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Abstract

This work consists of two parts.

The first part deals with optimization of large structures of linear elastic material with

contact modeled by Robin-type boundary conditions. The structures model textile-like ma-

terials and possess certain periodicity or quasiperiodicity properties. The homogenization

method is used to represent the structures by homogeneous elastic bodies and is essen-

tial for formulation of the effective properties optimization problems. Existing results for

problems with Robin-type boundary conditions for thermal conductivity are extended to

the case of elasticity. Some results, e.g. Korn’s inequality, are absent in works on conduc-

tivity and are novel. It is also proven that the convergence to the homogenized solution is

uniform with respect to geometrical parameters. Optimization problems are formulated for

the homogenized model only, but the homogenized properties depend on the geometrical

parameters. Poisson’s ratio and effective stress profiles are optimized. In both problems

a beam approximation is used to reduce the cell problems to algebraic equations and ob-

tain derivatives of the effective properties symbolically. For the stress profile optimization

problems, the adjoint approach is exploited for the PDE-constrained optimization problem

resulting from the homogenization. The application of the homogenization approach with

beam models to the problem of optimization of effective properties is new.

In the second part we consider a new model for simulation of textiles with frictional

contact between fibers and no bending resistance. In the model, 1D hyperelasticity and

the Capstan equation are combined. Its connection with conventional hyperelasticity and

Coulomb friction models is shown. Then, the model is formulated as a problem with the

rate-independent dissipation, and proofs of the problem’s proper convexity and continuity

are provided. The part ends with an numerical algorithm and numerical experiments. For

one of them, a comparison of the results to real measurements is provided.
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Chapter 1

Optimization of textile-like materials

via homogenization and beam

approximations

1.1 Introduction

This chapter presents an approach to the microstructure optimization problems of large

structures possessing periodicity or quasiperiodicity properties. These structures consist of

linear elastic material but are not homogeneous. They can be represented by repetitions

of cells or meshes, not necessarily the same but of certain predefined structure. The cells

considered in this work are beam structures, whereby some of the beams can be in contact

with each other. Contact is modeled by the Robin boundary conditions, (see [6] and [24]

for regularization and linearization of the quasistatic frictional model leading to the Robin

boundary conditions). The goal of the work is to find a microstructure with desired proper-

ties of the homogenized material.

As the properties subject to optimization, minimal shrinkage and closeness of the effec-

tive stress profile under prescribed loading to some given function are considered. Such

criteria are of interest in medical textile industry, for example for compressive stockings

and bandages. With the help of the homogenization method, the effective stress profiles

and the shrinkage can be expressed in a clear mathematical way. Minimization of the

shrinkage properties corresponds to optimization of the effective Poisson’s ratio, which in

1



2 CHAPTER 1. OPTIMIZATION VIA HOMOGENIZATION AND BEAM MODELS

turn reduces to optimization of an algebraic function of the effective elasticity tensor of the

homogenized structure. The stress profile optimization is formulated as a PDE-constrained

optimization problem.

There is a vast literature available on shape optimization via the homogenization method.

See, e.g. [2, 4, 15, 42]. In these works, homogenization is used primarily as a relax-

ation technique for the design space of the optimization problem stated for the initial non-

homogenized problem. The book [2] provides an in-depth analysis and a comprehensive

introduction to the homogenization with generalizations to the non-periodic case and a rich

summarization of the works on the topics existing at the time.

The approach of our work differs from the existing approaches in the role of the homoge-

nization: for us the homogenization is an essential part of the statement of the optimization

problem itself, not the relaxation technique.

The homogenization of models with frictional contact on the contact interfaces is studied

in [12]. It turns out that for the Tresca friction model it is in general impossible to separate

the scales. However, the model with Robin-type conditions can be used for regularization

of quasistatic contact problems, see [6] and [24]. For such problems, the homogenization

result with scale separation is available in [23].

For the cell problems, beam models are used as a solution approximation technique to

reduce the three-dimensional elasticity with Robin-type conditions to an algebraic system

of equations. In this case the derivatives of the cell problems’ solutions, which are necessary

for the classical gradient-based optimization, can be computed exactly by means of auto-

matic symbolic differentiation. Homogenization of beam or rod systems without contact is

considered in works [5, 36, 50, 51]. Results related to the reduction to beam models for

Robin-type boundary conditions are available in [6]. The extension of the results of [6] are

used to formulate algebraic systems for the cell problems.

The papers [50] and [51] are of particular theoretical interest. The authors develop the

idea of representation of thin elastic structures by measures and formulate the convergence

results of the homogenization using the convergence of these measures. Along with the

size of the periodicity cell, the second parameter corresponding to the thickness of beams

in the network is introduced and the limits of the solutions are investigated with respect

to both parameters. Three cases of the relation between the parameters are studied, and

the results are in agreement with the earlier work [37], where the complete asymptotic

expansion method is used.
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Optimization problems in the framework of [50] and [51] are considered in the arti-

cle [25]. The optimization problem is stated for the initial non-homogenized problem, and

then the limit with respect to the period of the structure is taken. The standard questions of

convergence of the objective functional and the minimizers arise, and they are investigated

in the work. It is shown that the solution of the homogenized optimization problem can be

used as a suboptimal control for the original problem.

In our work we do not investigate the question of convergence of the objective func-

tionals and their minimizers with respect to the limit taken by the period of the structure

or thickness of beams. The optimization problem is formulated for the homogenized model

only, which is quite natural for our example application. Namely, we consider the effective

Poisson’s ratio and the effective stress profile optimization problems. Both deal with the

effective properties, not some quantities available in the original model. A statement of

our optimization problems for the original model would require some non-trivial artificial

constructs.

PDE-constrained optimization is a well developed field nowadays. The adjoint approach

used in this work is similar to that of [2]. The general approach is described in [22, 27].

After this introduction, a set of geometries considered in this thesis is described. Then a

general description of the 3D direct problem in Section 1.3 and the basic results of existence

and uniqueness of the solutions are provided.

Before the homogenization results are formulated, the issue that the geometry from

Section 1.1 is repeatable in connected manner only in two in-plane directions is addressed,

but three-dimensional homogenization results are used. This problem arises from the ge-

ometrical fact that any geometry modeling a knot or any interlacing of yarns is essentially

three-dimensional, but the limiting structure — a fabric, is essentially two-dimensional.

A similar setting was considered in Chapter 3 of [36], where the limiting behavior of the

solutions of conductivity and elasticity problems are considered for a 3-dimensional domain

shrinking to a plate. Some additional symmetry assumptions are required for out-of-plane

bending equations and in-plane membrane equations to separate, since for a plate with

a non-symmetric structure the in-plane moduli are coupled with the bending constants.

Strictly speaking it is hard to differentiate the in-plane and out-of-plane moduli. That is

why we will define the in-plane moduli of the textile via some extension of the textile to

a 3D composite. Consider a 3D composite material consisting of an infinite periodic set

of identical parallel plates “immersed” into some soft matrix, filling all space out of the
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plates except for some small empty spaces (holes) around the contact interfaces between

the fibres. The Young’s modulus of the matrix is supposed to be of the order of a small in

comparison to the fibers’ Young’s modulus parameter δ. It can be seen that the solution of

the elasticity problem set in one plate with the Neumann condition on the lateral boundary

is close to the solution of the elasticity problem set in a 3D composite material (see the ficti-

tious domain approximation, Section 1.3.3). The homogenized moduli Ahom
ijkl (δ) of this 3D

composite can be defined according to the standard homogenization theory (see, for exam-

ple, [5, 36]), modified with respect to the Robin-type interface conditions in Section 1.3.5

(for the conductivity setting this is done in [23]).

Let us define the in-plane moduli of the plate as the limit as δ → 0 of the above homog-

enized moduli with the subscripts 1 and 2 only, multiplied by the in-plane period of the cell

of the knitting pattern of the textile-like material ε0 (see Section 1.5.1 for details):

Ainp
ijkl = ε0 lim

δ→0
Ahom
ijkl (δ), i, j, k, l ∈ {1, 2}.

According to the fictitious domain theory for periodic cell problems ([5, 36]) we obtain

the algorithm for the calculation of the in-plane moduli Ainp =
(
Ainp
ijkl

)
, 1 ≤ i, j, k, l ≤ 2

described in Section 1.3.5.

The homogenization topic is discussed in Section 1.3.4, where the scaled version of

Korn’s inequality with respect to the period of the structure is provided. Such result is

crucial for the justification of the homogenization. For problems with Robin-type jump con-

ditions at the interfaces this result is new. Similar results for a different type of problem

are presented in the state-of-the art work [11], and we use the similar technique for the

proof. In Section 1.3.5 the homogenization results of [23] are extended to elasticity prob-

lems using the statements of the previous sections. This homogenization result is new. In

Sections 1.3–1.3.5 the thickness parameter µ and geometry parameter g are discarded, be-

cause they don’t play any role in the homogenization and overload the notation. Further

the geometrical parameter µ is mentioned only in Section 1.6, where a question of relation

between µ and ε is dealt with briefly. In the rest of the work it does not play any important

role and is omitted. The geometrical parameter appears again in Section 1.4, where it is

shown that all the solutions and homogenized properties used in this part depend continu-

ously on the geometry described in Section 1.2. The continuity results are proved with the

help of techniques from [13]. In Section 1.4.2 it is proved that the 2-scale convergence of
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the homogenization is uniform with respect to the geometry. The corresponding extension

of the Arzela-Ascoli theorem is provided. This result is new, but the constructions in the

proof are the same as those used in the context of small domain perturbations from [33].

The optimization problems and their solution strategies are described in Section 1.5.

The mainstream adjoint state technique is used for the stress profile optimization prob-

lem. At the level of cell problems, elastic beam models help to reduce the computational

burden while computing the homogenized tensor and its derivatives. This is described in

Section 1.6. Finally, our numerical examples are presented in Section 1.8.

1.2 Description of the geometry

1.2.1 One-dimensional geometry

Consider two non-parallel planes π1 and π2. Assume that the origin O belongs to the inter-

section line l = π1 ∩ π2 and the coordinate axis Oz is aligned with l. Let the angle between

the planes be β < π and the plane Oxz evenly divide this angle. Let the axis Oy be such

that the system Oxyz is right-oriented. Introduce point B = (0, 0, h)T and two rays r11 ∈ π1

and r12 ∈ π1 with the origin at B, and r21 ∈ π2 and r22 ∈ π2 with the origin at O. Denote

the direction vector of rij by dij . Let

d11 =




sin(α/2) cos(β/2)

− sin(α/2) sin(β/2)

− cos(α/2)


 , d12 =




− sin(α/2) sin(β/2)

sin(α/2) sin(β/2)

− cos(α/2)


 ,

d21 =




sin(α/2) cos(β/2)

sin(α/2) sin(β/2)

cos(α/2)


 , d22 =




− sin(α/2) cos(β/2)

− sin(α/2) sin(β/2)

cos(α/2)


 , α ∈ (0;π).

Observe that axis Oz is the bisecting line for angles r11Br12 and r21Or22. Both angles have

magnitude α and belong to π1 and π2, respectively. The distance between r11 and r21, and

between r12 and r22 can be computed explicitly:

dist (r11, r21) = dist (r12, r22) = 2h |sin(α/2) sin(β/2)| (sin
2(α/2) sin2(β/2) + cos2(α/2))

1
2

1 + cos2(α/2)− sin2(α/2) cos(β)
.
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It is clear from this expression that one can always choose h in such a way that

dist (r11, r21) = dist (r12, r22) = 4µ(1− ζ), ζ ∈ (0; 0.01). (1.1)

Such choice ensures that semi-infinite cylinders of radii 2µ with axes r11 and r21 intersect,

and that the intersection has a non-empty interior.

Denote the point of r11 closest to r21 by P11. Define P12, P21, P22 in the similar way for

r12, r21, and r22. Further, for i ∈ {1, 2} and j ∈ {1, 2} introduce points Jij = Pij + 4µdij .

Define the sets of segments Γµ0 = {BP11, P11J11, BP12, P12J12, OP21, P21J21, OP22, P22J22}
and Γµc0 = Γµ0 ∪ {P11P21, P12P22}. Geometrical transformations of Γµ0 will form the set of

axes of the cylinders, whose union forms the textile-like domain. At the same time, the

same transformations of Γµc0 contain additional segments, which correspond to the contact

interfaces between (almost) cylindrical parts of the textile-like domain.

Define ΓµK(gx, gy) and ΓµcK (gx, gy) as the images of Γµ0 and Γµc0 under the following trans-

formation N :

1. rotation around axis Oy by the angle γ + π/2,

2. swap of the second and the third coordinates,

3. translation by (gx, gy, 0) for gx ∈ [0.4; 0.8] and gy ∈ [0.4; 0.8].

For a point x ∈ R3 the matrix of the mapping N can be written down as follows:

N(x) =




gx

gy

0


+




sin(γ) 0 − cos(γ)

cos(γ) 0 sin(γ)

0 1 0


x.

Introduce notation P ′ij = N(Pij), J ′ij = N(Jij) for i ∈ {1, 2} and j ∈ {1, 2}, O′ = N(O)

and B′ = N(B). For the following parameter values

α =
2

3
π, β =

1

3
π, γ = arctan

(
2

3

)
, 0.4 ≤ gx ≤ 0.8, 0.4 ≤ gy ≤ 0.8,

ΓµK(gx, gy) and ΓµcK (gx, gy) have their x and y coordinates in the interval (0; 1), and the

points closest to sets {x = 0}, {x = 1}, {y = 0}, {y = 1} are J ′22, J ′11, J ′21, J ′12, respectively.

Introduce Γµ#K(gx, gy) = ΓµK(gx, gy) ∪ {B22J
′
22, B21J

′
21, B12J

′
12, B11J

′
11} and Γµc#K(gx, gy) =
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Figure 1.1: A set similar to Γµ#K(gx, gy).

Γµ#K(gx, gy) ∪ {P ′11P
′
21, P

′
12P

′
22}, where

B11 =




1

[J ′11]2

[J ′11]3


 , B12 =




0.5

1

[J ′12]3


 , B21 =




0.5

0

[J ′21]3


 , B22 =




0

[J ′22]2

[J ′22]3


 .

Here the i-th component of a vector (or a point) a is denoted by [a]i. The choice of points

Bij guarantees that Γµ#K(gx, gy) and Γµc#K(gx, gy) touch the boundary of the set {x ∈ [0; 1]}×
{y ∈ [0; 1]}. An example of what Γµ#K(gx, gy) looks like is shown in Figure 1.1. Note that

the coordinates of B21 and B12 do not depend on the geometry shift parameters (gx, gy).

Let ΓRµ#K(gx, gy) be the reflection of Γµ#K(gx, gy) with respect to the plane x = 1. Let

ΓUµ#K(gx, gy) be the image of Γµ#K(gx, gy) under superposition of the following two reflec-

tions: the first with respect to the set x = 1/2 and the second with respect to the plane

y = 1. Let ΓURµ#K (gx, gy) be the reflection of ΓUµ#K(gx, gy) with respect to the plane x = 1. De-

fine ΓRµc#K (gx, gy), ΓUµc#K (gx, gy), and ΓURµc#K (gx, gy) analogously as the images of Γµc. Define

ΓµY (gx, gy) = S1/2

(
Γµ#K(gx, gy) ∪ ΓRµ#K(gx, gy) ∪ ΓUµ#K(gx, gy) ∪ ΓURµ#K (gx, gy)

)
,

ΓµcY (gx, gy) = S1/2

(
Γµc#K(gx, gy) ∪ ΓRµc#K (gx, gy) ∪ ΓUµc#K (gx, gy) ∪ ΓURµc#K (gx, gy)

)
,

where S1/2 is the uniform scaling operator with the scaling coefficient 1/2. Observe that
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ΓµY (gx, gy) and ΓµcY (gx, gy) are subsets of set {x ∈ [0; 1]} × {y ∈ [0; 1]} and that set

Γµ∞(gx, gy) =
⋃

kx∈Z,ky∈Z
Tkx,ky

(
ΓµY (gx, gy)

)
,

where Tkx,ky is a translation operator by kx along axis Ox and by ky along axis Oy, is infinite

and periodic in x and y set. Note that set

Γµc∞(gx, gy) =
⋃

kx∈Z,ky∈Z
Tkx,ky

(
ΓµcY (gx, gy)

)

is infinite, connected, and periodic in x and y.

Observe that due to the independence of coordinates of B12 and B21 on (gx, gy),

Γµ#K(g1x, g1y) can be connected to the translation Γµ#K(g2x, g2y) in the vertical direction

even if g1x 6= g2x and g1y 6= g2y. For a sequence of geometrical parameters {gkx, gky}, k ∈ Z,

define

Γµ∞({gkx, gky}) =
⋃

k∈Z
T0,k

( ⋃

m∈Z
Tm,0

(
ΓµY (gkx, g

k
y )
))

, (1.2)

Γµc∞({gkx, gky}) =
⋃

k∈Z
T0,k

( ⋃

m∈Z
Tm,0

(
ΓµcY (gkx, g

k
y )
))

. (1.3)

Note that set Γµc∞({gkx, gky}) is connected and infinite, but not necessarily periodic.

Assume that gx and gy are elements of C(R2,R). Introduce a new parameter ε and

define

Γε,µ∞ (gx, gy) = Sε
(
Γµ∞

[
{gx(ε(k + 1/2)), gy(ε(k + 1/2))}k∈Z

])
,

Γε,µc∞ (gx, gy) = Sε
(
Γµc∞

[
{gx(ε(k + 1/2)), gy(ε(k + 1/2))}k∈Z

])
.

These two sets represent scaled structures, for which the geometrical parameters are de-

fined by two continuous functions. As usual in homogenization, parameter ε will be as-

sumed to be small, and these definitions adjust the defining sequences from (1.2) and (1.3)

accordingly.

Introduce the enclosing domain Ω3D. Assume it has a piecewise-Lipschitz boundary and

satisfies the cone condition [19]. In our work Ω3D = Ω × (0;H3D), where Ω is a Lipschitz
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two-dimensional domain. In our example application Ω will be a rectangle. The following

two sets will be of interest in the sequel:

Γε,µ(gx, gy) = Ω3D ∩ Γε,µ∞ (gx, gy), Γε,µc(gx, gy) = Ω3D ∩ Γε,µc∞ (gx, gy).

It will also be convenient to consider Γε,µ as a weighted graph. Sometimes we will

refer to the segments as to edges, and to segments’ ends as to nodes. Denote the set of all

segment ends by N and for each node n ∈ N , let E(n) be the set of all segments incident

to n.

1.2.2 Three-dimensional geometry

For all the sets mentioned in the previous section we define the corresponding three-

dimensional preliminary geometries as Minkowski sums of one-dimensional geometries

with open ball Bµ of radius µ centered at zero. Due to the choice of geometrical parameters

and (1.1), any such 3D geometry will have self-intersections. Each of these intersections

is a lateral intersection of exactly two cylinders of the same radius and non-parallel non-

intersecting axes. Our aim is to state a 3D elasticity problem with Robin-type conditions

at the contact interfaces. Therefore, we have to first eliminate any self-intersections of the

geometry and then define the contact interfaces accordingly.

Since the intersections are always lateral intersections of exactly two cylinders, it is

enough to consider a general case of two intersecting cylinders of the same radii. Denote

the cylinders by C1 and C2 and their axes by a1 and a2. Assume that C1 and C2 are closed.

Let P1 and P2 be the closest points of a1 to a2 and a2 to a1 respectively. Consider plane πmid

parallel to a1 and a2 and equidistant from P1 and P2. Observe that R = C1 ∩ C2 ∩ πmid

is a parallelogram Pmid. Denote the closed half-space with respect to πmid containing a1

by V1, and the half-space containing a2 by V2. Let C1 = int (C1 \ (C2 ∩ V2)) and C2 =

int (C2 \ (C1 ∩ V1)). Define

S = C1 ∩ C2, int (S) = ∅, meassurf (S) 6= 0 (1.4)

and note that

C1 ∩ C2 = ∅. (1.5)
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Figure 1.2: Sketch of a contact interface between two cylinders.

However, Pmid ⊆ S. Observe that S = (V1 ∩ ∂C1 ∩ C2) ∪ (V2 ∩ ∂C2 ∩ C1) ∪ Pmid. The sets

mentioned are shown in Figure 1.2. For statements of elasticity problems instead of C1∪C2

we use C1 and C2, and S as the contact interface. Due to (1.4) and (1.5), the sets can be

used as domains for elasticity problems with Robin conditions at S.

Consider set Ointer = Γµ∞({gxk , gyk}) + Bµ. At each translated component ΓµY (gkx, g
k
y )

there are eight lateral intersections of cylindrical surfaces. Denote the modification of the

set Oµinter({gxk , gyk}) according to the technique described above by Oµ∞({gxk , gyk}) and

the union of all its contact interfaces by Sµ∞({gxk , gyk}). For given continuous functions

gx and gy, the set Oµ,ε∞ (gx, gy) is defined in a similar way, but with Γε,µ∞ (gx, gy) instead of

Γµ∞(gx, gy) and Bµε instead Bµ in the Minkowski sum. The corresponding contact interface

set is denoted by Sµ,ε∞ (gx, gy).

Define a two-component continuous function g̃ ∈ C(R2,R)×C(R2,R) and the following

set:

Oµ,εg = Ω3D ∩ Oµ,ε∞ ([g̃]1, [g̃]2).

Define Sµ,εg as a union of all contact interfaces inOµ,εg . Further in the optimization problems,

only the restriction of g̃ onto Ω will be important. Further in this section we denote this

restriction as follows: g ∈ C(Ω,R)× C(Ω,R).

Remark 1. In subsequent sections the symbol g is always used for the geometrical param-

eters. The underlying functional spaces will vary. For example, for the sections dealing

with periodic case, the geometry is parametrized by two numbers. For quasi-periodic set-

ting, parametrizations by Lipschitz and H2 functions will be considered. Finally, in the
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numerical examples the geometrical parameters will be either piecewise-affine functions

or two real numbers. The corresponding function spaces will always be mentioned in the

corresponding section.

In the sequel the set Oµ,εg will be considered as a union of cylinders with their axes

obtained from the corresponding transformations of Γµ∞({gxk , gyk}). All the cylinders have

circular cross-sections of radius µ everywhere except in the vicinity of the contact points.

We ignore this issue when considering one-dimensional problems for the beams and treat

their cross-sections as circular everywhere.

Denote the j-th connected component of Oµ,εg by Oµ,εg,j for j = 0, . . . ,mε (note that

the number of these connected components does not depend on g and µ). Let Sµ,εg,j =

Sµ,εg ∩Oµ,εg,j . The 0-th component is assumed to have a special property: throughout this part

it is assumed that for Oµ,εg,0 Dirichlet conditions are prescribed at some part of ∂Oµ,εg,0 with

non-zero measure. By the construction procedure of the geometry, for any j there exists a

sequence cjk, k = 1, . . . ,Kj such that cj1 = 0 and cj
Kj = j and for all integer m > 1, m ≤ Kj ,

the components Oµ,εg,j are connected by an interface of non-zero measure, i.e.

Sµ,εg,i,j = Oµ,εg,i ∩ O
µ,ε
g,j , meassurf S

µ,ε
g,i,j > 0.

Note that set

Oµ,εg,c = intOµ,εg

is a connected domain suitable for statement of an elasticity problem. The following rela-

tions are true: Oµ,εg ⊂ Oµ,εg,c , Oµ,εg ∩ Sµ,ε = ∅, Oµ,εg ∪ rel int (Sµ,ε) = Oµ,εg,c .

1.3 Description of periodic 3D direct problem

This section starts with a description of the periodic homogenization setting. Assume that

g̃ is periodic (and g is the restriction of a periodic function onto Ω). Since µ and g will not

play any role in this section, they are omitted in the notation.

The domain Oε is a union of connected open bounded Lipschitz domains Oεi , 0 ≤ i ≤
M ε, each representing a single fiber. The contact interface Sε between the fibers is known.

The part ∂OεD of the boundary ∂Oε ∩ ∂Ω is fixed. The rest of ∂Oε \ Sε, denoted by ∂OεN , is

load-free.
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Consider the following problem:





−∇ ·
(
Aε(x)e(uε(x))

)
= f ε(x) in Oε,

uε = 0 on ∂OεD,
Aεe(uε) · n(x) = 0 on ∂OεN ,
Aεe(uε) · nε+ = Aεe(uε) · nε− on Sε,

Aεe(uε) · nε+ = ε−1Rε [uε] on Sε,

(1.6)

where f ε is the volume force, [·] on Sε denotes the jump of the vector on the opposite

sides of the interface Sε, n(x) is the normal vector to the interface. Matrix Rε is the

Robin condition matrix, it is assumed to be an element of M+ (Sε). We say that matrix

R ∈M+ (Sε) if and only if

1. R ∈ L∞(Sε,R3×3),

2. R is symmetric and positive-definite.

In our case

Rε(x) = rnn(x)⊗ n(x) + rt(I − n(x)⊗ n(x)), rn > 0, rt > 0. (1.7)

Tensor Aε is the elasticity tensor, that is assumed to be an element of T + (Oε). We say that

tensor T ∈ T + (Oε) if and only if

1. T ∈ L∞(Oε,R3×3×3×3),

2. T satisfies symmetry and coercivity conditions

[T ]ijkl = [T ]klij = [T ]jikl = [T ]ijlk, 1 ≤ i, j, k, l ≤ 3,

∃Λ, λ : Λ ≥ λ > 0, Λ |M |2 ≥ TM : M ≥ λ |M |2 ∀M ∈Msym3 ,
(1.8)

where Msym3 is the space of symmetric 3 × 3 matrices. We additionally require that the

boundaries ∂Oεi are piecewise Lipschitz and each Oεi satisfies the cone condition (see [19]).

Remark 2. In this work Sobolev spaces on non-connected open sets and trace spaces on

non-connected boundaries are considered. These non-connected sets and boundaries are

always finite unions of non-intersecting domains and boundaries in the classical sense (i.e.

open connected sets). This is different from the standard theory, but is natural for our
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problem (see also Section 3 in [23]). The extension of the inner product of H1 onto unions

of domains with interfaces can be done in at least two different ways, which are both logical:

the first approach is to extend it with integrals of the traces on the interfaces (as it is done

in [23]), the other is to take the sum of the standard H1 inner products over the connected

subdomains.

The second approach implies that for non-intersecting connected open sets Oi, 1 ≤ i ≤
M and O =

⋃M
i=1Oi,

H1
e (O) =

M⋂

i=1

H1 (Oi) ,

and for any u,v ∈ H1
e (O) we extend the inner product as follows:

〈u,v〉H1
e (O) = 〈u,v〉H1

e(
⋃M
i=1O) =

M∑

i=1

〈u,v〉H1(Oi) ,

with the norm defined accordingly.

For H1/2 the same construct is used, namely, for non-intersecting connected open sets

Oi, 1 ≤ i ≤ M and connected open sets Γj , 1 ≤ j ≤ K, such that for any j : 1 ≤ j ≤ K,

there exists i : 1 ≤ i ≤M such that Γj ⊆ ∂Oi, we define Γ =
⋃K
j=1 Γj and

H1/2
e (Γ) =

K⋂

j=1

H1/2 (Γj),

where the holdall set is all functions defined on ∂O. The norm is defined as follows: for

any u ∈ H1/2 (Γ),

‖u‖
H

1/2
e (Γ)

=

K∑

j=1

‖u‖H1/2(Γj)
.

All fundamental properties of standard H1 and H1/2 spaces hold for H1
e and H1/2

e .

Introduce the space of functions H1
e (Oε, ∂OεD) as follows:

H1
e (Oε, ∂OεD) =

{
u ∈ H1

e (Oε) : u = 0 at ∂OεD
}
.
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The weak formulation of problem (1.6) reads: find uε ∈ H1
e (Oε, ∂OεD) such that

∫

Oε
Aεe(uε) : e(v) dx+

1

ε

∫

Sε
〈Rε [uε] , [v]〉 ds = lε(v),

lε(v) =

∫

Oε
〈f ε,v〉 dx,

(1.9)

where f ε ∈ L2(Oε), for all v ∈ H1
e (Oε, ∂OεD). The notation 〈a, b〉 denotes the scalar

product of two vectors a and b from R3. To ensure uniqueness of the solution it is assumed

that for some i the set ∂OεD ∩ Oεi has a non-zero surface measure.

1.3.1 Auxiliary elasticity results

In this section auxiliary results used to prove the existence and uniqueness of the problems

arising in homogenization are provided.

1.3.2 Korn’s inequalities for connected chains of domains

The existence of the solution of the main problem (1.9) and cell problems introduced later

is based on the following general

Theorem 1. Let Ωi, i = 1, . . . ,M be bounded Lipschitz domains such that Ωi ∩ Ωj = ∅,

Ωi∩Ωj = Γij , Ω =
⋃M
i=1 Ωi, Γ =

⋃M
i,j=1 Γij . Let R be the space of rigid displacements. Let V be

a closed subspace of vector-valued functions in
⋂M
j=1H

1(Ωj). Let Ṽ = {v ∈ V : [v] = 0 on Γ}.
Assume that Ṽ ∩R = {0}. Then every v ∈ V satisfies

M∑

j=1

‖v‖2H1(Ωi)
≤ CE(v), where E(v) =

∫

Ω
(e(v))2 dx+

∫

Γ
[v]2 ds. (1.10)

Proof. The theorem is proved from the contrary: assume that there exists a sequence of

vectors {vm} ∈ V such that

M∑

j=1

‖vm‖H1(Ωj)
= 1, E(vm)→ 0 as m→∞. (1.11)

By the compactness of the imbedding H1
e (Ω) ↪→ L2(Ω), there exists a subsequence ml →∞

such that for some v ∈ L2(Ω) we have vml → v in L2(Ω). According to the second Korn’s
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inequality, for every Ωj we have

∥∥vm+p − vm
∥∥2

H1(Ωj)
≤ C

(
∥∥vm+p − vm

∥∥2

L2(Ωj)
+

∫

Ωj

(
e(vm+p − vm)ik

)2
dx

)
≤

≤ C
(∥∥vm+p − vm

∥∥2

L2(Ωj)
+ E(vm+p − vm)

)
.

The first term in this expression tends to zero because vml → v in L2(Ω), and the second

term tends to zero by the assumption (1.11). It follows that vml → v in H1
e (Ω). Since V is

a closed subspace of
⋂M
j=1H

1(Ωj), we conclude that

v ∈ V,
M∑

j=1

‖v‖2H1(Ωj)
= 1, E(v) = 0.

The latter equality implies that v ∈ Ṽ and that e(v) = 0 in Ωj , j = 1, . . . ,M . Then by

the same argument as in Theorem 2.5 in [34], v ∈ R. Therefore, v ∈ R, v ∈ Ṽ , and
∑M

j=1 ‖v‖H1(Ωj)
= 1. But this contradicts the condition Ṽ ∩ R = {0}. The theorem is

proved.

1.3.3 Extension to fictitious domain

This section opens with the following general result similar to the extension-type theorems,

but in our case it will also be used for homogenization purposes. The solutions of elas-

ticity problems with Robin conditions on yarns (sets Gi1 defined below) are extended to a

connected periodical three-dimensional domain by partially filling the void space (set G2

defined below) with a soft material. The purpose of such extension is to obtain a set which

can be repeated in the out-of-plane direction, so that three-dimensional homogenization re-

sults can be used for the geometries which converge to a plane geometry. This allows us not

only to prove Korn’s inequalities using standard techniques for perforated domains, but also

to use three-dimensional homogenization for the problem, where the limiting geometry is

plane and has a zero thickness.

Note that for geometries with certain symmetry conditions, the homogenization proce-

dure without such extension is possible, see Chapter 3 of [36]. Although a very important

question of convergence with respect to both the stiffness of the soft matrix material and

the period of the structure arises, we do not study this question in this work. After the
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justification of the three-dimensional homogenization for the material with the soft matrix,

the in-plane homogenized properties Ainp are obtained according to

Ainp
ijkl = ε0 lim

δ→0
Ahom
ijkl (δ), i, j, k, l ∈ {1, 2}.

See Section 1.5.1 for more details on this relation. After this section, we imply everywhere

the functions extended according to the results of this section without using δ in the nota-

tion.

Let G = (0;L1) × (0;L2) × (0;h), let G1 be a union of open non-intersecting domains

Gi1, 1 ≤ i ≤ M , such that G1 ⊆ (0;L1) × (0;L2) × (α;β), 0 < α < β < h and that sets

Γ0 = ∂G1∩{x1 = 0} and Γ1 = ∂G1∩{x1 = L1} are non-empty and have a positive Lebesgue

measure. We assume that ∂G1 is a Lipschitzian boundary. Let

∂GN = (0;L1)× {x2 = 0} × (0;h) ∪ (0;L1)× {x2 = L2} × (0;h).

Sets

Sij1 = ∂Gi1 ∩ ∂Gj1, 1 ≤ i ≤M, 1 ≤ j ≤M, i 6= j,

S1 =

i=M,j=M⋃

i 6=j
i=1,j=1

∂Gi1 ∩ ∂Gj1

represent the contact interfaces between the connected components of G1. Let ∂GN1 =

∂G1 \ (Γ0 ∪ Γ1 ∪ S1). We assume that S1 has a positive Lebesgue measure and that G1 is a

connected Lipschitz set.

Consider the following problem





−∇ · (A1e(u)) = f in G1,

u = 0 on Γ0 ∪ Γ1,

A1e(u) · n = 0 on ∂GN1 ,

A1e(u) · n+ = A1e(u) · n− on S1,

A1e(u) · n+ = R1 [u] on S1,

(1.12)

where f ∈ L2 (G1), A1 ∈ T + (G1), R1 ∈M+ (S1).



1.3. DESCRIPTION OF PERIODIC 3D DIRECT PROBLEM 17

Figure 1.3: The textile layer in 3D (on the left) and an element of the geometry used for
the extension.

Let ζ be some small positive number and define

r̂ = min


ζ min

i,j : i 6=j,
Sij1 6=∅

diam
(
Sij1

)
, min

(i1,j1)6=(i2,j2)

S
i1j1
1 6=∅,Si2j21 6=∅

dist
(
Si1j11 , Si2j21

)
, min
i,j : Sij1 6=∅

dist
(
Sij1 , ∂G

)

 ,

i.e. such a number that sets Bij = Sij1 + Br̂, 1 ≤ i ≤ M , 1 ≤ j ≤ M intersect neither

each other, nor ∂G, and that r̂ is small with respect to the size of Sij1 themselves. Let

B =
⋃
i,j : i 6=j B

ij . Define G2 = int (G \G1 \B). A schematic illustration for the geometries

is provided in Figure 1.3.

From the definition of r̂ it follows that G2 is a connected set. Additionally, it is assumed

that its boundary is Lipschitz (the set subtraction of B from a Lipschitz domain is in general

not Lipschitz), so that the standard elasticity problem on G2 can be stated. The boundary

of G2 can be represented, up to some smooth curves, as the following union:

∂G2 = ∂GN ∪ Γ̃0 ∪ Γ̃1 ∪ ∂G12 ∪ ∂GB2 ,

where ∂G12 = ∂G1 ∩ ∂G2 and ∂GB2 = (G \G1) ∩ ∂B.
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Extend the parameters of the problem (1.12) on G2 as follows:

F (x) =




f(x), x ∈ G1,

0, x ∈ G2,
Aδ(x) =




A1(x), x ∈ G1,

δA2(x), x ∈ G2,

where A2 ∈ T + (G) and δ > 0. Consider the following fictitious domain problem:





−∇ · (Aδe(uδ)) = F , in int
(
G1 ∪G2

)
,

uδ = 0 on Γ̃0 ∪ Γ̃1,

Aδe(uδ) · n = 0 on ∂GN2 ∪ ∂GB2 ,
Aδe(uδ) · n+ = Aδe(uδ) · n− on S1,

Aδe(uδ) · n+ = R1
[
uδ
]

on S1,u
δ is periodic w.r.t. x3 with the period h,

(1.13)

where Γ̃0 = {x1 = 0} × (0;L2) × (0;h), Γ̃1 = {x1 = L1} × (0;L2) × (0;h). The cor-

responding variational formulation for (1.12) is: find u ∈ H1 (G1,Γ0 ∪ Γ1) such that

∀v ∈ H1 (G1,Γ0 ∪ Γ1),

∫

G1

A1e(u) : e(v) dx+

∫

S1

〈
R1 [u] , [v]

〉
ds =

∫

G1

〈f ,v〉 dx. (1.14)

For (1.13) it is: find uδ ∈ H1
e#3

(
G1 ∪G2, Γ̃0 ∪ Γ̃1

)
such that ∀v ∈ H1

e#3

(
G1 ∪G2, Γ̃0 ∪ Γ̃1

)

∫

G1∪G2

Aδe(uδ) : e(v)x+

∫

S1

〈
Rδ
[
uδ
]
, [v]

〉
ds =

∫

G1∪G2

〈F ,v〉 dx, (1.15)

where H1
e#3

(
G1 ∪G2, Γ̃0 ∪ Γ̃1

)
is the closure in the H1-norm of the set of functions from

C∞
(
G1, Γ̃0 ∪ Γ̃1

)
∩ C∞

(
G2, Γ̃0 ∪ Γ̃1

)
, periodic with respect to x3 with the period h. In

other words, the Sobolev space of functions, periodic in the third direction and satisfying

the Dirichlet conditions at the x1-sides.

Observe that problem (1.15) can be interpreted as problem (1.14), where the void space

is partially filled with some “weak” material. Further we will also refer to fhis material as

“soft matrix” material. It is crucial that by the repetition of G1∪G2 with respect to the third

axis one arrives at a periodic connected set.

It turns out that for δ sufficiently small, the solution of the extended problem approxi-

mates the solution of the original problem in G1.
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Theorem 2. There exists a unique solution u to problem (1.14) and there exists a unique

solution uδ to problem (1.15). For the difference u− uδ an estimate holds:

∥∥∥u− uδ
∥∥∥
H1
e (G1)

≤ Cδ, (1.16)

where C is a constant independent of δ.

Proof. Existence and uniqueness follow immediately from Corollary (2), because prob-

lems (1.14) and (1.15) are of the type 1.9.

Consider an auxiliary problem





−∇ · (A2e(ua)) = 0 in G2,

ua = 0 on (Γ̃0 \ Γ0) ∩ (Γ̃1 \ Γ1),

ua = u on ∂G12,

A2e(ua) · n = 0 on ∂GN2 ∪ ∂GB2 ,
ua is periodic w.r.t. x3 with period h.

The uniqueness and the existence of the solution to this problem are standard. By the

standard a priori estimate, the following holds:

‖ua‖H1(G2) ≤ C1 ‖u‖H1/2
e (∂G12)

. (1.17)

Consider the function ũ ∈ H1
e#3(G1 ∪G2, Γ̃0 ∪ Γ̃1),

ũ =




u(x), x ∈ G1,

ua(x), x ∈ G2.
(1.18)

Consider w = uδ − ũ ∈ H1
e#3(G1 ∪G2, Γ̃0 ∪ Γ̃1). Equations (1.14) and (1.15) yield

∫

G1∪G2

Aδe(w) : e(v) dx +

∫

S1

〈
R1 [w] , [v]

〉
ds = −δ

∫

G2

A2e(ua) : e(v) dx (1.19)

for any v ∈ H1
e#3(G1 ∪G2, Γ̃0 ∪ Γ̃1). By the boundedness of A2 and (1.17),

∣∣∣∣δ
∫

G2

A2e(ua) : e(v) dx

∣∣∣∣ ≤ δC2 ‖ua‖H1(G2) ‖v‖H1(G2) ≤ δC1C2 ‖u‖H1/2
e (∂GN1 )

‖v‖H1(G2) .
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Let us choose v = w in G. We get from (1.19) and the last estimate

∫

G1∪G2

Aδe(w) : e(w) dx+

∫

S2

〈
R1 [w] , [w]

〉
ds ≤ δC1C2 ‖u‖H1/2

e (∂G12)
‖w‖H1(G2) .

Note that w satisfies homogeneous boundary and periodicity conditions everywhere at the

boundary of the problem (we mean Γ̃0, Γ̃1, ∂GN and the sides (0;L1)× (0;L2)× {x3 = 0}
and (0;L1) × (0;L2) × {x3 = h}, not the interfaces). This allows us to apply the trace

theorem with respect to G1, G2 and ∂G12 to estimate ‖w‖G2
by ‖w‖G1

:

‖w‖H1(G2) ≤ C0 ‖w‖H1/2
e (∂G12)

≤ C0C1 ‖w‖H1/2
e (∂GN1 )

≤ C0C1C3 ‖w‖H1
e (G1) .

Finally,

∫

G1

A1e(w) : e(w) dx ≤
∫

G1∪G2

Aδe(w) : e(w) dx+

∫

S1

〈
R1 [w] , [w]

〉
ds ≤

≤ δC0C
2
1C2C3 ‖u‖H1/2

e (∂G12)
‖w‖H1

e (G1) .

Applying Korn’s inequality, we get

C4 ‖w‖2H1
e (G1) ≤ δC0C

2
1C2C3 ‖u‖H1/2

e (∂GN1 )
‖w‖H1

e (G1) .

The assertion of the theorem follows.

1.3.4 ε-scaled Korn’s inequality

In this section we deal with the solutions extended using the soft matrix mentioned in the

previous section. Korn’s inequalities obtained in this section use the soft matrix material as

a connected perforated domain used in [11, 34] to obtain Korn’s inequalities with constants

not depending on ε.

For homogenization purposes one needs the estimate of the type (1.10) for ε-scaled

domains with the constant in the inequality not depending on ε. In this section the corre-

sponding result is formulated.

Let Ωm, m = 1, . . . , q be 1-periodic sets in R3 such that

1. Γmn = ∂Ωm ∩ ∂Ωn are piecewise-smooth Lipschitz surfaces (m 6= n); Γmn ⊂ Bmn,

where Bmn are open connected sets in R3 such that for any l = 1, . . . , q set
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(a) The cylinders, the layer and parts of the sets Ω1

and Ω2 representing fibers.
(b) extension from the white cubes to the black
cubes

Figure 1.4: Sets used in the extension lemma

int
((
R3 \ (B ∪ Ω)

)
∪ Ωl

)
is a 1-periodic domain with Lipschitz boundary,

B =
⋃q
m,n=1B

mn, Ω =
⋃q
m=1 Ωm;

2. for any l = 1, . . . , q, int
((
Q \ (B ∪ Ω)

)
∪
(
Q ∩ Ωl

))
is a domain with Lipschitz bound-

ary, Q = (0; 1)3;

3. R3 \ (B ∪ Ω) contains
(⋃+∞

i,j=−∞Cij
)
∪
(⋃+∞

k=−∞ Lk
)
, where Cij are cylinders

{
x ∈ R3 : (x1 − i)2 + (x2 − j)2 < r2

}
with some positive r, Lk are layers

{
x ∈ R3 : |x3 − k| < r

}
.

Lemma 1. Let I, J , K be positive integers. For any l ∈ {1, . . . , q} there exists an extension of

a vector-valued function u ∈ H1
(
int
((
QIJK \ (B ∪ Ω)

)
∪
(
Ωk ∩QIJK

)))
to

ũ ∈ H1
((
QIJK \B

)
∪ (Ωk ∩QIJK)

)
and to ˜̃u ∈ H1(QIJK) such that

∥∥∥∇˜̃u
∥∥∥

2

L2(QIJK)
≤ C1 ‖∇ũ‖2L2(QIJK\B∪(Ω∪QIJK)) ≤ C2 ‖∇u‖2L2(int((QIJK\(B∪Ω))∪(Ωl∩QIJK))) ,

∥∥∥e
(
˜̃u
)∥∥∥

2

L2(QIJK)
≤ C1 ‖e(ũ)‖2

L2((QIJK\B)∪(Ω∩QIJK)) ≤

≤ C2 ‖e(u)‖2
L2(int((QIJK\(B∪Ω))∪(Ωl∩QIJK))) ,
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where Q = (0; I)× (0; J)× (0;K), C1 and C2 are independent of u, I, J , K.

Remark 3. Sets Ωi correspond to threads, Γmn correspond to the contact interfaces between

the threads, Q \ (B ∪ Ω) corresponds to a set occupied with the soft matrix material in a

single unit cube. Finally, set QIJK \(B∪Ω) is a connected perforated domain filled with the

soft material. Lemma 1 means that it is possible to extended displacement fields from the

set occupied with the soft material to the whole volume with the corresponding bilateral

estimates on the H1-norms of the functions. The constants in the estimates do not depend

on I, J,K, i.e. the relation of the size of the domain to the size of its single periodicity cell

does not affect the constants in the bilateral estimates of the norms. Later in Proposition 1

this fact will be expoited to prove Korn’s inequality with the constant independent of ε.

Proof. The extension is constructed first in the layer (R2 × (0; 1)) ∩ QIJK (in the layers

R2 × (k; k + 1) it is done in the same way). We proceed in 2 steps: we call “black” cubes

qi j = (i; i + 1) × (j; j + 1) × (0; 1) with even i + j, and “white” all other cubes with odd

i + j. At the first step we construct an extension from int
((
qi j \

(
B ∪ Ω

)))
∪
(
Ωl ∩ qi j

)
to

((
qi j \B

)
∪ (Ω ∩ qi j)

)
and then to qi j for even i + j as in Lemma 4.1 from [34]. At the

second step we construct the extension from

int
((
qi j \ (B ∪ Ω)

)
∪
(
Ωl ∩ qi j

))
∪
(
(qi−1 j ∪ qi+1 j ∪ qi j−1 ∪ qi j+1) \B∪

∪ (qi−1 j ∪ qi+1 j ∪ qi j−1 ∪ qi j+1) ∩ Ω
)

to (qi j ∪ qi−1 j ∪ qi+1 j ∪ qi j−1 ∪ qi j+1) \B ∪ (qi j ∪ qi−1 j ∪ qi+1 j ∪ qi j−1 ∪ qi j+1) ∪Ω and

then to qi j ∪ qi−1 j ∪ qi+1 j ∪ qi j−1 ∪ qi j+1 for odd i + j; if i (j) equals 0 or I (J), then

the cubes qi−1 j , qi+1 j , qi j−1, qi j+1 with the values of subscripts out of [0; I] (or [0; J ]) are

omitted.

For any set F denote by Fε its contraction Fε =
{
x ∈ R3 :

x

ε
∈ F

}
. Consider the space

H̃1
0 of vector-valued functions u defined in (Q \ Bε) ∪ (Q ∩ Ωε) vanishing for x1 = 0 and

such that for any l ∈ {1, . . . q}, u ∈ H1
(
(Q \Bε) ∪ (Q ∩ Ωε

l )
)
.

Proposition 1. There exist C3, C4 ≥ 0 independent of ε, such that ∀u ∈ H̃1
0 ,

‖u‖2
L2((Q\Bε)∪(Q∩Ωε)) ≤ C3 ‖∇u‖2L2((Q\Bε)∪(Q∩Ωε)) ≤ C4 ‖e(u)‖2

L2((Q\Bε)∪(Q∩Ωε)) . (1.20)

Here ε is sufficiently small.



1.3. DESCRIPTION OF PERIODIC 3D DIRECT PROBLEM 23

Proof. Make the change of variables y = x/ε and apply extension Lemma 1 from

H1
(
(Q1/ε \B) ∪ (Q1/ε ∩ Ωl)

)
to H1

(
Q1/ε

)
, where Q1/ε = (0, 1/ε)3. Then we immediately

obtain the estimates of the proposition by contraction.

1.3.5 Homogenization of 3D direct problem

This section opens with important corollaries from statements of Section 1.3.1. Then the

homogenized problem is described and then the analog of Theorem 6.1 and Theorem 7.1

from [23], which characterize the convergence of the solutions of the ε-problems to the

solution of the homogenized problem, is stated and proved. After these two corollaries,

all estimates and all problems in this section imply that the fictitious domain technique

described in Section 1.3.3 is applied. In other words, we fix some δ > 0 and imply that

all domains and elasticity problems are modified according to (1.13). For all sets from

Section 1.3 with symbol “O” in the notation, the corresponding connected modifications

are denoted similarly with symbol “Ω” instead of “O”. At the same time there will be no δ

in the notation for the elasticity tensor, i.e. we re-define Aε and f ε to be the corresponding

extensions of Aε and f ε from Section 1.3 from Oε onto Ωε.

Corollary 1. Inequality (1.10) holds for any u ∈ H1
e (Oε, ∂OεD).

Proof. Take H1
e (Oε, ∂OεD) as V . Observe that in this case Ṽ coincides with H1(Ωc, ∂ΩD) ≡

H1(Ωc) ∩ {u : u = 0 on ∂ΩD}. Since H1(Ωc) ∩ R = {0}, Theorem 1 is applicable and the

corollary is proved. For details on spaces H1(Ω, γ) see [34].

Corollary 2. Problem (1.9) has a unique solution for any ε and f ε ∈ L2(Oε).

Proof. The proof is similar to classical proofs in mathematical elasticity except that Korn’s

inequality now has form (1.10) and the bilinear form on the left-hand side of (1.9) includes

the boundary term. The coercivity and boundedness of the bilinear form follows from

conditions (1.7) and (1.8). The equivalence of the induced norm to the norm of H1
e (Oε) is

proved in Lemma 3.6 in [23]. Finally, the existence and uniqueness in H1
e (Oε) follow from

Lax-Milgram theorem.

Corollary 3. There exists H1-extension of ûε of the solution uε of problem (1.9) to Ωε from

Oε, such that

‖ûε‖H1(Ωε) ≤ C ‖uε‖H1
e (Oε) ,
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where C > 0 depends only on Oε.

Proof. The statement follows directly from Theorem 2.

For homogenization purposes, we need a straightforward modifications of Theorem (2)

for some fixed δ to have a material connected along the direction of the axis x3 and having

a coercive elasticity tensor. The potentially important question of the limiting behaviour of

solutions with respect to both δ → 0 and ε→ 0 is not studied in this work.

Proposition 2. Let uε be the solution of problem (1.9) There exists CH > 0 independent of ε

such that

‖uε‖H1(Ωε) ≤ CH ‖f ε‖L2(Ωε) .

Proof. The proposition follows directly from Proposition 1 and coercivity of the bilinear

form of problem (1.9).

Consider the following problem on the encompassing domain Ω3D

∫

Ω3D

Ahome(u0) : e(v) dx =

∫

Ω3D

〈
fhom,v

〉
dx, ∀v ∈ H1(Ω3D, ∂Ω3D

D ) (1.21)

for u0 ∈ H1(Ω3D, ∂Ω3D
D ). The corresponding strong form is





−∇ · (Ahome(u0)) = fhom in Ω3D,

u0 = 0 on ∂Ω3D
D ,

Ahome(u0)n(x) = 0 on ∂Ω3D
N .

By ΩY denote the 1-scaled periodicity cell of Ωε, and let SY to be the contact interfaces

between the connected components of ΩY . The homogenized tensor Ahom is defined by

Ahom
ijkl =

∫

ΩY

eij : A(e(wkl) + ekl) dy =

=

∫

ΩY

A(e(wij) + eij) : (e(wkl) + ekl) dy +

∫

SY

R [wij ] [wkl] ds,

(1.22)

where

R(x) = rnn(x)⊗ n(x) + rt(I − n(x)⊗ n(x)), rn > 0, rt > 0,
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eij are the unit basis vectors in the space of deformation gradients. In three dimensions

they are

e11 =




1 0 0

0 0 0

0 0 0


 , e12 = e21 =




0 1/2 0

1/2 0 0

0 0 0


 , e13 = e31 =




0 0 1/2

0 0 0

1/2 0 0


 ,

e22 =




0 0 0

0 1 0

0 0 0


 , e23 = e32 =




0 0 0

0 0 1/2

0 1/2 0


 , e33 =




0 0 0

0 0 0

0 0 1


 .

The functionswij ∈ H1
# (ΩY ), i, j = 1, . . . , 3 are the solutions of the following cell problems

∫

ΩY

(e(wij) + eij) : Ae(v) dx+

∫

SY

〈R [wij ] , [v]〉 ds = 0 ∀v ∈ H1
# (ΩY ) (1.23)

the corresponding strong form is





−∇ · (A(e(wij) + eij)) = 0 in ΩY

A(e(wij) + eij) · n+ = A(e(wij) + eij) · n− on SY ,

A(e(wij) + eij) · n+ = R [wij ] on SY ,

(1.24)

whereH1
# (ΩY ) is the closure of Y -periodic functions fromC∞ (ΩY ) in the norm ofH1 (ΩY ).

Introduce a closed subspace of functions with zero average from H1
# (ΩY ):

H1
#0 (ΩY ) =

{
u ∈ H1

# (ΩY ) :

∫

ΩY

u dx = 0

}
.

Theorem 3. There exists a unique solution of problem (1.23) for any i, j = 1, . . . , 3.

Proof. The idea of the proof is to apply Theorem 1 to obtain Korn’s inequality for the prob-

lem (1.23). Then the theorem follows by the application of Lax-Milgram theorem.

Transform the left-hand side of (1.23) into a bilinear form with respect to the unknown

function:

∫

ΩY

(e(wij) + eij) : Ae(v) dx+

∫

SY

〈R [wij ] , [v]〉 ds =

∫

ΩY

eij : Ae(v) dx+ a#(wij ,v),

a#(wij ,v) =

∫

ΩY

e(wij) : Ae(v) dx+

∫

SY

〈R [wij ] , [v]〉 ds.
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This bilinear form is coercive by conditions (1.7) and (1.8).

Observe that

{
v : v ∈ H1

#(ΩY ), [v] = 0 on SY ,
∫

ΩY

v dx = 0

}
= H1

#0

(
int
(
ΩY

))
,

here it is important that int
(
ΩY

)
is a connected open set which connects the opposite sides

of Y . Therefore this space is a classical space of periodic functions with zero average. It is

easy to see that H1
#0

(
int
(
ΩY

))
∩R = {0}. We can use H1

#0

(
int
(
ΩY

))
as Ṽ and H1

#0 as V

in Theorem 1 to prove the Korn’s inequality. The statement is proved.

In order to extend the results of [23] to elasticity, the Poincare inequality formulated in

Lemma 3.3 and Proposition 3.4 therein have to be replaced with the corresponding Korn’s

inequality. It is provided by the following

Lemma 2. There exists CP > 0 independent of ε such that for any u ∈ H1 (Ωε)

‖u‖2H1(Ωε) ≤ CP
(
‖e(u)‖2H1(Ωε) + ε−1 ‖[u]‖2Sε

)
. (1.25)

Proof. The lemma follows from Proposition 1 by an addition of a non-negative term

ε−1 ‖[u]‖2Sε to the right-hand side of the inequality.

Remark 4. It might look like it is not important, which term to add to the right-hand side

of (1.20). In general case where the fictitious domain technique is not used, this power

crucially affects the convergence with respect to ε. It follows from the scaling techniques

used in papers [23, 11] that the choice of ε−1 as a power is the only case where the con-

tact interface terms affect the properties of the homogenized medium without ruining the

convergence of the solutions of ε-problems to the solution of the homogenized problem.

From now on, we deal with the fictitious domain modifications of problems (1.6)

and (1.9):





−∇ ·
(
Aε(x)e(uε(x))

)
= f ε(x) in Ωε,

uε = 0 on ∂Ωε
D,

Aεe(uε) · n(x) = 0 on ∂Ωε
N ,

Aεe(uε) · nε+ = Aεe(uε) · nε− on Sε,

Aεe(uε) · nε+ = ε−1Rε [uε] on Sε

(1.26)
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and its corresponding weak formulation: find uε ∈ H1
e (Oε, ∂OεD) such that

∫

Ωε
Aεe(uε) : e(v) dx+

1

ε

∫

Sε
〈Rε [uε] , [v]〉 ds = lε(v),

lε(v) =

∫

Ωε
〈f ε,v〉 dx,

(1.27)

Further, Theorem 4.1 of [23] in our setting is formulated as follows:

Theorem 4. There exists CK > 0 independent of ε such that for any solution uε of (1.27) the

following inequality is true:

‖e(uε)‖2H1(Ωε) + ε−1 ‖[uε]‖2L2(Sε) ≤ CK ‖f ε‖2L2(Ωε) . (1.28)

Proof. The theorem is proved by the standard application of Cauchy-Schwarz inequality to

weak formulation (1.27) for v = uε.

Remark 5. In the homogenization theory for perforated domains it is common to divide

the right-hand side of (1.22) by the volume of the material in the periodicty cell, see the

expression for the homogenized tensor of Section 1.1 in Chapter II of [34]. We do not have

this fraction in the expression for the homogenized tensor, but the corresponding multiplier

appears in the limit of the right-hand side volume force. This causes no significant changes

in proofs.

The main homogenization result used in this work is the modification of Theorem 6.1

and Theorem 7.1 from [23] for the case of elasticity:

Theorem 5. Let uε ∈ H1 (Ωε, ∂Ωε
D) be a sequence of solutions of (1.27) and assume that

lim
ε→0

sup
v∈H1(Ωε,∂Ωε)
‖v‖=1

∫

Ωε

〈
fhom − |ΩY |f ε,v

〉
dx→ 0,

where |ΩY | is the volume of ΩY . Let u0 ∈ H1
(
Ω3D,Ω3D

D

)
be the solution of (1.21). Then

uε → u0 strongly in L2
(
Ω3D

)
,

1ΩεA
εe(uε)→ Ahome(u0) weakly in L2

(
Ω3D

)
,

∥∥e(uε)− e(u0)− ey(c0)
∥∥
L2(Ωε)

→ 0,
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where

c0(x,y) =
3∑

i,j=1

e(u0(x))ijwij(y).

Proof. The proof repeats the proofs of Theorems 6.1 and 7.1, but with the Poincare inequal-

ity replaced with the Korn’s inequality (1.25) and boundedness result (1.28).

1.4 Continuity with respect to the geometry variations

In this section it is proven that the homogenized tensor, the solutions of the cell prob-

lems and the ε-problems are continuous with respect to geometrical parameters g. All the

quantities, i.e. the elasticity tensor, the Robin condition matrix, the right-hand side and the

solutions of the elasticity problems become dependent on g. Everywhere in this section it is

assumed that g ∈ U2
g ⊂ R2, where U2

g is some compact set.

Note that in this section functions defined on different domains have to be compared,

and it is not possible to simply estimate the norm of the difference. Various approaches

addressing this issue exist. For our purposes, it is enough to “transport” the functions onto

some reference domain and then to work with the norm of the difference of the “trans-

ported” functions. This technique is called function space parametrization, see Section 2.2

of Chapter 10 in [13]. Namely, we define Ω∞g0
= Ωµ

∞(g0) to be the non-scaled infinite

periodic reference domain (see Section 1.2.2 for the definition of Ωµ
∞(g0)) and for any

g ∈ U2
g define the orientation-preserving diffeomorphism T g such that it transforms Ω∞g0

into Ωg = Ωµ
∞(g) together with the contact interfaces:

T g (Ωµ
∞(g0)) = Ωµ

∞(g), T g (Sµ∞(g0)) = Sµ∞(g). (1.29)

Under the action of this diffeomorphism, the integrals in weak formulations and expres-

sions for the homogenized tensor change their form according to the standard formulas for

various cases of integration by substitution. These formulas can be found in Section 4 of

Chapter 9 in [13] and further in this section.

Remark 6. The notation for transformation of functions deserves clarification. For some

point x ∈ Ω∞g0
denote its image T g(x) by y. Assume a three-dimensional field ug is defined

on Ωg. By the substitution of T g(x) in ug, we arrive at a new function ug(T g(x)) depending
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on x. Following [13], we denote this function by ug ◦T g. It is obvious that ug ◦T g ◦T−1
g ≡

ug. In the sequel we will actively use Jacobi matrices of ug and ug ◦ T g. For consistency

with the classical notation, the Jacobians of the functions from elasticity will be denoted by

the symbol ∇, for other quantities the symbol D will be used. Jacobians are always taken

with respect to the argument of the last function in the superposition, i.e.

∇ug =




∂ug,1(y)

∂y1

∂ug,1(y)

∂y2
· · · ∂ug,1(y)

∂yn
∂ug,2(y)

∂y1

∂ug,2(y)

∂y2
· · · ∂ug,2(y)

∂yn
...

...
. . .

...
∂ug,n(y)

∂y1

∂ug,n(y)

∂y2
· · · ∂ug,n(y)

∂yn




,

the derivative is taken with respect to the argument of ug, and

∇ (ug ◦ T g) =




∂ug,1(T g(x))

∂x1

∂ug,1(T g(x))

∂x2
· · · ∂ug,1(T g(x))

∂xn
∂ug,2(T g(x))

∂x1

∂ug,2(T g(x))

∂x2
· · · ∂ug,2(T g(x))

∂xn
...

...
. . .

...
∂ug,n(T g(x))

∂x1

∂ug,n(T g(x))

∂x2
· · · ∂ug,n(T g(x))

∂xn




,

the derivative is taken with respect to the argument of T g. The chain rule applies here and

has the following form:

∇(ug ◦ T g)(x) = ∇ug(T g(x))DT g(x),

where “∇ug(T g(x))” means the Jacobian ∇ug at the point T g(x), not the chain derivative

with respect to x. The arguments’ parentheses (x) and (T g(x)) will often be omitted.

Remark 7. The diffeomorphisms T g can be defined explicitly using the velocity method,

see Chapter 4 of [13]. These fields can be found for the geometric constructions of Sec-

tion (1.2) explicitly. Since this material is very elementary and cumbersome, we omit it.

In the sequel we assume that all the objects corresponding to our geometries set have the

proper smoothness properties.

Assumption 1. The family of diffeomorphisms T g satisfies the following conditions:
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1. T g0
= I,

2. ∀ g ∈ U2
g , T g ∈W 1,∞(Ω∞g0

),

3. ∀ g ∈ U2
g , Qg = (T g)

−1 ∈W 1,∞(Ω∞g0
),

4. ∀ g1, g2 ∈ U2
g ,
∥∥T g1

− T g2

∥∥
W 1,∞ → 0, as g1 → g2,

5. T g is periodic with the same periodicity properties as Ωg.

1.4.1 Continuity of the homogenized tensor and homogenized displacements

In this section it is proved that the solutions of the cell problems (1.23) and the form (1.22)

are continuous with respect to the geometrical parameters g. As in the cell problems and in

the expression for the homogenized tensor, here we deal with a single periodicity cell, not

with the whole periodic domain. This is indicated by the use of Ωg,Y and Sg,Y as domains

instead of Ωg and Sg.

Recall the following elementary domain and integral transformation rules: for any

diffeomorphism T ∈ W 1,∞(Ωg0,Y ), any volume field f ∈ L1(Ωg0,Y ), any surface field

k ∈ L1(Sg0,Y ), and any differentiable volume field h ∈W 1,1(Ωg0,Y ),

• the volume integral transformation rule is:

∫

T (Ω)
f(y) dy =

∫

Ω
f ◦ T (x) |det (DT (x))| dx, (1.30)

• the surface integral transformation rule is:

∫

T (Γ)
k(sy) dsy =

∫

Γ
k ◦ T (sx) |cof (DT (sx))ν| dsx,

• the function’s gradient and symmetrized gradient transformation rule is:

∇h ◦ T = ∇ (h ◦ T ) (DT )−1,

e(h) ◦ T =
1

2

(
∇ (h ◦ T ) (DT )−1 +

(
∇ (h ◦ T ) (DT )−1

)T)
= eT (h) ◦ T , (1.31)

where for any invertible M ∈ Rn×n, cof (M) ≡ det (M)M−T , and ν is the unit

normal vector to the surface (due to the structure of the integrals, in this section it
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is not important, whether it is an outward or inward unit normal vector). We will

also use the notation M−T , meaning the transpose of the inverse for any invertible

M ∈ Rn×n.

Consider some g ∈ U2
g such that g 6= g0. By the application of (1.30)–(1.31) it is

possible to transform problems (1.23) and the entries of the homogenized tensor from Ωg,Y

to Ωg0,Y , whereby all fields f defined on Ωg,Y correspond to the fields f ◦ T g on Ωg0,Y :

∫

Ωg,Y

(e(wgij(y)) + eij) : Ag · e(v(y)) dy +

∫

Sg,Y

〈
Rg(sy)

[
wgij(sy)

]
, [v(sy)]

〉
dsy =

=

∫

Ωg0,Y

(eT g(wgij + qgij)) ◦ T g : Ag ◦ T g · eT g(v) ◦ T g |det (DT g)| dx+

+

∫

Sg0,Y

〈
Rg ◦ T g

[
wgij ◦ T g

]
, [v ◦ T g]

〉
|cof (DT g(sx))ν| dsx = 0,

(1.32)

for any v ∈ H1
# (Ωg,Y ), where qgij ∈ H1 (Ωg) is any function continuous with respect to g

such that e(qgij) = eij , i, j = 1, . . . , 3. Note that the definition of H1
# for all values of g

is the same. Moreover, due to the periodicity assumption on T g, v ∈ H1
#(Ωg,Y ) implies

v ◦ T g ∈ H1
#(Ωg0,Y ). For the integral for the homogenized coefficients one arrives at

Ahom
g ijkl =

∫

Ωg,Y

Ag(y)(e(wgij) + eij) : (e(wgkl) + ekl) dy+

+

∫

Sg,Y

〈
Rg(sy)

[
wgij(sy)

]
,
[
wgkl(sy)

]〉
dsy =

=

∫

Ωg0,Y

Ag ◦ T g · eT g(wgij + qgij) : eT g(wgkl + qgkl) |det (DT g)| dx+

+

∫

Sg0,Y

〈
Rg ◦ T g

[
wgij ◦ T g

]
,
[
wgkl ◦ T g

]〉
|cof (T g)ν| dsx.

(1.33)

The continuity of the homogenized tensor is proved in two steps: show the continuity

of the solution of (1.32) with respect to g, and then the continuity of the form (1.33) with

respect to wgij , which, in turn, depends continuously on g.

Assumption 2. The coefficients Ag,Rg,fg are continuous with respect to g in the following
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sense:

∥∥Ag ◦ T g −Ag0

∥∥
L∞(Ωg0,Y ) → 0,

∥∥Rg ◦ T g −Rg0

∥∥
L∞(Sg0,Y ) → 0,

∥∥∥fg ◦ T g − fg0

∥∥∥
L2(Ωg0,Y )

→ 0

as g → g0.

Assumption 3. In the sequel we will need Theorem 1 formulated for domains depending on g

with the constant C depending continuously on g.

Let Ωgi = T g(Ωi), i = 1, . . . ,M , where Ωi are the domains satisfying the conditions of

Theorem 1. By analogy with the theorem, define Ωg = T g(Ω), Γg = T g(Γ), V g, rigid dis-

placements space R, and Ṽ g = {v ∈ V g : [v] = 0 on Γg}. Assume that Ṽ g ∩R = ∅. Then by

Theorem 1 every v ∈ V g satisfies the modified Korn’s inequality

M∑

j=1

‖v‖2H1(Ωgi ) ≤ CgEg(v), where Eg(v) =

∫

Ωg
e2(v) dx+

∫

Γg
[v]2 ds. (1.34)

Additionally, we assume that Cg ∈ C
(
U2
g

)
.

Theorem 6. Let wgij be the solution of (1.32) and the transformation diffeomorphisms satisfy

conditions of Assumption 1. Then wgij ◦ T g ∈ C(U2
g , H

1
#

(
Ωg0,Y

)
).

Proof. In (1.32) transfer all known terms to the right-hand side. This yields the following

problem:

Ag(wgij ◦ T g,v ◦ T g) +Rg(wgij ,v ◦ T g) = fgij(v ◦ T g), ∀v ∈ H1
#Ωg,Y ,

Ag(u,v) =

∫

Ωg0,Y

Ag ◦ T g ·
1

2

(
∇u(DT g)

−1 +
(
∇u(DT g)

−1
)T)

:

:
1

2

(
∇v(DT g)

−1 +
(
∇v(DT g)

−1
)T)

|det (DT g)| dx,

Rg(u,v) =

∫

Sg0,Y

〈Rg ◦ T g [u] , [v]〉 |cof (DT g)ν| dsx,

fgij(v) = −
∫

Ωg0,Y

Ag ◦ T g ·
1

2

(
∇
(
qgij ◦ T g

)
(DT g)

−1 +
(
∇
(
qgij ◦ T g

)
(DT g)

−1
)T)

:

:
1

2

(
∇v(DT g)

−1 +
(
∇v(DT g)

−1
)T)

|det (DT g)| dx.
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Consider g1 → g2. It is straightforward to verify that Assumption 1 and Assumption 2

guarantee the following relations:

sup

v∈H1(Ωg0,Y ),
‖v‖=1

∥∥∥∥(∇v(DT g2)
−1

+
(
∇v(DT g2)

−1
)T)

−
(
∇v(DT g1)

−1
+
(
∇v(DT g1)

−1
)T)∥∥∥∥→0.

‖Ag1◦T g1 |det(DT g1)|−Ag2◦T g2 |det(DT g2)|‖L(S+(S+(Ωg0,Y )),S+(S+(Ωg0,Y )))→0,

sup
ν : ‖ν‖=1

‖Rg1◦T g1 |cof(DT g1)ν|−Rg2◦T g2 |cof(DT g2)ν|‖L(L2(Sg0,Y
),L2(Sg0,Y

))→0,

∥∥∥|det(DT g1)|Ag1◦T g1 ·eT g1 (q
g1
ij )◦T g1−|det(DT g2)|Ag2◦T g2 ·eT g2 (q

g2
ij )◦T g2

∥∥∥
S+(Ωg0,Y )

→0.

These, in turn, guarantee that the bilinear form Bg(u,v) = Ag(u,v) +Rg(u,v) is itself

continuous with respect to g:

sup
u,v∈H1(Ωg0,Y ),
‖u‖=‖v‖=1

∣∣(Bg1
− Bg2

)(u,v)
∣∣→ 0 as g1 → g2. (1.35)

Consider the coercivity constant cB,g, defined as

cB,g = inf
v∈H1

#0(Ωg0,Y )
‖v‖=1

Bg(v,v).

Let us prove that this quantity is bounded from below by some positive number not de-

pending on g. Observe that for any u ∈ H1
#0 (Ωg,Y ), Bg(u ◦ T g,u ◦ T g) ≡ Eg(u), the

Korn’s inequality (1.34) is applicable (see the proof of Theorem 3). Together with uniform

non-degeneracy of DT g by Assumption 1, this delivers cB,g > 0 for any fixed g. For any

v ∈ H1
#0

(
Ωg0,Y

)
one arrives at the same result by considering u = v ◦ T g ∈ H1

#0 (Ωg,Y ).

We obtain that for any fixed g, cB,g > 0.

Further, consider the uniform coercivity constant

cinf = inf
g∈U2

g

cB,g > 0.

By the Assumption 1 and Assumption 3, cB,g is continuous with respect to g. But due to the
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compactness of U2
g , there exists ginf ∈ U2

g such that

cinf = cB,ginf
,

but the latter is positive. Thus, the uniform coercivity of Bg is proven.

The boundedness of Bg is proven in the similar way, but instead of Korn’s inequality the

trace theorem should be used.

Therefore, Bg is uniformly coercive and bounded. Since functions wgij are the solu-

tions of

Bg(wgij ◦ T g,v) = fgij(v) ∀v ∈ H1(Ωg0,Y ), (1.36)

where fgij are bounded by the same continuity-compactness argument, we conclude that

wgij ◦ T g is a uniformly bounded family of functions. By Assumption 1 this implies that wgij
is also a uniformly bounded family of functions.

Finally, let wg1
ij and wg2

ij be the solutions to (1.36) for g = g1 and g = g2, respectively.

Subtract the corresponding transported weak formulations:

(f
g1
ij − f

g2
ij )(v) = Bg1

(w
g1
ij ◦ T g1

,v)− Bg2
(w

g2
ij ◦ T g2

,v) =

= Bg1
(w

g1
ij ◦ T g1

,v)− Bg2
(w

g1
ij ◦ T g2

,v) + Bg2
(w

g1
ij ◦ T g1

,v)− Bg2
(w

g2
ij ◦ T g2

,v) =

= (Bg1
− Bg2

)(wg1
ij ◦ T g1

,v) + Bg2
(w

g1
ij ◦ T g1

−wg2
ij ◦ T g2

,v) ∀v ∈ H1
(
Ωg0,Y

)
.

In the latter estimate we can put v = w
g1
ij ◦ T g1

−wg2
ij ◦ T g2

and obtain

cinf

∥∥∥wg1
ij ◦ T g1

−wg2
ij ◦ T g2

∥∥∥
2

H1(Ωg0,Y )
+ (Bg1

−Bg2
)(w

g1
ij ◦T g1

,w
g1
ij ◦T g1

−wg2
ij ◦T g2

) ≤

≤ Bg2
(w

g1
ij ◦ T g1

−wg2
ij ◦ T g2

,w
g1
ij ◦ T g1

−wg2
ij ◦ T g2

)+

+ (Bg1
− Bg2

)(wg1
ij ◦ T g1

,w
g1
ij ◦ T g1

−wg2
ij ◦ T g2

) = (f
g1
ij − f

g2
ij )(w

g1
ij ◦ T g1

−wg2
ij ◦ T g2

).

As g1 → g2, the term (Bg1
− Bg2

)(wg1
ij ◦ T g1

,w
g1
ij ◦ T g1

−wg2
ij ◦ T g2

) tends to zero by the

continuity of Bg (1.35) and the uniform boundedness of wgij ◦ T g. The right-hand side

(f
g1
ij − f

g2
ij )(w

g1
ij ◦ T g1

−wg2
ij ◦ T g2

) tends to zero due to the continuity of fgij .

Thus, by letting g1 → g2 we arrive at the statement of the theorem.

Theorem 7. Let the transformation diffeomorphisms satisfy conditions of Assumption 1. Then
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Ahom
g ∈ C(U2

g , T +) is uniformly coercive and bounded, i.e.

∃chom
inf ∈ R, chom

inf > 0: ∀g ∈ U2
g , A

hom
g m : m ≥ chom

inf m : m ∀m ∈ S+,

∃Chom
sup ∈ R, Chom

sup > 0: ∀g ∈ U2
g , A

hom
g m : m ≤ Chom

sup m : m ∀m ∈ S+.
(1.37)

Proof. The continuity can be proven by the same argument as in the previous theorem by

showing the continuity of the functions under the integral signs in (1.33).

The symmetry and positivity properties follow from the symmetry of the forms of (1.33)

and from the standard homogenization results, which can be applied right after it is proven

that the bilinear form of the cell problem is coercive and positive-definite.

The uniform coercivity and boundedness are proved by the continuity and compactness

argument in the same way as in Theorem 6.

Finally, consider g-dependent form of problem (1.21):

u0
g ∈ H1

(
Ω3D, ∂Ω3D

D

)
:

∫

Ω3D

Ahom
g e(u0

g) : e(v) dx =

=

∫

Ω3D

〈
fhom
g ,v

〉
dx ∀v ∈ H1

(
Ω3D, ∂Ω3D

D

)
. (1.38)

Theorem 8. Assume the conditions of Theorem 7 are true. Then the solution u0
g of prob-

lem 1.38 is continuous with respect to g, i.e. u0
g ∈ C

(
U2
g , H

1
(
Ω3D, ∂Ω3D

D

))
.

Proof. Consider arbitrary g1 and g2 from U2
g . By subtraction of weak formulation (1.38) for

g = g2 from the one for g = g1 and addition-subtraction of the term
∫

Ω3D A
hom
g2

e(u0
g1

) : e(v) dx, one arrives at

∫

Ω3D

(
Ahom
g1
−Ahom

g2

)
e(u0

g1
) : e(v) dx+

∫

Ω3D

Ahom
g2

e(u0
g1
− u0

g2
) : e(v) dx =

=

∫

Ω3D

〈
fhom
g1
− fhom

g2
,v
〉
dx, ∀v ∈ H1

(
Ω3D, ∂Ω3D

D

)
.

Put v = u0
g1
− u0

g2
and use estimate 1.37 and standard Korn’s inequality:

chom
inf

∥∥∥u0
g1
− u0

g2

∥∥∥
2

H1(Ω3D)
≤
∫

Ω3D

Ahom
g2

e(u0
g1
− u0

g2
) : e(u0

g1
− u0

g2
) dx =

=

∫

Ω3D

〈
fhom
g1
− fhom

g2
,u0
g1
− u0

g2

〉
dx−

∫

Ω3D

(Ahom
g1
−Ahom

g2
)e(u0

g1
) : e(u0

g1
− u0

g2
) dx.
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The right-hand side can be estimated from above by

∥∥∥fhom
g1
− fhom

g2

∥∥∥
H−1(Ω3D,∂Ω3D

D )

∥∥∥u0
g1
− u0

g2

∥∥∥
H1(Ω3D)

+

+
∥∥∥Ahom

g1
−Ahom

g2

∥∥∥
L∞(Ω3D)

∥∥∥u0
g1

∥∥∥
H1(Ω3D)

∥∥∥u0
g1
− u0

g2

∥∥∥
H1(Ω3D)

.

Finally, we arrive at the inequality

chom
inf

∥∥∥u0
g1
− u0

g2

∥∥∥
H1(Ω3D)

≤
∥∥∥fhom

g1
− fhom

g2

∥∥∥
H−1(Ω3D,∂Ω3D

D )
+

+
∥∥∥Ahom

g1
−Ahom

g2

∥∥∥
L∞(Ω3D)

∥∥∥u0
g1

∥∥∥
H1(Ω3D)

. (1.39)

Assumption 2 guarantees that

∃Cu0 : ∀ g ∈ U2
g

∥∥u0
g

∥∥
H1(Ω3D)

≤ Cu0 ,∥∥∥fhom
g1
− fhom

g2

∥∥∥
H−1(Ω3D,∂Ω3D

D )
→ 0, as g1 → g2.

By passage to the limit g1 → g2, we arrive at the statement of the theorem.

1.4.2 Equicontinuity of the two-scale convergence of the homogenization re-

sult

In this section the diffeomorphisms between the scaled domains Ωε
g are considered. This

time Ωε
g0

is used as the reference domain and assumptions similar to Assumption 1 are

used, but for a different diffeomorphism. Namely, the standard homogenization transfor-

mation of the argument x/ε and then multiplication of the function by ε, are used for the

diffeomorphisms.

Recall that T g transforms the infinite set Ωµ
∞(g0) into Ωµ

∞(g). As usual in homoge-

nization, the diffeomorphism, which transforms their scaled versions Ωµ,ε
∞ (g0) and Ωµ,ε

∞ (g),

can be obtained by some proper scaling of T g. Introduce the uniform scaling diffeomor-

phism Sc. Observe that if T g satisfies (1.29), then

Tε
g = Sε ◦ T g ◦ S 1

ε
(1.40)
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satisfies

Tε
g (Ωµ,ε

∞ (g0)) = Ωµ,ε
∞ (g) and Tε

g (Sµ,ε∞ (g0)) = Sµ,ε∞ (g). (1.41)

In classical notations, Tε
g(x) ≡ εT g

(
x
ε

)
. It is important that the determinant and cofactor

of DTε
g are not scaled by ε, because

DTε
g(x) = DT g

(
x
ε

)
.

It can be seen from the direct computation: DTε
g = DSεDT gDS 1

ε
. Since DSc = cI,

the terms DSε and DS 1
ε

cancel out. It follows that no additional scaling will enter the

transformed integrals of weak formulations, and all the theorems on continuity with respect

to g of the solutions of ε-problems (1.27) can be proved in exactly the same way as in

Theorem 6. Further we will refer to Assumption 1 in the context of Tε
g. In such cases we

mean that Tε
g is defined according to (1.41), whereby the assumption holds for T g.

Recall that our elasticity problems are stated for the domains of the form

Ωg = Ω ∩ Ωµ,ε
∞ (g), and we need the diffeomorphisms which transform Ωg0

into Ωg, not

just the scaled infinite periodic domains.

Assumption 4. There exists a family of diffeomorphisms T εg satisfying the following condi-

tions:

1. T εg0
= I,

2. ∀ g ∈ U2
g , T

ε
g ∈W 1,∞(Ωg0

),

3. ∀ g ∈ U2
g , Q

ε
g =

(
T εg
)−1 ∈W 1,∞(Ωg0

),

4. ∀ g1, g2 ∈ U2
g ,
∥∥∥T εg1

− T εg2

∥∥∥
W 1,∞

→ 0, as g1 → g2,

5. DT εg ∈ C
(
R+ × U2

g , L
∞ (Ωg0

))
, ∃CJ > 0: ∀ ε

∥∥DT εg
∥∥
L∞(Ωg0)

≤ CJ , i.e. the Jacobi

matrix is continuous with respect to ε and g, and it is uniformly bounded with respect

to ε > 0.

Remark 8. Unfortunately, definition (1.40) does not ensure that Tε
g

(
Ωg0

)
= Ωg. The

problem is that the periodicity cells intersecting ∂Ω have to be transformed in a different

way than the periodicity cells lying wholly in the interior. Such irregularities are common

in studies of periodic media and usually it can be shown that the effect vanishes as ε→ 0.
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The last condition of Assumption 4 is satisfiable. Observe that for any rectangular Ω

with its sides parallel to the coordinate axes, there exists T g such that Tε
g defined according

to (1.40) actually satisfies all the conditions of Assumption 4, where the Jacobi matrix is

not scaled by ε at all. For each fixed ε the restriction of Tε
g on the set of points of Ω, having

distance to ∂Ω higher that the diameter of the periodicity cell, also satisfies the conditions. It

remains to carefully extend Tε
g to the boundary layer. Nevertheless, we omit this procedure

and make Assumption 4.

As in the previous section, all quantities are transformed to the reference domain Ωg0
.

Introduce the notations for the transported functions and their gradients as follows:

uεg ≡ uεg ◦ T εg,
Aε
g ≡ Aε

g ◦ T εg
∣∣det

(
DT εg

)∣∣ ,
Rε
g ≡ Rε

g ◦ T εg
∥∥cof

(
DT εg

)
ν
∥∥ ,

fεg ≡ f εg ◦ T εg
∣∣det

(
DT εg

)∣∣ ,
Duεg ≡ ∇

(
uεg ◦ T εg

) (
DT εg

)−1
,

e(uεg) ≡
1

2

(
Duεg +

(
Duεg

)T)
.

All these transported quantities are defined for x ∈ Ωg0
for any g ∈ Ug. Then the closeness

of functions uεg1
and uεg2

can be formulated in terms of the norm of the difference uεg1
−uεg2

.

This transformation notation is chosen in such way that each term of the weak for-

mulation (1.27) on Ωε
g corresponds to the similar term on Ωε

g0
. Namely, for any g ∈ U2

g ,

u ∈ H1
(
Ωε
g

)
, and v ∈ H1

(
Ωε
g

)
,

∫

Ωεg

Aε
ge(u) : e(v) dy =

∫

Ωεg0

Aε
g(x)e(u) : e(v) dx,

1

ε

∫

Sεc,g

〈
Rε
g [u] , [v]

〉
dsy =

1

ε

∫

Sεc,g0

〈
Rε
g0

[u] , [v]
〉
ds,

∫

Ωεg

〈f ,v〉 dy =

∫

Ωεg0

〈
fg,v

〉
dx.

Due to the non-degeneracy condition from Assumption 4, with this notation all the esti-

mates of Poincare and Korn type for non-transported functions are true for the transported

functions. The constants may change, but there exist universal constants such that the
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estimates are true for all g ∈ U2
g by the same argument as in proof of Theorem 6.

Theorem 9. Let uεg denote the solution of (1.27). The family of solutions uεg is uniformly

equicontinuous with respect to g, i.e. for any η > 0 there exists δ(η) > 0 such that

sup
ε>0

∥∥∥uεg1
− uεg2

∥∥∥
H1(Ωεg0

)
≤ η

for any g1, g2, provided that ‖g1 − g2‖ ≤ δ(η).

Proof. The proof is provided for non-homogeneous Dirichlet conditions. Consider the weak

formulation for ûεg = uεg − kεg, where kεg ∈ H1
(
Ωε
g

)
is the extension of the Dirichlet bound-

ary condition into Ωε
g. Assume that its transported version is continuous with respect to g,

i.e. kεg ∈ C(U2
g , H

−1(Ωε
g0
, ∂Ωε

D,g)). By virtue of standard estimates on the norms of solution

of elliptic problems, one obtains

∥∥∥ûεg1
− ûεg2

∥∥∥
H1(Ωεg0

)
≤

≤ C
(∥∥lg1

− lg2

∥∥
H−1(Ωεg0

) +
∥∥∥lεg1

∥∥∥
C(U2

g ,H
−1(Ωεg0

))

∥∥∥Aε
g1
−Aε

g2

∥∥∥
L(H1(Ωεg0

),H−1(Ωεg0
))

)
,

where lεg1
∈ C

(
Ug, H

−1
(

Ωε
g0

))
and constant C does not depend on ε, g0, g1, and g2.

Since Aε
g(x) = Ag(ε

−1x) for any g ∈ U2
g ,

∥∥∥Aε
g1
−Aε

g2

∥∥∥
L(H1(Ωεg0

),H−1(Ωεg0
))
≤

≤
∥∥∥Aε

g1
−Aε

g2

∥∥∥
L∞(Ωεg0

)
=
∥∥∥Aε

g1
−Aε

g2

∥∥∥
L∞(Yg0)

→ 0 as ‖g1 − g2‖ → 0,∀ε > 0.

Recall that ∀ g ∈ Ug

‖lg‖H−1(Ωεg0
) ≤

∥∥fεg
∥∥
H−1(Ωεg0

)
+
∥∥∣∣det

(
DT εg

)∣∣D(Aε
gDk

ε
g)
∥∥ .

The continuity of the term with fεg w.r.t. g follows directly from Assumption 1. See also

Lemma 2.1 of Section 2.4 in Chapter 10 from [13]. To prove the continuity of the second

term, introduce a new function

ψg

(x
ε

)
=
∣∣det

(
DT εg

)∣∣D(Aε
gDk

ε
g)
(x
ε

)
.
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Denote by Ym a zero-centered periodicity cell Y0 shifted by vector m ∈ Zn. The following

relations chain is true:

sup
ε

∫

Ω

∣∣∣ψg1

(x
ε

)
−ψg2

(x
ε

)∣∣∣
2
dx ≤ sup

ε

∑

εYm⊆Ω

∫

εYm

∣∣∣ψg1

(x
ε

)
−ψg2

(x
ε

)∣∣∣
2
dx =

= sup
ε
εn

∑

εYm⊆Ω

∫

Ym

∣∣∣ψg1
(ξ)−ψg2

(ξ)
∣∣∣
2
dξ ≤

≤ sup
ε

( |Ω|
|Y | + ε

|∂Ω|maxi=1,...,n |Y0i|
|Y |

)∫

Y

∣∣∣ψg1
(ξ)−ψg2

(ξ)
∣∣∣ dξ ≤

≤
( |Ω|
|Y| + εmax

|∂Ω|maxi=1,...,n |Y0i|
|Y |

)∫

Y

∣∣∣ψg1
(ξ)−ψg2

(ξ)
∣∣∣ dξ.

Here εmax can be assumed to be equal to 1. The last expression tends to zero as ‖g1 − g2‖ →
0 if ψg(ξ) is continuous with respect to g. Indeed,

∥∥∥ψg1
−ψg2

∥∥∥
L2(Y)

≤
∥∥Aε

g

∥∥
C(U2

g ,L
∞(Y))

∥∥∥Dkεg1
−Dkεg2

∥∥∥
L2(Y)

+

∥∥Dkεg
∥∥
C(U2

g ,L
2(Y))

∥∥Ag1
−Ag2

∥∥
L∞(Y)

→ 0 as ‖g1 − g2‖ → 0.

The a priori estimate also yields the uniform boundedness in g. This concludes the

proof.

The following theorem is a generalization of Arzela-Ascoli Theorem for the weak or

two-scale topology.

Theorem 10. Let {uεk} be a sequence of functions such that:

1. it is a uniformly bounded w.r.t. ε subset of C(U2
g , L

2(Ωε
g0

)),

2. it is uniformly equicontinuous in L2(Ωε
g0

).

Then it contains a subsequence {ûεk} which two-scale converges to a limit

u0,g ∈ C(U2
g , L

2(Ω3D × Y )), i.e. for any function ψ(x, y) ∈ D(Ω3D, C∞per(Y )),

lim
ε→0

∣∣∣∣∣

∫

Ωεg0

uεg(x)ψ(x, ε−1x) dx− 1

|Y |

∫

Y
u0,g(x, ξ)ψ(x, ξ) dξ

∣∣∣∣∣→ 0.

Proof. The proof is similar to the proof of Theorem 2.5.4 in [33]. Note that U2
g contains

a dense countable subset. Denote this subset by Ug. Due to the boundedness of {uεk},
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for each gi ∈ U2
g it is possible to extract a two-scale convergent subsequence with the limit

u0,gi ∈ L2
(
Ω3D ×Y

)
(see Theorem 1.2 in [3]). We proceed by the application of the Cantor

diagonal procedure. Namely, for g1 ∈ Ug we extract from {uεk} a subsequence
{
uεki1

}
which

two-scale converges to u0,g1
. From

{
uεki1

}
we extract a subsequence, two-scale converging

for g = g2 and so on for all gi ∈ Ug. We finally arrive at the subsequence {ûεk} that

two-scale converges to u0,gi(x, ξ) for all gi ∈ Ug, i ∈ N.

The continuity of the limit function u0,g(x, ξ) with respect to g follows from the uniform

equicontinuity of {uεk} and density of Ug. Indeed, for any gi, gj ∈ Ug,

∥∥∥u0,gi(x, ξ)− u0,gj (x, ξ)
∥∥∥
L2(Ω×Y)

≤ lim
ε→0

∥∥∥ûεk,gi(x)− ûεk,gj (x)
∥∥∥
L2(Ω)

≤

≤ sup
ε

∥∥∥ûεk,gi(x)− ûεk,gj (x)
∥∥∥
L2(Ω)

→ 0 as
∥∥gi − gj

∥∥→ 0. (1.42)

By the density of Ug in U2
g , for any g ∈ U2

g there exists a sequence {gi} ∈ Ug converging

to g. By (1.42), the sequence u0,gi is fundamental in L2(Ω3D ×Y). Therefore, it has a limit

which we denote by u0,g. Note that by (1.42) again, this limit does not depend on the choice

of the subsequence. Further, for any g1, g2 ∈ Ug we can choose two sequences from Ug and

by application of (1.42) prove that

∥∥u0,g1
(x, ξ)− u0,g2

(x, ξ)
∥∥
L2(Ω3D×Y)

≤ ε.

It remains to prove the point-wise two scale convergence for any g ∈ U2
g . Indeed, for

an arbitrary g ∈ U2
g pick a sequence {gk} converging to g. Let ψε ≡ ψ(x, ξ), ξ = ε−1x,

ψ ∈ D
(
Ω, C∞per (Y)

)
. Fix some ε > 0. We have

∣∣∣∣∣

〈
uεg,ψ

ε − 1

Y
〈u0,g,ψ〉L2(Y)

〉

L2(Ω)

∣∣∣∣∣ ≤
∥∥∥uεg − uεgk

∥∥∥
L2(Ω)

‖ψε‖L2(Ω) +

+

∣∣∣∣∣

〈
uεgk ,ψ

ε − 1

Y

〈
u0,gk ,ψ

〉
L2(Y)

〉

L2(Ω)

∣∣∣∣∣+
1

Y

∥∥u0,gk − u0,g

∥∥
L2(Ω×Y)

‖ψ‖L2(Ω×Y) . (1.43)

Here ‖ψε‖ is bounded uniformly in ε. Due to the equicontinuity of uεg and continuity of

u0,g, one can choose gk so close to g that the first and the third terms in the estimate (1.43)

are less than δ. Finally, due to the point-wise two-scale convergence of uεgk to u0,gk , one

can choose ε0(δ, gk) such that the second term in (1.43) is less than δ for any ε < ε0. This
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means that the left-hand side of (1.43) is less than 3δ and the convergence is proven.

1.5 Optimization problems statements

The textile-like material is modeled by a three-dimensional body made of the homogenized

material. We clarify the relation between this body and the homogenized coefficients with

the real textile and its properties further in this section.

The design space is always geometry parameter g defined in Section 1.2.2. For Poisson

ratio optimization problem we consider g to be a constant function. For stress profile opti-

mization problems we consider g to be an element of H2, but prove the minimizer existence

result when Ug is a compact set of C or when it is a bounded set in the space of Hölder

functions C0,1.

For each problem we discuss the objective functionals, prove existence of minimizers

and describe the way to find their gradients. The gradients are used to run the projected

gradient algorithm to obtain the minima, assuming that the gradient∇gA and the principal

part of increment δgA are known. Later in Section 1.6.1 we show how they are computed.

1.5.1 Connection between three-dimensional and two-dimensional problems

Consider a textile-like material described in Section 1.2. Assume that it has width Lw,

length Lh and the geometry consists of cells or meshes which are square in the in-plane

subspace. This condition is true for the geometries described in Section 1.2. Assume that

the side of the cells is ε0, i.e. the textile-like material is a periodic or quasiperiodic structure

with period ε0.

We approximate the textile-like material with a three-dimensional body Π3D of the ho-

mogenized medium described in Section 1.3.5. This body has the same length and width

as the textile material. We use ε0 for the thickness. There are two reasons for this. The first

one is that Π3D should model exactly one layer of the textile-like material. The second one

is that Π3D should consist of cubic cells, so that the homogenization results of Section 1.3.5

are applicable. Effectively, we take a single layer of the textile-like material and immerse

it into a layer of soft matrix material of thickness ε0. The plate obtained by this process is
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then homogenized, and its in-plane elastic properties Ainp
ijkl are defined as follows:

Ainp
ijkl = ε0 lim

δ→0
Ahom
ijkl (δ), i, j, k, l ∈ {1, 2}.

1.5.2 Poisson’s ratio optimization

The homogenized tensor is in general non-isotropic. However, if the geometry of the period-

icity cell possesses certain symmetry properties, the homogenized tensor will be orthotropic

(properties of the homogenized tensor are investigated in detail in [5]). Further in this part

everywhere, where it is essential, the homogenized tensor is assumed to be orthotropic.

Orthotropic elasticity Hooke’s law in case of two dimensions has a form




ε11

ε22

2ε12


 =




1/E1 −ν21/E2 0

−ν12/E1 1/E2 0

0 0 1/G12







σ11

σ22

σ12


 ,




σ11

σ22

σ12


 =




pE1 pE1ν21 0

pE2ν12 pE2 0

0 0 G12







ε11

ε22

2ε12


 , where p = (1− ν12ν21)−1. (1.44)

Poisson’s ratio ν12 characterizes contraction of the structure in the direction of axis Oy

when stretched in the direction of axis Ox. Note that Poisson’s ratios of an orthotropic

material do not possess symmetry properties, i.e. in general ν12 6= ν21.

The in-plane Hooke’s law is




σ11

σ22

σ12


 =




[
Ainp
g

]
1111

[
Ainp
g

]
1122

[
Ainp
g

]
1112[

Ainp
g

]
1122

[
Ainp
g

]
2222

[
Ainp
g

]
2212[

Ainp
g

]
1112

[
Ainp
g

]
2212

[
Ainp
g

]
1212







ε11

ε22

2ε12


 , (1.45)

where the notation
[
Ainp
g

]
ijkl

means the ijkl-th component of tensor Ainp
g . From (1.44)

and (1.45) it is easy to see that the Poisson’s ratios of the homogenized medium in 2D case

are the following explicit functions of the homogenized coefficients:

ν12 =

[
Ainp
g

]
1122[

Ainp
g

]
2222

ν21 =

[
Ainp
g

]
1122[

Ainp
g

]
1111

. (1.46)
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From Expressions (1.46) we immediately obtain the variation of ν12 and ν21:

δgν12 =
δg
[
Ainp
g

]
1122[

Ainp
g

]
2222

−
[
Ainp
g

]
1122[

Ainp
g

]2
2222

δg
[
Ainp
g

]
2222

,

δgν21 =
δg
[
Ainp
g

]
1122[

Ainp
g

]
1111

−
[
Ainp
g

]
1122[

Ainp
g

]2
1111

δg
[
Ainp
g

]
1111

.

At this point everything is available to run projected gradient method to optimize effec-

tive in-plane Poisson’s ratios numerically. Therefore, for constant geometry, optimization of

Poisson’s ratios is reduced to simple optimization over the square G. Due to the continuity

of ν12 and ν21 with respect to the entries ofAinp
g and that

[
Ainp
g

]
1111

> 0 and
[
Ainp
g

]
2222

> 0,

the existence of minimizers for ν12 and ν21 is obvious. In the section with numerical exam-

ples we show that the problem lacks convexity with respect to geometrical parameters and

that the minimizer depends on the initial point of the minimization algorithm. Therefore,

we do not discuss the uniqueness of the minimizers.

1.5.3 Effective pressure profile optimization

In this chapter we will work with non-periodic structures, at the same time using the results

of the previous sections obtained for the periodic setting. The justification for this is that we

apply Theorem 5 locally, i.e. we assume that the function g is no longer periodic and in the

homogenized problems, tensor Ainp
g is no longer constant due to non-periodically changing

geometry and should be computed at each point x from the corresponding cell problem.

This approach is valid if the geometry does not change too quickly. It is enough to require

that g(x) is a Lipschitz-continuous function with the Lipschitz constant independent of ε.

See Section 5 of Chapter 3 in [5].

The effective pressure profile optimization problem is formulated as follows: find geo-

metrical parameters g = (g1, g2) such that

J(g) =

∫

Ω
N(Ainp

g e(u0(g))− σ?) : (Ainp
g e(u0(g))− σ?) dx→ min

g
, (1.47)
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where N ∈ T + (Ω) does not depend on g and u0(g) is the solution of the following 2D

elasticity problem:





−∇ · (Ainp
g e(u0)) = f in Ω,

u0 = D(x) on ∂ΩD,

Ainp
g e(u0)n = 0 on ∂ΩN .

(1.48)

This is a well-studied PDE-constrained optimization problem.

Theorem 11. Let V be some compactly imbedded in C(Ω,R2) space and Ug be some bounded

in V set. Then the problem (1.47)–(1.48), where Ainp
g is defined according to (1.22)–(1.24),

has a minimizer.

Proof. We prove the theorem in four steps:

1. From Theorem 7 obtain that

∥∥∥Ainp
g1
−Ainp

g2

∥∥∥
L∞
→ 0 as g1 → g2, (1.49)

2. from Theorem 8 get

∥∥∥u0
g1
− u0

g2

∥∥∥
H1
→ 0 as

∥∥∥Ainp
g1
−Ainp

g2

∥∥∥
L∞
→ 0, (1.50)

3. observe that
∣∣Jg1
− Jg2

∣∣→ 0 as
∥∥∥u0

g1
− u0

g2

∥∥∥
H1
→ 0, by using (1.49)–(1.50) obtain

∣∣Jg1
− Jg2

∣∣→ 0 as g1 → g2,

4. finally, since Ug is bounded in V, by the compact imbedding result V ↪→ C, we observe

that Ug is compact in C. But since J is continuous w.r.t. g converging in C-norm, the

existence of the minimizer is provided by the classical Weierstrass theorem.

Corollary 4. Problem (1.47)–(1.48), where Ainp
g is defined according to (1.22)–(1.24), has

a minimizer, if Ug is a bounded set in either of the following spaces:

1. any finite-dimensional space of functions,
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2. the space of Lipschitz-continuous functions C0,1(Ω,R2),

3. the Sobolev space H2
(
Ω,R2

)
.

Proof. In either of the three cases the spaces are compactly embedded in C(Ω,R2), thus

Theorem 11 can be used directly.

Remark 9. In Section 1.8 from numerical examples we observe that the problem is non-

convex, and that the result of the gradient method depends on the initial approximation.

Therefore, we do not discuss convexity of the functional and the uniqueness of the mini-

mizer.

Assuming that increment δgAinp
g (g) is available, derive gradient of J(g). By the chain

rule

δgJ = 2

∫

Ω
N(Ainp

g (g)e(u0(g))− σ?) : (δgA
inp
g e(δgu

0(g))−Ainp
g (g) e(δgu

0(g))) dx =

= 2

∫

Ω
N(Ainp

g (g)e(u0(g))− σ?) : (δgA
inp
g e(u0(g))) dx−

+ 2

∫

Ω
N(Ainp

g (g)e(u0(g))− σ?) : (Ainp
g (g) e(δgu

0(g))) dx.

Let us introduce the operator

h(g) = Ainp
g (g)N(Ainp

g (g) e(u0(g))− σ?), (1.51)

we have

δgJ = 2

∫

Ω
N
(
Ainp
g (g)e(u0(g))− σ?

)
:
(
δgA

inp
g e(u0(g))

)
dx− 2

∫

Ω
h(g) : e(δgu

0(g)).

(1.52)

We will use integration by parts formula in the following form:

∫

Ω
〈∇ ·Ae(u),v〉 dx =

∫

∂Ω
〈Ae(u)n,v〉 ds−

∫

Ω
Ae(u) : e(v) dx,

This formula holds for any symmetric tensor A ∈ T + (Ω), u and v from H1, and for Ω with

piecewise-Lipschitz boundary.
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In (1.52) the function δgu
0 is yet unknown. It can be found with application of incre-

ment operation to the weak form of the state equation (1.48). For any g ∈ Ug and any

v ∈ H1(Ω), v = 0 on ∂ΩD

−
∫

Ω
Ainp
g e(u0) : e(v) dx+

∫

Ω
〈f ,v〉 dx = 0.

With the assumption that f does not depend on g, the application of increment operation

yields

0 = δg

(∫

Ω
Ainp
g e(u0) : e(v) dx

)
=

∫

Ω
δgA

inp
g e(u0) : e(v) dx+

∫

Ω
Ainp
g e(δgu

0) : e(v) dx.

Further, by partial integration we observe

0 = −
∫

Ω
δgA

inp
g e(u0) : e(v) dx−

∫

Ω
Ainp
g e(δgu

0) : e(v) dx =

= −
∫

∂ΩN

〈
δgA

inp
g e(u0)n,v

〉
+

∫

Ω

〈
∇ · δgAinp

g e(u0),v
〉
−
∫

Ω
Ainp
g e(δgu

0) : e(v) dx.

(1.53)

Here only δgu0 is unknown, therefore (1.53) can be considered as a weak formulation for

a problem, from which δgu0 can be determined. The corresponding strong formulation is





−∇ · (Ainp
g e(δgu

0)) = ∇ · δgAinp
g e(u0) in Ω,

Ainp
g e(δgu

0)n = −δgAinp
g e(u0)n on ∂ΩN ,

δgu
0 = 0 on ∂ΩD.

(1.54)

For some basis in the space, where g is defined, solutions of (1.52) and (1.54) can be found

in order to to compose the gradient of J and run a descent method for optimization. This

would implement the sensitivity approach.

It is possible to reduce the computational burden. Integrate by parts the unknown term

of (1.52) and use the Dirichlet boundary condition of (1.54):

∫

Ω
h : e(δgu

0) =

∫

∂ΩN

〈
hn, δgu

0
〉
ds−

∫

Ω

〈
∇ · h, δgu0

〉
dx =
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introduce function p such that −∇ · (Ainp
g e(p)) = ∇ · h and integrate the second term by

parts,

=

∫

∂ΩN

〈
hn, δgu

0
〉
ds+

∫

Ω

〈
∇ · (Ainp

g e(p)), δgu
0
〉

=

=

∫

∂ΩN

〈(
h+Ainp

g e(p)
)
n, δgu

0
〉
ds−

∫

Ω
e(p) : Ainp

g e(δgu
0) dx =

require that hn+Ainp
g e(p)n = 0 on ∂ΩN , the second term is integrated by parts

= −
∫

∂Ω

〈
p,Ainp

g e(δgu
0)n
〉
ds+

∫

Ω

〈
p,∇ ·Ainp

g e(δgu
0)
〉
dx =

as PDE of (1.54) states, Ainp
g e(δgu

0) can be replaced by −δgAinp
g e(u0),

= −
∫

∂Ω

〈
p,Ainp

g e(δgu
0)n
〉
ds−

∫

Ω

〈
p,∇ · δgAinp

g e(u0)
〉
dx =

= −
∫

∂Ω

〈
p,
(
Ainp
g e(δgu

0) + δgA
inp
g e(u0)

)
n
〉
ds+

∫

Ω
δgA

inp
g e(u0) : e(p) dx =

require that p = 0 on ∂ΩD and use the Neumann boundary condition of (1.54),

=

∫

Ω
δgA

inp
g e(u0) : e(p) dx.

Summarizing all the conditions for p we see that it is the solution to the problem





−∇ · (Ainp
g e(p)) = ∇ · h in Ω,

p = 0 on ∂ΩD,

Ainp
g e(p)n = −hn on ∂ΩN .

Objective funtional’s increment can be represented as

δgJ = 2

∫

Ω
N(Ainp

g (g)e(u0(g))− σ?) : (δgA
inp
g e(u0(g))) dx+ 2

∫

Ω
δgA

inp
g e(u0) : e(p),

where tensor h is defined in (1.51). Solving (1.48), then computing h and p, and fi-

nally obtaining objective functional’s increment is the adjoint approach and p is the adjoint

state [22, 27].
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Observe that it can be applied both to cases when the medium is periodic and not. The

function δgA
inp
g as a function of the spatial coordinate is constant in the first case. In the

non-periodic case this is no longer true, but the optimization approach described here still

works with no change in the expressions.

1.6 Application of beam models at the level of cell problems

At the scale of cell problems we consider µ to be a small parameter and apply beam models.

An investigation of elasticity problems on the domains parametrized in a similar way by two

numbers ε and µ is available in [36], where the analysis is performed by the full asymptotic

expansion for elasticity without Robin conditions.

In [38, 39, 51] it is observed that the limit strongly depends on the relation between ε

and µ. In general, the homogenization approach leads to the second-order equations for

the leading term if µ ∼ εω for ω ∈ (0, 1/2). For such parameter values a transition to beam

models can be justified as an asymptotic expansion of the cell problems with respect to the

parameter µ.

The standard result in homogenization of elasticity problems on the nets found in [36]

yields the problems on one-dimensional geometries of central segments of the cylinders of

Ωµ,ε
g , i.e. on sets Γε,µ(gx, gy). To account for Robin-type conditions at the contact interfaces,

we introduce contact segments and work with Γε,µc(gx, gy).

1.6.1 Reduction to beam models at the level of cell problems

Introduce some additional geometric notation. Consider one-dimensional geometry of some

cell ΓµY . Let n be some node of ΓµY . For an edge e ∈ E(n) define γ(e, n) to be the direction

vector of the edge pointing from n. For each edge e define χ to be its longitudinal vari-

able. In problems formulated on unions of segments, all derivatives with respect to χ mean

derivatives along the corresponding edge. Define global base (g1, g2, g3). For each edge

e define local base (le1, l
e
2, l

e
3). Introduce coordinate transformation matrix Ce (note that it

depends neither on µ nor on ε) by the following rule:

(le1, l
e
2, l

e
3) = (g1, g2, g3)Ce.

Following [36], we consider a behavior of the solution of the elasticity problem on a
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finite net representing the periodicity cell, what corresponds to the case of µ → 0. The

extension of these results to elasticity problems with Robin conditions at the contact inter-

faces for a particular geometry are obtained in [6]. In both works the limiting equations

are of standard Euler-Bernoulli beam model type, while the Robin conditions result in non-

standard jump conditions at the interfaces.

1.6.2 Using full beams system instead of pure tensional system

According to Section 5.6 of [36], the coefficients of the homogenized equation can be ob-

tained from problems of pure tension with periodic boundary conditions on ΓµY . However,

for the uniqueness of the solution, we have to require that the underlying graph is geo-

metrically rigid, independently of boundary conditions. This is undesirable for modeling of

textiles, because any chain of straight segments modeling a curved yarn is ruled out by this

condition.

For beam models with bending and torsion the situation is closer to standard elasticity,

namely, it is enough to require that the structure is connected and that a complete Dirichlet

condition is prescribed at any single node. It is proved in Corollary 5. Thus bending and

torsion provide some sort of regularization, what renders these systems more attractable

for numerical experiments. In the sequel we use the beam systems of equations from Sec-

tion 4.4.1 of [36] augmented with jump conditions (1.57).

Cell problems were already introduced in Section 1.3.5 in the form (1.23). The cell

problems are indexed by two numbers i ∈ {1, 2, 3} and j ∈ {1, 2, 3}. For the in-plane

properties, only problems for i ∈ {1, 2} and j ∈ {1, 2} are of interest. For beam models they
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are formulated as follows: find uij ∈ ΓY → R1×6, i, j ∈ {1, 2} such that





at each edge e define ueij ∈ [0; le]→ R1×4, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2,[
ueij

]
1
∈ H1 ([0; le]) ,

[
ueij

]
2
∈ H2 ([0; le]) ,

[
ueij

]
3
∈ H2 ([0; le]) ,

[
ueij

]
4
∈ H1 ([0; le]) ,

equilibrium conditions on edges hold:

EeAe d
2

dχ2

[
ueij

]
1

= 0,

EeIe2
d4

dχ4

[
ueij

]
2

= 0,

EeIe3
d4

dχ4

[
ueij

]
3

= 0,

GeMe d
2

dχ2

[
ueij

]
4

= 0,

force balance conditions in nodes hold:
∑

e∈E(n)E
eCe

(
Ae
([
ueij

]
1

+ (Ce)T Sij

)′
χ
Ie2
([
ueij

]
2

)′′′
χ
Ie3
([
ueij

]
3

)′′′
χ

)T
= 0,

moment balance conditions in nodes hold:
∑

e∈E(n)C
e

(
GeMe

([
ueij

]
4

)′
χ
−EeIe2

([
ueij

]
3

)′′
χ

EeIe3
([
ueij

]
2

)′′
χ

)T
= 0,

jump conditions at the contact interfaces given by (1.57), hold

periodic w.r.t. the periodicity cell boundary conditions hold:

[uij ]1:3 ≡ Ce
[
ueij

]
1:3

and [uij ]4:6 ≡ Ce




[
ueij

]
4

− d

dχ

[
ueij

]
3

d

dχ

[
ueij

]
2




are periodic,

(1.55)

where

S11 =

(
x1

0

)
, S12 =

(
0

x1

)
, S21 =

(
x2

0

)
, S22 =

(
0

x2

)
.

In this system χ is the longitudinal coordinate of an element. Constants Ae, Ie2 , Ie3 , andMe

are area of the cross-section of the element, its area moments with respect to the second

and the third axes of the element, and its polar area moment respectively. For a beam of

circular cross-section of radius r, Ae = πr2, Ie2 = Ie3 = πr4/4, and Me = πr4/2. Elastic

constants Ee and Ge are Young’s and shear moduli of the element’s material. For any vector
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v notation [v]i means the i-th component of v and for j ≥ i, [v]i:j is the sub-vector of v

from its i-th component to its j-th component, i.e. [v]i:j ≡
(
vi vi+1 . . . vj

)
.

It will be convenient to consider functions mij = uij + Sij instead of uij . It is easy to

check that since uij satisfy (1.55), mij solve the following problem:





at each edge e define me
ij ∈ [0; le]→ R1×4, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2,[

me
ij

]
1
∈ H1 ([0; le]) ,

[
me

ij

]
2
∈ H2 ([0; le]) ,

[
me

ij

]
3
∈ H2 ([0; le]) ,

[
me

ij

]
4
∈ H1 ([0; le]) ,

me
ij ∈ R1 → R1×4, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2

equilibrium conditions on edges hold:

EeAe d
2

dχ2

[
me

ij

]
1

= 0,

EeIe2
d4

dχ4

[
me

ij

]
2

= 0,

EeIe3
d4

dχ4

[
me

ij

]
3

= 0,

GeMe d
2

dχ2

[
me

ij

]
4

= 0,

force balance conditions in nodes hold:
∑

e∈E(n)E
eCe

(
Ae
([
me

ij

]
1

)′
χ
Ie2
([
me

ij

]
2

)′′′
χ
Ie3
([
me

ij

]
3

)′′′
χ

)T
= 0,

moment balance conditions in nodes hold:
∑

e∈E(n)C
e

(
GeMe

([
me

ij

]
4

)′
χ
−EeIe2

([
me

ij

]
3

)′′
χ

EeIe3
([
me

ij

]
2

)′′
χ

)T
= 0,

jump conditions at the contact interfaces given by (1.57),

periodic w.r.t. the periodic boundary conditions hold:

[uij ]1:3 ≡ Ce
([
me

ij

]
1:3
− Sij

)
and [uij ]4:6 ≡ Ce




[
me

ij

]
4

− d

dχ

[
me

ij

]
3

d

dχ

[
me

ij

]
2




are periodic.

(1.56)

From general asymptotic analysis it follows that adding non-scaled bending components

to purely tensional system from [36] does not affect the leading terms of the full asymptotic

expansion. Therefore, solutions of systems with bending and torsion instead of solutions of

purely tensional systems can be used for computation of the coefficients of the homogenized

tensor without any modifications.
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A remarkable feature of the problem (1.56) is that its solution is a piecewise-polynomial

function of the third order. This means that the corresponding finite element schemes yield

the exact solutions for this problem.

1.6.3 Introducing contact conditions

In the limit problem Robin boundary conditions are represented by jump conditions for

the derivatives of the components of displacement across the points, closest to the contact

interface, see [6]. We consider a more general case of the jump conditions.

Recall that each segment of ΓµY (gx, gy) corresponds to an elastic cylinder in Ωµ
∞(gx, gy)∩ Y .

This is not true for ΓµcY (gx, gy), where some segments correspond to locations of the contact

between the cylinders. We will refer to the ends of such segments as to contact nodes. By

construction of ΓµcY (gx, gy), contact nodes never connect two non-parallel non-contact seg-

ments. Therefore, for all non-contact segments adjacent to the same contact node the local

coordinate systems have the same bases.

Consider a single contact segment S and two pairs of segments entering its two contact

nodes n1 and n2. Denote their coordinate transformation matrices by C1 and C2. Define

contact coordinate system as a system with origin in the center of S and its first basis vector

aligned with S. The other two basis vectors can be any such that the contact coordinate

system is orthonormal. Let Cc be the coordinate transformation matrix. Denote the local

displacement components of the segments entering n1 by ui, 1 ≤ i ≤ 4 and the components

entering n2 by vi, 1 ≤ i ≤ 4.

Remark 10. Asymptotic dimension reduction for 3D problem of (1.24) was considered for

a beam in contact with a rigid foundation in [6]. With the appropriate choice of matrices

P f and PM the jump conditions presented below in (1.57) coincide with the conditions

of [6] for bending and tensional components, the torsional component in the work vanishes

due to scaling effects. It is remarkable, that the values obtained in [6] are bound to the

corresponding inertia moments of the contact interface, which is assumed to be known. We

choose the coefficients for our numerical experiments accordingly.
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We use the following jump conditions at n1 and n2:

Λ(w) = −QT
(
T Tf P fT f + T TMPMTM

)
Qw, where

PM =




G1 0 0

0 G2 0

0 0 G3


, V i=




0 zci −yci
−zci 0 xci

yci −xci 0


, δ

−1
c >0, G>0, GN >0, GT >0,

Tf =
(
I3 V 1 −I3 −V 2

)
,

TM =
(

0 I3 0 −I3

)
,

P f =




δ−1
c 0 0

0 G 0

0 0 G


,

(1.57)

Λ(w) =




[EAu′1]n1

[EIu′′′2 ]n1

[EIu′′′3 ]n1

[GJu′4]n1

− [EIu′′3]n1

[EIu′′2]n1

[EAv′1]n2

[EIv′′′2 ]n2

[EIv′′′3 ]n2

[GJv′4]n2

− [EIv′′3 ]n2

[EIv′′2 ]n2




, w =




u1

u2

u3

u4

−u′3
u′2
v1

v2

v3

v4

−v′3
v′2




, Q =




CTc C1 0 0 0

0 CTc C1 0 0

0 0 CTc C2 0

0 0 0 CTc C2



. (1.58)

Here r1 = (x1, y1, z1) is the radius-vector of n1 in the contact coordinate system,

r2 = (x2, y2, z2) — the radius vector of n2. Note that matrices P f and PM are positive-

definite.

Remark 11. Coefficient δ−1
c corresponds to the penalization of the normal penetration of

the beams, G corresponds to the penalization of the tangential relative displacement of the

beams. Rotational coefficients G1, G2 and G3 correspond to the penalization of the rota-

tional relative displacement in the tangential and two normal planes at the contact point

of the cylinders. Roughly speaking, if the following conditions hold: δ−1
c � E � G,
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G1 � E � G2 = G3, where E is the Young’s modulus of the material, then condi-

tions (1.57) will penalize the normal penetration much stronger than the tangential rel-

ative displacement. At the same time, the elastic energy term will penalize the deforming

elastic displacements weaker than the jump conditions penalize the normal penetration and

stronger than the tangential relative displacement. Such behaviour is desirable if friction

is approximated with conditions (1.57). The coefficients in our numerical experiments are

chosen accordingly.

The corresponding term in the energy of the system reflecting the Robin term in (1.22)

is

Jf (w) + JM (w) =
1

2
(Qw)T (T Tf P fT f + T TMPMTM )(Qw). (1.59)

Remark 12. Note that vector w contains the degrees of freedom of the elastic elements

being in contact in their local coordinate system. The matrices for the numerical scheme

differ from (1.59) in coordinate transformation matrices (see (1.65)).

We thus augment the system (1.55) with conditions (1.57) to model contact.

1.6.4 Variational formulation of 1D problem

We extend the definition of test functions from PF2 from Chapter 4 of [36]:

Definition 1. A four-dimensional function Ψ belongs to class H(ΓµY (gx, gy)), iff:

1. Ψ is Y -periodic,

2. for any segment e of ΓµY (gx, gy), [Ψ]1,4 ∈ H1(e), [Ψ]2,3 ∈ H2(e),

3. for all internal nodes n of ΓµY (gx, gy) for all pairs of segments e1, e2 ∈ E(n) the match-

ing conditions are satisfied:

Ce1




[Ψe1 ]1

[Ψe1 ]2

[Ψe1 ]3


 = Ce2




[Ψe2 ]1

[Ψe2 ]2

[Ψe2 ]3


 , Ce1




[Ψe1 ]4

−d[Ψe1 ]3/dχ

d[Ψe1 ]2/dχ


 = Ce2




[Ψe2 ]4

−d[Ψe2 ]3/dχ

d[Ψe2 ]2/dχ


 ,

The following assumption mimics Poincare’s inequality on ΓµY (gx, gy):
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Assumption 5. the following inequality holds:

∫

ΓµY (gx,gy)

(
[Ψe]21 +

(
d[Ψe]2
dχ

)2

+

(
d[Ψe]3
dχ

)2

+ [Ψe]24

)
dχ ≤

≤ C
∫

ΓµY (gx,gy)

((
d[Ψe]1
dχ

)2

+

(
d2[Ψe]2
dχ2

)2

+

(
d2[Ψe]3
dχ2

)2

+

(
d[Ψe]4
dχ

)2
)
dχ.

The homogenized coefficients are computed from the bilinear form of the

problem (1.55)–(1.57):

a1D(u,v) =
∑

e

(∫

e
EeAedu

e
1

dχ

dve1
dχ

dχ+

∫

e
EeIe2

d2ue2
dχ2

d2ve2
dχ2

dχ+

∫

e
EeIe3

d2ue3
dχ2

d2ve3
dχ2

dχ+

+

∫

e
GeMedu

e
4

dχ

dve4
dχ

dχ

)
+
∑

c

wT (u)Pcw(v), for u, v ∈ H
(
ΓµY (gx, gy)

)
,

(1.60)

where

Pc = QT
c (T TfcP fcT fc + T TMcPMcTMc)Qc (1.61)

is built according to (1.57) and (1.59) with matricesQ and V i obtained from the geometry

of the segments entering nodes c. Introduce homogenized coefficients computed from the

beam models as

Âhom
ijkl = a1D(mij ,mkl). (1.62)

Remark 13. We do not consider the important question of convergence of the coefficients

computed from 1.22 and from 1.62. For the problems without Robin boundary conditions,

such convergence is a direct corollary of dimension reduction results, see Chapter 5 in [36].

1.6.5 Homogenization of quasiperiodic structures

The homogenization approach works in a more general setting for non-periodic structures.

The scheme of the method does not change in the sense that the limiting problem is a

continuum problem, but the homogenized tensor is not constant anymore. At each point of

the limiting continuum problem it has to be computed from the solution of a coordinate-

dependent cell problem, i.e. for non-periodic medium one has to solve potentially infinitely



1.6. APPLICATION OF BEAM MODELS AT THE LEVEL OF CELL PROBLEMS 57

many cell problems. In numerics we use piecewise affine interpolation of the homogenized

tensor on a fixed grid, at each point of which we solve a cell problem.

1.6.6 Properties of the beam problems

In this section we assume that ΓcY (gx, gy) is a connected periodic graph. On this graph we

solve a problem of type (1.55) with contact conditions (1.57). Each edge of ΓcY (gx, gy)

corresponds to either an elastic element or a contact pair.

We explicitly check that the kernel of stiffness matrices for segments representing beams

and contact pairs is a standard rigid displacements field with small rotations. Then we show

that periodical boundary conditions rule out the rotational rigid displacements part. Thus,

to ensure that cell problems for such structures have unique solutions, it is enough to define

spatial displacements for any single node of the structure. Note that the solutions of beam

problems are continuous polynomials, and the spaces in variational formulation (1.60) con-

sist of absolutely continuous functions. For such problems fixation of displacements at any

single point makes sense.

We solve the cell problems in the form with zero right-hand sides. In this case func-

tions Mij are piecewise-polynomial functions of the third order on ΓY (gx, gy). Their coef-

ficients are algebraic functions of the degrees of freedom considered in the standard FEM

schemes for beams. Therefore, the analysis of uniqueness and the kernel structure for such

problems can be obtained from the properties of the corresponding stiffness matrices.

Kernel structure of the elastic part

In this section the following notation will be used: for a matrix A, [A]i1:i2,j1:j2
, i1 ≤ i2,

j1 ≤ j2 is the submatrix with lines from i1 to i2 and columns from j1 to j2. For example,

A =




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



, [A]2:3,2:4 =

(
6 7 8

10 11 12

)
.

Consider a single term of the first sum in (1.60) or a single segment (1.55). It will be

referred to as a single elastic element e of ΓY (gx, gy). Further in this section we omit e as a

subscript or index when refer to inertia moments and elastic constants. The corresponding
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stiffness matrix Ke of e has the following form:

Ke = ΞeGe (Ξe)T ,

where Ge is



EA
l

0 0 0 0 0 −EA
l

0 0 0 0 0

0 12
EI2

l3
0 0 0 6

EI2

l2
0 −12

EI2

l3
0 0 0 6

EI2

l2

0 0 12
EI3

l3
0 −6

EI3

l2
0 0 0 −12

EI3

l3
0 −6

EI3

l2
0

0 0 0
GM
l

0 0 0 0 0 −GM
l

0 0

0 0 −6
EI3

l2
0 4

EI3

l
0 0 0 6

EI3

l2
0 2

EI3

l
0

0 6
EI2

l2
0 0 0 4

EI2

l
0 −6

EI2

l2
0 0 0 2

EI2

l

−EA
l

0 0 0 0 0
EA
l

0 0 0 0 0

0 −12
EI2

l3
0 0 0 −6

EI2

l2
0 12

EI2

l3
0 0 0 −6

EI2

l2

0 0 −12
EI3

l3
0 6

EI3

l2
0 0 0 12

EI3

l3
0 6

EI3

l2
0

0 0 0 −GM
l

0 0 0 0 0
GM
l

0 0

0 0 −6
EI3

l2
0 2

EI3

l
0 0 0 6

EI3

l2
0 4

EI3

l
0

0 6
EI2

l2
0 0 0 2

EI2

l
0 −6

EI2

l2
0 0 0 4

EI2

l



,

Ξe = diag(Ce,Ce,Ce,Ce).

Lemma 3. The kernel of Ge is given by

kerL =
⋃

s∈R3

θ∈R3




s

θ

s+W (θ)l

θ



, l =




l

0

0


 , W (θ) =




0 −θz θy

θz 0 −θx
−θy θx 0


 , θ ∈ R3.

where s are spatial displacements and θ are angular displacements.
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The kernel of Ke is given by

kerG =
⋃

s∈R3

θ∈R3




s

θ

s+W (θ)Cel

θ



, l =




l

0

0


 , W (θ) =




0 −θz θy

θz 0 −θx
−θy θx 0


 , θ ∈ R3. (1.63)

Proof. Due to non-degeneracy of Ξe, rank (Ke) = rank (Ge). By direct calculation we ob-

serve that det
(

[Ge]1:6,1:6

)
= det

(
[Ge]7:12,7:12

)
= 144AE5GI2

2I2
3Ml−10 > 0. This means

that rank (Ke) = rank (Ge) ≥ 6. Further, by direct computation one can verify that

Gev = 0,v =




s

α

s+W (α)l

α



∀ s ∈ R3, ∀α ∈ R3.

Note that by special choice of α, s, θ it is possible to obtain six linearly independent full

displacement vectors v. It follows that dim (ker (Ke)) = dim (ker (Ge)) ≥ 6, but since

rank (Ke) = rank (Ge) ≥ 6, we conclude that dim (ker (Ke)) = dim (ker (Ge)) = 6 and that

ker (Ge) = kerL.

To prove that kerG = ker (Ke), observe that kerG is basically a transformation of kerL to

the global coordinate system, i.e. for any sg ∈ R3, θg ∈ R3 there exist s and θ, such that:

sg = Ces, θg = Ceθ, W (θg) = CeW (θ) (Ce)T . (1.64)

The transformation rule for W (θg) follows from the standard rules of transformation of

linear operators and properties of vector product. Further, consider vector

vg =




sg

θg

sg +W (θg)C
el

θg




=




Ces

Ceθ

Ces+CeW (θ) (Ce)T Cel

Ceθ




= Ξev.
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To show that it is in ker (Ke), show that the corresponding product is zero:

Kevg = ΞeGe (Ξe)T Ξev = ΞeGev = 0.

This proves that kerG ⊆ ker (Ke). However, due to the bijectivity of the transformations

in (1.64) and kerL = ker (Ge), it follows that kerG = ker (Ke).

Kernel structure of contact part

In this section the results similar to those of the previous section are proved. Denote a

single contact pair element of ΓcY (gx, gy) by c. The corresponding stiffness matrix Gc of c is

similar to Pc, the only difference is a coordinate transformation matrix: for (1.61) degrees

of freedom are specified in the local coordinate systems of the elastic elements in contact,

while for Gc degrees of freedom have to be specified in the coordinate system of the contact

element. We have:

Gc = T TfcP fcT fc + T TMcPMcTMc,

Kc = QT
cg(T

T
fcP fcT fc + T TMcPMcTMc)Qcg,

Qcg = diag(CT
c ,C

T
c ,C

T
c ,C

T
c ).

(1.65)

Further the following elementary representation of vector product will be helpful:

Lemma 4. for any ω ∈ R3, r ∈ R3




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0







r1

r2

r3


 = [ω × r] =




0 r3 −r2

−r3 0 r1

r2 −r1 0







ω1

ω2

ω3


 (1.66)

Lemma 5. The kerL = ker (Gc), kerG = ker (Kc) where

kerL =
⋃

s∈R3

θ∈R3




s

θ

s+W (θ)(r1l − r2l)

θ



,

where s are spatial displacements and θ are angular displacements, and rig, i = 1, 2, are the
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radius-vectors of the nodes of the elastic elements in contact in the contact coordinate system.

The kernel of Kc is given by

kerG =
⋃

s∈R3

θ∈R3




s

θ

s+W (θ)(r1g − r2g)

θ



, (1.67)

where rig are the radius-vectors the nodes of the elastic elements in contact in the global coor-

dinate system.

Moreover

det
(

[Gc]1:6,1:6

)
> 0, det

(
[Gc]7:12,7:12

)
> 0, det

(
[Kc]1:6,1:6

)
> 0, det

(
[Kc]7:12,7:12

)
> 0.

(1.68)

Proof. It is obvious that Gc and Kc are positive-semidefinite matrices. Recall that for any

positive-semidefiniteA, v ∈ ker (A)⇔ 〈v,Av〉 = 0. Further, note that both terms in (1.65)

of Gc are positive-semidefinite. Therefore, v ∈ ker (Gc) iff
〈
v,T TMcPMcTMcv

〉
= 0 and

〈
v,T TfcP fcT fcv

〉
= 0.

Observe that due to the structure of matrix TMc, for any s, t,α,β ∈ R3×1 for the second

term the following is true:

(
sT αT tT βT

)
T TMcPMcTMc

(
sT αT tT βT

)T
≡ (α− β)TPMc(α− β).

Since PMc > 0, this implies the following:
(
sT αT tT βT

)
∈ ker (Gc) if and only if

α = β, i.e. the angular components of the upper and the lower halves of v coincide. For

such vectors the first term can be written as follows:

(
sT αT tT αT

)
T TfcP fcT fc

(
sT αT tT αT

)T
≡

≡ (s− t+ (V 1 − V 2)α)TP fc(s− t+ (V 1 − V 2)α).

Since P fc > 0, this is zero if and only if t = s+(V 1−V 2)α. Recall that by the construction

of V 1 and V 2, and by (1.66), one has (V 1 − V 2)α = [α× (r1l − r2l)] = W (α)(r1l − r2l).

This proves ker (Gc) = kerL. Proof of ker (Kc) = kerG can be obtained from ker (Gc) = kerL
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in exactly the same way as in Lemma 3.

To prove (1.68), let us compute the determinants explicitly:

det
(

[Gc]1:6,1:6

)
= det

(
[Gc]7:12,7:12

)
= det

(
[Kc]1:6,1:6

)
= det

(
[Kc]7:12,7:12

)
=

= δ−1
c G2GNG

2
T > 0.

Solution structure for systems of elastic and contact elements

Lemma (3) and lemma (5) show that contact and elastic elements possess the same kernel

structure. The twelve-by-one kernel vectors are obtained by the substitution of coordinates

of the end nodes of the elements into some rigid displacements field

Rs,θ(x) = s+ [θ × x] = s+W (θ)x,

where x is a point in space and s and θ are six parameters defining the rigid displacements

field. In this section we prove that for a connected structure of elements the kernel of the

corresponding stiffness matrix is obtained in the same way as for individual elements. The

only difference is that instead of twelve-by-one vectors one has to deal with vectors having

total number of nodes multiplied by six components. From now on, the exact type of an

element (contact/elastic) will not be important. We will not distinguish between them and

use just the term “element”.

Under the term “system of elements” we understand any connected graph Γ, such that

each edge of it is an element. Denote the set of nodes of Γ by N . For each node n ∈ N

its reference six-dimensional position
(
xTn αTn

)T
, x ∈ R3, α ∈ R3 is defined, and six-

dimensional displacement qn ∈ R6 is to find from the statements of type (1.55). Denote

the vector of all the degrees of freedom by qtot. In each statement of this section we specify

boundary conditions explicitly, no other boundary conditions are implied.

The global stiffness matrix KΓ for Γ is obtained from matrices Kc and Ke by the stan-

dard procedure used in FEM methods.
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Lemma 6. For any connected system of elements its kernel space ker
(
KΓ
)

is defined by

qn =

(
s+W (θ)xn

θ

)
, for any s ∈ R3, θ ∈ R3. (1.69)

Proof. First note that for any element d, either plastic or elastic, (1.69) yields a vector from

(1.63) or (1.67). Indeed, let n1 and n2 be the two nodes of d and consider displacement

vector according to (1.69). By elementary transformations it can be transformed to the

forms (1.63) and (1.67):




s+W (θ)xn1

θ

s+W (θ)xn2

θ




=




s+W (θ)xn1

θ

s+W (θ)xn1 +W (θ)(xn2 − xn1)

θ




=




s′

θ

s′ +W (θ)(xn2 − xn1)

θ



.

Note that for an elastic element xn2 − xn1 = ±Cel and for a contact element sn2 − xn1 =

±(r1g − r2g). Therefore, vectors of the form (1.69) belong to the kernels of single elements

and thus are in ker
(
KΓ
)
.

Show that matrix KΓ has a non-degenerate submatrix of rank 6 |N | − 6. To prove this,

consider a system of linear algebraic equations KΓv = 0. Since KΓ and all its constituent

matrices are positive-semidefinite, this implies that for any element d

Kdvd = 0 ∀ d, (1.70)

where vd are twelve degrees of freedom of the nodes incident to d.

Fix all six degrees of freedom of any node n ∈ N . Consider set of all elements incident to

n Dn. For each d let nd be the second node of dwhich does not coincide with n. By Lemma 3

and Lemma 5, det
([

Gd
]
1:6,1:6

)
= det

([
Gd
]
7:12,7:12

)
> 0. But together with (1.70) this

implies that for any d all degrees of freedom of nd are uniquely defined from (1.70). We

can repeat this reasoning for nd and due to the connectedness of Γ this way we are able

to prove that all degrees of freedom are uniquely defined. This implies that the system of

equations KΓv = 0 is non-degenerate for any subset of variables not containing all degrees

of freedom of some single node. But any such subsystem is of rank 6 |N | − 6.

Finally, since KΓ contains a submatrix of rank 6 |N |− 6 and has size 6 |N |, its kernel can

be at most of dimensionality six. Since the subspace defined by (1.69) has dimensionality
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six, we conclude that it defines the whole ker
(
KΓ
)
.

Corollary 5. For any connected system of elements a problem of type (1.55) with any boundary

conditions fixing all degrees of freedom in any single node possesses a unique solution.

Consider a connected system of elements ΓY ⊆ Y such that it is possible to prescribe

periodic boundary conditions with respect to the periodicity cell Y . Moreover, assume

that ΓY has at least one node at each face of Y . For simplicity we assume that Y is a unit

cube.

Lemma 7. All vectors from (1.69) satisfying periodicity conditions for ΓY have zero rotational

part, i.e. if v is a vector of all nodal displacements and there exist s ∈ R3, θ ∈ R3 such that for

each n

qn =

(
s+W (θ)xn

θ

)
,

then θ = 0. In other words, all vectors from (1.69) satisfying periodicity conditions for ΓY are

spatial shifts.

Proof. By the assumptions on ΓY , there exist three pairs of nodes (nx−, nx+), (ny−, ny+)

and (nz−, nz+) such that

xx+ = xx− +




1

0

0


 , xy+ = xy− +




0

1

0


 , xz+ = xz− +




0

0

1


 .

Periodic boundary conditions imply that qx− = qx+, qy− = qy+ and qz− = qz+. By the

substitution of (1.69) in these three conditions we arrive at

W (θ)




1

0

0


 =




0

θ3

−θ2


 =




0

0

0


 , W (θ)




0

1

0


 =




−θ3

0

θ1


 =




0

0

0


 ,

W (θ)




0

0

1


 =




θ2

−θ1

0


 =




0

0

0


 .

It follows that θ = 0.
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Remark 14. Note that for the statement of Lemma 7 to be true it is enough to require

that ΓY has at least one node at each face from any set of two non-coincident pairs of the

opposite faces of Y .

Corollary 6. A problem of type (1.55) with periodical boundary conditions and all spatial

displacement components defined at certain node of ΓY possesses a unique solution.

Corollary 7. Assume that the coordinate transformation matrices Ce are continuously differ-

entiable with respect to g. Then

Âhom
ijkl (g) ∈ C1(Ug).

Proof. From differentiability of the coordinate transformation matrices we immediately ob-

tain the differentiability of the stiffness matrices. Further, by Corollary 6, the solutions to

the cell problems are the solutions of some linear systems of equations, with the systems’

matrices non-degenerate uniformly in g ∈ Ug and continuously differentiable with respect

to g. It follows that the solutions of the cell problems are themselves continuously differ-

entiable with respect to g. Finally, Âhom
ijkl (g) are differentiable as products of continuously

differentiable functions.

Derivatives of the solution and the homogenized tensor

The crucial point is that beam approximations reduce the cell problems to systems of linear

algebraic equations with uniformly non-degenerate matrix depending in some non-linear

manner on g. This allows us not only to benefit from the problem’s simplicity, but also

to obtain the derivatives of the solution with respect to g, which are necessary to obtain

δgÂ
inp

g . We achieve this with automatic symbolic differentiation of the FEM system of equa-

tions.

Assume that the conditions of Corollary 7 hold. Derive the algorithm to obtain deriva-

tives of the effective tensor given by (1.22) with respect to design parameters g.

Note that the right-hand sides of beam equations (1.56) are zeros, and thus the FEM

procedure with Lagrangian polynomials yields the exact solution of the beam structure

problem. It follows that solutions of the cell problems are polynomials parametrized by the
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solution wFEM
ij (g) of the corresponding FEM system

Kij(g)wFEM
ij (g) = fFEM

ij (g). (1.71)

This system holds for all values of g. Hence we can apply the increment operator δg to it

and arrive at

δgKij(g)wFEM
ij (g) +Kij(g)δgw

FEM
ij (g) = δgf

FEM
ij (g). (1.72)

Matrices Kij(g) are non-linear but explicitly known functions of g. Therefore, it is possible

to composeKij symbolically and obtain δgKij(g) using symbolic differentiation. The same

can be done with the right-hand side fFEM
ij (g) to obtain δgf

FEM
ij (g). However, it is very

difficult to solve system (1.71) symbolically and then findwFEM
ij by symbolic differentiation.

We overcome this obstacle using (1.72). Rewrite it as a linear system with respect to

δgw
FEM
ij (bg):

Kij(g)δgw
FEM
ij (g) = δgf

FEM
ij (g)− δgKij(g)wFEM

ij (g). (1.73)

Note that if wFEM
ij (g) is found numerically from (1.71), then all terms on the right-hand

side of (1.73) are known and it can be solved numerically to find δgwFEM
ij numerically. This

way we can find the derivatives of the cell problems’ solutions for beams for any fixed g.

To obtain the derivatives of the homogenized tensor, observe that since the FEM pro-

cedure yields exact solutions of the cell problems, expressions (1.22) for the entries of the

homogenized tensor can be computed symbolically with respect to wFEM
ij (g) and g. Denote

the symbolic expressions obtained as Â
inp

sym. Therefore, by the chain rule it is possible to

obtain increments of the homogenized tensor:

δgÂ
inp

g (g) = δgÂ
inp

sym(wFEM
ij (g), g) = δwÂ

inp

symδgw
FEM
ij (g) + δgÂ

inp

sym (1.74)

and evaluate the expressions obtained for any fixed value of g.

1.7 Summary of the optimization algorithm

A single step of a gradient-type method for the effective stress profile optimization problem

is presented in Figure 1.5. Assume that approximation gn is available. From gn we get the
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gn

cell problems
solved with
beam models

Â
hom

δgÂ
hom

direct problem
(2D elasticity)

adjoint problem
(2D elasticity)

u(gn)

p(gn)

δgJ(gn) gn+1

Figure 1.5: A brief scheme of the stress profile optimization algorithm

homogenized properties with help of beam the models. Then we plug the obtained tensor

into the direct and adjoint problems, which are of 2D elasticity type. Form these problems

we obtain state u(gn) and adjoint state p(gn), which are used to get the gradient of the

objective functional. Finally, the gradient is used to compute the next approximation of the

optimal solution gn+1. The loop is repeated until some convergence criteria is met.

1.8 Numerical examples.

In the examples presented below we use a rubber-like material with Young’s modulus E =

1.5 · 107Pa and Poisson’s ratio ν = 0.49 (we cannot use the ideally incompressible value 0.5

due to non-invertibility of Hooke’s law, we take 0.49 as an approximation), see Chapter 1

in [28]. The horizontal period ε0 of the fabric is 1.91mm, i.e. 1.91 · 10−3m. We use value

3 · 108 for the normal penetration coefficient δ−1
c and 3 · 103 for the tangential penetration

coefficient G. Angular penalization coefficients are chosen according to the following rule:

G1 = 375, G2 = G3 = 1.875 · 107, all penalization coefficients are given in SI unit system.

Examples of the homogenized structures can be seen in Figures 1.6–1.7. The stress ten-

sor is given in N/m, the proper unit for stress tensors in two dimensions. The displacement

field and local longitudinal stresses for cell problems are presented in Figure 1.8. We do not

provide scale and legend for this figure because the color scales are local and different for

each single element.

Out of six independent components of the in-plane elasticity tensor, two were always
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

3.68 · 102 0 0 0.20 · 102

0 3.02 · 102 0.20 · 102 0
0 0.20 · 102 3.02 · 102 0

0.20 · 102 0 0 3.04 · 102


,



1.84 · 102 0 0 0.14 · 102

0 1.35 · 102 0.14 · 102 0
0 0.14 · 102 1.35 · 102 0

0.14 · 102 0 0 1.59 · 102



Figure 1.6: Geometry and homogenized tensor for x = 0.5, y = 0.5 and x = 0.5, y = 0.8.

zeros. This is not uncommon for the homogenized elasticity tensor, since it is proven that

if the periodicity cell has some symmetry properties, then certain entries of the homoge-

nized tensor will be zeros, see Chapter 6 of [5]. The other four components are shown in

Figure 1.9.

Out of these four components, Ainp
1111, Ainp

1122, and Ainp
2222 are very much alike in the shape,

but the difference in the magnitude is up to 20%. In our stress profile optimization example,

we optimize specifically for the xx component of the stress. In such a setting, the major role

is played by the componentAinp
1111. It is maximal for gmax ≈ (0.723, 0.8), Ainp

1111 max ≈ 421.613,

and is minimal for gmin ≈ (0.4, 0.8), Ainp
1111 min ≈ 132.081. These values will be helpful during

the analysis of the results of the profile optimization problem, where at the areas of high

desired stress, the local geometries close to gmax are expected, and at the areas of low

desired stress, the local geometries close to gmin are expected. We will also use these values

as initial approximations for our optimization procedure. Another useful conclusion to draw

from the figure is that the optimization problems involvingAinp are essentially non-convex,

but it is likely that gradient-type methods will wander in valleys on the left and on the right

of the maximal hill clearly visible in the figure.
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

2.31 · 102 0 0 0.20 · 102

0 1.69 · 102 0.20 · 102 0
0 0.20 · 102 1.69 · 102 0

0.20 · 102 0 0 1.80 · 102


,



3.87 · 102 0 0 0.22 · 102

0 3.07 · 102 0.22 · 102 0
0 0.22 · 102 3.07 · 102 0

0.22 · 102 0 0 2.97 · 102



Figure 1.7: Geometry and homogenized tensor for x = 0.8, y = 0.5 and x = 0.8, y = 0.8.
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Figure 1.8: Cell problems for geometry parameters x = 0.5, y = 0.5 (for the boundary
conditions multiplied by 0.2, cell problems correspond to 1).
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Figure 1.9: Components of the homogenized in-plane tensor as functions of the geometrical
parameters.
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1.8.1 Poisson’s ratio optimization.

Figure 1.10: Poisson’s ratios for horizontal shrinking during vertical stretching (on the left)
and vertical shrinking during horizontal stretching (on the right).

Due to the simplicity of the Poisson’s ratio optimization problem, we do not provide the

details on numerics. Because it is controlled just by two geometrical parameters, Poisson’s

ratio can be conveniently plotted. This is done in Figure 1.10.

The extremal values and geometries are:

νmin
12 = 0.832, g12 min = (0.4, 0.8),

νmax
12 = 1.081, g12 max = (0.4, 0.4),

νmin
21 = 0.552, g21 min = (0.4, 0.8),

νmax
21 = 0.887, g21 max = (0.657, 0.8).

1.8.2 Stress profile optimization

Consider the following optimization problem: find such periodic structure of type described

in Section 1.2 that the functional 1.47 is minimized, whereby in the matrix N a single

component is one and the others are small, i.e. N1111 = 1, Nijkl = 10−10 for (i, j, k, l) 6=
(1, 1, 1, 1). This way we express that only xx-component of the effective stress is important,

which is the case in the compression stocking application.
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Figure 1.11: The decay of the objective functional.

The macroscopic geometry Ω in this example is a rectangle of width 0.2m and height 0.8

meter. Its top and bottom sides are load-free, and at the lateral sides Dirichlet conditions

are applied: u1 = −0.05m at the left side, u1 = 0.05m at the right side and at both sides

u2 = 0, i.e. the specimen is stretched in the horizontal direction, and our goal is to reach

the xx-stress profile as close to the desired one as possible.

We use 40-points grid in the vertical direction to define piecewise-affine functions g,

which are assumed to be constant along the horizontal direction, i.e. we deal with 80-

dimensional non-convex optimization problem. We compose, solve and differentiate the cell

problems with help of Symbolic Toolbox of MATLAB® according to the algorithms described

in Section 1.6.6. In our case the global stiffness matrix has dimensions 320 × 320, and the

linear system for the cell problems is slightly smaller. After we compute the homogenized

coefficients, the direct and adjoint 2D elasticity problems have to be solved. We solve them

with the help of FreeFem++, see [21].

We use standard projected gradient algorithm as an optimization method (see Section

2.2.2 in [22] or Section 1.5 in [7] and the bibliography therein). If our design variables

get outside of the box [0.4; 0.8] × [0.4; 0.8], we return them using trivial projection routine.

For the stepsize rule, we use the following one-dimentional inexact optimization routine:

we first compute the functional at 20-points grid on the segment [0; 2], find the minima
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Figure 1.12: Evolution of the stress profile along the center line of the textile. The dashed
curve represents the target profile. The legend indicates the optimization algorithm’s step
number, for which the profile is shown.

and then improve it recursively. Note that though each evaluation requires a solution of a

2-dimensional PDE, this step can be easily parallelized. In any case, we can expect at most

linear convergence rate of the algorithm. We stop the algorithm either when the decay of

the functional is small or when the change in the design variables is small.

The evolution of the pressure profile is shown in Figure 1.12. The major change is

visible at the initial steps, and, as clearly visible form Figure 1.12, the functional decay

greatly slows down from a certain step and is even non-monotone. There are two sources

for this inefficiency: the first one comes from the error of the numerical scheme for solution

of PDEs, and the second is the non-convexity of the functional. In any case, we see that the

stress profile approaches the desired one and that the design, shown in Figure 1.13, meets

the expectation that it should approach to the more stiff designs where the higher stress

is required. One should also keep in mind that the xx stress profile of the textile is not

uniform with respect to x, and the closeness of the profile curves to the desired one at the

right and left edges of the textile may require a design different from the design we would

expect in the middle, this is especially true in the vicinity of the Dirichlet boundary.
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(a) the initial approxima-
tion

(b) after the 3rd step (c) after the 10th step (d) the final design

Figure 1.13: Evolution of the design of the textile.



Chapter 2

One-dimensional computational

model for hyperelastic string

structures with Coulomb friction

2.1 Introduction

Due to the difference in size between thickness of yarns, dimensions of knitting patterns,

and macroscopic size of textile products, textiles are generally multi-scale structures. This

scale difference causes numerical difficulties for a direct numerical treatment. Therefore,

various techniques are required to handle such problems.

The description of major state of the art techniques in mechanical modeling of textiles is

provided in [45]. These techniques usually combine two approaches: a direct computation

of geometries resolving individual yarns and modeling of textiles as deformable homoge-

neous shells.

The major difficulties of the approach with modeling of individual yarns are strong non-

linearities and the algorithmic complexity associated with modeling of contact phenomenon

in large deformation setting. There is vast mechanical literature available on this topic, see,

e.g. [49, 47, 26]. State of the art works in simulations of textiles at the level of single

threads with massive contact are papers [17, 16].

Modeling of textiles as continua implies development of various hyperelastic models,

since large deformations and complicated non-linear constitutive laws must be considered.

76
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Advancement in this direction can be found, among others, in [9].

A common mathematical model for problems with friction is variational inequality with

a non-smooth term. Examples of state-of-the-art works in the direction of numerical meth-

ods with superlinear convergence rates for non-smooth problems are [46, 41].

Our aim in this chapter is to develop a model and a fast numerical approach, which

can be used for design of textiles, i.e. for simulation of the behaviour of textiles on the

basis of their knitting pattern and yarn’s properties in real time. In this chapter we are con-

cerned with knitted textiles with large stretching deformations, for which bending behavior

is not important. Since we have textile design assistance in mind, the model must meet the

following requirements:

• arbitrary physically reasonable force-stretch curves of the constituent fibers should be

supported;

• large strains, large displacements, and Coulomb friction should be handled adequately;

• various knitting patterns should be supported without construction of complicated

meshes;

• an implementation capable to run in time of several minutes for meshes modeling

textiles of size of several centimeters on modern desktop machines should be possible.

To meet the last three requirements, a simplified geometrical model is considered: we

represent textiles by graphs, where chains of edges represent fibers and some of the nodes

represent contact spots. The detailed description of the geometrical model opens Sec-

tion 2.2. The crucial point here is that we assume that contact interfaces are single points

that do not disappear, but can move with respect to the initial configuration of the sys-

tem. This brings a huge gain in performance in comparison with conventional approaches

to contact problems, where complicated geometrical algorithms associated with large dis-

placement contact problems have to be used.

Further in Section 2.2 we describe the 1D hyperelasticity model. It is similar to the

model described in [1, 43]. We use its reformulation for the arbitrary force-stretch curves,

which are more relevant for fibers. This way we deal with the requirement about ar-

bitrary physically reasonable force-stretch curves. Under “physically reasonable” force-

stretch curves we understand piecewise continuously differentiable and monotone contin-

uous curves. Since this is usually observed in measurements, the measured curves can be
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interpolated by splines and then plugged directly in our model with no additional model

fitting.

After the description of the hyperelasticity model we explain our friction model. We ex-

tend the Capstan equation, also known as Euler-Eytelwein formula, to the case of extensible

fibers. This way, we obtain conditions in contact points between fibers from Coulomb fric-

tion model. The Capstan equation is widely used for measurements of frictional properties

of fibers, see [20].

Section 2.2 is concluded with the mathematical problem statement for the whole model.

We use the nonlinear evolution equations formulation and later prove its equivalence to

the energetic solutions concept. This mathematical model is used for various models with

rate-independent dissipation, see [30, 31]. Application of Capstan equation with the refor-

mulated 1D hyperelastic model to simulation of textiles is novel.

In Section 2.3 we prove that our elastic energy is convex and the dissipation potential

is convex and also positively homogeneous of degree one. We show that the model yields

degenerate Jacobian matrices and consider a regularized model along with the original

one. Later in this section we elaborate on the continuity of the solutions. It is observed

that the continuity of the solutions to evolution equations is tightly bound to the relation

between the strict convexity constant of the elastic energy and the Lipschitz constant of

the dissipation potential, see [29]. We conclude Section 2.3 with time-discrete problems

suitable for numerical treatment.

The numerical algorithm is described in Section 2.4. We apply classic regularization

technique for the non-smooth frictional term and solve the resulting smooth problems with

Newton-Raphson method. An analysis of convergence of our numerical scheme is not pro-

vided. and due to the regularization, the algorithm is likely to be suboptimal in comparison

to the state-of-the art techniques for non-smooth problems described, e.g. in [46, 41]. How-

ever, application of these techniques requires non-trivial derivation of the tangent operators.

Since our algorithm performs well enough for our examples, we do not seek for the optimal

convergence rate, but believe that it can be improved.

The part concludes with section 2.5, where numerical results and a comparison with an

experimental measurement are presented.
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2.2 Problem Statement

2.2.1 Description of geometrical model

Fabrics are approximated by weighted graphs of geometries similar to the one in Figure 2.1.

Denote such a graph by Γ. Fibers are represented by chains of straight one-dimensional

segments (elements), which are edges of Γ. The contact points between fibers form a

subset of nodes set of Γ.

Introduce rigorous notation. The textile consists of fibers Fi. Each fiber Fi consists of

elements eji . Fibers are disjoint sets. Each element eji is defined by two nodes nli,j and nri,j ,

an undeformed length parameter Lji , an undeformed initial length parameter Lji , a current

length lji = |x
(
nri,j

)
−x

(
nli,j

)
| (the symbol x is introduced below), and material properties

described in Section 2.2.2. The set of all nodes of Γ is denoted by N . For each node n ∈ N ,

X(n) ∈ R3 is the reference position of n. Denote the vector of all undeformed lengths

Lji by L. Let E be the union of all elements eji . The set of common points between two

different fibers Fi and Fj is denoted N i,j
c . It represents contact points between Fi and Fj . It

is required that N i,j
c ⊆ N for all i and j. We call a node contact if it corresponds to a contact

point between some two fibers. Denote the union of all contact nodes by SC = ∪i,jN i,j
c .

The set of contact nodes of a single fiber Fi is denoted by N c
i .

For each node n define the displacement field u(n) = x(n) − X(n), where x(n) is

the position of the node in the current configuration. For each point of element eji , the

displacement field is interpolated by an affine function between the corresponding nodes

nli,j and nri,j .

common point
of F4 and F5

−→

common point
of F2 and F3

−→

↑
element

of F4

↑
element

of F4

←− fiber F4

←− fiber F3

←− fiber F2

←− fiber F1

↑
element

of F4

↑
element

of F4

Figure 2.1: Knitted fabric and its 1D graph model
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2.2.2 Description of elasticity model

For the modeling of a single element a hyperelastic material is considered, see [10, 48].

In the one-dimensional case the elasticity model is defined by an elastic energy density

function W (u′), where u′ is the derivative of the displacement field with respect to the

longitudinal coordinate of the element in the reference configuration x1 (i.e. convective

longitudinal coordinate),

W (u′) =
1

A

∫ ε

0
f̃(ε̄) dε̄, where ε =

√[
1 +

∂u1

∂x1

]2

+

[
∂u2

∂x1

]2

+

[
∂u3

∂x1

]2

− 1

is the nonlinear principal longitudinal strain, A is the undeformed cross-sectional area of

the element, and f̃(ε) is the force-strain curve of the element, which satisfies the following

properties:

Assumption 6 (on the force functions for convexity and convergence).

f̃(x) is strictly increasing for x > 0,

f̃(x) = 0 for x ≤ 0,

f̃(x) is a piecewise continuously differentiable continuous function.

(2.1)

The total strain energy U(u′) of an element e is thus given by

U(u′) =

∫

e
W (u′) dx1 = L

∫ ε

0
f̃(ε̄) dε̄ = L

∫ λ

1
f(λ̄) dλ̄, (2.2)

where λ(u′) = l(u)/L = 1 + ε(u′) is the principal stretch of the element, f(λ) = f̃(ε), L

is the undeformed length of the element, l(u) is the length of the element in the current

configuration, which is a function of the displacement field and the initial position of the

element. Note that if an element is compressed, then its elastic energy is zero due to the

second force function property. See [1] for the derivation of a similar 1D model from

conventional 3D hyperelasticity model.

2.2.3 Description of friction model

A common mathematical model for the equilibrium problem of elasticity with friction is

variational inequality. If U is the elastic energy and j is the work of friction forces, then the



2.2. PROBLEM STATEMENT 81

problem is stated as follows (see [24, 18]):

find w ∈ K : U(w) + j(w) ≤ U(v) + j(v), ∀v ∈ K,

where v is a test field, K is the set of admissible displacement fields, and j is the work

of friction forces. For various friction models the problem statement is preserved, but j

changes. For thin fibers, the work of friction forces can be expressed in terms of resultant

forces only.

Euler-Eytelwein formula

In case of contact between an inextensible fiber and a rigid cylindrical surface, the friction

equilibrium condition is given by the Euler-Eytelwein formula, also known as the Capstan

equation or the belt friction equation ([20]). The Euler-Eytelwein formula is presented in

Figure 2.2 and has the following form:

α

T1

T2

µ
e−µα ≤ T1

T2
≤ eµα

Figure 2.2: The Euler-Eytelwein formula or the Capstan equation

e−µα <
T1

T2
< eµα ⇒ [w]t = 0, stick phase,

e−µα =
T1

T2
or

T1

T2
= eµα ⇒ exists κ > 0, such that [w]t = −κ[T], slip phase,

(2.3)

where α defines the total angle, swept by the fiber. The total work of friction forces when

the fiber slides a small distance |[w]t| in the tangential direction at each point of the fiber is

given by

jcapstan(w) = µmin(T1, T2)(eµα − 1)
∣∣[w]t

∣∣. (2.4)
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We extrapolate this condition to pairs of fibers in contact, where α is computed from the

angle between the direction vectors of the elements that are adjacent to the contact node.

For the case of an extensible fiber the work of friction forces is given by

jFric = µ
∣∣[w]t

∣∣min(T1, T2)

∫ α

0
f−1

(
min(T1, T2)eµα

)
eµα dα. (2.5)

Slip variables and undeformed lengths

Redistribution of undeformed lengths of the adjacent elements in fibers is characterized by

slip variables. Let us consider a sample fiber F in Figure 2.3.

T 0

L0

T 1

L1

T 2

L2

· · ·
T j−1

Lj−1

T j

Lj

α1

s1

µ1

α2

s2

µ2

α3

s3

µ3

αj−1

sj−1

µj−1

αj

sj

µj

Figure 2.3: Slip variables and undeformed lengths of the sample fiber F

Assume that F consists of j + 1 elements e0, e1, . . . , ej . Then during the loading process

their undeformed lengths L0, L1, . . . , Lj change in such a way that (2.3) is satisfied (note

that here the local indexing of elements is used).

Consider two adjacent elements ek and ek+1. Denote the undeformed fiber length incre-

ment by sk+1, i.e. the material redistribution parameter or slip variable, move from element

ek to element ek+1. Then we observe that after this redistribution we have

Lk = Lk − sk+1 + sk.

Obviously, the latter relation between Lk and Lk automatically ensures that the length

conservation equation

∑

k

Lk =
∑

k

Lk (2.6)

holds.
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The full system of equations for all the elements of the fiber reads





L0 = L0 − s1,

L1 = L1 − s2 + s1,

L2 = L2 − s3 + s2,

· · ·
Lj−1 = Lj−1 − sj + sj−1,

Lj = Lj + sj .

Note that due to (2.6) this system is invertible with respect to sm. This fact will play an

important role later when the existence of the solutions to incremental problems will be

discussed.

Assumption 7 (geometric constraint). During the loading process it must hold that Li ≥ εlen,

where εlen is some small positive constant. This constraint means that undeformed lengths do

not turn to be too small. This yields the following constraints for slip variables:





εlen ≤ L0 − s1,

εlen ≤ Lm−1 − sm + sm−1, 2 ≤ m ≤ j,
εlen ≤ Lj + sj .

Due to invertibility of (2.2.3) with respect to sm, this system defines a compact convex set Sadm

(as a system of linear inequalities in a finite-dimensional space, see Chapter 1 in [40]).

Total frictional dissipation for complete fiber

Assume that all nodes of a fiber F are frictional and that friction coefficients in the nodes are

defined as in Figure 2.3. Consider time derivatives ṡk of slip variables sk. At each frictional

node the work of friction forces is given by (2.5). The total work of friction forces along the

whole fiber F can be computed as a sum of works in the individual nodes:

jFFric =

j∑

k=1

µi
∣∣∣ṡk
∣∣∣T kmin

∫ αk

0
f−1

(
T kmine

µkα
)
eµ

kα dα. (2.7)

Remark 15. Non-frictional nodes can be considered as a special case of frictional nodes
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Te

Le

αel
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µel

αer
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µer

uel

uer

Figure 2.4: A single element

with friction coefficient 0. This means that no work is done by friction forces at such nodes

and that the tensional forces in the elements incident to the same non-frictional node are

identical. Further we will not specifically distinguish this case from generic frictional nodes.

2.2.4 Description of aggregate model, statement of the evolution problem

In this section we combine the elasticity and friction models for the whole fabric from

Figure 2.1. We introduce notation s and ṡ for sets of all slip variables sji and their time

derivatives. The total elastic energy Utot of the mesh is the sum of the energies of all its

elements (2.2):

Utot(u, s) =
∑

e∈E
Ue(u, s), where (2.8)

Ue(u, s) = (Le + sel − ser)
∫ λe

1
fe(χ) dχ, λe =

‖Xel + uel −Xer − uer‖
Le + sel − ser

.

Ue is the elastic energy of a single element e, λe is its principal stretch, and Le is its initial

undeformed length. Lower indices l and r are introduced to simplify notations and to denote

“left” and “right” quantities of the element e, see Figure 2.4. Namely, the variable sel is the

slip variable at the left node of e, Xel is the initial position of the left node of e, and uel is

the displacement of the left node of e. Note that we used (2.2.3) to represent the element’s

undeformed length Le as a function of components of s and L.

Later we will show that the elastic energy presented above yields degenerate Jacobian

matrices. For better convergence and continuity properties, strict convexity is required.
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Introduce regularization term R and regularized total elastic energy U reg
tot :

R(u, s) = εr(〈u,u〉+ 〈s, s〉),
U reg

tot (u, s) = R(u, s) + Utot(u, s),
(2.9)

where εr > 0 and the symbol 〈u,v〉 denotes the standard inner product of finite-dimensional

vectors u and v.

The energy dissipated by friction can be computed as the total energy dissipated on each

particular fiber:

jtot(u, s, u̇, ṡ) =
∑

Fi∈E
jFiFric(u, s, u̇, ṡ), where

jFiFric(u, s, u̇, ṡ) =

j∑

k=1

µi
∣∣∣ṡk
∣∣∣T kmin(u, s)

∫ αk(u)

0
f−1
Fi

(
T kmin(u, s)eµ

kα
)
eµ

kα dα

is defined according to (2.7). Since a dissipative model is considered, the stretching process

is path-dependent, and an additional parametrization is necessary to track the process. We

achieve this with a new “time” parameter t and time-dependent boundary conditions.

The governing principle in our model is a doubly nonlinear evolution equation as stated

in [29]: find u ∈W 1,1 ([0;T ], Vu) and s ∈W 1,1 ([0;T ], Vs), such that

0 ∈ ∂u,s Utot(u, s) + ∂u̇,ṡ jtot(u, s, u̇, ṡ), for all time instants t,

u
∣∣
∂ΩD

= D(x, t),
(2.10)

where Vu and Vs are the corresponding finite-dimensional spaces, and the notation ∂a,b

denotes the subdifferential (see [40]) with respect to variables a and b.

Remark 16. Throughout this part we assume that s(t) ∈ Sadm for all time instants t. The

statement (2.10) can no longer be used in general with this constraint, since it is an opti-

mality condition for some problem. When we add the constraint s(t) ∈ Sadm to the model,

a proper constrained problem’s optimality condition has to be considered. However, due to

our assumption, any such condition would coincide with (2.10).

In the sequel the following equivalent statement will be used: find u ∈W 1,1
(
[0;T ], V D

u

)
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and s ∈W 1,1 ([0;T ], Vs) such that

0 ∈ ∂u,s UD
tot(t,u, s) + ∂u̇,ṡ j

D
tot(t,u, s, u̇, ṡ), for all time instants t, (2.11)

where UD
tot and jD

tot are Utot and jtot with the Dirichlet conditions plugged in, and V D
u is

the reduced finite-dimensional space of displacement fields with some components fixed

due to the Dirichlet conditions. We will also consider the regularized problem: find u ∈
W 1,1

(
[0;T ], V D

u

)
and s ∈W 1,1 ([0;T ], Vs), such that

0 ∈ ∂u,s UDreg
tot (t,u, s) + ∂u̇,ṡ j

D
tot(t,u, s, u̇, ṡ), for all time instants t, (2.12)

where UDreg
tot is U reg

tot with the Dirichlet conditions plugged in.

Remark 17. For the problem statement above to be well defined, one has to show that

the functions under the subdifferential operators are convex. The convexity of Utot(u, s),

UD
tot(t,u, s), and UDreg

tot (t,u, s) with respect to u and s for any t ∈ [0;T ] is shown in Sec-

tion 2.3. The convexity of jtot(u, s, u̇, ṡ) and jD
tot(t,u, s, u̇, ṡ) with respect to variables (u̇, ṡ)

for any t ∈ [0;T ] follows from the explicit form of jtot and (2.1).

It is assumed that D(x, 0) and all tensional forces of elements in the initial state are such

that the system is in equilibrium at the initial time instant. The simplest case of an initial

state equilibrium is that all tensional forces and Dirichlet conditions are equal to zero.

2.2.5 A model example

Consider a system in Figure 2.5.

T0

L0
T1

L1

α1

s1

n0 n1

µ1

n2

Figure 2.5: Example system

It contains only one fiber with two elements. Out of three nodes, two (n0, n1) are fixed
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and one is moving due to the prescribed Dirichlet conditions (n2). The only unknown in

this system is s1 (and its derivative ṡ1). Angle α1 does not change due to the alignment of

the prescribed Dirichlet displacement and the element pulled.

Let us check that the governing principle (2.10) for this system yields Euler-Eytelwein

condition (2.3) for the tensional forces and the slip variable.

Assume that for this system the force-stretch function f is affine, namely,

f(λ) = λ− 1.

The inverse is f−1(T ) = T + 1. It follows that

T0 =
l0

L0 − s1
− 1, T1 =

l1
L1 + s1

− 1.

Assume that T1 > T0 > 0, T1 ≤ eα1µ1T0, and T1 > T0. It is easy to see that under such

conditions s1 ≥ 0. The elastic energy and the total work of friction forces can be written

down explicitly:

Ue0 =
1

2

(l0 − L0 + s1)2

L0 − s1
=

1

2
(L0 − s1)(T0)2,

Ue1 =
1

2

(l1 − L1 − s1)2

L1 + s1
=

1

2
(L1 + s1)(T1)2,

jtot = |ṡ1|
(

(T0e
α1µ1)2

2
− (T0)2

2
+ T0e

α1µ1 − T0

)
.

From the governing principle (2.10) we obtain that ṡ1 is the solution of the following

problem:

0 ∈ ∂u,sUe0 + ∂u,sUe1 + ∂u̇,ṡ jtot.

Observe that for s1 such that s1 ≤ L0− εlen, Ue0 , Ue1 , jtot are convex with respect to. s1 and

the application of subdifferential operators is legal. Functions Ue0 and Ue1 are differentiable

and jtot is a multiple of the absolute value function. After differentiation with respect to ṡ1

and algebraic simplifications we arrive at

0 ∈ −
(

(T1)2

2
− (T0)2

2
+ T1 − T0

)
+ Sign(ṡ1)

(
(T0e

α1µ1)2

2
− (T0)2

2
+ T0e

α1µ1 − T0

)
.
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Note that since ṡ1 ≥ 0, the latter condition is equivalent to the following disjunction:


T1 = T0e

α1µ1 and ṡ1 ≥ 0,

T1 < T0e
α1µ1 and ṡ1 = 0.

This condition is similar to (2.3). The slip variable changes only if the tensional forces are

in critical state. Otherwise, no slip takes place.

2.3 Analysis of the model properties

For each fixed time instant the problem (2.10) is a finite-dimensional problem with respect

to u̇ and ṡ. We first prove that it possesses the desired convexity properties and then discuss

equivalent formulations, existence and properties of time-dependent solutions and possible

approaches to a numerical solution.

2.3.1 Convexity properties of elastic and frictional terms

Lemma 8. The elastic energy term Utot(u, s) has a positively-semidefinite Hessian matrix with

respect to u and s on the admissible set {s : s ∈ Sadm}.

Proof. Due to (2.8) it is enough to prove the statement for a single element. Elastic energy

of each element is defined by the independent quantities in its two nodes, see Figure 2.4

(in this proof we omit lower index e to simplify the notations):

1. spatial coordinates of the left and right nodes of the element: ul and ur,

2. left and right slip variables ṡl and ṡr.

Therefore, the elastic energy Ue of a single element e is a function of these eight variables:

Ue(ul1, ul2, ul3, sl, ur1, ur2, ur3, sr). We write this function explicitly, compute its Hessian ma-

trix, and show that it is always positively-semidefinite.

All of the six spatial nodal element coordinates are represented by a vector

u =
[
uTl ,u

T
r

]T
.

Let ce be the orientation unit vector of e ce = (ul − ur)l
−1, where l denotes the deformed

length of e. Further we will treat ce as a column-vector.
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The longitudinal principal stretch of the element can be represented as a function of

eight variables ulj , urj , sl, and sr:

λ =
l

L
=

√
[ul1 − ur1]2 + [ul2 − ur2]2 + [ul3 − ur3]2

L+ (sl − sr)
.

Here we used (2.2.3) to express L in terms of L and s. By straightforward differentiation

we obtain

∂λ

∂ulj
=
cej
L
,

∂λ

∂sl
= − 1

L
λ,

∂λ

∂urj
= −cej

L
,

∂λ

∂sr
=

1

L
λ.

Let us differentiate (2.2) using (2.2.3) to obtain the derivatives of Ue:

∂Ue
∂ulj

= Lf(λ)
∂λ

∂ulj
= f(λ)cej ,

∂Ue
∂sl

=

∫ λ

1
f(λ̄) dλ̄− Lf(λ)

∂λ

∂slj
=

∫ λ

1
f(λ̄) dλ̄− λf(λ),

∂Ue
∂urj

= Lf(λ)
∂λ

∂urj
= −f(λ)cej ,

∂Ue
∂sr

= −
∫ λ

1
f(λ̄) dλ̄+ λf(λ).

We also need the following second derivatives:

∂2Ue
∂u2

li

=
1

l
− (uli − uri)

2

l3
,

∂2Ue
∂uli∂ulj

= −(uli − uri)(ulj − ulj)

l3
, i 6= j,

∂2Ue
∂uli∂uri

= − ∂2Ue
∂uli∂uli

,
∂2Ue

∂uli∂urj
= − ∂2Ue

∂uli∂ulj
, i 6= j,

∂2Ue
∂u2

li

=
f ′(λ)

L
ceicej +

f(λ)

l

(
1− c2

ei

)
,

∂2Ue
∂uli∂ulj

=
f ′(λ)

L
ceicej +

f(λ)

l
(−ceicej), i 6= j,

∂2Ue
∂uli∂uri

= − ∂2Ue
∂uli∂uli

, ∀ i, j,

∂2Ue
∂s2

l

=
λ2f ′(λ)

L
,

∂2Ue
∂sl∂sr

= −λ
2f ′(λ)

L
,

∂2Ue
∂sl∂uli

= −cei
λf ′(λ)

L
,

∂2Ue
∂sr∂uli

= − ∂2Ue
∂sl∂uli

.

Let us introduce matrices

Zu =
f ′(λ)

L
cec

T
e +

f(λ)

l

(
I3 − cec

T
e

)
, Zs = −λf

′(λ)

L
ce,

where Ik is a k-by-k identity matrix. Then ∂2Ue can be rewritten in the following block
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form:

∂2Ue =

(
I4

−I4

)
B
(
I4 −I4

)
, B =

(
Zu Zs

ZTs λ2f ′L−1

)
. (2.13)

Assume that c1
e and c2

e are such vectors that (ce, c
1
e, c

2
e) is a right orthonormal triple. Intro-

duce notation

C4 =

(
C 01×3

03×1 1

)
, Bloc =




f ′L−1 0 0 −λf ′L−1

0 fl−1 0 0

0 0 fl−1 0

−λf ′L−1 0 0 λ2f ′L−1



, (2.14)

where C =
(
ce c1

e c2
e

)
, and 0m×n is the m-by-n matrix of zeros. It is easy to check that

B =

(
Zu Zs

ZTs λ2f ′L−1

)
= C4BlocC

T
4 . (2.15)

From (2.13), (2.14), and (2.15) it is easy to deduce that the following equality is true:

QT∂2UeQ = (Ql −Qr)
TC4BlocC

T
4 (Ql −Qr), where (2.16)

Ql =
(
ul1 ul2 ul3 sl

)T
, Qr =

(
ur1 ur2 ur3 sr

)T
, Q =

(
Ql Qr

)T
.

By Sylvester’s criterion, equality (2.16), and due to the orthogonality of C4, the quadratic

form QT∂2UeQ is positively-semidefinite if and only if all principal minors of Bloc are non-

negative. Indeed, due to the properties of force-principal stretch functions (2.1) we observe

that

∆1(Bloc) = f ′L−1 ≥ 0, ∆2(Bloc) = f ′fl−1L−1 ≥ 0, ∆3(Bloc) = f ′f2l−2L−1 ≥ 0,

∆4(Bloc) = λ2(f ′)2f2l−2L−2 − λ2(f ′)2f2l−2L−2 = 0.

These four inequalities conclude the proof.

Remark 18. Matrix Bloc is always degenerate, but its rank is 3 even when f and f ′ are

positive. This persistent zero subspace corresponds to the situation, where the slip variables
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compensate the change of the deformed length by the change of the undeformed length in

such a way that the principal stretch of the element is preserved. However, in the aggregate

model (2.10) this zero subspace is penalized by the frictional term, and the whole model is

not necessarily degenerate.

Corollary 8. Functions UD
tot(t,u, s) and UDreg

tot (t,u, s) are convex with respect to (u, s) on the

admissible set {s : s ∈ Sadm} for all t ∈ [0;T ].

Lemma 9. The regularized elastic energy functions U reg
tot (u, s) and UDreg

tot (t,u, s) are strictly

convex with respect to variables (u, s) for all t ∈ [0;T ] on the admissible set {s : s ∈ Sadm}.
The strict convexity is uniform with respect to time with coefficient εr.

Proof. The Hessian matrix of U reg
tot is positively definite due to the relation

U reg
tot (u, s) = R(u, s) + Utot(u, s),

the positive semidefiniteness of the Hessian of Utot(u, s), and the positive definiteness of

the Hessian of R(u, s). Since

R(u, s) = εr(〈u,u〉+ 〈s, s〉),

the minimal eigenvalue of the Hessian of U reg
tot is not less than εr. This concludes the proof.

Corollary 9. Function UDreg
tot (t,u, s) is uniformly convex on the admissible set {s : s ∈ Sadm}

for all t ∈ [0;T ] with strict convexity coefficient εr.

Lemma 10. The frictional energy term jtot(u, s, u̇, ṡ) is convex with respect to variables (u̇, ṡ)

for all admissible (u, s).

Proof. The lemma follows directly from the explicit form of individual terms of jtot given

by (2.5), convexity of the absolute value function, and the conditions on force-stretch func-

tions (2.1).

Corollary 10. Function jD
tot(t,u, s, u̇, ṡ) is convex with respect to variables (u̇, ṡ) for all t ∈

[0;T ] and all admissible (u, s).
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2.3.2 A system with discontinuous solution

In general, dissipative processes may show discontinuous behavior even if the input data is

Lipschitz-continuous. Let us provide such an example in our setting. In fact, discontinuities

may be observed already in the system in Figure 2.5.

Assume that the friction coefficient µ1 depends on s1 and that the current and initial

length parameters at the initial time instant t = 0, are defined as follows:

l0 = 2, L0 = 1, l1 = eα1µ1(0) + 1, L1 = 1.

Assume that the force function is linear. It is easy to check that at the initial time instant

the friction equilibrium condition is satisfied:

T0 = 1, T1 = eα1µ1(0), T1 = T0e
α1µ1(0).

As in the previous example, we assume that the Dirichlet conditions are such that the angle

α1 is constant. Here we also assume that the Dirichlet conditions are such that l1(t) =

eα1µ1(0) + 1 + t, i.e. element e1 is stretched in its longitudinal direction.

Let us analyse s1(t) as a function of time. It is obvious that it is a non-decreasing non-

negative function, and due to the constraint that undeformed lengths are positive, s1(t) < 1.

The friction equilibrium condition is

eα1µ1(0) + t+ 1

1 + s1(t)
− 1 = eα1µ1(s)

(
2

1− s1(t)
− 1

)
.

We write the equation for the critical case because the system is in the critical state at the

beginning of the process and element e1, which initially had higher strain, is being stretched

further on. The latter equation can be rewritten in the following form:

eα1µ1(s1) = f(s1, t), where f(s1, t) = 1 + t
1− s1

1 + s2
1

+
eα1µ1(0) − 1− s1

(
eα1µ1(s1)+1

)

1 + s2
1

.

Observe that f(s1, t) > f(s1, 0) for all t > 0, s ∈ [0; 1]. Consider the following friction

coefficient function:

µcrit(s1) = max

(
1

α1
ln

(
1 +

eα1µ1(0) − 1− s1(eα1µ1(s1) + 1)

1 + s2
1

)
, µmin

)
.
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For some sufficiently small µmin > 0, the first component of the max above is greater than

the second if

s1 < s∗ = −1

2

eα1µ1(0) + 1

eα1µmin − 1
+

1

2

√
(eα1µ1(0) + 1)2 + 4(eα1µmin − 1)(eα1µ1(0) − eα1µmin)

eα1µmin − 1
.

Observe that the friction equilibrium equation for t = 0 holds for all s between 0 and s∗.

Due to the initial conditions we put s1(0) = 0. However, for t > 0 it holds s1(t) ≥ s∗ > 0.

Therefore s1(t) is discontinuous with respect to time despite the Lipschitz-continuity of the

Dirichlet conditions and all the other problem parameters, see Figure 2.6.

s1(0) = 0 s∗1

µmin

µ1(0)

s1(t2)s1(t1) s1

α1
−1 ln f(s1, 0)

α1
−1 ln f(s1, t1)

α1
−1 ln f(s1, t2)

µcrit(s1)

Figure 2.6: s1(0) instantly jumps to s1(t) > s∗ right as t > 0 (the dashed arrow) and then
develops continuously with respect to time (the solid arrows)

In the next section we consider conditions, which guarantee Lipschitz-continuity of the

solution. Later we will refer to the Lipschitz-continuity of the solutions as to “stability of

the model”.

2.3.3 Lipschitz properties of the frictional term

The Lipschitz constant of the frictional term plays an important role in the stability of the

model. We estimate the constant in this section.

Due to (2.7) it is enough to prove that all the terms are Lipschitz-continuous and have

the same Lipschitz constant.

For a single term we re-denote the spatial nodal position by x and the slip variable by s,

see Figure 2.7.

In the sequel we will use the following notation: for a scalar function f(x), gradx f is its
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f l

Ll

f r

Lr

(xl
1, x

l
2, x

l
3)

(x1, x2, x3)

(xr
1, x

r
2, x

r
3)

α

s

µ
el

er

(xl
1, x

l
2, x

l
3)

(x1, x2, x3)

(xr
1, x

r
2, x

r
3)

α

Figure 2.7: A single frictional node and the direction vectors of the elements

gradient in the form of a row-vector, and for a vector function g(x), gradx g is its Jacobian

matrix, where i-th row is the gradient of the i-th component of g.

Lemma 11. Consider three points xl, xr, and x in R3. Let α(x) = π−arccos(
〈
el, er

〉
), where

el =
x− xl
‖x− xl‖ , e

r =
x− xr
‖x− xr‖ .

The function α(x) is Lipschitz-continuous with respect to x on the set

{x :
∥∥x− xl

∥∥ ≥ d} ∩ {x : ‖x− xr‖ ≥ d} for some d > 0 with the Lipschitz constant 3d−1.

Proof. We prove the lemma by coordinate transformation and direct differentiation.

Observe that el and er are Lipschitz-continuous with respect to x with constant 3d−1.

This is easy to obtain by the direct differentiation and estimation of the derivatives’ norms:

‖gradx e
r‖ =

1

‖x− xr‖3
×

×

∥∥∥∥∥∥∥∥




(xr2 − x2)2 + (xr3 − x3)2 −(xr1 − x1)(xr2 − x2) −(xr1 − x1)(xr3 − x3)

−(xr2 − x2)(xr1 − x1) (xr1 − x1)2 + (xr3 − x3)2 −(xr2 − x2)(xr3 − x3)

−(xr3 − x3)(xr1 − x1) −(xr2 − x2)(xr3 − x3) (xr1 − x1)2 + (xr2 − x2)2




∥∥∥∥∥∥∥∥
≤

≤ 3

‖x− xr‖ ≤
3

d
.

Here we have also used that ‖er‖ = 1.

Next, it is possible to find such an orthonormal basis, that the coordinate transformation

into coordinate system of this basis transforms er into (1, 0, 0) and el into w = (w1, w2, w3).

The coordinate transformation matrix Q is orthogonal. We completely ignore translations

because they do not affect the value of α(x).
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In the new coordinate system we have:

α(x) = π − arccos
(〈
el, er

〉)
= π − arccos

(
w1√

w2
1 + w2

2 + w2
3

)
= α̃(w).

Using the condition w2
1 + w2

2 + w2
3 = 1 (due to

∥∥el
∥∥ = 1), by direct differentiation with

respect to w we obtain

gradw α̃(w) =
1√

w2
2 + w2

3




−w2
2 − w2

3

w1w2

w1w3




T

=




−r2

sign(w1)r
√

1− r2 cos(β)

sign(w1)r
√

1− r2 sin(β)




T

,

r =
√
w2

2 + w2
3 ≤ 1, β = arctan

(
w3

w2

)
.

It is easy to see that ‖gradw α‖ ≤ 1.

Finally, due to the relation




w1

w2

w3


 = Q(x)




el1(x)

el2(x)

el3(x)




and by the chain rule and the properties of Q we arrive at

‖gradx α(x)‖ =
∥∥∥gradw α̃(w) gradew gradw e

l
∥∥∥ =

=
∥∥∥gradw α̃(w)Q gradx e

l
∥∥∥ ≤ ‖gradw α̃(w)‖ ‖Q‖

∥∥∥gradx e
l
∥∥∥ ≤ 3

d
.

This inequality concludes the proof.

Theorem 12. Suppose the following conditions hold:

1. generalized derivatives of force-principal strain functions are elements of L∞ and are

almost everywhere bounded both from below and from above:

0 < cforce <
∣∣f ′(x)

∣∣ < Cforce, ∀x > 0,

2. there exist uniform bounds for swept angles: α(n) ≤ Cα, ∀n ∈ N ,
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3. there exists a uniform upper bound for the principal stretches of the elements λe ≤ Cλ,

∀ e ∈ E.

4. there exists a uniform positive lower bound for the undeformed lengths of the elements:

Le ≥ clen > 0, ∀ e ∈ E,

5. there exists a uniform upper bound for the friction coefficients: µk ≤ Cµ.

Then the work of friction forces in any single node is Lipschitz-continuous:

jFric(q
1, s1, u̇, ṡ)− jFric(q

2, s2, u̇, ṡ) ≤ C loc
Lip ‖(u̇, ṡ)‖

∥∥(q1, s1)− (q2, s2)
∥∥ (2.17)

for all admissible (q1, s1) and (q2, s2),

C loc
Lip ≤ Cµe2CαCµC2

forcec
−1
forcec

−1
lenCλ max(2CλCα, 2Cα + 3Cλ).

Proof. We find the derivative of the frictional term and show that it is bounded.

Note that the only nonsmooth term subject to the differentiation is min(f l, f r). Due

to the strict monotonicity of force functions, this term is differentiable almost everywhere

and at the points of non-differentiability the superdifferential can be analyzed, see Theo-

rem 3.18 in [8]. To avoid technicalities arising from superdifferentials, we refer to Theo-

rem 25.6 in [40] and work only with directional derivatives.

The following derivatives of the principal strain and the force-principal stretch function

will be required for further estimates:

λl(x, s) =

∥∥x− xl
∥∥

Ll − s+ sl
, gradx λ

l(x) =
el

Ll − s+ sl
, el =

x− xl
‖x− xl‖ ,

(
λl
)′
s

=

∥∥x− xl
∥∥

(Ll − s+ sl)2
=

λl(x, s)

Ll − s+ sl
,

gradx f
l = f l

′
λl gradx λ

l = f l
′
λl

el

Ll − s+ sl
,
(
f l
)′
s

=
(
f l
)′
λl

λl(x, s)

Ll − s+ sl
.
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Differentiation with respect to s yields:

∣∣∣∣
∂

∂s
µ |ṡ|min(f l, f r)

∫ α

0
f−1(min(f l, f r)eµα)eµα dα

∣∣∣∣ ≤

≤ µ |ṡ|max
(∣∣∣f l′s

∣∣∣ ,
∣∣f r ′s

∣∣
) ∫ α

0
f−1

(
min(f l, f r)eµα

)
eµα dα+

+ µ |ṡ|min(f l, f r)

∫ α

0

e2µα max
(∣∣∣f l′s

∣∣∣ ,
∣∣f r ′s

∣∣
)

f ′ (f−1 (min(f l, f r)eµα))
dα ≤ 2µ |ṡ| e2CαµC2

forcec
−1
forcec

−1
lenC

2
λCα.

Differentiation with respect to x yields:

∣∣∣∣gradx µ |ṡ|min(f l, f r)

∫ α

0
f−1(min(f l, f r)eµα)eµα dα

∣∣∣∣ ≤

≤ µ |ṡ|max
(∥∥∥gradx f

l
∥∥∥

1
, ‖gradx f

r‖1
)∫ α

0
f−1

(
min(f l, f r)eµα

)
eµα dα+

+ µ |ṡ|min(f l, f r) ‖gradx α‖1 f−1
(

min(f l, f r)eµCα
)
eµCα+

+ µ |ṡ|min(f l, f r)

∫ α

0

e2µα max
(∥∥gradx f

l
∥∥

1
, ‖gradx f

r‖1
)

f ′
(
f−1 (min(f l, f r)eµα)

) dα ≤

≤ µ |ṡ| e2CαµC2
forcec

−1
forcec

−1
lenCλ (2Cα + 3Cλ) .

Here the terms without gradx α are estimated in the same way as for the derivative with

respect to s. For the estimate of ‖gradx α‖1 ≤ 3c−1
len see Lemma 11. It remains to estimate

the friction coefficients and take maximum of the two estimates above.

Corollary 11. Suppose that the conditions of Theorem 12 hold. Then the total work of friction

forces is Lipschitz-continuous:

jD
tot(t, q

1, s1, u̇, ṡ)− jD
tot(t, q

2, s2, u̇, ṡ) ≤ CLip ‖(u̇, ṡ)‖
∥∥(q1, s1)− (q2, s2)

∥∥ (2.18)

for all admissible (q1, s1), (q2, s2), for all t ∈ [0;T ],

(2.19)

CLip ≤ |SC |C loc
Lip,

where C loc
Lip is defined in Theorem 12.

Remark 19. Condition 1 is physically reasonable, but rules out discontinuous force curves.
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Condition 2 may be false for some special meshes, but it is quite reasonable for textile

modeling. Condition 3 can be derived from the energy conservation law and does not

impose any non-physical restrictions. Condition 4 can be a problem, since it is natural

to put clen to be very small. However, it enters the denominator of the estimate for the

Lipschitz constant and, as we will see further, it is desirable that this constant is small.

2.3.4 Energetic formulation and time-discrete problems

Following [29] and [32], consider the energetic formulation of the problem: find u ∈
W 1,1

(
[0;T ], V D

u

)
and s ∈W 1,1 ([0;T ], Vs), such that

UD
tot(t,u, s) ≤ UD

tot(t, û, ŝ) + jD
tot(t,u, s, û− u, ŝ− s) for all admissible (û, ŝ), t ∈ [0,T],

(S)

UD
tot(t,u(t), s(t)) +

∫ t

0
jD
tot

(
τ,u(τ), s(τ), u̇(τ), ṡ(τ)

)
dτ =

= UD
tot(0,u(0), s(0)) +

∫ t

0
Pext(τ,u(τ), s(τ)) dτ,

(E)

where the last integral term represents the work of external forces (caused by the boundary

conditions).

Theorem 13. Assume the conditions of Theorem 12 are satisfied. Then the problems (S)–(E)

and (2.10) are equivalent.

Proof. The theorem is a direct corollary of Proposition 2.7 from [29]. To use this proposi-

tion, we must ensure that the following conditions hold:

1. UD
tot(t,u, s) is convex w.r.t. (u, s) for all t ∈ [0;T ].

2. jD
tot(t,u, s, u̇, ṡ) is convex and positively homogeneous of degree 1 with respect to

(u̇, ṡ) for all admissible (u, s) and all t ∈ [0;T ],

3. ∃ CFric > 0: ∀ (u, s, u̇, ṡ) jD
tot(t,u, s, u̇, ṡ) ≤ CFric ‖(u̇, ṡ)‖ for all t ∈ [0;T ].

Condition 1 follows from Lemma 8, condition 2 is true by definition of jD
tot, and the last

condition is a corollary of Theorem 12. Hence Proposition 2.7 of [29] is applicable and the

proof is complete.



2.3. ANALYSIS OF THE MODEL PROPERTIES 99

Consider a partition

Pτ =
{
t0τ = 0 < t1τ < . . . < tNτ = T

}
, τ = max

j=1,...,N

{
tjτ − tj−1

τ

}

and the following problem:

Problem 1. Given (u0
τ , s

0
τ ) = (u0, s0), find (ukτ , s

k
τ ), k = 1, . . . , N such that

(ukτ , s
k
τ ) ∈ argminu∈V Du ,s∈Vs∩Sadm

(
UDreg

tot (tkτ ,u, s) + jD
tot(t

k
τ ,u

k−1
τ , sk−1

τ ,u− uk−1
τ , s− sk−1

τ )
)
.

(2.20)

Due to the strict convexity of UDreg
tot and convexity of jD

tot, problems 2.20 always have

unique solutions. From Lemma 4.4 and Corollary 4.5 of [29] we immediately conclude that

these solutions satisfy the condition (S) with UDreg
tot instead of UD

tot.

Introduce interpolants

(u(t), s(t)) = (ukτ , s
k
τ ) for t ∈ (tk−1

τ , tkτ ], (u(t), s(t)) = (uk−1
τ , sk−1

τ ) for t ∈ [tk−1
τ , tkτ ),

(û(t), ŝ(t)) =
t− tk−1

τ

tkτ − tk−1
τ

(ukτ , s
k
τ ) +

tkτ − t
tkτ − tk−1

τ

(uk−1
τ , sk−1

τ ), t ∈ [tk−1
τ , tkτ ].

The following analog of Theorem 4.6 from [29] provides an approach to numerical

solution of (2.10).

Theorem 14. Assume that conditions of Theorem 12 are satisfied and 2εr > CLip, see (2.9),

(2.19)). Then problem (2.12) with initial state satisfying (S) admits a solution. Moreover, if

Pτi is a sequence of uniform time-step partitions of [0, T ] with fineness τi → 0 as i→∞, then

there exist a subsequence τin and a solution u ∈W 1,∞ ([0;T ], V D
u

)
, s ∈W 1,∞ ([0;T ], Vs) such

that the following convergences hold as n→∞:

1. ∀ t ∈ [0;T ]

(u(t), s(t))→ (u(t), s(t)), (t,u(t), s(t))→ (u(t), s(t)), (û(t), ŝ(t))→ (u(t), s(t)),

2. (û, ŝ)
∗
⇀ (u, s) in W 1,∞([0;T ], V D

u × Vs),

3. ∀ t ∈ [0;T ] UDreg
tot (t,u(t), s(t))→ UDreg

tot (t,u(t), s(t)),
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4. ∀ t ∈ [0;T ]

∫ t

0
jD
tot(ξ, (u(ξ), s(ξ)), (û′(ξ), ŝ′(ξ))) dξ →

∫ t

0
jD
tot(ξ, (u(ξ), s(ξ)), (u̇(ξ), ṡ(ξ))) dξ.

Proof. To apply Theorem 4.6 the following conditions must be satisfied:

1. there exists κ > 0 such that ∀ (u0, s0), (u1, s1) ∈ Uadm, ∀ t ∈ [0,T], ∀ θ ∈ [0; 1]

UD
tot(t,uθ, sθ) ≤ (1− θ)UD

tot(t,u0, s0) + θUD
tot(t,u1, s1)+

+
κ

2
θ(1− θ) ‖(u0, s0)− (u1, s1)‖2 ,

where (uθ, sθ) = (1− θ)(u0, s0) + θ(u1, s1).

2. there exists ψ∗ > 0 such that for all t ∈ [0;T ],

∣∣jD
tot(t, û, ŝ, u̇, ṡ)− jD

tot(t,u, s, u̇, ṡ)
∣∣ ≤ ψ∗ ‖r(û, ŝ)− (u, s)‖ ‖(u̇, ṡ)‖ .

3. the following condition holds for Lipschitz constants of jD
tot and strict convexity of

UD
tot: ψ∗ < κ.

Condition 1 is fulfilled for U reg
tot with κ = 2εr. Condition 2 holds by Theorem 12 with

ψ∗ = CLip. Finally, Condition 3 is satisfied by the condition of the theorem being proved.

At this point Theorem 4.6 can be applied, and this concludes the proof.

Remark 20. The Lipschitz constant from Theorem 12 may be large and Condition 3 means

that εr is large. However, εr is a regularization constant, and it should be small. At the same

time, the model is highly anisotropic and the analysis based on uniform properties, such as

Lipschitz constants and strong ellipticity, may be too rough. We believe that it is possible

to derive finer conditions for the parameters based on anisotropic Lipschitz and strict el-

lipticity properties. In our numerical experiments εr was small, and we didn’t observe any

discontinuities of the solutions.

2.4 Numerical algorithm

Observe that Problems (2.20) are finite-dimensional nonsmooth optimization problems.

We apply convenient regularization technique for the friction term for numeric calculations



2.4. NUMERICAL ALGORITHM 101

(see [24, 44]). This renders the problems (2.20) finite-dimensional and smooth, and stan-

dard numeric optimization techniques are applicable.

The stiffness matrices induced by UDreg
tot are similar to those derived in Lemma 8, and

for the regularized version of jD
tot the derivation is standard.

2.4.1 Continuation method

Consecutive solution of problems (S) for increasing sequence of time instants tk in [0,T] can

be seen as a variation of continuation Newton-Raphson method ([48, 14, 35]). In our im-

plementation we use adaptive time step size selection based on the algorithm’s convergence

behavior.

1. Set the initial estimate of the solution to (u(tk), s(tk)).

2. Update Dirichlet displacements corresponding to tk+1.

3. Set an inner iterations counter to zero.

4. Apply a Newton-Raphson iteration to problem (S) for time instant tk:

(a) If the error norm is small enough, go to step 5.

(b) If the error norm violates the convergence criterion and the inner iterations

counter does not exceed the limit, go to step 4(d).

(c) Otherwise reduce the time step size and go to step 1.

(d) Increment the inner iterations counter.

(e) Apply an additional Newton-Raphson iteration to problem (S) for the time in-

stant tk,

(f) Go to step 4(a).

5. At this point the problem (S) for the time instant tk is solved. Proceed to the next

step.

The solution process is presented in Figure 2.8.
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Start with (u(ts), s(ts))

Set Dirichlet conditions
according to ts+1

Check conver-
gence criteria

Check inner itera-
tion number limit

(u(ts+1), s(ts+1)) is computed

Apply Newton-Raphson iteration
Set ts+1 to be
closer to ts

converged

not converged

more iterations
possible

no more
inner iterations

possible

restart step

Figure 2.8: Single step of the continuation method

2.5 Numerical examples

Let us first study the influence of the friction coefficient on the effective behaviour of textiles.

The results of computational experiments are presented in Figure 2.9.

In these experiments, four initially square fabric cutouts are stretched up to 80% de-

formation. The cutouts have identical geometrical properties, but the friction coefficients

differ. Width of the cutouts is fixed only at the top and bottom sides by the boundary

conditions. The lateral sides are free.

In the stretching experiments vertically aligned parts of fibers are stressed stronger than

the corresponding horizontal parts. Therefore, undeformed length flows from the horizon-

tal parts to the vertical parts. The smaller the friction coefficient, the easier it is for the

undeformed length to redistribute. At the same time, this higher redistribution leads to

higher shrinkage. This observation agrees with the behaviour observed in Figure 2.9. Note

that though the input force curves for individual yarns are monotone, the curves for yarn

structures may be non-monotone due to geometrical effects.

We proceed with an investigation of influence of the friction coefficient on the total force

applied to the cutouts to reach some fixed deformation.
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Figure 2.9: Tensional force plot of the cutouts computed for various friction coefficients.
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µ = 0.375

µ = 0.500

µ = 0.625

Figure 2.10: Load-unload Hysteresis for various friction coefficients associated with the
specimen in Figure 2.9.

We expect lower total force values for smaller friction coefficients, because the fibers are

more likely to redistribute than to develop high tension.

The corresponding hysteresis behavior for single load-unload cycle is shown in Fig-

ure 2.10. The curve for µ = 0 is almost indistinguishable from the curve for µ = 0.125.

Indeed, the higher the friction coefficient, the higher the total applied force for a fixed

deformation.

In Figure 2.11 comparison of measured and computed force for a square cutout of a

technical textile is presented. The relative error between the curves is high in the beginning

but is low for higher strain values. The operating range of the textile is between 50% and
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150%. The figure shows that the model gives a good approximation of the force behavior

of the textile.

10

20

30

40

50

0.2 0.41 0.61 0.82 1.02 1.23 1.43 1.64 1.84 2.05 2.25

ε

F, [N ] Courtesy of Zwick GmbH & Co. KG

Figure 2.11: Comparison of computed (green) and measured (dashed) forces for a real
fabric sample



Chapter 3

Summary

In the first chapter an optimization approach for beam structures with Robin boundary

conditions modeling contact is proposed. Homogenization approach can be used not only

to reduce the problem dimensionality, but also to formulate new optimization problems,

which would be difficult to state for the non-homogenized problem statement. Numerical

examples illustrating the approach are provided, both for stress profile and Poisson’s ratio

optimization problems.

In the second chapter a 1D truss method for the computational modeling of technical

textiles is developed. The existing FEM procedure is extended to the contact involving

Coulomb friction. The model is analyzed mathematically, numerical aspects are discussed,

and a computational algorithm is proposed. Finally, numerical experiments are presented

and the model is verified by a comparison with real measurements.
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