
Certi�cation-Cognizant Mixed-Criticality Scheduling

in Time-Triggered Systems

vom
Fachbereich Elektrotechnik und Informationstechnik

der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von
Jens Theis

geboren in Neunkirchen (Saar)

D 386

Eingereicht am: 05.02.2015
Tag der mündlichen Prüfung: 13.03.2015
Dekan des Fachbereichs: Prof. Dr.-Ing. Hans D. Schotten

Promotionskomission
Vorsitzender: Prof. Dr.-Ing. Wolfgang Kunz
Berichterstattende: Prof. Dipl.-Ing. Dr. Gerhard Fohler

Prof. Alan Burns

Erklärung gem. � 6 Abs. 3 Promotionsordnung

Ich versichere, dass ich diese Dissertation selbst und nur unter Verwendung der
angegebenen Quellen und Hilfsmittel angefertigt und die den benutzen Quellen wörtlich
oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Diese Disserta-
tion wurde weder als Ganzes noch in Teilen als Prüfungsarbeit für eine staatliche oder
andere wissenschaftliche Prüfung eingereicht. Es wurde weder diese noch eine andere
Abhandlung bei einem anderen Fachbereich oder einer anderen Universität als Disser-
tation eingereicht.

(Ort, Datum) (Jens Theis)

Abstract

In embedded systems, there is a trend of integrating several di�erent functionalities
on a common platform. This has been enabled by increasing processing power and
the arise of integrated system-on-chips. The composition of safety-critical and non-
safety-critical applications results in mixed-criticality systems. Certi�cation Authorities
(CAs) demand the certi�cation of safety-critical applications with strong con�dence in
the execution time bounds. As a consequence, CAs use conservative assumptions in the
worst-case execution time (WCET) analysis which result in more pessimistic WCETs
than the ones used by designers. The existence of certi�ed safety-critical and non-safety-
critical applications can be represented by dual-criticality systems, i.e., systems with two
criticality levels.
In this thesis, we focus on the scheduling of mixed-criticality systems which are sub-

ject to certi�cation. Scheduling policies cognizant of the mixed-criticality nature of the
systems and the certi�cation requirements are needed for e�cient and e�ective schedul-
ing. Furthermore, we aim at reducing the certi�cation costs to allow faster modi�cation
and upgrading, and less error-prone certi�cation. Besides certi�cation aspects, require-
ments of di�erent operational modes result in challenging problems for the scheduling
process. Despite the mentioned problems, schedulers require a low runtime overhead for
an e�cient execution at runtime.
The presented solutions are centered around time-triggered systems which feature a

low runtime overhead. We present a transformation to include event-triggered activities,
represented by sporadic tasks, already into the o�ine scheduling process. Further, this
transformation can also be applied on periodic tasks to shorten the length of schedule
tables which reduces certi�cation costs. These results can be used in our method to
construct schedule tables which creates two schedule tables to ful�ll the requirements of
dual-criticality systems using mode changes at runtime. Finally, we present a scheduler
based on the slot-shifting algorithm for mixed-criticality systems. In a �rst version, the
method schedules dual-criticality jobs without the need for mode changes. An already
certi�ed schedule table can be used and at runtime, the scheduler reacts to the actual
behavior of the jobs and thus, makes e�ective use of the available resources. Next,
we extend this method to schedule mixed-criticality job sets with di�erent operational
modes. As a result, we can schedule jobs with varying parameters in di�erent modes.

iii

To my parents, Elke and Manfred Theis.

Nur wer selber brennt,

kann andere entzünden.1

1English translation: �Only he who burns himself can ignite others.�

Acknowledgments

Writing the �rst words of a thesis or paper are always the most di�cult ones. You
stare at the screen and you do not know how to start. Now, I am doing this again
and there is the temptation to look into the acknowledgments of someone else to get
inspired, but this part is too important for myself to simply copy ideas. Hence, I resist
this temptation and make these acknowledgments to my acknowledgments.
After years of learning, trying to understand problems, and thinking about their

solutions, I am �nishing writing my PhD thesis. I wish I would not be indebted to
anybody, but in fact, I will never be able to give back all the support from my family,
my friends, my supervisor, and my colleagues.
First, I want to express my gratitude to Prof. Gerhard Fohler, who gave me the chance

to work on this thesis under his supervision, for his guidance and the valuable discussions
in the last years. I am grateful for the atmosphere he created at the Department of Real-
Time System where I enjoyed working with and talking to colleagues who are unique
in their own special way. In line with this, I want to thank the other members of my
thesis committee, Prof. Wolfgang Kunz and Prof. Alan Burns.
Next, I want thank my (ex-)colleagues Ramon Serna Oliver, Raphael Guerra, Ro-

drigo Coelho, Anand Kotra, Stefan Schorr, Cuong Viet Ngo, Anoop Bhagyanath, Naga
Rajesh, Markus Metz, Simara Pérez, Mitra Nasri, Ankit Agrawal, Ali Abbas Syed, and
Gautam Gala. I enjoyed working with you and I also liked the hours of �procrastination�
and fun.
As a PhD student in Germany, you are thankful for a person who practices some

kind of sorcery: turning empty sheets into �lled out travel authorization requests, travel
expenses reports, and much more. In my case, I am deeply grateful for Stephanie Jung
who supported me as �Sorceress Ste�� and was also a source of joy and support and
relief during my time at the Real-Time Systems department. Thanks for your support
and the great time, Ste�.
What do you need to become a PhD? Of course, you need good ideas, people to

discuss them, write papers, and publish them. However, you cannot do this without
technical devices to program your algorithms, write paper submission, print your texts,
prepare presentations, and so on. For this reason, I want to thank Markus Müller for
his technical support with the small and big problems modern computers (and printers)
cause. Besides this, his jokes enriched everybody's daily routine and it was a pleasure
to work you, Markus. Thank you Markus, �Earl of Backup� and �Lord of SVN�.

ix

Last but not least, I want to thank the students Pramod Murthy and Lars Guse who
supported me with their work at the Real-Time Systems department.
All of you, I wish the best for your future life. May the odds be ever in your favor.
Writing the text of your thesis is a long process. Starting from the �rst word and

ending with a printed version of you thesis. At some point, you do not read what you
have written in your texts but you read what you wanted to write. For this reason, I want
thank my proof-readers Ali, Ankit, Gautam, Rodrigo, and Stefan from our department.
I want to thank even more my friends Bianca, Christine, Julia, Kerstin, and Nina, who
spent their spare time to proof-read my thesis. I have no idea how di�cult it was for
you to read these texts without any background knowledge of electrical engineering and
information technology. Thank you so much for your help.
On a personal side, I want thank my family for their support, especially during the

recent years of studying and working on my thesis. My parents made it possible for me
to study, supported and encouraged me so that I can now write the lines of my thesis
which are most important from my personal view. No words can describe how grateful
I am, hence, I keep it simple: Thank you!
As important as your family are your friends. You meet people and some become

friends... few of them become true friends forever. They share their life with you
and you share your life with them. At some point, some of them go other ways, but
independent of where they are, they are still true friends. I want to thank my friends
for the time we shared and I am joyfully looking to the future to share more time with
you.

Jens Theis
Kaiserslautern, 05.02.2015

The work presented in this thesis has been partially supported by the European
project Distributed Real-time Architecture for Mixed Criticality Systems (DREAMS)
under project No. 610640.

x

Danksagung

Die ersten Worte einer (Doktor-)Arbeit oder eines Fachartikels zu schreiben, sind immer
die schwierigsten. Man starrt den Bildschirm an und weiÿ nicht, wie man anfangen
soll. Ich tue dies jetzt wieder und bin versucht, mir die Danksagung eines anderen
anzuschauen, um mich inspirieren zu lassen. Allerdings ist dieser Teil meiner Arbeit
für mich persönlich zu wichtig, als dass ich einfach Ideen kopieren möchte. Deshalb
widerstehe ich dieser Versuchung und werde diese Danksagung zuMeiner Danksagung
machen.
Nach Jahren des Lernens, des Versuchens Probleme zu verstehen und über deren

Lösungen nachzudenken bin ich im Begri� meine Doktorarbeit fertig zu schreiben. Ich
wünschte ich wäre niemanden etwas schuldig, aber die Wahrheit ist, dass ich niemals
in der Lage sein werde all die Unterstützung meiner Familie, meiner Freunde, meines
Dissertationsbetreuers und meiner Kollegen zurückzahlen zu können.
Als erstes möchte ich meine Dankbarkeit gegenüber Prof. Gerhard Fohler, der mir die

Möglichkeit gab diese Arbeit mit Hilfe seiner Betreuung zu verfassen, für seine Anleitung
und wertvollen Diskussionen in den letzten Jahren ausdrücken. Ich bin dankbar für die
Arbeitsatmosphäre, die er am Lehrstuhl für Echtzeitsysteme schuf, die mir ermöglichte
mit Freude zusammen mit einzigartigen Kollegen zu arbeiten. Auÿerdem möchte ich
den anderen Mitgliedern der Prüfungskommission, Prof. Wolfgang Kunz und Prof. Alan
Burns, danken.
Als nächstes möchte ich mich bei meinen (ehemaligen) Kollegen Ramon Serna Oliver,

Raphael Guerra, Rodrigo Coelho, Anand Kotra, Stefan Schorr, Cuong Viet Ngo, Anoop
Bhagyanath, Naga Rajesh, Markus Metz, Simara Pérez, Mitra Nasri, Ankit Agrawal,
Ali Abbas Syed und Gautam Gala bedanken. Ich habe die Zusammenarbeit mit euch
genossen und erfreute mich an der einen oder anderen Stunde Ablenkung und Spaÿ mit
euch.
Als Doktorand in Deutschland ist man dankbar für eine Person, die eine bestimmte

Art Zauberei beherrscht: leere Blätter in ausgefüllte Dienstreiseanträge, Reisekosten-
abrechnungen und vieles mehr zu verwandeln. In meinem Fall bin ich Stephanie Jung
zutiefst dankbar für ihre Unterstützung als �Zauberin Ste��. Sie war auÿerdem eine
Quelle der Freude und Unterstützung und Rückhalt während meiner Zeit am Lehrstuhl
für Echtzeitsysteme. Danke für deine Unterstützung und die schöne Zeit, Ste�.
Was benötigt man um einen Doktortitel zu erlangen? Man benötigt natürlich gute Ide-

en, Leute um diese zu diskutieren, Fachartikel zu schreiben und diese zu verö�entlichen.

xi

Allerdings ist dies nicht möglich ohne die technischen Geräte um deine Algorithmen zu
programmieren, Fachartikel zu schreiben, deine Texte auszudrucken, Präsentation vor-
zubereiten und so vieles mehr. Aus diesem Grund möchte ich Markus Müller für seine
technische Unterstützung bei den kleinen und groÿen Problemen moderner Computer
(und Drucker) danken. Auÿerdem bereicherten seine Witze unseren Alltag und es war
eine Freude mit dir zu arbeiten, Markus. Danke Markus, �Fürst des Backups� und �Herr
des SVNs�.
Letztlich möchte ich noch den Studenten Pramod Murthy und Lars Guse, die mich

mit ihrer Arbeit am Lehrstuhl unterstützt haben, bedanken.
Ich wünsche euch allen das Beste für eure Zukunft. Möge das Glück stets mit euch

sein.
Das Schreiben der Doktorarbeit ist ein langer Prozess. Angefangen mit dem ersten

Wort bis hin zu der gedruckten Fassung der Arbeit. Irgendwann gelangt man an den
Punkt, an dem man nicht mehr liest was man geschrieben hat, sondern was man schrei-
ben wollte. Aus diesem Grund danke ich meinen Kollegen Ali, Ankit, Gautam, Rodrigo,
und Stefan für das Korrektur lesen. Auÿerdem möchte ich noch stärker bei meinen
Freunden Bianca, Christine, Julia, Kerstin und Nina bedanken, die ihre Freizeit opfer-
ten um meine Arbeit Korrektur zu lesen. Ich habe keine Vorstellung, wie schwierig es für
euch war, diese Texte zu lesen ohne das elektrotechnische bzw. informationstechnische
Hintergrundwissen zu haben. Ich danke euch so sehr für eure Hilfe.
Auf der persönlichen Seite möchte ich meiner Familie für ihre Unterstützung, im Spezi-

ellen während den letzten Jahren des Studierens und Arbeitens an meiner Doktorarbeit,
bedanken. Meine Eltern ermöglichten es mir zu studieren, unterstützten und ermutigten
mich, so dass ich jetzt die Zeilen meiner Arbeit schreiben kann, die für mich persönlich
am wichtigsten sind. Worte können nicht beschreiben, wie dankbar ich bin und deshalb
sage ich einfach: Danke!
Genauso wichtig wie meine Familie sind mir meine Freunde. Man tri�t Leute und

manche werden Freunde... wenige werden wahre Freunde für immer. Sie teilen ihr Leben
mit dir und du teilst dein Leben mit ihnen. Irgendwann gehen einige von ihnen andere
Wege, aber unabhängig wo sie gerade sind, bleiben sie wahre Freunde. Ich möchte mich
bei meinen Freunden für die Zeit, die wir zusammen verbracht haben, bedanken und ich
schaue mit Freude in die Zukunft, um noch mehr Zeit mit euch zu verbringen.

Jens Theis
Kaiserslautern, 05.02.2015

Die gezeigte Arbeit dieser Dissertation wurde in Teilen durch das europäische Projekt
Distributed Real-time Architecture for Mixed Criticality Systems (DREAMS) unter der
Projektnummer 610640 unterstützt.

xii

Publications

I have authored or co-authored the following publications:

Conference and refereed workshop papers
• Jens Theis and Gerhard Fohler. Transformation of Sporadic Tasks for O�-line
Scheduling with Utilization and Response Time Trade-O�s. Proceedings of 19th In-
ternational Conference on Real-Time and Network Systems (RTNS 2011), Nantes,
France, September 2011

• Jens Theis, Gerhard Fohler and Sanjoy Baruah. Schedule Table Generation for
Time-Triggered Mixed Criticality Systems. Proceedings of 1st International Work-
shop on Mixed Criticality Systems (WMC 2013), Vancouver, Canada, December
2013

• Jens Theis and Gerhard Fohler. Mixed Criticality Scheduling in Time-Triggered
Legacy Systems. Proceedings of 1st International Workshop on Mixed Criticality
Systems (WMC 2013), Vancouver, Canada, December 2013

Technical Reports
• Jens Theis and Gerhard Fohler. Transformation of Tasks for Minimizing the
Hyper-period with an Advanced Hyper-period Calculation. Technical Report, Chair
of Real-Time Systems, Technische Universität Kaiserslautern, December 2012

• Jens Theis and Gerhard Fohler. Mode Changes for Time-Triggered Systems with
Certi�cation-Cognizant Mixed-Criticality Applications. Technical Report, Chair
of Real-Time Systems, Technische Universität Kaiserslautern, February 2013

• Jens Theis and Gerhard Fohler. De�nitions for Slot-based Schedulers. Technical
Report, Chair of Real-Time Systems, Technische Universität Kaiserslautern, June
2013

xiii

Contents

Acknowledgments ix

Danksagung xi

Publications xiii

1 Introduction 1

1.1 Real-Time Systems . 2

1.2 Mixed-Criticality Systems . 3

1.3 Problem Statement . 4

1.4 Contributions . 5

1.5 Organization . 6

2 Related Work 9

2.1 Event-Triggered Approaches . 10
2.1.1 Fixed Priority Scheduling . 10
2.1.2 Dynamic Priority Scheduling . 11

2.2 Time-Triggered Approaches . 12

3 Fundamentals 13

3.1 Task Model . 14
3.1.1 Generic Task and Job Model . 14
3.1.2 Vestal Mixed-Criticality Model 17

3.2 Scheduling . 18
3.2.1 General Scheduling Classi�cation 18
3.2.2 Schedule Characteristics . 21

4 Task Parameter Transformation 23

4.1 Prior Work . 24

4.2 Transformation of Sporadic Tasks . 31
4.2.1 Terms, Symbols, Notation and Assumptions 31
4.2.2 Worst-Case Arrival of Sporadic Tasks 33

xv

4.2.3 Transformation Method . 33
4.2.4 Adaption for Mixed-Criticality Task Sets 37

4.3 Utilization of Reservation Tasks . 38

4.4 Worst-Case Response Time . 46
4.4.1 Worst-Case Response Time Reduction 46
4.4.2 Results of the Worst-Case Response Time Reduction 49

4.5 Trade-O� between Utilization of Reservation Tasks and Worst-Case
Response Times . 50

4.6 Example of the Transformation of Sporadic Tasks 51

4.7 Evaluation: An Application of Parameter Transformation 53
4.7.1 Motivation . 54
4.7.2 Creation of Periods . 54
4.7.3 Exhaustive Search Algorithm . 55
4.7.4 Fast Hyper-Period Search Algorithm 57
4.7.5 Evaluation of the E�ectiveness and E�ciency 59

5 Time-Triggered Schedule Tables with Mode Changes 67

5.1 Time-Triggered Mode Changes . 68
5.1.1 General Discussion and Assumptions 68
5.1.2 Schedule Tables with Mode Changes 69
5.1.3 Runtime Behavior . 70

5.2 Allocation of Jobs to Modes . 71

5.3 Time-Triggered Schedule Table Generation 73
5.3.1 Low Criticality Schedule Table 74
5.3.2 High Criticality Schedule Table 75

5.4 Backtracking Procedure: Swapping . 75

5.5 Example of Schedule Table Construction 82

5.6 Evaluation . 87
5.6.1 Fixed Priority Schedule Table Construction 88
5.6.2 Experiment Description . 89
5.6.3 Impact of Certi�cation Authorities' Pessimistic Assumptions on

Schedulability . 90
5.6.4 Schedulability Analysis . 92
5.6.5 Runtime Analysis . 95
5.6.6 Summary of Results . 97

5.7 Extensions . 99

5.8 Open Questions . 100
5.8.1 Reducing the Number of Scheduling Decisions 100
5.8.2 Rationale of the Order of Scheduling Decisions 102

5.9 Discussion: How Can We Reduce the Complexity of Scheduling and
Certi�cation? . 102

xvi

6 Mixed-Criticality Slot-Shifting without Mode Changes 105

6.1 Motivation . 106

6.2 Original Slot-Shifting . 106
6.2.1 O�ine Phase . 107
6.2.2 Online Phase . 110

6.3 Mixed-Criticality Slot-Shifting . 112
6.3.1 O�ine Phase . 112
6.3.2 Online Phase . 114

6.4 Mixed-Criticality Slot-Shifting Example 121

6.5 Discussion: How Can We Dynamically Use Resources at Runtime? . . . 128

7 Slot-Shifting with Generic Mode Changes 131

7.1 Motivation . 132

7.2 Generic and Mixed-Criticality Mode Changes 132
7.2.1 General Job Behavior during Mode Changes 133
7.2.2 Mixed-Criticality Mode Changes 134

7.3 Job Model . 135

7.4 Slot-Shifting with Generic Mode Changes 136
7.4.1 O�ine Phase . 136
7.4.2 Online Phase . 136

7.5 Generic Mode Changes Example . 141

7.6 Application of Generic Mode Changes to Mixed-Criticality Systems . . 147
7.6.1 Assumptions and Requirements 148
7.6.2 Mixed-Criticality Slot-Shifting with Generic Mode Changes . . . 148
7.6.3 Applicability to Mixed-Criticality Systems with Shared Resources 151

7.7 Discussion: How Much Flexibility in the Mixed-Criticality Model Is
Reasonable? . 152

8 Conclusions 155

8.1 Main Contributions . 155

8.2 Final Remarks . 157

A Extended Results 159

A.1 Further Evaluation Results of the E�ectiveness and E�ciency of the
Period Transformation . 159

A.2 Extended Evaluation of the Algorithms SWAP and FPS 166

A.3 Resulting Example Schedules of Slot-Shifting with Generic Mode Changes 169

Bibliography 173

Glossary 179

Summary 183

xvii

Zusammenfassung 187

Curriculum Vitae 193

xviii

List of Figures

3.1 De�nition of a slot with scheduler execution within slots 19
3.2 De�nition of a slot with scheduler execution outside the slots 20

4.1 Example schedule using PES . 25
4.2 Example schedule using TBS . 27
4.3 Example schedule using CBS . 29
4.4 Worst case arrival of a sporadic task instance. 34
4.5 Utilization of a reservation task . 35
4.6 Utilization of a reservation including switching overhead 39
4.7 Utilization of a reservation task considering di�erent switching overheads 40
4.8 Unused reserved execution time . 40
4.9 Unused reserved utilization considering switching overheads 41
4.10 Vertex approach: reserved utilization and utilization range 42
4.11 First step approach: reserved utilization and utilization range 43
4.12 Utilization limit approach: reserved utilization and utilization range . . 44
4.13 Total utilization limit approach: reserved utilization and utilization range 45
4.14 Shortening period and length of slices of a reservation task 46
4.15 Utilization of one reservation task . 48
4.16 Worst-case response times of a reservation task 48
4.17 Worst-case response time graph of a sporadic task 49
4.18 Contour plot for feasibility analysis including switching overhead 51
4.19 Example: Resulting schedule when sporadic tasks are not considered

in the o�ine scheduling process . 52
4.20 Example: feasibility analysis of two sporadic tasks 52
4.21 Example: schedule including reservation tasks into the o�ine schedul-

ing process . 53
4.22 Complexity of hyper-period calculation using ESA with two tasks with

each two additional periods. 56
4.23 ESA runtimes to calculate the minimum hyper-period 58
4.24 Mean runtimes of FHS to calculate the minimum hyper-period 59
4.25 Box plot of FHS runtimes and mean runtimes of FHS 61
4.26 Scatter plot of FHS runtimes and mean runtimes of FHS 62
4.27 Mean runtimes for FHS with varying η 63

xix

4.28 Optimized hyper-period for n = 30 and η = 2: comparison to reference
hyper-period . 64

4.29 Optimized hyper-period for n = 30 and η = 2: comparison for di�erent
number of additional periods κ . 64

5.1 Example that missing switch-through property prevents correct system
behavior . 70

5.2 Schedule tables to illustrate that traditional scheduling criteria are not
enough . 71

5.3 Derivation of parameters for split hi-criticality jobs 73
5.4 Backtracking methods . 76
5.5 Swapping in the search tree and consequences for the scheduling decisions 77
5.6 Backtracking heuristic swapping: case 1 78
5.7 Backtracking heuristic swapping: case 2 79
5.8 Backtracking heuristic swapping: case 3 80
5.9 Backtracking heuristic swapping: case 4 80
5.10 Backtracking heuristic swapping: case 5 81
5.11 Backtracking heuristic swapping: case 6 81
5.12 Swapping example: demand of hi-criticality jobs J∆

i 83
5.13 Swapping example: partial schedule after slot 0 84
5.14 Swapping example: partial schedule after slot 1 84
5.15 Swapping example: partial schedule before swapping slot 2 85
5.16 Swapping example: swapping slot 2 with slot 0 85
5.17 Swapping example: partial schedule after swapping and completing

scheduling in slot 0 . 86
5.18 Swapping example: partial schedule after completing scheduling in slot 2 86
5.19 Swapping example: partial schedule after scheduling slot 3 and 4 87
5.20 Swapping example: complete schedule 87
5.21 Example: schedule tables . 89
5.22 Success ratios for varying high scale factor 91
5.23 Success ratios for medium lo-criticality utilizations 94
5.24 Success ratios for high lo-criticality utilizations 95
5.25 Cumulative distribution function of the runtime fractions 98
5.26 Histogram of the runtime fractions . 98

6.1 Example precedence graph with four jobs 107
6.2 Derivation of capacity intervals in slot-shifting 109
6.3 Spare capacity calculation in slot-shifting 110
6.4 Mixed-criticality slot-shifting decision case 1 116
6.5 Mixed-criticality slot-shifting decision case 2 116
6.6 Mixed-criticality slot-shifting decision case 3 117
6.7 Mixed-criticality slot-shifting decision case 4 117
6.8 Mixed-criticality slot-shifting decision case 5 118
6.9 Mixed-criticality slot-shifting example: intervals 122
6.10 Mixed-criticality slot-shifting example: spare capacities 123

xx

6.11 Mixed-criticality slot-shifting example: runtime execution after slot 3 . 124
6.12 Mixed-criticality slot-shifting example: runtime execution after slot 4 . 124
6.13 Mixed-criticality slot-shifting example: runtime execution after slot 6 . 125
6.14 Mixed-criticality slot-shifting example: runtime execution after slot 7 . 125
6.15 Mixed-criticality slot-shifting example: runtime execution after slot 8 . 125
6.16 Mixed-criticality slot-shifting example: spare capacities after accep-

tance of a �rm aperiodic job . 126
6.17 Mixed-criticality slot-shifting example: runtime execution after slot 9 . 126
6.18 Mixed-criticality slot-shifting example: runtime execution after slot 11 . 127
6.19 Mixed-criticality slot-shifting example: runtime execution after slot 12 . 127
6.20 Mixed-criticality slot-shifting example: runtime execution after slot 13 . 127
6.21 Mixed-criticality slot-shifting example: runtime execution after slot 14 . 128

7.1 System view of mode changes . 137
7.2 Scheduling view of mode changes . 137
7.3 Slot-shifting with generic mode changes example: spare capacities in

all three modes . 142
7.4 Slot-shifting with generic mode changes example: spare capacities after

slot 0 . 143
7.5 Slot-shifting with generic mode changes example: spare capacities after

slot 1 . 143
7.6 Slot-shifting with generic mode changes example: spare capacities after

slot 2 . 144
7.7 Slot-shifting with generic mode changes example: spare capacities after

slot 3 . 144
7.8 Slot-shifting with generic mode changes example: spare capacities after

slot 4 . 145
7.9 Slot-shifting with generic mode changes example: spare capacities after

slot 5 . 145
7.10 Slot-shifting with generic mode changes example: spare capacities after

slot 7 . 146
7.11 Slot-shifting with generic mode changes example: spare capacities after

slot 8 . 146
7.12 Slot-shifting with generic mode changes example: spare capacities after

slot 9 . 147
7.13 Feasibility of mode changes in mode 1. 147
7.14 O�ine calculated spare capacities of mixed-criticality slot-shifting with

generic mode changes . 150

A.1 Period transformation: box plot with extended results for up to 60
tasks with 7 additional periods . 160

A.2 Period transformation: scatter plot with extended results for up to 60
tasks with 7 additional periods . 161

A.3 Period transformation: box plot with extended results for up to 60
tasks with 9 additional periods . 162

xxi

A.4 Period transformation: scatter plot with extended results for up to 60
tasks with 9 additional periods . 163

A.5 Period transformation: box plot with extended results for up to 60
tasks with 10 additional periods . 164

A.6 Period transformation: scatter plot with extended results for up to 60
tasks with 10 additional periods . 165

A.7 Schedule table construction: success ratio for high scale factor set to 2 . 167
A.8 Schedule table construction: success ratio for high scale factor set to 3 . 167
A.9 Schedule table construction: success ratio for high scale factor set to 5 . 168
A.10 Resulting schedule of mode 2 . 169
A.11 Feasibility of mode changes in mode 2 169
A.12 Resulting schedule of mode 3 . 170
A.13 Feasibility of mode changes in mode 3 170

xxii

List of Tables

4.1 Task set for PES example. 25
4.2 Task set for TBS example. 27
4.3 Task set for CBS example. 28
4.4 Example task set. 51
4.5 Runtimes to calculate the minimum hyper-period with ESA. 57

5.1 Example mixed-criticality job set. 71
5.2 Overview of job parameters. 73
5.3 Example job set for the schedule table construction. 82
5.4 Job set after separating the demand of designers and additional demand

introduced by CAs. This job set is used to construct the schedule tables. 82
5.5 Example job set for the schedule table construction. 89
5.6 Results: success ratio for hi-ratio=25%. 90
5.7 Success ratios for corner cases and hsf = 3. 92
5.8 Success ratios for low lo-criticality utilizations and hsf = 3. 93
5.9 Success ratio for medium lo-criticality utilizations and hsf = 3. 93
5.10 Success ratio for high utilizations and hsf = 3. 94
5.11 Mean values of runtime for low lo-criticality utilizations & hsf = 3 . . 96
5.12 Mean values of runtime for medium lo-criticality utilizations & hsf = 3 96
5.13 Mean values of runtime for high lo-criticality utilizations & hsf = 3 . . 97
5.14 Mean values of runtime FPS divided by runtime SWAP. 97

6.1 Example job set to illustrate slot-shifting. 108
6.2 Example job set for mixed-criticality slot-shifting. 122
6.3 Intervals with their earliest start times, start times, and end times. . . . 123

7.1 Example job set for slot-shifting with generic mode changes. 141
7.2 Example job set for mixed-criticality slot-shifting with generic mode

changes. 149

A.1 Extended results: SWAP and FPS success ratios for hsf = 2. 166
A.2 Extended results: SWAP and FPS success ratios for hsf = 3. 166
A.3 Extended results: SWAP and FPS success ratios for hsf = 5. 167
A.4 Example job set for slot-shifting with generic mode changes. 169

xxiii

A.5 Spare capacities in mode 2 . 170
A.6 Spare capacities in mode 3 . 171

xxiv

List of Symbols and Abbreviations

Symbols

C marks the end of a de�nition

J marks the end of a theorem

� marks the end of a proof

♦ marks the end of an example

N set of natural numbers: N = {0, 1, 2, 3, ...}

Abbreviations

AMC Adaptive Mixed-Criticality
CAs Certi�cation Authorities

CBEDF Criticality Based Earliest Deadline First
CBS Constant Bandwidth Server
DPS Dynamic Priority Scheduling
EDF Earliest Deadline First
ESA Exhaustive Search Algorithm
ET Event-Ttriggered
FA Federated Approach
FHS Fast Hyper-period Search
FPS Fixed Priority Scheduling
GCD Greatest Common Divisor
G-EDF Global EDF
IMA Integrated Modular Avionics
LCM Least Common Multiple
LLF Least Laxity First
MCR Mode Change Request
OCBP Own Criticality Based Priority

xxv

PC Partitioned Criticality
P-EDF Partitioned EDF
PES Priority Exchange Server
PS Polling Server
RET Reserved Execution Time
RM Rate Monotonic
RTS Real-Time System
SMC Static Mixed-Criticality
SS Sporadic Server
TBS Total Bandwidth Server
TT Time-Triggered
TTA Time-Triggered Architectures
UAV Unmanned Aerial Verhicle
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

xxvi

Chapter 1

Introduction

Increasing processing power and integrated system-on-chips resulted in the trend of in-
tegrating several functionalities on the same shared platform. These mixed-criticality
systems are composed of safety-critical and non-safety-critical applications. While strict
real-time requirements have to be ful�lled for all functionalities, further requirements
of the certi�cation process of safety-critical applications result in additional challenges.
The conservative assumptions of Certi�cations Authorities (CAs) increase the complex-
ity and di�culty of the scheduling process.
An approach commonly used in safety-critical systems is the implementation as a

time-triggered (TT) system. The bene�t of this approach is the determinism which
eases certi�cation, upgrading, and modernization of these systems at a manageable
e�ort. Furthermore, implementing safety-critical and non-safety-critical requirements
into di�erent operational modes re�ects the di�erent requirements and behaviors under
speci�c circumstances in mixed-criticality systems. Thus, using TT schedulers with
mode changes can reduce the certi�cation complexity and can provide e�cient and
e�ective scheduling of mixed-criticality systems.
In this chapter, we provide a general introduction to real-time system and the real-

time scheduling problem in Section 1.1. In Section 1.2, we introduce the concept of
mixed-criticality systems and the challenges of these systems. Next, we describe the
problem we deal with in this thesis in Section 1.3. In Section 1.4, we present the main
contribution of our work. Finally, we present the organization of the rest of this thesis
in Section 1.5.

1

2 Chapter 1. Introduction

1.1 Real-Time Systems
Real-time systems (RTSs) are software and hardware systems in which the correctness of
computations is not only de�ned by their values, but also the time when the results are
provided. As a consequence, applications are de�ned including timing constraints. In
general, these timing constraints have to be enforced strictly [CL90]. Typical systems are
safety-critical systems and essential sub-systems in which violation of timing constraints
can result in catastrophic consequences. Besides timing constraints, the environment
also introduces constraints as the system cannot control the environment. RTSs have
to react within predetermined time intervals to the environmental events.
Enforcing the timing constraints is done by the process of scheduling. Applications

are usually composed of one or several processes which are represented in the scheduler
as tasks and/or jobs. In the scheduling process, we determine the execution order of
tasks and jobs. Scheduling algorithms are de�ned by a set of rules that enforce the
timing constraints of the scheduled tasks and jobs. We give a brief classi�cation of
scheduling algorithms in Chapter 3. A correct scheduling policy results in a schedule
that guarantees the execution of all tasks and jobs within their timing constraints. Major
concepts are worst-case execution times (WCETs) and execution windows of tasks and
jobs. The WCET of a task or job is an upper bound on the execution time the task
or job needs to execute in the worst-case scenario. The execution window describes the
time interval between earliest start time and execution deadline of the tasks and jobs.
We present more details about the scheduling parameters of tasks and jobs in Chapter 3.
Scheduling can be done before the system starts (o�ine or TT scheduling) or at runtime
(online or event-triggered (ET) scheduling). TT scheduling needs full knowledge of the
systems parameters, but the advantage is the deterministic behavior.

De�nition 1.1. Determinism [Kop11]
A physical system behaves deterministically if given an initial state at instant t and a
set of future timed inputs, then the future states and the values and times of future
outputs are entailed. C

As a result, the system �is easy to certi�cate, upgrade and modernize at manageable
e�ort� [TG]. On the contrary, ET scheduling is more �exible at runtime to react to
events, and worst-case assumptions are still guaranteed such that the system is pre-
dictable. Obtaining predictable results is the major di�erence of RTS to �conventional�
computing systems in which average performance is the major optimization goal.

De�nition 1.2. Predictability [But05]
To guarantee a minimum level of performance, the system must be able to predict the
consequences of any scheduling decision. If some task cannot be guaranteed within its
time constraints, the system must notify this fact in advance, so that alternative actions
can be planned in time to cope with the event. C

Well studied example scheduling algorithms are Rate Monotonic (RM) and Earliest
Deadline First (EDF) which were presented in [LL73]. Scheduling algorithms produce
correct real-time schedules under speci�ed system models and assumptions.

1.2. Mixed-Criticality Systems 3

Increasing complexity of systems results in changing requirements during the lifetime
of a system. Timing constraints and resource requirements, e.g., execution time demands
on processors, are adapted to changes in the environment. Guaranteeing worst-case
scenarios in all possible situations can lead to extremely pessimistic assumptions and
under-utilized systems. A possible implementation to overcome pessimistic assumptions
and under-utilization of systems are mode changes. The system is de�ned in di�erent
modes to separate requirements in di�erent situations. Thus, a more accurate reaction
to environmental events is possible without the need of over-provisioning the system
by guaranteeing all worst-case scenarios at the same time. As a consequence, new
challenging system models and requirements lead to the development of algorithms
optimized for the new requirements and optimization goals. In recent years, increasing
computational capabilities resulted in the new �eld of mixed-criticality systems [Ves07].
In the next section, we describe the requirements and characteristics of these mixed-
criticality systems in more detail.

1.2 Mixed-Criticality Systems
Cost, energy e�ciency, and related considerations resulted in the trend of embedded sys-
tems integrating several functionalities on the same shared platform. These functionali-
ties can be both safety-critical and non-safety-critical, which represents mixed-criticality
systems. A typical example of software standards addressing mixed-criticality issues are
the AUTomotive Open System ARchitecture (AUTOSAR) [AUT] in the automotive
industry and ARINC [ARI] in the avionics domain.
Typically, the mixed-criticality nature of tasks in scheduling theory is expressed by

di�erent assumptions about their WCET. The WCET is a conservative upper bound
on the execution time. A tight determination of WCETs is very di�cult in practice,
e.g., due to hardware unpredictabilities as caches, pipelines, speculative execution, and
out-of-order execution.
Independent of the importance of tasks, the mixed-criticality aspect often results in a

categorization into tasks that are subject to certi�cation and tasks that are not. �Future
systems are likely to be constructed from compostable components with known levels
of certi�ability. The challenge is to identify, develop and implement both a certi�cation
process and a compostability framework that will support compostable and incremental
certi�cation� [Sys]. Certi�cation is usually done by Certi�cation Authorities (CAs)
which are only concerned with the correctness of safety-critical functionalities whereas
designers are concerned with the correctness of the entire system. CAs make assumptions
about the worst-case behavior of tasks which are more pessimistic and conservative than
the worst-case assumptions by designers. The resulting certi�cation requirement is a
strong con�dence that the WCETs are actual upper bounds on the execution times of
the code [BLS10].
The certi�cation process is often centered on safety-critical standards such as DO-

178B [Joh92]. Certi�cation of integrated platforms is often done by complete spatial
and temporal isolation, e.g., in �ARINC 653-1: Avionics application software standard
interface� [ARI03], which can result in sub-optimally usage of resources. As a result,

4 Chapter 1. Introduction

industry, academia, and standards bodies search for e�cient and cost-e�ective certi�-
cation processes [BBD+12b]. One possible approach is the development of certi�cation-
cognizant mixed-criticality scheduling methods.
The term criticality is used in di�erent ways which has been pointed out by Graydon

and Bate [GB13]. In this thesis, we focus on the scheduling view of mixed-criticality
systems. Dual-criticality systems are system with two criticality levels. In this thesis,
we use the criticality levels lo and hi for dual-criticality systems. Varying parameters
for di�erent task behaviors result in the need for �exible scheduling. In a dual-criticality
system, a task exhibits lo-criticality behavior if its actual execution time is not greater
than the lo-criticality WCET. lo-criticality tasks are not allowed to execute for more
than their speci�ed lo-criticality WCET which then corresponds to an erroneous be-
havior. If the actual execution time is greater than the lo-criticality one and does not
exceed the hi-criticality WCET, then the tasks exhibits hi-critical behavior. Else the
task shows erroneous behavior. Scheduling policies have to deal with the problem of
criticality inversion, i.e., when a lower criticality task is favored over a higher criticality
task [dNLR09].
An often used approach is TT mixed-criticality schedulers with mode changes. Dif-

ferent operational modes re�ect di�erent requirements and behaviors of the system. For
instance, in a dual-criticality system, lo- and hi-criticality behavior can be implemented
in two modes. A transition to the hi-criticality mode is only a theoretical possibility
that the scheduling analysis can exploit [BV08]. In a robust priority assignment, it is less
likely that a mode change to a hi-criticality level is necessary [BBD11, BB13]. A com-
mon assumption is that lo-criticality tasks can be abandoned in case of a hi-criticality
system state. Burns and Baruah showed an approach in which lo-criticality tasks are
not skipped on a mode change [BB13]. As alternative to skipping them, lo-criticality
tasks should be allowed to make some progress as long as they are not interfering with
hi-criticality tasks. Furthermore, the authors state that a mode change back to lo-
criticality mode should also be possible. Finally, mode changes can only be triggered
by hi-criticality tasks because lo-criticality tasks are not allowed to execute for longer
than their lo-criticality WCET.

1.3 Problem Statement
The trend to mixed-criticality systems causes new challenges in scheduling theory. In
the following, we show the major problems which we focus on in this thesis.
Traditional scheduling criteria as deadlines (e.g., Earliest Deadline First) and period-

or deadline-based priority assignments (e.g., Rate Monotonic or Deadline Monotonic)
are not enough for e�ective scheduling algorithms. The di�erent nature of safety-critical
and non-safety-critical functionalities require scheduling policies which accommodate
for the mixed-criticality parameters of tasks and jobs. In the simplest case, a system is
composed of lo-criticality and hi-criticality tasks and jobs which are either subject to
certi�cation or not. Furthermore, a hierarchical structure of criticality levels indicating
the consequences of not ful�lled timing requirements is also used in practice. For in-
stance, in DO-178B, �ve criticality levels ranging from catastrophic consequences, i.e.,

1.4. Contributions 5

loss of essential functions, to no consequences, i.e., the failure has no e�ects on the safe
operation of the system, are used in case of a failing task or job. As a result, a scheduling
policy which is cognizant of the mixed-criticality and certi�cation requirements is needed
to guarantee safe operation of the safety-critical mixed-criticality systems. The major
goal is an e�ective use of the resources while guaranteeing the system requirements.
Additionally to the e�ective scheduling, the certi�cation aspect is important in safety-

critical mixed-criticality systems. Simpli�ed certi�cation procedures are less error-prone.
Furthermore, a simpli�ed certi�cation is less time consuming such that changes and
upgrades of a system can be implemented and certi�ed faster, resulting in a shorter
time-to-market. As a consequence, scheduling policies should aim at low or decreased
certi�cation costs.
Multiple functionalities in mixed-criticality systems can also result in varying parame-

ters of the tasks and jobs based on changing requirements depending on the system state.
Besides two or multiple criticality levels, systems can be designed by several operational
modes. Thus, task and job parameters may change not only based on the criticality
levels and certi�cation requirements but also based on the current operational mode of
the system. As a consequence, the scheduler has to be able to react to the di�erent
requirements of the mixed-criticality applications.
Although many di�erent requirements of mixed-criticality systems have to be ful�lled,

the goal of scheduler design is also to develop e�cient scheduling policies. The scheduler
should feature a low runtime overhead. High runtime overheads consume essential re-
sources such that the scheduling and execution of the actual workload is becoming more
challenging. As a consequence, this can result in more expensive systems to compensate
for the high overheads.

1.4 Contributions

In the following, we brie�y summarize the contributions of this thesis with respect to
the aforementioned problem statement.
First, we present a method to transform sporadic tasks into periodic reservation tasks.

The transformation works on the sporadic task parameters independent of the actual
scheduling policy. Due to the unknown arrival times of the sporadic task instances
at runtime, we have to guarantee that we execute all instances even with worst case
arrival. Using this transformation, we can choose from a range of possible parameters
of the periodic reservation tasks and thus, gain some �exibility in the task parameters.
Further, we include the switching overhead at runtime into the computation of the
reservation task parameters such that we can control the runtime overhead caused by
the transformation. As a result, we can include ET activities already in the o�ine
scheduling process. Additionally, we show how we can use the method to transform
periodic tasks to obtain additional WCETs and periods. The additional periods can
be used to minimize the hyper-period of schedule tables. The minimization of the
hyper-period improves the certi�cation costs of TT schedule tables. TT schedule tables
represent a constructive proof and hence, only the correctness of the scheduling tables

6 Chapter 1. Introduction

in the table have to be checked. Shorter schedule tables reduce the time to check the
correctness of the schedule table.
Second, we show an algorithm to create TT schedule tables with dual-criticality job

sets. The scheduling process results in two schedule tables whereas one table is con-
structed such that certi�cation requirements are guaranteed. The algorithm consists of
several components: to reduce the complexity of scheduling, we present a method to
split mixed-criticality jobs into jobs with only one WCET. Furthermore, the complexity
of the scheduling process is reduced by considering the demand of hi-criticality jobs
during scheduling and backtracking. The constructive proof by the scheduling tables
simpli�es the certi�cation and thus, reduces the certi�cation costs. At runtime, the jobs
have only to be dispatched according to the schedule table and thus, we obtain a low
runtime overhead.
Next, we present a method based on slot-shifting [Foh95] to schedule dual-criticality

jobs in a TT system. The selection function includes the criticality levels of jobs and
the resulting computational requirements into the scheduling process. Thus, we can
guarantee the hi-criticality jobs which are certi�ed. The method is based on an already
certi�ed o�ine schedule table such that there is no need for re-certi�cation. At runtime,
slot-shifting is able to react on the actual behavior of all jobs and assign the available
computation time to other jobs. Schorr and Fohler showed that slot-shifting has an
applicable runtime overhead [SF13]. Furthermore, we can include ET activities based
on slot-shifting's acceptance test at runtime.
Finally, we extend the dual-criticality slot-shifting approach shown before to generic

mode changes. Using this method, we can schedule non-mixed-criticality or mixed-
criticality jobs with varying parameters in di�erent modes. The �exibility of the jobs
ranges from di�erent execution parameters in di�erent modes to added or removed jobs
in other modes. We include two versions such that either we can check the feasibility of
mode changes at every instant of the schedule or we trigger mode changes to guarantee
the timing constraints of jobs with criticality levels higher than the current system
state. Furthermore, we provide an acceptance test for ET jobs such that we can test
the feasibility of including them into modes in which the jobs are active.

1.5 Organization

The rest of this thesis is structured into the following chapters:

Chapter 2 � Related Work

In this chapter, we describe some approaches related to the presented work in this
thesis which form the background of the presented methods.

Chapter 3 � Fundamentals

In this chapter, we show terms and notations used in this thesis. Furthermore,
we also present the basic concepts of tasks, jobs, and schedulers. Based on these
concepts, we de�ne fundamental properties of task sets, job sets, and schedules.

1.5. Organization 7

Chapter 4 � Task Parameter Transformation

In this chapter, we present a transformation of sporadic tasks into periodic reser-
vation tasks which can be used to guarantee the runtime execution of sporadic
tasks already in the TT schedule table. We analyze our method with respect to
the reserved utilization and the worst-case response times of the sporadic tasks.
An evaluation which uses the transformation to minimize the hyper-periodic of
periodic task sets shows the applicability of the method and concludes the chap-
ter.

Chapter 5 � Time-Triggered Schedule Tables with Mode Changes

In this chapter, we propose an o�ine scheduling algorithm. In this algorithm, we
create two schedule tables for dual-criticality TT systems. The method consists of
three major steps: First, the lo-criticality demand is separated from the addition-
ally needed demand in the hi-criticality case by splitting the mixed-criticality jobs
into non-mixed-criticality jobs. Second, we implement a variable called leeway to
early detect paths in a search tree that will result in an infeasible schedule and
thus, reduce the complexity of the scheduling process. Finally, we show a back-
tracking method based on the leeway to reduce the complexity of backtracking.
Then, the approach is evaluated by an empirical comparison with a �xed priority
scheduling (FPS) mixed-criticality scheduler. A discussion on the complexity of
the certi�cation concludes the chapter.

Chapter 6 � Mixed-Criticality Slot-Shifting without Mode Changes

In this chapter, we describe a method based on slot-shifting to schedule dual-
criticality jobs in a TT system. The method uses a (certi�ed) schedule table of a
legacy system as input to guarantee hi-criticality requirements without the need
for mode changes. lo-criticality jobs are only abandoned if this is necessary to
ful�ll the timing requirements of hi-criticality jobs. A discussion about dynamic
resource usage concludes the chapter.

Chapter 7 � Slot-Shifting with Generic Mode Changes

In this chapter, we present a generalization of the method shown in Chapter 6 by
an extension to mixed-criticality jobs with more than two criticality levels. Ad-
ditionally, the extension is capable of scheduling jobs with generic mode changes.
To conclude the chapter, we discuss how much �exibility in the mixed-criticality
model is reasonable.

Chapter 8 � Conclusions

In this chapter, we summarize the contributions of this thesis and bring the con-
cluding remarks.

Chapter 2

Related Work

In this chapter, we present mixed-criticality scheduling methods related to this the-
sis' work. Section 2.1 shows event-triggered (ET) runtime schedulers. The section is
divided into �xed priority scheduling (FPS) and dynamic priority scheduling (DPS).
In Section 2.2, we present time-triggered (TT) schedulers which create one or several
schedule tables to determine the order of executions at runtime.

9

10 Chapter 2. Related Work

2.1 Event-Triggered Approaches

The approaches presented in the following aim at uni-processor platforms unless men-
tioned di�erently. Besides the shown approaches, there are many other event-triggered
(ET) algorithms, e.g., [BBD+12b, BV08, SPBB13, BBD+12a].

2.1.1 Fixed Priority Scheduling

Vestal proposed the mixed-criticality task model [Ves07] which we show in more detail
in Section 3.1.2. Furthermore, he presented an algorithm to schedule mixed-criticality
tasks. In his approach, priorities are assigned according to deadline monotonic, i.e., tasks
with shorter relative deadlines have a higher priority. Periods and worst-case execution
times (WCETs) of tasks with higher criticality level are divided into several portions,
i.e., shorter periods with proportionally decreased WCETs, such that a higher criticality
level is re�ected by a higher priority. At runtime, the tasks are dispatched according
to their priorities. Additionally, Vestal considered an alternative priority assignment by
the so-called �Audsley approach�. In the Audsley approach, we check whether a task
can be assigned the lowest priority without violation of its timing constraints. If this is
not possible, then another task is selected to test whether it can meet its deadline if it
is assigned the lowest priority. If this is possible, the task is assigned the lowest priority,
removed from the set of remaining tasks, and the test for the lowest priority continues
with the set of remaining tasks until the set of remaining tasks is empty or the method
cannot �nd a task which can have the lowest priority.
Baruah et al. presented a �xed priority scheduling (FPS) approach for dual-criticality

systems, i.e., mixed-criticality systems with two criticality levels lo and hi [BBD13].
If the system is in lo-criticality system state, priorities are used which are determined
using the lo-criticality WCETs. When the system changes to the hi-criticality system
state, lo-criticality tasks are dropped and another priority assignment is used for the hi-
criticality tasks. The improvement to the Vestal approach shown before is the possibility
to use a di�erent priority assignment at runtime when the system is in hi-criticality
system state.
Burns and Baruah showed a dual-criticality approach which does not abandon lo-

criticality tasks when the system is switched to hi-criticality system state [BB13]. To
not drop lo-criticality tasks, three possible changes are shown when the system changes
its state to hi. First, it is possible to reduce the priority of lo-criticality tasks. Second,
lo-criticality tasks are allowed to execute for a shorter time, i.e., the execution budget
of these tasks is reduced. Finally, it is possible to increase the periods of lo-criticality
tasks.
Baruah et al. showed a method for a �xed priority assignment of periodic tasks with

more than two criticality levels [BBD11]. In the Partitioned Criticality (PC) scheme
priorities are assigned according to the criticality level of tasks. Within each criticality
level, the priorities are assigned by an optimal priority assignment as, e.g., deadline
monotonic. The bene�t of this approach is that runtime monitoring is not necessary.
In addition, the authors showed two schemes for dual-criticality systems. The priority

2.1. Event-Triggered Approaches 11

assignment of the Static Mixed-Criticality (SMC) scheme is based on the Audsley ap-
proach. At runtime, each task is allowed to execute up to its representative WCET.
The second scheme, the Adaptive Mixed-Criticality (AMC) scheme, improves the per-
formance of SMC. As in SMC, priorities are assigned according to the Audsley approach.
A criticality level indicator, initialized to lo, is used to represent the current state of
the system. As long as the level indicator is set to lo, tasks are scheduled according
to their priority. If a hi-criticality task does not signal completion by its lo-criticality
WCET, the criticality level indicator is set to hi. As a consequence, lo-criticality tasks
are not executed anymore.
Baruah et al. presented the Own Criticality Based Priority (OCBP) approach for

time-triggered (TT) jobs with an arbitrary number of criticality levels [BLS10]. Prio-
rities are assigned based only on the criticality of a job. A job is assigned the lowest
priority if there is enough time to schedule its WCET at its criticality level within its
execution window even if all other jobs have a higher priority. If a job can be assigned
the lowest priority, this procedure is repeated with the remaining jobs; otherwise another
job is tested for the lowest priority. Li and Baruah showed how the OCBP approach
can be used to schedule dual-criticality sporadic task systems [LB10]. They solve the
problem that OCBP needs full knowledge of the job parameters to assign the priorities
which are not known for sporadic tasks before runtime.
De Niz et al. showed the Zero-Slack Scheduling approach for dual-criticality systems

[dNLR09]. In this approach, hi-criticality tasks can run for their hi-criticality WCET.
If hi-criticality tasks only execute for their lo-criticality WCET, the di�erence can be
added to the slack which can be used by lo-criticality tasks. The authors presented and
evaluated their approach based on Rate Monotonic, but the usage with other priority-
based algorithms (e.g., EDF) is also possible.

2.1.2 Dynamic Priority Scheduling

Park and Kim presented Criticality Based Earliest Deadline First (CBEDF) for dual-
criticality jobs [PK11]. Their approach divides the schedule into intervals based on the
job deadlines. For each interval, the algorithm determines two slack values: the empty
slack and the remaining slack. The empty slack is computed o�ine and determines the
available time to execute lo-criticality jobs after reserving the hi-criticality WCETs of
all hi-criticality jobs. If a hi-criticality job executes only for its lo-criticality WCET,
then the di�erence between lo-criticality and hi-criticality WCET is added to the re-
maining slack which is initially equal to zero. Chen et al. showed problems with the
schedulability conditions on CBEDF and presented su�cient schedulability conditions
[CLTX13]. Furthermore, they improved CBEDF by considering empty slack which can
be consumed by hi-criticality jobs under speci�c conditions.
Ekberg et al. presented an EDF-based approach to bound and shape the demand

to schedule dual-criticality sporadic tasks [EY12, GESY11]. The authors set arti�cial
(shorter) deadlines to change the demand of sporadic tasks aiming at a better schedu-
lability. By setting shorter deadlines hi-criticality tasks are more likely to be scheduled
before lo-criticality tasks. When the system changes its state from lo to hi, lo-

12 Chapter 2. Related Work

criticality tasks are dropped and the hi-criticality tasks are scheduled according to their
original deadlines.
Mollison et al. showed a two-level hierarchical scheduler for multi-processor systems

[MEA+10]. Their method considers periodic tasks with �ve criticality levels, ranging
from A to E. Tasks with criticality level A are scheduled by table-driven scheduling
and thus, are assigned statically to a processor. The next lower criticality level B
also partitions tasks to a speci�c processor which are then scheduled by EDF, i.e.,
tasks with criticality level B are scheduled by Partitioned-EDF (P-EDF). Tasks with
criticality levels C and D are scheduled by a Global-EDF (G-EDF) scheduler. The G-
EDF scheduler at level C (respectively D) is invoked when there are no schedulers active
with higher criticality level. Finally, tasks with criticality level E are scheduled by best
e�ort. As a result, the presented architecture provides temporal isolation between the
di�erent criticality levels.

2.2 Time-Triggered Approaches
In the following, we show TT scheduling approaches which feature the bene�t of a sim-
pler certi�cation. These schedulers create one or several schedule tables which represent
a constructive proof. As a consequence, only the correctness of the schedule tables have
to be proven instead of proving the correctness of all possible scheduling decisions in all
possible situations in case of an ET scheduling approach.
Baruah and Fohler presented an FPS scheduling approach to create schedule tables

for dual-criticality systems as a proof-of-concept [BF11]. They use the Audsley ap-
proach to assign priorities to TT jobs. The priority ordering is then used to create two
schedule tables; one table under lo-criticality and one under hi-criticality assumptions.
In Section 5.6.1, we show the approach in more detail and use it as a reference for our
schedule table generation method.
Socci et al. showed a dual-criticality algorithm to transform priority assignments into

TT schedule tables [SPB13]. Based on two priority assignments, one for lo-criticality
behavior and one for hi-criticality behavior, one schedule table is generated for each
behavior. Furthermore, the authors prove that this single schedule table per mode
dominates the given priority assignment, i.e., �xed priority per mode.
Jan et al. considered the problem of scheduling dual-criticality periodic tasks on multi-

processor systems [JZLP14]. Their method is based on linear programming and creates
two schedule tables; one for lo-criticality and one hi-criticality behavior. The authors
show two proposals to construct the schedule tables: In the �rst version, the schedule
table for hi-criticality behavior is determined and then, based on this, the lo-criticality
schedule table is computed. In the second version, hi-criticality jobs are split based
on the method, which we will present in Section 5.2 and then both schedule tables are
created at the same time.

Chapter 3

Fundamentals

In this chapter, we present terms, notations and the basic concepts used in this thesis.
First, we present generic task models including the characteristic parameters of these
tasks. Additionally, we show the Vestal model of mixed-criticality tasks. Second, we
present a brief classi�cation of scheduling algorithms and the resulting characteristics
of schedules which will be used in this thesis.
The task models and the Vestal mixed-criticality model are shown in Section 3.1.

Section 3.2 presents the scheduling classi�cation and the schedule characteristics.

13

14 Chapter 3. Fundamentals

3.1 Task Model
In this section, we show task and job models and their characteristics. We start with
generic task models and then, we present the commonly used Vestal model for mixed-
criticality tasks.

3.1.1 Generic Task and Job Model
Based on the release pattern, tasks can be classi�ed into periodic, aperiodic, and spo-
radic tasks. Periodic tasks [LL73] are released with a constant time interval between
two consecutive releases. On the contrary, aperiodic tasks [But05] can be released at
arbitrary time instants. Typical events for aperiodic task releases are alert conditions,
or failures of periodic tasks that must be retried [TL94, Thu93]. Finally, sporadic tasks
[Mok83] have an arbitrary release time but two consecutive releases are separated by a
minimum-interarrival time. Typical events for sporadic task releases are external events,
e.g., device interrupts, but with a restriction of the maximum number of events within
a time interval and thus, preventing a monopolization of the system [Mok83].
When a task is released, then this is called a job or an instance of the task.
Periodic tasks consist of an in�nite sequence of jobs. Due to the constant time interval

between two releases, release times of all instances are known and hence, this represents
a time-triggered (TT) task.
Additionally, aperiodic tasks can consist of one single job or a sequence of jobs,

whereas in both cases, the release time is only known when the job is released at run-
time. From scheduling point of view, there is no di�erence whether an aperiodic job is
the only release of an aperiodic task or whether it is one job of a sequence of releases of
an aperiodic task. As a result, we can use the terms aperiodic task and aperiodic job
interchangeably for a job with an unknown release time.
Finally, sporadic tasks also consist of an in�nite sequence of jobs. The actual release

time of jobs is unknown but with a minimum time between two consecutive jobs. Due
to the unknown release time of aperiodic and sporadic tasks, these tasks (and their jobs)
are event-triggered (ET) tasks.
In our schedulers presented in this thesis, we refer to jobs with a known release time

as TT or o�ine jobs. On the contrary, jobs with unknown release time, i.e., jobs of
aperiodic or sporadic tasks, are referred to as ET or online jobs. If a scheduler works
on job basis, there is no di�erence whether a job is part of a sequence of jobs or just a
single release.
In the following, we show the parameters that characterize tasks and jobs.

Periodic Tasks. A periodic task τi is characterized by the tuple τi = 〈Ci, Ti, Di〉 with

• Ci: worst-case execution time (WCET), i.e., upper bound on the execution time;

• Ti: period, i.e., time interval between two consecutive releases;

• Di: relative deadline, i.e., maximum time to execute Ci time units;

3.1. Task Model 15

Further (optional) parameter are

• Φi: o�set (also phase), i.e., delay until the �rst job is released;

• pi: priority, i.e., assigned priority for �xed priority scheduling (FPS);

If the o�sets of all tasks in a task set are equal to zero, then this task set is called
synchronous. The critical instant for a scheduler, i.e., the situation which represents the
worst-case release to schedule occurs when the task set is synchronous [LL73]. If no task
o�sets are given, we assume them to be equal to zero. A job τi,j of a periodic task τi is
released at ri,j = Φi + (j − 1)Ti with j ∈ {1, 2, ...,∞}. As a consequence, the absolute
deadline of a job τi,j results in di,j = ri,j +Di = Φi+(j−1)Ti+Di with j ∈ {1, 2, ...,∞}.
Periodic tasks can have precedence constraints, i.e., a periodic task can only be executed
if a speci�ed other periodic tasks has completed its execution before [Foh97, CSB90]. A
precedence constraint between tasks τ1 and τ2, i.e., τ2 can only be executed after τ1, is
represented by τ1 ≺ τ2.

TT jobs. If we work on job basis, we refer to TT jobs by the tuple Ji = 〈Ci, ri, di〉 with

• Ci: WCET of the job;

• ri: release time of the job;

• di: absolute deadline of the job;

An optional parameter is the priority pi of a job. Furthermore, precedence constraints
can also be set between TT jobs.

Sporadic Tasks. A sporadic task τSi is characterized by τSi = 〈CSi, TSi, DSi〉 with

• CSi: WCET, i.e., upper bound on the execution time;

• TSi: period (also minimum inter-arrival time), i.e., minimum time interval between
two consecutive releases;

• DSi: relative deadline, i.e., maximum time to execute CSi time units;

The actual release time is unknown until a job of the sporadic task is released in the
system at runtime. The absolute deadline of a job is set DSi time units after its actual
release time. In the worst case, a sporadic task behaves like a periodic task [ABRW92].

Aperiodic tasks and ET jobs. If we work on a job basis, there is no di�erence in the
behavior of the scheduler whether a job with unknown release time is an ET job, a single
aperiodic job, or a job from a sequence of jobs of an aperiodic task. We characterize
these jobs by the tuple JAi = 〈CAi, rAi, dAi〉 with

• CAi: WCET of the job;

• rAi: release time of the job;

• dAi: absolute deadline of the job;

16 Chapter 3. Fundamentals

Relative deadlines can be classi�ed into implicit, constraint, and arbitrary deadlines.
First, implicit deadlines are equal to the period of periodic and sporadic tasks. Implicit
deadlines allow to simplify the task parameters such that we only need to set a period
instead of period and relative deadline. Second, constraint deadlines allow relative
deadline values to be smaller than or equal to the period of periodic and sporadic tasks.
Finally, arbitrary deadlines can also be larger than the period of a task. The consequence
of arbitrary deadlines is that there can be several jobs of one task active at the same
time.

The time interval between release and and absolute deadline is called the execution
window of a job.

The hyper-period H is calculated by the least common multiple of all task periods in
the task set. The execution sequence of a synchronous periodic task repeats itself after
this hyper-period. Hence, if we can schedule a task set until the hyper-period, we can
also schedule it for an in�nitely long time.

The utilization of a periodic task determines the fraction of processor time spent to
execute the task. Equation (3.1) shows the calculation of the utilization of a periodic
task τi. Due to the fact that sporadic task behave in the worst case like periodic
tasks, thus, we can analogously calculate the worst-case utilization of sporadic tasks in
Equation (3.2). The utilization of a task set is calculated by the sum of task utilizations,
which is shown in Equation 3.3 for a periodic task set with n tasks.

utilization of a periodic task: Ui =
Ci
Ti

(3.1)

worst-case utilization of a sporadic task: USi =
CSi

TSi
(3.2)

utilization of a periodic task set: U =
n∑
i=1

Ui (3.3)

The demand determines the amount of execution time which has to be processed
within a time interval. The demand g(t1, t2) summarizes the WCETs of all jobs with
release time later than t1 and deadline before t2. Baruah et al. showed that it is
su�cient to check intervals starting from 0 until all absolute deadlines to check whether
a synchronous periodic task set with constraint deadlines can be scheduled [BRH90].
In other words, the demand of an interval starting at 0 with length L, g(0, L), must
be smaller than or equal to the length of the interval. To calculate the demand in this
interval, we have to summarize the WCETs of jobs with execution window within this
interval. Inequality (3.4) shows this condition for a periodic task set with n tasks.

3.1. Task Model 17

g(0, L) ≤ L ∀L ∈ {di,j|di,j ≤ min (L∗, H)} (3.4)

with g(0, L) =
n∑
i=1

⌊
L+ Ti −Di

Ti

⌋
Ci

and di,j: all absolute deadlines of jobs of all periodic tasks

and L∗ =

n∑
i=1

(Ti −Di)Ui

1− U

In the shorter version g(t), we refer to the demand between 0 and at time t of jobs with
release time and deadline less than or equal to t which is also applicable for TT jobs.
Eventually, we can classify tasks and jobs by the consequences of missing timing

constraints. First, soft tasks and jobs violating timing constraints do not jeopardize
correct system behavior and thus, are usually not characterized by a deadline. Second,
�rm tasks and jobs also do not jeopardize correct system behavior in case of a missed
deadline but are completely useless for the system. Finally, hard tasks and jobs can
jeopardize the correct behavior of the entire system in case of a missed deadline. We
can guarantee periodic tasks and TT jobs and hence, implementation of hard periodic
tasks and TT jobs is no problem. Further, sporadic tasks can be guaranteed at design
time with a worst-case guarantee test. On the contrary, aperiodic tasks and jobs cannot
be guaranteed due to their unrestricted releases and thus, only soft and �rm aperiodic
tasks (and jobs) are reasonable to implement.

3.1.2 Vestal Mixed-Criticality Model
Vestal presented a task model for mixed-criticality tasks [Ves07]. The target area of the
task model is a system with di�erent tasks performing safety-critical and non-safety-
critical functions on the same nodes. Vestal presented the model based on periodic
tasks and extended their parameters by the criticality level of each task. As a result of
this, tasks are also de�ned by several WCETs instead of only one. WCETs are assigned
for each criticality level up to the criticality level of tasks and jobs. For higher criticality
levels, there is no WCET assigned or the WCETs are set to the WCET of the highest
assigned criticality level.
As a result, in a mixed-criticality system with k criticality levels, a periodic mixed-

criticality task is characterized by the tuple τi = 〈χi, Ci(1), ..., Ci(k), Ti, Di〉 with

• χi: criticality level of the job;

• Ci(j): WCET with criticality level j and j ∈ {1, 2, ..., k};

• Ti: period of the task;

• Di: relative deadline of the task;

18 Chapter 3. Fundamentals

For TT jobs, we can replace the period and the relative deadline by the release time and
absolute deadline of the job. As a result, TT mixed-criticality jobs are characterized by
the tuple Ji = 〈χi, Ci(1), ..., Ci(k), ri, di〉. The WCETs of a task or job are monotoni-
cally increasing for increasing criticality level. Typically, in dual-criticality systems, i.e.,
systems with two criticality levels, criticality levels lo and hi for low and high criticality
levels are used.

3.2 Scheduling
In this section, we present a general classi�cation of scheduling algorithms. Furthermore,
we show characteristic properties of schedules.

3.2.1 General Scheduling Classification
Scheduling algorithms can be classi�ed according to the priority determination scheme,
i.e., the method which determines the order in which the scheduler selects the next
executing job. On the one hand, there is �xed task priority scheduling, mostly referred
to as �xed priority scheduling (FPS). In FPS each task is assigned exactly one priority
value which does not change over the lifetime of the system. This priority is assigned to
each job of the task. An example algorithm of this category is Rate Monotonic (RM)
which assigns the highest priority to the task with the shortest period. On the other
hand, there is dynamic task priority scheduling, which is mostly referred to as dynamic
priority scheduling (DPS). We can divide DPS into two sub-categories: �xed job priority
scheduling and dynamic job priority scheduling. A �xed job priority scheduler assigns
one constant priority to each job of a task, i.e., the priority of the task changes but an
assigned priority of a job does not change. An example algorithm is Earliest Deadline
First (EDF) which uses the absolute deadline of a job as priority of the job. On the
contrary, in dynamic job priority scheduling, the priority of a job can change over time.
As an example, the Least Laxity First (LLF) scheduler assigns the highest priority to the
job with the smallest laxity value, i.e., the smallest di�erence between absolute deadline
and remaining execution time.
Another classi�cation is based on the criterion that triggers the invocation of the

scheduler. The invocation of the scheduler can be time-triggered (TT) or event-triggered
(ET). A TT scheduler is invoked at predetermined time instances. For instance, a
TT schedule table stores the time instances when one job stops its execution and the
scheduler dispatches the next job for execution. To use a TT scheduler, all release times
of jobs have to be known at design time. On the contrary, an ET scheduler is invoked at
prede�ned events, e.g., at release of a job or when a job completes its execution. Based
on the scheduler activation, the decision mode of a scheduler is determined. On the one
hand, once a job started its execution, it can run until its completion which is called
non-preemptive scheduling, e.g., [JSM91, BC06]. On the other hand, if the scheduler
can preempt the execution of a job to schedule another job, the scheduler is called (fully)
preemptive. Further, it is possible that the preemption of a job is only allowed at speci�c
locations (preemptions points). In this case, the scheduler is partially preemptive.

3.2. Scheduling 19

In this thesis, we present di�erent scheduling algorithms which are based on slots.
Scheduling decisions with the granularity of slots corresponds to partially preemptive
scheduling, i.e., we can take scheduling decisions only at the beginning of a slot. Within
each slot, the scheduler is executed and then the selected job is executed. During system
design, slot sizes have to be determined. We can calculate the minimum time a job can
execute in a slot based on the worst-case time the scheduler needs to execute and the
slot length. Figure 3.1 shows the de�nition of slots. The maximum execution time of the
scheduler is represented by tsched. As a result, we can guarantee a minimum execution
time for the selected job of texec. At runtime, the scheduler execution time varies based
on the actual system state. As a consequence, there can be more time to execute the
selected job which is also shown in the �gure.

Figure 3.1: De�nition of a slot with scheduler execution within slots.

For completeness, Figure 3.2 shows the problems if we want to de�ne a slot with
constant execution times of the jobs within a slot. As a reference, we show slots when the
schedulers always executes for its worst-case time. On the one hand, we can synchronize
[Lam78, KO87] the start of slots such that we compensate shorter actual execution times
of the scheduler by inserting idle time. As a result, we obtain deterministic start times
of the slots. On the other hand, if we directly start the execution of the selected job
after the scheduler execution, the start times of slots drift apart from the reference and
hence, are not deterministic anymore. The scheduler execution outside of slots results
either in inclusion of idle time or non-deterministic slot start and end times. For this
reason, the slot model should be de�ned with scheduler execution within the slots. As
a result, we can guarantee a minimum time to execute jobs and execute the jobs longer
when the scheduler executes for less than its worst-case execution time.
When implementing a slot-based scheduler, using release times, deadlines, andWCETs

based on slots simpli�es scheduling. The transformation into slot-based time values can
be done as follows: release times are set to the start time of the next slot after the actual
release time. Additionally, deadlines are set to the start time of the slot just before the
deadline. The WCETs are divided by the guaranteed execution time texec within one slot
to determine the number of slots needed to execute the job. Non-integer slot numbers

20 Chapter 3. Fundamentals

Figure 3.2: De�nition of a slot with scheduler execution outside the slots.

are rounded to the next full integer number of slots. If a job �nishes execution within a
slot, we cannot start the slot earlier because this results in non-deterministic slot start
times.

In this thesis, we refer to time instances in the schedules with the variable t. Fur-
thermore, when using time intervals of several slots, an interval is de�ned as follows:
[tstart, tend) whereas tstart and tend are multiples of the length of a slot.

So far, we considered schedulers to create a schedule for a single processing unit (pro-
cessor). Besides this uni-processor scheduling problem, systems with more than one
processor need to allocate tasks and jobs to the processors. Such systems are called
multi-processor systems. In the earlier years, they were implemented as distributed sys-
tems, i.e., systems in which each processor is implemented as a single hardware chip.
Nowadays, multi-processor systems are mostly implemented using multi-core chips, i.e.,
a single chip contains more than one processor which is usually called �core�. Sched-
ulers for multi-processor systems can be classi�ed into partitioned, global, and hybrid
approaches. Partitioned scheduling algorithms allocate tasks to processors and on each
processor a single-processor scheduling algorithm is used. As a result, tasks and jobs
cannot migrate from one processor to another. On the contrary, global scheduling algo-
rithms can schedule all tasks and jobs on an arbitrary processor in the system. Hence,
jobs can migrate between all processors at every time instant which is called fully migra-
tive. In hybrid approaches, it is possible to restrict migrations. For instance, once a job
of a task started execution on a processor, it cannot migrate anymore, but other jobs
of the same task can be assigned to a di�erent processor. Another example is the class
of cluster-based algorithms. These algorithms assign tasks to a sub-set of processors in
which these tasks and jobs are fully migrative.

3.2. Scheduling 21

To conclude the brief classi�cation of schedulers, we mention two types of schedulers
which we will use in this thesis.
Scheduling can be represented by a search tree [Kor85]. Each scheduling decision

corresponds to an edge in the tree. As a consequence, each node represents the partial
schedule based on the scheduling decisions so far. Leaf nodes represent complete sched-
ules. Tree search schedulers are TT schedulers, e.g., [FK90, BNDPS02]. A bene�t of
this approach is that we can change already taken scheduling decisions to improve the
schedule. A common way to do this is backtracking. We present this approach in more
detail in Chapter 5.
We can use mode change schedulers, e.g., [Foh93, PB98], to accommodate for di�erent

requirements. At design time, we can create schedule tables for the di�erent modes. At
runtime, the scheduler schedules the jobs according to the schedule table of the current
mode. If the system needs to change its behavior, we can change the mode and use a
di�erent schedule table. Our scheduling algorithms presented in Chapters 5 and 7 are
based on these mode changes.

3.2.2 Schedule Characteristics
Scheduling algorithms must result in schedules that meet the timing constraints of all
tasks and jobs. We call these schedules feasible.

De�nition 3.1. Feasible Schedule
A schedule in which all tasks and jobs execute for their de�ned worst-case execution
time within their execution window is called a feasible schedule. C

Not all task sets and job sets can result in feasible schedules. A trivial example is a
task set which only consists of one periodic task with a WCET which is longer than its
relative deadline. As a result, if it is possible to �nd a feasible schedule, then the task
set (job set) is called feasible.

De�nition 3.2. Feasible Task (Job) Set
A task (job) set, for which a feasible schedule exists, is called feasible task (job) set. C

If we use a speci�c scheduler with a feasible task (job) set and the scheduler can create
a feasible schedule, the task (job) set is called schedulable.

De�nition 3.3. Schedulable Task (Job) Set
A task (job) set which can be scheduled by a speci�c scheduling algorithm is called a
schedulable task (job) set. C

Based on the implemented scheduling algorithm, speci�c characteristics of the sched-
ule and the tasks can be derived. An important characteristic is the worst-case response
time (WCRT) of tasks [JP86]. The response time of a job of a task is the time interval
between its release time and the point in time when the job completes its execution.
The WCRT determines the longest possible response time of a task. We will analyze
the response times of tasks in Chapter 4.

22 Chapter 3. Fundamentals

Schedulability tests are used to test the schedulability of task sets. We can group the
schedulability tests in to three groups: su�cient, necessary, and exact tests. Task sets
that pass a su�cient schedulability test are de�nitely schedulable. If the task set does
not pass the test, the su�cient test cannot determine whether the task set is schedulable
or not. Furthermore, failing a necessary schedulability test proves that the task set is
de�nitely not schedulable whereas passing the test means that the tested task set can be
schedulable or not. Additionally, schedulability tests which are necessary and su�cient
are exact tests. Passing an exact schedulability test proves the schedulability of the
task set. On the contrary, failing the exact test proves that the task set is de�nitely not
schedulable.
Typical exceptions that can be detected during task and job executions are deadline

misses and overruns. A deadline miss occurs when a job does not �nish execution before
its deadline. A job overruns if the job does not complete its execution within its WCET
and requests more computation time after that. In a correctly working system, both
exceptions should never occur.

Chapter 4

Task Parameter Transformation

In this chapter, we describe a proactive method for handling sporadic tasks with stan-
dard o�ine scheduling in time-triggered (TT) systems without changing the schedule
table at runtime. The method is based on reservation tasks which are included into the
o�ine scheduling process to guarantee the execution of sporadic tasks at runtime. In
the schedule table, we reserve execution time for the sporadic task instances such that
at runtime, independent of the unknown arrival time of sporadic task instances their
deadlines can be met.
The transformation of sporadic tasks into periodic tasks with implicit deadlines is

independent of the applied o�ine scheduling algorithm. This transformation at design
time allows for a simpli�ed guarantee and certi�cation before start of the system be-
cause the sporadic tasks can be guaranteed already in the o�ine scheduling process.
Additionally, the transformation allows for an minimization of reserved utilization and
a reduction of the worst-case response times (WCRTs) of sporadic tasks.
Further, we apply the presented transformation method on periodic tasks to evaluate

the e�ciency and e�ectiveness of the method. We calculate new periods and worst-
case execution times (WCETs) for the periodic tasks aiming at a minimization of the
resulting hyper-period of the periodic task set.
We start with a brief description of prior work in the �eld of handling non-periodic

tasks and optimization of task parameters in Section 4.1. Next, we present our transfor-
mation method to create periodic reservation tasks to guarantee sporadic tasks already
in the o�ine scheduling process in Section 4.2. In Section 4.3, we analyze our method
with respect to the needed utilization of reservation tasks to guarantee sporadic tasks.
Further, we show an extension of the transformation to optimize the WCRTs of sporadic
tasks in Section 4.4. As a result of the extension, we show the trade-o� between the
optimization of the utilization and the WCRT in Section 4.5. An example in Section 4.6
illustrates how the method works. Finally, Section 4.7 presents evaluation results based
on applying the presented method on periodic tasks to minimize the length of the hyper-
period.

23

24 Chapter 4. Task Parameter Transformation

4.1 Prior Work
Safety-critical applications are often represented by periodic tasks [LL73]. Using peri-
odic tasks, all parameters, e.g., release times, deadlines, and worst-case execution times
(WCETs), are known before runtime, i.e., at design time. At runtime, the occurrence
of aperiodic and/or sporadic tasks is possible which is caused by for instance inter-
rupts [Mok83]. We can classify methods to handle aperiodic and sporadic tasks into two
groups: o�ine and online methods. On the one hand, o�ine methods include knowledge
about worst-case behavior of sporadic tasks. These methods are proactive approaches.
On the other hand, online methods react on arrivals of aperiodic and sporadic tasks at
runtime which represents reactive approaches. In the following, we give a brief overview
of o�ine and online methods with their advantages and disadvantages.
The simplest reactive approach is using background scheduling for aperiodic and spo-

radic tasks. In this approach, aperiodic and sporadic tasks are only scheduled if there
are no jobs of periodic tasks ready to run. The major advantage of this approach is
a very simple implementation with the guarantee that non-periodic tasks do not inter-
fere with periodic tasks. The obvious drawback is the possibly extremely long response
times and also there is no guarantee of actually being scheduled. A common approach to
overcome these drawbacks are server-based algorithms. Server algorithms are available
for �xed priority scheduling (FPS) and dynamic priority scheduling (DPS).
Lehoczky et al. presented a simple server called Polling Server (PS) based on FPS

[LSS87]. The server task is characterized by its budget CS and its period TS. At runtime,
when the server becomes active, i.e., it would be selected for execution according to its
priority, it checks whether there is an aperiodic or sporadic task to execute. If there is
a non-periodic task ready to execute, the task is served with the current budget of the
server and the budget is replenished at next server period. Else the budget is completely
dropped and replenished at next server period. The advantage of this method is that
the simplicity of the mechanism and it improves the response times of aperiodic and
sporadic tasks. On the contrary, capacity is lost if there is no aperiodic or sporadic task
ready to execute when the server becomes active. Hence, the response times of aperiodic
and sporadic tasks can increase when the budget is dropped.
To overcome the disadvantage of the lost capacities, Lehoczky et al. also presented the

FPS-based Priority Exchange Server (PES) [LSS87]. This server algorithm exchanges
capacity at server priority level for capacity at priority level of periodic tasks. By doing
this, the server does not immediately drop its capacity if there is no aperiodic or sporadic
task ready to execute. If there is no task ready to execute, we still lose capacity.
Example. We show the behavior of this algorithm using the following example task
set shown in Table 4.1.
Figure 4.1 shows the resulting schedule applying FPS with PES. On top, the execution

of aperiodic tasks is shown; thereunder the server task τS and the periodic tasks with
server capacity at the corresponding priority level are shown.
At the beginning of the schedule, there is no aperiodic task ready to execute. The

capacity of the server at highest priority level is decreased while capacity at the priority
level of the executing task τ1 is increased by the same amount. After τ1 �nished execu-

4.1. Prior Work 25

periodic
WCET period priority

aperiodic
WCET

release

tasks tasks time

τ1 2 8 2 τA1 3 4

τ2 1 12 3 τA2 5 9

τS 3 6 1

Table 4.1: Task set for PES example.

tion, τ2 starts execution using the highest priority capacity which is the server priority
and generates capacity at its own priority level. Due to the fact that there is no task
ready to execute capacity is lost at the highest priority level with available capacity.

At t = 4, an aperiodic task τA1 arrives in the system and is served with the highest
priority capacity available, i.e., �rst at priority of τ1, then at priority of τ2, and �nally
at server priority. At t = 9, a second aperiodic task τA2 arrives and is executed for
one time unit using the available capacity. After that, there is no available capacity
for serving aperiodic tasks. Hence, periodic tasks are executed until the server capacity
is replenished at t = 12 when the next server instance is released. This procedure is
repeated until the aperiodic task �nishes its execution. ♦

Figure 4.1: Schedule for task set shown in Table 4.1 using PES.

26 Chapter 4. Task Parameter Transformation

PES provides better response times than PS at cost of higher scheduling overhead.
The disadvantage of this method is the complex implementation and capacity manage-
ment.
Sprunt presented the Sporadic Server (SS) which is an FPS server overcoming the

drawback of the complex capacity management of PES [SSL89, Spr90]. This server
preserves its capacity at its own high priority level. Server capacity is restored when
the server becomes active. When the server becomes idle or capacity is exhausted, the
amount of capacity is calculated which will be increased at so-called �replenishment
times� which are based on the server period. SS provides fast response times without
jeopardizing deadlines of periodic tasks. Additionally, capacity is not lost and it has a
lower overhead than PES. Saewong et al. showed how to determine the critical instant
of the sporadic server replenishment and a schedulability analysis [SRLK02].
We refer the interested reader to [DB05], where Davis and Burns showed an FPS

server performance analysis. As a result of the shown approaches before, the question
arises how to determine the parameters budget and period for server tasks. Lipari and
Bini answered the question on how to determine the �best� pair (budget, period) to
schedule groups of tasks in [LB03]. They assumed a hierarchical scheduler with periodic
servers, e.g., PS or SS, de�ned by the server budget QS and the server period TS. Each
server is assigned a set of tasks. The method aims at minimizing the needed utilization
for these servers. The authors transformed the problem into (α,∆)-space, i.e., α = QS

TS
and ∆ is the maximum delay in the time slot distribution. The obtained values of the
(α,∆)-pair is then transformed back to server budget QS and server period TS.
In [LBA98], Lipari et al. showed a two level DPS scheduler. They use one server

for each application where target applications are soft real-time and multimedia appli-
cations. Instead of exact execuction times and inter-arrival times, they make of use
�desired� inter-arrival times and reservations of a bandwidth for each application. Each
job is assigned a deadline and put into single EDF queue.
Spuri and Buttazzo presented the Total Bandwidth Server (TBS) [SB94]. This EDF-

based DPS server is characterized by its utilization US = CS

TS
. On arrival of an aperiodic

task or job of a sporadic task, a deadline is assigned based on the server utilization
and the WCETof of the aperiodic (sporadic) task. The assigned deadline for the k-th
aperiodic request is calculated according to the following equation:

dAk = max (rAk, dAk−1) +
CAk

US
(4.1)

The server bandwidth until the deadline of the request is assigned to this aperiodic
task and succeeding aperiodic requests are assigned the bandwidth available after this
deadline.
Example. In the following, we show the behavior of TBS using the same example
task set as used for PES which is shown in Table 4.2. TBS is characterized by its
utilization which we calculate by US = CS

TS
= 3

6
= 0.5. Figure 4.2 shows the resulting

schedule serving aperiodic requests with TBS. The selection function of the scheduler
works according to the earliest deadline �rst rule.

4.1. Prior Work 27

periodic
WCET period

aperiodic
WCET

release

tasks tasks time

τ1 2 8 τA1 3 4

τ2 1 12 τA2 5 9

τS 3 6

Table 4.2: Task set for TBS example.

When the �rst aperiodic request arrives at t = 4, a deadline of dA1 = 10 is assigned
and is executed according to this deadline. Before the deadline of the �rst aperiodic task,
another aperiodic task τA2 arrives in the system. Although the �rst aperiodic task is
already completely executed, the deadline is calculated based on the available bandwidth
of the server after this deadline. This is done because the bandwidth until dA1 is already
reserved for τA1. The schedule is then completed by scheduling the tasks according to
EDF. ♦

Figure 4.2: Schedule for task set shown in Table 4.2 using TBS.

TBS provides good response times for aperiodic and sporadic tasks and the imple-
mentation complexity is low.
Buttazzo and Sensini presented an improvement of the TBS called TB* [BS97]. TB*

reduces the response times of aperiodic and sporadic requests by an iterative deadline
calculation based on the estimated completion by the original deadlines calculated by

28 Chapter 4. Task Parameter Transformation

TBS. The result is an optimal solution at cost of an higher overhead for the deadline
calculation. In their paper, the authors showed that already for few iteration steps TB*
provides strong improvements in the response times. This results in a reduced overhead
of deadline calculations.
The drawback of TBS and TB* is the fact that the deadline assignment is based on

WCET of aperiodic and sporadic tasks. As a consequence, misbehaving, i.e., exceeding
their WCET, aperiodic or sporadic tasks jeopardize the execution of periodic tasks. To
overcome this problem, Constant Bandwidth Server (CBS) can be used which is shown
later in this section.
Fohler et al. presented in [FLB01] how to handle soft aperiodic tasks using TBS.

They included TBS into slot-shifting, which we will show in detail in Chapter 6, for
soft aperiodic tasks. Before runtime, complex constraints of periodic tasks are resolved
according to slot-shifting. The method creates an o�ine schedule such that the server
utilization US is reserved for TBS. Then at runtime, slot-shifting, which takes decisions
based on EDF, is used to schedule tasks. At the arrival of soft aperiodic tasks, a deadline
is assigned based on the TBS bandwidth. The advantage of the method is the reduction
in response times of soft aperiodic tasks and the handling of complex constraints, e.g.,
precedence constraints, of periodic tasks.
Another algorithm using server tasks is the Constant Bandwidth Server (CBS) which

overcomes the problem of misbehaving aperiodic tasks a�ecting periodic tasks [AB98].
Abeni and Buttazzo characterize in their approach a server task τS by a maximum
budget QS and a server period TS. The server utilization is calculated by US = QS

TS
.

At runtime, the currently available budget cS is calculated and updated. Executing
aperiodic tasks consumes this budget. If the currently available budget is exhausted,
i.e., is equal to zero, then it is replenished to maximum budget QS and the server
deadline is extended by one server period.
When the k-th aperiodic task arrives and if the condition

cS ≥ (dS,k − rAk)US (4.2)

is ful�lled, the budget is replenished and the server deadline is set to dS,k+1 = rAk + TS.
If the condition is not satis�ed, the aperiodic task is served with the current budget and
deadline.
Example. We show the behavior of CBS using the same task set as before (for PES
and TBS) which is depicted in Table 4.3.

periodic WCET /
period

aperiodic
WCET

release

tasks max. budget tasks time

τ1 2 8 τA1 3 4

τ2 1 12 τA2 5 9

τS 3 6

Table 4.3: Task set for CBS example.

4.1. Prior Work 29

Figure 4.3 shows the resulting schedule using EDF with CBS. At system start, the
server task is initialized with maximum budget and deadline equal to zero. Periodic tasks
are executed according to EDF until at t = 4 the �rst aperiodic request is triggered.
We check the condition shown in Inequality (4.2) which is ful�lled. As a consequence,
we set the currently available budget to maximum budget QS = 3 and set the server
deadline to the aperiodic task's release time extended by the server period to dS,1 =
rA1 + TS = 4 + 6 = 10. Aperiodic task τA1 is then executed consuming the budget of
the server until the currently available budget is zero, which is in this case when the
tasks signals completion. Due to the exhausted budget, the budget is replenished and
the server deadline is extended to dS,2 = 16. The next aperiodic request is triggered
at t = 9. We check the condition in Inequality (4.2) which is not ful�lled and hence,
we do not assign a new deadline but use the existing budget and deadline to serve the
aperiodic task. At t = 12, the available budget is exhausted and we replenish it and
extend the server deadline by one period to dS,3 = 22. The aperiodic task is served with
the budget until its completion according to the server deadline. ♦

Figure 4.3: Schedule for task set shown in Table 4.3 using CBS.

30 Chapter 4. Task Parameter Transformation

CBS shows good response times with a low complexity. Further, misbehaving tasks,
i.e., tasks over-running their WCETs, do not jeopardize periodic tasks because CBS
enforces its maximum bandwidth even if the actual execution time of aperiodic tasks
exceeds their WCET and the actual execution time is unknown and maybe extremely
large (or even unbounded).
In safety-critical applications not only the response times of aperiodic and sporadic

events is important but also the response times of periodic tasks. Periods and hence,
deadlines of tasks with implicit deadlines, a�ect the response times. Furthermore, higher
sampling rates, i.e., shorter periods, can improve quality of results of periodic tasks.
Additionally, periods in time-triggered (TT) systems a�ect the length of the hyper-
period which is calculated by the least common multiple (LCM) of all periods in the
system. The hyper-period determines the length of the schedule table and hence, a
shorter hyper-period results in less memory consumption of the schedule table. In the
following, we present methods to adjust task parameters before runtime to ful�ll these
goals.
Cottet and Babau showed a method based on Rate Monotonic in [CB96]. The authors

assumed that all tasks' parameters are pre-determined except for one task. Their method
calculates possible periods and deadlines for this one remaining task. As a result, an
area with schedulable pairs of period and deadline is obtained and can be used to select
period and deadline.
Burns and Davis presented a method for FPS consisting of periodic tasks [BD96].

They consider three di�erent cases to calculate new periods. First, all releases of tasks
have the same computation time. Second, task computation times di�er but are the
same for di�erent releases of the same task. Third, each task has two computation
times corresponding to whether an event is observed or not. The method reduces periods
iteratively as long as task are schedulable based on a response time analysis. As a result,
the method improves response times of periodic tasks and by improving the sampling
rate, quality of results can be improved. On the contrary, increasing overheads by
shorter periods, and hence, more invocations, are neglected.
So far, methods changed task parameters to optimize the performance of the system.

The methods presented in the following focus on accommodating requirements by the
hardware of the system, e.g., limited memory for storing the schedule table and limited
computational capabilities, i.e., maximum utilization of the task set, of the system.
Brocal et al. assumed in [BBBR11] that periods are given as ranges of integer numbers

to minimize the hyper-period. They presented the Fast Hyper-period Search (FHS)
algorithm to e�ciently minimize the hyper-period. We show the method in Section 4.7.4
in more detail as an application of our transformation method.
Ripoll and Ballester-Ripoll used the rationale of FHS to optimize the hyper-period

assuming that periods are given as continuous ranges [RBR12]. In their method, periods
are not absolute times values, e.g., a task is invoked every 30 ms, but tasks are invoked
x-times within the hyper-period. For instance, a task is invoked x = 3 times within a
hyper-period of H = 100 ms. Thus, the e�ective period of the task would be 33.3̄ ms.
As a consequence, the scheduler is responsible to determine the exact activation time
based on the granularity of time. The method determines overlapping intervals based on

4.2. Transformation of Sporadic Tasks 31

multiples of the original period ranges. If all intervals overlap, a minimum hyper-period
is found.
Nasri et al. presented a method to select harmonic periods optimizing the system

utilization [NFK14]. They assumed that periods are given as ranges. Based on integer
multiples of the period ranges, the method searches for covering intervals of multiples
of the period ranges to �nd harmonic periods. By using harmonic periods, the system
utilization can be reduced and the hyper-period can be optimized.

4.2 Transformation of Sporadic Tasks
In this section, we show how we transform sporadic tasks into periodic reservation tasks.
The goal of the transformation is to integrate reservation tasks into the o�ine scheduling
process such that execution time is reserved for sporadic tasks arriving at runtime at
unknown arrival times. In general, o�ine schedulers need knowledge about all task
parameters for the scheduling process. We do not assume any speci�c o�ine scheduler.
Our method is valid for an arbitrary o�ine scheduler able to schedule periodic tasks. At
runtime, for each sporadic task, independent of its arrival time, there must be enough
reserved execution time (RET) such that the task can execute for at least its WCET
before its deadline. In contrast to the reactive server algorithms before, our method is
proactive, i.e., the method accommodates for the demands of sporadic tasks already at
design time. For the reason of simplicity, we present our transformation for the non-
mixed-criticality case. Our method is also applicable for mixed-criticality task sets. We
show how to adapt the basic method for the mixed-criticality case in Section 4.2.4.

4.2.1 Terms, Symbols, Notation and Assumptions
The set P = {τ1, . . . , τn} represents n periodic tasks τi. Periodic tasks are characterized
by the tuple of task parameters τi = 〈Ci, Ti, Di〉 with

• Ci: WCET, i.e., upper bound on the largest possible execution time;

• Ti: period, i.e., time interval between two consecutive releases;

• Di: relative deadline, i.e., maximum time to complete execution relative to the
release of a task instance;

The instances of periodic tasks are released at ri,j = (j − 1)Ti with j ∈ {1, . . . ,∞}.
The set S = {τS1, . . . , τSm} represents m sporadic tasks τi. Sporadic tasks are char-

acterized by the tuple of task parameters τSi = 〈CSi, TSi, DSi〉 with

• CSi: WCET, i.e., upper bound on the largest possible execution time;

• TSi: period, i.e., minimum time interval between two consecutive releases;

• DSi: relative deadline, i.e., maximum time to complete execution relative to the
release of a task instance;

32 Chapter 4. Task Parameter Transformation

Sporadic tasks have arbitrary release times with a period TSi (also called minimum
inter-arrival time of the sporadic task).
For each sporadic task, we create one reservation task. The set R = {τR1, . . . , τRm}

represents m reservation tasks τRi with implicit deadlines. Reservation tasks are char-
acterized by the tuple of task parameters τRi = 〈CRi, TRi〉 with
• CRi: RET, i.e., reserved time in the o�ine schedule which can be used to execute
sporadic tasks at runtime;

• TRi: period, i.e., time interval between two consecutive releases of the reservation
task;

Reservation task instances are released at rRi,j = (j − 1)TRi with j ∈ {1, . . . ,∞}.
In the following, we do not only show how to transform sporadic tasks into reservation

tasks with the goal of including them into the o�ine scheduling process but also show
how to improve the worst-case response time (WCRT) of sporadic tasks.

De�nition 4.1. Worst-Case Response Time
The worst-case response time (WCRT) RSi of a (sporadic) task is the longest possible
time between the release ri,j of an (sporadic) task instance and the successful execution
of the task instance, i.e., �nishing time f (τSi,j) [LL73].

RSi = f (τSi,j)− ri,j (4.3)

C

The utilization calculation of periodic tasks with implicit deadlines is shown in Equa-
tion (4.4).

Ui =
Ci
Ti

(4.4)

The maximum workload of sporadic tasks is produced when they arrive with maximum
frequency. In this case, sporadic tasks behave like periodic tasks [ABRW92]. The worst-
case, i.e., maximum, utilization of sporadic tasks results then in:

USi =
CSi

TSi
(4.5)

The utilization of the entire (combined) task set P ∪ S results in:

U =
n∑
i=1

Ui +
m∑
i=1

USi (4.6)

After the transformation, the utilization of the task set for the o�ine schedule consists
of the periodic tasks and the (periodic) reservation tasks, i.e., P ∪R:

Uo�. schedule =
n∑
i=1

Ui +
m∑
i=1

URi (4.7)

We do not assume any speci�c scheduler to generate the o�ine schedule table. Fur-
ther, we assume that sporadic tasks have to be fully preemptive, because several reser-
vation instances could be needed for runtime execution. The o�ine scheduler can be
non-preemptive or preemptive.

4.2. Transformation of Sporadic Tasks 33

4.2.2 Worst-Case Arrival of Sporadic Tasks

We assume deadlines of sporadic tasks are equal to the minimum inter-arrival time. For
sporadic tasks with shorter deadlines, because we transform the sporadic tasks based on
their execution window, the transformation can be adapted by using the deadline instead
of the minimum inter-arrival time for the calculation of the reservation task parameters.
We show the transformation based on deadlines which are equal to the minimum inter-
arrival time for the reason of simplicity of the explanation but the method can also be
applied to sporadic tasks with deadlines shorter than the minimum inter-arrival time.
Guaranteeing sporadic tasks with DSi ≤ TSi will result in more reserved utilization than
for sporadic tasks with DSi = TSi.
Within the execution window of every sporadic task τSi ∈ S, we reserve at least CSi

(split into kUi slices) time units. A slice of a reservation task is the amount of execution
time reserved within one period of the reservation task. The sum of kUi slices is equal
to the WCET of the sporadic task. This reservation has to be done for every possible
release time of a sporadic task instance within the schedule independent of the schedul-
ing pattern of the reservation task. If we can guarantee a sporadic task instance for its
worst-case arrival, then we can also guarantee it in all other cases.

Figure 4.4 shows worst-case arrival: a sporadic task instance of τSi arrives directly
after the scheduled RET CRi. This RET before the release of the sporadic task instance
is scheduled at the beginning of its period and thus, the time until the start of the
next period (TRi − CRi) is maximum. This time interval until the next period elapses
without execution of the sporadic task instance. All further slices are scheduled at the
end of their periods such that the instances of the reservation task are scheduled as late
as possible and the execution of the sporadic task instance completes just before its
deadline. For the execution of the sporadic task instance, there are kUi slices and hence,
kUi periods, plus the time interval TRi − CRi without any execution needed. This time
interval must not exceed the period, i.e., deadline, of the sporadic task which is shown
in Equation (4.9a).

4.2.3 Transformation Method

For the transformation, we assume that the sporadic tasks arrive with maximum fre-
quency and hence, behave like periodic tasks. Furthermore, for reasons of simplicity
of representation, deadlines of sporadic tasks are assumed to be equal to the minimum
inter-arrival time. For sporadic tasks with deadlines shorter than minimum inter-arrival
time, the minimum inter-arrival time TSi has to be replaced by DSi in all equations.
Assuming the worst-case arrival in Figure 4.4, we calculate the parameters of the pe-
riodic reservation tasks τRi. In the following, we set implicit deadlines (DRi = TRi)
for all reservation tasks. The periodic reservation tasks are characterized by the tu-
ple: τRi = 〈CRi, TRi〉, whereas we call the execution time CRi of such reservation tasks
RET. The RET CRi of the reservation task is calculated according to Equation (4.8).
We choose the period of the reservation task such that the time without execution

34 Chapter 4. Task Parameter Transformation

Figure 4.4: Worst case arrival of a sporadic task instance.

(TRi−CRi) in the �rst period and kUi periods are as long as the execution window, i.e.,
the relative deadline DSi, of the sporadic task instance (see Figure 4.4); The resulting
equation is shown in Equation (4.9a). We calculate the period of the reservation task
using Equation (4.9b).

CRi =
CSi

kUi
with kUi ∈ N\{0} (4.8)

(TRi − CRi) + kUi · TRi = TSi with kUi ∈ N\{0} (4.9a)

⇔ (kUi + 1)TRi − CRi = TSi

⇔ TRi =
TSi + CRi

kUi + 1

⇔ TRi =
TSi + CSi

kUi

kUi + 1
(4.9b)

As a consequence, the resulting utilization of reservation tasks is:

URi =
CRi

TRi

=
CSikUi + CSi

TSikUi + CSi

=
USikUi + USi

kUi + USi
(4.10)

As Equation (4.10) shows, the utilization of a reservation task depends only on the
utilization of the sporadic task and kUi. With increasing kUi, we can achieve a �ner

4.2. Transformation of Sporadic Tasks 35

granularity of the RET and hence, we can decrease the needed utilization to guarantee
sporadic tasks (see Figure 4.5).
The extrema of the reservation task's utilization are calculated in Equations (4.11)
and (4.12). Depending on kUi, the reservation task's utilization can be decreased down
to the sporadic task utilization if the WCET of the sporadic task is divided into an
in�nite number of slices.

URi(kUi = 1) =
USi · 1 + USi

1 + USi

=
2USi

1 + USi
(4.11)

lim
kUi→∞

URi = lim
kUi→∞

USikUi + USi

kUi + USi

= lim
kUi→∞

kUi

(
USi + USi

kUi

)
kUi

(
1 + USi

kUi

)
= USi (4.12)

On the contrary, an in�nite number of slices for one sporadic task instance execution

Figure 4.5: Utilization of the reservation task for a sporadic task τS1 = 〈10, 70〉.

leads to an in�nite number of preemptions of the sporadic task instance. We show the
in�uence of this switching (preemption) overhead in Section 4.3.
Each sporadic task has its own reservation task. Hence, we guarantee each sporadic
task independently from other sporadic tasks such that they do not interfere.

36 Chapter 4. Task Parameter Transformation

Theorem and Proof

In the following, we show that independent of the release time of a sporadic task instance,
this method reserves enough execution time, such that the sporadic task instance can
complete its execution within its execution window.

Theorem 4.1.
In each time interval [t1; t2) with t2 − t1 ≥ TSi, i.e. arrival ri,j ≥ t1 and deadline
dSi,j ≤ t2, if CSi is the execution demand of the sporadic task instance (with relative
deadline DSi), there will be at least CSi time units reserved for the execution of the
sporadic task instance. J

Proof 4.1.
To prove the theorem, we will show that there are at least CSi time units reserved within
the interval [t1; t2): ⌊

t2 − t1
TRi

⌋
CRi ≥ CSi

Replacing CRi by its de�nition as shown in Equation (4.8):⌊
t2 − t1
TRi

⌋
CSi

kUi
≥ CSi

Multiplying with kUi

CSi
: ⌊

t2 − t1
TRi

⌋
≥ kUi

Hence, the interval [t1; t2) must be greater than or equal to the product kUi · TRi:

t2 − t1 ≥ kUiTRi

Replacing TRi by its de�nition as shown in Equation (4.9b):

t2 − t1 ≥ kUi
TSi + CSi

kUi

kUi + 1

⇔ t2 − t1 ≥
kUiTSi + CSi

kUi + 1

We perform polynomial division for the right-hand side of the inequality:

(kUiTSi + CSi) : (kUi + 1) = TSi +
CSi − TSi
kUi + 1

Thus, the inequality results in:

t2 − t1 ≥ TSi +
CSi − TSi
kUi + 1

⇔ TSi − CSi

kUi + 1
≥ TSi − (t2 − t1)

4.2. Transformation of Sporadic Tasks 37

With

(t2 − t1)
def.
≥ TSi

⇔ TSi − (t2 − t1) ≤ 0

follows:
TSi − CSi

kUi + 1
≥ 0 (4.13)

According to the de�nition of kUi ∈ N\{0}, Inequality (4.13) is greater than or equal to
zero if the numerator of the fraction is greater than or equal to zero. The numerator is
greater than or equal to zero if the WCET does not exceed the period of the sporadic
task which is a trivial condition. Hence, we proved the assertion. �

4.2.4 Adaption for Mixed-Criticality Task Sets
The transformation method we have shown before is based on WCETs and periods (i.e.,
minimum inter-arrival time) of sporadic tasks. In mixed-criticality systems, there are
several WCETs per task. As a consequence, several questions have to be answered when
thinking about applicability of the presented method for mixed-criticality systems. For
reasons of simplicity and clarity, we consider the dual-criticality case with low and high
criticality level. The issues shown in the following, are also valid for mixed-criticality
systems with more than two criticality levels.
Criticality level of sporadic tasks. We can handle low criticality sporadic tasks
without any problems. Low criticality tasks are not certi�ed and not essential for sur-
vivability of the system. There is only one WCET per task, or the WCET is the same
for low and high criticality level. In this case, we can transform sporadic tasks as shown
before.
On the contrary, the unknown arrival times of high criticality sporadic tasks results in a
possibly unknown schedulability. As a result, we need to ensure schedulability by using
an o�ine guarantee algorithm to check whether sporadic tasks can always be included
at runtime, e.g., [SRLK02, IF99]. Without this test, a guarantee and certi�cation of
high criticality tasks is useless.
Transformation of several WCETs. High criticality tasks have two (maybe) di�erent
WCETs which would result in di�erent reservation tasks. Although using the same kUi,
both the RET and the period of the reservation tasks can be di�erent. In the following,
we show the basic idea of three possible solutions for this issue:

1. A trivial approach is to use the largest, i.e., the high criticality, WCET to create
the reservation tasks. As a result, the high criticality behavior is guaranteed
already in low criticality system mode. The advantage is a simple transformation,
but on the contrary, this assumption is very pessimistic and results in a possibly
strongly under-utilized system.

2. In a two step approach, we can transform sporadic tasks based on their high crit-
icality WCET. We obtain a value for the RET and the period of the reservation

38 Chapter 4. Task Parameter Transformation

task. In a second step, we use the obtained period to calculate a correspond-
ing RET for the low criticality behavior. In this way, the transformation is less
pessimistic and more �exible. The drawback of this approach is the addition-
ally needed step in the transformation which is only a small problem because the
transformation is done before runtime. Furthermore, the scheduling process is
more complex to guarantee the high criticality requirements.

3. Another approach is to separate the WCET of the low criticality behavior from the
additionally needed WCET in the high criticality case. We create two reservation
tasks for one sporadic task. In Section 5.3, we show how we can separate the
low criticality demand from the additionally needed demand in the high criticality
case. This approach is less pessimistic and allows for a �exible scheduling process.
On the contrary, more tasks can also increase the scheduling complexity.

4.3 Utilization of Reservation Tasks
In the following, we analyze the utilization of reservation tasks. Using the parameter kUi,
we can adapt the utilization to the system requirements while including the introduced
overhead of the transformation method.
In theory, we can divide the reservation tasks into an in�nite number of in�nitesimally

short slices. But in practice, this is not possible because of the switching overhead
(e.g., [SE04]). The switching overhead includes the time the scheduler/dispatcher needs
to preempt the current task and to select and start the next executing task. As a
consequence, the time consumed by this switching has to be included into the feasibility
tests.
Besides the switching overhead, the length of a clock cycle is also a restricting factor for
the minimum length of a slice.
The reservation tasks are periodic and hence, their utilization can be calculated by

Equation (4.4). Splitting the RET for sporadic into several slices results in additional
switching overhead which is not accommodated by the WCETs of the sporadic tasks. As
a consequence, besides the RET of the reservation tasks, we have to consider the switch-
ing overhead λ which is added to the RET. For the guarantee of the sporadic tasks, we
assume the worst-case for the switching overhead, i.e., for each instance of the reserva-
tion task the maximum switching overhead λ is needed. The e�ective utilization URi

of the reservation tasks including the additional switching overhead is determined in
Equation (4.14).

URi =
CRi + λ

TRi

=
(CSi + kUiλ) (kUi + 1)

kUiTSi + CSi
(4.14)

If we set λ = 0, we obtain the utilization mentioned earlier without overhead considera-
tion, as shown in Equation (4.10). Figure 4.6 shows the comparison between a reserva-
tion task's utilization with and without overhead for an example sporadic task. Without

4.3. Utilization of Reservation Tasks 39

considering the switching overhead, the utilization of the reservation task approximates
the utilization of the sporadic task (kUi →∞). But in practice, the switching overhead
is not negligible and we choose an integer value for kUi 9 ∞ close to the minimum of
the function including the overhead (N). For the example reservation task in Figure 4.6,
the minimum utilization is obtained for kUi = 9. Due to the increasing impact of the
switching overhead, the utilization exceeds the utilization of the �rst step (kUi = 1) at
kUi = 73

Figure 4.6: Utilization considering switching overheads of a reservation task for a sporadic
task τS1 = 〈10, 70〉.

In Figure 4.7, we show the impact of varying switching overheads. As a reference, we
use the reserved utilization for τS1 with the switching overhead used in Figure 4.6 (N).
Further, we show the reserved utilization including an overhead which is �ve times
higher (©), which corresponds to 5% of CS1, than the reference switching overhead
of λ = 0.1 and reserved utilizations for two times higher (�), i.e, 2% of CS1, for two
times smaller (3), i.e, 0.5% of CS1, for �ve times smaller (O) i.e, 0.2% of CS1, switching
overhead.
We can observe that higher overheads result in higher reserved utilizations. In theory,

for kUi = 1 only one slice is needed to execute a sporadic task instance and hence, no
additional preemption is introduced. On the contrary in practice, although only the
length of one slice is needed, a sporadic task instance can arrive during this reserved
execution time such that e.g., 50% of current slice is used to execute and 50% of next
reservation task instance is used to �nish execution. As a result, one additional pre-
emption is introduced and thus, already for kUi = 1 the reserved utilization is higher for
higher switching overheads. For higher overheads, the impact of the switching overheads
transcends the improvements of utilization reduction by �ner granularity (more slices)
already for smaller kUi, i.e., the sporadic WCET is reserved by fewer reservation slices.

40 Chapter 4. Task Parameter Transformation

Figure 4.7: Utilization considering di�erent switching overheads of a reservation task for a
sporadic task τS1 = 〈10, 70〉.

Figure 4.8: Unused RET with kU1 = 1.

As Figure 4.8 shows, we reserve more utilization than actually needed even if the
sporadic tasks arrive with maximum frequency.

This over-provisioning is done because of the unknown arrival times of the sporadic
tasks at runtime. In the following, we calculate the amount of unused reserved utiliza-
tion Λi. For this calculation, we consider the arrival pattern which creates the highest
workload, i.e., the sporadic task instances always occur with their minimum inter-arrival
time. Equation (4.15b) calculates the amount of unused reserved utilization Λi of one
sporadic task. We include the switching overhead into the reservation tasks such that
Λi accounts for the switching overhead and the overhead by unused slices. The reserved

4.3. Utilization of Reservation Tasks 41

utilization includes the switching overhead and the di�erence to the actual execution of
the sporadic task results in Λi as shown in Equation (4.15a).

Λi (kUi) =
CRi + λ

TRi︸ ︷︷ ︸
reserved utilization

− CSi

TSi︸︷︷︸
sporadic task utilization

(4.15a)

=
k2
Uiλ+ kUiλ+ CSi − (CSi)

2

TSi

kUiTSi + CSi
(4.15b)

Figure 4.9 shows the unused reserved utilization for the example task of Figure 4.8.
For values of kU1 with Λ1(kU1) > min(Λ1(kU1)), the switching overhead has a stronger
in�uence on the utilization of the reservation task than the utilization reduction achieved
by increasing kU1. The minimum unused reserved utilization is obtained for kU1 = 9
which is also the kU1-value when the utilization of the reservation task is minimum.

Figure 4.9: Unused reserved utilization considering switching overheads of the reservation task
for a sporadic task τS1 = 〈10, 70〉.

When choosing kUi for a desired utilization of the reservation task, we must not forget
that reservation tasks have to be schedulable. In Section 4.4, Equation (4.23) shows the
necessary schedulability condition for the reservation tasks.
We showed before how to minimize the needed utilization of reservation tasks. It is

possible that designer wants to choose a larger or shorter period than the one which
results in minimum reserved utilization.
On the next pages, we show possible approaches to determine a feasible range for kUi

based on the reserved utilization:

1. Vertex approach on page 42;
2. First step approach on page 43;
3. Utilization limit approach on page 44;
4. Total utilization limit approach on page 45;

42 Chapter 4. Task Parameter Transformation

Vertex approach. Figure 4.10 visualizes the choices for kUi. The range is characterized
by the minimum utilization of the reservation task, i.e., increasing kUi also increases the
reserved utilization. Inequality (4.16a) shows that we determine all kUi such that with
increasing kUi the utilization does not decrease. Although the utilization for values of kUi
larger than the determined kUi is still smaller than initial reserved utilization (kUi = 1),
the number of preemptions increases without reducing the reserved utilization. This
approach minimizes both utilization and number of preemptions. As a result, we choose
kUi ∈ [1, kvertexUi] whereas kvertexUi is the largest kUi satisfying Inequality (4.16b).

URi (kUi) < URi (kUi + 1) (4.16a)

⇔ CRi(kUi) + λ

TRi(kUi)
<
CRi(kUi + 1) + λ

TRi(kUi + 1)

⇔
CSi
kUi

+ λ

TSi+
CSi
kUi

kUi+1

<

CSi
kUi+1

+ λ

TSi+
CSi

kUi+1

kUi+2

⇔ [. . .]

⇔ λ

(
TSi +

2USiTST
kUi

)
− USiT

2
Si

1− USi

kUi (kUi + 1)
> 0 (4.16b)

Figure 4.10: Reserved utilization UR1 and utilization range according to vertex approach.

4.3. Utilization of Reservation Tasks 43

First step approach. The range of this approach, shown in Figure 4.11, is charac-
terized by the initial reserved utilization, i.e., utilization with kUi = 1. The reserved
utilization increases for many slices because of the overhead. At some point, the reserved
utilization transcends the initial reserved utilization. We choose values for kUi satisfy-
ing Inequality (4.17b). This approach can be seen as special case of next approach: the
utilization limit approach.

URi (kUi) ≤ URi (kUi = 1) (4.17a)

⇔ CRi(kUi) + λ

TRi(kUi)
≤ CRi(kUi = 1) + λ

TRi(kUi = 1)

⇔
CSi
kUi

+ λ

TSi+
CSi
kUi

kUi+1

≤ CSi + λ
TSi+CSi

2

⇔ [. . .]

⇔ λTSi

(
kUi − 1 + USi

(
kUi + 1− 2

kUi

))
+

USiTSi

(
1

kUi
+ 1 + USi −

USi

kUi

)
≤ 0 (4.17b)

Figure 4.11: Reserved utilization UR1 and utilization range according to �rst step approach.

44 Chapter 4. Task Parameter Transformation

Utilization limit approach. As shown in Figure 4.12, the available utilization of each
reservation task is limited (dotted line). Possible reasons for this can be that there is
not more utilization available for this reservation task or the designer wants to privilege
another sporadic task by granting more utilization to the corresponding reservation task
and reducing the available utilization for this reservation task. As a consequence, we
have to choose values for kUi such that resulting utilization of reservation task is below
the threshold Ulimit, which is shown in Inequality (4.18a). The resulting values for kUi
have to satisfy Inequality (4.18b).

URi ≤ Ulimit (4.18a)

⇔ CRi + λ

TRi
≤ Ulimit

⇔
CSi
kUi

+ λ

TRi+
CRi
kUi

kUi+1

≤ Ulimit

⇔ [. . .]

⇔ λk2
Ui + (USiTSi + λ) kUi + 2λUSi (USi + 1)

TRi (kUi + USi)
≤ Ulimit (4.18b)

Figure 4.12: Reserved utilization UR1 and utilization range according to utilization limit ap-
proach.

4.3. Utilization of Reservation Tasks 45

Total utilization limit approach. Figure 4.13 visualizes the approach where the
total utilization of all reservation tasks is limited. In contrast to selecting one value
for each kUi of every task, we select one (same) value kUi for all tasks. This reduces
the complexity of calculating kUi. kU is the value used to determine the parameters
of all reservation tasks. We choose a value for kU such that resulting total utilization
of all reservation tasks is below threshold Utotal_limit. The values for kU have to satisfy
Inequality (4.19b).

n∑
i=1

URi ≤ Utotal_limit (4.19a)

⇔
n∑
i=1

CRi + λ

TRi
≤ Utotal_limit

⇔
n∑
i=1

CSi
kU

+ λ

TRi+
CRi
kU

kU+1

≤ Utotal_limit

⇔ [. . .]

⇔
n∑
i=1

λk2
U + (USiTSi + λ) kU + 2λUSi (USi + 1)

TRi (kU + USi)
≤ Utotal_limit (4.19b)

Figure 4.13: Reserved utilization UR1 and utilization range according to total utilization limit
approach.

46 Chapter 4. Task Parameter Transformation

4.4 Worst-Case Response Time

Up to this point, we can guarantee sporadic tasks in the o�ine schedule. To achieve
this, we split the sporadic task's WCET into kUi slices. With shorter periods and
shorter slices, we achieve a �ner granularity and can reduce the WCRT of the sporadic
task instances. As a consequence, we adapt Equations (4.8) and (4.9b), such that the
periods and RETs are shortened.

4.4.1 Worst-Case Response Time Reduction

In the following, we shorten the period and the length of the slices of the reservation
tasks to achieve a �ner granularity, but we do not want to change the utilization of
the reservation tasks. We introduce a new parameter kRi to reduce the WCRT RSi of
the sporadic tasks. In contrast to kUi, that changes the utilization of the reservation
task, kRi only changes the granularity of the reservation tasks and hence, the WCRT
of the sporadic task. As a secondary consequence, kRi causes more preemptions which
increases the switching overhead and thus, the increases the utilization.

The periods T (4.9b)
Ri presented in Equation (4.9b) and the length of the slices C(4.8)

Ri

shown in Equation (4.8) of the reservation task τRi are split into kRi fractions with
kRi ∈ N\{0}. As Figure 4.14 shows, the utilization of the reservation tasks is unchanged
(ignoring the constant switching overhead) but the slices are more regularly distributed
over the schedule.

Figure 4.14: Shortening period and length of slices of a reservation task.

As a consequence, the equations calculating the period and RET (slice length) of
the reservation tasks have to be adapted to these changes. Equations (4.20) and (4.21)

4.4. Worst-Case Response Time 47

show the adapted equations for the RET calculation and for the period calculation,
respectively.

CRi =
C

(4.8)
Ri

kRi
with {kRi, kRi} ∈ N\{0}

=
CSi

kRikUi
(4.20)

TRi =
T
(4.9b)
Ri

kRi
with {kRi, kRi} ∈ N\{0}

=
TSi + CSi

kUi

kRi (kUi + 1)
(4.21)

Thus, the utilization of the reservations tasks can be adapted with kUi and the WCRT
can be adapted with kRi. An improvement of the WCRT will lead to an increasing
utilization because of the switching overhead. Equation (4.22) shows the utilization of
a reservation task including the adaptation for WCRT reduction.

URi =
C

(4.8)
Ri + λ

T
(4.9b)
Ri

= [. . .]

=
CSi (kUi + 1) + λkUikRi (kUi + 1)

TSikUi + CSi
(4.22)

The utilization of the reservation tasks restricts the schedulability of the entire task set.
This results in the necessary schedulability condition shown in Equation (4.23).

n∑
i=1

Ui +
m∑
i=1

URi ≤ 1 (4.23)

The utilization of the periodic tasks is given by the designer and cannot be in�uenced.
Changing kUi and kRi in�uences the utilization of the reservation tasks, which includes
the switching overheads introduced by the transformation. Figure 4.15 shows the uti-
lization of one example reservation task versus the adaptation factors kUi and kRi. The
utilization available for the guarantee of a speci�c sporadic task restricts the combina-
tions of kUi and kRi, i.e., for a maximum available utilization for a reservation task only
values kUi and kRi can be chosen which are below the corresponding utilization level in
the graph.
Figure 4.16 depicts an example which shows that WCRT can be reduced when split-

ting the period and RET into shorter slices. Both calculations of reservation task's
parameters are based on the same sporadic task τS1 = 〈10, 70〉. The switching overhead
is shown disproportionately large to show how it in�uences the WCRT.
For (kU1 = 1, kR1 = 1), the WCRT is 70 and with (kU1 = 1, kR1 = 2) the WCRT

can be decreased to 55, in this example. In the next step, we describe the in�uence of
switching on the WCRT.

48 Chapter 4. Task Parameter Transformation

Figure 4.15: Utilization of one reservation task.

Figure 4.16: Reservation tasks with kR1 = 1 (top) and kR1 = 2 (bottom) and resulting WCRT
of sporadic task at runtime.

4.4. Worst-Case Response Time 49

4.4.2 Results of the Worst-Case Response Time Reduction
We assumed for the determination of the WCRT, that the sporadic task instance arrives
at the end of a slice so that there is just enough time left for selecting the next task and
fetching the data into the cache (switching overhead λ). This slice is scheduled at the
beginning of its period and the following slices are scheduled at the end of their periods
(see examples in Figure 4.16). Each time the data is removed from the cache so that
it has to be fetched again from main memory. With this scenario, we can determine
the WCRT which is shown in Equation (4.24). Before the execution of a sporadic task
instance can start, the instance has to wait for the beginning of the next period because
the RET of the current period in which the instance arrived is already gone. To complete
the sporadic task execution, we need (kUi · kRi) slices and hence, (kUi · kRi) periods.

RSi = λ+ (TRi − CRi − λ) + kUikRiTRi

=
kUiTSi + CSi

kUi + 1
+

1

kRi
· TSi − CSi

kUi + 1
(4.24)

With Equation (4.24), we can determine the extrema of the WCRT shown in Equa-
tions (4.25a) - (4.25d).

RSi(kUi = 1, kRi = 1) = TSi (4.25a)

lim
kUi→∞

RSi(kRi = 1) = TSi (4.25b)

lim
kRi→∞

RSi(kUi = 1) =
TSi + CSi

2
(4.25c)

lim
kRi→∞

lim
kUi→∞

RSi = TSi (4.25d)

Figure 4.17: WCRT of τS1 = 〈10, 70〉: 3D plot (left) and contour plot (right).

50 Chapter 4. Task Parameter Transformation

As Equation (4.25c) shows, the shortest WCRT is achieved for (kUi = 1, kRi → ∞).
Due to the fact, that the WCRT is always shorter than or equal to the deadline, we can
again con�rm the feasibility of our method. Figure 4.17 can be used to determine the
WCRT of a sporadic task for chosen pairs of kUi and kRi.

4.5 Trade-Off between Utilization of Reservation Tasks and
Worst-Case Response Times

Section 4.3 showed how we can reduce the utilization of reservation tasks. In Section 4.4,
we showed how to reduce the WCRT. In this section, we depict the trade-o� between
utilization of reservation tasks and WCRT of the sporadic task.
As already mentioned, because of the unknown arrival times guaranteeing sporadic tasks
causes overhead. Even when sporadic tasks arrive with maximum frequency, there is
RET which the sporadic task instances will not use at runtime. By adapting kUi and
kRi, we can change the utilization of reservation tasks such that the o�ine scheduled
tasks will be feasible. Assuming the use of a scheduler which is able to schedule periodic
task sets with a maximum utilization of Usched, we have to determine pairs of kUi and
kRi so that Inequality (4.26) holds. For instance, EDF is capable of exploiting the full
processor capacity and thus, Usched is 1 for EDF.

n∑
i=1

Ui +
m∑
i=1

URi ≤ Usched (4.26)

Within this constraint, we can reduce the WCRT for a given bound of the reservation
tasks' utilization and vice versa. A trade-o� between both parameters at the same time
is also possible.
We show a feasibility analysis for this trade-o� between the utilization of the reser-

vation tasks and the WCRT of the sporadic tasks in the following. We determine pairs
of kUi and kRi for given bounds on the WCRT and the utilization of the reservation
tasks. As an example, we use one sporadic task τ1 with the parameters CS1 = 10 and
TS1 = 70. Figure 4.18 shows a contour plot for the feasibility analysis with switching
overhead set to 1% of the WCET of the sporadic task (λ = 0.1). Dashed lines depict
the utilization UR1 of the reservation task τR1. The maximum available utilization for
this reservation restricts the possible pairs of kUi and kRi. Solid lines show the WCRT
of the sporadic task. The curves represent contour lines with the same values of that
variable.
To check the feasibility of given bounds, we determine the area which is surrounded by
the contour lines for the given bounds. If there is no pair of kUi and kRi (remember
both are natural numbers) for the given bounds, the transformation is infeasible for the
given bounds. The procedure is shown in the example in Section 4.6.

4.6. Example of the Transformation of Sporadic Tasks 51

Figure 4.18: Contour plot for feasibility analysis with λ = 0.1.

4.6 Example of the Transformation of Sporadic Tasks
In this section, we present an example: �rst, we show that deadline misses can occur
when sporadic tasks are not considered in the o�ine scheduling process. After this, we
perform a feasibility analysis for given bounds on the utilization of the reservation tasks
and the WCRT to determine feasible pairs of kUi and kRi for the reservation tasks. To
conclude the example, we show that when including the reservation tasks into the o�ine
scheduling process, deadlines are met.
In this example, we use a task set with three periodic tasks and two sporadic tasks,

shown in Table 4.4. In a �rst step, the o�ine scheduler schedules the periodic tasks and
at runtime the two sporadic tasks arrive at the beginning of the schedule, i.e., t = 0.
Figure 4.19 shows the occurring deadline miss of the sporadic task τS2.

periodic tasks WCET period sporadic tasks WCET period

τ1 10 60 τS1 10 100

τ2 20 95 τS2 20 110

τ3 30 150

Table 4.4: Example task set.

In the following, we show how we can determine the parameters kUi and kRi for given
bounds on the utilization and the WCRT. The utilization of the periodic tasks is about
58%. We want to use the remaining 42% to guarantee the sporadic tasks. We test the
feasibility of the bounds UR1 ≤ 0.16 and RS1 ≤ 100 for τS1 and UR2 ≤ 0.26 and RS2 ≤ 95
for τS2. Figure 4.20 shows the given bounds. The areas with feasible pairs of kUi and kRi

52 Chapter 4. Task Parameter Transformation

Figure 4.19: Resulting schedule when sporadic tasks are not considered in the o�ine scheduling
process.

are highlighted. We choose the pairs of kUi and kRi such that the number of slices for
each task is minimum. As a result, we choose (kU1, kR1) = (2, 1) and (kU2, kR2) = (2, 2)
(marked in Figure 4.20).

Figure 4.20: Feasibility analysis of τS1 = 〈10, 100〉 and τS2 = 〈20, 110〉.

4.7. Evaluation: An Application of Parameter Transformation 53

Using the chosen parameters, we transform the sporadic tasks into periodic reservation
tasks and schedule them together with the periodic tasks τ1, τ2, and τ3, again. The
resulting parameters for the reservation tasks are: τR1 = 〈5, 35〉 and τR2 = 〈5, 20〉. The
utilizations of the reservation tasks (UR1 ≈ 0.143, UR2 = 0.250) are below the desired
bounds. Figure 4.21 (upper part and highlighted middle part) shows the resulting o�ine
schedule. At runtime, both sporadic tasks are released at the beginning of the schedule,
i.e., t = 0. Both tasks meet their deadline using the reserved execution time of their
allotted reservation task which is shown in the �gure (lower part).

Figure 4.21: Schedule including reservation tasks into the o�ine scheduling process.

4.7 Evaluation: An Application of Parameter Transformation
In this section, we show a possible application of the transformation method shown
before. The presented transformation guarantees sporadic tasks even when they arrive
with maximum frequency. Sporadic tasks arriving with maximum frequency behave

54 Chapter 4. Task Parameter Transformation

like periodic tasks [ABRW92]. As a consequence, we can also transform periodic task
parameters. The disadvantage of transforming periodic tasks is that additional preemp-
tions are introduced and hence, switching overhead is increased. A major reason to
apply the transformation despite this disadvantage is the hyper-period. The schedule of
synchronized periodic tasks repeats itself after the hyper-period H. The hyper-period is
calculated by the LCM of the periods of all tasks. In TT schedule tables, the length of
the schedule table is determined by the hyper-period. Thus, shortening the length of the
schedule table, i.e., reducing the hyper-period, results in less memory consumption by
the schedule table. A shortened hyper-period can be obtained by adjusting the periods
or a smart selection of periods within a range, e.g., [Xu10, GM01, RBR12, BBBR11]. In
this section, we use our transformation method to generate new periods (and WCETs)
for periodic tasks. The idea is to use the presented reservation also on periodic tasks to
make use of the additionally calculated periods. In the following, we assume that the
feasibility of the determined periods (and WCETs) has been checked and we use only
valid periods.

4.7.1 Motivation
Standard methods to calculate the hyper-period, i.e., the LCM, of two integer numbers
a and b are, for instance:

Reduction by the greatest common divisor. Calculation of greatest common divisor
(GCD) by using an algorithm like Euclidean algorithm and then calculating LCM
by lcm(a, b) = |a·b|

gcd(a,b)
;

Prime factorization. Find a product of prime numbers for a and b; LCM is then the
product of multiplying the highest power of each prime number of a and b;

There are further algorithms and table-based methods to calculate the LCM. These
standard methods are quite computationally complex. Using given task periods can
lead to extremely large hyper-periods and thus, to large memory demands. In the
following, we show how to generate new periods based on the method presented in this
chapter. Furthermore, we show the applicability of our method and the improvements
by applying an advanced method to calculate the minimum hyper-period called Fast
Hyper-period Search (FHS).

4.7.2 Creation of Periods
In Section 4.4, we showed the extension to include a WCRT optimization into the trans-
formation. We neglect this possibility here for the sake of simplicity and clarity. The
LCM is de�ned on integer numbers, hence, periods have to be integer. As a consequence,
to get integer results from our transformation, we adapt the calculation of RETs and
periods. Equations (4.27) and (4.28) show the adapted equations for the hyper-period
optimization. As a result, the calculated parameters are integer numbers. Further, we
replaced the WCET and period of sporadic tasks by the parameters of periodic tasks.

4.7. Evaluation: An Application of Parameter Transformation 55

This requirement �ts to actual hardware. In processor, granularity of time is the clock
cycle, hence, times have to be integer multiples of the length of a clock cycle.

CRi =

⌈
Ci
kUi

⌉
(4.27)

TRi =

⌊
Ti + Ci

kUi

kUi + 1

⌋
(4.28)

Due to the fact that we consider several periods for one periodic task, we refer to the
possible periods like this:

• Ti: original given period

• Ti(1): calculated reservation task period based on kUi = 1

• Ti(2): calculated reservation task period based on kUi = 2

• . . .

The calculation of κ additional periods results in the set of periods

Γi(kUi) = {Ti, Ti(1), Ti(2), . . . , Ti(κ)}

of task τi. Performing these calculations for all tasks in the task set results in the
set Γi(kUi) which contains (κ+ 1) elements (periods) per task. The assumptions for the
remainder of this section are: Without loss of generality, for all tasks the same number κ
of additional periods are calculated. Additionally, all possible periods of the periodic
task set are stored in a period matrix Γ(κ) shown in Equation (4.29).

Γ(κ) =

Γ1(kU1)
Γ2(kU2)

...
Γn(kUn)

=

T1 T1(1) T1(2) . . . T1(κ)
T2 T2(1) T2(2) . . . T2(κ)
...

...
...

. . .
...

Tn Tn(1) Tn(2) . . . Tn(κ)

 (4.29)

4.7.3 Exhaustive Search Algorithm
As a comparison for the later presented FHS algorithm, we �rst show a trivial approach
to determine the minimum hyper-period based on a set of periods for each task. We
calculate the hyper-period for each possible combination of periods which we refer to as
Exhaustive Search Algorithm (ESA). Figure 4.22 shows a small example with two tasks

56 Chapter 4. Task Parameter Transformation

with two additional, i.e., in total three, periods. We can see that there are nine possible
combinations and hence, we calculate nine times the LCM of two periods. For n tasks
with κ additional periods, there are (κ+ 1)n possible combinations, i.e., a complexity of
O ((κ+ 1)n). The calculation of the LCM is highly data dependent, i.e., independent
of the length of hyper-period, the time to calculate the LCM varies with the chosen
periods, which we show in Section 4.7.5 in our experiments. As a result, the length of
periods does not in�uence the length of the hyper-period, i.e., a longer periods of tasks
can result in a shorter hyper-period.

Figure 4.22: Complexity of hyper-period calculation using ESA with two tasks with each two
additional periods.

The following example shows an exponential increase in calculation times for ESA.
We create 10 random tasks with periods between 50 and 500 and generate κ = 10
additional periods for each task. As a result, the period matrix Γ(κ = 10) is shown in
Equation (4.30). Each row shows the original period and the additionally calculated
periods of a task. As the sixth row in the matrix shows, due to rounding, the method
can produce the same period several times. This phenomenon does not improve the
results but also does not result in wrong results. This period matrix forms the basis of
the following runtime measurements. When we measure the runtime to determine the
minimum hyper-period for a task set with n tasks and κ additional periods, we select
the �rst n rows and the �rst κ+ 1 columns of the matrix. In other words, the task set
with n tasks is always the task set for n− 1 tasks extended by one additional task.

Γ(κ = 10) =

410 205 136 102 82 68 58 51 45 41 37
454 227 151 113 90 75 64 56 50 45 41
72 36 24 18 14 12 10 9 8 7 6
458 230 153 114 91 76 65 57 50 45 41
320 160 106 80 64 53 45 40 35 32 29
57 28 19 14 11 9 8 7 6 5 5
146 73 48 36 29 24 20 18 16 14 13
278 139 92 69 55 46 39 34 30 27 25
480 240 160 120 96 80 68 60 53 48 43
483 241 161 120 96 80 69 60 53 48 43

(4.30)

4.7. Evaluation: An Application of Parameter Transformation 57

We perform our experiments on an Intel XEON processor E5-2670 running at 2.60 GHz
and with 4 GB equipped main memory. Based on shown period matrix, we calculate the
minimum hyper-period using ESA and show the runtimes of it. Table 4.5 depicts the
runtime results for 2 to 10 tasks. As the �rst column of the runtime results shows, the
calculation of the LCM with only the original period per task takes only little time. With
increasing number of periods and/or tasks, the runtimes increase drastically. Whereas
increasing the number of tasks has � as expected � an exponential impact on the run-
times. For more than eight tasks, runtimes already go up to several seconds. The
calculation of the minimum hyper-period for 10 tasks with 10 additional periods even
takes more than 50 minutes.

no. of time
T1 T1(1) T1(2) T1(3) T1(4) T1(5) T1(6) T1(7) T1(8) T1(9) T1(10)

tasks unit

2

µs

1 1 1 2 3 4 6 7 9 11 14

3 1 1 5 9 16 25 38 55 74 101 132

4 1 4 15 41 95 184 335 551 846 1244 1789

5 1 7 46 166 472 1119 2237 4174 7229 11904 19145

6 1 15 137 638 2205 5997 14079 29987 58083 104820 182269

7 1 33 411 2496 11525 37614 101851 244623 537399 1083729 2115938

8

s

< 1 < 1 < 1 < 1 < 1 < 1 < 1 2 6 13 27

9 < 1 < 1 < 1 < 1 < 1 1 5 15 43 108 266

10 < 1 < 1 < 1 < 1 1 8 38 133 434 1199 3213

Table 4.5: Runtimes to calculate the minimum hyper-period with ESA.

In Figure 4.23, we depict the increasing runtimes for increasing number of additional
periods. The y-axis shows the runtimes in microseconds on a logarithmic scale. Further,
the �gure also shows that although the �gure depicts runtimes in relation to periods, but
by the distance between curves, we can see an additional task also results in a runtime
increase by about an order of magnitude. Further experiments con�rmed the shown
trend in this example and con�rm the expected increase in runtimes. In summary, the
results show that ESA is hardly applicable in real systems because of extremely long
runtimes for more than just a few tasks.

4.7.4 Fast Hyper-Period Search Algorithm
As we showed before, we need a more e�cient method to calculate the minimum hyper-
period. Brocal et al. proposed an advanced method to calculate minimum hyper-period
in [BBBR11]. They assume that tasks do not have a single period, but the period is
given as range of integer numbers, e.g., period is not given as 70 but as a range of
integers [68, 72] ≡ {68, 69, 70, 71, 72}. After the selection of a period at design time,
this period is used at runtime for the lifetime of the tasks, i.e., there is no change of the
periods at runtime. Their method to calculate the minimum hyper-period is called Fast
Hyper-period Search (FHS).

58 Chapter 4. Task Parameter Transformation

Figure 4.23: ESA runtimes to calculate the minimum hyper-period.

FHS performs the calculation of the minimum hyper-period in the following steps:

1. A hyper-period based on the original period of each task is calculated as �rst
reference hyper-period.

2. All possible period combinations for the LCM of the �rst η tasks are calculated.
Hence, the larger η is, the more time consuming these calculations are (see ESA
in Section 4.7.3).

3. Next, the list of these possible hyper-periods is sorted in ascending order.

4. Each element of the list is used to check whether this a possible hyper-period of
the remaining tasks. If there is a valid period for each of the remaining tasks, the
element is set as the new shortest hyper-period. If there is at least one task in
whose period range is not a valid divisor, the next element in the list is checked until
the next element is greater than the currently shortest hyper-period. (reference
hyper-period).

5. In this step, the list of sorted periods is multiplied by an iteration counter d + 1
(for original sorted list d = 1) and step 4 is repeated. This process is repeated
until the �rst element of the multiplied sorted list is the new shortest hyper-period
(reference hyper-period) or the �rst element is larger than the current reference
hyper-period.

For more details about the algorithm, we refer the interested reader to [BBBR11].
For the �rst η tasks all possible hyper-periods are calculated which is analogue to ESA.
In the next section, we show the runtime behavior of FHS for minimum η, i.e., η = 2,

4.7. Evaluation: An Application of Parameter Transformation 59

to illustrate the runtime improvements. Additionally, we show the in�uence of larger
values for η. Finally, we show that by generating new periods, the hyper-period can be
drastically reduced in a reasonable amount of time by using FHS.

4.7.5 Evaluation of the Effectiveness and Efficiency
We performed our runtime experiments on an Intel XEON processor E5-2670 running
at 2.60 GHz. Each experiment consists of calculating the minimum hyper-period for
n ∈ {2, ..., 60} tasks with κ = {7, ..., 10} additional periods. We generate task periods
randomly between 50 and 1000 time units. The selection of tasks is done as before,
i.e., a task set is always the task set as before extended by one additional task or
period, respectively. The presented results are based on runtimes of 100 experiments.
In addition, we measured runtimes with a granularity, i.e., also minimum measured
runtime, of 1 µs. First test runs showed extremely long runtimes for small κ and shorter
runtimes for increasing κ. Thus, we performed experiments for up to 60 tasks for 7 to
10 additional periods. Figure 4.24 shows mean runtimes results for η = 2 using FHS
algorithm.

Figure 4.24: Mean runtimes of FHS to calculate the minimum hyper-period.

In general, runtimes strongly increase with increasing number of tasks. The slope of
the curves �atten for higher number of tasks which can be explained by the restricted
range of periods, i.e., at some point it is likely that a new period is a multiple or divisor
of an already existing period and hence, does not strongly in�uence the hyper-period
calculations. Furthermore, with increasing number of additional periods, the mean
runtimes decrease. With more possible periods, the list of possible periods in step 2

60 Chapter 4. Task Parameter Transformation

is larger and hence, it is more likely to �nd a possible hyper-period in this set which
results in shorter runtimes. As enlarged in the �gure, for only a few tasks, runtimes
are shorter with less additional periods, because the overhead of calculating the set of
possible hyper-periods takes longer than the procedures afterwards.
As we mentioned before, the calculation of the hyper-periods is highly data-dependent.

As an example, Figure 4.25 on page 61 shows a box plot of the measured runtimes
including the mean runtimes for κ = 8 and Figure 4.26 on page 62 presents all measured
runtimes in a scatter plot. The results for κ = {7, 9, 10} are shown in the appendix
in Section A.1. The majority of runtimes is even below the mean runtimes but several
much larger exceptions, with a di�erence of one to two orders of magnitude, increase the
mean runtimes. The range of runtimes is between four and seven orders of magnitude
which con�rms the data-dependency of the hyper-period calculation.

4.7. Evaluation: An Application of Parameter Transformation 61

F
ig
u
r
e
4
.2
5
:
B
o
x
p
lo
t
o
f
F
H
S
ru
n
ti
m
es

a
n
d
m
ea
n
ru
n
ti
m
es

o
f
F
H
S

62 Chapter 4. Task Parameter Transformation

F
ig
u
r
e
4
.2
6
:
S
ca
tter

p
lo
t
o
f
F
H
S
ru
n
tim

es
a
n
d
m
ea
n
ru
n
tim

es
o
f
F
H
S

4.7. Evaluation: An Application of Parameter Transformation 63

The results shown so far based on η = 2, i.e., minimizing the in�uence of the cal-
culation of the set of possible hyper-periods by calculating all possible combinations.
In Figure 4.27, we show the mean runtimes for κ = 7 and κ = 8 with η ∈ {2, 4, 5}.
We show runtime results for at least 10 tasks to avoid just showing the runtimes of the
calculation of the set of possible hyper-periods. Both graphs in the �gure show that
higher η results in longer runtimes. This results from the fact that in each iteration step
the set of possible hyper-periods is multiplied by the iteration counter d which is time
consuming. As a consequence, larger η results in a larger set of possible hyper-periods
and hence, the runtimes are strongly a�ected by the multiplications. The impact of η
is strong because of the number of possible hyper-periods in the initial set is (κ+ 1)η.

Figure 4.27: Mean runtimes for FHS with varying η.

Based on the results of the runtimes shown before, we can see that the minimum
hyper-period can be calculated within seconds up to a few hours for up to 60 tasks
with 10 additional periods. On the contrary, ESA showed already for 10 tasks with
10 additional periods runtimes of about one hour. As a consequence of using FHS, we
can e�ciently apply our transformation method of creating additional periods. In the
following, we show the e�ectiveness of our method, i.e., that we can drastically improve
the hyper-period and hence, reduce memory consumption of TT schedule tables. To
illustrate the improvements, we show the results for an representative example with 30
tasks with η = 2 and κ ∈ {7, 8, 9, 10}. Figure 4.28 compares the minimized hyper-period
for κ ∈ {7, 8, 9, 10} with the hyper-period determined without additional periods. As a
result,we can see that in all four cases, all 100 experiments showed an improvement in
the length of the hyper-period.

64 Chapter 4. Task Parameter Transformation

Figure 4.28: Optimized hyper-period for n = 30 and η = 2: comparison to reference hyper-
period.

Figure 4.29 compares the hyper-periods for four di�erent values of κ. We can con�rm
the expected result that with more additional periods the optimized hyper-period is
never larger than the one with less additional periods. When comparing Figure 4.29
with Figure 4.28, we can also show the drastic improvement of the hyper-period. In
summary, the optimized hyper-periods are below 1013 time units whereas the original
hyper-periods are up to 1020 time units.

Figure 4.29: Optimized hyper-period for n = 30 and η = 2: comparison for di�erent number
of additional periods κ

4.7. Evaluation: An Application of Parameter Transformation 65

To summarize the experiments in this section, our method to transform sporadic tasks
can also be applied to transform periodic tasks. We gain new periods which can be used
to optimized the hyper-period of TT schedule tables to reduce memory consumption
and shorten scheduling process. Further, by applying FHS, we can make use of the
additional periods to e�ciently and e�ectively minimize the hyper-period.

Chapter 5

Time-Triggered Schedule Tables with Mode
Changes

In this chapter, we show methods for the e�ective and e�cient construction of time-
triggered (TT) schedule tables. The methods focus on the construction of two modes,
each with one schedule table, for mixed-criticality systems with two criticality levels,
so-called dual-criticality systems. We present di�erent methods that altogether form an
algorithm to construct the schedule tables. The �rst method separates the demand of
jobs determined by the designers from the additionally needed demand to ful�ll the hi-
criticality worst-case execution times (WCETs) of the Certi�cation Authorities (CAs).
We split hi-criticality jobs into two jobs to obtain jobs with only one WCET. In the
next step, we construct the TT schedule tables. The schedule tables are created slot
by slot starting in the lo-criticality table and then, scheduling the same slot in the
hi-criticality table. An important step is then the calculation of the leeway. The leeway
of a slot determines whether the job in this slot can meet its deadline, including future
demand of this job, or not. Instead of scheduling until a deadline miss occurs, we can
detect infeasible schedules earlier. By doing this, we can reduce the complexity of the
scheduling process. If the leeway is negative, then we apply our backtracking method
called swapping. We swap the scheduling decisions of two slots such that both jobs
in the slots can meet their deadline. In contrast to standard backtracking, we do not
need to check all possible scheduling decisions in the previous schedule but only slots
with speci�c leeway values. The advantage of swapping is a strong reduction in the
complexity of the backtracking process.
In Section 5.1, we describe the general behavior of TT mode changes. Next, we show

our method to separate the designers' based demand from the demand introduced by
CAs' pessimistic assumptions in Section 5.2. Further, Section 5.3 presents the method to
construct the schedule tables. As mentioned before, a possible backtracking procedure
is needed which is shown in Section 5.4. In Section 5.5, we illustrate our algorithm with
an example. The evaluation in Section 5.6 shows the e�ectiveness and e�ciency of our
algorithm. Next, Section 5.7 and Section 5.8 discuss extensions and open questions.
Finally, Section 5.9 concludes the chapter with a discussion.

67

68 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

5.1 Time-Triggered Mode Changes
Modern embedded systems are often composed of safety-critical applications which are
subject to certi�cation. In these systems, there is a trend to combine highly safety-
critical with less safety-critical applications on the same platform. In avionics, for
instance, design approaches are moving from the federated approach (FA) to the in-
tegrated modular avionics (IMA) approach. A common approach for these systems is a
spatial and temporal isolation between activities, e.g., in ARINC [ARI03]. As a conse-
quence of the complete isolation, resources can only sub-optimally be used. As a result,
task and job sets are composed of a combination of tasks and jobs which are subject
to certi�cation and less critical tasks and jobs which are not subject to certi�ccation.
Hence, the problem is to schedule mixed-criticality task and job sets. Thus, there is a
need for guaranteeing tasks and/or jobs with di�erent requirements and assumptions.
In our approach, we make use of time-triggered (TT) schedule tables with mode changes
to meet designer and certi�cation requirements while making e�cient use of resources.
In this chapter, we use the Vestal mixed-criticality model, shown in Chapter 3, with

two criticality levels lo and hi. The presented methods work on job basis, hence, when
we talk of jobs, we make no di�erence between single jobs or jobs which are instances of
a periodic task. Further, we assume that all jobs have known release times, worst-case
execution times (WCETs) and deadlines.

5.1.1 General Discussion and Assumptions
In the following, we describe and discuss the basic elements of our approach. First,
we de�ne the TT approach and continue with the mixed-criticality assumptions for our
method. Finally, we show the issues we have to consider when implementing mode
changes in our approach. TT architectures (TTA) [KB03] are often used for safety-
critical applications. These architectures are characterized by global time base and
complete determinism of the TT components.

De�nition 5.1. Time-Triggered Architecture [Kop11]
A distributed computer architecture for real-time applications, where all components
are aware of the progression of the global time and where most actions are triggered by
the progression of this global time. C

In our approach, the execution of all jobs is only triggered by progression of time.
This TT paradigm [Kop11] is characterized by complete determinism which simpli�es
veri�cation and thus, certi�cation.
We assume a dual-criticality system in which mixed-criticality jobs are character-

ized by two WCETs. The two WCETs represent the di�erent assumptions of designers
and certi�cation authorities (CAs) about the con�dence in the bound on the execution
times. By the nature of the system, hi-criticality jobs have higher importance than
lo-criticality jobs. For instance, �ight-critical (hi-criticality) jobs, e.g., guidance, navi-
gation, and control, in Unmanned Aerial Vehicles (UAVs) are more important than so-
called mission critical (lo-criticality) jobs, e.g., video recording and streaming. Failing

5.1. Time-Triggered Mode Changes 69

lo-criticality jobs degrade the performance of the system but failing hi-criticality jobs
can lead to destruction and loss of the system and even to dangers for human beings.
As a result, meeting deadlines is important for both job types but in an emergency,
hi-criticality jobs are prioritized. This prioritization is represented in the scheduler
mode: schedule tables are constructed such that only hi-criticality jobs are executed in
case of an unexpected behavior, i.e., one or several hi-criticality tasks exceeding their
designer-based WCETs.
In the past, mode changes were used to accommodate for di�erent behaviors of pro-

cesses, e.g., aircraft control systems during di�erent phases like take o�, �ight, and
landing. In the context of mixed-criticality systems, we use mode changes to ful�ll
the requirements of the designers and the CAs. We construct one mode for each crit-
icality level, here, for dual-criticality, we use two modes: one mode ful�lling designer
requirements, i.e., all jobs must meet their deadlines with WCETs based on designers'
assumptions; second mode ful�lling CAs' requirements, i.e., hi-criticality must meet
their deadlines with WCETs based on CAs' pessimistic assumptions to obtain a high
con�dence in the execution time bounds. CAs certify only hi-criticality jobs and hence,
are not interested in the behavior of lo-criticality jobs as long as they do not interfere
with hi-criticality jobs.
In general, it is possible to construct modes such that during a mode change a tran-

sition mode is executed to switch from one to another mode. In our approach, we
construct modes, i.e., schedule tables, such that there is no transition mode necessary.
Additionally, we construct the schedule tables such that switching from lo-criticality
to hi-criticality mode is possible at every time instant without violation of the certi�ed
hi-criticality jobs. In the following, we refer to this property as switch-through property.
If modes are not constructed with switch-through property, we need to determine black-
out slots [Foh94], i.e., slots in the schedule in which we cannot switch from the current
mode to the destination mode.
In summary, we construct two schedule tables to meet designers' and CAs' require-

ments such that a change of operational mode from lo to hi is possible at every time
instant.

5.1.2 Schedule Tables with Mode Changes

The pre-computed schedule tables represent schedule decisions for the entire runtime of
the system. At the end of a schedule table, the table is repeated. Although switching
back from hi-criticality to lo-criticality mode is not speci�ed in the problem statement,
e.g., in [BF11], we can safely switch back to lo-criticality mode at the end of a schedule
table.
Baruah and Fohler showed that mode change schedulers, e.g., [Foh94], can be used to

accommodate for demands of mixed-criticality job sets [BF11]. The di�erent modes are
used to accommodate the di�erent requirements of lo- and hi-criticality behavior. They
create for each mode one schedule table, i.e., for dual-criticality systems two schedule
tables. Due to the fact that the table for hi-criticality behavior has to be certi�ed,
we have to guarantee not missing a deadline under CAs' pessimistic assumptions. For

70 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

the certi�cation, it is su�cient to guarantee only the hi-criticality jobs based on CAs'
assumptions and hence, the hi-criticality schedule table (mode) needs only to contain
hi-criticality jobs. In Baruah's and Fohler's approach [BF11], they include lo-criticality
jobs into the hi-criticality mode to obtain the switch-through property.
Determining whether a mixed-criticality job set is schedulable by a TT scheduler,

is highly intractable [BF11]. Thus, there can be no polynomial or pseudo-polynomial
time algorithm for constructing the lo- and hi-criticality schedule table for any TT-
schedulable mixed-criticality job set [BF11].

5.1.3 Runtime Behavior
Our goal is to construct the schedule tables such that we obtain schedule tables with
switch-through property. In other words, at every time-instance t in the hi-criticality
table, there must not be more time reserved for each job before t than in the lo-
criticality schedule table. In the following, we refer to the lo-criticality schedule table
as lo-table and to the hi-criticality schedule table as hi-table. Figure 5.1 presents
a counter-example, i.e., two schedule tables without switch-through, to illustrate the
problem of constructing the schedule tables. Switching from lo-table to hi-table at
t = 3 leads to violation of Ji's required WCET for the hi-criticality case. At design
time, the construction of the schedule tables has to ensure the switch-through property.

Figure 5.1: Counter-example: although hi-table guarantees CAs' requirements for Ji, the
missing switch-through property prevents correct system behavior.

At runtime, the system starts in lo-criticality mode, i.e., using schedule table lo-table
with designers' assumptions. Harming designers' assumptions, i.e., exceeding Ci(lo) of
a hi-criticality job leads to a switch to hi-criticality mode, i.e., using schedule table hi-
table. After the mode change, we can guarantee that all hi-criticality jobs are provided
at least their Ci(hi) in total.

5.2. Allocation of Jobs to Modes 71

Example. In the following, we present an example to illustrate that obtaining the
switch-through property is not trivial by constructing two schedule tables based on pure
EDF. The example shows that traditional scheduling criteria, e.g., deadlines (based on
EDF), are not enough to create the TT schedule tables. Table 5.1 shows the given job
set for the example.

χi ri di Ci(lo) Ci(hi)

J1 lo 0 3 1 1

J2 hi 0 4 2 2

J3 hi 1 3 1 2

Table 5.1: Example mixed-criticality job set.

The goal is to construct two TT schedule tables for which switching from lo-table
to hi-table is possible at every time-instant in case of a hi-criticality job exceeding its
Ci(lo). First, we create both schedule tables based on pure EDF. In Figure 5.2(a),
hi-table is constructed independently of lo-table.

(a) Independently constructed schedule tables
based on EDF.

(b) Schedule tables with necessary switch-
through property.

Figure 5.2: Schedule tables to illustrate that traditional scheduling criteria are not enough.

Switching from lo-table to hi-table at t = 2, due to J3 showing hi-criticality behavior,
leads to not enough resources for J2. As a consequence, traditional scheduling criteria as,
e.g., deadlines, are not enough. When creating the schedule tables, we have to consider
a possible hi-criticality behavior of hi-criticality jobs. Figure 5.2(b) shows a possible
solution that allows for switching at every time-instant (switch-through property). ♦

5.2 Allocation of Jobs to Modes
In this section, we present how we separate demand based on designers' assumptions
and additional demand by CAs' pessimistic assumptions for hi-criticality jobs. The
construction of the schedule tables takes scheduling decision with the granularity of
slots, i.e., the scheduler is preemptive at slot borders.

72 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

In a �rst step, we split hi-criticality jobs to separate the lo-criticality WCET and
the additionally needed WCET in the hi-criticality case. As a result, we obtain jobs
with only one WCET each. Remember that lo-criticality jobs can be excluded in the
hi-criticality schedule table.
lo-criticality jobs Ji, which are only present in lo-table, are not split and the WCET

Ci is set to Ci(lo). The remaining parameters of these jobs remain unchanged. Each
hi-criticality job Ji is split into a job Jlo

i , which is the portion present in both tables
and a job J∆

i , which is the portion that is additionally needed in hi-criticality case.
The calculation of the WCETs, which we will use as input for our scheduler, are shown
in Equations (5.1) - (5.3). Note that splitting hi-criticality job Ji results in two jobs
Jlo

i and J∆
i both with the same index i. The di�erence is the super-script: lo for the

portion present in both tables and ∆ for the portion that is additionally needed in the
hi-criticality case. Both jobs feature the same sub-scripts as the original job.

Ji : Ci = Ci(lo) if χi = lo (5.1)

Jlo

i : Clo

i = Ci(lo) if χi = hi (5.2)

J∆
i : C∆

i = Ci(hi)− Ci(lo) if χi = hi (5.3)

In Figure 5.3, ri and di represent the original release time and deadline, respectively.
For the split jobs, we now derive new parameters based on the original parameters of
the hi-criticality job. The release time rloi of Jlo

i is equal to original release time ri:

rloi = ri (5.4)

The deadline of Jlo

i must be set early enough such that there remains enough time
to schedule the additionally needed WCET in the hi-criticality case. As a result, the
deadline of Jlo

i is set to

dloi = di − C∆
i

= di − [Ci(hi)− Ci(lo)] . (5.5)

The WCET of J∆
i represents the temporal portion which is additionally needed in the

hi-criticality case. The earliest possible release time of J∆
i occurs when its corresponding

job Jlo

i is scheduled directly at the beginning of the execution window. Hence, we set
the release time of a job J∆

i to

r∆
i = ri + Clo

i

= ri + Ci(lo). (5.6)

The deadline of J∆
i is equal to the deadline of its corresponding original job Ji:

d∆
i = di (5.7)

5.3. Time-Triggered Schedule Table Generation 73

Figure 5.3: Derivation of parameters for split hi-criticality jobs.

This parameter assignment results in maximum slack for both Jlo

i and J∆
i . To avoid

that J∆
i is scheduled before Jlo

i , we add a precedence constraint between them:
Jlo

i ≺ J∆
i , i.e., J

∆
i cannot be scheduled before Jlo

i is completely scheduled. As a
consequence, we can guarantee with J∆

i that in hi-criticality case the additionally needed
WCET is scheduled. The two resulting jobs Jlo

i and J∆
i of a split hi-criticality job Ji

keep their criticality level hi. Table 5.2 gives an overview of the denomination of the
original and the split jobs' parameters.

original jobs split jobs

job
release

deadline WCETs criticality job
release

deadline WCET criticality
time time

Ji ri di Ci(lo) = Ci(hi) χi = lo Ji ri di Ci χi = lo

Ji ri di Ci(lo) ≤ Ci(hi) χi = hi

Jloi rloi dloi Cloi χloi = hi

J∆
i r∆

i d∆
i C∆

i χ∆
i = hi

Table 5.2: Overview of job parameters.

The input job sets for the scheduler are represented by S(lo) for lo-criticality mode
and by S(hi) for hi-criticality mode. The lo-criticality table lo-table contains all jobs
in the set S(lo) while the hi-criticality table hi-table contains all jobs in the set S(hi)
with:

S(lo) = {Ji, Jlo

k } with (χi = lo) ∧ (χlo

k = hi)∀{i, k} ∈ {1, ..., n} (5.8a)

S(hi) = {Jlo

i , J∆
k } with (χlo

i = hi) ∧
(
χ∆
k = hi

)
∀{i, k} ∈ {1, ..., n} (5.8b)

By splitting the jobs, we now can schedule the job sets S(lo) and S(hi) to satisfy the
switch-through property. We ensure this by scheduling jobs Jlo

i , which are present in
both modes, at the same time in both tables and obeying the precedence constraints.

5.3 Time-Triggered Schedule Table Generation
In the following, we create one schedule table for each of the two modes. The modes
are characterized by their schedule table and thus, we use the terms schedule table and
mode for lo-table and hi-table interchangeably.

74 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

Based on the job sets S(lo) and S(hi), we now show how to construct the sched-
ule tables lo-table and hi-table for lo- and hi-criticality mode with switch-through
property. We construct the schedule tables slot by slot, i.e., we implement preemptive
scheduling with the slot as the atomic unit of execution. Additionally, construction
of the scheduling tables is done concurrently for both tables, i.e., we schedule a slot
i in both schedule tables (�rst in lo-table then in hi-table) before we proceed to the
next slot i + 1. The length of the schedule table is determined by the last deadline
of the job set or the hyper-period in case of a job set derived from a periodic task
set. Scheduling decisions are represented by a search tree which is based on iterative
deepening [Kor85]. Each scheduling decision for a slot in both tables, i.e., a pair of
selected jobs, is represented by an edge in the search tree. The levels of the search
tree (the nodes) correspond to a scheduled slot, except for the root node which is the
starting point for the �rst scheduling decision. Based on the history of decisions, a node
represents a possible partial schedule of both tables at a given point in time.

In each node of a path, several scheduling decisions can be taken, leading to di�erent
(partial) schedules. All combinations of possible scheduling decisions form the complete
search tree. Leaf nodes in a complete search tree represent complete schedules, both
feasible and infeasible ones. The search for a feasible schedule is di�cult due to the fact
that we schedule mixed-criticality job sets with precedence constraints. Further, the
table generation process requires the simultaneous construction of two schedule tables:
lo-table and hi-table. Our selection of jobs in both tables uses a heuristic which is
based on EDF and the criticality levels of the jobs. If a scheduling decision leads to
infeasible schedule tables, we use a backtracking method, which we refer to as swapping,
to search for another schedule table. In classic backtracking, all possible decisions in a
search tree are considered which can be extremely complex. We use swapping, presented
in Section 5.4, for backtracking which is based on the demand of hi-criticality jobs to
reduce the complexity of backtracking.

5.3.1 Low Criticality Schedule Table

In the lo-criticality mode lo-table, we select a ready job of the set S(lo) with the
earliest deadline. We introduce the concept of leeway δ(s) of a slot s as a heuristic
function for our backtracking mechanism. The calculation of the leeway depends on the
criticality level of the selected job in the current slot: for lo-criticality jobs Ji, the leeway
represents the di�erence between the deadline of the selected job and the current time,
i.e., end of current slot. For hi-criticality jobs Jlo

i , the leeway represents the di�erence
between the deadline of the selected job Jlo

i and the current point in time reduced
by the remaining, i.e., which have not been completely scheduled, demand of all jobs
J∆
k with k ∈ {1, ..., n} which have to be scheduled in hi-table until the deadline of J∆

i .
The demand g∆(t) at time t represents the demand in the interval [0, t] accumulated by
all jobs J∆

i . The function g
∆
sched(t) keeps track of the already scheduled demand of hi-

criticality jobs J∆
i with deadlines until d∆

i . Equation (5.9) shows the leeway calculation

5.4. Backtracking Procedure: Swapping 75

based on the criticality level of the selected job. If there is no job scheduled in a slot,
we de�ne the leeway to be in�nity.

δ(s) =

di − (s+ 1) if χi = lo[
d∆
i − (s+ 1)

]
−
[
g∆(d∆

i)− g∆
sched(s)

]
if χlo

i = hi

∞ else

(5.9)

The current slot sc in the hi-criticality schedule table hi-table has not been scheduled
yet, hence, g∆

sched(sc) does not include the scheduled demand of hi-criticality jobs J∆
i in

the current slot in hi-table. Due to the fact that g∆
sched(sc) is only part of the equation if

there is a hi-criticality job Jlo

i scheduled, g∆
sched(sc) will not be increased in this slot in hi-

table because in hi-table there will be a job Jlo

i scheduled which does not contribute to
g∆
sched(sc). We show the corresponding scheduling decisions for hi-table in Section 5.3.2.
For each slot in the mode lo-table, we calculate the leeway. A non-negative leeway
means it is possible to schedule remaining jobs J∆

i in the hi-criticality mode. Thus, we
continue the scheduling process by scheduling the current slot in mode hi-table. If the
leeway is negative, then independent of succeeding scheduling decisions, all paths in the
search tree will lead to leaves representing infeasible schedules. As a consequence, we
start backtracking based on our heuristic which we show in Section 5.4. Based on the
heuristic function (leeway), a preceding node in the search tree is searched to apply for
backtracking, i.e., we change the scheduling decision for that slot.

5.3.2 High Criticality Schedule Table
Based on the decision in lo-table, we select a job for hi-table. If the scheduled job in the
current slot in schedule table lo-table has criticality level hi, i.e., Jlo

i , with i ∈ {1, .., n}∧
χlo

i = hi, then we schedule the same job Jlo

i in the current slot in mode hi-table. If the
scheduled job in the current slot in mode lo-table is a lo-criticality job Ji, or no job
is scheduled, then we select a hi-criticality job J∆

k , with k ∈ {1, ..., n} ∧ χ∆
k = hi, with

ful�lled precedence constraints and earliest deadline. After scheduling a hi-criticality
job J∆

k , we increase the amount of already scheduled demand g∆
sched(sc) by one slot.

After scheduling the current slot, we check whether a deadline miss of a hi-criticality
job J∆

i , with i ∈ {1, ..., n} ∧ χ∆
i = hi, occurred. In this case, the scheduling process is

aborted. It is possible to extend the method by applying standard backtracking in this
case to search for a solution at cost of increasing the complexity of scheduling again.
After scheduling this slot in the hi-criticality mode hi-table, we continue with schedul-

ing the next slot.

5.4 Backtracking Procedure: Swapping
As shown before, it is possible that we have to change scheduling decisions which is done
by applying a form of backtracking. In this section, we present our method to reduce
the complexity of the backtracking mechanism. If the scheduler calculates a negative

76 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

leeway for a slot, we apply backtracking with our heuristic based on the leeway. Fig-
ure 5.4 describes the di�erences between classic backtracking and our applied methods.
Solid arrows represent scheduling decisions and dashed arrows are backtracking steps.
In column (I), classic backtracking is applied. For instance, the fourth scheduling deci-
sion leads to a deadline miss (DL miss), then the scheduler goes back to a higher level
to take another scheduling decision which is shown by the �fth and sixth arrow. If in
the higher level all possible scheduling decisions are already exploited, here represented
by arrows four and six, then the scheduler goes back to the next higher level in the tree
� as shown by eighth arrow. The steps are repeated until a feasible schedule is found or
the complete tree is explored.
In column (II), we integrate the leeway for an earlier detection that the current path will
lead to a deadline miss. Here, a negative leeway is an exact indicator that independent
of the next scheduling decisions a deadline miss will occur, e.g., after scheduling decision
indicated by third arrow. Hence, we can already reduce the complexity just by applying
the leeway for early detection of future deadline misses. Further steps follow the classic
backtracking approach.
In column (III), we additionally integrate the backtracking procedure called swapping
which allows for further reduction of the tree by guiding the backtracking. After the
third scheduling decision, we check the slots already scheduled for a promising prede-
cessor such that we can skip one or several backtracking steps, e.g., as shown by fourth
arrow.

Figure 5.4: Backtracking methods: (I) classic backtracking, (II) classic backtracking with early
detection, (III) swapping with early detection.

In the following, we describe our swapping procedure. Depending on the criticality of
the jobs in the a�ected slots, there are di�erent consequences for the swapping procedure.
In Figure 5.5 column (I), scheduling decision (b) for current slot sc leads to a negative
leeway and hence, all succeeding scheduling decisions will yield infeasible schedule tables.

5.4. Backtracking Procedure: Swapping 77

Figure 5.5: Swapping in the search tree and consequences for the scheduling decisions.

As a consequence, we may skip the search for a feasible schedule in this part of the search
tree. By this early detection of paths leading to infeasible schedule tables, we save the
time to check all succeeding decisions and thus, reduce the complexity.
Based on the leeway values, we look for a promising predecessor node to continue the

scheduling process with a di�erent scheduling decision for that node, as indicated by
the dashed (red) arrow in Figure 5.5 column (I) from (b) to (a). We start in the current
slot sc and proceed upwards in the tree structure, checking based on the leeway of each
slot whether it is a possible slot sswap for which we can swap the scheduling decision.
The conditions that de�ne this swapping slot sswap are: The swapping slot sswap must
be later than the release time of job scheduled by decision (b). Furthermore, the leeway
of a candidate for the swapping slot must be greater than or equal to the di�erence
in number of slots between the current slot and the candidate for the swapping slot.
Inequalities (5.10a) and (5.10b) show these conditions. Additionally, the swapping slot
has to be early enough such that the job in the current slot can meet its deadline which
is represented by the condition in Inequality (5.10c). If these conditions are ful�lled, we
can delay scheduling decision (a) of the swapping slot without violating the deadline.
Further, the remaining demand of high criticality jobs in mode hi-table can be scheduled
until the deadline of the job in the swapping slot.{

ri ≤ sswap if χi = lo

rloi ≤ sswap if χlo

i = hi
(5.10a)

δ(sswap) ≥ sc − sswap (5.10b)

sswap ≤ sc + δsc (5.10c)

78 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

Once we found a slot which ful�lls the swapping conditions, we now take scheduling
decision (b) for sswap and decision (a) for sc, which can be seen in Figure 5.5 column (II).
The scheduling decisions after the swapping slot, e.g., decision (c), remain unchanged.
In other words, we only swap the decisions of the two slots sc and sswap. After swapping
the decisions of the two slots, we have to recalculate the leeway values of these slots.
By swapping scheduling decisions (a) and (b), it is possible that ful�lled precedence

constraints are not ful�lled anymore and/or scheduled demand of hi-criticality jobs J∆
i

is changed. In this case, we cannot continue with scheduling decision (c) after sswap and
we continue the scheduling process after sswap with a possibly di�erent decision (d) for
the next slot. This is shown in Figure 5.5 column (III). As a result, the current slot sc
is set to the swapping slot sswap and we continue the scheduling process from that slot.
Depending on the scheduled jobs in the current slot and the swapping slot, there are

six di�erent cases which have to be considered when making swapping decisions. In the
following, we present these cases and the consequences for the scheduling process. We
refer to slots in mode lo-table by slo and slots in mode hi-table by shi. We group the
di�erent cases into the two categories already shown in Figure 5.5 in columns (II) and
(III): for category NC (No Change), there is no need to change scheduling decisions be-
tween slot sc and sswap, whereas in category DC (Decisions Changed), we set sc := sswap
and continue scheduling from this point with possibly di�erent scheduling decisions.

Case 1. In both slots sloc and sloswap, a lo-criticality job is scheduled. In shiswap, no
job is scheduled. The schedule which triggers swapping is shown in Figure 5.6(a). We
swap slots in lo-criticality mode lo-table and update the leeway of sc and sswap. The
swapping slot in the hi-criticality mode remains unchanged because if there was no
hi-criticality job J∆

m with m ∈ {1, ..., n} ready to be scheduled, swapping of two lo-
criticality jobs does not in�uence this. In a last step, we schedule the current slot in
the hi-criticality mode. Figure 5.6(b) depicts the situation after swapping the decision
in slots sc and sswap. In this case, swapping does not change any precedence constraints
and this refers to category NC.

(a) Slots before swapping. (b) Slots after swapping.

Figure 5.6: Swapping case 1.

Case 2. In both slots sloc and sloswap, a lo-criticality job is scheduled. In shiswap, a
hi-criticality job J∆

m is scheduled. Figure 5.7(a) shows this situation. We swap slots

5.4. Backtracking Procedure: Swapping 79

in lo-criticality mode lo-table and update the leeway of sc and sswap. Swapping two
lo-criticality jobs does not change precedence constraints, and hence, the scheduled job
in shiswap remains unchanged. Finally, we schedule the current slot in the hi-criticality
mode. The schedule after swapping is shown in Figure 5.7(b). Here, swapping refers to
category NC.

(a) Slots before swapping. (b) Slots after swapping.

Figure 5.7: Swapping case 2.

Case 3. In slot sloc , a lo-criticality job Ji and in slot sloswap, a hi-criticality job Jlo

k

are scheduled. In shiswap, the same hi-criticality job Jlo

k as in sloswap is scheduled which
is shown in Figure 5.8(a). We swap slots in lo-criticality mode lo-table and update
the leeway of sc and sswap. Now we must check whether ful�lled precedence constraints
have been changed by swapping, i.e., whether an already ful�lled precedence constraint
between sswap and sc is now not ful�lled anymore or is ful�lled at a later slot.
If ful�lled precedence constraints have been changed, then we re-schedule slot shiswap and
set the swapping slot as current slot and continue the scheduling process at slot sc.
Figure 5.8(b) shows the schedule after this actions. This case refers to category DC.
If ful�lled precedence constraints have not been changed, then we swap shiswap and shic
(unscheduled yet) and re-schedule shiswap based on the ful�lled precedence constraints
at that time, as described in Section 5.3.2. Figure 5.8(c) depicts the schedule after
swapping and the actions result in category NC.

Case 4. Figure 5.9(a) illustrates the situation which triggers the swapping: In slot sloc , a
hi-criticality job Jlo

i and in slot sloswap, a lo-criticality job Jk are scheduled. In s
hi

swap, no
job is scheduled. We swap slots in lo-criticality mode lo-table and update the leeway
of sc and sswap. In slot shiswap, we schedule the same job J

lo

i as in sloswap (after swapping).
As a consequence, we update g∆

sched(s) and leeway δ(s) for s ∈ {sswap, ..., sc}. Eventually,
we schedule the current slot in the hi-criticality mode as depicted in Figure 5.9(b). This
case refers to category NC.

Case 5. In slot sloc , a hi-criticality job Jlo

i and in slot sloswap, a lo-criticality job Jk
are scheduled. In shiswap, a hi-criticality job J∆

m is scheduled as shown in Figure 5.10(a).
First, we check whether scheduling J∆

m in shic leads to a deadline miss.

80 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

(a) Slots before swapping.

(b) Slots after swapping (changed ful�lled prece-
dence constraints).

(c) Slots after swapping (unchanged ful�lled
precedence constraints).

Figure 5.8: Swapping case 3.

(a) Slots before swapping. (b) Slots after swapping.

Figure 5.9: Swapping case 4.

If yes, then we have to search for another swapping slot.
If this does not lead to a deadline miss, then we swap slots in lo-criticality mode lo-
table. Then, we swap shiswap and s

hi

c (unscheduled yet) and schedule in shiswap the same
job Jlo

i as in slot sloswap (after swapping in lo-table). As a consequence, we update
g∆
sched(s) and leeway δ(s) for s ∈ {sswap, .., sc}. Figure 5.10(b) depicts the schedule after
swapping. The category for this swapping case is NC.

Case 6. As Figure 5.11(a) shows, in both slots sloc and sloswap, hi-criticality jobs Jlo

i

and Jlo

k are scheduled. Further, in shiswap, the same hi-criticality job Jlo

k is scheduled as
in slot sloswap. We swap slots in lo-criticality modes and update the leeway of sc and

5.4. Backtracking Procedure: Swapping 81

(a) Slots before swapping. (b) Slots after swapping.

Figure 5.10: Swapping case 5.

sswap. Now we must check whether ful�lled precedence constraints have been changed
by swapping.
If ful�lled precedence constraints have been changed, then we schedule Jlo

i in slot shiswap,
set the swapping slot as current slot, and continue the scheduling process. We show this
in Figure 5.11(b). This refers to category DC.
If ful�lled precedence constraints have not been changed, then we schedule Jlo

i in slot
shiswap as presented in Figure 5.11(c). This situation is categorized into category NC.

(a) Slots before swapping.

(b) Slots after swapping (changed ful�lled prece-
dence constraints).

(c) Slots after swapping (unchanged ful�lled
precedence constraints).

Figure 5.11: Swapping case 6.

82 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

In summary, the leeway allows for an early detection of scheduling decisions that
result in infeasible schedules. Further, we can reduce the complexity of backtracking by
the application of our swapping procedure.

5.5 Example of Schedule Table Construction

In the following, we present a small example showing the construction of the TT schedule
tables. Further, the example shows our backtracking method swapping. In Table 5.3, we
show the job set used in this example. The job set consists of four jobs: two lo-criticality
jobs and two hi-criticality jobs.

jobs
criticality lo-criticality hi-criticality release (absolute)

level WCET WCET time deadline

J1 lo 1 1 0 4

J2 lo 2 2 0 6

J3 hi 1 4 0 8

J4 hi 1 4 0 8

Table 5.3: Example job set for the schedule table construction.

In a �rst step, we split the jobs as shown in Section 5.2. We apply Equations (5.1)
- (5.7) to determine the parameters for the split jobs. lo-criticality jobs J1 and J2

are not split and we assign the lo-criticality WCET as new WCET for the job after
the splitting procedure. The other parameters remain unchanged. hi-criticality jobs J3

and J4 are split into Jlo

3 and J∆
3 , and into Jlo

4 and J∆
4 , respectively. Table 5.4 depicts

the split jobs.

jobs
criticality

WCET
release (absolute)

level time deadline

J1 lo 1 0 4

J2 lo 2 0 6

Jlo

3 hi 1 0 5

J∆
3 hi 3 1 8

Jlo

4 hi 1 0 5

J∆
4 hi 3 1 8

Table 5.4: Job set after separating the demand of designers and additional demand introduced
by CAs. This job set is used to construct the schedule tables.

5.5. Example of Schedule Table Construction 83

Figure 5.12: Demand of hi-criticality jobs J∆
i .

For the leeway calculations, we need the demand of hi-criticality jobs J∆
i which is

depicted in Figure 5.12.
After we have split the jobs and calculated the demand, we can now start constructing

the schedule tables lo-table and hi-table. We start in lo-table with slot 0. We select a
job with earliest deadline, which is in this case J1. We calculate the leeway for this slot
according to Equation (5.9):

δ(0) = d1 − (0 + 1)

= 4− (0 + 1)

= 3

Due to the fact, that we just scheduled a lo-criticality job in lo-table, we now schedule
a job J∆

i with earliest deadline and ful�lled precedence constraints in hi-table. In this
case, there is no job ful�lling these constraints and thus, we schedule an idle slot. The
combination of these two scheduling decisions is represented by one edge in the schedul-
ing tree. The succeeding node in the tree represents the resulting partial schedule. The
partial schedule after scheduling slot 0 and the search tree are shown in Figure 5.13.
In the next slot, we start again in lo-table selecting a job by EDF. As a result, we

select Jlo

3 and calculate the leeway:

δ(1) =
(
d∆

3 − (1 + 1)
)
−
(
g∆(d∆

3)− g∆
sched(1)

)
= (8− (1 + 1))− (6− 0)

= 0

We scheduled a hi-criticality job and as a consequence, we schedule the same job Jlo

3

in hi-table which is necessary to obtain the switch-through property. The combination
of these two scheduling decisions is represented by a new edge in the scheduling tree.

84 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

Figure 5.13: Partial schedule after scheduling slot 0.

Figure 5.14: Partial schedule after scheduling slot 1.

The succeeding node in the tree represents the resulting partial schedule including slot 1.
The partial schedule after scheduling slot 1 and the search tree are shown in Figure 5.14.
We continue with slot 2 in lo-table. Jlo

4 is the job with the earliest deadline which is
ready to execute. The leeway is calculated as follows:

δ(2) =
(
d∆

4 − (2 + 1)
)
−
(
g∆(d∆

4)− g∆
sched(2)

)
= (8− (2 + 1))− (6− 0)

= −1

The consequence of negative leeway is that we apply our backtracking method swapping.
We start with the previous slot to search for a possible slot to swap scheduling decisions
with the current slot, which is in this case slot 1. In slot 0, the leeway is 3 and this
ful�lls the conditions presented in Equations (5.10a) - (5.10c). The situation is depicted
in Figure 5.15 and refers to swapping case 4 which is shown in Section 5.4.
We swap slot 2 with slot 0 in both schedules lo-table and hi-table. Figure 5.16 shows

which slots are swapped in the schedules and the decisions in the search tree which are
swapped.

5.5. Example of Schedule Table Construction 85

Figure 5.15: Partial schedule before swapping slot 2.

Figure 5.16: Swapping slot 2 with slot 0.

In the search tree, swapping the scheduling decisions in these slots corresponds to a
new branch in the tree. Now, we re-calculate the leeway values for both slots 0 and 2.
Both leeway values are now non-negative and we can continue the scheduling process.

After swapping, we �nish scheduling of the slot which we started with scheduling Jlo

4

in lo-table. As a consequence, we schedule Jlo

4 in slot 0 in hi-table. The re-calculated
leeway values, the additional path in the search tree, and the completed schedule decision
of slot 0 is shown in Figure 5.17.

Due to swapping slots whereas one slot is an idle slot, we now can check whether we
can re-schedule this slot. In slot 2 in hi-table we can now schedule a job J∆

i with earliest
deadline and ful�lled precedence constraints. This results in scheduling J∆

3 in this slot.
Figure 5.18 shows the partial schedule after swapping and completing the scheduling
decisions in slot 2.

86 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

Figure 5.17: Partial schedule after swapping and completing scheduling in slot 0.

Figure 5.18: Partial schedule after completing scheduling in slot 2.

In the next slot 3, we schedule J2 which has the earliest deadline of ready jobs in
lo-table. We calculate the leeway as follows:

δ(3) = d2 − (3 + 1)

= 6− (3 + 1)

= 2

As a consequence of the lo-criticality job in lo-table, we schedule a job J∆
i with earliest

deadline in hi-table, here J∆
3 . In slot 4, we ready jobs result in repeating the same

scheduling decisions as in slot 3, whereas the leeway of slot 4 results in:

δ(4) = d2 − (4 + 1)

= 6− (4 + 1)

= 1

The partial schedule after scheduling slot 3 and 4 is shown in Figure 5.19.
We scheduled all jobs allocated to lo-table and hence, we schedule idle slot in lo-table

until we also scheduled all jobs in hi-table. The leeway for these slots is set to in�nity.
In hi-table, we schedule J∆

4 in slots 5-7 such that it completes its execution. After doing

5.6. Evaluation 87

Figure 5.19: Partial schedule after scheduling slot 3 and 4.

this, all jobs in both schedule tables are scheduled. The resulting (complete) schedule
tables are shown in Figure 5.20. The branch in the search tree which results in the
feasible complete schedule is also shown in Figure 5.20.

Figure 5.20: Complete schedule after completing scheduling in slot 7.

5.6 Evaluation
In this section, we evaluate the e�ciency and e�ectiveness of our tree-based method of
TT schedule table construction presented in Sections 5.2 - 5.4. We implemented the
scheduling algorithm including the leeway to determine paths in the search that lead
to infeasible schedules for early application of backtracking. To reduce the complex-
ity of backtracking, we implemented our backtracking method called swapping. For
evaluation, we compare our method with the �xed priority scheduling (FPS) approach
presented by Baruah and Fohler in [BF11].
In the following, we brie�y review Baruah's and Fohler's FPS algorithm to construct

TT schedule tables with mode changes. After that, we describe the setup of our ex-
periments and evaluate our scheduling algorithm. Further, we show the results of the
empirical comparison in the ability of the two approaches to schedule example job sets.

88 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

We compare the algorithms regarding the in�uence of the utilization of lo-criticality
jobs. Further, we analyze the results with respect to the introduced pessimism by the
CAs, i.e., by extension of the WCETs, and the ratio of hi-criticality jobs in the job set.
Finally, we present and evaluate the runtimes of both algorithms.

5.6.1 Fixed Priority Schedule Table Construction

Baruah's and Fohler's algorithm to construct two schedule tables is based on a priority
ordering. The algorithm is su�cient but not necessary, i.e., it generates schedule tables
not for all possible mixed-criticality job sets, but if the generation is successful, then the
table is correct. The algorithm works in the following steps: 1) It assigns priorities and if
this is not successful, the method cannot schedule the job set. 2) The schedule table lo-
table is created based on this priority ordering using Ci(lo) values for all jobs. 3) Based
on same priority ordering and Ci(hi) values for all jobs, whereas Ci(lo) = Ci(hi) for
lo-criticality jobs, the algorithm constructs the hi-criticality table hi-table.
Assigning job priorities. Baruah's and Fohler's approach is based on an optimal
recursive priority ordering method presented by Audsley [Aud91, Aud93] to assign pri-
orities. This approach looks for a job which can be assigned the lowest priority and if
it �nds one, it continues with the remaining set of jobs. A job Ji may be assigned the
lowest priority if criticality level of Ji is lo and there are at least Ci(lo) time units
between release time and deadline of this job if all other jobs have a higher priority than
Ji. If job Ji has criticality level hi, then at least Ci(hi) must be available in its execution
window under the assumptions that all other jobs have a higher priority and execute for
their Ci(hi). Remember that Ci(lo) = Ci(hi) for lo-criticality jobs. This procedure is
repeated until the priority ordering includes all jobs or in an iteration step, a job which
can have lowest priority does not exist. In the latter case, the priority assignment fails
and the job set cannot be scheduled.
Constructing the Schedules. Based on the priority ordering determined before, we
now show how to construct the TT schedule tables. The algorithm simulates a �xed
priority scheduler for both lo-table and hi-table. In lo-table, all jobs are scheduled
assuming jobs execute exactly for Ci(lo). In hi-table, all jobs are scheduled assuming
jobs execute exactly for Ci(hi). A consequence of including all jobs into the hi-criticality
schedule table is the possible over-provisioning as shown in the following Example.
Example. To illustrate the over-provisioning, which is a property independent of the
priority assignment, we use a simpli�ed priority assignment instead of the more com-
plex Audsley-approach. We assign priorities pi ∈ N\{0} with 1:= highest priority.
hi-criticality jobs have higher priority than lo-criticality jobs, and we use as priority
ordering within the criticality levels the index. Table 5.5 shows the example job set.
Figure 5.21 shows the resulting schedule tables whereas jobs are scheduled for Ci(lo)

time units in lo-table and for Ci(hi) time units in hi-table. Only hi-criticality jobs can
trigger a mode change from lo-table to hi-table, i.e., in this example jobs J1 and J3. If
J1 exceeds its C1(lo) at t1, i.e., it does not signal completion, then the mode is changed
to hi-table and both J1 and J3 can execute for their hi-criticality WCETs C1(hi) and

5.6. Evaluation 89

jobs
criticality lo-criticality hi-criticality release

deadline priority
level WCET WCET time

J1 hi 1 2 0 6 1

J2 lo 1 1 0 6 3

J3 hi 1 2 2 6 2

Table 5.5: Example job set for the schedule table construction.

C3(hi), respectively. However, if J3 exceeds its C3(lo) at t2, then the mode is changed
to hi-table and J3 can execute for 3 time units in total which is more than C3(hi). ♦

Figure 5.21: Example: schedule tables constructed by simulating FPS [BF11].

As a result, independent of the time instant when a mode change is triggered, all
hi-criticality jobs can execute at least for Ci(hi) time units, which results in a correct
schedule. However, there is the major disadvantage of over-provisioning which decreases
the e�ective utilization.

5.6.2 Experiment Description

We generated job sets with an uniformly distributed utilization based on UUniFast
algorithm [BB05]. The algorithm generates periodic tasks which are then unrolled into
set of jobs. Further, jobs are randomly assigned a criticality level lo or hi according
to ratio of hi-criticality jobs (hi-ratio). Synthetic workloads are used to show the
correctness and a comparison of the methods. All parameters are rounded to full slot
size values which causes errors. We only consider job sets with an utilization error up
to 3%. Based on the assumption that the system is designed to meet designers' worst
case scenario, job sets with lo-criticality parameters are feasible and then the pessimism
of CAs' is added to WCET values.
We varied the following parameters for the evaluation: impact of CA's pessimistic

assumptions, lo-criticality utilization and ratio of hi-criticality jobs; which is in line

90 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

with other mixed-criticality work in the �eld, e.g., [BBD11]. For each combination of
input parameters, we generated 1,000 random job sets.

5.6.3 Impact of Certification Authorities’ Pessimistic Assumptions on
Schedulability

In the following, we evaluate the impact of CA's pessimistic assumptions. The pessimism
of CAs is expressed by the hi-criticality WCET which is Ci(hi) ≥ Ci(lo). We generated
job sets with the same input parameters for di�erent degrees of pessimism, i.e., how much
larger is Ci(hi) than Ci(lo). Based on Ci(lo), we randomly determine a value for Ci(hi)
in the range of [Ci(lo), hsf · Ci(lo)], whereas the high scale factor hsf represents the
degree of pessimism introduced by CAs. The evaluation considers the following high
scale factor values: hsf = {2, 3, 5}. We present job sets for lo-criticality utilizations∑n

i=1 Ui(lo) = {10%, 20%, ..., 80%}, i.e., workload based on Ci(lo). The ratio of hi-
criticality jobs (hi-ratio) is set to 25%. Later, we explain the reason for this hi-ratio
choice. We compared the scheduler presented in [BF11], in the following referred to as
FPS, with the approach presented in this chapter, in the following referred to as SWAP.
The results compare the number of job sets for which the given schedulers can create a
correct schedule table (in percent based on a test set of 1,000 job sets).
Table 5.6 presents the results of the comparison of the success ratio for both FPS

and SWAP. Both algorithms show a decrease in the success ratio for an increasing lo-
criticality utilization. Additionally, the success ratio also decreases for increasing hsf .
The reason for the decreasing success ratio of both algorithms is that increasing the
lo-criticality utilization and increasing the high scale factor hsf results in a higher hi-
criticality utilizations. FPS, which includes all jobs in hi-table, is more a�ected by these
increases than SWAP.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 10% 20% 30% 40% 50% 60% 70% 80%

ratio [%] SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS

h
sf

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.5 93.7 76.7 52.9 44.0 4.5 16.2 0.0

3 100.0 100.0 100.0 100.0 100.0 99.4 89.8 87.3 52.9 37.1 25.2 5.4 10.0 0.4 2.9 0.0

5 100.0 100.0 100.0 100.0 71.7 71.3 30.4 9.4 10.8 0.6 * * * * * *

* no job sets generated for this case

Table 5.6: Results: success ratio for hi-ratio=25%.

In the following, we explain the results in more detail. Assume that �25% of jobs are
hi-critical� corresponds to �25% of lo-criticality utilization is caused by hi-criticality
jobs�. We now calculate the theoretical utilization of all jobs in the hi-criticality case,
i.e., the maximum utilization which can be obtained for the input parameters based on
Ci(hi)∀i ∈ {1, ..., n}. Consider a lo-criticality utilization of

∑n
i=1 Ui(lo) = 60%. hi-

ratio of 25% means that hi-criticality jobs have a lo-criticality utilization (utilization
based on Ci(lo)) of 15%. Further, the remaining lo-criticality jobs cause the remain-
ing 45% utilzation. For a high scale factor of hsf = 2, the utilization based on Ci(hi)

5.6. Evaluation 91

doubles for hi-criticality jobs, such that their hi-criticality utilization is 30%. Adding
the unchanged 45% utilization of the lo-criticality jobs results in a total theoretical
hi-criticality utilization of 75%. This theoretical hi-criticality utilization of 75% is also
obtained if hsf = 3 for a lo-criticality utilization of

∑n
i=1 Ui(lo) = 50%. Further-

more, if hsf = 5 the theoretical hi-criticality utilization can be 75% for a lo-criticality
utilization of

∑n
i=1 Ui(lo) = 37.5%.

The result of the theoretical observation of high utilizations, for instance, the pre-
sented 75%-case before, in hi-table can be con�rmed by the drastically dropping success
ratios of FPS at

∑n
i=1 Ui(lo) = 60% for hsf = 2, at 50% if hsf = 3, and at 40% if

hsf = 5. The problem of the FPS approach is that it includes all jobs in hi-table and
the high utilizations make scheduling di�cult. A similar drop of the success ratios can
be observed for SWAP at

∑n
i=1 Ui(lo) = 70% if hsf = 2, at 60% if hsf = 3, and at 40%

if hsf = 5. The theoretical hi-criticality utilizations are above 80% in these cases. As
a result, SWAP is less a�ected by an increasing hi-criticality utilization. We also inves-
tigated hi-ratios over 25% which results in a drop-o� point shift to lower lo-criticality
utilizations and lower hsf . Hence, we select hi-ratio=25% to show the behavior of the
algorithm because the di�erences are visible for all three high scale factors. For higher
hi-ratios, high utilization job sets are hardly schedulable and the success ratios are
almost 0%.
Figure 5.22 depicts the success ratios for FPS and SWAP as already shown in Ta-

ble 5.6. The graph con�rms the aforementioned drop of the success ratio. The curves
for hsf = 2 (©), hsf = 3 (�), and hsf = 5 (4) show a similar trend: for a speci�c lo-
criticality utilization, the success ratio drastically drops. Further, we see that a higher
hsf -value shifts this drop-o� point to lower lo-criticality utilizations.

Figure 5.22: Success ratio for varying high scale factor hsf .

The assumption above is only an approximation to the actual hi-criticality utiliza-
tions because the job set generator does not ensure that �25% of jobs are hi-critical�

92 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

corresponds to �25% of lo-criticality utilization is caused by hi-criticality jobs�. Actu-
ally , hi-criticality utilizations are mostly even higher. Based on this assumption, the
utilization of hi-criticality jobs can exceed 100% for hsf = 5 and

∑n
i=1 Ui(lo) ≥ 60%

and hi-ratio = 25%. The job set generator limits the utilization to 100%. As a conse-
quence, if the hi-criticality utilization would exceed 100%, this correspond to job sets
with lower hsf , results are not reliable and not shown (* in Table 5.6). Based on the
observations above for di�erent hsf , we present a detailed analysis of the schedulers in
the following by investigating the success ratios and runtimes.

5.6.4 Schedulability Analysis
In the following, we investigate the success ratios and runtimes for FPS and SWAP for
varying lo-criticality utilizations and varying hi-ratio. For all further experiments, hsf
is set to 3 . We group experiments into three utilization categories: low (10%, 20%,
30%), medium (40%, 50%, 60%) and high (70%, 80%, 90%) lo-criticality utilizations.
In each category, we used the same input parameters for the job set generator to generate
the target lo-criticality utilizations

∑n
i=1 Ui(lo).

In Table 5.7, we present the success ratios for the corner cases hi-ratio=0% and
hi-ratio=100%, i.e., for a standard (non-mixed-criticality) scheduling problem. For hi-
ratio=0%, both schedulers can always schedule the job sets. In this case, SWAP works
as a pure EDF scheduler and FPS uses an optimal priority assignment.On the contrary
for hi-ratio=100%, FPS shows much better results in each utilization category than
SWAP. Remember that each category has di�erent input parameter for job set gener-
ation and thus, results are not comparable to other categories. For low lo-criticality
utilizations, the hi-criticality utilization is still not too high and as a result, the success
ratios are 100%. Whereas for lo-criticality utilizations above 30%, hi-criticality utiliza-
tions increase drastically to values above 95% and the success ratios drop rapidly. SWAP
exploits slots with lo-criticality jobs and idle time to schedule additionally needed ex-
ecution time in hi-criticality case, i.e., execution time of jobs J∆

i . For hi-ratio=100%,
there are no slots with lo-criticality jobs and high hi-criticality utilizations reduce the
amount of idle time slots. As a result, SWAP su�ers more from the high utilizations
than FPS. These corner cases do not represent mixed-criticality job sets because all jobs
have the same criticality level, hence, this refers to a standard scheduling problem. As
a consequence, schedulers optimized for mixed-criticality, here SWAP, cannot exploit
their advantages.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 10% 20% 30% 40% 50% 60% 70% 80% 90%

ratio [%] SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o

0% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100% 100.0 100.0 100.0 100.0 100.0 100.0 19.7 88.3 0.0 0.8 0.0 0.5 10.6 66.8 3.4 66.3 1.8 73.7

Table 5.7: Success ratios for corner cases and hsf = 3.

5.6. Evaluation 93

In the following, we analyze and compare FPS and SWAP for job sets with 25%, 50%
and 75% ratio of hi-ciritcality jobs.
Table 5.8 shows the success ratios for low lo-criticality utilizations. In case of these

low utilizations, both algorithms can schedule (almost) all job sets. FPS shows a slight
decrease in the success ratio already for lo-criticality utilizations of 30%. Including all
jobs into hi-table increases the utilization and results in the observed decrease of success
ratio.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 10% 20% 30%

ratio [%] SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 100.0 100.0 100.0 100.0 100.0 98.3

50% 100.0 100.0 100.0 100.0 100.0 96.0

75% 100.0 100.0 100.0 100.0 100.0 96.0

Table 5.8: Success ratios for low lo-criticality utilizations and hsf = 3.

Table 5.9 shows the success ratios for medium lo-criticality utilizations. Further, the
results are also depicted in Figure 5.23. An increasing lo-criticality utilization and/or
hi-ratio show a strong impact for both algorithms. On the one hand, an increasing
hi-ratio has a stronger a�ect on the success ratio than increasing the lo-criticality
utilization in case of SWAP. On the other hand for FPS, an increasing lo-criticality
utilization a�ects the success ratio stronger than increasing the hi-ratio. The EDF-
driven selection function of SWAP advantages high utilizations in contrast to Audsley's-
�xed-priority-approach for FPS. Due to the fact that SWAP uses lo-criticality execution
and idle time, SWAP su�ers from high hi-ratio values. In the range of the presented
medium lo-criticality utilizations with hi-ratio=50%, the hi-criticality utilizations are
already in the range of more than 60%. For higher lo-criticality utilizations and higher
hi-ratio values, this e�ect becomes even more important. In summary, the results show
better success ratios for SWAP.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 40% 50% 60%

ratio [%] SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 94.4 62.4 54.1 7.3 14.6 0.4

50% 79.8 37.7 9.9 1.0 0.3 0.0

75% 51.1 25.4 0.2 0.1 0.0 0.0

Table 5.9: Success ratio for medium lo-criticality utilizations and hsf = 3.

94 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

Figure 5.23: Success ratio for medium lo-criticality utilizations.

In Table 5.10, we show the success ratios for medium lo-criticality utilizations which
are also shown in Figure 5.24. Keep in mind that input parameters are changed to create
high utilization job sets and hence, the success ratio results are incomparable with the
results of low/medium lo-criticality utilization job sets. FPS su�ers from the �xed
priority assignment and as a consequence, high lo-criticality utilizations result in very
low success ratios. On the contrary, our EDF-based method SWAP allows for scheduling
higher utilizations, but there is also a drastic drop of success ratios for SWAP for these
high lo-criticality utilizations. As seen before, an increasing lo-criticality utilization
has strong impact on success ratio of FPS. Similarly, an increasing hi-ratio has strong
impact on success ratio of SWAP. In summary, hsf = 3 and lo-criticality utilization of
70% and more result in extremely high hi-criticality utilizations which are very di�cult
to schedule.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 70% 80% 90%

ratio [%] SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 67.5 10.4 42.1 1.1 18.4 0.1

50% 20.3 5.4 4.8 0.7 1.0 0.2

75% 7.4 3.7 1.4 0.8 0.1 0.2

Table 5.10: Success ratio for high utilizations and hsf = 3.

5.6. Evaluation 95

Figure 5.24: Success ratio for high lo-criticality utilizations.

5.6.5 Runtime Analysis

In the following, we compare FPS and SWAP by their runtimes. We measured the run-
times of each scheduler for the experiments presented before within the three utilization
groups. All runtime measurements are performed on an Intel Xeon E5345 processor
running at 2.33 GHz. The memory consumption of both algorithms are negligible (only
a few megabytes). As before, the results are grouped into low, medium and high lo-
criticality utilizations.
In Table 5.11, we present the mean runtimes for low lo-criticality utilizations. The

runtimes for both algorithms are up to approximately 1 second. Assigning the job
priorities in FPS is the dominating factor for its runtimes and the complexity of it
depends on the number of jobs. For the low lo-criticality utilizations, only few iteration
steps for FPS and no/few backtracking steps for SWAP are necessary which results in
the small runtimes.
Table 5.12 presents the mean runtimes for medium lo-criticality utilizations. The

runtimes of FPS drastically increase with increasing lo-criticality utilization and/or
increasing hi-ratio. If there is no priority assignment, FPS checks all possible jobs
for a lowest priority job. In the worst case, in each iteration step the job checked at
last can have lowest priority until in the last iteration step no job can have lowest
priority. The runtimes of SWAP even decrease with increasing lo-criticality utilization
and/or increasing hi-ratio. The reason for the decreasing runtimes is that the higher
the utilization the lower the success ratio is and with an uniformly distributed high
utilization an early deadline miss is likely. To illustrate this with an example which

96 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

lo-criticality utilization
∑n

i=1 Ui(lo)

mean 10% 20% 30%

runtime [s] SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 0.095 0.699 0.083 0.567 0.115 1.006

50% 0.110 0.626 0.107 0.688 0.146 1.071

75% 0.117 0.617 0.131 0.752 0.148 0.960

Table 5.11: Mean values of runtime for low lo-criticality utilizations and hsf = 3.

cannot be scheduled, we assume that a job with earliest deadline cannot be scheduled.
The SWAP scheduler detects the deadline miss and checks the slots which have already
been scheduled which is only a small part of entire schedule. Hence, SWAP can early
detect that the scheduling process cannot be completed. On the contrary, the FPS
scheduler checks whether this job can have lowest priority. If this not the case, the
scheduler checks all other jobs for a possible lowest priority assignment. Maybe another
job can have lowest priority and hence, many other job will be checked before the
scheduler knows that job with earliest deadline cannot be scheduled. As a result, if
both schedulers cannot �nd a solution, SWAP stops earlier than FPS which checks
many possible priority assignments before stopping the process.

lo-criticality utilization
∑n

i=1 Ui(lo)

mean 40% 50% 60%

runtime [s] SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 0.388 5.219 0.233 7.301 0.074 12.322

50% 0.385 5.618 0.071 17.955 0.013 116.500

75% 0.300 6.308 0.014 170.840 0.005 2150.005

Table 5.12: Mean values of runtime for medium lo-criticality utilizations and hsf = 3.

Table 5.13 presents the mean runtimes for high lo-criticality utilizations. The runtime
results for high lo-criticality utilizations con�rm the results of medium lo-criticality
utilizations. All comments for medium lo-criticality utilizations are also valid for this
case.
In the following, we compare FPS and SWAP by dividing the runtimes of FPS (tFPS)

by the runtimes of SWAP (tSWAP). Table 5.14 presents the mean values for the runtime
fraction (RTF), i.e., the quotient runtime FPS divided by runtime SWAP. For each
job set, we calculate RTF and the mean values for each combination of lo-criticality
utilization and hi-ratio are shown in the table. For low lo-criticality utilizations, when
both schedulers can schedule (almost) all job sets, FPS needs about three to four times

5.6. Evaluation 97

lo-criticality utilization
∑n

i=1 Ui(lo)

mean 70% 80% 90%

runtime [s] SWAP FPS SWAP FPS SWAP FPS
h
i
-r
a
ti
o 25% 0.127 1.155 0.082 1.335 0.039 1.946

50% 0.055 5.697 0.019 9.822 0.007 28.774

75% 0.250 52.073 0.008 75.017 0.004 128.418

Table 5.13: Mean values of runtime for high lo-criticality utilizations and hsf = 3.

RTF = tFPS

tSWAP

∑n
i=1 Ui(lo)

10% 20% 30% 40% 50% 60% 70% 80% 90%

h
i
-r
a
ti
o 25% 3.6 3.6 4.0 14 114 485 24.7 62.3 160

50% 3.1 3.1 3.6 51 1153 12430 493 1374 5094

75% 2.7 2.9 3.2 139 18564 35204 8006 14560 28732

Table 5.14: Mean values of runtime FPS divided by runtime SWAP.

longer than SWAP. The di�erence between FPS and SWAP drastically increases with
high lo-criticality utilizations and increasing hi-ratios.
Figure 5.25 shows the cumulative distribution function (CDF) representing of the

runtime fractions RTF for all 27,000 job sets, i.e., 1,000 job sets per parameter com-
bination lo-criticality utilization (10%, 20%, ..., 90%) and hi-ratios (25%, 50%, 75%).
In 50% of the cases, FPS needs at least nine times as long as SWAP. Further, there are
also cases where FPS needs more 100,000 times as long as SWAP. The cases, where FPS
needs drastically longer than SWAP, are job sets which are not schedulable. Because of
the iterative search for a priority assignment, FPS needs a lot of time to check whether
there is a priority assignment.
Figure 5.26 shows a histogram showing the distribution of RTF below 10,000 which is

about 90% of all results. Each bar represents the number of resulting RTF values which
are between its borders. 2507 values (≡ 9.3%) are above 10,000 and are not shown in
the �gure. In summary, 96.9% of the results are above 2, i.e., FPS takes at least twice
as long as SWAP. Further, 99.5% of the results are above 1.5. Finally, no run of FPS
was quicker than the same job set scheduled by SWAP (no value for RTF < 1).

5.6.6 Summary of Results

Each success ratio and mean runtime presented in this section are based on 1,000 ran-
domly generated job sets. An increasing utilization, both for lo-criticality and hi-
criticality assumptions, makes scheduling harder. Further, an increasing hsf , i.e., intro-

98 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

Figure 5.25: Cumulative distribution function (CDF) of the runtime fractions RTF .

Figure 5.26: Histogram of the runtime fractions RTF .

ducing more pessimistic WCETs for hi-criticality behavior, corresponds to an increasing
hi-criticality utilization. Also, a higher hi-ratio increases the hi-criticality utilization.
We showed corner cases with only lo-criticality jobs and only hi-criticality jobs.

For only lo-criticality jobs, both algorithms perform well. This case corresponds to a
standard scheduling problem with an optimal priority assignment or the optimal EDF
scheduler. On the contrary, for only hi-criticality jobs, SWAP cannot exploit its ad-
vantages which are based on idle time and scheduled execution of lo-criticality jobs.
FPS is less a�ected by the hi-ratio because only the utilization is important and not
which criticality level creates the workload. These two corner cases do not represent
mixed-critical systems because there is only one criticality level in this case.

5.7. Extensions 99

For the general cases, i.e., job sets with more than one criticality level, SWAP's
performance decreases with increasing hi-ratio whereas FPS is stronger a�ected by
increasing lo-criticality utilization. Additionally, the runtime of SWAP is much better
than the runtime of FPS. In particular, for job sets which cannot be scheduled by both
algorithms, SWAP aborts the scheduling process earlier while FPS iterates through the
job set to check for possible priority assignments. SWAP is at least twice as fast as
FPS in 96.9% of presented cases. Furthermore, for no tested job set FPS is quicker
than SWAP. FPS shows decreasing success ratio while runtime is increasing. When
observing decreasing success ratio in SWAP, runtimes are decreasing. If we exclude the
corner cases, which are not mixed-criticality job sets, SWAP performs better than FPS
w.r.t. the success ratio and the runtime. We repeated all experiments with di�erent
input parameters which con�rm the presented results. We show the further results in
in the appendix in Section A.2.

5.7 Extensions
We developed our method for uniprocessor dual-criticality systems. The ideas presented
so far are generic such that an extension based on the shown methods is possible. In the
following, we present the fundamental information to extend our methods to systems
with more than two criticality levels. Further, we show the basic idea to extend the
methods to multiprocessor systems.
As mentioned earlier, the presented methods work on job-basis and the extension to

handle periodic tasks is simple. Tasks are unrolled into a sequence of jobs with release
time and deadline. For the WCET assignment, it is reasonable to assume that all jobs
of a periodic tasks share the same WCETs, i.e., Ci(lo) and Ci(hi) of tasks for all their
jobs.
For a mixed-criticality system with k criticality levels, we create k schedule tables,

i.e., one schedule table for each criticality level. In the following, we assume as lowest
criticality level χ = 1. As a result, the mode m1 with criticality level 1 includes all
jobs. In general, mode mc includes all jobs Ji with criticality level χi ≥ mc with WCET
C(mc). The construction of the schedule tables is analogue to our presented method:
the creation of the schedule table for mode m1 is based on EDF. Modes with criticality
level greater than 1 are based on modes with lower criticality level. A job Ji with χi = c
is scheduled in the c lowest schedule tables. For schedule tables with higher criticality,
we schedule a job representing additional needed execution time for the criticality case
greater than mi with ful�lled precedence constraints, lowest criticality level and earliest
deadline. For instance, in mode m4 given a job Ji with criticality level χi = 6 is
scheduled with its WCET of Ci(6)− Ci(5) in all criticality modes greater than m4 and
less than or equal to criticality level of the job; here 6. We repeat this procedure until
mode mk is scheduled. For each slot, we calculate k − 1 leeway values. The leeway
includes additional workload for each criticality level between 1 and k − 1, i.e., δ1(s)
includes additional workload of all jobs with criticality level between 2 and k, and so
on until δk−1(s) which includes additional workload of jobs with criticality level k. The
backtracking method swapping is more complex due to the fact that several leeway

100 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

values and precedence constraints have to be considered. We have to check whether
swapping two slots in all modes can lead to an infeasible schedule table in the future.
In other words, we check whether the job in the swapping slot can be delayed until the
current slot without resulting in a negative leeway. This has to be checked for the jobs
in the swapping slot in all modes. As a consequence, many di�erent cases have to be
handled when swapping. A simpli�cation by using the minimum leeway values of the
slots for backtracking results in worse results because this can be very pessimistic. As
a result of this schedule table construction, there can be a maximum number of k − 1
mode-changes.
In general, multiprocessor systems can be classi�ed into partitioned and global ap-

proaches (and also hybrid versions). In a partitioned multiprocessor system, uniproces-
sor methods can be applied based on a given job partitioning. As a result, our presented
methods can be applied without any change. For global multiprocessor scheduling, we
assume a system with M processing units. We select M jobs with earliest deadlines to
schedule them in the lo-criticality schedule tables (one job for each processing unit).
As a consequence, the switch-through condition can be relaxed: the same job Jlo

i need
not to be schedule in same slot in hi-table on the same processing unit but only on
any processing unit in the system in this slot. However, this results in an increasing
complexity for backtracking with the number of processing units. A scheduling decision
resulting in a negative leeway can be swapped with another job in the same schedule
table or with a job in another schedule table on a di�erent processing unit. As a result,
we get an improvement of schedulability at cost of an increasing complexity.

5.8 Open Questions
In the following, we discuss open problems to improve the scheduling process. Further,
we justify the rationale of our method and show alternatives.

5.8.1 Reducing the Number of Scheduling Decisions
The granularity of our scheduler is based on the length of a slot. Smaller slot sizes
increase the percentage overhead within a slot and hence, increase the total accumulated
overhead at runtime. On the contrary, larger slot sizes increase unused time in a slot
when a job does not need the full slot size for computation or �nishes computation in
the middle of a slot, respectively. Based on a predetermined slot size, the scheduler
can create a schedule table based on �chunks� of slots. In other words, instead of
scheduling slot by slot, we schedule several slots together instead of selecting the same
job several times in sequence. As a result, we can reduce the scheduling complexity. As
a consequence the problem of a more complex backtracking mechanism occurs because
of di�erent �chunk� sizes. Dividing these �chunks� into fractions with the size of one or
several slots to swap jobs, and thus, improving results, also increases the complexity of
the backtracking.
Another possibility is to schedule the jobs non-preemptively and only divide jobs into

slot-sized fractions if the leeway is negative and thus, indicates that the process will

5.8. Open Questions 101

result in an infeasible schedule table. In this case, we have to consider several new
aspects of the problem: First, we start with scheduling a job non-preemptively in both
schedule tables lo-table and hi-table.
Assume we start the scheduling process with a hi-criticality job. In lo-table, we

schedule this hi-criticality job for its lo-criticality WCET Ci(lo) and in hi-table, we
can schedule the job its hi-criticality WCET Ci(hi). In this way, we do not need to
make use of the split jobs and can avoid the introduced precedence constraint when we
split jobs. A job has the same start time in both schedule tables, and is continuously
scheduled until its completion, and thus, we can obtain the switch-through property.
The problem in this case are the di�erent completion times of the job in lo-table and
hi-table. This will a�ect future scheduling decisions. If we schedule another hi-criticality
job afterwards, the start time is determined by the completion time in hi-table, which
is later than the completion time in lo-table. On the contrary, if we schedule a lo-
criticality job next, we start scheduling it at the completion time in lo-table, because
the lo-criticality job is only scheduled in lo-table and can be scheduled in parallel with
the additionally needed execution time of the previous hi-criticality job in hi-table.
Now assume we start the scheduling process with a lo-criticality job. We schedule

this job only in lo-table. If the next job to schedule is also a lo-criticality one, we
can attach this job at the completion time of the previous one in lo-table. Further, if
we schedule a hi-criticality job, we also set the start time of this job to the completion
time of the previous lo-criticality job because we schedule this in both schedule tables
in parallel and thus, we cannot make use of the idle time in hi-table parallel to the
lo-criticality job.
By constructing the schedule tables in this way, we can minimize preemptions. The

calculation of the leeway is also simpli�ed because we need only to calculate the leeway
for the completion time in lo-table instead of for every single slot.
The disadvantage of this procedure is the backtracking procedure when the leeway

calculation results in a negative value. A negative leeway will give us the number of
slots we have to swap. For instance, a leeway of minus three means that we missed the
deadline by three slots. As a consequence, we have to swap the last three slots in lo-
table. If the job has hi-criticality level, we have to re-schedule the additionally needed
slots to execute in hi-criticality case. To apply swapping for the mentioned slots, we
have to divide the non-preemptively scheduled job into slot-sized fractions. This has to
be done for jobs until the release time of the job which caused a negative leeway because
we cannot swap this job before its release time. When we swap the slots, we have to
follow the rules we presented in Section 5.4 for our presented method.
In summary, we can reduce the scheduling complexity by scheduling jobs non-pre-

emptively at cost of an increased overhead of the backtracking procedure. If we apply
backtracking, we use the job set with the split jobs and change scheduling decisions with
the granularity of a slot. As a consequence, the general behavior of the scheduler will
change which has to be analyzed and compared to the existing approach. The results
will show whether we can improve the e�ectiveness and in how far the runtimes, i.e.,
the e�ciency of the method, is a�ected.

102 Chapter 5. Time-Triggered Schedule Tables with Mode Changes

5.8.2 Rationale of the Order of Scheduling Decisions
In the presented methods and extensions presented so far, we always started in the lo-
criticality schedule table. In the following, we justify this decision and show di�erent
starting points for the scheduling process.
In our method, the schedule table generation is based on the designers' assumptions.

We chose to base the method on designers' assumptions because a proper design process
should result in correct assumptions. Our methods create the lo-criticality schedule ta-
ble �rst and adapts the hi-criticality schedule table decisions to the lo-criticality table.
Hence, the leeway considers additional demand introduced by pessimism of CAs.
On the one hand, it is also possible to start with the hi-criticality schedule table and
adapt lo-criticality schedule table. In this case, the leeway has to consider lo-criticality
jobs. As a consequence, we adapt the normal system behavior, i.e., the lo-criticality
behavior, to the special case of hi-criticality behavior which is not intuitive.
On the other hand, we can also construct both lo-criticality and hi-criticality sched-
ule together considering all possible combinations. This will result in a very complex
scheduling strategy which is similar to an exhaustive search with very high complexity.
To summarize this, we focused on the assumptions for which the designers assume that
they are correct and a mode-change to hi-criticality behavior will never occur or a mode-
change is extremely unlikely to occur, respectively. This also validates the assumption
that we do not need to include lo-criticality jobs into the hi-criticality mode.

5.9 Discussion: How Can We Reduce the Complexity of
Scheduling and Certification?

In this section, we summarize the advantages of the presented methods. The goal of our
approach was to create TT schedule tables for a mode changes scheduler with a dual-
criticality job set. Further, switching from lo-criticality to hi-criticality mode should
be possible at every time instant (switch-through property). The approach is based
on a search tree whereas classic tree search scheduling can be in complex. Jobs are
characterized by two WCETs which increases the complexity of scheduling. Further-
more, creating two scheduling tables with switch-through property also increases the
complexity of scheduling.
In a �rst step, we reduce the complexity of scheduling problem by splitting jobs.

We separate the demand of determined by the designers and the additional demand
introduced by the CAs. This results in jobs with only one WCET. Thus, splitting jobs
reduces the complexity of the scheduling problem.
Additionally, we introduce the leeway of a slot. Instead of scheduling slot by slot until

a job misses its deadline and apply backtracking, we can use the leeway for an early
detection of paths in the search tree resulting in infeasible schedules. Further, the leeway
is used to guide our backtracking method. Instead of checking every possible scheduling
decision, scheduling decisions are changed that can result in feasible schedules. As a
result, we can reduce the number of scheduling decisions and possible backtracking steps
which results in a reduced scheduling complexity.

5.9. Discussion: How Can We Reduce the Complexity of Scheduling and
Certi�cation? 103

Finally, the creation of TT schedule tables represents a constructive proof. Hence,
there is no need to certify all possible scheduling decisions of a scheduler. Checking
the correctness of two schedules tables simpli�es the certi�cation complexity. Further,
additional optimizations to improve response times, latencies, jitter, etc. can be imple-
mented into the o�ine scheduler without changing the certi�cation procedures.

Chapter 6

Mixed-Criticality Slot-Shifting without Mode
Changes

In this chapter, we describe how we can increase the �exibility of time-triggered (TT)
schedule tables. Based on the job parameters release times, deadlines, lo-criticality,
and hi-criticality worst-case execution times (WCETs), we determine the amount and
distribution of available resources. We di�erentiate between available resources if jobs
show lo-behavior or show hi-behavior. The selection function of our scheduler uses
this knowledge to schedule the dual-criticality jobs. With the presented scheduler, we
can accommodate lo-criticality and hi-criticality behavior of jobs without the need for
mode changes. Further, we show an acceptance test for �rm aperiodic jobs, which can
be integrated into the schedule without violation of already guaranteed jobs. Addition-
ally, soft aperiodic jobs can be included while improving their response times without
interfering guaranteed jobs. Our presented approach allows for an scheduling process
which reacts to the actual behavior of jobs.
In Section 6.1, we explain why TT schedule tables are in�exible and mention the rea-

son why �exibility is needed in mixed-criticality systems. After that, Section 6.2 reviews
the original slot-shifting approach which forms the basis of our mixed-criticality sched-
uler. In the next section, we present the two phases of our approach. In Section 6.3.1, we
show the o�ine phase and in Section 6.3.2, we present the online phase. An example in
Section 6.4 illustrates the behavior and clari�es the method. A discussion in Section 6.5
concludes this chapter.

105

106 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

6.1 Motivation
In Chapter 5, we presented a method to construct time-triggered (TT) schedule tables
with mode changes. The constructed schedule tables determine exact start and end
times of job executions. The major advantage of this approach is full determinism and
hence, a simpli�ed veri�cation and certi�cation process. On the contrary, the resulting
schedule tables are completely in�exible at runtime. As a consequence, there is the need
for a more �exible method.
In this chapter, we present a method to allow for some �exibility at runtime based

on slot-shifting [Foh95]. Slot-shifting uses o�ine constructed schedule tables but in
contrast to the schedule tables presented before, these tables contain earliest start times
and deadlines for each job instead of an exact job to slot assignment. As a result, the
exact start and end times of jobs are not predetermined. Further, slot-shifting allows
for shifting job executions within their execution window, i.e., within the time interval
between release (earliest start time) and deadline of a job. By doing this, we get some
�exibility in the execution of jobs. Additionally, already certi�ed schedule tables can be
used , e.g., schedule tables of TT legacy systems.
In the following, we present our slot-shifting based method to �exibly schedule mixed-

criticality job sets at runtime. We assume job parameters are given based on certi�ed
schedule tables, e.g., constructed for legacy systems. We use the Vestal mixed-criticality
model, shown in Chapter 3, with two criticality levels lo and hi for mixed-criticality
jobs. The parameters are represented by the symbols shown in Chapter 3. We develop
our method such that we can accommodate for lo-criticality and hi-criticality behavior
of mixed-criticality jobs without the need to use mode changes. Without the need of
changing the mode of the scheduler, we do not have to decide whether to include lo-
criticality jobs into the hi-criticality table or not. As a result, we do not necessarily
exclude lo-criticality jobs if a hi-criticality job exceeds its lo-criticality worst-case
execution time (WCET). Based on the actual behavior, it is possible to execute lo-
criticality jobs. Thus, decisions are based on actual behavior and not based on the
pessimistic worst-case estimations. As a consequence, we can guarantee the worst-case
behavior of hi-criticality jobs and still allow for lo-criticality job executions without
interference of hi-criticality jobs.
Another advantage of our approach is the possibility to include event-triggered (ET)

activities, i.e., aperiodic and sporadic jobs and tasks at runtime. Based on slot-shifting's
acceptance test, we provide an acceptance test for mixed-criticality ET activities. We
present detailed assumptions about ET jobs and tasks later in this chapter.
In the following, we start with a description of the original slot-shifting method and

then, we continue with our mixed-criticality slot-shifting based on TT legacy system
schedule tables.

6.2 Original Slot-Shifting
In the following, we describe the original slot-shifting algorithm as presented by Fohler
in [Foh95]. Slot-shifting is a method to integrate ET activities into TT systems [IF99,

6.2. Original Slot-Shifting 107

IF00, IF09]. The method assumes a distributed system where on each node a prede�ned
set of jobs is executed with slot-shifting as scheduling algorithm. Slot-shifting consists
of two phases: an o�ine and an online phase. Before runtime, precedence constraints
are resolved and jobs are scheduled in a schedule table containing earliest start times
and deadlines for each job. In a further step, capacity intervals are determined based
on the schedule table and spare capacities are calculated, i.e., unused resources within
these intervals. At runtime, the capacity intervals and spare capacities are used to
schedule jobs and updated according to the execution of jobs. Additionally, aperiodic
jobs and jobs of sporadic tasks can be handled at runtime. For �rm aperiodic jobs and
jobs of sporadic tasks, an acceptance test is provided. The capacity intervals allow to
control the scheduling overhead which results in lower overall overhead than, for instance,
standard EDF schedulers [VDHBL+12]. Schorr and Fohler showed that slot-shifting has
an applicable runtime overhead [SF13].

6.2.1 Offline Phase

Time-triggered (TT) jobs are characterized by their earliest start time (release time) ri,
deadline di and WCET Ci. The earliest start time of a job can be seen as release time of
a job and thus, we use both terms as synonyms. Further, these jobs can have precedence
constraints represented by a precedence graph. Figure 6.1 shows an example for such a
precedence graph. The execution of the four jobs starts with job J1 which is required
to execute jobs J2 and J3. The order of execution for J2 and J3 can be arbitrary. Job
J4 can only start its execution after both J2 and J3 have �nished their execution.

Figure 6.1: Example precedence graph with four jobs.

Precedence constraints are resolved by combining jobs into scheduling blocks which
are assigned earliest start times and deadlines such that precedence constraints are
obeyed. The combination of jobs into scheduling blocks reduces the number of objects
to schedule which reduces the complexity of the scheduling process. In the following, we
present slot-shifting by using the term job equivalent to scheduling block. These jobs
are de�ned by their earliest start time, deadline and WCET. Slot-shifting assigns jobs
to (capacity) intervals which are based on the earliest start times and deadlines of all

108 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

jobs. We show the creation of intervals based on an example. Table 6.1 shows the job
set used in the example.

jobs WCET earliest start time deadline

J1 1 0 3

J2 1 5 8

J3 2 7 12

J4 2 8 12

J5 3 9 14

Table 6.1: Example job set to illustrate slot-shifting.

Figure 6.2 shows the execution windows, i.e., the time interval between earliest start
time and deadline, of jobs J1, J2, J3, J4, and J5. Furthermore, the resulting intervals
are shown below. The determination of intervals starts at the end of the schedule and
ends at the start of the schedule. Each deadline marks the end of an interval, e.g.,
end(I4) = d5. Jobs are assigned to the interval for which the end of the interval is
their deadline, e.g., job J5 is assigned to the last interval I4. In addition, the earliest
start time (not start) of an interval is determined by the minimum earliest start time
of jobs belonging to this interval, e.g., est(I3) = min (r3, r4). The start of an interval is
de�ned by the maximum of its earliest start time and the end of the previous interval,
e.g., start(I3) = max (est(I3), end(I2)). Additionally, consecutive slots between these
interval are also de�ned as intervals. These intervals are called empty intervals, in the
�gure: I1. Intervals in which no execution windows overlap are called independent
intervals, in the �gure: I0. Eventually, the length of an interval is calculated as follows:

|Ii| = end(Ii)− start(Ii).

In the next step, we calculate the spare capacities sc(Ii) of all intervals Ii starting
with the last interval. The spare capacities represent the available resources within an
interval. The calculation of spare capacities in an empty interval is trivial: the available
resources are determined by the length of the interval. For independent intervals, the
di�erence between the length of the interval and the sum of the WCETs of the assigned
jobs in that interval determines the spare capacities. Up to this, spare capacities are
always greater than or equal to zero. For non-independent intervals, it is possible that
the spare capacities are negative. If the spare capacities of an interval are negative, we
have to borrow slots from an earlier interval. Keep in mind that (capacity) intervals are
not equivalent to execution windows. As a consequence of borrowing, we also have to
consider if an interval lent slots to the later interval. In this case, we reduce the available
spare capacities by the amount of slots which are lent to the later interval. As a result,
Equation (6.1) shows the spare capacity calculation of an interval Ii.

6.2. Original Slot-Shifting 109

Figure 6.2: Capacity interval derivation with �ve jobs.

sc (Ii) = |Ii| −
∑
Jk∈Ii

Ck + min (sc (Ii+1) , 0) (6.1)

Figure 6.3 shows the resulting spare capacities for the example job set. We use as late
as possible scheduling to illustrate the available spare capacities. Starting in the last
interval, the spare capacities in interval I4 are negative, i.e., this intervals borrows one
slot from I3 which is highlighted in slot 11 in the �gure. Although interval I3 is as long
as the WCETs of the assigned jobs, the spare capacities are negative because I3 lent
one slot to I4. As a consequence, I3 also has to borrow one slot from an earlier interval.
This phenomenon is called borrowing propagation and is highlighted in slot 7 in the
�gure. Borrowing and borrowing propagation will be important when we schedule jobs
at runtime and update the spare capacities. Finally, the spare capacities of intervals I0,
I1, and I2 are positive which is illustrated in the �gure by the available (idle) slots.

The calculation of the spare capacities concludes the o�ine phase. Based on the
knowledge of intervals and their spare capacities, we schedule the jobs at runtime.

110 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

Figure 6.3: Spare capacity calculation with �ve jobs.

6.2.2 Online Phase

At runtime, we execute jobs from the schedule table by selecting the job with the earliest
deadline. If there are no jobs ready to execute, we schedule an idle slot. Further, at
arrival of �rm aperiodic jobs or jobs of a sporadic task, i.e., event-triggered (ET) jobs,
we perform an acceptance test to check whether we can integrate these jobs into the
schedule without violation of already guaranteed jobs. Firm jobs which pass the test are
included into the set of guaranteed jobs, i.e., TT and accepted ET jobs. Soft ET jobs do
not need to perform an acceptance test because soft jobs are scheduled only if the spare
capacities allow for an execution without violation of guaranteed jobs. Additionally,
soft jobs do not have timing constraints. In the following, we review the selection
function, spare capacity maintenance, and the acceptance test of original slot-shifting.
We consider aperiodic jobs as ET activities, but all procedures are also valid for jobs of
sporadic tasks.
The scheduler has a ready queue R(t) = {Ji|ri ≤ t} with jobs that are ready at time t.

The current interval is named Ic. Based on the following cases, a job to execute or an
idle slot is selected:

a) R(t) = {}:
No job is ready to execute and hence, we schedule an idle slot.

b) R(t) 6= {} ∧ sc(Ic) = 0:
We schedule a guaranteed job with the earliest deadline because zero spare capacities

indicate that we have to schedule a guaranteed job otherwise there will be a deadline
miss.

c) R(t) 6= {} ∧ sc(Ic) > 0 ∧ @JAi, JAi soft aperiodic job:
We schedule a guaranteed job with the earliest deadline.

d) R(t) 6= {} ∧ sc(Ic) > 0 ∧ ∃JAi, JAi soft aperiodic job:
We schedule an aperiodic job JAi. The positive spare capacities allow for a delay

of the guaranteed jobs' execution.

6.2. Original Slot-Shifting 111

In summary, we schedule soft aperiodic jobs only if the spare capacities of the current
interval are positive. In contrast to background service, we know the amount of available
resources and can schedule soft aperiodic jobs not only when there is no guaranteed job
ready to execute. As a result, we improve the response times of soft aperiodic jobs.

Based on the scheduled job in a slot, we update the spare capacities. There are four
cases to consider:

No execution: One slot of the spare capacities is unused and thus, sc(Ic) is reduced
by one slot.

Soft aperiodic execution: One slot of the spare capacities in the current intervals
is used to execute a job which has not been considered when calculating the spare
capacities and thus, sc(Ic) is reduced by one slot.

Execution of a guaranteed job within its interval: There is no change in the spare
capacities because the execution of this job has been considered in the spare capacity
calculation.

Execution of a guaranteed job outside its interval: A job assigned to interval Ik
consumes execution time in the current interval Ic. Hence, in the current interval the
spare capacities are decreased by one slot and in Ik the spare capacities are increased by
one slot, i.e., one slot has been swapped. If sc(Ik) < 0, there has been borrowing. As a
consequence, one slot is now borrowed less in all intervals with borrowing and borrowing
propagation which are a�ected by the earlier execution, and thus, we increase the spare
capacities by one slot in these intervals.

The maintenance of spare capacities is performed after the execution at the end of
each slot. It is also possible to include the spare capacity updates at the beginning of a
slot when the scheduler selects the next executing job, but the spare capacities describe
the available resources after the execution. The spare capacities of the current interval
can be used as correctness criterion at the end of each interval, when the spare capacity
value has to be zero, otherwise there has been an error.

So far, we considered scheduling of guaranteed jobs, i.e., TT jobs and ET jobs that
passed the acceptance test. In the following, we present this acceptance test which
is performed at the arrival of a �rm aperiodic job. The test checks whether we can
integrate and guarantee a �rm aperiodic job without violation of the timing constraints
of already guaranteed jobs. To do this, the test sums up all positive spare capacities
until the deadline of the aperiodic job. These space capacities can be divided into
3 groups: spare capacities of the current interval; spare capacities of all full interval
between the current interval and the interval including the aperiodic job deadline; and
spare capacities in the interval with the job deadline until the job deadline. We consider
only positive spare capacities because negative spare capacities are already considered
in the previous interval when taking borrowing into account. Finally, the sum of the
spare capacities has to be larger than or equal to the WCET of the aperiodic job to
pass the test. Else, the aperiodic job is rejected. This condition is represented by
Inequality (6.2).

112 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

sc(Ic)︸ ︷︷ ︸
current interval

+ sc(Ifull)︸ ︷︷ ︸
full intervals

+ sc(Idl)︸ ︷︷ ︸
interval with aperiodic

job deadline

≥ CAj (6.2)

with sc(Ifull) =
∑
c<i≤l

max (0, sc(Ii))

and sc(Idl) = max (0,min (sc(Il+1), dAj − start(Il+1)))

and end(Il) < dAj ∧ end(Il+1) ≥ dAj

After its acceptance, an aperiodic job is assigned to the set of guaranteed jobs. As
a consequence, its WCET has to be included into the spare capacities. If the deadline
of an aperiodic job is equal to an deadline, i.e., the end of an interval, which is already
present in the system, then job is assigned to this interval. Else, the interval, in which the
deadline is located, is split into two intervals with the aperiodic job deadline as new end
of the �rst interval and also start of the second interval. Afterwards, the spare capacities
of the interval or the two intervals after splitting have to be recalculated. This includes a
possible re-calculation of earlier intervals due to borrowing and borrowing propagation.

6.3 Mixed-Criticality Slot-Shifting

In the following, we present our slot-shifting-based method to schedule mixed-criticality
jobs without the need for mode changes. In this chapter, we use the Vestal model with
the two criticality levels lo and hi. TT jobs are scheduled o�ine in a schedule table with
earliest start times, deadlines, and WCETs. At runtime, these TT jobs are guaranteed to
execute for their WCET within their execution window in the corresponding criticality
level. Additionally, ET aperiodic jobs or jobs of sporadic tasks, i.e., jobs with unknown
arrival time, are handled. In the following, we consider only aperiodic jobs, but the
procedures are also valid for sporadic jobs. A bene�t of this approach is that slot-
shifting allows for non-work-conserving schedules based on spare capacities. Further,
slot-shifting allows for scheduling of strictly periodic jobs, i.e., jobs that have to be
executed directly at their periodic release. The approach is divided into an o�ine and
an online phase which are presented in the following.

6.3.1 Offline Phase

In the o�ine phase of slot-shifting, we can resolve complex constraints, e.g., precedence
constraints. The interested reader is referred to [Foh95]. We assume that complex
constraints are resolved and focus on the scheduling of mixed-criticality jobs. In the
following, we show how to determine capacity intervals and how to calculate spare
capacities which form the basis for the slot-shifting runtime scheduler.

6.3. Mixed-Criticality Slot-Shifting 113

Capacity Intervals

We divide the schedule into disjoint capacity intervals Ii with i ∈ {0, ...,m} based on the
release times and deadlines of the jobs. As mentioned before capacity intervals are not
identical to the execution windows, i.e., the time between release and deadline of a job.
In the following, capacity intervals are brie�y referred to as intervals. The intervals are
not a�ected by the mixed-criticality nature of jobs, i.e., jobs with two WCETs. In the
Vestal model, the release times and deadlines of jobs do not change with the criticality
level and hence, the construction of intervals also does not change from the original
slot-shifting. We brie�y recapitulate the rules to construct the intervals. Each deadline
of a job marks the end end (Ii) of an interval Ii. Each job Jk with k ∈ {1, ..., n} is
assigned to an interval with end (Ii) = dk. Jobs with the same deadline belong to the
same interval. The earliest start time est (Ii) of an interval Ii is determined by the
minimum of all release times of jobs assigned to that interval:

est(Ii) = min
∀Jk∈Ii

(rk) (6.3)

The start of an interval is determined by the maximum of its earliest start time and the
end of the previous interval:

start(Ii) = max (est(Ii), end(Ii−1)) (6.4)

The gaps between the determined intervals above are de�ned as empty intervals, i.e.,
there is no job assigned to them. An interval Ii is called independent if there is no
interval Ie with e < i and end(Ie) > est(Ii) and there is no interval Il with i < l and
end(Ii) > est(Il). The length |Ii| of an interval is calculated by Equation 6.5.

|Ii| = end(Ii)− start(Ii) (6.5)

Spare Capacities

In the following, we explain how we can apply slot-shifting's concept of spare capacities
to mixed-criticality job sets. The o�ine calculated spare capacities sc(Ii) of an interval Ii
represent the amount of available resources within this interval after guaranteeing TT
jobs. The requirements of mixed-criticality job sets result in di�erent spare capacities
based on the behavior of jobs. At runtime, we perform an acceptance test for ET jobs
with �rm deadlines. We consider the demand of guaranteed ET jobs, i.e., jobs that
passed the acceptance test, in the selection function and the maintenance of the spare
capacities. In the following, we show how spare capacities are calculated for mixed-
criticality job sets. We calculate spare capacities beginning with the last interval Im
until the �rst interval I0.
We can test the schedulability based on the spare capacities under the condition of

obeying release times and deadlines. Spare capacities of independent intervals have to
be non-negative. Further, after borrowing and borrowing propagation there must be an
earlier interval with non-negative spare capacity.
The calculation of mixed-criticality spare capacities is based on the calculation shown

in Section 6.2 for original slot-shifting. We calculate two spare capacity values for each

114 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

interval: sclo(Ii) and schi(Ii). The calculation of spare capacities is done by Equa-
tions (6.6) and (6.7).

sclo (Ii) = |Ii| −
∑
Jk∈Ii

Ck(lo) +min (sclo (Ii+1) , 0) (6.6)

schi (Ii) = |Ii| −
∑
Jk∈Ii
∧χk=hi

Ck(hi) +min (schi (Ii+1) , 0) (6.7)

Spare capacities sclo(Ii) represent available capacities based on designer's require-
ments, i.e., considering Ck(lo), including all jobs. If the lo-criticality spare capacities
are equal to zero, we cannot include non-guaranteed jobs, i.e., soft ET jobs. Addition-
ally, schi(Ii) represents the available resources based on certi�cation authorities' (CAs)
requirements, i.e., considering Ck(hi), considering only hi-criticality jobs. If the hi-
criticality spare capacities are equal to zero, then we have to run a hi-criticality job,
otherwise we cannot guarantee the hi-criticality WCETs.

6.3.2 Online Phase

At runtime, we execute mixed-criticality jobs based on the spare capacity in the current
interval Ic and the deadlines of the jobs. Further, soft ET aperiodic jobs are executed
if there are available resources to execute them without harming guaranteed jobs. We
assume that soft aperiodic jobs always have lo-criticality. On the contrary, for �rm
aperiodic jobs, we perform an acceptance test to check whether we can guarantee the
execution within their execution windows. If the �rm aperiodic jobs have lo-criticality,
we use the lo-criticality spare capacities sclo for the acceptance test. Although hi-
criticality �rm ET aperiodic jobs are possible, they are not reasonable because we can-
not guarantee their execution. It is possible that one of these jobs does not pass the
acceptance test and cannot be executed. In this case, we would reject hi-criticality
jobs which are subject to certi�cation. As a result, if we want to certify and guarantee
ET activities, e.g., hi-criticality �rm sporadic jobs, we need an o�ine reservation task,
for instance, as we showed in Chapter 4, to include the worst-case demand into the
spare capacity calculations. In case the designer wants to include these jobs despite
the mentioned problems, we would have to perform two acceptance tests: one test with
lo-criticality spare capacities under designer assumptions, i.e., using CAk(lo), and one
test with hi-criticality spare capacities under CAs' assumptions, i.e., using CAk(hi). The
hi-criticality aperiodic jobs have to pass both tests to get accepted. In the following,
we assume only lo-criticality ET aperiodic jobs.
In the following, we present how to select the next job for execution. Further, we show

the update procedures for spare capacities depending on the job execution. Finally, we
present an acceptance test for lo-criticality ET jobs.

6.3. Mixed-Criticality Slot-Shifting 115

Decision Mode and Selection Function

The decision mode of the slot-shifting runtime scheduler is preemptive at slot borders.
We use three ready queues: Rlo(t), Rhi(t), and Rsoft(t). Whereas,

Rlo(t) = {Ji|ri ≤ t ∧ χi = lo} ∪ {JAi|rAi ≤ t ∧ χAi = lo}

contains both TT and �rm ET lo-criticality jobs. Further,

Rhi(t) = {Ji|ri ≤ t ∧ χi = hi}

is used for TT hi-criticality jobs. Finally, the FIFO-queue

Rsoft(t) = {Ji|ri ≤ t}

contains all soft aperiodic (lo-criticality) jobs. We de�ne

R�rm(t) = Rlo(t) ∪Rhi(t)

which represents all guaranteed (�rm) jobs to simplify our explanations. The scheduler
selects the next executing jobs based on the ready queues, the intervals and the spare
capacities. In contrast to original slot-shifting, lo-criticality spare capacities can be
negative in the current interval Ic. This can occur when a hi-criticality job Jk executes
for more than its lo-criticality WCET and we have to continue its execution. As long
as the lo-criticality spare capacity in the current interval is negative, i.e., sclo(Ic) < 0,
we can only execute hi-criticality jobs. Based on these observations, we distinguish the
following possible decision cases at time t.

a) R�rm(t) = {}:
1) Rsoft(t) = {}:

We schedule an idle slot because there are no ready jobs.

2) Rsoft(t) 6= {}:
sclo(Ic) and schi(Ic) are always greater than zero and hence, we can schedule a
soft aperiodic job.

b) R�rm(t) 6= {} ∧ schi(Ic) > 0:

1) sclo(Ic) > 0:
If Rsoft(t) 6= {} then we schedule the �rst soft aperiodic job in the FIFO-queue
Rsoft(t). Else, we select the ready job with the earliest deadline in R�rm(t). This
is the only situation when soft aperiodic jobs are scheduled if guaranteed jobs
are ready to execute. Figure 6.4 illustrates this situation with an example.

2) sclo(Ic) = 0:
We select the job with the earliest deadline in R�rm(t) because there are enough
available resources for both lo- and hi-criticality jobs and thus, there is no need
to prioritize hi-criticality jobs. On the contrary, there are no spare capacities left
for soft aperiodic demand and thus, we have to select a guaranteed job. Figure 6.5
illustrates this situation with an example.

116 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

Figure 6.4: Example situation when selecting the next job with Rlo(t) = {J2}, Rhi(t) = {J1},
sclo(Ic) > 0, and schi(Ic) > 0.

Figure 6.5: Example situation when selecting the next job with Rlo(t) = {J2}, Rhi(t) = {J1},
sclo(Ic) = 0, and schi(Ic) > 0.

3) sclo(Ic) < 0:
We select the job with the earliest deadline in Rhi(t). There are not enough
available lo-criticality spare capacities in the current interval to complete the
remaining lo-criticality jobs and hence, they are skipped until enough resources
are available to schedule both lo- and hi-criticality jobs again. Figure 6.6 illus-
trates this situation with an example.

c) R�rm(t) 6= {} ∧ schi(Ic) = 0:

1) sclo(Ic) > 0:
The job with the earliest deadline in Rhi(t) is selected because we have to execute
a hi-criticality job to guarantee its completion with CAs' assumptions before its
deadline. Figure 6.7 illustrates this situation with an example.

6.3. Mixed-Criticality Slot-Shifting 117

Figure 6.6: Example situation when selecting the next job with Rlo(t) = {J2}, Rhi(t) = {J3},
sclo(Ic) < 0, and schi(Ic) > 0.

Figure 6.7: Example situation when selecting the next job with Rlo(t) = {}, Rhi(t) = {J1},
sclo(Ic) > 0, and schi(Ic) = 0.

2) sclo(Ic) ≤ 0:
We select the job with the earliest deadline in Rhi(t) because of the reasons
mentioned in case c1. A consequence of this situation is that lo-criticality jobs
are skipped. Figure 6.8 illustrates this situation with an example.

d) R�rm(t) 6= {} ∧ schi(Ic) < 0:
The hi-criticality spare capacities cannot be less than zero. This could only happen if
we execute a hi-criticality job Jk for more than Ck(hi) which we assume is prevented
by the system.

118 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

Figure 6.8: Example situation when selecting the next job with Rlo(t) = {J2}, Rhi(t) = {J1},
sclo(Ic) ≤ 0, and schi(Ic) = 0.

Spare Capacity Maintenance

As a consequence of the process to select the next executing job, we have to update the
spare capacities depending on the criticality level and type of the job.
No execution: If an idle slot has been scheduled, we decrease both sclo(Ic) and schi(Ic)
by one slot.
Soft aperiodic execution: Soft aperiodic jobs are not considered in the spare capacity
calculations. As a result, we have to decrease the lo- and hi-criticality spare capacities
in the current interval by one slot.
Guaranteed job execution: If a guaranteed job Ji, either TT or �rm ET (in this
case: JAi), has been scheduled, then we have to di�erentiate whether Ji is assigned
to the current interval Ic or to a later interval Ik. Further, the fact whether a hi-
criticality job exceeded its lo-criticality WCET, i.e., exhibited hi-behavior, in�uences
the maintenance of spare capacities.

A) Ji ∈ Ic
1) Ji did not exceed Ci(lo) and χi = lo:

In the lo-criticality spare capacities sclo(Ic), Ji has been considered and thus,
sclo(Ic) is not changed. On the contrary, in the hi-criticality spare capacities
schi(Ic), Ji has not been included such that we decrease schi(Ic) by one slot.

2) Ji did not exceed Ci(lo) and χi = hi:
In both spare capacity calculations, sclo(Ic) and schi(Ic), the scheduled demand
has already been considered and hence, both spare capacities in the current
interval remain unchanged.

3) Ji exceeded Ci(lo):
As the job executes for more than the considered amount of lo-criticality execu-
tion time, which is only possible for hi-criticality jobs, we have to decrease the
lo-criticality spare capacity in the current interval by one slot. On the contrary,

6.3. Mixed-Criticality Slot-Shifting 119

for the hi-criticality spare capacity schi(Ic), this scheduled execution has already
been considered and thus, schi(Ic) is unchanged.

B) Ji ∈ Ik with Ik 6= Ic and k > c

1. Ji did not exceed Ci(lo) and χi = lo:
The scheduled demand has not been considered in sclo(Ic). As a consequence,
we decrease sclo(Ic) by one slot. Additionally, we increase sclo(Ik) where the
demand has been originally considered in the spare capacity calculations. In
other words, one slot of execution is swapped between the current interval Ic
and the assigned job interval Ik.

Furthermore, there is the aspect of borrowing which has to be considered: if
sclo(Ik) was less than zero before increasing by one in the current step, then
Ik was borrowing capacity from at least one earlier interval. Thus, we have
to increase the spare capacities by one if there was borrowing or borrowing
propagation in one or several of the intervals from Ic to Ik−1.

In all hi-criticality spare capacities, job Ji has not been considered. As a result,
we decrease schi(Ic) by one slot because we used one slot to execute a job which
has not been considered in the current interval. Further, schi(Ik) is not a�ected
by this and thus, not changed.

2. Ji did not exceed Ci(lo) and χi = hi:
The lo-criticality spare capacities sclo(Ic) and sclo(Ik) are updated as shown
before in step B1.

Additionally, we have to update the hi-criticality spare capacities. The scheduled
demand has not been considered in schi(Ic). As a consequence, we decrease
schi(Ic) by one slot and increase sclo(Ik) where the demand has been originally
included. Thus, we swap one slot of execution between the current interval Ic
and the assigned job interval Ik.

Furthermore, the aspect of borrowing has to be considered also: if schi(Ik) was
less than zero before increasing by one slot in the current step, then Ik was
borrowing capacity from at least one earlier interval. Thus, we have to increase
the spare capacities by one slot in all intervals from Ic to Ik−1 if they were a�ected
by borrowing or borrowing propagation.

3. Ji exceeded Ci(lo):
The demand has not been considered in the lo-criticality spare capacities, nei-
ther in sclo(Ic) nor in sclo(Ik). Thus, only the spare capacity in the current
interval sclo(Ic) is decreased by one.

For the hi-criticality spare capacities, we have to apply the same procedures as
in step B2; which are:
The scheduled demand has not been considered in schi(Ic) and thus, we have
to decrease schi(Ic) by one slot. Further, schi(Ik), where the demand has been
originally considered, is increased by one.

120 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

Still, there may be the aspect of borrowing which has to be considered: if schi(Ik)
was less than zero before increasing by one in the current step, then Ik was
borrowing capacity from at least one earlier interval. Thus, we have to increase
the spare capacities by one if there was borrowing or borrowing propagation in
one or several of the intervals from Ic to Ik−1.

After execution of a job in the current slot and before the scheduling process continues
in the next slot, we have to compare the actual execution time of the job with the WCET
for the lo- and the hi-criticality case if the job �nished in the current slot. If guaranteed
jobs complete earlier than their criticality level speci�c WCET (Ck(lo) for lo- and
Ck(hi) for hi-criticality spare capacities), the di�erence between actual execution time
and speci�ed WCET can be added to the spare capacities of the corresponding intervals,
as shown in [IF09].
In conclusion, we can make e�cient use of the available resources by the update

mechanism presented above. Further, the lo-criticality and hi-criticality spare capaci-
ties allow for �exibility to react to the actual job behavior.

Acceptance Test for Aperiodic Jobs

So far, we showed how we schedule TT jobs by introducing (capacity) intervals and
spare capacities for lo- and hi-critical behavior of jobs. In the following, we present
a method which uses these intervals and spare capacities to integrate ET jobs into the
system. To integrate them, we show an acceptance test for �rm aperiodic jobs. As
we showed before, soft aperiodic jobs are only scheduled if they do not interfere with
guaranteed jobs and hence, there is no need for an acceptance test for them.
We present the acceptance test for lo-criticality �rm aperiodic jobs. Changes for

an acceptance test for hi-criticality jobs are straight forward but having aperiodic jobs
which cannot be guaranteed before runtime contradicts the rationale of hi-criticality
jobs. A certi�ed hi-criticality job must meet its deadline otherwise catastrophic conse-
quences can happen for the system. Hence, a hi-criticality aperiodic job which may be
rejected by an acceptance test is a contradiction.
When an ET job is released in the system, the scheduler checks for ET activities at the

beginning of a slot. The acceptance test summarizes the available lo-criticality spare
capacities until the deadline of the aperiodic job. (For a hi-criticality acceptance test, we
would have to perform an acceptance test based on the lo-criticality and one test based
on the hi-criticality spare capacities.) We can group the available spare capacities into
three groups: the spare capacities sclo(Ic) in the current interval; the spare capacities
sclo(Ifull) of all full intervals between the current interval and the interval in which
the aperiodic job deadline is located; and �nally, the spare capacities sclo(Idl) available
between the start of the interval in which the aperiodic job deadline is located and the
absolute deadline of the job. The sum of these spare capacities must be greater than
or equal to the lo-criticality WCET of the aperiodic job. Inequality (6.8) shows this
condition including the calculations of the three spare capacity groups.

6.4. Mixed-Criticality Slot-Shifting Example 121

max (0, sclo(Ic))︸ ︷︷ ︸
current interval

+ sclo(Ifull)︸ ︷︷ ︸
full intervals

+ sclo(Idl)︸ ︷︷ ︸
interval with aperiodic

job deadline

≥ CAj(lo) (6.8)

with sclo(Ifull) =
∑
c<i≤l

max (0, sclo(Ii))

and sclo(Idl) = max (0,min (sclo(Il+1), dAj − start(Il+1)))

and end(Il) < dAj ∧ end(Il+1) ≥ dAj

In contrast to original slot-shifting, the spare capacities in the current interval can be
negative which is a result of the execution of hi-criticality jobs longer than their speci-
�ed lo-criticality WCET. As a consequence, the lower bound for the considered spare
capacities in the current interval is zero. In the full intervals, negative spare capacities
are already included in the spare capacities of the previous interval as consequence of
borrowing. Thus, only non-negative spare capacities in these intervals are included. In
the interval with the aperiodic job deadline, we can only use the spare capacities until
the deadline. As a result, if the spare capacities are larger than time between start of
the interval and the job deadline, we can only use this time until the deadline. Further,
if the spare capacities in this interval are negative, zero is used as lower bound because
the negative spare capacities have been considered when we included borrowing in the
calculations.
If the acceptance test fails, then the aperiodic job is rejected. Else, the (lo-criticality)

aperiodic job is included into the queue of guaranteed jobs and (lo-criticality) spare
capacities are updated. The job is included into the interval whose end is equal to the
deadline of the job. If the there is no such interval, the deadline marks the end of an
interval and hence, one interval is split into two intervals. The WCET of the job has to
be considered in the spare capacities and if the spare is negative, we have to recalculate
the spare capacities of intervals a�ected by borrowing and borrowing propagation.

6.4 Mixed-Criticality Slot-Shifting Example
In this section, we show an example showing that with our presented approach we do not
need mode changes for handling hi-criticality behavior of jobs. Further, we illustrate the
advantage that we only skip lo-criticality jobs if the actual behavior of hi-criticality jobs
requires this. Finally, the acceptance test for ET activities is shown. Table 6.2 depicts
the job set and the aperiodic jobs used in this example. The jobs are characterized by
the parameters used before. Additionally, we include the actual execution time γi which
is only known when the job signals its completion at runtime. The release time of the
aperiodic job is also unknown until the job enters the system at this time.
First, we determine the (capacity) intervals which we use for the calculation of the

spare capacities. We set all job deadlines as an end of an interval. Then, starting from

122 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

jobs
criticality lo-criticality hi-criticality release

deadline
actual

level WCET WCET time execution time

J1 lo 4 4 0 7 4

J2 lo 2 2 1 9 1

J3 hi 4 8 2 12 5

J4 hi 1 2 10 15 2

JA1 lo 2 2 9 12 2

JA2 lo 2 2 9 � 2

Table 6.2: Example job set for mixed-criticality slot-shifting.

the last interval end, we determine the earliest start times. All intervals have only one
job assigned, such that the earliest start time of an interval is equal to the release time of
the job assigned to it. For the intervals with jobs J2, J3, and J4, the maximum between
earliest start time of the interval and end of the previous interval is always the end of
the previous interval. As a result, for these intervals, the start times are the end times
of their previous interval. For the interval with J1, there is no previous interval and
hence, the start time is set to the release time of J1. Figure 6.9 shows the release times
and deadlines of the jobs, and the resulting intervals whereas the release times of the
jobs are the earliest start times of the intervals. Table 6.3 summarizes the earliest start
times, start times, and end times of all intervals.

Figure 6.9: Resulting intervals of the mixed-criticality job set.

In the next step, we calculate the lo- and hi-criticality spare capacities using Equa-
tions (6.6) and (6.7). Figure 6.10 illustrates the calculations by showing the WCETs of
all jobs depending on the criticality level of the spare capacities. Scheduling the jobs
as late as possible shows the resulting spare capacities with the previously determined
intervals. We can see that we cannot execute J3 for its hi-criticality WCET before its
deadline while including J1 and J2 at the same time. The selection function of our sched-
uler schedules the job such that we can always guarantee the execution of hi-criticality

6.4. Mixed-Criticality Slot-Shifting Example 123

interval earliest start time start time end time

I0 0 0 7

I0 1 7 9

I0 2 9 12

I0 10 12 15

Table 6.3: Intervals with their earliest start times, start times, and end times.

jobs under CAs' pessimistic assumptions. Further, the scheduler can react dynamically
on the actual behavior, i.e., the actual execution times, of all jobs.

Figure 6.10: lo- and hi-criticalilty spare capacities of the determined intervals.

After completing the o�ine calculation of spare capacities, we now start the system
and execute the jobs with their actual execution time and react to the ET activities. At
the start of the system, there are no soft aperiodic jobs and hence, we select a guaranteed
job with earliest deadline, which is J1. J1 is assigned to the current interval I0 and thus,
the lo-criticality spare capacities in I0 are unchanged. Due to the criticality level lo
of J1, the job has not been considered in the hi-criticality spare capacity calculation of
schi(I0). As a consequence, schi(I0) is reduced by one slot. This scheduling decision and
the spare capacity updates are repeated until slot 3. In slot 3, J1 signals completion
and as a consequence of the spare capacity updates, the hi-criticality spare capacities
schi(I0) become zero.schi(I0). In Figure 6.11, we show the execution of J1 in 4 slots and
the resulting spare capacities after slot 3.
The hi-criticality spare capacities in the current interval indicate that we must sched-

ule a hi-criticality job otherwise we cannot guarantee its hi-criticality WCET before
its deadline. We select a job with earliest deadline from Rhi(t) which is J3. In slot 4,
we schedule J3 which is assigned to interval I2. J2 is a hi-criticality job and executes
outside its interval. As a result, we have to update the spare capacities in the follow-
ing way: in sclo(I0), this execution has not been considered and hence, we reduce the
spare capacities here by one slot. In the assigned interval of J3, we increase the spare

124 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

Figure 6.11: Scheduled jobs and spare capacities after slot 3.

capacities by one slot because this slot has now been executed earlier already in inter-
val I0. Due to the borrowing of I2, indicated by the negative spare capacities before
we increased them by one slot, interval I1 needs to lend one slot less to I2 and thus,
we increase sclo(I1) by one slot. The hi-criticality spare capacities are updated in the
same way, but with additionally increasing schi(I0) by one slot because I0 is a�ected by
borrowing propagation in the hi-criticality case. In other words, due to the swapping
of one slot between I0 and I2 by the earlier execution of J3, I2 borrows one slot less in
I1 and consequently, I1 borrows one slot less in I0. Increasing by one and decreasing by
one slot results in unchanged schi(I0) which is still zero. The resulting spare capacities
are shown in Figure 6.12.

Figure 6.12: Scheduled jobs and spare capacities after slot 4.

The hi-criticality spare capacity value schi(I0) = 0 requires that we schedule a hi-
criticality job in the next slot. The spare capacity updates are done as in slot 4 ex-
cept that sclo(I1) is not a�ected by borrowing anymore which is indicated by the non-
negative spare capacity value. As a result, these spare capacities are unchanged. Zero
hi-criticality spare capacities require that we schedule a hi-criticality job also in slot
6. As a consequence, in slot 5 and 6, we schedule J3. The resulting spare capacities
are shown in Figure 6.13. The negative lo-criticality spare capacities at the end of the
current interval indicate that we executed more slots with workload which has not been
assigned to this interval than we have had spare capacities. This is a �rst indicator that
we may have to skip a lo-criticality job if all jobs need to run for their WCET.
At t = 7, the hi-criticality spare capacities in the new current interval I1 are zero.

As a consequence, we select a hi-criticality job with earliest deadline again. The earlier
execution of one slot of J3 which has been assigned to interval I2 swaps one slot between

6.4. Mixed-Criticality Slot-Shifting Example 125

Figure 6.13: Scheduled jobs and spare capacities after slot 6.

![htb]

Figure 6.14: Scheduled jobs and spare capacities after slot 7.

sclo(I1) and sclo(I2). Further, one slot is swapped between schi(I1) and schi(I2) and
additionally, there is one slot borrowed less in I1 which results in increasing schi(I1) by
one slot. We show the resulting spare capacities in Figure 6.14.
In slot 8, we have to schedule a hi-criticality job again. The spare capacity updates

are as before. In this slot, J3 completes its execution within 5 slots. In the lo-criticality
spare capacities only 4 slots have been considered and thus, we need to update them.
On the contrary, in the hi-criticality spare capacities we considered an execution of 8
slots. As a consequence, the spare capacities in the assigned interval I2 can be increased
by the di�erence of 3 slots. In Figure 6.15, we depict the resulting spare capacities at
the end of slot 8.

Figure 6.15: Scheduled jobs and spare capacities after slot 8.

At t = 9, the ET jobs JA1 and JA2 are released. JA2 is a soft aperiodic job and
thus, can be directly added to the queue of soft jobs Rsoft(t). Firm aperiodic job JA1

has lo-criticality and hence, we perform an acceptance test with lo-criticality spare
capacities and WCETs. The deadline of this job is equal to the start of the next

126 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

interval I2. Based on Inequality (6.8), we test whether the �rm aperiodic job can be
accepted. In this case, the test is simple: the deadline of the aperiodic job is equal
to the start of the next interval. As a consequence, the acceptance test is simpli�ed
to: max (0, sclo(Ic)) ≥ CAj(lo). Here, the lo-criticality spare capacities in the current
interval are three and the computational demand of the aperiodic job is two, and hence,
we can accept the job. By accepting this job, we have to update the lo-criticality spare
capacities. The aperiodic job is assigned to the current interval which reduces sclo(I2)
by CA1(lo). The resulting spare capacities are positive, i.e., there is no borrowing.
Figure 6.16 depicts the spare capacities after the acceptance of the aperiodic job.

Figure 6.16: Spare capacities after accepting �rm aperiodic job JA1.

In the current interval I2, the ready queue for soft aperiodic jobs is not empty anymore.
The lo- and hi-criticality spare capacities in the current interval are both greater than
zero such that we can schedule a soft aperiodic job without violation of guaranteed �rm
jobs. As a result, we schedule the soft aperiodic job JA2 in slot 9. Scheduling a soft
aperiodic job reduces sclo(Ic) and schi(Ic) by one slot. We show the resulting spare
capacities and the execution of the jobs so far in Figure 6.17.

Figure 6.17: Scheduled jobs and spare capacities after slot 9.

The lo-criticality spare capacities in the current interval are equal to zero and hence,
we have to schedule a guaranteed job. schi(Ic) is greater than zero, i.e., it is possible
to select a lo-criticality job. The scheduler selects the job with the earliest deadline in
R�rm(t) which is JA1. JA1 has lo-criticality and executes inside its assigned interval such
that sclo(Ic) is unchanged and schi(Ic) is reduced by one slot. The spare capacities in
the current interval still require the selection of a guaranteed job. As a consequence, JA1

6.4. Mixed-Criticality Slot-Shifting Example 127

Figure 6.18: Scheduled jobs and spare capacities after slot 11.

is scheduled for another slot and schi(Ic) is reduced by one slot again. In Figure 6.18,
we show the resulting spare capacities after slot 11.
At t = 12, the current interval is now interval I3. Spare capacities sclo(Ic) and schi(Ic)

are greater than zero which allows for the execution of a soft aperiodic job. We schedule
JA2 which reduces the lo- and hi-criticality spare capacities in the current interval by
one slot. We show the resulting spare capacities in Figure 6.19.

Figure 6.19: Scheduled jobs and spare capacities after slot 12.

As a consequence of the soft aperiodic job execution, the hi-criticality spare capacities
in the current interval indicate that we have to schedule a hi-criticality job to guarantee
the hi-criticality WCET. This results in scheduling J4 in slot 13 which is assigned to the
current interval and hence, the execution has already been considered in both sclo(Ic)
and schi(Ic). Thus, sclo(Ic) and schi(Ic) remain unchanged which is shown in Figure 6.20.

Figure 6.20: Scheduled jobs and spare capacities after slot 13.

Job J4 executed for its lo-criticality WCET but did not signal completion. Further,
the hi-criticality spare capacities indicate that we have to schedule a hi-criticality job.

128 Chapter 6. Mixed-Criticality Slot-Shifting without Mode Changes

We schedule J4 in slot 14 which signals completion after its execution in this slot. The
execution for more than C4(lo) has not been considered in the lo-criticality spare
capacities and thus, we reduce sclo(Ic) by one slot. In the hi-criticality spare capacities,
the execution has been considered such that they are unchanged. This completes the
execution of the given job set and Figure 6.21 depicts the resulting schedule with the
spare capacities after the last slot.

Figure 6.21: Scheduled jobs and spare capacities after slot 14.

In the presented example, we showed that with our method we can react to the actual
behavior of mixed-criticality jobs. Due to the hi-criticality behavior of job J3, we had
to skip lo-criticality job J2. On the contrary, J3 completed earlier than its hi-criticality
WCET such that we could make use of the available capacities to guarantee the �rm
aperiodic job JA1 and also execute the soft aperiodic job JA2.

6.5 Discussion: How Can We Dynamically Use Resources at
Runtime?

In the following, we answer the question on how we can make use of the knowledge
about the available resources at runtime. Our approach is based on an schedule table
with earliest start times (release times), deadlines, and WCETs of jobs. To answer the
question, we can consider two versions of schedule tables: certi�ed and non-certi�ed
schedule tables.
First, we assume that the starting point is a certi�ed schedule table of a legacy system.

As a result, the pessimistic assumptions of the CAs are already included in the schedule
table. Using our presented approach with such tables can �exibly make use of the
available resources. We include ET activities into the scheduling process at runtime
without interference of certi�ed system behavior. Further, the knowledge of actually
available resources at runtime can be used to improve quality of result. As an example,
we consider applications that improve their results when executing for longer times,
e.g., quality of result is improved when more iterations of a calculation are performed.
In order to achieve this goal, we can implement this desired behavior as follows: a job
provides the required quality of result within its speci�ed WCET. If the job completes its
execution before its deadline, we can use the available resources to create an aperiodic
job with deadline equal to the original job deadline to improve the quality of result

6.5. Discussion: How Can We Dynamically Use Resources at Runtime? 129

by executing the job for some additional time. As a consequence, we can guarantee a
�minimum� quality of the results while making use of the available resources to further
improve the quality of results.
In contrast to the certi�ed schedule tables, we can begin with a designer based sched-

ule table excluding the pessimistic assumptions of the CAs. The schedule table is con-
structed based on the lo-criticality WCETs and hence, it is not certi�ed. Release times
and deadlines of hi-criticality jobs are not changed by CAs. As a result, capacity in-
tervals are not in�uenced by CAs' pessimistic assumptions. On the contrary, WCETs
change for hi-criticality jobs. This results in changing spare capacities for hi-criticality
system state. We can use the hi-criticality spare capacities to prove correct system
behavior even in case all hi-criticality jobs show hi-behavior because lo-criticality jobs
do not interfere them. The available resources, i.e., spare capacities, can be used for ET
activities based on the actual behavior of jobs instead of worst-case estimations.
Finally, the knowledge of actually available resources can be used for lo-criticality jobs

at runtime. When hi-criticality jobs exceeds their lo-criticality WCET, it is possible
that lo-criticality jobs cannot execute before their deadline and thus, are skipped. If
results of such a lo-criticality job are useless after their deadline, then the system
performance will degrade. On the contrary, if the a�ected lo-criticality jobs allow for
some tardiness, we can use the knowledge of available resources to try to avoid this
performance degradation. If a delayed execution of a lo-criticality job results in worse
result but results which can still be used to improve the performance of the system,
then we can create a new (lo-criticality) aperiodic job to execute this job. The skipped
lo-criticality job is re-released as an aperiodic job with an extended deadline. Although
the execution of the job is delayed, its execution can still contribute to the system
performance. As a result, a temporary higher workload by hi-criticality jobs can lead
to skipping lo-criticality jobs. Despite this, jobs allowing some tardiness can execute
with available resources when the high workload is decreasing again. The presented
acceptance test guarantees that by re-releasing this job, the timing constraints of other
guaranteed jobs are not violated.

Chapter 7

Slot-Shifting with Generic Mode Changes

In this chapter, we present two approaches to use mode changes with slot-shifting. On
the one hand, we show slot-shifting with generic mode changes. This method schedules
jobs with varying parameters in di�erent modes. Furthermore, we can determine the
feasibility of mode changes and perform them only if the active jobs in the destination
mode can meet their deadlines. On the other hand, we adapt slot-shifting with generic
mode changes to accommodate the requirements of mixed-criticality systems. In con-
trast to the generic mode change case, we need to change modes to guarantee timing
constraints of jobs with high criticality levels. As a result, the method does not check
the feasibility of mode changes but triggers mode changes such that a timing behavior
of high criticality jobs can be guaranteed.
In Section 7.1, we show the limitations of the Vestal mixed-criticality model and

how we can re�ne the term �criticality�. Next, Section 7.2 presents important aspects
of mode changes with mixed-criticality and non-mixed-criticality jobs. The used job
model for our algorithms is shown in Section 7.3. In Section 7.4, we explain slot-shifting
with generic mode changes and illustrate its behavior with an example in Section 7.5.
The application of slot-shifting with generic mode changes to mixed-criticality systems
is shown in Section 7.6. Finally, a discussion about the mixed-criticality model in
Section 7.7 concludes the chapter.

131

132 Chapter 7. Slot-Shifting with Generic Mode Changes

7.1 Motivation
In the previous chapter, we showed a slot-shifting-based approach to handle dual-
criticality jobs with two worst-case execution times (WCETs). In this chapter, we
generalize this approach to increase the �exibility in the mixed-criticality job param-
eters. We assume a system de�ned by several modes with di�erent jobs and variable
job parameters. As a result, the job set is de�ned by jobs which are executed only in
speci�c modes. Furthermore, job parameters can change depending on the mode. The
exact assumptions about job parameters are shown in Section 7.3.
As Graydon and Bate suggested, the term criticality of a job or task should be con-

sidered more speci�cally [GB13]. The �criticality� of systems and their jobs should be
de�ned by the terms con�dence, importance, and mode. In the Vestal model [Ves07],
the criticality of a job is re�ected by the con�dence in the WCET bounds. As a conse-
quence, larger WCET values correspond to a higher con�dence in this bound. On the
contrary, the importance is not considered in this model. An often used assumption is
that lo-criticality jobs do not need to execute when the system is in hi-criticality state.
This assumption refers to the mode of the scheduler. Burns and Baruah generalized
the Vestal model by extending the constant periods and deadlines of periodic tasks to
periodic tasks which allow for shortened periods and shortened deadlines of tasks in a
higher criticality state [BB11].
In this chapter, we consider two �versions� of mode changes. On the one hand, we use

mode changes as consequence of a hi-criticality job exceeding its lo-criticality WCET,
as shown in Chapter 5. In this case, we must perform the mode change to guarantee a
speci�c behavior at the cost of the lo-criticality jobs. On the other hand, a mode change
can be performed to switch into a di�erent operational mode. Here, the mode change
cannot be performed at every instant. An example to illustrate di�erent operational
modes is switching from take-o� mode to �ying mode of an airplane. For instance,
during take-o� phase, an airplane needs its landing gear on the runway. At take-o�
completion, the landing gear is retracted and the airplane can switch to �ying mode.
As a consequence, switching from starting to �ying is only possible if the job �retract
landing gear� is completed. Thus, a mode change request can be declined until speci�c
conditions allow for the mode change.
In our method, we show the conditions that allow for a mode change to a speci�c

destination mode. Afterwards, we present how we can adapt the method to accom-
modate for the requirements of mixed-criticality systems. In other words, the needed
adaptations when a mode has to be changed to guarantee a speci�ed behavior, i.e., to
guarantee hi-criticality jobs with the hi-criticality WCETs of the certi�cation authori-
ties (CAs). Finally, we can include event-triggered (ET) activities into the scheduling
process with our method.

7.2 Generic and Mixed-Criticality Mode Changes
In Chapter 5, lo-criticality jobs have been aborted when we switched from lo-criticality
to hi-criticality mode. In Chapter 6, an hi-criticality job exceeding its lo-criticality

7.2. Generic and Mixed-Criticality Mode Changes 133

WCET, resulted in skipped lo-criticality jobs as long as there are not enough resources
to schedule lo-criticality jobs and guarantee CAs' requirements of hi-criticality jobs.

7.2.1 General Job Behavior during Mode Changes

In this chapter, we show an approach which allows for di�erent WCETs, di�erent ex-
ecution windows, and di�erent jobs in each mode. In the following, we present the
consequences for ready jobs when a mode change request (MCR) occurs.
The original Vestal model is based on periodic tasks. Burns and Baruah showed an

extension of this mixed-criticality task model [BB11]. In their extended model, the
periodic mixed-criticality tasks are characterized by criticality level, periods, relative
deadlines, and WCETs. As in Vestal's model, there is one WCET for each criticality
level. In addition, for criticality levels higher than the task's criticality level, the WCET
is not de�ned or de�ned as the same value as for the highest used criticality level.
Furthermore, relative deadlines can also change: for a higher criticality level, the task's
deadline is allowed to be shorter than the original deadline at its lowest criticality level.
Finally, the periods can also be shortened if the task is executed in a higher criticality
level.
Although our method works on job-base, we show the di�erent behaviors based on

periodic tasks during the mode changes for reasons of comparability. This does not
in�uence the applicability of our method.
In the following, mode changes are performed from source mode to destination mode.

We show di�erent types of periodic tasks before and after a mode change.
The current instance of a periodic task can be canceled at mode change when this

task is not active in the destination mode. As a result, the task is removed from ready
queue and not scheduled anymore.
On the contrary, there are tasks which are only active in the source mode and must

complete the execution of the currently active instance. Our approach works without
a transition mode and hence, this task is not included in the destination mode and
thus, will not be scheduled. We perform mode changes based on the information in
the destination mode. In other words, when we switch to the destination mode, we
guarantee tasks in that mode and assume that tasks in the source mode are not needed
anymore. Despite this, we can complete the execution of ready source mode jobs by
re-releasing them as an aperiodic job such that this job can complete its execution. In
this case, the job can continue its execution with additional execution time granted for
the re-released aperiodic job.
Besides tasks that are only active in the source mode, tasks that are active in both

modes are also possible. These tasks can continue with their release pattern or change
it. In both cases, only the task instance which is active during the mode change is
important for a job-based scheduler. Due to being active in both source and destination
mode, the currently active instance should not be aborted. In the destination mode,
the currently active job is also considered and if there is enough time available, we
can switch to the destination mode and complete its execution; otherwise, the MCR is
denied.

134 Chapter 7. Slot-Shifting with Generic Mode Changes

Finally, there are tasks which are only active in the destination mode. Thus, their
execution is considered in the destination mode. If the MCR is accepted, these tasks
can be executed.
Our approach is based on slot-shifting. We have shown the original slot-shifting

approach in Section 6.2. For each mode, we determine capacity intervals and spare
capacities based on the jobs active in this mode with the job parameters for this mode.
While we schedule jobs in the current mode, we update the spare capacities of all modes.
When a mode change is requested, we perform the mode change only if we can guarantee
the execution of all jobs of the destination mode with deadline later than the current
time instance. If a job is active in both source and destination mode, the already granted
execution time is accounted for the execution in the destination mode. It is possible that
a job has a di�erent deadline and/or WCET in the destination mode and we perform
the mode change only if the new parameters can be guaranteed.

7.2.2 Mixed-Criticality Mode Changes

In the following, we show the impact of the requirements of mixed-criticality systems on
job parameters and modes. The event which triggers a mode change is the overrun of the
lo-criticality WCET of a guaranteed hi-criticality job. Hence, mixed-criticality systems
focus on the guarantee of the hi-criticality jobs. In this chapter, we also show how we
can adapt our approach with generic mode changes to guarantee the requirements of
hi-criticality jobs. As a consequence, an MCR is triggered by the need for a guarantee
of the job parameters in the hi-criticality mode and hence, the MCR is never denied.
In contrast to the generic mode change scheduler, there is an order of modes which is

based on the criticality levels. In a dual-criticality system, we begin in criticality level
lo and we can switch to the higher criticality level hi. In a system with more than two
criticality levels, we sort the mode according to their ascending criticality level. The
goal is to guarantee jobs with the highest criticality level at cost of jobs with lower
criticality level.
As a consequence of the previous considerations, the question �How many criticality

levels are reasonable?� arises. The rational for two criticality levels is intuitive: one
criticality level for certi�ed jobs and one criticality level for non-certi�ed jobs. Certi�ed
jobs have to be guaranteed under all circumstances under CAs' pessimistic parameters.
For more criticality levels, the reason for di�erent parameters is not that intuitive and
the term criticality is too general. As a consequence, we discuss the question of how
many criticality levels we need in more detail using the suggested terms of Graydon and
Bate [GB13].
First, the con�dence in the WCET bound does not justify having many criticality

levels. There are not that many completely di�erent WCET analysis methods to justify
many di�erent WCETs.
Second, having many di�erent modes in a system is reasonable but this does not

necessarily result in having di�erent parameters for the same jobs. Using di�erent
modes during di�erent operational phases of a system result in di�erent jobs that have
to be performed depending on the situation. We can perform these mode changes with

7.3. Job Model 135

our generic mode change scheduler based on slot-shifting. Jobs in a source mode can
trigger an MCR and the mode change is performed if the requirements, i.e., the timing
constraints, of the destination mode can be ful�lled. In other words, we stay in the
feasible source mode until it is safe (feasible) to switch to the destination mode.
Finally, the importance of jobs can justify having several or many criticality levels.

It is possible to group jobs into many classes with di�erent importances. Despite this,
di�erent importances do not result in di�erent job parameters. As a consequence, a
re�ned viewpoint is needed. The system developers have to de�ne the consequences
of a higher importance of a job. Possible optimization goals are, e.g., response times,
latency, jitter, and many other characteristics of the jobs. Thus, depending on the target
applications, the scheduling problem for these cases has to be re�ned.
In the following, we show a method to handle generic mode changes. For each mode,

a speci�ed set of jobs is scheduled and jobs can be scheduled in several modes. The
feasibility of an MCR is determined by the guarantee to successfully schedule the jobs
in the destination mode. Further, we show how we can adapt the approach to schedule
mixed-criticality jobs where jobs with the highest criticality level are guaranteed with the
WCET of their highest criticality level. By doing this, we can handle mixed-criticality
jobs with several WCETs and changing release times and deadlines, at the cost of very
pessimistic scheduling decisions.

7.3 Job Model

In Sections 7.4 and 7.5, we will schedule jobs only in modes if the job is active in that
mode, i.e., the job has a de�ned WCET for that mode. For reasons of simplicity, we
assume that a job has the same release time and deadline in all modes which does
not restrict the applicability and the behavior of our methods. A job with a di�erent
deadline in another mode, only in�uences the assigned interval and in which interval
the spare capacities are updated. The way in which spare capacities are updated is not
in�uenced by this di�erent deadlines.
The jobs are characterized by the tuple Ji = 〈Ci(1), ..., Ci(k), ri, di〉 with:

• Ci(j): WCET in mode j;

• ri: release time in modes where the job is active;

• di: deadline in modes where the job is active;

If a job is inactive in a mode, the WCET for this mode is not de�ned. For instance, job
Ji = 〈3,−, 2, 0, 10〉 is only active in mode 1 and 3 with release time 0 and deadline 10.
In Section 7.6, we use the Vestal job model with k criticality levels whereas 1 is the

lowest criticality level. The WCET of job Ji for criticality level j is represented by Ci(j)
whereas the WCET for a higher criticality level is not smaller than the WCET of the
next lower criticality level, i.e., the WCETs are monotonically increasing.

136 Chapter 7. Slot-Shifting with Generic Mode Changes

7.4 Slot-Shifting with Generic Mode Changes
We showed the original slot-shifting algorithm in Section 6.2. In Section 6.3, we showed
the mixed-criticality slot-shifting algorithm without mode changes. In the following, we
show a scheduler based on slot-shifting to handle generic mode changes. The scheduler
consists of an o�ine and an online phase.

7.4.1 Offline Phase
For each mode, we determine intervals and spare capacities based on the jobs active
in that mode. The process of interval determination and spare capacity calculation is
shown in Section 6.2 in general and in Section 6.3 in the dual-criticality case. In the
following, we brie�y recapitulate the procedures and show the symbols for the generic
mode change case.
We divide the schedule of each mode m into disjoint (capacity) intervals Imi . In each

mode m, each deadline of a job, which is active in this mode, marks the end end(Iji) of
an interval. Jobs active in mode m are assigned to the intervals with the corresponding
deadline. The earliest start time est (Imi) of an interval is determined by the minimum
of all release times of jobs assigned to this interval in this mode:

est(Imi) = min
∀Jk∈Imi

(rk) (7.1)

The start of an interval in a mode m is determined by the maximum of its earliest start
time and the end of the previous interval in that mode:

start(Imi) = max
(
est(Imi), end(Imi−1)

)
(7.2)

Furthermore, consecutive slots between these intervals are de�ned as empty intervals.
Finally, the length |Imi | of an interval Imi is de�ned by the di�erence in the number of
slots between start and end of the interval.
Spare capacities re�ect the number of empty slots within an interval. We can calculate

the spare capacities by the length of the interval, the assigned WCETs of jobs in this
interval, and the slots lent to later intervals because of borrowing1. Equation (7.3) shows
the calculation of the spare capacities for an interval Imi in mode m.

sc (Imi) = |Imi | −
∑
Jk∈Imi

Ck(m) +min
(
sc
(
Imi+1

)
, 0
)

(7.3)

In summary, the o�ine phase is quite similar to the original slot-shifting algorithm. At
runtime, intervals and spare capacities are used to schedule jobs and check the feasibility
of MCRs.

7.4.2 Online Phase
In the following, we show how we schedule jobs and update the spare capacities at
runtime. Additionally to slot-shifting without mode changes, as shown in Chapter 6, we
have to check the feasibility of MCRs.
1The e�ect of borrowing is described in Section 6.2.1 on page 108.

7.4. Slot-Shifting with Generic Mode Changes 137

Correctness of Mode Changes

Based on a system con�guration, a speci�c sequence of possible mode changes is given.
This sequence is based on the behavior of the system. As an example, a mode change
from landing to �ying should not be possible without the mode take-o� in between.
As an example, Figure 7.1 shows a deterministic �nite automaton de�ning the possible
sequences of mode changes. For instance, in mode 4, the system can switch to modes 5
and 7 based on the speci�ed events. In this automaton, it is also possible to switch to the
current mode, i.e., we do not change the mode. For reasons of clarity, we neglect to show
the corresponding transitions from one mode to itself. In contrast to the system view,

Figure 7.1: System view of mode changes.

our scheduler checks the feasibility of a mode change considering timing guarantees of the
executing jobs of the destination mode. Figure 7.2 shows the same modes as Figure 7.1
from a scheduling point of view. Considering only the feasibility of scheduling, i.e.,
ignoring the automaton showing the system view of mode changes, we can switch to a
mode if all jobs with deadline later than the current time instant can meet their deadline.
In the shown example, we can switch from mode 4 to modes 2, 3, and 5. We assume
that jobs request only mode changes to modes which result in a valid behavior of the
system, i.e., a behavior which is compliant with the system view of the mode changes.

Figure 7.2: Scheduling view of mode changes.

138 Chapter 7. Slot-Shifting with Generic Mode Changes

Selection Function

Based on the spare capacities and the deadlines of jobs, we select the next executing
job. We use two ready queues for each mode m: Rm|�rm(t) contains all guaranteed ready
jobs in the current mode and Rm|soft(t) contains all soft aperiodic jobs which are active
in the current mode. The possible decision cases at time t are shown in the following:

a) Rm|�rm(t) = {}:
1) Rm|soft(t) = {}:

We schedule an idle slot because there are no ready jobs.

2) Rm|soft(t) 6= {}:
The spare capacities sc(Imc) are always greater than zero and hence, we can
schedule a soft aperiodic job.

b) Rm|�rm(t) 6= {}:
1) sc(Imc) > 0:

If Rm|soft(t) 6= {} then we schedule the �rst soft aperiodic job in the FIFO-queue
Rm|soft(t). Else, we select the ready job with the earliest deadline in Rm|�rm(t).
Only in this situation, we can schedule soft aperiodic jobs if guaranteed jobs are
ready to execute.

2) sc(Imc) = 0:
We select the job with the earliest deadline in Rm|�rm(t) because there are no
available resources for soft aperiodic jobs.

3) sc(Imc) < 0:
In the current interval, the spare capacities of the current mode cannot be less
than zero.

In summary, the selection of the next execution job is simple. Here, we only have to
consider jobs in the current mode. If we have to ful�ll job timing requirements of other
modes, the selection function becomes more complex, which we will show in Section 7.6.

Acceptance of Mode Change Requests

The decision about the acceptance of an MCR is taken at the beginning of a slot when
the scheduler is active. The scheduler checks whether the MCR can be accepted or
is denied, and then selects the next executing job and updates the spare capacities.
Whether an MCR from current (source) mode src to the destination mode dest is
feasible depends on the spare capacities in the destination mode. It is important to
highlight that intervals can be di�erent in the destination mode. We repeat that the
interval border, i.e., the point in time when an interval ends and the next interval starts,
belongs to the interval which is starting at that time instant. The scheduler accepts an
MCR if and only if the spare capacities in the current interval in the destination mode
are non-negative, i.e., sc

(
Idestc

)
≥ 0. If these spare capacities are negative, at least one

job of the current or of a later interval cannot meet its deadline. Spare capacities in the

7.4. Slot-Shifting with Generic Mode Changes 139

current interval in another mode can be negative because we can execute jobs which are
not active in that mode and hence, are not considered in the spare capacity calculations.
It is su�cient to check the spare capacities of the current interval because WCETs in
later intervals exceeding the length of the interval, are considered by borrowing. As long
as the spare capacities in the current interval in the destination mode are negative, we
cannot change the mode to dest. Negative spare capacities in the current interval of a
mode can become positive if a job �nishes earlier than its WCET in the current interval
of the source mode, i.e., the current mode. If a denied MCR is performed as soon as it
is feasible or if the denied mode change is not performed at all depends on the system
con�guration. Both approaches do not in�uence our scheduler and the only di�erence
is whether the scheduler checks the feasibility of a denied MCR in the next slot(s) again
or not.

Spare Capacity Maintenance

Based on the executed job, we update the spare capacities in all modes. We assume
that the performed execution of a job in the current mode is also valid in another mode
where the job is active. For instance, a job calculating the current position of a plane
can start its execution in take-o� mode and complete its execution in �ying mode and
the results are valid. In this case, there is no reason to restart the job execution in
case of a mode change. On the contrary, if it should be necessary to restart a job with
di�erent parameters in a new mode, then this can be solved by simply using a copy
of the job with a di�erent identi�er in the destination mode and thus, performing the
same calculations but with di�erent input parameters again. The spare capacities are
updated according to the assigned interval and the modes in which the executed job is
active.
No execution: If an idle slot has been scheduled, we decrease the spare capacities of
the current interval in all modes by one slot.
Soft aperiodic execution: As the workload of soft aperiodic jobs is not included in
the spare capacity calculations, we decrease the spare capacities of the current interval
in all modes by one slot.
Guaranteed job execution: If a guaranteed job Ji, either time-triggered (TT) or
�rm ET (in this case: JAi), has been scheduled, then we have to di�erentiate to which
interval the job is assigned and in which modes the job is active. The spare capacities
have to be updated in all modes m. Due to di�erent WCETs in the modes, it is possible
that a job executes for longer than the WCET of another mode. We highlight that
a job which is assigned to the current interval of the current mode, is not necessarily
assigned to the current interval in another mode. Additional jobs in other modes can
create additional intervals in the corresponding modes.

A) Ji is not active in mode m:

The execution of Ji does not contribute to any job active in this mode and thus, is
not considered in the spare capacities of this mode. As a result, the spare capacities
in the current interval are decreased by one slot.

140 Chapter 7. Slot-Shifting with Generic Mode Changes

B) Ji is active in mode m and Ji ∈ Imc :

1. Ji executed for less than Ci(m):
The scheduled job has been considered in the current interval of this mode and
hence, the spare capacities are not changed.

2. Ji executed for more than Ci(m):
The job executed for more than the mode speci�c WCET. Hence, the execution
has not been considered in the spare capacity calculations and we decrease sc(Imc)
by one slot.

C) Ji is active in mode m and Ji ∈ Imk with Imk 6= Imc and k > c:

1. Ji executed for less than Ci(m):
The scheduled demand has not been included in the spare capacity calculations
of the current interval Imc . As a consequence, we decrease (Imc) by one slot. Addi-
tionally, we increase sc(Imk) where the demand has been originally considered in
the spare capacity calculations. In other words, one slot of execution is swapped
between the current interval Imc and the assigned job interval Imk .

Furthermore, we have to consider borrowing: if sc(Imk) was less than zero before
increasing by one slot in the current step, then Imk was borrowing capacity from
at least one earlier interval. As a consequence, we have to increase the spare
capacities by one slot if there was borrowing or borrowing propagation in one or
several of the intervals from Imc to Imk−1.

2. Ji executed for more than Ci(m):
The job executed for more than the WCET speci�ed in this mode. Hence, the
execution has not been considered in the spare capacity calculations and we
decrease sc(Imc) by one slot.

If guaranteed jobs complete earlier than their speci�ed WCET in a mode, then the
di�erence between actual execution time and speci�ed WCET can be added to the spare
capacities in the assigned interval of the corresponding modes. Further intervals in that
mode which are a�ected by borrowing also have to be updated.

Acceptance Test

The acceptance test in slot-shifting with generic mode changes is similar to the test
of the original slot-shifting algorithm. The test checks whether �rm aperiodic jobs
can complete their execution within their execution window without violating timing
constraints of already guaranteed TT and ET jobs. It has to summarize the available
spare capacities until the aperiodic job's deadline in a mode m where the job is active.
As in original slot-shifting, spare capacities can be grouped into three groups: the spare
capacities sc(Imc) in the current interval; the spare capacities sc(Imfull) of all full intervals
in between the current interval and the interval in which the aperiodic job deadline

7.5. Generic Mode Changes Example 141

is located; and the spare capacities sc(Imdl) available between the start of the interval
in which the aperiodic job deadline is located and the absolute deadline of the job.
Inequality (7.4) shows the condition that the sum of these three spare capacity groups
have to be at least as large as the WCET of the aperiodic job.

max (0, sc(Imc))︸ ︷︷ ︸
current interval

+ sc(Imfull)︸ ︷︷ ︸
full intervals

+ sc(Imdl)︸ ︷︷ ︸
interval with aperiodic

job deadline

≥ CAj(m) (7.4)

with sc(Imfull) =
∑
c<i≤l

max (0, sc(Imi))

and sc(Imdl) = max
(
0,min

(
sc(Iml+1), dAj − start(Iml+1)

))
and end(Iml) < dAj ∧ end(Iml+1) ≥ dAj

If the acceptance test fails, i.e., in at least one mode where the job is active the spare
capacities are less than the corresponding WCET, the aperiodic job is rejected. Else,
the aperiodic job is included into the queues of guaranteed jobs in the a�ected modes
and spare capacities are updated in all modes where the job is active.

7.5 Generic Mode Changes Example
In this section, we present an example to illustrate how we schedule jobs and update
the spare capacities in each mode. Further, we show how the spare capacities are used
to determine safe time instants to switch to another mode, i.e., time instants at which
an MCR is accepted. Table 7.1 depicts the used job set. The job set consists of one job
active in all mode with di�erent WCETs and three jobs active only in a subset of the
modes. If there is no WCET de�ned for a job in a mode, then this job is not active in
the corresponding mode. In this example, we focus on the feasibility of possible mode
changes and thus, we do not include ET activities. We assume that all jobs execute for
the entire WCET de�ned in the currently active mode.

jobs
WCET WCET WCET release

deadline
in mode 1 in mode 2 in mode 3 time

J1 3 � 1 0 4

J2 � 2 � 0 8

J3 2 3 5 0 8

J4 � 3 2 0 10

Table 7.1: Example job set for slot-shifting with generic mode changes.

We present the sequence of scheduling decisions for the execution of mode 1. The
resulting schedules and the feasibility of mode changes executing mode 2 or mode 3 are

142 Chapter 7. Slot-Shifting with Generic Mode Changes

shown in the appendix in Section A.3. The spare capacity values of a slot refer to the
available resources after at the end of this slot.
As discussed before, we determine the intervals and spare capacities in each mode.

Figure 7.3 shows the resulting intervals and spare capacities for mode 1, 2, and 3.
In modes 1 and 3, the job parameters create three intervals each. In mode 2, only
two intervals are created. The current interval Imc in mode m is the interval Imi with
start(Imi) ≤ tc < end(Imi) with tc as the current time instance. In other words, the time
instance when one intervals ends and the next interval start belongs to the next starting
interval. In all three modes, the spare capacities of the �rst interval are positive. As a
result, it is feasible to start the system in each of the modes. Here, we assume that we
schedule mode 1 without an MCR.

Figure 7.3: Spare capacities in all three modes.

In the following, we show the scheduling decisions for each slot. Below the schedule,
we depict the spare capacity values for all three modes. Spare capacities which are not
a�ected by the last scheduling decision are grayed out.
In slot 0, we schedule J1 which has the earliest deadline of jobs active in mode 1. The

job is active in modes 1 and 3, and is assigned to the current interval in both modes.
As a result, the spare capacities sc(I1

0) and sc(I3
0) are unchanged. In mode 2, the job

is not active and hence, its execution is not considered in any spare capacity value of
this mode. As a consequence, we reduce the spare capacities in the current interval in

7.5. Generic Mode Changes Example 143

Figure 7.4: Spare capacities after slot 0.

this mode, sc(I2
0), by one slot. Figure 7.4, shows the scheduled job in slot 0 and the

resulting spare capacities.
In the next step, J1 still is the job with the earliest deadline and hence, is scheduled

in slot 1. In the current mode, the spare capacities do not changed for the same reason
as mention before. In mode 2, J1 is not active and thus, we decrease sc(I2

0) by one
slot again. Although, J1 is active in mode 3, we must decrease sc(I3

0) because the
WCET de�ned in mode 3 is only 1. As a result, the job executes for longer than the
speci�ed WCET of that mode and this has not been considered in the spare capacity
calaculations. We show the schedule after slot 1 and the corresponding spare capacity
values in Figure 7.5.

Figure 7.5: Spare capacities after slot 1.

In slot 2, we schedule job J1 as before. As mentioned in the beginning of the example,
all jobs execute for their de�ned WCET in the current mode, and thus, we assume
that J1 signaled completion in this slot. The spare capacities are updated as in the
slot before. A consequence of these updates is that the spare capacities in the current
interval of mode 2 become negative. Hence, time instant t = 3 is not a feasible time
instant to switch the mode change. The spare capacities sc(I3

0) are still non-negative,

144 Chapter 7. Slot-Shifting with Generic Mode Changes

and thus, we could switch mode 3. The resulting schedule and spare capacity values are
shown in Figure 7.6.

Figure 7.6: Spare capacities after slot 2.

In the current mode, the next job with earliest deadline is J3 and thus, we schedule it
in slot 3. This job is assigned to interval I1

1 and executed for one slot in interval I1
0 . The

consequence of this execution is that one slot is swapped between these two intervals.
In other words, sc(I1

0) is reduced by one slot and sc(I1
1) is increased by one slot. In

mode 2, J3 is assigned to the current interval and hence, the spare capacities sc(I2
0) are

not changed, but sc(I2
0) is still negative such that we could not switch to this mode in

case of an MCR. In mode 3, J3 is also assigned to a later interval and thus, one slot
is swapped between I3

0 and I3
1 . Further, interval I

3
1 borrowed one slot from interval I3

0

and as a consequence, we increase sc(I3
0) by one slot again. In modes 1 and 3, after the

execution in slot 3, the �rst interval ends and a new interval starts. The spare capacities
of these new intervals determine the feasibility of an MCR at t = 4. Both sc(I1

1) and
sc(I3

1) are non-negative and thus, indicate time instances for feasible mode changes. In
mode 2, the spare capacities of the current interval are still negative such that a mode
change to mode 2 is not feasible. Figure 7.7, shows the schedule and the spare capacities
of slot 3.

Figure 7.7: Spare capacities after slot 3.

7.5. Generic Mode Changes Example 145

Job J3 is also scheduled in slot 4 due to its earliest deadline. In this slot, it signals
completion and thus, executed in total for two slots. As a consequence, we increase
sc(I2

0) by one slot where a WCET of 3 slots has been considered, and increase sc(I3
1)

by three slots where a WCET of 5 slots has been considered. In all three modes, J3

has been assigned to the current interval and hence, no further changes to the spare
capacities are necessary. In Figure 7.8, the schedule and spare capacity updates are
shown.

Figure 7.8: Spare capacities after slot 4.

The jobs active in mode 1 are completely executed and hence, we schedule now idle
slots until the end of the schedule. An idle slot decreases the spare capacities in the
current interval in all modes. The spare capacity value in interval I2

0 becomes negative,
which results in an infeasible mode change to this mode. The resulting schedule and
spare capacities are shown in Figure 7.9.

Figure 7.9: Spare capacities after slot 5.

After scheduling idle slots in slots 6 and 7, in all three modes a new interval starts. As
a consequence, the spare capacities of the last interval in each mode now determine the
feasibility of a mode change. A mode change to mode 1 and 3 is feasible. Changing to

146 Chapter 7. Slot-Shifting with Generic Mode Changes

mode 1 is trivial because it is the currently active mode, and a mode change to mode 2
is infeasible due to the negative spare capacities. Figure 7.10 shows the schedule and
spare capacities after scheduling slot 7.

Figure 7.10: Spare capacities after slot 7.

After scheduling an idle slot in slot 8, the spare capacities are decreased by one slot
again and the spare capacities in mode 3 become negative, too. Hence, a mode change
to this mode is not feasible. In Figure 7.11, we show the resulting schedule and spare
capacities.

Figure 7.11: Spare capacities after slot 8.

Scheduling slot 9 completes the schedule. The spare capacities of the last intervals
in each schedule do not determine feasibility anymore. For a periodic system, we con-
tinue with scheduling the same jobs again. As a consequence, time instance t = 10 is
equivalent to the start of the schedule when all three modes are feasible starting modes.
Figure 7.12 shows the complete schedule and the spare capacities of the last intervals in
each mode.
Figure 7.13 summarizes the feasible and infeasible mode change instances based on

the execution in mode 1. A circle refers to a feasible mode change into this mode at the

7.6. Application of Generic Mode Changes to Mixed-Criticality Systems147

Figure 7.12: Spare capacities after slot 9.

beginning of the corresponding slot, whereas a cross corresponds to an infeasible time
instant for a mode change.

Figure 7.13: Feasibility of mode changes in mode 1.

The example showed that we can use the spare capacities to determine the feasibility
of mode changes. In contrast to static schedule tables with mode changes, we can react
to the actual behavior of jobs. In the static schedule tables, mode change instants can
be rare but by the possibility to react on the actual job behavior, i.e., react on the actual
execution times, it is possible to react to requests faster and change modes earlier.

7.6 Application of Generic Mode Changes to Mixed-Criticality
Systems

So far, we focused on the execution of jobs in one mode and check whether a mode
change can be accepted. In the following, we aim at executing jobs such that modes,
and consequently jobs, with higher criticality level can be guaranteed.
In Chapter 6, we showed how we ful�ll the requirements of mixed-criticality job sets

with two criticality levels lo and hi. We assumed that all jobs are characterized by
two WCETs but with same release time and deadline for both criticality levels. Burns
and Baruah presented an extension of the Vestal mixed-criticality model to allow shorter
periods and shorter relative deadline for higher criticality levels of periodic tasks [BB11].

148 Chapter 7. Slot-Shifting with Generic Mode Changes

Based on our job model presented before, see Section 7.3, we now allow for independent
parameters for all jobs in the di�erent modes.

7.6.1 Assumptions and Requirements

We use the job model presented in Section 7.3 and extend it by the criticality of the
job. Jobs are active in all modes with a criticality level up to the criticality level of
the job. This requires that the WCETs are speci�ed up to the criticality level of the
job. Based on the assumption that di�erent WCETs originate from the con�dence in
the execution time bound, it can logically be assumed that WCETs of higher criticality
levels (modes) are not shorter than the WCETs of lower criticality levels (modes). As a
consequence, the modes are ordered according to their criticality level. For instance, in
mode 1, i.e., the mode with the lowest criticality level, all jobs are active. Further, in
mode 2, only jobs with criticality level greater than or equal to 2 are active, and so on...
Eventually, in the highest mode k, only jobs with criticality k are active. Our goal is
to always guarantee the highest criticality levels. In other words, we switch to a higher
mode when we can guarantee jobs with higher criticality level only if we drop jobs with
lower criticality level. For instance, if a job with criticality 5 can only be guaranteed
with its highest WCET if all jobs with criticality 4 and lower are dropped, then we have
to switch to mode 5 where only jobs with criticality level greater than or equal to 5 are
scheduled.

7.6.2 Mixed-Criticality Slot-Shifting with Generic Mode Changes

The o�ine phase is the same as presented before in Section 7.4 for the non-mixed-
criticality case. At runtime, the update of spare capacities and the acceptance test are
also unchanged. The di�erences to non-mixed-criticality slot-shifting with generic mode
changes are the requests to change a mode. In contrast to the mode changes triggered by
internal or external events, in the mixed-criticality case mode changes are triggered by
the requirement to guarantee jobs with higher criticality, i.e., guaranteeing their WCET
at their highest criticality level. As a consequence, the selection of the next executing
job has to be adapted to this requirement.
Next, we present the selection function that triggers mode changes if a mode change

is needed to guarantee jobs with a criticality level higher than the criticality level of
the current mode. We use two ready queues for each mode m: Rm|�rm(t) contains all
guaranteed ready jobs in the current mode and Rm|soft(t) contains all soft aperiodic jobs
which are active in the current mode. The possible decision cases in the current mode
mc at time t are shown in the following:

a) ∃m with sc(Imc) = 0 and m > mc:
Switch to mode m with sc(Imc) = 0 and highest criticality level. The spare capacities
in the current interval in the destination mode are equal to zero and thus, there must
be at least on �rm job ready to execute. As a result, set destination mode as new
current mode mc and schedule job according to decision case c2.

7.6. Application of Generic Mode Changes to Mixed-Criticality Systems149

b) Rmc|�rm(t) = {} ∧ @m with sc(Imc) = 0 and m > mc:

1) Rmc|soft(t) = {}:
We schedule an idle slot because there are no ready jobs.

2) Rmc|soft(t) 6= {}:
The spare capacities sc(Imc) are always greater than zero and hence, we can
schedule a soft aperiodic job.

c) Rmc|�rm(t) 6= {} ∧ @m with sc(Imc) = 0 and m > mc:

1) sc(Imc
c) > 0:

If Rm|soft(t) 6= {} then we schedule the �rst soft aperiodic job in the FIFO-queue
Rm|soft(t). Else, we select the ready job with the earliest deadline in Rm|�rm(t).
Only in this situation, we can schedule soft aperiodic jobs if guaranteed jobs are
ready to execute.

2) sc(Imc
c) = 0:

We select the job with the earliest deadline in Rm|�rm(t) because there are no
available resources for soft aperiodic jobs.

3) sc(Imc
c) < 0:

In the current interval, the spare capacities of the current mode cannot be less
than zero.

In general, we select the job with the earliest deadline in the current mode and if
there are available resources and ready soft aperiodic jobs, we can execute them. Mode
changes are triggered by the spare capacities of other modes in the current interval which
are equal to zero. If spare capacities of a current interval in a mode, which has a higher
criticality level than the current mode, are equal to zero, then we switch to the highest
mode with spare capacities equal to zero. We illustrate this with an example.
Example. For simplicity, we show an example with only one interval, named current
interval Imc in mode m ∈ {1, 2, 3, 4}, and jobs with the same release time and deadline.
Table 7.2 shows the used job set. For higher criticality levels, jobs have monotonically
increasing WCETs. If a WCET is not de�ned, the job is not active in this mode because
of a lower criticality level.

jobs
criticality WCET WCET WCET WCET release

deadline
level in mode 1 in mode 2 in mode 3 in mode 4 time

J1 1 1 � � � 0 5

J2 2 1 1 � � 0 5

J3 3 1 2 2 � 0 5

J4 4 1 2 3 4 0 5

Table 7.2: Example job set for mixed-criticality slot-shifting with generic mode changes.

150 Chapter 7. Slot-Shifting with Generic Mode Changes

We determine the intervals and calculate the spare capacities. Figure 7.14 shows the
spare capacities of the current intervals in all modes before start of the system.

Figure 7.14: O�ine calculated spare capacities.

Assume we want to start the system in mode 1 and the actual execution times of all
jobs are equal to their WCET. At the beginning of slot 0, two spare capacity values
in other modes are equal to zero. As a consequence, to guarantee the jobs with higher
criticality, we must switch to the highest mode with spare capacities equal to zero in the
current interval. In this case, this is mode 3. As a result, jobs J1 and J2 will never be
executed because of guaranteeing the WCETs of J3 and J4 in mode 3. Furthermore, if the
tie breaking2 results in executing J3 �rst, we have to switch to mode 4 to guarantee the
highest WCET of job J4 after one slot of execution. The example shows that in case of
more than two criticality levels, the mode with the highest workload determines whether
other modes with lower criticality level can be executed or not. Hence, the number of
criticality levels is not the dominating factor but the more pessimistic WCETs of modes

2Tie breaking rules are applied if two or several jobs have the same priority. Tie breaking rules must
not change to deterministically schedule the job set. In this case, both jobs have the same deadline
and thus, the same priority. A tie breaking that would favor J3 is tie breaking by index, i.e., the
job with the smaller index is selected �rst.

7.6. Application of Generic Mode Changes to Mixed-Criticality Systems151

with higher criticality level. As a result, it is possible that many intermediate criticality
are skipped and directly, a mode with relatively high criticality is switched to. ♦
In summary, the mode with the highest workload and the highest criticality determines

whether we can schedule jobs in lower modes or not. This can result in extremely
pessimistic scheduling decisions. As we mentioned in Section 7.2.2, having too many
criticality levels, and hence, many di�erent WCETs, is not reasonable. Do we get a
bene�t by adding many intermediate WCETs between a �normal� WCET and a very
pessimistic WCET? Eventually, the di�erence between the shortest and the longest
WCET of one job determines the degree of pessimism for the scheduling decisions. In
the next section, we discuss the problems of many di�erent WCETs and the use of many
di�erent modes to guarantee them.

7.6.3 Applicability to Mixed-Criticality Systems with Shared Resources

So far, we considered mixed-criticality jobs which do not share resources. The challenge
of systems with shared resources is to prevent a simultaneous access of several jobs to
the same resource. For instance, two jobs writing into the same memory block results
in inconsistent and erroneous data. Thus, we need to prevent this situation, which is
called mutual exclusion. Common solutions to solve this problem increase the priority
of a job accessing the shared resource such that a competing job cannot preempt the job
already accessing the resource. Examples are the Priority Inheritance Protocol (PIP)
or the Priority Ceiling Protocol (PCP) [SRL90]. In both examples, the priority of a job
is temporarily increased such that mutual exclusion is ensured.
In the following, we present the rationale how we can achieve mutual exclusion based

on the slot-shifting approaches shown in this chapter. To achieve mutual exclusion, we
have to ensure that once a job accesses a resources, no other job can access the same
resource. We can implement this by a temporary mode which consists of the same jobs
with the same parameters as in the current mode, but we need to remove all jobs which
can also access this resource from the ready queues. The temporary mode is dynamically
created at runtime and is used to block jobs competing for the resource. After release of
the resource, we switch back to the original mode and this temporary mode is removed.
By doing these steps, we also prevent deadlocks. A deadlock can occur when two jobs
need to access the same two resources. One jobs accesses the �rst resources and the
other job the second resource. In this situation both jobs wait for the other job to
release the other resource. As a result, both jobs are stuck and cannot continue with
their execution.
For reason of clarity of explanation, we restrict description of the basic idea of mixed-

criticality jobs with shared resources to dual-criticality systems. As long as lo-criticality
jobs do not share resources with hi-criticality jobs, we can guarantee mutual exclusion
and the execution of hi-criticality jobs. If lo-criticality and hi-criticality jobs share
resources another problem arises: Assume a lo-criticality job accesses a resource which
is shared with a hi-criticality job. During the execution of this lo-criticality job, we
have to execute the hi-criticality job to guarantee its hi-criticality requirements. For
instance, the correctness of data � the shared resource is represented by shared memory �

152 Chapter 7. Slot-Shifting with Generic Mode Changes

competes with the guarantee of the certi�ed hi-criticality behavior. In both cases, the
safe operation of the system cannot be ensured. As a consequence, we need to determine
the maximum time hi-criticality jobs can be blocked by lo-criticality jobs accessing a
shared resource before we can grant access to the resource. Only if all hi-criticality jobs
can meet their timing requirements even when they experience this maximum blocking
time, lo-criticality jobs can access a shared resource.
The above mentioned problem and basic idea for solutions are not necessarily com-

plete. The complete solution to the mixed-criticality shared resources problem using
the presented slot-shifting approach with generic mode changes remains future work.

7.7 Discussion: How Much Flexibility in the Mixed-Criticality
Model Is Reasonable?

In the following, we focus on the criticality levels and modes. In this chapter, we showed
an approach based on slot-shifting to handle mode changes in general and mode changes
in mixed-criticality systems. With the presented methods, we can schedule jobs which
are active only in a subset of the modes and can be characterized by di�erent parameters
in the di�erent modes.
First, we consider the origin of di�erent criticality levels. Vestal introduced the term

�criticality� to use several WCETs per task [Ves07], whereas WCETs of higher criticality
levels are greater than or equal to WCETs of lower criticality levels, i.e., monotonically
increasing WCETs. This de�nition corresponds to the con�dence in the bounds on the
WCETs. Burns and Baruah extended this de�nition by allowing shorter periods and
shorter relative deadlines with increasing criticality level [BB11]. For instance, sampling
tasks can provide a better quality of service with shorter sampling periods. By doing this,
the approach can increase the importance of tasks when they are scheduled with period-
or deadline-driven schedulers, e.g., Rate Monotonic, Deadline Monotonic, or Earliest
Deadline First. A usual assumption in mixed-criticality schedulers is the dropping of
lower criticality jobs and tasks if the system changes to a higher criticality state. Using
this assumption, we can in�uence the �exibility in scheduling which refers to the mode
of the scheduler. As a result, we obtain job sets and tasks sets with varying WCETs,
periods, and deadlines and di�erent scheduling requirements depending on the system
state.
Second, we review the results of the presented approach in this chapter. Using slot-

shifting with generic mode changes, we can schedule jobs with di�erent parameters in
di�erent modes. Further, we can determine the feasibility of mode changes to a des-
tination mode such that active jobs can execute for their WCET until their deadline.
Additionally, we also presented how we can use this approach to guarantee the require-
ments of mixed-criticality job sets. Guaranteeing high criticality jobs with possible long
WCETs can result in very pessimistic scheduling decisions. In conclusion, the �exibility
of scheduling and guaranteeing mixed-criticality job with varying WCETs and deadlines
can result in dropping many jobs with lower criticality levels.

7.7. Discussion: How Much Flexibility in the Mixed-Criticality Model Is
Reasonable? 153

With the aforementioned information, we now try to answer the question on how
many criticality levels and thus, modes, we need. Our scheduler works on job basis and
as a consequence, handling periodic tasks with our scheduler is straight forward. Tasks
with varying periods and relative deadlines, thus, resulting in jobs with changing release
times and absolute deadlines, are reasonable. The example of sampling tasks illustrates
the bene�ts of shorter periods and relative deadlines in higher criticality levels. We can
ful�ll these requirements with the presented slot-shifting scheduler with generic mode
changes. The more di�cult aspects are the di�erent WCETs and criticality levels. The
con�dence in the execution time bounds justi�es dual-criticality jobs with two WCETs.
On the contrary, mixed-criticality systems with many criticality levels and consequently,
many di�erent WCETs per job cannot be justi�ed by the con�dence in the execution time
bounds. Especially, the assumption that WCETs of higher criticality levels are greater
than WCETs of lower criticality levels is not reasonable. If designers want to increase
the importance of jobs and tasks, then shorter periods and shorter relative deadlines
are more reasonable than increasing WCETs. Furthermore, additional methods as fault
tolerance algorithms can improve the quality of service of mixed-criticality systems.
In summary, jobs with many WCETs, which always have to be guaranteed at highest
criticality level, result in pessimistic scheduling and bad overall performance of the
system. Further, the pessimistic WCETs of high criticality levels can result in skipped
many modes with lower criticality at once such that the intermediate criticality levels
do not provide any bene�ts.

Chapter 8

Conclusions

In this thesis, we focused on the problem of scheduling mixed-criticality systems which
are subject to certi�cation. Increasing processing power and decreasing structure sizes
made it possible to integrate many functionalities onto a single chip. In mixed-criticality
systems, safety-critical and non-safety-critical functionalities are implemented on these
system-on-chips. For instance, the software standards AUTOSAR [AUT] in the auto-
motive industry and ARINC [ARI] in the avionics domain address such mixed-criticality
systems. The mixed-criticality nature of tasks and jobs is usually represented by their
parameters worst-case execution time (WCET), periods, and deadlines. These safety-
critical systems are often subject to certi�cation, i.e., the correctness of safety-critical
functionalities has to be proven under conservative assumptions. This di�erence between
certi�ed and non-certi�ed tasks and jobs can be expressed by two criticality levels lo
and hi which results in dual-criticality systems. As a consequence, we need e�ective and
e�cient scheduling policies which are cognizant of the mixed-criticality nature of tasks
and jobs. The certi�cation is also a major aspect of these systems such that reduction
of certi�cation costs is also a major goal of scheduling. Finally, besides the unknown
actual behavior of tasks and jobs at runtime, we aimed at handling event-triggered (ET)
activities.

8.1 Main Contributions
In this thesis, we presented di�erent methods to ful�ll the requirements of mixed-critical
systems which are subject to certi�cation. In the following, we review the fundamental
steps of the methods, the results, and their consequences.
Using the presented sporadic task transformation, we created periodic reservation

tasks. We can include them in the o�ine scheduling process such that we can guarantee
the execution of all sporadic task instances independent of the actual arrival time at
runtime. The method provides reservation tasks with di�erent parameter combinations
for the corresponding sporadic task. The di�erent combinations allow for a reduction of
the utilization of the reservation tasks and a reduction of the worst-case response time
(WCRT) of the sporadic tasks. A major advantage of the method is its independence
of a scheduling algorithm, i.e., as long as the scheduler can feasibly schedule periodic
tasks, the resulting reservation tasks can be used to guarantee the runtime execution of

155

156 Chapter 8. Conclusions

sporadic tasks. As a result, we can include sporadic tasks already in the o�ine scheduling
process. The disadvantage of this approach is that we have to reserve enough execution
time for the worst-case scenario of sporadic task arrivals which is pessimistic. Besides the
application on sporadic tasks, we can use the method also to transform periodic tasks.
In this case, we obtain periodic tasks with di�erent WCETs and periods. Performing
this transformation increases the utilization of the periodic tasks. On the contrary,
we get additional feasible periods which in�uence the length of the hyper-period. The
hyper-period determines the length of a schedule table. As a consequence, long schedule
tables increase the certi�cation costs. Hence, a slight increase in the utilization of the
periodic tasks can be justi�ed by an extremely shorter hyper-periods.

The aforementioned task transformation aims at the inclusion of ET (sporadic) ac-
tivities into schedule tables. This transformation is applicable to our schedule table
generation algorithm for dual-criticality time-triggered (TT) systems. In this scheduler,
we use mode changes to ful�ll the requirements of dual-criticality job sets. On the one
hand, we implement one mode to construct a feasible schedule with all jobs, i.e., lo-
and hi-criticality jobs, based on the lo-criticality WCETs of the designers. On the
other hand, in the second mode, we guarantee the conservative requirements of the Cer-
ti�cation Authorities (CAs) of the hi-criticality jobs. The resulting schedule tables are
executed at runtime resulting in a low execution overhead. Furthermore, they represent
a constructive proof such that certi�cation costs can be reduced. Besides the general
advantages of TT schedulers with mode changes, the method can e�ciently generate
the schedule tables. In our algorithm, we reduce the complexity of scheduling by split-
ting the mixed-criticality jobs with two WCETs into jobs with only one WCET. The
scheduling process is based on a search tree. We guide the search for a feasible schedule
using the hi-criticality demand of hi-criticality jobs. Further, we use this demand to re-
duce the complexity of the implemented backtracking procedure. As a result, we reduce
the complexity of scheduling the mixed-criticality job set. We evaluated the e�ciency
and e�ectiveness of our scheduler by comparing it with Baruah's and Fohler's TT mode
change scheduler [BF11] which is based on Audsley's optimal �xed priority assignment
[Aud91, Aud93]. The evaluation results showed that our presented scheduler is less time
consuming in the schedule table construction process and can create a feasible schedule
table for mixed-criticality test cases.

So far, the mentioned methods completely work at design time. We also presented
a slot-shifting [Foh95] based method without mode changes that can make use of an
already existing certi�ed schedule table. The dual-criticality algorithm makes use of
the schedule table to determine intervals and spare capacities, i.e., amount of available
resources within these intervals. At runtime, the scheduler can handle ET activities
while guaranteeing the timing constraints of TT jobs. The major advantage of this
method is the ability to react to the actual behavior of jobs. If a job �nishes its exe-
cution earlier than its WCET, the scheduler can use the gained computation time to
execute TT jobs earlier and integrate more ET activities. Additionally, if jobs show
hi-criticality behavior at runtime, then we do not necessarily skip lo-criticality jobs.
lo-criticality jobs are only skipped when the execution of them jeopardizes the timing
constraints of hi-criticality jobs. As soon as computational resources are available for

8.2. Final Remarks 157

lo-criticality jobs, the scheduler schedules lo-criticality jobs again. As a consequence,
the selection function allows for criticality based scheduling decisions. The provided ac-
ceptance test allows for an inclusion of ET jobs without interference of already guaran-
teed jobs. The possibility to re-use already certi�ed schedule tables allows for �exibility
in the scheduling process without adding certi�cation costs. Schorr and Fohler showed
that slot-shifting has an applicable runtime overhead [SF13], which results in e�cient
scheduling at runtime.
The presented slot-shifting method without mode changes is restricted to dual-cri-

ticality systems. We extended this approach to schedule job sets with more than two
criticality levels using di�erent modes for the di�erent criticality levels. Further, the
extension allows for varying job parameters, and adding and removing jobs in di�erent
modes. On the one hand, the method can schedule jobs in di�erent modes and check the
feasibility of mode change requests (MCRs) and perform mode changes when an event
triggers an MCR and the MCR is feasible. On the other hand, the scheduler can trigger
mode changes to guarantee the requirements of a mode with a higher criticality level. As
a result, the algorithm can schedule mixed-criticality job sets with an arbitrary number
of criticality levels. Further, the method allows for varying job WCETs and deadlines
in di�erent modes. This approach improves the �exibility in scheduling and variation of
job parameters compared to the approaches shown before. On the contrary, updating
many modes during scheduling increases the runtime overhead such that this method
is applicable for a reasonable number of modes. Finally, the method provides also an
acceptance test for ET jobs such that the feasibility of including them into modes in
which the jobs are active can be tested.

8.2 Final Remarks

In this thesis, we showed that we can e�ectively reduce the complexity of certi�cation by
the implementation of TT schedule tables. The e�cient construction of these schedule
tables is a challenging problem. We showed that a separation of lo-criticality and hi-
criticality WCET requirements can reduce the complexity of scheduling dual-criticality
jobs. As a result, we can simplify the mixed-criticality jobs to jobs characterized by
only one WCET. This result has been used by Jan et al. to implement a mode change
scheduler based on linear programming [JZLP14]. Further, the construction of schedule
tables for di�erent modes can be optimized by including knowledge about the lo- and
hi-criticality requirements in both modes. We evaluated these results by comparing
our method to generate schedule tables with an approach based on an optimal priority
assignment to construct schedule tables for dual-criticality TT systems.
Using TT schedule tables provides a very low runtime overhead. On the contrary,

this does not provide any �exibility in the execution and thus, can be pessimistic. We
showed that slot-shifting makes use of the advantages of TT schedule tables. Further,
we can react to the actual behavior of jobs at runtime such that we can e�ectively use
of the available resources. Due to the possibility to use already certi�ed schedule tables,
the method simpli�es the certi�cation process.

158

Additionally, we discussed the mixed-criticality job model. We concluded that the
criticality of a job should represent more than just di�erent WCET values. Di�erent
WCETs are justi�ed by di�erent levels of con�dence in the upper bound of the execution
times. The often implemented assumption that we can skip jobs with lower criticality
level to guarantee high criticality jobs is too pessimistic. In contrast to this, all jobs
should be allowed to make some progress and high criticality jobs are only prioritized as
long as it is necessary to guarantee their timing constraints. We showed that di�erent
job parameters, as longer relative deadlines and shorter execution budgets, are suitable
approaches to achieve this goal. As a consequence, scheduling focuses on the guarantee
of di�erent job parameters depending on the criticality level, but additionally, methods
as fault tolerant algorithms need to be applied to obtain reliable safety-critical systems
As future work, the presented slot-shifting approach with generic mode changes can

be applied to mixed-criticality job sets with shared resources. To develop a reliable
solution, we have to de�ne the assumptions about resources which are shared between
lo-criticality and hi-criticality jobs. Based on these assumptions, we have to elaborate
a solution for the competing aspects of ensuring mutual exclusion and the guarantee of
the certi�ed behavior of hi-criticality jobs. The absolute deadlines of the jobs are one of
the properties the presented method uses to schedule jobs. Using these deadlines as pri-
orities of the jobs, we can implement resources sharing protocols as Priority Inheritance
Protocol (PIP) and Priority Ceiling Protocol (PCP) to reduce blocking times, etc. For
instance, a possible solution is to shorten the deadlines while accessing a shared resource
which corresponds to an increased priority. In future work, we aim at including shared
resources into our methods and improve the scheduling of jobs with shared resources,
e.g., by the implementation of resource sharing protocols as PIP and PCP.

Appendix A

Extended Results

A.1 Further Evaluation Results of the Effectiveness and
Efficiency of the Period Transformation

In the following, we show the skipped evaluation results of our transformation method.
The method generates parameters for reservation tasks to guarantee sporadic and pe-
riodic tasks. Using this new parameters, we get further feasible periods for periodic
tasks, which can be used to minimize the hyper-period and thus, reduce the memory
consumption of time-triggered (TT) schedule tables, for instance. In Chapter 4, we
presented the method and the major results for the evaluation of the method.
In our evaluation, we have run experiments with κ ∈ {7, 8, 9, 10} additional periods

per periodic task. We have shown the results for κ = 8 as a representative example.
In the following, we complete the results by showing the evaluation for the missing
values of κ which are κ ∈ {7, 9, 10}. As before, we performed our experiments on an
Intel XEON processor E5-2670 running at 2.60 GHz. The experiments are comprised
of n ∈ {2, ..., 60} periods tasks with randomly distributed periods between 50 and 1000
time units. For each parameter combination, we performed 100 experiments to measure
the runtimes of the Fast Hyper-period Search (FHS) algorithm. The shown graphs in
this appendix con�rm the results shown in Section 4.7.
Figure A.1 depicts a box plot for κ = 7 con�rming the strongly increasing runtimes

with increasing number of tasks n. There is a wide range of runtimes for each n.
The scatter plot in Figure A.2 shows all measured runtimes for this case. Due to the
fact that we performed 100 experiments per parameter combination, a clear distinction
between the resulting runtimes is di�cult. The major result of this graph is the wide
range of resulting runtimes which con�rm the high data dependency of the hyper-period
calculations.
Figures A.3, A.4, A.5 and A.6 con�rm this behavior of FHS for κ = 9 and κ = 10.

159

160

F
ig
u
r
e
A
.1
:
B
o
x
p
lo
t
w
ith

exten
d
ed

resu
lts

fo
r
u
p
to

6
0
ta
sks

w
ith

7
a
d
d
itio

n
a
l
period

s.

161

F
ig
u
r
e
A
.2
:
S
ca
tt
er

p
lo
t
w
it
h
ex
te
n
d
ed

re
su
lt
s
fo
r
u
p
to

6
0
ta
sk
s
w
it
h
7
a
d
d
it
io
n
a
l
pe
ri
od
s.

162

F
ig
u
r
e
A
.3
:
B
o
x
p
lo
t
w
ith

exten
d
ed

resu
lts

fo
r
u
p
to

6
0
ta
sks

w
ith

9
a
d
d
itio

n
a
l
period

s.

163

F
ig
u
r
e
A
.4
:
S
ca
tt
er

p
lo
t
w
it
h
ex
te
n
d
ed

re
su
lt
s
fo
r
u
p
to

6
0
ta
sk
s
w
it
h
9
a
d
d
it
io
n
a
l
pe
ri
od
s.

164

F
ig
u
r
e
A
.5
:
B
o
x
p
lo
t
w
ith

exten
d
ed

resu
lts

fo
r
u
p
to

6
0
ta
sks

w
ith

1
0
a
d
d
itio

n
a
l
period

s.

165

F
ig
u
r
e
A
.6
:
S
ca
tt
er

p
lo
t
w
it
h
ex
te
n
d
ed

re
su
lt
s
fo
r
u
p
to

6
0
ta
sk
s
w
it
h
1
0
a
d
d
it
io
n
a
l
pe
ri
od
s.

166

A.2 Extended Evaluation of the Algorithms SWAP and FPS
In the following, we present more experimental results on the success ratio for our
presented algorithms SWAP and Baruah's and Fohler's �xed priority scheduling (FPS)
approach called FPS. In these experiments, we generated the input job sets for the
scheduler with jobs sets comprised of a higher number of jobs with smaller worst-case
execution times (WCETs) and shorter execution windows. Both WCETs and execution
windows are scaled down proportionally, but in this way, the high scale factor hsf has
a stronger impact on the success ratio. By doing this, we show that the introduced
pessimism by the Certi�cation Authorities (CAs) has a strong impact on the results of
both algorithms.
In the following results, we see that the drop of the success ratio, which we explained in

our main experiments in Section 5.6, begins already for lower lo-criticality utilizations
and the success ratios drop faster. The shown experiments strengthen the fact that FPS
works better when there is little idle time or few lo-criticality jobs in the schedule while
SWAP is better in more balanced job sets. Further, the scheduling of job sets with
very high workloads is for both algorithms very di�cult. As a result, the problem is
not which algorithm to choose but how can we avoid too high hi-criticality utilizations
in the system because this factor has the strongest impact in these experiments. The
following tables and �gures show the success ratio for both SWAP and FPS in three
groups of experiments with high scale factors hsf ∈ {2, 3, 5}.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 10% 20% 30% 40% 50% 60% 70% 80%

ratio [%] SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.5 93.7 76.7 52.9 44.0 4.5 16.2 0.0

50% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0 92.9 90.6 32.8 34.3 4.2 0.6 0.4 0.0

75% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5 87.8 90.5 5.8 25.7 0.0 0.0 0.0 0.0

Table A.1: Extended results: SWAP and FPS success ratios for hsf = 2.

lo-criticality utilization
∑n

i=1 Ui(lo)

success 10% 20% 30% 40% 50% 60% 70% 80%

ratio [%] SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 100.0 100.0 100.0 100.0 100.0 99.4 89.8 87.3 52.9 37.1 25.2 5.4 10.0 0.4 2.9 0.0

50% 100.0 100.0 100.0 100.0 100.0 99.0 64.2 77.0 11.2 17.4 1.4 1.8 0.0 0.0 0.0 0.0

75% 100.0 100.0 100.0 100.0 100.0 98.9 35.2 71.1 11.0 11.0 0.0 0.1 0.0 0.0 0.0 0.0

Table A.2: Extended results: SWAP and FPS success ratios for hsf = 3.

167

lo-criticality utilization
∑n

i=1 Ui(lo)

success 10% 20% 30% 40% 50% 60% 70% 80%

ratio [%] SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS SWAP FPS

h
i
-r
a
ti
o 25% 100.0 100.0 100.0 100.0 71.7 71.3 30.4 9.4 10.8 0.6 * * * * * *

50% 100.0 100.0 99.9 100.0 24.5 31.0 2.7 0.7 0.1 0.0 * * * * * *

75% 100.0 100.0 99.8 99.9 7.2 13.5 0.3 0.0 0.6 0.2 * * * * * *

* no job sets generated for this case

Table A.3: Extended results: SWAP and FPS success ratios for hsf = 5.

Figure A.7: Success ratio for high scale factor hsf = 2.

Figure A.8: Success ratio for high scale factor hsf = 3.

168

Figure A.9: Success ratio for high scale factor hsf = 5.

169

A.3 Resulting Example Schedules of Slot-Shifting with Generic
Mode Changes

In the following, we present the resulting schedules and spare capacities after each steps
of the scheduling process of the example presented in Section 7.5. Table A.4 shows the
job set used.

jobs
WCET WCET WCET release

deadline
in mode 1 in mode 2 in mode 3 time

J1 3 � 1 0 4

J2 � 2 � 0 8

J3 2 3 5 0 8

J4 � 3 2 0 10

Table A.4: Example job set for slot-shifting with generic mode changes.

First, we assume that the system operates only in mode 2. Figure A.10 depicts the
resulting schedule and Table A.5 shows the spare capacities at each time instant. The
feasibility of mode changes is summarized in Figure A.11.

Figure A.10: Resulting schedule of mode 2.

Figure A.11: Feasibility of mode changes in mode 2.

170

sc(I1
0) sc(I1

1) sc(I1
2) sc(I2

0) sc(I2
1) sc(I3

0) sc(I3
1) sc(I3

2)

t = 0 1 2 2 2 -1 2 -1 0

t = 1 0 2 2 2 -1 1 -1 0

t = 2 -1 2 2 2 -1 0 -1 0

t = 3 -2 3 2 2 -1 0 0 0

t = 4 -3 4 2 2 -1 -1 1 0

t = 5 3 2 2 -1 3 0

t = 6 2 2 2 0 2 1

t = 7 1 2 1 1 1 2

t = 8 0 2 0 2 0 2

t = 9 1 1 1

t = 10 0 0 0

Table A.5: Spare capacities in mode 2 (highlighted values are indicate feasibility of mode
change; horizontal lines in the table indicate interval borders).

Figure A.12: Resulting schedule of mode 3.

Now, we assume that the system operates only in mode 3. Figure A.12 depicts the
resulting schedule and Table A.6 shows the spare capacities at each time instant. The
feasibility of mode changes is summarized in Figure A.13.

Figure A.13: Feasibility of mode changes in mode 3.

171

sc(I1
0) sc(I1

1) sc(I1
2) sc(I2

0) sc(I2
1) sc(I3

0) sc(I3
1) sc(I3

2)

t = 0 1 2 2 2 -1 2 -1 0

t = 1 3 2 2 1 -1 2 -1 0

t = 2 2 3 2 1 -1 2 0 0

t = 3 1 4 2 1 -1 1 1 0

t = 4 0 4 2 1 -1 0 2 0

t = 5 3 2 0 -1 2 0

t = 6 2 2 -1 -1 2 0

t = 7 1 2 -1 0 1 1

t = 8 0 2 -2 2 0 2

t = 9 1 1 1

t = 10 0 0 0

Table A.6: Spare capacities in mode 3 (highlighted values are indicate feasibility of mode
change; horizontal lines in the table indicate interval borders).

Bibliography

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in
hard real-time systems. Proceedings of the 19th IEEE Real-Time Systems
Symposium, 1998.

[ABRW92] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: the deadline monotonic approach. Proceedings of
the IFAC/IFIP Workshop, 1992.

[ARI] ARINC. http://www.arinc.com.

[ARI03] ARINC 653-1 Avionics application software standard interface. 2003.

[Aud91] N. C. Audsley. Optimal priority assignment and feasibility of static pri-
ority tasks with arbitrary start times. Technical report, The University
of York, England, 1991.

[Aud93] N. C. Audsley. Flexible Scheduling in Hard-Real-Time Systems. PhD
thesis, Department of Computer Science, University of York, 1993.

[AUT] AUtomotive Open System ARchitecture AUTOSAR.
http://www.autosar.org.

[BB05] Enrico Bini and GiorgioC. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 2005.

[BB11] Alan Burns and Sanjoy Baruah. Timing faults and mixed criticality sys-
tems. In Dependable and Historic Computing. Springer Berlin Heidelberg,
2011.

[BB13] A. Burns and S. Baruah. Towards a more practical model for mixed
criticality systems. In Proceedings of the 1st International Workshop on
Mixed Criticality Systems, 2013.

[BBBR11] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll. Task period selection
to minimize hyperperiod. In 16th Conference on Emerging Technologies
Factory Automation (ETFA), 2011.

173

174 BIBLIOGRAPHY

[BBD11] S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed
criticality systems. In 32nd Real-Time Systems Symposium (RTSS), 2011.

[BBD+12a] S. Baruah, V. Bonifaci, G. D'Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van der Ster, and L. Stougie. The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems. In 24th
Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[BBD+12b] S. Baruah, V. Bonifaci, G. D'Angelo, Haohan Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-time mixed-
criticality jobs. IEEE Transactions on Computers, 2012.

[BBD13] S Baruah, A Burns, and RI Davis. An extended �xed priority scheme for
mixed criticality systems. Proceedings of the 1st workshop on Real-Time
Mixed Criticality Systems (ReTiMiCS), 2013.

[BC06] Sanjoy K. Baruah and Samarjit Chakraborty. Schedulability analysis of
non-preemtpive recurring real-time tasks. 20th International Parallel and
Distributed Processing Symposium, 2006.

[BD96] Alan Burns and Robert Davis. Choosing task periods to minimise system
utilisation in time triggered systems. Information Processing Letters, (5),
1996.

[BF11] Sanjoy Baruah and Gerhard Fohler. Certi�cation-cognizant time-
triggered scheduling of mixed-criticality systems. In 32nd Real-Time Sys-
tems Symposium (RTSS), 2011.

[BLS10] S. Baruah, Haohan Li, and L. Stougie. Towards the design of certi�-
able mixed-criticality systems. In 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010.

[BNDPS02] A. Bar-Noy, V. Dreizin, and B. Patt-Shamir. E�cient periodic scheduling
by trees. In Proceedings of Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), 2002.

[BRH90] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms
and complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. Real-Time Systems Journal, 1990.

[BS97] Giorgio C. Buttazzo and Fabrizio Sensini. Optimal deadline assignment
for scheduling soft aperiodic tasks in hard real-time environments. Pro-
ceedings. Third IEEE International Conference on Engineering of Com-
plex Computer Systems, 1997.

[But05] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer Science+Business Me-
dia, 2nd edition, 2005.

BIBLIOGRAPHY 175

[BV08] Sanjoy Baruah and Steve Vestal. Schedulability analysis of sporadic tasks
with mutliple criticality speci�cations. Euromicro Conference on Real-
Time Systems, 2008.

[CB96] F. Cottet and J.-P. Babau. An iterative method of task temporal parame-
ter adjustment in hard real-time systems. In Proceedings of Second IEEE
International Conference on Engineering of Complex Computer Systems,
1996.

[CL90] Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency
control protocol for real-time systems. Real-Time Systems, 1990.

[CLTX13] Yao Chen, Qiao Li, Xiaojie Tu, and Huagang Xiong. Certi�cation-
cognizant real-time scheduling for mixed-criticality tasks in avionics sys-
tem. In 32nd Digital Avionics Systems Conference (DASC), 2013.

[CSB90] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time
tasks under precedence constraints. Real-Time Systems, 1990.

[DB05] R.I. Davis and A. Burns. Hierarchical �xed priority pre-emptive schedul-
ing. In 26th IEEE International Real-Time Systems Symposium (RTSS),
2005.

[dNLR09] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In 30th IEEE Real-Time Systems
Symposium (RTSS), 2009.

[EY12] P. Ekberg and Wang Yi. Bounding and shaping the demand of mixed-
criticality sporadic tasks. In 24th Euromicro Conference on Real-Time
Systems (ECRTS), 2012.

[FK90] G. Fohler and Koza. Heuristic scheduling for distributed hard real-time
systems. Technical report, Intitut für Technische Informatik, Technische
Universität Wien, 1990.

[FLB01] Gerhard Fohler, Tomas Lennvall, and Giorgio Buttazzo. Improved han-
dling of soft aperiodic tasks in o�ine scheduled real-time systems using
total bandwidth server. Proceedings of 8th IEEE International Conference
on Emerging Technologies and Factory Automation, 2001.

[Foh93] Gerhard Fohler. Changing operational modes in the context of pre run-
time scheduling. IEICE transactions on Information and Systems, 1993.

[Foh94] Gerhard Fohler. Flexibillity in Statically Scheduled Hard Real-Time Sys-
tems. PhD thesis, Technische Universität Wien, 1994.

[Foh95] Gerhard Fohler. Joint scheduling of distributed complex periodic and
hard aperiodic tasks in statically scheduled systems. In Proceedings of
IEEE Real-Time Systems Symposium, 1995.

176 BIBLIOGRAPHY

[Foh97] Gerhard Fohler. Dynamic timing constraints � relaxing overconstraining
speci�cations of real-time systems. In Work-in-Progress Session, Real-
Time Systems Symposium, 1997.

[GB13] Patrick Graydon and Iain Bate. Safety assurance driven problem formu-
lation for mixed-criticality scheduling. In Proceedings of the 1st Interna-
tional Workshop on Mixed Criticality Systems, 2013.

[GESY11] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. E�ective and
e�cient scheduling of certi�able mixed-criticality sporadic task systems.
In 32nd Real-Time Systems Symposium (RTSS), 2011.

[GM01] Joel Goossens and Christophe Macq. Limitation of the hyper-period in
real-time periodic task set generation. In Proceedings of the RTS Embed-
ded Systems, 2001.

[IF99] Damir Isovic and Gerhard Fohler. Handling sporadic tasks in o�-line
scheduled distributed real-time systems. Proceedings of the 11th Euromi-
cro Conference on Real-Time Systems, 1999.

[IF00] Damir Isovic and Gerhard Fohler. E�cient scheduling of sporadic, ape-
riodic, and periodic tasks with complex constraints. In Proceedings of
IEEE Real-Time Systems Symposium, 2000.

[IF09] Damir Isovic and Gerhard Fohler. Handling mixed sets of tasks in com-
bined o�ine and online scheduled real-time systems. Real-Time Systems,
2009.

[Joh92] L. A. Johnson. Do-178b: Software considerations in airborne systems and
equipment certi�cation. In Radio Technical Commission for Aeronautics,
1992.

[JP86] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 1986.

[JSM91] Kevin Je�ay, Donald F. Stanat, and Charles U. Martel. On non-
preemtpive scheduling of perdiodic and sporadic tasks. Proceedings of
Twelfth Real-Time Systems Symposium, 1991.

[JZLP14] Mathieu Jan, Lilia Zaourar, Vincent Legout, and Laurent Pautet. Han-
dling criticality mode change in time-triggered systems through linear
programming. In Ada User Journal, Proceedings of Workshop on Mixed
Criticality for Industrial Systems (WMCIS 2014), 2014.

[KB03] Hermann Kopetz and G. Bauer. The time-triggered architecture. Pro-
ceedings of the IEEE, 2003.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in
distributed real-time systems. IEEE Transactions on Computers, 1987.

BIBLIOGRAPHY 177

[Kop11] Hermann Kopetz. Real-Time Systems - Design principles for Distributed
Embedded Applications. Springer, 2nd edition, 2011.

[Kor85] Richard E Korf. Depth-�rst iterative-deepening: An optimal admissible
tree search. Arti�cial intelligence, 1985.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 1978.

[LB03] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. In Proceedings of 15th Euromicro Conference on Real-Time Sys-
tems, 2003.

[LB10] Haohan Li and S. Baruah. An algorithm for scheduling certi�able mixed-
criticality sporadic task systems. In 31st Real-Time Systems Symposium
(RTSS), 2010.

[LBA98] Guiseppe Lipari, Giorgio Buttazzo, and Luca Abeni. A bandwidth reser-
vation algorithm for multi-application systems. Proceedings of Fifth Inter-
national Conference on Real-Time Computing Systems and Applications,
1998.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the ACM, 1973.

[LSS87] J. Lehoczky, L. Sha, and J. Strosnider. Enhancing aperiodic responsive-
ness in a hard real-time environment. In Real-Time Systems Symposium,
1987.

[MEA+10] M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah, and J.A. Score-
dos. Mixed-criticality real-time scheduling for multicore systems. In
10th International Conference on Computer and Information Technology
(CIT), 2010.

[Mok83] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems
for the Hard-Real-Time Environment. PhD thesis, Massachusetts Insti-
tute of Technology, 1983.

[NFK14] Mitra Nasri, G. Fohler, and Mehdi Kargahi. A framework to construct
customized harmonic periods for real-time systems. In 26th Euromicro
Conference on Real-time Systems, 2014.

[PB98] P. Pedro and A. Burns. Schedulability analysis for mode changes in �ex-
ible real-time systems. In Proceedings of 10th Euromicro Workshop on
Real-Time Systems, 1998.

178 BIBLIOGRAPHY

[PK11] Taeju Park and Soontae Kim. Dynamic scheduling algorithm and its
schedulability analysis for certi�able dual-criticality systems. In Proceed-
ings of the International Conference on Embedded Software (EMSOFT),
2011.

[RBR12] I. Ripoll and R. Ballester-Ripoll. Period selection for minimal hyper-
period in periodic task systems. IEEE Transactions on Computers, 2012.

[SB94] Marco Spuri and Giorgio C. Buttazzo. E�cient aperiodic service under
earliest deadline scheduling. Proceedings of Real-Time Systems Sympo-
sium, 1994.

[SE04] Jan Staschulat and Rolf Ernst. Multiple process execution in cache related
preemption delay analysis. In Proceedings of the 4th ACM international
conference on Embedded software, 2004.

[SF13] Stefan Schorr and Gerhard Fohler. Integrated time- and event-triggered
scheduling - an overhead analysis on the arm architecture. In The 19th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), Taipei, Taiwan, August 2013.

[SPB13] D. Socci, P. Poplavko, and S. Bensalem. Time-triggered mixed-critical
scheduler. In Proceedings of the 1st International Workshop on Mixed
Criticality Systems, 2013.

[SPBB13] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed
critical earliest deadline �rst. In 25th Euromicro Conference on Real-Time
Systems, 2013.

[Spr90] Brinkley Sprunt. Aperiodic Task Scheduling for Hard-Rreal-Time Sys-
tems. PhD thesis, Carnegie Mellon University, 1990.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority inheri-
tance protocols: An approach to real-time synchronization. IEEE Trans-
actions on Computers, (9), 1990.

[SRLK02] S. Saewong, R.R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analysis of
hierarchical �xed-priority scheduling. In Proceedings of 14th Euromicro
Conference on Real-Time Systems, 2002.

[SSL89] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling
for hard-real-time systems. Real-Time Systems, 1989.

[Sys] Mixed Critical Systems. http://www.nitrd.gov/about/blog/white_papers/
20-mixed_criticality_systems.pdf.

[TG] TTA-Group. http://www.ttagroup.org/technology/tta.htm.

BIBLIOGRAPHY 179

[Thu93] Sandra Ramos Thuel. Enhancing Fault Tolerance of Real-Time Systems
through Time Redundancy. PhD thesis, Carnegie Mellon University, 1993.

[TL94] S.R. Thuel and J.P. Lehoczky. Algorithms for scheduling hard aperiodic
tasks in �xed-priority systems using slack stealing. In Proceedings of Real-
Time Systems Symposium, 1994.

[VDHBL+12] M.M.H.P. Van Den Heuvel, R.J. Bril, J.J. Lukkien, D. Isovic, and G.S. Ra-
machandran. Rtos support for mixed time-triggered and event-triggered
task sets. In 15th International Conference on Computational Science
and Engineering (CSE), 2012.

[Ves07] Steve Vestal. Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance. 28th IEEE International Real-
Time Systems Symposium, 2007.

[Xu10] Jia Xu. A method for adjusting the periods of periodic processes to reduce
the least common multiple of the period lengths in real-time embedded
systems. In International Conference on Mechatronics and Embedded Sys-
tems and Applications (MESA), 2010.

Glossary

Determinism

A physical system behaves deterministically if given an initial state at instant t
and a set of future timed inputs, then the future states and the values and times
of future outputs are entailed. [Kop11]. 2, 68, 106

Dynamic Priority Scheduling

In dynamic priority scheduling the priority of a task can change over time. We
di�erentiate between �xed job priority and dynamic job priority. In the former,
the priority of each job does not change whereas in the latter, also the priority of
one job can change over time. 9, 18, 24, 26

Event-Triggered Paradigm

In the event-triggered paradigm actions are triggered by internal or external events.
2, 5, 6, 9, 10, 12, 14, 15, 18, 106, 110�115, 118, 120, 121, 123, 125, 128, 129, 132,
139�141, 155�157

Fixed Priority Scheduling

In �xed priority scheduling one priority value is assigned to each task and applied
to all of its jobs. This priority does not change over the lifetime of the system. 7,
9, 10, 12, 15, 18, 24, 26, 30, 87, 89, 166

Hyper-period

The hyper-period is determined by the least common multiple of all periods in the
system. It determines the point in time when a schedule of a synchronous task set
repeats itself. 16, 23, 30, 31, 54�60, 63�65, 156, 159

Least Common Multiple

The least common multiple of two integer numbers is the smallest possible integer
that is divisible by both numbers. 30, 54, 56�58

181

182 Glossary

Real-Time System

Real-time systems are software and hardware systems in which the correctness
of computations is not only de�ned by their values, but also the time when the
results are provided. 2

Reserved Execution Time

The reserved execution time of a reservation is the amount of execution time which
is reserved by one instance of the reservation task. 31�33, 35, 37, 38, 46, 47, 49,
50, 54

Time-Triggered Paradigm

In the time-triggered paradigm all actions are triggered by the progression of time.
1, 2, 4�7, 9, 11, 12, 14, 15, 17, 18, 21, 23, 30, 54, 63, 65, 67, 68, 70, 71, 82, 87, 88,
102, 103, 105�107, 110�113, 115, 118, 120, 139, 140, 156, 157, 159

Worst-Case Execution Time

The worst-case execution time of a task or job is an upper bound on the longest
execution time needed by a processor to complete the task or job without inter-
ruption under speci�c assumptions considering all possible input data. 2�6, 10, 11,
14�19, 21�24, 26, 28, 30, 31, 33, 35, 37, 38, 46, 54, 67�70, 72, 82, 88, 99, 101, 102,
105�109, 111�115, 118, 120�125, 127�129, 132�136, 139�141, 143, 145, 147�153,
155�158, 166

Worst-Case Response Time

The worst-case response time of a task or job is the longest possible time between
release and completion of the execution. 21, 23, 32, 46�51, 54, 155

Summary

Certi�cation-Cognizant Mixed-Criticality Scheduling

in Time-Triggered Systems

In real-time systems, timing constraints of jobs and tasks are ensured by real-time
scheduling policies. Increasing processing power and reduced structure sizes in modern
processing units led to the trend of integrating safety-critical and non-safety-critical
functionalities on the same platform. These mixed-criticality systems resulted in new
challenges in the development of e�cient and e�ective scheduling algorithms. In dual-
criticality systems, we use the criticality levels lo and hi. In this thesis, we focus on
the development of such algorithms aiming at reduced certi�cation costs and resource
e�cient scheduling of mixed-criticality systems.

Chapter 1 – Introduction

In this chapter, we present a brief introduction to the research areas which constitute
the major body of this thesis. We introduce the concepts of real-time systems and show
the properties and challenges of mixed-criticality systems. Additionally, the problem
statement and contribution of this thesis are summarized. Finally, an overview of the
structure of this thesis is given.

Chapter 2 – Related Work

In this chapter, we review related work in the area of mixed-criticality systems. We
organize the presented approaches into event-triggered and time-triggered ones. The
presented scheduling policies are classi�ed into �xed and dynamic priority scheduling
approaches.

Chapter 3 – Fundamentals

In this chapter, we show terms and notations used in this thesis. Furthermore, we present
the task models of periodic, sporadic and aperiodic tasks. In addition, the job models
of event-triggered and time-triggered jobs are shown. Next, we derive properties of the
used task and job models. The Vestal mixed-criticality model which forms the basis

183

184 SUMMARY

for the presented mixed-criticality schedulers concludes the �rst section. In the second
section, we classify real-time scheduling algorithms based on the priority assignment.
Furthermore, we present the di�erences between event-triggered and time-triggered,
and between preemptive and non-preemptive schedulers. A brief overview of scheduling
policies of uni-processor and multi-processor systems and basic scheduling approaches
used in this thesis conclude the scheduler classi�cation. Finally, we de�ne fundamental
characteristics of schedules including the feasibility and schedulability of task and job
sets.

Chapter 4 – Task Parameter Transformation

In this chapter, we describe a proactive method to transform sporadic tasks into periodic
reservation tasks. The method aims at the inclusion of the event-triggered sporadic
tasks, which are characterized by an unknown arrival time, into an o�ine scheduling
process to reserve execution time for the runtime execution of them. The computation of
the reservation tasks allows for an adaptation of the needed utilization to guarantee the
sporadic tasks. Furthermore, the worst-case response time can be improved. We analyze
the feasibility of reservation tasks based on their utilization including the switching
overhead and based on the resulting worst-case response time of the sporadic tasks.
Finally, we evaluate the applicability of the method by applying the procedures on
periodic tasks to determine new periods to minimize the hyper-period of a time-triggered
system. The evaluation shows that by an increase of the periodic task utilization, we
can shorten the length of the hyper-period. A shorter hyper-period reduces the length
of the schedule table and thus, reduces also the certi�cation complexity of safety-critical
time-triggered systems.

Chapter 5 – Time-Triggered Schedule Tables with Mode Changes

In this chapter, we show a search tree based algorithm to e�ectively and e�ciently
construct time-triggered schedule tables for dual-criticality systems. The algorithm
consists of several steps to reduce the complexity of the scheduling process. First,
we separate the demand in the lo-criticality case from the additional demand in the
hi-criticality case by splitting hi-criticality jobs. As a consequence, we do not need
to schedule jobs with two worst-case execution times but only jobs with one worst
case execution time. Second, we introduce the concept of leeway which is based on
the deadlines and on the demand of scheduled jobs. Using the leeway, we can detect
paths in the search tree that result in infeasible schedules earlier and thus, reduce
the complexity of the schedule search. Finally, we also use the leeway to guide our
backtracking procedure. Instead of exploring all possible backtracking steps, we check
only backtracking decisions for which the leeway does not indicate a resulting infeasible
schedule. We conclude the chapter, evaluating the algorithm by a comparison with a
�xed priority based scheduler presented by Baruah and Fohler [BF11]. The evaluation
shows that our scheduler results in more feasible schedule tables which can be computed
in a shorter amount of time.

SUMMARY 185

Chapter 6 – Mixed-Criticality Slot-Shifting without Mode Changes

In this chapter, we present a dual-criticality scheduler based on slot-shifting [Foh95]. A
major bene�t of the presented approach is that we can use an already certi�ed schedule
table resolving possible complex constraints, e.g., by setting earliest start times and
deadlines. Based on this schedule tables and the job parameters, we determine capacity
intervals and spare capacities, i.e., amount of available resources within these intervals.
We di�erentiate between two spare capacity types: lo-criticality and hi-criticality spare
capacities, i.e., spare capacities based on all jobs with lo-criticality worst-case execution
time and spare capacities based hi-criticality jobs with hi-criticality worst-case execution
time. At runtime, a hi-criticality spare capacity value of zero indicates that we need
to schedule a hi-criticality job to guarantee its hi-criticality timing requirements. As a
consequence, we schedule the ready hi-criticality job with the earliest deadline. If the
hi-criticality spare capacities are greater than zero, we select a job with earliest deadline
from the set of all ready jobs. Additionally, we can use the spare capacities to perform an
acceptance test for event-triggered activities, i.e., �rm aperiodic and sporadic tasks. The
test checks whether the aperiodic (sporadic) instance can be executed until its deadline
without jeopardizing the execution of already guaranteed jobs. If this is not possible,
the aperiodic (sporadic) instance is rejected. The main advantage of the approach is
that we can react on the actual behavior of jobs. Early completions result in more
available resources for other jobs which can be directly used. In case of a job showing
hi-criticality behavior, we skip lo-criticality jobs only if it is necessary to guarantee hi-
criticality jobs. As soon as resources are available, we continue scheduling lo-criticality
jobs again.

Chapter 7 – Slot-Shifting with Generic Mode Changes

In this chapter, we extend the scheduler shown in Chapter 6 to mixed-criticality systems
with more than two criticality levels. Based on slot-shifting [Foh95], we develop a sched-
uler to handle generic mode changes and show how we can use this approach to schedule
mixed-criticality systems. The di�erent criticality levels of the system are represented
by modes including jobs with same or higher criticality level and the corresponding job
parameters. In the o�ine phase of slot-shifting, we determine capacity intervals and
spare capacities for each mode based on the jobs active in this mode. At runtime, we
execute the current mode using EDF to select the next executing job and update the
spare capacities of the other modes according to the executed job. We assume that the
execution of a job in the current mode, which is active in several modes, is also valid
in another mode. The spare capacities of a mode indicate whether we can switch to
a mode without violation of the timing constraints of jobs in this mode. As a result,
we can determine the feasibility of a mode change at every instant of the scheduler.
On the contrary, the guaranteed execution of certi�ed jobs with high criticality levels
requires a mode change to a higher criticality level if otherwise the timing constraints
are jeopardized. In conclusion, the scheduler can determine the feasibility of a requested
mode change and can also trigger mode changes to ensure the guaranteed behavior of
high criticality jobs. As a consequence, we can schedule mixed-criticality job sets with

186 SUMMARY

varying parameters, i.e., varying worst-case execution times and deadlines of speci�c
criticality levels, and can also handle added and removed jobs in other modes. This
�exibility comes at the cost of an increasing overhead with the number of modes.

Chapter 8 – Conclusions

In this chapter, we draw the conclusions and present the major contribution of this
thesis. Concluding remarks complete the chapter.

Appendix A – Extended Results

In this chapter, we present further evaluation results of the e�ectiveness and e�ciency
of the presented period transformation method shown in Chapter 4. Furthermore, we
show an extended evaluation including additional comparison results of the schedule
table generation algorithm presented in Chapter 5. Finally, further examples of the
slot-shifting algorithm with generic mode changes complete the appendix.

Zusammenfassung

Zerti�zierungsorientierte Aufgabenplanung

mit gemischten Kritikalitätsstufen in zeitgesteuerten Systemen

In Echtzeitsystemen wird die Einhaltung zeitlicher Bedingungen von Programmen und
Programminstanzen, im folgenden Tasks und Jobs genannt, durch Echtzeit-Scheduling1-
Strategien sichergestellt. Steigende Rechenleistung und verkleinerte Strukturgröÿen in
modernen Prozessoren führten zu dem Trend der Integration sicherheitskritischer und
sicherheitsunkritischer Funktionalitäten auf einer gemeinsamen Plattform. Diese soge-
nanntenMixed-Criticality2 Systeme warfen neue Herausforderungen bei der Entwicklung
e�zienter und e�ektiver Scheduling-Algorithmen auf. In Dual-Criticality Systemen, d.h.
Systemen mit lediglich zwei unterschiedlichen Kritikalitätsstufen, werden die Kritikali-
tätsstufen lo (engl. �low� für niedrig) und hi (engl. �high� für hoch) benutzt. Diese
Dissertation konzentriert sich auf die Entwicklung solcher Algorithmen mit dem Ziel die
Zerti�zierungskosten zu reduzieren und die Ausführungsreihenfolge in Mixed-Criticality
Systemen e�zient zu planen.

Kapitel 1 – Einleitung

Dieses Kapitel umfasst eine kurze Einführung in das Forschungsgebiet, das den Hauptteil
dieser Dissertation darstellt. Es werden die grundlegenden Konzepte von Echtzeitsys-
temen zusammen mit den Eigenschaften und Herausforderungen von Mixed-Criticality
Systemen gezeigt. Auÿerdem wird die Problemstellung und der Beitrag dieser Arbeit zu-
sammengefasst. Eine Übersicht der Gliederung dieser Dissertation schlieÿt dieses Kapitel
ab.

1Scheduling beschreibt den Prozess der Planung der Ausführungsreihenfolge von Tasks und/oder Jobs
2Mixed-Criticality (dt.: gemischte Kritikalitätsstufen) Systeme zeichnen sich durch Tasks und Jobs aus,
deren Versagen zu unterschiedlich schweren Konsequenzen für das System führt. Die Konsequenzen
reichen von keinen sicherheitsrelevanten Auswirkungen bis hin zum Totalausfall inklusive Zerstörung
des Systems und möglichem Personenschaden.

187

188 ZUSAMMENFASSUNG

Kapitel 2 – Themenbezogene Fachliteratur

Dieses Kapitel betrachtet relevante Fachliteratur im Bereich derMixed-Criticality Syste-
me. Ihre Ansätze werden in ereignisgesteuerte und zeitgesteuerte Ansätze di�erenziert.
Die gezeigten Scheduling-Strategien werden in Strategien mit festzugewiesenen und dy-
namischen Prioritäten eingeteilt.

Kapitel 3 – Grundlagen

Dieses Kapitel erläutert die genutzten Begri�e sowie deren Beschreibungen dieser Disser-
tation. Auÿerdem werden die Task-Modelle von periodischen, sporadischen und aperiodi-
schen Tasks präsentiert. Zusätzlich werden die Job-Modelle ereignisgesteuerter und zeit-
gesteuerter Jobs gezeigt. Danach werden die sich ergebenden Eigenschaften der benutz-
ten Task- und Job-Modelle gezeigt. Das von Vestal vorgeschlagene Mixed-Criticality-
Modell, das die Basis der präsentiertenMixed-Criticality Scheduling-Algorithmen bildet,
schlieÿt den ersten Abschnitt ab. Im zweiten Abschnitt des Kapitels werden Echtzeit-
Scheduling-Algorithmen, basierend auf der verwendeten Prioritätszuweisung, gruppiert.
Danach werden die Unterschiede zwischen ereignisgesteuerten und zeitgesteuerten so-
wie zwischen unterbrechbaren und nicht unterbrechbaren Scheduling-Methoden gezeigt.
Eine kurze Übersicht der Scheduling-Strategien für Systeme mit einem bzw. mehreren
Prozessoren und grundlegende Scheduling-Ansätze schlieÿen die Gruppierung der Sche-
duling-Strategien ab. Die De�nition charakteristischer Eigenschaften von Scheduling-
Plänen, inklusive der Ausführbarkeit und Planbarkeit der Task- und Job-Sets, schlieÿt
das Kapitel ab.

Kapitel 4 – Task-Parameter-Transformation

Dieses Kapitel beschreibt eine proaktive Methode um sporadische Tasks in periodi-
sche Reservierungstasks zu transformieren. Diese Methode zielt auf die Einbeziehung
der ereignisgesteuerten, sporadischen Tasks, die durch eine unbekannte Ankunftszeit
gekennzeichnet sind, in den o�ine durchgeführten Scheduling-Prozess ab. Die Reser-
vierungstasks garantieren Ausführungszeit für die Laufzeitausführung der sporadischen
Tasks. Eine Anpassung der erforderlichen Utilization der Reservierungstasks, d.h. dem
Anteil an Ausführungszeit auf dem Prozessor zur Garantie der sporadischen Tasks, ist
während der Bestimmung ihrer Parameter möglich. Auÿerdem kann die längst mögliche
Antwortzeit der sporadischen Tasks durch diese Anpassung verbessert werden. Im An-
schluss wird die Ausführbarkeit der Reservierungstasks, basierend auf ihrer Utilization
unter Beachtung der Scheduling-Kosten und auf der sich ergebenden längst möglichen
Antwortzeit der sporadischen Tasks, analysiert. Schlieÿlich wird die Anwendbarkeit der
Methode, durch das Erzeugen neuer Perioden für periodische Tasks um das kleinste
gemeinsame Vielfache (kgV) der Perioden eines zeitgesteuerten Systems zu minimie-
ren, evaluiert. Das kgV der Perioden bestimmt die Länge der Scheduling-Tabelle. Die
Auswertung der Ergebnisse zeigt, dass durch einen Anstieg der Utilization der periodi-
schen Tasks das kgV der Perioden verkleinert werden kann. Die sich dadurch ergebende

ZUSAMMENFASSUNG 189

Verkürzung der Scheduling-Tabelle reduziert die Komplexität der Zerti�zierung von si-
cherheitskritischen, zeitgesteuerten Systemen.

Kapitel 5 – Zeitgesteuerte Scheduling-Tabellen mit Moduswechseln

Dieses Kapitel zeigt einen suchbaumbasierten Algorithmus zur e�ektiven und e�zienten
Konstruktion von Scheduling-Tabellen für Dual-Criticality Systeme. Der Algorithmus
besteht aus drei Schritten, um die Komplexität des Scheduling-Prozesses zu reduzieren.
Im ersten Schritt wird der Rechenzeitbedarf von hi-Criticality Jobs im lo-Criticality-
Fall vom zusätzlich benötigten Rechenzeitbedarf im hi-Criticality-Fall separiert. Das
Ergebnis sind dann Jobs, die nur noch durch eine Worst-Case Execution Time3 (WCET)
charakterisiert sind. Dadurch müssen nicht mehr Jobs mit zwei WCETs geplant werden.
Im zweiten Schritt wird der leeway eingeführt, der eine charakteristische Gröÿe eines
Scheduling-Slots darstellt und auf den Ausführungsfristen und dem Rechenzeitbedarf
des in diesem Slot geplanten Jobs basiert. Durch den leeway können Pfade im Such-
baum, die zu nicht ausführbaren Scheduling-Plänen führen, früher erkannt und somit
die Komplexität des Schedulings reduziert werden. Im letzten Schritt wird der leeway
genutzt, um beim Backtracking nicht alle Schritte überprüfen zu müssen und statt des-
sen nur noch Entscheidungen in Slots zu überprüfen, deren leeway nicht einen daraus
resultierenden, nicht ausführbaren Scheduling-Plan, ergibt. Das Kapitel wird mit einer
Evaluierung des Algorithmus, durch einen Vergleich mit der Methode von Baruah und
Fohler [BF11], die auf festzugewiesenen Prioritäten basiert, abgeschlossen. Das Ergeb-
nis der Evaluierung zeigt, dass der Algorithmus, der in dieser Dissertation vorgestellt
wurde, mehr ausführbare Scheduling-Pläne in kürzerer Zeit liefert.

Kapitel 6 – Mixed-Criticality Slot-Shifting ohne Moduswechsel

Dieses Kapitel stellt einen Dual-Criticality Algorithmus, der auf dem von Fohler ge-
zeigten Slot-Shifting Algorithmus [Foh95] basiert, vor. Ein Vorteil dieses Ansatzes ist
die Möglichkeit bereits zerti�zierte Scheduling-Tabellen nutzen zu können. Diese Ta-
bellen lösen etwaige komplexe Einschränkungen, z.B. durch früheste Startzeiten und
Ausführungsfristen, auf. Basierend auf diesen Scheduling-Tabellen werden Kapazitäts-
intervalle und Spare Capacities, die ein Maÿ für die verfügbaren Ressourcen innerhalb
dieser Intervalle darstellen, bestimmt. Es werden zwei Typen dieser Spare Capacities un-
terschieden: lo-Criticality Spare Capacities, die auf allen Jobs mit lo-Criticality WCET
basieren, und hi-Criticality Spare Capacities, die auf hi-Criticality Jobs mit ihren hi-
Criticality WCETs basieren. Zur Laufzeit zeigt ein Spare-Capacity-Wert von Null an,
dass ein hi-Criticality Job als nächstes ausgeführt werden muss, damit dieser seine ga-
rantierten hi-Criticality Anforderungen erfüllen kann. Der Job mit der frühesten Aus-
führungsfrist wird dann als nächstes zur Ausführung ausgewählt. Wenn die hi-Criticality
Spare-Capacity-Werte gröÿer als Null sind, dann wird ein ausführbarer Job mit der frü-
hesten Ausführungsfrist aus dem gesamten Job-Set ausgewählt. Auÿerdem werden die
Spare Capacities genutzt, um einen Test zur Annahme von ereignisgesteuerten Aktivi-
täten, d.h. sporadische und aperiodische Tasks mit Ausführungsfristen, durchzuführen.

3Die Worst-Case Execution Time ist eine Abschätzung für die maximal benötigte Ausführungszeit.

190 ZUSAMMENFASSUNG

Der Test überprüft, ob die Annahme des aperiodischen (sporadischen) Jobs die Ausfüh-
rung bereits garantierter Jobs gefährdet. Auÿerdem muss der aperiodische (sporadische)
Job vollständig ausführbar bis zu seiner Ausführungsfrist sein. Wenn diese beiden Be-
dingungen nicht erfüllt sind, dann wird der aperiodische (sporadische) Job abgelehnt.
Der Hauptvorteil dieses Ansatzes ist die Möglichkeit auf das tatsächliche Verhalten der
Tasks zur Laufzeit zu reagieren. Eine frühere Beendigung der Ausführung ermöglichen
die Nutzung freiwerdender Ressourcen für andere Tasks. Falls ein Job hi-Criticality-
Verhalten zeigt, wird die Ausführung von lo-Criticality Jobs, nur wenn dies notwendig
ist, übersprungen, um hi-Criticality Jobs zu garantieren. lo-Criticality Jobs werden
wieder ausgeführt sobald Ressourcen für diese zur Verfügung stehen.

Kapitel 7 – Slot-Shifting mit allgemeinen Moduswechseln

In diesem Kapitel wird eine Erweiterung des Slot-Shifting-Algorithmus aus Kapitel 6
gezeigt. Die Erweiterung umfasst Mixed-Criticality Systeme mit mehr als zwei Kritika-
litätsstufen. Der Scheduling-Algorithmus behandelt allgemeine Moduswechsel und kann
auÿerdem in Mixed-Criticality Systemen verwendet werden. Die verschiedenen Kritika-
litätsstufen des Systems werden durch Modi dargestellt, die Jobs gleicher oder höherer
Kritikalitätsstufe beinhalten. In der O�ine-Phase von Slot-Shifting werden Kapazitäts-
intervalle und Spare Capacities, basierend auf den aktiven Jobs des Modus, bestimmt.
Zur Laufzeit wird der als nächstes auszuführende Job mittels EDF4 ausgewählt. Au-
ÿerdem werden die Spare Capacities aller Modi entsprechend dem ausgeführten Job
aktualisiert. Die Spare Capacities eines Modus bestimmen die Ausführbarkeit eines Mo-
duswechsels in den entsprechenden Modus. Daraus lässt sich die Ausführbarkeit von Mo-
duswechseln für jeden Zeitpunkt während des Scheduling-Prozesses bestimmen. Im Ge-
gensatz dazu können Zeitpunkte bestimmt werden, zu denen ein Moduswechsel nötig ist,
um die Anforderungen von Jobs mit höherer Kritikalitätsstufe zu garantieren. Dadurch
kann der Scheduling-Algorithmus die Ausführbarkeit von Moduswechseln überprüfen
und Moduswechsel veranlassen, um die Ausführungsfristen der Jobs mit hoher Kritika-
litätsstufe einzuhalten. Als Ergebnis dieser Möglichkeiten können Mixed-Criticality Jobs
mit veränderlichen Parametern, d.h. veränderlichen WCETs und Ausführungsfristen in
spezi�schen Kritikalitätsstufen, geplant werden. Auÿerdem ist es möglich Jobs hinzu-
zufügen und zu entfernen auch in anderen Modi. Diese Flexibilität wird erreicht durch
erhöhte Scheduling-Kosten, die mit Anzahl der Modi steigen.

Kapitel 8 – Fazit

Dieses Kapitel präsentiert das Fazit und den Hauptbeitrag dieser Dissertation. Abschlie-
ÿende Bemerkungen vervollständigen dieses Kapitel.

Anhang A – Erweiterte Ergebnisse

In diesem Kapitel werden weitere Evaluierungsergebnisse, die die E�ektivität und E�-
zienz der Perioden-Transformationsmethode belegt, gezeigt. Auÿerdem wird eine erwei-

4Scheduling-Algorithmus, der den nächsten Job durch die früheste Ausführungsfrist auswählt.

ZUSAMMENFASSUNG 191

terte Evaluierung, inklusive zusätzlichen Vergleichen des Scheduling-Tabellen-Konstruk-
tionsalgorithmus, dargestellt. Schlieÿlich vervollständigen weitere Beispiele des Slot-
Shifting-Algorithmus mit allgemeinen Moduswechseln den Anhang.

JENS THEIS • jtheis@eit.uni-kl.de

LEBENSLAUF

PERSÖNLICHE DATEN .

Staatsangehörigkeit: deutsch

Familienstand: ledig

Lehrstuhladresse: Lehrstuhl für Echtzeitsysteme

 TU Kaiserslautern

 Postfach 3049

 67653 Kaiserslautern

HOCHSCHULBILDUNG .

05/2010 – heute Technische Universität Kaiserslautern

Doktorand bei Prof. Dipl.-Ing. Dr. Gerhard Fohler

Fachbereich Elektro- und Informationstechnik, Lehrstuhl Echtzeitsysteme

• Dissertation: "Certification-Cognizant Mixed-Criticality Scheduling in Time-Triggered

 Systems"

• Reviewer bei internationalen Wissenschaftskonferenzen im Bereich Real-Time Systems

• Lehrauftrag für das Labor "Real-Time Systems Lab" im Wintersemester 2011/12

• Vorlesungen und Übungen für die Kurse "Operating Systems", "Real-Time Systems I" und

 "Real-Time Systems II"

• Betreuung des Seminars "Real-Time Systems"

• Betreuung studentischer Forschungsarbeiten

10/2004 – 01/2010 Technische Universität Kaiserslautern

Diplom in Elektro- und Informationstechnik

• Diplomarbeit: "A Generic Berlekamp-Massey Hardware Implementation for a Flexible

 High-Throughput BCH Decoder"

• Studienarbeit: "Design and Implementation of a Wireless Sensor Network for Breathing

Protection Monitoring"

BERUFLICHE ERFAHRUNG .

06/2004 – 09/2004 Praktikum in der Lehrwerkstatt für Feinmechanik und Elektrotechnik

 Fresenius Medical Care, St. Wendel, Saarland

 • Spanabhebende und spanlose Formung und weitere industrielle Techniken

 • Elektrotechnische Arbeitsverfahren

• Betrieblicher Einsatz moderner informationstechnischer Mittel und Verfahren

06/2003 – 08/2003 Aushilfe im Rasterelektronenmikroskop-Labor

 Fresenius Medical Care, St. Wendel, Saarland

 • Probenvorbereitung

 • Probenanalyse mittels Rasterelektronenmikroskop

AUSBILDUNG .

08/1994 – 06/2003 Allgemeine Hochschulreife am Gymnasium Wendalinum, St. Wendel, Saarland

SPRACHEN .

Deutsch: Muttersprache

Englisch: Fließend

Französisch: Grundkenntnisse

JENS THEIS • jtheis@eit.uni-kl.de

VERÖFFENTLICHUNGEN .

12/2013 Jens Theis und Gerhard Fohler

 "Mixed Criticality Scheduling in Time-Triggered Legacy Systems"

 Proceedings of the 1st International Workshop on Mixed Criticality Systems at Real-Time Systems

 Symposium, Vancouver, Kanada

12/2013 Jens Theis, Gerhard Fohler und Sanjoy Baruah

 "Schedule Table Generation for Time-Triggered Mixed Criticality Systems"

Proceedings of the 1st International Workshop on Mixed Criticality Systems at Real-Time Systems

Symposium, Vancouver, Kanada

09/2011 Jens Theis und Gerhard Fohler

 "Transformation of Sporadic Tasks for Offline Scheduling with Utilization and Response Time

 Trade-offs"

 Proceedings of the 19th International Conference on Real-Time and Network Systems,

 Nantes, Frankreich

KENNTNISSE .

Betriebssysteme: Microsoft Windows, Linux

Programmiersprachen: C/C++

Office-Programme: Microsoft Word, Excel, PowerPoint, Outlook

Grafikprogramme: Microsoft Visio, Corel Draw

Sonstige Programme: The MathWorks Matlab, LaTex-Textsatz

	Acknowledgments
	Danksagung
	Publications
	Introduction
	Real-Time Systems
	Mixed-Criticality Systems
	Problem Statement
	Contributions
	Organization

	Related Work
	Event-Triggered Approaches
	Fixed Priority Scheduling
	Dynamic Priority Scheduling

	Time-Triggered Approaches

	Fundamentals
	Task Model
	Generic Task and Job Model
	Vestal Mixed-Criticality Model

	Scheduling
	General Scheduling Classification
	Schedule Characteristics

	Task Parameter Transformation
	Prior Work
	Transformation of Sporadic Tasks
	Terms, Symbols, Notation and Assumptions
	Worst-Case Arrival of Sporadic Tasks
	Transformation Method
	Adaption for Mixed-Criticality Task Sets

	Utilization of Reservation Tasks
	Worst-Case Response Time
	Worst-Case Response Time Reduction
	Results of the Worst-Case Response Time Reduction

	Trade-Off between Utilization of Reservation Tasks and Worst-Case Response Times
	Example of the Transformation of Sporadic Tasks
	Evaluation: An Application of Parameter Transformation
	Motivation
	Creation of Periods
	Exhaustive Search Algorithm
	Fast Hyper-Period Search Algorithm
	Evaluation of the Effectiveness and Efficiency

	Time-Triggered Schedule Tables with Mode Changes
	Time-Triggered Mode Changes
	General Discussion and Assumptions
	Schedule Tables with Mode Changes
	Runtime Behavior

	Allocation of Jobs to Modes
	Time-Triggered Schedule Table Generation
	Low Criticality Schedule Table
	High Criticality Schedule Table

	Backtracking Procedure: Swapping
	Example of Schedule Table Construction
	Evaluation
	Fixed Priority Schedule Table Construction
	Experiment Description
	Impact of Certification Authorities' Pessimistic Assumptions on Schedulability
	Schedulability Analysis
	Runtime Analysis
	Summary of Results

	Extensions
	Open Questions
	Reducing the Number of Scheduling Decisions
	Rationale of the Order of Scheduling Decisions

	Discussion: How Can We Reduce the Complexity of Scheduling and Certification?

	Mixed-Criticality Slot-Shifting without Mode Changes
	Motivation
	Original Slot-Shifting
	Offline Phase
	Online Phase

	Mixed-Criticality Slot-Shifting
	Offline Phase
	Online Phase

	Mixed-Criticality Slot-Shifting Example
	Discussion: How Can We Dynamically Use Resources at Runtime?

	Slot-Shifting with Generic Mode Changes
	Motivation
	Generic and Mixed-Criticality Mode Changes
	General Job Behavior during Mode Changes
	Mixed-Criticality Mode Changes

	Job Model
	Slot-Shifting with Generic Mode Changes
	Offline Phase
	Online Phase

	Generic Mode Changes Example
	Application of Generic Mode Changes to Mixed-Criticality Systems
	Assumptions and Requirements
	Mixed-Criticality Slot-Shifting with Generic Mode Changes
	Applicability to Mixed-Criticality Systems with Shared Resources

	Discussion: How Much Flexibility in the Mixed-Criticality Model Is Reasonable?

	Conclusions
	Main Contributions
	Final Remarks

	Extended Results
	Further Evaluation Results of the Effectiveness and Efficiency of the Period Transformation
	Extended Evaluation of the Algorithms SWAP and FPS
	Resulting Example Schedules of Slot-Shifting with Generic Mode Changes

	Bibliography
	Glossary
	Summary
	Zusammenfassung
	Curriculum Vitae

