
An Automata-Theoretic Approach to
Open Actor System Verification

Ilham W. Kurnia

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte

Dissertation

Datum der wissenschaftlichen Aussprache: 23. Januar 2015

Dekan: Prof. Dr. Klaus Schneider
Vorsitzender der Promotionskommission: Prof. Dr. Jens Schmitt
Erster Berichterstatter: Prof. Dr. Arnd Poetzsch-Heffter
Zweiter Berichterstatter: Prof. Dr. Roland Meyer

D 386





To Mom





Abstract

Open distributed systems are a class of distributed systems where
• only partial information about the environment, in which they are running, is

present,
• new resources may become available at runtime, and
• a subsystem may become aware of other subsystems after some interaction.
Modeling and implementing such systems correctly is a complex task due to the
openness and the dynamicity aspects. One way to ensure that the resulting sys-
tems behave correctly is to utilize formal verification.

Formal verification requires an adequate semantic model of the implementa-
tion, a specification of the desired behavior, and a reasoning technique. The
actor model is a semantic model that captures the challenging aspects of open
distributed systems by utilizing actors as universal primitives to represent system
entities and allowing them to create new actors and to communicate by sending
directed messages as reply to received messages. To enable compositional reason-
ing, where the reasoning task is reduced to independent verification of the system
parts, semantic entities at a higher level of abstraction than actors are needed.

This thesis proposes an automaton model and combines sound reasoning tech-
niques to compositionally verify implementations of open actor systems. Based on
I/O automata, the model allows automata to be created dynamically and captures
dynamic changes in communication patterns. Each automaton represents either
an actor or a group of actors. The specification of the desired behavior is given
constructively as an automaton. As the basis for compositionality, we formalize a
component notion based on the static structure of the implementation instead of
the dynamic entities (the actors) occurring in the system execution. The reasoning
proceeds in two stages. The first stage establishes the connection between the au-
tomata representing single actors and their implementation description by means
of weakest liberal preconditions. The second stage employs this result as the ba-
sis for verifying whether a component specification is satisfied. The verification
is done by building a simulation relation from the automaton representing the
implementation to the component’s automaton. Finally, we validate the composi-
tional verification approach through a number of examples by proving correctness
of their actor implementations with respect to system specifications.

v





Acknowledgments

First of all I would like to thank my advisor, Prof. Dr. Arnd Poetzsch-Heffter, for his
continuous support, from caring a lot about my work to ensuring that all adminis-
trative and bureaucratic obstacles were resolved in advance. The opportunity he
has given me to pursue my doctorate in Kaiserslautern has enabled me to grow
not only academically but also in other aspects of life. I also thank Prof. Dr. Roland
Meyer who reviewed this thesis as the second reviewer and Prof. Dr. Jens Schmitt
for chairing the doctoral committee.

In the course of my study, I had the luxury to be working in the EU Project HATS,
led by Prof. Dr. Reiner Hähnle. The project brought plenty of interaction, new
acquaintances, traveling and work experience, and many other positive aspects.
It is a great pleasure to take part in advancing practical formal verification a step
further.

This dissertation could not be brought to fruition without the interaction I had
within the Software Technology working group at University of Kaiserslautern. I
am especially grateful to Annette Bieniusa, Christoph Feller, Jan Schäfer and Yan-
nick Welsch for allowing me discuss research problems in depth, sometimes under
time pressure. The encouragement Ina Schaefer once said to me: “never give up”
kept me going at rough times. And to my ex-office mate, Kathrin Geilmann, thank
you for enduring my yapping and often ridiculous questions about Germany and
the German language.

The quality of the dissertation would have taken a severe hit, if it were not
for the detailed proofreading by Annette, Christoph, Yannick, Deepthi Akkoorath,
Peter Zeller and Carroline Dewi Puspa Kencana Ramli. The administrative and
technical support from Judith Stengel, Gabriele Sakdapolrak, Thomas Schneider
and Bernd Schurmann, among others is deeply appreciated.

My university life would not be complete without the social support I was fortu-
nate to have. To ISGS, Ania, Christiano, Dasha, Misha, Olga, Paddy, Ramy, Viktor:
thank you for being there when I needed it the most.

Last but not least, I would like to thank my parents and my brother and his
family. Without their constant support, I could not see myself going for my Ph.D.
to begin with.

vii





Contents

1 Introduction 1
1.1 Implementations and Components . . . . . . . . . . . . . . . . . . . . 4
1.2 Automata-Based Specification . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Reasoning Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Language and Component Framework 15

2 Verification Framework Overview 17
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Class Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Component/System Verification . . . . . . . . . . . . . . . . . . 26

3 αABS: Syntax and Semantics 29
3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Syntax of αABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Data Type and Functional Layer . . . . . . . . . . . . . . . . . . 31
3.2.2 Object-Oriented and Distributed (Concurrent) Layer . . . . . 33

3.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Trace Foundation of Actor Systems 41
4.1 Actor Universe, Events and Traces . . . . . . . . . . . . . . . . . . . . . 42
4.2 Observable Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



Contents

5 Component Representation and Open Systems 63
5.1 Closed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Open Systems and Components . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II Automaton Framework for Actor Systems 73

6 Dynamic I/O Automaton Model 75
6.1 Signature I/O Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Configuration Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Class Behavior Representation 89
7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Configuration Automata for Actor Systems 105
8.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3.1 Dynamic Automaton Models . . . . . . . . . . . . . . . . . . . . 114
8.3.2 Other Automaton Models . . . . . . . . . . . . . . . . . . . . . . 117

9 Component Automata 119
9.1 Model of Component Automata . . . . . . . . . . . . . . . . . . . . . . 120
9.2 Properties of Component Automata . . . . . . . . . . . . . . . . . . . . 126
9.3 Model of Component Configuration Automata . . . . . . . . . . . . . 130
9.4 Properties of Component Configuration Automata . . . . . . . . . . . 135
9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10 Specification of Automata 143
10.1 Class Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.2 Component Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

x



Contents

III Verification of Open Actor Systems 157

11 Verification of Classes 159
11.1 SEQ language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.2 Weakest Liberal Preconditions . . . . . . . . . . . . . . . . . . . . . . . 164
11.3 Class Specification to Class Invariants . . . . . . . . . . . . . . . . . . . 166
11.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

12 Verification of Components 171
12.1 Possibility Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
12.2 Soundness of Component Verification . . . . . . . . . . . . . . . . . . . 175
12.3 Discussion and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 180

13 Examples 183
13.1 Ticker Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13.1.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.1.2 Class Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.1.3 System Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 188

13.2 Sieve of Eratosthenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.2.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
13.2.2 Class Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.2.3 System Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 208

13.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

14 Conclusion 219
14.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
14.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Bibliography 223

Appendix 237

A Glossary 239

B Operational Semantics of αABS 243

C Denotational Semantics of αABS 249

About the Author 253

xi





List of Figures

1.1 Compositional verification . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Adaptation of DIOA model for actor systems . . . . . . . . . . . . . . 7
1.3 Two-tier verification with DIOA . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Request processing structure on the server system1 . . . . . . . . . . 18
2.2 Verifying class implementations . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Server system’s actor creation structure after processing 2 queries

and hierarchical componentization . . . . . . . . . . . . . . . . . . . . 27

3.1 Syntax of αABS (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Syntax of αABS (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Reduction rules of αABS (selected statements) . . . . . . . . . . . . . 37

4.1 Event types and their usage . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Observable events of actors a and b and group of actors {a, b} . . . 48

6.1 DIOA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1 A specification of actor automaton Server(this) for Server class . . . 96
7.2 A specification of actor automaton Worker(this) for Worker class . . . 97

9.1 A specification of component automaton [Server](this) for [Server]
component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2 A specification of component automaton [Worker](this) for [Worker]
component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.1 Two-tier verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.2 Encoding of αABS in SEQ . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.3 Weakest liberal preconditions semantics for SEQ . . . . . . . . . . . 164

12.1 A possibility map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

13.1 A specification of actor automaton Ticker(this) for Ticker class . . . 185

xiii



List of Figures

13.2 A specification of actor automaton TickerFactory(this) for TickerFactory
class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

13.3 A specification of component automata [TickerFactory](this) for
[TickerFactory] component . . . . . . . . . . . . . . . . . . . . . . . . 186

13.4 The communication structure of the Filter actors . . . . . . . . . . . 194
13.5 A specification of actor automaton Sieve(this) for Sieve class . . . . 195
13.6 A specification of actor automaton Filter(this) for Filter class . . . 197
13.7 A specification of component automaton [Filter](this) for [Filter]

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
13.8 A specification of component automaton [Sieve](this) for [Sieve]

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.9 The weakest liberal precondition for method filter of class Filter 206
13.10A possibility map from C1 representing Filter implementation to

C2 representing S[Filter] . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.1 Reduction rules of αABS (1) . . . . . . . . . . . . . . . . . . . . . . . . 244
B.2 Reduction rules of αABS (2) . . . . . . . . . . . . . . . . . . . . . . . . 245
B.3 Reduction rules of αABS (3) . . . . . . . . . . . . . . . . . . . . . . . . 246

xiv



List of Tables

A.1 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.2 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.3 List of predicates, operators and functions . . . . . . . . . . . . . . . . 240

xv





List of Definitions, Theorems, and
Lemmas

Definitions

4.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Well-formed traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Creation-complete class sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Closed systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Open systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Exposed actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1 Signature Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Signature I/O automata [AL15] . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Execution and traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Compatible SIOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Composition of SIOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6 Configuration and compatible configuration . . . . . . . . . . . . . . . . . 83
6.7 Intrinsic signatures of a configuration . . . . . . . . . . . . . . . . . . . . . 83
6.8 Intrinsic transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.9 Configuration automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.10 Executions and traces of configuration automata . . . . . . . . . . . . . . 86
7.1 Parameterized events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Actor automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1 Actor configuration and compatible actor configuration . . . . . . . . . . 107
8.2 Intrinsic signatures of an actor configuration . . . . . . . . . . . . . . . . 109
8.3 Actor intrinsic transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4 Actor configuration automata . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.5 Well-formed traces w.r.t. environment . . . . . . . . . . . . . . . . . . . . . 113

xvii



List of Tables

9.1 Component automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2 Actor-based SIOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.3 Component configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4 Intrinsic signatures of a component configuration . . . . . . . . . . . . . 133
9.5 Component intrinsic transitions . . . . . . . . . . . . . . . . . . . . . . . . 134
9.6 Component configuration automata . . . . . . . . . . . . . . . . . . . . . . 135
9.7 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.1 Class allowed messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.2 Event sequence transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.3 Class specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.4 Class specification semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.5 Component allowed messages . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.6 Event transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.7 Component specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.8 Component specification semantics . . . . . . . . . . . . . . . . . . . . . . 153
11.1 Class specification translation to class invariant . . . . . . . . . . . . . . . 167
12.1 Classes of directly created actors . . . . . . . . . . . . . . . . . . . . . . . . 172
12.2 Creation-complete subcomponent set . . . . . . . . . . . . . . . . . . . . . 173
12.3 Satisfaction of component specifications . . . . . . . . . . . . . . . . . . . 173
12.4 Possibility maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Theorems

9.1 Bisimulation between ACA and CCA . . . . . . . . . . . . . . . . . . . . . . 138
11.1 Sound invariant translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.1 Soundness of possibility maps [NS94] . . . . . . . . . . . . . . . . . . . . 175

Lemmas

4.1 Well-formedness of the denotational semantics . . . . . . . . . . . . . . . 58
5.1 Closed system interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Open system interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1 Well-formedness of generated traces of actor automaton . . . . . . . . . 99
7.2 Disjoint actor automaton signature . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Disjoint signatures between actor automata . . . . . . . . . . . . . . . . . 102
7.4 Compatibility of actor automata . . . . . . . . . . . . . . . . . . . . . . . . 102
8.1 Well-formedness of traces of ACA . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Environment well-formedness of traces of ACA . . . . . . . . . . . . . . . 113

xviii



List of Tables

8.3 Signature disjointness of ACA . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.1 Well-formedness of traces of component automata . . . . . . . . . . . . . 127
9.2 Environment well-formedness of traces of CompA . . . . . . . . . . . . . 128
9.5 External behavioral equivalence of ACA and CCA . . . . . . . . . . . . . . 140
10.1 AA conformance to class invariants . . . . . . . . . . . . . . . . . . . . . . 150
11.1 Denotational semantics maintains the class invariant . . . . . . . . . . . 168
12.1 Reasoning soundness for component specification . . . . . . . . . . . . . 175
12.2 Mapping prerequisites for CCA . . . . . . . . . . . . . . . . . . . . . . . . . 176
13.1 Filter sequentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
13.2 Prime number generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
13.3 Generator sequentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

xix





CHAPTER 1

Introduction

The current state of technology dictates that distributed systems are integrated
into many daily activities, such as controlling modern household appliances and
performing valid transactions in the field of e-commerce. They are often designed
to run continuously. Combined with the never-ending development of technology,
they need to be able to cope with operating in and interacting with some not fully
understood environment (e.g., the Internet). Systems that are designed to handle
this condition are called open distributed systems.

Developing open distributed systems is a non-trivial task. Various independent
components of these systems are typically executed on various kinds of machines
such as desktop computers, servers and mobile devices. Communication between
components is affected by the underlying network whose structure may change
over time. The systems themselves tend to be dynamic, allowing components to
be added, replaced, or removed with little control of the environment. Because
of their importance and complexity, the International Organization for Standard-
ization, the International Electrotechnical Commission, and the Telecommunica-
tion Standardization Sector created a reference model for open distributed sys-
tems [IT95].

Actor model. One established programming model that caters for this reference
model is the actor model [HBS73; Agh86]. The actor model, which is adopted
by prominent programming languages for building distributed systems such as
Erlang [Arm03] and Scala [OSV11], follows the object modeling approach rec-
ommended in the reference model. As in the object-oriented paradigm, the actor
model views a system as a collection of uniquely named actors. Each actor is
usually seen as an object that has an encapsulated state and a single-threaded pro-
cessor, meaning that an actor has exclusive control over its state and processor
that other actors cannot influence directly. Actors communicate exclusively with
each other via asynchronous message passing addressed with the actor’s name. Ac-
tors react to incoming messages by possibly changing their state, creating more
actors, and sending out messages to other actors according to some code asso-

1



Chapter 1. Introduction

ciated with them. Because of the encapsulation the actor model abstracts from
the issues pertinent to the actual conditions on which the actors execute, such
as the type of processors, their speed and the underlying network systems. The
communication mechanism lends itself as a simple, scalable communication in-
teraction model in a distributed setting [CH05, Chapter 1]. Being input-enabled
(i.e. accepting all messages addressed to it [Lyn96, p. 257]), an actor is by design
open. Actor creation and sending the names of other actors within the messages
represent the dynamicity of the open distributed systems.

The actor model succeeds in providing a high-level abstraction of open dis-
tributed systems. Ensuring such a system operates correctly is still nevertheless a
difficult problem ([CY83; Roe+01, Chapter 1]). With errors in software systems in
general proving to be very costly1, it is desirable to perform the correctness check
in a systematic and reliable manner. Testing, a successful technique to improve the
quality of systems running sequentially on a single machine, is much less appropri-
ate for open distributed systems because of its high degree of non-determinism.
Formal verification has been pushed as the proper method to perform this task
(see, e.g., [BK08]).

Verification context. Formal verification is a methodical, mathematical-based
analysis to prove that a system satisfies a formal description (i.e., specification) of
the desired properties. To perform this analysis, the system needs to be modeled
as a mathematical entity such that it can be verified against the specification. This
mathematical entity needs to be chosen carefully to establish a strong connection
with the implementation. The way the specification is described and the system
is verified also influences the choice of the entity.

A formal verification technique for a category of systems makes use of promi-
nent characteristics of the category in order for the analysis to be effective. For
actor systems we identify the following characteristics inherited from the open
distributed systems:

• The heterogeneity of the underlying infrastructure implies that concurrent com-
putations may progress at different speed.

• The dynamicity of the underlying network infrastructure implies that messages
take arbitrary time to be sent and may arrive out of order.

• Actor names can be passed around and new actors can be created, allowing
new connections to appear. The topology of the network built by the actor

1The University of Cambridge estimated that the global cost of errors in software is 312 billion
USD. http://www.prweb.com/releases/2013/1/prweb10298185.htm

2

http://www.prweb.com/releases/2013/1/prweb10298185.htm


Component/System Specifications

Primitive Component Specifications

Component/System Specifications

based on

Implementations

based on

Figure 1.1.: Compositional verification

system is dynamic.

• Being open, an actor system has little control of its environment. This means
that once an actor is exposed to the environment, the environment remembers
the knowledge of this actor forever.

Verifying actor systems. Distributed systems tend to be complex, with their
development done on a component basis. Similarly, the verification of an actor
system is ideally done in a compositional (also known as modular) manner [MC81;
Zwi89]. This compositional principle works in the way that the specification of
a component is verified on the basis of the specification of subcomponents that
have been previously verified. The specification represents the desired black-box
or functional behavior of the component. The implementation of an indivisible or
atomic or primitive component is verified against the specification, as illustrated
by Figure 1.1. The final goal is to verify the whole system. With the compositional
principle in place, verifying that the system satisfies desired properties can be done
only by dealing with the specification of its constituents.

To apply this verification approach, the following three questions need to be
answered.

Q1. What are components in the context of verification of actor-based systems?

Q2. How do we specify the desirable properties?

Q3. Which verification technique is suitable for performing the compositional
verification?

The answer of the first question is strongly linked to how we model the imple-
mentation. In turn, this affects the choice of specification and verification tech-
niques. The following sections dissect the three questions above in more detail,
presenting an overview of this thesis.

3



Chapter 1. Introduction

1.1 Implementations and Components

There is no universal answer to the question what components are, as the precise
notion of components depends strongly on the underlying system implementation
and the goal that we want to achieve with the presence of components. In this
thesis, we want to use components as entities that capture independent parts of
the implementation of an actor system. The desired characteristics of a software
component as defined by Szyperski [Szy98] are: stateless, composable by third
parties, independently deployable and providing a specific interface. To come up
with a definition of component that fulfills these characteristics, we first need to
discuss what kind of implementation language we use to describe the behavior of
the actors.

In general, there are two approaches how to program the behavior of actors:2

• the update-based approach [HBS73; Agh86; Lie87; Arm10] and
• the class-based approach [YBS86; VA01; SJ11; JOY06; JHSSS11].
In the update-based approach, the behavior of an actor is described by a parame-
terized procedure. The procedure starts with a pattern matching construct to filter
what messages the actor can process. Then follows the desired behavior of the ac-
tor which may send messages and create new actors. At the end of the procedure,
the description of the behavior of the actor is replaced by a potentially different
procedure. As a result, the actor may now behave totally differently from before,
whether it is the set of messages it can process, the messages it produces, the new
actors it creates and so on. The class-based approach advocates for a more static
description, where the behavior of an actor is fixed to a class. The class contains
a number of method definitions, each describing a message pattern the actor can
process, and a number of fields describing the internal state of the actor. Each
method definition describes the messages the actor sends, the new actors that are
created, and the changes in the internal state.

The class-based approach is the approach chosen in this thesis as motivated by
the following reasons:

• The class-based approach is closer to the object-oriented paradigm hailed by
the reference model [IT95].

• The class-based approach has more ingredients to provide a type-safe envi-
ronment [Pie02] for verification, so that orthogonal issues such as checking

2In a way, these two approaches resemble the two popular description mechanisms for objects:
the prototype-based approach — first introduced in Self [US87] and later adopted by JavaScript
[ECM11]— and the class-based approach – first introduced in Simula [DN66] and later adopted
by C++ and Java.

4



1.1. Implementations and Components

whether a message can ever be processed by an actor (i.e., fits a pattern) can
be solved statically through the use of static type checkers.

• It provides static names to refer to a group of actors that have the same set of
possible behaviors.

Furthermore, the class-based approach supports the methodology of programming
to interfaces [GHJV95]. An agreement over the interfaces allows the users of the
interfaces to abstract from the irrelevant details that are used by their providers,
which in turn reduces the complexity of developing software in general.

The language we use as the basis for the implementation is a simplified version
of ABS [JHSSS11], short for Abstract Behavioral Specification language. This
class-based language is designed as a middle ground between
• design-oriented and architectural languages such as UML [RJB04],
• minimal executable formalisms for specifying concurrent and distributed be-

havior such as CSP [Hoa78] and π-calculus [Mil99], and
• implementation-oriented specification languages, such as JML [LC06] for Java
[GJJ96] that applies the ‘design by contract’ principle [Mey97].

Its syntax adapts the syntax of Java, focusing only on the core features needed
for describing the desired behavior of actors. Realizing the advantage of being
an abstract language [Pla13], the simplicity of ABS allows the development of
automatic translators to Java, Maude ([Cla+07]), Scala, and Haskell ([Jon03]).
The work on the automatic translators are reported, e.g., in [AØVWW13]. ABS
features futures [BH77; Hal85; LS88]: a construct to synchronize a method call
and its return result. By using futures, the request/reply communication pattern
that appears very often in actor systems [HO09] can be elegantly solved without
having to expose the caller’s name and introducing a new process on the caller’s
side to act upon the return.

Having decided on the class-based approach, the notion of components should
be class-based as well, following the component characteristics defined by Szyper-
ski. An actor on its own is an independent executable entity with a clear interface.
Thus, its static behavioral representation (i.e., its class) is fit to become the prim-
itive component. One characteristic that can be used to define the general notion
of components is the creation relation between the actors. This relation can be de-
duced from the class descriptions. A set of classes is said to be creation-complete
if an actor of a class within the set creates only actors whose classes are also
within the set [KPH13]. Combining a creation-complete set of classes with one
specific activator class in the set, following the basic idea from software compo-
nent models such as OSGi [Osg] and COM [Mic99], yields our components. The
component instances are groups of actors, each of which consists of an actor of the

5



Chapter 1. Introduction

activator class and all other actors transitively created by that actor. This instance
notion is similar to the actor components defined by Agha, Mason, Smith and Tal-
cott [AMST97], which are dynamic entities. Because the behavior description of
all actors in these groups is static, we have the basis for statically analyzing groups
of actors. The exact members of the component instances are influenced by their
interaction with the environment.

A key feature of this component definition is that given an activator class, the
corresponding component can be derived by going through each class definition.
If a class C is contained in a component derived from an activator class AC, then
C is also contained in a component that is derived from another activator class
and that includes AC. Because of this hierarchical structure, components whose
specifications have been verified can be used as the ingredients to verify other
components, allowing compositional verification.

1.2 Automata-Based Specification

After establishing the precise context of the implementations, we now proceed to
discuss the specifications. Lamport [Lam83b] distinguishes a specification tech-
nique based on two factors:

• The way the specification is described: constructive or axiomatic.

• What the specification talks about: the actions that the implementation should
do or the change of states the implementation should experience.

A constructive specification “describes an abstract model that tells how the [im-
plementation] should behave”. On the opposite side, an axiomatic specification
directly states what properties the implementation should have. The desire for
compositional verification means that the chosen specification technique should
be able to tackle the hierarchical nature of the components. Furthermore, a spec-
ification needs to have a clear, formal semantics, which becomes the basis for
proving the soundness of the selected verification method.

Several formalisms and their associated specification techniques have been in-
troduced to model distributed systems, for example, process calculi [Hoa78; CG97;
Mil99], Petri nets [Pet62] and temporal logics [Pnu77]. In this thesis, we adopt a
constructive, automata-based specification technique. Choosing automata as the
semantics for the specifications has the following advantages:

• Automata can incorporate both notions of actions and states in the same model.
From a semantical point of view, actions are the atomic units of traces, while

6



1.2. Automata-Based Specification

b) DIOA adaptation for actor systemsa) DIOA model

Signature I/O
automata (SIOA)

Configuration
automata (CA)

Actor automata (AA)

Actor configuration
automata (ACA)

Component
automata (CompA)

Component configuration
automata (CCA)

entities of entities of
entities of entities of

Figure 1.2.: Adaptation of DIOA model for actor systems

traces are typically the basis for a fully abstract semantics (see, e.g., for object-
oriented setting [JR05; AGGS09; WP14]). A fully abstract semantics captures
the minimal information needed to define the observable behavior without re-
lying on the implementation details [Plo77]. Thus, using actions is ideal to
specify the behavior of a system on different levels of abstraction. The use of
states can simplify the specification, in particular for specifying the impact of
different related actions being sent to an actor or a component instance.

• (Parallel) composition is a standard operator on automata. The correctness
of a composed automaton can often be proved through some compositional
reasoning.

Many automaton models have been used to formally represent the behavior of
distributed systems (see, e.g., [BZ83; LT87; AH01]). Usually these models are
static, meaning that the set of states and transitions of the automaton must be
decided up front. Modeling dynamic systems such as actor systems and ad-hoc
networks where the participating members of the systems may vary is done by
the addition of Boolean flags. For example, all possible actors are assumed to be
present all along, but only become alive (i.e., the flag changes to true) after spe-
cial creation events are executed [Leo90; LMWF93]. This approach has a severe
disadvantage in an open setting as all possible actors of all possible behavior need
to be represented in the automata already from the initial states. Consequently,
the supposed advantage of having a composition operator becomes non-existent.
To obtain a model that more closely represents actor systems, we follow Attie and
Lynch’s proposal: the dynamic I/O automaton (DIOA) model [AL01; AL15].

The DIOA model is based on I/O automata [LT87], an automaton model that
caters well for modeling open systems [FL05]. An I/O automaton is a state tran-
sition system whose transitions are labeled with actions which are statically ca-

7



Chapter 1. Introduction

tegorized as input, output and internal actions. The input and output actions are
used to communicate with the environment, while the internal actions are used
for internal purposes, such as triggering certain side effects to be executed. This
categorization is called the signature of the automaton.

The DIOA model extends I/O automata by enabling dynamic changes in their
signatures (i.e., the set of events the represented entity can participate in) and
the creation of other I/O automata. The DIOA model introduces two layers of
I/O automata: signature I/O automata (SIOA) and configuration automata (CA),
whose relation is portrayed in Figure 1.2 a). The SIOA, which represent the en-
tities of the systems, extend I/O automata by allowing the signatures to change
dynamically according to their own states. The semantics of a system is repre-
sented by CA which keep track of the set of created SIOA. A CA3 is based on the
notion of a configuration which contains the set of created SIOA and a mapping
to keep track of the current state of each of these SIOA. The transitions of a CA
are derived intrinsically from the SIOA. Each time a transition involves an action
that creates new SIOA, the configuration is extended to include these new SIOA.

The DIOA model has been developed as a model for ad-hoc networks and
its adaptation to represent object-based settings has been left as an open ques-
tion [AL15]. To represent actor systems using the DIOA model, the SIOA and the
CA are extended to reflect the underlying behavior of the actors. The SIOA are
refined to actor automata (AA) where the states and the transitions are defined so
that each AA represents typical characteristics of an actor. To provide a close con-
nection to the implementation, the specification of the desired AA uses trace-based
class invariants. In this way, the specification of the AA is a class specification.

While an AA defines what an actor can do, it is also defined with an open set-
ting in mind. The implication of this definition is that the environment knows all
actors, i.e., it is exposed to all actors within an actor system. However, in a typical
execution of an actor system, not all created actors are exposed to the environ-
ment. At its extreme, only the initial actor is exposed to the environment, while
all other actors are not directly callable by the environment. This exposure infor-
mation changes over time as more actors are exposed to other actors, changing
the communication topology within the system and between the system and the
environment. To correctly model this dynamic topology aspect, we extend CA to
actor configuration automata (ACA) that provide a notion of actor configurations
which have AA as their members and keep track of exposed actors. The infor-
mation on these exposed actors allows a more precise derivation of the action
signatures, where actions that represent the environment calling non-exposed ac-

3We use abbreviations for automata to also represent “a single automaton”. The usage is apparent
from the context.

8



1.3. Reasoning Technique

Component/System Specifications
Component Automata

Class Specifications
Actor Automata

Component/System Specifications
Component Automata

based on

ABS Class Implementations

based on

Figure 1.3.: Two-tier verification with DIOA

tors of the system are excluded. The relation between ACA and AA is portrayed
in Figure 1.2 b).

With appropriate modifications, the DIOA model can accommodate the com-
ponent notion. First, we refine the SIOA to component automata (CompA) where
the states and transitions are defined such that each CompA captures the possible
external behavior of a component instance. Being refinements of SIOA, CompA
and AA share the same fundamental structures. This means that we can compose
them together to know how they behave when they execute in parallel.

The ACA do not cover CompA. Therefore, the CA also need to be refined where
the component instances have a place in the configuration. That is, CompA can
also be part of a configuration. We define component configuration automata
(CCA) which fulfills this requirement. In fact, a configuration of a CCA contains
AA, CompA and also SIOA that represents compositions of a set of AA and/or
CompA. Allowing a set of AA, CompA and the composed SIOA to stand on an
equal level in the configurations provides the means to perform the verification of
a component implementation as we explain below. The introduction of CCA and
CompA completes the adaptation of the DIOA model for open component-based
actor systems as portrayed in Figure 1.2 b).

1.3 Reasoning Technique

Combining the component notion and the specification technique described in the
previous sections, we investigate how to instantiate the general compositional ver-
ification method illustrated by Figure 1.1 to Figure 1.3. The approach taken here is
divided into two tiers. The first tier is about verifying that a class implementation
satisfies its class specification. Once that is established, the verification procedure

9



Chapter 1. Introduction

proceeds to the second tier, where a component or system specification is verified
from the subcomponent specifications. Each tier uses a distinct technique that is
appropriate to handle the different complexity present in each tier.

For the first tier, we use a sound, compositional, local verification technique de-
veloped by Din et al. [DJO05; DDJO12; DDO12a]. This technique consists of two
steps. First, an αABS class implementation is encoded into a simple sequential
language SEQ with non-deterministic assignments [Apt84]. This encoding pro-
cedure follows a transformational approach originally proposed by Olderog and
Apt [OA88]. A SEQ has an established weakest (liberal) precondition semantics
([Dij75]), from which we can use logical inference to verify whether the seman-
tics of the class implementation satisfies a specification for the class in form of
class invariants. We show the link between the class invariants and the AA class
specifications by comparing them to a trace-based denotational semantics of the
classes derived from the work by Ahrendt and Dylla [AD12]. In a nutshell, their
relationship in terms of some class C can be characterized as

Traces(Cimpl) ⊆ Traces(AC)

where Cimpl represents the implementation of C in αABS and AC represents the
actor automaton of C .

For the second tier, we adapt the notion of possibility map [LT87; NS94], which
is first developed for comparing I/O automata. A possibility map is a particular
simulation relation ([Par81]) that maps several states sl of a lower-level automa-
ton to a state sh of a higher-level automaton. The mapping holds only if sh can
mimic the non-internal transitions that can be taken by sl and the resulting states
of the transitions are in the relation. That is, if sl makes a non-internal transi-
tion t to s′l , then the transition t can be performed at sh to go to s′h, and s′l and
s′h are related. This notion allows us to conclude that if an SIOA produces fewer
traces than another SIOA, then replacing this other SIOA on the CA level implies
that no new behavior is introduced. More specifically for the actor setting, the
implementation of a component represented by an SIOA composed from AA and
CompA representing single actors and subcomponent instances produces no new
behavior that is not within its CompA specification. Because we may need to deal
with some creation process to represent some internal behavior, the possibility
map relates states of two CCA: one that uses the composed SIOA and another that
uses the CompA. If a possibility map is found, we can conclude

Traces(C{A1,...,An}) ⊆ Traces(CCompA)

where

10



1.4. Contributions and Outline

• A1, . . .An represent the AA and CompA derived from the class specifications
and the subcomponent specifications,

• C{A1,...,An} represents the CCA of the component implementation, and
• CCompA represents the CCA of the component specification.
By transitivity, the result above implies

Traces(implementation) ⊆ Traces(CCompA) .

The sound adaptation of different verification techniques to the two-tier approach
becomes a part of the contributions of this thesis, as compiled in the next section.

1.4 Contributions and Outline

This thesis develops an automaton model that allows modular verification of actor-
based component systems. The main contributions of this thesis are:

• The development of a component notion for actor systems that enables modu-
lar verification, not only on the model level of the specification, but also of the
implementation.

• The development of an automaton model based on DIOA that faithfully cap-
tures fundamental properties of actor systems: the dynamic creation and the
dynamic topology. This model provides an alternative semantical model to
developed operational or denotational semantics for actor systems. It also in-
corporates a representation of futures.

• A compositional specification technique that has a direct translation to the
automaton model. This specification technique bridges the action-based and
state-based approaches in a suitable way for the actor model.

• A sound adaptation of a trace-based verification technique by Din et al. [DJO05;
DDJO12; DDO12a] to reason about the correctness of a class implementation
given an automaton specification for the class.

• A possibility map notion for the automaton model to reason about the correct-
ness of system behaviors.

To describe these contributions, the thesis is structured into three parts. Part I,
consisting of Chapters 2 to 5, sets up the precise setting by first introducing a
running example (Chapter 2). This part motivates the use of the compositional
verification framework proposed in Chapter 1 and provides the building blocks

11



Chapter 1. Introduction

for the automaton model. Chapter 2 starts with an overview of the modeling and
verification framework via a client-server example, which is the running example.
Then, Chapter 3 formalizes the actor-based language αABS used to illustrate a
running example. Based on this αABS description, Chapter 4 describes the basic
formalisms necessary to define the automaton framework. This chapter also pro-
vides a trace-based denotational semantics employed to prove the soundness of
the automaton semantics. Chapter 5 formalizes the component concept.

Part II describes how an automaton model based on the DIOA model (Chapter 6)
can be constructed from the setting (Chapters 7 to 9). Chapter 6 summarizes the
DIOA framework which consists of two layers: SIOA and CA. Chapters 7 and 8
describe how classes and actor systems can be represented by SIOA and CA, re-
spectively. Chapter 9 describes the adaptation of the component notion defined
in Chapter 5 into the DIOA framework. The last chapter of this part, Chapter 10,
formalizes how the automata can be specified.

Part III realizes the hierarchical verification model in two steps. First, Chap-
ter 11 describes a sound verification of a class implementation with respect to a
class automaton specification. Then, Chapter 12 describes how the component
specifications can be verified from other specifications that have been verified.
Chapter 13 provides several case studies how the verification model is applied.

Finally, Chapter 14 provides some concluding remarks of the thesis. When ap-
propriate, a discussion is provided at the end of a chapter. Chapter 5 is based on
[KPH13] while Parts II and III and are derived from [KPH15]. Before we start
with the first part, the following section provides the notational conventions used
in this thesis.

1.5 Notation

We rely on the following notations and conventions. Variables are typically written
in italics. Program( fragment)s are written in a monospaced font. Common data
types N and B represent natural numbers and booleans, respectively. We use the
common Boolean operator precedence:
• negation ¬ binds tighter than conjunction ∧,
• conjunction binds tighter than disjunction ∨, and
• conjunction and disjunction have a higher precedence than implication =⇒ .

We use four abstract data structures to describe the formal definitions and spec-
ifications of functional behavior, namely tuple, sequence, set and map. A tuple is
an ordered finite list of elements represented using angled brackets 〈〉.

12



1.5. Notation

The sequence data structure is represented by Seq〈T 〉, with T denoting the type
of the sequence elements. Sequences are typically represented as normal variables
(e.g., s) or variables of type T with an overbar (e.g., e). An empty sequence is de-
noted by [] and · represents sequence concatenation. We also use juxtaposition to
represent sequence concatenation when it is clear from the context. The notation
s pr s′ means that a sequence s is a prefix of another sequence s′. The function
Pref(s) yields the set of all prefixes of s. The projection operator s↓X produces the
longest subsequence4 of the sequence s that contains sequence elements in X . A
sequence s1 is contained within another sequence s2, written s1 ⊆ s2 if there are
s′, s′′ such that s′ ·s1 ·s′′ = s2. An element e occurs before e′ in a sequence s, written
e <s e′, if there is s′ such that e ·s′ ·e′ ⊆ s. Note that if e or e′ occurs multiple times,
this predicate behaves positively by picking suitable specific occurrences of e and
e′. The length of a sequence s is denoted by |s|. If s is an infinite sequence, then
|s| =∞. The n-th element on the sequence is retrieved by s[n] provided |s| ≥ n.
The notation e∗ represents a finite sequence containing only of e’s.

The set data structure Set〈T 〉 is a container of values of type T . Set variables
are typically written in capital letters (e.g., S). A bold face indicates that the
variable is used as a general universe, e.g., N and B as stated above. An empty
set is denoted by ;. We use the union symbol ∪ and the difference symbol − to
represent the insertion and deletion operations to a set, respectively. The power
set of a set S is written as 2S . If T is a sequence type, the projection operator can
be applied to a set S of type Set〈T 〉, written S↓X , producing the following set:
{ s↓X | s ∈ S }.

The map data structure Map〈S, T 〉 is an associative container that maps unique
keys of type S to values of type T . An empty map is denoted by {}. If m is a
map, m[x 7→ y] represents the insertion or update of the key x with value y to m.
The operator is naturally extended to m[x1 7→ y1, . . . , xn 7→ yn] to allow a simul-
taneous update of distinct keys x1, . . . , xn. The value y of key x is represented
by m(x). If m does not have any value associated with x , then m(x) = undef.
Two maps m1, m2 of the same type Map〈S, T 〉 may be combined when for each
key x of type S, either m1(x) = undef or m2(x) = undef, or both. The com-
bination of combinable maps m1 and m2, written m1 ∪m2, is m where for each
key x , m(x) = m1(x) if m1(x) 6= undef, otherwise m(x) = m2(x). The predicate
diffOn(m1, m2, X ) for a set of keys X is true if m1 may differ from m2 with respect
to the values of keys in X and other keys are mapped to the same value.

4A sequence s is a subsequence of another sequence s′ if s can be derived from s′ by deleting some
elements of s′ while preserving the order of the remaining elements [Gus97, p. 4].

13





PART I.

Language and Component
Framework

15





CHAPTER 2

Verification Framework Overview

The main aim of this thesis is to present a chain of verification methods from
implementations to system models. This chapter provides an overview of how
this chain works through a client-server example derived from an industrial Erlang
case study by Arts and Dam [AD99].
Chapter outline. We first start by describing the case study in Section 2.1. Then,
Section 2.2 discusses its implementation in αABS, which is described in Chap-
ter 3. Finally, Sections 2.3 and 2.4 provide a sketch of the approach to verify the
implementation against the requirements. This approach is formalized in Parts II
and III which feature the client-server example as the running example.

2.1 Description

The case study deals with an implementation of a query mechanism of a dis-
tributed database. The database has a single front end which we call the server.
The system consists of the server (sub)system and numerous clients. The server
receives requests from clients, where each request contains a query. The server
has to respond to the requests with the appropriate computation results. To serve
each request, the server creates a worker and passes on the query to be computed.
If a query can be divided into multiple chunks, more concurrent computations can
be introduced in the following way. Before each worker processes the first chunk
of the query, it creates another worker to which the rest of the query is passed
on. When the computation of the first query chunk is finished, the worker waits
for the result from the next worker and merges the computation results together.
The merged result is then returned. From the client side, the server is expected
to respond to each request with the correct computation result, without having to
know how the computation is done. The structure that results from the response
of the server to a request is portrayed in Figure 2.1 where a query can be divided
into three chunks.

The requirements for the query mechanism highlights a number of challenges
for the implementation. First, the number of clients and the number of requests

17



Chapter 2. Verification Framework Overview

Client Server Worker Worker Worker

Figure 2.1.: Request processing structure on the server system1

being made to the server are unknown and can happen without any control from
the server side. Second, there is no restriction on the size of a query. As a result,
the number of workers needed to process a query is unbounded. The server and
potentially each worker may need to coordinate the request with the computation
result. In particular, the server must eventually respond each request with the
correct computation result of the query if it is computed directly as a whole. The
communication that happens between different requests must not interfere with
or even block each other.

2.2 Implementation

We look into implementations of such distributed systems in terms of the actor
model. The actor model is by nature open, so it is designed to handle situations
where the system has no control over the environment it is running in. Further-
more, dynamic creation, such as the creation of the workers, is an inherent feature
of the model. To coordinate the requests, a synchronization construct called fu-
ture [BH77; Hal85; LS88] is added to the model.

As explained in Chapter 1, in the actor model, each entity of the system is rep-
resented by an actor. For our running example, each server and worker entity is
represented by an actor. To describe the behavior of each actor, we choose an
object-oriented approach, where the behavior of an actor is described by means
of a class and each message sent to that actor has to correspond to a method
of the class. The description is formalized through an object-oriented language
called αABS, an actor subset of the Abstract Behavioral Specification (ABS) lan-
guage [JHSSS11].

Listing 2.1 illustrates how the server scenario can be implemented in αABS.
αABS has a Java-like syntax. The behavior of each server and worker actor is
specified by its respective class. Each class implements an interface which defines
the patterns of messages (i.e., method calls in object-oriented terms) an actor is
allowed to receive from other actors. A standard static type system ensures that
a class implementation adheres to these pattern restrictions, meaning that each
actor only receives calls that are specified by the implemented interface. In other

1Icons in the figure are taken from http://www.icons-land.com/

18

http://www.icons-land.com/


2.2. Implementation

Listing 2.1: Server implementation in αABS
1interface IServer {
2 Value serve(Query q);
3}
4interface IWorker {
5 Value do(Query q);
6}
7

8class Server() implements IServer {
9 Value serve(Query q) {

10 IWorker w;
11 Fut<Value> u;
12 Value v;
13

14 w = new Worker();
15 u = w.do(q);
16 await u?v;
17 return v;
18 }
19}

20class Worker() implements IWorker {
21 Value do(Query q) {
22 IWorker nxtWrkr;
23 Fut<Value> u;
24 Value v, c;
25

26 if (querySize(q) > 1) {
27 nxtWrkr = new Worker();
28 u = nxtWork.do(restQuery(q));
29 c = compute(firstQuery(q));
30 await u?v;
31 v = merge(c, v);
32 }
33 else {
34 v = compute(firstQuery(q));
35 }
36 return v;
37 }
38}

words, an actor can only invoke a call on another actor, henceforth called the
target actor, as long as that call matches the restriction of the target’s interface.
For example, the central class of the server scenario is Server which implements
the interface IServer. All actors of class Server accept only serve(q) calls from
other actors.

When a server actor receives a call serve(q), it processes the query q and makes
sure that the query is responded to. To enable concurrent computation of the
queries, the server delegates each query to a dynamically created worker. If the
query has more than one chunk (querySize(q) > 1), the worker delegates the
rest of the query to a newly created worker and works on the first chunk. This
delegation is done via a method call do, from which the server generates a future,
a placeholder for the return value of the method call. This placeholder can only
be filled in once, after which we say that the future is resolved. Its value can
then be retrieved multiple times. The presence of futures allows the server to
decouple the process of invoking a call from the process of retrieving the result.
After working on the first chunk, the worker waits for the computation of the rest
of the chunk to be finished by awaiting for the future to be resolved. The await

statement explicitly introduces a processor release point, which allows the server

19



Chapter 2. Verification Framework Overview

to process other incoming requests instead of staying idle while waiting for the
desired condition to be fulfilled. When the future is resolved, the returned value
is fetched and merged together with the computation result of the first chunk. The
merged value is then returned. A similar process is also done by the server, but
without the merging.

To complete the description, we assume appropriate definitions for the data
types Query and Value and the total functions:

compute : Query −→ Value
querySize : Query −→ Int
firstQuery : Query −→ Query
restQuery : Query −→ Query
merge : Value × Value −→ Value

where compute(q) computes the result of q; querySize(q) yields a number of
chunks in which q could be partitioned; firstQuery(q) returns the first chunk of
q; restQuery(q) returns the rest of q; and merge merges results. We also assume
the following properties:

querySize(q) ≥ 1
querySize(q) > 1 → compute(q) = merge(compute(firstQuery(q)),

compute(restQuery(q)))
querySize(q) = 1 → compute(q) = compute(firstQuery(q))
merge(null, v) = v

A query consists of at least one chunk; computing a non-primitive query is the
same as merging the result of computing the first query with the computation of
the rest of the query; computing a single query chunk is the same as computing the
first query of the chunk; and merging null with some value v produces v. These
assumptions follow the intention of the distributed query protocol [AD99], where
the merge function acts as an aggregate to collect the partial subquery results from
each database machine. Details on the precise semantics of the implementation
appear in Chapter 3.

2.3 Specification

To discuss the verification of the server system implementation, we need to ex-
plore the requirements in more detail. Following Lamport [Lam83a]we first refine
the requirements by means of operators. In terms of operators, the external re-
quirement of the server system can be described as follows: every time the server
receives a serve(q) call, its response is compute(q). The link between these two
operators is a future u.

20



2.3. Specification

Server system specification. A more formal way to write this requirement is by
considering the desired behavior of the server system in terms of a set of traces
of operators combined with a standard first-order logic. A trace is essentially a
sequence of events generated by the execution.

∀t, u, q : t pr . . . 〈u→ s : serve(q)〉 . . . 〈u← s : compute(q)〉 . . .

where s is the server actor and t is a trace of the server system. The formula above
states that a desired trace t of the server system is such that for every serve(q) call
directed to server s with future u attached to it, when the server finishes processing
the query q, the resolved value of u is compute(q). The prefix operator pr allows
t to represent an incomplete execution [BK08, p. 95], an execution that does not
produce any more operators. While compact, the main problem with this formula
is the precise meaning of the ellipses. If we replace the ellipses with any trace
t1, t2, t3, then we do not exclude the possibility that the serve operator with the
same future u but with a different query q′ may happen.

A workaround to this problem is by using projected traces. For example, we
can project the trace t to the set of events that involves the future u, represented
by t↓u. The formula above becomes

∀t, u, q : t↓u pr 〈u→ s : serve(q)〉 · 〈u← s : compute(q)〉 . (2.1)

In the formulation above, we do not accept traces that allow the presence of other
serve operators (in fact any other operators) with the same future u.

Server actor specification. The projection operator works nicely as long as that
the future resolution message is the only message that is being sent out. Consider
now the requirement of the server actor. When the server actor receives a serve(q)

call, it creates a worker and passes on the computation task to the worker. When-
ever the computation is done, the server passes on the computation result back to
the caller by resolving the associated future. A projection operator does not help
us much here, because to specify this property, we have to provide a link between
the request, the created worker, the future of the worker call. However, since
we are on the class level, we have the guarantee that, for example, the worker
creation is followed directly with passing on the computation task to the newly
created worker. This observation allows a specification of this property as follows,
assuming that we can fill the ellipses more precisely later on:

∀t, u, q, w, u′, v : t pr . . . 〈u→ s : serve(q)〉 . . . 〈s→ w : new Worker()〉 ·
〈u′→ w : do(q)〉 . . . 〈u′← w : do / v〉 . . . 〈u← s : serve / v〉 . . .

21



Chapter 2. Verification Framework Overview

The variables w, u′, and v represent the name of the newly created worker actor,
the future generated by the server actor to pass the request, and the value the
worker has computed for the query q, respectively.

Excluding the ellipses, one problem with the specification technique above is
that the represented traces do not allow the server actor to receive a call in be-
tween the creation of the worker and the do(q) call. Actors are inherently input-
enabled as noted in Chapter 1. To solve this problem, Din et al. [DDJO12] in-
troduce the 4-event semantics, where they distinguish between the sending of a
method-related operator and its reaction. For example, in this semantics the op-
erator 〈u→ s : serve(q)〉 is split into two events:
• 〈u→ s : serve(q)〉, representing the sending of the method call, and
• 〈u� s : serve(q)〉, denoting that s starts to react to the method call.
A similar split is also performed for the future resolution operator, hence the name
4-event. There are several reasons, which are elaborated in Chapter 4, why this
splitting is useful for specifying the desired properties:

• The semantics provides the distinction between the events that are actually
generated by the actor and the events that are not generated by the actor.
Consequently, the specification can focus only on the events that are generated
by the actor. The incoming messages can be uniformly treated by considering
only well-formed traces, traces that adhere to the actor model characteristics.

• The semantics is more fine-grained than the operator model, allowing a more
faithful representation of the asynchronous setting where there is a delay be-
tween the sending of a message, its receipt and the start of the reaction to the
message.

Using the 4-event semantics, the previous specification can be localized to the
server actor as follows.

∀t, u, q, w, u′, v : t pr . . . 〈u� s : serve(q)〉·〈s→ w : new Worker()〉·〈u′→ w : do(q)〉
. . . 〈u′� w : do / v〉 · 〈u← s : serve / v〉 . . .

The formula above can be grouped into two parts, focusing only to the events
generated by the server actor. The first part states the reaction from the server
actor until the introduction of the first release point where it waits for the compu-
tation result from the worker. The second part states the reaction from the server
actor when the computation result is ready, that is, it resolves the future u. The
return events are enriched with the method name, allowing for more information
for the verification method to use. Together, these two parts can be seen as a class
invariant, that describes the behavior of the server actor between release points.

22



2.3. Specification

We cannot use the projection operator to define the class invariant, because it
throws away the information that there cannot be an event between, for exam-
ple, the creation of the worker actor and the call to the worker. Instead, we add
some state information as observed by Lamport when he wants to specify prop-
erties more precisely. Ideally the state should be as simple as possible to ease the
verification. Building from the specification above, the state information should
provide a relation between the future u of the serve call and the future of the
worker u′, as these information are needed in each part. The worker’s name and
the value returned by the worker can be inferred from well-formed traces. Taking
the state to be a set of pairs 〈u, u′〉, the properties can be specified as transitions
from a state to another, labeled with the desired sequence of events and enriched
with proper preconditions.

∀u, q, w, u′, s : s
〈u�s:serve(q)〉·〈s→w:new Worker()〉·〈u′→w:do(q)〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s ∪ {〈u, u′〉}

∀s, u, u′, w, v : 〈u, u′〉 ∈ s =⇒ s
〈u′�w:do/v〉·〈u←s:serve/v〉
−−−−−−−−−−−−−−−−−→ s− {〈u, u′〉}

The first formula states the change in the state after the server actor generates
the three events in reaction to an incoming serve call, while the second formula
states the change in the state when the server actor processes the return from the
server. In the second formula, we have to ensure the proper coupling between
the future u′ the server generates in its do call to the worker and the future u of
the serve call that causes the do call. By placing the existence of the pair 〈u, u′〉 in
the state as a precondition, the second formula ensures that the transition occurs
when the worker has finished its computation. Their conjunction becomes the
class invariant for the server actor. The trace t is no longer part of the formula
as it is represented by the state. Part II elaborates on the ingredients needed to
complete a specification such as the class invariant above to produce an (actor)
automaton semantics.

Server system specification revisited. Following the class invariant, the project-
ion-based specification for the server system can also be transformed into a transit-
ion-based specification. For example, by setting the state to be a set of pairs 〈u, q〉
of the future of the incoming call and the corresponding query, we can rewrite
Equation (2.1) as follows.

∀u, q : s
〈u�s:serve(q)〉
−−−−−−−−−→ s ∪ {〈u, q〉}

∀u, q : 〈u, q〉 ∈ s =⇒ s
〈u←s:serve/compute(q)〉
−−−−−−−−−−−−−−→ s− {〈u, q〉}

(2.2)

23



Chapter 2. Verification Framework Overview

ABS class
implementation

SEQ
translation

WLP
verification

SEQ
translation

WLP
verification

Class
invariant

Figure 2.2.: Verifying class implementations

This transition-based specification is more readily translated to a (component)
automaton and, thus, provides more support for the automaton model.

2.4 Verification

The specification technique outlined in the previous section is utilized for the two-
tier verification approach. The first tier deals with the verification of the class im-
plementations, while the goal of the second tier is to verify components/systems.
As already mentioned in Chapter 1, we adopt the verification technique of Din et
al. [DJO05; DDJO12; DDO12a] to handle the class verification. For the second
tier, using the automaton semantics of the class and component specifications, the
verification for components boils down to supplying a particular kind of simula-
tion relation called a possibility map. In this section, we look into these two tiers
in more detail using the server example.

2.4.1 Class Verification

The process we use for verifying the class implementation is illustrated in Fig-
ure 2.2. As input to the process for the first tier are the ABS class implementation
and the desired class invariants. The process as proposed by Din et al. consists of
two steps. The first step is the translation of a class implementation in ABS to a
well-researched sequential language called SEQ [Apt81; Apt84]. One semantics
of SEQ suited for verifying a class implementation against the invariants is the
weakest liberal precondition (WLP) semantics [Dij75].

A program in a SEQ language consists of variable declarations, statements and
procedures. A procedure is essentially the same as a method, except that it has
no outer enclosure such as a class that a method has. A statement can be a stan-
dard sequential statement such as a variable assignment or a conditional branch-
ing, or a non-deterministic assignment, assume and assert statements. The non-

24



2.4. Verification

deterministic assignment is used to emulate various effects that cannot be (di-
rectly) controlled by an actor such as the return value of a method call and the
name of a created actor. The assume and assert statements serve as the media
to perform the invariant check. A WLP semantics of SEQ with these features is
described by Apt [Apt84].

To have an idea how the resulting translation looks like, we translate fragments
of the Server class into SEQ. The precise and complete translation appears in
Chapter 11 (Listing 11.1). The main idea of the translation is to embed the trace
information and the class invariant into the SEQ program, allowing a weakest
liberal precondition based on them to be constructed. The translation keeps the
statements whose constructs are present in SEQ as they are, such as the variable
assignment and the conditional branching statements. Emulating actor creation,
method call and future resolution statements that involve identity generation or
return values is done by performing a combination of non-deterministic assign-
ment, assume and assert statements. For example, the three statement sequence
w = new Worker(); u = w.do(q); await u?v; in the serve method is encoded as
follows.

// w = new Worker() ;
w′ = some;
t = t · this→ w′ : new Worker();
w = w′;
assume wf(t);

// u = w.do(q);
u′ = some;
t = t · u′→ w : do(q);
u = u’;
assume wf(t);

//await u?v ;
assert I(fields, t) && wf(t);
t′ = some;
v′ = some;
t = t · t′ · u� w : do / v’;
v = v′;
assume I(fields, t) && wf(t);

In the translation above, the trace is stored by the variable t, and the check for
trace well-formedness and class invariant are represented by functions wf and I,
respectively. All three statements affect the trace such that each adds an event
to the trace. The actor creation statement for example adds the creation event
to the trace. Because we do not know the name of the created worker, a non-
deterministic assignment is made to “generate” the name, such that when the
event is added to the trace, the trace remains well-formed, as assumed by the
assume wf(t) statement. The same translation method is applied for the method
call translation, where the future identity is generated non-deterministically.

The await statement translation is more involved because of the introduction

25



Chapter 2. Verification Framework Overview

of a release point. When a release point is made, other tasks may progress under
the assumption that the class invariant holds. When the task is given the control
back, the trace may have grown and the values of the fields may have changed. To
emulate this correctly in SEQ, an assertion on the class invariant (and the well-
formedness of the trace) is made before the release point. The class invariant
is then assumed after progress on the other tasks is emulated by means of non-
deterministic assignment. The non-determinism also includes the possibility that
the task gets the control back immediately after the control is released.

After the translation is done, it is sufficient to check for each method whether
given a well-formed trace and a class invariant implies the WLP of that method.
This check is done by reasoning in first-order logic. When the implication holds
for each method, the soundness of this verification method [DDJO12; DDO12a]
allows us to conclude that the class implementation satisfies the class invariant.

The trace-based class invariants are the basis for specifying the actor automata,
the basis of the DIOA model adaptation for actors. With a sound connection be-
tween class invariants and actor automata explained in Chapters 10 and 11, we
can use the actor automata as the basis for verifying component/systems.

2.4.2 Component/System Verification

With the classes verified, we have the basis to verify if the whole system imple-
mentation satisfies its specification. The verification technique developed by Din
et al. can be used to verify a system implementation by inferring the system spec-
ification from the invariants of each actor of the system. When these actors are
fixed and the creation of actors does not depend on the system’s interaction with
its environment, this compositional approach is appropriate for proving that the
system specification is fulfilled by the implementation. However, as seen in the
server example, the creation of the worker actors depends on the query sent by
the clients of the server. Therefore, the verification process must deal with an
unbounded number of actors. To work around this issue, we introduce a static
component notion.

The main idea is to designate a specific activator class and form a component in-
stance based on the actors transitively created by an actor of that activator class.
We call the initial actor of the component instance as the head actor. To illus-
trate this idea using the server system example: consider a server actor s that has
received 2 queries. The first query consists of two subqueries while the second
query consists of three subqueries. To process each query, s creates a worker actor
that performs the computation. After completing the computation of all queries,
the creation relation between the actors in the server system is captured by the

26



2.4. Verification

s

w1

w3

w2

w4

w5

s

w1

w3

w2

w4

w5

[w1]
[w2]

s

w1

w3

w2

w4

w5

[s]

Figure 2.3.: Server system’s actor creation structure after processing 2 queries and
hierarchical componentization

left part of Figure 2.3. Because each worker actor has exactly the same behavior,
we can represent the behavior of a chain of worker actors (e.g., the w1, w3 and
w2, w4, w5 chains) as a single instance. Taking the Worker class to be an activator
class, these chains become component instances with w1 and w2 as the heads of
these instances (middle part of Figure 2.3). With the same principle, we can also
compose together these component instances with s and produce a component
instance headed by s (right part of Figure 2.3).

What is common about these component instances is that each is derived from
a specific class. The behavior of an instance of a class is predetermined by the
class implementation. Consequently, the behavior of the component instance is
also predetermined. The behavior of the server system can be represented by
a component with the Server class as an activator class of that component. We
have an entity, denoted by [Server], to refer to this component. This generic
representation of such component instances allows a specification to target a part
of the implementation, instead of some specific actor name of class Server. For
example, the specification of the server system (Equation (2.2)) can be designated
to [Server] instead of a server actor named s and the worker actors transitively
created by s.

The verification on this tier is done by constructing a possibility map [LT87;
NS94] from the composed states of the subcomponent specifications to the states
of the component specification. Essentially, a possibility map requires the automa-
ton representations of both subcomponents and the component to synchronize on
external events, while allowing the subcomponents to progress when executing
internal events. In its implementation, a component may dynamically create sub-
component instances. Therefore, a state of a component implementation may
consist of several substates of the subcomponent instances. In the automaton
model, this state is a Cartesian product of the substates of the subcomponent

27



Chapter 2. Verification Framework Overview

specifications enriched with information on the created instances. If a possibility
map can be constructed, the trace of an execution of the component implemen-
tation is a trace of the component specification. That is, the implementation does
not produce some non-specified behavior.

For the implementation of the [Server] component, the external events are the
serve calls and the returns, while the events between the server actors and the
worker component instances are internal. A possibility map p for the [Server]
component is roughly constructed as follows, where the states of the [Server]
implementation impl([Server]) is a tuple 〈ss, wn, m〉 consisting of
• the server actor’s state ss,
• a set of names of the [Worker] instance’s head actors, and
• a map from the head actors to a [Worker] state.
∀〈ss, wn, m〉 ∈ states(impl([Server])), y ∈ states([Server]) :

(First(ss) = First(y)) =⇒ p(〈ss, wn, m〉) = y

The formula above maps a state of the [Server] component implementation to
a state of the [Server] component specification when the set of futures stored
in the server actor’s specification state and the server component specification
state is the same. The function First collects the first elements of all tuples in
a set of tuples, which in the case of the server actor and the server component
are the futures attached to the serve calls. It can be checked that the serve calls
and returns are indeed simulated correctly when the component’s implementation
and specification are in the states where the mapping condition is fulfilled. The
actual possibility map for the [Server] component and its implementation is more
involved because the actor characteristics and the automaton representation must
be taken into consideration. A more precise discussion on this possibility map is
deferred to Chapter 12.

The rest of this thesis provides the details of this automaton-based verification
framework, starting by providing a sound basis for the implementation language
αABS.

28



CHAPTER 3

αABS: Syntax and Semantics

A sound basis for a system’s implementation is crucial to perform formal verifica-
tion. We base the implementation on the language αABS, a kernel object-oriented
language that combines actor model with non-shared futures. This language can
be seen as an intersection between the modeling languages Creol [JOY06] and
ABS [JHSSS11] and an enrichment of Rebeca [SJ11].
Chapter outline. This chapter formally describes αABS and starts by explaining
the features of αABS more thoroughly. Then, Section 3.2 describes the formal
syntax of αABS and Section 3.3 presents its operational semantics. Apart from
an operational semantics, we also describe a denotational semantics for theαABS,
but this description is postponed to the next chapter where we have a better toolkit
to express the denotational semantics. Finally, Section 3.4 discusses the features
of αABS in the context of related work.

3.1 Features

αABS is a subset of ABS, a language developed for “design, analysis, and im-
plementation of highly adaptable software systems”1, where distributed, object-
oriented systems are identified as the highly adaptable software systems [IT95].
To achieve this goal, ABS locates itself between design-oriented and architec-
tural languages such as UML [RJB04], minimalistic and foundational languages
such as π-calculus [Mil99], and object-oriented specification languages such as
JML [LBR06]. This allows ABS programs (or more precisely, models) to be ex-
ecutable, while being more readily verifiable. ABS adopts the structures of full-
scale programming languages such as Java and Scala, that permits a reliable trans-
lation of ABS programs to these languages [AØVWW13]. A generic algorithm, for
example, can be written in ABS and verified, before translated to the full-scale
languages for optimizations and actual usage. In fact, these aspects are exactly
the advantages of using an abstract language [Pla13].

1HATS project description (http://www.hats-project.eu/node/113)

29

http://www.hats-project.eu/node/113
http://www.hats-project.eu/node/113


Chapter 3. αABS : Syntax and Semantics

Following the actor model, communication between actors in αABS are per-
formed only via asynchronous method calls. This means that a method call is
non-blocking, allowing the code execution on an actor to directly proceed with
the next statement. Any incoming call is transformed into a task whose duty is to
execute the method body. An actor stores these tasks in its buffer.

Futures. A common pattern that appears in the actor model is the request/reply
pattern [HO09]. The interaction documented in this pattern consists of two parts:
• an actor sends a request along with its name to another actor, and
• receives a reply message from that other actor when the request computation

result is ready.
One approach to tackle this pattern without having to expose the actor’s name
is by using futures [BH77; Hal85; LS88]. Futures are proxies for values which
are to be computed. A future is either unresolved or resolved, where resolving a
future means that the future is populated with a value. Initially, a future is un-
resolved and once it is resolved, it cannot be resolved anymore. This resolution
process is done transparently in αABS via method returns. To obtain the value
of a resolved future, it has to be claimed, which is done explicitly in αABS. Apart
from avoiding having to expose names, the use of futures also reduces the num-
ber of methods that need to be declared because the computation result can be
retrieved without having to explicitly perform another method call. In αABS, the
futures are non-shared, meaning that a future is accessible only by its generator
and cannot be passed around as a parameter of a message. While less flexible than
sharable futures, their introduction provides an interesting challenge in terms of
task coordination and verification.

Cooperative multi-tasking. To coordinate the progress of a task with other
tasks and the future resolutions, αABS adopts the cooperative multi-tasking ap-
proach [AGGS09]. In this approach, each task is categorized either as being ready,
suspended, or active, such that a new task initially has a ready status. Following
the actor model, there can be at most one active task at any time being executed
by an actor. Other tasks can only be active if the active task explicitly gives up
control or if it completes its computation.

In αABS, cooperative multi-tasking is presented through explicit introduction
of release points. A release point is the point within an actor where an active
task gives up control. A release point can be introduced because a task requires
some condition on the internal state to be fulfilled or it waits for a future value
to be resolved (i.e., the result of some method execution becomes available). It is
also introduced by default when a task finishes its computation (i.e., it provides

30



3.2. Syntax of αABS

a return value). When a release point is introduced, a ready task or an enabled
suspended task is selected at random to become active.

Programming to interfaces. αABS follows the principle of programming to in-
terfaces [GHJV95], where the declared types of actors are interface types. This
principle ensures that communication between actors are done wholly through
the given interfaces. In particular, each call that is sent to an actor can be pro-
cessed by that actor. In the original actor model and in popular actor programming
languages such as Erlang and Scala, this principle is not present, allowing actors
to receive messages that may not be processed at all. Such a restriction is desir-
able for verifying open systems, as it limits the scope of communication whenever
possible.

Further features are presented alongside the syntax description of αABS. Be-
fore proceeding, we remark that our presentation of αABS and its operational
semantics follows the ABS language description [Häh+10; JHSSS11].

3.2 Syntax of αABS

This section provides the formal syntax of αABS. The syntax follows the Java syn-
tax, except for aspects that deal with distribution (concurrency). The semantics
of αABS follows closely the semantics of ABS that focuses on the asynchronous
communication layer [Häh13]. Design decisions such as allowing actors to multi-
task can be inferred from the design decisions for ABS [JHSSS11] and is shortly
discussed in Section 3.4. This language focuses on crucial factors affecting ac-
tor behaviors that we would like to capture by the automaton model: dynamic
creation, dynamic topology and non-shared futures.

The syntax of αABS consists of two layers: the data type and “functional” layer
and the object-oriented and distributed layer. The former provides a mechanism
to represent abstract data structures and internal computations, while the latter
deals with the description of actors and the communication mechanism between
actors.

3.2.1 Data Type and Functional Layer

This layer defines the data types that can be used in an implementation and side-
effect-free functions that manipulate these data types. In particular, it is used
to represent internal data structures used by an actor without committing to a
lower-level implementation. The language provides some basic data types such

31



Chapter 3. αABS : Syntax and Semantics

T ::= I | D | Unit | Int | Bool | String | . . . types
Dd ::= data D[〈T 〉] = [Cons] data type declaration

Cons ::= Co(T ) | null constructors
F ::= def T fn([T x]) = rhs function declaration

rhs ::= e | case e { pat⇒ rhs } function right hand side
pat ::= _ | val | e | Co(pat) pattern

Figure 3.1.: Syntax of αABS (1)

as the singleton type Unit, integer, boolean and string. The basic data types can
be extended to allow user-defined data types and functions.

For example, using this layer the Query data type of the running example can
be defined as follows.

data Query = SingleQuery(String) |
CompoundQuery(String, Query);

The SingleQuery is a possible constructor for the Query data type and accepts one
parameter of type String. Using the data type definition, the functions firstQuery
and restQuery can be represented as follows, where the values are extracted by
means of pattern matching.

def String firstQuery(Query q) = case q {
SingleQuery(_) => q;
CompoundQuery(sq, _) => SingleQuery(sq);

}
def String restQuery(Query q) = case q {
SingleQuery(_) => q;
CompoundQuery(_, rest) => rest;

}

The formal syntax for this part is given in Figure 3.1. It uses the following syn-
tactic conventions: italics denote non-terminals in the grammar; a list of syntactic
entities are denoted by an overbar, such as e for a list of expressions e; optional
parts are surrounded by square brackets [. . . ].

The set of types T consists of interface types I to be explained in the following
subsection, data types D and the basic types. Data type declarations Dd specify
the construction of user-defined data types D which may be parameterized with
other types (in a similar manner to generics in Java). Each constructor has a
name Co and a list of types acting as the parameters of the constructor. A function

32



3.2. Syntax of αABS

TF ::= T | Fut〈T 〉 types with futures
P ::= Dd F In Cl { TF x; s } programs
In ::= interface I { MS } interface definition
Cl ::= class C(T p) implements I { TF f := e; M { s } } class definition

MS ::= T mtd(T x) method signature
M ::=MS { TF x := e; s; return e } method definition
v ::= x | f mutable variables

rv ::= v | p variables
e ::= null | this | rv | c | fn(e) pure expressions
s ::= skip | s; s | if e s [else s] | v := e | v := new C(e) statements
| [v :=] rv.mtd(e) | [v :=] v.get | await g

g ::= e | v?v guards

Figure 3.2.: Syntax of αABS (2)

declaration F has a function name fn, a return type T and accepts a number of
named parameters T x . Using the parameters, the definition of a function can
be an expression over the parameters or a nested case expression, allowing some
expression e to be matched with a list of possible patterns. A pattern can be a wild
card _ that matches everything2, an expression or a constructor. The right hand
side of the first matching pattern is evaluated as the result of the function. The
next layer provides a more precise syntax of an expression.

3.2.2 Object-Oriented and Distributed (Concurrent) Layer

The second layer presents the imperative layer of αABS, where the cooperation
between actors can be expressed through communication and synchronization.
Following the same syntactic convention, the syntax for this layer of αABS is
given in Figure 3.2. A program P consists a number of definitions of data types
Dd, functions F, interfaces In, and classes Cl and a body that defines the initial
activity (similar to the main method in Java).

An interface definition In states the publicly available methods of actors that
provide the interface I . The interface names are used as types of actors. The
methods are declared by means of their signatures MS. A method signature
Tret mtd(T x) consists of a return type Tret, a name mtd and formal parameters

2That is, only its existence is of interest.

33



Chapter 3. αABS : Syntax and Semantics

T x , where T x denotes the variable name x and its type T . The return type and
the types of the formal parameters may be interfaces or (basic) data types. We
allow the variable names to be omitted from the signature when it is part of an
interface definition.

A class definition Cl introduces the class name C and contains a number of
fields and methods. It is equipped with a class constructor that allows an actor
of the class to execute some statement s when it is created. Some of the fields
are initialized by (an expression of) read-only parameters of the class when an
actor is created. As syntactic sugar, other fields that do not have any initialization
expression are initialized by their default values, e.g., by integer 0, false or null
as in Java. Fields and class parameters are grouped together under the term class
attributes. The types of fields can include future types Fut〈T 〉. Combined with
the method signature, the typing ensures that futures cannot be shared among
multiple actors. Each class implements an interface I . This means that each class
must contain a method definition for each method signature that is present in I .
For simplicity, we require that there is at most one method definition per method
name mtd in the class declaration (i.e., no method overloading). An interface can
be implemented by any number of class. The method bodies are implemented
similarly to Java, except for statements related to concurrency.

A method implementation M contains a declaration of local variables and a
statement. As with fields, some of the local variables are initialized by expressions
on the method parameters. Other local variables are initialized by their default
values. A statement can be a skip (skip), a sequential composition (s;s), a con-
ditional (if-else), a variable assignment to the actor fields or the local variables
(var := expression), a creation of new actors (new C(p)), an asynchronous call
(a.mtd(p)), a return (return value), a conditional process release (await guard)
and a blocking future resolution (v.get). For clarity (both here and in the seman-
tics), the assignment operator is represented here by := instead of just = which is
used in the program examples. A skip statement is typically used as a valid repre-
sentation of empty methods or constructors, which are syntactic sugar. A return
statement may only appear at the end of the sequence. This return statement
can be omitted when the return type of the method is Unit. A variable assign-
ment can be combined with creation and call constructs (i.e., var := new C(p) or
var := a.mtd(p)). The actor creation statement yields an actor name, whereas
the call statement yields a future.

A release point is introduced when the conditional process release statement is
executed. For the execution of the task to continue, the guard of the statement
must be satisfied. There are two kinds of guards: a boolean expression e over the
class attributes and a future resolution vu?v. The boolean expression can be used

34



3.3. Operational Semantics

by the actor to synchronize between different tasks. The future resolution guard
is satisfied when the future u represented by vu is resolved. The value stored in
the future u is assigned to v. When the actor needs to synchronize with the result
of a method call, a blocking statement (vu.get) can be used instead. No release
point is introduced, and the actor continues its execution only when the future u
is resolved.

For simplicity, a non-empty class constructor only contains method call and ac-
tor creation statements. This means that the class constructor performs no con-
ditional checks, cannot explicitly block or introduce a release point, does no vari-
able assignments apart from assigning variables to the generated futures and actor
names. In other words, the constructor performs some initialization that cannot
be performed through side-effect free expression evaluations.

An expression can be of the constant null, the self name reference of the ac-
tor this, a local variable or a method parameter x , a field f , a data constant c
(including data type constructors Co(e), strings and integers), or a function fn(e).
A function can be, among others, an arithmetic function on integers, string con-
catenation or a user-defined function as facilitated by the functional layer. An
expression in our language is pure, meaning that its evaluation does not affect the
current state of an actor. A reflective mechanism is not present, so the caller of a
method call cannot be inferred from (the future attached to) the call.

3.3 Operational Semantics

The run-time semantics of αABS is given as a small-step, operational semantics
under the assumption that we deal only with type-correct implementations. This
issue is orthogonal to the focus of this thesis on verifying the dynamic behavior
of the systems. A thorough treatment of the type system can be found in the ABS
language description [Häh+10; JHSSS11].

The operational semantics is defined by reduction rules on configurations. The
configurations contain the code being executed and the heap with the instantiated
actors. A configuration is then represented by the parallel composition of these
entities. This binary composition is associative and commutative, which allows
us to focus on the interesting parts of the configurations in the reduction rules. A
configuration is represented at run time as follows:

K ::= a[C ,σ, l] actor a
| u[a,σ, l, s] task with future u
| u[a,σ, l, v] completed task with future u
| K ‖ K composition

35



Chapter 3. αABS : Syntax and Semantics

An actor a[C ,σ, l] has the name a, contains information about its class C , its
instance state σ, and a lock to indicate whether the actor has an active task it
is executing. σ is represented by a map from fields to values. The lock l either
has the value of > and ⊥ (i.e., of boolean type), indicating whether an actor is
currently executing a task or not, respectively. The entity u[a,σ, l, s] represents
the task with future u of actor a representing the statement s the task needs to
execute with a map from the local variables to values. The lock l indicates whether
the task is active. The task is essentially the representation of an actor executing
an asynchronous method call as we see in the reduction rules. The task name also
corresponds to the future identity of that task. When the task is completed, the
entity u[a,σ, l, s] is substituted by another entity u[a,σ, l, v] where v represents
the resolved value for future u. The task is provided as a standalone entity instead
of being part of the actor entity to simplify the reduction rules.

To specify the reduction rules, we add two constructs to the statement syntax
of αABS given in Figure 3.2:

s ::= . . . | grab | release

The statements grab and release handle the lock, allowing inactive tasks to ac-
quire the lock of the actor. In particular, the execution of the release statement
can be seen as the actual introduction of a release point in the actor. As we only
have pure expressions, the order of how expressions are evaluated is not relevant.
For simplicity, we use E(e)σ to evaluate an expression e with respect to some state
σ.

The reduction rules of αABS follow a standard sequential programming seman-
tics, except for the parts dealing with the concurrency constructs. In Figure 3.3,
we provide a sample of reduction rules that deal with the cooperative multitasking
approach. The reduction rules are of the form K   K ′, reducing the configuration
K to K ′. They are performed under a fixed underlying program. See Appendix B
for the complete operational semantics.

The two rules R-GRAB and R-RELEASE dealing with the grab and release state-
ments, respectively, change the configurations according to their desired descrip-
tions. The locks of the task and the actor are synchronized to ensure that at most
one task is active. These two statements are introduced when a method is invoked.
As described by rule R-CALL, a method call statement introduces the creation of
a new task associated with the target actor. The statement this new task has to
execute is the corresponding method body, padded with the grab and release

statements. With the padding, the new task has to first obtain the lock and later
release the lock after the execution of the method is finished. The generated fu-
ture identity is stored in the assigned variable. We assume that an asynchronous

36



3.3. Operational Semantics

R-GRAB

a[C ,σ,⊥] ‖ u[a,σ,⊥,grab; s]  a[C ,σ,>] ‖ u[a,σ,>, s]

R-RELEASE

a[C ,σ,>] ‖ u[a,σ,>,release; s]  a[C ,σ,⊥] ‖ u[a,σ,⊥, s]

R-CALL
u′ fresh s′′ = body(m(x), C ′) a′ = E(e′)(σ′ ∪σ)

val= E(e)(σ′ ∪σ) σu′ = σinit[x 7→ val] s′ = grab; repAwait(s′′);release

a′[C ′,σ′′, l ′] ‖ a[C ,σ′, l] ‖ u[a,σ, l, x := e′.m(e); s] 
a′[C ′,σ′′, l ′] ‖ u′[a′,σu′ ,⊥, s′] ‖ a[C ,σ′, l] ‖ u[a,σ[x 7→ u′], l, s]

R-AWAIT
u′ = E(v)(σ′ ∪σ)

u′[a′,σ′′, l ′, s′] ‖ a[C ,σ′,>] ‖ u[a,σ,>,await v?v′; s] 
u′[a′,σ′′, l ′, s′] ‖ a[C ,σ′,⊥] ‖ u[a,σ,⊥,release;grab;await v?v′; s]

R-GET
u′ = E(e)(σ′ ∪σ)

a[C ,σ′, l] ‖ u[a,σ, l, x := e.get; s] ‖ u′[a′,σ′, l ′, val] 
a[C ,σ′, l] ‖ u[a,σ[x 7→ val], l, s] ‖ u′[a′,σ′, l ′, val]

R-RETURN

a[C ,σ′,>] ‖ u[a,σ,>,return e; release]  a[C ,σ′,⊥] ‖ u[a,σ,⊥,E(e)(σ′ ∪σ)]

Figure 3.3.: Reduction rules of αABS (selected statements)

call is always successful (i.e., the receiving actor is always able to create a task).

The await and get statements respectively provide the non-blocking and block-
ing alternatives to retrieving the return result of a method call. The rule R-AWAIT

highlights that when the return result is not ready, a new release point is intro-
duced. Other variants of the rule exist to handle the other cases. The rule R-GET

ascertains that the reduction on the statement can only go ahead if the return
result is ready. This rule is the only rule dealing with the get statement, so if a
future is not yet resolved, the task cannot proceed with its execution and thus
blocks.

A task terminates when the return statement is executed. Because this state-
ment is placed at the end of a method body, we can process it together with the
padded release statement (R-RETURN). The result of evaluating the expression e
becomes the value held by the future u.

37



Chapter 3. αABS : Syntax and Semantics

3.4 Discussion

Programming actor behavior. In general, programming and modeling lang-
uages that adopt the actor model facilitate the description of an actor’s behavior
in two ways: update-based and class-based. In the update-based approach, the
behavior of an actor is written down in a procedure. This procedure contains
a number of patterns that determine what messages are accepted by the actor.
When an actor finishes reacting to an accepted message, the behavior of the ac-
tor is updated to a possibly different procedure. This approach is proposed in
the original actor model [HBS73; Agh86] and is followed by languages such as
Act1 [Lie87] and Erlang [Arm03; Arm10]. Because the description of the behav-
ior of an actor dynamically changes, an actor needs to accept all messages and
store them in its buffer, even if some of them may never be reacted to. While this
provides a simple mechanism to define a fixed communication protocol, it com-
plicates the verification effort, because we can send any kind of message to each
actor.

In the class-based approach used by, e.g., ABCL [YBS86], SALSA [VA01], Re-
beca [SJ11], Creol [JOY06], JCoBox [SPH10], and ABS [JHSSS11], each actor is
assigned to a class since its creation. This assignment never changes throughout
the lifetime of the actor. A class contains a fixed number of method definitions.
The actor’s behavior is modified through the execution of a method by changing
the value of the internal variables. Further actions taken by the actor, including
the reaction to further messages may be influenced by these changes. This static
description of an actor’s behavior is advantageous for verification, particularly in
an open setting, because it limits the messages an actor can receive.

Guaranteed invariants. The operational semantics provides the guarantee that
there can be at most one task that an actor is actively executing. This invariant is
derived from the reduction rules that ensures that within two scheduling points,
only one task of an actor has the lock. The semantics, however, does not guarantee
that busy-waiting is void from the executions. For example, the rules R-AWAIT, R-
RELEASE, R-GRAB are consecutively chosen to handle one task. The introduction
of non-terminating executions is usually avoided on the implementation level of
the language by using queues to fairly schedule the tasks (e.g., in JCoBox).

Futures and cooperative multi-tasking. There are many ways to introduce fu-
tures into a language. Using the classification provided by De Boer, Clarke and
Johnsen [BCJ07], futures in αABS are non-transparent on the caller side and

38



3.4. Discussion

non-shared. A transparent future means that the future cannot explicitly be han-
dled in a program to write some value (on the target side) or to retrieve the value
(on the caller side). Adopting a fully transparent future, such as done in Multil-
isp [Hal85] and ASP [CHS09], means that method calls tightly couple the caller
and the target. In αABS, the transparency is only done on the target side, where
the placeholder is populated only once (the same as promises [LS88], a variant
of futures that ensures that the placeholder is populated once) when the return

statement is executed. The caller side has more control on how to wait for the
resolution of a future and how often the value can be retrieved.

The original actor model does not have the notion of futures. The addition
of futures requires a control mechanism on the actors to retain the deterministic
sequential execution property. Several languages such as Multilisp and ASP block
the actor execution when an actor needs to fetch the value of a future that is not
resolved yet. Creol, JCoBox, ABS, and αABS use the multi-tasking approach as
described in this chapter. This approach allows for better usage of computing
resource.

Futures that can be shared are futures whose identity can be passed as param-
eters of method calls. By having it non-shared as in Creol, the future can only
be accessed by the actor that generates the future. While it is not as flexible as
shared futures, the request/reply pattern as stated in Section 3.1 is solved without
exposing the caller’s name.

Class constructor. In αABS, a class constructor allows an actor to execute asyn-
chronous calls and create new actors without having the trigger of a call from other
actors. Such behavior is called active [JOY06]. Other than that, an actor typically
reacts to calls from other actors.

Loop construct. As in Rebeca [SJ11], the syntax of αABS does not include a
loop construct. This decision ensures that each time a method call is processed,
only a finite amount of method calls and new actors are generated, as constrained
by the original actor model [HBS73; Agh86]. A loop construct can explicitly be
introduced as present in ABS. It also can be emulated in αABS by recursive asyn-
chronous calls and explicit synchronization via await on a counter placed as a
field. More precisely, other methods which are not involved in the loop are pre-
fixed with an await statement on a condition that either the counter is inactive,
meaning there is no loop being emulated, or the counter has not reached the
desired value.

39



Chapter 3. αABS : Syntax and Semantics

Access modifier. There is no need to have a private/public access level modi-
fier as in Java, because the states of actors are fully encapsulated and all methods
within the interface are public. All other methods are private.

Multiple object representation, inheritance and subtyping. As stated in the
chapter introduction, αABS can be seen as an intersection between Creol and
ABS. One of the intersections is with regards to the non-shared futures as dis-
cussed above. Another intersection is on how an actor is represented. In Creol,
an actor is represented by one active object [LS95]. This is extended in ABS,
where an actor is represented by a cog, concurrent object group [SPH10]. It al-
lows an actor to have multiple service objects that interact with its environment,
exposing different aspect of the actor. On a higher abstraction level [Häh13], the
cog as a whole is an actor, because there can only be at most one thread of compu-
tation active at any time. With a richer state representation, an actor can simulate
a cog. For example, an actor can store a list of objects it “contains” and a message
is sent to the actor if the target object is in the list.

Another intersection is with respect to inheritance. In Creol, a class can in-
herit the implementation from multiple classes (also known as multiple inheri-
tance [Kro85]), allowing code reuse in a similar way that is done in C++. In-
heritance is not present in ABS. Code reuse is performed in ABS by code deltas
[Sch10]. Code deltas allow parts of code to be added or deleted from an imple-
mentation based on some desired software configuration.

Both Creol and ABS have the same notion of subtyping, where an interface
can be extended to include additional methods. These languages guarantee type
safety that can be statically enforced. In other words, there will be no calls sent
to an actor that is not within the interface that actor supports. Because αABS is
simpler in this respect, we can reuse their type checking procedure and assume
type safety when performing verification.

40



CHAPTER 4

Trace Foundation of Actor Systems

To form a solid foundation for verifying actor systems, we formally define the
entities present in actor systems using mathematical constructs. The elementary
entities in our setting are actors, messages, classes and futures. From these ele-
mentary entities, we build the notion of events which represent the communication
that happen between the actors. In other words, events are what are observable
from an actor when it is viewed as a black box.

Particularly interesting for verification is that events are the typical primary
building blocks for defining a fully abstract semantics (see, e.g., [Bro02] in the
context of communicating processes), a semantics which allows for equivalence
behavioral check without additional information of the implementation [Plo77].
With a fully abstract semantics, the desired requirement of a system can be ex-
pressed using the same building blocks as those that are used to define the seman-
tics of the implementations. With this in mind, it is useful to define a denotational
semantics for αABS based on events.

Denotational semantics is a compositional semantics that associates a mathe-
matical entity with a( fragment of a)n implementation. For αABS, the appropri-
ate mathematical entity is a set of traces, i.e., sequences of events. A trace shows
one possible interaction within an actor system and between the system and its
environment. Taking a set of traces as the mathematical entity means that the
semantics shows all possible interactions an actor system can have. This choice
makes the denotational semantics as the bridge between the (class) specifications
and the implementations (see Chapter 11).

Defining a denotational semantics for an actor-based language is non-trivial
because of the presence of unbounded non-determinism [Cli81]. There are at
least three factors that contribute to the non-determinism: the open nature of
actors in accepting messages, the delivery process of messages, and the message
selection process within actors. To cope with the non-determinism, we follow the
guess and merge approach by Ahrendt and Dylla [AD12] where input events in the
trace are guessed and only (sub)traces that lead to well-formed traces are merged
together when composing different fragments of the language.

41



Chapter 4. Trace Foundation of Actor Systems

Chapter outline. The chapter begins with the formalization of events and traces
(Section 4.1). Section 4.2 explains what the observable events for a group of
actors are. Then, Section 4.3 presents a trace-based denotational semantics for
αABS. The presentation and conventions used in this section are derived from the
work by Ahrendt and Dylla [AD12]. We close this chapter with some discussion on
different semantical models that are developed for the actor model (Section 4.4).

4.1 Actor Universe, Events and Traces

An actor system consists of a number of concurrently executing objects called
actors. Each actor communicates with other actors purely by sending messages
asynchronously. Each actor has a unique name, which is used to target where
each message should be sent1. Each message may contain a number of parame-
ters, some of which may be actor names. The actors whose names are contained
within a message’s parameters become known to the target actor when the target
actor reacts to that message. These actors are also called acquaintances. An actor
system is started by having some initial actors which may be passed on some initial
messages. To conform with the open setting, we allow the entity that starts the
system to be part of the environment which implies that the environment knows
the initial actors.

To transfer the basic concepts and our language setting to the automaton model,
we formalize the elementary building blocks: actors, messages and events. We
also define functions to extract particular elements for the blocks. These functions
are used exclusively for definitions related to the adaptation of the DIOA model,
and are not used within the system implementation or specification.

To model actors with futures, we use the following universes (represented as
sets):
• the universe of actor( name)s a, b ∈ A,
• the universe of future( identitie)s u ∈ U,
• the universe of messages m ∈M, and
• the universe of classes C ∈ CL.
We also introduce the universe of data values d ∈ D to represent, for example,
constant integer values, strings or, in our server example, queries. We say “actor
a” to refer to an actor of name a. The name is unique, such that actors a and b
are the same if and only if a = b. The behavior of each actor is represented by a
class C . A class also determines what kind of messages an actor of that class can
process, represented by aMsg(C) ⊆ M. This function states which messages are

1This implies that the actor model does not provide an explicit support for message broadcasting.

42



4.1. Actor Universe, Events and Traces

allowed to be sent to the actor and which messages the actor can send to other
actors. Note that this function may include messages, particularly the messages
sent by the actor, that never appear in an actual execution. We overload this
function with an extra parameter type ∈ {in, out, int} to distinguish respectively
which messages are part of the input interface of the class, which messages can
be sent by the actor to another actor, and which messages an actor can send to
itself, e.g., to trigger certain internal computations.

Futures are used to distinguish calls with the same method name and param-
eters, and play a role in the correct retrieval of the return value. As with actor
names, they need to be unique. We conveniently choose futures u ∈ U to be
structured such that we can retrieve their generator, denoted by gen(u). We let
the model of futures open and fix them according to specific needs as long as the
uniqueness property is maintained.

A message m can either be an actor creation new C(p), a method call mtd(p) or
a method return mtd / result, where C ∈ CL is a class, mtd denotes some method
name, p is a list of actual parameters and result is a return value. A parameter or
a return value can either be a data value d ∈ D or an actor name.

From this foundation, we build the set of events E. Adapting the 4-event seman-
tics proposed by Din et al. [DDJO12], we characterize an event as the occurrence
of an actor emitting or reacting to a message. That is, an event e ∈ E represents the
occurrence of a message m=msg(e) being sent from the caller actor a = caller(e)
to the target actor b = target(e) or being reacted to by b. If m is a creation mes-
sage, b will be the name of the newly created actor while a is its creator. If m
is a method call, a future u = fut(e) is attached to the event. Since the caller
information is contained within the future, the caller caller(e) can be represented
by gen(fut(e)). The function param(e) extracts the parameters of the message
msg(e). The definition below formalizes the notion of events.

Definition 4.1 (Events):
Let a, b ∈ A be actor names, C ∈ CL a class, p a list of parameters, mtd a
method name, and u ∈ U a future. An event e ∈ E is one of the following
tuples:

Event status Emittance Reaction
Actor creation a→ b : new C(p) Not introduced
Method call u→ a : mtd(p) u� a : mtd(p)
Method return u← a : mtd / v u� a : mtd / v

An event is formalized as a quadruple of an actor name or a future represent-
ing the caller, an actor name representing the target, the event status, where →

43



Chapter 4. Trace Foundation of Actor Systems

a b

a→ b : new C(p)Actor creation
emittance

u→ b : mtd(p′)
Method call

emittance

u� b : mtd(p′)
Method call
reaction

u← b : mtd / v
Method return
emittance

u� b : mtd / v
Method return

reaction

Figure 4.1.: Event types and their usage

and ← represents emittance and � and � represents reaction, and the mes-
sage. The inclusion of the caller information, albeit implicitly through the futures
for method calls and returns, significantly simplifies the presentation of the def-
initions of other mathematical entities. Following the assumption of successful
message delivery mentioned in Chapter 3, an emittance event is carried out in
synchrony with the receive of the event on the destination side. This means that
the target actor stores the message in its buffer. A reaction event is an event when
a message is actually processed by an actor. It can also be seen as a commitment
made by the actor to process the message. A reaction event can happen only if
the corresponding emittance event is present in the buffer of the actor. The asyn-
chronicity of a method call or a method return is still represented by means of the
buffer in each actor. The arbitrary delay between the emittance of a message and
its reaction provides a more realistic view of the distributed setting, where send-
ing a message takes time. For clarity, we sometimes notate an event e enveloped
by angled brackets 〈e〉.

Actor creation is handled slightly differently from method calls. For simplicity
we assume that actor creation is done instantaneously. Given an actor creation
emittance event e = a→ b : new C(p), the actor b is named such that creator(b) =
a. The function created(e) acts as an alias for target(e) for creation events where
it returns b. We also allow the function class(e) = C to extract the class name C .
Changes to include actor creation reaction events are relatively straightforward,
but complicate the presentation of our automaton model.

Figure 4.1 illustrates what these events represent via two actors a and b and
their execution lifelines (the parallel vertical lines). The black circles represent

44



4.1. Actor Universe, Events and Traces

the time when events are generated by the actor on whose lifeline the black circles
appear. An outgoing edge from one lifeline to another lifeline indicates the source
event is being sent from one actor to another. We use Gen(a) to represent the set
of events generated by a.

We can extract information from events in the following way. The predicates
isEmit and isReact check whether an event is an emittance or a reaction event,
respectively. If e is a reaction event, emitOf(e) returns the corresponding emit-
tance event. The predicates isCreate, isCall and isRet determine whether an event
is an actor creation, a method call or a method return event, respectively. The
predicate isMethod is used when the distinction between method call and method
return is not necessary. As actor references are important to determine whom an
actor can communicate with, we use the function acq(e), short for acquaintance,
to extract all actor names appearing in the message of the event. The information
of the creator of an actor or the caller of a method call is transparent from the
created actor or the target, respectively, so they are not part of the acquaintance.

We define the term event core as a triple of a future, a target actor and method
name, written as (future, target actor, method name). For example, the event
core of u→ a : mtd(p) is (u, a : mtd). We use the event cores to represent tasks
an actor is currently handling, and thus they are not applicable to the creation
events. The function eCore extracts the event core from an event.

Example 4.1.1 (Events):
The following provides several events that can be generated by an actor s of class
Server from the client-server example.
• e1 = s→ w : new Worker()

The server s creates a new Worker actor w.
• e2 = u� w : serve(q)

The worker w starts processing a request from some actor a that generates the
future u to compute a query q.

• e3 = u→ w : do(q)
The server s sends a message to worker w to do the query q. The future u
identifies this method call such that gen(u) = s.

• e4 = u� w : do / v
Given gen(u) = s, the server s fetches the resolved future u to obtain the value
v.

• e5 = u← s : serve / v
The server s resolves the future u by filling it with value v.

Applying acq to e1, e2, e3 and e4 returns the set {w}, while for e5 the result is {s}.
The functions creator(w) and caller(e1) return the actor s. 4

45



Chapter 4. Trace Foundation of Actor Systems

To represent the interaction that happens between actors, we use the following
simple notion of traces.

Definition 4.2 (Traces):
A trace t ∈ Seq〈E〉 is a sequence of events.

This simple definition allows us to lift up some functions that accept events as
parameters to traces. For example, the function

created(t) = {a | t ′ · e ∈ Pref(t)∧ isCreate(e)∧ created(e) = a}

returns a set of actors that are created in the trace t. This lifting also applies to
the function acq(t).

Because of its simplicity, it is not sufficient to restrict the kind of traces that may
represent the interaction that happens. In particular, we need to take into account
the characteristics of actors. For example, the underlying communication pattern
used in the interaction needs to follow the pattern portrayed in Figure 4.1.

A trace that adheres to the actor characteristics is called a well-formed trace. To
formally define this well-formedness properties, a trace is anchored to a certain set
of actors A2. This anchor determines which relevant events need to be monitored
for the well-formedness property to hold. We also use the following short hand
notations for the projection operators. t↓(u, a) denotes the projection of a trace
t to the set of events whose future is u and whose caller or target actor is a (i.e.,
t↓{e | isMethod(e)∧ fut(e) = u∧ (caller(e) = a ∨ target(e) = a)}). t↓a denotes the
projection of t to the set of events where a is either the caller or the target ac-
tor (i.e., t↓{e | caller(e) = a ∨ (target(e) = a ∧¬isCreate(e))}). The creation event
where a is created is not part of the projection.

The well-formedness of a trace is captured in three parts.

• The first part can be summed up as each future is used only for a unique com-
munication cycle (with respect to an actor), as shown in Figure 4.1. There are
three cases that needs to be handled: a call within the group, a method call
from and to an actor outside of the group. The first case portrays the full com-
munication cycle, while the latter two cases excludes reaction events generated
from outside the group. Because the focus is on A, events between actors out-
side of A are ignored. We use the Kleene star for the method result reaction
events because the value of a future may be fetched multiple times, and each
event agrees on the fetched value.

2The anchor can also be the set of all actors A if we are dealing with a closed system.

46



4.1. Actor Universe, Events and Traces

Definition 4.3 (Well-formed traces):
Let t be a non-empty trace and A ⊆ A is a set of actors. The trace t is well-
formed with respect to A if

1. the sequence of events related to a method call initiated by or targeted to
an actor of the actor set follows the cycle of observable events depicted in
Figure 4.1:

∀u ∈ U, a ∈ A : ∃b, mtd, p, v :
(t↓(u, a) 6= [] =⇒ u→ b.mtd(p) pr t↓(u, a)∧ (b = a ∨ gen(u) = a))
∧ (gen(u) ∈ A∧ b ∈ A =⇒ t↓(u, a) pr u→ b : mtd(p) · u� b : mtd(p) ·

u← b : mtd / v · [u� b : mtd / v]∗)
∧ (gen(u) /∈ A∧ b ∈ A =⇒ t↓(u, a) pr u→ b : mtd(p) · u� b : mtd(p) ·

u← b : mtd / v)
∧ (gen(u) ∈ A∧ b /∈ A =⇒ t↓(u, a) pr u→ b : mtd(p) · u← b : mtd / v ·

[u� b : mtd / v]∗) ;

2. the set of known actors grows monotonically:

∀a ∈ A, t ′ · e ∈ Pref(t↓a) : isEmit(e)∧ e is generated by a
=⇒ acq(e) ⊆ acq(t ′)∪ A∪ {target(e) | isCreate(e)} ;

3. each created actor has a fresh name:

∀t ′ · e ∈ Pref(t) : isCreate(e) =⇒ t ′↓target(e) = []∧ target(e) /∈ acq(t ′) .

• The second part overapproximates the knowledge about other actors an ac-
tor has over time (cf. [AMST97]). As a consequence an actor a may never
call another actor b whose name is still unknown to a. A trace does not pro-
vide the information when an actor forgets a name of another actor. The term
e is generated by a refers, for example, to a method call emittance event where
a is the caller or a method call reaction event where a is the target.

• The third part deals with the creation process. If a creates an actor, the created
actor must be taken into consideration as part of the known actors, because
the acquaintance function also includes the target actor of an event. That is, it
locally ensures that no two actors will be created with the same name.

The next section confirms that the traces generated by an αABS implementation
are well-formed.

47



Chapter 4. Trace Foundation of Actor Systems

a

u1 → a : m(p)

u1← a : m / v1

u1� a : m(p)

b

u3→ b : n(p)

u2→ b : n(p)

u2← b : n / v2

u4→ x : m(p)

u4 ← x : m / v4

Figure 4.2.: Observable events of actors a and b and group of actors {a, b}

Example 4.1.2:
The following trace that is generated by the execution of two serve calls to server
s is an example of a well-formed trace.
u1→ s : serve(q1) · u1� s : serve(q1) · s→ w1 : new Worker() · u′1→ w1 : do(q1) ·

u2→ s : serve(q2) · u2� s : serve(q2) · s→ w2 : new Worker() · u′2→ w2 : do(q2) ·

u′2← w2 : do / v2 · u′2� w2 : do / v2

The first line considers the process of the first serve call until it has to wait for
the computation result from the worker w1. Similarly, the second is the trace
s generates when processing the second serve call. The third line shows an in-
complete response of the server when it receives the computation result for the
second query. Note that the incoming call and method return events that are not
generated by the server precede the reaction events.

The definition of well-formed traces allows for the second serve emittance event
to be shifted anywhere in the trace prior to its reaction event. This flexibility
reflects the input-enabledness of s. However, the method return emittance event
for u′2 cannot be shifted any earlier, because that will violate the well-formedness
condition. 4

4.2 Observable Behavior

We consider events as the primary unit of observability. We say an event is ob-
servable by an actor if the actor receives or generates the event. This definition
is naturally extended for a group of actors A to mean that an event is observable
by A if there is an actor in A for which the event is observable. In Figure 4.2,
all events are observable by the group {a, b} with events with future u1 are ob-
servable by a, events with future u3 (which are an internal call and its not-shown
reaction event) or u4 generated by b are observable by b and events with future

48



4.3. Denotational Semantics

u2 generated by a is observable by both a and b. The notion of observable event
of an actor can also be seen as all events that touches the execution lifeline (as
portrayed in Figure 4.1) of that actor.

More interesting is what the externally observable behavior of an actor or a group
of actors (for short, “entity”) is. This information is relevant because it allows us
to characterize how an entity behaves without needing to know how it works
internally (i.e., a black box view). As we base the observable behavior on events,
we need to define the notion of externally observable events. Intuitively, they are
input and output events of the entity we are interested in. The entity develops a
boundary which can be seen, e.g., graphically by the dotted borders in Figure 4.2.
An externally observable event of an actor a is a non-self-call emittance event
whose caller or target is a. An externally observable event of a group of actors A
is an emittance event that either the caller is an actor of A and the target is not or
vice versa. When a trace uses only the externally observable events of an entity,
that trace is an external trace of that entity.

Example 4.2.1:
The following trace is an external trace of the actor a.

u1→ a : m(p) · u2→ b : n(p) · u2← b : n / v2 · u1← a : m / v1

Note how the reaction events are not part of the external trace. 4

The notion whether a creation event is externally observable depends on the
context, whether the created actor resides within the boundary or outside. From
an actor’s perspective, the created actor is outside of the boundary and therefore
the creation event is an externally observable event of the actor. If we consider
a group of actors, a choice can be made to put the new actor within or outside
the boundary of the group. For our purpose, we consider the new actor to reside
within the boundary of the group. This choice coincides with the black box view
we want to establish for components and systems as explained in the next chapter.

4.3 Denotational Semantics

The formal foundation explained in the previous section provides the building
blocks to construct a trace-based denotational semantics for αABS. The denota-
tional semantics of an αABS implementation produces a set of traces associated
to the implementation. This trace set represents the overall behavior of the im-
plementation paired with an unknown environment.

49



Chapter 4. Trace Foundation of Actor Systems

The basic idea for the construction of the denotational semantics follows the
idea from Zwiers [Zwi89] where the set of traces of concurrent processes are
built in two steps:

1. Construct independently all possible traces each concurrent process may
produce, including guessing the observation the concurrent process may ob-
tain from other processes.

2. Obtain the composed traces of the concurrent processes by merging traces of
each concurrent process that agree on the same observations. Trace merging
is defined as the inverse of a trace projection.

In terms of actors, a process is interpreted as a thread of computation that an actor
makes when it receives a method call.

To obtain the desired semantics, Ahrendt and Dylla [AD12] push the guess and
merge idea from Zwiers far. The guess part appears on several levels. First, in the
semantics of a method, the parameters of a call are guessed. Then, the number
of method calls (i.e., the task instances) for that method is also guessed as well
as the number of actors instantiated from a call. All these guesses are used to
populate the set of traces generated for one method execution, a method defini-
tion, and a class definition, respectively. To ensure that the interactions between
these threads are appropriate, particularly that the executions of the sequential
parts of method calls are uninterrupted between scheduling points, the semantics
of an actor only includes mergeable traces. The merging conditions include an
agreement over the states and a proper correspondence between emittance and
reaction events.

The ingredients for defining the denotational semantics are the states of the
actor and the traces. The states are denoted by σ, a map from variables to values.
In the denotational semantics, the variables σ handles are the class attributes and
local variables of method calls. We represent the maps of the class attributes by
σ|ca, while the maps of the local variables of the task k by σ|k. These maps corre-
spond to the σ in operational semantics configurations a[C ,σ, l] and u[a,σ, l, s],
respectively.

We also provide a model of tasks and futures suited for the denotational seman-
tics. A task k is modeled by a triple 〈a, mtd, i〉 denoting the actor a it belongs to,
the method it is executing and an integer. The integer serves as a unique identi-
fier. A special task kinit = 〈a,−,−〉 is reserved for the actor’s initialization process.
When a constructor is present, this task executes the constructor. As the self ref-
erence of an actor is represented by the variable this in the state, the task identity
is represented by the variable me. This variable is used only for the denotational

50



4.3. Denotational Semantics

semantics and is not used within the implementation. A future u is a pair of tasks
〈kcaller, ktarget〉 denoting the task that generates and processes the call, respectively.

The traces in the denotational semantics consist of events as described in the
previous section. To allow the correct merging of the traces, information about
when the scheduling points occur and the changes other tasks of the actor make
(method call computations that execute while a task is suspended) needs to be
present. This information is encoded by yield(k,σ|ca) and resume(k,σ|ca) that re-
spectively represent when a task k becomes suspended and active. The parameter
σ|ca allows a task to synchronize on the changes on the class attributes. We also
append the creation events with the task k, written k : a→ b : new C(val), to indi-
cate which task performs the actor creation. Because the number of instantiations
of a class is important, we let each actor a to contain its instantiation id, which is
retrieved by the function ciid(a) (short for class instantiation identifier). We de-
note the set of events extended by the extra information by EE and define traces
for our denotational semantics as sequences of extended events Seq〈EE〉. The ex-
tra information is shed by means of projections to the set of events E, resulting in
a set of traces.

The denotational semantics is represented by a function ¹º which comes in
several flavors:
• a map from variable declarations, statements or method implementations and

states to traces and states
• a map from method names, numbers of tasks and states to traces and states
• a map from method names and states to traces and states
• a map from classes and numbers of instances to traces
• a map from actors, classes and programs to traces
In this chapter we define ¹º for some selected statements, methods, classes and
programs. See Appendix C for the complete denotational semantics.

Semantics for statements. A skip statement neither changes the state of the
actor nor produces an event.

¹skipº(σ) = {(σ, [])}

The sequential composition of statements records the changes and traces gener-
ated by the two statements in the sequential manner.

¹s1; s2º(σ) = {(σ2, t1 · t2) | ∃σ1 : (σ1, t1) ∈ ¹s1º(σ)∧ (σ2, t2) ∈ ¹s2º(σ1)}

The variable assignment statement updates the variable v in the state to the eval-
uation value of the expression e. If the evaluation always generates an error (e.g.,

51



Chapter 4. Trace Foundation of Actor Systems

division by zero), the resulting set is empty. This semantics is comparable to can-
celing the whole computation when an error happens as if the line of computation
never happens, implying that the resulting trace sets do not include erroneous
computations. This design decision allows for a cleaner composition of traces on
method and actor levels (and also class and program levels in [AD12]). This
approach is also followed every time an expression needs to be evaluated.

¹v := eº(σ) =
�

(σ′, []) | ∃val : val= E(e)σ∧σ′ = σ[v 7→ val]
	

The actor creation statement adds the extended creation event to the trace. The
actor identity of the newly created actor is guessed such that the actor creation
relation and the class are appropriate.

¹v := new C(e)º(σ) =







(σ′, t)

�

�

�

�

�

�

∃val, a : val= E(e)σ∧σ′ = σ[v 7→ a] ∧
created(a) = E(this)σ∧ class(a) = C ∧
t = E(me)σ : E(this)σ→ a : new C(val)







The method call statement is treated by generating a future u, that guesses the
task identifier on the target side. The method call emission event is the generated
trace of this statement.

¹v := v′.mtd(e)º(σ) =







(σ′, t)

�

�

�

�

�

�

∃a, val, i, u : a = E(v′)σ 6= null ∧
u= 〈E(me)σ, 〈a, mtd, i〉〉 ∧σ′ = σ[v 7→ u] ∧
val= E(e)σ∧ t = u→ a : mtd(val)







The await statement is interpreted by means of the extra events yield and resume
as the task releases the control to other tasks. The task only continues when the
method return event is present in the buffer of the actor. The method reaction
reaction event is appended to the trace. The resolved value of the future is stored
in the state, to ease synchronization.

¹await v?v′º(σ) =



























(σ′, t)

�

�

�

�

�

�

�

�

�

�

�

�

∃t ′, u, kc , i, a, mtd, val :
u= E(v)σ = 〈kc , 〈a, mtd, i〉〉 ∧
(E(u)σ 6= undef =⇒ val= E(u)σ) ∧
t = yield(u,σ|ca[u 7→ val]) ·

resume(u,σ′|ca) · u� a : mtd / val ∧
σ′|k = σ|k[v′ 7→ val]



























Semantics for methods. Given the semantics of the single statements, the se-
mantics of a task is given below. As a denotation, we use the method definition as
the representation for the task. A class constructor receives a similar treatment.

52



4.3. Denotational Semantics

¹mtd(x){TF y := einit; s;return e}º(σ) =














(σ2, t1 · t · t2)

�

�

�

�

�

�

�

�

∃val,σ1, u : (σ1, []) ∈ ¹TF y := einitº(σ[x 7→ val]) ∧
(σ2, t) ∈ ¹sº(σ1)∧ gen(u) = E(caller)σ ∧
t1 = resume(E(me)σ,σ|ca) · u� E(this)σ : mtd(val) ∧
t2 = u← E(this)σ : mtd / E(e)σ2 · yield(E(me)σ,σ2|ca)















First, the state is updated with the parameter values and the initialization of local
variables. This updated state is passed on as an input for the semantics of the
method body. The trace generated by the execution of a single method call is
essentially the trace generated by the method body. This trace is sandwiched
by the method call reaction event and the method return emittance event. The
information on acquiring and releasing control before and after the execution of
the method call is then placed on the ends of the generated trace.

The semantics of a task provides the basis to define the composed semantics of
a number of tasks i of the same method mtd. We use the function mtdDef(C , mtd)
to extract the method definition of method mtd from class C .

¹mtd, iº(σ) =























t

�

�

�

�

�

�

�

�

�

�

t↓{〈E(this)σ, mtd, j〉 | j ∈ {1, . . . , i}}= t ∧
∀ j ∈ {1, . . . , i} : ∃k, a, val,σk, tk,σ′k :

k = 〈a, mtd, j〉 ∧σk = σ[me 7→ k, caller 7→ a, f 7→ val] ∧
(σ′k, tk) ∈ ¹mtdDef(class(E(this)σ), mtd)º(σk) ∧
t↓{k}= tk ∧ condm(t)























The semantics above demonstrates the general idea how to merge the different
traces into one by means of inverse of projection [Zwi89]. The first line of the
semantics ensures that the merged trace t of i different tasks does come from
the traces generated by the tasks. We use the projection t↓K where K is a set of
task identifiers as a shorthand for a projection to a set of events where tasks in
K take part as the generator or the receiver of the events. Then, we attempt to
create these i traces. First, we create the initial setting of each task, by populating
the initial state with the task identifier, the reference to the caller and the field
values. The initial values of the fields for each task may differ as it is influenced
by other tasks that may have been previously executed. The result of executing
the task under the given conditions is captured by (σ′k, tk). Then the merging of
the traces of the tasks tk is reflected as the inverse of projecting the merged trace
t to each task. The predicate condm(t) ensures that the switching of execution
control between tasks only happen at release points, which is defined below.

∀e1, e2, k1, k2, tk1
, tk2

: e1 · e2 ⊆ t ∧ e1 ⊆ tk1
∧ e2 ⊆ tk2

∧ k1 6= k2 =⇒

(e1 = yield(_)∧ e2 = resume(_))

53



Chapter 4. Trace Foundation of Actor Systems

The release point is indicated by the consecutive yield and resume events in the
trace. The underscore abstracts away from the irrelevant contents. The semantics
of a method is the union over all possible numbers of tasks.

¹mtdº(σ) =
⋃

i∈N

¹mtd, iº(σ)

Example 4.3.1:
To illustrate the denotational semantics of a method, consider the serve method
of the Server class. The statement

w = new Worker(); u = w.do(q); await u?v; return v

generates a set of traces. Here is one of them, where there are two queries q1 and
q2 that a server actor s receives, the task ids for each call are k1 = 〈s,serve, 1〉 and
k2 = 〈s,serve, 2〉, and the corresponding futures of the calls are u1 = 〈k1

caller, k1〉
and u2 = 〈k2

caller, k2〉. The futures of the calls to the workers are guessed to be u′1
and u′2.

resume(k1,σ1|ca) · u1� s : serve(q1) ·
k1 : s→ w1 : new Worker() · u′1→ w1 : do(q1) · yield(u1,σ′1|ca) ·

resume(k2,σ2|ca) · u2� s : serve(q2) ·
k2 : s→ w2 : new Worker() · u′2→ w2 : do(q2) · yield(u2,σ′2|ca) ·

resume(u1,σ′′1 |ca) · u
′
1� w1 : do / v1 · u1← s : serve / v1 · yield(k1,σ′′′1 |ca) ·

resume(u2,σ′′2 |ca) · u
′
2� w2 : do / v2 · u2← s : serve / v2 · yield(k2,σ′′′2 |ca)

The trace above consists of 4 parts. The first and third parts concatenated to-
gether are the trace generated for processing the first call. The second and fourth
parts (the shaded parts) represent the processing of the second call. The predi-
cate condm(t) allows the third part to be shifted around, but not before the first
part because then the projection condition is not fulfilled. The traces generated
by the denotational semantics has the all or nothing flavor (i.e., it describes only
complete traces). A trace that reflects partial execution of a method (e.g., a trace
with the fourth part only until the reaction to the method return event), is not
part of the trace set.

The conditions on the denotational semantics so far already partially support
the desired well-formedness property. For example, we can compare the trace
above with the trace seen Example 4.1.2 without the input events for s. The rest
of the denotational semantics definition strengthens the resulting traces so that
the well-formedness property is achieved. 4

54



4.3. Denotational Semantics

Semantics for classes. The enumeration technique to obtain the semantics of
a method applies as well for classes. Instead of the number of tasks, the enumer-
ation is done on the number of instances of a particular class. First we consider
the semantics of a single actor of class C , given the semantics of all methods in
C . For simplicity we let Mtd(C) to be the set of methods defined in C and assume
there is no method name clash between classes. The class constructor, if present,
is considered as a Unit method that does not produce any method return event.

¹aº=



















































t ′′

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

∃t, t ′ : t↓Mtd(C) = t :
(∀mtd ∈Mtd(C) : ∃tmtd, val, k, a′′ :

tmtd ∈ ¹mtdº(σ)∧ t↓{mtd}= tmtd) ∧
t ′ = yield(〈a,−,−〉, [this 7→ a, ca 7→ val]) · t ∧ conda(t ′) ∧
(∀a′ : a′ 6= a ∧ t ′↓CrEv(a, a′) 6= [] =⇒ |t ′↓CrEv(a, a′)|= 1 ∧
∀e ∈ CrEv(a, a′), e′ : a′ ∈ acq(e′) =⇒ ¬(e′ <t ′ e)) ∧
(∀e : isReact(e)∧ e ⊆ t ′ ∧ emitOf(e) ⊆ t ′ =⇒

emitOf(e)<t ′ e) ∧
t ′′ ∈ addInput(k : a′′→ a : new C(val) · t ′, a)∧ a = taskOf(k)



















































The composed semantics of actors works in a similar way as for obtaining the
semantics of tasks of the same method. The trace t is a merge of traces of the
methods. In other words, the projection of t to the set of (extended) events that
are generated from processing a method call mtd is a trace tmtd that is part of
the semantics of the method call. These events can be gathered via the method
name in the task identifiers. We prefix this trace with a yield after initializing the
class attributes and do some sanity check. First we check through the predicate
conda(t ′) that the class attributes of a have the same evaluation before and after
a control switch happens.

conda(t
′) = condm(t

′) ∧
∀σ′,σ′′ : ∃k′, k′′ : yield(k′,σ′) · resume(k′′,σ′′) ⊆ t ′ =⇒ σ′ = σ′′

Next we check that an actor a′ created by a can only be created once as governed
by the projection of the trace to CrEv(a, a′), a set of creation events where a creates
a′. We enforce that a′ can only be used after it is created. Then, any emittance
event comes in the trace before the corresponding reaction event. (This occurs
for self calls.) At this point, we also add the method call and method return emit-
tance events generated by other actors through the function addInput. For every
reaction event that appears in a trace of a whose emittance is not generated by
a, the emittance event is inserted before the reaction event happens. A safeguard
is present so that a method return cannot precede the call. This function also

55



Chapter 4. Trace Foundation of Actor Systems

guesses a method return emittance event, when the corresponding reaction event
is not available (i.e., the actor does not retrieve the resolved value of a future).
Furthermore, no events are added for internal events.

addInput(t ′, a) =



























t

�

�

�

�

�

�

�

�

�

�

�

�

t↓Gen(a) = t↓Gen(a)∧∀u : ∃e, e′, t ′′ :
(gen(u) = a ∧ target(u) 6= a ∧ t ′↓u= e′ · t ′′ ∧

t ′′ = e∗ ∧ eCore(e′) = eCore(e)∧ isRet(e′) =⇒
t↓u= e′ · emitOf(e) · t ′′) ∧

(gen(u) 6= a ∧ target(u) = a ∧ t ′↓u= e · t ′′ =⇒
t↓u= emitOf(e) · e · t ′′)



























The addition of the emittance events connects the different actors when their
traces are merged. This connection is visible through the set of events we pick as
the common ground for merging. For an emittance event to appear on a trace of
a receiver, this event has to really be generated, i.e., it appears on the trace of the
generator. Only then the trace of the receiver and the trace of the generator can be
merged together. In other words, the emittance events become the synchroniza-
tion points between different tasks, and later on actors. This addition is artificial
in the sense that the actual actor does not produce these emittance events, but it
provides the connection between the automaton model and the class implemen-
tation (see Chapter 11).

Example 4.3.2:
The semantics for actors completes the trace described in Example 4.3.1 by pro-
viding the emittance events to the reaction events. For example, the serve call
emittance events appear before their reaction events as can be seen below as one
of the traces of the server actor s.
u1→ s : serve(q1) · resume(k1,σ1) · u1� s : serve(q1) ·

k1 : s→ w1 : new Worker() · u′1→ w1 : do(q1) · yield(u1,σ2) ·

u2→ s : serve(q2) · resume(k2,σ2) · u2� s : serve(q2) ·
k2 : s→ w2 : new Worker() · u′2→ w2 : do(q2) · yield(u2,σ′1) ·

resume(u1,σ′1) · u
′
1← w1 : do / v1 · u′1� w1 : do / v1 · u1← s : serve / v1 ·

u′2← w2 : do / v2 · yield(k1,σ′2) ·

resume(u2,σ′2) · u
′
2� w2 : do / v2 · u2← s : serve / v2 · yield(k2,σ)

The condition conda ensures that the changes on the state of s are preserved cor-
rectly at each release point.

The example trace above also shows that the insertion of the input events is
done rather liberally. For example, the method return emittance event for u′2

56



4.3. Denotational Semantics

appears before the yield event of the first task. This flexibility does not pose a
problem as the extra events are not explicitly used in the higher level semantics.

4

Analogous to the semantics of methods, we first give the semantics of a class C
having i instances (actors).

¹C , iº=



















t

�

�

�

�

�

�

�

�

�

�

t↓{(C , j) | j ∈ {1, . . . , i}}= t ∧
∀ j ∈ {1, . . . , i} : ∃a, ta ∈ ¹aº :

class(a) = C ∧ ciid(a) = j ∧ t↓Gen(a) = ta↓Gen(a) ∧
∀u : |t↓{e | isEmit(e)∧ isCall(e)∧ fut(e) = u}| ≤ 1 ∧

|t↓{e | isEmit(e)∧ isRet(e)∧ fut(e) = u}| ≤ 1



















This semantics is simpler for classes than for methods, because we are only dealing
with message passing parallelism. We do not have to consider the shared state
within a single actor. The first requirement for a trace t to be in the trace set is
that each event e of the trace must involve at least one of the considered instances
as an active participant. This condition is reflected by the projection t↓A, which
lifts t↓a from a single actor to the set of actors A. The second requirement states
that the trace is merged from traces of the instances, such that the event ordering
on the traces generated by an instance of C remains the same in the merged
trace. Because the focus is only on the generated portion of the trace, we put in an
additional condition on the method calls and returns, such that the added input
events is present only once in the trace. This condition yields flexibility on the
instances not to react to every input event coming their way, while maintaining
the well-formedness of the resulting traces.

The semantics of class C is the aggregation of all possible number of actors of
that class.

¹Cº=
⋃

i∈N

¹C , iº

Semantics for programs. Given a program P that has a set of classes Cls(P),
the trace semantics of P is defined as follows. We assume that the body of P
is represented by a special class called Main containing a parameterless method
main. The content of main is exactly the body.

¹Pº=











t ′

�

�

�

�

�

�

�

�

Main /∈ Cls(P) ∧
∀C ∈ Cls(P),∃tC : tC ∈ ¹Cº∧ t↓{C}= tC ∧
∃t, a, u : t↓Cls(P) = t ∧ class(a) = Main∧ gen(u) = a ∧ t↓u= [] ∧

t ′ = remCr(u→ a : main() · t)↓E











57



Chapter 4. Trace Foundation of Actor Systems

Similar to the class semantics, the trace t is composed of traces tC given by all
the classes C of program P. Through the use of the projection operator t↓Cls(P),
which is defined to be t↓{a | class(a) ∈ Cls(P)}, we ensure that the trace t does
come from the merging of traces in the class semantics. Then, the traces are
stripped from the additional information needed to compose the traces of the
individual elements of the method executions. This is done via the function remCr
which removes the task information from an actor creation event, followed by a
projection to the set of events E which throws away the yield and resume events.

remCr([]) = []

remCr(e · t) =

¨

a→ a′ : new C(val) · remCr(t) if e = k : a→ a′ : new C(val)
e · remCr(t) otherwise

An important property that the denotational semantics has is that the resulting
traces are well-formed. This property follows from the careful conditions placed
on the definition of the semantics of each syntactic construct.

Lemma 4.1 (Well-formedness of the denotational semantics):
Let P be a program and t a trace in ¹Pº. Given a set of actors A where each
actor is of class C ∈ Cls(P), t is well-formed with respect to A.

Proof:
The first condition on the method call cycle follows from the definition of method
calls, the definition of addInput and the sanity checks, particularly that any emit-
tance event comes in the trace before the corresponding reaction event. The sec-
ond condition on monotonicity of known actors follows from the predicates condm
and conda that the knowledge of an actor is passed consistently from one release
point to the next one and the merging restrictions. The third condition on the
freshness of names of the created actors follows from the sanity check for actor
creation events and the merging restriction on the definition of ¹C , iº. �

From this lemma, we can derive the following corollary on the well-formedness
of the traces of an actor. We use this result as the basis for proving a sound link
between the verified class invariants and the automaton model (see Chapter 11).

Corollary 4.1 (Well-formedness of traces of an actor):
Let a be an actor and t a trace in ¹aº. Then remCr(t)↓E is well-formed with
respect to {a}.

58



4.4. Discussion

4.4 Discussion

4-event semantics. Events are more commonly defined without any splitting
[VT91; JO04; KBR05; DJO08; AD12]. That is, there is no distinction between the
sending of a message and its receive or reaction. Instead of having two events3

a → b : mtd(x) and a � b : mtd(x), there would only be one event: a → b :
mtd(x). This means that both a and b deal with the same event, much in a similar
vein to the merging between the traces.

At the first glance, this splitting introduces more complexity from the specifica-
tion perspective as the alphabet is larger. However, it enables us to focus directly
on what happens to a certain actor. If we look back at Figure 4.1, the 4-event
semantics allows us to talk exactly what happens on one execution lifeline. Con-
sequently, the model and the proof system (Chapter 11) becomes simpler as rea-
soning about a class can be done without considering the activity of actors in the
environment [DDJO12].

Observable events of an actor. The denotational semantics of an actor ¹aº em-
ploys the set of input emittance events. As explained in Section 4.2, we consider
these events as part of observable events of a. This view differs from Din et al.
[DDJO12] where only the events generated by an actor are deemed observable
from that actor. Indeed, the way we specify the automata (Chapter 10) supports
this view. The benefit of including the input emittance events is that the automata
can emulate the actions the environment makes. By showing a sound connection
between the verification method of Din et al. and the automaton model for the
classes (Chapter 11), we argue that this view difference is not significant.

Denotational semantics of Ahrendt and Dylla [AD12]. The denotational se-
mantics of αABS is defined in a similar way as the denotational semantics of Creol
proposed by Ahrendt and Dylla. Some of the definitions are tweaked to fit the con-
text. Apart from syntactic differences of αABS and Creol, Ahrendt and Dylla use
2-event semantics instead of a 4-event semantics as the basis for the traces. As a
result, they have to introduce more extra events to the trace set. In addition to
the yield and resume events that appear in Section 4.3, a pair of extra events invoc
and comp are needed to mark when a task execution starts and finishes, respec-
tively. This extra pair of events are represented by the method call reaction and
the method return emittance events.

3A slightly different notation where instead of futures, a represents the caller actor.

59



Chapter 4. Trace Foundation of Actor Systems

Ahrendt and Dylla leave many of the safe guards needed to ensure well-formed
traces until the program level (i.e., ¹Pº). These safe guards essentially construct
a partial order between the emittance and reaction events. We shift some of the
burden to the actor level via the addInput function. Because of this choice, we can
ensure that a trace of an actor is well-formed.

Other semantics for the actor model. Based on Agha’s actor model [Agh86],
Vasconcelos and Tokoro [VT91; Vas92] propose a Mazurkiewicz’s trace model
([Maz86]). In contrast to the interleaving semantics used in this report, the traces
are extracted from some concurrent semantics of an actor system which relies on
an independence relation and the sequential behavior obtained from the implemen-
tation. This relation defines which pair of events that can occur simultaneously.
Because the focus is on abstract description of the behavior of an actor system, the
creation of actors are left out from the semantics. Extracting the independence
relation from an implementation is challenging and how to compose the trace
semantics of parts of a system is still an open question.

Talcott defines and refines several semantics for Agha’s actor model in the open
context [Tal98]. She compares the abstractness of each semantics and defines a
notion of equivalence on each semantics to perform reasoning. Events used in
these models are only of one kind: 〈e : a / m〉, where e is a unique tag, m is a
message (or method calls in our terms) and a is an actor to which m is targeted.
The caller information is not present and the creation of actors are done implicitly.
Futures are not featured.

The first model called event paths is an abstracted operational model based
on rewriting logic [Tal96]. This model is based on actor theory configurations
(ρ,χ)(B, E | h), each of which consists of an interface (ρ,χ) as explained above,
a set of actors and their behavior B, a set of pending events E, and the history of
the delivery of events h. The behavior of the actors is governed by rewrite rules
which induce changes on an actor theory configuration. Each rule specifies what
an actor may do when it consumes a message. More precisely, a rule application
rewrites the configuration such that the event containing the consumed message
is removed from E and appended to h, the behavior of the actor is updated, new
actors along with their initial behavior are added to B, and the events generated
by the actor is put into E. Two additional generic rewrite rules mimic the interac-
tion with the environment: environment sending (input) messages to the system
and the system delivering (output) messages to the environment. The rewrites
produce labeled transitions, where the labels indicate the delivery of messages
d(e), incoming input messages from the environment in(e), and outgoing output
messages to the environment out(e). The sequences of transitions yield computa-

60



4.4. Discussion

tions. An event path (ρ,χ)e is the resulting interface and the sequence of labels
of the transitions of a computation.

The second model is the open event diagrams, a generalization of event dia-
grams proposed by Grief [Gre75] and formalized by Clinger [Cli81]. An open
event diagram (ρ,χ)〈A, D, P, activator,

arr
−→, acqB, Cr〉 stores the information about

the interface of a group of actors (ρ,χ), the set of internal actors A, the set of
delivered events D, the set of pending events P, the activator function that asso-
ciates to each event e ∈ D∪ P the event that caused e to be generated, the arrival
order

arr
−→ of events to each internal actor of the group, the acquaintances acqB

of each internal actor and the creation function Cr identifying the creator of each
internal actor. Because an open event diagram does not provide a total order-
ing between the events, it may represent more than one event path. Similarly,
an open event diagram may represent a number of traces of an ACA. However, it
still represents a computation modulo permutation of the independent transitions
(cf. the trace semantics by Vasconcelos and Tokoro), and does not constitute all
possible behaviors of a component (instance).

The third model is the interaction diagrams which can be thought as a compact
version of open event diagrams, focusing only on the external events. An inter-
action diagram (ρ,χ)〈I , O,≺, A〉 keeps only an aggregated information in form
of a partial order map ≺ from the input events in I to the output events in O.
Because the ordering of the input events is not given, not every interaction dia-
grams is admissible. Only when such a well-formed total ordering called global
time exists between the events is an interaction diagram admissible. Events in
I correspond to the emittance input events, while events in O correspond to the
emittance output events.

The fourth model is the extraction of interaction paths from interaction diagrams
with respect to some global time. Formally, an interaction path is of the form
(ρ,χ)〈e, A〉, where the sequence of events e consists only of input and output
events with the set of internal actors A needed for defining its composablility with
another interaction path.

Compared to the denotational semantics described in Section 4.3, Talcott’s mod-
els are more dynamic in nature, in the sense that the semantics include the ac-
tors that are initially present. The closest model to our denotational semantics is
clearly the interaction paths. The main difference is that the sequence of events
e an interaction path has consists only of the interaction of the group of actors
with its environment. This representation fits to the notion of external traces de-
scribed in Section 4.2. The idea of describing the externally observable behavior
of a group of actors is explored in the next chapter, where we described the com-
ponent notion.

61



Chapter 4. Trace Foundation of Actor Systems

Calculi for actors. Caromel et al. [CHS04; CHS09] propose a calculus, called
ASP, to provide a minimal setting to study “object-oriented languages with asyn-
chronous communications, futures, and sequential execution within each parallel
process”. This calculus extends the ς-calculus [AC96] by adopting the actors as
objects and allowing the use of shared futures. Unlike the model discussed here,
each actor can only handle one task at a time. Every time the value of a future is
needed, the actor blocks until the future is resolved. A similar hierarchical struc-
ture of components is defined, where each component is represented by a fixed set
of actors with fixed topology. The restrictions placed on the actors and the com-
ponents are needed to ensure the system behaves deterministically. No explicit
verification methods are given to check the correctness of the functional behavior
of the system.

Gaspari and Zavattaro [GZ99] and Agha and Thati [AT04] develop process al-
gebra formalisms of the actor model. The challenges with adopting process alge-
bra such as CCS [Mil82], CSP [Hoa78] and π-calculus [Mil99] lie on the asyn-
chronous communication and the persistent first-class actor names. Gaspari and
Zavattaro follow the approach of asynchronous π-calculus [HT91] to model the
asynchronous communication and the change of state on an actor is emulated by
introducing a new name that is used only explicitly to execute the state change.
However, their process algebra contain primitives that are not present in the ac-
tor model. Agha and Thati develop Aπ-calculus to get around these primitives by
imposing type restrictions on π-calculus, similar in nature to what is done by San-
giorgi and Walker to model object-orientation in π-calculus [SW01, Chapter 10].
Neither of these calculi features the use of futures.

62



CHAPTER 5

Component Representation and
Open Systems

Central to this thesis is the notion of components. Following Szyperski’s definition
of components [Szy98], the following requirements should be satisfied:
• Components are stateless.
• Components should allow the construction of increasingly large systems.
• Components need clear semantical interfaces that can hide internal behavior.
• Components can be independently deployable.
The stateless requirement hints that a component should be based on the descrip-
tion of the run-time entities. Only its instances have states. We can interpret
the second requirement as finding a mechanism to reuse components to build
bigger components. The interface requirement is identified as defining what a
component provides to its users and what it requires to function properly. The last
requirement can be roughly interpreted as a component being self-contained to
enable its instantiation and encapsulate its features.

We identify these aspects in our setting by looking into the fundamental con-
cepts. The actor model stipulates that a system is represented by configurations,
each of which consists of actors [Agh86, Chapter 5]. Actors, however, are dy-
namic, run-time entities that have states. What is stateless is their description,
which in Chapter 3 are classes. Classes are the building blocks for implementing
a system. Moreover, a class has a clear interface that describes which methods
an actor of that class provides and what the actor requires from other actors in
order to operate. The provided interface of a class is described by the interface a
class is implementing, while the required interface can be extracted from the im-
plementation by analyzing the (parameters of the) method call and actor creation
statements present in the implementation.

Using classes as the primitive entities, a component can roughly be seen as a
set of classes. Consequently, when a component is instantiated, the instantiation
is represented by a set of actors. Some questions still remain, namely
• what becomes the interface of a component,

63



Chapter 5. Component Representation and Open Systems

• when a set of classes becomes independently deployable, and
• what the precise link of a component with the actors is.

Agha et al. [AMST97] answer the first question in the context of actors by keep-
ing track which actors are exposed. Exposed actors are the medium for interac-
tion, as an actor that is not exposed to any other actors cannot be a target of a
call. The interface of a set of actors A has two parts 〈ρ,χ〉:
• the (receptionist) actors ρ of A that are exposed to actors outside of A, and
• the (external) actors χ outside of A that are exposed to actors of A.
This interface may change as A interact with other actors, but the change is mono-
tonic. That is, once an actor is a receptionist actor of A, it is always a receptionist
actor (similarly for the external actors).

This answer is abstracted on the class level to some extent by analyzing the
class implementation, particularly the class and method call parameters and the
returns. Aggregating the interfaces of the classes whose actors can be exposed
as a result of being passed around as parameters and returns produces an over-
approximation of the provided and required interfaces of a component. A precise
characterization of the interface of a component is still an active research field
(see, e.g., [CNW13]).

The answer to the second and third questions depends on how a component
is instantiated and what constitutes as the set of actors of such an instantiation.
We combine two ideas: an activator class [Osg] and the creation relation between
the actors [AMST97]. Designating an activator class to a set of classes means that
when the component is instantiated, an actor a of the activator class is instan-
tiated. This actor, called the head actor, becomes the initial member of the set
of actors. Then, this set grows dynamically based on other actors a transitively
creates (e.g., the worker actors transitively created by the server actor in Sec-
tion 2.4.2). This set of actors is called a component instance, while the creation
relation which forms a tree is called the actor creation tree.

To create an actor, the class of that actor must be known. Hence, this class must
be part of the component. From this requirement, we can define a component to
be independently deployable, if the class of any actor that can be created by the
head actor is contained in the set of classes represented by the component. We
name this kind of set of classes as a creation-complete set.

An effect of this requirement is that the behavior of all transitively created ac-
tors are known. However, it does not imply that the behavior of all actors that
interact with the component instance is known. The behavior of external actors
remains unknown. How the receptionist actors are used is also unknown. The
distinction between known and unknown behavior allows for the categorization
of actor systems into open and closed systems.

64



5.1. Closed Systems

A closed system is essentially a system where it cannot influence and be influ-
enced by the environment is running in. Otherwise, the system is open [HP85].
In terms of the interface of actor systems, a closed system is a system whose inter-
face contains no receptionist and external actors [AMST97]. In other words, the
key to a closed actor system is an empty interface: an interface that contains no
method signatures. Because the head actor of a component instance is exposed
to its creator, a component generally represents an open system. However, if the
environment has no means to influence the behavior of the head actor after it is
created the component represents a closed system. This is technically done by
checking whether the activator class implements an empty interface.
Chapter outline. In this chapter we formalize the distinction between closed (Sec-
tion 5.1) and open systems (Section 5.2). The chapter ends with some discussion
on the component notion.

5.1 Closed Systems

To begin the exposition on closed and open systems, we first define what systems
are. A system for a class-based actor language such as αABS is described by a set
of classes. Within this set, there is a designated class, called the activator class,
which is invoked to initialize the system, similar to the Main class concept in Java
and many other class-based languages. The constructor of this class can be seen as
the initial main method that is executed when an actor of this class is created. In
αABS, a system can be represented by a program P by encapsulating the body of
P in some fixed class which act as the activator class, as done for the denotational
semantics ¹Pº (Section 4.3).

Definition 5.1 (System):
A system is described by Sys= 〈C, C0〉 is a set of classes C ⊆ CL with a distin-
guished activator class C0 ∈ C.

One important characteristic of a class-based language is that to create an actor
of class C , the corresponding class definition must be known. In terms of a system,
C must be in the set of classes of the system. A system that satisfies this condition
is called creation-complete.

Definition 5.2 (Creation-complete class sets):
Let C ⊆ CL be a set of classes. C is creation-complete if for each actor creation
message new C ′ in aMsg(C) of any class C ∈ C, C ′ ∈ C.

65



Chapter 5. Component Representation and Open Systems

Example 5.1.1:
The pair 〈{Server},Server〉 is not a creation-complete system because a server
may create a worker, yet the class Worker is not within the set of classes. The pair
〈{Worker},Worker〉 on the other hand is a system because the only actors a worker
may create are of the same class. 4

A closed system is defined as a creation-complete system whose activator class
implements an empty interface and has no class parameters1.

Definition 5.3 (Closed systems):
A creation-complete system Sys= 〈C, C0〉 is a closed system if the interface C0
implements is an empty interface and C0 has no class parameters.

Example 5.1.2:
Let Main be a class that implements an empty interface and whose constructor cre-
ates a server and calls the serve method. Then, the system 〈{Main,Server,Worker},
Main〉 is a closed system. 4

When a closed system is executed, the environment cannot influence the execu-
tion of the instantiated system any longer because it cannot perform any method
calls on the head actor. Furthermore, the instantiated system cannot influence the
environment as no actors of the environment are exposed to the system to begin
with. To show this property, we represent a closed system as a program P and
show for every trace of the denotational semantics of P that there is no interac-
tion between an actor of a system and an actor of the environment. To distinguish
actors part of the system from actors part of the environment, we check whether
the ancestors of an actor includes the head actor. We define the ancestors of an
actor as a transitive closure of the actor creation relation.

ancestors(a) = {a} ∪ {a′ | ∃a′′ ∈ ancestors(a) : a′ = created(a′′)}

Using this function, we over-approximate all actors that can be created by a.

descendants(a) = {a′ | a ∈ ancestors(a′)}

Lemma 5.1 (Closed system interactions):
Let program P be a closed system and a is the head actor. Then,

1The restriction on class parameters can be loosened up slightly by allowing data types that contain
no actors to be part of the class parameters.

66



5.2. Open Systems and Components

∀t ∈ ¹Pº, u : ∃u′ : u′→ a : main() pr t ∧ t↓u 6= [] =⇒
a ∈ ancestors(gen(u))∧ a ∈ ancestors(target((t↓u)[1])) .

Lemma 5.1 (Continued)

Proof (by induction):
By Lemma 4.1 and Definition 5.2, a trace t ∈ ¹Pº is well-formed with respect to
descendants(a). Therefore, the first element of t↓u, when this projection does not
yield an empty sequence, is a method call emittance event e. Let t ′, t ′′ be traces
such that t = t ′ · e · t ′′. Then we show by induction on t ′ · e that the caller and the
target of e are actors of the system.

• For the base case, e is a call to a invoking the method main. By the definition
of ¹Pº, the caller is a. Thus, the property holds.

• For the inductive case, t ′ has no calls whose caller and target actors are part
of the environment. Because Main implements an empty interface, a cannot be
called by the environment to expose actors of the environment to a. Further-
more, Main has no class parameters. Consequently, acq(t ′) ⊆ descendants(a).
Because no other actor of the system is exposed to the environment, and no
actors of the environment are exposed to the system, the caller and target of e
must be actors of the system. Thus, the property holds. �

5.2 Open Systems and Components

Let us loosen up the constraint of the activator class, by allowing the environment
to interact at least with the head actor. That is, we open up the system so it be
influenced by the environment. This kind of systems is called open systems.

Definition 5.4 (Open systems):
An open system Sys= 〈C, C0〉 is a creation-complete system with some activa-
tor class C0 ∈ C such that C0 implements a non-empty interface.

The relationship between an open system and a closed system is established by
some context. The obligation of the context is to ensure the behavior of each actor
is known. This obligation is fulfilled by plugging in some classes that are needed
to close the system. The context may also use some classes that are used in the
system.

67



Chapter 5. Component Representation and Open Systems

Definition 5.5 (Context):
A context of an open system Sys= 〈C, C0〉 is X = 〈Cx , C x

0 〉 such that C∪Cx is
creation-complete and C x

0 ∈ Cx implements an empty interface and has no
class parameters.

The closure of open systems with appropriate contexts is described by the follow-
ing proposition.

Proposition 5.1 (Open system + context = closed system):
Let Sys= 〈C, C0〉 be an open system and X = 〈Cx , C x

0 〉 a context of Sys. Then
Sys′ = 〈C∪Cx , C x

0 〉 is a closed system.

Proof:
Follows from Definitions 5.3 to 5.5. �

The execution of an open system produces a trace where the environment can
call methods of exposed actors of the instantiated system. More precisely, once an
actor a of the instantiated system is exposed to the environment, then there is a
context where a is called in any way providing it is consistent with the knowledge
the environment currently knows about the exposed actors. To characterize this
property, first we broaden the denotational semantics of αABS to cover systems
by taking a similar semantics to that of programs.

¹C, C0º=



















remCr(t)↓E

�

�

�

�

�

�

�

�

�

�

t↓C= t ∧∀C ∈ C,∃tC : tC ∈ ¹Cº∧ t↓{C}= tC ∧
∃a, a′, k, v :

class(a) = C0 ∧ a /∈ ancestors(a′) ∧
t 6= [] =⇒ k : a′→ a : new C0(v) pr t ∧

created(t) ⊆ descendants(a)



















The denotational semantics of a system is a set of traces merged from the traces
of classes, such that each trace begins with the creation of the head actor a and
all created actors in the trace are descendants of a.

Important for the openness property is the exposed actors. Only through ex-
posed actors can an environment interact with an open system. Given a set of
actors A, some actor a is exposed to A if it is created by an actor of A or a is an
acquaintance of an event directed to some actor in A.

Definition 5.6 (Exposed actors):
Given a set of actors A and a trace t, the actors exposed to A according to t
are contained in the following set:

68



5.2. Open Systems and Components

exposed(t, A) = created(t↓{e | isCreate(e)∧ caller ∈ A∧ created(e) /∈ A}) ∪
acq(t↓{e | (isCall(e)∧ target(e) ∈ A)∨ (isRet(e)∧ caller(e) ∈ A)})

Definition 5.6 (Continued)

In the previous section, we have seen how to split actors of a system and actors
of the system’s environment by referring to the descendants of the head actor.
Based on this split, we can say an actor a of a system is exposed to the system’s
environment if the environment gains the knowledge of a through some prior
interaction. Once a is exposed, we can expect that the environment may call a
method of the provided interface (implemented by the class) of a at any time
afterwards. It is not important which actor of the environment does the call, as
the target actor does not get to access the caller information. Open systems fulfill
this property as formalized by the following lemma.

Lemma 5.2 (Open system interactions):
Let a be the head actor of an instantiated open system Sys= 〈C, C0〉, and the
actors of the environment be represented by Aenv = A−descendants(a). Then,

∀t ∈ ¹C, C0º : ∃a′ ∈ Aenv, 〈Cx ,Cx
0〉, u :

a′→ a : new C0(v) pr t ∧
〈Cx ,Cx

0〉 is a context of Sys∧ gen(u) ∈ Aenv ∧ t↓u= [] ∧
∀a′′ ∈ exposed(t, Aenv), m ∈ aMsg(class(a′′), in) :

isCall(m)∧ acq(m) ⊆ exposed(t, Aenv)∪ Aenv =⇒
∃t ′ ∈ ¹C∪Cx , C x

0 º : t ′↓descendants(a) = t · u→ m

The formula above represents the openness property by establishing an appro-
priate context that allows the generation of a trace of the system instance. This
context is framed such that once an actor of the system is exposed to the environ-
ment, the trace can be extended by a method call to that actor. The trace of the
system instance begins with the creation of the head actor by the environment.
The provided interface of an exposed actor a′′ is represented by the allowed input
messages of the class of a′′.

Proof (by construction):
Because of the interface model2, we can assume without loss of generality that

• Cx ∩C= ;, and
2The programming to interfaces principle avoids a problem called replay [Ste06]. The replay prob-

lem appears when the system instance exposes some actor to an actor of the environment whose
class is part of the system. Because the implementation of the actor is fixed, that environment
actor can only use the exposed component actor in a specific way. In particular, this environment
actor may only store the exposed component actor and openness is not achieved.

69



Chapter 5. Component Representation and Open Systems

• C x
0 is such that all necessary actors of the context are created before the acti-

vator class of the component is created.

Because the classes are disjoint, we can explicitly manipulate the behavior of each
actor of the environment. The class C ∈ Cx has as many parameters as needed to
receive the actors of the environment. For each method definition mtd of a class
C ∈ Cx , the acquaintance is stored in the state and disseminated to all other actors
of the environment. Furthermore, mtd contains an internal call, whose method
definition is recursively sending calls to the stored actors. By constructing such a
context, given a trace t of the open system, the context can make it such that t is
extended by a method call to some exposed actor. �

An important observation is that the set of classes of an open system can be
constructed from the activator class. The proof of the following lemma shows
how this is done.

Lemma 5.3:
Let C0 ∈ CL be a class. Then there is a unique minimal set of classes C ⊆ CL
such that 〈C, C0〉 is an open system.

Proof (by construction):
Let consComp : 2CL→ 2CL be a function defined as follows

consComp(C) = C∪ {C ′ | new C ′ ∈ aMsg(C)∧ C ∈ C}

(i.e., a function that gathers all classes that can be created by classes in C includ-
ing themselves). The subset relation forms a complete lattice and consComp is
continuous, as we can only add new members in the set. Therefore, we can apply
Kleene’s fixed-point theorem and obtain a unique least fixed point of consComp
applied to the activator class C0. �

Components are generally open systems, as they commonly interact with their
users. The lemma above allows us to separate components from open systems
by eliminating classes that are not necessary for a component to function. Thus,
we have a set of classes that are independently deployable without requiring the
description of other classes.

Definition 5.7 (Components):
Let Sys = 〈C, C0〉 be an open system. Sys is a component if there exists no
subset C′ of C such that C0 ∈ C′ ∧C′ = consComp(C′).

70



5.3. Discussion

Because the set of classes can be uniquely derived given an activator class, we
can represent a component Sys= 〈C, C0〉 simply by its activator class. We use the
notation [C0], called the boxed class, to refer to component Sys. The classes in C
are the companion classes of C0. The universe of components is represented by
[CL].

Example 5.2.1:
The pair 〈{Worker,Server},Worker〉 is an open system, but it is not a component
because a worker never creates a server. The pair 〈{Worker},Worker〉 on the other
hand is a component because the only actors a worker may create are of the same
class. In addition, we can combine the Worker component with the Server class to
create a new component: 〈{Server,Worker},Server〉. These component pairs are
referable by [Worker] and [Server]. 4

5.3 Discussion

The term activator class used in this chapter comes from OSGi [Osg], where their
component is instantiated through BundleActivator. The model where the com-
ponent is instantiated by instantiating a single actor of the activator class is not
uncommon. For example, it coincides with the “actor adaptor” of CORBA Com-
ponent Model [OMG06] and the “class factory” of COM [Mic99]. Should a need
arise for having more than one initial actor, our model can simulate it by having
the activator class as a stub that only creates the other actors.

An important part of a component notion is how the component is instantiated.
When a component is instantiated, the resulting actors form a group which pro-
vides a clear boundary between one instance and the other. We identify three par-
ticular ways to group actors into instances of a component: static, programmer-
defined and dynamic.

Static component instance. A static component instance contains all actors
in C. As such, grouping the actors into the component is trivial to define,
by following the class of each actor. However, the drawbacks of doing so
are numerous. As the component instance contains all actors in C, every
actor is at the boundary. This means that we cannot hide the internal be-
havior. Furthermore, the components then cannot share classes, as there is
no way to separate the run-time instances of intersecting components. In
our example, a static component instance of the 〈{Server,Worker},Server〉
component includes all server and worker actors. Hence, we cannot focus
only on a single server with the workers it creates to represent the run-time

71



Chapter 5. Component Representation and Open Systems

view of the component. As a consequence, not only the focus on the activa-
tor class is lost, it is also difficult to specify the behavior that the component
should have. Nevertheless, with this kind of component instances, we can
apply abstraction techniques such as grouping together the buffers of differ-
ent actors of the same class [DKOne]. D’Osualdo, Kochems and Ong utilize
this abstraction technique for verifying safety properties of closed actor sys-
tems.

Programmer-defined component instance. A programmer-defined compo-
nent instance contains all actors in the way how the programmer defines
it by specifying at the point of creation to which component instance the
newly created actor belongs to. For example, JCoBox [SPH10] does this
by extending the new statement with in a to say that newly created actor
resides in the same component instance as a. Various type-based owner-
ship approaches can also be used (see, [CNW13] for state-of-the-art). This
approach is the most flexible as it provides fine-grained information which
actors are at the boundary. However, this leads to additional constructs
which makes it more complex to handle.

Dynamic component instance. A dynamic component instance contains all
actors that are created directly or indirectly by the initial actor of the ac-
tivator class. In other words, the component instance is formed from the
actor creation tree, with the initial actor of the activator class as the head.
This gives a more fine-grained grouping than the static approach, but less
specific than the programmer-defined approach. Additionally, we can keep
track of which actors are on the boundary, while keeping track which new
actors are included in the component instance. This focuses the attention
on the behavior at the component’s boundary. After all, the hidden actors
do not appear at the boundary and hence hiding them reduces the com-
munication with the context. Because of its dynamicity, it is less straight
forward than the static approach to provide upfront the exact instances of
a component. In this thesis, we follow the dynamic approach of identifying
component instances which allows the use the activator class to represent
the component. We generalize the setting given in [KPH13] to deal with
non-shared futures.

72



PART II.

Automaton Framework for Actor
Systems

73





CHAPTER 6

Dynamic I/O Automaton Model

As described in Chapters 1 and 2, dynamic creation and dynamic topology are
prevalent features of actor systems. However, automaton models tend not to
provide direct support for dynamic creation and dynamic topology. A promising
proposal that supports dynamic creation is the dynamic I/O automaton (DIOA)
model [AL01; AL15].

The basis of the DIOA model is the I/O automaton model [LT87], which is de-
signed especially to represent open systems [FL05]. As typical in other automa-
ton models, an I/O automaton consists of states and labeled transitions. What is
distinct about I/O automata is the categorization of the labels of the transition,
called actions, into input, output and internal. Input and output actions represent
the communication between the entity represented by the automaton and its en-
vironment. Together these actions are called external actions. An internal action
is an action that is visible only to the entity itself. Collectively, the actions and
their categorization are called the signature of the automaton.

An action is called enabled on a certain state if there is a transition from that
state with that action as the label. The I/O automaton model requires that each
automaton is input-enabled, meaning that regardless the state, each input action
in the signature must be enabled. This requirement nicely reflects the open system
setting and is beneficial to detect serious errors when components of a system face
unexpected inputs [Lyn96, pp. 202–203].

To support dynamic creation, the DIOA model extends I/O automata in the
following way:

• Instead of having a generic one automaton model, the dynamic I/O automa-
ton model introduces two layers of automata (Figure 6.1): the signature I/O
automata (SIOA) and the configuration automata (CA). The SIOA represent
the behavior of the entities on their own, while the CA represent the collective
behavior of these SIOA while keeping track which entities are present (i.e.,
alive). A CA itself is actually an SIOA derived from the SIOA that represent the
entities, such that each state of the derived SIOA is mapped to a configuration
that describes the present SIOA and the current state of each of those SIOA.

75



Chapter 6. Dynamic I/O Automaton Model

Signature I/O automata (SIOA)

Configuration automata (CA)

Figure 6.1.: DIOA model

• The SIOA extend I/O automata by allowing the signatures to change depend-
ing on the states. This notion of state signature is motivated by the dynamic
creation aspect, which may cause new actions to be introduced into the signa-
ture and present actions to be eliminated or recategorized.

Allowing signatures to change on SIOA, particularly the input signatures, means
that certain assumptions about the environment can be encoded. Being more
explicit towards what the environment can do means that the verification effort
does not have to deal with impossible actions by the environment.
Chapter outline. The description of the DIOA model is presented in two sections.
Section 6.1 details the SIOA, while Section 6.2 defines the CA. The notation and
convention used to describe the DIOA model follows from Attie and Lynch’s latest
technical report [AL15]. Section 6.3 provides a short discussion on the differences
of the DIOA model presented in this chapter to that of Attie and Lynch. Discussion
on other models suited to represent actor systems is postponed to the following
chapters, where the discussion is more appropriate.

6.1 Signature I/O Automata

The general structure of an SIOA is captured by a signature automaton (SA): a
transition system with functions that map each state of the automaton to the sets
of input, output and internal actions that the automaton may take in that state.

Important to an SA is its state signature: a description of its input, output and
internal actions parameterized by the state. Assuming a universal set of actions
Act1, a state signature sig(A)(s) of an SAA in state s is a triple 〈in(A)(s), out(A)(s),
int(A)(s)〉 representing the input, output and internal actions, respectively. The
external signature of A in state s is defined by ext(A)(s) = 〈in(A)(s), out(A)(s)〉.
Given a signature, the b operator yields the union of sets of the signature tuple,
e.g., csig(A)(s) = in(A)(s) ∪ out(A)(s) ∪ int(A)(s). The set of actions A could
execute is represented by acts(A) =

⋃

s∈states(A)
csig(A)(s). We let action l (from

label) to be a typical element of acts(A).
1For the actor model, the universe of actions is represented by the universe of events E

76



6.1. Signature I/O Automata

Definition 6.1 (Signature Automata):
A signature automaton A = 〈states(A), start(A), sig(A), steps(A)〉 is a 4-tuple
where

• states(A) is a set of states,

• start(A) ⊆ states(A) is a non-empty set of initial states,

• sig(A) is a signature mapping where for each s ∈ states(A), sig(A)(s) =
〈in(A)(s), out(A)(s), int(A)(s)〉 and in(A)(s), out(A)(s), int(A)(s) are sets
of actions.

• steps(A) ⊆ states(A)× acts(A)× states(A) is a transition relation.

We assume the set Autids of SA identifiers, a universal set of signature automata
SA and a map aut ∈Map〈Autids,SA〉 such that aut(A) is the SA with identifier A.
These identifiers uniquely represent the signature automata, in the sense that two
different identifiers always refer to two different SA. We write “the SA A” to say
“the SA with identifier A”. The identifiers are used in the definition of CA to
determine whether an SA can be inserted into a configuration.

We write s
l
−→A s′ to represent a transition (s, l, s′) ∈ steps(A). The state s is

called the pre-state of the transition, where as s′ is called the post-state. We drop A
from the notation when it is clear from the context. Following the I/O automaton
model, typical constraints of I/O automata are placed on signature automata.

Definition 6.2 (Signature I/O automata [AL15]):
A signature automaton A = 〈states(A), start(A), sig(A), steps(A)〉 is a signa-
ture I/O automaton if

1. ∀(s, l, s′) ∈ steps(A) : l ∈csig(A)(s).

2. ∀s ∈ states(A) : ∀l ∈ in(A)(s) : ∃s′ ∈ states(A) : s
l
−→ s′.

3. ∀s ∈ states(A) : in(A)(s)∩ out(A)(s) = in(A)(s)∩ int(A)(s) =
out(A)(s)∩ int(A)(s) = ;.

The definition above states when an SA is an SIOA. The first constraint ensures
that only actions that belong to the state signature may be executed in a transition.
The second constraint ensures that the SIOA is input-enabled. The third constraint
requires that the elements of the state signature are always pairwise disjoint. Note
that there is no necessity for an action to remain as an input (or output or internal)
action in all states of the SIOA. Of particular interest is that we can expand the

77



Chapter 6. Dynamic I/O Automaton Model

actions allowed in the signatures only as we need them (e.g., actions that only
occur after some SIOA is created).

As with general transition system (cf. [BK08, p. 24]), the behavior of an SIOA is
formalized using the notion of executions. The notion of traces provides us with
what the observable behavior of an SIOA is. The definition below formally states
what executions and traces of an SIOA are.

Definition 6.3 (Execution and traces):
An execution fragment α of an SIOA A is a non-empty (finite or infinite) se-
quence s0l1s1l2 . . . of alternating states and actions such that

• si−1
li−→ si , and

• a finite fragment α ends in a state.

α is an execution if s0 ∈ start(A).
Given an execution α = s0l1s1l2 . . . of A, the trace t of α in A, written

traceA(α), is the sequence that results from removing all states from α. The
external trace xt of α, written xtraceA(α), is the sequence that results from
removing actions li from α such that li ∈ int(A)(si) and then removing all
states from the resulting sequence.

We write s
α
−→A s′ if there exists an execution fragment α of A starting in s and

ending in s′. If this holds for A, s′ is reachable from s. We write α pr α′ to denote
that an execution fragment α is a prefix of another execution fragment α′. The
same notation is used for traces. Note that the sets of traces of an SIOA are prefix-
closed, meaning if a trace t · e is in the trace set for some state or action e, then t
is also in the trace set.

Parallel composition. A system typically is represented by a number of SIOA,
each representing an entity in the system. One way to see how they interact
is by composing them together. The operation parallel composition provides the
technical definition of how this interaction looks like.

The main idea for the parallel composition is that the composition identifies
the same actions l in different SIOA and combine it as one action. Therefore, all
participating SIOA perform together the transition of l.

As with I/O automata ([Lyn96, p. 207]), not all SIOA can be composed. Two
SIOA that can be composed are called compatible. By compatible, we mean that
internal actions of an SIOA A should not be part of the actions of another SIOA A′.
Otherwise, an internal action of A can force A′ to make a transition. These SIOA

78



6.1. Signature I/O Automata

should also not produce a common output. They may, however, receive the same
input mimicking situations such as multiple devices receiving the same broadcast
message. On I/O automata, this check is performed only by comparing the signa-
tures of automata, because the signature is static. For SIOA, however, this check
must be performed on the states, because the signatures vary with the states. We
follow the conservative approach of Attie and Lynch [AL15] which requires com-
patibility for all possible pairings of the states of the two SIOA being composed,
instead of just checking the compatibility of the state pairs that are reachable in
the execution of the composed SIOA (e.g., as in interface automata [AH01]).

Definition 6.4 (Compatible SIOA):
Let sig = 〈in, out, int〉 and sig′ = 〈in′, out′, int′〉. sig is compatible with sig′ iff
we have:

1. csig∩ int′ = ;,

2. Ósig′ ∩ int= ;, and

3. out∩ out′ = ;.

LetA1,A2 be SIOA.A1,A2 are compatible iff∀s1 ∈ states(A1), s2 ∈ states(A2) :
sig(A1)(s1) is compatible with sig(A2)(s2).

The parallel composition of two such SIOA A1,A2 produces an SIOA A where
common actions of the input signature and output signature of A1 and A2 are
recategorized as internal actions. The transitions of A are derived from the tran-
sitions of A1 and A2 such that when both are able to take a transition of the same
event, then the transition is synchronized in A. Otherwise, only one of the two
SIOA makes the transition and change the state accordingly. The signature recat-
egorization resembles the parallel composition of interface automata [AH01].

Definition 6.5 (Composition of SIOA):
Let A1,A2 be compatible SIOA. The parallel composition of these SIOA, writ-
ten A=A1 ‖A2 is the SA consisting of the following parts:

1. A set of states states(A) = states(A1)× states(A2).

2. A set of initial states start(A) = start(A1)× start(A2).

3. A signature mapping sig(A) such that for each s = 〈s1, s2〉 ∈ states(A),

(a) in(A)(s) = (in(A1)(s1)∪ in(A2)(s2))− out(A1)(s1)− out(A2)(s2)

79



Chapter 6. Dynamic I/O Automaton Model

(b) out(A)(s) = (out(A1)(s1)∪out(A2)(s2))− in(A1)(s1)− in(A2)(s2)

(c) int(A)(s) = int(A1)(s1)∪ int(A2)(s2) ∪
((in(A1)(s1)∪ in(A2)(s2))∩ (out(A1)(s1)∪ out(A2)(s2)))

4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A), such
that (〈s1, s2〉, e, 〈s′1, s′2〉) ∈ steps(A) if

(a) e ∈csig(A)(〈s1, s2〉)

(b) ∀i ∈ {1, 2} : if e ∈csig(Ai)(si) then si
e
−→Ai

s′i , otherwise s′i = si .

Definition 6.5 (Continued)

It is important for the parallel composition operator to be well-defined. This
means that the resulting SA is an SIOA, as shown in the following proposition.

Proposition 6.1:
Let A1,A2 be compatible SIOA. Then A1 ‖A2 is an SIOA.

Proof:
To prove A1 ‖ A2 is an SIOA, we check whether the three constraints on Defini-
tion 6.2 are fulfilled. The first constraint is fulfilled by part 4(a) of Definition 6.5.
The second constraint comes from the input-enabledness of A1 and A2. The third
constraint is fulfilled by part 3 of Definition 6.5.

The parallel composition does not add or remove any action that is present in
the signature of the SIOA operands.

Proposition 6.2:
Let A1,A2 be compatible SIOA. Then for each s = 〈s1, s2〉 ∈ states(A1 ‖ A2),
csig(A)(s) =csig(A1)(s1)∪csig(A2)(s2).

Proof:
Follows from Definition 6.5.3.

Another desirable quality of a parallel composition operator is associativity,
meaning that the order by which the SIOA are composed do not matter. The paral-
lel composition operator is associative as long as we can guarantee that the SIOA
share no input actions. The following proposition shows this property, assuming
that the states are flattened (i.e., 〈s1, s2, s3〉 ∈ states(A1 ‖ (A2 ‖ A3)) instead of
〈s1, 〈s2, s3〉〉).

80



6.1. Signature I/O Automata

Proposition 6.3 (Associativity of parallel composition):
Let A1,A2,A3 be compatible SIOA and such that for each state triple s1 ∈
states(A1), s2 ∈ states(A2), s3 ∈ states(A3) the pairwise input and output
signatures are disjoint. Then A1 ‖ (A2 ‖A3) = (A1 ‖A2) ‖A3.

Proof:
Let Al = A1 ‖ (A2 ‖ A3) and Ar = (A1 ‖ A2) ‖ A3. We prove that Al = Ar by
showing that their set of states and initial states, signature mapping, and transition
relations are equal. From our flattening assumption, it immediately follows that
states(Al) = states(Ar) and start(Al) = start(Ar). Let s = 〈s1, s2, s3〉 ∈ states(Al).
For simplicity, we represent the input and output signatures of the SIOA as follows:

• I1 = in(A1)(s1)

• O1 = out(A1)(s1)

• I2 = in(A2)(s2)

• O2 = out(A2)(s2)

• I3 = in(A3)(s3)

• O3 = out(A3)(s3)

Following Definition 6.2 and the assumption, we gather that
• I1 ∩O1 = I2 ∩O2 = I3 ∩O3 = ;,
• I1 ∩ I2 = I1 ∩ I3 = I2 ∩ I3 = ;, and
• O1 ∩O2 = O1 ∩O3 = O2 ∩O3 = ;.
Then, using these assumptions, we can work out that in(Al)(s) = in(Ar)(s).

in(Al)(s) = (I1 ∪ ((I2 ∪ I3)−O2 −O3))−O1 − ((O2 ∪O3)− I2 − I3)

= (I1 ∪ (I2 −O3)∪ (I3 −O2))−O1 − ((O2 − I3)∪ (O3 − I2))

= ((I1 −O1)∪ (I2 −O3 −O1)∪ (I3 −O2 −O1))− ((O2 − I3)∪ (O3 − I2))

= (I1 ∪ (I2 −O1 −O3)∪ (I3 −O1 −O2))− ((O2 − I3)∪ (O3 − I2))

= (I1 ∪ (I2 −O1 −O3)∪ (I3 −O1 −O2))− (O2 − I3)− (O3 − I2)

= (I1 − (O2 − I3)− (O3 − I2))∪ (I2 −O1 −O3)∪ (I3 −O1 −O2)

= (I1 −O2 −O3)∪ (I2 −O1 −O3)∪ (I3 −O1 −O2)

= (I1 −O2 −O3)∪ (I2 −O1 −O3)∪ (I3 − (O1 − I2)− (O2 − I1))

= ((I1 −O2 −O3)∪ (I2 −O1 −O3)∪ I3)− (O1 − I2)− (O2 − I1)

= ((I1 −O2)∪ (I2 −O1)∪ I3)− ((O1 − I2)∪ (O2 − I1))−O3

= (((I1 ∪ I2)−O1 −O2)∪ I3)− ((O1 ∪O2)− I1 − I2)−O3

= in(Ar)(s)

Through a similar line of reasoning we obtain out(Al)(s) = out(Ar)(s) and
int(Al)(s) = int(Ar)(s). The input and output state signatures of Al (and Ar)
are portrayed by the following Venn diagram as the shaded part.

81



Chapter 6. Dynamic I/O Automaton Model

I1

I2

I3

O1

O2

O3

E

Because csig(Al) =csig(Ar) and both Al and Ar are SIOA, their internal signatures
are the same. Hence, sig(Al) = sig(Ar).

Because the signatures are the same, the set of actions that are represented in
the transition relation is the same on both sides. Furthermore, the synchronization
part is independent on the ordering of the composition operator. Therefore, the
transition relations of Al and Ar are the same. �

The state of a composed SIOA is a Cartesian product of the states of the operands.
If we consider the order of individual state elements in a composed state irrelevant
(i.e., we have unordered tuples), then the parallel composition is also commuta-
tive.

Proposition 6.4 (Commutativity of parallel composition):
Let A1,A2 be compatible SIOA. Assuming the states of A1 ‖A2 and A2 ‖A1
are unordered, then A1 ‖A2 =A2 ‖A1.

Proof:
Follows immediately from the assumption and Definition 6.5.

6.2 Configuration Automata

Some actions have a side effect, namely they create new SIOA. Because SIOA rep-
resent single entities, executing these actions may give no impact on the SIOA
themselves. To model this side effect, Attie and Lynch define configuration au-
tomata. A configuration automaton (CA) is a means to “keep track of the set of
alive SIOA” [AL15, p. 30]. As the name suggests, CA are based on the notion of
configurations: the set A of alive SIOA and a mapping S with the domain A such

82



6.2. Configuration Automata

that S(A) is the current local state of A, for every SIOA A ∈ A. Based on these
configurations and the underlying SIOA, we intrinsically derive the transitions be-
tween the configurations. What is particularly interesting with the intrinsic transi-
tions is that we can add SIOA to the configurations. The configurations and these
transitions then are weaved together to form CA. Because the creation aspect is
only handled on the CA level, CA are the principle semantic objects representing
the systems.

Definition 6.6 (Configuration and compatible configuration):
A configuration C is a pair 〈A,S〉, where

• A is a finite set of SIOA identifiers, and

• S maps each SIOA A ∈ A to a state s ∈ states(A).

A configuration 〈A,S〉 is compatible iff, for all A,A′ ∈ A,A 6=A′ :

1. csig(A)(S(A))∩ int(A′)(S(A′)) = ;, and

2. out(A)(S(A))∩ out(A′)(S(A′)) = ;.

Given a configuration C = 〈A,S〉, the functions auts(C) = A and map(C) =
S extract the set of SIOA identifiers and the local state mapping, respectively.
Furthermore, we use (A, s) ∈ C as a shorthand for A ∈ A∧ s = S(A).

A configuration is an unordered representation of pairs of an SIOA identifier and
its local state. The compatibility condition reflects the compatibility conditions
between SIOA applied to configurations. To establish what kind of transitions a
configuration may take, its signature must be clear.

Definition 6.7 (Intrinsic signatures of a configuration):
Let C = 〈A,S〉 be a compatible configuration. Then, the signature sig(C) =
〈in(C), out(C), int(C)〉 is the intrinsic signature of C, where

• in(C) = (
⋃

A∈A
in(A)(S(A)))− out(C),

• out(C) =
⋃

A∈A
out(A)(S(A)), and

• int(C) =
⋃

A∈A
int(A)(S(A)).

The external intrinsic signature of C is defined as ext(C) = 〈in(C), out(C)〉.

83



Chapter 6. Dynamic I/O Automaton Model

The intrinsic signature of a configuration is formed from combining the signa-
tures of its SIOA members. While an empty configuration is a compatible con-
figuration, it cannot make any transitions as its intrinsic signature contains no
actions.

We define intrinsic transitions
l
=⇒ϕ that avoid transitions to incompatible con-

figurations. An intrinsic transition takes as a parameter a set ϕ of SIOA identifiers
that represents SIOA created by executing the transition. Attie and Lynch take the
view that this parameter is given as part of the configuration automaton.

Definition 6.8 (Intrinsic transitions):
Let 〈A,S〉, 〈A′,S′〉 be arbitrary compatible configurations and ϕ ⊆ Autids.

Then 〈A,S〉
l
=⇒ϕ 〈A′,S′〉 iff

1. l ∈csig(〈A,S〉),

2. A′ = A∪ϕ,

3. for all A ∈ A′ −A : S(A) ∈ start(A),

4. for all A ∈ A : if l ∈ csig(A)(S(A))∧ S(A)
l
−→A s, then S′(A) = s, other-

wise S′(A) = S(A).

An intrinsic transition is defined such that the executed action is part of the
intrinsic signature (Constraint 1) and is an actual transition of some SIOA in the
configuration (Constraint 4). The second constraint states that the transition may
result in a configuration with additional SIOA as given in the parameter. These
newly created SIOA are randomly assigned initial states (Constraint 3).

Note that the definitions of intrinsic signatures and transitions are only given
for compatible configurations. Executing an action on a compatible configuration
may lead incompatible configurations. There are two possibilities how this may
happen:

• An action which involves two or more SIOA in the configuration may cause
these SIOA to move to states with some common output actions.

• A new SIOA is created with an initial state whose signature is incompatible
with the signature of the existing SIOA.

In Chapter 7, we show that in the actor setting, these possibilities cannot occur.
The intrinsic signatures and transitions are two main ingredients to define CA.

What we need to add now are the SIOA themselves. The following definition
shows how they are combined together as CA.

84



6.2. Configuration Automata

Definition 6.9 (Configuration automata):
A configuration automaton C is a triple 〈sioa(C), config(C), created(C)〉 where

• sioa(C) is an SIOA;
(The parts of this SIOA are abbreviated to states(C) = states(sioa(C)),
start(C) = start(sioa(C)), etc., for brevity.)

• a configuration mapping config(C) with domain states(C) such that for all
x ∈ states(C), config(C)(x) is a compatible configuration; and

• for each x ∈ states(C), a mapping created(C)(x) with domain csig(C)(x)
such that for all actions l ∈csig(C)(x), created(C)(x)(l) ⊆ Autids,

such that the following constraints are satisfied:

1. If x ∈ start(C) and (A, s) ∈ config(C)(x), then s ∈ start(A).

2. If (x , l, x ′) ∈ steps(C) then config(C)(x)
l
=⇒ϕ config(C)(x ′),

where ϕ = created(C)(x)(l).

3. If x ∈ states(C) and config(C)(x)
l
=⇒ϕ C for some action l,

ϕ = created(C)(x)(l), and a compatible configuration C,
then ∃x ′ ∈ states(C) such that config(C)(x ′) = C and (x , l, x ′) ∈ steps(C).

4. For all x ∈ states(C)

(a) in(C)(x) = in(config(C)(x))

(b) out(C)(x) = out(config(C)(x))

(c) int(C)(x) = int(config(C)(x))

A configuration automaton consists of an SIOA that acts as a configuration con-
troller, a mapping from the state of the control SIOA to compatible configurations,
and a mapping that states which SIOA is created after executing a transition. We
do not specify this control SIOA, instead it is derived from the SIOA present in the
configurations, provided the constraints are fulfilled.

The constraints placed on a CA guarantee the following. In an initial configu-
ration, each SIOA in the configuration must be mapped to an initial state of that
SIOA (Constraint 1). Constraint 2 uses the intrinsic transitions to describe the
transition of the configuration automaton. This is strengthened by the third con-
straint that the transition relation of CA must include all intrinsic transitions the
CA can do. Unlike the basic I/O automaton model, this constraint means that the

85



Chapter 6. Dynamic I/O Automaton Model

states themselves contain information about their successor states. Constraint 4
states that the signature of a state x of the CA must be equal to the signature of
its corresponding configuration. This constraint may be adjusted similar to the
original definition [AL15] when we define some operators on the CA.

The notions of executions and traces for CA remain the same as those for SIOA,
because the main representative of a CA is an SIOA. Consequently, the trace sets
are also prefix-closed.

Definition 6.10 (Executions and traces of configuration automata):
α is an execution fragment (execution) of a configuration automaton C iff it
is an execution fragment (execution) of sioa(C). t is a trace of C if it is a trace
of sioa(C). The sets of executions, traces and external traces of C are denoted
by execs(C), traces(C) and xtraces(C), respectively.

6.3 Discussion

The DIOA model as proposed by Attie and Lynch is designed to represent mobile
agents. As a result, the DIOA model is very general, where the signatures may dy-
namically change. For example, an input action on one state may become an out-
put action on another state. Message broadcasting to multiple entities through a
single output action is also supported, as implicitly rendered possible by the intrin-
sic transitions. The intrinsic transition definition in [AL15] is actually even more
general than Definition 6.8 because it accommodates the removal of no longer
active SIOA. A mobile phone, for example, that leaves a mobile network can be
captured by this more general definition. Because we do not concern ourselves
with the explicit removal of actors, we opt for a simpler definition.

Similarly, Attie and Lynch need their notion of traces to only deal with external
actions. Furthermore, the traces also include the external signatures of the SIOA.
These two elements are sufficient to allow traces to become the externally visi-
ble behavior of an SIOA. Because we are using the SIOA to model the behavior
of actors, these complications are not necessary. In fact, it is necessary to have
(some of) the internal actions in the traces, as they enable the verification of the
implementation based on the denotational semantics.

The definition for parallel composition is slightly different from Attie and Lynch’s
on the output signature aspect. In Definition 6.5, output actions that are input ac-
tions of the input state signatures are removed from the output state signatures
on the composed SIOA. We consider such actions as being recategorized as inter-
nal actions. Attie and Lynch refrain from recategorizing output actions, keeping

86



6.3. Discussion

an action that is part of the output state signature of one of the SIOA operands
as an output action in the composed SIOA. This difference is deliberately put in
there because the actor model has no direct support for message broadcasting.
Furthermore, the definition for parallel composition originally accepts a variable
number of SIOA as the operands. The motivation for such a general version is
to enable the composition of “a finite number of large systems” (such as the cell
towers for transmitting mobile signals). This intention is not present here, so we
opt for the binary version.

Similar to SIOA, we can also define a parallel composition operator on CA.
Since this operator is not needed in the adaptation for the actor model, interested
readers are referred to Attie and Lynch’s report [AL15, Section 5.1].

In the following chapters, we see how this DIOA model is adapted to suit the
actor model and the component notion we have described in Chapter 5. The
adaptation of SIOA to single actors is defined in Chapter 7, while the adaptation
of CA to actor systems is defined in Chapter 8. Together, they constitute an inter-
pretation of the actor model in a dynamic automaton model. The inclusion of the
component notion is described in Chapter 9.

87





CHAPTER 7

Class Behavior Representation

In αABS the behavior of an actor is described by a class. To model this behavior,
we introduce an adaptation of SIOA called actor automata (AA) that fits well with
αABS. AA are designed to capture the characteristics of an actor. We attain this
goal by ensuring that the traces of AA are well-formed.

The main idea of the adaptation is to embed the desired characteristics as deep
as possible into AA. For example, the AA model utilizes the possibility to change
the state signatures of SIOA by removing a set of input events from a state sig-
nature, once an input event using the same future is executed. To be able to
manipulate the signatures, information about received futures, sent method calls
and other known actors, among others, is encoded in the states. Through such
embedding, we ensure that the AA model produces only well-formed traces. Fur-
thermore, an AA can be specified concentrating on the specific behavior repre-
sented by a particular class.
Chapter outline. This chapter begins with a formal representation of AA in Sec-
tion 7.1. Section 7.2 describes the properties of AA. Finally, Section 7.3 provides
a short discussion on our encoding of the general characteristics of an actor. The
complete adaptation of DIOA for the actor model is provided in the next chapter.

7.1 Model

An AA models the behavior of an actor a ∈ A by refining the state space of a
signature automaton to deal with the generation of unique futures, the generation
of new actor names, the blocking to wait certain future resolutions and exposure
of other actors to a. Because all AA representing actors of the same class have
the same set of states and transitions save for the name of the actors, it is only
natural to supply the actor name as a parameter to the AA. This name acts as
a convenient reminder of which actor the automaton is representing as well as
a means to classify the state signatures. This parameterization can be removed
by enriching the state with a self reference that stays constant in each transition.
To refer to specific parts of a state of an AA we use the universe of variables V.

89



Chapter 7. Class Behavior Representation

Transitions of AA are labeled by parameterized events, where the parameter is the
actor name.

Definition 7.1 (Parameterized events):
A parameterized event ev is an event e where caller(e), target(e) and some
values of param(e) can be the this variable.

The instantiation of ev is represented by ev(a), where a is an actor name of the
specified class. As we use the events only in an instantiated context, we abuse
the notation in the following definitions where for each event e ∈ E as defined in
Definition 4.1 appearing as a transition label is actually ev(this).

The complete definition of AA is given by Definition 7.2. For convenience, we
let U contain a special member ⊥ that cannot be generated by any actor.

AA are instances of SA with the states now containing information specific to
the need to model class-based actors with method returns. The automaton is
parameterized with the actor name, allowing a single representation of actors of
the same class. For simplicity, we allow the name parameter of an actor automaton
to be dropped when it is clear from the context (i.e., A is used instead of A(a)
when it is clear). The actor name can be retrieved by using the function names
that maps an AA (identifier) to an actor (names(A(a)) = {a}1).

State variables. The variable cons indicates that the class constructor has been
executed if it is set to true. The variables bufc and bufr act as the buffer of an
actor that store input events. The variable bufc stores the incoming calls, while
bufr stores the method returns. The buffer is divided into two to enable multiple
fetching of resolved future values. When an actor reacts to an incoming method
call, a task is created. As αABS allows cooperative multitasking, the model needs
to store the tasks an actor is currently working at. Only one task may be actively
processed by the actor and this requirement is represented in the automata by
the variable release, which is assigned to true if the actor has no active task (i.e.,
currently at the release point). Any transition can introduce a release point, when
it represents receiving an input. This flexibility is necessary to model cooperative
multitasking. To synchronize with other actors when processing a task, an actor
can block to wait for the result of a method call. This blocking is represented in
the model by storing the blocked future in blkFut that needs to be resolved. We
use the symbol ⊥ to represent the state where no blocking is being placed.

Identifying events an actor can receive and generate requires the information on
the actors it knows (known), the pairs of future and target actor of the call events

1A set notation is used to provide better compatibility with the configuration automata.

90



7.1. Model

it has received (rcvFutTgt), the futures it has generated (futGen) and the actors
it has created (nameGen). Both the future and actor name generators ensure
only fresh identifiers are produced. The events the actor has generated so far
are stored in tgen. For AA, it is actually not necessary to store the target actor of
incoming call events, however this allows compatibility on the component level.
In addition, the state stores the calls the actor made to other actors that have not
been replied yet (outCalls). Internal variables used by the actor are categorically
represented by the variable ints. The parameters passed on when creating the
actor are categorically represented by the variable params. The precise description
of the internal variables and the parameters is presented in the specification of AA,
where its usage to control the actions of the actors is described.

Transition constraints. The constraints show the dynamics of each of these
state elements with respect to the signatures and the transition relation. Con-
straint A1 states that every transition happens by executing an event of the state
signature. This constraint is a refined version of the original first constraint of
SIOA, which is required to show that an AA is indeed an SIOA.

Initial state constraint. Constraint A2 states the generic property of initial states.
In an initial state, all sets are initialized to empty set, except for the known actor
set, because it may contain actor names that are part of the class parameters, and
no blocking is being placed. The initial value of the variable cons is left open to
the specification of the AA.

State signature constraints. The state signatures of non-initial states are char-
acterized by Constraints A3 to A5. These constraints can be summarized as fol-
lows. Reaction events are internal events, as they are only observable by the actors
that produce them. An emittance event generated by the actor is an output event,
except for a self call, which is classified as an internal event. An emittance event
generated by other actors and targeted to the actor is an input event. The message
of every emittance event must be in the set of allowed messages governed by the
class of the represented actor. The following explanation gives more details on
how the signatures evolve.

Constraint A3 ensures that events in the input state signatures have characteris-
tics of input events: emittance events generated by other actors. If the input event
is a method call, the future of that input event has never been received by the ac-
tor. If it is a return, its event core corresponds to the event core of an outgoing
call that has not been returned yet.

91



Chapter 7. Class Behavior Representation

Definition 7.2 (Actor automata):
A parameterized SA A(this) = 〈states(A), start(A), sig(A), steps(A)〉 with the
following description:

• states(A) is a map with a fixed domain V ⊆ V denoting the variables stored
by the actor. V includes the following fixed variables: cons, bufc, bufr,
tasks, blkFut, release, known, rcvFutTgt, outCalls, futGen, nameGen and
tgen, representing whether the class constructor has been executed (B), a
call event buffer (of type 2E), a return event buffer (2E), the set of tasks
(eCore(2E)), whether the actor is at a release point (B), the blocking future
(U), the set of known actors (2A), the set of pairs of received future and
target (2U×A), the set of outgoing calls (eCore(2E)), the future generator
(2U), the actor name generator (2A) and the generated trace (Seq〈E〉),
respectively. The read-only class parameters are stored under the variable
params. Other variables are deemed internal and grouped together under
ints;

• a non-empty set of initial states start(A) ⊆ states(A);

• a signature mapping sig(A) where for each state s ∈ states(A),
sig(A)(s) = 〈in(A)(s), out(A)(s), int(A)(s)〉 and csig(A)(s) ⊆ E;

• a transition relation steps(A) ⊆ states(A)× acts(A)× states(A);

is an actor automaton representing an actor of name this when it satisfies the
following constraints where Cthis = class(this):

A1. ∀(s, e, s′) ∈ steps(A) : e ∈csig(A)(s)

A2. ∀s ∈ start(A) : s(bufc) = s(bufr) = s(tasks) = s(futGen) = ; ∧
s(rcvFutTgt) = s(nameGen) = s(outCalls) = ; ∧ this ∈ s(known) ∧

s(tgen) = []∧ s(blkFut) =⊥∧ s(release)

A3. ∀s ∈ states(A) : in(A)(s) =










e

�

�

�

�

�

�

�

�

isEmit(e)∧msg(e) ∈ aMsg(Cthis, in) ∧
(isCall(e) =⇒ target(e) = this∧ caller(e) 6= this ∧

〈fut(e), this〉 /∈ s(rcvFutTgt)) ∧
(isRet(e) =⇒ eCore(e) ∈ s(outCalls))











92



7.1. Model

A4. ∀s ∈ states(A) : out(A)(s) =


















e

�

�

�

�

�

�

�

�

�

�

isEmit(e)∧ acq(e) ⊆ s(known)∧msg(e) ∈ aMsg(Cthis, out) ∧
(isRet(e) =⇒ eCore(e) ∈ s(tasks)∧ caller(e) 6= this) ∧
(isCall(e) =⇒ fut(e) /∈ s(futGen)∧ caller(e) = this ∧

target(e) 6= this) ∧
(isCreate(e) =⇒ target(e) /∈ s(nameGen)∧ caller(e) = this)



















A5. ∀s ∈ states(A) : int(A)(s) =


















e

�

�

�

�

�

�

�

�

�

�

(isReact(e) =⇒ emitOf(e) ∈ s(bufc)∪ s(bufr)) ∧
(isEmit(e) =⇒ isMethod(e)∧msg(e) ∈ aMsg(class(this), int) ∧

caller(e) = target(e) = this∧ acq(e) ⊆ s(known) ∧
(isCall(e) =⇒ fut(e) /∈ s(futGen)) ∧
(isRet(e) =⇒ eCore(e) ∈ s(tasks)))



















A6. ∀s ∈ states(A) : ∀e ∈ in(A)(s) : ∃s′ ∈ states(A) : (s, e, s′) ∈ steps(A) ∧

s′ = s





bufc 7→ s(bufc)∪ {e | isCall(e)}, bufr 7→ s(bufr)∪ {e | isRet(e)},
rcvFutTgt 7→ s(rcvFutTgt)∪ {〈fut(e), this〉 | isCall(e)},
outCalls 7→ s(outCalls)− {eCore(e) | isRet(e)}





A7. ∀(s, e, s′) ∈ steps(A) : ∃s′′ : isReact(e) =⇒ s(release) ∧
diffOn(s, s′′, {bufc, bufr, known, release, ints, tgen})∧s′′(tgen) = s(tgen)·e ∧
s′′(bufc) = s(bufc)− {emitOf(e)} ∧ s′′(known) = s(known)∪ acq(e) ∧
(s(blkFut) 6=⊥ =⇒ isRet(e)∧ fut(e) = s(blkFut) ∧

s′ = s′′[blkFut 7→ ⊥]) ∧
(s(blkFut) =⊥ =⇒ s′ = s′′[tasks 7→ s′′(tasks)∪ {eCore(e) | isCall(e)}])

A8. ∀(s, e, s′) ∈ steps(A) : ∃s′′, s′′′ : isEmit(e)∧ e ∈ out(A)(s)∪ int(A)(s) =⇒
s(blkFut) =⊥∧ diffOn(s, s′′′, {ints, blkFut, release, tgen}) ∧
s′′′(tgen) = s(tgen) · e ∧
(isRet(e) =⇒ eCore(e) ∈ s′′′(tasks) ∧

s′′(tasks) = s′′′(tasks)− {eCore(e)}) ∧
(isCall(e) =⇒ s′′(futGen) = s′′′(futGen)∪ {fut(e)}) ∧
(isCreate(e) =⇒ s′′(known) = s′′′(known)∪ {target(e)} ∧

s′′(nameGen) = s′′′(nameGen)∪ {target(e)}) ∧
(e ∈ int(A)(s) =⇒ (isCall(e)∧ s′ = s′′[bufc 7→ s′′(bufc)∪ {e}]) ∨

(isRet(e)∧ s′ = s′′[bufr 7→ s′′(bufr)∪ {e}])) ∧
(e ∈ out(A)(s) =⇒

s′ = s′′[outCalls 7→ s′′(outCalls)∪ {eCore(e) | isCall(e)}])

Definition 7.2 (Continued)

93



Chapter 7. Class Behavior Representation

The output state signatures are described in Constraint A4 by looking at the
types of the events. Only emittance events are contained in the output state sig-
nature and for each emittance event, its acquaintance must be known in that
state. A return event must be the result of finishing one of the tasks originating
from other actors. If it is a method call event, then the emittance event must have
a future that is constructed from the actor name and the future generator. The
future generator behaves non-deterministically, but since it stores the generated
future identifiers, no duplicate will be generated. The event must also be targeted
to a different actor from this and the method call must be part of the interface of
that other actor. If it is a creation event, the actor decides non-deterministically,
as with the future generator, the name of the new actor. Because an actor name
is hierarchically structured, the created actor cannot have the same name as this.

The internal state signatures contain all reaction events, self calls and their re-
turns as described by Constraint A5. The additional condition on method return
events reflects on the existence of corresponding internal tasks the actor is han-
dling.

Transition relation constraints. Constraints A6 to A8 deal with the restriction
on the transition relation. Constraint A6 ensures that the input-enabled property
of SIOA (Constraint 2 of Definition 6.2) is preserved. The effect of executing an
input event means storing it in the actor’s buffer, mimicking the buffering of in-
coming messages. If the input event is a method call, then its future and target
actor (which in this case is always the represented actor this) are recorded as re-
ceived. Otherwise, the event core of the outgoing call matching the event core
of method return input event is removed from the state. This state modification
ensures that an actor cannot respond to multiple events with the same future.
Normally this property is ensured on the global level by having each actor gener-
ating unique futures. We localize this property to allow well-formedness criteria
on the resulting traces of single actors. No other state information is changed.

The last two constraints deal with non-input events, i.e., the events generated
by the actor. Constraint A7 states that executing a method call reaction event
means removing the corresponding emittance event from the call buffer. Execut-
ing a method return reaction event does not remove the corresponding emittance
event from the return buffer, enabling multiple fetching of the resolved value. As
this reaction event is generated by the actor, it is appended to tgen. A reaction event
can happen only when an actor is at a release point. Because of the constraints
on the state signatures, it is guaranteed that the corresponding emittance event
exists in the buffer. This emittance event is then removed from the buffer. Because
this transition happens when the actor actually obtains the content of the event

94



7.1. Model

parameters, the known actor set is enlarged by the acquaintance in the event.
When the actor is in blocking mode waiting for a return event, the correspond-
ing reaction event is prioritized. No other event may be processed in the mean
time, except for the input events (due to the input-enabledness requirement). The
blocking is then resolved by executing the transition. Otherwise, a method call
reaction event is transformed into a task the actor has to do. Changes pertaining
the release point and the internal variables are allowed, but their specifications
are left open.

Constraint A8 deals with a transition of an output or internal emittance event.
An emittance may occur only when the actor is not in blocking mode. When it
occurs, the event is appended to tgen. A return event indicates that a task is fin-
ished. A method call event requires a new future to be generated, while a creation
event requires a new actor name to be generated. The generated future or name
is guaranteed to be locally unique due to the restriction placed by Constraints A4
and A5 on the output and internal signatures. As the creator, the actor then knows
the created actor. If the event is an internal event, it goes directly to the call or
return buffer. Otherwise, the outgoing calls are updated accordingly. Left open
to the specification are the changes on the internal variables, whether the actor
blocks and whether the current task is now suspended or completed, leading to a
release point.

The constraints on the state signatures mark a difference between the class-
based approach and the update-based approach. An update-based actor may rad-
ically change its input interface according to its state. Thus, the actor must be
able to accept any input message although it may not react to them at all.

This definition can be extended to accommodate a creation reaction event (that
is, fully adopting the event types of Din et al. [DDJO12]), by distinguishing be-
tween initial and non-initial states. The creation reaction events allow a direct
support for class constructors. The creation emittance event is stored in the buffer
of the initial state and allows only its corresponding reaction event to be present
in the signature of that initial state. The constraints on the input, output and
internal state signatures as described above are then applied only to non-initial
states. Should a specific scheduling strategy for retrieving input events from the
buffer be desired, the type of the variable release and related constraints can be
refined accordingly.

Example 7.1.1:
The AA of the Server and Worker classes described in Chapter 2 are specified in
Figures 7.1 and 7.2, respectively. The specification has a similar format to the I/O
automata “precondition effect” pseudocode [Lyn96, Chapter 8], tailored for our

95



Chapter 7. Class Behavior Representation

Allowed messages

Server():
provided: Value serve(Query q)
required: new Worker()

Value w : do(Query q) class(w) = Worker

internal: none

State

futPair ⊆ U×U, initially ;

Actions

u� this : serve(q) · this→ w : new Worker() · u′→ w : do(q)
pre: true
state: futPair := futPair∪ {〈u, u′〉}

u′� w : do / v · u← this : serve / v
pre: 〈u, u′〉 ∈ futPair
state: futPair := futPair− {〈u, u′〉}

Figure 7.1.: A specification of actor automaton Server(this) for Server class

actor setting. The specification has three parts defining the allowed messages of
the actor, its internal variables and its actions.

• The Allowed messages section specifies the class parameters (if any), the in-
coming calls that the actor can handle (the provided interface), the output
messages it may produce in order to respond to incoming calls (the required
interface), and the internal messages that may occur. This classification of al-
lowed messages is transformed into the signature of the AA semantics of the
specification.

• The State section specifies the internal variables, their types and their initial
value using the initially keyword. The domain of the data type D is assumed
by D(D).

• The Actions section specifies the sequence of events an actor takes until it
reaches a release point or it actively blocks to retrieve the resolved value of
a future. In other words, the specification covers the produced internal and
output events from one release or blocking point to another release or blocking
point. Consequently, there can be at most one reaction event in the sequence.

96



7.1. Model

Allowed messages

Worker():
provided: Value do(Query q)
required: new Worker()

Value w : do(Query q) class(w) = Worker

internal: none

State

futTriple ⊆ U×U×D(Query), initially ;

Actions

u� this : do(q) · this→ w : new Worker() · u′→ w : do(restQuery(q))
pre: querySize(q)> 1
state: futTriple := futTriple∪ {〈u, u′, q〉}

u′� w : do / v · u← this : do / merge(compute(firstQuery(q)), v)
pre: 〈u, u′〉 ∈ futTriple
state: futTriple := futTriple− {〈u, u′, q〉}

u� this : do(q) · u← this : do / compute(q)
pre: querySize(q) = 1
state: no change

Figure 7.2.: A specification of actor automaton Worker(this) for Worker class

If the sequence of events contains a reaction event, this event must appear
as the first event of the sequence. The specification also defines the change
on the values of the internal variables as marked by the state keyword. After
the sequence of events is generated, the state of the internal variables has to
fulfill the given specification. We can also specify when a blocking is desired
by stating blkFut = u where u is the future that the actor should wait to be
resolved. As the specification technique name suggests, it is possible to control
which sequence an actor can perform next. This precondition, marked by the
pre keyword and defined over the internal states, specifies the conditions under
which the sequence of events is permitted to occur.

Each of the Server and Worker class specifications has these three parts. Com-
paring the class implementation with the specification provides some hints how an
AA represents an actor. The Allowed messages section of the class specifications

97



Chapter 7. Class Behavior Representation

represents the possible method calls and actor creation an instance of a class can
handle or generate. The provided part of the class specifications resembles the
methods of the interface the classes implement. For example, the serve method
in the Server class specification is part of the IServer interface. The required part
of the class specifications resembles the method call and create statements in the
implementation. A Worker actor can create a new worker and call this new worker
with the do method. As there is no need to produce some internal behavior, the
internal part of both specifications is left empty.

The internal state of an instance of a Server class is defined as a set of pairs
of futures. A server actor needs to associate the future of a request with the fu-
ture it generates when calling the worker to compute the request query. In the
implementation, this control task is done implicitly by the underlying operational
semantics. Because AA do not provide such support, this control must be repre-
sented explicitly in the specification. Similarly, the Worker class specification uses
a set of triples 〈u, u′, q〉. The added query q is stored so that a worker actor can
complete the computation when it returns the result.

The Action section of the class specifications follows the description of our
server requirement (Section 2.1). It also illustrates how the internal state is being
used to control the connection between the incoming calls and the calls generated
by the actors.

In Section 10.1, we provide the semantics of the class specifications in terms of
AA. Roughly, the semantics translates a class specification into an AA by

• populating the signatures based on the Allowed messages section,
• populating ints by the variables defined in the State section,
• transferring the sequence transition described in the Action section into single

transitions of the AA, and
• completing the state space, the state signatures and the transition relation of

the AA as required by the constraints of Definition 7.2.

Thus, from the Server specification, the corresponding AA A(s) can produce the
following trace of a server actor s.

u1→ s : serve(q1) · u1� s : serve(q1) · s→ w1 : new Worker() · u′1→ w1 : do(q1) ·
u′1← w1 : do / v1 · u′1� w1 : do / v1 · u1← s : serve / v1

The serve call and do return emittance events are generated by the AA as required
by Constraint A6. 4

98



7.2. Properties

7.2 Properties

In this section we look into several properties of AA. A fundamental property is
that AA are SIOA as stated by the following proposition. This has two implications.
First, it allows us to talk about SIOA that represent the behavior of single actors,
while reusing the definitions of executions of traces that come with SIOA. Second,
it enables us to use operations on SIOA such as the parallel composition operator.

Proposition 7.1:
An actor automaton A is an SIOA.

Proof:
A is a signature automaton. Thus, only the constraints of Definition 6.2 need
to be checked. The first constraint follows directly from Constraint A1, whereas
the second constraint on input-enabledness follows from constraint A6. The dis-
jointness of the state signatures as expressed by the third constraint comes from
Constraints A3 to A5, where each event is classified as input, output or internal
based on its caller, target, future and type. �

We expect that the traces of an actor automaton to be well-formed (Defini-
tion 4.3). The following lemma states that generated traces of an actor automa-
ton A(a) are well-formed. The idea behind the proof of this lemma is that the
constraints of AA are designed to capture the well-formedness properties.

Lemma 7.1 (Well-formedness of generated traces of actor automaton):
Let A(a) be an actor automaton of actor a. Let α ∈ execs(A(a)) be an execu-
tion of A(a) such that t is the derived trace of α. Then, t is well-formed with
respect to A= {a}.

Proof:
The proof follows from the constraints on actor automata.

Property 1: If there is no event in α with the future u, the property holds. Assume
the projection of the trace to the future u results in events t ′ = e1e2e3 . . .. The
first event of this projected trace t ′ is a method call emittance event. By Con-
straint A3, a method return event is present in the input signature, but only if the
corresponding event core is in the set of tasks. Similar argument is fulfilled for
the output and internal signatures by means of Constraints A4 and A5. However,
initially the set of tasks is empty. For an event core to be in the set of tasks, the
corresponding input event has to be in the buffer (Constraints A7 and A8). Thus,
the premise holds. We proceed by proving what happens after the method call
emittance event is received.

99



Chapter 7. Class Behavior Representation

Case internal call: Let e1 be an internal method call event, that is, gen(fut(e1)) =
a ∧ target(e1) = a. By Constraint A8, e1 is placed into the buffer. Because the
same future as the one used for e1 cannot be used in other method call events
produced by the actor (Constraint A4, A5 and A8), we exclude the possibility
of other method call events with the same future appearing in the projection of
the trace. Consequently, when |t ′| > 1, e2 must be a reaction event of e1 (Con-
straint A7). The corresponding event core of e2 is inserted into the actor task
set. When |t ′| > 2, the only option is to finish processing the task and return
the result of executing the method (Constraint A8). Following Constraint A8, this
return event e3 is stored in the buffer. The only extension left for the projected
trace is (a sequence of) the reaction event of e3. Thus, the property holds.
Case incoming method call: Let e1 be a method call emittance input event, that
is, caller(e1) 6= a. By Constraint A6, e1 is placed into the buffer and the future of
e1 (and a) is stored in the set of received futures, effectively removing all events
with the same future from the input signature (Constraint A3). When |t ′|> 1, e2
must be a reaction event of e1, because no further input with the same future may
appear and no task with the same future is present in the set of tasks of the actor
(Constraint A7). The corresponding event core of e2 is inserted into the actor task
set. As the input signature excludes method call events whose futures have been
received previously, the automaton never returns back to the state with an input
signature that contains e1. When |t ′| > 2, the only option is to finish processing
the task and return the result of executing the method (Constraint A8). Then it
follows that the projected trace may only contain a method call event possibly
followed by the corresponding method return event.
Case outgoing method call: Let e1 be a method call emittance output event, that
is caller(e1) = a ∧ target(e1) 6= a. Following Constraint A8, such an event only
appears in the output signature. Because the generated future is stored, the same
future will never be generated again (Constraints A4 and A5). The input signature
is updated accordingly to allow for the corresponding method return events. For
the projected trace to proceed, only a corresponding method return event may
appear as an input. That is, e2 is of the form u ← b.mtd / v for some result
v. Following Constraint A6, this input event is stored in the buffer. The only
extension left for the projected trace is (a sequence of) the reaction event of e2.
Thus, the property holds.

Property 2: Let α be such that trace(α) = t · e where e is an emittance event
and generated by a. For any transition (s, e′, s′) such that s e′ s′ is a part of α,
the set of known actors grows monotonically (known(s) ⊆ known(s′)) following
Constraints A6 to A8. If e′ is a non-reaction internal event (a.k.a., self calls and
their returns), the set of known actors does not change (known(s) = known(s′))

100



7.2. Properties

because the acquaintance of e′ must already be part of the set of known actors
(Constraint A8). As e is appears in trace(α) and generated by a, there must be
a transition (se, e, s′e) ∈ steps(A) taken to make that event appear in e. As Prop-
erty 1 holds, e can only appear once in trace(α), meaning it cannot appear in
t. For transition (se, e, s′e) to appear, Constraint A8 must be fulfilled, particularly
acq(e) ⊆ known(se). Similarly, every consecutive triple (s, e′, s′) in α must obey
the Constraints A4 and A5, maintaining the monotonicity property. As t con-
tains input events that may not be reacted upon, known(se) ⊆ acq(t)∪{a}. Thus,
acq(e) ⊆ acq(t)∪ {a}.

Property 3: Follows directly from Constraints A8. �

The well-formedness property does not filter out degenerate cases such as the
environment may send the actor a a reference to an actor that is not yet created
(or even an actor that is supposed to be created by a!). While it is possible to
prune down more degenerate cases by refining the AA definition, the removal of
such cases is better done on the configuration level, where complete information
of the system is available.

The parallel composition operator is crucial for our verification effort, because
it enables us to relate the composed SIOA with some more general SIOA repre-
senting the components. Through the following lemmas, we show that different
AA are indeed compatible, which fulfills the condition for the parallel composition
operator. The main reason why they are compatible is because the actions used
in the AA (i.e., the events) involve at most two actors.

Lemma 7.2 (Disjoint actor automaton signature):
Let A be an actor automaton. We define in(A) to be

⋃

s∈states(A) in(A)(s), and
similarly for out(A) and int(A). Then,

in(A)∩ out(A) = in(A)∩ int(A) = out(A)∩ int(A) = ; .

Proof:
First we show that any event in the input signature never belongs to the other two
signatures. Assume e ∈ in(A). By Constraints A3, e must be an emittance event
which is either a method call from another actor to a or a return of a message
sent by a to another actor. None of these possibilities fulfills the constraints for
the output and internal signatures (Constraints A4 and A5). Thus, e /∈ out(A) and
e /∈ int(A).

Now assume e ∈ out(A). Constraint A4 states that e cannot be a reaction event.
For e to also be in int(A), it must be a self call (constraint A5). However, it violates
constraint A4. Thus, e /∈ int(A) and the three signatures are pairwise disjoint. �

101



Chapter 7. Class Behavior Representation

The lemma above reflects the signature stability of the class-based approach
that provides the basis of our actor model.

Lemma 7.3 (Disjoint signatures between actor automata):
Let A and A′ be actor automata of actors a and a′, respectively, where a 6= a′.
Then in(A)∩ in(A′) = out(A)∩ out(A′) = int(A)∩ int(A′) = ;.

Proof:
Assume that e ∈ in(A). By constraint A3, e must either be a return emittance
event with the future generated by a or a method call emittance event targeted
to a. Because we assume a 6= a′, then by the same constraint e /∈ in(A′). Similar
arguments are placed for the output signatures and internal signatures, applying
the appropriate constraints. �

The following lemma shows that given AA that model two distinct actors, they
are compatible. The lemma is framed under the condition that each actor only
can send messages to the other actor that are in the set of allowed messages of
the other actor (i.e., part of the (input) interface of the other actor). Employing
type systems as done in ABS avoids such a problem.

Lemma 7.4 (Compatibility of actor automata):
Let A1(a1) and A2(a2) be AA representing any two distinct actors a1 and a2,
respectively, such that aMsg(class(a1))∩{e | target(e) = a2} ⊆ aMsg(class(a2))
and aMsg(class(a2))∩ {e | target(e) = a1} ⊆ aMsg(class(a1)). Then, A1(a1) is
compatible with A2(a2).

Proof:
We need to establish that the compatibility of the signatures of the actor automata
(Definition 6.4) are fulfilled. Let s1 ∈ states(A1(a1)) and s2 ∈ states(A2(a2)). It
follows from the assumption and Constraints A3 to A5 that the internal state sig-
nature of s2 cannot have a common intersection with the state signature of s1 be-
cause the difference between future generator and the target actor of each event
in either signature. The property of disjoint output state signatures is fulfilled fol-
lowing Lemma 7.3. Therefore the signatures of A1(a1) and A2(a2) are compatible
and A(a1) is compatible with A2(a2). �

The following property shows that the traces generated by an actor are stored
properly in the state of the AA.

102



7.3. Discussion

Proposition 7.2 (Generated traces of actors):
Let A(a) be an AA representing an actor a and α ∈ execs(A(a)) an execution
that ends in state s. Then trace(α)↓Gen(a) = s(tgen).

Proof:
The claim holds by induction on the length of the execution and Constraints A7
and A8. �

7.3 Discussion

This chapter presents an adaptation of SIOA to model the behavior of an actor.
This adaptation features the use of non-shared futures. To model actors with-
out futures, the state variables related to futures can be removed along with the
relevant constraints. The structure of the constraints should remain the same.

Actor exposure plays an important role in verification, especially in the open
system context. We can encode the information of which actors an actor a has
exposed to some other actor b in the states of the AA. The advantage of including
this information is that we can locally obtain the information whether a is exposed
to the environment by means of composing the AA of a, the creator of a, say c,
and relevant actors of the systems to which c exposes a to. A function can be
created over a composed SIOA that aggregates the exposure mapping to obtain
the desired information. We opt to regulate the actor exposure information to
the configuration automaton level as presented in the next chapter. Apart from
reducing the complexity of AA, the exposure information is needed to define the
intrinsic signatures of the configurations.

Each state of AA stores the trace generated by the represented actor. This in-
formation is actually enough to infer the set of outgoing calls outCalls, future
generator futGen and actor name generator nameGen. Its real value lies in the
verification domain, where it eases the task of checking whether the class imple-
mentation satisfies the desired properties at release points (see Chapter 10).

Left out from the presentation of the DIOA adaptation for actor systems is the
notion of fairness. The actor model stipulates that actors are fair, in the sense that
the delivery of a message cannot be delayed indefinitely. We somewhat bypass
this condition because in the 4-event semantics actors synchronize directly on
emittance events. Further fairness conditions can be expected. For example, each
actor that is currently not blocked has equal opportunity to progress. Similarly,
given if an actor can infinitely often react to a certain message in its buffer, it
should do so eventually. As with I/O automata [Lyn96, Section 8.3], these desired
fairness conditions can be defined separately as a restriction on the traces.

103





CHAPTER 8

Configuration Automata for Actor
Systems

In this chapter, we deal with how to refine the definition of CA to allow a well-
behaved representation of an actor system. There are a few issues that need to be
resolved when adapting CA for actor systems:

1. What information needs to be present in the configuration?

2. How should the signatures of the configurations be derived? Should the
environment be given unconditional liberty to send input events to any actor
in the system?

The answer to the first question is alluded in Chapter 6: the configuration
should contain the AA that have been created, the state mapping, and the ac-
tors of the system exposed to the environment. The state of an AA representing
actor a includes the information of the actors a knows, including other actors.
However, AA are designed to be open and not to keep track what other actors do
with information transmitted by the actor represented by the AA. To limit the in-
teraction with the environment with actual possible interaction, the configuration
contains explicitly the set of actors that have been exposed to the environment.
We call this extended configurations actor configurations.

The intrinsic signatures of the actor configurations are defined following the
observation that at most two actors are actively participating in an event. When-
ever the two participating actors are part of the system, i.e., represented in an
actor configuration, the events between them should be classified as internal be-
cause they are not observed by the environment. Because each AA places an actor
directly in an open setting, there can be bogus transitions involving events either
between two actors of the system or an actor of the system and an actor of the
environment, but actually only one can participate in the transition. In general,
this case appears when an actor is not yet exposed to another actor. The more
subtle degenerate cases appear from the use of futures and the actor exposure.

105



Chapter 8. Configuration Automata for Actor Systems

The first subtle case appears when an actor a is exposed to another actor b and
both are part of the system. The input signature of the AA representing a contains
all input events that a can possibly receive from an (unknown from a’s persepc-
tive) b. However, the behavior of b is known, and this means that it is possible
that b may not call certain methods of a. Even if b randomly calls all methods
of a, some of the futures that b can generate have been previously generated,
causing some input events not to have matching output events in the signature
of the AA representing b. For a concrete example, consider the input signature
of worker w after its exposure to server s. From the specification (Figure 7.1), s
calls the do method of w only once, giving out only one of its generated futures to
w. However, the input signature of w also contains other similar calls. These calls
can only be executed by the AA representing w, but not the AA representing s.

Another issue that is already mentioned in Chapter 7, AA are not defined to
control what information the environment can send to an (exposed) actor. For
example, some actor ae of the environment sends to an actor as of the system
with a message whose acquaintance contains the actor name b. However if b is
an actor of the system that is not yet exposed, or even worse, whose creator is as
according to the creator relation, but it is actually not yet created, such an event
is bogus. Because the exposure of an actor may be caused by other actors in the
system, restricting such an input event is only done on the configuration level.

A similar argument holds as well for the futures generated by the environment.
AA are defined to eliminate a future u being used twice to call an actor. However,
an AA on its own does not eliminate the possibility of the environment from using
u to call other actors. By storing these futures in the configuration, we ensure that
a future uniquely identifies a method call.

To solve these problems, we throw such events out from the derived signatures.
Therefore, we guarantee that all events in a transition are indeed events that
happen when the actors interact.

Chapter outline. In the following section, we define the actor configurations, the
intrinsic signatures of these configurations, the intrinsic transitions and the actor
configuration automata (ACA) which represent open actor systems. Section 8.2
describes the properties of ACA. Finally, Section 8.3 relates the adaptation of DIOA
described here to how actors can be represented in other kinds of automata, par-
ticularly those with a similar dynamic flavor.

106



8.1. Model

8.1 Model

Definition 8.1 (Actor configuration and compatible actor configuration):
An actor configuration C is a pair 〈A,S,E,U〉 where

• A is a set of AA (identifiers),

• S maps each AA (identifier) A ∈ A to a state s ∈ states(A),

• E is the set of actors (names) that have been exposed to the environment,
and

• U is the set of futures that the environment has used in relation to calling
methods of actors represented in the configuration.

We lift the names function to actor configurations, such that names(C) =
⋃

A∈A
names(A). An actor configuration C is compatible iff, for all A,B ∈ A,

A 6= B:

• names(A) 6= names(B), letting a ∈ names(A) and b ∈ names(B),

• out(A)(S(A))∩ {e | isCreate(e)∧ target(e) = b}= ;;

E ⊆ names(〈A,S,E,U〉), and U ⊆ {u | ancestors(gen(u))∩ names(C) = ;}.

An actor configuration has four parts: the SIOA in the system, the state map-
ping, the set of actors that have been exposed to the environment and the set of
futures the environment has used to call an actor of the system. The first two parts
are similar to the configurations for CA (Definition 6.6), except that each SIOA is
an actor automaton. The information on exposed actors and used futures allows
an accurate derivation of intrinsic input signatures of the configuration.

The actor configuration reflects the state of an actor system. Therefore, the
compatibility notion has to be adapted to take the actor setting into account. The
first condition states that each SIOA in the actor configuration represents a unique
actor. By Lemma 7.3, we know that a pair of actor automata have disjoint signa-
ture components, fulfilling the compatibility requirement of configurations as in
Definition 6.6. So we only need to add the condition that no actor may produce
a creation event that creates an actor that is already in the actor configuration.
Finally, the exposed actors must be represented within the actor configuration
and the used futures are generated by the environment. We continue to write
(A, s) ∈ C as a shorthand for A ∈ A ∧ s = S(A). The short hand exposed(C)

107



Chapter 8. Configuration Automata for Actor Systems

retrieves the actors in the configuration C that are exposed to the environment,
while futs(C) retrieves the set of futures the environment has used.

Example 8.1.1:
Let C be an actor configuration representing a Server actor s and a Worker actor w
— 〈{Server(s),Worker(w)},S, {s}, {u}〉— such that the server is in the state where
it is processing a request task and just finished creating the worker. Only s is
exposed to the environment (i.e., to the clients). It does not have other requests
and the request task it is currently processing is the first request it receives. The
worker has not received any input. This actor configuration is compatible because
• the two AA represent two different actors,
• the server can send method calls to the worker which are captured by the

input interface of the worker (the specifications of the AA Server and Worker

in Figures 7.1 and 7.2 and Constraint A8 of Definition 7.2),
• the worker does not send any calls to the server, trivially fulfilling the second

condition from the worker side,
• the server cannot create another worker with the same name (Constraint A4

of Definition 7.2),
• the server is represented within the configuration, and
• the future is generated by some actor (i.e., a client) belonging to the environ-

ment. 4

The intrinsic signatures of an actor configuration take into account the afore-
mentioned subtleties. First we define the actor-external events of the actors repre-
sented in the configuration that represent events between two actors in the config-
uration. The common events are used to filter the union of input and output state
signatures of individual SIOA in the configuration. Those that are present in both
input and output state signatures of the SIOA in the configuration are inserted in
the intrinsic internal signature. This filters out input events that are communi-
cated between two actors of the configuration but are never actually generated
while helping to preserve the input-enabledness requirement of CA. These com-
mon events include not only method calls and method returns, but also creation
events because they should not be observed by the environment (Section 4.2).

The intrinsic external signature of the configuration reflects the possible mes-
sage exchange between the system and its environment. The intrinsic output sig-
nature is completely controlled by the actors of the configuration. As these actors
are well-behaved (Lemma 7.1), the focus is put on the intrinsic input signature.

The DIOA infrastructure requires all automata to be input-enabled. Thus, the
input events from the environment must not include events where the environ-
ment uses actors that are supposed to belong to the system but are not yet exposed

108



8.1. Model

to the environment and events the futures of which are in the set of used futures.
To filter out such events, we identify the actors of the environment using the fol-
lowing function:

envActors(A) = {a | ancestors(a)∩ A= ;}

where A is populated with the actors present in the system.

Definition 8.2 (Intrinsic signatures of an actor configuration):
Let C = 〈A,S,E,U〉 be a compatible actor configuration. Let commonEv be
the set of common events between actors represented within the configura-
tion:

commonEv=







e

�

�

�

�

�

�

gen(e) ∈ names(C) ∧
(isMethod(e) =⇒ caller(e) ∈ names(C)) ∧
(isCreate(e) =⇒ caller(e) ∈ names(C))







.

Let envEv be the set of bogus events generated by the environment:

envEv=











e

�

�

�

�

�

�

�

�

isMethod(e) ∧
(acq(e)∩ (envActors(names(C))∪E) 6= ; ∨ fut(e) ∈ U) ∧
(isCall(e) =⇒ caller(e) /∈ names(C)) ∧
(isRet(e) =⇒ target(e) /∈ names(C))











.

Then, the signature sig(C) = 〈in(C), out(C), int(C)〉 is the intrinsic signature
of C, where

• in(C) = (
⋃

A∈A
in(A)(S(A)))− commonEv− envEv,

• out(C) = (
⋃

A∈A
out(A)(S(A)))− commonEv,

• int(C) =
⋃

A∈A
(int(A)(S(A)))∪ (

⋃

A∈A
in(A)(S(A))∩

⋃

A∈A
out(A)(S(A))),

The external signature C is defined as ext(C) = 〈in(C), out(C)〉.

Example 8.1.2:
Following from the previous example, the intrinsic input signature of the configu-
ration consists of all requests the server can receive from the environment (except
for requests events with the same future attached to the currently processed re-
quest) and all do calls the worker can receive from the environment. The intrinsic
output signature consists of new worker creation events by the server and the
worker. The intrinsic internal signature consists of the requests that the server
can pass on to the worker.

109



Chapter 8. Configuration Automata for Actor Systems

The intrinsic transitions are derived from transitions present in AA. The restric-
tion placed on the intrinsic signatures characterizes how an actor configuration is
affected when a transition is taken. Because the intrinsic signatures have elimi-
nated events that could not take place, the following definition modifies Defini-
tion 6.8 by managing the exposed actors and the initial state of a created actor.

Definition 8.3 (Actor intrinsic transitions):
Let C= 〈A,S,E,U〉, C′ = 〈A′,S′,E′,U′〉 be arbitrary compatible actor config-
urations and e an event. Let A′(target(e)) be an AA of class class(e), if e is a
creation event (i.e., isCreate(e)). There is an actor intrinsic transition from C
to C′ labeled by e, written C

e
=⇒ C′, iff

1. e ∈csig(〈A,S,E,U〉),

2. A′ = A∪ {A′(target(e)) | isCreate(e)},

3. for all A ∈ A′ −A : S′(A) ∈ start(A)∧ S′(A)(params) = param(e),

4. for all A ∈ A : if e ∈ csig(A)(S(A)) ∧ S(A)
e
−→A s, then S′(A) = s,

otherwise S′(A) = S(A),

5. E′ = E∪







a

�

�

�

�

�

�

(isCall(e) =⇒ target(e) /∈ names(C)) ∧
(isRet(e) =⇒ caller(e) /∈ names(C)) ∧
a ∈ acq(e)− envActors(names(C))







, and

6. U′ = U∪ {fut(e) | isCall(e)∧ caller(e) /∈ names(C)}.

Each actor intrinsic transition ensures that the event e is part of the intrinsic
signature of the actor configuration. Different from the intrinsic transition, we
know that at most one actor can be created as a result of executing an event.
Moreover, the actor name is also exclusively derived from the event, which is
in turn dependent on the state, as required by the definition of AA (Constraint
A8 of Definition 7.2). As only compatible actor configurations are considered,
the created actor is not yet represented by any SIOA in the configuration. The
state of this new automaton is an initial state of the actor automaton with the
class fields assigned to initial values as given in the parameter of the event. As in
Definition 6.8, each SIOA that synchronizes on e makes a transition. In particular,
the compatibility requirement ensures that whenever an input event of an actor
in the configuration comes from another actor in the configuration, this event
is synchronized with the output event of that actor. Event e that is sent to the
environment may expose actors of the system. In such event the exposed actors

110



8.1. Model

are recorded in the resulting configuration. The futures of method call events
generated by the environment are recorded as being used.

Example 8.1.3:
Consider the same scenario as in the previous example with one server that is
currently processing a request and has no other input, but the worker is only
about to be created. The actor configuration C= 〈{Server(s)},S, {s}, {u}〉 where
• S(Server(s))(tasks) = {u→ s : serve} and
• S(Server(s))(buf) = S(Server(s))(known) = ;

reflects this scenario. The actor intrinsic transition C
s→w:new Worker()
=========⇒ C′ states the

step of the server creating a worker actor, where C′ = 〈{Server(s),Worker(w)},
S′, {s}, {u}〉 such that S′(Server(s))(known) = {w} and for s′ = S′(Worker(w)),
s′(bufc) = s′(bufr) = s′(known) = s′(tasks) = s′(futTriple) = ; (that is the Worker

w is in its initial state).

The ACA, our extension of CA for actors, are defined as that for CA (Defini-
tion 6.9) except for the use of actor configurations and events. For simplicity,
we restrict ourselves to ACA where initially there is only one actor in the actor
configuration. Initial actor configurations that contain more than one actor can
be simulated by having a main actor that creates these actors and send a start
message to each of these actors in a non-deterministic order. Because the created
mapping fully depends on the events, we do not need to specify this mapping as
part of the definition.

Definition 8.4 (Actor configuration automata):
An actor configuration automaton C is a pair 〈sioa(C), config(C)〉 where

• sioa(C) is an SIOA;
(As with CA, the parts of this SIOA are abbreviated to
states(C) = states(sioa(C)), start(C) = start(sioa(C)), etc. for brevity)

• a configuration mapping config(C) with domain states(C) such that for all
x ∈ states(C), config(C)(x) is a compatible actor configuration;

such that the following constraints are satisfied:

1. If x ∈ start(C) and (A, s) ∈ config(C)(x), then s ∈ start(A).
Additionally, ∀x ∈ start(C) : 〈A,S,E,U〉= config(C)(x)∧ |A|= 1 ∧

E ⊆ names(A)∧U= ;.

2. If (x , e, x ′) ∈ steps(C) then config(C)(x)
e
=⇒ config(C)(x ′).

111



Chapter 8. Configuration Automata for Actor Systems

3. If x ∈ states(C) and config(C)(x)
e
=⇒ C for some event e and a compati-

ble actor configurationC, then ∃x ′ ∈ states(C) such that config(C)(x ′) =
C and (x , e, x ′) ∈ steps(C).

4. For all x ∈ states(C)

(a) in(C)(x) = in(config(C)(x))

(b) out(C)(x) = out(config(C)(x))

(c) int(C)(x) = int(config(C)(x))

Definition 8.4 (Continued)

Given an initial state x of ACA C, we represent the initial actor of the configura-
tion C= config(C)(x) by init(C). Note that we do not fix the set of exposed actors
in the initial state to be the initial actor. A closed system can be represented by
having the set of exposed actors to be empty and the set of known actors in the
state of the initial actor to contain only the initial actor. In such case, the creator
of the initial actor is represented by ⊥ to denote that the initial actor is by default
present without any creator. The actors of the system represented by an ACA can
be identified by checking whether their ancestors include the initial actor. The
env predicate represents this check: given an actor a and an initial actor init of a
system represented by an ACA,

env(a, init) = init /∈ ancestors(a) .

The notions of executions and traces of an ACA remain the same as that of a CA.
That is, we can reuse Definition 6.10.

The definition above allows the environment to use a future multiple times
when calling exposed actors of the system. However, the environment can only
use a future once to call a specific exposed actor of the system. Because future
identities and actor names are unique, the generated events (and event cores) are
distinguishable. If a more precise characterization is required, we can encode the
received future as a specific SIOA and compose this SIOA with the control SIOA
of the ACA. Alternatively, we can also define a CA for the environment such that
futures are only used once and this CA is composed with the ACA. These options
are out of scope for this thesis.

8.2 Properties

As ACA are the primary semantic objects representing actor systems, we have to
ensure that ACA are well-behaved. This means, the traces of ACA should be well-

112



8.2. Properties

formed as stated by the following lemma. The proof idea for the lemma is similar
to the lemma for AA, except that we consider actor configurations and intrinsic
transitions.

Lemma 8.1 (Well-formedness of traces of ACA):
Let C be an ACA and α ∈ execs(C) = x0 . . . is one of its non-empty execu-
tions such that init is the initial actor present in the execution (i.e., init =
init(config(C)(x0))). Then, execution α’s trace t = trace(α) is well-formed
with respect to the set of actors of the system A= {a | ¬env(a, init)}.

Proof:
All properties follow directly from the well-formedness of AA (Lemma 7.1) and
how the signatures and transitions of actor configurations are derived (Defini-
tions 8.2 and 8.3). �

We can extend the well-formedness definition to ensure that the environment
does not use an actor of the system that is not yet exposed and show that the
traces of ACA hold this property. Because the environment acts as a unit, any
actor exposed to an actor of the environment is considered exposed to all actors
of the environment, and renders them usable by all actors of the environment in
their generated method calls or returns.

Definition 8.5 (Well-formed traces w.r.t. environment):
Let init be the initial actor of some actor system, and Aenv = {a | env(a, init)}
be the set of actors of the system’s environment. A trace t is well-formed with
respect to the environment Aenv if
∀t ′ · e ∈ Pref(t↓Aenv) : isEmit(e)∧ e is generated by a ∈ Aenv =⇒

acq(e) ⊆ acq(t ′)∪ Aenv

The following lemma shows that the environment as portrayed by the ACA is
well-behaved.

Lemma 8.2 (Environment well-formedness of traces of ACA):
Let C be an ACA and α ∈ execs(C) = x0 . . . is one of its non-empty execu-
tions such that init is the initial actor present in the execution (i.e., init =
init(config(C)(x0))). Let Aenv = {a | env(a, init)}. Then, the execution α’s
trace t = trace(α) is well-formed with respect to Aenv.

Proof:
Follows from Definition 8.4.2, Definition 8.3.5 and Definition 8.2. �

The disjointness of each signature part of an ACA state also follows.

113



Chapter 8. Configuration Automata for Actor Systems

Lemma 8.3 (Signature disjointness of ACA):
Let C be an actor configuration automaton. Then for all states x ∈ states(C),

in(C)(x)∩ out(C)(x) = in(C)(x)∩ int(C)(x) = out(C)(x)∩ int(C)(x) = ; .

Proof:
Follows from Definition 8.2 and Lemma 7.2. �

8.3 Discussion

In this section, we look into several automaton models. Section 8.3.1 describes
automaton models that support dynamic creation and dynamic topology other
than DIOA. Section 8.3.2 looks into automaton models that are specifically de-
veloped to model actors/objects, but do not address the dynamic creation issue.
Discussion on other formal models is postponed to Part III.

8.3.1 Dynamic Automaton Models

The idea of representing a system featuring dynamic creation as a two-tier model
is prevalent in the few automata-based models present in the literature. The au-
tomata are used to represent the individual entities, whereas other models may
be used to represent the semantical model of systems. To our best knowledge,
here are the automaton models that feature dynamic creation:

• Dynamic communicating automata [BH10; BCHKS13] extend communication
automata ([BZ83]) to model the behavior of a process.

• Dynamic register automata [AAKR14] extend register automata ([KF94]) to
model dynamic creation of processes, where each process is equipped with a
number of registers.

• Callable timed automata [BVBF13] represent behavior templates for processes
and the (timed) systems are represented using timed transition systems.

• Dynamic reactive module framework [Fis+11] represents process classes as
simple dynamic discrete systems and the systems are represented using dy-
namic discrete systems.

• Dynamic I/O automaton model [AL01; AL15], which is adopted in this thesis.

114



8.3. Discussion

Apart from DIOA which is presented in Chapter 6, we discuss these models along
with other related automaton models used to represent (parts of) actor or object-
based systems.

Dynamic communicating automata and dynamic register automata. Dyna-
mic communicating automata (DCA) [BH10; BCHKS13] and dynamic register au-
tomata (DRA) [AAKR14] are extensions of classical automaton models, namely
communication automata [BZ83] and register automata [KF94]. These models
are developed to model a system of processes featuring dynamic creation and dy-
namic topology. Both DCA and DRA are finite state machines equipped with a
finite, fixed set of registers. A register stores the identity of some process. Tran-
sitions between states are labeled with messages that can indicate the creation of
new processes, send and receive messages. The DRA model is a bit richer than
the DCA model by allowing to reset the values of registers. To send a message
from one process to another process, the acquaintance of the message (i.e., the
target and parameter identities) must be known to the sender before the message
is sent.

Much like the DIOA model, the DCA and the DRA models also consist of two
layers. The DCA and the DRA act as a template (in fact, the only one in these
models) of how a process behaves. The behavior of a system is represented by a
transition relation between configurations. Similar to CA configurations, a config-
uration in the DCA and the DRA models consists of a set of alive processes, a state
mapping from alive processes to their automaton state, and a register mapping
from alive processes to the values of their registers. The configuration of a DCA
also includes the notion of channels which enables asynchronous communication.
Unlike DCA, processes in the DRA model communicate synchronously, rendering
it to be more restrictive with respect to distributed systems. The behavior of the
system is represented by the runs based from the transition relation. Bollig et
al. [BCHKS13] also describe the semantics of the DCA model in terms of message
sequence charts ([IT11]).

The minimalist view of the DCA and DRA models makes it suitable for studying
the boundary of automatic verification of systems that support dynamic creation
and dynamic topology. However, there is still a big gap between these models
and the actual (abstracted) implementation model, such as the actor model. In
the implementation, an actor may hold the set of actor names that it has come to
know so far (e.g., a subject actor in the observer pattern [GHJV95]). Therefore, a
finite, fixed set of registers is unsatisfactory to represent such an actor. The notion
of data also needs to be added to the models, for them to have a closer relationship
with the implementation. Furthermore, these models pack all possible behavior

115



Chapter 8. Configuration Automata for Actor Systems

of a process into one single automaton with a single initial state. The separation
of processes into several classes and how to compose these classes are yet to be
investigated, as with the open environment setting.

Callable timed automata. The callable timed automaton (CTA) model
[BVBF13] is an extension of timed automata (TA) [AD90] that allows the repre-
sentation of real-time systems featuring dynamic creation. In this model, a system
is populated with processes and a call made by a process to another process is rep-
resented by a CTA (i.e., the call itself is a process). CTA are parameterized with
some identity and the description of a CTA is a template behavior of its instances.
A CTA includes special call and return actions. When a transition labeled with a
call action is taken, an automaton is created to process that call. The result of
executing the call is transmitted by executing a transition with the return action
as the label. The caller and the callee automata synchronize in the time transition
system semantics (similar to CA) on matching input and output actions. A trans-
lation to TA is present, allowing the reuse of TA proof tools to reason over CTA.
To model actors, the notion of actor names and exposure need to be introduced
to the CTA model possibly in a similar way to our proposition.

Dynamic reactive module framework. Fisher et al. [Fis+11] introduce the dy-
namic reactive modules (DRM) as a means to model dynamic reconfiguration and
creation of processes using transition systems. The DRM are classes with specific
behaviors that can be instantiated in the form of simple dynamic discrete systems
(SDDS). The transition relation of an SDDS is modeled by logical formulas. Ini-
tially, only one SDDS is active. Composition can be done on both the SDDS and
on the dynamic reactive modules by combining common variables of the states
and composing the transition relation accordingly. The dynamic system is mod-
eled by a finite set of SDDS, named dynamic discrete system (DDS), while the
static system is modeled by a finite set of reactive modules, named dynamic re-
active system (DRS). In DDS, the creation of a class instance is handled via the
execution of a new command, which returns the reference to the newly created
instance. The communication between class instances is done exclusively through
externally visible shared variables. However, as DDS contains only a fixed finite
set of SDDS, the model handles only a bounded number of instance creations. A
notion of refinement is present on the DDS and DRM level, but it is not present
for the DRS.

116



8.3. Discussion

8.3.2 Other Automaton Models

Jaghoori and Chothia [JC10] present a timed automata semantics to analyze the
behavior of Creol ([JOY06]) objects. While the focus is more on the real-time
aspect, the automata are also capable of representing desired functional behav-
iors. The automaton of an actor is built compositionally from the parts of the class
implementation, unlike our actor automata which are specified separately from
the implementation. No composition operation is defined for the actor automata.
Furthermore, dynamic creation and dynamic topology are not considered.

Sirjani et al. [SJBA06] defined a translation of Rebeca ([SJ11]) models to con-
straint automata [BSAR06]. The translation is done in two stages: from Rebeca
to Reo ([Arb04]), a coordination language, and then from Reo to constraint au-
tomata. The translation does not consider dynamic creation. Thus, the partic-
ipating actors are present from the start. The dynamic topology is handled by
a sweeping method that forces messages on Reo connectors representing actors
to synchronize only when the actor names match. While there are works on dy-
namic reconfigurations for Reo (e.g., [KGV13]), allowing dynamic topology to be
addressed in more detail, these techniques are not yet applied for actor-based
setting.

Rumpe and Klein [RK96] propose an automaton model for objects called Mes-
sage Processing Automata (MPA). The definition of MPA is very general, without
any specific features to deal with dynamic topology. The semantics of an MPA is
captured as a function of an infinite stream of input messages to an infinite stream
of output messages. The input-enabledness property is captured by the separation
of input and output messages. The message processing automata are taken as a
system model on top of which a refinement calculus is defined. No composition
operator on the automata is given.

In some respect our class specifications resemble the semi-automaton model
[RD12] used to model objects of idealized Algol classes. The semi-automaton
model allows a transition being a sequence of events before a state change occurs.
While this model allows a smaller transition system for an actor (and fits nicely as
a model for our class specification technique), the composition of multiple actor
models usually requires the introduction of intermediate states to capture inter-
leaving. Dynamic creation and dynamic topology are not yet established with this
approach.

117





CHAPTER 9

Component Automata

One of our goals is to provide a model for the components that can be integrated
to the modeling framework and facilitate the verification of a component imple-
mentation. In terms of the DIOA model, the components can be represented by
an adaptation of the SIOA. Accordingly, there must be an adaptation of CA where
the configurations accept component instances. Because this adaptation becomes
a platform to verify that the combination of subcomponent specifications (includ-
ing the class specifications) through parallel compositions satisfies the component
specifications, these configurations must be general enough to also include AA.
The adapted SIOA must be designed such that it can be composed with AA, pro-
ducing what we call actor-based SIOA.

In this chapter, we present component automata (CompA) as an adaptation of
SIOA that represent component instances. Focusing on how to represent the black
box behavior of a component, CompA abstract from unnecessary details, namely
the internal events other than the reaction events. Because the setting disallows
creating actors of the environment, all creation events are ultimately internal
events as the definition of intrinsic signatures of ACA suggests. As with AA, we
refine the state space of an SA such that a CompA can be specified as concise as
possible.

We introduce component configuration automata (CCA) to accommodate com-
ponents as part of systems. CCA are based on component configurations which
take into account the component instances. An intrinsic transition between two
component configurations distinguishes between actors and component instances,
such that when a component instance is created, a creation event involving that
component instance produces a configuration where the component instance is
composed with the new created entity. Otherwise, the intrinsic transitions of CCA
have the same characteristics as the intrinsic transitions of ACA.
Chapter outline. This chapter is partitioned into five sections. The first two (Sec-
tions 9.1 and 9.2) describe the model and some properties of the CompA. The
following two (Sections 9.3 and 9.4) describe the model and some properties of
the CCA. In particular, we show that CCA are indeed a generalization of ACA.

119



Chapter 9. Component Automata

Some discussion is provided at the end of the chapter.

9.1 Model of Component Automata

A CompA models the behavior of a group of actors whose initial actor a ∈ A is of an
activator class C . That is, this CompA represents a component instance of initial
class C . As with AA, we can also use the activator class name to refer to the CompA
and use the set of variables V to refer to specific parts of a state. Because the
behavior of classes is fixed, we can also parameterize CompA by the name of the
initial actor. Similar to AA, states in CompA store information about the exposure
of other actors to the component instance and the generated futures. In addition,
CompA abstracts from the created actors by storing only the actors of a component
instance that are exposed to the environment. In other words, the creation events
are banned from the signatures of CompA. The restrictions on CompA are similar
to AA, but with the consideration that the exposure of component actors may open
up an interface that is not part of the initial actor’s interface. Apart from using
the env function defined in Section 8.1, we also use envFut to indicate whether a
future is local to the component instance or generated by the environment.

envFut(u, init) = init /∈ ancestors(gen(u))

The constant comp= [class(init)] represents the boxed activator class of the initial
actor init and is used to retrieve the allowed message with respect to actors of the
component instance. The actor name can be retrieved by using the function names
that maps a CompA (identifier) to a set of actors that can be created by init (i.e.,
names(A(init)) = {a | init ∈ ancestors(a)}). The function fut is overloaded to
accept a parameter of a set of non-creation events E, to return the set of futures
attached to some event e ∈ E.

State variables. As with AA, CompA are instances of SA with the states con-
taining necessary information to model our components. The state of a CompA
contains buffers bufc and bufr that store the incoming calls and the method re-
turns, respectively. In the component context, the call buffer may contain not just
the events targeted to the initial actor of the component instance, but also events
targeted to other actors of the component instance that have been exposed. Simi-
larly, the task set tasks combines the tasks of all actors of the component. However,
the use of tasks in CompA is less intensive than in AA because it is only employed
to control the output state signature and transitions with an output event as la-
bel. For component instances, we follow the “external actors” and “receptionist

120



9.1. Model of Component Automata

actors” approach by Agha et al. [AMST97]where the knowledge of exposed actors
of the environment and the component instance is split into known and expActors,
respectively. For simplicity, the set of actor names represented by a configuration
of a CompA is equivalent to expActors.

To represent the state signatures correctly, a CompA is equipped with state vari-
ables storing the set of received future and target actor pairs, the set of outgoing
calls and the set of generated futures. When an actor of the component instance
is called by the environment, the future and the target actor of the call event are
stored in rcvFutTgt. The pair, instead of just the future, is stored to imitate the
same well-formed behavior as exhibited by AA and CCA. If we assume that the
environment always produces unique futures, the target actor information can be
removed. As in AA, we store the class parameters params of the initial actor of the
component, as they can influence how the component acts. The internal variables
used by the component is categorically represented by variable ints.

Transition relation constraints. The constraints show the relations between
each state element with respect to the signatures and the transition relation. We
follow the presentation of AA in explaining the constraints. The first constraint is
a refined version of the original first constraint of SIOA, required to show that an
CompA is indeed an SIOA. It states that every transition happens by executing an
event of the state signature.

Initial state constraint. Constraint C2 states the generic property of the initial
states. In an initial state, all sets are initialized to empty set, except for the known
and the exposed actor sets. The known actor set contains the knowledge of all
actors of the component instance as an overapproximation of the internal behavior
of the component instance. It may also contain actor names that are part of the
class parameters. Thus, the component instance is free to use these actors as
part of the output events. The exposed actor set contains the initial actor of the
component instance.

Constraint C3 ensures that events in the input state signatures are emittance
events generated by the environment following the input interface of the compo-
nent. The environment can only send a method call to an exposed actor of the
component instance and the future and target actor pair must not have occurred.
A return must have a matching outgoing call. The acquaintance of the event which
are part of the component instance can only contain the exposed actors.

121



Chapter 9. Component Automata

Definition 9.1 (Component automata):
A parameterized SA A(this) = 〈states(A), start(A), sig(A), steps(A)〉 with the
following description:

• states(A) is a map with a fixed domain V ⊆ V denoting the variables stored
by the component instance. V includes the following fixed variables: bufc,
bufr, tasks, known, expActors, rcvFutTgt, outCalls and genFut representing
a call event buffer (of type 2E), a return event buffer (2E), the set of tasks
(eCore(2E)), the set of known actors (2A), the set of exposed actors (2A),
the set of received future and target actor pairs (2U×A), the set of outgoing
calls (eCore(2E)) and the generated futures (2U), respectively. The class
parameters of the initial actor is stored under params. Other variables are
internal and grouped together under ints;

• a non-empty set of initial states start(A) ⊆ states(A);

• a signature mapping sig(A)where for each state s ∈ states(A), sig(A)(s) =
〈in(A)(s), out(A)(s), int(A)(s)〉, where in(A)(s), out(A)(s), int(A)(s) ⊆ E;

• a transition relation steps(A) ⊆ states(A)× acts(A)× states(A)

is a component automaton representing a component instance with the initial
actor of name this when it satisfies the following constraints:

C1. ∀(s, e, s′) ∈ steps(A) : e ∈csig(A)(s)

C2. ∀s ∈ start(A) : s(bufc) = s(bufr) = s(tasks) = s(genFut) = ; ∧
s(rcvFutTgt) = s(outCalls) = ; ∧ s(expActors) = {this} ∧

{a | this ∈ ancestors(a)} ⊆ s(known)

C3. ∀s ∈ states(A) : in(A)(s) =


















e

�

�

�

�

�

�

�

�

�

�

isEmit(e)∧msg(e) ∈ aMsg(comp, in) ∧
acq(e)− envActors({this}) ⊆ s(expActors) ∧
(isCall(e) =⇒ target(e) ∈ s(expActors)∧ env(caller(e), this) ∧

〈fut(e), target(e)〉 /∈ s(rcvFutTgt)) ∧
(isRet(e) =⇒ eCore(e) ∈ s(outCalls)



















122



9.1. Model of Component Automata

C4. ∀s ∈ states(A) : out(A)(s) =


















e

�

�

�

�

�

�

�

�

�

�

isEmit(e)∧msg(e) ∈ aMsg(comp, out)∧¬isCreate(e) ∧
acq(e)∩ {a | env(a, this)} ⊆ s(known) ∧
(isCall(e) =⇒ fut(e) /∈ s(genFut)∧¬envFut(fut(e), this) ∧

¬env(caller(e), this)∧ target(e) ∈ s(known)) ∧
(isRet(e) =⇒ eCore(e) ∈ s(tasks))



















C5. ∀s ∈ states(A) :
int(A)(s) = {e | isReact(e)∧ emitOf(e) ∈ s(bufc)∪ s(bufr)}

C6. ∀s ∈ states(A) : ∀e ∈ in(A)(s) : ∃s′ ∈ states(A) : (s, e, s′) ∈ steps(A) ∧

s′ = s





bufc 7→ s(bufc)∪ {e | isCall(e)}, bufr 7→ s(bufr)∪ {e | isRet(e)},
rcvFutTgt 7→ s(rcvFutTgt)∪ {〈fut(e), target(e)〉 | isCall(e)},
outCalls 7→ s(outCalls)− {eCore(e) | isRet(e)}





C7. ∀(s, e, s′) ∈ steps(A) : ∃s′′ : isReact(e) =⇒ diffOn(s, s′′, {ints}) ∧

s′ = s′′





bufc 7→ s′′(bufc)− {emitOf(e)},
known 7→ s′′(known)∪ (acq(e)− s′′(expActors)),
tasks 7→ s′′(tasks)∪ {eCore(e) | isCall(e)}





C8. ∀(s, e, s′) ∈ steps(A) : ∃s′′ : isEmit(e)∧ e ∈ out(A)(s) =⇒
diffOn(s, s′′, {ints, expActors}) ∧
s′′(expActors) = s(expActors)∪ (acq(e)− {a | env(a, this)}) ∧

s′ = s′′





genFut 7→ s′′(genFut)∪ {fut(e) | isCall(e)},
tasks 7→ s′′(tasks)− {eCore(e) | isRet(e)},
outCalls 7→ s′′(outCalls)∪ {eCore(e) | isCall(e)}





Definition 9.1 (Continued)

The output state signatures depend on the tasks of the component instance and
exposed actors of the environment. Constraint C4 accumulates all method returns
that the component can produce and all method calls it can make to the environ-
ment as the output signature of each state of CompA. Because it is not important
on the component level to know which actor makes the call, the generator of the
future is not restricted as long as it is an actor of the component instance. The
message of the event must be part of the output interface of the component in-
stance. The acquaintance of the event which is part of the environment can only
contain the exposed actors of the environment.

Transition relation constraints. Constraints C6 to C8 deal with the restriction
on the transition relation and the changes in state input signatures. Constraint C6

123



Chapter 9. Component Automata

Allowed messages

Server():
provided: Value serve(Query q)
required: none

State

futQPair ⊆ U×D(Query), initially ;

Actions

u� this : serve(q)
pre: true
state: futQPair := futQPair∪ {〈u, q〉}

u← this : serve / compute(q)
pre: 〈u, q〉 ∈ futQPair
state: futQPair := futQPair− {〈u, q〉}

Figure 9.1.: A specification of component automaton [Server](this) for [Server]
component

deals exclusively with the input events, while Constraints C7 and C8 describe the
effects of generating reaction and emittance events, respectively.

As with AA, the input-enabledness property (Constraint C6) ensures that all
input events go into the buffer. Executing an input event places the event into the
buffer. If the event is a method call, the pair of future and target actor is stored
in the state. If the event is a method return, the corresponding outgoing call is
removed from the state.

Constraint C7 states that a reaction event enriches the knowledge of the com-
ponent instance about the environment. The corresponding emittance event is
removed from the buffer, and if it is a method call, then a new task is added to
the component. The internal state may be modified.

Executing an output emittance event may expose more actors of the component
instance and change the internal state as governed by C8. If the event is a method
call, a new future is generated and the outgoing call is stored. If the event is a
method return, the corresponding task is removed from the set of tasks.

Example 9.1.1:
The CompA of Server and Worker as activator classes are specified in Figures 9.1
and 9.2. As with AA, the specification for CompA consists of three parts: the al-
lowed messages, its internal state and its actions. Of these three parts, only the
State section follows the same format. The Allowed messages section contains a
set of classes of actors that may be exposed by the component instance. For each
class, it specifies the incoming calls an exposed actor of that class can handle.

124



9.1. Model of Component Automata

Allowed messages

Worker():
provided: Value do(Query q)
required: none

State

futQPair ⊆ U×D(Query), initially ;

Actions

u� this : do(q)
pre: true
state: futQPair := futQPair∪ {〈u, q〉}

u← this : do / compute(q)
pre: 〈u, q〉 ∈ futQPair
state: futQPair := futQPair− {〈u, q〉}

Figure 9.2.: A specification of component automaton [Worker](this) for [Worker]
component

Component instances may call exposed environment actors. The types of the ac-
tors can be gathered from the parameters of the incoming calls and can be used for
determining which calls the component can make depending on the exposed ac-
tors. Because CompA disallow internal events beyond the reaction events which
can be derived from the input messages, there is no need to specify messages
that are only used internally. This follows the focus of CompA on representing
the externally observable behavior of component instances. The Actions section
specifies the transitions a component instance may take. Unlike actors, compo-
nent instances in general cannot provide a sequential guarantee when processing
a message. For example, the computation of the requests can finish at differing
times and the client can receive the result of the requests not in the order they
are processed by the server. Therefore, the behavior of a component instance is
defined per event, as with I/O automata [Lyn96, pp. 203–204].

Both the [Server] and the [Worker] component specifications are expected to
produce the same behavior, barring the slight method name difference for the re-
quests. Thus, it is sufficient to explain only one of them. The [Server] component
specification consists of these three parts. Because the initial actor is the only
exposed actor, we only need to specify the messages the initial actor can receive
based on the class of the initial actor. As a result, the provided part of the Server

class remains the same as in Example 7.1.1. The required part on the other hand
becomes empty, because the component instances can never call an actor of the
environment.

125



Chapter 9. Component Automata

Unlike the internal state of the Server class specification, the internal state of
[Server] component specification consists of a set of pairs of a future and a query.
The information of the future generated by the server when delegating the query
to a worker is abstracted. In other words, we do not get to see how each request
is processed as shown by the Actions section.

The Actions section of the component specification illustrates only the start and
end points of the [Server] component processing the request. The only control
mechanism needed here is that the futures need to be resolved with the correct
computation results.

In Section 10.2 we provide the semantics of the component specifications in
terms of CompA. Similar to the semantics of the class specifications, we popu-
late the states, signatures and transitions of CompA appropriately, such that the
constraints placed on the CompA are fulfilled. From the [Server] specification,
the corresponding CompA A(s) can produce the following trace for a component
instance with the initial server actor s.

u→ s : serve(q) · u� s : serve(q) · u← s : serve / compute(q)

4

9.2 Properties of Component Automata

In this section we look into several properties of CompA. The most fundamental
one is that CompA are SIOA. Thus, we have uniform definitions of executions and
trace.

Proposition 9.1:
A component automaton A is an SIOA.

Proof:
A is an SA, thus only the constraints of Definition 6.2 need to be checked. The
first constraint follows directly from Constraint C1, whereas the second constraint
on input-enabledness follows from Constraint C6. The disjointness of the input,
output and internal state signatures as required by the third constraint follows
directly from Constraint C3 to C5. �

We expect the traces of CompA to be well-formed (Definition 4.3). As with AA,
the idea behind the proofs of these properties is that the constraints of CompA
capture the well-formedness properties.

126



9.2. Properties of Component Automata

Lemma 9.1 (Well-formedness of traces of component automata):
Let A(a) be a component automaton with initial actor a. Let α ∈ execs(A(a))
be an execution of A(a) such that t is the derived trace of α. Then, t is
well-formed with respect to {a′ | a ∈ ancestors(a)}.

Proof:
The proof follows from the constraints on component automata.
Property 1: If there is no event in α with the future u, the property holds. Assume
the projection of the trace to the future u results in events t ′ = e1e2e3 . . .. The
first premise needs to be shown is that the first event of this projected trace t ′ is a
method call emittance event. By Constraint C3, a method return event is present
in the input signature, but only if the corresponding event core is in the set of
tasks. Similar argument is fulfilled for the output signature by Constraint C4.
Initially the set of tasks is empty. For an event core to be in the set of tasks, the
corresponding input event has to be in the buffer (Constraints C7 and C8). Thus,
the premise holds. We proceed by proving what happens after the method call
emittance event is received.
Case internal call: This case never happens because no internal call is part of the
signature, following Constraints C3 to C5. Thus, the property trivially holds.
Case incoming method call: Let e1 be a method call emittance input event (i.e.,
caller(e1) ∈ envActors({a})). By Constraint C6, e1 is placed into the buffer and the
future of e1 (and a) is stored in the set of received futures, effectively removing
all events with the same future from the input signature (Constraint A3). When
|t ′|> 1, e2 must be a reaction event of e1, because no further input with the same
future and actor pair may appear and no task with the same future and actor name
pair is present in the set of tasks (Constraint C7). The corresponding event core
of e2 is inserted into the task set. As the input signature excludes method call
events whose futures have been received previously, the automaton never returns
back to the state with an input signature that contains e1. When |t ′| > 2, the
only option is to finish processing the task and return the result of executing the
method (Constraint C8). Then it follows that the projected trace may only contain
a method call event followed by the corresponding method return event.
Case outgoing method call: Let event e1 be a method call emittance output event,
that is caller(e1) = a ∧ target(e1) 6= a. e1 cannot be a reaction event as the only
possibility that the future of e1 is generated by a is that e1 must be an output
event. Following Constraint C8, such an event only appears in the output sig-
nature. Because the generated future is stored, the same future will never be
generated again (Constraint C4). The input signature is updated accordingly to
allow for the corresponding method return events. For the projected trace to pro-

127



Chapter 9. Component Automata

ceed, only a corresponding method return event may appear as an input. That
is, e2 is of the form u ← b.mtd / v for some result v. Following Constraint C6,
this input event is stored in the buffer. The only extension left for the projected
trace is the reaction event of e2 which can be done repeatedly. Thus, the property
holds.

Property 2: Let α be such that trace(α) = t · e where e is an emittance event
and generated by a. For any transition (s, e′, s′) such that s e′ s′ is a part of α,
the set of known actors grows monotonically (known(s) ⊆ known(s′)) following
Constraints C6 to C8. As e appears in trace(α) and generated by a, a transition
(se, e, s′e) ∈ steps(A) is taken. As Property 1 holds, e can only appear once in
trace(α), meaning it cannot appear in t. For transition (se, e, s′e) to be executable,
Constraint C8 must be fulfilled, particularly acq(e) ⊆ known(se). Similarly, every
consecutive triple (s, e′, s′) in αmust obey the Constraints C4 and C5, maintaining
the monotonicity property. As t can contain input events that are not reacted to,
known(se) ⊆ acq(t) ∪ {a′ | a ∈ ancestors(a′)}. Thus, acq(e) ⊆ acq(t) ∪ {a′ | a ∈
ancestors(a′)}.

Property 3: Follows directly from Constraints C8. �

The definition of CompA places more guarantee such that the generated traces
of a CompA are also well-formed with respect to its environment (Definition 8.5).

Lemma 9.2 (Environment well-formedness of traces of CompA):
Let A be a component automaton with initial actor a and α ∈ execs(A) is an
execution. Let Aenv = envActors({a}). Then the trace t = trace(α) is well-
formed with respect to the environment Aenv = envActors({a}).

Proof:
Follows from Constraints C3 and C8. �

The constraints of CompA ensure that the state signature of a CompA only con-
tains external emittance events and their reaction events.

Proposition 9.2 (State signature event characteristic of CompA):
Let A be a component automaton with initial actor a and

Ecmp(a) = {e | isMethod(e)∧(caller(e) /∈ ancestors(a)∨target(e) /∈ ancestors(a))}

the set of external events and their corresponding reaction events with re-

128



9.2. Properties of Component Automata

spect to a component instance with initial actor a. Then,

∀s ∈ states(A) : sig(A)(s) ⊆ Ecmp(a) .

Proposition 9.2 (Continued)

Proof:
From Constraints C3 and C4, ext(A)(s) ⊆ Ecmp(a). Since by Constraint C5 int(A)(s)
only adds reaction events to the emittance events in the buffer, which is only pop-
ulated with input events, sig(A)(s) ⊆ Ecmp(a). �

The disjointness of the signatures within a CompA and between CompA follows
from the disjointness of the individual actor, that the internal events can only be
reaction events to input events, and the fact that the exposed actors must have
the initial actor of the component as one of their ancestors.

Proposition 9.3 (Disjoint component automaton signature):
Let A be a component automaton. Then,

in(A)∩ out(A) = in(A)∩ int(A) = out(A)∩ int(A) = ; .

Proof:
From the Constraint C5 it is clear that internal events are exclusively reaction
events and reaction events are never categorized as input or output events. There-
fore, we only need to show that in(A)∩out(A) = ;. From Constraint C4, an output
event is either a return event targeted to an actor of the component or a method
call targeted to an exposed environment actor, while according to Constraints C3
and C8, an input event is the opposite. Therefore, the input and output signatures
are also disjoint. �

Proposition 9.4 (Disjoint signatures between component automata):
LetA andA′ be component automata with initial actors a and a′, respectively,
where a /∈ ancestors(a′)∧ a′ /∈ ancestors(a). Then, in(A)∩ in(A′) = out(A)∩
out(A′) = int(A)∩ int(A′) = ;.

Proof:
The lemma follows from the assumption that the actors of the components being
disjoint. �

The signature disjointness between a CompA and an AA also follows if the actor
represented by the AA is part of the environment of CompA.

129



Chapter 9. Component Automata

Proposition 9.5 (Disjoint signatures between AA and CompA):
Let A be a component automaton with the initial actor a and A′ be an actor
automaton representing actor a′ such that a′ /∈ ancestors(a). Then, in(A) ∩
in(A′) = out(A)∩ out(A′) = int(A)∩ int(A′) = ;.

Proof:
Follows from Constraints A3 to A5, Constraints C3 to C5 and the assumption that
a′ /∈ ancestors(a). �

The propositions above indicate that CompA, as with AA, fulfill the require-
ments of the parallel composition operator. We classify SIOA that are obtained
from the composition of CompA and AA as actor-based SIOA. We use s(a) to ex-
tract the state of a particular actor or a component instance with the initial actor
a from the state s of an actor-based SIOA A.

Definition 9.2 (Actor-based SIOA):
Let {A1, . . . ,An} be a set of AA and CompA. The SIOA A = A1 ‖ . . . ‖ An is
an actor-based SIOA.

9.3 Model of Component Configuration Automata

In this section, we realize an adaptation of CA, called component configuration au-
tomata (CCA), that accommodates components. To define CCA, first, we include
the information of which classes are the activator classes. Second, we extend the
configuration to include information which SIOA represents an actor and which
SIOA represents a component instance. Every time there is a transition that cre-
ates an actor of an activator class C , the new SIOA (that is, an instance of AA of
C) is marked as a component, unless the creator is part of a component instance.
In the latter case, the new SIOA is composed together (using the parallel compo-
sition operator) with the creator’s SIOA. Otherwise, this transition creates a new
SIOA and puts it into the configuration as done in ACA. Transitions that do not
involve actor creations are modeled the same to what is done in ACA with the
exception of allowing simultaneous exposure of a group of actors. We show that
this adaptation does not impact the observable behavior of the represented actor
system in comparison to ACA.

To unite the use of AA and CompA, CCA are defined such that components
[C] can be designated as activator classes. Creating such a component means
instantiating a parameterized component automaton that represents [C]. The

130



9.3. Model of Component Configuration Automata

component automata are SIOA, allowing the AA, composed AA and component
automata to be treated in a uniform manner.

First we define a notion of configurations called component configuration that al-
lows the use of an SIOA A to represent a group of actors. To distinguish SIOA that
represent only single actors from SIOA that represent a group of actors, we encode
this information in a boolean mapping. The notion of a compatible component
configuration is a generalization of the notion of compatible actor configurations.

Definition 9.3 (Component configurations):
A component configuration C is a tuple 〈A,S,E,U,B〉 where

• A is a set of SIOA identifiers,

• S maps each SIOA identifier A ∈ A to a state s ∈ states(A),

• E is the set of actors (names) that have been exposed to the environment,

• U is the set of futures that the environment have used in relation to calling
methods of actors represented in the configuration, and

• B maps each SIOA identifier A ∈ A to a boolean value, indicating, if true,
that A represents a component instance. Otherwise, A is an AA represent-
ing an actor.

We lift the names function to component configurations, such that names(C) =
⋃

A∈A
names(A). A component configuration C = 〈A,S,E,U,B〉 is compatible

iff, for all A,B ∈ A, A 6= B:

• names(A)∩ names(B) = ;,

• out(A)(S(A))∩ {e | target(e) ∈ names(B)∨ caller(e) ∈ names(B)}
⊆ in(B)(S(B))∩ {e | caller(e) ∈ names(A)∨ caller(e) ∈ names(B)}, and

• out(A)(S(A))∩ {e | isCreate(e)∧ target(e) ∈ names(B)}= ;.

E ⊆ names(C) and U ⊆ {u | ancestors(gen(u))∩ names(A) = ;}.
Additionally, for all A ∈ A : |names(A)|> 1 =⇒ B(A) = true.

The definition above is a natural extension to the actor configuration defini-
tion (Definition 8.1), where it provides also a map to indicate which SIOA in the
configuration are representing groups of actors. The compatibility of component
configurations only differs from that of actor configurations in the assumption that
each SIOA represents an actor. Apart from that, the compatibility notion remains

131



Chapter 9. Component Automata

the same. An output event generated by an actor represented within some actor-
based SIOA A and sent to an actor represented within B can be accepted as an
input event for the target actor, and no creation event that marks the creation of
an actor that is already in the actor configuration is generated. The compatibility
notion above assumes that there is no conflict within an SIOA, which is guaranteed
by how the transitions are intrinsically derived. This notion also strengthens the
usage of the mapping, such that when an SIOA represents a component instance,
it is marked so in the mapping B, which we call component instance mapping. The
function names for actor configurations retains the same meaning for component
configurations. This function applied to a component automata instance returns
the set of all actors that may be transitively created by the initial actor of the com-
ponent instance. We qualify (A, s, b) as a member of a component configuration
〈A,S,E,U,B〉 if A ∈ A, S(A) = s and B(A) = b. The functions exposed(C) and
futs(C) retain their meaning for actor configurations.

The notion of intrinsic signatures of component configurations is formalized by
Definition 9.4. This notion is the same as that for actor configurations, because
the additional element B does not affect the actual signatures of each SIOA within
a configuration.

As with the intrinsic signatures, the intrinsic transitions for component config-
urations do not differ much from the intrinsic transitions for actor configurations.
There are two main differences: the consideration of groups of actors as compo-
nent instances, instead of just single actors, and the inclusion of activator classes
to distinguish which groups of actors should be represented by an SIOA. Unlike
for actor configurations where an actor creation event simply means adding a new
SIOA to the set of existing SIOA, in the component case we have to distinguish
whether the new SIOA is going to be composed with the SIOA that generates
the event or it is going to be a separate member of the configuration. The latter
case requires a further check on whether the class of created actor is an activator
class. If so, the component instance mapping for the corresponding SIOA marks
this SIOA as a component. Furthermore, if the activator class is represented in
its boxed variant, the component automaton instance is used in the configuration
instead of the actor automaton one. Because an SIOA may represent a group of
actors, more than one actor of that group can be exposed within one single event.

A component intrinsic transition (Definition 9.5) relies on the event being in
the intrinsic signature of the component configuration. If e is a creation event
such that the creator is part of a component instance, then the SIOA representing
the component instance is composed with the new SIOA in the configuration. If
e is a creation event where the creator is not part of a component instance, the
new SIOA is a new member of the configuration. Furthermore, if the class of

132



9.3. Model of Component Configuration Automata

Definition 9.4 (Intrinsic signatures of a component configuration):
Let C = 〈A,S,E,U,B〉 be a compatible component configuration. Let
commonEv be the set of common events between actors represented within
the configuration:

commonEv=







e

�

�

�

�

�

�

target(fut(e)) ∈ names(C) ∧
(isMethod(e) =⇒ caller(e) ∈ names(C)) ∧
(isCreate(e) =⇒ caller(e) ∈ names(C))







.

Let envEv be the set of bogus events generated by the environment:

envEv=











e

�

�

�

�

�

�

�

�

isMethod(e) ∧
(acq(e)∩ (envActors(names(C))∪E) 6= ; ∨ fut(e) ∈ U) ∧
(isCall(e) =⇒ caller(e) /∈ names(C) ∧
(isRet(e) =⇒ target(e) /∈ names(C))











.

Then, the signature sig(C) = 〈in(C), out(C), int(C)〉 is the intrinsic signature
of C, where

• in(C) = (
⋃

A∈A
in(A)(S(A)))− commonEv− envEv

• out(C) = (
⋃

A∈A
out(A)(S(A)))− commonEv

• int(C) = (
⋃

A∈A
int(A)(S(A)))∪ (

⋃

A∈A
in(A)(S(A))∩

⋃

A∈A
out(A)(S(A)))

The external signature C is defined as ext(C) = 〈in(C), out(C)〉.

the created actor is an activator class, the new SIOA is marked as a component
instance. The exposure of actors is done in bulks, as an SIOA may represent
a group of actors. If an event is sent to the environment, all acquaintance of
that event is exposed to the environment. The collection of futures used by the
environment also remains the same. The transition causes the state of an SIOA
in the configuration to change if an actor represented by the SIOA takes part in
the event. No transition causes the mapping of component instances to change
on existing SIOA.

The definition of CCA differs from ACA only on the use of component configu-
rations and component intrinsic transitions. As explained previously, the activator
class info must be included in the structure of CCA. To avoid confusion, an acti-

133



Chapter 9. Component Automata

Definition 9.5 (Component intrinsic transitions):
Let C = 〈A,S,E,U,B〉, C′ = 〈A′,S′,E′,U′,B′〉 be two arbitrary compatible
component configurations and e an event. Let CL ⊆ CL ∪ [CL] be a set of
classes and components. If e is a creation event and class(e) ∈ CL, we let
A′′ = A′(target(e)) be an actor automata of class class(e). If e is a creation
event and [class(e)] ∈ CL is a boxed class [C], we let A′′ = A′(target(e))
be a component automata of initial class C . There is a component intrinsic

transition from C to C′, written as C
e
=⇒

CL
C′, iff

1. e ∈csig(C);

2. Let A′′ be a set of SIOA identifiers such that,

• if e is a creation event (i.e., isCreate(e)), A ∈ A is an SIOA such that
caller(e) ∈ names(A) and A is derived from a group of actor automata
(i.e., B(A) = true),

A′′ = (A− {A})∪ {A ‖A′′} ;

in addition, S′(A ‖A′′) = 〈s′, s′′〉 where S(A)
e
−→A s′ and s′′ ∈ start(A′′)

such that param(e) = s′′(params);

• if e is a creation event (i.e., isCreate(e)), A ∈ A is an SIOA such that
caller(e) ∈ names(A) and A is an AA (i.e., B(A) = false),

A′′ = A∪ {A′′} ;

in addition, S′(A′′) ∈ start(A′′) such that param(e) = param(S′(A′′)),
B′(A′′) = class(e) ∈ CL;

• otherwise A′′ = A;

3. for all A ∈ A : B′(A) = B(A) and if e ∈ csig(A)(S(A)) ∧ S(A)
e
−→A s, then

S′(A) = s, otherwise S′(A) = S(A),

4. E′ = E∪







a

�

�

�

�

�

�

(isCall(e)∧ target(e) /∈ names(C)) ∨
(isRet(e)∧ caller(e) /∈ names(C)) ∧

a ∈ acq(e)− envActors(names(C))







, and

5. U′ = U∪ {fut(e) | isCall(e)∧ caller(e) /∈ names(C)}.

134



9.4. Properties of Component Configuration Automata

vator class C can only be present either in its class or its boxed form. We assume
that the configuration of an initial state only contains one actor-based SIOA.

Definition 9.6 (Component configuration automata):
A component configuration automaton C is a triple 〈sioa(C), config(C), CL(C)〉
where

• sioa(C) is an SIOA;
(As with CA, the parts of this SIOA is abbreviated to
states(C) = states(sioa(C)), start(C) = start(sioa(C)), etc., for brevity.)

• a configuration mapping config(C) with domain states(C) such that for all
x ∈ states(C), config(C)(x) is a compatible component configuration;

• CL(C) is a set of activator classes where ∀C ∈ CL(C) : C ∈ CL∪ [CL] and
∀C ∈ CL : (C ∈ CL(C) =⇒ [C] /∈ CL(C))∧ ([C] ∈ CL(C) =⇒ C /∈ CL(C));

such that the following constraints are satisfied:

1. Let x ∈ start(C) and C = 〈A,S,E,U,B〉 = config(C)(x). Then, |A| = 1,
U= ; and (A, s) ∈ C =⇒ s ∈ start(A).

2. If (x , e, x ′) ∈ steps(C) then config(C)(x)
e
=⇒

CL(C)
config(C)(x ′).

3. If x ∈ states(C) and config(C)(x)
e
=⇒

CL(C)
C for some event e and a compati-

ble component configuration C, then ∃x ′ ∈ states(C) such that
config(C)(x ′) = C and (x , e, x ′) ∈ steps(C).

4. For all x ∈ states(C)

(a) in(C)(x) = in(config(C)(x))

(b) out(C)(x) = out(config(C)(x))

(c) int(C)(x) = int(config(C)(x))

The notions of execution and traces of CCA remain the same as that of CA.

9.4 Properties of Component Configuration Automata

In each state of the CCA, each event in the signature is also exclusively classified
either as an input event, an output event or an internal event as stated by the
following proposition.

135



Chapter 9. Component Automata

Proposition 9.6 (Signature disjointness of CCA):
Given a component configuration automaton C, for all states x ∈ states(C),

in(C)(x)∩ out(C)(x) = in(C)(x)∩ int(C)(x) = out(C)(x)∩ int(C)(x) = ; .

Proof:
Follows from Definition 9.4 and Lemma 7.2. �

The fact that CCA is a generalization of ACA is captured by the following lemma.
We frame this fact in terms of executions, where the executions of a CCA that
has no activator classes is the same as that of an ACA, provided we strip out the
component instance mapping from the component configurations. The stripping
out action is represented by the function

stripCompConf(〈A,S,E,U,B〉) = 〈A,S,E,U〉 ,

which is lifted up naturally to executions and sets of executions.

Lemma 9.3:
Let CACA be an ACA and CCCA be a CCA where for each initial state in start(CACA)
there is an initial state in start(CCCA) that contains the same SIOA (identi-
fier) mapped to the same SIOA initial state, and vice versa. Additionally,
CL(CCCA) = ;. Then execs(CACA) = stripCompConf(execs(CCCA)).

Proof:
Follows from Definition 9.5 which is reduced to Definition 8.3 when an actor of
any activator class is never created. �

The following lemma states that having activator classes does not change the
intrinsic state signature of a CCA.

Lemma 9.4:
Let C1,C2 be CCA, C1 the configuration of some state x1 of C1 and C2 the
configuration of some state x2 of C2 such that names(C1) = names(C2) and
∀a ∈ names(C1) : ∃(A1, s1, b1) ∈ C1, (A2, s2, b2) ∈ C2 : a ∈ names(A1)∧ a ∈
names(A2)∧ s1(a) = s2(a). Then sig(C1)(x1) = sig(C2)(x2).

Proof:
The underlying AA of every actor a ∈ names(C1) is the same. Hence, the signature
of the AA in state s1(a) is the same as the signature of the AA in state s2(a). From
Proposition 6.2, the parallel composition does not remove any event from the sig-
nature of its SIOA operands. Furthermore, no transition is lost (Definition 6.5.4).

136



9.4. Properties of Component Configuration Automata

It follows from Definitions 9.4 and 9.5, that csig(C1)(x1) =csig(C2)(x2). From Defi-
nitions 6.5.3 and 9.4, if the signatures of the SIOA in a configuration are disjoint,
an event is uniquely categorized as an input, output or internal event. Because
the signature of an AA is disjoint (Lemma 7.3), it is sufficient to show that the cat-
egorization of any event e ∈ csig(C1)(x1) in sig(C1)(x1) is the same in sig(C2)(x2).
Let e ∈ in(C1)(x1). Because one of the participating actor of e is an actor of the en-
vironment, e ∈ in(A1)(s1). Since e ∈ csig(C2)(x2), e can only be in in(A2)(s2) and
by Definition 9.4, e ∈ in(C2)(s2). Similar reasoning follows for e ∈ out(C1)(x1). If
e ∈ int(C1)(x1), the participating actors of e (or the only one participating actor if
it involves a self call) are represented within the configuration. By Definition 9.4,
e ∈ int(C2)(x2). By symmetry, for each event e ∈ csig(C2)(x2), e ∈ csig(C1)(x1).
Because csig(C1)(x1) = csig(C2)(x2) and the same event categorization applies, we
conclude that sig(C1)(x1) = sig(C2)(x2). �

It is important that integrating our component notion into the automaton model
does not impact the observable behavior of the represented system. Regardless
which classes are deemed as activator classes, each actor in the system modeled by
a CCA should be able to perform interaction as modeled in an ACA. The observable
behavior of an actor system is represented by a trace of the CCA. Hence, this
property can be phrased as the two models having the same set of traces. To show
this property, we utilize the well-known bisimulation relation ([Par81]), such that
showing the existence of a bisimulation between these models implies that both
ACA and CCA generate the same set of traces (cf., e.g., [BK08, Theorem 7.6]). We
state below the definition of bisimulation.

Definition 9.7 (Bisimulation):
Let C1,C2 be configuration automata. A bisimulation for (C1,C2) is a binary
relation R ⊆ states(C1)× states(C2) such that

1. ∀x1 ∈ start(C1) : ∃x2 ∈ start(C2) : (x1, x2) ∈R and
∀x2 ∈ start(C2) : ∃x1 ∈ start(C1) : (x1, x2) ∈R;

2. ∀(x1, x2) ∈R :

a) if x1
l
=⇒C1

x ′1, then x2
l
=⇒C2

x ′2 for some x ′2 ∈ states(C2) such that
(x ′1, x ′2) ∈R and

b) if x2
l
=⇒C2

x ′2, then x1
l
=⇒C1

x ′1 for some x ′1 ∈ states(C1) such that
(x ′1, x ′2) ∈R.

Intuitively, two CA C1,C2 are called bisimilar if a transition made on one CA can
be matched by the other one. The definition above relates the states of the two

137



Chapter 9. Component Automata

CA to confine when a transition of one CA can be mimicked by the other one and
vice versa.

The following theorem states the desired property linking the observable be-
havior of ACA and CCA. Because the structure of an ACA can be fully captured by
a CCA, the ACA is represented by a CCA without any activator class. The essence
of the proof is that the parallel composition does not affect the observable behav-
ior of the CCA. Because ACA do not allow CompA to be part of the configuration,
we omit boxed classes in the set of activator classes of CCA.

Theorem 9.1 (Bisimulation between ACA and CCA):
Let C1,C2 be CCA where CL(C1) = ;, CL(C2) ⊆ CL, CL(C2) is non-empty and for
each initial state in start(C1) there is an initial state in start(C2) that contains
the same SIOA (identifier) mapped to the same SIOA initial state, and vice
versa. Then, there is a bisimulation for (C1,C2).

Proof:
Without loss of generality we assume that the class of the initial actor is an activa-
tor class, and each initial state of C1 and C2 is mapped to configurations containing
the same actor. If the class is not the activator class, the ACA and CCA exhibit no
difference in behavior until an actor of an activator class is created. We assume
the name of this actor is init. We drop the activator class parameter from the
intrinsic transition of C2 to simplify the presentation because there is no need to
consider them for the proof. We define a relation R between the states of C1 and
C2 as follows.

R=



























(x1, x2)

�

�

�

�

�

�

�

�

�

�

�

�

x1 ∈ states(C1)∧ x2 ∈ states(C2) ∧
C1 = config(C1)(x1)∧C2 = config(C2)(x2) ∧
exposed(C1) = exposed(C2)∧ names(C1) = names(C2) ∧
∀a ∈ names(C1) : ∃A1, s1,A2, s2, b2 :
(A1, s1, false) ∈ C1 ∧ a ∈ names(A1) ∧
(A2, s2, b2) ∈ C2 ∧ a ∈ names(A2)∧ s1 = s2(a)



























R relates states that are mapped to configurations that represent the same set
of actors in the same state and expose the same set of actors to the environment.
Note that each state of C1 and C2 is mapped to some compatible configuration,
ensuring the absence of degenerate cases where an intrinsic internal signature
of an ACA or a CCA contains an event that only appears as an input or an out-
put event in the SIOA part of the configuration, but not both (i.e., that event is
only acknowledged by one of the two participating parties). We show that R is a
bisimulation.

138



9.4. Properties of Component Configuration Automata

From the assumption on initial state and Definition 9.6.1, the initial configu-
rations of C1 and C2 contain exactly the same AA A representing init. R then
contains all pairs of states of C1 and C2 for A whose state mapping for A yields
the same initial state of A. This also ensures that R is not empty if the set of
initial states of A is not empty. Therefore, the condition on initial states of the
bisimulation relation is fulfilled.

Now we show the second condition of the bisimulation relation holds. Let
(x1, x2) ∈R.

(a) Let e ∈ csig(C1)(x1) and there is x ′1 such that x1
e
=⇒C1

x ′1. Let a ∈ names(C1)
be a participating actor of e and s′1(a) be its mapped state in config(C1)(x ′1).
Because (x1, x2) ∈ R, the states of a in C1 and in C2 are the same. By
Lemma 9.4, e ∈ csig(C2)(x2). If a is represented in C2 as an AA A, there is

s′2(a) such that s2(a)
e
=⇒A s′2(a). If a is part of a composed AA A2 in C2,

by Definition 6.5.4 there is s′2(a) such that s2(a)
e
=⇒A s′2(a). If there is more

than one s′2(a), we choose the one where s′1(a) = s′2(a). The same argument
is also applied to the other participating actor a′ of e, if a′ ∈ names(C1). If
a′ is created as the result of executing e′, the resulting configuration C′2 is
formed by adding the AA A′ representing a′ to the component configuration
C2 or composing it with the caller’s SIOA (Definition 9.5.2). The state of a′ is
mapped in C′2 to the same initial state as in config(C1)(x ′1) (Definition 8.3.3

and Definition 9.5.3). By Definition 9.5, there is x ′2 such that x2
e
−→C2

x ′2.
Because the states of the other SIOA do not change, for every actor a′′ ∈
names(config(C1)(x ′1)), its mapped state in config(C1)(x ′1) is the same as its
mapped state in config(C2)(x ′2). Therefore, (x ′1, x ′2) ∈R.

(b) A similar argument applies in the other direction. The crucial point is that
for a transition to happen in a composed SIOA, it has to be present in the
underlying AA operands.

Thus, R is a bisimulation. �

Following this result, we have trace equivalence of both CCA.

Corollary 9.1:
Let C1,C2 be CCA where CL(C1) = ;, CL(C2) ⊆ CL, CL(C2) is non-empty and for
each initial state in start(C1) there is an initial state in start(C2) that contains
the same SIOA (identifier) mapped to the same SIOA initial state, and vice

139



Chapter 9. Component Automata

versa. Then,
traces(C1) = traces(C2)

Corollary 9.1 (Continued)

A useful consequence of the theorem above is that the traces are well-formed.

Corollary 9.2:
Let C be a CCA. Then, for each trace t ∈ traces(C), t is well-formed with
respect to the set of actors represented by the CCA.

It is also important that externally observable behavior of the systems are ac-
curately represented by CCA. This behavior is captured by the external traces.
Because the intrinsic signatures of ACA and CCA are handled in the same way, the
classification of external events in both models is the same. As we know that the
set of generated traces of both models is the same, the resulting set of external
traces is also the same.

Lemma 9.5 (External behavioral equivalence of ACA and CCA):
Let CACA be an ACA and CCCA be a CCA where for each initial state in start(CACA)
there is an initial state in start(CCCA) that contains the same SIOA (identifier)
mapped to the same SIOA initial state, and vice versa. Then,

xtraces(CACA) = xtraces(CCCA) .

Proof:
Follows from Definitions 8.2 and 9.4 and Theorem 9.1. �

9.5 Discussion

Interface of components. As mentioned in Chapter 5, the interface of a com-
ponent can be over-approximated by aggregating the provided and required in-
terface of all classes in the component. We do not apply this over-approximation
to the CompA, because not all actors of a component instance are exposed to the
environment and vice versa as a result of some interaction. Instead the interface
through the input and output state signatures changes as more and more actors
are exposed. This decision is helpful for specifying a CompA, because the spec-
ification does not have to include the description of the interface of all possible
classes needed to implement the component.

140



9.5. Discussion

Other notions of component instances. In Section 5.3, we have identified
three ways to instantiate a component: static, programmer-defined and dynamic,
with the dynamic kind being presented in this chapter. Adopting static compo-
nent instances (actors of the same class are grouped together) requires a signif-
icant change on the overall structure of CompA and CCA. On the CompA front,
the definition is more heavy duty as the internal state of each actor needs to be
incorporated directly within the same CompA state. Defining configurations of
CCA becomes simpler, as there is no need to present a boolean map that checks
whether an SIOA represents a single actor or a group of actors. The intrinsic tran-
sitions also becomes simpler, as it is no longer necessary to distinguish whether an
actor is joining a group of actors. The cost of this adoption is the loss of connec-
tion between CCA and ACA, because the behavior of single actors are inevitably
incorporated in the CompA.

Adopting programmer-defined component instances (where an implementation
can contain a specification in which component instance a newly created actor
should be placed) has the cost of creating a partial representation of component
instances that belong to the environment. Being able to state in which instance a
newly created actor should be grouped means that the actor may become part of
a component instance created by the environment. The definition of CompA also
needs to be changed accordingly, where a creation event can now be part of the
external state signatures.

141





CHAPTER 10

Specification of Automata

The adaptation of the DIOA model produces automata with infinite states. As
stated by d’Osualdo, Kochems and Ong [DKOne], the infinite states come from
these aspects:

• The dynamic topology of an actor system

• The unbounded data domain

• The unbounded dynamic creation of actors

• The unbounded capacity of the message buffers of actors

Furthermore, we consider futures and the open setting which increases the com-
plexity. Therefore, it is necessary to obtain a finite representation of our model.

First let us note that despite the primary semantic objects of the DIOA model
are the CA, as in [AL15], we do not specify the ACA or CCA directly. They are
derived intrinsically from the relevant AA and CompA which are the subject of
the specifications.

The proposed specification approach is inspired by the pseudocode of I/O au-
tomata described by Lynch [Lyn96, Chapter 8], a precursor to the IOA language
[GLMT09]. Each specification has 3 parts describing the signatures, the states and
the actions. The signatures are essentially the interfaces of the class(es) of the ac-
tor (or all possibly exposed actors of a component). The state parts focus on the
internal states of the represented entity, while the actions describe the transitions
taken by the entity. We assume that the data domain are described elsewhere and
use the set D as the universe for the data domain. In addition, we assume that AA
and CompA are defined such that the infinite aspects mentioned above are dealt
with within their definitions. Therefore, the specifications can be finitely repre-
sented. We only need to provide a suitable interpretation of their specification.
Chapter outline. This chapter begins by giving a formal definition of the class spec-
ifications and their automaton semantics. Section 10.2 formalizes the component
specification. The chapter ends with a discussion on the specification technique.

143



Chapter 10. Specification of Automata

10.1 Class Specification

Class specifications, as exemplified by Figures 7.1 and 7.2, represent the expected
observable behavior of class implementations. They contain the ingredients that
are needed to construct the corresponding AA. The first ingredient is the set of
allowed messages. In the specification, the allowed messages are given in terms
of required, provided, and internal call and creation messages, leaving out the
return messages. By instantiating the free variables in the Allowed messages
specification according to their appropriate types, the specified required, pro-
vided and internal messages become the foundation of the input (aMsg(C , in)),
output (aMsg(C , out)) and internal (aMsg(C , in)) allowed messages of the class,
respectively. The set of allowed messages aMsg(C) is completed by populating the
set with all possible return messages based on the call and the creation messages.
The definition below which describes the set of allowed messages employs the
universe R(m) to represent the largest set of possible return values for a method
call message m. This universe encompasses the data universe D and the actor
universe A.

Definition 10.1 (Class allowed messages):
Given a class C , the set of allowed messages of C , aMsg(C) ⊆M, is the triple
〈aMsg(C , in), aMsg(C , out), aMsg(C , int)〉 where

• ∀(a : mtd(p)) ∈ aMsg(C , in) : ∀v ∈ R(a : mtd(p)) :
class(a) = C ∧ (a : mtd / v) ∈ aMsg(C , out)

• ∀(a : mtd(p)) ∈ aMsg(C , out) : ∀v ∈ R(a : mtd(p)) :
(a : mtd / v) ∈ aMsg(C , in)

• ∀(a : mtd(p)) ∈ aMsg(C , int) : ∀v ∈ R(a : mtd(p)) :
class(a) = C ∧ (a : mtd / v) ∈ aMsg(C , int)

The second ingredient is the internal state. A class specification uses the internal
state to help determine what kind of actions an actor of that class should take
when it processes a message. The internal state is represented by typed internal
variables. The universe of the types consists of the class universe CL, the data
universe D, the actor universe A, the future universe U and their combination via
abstract data structures. The initial value of each internal variable must be stated
to ensure what kind of behavior an actor makes after it is created. For simplicity,
we assume the variable names declared in the specification do not coincide with
the fixed variable names of AA and the class parameters. In the following, we
represent the class parameters as Vparams and the internal variables as Vint. The

144



10.1. Class Specification

initial states initStates generated by the specification map the variables in Vparams
to all possible values and the internal variables to their specified initial values.

The third ingredient defines the expected observable behavior of an actor. As
explained in Chapter 7, the observable behavior of an actor can be characterized
by the events the actor generates from one release point to the next one. We name
a transition from one release point to the next one an event sequence transition.
An event sequence transition may start by generating a reaction event to some
input event in the buffer, followed by a (possibly empty) sequence of output and
internal emittance events. Only the last event in this sequence is allowed to be a
return event following the semantics of method returns. The effect of performing
these events on the state is recorded by assigning the variables to their desired
values. We also include the possibility to specify blocking through the reserved
variable blkFut of AA, where the actor waits for a specific future to be resolved.
The description above is summarized by the following definition.

Definition 10.2 (Event sequence transitions):
Let Vparams and Vint be sets of variables representing the parameters of the
class signature and internal variables, respectively. An event sequence tran-
sition es= 〈s, EV, s′〉 where

• s, s′ are states that map variables Vparams ∪ Vint ∪ {blkFut} to values,

• ∀v ∈ Vparams : s(v) = s′(v), and

• EV = ev1 . . . evn is a non-empty finite sequence of parameterized events
such that

∀i ∈ {1, . . . , n} : (i > 1 =⇒ isEmit(evi))∧ (i < n =⇒ ¬isRet(evi)) .

In a class specification, an event sequence transition is described by an event
sequence, a precondition predicate pre and a state assignment state. The event
sequence consists of parameterized events with several free variables. Variables
that can be left free are variables on a reaction event and variables representing
the future identities and actor names generated by the actor in an emittance event.
Other variables should be part of the internal state or the class parameters. Al-
lowing free variables to be part of a reaction event mimics the input-enabledness
property of actors.

To provide some control on how an actor reacts to input events, the event se-
quence transition specification features a precondition predicate. The precondi-
tion predicate, specified as a first-order logic formula, states when an event se-
quence transition specification can be instantiated. This predicate may use the in-

145



Chapter 10. Specification of Automata

ternal variables, the class parameters, and the free variables of the reaction event,
if it exists in the event sequence. This predicate is evaluated on the pre-state and
the input obtained from the input event the actor is reacting to. In a way, the
use of this predicate restricts the capability of an actor to react to an input event
beyond the actor model, because there can be some input event in the buffer of
the actor model whose reaction event is not part of an event sequence transition.
We will shortly see in the semantics of the class specifications how this problem is
handled.

The state assignment defines what is expected of the post-state of the transition.
In the specification, we use a simple assignment operator := to indicate the ex-
pected value of some variables of the post-state s′ after the transition is executed.
The assignments of multiple variables in one event sequence transition specifica-
tion are separated by ∧ and a condition can be placed on an assignment by means
of an implication =⇒ such that the assignment happens only when the condition
is fulfilled. The values of all other internal variables do not change.

The behavior of a class constructor can be specified with the keyword con-
structor before the event sequence. The event sequences of the constructor is
dealt separately from the other event sequences because the constructor is only
executed once. Following the restriction on constructors in αABS, where a con-
structor cannot contain await and get statements, the event sequence transition
enacts the complete execution of a constructor. In addition, the lack of conditional
checks means that the constructor can be executed in any state regardless how the
internal variables and class parameters are mapped.

Instantiating the internal states, class parameters and the free variables given
in the specification such that the precondition and state assignment predicates
are fulfilled produces a set of event sequence transitions. As a whole, these three
ingredients constitute a class specification. Collectively the event sequence transi-
tions represent the class invariant the actor should satisfy at a release point or a
blocking state. More precisely, between two consecutive release points, an actor
must perform an event sequence transition specified in the class specification.

Definition 10.3 (Class specifications):
Let C be a class. A class specification S for C parameterized with an actor this
of class C is a tuple 〈aMsg(C), Vparams, Vint, initStates, ES, EScons〉 such that

• aMsg(C) represents the set of allowed messages of class C ,

• each s ∈ initStates are states that map variables Vparams∪Vint to some initial
values and blkFut to ⊥, and

146



10.1. Class Specification

• ES∪ EScons is a set of event sequence transitions, each of these transitions
satisfies the following condition:
∀〈s, ev1 . . . evn, s′〉 ∈ ES : ∀e ∈ {ev1 . . . evn} :

msg(e) ∈ aMsg(C)∧ this ∈ {caller(e), target(e)}.
The set EScons represents the class constructor’s event sequence transitions.
An empty constructor is represented by EScons = ;.

Definition 10.3 (Continued)

Given a class specification, we need to establish its semantics. The specification
is translated to an SA that obeys the constraints of an AA, with the event sequence
transitions providing the possible transitions the signature automaton may take.
The translation splits each event sequence transition to AA transitions, where the
internal variables immediately change their values after the first step of the event
sequence transition. Such a design eases the reasoning on component behav-
iors. During an event sequence transition, the intermediate states should not be
a release point, while the futures blocking at the release points are determined
by the pre- and post-state (i.e., the s and s′, respectively) of the event sequence
transition. Because the event sequence transitions in the specification contain all
possible mappings of the variables that satisfy the given preconditions, we only
need to cherry pick those which fit to the constraints of an AA. For example, when
an actor is blocked because it waits for a certain future to be resolved, only the
corresponding method return emittance event can be reacted to.

The remaining question is what happens when the actor reacts to an input event
at some state where no event sequence transition is applicable. Because we con-
sider the specification to be constructive [Lam83a], the specification describes all
situations that an actor can handle. Other situations not described in the spec-
ification lead to an error on the actor side. That is, reacting to that particular
input event at that state produces some sort of error. To model these undesired
situations, the AA are equipped with erroneous states. An erroneous state in AA
is a state where release is true, but the blkFut is false, without any transitions
that leads to a state where release is false. That is, the actor becomes constantly
at a non-release point without any possibility for going back to a release point.
Therefore, the actor cannot generate another event. Note that the actor remains
input-enabled, because the execution of a transition labeled with an input event
does not depend on these two variables.

Definition 10.4 formalizes these requirements. It uses the following predicate

sameState(saut, sspec) = diffOn(saut, sspec,V− (Vparams ∪ Vint ∪ {blkFut}))

to express that the state saut of the automaton is equal to the state sspec of the
specification.

147



Chapter 10. Specification of Automata

Definition 10.4 (Class specification semantics):
Let 〈aMsg(C), Vparams, Vint, initStates, ES, EScons〉 be a class specification for
class C parameterized with an actor this of class C . Its corresponding parame-
terized signature automaton A(this) is defined by 〈states(A), start(A), sig(A),
steps(A)〉 where

• the domain of variables of states(A) is the fixed variables defined in Defi-
nition 7.2 and the params and ints variables are expanded to Vparams and
Vint, respectively;

• ∀s ∈ start(A) : Constraint A2 is fulfilled and
∃s′ ∈ initStates :

s(cons) = (EScons = ;) ∧
s(known) = {this} ∪ {a | a ∈ acq(s′(v))∧ a ∈ A∧ v ∈ Vparams} ∧
∀v ∈ Vparams ∪ Vint : s(v) = s′(v);

• sig(A) is a state signature mapping such that Constraints A1 and A3 to A5
are fulfilled;

• steps(A) is the smallest relation such that Constraints A6 to A8 are fulfilled
and
∀s1 ∈ states(A), ev1 ∈ E :
(s1(release)∨ (isReact(ev1)∧ s1(blkFut) = fut(ev1))) ∧
(∀〈s, ev1 . . . evn, s′〉 ∈ ES : sameState(s1, s) =⇒
∃s′1, s2, s′2, . . . , s′n ∈ states(A) : sameState(s′1, s′)∧∀i ∈ {2, . . . , n} :
¬s′i−1(release)∧ diffOn(s′i−1, si , {bufc, bufr, rcvFutTgt}) ∧
evi ∈ out(A)(si)∪ int(A)(si)∧ s′n(release) =⇒

∀i ∈ {1, . . . n} : (si , evi , s′i) ∈ steps(A)) ∧
(¬s1(cons)∧∀〈s, ev1 . . . evn, s′〉 ∈ EScons : sameState(s1, s) =⇒
∃s′1, s2, s′2, . . . , s′n ∈ states(A) : sameState(s′1, s′)∧ s′1(cons) ∧
∀i ∈ {2, . . . , n} :
¬s′i−1(release)∧ diffOn(s′i−1, si , {bufc, bufr, rcvFutTgt}) ∧
evi ∈ out(A)(si)∪ int(A)(si)∧ s′n(release) =⇒

∀i ∈ {1, . . . n} : (si , evi , s′i) ∈ steps(A)) ∧
(s1(cons)∧¬(∃〈s, ev1 . . . evn, s′〉 ∈ ES : sameState(s1, s)) =⇒
∃s′1 ∈ states(A) : diffOn(s1, s′1, {bufc, bufr, release, blkFut}) ∧

¬s′1(release)∧ s′1(blkFut) =⊥∧ (s1, ev1, s′1) ∈ steps(A)).

148



10.1. Class Specification

The SA of a class specification has states whose class parameters and internal
variables are obtained from the specification. The initial states of the SA are also
obtained from the initial states of the specification by letting the actor know itself
and other actors which are contained in the class parameters. The variable cons
of an initial state is mapped to true if the constructor is empty. Otherwise, it is
initialized to false, indicating that the constructor still needs to be executed. We
overload the acq notion to work also on the mapped values of variables. The state
signatures are derived from the states as regulated by the constraints of AA.

The transition relation follows the constraints of AA and is built from the event
sequence transitions. Whenever the actor is in a release point, we allow an actor to
execute an event sequence transition that can be executed from that release point.
Similarly, if an actor is blocked for some future u, we allow the actor to execute an
event sequence transition which begins with a reaction to a return event where u
is resolved. The constraints of AA ensure that every transition follows the generic
control flow of an actor. Because the actor is input-enabled, the intermediate state
may change by virtue of receiving more input events. Thus, the definition allows
some flexibility regarding the actor buffer between states s′i and si+1.

The execution of an event sequence transition belonging to the constructors is
interpreted essentially the same as for other event sequence transitions. The only
difference is that we need to guarantee that the constructor is only executed once,
through the use of cons. Following the semantics of αABS, it is possible that the
constructor is not the first statement that is executed by the actor.

The non-existence of an event sequence transition that can be applied in a state
indicates that the reaction to an input event causes an error. In such cases, the SA
transitions to an erroneous state.

Because the constraints of AA are being used in the semantics, the correspond-
ing SA of the specification is an AA.

Proposition 10.1:
The corresponding signature automaton of a class specification S of class C
is an actor automaton.

Proof:
Follows from Definitions 7.2 and 10.4. �

The traces generated by the AA of a class specification follow the class invari-
ants, because of the way the transition relations are constructed. The following
lemma states this property more precisely, with the inclusion of the incomplete
response to a method call. Because of the set of traces of AA is prefix-closed, we
can safely focus the attention on the finite traces (cf. [LV95, Lemma 3.4]).

149



Chapter 10. Specification of Automata

Lemma 10.1 (AA conformance to class invariants):
Let a be an actor of class C and A(a) its actor automaton obtained from a class
specification 〈aMsg(C), Vparams, Vint, initStates, ES, EScons〉 for class C where the
parameter this is instantiated by a. Then, the following holds:
∀ta ∈ traces(A(a)) : ∃t ′ : t ′ = ta↓Gen(a)∧ |t ′| 6=∞∧|t ′| 6= 0 =⇒
∃n≥ 0 : ∃〈s0, e1

1 . . . e1
k1

, s1〉, . . . , 〈sn−1, en
1 . . . en

kn
, sn〉 ∈ ES∪ EScons : ∃t :

t ′ = e1
1 . . . e1

k1
· . . . · en

1 . . . en
kn
· t ∧

(t = []∨ t = e ∨
(∃t ′′, 〈sn, en+1

1 . . . en+1
kn+1

, sn+1〉 ∈ ES∪ EScons :

t ′′ ∈ traces(A(a))∧ t ∈ Pref(t ′′)∧ t ∈ Pref(en+1
1 . . . en+1

kn+1
) ∧

t ′′↓Gen(a) = e1
1 . . . e1

k1
. . . en

1 . . . en
kn

en+1
1 . . . en+1

kn+1
))

Proof (by induction on the length of ta):
The invariant trivially holds for empty traces. Now assume that ta·e ∈ traces(A(a))
where ta satisfies the condition and its projection t ′ to events generated by a is
finite. If t ′ does not end with e, then e is an input event and the condition holds
by the inductive assumption. Otherwise, either t ′ ends with the completion of
an event sequence transition, or it is still in the middle of one. If it is the for-
mer case, by Definition 10.4, e can be appended regardless whether there is an
event sequence transition that matches it. If there is none, the AA moves to an
erroneous state where a cannot generate any more events. In the latter case, Def-
inition 10.4 regulates that the continuation e must be part of a matching event
sequence transition. Thus, the condition is satisfied. �

The lemma above can be reformulated as follows: Every time an actor is at a
release point or a blocking state, the trace generated by an actor coincides with the
concatentation of the event sequences of the event sequence transitions.

Corollary 10.1:
Let a be an actor of class C and A(a) its actor automaton obtained from a class
specification 〈aMsg(C), Vparams, Vint, initStates, ES, EScons〉 for class C where the
parameter this is instantiated by a. Then, the following holds:
∀s ∈ states(A(a)) : s(release)∨ s(blkFut) 6=⊥ =⇒
∃n≥ 0 : ∃〈s0, e1

1 . . . e1
k1

, s1〉, . . . , 〈sn−1, en
1 . . . en

kn
, sn〉 ∈ ES∪ EScons :

∀v ∈ Vparams ∪ Vint : s(v) = sn(v) ∧
s(tgen) = e1

1 . . . e1
k1

. . . en
1 . . . en

kn

Proof:
Follows from Proposition 7.2, Def. 10.4, and Lemma 10.1.

150



10.2. Component Specification

10.2 Component Specification

Similar to a class specification, a component specification is divided into the al-
lowed message, the internal state and the action specifications. Component spec-
ifications are typically simpler than the class specifications. Because a component
specification focuses on the externally observable behavior, the description of in-
ternal messages is not needed. On the other hand, the interface of a component
may consist of the interface of several classes. For example, imagine that in the
server example, a client first has to set up connection with the server with some
general form of queries, before it can send specific queries to the server. However,
once a connection is set up, the client can use the connection to send other specific
queries within the form. In this scenario, the server may perform optimization for
the query computation based on the general form of the queries. The connection
can be modeled, for instance, as a session actor which is created and returned by
the server when the client sets up a connection. This means that there are more
actors exposed to the environment of the server than just the server actor.

With this scenario in mind, a specification of the set of allowed messages for
a boxed class is defined as a list of class names and their external interface. The
class signature of the boxed class is also part of the specification, but the signature
of other classes in the list does not need to be specified, because the creation of
other actors within a component instance is internal. The information the compo-
nent instance has over the environment does not change. From this specification,
we can built the component’s allowed messages. The parameters of the class sig-
nature of the boxed class are represented as a set of variables Vparams. As with class
specifications, the set of allowed messages contains as many messages as possible
that do not breach the type restriction given in the specification.

Definition 10.5 (Component allowed messages):
Given a boxed class [C], the set of allowed messages of [C], aMsg([C]) ⊆M,
is the triple 〈aMsg([C], in), aMsg([C], out),;〉 where

• ∀(a : mtd(p)) ∈ aMsg([C], in) : ∀v ∈ R(a : mtd(p)) :
(a : mtd / v) ∈ aMsg([C], out)

• ∀(a : mtd(p)) ∈ aMsg([C], out) : ∀v ∈ R(a : mtd(p)) :
(a : mtd / v) ∈ aMsg([C], in)

The component specifications also have a section to specify internal variables
of a component instance and its initial value. As with the class specifications, the
internal variables are represented as Vint. The initial states initStates of the com-

151



Chapter 10. Specification of Automata

ponent contain all possible mapping of the variables of Vparams, while all variables
Vint are mapped to their specified initial values.

The behavior of a component instance is described by event transitions. This
part differs from the class specifications, where it makes more sense there to use
an event transition sequence to represent the behavior of an actor from one re-
lease point to the next one. A component instance may have more than one actor,
allowing interleaving to happen. In general, the interleaving is desirable because
it allows more concurrent computation to happen. As an effect, component spec-
ifications provide event transitions that highlight when a transition takes place.

An event transition specification consists of the event, the precondition when
such an event may be executed, and the state assignment. In general, the specified
event of a transition is either a reaction event or a method-related output emit-
tance event. Because an output emittance event may expose actors that have not
been exposed previously, such as the session actor in the extended example, the
specification should allow the generation of new exposed actors. In Definition 9.1,
this aspect is represented by the expActors variable which keeps track which ac-
tors have been exposed so far. Whenever an assignment w := new C appears in
the state part of an event transition specification, an actor of class C that is not
yet in expActors is used to in place of w. The creation assignment may only appear
if the created actor is to be exposed to the environment. Because the component
specification does not capture the actual creation process, the actual actor name
is kept loose (i.e., non-deterministically guessed) as long as the actor’s ancestors
include the initial actor. The event transitions produced from the specification are
the largest set of instantiations that fulfill the precondition.

Definition 10.6 (Event transitions):
Let [C] be a boxed class and Vparams and Vint sets of variables representing
the parameters of the class signature and internal variables, respectively. An
event transition is a triple 〈s, ev, s′〉 where

• s, s′ are partial states that map variables Vparams ∪ Vint ∪{expActors} to val-
ues,

• ∀v ∈ Vparams : s(v) = s′(v),

• s′(expActors)− s(expActors) ⊆ acq(ev), and

• ev is a parameterized event.

The component specification gathers all these aspects into one unit as defined
below. The initial actor of the component instance is represented by this.

152



10.2. Component Specification

Definition 10.7 (Component specifications):
Let [C] be a boxed class. A component specification S for [C] is a tuple
〈aMsg([C]), Vparams, Vint, initStates, ET〉 parameterized with an actor this of class
C where

• each s ∈ initStates are partial states that map variables in Vparams ∪ Vint to
some value and expActors to ;,

• ∀〈s, ev, s′〉 ∈ ET : ∃a ∈ A : class(a) = C ∧
(isEmit(ev) =⇒ msg(ev(a)) ∈ aMsg([C]) ∧
(isReact(ev) =⇒ msg(emitOf(ev(a))) ∈ aMsg([C], in)).

The semantics of a component specification is a signature automaton that obeys
the constraints of a CompA. The translation is similar to that for class specification,
except that there are less conditions to be checked due to the event transitions
and the abstraction from the internal workings of a component instance. Fur-
thermore, potential errors need to be explicitly identified within the component
specification, allowing a simpler definition of the transition relation.

Definition 10.8 (Component specification semantics):
Let 〈aMsg([C]), Vparams, Vint, initStates, ET〉 be a component specification for
component [C]. Its corresponding parameterized signature automatonA(this)
is defined by 〈states(A), start(A), sig(A), steps(A)〉 where

• The domain of variables of states(A) is the fixed variables defined in Def-
inition 9.1 and the params and ints variables are expanded to Vparams and
Vint, respectively.

• ∀s ∈ start(A) : Constraint C2 is fulfilled and
∃s′ ∈ initStates : s(known) = {this}∪{a | a = s′(v)∧a ∈ A∧v ∈ Vparams} ∧
∀v ∈ Vparams ∪ Vint : s(v) = s′(v).

• sig(A) is a state signature mapping such that Constraints C1 and C3 to C5
are fulfilled.

• steps(A) is the smallest relation such that Constraints C6 to C8 are fulfilled
and
∀s1, s2 ∈ states(A), 〈s, ev, s′〉 ∈ ET, a ∈ A : class(a) = C ∧
∀v ∈ Vparams ∪ Vint ∪ {expActors} :

s1(v) = s(v)∧ s2(v) = s′(v) =⇒ (s1, ev(this), s2) ∈ steps(A).

The signature automaton produced by translating the component specification

153



Chapter 10. Specification of Automata

is a CompA because all constraints of CompA are observed when generating the
signature automaton.

Proposition 10.2:
The corresponding signature automaton of a component specification S of
boxed class [C] is a component automaton.

Proof:
Follows from Definitions 9.1 and 10.8. �

10.3 Discussion

Class vs. component specification. While the underlying specification frame-
work is the same, the treatment for specifying AA and CompA differs. On the
action front, we can define how an actor behaves from one release point to the
other for AA. Specifying AA this way allows an adaptation of the class invariant
verification approach of Din et al. [DJO05; DJO08; DDJO12] (Chapter 11). For
CompA, generally it is not possible to specify what a component does from one re-
lease point to the next because the actors within a component act concurrently as
explained in Section 9.1. Therefore, their specifications tend to be based directly
on transitions that the CompA take. On the signature front, AA only represent sin-
gle classes. This means that we can use the interface the class implements as the
input signature part, whereas the output and internal signatures can be derived
from the calls and actor creations an actor of that class may make CompA, on the
other hand, generally combine the behavior of multiple classes. CompA also ig-
nore non-reaction, internal events that are present in AA. Therefore an adjustment
needs to be made to specify a CompA.

Error handling. Another difference lies on how errors are handled. For AA,
input events that lead to errors (e.g., having an input parameter that causes divi-
sion by zero) can be handled in a uniform way by providing a transition to a state
where further release points are never reached (i.e., release remains true). There-
fore, the conditions when errors may happen do not need to be present in the
specification. For CompA, errors need to be specified explicitly, because a compo-
nent instance may consist of more than one actor allowing some of the incoming
input events to still be processed, even though an error happens on some parts of
the component instance.

This approach of handling errors with the addition of erroneous states is also
known as the demonic approach [NS95]. Another approach is to create a self loop

154



10.3. Discussion

in each state representing a release point that ignores some disagreeable input,
also known as the angelic approach. The operational semantics of αABS sug-
gests that an actor remains input-enabled, regardless whether it encounters some
errors. However, the error means that the actor cannot make any progress pro-
cessing other tasks. Thus, the angelic approach is not suitable with the adaptation
of DIOA model for actors.

Constructive vs. axiomatic. The specification technique used in this thesis falls
into the constructive category [Lam83a], where the expected observable behavior
of an actor or a component instance is illustrated step by step. Compared to
programming languages such as αABS, we abstract from the more fine-grained
operations needed to produce the events. On the component level, this abstraction
is even more pronounced as we leave behind the internal events (apart from the
reaction to input events). The next chapter shows how to soundly link the event-
based class specifications with the class implementations.

Smith and Talcott introduce Specification Diagrams (SD) as a constructive ap-
proach to specify open actor systems [ST02]. SD provide graphical descriptions of
the behavior of actors in terms of functions, where the names of the operating ac-
tors are part of the function parameters. The function body may include assertion,
assumption and non-deterministic assignment statements (as in SEQ). The main
difference is that a diagram may state when and what kind of a certain pattern of
input messages may be received, which fits nicely with update-based languages.
There are three kinds of semantics defined for Specification Diagram namely a
small-step operational semantics which produces computations, a big-step oper-
ational semantics that groups together sequential computations, and an interac-
tion path semantics derived from the computations. Only computations where
no errors are raised may yield an interaction path, similar to the denotational se-
mantics in Section 4.3 that drops all traces that yield an error. Actor creations
are partially considered in these semantics, in the sense that only actors whose
causal relationship with their creators is being tracked in the diagram is consid-
ered. Neither futures nor cooperative multitasking, which are present in αABS,
are featured in SD. Consequently, specifying the Worker actors, for example, re-
quires an extension on the underlying concepts of SD, which may significantly
change the graphical constructs.

An axiomatic approach to specifications describes the desired properties directly
[Lam83a]. For example, Din et al. [DDJO12] specify the desired trace invariants
of an actor by taking projections of the trace of the actor to specific sets of fu-
tures. They also propose a more powerful dynamic logic ([HTK00]) which can
describe more complex properties than trace invariants, such as when a worker

155



Chapter 10. Specification of Automata

actor w in state φ terminates after executing a statement s, w now is in state ψ.
Ahrendt and Dylla [AD12] provide more elaborate assume-guarantee style trace-
based dynamic logic specifications that allow an even more specific description
of how an actor performs cooperative multitasking. Logic-based specification ap-
proaches that do not feature futures are presented by Darlington and Guo [DG94]
(intuitionistic linear logic [Abr93]), Dam, Fredlund and Gurov [DFG97] (first-
order µ-calculus [Par76]), Duarte [Dua99] (CTL* [EH86]), Schacht [Sch01] (LTL
[Pnu77]). Their approaches allow desired properties of an actor system to be
compactly specified as formulas of the respective logics. Generating an automa-
ton model that corresponds to these formulas is a challenging exercise because
such automata need to be built compositionally based on the structure of the for-
mulas, while taking the aspects of the underlying actor model into account. If the
actor model is instead encoded into the formulas, the resulting formulas tend to
be large and complex as illustrated by Schacht.

Session types. A different approach to statically regulate the interaction be-
tween actors is by annotating a method with a session type [THK94; DCDMY09].
Each session type describes what kind of data an actor produces and expect to re-
ceive from the environment during an interaction session. For example, the serve

method of the Server class can be annotated as follows:

c1 :?Query.{c2 :!Query.?Value}.!Value

This means that the server is expected to receive a query, send a query, receive
some value (the result of computing a query) and then send a value away. Apart
from the lack of content information (for example that the query the server sends
needs to be the same as the query it has received), the main issue is that session
types require the use of channels. The variables c1 and c2 represents two differ-
ent channels in which the server is communicating. The first channel is used for
the clients to communicate with the server, while the second channel is used by
the server to communicate with the workers. Consequently, channels become an-
other primitive communication mechanism that needs to be present apart from
the asynchronous method calls.

156



PART III.

Verification of Open Actor
Systems

157





CHAPTER 11

Verification of Classes

After specifying the intended behavior of the classes and components, we need
to verify their correctness. Our approach is a two-tier verification approach as
shown in Figure 11.1. As stated in Chapter 1, the verification task is managed in
two tiers as proposed by, for example, Misra and Chandy [MC81] and Widom et
al. [WGS87]:

• Verifying that the class implementation satisfies the class specification

• Verifying that the related class and subcomponent specifications satisfy the
component specification

In this chapter we focus on the verification for the first tier, where we follow the
technique presented by Din et al. [DDJO12]. First a class implementation inαABS
is transformed into an implementation in a simple sequential language SEQ with
non-deterministic assignments, a technique proposed by Olderog and Apt [OA88].
This sequential language has well-established semantics [Apt81; Apt84] in several
forms, including a weakest liberal precondition semantics ([Dij76]). The weakest
liberal precondition semantics allows the verification of desired properties, which
by Din et al. are formulated in terms of class invariants. The class invariant used
by Din et al. generalizes the idea of pre- and post-conditions of method definitions
to pre- and post-conditions between release points. In other words, they act as a
contract between different tasks within a single actor.

In Chapter 10, we have formally described the automata-based class specifica-
tions. The class invariant is derived from a class specification by means of con-
catenating a chain of event sequence transitions. This derivation is reiterated in
this chapter following the format used for the SEQ transformation. What is left
is to link the trace semantics of the class implementation with the trace semantics
of the AA of the class specification. That is, if the class invariant translated from
the class specification is satisfied by the class implementation, then for any actor
a of that particular class,

traces(a) ⊆ traces(A(a)) .

159



Chapter 11. Verification of Classes

Component/System SpecificationComponent/System Specifications

Class Specification

based on

Implementation

based on

Figure 11.1.: Two-tier verification

By case analysis on the αABS statements and the well-formedness of the traces of
the denotational semantics and of the AA, we establish this soundness property.
Chapter outline. This chapter is divided into 4 sections. The first section describes
the SEQ language and the transformation of programs in αABS to SEQ. Sec-
tion 11.2 presents the weakest liberal precondition semantics of the SEQ. The
automata-based class specifications are then translated to class invariants in Sec-
tion 11.3 and we show that this translation is sound with respect to the denota-
tional semantics of αABS. Therefore, when a class implementation is shown to
satisfy the class invariant, then it also satisfies the AA representation of the class
specification. The verification of the second tier is discussed in the next chapter.
The chapter ends with a discussion.

11.1 SEQ language

We adopt the approach of Din et al. [DJO05; DDJO12] that transforms class
implementations in αABS to implementations in a simple sequential language
SEQ enriched with a non-deterministic assignment operator. The SEQ language
has a well-established semantics and a sound and relatively complete proof sys-
tem [Apt81; Apt84]. In this report, the proof system is presented as weakest
liberal preconditions, allowing the class to be compositionally verified method-
wise. The soundness of the reasoning of the SEQ with the addition of a non-
deterministic assignment operator with respect to the operational semantics of
αABS hinges on the fact that there are no shared states between actors [DJO05].
Our presentation of SEQ and the encoding follows Din et al.’s [DDJO12].

The following is the syntax for SEQ statements.

s ::= skip | abort | var v | v := e | s; s | if b { s } else { s } |
y := some | assert b | assume b

160



11.1. SEQ language

These statements represent the skip, abort, variable declarations, deterministic
assignment, sequential composition, conditional, non-deterministic assignment,
assert and assume statements, respectively. The abort statement is used to termi-
nate the program, usually indicating an error. The skip, variable declaration, de-
terministic assignment, sequential composition and conditional statements carry
the usual semantics as for αABS. The non-deterministic assignment statement as-
signs to the variables v some random values that match the type of the variables.
The statement assert b indicates that some required condition b needs to be ver-
ified, whereas the statement assume b states some fact b. Neither statement has
any effect, but they are crucial for verifying the desired behavior as we will soon
see. The SEQ syntax is completed by adding procedure definitions:

PD ::= m(x) { T y; s }

A procedure m accepts the parameters x , allows a set of local variables y to be
used when executing statement s. The declaration of local variables and the state-
ment is called the procedure body. A procedure does not return any value (i.e., it
can be seen as a Unit method).

SEQ also contains procedure call statements (x := m(e)). This is omitted from
the presentation because the encoding of αABS to SEQ does not involve these
statements.

To encode αABS classes in the SEQ language, the class attributes f is expanded
with the variable this and the trace variable t, representing the self reference and
the locally generated trace, respectively. The trace variable allows us to reason
about the traces generated by an actor. Because of the focus on the part that
is generated by the actor, it is not necessary to include the input events in the
trace. They are implicitly represented via the non-deterministic assignments as
described below. The fields are also extended when needed by a number of auxil-
iary variables ([OG76]) as needed to establish the class invariants. These auxiliary
variables correspond to the internal variables used in the class specification and
also extra variables introduced by the encoding. The execution of a task by an ac-
tor is represented by a SEQ process. A SEQ process operates on a state that maps
the class attribute variables, the local variables and the auxiliary variables to their
corresponding values. The encoding of important parts of αABS is presented in
Figure 11.2.

A method definition mtd(p) { body } is translated to the form mtd(p,u) {
� body �} where � body � is the encoding of body in SEQ. The future in-
formation attached with the asynchronous method call is explicitly given in the
encoding, allowing their usage when constructing the local trace. When a method
call is executed by the actor, the local trace is extended by the corresponding re-

161



Chapter 11. Verification of Classes

� m(x){ y; s } � def
= m(x , fut){ T y ,return; t := t · fut� this : m(x);

� s�; t := t · fut← this : m / return;
assume wf(t) }

� skip� def
= skip

� s1; s2�
def
= � s1�;� s2�

� if e s1 else s2�
def
= if e {� s1�} else {� s2�}

� v := e� def
= v := e

� return e� def
= return := e

� v := new C(e)� def
= v′ := some; t := t · this→ v′ : new C(e); v := v′;

assume wf(t)
� v1 := v2.m(e)� def

= u′ := some; t := t · u′→ v2 : m(e); v1 := u′;assume wf(t)
� await u?v� def

= assert I( f , t)∧ wf(t); f
′
, t ′, v′ := some;

t ′′ := u� getTgt(t, u) : getMtd(t, u) / v′;
v := v′; t := t · t ′ · t ′′;assume I( f , t)∧ wf(t)

� await e� def
= assert I( f , t)∧ wf(t); f

′
, t ′ := some;

t := t · t ′;assume I( f , t)∧ wf(t)∧ e
� v = u.get� def

= v′ := some; t := t · u� getTgt(t, u) : getMtd(t, u) / v′;
v := v′;assume wf(t)

Figure 11.2.: Encoding of αABS in SEQ

action event. When the computation is finished, the local trace is extended by
the resulting method return event. A class constructor is encoded similarly to a
method definition. The main difference is that it does not have the opening call
reaction and closing return emittance events.

Statements that do not contribute to the cooperative multitasking aspects (i.e.,
skip, sequential composition, conditional check, variable assignment) have a
straightforward translation in SEQ. Returns are modeled using the auxiliary vari-
able return which is assigned to the returned value.

Creating a new actor causes the trace to be extended with the actor creation
event. The identity of the new actor is guessed via the non-deterministic assign-
ment, and the guess is assumed to be correct by assuming the well-formedness
of the trace with respect to the actor this. The well-formedness check is repre-
sented by wf(t), which is an abbreviation of Definition 4.3 on well-formed traces
of actors, without considering the input events. That is, wf(t) only confirms the
well-formedness of the generated part of an actor’s trace. A similar approach is

162



11.1. SEQ language

Listing 11.1: Server encoding in SEQ
// class Server()
trace t = [];
// Value serve(Query q) {
Value serve(Query q, Fut<Value> fut) {
IWorker w;
Fut<Value> u;
Value v;
// logical variables
trace t′;
trace t′′;
IWorker w’;
Fut<Value> u’;
Value v’;
Value return;
t = t · fut� this : serve(q);
// w = new Worker();
w’ = some;
t = t · this→ w′ : new Worker();
w = w’;
assume wf(t);

// u = w.do(q);
u’ = some;
t = t · u′→ w : do(q);
u = u’;
assume wf(t);
//await u?v;
assert I(fields, t) && wf(t);
t′ = some;
v’ = some;
t′′ = u� getTgt(t,u) : getMtd(t,u) / v’;
v = v’;
t = t · t′ · t′′;
assume I(fields, t) && wf(t);
//return v;
return = v;
t = t · fut← this : serve / return;
assume wf(t);

}

also taken to deal with a method call statement, except that the guess is done on
the generated future, respectively.

The await and get statements are translated in a similar way, except that await
triggers a release point. In both cases, the return value is guessed and the reaction
event that marks this fetching is appended to the local trace. The reaction event is
built by obtaining relevant information from the trace through getTgt and getMtd
functions. Because await introduces a release point, we have to check the class
invariant I holds before the actor can perform other tasks. The class invariant
I checks that the class attributes and the local trace satisfy the condition that
must hold at release points. After which, the trace may be extended and the class
attributes may change values as the actor works on other tasks. The actor then
executes the rest of the method body, assuming that the class invariants hold.
Ensuring that the well-formedness property holds is crucial to ensure that the
result of fetching the resolved value of a future multiple times remains consistent.

We assume for the verification purpose that a SEQ process is not suspended
infinitely long, implying that every method call made by this process is always
resolved. This assumption allows the reasoning part to cover as many parts of the
implementation as possible.

As an example, we present the encoding of the Server class in SEQ (List-
ing 11.1), where the original statements which are changed in the encoding are

163



Chapter 11. Verification of Classes

wlp(skip,Q)
def
= Q

wlp(abort,Q)
def
= true

wlp(v := e,Q)
def
= Qv

e

wlp(s1; s2,Q)
def
= wlp(s1, wlp(s2,Q))

wlp(if b { s1 } else { s2 },Q)
def
= (b ∧wlp(s1,Q))∨ (¬b ∧wlp(s2,Q))

wlp(m(x) body,Q)
def
= wlp(body,Q)

wlp(T y,Q)
def
= ∀y : Q

wlp(x := some,Q)
def
= ∀x : Q

wlp(assume b,Q)
def
= b =⇒ Q

wlp(assert b,Q)
def
= b ∧Q

Figure 11.3.: Weakest liberal preconditions semantics for SEQ

put as comments followed directly by their encoding. The encoding introduces to
the class the generated events as they are generated. The statements that assign
expressions to variables remain the same in the encoding. In the encoding, several
logical variables are typically introduced to represent the values of generated by
the non-deterministic assignments (e.g., t′ and v′). The return statement is trans-
formed into an assignment to the default variable return. These logical variables
are helpful in constructing the encoding compositionally.

11.2 Weakest Liberal Preconditions

The semantics for SEQ is described by means of weakest liberal preconditions
[Dij76]. This semantics allows partial correctness reasoning, where desired prop-
erties are established upon termination. The reasoning method offered by the
weakest liberal preconditions is a predicate transformation to first-order logic.
The choice of partial correctness instead of total correctness where termination
also needs to be shown is motivated by the following factors:

• Actors are inherently input-enabled. Even when an actor blocks because it is
waiting for a future to be resolved, it is still capable of receiving input events.
From this perspective, the actor has a non-terminating behavior.

• We consider here that processing a call causes only a finite amount of output
events to be produced (as implicitly indicated by the loopless syntax of αABS).

164



11.2. Weakest Liberal Preconditions

• Errors are seen as non-terminating behaviors, consistent with the first point.

First we deal with the weakest liberal preconditions of the SEQ statements
which are defined in Figure 11.3. Given a statement s, the weakest liberal pre-
condition that ensures some postcondition Q holds after executing s is denoted
by wlp(s,Q). The definition uses the construct Qx1·...·xn

e1·...·en
, which represents the sub-

stitutions of all free occurrences of variables x i in Q with ei . The weakest liberal
precondition for abort is chosen to be true, indicating the choice of representing
errors as non-terminating computations [Mor87]. The weakest liberal precondi-
tions for variable declarations and non-deterministic assignments are treated the
same, where the universal quantifier indicates that the values of the variables are
unknown in the pre-state before the statement is executed. The variable domains
are implicitly extracted from the types of the variables. The weakest liberal pre-
conditions for other statements are standard.
Example 11.2.1:
Given some class invariant I( f , t), the serve method of the Server class has the
following weakest liberal precondition.

wlp(serve(q, fut),Q) =
∀w, u, v, w′, u′, t ′, v′,return : w= w′ ∧ u= u′ ∧ v = v′ = return ∧
wf(t · e1 · e2) =⇒
wf(t · e1 · e2 · e3) =⇒
(I( f , t · e1 · e2 · e3)∧ wf(t · e1 · e2 · e3)) ∧
(I( f , t · e1 · e2 · e3 · t ′ · e4)∧ wf(t · e1 · e2 · e3 · t ′ · e4) =⇒
wf(t · e1 · e2 · e3 · t ′ · e4 · e5) =⇒ Qt

t·e1·e2·e3·t ′·e4·e5
)

where the events e1, e2, e3, e4 and e5 are defined as follows:
• e1 = 〈fut� this : serve(q)〉
• e2 = 〈this→ w : new Worker()〉
• e3 = 〈u→ w : do(q)〉
• e4 = 〈u� w : do / v〉
• e5 = 〈fut← this : serve / return〉
The weakest liberal precondition above shows that the trace generated by the
serve method is well-formed and the invariant is checked before and after the
await statement is executed. During the release point that is induced by the
await statement, we allow the local trace to be extended, indicating the progress
made on the server actor’s other tasks, as long as the class invariant and the well-
formedness of the trace are maintained. The assignment statements appearing in
the serve method are represented in the weakest liberal precondition by means
of idempotence of the appropriate local and logical variables. 4

165



Chapter 11. Verification of Classes

The verification condition of a class C with the invariant I( f , t) is given as
follows:

∀t, f , x : wf(t)∧ I( f , t) =⇒ wlp(m(x) bodym,I( f , t))

for each method definition m(x) bodym in the class implementation. This verifica-
tion condition is the same as asserting that the local trace is initially well-formed
and the class invariant holds before the execution of a method call begins, after
which the weakest liberal precondition of the corresponding method definition
holds.

If additional knowledge with regards to certain methods needs to be proved,
verification conditions with a similar form can be created. For example, if a spe-
cific pre-post condition pair 〈P( f , t),Q( f , t)〉 for a method definition is needed,
the verification condition that needs to be proved has the following form:

∀t, f , x : wf(t)∧ P( f , t) =⇒ wlp(m(x) bodym,Q( f , t)) .

In practice, the post-condition Q( f , t) is often enriched by the class invariant to
ease the verification effort. By construction, the verification condition remains in
the realm of first-order logic.

Example 11.2.2:
The verification condition of the Server class is

∀t, f , x : wf(t)∧ I( f , t) =⇒
∀w, u, v, w′, u′, t ′, v′,return : w= w′ ∧ u= u′ ∧ v = v′ = return ∧
wf(t · e1 · e2) =⇒
wf(t · e1 · e2 · e3) =⇒
(I( f , t · e1 · e2 · e3)∧ wf(t · e1 · e2 · e3)) ∧
(I( f , t · e1 · e2 · e3 · t ′ · e4)∧ wf(t · e1 · e2 · e3 · t ′ · e4) =⇒
wf(t · e1 · e2 · e3 · t ′ · e4 · e5) =⇒ I( f , t · e1 · e2 · e3 · t ′ · e4 · e5)) 4

11.3 Class Specification to Class Invariants

Now that we have the means to verify a class implementation, we only need to
reformulate the class specification in terms of class invariants. For simplicity, we
assume a syntax and type checker that ensures that the allowed messages spec-
ified in a class specification matches the method signatures and creation state-
ments of the class implementation. By matching we mean, for example, that if
some method signature appears in the input or internal part of the class, the class
implementation includes that method signature. We also assume that the value

166



11.3. Class Specification to Class Invariants

of a future is retrieved only once in the implementation. Further retrievals are
replaced directly with the same value.

The following definition connects the class specification to class invariants. The
requirement is that the class invariant is checked just before and after a release
point. The local trace should be a concatenation of event sequences defined as
a chain event sequence transitions. From Corollary 10.1, we formulate this re-
quirement in terms of the AA semantics to stay in first-order. In particular, we
use state variables release for determining release points and tgen for tracking the
locally generated traces present in the AA. However, because of the same equiv-
alence result, the verification argument can also be made directly from the class
specification, particularly from the specification of the event sequence transitions.

Definition 11.1 (Class specification translation to class invariant):
Let C be a class and S = 〈aMsg(C), Vparams, Vint, initStates, ES, EScons〉 its class
specification parameterized with an actor this such that A is the actor au-
tomaton. Given a predicate ρ( f , s) over the class parameters f and a state s
of the A, the class invariant I( f , t) of S is defined as follows:

I( f , t)
def
= ∃s ∈ states(A) : s(release)∧ s(tgen) = t∧ρ( f , s)

In the definition above, the construction of the class invariant of a class specifi-
cation requires an additional predicate ρ. This user-given predicate links the class
parameters used in the implementation and the variables used in the class specifi-
cations. It is typically given during the verification process as the implementation
is available and only the internal variables of the specification are compared to
the class parameters.

Example 11.3.1:
To verify the Server class, we check that verification condition on the servemethod
holds. The predicate ρ can be left as true because the implementation neither uses
a class attribute nor has a class parameter. Let the specification of the reaction
to the serve method call event be represented by es1 and the specification of the
reaction to the method return event by es2. Following from weakest liberal precon-
dition of the serve method, we note that the local trace generated by the execution
of a serve method call is split into two parts, each of which conveniently matches
the event sequence transitions es1 and es2. As the well-formedness of the traces is
maintained throughout the execution, the generated futures need to be fresh. As
the future generated for the method call is fresh and stored local to the method,
the method return reaction event that contains the resolved value never appears
in the local trace before the await statement completes its execution. Because the
post-state of es1 matches the pre-state of es2, the verification condition holds at

167



Chapter 11. Verification of Classes

every release point related to the execution of the serve method. Therefore, we
have that the Server class satisfies its class specification. 4

To show the soundness of the class verification, first we establish the connection
between the denotational semantics and the weakest liberal precondition seman-
tics. The following lemma states that when the class implementation is proved
under the weakest liberal precondition semantics to satisfy the class invariants,
all traces present in the denotation of the actor also satisfy the class invariants.
The lemma is proved by analyzing the semantics case by case.

Lemma 11.1 (Denotational semantics maintains the class invariant):
Let C be a class, a an actor of class C , S = 〈aMsg(C), Vparams, Vint, initStates, ES,
EScons〉 a class specification of C , αABS (C) its implementation in αABS such
that S is satisfied by the implementation. Then,

∀t ∈ ¹aº : ∃n : ∃〈s0, e1
1 . . . e1

k1
, s1〉, . . . , 〈sn−1, en

1 . . . en
kn

, sn〉 ∈ ES∪ EScons :

removeInput(t, a) = e1
1 . . . e1

k1
. . . en

1 . . . en
kn

where removeInput(t, a) = t↓Gen(a).

Proof:
From Corollary 10.1, we know the class invariant is equivalent to the statement
above. From Lemma 4.1, ∀t ∈ ¹aº : t is well-formed with respect to {a}. There-
fore, ∀t ∈ ¹aº : wf(removeInput(t, a), a) by the definition of wf. The verification
condition of a method definition allows any arbitrary initial trace that satisfies wf
and the class invariant before a method definition is checked. Furthermore, the
translation of the await statement to SEQ allows any arbitrary extension to the
trace as long as the wf and the class invariant hold. Therefore, the trace consist-
ing of the events generated by a method definition projected to the task should
be equivalent to a trace in ¹mtdº (Equation (C.13)). By equivalent we mean that
when the extra events yield and resume are removed from the trace of the deno-
tation a task, these two traces are the same. Provided this equivalence holds, the
lemma holds.

To check the equivalence, we check that each kind of statements produces the
same change to the state. Statements that do not generate any events have the
same effect on the state in the denotational semantics as defined by the weakest
liberal preconditions. For the actor creation, the method call and the get state-
ments, the values that are not contained in the states are guessed non-determini-
stically in both semantics. Because the traces are well-formed, the guesses are
picked appropriately and the occurrence of method return reaction event happens

168



11.3. Class Specification to Class Invariants

only once for each future. The effect of these statements on the state is the same
as defined by the weakest liberal preconditions. Left is the await statement which
produces a release point. The await statement is translated to SEQ by allowing
the values of the class attributes to change non-deterministically. The values of
the local variables remain the same. This change in the state is the same as what
is stated in Equation (C.8). The occurrence of method return reaction event hap-
pens only once for each future. Again the effect of the await statement on the
state is the same as defined by the weakest liberal precondition. Therefore, the
changes to the state each statement in the method body produces in both weakest
liberal precondition and the denotational semantics are the same. The generated
traces without the extra events are also the same. Thus, the lemma holds. �

Using the result above and that the AA semantics of the class specification gen-
erates only traces that adhere to the class invariants, the class verification tech-
nique is sound with respect to the AA semantics. More precisely, when we say
that a class implementation satisfies its specification, the traces generated by that
implementation are traces of the AA semantics of the class specification.

Theorem 11.1 (Sound invariant translation):
Let C be a class, a an actor of class C , A(a) the actor automaton obtained from
the class specification S of C , and αABS (C) its implementation in αABS.
If αABS (C) satisfies the weakest liberal precondition that uses the class in-
variant obtained from S, then

remCr(¹aº)↓E ⊆ traces(A(a)) .

Proof:
From Lemmas 10.1 and 11.1, all traces in ¹aº and traces(A(a))maintain the class
invariant derived from the class specification. Furthermore, these traces are also
well-formed (Corollary 4.1 and Lemma 7.1). Because of the input-enabledness of
A(a) and the well-formedness of the traces, we can choose to introduce an input
event into a trace generated by A(a) to match the occurrence of the respective
input event in the denotational semantics. From Definition 10.4, steps(A(a)) al-
lows an event sequence transition to occur whenever it is possible. Therefore, the
traces(A(a)) covers all traces that satisfy the class invariant derived from S and
the theorem holds. �

169



Chapter 11. Verification of Classes

11.4 Discussion

This chapter presents an adaptation of a verification technique developed by Din et
al. [DDJO12] to our setting. Their technique allows local reasoning of the behav-
ior of an actor, ideal as the basis for analyzing open actor systems. They have sub-
sequently extended this technique to cover shared futures [DDO12a; DDO12b],
providing full support for the ABS language ([JHSSS11]). Based on the weakest
liberal precondition semantics for SEQ, they provide a weakest liberal precondi-
tion semantics directly for ABS. This semantics becomes the basis for proving the
soundness of dynamic logic ([HTK00]) proof rules. With the same dynamic logic
framework, a theorem prover for (a subset of) Java called KeY ([BHS07]) has
been adapted for ABS [DOB14], enabling a semi-automatic verification of ABS
programs.

In a similar line, Ahrendt and Dylla [AD12] propose a compositional, assume-
guarantee proof system in dynamic logic for Creol ([JOY06]). The assume-guaran-
tee approach allows us to say more about the context in which an actor is interact-
ing. Despite presenting a denotational semantics for Creol, a soundness proof for
the proof system is part of future work. Because the traces are based on 2-event
semantics the rules are more complex.

De Boer, Clarke and Johnsen [BCJ07] present a sound and relatively complete
state-based proof system for Creol enriched with shared futures. A specification
for a class is defined using a combination of global and local invariants, wrapped
in a Hoare logic style pre-/post-conditions. Similar to the technique of Din et al.,
verifying whether a class satisfies the desired invariants is performed by proving
that the specification holds for each method definition. Because the specification
includes global invariants, the environment must be known during the verifica-
tion.

170



CHAPTER 12

Verification of Components

The previous chapter explains the first tier of the verification approach: the verifi-
cation of class implementations. This chapter presents the second tier verification:
verifying whether a component implementation satisfies a component specifica-
tion. For this tier, we rely on a particular variant of the simulation notion [Par81]
called possibility map [LT87; NS94]. Simulation is a relation R that links the states
sl of a lower-level specification with the states sh of a higher-level specification,
such that whenever (sl , sh) ∈R (i.e., sh simulates sl), state sh can mimic any tran-
sitions that can be taken by sl and the resulting post-states are in R. When such
a relation exists, any trace of the lower-level specification is a trace of the higher-
level specification. The possibility map relaxes this condition using the external
actions in the following way. A sequence of transitions from sl which may contain
an arbitrary number of internal transitions, apart from a single external action
that has to be matched, can be simulated by a single transition on sh so that the
resulting post-states are in R. When such a map is found, the external behavior
of the lower-level specification is simulated by the higher-level specification.

The notion of possibility maps fits for our class and component specifications,
because the component specification concentrates on the externally observable
behavior of the component instances while the implementation shows the addi-
tional internal computations to produce the externally observable behavior. The
external actions are defined thanks to the clear boundary a component instance
possesses. The possibility map is built on the states of two CCA, where one CCA
represents the usage of the component specification (i.e., acts as the higher-level
specification) while the other represents the usage of the class specification (i.e.,
the lower-level specification), provided the class specification has been proved.
Both CCA are parameterized with the same actor as the initial actor. To facilitate
compositionality, the behavior of actors that are created by the initial actor can be
represented directly by verified component specifications.

Finding a possibility map is usually not a trivial task. As an aid, we identify
a common fragment that a possibility map between two CCA should have. This
fragment includes pairing states that contain the same set of exposed actors and
the same set of input events buffered by the exposed actors.

171



Chapter 12. Verification of Components

Chapter outline. The chapter starts by discussing which (sub)component specifi-
cations are relevant for verifying a component specification using possibility map
and the definition of the possibility map itself. Section 12.2 provides the guaran-
tee that verifying the components using the possibility map is sound. This section
also presents the common characteristics that need to be present in a possibility
map. We end the chapter with some discussion on the approach and related work.

12.1 Possibility Maps

The base line for the verification in this second tier is that all class implementa-
tions have been verified to satisfy their respective class specifications. While it is
possible to directly use the class specifications every time we want to verify some
component specification (as done by Din et al. [DDJO12] on the actor level), the
verification effort can be reduced if we can reuse component specifications that
are already verified. Not all verified component specifications are relevant when
we want to verify a component implementation. To identify the relevant ones, we
collect the information of the classes of actors directly created by some actor of
the component instance.

Definition 12.1 (Classes of directly created actors):
Let C be a class. The set of classes C = dirCreate(C) of actors that can be
directly created by an instance of C is defined as

{C ′ | e ∈ aMsg(C)∧ isCreate(e)∧ class(e) = C ′} .

Example 12.1.1:
The set of classes of actors directly created by a Server actor is {Worker}, while
the set of classes of actors directly created by a Worker actor is {Worker}. 4

As shown in Chapter 5, a component can be uniquely identified from its acti-
vator class. For each companion class1 of a component, we can choose whether
it will be represented by its class specification or its component specification (or
both). When a set of companion classes is already represented by a subcompo-
nent specification (i.e., they are the companion classes of a subcomponent), we
can get away with using only the specification of this subcomponent. After all,
a CompA never includes a creation event as part of its signature. A collection
of classes and components with such categorization for a component is called a
creation-complete set of subcomponents.

1see page 71; essentially a class that is needed by the activator class to form a component

172



12.1. Possibility Maps

Definition 12.2 (Creation-complete subcomponent set):
Let D= {C1, . . . , Ci , [Ci+1], . . . , [C j]} ⊆ CL∪ [CL] be a set of classes and com-
ponents. We call D a creation-complete set of subcomponents with respect to
an activator class C ∈ D, if

∀C ′ ∈ D : ∀C ′′ ∈ dirCreate(C ′)∪ dirCreate(C) :
(C ′′ ∈ D =⇒ [C ′′] /∈ D)∧ ([C ′′] ∈ D =⇒ C ′′ /∈ D).

Example 12.1.2:
Here are two creation-complete sets of subcomponents for the [Server] compo-
nent: {Worker}, {[Worker]}. An interesting consequence of this definition is that
there is only one creation-complete set of subcomponents for the [Worker] com-
ponent: {[Worker]}.

The link between the specifications is the CCA. A CCA can accommodate both
AA (the class specifications) and CompA (the component specifications) under
the same umbrella: component configurations. Given a creation-complete set of
subcomponents, we can determine whenever a CCA executes a creation event
whether an actor or a component instance will be incorporated to the component
configuration. Having a creation-complete set of subcomponents as the represen-
tation of a component implementation, we now have a proof obligation that a
verification technique for this tier should fulfill, assuming the availability of ap-
propriate component specifications.

Definition 12.3 (Satisfaction of component specifications):
Let
• [C] be a component,
• D = {C1, . . . , Ci , [Ci+1], . . . , [C j]} a creation-complete set of subcompo-

nents with respect to C ,
• SC , SC1

, . . . , SCi
the respective class specifications, and

• S[C], S[Ci+1], . . . , S[C j] the respective component specifications.
Let C1 be a component configuration automaton whose set of activator classes
is D and whose set of initial states are mapped to the configurations contain-
ing an actor automaton of SC . Similarly, we define C2 as a component config-
uration automaton whose set of initial states are mapped to configurations
containing a component automaton S[C]. Then,

SC , SC1
, . . . , SCi

, S[Ci+1], . . . , S[C j] satisfy S[C] if xtraces(C1) ⊆ xtraces(C2) .

To verify that the component specification is satisfied by the class specification
and the specification of the directly created component instances, we employ the

173



Chapter 12. Verification of Components

C1

C2 x1 x2 x3

x ′1 x ′2 x ′3 x ′4 x ′5 x ′6

l1 l2

l ′ l1 l ′′ l2 l ′′′

r

Figure 12.1.: A possibility map

possibility maps [LT87; NS94]. This notion is based on a map between states of
two automata such that a step on one automaton can be simulated by a num-
ber of steps on the other automaton, similar to stuttering simulation [Man01].
The differences to stuttering simulation are the use of partial functions instead
of binary relations to relate the states and that each transition on the simulated
automaton cannot be classified as internal transitions. The latter motivates us
to utilize possibility maps as our verification instrument on the component level,
as the component specifications are based exclusively on the external events and
their reaction events. The possibility maps reduce the global reasoning on the
external traces to local reasoning on the states of the automata. The definition
below formalizes the description of possibility maps.

Definition 12.4 (Possibility maps):
Let C1,C2 be (configuration) automata and Act ⊆ Act(C1) a set of actions. A
map r = Map〈states(C1), states(C2)〉 is a a possibility map from C1 to C2 with
respect to Act if the following conditions hold.

1. If x ∈ start(C1) then r(x) 6= undef and r(x) ∈ start(C2).

2. If x
l
−→C1

x ′ ∧ r(x) 6= undef then

• r(x ′) 6= undef and

• either l /∈ Act∧ r(x) = r(x ′) or r(x)
l
−→C2

r(x ′).

Figure 12.1 illustrates the notion of a possibility map on two automata C1 and
C2 with respect to the set of actions Act= {l1, l2}. There are transitions in C1 that
are not matched by any transition in C2. However, the label of these transitions is
not in Act. Therefore, the state x ′3, for example, can be mapped to x2.

174



12.2. Soundness of Component Verification

12.2 Soundness of Component Verification

When a possibility map is found for the two automata, the sets of traces of the two
automata form a set inclusion relation with respect to the selected set of actions.
If the set of actions comprises of all actions the simulated automaton can take, this
inclusion result becomes even stronger, in the sense that the simulator automaton
must be able to deal with the input actions the simulated automaton can receive.

Theorem 12.1 (Soundness of possibility maps [NS94]):
Let C1,C2 be (configuration) automata, Act a set of actions and r a possibility
map from C1 to C2 with respect to Act. Then, the following holds.

traces(C1)↓Act ⊆ traces(C2)

To apply this reasoning technique to our verification problem (Definition 12.3),
we need to determine an appropriate set of actions. The interest lies on the ex-
ternal events a component instance can take part. These external events can be
generically defined by the following function given the initial actor of the compo-
nent instance.

extEv(a) = {e | isMethod(e)∧ isEmit(e)∧ (caller(e) /∈ ancestors(a) ∨
target(e) /∈ ancestors(a))}

In addition to the external events, the component specification utilizes the reac-
tion events of the input events, as captured by Ecmp defined in Proposition 9.2.

Ecmp(a) = extEv(a)∪ {e | emitOf(e) ∈ extEv(a)}

Consequently, Ecmp becomes the basis for defining the possibility map. If a pos-
sibility map with respect to envEv between the CCA containing the component
automaton of component specification and the CCA containing the actor automa-
ton of the class specification can be found, then it shows that the component
specification is satisfied by its implementation.

Lemma 12.1 (Reasoning soundness for component specification):
Let
• [C] be a component,
• D = {C1, . . . , Ci , [Ci+1], . . . , [C j]} a creation-complete set of subcompo-

nents with respect to C ,
• SC , SC1

, . . . , SCi
the respective class specifications, and

• S[C], S[Ci+1], . . . , S[C j] the respective component specifications.

175



Chapter 12. Verification of Components

Let C1 be a component configuration automaton whose set of activator classes
is D and whose set of initial states are mapped to the configurations contain-
ing an actor automaton of SC . Similarly, we define C2 as a component config-
uration automaton whose set of initial states are mapped to configurations
containing a component automaton S[C]. The initial actor of C1 and C2 is
the same: a. If there exists a possibility map r from C1 to C2 with respect to
Ecmp(a),

xtraces(C1) ⊆ xtraces(C2) .

Lemma 12.1 (Continued)

Proof:
From Theorem 12.1, traces(C1)↓Ecmp(a) ⊆ traces(C2). From Proposition 9.2, the
set of events E overapproximates the state signatures of the CompA of S[C]. Be-
cause the transitions of C2 depend exclusively on the transitions of the CompA,
each trace of C2 consists only of events in Ecmp(a). The external traces are ob-
tained from the traces by projecting them to the emittance events, i.e., extEv(a).
Because extEv(a) ⊆ Ecmp(a), xtraces(C1) ⊆ xtraces(C2). �

Every possibility map that links two CCA shares the same properties, namely
it relates only configurations that have the same set of exposed actors and input
events accumulated in the buffer of the actors. Linking configurations where these
properties do not hold means that different core traces are needed to reach the
configurations. Because the AA and CompA also store information on the tasks the
instances are working on, the paired configurations should agree on the external
tasks. To ensure that the input events of both CCA process are the same, the set of
received future and target actor pairs must be the same. The properties should be
valid for states that are reachable from the initial states. Other (non-reachable)
states may be part of the map, but because these states may never be part of the
set of executions of the CCA, they do not affect the generated set of traces. In
fact, it is sufficient for our verification purpose to consider maps that provide a
mapping from reachable states of the first CCA to the second CCA. The following
lemma sums it all.

Lemma 12.2 (Mapping prerequisites for CCA):
Let C1 and C2 be two component configuration automata such that a is the
initial actor. Assuming the interface implemented by all classes is not empty,
a possibility map r from C1 to C2 with respect to Ecmp(a) fulfills the following
condition:

176



12.2. Soundness of Component Verification

PREREQ
def
= ∀x ∈ rStates(C1) : ∃C1,C2,A′, s′, b′ : r(x) 6= undef =⇒

C1 = config(C1)(x)∧C2 = config(C2)(x ′)∧ names(C2) ⊆ names(C1) ∧
exposed(C1) = exposed(C2)∧ (A′, s′, b′) ∈ C2 ∧
(
⋃

cond
s(bufc)∪ s(bufr))∩ extEv(a) = s′(bufc)∪ s(bufr) ∧

(
⋃

cond
s(tasks))∩ {eCore(e) | e ∈ extEv(a)}= s′(tasks) ∧

(
⋃

cond
s(rcvFutTgt))∩ {〈u, a′〉 | gen(u) ∈ ancestors(a)∧ a′ ∈ exposed(C1)})

= s′(rcvFutTgt)

where rStates(C1) is the set of (reachable) states of C1 to each of which there
is an execution from the initial state, and

cond
def
= (A, s, b) ∈ C1 ∧ names(A)∩ exposed(C1) 6= ; .

Lemma 12.2 (Continued)

Proof (by contradiction):
Assume that r is a map from C1 to C2 such that the PREREQ is not fulfilled. Then,
we need to show that r is not a possibility map (i.e., r does not satisfy Defini-
tion 12.4). This means that there is x ∈ rStates(C1) where at least one of the
conjuncts does not hold.

Case names(C2) ⊃ names(C1): The set of actor names represented by a CompA is
equivalent to the set of its exposed actors. This means that exposed(C2) ⊃
exposed(C1). However, by Definition 9.5 there is a transition that causes an
actor to be exposed in C2 but not in C1. Since x is reachable from C1 and the
initial states all have the same set of exposed actors (i.e., the initial actor), by
Definition 12.4.2 there should be x ′ such that x ′

e
−→C1

x and r(x ′)
e
−→C2

r(x).
However, both transitions have the same effect because C1 and C2 are both
CCA. Therefore, Definition 12.4.2 cannot hold.

Case exposed(C1) ⊃ exposed(C2): The same argument as before.

Case (
⋃

cond
s(bufc)∪ s(bufr))∩ extEv(a) 6= s′(bufc)∪ s(bufr): The same argument as

before, with e taken as an input event.

Case (
⋃

cond
s(tasks))∩ {eCore(e) | e ∈ extEv(a)} 6= s′(tasks): The same argument as

before, with e taken as a reaction to an input event.

Case (
⋃

cond
s(rcvFutTgt))∩ {〈u, a′〉 | gen(u) ∈ ancestors(a)∧ a′ ∈ exposed(C1)})

6= s′(rcvFutTgt):

177



Chapter 12. Verification of Components

CCA are input enabled (Definition 9.6). Because we assume that every class
is defined such that its instances can receive input messages, there can be
an input event sent to a′ with future u on C1 but not on C2 or vice versa.
Therefore, Definition 12.4.2 does not hold.

For all cases, contradiction is reached and thus the lemma holds. �

The lemma above is applied when each class implements a non-empty inter-
face. If class C implements an empty interface, we can always construct a map
where a state in C1 is related to some state y in C2 where actors of class C have
spuriously received more input events in y . Since these actors cannot receive (any
further) input events that may influence their internal states (in fact, they should
not receive input events to begin with), we can always pick a map where PREREQ

holds. Therefore, we can use PREREQ as the basis for constructing a possibility
map.

To verify whether a component specification is fulfilled, we define a map be-
tween the states of the CCA. To show the map is a possibility map, we typically
use a CCA whose initial states are mapped to a configuration where the SIOA
representing the initial actor is not marked as a component instance. From The-
orem 9.1, this decision does not affect the observable behavior of the CCA, but it
eases the comparison of the configuration without having to refer to the composed
states.

To illustrate the reasoning technique, we verify the [Worker] component specifi-
cation S[Worker]. The verification of the [Server] component specification follows
the same line of reasoning.

Example 12.2.1:
Let C1 and C2 be CCA whose initial states are mapped to a configuration containing
the AA of SWorker and the CompA of S[Worker], respectively. The initial Worker actor
is represented by w. We also let the component instance mapping of the AA to be
set to false, allowing the creation of actors to be represented in the configuration
as a separate SIOA. The map r from C1 to C2 is defined as follows:
PREREQ ∧∀x ∈ rStates(C1), y ∈ states(C2) : ∃A1,A2, s1, s2, u, u′, q :
(A1, s1, false) ∈ config(C1)(x)∧ (A2, s2, true) ∈ config(C2)(y) ∧
{w}= names(A1)∧w ∈ names(A2)∧ s2(known) = {a | w ∈ ancestors(a)}∧
s2(outCalls) = s2(genFut) = ; ∧ uniqueFut(s1(futTriple)) ∧
uniqueFut(s2(futQPair))∧ s2(futQPair) = {〈u, q〉 | 〈u, u′, q〉 ∈ s1(futTriple)}
=⇒ r(x) = y

where uniqueFut is a function that disallows the internal state of a Worker AA
and CompA from having two elements of the same future. In other words, each

178



12.2. Soundness of Component Verification

element of futTriple and futQPair can be uniquely identified by the futures (from
the environment calls). The condition placed on the states of the CompA ensures
that there is no ambiguity to which state of C2 a state of C1 is mapped to. This
map is a possibility map as reasoned below.

0. For every x ∈ states(C1) there is at most one y ∈ states(C2) that fulfills the
condition. This follows from the precise description of the internal state of
y on the map definition.

1. C1 has a single initial state x0 that is mapped to a configuration C1 such
that exposed(C1) = {w}, futs(C1) = ; and (A(w), s0, false) ∈ C where A(w)
is the AA of SWorker parameterized with w and s0 is the initial state of the
worker with empty set as the value of the internal state. C2 also has a single
initial state y0 that is mapped to a similar configuration, except that the
A(w) represents the CompA of S[Worker]. Because these two states fulfill the
conditions, r(x0) = y0.

2. The related states of both CCA can receive the same input events, because
of the restriction on rcvFutTgt of the AA/CompA representing w. Executing
the reaction event u � w : do(p) adds the internal state in the same way
such the post-states of the transition on both CCA are connected. All other
events map the post-states x ′ to the same y . We only concentrate on the
output events eo = u← w : do / v. If the query q of do is a singleton, then
v contains the expected value of compute(q). Because x is a state reachable
from some initial state, we can reason that the event sequence transitions
and event transitions of the Worker and [Worker] specifications must hold in
order to reach x . From SWorker, the transition u ← w : do / v if 〈u, u′, q〉 is
in futTriple and v is formed from merge(compute(firstQuery(q), v′)), where
v′ is obtained from the value stored in u′. The u′ is generated alongside
the call do on a fresh [Worker] instance. From S[Worker], the value returned
by this component instance is compute(restQuery(q)). From the assumption
on the merge function, we have that v = compute(q). Thus, the transition
labeled by the output event eo on C1 mimics the transition with the same
label done C2. The Definition 12.4.2 is fulfilled.

4

Example 12.2.2:
Let C1 and C2 be CCA whose initial states are mapped to a configuration containing
the AA of SServer and the CompA of S[Server], respectively. The initial server actor
is represented by serv. The map r from C1 to C2 is defined as follows:

179



Chapter 12. Verification of Components

PREREQ ∧∀x ∈ rStates(C1), y ∈ states(C2) : ∃A1,A2, s1, s2, u, q :
(A1, s1, false) ∈ config(C1)(x)∧ (A2, s2, true) ∈ config(C2)(y) ∧
names(A1) = {serv}∧serv ∈ names(A2)∧s2(known) = {a | serv ∈ ancestors(a)} ∧
s2(outCalls) = s2(genFut) = ; ∧ uniqueFut(s1(futPair)) ∧
uniqueFut(s2(futQPair))∧ s2(futQPair) = {〈u, q〉 | 〈u, q〉 ∈ s1(futPair)}
=⇒ r(x) = y

We can show that r is a possibility map by following a similar reasoning as
for the [Worker] component. The main difference lies on the method calls being
called on the server. Because there is no need to show how a [Worker] component
instance functions, the reasoning is simpler. 4

12.3 Discussion and Related Work

Reasoning on the DIOA model. To reason directly on the DIOA model, Attie
and Lynch [AL15] define a trace as a sequence of external actions interleaved
with external signatures. The changes in the external signatures are necessary to
be present in a trace because internal actions may scramble the state signatures,
making an action that is previously part of an input signature to be part of an out-
put signature and all other possible combinations. To reason about two systems
represented by CA C1 and C2, they define a specialized notion of trace merging
which enables statements of the form trace t of C1 is a trace of C2. By analyzing
all traces of C1, we obtain the result that C1 implements C2. Whether a state-based
technique can be developed for the DIOA model is an open question.

Would the possibility map be applicable to the DIOA model? In the current
form, the answer is negative. The problem lies in the dynamic change of the
external signatures. Not only must the states match on the transition department,
they also have to match the external signatures as well. In the actor setting, this
problem does not appear because the signatures are stable in the sense that an
event can only exclusively be part of input, output or internal signature of an AA
or a CompA.

Verification using proof systems. In [KPH12], we describe a trace semantics
for open actor systems and components, where futures are not present. Based on
the trace semantics, we develop a Hoare-style logic that connects the input event
trace of a component with the expected output event trace. The specifications are
of the form {p} D {q} where p and q are assertions over the input and output
event traces, respectively, and D is a class C or a component [C]. This axiomatic
specification style facilitates better representation of the desired partial behavior
than the automaton specifications. However, it also carries several drawbacks:

180



12.3. Discussion and Related Work

• Relating input events that depend on certain output events requires non-trivial
bookkeeping assertions, which are immediately needed when futures are in-
troduced into the actor model.

• Providing the connection between the class specifications to the implementa-
tions is still an open problem because the verification techniques from Din et
al. [DDJO12] and Ahrendt and Dylla [AD12] do not separate the traces into
input and output traces.

The reasoning techniques proposed by Din et al. and Ahrendt and Dylla can be
used to verify system properties. After verifying the class invariants, the system
is verified by considering the composition of the class invariants for each actor
that occur when the system is instantiated. The components add some structure
to the system instances, allowing the verification on the system level to be done
in a more compositional fashion.

De Boer [Boe02] presented a sound and relatively complete Hoare logic for
concurrent processes that communicate by message passing through FIFO chan-
nels (similar to actors). He described a similar two-tier verification architecture,
where the assertions are based on local and global rules. The local rules deal with
the local state of a process, whereas the global rules deal with the message pass-
ing and creation of new processes. Only closed systems are considered, meaning
that the environment must be explicitly present as part of the system specification.
Furthermore, the global rules do not accommodate a component notion, so that
all created processes have to be considered in one go.

Dam, Fredlund and Gurov [DFG97], Duarte [Dua99], Schacht [Sch01] devel-
oped a proof system for actor systems based on the respective logics (see Sec-
tion 10.3). Arts and Dam, in particular, realize the proof system described by
Dam, Fredlund and Gurov in form of a theorem prover for Erlang [AD99].

Verification using equivalences. As described in Section 4.4, Gaspari and Za-
vattaro [GZ99] and Agha and Thati [AT04] develop process algebra formalisms of
the actor model. The verification method associated with the process algebra of
Gaspari and Zavattaro uses asynchronous bisimulation. Agha and Thati with their
Aπ-calculus goes a different way by defining a theory of may testing ([Hen88]).
In may testing, a process is paired with some context which performs some inter-
action with the process. If there is at least one run where the resulting observable
behavior reflects the desired behavior, then the process is said to pass the test.
Agha and Thati provide such a context, where the observable behavior is given in
terms of interaction paths ([Tal98], see Section 4.4). Together with Talcott, they
give an Aπ-calculus characterization [TTA04] of a fragment of the specification

181



Chapter 12. Verification of Components

diagrams ([ST02]). Smith and Talcott [ST02] defined an interaction bisimulation
on the specification diagrams2 with conditions similar to the possibility maps and
PREREQ. The soundness with respect to interaction path semantics is not given,
but could be derived in a similar manner to our soundness result.

Verification using abstractions. A more recent development is the use of ab-
straction techniques to automatically model check actor systems (without the sup-
port of futures). D’Osualdo, Kochems and Ong [DKOne] consider a core Erlang
program that defines a closed system and generate a Petri Net abstraction, where
the actors of the same type share the same FIFO buffer. The specification is de-
scribed in terms of the coverability of certain desired states. This abstraction en-
ables them to handle unbounded creation of actors and guarantees termination
of the model checking procedure.

If an actor system is known to put a bound on the depth of the interaction in
terms of messages being sent around to perform a certain computation, then its
representation in a π-calculus belongs to a fragment of π-calculus called depth-
bounded processes [Mey08]. The running server example presented in Chapter 2
fits into this category, if the size of the query is bounded. Depth-bounded pro-
cesses can be translated into well-structured transition systems ([Fin90; FS01]),
for which finding if there exists a non-terminating execution is decidable. Using
the translation, Zufferey et al. [ZWH12; BKWZ13] apply further abstractions on
the well-structured transition systems to allow model checking closed actor sys-
tems.

Fredlund and Svensson develop a more general model checker for Erlang [FS07],
where the desired properties are given in form of Büchi automata ([Büc60]) and
an abstraction over the program is provided. The abstracted Erlang program is
then checked under certain environmental constraints. If the resulting model has
an infinite number of states, termination is not guaranteed.

An abstraction on the actor’s buffer is also done by Sirjani, de Boer and Movaghar
[SBM05] to allow model checking of Rebeca programs ([SJ11]) with open envi-
ronment. External messages generated by the environment are assumed to be
present in the buffer, so only internal messages (messages generated by actors of
the systems) can be explicitly put in the buffer. When the actors of the system gen-
erate only a finite number of messages, the corresponding model is finite-state.
The main constraint placed on Rebeca programs for the abstraction to work is that
the network topology is static. Thus, the exposure of actors is predetermined and
no actor creation is allowed.

2The actual term used in [ST02] is interaction simulation, a misnomer as the conditions posed on
the pairs of configurations of diagrams A and B are applied in both directions.

182



CHAPTER 13

Examples

In this chapter, we provide two examples where we apply the two-tier verification
approach. The examples illustrate the intricacies of open actor systems, where the
environment interacts with the system beyond one-way communication where the
environment only calls the head actor as exhibited by the client-server example.
The first example called Ticker Factory is taken from Smith and Talcott’s paper on
Specification Diagrams [ST02]. This example features the exposure of actors of a
component instance other than the head actor. The second example is a classical
Sieve of Eratosthenes. This example features the exposure of environment actors
to a component instance.

Each example starts with the description and its αABS implementation. Then,
we specify the desired behavior in terms of class and component specifications.
Using the class invariant technique described in Chapter 11, we verify that the
class implementations satisfies the class specifications. Then we define possibility
mappings for the component specifications to verify that the component imple-
mentations satisfy the component specifications.

13.1 Ticker Factory

A ticker is a monotonically increasing counter resembling a processor’s clock. The
ticker returns the value of the counter whenever it receives a time call. To produce
tickers in a uniform manner, a ticker factory manages the creation process.

Listing 13.1 presents an implementation of the ticker factory in αABS. The
tickers are represented by the Ticker class. The Ticker class features
• the use of a class constructor,
• an internal method that is not part of the interface it is implementing, and
• the use of class attributes.
The internal method tick provides the means for a ticker to independently in-
crease the counter. The constructor initiates the first increment by calling tick.

The factories are represented by the TickerFactory class. A factory exposes a
ticker to the environment each time a request for a newTicker is processed.

183



Chapter 13. Examples

Listing 13.1: Ticker factory implementation in αABS
interface IFactory {
ITicker newTicker();

}
interface ITicker { Int time(); }
class TickerFactory()

implements IFactory {
ITicker newTicker() {
ITicker t = new Ticker();
return t;

}
}

class Ticker() implements ITicker {
Int count = 0;
Int time() {
return count;

}
Unit tick() {
count = count + 1;
this.tick();

}
{ this.tick(); }

}

13.1.1 Specification

Figures 13.1 to 13.3 present specifications for the Ticker class, the TickerFactory

class and the [TickerFactory] component, respectively. The Ticker class specifi-
cation showcases the use of the constructor keyword representing the class con-
structor’s event sequence transition, while the [TickerFactory] component speci-
fication shows how to specify a component that exposes more than just the initial
actor to the environment.

The specification S(Ticker) (Figure 13.1) states that a ticker only accepts being
sent time() calls. It also allows a ticker to internally produce a self tick call.
The internal state in the specification consists of two variables: the counter c
and lastTime which records the value of the counter the last time a time call
comes. The lastTime variable is not used when verifying a class implementation,
however it plays a crucial role in showing the monotonicity of the counter value. A
ticker responded to a time call by returning the value of the counter and internally
updating the lastTime variable. The counter evolves via tick internal calls. A
ticker reacts to a tick call by increasing the internal counter and returns after
making a self tick call. When a ticker is created, the class constructor is executed,
producing a self tick call.

A ticker factory has a straightforward behavior: every time it is asked to supply
a ticker, it creates a new one and returns the new ticker. To allow this behavior, the
specification S(TickerFactory) (Figure 13.2) states that a ticker factory accepts
newTicker calls, while requiring the presence of a Ticker class as it creates new
tickers. The internal state is empty because it does not need to store anything.

The specification S([TickerFactory]) (Figure 13.3) aggregates the external be-
havior of a ticker factory and its tickers. A component instance of [TickerFactory]

184



13.1. Ticker Factory

Allowed messages

Ticker():
provided: Int time()
required: none
internal: Unit tick()

State

c ∈ D(Int), initially 0
lastTime ∈ D(Int), initially 0

Actions

u� this : time() · u← this : time / c
pre: true
state: lastTime := c

constructor u→ this : tick()
pre: true
state: no change

u� this : tick() · u′→ this : tick() · u← this : tick / Unit
pre: true
state: c := c+ 1

Figure 13.1.: A specification of actor automaton Ticker(this) for Ticker class

Allowed messages
TickerFactory():
provided: Ticker newTicker()
required: new Ticker()
internal: none

State

none

Actions

u� this : newTicker() · this→ t : new Ticker() · u← this : newTicker / t
pre: true
state: no change

Figure 13.2.: A specification of actor automaton TickerFactory(this) for
TickerFactory class

185



Chapter 13. Examples

Allowed messages

TickerFactory():
provided: Ticker newTicker()
required: none

Ticker():
provided: Int time()
required: none

State

tickers ∈Map〈A,D(Int)〉, initially all actors are mapped to undef

Actions

u� this : newTicker()
pre: true
state: no change

u← this : newTicker / tk
pre: tk= new Ticker∧ tickers(tk) = undef
state: tickers := tickers[tk 7→ 0]

u� tk : time()
pre: tickers(tk) 6= undef ∧ tickers(tk)≤ n
state: tickers := tickers[tk 7→ n]

u← tk : time / tickers(tk)
pre: true
state: no change

Figure 13.3.: A specification of component automata [TickerFactory](this) for
[TickerFactory] component

exposes the created tickers. As a result, the interface of this component consists of
two classes: one for TickerFactory and the other is for Ticker. The internal state
of a [TickerFactory] instance consists of a map tickers from the created tickers
to their counter value. A ticker factory accepts newTicker calls. The reaction to a
newTicker call does not change the internal state of the component instance. The
return event enriches the internal state by mapping the created ticker to a counter
of value 0, while exposing the ticker to the environment. This value 0 corresponds
to the initialized value of the counter held by a ticker. When a ticker is exposed, it
can receive time calls. When a ticker reacts to a time call, the value of the counter
is frozen. We guess this frozen value n, which must be at least of the previously
observable value held by the ticker (tickers(tk)). The ticker then uses this value
to return the time call.

13.1.2 Class Verification

To verify the class implementation against the class specification, we encode the
αABS implementation of Ticker and TickerFactory in SEQ as shown in List-
ing 13.2. From the encoding, we extract the weakest liberal precondition of each
method in each class. These weakest liberal preconditions are shown to satisfy

186



13.1. Ticker Factory

Listing 13.2: Ticker and TickerFactory encoding in SEQ
//class Ticker()
trace t = [];
Int count = 0;
time(Fut<Int> fut) {
Int return;
t = t · fut� this : time();
return = count;
t = t · fut← this : time / return;
assume wf(t);

}
tick(Fut<Unit> fut) {
Fut<Unit> u;
t = t · fut� this : tick();
count = count + 1;
u = some;
t = t · u→ this : tick();
assume wf(t);
t = t · fut← this : time / Unit;
assume wf(t);

}

{
Fut<Unit> u;
u = some;
t = t · u→ this : tick();
assume wf(t);

}
//class TickerFactory()
trace t = [];
newTicker(Fut<Ticker> fut) {
Ticker tk, tk’;
Ticker return;
t = t · fut� this : newTicker();
tk’ = some;
t = t · this→ tk’ : new Ticker();
tk = tk’;
assume wf(t);
return = tk;
t = t · fut← this : newTicker / return;
assume wf(t);

}

the class invariants extracted from the class specifications of Ticker (Figure 13.1)
and TickerFactory (Figure 13.2).

The method time of Ticker has the following weakest liberal precondition:

wlp(time(fut),Q) = ∀return : return= count∧ wf(t · e1 · e2) =⇒ Qt
t·e1·e2

where the events e1 and e2 are defined as follows:
• e1 = 〈fut� this : time()〉
• e2 = 〈fut← this : time / count〉
The method tick of Ticker has the following weakest liberal precondition:

wlp(time(fut),Q) = ∀u : wf(t · e1 · e2) =⇒ wf(t · e1 · e2 · e3) =⇒ Qcount·t
count+1·(t·e1·e2·e3)

where the events e1, e2 and e3 are defined as follows:
• e1 = 〈fut� this : tick()〉
• e2 = 〈u← this : tick()〉
• e3 = 〈fut← this : tick / Unit〉
The constructor of Ticker has the following weakest liberal precondition:

wlp(Tickercons,Q) = ∀u : wf(t · u→ this : tick()) =⇒ Qt
t·u→this:tick()

187



Chapter 13. Examples

The method newTicker of TickerFactory has the following weakest liberal pre-
condition.

wlp(newTicker(fut),Q) =
∀tk, tk′,return : tk= tk′ = return∧ wf(t · e1 · e2) =⇒

wf(t · e1 · e2 · e3) =⇒ Qt
t·e1·e2·e3

where the events e1, e2 and e3 are defined as follows:
• e1 = 〈fut� this : newTicker()〉
• e2 = 〈this→ tk : new Ticker()〉
• e3 = 〈fut← this : newTicker / tk〉

The class invariant for the respective classes are extracted from the class speci-
fications as described in Definition 11.1. The predicate ρ for Ticker, which con-
nects the internal variables of the specification to the class attributes of the im-
plementation is a simple equality c = count, while for TickerFactory it is true.
Plugging in the class invariant to the weakest liberal preconditions gives us the
proof obligations for TickerFactory and Ticker. The remaining task is to provide
the correct event sequence transitions each time the class invariant is checked.
For example, the proof obligation for time is as follows:

∀t, f : wf(t)∧I( f , t) =⇒ ∀return : return= count∧wf(t·e1·e2) =⇒ I( f , t·e1·e2)

where the local trace t is a concatenation of (instantiations of n) event sequence
transitions given in Figure 13.1, such that the reaction to every tick call increases
the value of the internal variable c and c = sn(count). Whenever I( f , t) takes n
event sequence transitions, I( f , t) takes n+ 1 event sequence transition with the
event sequence transition involving the reaction time call. Because c is the same
as the value sn(count), the value returned by the ticker indeed corresponds to the
value returned in the class specification.

13.1.3 System Verification

On the next tier, we show that the [TickerFactory] component implementation
fulfills the its specification S[TickerFactory] (Figure 13.3). To do this, we provide a
possibility map between the CCA of the implementation and the component spec-
ification. The CCA of the implementation uses the class specifications STicker and
STickerFactory whose individual implementations are verified in the previous sub-
section. Because the classes Ticker and TickerFactory form a creation-complete
set with respect to
TickerFactory, the CCA contain enough ingredients to define a possibility map.

188



13.1. Ticker Factory

Given a head factory actor tf , let C1 and C2 be CCA whose initial states are
mapped to a configuration consists of an AA specified by STickerFactory and a
CompA specified by S[TickerFactory], respectively. The map r from reachable states
of C1 to states of C2 fulfills the following conditions:
• The prerequisite PREREQ is satisfied.
• The created actors in a reachable configuration of C1 can only differ by at most

one actor to the set of exposed actors in the mapped configuration C2 of C2.
This condition allows some flexibility when mapping a state of the ticker factory
implementation where it has created a ticker and yet to expose it to its client.

• The remaining state variables of the [TickerFactory] component instance that
is not addressed by the prerequisite is fixed appropriately.

• Whenever the ticker factory is reacting to a request to create a ticker, we allow
the ticker not to be present in the tickers map of the component instance when
it is not yet exposed to the environment (i.e., it is not yet returned). However,
for all other mapped tickers in tickers, each must have an AA representation in
the configuration of C1.

This map is formally defined as follows.

PREREQ ∧∀x ∈ rStates(C1), y ∈ states(C2) : ∃A1,A2, s1, s2,C1,C2 :
C1 = config(C1)(x)∧C2 = config(C2)(y)∧ |exposed(C2)|+ 1≤ |names(C1)| ∧
(A1, s1, false) ∈ C1 ∧ (A2, s2, true) ∈ C2 ∧ names(A1) = {tf} ∧ tf ∈ names(A2) ∧
s2(known) = {a | tf ∈ ancestors(a)} ∧ s2(outCalls) = s2(genFut) = ; ∧
(¬s1(release) =⇒

∃tk ∈ s1(known) : tk /∈ exposed(C2) =⇒ s2(tickers)(tk) = undef) ∧
(∀tk : s2(tickers)(tk) 6= undef =⇒ ∃A, s :

(A, s, false) ∈ C1 ∧ names(A) = {tk} ∧ s(lastTime) = s2(tickers)(tk))
=⇒ r(x) = y

Now we show that r is a possibility map, by showing that r is indeed a map,
and the two conditions in Definition 12.4 hold.

0. For each reachable state x ∈ rStates(C1) whose configuration is represented
by C, almost every ticker that is present in the configuration must be part
of the internal ticker mapping tickers of the component instance and no
other ticker is mapped in tickers. The only ticker that is not yet repre-
sented in tickers can appear only when the ticker factory is processing a
newTicker call. Because of the constraints on the configurations (Defini-
tion 9.3), each ticker is represented in C by exactly one AA specified by
S(Ticker). The mapped value of these tickers corresponds to the value of
the variable lastTime in the state of the AA. As C has exactly one represen-

189



Chapter 13. Examples

tation in states(C2), r is a map.

1. There exists only one initial state in both C1 and C2 representing a ticker
factory that has not produced any tickers and these states are related in r.

2. For each event transition executable by C1 in some reachable state, we show
that the mapping condition is fulfilled by analyzing each event that a ticker
or a ticker factory may produce. That is, if x is a reachable state of C1 and
x

e
−→C1

x ′ is a transition, we need to show if e is an observable generated

event of a component instance of [Sieve], then r(x)
e
−→C2

r(x ′), otherwise
r(x) = r(x ′). For simplicity, we assume tf is the initial ticker factory actor
and tk is a ticker actor that is represented in the configuration.

Case e = 〈u� tf : newTicker()〉: The internal state of the implementation
representative does not change when this event is executed. Thus, the
mapped state in C2 does not change. As the component specification
defines the internal state not to change when performing a transition
labeled with this event, the possibility map condition is fulfilled.

Case e = 〈tf � tk : new Ticker〉: This creation event is an internal event at
the component level, so r must map the post-state of C1 after executing
a transition labeled with this event to the same state. The ticker tk is
at this stage only exposed to tf and therefore not part of the actors
exposed to the environment. Because tf has not reached a release
point, tk must still be mapped to undef in tickers. Thus, after executing
this transition, r(x) = r(x ′).

Case e = 〈u← tf : newTicker / tk〉: Executing this observable generated
event exposes tk to the environment. In C1, the ticker factory is back at
a release point, meaning that there cannot be any discrepancy between
the actors present in C1 and the exposed actors in C2. The component
specification requires the post-state of the component instance to in-
sert tk to tickers with the value 0. This value corresponds to the initial
value of lastTime of the AA of tk. Because tk is exposed only after
this event is executed, the value of lastTime still remains 0. Thus,

r(x)
e
−→C2

r(x ′).

Case e = 〈u� tk : time()〉: Reacting to a time call changes the mapping of
tk in tickers to some guessed value n larger than the previous mapped
value. As tk can only react to such an event when it is already ex-
posed, tk is part of the configuration of x . The semantics of the class
specification (Definition 10.4) requires that the internal state change

190



13.2. Sieve of Eratosthenes

of an event sequence transition to be performed immediately after the
reaction event. As lastTime is assigned to the monotonically increas-
ing counter value c, we can instantiate n to be lastTime. Because of
the non-determinism introduced by the guessing, the possibility map
condition holds in this case.

Case e = 〈u← tk : time / v〉: This event is an external event, so both CCA
can execute a transition labeled with this event. When this transition
is executed, the internal state of both the ticker actor’s AA and the
CompA remains the same. Thus, r(x)

e
−→C2

r(x ′).

Case mtd(e) = tick: These events are internal events that can only change
the value held by the counter variable c. Because this variable plays
no role in the mapping, when C1 makes a transition labeled by e, the
post-state is mapped in r to the same state in C2.

Because conditions in Definition 12.4 is satisfied, r is a possibility map, and List-
ing 13.1 provides an implementation for S[TickerFactory].

13.2 Sieve of Eratosthenes

The sieve of Eratosthenes is a well-known algorithm to find prime numbers. A
typical actor-based implementation consists of a generator and a chain of filter
actors. The generator has the task of sending natural numbers greater than 2
to the head of the chain. Initially, the chain consists of only one filter actor and
grows longer as more numbers are fed to the chain. Each filter actor holds a prime
number, with the initial filter actor holds the number 2. When a filter receives
a number i and it is divisible by the number the filter holds, no further action
is taken. Otherwise, it passes on the number to the next filter actor down the
chain. If the filter is the last actor in the chain, a new filter actor is created,
assigned i as the number it holds, and added to the end of the chain. Integral
to a correct implementation is that each filter actor processes the numbers in the
correct, increasing order.

Listing 13.3 presents an implementation of the sieve in αABS. In this implemen-
tation, we try to maximize concurrent processing of the integers. For simplicity,
we assume that the Int type represents only non-negative integers. Also, we use
syntactic sugar await u? when only the completion of a method call is of interest.
This implementation consists of 2 classes Sieve and Filter, each implementing
the interfaces ISieve and IFilter, respectively.

The Sieve class implements the generator described above. It acts as the in-
terface to access the prime numbers, which is returned one at a time through the

191



Chapter 13. Examples

Listing 13.3: An implementation of the sieve of Erastothenes in αABS

1interface ISieve {
2 Int nextPrime();
3}
4

5

6interface IFilter {
7 Unit check(Int x);
8 Unit insert(Int x);
9 Int retrieve();

10}
11

12data List<T> =
13 Nil |
14 Cons(List<T> front, T last);
15

16class Sieve() implements ISieve {
17 IFilter head = null;
18 Int count = 2;
19 Fut<Int> retu = null;
20

21 Int nextPrime() {
22 Int next;
23 await head != null && retu == null;
24 retu = head.retrieve();
25 await retu?next;
26 retu = null;
27 return next;
28 }
29

30 Unit generate() {
31 Fut<Unit> done;
32 count = count + 1;
33 done = head.check(count);
34 await done?;
35 this.generate();
36 }
37

38 {
39 head = new Filter(2, null);
40 this.generate();
41 }
42}
43

44class Filter(Int mine, IFilter hd)
45 implements IFilter {
46 IFilter next = null;
47 List<Int> todo = Nil;
48 List<Int> num = Cons(Nil, mine);
49 Unit check(Int x) {
50 todo = Cons(todo, x);
51 }
52 Unit insert(Int x) {
53 num = Cons(num, x);
54 }
55 Int retrieve() {
56 Int p;
57 await num != Nil;
58 p = num.first();
59 num = num.tail();
60 return p;
61 }
62 Unit filter() {
63 Int x;
64 Fut<Unit> u;
65 await todo != Nil;
66 x = todo.first();
67 if (x % mine != 0) {
68 if (next == null) {
69 if (hd == null) {
70 next = new Filter(x, this);
71 u = this.insert(x);
72 }
73 else {
74 next = new Filter(x, hd);
75 u = hd.insert(x);
76 }
77 } else {
78 u = next.check(x);
79 }
80 await u?;
81 }
82 todo = todo.tail();
83 this.filter();
84 }
85 { this.filter(); }
86}

192



13.2. Sieve of Eratosthenes

nextPrime method. The internal method generate implements the generation pro-
cess. This method sends the integers to the head actor of the filter chain by calling
the check method. The generate method progresses once the check method re-
turns. At this point, the actor recursively calls generate. To set up the generation
process correctly, the Sieve class is equipped with a constructor, which creates the
head Filter actor and calls the generate method. Because the generate method
is not part of the interface, this constructor and the generate method definition
ensure that the chain obtains the integers in the right order.

The nextPrime method works by checking whether the head Filter actor has
been created and the Sieve actor is not currently retrieving any prime numbers.
This check is important because the semantics of αABS does not guarantee that
the class constructor will be executed before an actor can execute incoming calls.
When this guarantee is given, the condition on the Filter actor on Line 23 can
be removed. Then it calls the head Filter actor to retrieve a prime number. The
semantics of αABS offers no guarantee that the calls are processed in the same or-
der as their arrival. To provide a guarantee that whenever the Sieve actor returns
a prime number, it is the next largest prime number, the future of the retrieve call
is stored in the field retu, allowing synchronization with other tasks. The return
value of the retrieve method becomes the return value of the nextPrime method,
and the retu is assigned back to null.

The Filter class implements the filter actors. It has two class parameters: the
filter number held by the actor and the name of the head Filter actor. Only when
the head is the actor itself does the class parameter hd not refer to any actor. The
head Filter actor acts not only as the interface of the filter chain, but also as a
collector of the numbers that the sieving process determines to be prime. The
numbers a Filter actor receives are stored in two lists: todo and num. The first
list is used to maintain the order of the numbers the filter chain receives from
the generator, while the num is used to store the prime numbers, as the method
definitions check and insert reflect. The retrieve method removes and returns
the first number in num. As a condition to allow the retrieval, this list must not be
empty.

The main filtering procedure is implemented by an internal method filter.
In principle, it works in a similar way to the generate method. First it ensures
that there is a number to be sifted. Then it extracts the first number x from the
todo list, and checks the divisibility of this number. If x is divisible by mine, then
nothing is done except removing the number from the todo list. If it is not divisible
and the Filter actor is the last actor in the chain, the chain is extended with a
new Filter actor holding x. Then, x is inserted to the num list of the head Filter

actor. If the Filter actor is not the last actor, x is passed on to the next actor in

193



Chapter 13. Examples

2

3

5

pi

Figure 13.4.: The communication structure of the Filter actors

the chain. This actor then waits until the head or the next Filter actor returns,
before continuing with the next number in the todo list. To initiate the filtering
process, the Filter class is equipped with a class constructor that calls the filter

method. The communication structure of the Filter chain forms somewhat like
a ring, where all actors of the chain may call the head Filter actor, as illustrated
by Section 13.2.

The implementation gives rise to two components: [Sieve] and [Filter]. Based
on the communication structure of the Filter actors, the [Filter] component
features the exposure of actors of the environment. From the perspective of a
[Filter] component instance headed the filter representing the number 3, for
example, the filter representing the number 2 is part of the environment. This
aspect needs to be taken into consideration when specifying the desired behavior
of [Filter] as shown in the next subsection.

13.2.1 Specification

Figures 13.5 to 13.8 present specifications for the Sieve class, the Filter class,
the [Filter] component and the [Sieve] component, respectively. The [Filter]
component features a call to the environment.

Sieve class specification. A specification SSieve (Figure 13.5) states that a Sieve

actor receives only nextPrime() calls. As part of its interface, a Sieve actor may
create Filter actors and call their retrieve() and check() methods. Internally,
a Sieve actor may produce a self generate call. The internal state consists of
seven variables. The variable head stores the Filter actor created by the Sieve

194



13.2. Sieve of Eratosthenes

Allowed messages

Sieve():
provided: Int nextPrime()
required: Int f .retrieve() where class( f ) = Filter

Unit f .check(Int x) where class( f ) = Filter

new Filter(Int x ,Filter f )
internal: generate()

State

head ∈ A initially null tmpFut ∈ U initially null

c ∈ D(Int) initially 2 prev ∈ D(Int) initially 1
retu ∈ U initially null tmpPrev ∈ D(Int) initially 0
nreq ∈ D(Int) initially 0

Actions

u� this : nextPrime()
pre: true
state: nreq := nreq+ 1∧ tmpPrev := 0

u→ head : retrieve()
pre: head 6= null∧ retu= null∧ nreq> 0
state: nreq := nreq− 1∧ retu := u∧ tmpPrev := 0

u� head : retrieve / i · u′← this : nextPrime / i
pre: u= retu
state: retu := null∧ prev := i ∧ tmpPrev := prev

u� this : generate() · u′→ head.check(c)
pre: head 6= null

state: tmpPrev := 0∧ c := c+ 1∧ tmpFut := u′

u� head.check / Unit · u′→ this : generate() · u′′← this : generate / Unit
pre: tmpFut= u
state: tmpPrev := 0∧ tmpFut := null

constructor this→ head : new Filter(2,null) · u→ this : generate()
pre: true
state: tmpPrev := 0

Figure 13.5.: A specification of actor automaton Sieve(this) for Sieve class

195



Chapter 13. Examples

actor. The variable c contains the integer to be sifted by the filter chain. nreq
stores the number of nextPrime() calls that have been reacted to, but are still
pending to retrieve a number. retu stores the future generated by the Sieve actor
to retrieve a filtered number. The variable tmpFut temporarily stores the future
of the last check call sent by the Sieve actor until the return event is reacted to.
The variables prev and tmpPrev are used to store the last number returned by
the Sieve actor, with tmpPrev acts as the intermediary value between transitions
(more explanation follows). The last two variables only play some part in the
[Sieve] component verification.

The first three event sequence transition specifications in SSieve describe how a
Sieve actor reacts to a nextPrime call. First it starts by reacting to the call, which
increases the number of pending requests. As done in the implementation, the
Sieve actor must wait until the head Filter actor is created and no other tasks are
currently retrieving any numbers. In which case, it calls head to retrieve the next
filtered number and stores the generated future. The number of pending requests
are decreased. Resolving the future of a nextPrime call is done by returning the
integer i retrieved from the filter chain. The variable prev stores i. Because of the
semantics of the event sequence transition specifications, this assignment happens
after the retrieve return reaction event is executed. The intention, however, is
that prev only refers to the returned value in the states after the return event
for nextPrime is executed. To get around this problem, the temporary variable
tmpPrev stores the previous value of the prev variable. Thus, we still have the
information of the last returned number in the states between the execution of
these two events.

The last three event sequence transition specifications deal with feeding of the
integer sequence to the filter chain. Reacting to the generate method means sup-
plying the filter chain with the next integer that needs to be filtered, represented
by c. Before the Sieve actor can send the next integer, it has to wait until the
head Filter actor has received the previously sent integer. By storing the future
of the check call in tmpFut, the Sieve actor does not confuse itself by reacting
to a different check return event. After which, it produces a self call. The class
constructor sets up the filter chain by creating a Filter actor that holds the first
prime number 2 and starting the feeding process.

Filter class specification. The specification SFilter (Figure 13.6) describes the
actual filtering process done by a single Filter actor. The Filter class has two
parameters: myDiv representing the number the divisibility check is based on and
head representing the head Filter actor it should send the filtered numbers to.
The provided interface follows the IFilter interface. A Filter actor may call the

196



13.2. Sieve of Eratosthenes

Allowed messages

Filter(Int myDiv,Filter head):
provided: Unit check(Int x)

Unit insert(Int x)
Int retrieve()

required: Unit f .check(Int x) where class( f ) = Filter
Unit f .insert(Int x) where class( f ) = Filter
new Filter(Int x ,Filter f )

internal: Unit filter()

State

next ∈ A initially null fStg ∈ {1,2, 3} initially 1
todo ∈ D(Seq〈Int〉) initially [] used ⊆ U initially ;
divs ∈ D(Seq〈Int〉) initially myDiv insIdx ∈ D(Seq〈Int〉) initially []
done ∈ U initially null

Actions

u� this : check(x) · u← this : check / Unit
pre: x > 0
state: todo := todo · x

constructor u→ this : filter()
pre: true
state: no change

u� this : insert(x) · u← this : insert / Unit
pre: true
state: divs := divs · x ∧ (this /∈ ancestors(gen(u)) =⇒ insIdx := insIdx · (|divs|+ 1))

u� this : retrieve()
pre: true
state: no change

u← this : retrieve / x
pre: divs= x · divs′

state: divs := divs′ ∧ dec(insIdx)

u� this : filter()
pre: true
state: fStg := 2

u→ this : filter() · u′← this : filter()
pre: fStg = 2∧myDiv | x ∧ todo= x · todo′

state: todo := todo′ ∧ fStg := 1

this→ f : new Filter(todo[1], f ′) · u→ f ′ : insert(x)
pre: fStg = 2∧ |todo|> 0∧myDiv - todo[1]∧ next= null ∧

(head= null =⇒ f ′ = this)∧ (head 6= null =⇒ f ′ = head)
state: used := used∪ {u} ∧ fStg := 3∧ done := u

u→ next : check(x)
pre: fStg = 2∧ next 6= null∧ todo= x · todo′ ∧myDiv - x
state: fStg := 3∧ done := u

u� a : mtd / Unit · u′→ this : filter() · u′′← this : filter()
pre: u= done∧ fStg = 3∧mtd ∈ {insert,check} ∧ todo= x · todo′

state: todo := todo′ ∧ fStg := 1∧ done := null

Figure 13.6.: A specification of actor automaton Filter(this) for Filter class

197



Chapter 13. Examples

methods check and insert on other Filter actors and may create new Filter ac-
tors. Internally, it can call the method filter. The internal state of the resulting
actor automaton of SFilter consists of seven variables. todo stores the list of in-
coming integers the filter needs to check. divs contains the numbers inserted to
the filter in the order they are received. next represents the head of the filter chain
created by the Filter actor. The variables done and fStg are needed to ensure
a sequential connection performed by a Filter actor while processing a filter

call. The next two variables used and insIdx are only needed for verifying the
[Filter] implementation. The former stores the futures of all insert calls made
by the Filter actor to the head actor. The latter stores the indices of the numbers
in divs inserted by some actor other than the Filter actor and the actors present
in the chain created by the Filter actor. This information is required because the
[Filter] component is verified without assuming how the environment behaves.

The event sequence transition specifications dealing with the check and insert

methods are straightforward. Each appends the incoming integer to the respec-
tive lists. The insert method has a slight complication where it also has to store
the index where the number of is inserted, if the caller is not the Filter actor
or actors transitively created by the Filter actor. The specification dealing with
the retrieve call reaction is also straightforward. Because the return event can
only be generated when the actor has something to return (i.e., |divs| > 0), the
reaction and return events are split into two event sequence transition specifi-
cations. As the retrieve method changes the divs list, the indices in insIdx must
also change. Given an integer sequence variable s, dec(s) assigns s to the sequence
resulting from subtracting all integers by 1 and removing the first integer if the
value falls below 1 (i.e., the integer has been removed from the list). The order
of the sequence is maintained.

The meat of the filtering process lies in the filter method. The specification
states that the filtering process is done in two or three stages. The first stage is
starting the filtering process by reacting to a filter call. The second stage is on
only when the todo list is not empty and it is at a stage where the filtering process
can happen (fStg = 2). When the first number x in the todo list is divisible by

myDiv (represented by myDiv | x1), nothing further is done except removing x
from the list and returning to the first filter stage. Otherwise (myDiv - x), there
are two cases to handle. If the Filter actor is not the last actor in the chain
(next 6= null), it passes on the number to the next Filter actor on the chain by
calling the check method. Otherwise, it creates a new Filter actor assigned with
the number x before sending x to the head actor of the chain. A distinction needs

1read as myDiv divides x

198



13.2. Sieve of Eratosthenes

to be made whether the Filter actor is the head actor or some other actor given
in head. The future of a check or a insert call is temporarily stored in done and
the actor progresses to the third filter stage. When the check or insert calls return
(confirmed by comparing the future of the reaction event with done), a recursive
filter call is made to continue the filtering process, x is removed from the list,
the temporary storage for the future is nullified, and the Filter actor is back to the
first filter stage. Without temporarily storing the future of check or insert calls,
the Filter actor can actually progress to filter the next number, without properly
ensuring that the number is passed on to the next Filter actor on the chain or
inserted in the right order.

[Filter] component specification. The expected behavior of a filter chain is
represented by a specification S[Filter] (Figure 13.7). Essentially, we want the
chain to sift the given integers, based on the initial divisor provided by the class
parameter myDiv. However, the specification needs to consider the behavior of
the component instance when it represents the tail of some chain (i.e., the class
parameter head is filled with some Filter actor). Furthermore, because of the
environment assumption (more precisely, lack thereof), we also need to cover
the situation where integers are insert-ed to the filtered list, even though the
component instance does not represent the whole chain.

The provided interface of [Filter] follows the IFilter interface. The required
interface only consists of the insert call, to reflect that the component instance
represents only the chain tail. The internal state of a component automaton of
S[Filter] is represented by 4 variables. The variable kept contains the filtered inte-
gers, based on the integers the component instance needs to check. The variable
sifted represents these integers in a sequence form. However, as the filtered in-
tegers may be retrieved or inserted to the head filter actor, this list may consist
of the remaining filtered integers. The variable divs stores all integers inserted to
the component instance via the insert call. The variable used is the counterpart
of the used variable in SFilter.

The event transition specifications that deal with the reaction to a check, insert
or retrieve call are straightforward. The return of a retrieve call is a bit more
tricky to specify. In general, the return value should come from the list of in-
serted integers divs. However, when a component instance represents the com-
plete chain, as reflected by the condition head = null, the return value can also
come from the sifted list. In this specification, the resulting component automa-
ton may make a non-deterministic decision from which list the return value is
extracted. When the component instance does not represent a complete chain,
it must pass on the filtered integers to the head actor. This is done through a

199



Chapter 13. Examples

Allowed messages

Filter(Int myDiv,Filter head):
provided: Unit check(Int x)

Unit insert(Int x)
Int retrieve()

required: Unit f .insert(Int x) where class( f ) = Filter

State

kept ⊆ D(Int) initially {myDiv}
sifted ∈ D(Seq〈Int〉) initially {myDiv}
divs ∈ D(Seq〈Int〉) initially ;
used ⊆ U initially ;

Actions

u� this : check(Int x)
pre: x > 0∧∀y ∈ kept : y - x
state: sifted := sifted · x ∧ kept := kept∪ {x}

u� this : check(Int x)
pre: ∃y ∈ kept : y | x
state: no change

u← this : check / Unit
pre: true
state: no change

u� this : insert(Int x)
pre: true
state: divs := divs · x

u← this : insert / Unit
pre: true
state: no change

u� this : retrieve(Int x)
pre: true
state: no change

u← this : retrieve / x
pre: divs= x · divs′

state: divs := divs′

u← this : retrieve / x
pre: head= null∧ sifted= x · sifted′

state: sifted := sifted′

u→ head : insert(sifted[1])
pre: head 6= null∧ |sifted|> 0
state: used := used∪ {u}

u� head : insert / Unit
pre: u ∈ used∧ sifted= x · sifted′

state: sifted := sifted′ ∧
used := used− {u}

Figure 13.7.: A specification of component automaton [Filter](this) for [Filter]
component

200



13.2. Sieve of Eratosthenes

Allowed messages

Sieve():
provided: nextPrime()
required: none

State

lastRet ∈ D(Int) initially 1

Actions

u� this : nextPrime()
pre: true
state: no change

u← this : nextPrime / p
pre: p > lastRet∧ isPrime(p)∧∀i ∈ {lastRet+ 1, . . . , p− 1} : ¬isPrime(i)
state: lastRet := p

Figure 13.8.: A specification of component automaton [Sieve](this) for [Sieve]
component

u → head : insert(x) call. Because the call is targeted to the environment, the
future u is stored in used.

[Sieve] component specification. Last but not least is the component specifica-
tion S[Sieve] (Figure 13.8). The specification states that every time a component
instance returns a nextPrime call, the returned integer is the next lowest prime
number. As a guide to determine the next prime number, the last returned integer
is stored in the variable lastRet.

13.2.2 Class Verification

In this section, we sketch how the verification of the class implementation of the
[Sieve] component can be done. First, we encode the αABS implementation of
Sieve and Filter in SEQ (Listings 13.4 and 13.5). To shorten the encoding, we
omit non-deterministic guessing of the resolved value of a future when the future
is a placeholder of type Unit. The fields are collectively represented by the variable
fields. From the encoding, we extract the weakest liberal precondition of each
method in each class. These weakest liberal preconditions are shown to satisfy
the class invariants extracted from the class specifications of Sieve (Figure 13.5)
and Filter (Figure 13.6).

201



Chapter 13. Examples

Listing 13.4: Sieve encoding in SEQ
IFilter head = null;
Int count = 2;
Fut<Int> retu = null;
trace t = [];
nextPrime(Fut<Int> fut) {
Int next, next’;
Fut<Int> u;
Int return;
trace t1, t2, t3;

t = t · fut� this : nextPrime();
assert I(fields, t) && wf(t);
fields, t1 = some;
t = t · t1;
assume I(fields, t) && wf(t) &&

head != null && retu == null;
u = some;
t = t · u→ head : retrieve();
retu = u;
assume wf(t);
assert I(fields, t) && wf(t);
fields, t2, next’ = some;
t3 = retu� head : retrieve / next’;
next = next’;
t = t · t2 · t3

assume I(fields, t) && wf(t);
retu = null;
return = next;
t = t · fut← this : nextPrime / return;
assume wf(t);

}

generate(Fut<Unit> fut) {
Fut<Unit> done, u’;
trace t′, t′′;

t = t · fut� this : generate();
count = count + 1;
u’ = some;
t = t · u′→ head : check(count);
done = u’;
assume wf(t);
assert I(fields, t) && wf(t);
fields, t′ = some;
t′′ = done� head : check / Unit;
t = t · t′ · t′′;
assume I(fields, t) && wf(t);
t = t · fut← this : generate / Unit;
assume wf(t);

}

{
Int h’;
Fut<Unit> u’;

h’ = some;
t = t · this→ h’ : new Filter(2,null);
head = h’;
assume wf(t);
u’ = some;
t = t · u′→ this : generate();
assume wf(t);

}

The method nextPrime of Sieve has the following weakest liberal precondition:

wlp(nextPrime(fut),Q) =
∀next, next′, head′, head′′, retu′, retu′′, count′, count′′, u, t1, t2,return :

next= next′ = return∧ retu′′ = u ∧
(I( f , t · e1)∧ wf(t · e1)) ∧
(I( f

′
, t · e1 · t1)∧ wf(t · e1 · t1)∧ head′ 6= null∧ retu′ = null) =⇒

wf(t · e1 · t1 · e2) =⇒
(I( f

′
, t · e1 · t1 · e2)∧ wf(t · e1 · t1 · e2)) ∧

(I( f
′′
, t · e1 · t1 · e2 · t2 · e3)∧ wf(t · e1 · t1 · e2 · t2 · e3)) =⇒

wf(t · e1 · t1 · e2 · t2 · e3 · e4) =⇒ Q f ·retu·t

f
′′
·null·(t·e1·t1·e2·t2·e3·e4)

202



13.2. Sieve of Eratosthenes

Listing 13.5: Filter encoding in SEQ
// class parameters
Int mine;
Filter hd;
// f ie lds
Filter next = null;
List<Int> todo = Nil;
List<Int> num = Cons(Nil, mine);
trace t = [];

check(Fut<Unit> fut, Int x) {
t = t · fut� this : check(x);
todo = Cons(todo, x);
t = t · fut← this : check / Unit;
assume wf(t);

}

insert(Fut<Unit> fut, Int x) {
t = t · fut� this : insert(x);
num = Cons(num, x);
t = t · fut← this : insert / Unit;
assume wf(t);

}

retrieve(Fut<Int> fut) {
Int p, return;
var t′;

t = t · fut� this : retrieve();
assert I(fields, t) && wf(t);
fields, t′ = some;
t = t · t′;
assume I(fields, t) && wf(t) &&

num != Nil;
p = num.first();
num = num.tail();
return = p;
t = t · fut← this : retrieve / return;
assume wf(t);

}

{
Fut<Unit> u’;
u’ = some;
t = t · u′→ this : filter();
assume(t);

}

filter(Fut<Unit> fut) {
Int x;
Fut<Unit> u, u’, u”;
Filter f’;
trace t1, t2, t3;
t = t · fut� this : filter();
assert I(fields, t) && wf(t);
fields, t1 = some; t = t · t1;
assume I(fields, t) && wf(t) &&

todo != Nil;
x = todo.first();
if (x % mine != 0) {
if (next == null) {
if (hd == null) {
f’ = some;

t = t · this→ f’ : new Filter(x ,this);
next = f’; assume wf(t);
u’ = some;
t = t · u’→ this : insert(x);
u = u’; assume wf(t);

}
else {
f’ = some;

t = t · this→ f’ : new Filter(x ,hd);
next = f’; assume wf(t);
u’ = some;
t = t · u’→ hd : insert(x);
u = u’; assume wf(t);

}
} else {
u’ = some;
t = t · u’→ next : check(x);
u = u’; assume wf(t);

}
assert I(fields, t) && wf(t);
fields, t2 = some;
t3 = u� getTgt(t,u) : getMtd(t,u) / Unit;
t = t · t2 · t3;
assume I(fields, t) && wf(t);

}
todo = todo.tail();
u” = some;
t = t · u”→ this : filter();
assume wf(t);
t = t · fut← this : filter / Unit;
assume wf(t);

}

203



Chapter 13. Examples

where the events e1 are defined as follows:
• e1 = 〈fut� this : nextPrime()〉
• e2 = 〈u→ head′ : retrieve()〉
• e3 = 〈retu′′� head′′ : retrieve / next〉
• e4 = 〈fut← this : nextPrime / return〉
For simplicity, the class fields are grouped together to a sequence of variables f .
The changes of values in the class fields are reflected by the different versions of
the variables, e.g., head′ and head′′ which represent the second and third versions
of the variables head′ after the execution of the corresponding non-deterministic
assignments. As explained in Section 11.2, the first version of these variables are
supplied by the verification condition. Abusing the notation slightly, the assign-
ment of retu back to null at the end of the method is reflected directly in the
substitution on Q.

The method generate of Sieve has the following weakest liberal precondition:

wlp(generate(fut),Q) =
∀done, u′, head′, t ′ : done= u′ ∧
wf(t · e1 · e2) =⇒
(I( f , t·e1 ·e2)∧wf(t·e1 ·e2))∧(I( f

′
, t·e1 ·e2 · t ′ ·e3)∧wf(t·e1 ·e2 · t ′ ·e3)) =⇒

wf(t · e1 · e2 · t ′ · e3 · e4) =⇒ Q f ·t

f
′
·(t·e1·e2·t ′·e3·e4)

where the events e1, e2, e3 and e4 are defined as follows:
• e1 = 〈fut� this : generate()〉
• e2 = 〈done→ head : check(count+ 1)〉
• e3 = 〈done� head′ : check / Unit〉
• e4 = 〈fut← this : generate / Unit〉

The constructor of Sieve has the following weakest liberal precondition:

wlp(Sievecons,Q) = ∀h′, u′ : wf(t · e1) =⇒ wf(t · e1 · e2) =⇒ Qhead·t
h′·(t·e1·e2)

where the events e1 and e2 are defined as follows:
• e1 = 〈this→ h′ : new Filter(2,null)〉
• e2 = 〈u′→ this : generate()〉

The method check of Filter has the following weakest liberal precondition:

wlp(check(fut, x),Q) = wf(t · e1 · e2) =⇒ Qtodo·t
Cons(x ,todo)·(t·e1·e2)

where the events e1 and e2 are defined as follows:
• e1 = 〈fut� this : check(x)〉
• e2 = 〈fut← this : check / Unit〉

204



13.2. Sieve of Eratosthenes

The weakest liberal precondition of the method insert of Filter is the same as
that for check after substituting the method name check with insert and the field
variable todo with num.

The method retrieve of Filter has the following weakest liberal precondition:

wlp(retrieve(fut),Q) =
∀num′,return, t ′ : return= num′.first() ∧
(I( f , t · e1)∧ wf(t · e1))∧ (I( f

′
, t · e1 · t ′)∧ wf(t · e1 · t ′)∧ num′ 6= Nil) =⇒

wf(t · e1 · t ′ · e2) =⇒ Q f ·t

f
′
·(t′·e1·t ′·e2)

where the events e1 and e2 are defined as follows:
• e1 = 〈fut� this : retrieve()〉
• e2 = 〈fut← this : retrieve / return〉

Figure 13.9 presents the weakest liberal precondition of method filter of Filter,
where the events e1, e2, e′2, e3, e′3, e′′3 , e4, e′4, e′′4 , e5 and e6 are defined as follows:
• e1 = 〈fut� this : filter()〉
• e2 = 〈this→ f ′ : new Filter(x ,this)〉
• e′2 = 〈this→ f ′ : new Filter(x , hd)〉
• e3 = 〈u′→ this : insert(x)〉
• e′3 = 〈u

′→ hd : insert(x)〉
• e′′3 = 〈u

′→ next′ : check(x)〉
• e4 = 〈u′� this : insert / Unit〉
• e′4 = 〈u

′� hd : insert / Unit〉
• e′′4 = 〈u

′� next′ : check / Unit〉
• e5 = 〈u′′→ this : filter()〉
• e6 = 〈fut← this : filter / Unit〉
This precondition is more complex because of the presence of the branching state-
ments which produce 4 branches. These branches are produced hierarchically
based on three factors:
• the divisibility of the first number on the todo list by the number held by the

Filter actor,
• whether the Filter actor is the last actor in the chain, and
• whether the Filter actor is the head actor of the chain.

The constructor of Filter has the following weakest liberal precondition:

wlp(Filtercons,Q) = ∀u′ : wf(t · u′→ this : filter()) =⇒ Qt
t·u′→this:filter()

To obtain class invariants from the class specifications SSieve and SFilter, we
define a predicate ρ for each class that connects the class attributes with the in-
ternal variables present in the specification. For the Sieve class, the values of

205



Chapter 13. Examples

wlp(filter(fut),Q) =
∀todo′, todo′′, todo′′′, next′, f ′, u, u′, u′′, x , t1, t2 :

next′ = f ′ ∧ u= u′ ∧ x = todo′.first() ∧
(mine | x =⇒ todo′′′ = todo′′.tail()) ∧
(mine - x =⇒ todo′′ = todo′.tail()) ∧
(I( f , t · e1)∧ wf(t · e1))∧ (I( f

′
, t · e1 · t1)∧ wf(t · e1 · t1)∧ todo′ 6= Nil) =⇒

((mine | x ∧ next′ = null∧ hd= null)∧ wf(t · e1 · t1 · e2) =⇒
wf(t · e1 · t1 · e2 · e3) =⇒
(I( f

′
, t · e1 · t1 · e2 · e3)∧ wf(t · e1 · t1 · e2 · e3)) ∧

(I( f
′′
, t · e1 · t1 · e2 · e3 · t2 · e4)∧ wf(t · e1 · t1 · e2 · e3 · t2 · e4) =⇒

wf(t · e1 · t1 · e2 · e3 · t2 · e4 · e5) =⇒
wf(t · e1 · t1 · e2 · e3 · t2 · e4 · e5 · e6) =⇒ Q f ·t

f
′′′
·(t·e1·t1·e2·e3·t2·e4·e5·e6)

)

∨
((mine | x ∧ next′ = null∧ hd 6= null)∧ wf(t · e1 · t1 · e′2) =⇒
wf(t · e1 · t1 · e′2 · e

′
3) =⇒

(I( f
′
, t · e1 · t1 · e′2 · e

′
3)∧ wf(t · e1 · t1 · e′2 · e

′
3)) ∧

(I( f
′′
, t · e1 · t1 · e′2 · e

′
3 · t2 · e′4)∧ wf(t · e1 · t1 · e′2 · e

′
3 · t2 · e′4) =⇒

wf(t · e1 · t1 · e′2 · e
′
3 · t2 · e′4 · e5) =⇒

wf(t · e1 · t1 · e′2 · e
′
3 · t2 · e′4 · e5 · e6) =⇒ Q f ·t

f
′′′
·(t·e1·t1·e2·e′3·t2·e′4·e5·e6)

)

∨
((mine | x ∧ next′ 6= null)∧ wf(t · e1 · t1 · e′′3 ) =⇒
(I( f

′
, t · e1 · t1 · e′′3 )∧ wf(t · e1 · t1 · e′′3 )) ∧

(I( f
′′
, t · e1 · t1 · e′′3 · t2 · e′′4 )∧ wf(t · e1 · t1 · e′′3 · t2 · e′′4 ) =⇒

wf(t · e1 · t1 · e′′3 · t2 · e′′4 · e5) =⇒

wf(t · e1 · t1 · e′′3 · t2 · e′′4 · e5 · e6) =⇒ Q f ·t

f
′′′
·(t·e1·t1·e′′3 ·t2·e′′4 ·e5·e6)

)

∨
(mine - x ∧ wf(t · e1 · t1 · e5) =⇒ wf(t · e1 · t1 · e5 · e6) =⇒ Q f ·t

f
′′
·(t·e1·t1·e5·e6)

)

Figure 13.9.: The weakest liberal precondition for method filter of class Filter

head, count, retu, and done must be the same as the values of head, c, retu, and
tmpFut respectively.

ρSieve( f , s)
def
= head= s(head)∧ count= s(c)∧ retu= s(retu)∧ done= tmpFut

For the Filter class, we equate the class attributes mine, hd, next, todo, num to

206



13.2. Sieve of Eratosthenes

the internal variables myDiv, head, next, todo and divs, respectively.

ρFilter( f , s)
def
=

mine= s(myDiv)∧ hd= s(head)∧ next= s(next) ∧
todo= s(todo)∧ num= s(divs)

Verifying whether a class invariant holds for each method is established by iden-
tifying the corresponding event sequence transitions every time the class invari-
ant is checked, as demonstrated in the previous section. To verify the method
nextPrime of Sieve, we consider the first three event sequence transition specifi-
cations of Figure 13.5. What needs to be noted from the other transition specifi-
cations is that the value of head is changed only once by the constructor, and thus
remains constant afterwards. The three transition specifications do not change
the value of c and tmpFut, so we only need to check at the completion of the
method, whether the return value and the value of the field retu correspond to
the specification. The return value corresponds to whatever value the Sieve ac-
tor gets from retrieving from the head, and the value of retu is set back to null,
equalling the specification. Thus, the invariant holds for nextPrime. Verifying the
method generate and the constructor is more straightforward.

Verifying Filter implementation for insert, check, retrieve and the construc-
tor is relatively straightforward. Verifying the proof obligation of filter is more
involved, because of multiple branching and await statements. The crux of the
verification effort is the linkage between events after each await statement. Be-
cause the specification SFilter strictly restricts that a filtering process can progress
only at the correct stages and the futures of the insert and check calls are stored
temporarily, a proper relation between, e.g., insert emittance call events e3 and
their reaction e4 is maintained.

Let us consider the case when the first number on the todo list is not divisible by
the prime number held by the Filter actor, and the actor is the first in the chain.
From the weakest liberal precondition of filter, we can assume that the class in-
variant holds at every release point prior to the last one. That is, we proceed under
the assumption that given an execution where the trace t ·e1 · t1 ·e2 ·e3 · t2 ·e4 is in-
troduced by executing the appropriate event sequence transitions. For the method
filter to continue its execution, the insert method must finish executing. That
is, the last transition specification SFilter must be applicable. After executing this
transition, we arrive at a release point and have to check that the predicate ρFilter
holds. Because this transition only changes the value of todo by removing its first
number, and the value of todo in the weakest liberal precondition is updated in the
same way, the predicate is evaluated to true. Other cases are reasoned similarly.

207



Chapter 13. Examples

13.2.3 System Verification

The next task is to verify that the implementation of the sieve of Eratosthenes
satisfies its specification. Using the class specifications SSieve and SFilter, we pro-
ceed with this task in two stages. First we show that the component specification
S[Filter] is satisfied. Using this component specification, we show that the com-
ponent specification S[Sieve] is satisfied. In both instances, we make use of some
properties of the reachable states of the implementation.

Verifying [Filter] component implementation. From the class specification
SFilter, it is clear that integers are added to a Filter actor in the order of the
respective reaction events to check and insert calls are performed. That is, the
todo and divs lists capture the received integers, such that none are lost unless
they are properly retrieved or filtered. To show that S[Filter] is satisfied, we need
to ensure that the Filter actor performs the filtering process one integer at a
time. By using a combination of trace projection and regular expression, we can
formulate the property as done by the following lemma.

Lemma 13.1 (Filter sequentiality):
LetAFilter be the actor automaton specified by SFilter and t ∈ Traces(AFilter).
Then,

t↓filter pr _→ this : filter() ·
(_� this : filter() · _→ this : filter() · _← this : filter / Unit)∗

As defined in Section 4.3, the projection to a method name is a shorthand for
projecting to a set of call and return events where the respective method of these
events are the given method name. The property above states that a trace of a
Filter actor with respect to the filter method is a prefix of a trace that starts
with a single filter emittance call event, followed by a cycle of reaction event,
followed by a call emittance event and a return emittance event, all bearing the
filter method name. Note that filter is an internal method. Therefore, only a
self call can trigger the execution of the method. An underscore _ represents that
we can put any value in it. In this case, we left out the exact values of the futures.
Because the traces of an actor automaton are well-formed, the futures that we
left out from the regular expression are interconnected such that the futures of a
call reaction event and a return emittance event are the future of the preceding
call emittance event. The proof for this property follows from how the states of
AFilter evolve as specified in SFilter.

208



13.2. Sieve of Eratosthenes

Proof (Induction on the length of the corresponding execution):
Let α ∈ execs(AFilter) be an execution such that t = trace(α) and the execution
ends in state s. If this state s is an initial state (i.e., t is an empty trace), the
property is trivially satisfied.

For the inductive case, assume that the trace t satisfies the property. From
the event sequence transition specifications of SSieve, we need to show that the
following holds.
• fStg = 1 if t↓filter is either empty or ends with a filter call emittance or

return emittance event; and
• fStg ∈ {2,3} if t↓filter ends with a filter call reaction event.
If the cycle of the filtering stage holds, the property holds. We proceed by analyz-
ing a transition s

e
−→ s′ for each possible event e.

Case e = 〈u→ this : filter()〉: Either s(fStg) = 1∧¬s(cons) or s(fStg) ∈ {2,3}.
Otherwise, the transition cannot occur. Following the observation on the
last event of the projected trace t↓filter, appending e to this projected
trace does not break the property. In the former case, the class construc-
tor is executed such that by the semantics of class specifications (Defini-
tion 10.4) s′(cons) = true, disallowing the class constructor to be executed
again. In the latter case, executing this transition changes the value of fStg
to 1. Therefore, the observation on the value of fStg holds.

Case e = 〈u← this : filter / Unit〉: This transition can only occur if
s(fStg) = 1 ∧ ¬s(release) ∧ t↓filter ends with u′ → this : filter(). The
actor is not at a release point because it still needs to complete an event
sequence transition. From SFilter and ignoring the input events, the event
preceding e can only be a filter call emittance event. Following this obser-
vation, the property is satisfied.

Case e = 〈u� this : filter()〉: This case occurs when emitOf(e) ∈ s(bufc). From
the induction hypothesis, each filter call is consumed immediately after
its emittance, except for the last one. Therefore, the call buffer in s contains
exactly one such call event. t↓filter · e satisfies the property, and because
s′(fStg = 2), the observation on fStg holds.

Case e = 〈_→_ : new Filter(_,_)〉: The transition changes the value of fStg
to 3, but because it does not add any event to the projected trace, the ob-
servation on fStg still holds.

Case e = 〈_→ s(next) : check(_)〉: Same as above.

Other cases: the value of fStg does not change and t · e↓filter= t↓filter.

209



Chapter 13. Examples

PREREQ ∧∀x ∈ rStates(C1), y ∈ states(C2) : ∃C1,C2,A1,A2, s1, s2 :
C1 = config(C1)(x)∧C2 = config(C2)(y) ∧
(A1, s1, false) ∈ C1 ∧ (A2, s2, true) ∈ C2 ∧ { f }= names(A1)∧ f ∈ names(A2) ∧
s2(known) = {a | f ∈ ancestors(a)∨ (s1(head) 6= null∧ a = s1(head))} ∧
s2(myDiv) = s1(myDiv)∧ s2(head) = s1(head) ∧
(s1(next) = null =⇒

s2(kept) = sift(s1(todo), {s1(myDiv)}) ∧
s2(divs) = select(s1(divs), s1(insIdx)) ∧
s2(sifted) = siftSeq(s1(todo), s1(myDiv)) ∧
s2(outCalls) = s1(outCalls)∧ s2(genFut) = s2(used) = s1(used)) ∧
(s1(next) 6= null =⇒
∃A, s : (A, s, true) ∈ C1 ∧ s1(next) ∈ names(A) ∧

s2(kept) = sift(s1(todo), {s1(myDiv)} ∪ s(kept)) ∧
s2(divs) = select(s1(divs), s1(insIdx)) ∧
s2(sifted) = siftSeq(s1(todo), {s1(myDiv)} · s(sifted)) ∧
s2(outCalls) = (s1(outCalls)∪ s(outCalls))∩ eCore(extEv( f )) ∧
(s1(head) = null =⇒ s2(genFut) = ;) ∧
(s1(head) 6= null =⇒ s2(genFut) = s2(used) = s1(used)∪ s(used)))

=⇒ r(x) = y

Figure 13.10.: A possibility map from C1 representing Filter implementation to
C2 representing S[Filter]

Each event transition extends the trace t such that the property holds. Thus by
the induction argument, the property holds. �

Figure 13.10 defines a possibility map r from the CCA representation of the
Filter implementation to the CCA representing the component specification S[Filter].
The map r from reachable states x of C1 to states y of C2 fulfills the following con-
ditions:

• The prerequisite PREREQ is satisfied.

• The class parameters of the initial Filter actor f in C1 and C2 hold the same
values.

• If f is the last actor in the chain (next = null), the resulting filtering process
represented by the component instance is collected exclusively from the todo
list, the class parameter myDiv and the list of divisors divs of the Filter actor.
The filtering process is represented by the sift function which returns the set

210



13.2. Sieve of Eratosthenes

of sifted integers (or siftSeq function if the order is relevant). This function is
defined as follows:

sift([], result) = result

sift(i · s, result) =

¨

sift(s, result∪ {i}) if ∀ j ∈ result : j - i
sift(s, result) otherwise

The collected list of divisors divs for the component instance that are obtained
through the insert calls is extracted by projecting the list of divs of the Filter

actor to the list of indices insIdx. The projection is performed by the function
select defined below.

select(s, []) = []
select(s, i · s′) = s[i] · select(s, s′)

The remaining state variables outCalls and genFut of the component automaton
A[Filter] are assigned to the value of the variable outCalls held by the actor
automaton AFilter and the internal variable used, respectively.

• If f is not the last actor in the chain (next 6= null), the states of component
automaton A[Filter] are collected from the states of the Filter actor and the
created [Filter] subcomponent.

Now we show that r is a possibility map, by showing that r is indeed a map,
and the two conditions in Definition 12.4 hold.

0. For each reachable state x ∈ rStates(C1), there exists exactly one state where
y ∈ states(C2). This property holds because all state variables of the CompA
specified by S[Filter] are assigned to values stored by the variables of the
representation of the [Filter] implementation. Thus, r is a map.

1. All initial states of C1 are mapped to some initial state of C2, as the class
parameters have to be the same and the set of known actors on the compo-
nent side is fixed to all component actors plus the Filter actor provided as
a class parameter.

2. For each event transition x
e
−→ x ′ executable by C1 in some reachable state

x , we show that the mapping condition specified in Definition 12.4.2 holds.
For simplicity, we assume f is the initial Filter actor, f ′ represents the next
filter in the chain, and head represents the class parameter hd stored by the
AA in C1 representing f and the corresponding CompA in C2. Because none
of the methods return a Filter actor, only the initial actor is the exposed
actor.

211



Chapter 13. Examples

Case e = 〈u� f : check(i)〉: Reacting to this input call means adding the
integer i to the todo list. Because this event is an observable generated
event of the [Filter] component instance, a transition with the same
label must be executable at r(x) and the post-state is r(x ′). From
S[Filter], this transition can be executed at r(x) and accordingly the
post-state is r(x ′).

Case e = 〈u� f : insert(i)〉: Similar to above, except that the concerned
list is divs and the insIdx.

Case e = 〈u← f : mtd / Unit〉 where mtd ∈ {check,insert}: By the se-
mantics of class specifications (Definition 10.4), all events but the first
event in the transition sequence do not change the internal state. As
this is mimicked by event transition specifications of the respective re-
turn events in S[Filter], the property holds for this case.

Case e = 〈u� f : retrieve()〉: Same as above.

Case e = 〈u← f : retrieve / i〉: The return event removes the head of the
list divs and decreases the insIdx list. Because the component spec-
ification allows a choice whether to reduce the divs or sifted lists of
the component specification, we take the transition whenever possible
where the head of the sifted list is returned, unless the first element of

insIdx is 1. Thus, r(x)
C2−→ r(x ′).

Case e = 〈u� f : filter()〉: This event is not part of the observable gen-
erated event of the [Filter] component instance. As the execution of
this event only changes the value of fStg, and this variable does not
play any part in the map, r(x) = r(x ′).

Case e = 〈u→ f : filter()〉: This event is not part of the observable gen-
erated event of the [Filter] component instance. When this event is
executed, the todo list is either already reduced or the first element,
which is divisible by myDiv, is removed from the list. Thus, nothing
changes from the kept and sifted lists and r(x) = r(x ′).

Case e = 〈u← f : filter()〉: Similar to above, except that in no circum-
stances is the todo list changed.

Case e = 〈 f → f ′ : new Filter(i, f ′′)〉: This event is not part of the observ-
able generated event of the [Filter] component instance. When tran-
sition is executed, a new instance of the [Filter] component automa-
ton is added to the configuration of x ′. Nothing changes for the vari-
ables kept and sifted because the integer i is already recognized as a

212



13.2. Sieve of Eratosthenes

divisor. Therefore, r(x) = r(x ′).

Case e = 〈u→ head : insert(i)〉: This event is part of the observable gen-
erated event of the [Filter] component instance. Its execution adds

u to the used set. Thus, r(x)
C2−→ r(x ′).

Case e = 〈u� head : insert / Unit〉: This event is part of the observable
generated event of the [Filter] component instance. Its execution re-
moves the first element for the todo list. Because the removed integer
is sent to head, which is an actor not part of the component instance,
this integer is removed from the list sifted as described in S[Filter].

Thus, r(x)
C2−→ r(x ′).

Case e = 〈u→ f : insert(i)〉: This event is not part of the observable gen-
erated event of the [Filter] component instance. When the transition
is executed, only the values of fStg, used and done are changed. As
they play no role in the map, r(x) = r(x ′).

Case e = 〈u� f : insert / Unit〉: This event is not part of the observable
generated event of the [Filter] component instance. Executing this
transition removes the first element of the todo list. However, the re-
moved element has become part of the subcomponent instance. There-
fore, r(x) = r(x ′).

Case e = 〈u→ next : check(i)〉: This event is not part of the observable
generated event of the [Filter] component instance. When the tran-
sition is executed, only the values of fStg and done are changed. As
they play no role in the map, r(x) = r(x ′).

Case e = 〈u� next : check / Unit〉: Similar to the case for the reaction event
to insert.

As the conditions hold, r is a possibility map and the Filter class implementation
satisfies S[Filter].

If feed the [Filter] component instance correctly, it will generate prime num-
bers, as the following lemma shows.

Lemma 13.2 (Prime number generations):
Assume the following:
• A be a component automaton specified by S[Filter] component instance,
• s0 be an initial state of A such that s0(myDiv) = 2,
• α is an execution of A starting from s0, and
• t ∈ trace(α), such that gatherTodo(t↓check) pr 3·4·5·. . . where gatherTodo

213



Chapter 13. Examples

is a function that extracts the sequence of integer parameters from check

call reaction events, and t↓insert= [].
Then,

gatherRet(t↓retrieve) pr 2 · 3 · 5 · . . .

where gatherRet is a function that extracts the sequence of integer returns
from retrieve return emittance events.

Lemma 13.2 (Continued)

Proof:
Follows from S[Filter] and proof on the Sieve of Eratosthenes algorithm (e.g.,
[LP93]). �

Verifying [Sieve] component implementation. The implementation of the
Sieve class and the [Filter] component have been verified. They become the
basis of verifying the implementation of the [Sieve] component.

First we note several properties about the reachable states. The Sieve class
provides a specific usage context of the [Filter] component, such that the insert

method of the [Filter] component is never called. Thus, divs in [Filter] is always
an empty sequence. The return value of a retrieve call depends solely on the
integers the component instance receives. If we can show that the Sieve actor
creates a [Filter] component instance with the first divisor 2 and supplies it with
an increasing sequence of consecutive integers starting from 3, the component
instance produces a sequence of consecutive prime numbers starting from 2.

Similar to a Filter actor, a Sieve actor forms a recursive call to provide the
[Filter] component instance with the desired sequence. We can reproduce the
result of Lemma 13.1 in terms of generate and check method calls as given below.

Lemma 13.3 (Generator sequentiality):
Let ASieve be the actor automaton specified by SSieve and t ∈ Traces(ASieve).
Then,
t↓{generate,check} pr _→ this : generate() ·
(_� this : generate() · _→ head : check(_) · _← head : check / Unit ·

_� head : check / Unit · _→ this : generate() · _← this : generate / Unit)∗

The proof follows the proof for Lemma 13.1, except that there is only one release
point introduced when generating the integers.

Proof (by induction on the length of the corresponding execution):
Let α ∈ execs(AFilter) be an execution such that t = trace(α) and the execution
ends in state s. If this state s is an initial state (i.e., t is an empty trace), the

214



13.2. Sieve of Eratosthenes

property is trivially satisfied.
For the inductive case, assume that the trace t satisfies the property. From the

event sequence transition specifications of SSieve, we observe that
• tmpFut 6= null, if the trace t↓{generate,check} ends with a reaction to a

generate self-call or a check return from the Filter head actor.
• tmpFut= null otherwise.

We proceed by analyzing each kind of event sequence transition s
e
−→ s′ such that

the Sieve actor is at a release point (s(release) = true).

Case e = 〈this→ head : new Filter(2,null)〉 · 〈u→ this : generate()〉: This is the
only event sequence transition that creates a Filter actor and produces a
generate call without having a precondition. However, representing a class
constructor, this event sequence transition can only occur once. Before this
transition occurs, head is null and tmpFut= null disabling the execution of
other event sequence transitions involving generate and check calls. There-
fore, the projected trace after appending e contains the first generate call
emittance event.

Case e = 〈u� this : generate()〉 · 〈u′→ head.check(c)〉: This event sequence
transition occurs only when head 6= null and the corresponding call event
exists. By the induction hypothesis and the above case analysis, when this
transition is executed, the automaton is a state where the class constructor
has been executed. The property on the trace t holds after appending e.

Case e = 〈u� head.check / Unit〉 · 〈u′→ this : generate()〉·
〈u′′← this : generate / Unit〉:

Before this event sequence transition can occur, the corresponding return
emittance event must appear in the trace. An AA produces only well-formed
traces (Lemma 7.1), so this emittance event must be preceded by a corre-
sponding call event. As the trace t satisfies the property, appending it with
the events e still satisfies the property. The transition causes the actor to for-
get the future u, so the same reaction event cannot be used in a transition.

Other cases: The other event sequence transitions do not involve generate and
check calls and do not change the internal state needed for checking the
preconditions of the three event sequence transitions above.

Each event sequence transition extends the trace t such that the property holds.
Thus by the induction argument, the property holds. �

The lemma above means that the [Filter] component instance created by a
Sieve actor receives all integers in the right order.

215



Chapter 13. Examples

Corollary 13.1:
Let C be a component configuration automaton whose initial actor is of the
class Sieve, and t ∈ Traces(C). Then,

gatherTodo(t↓check) pr 3 · 4 · 5 · . . .

Proof:
Follows from SSieve, S[Filter], the well-formedness of traces of CCA (Corollary 9.2)
and Lemma 13.3. �

The final piece we need to verify the implementation of [Sieve] is a possibility
map from the reachable states of the CCA representing the implementation to the
states of the CCA representing the component specification. The main idea of the
map is to correctly assign the last returned prime number variable lastRet of the
component specification to the corresponding variable on the class specification
SSieve. The class specification SSieve has variables prev and tmpPrev that store
the last returned prime number. Being temporary, we use tmpPrev as lastRet
only if the Sieve actor is in the middle of executing the event sequence transition
that returns the nextPrime call. Otherwise, the value of lastRet always points to
prev. Assuming that the initial Sieve actor has the name sv, the following map r
provides the formal definition of the desired map.

PREREQ ∧∀x ∈ rStates(C1), y ∈ states(C2) : ∃C1,C2,A1,A2, s1, s2 :
C1 = config(C1)(x)∧C2 = config(C2)(y) ∧
(A1, s1, false) ∈ C1 ∧ (A2, s2, true) ∈ C2 ∧ {sv}= names(A1)∧ sv ∈ names(A2) ∧
s2(known) = {a | sv ∈ ancestors(a)} ∧ s2(outCalls) = ; ∧
(¬s1(release)∧ s1(tmpPrev) 6= 0 =⇒ s2(lastRet) = s1(tmpPrev)) ∧
(s1(release)∨ s1(tmpPrev) = 0 =⇒ s2(lastRet) = s1(prev))
=⇒ r(x) = y

We show that r is a possibility map, by showing that r is indeed a map, and the
two conditions in Definition 12.4 hold.

0. For each reachable state x ∈ rStates(C1), there exists exactly one state where
y ∈ states(C2). This follows directly from the definition of r.

1. There is only a single initial state in C1 and C2, as there are no class param-
eters and the initial value of the internal variables are fixed. Because the
values of prev and lastRet on the initial configurations are the same, the
condition Definition 12.4.1 holds.

216



13.2. Sieve of Eratosthenes

2. From Lemma 13.2 and corollary 13.1, we know that for each reachable
state of C1, each retrieve call made by the Sieve actor to the filter chain
returns the next smallest prime number. Now we prove that the condition
Definition 12.4.2 on the transitions hold. That is, if x is a reachable state
of C1 and x

e
−→C1

x ′ is a transition, we need to show if e is an observable

generated event of a component instance of [Sieve], then r(x)
e
−→C2

r(x ′),
otherwise r(x) = r(x ′).

Case e = 〈u� this : nextPrime()〉: This event is an observable generated
event of [Sieve]. When this transition is executed, according to SSieve,
the Sieve actor moves from one release point to another. According to
S[Sieve], executing this does not affect the internal state of the compo-

nent instance. Thus, lastRet stays equal to prev and r(x)
e
−→C2

r(x ′).

Case e = 〈u� this : retrieve / i〉: This event is not an observable gener-
ated event of [Sieve]. When this transition is executed, according to
SSieve, the Sieve actor assigns tmpPrev to the (old) value of prev, and
the value of prev is updated to i. Because the Sieve actor does not
reach a release point, the value of tmpPrev is used in the mapping
instead of prev. Thus, r(x) = r(x ′).

Case e = 〈u← this : nextPrime / i〉: This event is an observable generated
event of [Sieve]. When this transition is executed, the Sieve actor
reaches a release point, and the value of lastRet is mapped to prev = i.
By Corollary 13.1, we know that i is indeed the smallest prime number
larger than tmpPrev. Then, r(x)

e
−→C2

r(x ′).

Other cases: The event is not an observable generated event of [Sieve].
When this event is generated by the filter chain, the mapping is not
affected. When the Sieve actor in x is at a release point, according to
SSieve, the value of tmpPrev becomes assigned to 0. Consequently, the
value of lastRet is mapped to prev, maintaining the condition. When
the Sieve actor in x is not at a release point, then lastRet = 0 due to
SSieve and x being a reachable state. Therefore, the map condition
holds.

Therefore, we have shown that the implementation Listing 13.3 fulfills the speci-
fication S[Sieve].

217



Chapter 13. Examples

13.3 Discussion

The ticker factory example shows that to come up with a possibility map, class
specifications may need to be enriched by extra information that may not play
a part in verifying the implementation. Relaxing the condition of the possibility
map to a normal simulation relation, where a state of the implementation may be
mapped to more than one state of the CCA of the specification, would ease the
description. However, this would require an appropriate definition of the relation
for it to imply trace inclusion.

The sieve example provides a rather elaborate implementation in αABS. The
main source of the complexity is the lack of FIFO guarantee in processing incom-
ing messages. This FIFO guarantee is simulated in the sieve case by forming a
recursive call that only progresses once the call is fully completed. This approach
is also applicable in general to simulate loops. The inclusion of the FIFO guar-
antee or other scheduling mechanisms can be accommodated in the automaton
model by placing a more specific data structure to represent the buffer and apply
appropriate constraints to simulate the desired scheduling mechanism. Without
such a scheduling mechanism, it is difficult to guarantee, for example, that a prime
number that has been returned by the filter chain is actually returned by the sieve.

The sieve example also uncovers some complexity in the class specification tech-
nique. When it is desired that certain internal variables are assigned new values
only after the execution of an event in an event sequence transition other than
the first event, we must introduce temporary internal variables and some usage
convention. Allowing more flexibility to which intermediary state the value of
a certain variable should change requires a stronger connection between the AA
and the class invariants than what is currently provided by Lemma 10.1.

The way the [Filter] component is used by the Sieve class suggests that the
specification of the filter component could actually be simplified. A [Filter] com-
ponent instance never receives an insert call from its user. Therefore, the variable
divs in S[Filter] is not needed when we want to verify the behavior of the [Sieve]
component. However, because components are specified with an open context,
all possible incoming calls must be taken into account. This aspect enables reuse
of the [Filter] component (and its specification) in other situations.

218



CHAPTER 14

Conclusion

The actor model is an established model to develop distributed systems, with
strong research interests being poured to further investigate various aspects re-
lated to the actor model. The goal of this thesis is to provide a compositional
verification technique to reason about implementations of open actor systems
that feature non-shared futures and cooperative multitasking. To reach this goal,
we assembled various modeling and reasoning techniques within an automaton
framework. The following sections recount the contributions in more detail and
describe the outlook.

14.1 Contributions

To achieve the goal, we developed an adaptation of the DIOA model to repre-
sent the behavior of actor systems in an open setting. The model captures the
creation of new actors and the modification of communication capabilities of the
actors based on information it receives from other actors, particularly the actors
they are exposed to. By precisely characterizing the actions actors can perform
and storing information about the exposed actors, we resolved the question of
how to represent an object-based setting using the DIOA model. Furthermore, we
incorporated into the model the concept of non-shared futures, which improves
the decoupling of the process that sends a computation request to an actor and
the process that retrieves the result. This adaptation also becomes the basis for a
specification technique that allows the use of both states and traces.

The automaton framework provides the basis to realize a two-tier verification
method. First the implementation is verified against the class specifications given
as automata. Then, the behavior of the system, also specified as an automaton, is
hierarchically verified by means of the class specifications.

As the basis of the implementation, we presented a class-based actor language
αABS, derived from ABS: a melting pot of design languages, minimal executable
formalisms and implementation languages fit for representing distributed sys-
tems. This language features non-shared futures to communicate results of calls

219



Chapter 14. Conclusion

on actors and cooperative multitasking which allows actors to process multiple
calls concurrently. We established a sound connection between αABS and the
adapted DIOA model through the use of trace-based class invariants. This con-
nection is formed by bringing together
• a trace-based denotational semantics of αABS,
• a sound transformation of αABS into a simple sequential language SEQ with

a weakest liberal precondition semantics, and
• a translation of constructive specifications of SIOA into class invariants.

We introduced a notion of components to allow compositional reasoning based
on the class specifications. The component notion incorporates the idea of an
activator class and actor creation tree such that
• a component can be statically referred to just by the activator class, and
• an instance of the component is captured by grouping together all actors tran-

sitively created by the head actor.
The classes needed to implement a component can be uniquely derived from the
activator class. As a result, the components have a hierarchical structure ideal for
a compositional reasoning.

To verify the component implementations, we lifted the possibility map for I/O
automata to the DIOA setting. This specialized simulation relation provides a
state-based means to conclude if the traces produced by the implementation of a
component are part of the allowed traces of its specification. As a system can also
be represented by some activator class that acts as the initializer for the system, we
have a compositional means to verify whether a system implementation satisfies
desired system properties.

14.2 Outlook

We envision several directions for further research. One direction is to feature
shared futures and loops as part of the automaton model. This model would
allow full support of the ABS language. A possible approach to represent shared
futures is to define a parameterized SIOA that represents their behavior. Because
all futures have the same behavior (resolved once then fetched multiple times), it
is sufficient to define this parameterized SIOA once and have them as invariants
in the verification. Care is needed when dealing with futures that are passed by
the environment to the system as parameters, but the generation of which occurs
in the environment.

Another direction is to explore how interesting properties of AA, CompA, ACA
and CCA can be specified and verified. Logics are good means to serve this pur-

220



14.2. Outlook

pose. A lead on how this may be done is present on a preliminary effort to apply
Lamport’s TLA on the DIOA model [Kap09]. An integration of the temporal logic
could also be fruitful. It is also interesting to see how the DIOA model is affected
by the various bisimulation and simulation relations widely investigated for pro-
cess calculi.

Georgiou et al. [GLMT09] propose an automated implementation of distributed
algorithms from I/O automata. This synthesization idea is also present in ABS,
where ABS programs are automatically translated into popular implementation
languages such as Java, Scala and Haskell. Developing such a synthesizing mech-
anism for AA focuses the verification effort only on the second tier: proving that
a system property holds from the class specifications. Because AA generally are
unimplementable, an important question to be addressed is what kind of AA is
implementable. An open question is also present in the other direction. Given a
class implementation, it is currently unknown whether an AA that represents this
class implementation exists. The way αABS can be transformed to SEQ seems
to indicate that this is indeed the case. From such an extraction, further methods
could be developed to synthesize readable class specifications, replacing the need
to come up with class specifications in the first place. This extracted version can
also act as the baseline for enriching class specifications with information that
may be required for proving that the implementation satisfies component specifi-
cations.

221





Bibliography

[AAKR14] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmet Kara, and Oth-
mane Rezine. “Verification of Dynamic Register Automata”. In:
FSTTCS 2014. To be published. 2014 (cit. on pp. 114, 115).

[Abr93] Samson Abramsky. “Computational Interpretations of Linear Logic”.
In: Theor. Comput. Sci. 111.1&2 (1993), pp. 3–57 (cit. on p. 156).

[AC96] Martín Abadi and Luca Cardelli. A Theory of Objects. Springer,
1996, pp. I–XIII, 1–396 (cit. on p. 62).

[AD12] Wolfgang Ahrendt and Maximilian Dylla. “A System for Composi-
tional Verification of Asynchronous Objects”. In: Sci. Comput. Pro-
gram. 77.12 (2012), pp. 1289–1309 (cit. on pp. 10, 41, 42, 50,
52, 59, 156, 170, 181, 249).

[AD90] Rajeev Alur and David L. Dill. “Automata For Modeling Real-Time
Systems”. In: ICALP. 1990, pp. 322–335 (cit. on p. 116).

[AD99] Thomas Arts and Mads Dam. “Verifying a Distributed Database
Lookup Manager Written in Erlang”. In: World Congress on Formal
Methods. 1999, pp. 682–700 (cit. on pp. 17, 20, 181).

[AGGS09] Erika Ábrahám, Immo Grabe, Andreas Grüner, and Martin Stef-
fen. “Behavioral interface description of an object-oriented lan-
guage with futures and promises”. In: J. Log. Algebr. Program. 78.7
(2009), pp. 491–518 (cit. on pp. 7, 30).

[Agh86] Gul Abdulnabi Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. Cambridge, MA, USA: MIT Press, 1986 (cit.
on pp. 1, 4, 38, 39, 60, 63).

[AH01] Luca de Alfaro and Thomas A. Henzinger. “Interface automata”.
In: ESEC / SIGSOFT FSE. 2001, pp. 109–120 (cit. on pp. 7, 79).

[AL01] Paul Camille Attie and Nancy Ann Lynch. “Dynamic Input/Output
Automata: A Formal Model for Dynamic Systems”. In: CONCUR.
2001, pp. 137–151 (cit. on pp. 7, 75, 114).

223



Bibliography

[AL15] Paul Camille Attie and Nancy Ann Lynch. “Dynamic Input/Output
Automata: A Formal and Compositional Model for Dynamic Sys-
tems”. In: Information and Computation (2015). To appear (cit. on
pp. xvii, 7, 8, 75–77, 79, 82, 86, 87, 114, 143, 180).

[AMST97] Gul Abdulnabi Agha, Ian Alistair Mason, Scott Fraser Smith, and
Carolyn L. Talcott. “A Foundation for Actor Computation”. In: J.
Funct. Program. 7.1 (1997), pp. 1–72 (cit. on pp. 6, 47, 64, 65,
121).

[Apt81] Krzysztof Rafał Apt. “Ten Years of Hoare’s Logic: A Survey - Part
1”. In: ACM Trans. Program. Lang. Syst. 3.4 (1981), pp. 431–483
(cit. on pp. 24, 159, 160).

[Apt84] Krzysztof Rafał Apt. “Ten Years of Hoare’s Logic: A Survey Part II:
Nondeterminism”. In: Theor. Comput. Sci. 28 (1984), pp. 83–109
(cit. on pp. 10, 24, 25, 159, 160).

[Arb04] Farhad Arbab. “Reo: a channel-based coordination model for com-
ponent composition”. In: Mathematical Structures in Computer Sci-
ence 14.3 (2004), pp. 329–366 (cit. on p. 117).

[Arm03] Joe Armstrong. “Making Reliable Distributed Systems in the Pres-
ence of Software Errors”. PhD thesis. Royal Institute of Technology,
Stockholm, Sweden, 2003 (cit. on pp. 1, 38).

[Arm10] Joe Armstrong. “Erlang”. In: Commun. ACM 53 (9 2010), pp. 68–
75 (cit. on pp. 4, 38).

[AT04] Gul Agha and Prasanna Thati. “An Algebraic Theory of Actors and
Its Application to a Simple Object-Based Language”. In: Essays in
Memory of Ole-Johan Dahl. 2004, pp. 26–57 (cit. on pp. 62, 181).

[AØVWW13] Taslim Arif, Bjarte M. Østvold, Karina Villela, Balthasar Weitzel,
and Peter Wong. ABS Tool Platform and Methodology. Deliverable
1.5 of project FP7-231620 (HATS). 2013 (cit. on pp. 5, 29).

[BCHKS13] Benedikt Bollig, Aiswarya Cyriac, Loïc Hélouët, Ahmet Kara, and
Thomas Schwentick. “Dynamic Communicating Automata and
Branching High-Level MSCs”. In: LATA. 2013, pp. 177–189 (cit.
on pp. 114, 115).

[BCJ07] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. “A Com-
plete Guide to the Future”. In: ESOP. 2007, pp. 316–330 (cit. on
pp. 38, 170).

224



Bibliography

[BH10] Benedikt Bollig and Loïc Hélouët. “Realizability of Dynamic MSC
Languages”. In: CSR 2010, Kazan, Russia. 2010, pp. 48–59 (cit. on
pp. 114, 115).

[BH77] Henry Givens Baker Jr. and Carl Hewitt. “The Incremental Garbage
Collection of Processes”. In: SIGART Bull. (64 1977), pp. 55–59
(cit. on pp. 5, 18, 30).

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verifica-
tion of object-oriented software: The KeY approach. Berlin, Heidel-
berg: Springer, 2007 (cit. on p. 170).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. MIT Press, 2008 (cit. on pp. 2, 21, 78, 137).

[BKWZ13] Kshitij Bansal, Eric Koskinen, Thomas Wies, and Damien Zufferey.
“Structural Counter Abstraction”. In: TACAS. 2013, pp. 62–77 (cit.
on p. 182).

[Boe02] Frank S. de Boer. “A Hoare Logic for Dynamic Networks of Asyn-
chronously Communicating Deterministic Processes”. In: Theor.
Comput. Sci. 274.1–2 (2002), pp. 3–41 (cit. on p. 181).

[Bro02] Stephen D. Brookes. “Traces, Pomsets, Fairness and Full Abstrac-
tion for Communicating Processes”. In: CONCUR. 2002, pp. 466–
482 (cit. on p. 41).

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rut-
ten. “Modeling component connectors in Reo by constraint au-
tomata”. In: Sci. Comput. Program. 61.2 (2006), pp. 75–113 (cit.
on p. 117).

[BVBF13] Abdeldjalil Boudjadar, Frits Willem Vaandrager, Jean-Paul Bode-
veix, and Mamoun Filali. “Extending UPPAAL for the Modeling
and Verification of Dynamic Real-Time Systems”. In: FSEN. 2013,
pp. 111–132 (cit. on pp. 114, 116).

[BZ83] Daniel Brand and Pitro Zafiropulo. “On Communicating Finite-
State Machines”. In: J. ACM 30.2 (1983), pp. 323–342 (cit. on
pp. 7, 114, 115).

[Büc60] Julius Richard Büchi. “On a decision method in restricted second
order arithmetic”. In: International Congress on Logic, Methodoly
and philosophy of Science. Stanford University Press, 1960, pp. 1–
11 (cit. on p. 182).

225



Bibliography

[CG97] Luca Cardelli and Andrew D. Gordon. “Mobile Ambients”. In: Electr.
Notes Theor. Comput. Sci. 10 (1997), pp. 198–201 (cit. on p. 6).

[CH05] Denis Caromel and Ludovic Henrio. A theory of distributed objects
- asynchrony, mobility, groups, components. Springer, 2005, pp. I–
XXXII, 1–346 (cit. on p. 2).

[CHS04] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. “Asyn-
chronous and deterministic objects”. In: POPL. 2004, pp. 123–134
(cit. on p. 62).

[CHS09] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. “Asyn-
chronous sequential processes”. In: Inf. Comput. 207.4 (2009),
pp. 459–495 (cit. on pp. 39, 62).

[Cla+07] Manuel Clavel, Francisco Duràn, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott, eds. All
About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic. Vol. 4350. LNCS.
Springer, 2007 (cit. on p. 5).

[Cli81] William Douglas Clinger. “Foundations of Actor Semantics”. PhD
thesis. Cambridge, MA: Massachusetts Institute of Technology, 1981
(cit. on pp. 41, 61).

[CNW13] Dave Clarke, James Noble, and Tobias Wrigstad, eds. Aliasing in
Object-Oriented Programming. Types, Analysis and Verification. Vol.
7850. LNCS. Springer, 2013 (cit. on pp. 64, 72).

[CY83] Bo-Shoe Chen and Raymond T. Yeh. “Formal Specification and Ver-
ification of Distributed Systems”. In: IEEE Trans. Software Eng. 9.6
(1983), pp. 710–722 (cit. on p. 2).

[DCDMY09] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris
Mostrous, and Nobuko Yoshida. “Objects and Session Types”. In:
Inf. Comput. 207.5 (2009), pp. 595–641 (cit. on p. 156).

[DDJO12] Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf
Owe. “Observable Behavior of Distributed Systems: Component
Reasoning for Concurrent Objects”. In: J. Log. Algebr. Program.
81.3 (2012), pp. 227–256 (cit. on pp. 10, 11, 22, 24, 26, 43, 59,
95, 154, 155, 159, 160, 170, 172, 181).

226



Bibliography

[DDO12a] Crystal Chang Din, Johan Dovland, and Olaf Owe. “An Approach
to Compositional Reasoning about Concurrent Objects and Fu-
tures”. In: Research Report 415 (2012) (cit. on pp. 10, 11, 24, 26,
170).

[DDO12b] Crystal Chang Din, Johan Dovland, and Olaf Owe. “Compositional
Reasoning about Shared Futures”. In: SEFM. 2012, pp. 94–108
(cit. on p. 170).

[DFG97] Mads Dam, Lars-Åke Fredlund, and Dilian Gurov. “Toward Para-
metric Verification of Open Distributed Systems”. In: COMPOS.
1997, pp. 150–185 (cit. on pp. 156, 181).

[DG94] John Darlington and Yike Guo. “Formalising Actors in Linear Logic”.
In: OOIS. 1994, pp. 37–53 (cit. on p. 156).

[Dij75] Edsger Wybe Dijkstra. “Guarded Commands, Nondeterminacy and
Formal Derivation of Programs”. In: Commun. ACM 18.8 (1975),
pp. 453–457 (cit. on pp. 10, 24).

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. 1st. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1976 (cit. on pp. 159,
164).

[DJO05] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. “Verification
of Concurrent Objects with Asynchronous Method Calls”. In: Sw-
STE. 2005, pp. 141–150 (cit. on pp. 10, 11, 24, 154, 160).

[DJO08] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. “Observable
Behavior of Dynamic Systems: Component Reasoning for Concur-
rent Objects”. In: ENTCS 203.3 (2008), pp. 19–34 (cit. on pp. 59,
154).

[DKOne] Emanuele D’Osualdo, Jonathan Kochems, and Chih-Hao Luke Ong.
“Automatic Verification of Erlang-Style Concurrency”. In: SAS.
2013, pp. 454–476 (cit. on pp. 72, 143, 182).

[DN66] Ole-Johan Dahl and Kristen Nygaard. “SIMULA - an ALGOL-based
simulation language”. In: Commun. ACM 9.9 (1966), pp. 671–678
(cit. on p. 4).

[DOB14] Crystal Chang Din, Olaf Owe, and Richard Bubel. “Runtime As-
sertion Checking and Theorem Proving for Concurrent and Dis-
tributed Systems”. In: MODELSWARD. 2014, pp. 480–487 (cit. on
p. 170).

227



Bibliography

[Dua99] Carlos Henrique Cabral Duarte. “Proof-Theoretic Foundations for
the Design of Actor Systems”. In: Mathematical Structures in Com-
puter Science 9.3 (1999), pp. 227–252 (cit. on pp. 156, 181).

[ECM11] European Computer Manufacturers Association. Standard ECMA-
262: ECMAScript Language Specification. Tech. rep. Geneva: ECMA
International, 2011 (cit. on p. 4).

[EH86] E. Allen Emerson and Joseph Y. Halpern. ““Sometimes” and “Not
Never” Revisited: On Branching Versus Linear Time Temporal Logic”.
In: J. ACM 33.1 (Jan. 1986), pp. 151–178 (cit. on p. 156).

[Fin90] Alain Finkel. “Reduction and covering of infinite reachability trees”.
In: Inf. Comput. 89.2 (1990), pp. 144–179 (cit. on p. 182).

[Fis+11] Jasmin Fisher, Thomas A. Henzinger, Dejan Nickovic, Nir Piter-
man, Anmol V. Singh, and Moshe Y. Vardi. “Dynamic Reactive Mod-
ules”. In: CONCUR. 2011, pp. 404–418 (cit. on pp. 114, 116).

[FL05] Marco Faella and Axel Legay. “Some Models and Tools for Open
Systems”. In: Foundations of Interface Technologies. 2005 (cit. on
pp. 7, 75).

[FS01] Alain Finkel and Phillipe Schnoebelen. “Well-structured transition
systems everywhere!” In: Theor. Comput. Sci. 256.1-2 (2001), pp. 63–
92 (cit. on p. 182).

[FS07] Lars-Åke Fredlund and Hans Svensson. “McErlang: a model checker
for a distributed functional programming language”. In: SIGPLAN
Not. 42.9 (Oct. 2007), pp. 125–136 (cit. on p. 182).

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995 (cit. on pp. 5, 31, 115).

[GJJ96] James Gosling, William N. Joy, and Guy L. Steele Jr. The Java Lan-
guage Specification. Addison-Wesley, 1996 (cit. on p. 5).

[GLMT09] Chryssis Georgiou, Nancy A. Lynch, Panayiotis Mavrommatis, and
Joshua A. Tauber. “Automated implementation of complex dis-
tributed algorithms specified in the IOA language”. In: STTT 11.2
(2009), pp. 153–171 (cit. on pp. 143, 221).

[Gre75] Irene Greif. “Semantics of Communicating Parallel Processes”. PhD
thesis. Cambridge, MA, USA: Massachusetts Institute of Technol-
ogy, 1975 (cit. on p. 61).

228



Bibliography

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Com-
puter Science and Computational Biology. Cambridge University
Press, 1997 (cit. on p. 13).

[GZ99] Mauro Gaspari and Gianluigi Zavattaro. “An Algebra of Actors”.
In: FMOODS. 1999 (cit. on pp. 62, 181).

[Hal85] Robert H. Halstead Jr. “Multilisp: A Language for Concurrent Sym-
bolic Computation”. In: ACM Trans. Program. Lang. Syst. 7.4 (1985),
pp. 501–538 (cit. on pp. 5, 18, 30, 39).

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Universal Mod-
ular ACTOR Formalism for Artificial Intelligence”. In: IJCAI. 1973,
pp. 235–245 (cit. on pp. 1, 4, 38, 39).

[Hen88] Matthew Hennessy. Algebraic theory of processes. MIT Press series
in the foundations of computing. MIT Press, 1988, pp. I–VI, 1–270
(cit. on p. 181).

[HO09] Philipp Haller and Martin Odersky. “Scala Actors: Unifying thread-
based and event-based programming”. In: Theor. Comput. Sci. 410.2-
3 (2009), pp. 202–220 (cit. on pp. 5, 30).

[Hoa78] Charles Antony Richard Hoare. “Communicating Sequential Pro-
cesses”. In: Commun. ACM 21.8 (Aug. 1978), pp. 666–677 (cit. on
pp. 5, 6, 62).

[HP85] David Harel and Amir Pnueli. “Logics and Models of Concurrent
Systems”. In: ed. by Krzysztof Rafał Apt. New York, NY, USA:
Springer, 1985. Chap. On the Development of Reactive Systems,
pp. 477–498 (cit. on p. 65).

[HT91] Kohei Honda and Mario Tokoro. “An Object Calculus for Asyn-
chronous Communication”. In: ECOOP. 1991, pp. 133–147 (cit.
on p. 62).

[HTK00] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. Cam-
bridge, MA, USA: MIT Press, 2000 (cit. on pp. 155, 170).

[Häh+10] Reiner Hähnle, Einar Broch Johnsen, Bjarte M. Østvold, Jan Schäfer,
Martin Steffen, and Arild B. Torjusen. Report on the Core ABS Lan-
guage and Methodology: Part A. Part of Deliverable 1.1 of project
FP7-231620 (HATS), available at http://www.hats-project.
eu. 2010 (cit. on pp. 31, 35, 243).

229

http://www.hats-project.eu
http://www.hats-project.eu


Bibliography

[Häh13] Reiner Hähnle. “The Abstract Behavioral Specification Language:
A Tutorial Introduction”. In: International School on Formal Mod-
els for Components and Objects: Post Proceedings. Vol. 7688. LNCS.
Springer, 2013, pp. 1–37 (cit. on pp. 31, 40).

[IT11] International Telecommunication Union – Telecommunication Stan-
dardization. Recommendation Z.120: Message Sequence Chart (MSC).
Tech. rep. Geneva: ISO/IEC, 2011 (cit. on p. 115).

[IT95] International Telecommunication Union – Telecommunication Stan-
dardization. Open Distributed Processing – Reference Models parts
1–4. Tech. rep. Geneva: ISO/IEC, 1995 (cit. on pp. 1, 4, 29).

[JC10] Mohammad Mahdi Jaghoori and Tom Chothia. “Timed Automata
Semantics for Analyzing Creol”. In: FOCLASA. 2010, pp. 108–122
(cit. on p. 117).

[JHSSS11] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte,
and Martin Steffen. “ABS: A Core Language for Abstract Behav-
ioral Specification”. In: FMCO 2010. LNCS. Graz, Austria: Springer,
2011, pp. 142–164 (cit. on pp. 4, 5, 18, 29, 31, 35, 38, 170).

[JO04] Einar Broch Johnsen and Olaf Owe. “Object-Oriented Specifica-
tion and Open Distributed Systems”. In: Essays in Memory of Ole-
Johan Dahl. 2004, pp. 137–164 (cit. on p. 59).

[Jon03] Simon Peyton Jones. Haskell 98 language and libraries : the revised
report. Cambridge U.K.; New York: Cambridge University Press,
2003 (cit. on p. 5).

[JOY06] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. “Creol: A
type-safe object-oriented model for distributed concurrent systems”.
In: Theor. Comput. Sci. 365.1-2 (2006), pp. 23–66 (cit. on pp. 4,
29, 38, 39, 117, 170).

[JR05] Alan Jeffrey and Julian Rathke. “Java Jr: Fully Abstract Trace Se-
mantics for a Core Java Language”. In: ESOP. 2005, pp. 423–438
(cit. on p. 7).

[Kap09] Tatjana Kapus. “Using Mobile TLA as a Logic for Dynamic I/O Au-
tomata”. In: IEICE Transactions on Information and Systems E92.D.8
(2009), pp. 1515–1522 (cit. on p. 221).

[KBR05] Marcel Kyas, Frank S. de Boer, and Willem P. de Roever. “A Compo-
sitional Trace Logic for Behavioural Interface Specifications”. In:
Nord. J. Comput. 12.2 (2005), pp. 116–132 (cit. on p. 59).

230



Bibliography

[KF94] Michael Kaminski and Nissim Francez. “Finite-Memory Automata”.
In: Theor. Comput. Sci. 134.2 (1994), pp. 329–363 (cit. on pp. 114,
115).

[KGV13] Christian Krause, Holger Giese, and Erik Peter de Vink. “Composi-
tional and behavior-preserving reconfiguration of component con-
nectors in Reo”. In: J. Vis. Lang. Comput. 24.3 (2013), pp. 153–
168 (cit. on p. 117).

[KPH12] Ilham W. Kurnia and Arnd Poetzsch-Heffter. “A Relational Trace
Logic for Simple Hierarchical Actor-Based Component Systems”.
In: AGERE! ’12. Tucson, Arizona, USA: ACM, 2012, pp. 47–58 (cit.
on pp. 180, 253).

[KPH13] Ilham W. Kurnia and Arnd Poetzsch-Heffter. “Verification of Open
Concurrent Object Systems”. In: FMCO 2012. Vol. 7866. LNCS.
Springer, 2013, pp. 83–118 (cit. on pp. 5, 12, 72, 253).

[KPH15] Ilham W. Kurnia and Arnd Poetzsch-Heffter. A Dynamic Automa-
ton Model for Open Actor-Based Systems. Tech. rep. University of
Kaiserslautern, 2015 (cit. on pp. 12, 254).

[KPHW10] Ilham W. Kurnia, Arnd Poetzsch-Heffter, and Yannick Welsch. “State-
based Object Models Are More Abstract Than Trace-based Mod-
els: Towards a Unified Specification Framework”. In: Technical Re-
port No. 2010-13. 2010-13. Karlsruhe, 2010, pp. 268–282 (cit. on
p. 254).

[Kro85] Stein Krogdahl. “Multiple Inheritance in SIMULA-like Languages”.
In: BIT 25.2 (1985), pp. 318–326 (cit. on p. 40).

[Lam83a] Leslie Lamport. “Specifying Concurrent Program Modules”. In: ACM
Trans. Program. Lang. Syst. 5.2 (1983), pp. 190–222 (cit. on pp. 20,
147, 155).

[Lam83b] Leslie Lamport. “What Good is Temporal Logic?” In: IFIP Congress.
1983, pp. 657–668 (cit. on p. 6).

[LBR06] Gary Todd Leavens, Albert Louis Baker, and Clyde Ruby. “Pre-
liminary Design of JML: A Behavioral Interface Specification Lan-
guage for Java”. In: ACM SIGSOFT Software Engineering Notes 31.3
(2006), pp. 1–38 (cit. on p. 29).

[LC06] Gary Todd Leavens and Yoonsik Cheon. Design by Contract with
JML. 2006 (cit. on p. 5).

231



Bibliography

[Leo90] John Leo. “Dynamic Process Creation in a Static Model”. MA the-
sis. MIT, 1990 (cit. on p. 7).

[Lie87] Henry Lieberman. “Object-oriented Concurrent Programming”. In:
ed. by Akinori Yonezawa and Mario Tokoro. Cambridge, MA, USA:
MIT Press, 1987. Chap. Concurrent Object-oriented Programming
in Act 1, pp. 9–36 (cit. on pp. 4, 38).

[LMWF93] Nancy Ann Lynch, Michael Merritt, William E. Weihl, and Alan
Fekete. Atomic Transactions. Morgan Kaufmann, 1993 (cit. on p. 7).

[LP93] François Leclerc and Christine Paulin-Mohring. “Programming with
Streams in Coq - A Case Study: the Sieve of Eratosthenes”. In:
TYPES. 1993, pp. 191–212 (cit. on p. 214).

[LS88] Barbara Liskov and Liuba Shrira. “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Systems”.
In: PLDI. 1988, pp. 260–267 (cit. on pp. 5, 18, 30, 39).

[LS95] Robert Gregory Lavender and Douglas Craig Schmidt. “Active Ob-
ject – An Object Behavioral Pattern for Concurrent Programming”.
In: Pattern Languages of Programs. 1995 (cit. on p. 40).

[LT87] Nancy Ann Lynch and Mark Rogers Tuttle. “Hierarchical Correct-
ness Proofs for Distributed Algorithms”. In: PODC. 1987, pp. 137–
151 (cit. on pp. 7, 10, 27, 75, 171, 174).

[LV95] Nancy A. Lynch and Frits W. Vaandrager. “Forward and Backward
Simulations: I. Untimed Systems”. In: Inf. Comput. 121.2 (1995),
pp. 214–233 (cit. on p. 149).

[Lyn96] Nancy Ann Lynch. Distributed Algorithms. Morgan Kaufmann, 1996
(cit. on pp. 2, 75, 78, 95, 103, 125, 143).

[Man01] Panagiotis Manolios. “Mechanical Verification of Reactive Systems”.
PhD thesis. University of Texas at Austin, 2001 (cit. on p. 174).

[Maz86] Antoni W. Mazurkiewicz. “Trace Theory”. In: Petri Nets. 1986, pp. 279–
324 (cit. on p. 60).

[MC81] Jayadev Misra and Kanianthra Mani Chandy. “Proofs of Networks
of Processes”. In: IEEE Trans. Software Eng. 7.4 (1981), pp. 417–
426 (cit. on pp. 3, 159).

[Mey08] Roland Meyer. “On Boundedness in Depth in the π-Calculus”. In:
IFIP TCS. 2008, pp. 477–489 (cit. on p. 182).

232



Bibliography

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice-
Hall, 1997 (cit. on p. 5).

[Mic99] Microsoft. Component Object Model. Jan. 1999 (cit. on pp. 5, 71).

[Mil82] Robin Milner. A Calculus of Communicating Systems. Secaucus, NJ,
USA: Springer, 1982 (cit. on p. 62).

[Mil99] Robin Milner. Communicating and Mobile Systems – Theπ-Calculus.
Cambridge University Press, 1999, pp. I–XII, 1–161 (cit. on pp. 5,
6, 29, 62).

[Mor87] Joseph M. Morris. “Varieties of Weakest Liberal Preconditions”. In:
Inf. Process. Lett. 25.3 (1987), pp. 207–210 (cit. on p. 165).

[NS94] Tobias Nipkow and Konrad Slind. “I/O Automata in Isabelle/HOL”.
In: TYPES. 1994, pp. 101–119 (cit. on pp. xviii, 10, 27, 171, 174,
175).

[NS95] Rocco De Nicola and Roberto Segala. “A process algebraic view
of input/output automata”. In: TCS 138.2 (1995). Meeting on the
mathematical foundation of programing semantics, pp. 391–423
(cit. on p. 154).

[OA88] Ernst-Rüdiger Olderog and Krzysztof Rafał Apt. “Fairness in Paral-
lel programs: the Transformational Approach”. In: ACM TOPLAS
10.3 (July 1988), pp. 420–455 (cit. on pp. 10, 159).

[OG76] Susan S. Owicki and David Gries. “An Axiomatic Proof Technique
for Parallel Programs I”. In: Acta Inf. 6 (1976), pp. 319–340 (cit.
on p. 161).

[OMG06] Object Management Group. CORBA Component Model v4.0. 2006
(cit. on p. 71).

[Osg] OSGi Core Release 5. http://www.osgi.org. The OSGi Alliance,
2012 (cit. on pp. 5, 64, 71).

[OSV11] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala:
A Comprehensive Step-by-Step Guide, 2nd Edition. 2nd. USA: Ar-
tima Incorporation, 2011 (cit. on p. 1).

[Par76] David Michael Ritchie Park. “Finiteness is Mu-Ineffable”. In: Theor.
Comput. Sci. 3.2 (1976), pp. 173–181 (cit. on p. 156).

[Par81] David Michael Ritchie Park. “Concurrency and Automata on Infi-
nite Sequences”. In: Theor. Comput. Sci. 1981, pp. 167–183 (cit.
on pp. 10, 137, 171).

233

http://www.osgi.org


Bibliography

[Pet62] Carl Adam Petri. “Kommunikation mit Automaten”. ger. PhD the-
sis. Universität Hamburg, 1962 (cit. on p. 6).

[PHFKW12] Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and Yan-
nick Welsch. “Model-Based Compatibility Checking of System Mod-
ifications”. In: ISoLA 2012. LNCS. Springer, 2012, pp. 97–111 (cit.
on p. 253).

[PHKF11] Arnd Poetzsch-Heffter, Ilham W. Kurnia, and Christoph Feller. “Ver-
ification of Actor Systems Needs Specification Techniques for Strong
Causality and Hierarchical Reasoning”. In: FoVeOOS. 2011-26. Tech-
nische Universität Karlsruhe, 2011, pp. 289–305 (cit. on p. 254).

[Pie02] Benjamin Crawford Pierce. Types and programming languages. MIT
Press, 2002 (cit. on p. 4).

[Pla13] David Alan Plaisted. “Source-to-Source Translation and Software
Engineering”. In: JSEA Special Issue on Software Dependability 6.4a
(2013), pp. 30–40 (cit. on pp. 5, 29).

[Plo77] Gordon David Plotkin. “LCF Considered as a Programming Lan-
guage”. In: Theor. Comput. Sci. 5.3 (1977), pp. 223–255 (cit. on
pp. 7, 41).

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: FOCS. 1977,
pp. 46–57 (cit. on pp. 6, 156).

[RD12] Uday S. Reddy and Brian Patrick Dunphy. “An Automata-Theoretic
Model of Idealized Algol - (Extended Abstract)”. In: ICALP (2).
2012, pp. 337–350 (cit. on p. 117).

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Model-
ing Language Reference Manual, The (2nd Edition). Pearson Higher
Education, 2004 (cit. on pp. 5, 29).

[RK96] Bernhard Rumpe and Cornel Klein. “Automata Describing Object
Behavior”. In: Specification of Behavioral Semantics in Object-Oriented
Information Modeling. Kluwer Academic Publishers, 1996, pp. 265–
286 (cit. on p. 117).

[Roe+01] Willem P. de Roever, Frank S. de Boer, Ulrich Hannemann, Jozef
Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concur-
rency Verification: Introduction to Compositional and Noncomposi-
tional Methods. Vol. 54. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2001 (cit. on p. 2).

234



Bibliography

[SBM05] Marjan Sirjani, Frank S. de Boer, and Ali Movaghar-Rahimabadi.
“Modular Verification of a Component-Based Actor Language”. In:
J. UCS 11.10 (2005), pp. 1695–1717 (cit. on p. 182).

[Sch01] Susanne Schacht. “Formal Reasoning about Actor Programs Using
Temporal Logic”. In: Concurrent Object-Oriented Programming and
Petri Nets. 2001, pp. 445–460 (cit. on pp. 156, 181).

[Sch10] Ina Schaefer. “Variability Modelling for Model-Driven Development
of Software Product Lines”. In: VAMOS. 2010, pp. 85–92 (cit. on
p. 40).

[SJ11] Marjan Sirjani and Mohammad Mahdi Jaghoori. “Ten Years of An-
alyzing Actors: Rebeca Experience”. In: Formal Modeling: Actors,
Open Systems, Biological Systems. 2011, pp. 20–56 (cit. on pp. 4,
29, 38, 39, 117, 182).

[SJBA06] Marjan Sirjani, Mohammad Mahdi Jaghoori, Christel Baier, and
Farhad Arbab. “Compositional Semantics of an Actor-Based Lan-
guage Using Constraint Automata”. In: COORDINATION. 2006,
pp. 281–297 (cit. on p. 117).

[SPH10] Jan Schäfer and Arnd Poetzsch-Heffter. “JCoBox: Generalizing Ac-
tive Objects to Concurrent Components”. In: ECOOP. LNCS. Springer,
2010, pp. 275–299 (cit. on pp. 38, 40, 72).

[ST02] Scott Fraser Smith and Carolyn L. Talcott. “Specification Diagrams
for Actor Systems”. In: Higher-Order and Symbolic Computation
15.4 (2002), pp. 301–348 (cit. on pp. 155, 182, 183).

[Ste06] Martin Steffen. “Object-Connectivity and Observability for Class-
Based, Object-Oriented Languages”. 281 pages. Habilitation the-
sis. Christian-Albrechts-Universität zu Kiel, July 2006 (cit. on p. 69).

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus – A Theory of
Mobile Processes. Cambridge University Press, 2001, pp. I–XII, 1–
580 (cit. on p. 62).

[Szy98] Clemens Alden Szyperski. Component Software – Beyond Object-
Oriented Programming. Addison-Wesley-Longman, 1998, pp. I–XVIII,
1–411 (cit. on pp. 4, 63).

[Tal96] Carolyn L. Talcott. “An Actor Rewriting Theory”. In: Electr. Notes
Theor. Comput. Sci. 4 (1996), pp. 361–384 (cit. on p. 60).

235



Bibliography

[Tal98] Carolyn L. Talcott. “Composable Semantic Models for Actor The-
ories”. In: Higher-Order and Symbolic Computation 11.3 (1998),
pp. 281–343 (cit. on pp. 60, 181).

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. “An Interaction-
Based Language and its Typing System”. In: PARLE. 1994, pp. 398–
413 (cit. on p. 156).

[TTA04] Prasanna Thati, Carolyn L. Talcott, and Gul Abdulnabi Agha. “Tech-
niques for Executing and Reasoning about Specification Diagrams”.
In: AMAST. 2004, pp. 521–536 (cit. on p. 181).

[US87] David Ungar and Randall B. Smith. “Self: The Power of Simplic-
ity”. In: OOPSLA. 1987, pp. 227–242 (cit. on p. 4).

[VA01] Carlos Arturo Varela and Gul Abdulnabi Agha. “Programming Dy-
namically Reconfigurable Open Systems with SALSA”. In: SIG-
PLAN Notices 36.12 (2001), pp. 20–34 (cit. on pp. 4, 38).

[Vas92] Vasco Thudichum Vasconcelos. “Trace Semantics for Concurrent
Objects”. MA thesis. Keio University, Mar. 1992 (cit. on p. 60).

[VT91] Vasco Thudichum Vasconcelos and Mario Tokoro. “Traces Seman-
tics for Actor Systems”. In: Object-Based Concurrent Computing.
1991, pp. 141–162 (cit. on pp. 59, 60).

[WGS87] Jennifer Widom, David Gries, and Fred B. Schneider. “Complete-
ness and Incompleteness of Trace-Based Network Proof Systems”.
In: POPL. 1987, pp. 27–38 (cit. on p. 159).

[WP14] Yannick Welsch and Arnd Poetzsch-Heffter. “A fully abstract trace-
based semantics for reasoning about backward compatibility of
class libraries”. In: Sci. Comput. Program. 92 (2014), pp. 129–161
(cit. on p. 7).

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. “Object-
Oriented Concurrent Programming in ABCL/1”. In: OOPSLA. 1986,
pp. 258–268 (cit. on pp. 4, 38).

[ZWH12] Damien Zufferey, Thomas Wies, and Thomas A. Henzinger. “Ideal
Abstractions for Well-Structured Transition Systems”. In: VMCAI.
2012, pp. 445–460 (cit. on p. 182).

[Zwi89] Job Zwiers. Compositionality, Concurrency and Partial Correctness
- Proof Theories for Networks of Processes, and Their Relationship.
Vol. 321. LNCS. Springer, 1989 (cit. on pp. 3, 50, 53).

236



Appendix

237





APPENDIX A

Glossary

This appendix provides a summary of abbreviations, symbols, predicates, opera-
tors, and functions used throughout the report in Tables A.1 to A.3.

Table A.1.: List of abbreviations

Abbreviation Description
AA Actor Automata
ABS Abstract Behavioral Language
ACA Actor Configuration Automata
CA Configuration Automata
CCA Component Configuration Automata
CompA Component Automata
DIOA Dynamic I/O Automata
SIOA Signature I/O Automata

Table A.2.: List of symbols

Symbol Description
Actors
a, b ∈ A The set of actor names
D The set of data values (including booleans, integers and

strings)
u ∈ U The set of futures
C ∈ CL The set of class names
m ∈M The set of messages
e ∈ E The set of events
EC The set of event cores
Automaton Model
A A signature automaton (of identifier) A
C A configuration automaton

239



Appendix A. Glossary

l An action (i.e., the transition label)
s A typical state symbol
C A configuration
A A set of SIOA
S A mapping of an SIOA to its current states
B A mapping of a set of SIOA to its component status
E A set of exposed actors
U A set of futures the environment generated to call methods of

actors in the system
α An execution (fragment)
t A trace
v ∈ V The set of variables

Table A.3.: List of predicates, operators and functions

Functions Description
Data structures
s1 · s2 or s1s2 Returns the concatenation of sequences s1 and s2
Pref(s) Returns the set of prefix of sequence s
s1 pr s2 Checks if s1 is a prefix of s2
s↓X Returns the longest subsequence of the sequence s contain-

ing elements in X
s1 ⊆ s2 Checks if sequence s1 is contained within sequence s2
e <s e′ Optimistically checks if an element e occurs before e′ in

sequence s
|s| Returns the length of sequence s
s[n] Returns the n-th element of sequence s
e∗ A regular expression that represents a finite sequence of

element e’s.
S ∪ S′ Returns the union of sets S and S′

S − S′ Returns the largest subset of S not contained in S′

2S Returns the power set of set S
m[x 7→ y] Returns the insertion or update of the key x with value y

to map m
m1 ∪m2 Returns the joined map of maps m1 and m2
diffOn(m1, m2, X ) Checks if maps m1 and m2 differ only in the mapping of

the keys in X

240



Actors
acq(e) Returns all actor names appearing in event e
ancestors(a) Returns the ancestors of actor a
caller(e) Returns the caller of event e, equivalent to gen(fut(e))
creator(a) Returns the creator of actor a
class(a) Returns the class of actor a
class(e) Returns the class used in a creation event e
descendants(a) Returns the descendants of actor a
dirCreate(C) Returns the set of classes whose actors can be directly cre-

ated by an actor of class C
emitOf(e) Returns the emittance event
eCore(e) Returns the event core of event e
exposed(t, A) Returns the set of actors exposed in t to the set of actors A
fut(e) Returns the future of event e
gen(u) Returns the generator of future u
Gen(a) Returns the set of events generated by actor a
isCreate(e) Checks if e is a creation event
isEmit(e) Checks if e is an emittance event
isCall(e) Checks if e is a method call event
isRet(e) Checks if e is a method return event
isReact(e) Checks if e is a reaction event
msg(e) Returns the message of event e
remCr(t) Removes the task identifier k from extended events k : a→

a′ : new C(p) present in trace t
target(e) Returns the target actor of event e
Automaton Framework
auts(C) Returns the identifiers of the SIOA contained in a configu-

ration
names(A) Returns the names of actors represented by the SIOA
in(A)(s) Input signature of A in state s
out(A)(s) Output signature of A in state s
int(A)(s) Internal signature of A in state s
A1 ‖A2 Returns the actor-based parallel composition of SIOA A1,

A2
execs(A) Returns the set of executions of an automaton A
traces(A) Returns the set of traces of an automaton A
xtraces(A) Returns the set of external traces of an automaton A

241





APPENDIX B

Operational Semantics of αABS

In this appendix, we provide the complete operational semantics of αABS. This
semantics is derived from the operational semantics of ABS [Häh+10].

The operational semantics of αABS is defined by reduction rules on configura-
tions. For convenience, we shortly repeat the possible forms of a configuration.

K ::= a[C ,σ, l] actor a
| u[a,σ, l, s] task with future u
| u[a,σ, l, v] completed task with future u
| K ‖ K composition .

We abuse the notation for tasks slightly by allowing u to be a fixed value cons to
represent the constructor that is invoked when an actor is created.

The following two statement constructs is added to describe the reduction rules.

s ::= . . . | grab | release

Figures B.1 to B.3 describe the reduction rules that are applicable to a configu-
ration. The rules in Figure B.1 focus on the sequential composition aspect of the
execution of an actor, while the rules in Figures B.2 and B.3 focus on the actor
creation and the concurrent aspects. Rule R-RETURN shows how returns are con-
verted into values. Executing a skip statement has no effect except allowing the
next statement to be processed. The rules for conditionals behave in a standard
manner depending on the evaluation of the Boolean condition (see rules R-IF1 and
R-IF2). Rules R-ASSIGN and R-FASSIGN describe assigning values to local variables
and fields, respectively.

The rules in Figures B.2 and B.3 look into how actor creation, message passing
and task handling are done. Rules R-NEW and R-FNEW deal with actor creation: a
new actor with a fresh name is created. The fields of the new actor are initialized
with the parameters of the new C(val) statement. Other fields that are not covered
by the class parameters are mapped to default values similar to Java, e.g., an
integer variable to the value of 0, and represented by σinit. The task where the
creation statement occurs proceeds to the next statement. For simplicity these

243



Appendix B. Operational Semantics of αABS

R-RETURN
a[C ,σ′,>] ‖ u[a,σ,>,return e; release] 

a[C ,σ′,⊥] ‖ u[a,σ,⊥,E(e)(σ′ ∪σ)]

R-SKIP

u[a,σ, l,skip; s]  u[a,σ, l, s]

R-IF1
E(e)(σ′ ∪σ) = true

a[C ,σ′, l] ‖ u[a,σ, l,if e s1 else s2; s]
  a[C ,σ′, l] ‖ u[a,σ, l, s1; s]

R-IF2
E(e)(σ′ ∪σ) = false

a[C ,σ′, l] ‖ u[a,σ, l,if e s1 else s2; s]
  a[C ,σ′, l] ‖ u[a,σ, l, s2; s]

R-ASSIGN
val= E(e)(σ′ ∪σ)

a[C ,σ′, l] ‖ u[a,σ, l, x := e; s] 
a[C ,σ′, l] ‖ u[a,σ[x 7→ val], l, s]

R-FASSIGN
val= E(e)(σ′ ∪σ)

a[C ,σ′, l] ‖ u[a,σ, l, f := e; s] 
a[C ,σ′[ f 7→ val], l] ‖ u[a,σ, l, s]

Figure B.1.: Reduction rules of αABS (1)

rules assume that a constructor constructor(C) is present, making the constructor
to be a special initial task of the created actor. When a constructor is not present,
we assign skip to be constructor(C). Note that the this initial task has the lock,
ensuring that other non-constructor tasks can only be executed after the execution
of the constructor is finished (via the padded release statement). The difference
between these two rules lies on whether the name of the new actor is stored in a
local variable or in a field.

Rule R-CALL deal with asynchronous method calls. A new task with appropri-
ate initial local variable assignments (σinit) that belongs to the target of the call
is composed with the configuration. The new task is only prepared, so it is yet to
acquire the lock. The statement the new task processes is based on the method
body. The statement that it processes first needs to be transformed by the repAwait
function. The function repAwait(s) replaces all occurrences of await g in the state-
ment s to release;grab;await g. This means that executing an await statement
guarantees that a task relinquishes the lock at least once before continuing. Af-
terward, the variables representing the parameters, including the self reference
construct this are subsituted with the appropriate values. The properly initialized
statement is now sandwiched between a grab and a release statements. This is
done so the task has a chance to acquire the lock of the actor and once the task
finishes executing the method body, it releases the lock and ends with the return
result. Rules R-FCALL1 and R-FCALL2 are the same as rule R-CALL except that the
futures are stored in the actor’s fields. Because the target can be an actor different
from the caller (rule R-FCALL1), the target’s actor configuration may be needed

244



R-NEW

a′ fresh val= E(e)(σ′ ∪σ) σa′ = σinit[ f 7→ val] scons = constructor(C)

a[C ′,σ′, l] ‖ u[a,σ, l, x = new C(e); s] 
a′[C ,σa′ ,>] ‖ a[C ′,σ′, l] ‖ u[a,σ[x 7→ a′], l, s] ‖ cons[a, {},>, scons;release]

R-FNEW

a′ fresh val= E(e)(σ′ ∪σ) σa′ = σinit[ f 7→ val] scons = constructor(C)

a[C ′,σ′, l] ‖ u[a,σ, l, f := new C(e); s] 
a′[C ,σa′ ,>] ‖ a[C ′,σ′[ f 7→ a′], l] ‖ u[a,σ, l, s] ‖ cons[a, {},>, scons;release]

R-CALL
u′ fresh s′′ = body(m(x), C ′) a′ = E(e′)(σ′ ∪σ)

val= E(e)(σ′ ∪σ) σu′ = σinit[x 7→ val] s′ = grab; repAwait(s′′);release

a′[C ′,σ′′, l ′] ‖ a[C ,σ′, l] ‖ u[a,σ, l, x := e′.m(e); s] 
a′[C ′,σ′′, l ′] ‖ u′[a′,σu′ ,⊥, s′] ‖ a[C ,σ′, l] ‖ u[a,σ[x 7→ u′], l, s]

R-FCALL1
u′ fresh s′′ = body(m(x), C ′) a′ = E(e′)(σ′ ∪σ) 6= a

val= E(e)(σ′ ∪σ) σu′ = σinit[x 7→ val] s′ = grab; repAwait(s′′);release

a′[C ′,σ′′, l ′] ‖ a[C ,σ′, l] ‖ u[a,σ, l, f := e′.m(e); s] 
a′[C ′,σ′′, l ′] ‖ u′[a′,σu′ ,⊥, s′] ‖ a[C ,σ′[ f 7→ u′], l] ‖ u[a,σ, l, s]

R-FCALL2
u′ fresh s′′ = body(m(x), C) E(e′)(σ′ ∪σ) = a

val= E(e)(σ′ ∪σ) σu′ = σinit[x 7→ val] s′ = grab; repAwait(s′′);release

a[C ,σ′, l] ‖ u[a,σ, l, f := e′.m(e); s]  a[C ,σ′[ f 7→ u′], l] ‖ u[a,σ, l, s] ‖ u′[a,σu′ ,⊥, s′]

Figure B.2.: Reduction rules of αABS (2)

to obtain the method body.
Rules R-GRAB and R-RELEASE govern how locks are acquired and released, re-

spectively. When a task needs to acquire a lock and the actor is in the idle state,
then the lock can be grabbed. A task that has a lock may release the lock.

The get construct is used to obtain the return result of a method call. Rule
R-GET reflects this intention by transferring the value of a resolved future to the
actor that requests the value. The local variable is updated to store this value. The
consequence of rule R-GET is that executing the get construct blocks the actor from
progressing until the future is resolved. Rule R-FGET is the same as rule R-GET

except that the result is stored in a field.
The last construct to be dealt with is the await construct. Rules R-AWAIT1, R-

245



Appendix B. Operational Semantics of αABS

R-GRAB
a[C ,σ,⊥] ‖ u[a,σ,⊥,grab; s] 

a[C ,σ,>] ‖ u[a,σ,>, s]

R-RELEASE
a[C ,σ,>] ‖ u[a,σ,>,release; s] 

a[C ,σ,⊥] ‖ u[a,σ,⊥, s]

R-GET
u′ = E(e)(σ′ ∪σ)

a[C ,σ′, l] ‖ u[a,σ, l, x := e.get; s] ‖ u′[a′,σ′, l ′, val] 
a[C ,σ′, l] ‖ u[a,σ[x 7→ val], l, s] ‖ u′[a′,σ′, l ′, val]

R-FGET
u′ = E(e)σ′ ∪σ

a[C ,σ′, l] ‖ u[a,σ, l, f := e.get; s] ‖ u′[a′,σ′, l ′, val] 
a[C ,σ′[ f 7→ val], l] ‖ [a,σ, l, s] ‖ u′[a′,σ′, l ′, val]

R-AWAIT1
E(e)(σ′ ∪σ) = true

a[C ,σ′, l] ‖ u[a,σ, l,await e; s] 
a[C ,σ′, l] ‖ u[a,σ, l, s]

R-AWAIT2
E(e)(σ′ ∪σ) = false

a[C ,σ′, l] ‖ u[a,σ, l,await e; s] 
a[C ,σ′, l] ‖ u[a,σ, l,release;grab;await e; s]

R-AWAIT3
u′ = E(v)(σ′ ∪σ)

u′[a′,σ′′, l ′, val] ‖ a[C ,σ′, l] ‖ u[a,σ, l,await v?x; s] 
u′[a′,σ′′, l ′, val] ‖ a[C ,σ′, l] ‖ u[a,σ[x 7→ val], l, s]

R-FAWAIT3
u′ = E(v)(σ′ ∪σ)

u′[a′,σ′′, l ′, val] ‖ a[C ,σ′, l] ‖ u[a,σ, l,await v? f ; s] 
u′[a′,σ′′, l ′, val] ‖ a[C ,σ′[ f 7→ val], l] ‖ u[a,σ, l, s]

R-AWAIT4
u′ = E(v)(σ′ ∪σ)

u′[a′,σ′′, l ′, s′] ‖ a[C ,σ′, l] ‖ u[a,σ, l,await v?v′; s] 
u′[a′,σ′′, l ′, s′] ‖ a[C ,σ′, l] ‖ u[a,σ, l,release;grab;await v?v′; s]

Figure B.3.: Reduction rules of αABS (3)

AWAIT2, R-AWAIT3, R-FAWAIT3, and R-AWAIT4 evaluate whether the task can now
progress with its computation. Rules R-AWAIT1 and R-AWAIT2 deal with the case
where the guard of the await statement is a boolean expression e. Similar to the
rules for conditionals, if the boolean expression is evaluated to true, then the task
can continue its computation. Otherwise, the task must wait until its next chance

246



to check whether the guard condition is fulfilled. The rest of the rules deal with
the guard v?v′, where v is evaluated to some future u. When u is resolved, the
task fetches the value val and stores it in the local variable (R-AWAIT3) or the
field variable (R-FAWAIT3). When this condition is not fulfilled, rule R-AWAIT4 is
applied whose effect is the same as R-AWAIT2.

The reduction rules above imply that the actors are never destroyed. Neither
do tasks. Actors and tasks that are no longer used can be disposed through a
garbage collection mechanism, an aspect orthogonal to the functional behavioral
characterization we want to obtain.

The initial configuration of the program depends on what part of the program
we want to evaluate. The initial configuration may consist only of a designated
initial Main actor which executes the main method. It can also consist of a single
actor entity representing the main interface of a library (such as a Server actor in
our server example, see Listing 2.1). Below is an example of an initial configura-
tion of a single Server actor receiving a request with the query qu.

s[Server, {},⊥] ‖

u






s,











q 7→ qu,
w 7→ null,
u 7→ ⊥,
v 7→ Valuedef











,⊥,grab; repAwait(body(q),Server);release







247





APPENDIX C

Denotational Semantics of αABS

In this chapter, we provide the complete denotational semantics of αABS. They
are derived from the denotational semantics of Creol [AD12].

The denotational semantics is represented by a function ¹º which comes in
several flavors:
• A mapping from variable declarations, statements or method implementations

and states to states and traces
• A mapping from method names, numbers of tasks and states to states and

traces
• A mapping from method names and states to states and traces
• A mapping from classes and numbers of instances to traces
• A mapping from actors, classes and programs to traces
The following describes these mappings for a given syntactic constructs. Con-
structs that are not explained in Section 4.3 are given a short description.
A skip statement neither changes the state of the actor nor produces an event.

¹skipº(σ) = {(σ, [])} (C.1)

The declaration of a variable v adds a new mapping to the partial function σ

¹T x := eº(σ) = {(σ[x 7→ E(e)σ], [])} (C.2)

Sequential composition of statements:

¹s1; s2º(σ) = {(σ2, t1 · t2) | ∃σ1 : (σ1, t1) ∈ ¹s1º(σ)∧ (σ2, t2) ∈ ¹s2º(σ1)}
(C.3)

The branching if statement has two sets of interpretation, following the two pos-
sible results of evaluating the Boolean condition.

¹if e s1 else s2º(σ) =
{(σ1, t) | E(e)σ∧ (σ1, t) ∈ ¹s1º}∪
{(σ1, t) | ¬E(e)σ∧ (σ1, t) ∈ ¹s1º}

(C.4)

The assignment statement:

¹v := eº(σ) =
�

(σ′, []) | ∃val : val= E(e)σ∧σ′ = σ[v 7→ val]
	

(C.5)

249



Appendix C. Denotational Semantics of αABS

The actor creation statement:

¹v := new C(e)º(σ) =







(σ′, t)

�

�

�

�

�

�

∃val, a : val= E(e)σ∧σ′ = σ[v 7→ a] ∧
created(a) = E(this)σ∧ class(a) = C ∧
t = E(me)σ : E(this)σ→ a : new C(val)







(C.6)
The method call statement:

¹v := v′.mtd(e)º(σ) =







(σ′, t)

�

�

�

�

�

�

∃a, val, i, u : a = E(v′)σ 6= null ∧
u= 〈E(me)σ, 〈a, mtd, i〉〉 ∧σ′ = σ[v 7→ u] ∧
val= E(e)σ∧ t = u→ a : mtd(val)







(C.7)
The await statement with future guard:

¹await v?v′º(σ) =



























(σ′, t)

�

�

�

�

�

�

�

�

�

�

�

�

∃t ′, u, kc , i, a, mtd, val :
u= E(v)σ = 〈kc , 〈a, mtd, i〉〉 ∧
(E(u)σ 6= undef =⇒ val= E(u)σ) ∧
t = yield(u,σ|ca) ·
resume(u,σ′|ca) · u� a : mtd / val ∧
σ′|k = σ|k[v′ 7→ val]



























(C.8)

The await statement with conditional expression guard is a simplified version of
the above semantics, because we only need to adjust that the state satisfies the
condition.

¹await eº(σ) =
�

(σ′, yield(σ|ca) · resume(σ|ca)
�

�σ′|k = σ|k ∧ E(e)(σ′)
	

(C.9)

The get statement is a variant of the await statement with the future guard, where
the yield and release events are not needed to simulate the blocking nature of get.

¹v := v′.getº(σ) =



















(σ′, t)

�

�

�

�

�

�

�

�

�

�

∃t ′, u, kc , i, a, mtd, val :
u= E(v′)σ = 〈kc , 〈a, mtd, i〉〉 ∧
(E(u)σ 6= undef =⇒ val= E(u)σ) ∧
t = u� a : mtd / val ∧
σ′ = σ[v 7→ val, u 7→ val]



















(C.10)
Based on the semantics of all statements, the semantics of a single execution of a
method is as follows:

250



¹mtd(x){TF y := einit; s;return e}º(σ) =














(σ2, t1 · t · t2)

�

�

�

�

�

�

�

�

∃val,σ1, u : (σ1, []) ∈ ¹TF y := einitº(σ[x 7→ val]) ∧
(σ2, t) ∈ ¹sº(σ1)∧ u= 〈E(caller)σ,E(me)σ〉 ∧
t1 = resume(E(me)σ,σ|ca) · u� E(this)σ : mtd(val) ∧
t2 = u← E(this)σ : mtd / E(e)σ2 · yield(E(me)σ,σ2|ca)















(C.11)
The semantics of i tasks of method mtd:

¹mtd, iº(σ) =























t

�

�

�

�

�

�

�

�

�

�

t↓{〈E(this)σ, mtd, j〉 | j ∈ {1, . . . , i}}= t ∧
∀ j ∈ {1, . . . , i} : ∃k, a, val,σk, tk,σ′k :

k = 〈a, mtd, j〉 ∧σk = σ[me 7→ k, caller 7→ a, f 7→ val] ∧
(σ′k, tk) ∈ ¹mtdDef(class(E(this)σ), mtd)º(σk) ∧
t↓{k}= tk ∧ condm(t)























(C.12)
The combined semantics of a method mtd:

¹mtdº(σ) =
⋃

i∈N

¹mtd, iº(σ) (C.13)

The semantics of an actor:

¹aº=



















































t ′′

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

∃t, t ′ : t↓Mtd(C) = t :
(∀mtd ∈Mtd(C) : ∃tmtd, val, k, a′′ :

tmtd ∈ ¹mtdº(σ)∧ t↓{mtd}= tmtd) ∧
t ′ = yield(〈a,−,−〉, [this 7→ a, ca 7→ val]) · t ∧ conda(t ′) ∧
(∀a′ : a′ 6= a ∧ t ′↓CrEv(a, a′) 6= [] =⇒ |t ′↓CrEv(a, a′)|= 1 ∧
∀e ∈ CrEv(a, a′), e′ : a′ ∈ acq(e′) =⇒ ¬(e′ <t ′ e)) ∧
(∀e : isReact(e)∧ e ⊆ t ′ ∧ emitOf(e) ⊆ t ′ =⇒

emitOf(e)<t ′ e) ∧
t ′′ ∈ addInput(k : a′′→ a : new C(val) · t ′, a)∧ a = taskOf(k)



















































(C.14)
The semantics of a class C with i instances (actors):

¹C , iº=







t

�

�

�

�

�

�

t↓{(C , j) | j ∈ {1, . . . , i}}= t ∧
∀ j ∈ {1, . . . , i} : ∃a, ta ∈ ¹aº :

class(a) = C ∧ ciid(a) = j ∧ t↓a = ta







(C.15)

The combined semantics of a class C:

¹Cº=
⋃

i∈N

¹C , iº (C.16)

251



Appendix C. Denotational Semantics of αABS

The semantics of program P:

¹Pº=











t ′

�

�

�

�

�

�

�

�

Main /∈ Cls(P) ∧
∀C ∈ Cls(P),∃tC : tC ∈ ¹Cº∧ t↓{C}= tC ∧
∃t, a, u : t↓Cls(P) = t ∧ class(a) = Main∧ gen(u) = a ∧

t ′ = remCr(u→ a : main() · t)↓E











(C.17)

252



About the Author

Name: Ilham W. Kurnia

Education

• 2009–2014: Doctoral student at the Software Technology Group, University of
Kaiserslautern, Germany.

• 2006–2008: Master of Science, European Masters in Computational Logic,
New University of Lisbon, Portugal and Dresden University of Technology.
Thesis title: BTSL∗ Model Checking with Fairness for Reo.

• 2002–2006: Bachelor of Science in Computer Science, University of Indonesia,
Indonesia.
Thesis title: Verification of Horn-Preneel Authentication Protocol Using AVISPA.

• 2001: A Bursary, St. Patrick’s College, Wellington, New Zealand.

Publications

A list of my peer-reviewed publications in reverse chronological order:

• Ilham W. Kurnia and Arnd Poetzsch-Heffter. “Verification of Open Concurrent
Object Systems”. In: FMCO 2012. Vol. 7866. LNCS. Springer, 2013, pp. 83–
118

• Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and Yannick Welsch.
“Model-Based Compatibility Checking of System Modifications”. In: ISoLA
2012. LNCS. Springer, 2012, pp. 97–111

• Ilham W. Kurnia and Arnd Poetzsch-Heffter. “A Relational Trace Logic for Sim-
ple Hierarchical Actor-Based Component Systems”. In: AGERE! ’12. Tucson,
Arizona, USA: ACM, 2012, pp. 47–58

253



About the Author

Other relevant drafts:

• Ilham W. Kurnia and Arnd Poetzsch-Heffter. A Dynamic Automaton Model for
Open Actor-Based Systems. Tech. rep. University of Kaiserslautern, 2015

• Arnd Poetzsch-Heffter, Ilham W. Kurnia, and Christoph Feller. “Verification of
Actor Systems Needs Specification Techniques for Strong Causality and Hier-
archical Reasoning”. In: FoVeOOS. 2011-26. Technische Universität Karlsruhe,
2011, pp. 289–305

• Ilham W. Kurnia, Arnd Poetzsch-Heffter, and Yannick Welsch. “State-based Ob-
ject Models Are More Abstract Than Trace-based Models: Towards a Unified
Specification Framework”. In: Technical Report No. 2010-13. 2010-13. Karl-
sruhe, 2010, pp. 268–282

254


	Title page
	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Implementations and Components
	Automata-Based Specification
	Reasoning Technique
	Contributions and Outline
	Notation

	I Language and Component Framework
	Verification Framework Overview
	Description
	Implementation
	Specification
	Verification
	Class Verification
	Component/System Verification


	αABS: Syntax and Semantics
	Features
	Syntax of αABS
	Data Type and Functional Layer
	Object-Oriented and Distributed (Concurrent) Layer

	Operational Semantics
	Discussion

	Trace Foundation of Actor Systems
	Actor Universe, Events and Traces
	Observable Behavior
	Denotational Semantics
	Discussion

	Component Representation and Open Systems
	Closed Systems
	Open Systems and Components
	Discussion


	II Automaton Framework for Actor Systems
	Dynamic I/O Automaton Model
	Signature I/O Automata
	Configuration Automata
	Discussion

	Class Behavior Representation
	Model
	Properties
	Discussion

	Configuration Automata for Actor Systems
	Model
	Properties
	Discussion
	Dynamic Automaton Models
	Other Automaton Models


	Component Automata
	Model of Component Automata
	Properties of Component Automata
	Model of Component Configuration Automata
	Properties of Component Configuration Automata
	Discussion

	Specification of Automata
	Class Specification
	Component Specification
	Discussion


	III Verification of Open Actor Systems
	Verification of Classes
	SEQ language
	Weakest Liberal Preconditions
	Class Specification to Class Invariants
	Discussion

	Verification of Components
	Possibility Maps
	Soundness of Component Verification
	Discussion and Related Work

	Examples
	Ticker Factory
	Specification
	Class Verification
	System Verification

	Sieve of Eratosthenes
	Specification
	Class Verification
	System Verification

	Discussion


	Conclusion
	Contributions
	Outlook


	Bibliography
	Appendix
	Glossary
	Operational Semantics of ABS
	Denotational Semantics of ABS
	About the Author

