, c̆j)
≤
√
t

2

⇔
(
b̆j − b̆i

)
≤
√
t

2
min (c̆i, c̆j)

We have so far shown the ‘⇒’ direction. The ‘⇐’ direction follows as all the steps in the proof of

the ‘⇒’ direction are if and only if relations. This completes the proof.

Corollary 5.1.9. Any two Gaussian functions have pij(α) ≤ 2 on the interval
[
b̆i, b̆j

]
iff

b̆j − b̆i ≤ min (c̆i, c̆j) (5.17)

Proof. Follows directly from Lemma 5.1.8 by taking t = 2.

As a consequence of Corollary 5.1.9 we know that for any two Gaussian functions, pij(α) ≤ 2

on α ∈
[
b̆i, b̆j

]
is true if and only if the difference b̆j − b̆i is not more than the minimum of the

parameters c̆i and c̆j . From this result we do not need to check if pij(α) ≤ 2 is true over the entire

interval we just check if the condition in Corollary 5.1.9 is true.

In Corollary 5.1.7 we showed that if p12(α) ≤ 2 on the interval
[
b̆1, b̆2

]
then G has a single

maximum. In the next result we show that for ng = 2 we have a single maximum even when

p12(α) ≤ 4 on the interval
[
b̆1, b̆2

]
.
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Theorem 5.1.10. In case of ng = 2, G as in Eq. (5.1) have a single maximum if

p12(α) ≤ 4

for α ∈
[
b̆1, b̆2

]
.

Proof. From Theorem 5.1.4 the condition for the first derivative of ϕ(α) to be less than one, when

ng = 2, is

(p12(α)− 2) Ψ1(α)Ψ2(α)−Ψ2
1(α)−Ψ2

2(α) < 0.

Taking all terms independent of p12 on one side and using a2 + b2 + 2ab = (a+ b)2 to get

p12(α)Ψ1(α)Ψ2(α) < (Ψ1(α) + Ψ2(α))
2

Dividing both sides by Ψ1(α)Ψ2(α) and simplifying finally gives

p12(α) <

(√
Ψ1(α)

Ψ2(α)
+

√
Ψ2(α)

Ψ1(α)

)2

. (5.18)

The minimum value of the right hand side of the inequality in (5.18) is 4 as it is of the form

(z + 1
z )2 and the term z + 1

z for z > 0 is always greater than 2. Hence, when p12(α) ≤ 4 the first

derivative of ϕ is less than one and therefore Eq. (5.4) has a unique fixed point and G has a single

maximum.

In some cases even when p12(α) > 4 for some subinterval S ⊂
[
b̆1, b̆2

]
we can still have a single

maximum for the sum. In Figure 5.1 we see cases when p12(α) < 2 for all α ∈
[
b̆1, b̆2

]
, p12(α) < 4

for all α ∈
[
b̆1, b̆2

]
and p12(α) > 4 for some subinterval S ⊂

[
b̆1, b̆2

]
with two and one maximum

respectively. In (d) we see an example where the sum of two Gaussian function has a single

maximum even when p12(α) > 4 on some subinterval S ⊂
[
b̆1, b̆2

]
.

In Theorem 5.1.10 we stopped at Eq. (5.18). Continuing from there we give in Theorem 5.1.12

another property which when satisfied gives us a single maximum even when p12(α) > 4 on a

subset S of the interval
[
b̆1, b̆2

]
. Next we prove a result which is used in proving Theorem 5.1.12.

Lemma 5.1.11. For t > 4 and z > 0 the interval on which the inequality t <
(
z + 1

z

)2
is satisfied

by z is given as

I =

(
0,

1

2

(√
t−
√
t− 4

))⋃(
1

2

(√
t+
√
t− 4

)
,∞
)
.

Proof. The inequality can be written as a quadratic inequality as shown in the steps below:

t <

(
z +

1

z

)2
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α

(a) Example for p12(α) < 2 for all α ∈
[
b̆1, b̆2

] α

(b) Example for p12(α) < 4 for all α ∈
[
b̆1, b̆2

]
.

α

(c) Example for p12(α) > 4 for some subinterval

S ⊂
[
b̆1, b̆2

]
with two maxima

α

(d) Example for p12(α) > 4 for some subinterval

S ⊂
[
b̆1, b̆2

]
with one maximum.

Figure 5.1.: Sum of two Gaussian functions with different values of p12. The sum of the Gaussian
functions is given in black and the individual Gaussian functions are in blue and
purple.

Both the sides of the inequality are positive. We take the square root to get

⇒
√
t <

z2 + 1

z

Multiplying both sides of the inequality by z and collecting terms on one side we get a quadratic

inequality

⇒ z2 −
√
tz + 1 > 0.

Now we look at the associated two-variable equation, y = z2 −
√
tz + 1, and consider where its

graph is above the horizontal axis. To do so we have to find when the graph crosses the horizontal

axis. In other words we have to find where z2 −
√
tz + 1 is zero:

z2 −
√
tz + 1 = 0

Quadratic Formula⇒
(
z − 1

2

(√
t−
√
t− 4

))(
z − 1

2

(√
t+
√
t− 4

))
= 0

Which gives us

z =
1

2

(√
t−
√
t− 4

)
or z =

1

2

(√
t+
√
t− 4

)
.

These zeros divide the interval (0,∞) into three subintervals and using the sign test we get the

interval I.
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In the next Theorem we give a sufficient condition which when satisfied, the sum of two Gaussian

functions has a single maximum even when p12(α) > 4 on a subset of interval
[
b̆1, b̆2

]
.

Theorem 5.1.12. If ng = 2 and p12(α) > 4 on α ∈ S ⊂
[
b̆1, b̆2

]
, then the sum of two Gaussian

functions has a single maximum if the following condition is satisfied on S

∣∣∣∣ln
(

Ψ2(α)

Ψ1(α)

)∣∣∣∣ > 2 ln

(√
p12(α) +

√
p12(α)− 4

2

)
. (5.19)

Proof. Substituting t = p12(α) and z =
√

Ψ2(α)
Ψ1(α) in Lemma 5.1.11 the inequalities that must be

satisfied at all points of S are given by the interval I as

√
Ψ2(α)

Ψ1(α)
>

√
p12(α) +

√
p12(α)− 4

2
or

√
Ψ2(α)

Ψ1(α)
<

√
p12(α)−

√
p12(α)− 4

2

All terms in the inequalities are positive and taking natural logarithm of the inequalities gives us

ln

(
Ψ2(α)

Ψ1(α)

)
> 2 ln

(√
p12(α) +

√
p12(α)− 4

2

)
or ln

(
Ψ2(α)

Ψ1(α)

)
< 2 ln

(√
p12(α)−

√
p12(α)− 4

2

)

Observing that

√
p12(α)−

√
p12(α)−4

2 = 2√
p12(α)+

√
p12(α)−4

we get

ln

(
Ψ2(α)

Ψ1(α)

)
> 2 ln

(√
p12(α) +

√
p12(α)− 4

2

)
or

ln

(
Ψ2(α)

Ψ1(α)

)
< −2 ln

(√
p12(α) +

√
p12(α)− 4

2

)
(5.20)

Combining both inequalities into one we get the result.

So far we have relaxed the assumptions for the case ng = 2 such that the first derivative of ϕ(α) is

less than one on the interval
[
b̆1, b̆2

]
which implies that G has one maximum. In the next results

we give relaxed conditions for the general case of ng > 2. We begin by showing that pij(α) with

i 6= 1 and j 6= ng have to be less than two on the interval
[
b̆i, b̆j

]
instead of interval

[
b̆1, b̆ng

]
as

proven in Corollary 5.1.6.

Theorem 5.1.13. For ng > 2 if we have pij(α) ≤ 2 for all j > i on the interval
[
b̆i, b̆j

]
then

pij(α) < 2 on the interval
[
b̆1, b̆ng

]
for all j > i with i 6= 1 and j 6= ng.

Proof. We consider the case c̆i > c̆j first. In this case we know from Lemma 5.1.5(ii) that pij(α)

is a decreasing function. Hence, the maximum value of pij is obtained by evaluating at b̆1. If we

can show that pij

(
b̆1

)
≤ 2 we are done. Evaluating pij at α = b̆1 gives

pij

(
b̆1

)
= 2

(
b̆j − b̆i

)( b̆j − b̆1
c̆2j

+
b̆1 − b̆i
c̆2i

)
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= 2
(
b̆j − b̆i

)( b̆j − b̆1
c̆2j

− b̆i − b̆1
c̆2i

)

Adding and subtracting b̆i from the numerator of the first term in the parenthesis results in

= 2
(
b̆j − b̆i

)( b̆j − b̆i + b̆i − b̆1
c̆2j

− b̆i − b̆1
c̆2i

)
.

Collecting similar terms together and expanding the product we get

= 2

(
b̆j − b̆i

)2

c̆2j
+ 2

(
b̆j − b̆i

)(
b̆i − b̆1

)( 1

c̆2j
− 1

c̆2i

)
.

Taking 2
(b̆j−b̆i)

2

c̆2j
common from both the terms gives

= 2

(
b̆j − b̆i

)2

c̆2j

(
1 +

b̆i − b̆1
b̆j − b̆i

(
1−

c̆2j
c̆2i

))
.

Let us now assume that the claim is false. This would mean that pij

(
b̆1

)
> 2. Hence, we should

have

pij

(
b̆1

)
= 2

(
b̆j − b̆i

)2

c̆2j

(
1 +

b̆i − b̆1
b̆j − b̆i

(
1−

c̆2j
c̆2i

))
> 2.

We know that
(

1− c̆2j
c̆2i

)
< 1 as c̆i > c̆j ,

(
b̆j − b̆i

)2

c̆2j

(
1 +

b̆i − b̆1
b̆j − b̆i

)
> 1,

⇒

(
b̆j − b̆i

)(
b̆j − b̆1

)

c̆2j
> 1.

We have p1j(α) ≤ 2 on
[
b̆1, b̆j

]
and pij(α) ≤ 2 on

[
b̆i, b̆j

]
and as a result of Corollary 5.1.9 we get

b̆j− b̆i ≤ c̆j and b̆j− b̆1 ≤ c̆j which leads to a contradiction. Hence the assumption that pij(b̆1) > 2

is false.

Next we consider the case c̆j > c̆i. In this case we know from Lemma 5.1.5(iii) that pij(α) is an

increasing function. Hence, the maximum value of pij is obtained by evaluating at b̆ng . If we can

show that pij(b̆ng ) ≤ 2 we are done. Evaluating pij at α = b̆ng gives

pij

(
b̆ng

)
= 2

(
b̆j − b̆i

)( b̆j − b̆ng
c̆2j

+
b̆ng − b̆i
c̆2i

)
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= 2
(
b̆j − b̆i

)( b̆ng − b̆i
c̆2i

− b̆ng − b̆j
c̆2j

)

Similar to the case of c̆i > c̆j we simplify to

= 2

(
b̆j − b̆i

)2

c̆2i

(
1 +

b̆ng − b̆i
b̆j − b̆i

(
1− c̆2i

c̆2j

))
.

Let us now assume that the claim is false. This would mean that pij(b̆ng ) > 2. Hence, we should

have

pij

(
b̆ng

)
= 2

(
b̆j − b̆i

)2

c̆2i

(
1 +

b̆ng − b̆i
b̆j − b̆i

(
1− c̆2i

c̆2j

))
> 2

(
1− c̆2i

c̆2j

)
< 1⇒ (b̆j − b̆i)2

c̆2i

(
1 +

b̆ng − b̆j
b̆j − b̆i

)
> 1

⇒

(
b̆j − b̆i

)
(b̆ng − b̆i)
c̆2i

> 1.

We have ping (α) ≤ 2 on
[
b̆i, b̆ng

]
and pij(α) ≤ 2 on

[
b̆i, b̆j

]
which implies from Corollary 5.1.9 that

b̆ng − b̆i ≤ c̆i and b̆j− b̆i ≤ c̆i and leads to a contradiction. Hence the assumption that pij(b̆ng ) > 2

is false.

Hence, we have shown that pij(α) < 2 on the interval
[
b̆1, b̆ng

]
for all j > i with i 6= 1 and

j 6= ng.

In Theorem 5.1.13 we have given conditions for the single maximum when ng = 2 that are not as

strict as the conditions of Corollary 5.1.6. We have shown that it is sufficient to have the value of

pij(α) ≤ 2 for the ith and the jth interior Gaussian functions on interval
[
b̆i, b̆j

]
which implies that

it is also less than two on the full interval
[
b̆1, b̆ng

]
. In the next result we give a similar condition

if either i = 1 or j = ng.

Theorem 5.1.14. For ng > 2 if we have pij(α) ≤ 2 for all j > i on the interval
[
b̆i, b̆j

]
then both

p1j(α) and ping (α) are less than two on the interval
[
b̆1, b̆ng

]
for all j > 1 and i < ng.

Proof. In case c̆j ≤ min
(
c̆1, c̆ng

)
then from Lemma 5.1.5(ii) we have p1j is a decreasing function of

α and from Lemma 5.1.5(iii) we have pjng is an increasing function of α. Therefore, the maximum

value of p1j and pjng is less than two on the complete interval
[
b̆1, b̆ng

]
.

When c̆j > min
(
c̆1, c̆ng

)
we prove similar to the proof for Theorem 5.1.13 that p1j

(
b̆ng

)
and

pjng

(
b̆1

)
are less than two and therefore, p1j(α) and pjng (α) are less than two on the interval

[
b̆1, b̆ng

]
.
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Theorem 5.1.15. Given the sum of Gaussian functions G as defined in Eq. (5.1), if pij(α) ≤ 2

on the interval
[
b̆i, b̆j

]
for all j > i then the sum G has a single maximum.

Proof. It follows from Theorem 5.1.13 and Theorem 5.1.14 that for all pij(α) < 2 on the interval[
b̆i, b̆j

]
implies pij(α) < 2 on the interval

[
b̆1, b̆ng

]
. From Corollary 5.1.6 we know that the sum of

Gaussian functions G has a single maximum if pij(α) ≤ 2 on the interval
[
b̆1, b̆ng

]
and the result

follows.

From Theorem 5.1.15 we now have a necessary condition which pij has to satisfy for the sum of

Gaussian functions G to have a single maximum. Next we prove some results for parameters c̆i
and pij(α) when conditions of Theorem 5.1.15 are satisfied.

Lemma 5.1.16. For ng > 2 if we have pij(α) ≤ 2 for all j > i on the interval
[
b̆i, b̆j

]
then

c̆i ≥ b̆ng−b̆1
2 .

Proof. Suppose that for some i we have c̆i <
b̆ng−b̆1

2 with p1i(α) ≤ 2 on the interval
[
b̆1, b̆i

]

and ping (α) ≤ 2 on the interval
[
b̆i, b̆ng

]
. However, c̆i <

b̆ng−b̆1
2 means that even if the ith

Gaussian function is located in the middle of the first and the last Gaussian function we still

have p1i(α) ≥ 2 on some subinterval S1 ⊂
[
b̆1, b̆i

]
and similarly we have ping (α) ≥ 2 in some

subinterval S2 ⊂
[
b̆i, b̆ng

]
. This is a contradiction to the fact that p1i ≤ 2 on the interval

[
b̆1, b̆i

]
and ping (α) ≤ 2 on the interval

[
b̆i, b̆ng

]
. In other words we were wrong to assume that

c̆i <
b̆ng−b̆1

2 .

In Figure 5.2 we see in red the intervals in which b̆i should lie for different values of t ∈ [0, 1] where

c̆i = t
(
b̆ng − b̆1

)
such that p1i(α) ≤ 2 on the interval

[
b̆1, b̆i

]
. Similarly, we see in blue the interval

in which b̆i should lie for different values of t where c̆i = t
(
b̆ng − b̆1

)
such that ping (α) ≤ 2 on

the interval
[
b̆i, b̆ng

]
. In order for both p1i(α) < 2 as well as ping (α) < 2 we must have an overlap

between the red and blue intervals. We observe that when t = 0.5 the overlap of the two intervals

reduces to a point and for all values of t < 0.5 there is no overlapping interval. However, when

t ≥ 1 then b̆i can be anywhere in the interval
[
b̆1, b̆ng

]
.

Lemma 5.1.17. Let ng > 2 with pij(α) ≤ 2 for all j > i. If for some ĵ ≤ ng

b̆ĵ 6=
b̆1 + b̆ng

2

then p1ĵ(α) and pĵng (α) both cannot be equal to two on one end point of the interval
[
b̆1, b̆ĵ

]
and

[
b̆ĵ , b̆ng

]
respectively.

Proof. At the end points of the interval
[
b̆1, b̆ĵ

]
, p1ĵ is either

2(b̆ĵ−b̆1)2

c̆21
or

2(b̆ĵ−b̆1)2

c̆2
ĵ

. We have

2(b̆ĵ−b̆1)2

c̆21
<

2(b̆ng−b̆1)2

c̆21
< 2. Hence, the only possibility for p1ĵ to be two at the end points of
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b̆1 b̆ng

(a) For t = 0.25 we have no overlap.

b̆1 b̆ng

(b) For t = 0.5 the overlap is a point.

b̆1 b̆ng

(c) For t = 0.75 the overlap is an interval.

b̆1 b̆ng

(d) For t = 1 the overlap is the entire interval

[b̆1, b̆ng ].

Figure 5.2.: Interval where b̆i can lie such that p1i(α) ≤ 2 on the interval
[
b̆1, b̆i

]
in red and

ping (α) ≤ 2 on the interval
[
b̆i, b̆ng

]
in blue. The overlapping interval in green.

the interval is when c̆ĵ = b̆ĵ − b̆1. This leads us to the conclusion that
2(b̆ng−b̆ĵ)

2

c̆21
6= 2 since,

b̆ĵ − b̆1 6= b̆ng − b̆ĵ . For pĵng it follows similarly.

Theorem 5.1.18. Let ng > 2. If we have pij(α) ≤ 2 on the interval
[
b̆i, b̆j

]
for all ng ≥ j > i

then the number of pairs (i, j) such that pij(α) = 2 is bounded from above by ng.

Proof. We have p1ng (α) ≤ 2, which implies from Corollary 5.1.9 that b̆ng − b̆1 ≤ min
(
c̆1, c̆ng

)
.

Additionally, we have from Lemma 5.1.16 that c̆i ≥ b̆ng−b̆1
2 for 1 < i < ng. From Lemma 5.1.17

we know for b̆i 6= b̆1+b̆ng
2 it is not possible to have both p1i(α) = 2 and ping (α) = 2. So, it is only

possible for one of p1i(α) or ping (α) to be equal to two. This gives us an upper bound of ng − 1.

However, if there exists a j such that b̆j =
b̆1+b̆ng

2 and c̆j =
b̆ng−b̆1

2 then both p1j(α) = 2 and

pjng (α) = 2 on one end point of
[
b̆1, b̆j

]
and

[
b̆j , b̆ng

]
respectively. This makes the upper bound

ng.

In the next result we further generalize Theorem 5.1.15.

Theorem 5.1.19. In case of ng ≥ 2, there is only one maximum for the sum of Gaussian functions

G if

p1i(α) ≤ 2 for all α ∈
[
b̆1, b̆i

]
, i = 2, . . . , ng and

ping (α) ≤ 2 for all α ∈
[
b̆i, b̆ng

]
, i = 1, . . . , ng − 1.

Proof. We have p1i(α) ≤ 2 for all α ∈
[
b̆1, b̆i

]
that implies c̆2i ≥

(
b̆i − b̆1

)2

from Corollary 5.1.9.

Also, ping (α) ≤ 2 which implies c̆2i ≥
(
b̆ng − b̆i

)2

from Corollary 5.1.9. The result follows by

observing that maxα∈[b̆i,b̆j] pij(α) < 2 for all ng ≥ j > i:

max
α∈[b̆i,b̆j]

pij(α) = 2
(
b̆j − b̆i

)2

max

(
1

c̆2i
,

1

c̆2j

)
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Corollary 5.1.9 ⇒ ≤ max




2
(
b̆j − b̆i

)2

max

((
b̆ng − b̆i

)2

,
(
b̆i − b̆1

)2
) ,

2
(
b̆j − b̆i

)2

max

((
b̆ng − b̆j

)2

,
(
b̆j − b̆1

)2
)




< 2,

The final inequality is true because we have
(
b̆j − b̆i

)2

< max

((
b̆ng − b̆i

)2

,
(
b̆i − b̆1

)2
)

and also

(
b̆j − b̆i

)2

< max

((
b̆ng − b̆j

)2

,
(
b̆j − b̆1

)2
)

. The result follows from Theorem 5.1.15.

So far we have considered conditions for having a single maximum for sum of ng Gaussian functions.

However, we did not discuss yet what happens in situations where these conditions are not satisfied.

In what follows the theorems for single maximum are used as the basis for estimating the upper

bound for the number of maxima (nm) in a sum of Gaussian function with ng ≥ 3. The following

results are similar to the results obtained in [3].

Corollary 5.1.20. For ng ≥ 3, if there exists a value of s ≥ 1 and t ≥ 1 with s+ t ≤ ng such that

ps,s+k(α) ≤ 2 for α ∈
[
b̆s, b̆s+k

]
, 1 ≤ k ≤ t, and (5.21)

ps+k,s+t(α) ≤ 2 for α ∈
[
b̆s+k, b̆s+t

]
, 0 ≤ k < t, (5.22)

the number of maxima nm in the sum of ng Gaussian functions satisfies the inequality

nm ≤ ng − t

Proof. The proof follows from Corollary 2.1 in [3].

Corollary 5.1.20 in some sense defines a cluster of t + 1 Gaussian functions and this idea is used

for the clustering algorithm that is developed in the next section. In general we can have more

than one such clusters of Gaussian function that in the absence of other Gaussian functions would

give a single maximum.

Corollary 5.1.21. For ng > 2, if there exists at least one value

pt,t+1(α) ≤ 4, t ∈ {1, 2, . . . , ng − 1}, α ∈
[
b̆t, b̆t+1

]

then the number of maxima satisfies the inequality

nm ≤ ng − 1.

Proof. The proof follows from Corollary 3.1 in [3].

In this section we gave several results on the sufficient condition for a single maximum for sum

of ng Gaussian functions with parameters ăi, b̆i and c̆i. We ended the section with results on the

bounds for nm. In the next section we show how we use our theory to derive an algorithm that
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clusters the Gaussian functions such that each cluster is a potential local maximum. The obtained

clusters are then used to find the point of a global maximum.

5.2. Clustering algorithm for Gaussian functions in sum G

When png1(α) > 2 on some subinterval of
[
b̆1, b̆ng

]
, there is no information about the number of

maxima the sum of the Gaussian functions G have. From Theorem 5.1.1 we know that all the

maxima and minima of G lies in the interval
[
b̆1, b̆ng

]
. Thus, one obvious procedure to find all

the points of maximum of G is to use a hill-climbing algorithm starting from individual points

of maximum of the Gaussian functions in G (see [7]). However this approach is highly inefficient

when there are hundreds of Gaussian functions in the sum. If individual Gaussian functions in

the sum interact with each other, then the number of maxima nm of G is less than the number of

Gaussian functions ng in the sum.

Keeping this in mind we group together Gaussian functions into clusters with each cluster being

a potential maximum. Then we can run a hill-climbing algorithm or fixed point iterations for

each cluster’s point of maximum (which is computed empirically). In [16] Henning describes the

ridge-line unimodal method to find modes for Gaussian mixtures, which is based on the idea of

a ridge-line developed by Ray and Lindsay in [30]. We use a modified version of the ridge-line

unimodal method, given by Henning, to cluster the Gaussian functions in the sum G. Unlike

Henning we want to find clusters by which we can approximate the regions in which the global

maximum could lie. We can then use a fixed point iterations or hill-climbing algorithms to get to

the global maximum.

Before we proceed any further we give a precise definition of what we mean by a “cluster” in

general in Definition 5.2.1. We modify this definition of a “cluster” in Definition 5.2.4 to the

context of Gaussian functions by the help of cluster distance defined in Definition 5.2.2.

Definition 5.2.1 (Clustering). Given ng Gaussian functions with parameters b̆i and c̆i, i =

1, 2, . . . , ng. Let for i = 1, 2, . . . ,m∗ with m∗ ≤ ng the collection of indices

Ci ⊂ {1, 2, . . . , ng}

form a partition of the indices {1, 2, . . . , ng}, i.e.,

m∗⋃

i=1

Ci = {1, 2, . . . , ng}

and

Ci ∩ Cj = ∅, for all i 6= j

then Ĉ = {C1,C2, . . . ,Cm∗} is called a Clustering of the ng Gaussian function.

We denote by Ci a cluster that has indices of Gaussian functions in the sum that are part of this

cluster. In Definition 5.2.2 we introduce the idea of a within-cluster distance D for every cluster

C ∈ Ĉ . For any cluster C, the within-cluster distance DC gives information about how much do the
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Gaussian functions in the cluster interact with each other. The smaller the value of within-cluster

distance for any cluster is, the higher is the interaction between the Gaussian functions whose

indices are present in the cluster.

Definition 5.2.2 (Within-Cluster Distance). Given a clustering Ĉ , then we define for each cluster

C ∈ Ĉ with |C| ≥ 2 a within-cluster distance DC as

DC = max
α∈[b̆i,b̆j]

pij(α), ∀i < j and i, j ∈ C (5.23)

where pij is as defined in Eq. (5.9). When |C| = 1 then DC = 0.

In Theorem 5.2.3 we prove that for a cluster, if the within-cluster distance is less than two, then

the sum of Gaussian functions whose indices are in the cluster, have a single maximum in the

absence of all other clusters.

Theorem 5.2.3. If a cluster C has a within-cluster distance DC ≤ 2, then the sum of Gaussian

functions whose indices are in the cluster C, have a single maximum in the absence of all other

clusters.

Proof. In the absence of all other clusters, the within-cluster distance DC ≤ 2 implies that the

sum of Gaussian functions whose indices are in the cluster C satisfy the assumption of Theorem

5.1.15. Therefore, from the result of Theorem 5.1.15 we get a single maximum for the sum of

Gaussian functions whose indices are in the cluster C.

In the context of Gaussian functions we want every cluster in our clustering to give a single

maximum in the absence of all other clusters. We define a Gaussian Clustering as a clustering

where individual clusters in the clustering have a within-cluster distance of less than two.

Definition 5.2.4 (Gaussian Clustering). Given ng Gaussian functions with parameters b̆i and c̆i,

i = 1, 2, . . . , ng and clustering C as in Definition 5.2.1. If additionally for all i ≤ m∗ we have a

within-cluster distance DCi ≤ 2 then C is called a Gaussian Clustering.

In case of a Gaussian clustering we denote C as Gaussian cluster. In the next result we prove that

each individual Gaussian cluster in the absence of all other clusters have a single maximum.

Corollary 5.2.5. Given a Gaussian Clustering C as in Definition 5.2.4, then for each Gaussian

cluster C ∈ C , the sum of all Gaussian functions in the cluster have a single maximum in the

absence of all other clusters.

Proof. From the definition of a Gaussian cluster we have that the within-cluster distance is less

than two. This fulfills the assumptions of Theorem 5.2.3 for each Gaussian cluster C ∈ C and

proves the result.

Sometimes for a Gaussian clustering it is possible that when we merge two Gaussian clusters

together we still get a single maximum in the absence of all other clusters. Before we give conditions

for this specific case we introduce the idea of between-cluster distance in Definition 5.2.6. This is

the idea we build a clustering algorithm upon.
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Definition 5.2.6 (Between-Cluster Distance). For a clustering Ĉ we define between-cluster dis-

tance DCi,Cj for any two clusters Ci,Cj ∈ Ĉ as

DCi,Cj = max
î∈Ci

max
ĵ∈Cj

max
α∈Iî,ĵ

pîĵ(α) (5.24)

where pij is as defined in Eq. (5.9) and Iî,ĵ is the interval enclosed in between the points b̆î and

b̆ĵ .

Similar to the within-cluster distance, the between-cluster distance gives us information about how

two clusters interact with each other. If the value of between-cluster distance is small it means

that there is high interaction between the components of the two clusters. Additionally for two

clusters with between-cluster distance less than two we can prove that the two clusters have a

single maximum even when merged together.

Theorem 5.2.7. If two Gaussian clusters Ci and Cj have a between-cluster distance DCi,Cj ≤ 2,

then the sum of all Gaussian functions in Gaussian clusters Ci and Cj have a single maximum in

the absence of all other clusters .

Proof. From the definition of Gaussian clusters the within-cluster distance for Ci and Cj is less

than two, i.e., pîĵ(α) ≤ 2 on α ∈
[
b̆î, b̆ĵ

]
for all î < ĵ and î, ĵ ∈ Ci and similarly, pîĵ(α) ≤ 2 on

α ∈
[
b̆î, b̆ĵ

]
for all î < ĵ and î, ĵ ∈ Cj . Combining this with the fact that when DCi,Cj ≤ 2, from

definition of between-cluster distance, we also have that pîĵ(α) ≤ 2, for α ∈ Iî,ĵ , and all î ∈ Ci
and ĵ ∈ Cj . Therefore, the assumptions of Theorem 5.1.15 are satisfied and from the result of

Theorem 5.1.15 we get a single maximum for the sum of Gaussian functions whose indices are in

the clusters Ci and Cj .

Theorem 5.2.7 implies that two Gaussian clusters with between-cluster distance less than two give

a single Gaussian cluster when merged. The between-cluster distance and within-cluster distance

are important as they enable us to reduce the number of clusters in a clustering by merging two

clusters with between-cluster distance and within-cluster distances less than two. We use this idea

to get a Gaussian clustering for a sum G of ng Gaussian functions such that each Gaussian cluster

in the absence of other clusters have a single maximum. The basic idea of the clustering algorithm

is that we begin with assigning each Gaussian function in G to a separate cluster and at every

iteration merge clusters until no more clusters can be merged together.

The Clustering algorithm described in Algorithm 5.2.1 is iterative and at each iteration in line

8 it tries to find two clusters that can be merged together. The search for the cluster pair can

be done in may ways, for example, we can start from the leftmost clusters and move towards the

rightmost clusters or start from the rightmost cluster and move towards the leftmost cluster or

choose clusters randomly. In Section 5.4 we look at the effects of different selection criteria on the

resulting Gaussian clustering. At each iteration the number of clusters is reduced by one. The

algorithm ends when the number of clusters at an iteration do not decrease. In the next result we

prove that at each iteration the clustering obtained in Algorithm 5.2.1 is a Gaussian clustering.

Theorem 5.2.8. At every iteration in Algorithm 5.2.1 the clustering Cit is a Gaussian clustering.

121



Algorithm 5.2.1: Clustering Algorithm for Gaussian functions

Data: Parameters b̆i, c̆i with i = 1, 2, . . . , ng
Result: Cit

1 begin
2 C0 ←− {C1,C2, . . . ,Cng} . Start with all Gaussian functions as current clusters.
3 m∗ ←− |C0|+ 1 . Initialize number of clusters.
4 it←− 0 . Initialize number of iteration.
5 while m∗ > |Cit| do
6 m∗ ←− |Cit|
7 it←− it+ 1
8 if exists i, j ≤ m∗, i 6= j with between-cluster distance DCi,Cj ≤ 2 then
9 Cij ←− Ci ∪ Cj . Merged cluster.

10 Cit ←− (Cit−1 − {Ci,Cj}) ∪ {Cij} . Add merged clusters.

11 end

12 end
13 return Cit
14 end

Proof. We first prove that C0 is a Gaussian clustering. The clusters in C0 are individual Gaussian

functions and therefore, the within-cluster distance for each of these clusters is zero. This implies

that C0 is a Gaussian clustering. At following iteration steps we merge two Gaussian clusters when

between-cluster distance between them is less than two. Therefore, from Theorem 5.2.7 we know

that the merged cluster is also a Gaussian cluster which implies that Cit is a Gaussian clustering

at each iteration.

In Figure 5.3 we see the iterations of the clustering algorithm applied for an example where we

have ng = 5 Gaussian functions in the sum G and we find pairs from left end.

Algorithm 5.2.1 described above does not always find the optimal number of clusters. This is

because in developing the clustering algorithm we did not consider the parameter ă, the height

of the Gaussian function, at all. When pij(α) > 4, the parameters ăi and ăj can still make

the two Gaussian function to have a single maximum. Therefore, as a result of Algorithm 5.2.1

we only get clusters that divide the interval
[
b̆1, b̆ng

]
into subintervals with a possible presence

of a local maximum of G in each subinterval. By the application of Algorithm 5.2.1 we have

therefore reduced the number of times we have to run the hill-climbing algorithm or the fixed

point iterations to find the global point of maximum to m∗ instead of ng. Next we prove that the

number of Gaussian clusters m∗ obtained from Algorithm 5.2.1 are always more than or equal to

the number of maxima of G, m̂∗.

Theorem 5.2.9. Application of Algorithm 5.2.1 on the Gaussian functions in G gives us the

following relationship between the number of Gaussian clusters m∗ and number of maxima of G,

m̂∗:

m̂∗ ≤ m∗. (5.25)

Proof. (Proof by contradiction.) We assume that m̂∗ > m∗. This means that the number of

clusters are less than the number of maxima of G. This in turn implies that there exists at least

one Gaussian cluster C in the Gaussian clustering C obtained from Algorithm 5.2.1 that has at
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Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
G

(a) Initialization of all the Gaussian functions as clusters.

Cluster 1
Cluster 2
Cluster 3
Cluster 4
G

(b) Iteration 1: Cluster 1 and Cluster 2 in (a) satisfy the assumptions of
Corollary 5.1.20 and are merged into one cluster.

Cluster 1
Cluster 2
Cluster 3
G

(c) Iteration 2: Cluster 1 and Cluster 2 in (b) are merged into one cluster.

Figure 5.3.: Iterations of Clustering Algorithm on an example case with ng = 5 Gaussian functions
in the sum G. In the third iteration the algorithm finds no new pairs that satisfy the
assumptions of Corollary 5.1.20. The algorithm ends after three iterations giving three
clusters.

least two maxima in the absence of all other clusters. However, this contradicts the definition of

Gaussian clusters as being clusters that have only one maximum for the sum of Gaussian functions

whose indices are in the cluster. So our assumption that m̂∗ > m∗ is false. This completes the

proof.

In this section we developed an algorithm for clustering Gaussian functions in the sum G. The

next section gives an empirical approximation of the point of maximum of each cluster from where

we can start hill-climbing or fixed point iterations to get the point of global maximum and the

maximum value of the sum of Gaussian functions in each cluster.
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5.3. Points of maximum of sum of Gaussian functions G

In the previous section we considered an algorithm for partitioning the Gaussian functions in the

sum G into a Gaussian clustering C . In this section we show how to compute an approximation

of the point of maximum for each Gaussian cluster C ∈ C which then serves as a starting point

for the hill-climbing algorithm or fixed point iteration for computing the points of maximum of G.

Therefore, the number of starting points is equal to the number of clusters m∗.

The approximate point of maximum of a Gaussian cluster C ∈ C can be computed from the

empirical formula

αC =

∑

i∈C

ăib̆i

∑

i∈C

ăi
(5.26)

where ăi is the height and b̆i is the point of maximum of the Gaussian function corresponding to

the i-th index in the Gaussian cluster C. It is intuitive to see that the point of maximum of a

cluster is in the vicinity of the Gaussian function with the maximum height or in the vicinity of a

point where more than one Gaussian functions are present. The empirical formula in Eq. (5.26)

is based on this idea. In Figure 5.4 we see the approximate point of maximum computed from Eq.

(5.26) for the Example in Figure 5.3.

Cluster 1
Cluster 2
Cluster 3
G

Figure 5.4.: Approximate point of maximum of Gaussian clusters computed by Eq. (5.26) for the
example in Figure 5.3. The black dots are the exact points of maximum of G and the
dots in the color corresponding to the color of the clusters are the approximate point
of maxima computed by Eq. (5.26).

From Figure 5.4 we see that the approximate point of maximum of a Gaussian cluster is in the

neighbourhood of the the point of maximum of the sum of Gaussian functions G. We can now

use a hill-climbing algorithm or a fixed point iterations to converge to the point of maximum

starting at the approximate points of maximum of clusters. Algorithm 5.3.1 describes the process

of finding the points of maximum of the sum of Gaussian functions G.

In Algorithm 5.3.1 we provide the parameters b̆i and c̆i for all the Gaussian functions in the sum

G. An important information provided to the algorithm is the fixed point operator ϕ. If we give

the fixed point operator from Eq. (5.5) we get the exact points of maximum for the Gaussian

approximation. In Chapter 6 we use the fixed point operator for the total damage function

that gives us the exact points of maximum for the total damage. Additionally, ε and maxIter

are also provided which decide the quality of the points of maximum computed and maximum

number of iterations allowed, respectively. The Gaussian clustering is computed first and then an
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Algorithm 5.3.1: Points of maximum of G
Data: G with ng Gaussian functions with parameters ăi, b̆i and c̆i, i = 1, 2, . . . , ng, ε, ϕ

and maxIter
Result: α∗

1 begin
2 C ←− Get Gaussian clustering by Algorithm 5.2.1 . Get Gaussian clustering for G.
3 m∗ ←− |C | . Initialize number of clusters.
4 α∗ ←− 0m∗ . Initialize points of maximum
5 for it←− 1 to m∗ do
6 α0 ←− αCit . Approximate cluster maximum from Eq. (5.26)
7 temp←− 0
8 counter ←− 0
9 while |αcounter − temp| > ε and counter < maxIter do

10 temp←− αcounter
11 counter ←− counter + 1
12 αcounter ←− ϕ(αcounter−1)

13 end
14 α∗it ←− αcounter
15 end
16 Remove point of maxima in α∗ that are repeated more than once.
17 return α∗

18 end

approximate point of maximum for each Gaussian cluster is computed. The approximate point of

maximum is then used as the starting point for the fixed point equation (5.4) to get the point of

maximum of G. It is possible that even after starting at different points the fixed point iterations

could still converge to the same point of maximum. This is evident from Theorem 5.2.9 which

states that the number of clusters m∗ is more than or equal to the number of maxima m̂∗ of G.

Therefore, we remove those points of maxima that are repeated more than once in α∗. In the

example in Figure 5.4 we have m∗ = m̂∗.

In this section we saw how to compute the points of maximum of the sum of Gaussian functions

by using the Gaussian clustering computed by Algorithm 5.2.1. In the next section we use the

Algorithms on more complex examples and discuss the results obtained.

5.4. Numerical results and discussion

In this section we apply Algorithm 5.2.1 and Algorithm 5.3.1 to some examples. In line 8 of

Algorithm 5.2.1 we did not specify in detail how to choose pair of clusters that are merged.

However, in Figure 5.3 we showed an example where we chose the cluster pairs moving from the

leftmost clusters towards the rightmost clusters.

Next we see three possible ways to select pair of clusters that are merged:

1. The search for the pair of clusters that can be merged is started from the two leftmost

clusters and we move towards the rightmost clusters. The steps are shown in Algorithm
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5.4.1:

Algorithm 5.4.1: Choosing pair of clusters starting from left

Data: G with ng Gaussian functions with parameters b̆i and c̆i, i = 1, 2, . . . , ng and
Gaussian Clustering C = {C1,C2, . . . ,Cm∗}.

Result: The index i and j of the clusters that can be merged or FALSE if no such
clusters exist.

1 begin
2 m∗ ←− |C |
3 for i←− 1 to (m∗ − 1) do
4 for j ←− (i+ 1) to m∗ do
5 if between-cluster distance, DCi,Cj ≤ 2 then
6 return i, j
7 end

8 end

9 end
10 return FALSE

11 end

Algorithm 5.4.1 starts with the leftmost cluster and returns the indices if it has a between-

cluster distance less than two with any other cluster, otherwise it moves one cluster to the

right and repeats the process. The algorithm returns FALSE if there does not exist any

cluster pair with between-cluster distance less than two. Algorithm 5.4.1 in the worst case

makes 1
2m
∗(m∗ − 1) calls to the between-cluster distance function.

2. The second method looks for a pair of clusters that can be merged starting from the two

rightmost clusters and moving towards the leftmost clusters. The steps are identical to the

steps of Algorithm 5.4.1 however we start from the rightmost cluster and move towards the

leftmost cluster in this case:

Algorithm 5.4.2: Choosing pair of clusters starting from right

Data: G with ng Gaussian functions with parameters b̆i and c̆i, i = 1, 2, . . . , ng and
Gaussian Clustering C = {C1,C2, . . . ,Cm∗}.

Result: The index i and j of the clusters that can be merged or FALSE if no such
clusters exist.

1 begin
2 m∗ ←− |C |
3 for i←− m∗ to 2 do
4 for j ←− (i− 1) to 1 do
5 if between-cluster distance, DCi,Cj ≤ 2 then
6 return i, j
7 end

8 end

9 end
10 return FALSE

11 end

Algorithm 5.4.2 makes in the worst case 1
2m
∗(m∗ − 1) calls to the between-cluster distance

function.

126



3. In the previous two cases we looked for a possible cluster pair which had between-cluster

distance less than two starting from the leftmost cluster or the rightmost cluster. However,

this may not be the most efficient way to get clusters in the context of clustering Gaussian

functions. In clustering Gaussian functions we want the largest clusters to have the maximum

number of components (Gaussian functions). If we can find such clusters the probability of

the maximum of the G to be suitably represented by the clusters is higher than any general

cluster. Keeping this in mind we give a new algorithm where we find the largest cluster from

within the Gaussian functions and repeat the process on the remaining functions until no

more Gaussian functions are left to be clustered:

Algorithm 5.4.3: Choosing cluster with maximum number of Gaussian functions

Data: ng Gaussian functions with parameters b̆i and c̆i, i = 1, 2, . . . , ng.
Result: Gaussian cluster C with maximum number of components and set of Gaussian

functions not in C.
1 begin
2 m←− ng
3 m∗ ←− 0 . Initialize the size of largest cluster.
4 C0 = {1, 2, . . . , ng} . Basic cluster.
5 C←− ∅ . Initialize the largest cluster.
6 for i←− 1 to m do
7 Ci ←− {i} . Start with i-th Gaussian function as the Cluster
8 isSwap←− TRUE
9 Ctemp ←− C0 − Ci . Ctemp has elements not in Ci

10 while isSwap do
11 isSwap←− FALSE
12 Assignment Step:
13 for j ←− 1 to |Ctemp| do
14 if within-cluster distance after adding Ctemp,j to Ci is less than two then
15 Ci ←− Ci ∪ Ctemp,j
16 end

17 end
18 Ctemp ←− Ctemp − Ci
19 Swapping Step:
20 Find q ∈ Ci with maximum decrease in within-cluster distance when removed

from Ci.
21 dmax ←− the maximum decrease
22 if exists r ∈ Ctemp with minimum increase in within-cluster distance when

added to Ci and the increase in within-cluster distance is less than dmax then
23 Ci ←− (Ci − q) ∪ r
24 Ctemp ←− (Ctemp − r) ∪ q
25 isSwap←− TRUE
26 end

27 end
28 if m∗ < |Ci| then
29 m∗ ←− |Ci|
30 C←− Ci
31 end

32 end
33 return C, C0 − C

34 end
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Algorithm 5.4.3 finds the largest Gaussian cluster by building clusters starting at each given

Gaussian function and selecting the largest cluster from them. For the i-th Gaussian function

it consists of an assignment step (lines 13-17) and a swapping step (lines 19-25) which are

repeated until there is no more swapping possible. In the assignment step it adds to the

current cluster Ci all Gaussian functions such that the within-cluster distance is less than

two. In the swapping step it tries to find if there exist any Gaussian functions which are

not in Ci and can be swapped by a Gaussian function in Ci such that the within-cluster

distance is reduced. To give a Gaussian clustering, Algorithm 5.4.3 is repeatedly applied

on the remaining Gaussian functions returned from previous run of the algorithm until

all Gaussian functions are clustered. In worst case this algorithm makes O(n4
g) function

calls to the within-cluster distance function. However, this algorithm has a potential for

parallelization as computing of the largest cluster starting from each Gaussian function can

be done on more than one threads simultaneously.

It is intuitive that the Gaussian clustering as a result of application of Algorithm 5.4.3 should

in general result in larger clusters. The three algorithms can be made faster by a preprocessing

step where we compute the maximum value of pij on the interval
[
b̆i, b̆j

]
by using Lemma 5.1.5

∀i, j ∈ {1, 2, . . . , ng} and storing it as a matrix. Before we can compare the three methods we

define the idea of a strong clustering.

Definition 5.4.1 (Strong Clustering). Given n Gaussian clusterings Ci, i = 1, 2, . . . , n each con-

sisting of ng Gaussian functions, then a strong clustering is one whose largest cluster has more

elements than the largest cluster of other clusterings. If there are more than one clusterings with

same number of elements in the largest cluster, we look at the second largest cluster and so on until

there is just one clustering left or we have reached the last cluster. If more than one clusterings

have same number of clusters and same number of Gaussian functions in each cluster, all of them

are strong clusterings.

To compare how the three methods perform with the strong clustering as the main criterion, tests

were performed where the three algorithms ran 20 times on 1000 different random tests for each

ng ∈ {1, 2, . . . , 50}. One was added to the score for each method for every instance for which the

method resulted in a strong clustering in comparison to the two other methods. If more than one

method lead to the same Gaussian clustering all of their scores are increased by one. In Figure

5.5 we see the average scores for 20 runs of the three methods for different values of ng.

As the number of Gaussian function ng to be clustered increases we observe from Figure 5.5 that

Algorithm 5.4.1 and Algorithm 5.4.2 result on an average, lesser number of strong clusterings.

The scores for these two algorithms eventually goes to zero. Therefore, when ng ≥ 10 we use

Algorithm 5.4.3.

So far we did not compare the three algorithms on the basis of time required for clustering.

After running the three algorithms on 10000 test cases for many different values of ng we see that

Algorithm 5.4.3 takes approximately seven times the time taken by Algorithm 5.4.1 and Algorithm

5.4.2. Algorithms 5.4.1 and 5.4.2 as expected took approximately the same amount of time. In

Figure 5.6 we see the average time for clustering taken by the three algorithms for different values

of ng.

Next we apply Algorithm 5.2.1 on a specific example.
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Figure 5.5.: Average scores for 20 runs of the Algorithm 5.4.1 (red), Algorithm 5.4.2 (blue) and
Algorithm 5.4.3 (black) on 1000 random tests with respect to the strong clustering in
Definition 5.4.1. The maximum possible score is 1000.
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Figure 5.6.: Average runtime of the Algorithm 5.4.1 (red), Algorithm 5.4.2 (blue) and Algorithm
5.4.3 (black) for 10000 random tests for different values of ng. Tests were performed
on a 32-bit Ubuntu 13.10 system with 3.8 GB RAM and CoreTM i3 CPU M 380 from
Intelr.

Example 5.4.2. We randomly generate 12 Gaussian functions with parameters ăi, b̆i and c̆i for

i = 1, 2, . . . , 12 as below:

The Gaussian functions and the sum of these Gaussian functions is shown in the Figure 5.7. We

see that the sum of the Gaussian functions have two peaks.

Algorithm 5.2.1 is run on this example. We first use Algorithm 5.4.1 to identify clusters that can

be merged to get the Gaussian clustering also seen in Figure 5.8:

CLeft2Right = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9, 10, 11, 12}}.

Then we use Algorithm 5.4.2 in Algorithm 5.2.1 to identify clusters that can be merged to get the

Gaussian clustering also seen in Figure 5.9:

CRight2Left = {{1, 2, 3, 4}, {5, 6}, {7, 8, 9, 10, 11, 12}}.
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Table 5.1.: Values of parameter ăi, b̆i and c̆i of Gaussian functions used in the example.

i ăi b̆i c̆i

1 0.2305 0.2549 0.6786

2 0.5870 0.5765 0.8108

3 0.5502 0.5936 0.6063

4 0.8000 0.9309 0.7359

5 0.2077 1.1576 1.0000

6 0.3507 1.7185 0.7868

7 0.3012 1.9654 1.0000

8 0.6225 2.1576 0.8085

9 0.8000 2.3395 0.7468

10 0.1948 2.4370 0.8328

11 0.4709 2.4512 0.9443

12 0.8000 2.9198 1.0000

α

Figure 5.7.: Gaussian functions and their sum G from Example 5.4.2.

Finally, we use Algorithm 5.2.1 with Algorithm 5.4.3 for finding largest cluster at each iteration

from the unclustered Gaussian functions to get the Gaussian clustering also seen in Figure 5.10:

CLargestCluster = {{1, 2}, {3, 4, 5, 6, 7, 9}, {10, 8}, {11, 12}}.

We see that the three Gaussian clusterings obtained have different Gaussian clusters. The Gaus-

sian clustering from Algorithm 5.4.1 CLeft2Right and the Gaussian clustering from Algorithm

5.4.2 CRight2Left has three Gaussian clusters and the Gaussian clustering from Algorithm 5.4.3

CLargestCluster has four Gaussian clusters. However, the largest Gaussian cluster in CLargestCluster
and CRight2Left has six elements.

In Figure 5.7 we see that the example sum of Gaussian function G has two peaks. In Figure 5.11

we see the approximate point of maximum of the Gaussian clusters in the Gaussian clusterings

obtained in Example 5.4.2. We see that the approximate point of maximum of Gaussian clusters

obtained in the case of Algorithm 5.4.3 is closer to the actual points of maximum when compared

with the approximate points of maximum of the Gaussian clusters obtained in the other two

algorithms. In what follows, we use Algorithm 5.4.3 for clustering of the Gaussian functions in a

sum G.
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Cluster 1
Cluster 2
Cluster 3

Figure 5.8.: Gaussian clustering CLeft2Right obtained by applying Algorithm 5.2.1 using Algorithm
5.4.1 to identify clusters that can be merged together.

Cluster 1
Cluster 2
Cluster 3

Figure 5.9.: Gaussian clustering CRight2Left obtained by applying Algorithm 5.2.1 using Algorithm
5.4.2 to identify clusters that can be merged together.

In this chapter we proved conditions for the sum of Gaussian functions G to have a single maximum.

We also gave bounds on the number of maxima when the conditions for single maximum are not

satisfied by the Gaussian functions in the sum G. Using these conditions we gave a clustering

algorithm. Finally, we described three methods by which the clustering part of the algorithm

could be done and compared the three methods with respect to the strong clustering and average

runtime. In the next chapter, we use the clustering algorithm for finding the plane of maximum

damage for each hotspot at each iteration in the optimization.
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Cluster 1
Cluster 2
Cluster 3
Cluster 4

Figure 5.10.: Gaussian clustering CRight2Left obtained by applying Algorithm 5.2.1 using Algo-
rithm 5.4.2 to identify clusters that can be merged together.

α

Figure 5.11.: Approximate point of maximum obtained for each Gaussian cluster of the Gaus-
sian clusterings obtained in Example 5.4.2 for the three algorithms. The red dots,
the blue dots and the black dots represent the approximate point of maximum for
each Gaussian cluster obtained by Algorithm 5.4.1 (CLeft2Right), Algorithm 5.4.2
(CRight2Left) and Algorithm 5.4.3 (CLargestCluster), respectively. Since, Algorithm
5.4.2 and Algorithm 5.4.1 have a common Gaussian cluster there is an overlap as
seen by two dots one above another. By dashed lines we see the location of the two
peaks.
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6. Testrig optimization with clustering

In Chapter 4, we remodeled damage from a block load as Gaussian functions when the S-N curve

has one slope. In Section 6.1, we see how the total damage is computed from the Gaussian functions

which approximate the damage from a block load. In Chapter 5, we gave a clustering algorithm

to cluster the Gaussian functions in the sum of Gaussian functions G. We use Algorithm 5.3.1 on

the clusters obtained from the Clustering algorithm to get the exact point of maxima for the total

damage at each hotspot in Section 6.2. In Section 6.3, we compare the results obtained for the

damage optimization with discretization and clustering on two examples. Finally, we describe a

new application of the Gaussian functions and clustering algorithm to shift the plane of maximum

total damage to a desired plane α. This shifting of the plane of maximum total damage at a

hotspot to a desired plane angle α was not achievable from the previous approaches.

6.1. Total damage from approximation

In Section 4.4, damage was remodelled as Gaussian functions for the load time series with one

block for the interval [0, π). We have so far not discussed the general case when the load time

series with block loads Lb has m block loads. In this case the load time series with block loads

Lb can be represented as amplitude matrix Lb,a. The stress matrix is then given from Eq. (2.49)

as

Σx(Lb,a) = σ̃xLb,a = (σx(lb,1),σx(lb,2), · · · ,σx(lb,m)) = (σ1,σ2, . . . ,σm)

at hotspot x. The i-th column of the stress matrix Σx represents the stress at hotspot x induced

by the amplitudes of the i-th block load for each force/moment acting through the actuators lb,i.

We can partition Σx into two sets depending on if a(σi) ≥ b(σi). We include all the block loads

for which a(σi) ≥ b(σi) in the set Ig and the remaining block loads in the set Il.

Ig := {i|a(σi) ≥ b(σi) ≥ 0, i = 1, 2, . . . ,m}.

Il := {1, 2, . . . ,m} − Il.

The total damage at any point α ∈ [0, π) is then given as

G(Σx(Lb,a), α) =
∑

i∈Ig

g[0,π)(σi, α) +
∑

j∈Il

ĝ(σj , α). (6.1)

where the approximation function g[0,π) is from Eq. (4.105) and the approximation function ĝ is

from Eq. (4.136).

We simplify Eq. (6.1) by renaming and renumbering each Gaussian function. In Eq. (6.1) we have
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altogether 3|Ig|+ 6|Il| Gaussian functions. Three each for every block i in Ig and six altogether

from the two peaks for every block j in Il. Let us denote by B the list of points of maximum of all

the Gaussian functions in the approximation of the damage due to the individual block loads of the

load time series L, i.e., all elements of list B are from one of b̆(σi) + tπ, b̆1(σj) + tπ or b̆2(σj) + tπ,

where t ∈ {−1, 0, 1}, i ∈ Ig and j ∈ Il. The elements in B are arranged in an ascending order,

i.e., B1 = minB and B3|Ig|+6|Il| = maxB.

For every element in B we have corresponding elements in lists A and C. A consists of the

parameters ă(σi), ă1(σj) and ă2(σj), C has elements consisting of c̆(σi), c̆1(σj) and c̆2(σj) where

i ∈ Ig and j ∈ Il. However, each of these parameters occur thrice in the list corresponding to each

t in {−1, 0, 1}. Finally we give a list D which consists of d̆(σi) for i ∈ Ig and d̆1(σj) for j ∈ Sl
and the order here is not important. The total damage G in Eq. (6.1) at hotspot x can now be

rewritten as

G(Σx(Lb,a), α) =

3|Ig|+6|Il|∑

i=1

Ai exp

(
−
(
α− Bi
Ci

)2
)

+

m∑

i=1

Di (6.2)

The total damage G from Eq. (6.2) is similar to the sum of Gaussian functions G in Chapter 5.

So, all the results obtained in that chapter are also applicable to the total damage G. In the next

section, we explain the steps involved in using the Gaussian approximation from Chapter 4 and

clustering algorithm from Chapter 5 in the testrig damage optimization (WSDP).

6.2. Optimization with clustering

In this section, we use the approximate point of maxima of the clusters obtained by the clustering

algorithm to get the exact point of maximum of the total damage at every hotspot xi ∈ X during

each iteration in the optimization. Before we can give the algorithm for finding the point of

maximum at hotspot xi we look at the roots of the first derivative of the total damage D̂xi with

respect to α assuming all other parameters are fixed as given in Theorem 2.4.11. The roots of the

first derivative are given by the equation

dD̂xi(L̂,V, α)

dα
=

k

Neσke

m∑

j=1

νj |n(α) · σxi,j |k−2 (n(α) · σxi,j) (n′(α) · σxi,j) = 0 (6.3)

The above equation can be written in the form of a fixed point equation that is used as the

fixed point operator in Algorithm 6.2.1 for finding the point of maximum and the total maximum

damage.

Theorem 6.2.1. Equation (6.3) is equivalent to the fixed point equation

α = ϕd(α)

where

ϕd(α) =
1

2
tan−1

(∑m
j=1 νj |n(α) · σx,j |k−2 (n(α) · σxi,j) (σxi,j,xx − σxi,j,yy)

2
∑m
j=1 νj |n(α) · σxi,j |k−2 (n(α) · σx,j)σxi,j,xy

)
(6.4)

with σxi,j = (σxi,j,xx,σxi,j,yy,σxi,j,xy)T .
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Proof. We can rewrite Eq. (6.3) as

k

Neσke

m∑

j=1

νj |n(α) · σxi,j |k−2 (n(α) · σxi,j)×

(
(− cos(2α), cos(2α), 2 sin(2α)) · (σxi,j,xx,σxi,j,yy,σxi,j,xy)T

)
= 0

k

Neσke

m∑

j=1

νj |n(α) · σxi,j |k−2 (n(α) · σxi,j)×

(− cos(2α)σxi,j,xx + cos(2α)σxi,j,yy + 2 sin(2α)σxi,j,xy)) = 0

After collecting terms with cos(2α) and sin(2α) together and rearranging we get


 2k

Neσke

m∑

j=1

νj |n(α) · σxi,j |k−2 (n(α) · σxi,j)σxi,j,xy


 sin(2α)

=


 k

Neσke

m∑

j=1

νj |n(α) · σxi,j |k−2 (n(α) · σxi,j) (σxi,j,xx − σxi,j,yy)


 cos(2α)

Further simplification gives us the result.

We use ϕd from Eq. (6.4) in Algorithm 6.2.1 to find the point of maximum total damage. We

can now find the point of maximum total damage at each iteration of the optimization. In the

next section, we use Algorithm 6.2.1 in the optimization and compare the results obtained with

the results from the discretization for two examples.

6.3. Numerical results and comparisons

In this section, we compare the results obtained from the testrig damage optimization problem

with and without clustering. We do not discuss here the testrig stress optimization problem as

in Section 3.2 we had already seen that testrig damage optimization is better. From the results

presented in Section 3.2, it was seen that the maximum total damage from discretization of the

interval of plane angle α introduces discretization errors which could be as high as 10% at more

than one hotspot. This would lead to overestimation of the fatigue lifetime of a component.

Therefore, the remodeling of damage and the corresponding clustering algorithm was developed

to be able to remove the discretization errors so that the results of the optimization are more

reliable and give the actual picture of what is to be expected.

We compare the two methods for one testrig configuration on two test example. The first example

being that of the knuckle from the previous considerations in Section 3.2 where we now assume

that the material has one slope and the second example is an artificial component created for

testing of the algorithms that are developed. At the end of this section, we give a new application

of the clustering algorithm to restrict the plane of maximum total damage resulting at a hotspot

135



Algorithm 6.2.1: The plane of maximum total damage α∗xi and the total maximum dam-
age for hotspot xi using the Gaussian approximation and clustering during the optimization

Data: The amplitude vector at p-th iteration L̂p, stress tensor σ̃xi at hotspot xi and
number of blocks m.

Result: The plane of maximum total damage α∗xi and the maximum damage.
1 begin

2 Σ̂←− Σ̂xiL̂ = (σ1,σ2, . . . ,σm) . Compute stress σi for all blocks.
3 for j ←− 1 to m do
4 Compute a(σj) from Eq. (2.12) and b(σj) from Eq. (2.9)
5 if a(σj) ≥ b(σj) then
6 Compute c̆(σj) from fixed point equation in Eq. (4.111).

7 Compute b̆(σj) = α+
max(σj) from Eq. (2.18), ă(σj) from Eq. (4.109) and d̆(σj)

from Eq. (4.110)
8 Assign to the ordered lists A, B, C and D for Eq. (6.2) to hold.

9 else
10 Compute c̆1(σj) from fixed point equation in Eq. (4.130) and c̆2(σj) from

fixed point equation in Eq. (4.131).

11 Compute b̆1(σj) = α−max,1(σj) from Eq. (2.36), b̆2(σj) = α−max,2(σj) from Eq.

(2.36) and ă1(σj), ă2(σj) and d̆1(σj) satisfying Eq. (4.137), Eq. (4.138) and
Eq. (4.139).

12 Assign to the ordered lists A, B, C and D for Eq. (6.2) to hold.

13 end

14 end
15 α∗xi ←− Algorithm 5.3.1 with lists B and C, fixed point operator ϕd from Eq. (6.4), ε

and maxIter.
16 Evaluate D̂xi at each point in α∗xi and return the point of maximum and the

maximum total damage value.
17 end

from the optimized load time series in the neighborhood of some point.

6.3.1. First Example: Knuckle

We described the purpose of a knuckle in a vehicle in Section 3.2.1. The knuckle we are using for

our algorithms is shown in Figure 3.2. The knuckle has seven possible attachment points. We use

one of these attachment point as the fixation point Af to fix the component in the testrig. We

do not want the number of force/moment n acting through the actuators to be more than three

so in all the results presented we have n = 3. The number of hotspots nh is given to be ten. The

location of the ten hotspots is given by X = {x1,x2, . . . ,x10}. We have been given the reference

stress time series and the the reference damage values for each hotspot. The reference damage

values D(ref) for the hotspots are given in Table 3.1.

The material of the knuckle is assumed to have one slope in the S-N curve. The value of the

alternating stress where the slope changes is σe = 55.01kPa and the corresponding value of the

number of cycles is Ne = 1 × 108. The ultimate tensile stress and the maximum allowed stress

value is given as σu = 190.5kPa and σmax = 190.5kPa, respectively. The slope is k = 5. We

use the inbuilt function fmincon of MATLAB with the interior-point algorithm for the damage
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optimization.

We will again use the testrig configuration T C2 from Eq. (3.20) to compare the results obtained

from optimization with and without clustering.

T C2 = (3, {5, 4, 2}, {(5, {fx}), (4, {fy}), (2, {fz})}) (6.5)

The index of the fixation point is Af = 3. We apply load time series at F = (5fx , 4fy , 2fz ), i.e., at

the attachment point with index 5 we apply forces along the x-axis, at the attachment point with

index 4 we apply forces along the y-axis and at the attachment point with index 2 we apply forces

along the z-axis. For the damage optimization problem we additionally fix the number of block

loads m to 15, the number of cycles for each block load νi = 5, i = 1, 2, . . . ,m and the weights wi
to be all equal. The constraints on the maximum and minimum loads that can be applied through

the actuators is given as ll = −10000 Newtons and lu = 10000 Newtons. We are also given the

stress tensor σ̃xi for the ten hotspots.

For both the damage optimization with and without clustering we used as the starting point the

same random vector with maximum magnitude half the maximum allowed load lu in the testrig.

This is a feasible point. All calculations are done on an Intel Core i3 CPU with 2.53 GHz and

4 GB RAM. Calculating a solution using damage optimization without clustering takes 102.31

seconds for 614 iterations. This corresponds to an average of 0.166 seconds for each iteration.

On the other hand calculating a solution using damage optimization with clustering takes 424, 87

seconds for 582 iterations. This corresponds to an average of 0.723 seconds for each iteration. We

see that the clustering is 4 times slower but the objective function value for damage optimization

without clustering is 3.4769 while that for damage optimization with clustering is 3.4495. One

thing to note here is that the objective function value ideally should be as close as possible to

two but since we have restricted the maximum load that can be applied to 10000 Newtons and

reduced the number of blocks to 15 this is expected. The runtime for damage optimization with

clustering depends on the number of blocks chosen as the clustering algorithm is expensive. One

way to reduce the time would be by parallelization of the clustering algorithm.

In Figure 6.1, we see the maximum total damage at the ten hotspots resulting from the load time

series obtained through damage optimization without clustering and with clustering. We see in

Figure 6.1 that the maximum total damage from the damage optimization with clustering is at

least as close or closer to the reference damage when compared with the maximum total damage

from the damage optimization without clustering at nine hotspots. Therefore, we get slightly

better results in terms of the total maximum damage.

In Table 6.1, we see the magnitude of relative error for the two cases. As expected, we observe

that the damage optimization with clustering has slightly better results:

In Figure 6.2, we see the points of maximum total damage returned by the clustering algorithm.

All the points of the maximum total damage returned coincide with the actual points of maxi-

mum. Therefore, the maximum total damage used at each iteration of the optimization is the

actual maximum total damage. The solution of the optimization problem are more reliable when

clustering is used.
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Figure 6.1.: The maximum total damage at the ten hotspots resulting from the load time series
obtained through damage optimization without clustering (green) and with clustering
(brown). The horizontal axis is the index of the hotspots and the vertical axis is the
damage values on the logarithmic scale.

i
|D(ref)

xi
−D̃xi |

D̃xi

w/o
|D(ref)

xi
−D̃xi |

D̃xi

w/

1 2.0875 2.0361
2 0.0084 0.0059
3 1.6379 1.6207
4 3.8652 3.8582
5 3.3339 3.2378
6 0.0970 0.1226
7 0.3239 0.3246
8 0.6136 0.5582
9 2.7382 2.6902
10 5.1373 5.0910

Table 6.1.: The relative error in damage for maximum total damage computed from the load time
series obtained as a result of the two optimization.

6.3.2. Second Example: Artificial Component

The component in Figure 6.3 has four possible attachment points. We use one of these attachment

point as the fixation point Af to fix the component in the testrig. We do not want the number of

force/moment n acting through the actuators to be more than three so in all the results presented

we have n = 3. The number of hotspots nh is given to be ten. The location of the ten hotspots is

given by X = {x1,x2, . . . ,x10}. We have been given the reference stress time series and the the

reference damage values for each hotspot. The reference damage values D(ref) for the hotspots

are given in Table 3.1:

The material of the component has one slope in the S-N curve. The value of the alternating

stress on the S-N curve is σe = 80kPa and the corresponding value of the number of cycles is

Ne = 1 × 106. The ultimate tensile stress and the maximum allowed stress value is given as
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Figure 6.2.: The total damage function for the ten hotspots for the plane angle α ∈ [0, π). With *
are shown the points of total maximum damage returned by the clustering algorithm.
The horizontal axis gives the plane α and the vertical axis gives the total damage.

i D
(ref)
xi

1 3.7225×10−3

2 2.5521×10−3

3 1.4389×10−3

4 5.9046×10−4

5 5.0265×10−4

6 4.9796×10−4

7 5.0265×10−4

8 4.9796×10−4

9 4.5812×10−4

10 3.8482×10−4

Table 6.2.: The reference damage values for the ten hotspots on the component.

σu = 450 kPa and σmax = 450 kPa, respectively. The slope is k = 5.

The testrig configuration we consider is given as:

T C = (1, {2, 3, 4}, {(2, {fz}), (3, {fx}), (4, {fy})}). (6.6)

The index of the fixation point is Af = 1. We apply load time series at F = (2fz , 3fx , 4fy ), i.e., at

the attachment point with index 2 we apply forces along the z-axis, at the attachment points with

index 3 we apply forces along the x-axis and at the attachment point with index 4 we apply forces

along the y-axis. For the damage optimization problem we additionally fix the number of block

loads m to 10, the number of cycles for each block load νi = 1000, i = 1, 2, . . . ,m and the weights

wi to be all equal. The constraints on the maximum and minimum loads that can be applied

through the actuators is given as ll = −20000 Newtons and lu = 20000 Newtons, respectively. We

are also given the stress tensor σ̃xi for the ten hotspots.
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Figure 6.3.: An artificial test example.

For the damage optimization we used a random vector with maximum magnitude half the max-

imum allowed load lu in the testrig. All calculations are done on an Intel Core i3 CPU with

2.53 GHz and 4 GB RAM. Calculating a solution using damage optimization with clusters takes

60.40 seconds for 158 iterations. This corresponds to an average of 0.38 seconds for each iteration.

Calculating a solution using damage optimization without clusters takes 16.58 seconds for 167

iterations. This corresponds to an average of 0.099 seconds for each iteration. Again, damage

optimization without clusters is faster but takes more number of iterations.

The objective function value for the damage optimization with clustering and without clustering

are almost the same at 2.0302 and 2.0304, respectively. As discussed earlier the minimum value

of the objective function is two and both these values are close to two. So, both these approach

work equally well for the artificial example.

6.3.3. Example: Shifting plane of maximum total damage in the

neighborhood of a given point.

In this section we show that using the conditions developed in Chapter 5 we can add additional

constraint to the optimization problem which restricts the plane of maximum damage for a hotspot

to lie in the neighborhood of a selected point. We take the same testrig configuration as in Section

6.3.2. The additional constraint was added to the hotspot with index 1 and the selected point was

α̂ = 1.0. The constraint is ∥∥∥∥∥
2(α̂− b̆x1,j)

2

c̆2x1,j

∥∥∥∥∥
∞

≤ 2 (6.7)

where b̆x1,j and c̆x1,j are the parameters of the Gaussian function approximating j-th block load.

This is a naive approach and more sophisticated approaches could be use to get even better results

than presented here.

In Figure 6.4, we see the plot of the total damage with (red) and without (blue) the additional

constraint from Eq. (6.7).

In this section, we looked at three examples where we applied the clustering algorithm to compute

140



0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5
x 10

−6

 

 

Figure 6.4.: The plot of the total damage with (red) and without (blue) the additional constraint
from Eq. (6.7)

the maximum total damage for each iteration in the damage optimization. In the first example

in Section 6.3.1, the component to be tested was a knuckle for which we saw that the clustering

algorithm was slightly better in objective function value and at the same time the points of

maximum total damage used in clustering were the actual points of maximum total damage

thereby making the solution obtained from clustering more reliable than the solution obtained in

the case of damage optimization without clustering. The number of iterations to converge to the

optimal solution was also less in the case of optimization with clustering.

In the second example in Section 6.3.2 we looked at an artificial example. In this case as well the

objective function values for the damage optimization with clustering algorithm are slightly better

than that obtained in damage optimization with clustering. The number of iterations to converge

to a solution in this example taken by optimization with clustering is again less than the number

of iterations taken by optimization without clustering.

In the third example we saw how we can use the conditions developed in Chapter 5 to add an

additional constraint to the damage optimization problem in order to shift the point of maximum

total damage of a hotspot to the neighborhood of a selected plane.

Thus, we see that in general testrig damage optimization with clustering is better than the testrig

damage optimization without clustering. However, the reliability of the solutions obtained is much

higher in the case of damage optimization with clusters as the actual points of maximum are used

for computing the maximum total damage at each iteration of the optimization. Additionally, the

idea of clustering can also be used to shift the point of maximum total damage to the neighborhood

of a new point. This can find applications in case we want to test the component at a point along

a particular plane angle α.
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7. Conclusions and future research topics

Estimating fatigue life of components is an important aspect of vehicle design. No vehicle manu-

facturing company want their vehicles to fail due to the fatigue failure of a component before the

expected lifetime of the vehicle. The fatigue lifetime of the components is estimated by applica-

tion of load time series in testrigs. Mathematical optimization in testrig is a relatively new field

of research. There are many challenges that needs to be answered in this discipline. The most

important aspect that has to be considered during mathematical optimization in testrig is the

validity of the theoretical results obtained to be applicable in practice. Keeping this in mind we

gave a testrig damage optimization problem (WSDP) which used block loads as building blocks

for the load time series. The optimized load time series with block loads obtained by the testrig

damage optimization (WSDP) have considerably less number of points compared to the load time

series obtained in the testrig stress optimization problem (TSOP) that is the current state of the

art. Due to the simplicity and smaller number of points in the load time series from (WSDP)

they would lead to reduction in total time and costs involved in performing tests on a testrig. The

(WSDP) is shown to be an improvement on the (TSOP).

As our main result, we remodelled damage from block loads as Gaussian functions on three intervals

of interest when the S-N curve has one slope. We derived conditions which when satisfied by

the Gaussian functions, they give a single maximum. These conditions can be easily extended

to be used in the Gaussian Mixture Models (GMM) for finding modes which has application in

image segmentation, speaker identification and many other fields. Remodelling of damage function

enabled us to be able to select the plane of maximum total damage at a hotspot. This was not

possible by any of the previous approaches. Extension of the Gaussian approximation to the case

when S-N curve has two slopes is a promising field of future research.

Although testrig damage optimization problem was presented as a multi-objective problem and was

solved by weighted-sum-of-objective-functions approach, we did not consider in detail the multi-

objective nature of the problem. It would be interesting to investigate the effects of changing the

weights of objective functions associated with different hotspot on the results of the multi-objective

problem and to be able to give a representative set of the efficient solutions. This could then be

used as an interactive decision support tool that can be used by the decision makers to decide

between solutions of the different instances of the problem.

We investigated the effects of increasing the number of times a unit of block load is repeated for a

single block on results of the optimization. Number of blocks and number of times a unit of block

load is repeated was not optimized and were fixed for every problem instance. However, from the

results obtained one can safely state that the number of blocks and also the number of times a unit

of the block is repeated need not be very large. This could be included as optimization parameters

in any future research in this field. However, this would considerably increase the complexity of
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the optimization problem as both these parameters are integers.

So far, the focus of the implementation was on the quality of the solutions and the stability of the

program. To improve the performance of the methods, the implementation can be improved for

speed. Clustering of Gaussian functions is a significant driver of the running time. Parallelization

of Algorithm 5.4.3 that is used for clustering of the Gaussian functions and clever computation of

between-cluster and within-cluster distances can result in speed improvements.
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A. Proofs

A.1. Taylor Series

In this section, we derive the Taylor series for functions from the previous chapters.

Theorem A.1.1. The Taylor series of the damage function d̂ from Eq. (4.16) at b̆(σ) is given as

d̂(σ, α) = d̂(σ, b̆(σ)) +
2kb(σ)

σkeNe
(a(σ) + b(σ)))

k−1
(α− b̆(σ))2 +O

(
(α− b̆(σ))4

)
(A.1)

Proof. From Eq. (4.16), the damage function d̂ is given as:

d̂(σ, α) =
1

σkeNe

(
a(σ) + b(σ) cos

(
2α− 2b̆(σ)

))k
, α ∈ I.

The Taylor series of d̂(σ, α) at b̆(σ) is the power series (by using the big O notation)

d̂(σ, α) = d̂(σ, b̆(σ)) +
d′(σ, b̆(σ))

1!
(α− b̆(σ)) +

d′′(σ, b̆(σ))

2!
(α− b̆(σ))2

+
d(3)(σ, b̆(σ))

3!
(α− b̆(σ))3 +O

(
(α− b̆(σ))4

)
(A.2)

Next, we take the derivatives of the damage function d̂ and evaluate them at α = b̆(σ). The first

derivative of the damage function d̂ is

d′(σ, α) =
2kb(σ)

σkeNe

(
a(σ) + b(σ) cos

(
2α− 2b̆(σ)

))k−1

sin
(

2α− 2b̆(σ)
)
. (A.3)

Evaluating the first derivative d̂′ at α = b̆(σ) leads to d′(σ, b̆(σ)) = 0 since sin(0) = 0. Intuitively,

all the odd derivatives of the damage function d̂ are zero when evaluated at α = b̆(σ) as all the

terms in every odd derivative are a multiple of sin(2α− b̆(σ)) which evaluates to zero at α = b̆(σ).

However, this is not true for the case of even derivatives of the damage function d̂.

The second derivative of the damge function d̂ can be computed by observing that d′′ = (d′)′ and

using the product rule of differentiation, d
dx (uv) = v dudx + u dvdx , to get

d′′(σ, α) =
4k(k − 1)b2(σ)

σkeNe

(
a(σ) + b(σ) cos

(
2α− 2b̆(σ)

))k−2

sin2
(

2α− 2b̆(σ)
)

+
4kb(σ)

σkeNe

(
a(σ) + b(σ) cos

(
2α− 2b̆(σ)

))k−1

cos
(

2α− 2b̆(σ)
)
. (A.4)
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Evaluating the second derivative d̂′′ of the damage function d̂ in Eq. (A.4) at α = b̆(σ) we get

d′′(σ, b̆(σ)) =
4kb(σ)

σkeNe
(a(σ) + b(σ))

k−1
. (A.5)

Inserting the value of the derivatives evaluated at α = b̆(σ) into Eq. (A.2) we get the Taylor series

of the damage function d̂ at b̆(σ) as

d̂(σ, α) = d̂(σ, b̆(σ)) +
2kb(σ)

σkeNe
(a(σ) + b(σ))

k−1
(α− b̆(σ))2 +O

(
(α− b̆(σ))4

)

This completes the proof.

We define F : R→ R for fixed stress σ as

α 7→
∞∑

i=−∞
fă(σ),b̆(σ),c̆(σ)(α− iπ) = ă(σ)

∞∑

i=−∞
exp

(
− (α− iπ − b̆(σ))2

c̆2(σ)

)
(A.6)

Theorem A.1.2. Let the function F be defined as in Eq. (A.6). The Taylor series of F at b̆(σ)

is given as

F (α) = ă(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
+
ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
(α− b̆(σ))2

+O((α− b̆(σ))4) (A.7)

Proof. We want to find the Taylor series of the function F around b̆(σ) of order 4. The Taylor

series is given as

F (α) = F (b̆(σ)) +
F ′(b̆(σ))

1!
(α− b̆(σ)) +

F ′′(b̆(σ))

2!
(α− b̆(σ))2

+
F (3)(b̆(σ))

3!
(α− b̆(σ))3 +O((α− b̆(σ))4) (A.8)

To give the Taylor series we need to find F (b̆(σ)), F ′(b̆(σ)), F ′′(b̆(σ)) and F (3)(b̆(σ)). Evaluating

the function F at α = b̆(σ) yields

F (b̆(σ)) = ă(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
(A.9)

The first derivative of the function F is

F ′(α) = −2ă(σ)

c̆2(σ)

∞∑

i=−∞
(α− iπ − b̆(σ)) exp

(
− (α− iπ − b̆(σ))2

c̆2(σ)

)
. (A.10)

Evaluating the first derivative F ′ at α = b̆(σ) we get

F ′(b̆1(σ)) =
2πă(σ)

c̆2(σ)

∞∑

i=−∞
i exp

(
− i2π2

c̆2(σ)

)
= 0. (A.11)
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The summand i exp
(
− i2π2

c̆2(σ)

)
in Eq. (A.11) is an odd function of i. So, the ith and −ith terms

cancel each other in the sum. The second derivative of the function F is

F ′′(α) =
2ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2(α− iπ − b̆(σ))2

c̆2(σ)
− 1

)
exp

(
− (α− iπ − b̆(σ))2

c̆2(σ)

)
. (A.12)

Evaluating the second derivative F ′′ at α = b̆(σ) yields

F ′′(b̆(σ)) =
2ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
. (A.13)

The third derivative of F is

F (3)(α) =
4ă(σ)

c̆4(σ)

∞∑

i=−∞

(
3(α−iπ−b̆(σ))− 2(α− iπ − b̆(σ))3

c̆2(σ)

)
exp

(
− (α− iπ − b̆(σ))2

c̆2(σ)

)
. (A.14)

Evaluating the third derivative F (3) at α = b̆(σ) gives

F (3)(b̆(σ)) = −4ă(σ)

c̆4(σ)

∞∑

i=−∞

(
3iπ − 2i3π3

c̆2(σ)

)
exp

(
− i2π2

c̆2(σ)

)
= 0. (A.15)

The summand above is an odd function with respect to the variable i and therefore cancel each

other out. At i = 0 the summand is zero. Inserting F (b̆(σ)) from Eq. (A.9), F ′(b̆(σ)) from Eq.

(A.11), F ′′(b̆(σ)) from Eq. (A.13) and F (3)(b̆(σ)) from Eq. (A.15) into Eq. (A.8) gives the fourth

order Taylor series of F :

F (α) = ă(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
+
ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
(α− b̆(σ))2

+O((α− b̆(σ))4) (A.16)

This completes the proof.

Theorem A.1.2 gives a general result on the Taylor series of the sum of Gaussian functions about

the parameter b̆(σ) for which the Gaussian functions are defined. We use this result to give Taylor

series for other functions required in the proof of theorems from previous chapters.

Corollary A.1.3. The Taylor series expansion of the approximation function gR(σ, α) from Eq.

(4.67) at b̆(σ) is

gR(σ, α) = ă(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆2(σ)

)
+
ă(σ)

c̆2(σ)

∞∑

i=−∞

(
2i2π2

c̆2(σ)
− 1

)
exp

(
− i2π2

c̆2(σ)

)
(α− b̆(σ))2

+O((α− b̆(σ))4) (A.17)

Proof. Follows directly from Theorem A.1.2 by observing that the function F and the approxima-

tion function gR(σ, α) have exactly the same form.
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Corollary A.1.4. The Taylor series of the approximation function g̃R(σ, α) from Eq. (4.80) at

b̆1(σ) for α ∈ Î1 is

g̃R(σ, α) = ă1(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆21(σ)

)
+
ă1(σ)

c̆21(σ)

∞∑

i=−∞

(
2i2π2

c̆21(σ)
− 1

)
exp

(
− i2π2

c̆21(σ)

)
(α− b̆1(σ))2

+ d̆1(σ) +O((α− b̆1(σ))4) (A.18)

Proof. Follows directly from Theorem A.1.2 by using parameters ă1(σ), b̆1(σ) and c̆1(σ) for the

Gaussian functions in the summand of the function F and observing that d̆1(σ) is independent of

α.

Corollary A.1.5. The Taylor series of the approximation function g̃R(σ, α) from Eq. (4.80) at

b̆2(σ) for α ∈ Î2 is

g̃R(σ, α) = ă2(σ)

∞∑

i=−∞
exp

(
− i2π2

c̆22(σ)

)
+
ă2(σ)

c̆22(σ)

∞∑

i=−∞

(
2i2π2

c̆22(σ)
− 1

)
exp

(
− i2π2

c̆22(σ)

)
(α− b̆2(σ))2

+ d̆2(σ) +O((α− b̆2(σ))4) (A.19)

Proof. Follows directly from Theorem A.1.2 by using parameters ă2(σ), b̆2(σ) and c̆2(σ) for the

Gaussian functions in the summand of the function F and observing that d̆2(σ) is independent of

α.

A.2. Convexity proofs

A.2.1. Convexity of T in Eq. (4.30)

In this section we show that the function T as defined in Eq. (4.30) is strictly convex. We have

for positive constants a ≥ b > 0 and k ≥ 1

T (k) =
(a+ b)k − (a− b)k

2kb (a+ b)
k−1

. (A.20)

To prove that the function T is strictly convex we use the following Theorem.

Theorem A.2.1. Let I be an open interval and suppose that f is twice differentiable on I. Then

f is convex on I if and only if

f ′′(x) ≥ 0

for all x ∈ I.

Proof. For proof see [5].

Corollary A.2.2. Let I be an open interval and suppose that f is twice differentiable on I. Then

f is strictly convex on I if and only if

f ′′(x) > 0
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for all x ∈ I.

So if we can show that T ′′(k) > 0 for all k ∈ (1,∞) we are done as a result of Corollary A.2.2.

Theorem A.2.3. The function T as defined in Eq. (A.20) is strictly convex on the interval

k ∈ (1,∞).

Proof. Differentiating the function T once yields

T ′(k) =





1
2bk2(a+b)k−1

(
(a− b)k − (a+ b)k + k(a− b)k log

(
a+b
a−b

))
, if a > b

− 1
k2 , if a = b

,

and differentiating again we get the second derivative of the function T as

T ′′(k) =





1
2bk3(a+b)k−1

(
2(a+ b)k − (a− b)k

(
2 + k ln

(
a−b
a+b

)(
k ln

(
a−b
a+b

)
− 2
)))

, if a > b

2
k3 , if a = b

.

Next we show that T ′′(k) > 0 for all a ≥ b > 0 and k > 1. For the case a = b we have

T (k) = 2
k3 > 0. For the other case we start by taking (a− b)k common and rewriting T ′′(k) as

T ′′(k) =
(a− b)k

2bk3(a+ b)k−1

(
2

(
a+ b

a− b

)k
−
(

2 + k ln

(
a− b
a+ b

)(
k ln

(
a− b
a+ b

)
− 2

)))
(A.21)

We replace a+b
a−b by t in Eq. (A.21) to get

=
a+ b

2bk3tk

(
2tk −

(
2 + k ln

(
1

t

)(
k ln

(
1

t

)
− 2

)))
(A.22)

Using the property ln
(

1
t

)
= − ln t we can further simplify Eq. (A.22) as

=
a+ b

2bk3tk
(
2tk − (2− k ln t (−k ln t− 2))

)

=
a+ b

2bk3tk
(
2tk − 2− 2k ln t− k2 ln2 t

)
(A.23)

Replacing tk by exp(k ln t) in Eq. (A.23) we get

=
a+ b

2bk3tk
(
2 exp(k ln t)− 2− 2k ln t− k2 ln2 t

)

=
a+ b

bk3tk

(
exp(k ln t)− 1− k ln t− k2

2
ln2 t

)

Finally we replace k ln t by u to get

=
a+ b

bk3tk

(
exp(u)− 1− u− u2

2!

)
(A.24)
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In Eq. (A.24), we observe that we are taking the difference of exponential function and first three

terms of its Taylor series. Since u = k ln t = k ln
(
a+b
a−b

)
> 0, the difference is positive

> 0.

We have proven that the second derivative of the function T is positive for all a ≥ b > 0 and k > 1

and from Corollary A.2.2 we have that the function T is strictly convex on (1,∞).

A.3. Other results

Theorem A.3.1. For θ ∈
[
0, π2

)
the term

√
1+sin θ

2
4

π+2θ is decreasing.

Proof. For the term to be decreasing in the interval
[
0, π2

)
we have to show that the first derivative

of the term is less than zero in this interval. The first derivative is given by using the product rule

of differentiation

d

dθ

(√
1 + sin θ

2

4

π + 2θ

)
=

√
2 cos θ√

1 + sin θ(π + 2θ)
− 4
√

2
√

1 + sin θ

(π + 2θ)2

Making the denominators of both the terms same and factoring out
√

2 cos θ yields

=

√
2 cos θ

(
π + 2θ − 4

cos θ (1 + sin θ)
)

√
1 + sin θ(π + 2θ)2

The denominator and
√

2 cos θ are positive which gives us

< π + 2θ − 4

cos θ
(1 + sin θ)

= π + 2θ − 4

cos θ
+ 4 tan θ

π <
4

cos θ
and 2θ ≤ 4 tan θ ⇒ < 0.

Therefore, the first derivative is less than zero in the interval
[
0, π2

)
and we have proven that the

term is decreasing.

A.3.1. Proof that function is positive at a point

We prove a general result that we use to show that T
(

1
k

)
in Eq. (4.113) and T

(
1
2k

)
in Eq. (4.134)

are positive.
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Let us consider a function T̂ defined as

T̂ : (1,∞)→ R, k 7→
∑1
i=−1

(
tk − 2π2i2(tk)3

)
exp

(
−i2π2(tk)2

)
∑1
i=−1

(
exp (−i2π2(tk)2)− exp

(
− (2i+1)2π2(tk)2

4

)) (A.25)

where t ∈ R and t ≥ 1.

We want to prove that the function T̂ is always greater than tk for k ∈ R and k > 1. We will use

the following results in the proof:

Lemma A.3.2. For x ∈ [0,∞) we have

T (x) := x2 exp

(
−3x2

4

)
< 0.5.

Proof. We show that the maximum value of the function T on the interval [0,∞) is less then 0.5.

The first derivative of the function T is

T ′(x) = 2x exp

(
−3x2

4

)
− 3

2
x3 exp

(
−3x2

4

)

The critical points greater than or equal to zero are at x = 2√
3
, 0. Taking the second derivative

T ′′(x) = 2 exp

(
−3x2

4

)
− 15

2
x2 exp

(
−3x2

4

)
+

9

4
x4 exp

(
−3x2

4

)
.

Evaluating the second derivative at the critical points gives us T ′′(0) = 2 and T ′′
(

2√
3

)
= − 4

e .

Since, the second derivative T ′′
(

2√
3

)
< 0, point x = 2√

3
is a point of local maximum and since

T ′′(0) > 0, point x = 0 is a point of local minimum.

Evaluating the function T at x = 2√
3

we get T
(

2√
3

)
= 4

3e < 0.5. We have proven that the local

maximum of the function T is less then 0.5 but we need to consider the asymptotic behaviour of

the function T to be sure that the function T is bounded for x→∞. In this case limx→∞ T (x) = 0.

Hence, T (x) < 0.5 for all x ∈ [0,∞). In Figure A.1, we see a plot of the function T (x).

0.1

0.2

0.3

0.4

0.5

T
(x

)

1 2 3 4 5 6
x

Figure A.1.: T (x), x ∈ [0, 6]
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Lemma A.3.3. For real k > 1 we have

1∑

i=−1

exp

(
− (2i+ 1)2k2π2

4

)
< 1.

Proof. The term
∑1
i=−1 exp

(
− (2i+1)2k2π2

4

)
is a decreasing function with respect to k. Hence, the

maximum value of the term is at k = 1. Inserting k = 1 in the term above we get:

1∑

i=−1

exp

(
− (2i+ 1)2k2π2

4

)
<

1∑

i=−1

exp

(
− (2i+ 1)2π2

4

)
< 1 (A.26)

Equipped with Lemma A.3.2 and Lemma A.3.3 we can show that the function T̂ from Eq. (A.25)

is always more than tk.

Theorem A.3.4. For t ∈ R, t ≥ 1 and k ∈ R, k > 1, the function T̂ as defined in Eq. (A.25) is

always more than tk.

Proof. We have to show that T̂ is always more than tk. We subtract tk from T̂ and show that

the result is positive. The difference after simplification yields

T̂ − tk =
2tk exp

(
−π

2(tk)2

4

)(
1− 2π2(tk)2 exp

(
− 3π2(tk)2

4

))
+ tk exp

(
− 9π2(tk)2

4

)

1∑

i=−1

(
exp (−i2π2(tk)2)− exp

(
− (2i+1)2π2(tk)2

4

)) . (A.27)

For the proof we need to show that the numerator and the denominator both are positive. The

numerator is positive if
(

1− 2π2(tk)2 exp
(
− 3π2(tk)2

4

))
is positive and the denominator is positive

if
∑1
i=−1

(
exp

(
−i2π2k2

)
− exp

(
− (2i+1)2π2k2

4

))
is positive.

Applying Lemma A.3.2 for x = πtk results in the numerator being positive.

The denominator can also be written as

1 + 2 exp
(
−π2k2

)
−

1∑

i=−1

exp

(
− (2i+ 1)2π2k2

4

)
.

From Lemma A.3.3 we know that the term
∑1
i=−1 exp

(
− (2i+1)2π2k2

4

)
is less than one. Hence, the

denominator is also positive. Therefore, we have shown that for k ∈ R, k > 1 and t ∈ R, t ≥ 1 the

function T̂ is always greater than tk.

Corollary A.3.5. For k ∈ R and k > 1, the function T from Eq. (4.112) evaluated at the point

y = 1
k is positive.
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Proof. We can rewrite T
(

1
k

)
as

T
(

1

k

)
=

1

k





 kt̃

∑1
i=−1

(
k − 2i2π2k3

)
exp

(
−i2π2k2

)
∑1
i=−1

(
exp (−i2π2k2)− exp

(
− (2i+1)2π2k2

4

))




1
4

− 1


 .

We know that t̃ ∈
[

1
k , 1
]
. Therefore, kt̃ > 1. Applying Theorem A.3.4 with t = 1 yields the

result.

Corollary A.3.6. For k ∈ R and k > 1, the function T1 from Eq. (4.132) evaluated at the point

y = 1
2k is positive.

Proof. It can be shown that
∑1
i=−1 exp

(
−(2k)2

(
π
4 + θ

2 + iπ
)2)

>
∑1
i=−1 exp

(
− (2i+1)2π2(2k)2

4

)

for all θ ∈
[
0, π2

)
. This gives us

T
(

1

2k

)
>

1

2k





 2kt̃1

∑1
i=−1

(
2k − 2i2π2(2k)2

)
exp

(
−i2π2(2k)2

)
∑1
i=−1

(
exp (−i2π2(2k)2)− exp

(
− (2i+1)2π2(2k)2

4

))




1
4

− 1


 .

We know that t̃1 ∈
[

1
2k ,

1
k

)
. Therefore, 2kt̃1 > 1. Applying Theorem A.3.4 with t = 2 yields the

result.

A.3.2. Equation (4.133) is negative

We have to show that

t̃1
∑1
i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)

∑1
i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (π4 + θ

2 +iπ)
2

22

)) < 16,

which implies that Eq. (4.133) is negative. We subtract the term from 16 and prove that the

difference is positive for k ∈ R, k > 1 and t̃1 ∈
[

1
2k ,

1
k

)
.

F (t̃1) :=16−
t̃1

1∑

i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)

1∑

i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (π4 + θ

2 +iπ)
2

22

))

=

16

1∑

i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (π4 + θ

2 +iπ)
2

22

))
− t̃1

1∑

i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)

1∑

i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (π4 + θ

2 +iπ)
2

22

))
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The terms 16
∑1
i=−1 exp

(
− i2π2

22

)
and

∑1
i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)
are constants. Next we

prove that F(t̃1) :=
∑1
i=−1 exp

(
− (π4 + θ

2 +iπ)
2

22

)
is a decreasing function in the interval

[
1
2k ,

1
k

)
for

θ = sin−1(2kt̃1 − 1) (We have θ = sin−1
(
a(σ)
b(σ)

)
and t̃1 = a(σ)+b(σ)

2kb(σ) .). We take the first derivative

of the function F to get

F ′(t̃1) = − 1

16
√
t̃1 − t̃21

1∑

i=−1

(π + 2θ + 4iπ) exp

(
−
(
π
4 + θ

2 + iπ
)2

22

)

< − 1

16

1∑

i=−1

(π + 2θ + 4iπ) exp

(
−
(
π
4 + θ

2 + iπ
)2

22

)

Let us insert θ1 = π
2 + θ, θ1 ∈ [π2 , π), into the equation above and expand to get

= −1

8

(
θ1 exp

(
−θ

2
1

42

)
+ (−2π + θ1) exp

(
− (−2π + θ1)2

42

)
+ (2π + θ1) exp

(
− (2π + θ1)2

42

))

= −
exp

(
− (2π+θ1)2

42

)

8

(
exp

(
πθ1

2

)(
θ1 exp

(
π2 − πθ1

4

)
− 2π + θ1

)
+ 2π + θ1

)

If we can show that θ1 exp
(
π2−πθ1

4

)
− 2π+ θ1 > 0 then we are done. The following lemma proves

that indeed θ1 exp
(
π2−πθ1

4

)
− 2π + θ1 > 0.

Lemma A.3.7. For x ∈
[
π
2 , π

]

L(x) := x

(
1 + exp

(
π2

4
− πx

4

))
≥ 2π

Proof. Taking the first and second derivative of the function L gives us

L′(x) = 1 + exp

(
π2

4
− πx

4

)
− πx

4
exp

(
π2

4
− πx

4

)
,

L′′(x) =
π

2

(πx
8
− 1
)

exp

(
π2

4
− πx

4

)
.

We observe that L′(π2 ) > 0 and L′(π) < 0. This implies from the Intermediate Value Theorem

that there exists at least one point c such that L′(c) = 0 in the interval
[
π
2 , π

]
. Since, the value of

the first derivative at the end points of the interval are of opposite sign we have either one, three,

five, etc. number of such points. However, we notice that the second derivative has just one root

at x = 8
π in the interval

[
π
2 , π

]
which implies there can be at most two sign changes for the first

derivative. Hence, there exists only one c such that L′(c) = 0 in the interval
[
π
2 , π

]
.

Also, since L′(x) > 0 in the interval
[
π
2 , c
)

implies the function L is increasing in this interval.

Similarly the function L is decreasing in the interval (c, π]. So, it would be sufficient to show

that L(x) ≥ 2π at the end points of the interval
[
π
2 , π

]
. We have L(π2 ) = 6.9647749 > 2π and

L(π) = 2π. This proves our claim.

153



Applying Lemma A.3.7 for x = θ1 we have shown that the first derivative of the function F is

negative and therefore, the function F is a decreasing function for t̃1 ∈ [ 1
2k ,

1
k ). Using this result

we can further show that
∑1
i=−1

(
exp

(
− i2π2

22

)
− exp

(
− (π4 + θ

2 +iπ)
2

22

))
is more than zero for all

t̃ ∈
[

1
2k ,

1
k

)
. For F (t̃1) to be positive we have to show that the numerator is positive. We do this

by proving that numerator is increasing. The numerator is:

16

1∑

i=−1

exp

(
− i

2π2

22

)
− t̃1

1∑

i=−1

(
22 − 2i2π2

)
exp

(
− i

2π2

22

)
− 16

1∑

i=−1

exp

(
−
(
π
4 + θ

2 + iπ
)2

22

)

(A.28)

We observe that the term 16
∑1
i=−1 exp

(
− i2π2

22

)
− t̃1

∑1
i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)
is a de-

creasing function of t̃1 and we have also proven that 16
∑1
i=−1 exp

(
− (π4 + θ

2 +iπ)
2

22

)
is a decreasing

function. Since we are adding a decreasing function and an increasing function we have to show

that the rate of increase of the increasing function is more than the rate of decrease in the decreas-

ing function. In other words we have to show after taking the first derivative of the numerator

that

−
1∑

i=−1

(
22 − 2i2π2

)
exp

(
− i

2π2

22

)
− 16F ′(t̃1) > 0

F ′(t̃1) < −

1∑

i=−1

(
22 − 2i2π2

)
exp

(
− i2π2

22

)

16

F ′(t̃1) < −0.083154375

We can prove similar to the proof in Lemma A.3.7 that F ′′ is also negative for all t̃1 ∈
[

1
2k ,

1
k

)
.

Hence, F ′ is a decreasing function on this interval. Evaluating F ′ at t̃1 = 1
2k and finding the

maximum value for all k > 1 we get

max
k>1,k∈R

F ′
(

1

2k

)
= −0.0840917 < −0.083154375.

Hence, the numerator is positive and we have shown that Eq. (4.133) is negative.
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B. Images

B.1. Approximation around the maximum

In this section, we compare the damage function d̂ from Eq. (4.4) and its approximation around

the maximum developed in Section 4.2.

B.1.1. Case a(σ) ≥ b(σ)

In Figure B.1, we compare the approximation function g from Eq. (4.5) and the damage function

d̂ in the case of b(σ)
a(σ) ≈ 0. In Figure B.2, we compare the approximation function g from Eq. (4.5)

and the damage function d̂ in the case of b(σ)
a(σ) = 0.5. In Figure B.3, we compare the approximation

function g from Eq. (4.5) and the damage function d̂ in the case of b(σ)
a(σ) = 1. In all the figures

the horizontal axis is given by the plane angle α which is centered around the maximum value.
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1.068×10−7

−1.5 −1 −0.5 0 0.5 1 1.5
α

(a) Approximation (red) and actual (blue) dam-
age.

0

1×10−11

2×10−11

3×10−11

4×10−11

5×10−11

−1.5 −1 −0.5 0 0.5 1 1.5
α

(b) Error |d̂(σ, α)− g(σ, α)|.

Figure B.1.: Approximation around maximum when b(σ)
a(σ) ≈ 0.

We see that the error in Figure B.1(b) is small compared to the maximum damage. Also, since

b(σ) ≈ 0, damage is almost constant over the entire interval.

In Figure B.2(b) and Figure B.3(b) the error is also small compared to the maximum damage but

the relative error in these cases is greater than the relative error displayed in Figure B.1(b). In

general, the approximation function g approximates the damage function exactly at the point of

maximum as seen in the plot for the error functions in Figure B.1(b), Figure B.2(b) and Figure

B.3(b).
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(a) Approximation (red) and actual (blue) dam-
age.
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(b) Error |d̂(σ, α)− g(σ, α)|.

Figure B.2.: Approximation around maximum when b(σ)
a(σ) = 0.5.
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(a) Approximation (red) and actual (blue) dam-
age.
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−0.5 0 0.5 1 1.5 2
α

(b) Error |d̂(σ, α)− g(σ, α)|.

Figure B.3.: Approximation around maximum when b(σ)
a(σ) = 1.

B.1.2. Case a(σ) ≥ b(σ)

In Figure B.4, we compare the approximation function g̃ from Eq. (4.36) and the damage function

d̂ in the case of a(σ)
b(σ) = 0. In Figure B.5, we compare the approximation function g̃ from Eq. (4.36)

and the damage function d̂ in the case of a(σ)
b(σ) = 0.128.

In Figure B.4, we have a(σ) = 0 which implies that the two peaks in the damage profile have the

same height. Again, we observe that as soon as the ratio a(σ)
b(σ) increases to 0.128 the height of the

smaller peak is less than half of the height of the larger peak. Therefore, with increasing value of

the ratio a(σ)
b(σ) the contribution of the peak with smaller height becomes negligible.
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Figure B.4.: Approximation around maximum when a(σ)
b(σ) = 0.
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Figure B.5.: Approximation around maximum when a(σ)
b(σ) = 0.128.
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C. Algorithms

C.1. 4-Point algorithm

We present in this section the 4-point algorithm as given in [17]. For more information about

4-point algorithm and Rainflow counting in general look at Chapter 3 in [17].

We work with only turning points, which are the local maximum and minimums in a given stress

time series. We then discretize these turning points. This sequence of discretized turning points

zi, for i = 1, · · · , N , taking values 1, · · · , n, that is the min/max filtering and discretization has

already been done. The rainflow matrix RFM has all zeros as its entries and the residual set RES

is empty at the beginning. The algorithm as the name suggests works with a stack of 4 points,

which is initialized with the first 4 points of the signal s = [s1 = z1, s2 = z2, s3 = z3, s4 = z4] and

the number of elements in the residual set RES, r is set to zero, r = 0. After the initialization

step we apply the following counting rule

(c) if min(s1, s4) ≤ min(s2, s3) and max(s2, s3) ≤ max(s1, s4), then the pair (s2, s3) is a cycle,

that is provided s2, s3 are contained between s1, s4. If this is the case we store the cycle in the

matrix RFM(s2, s3) = RFM(s2, s3) + 1. We delete the points s2, s3 from the stack. The stack

has to be refilled now. The way this is done reflects the memory rules from the hysteresis model.

We fill the stack with the points from the residual if possible. In detail, this means (k denotes the

next point of the signal z):

(r1) if r = 0, then [s1 = s1, s2 = s4, s3 = zk, s4 = zk+1], and k = k + 2

(r2) if r = 1, then [s1 = RESr, s2 = s1, s3 = s4, s4 = zk], k = k + 1 and r = 0

(r3) if r = 2, then [s1 = RESr−1, s2 = RESr, s3 = s1, s4 = s4], and r = r − 2

Then the counting rule is applied again. If the counting condition (c) is not fulfilled, then

(r4) r = r + 1, RESr = s1, [s1 = s2, s2 = s3, s3 = s4, s4 = zk], and k = k + 1.

This is repeated until the last point of the time signal is reached and (c) does not apply any more.

The result of this procedure is the rainflow matrix RFM , containing all close cycles, and the

residual RES, containing the remaining sequence of turning points.
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C.1.1. The Residual

The residual consists of an increasing part followed by a decreasing part. The residual is very

important when short signals are used repeatedly for testing or simulation. If the signal is applied

once on the component, some hysteresis cycles result. If we now apply the signal a second time,

some other cycles are created. But, if the signal is applied further, the same cycles are created as

during the second run.

The 4-point algorithm gives us RFM which contains all the cycles closing in the first as well as in

the second run through the signal. We can study the Residual also by using Rainflow Counting

algorithm with an additional counting condition (c1):

(c1) if us2 · us3 < 0 and |us4 | ≤ |us2 | ≤ |us3 | then (s2, s3) is a cycle,

where us2 and us3 are the physical values of the stress corresponding to the bin values s2 and s3,

respectively.

We start with the 4-point stack s = [RES1, RES2, RES3, RES4], we check the counting condition

(c1). If (c1) is fulfilled, then we remove s2, s3 from the stack which is then refilled in similar way as

explained above. This gives us only those cycles which close in the first run. We can also get the

cycles which close in the second run and all following runs by constructing an intermediate signal

y by doubling the residual in the form y = (RES,RES) and applying the 4-point algorithm.

We do not consider the damage due to all cycles closing in only the first run, as they have very

negligible influence on the final damage value when we have large number of runs.

C.1.2. Example of Rainflow Counting using 4-Point algorithm

Figure C.1 shows the signal, with discretized turning points, considered for the example. The

stress time series is

(3, 9, 7, 10, 1, 4, 2, 9, 3, 8, 5, 10, 2, 4, 1)

0

2

4

6

8

10

S
tr
es
s
(s
)

0 5 10 15
Time

Figure C.1.: A simple stress time series for explaining 4-point method

159



Applying 4-point algorithm gives the following closed cycles

{(9, 7), (4, 2), (8, 5), (9, 3), (2, 4)}

and the residual is

(3, 10, 1, 10, 1)

As we can see, the largest load cycle is in the residual, and thus needs to be treated. As explained

in the previous section we can compute the cycles in the residual by doubling the residual and

making a rainflow count. The 4-point algorithm gives the following cycles in the residual:

{(1, 10), (1, 10)}

These cycles are formed each time we repeat the load signal.
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List of Symbols

Chapter 2

D(ref) reference damage at some point of the surface

A the number of available attachment points

Af index of the fixation point

Aa index of the attachment points where actuators are installed

na number of actuators

T C testrig configuration

F set of 2-tuples with all the forces/moments acting at attachment points

xi location of hotspot with index i

Dxi total damage at hotspot xi
F the location and direction of forces/moments acting on the component

n total number of forces/moments acting on the component

L general load time series

li loads at i-th point of time series

N the number of points in the load time series

l′j the load time series acting at j-th actuator

0n vector of size n with all elements zero

ν the number of times a single unit of the block load is repeated

B block loading

m the number of blocks

L the amplitudes of all the blocks

V the number of times the single unit of block loads are repeated

Lb load time series with block loads

σx stress at hotspot x

σ̃x stress tensor at hotspot x

Σx stress time series at hotspot x

s scalar stress

n transformation vector to transform stress σ to scalar stress s

â(σ) non oscillating component of scalar stress

b(σ) oscillating component of scalar stress

a(σ) absolute value of â

Sa tuple of alternating stress amplitudes

d damage from a single alternating stress

lb,j the amplitudes of the j-th block at each actuator

Lb,a matrix of amplitudes of block loads

Sx set of scalar stresses at point x

L̂ vector of amplitudes in Lb
Ŝx the scalar stresses at point x for L̂
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N the matrix with block diagonal entries as n

Σ̂x the matrix with block diagonal entries given by σ̃x

D̂x Damage computed from L̂

k slope in the S-N curve

α the plane angle

Chapter 3

X set of all hotspots

σ(ref) reference stress time series

nh number of hotspots

Nf number of points in the reference stress time series

(TSOP) testrig stress optimization problem

(BOINCQP) convex quadratic optimization problem with box and inequality con-

straints

Dσ design space of the testrig stress optimization problem

lmin the minimum load that can be applied through the actuators

lmax the maximum load that can be applied through the actuators

S the vector of scalar stresses

Σ̃ a block row matrix with elements xi for all hotspots

Lσ set of all feasible solutions for testrig stress optimization problem

η objective function for testrig stress optimization problem

DD the design space of the testrig damage optimization problem

σmax the maximum stress allowed to develop in the component

(WSDP ) testrig damage optimization problem

ZZ,W weighted sum objective function for the (WSDP)

ζi the objective function in the testrig optimization problem

D̃xi maximum total damage at hotspot xi

Chapter 4

fă,b̆,c̆ Gaussian function with parameters ă, b̆ and c̆

ă the maximum value of the Gaussian function

b̆ the point of maximum of the Gaussian function

c̆ such that b̆± c̆√
2

are inflexion points

R+ positive real numbers

σe the stress at any point on the S-N curve

Ne the number of cycles for the component to fail for alternating stress σe
d̂ the damage from a single block

g the approximation of damage for the case a(σ) ≥ b(σ)

g̃ the approximation of damage for the case a(σ) < b(σ)

ĝ simplified approximation of damage for the case a(σ) < b(σ)

Chapter 5

G sum of Gaussian functions

ϕ the fixed point operator for finding critical points

pij measure of closeness of the i-th and the j-th Gaussian functions in the

sum G
ng number of Gaussian functions
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C a general cluster

Ĉ a general clustering

DC within-cluster distance

C Gaussian clustering

DCi,Cj between-cluster distance

m̂∗ number of maxima of sum G
αC approximate maximum of cluster C

Chapter 6

G total damage as sum of Gaussian functions

Ig the set of indices of block loads with a(σ) ≥ b(σ)

Il the set of indices of block loads with a(σ) < b(σ)
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Hüttenkunde, 10:215–234, 1837.

[3] N. N. Aprausheva, N. Mollaverdi, and S. V. Sorokin. Bounds for the number of modes of
the simplest gaussian mixture. International Conference on Pattern Recognition and Image
Analysis: New Information Technologies, 7:677–681, 2004.

[4] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux
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