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Abstract

A single facility problem in the plane is considered, where an optimal location has to be
identified for each of finitely many time-steps with respect to time-dependent weights and
demand points. It is shown that the median objective can be reduced to a special case of the
static multifacility median problem such that results from the latter can be used to tackle the
dynamic location problem. When using block norms as distance measure between facilities,
a Finite Dominating Set (FDS) is derived. For the special case with only two time-steps, the
resulting algorithm is analyzed with respect to its worst-case complexity. Due to the relation
between dynamic location problems for T time periods and T -facility problems, this algorithm
can also be applied to the static 2-facility location problem.

Keywords: optimal dynamic locations, optimal trajectory, block norm, public event

1 Introduction

The location problem presented in this paper is motivated by commercial and safety issues in the
organization of public events. It is part of a larger project in which various conflicting objectives
(safety, commercial success, visitor-friendliness, etc.) will be simultaneously optimized in multi-
objective models. We consider, in particular, the presence of sales- and security personnel which
we assume to be dependent on data changing over time.
As a first step in tackling this complex issue, we consider in this paper, single-commodity, single-
facility dynamic location problems. In contrast to the existing literature, weights and demand
points are time-dependent. Moreover, there will be penalties dependent on the distance for moving
staff around.
In Section 2 we will give a short review of planar location problems, focusing on the time-dependent
case. In Section 3 we will introduce our problems and show in Section 4 that the median version
of the problem can be interpreted as special case of the static multifacility location problem.
Optimality conditions are stated and applied to identify a Finite Dominating Set in Section 5.
The worst-case complexity of the resulting algorithm is analyzed and an Algorithm is stated for
the case with only two time-steps. In the last Section 6, possible improvements and future research
are discussed.

∗This work was in part supported by a grant of the German Ministry of Research and Technology (BMBF)
under grant FKZ 13N12826
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2 Literature Summary

Facility location is a major research topic in optimization and can be categorized in many subtopics.
For a general overview of location problems see for example Love et al. [LMW88], Drezner [Dre95a]
or Drezner and Hamacher [DH04].
In planar location theory, the distance is usually measured by norms, such as lp-norms or block
norms. In this paper we will focus on the latter. Block norms were introduced by Ward and Wen-
del in 1980 [WW80]. They showed that location problems with block norms can be formulated
as linear programs [WW85] and are, therefore, solvable in polynomial time. As generalization of
block norms, polyhedral gauges - in which the symmetry requirement of block norms are relaxed
- have been considered for example in [ML87], [Dur90], [CCMMP97], [Nic98] and [Fli98]. The
standard assumption in these models is that the data is constant over time.

In this paper planar location problems with time-dependent data are presented. To the best of our
knowledge, Ballou [Bal68] was the first to consider such a dynamic location model. In his model
he relocates a single warehouse to maximize the profit. He takes transportation and relocation
costs into account and develops an approach based on dynamic programming. A discussion in
the Journal of Marketing Research arose when Ballou stated that his approach could be easily
applied to other location models. Lodish [Lod70] claimed that it is not possible to transfer the
approach that easily, but Ballou [Bal70] defended himself in the same issue. However, Ballou’s
approach was later shown to be suboptimal by Sweeney and Tatham [ST76] who were also able
to improve Ballou’s solution approach. In 1973 Wesolowsky [Wes73] extended the single facility
location model to one where the facility location can change within a given time interval. In
this model, locations are predefined. Location problems are not only considered in optimization,
but also in computational geometry where Atallah [Ata83] introduces various “location” problems
with moving geometric objects.

Mediggo [Med86] works with moving demand points, however, not with changing the demand. He
tries to find a single location in his two models which he calls the “global optimization” and the
“steady state” problem. Moreover, the demand points and the location are coordinates in R3.
Two years later Chand [Cha88] provided decision and forecast results for a dynamic relocation
problem with a single facility. Campbell [Cam90] developed a myopic approach for a continuous
location model of a freight carrier with increasing demand, terminal, transportation and relocation
costs.

Drezner and Wesolowsky [DW91] introduced a multifacility model in which the facilities can relo-
cate at so called “break points”. Their plan is to find an optimal location/ relocation plan for the
corresponding break points. They investigate the minisum Weber and minimax location problem
and propose algorithms. Later Drezner [Dre95b] considered the dynamic p-median problem where
demand can change over time. For the Euclidean norm he gives a heuristic.

Planar dynamic location was rediscovered in 2008 by Farahani et al [FDA09]. In their article they
consider weights given by a function of time. In their model the facilities can only be relocated at
given break points. The latest work was done by Farahani et al. [FSG14] where they picked up
the model of the previous paper. The location can only change once on a given time interval and
their aim is to find the optimal relocation time.

3 Problem Formulations

The real-world problems sketched in Section 1 will subsequently be modeled by various versions
of the dynamic single facility problem in the plane. The location of the sales-, security person, etc.
at time t ∈ T := {1, . . . , T} is a point xt ∈ R2 in the plane. Here T is a given set of equidistant,
discrete time steps with time horizon T . Since the set X = (xt)t∈T ∈ R2T of dynamic locations
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can be interpreted as a trajectory in the plane, the dynamic single facility problem could also be
coined optimal trajectory problem.
Each change of the location from time t to t+ 1 (for t = 1, . . . , T − 1) induces some cost vt ∈ R>0

per unit distance between xt and xt+1. Moreover, for each t ∈ T there are M demand points
Dt := {dtm ∈ R2,m ∈ M}, each associated with weights wtm ∈ R≥0, where M := {1, . . . ,M}.
The set of all demand points over time is denoted by D := ∪t∈T Dt. For the unweighted version
all weights are equal to 1.
Depending on the real-world problem different objective functions may be used.

The median objective

min
X∈R2T

T−1∑
t=1

vt‖xt+1 − xt‖+

T∑
t=1

M∑
m=1

wtm‖dtm − xt‖, (1)

where ‖·‖ denotes a norm, is for instance useful in order to minimize the overall cost of a salesperson
which is assumed to be proportional to the overall distance covered by moving along a trajectory
and serving the customers.
For a safety patrol, objective (1) is in general not suitable, since it is more important to show
presence during the public event rather than saving cost. In order to deter potential trouble-
makers it is advisable that the patrol is able to see all visitors at some time during the periods
t ∈ T . This can be modeled by the objective function

min
X∈R2T

max
m∈M

min
t∈T

wtm‖dtm − xt‖. (2)

For police or medical services it is important to get as fast as possible to the emergency location
over the whole time horizon. This is achieved by minimizing the maximum distance to any demand
point for any time step, which gives us the classical Center objective:

min
X∈R2T

max
m∈M

max
t∈T

wtm‖dtm − xt‖. (3)

However, if at one time step the weight of a demand point is very big, or the demand points
themselves are much farther away than at other time steps, then this time step might dominate
all the others and it might not be important where the location at other time steps is. Therefore,
instead of considering the maximum over all time steps, it might be better to find a path which
minimizes the maximum distance over all demand points considering the whole time-horizon.

min
X∈R2T

max
m∈M

{
T∑
t=1

wtm‖dtm − xt‖

}
+

T−1∑
t=1

vt‖xt+1 − xt‖. (4)

There are several reasonable constraints on the choice of locations X = (xt)t∈T ∈ R2T which may
be considered in the dynamic location model.

The most obvious one is the restriction to the area in which the public event takes place and the
space which is available inside this area. If F ⊂ R2 is the feasible set from which the locations xt
can be chosen, then the dynamic location problem is restricted (see, e.g., [HN95] for the static case).

Often, the start point and/or end point of the path is predefined, i.e. for two points in the plane
p1, pT ∈ R2:

x1 = p1 and/or xT = pT , (5)

or the trajectory of the staff is repeating after a time interval, hence

x1 = xT (= p1) . (6)
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Further interesting constraints are limits on the distance of the staff by considering lower and
upper bounds L and U , respectively (which may also be time-dependent) for the distance covered
between two consecutive time steps.

L ≤ ‖xt+1 − xt‖ ≤ U, t = 1, . . . , T − 1, (7)

or during the complete time horizon

L ≤
T−1∑
t=1

‖xt+1 − xt‖ ≤ U. (8)

4 Dynamic Single Facility Location Problem with Median
Objective

Interrelation Between Dynamic and Static Location Problems

The unconstrained single-facility dynamic location problem in the plane with median objective is
to find X = (xt)t∈T ∈ R2T minimizing

F (X) :=

T−1∑
t=1

vt‖xt+1 − xt‖+

T∑
t=1

M∑
m=1

wtm‖dtm − xt‖ (1FDynLoc)

Using the classification scheme of Hamacher et al. [HNS96], we denote the problem also as
1/P/dyn/•/Σ . Its set of optimal solutions is denoted by X ∗, or more extensively by X ∗(1/P/dyn/•
/Σ ). The possible optimal values for one time-step t is defined by X ∗t := {x ∈ R2 : ∃X∗ ∈ X ∗, x =
x∗t }.
We will first show that this problem can be interpreted as special case of the well-known multi-
facility location problem introduced next (see Love et al. [LMW88]).

Given a set of N facilities with N := {1, . . . , N}. Between each pair of facilities, there are weights

ṽkl ≥ 0 for all k, l ∈ N := {1, . . . , N}. Let D̃ := {d̃m ∈ R2 : m ∈ M̃ := {1, . . . , M̃}} be the set of
demand points with corresponding weights between the facilities and the demand points w̃lm ≥ 0
for all l ∈ N ,m ∈ M̃ .
The (static) multifacility Weber problem in the plane, denoted N/P/static/ • /Σ, is to find X =
(xn)n∈N ∈ R2N minimizing

F̃ (X) =

N∑
k=1

N∑
l=1

ṽkl‖xl − xk‖+

M̃∑
m=1

N∑
l=1

w̃lm‖d̃m − xl‖. (9)

Theorem 4.1. The single-facility dynamic location problem with objective function (1FDynLoc)
and time horizon T is a special case of the static multi-facility location problem.

Proof. Any given instance of 1/P/dyn/ • /Σ can be reformulated as an equivalent multi-facility
static Weber problem with

- N = T ,
- M̃ = {(t,m) : t ∈ T ,m ∈M},
- D̃ = ∪t∈T Dt,

and weights

w̃t(t̂,m) :=

{
wtm, if t = t̂,

0, else
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ṽtt̂ =

{
vt, if t̂ = t+ 1,

0, else.

Optimality Conditions

In general (1FDynLoc) is not differentiable whenever xt = xt+1 for some t ∈ T . Plastria [Pla92]
derived optimality conditions using the subdifferential of the objective function. Lefebvre et
al. [LMP90] gave a geometric interpretation of the optimality conditions. Before stating these
conditions one has to be familiar with the concept of dual norms and normal cones.
The dual or also called polar norm of ‖ · ‖ with unit ball B is given by

‖p‖◦ := max{〈p, x〉 : ‖x‖ ≤ 1},

with 〈·, ·〉 denoting the dot product. Its associated unit ball is denoted by B◦.
The normal cone K(p) to B◦ at p ∈ B◦ is defined by

K(p) = {x ∈ Rn : 〈x, q − p〉 ≤ 0 ∀q ∈ B◦}.

The following Theorem is stated for 1/P/dyn/ • /Σ, however, was first developed by Lefebvre et
al. [LMP90] for N/P/static/ • /Σ

Theorem 4.2 (Lefebvre et al. [LMP90]). (i) If X is an optimal solution to 1/P/dyn/ • /Σ ,
then there exists vectors ptm ∈ R2 and p̃t for t ∈ T , m ∈M, whereas p̃0 = p̃T = 0, satisfying
the conservative constraints:∑

m∈M
wtmptm + vtp̂t − vt−1p̂t−1 = 0, ∀t ∈ T (10)

and the cone and ball conditions:

xt ∈ dtm +K(ptm), t ∈ T ,m ∈M, (11)

xt ∈ xt+1 +K(p̃t), t ∈ T \ T, (12)

ptm ∈ B◦, t ∈ T ,m ∈M, (13)

p̃t ∈ B◦, t ∈ T \ T. (14)

(ii) Let p = (ptm)m∈M,t∈T , p̃ = (p̃t)t∈T and P = (p, p̃) be a vector satisfying the conservation

constraints (10) and the ball conditions (13) and (14) on p and p̃. If there exists a X̃ such
that the pair (X̃, P ) also satisfies the cone conditions, then X̃ is optimal. Moreover, X ′ is
also an optimal solution if and only if (X ′, P ) also satisfies these cone conditions.

Proof. [LMP90]

An example of the optimality conditions will be given later using a block norm which will be
defined in the next section.

5 1FDynLoc with Block Norms: Finite Dominating Set Re-
sult

In the following we will consider (1FDynLoc) under block norms. Let B ⊂ R2 be a bounded,
convex, symmetric polytope with 0 as center. Then a block norm is defined by γ(v) := inf{µ >
0 : v ∈ µB} and the objective is denoted by:

Fγ(X) =

T−1∑
t=1

vtγ(xt+1 − xt) +

T∑
t=1

M∑
m=1

wtmγ(dtm − xt), (Fγ)
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Considering the cone conditions (11), then the sets⋂
m∈M

dtm +K(ptm)

define geometric objects, more precisely polyhedral cells, edges and extreme points of those cells.
The extreme points of those cells will be denoted by I(Dt), respectively I(S) for S ⊆ D if we
consider the intersection points of a specific subset of D.
The extreme points of B, denoted by Ext(B) = {b±1, . . . , b±R} with br = −b−r as B was assumed
to be symmetric, define fundamental directions fr = {λbr : λ ≥ 0} for r ∈ R := {±1, . . . ,±R}.
The construction line defined by fr at point d is given by:

Lr(d) := {x ∈ R2 : x = d+ fr}.

For a finite set D ⊂ R2 define the set of construction lines of D by

CL(D) :=
⋃
d∈D

⋃
r∈R

Lr(d).

The following example will illustrate the optimal conditions of Theorem 4.2 using a block norm.

Example 5.1
Given the unit ball with extreme points (0, 2/3

√
2), (1/3, 1/3), (2/3

√
2, 0), (1/3,−1/3), (0,−2/3

√
2),

(−1/3,−1/3), (−2/3
√

2, 0), (−1/3, 1/3) and its dual ball with extreme points (1, 2), (2, 1), (2,−1),
(1,−2), (−1,−2), (−2,−1), (−2, 1), (−1, 2). Consider the following set of demand points with
according weights:

T \M 1 2 3 4
1 (1, 15) (3, 13) (1, 13) (3, 15)
2 (11, 15) (10, 18) (6, 8) (9, 17)
3 (7, 5) (9, 3) (7, 3) (9, 5)

T \M 1 2 3 4
1 6 6 8 4
2 4 4 3 3
3 6 6 8 4

demand points: dtm weights: wtm

and weights for moving the location per unit distance v1 = 6, v2 = 6.
By simple calculation, one can see that the following flow P is satisfies the conservation constraints
10:

T \M 1 2 3 4

1

(
1.5
−1.5

) (
−1.5
1.5

) (
2
1

) (
−1
−2

)
2

(
−2
−1

) (
−1
−2

) (
1
2

) (
−1
−2

)
3

(
1.5
−1.5

) (
−1.5
1.5

) (
1
2

) (
−2
−1

)
p̃1

(
−2
0

)
p̃2

(
0
2

)

flow: ptm ∈ B0, p̃t ∈ B0.
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Clearly, the ball conditions are satis-
fied, hence, if we find a solution X such
that the pair (X,P ) satisfies the cone
conditions, then we know by Theorem
4.2 that X is optimal. In addition, by
the second part of the Theorem, each
optimal solution must satisfy the cone
condition considering the flow P .
One can see in the Figure that the set of
optimal solution is given for 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1:

x1 = (2 + α, 14− α),

x2 = (7 + β, 14− α),

x3 = (7 + β, 5− β).

Note that C∗2 =
⋂
m∈M d2m+K(p2m) is

the cell defined by the cone conditions
(11) of the demand points.

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

C∗2

X ∗
2

5.1 1FDynLoc with minimal dimension

To derive general geometrical properties, we first have to consider a special case of 1FDynLoc: The
dynamic location problem (1FDynLoc) has minimal dimension if there exists no optimal solution
X ∈ X ∗, such that xt = xt+1 for all t ∈ T \ T . Throughout this section, we will assume that
1FDynLoc has minimal dimension. The interior of a set S ⊂ R2 will be denoted by int(S) and
the boundary by bd(S).

Theorem 5.2. Given 1/P/dyn/γ/Σ with minimal dimension. Assume we have a pair (X,P )
satisfying the optimality conditions in Theorem 4.2, then there exists a solution X∗ ∈ X ∗ satisfying
the following aspects:

(i) if there exist a t′ ∈ T with x∗t′ ∈ int(Ct′) for a cell Ct′ :=
⋂
m∈M dt′m +K(pt′m), then there

exists t1, t2 with t1 < t′ < t2 such that x∗t1 ∈ I(Dt1), x∗t2 ∈ I(Dt2) and moreover, for all
time-steps t between t1 and t′ as well as between t′ and t2 holds: x∗t ∈ CL(Dt),

(ii) there exists at least one t ∈ T with x∗t ∈ I(Dt),
(iii) let t̄1 and t̄2 be the smallest t1, resp. the biggest t2 in property (i) or t̄1 = t̄2 = t in property

(ii) if (i) does not apply, then x∗t ∈ CL(Dt) for t = 1, . . . , t1, t2 . . . T

Proof. The proof is constructive and returns a solution X∗ ∈ X ∗ fulfilling the desired property:
Since x1 must be an optimal solution to the static single facility problem with fixed x2, . . . , xt, we
can assume that x1 ∈ I(D1 ∪ x2). The same holds for xT . Hence, without loss of generality x1

and xT lie on the construction lines CL(D1), resp. CL(DT ).
Recall that Gt :=

⋂
m∈M dtm + K(ptm) are geometric objects formed by the cone conditions.

Define rt as the ray with initial point xt and direction given by xt and xt+1 and r0 as the line
lying on a boundary of G1 going through x1 and rT respectively with GT and xT .

In the following, only the initial points of the rays will change, the direction will stay the same.
Hence, by moving xt along rt−1 in any direction for which Gt is bounded and adjusting xt+1

accordingly on rt and rt+1 (see Figure 1) until xt or xt+1 reaches its object boundary bd(Gt),
resp. bd(Gt+1) (see Figure 2), yields another optimal solution as the optimality conditions are still
fulfilled.
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xt

xt+1

xt+2
rt−1

rt

rt+1

rt+2

Figure 1: Modifying original optimal solution

xt

xt+1

xt+2
rt−1

rt

rt+1

rt+2

Figure 2: Another optimal solution

Now assume xt+1 reaches its boundary and, hence, moving xt further and xt+1 along rt+1 violates
the cone conditions (11). The only possibility is to move xt+1 along its cell boundary of Gt, like
indicated in Figure 2 and adjusting xt+2 along rt+2 until it reaches its boundary (see Figure 3) or
one of the previous time-steps reaches an extreme point. Note, that since no direction is modified,
the cone conditions are still satisfied and hence, this can be iteratively repeated until moving xt
any further results in violating the optimality conditions. Since all cells are bounded in at least
one direction, this will definitely happen.

xt

xt+1

xt+2
rt−1

rt

rt+1

rt+2

Figure 3: Moving the optimal solution on the
boundaries

xt

xt+1

xt+2

dt−1

rt

rt+1

rt+2

Figure 4: xt+2 reached an extreme point of its
cell

There are three cases to distinguish:
Case 1: Point xt cannot be moved anymore, since it itself or one of the succeeding

points reached an extreme point (like shown in Figure 4).

Case 2: There is a t′ for which the boundary of the cellGt′

lies on rt′−1. In this case, we cannot keep moving
xt in the desired direction and no intersection
point has been found yet. Instead, we choose
a direction for xt′ and move it along rt′−1 and
continue the process.

rt′−1

xt′

rt′

Case 3: There is a t′ for which the boundary of the cell
Gt′ lies on rt′ or t′ = T . We can move xt′ along
the boundary without adjusting xt′+1. Hence, by
continuing moving the solution, we must reach
Case 1.

rt′

xt′

rt′−1

Since we only moved xt along rt−1 all the optimality conditions for the previous time-steps are
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still satisfied.

When iteratively applying this procedure to all time-steps from 1 to T , we get the desired result
for all parts (i),(ii) and (iii). When there is a X ∗t ⊂ int(Gt), then this procedure has already found
a t1 < t in the previous iterations and in the subsequent, it must find t2, which proves part (i).
Part (ii) and (iii) immediately follow as one of the three cases have to occur.

Theorem 5.3. Given 1/P/dyn/ • /Σ with minimal dimension and a pair (X,P ) satisfying the
optimality conditions in Theorem 4.2, then there exists an optimal solution X∗ ∈ X ∗ such that:

(i) For all x∗t′ ∈ CL(Dt′) \ I(Dt′) there exists a t̄ ∈ T \ {t′} with x∗t̄ ∈ I(Dt̄) and

x∗t ∈

{
I(Dt ∪ xt+1) ∀t = t′, . . . , t̄− 1, if t′ < t̄,

I(Dt ∪ xt−1) ∀t = t̄+ 1, . . . , t′, if t′ > t̄.

(ii) If x∗t′ ∈ int(Ct′) with a cell Ct′ :=
⋂
m∈M dt′m+K(pt′m) for a t′ ∈ T , then there exists t1, t2

with t1 < t < t2, such that xt1 ∈ I(Dt1), xt2 ∈ I(Dt2) and

xt ∈ I(Dt ∪ xt−1) for t = t1 + 1, . . . , t′ − 1,

xt ∈ I(Dt ∪ xt+1) for t = t′ + 1, . . . , t2 − 1,

xt′ ∈ I(xt′−1 ∪ xt′+1).

Proof. The proof is based on the same argumentation as in the previous proof. Assume we have
an optimal solution X ∈ X ∗ satisfying all conditions in Theorem 5.2. Note, that there is at least
one location xt ∈ I(Dt) and if there is a xt ∈ int(Ct) then it is surrounded by only locations on
the construction lines and two locations on the intersection points.

(i) By symmetry we start at x1 ∈ X ∗1 and by Theorem 5.2 assume that there is a xt′ ∈ I(Dt′)
s.t. xt ∈ CL(Dt) for t = 1, . . . , t′. Define the rays rt as above. If the direction of r1 is
not the same as one of the fundamental directions defined by the extreme points Ext(B),
then the optimality conditions (12) must yield a cone and not a ray. Hence, we can move
x1 along the boundary of its geometric object G1 :=

⋂
m∈M d1m + K(p1m) until it either

reaches an extreme point, or the boundary of the cone K(p̃1) (see Figure 5). If it reaches
the boundary of K(p̃1), then x1 ∈ x2 + fr for one of the fundamental directions fr. If x1

reaches an intersection point, then we can go to x2 and do the same thing as with x1; in the
case that it reaches the boundary of the cone, we set the direction of r1 to fr and continue
moving x1 (see Figure 6). Like done in the proof of Theorem 5.2 we now have to adjust
x2 accordingly to x1, but instead of adjusting x3 right away, we will only adjust it when x2

reaches the boundary of K(p̃2). Then we iteratively continue this process, until one of the
points reaches an extreme point of its cell or all rt are extreme points of the block norm.
The case, where there is a xt in the interior of its cell is covered in (ii). Note: When one the
locations reaches an extreme point and we continue the procedure with the next location,
we might have to adjust the previous locations accordingly.

G1

G2
K(p̃1)

CL(D1)

CL(D2)

x1

x2
r1

Figure 5: Moving x1

G1

G2
K(p̃1)

CL(D1)

CL(D2)

x1

x2r1

Figure 6: Moving x2
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(ii) Assume that we have a solution with property (i) and a point xt′ ∈ int(Ct′). Note that xt
has to be located in the cell C := Ct′ ∩ (xt′+1 +K(p̃t′+1)) ∩ (xt′−1 −K(p̃t′)) to fulfill the
optimality conditions. This cell must contain an intersection point of I(Dt′ ∪ xt′−1 ∪ xt′+1).
Hence, even if X ∗t′ ⊂ int(Ct′), there must be a point such that xt′ fulfills the desired property,
like shown in Figure 7.

xt′−1

xt′+1C

xt′−1

xt′+1

C

Figure 7: Different illustrations of (ii)

5.2 1FDynLoc General Result

So far we have considered 1FDynLoc with minimal dimension. However, the argumentation in
the proofs won’t work out if two locations for consecutive time-steps coincide. In this case, if
xt′ = xt′+1, then both can lie on I(Dt′∪Dt′+1). However, knowing that two time-steps xt′ = xt′+1

coincide, we can reduce the size of the problem the following way:
Consider the parts in the objective function F , where xt′ , xt′+1 appears:

1. The part measuring the distances between the new locations:

· · ·+ vt′−1‖xt′ − xt′−1‖+ vt′‖xt′+1 − xt′‖+ vt′+1‖xt′+2 − xt′+1‖+ . . .

= · · ·+ vt′−1‖xt′ − xt′−1‖+ vt′+1‖xt′+2 − xt′‖+ . . .

2. the part measuring the distances between the new location and the facility:

· · ·+
M∑
m=1

wt′m‖xt′ − dt′m‖+ w(t′+1)m‖xt′+1 − d(t′+1)m‖+ . . .

= · · ·+
M∑
m=1

wt′m‖xt′ − dt′m‖+ w(t′+1)m‖xt′ − d(t′+1)m‖︸ ︷︷ ︸
2M facilities at time step t′

+ . . .

Hence, after rearranging and defining the weights and demands accordingly, one can reduce the
dimension of the dynamic single facility location problem with time horizon T to one with time
horizon T − 1. However, the demand points at time step t′ + 1 join the demand points at time t′

and we have 2M demand points.
By iteratively applying the problem reduction we get the following Theorem:

Theorem 5.4. There exists an optimal solution (X,P ) that satisfies the optimality conditions
in Theorem 4.2 and that has k ≤ T non-coincident consecutive facilities (i.e., for a sequence of
time-steps 1 = τ1 < τ2 < · · · < τk < τk+1 := T + 1 holds xτi 6= xτi+1 for all i = 1, . . . , k − 1 and
xτi = · · · = x(τi+1−1) for all i = 1, . . . , k) such that further:
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(i) There exists at least one τi with:

xτi ∈ I(
⋃
t∈Πi

Dt),

with Πi := {τi, . . . , τi+1 − 1}.

(ii) for all x∗τi ∈ CL(
⋃
t∈Πi
Dt) \ I(

⋃
t∈Πi
Dt) there exists an m ∈ {1, . . . , k} \ {i} with x∗τm ∈

I(
⋃
t∈Πm

Dt) and

x∗τl ∈

{
I(
⋃
t∈Πl
Dt ∪ xτl+1

) ∀l = i, . . . ,m− 1, if i < m,

I(
⋃
t∈Πl
Dt ∪ xτl−1

) ∀l = m+ 1, . . . , i, if i > m.

(iii) Moreover, if x∗τi ∈ int(C) for a cell

C :=
⋂
t∈Πi

⋂
m∈M

dtm +K(ptm),

then there exists m,n ∈ {1, . . . , k} with m < i < n, such that xτm ∈ I(
⋃
t∈Πm

Dt), xτn ∈
I(
⋃
t∈Πn

Dt) and

xτl ∈ I(
⋃
t∈Πl

Dt ∪ xτl−1
) for l = m+ 1, . . . , i− 1,

xτl ∈ I(
⋃
t∈Πl

Dt ∪ xτl+1
) for l = i+ 1, . . . , n− 1,

xτi ∈ I(xτi−1
∪ xτi+1

).

Proof. The proof immediately follows from the Theorems 5.2 and 5.3 and the dimension reduction
introduced in this Section.

The previous result gives us an FDS result for 1/P/dyn/ • /Σ . However, although the structure
of 1FDynLoc is much simpler than N/P/ • /γ/Σ calculating the FDS is exponential in T .

5.3 Construction Line Algorithm

Algorithm for 1/P/dyn,T = 2/γ/Σ

To understand the general case, first have a look when there are only two time-steps. By the
previous result, one has to distinguish the following cases:

• x1 ∈ I(D1) and x2 ∈ I(D2):
In this case, we only have to check

(x∗1, x
∗
2) = arg min

(x1,x2)∈R4
{F (x1, x2) : x1 ∈ I(D1), x2 ∈ I(D2)}.

• x1 = x2 ∈ I(D):
When x1 = x2, then it is possible that the optimal solution lies of the construction lines of
I(D1 ∪ D2), therefore we have to check

(x∗1, x
∗
2) = arg min

(x,x)∈R4
{F (x, x) : x ∈ I(D)}.

• x1, x2 lie on the construction lines of each other:
Excluding the first case, either x1 ∈ I(D1) and x2 ∈ I(D2 ∪ x1) \ I(D2) or x2 ∈ I(D2) and
x1 ∈ I(D1 ∪ x2) \ I(D1):

S1 := {(x1, x2) ∈ R4 : x1 ∈ I(D1), x2 ∈ I(D2 ∪ x1) \ I(D2)},
S2 := {(x1, x2) ∈ R4 : x2 ∈ I(D2), x1 ∈ I(D1 ∪ x2) \ I(D1)}
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and, therefore,

(x∗1, x
∗
2) = arg min

(x1,x2)∈R4
{F (x1, x2) : (x1, x2) ∈ S1 ∪ S2}.

The complete procedure is shown in Algorithm 1.

Algorithm 1: Solving 1/P/dyn, T = 2/γ/Σ (O(M5R4 logR))

input : 1/P/dyn, T = 2/γ/Σ
output: Optimal Solution X ∈ R2T

// Calculate FDS:

FDS1 := {(x1, x2) : x1 ∈ I(D1), x2 ∈ I(D2)};
FDS2 := {(x, x) : x ∈ I(D)};
FDS3 := {(x1, x2) : x1 ∈ I(D1), x2 ∈ I(D2 ∪ x1) \ I(D2)};
FDS4 := {(x1, x2) : x2 ∈ I(D2), x1 ∈ I(D1 ∪ x2) \ I(D1)};
FDS :=

⋃4
i=1 FDSi;

// Check for minimum objective function value:

(x∗1, x
∗
2) := arg min(x1,x2)∈R4{F (x1, x2) : x1, x2 ∈ FDS}

Theorem 5.5. Algorithm 1 runs in O(M5R4 logR) using complete enumeration, given O(MR)
space and O(R logR) preprocessing, using a suitable implementation.

Proof. For the preprocessing we sort the extreme points of B in clockwise order, which can be
done in O(R logR). This realizes the possibility to calculate the norm of a vector in O(logR)
using suitable search structures like binary search. For the actual algorithm we distinguish the
following two cases:

Case 1 (x∗1 = x∗2): When x := x1 = x2 we know the problem reduces to the static single facility
location problem 1/P/static/γ/Σ and hence the optimal solution is one of the intersection

points of I(D). The number of intersection points is bounded by 2MR(2MR−1)
2 .

Case 2 (x∗1 6= x∗2): In case of xt ∈ I(Dt) for both t = 1, 2, the number of possible solutions is

bounded by
(
MR(MR−1)

2

)2

, however, as one of the solutions can be on the construction line

made by the other time-step, we also have to calculate the intersection points in S1 and

S2. As there are at most MR(MR−1)
2 intersection points for one time-step, each having R

lines going through it possibly intersecting each of the MR construction lines from the other

time-step, we have an upper bound of 2MR(MR−1)
2 ·R ·MR+

(
MR(MR−1)

2

)2

∈ O(M4R4).

Both cases together we have O(M4R4) intersection points to check for optimality.
However, for calculating F (x1, x2) we have to calculate the distance of 2M + 1 vectors. Using
prepossessing, the distance can be calculated in O(logR).
As the FDS can be calculated on the spot while checking for the best objective value gives the
space complexity and finishes the proof.

General Case: 1/P/dyn/γ/Σ

As one can see, constructing the Finite Dominating Set for 1/P/dyn/γ/Σ is exponential in T as
there are already O((MR)2T ) possible solutions lying on the intersection points I(Dt) for t ∈ T .
Jumping back to a problem with minimal dimension, there are three possibilities for an optimal
location at a time-step t:

1. xt ∈ I(Dt),
2. xt ∈ I(Dt ∪ xt−1) \ I(Dt) or xt ∈ I(Dt ∪ xt+1) \ I(Dt),
3. xt ∈ I(xt−1 ∪ xt+1).

12



By the same argumentation as in the case for T = 2, we know that the complexity of the first case
dominates the second one, and by similar argumentation it also dominates the third case.
To get a valid upper bound for the general case, assume t+ 1 facilities coincide (t = 0, . . . , T − 1).
Overall, there are

(
T−1
t

)
possibilities for these facilities to coincide. More precisely, these facilities

may not necessarily coincide consecutively.
Assume for a fixed t we have K separate components of coincident facilities, each component
contains ki ∈ N≥2 coincident facilities (i ≤ K). Therefore, we must have

∑K
i=1 ki = t+ 1.

Overall, the number of optimal points for t+ 1 coincident locations is bounded by

O

(
K∏
i=1

kiMR(kiMR− 1)

2
·
(
MR(MR− 1)

2

)T−(t+1)
)

= O

( K∏
i=1

ki

)2

·
(
M2R2

2

)T−(t+1)+K
 ,

where K can vary.
Now, we want to find an upper bound for the first part of the product. Therefore, consider

max
K∈N

K∏
i=1

ki

s.t.

K∑
i=1

ki = t+ 1

ki ∈ N≥2.

In the following, we will show that this is bounded by 4 · 3bt+1/3c:
Assume there is a ki > 4 which is supposed to be optimal. Then, by introducing an additional
variable kK+1 := ki − 2 and setting ki = 2 we still have a feasible solution. However, ki · kK+1 =
2kK+1 = 2ki−4 > ki as ki > 4. Therefore, no ki can be bigger than 4. Moreover, as 2+2 = 2·2 = 4
there exists an optimal solution of the form 2a3b. More precisely, as 2 + 2 + 2 = 3 + 3 and 23 < 32,
a must be less than 3, i.e. a ≤ 2, which gives us an upper bound of 223b. By the constraints, we
also know that 3b ≤ t + 1, otherwise the IP would be infeasible. Therefore b ≤ b(t+1)/3c, which
finishes the claim.
Applying the binomial Theorem, we have

O

([
T−1∑
t=0

(
T − 1

t

)
9

t/3

]
· (MR)

2T

)

= O
((

1 +
3
√

9
)T

(MR)
2T

)
,

including the possibilities when the facilities lie on the construction lines of each other. Calculating
the objective value takes additional O(M logR), which gives us a total approximated upper bound
of

O
(
3.08TM2T+1R2T logR

)
which might become unusable in praxis for very big T if we use complete enumeration. Note that

one might be able to get a better bound by considering the (1/2)
T−(t+1)+K

, which we have thrown
away as T − (t+ 1) +K ≥ 0.

6 Conclusion and Future Research

In a first step to model security guards, first-aider and other staff at public events we have intro-
duced different objectives for single facility, single objective location problems with time depending
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data. We have shown for the dynamic median version that the problem is a special case of the
static multifacility median problem. The main result is the derivation of a finite dominating set
which yields an efficient solution algorithm whenever the number of time periods is assumed to
be fixed. The same idea can be used to deal with the more general case of static, planar location
problems for T new facilities.

Various ideas for improvement and extensions are possible (see [Mai16]):
The running time of the algorithm can be improved by adapting coincidence results (see [Pla92],
[LMP90] or [FMP98]) of multifacility location problems. Using the result of Durier and Michelot
[DM85] that the optimal solution lies in the metric hull of the demand points, the size of the FDS
can be reduced. Instead of enumerating all candidates in the FDS a suitable “search direction”
can be used to speed up the algorithm. The block norms considered in this paper can be extended
to polyhedral gauges, since the symmetry property has not been used in any of the proofs (see,
for instance, Lefebvre et al. [LMP90] and Plastria [Pla92]).
For the dynamic multifacility case, it will be more suitable to consider a location-allocation model
within each time-step. This is justified by our real-world problem in public events, since it is, for
instance, sufficient to have a single patrol around a potential danger site.
Another research topic is to consider the objective functions under constraints, for example in
public events security guards often walks in elliptic curves. Therefore, we might have constraints
like

xt = (r1 sin(t), r2 cos(t)) ,

for the major radius r1 ∈ R>0 and the minor radius r2 ∈ R>0. If we have restricted areas, like a lake
or anything else, it is not possible to apply current known algorithms for the multifacility location
problem with restricted areas, as the security guard possibly might “jump” around the lake, which
does not yield a meaningful trajectory in our case. Therefore, dynamic location problems with
barriers, in which trespassing of forbidden regions is part of the model, is an interesting modeling
extension.
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