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Abstract

The goal of this work is to develop statistical natural language models and processing techniques

based on Recurrent Neural Networks (RNN), especially the recently introduced Long Short-

Term Memory (LSTM). Due to their adapting and predicting abilities, these methods are more

robust, and easier to train than traditional methods, i.e., words list and rule-based models. They

improve the output of recognition systems and make them more accessible to users for browsing

and reading. These techniques are required, especially for historical books which might take

years of effort and huge costs to manually transcribe them.

The contributions of this thesis are several new methods which have high-performance com-

puting and accuracy. First, an error model for improving recognition results is designed. As

a second contribution, a hyphenation model for difficult transcription for alignment purposes

is suggested. Third, a dehyphenation model is used to classify the hyphens in noisy transcrip-

tion. The fourth contribution is using LSTM networks for normalizing historical orthography.

A size normalization alignment is implemented to equal the size of strings, before the training

phase. Using the LSTM networks as a language model to improve the recognition results is

the fifth contribution. Finally, the sixth contribution is a combination of Weighted Finite-State

Transducers (WFSTs), and LSTM applied on multiple recognition systems. These contributions

will be elaborated in more detail.

Context-dependent confusion rules is a new technique to build an error model for Optical

Character Recognition (OCR) corrections. The rules are extracted from the OCR confusions

which appear in the recognition outputs and are translated into edit operations, e.g., insertions,

deletions, and substitutions using the Levenshtein edit distance algorithm. The edit operations

are extracted in a form of rules with respect to the context of the incorrect string to build an

error model using WFSTs. The context-dependent rules assist the language model to find the

best candidate corrections. They avoid the calculations that occur in searching the language

model and they also make the language model able to correct incorrect words by using context-

dependent confusion rules. The context-dependent error model is applied on the university of

Washington (UWIII) dataset and the Nastaleeq script in Urdu dataset. It improves the OCR

results from an error rate of 1.14% to an error rate of 0.68%. It performs better than the

state-of-the-art single rule-based which returns an error rate of 1.0%.

This thesis describes a new, simple, fast, and accurate system for generating correspondences
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between real scanned historical books and their transcriptions. The alignment has many chal-

lenges, first, the transcriptions might have different modifications, and layout variations than the

original book. Second, the recognition of the historical books have misrecognition, and segmen-

tation errors, which make the alignment more difficult especially the line breaks, and pages will

not have the same correspondences. Adapted WFSTs are designed to represent the transcrip-

tion. The WFSTs process Fraktur ligatures and adapt the transcription with a hyphenations

model that allows the alignment with respect to the varieties of the hyphenated words in the line

breaks of the OCR documents. In this work, several approaches are implemented to be used for

the alignment such as: text-segments, page-wise, and book-wise approaches. The approaches

are evaluated on German calligraphic (Fraktur) script historical documents dataset from “Wan-

derungen durch die Mark Brandenburg” volumes (1862-1889). The text-segmentation approach

returns an error rate of 2.33% without using a hyphenation model and an error rate of 2.0%

using a hyphenation model. Dehyphenation methods are presented to remove the hyphen from

the transcription. They provide the transcription in a readable and reflowable format to be used

for alignment purposes. We consider the task as classification problem and classify the hyphens

from the given patterns as hyphens for line breaks, combined words, or noise. The methods are

applied on clean and noisy transcription for different languages. The Decision Trees classifier

returns better performance on UWIII dataset and returns an accuracy of 98%. It returns 97%

on Fraktur script.

A new method for normalizing historical OCRed text using LSTM is implemented for differ-

ent texts, ranging from Early New High German 14th - 16th centuries to modern forms in New

High German applied on the Luther bible. It performed better than the rule-based word-list

approaches. It provides a transcription for various purposes such as part-of-speech tagging and

n-grams. Also two new techniques are presented for aligning the OCR results and normalize the

size by using adding Character-Epsilons or Appending-Epsilons. They allow deletion and inser-

tion in the appropriate position in the string. In normalizing historical wordforms to modern

wordforms, the accuracy of LSTM on seen data is around 94%, while the state-of-the-art com-

bined rule-based method returns 93%. On unseen data, LSTM returns 88% and the combined

rule-based method returns 76%. In normalizing modern wordforms to historical wordforms, the

LSTM delivers the best performance and returns 93.4% on seen data and 89.17% on unknown

data.

In this thesis, a deep investigation has been done on constructing high-performance language

modeling for improving the recognition systems. A new method to construct a language model

using LSTM is designed to correct OCR results. The method is applied on UWIII and Urdu

script. The LSTM approach outperforms the state-of-the-art, especially for unseen tokens

during training. On the UWIII dataset, the LSTM returns reduction in OCR error rates from

1.14% to 0.48%. On the Nastaleeq script in Urdu dataset, the LSTM reduces the error rate

from 6.9% to 1.58%.
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Finally, the integration of multiple recognition outputs can give higher performance than a

single recognition system. Therefore, a new method for combining the results of OCR systems is

explored using WFSTs and LSTM. It uses multiple OCR outputs and votes for the best output

to improve the OCR results. It performs better than the ISRI tool, Pairwise of Multiple Se-

quence and it helps to improve the OCR results. The purpose is to provide correct transcription

so that it can be used for digitizing books, linguistics purposes, N-grams, and part-of-speech

tagging. The method consists of two alignment steps. First, two recognition systems are aligned

using WFSTs. The transducers are designed to be more flexible and compatible with the dif-

ferent symbols in line and page breaks to avoid the segmentation and misrecognition errors.

The LSTM model then is used to vote the best candidate correction of the two systems and

improve the incorrect tokens which are produced during the first alignment. The approaches

are evaluated on OCRs output from the English UWIII and historical German Fraktur dataset

which are obtained from state-of-the-art OCR systems. The Experiments show that the error

rate of ISRI-Voting is 1.45%, the error rate of the Pairwise of Multiple Sequence is 1.32%, the

error rate of the Line-to-Page alignment is 1.26% and the error rate of the LSTM approach has

the best performance with 0.40%.

The purpose of this thesis is to contribute methods providing correct transcriptions corre-

sponding to the original book. This is considered to be the first step towards an accurate and

more effective use of the documents in digital libraries.
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Chapter 1

Introduction

1.1 Motivation

An important goal of historical document analysis are digital libraries for historical critical

editions. Therefore, information extraction, natural language processing, and corpus analysis

techniques should be performed. One prerequisite is OCR which transcribes the input docu-

ment image to a machine readable format. A satisfactory OCR accuracy for the whole content

of digital documents will allow us to lower the costs for manually transcribing the documents.

Various historical digitalization projects have used OCR systems, e.g., the Improving Access to

Text (IMPACT) project1 used the ABBYY system2, the TextGrid project3 has integrated the

OCRopus system4 to obtain recognition results. This dissertation is devoted to the improve-

ments of OCR results of such systems.

In recognition systems such as OCR and Handwritten Recognition systems, errors appear

in the results due to noisy and complex documents, bad quality, and low resolution [Lop09].

Document layout analysis is the process of identifying and categorizing the regions of interest

in the scanned image of a text document. A reading system requires the segmentation of text

zones from non-textual ones and the arrangement in their correct reading order. Over- and

under-segmentation of lines and characters are produced due to the large variety of layouts and

narrow spaces. The challenges of document layout analysis are an open problem for historical

and handwritten documents. Much research has been done, but the recognition task is still

difficult. The documents are bad quality images due to blurred, yellow papers, faded ink,

damaged parchment, or ink bleed-through [Fis12,AD07], as shown in Figure 1.1.

Moreover, historical and handwritten documents have connected characters which create the

so-called ligatures such as the German calligraphic Fraktur script as in Figure 1.2(a), 1.2(b),

1 IMPACT Project: http://www.impact-project.eu/taa/tech/tools/
2 ABBYY: http://www.abbyy.de/
3 TextGrid Project: http://textgrid.de/
4 OCRopus Project: https://github.com/tmbdev/ocropy

1

http://www.impact-project.eu/taa/tech/tools/
http://www.abbyy.de/
http://textgrid.de/
https://github.com/tmbdev/ocropy
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(a) Unknown font to the classifiers (b) Bad binarization

(c) Low resolution (d) Historical orthography

Figure 1.1: Problems of historical documents.

1.2(d), and 1.2(e). In the historical Fraktur script, some Glyphs are extended vertically and

rise above the x-height, which refers to the distance between the baseline and the mean line in

a typeface. Typically, this is the height of the letter x in the font, as well as the u, v, w,, and

z. For example, the Letter f has a ascender height and connects with the letters which have

descender heights. The small letters p, h, g, y, and Fraktur long s exceeds the descender height

and extends to the next text line. The capital letters A,P,Q, Y also have the same descender

expansion.

The connected characters or merged text lines are difficult to split for any automatic segment

system. The character segmentation is important for classifiers which learn the character seg-

ments, for example, Multilayer Perceptrons (MLP) [Ros62]. The Hidden Markov Model (HMM)

and Neural Networks (NN) based recognizers are segmentation-free, they learn sequences that

do not depend on character segmentation prior to recognition. They are widely used in speech

and handwriting recognition [Rab89,GLF+09].

As for historical documents, large electronic text corpora with a consistent orthography

are often unavailable for historical languages [AAAB13]. Furthermore, recognition models can-

not easily be transferred to different manuscripts in case of non-standardized orthography, and

special character symbols (fonts unknown to a trained system). Historical documents usually

include multiple scripts in one volume. For example, the “Allgemeine Encyclopdie der Wis-

senschaften und Künste” published by Johann Samuel Ersch and Johann Gottfried Gruber,

also known as the “Ersch-Gruber”. Ersch-Gruber documents have German Fraktur, Greek,

Latin, Arabic, and Hebrew scripts, as shown in Figure 1.2(b).

This dissertation solves the problem of language modeling by using various methods and
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(a) Fontane’s document (b) Ersch-Gruber

(c) Luther Bible (d) Campe dictionary

(e) Fraktur document (f) UNLV dataset (g) Urdu dataset

Figure 1.2: Collection of document images.
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alignment techniques. The remainder of this chapter is organized as follows. The challenges

of historical documents are shown in Section 1.2. The hypothesis of the dissertation is stated

in Section 1.3. The contributions of the dissertation are presented in Section 1.4. Finally, the

outlines of the dissertation are given in Section 1.5.

1.2 Challenges of Historical Documents

Pre-existing OCR systems are unable to solve all those problems during their pipeline. There-

fore, post-processing techniques are required after the recognition stage. In the last decade,

much research has been done on error corrections in automatic speech recognition, optical char-

acter recognition, and spell-checking. A language model can be used to recognize valid word

forms of a language. A language model is a model of dictionary words and, possibly, allowed

word sequences. Generally, a language model is capable of creating infinite dictionary correc-

tions for the errors. To find the correct form of word, the language model needs to search through

whole entries for the best candidate corrections. This search, however, is time consuming and

inefficient. Furthermore, it is not eligible for unknown word forms in the dictionary.

In order to suggest appropriate candidate corrections, an error model is required to generate

the correct form of the misspelled or misrecognized words. Example of recognition results

of Urdu and Fraktur script are given in Figure 1.3(a). The Figure shows the misrecognized

words and the appropriate corrections. The traditional error model is the Levenshtein-Damerau

edit distance algorithm attributed initially by [Lev66b]. In the edit distance algorithm, the

misrecognition is assumed to be a finite number of operations applied to characters of a string:

deletion, insertion, and substitution. Schulz et al. [SM02] introduced a deterministic Levenshtein

automata for correcting misspelled words using an electronic dictionary. The error model using

finite-state automaton and is widely used in speech recognition [Moh03a], in spell-checker [PH12,

HNH08], and in OCR [LNCPCA10].

A second major problem in historical documents analysis is linking the transcripts of his-

torical documents to the corresponding positions in the original document [KMA04, FFFB11,

FM06,FIFB11], as shown in Figure 1.3(b). The alignment produces a huge amount of training

data with aligned image segments and transcriptions which are necessary in order to create

good recognition models. Fischer et al. [FIFB11] used alignment based on HMM. For tran-

scription alignment, it is necessary to prepare, and clean-up the transcriptions before use in

alignment, as shown in Figure 1.3(c). Therefore, dehyphenation methods are implemented to

support clean-up of transcription. They can be used for different purposes, such as building

n-grams and text corpora. The work of [GT94] eliminates the hyphen from the text, ignores

the combined words, and Unicode strings.

A third problem is the alignment of different word forms. With non-standard and unknown

orthography in historical documents, words-list, and rule-based approaches are designed to
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normalize the historical word forms to modern word forms, and vice versa [BPD11a]. These

approaches are unable to cover all the variety of orthographical and misrecognized tokens.

Therefore a new generation of learning-based language modeling is implemented to solve these

problems [AAAB13]. Figure 1.3(d) shows the original document image, historical form with the

corresponding modern form.

Fourth problem is the combination of multiple recognition systems as several different recog-

nizers exist is implemented to improve the recognition results [LR11,LZ97,BRB+09], as shown

in Figure 1.3(e). These methods are based on heuristic algorithms to find the best results

from the n-best paths and are unable to predict the correct candidates which are unavailable

in the OCR systems. They vote for an incorrect character, if all the systems provided incorrect

characters in the same position of the sequences.

The purpose is to provide correct digitization and correspondence transcriptions. This is

the first step towards accurate and more effective use of the documents in digital libraries.

Therefore, this dissertation introduces seven novel contributions, as described in Section 1.4.

1.3 Hypothesis

The main target of the dissertation is to improve and normalize the recognition results. The

hypotheses are:

H1 WFSTs are suitable for constructing error models to build orthographical or OCR correc-

tion rules.

H2 WFSTs are suited for alignment between the scanned historical documents and the tran-

scription. They adapt the transcription according to the OCR errors and make it more

flexible on character, word, line, and page level so that it can be compatible with various

books.

H3 Noisy transcriptions can be cleaned and converted to hyphenation free text by using

machine learning methods. These methods are capable of classifying the hyphen as a line

break or in combined words or noise.

H4 Language modeling can be done with NN for modern and historical documents. Such

learning-based language modeling can predict the historical orthographical rules which

are inconsistent in historical text.

H5 Neural Networks can be used to improve the OCR accuracy by correcting the recognition

results.

H6 WFSTs are a flexible alignment for combining multiple OCR outputs and LSTM are able

to predict the errors appearing in several OCR systems.
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(a) Correction of recognition output

(b) Alignment of books to transcriptions

(c) Dehyphenation and clean-up

(d) Normalize historical orthography

(e) Combination of multiple recognition output

Figure 1.3: Problems and targets
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1.4 Contributions of this Dissertation

The purpose is to develop statistical language modeling based on WFST and LSTM for modern

and historical scripts written in English, German, and Urdu. Below is a summary of the work

carried out.

C1 Error Model using context-dependent rules (Chapter 3). A novel new technique to cor-

rect the OCR errors by means of WFST with context-dependent confusion rules. It is

implemented to address H1.

• The OCR confusions which appear in the recognition outputs are translated into

edit operations, e.g., insertions, deletions, and substitutions using Levenshtein edit

distance algorithm to construct an error model.

• The error model avoids the calculations that occur in searching the language model.

• It makes the language model eligible to correct incorrect words.

• It is language independent. It is applied on English and Urdu.

• It has no limited words size.

• It deals with various numbers and types of errors.

• It is faster needs less memory space and returns a lower error rate than the state-of-

the-art single rule-based approach [HNH08].

C2 Transcription Alignment (Chapter 4)

• The approach aligns the manuscript of historical books and the transcription that

have no matching information about the correspondence at the word, line, and sen-

tence level. It is implemented to address H2.

• It contributes a new hyphenation model for hyphenating the transcriptions according

to the scanned books.

• The alignment model works under OCR errors. OCR errors make the textual con-

tents of the books differ from the original or corresponding transcriptions.

• It aligns with various transcriptional modifications.

• It avoids the problems of recognition, modified transcriptions, and segmentation

errors by using edit operations on character level (insertion, deletion, substitution).

• Those edit operations are translated to edit rules adapt the manuscript and the

transcription during the alignment.

• It works under segmentation errors and different line breaks.

• WFSTs process Fraktur ligatures.



8 1.4. CONTRIBUTIONS OF THIS DISSERTATION

• It provides a graphical user interface to view the alignment pairs, make them acces-

sible, and easy to edit.

C3 Dehyphenation by Classification (Chapter 4). It is used for noisy historical and modern

transcriptions and addresses in H3.

• The approach is applied on English script from UWIII dataset and Fraktur script

from documents of Theodor Fontane.

• Dehyphenation removes the hyphen and converts the results of Handwriting Recog-

nition (HWR) or OCR into a readable and reflowable formats.

• It processes Unicode, e.g, words with Umlaut. It also processes hyphenated pairs

and combined words which were not solved by [GT94].

• It is robust against OCRs errors which include recognition errors and substitution of

symbols, i.e., dashes with hyphen due the misrecognition.

C4 A novel learning-based for normalizing historical orthography (Chapter 5) is introduced

which addresses in H4.

• It achieves better results than the state-of-the-art methods [BPD11a] even with the

absence of consistent orthographic conventions in historical text.

• There is no fixed lexicon accessed by orthographic form is available.

• It works well with seen and unseen tokens, especially the state-of-the-art methods

that cannot normalize the unseen tokens where the spelling of words often differ in

various way.

• It is evaluated on OCRed scripts from 14th to 16th centuries.

• Simple approach requires less time and effort to train.

C5 Language-Independent (Chapter 6) is a new techniques. It is introduced to correct the

OCR errors by means of Recurrent Neural Network (RNN) with LSTM, as addresses in

H5.

• It is applied on challenging script Urdu.

• It is applied on OCR results of the Latin script and Urdu UPTI datasets.

• New LSTM model avoids the calculations that occur in searching the language model.

• It makes the language model eligible to correct seen and unseen incorrect words.

• Prediction using LSTM is fast and accurate. Other approaches are time consuming

and labor-intensive [HNH08].

C6 A Heuristic-based alignment approach for combining multiple recognition systems is in-

troduced (Chapter 7) as addresses in H6.
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• Flexible combination and adaptation using WFST.

• The purpose is combining the output of many OCRs to improve the recognition

results.

• WFST approach aligns multiple OCR systems and avoids the problem of segmenta-

tion and recognition errors.

• It performs better than the state of the art ISRI [RJN96] and Wemhoener et al.

[WYM13].

• It is language independent approaches.

C7 A novel learning-based model for combining multiple recognition systems using LSTM

(Chapter 7) is implemented, as addresses in H6.

• Combining the output of many OCRs to improve the recognition results.

• The approach is flexible and adaptable.

• The combination of OCRs outputs is improved using LSTM.

• It is a language independent approach.

• It performs better than the state-of-the-art [RJN96,WYM13].

• The heuristic approaches are unable to predict characters which did not appear in

the OCR results. They also are unable to correct a character, if all the OCR systems

provide the misrecognized version of this character. LSTM approach solves all those

problems.

1.5 Dissertation Overview

Figure 1.4 shows the structure of this dissertation. Chapter 2 presents a survey about the state-

of-the-art in statistical language modeling which is used in OCR, Automatic Speech Recognition

(ASR), and Machine Translation (MT). It also described the open-source toolkits.

Next, Part I presents language modeling methods using WFSTs. Then, Chapter 3 introduces

an error model to support the statistical language modeling using WFSTs. Chapter 4 provides

a method for aligning historical books with their transcriptions and hyphenation model using

WFSTs. This chapter presents a dehyphenation models by classification for historical noisy

transcription.

Part II shows the abilities of the LSTM which outperforms other language modeling methods.

Chapter 5 contributes on normalizing historical OCR text from historical document of the

14th century from Luther Bible. The goal is to build a language model maps the historical

word forms to modern word forms. Chapter 6 provides extensive empirical comparison of

results obtained with various advanced language modeling techniques using rules-based and
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LSTM. The experiments are applied on Urdu and UWIII datasets obtained from OCR system.

Chapter 7 focuses on the combination of WFSTs and LSTM to combine the results of various

OCR systems. Chapter 8 summarizes the achieved results and concludes the work.

Finally, the appendix introduces the WFSTs and their related algorithms as well as RNN

and the architecture of the LSTM.
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Figure 1.4: Visualization of the structure of this dissertation illustrating the relationship be-
tween different chapters and their contribution to different areas of OCR post-
processing. Filled blocks show the tools and the areas to which this dissertation
contributes.
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Chapter 2

State-of-the-Art Language Modeling

2.1 Motivation

In this Chapter, an overview of the language modeling (LM) approaches and tasks will be

given. The Chapter will summarize selected recognition systems, such as OCR, Automatic

Speech Recognition (ASR), and Machine Translation (MT).

The strategies and methods of building LMs are described. Also the toolkits, and open-

source libraries will be shown. Beside corrections task, there are several tasks which need LMs

to perform the alignment with documents for various purposes, such as normalizing histori-

cal orthography, generate image to transcription segments, and combining recognition results

among many systems. These task will be described with their strategies.

The Chapter is structured as follows: Section 2.2 discusses the LMs which are designed to

automatic speech recognition, and machine translation. In Section 2.3, the LMs in top OCR

systems are explained. Section 2.4 shows several LMs which are used for solving problems

in OCR. New strategies for building learning-based LM are explained in Section 2.4.2. The

open-source tools are shown in Section 2.5. Summary and discussion will be in Section 2.6.

2.2 Language Modeling in Automatic Speech Recognition (ASR)

and Machine Translation (MT)

In speech recognition, the work of Mohri et al. [Moh03a] presented a general algorithm based

on classical, and new weighted automata algorithms for exactly computing the edit distance be-

tween two string distributions given by two weighted automata. In their work, a new and general

synchronization algorithm is published for weighted transducers. It combined with Epsilon-

removal and can be used to normalize weighted transducers with bounded delays. The work

also made use of composition, Epsilon-removal of weighted transducers, and the determinization

of weighted automata. The work of Allauzen et al. [AM09] proposed linear-space algorithms

13
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for computing the edit distance between a string, and an arbitrary weighted automaton, or

an unambiguous weighted automaton. The algorithm is efficient and optimized for finding an

optimal alignment of a string, and such as a weighted automaton. It helped to understand the

classical algorithms [MCL07,Gus97], and making possible to generalize them [Moh03a].

The open-source Weighted Finite-State library is developed and achieved a competitive per-

formance for building and applying the WFST for the LM. The work of [CAM07] presented

general algorithms for building and optimizing transducer models. They explained the appli-

cation of these methods to large-vocabulary recognition tasks and their experimental results.

In Machine translation, [KB03] presented a derivation of the alignment template model for

statistical machine translation and an implementation of the model using WFSTs.

Mikolov et. al [MKB+11] extended the RNN LM for speech recognition task and compared

to feedforward networks. The backpropagation through time algorithm (BPTT) is used for

learning. In their work, they showed the number of trained classes over the epochs and time. The

RNN with Kneser Ney (KN) reduce the perplexity to 107 using 8000 classes, in 107 Min/epoch,

and for testing 148 Sec/test. The perplexity is a measurement of how well a probability model

predicts a sample. It is used to evaluate LMs. The network has 200 hidden units. While

the perplexity is increased from 109 to 134 using 6000 to 30 classes, the training and testing

time was decreased. The RNN results was better using interpolated 5-grams model with KN

smoothing, and no count cutoffs. Four RNN networks were trained with 250, 300, 350, and

400 units in the hidden layer. During the training phase, the complexity is increased with the

amount of the steps, and stayed constant during the testing. The simple RNN outperforms the

standard feedforward network, while the BPTT provide a better improvement. In their work,

they have implemented a simple factorization of the output layer using classes, to avoid the

computational bottleneck between the hidden and output layers, and to reduce the size of the

weight matrix.

2.3 Language Modeling in Top OCRs

In this section, the LM approaches of the top recognition systems are described. Those ap-

proaches are investigated in different research groups and their results were reported in Breuel

et al. [BUHAAS13] 1. A report of the recent novel methods will be also described.

2.3.1 OCRopus

OCRopus is a free document analysis and optical character recognition (OCR) system released

under the Apache License, Version 2.0 with a very modular design through the use of plugins

in 2007. These plugins allow OCRopus to swap out components easily. OCRopus is developed

under the lead of Thomas Breuel at TU-Kaiserslautern, Germany and is sponsored by Google.

1 Co-authored by the author of this thesis
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OCRopus is an OCR system that combines pluggable layout analysis, pluggable character recog-

nition, and pluggable LM. It aims primarily for high-volume document conversion, namely for

Google Book Search, but also for desktop, and office use [Bre08].

Breuel et al. [Bre08] has shown in OCRopus 0.4 the RAST-Based layout analysis, MLP

recognizer, and the recognition outputs are presented as multiple paths WFST for each text

line. The input label is the character or ligature segment and the output label is the recognition

output. LMs based on WFSTs can be composed modularly from dictionaries, n-grams, gram-

matical patterns, and semantic patterns. This allows OCRopus to be re-targeted and adapted

quickly to new document types and languages. Statistical LMs associate probabilities with

strings; their function in an OCR system is to resolve ambiguous or missing characters to their

most likely interpretation.

The early work of Breuel [T B95] showed that LM can be phrase-based or word-based. The

phrase-based models are suitable when the data set consists of short phrases. A dictionary of

phrases can be learned from a large corpus and the frequencies of the phrases can be used to

approximate probability of the word P (W ). But the phrase-based model is not scalable and is

not suitable for most applications. Word-based models are effected by errors in segmentation

and by the presence of characters like “/”, “.”, etc. Breuel et al. [T B94] made a comparison

between phrase and word based models. It was found that phrase-based models performed

poorly when many of the phrases in the test set were not part of the LM. As compared to the

phrase model, the performance of the unigram word model was poor due to the large entropy,

and perplexity of the word model. The performance was seen to improve when the output

of recognizers based on the two LMs was combined. For handwritten recognition system, two

statistical LMs were constructed. The first consists of phrases and the estimated associated

frequency information. The second consists of unconstrained concatenations frequently used

words, separated by spaces, and uses a word insertion penalty to assign probabilities to phrases

[13]. It has higher coverage 87% than the phrase-based LM but contains many implausible or

impossible phrases. The objective of recognition in a Bayesian framework is to find P (W ) can

be obtained from the LM. The work of Breuel et al. [T B95] manipulated the output of the

segmentation stage into hypothesis graph to allows skips, insertions, and the deletions. Finding

the best path through the hypothesis graph constrained by the dictionary is carried out using

the Viterbi algorithm [Vit67].

In OCRopus 0.7, Breuel et al. [BUHAAS13] implemented, and integrated LSTM recognizer

for text line recognition. The LSTM yields better results compared to the state-of-the-art OCR

systems. An OCR-Service was provided to the partners of the TextGrid project using OCRopus.

The OCR-Service recognized historical documents with Fraktur script.
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2.3.2 Tesseract

Tesseract is an optical character recognition engine for various operating systems. It is free

software, released under the Apache License, Version 2.0, and development by Ray Smith has

been sponsored by Google since 2006.

The dictionaries in Tesseract are represented by Directed Acyclic Word Graph (DAWG).

The dictionaries include the pre-generated system dictionary, the document dictionary, and the

a user-provided words list. The implementation of the data structure has been improved to

parallelize the search over all the DAWGs and support multi-language text [Smi07]. The most

frequent punctuations and numbers are encoded in DAWGs. For unambiguous dictionary words,

the shape classifier must identify the a clear winner among all the alternative choices for the

word. The recognition result is considered and stop further processing for the word, if there is

no dictionary word word exists. By having a text file including a word per line, the DAWD will

be created during the creation of the train data for the language [Smi11]. Smith et al. [Smi11]

has discussed that the LM with frequency-based dictionary could be more damage than helpful.

The paper showed an analysis of the contrariety with the help of the Google Books n-grams

corpus and concludes that noisy-channel models that closely model the underlying classifier and

segmentation errors are required [Smi11]. They proposed an isolated shape classifier, combined

with a LM that has a word n-gram frequency model (1 <= n <= 3) or a binary n-gram

dictionary model.

The paper showed the limitation of the frequency models because the close relationship

between the probability that a word occurs in the language with given some context for n-gram

within n > 1 and the probability that a word is correct. The study included weak and accurate

classifiers. The most frequent word is best choice, if the classifier is weak. And it is better to

involve the previous n − 1 words. If the classifier is accurate, then the most probable word is

not the best choice, even in context with previous words.

They also reported that the LM is less effective for Latin language such as English, because

the OCR shape classifier is more accurate. While LM is required for high error rate systems

such as ASR, OCR for Arabic, and Hindi.

Smith et al. [LS12] has described a combination of two parallel correction paths using

document-specific image and LMs.

The models are adapted to shape and vocabularies within a book to build the correction

hypotheses. The models is depending on selecting the correct words.

The purpose of the shape model is to solve the confusion in similar shapes such as m/rn

and 1/I/l and also assist the LM to distinguish between between back and blue while correcting

the words. The paper showed the usage of the strength of each model to solve confusions.

The tokens are passed over all the instances, then the more likely answer are taken. However,

this could generate valid, and false hypotheses of out of vocabulary tokens in ambiguous context.

Therefore, each instance of correction is evaluated by the image model to remove mismatches.
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The tokens are verified after correction, the LM is adapted with a new word-list, and the

image model updates the shape clusters. Improvement can obtained over iterations and during

their experiments then found that good performance shown first iteration.

The approach is evaluated on scanned books. In training, 2 million words are used, 6 million

words are used in the testing. The system was able to reduce the word error rate of Tesseract

by 25% on a large test set.

2.3.3 ABBYY FineReader

ABBYY FineReader is a commercial OCR software is intended to simplify converting paper

documents to digital data. It recognizes printed text in 190 languages in modern and historical

form2.

ABBYY OCR system was required for recognizing historical texts printed with Fraktur

script for the period 1800 1938 in Meta-E project. The Meta-E project focused on providing

technology basis for digitisation and web-publishing of valuable printed sources spanning several

centuries of European history. The linguistic part of the project was done by ATAPY Software3,

ABBYY’s long-term partner in OCR, and linguistic development. ATAPY joined the Meta-E

project to build Language Models for 5 old European languages: Old English, Old French, Old

German, Old Italia, and Old Spanish.

The recognition system of ABBYY OCR works by analysing a text image and making a

hypothesis. The hypothesis is about which letter or word an image represents. Then, the

hypotheses are analysed in context, and verified by using sophisticated OCR dictionaries made

up of LMs.

ABBYY OCR system uses the latest findings in linguistic technologies and morphological

dictionaries in the background so that the system can take a decision for ambiguous recognized

characters, example a misrecognized character “ü”, the OCR system is assisted by linguistic

information, addition information for identifying the language is German, and dictionaries to

predict the correct text. This technique works well in moder text, but not easy to apply in the

historical text, and depends on the available dictionaries from that time.

ABBYY FineReader checks all words’ spelling in order to highlight the incorrectly recognized

characters and build correct spelling hypotheses for operator to choose from. The dictionaries

are not only sets of words. The dictionaries are built in optimized way which each word is stored

as a single database entry in the form of a linguistic formula which an appropriate grammar

paradigm is assigned. Based on authentic dictionaries, and original old European texts, a study

is done on the historical material, building the word stock, and assigning appropriate paradigm

formulas of words.

To analyse the dictionaries and the original text of a give period, they selected 10 dictionaries

2 ABBYY: http://www.abbyy.de/
3 ATAPY: http://www.atapy.com/

http://www.abbyy.de/
http://www.atapy.com/
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representing the state of project languages in the range of the publication’s years from 1808 to

1930. The analysis is done using 105 authentic books belonging to that period, of more than

50 MB of archived information in volume. The historical LMs were built on the basis of the

coexisting FineReader models and reduced the big efforts of building a new ones. However,

the stage of building historical LMs appeared laborious, as ATAPY engineers had to manually

compare the information from the authentic dictionaries, and texts to existing FineReader

models which are about 500.000 entries. 159 historic grammar paradigms were added to carry

out corrections that were missing in the contemporary models. The LMs were tested on the

original old text material collected during the analysis stage. The results are 98,91% vocabulary

coverage for Old English, 99,16% for Old French, 96,58% for Old German, 98,58% for Old Italian,

and 98,79% for Old Spanish language. The new OCR functionality is available for purchase as

an additional module to ABBYY FineReader 7.0.

2.3.4 Raytheon BBN Technology

The research group of Bolt, Beranek, and Newman (BNN) described the enhancement to their

HMM-based OCR system that results in a significant increase in the speed of the system without

any impact on recognition accuracy. The LM which is used was an n-gram on character level.

In [LBK+99], BBN presented a language-independent OCR system performing open-vocabulary

OCR on Arabic, English, and Chinese. The system is based on Hidden Markov Models (HHMs)

and utilizes the same advanced technology that is used for speech recognition. They described

that the HMM-based OCR system was easily trainable on new sets of data and portable to

recognize new scripts. They showed that the system depends on the estimation of character

models, as well as a lexicon, and grammar, from training data. The character models are

estimated by taking the feature vectors and the corresponding ground truth. Then, each text

line is transcribed in terms of words, therefore the character model component also can make

use of a lexicon obtained from a large text corpus. Their grammar LM is estimated from the

same text or a larger set of text. The training process used the orthographic rules that depend

on the type of script. For example, the rules tell whether the text lines go horizontally or

vertically, as in traditional Chinese, and if vertically, whether the text is read from left-to-right,

as in Roman script, or right-to-left, as in Arabic script.

They compute a character HMM, a lexicon, and a LM. These models are estimated from

large text corpora which are independent of the image data. The LM is usually a bigram or

trigram model that contains the probabilities of all pairs or triples of words. The recognition

process is mainly a search for the most likely sequence of characters given the input feature

vector sequence, the lexicon, and the LM. Since the Viterbi algorithm would be quite expensive

when the state space includes a large vocabulary and a bigram or trigram LM, they used a

multi-pass search algorithm. They used character trigram and word unigram LMs for Arabic

script. Without a lexicon, a Character Error Rate (CER) of 4.7% was obtained. With a 30K-
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lexicon, a CER of 3.3% was obtained using our unlimited-vocabulary technique which solved

the out-of-vocabulary (OOV) problem, a 30% relative improvement. They used the DARPA

Arabic OCR Corpus with 89-character set to train and test their omnifont system.

2.4 Recent Developments in Language Modeling for OCR

There are several tasks of post-processing for documents and recognition systems which need a

LM for correcting, normalizing, and aligning purposes.

2.4.1 Automatic Document and Transcription Alignment

Earlier work by Manmatha [KMA04] proposes an alignment using HMMs or dynamic time warp-

ing (DTW). Text alignment with historical documents is concerned by the problem of alignment

when line by line correspondences are available and page by page correspondences are provided.

This approach semi-automatically aligns word-images with ASCII words without OCR. The

approach is that in some situations the stretch between two anchor words may be relatively

large, making the dynamic programming somewhat expensive. Another HMM-based algorithm

for transcription alignment to automatically segmented handwritten manuscript was proposed

in Fischer et al. [FFFB11]. It was designed for word by word alignment of scanned handwritten

document images with ASCII transcripts. However, this model was not hierarchical, and not

practical for aligning large sequences.

A hierarchical HMM-based automatic evaluation of OCR accuracy for a digital library of

books [FM06] is recent work from two alignment approaches using HMM. This approach is

similar to the previous HMM model. Unlike Krogh’s linear HMMs, the HMM at each level

of their hierarchical alignment approach directly takes positions as states, and calculates the

probability of generating a sequence of OCR output given any possible sequence of positions in

the ground truth. There is a state correspondence to every position in the ground truth sequence.

In this approach, they sought to align text to text, and not text to images. Given the problem

and domain differences, the transition probabilities and generative probabilities have to be,

and are defined differently. Compared with edit distance based alignment algorithm, the HMM

based alignment allows one to learn the domain knowledge through training over aligned or even

unaligned sequences, and formulate the probabilities of alignments using arbitrary distributions.

It is more flexible and powerful.

The authors of Fischer et al. [FIFB11] propose a multi-pass alignment method based on

HMMs that combines text line recognition, bigram LM, string alignment, and keyword spot-

ting to cope with word substitutions, deletions, and insertions in the transcription. In a

segmentation-free approach, transcriptions of complete pages are aligned with sequences of

text line images. They applied their approach on the Parzival data set. However, this approach

does not take text line segmentation errors into account, and it assumes page breaks to be
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present in the transcription. This method was applied at page-level and is segmentation-free in

the sense that neither segmentation of text line images into words nor line break information in

the transcription are needed. A possible speed-up of text alignment was proposed in Yalniz et

al. [YM11]. This approach aligns the ground truth and the OCR output using a fast recursive

text alignment scheme (RETAS). First, it aligns unique words from vocabulary with unique

words in the OCR output. This process is recursively applied to each text segment between

the matching unique words until the text segments become small. Then the edit distance based

alignment is used to align those (short) chunks of text and obtain the final alignment. This

approach segments the alignment problem into small subproblems, which leads to significant

time saving, and less computation and memory space requirements than in previous approaches.

The worst case running time was achieved when there are no common unique words between

OCR output and the ground truth, which means there are no anchors to make the alignment.

In this case the texts have to be aligned using an exact alignment algorithm at the leaf level.

2.4.2 Learning-Based Language Modeling

A novel designed learning-based approach for learning recognition errors and improve the recog-

nition results is implemented by Al Azawi et al. [AAUHLB14] using LSTM. For the LSTM based

approach, powerful LSTM networks were trained to learn corrections by themselves. LSTM is

specifically designed to overcome limitations of RNN. LSTM has the ability to remember the

target association between irrelevant input and target events even for very long time lags. A

new Character-Level alignment was proposed to normalize the strings length before the training

of LSTM, as will be described in Chapter 6.

Statistical LMs based on n-grams are widely used in several application such as ASR, MT,

and OCR and considered as state-of-the-art. However, n-grams are not giving results good

enough even after a lot of efforts [TMC11]. Al Azawi et al. [AAAB13] implemented new LMs

for historical spelling variants that are based on LSTM. The models achieved better performance

in normalizing of historical text. The experiments show the new implemented LSTM model has

better performance than the existing methods on the unknown data which were unseen during

the training, as will be described in Chapter 5.

Frinken et al. [FZMEB+12] presented to model the target language using RNN with LSTM cells.

The network contains two hidden layers, a project layer, and recurrent LSTM layer. The network

is trained LSTM on word features. They trained the on a given shortlist which contains the most

frequent words, for each word three additional features are added: one related to out-of-shortlist

(OOS) word, one for the start-of-sentence (SOS) tag, and one for the end-of-sentence (EOS) tag.

The approach needed long time to process because long computations of the huge size of the

feature vector. Therefore, the project layer is used to reduce the calculations due to the huge

dimensionality of the word encoding. The output layer has the same dimension as in the input

layer. The probabilities are estimated from the training corpus and are smoothed with bi-gram
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LM. In their paper, they demonstrated that the context information of the words decreases the

perplexity of a testing set using LSTM LM. This LM can use for re-ranking generated N-best

lists. The experiments are conducted on the IAM off-line handwritten datasets and LOB corpus.

In Zamora-Martinez et al. [ZFB+14], they trained the neural network for LM task using the

backpropagation. They also trained on words features as in [ZFB+14]. The size of the input

and output is corresponding to the vocabulary size, which the training of the neural network

expensive. The size is reduced by taking a subset of the vocabulary which is called shortlist with

the more frequent words. The proposed NN LM were 4-gram, 3-gram, bigram, and unigram.

They used 10 K input/output shortlist of words. The NN LM is a combined of four linear

combined NN. Two recognition results was used which are obtained from HMM/ANN and

BLSTM to be used for the experiments. Using 55 K vocabulary, the 4-gram NN LM improved

by a 18%. While it improved up to 20% by using 103 K vocabulary. The increase of the

dictionary size leads to a better performance, the use of 103 K dictionary returned the best

performance of NN LM. The perplexity is decreased by increasing the modeling length and

using the Witten Bell smoothing [ZFB+14]. The best perplexity was obtained from 4-gram

LM smoothed by Witten Bell. However, that was not the case using Kneser-Ney [KN95]. The

projection layer size varying in each neural network with 160, 192, 224, 256 neurons, while

hidden layer size is 200 neurons.

2.4.3 Historical Orthography

Historical documents have nonstandard orthography. Therefore, a normalization approach is

required for mapping historical form to modern form, makes the documents more accessible,

and available for further processing e.g., POS taggers and simple wordform queries by other

users working with the data. The goal of this research is to provide an automatic mapping

from wordforms from ENHG (14th - 16th centuries) to the corresponding modern wordforms

from New High German (NHG), as shown in Chapter 1. Bollman et al. [BPD11b, BPD11c]

compared different approaches for normalizing of variant word forms on their modern spelling

using string distance measures and evaluate them on two types of historical text Luther Bible

and Anselm. These approaches are either rule-based or wordlist approaches. The wordlist

approach is bilingual wordlists. The wordlist maps each historical wordform to the modern

wordform that it is most often aligned with. The normalized wordforms are generated using

this method by substituting an old wordform with its modern counterpart as specified in the

wordlist. If the word is not in the list, it is left unchanged. But this approach fails to produce

a modern wordform, if it’s historical wordform is not in the list.

The rule-based approach is derived by computing Levenshtein edit distance. It outputs a

numerical value with respect to edit operations such as substitution, insertion, and deletion of

single characters that map strings from the historical to modern wordform. If multiple rules are

applicable at the same position within a word, the rule that is ranked higher is applied. This
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approach works well. However, the same experiments showed lower performance on unknown

wordforms [BPD11b], specially in some periods (time in history) the rules were varying. The

rule-based approach was widely used in Information Retrieval applied for normalizing historical

language data [EGF06,AWH07,Pil05,HM11].

Jurish et al. [Jur10] evaluated historical German data for various canonicalization techniques.

The techniques were based on: string identity, transliteration, phonetization, and rewrite trans-

duction. The experiments show the best performance which is selected by a Hidden Markov

Model. Zobel et al. [ZD95] proposed the usage of string matching techniques, such as similarity

measures and phonetic coding, in conjunction with lexicon indexes to find approximate matches

in a large lexicon. The experiments showed that n-gram string distance is a suitable fine search

mechanism, because it is effective and simple to compute. VARD2 is a statistical tool for nor-

malising spelling [BR08]. It is adapted by [HM11] to tackle the problem of spelling variations

in a corpus of personal Portugese letters from the 16th to the 20th century.

Based on the modern lexicon and the 140 manually collected patterns, the set of all potential

rule based historical variants can be computed automatically (hypothetical lexicon)4. The

experiment shows the possibility of automatic mapping from rule based historical variants to

their equivalent in the modern vocabulary. However, they showed, by far, not all historical

variants can be described by simple replacement rules.

2.4.4 Error Modeling

In the last decade, a number of research have been done on error corrections in ASR, OCR,

and spell-checking. A LM in simple form of one-tape finite-state automaton has been proposed

to recognize a valid wordforms of a language. However, the LM should be capable of creating

infinite dictionary corrections for the errors in efficient manner. To find the correct form of

word, the LM needs to search through the whole entries to find the best candidate corrections

which is time consuming, and inefficient. It is also not eligible for unknown wordforms in the

dictionary.

In order to suggest appropriate candidate corrections, an error model is required to gen-

erate correct form of the misspelled or misrecognized words. The traditional error model is

the Levenshtein-Damerau edit distance algorithm attributed initially by [Lev66b]. In the edit

distance algorithm, the misrecognition is assumed to be a finite number of operations applied to

characters of a string: deletion, insertion, and substitution. The Levenshtein distance [Lev66b]

between two strings is used to control the search in the lexicon by generating the exact lexical

words where the Levenshtein distance between the misspelling words and lexical words does not

exceed a given bound [SM02]. This makes the search in lexicon more efficient and faster than

previous methods.

The work of Schulz et al. [SM02] introduced two related methods for correcting misspelling

4http://impactocr.wordpress.com/2011/10/25/language-parallel/
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words using an electronic dictionary, that is implemented as a deterministic finite-state automa-

ton. The correction procedures are similar to Oflazers approach [Ofl96], but completely avoid

the computation of Levenshtein distances. In the first method [SM02], they computed an ap-

propriate deterministic Levenshtein automata in linear time to the length of the input. In their

second method, they avoided the actual computation of a deterministic Levenshtein automaton

for the input word by using precompiled tables to simulate transitions in the automaton. The

precompiled table contains a parametric, generic description of states, and transitions of the

automaton. The traversal of the dictionary automaton is controlled using the table improved

the correction method. As an extension to the work of Schulz et al. [SM02], they suggested to

use a specific costs of the edit operations based on the symbol of the operation. For example, the

frequency of occurrences of a given correction candidate can be taken into account for ranking

correction candidates.

Error model is widely used in different application such as spell-checkers and post-processing

in speech recognition. The authors in [PH12, PSL12] proposed an error model to aid the LM

in a spell-checker to correct misspelling errors and provide the user with several suggestions.

The error model consists of two-tape finite-state automaton mapping any string of the error

model alphabet to at least one string of the LM alphabet. Their goal is to build Finnish

spell-checking. They used finite-state implementation of a traditional edit distance algorithm.

Extensive research has been conducted on spell-checker [Kuk92,SM02].

There are several approaches that have been proposed to solve this problem that use statis-

tical machine learning [GR98], lexical semantics [HB05], and web crawls [RHSM07].

Hassan et al. [HNH08] proposed an error model with edit operations and additional trans-

position operation, i.e., exchanging the order of two consecutive symbols “ab” → “ba”. Their

work was proposed for spell-checking and corrected words with only error of edit distance 1 or

2. In OCR, the work of [LNCPCA10] proposed a method to post processing the results of the

OCR. They proposed a LM with error mode. The error model include the insertion, deletion,

and substitution and apply it on handwritten Spanish surnames in scanned forms.

Further LM research is done in this thesis by constructing a new error model with context

dependent is designed by Al Azawi et al. [AAB14a]. A simple way to use an arbitrary string-to-

string relation transducers such as a misrecognized and the suggested corrections is presented.

We test it by implementing a Finite-State Transducer form of the Levenshtein edit distance

relation. The context-dependent confusion rules is used to build the error model. It is based

on the confusion matrix that the OCR produces and is dependent on the context of the strings

(OCR results). The context help to fit the confusion rule in the proper string where it belongs

and brings the string to the corrections. The LM can be as simple as a list of finite words

compiled into a finite-state transducers. The error model provides a efficient and fast search to

assist the LM. The frequencies of a token or rule in the corpus are converted to weights in the

finite-state transducer.
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2.4.5 OCR Combination

The combination of multiple recognition engines produces better results than single recognition

systems. The early work of combining multiple outputs to correct OCR errors is described

by Lopresti et al. [LZ97]. The method is called Consensus Sequence Heuristic Voting. In

the method, the pages are scanned three times, and the OCR output is combined, then a

voting procedure is applied. The recognition errors are produced by a single OCR package.

The method is inspired from molecular biology. As the approach shows that dictionaries are

able to insert characters, if none of the combined OCR systems produce them. Boschetti et

al. [BRB+09] developed a workflow for digitizing Greek and Latin printed editions. It used

Progressive Multiple Alignment method applied to different OCR outputs. The most similar

pairs are aligned, necessary gaps are fixed to align the sequences and supplementary gaps are

progressively added to the previous aligned sequences. The naive Bayes classifier is used to

find the highest probability among multiple strings provided by the engines. Abdulkader et

al. [AC09] reduced the error rate by using an error estimator neural network that learns to

assess the error probability of every word from ground truth data.

The work of Lund et al. [LR11] proposed a decision list based on a combination of textual

features of multiple OCR engines. The used features are based on voting values, word in dic-

tionary, and other textual features where in-domain training data is available. Lund [LWR11]

has also used progressive alignment to combine multiple OCR systems, then applied a super-

vised, discriminative machine learning method to select among multiple outputs. The Maximum

entropy models are used and trained on synthetic data.

The Recognizer Output Voting Error Reduction (ROVER) [AAKK12] is a well known pro-

cedure for combining several speech recognition outputs. ROVER uses the frequency of occur-

rences and word level confidence values in the voting. However, those values cause poor voting

outcomes due to the unreliability of the decoders confidence scores. Therefore, it is proposed

that ROVER uses a pattern-matching-based voting scheme.

Wemhoener et al. [WYM13] proposed a method using Pairwise alignment and Multiple

Sequence alignment to improve the OCR from multiple editions. The approach correct the

OCR errors based on the majority choice.

The approaches can correct an error, if the correction occur in one of the OCR system. But

they are unable to fix errors which have no correction in one of the OCR systems. A learning-

based method is needed to vote for the best candidate corrections, when the multiple editions are

unable to vote for the corrections, to resolve ambiguity in the choices, and when the correction is

missing from the multiple editions so a prediction of unknown correction is required. Therefore,

an LSTM corrections is designed in this thesis to solve all the above mentioned problems.
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2.5 Toolkits and Open-Source Libraries for building Language

Modeling

There are many tools which support the creation and evaluation of variety of LM’s types based

on n-gram statistics, as well as several related tasks, such as statistical tagging, manipulation

of N-best lists, and word lattices.

Natural Language Toolkit (NLTK)5 is a platform for building Python programs to work with

human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources

such as WordNet, along with a suite of text processing libraries for classification, tokenization,

stemming, tagging, parsing, and semantic reasoning. NLTK is available for Windows, Mac OS

X, and Linux.

The MIT Language Modeling (MITLM) toolkit6 is a set of tools designed for the efficient

estimation of statistical n-gram LMs involving iterative parameter estimation. It achieves much

of its efficiency through the use of a compact vector representation of n-grams. Details of the

data structure and associated algorithms can be found in MITLM toolkit. It has been built

and tested on 32-bit and 64-bit Intel CPUs running Debian Linux 4.0.

Speech Technology and Research Laboratory provided the SRILM7 toolkit for building and

applying statistical LMs, primarily for use in speech recognition, statistical tagging, segmenta-

tion, and machine translation. SRILM runs on UNIX and Windows platforms.

Carnegie Mellon Statistical Language Modeling (CMUSLM) toolkit8 is meant for large

amounts of training data. If you intend to train a LM from a few dozen or even hundred

sentences. It is a set of Unix software tools designed to facilitate LM. It estimates word fre-

quency lists, vocabularies, word bigram, trigram counts, various Backoff bigram, and trigram

LMs.

In this section, we are also going to give an overview of several open-source toolkits which

have been used for NLP application, and to represent the LM in Finite-State Transducers

(FSTs). FSTs have key applications in speech recognition and synthesis, machine translation,

OCR, pattern matching, string processing, machine learning, information extraction, and re-

trieval among others. Often a weighted transducer is used to represent a probabilistic model

(e.g., an n-gram model, pronunciation model). FSTs can be optimized by determinization and

minimization. The models can be applied to hypothesis sets and the best results can be selected

by shortest-path algorithms.

OpenSFT [CAM07] is a library for constructing, combining, optimizing, and searching WF-

STs. WFSTs are automata where each transition has an input label, an output label, and a

weight. It provides the standard functionality which are required for WFSTs, such as compose,

5 NLTK Toolkit: http://nltk.org/
6 MITLM Toolkit: https://code.google.com/p/mitlm/
7 SRILM Toolkit: http://www.speech.sri.com/projects/srilm/
8 CMUSLM Toolkit: http://www.speech.cs.cmu.edu/SLM_info.html

http://nltk.org/
https://code.google.com/p/mitlm/
http://www.speech.sri.com/projects/srilm/
http://www.speech.cs.cmu.edu/SLM_info.html


26 2.6. DISCUSSION

closure, minimize, determinize, concat, prune, intersect, project, shortest path, remove epsilon,

and union. It is powerful, widely used toolkits with optimized algorithms.

HFST9 the Helsinki Finite-State Transducer software is intended for the implementation

of morphological analysers and other tools which are based on weighted and unweighted FST

technology. The feasibility of the HFST toolkit is demonstrated by (a full-fledged) open source

implementation of a Finnish lexicon as well as a number of other languages of varying morpho-

logical complexity. OpenFST is used for providing the functionality for WFST technology.

XFST10 Xerox finite-state tool is a general-purpose utility for computing with finite-state

networks. It enables the user to create simple automata and transducers from text, binary

files, regular expressions, and other networks by a variety of operations. The user can display,

examine, and modify the structure and the content of the networks. The result can be saved as

text or binary files. They can be combined by means of a variety of operations, such as union,

and composition.

DFKI Finite-State Machine FSM toolkit [Pis02] is used for building, combining, and opti-

mizing the Finite-State Machines (FSM). They provide standard operation for FSM with some

other operations which include direct incremental construction of minimal deterministic acyclic

FSM.

2.6 Discussion

In this Chapter, a summary of the state-of-the-art LMs in various application is provided. The

standard LMs based on probabilistic n-gram models, with heuristic search to find the N-best

path.

New LM techniques were invited using Neural Networks. The learning-based models showed

good performance especially for the unseen tokens during the training.

This Thesis will show the improvement of the state-of the-art rule-based error model and

also will show the outperforming LM using the learning-based model in various tasks.

Several open-source libraries are viewed to construct, evaluate the LM.

9 HFST Library: http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
10 XFST Library: http://www.cis.upenn.edu/~cis639/docs/xfst.html

http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
http://www.cis.upenn.edu/~cis639/docs/xfst.html
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Chapter 3

Context-Dependent Confusion Rules

for OCR Post-Processing

The correction of recognition outputs is an important first step in post-processing of recognition

systems. The goal of improving recognition results is to convert a given document image into a

machine readable format for books digitalization.

The designed error model transducers in this chapter are extracted from OCR confusions

with context-dependent rules. The error model supports the Language Model (LM) to correct

the words which are unknown in the dictionary and to reduce search time in dictionary. The

error model and language model are represented in WFSTs.

The following contributions to the state-of-the-art in language modeling for recognition

systems are presented in this chapter1:

1. Context-dependent confusion rules are used to build the error model.

2. They are based on the confusion matrix that the OCR produces and is dependent on the

context of the strings (OCR results).

3. The context of the string is used to fit the confusion rule in the proper string where it

belongs and brings the string to the corrections. It involves less rules in the composition

which makes the search faster and accurate.

4. The size of the context rules is flexible.

5. The approach is language independent.

6. It is designed to deal with different number of errors.

7. It has no limited words size.

1 This chapter is based on Al Azawi work in [AAB14a].
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8. WFSTs are flexible, easy to adapt, and have fast computation.

9. WFSTs provide smoothed alignment between two different strings by allowing various

types of transactions. Beside the input/output labels of the current string, the edit op-

erations: insertion, deletion, and substitution can also be applied. Those operations are

translated to context-dependent rules to help the transducers to compose the appropriate

labels to choose the candidate outputs during the alignment. The weight supports to

produce the best output from the candidate outputs.

10. Evaluation shows that the error rate of the implemented model on the UWIII testset is

0.68%, while the baseline is 1.14%, and the error rate of the existing state-of-the-art single

character rules-based approach is 1.0%, as shown in Section 3.3.

11. The designed approach in the experiments requires 30 seconds, while the single-character

error model takes 1 minute and 6 seconds.

It was proved by the research on language modeling for speech recognition [Moh03b] that

the WFSTs are flexible, fast, and can be interpreted in different designs for lattices and string

matching tasks. It is easy to align various WFSTs with the recognition input. The search is

done by using optimized and high speed algorithms such as the OpenFST presented in [CAM07].

Therefore, the error model is designed using WFSTs, and not other structures.

The remainder of the chapter is structured as follows. In Section 3.1, the state-of-the-art

single character error model is explained. Section 3.2 describes the designed method for building

error models using context-dependent OCR confusion rules and WFSTs. The language model

and the alignment are shown in Section 3.2.3. Section 3.3 presents the experimental results.

The materials are explained in Section 3.3.1. Section 3.4 concludes the chapter.

3.1 Single Character Rules-Based Approach

The single character rules are extracted using Levenshtein edit distance algorithm [HNH08].

The rules represent the primitive operations: insertion, deletion, and substitution. These rules

are used for constructing the transducers. Each transition in the transducer holds single rules,

i.e., the substitution rule c : a, where c is the wrong character in a given string, and a is the

correct character, as shown in Figure 3.1.

An example of insertion rule is ε : v and deletion rule is t : ε. The transitions from the start

state Sstart to the final state Sfinal allow editing of the input strings according to the rules. The

loop transitions on the start state Sstart and final state Sfinal are called identity rules, and are

used to pass the rest of the characters in the strings.
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Figure 3.1: Sample of the Single Character Rules-based Transducer. The transitions from Sstart
to Sfinal are used to modify the strings such as: t : ε, c : a, and 7 : T . The loop
transitions hold the identity rules.

3.2 Designed Context-Dependent Error Model Method

In OCR systems the Language model consists of finite wordforms and their probabilities based

on their occurrence in a given corpus, as shown in Section 3.3.2. The Language model can be

constructed as deterministic FSTs which are fast and efficient to search in a set of words, and

retrieve words. However, the search for candidate corrections for the misrecognized word in

the language model is inefficient, and very slow for large-size dictionaries, because it requires a

look-up over all the entries of the language model. Furthermore, the language model might fail

to find the suitable candidate corrections for unknown wordforms. Therefore, a mechanism for

generating correction suggestions for the erroneous wordforms is needed, which is called error

model.

In this section, the extraction of the context-dependent rules, and construction of the error

model transducer using those rules are described. The way that the language model is built,

the alignment technique which is used, and the used materials are explained.

3.2.1 Context-Dependent Confusion Rules Extraction

The purpose of an error model is to act as a filter to revert the mistakes of the recognition out-

puts. The simplest and most traditional model for making such corrections is the Levenshtein-

Damerau edit distance algorithm contributed initially by [Lev66b]. The correction of OCR

errors using the confusion rules usually means generating a list of wordforms belonging to the

given language.

The error model typically provides a small selection of the best matches for the language

model to select from in relatively short time span, which means that when defining corrections,

it is also necessary to specify their likelihood in order to rank the correction suggestions. The

designed error model developes the Levenshtein transducer using the alignment of misrecognized

words of the OCR output with their corresponding ground truth. By using the outputs of the

alignment, the OCR confusions are extracted in a form of rules to be used in the error model with
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Table 3.1: Context-dependent rules which are required to fix the misrecognized words and their
correspondencing correct words.

Context-Dependent Rules Misrecognized Words Correct Words

fεn → fin Defnition Definition

fεe→ffe efect effect

mεd→mod mdel model

[l]→[1] [l] [1]

Sqfecy→Safety Sqfecy Safety

respect to their context in both the misrecognized and ground truth wordforms. The extracted

confusion rules represent the simple edit operations: insertions, deletions, and substitutions in

a context-dependent form, as are shown in the examples in Table 3.1. The error model assigns

cost for each rule. The cost is represented in weight w to the confusions pair of the misrecognized

word r and its correct word s corresponding to the probability of an OCR output word r when

intending to recognize the word s, and the context model assigns weight w.

The error model is built using edit distance algorithm; the misrecognition is assumed to be

a number of operations applied to characters of a string: deletion, insertion, and substitution.

With neighboring characters on leftmost and rightmost sides. Also the size of the context that

are involved in the rule is controlled. To correct the first character, the context of the right side

is taken. The context of the left side is taken to correct the last character. For example, the

misrecognized word Defnition needs the rules fεn→ fin to be fixed. The misrecognized word

efect requires the rule fεe → ffe, as are shown in Table 3.1.

3.2.2 Construct Error Model using Weighted Finite-State Transducers

In the next step, the error model transducer is constructed using the extracted context-dependent

rules which are extracted in Section 3.2.1. The error model transducer is a weighted finite-

state transducer that maps the misrecognized words to correct strings. Each of these context-

dependent rules can receive a probability. The probability is derived from the confusion matrix

of the OCR classifier. The context-dependent rules consist of two parts, the left part is the

OCR confusions, and the right part is the corresponding ground truth. The rules are translated

into a WFST, while the left part represents the input label of the transducer, and the right part

of the rule represents the output label. The probabilities of these rules are taken as weights in

the transducer.

Therefore, the error model transducer is able to map the OCR error by matching the output

label of the OCR transducer with the input label of the error model. The output label of the

error model is matched to the corresponding input label of the dictionary and maps the OCR

error to its correspondence correction. For example, the rule fεc → fic is highlighted in the
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Figure 3.2: Sample of the context-dependent Confusion rules in Error Model (EM) transducer.
The figure shows inputs/outputs examples for seen and unseen tokens in the EM
and LM.

WFST as is shown in Figure 3.2.

The transducer starts from the start state Sstart, the character f represents an input and output

label in the first transition to state S4. The left part of the rule ε is an input label in the second

transition to state S5, while i represents the output label of this transition. Finally, from state

S5 to the final state Sfinal the input, and output labels are c. The path from Sstart to Sfinal is

a successful path. The transition ε : i means insert i in the word which was missing from OCR

outputs. Other identity rules, i.e., a : a, are also involved to pass the remaining characters of

the string. Part of the constructed error model transducer is shown in Figure 3.2.

3.2.3 Language Model and Alignment Technique

The language model can be as simple as a list of finite words compiled into probabilistic WFST.

The words and their frequencies were extracted from the text corpus from project Gutenberg2.

The standard WFSTs framework is used to include probability estimates for constructing a

unigram model.

In an n-gram model, the probability P (w1, ..., wm) of observing the sentence w1, ..., wm is

approximated as:

P (w1, ..., wm) ≈
m∏
i=1

P (wi | wi–(n–1), ..., wi–1) (3.1)

2 Gutenberg Project: www.gutenberg.org

www.gutenberg.org
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Figure 3.3: Output of the composition

The conditional probability is calculated from the n-gram frequency counts:

P (wi | wi−(n−1), ..., wi−1) =
count(wi−(n−1), ..., wi−1, wi)

count(wi−(n−1), ..., wi−1)
(3.2)

It is assumed that the probability of observing the ith word wi in the context history of the

preceding i− 1 words can be approximated by the probability of observing it in the shortened

context history of the preceding n− 1 words.

In the next step, the three transducers are aligned:

OCRoutput ◦ EM ◦ LM (3.3)

Where ◦ represents the compose operation as described in Section A.1.1. First, the OCR

outputs are aligned with the error model to generate composed Levenshtein transducer with

OCR confusions of OCR output. The alignment technique is described in [AALB13]. It contains

all the possible and appropriate candidate corrections of the misrecognized tokens, and provides

suggestions to the language model to decide the best candidate correction which should be taken

to correct the misrecognized tokens. Both the OCR output and the error model are represented

in finite-state transducers.

After composing the input with the error model transducer, the resulting WFST is composed

with the dictionary to filter out the words that do not exist in the language. Then, the best

path with lowest cost is chosen from the second composition. A composed WFST will be

generated with weights to be used in the ranking. The weights are based on the extraction

which is described in the formula in Section 3.2.1. The composed WFST has many paths and

depends on the compositions with the correspondence rules in the error model. The best path

of composed WFST has the lowest cost and it is obtained by using a dictionary as a filter in

the second composition. The best path is considered the output of the combination of the two

compositions which include the composition of the OCR output, error model transducer, and

language model transducer, as shown in Figure 3.3. The Figure shows the rule m ε d → m

o d which is composed with the recognition output to correct the string mdel to model. In

the second composition, the dictionary lookup will find the proper candidates corrections that

are closed to the input string. As such an optimal and efficient searching in the dictionary is

obtained with respect to time and space.
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Table 3.2: Error rate of the designed Error Model compared to the original OCR recognition
results and single character rule-based correction.

Dataset Baseline Single Character Context-Dependent

Rules-based Confusion EM

UWIII-training 1.28% 0.79% 0.10%

UWIII-testing 1.14% 1.0% 0.68%

3.3 Experiments

3.3.1 OCR and Materials

The OCRopus OCR system3 is used to obtain the recognition of the University of Washington

(UWIII) dataset [GHHP97] and separate the data into a training and a test set. The OCR out-

puts are extracted from lattices of character hypothesis. They are used in the testing and are

transformed into finite-state transducers to be composed with the error model transducer. The

implemented method does not impose any constraints on the bound k, where k is the edit dis-

tance between the input word and the candidate corrections. The purpose of context-dependent

error correction using OCR confusion is to rank a set of candidate corrections taking the mis-

recognized word context into account. In the implemented approach, there is no limitation or

constraints on the length of the word or number of errors in the word.

The dataset is split into 6,000 training inputs and 3,917 testing inputs. The ground truth

is used to evaluate the generated corrections wordforms. The dataset is generated from OCRed

textlines of the UWIII datasets. The context-dependent confusion rules are extracted from

OCRed pages of the UWIII dataset. The total number of the extracted set of rules in the error

model are 162 rules. The number of entries in the language model is 144,240 and generated from

project Gutenberg4. The number of rules in the single-character model is 208. The number of

identity rules is 78, for example, e → e.

3.3.2 Experimental Results

In the experiments, OCR output and the corresponding ground truth is used to build the error

model. Table 3.2 shows the evaluation of the implemented error model approach compare to

the original OCR recognition results and the state-of-the-art approach single character rule-

based [HNH08].

The Character Error Rate (CER) is measured using the edit distance to find the number of

3 OCRopus Project: https://github.com/tmbdev/ocropy
4 Gutenberg Project: www.gutenberg.org

https://github.com/tmbdev/ocropy
www.gutenberg.org
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Table 3.3: Output examples of the designed error model compared to the original OCR recog-
nition results.

Misrecognized Correct Applied Context- Edit Operations

Words Words Dependent Rules

nefer refer ne → re substitution

peEformed performed eEf → erf substitution

AUsTIN, AUSTIN, UsT → UST substitution

7he The 7h → Th substitution

rnethod method rne → mεe deletion and substitution

artifcial artificial fεc → fic insertion

ecause because εe → be insertion

diHerent different iHεe → iffe insertion

edit operations on character level.

CER =
I +D + S

N
× 100 (3.4)

where N is the total number of characters. I is the number of insertions, D is the number of

deletions, and S is the number of substitutions. The experimental runtime for the implemented

context-dependent error model was 30 seconds, while the single-character error model took 1

minute and 6 seconds for the testing set.

An example, the confusion rule pεr → per is used to fix the misrecognized word papr to

paper by insertion of the character e. Another example is transforming the misrecognized word

lt to the correct word It using the rule lt → It by substituting the character l with I. More

examples are shown in Table 3.3. The misrecognized word ecause is corrected by using the

context-dependent rule εe → be to because, while the result using single character rules is

cause. The unknown misrecognized word trafic overlaps with the rule fεi → ffi and the

alignment produces the correct word traffic. While the misrecognized word Transportation

is not corrected Transrtation.

An example of a confused case, i.e., a misrecognized word a is considered as a dictionary

word but in the original context is different word and, which it misrecognized by the OCR as a.

The error model is able to find the correspondence confusion rule while the language model

considers it as a correct word. Finally, the best path with the lowest cost is chosen from

n-best paths. The implemented error model is capable of correcting any type of errors such

as transform an incorrect word to a dictionary word or transform the wrong symbols to its

correspondencing digits or punctuations. The implemented model learns the OCR confusions

and converts them to rules to edit, and correct the strings. The size of the context that is used
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in the rules is flexible. If the word is not in the dictionary, then only the error model is used.

The error model can fix any number of errors per word. The length of the words is not fixed.

Words with different length are applied.

3.4 Discussion

In this chapter a WFST-based method is used to build an error model to correct OCR errors.

The error model is established from the context-dependent confusions of the OCR errors and

is constructed using WFSTs. The context-dependent confusions are extracted using the Lev-

enshtein edit distance alignment. The Levenshtein edit distance algorithm is used to construct

the error model. The primitive operations, such as deletion, insertion, and substitution are used

to fix the misrecognized tokens. A number of edit operations are applied on the character in

the string with respect to the leftmost side or rightmost side of the sting. The rules cover the

OCR confusions.

Using the technique from the Finite-State theory and avoiding calculating the edit distance

makes the approach fast and efficient. The new implemented method avoids calculating the edit

distance at all steps of the correction process. It helps the language model to find the candidate

corrections efficiently and with a controlled search. The designed method uses the context of

the string to extract the rules and later the rules will be more efficient and convenient to fit

in, and correct the wrong string. The implemented model is capable of correcting any type of

errors such as transforming an incorrect word to a dictionary word, or transforming the wrong

symbols to digits, and any other errors.

The implemented error model is fast, efficient, and performs better than the state-of-the-art

approaches [HNH08, LNCPCA10]. The single character rule-based method required a lot of

effort to obtain an optimized model and accurate results. Tuning and pruning with different

parameters are needed to solve the delay in composition, but might not lead to accurate results.

The single rule-based approach is slow because it involves many irrelevant edit operations in

the composition between the input and the error model. The state-of-the-art in spell-checkers

showed that the rules-based approach is better to aid the language model, while alone language

model is not capable of doing the corrections, moreover language model are often slow. However,

the single character rules-based requires to be optimized [HNH08]. The parameter for smoothing

the weights needs to be tuned to have optimized costs. The composition with such a model

needs to use more operations such as pruning [LNCPCA10] and remove epsilon. The single

character model needs to reduce the usage of epsilons and identity transitions to avoid the

delay in the composition. Their search is not restricted and involves in irrelevant and unsuited

candidate correction or transitions which makes the composition slow and the WFST huge.

However, such transitions with epsilons, and identity rules are necessary in the composition.

Using an inappropriate threshold during the pruning process on the transducers leads to a loss
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of the best path with low cost. Such problems were not faced in the designed context-dependent

scenario. Therefore, the designed context-dependent error model is suggested which shows the

improvement on the OCR results compared to the single character rules.

The implemented WFSTs approach has no limitation on the words length and the number of

the errors that the method should correct. The experimental results show that the implemented

method achieves good performance for both time and correction accuracy. The approach is

completely language independent and can be used with any language that has a dictionary and

text data to build a language model.



Chapter 4

Transcription Alignment

The motivation of this chapter is two-fold. First, available manual transcriptions in standard

edition lack the possibility of linking from the transcription to the corresponding positions in the

original document, and second, a huge amount of training data with aligned transcriptions would

be necessary in order to create good OCR systems for historical documents. The typical manual

transcribing process usually provides different editions of transcriptions which are nowadays

available for some manuscripts. Originally, transcriptions were created for just assessing the

contents of the text rather than for providing an alignment between the transcribed edition,

and the original image. Hence correspondence at the word, line, or sentence level may not be

available. This is especially true for historical documents1. Therefore training and evaluation

of techniques for recognition and retrieval of historical documents with different levels of text

modification is still a big research challenge.

The first part describes the implemented approaches for transcription alignment with the

hyphenation model using WFSTs. The second part presents the dehyphenation for noisy tran-

scription is by classification.

C1: The first part of the chapter discusses WFST-based alignment approaches which are scal-

able and are well suited for historical documents, as shown in Section 4.2. The purpose of

Section 4.2 is to provide an easy-to-use implementation with no parameter tuning but still

yielding lower error rates. In particular, the contributions are divided into two scenarios

in Section 4.2.

(a) Alignment approaches are designed under OCR layout and recognition errors with

desired transcription.

(b) Aligning the OCR lines with imperfect transcriptions which have different text or

missing contents, words with different upper or lower case letters, and different punc-

tuation.

1 This chapter is based on Al Azawi works in [AALB13,AAB14b].

39



40

Figure 4.1: Text lines from the actual OCR transcription from the original document and the
corresponding transcription from the project Gutenberg-DE corpus. Each word
in the actual transcription must be aligned with the corresponding word in the
other text. The transcription from Gutenberg-DE corpus has different contents,
line breaks, and no hyphenation

(c) Typically, the transcription has different line or page breaks which means having

no information about the correspondence at the word, line, sentence level or page

level. The implemented approaches are robust and able to solve the correspondences

problem.

(d) A novel hyphenation model is designed using WFST to adapt any unhyphenated

transitions or transitions with different hyphenation differ from the hyphens in the

OCR’s lines.

C2: The second part of the chapter is the dehyphenation for noisy transcriptions and is de-

scribed in Section 4.3.

(a) The purpose of dehyphenation is to provide the output of the text recognition systems

in a clean format by removing hyphens which are used as line breaks.

(b) Furthermore, it removes all the misrecognized hyphens,in order to deliver a clean,

and easily adaptable text format of the recognition results to be used for different

purposes.

The remainder of the chapter is outlined as follows. Section 4.1 describes the alignment

problem. Section 4.2 describes several WFST-based alignment approaches for OCR errors

and layout variations for historical language. The designed approaches page-wise alignment in

Section 4.2.1 and small text segment alignment in Section 4.2.2 are compared with the state-of-

the-art book-wise approach [YM11] in Section 4.2.3. Section 4.3 describes the dehyphenation of

noisy transcriptions. Section 4.3.1 shows the dehyphenation problems in the noisy transcriptions

and Section 4.3.2 describes the challenges in English and German.
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The implementation of the designed methods for de-hyphenation is described in detail in

Section 4.3.3. Section 4.4 presents the experimental results. Section 4.4.1 presents the tran-

scription alignment approaches and Section 4.4.2 shows the results of dehyphenation approaches.

Finally, Section 4.5 concludes the chapter with a discussion.

4.1 The Alignment Problem

Historical books may contain different fonts, touching, broken characters, and warped characters

at the edges. Furthermore, the scanning process often introduces blur and curved lines, and

there are numerous other possible sources of noise like bleed-through, degraded character, and

annotations [BC11, NSD+11, LdFPeSdAF11, MEAMA11, FV11]. An example font is Fraktur,

which is a form of black letter or Gothic script, and includes the elongated s, and ligatures, or

“joined” letters for certain letter combinations. Fraktur documents have multi-column layout

with narrow line spacing which leads to touching lines. Bad scanning resolution or degraded

documents lead to many segmentation and recognition errors. Applying OCR on those images

might produce many words with at least one or more wrong characters in the word, which might

disturb the idea of finding unique words, and producing a long segment for the alignment as was

shown in Manmatha et al. [YM11]. An important task is creating a correspondence between the

OCR results and a differ ASCII text of the document. To be able to align the erroneous OCR

lattices with a layout variable ground truth, an adapted transcription model is designed using

WFST with edit operations such as addition, deletion, and substitution. With this approach

there is no need to revise the numerous wrong characters or words in the the OCR transcription

before the alignment.

The transcriptions were taken from project Gutenberg-DE2 which has different line breaks,

page breaks, hyphenenation, and punctuations. Furthermore, the capitalization of the words

in the text edition do not correspond to the images of these words. The transcription includes

missing text lines and also has different text content from the image, as shown in Figure 4.1.

4.2 WFST-Based Transcription Alignment Methods

Aligning the OCRed text line lattices directly to transcriptions might not align the pairs cor-

rectly. An important reason for that is that the sequence of the OCR lines is not the same as

in the original document or the transcription. Other factors which can affect the alignment are

insufficient information at word or line level of the transcription. Therefore, different alignment

approaches are implemented using WFST to avoid mismatched parts between the OCR lattices

and the transcriptions, and guarantee the OCR lattices will be aligned to the correct text con-

tents in the transcriptions to get as much as possible of those alignment pairs. In the following

2 Gutenberg Project: www.gutenberg.org

www.gutenberg.org
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Figure 4.2: Page-Wise WFST-Based Alignment Approach. The Page-Wise alignment approach
aligns each OCR lines with the page transcription (on the right side in WFST)
separately, while the text line has a segmentation problem.

sections the designed alignment approaches are presented.

4.2.1 Page-Wise Approach

To avoid the problem of mismatched sequences, a page-wise approach is designed as parallelized

text lines in an FST. The approach is used in aligning an OCRed text line with a line from

the transcription, while it is unknown, if the sequence (order) of the OCRed text lines are the

same as in the transcription. The difference in the line order comes from segmentation errors

or transcriptions having different line order or line breaks. Figure 4.2 shows the idea of the

page-wise alignment approach which aligns separately each OCR line lattices with the whole

page transcription.

A page-wise approach is designed to avoid the differences in the lines’ order in the OCR

from the transcription. Each line in the transcribed page is represented as a line in the FST,

altogether they are represented as parallel lines for the page FST. This approach aligns the line

lattice of the OCR with each line in the page FST, then the best valid path is chosen from

the composed graph which represents the best match between the OCR and the transcription.

Figure 4.2 shows how the lines in a page as FST are represented. The page FST consists of “j”

states and “m” lines.

Each line is represented as a string and each character is considered as an input and output

label for the transition between every two states. Considering “a1” as the input and output



CHAPTER 4. TRANSCRIPTION ALIGNMENT 43

(a) Fraktur ligatures ch (b) Fraktur ligatures st

(c) Fraktur ligatures fi (d) Fraktur ligatures ll

Figure 4.3: Presentation of the Fraktur ligatures in FST: “ch”, “st”, “ll” , and “fi”.

label for the first character in the line, this representation is followed until the last character

in the line which is “an” is reached. Each line in the transcription is presented as WFST line

and starts from the start state and ends in the final state. The same representation is followed

for the next lines until the end of the last line. The combined WFST lines generate the WFST

page of the transcription. All the WFST lines on one page, start in the same start state, and

end in the same final state.

Segmentation of Fraktur characters is a challenge because the Fraktur documents include

many touching characters which are represented in the clustering and recognition as combined

characters or so-called ligatures. The OCR lattices include many combined characters as one

segmentation. Therefore, those characters are also represented as single characters, and/or as

combined characters if they are considered as Fraktur ligatures to find the suitable match pairs

in the alignments. In Figure 4.11(a), the representation of the ligature “ch” is shown, which is

for part of the the word, for example, “machen”. The transition “c : ch” has “c” as an input

label and “ch” as an output label, the second transition “h : ε” has “h” as an input label, and

“ε” as an output label to produce the “ch” as ligatures, which is a typical Fraktur ligature and

appears often. The parallel transition is present in the FST to produce the “c : c” and “h : h”

respectively, if the ligature does not occur in the OCR lattices. This design is followed for most

frequent Fraktur ligatures.

The edit operations substitution, insertion, and deletion are used in the approach to smooth

the alignment between OCR and the transcription. They are translated as transitions in the

FST and used as rules to substitute, insert, and delete characters from the OCR. Those
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Figure 4.4: Alignment of the OCR line against the Transcription lines.

editing rules are: Substitution: “ρ” → “c”, Deletion: “ρ”→ “ε”, and Insertion: “ε” → “c”,

where “c” is a character, “ρ” is Rho and “ε” is epsilon. The Rho matcher is used if there

is no symbol in the OCR Lattices that match the transcription characters. More generally,

they may implement matching special symbols that represent sets of labels such as “ρ” (rest),

which can be used for more compact automata representations, and faster matching. For each

character in the line, the designed edit rules are applied. The cost of those edit operations is

empirically estimated. Matchers can find and iterate through requested labels at WFST states;

their principal use is in composition matching. In Figure 4.3 ligature representations with the

regular representation of the character itself are shown. They are then combined in one WFST

as shown previously in Figure 4.2. The punctuation and special symbols are included as it is

written in the transcription.

4.2.2 Small Text Segment Approach

To avoid the problem of different line breaks in the transcription and the over-segmentation

problem in the OCR, an alignment approach is designed to find matches of the OCR lines

(broken or correct line) in small parts of the transcription. A segment of text lines is extracted

from the transcription and is defined as being less than a page and containing a text line from

the transcription, and its surrounding lines, i.e., n previous and m next lines, where n and m

typically range from 2 to 5. Figure 4.4 shows OCR lines having an over-segmentation problem
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Figure 4.5: Extracted text lines segment of length “j”.

Figure 4.6: The word “Wasser” represented in FST with hyphenation.

and the transcription having different line breaks.

The desired line is extracted with the surrounding lines, for example, here a text segment

with three lines is extracted. The extraction of the surrounding text line for the segment

can be increased according to differences in the lines order and breaks between the OCR, the

transcription, and the number of over-segmentations in the OCR. This approach can align

text lines and solves the problem of mismatches as in the page-wise alignment. The text lines

segments are represented as line WFST as shown in Figure 4.5. The first transition has the first

character in the segment and the edit rules are used for each character, as shown in Section 4.2.1.

The last transition represented is the last character in the segment. Each OCR line lattice is

aligned with the text lines segment. The ligatures are also considered in the FST representation

as in Figure 4.3.

Each combination of characters in the transcription is represented with the help of a big list

of Fraktur ligatures. If it matches a ligature in the list. Skipping rule is added by using the

epsilon transition to skip those symbols in the transcription which do not match any symbols

in the lattices.

Noteworthy, this model is applied with and without hyphenation. The purpose of the

hyphenation model is to hyphenate the words in the transcription which have no information

about line breaks and the hyphenated words. Therefore, each word in the transcription is

hyphenated. Then, the words are presented within the text lines segment FST. Figure 4.6

shows the designed hyphenation model which can produce the word water without hyphen
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Figure 4.7: Book-Wise N-gram WFST-Based alignment approach.

“Wasser” or the hyphenated “Was−” and “ser” with certain cost. This model can produce

the required word or part according to the OCR token.

4.2.3 Book-Wise N-gram Approach

The idea of this approach is aligning the OCR line lattices with the whole transcription content

which is a book. The work of Manmatha et al. [YM11] aligns the whole OCR text output with

the whole transcription and finding the unique words which help to clarify the correspondences

between words in the OCR and the transcription. This idea is applied for evaluating the

OCR results. The purpose is to generate the aligned pairs from the character segments of the

manuscript and transcription for training purposes. Instead of getting the best path from the

OCR lattices and matching it against the transcribed book. The corresponding text segment is

then aligned with the OCR lattices. A simple approach is implemented to align the OCR lattices

against the whole transcription directly using Weighted Finite-State Transducers. The WFST

can find the correspondences on character level and is easier and simpler to use to generate the

aligned pairs. This idea is supported when there is fuzzy information about the page breaks and

big differences in the pages content between the OCR, and the transcription. Especially when

the OCR produces a lot of errors due to the different fonts, touched, and broken characters and

bad scanned historical documents. Figure 4.7 shows the book-wise based WFST. The WFST

consists of parallel paths each path represents a word of the transcription. For each word, the

normal and ligature characters representation are used, as shown in Section 4.2.2. Again, the

hyphenation model described in Section 4.2.2 is integrated into this model. In the experiments,

this approach is applied with and without hyphenation.
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Figure 4.8: Goal of the dehyphenation approach: the recognition result is the input and the
recognition without the line breaks and noisy hyphens.

4.3 Dehyphenation of Historical Noisy Transcriptions by clas-

sification

The main aim of dehyphenation is to remove the hyphen and convert the result of OCR into

a readable and reflowable format, so that they can be used for different purposes such as post-

processing, and digitalization of the transcriptions with the corresponding historical books. The

documents emphasize that hyphens are not only used as line breaks. For languages, such as

German, hyphens are frequently used to combine two nouns to produce a word.

The remainder of this section describes the problems in Section 4.3.1, the challenges in

Section 4.3.2. The implementation of the implemented methods for dehyphenation are described

in details in Section 4.3.3.

4.3.1 Dehyphenation Problems in Noisy Text

This section describes the dehyphenation problems in noisy transcriptions of German and En-

glish script, as shown in Figure 4.8. The transcription is called noisy because it is obtained

either from recognition systems with errors or when the users are typing text with various

spelling and typing errors. To dehyphenate the noisy transcriptions, a robust method against

spelling and recognition errors is required. Misrecognition example are substitution of symbols

or dashes with hyphens.

A requirement is the ability to distinguish hyphens at the end of the line from those of

compound words. The purpose is to classify the hyphen as a hyphenation of line break or

hyphenation of combined words and terms. Furthermore, the transcription has a lot combined

digits and letters, not only words, with a hyphen such as: “NS-1039-11”, and “l073-l078”.

Table 4.1 shows the recognition errors occur with hyphens. Compound words appear in three
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Table 4.1: Misrecognitions with hyphens

Error Types Tokens

Recognition Error w wHOLE-BODY

Insertion Error of Hyphens high-r-lution
and Deletions

Recognition Error ∼ Go∼back-N

Insertion Error of Hyphens Schlachtfeld-,Während

Recognition Error Witioenschteiev-1o)

Insertion Error of − and , Untergenerm-,,

disambiguities I-\n je

tokens “Electro-Magnetic-Acoustic”, line breaks hyphenated words such as “distri-\n bution”,

and words which are hyphenated at the line break “plystyrene-poly-\n methylmethacrylate”.

The recognition errors appear also in the compound words “Spät-NachmittaM-Beleuchtung;”,

“Werbelliner-Forstj”, “Friedland-1788–180;j”, “16-Jahrhuntertg”, and “literarisch-aes)hetischer”.

In the Fraktur documents, few compound words could appear with no capitalization e.g.,

“wiffenschaftlich-praktisch”. In the scanned books, the hyphen could appear at the line break

of the page’s last line. In the next page, the page number is given, and then the rest of the

hyphenated word.

4.3.2 Language-Specific Challenges

This section describes the specifics of English and German hyphenation which appear in clean

and noisy texts.

In English, hyphens are used to link words and parts of words. They are not as common

today as they used to be, but there are three main cases where they should be used: in compound

words, to join prefixes to other words, and to show word breaks.

1. Hyphens are used in many compound words to show that the component words have a

combined meaning (e.g., “a pick-me-up”, “mother-in-law”, “good-hearted”) or that there

is a relationship between the words that make up the compound: for example, “rock-

forming minerals are minerals that form rocks”. Compound adjectives are made up of a

noun and an adjective: “sugar-free”, a noun and a participle: “computer-aided”, or an

adjective, and a participle: “quick-thinking”.

2. Hyphens can be used to join a prefix to another word, especially if the prefix ends in a

vowel, and the other word also begins with one (e.g., “pre-eminent” or “co-own”).

3. Hyphens showing word breaks. They show where a word is to be divided at the end of a

line of writing, for example, “hel-met” not “he-lmet”.
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The hyphen (der Bindestrich) in German is used very much like in English. Some of its

lesser used functions are:

1. To indicate a link between syllables when lack of space at the end of a handwritten/printed

lines forces the writer to separate a word.

2. To indicate a common suffix to words: “saft- und geschmacklos” (not juicy and without

taste).

In German specifically, hyphens can be used to combine (nouns,nouns), (adjectives,adjectives),

(suffixes,nouns), and (suffixes,adjectives), plus much more. Here are the rules for hyphenation

in German as it currently stands:

1. The users have the choice to use the hyphen in: any long compound word where a hy-

phen would improve its readability and clarity “Kundenauftragsabwicklungsprozess” to

“Kunden-Auftragsabwicklungsprozess”. With foreign words, namely the many English

words that have infiltrated German business and media lingo “Job-Share” or “Jobshare”.

However, foreign words will be written together when the first word cannot stand alone

as an actual word, such as “der Afrolook”, “der Neofaschismus”. Compound words that

contain three of the same letters one after another, such as “der Kaffeeersatz” to “der

Kaffee-Ersatz” (coffee substitute).

2. Hyphens must be used when combining: numbers and words other than“-fach” and “Jahr”,

for example “16jährig” to “16-jährig”(16 year-old), “5mal” to “5-mal” (5 times). Abbre-

viations and nouns: “Der Lkw-Fahrer”(truck driver), “die UV-Bestrahlung” (UV radia-

tion). Single letters and words: “Das T-Shirt”, “die U-Bahn”. Words can combined with

or without hyphens, e.g., “Ticket- und Tarif-Infos” (Ticketing and rate information) and

“Bus- und Bahnfahrpläne” (bus and train timetables).

4.3.3 Designed Classification-based Methods for Dehyphenation

In the designed approach, the dehyphenation is treated as a classification problem. Hyphens are

spaced apart enough so that each hyphen/no-hyphen decision is treated as a separate problem.

Feature Extraction

It is important to select appropriate features that can be learned for building a dehyphenation

model based on the data in training sets. How those features should be encoded, which features

are most informative, and how those features relate to one another. The appropriate features

which are extracted from Fraktur are word length and the length of both tokens joined by a

hyphen because German words are longer than a hyphenated part. Capitalization is one of

the most appropriate features because the second part of the compound word could start with
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capital which makes it distinguishable. German nouns start with capital letters, it is more

frequent that a word appears after a hyphen as a second part of the compound word than a

second part of a hyphenated word at the next line [GT94].

Other features are the length of the two parts of either a hyphenated word or a compound

word. It is necessary to find some other features to be used with the mentioned features for

the English input. An example, part-of-speech tagging is used to distinguish between words,

and hyphenated token because only words can have tags. Most compound words in English

start with lowercase and some compound words have a short length. Therefore, the part-of-

speech tagging is used. The two tokens which represent a compound word can have a POS-

tagging, since it could be a combination of noun-noun, adjectives-adjective, noun-participle, and

adjective-participle. However, the two tokens which represent a hyphenated word, they are not

dictionary words, and cannot have POS-tagging. The hyphenated words in English are divided

into syllables, which have no POS-tagging. The NLTK available tagger is used which is based

on the Penn Treebank tagset [LB02]. For noisy transcriptions, a tagger supposes to work under

OCR’s errors to find the right tagger for the each hyphenated tokens. The tagger determines

the tagging by checking the end of the word, but the tagger should avoid tagging a token such

as “istry” in “chem-istry” by using a regular expression tagger.

The hyphen divides the words between syllables, e.g., “bas-ket”,“pic-ture”. It can be avoided

to carry over two-letter syllables to the next line, e.g., “fully”, not “ful-ly”. It can not divide a

word of one syllable or divide any word that will result in a single-letter syllable, e.g., “again”,

not “a-gain”. The hyphen also divides between double consonants, e.g., “equip-ping”, not

“equipp-ing”. Therefore, the feature vowel is used to learn the characteristic of the syllables.

The frequency of the input which occurs either as hyphenated word or compound word is also

used with the other features. In English, there are some cases where there is no distinguishable

difference between the length of the compound words, and normal words. Furthermore, the

compound word does not start with capitalization. The features set is fed into the model,

which generates predicted labels. The input features are:

• The word length: the length of the two tokens which connect with the hyphen.

• The length of the first part of the word: the length of the first part of the hyphenated or

command word.

• The length of the second part of the word: the length of the second part of the hyphenated

or command word.

• The word has a Tag: binary (“yes” or “no”) and provided by checking the the tag of the

two tokens. The value is “yes” if first and second token have POS-tagging.

• Check Vowel: binary (“yes” or “no”) and provided by checking the last syllable of the

first token.
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Table 4.2: Performance evaluation results of the alignment approaches applied on original tran-
scription.

Alignment Approaches Total Number of obtained Characters Error Rate

Small Text Segments 137,408 0.6%

Page-Wise 111,572 3.2%

• Check Vowel: binary (“yes” or “no”) and provided by checking the first syllable of the

second token.

• Has a capital: binary (“yes” or “no”). The value is “yes” if the second token starts with

upper case letter.

• Frequency: an integer value. It refers to the frequency of occurrence of the tokens within

some given text corpus.

For classification, Decision Trees, Naive Bayes, and Maximum Entropy [LB02] are used.

4.4 Experiments

4.4.1 Experimental Results of WFST-based Transcription Alignment

The alignment approaches are evaluated on Fraktur documents from real scanned books. The

volumes of “Wanderung durch die Mark Brandenburg” (1862-1889) of Heinrich Theodor Fontane

are used which have been provided from the German Text Archive (DTA). The recognition

lattices are obtained by using open sources OCR system OCRopus [Bre08]. In the first part of

the experiments, the approaches are applied on the original real transcriptions (ground truth)

to assess their performance under OCR segmentation and recognition errors. The methods are

applied on 106 Fraktur documents which have 3353 text lines and the results are shown in

Table 4.2.

The first approach of small text segments returns 137,408 single and combined (ligatures)

characters. The number of the returned ligatures is 6,941 which might be a combination of two,

three or four characters. Those characters are stored in a database as tuples representing the

correspondence between the segmented character(s) (of the manuscript) and the transcription

character(s) which it has been aligned with. The error rate was 0.6%. The page-wise approach

returns 111,572 characters with error rate 3.2% and 587 ligatures.

The error rate is measured by:

Error Rate =
Number of invalid character pairs

Total number of extracted pairs
× 100 (4.1)
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Note that the number of characters and ligatures differs between these methods, because

the different approaches solve the problem of layout variation of the OCR and the transcription.

The first part of the experiments shows that aligning the OCR line lattice with small text line

segment is recommended for solving the problem of OCR segmentation. Figure 4.9 shows the

coverage of the text output of each alignment approach regarding the original ground truth

based on the text length for 106 documents.
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Figure 4.9: Length of the alignments output for each page by applying different alignment
approaches compared to the original transcription, (a) Small Text Segment, (b)
Page-Wise. The pages number is represented on the horizontal axis. On the vertical
axis, the length of the pages is shown based on the number of characters, and spaces
that exist in the original ground truth (blue color) and the number of the characters
that are produced by the implemented method in (a), and (b), in red color.

In the second part of the experiment, the approaches are applied on a transcription edi-

tion which is different from the original documents to show their performance under text

modification, and layout variations. The transcription is used from project Gutenberg-DE.

The imperfect transcription was 90.53% correct compared to the original transcription. It

has a lot of missing text and many words which are written in different way from the orig-

inal documents but have the same meaning, such as: “Kantonversammlungen” instead of

“Caton-Versammlung”, “Dreißigjährigen” instead of “30jährigen”, “Gesamtökonomie” instead

of “Gesammt-Oekonomie”, “Teilen” inst of “Theilen”, and “fünf Uhr” instead of “5Uhr”. The

transcription has no hyphenated words.

A hyphenated WFST is also designed to hyphenate the transcription text so a match is made

in the original text documents. The transcription edition has no line, page breaks information,

extra or missing text, and no hyphenation. It has different vocabulary which has the same

meaning, i.e., in the original document the editor used “zugleich”, and in other transcription

“ebenso” is used. Capitalization or small letters are different from the original documents.

The number of the returned characters and ligatures and the error rates are shown in

Table 4.4. Figure 4.10 shows the coverage of the text output of each alignment approach
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Table 4.3: Performance evaluation results of the approaches applied on imperfect transcription
edition.

Alignment Approaches Total Number of obtained Characters Error Rate

Small Text Segments with Hyphens 121,737 2.0%

Small Text Segments No Hyphens 121,902 2.33%

Book-Wise with Hyphens 127,022 2.54%

Book-Wise No Hyphens 109,702 3.87%

regarding the original ground truth based on the text length.

The small text segments approach is applied by using hyphenation on the words in the text

segments. There is no information available about which word is at the end of the line and if

they are hyphenated or not. Therefore, the WFST-based approach is designed so that it can

skip the hyphen transition from transcription if it does not exist in the OCR lattices. The

model is also capable of producing the hyphenated parts which exist in the OCR lattices and

not in the transcription. The alignment approach which used the hyphenation WFST-based

shows better performance in aligning the hyphenated OCR’s words with the auto-hyphenated

transcription words, such as “Pas-” in “Passagierboote” the model aligned the lattices part “s”

which the transcription “s”, and the lattice part “-” with the transcription “-” respectively.

While applying the approach without hyphenation failed in several cases and aligned lattice

part “s-” with the “s” in the transcription. Figure 4.11 shows the output of the aligned pairs

of some ligatures. Those aligned pairs will be used for training purposes.

The command line is transcription − alignment[options] ∗ .gt.txt. The options are −p is

aligning with page-wise model, −s is aligning with small text segment model and −b is aligning

with book-wise model. For each alignment approach, information is provided to know how well

the line aligned, and if there is over segmentation. The alignment provides text lines an output

and also an isolated character database where the the aligned pairs are stored. The implemented

approaches are simple and an editing tool is provided which allow for easy viewing and editing

of the aligned pairs, as shown in Figure 4.12. The raw output of the alignment is also shown

with a message showing that the lines are correctly aligned to the right transcription.

4.4.2 Experimental Results of Dehyphenation of Noisy Transcription

This section describes the datasets and the obtained transcriptions which are used in the ex-

periments. The setup of the experiments is described.

OCR and Datasets

The datasets are generated from the raw output of the OCRopus system after applying it on

English UWIII dataset and German Fraktur Documents obtained from “Wanderungen durch
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Figure 4.10: Length of the alignment output for each page by applying different alignment
approaches compared to the original and different edition (Downloaded) transcrip-
tion, (a) Small Text Segment with Hyphenation, (b) Small Text Segment without
Hyphenation (c) Book-Wise with Hyphenation, and (d) Book-Wise without Hy-
phenation. The pages number is represented on the horizontal axis. On the vertical
axis, the length of the pages is shown based on the number of characters that exist
in the original ground truth (blue color), the downloaded transcription with differ-
ent line breaks and contents (green color), and the number of the characters that
are produced by the implemented models in (a), (b), (c), and (d) in red color.

die Mark Brandenburg” volumes 1862-1889 by Heinrich Theodor Fontane. The purpose is to

learn the tokens which appear with or without a hyphen, with the aim of finding out whether

the hyphen is related to line breaks, due to combing words or misrecognition of a symbol as a

hyphen by the OCR. Therefore, it is important that the text contains words with hyphens in

different positions based on the number of syllables. The ground truth is represented in words

and corresponding labels that refer to whether the word has a hyphen or not.

In the first part of the experiments, the approaches are applied on the Fraktur documents.

Three volumes are chosen for training and one volume of a different nature for obtaining the
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(a) (b)

(c)

(d) (e)

Figure 4.11: Output of the alignment tuple of the Classes: (a) “ll”, (b) “st”, (c) “ck”, (d)
“longs”, and (e) “ss”.
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Figure 4.12: Editing and output of the alignment tuple of the Class: “es”.

Table 4.4: Performance evaluation results of the dehyphenation classifiers applied on cleaned
data and noisy OCR’s Results. The experiments are done first by classifying the
hyphens of a clean transcription, then the classifiers are applied on a noise transcrip-
tion. English script from the UWIII dataset, and German Fraktur from Fontane
documents are used.
Test Sets Regular Expression Naive Bayes Decision Trees Maxent

Cleaned English 60% 97% 99% 98%

Noisy English 64% 97% 98% 97%

Cleaned Fraktur 76% 97% 98% 97%

Noisy Fraktur 74% 96% 97% 96%

OCR of those documents and using them for testing. The models are trained on 11,239 combi-

nations of hyphenated and compound patterns. In order to evaluate the implemented models, a

portion of 1,248 tokens is reserved for testing. Then, the models are evaluated on 2,425 tokens

which are extracted from the OCR output. The results appear in Table 4.4. The table shows

the performance of the three classifiers: Decision Trees, Naive Bayes, and Maximum Entropy

classifiers (Maxent) using the NLTK toolkit 2.0 in Python. All classifiers are implemented in

Python and applied using the NLTK toolkit 2.0 [LB02] under Linux. Running times for the

classification is fast on a modern desktop PC with four cores and 8 GB RAM. The baseline

method is the Regular Expression-based approach of [GT94].
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In the second part of the experiments, the approaches are applied on the English documents

from the UWIII datasets. The extracted combination of hyphenated and compound patterns

are split in a training set of 6,262 and a test set 932. The models are evaluated on 2,623 tokens

which are extracted from OCR’s output. The results in Table 4.4 shows the performance of the

three classifiers on the test sets.

The approaches process words with Unicode, letters with diacritics, capitalization, dig-

its, and compound words which are not processed in [GT94]. For example, “Flüß-\n chests

Flüßchests”, “verhältniß-\n mäßig verhältnißmäßig”, “treff-\n lichzu trefflichzu”, “mehr-\n genan-

nten mehrgenannten”, “Schermtzel-See”, and “Pfälzer-Dörfern”.

The compound words get a hyphen of a line break, if it appears at the end of the line

“Re-\n lief-Figur Relief-Figur”. The approaches classify the words even if they have spell errors

“Werbelliner-Forstj”. They also classify compound words that start with small letters “neu-

knigliches” or capital letters “Stammes-Eigenthmlichkeiten,”, and “MORITZ-KIRCHE”. The

approaches work with combined words with digits under recognition errors“16-Jahrhuntertg”.

They also classify long compound words such as “General-Feldmarschall-Lieutenant,”.

The classifiers misclassified the compound word “grell-echg” and removed the hyphen. The

second token “echg” is originally the word “echt” and it has a recognition error. Due to this error

the second token did not have a tag and it starts with small letter, therefore it was misclassified.

The compound German words usually start with capital letter. The compound word “Schlo-

geseffenen” is also misclassified, which is originally “Schlo-Geseffen”. Those examples were

confused cases for the classifiers.

The Naive Bayes misclassified “Berechtig-\n es Berechtiges” and classified it as a compound

word because “es” is a personal pronoun and it has a tag. The word “Cister-\n zienser-OrdenC

Cisterzienser-OrdenC” is misclassified. The word “bedenklich-\n pittoresken bedenklichpit-

toresken” is misclassified as a compound word did not remove the hyphen because both tokens

have a tag and they are words.

4.5 Discussion

The section includes two parts. Section 4.5.1 describes the outcomes of the alignment ap-

proaches. Section 4.5.2 shows the discussion of the dehyphenation approaches.

4.5.1 Discussion of Alignment Approaches

The implemented Small Text Segment model aligns with or without the hyphenation model and

also produces correct aligned pairs for training purposes even if the transcription is imperfect

and has many differences from the original documents. The model is applied on a transcription

which has missing text contents, different words, terms, line breaks, capital, and small letters.

The WFST-based alignment approaches are simple and give the best matches easily. It allows
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us to add rules which help to skip mismatches or correct OCR characters in the lattices. The

book-wise approach is used because it is suitable when no page beak information is available

and the line order is different, especially when the transcriptions have a lot of mismatches in

the contents. The approach is directly designed for WFST to have a faster and direct alignment

between the OCR lattices and the transcription.

The first part of the experiments shows that aligning the OCR line lattice with small text

lines segment is recommended for solving the problem of OCR segmentation. In the second

part of the experiments, the performance of the alignment approaches are evaluated when

the original transcription does not exist, and the only available transcription is an imperfect

transcription with many errors instead, e.g., text is having different line breaks, different words,

and sentences and many differences in spelling and vocabulary. In some pages 50% of the

text contents missing. The transcription has no hyphenations. The alignment approaches are

evaluated with and without the hyphenation model. It shows that the alignment approaches

still can produce correct aligned pairs even if it do not have any information about the hyphens.

It just produces those characters which are touched with the hyphen as “r-” instead of “r” and

“-” when the hyphenation model is not used. An application could report those pages and lines

which have a bad alignment result, so that the user can edit their transcriptions separately.

The generated aligned pairs are stored in an isolated character database with few errors and

can easily correct the pairs and are assigned the correct label to the character segment.

The straight-forward approach would fail in the case of a noisy transcription, because no

unique words would be found, as in Manmatha et al. [YM11]. This issue is solved in the

implemented WFST-based approach. Noteworthy, the WFST-based approach is still easy to

be implemented. In the case of a transcription with many errors, aligning the line against the

whole transcription can be an option to avoid the differences in the transcription, and produce

correct pairs, but also using extracted text segment with adaptive length can provide good

results faster. The imperfect transcription has some extra text lines and paragraphs between

the desired text lines. The number of the text lines can be increased to enlarge the segment

of the second approach when the documents are aligned with the imperfect transcription, so

that the range of the segment is expanded and avoids aligning only with mis-correspondence

lines. A punctuation model can be easily added to the WFST as in Ref. FIFB11, to avoid the

different kind of punctuations which is used in the imperfect transcription, in some cases such

as “′′” which is replaced by the “ �”. The advantage of implemented approaches is that they

are be applied to documents of other scripts easily and accurately.

4.5.2 Discussion of Dehyphenation Approaches

In Section 4.3.3, a machine-learning based classification approach is implemented for the dehy-

phenation of OCR outputs.

With this approach the following issues are solved: supporting the Unicode, can be used for
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different languages, and solving the problem of processing hyphenation with combined words

and digits which are not handled with the other approach. The approaches are robust against

OCR’s errors which include spell errors and substitution of symbols, i.e., dashes with hyphens

due the misrecognition. Particular features of language data are used for classifying types of

hyphen in OCR’s results such as: word length, length of the hyphenated tokens, capitalization,

and part-of-speech tagging which have not been used before. It was found that these processes

could handle several various cases of hyphenations and return significantly better results. No

OCR correction is applied before the dehyphenation and thus it was found again that these

approaches could handle various cases of hyphenation.

An appropriate feature is the length of both tokens joined by a hyphen, e.g., the length of

the words is longer than the length of the hyphenated tokens. Capitalization is one of the most

appropriate features because the second part of the compound word could start with capital

which would make it distinguishable compared to the second part of hyphenated word at the

next line. However, the compound words in English start with lowercase. Also some compound

words have short length of words. Therefore using part-of-speech tagging support to distinguish

the real words from the hyphenated parts or part of compound words. The hyphenation of a

compound word at the end of the line, might rarely happen, but the two parts of the hyphenated

word could have a tag by using the tagger for German, and the hyphen is kept for the words

combination. To build good models, the OCR results need to be observed to select suitable

features which can provide a good separation of the data. The approaches are applied on OCR

results and can be applied on any text corpus. The classifiers perform well on large dataset and

classify them in short time. They are simple to understand and interpret and can handle both

numerical and categorical data.
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Chapter 5

Normalizing Historical Orthography

Historical text presents numerous challenges for contemporary different techniques, e.g., infor-

mation retrieval, Optical Character Recognition (OCR), and Part-of-Speech (POS) tagging.

In particular, the absence of consistent orthographic conventions in historical texts presents

difficulties for any system which requires reference to a fixed lexicon accessed by orthographic

form. For example, a language modeling or retrieval engine for historical text produced by OCR

systems, where the spelling of words often differ in various way, suffer from disambiguities. It is

important to aid those techniques with the rules for automatic mapping of historical wordforms.

In this chapter, a new technique is implemented to model the target modern language by

means of a recurrent neural network with long-short term memory architecture. Because the

network is recurrent, the considered context is not limited to a fixed size, especially due to

memory cells which are designed to deal with long-term dependencies.

The contribution1 of this chapter is as following:

1. Novel alignment techniques are implemented to prepare the training pairs in historical

and modern forms. The techniques are called Character-Epsilon Alignment and Size

Normalization with Epsilon.

2. The implemented alignment techniques translate the orthographic rules to edit operations

and allow insertion, deletion, and substitution operations.

3. The designed approach is applied on historical texts with the absence of consistent ortho-

graphic conventions.

4. Approaches are applied to transform wordforms from Early New High German (ENHG)

14th - 16th centuries, as shown in Figure 5.1.

5. The novel implemented alignment approach using LSTM outperforms the state-of-the-art

approaches designed by Bollmann et al. [BPD11a,BPD11c].

1 This chapter is based on the Al Azawi work in [AAAB13].
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Figure 5.1: Example of the original ENHG and the modernized New High German (NHG) which
is used as a target to be transformed from the original form using the implemented
normalization approach (LSTM).

6. The evaluation shows the accuracy of the implemented model on the known wordforms

is 93.90% and on the unknown wordforms is 87.95%, while the accuracy of the existing

state-of-the-art combined approach of the wordlist-based and rule-based normalization

models is 92.93% for known and 76.88% for unknown tokens.

7. The implemented LSTM approach predicts unknown orthographic rules which were not

seen during the training phase, while the rule-based and wordlist are unable to normalize

unseen tokens in their training rules or words list.

The chapter is organized as follows. In Section 5.1.1 and 5.1.2, two state-of-the-art methods

are described which are wordlist-based and rule-based. In Section 5.2, the novel implemented

method is described. Section 5.3 shows the experimental results. Finally, Section 5.4 presents

the conclusions.

5.1 State-of-the-Art Approaches

In this Section, two state-of-the-art approaches will be described. In Section 5.1.1 the Wordlist-

based approach is described. The Rule-based approach is shown in Section 5.1.2.

5.1.1 Wordlist-based Approach

This approach consists of wordlists that map historical wordforms to their modern wordforms.

The wordlist is generated by aligning sentences and words between two languages. It is im-

portant to specify that the two languages are the source language and the target language in
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Figure 5.2: Combined approach of Rules-based and Wordlist-based approach. The Figure shows
samples of rules from the mapping of historical to modern wordforms.

order to correctly apply the word alignment. Then, a pre-processing is applied to clean up the

corpora of the two languages, set every word in lower case, and separate every word from each

other. The word alignment can be one-to-one, Null-to-one, and many-to-one. The alignment

is doing using HMM model. Then, the alignment output need to be checked and corrected, if

it is needed. The alignment is done using the Gargantua [BF10] and the GIZA toolkit [ON03].

Running this technique requires a lot of memory. The historical strings are matched to the

modern strings, then the tool finds the matched tokens and outputs the parallelized text. The

alignment of the parallelized historical and modern text is done automatically, but it is time

consuming, and labor-intensive because specialists (historical linguists) are needed to check the

aligned generated pairs. The modern wordforms are generated by aligning the historical words

with n-gram model and substituting an old wordform with its modern counterpart. The n-grams

are widely used in statistical language model for speech recognition, machine translation, OCR,

and normalization of historical text [BPD11c,Moh03b,LNCPCA10].

5.1.2 Rules-based Approach

The rules are derived from aligning the historical and modern words and are weighted according

to their frequency. The rules are obtained by applying the edit distance algorithm to extract

single characters to identity rules and context-based confusions between the historical and mod-

ern wordforms as replacement rules. Those replacement rules are used to build an approach

which can solve the problem of the historical orthography where the wordforms have evolved

over time and have many different variants.

The rules are represented in insertion, deletion, and substitution operations. Whenever mul-

tiple rules are applicable at the same position within a word, the rules that have a high rank
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are applied [BPD11c]. The identity rule is represented by mapping the character to itself, for

example, n → n. The substitution rule means to map a character or multiple characters to

another one, for example, v → n, j → ih. The insertion rule is used for inserting a character

ε→ l. The deletion rule is used for delete a character f → ε.

The rule-based approach using the Levenshtein edit distance is used in speech recognition

[Moh03b] and OCR [LNCPCA10] to assist the language model in the correct recognition re-

sults.

Figure 5.2 shows a combined approach based on both rules- and wordlist-based approaches.

The samples in the Figure represent the rules, historical and modern wordforms, e.g., “vnd”

represents an input word in historical form which is passed through the rules-based and then

wordlist-based approach, and transformed to modern wordform “und”. However, historical

wordforms which have not existed in the wordlist are only passed through the rule-based ap-

proach.

5.2 Designed LSTM Approach

A new technique based on LSTM recurrent networks is implemented to solve the problem of

transforming historical wordforms into modern wordforms and vice versa which had very little

attention in the past. An introduction for LSTM is provided in Section A.2.3.

For training, the historical wordforms are used with their corresponding modern wordforms.

The training pairs are prepared using two alignment techniques, as described in Section 5.2.1 and

Section 5.2.2 which are considered a pre-processing step for feature extraction. Two different

techniques are applied to align the training pairs, the first uses the Levenshtein edit distance

and the second uses an empirical number of epsilons. The alignment technique of two strings

finds the similarities and differences between them and can be interpreted as point mutations.

If they share common characters, mismatches, and gaps then insertion or deletion mutations

are introduced in one or both lineages at the time since they diverged from one another. The

training and testing pipeline is shown in Figure 5.3.

5.2.1 Designed Character-Epsilon Alignment

The first method Character-Epsilon alignment uses the Levenshtein alignment technique [Lev66a]

to align two strings A and B and find an optimal alignment to give a better score. To compute

an alignment that actually gives the score, it starts from the bottom right cell, and compare

the value with the possible sources (Match, Substitution, Insertion, and Deletion) to see which

it came from. In the case of Delete, Ai is aligned with a gap and for Insert, Bj is aligned with

a gap. Otherwise Ai and Bj are aligned to accomplish this goal.

First the epsilon after each character of the historical wordform is inserted, then alignment

is applied using the Levenshtein edit distance between the historical and modern wordforms to
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Figure 5.3: Training and Testing Pipeline. Historical wordform in text format is converted to
1D vector and it fed to the LSTM network along with its ground truth (modern
form). CTC layer performs the output transcription alignment. Finally the network
is trained and is used as historical language model.

obtain the optimal aligned character pairs, for example:

1. Input historical form: jrem

2. Adding epsilon to the historical wordform: j ε r ε e ε m ε

3. Applying alignment to obtain:

historical wordform = j ε r ε e ε m ε

modern wordform = i h r ε e ε m ε

Another example where insertion is required:

1. Input historical form: jr

2. Adding epsilon to the historical wordform: j ε r ε

3. Applying alignment to obtain:

historical wordform = j ε r ε

modern wordform = i h r ε

Another example where substitution and deletion are required:

historical wordform = c ε r ε e ε u ε t ε z ε

modern wordform = k ε r ε e ε u ε ε ε z ε

Then, the LSTM network is provided with feature vector of the historical wordforms and

the corresponding groundtruth labels in modern wordforms for training purposes. For testing

purposes, the LSTM trained model is applied after adding epsilon ε behind each character in
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the historical wordform of the test token, and then predicting its modern wordform (see Section

5.2.3.

5.2.2 Designed Size Normalization with Epsilon

The second type of alignment is Size Normalization with Epsilon and it is applied by using an

empirical number of epsilons to assist the alignment of the characters of historical and modern

wordforms. Wordform size normalization is an essential step in the feature extraction of the

tokens and it is started by adding three epsilons to small size historical or modern tokens. Then,

the updated historical and modern wordforms are aligned to have the optimal transformation

operations (deletion, insertion, substitution) between corresponding characters. The addition

of epsilons is not employed for equal size historical and modern wordforms.

1. Input historical wordform = j m

2. Appending epsilon at the end of the string = j m ε ε ε

3. Applying alignment to obtain:

historical wordform = j m ε ε ε

modern wordform = i h m ε ε

The two different size normalization and alignment on the historical and modern wordforms

are applied before LSTM training. It is applied on the normalization from historical to modern

forms and vise versa.

5.2.3 String Encoding

For encoding a string, a sequence of vectors is used where each vector has a length corresponding

to the size of 300. Each character in the string is mapped to its code point which is used in the

binary feature representation, as shown in Figure 5.3.

Figure 5.3 shows the complete training and testing pipeline and the normalized historical word-

forms along with their transcriptions are fed into the network, which perform the forward

propagation step first. Alignment of output with associated transcriptions is done in the next

step and then finally the backpropagation step was performed.

After each epoch, training and validation errors are computed and the best results saved. When

there was no significant change in validation errors for a pre-set number of epochs, the training

was stopped. There are three parameters, which need to be tuned; namely input-wordform size,

hidden-states size, and learning rate. It will be explained in detail in Section 5.3.

5.2.4 LSTM Networks Configuration

The configuration of the network and the number of weights mapping between and within layers

is shown in A.2.3. Training of the network proceeds by choosing text input lines randomly from
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Table 5.1: Character accuracy on Luther Bible Testsets using LSTM, Rule-based, Wordlist-
based approaches, and the combined approach of Rule-based and Wordlist-based.

Testsets Rule-based Wordlist-based Combined LSTM

All 91.00% 91.98% 92.93% 93.90%

Unknown 76.88% 40.88% 76.88% 87.95%

the training set, performing a forward propagation step through the LSTM and output networks,

then performing forward-backward alignment of the output with the ground-truth, and finally

performing backward propagation.

5.3 Experiments

The experiments are described in this section. Section 5.3.1 explains how the Luther Bible

dataset was extracted. In Section 5.3.2, the experimental results are shown.

5.3.1 Luther Bible Dataset

The dataset is state-of-the-art established by Bollmann et al. [BPD11c]. In the experiments

219,948 historical wordforms are used with their corresponding modern wordforms for training

purposes. Testing was done on 109,973 historical wordforms and their corresponding modern

wordforms in UTF-8 encoded text format which are used as ground truth to evaluate the gener-

ated modern wordforms by the implemented normalized approaches. The dataset is generated

from OCRed historical text of the Martin Luther bible 1545 and the revised modern version.

5.3.2 Experimental Results

Table 5.1 shows the evaluation of the approaches using the whole testset and a separate eval-

uation was done on word pairs that were not seen during the training denoted as “unknown”.

The unknown wordform is a subset from the testset. The evaluation shows an effective perfor-

mance of the LSTM on the whole testset 93.90%. LSTM shows significant results 87.95% on

the unknown testset compared to other approaches.

The LSTM is trained on the features of the first preprocessing approach 5.2.1 by adding

epsilon after each character in the historical form and then aligning with the modern form,

which gives better results. For testing, epsilon is added after each character in test historical

form, and then the modern form is predicted using the trained LSTM network. While using

addition of three epsilons at the end of the wordform, as other preprocessing step 5.2.2 for the

LSTM, delivered 86.37% for unknown testset.

The implemented LSTM approach is compared with the combined model of rule- and

wordlist-based approaches. The combined model shows lower performance than the LSTM,
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Table 5.2: Top confusions of the character-epsilon alignment with LSTM.
Operations Confusions

Substitution ohl : oll

Substitution as : aß

Insertion ε : s

Deletion f : ε

Deletion h : ε

Table 5.3: Top confusions of the adding three epsilons alignment with LSTM.
Operations Confusions

Substitution a : h

Substitution oho : oll

Substitution uh : un

Substitution ehe : eue

Insertion ε : n

Insertion ε : s

Insertion ε : e

Deletion t : ε

Deletion f : ε

Deletion d : ε

Deletion e : ε

but performs better than using the rule-based or wordlist-based individually each one as a sep-

arate approach. The wordlist-approach is unable to generate a modern wordform for unknown

tokens. Furthermore for the rules mismatches may link a historical spelling variation to a wrong

modern word. LSTM is well suited to work with learning sequences and achieved the best known

results in unsegmented connected handwriting recognition.

The LSTM networks are trained with a hidden-state of different size 40, 60, 80, 100, 120, 140,

and 200. The optimal error rates are obtained when the size of the hidden-states is in a range

between 120 - 200. It takes 782 - 1097 minutes for training. When the size of the hidden-states

is in a range between 40 - 100, it takes 251 - 594 minutes for training respectively. The time

increases linearly with an increase in the number of hidden-states. After the model has been

trained, the predictions are fast. The accuracy is measured by using string Levenshtein edit

distance. The most appropriate number of hidden-states were determined keeping the learning

rate constant at 0.0001.

Most of the confusions which occurred while predicting the modern form using the character-

epsilon alignment are very few and the error types are shown in Table 5.2 such as ohl confused

with oll. The second alignment used adding the three epsilons at the end of the word and the

top confusions are presented in Table 5.3.

The transformation of the orthographical variants differs from word to word. And it is also
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Table 5.4: Output of LSTM on predicting the modern form.
Prediction Historical form Modern form Rule

und vnd und v → u

über vber über v → ü

erwählet erwelet erwählet e → ä h

egyptenland ägyptenland egyptenland e → ä

ihr jr ihr j → i

ich jch ich j → ih

verführet verfüret verführet h → ε

sohn son sohn ε → h

kalzedonier calcedonier chalzedonier ε → h, c → z

Table 5.5: Output of LSTM on predicting the modern form using the preprocessing with Size
Normalization with Epsilon.

Prediction Modern form Historical form

zwelff zwölf zwelff

das daß das

euer eure ewr

possible that one character is changed to many characters and vice versa. The LSTM shows the

ability predict the modern form correctly even if there are more than one transformed spelling

variants in single word form. LSTM outperforms various transformation variants. It is also

capable of predicting the character when it is transformed into various modern combinations in

different historical word form,as shown in Table 5.4. It is also capable of deletion or insertion

of characters such as h→ ε or ε→ h.

The trained LSTM using addition of three epsilons at the end of the wordform performed

good on the rules of change “v” to “u”, and “j” to “i” and some others. But, it produced errors

which was not given in the previous LSTM, as shown in Table 5.5.

The LSTM is trained to perform transformation of the modern wordforms to their historical

wordforms. Different preprocessing strategies are applied, first approach by insertion of epsilon

after each character which is called LSTM1. The other approach is adding three epsilon at the

end of the token which is called LSTM2. The two approaches are compared using the LSTM

with the baseline. The results is shown in Table 5.8. The baseline approach means that the

tokens are passed with no changing. LSTM 1 performs very well in change the “u” to “v”, the

“e” to “ä”, insertions of “d” or “t”, but LSTM 2 could not fulfill the all orthographic rules, as

in Table 5.6: In the examples of Table 5.7 both LSTMs perform well.
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Table 5.6: Output of LSTM on predicting the historical form using the preprocessing with
Character-Epsilon Alignment.

Prediction Historical form Modern form

vnd vnd und

todte todte tote

kurtzes kurtzes kurzes

Table 5.7: Output of LSTM on predicting the historical form using the preprocessing with
Character-Epsilon Alignment and Size Normalization with Epsilon.

Prediction Historical form Modern form

nehe nehe nähe

vberkeme vberkeme überkäme

5.4 Discussion

The results presented in this Chapter show that the LSTM yields excellent normalization results

for historical orthography. There are several indications that the LSTM-based approach gen-

eralizes much better to unseen samples than previous approaches applied to historical spelling

variants.

Previously, the artificial neural network was not used in historical orthography tasks. The

CTC layer is responsible in finding and aligning with the corresponding labels. The CTC is

used for such purposes for hard tasks such as handwritten recognition. Another indication is the

excellent performance of the LSTM-based approach. It is a simple approach and needs less time

and effort to train. The prediction using LSTM is fast. However, other approaches are time

consuming, labor-intensive and require effort to construct and combine different components.

The rule-based approach might not be able to cover all the spelling variants when the

OCR does misrecognition of characters. The misrecogniton leads to a mismatch of a historical

spelling variation to a wrong modern word. Some approaches pass unseen samples unchanged

when they are not in their model. Wordlist approach is unable to process unseen samples. The

case of synonyms, if they exist in the training data, the model is able to learn it, and do the

appropriate normalization in the given context. However, all the tokens are processed in the

testsets through the implemented LSTM, and the model is able to predict quickly all different

spell variants significantly.

Table 5.8: Character accuracy on Luther Bible Testsets using different LSTM Networks and
baseline approaches.

Testsets baseline LSTM 2 LSTM 1

Seen Tokens 89.73% 91.94% 93.40%

Unknown Tokens 87.16% 87.96% 89.17%



Chapter 6

Learning-Based Character-Level

Corrections in Multi-Script

Recognition Systems

Handwritten and printed text recognition research focuses more and more on challenging scripts

and bad quality images, as these are difficult recognition tasks. Language modeling techniques

are required to improve the recognition results. While dictionaries are built with finite vocab-

ularies, however, a language model should be capable of efficiently creating infinite dictionary

corrections. Therefore, a fast and accurate technique with a capability of predicting unknown

tokens is needed.

In this Chapter, a new method is introduced to normalize the strings and correct the OCR

errors, using the Recurrent Neural Networks (RNN) with Long-Short Term Memory (LSTM).

A second method is the error model using Weighted Finite-State Transducers (WFSTs) with

context-dependent confusion rules in Chapter 3 is used for the first time for difficult to recognize

Urdu scripts. Both methods are applied on OCR results of Latin and Urdu Script. Urdu script

is challenging for OCR systems.

For building an error model using context-dependent confusion rules, the OCR confusions

which appear in the recognition outputs are translated into edit operations using Levenshtein

edit distance algorithm. The newly designed LSTM model avoids the calculations that occur in

searching the language model and makes the language model capable to correct unseen incorrect

words. The implemented generic approaches are language independent.

Building and evaluating a post-processing system for OCR corrections are discussed. Two

different language models are used: error model transducer in the form of WFST and Character-

Level correction in LSTM. The contributions are1:

C1: The error model is built using context-dependent confusion rules and WFSTs. It is a new

1 This chapter is based on the Al Azawi work in [AAUHLB14].
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contribution for Arabic and Urdu script.

• Based on the confusion matrix that the OCR produces and is dependent on the

context of the strings (OCR results).

• Designed error model in Chapter 3 returns a lower error rate than the state-of-the-art

single character rule-based approach [HNH08].

• Error model is extended to more challenging script such as Urdu Nastaleeq (Arabic)

by extracting new rules in this Chapter.

• Tested by implementing a WFST from the Levenshtein edit distance relations.

• Context is a new idea instead of single character rules. This helps to fit the confusion

rule in the proper string where it belongs and brings the string to the corrections.

• Language model can be as simple as a list of finite words compiled into WFSTs.

• Frequencies of a token or a rule in the corpus are converted to weights in the WFSTs.

• Rule that is ranked higher is applied, if multiple rules are applicable at the same

position within a word in the error model approach.

• Rule-based fails when the cost of appropriate correct candidate is higher than the

cost of other correct candidates for the same input token.

C2: The LSTM based approach.

• A powerful method trained to learn corrections of recognition errors.

• Designed specifically to overcome limitations of RNN.

• Ability to remember the target association between irrelevant input and target events

even for very long time lags [GLF+09].

• A new Character-Level alignment is designed to normalize the string’s length before

the training of the LSTM, as described in Section 6.3.1.

• Language independent approach.

• Normalization of the historical orthography for OCR historical documents.

• Used in Latin and Urdu script.

• Recognition and language models results examples of Latin and Urdu Nastaleeq are

shown in Figure 6.4.

• Experiment results show that the designed LSTM model has better performance than

the error model on the known and unknown data which unseen during the training.

• The supervised LSTM model is compared with the context-dependent error model

and state-of-the-art single character rule-based methods. The evaluation on Latin

script shows an error rate of LSTM is 0.48%, error model is 0.68%, and the rule-based
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model is 1.0%. The evaluation shows the accuracy of the LSTM model on the Urdu

testset is 1.58%, while the accuracy of the error model is 3.8%, and OCR recognition

result is 6.9% for Urdu testset.

• Best performance is obtained by applying LSTM in both Latin and Urdu script. As

such, experiments show that LSTM performs well in language techniques, especially,

post-processing.

The chapter is organized as follows. Section 6.1 describes the state-of-the-art single character

rule-based model. In Section 6.2 and 6.3, the context-dependent error model and LSTM

networks are described. Section 6.4 contains the experimental results. Finally, Section 6.5

presents the conclusions.

6.1 Single Character Rule-Based Approach

The single character rule-based approach is widely used in various applications such as spell-

checkers and handwriting recognition. Pirinen et al. [PH12] and Hassan et al. [HNH08] proposed

an error model to aid the language model in a spell-checker to correct misspelling errors. They

provided several suggestions using a single character rule-based error model. The error model

consists of two-tape finite-state automaton mapping of any string of the error model alphabet

to at least one string of the language model alphabet. Llobet et al. [LNCPCA10] proposed a

similar error model using OCR to improve the recognition results of handwritten Spanish in

scanned forms.

As described in Section 3.1, the single character rules are extracted using Levenshtein edit

distance algorithm [HNH08]. The primitive operations: insertion, deletion, and substitution are

used to represent the rules. These rules are used for constructing the transducers and editing

the strings. The single rule is held on one transition in the transducer. To insert the character

f in a string, the insertion rule is used as ε → f . The deletion of character, for example r, is

presented by r → ε. The substitution operation is done by the rule, such as f → t.

6.2 Context-Dependent Error Model Approach

In this section, extracting the context-dependent rules and constructing the error model trans-

ducer using those rules are described. The language model and the alignment technique are

explained.

6.2.1 Context-Dependent Confusion Rules Extraction

The error model is used to refine the candidate corrections and process the strings which do not

exist in the dictionary. The goal is to sift and correct the mistakes of the recognition outputs.
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Figure 6.1: Context-dependent rules which are required to fix the misrecognized words and their
corresponding correct words. ε corresponds to insert a character in this position.

The error model returns a small selection of the best matches for the language model. When

the suggested corrections are defined, the corrections are ranked based on the given likelihood.

The error model is built using the Levenshtein edit distance algorithm [Lev66a].

The misrecognition is adapted to be used as a number of operations applied to the characters

of a string: deletion, insertion and substitution with the neighbor characters on the leftmost

and rightmost sides as context. The context of charaters is combined as a rule. The characters

are dependent and involved together in the composition of the rule with the strings. The size

of the context can be controlled, as shown in Figure. 6.1. For example, the misrecognized word

Defnition which needs the rules fεn→ fin to be fixed. The misrecognized word efect requires

the rule fεe→ ffe, as shown in Figure 6.1. The error model is a transducer and is constructed

by aligning the misrecognized word of the OCR output with their corresponding ground truth.

By using the outputs of the alignment, the OCR confusions are extracted in the form of rules

to be used in the error model with respect to their context in both misrecognized, and ground

truth wordforms. The error model is used as described in Section 3.2.1 in Chapter 3. In this

Chapter, new rules are extracted for Urdu script, as shown Figure 6.1

6.2.2 Constructing the Error Model using Weighted Finite-State Transduc-

ers (WFSTs) and the Alignment Technique

The extracted context-dependent rules in Section 6.2.1 are used to construct the error model

transducer. The context-dependent rules have two parts, the left part is the OCR confusions and

the right part is the corresponding corrections which are driven from the ground truth. The

context-dependent rules have probabilities. The probabilities are derived from the confusion

matrix of the OCR classifier and considered as costs of the rule to be used in the ranking.

To use the rules with their cost, the error model transducer is built as a WFST. The weight

represents the cost of the rule and input/output labels represent the left/right sides of the rules
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Figure 6.2: Sample of the Latin context-dependent confusion rules in error model transducer

Figure 6.3: Sample of the Urdu context-dependent confusion rules in error model transducer

which help to improve the misrecognized string into the correct string.

Therefore, the error model transducer is able to map the OCR error by matching the output

label of the OCR transducer with the input label of the error model. The composition is done

by taking the output labels of the error model and matching them with the corresponding input

label of the dictionary. Later, the OCR errors are adjusted to their correspondence corrections.

Part of the constructed error model transducer for Urdu is shown in Figure 6.3 and Figure 6.2

for English. The simple operations to add a transition or state are used from the open-source

OpenFST library. The newly designed error model using WFSTs for this thesis is described

in [AAB14a,AAUHLB14] and has achieved a competitive performance for building and applying

the context-dependent rules using WFSTs.

Three transducers are aligned. First, the OCR outputs are aligned with the error model

to generate a composed Levenshtein transducer with OCR confusions of OCR output. The

alignment technique is shown in Al Azawi et al. [AALB13] and is described in Section 3.2.3.

The composed transducer has all the appropriate candidate corrections of the misrecognized

tokens and supports the language model by providing the suggestions to decide which token is
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the best candidate correction. After the first alignment, the produced WFST is aligned with

the dictionary to filter out words that do not exist in the language. The aligned WFST has

many paths depending on the compositions of the correspondence rules in the error model. The

best path with lowest cost is chosen from the second composition.

6.3 Character-Level Correction and LSTM Neural Networks

Approach

This Section shows the powerful, novel contribution of this thesis for the task of language

modeling corrections using learning-based techniques which is newly contributed in the field

with simple novel designed pre-processing alignment technique. The RNN with LSTM is used

to solve the problem of OCR corrections. The RNN has had very little attention in the past.

Levenshtein edit distance technique is applied to align the training pairs. The alignment

technique of two strings finds the similarities and differences between them and can be inter-

preted as point mutations. If they share common characters, mismatches or gaps then insertion

or deletion mutations are introduced in one or both lineages.

6.3.1 Character-Epsilon Alignment

In this section, a preprocessing method is described to allow insertion, deletion, and substitution

operations in the wordform. An epsilon is inserted after each character of the misrecognized

wordform. Then, the difference between two sequences is measured to find the minimum number

of edits operations. If they match, then there is no change. If insertion, then the character in

the second sequence is aligned with a gap. If deletion, then the character in the first sequence

is aligned with a gap. In substitution, the character is replaced.

An example where substitution is required:

1. Input misrecognition: 7he

2. Adding epsilon to the input: 7 ε h ε e ε

3. Applying alignment to obtain:

Misrecognition = 7 ε h ε e ε

Ground Truth= T ε h ε e ε

Another example where insertion is required:

1. Input misrecognition: voic

2. Adding epsilon to the input: v ε o ε i ε c ε
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Table 6.1: Error rate of the implemented Character-Epsilon LSTM model, Context-Dependent
Confusion Rules WFTS compared to the original OCR recognition results, and Single
Character Rule-Based model. The LSTM is trained 100 times and reports the mean
of the error rate from different training models. The Rule-Based is skipped from
Urdu dataset because of low performance amongst other approaches.

Dataset OCR Single Character Context-Dependent Character-Epsilon
Rule-Based Confusion Rules WFTS LSTM

English Testset 1.14% 1.0% 0.68% 0.48%

Urdu Testset 6.9% - 3.8% 1.58%

3. Applying alignment to obtain:

Misrecognition = v ε o ε i ε c ε

Ground Truth= v ε o ε i ε c e

6.3.2 String Encoding

A sequence of vectors represents the string. The encoding is done by usage of the code point for

presenting each character in the string. Misrecognized wordforms along with their transcriptions

are fed to the network, which performs the forward propagation step first. Alignment of output

with associated transcriptions is done in the next step, then finally the backward propagation

step is performed.

The LSTM is like a computer memory cell providing three multiplicative gates, namely

input, output, and forget gate in order to simulate write, read, and reset operations. LSTM can

be used to remember contexts over a long period of time. In order to be aware of the context

in both directions, a variant name BLSTM is introduced by [GLF+09]. Furthermore, a CTC

layer has been introduced to overcome the limitation of data pre-segmentation.

Pre-processing and the feature vectors, e.g., characters and epsilons, are newly presented in

this thesis for the task of language modeling corrections and alignments. Further explanations

and network configurations are available in the experiments (Section 6.4).

After each epoch, training and validation errors are computed and the best results are

saved. When there is no significant change in validation errors for a pre-set number of epochs,

the training is stopped. There are two parameters which need to be tuned; namely number of

hidden states and the learning rate.

6.4 Experiments

The approaches are evaluated on two different scripts, to show that the designed methods are

language independent. One is Latin script (English) and the second is Urdu Nastaleeq (Arabic).

All approaches are implemented in C++ and Python under Linux.
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Figure 6.4: Sample result of LSTM and Rule-based models with the correspondence OCR and
Ground Truth.

6.4.1 OCR Datasets UWIII and Urdu

Two datasets of recognized script have been used for the experiments, the first is based on

English script, and the second is based on Urdu. The English script dataset is extracted from

the OCRed collected work which is freely available from the web2. The Urdu script dataset is

the UPTI (Urdu Printed Text Images) dataset [UHBAR+13], which contains synthetic scanned

image data. Various degradation techniques are applied to increase the size of dataset. In

the recognition phase, two parameters namely the number of hidden states 100, and learning

rate 0.0001 are evaluated for their respective effect on the recognition accuracies. Parameter

selection is done for a case where the ligature shape variations (191 classes) are considered.

In the experiments, the datasets are divided into training and testing sets as described

in [UHBAR+13]. The OCR’s output is used with its corresponding ground truth to build the

LSTM and the error model. For the Urdu datasets (UPTI), 60,177 entries are used for training

purposes, and 8,376 entries for testing purposes.

In the experiments using English script, 6,000 training inputs with their corresponding

ground truth are used. In testing, 3,917 testing inputs are tested, and their corresponding

UTF-8 encoded text format are used as ground truth to evaluate the generated by the proposed

approaches.

6.4.2 Experimental Results

Preparation of the alignment technique is described in Section 6.3.1, which is considered a

pre-processing step. The context-dependent EM has 830 extracted context-dependent rules to

build the error model. The rules are used to build the error model using WFST. The language

2 OCRopus Project: https://github.com/tmbdev/ocropy

https://github.com/tmbdev/ocropy
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model can be as simple as a list of finite vocabularies compiled into probabilistic finite-state

transducers. The vocabularies are extracted with their frequencies from UPTI and English

text corpus. The standard WFSTs framework include probability estimates for constructing

a unigram model. The error rate is measured using edit distance to find the number of the

edit operations on the character level. Figure 6.4 shows samples of the results of LSTM and

rule-based models on both datasets.

Table 6.1 shows the evaluation of the approaches using the whole testset. The unknown

wordforms are a subset from the testset. The evaluation shows an effective performance of the

implemented LSTM. The context-dependent EM approach of English script has 162 rules. The

single character rule-based approach of English script has 237 rules. An example is shown in

the correction of the misrecognized words “rnethod” to “method” and “artifcial” to “artificial”.

The configuration of the network and the number of weights mapping between and within

layers is shown in [GLF+09]. Training of the network proceeds by choosing text input lines

randomly from the training set, performing a forward propagation step through the LSTM and

output networks, then performing forward-backward alignment of the output with the ground-

truth, and finally performing backward propagation.

LSTM networks are trained with hidden-states of different sizes 40, 60, 80, 100, 120, 140,

and 160. The optimal error rates are obtained when the size of the hidden-states is in a range

between 100 and 160. Time increases linearly with an increase in the number of the hidden-

states. After the model has been trained, the predictions are fast. The most appropriate number

of hidden-states is determined at a learning rate of 0.0001.

6.5 Discussion

In this chapter, two new methods of building a language model to correct OCR errors have

been discussed, one based on WFST, the other based on LSTM. The experimental results show

that the implemented methods achieve improvements of the OCR results when being compared

to single character rule-based models. The LSTM based method yields the best performance.

There are several indications that the LSTM-based approach generalizes much better to unseen

samples than WFST and other approaches proposed in the literature.

The Wordlist approach, for example, is unable to process unseen samples. The rule-based

approach might not be able to cover all the misrecognized variants when the OCR does recog-

nition errors which did not appear during training. In summary, most existing approaches just

pass unseen samples, leaving them unchanged. Both implemented methods process all tokens

in the testset.

The LSTM model is able to predict all different misrecognized variants accurately and

significantly better than WFST. The implemented approaches have no limitation on the word

length and the number of errors that occur in the words. The approach is completely language
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independent and can be used with any language that has a dictionary and text data to build a

language model.



Chapter 7

Combination of Multiple

Recognition Systems

The purpose of this Chapter is to improve the results by designing new strategy of integrating

multiple recognition outputs of recognizers. Such an integration can give higher performance

and more accurate outputs than a single recognition system. The problem of aligning various

OCR results lies in the difficulties to find the correspondence on character, word, line, and page

level. These difficulties arise from segmentation and recognition errors which are produced by

OCRs. Therefore, alignment techniques are required for synchronizing the outputs in order to

compare them. For these alignment techniques, many OCR outputs were combined by aligning

text lines from the first OCR output with text lines from the other OCR output.

For example, Multiple Sequence Alignment [WYM13], and heuristic search [RJN96] ap-

proaches correct recognition errors which have different intensity and type in the aligned text.

These approaches fail when the same error occurs in all sequences of the OCRs. If the correc-

tions do not appear in one of the OCRs, then none of the approaches are unable to improve upon

the results of the OCRs. A Line-to-Page alignment with edit rules using WFSTs is designed.

These edit rules are based on the edit operations: insertion, deletion, and substitution.

Therefore, an approach is designed using RNN with LSTM to predict these types of errors,

and to solve the mentioned problems as shown in Figure 7.1. A new novel method is designed

to normalize the size of the strings for the LSTM alignment. The LSTM returns best voting,

especially when the heuristic approaches are unable to vote amongst various OCR engines.

LSTM predicts the correct characters, even if the OCR could not produce these characters in

the outputs. The contributions of this Chapter are:

C1 Line-to-Page Alignment approach as described in Section 7.2

(a) Solving the problem of segmentation and various line breaks by aligning line to page.

(b) Solving the problem of the recognition error by using edit operations as rules. The

usual edit operations such as insertion, deletion, and substitution are used.

83
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Figure 7.1: Results of the OCR Systems, LSTM alignment, and other state-of-the-art ap-
proaches such as heuristic search and Pairwise of Multiple Sequence alignment.

(c) Flexible combination and adaptation using WFST.

(d) Improving recognition results using multiple outputs from different recognition sys-

tems without using dictionary.

C2 LSTM approach as described in Section 7.3

(a) Normalization of the strings of different OCR outputs.

(b) Yields prediction of unknown strings and can vote for the best output amongst

various errors.

(c) Solves all problems, which are not solved by previous approaches. Heuristic ap-

proaches are unable to return characters which did not appear in the OCR results.

They also fail to vote for a correct character, if all the OCR systems provide the

misrecognized versions of this character.

(d) Flexible and adaptable approach.

(e) Improved the recognition results by combining the output of many OCRs.

(f) Approaches in C1 and C2 are language independent.

(g) Performance is better than the state-of-the-art [RJN96,WYM13].

(h) The approaches are evaluated on OCRs output from the English UWIII and historical

German Fraktur dataset which are obtained from state-of-the-art OCR systems.

(i) Experiments show that the error rate of ISRI-Voting is 1.45%, the Pairwise of Multi-

ple Sequence is 1.32%, the Line-to-Page alignment is 1.26%, and the LSTM approach

has the best performance with 0.40% for English script from the UWIII dataset.

The rest of the chapter is structured as follows. In Section 7.1, the state-of-the-art Pairwise

of Multiple Sequence Alignment and ISRI OCR voting tools are described. Section 7.2 shows the
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contributed method and the constructing of Line-to-Page Alignment using WFSTs. Section 7.3

explains the second novel contributed approach using alignment and LSTMs. In Section 7.3.1,

the newly designed Character-Epsilon alignment for size normalization is shown. Section 7.3.2

describes the string encoding and Section 7.3.3 shows the configuration of the LSTM network.

Section 7.4 presents the experimental results. Section 7.5 summarizes conclusion.

7.1 State of the Art Methods

In this Section, two state-of-the-art methods are described. The two methods are used in the

experiments of this Chapter and compared to newly implemented methods.

7.1.1 Pairwise of Multiple Sequence Alignment

Wemhoener et al. [WYM13] evaluated an alignment technique for combing OCRs outputs from

scanned books. They generated the pairwise alignments of the recognized text output of the

books. A pivot is chosen as the best OCR output. The pivot is aligned with each single OCR

output separately to find the corresponding sequences on character level and also to fill the gaps

by using null character. Then, output sequences in these pairwise alignments are aligned with

each other to find the best output. This method can reduce the OCR error as long as the same

error does not occur over multiple scans.

In the work of Wemhoener et al. [WYM13], the null symbol which is represented by @ is

used when a character in one text fails to align with a character in the other text. In some

books, the input text are differentiated in various editions, and big text portions might be miss-

ing from one edition to another. Using null symbol adds irrlevant characters in the alignment

and makes the alignment slower.

Unaligned Texts:

String 1 = had I expressed the agony I frequentl felt he would have been taught

String 2 = had I sed the agony I fefjuently felt he would have

Pair-Wise Alignment:

String 1 = had I expressed the agony I fre@@quentl@ felt he would have been taught

String 2 = had I @@@@@s@ed the agony I f@efj@uently felt he would have@@@@@@@@@@@@
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Figure 7.2: Illustrate Line-to-Page Alignment Approach. The Figure shows the alignment of
each line of the first OCR with the page of the second OCR system. It shows the
representation of the line and page in WFSTs, [a-f] are the input/output labels, ρ
label is used for substitution, and the label ε is used for insertion or deletion.

7.1.2 ISRI OCR Voting Tool

The Information Science Research Institute (ISRI) at the University of Nevada, Las Vegas

(UNLV) conducted evaluations of OCR systems [RJN96, ISR10]. The OCR systems that were

evaluated are known as page readers. ISRI has been actively developing performance measures

for page-reading systems. The system remains in use [ISR10].

The measures include character accuracy, marked character efficiency, word, non-stopword,

and phrase accuracy as well as the the cost of correcting automatic zoning errors. Their vote

program applies a voting algorithm to produce a more accurate single text file. The inputs for

the voting program are the outputs of other OCR systems. The input files are first aligned so

that agreements and disagreements amongst the page readers are evident. A majority vote is

then taken to resolve the disagreements. The algorithm involves heuristics. The resulting text

is then written. The accuracy of the voting output is normally greater than the accuracy of the

text from each page reader. The tool has an option to enable some important optimizations

and should be specified to get the best results. An output character is marked as a suspect if it

receives no more than the fraction of votes specified by an option. Another parameter indicates

the fraction of a vote that each input character receives if it is marked as being a suspect. This

reduces the influence of marked characters on the voting.

Voting:

String 1 = had I expressed the agony I frequentl felt he would have been taught

String 2 = had I sed the agony I fefjuently felt he would have
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7.2 Line-to-Page Alignment using Weighted Finite-State Trans-

ducers Approach

A Line-Page approach is designed to avoid the difference in the lines’ order for both OCR

systems, where each line in OCR’s page is represented as a line in the WFST. The OCR’s page

is represented as parallel lines for the page WFST. This approach aligns the line of the first

OCR with each line in the page WFST of the second OCR. Best matches between the first

OCR and the second OCR systems are represented in a composed graph. From the composed

graph, the best valid path is then chosen.

Figure 7.2 shows the idea of the Line-to-Page alignment approach which separately aligns

each line in the first OCR system with the whole page output of the second OCR system.

The page WFST consists of j states and m lines. Each line is represented as a string and

each character is considered as input and output label for the transition between all pairs of

two states. Considering a1 as the input as well as the output label for the first character in the

line, this representation is followed until the last character is reached in the line which is an, as

shown in Figure 7.2.

The same representation is followed for all subsequent lines. All the WFST lines of one page

begin in the same start state and end in the same final state. The OpenFST library [CAM07]

provides further information regarding the basic definition of WFST.

Al Azawi et al. [AALB13] designed an alignment approach using WFSTs to align the OCR

lattices with different edition transcription. To solve the problem of recognition and segmenta-

tion errors, the input of the Line-to-Page WFSTs is adapted to be used for aligning text line

strings from the first OCR with the whole text line strings from the corresponding page of the

second OCR. The designed approach helps to solve the over and under segmentation problems

in OCR which disturb the order of the lines in a page.

In the approach, the edit operations are substitution, insertion, and deletion. They are

used to smooth the alignment between the output of the OCR systems. By using them, the

WFSTs provide flexibility and adaptability to process a large array of OCR processing options.

They are translated as transitions in the WFST and used as rules to substitute, insert, and

delete characters from the OCR. Those editing rules are: Substitution: ρ → a, Deletion: ρ → ε,

and Insertion: ε → a, where a is a character, ρ is Rho and ε is epsilon. The cost of those edit

operations is empirically estimated. The matchers are used to find and iterate through requested

labels at WFST states; each matcher has a principal that is used in composition matching, as

described in Chpater 4. They may implement matching special symbols that represent sets of

labels such as ρ (rest) which can be used for more compact automata representations and faster

matching. If there is no symbol in the OCR text line that match the transcription characters,

then the Rho matcher is used.
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7.3 Long Short-Term Memory Alignment Approach (LSTM)

A new technique is designed based on LSTM recurrent networks to solve the problem of vot-

ing for the best candidate correction amongst various OCR systems. It predicts the missing

characters from both OCR systems. It votes for the correct character when both OCR systems

provide misrecognized characters. The initial step will be discussed in Section 7.3.1, which is

the preprocessing step includes the string normalization. Following this, the features extraction

is in Section 7.3.2. Finally, the LSTM network configuration is discussed in Section 7.3.3.

7.3.1 Preprocessing using Character-Epsilon Alignment

The preprocessing method is discussed in this section which is used to extract the features.

It is used to allow insertion, deletion, and substitution operations in the strings. The strings

are aligned to find the optimal alignment to give a score. The path which gives a better score

represent the alignment output. The value with the possible sources (Match, Substitution,

Insertion, and Deletion) is compared to see which character it came from.

To normalize the strings size, an epsilon is inserted after each character of the word of the

text lines. An alignment is then applied using the Levenshtein edit distance between the words

and the corresponding ground truth to obtain the optimal aligned character pairs. For example,

havng the input word:

e ε f ε e ε c ε t ε

requires an insertion for the alignment to be possible obtaining:

Input word = e ε f ε e ε c ε t ε

ground truth word = e f f ε e ε c ε t ε

Another example where substitution is required:

Input word = d ε i ε H ε e ε r ε e ε n ε t ε

ground truth word = d ε i f f ε e ε r ε e ε n ε t ε

The LSTM network is provided with the feature vector of the input and ground truth aligned

pairs for training purposes as described in section 7.3.2. For testing purposes, designed LSTM

trained model is applied after adding epsilon ε behind each character in the input word of the

test token, then the correct string is predicted.

7.3.2 Strings Encoding

The string encoding is presented by a sequence of vectors as shown in Figure 5.3 in Section 5.2.3.

The dimension is speicfied by the size of the characters set. Normalized input words along with

their ground truth are fed into the network, which performs the forward propagation step first.

Alignment of output with associated transcriptions is done in the next step and then finally a

backward propagation step is performed.
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Table 7.1: Evaluation of the experiments applied on the UW-III and German Fraktur script
from Fontane dataset using OCR1, OCR2, ISRI-Voting Tool (ISRI), Line-to-Page
Alignment (Line-Page WFST), and Long Short-Term Memory (LSTM) approaches.
The Table shows the error rates of each approach.

Dataset OCR1 OCR2 ISRI [ISR10] Pairwise [WYM13] Line-Page WFST LSTM

UW-III 2.0% 1.56% 1.45% 1.32% 1.26% 0.4%

Fraktur 2.7% 2.5% 2.41% 2.36% 2.31% 0.39%

After each epoch, training and validation errors were computed and the best results were saved.

When there is no significant change in validation errors for a pre-set number of epochs, the

training is stopped. There are three parameters, which need to be tuned, namely input word

size, size of the hidden-states, and learning rate. This will be explained in detail in Section 7.3.3.

7.3.3 LSTM Networks Configuration

LSTM has been applied to many of the language modeling tasks in this thesis and has been

shown promising results. LSTM can be used to remember contexts over a long period of time.

Therefore, it fits to natural language processing purposes tasks.

The LSTM networks are trained with hidden-states of different sizes 40, 60, 80, 100, 120,

140, and 160. The optimal error rates are obtained when the size of the hidden-states ranges

between 100 - 160, and takes 790 - 1100 minutes for training respectively. Running times for

the training is on a modern desktop PC with four cores and 8 GB RAM.

By keeping the hidden-states size fixed, the learning rate was varied between 0.001, 0.0001,

and 0.00001. The most appropriate number of hidden-states was determined keeping the learn-

ing rate constant at 0.0001. After the model had been trained, the predictions were fast.

7.4 Experimental Results

OCR output was used with its corresponding ground truth from two sources: an open-source

OCR system OCRopus1 (OCR2) and an Multilayer Perceptrons (MLP) Classifier (OCR1).

A testing set was generated from 490 OCR output pages from the UWIII datasets obtained

from an evaluation set of the OCRopus project with other state-of-the-art OCR systems. The

ground truth was used to evaluate the generated corrected pages by the contributed Line-to-Page

Alignment, LSTM, the state-of-the-art Pairwise of Multiple Sequence Alignment [WYM13], and

ISRI-Voting tool [ISR10]. Table 7.1 shows the evaluation of the approaches Line-to-Page WFST

Alignment (Line-Page), LSTM compared to the original OCR recognition results and the state-

of-the-art approaches applied on Fraktur and English script. The LSTM network is trained on

1 OCRopus Project: https://github.com/tmbdev/ocropy

https://github.com/tmbdev/ocropy
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196,257 entries. All the approaches are tested on 490 pages.

The volume of “Wanderung durch die Mark Brandenburg” (1862-1889) of Heinrich Theodor

Fontane is used which have been provided from the German Text Archive (DTA). The ap-

proaches are tested on OCR results of Fraktur script of 263 documents using the commercial

OCR system ABBYY 2 (OCR2) and MLP (OCR1). The LSTM is trained on 75,772 entries.

The LSTM Memory has the best performance of 0.40%, and 0.39%.

The error rate is measured using the Character Error Rate (CER) tool of [NRJ96]. The

CER is measured using the edit distance to find the number of edit operations on character

level.

CER =
I +D + S

N
× 100 (7.1)

The ISRI voting tool applies a heuristic search to align OCR systems. The tool processes

each text page of the first OCR with the corresponding text page of the second OCR. The order

of the OCR’s text pages in the input of the ISRI tool is important during voting procedure.

The best OCR’s output should be entered first. There is no language modeling involvement.

The Line-to-Page Alignment approach aligns each text line of the first OCR system with the

text page of the second OCR system. The alignment is based on a character-level composition.

All the characters of the OCR systems are involved in the composition. The line lattices are

created from the composition in the form of WFST. The best path is then produced from the

N-best paths of the composed OCRs outputs.

7.4.1 Analysis

In Line-to-Page WFSTs, the usage of the epsilon is optimized and associated with cost, while

Wemhoener et al. [WYM13] has added the null and involved irrelevant characters in the align-

ment, and made the alignment slower.

The voting approaches search among the various candidate strings to find the best correc-

tions for improving the recognition outputs. The number of the OCR systems is irrelevant, if

all the systems have a high error rate, then the task of finding the best correction becomes dif-

ficult. Therefore, a new technique for learning the OCR errors is required to deliver significant

improvements. It helps to come up with corrected characters for the string especially characters

are not produced by the recognition systems. The LSTM model learns the recognition errors

from the outputs of the OCR and is able to solve the confusion problems between the two

aligned OCR outputs. For example, different substitution errors for the same character in a

string. One such example is in recognizing of the character m where each OCR system has

misrecognized it as rn and the other OCR has also misrecognized it as nn. An example of top

confusions of the OCRs using Fraktur script are s : f , c : e, and epsilon : i which are solved

by LSTM, but not the other approaches. LSTM has confusions in s : epsilon and l : epsilon.

2http://www.abbyy.de/
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The LSTM model is able to solve the misrecognition, whilst the heuristic approach cannot.

Only learning-based models predict unknown correct characters and insert them, even if both

OCR systems are unable to provide them. In other approaches, the unknown characters are

not produced, if not provided by both OCR systems.

7.5 Discussion

The Chapter presents two novel and efficient low cost methods for digitizing books with several

corresponding OCR’s results. The results of the OCRs combine with segmentation and recog-

nition errors. The segmentation errors make the alignment between two recognition results not

possible when the line breaks are in different positions. As a consequence, the word, line, and

page correspondences are lost.

Various recognition errors in different recognition systems prevent the correspondences on

character or word level. Therefore, edit rules were added to the transcription with empirical

cost to smooth the alignment, and make the composition of the different transcription more

compatible.

The contributed Line-Page Alignment using WFSTs provides the best alignment between

OCR systems. The approach aligns each line of first OCR with the page of the second OCR to

avoid the segmentation problem.

The novel contributed LSTM approach provides a significant reduction in the error rate.

This is achieved by the high performance of the neural networks prediction to find the appro-

priate voting for the right candidate corrections.

The LSTM learns from the OCRs errors and is able to choose the best correction from the

multiple aligned candidates. The other approaches fails, if the correct character does not appear

in one or all of the OCRed editions. Also LSTM returns the appropriate correction better than

the others, if the majority choice of the correction is not found in the OCRed editions, and the

other approaches can not return the right decision. LSTM also predicts the correct votes for

unknown characters and tokens.

The method offers alignment of a flexible number of recognition systems. It is generally

language-independent. Therefore, there is a plan to align more recognition systems. The de-

signed method will also be applied on various scripts such as Urdu. Because it is challenging

and difficult to obtain high accuracy results from one recognition system, this approach could

potentially be applied to historical documents and handwriting recognition.
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Chapter 8

Discussion and Future Work

This thesis has achieved several key contributions to improve the state-of-the-art in language

modeling, alignment techniques for recognition systems, and document analysis and processing.

This work provides a high-performance, high-accuracy, trainable language modeling and

alignment system. The thesis aims of building general-purpose language modeling using high

performance techniques for historical and modern languages. The key contributions solved

many problems in the tasks of alignment of image segments with different transcription editions,

alignment of multiple recognition systems, hyphenation modeling, correction of misrecognition,

dehyphenation, and transcription processing. In the thesis, the implemented approaches are

language-independent. They need less effort to train and can learn from few data.

Recognition systems become very important for digitizing historical and modern documents.

The correct and clean recognition outputs are used for many purposes, such as, finding the

corresponding transcription to the image segments on word, line, page levels, building n-grams,

linguistics dictionaries, and understanding the contents of the documents.

Therefore, one of the core concern of this thesis has been the following question: Can

we learn from the recognition errors to improve the results? The answer is yes, learning the

recognition results assists the dictionary based approaches to find the appropriate, correct word

in a very efficient manner. By observing the insertion, deletion, and substitution errors from

the confusion of misrecognized tokens, these errors can be translated into edit rules.

Chapter 3 offers the method of building an error model using confusion rules with context-

dependent information. The experiments showed that the error model approach performs better

than the state-of-the-art single rule-based approaches [HNH08,LNCPCA10]. By using context

information of the neighbour characters, the search is restricted to a certain string related to the

misrecognized word. These confusion rules with context-dependent avoid the calculations, save

time, and provide better accuracy than the single rule-based which involves several irrelevant

rules in the composition. The designed error model also solves the problem of correcting the

unknown words in the given dictionary.

Historical documents have various scripts and languages. A small amount of training samples
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are available. The corresponding ground truth is unattainable, thus makes the training very

challenging for recognition systems. The difficult image conditions and the bad segmentation

also make a correct recognition output not directly obtainable. The raised questions: Can we

find the correspondence between the original image/text documents with different transcription

editions on page, line, and word levels?

Therefore, new alignment strategies are required to find the image segments with their

corresponding transcription, improve the results, and generate more training samples. The

presented alignment approaches work with correct, incorrect ground truth, and different tran-

scription editions which have different content in some paragraphs or the whole page. The

implemented alignment approaches have an embedded hyphenation model. This adapts the

lines breaks of the recognition results and the transcription due to segmentation errors. There

are various versions of transcription editions, which need to be altered according to the input

segments.

The experiments show that the presented alignment approaches in Chapter 4 perform better

that the state-of-the-art approaches [FFFB11, YM11]. The improved recognition results, the

linked image, and transcription create more training data on characters and ligatures. The

alignment approaches avoid the effort of a manually generating ground truth and help to digitize

and index the content of historical books with their editable format.

The research in this thesis found that the designed dehyphenation model using machine

learning can be used for cleaning, removing regular, and noisy hyphens from recognition results

or any noisy transcriptions. Many linguistic features are explored in this research to show the

best performance, but the syntax-based models using regular expression are not good enough

to solve various hyphen problems.

Using the technique from finite-state theory and avoiding the calculation, makes the ap-

proaches very fast and efficient. The WFSTs are flexible, easy to adapt, and the alignment can

be done smoothly in hard situations. The WFSTs showed good performance and have been

used in many applications such as speech recognition and machine translation.

The second part of this thesis is to design general-purpose language modeling using high

performance Artificial Neural Network to improve, normalize, and correct the historical and

modern languages. This is motivated by the demand of scholars and digital humanities to

understand the contents of the old centuries historical texts and study many subjects in those

documents, such as: Languages, religion, politics, and science. The purpose of Chapter 5 is to

translate the historical text forms to modern text forms by normalizing the historical documents,

where the language has different forms from the modern forms.

It is not possible to cope with all historical documents from the same or different centuries

because of the variance in the orthographic rules of those centuries. There rules are highly

contrasting and deviating from one document to another.

Therefore, the implemented novel Character-Epsilon alignment with LSTM learning-based
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approach in Chapter 5 returned better prediction for known and unknown tokens than the

state-of-the-art rule-based approach in Bollmann et al. [BPD11a]. It avoided the limitations

in the word-list dictionary approach, where such mapping of token-to-token corpus are rarely

available. The LSTM learns from few training data and provides a fast generated mapping

corpus for further work.

Several problems of language models have been investigated in this thesis for improving,

normalizing, and cleaning the historical and modern documents which are obtained by using

recognition systems.

The experiments in Chapter 6 shows the more accurate and robust performance of LSTM

language model to correct the recognition results. Beside English script, LSTM returned best

accuracy for the very challenging Arabic Nastaleeq script in Urdu Language.

In this thesis, the presented Context-Dependent Confusion Rules and Character-Epsilon

LSTM learning-based approaches are the first and novel contribution for Urdu language mod-

eling, and right-to-left script. Character-Epsilon learning-based using LSTM approach showed

best performance in improving unseen tokens during the training. This approach is able to

produce good results, even if few training samples are used.

The final question in this thesis was: How to use such methods for not only learning errors

coming from one recognition system, but also learning errors using various output from multiple

recognition systems? There, the same problems appear, such as, finding the correspondence on

character, word, sentence, and page levels that come from segmentation errors, different text

editions and misrecognition errors. The implemented language models in this thesis have been

proven to robust against the inconsistent images and texts. They show a high performance

with accuracy, flexibility, and are able to learn from recognition errors to improve the results.

Therefore, the Line-Page Alignment using WFSTs and LSTM are used for the aligning of various

transcription editions. The transcription editions have different line breaks and hyphenations

under the recognition errors, diverse content, and found the correspondences of the contents

between various documents. This combined model gives a powerful performance for aligning

hard problematic documents and predicting errors which did not appear in the training phase. In

Chapter 7, the contributed approaches of this thesis outperform the state-of-the-art approaches

[RJN96,WYM13].

The correction and alignment services in this thesis offer new sources of information that

open great chances for learning, aligning, and correcting of recognition systems. The services

are useful for modern and historical document analysis and recognition, especially for digital

humanities where such techniques are required. The services are automatic and cost saving.

This thesis is an important contribution to the historical document analysis field. It offers an

simple interface for easily viewing, editing, and annotating the character and ligature segments

with the corresponding aligned transcriptions. It provides a tool to view the text line images

with the corresponding recognition output and ground truth. The recognition results with
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post-processing is provided as an OCR service.

The approaches presented in this thesis have no limitation on the word length and the

number of errors that occur in the words. They are completely language independent and can

be used with any language that has a dictionary and text data to build a language model.

In the future, the training purposes, the pre-processing, and feature extractions can be

explored with other features, e.g., morphological properties. Various scripts and languages

can be experimented with the designed approaches. The presented approaches in this thesis

can be applied for other scripts, such as Chinese, Japanese, and obtained recognition results

from various Arabic documents with different fonts. The presented learning-based normalizing

approach for historical orthography can be used in the machine translation approach. It learns

the rule of one language and translates to the other corresponding rules. Some approaches can

be transferred from automatic tool to semi-automatic tools.



Appendix A

Preliminaries

This chapter describes the basic framework needed for Natural Language Processing (NLP)

tasks, which includes operations and algorithms for constructing statistical language modeling.

The chapter begins by explaining Weighted Finite-State Transducers WFSTs in Section A.1.

It also provides the basic operations and a background literature review for WFSTs, such as

composition in Section A.1.1, determinization, minimization in Section A.1.2, and closure in

Section A.1.3. Section A.2 describes the methods and state-of-the-art of Recurrent Neural Net-

work (RNN). Section A.2.2 is an introduction into RNN. Section A.2.3 reviews the background

material for Long Short-Term Memory (LSTM), which is the main RNN architecture used in

this thesis.

A.1 Weighted Finite-State Transducers (WFSTs)

WFSTs have been used in various NLP tasks including automatic speech recognition, morphol-

ogy analysis, Optical Character Recognition (OCR), spell checking, part-of-speech tagging, and

machine translation.

A.1.1 Composition

The compose operation computes the composition of two transducers. If T transduces string a

to q with weight 1 and P transduces q to f with weight 1, then their composition transduces a

string a to f with weight 2.

(0, a, q, 1, 1) and (0, q, f, 1, 2) =⇒ ((0, 0), a, f, 2, (1, 2)) (A.1)

The output labels of the first transducer or the input labels of the second transducer must be

sorted. Figure A.1 shows the compose operation, as described in [CAM07]. The Figure A.1(a)

shows that the first WFST T starts with the start state 0 and has two final states 1 and 2. The

final states can have weight, for example the final state 1 has 0 weight, and the final state 2 has
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(a) First WFST T (b) Second WFST P

(c) The composition output WFST

Figure A.1: Composition of two WFST (a) and (b). The result is (c)

2.5 weight. WFST T has three transitions. The first transition has input label a, output label

q, and weight with value 1. It starts from start state 0 to final state 1. The second transition

starts from start state 0 to the final state 2. It has input label a, output label r, and weight

with value 2.5. The last transition is a loop transition on the final state 1 with input label c,

output label s, and weight 1.

The second WFST P starts with the start state 0 and ends with one final state 2 has weight

2 as shown in Figure A.1(b). It has four transitions. The first transition has input label q,

output label f , and weight with value 1. It starts from start state 0 to final state 1. The second

transition starts from start state 0 to the final state 2. It has input label r, output label h, and

weight with value 3. The third transition starts from state 1 to final state 2 and it has input

label s, output label g, and weight 2.5. The last transition is a loop transition on the final state

2 with input label s, output label j, and weight 1.5.

The composition of the two transducers T and P is presented in Figure A.1(c). The compo-

sition operation is to find the matches between the output and input labels of the transitions in

both transducers. For example, the transition a : q in T is composed with the transition q : f

in P to output the transition a : f .

Second composition is between the transition a : r in T with the transition r : h in P to

output a : h. Another composition is between c : s in T with the transition s : g in P to output

c : g transition. The final loop transition c : j is generated from the composition of c : s and
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(a) Input WFST T (b) Output WFST P

Figure A.2: Determinization of WFST (a) to (b).

s : j. The sum of all the weights on the transitions and in the final states is used to find the

best path in the WFST with low cost. The best path is a successful path from start state to

the final state. The shortest-path algorithm can be used to find the k lowest cost paths in a

transducer Mohri et al. [Moh03c]. This allows the best string(s) to be efficiently extracted and

provides a generic implementation of the maximum and minimum operations in probabilistic

models.

Special symbol matching [CAM07] can be used in weighted composition. Special symbols

act as transition filters in composition and enable more compact topologies and faster matching.

The special symbols are ε (epsilon), σ (all), ρ (rest), and ϕ (fail). Transitions labelled σ match

and consume any arc in composition. Transitions labelled ρ match and consume any arc without

an explicit transition from the state. Non-consuming ϕ-transitions are similar to ε transitions

but can only be taken when no regular symbol match is possible. ϕ-transitions are required for

the exact implementation of backoff in the WFSTs representation of an n-gram language model

Allauzen et al. [CAR03].

A.1.2 Determinization and Minimization

The determinization operation is used to determinize a weighted transducer. The result will

be an equivalent WFST that has the property that no state has two transitions with the same

input label, as shown in Figure A.2. For this algorithm, epsilon transitions are treated as regular

symbols. The start state 0 in WFST T has two transitions a : p and a : q and they have the

same input label a. The state 1 has also two transitions c : r and c : r and both have the same

input label c.

Epsilons is added as input labels at the end of the paths when determinizing transducers.

If the input transducer also contains epsilons, this may result a non-deterministic results even

when the epsilons are treated as regular symbols. Further explanation of the algorithm is

described in [CAM07] and [CAR03].

The minimization operation performs the minimization of deterministic weighted transduc-

ers. If the input WFST T is an transducer, this operation produces the minimal transducer

P equivalent to T , i.e.,the transducer with a minimal number of states that is equivalent to

T , as shown in Figure A.3. However, this minimality is obtained by allowing transition having
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(a) Input WFST T (b) Output WFST P

Figure A.3: Minimization of WFST (a) to (b).

(a) First WFST T (b) Output of closure plus opera-
tion

(c) Output of closure star operation

Figure A.4: Closure plus and star operation of WFST (a) and the results are (b) and (c)

strings of symbols as output labels, this is known in the literature as a real-time transducer.

The minimize function converts such a transducer by expanding each string-labeled transition

into a sequence of transitions. This will result in the creation of new states, hence losing the

minimality property.

A.1.3 Closure

The closure operation computes the concatenative closure. If T transduces string a to p, then

the closure transduces a to p, aa to pp, aaa to ppp, etc. If the closure type is ClosureStar,

then the empty string is transduced to itself with weight 0, as shown in Figure A.4.
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A.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are similar to Biological Neural Networks in performing

functions collectively and in parallel by individual units, the neurons. An artificial neuron is a

computational model inspired by the natural neurons. Neural network models which emulate

the central nervous system are part of theoretical neuroscience and computational neuroscience.

ANNs are employed in various applications such as speech, printed characters, and handwriting

recognition. McCulloch and Pitts et al. [McC] built a computational model based on mathe-

matics and algorithms for neural networks. This model is called threshold logic.

ANN basically consist of inputs, which are multiplied by weights. Then, it is computed

by a mathematical function which determines the activation of the neuron. Another function

computes the output of the artificial neuron. ANNs combine artificial neurons in order to

process information.

The MLP is described in Section A.2.1. The RNN is reviewed in Section A.2.2. Section A.2.3

describes the LSTM.

A.2.1 Multilayer Perceptrons (MLP)

The MLP [Ros62] is a feedforward ANN model that maps sets of input data into a set of

appropriate outputs. A MLP consists of multiple layers of nodes in a directed graph, with

each layer fully connected to the next one. MLP utilizes a supervised learning technique called

backpropagation for training the network. The multilayer perceptrons consists of three or more

layers: an input and an output layer with one or more hidden layers of nonlinearly-activating

nodes. Therefore, it considered a deep neural network. Each node in one layer connects with a

certain weight to every node in the following layer. Input are entered to the input layer and the

resulting unit activations are propagated through the hidden layers to the output layer. This

process is called the forward pass of the network. In the hidden layers, the units have activation

functions that transform the summed activation arriving at the unit.

An example MLP with I input units, activated by input vector x. Each unit in the first

hidden layer calculates a weighted sum of the input units. For hidden unit h, it refers to this

sum as the network input to unit h, and denote it ah. The activation function θh is then applied,

yielding the final activation bh of the unit. Denoting the weight from unit i to unit j as wij ,

then:

ah =
I∑

i=1

wihxi (A.2)

bh = θh(ah) (A.3)
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The most common choices of activation function are the hyperbolic tangent:

tanh(x) =
e2x − 1

e2x + 1
(A.4)

and the logistic sigmoid:

σ(x) =
1

1 + e−x
(A.5)

A further explanation of the theoretical background can be found in Graves et al. [Gra12].

A.2.2 Recurrent Neural Networks (RNNs)

The RNN is an ANN with an additional connections from the hidden units to themselves,

therefore the RNN differs from the feed forward network. The RNNs use their internal memory

to process arbitrary sequences of inputs and makes the RNNs capable of solving challenging

problems such as unsegmented connected handwriting recognition. The forward pass of RNN

is the same as the feedforward neural network the MLP, except that the activations reach

the hidden layer from both the input and hidden layer activations. As described in Graves et

al. [Gra12], a length T input sequence x is entered to an RNN with I input units, H hidden

units, and K output units. xti is the value of the input i at time t, atj and btj are the network

input to units j at time t, and the activation of the unit j at time t respectively for hidden unit

h, where h′ is the size of the hidden unit of the recurrent connections and the weight is denoted

as w. For the hidden units:

ath =

I∑
i=1

wihx
t
i +

H∑
h′=1

wh′hb
t−1
h′ (A.6)

Nonlinear, differentiable activation functions are then applied as for MLP:

bth = θh(ath) (A.7)

The network inputs to the output units are calculated at the same time as the hidden activations:

atk =

H∑
h=1

whkb
t
h (A.8)

In the backward pass, Graves et al. [Gra12] focus on Backpropagation Through Time

(BPTT) [WZ95,Wer90] because it is simple and efficient in computation time. BPTT is similar

to standard backpropagation. The objective function for recurrent networks depends on the ac-

tivation of the hidden layer not only through its influence on the output layer, but also through
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its influence on the hidden layer at the next timesteps, Graves et al. [Gra12]:

δth = θ′(ath)

(
K∑
k=1

δtkwhk +
H∑

h′=1

δt+1
h′ whh′

)
, (A.9)

where

δtj
def
==

∂O

∂atj
(A.10)

Where ∂O and ∂atj are the derivatives of the objective function O and the network input

to unit j at time t. The weights to and from each unit in the hidden layer are the same at

every timestep. To obtain the derivatives with respect to each of the network weights, the whole

sequnce is summed over.

∂O

∂wij
=

T∑
t=1

∂O

∂atj

∂atj
∂wij

=
T∑
t=1

δtjb
t
i (A.11)

For further reading regarding Bidirectional RNNs, network training, gradient descent, training

with noise, input representation, and weight initialisation see Graves et al. [Gra12]

A.2.3 Long Short-Term Memory (LSTM)

LSTM is a RNN architecture consisting of a set of recurrently connected subsets, known as

memory blocks. Each block contains one or more self-connected memory cells and three multi-

plicative units. The multiplicative units are the input, output, and forget gates. They provide

continuous analogues of write, read, and reset operations for the cells. The LSTM differs by

the nonlinear units in the hidden layers of RNN are replaced by memory blocks.

In LSTM, the multiplicative gates allow the LSTM memory cells to store, and access in-

formation over long periods of time, thereby avoiding the vanishing gradient problem [HS97].

The gates determine when the input is significant enough to remember, when it should continue

to remember or forget the value, and when it should output the value. Figure A.5 shows the

memory block with one cell of LSTM.

LSTM has been applied to various problems, such as learning context free languages [GS01],

recognition of text lines [BUHAAS13], speech recognition [GS05a, AGS06], and handwriting

recognition [Gra12,GLF+09]

In the work of Graves et al. [Gra12, GS05a, GS05b], the author introduces bidirectional

LSTM, which is composed of the standard bidirectional RNN architecture with LSTM used in

the hidden layers. BLSTM has the benefit of accessing the long range context in both input

directions and outperforms other neural network architectures on sequence labelling tasks. It

is widely used especially in the field of bioinformatics [TR07, CC05]. For further reading, the

thesis of Graves et al. [Gra12] describes LSTM in more details.

The equations for the activation (forward pass) and gradient calculation (backward pass) of

an LSTM hidden layer within a RNN are provided. The exact error gradient [GS05a], calculated
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Figure A.5: LSTM memory block with one cell, as shown in Graves et al. [Gra12]

with backpropagation through time, is presented in [Gra12]. The weight of the connection from

unit i to unit j is wij ∈ R. The network input to some unit j at time t is represented as atj and

btj is the value of the j same unit after the activation function has been applied. The LSTM

equations are given for a single memory block only.

For multiple blocks the calculations are simply repeated for each block, in any order. The

subscripts c refers to one of the C memory cells. stc is the state of cell c at time t. f is the

activation function of the gates and g and h are respectively the cell input and output activation

functions.

The number of inputs is I; K is the number of outputs; and H is the number of cells in the

hidden layer. Only the cell outputs btc are connected to the other blocks in the layer. The index

h represents the cell outputs from other blocks in the hidden layer. In LSTM, the forward pass

is calculated for a length T input sequence x by starting at t = 1, as with standard RNNs, Then,

the update equation is recursively applied while incrementing t. The BPTT backward pass is

calculated by starting at t = T . Then, the unit derivatives are recursively calculated while

decrementing t [Gra12]. The final weight derivatives are found by summing over the derivatives

at each timestep. O is the objective function used for training. The equations calculated during

the forward and backward passes should proceed as given in Graves et al. [Gra12].
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