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Abstract

We intend to find optimal deterministic and randomized algo-
rithms for three related problems: multivariate integration, para-
metric multivariate integration, and parametric initial value prob-
lems. The main interest is concentrated on the question, in how
far randomization affects the precision of an approximation. We
want to understand when and to which extent randomized algo-
rithms are superior to deterministic ones.

All problems are studied for Banach space valued input functions.
The analysis of Banach space valued problems is motivated by
the investigation of scalar parametric problems; these can be un-
derstood as particular cases of Banach space valued problems.
The gain achieved by randomization depends on the underlying
Banach space.

For each problem, we introduce deterministic and randomized
algorithms and provide the corresponding convergence analysis.
Moreover, we also provide lower bounds for the general Banach
space valued settings, and thus, determine the complexity of the
problems. It turns out that the obtained algorithms are order
optimal in the deterministic setting. In the randomized setting,
they are order optimal for certain classes of Banach spaces, which
includes the L, spaces and any finite dimensional Banach space.
For general Banach spaces, they are optimal up to an arbitrarily
small gap in the order of convergence.
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Chapter 1

Introduction

In this thesis, we analyze the complexity of three related numerical problems:
multivariate integration, parametric multivariate integration and parametric ini-
tial value problems. These problems are relevant in multiple applications when
modeling natural phenomena in physics, engineering or biology as well as eco-
nomics and finance. Analytical solutions are often not accessible, therefore, nu-
merical approximations are needed. Our aim is to find optimal algorithms for
the mentioned problems. We also discuss the impact of randomization on the
error of the approximation, and we want to understand when and to which extent
randomized algorithms are superior to deterministic ones.

In the setting of information-based complexity theory, the complexity of a nu-
merical problem is described in terms of the n-th minimal error. This is the best
possible approximation error that can be achieved given a fixed amount of infor-
mation (about the problem). In the present thesis, the admissible information
is based on point evaluations of the input functions. The n-th minimal error is
usually estimated by providing upper and lower bounds. Here, all upper bounds
are proven due to defining and analyzing an explicit algorithm. The lower bound
can be used as a measure of quality for these algorithms. If the algorithm reaches
the lower bound, it is optimal for this setting. If not, we may either find a sharper
lower bound or need to find a better algorithm. In case of matching bounds the
complexity is precisely determined and we found an optimal algorithm for the
considered problem. In this manner, for instance, the multilevel Monte Carlo
method has been established in [I7] and [25], which is, due to [I4], a common
used algorithm in finance nowadays.

The complexity of multivariate integration is well-studied for scalar valued in-
put functions. It is well-known for definite integration and the indefinite case has
recently been considered in [24]. However, all these results are valid for scalar val-
ued input functions only. In this thesis, we consider the problem for Banach space
valued input functions and analyze deterministic and randomized algorithms for
the definite and the indefinite case. To determine the complexity, we also provide
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lower bounds. This is the first time that the complexity of Banach space valued
problems is studied. It turns out that the algorithms are order optimal in the de-
terministic setting. In the randomized setting, however, the gain achieved due to
randomization depends on the geometry of the underlying Banach space. In this
setting, the algorithms are order optimal only for certain classes of Banach spaces.
For general Banach spaces, an arbitrarily small gap in the exponent remains.

The analysis of Banach space valued problems is motivated by the study of
parametric problems. These can be understood as particular cases of Banach
space valued problems. Thus, if the parametric problem can be expressed as a
Banach space valued problem, we can apply the results of the general Banach
space valued analysis. It turns out that this technique is crucial for the analysis
of multilevel algorithms for parametric problems.

The complexity of definite parametric integration was studied in [25] and [I§]
and later for quantum algorithms in [45]. The indefinite case has not been studied
so far. We fill this gap and provide the analysis of indefinite parametric integra-
tion. Moreover, we further extend the considered classes of input functions to
spaces of dominating mixed derivatives and other types of non-isotropic smooth-
ness. In contrast to the classes that have been studied before, these classes allow
to treat different types of smoothness for the parameter dependence and for the
basic (nonparametric) integration problem, separately. For this more general set-
ting, we provide and analyze certain multilevel Monte Carlo algorithms for both,
the definite and the indefinite case. Beyond that, all results are stated for Banach
space valued input functions. If we fix the random parameter, we obtain determin-
istic algorithms, which turn out to be order optimal for the deterministic setting.
In the randomized case, the gain achieved by randomization depends again on
the geometry of the underlying Banach space. As for Banach space valued mul-
tivariate integration, the algorithm is optimal for certain Banach spaces and an
arbitrarily small gap in the order of convergence remains if general Banach spaces
are considered. However, for certain Banach spaces, we show optimality even up
to logarithmic factors and only in some limit cases a logarithmic gap remains.

Indefinite integration is a particular case of an initial value problem if the inte-
gration domain is one-dimensional. Thus, as a next step, the complexity of para-
metric initial value problems is studied. This problem has not been investigated
before. The complexity of initial value problems for ordinary differential equations
(ODEs) without dependence on a parameter s was studied in [28] 29} 30} 23] [§] for
scalar systems, and in [21] for the Banach space valued case. We use the Banach
space valued algorithm of [21] to define a multilevel Monte Carlo algorithm for the
parametric problem. The problem is again studied for Banach space valued input
functions. Therefore, systems of ordinary differential equation are included if we
choose the Banach space to be RY. We prove lower bounds and this way we deter-



mine the complexity of the problem. Since parametric integration is a particular
case of an initial value problem, we cannot assume better rates than established
for parametric indefinite integration. Moreover, due to the non-linearity of the
problem, the passing from non-parametric to the parametric problem is more in-
volved. Nevertheless, we obtain similar results as for parametric integration. This
means that the considered multilevel Monte Carlo algorithm is order optimal in
the deterministic setting, and that the dependence on the geometry of the Banach
space is as before. Furthermore, in certain cases, the considered algorithms are
optimal even up to logarithmic factors and as before, only in some limit cases a
logarithmic gap remains.

Finally, we restrict ourselves to Hilbert space valued initial value problems,
which allows the further extension of the considered class of input functions to
certain local classes. We carry over the previous results for Banach space valued
initial value problems to these more general classes, i.e., we obtain algorithms that
are optimal even up to logarithmic factors (as before, only in some limit cases a
logarithmic gap remains). This consideration still includes systems of parameter
dependent ordinary differential equation.

The thesis is organized as follows: First, preliminaries, needed in the
sequel, are introduced in Chapter Afterwards, related and new results are
briefly summarized in an informal way in Chapter |3| called 'The Thesis in a
Nutshell’. Having provided an overview of the entire thesis, we will start with the
complexity analysis of Banach space valued multivariate integration in Chapter
M A multilevel algorithm is applied to analyze the complexity of parametric
Banach space valued multivariate integration in Chapter[5] In Chapter[6] a similar
approach is chosen to study the approximate solution of parametric Banach space
valued initial value problems, and in Chapter [7, we finally restrict ourselves to
parametric Hilbert space valued initial value problems, which allows us to extend
the class of considered input functions to certain local classes.






Chapter 2

Preliminaries

This chapter provides an overview of conventions used in this thesis as well as
results required from certain mathematical fields. However, it is not exhaustive.
We assume a basic knowledge in functional analysis and probability theory. The
monographs [1],[43],[47] and [27],[32] are recommended for an introduction into
these fields.

2.1 General Conventions and Notions

We introduce some notations needed in the sequel. We use N = {1,2,...}, Ny =
{0,1,2,...}. Throughout the thesis, log always means log,; A and V mean logical
conjunction and disjunction, respectively. For a Banach space Z, the closed unit
ball is denoted by By, the open unit ball by BY, the identity mapping on Z by I,
and the dual space by Z*. The norm of Z is || - ||, other norms are distinguished
by subscripts. We assume that all considered Banach spaces are defined over the
scalar fields K = R or K = C. Given k € N, Banach spaces X; (1 = 1,...,k)
and Y, we let .Z(Xy,..., Xy, Y) be the space of bounded multilinear mappings
T:X; X+ x X, — Y endowed with the canonical norm

1Tl 2. x0v) = sup [T (@1 @)y
x1€BX1 ..... kaBXk

If X3 = =X, = X, we write Z(X,Y). Similarly, if & = k; + ko with
ki,ke > 0, X4 = -+ = Xy, = X, and Xy, 41 = -+ = Xgyh, = £, We use
the notation %, 1, (X, Z,Y’). For convenience, we extend the notation to k = 0
by setting £ (X,Y) = %o X, Z,Y) =Y. It k =1, Z(X,Y) is the space of
bounded linear operators, for which we also write Z(X,Y). If Y = X, we write
Z(X) instead of £ (X, X).

If M is a nonempty set, we let B(M, Z) be the space of all Z-valued functions
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that are bounded on M, and equip this space with the supremum norm
19/l Bavr.z) = sup [lg(2)]].
teM

If Z =K, we only write B(M).

Moreover, c,cg,cq, ... denote constants, which may depend on the problem
parameters, such as d,r,k, L, X,Y, Z, but depend neither on the algorithm pa-
rameters n, ly, [1, . .. nor on the input. The same symbol may also denote different
constants, even in a sequence of relations.

To state complexity results, we use asymptotic notations such as a,, < b,,, which
means that there exists a constant ¢ > 0 and a natural number ng € N such that
for all n > ng, we have a, < cb,. If a, < b, and b, < a,, we write a,, < b,.
We also use the notation a, <. b, if there are constants c¢;,c; > 0, ng € N, and
01,05 € R with 6, < 65 such that for all n > ny,

c1b,(log(n + 1))91 < a, < by (log(n + 1))02.

2.2 Introduction to Information-Based
Complexity Theory

We deal with the complexity of certain integration problems. For this purpose it
is necessary to introduce a measure of difficulty for numerical problems.

In contrast to discrete complexity theory, where discrete problems, such as
graph theoretic problems, are considered, we are interested in the complexity of
continuous problems. Examples are multivariate integration, the solution of dif-
ferential equations as well as matrix multiplication and the solution of systems
of linear equations. These examples can be further divided into problems where
information is partial and problems where the problem constellation can be de-
scribed entirely. Concerning the solution of systems of linear equations or matrix
multiplication, we obtain an exact solution up to machine precision, since the
input can be described by a finite number of parameters.

In information-based complexity theory, we concentrate on problems, where
information is only partial. These problems, in general, cannot be solved exactly.
This holds in particular for multivariate integration and the solution of differen-
tial equations. Here the inputs are elements of infinite dimensional spaces, usually
function spaces. Unfortunately, there is no way to describe these functions en-
tirely using discrete sets so that a computer can handle it. However, given some
information about the problem, we are usually able to propose an approxima-
tion to the exact solution. The accuracy that can be achieved by reasonable
algorithms depends in most cases directly on the given information. Thus, the
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question arises: What is the best approximation we can achieve, given a certain

amount of information about a problem constellation?

This is the basis of information-based complexity theory (IBC), which will be

briefly introduced in a formal way. We refer to [42] and [39] for further details.
An abstract numerical problem is described by a tuple

P = (F.G, S, K,N\).

The set F' is the set of input data, G is a normed linear space, and K is an
arbitrary set, in the sequel always a Banach space. Moreover,

S:F—-d

is an arbitrary mapping, usually called the solution operator, which maps the
input f € F to the exact solution Sf. A is a set of mappings from F' to K, which
is called the class of admissible information functionals A € A. Thus, A describes
the admitted information for the calculation of an approximation. In this thesis
we primarily consider point evaluations, e.g., for continuous input functions f, we
obtain

A={5 : telo,1]%,

where 0,(f) := f(t). This type of information is usually called standard informa-
tion.

Example 2.2.1. We take the classical integration problem as an introductory
example. Here we choose

o F={feC[0,1]) : [[fllc2qop <1},

e G =R,
o S(f)= [, f(r)dr,
o K =R,

° A:{5t : tE[O,l]},

where C?([0, 1]) denotes the space of 2-times continuously differentiable functions
endowed with the norm
1 lle2o.n

= max_sup
3=0,1,2 (0,1

FO ) ' .
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The complexity of a given problem depends highly on the admissible informa-
tion. For instance, we can allow linear information. In this case, A consists of
all linear functionals A\ € F}, where F} is a linear space with F' C Fj. Since the
integration operator itself is a linear functional, it follows that the integration
problem is trivial. The exact solution is already given by a single information
call, i.e., by

a0 = [ 5w dr

However, there are also problems, e.g., the approximation of smooth functions in
suitable norms, for which we know that the complexity is the same, no matter if
we use linear information or standard information. Thus, even linear information
does not help in some cases. Notice that all results of the thesis are obtained
using only standard information.

Next, we introduce the concept of information operators, which is crucial for
the definition of abstract numerical algorithms. We set

K> = U K*. (disjoint union).
k=1

Definition 2.2.2. An information operator N : ' — K is given by two se-
quences of functions

Nt Fx K™ 'S K (t=1,2,...), [information functions]
7t K'— {0,1} (1=0,1,2,...) [termination functions]
such that
A1 €A,

)‘z()/\l(f)7u)‘z—l(f)> eA (ZZQ,S,)

Given f € F, N(f) is determined as

where

n(f) :=min{i : 7(M(f),..., N(f)) =1}

If no such i exists, we set n(f) = oo.
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Remark 2.2.3. If \; depends on the already calculated values A;(f),..., \i—1(f),
we call the information operator N adaptive. Otherwise, i.e., if n(f) is fixed and
A; are just mappings from F to K, we call N non-adaptive.

Definition 2.2.4. A mapping A : F — G is called an algorithm if it can be
represented as A = ¢ o N, where N : F' — K is an information operator and
¢ : K> — G is an arbitrary mapping.

Remark 2.2.5. An algorithm A is called adaptive and non-adaptive if the associ-
ated information operator is adaptive and non-adaptive, respectively.

Example 2.2.1 (continued). A standard algorithm for solving integration prob-
lems is the composite trapezoidal rule. For m € N and an equidistant discretiza-
tion t; :=i/m (i =0,1,...,m), it is defined as

m—1
1
agwe(f) = o () 423 100 + 1 (0)).
i=1
In this case
)\1 :(507)\2 :6i7)\3 :5£"'>)\m+1 :51

and
To=""=Tm=0,Tpt1 = 1.

n(f) =m+ 1is fixed for all f € F and N is given by
N(f) = ()‘1<f>7 s 7)‘m+1(f)) = (f<t0)7f(t1>7 ce 7f(tm))
Choosing ¢ in such a way that ¢ maps N(f) to

%(Al(f) +2 ; Aig1(f) + )‘m+1(f)>

we obtain
Ao (f) = (p o N)(f).

It is easy to see that the algorithm above is non-adaptive and, as we shall see in
the next paragraph, that it is deterministic.

Deterministic Setting

A deterministic algorithm A for P is defined as a mapping A : F' — G, as above.
Let card(A, f) be the number of information functionals used by A at input f,
i.e., for A= ¢o N, we have card(A, f) = n(f). Then we set

card® (A, F) = sup card(4, f).
fer
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If card®®*(A, F) < oo, the error of A is given by
et (S, A, F) = sup ||Sf — Afl|e,
fer

and ed'(S, A, F') = oo otherwise. The central notion of IBC is the n-th minimal
error, which is defined for n € Ny by

edt(S, F) = inf %S A F).

card(A,F)<n

So, edt(S, F') is the minimal possible error that can be achieved among all deter-
ministic algorithms that use at most n information functionals.

Randomized Setting

A randomized (or Monte Carlo) algorithm for P is a family A = (A, )wen =
(pw © Ny)wea, where (2,5, P) is a certain probability space and each A, is a
mapping A, : F — G. For w € Q fixed, A, : F — G is a deterministic algorithm
as defined above.
Let Dom(A) be the set of all f € F such that card(A,, f) is a measurable
function of w,
card(A,, f) < oo for almost all w € Q,

and A, (f) is a G-valued random variable, that is, A, (f) is Borel measurable and
there is a separable subspace Gy of G (which may depend on f) such that

Au(f) € Gy for almost all w € Q.

For f € F, let
card™ (A, f) = Ecard(A,, f)

if f € Dom(A), and card™ (A, f) = +oo otherwise. We set
card™ (A, F') = sup card™ (A, f).

fer

Now, the error of A is defined as

€™ (S, A F) = fcglgEHS(f) = Au(Nlle

if I C Dom(A), and e™*(S, A, F') = 400 otherwise. For n € Ny the n-th minimal
randomized error is defined as

e (S, F) = inf{e(S, A, F) : A e A™ card(A, F) < n}.

Similar to the deterministic case, ;" (S, F') is the minimal possible error among
all randomized algorithms that use at most n information functionals (in expec-
tation).

10
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Remark 2.2.6.

e The deterministic setting can be understood as a special case of the ran-
domized setting by considering only one-point probability spaces Q2 = {wp};
this means the algorithm is not random. Thus, by fixing the random param-
eter w € () every randomized algorithm becomes a deterministic one. This
approach is used in this thesis. We define only randomized algorithms and
analyze the deterministic setting by restricting the algorithm to an arbitrary
realization.

e [f deterministic and randomized cardinality coincide, we omit the super-
script 'det” and ’'ran’. This occurs for instance if the cardinality of the
randomized algorithm does not depend on randomness at all, which is the
case for all algorithms considered here.

Example 2.2.7. The standard example of a randomized algorithm is the classical
Monte Carlo method. First, we define the considered probability space (2, %, P).

We choose
o0

Q=1[0,1"= H[O, 1] (Cartesian product)
i=1
and w € Q has the form w = (xy,29,...), where z,29,... € [0,1]. X is the

smallest o-algebra that contains all sets
[[B  (BieB(1),
i=1

where only for finitely many ¢ the sets B; # [0,1]. Then there exists a unique
measure P such that for all B; as above

P(HBZ-) =TT B,
i=1 i=1
where A is the Lebesgue measure on [0, 1]. We define for w = (z1,z5,...) € Q

Gw) =2,  (k=1,2,...).

Thus, & is a sequence of independent random variables, uniformly distributed on

[0,1]. Given f € C(]0,1]) the classical Monte Carlo method is defined for m € N
and w € () as

Amo(f) = f(&(w))

k=1

11
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and AMC = (A,, ,)ueq. Thus, N, is given by

No(f) = Qei@ () - A () = (f(&1(w)), f(E2(w)), - -, f(&m(w)))

and ¢, maps N, (f) to
Z )‘Ek(w) (f)
k=1

This means, ¢,, does not depend on w € €2 at all and

A%C = (Am7w>w€Q = (SOw o Nw)wEQ-

Model of Computation

Our standard model is the real number model. This means, we assume the ability
to perform arithmetic operations in R; this avoids roundoff issues. For theoretical
interest and as a key technique for the analysis of parameter dependent problems,
we will also consider Banach space valued problems. Therefore, we also assume
the ability to perform vector operations in K if K is a general Banach space.
Considering the cardinality of an algorithm also means neglecting the total
arithmetic cost. There are models of computation that further refine the de-
pendence on arithmetic operations, and thus, give a better estimate of the real
computational cost. We introduce the following cost model as an example.

Definition 2.2.8. For f € F the cost(A, f) of an algorithm A given f is deter-
mined as follows:

e cvery arithmetic operation +, —, *, / has cost 1,

e if K is a general Banach space, vector operation in K have cost ¢y > 0,
e cvery comparison >, > has cost 1,

e vector operations in G have cost ¢; > 1,

e information operations A(f) have cost ¢y > 1.

If A can be represented as a composition of such elementary operations we define
the cost as follows. Given a certain decomposition, the overall cost is the sum
of the cost of each elementary operation. Now, the cost of A is defined as the
minimal cost of all possible decompositions. If A cannot be represented as such
a decomposition, the cost is set to infinity.

12
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It is clear by definition that
card(A, f) < cost(A, f).
But for all algorithms used in the sequel, there exists a constant ¢ > 0 such that
card(A, f) < cost(A, f) < ¢ card(A, f).

Thus, for the sake of simplicity, we will focus on the cardinality, having in mind
that this is also proportional to the cost.

Upper and Lower Bounds

To estimate the n-th minimal error in the deterministic and the randomized set-
ting, we usually provide upper and lower bounds. The goal is to find matching
upper and lower bounds. In this thesis, the proof of an upper bound is always
given in a constructive way; this means, we state an explicit algorithm and provide
the convergence analysis, which immediately gives the upper bound of the n-th
minimal error. If the upper bound matches the lower bound up to some constant
factor, we call the algorithm optimal (up to constants). If a logarithmic gap with
respect to n remains, we say it is optimal up to logarithmic factors. In both cases,
the algorithm is order optimal; thus, the upper and lower bound coincides with
respect to the convergence order.

Having bounds for the n-th minimal error, we can easily determine the e-
complexity of a numerical problem, which can be understood as the inverse of
the n-th minimal error.

Definition 2.2.9. For set € {det,ran} and ¢ > 0, we define the e-complexity of
a numerical problem S given the input class F' as

compi®(S, F) = inf{n € Ny : (S, F) <e}.

Thus, the n-th minimal error immediately settles the e-complexity of a numer-
ical problem. For this reason, we concentrate on n-th minimal errors.

Example 2.2.1 (continued). It is well-known that the approximation error of
Afrapez from above satisfies

1
det trapez trapez
S, A 1) = sup |S(f) — AU f)] < ——.

We conclude

13



2 Preliminaries

Moreover, it is possible to show that n=2 < ed®*(S, F), thus
et (S, F) < n?

and the composite trapezoidal rule is optimal for the given input class. Further-
more, in terms of the e-complexity, we obtain

1
1\ 2
compl®(S, F) < (—) .

€

Toolbox from Information-Based Complexity Theory

We will have recourse to certain auxiliary results for subsequent lower bound
proofs. In the randomized setting, we use the following lemma due to [2], which
describes a relationship between randomized and average case setting. This en-
ables us to concentrate on the average case setting, where lower bounds are easier
to prove. Before we state the lemma, we briefly introduce the average case setting.

Given F', we additionally assume that there is a probability measure v on F.
The probability space is thus defined by (F, X, v), where ¥ denotes a og-algebra
of subsets of F', usually the Borel sigma algebra. Then the average cardinality of
a deterministic algorithm A is defined as

card™®(A, F,v) = / card(A, f) dv(f),

F

and the average case error as

eavg(s,A,F,y):/FHSf—AfHG dv(f).

Moreover, the n-th minimal average case error is defined as

ee(S, F,v) = inf e™8(S, A, F,v).

card®8(A,F,v)<n

Lemma 2.2.10. For each probability measure v on F' of finite support and each
n €N,

1
(S, F) > SenE(S Fv).

Proof. see [19], Lemma 5. O

The next lemma is restricted to problems P that are linear. This means the
following:

14



2.2 Introduction to Information-Based Complexity Theory

Definition 2.2.11. The tuple P = (F, G, S, K, A) defines a linear problem if
e [ is a convex, balanced subset of a linear space Fi,
e S is the restriction to F' of a linear operator from Fj to G,
e all mappings A € A are restrictions to F' of linear mappings from F} to K.

Lemma 2.2.12. Let n,n € N with n > 2n, assume that there are (f;)!, C F

such that the sets {\ € A : X(fi) #0} (i =1,...,n) are mutually disjoint. Then
det :
en (S, F) = min|| Y " S(f)l] 4
ic.s
where the minimum is taken over all subsets & of {1,...,n} with |.Z| > n — 2n.
Proof. This is a standard result from IBC, see [42], Ch. 4.5. O

Lemma 2.2.13. Let n,n € N with n > 2n, assume that there are (f;)!, C F
such that the sets {\ € A : A(f;) #0} (i =1,...,7n) are mutually disjoint, and
for all sequences (o), € {—1,1}" we have Y., a;fi € F. Define the measure
v on F to be the distribution of Z?:l g fi, where g; are independent Bernoulli
random variables with P{e; = 1} =P{e; = —1} = 1/2. Then

aV 1
e (S,v) zémanH;Q (f:) HG,

where the minimum is taken over all subsets . of {1,...,n} with |.#| > n — 2n.

Proof. see [19], Lemma 6. The lemma is formulated for K = K, but immediately
carries over also to the Banach space valued case. O

The lemmas above are needed to prove lower bounds for linear problems in a
direct way. However, it is sometimes easier to reduce a numerical problem to
another numerical problem than proving a direct lower bound. This way, we can
utilize already proven results. This is especially the case for non-linear problems.
For example, the next lemma is applied in the lower bound proof of Theorem
6.6.11

Assume that P = (F,G, S, K, A) is another numerical problem. Furthermore,
Vi : F — F is a mapping that maps input f € F of S to input Vif € F of S and
each information about Vi f can be obtained from k suitable informations about
f and the application of a certain mapping. Let V5 : G — G be another mapping
such that

S=V,080V,

15



2 Preliminaries

where V3 : G — G is Lipschitz. This means that there is a constant ¢ > 0 such
that

[[Va(z) = Va(y)lle < cllz —yllg for all z,y € G.
The Lipschitz constant [[Va||Lip is the smallest constant ¢ such that the relation

above holds. In this situation, P reduces to P and the following Lemma is appli-
cable.

Lemma 2.2.14. Assume that Vi : F — F is a mapping such that there exist a
k € N, mappings
77JA—>A (]:17,]€),

and 0 : A x K* = K with
(Vif)A) = oA, FmN), -, F(nk(N)))
for all f € F and X € A. Then for alln € N

€in (8, F) < ||Valluipen (S, F),
' (S, F) < |[Valluiper™ (S, F). (2.1)

Proof. See [20], Section 3. O
Corollary 2.2.15. If S is a linear operator, then for all c € K

ent (S, cF) = |clen™ (S, F),
e (S, cF) = |cleg™ (S, F).

2.3 Mathematical Foundations

2.3.1 Differential Calculus in Banach Spaces

We introduce spaces of continuously differentiable functions with values in a
Banach space. Notice, if the domain is a subset of R, the definition of differ-
entiability coincides with the usual definition.

Let Z be an arbitrary Banach space. For r € Ny, d € N, let Q = [0,1]¢
and C"(Q, Z) denote the space of all r-times continuously differentiable functions
f Q) — Z equipped with the norm

0"lf(t)

ol (t) ‘
oter . .. Jted

Hf||cr(Q7Z): max sup 5

Y
OZGNg, ‘CX'ST tGQ

= max sup
aeNg, |a|<r teQ

16



2.3 Mathematical Foundations

where @ = (ayq,...aq) € Nd and |a| = a; + -+ + ag. For r = 0 we, write
C(Q, Z) = C(Q, Z), which is the space of continuous Z-valued functions on Q,
and if Z =K, we write C"(Q) and C(Q), respectively.

In Chapter [0 we also consider input functions where the domain is an arbitrary
Banach space. In this case, the definition of differentiability has a more general
fashion. Referring to [47], we briefly introduce the Fréchet and the Gateaux
derivative. The Fréchet derivative is a generalization of the total derivative and
the Gateaux derivative can be understood as a generalization of the concept of

directional derivatives.
Given Banach spaces X, Z, let V' C X be a neighborhood of 0. For g : V — Z,
we write g € o(V, Z) iff

9(v)

—0as (v—0,veV).
[lollx

Definition 2.3.1. For z € X, let U C X be a neighborhood of z and let f : U —
Z be given.

(i) f is Fréchet-differentiable at x iff there exists a linear operator T' € 2 (X, Z),
a neighborhood V' C X of 0, and a mapping g € o(V, Z) such that for all
h € V it follows that x +h € U and

flx+h)— f(x)=Th+g(h) (h—0,heV).

If such a T exists, we define f'(x) = T, which is the Fréchet derivative of f
at x.

(ii) f is Gateaux-differentiable at z iff there exists a linear operator T € £ (X, Z),
a neighborhood V' C R of 0, and a mapping g € o(V,R) such that for all
k € Bx,t € V it follows that x 4+ tk € U and

flz+tk)— f(z) =tTk + g(t) (t—0,teV).

If such a T exists, we define f'(z) = T', which is the Gateaux derivative of
f at x.

(iii) If the Fréchet and Gateaux derivatives f’(z) exist for all x € A C X, then
the mapping

A= 2(X,2)
z = f'(x)

is called the Fréchet and Gateaux derivative of f on A, respectively.

17



2 Preliminaries

(iv) Higher derivatives are defined successively. Thus, f”(z) is the derivative of
fat .

Notice that the Gateaux derivative f'(x) can be defined equivalently by

Fla)k = i LE R =@ gy (2.2)

t—0 t

In the next proposition we summarize known results for the relationship of
Fréchet and Gateaux derivative.

Proposition 2.3.2. Let x € X.
(i) Every Fréchet derivative at x is also a Gateaux derivative at x.

(i) A Gateaux deriative at x for which the passage to the limit in is
uniform for all k € Bx s also a Fréchet derivative at x.

(111) If f' exists as a Gateaur derivative in some neighborhood of x, and if [ is
continuous at x, then f'(x) is also a Fréchet derivative at x.

() If f'(x) exists as an Fréchet derivative at x, then f is continuous at x.
Proof. The proof can be found in [47], Proposition 4.8. O
2.3.2 Tensor Product Representation
This section introduces some notations and facts on tensor products of Banach

spaces. For details and proofs we refer to [6] and [34].
Let X and Y be arbitrary Banach spaces. For n € N, (z;), C X, (y;), C Y,

the formal expression
Z T @ Y
i=1

can be identified with an operator ® : X* — Y given by
Olp)=> oy (peX7).
i=1

For (u;)’, C X, (v;), C Y, we introduce an equivalence relation

foi@yi ~ Zuz & v;
=1 i=1

18



2.3 Mathematical Foundations

if both expressions define the same operator from X* to Y. The algebraic tensor
product X ® Y is then defined to be the set of all such equivalence classes. We
abuse notation by referring to the expression » . x; ® y; as a member of X ®
Y when we intend to refer to the equivalence class of expressions containing
Yoo 2 ®@y;. For A € K, we define multiplication of scalars as

)\E :ci®yizg /\x,-®yi=§ AT; @ Y
i=1 i=1 i=1
and addition as

in®yi+ Z l‘i®yi:Z$i®yi-
i=1 i=1

i=n+1
By definition, it is easily checked that for z,z1, 22 € X, y, 11,92 € Y, and A € K
TR+ 1Y) =T Ry + T X Yo,
(214 22) QYy=21 QY+ 22V,
M) @y =2 (\y).
For z =" x;®y; € X ®Y, the injective tensor norm is defined as

n

Az) = sup ‘ Z (i, u) (yi,v) |

UEB x*,VEBy* i—1

The injective tensor product X ®, Y is defined as the completion of X ® Y with
respect to the norm A. We will use the canonical isometric identification

CQ.2) = Z2,C(Q), (2.3)

which is valid for arbitrary Banach spaces Z (see [34], Theorem 1.13). In partic-
ular, for d > 1, we obtain

C([0,1]) = C([0,1]) ® C([0,1]*7") = C([0,1]) @ - @, C([0,1]).  (2.4)

Given Banach spaces X, Y, X;,Y] and operators T} € Z(X, X;), T € Z(Y, Y1),
the algebraic tensor product 71 ® To : X ® Y — X7 ® Y] is defined as

(Ty ® T3) Z% QY = ZTlﬂUi ® Try;,
i=1 i=1

where (77 ®T,)(z) is independent of the representation of z. We see that (77 ®T3)
is bilinear and for further Banach spaces X, Y3, and operators 57 € Z(X, X5),
S2 € Z(V1,Y2)

(S1® 8) o (Th ®@Tz) = (S10Th) ® (S20Th).
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2 Preliminaries

Moreover, (T} ®T3) extends to a bounded linear operator (we use the same symbol
for the extension)
TiT,e Z(X®,Y,X;®,Y7)
with
1T © T 2(xevixioavs) = IT1ll2x x| T2z (2.5)

2.3.3 Lagrange Interpolation

For r,m € Ny, let PE € 2(C([0,1])) be the operator of composite Lagrange
interpolation of degree r, with respect to the partition of [0, 1] into m intervals of
length m™!. Let

Prif = @!pPrtt e 2(0([0,1]%) (2.6)

be its d-dimensional version. Setting ¢ = {% 0<1 < rm}d for r,m € Ny, it
follows that P74 interpolates on I'¢. Given a Banach space Z, the Z-valued
versions of the operators above are defined in the sense of identification (2.3) as

prdZ — [, @ PRk, (2.7)

This means, if Pn4¥ is represented as

PR f =" f(s)ps (f€C(Q))

.d
sETT

for some ¢, € C(Q), then P":%Z has the representation

P2 f= %" fls)ps (f€C(Q,2)).

.d
seT

We can obviously consider P’ also as an operator from £, (I'¢, Z) to C(Q, Z).
Notice, if there is no ambiguity, we omit the superscript Z.

The next lemma settles the approximation error of the Lagrangian interpolation
operators for Banach space valued functions.

Lemma 2.3.3. Given r € Ny and d € N, there are constants ¢y, co > 0 such that
for all Banach spaces Z and all m € Ny

(1,

<
S CQm_TJ

I1Pr 2 c.2))
1] — Bt zcrq.2).c(0,2))

where J : C™(Q, Z) — C(Q, Z) is the canonical embedding.
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2.3 Mathematical Foundations

Proof. The statement is well-known in the scalar case and can easily be extended
to the Banach space case in the following way. Denote by Jk : C"(Q) — C(Q)
the respective scalar embedding. Then

1P fllcz = sup || (Pt f,2%) llew@)

Z*eBz*
~ sup [|PpE (S

Z*GBz*

<¢ sup || (f,2%) e
z*€Bgx

= allflle@.z): (2.10)

Mew

and similarly,

I(7 = Pri) fllo@z = sup || = Pu® k) (£, 2| o)

z*EBgx
< Cgm_r sup || (f7 Z*) ||OT(Q)
z*€Byx
olel f
=com™" max  sup ( ’Z*)
aeN, al<r 2+ By ||\ O5° c@
— com | flleri.)- (2.11)

]

2.3.4 Smolyak Interpolation

Except for the definite integration problem, we use multilevel algorithms to derive
upper bounds for all remaining problems. The idea of these algorithms goes back
to Smolyak in [41]. He proposed a certain tensor product structure, which we use
here to illustrate the underlying idea of these methods. For n € Ny, the composite
Lagrangian tensor product operator P7*? samples on the regular grid

rd __ 1l r,1
I —Fn X ><Fn1,

~
d times

see Figure . Altogether, cn? function evaluations are needed for the interpola-
tion. Thus, the number of sample points grows exponentially in d.

The idea of Smolyak’s method is to use interpolation operators on several levels.
On each level, the number of sample points is fixed. The structure of the grid,
thereby, changes for every level. For L,m € Ny, m > 2, every level has the grid
structure

I % oo x I (2.12)

mld’
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2 Preliminaries

1,1
Ly

Figure 2.1: Regular grid for m =4,r =1, and d = 2.

where [ = (Iy,...,lg) € Nd and |I| =1, + -+ + lg = L. Often, dyadic settings are
chosen, i.e., m = 2. By construction, every grid has only em” sample points and
these are balanced in such a way that the highest precision is obtained at most
for one single dimension, see Figure 2.2]

level 0 level 1 level 2
3 0 ® 7Y
1,1 1,1 1,1
F22 3 F21 ® F20
b ® o °® S—
° ® —o—o —o o o o
Fl,l Fl’l I‘Ll

20 21 22

Figure 2.2: Grids of different levels for L =d =m =2 and r = 1.

Smolyak’s method connects each level via difference operators. We obtain the
following structure for the Smolyak interpolation operator

L

Vi= Y (Pl =P )@@ (P =P ) ® P (2.13)

mld—1 lg—q—1 mld?
IEN,|l|=L

where P;;‘il = (0. Due to

e, cr (1eN),

it is easily seen that every element of the sum is an interpolation operator which
samples on a grid of the form (2.12)). Moreover, due to the summation, the
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2.3 Mathematical Foundations

entire interpolation operator samples on a sparse grid, see Figure If we
choose L = [log,, n], Smolyak’s method only needs cn(logn)¢~! sample points.
Of course, this construction works well for special classes of functions only.

r—o——0—9§

I

Figure 2.3: Sparse grid for L=d =m =2 and r = 1.

For r € Ny, d € N, let

/—/dA
C«T,...,?”(Q’Z)

be the space of functions f : ) — Z having continuous partial derivative

olelf
ote

for all @ € Nd with || < drand a; <7 (i =1,...,d). The norm of C""(Q, Z)
is defined as ‘

This type of smoothness is an example for dominating mixed smoothness. On the
other hand, the class C"(Q, Z), mentioned before, is an example of a class with
isotropic smoothness.

alf(t)
ot

Crom(Q,Z) = max sup
aENg te@
a;<r (7/:1,,(1)

Lemma 2.3.4. Given r € Ny and d € N, there is a constant ¢ > 0 such that for
all Banach spaces Z and all L,m € Ny, m > 2

Proof. The result is only given for clarification, thus we do not prove it. It is
well-known in the scalar case and carries over to the Banach space valued case in
a similar way as before. See also Lemma and , where a comparable
setting is considered. O
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Setting L = [log,, n], Smolyak’s algorithm has an error < c(logn)? 'n=" using

only cn(logn)¢~! sample points. But the considered input class is of course much
smaller than C"(Q, 7).

Notice that the multilevel algorithms that will be used for the approximation of
subsequent parameter dependent problems also utilizes this balancing of precisions
in a similar way. But instead of Lagrangian operators on the right hand side of
(2.13)), we use Banach space valued randomized algorithms and the error estimates
get more involved.

2.3.5 Probability Theory in Banach Spaces

Definition 2.3.5. Let 1 < p < 2. A Banach space Z is said to be of (Rademacher)
type p if there is a constant ¢ > 0 such that for all n € N and 2q,...,2, € Z

n
EH E EiZj
=1

where (g;)_, is a sequence of independent Bernoulli random variables with P{e; =
—1} = P{e; = +1} = 1/2. The smallest constant satisfying is called the
type p constant of Z and is denoted by 7,(Z). If there is no such ¢ > 0, we set
7,(Z) = 0o. We also refer to [37, B3] for related facts.

p n
<&y |l (2.14)
k=1

Remark 2.3.6. As an example, we choose L,(N,v), where (N,v) is an arbitrary
measure space and 1 < p < oo. For 2 < p < oo, the L, spaces satisfy the
type 2 property. For 1 < p < 2, they only satisfy the type p property. Certain
subspaces such as the Sobolev spaces also satisfy this properties. Moreover, due
to orthogonality, all Hilbert spaces H satisfy m(H) = 1. However, if p = oo, we
have m5(L,(Q))) = oo, and also 72(C"(Q)) = oo for all r € Np.

We need the following results for the analysis of Banach space valued algo-
rithms.

Lemma 2.3.7 (equivalence of moments). Let Z be an arbitrary Banach space.
Then for any 0 < p,q < oo, there is a constant K, , depending on p,q only such

that ) )
PN » N o
(]E Z EiZi ) S Kp,q (E Z €iZi ) 9
ieN ieN
where (€;)ien 1S a sequence of independent Bernoulli random variables with

1

and (z;)ien C Z. Furthermore, there is a constant ¢ > 0 such that

Kp,2 = C\/ﬁ (p 2 2)
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Proof. See, e.g., [33], p. 100. ]

Lemma 2.3.8. There are constants cy,co > 0 such that for all 1 < p < 2,
p < q < oo, for alln € N, for any Banach space Z and measure space (N, v) the
following holds:

Tp(LyWN v, Z)) < ay/qm(2), (2.15)
7,0 (Z)) < con/log(n+1)71,(Z). (2.16)

Proof. We start with ( - Let (9;)", C L,(N,v,Z). Then we obtain
C oS0
Ly( NVZ)) o Z Le(Nw,2)

_ /NE H ;eiﬂi(t)HquV(t), (2.17)

where (g;)7, is a sequence of independent centered Bernoulli random variables.
We apply Lemma [2.3.7] m and ( m ) to obtain

/EHZeﬁ
7) / <]EHZeiz9i(t)HZ>Zdu(t) (2.19)
< (evan(2) | (Zw ) vt (220)

with a constant ¢ > 0 independent of p and ¢. Using the triangle inequality in

Lqjp(N, V), we get
[ (S mez) sty (Z ([ 1oonzavto) )
i=1 N
- (S 1icn) 2
i=1
Joining (2.17)), (2.20), and (2.21]) yields (2.15). To show (2.16]), we observe that

the identity map I : £7(Z) — (7 (Z) satisfies

(2.18)

IN

IA

_ 1
1zl =1, '] =ne. (2.22)

If n >4, we set ¢ =logn, so ¢ > 2> pand n'/?7 < 2. For n < 4, we put ¢ = 2.
Now, (2.16)) follows from ([2.15)) and (2.22)). O
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Taking account of the type of a certain Banach space, we will need the follow-
ing result for the upper bound proof of the Banach space valued multivariate
integration problem.

Lemma 2.3.9. Let 1 < p < 2, Z be a Banach space, n € N, let (J), be
a sequence of independent Z-valued random wvariables with E||9;||P < oo, and
Ed; =0 foralli=1,...,n. Then

1

(EH >0 p>p < 21.(2) <ZJEH191-H”> . (2.23)

Proof. The proof can be found in [33], Proposition 9.11. ]

The next statements will be useful to prove lower bounds for Banach space
valued problems.

Theorem 2.3.10 (Contraction principle). Let g : [0,00) — [0,00) be conver and
Z be an arbitrary Banach space. For every n € N, any sequence (z;)!-, C Z and

any sequence (o;)?_y C Bgr, we have
Eg( Zaiﬁﬂz‘ ) < EQ( Z&%’ )7
i=1 i=1

where (g;)7_, s again a sequence of independent Bernoulli random variables.

Proof. See [33], Theorem 4.4. O

Definition 2.3.11. Let 1 <p <2 n € Nand € > 0. A Banach space Z is said to
contain a subspace which is (1 + €)—isomorphic to ¢, if there exist 21,...,2, € Z
such that for all ay,...,a, € R

n 1

() -

i=1

n

<(1 —1—5)(2\@#’);.

=1

n
E (67%7]
i=1

Moreover, Z contains almost isometric copies of £} if it contains subspaces (1+¢)-
isomorphic to £} for all n € N and & > 0.

Theorem 2.3.12 (Maurey-Pisier). For a Banach space Z, let py denote the
supremum of all 1 < py < 2 such that Z is of type p1. The set of all1 < p < 2 for
which an infinite dimensional Banach space Z contains almost isometric copies
of £ is equal to [pz,2].

Proof. See [33], Chap. 9 or [37], Th. 2.3. O
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Chapter 3

The Thesis in a Nutshell

The thesis deals with the complexity analysis of certain integration problems,
where complexity is meant in the sense of IBC as introduced in the previous
chapter. As a main interest, we want to understand the typical behavior of
the complexity in relation of the deterministic and randomized setting. In this
manner, we clarify in which cases and to which extent randomized methods are
superior to deterministic ones and compare the corresponding optimal rates.

In the present chapter, we summarize the new results of the thesis and discuss
previous results on related problems. Sometimes, only simplified versions of sub-
sequent statements are given. Moreover, since certain definitions of later chapters
are needed as well, some definitions may occur twice in the thesis.

3.1 Banach Space Valued Integration

The complexity of Banach space valued multivariate integration is studied in
Chapter [4

Problem formulation. Let r € Ny,d € N, and Q = [0,1]. The definite
integration operator Sy : C(Q, Z) — Z is defined by

Sof = /Qf(t)dt (3.1)

in the sense of a Bochner integral. The Bochner integral is a natural generalization
of the classical Lebesgue integral for functions f : () — Z with values in a Banach
space. The corresponding rules of calculation are similar to these obtained for the
scalar valued case. As a reference, see [1] or [47].

The indefinite integration operator S; : C(Q, Z) — C(Q, Z) is given by

(SN = [ flwdu  (t€Q), (3-2)

(0¢]
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3 The Thesis in a Nutshell

where [0,t] = H?Zl[(),ti] for t = (t;,)4, € Q. Thus, S, f is again a function, the
anti-derivative of f.

To define the abstract numerical problem, we set I' = Bor(z), G = 2, K = Z,
and

A=ANQ,Z)={0: t € Q},

for the definite integration problem, where 6,(f) = f(t) for f € F. So we consider
Z-valued information functionals and the definite integration problem is described
by

PO - (BCT(Q,Z)a Z7 807 Z? A(Q7 Z))

Moreover, we take G = C(Q), Z) for the indefinite integration problem, while F', K,
and A are the same as above. Thus, the indefinite integration problem is defined
by

Pl = (BCT(Q,Z% C(Q? Z)a 817 Za A(Q; Z))
Previous results. While the complexity of these Banach space valued problems

have not been studied so far, the scalar valued integration problems have been
studied very well. In the deterministic setting, it is well-known that

n-i =< edS,, Borg)) < nd (¢ €{0,1}). (3.3)

Moreover, if we allow randomized algorithms, it is known due to [2] that

s
NI

nTair < en™(So, Bergy) 2 n” (3.4)
in the definite case. The right hand inequality is, for instance, satisfied by Monte
Carlo integration with separation of the main part. Finding an order optimal
algorithm for the indefinite problem remained open for a long time. However,
it was shown recently in [24] that the same order as for the definite case can be
reached. Thus,

=

n_g_% = efn(Sl,BCr(Q)) = n_ﬁ_ . (35)

New results. Chapter |4 contains a generalization of the previous results to
Banach space valued integrands. In the deterministic setting, we obtain the same
rates as above, i.e.,

n-a < eflet(SL, Berg,zy) = n-a (v € {0,1}).

In the randomized setting, the complexity depends on the type of the underlying
Banach space. Let pz be the supremum of all p; such that Z is of type p;. Then
we obtain, if Z is of type p,

r

n—%—l—&-i < €;an(SL,BCT(Q,Z)) < Tp(Z)n_*—l-i-l (L € {07 1})

£
S
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Since 1 < p < py < 2, it follows that the gain, we achieve due to randomization,
is between 0 and 1/2. Furthermore, there remains an arbitrarily small gap in the
exponent and the gap is closed if p; = p, which holds, for instance, for type 2
Banach spaces and the L, spaces with 1 < p < oo.

Notice that the upper bounds are achieved by providing and analyzing ran-
domized algorithms. In the definite case, the algorithm is a generalization of the
Monte Carlo method with separation of the main part. In the indefinite case,
we use a general version of the Smolyak multilevel Monte Carlo method from
[24]. The deterministic algorithms are obtained by fixing any random parameter
w € (). This way, we prove that each realization of these randomized algorithms
satisfies at least the corresponding optimal deterministic order. Moreover, the
result above yields that for Banach spaces, satisfying p; = p, the considered al-
gorithms are order optimal in the randomized setting. For general Banach spaces
these algorithms are order optimal up to an arbitrarily small gap in the exponent.

3.2 Parametric Banach Space Valued Integration

Parametric integration is a problem intermediate between integration and approx-
imation. It is known that randomized algorithms are superior to deterministic
algorithms if pure integration problems are considered. On the other hand, for
certain approximation problems we know that randomization does not improve
the complexity, see [42] and [39]. We will investigate the behavior of this problem
in Chapter

Problem formulation. For dy € N, let Qy = [0,1]% and for ry,r € Ny, let
C™"(Qo X Q, Z) be the space of continuous functions f : @y X ¢ — Z having
for a = (v, 1), ap € Ng(’, oy € N¢ with |ap| < 7o, |ay] < 7 continuous partial

derivatives g\;lgv 8(:;?, endowed with the norm
17 015,
rg.r = max su — 1.
cro (QOXQyz) |a0|§7‘0,|0&1|§7‘ SEQDEGQ asaoatal
For r; € Ny, we then define the input set by
g() - BCOW(QOXQ,Z) N Bcro,rl (QoxQ,Z)- (36)

The definite parametric integration operator . : C(Qo X @, Z) — C(Qy, Z) is
given by

(Aof)(s) = /Q f(s.0)dt (s € Qo).
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3 The Thesis in a Nutshell

and the indefinite parametric integration operator .5 : C'(Qo X @, Z) — C(Qq X
Q,Z) by

(AN (st) = [ fls,u)du (s € Qo,t € Q).

[0,¢]

Remark 3.2.1. For r < ry, we obtain

Beor@ox@,z) N Beror(Qox@,z) = Beror (Qoxq,2)
= Beori(@ux@.z) N Berom(Qoxq.2)- (3.7)

Hence, we can assume r > r; without loss of generality.

The admissible information in consideration is standard information, thus the
class of information functionals is defined by

AMQox Q,Z)={ds+: s € Qo teqQ},

where 654(f) = f(s,t) and K = Z. In terminology of Section the definite
parametric integration problem is now described by the tuple

Iy = (Beor(@oxq,2) N Beror (ox,2): C(Qo, Z), S0, Z, AM(Qo x Q, Z)),
and the indefinite parametric integration problem by
Iy = (Beor@ox@,2) N Beror(@ox,2), C(Qo x Q, Z), 71, Z, AN(Qo x Q, Z)).

Previous results. The complexity of scalar valued definite parametric integra-
tion was first studied in [25],[18] and later for the case of quantum algorithms in
[45]. It is known that

n” < en (S, Ber (0,140 x[0,1]4)) = n T,
Moreover, due to [25], we know for the randomized setting that

__2r+4d 1 .
n 2@dotd) (log, n)2 if >

eran y,B r d, = T T
w (0 Bor oo o) {ndo(logg n)do if r <

NSNS

and

1 3. d,
= e;an(y(), BC’T([O71:|dO><[O71]d)) = n:2 (10g2 Tl)2 if r = 70

[NIE
N

nz(log, n)

New results. The indefinite problem has not been considered so far. In Chapter
b, we give an exhaustive investigation of the Banach space valued setting defined
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3.2 Parametric Banach Space Valued Integration

above. This means the following: The randomized setting as well as the deter-
ministic setting for both, definite and indefinite parametric Banach space valued
integration is studied. In contrast to previous investigations, we consider the more
general input class .%,, which includes dominating mixed smoothness and other
types of non-isotropic smoothness. These classes allow us to treat different types
of smoothness for the parameter dependence and for the basic (non-parametric)
integration problem, separately.
In the deterministic setting, we obtain

n 0 < el F, Fy) Riog n 2 (c€{0,1}),

where for 1 < p <2

q
do T 1) s mo o1 1
i (d—f—l ) if 2>%+1

2+ P P
va(p) = do .

o 1 o T I 3

do if do < a T 1 P

Notice that logarithmic factors are neglected in the whole chapter for the sake of
simplicity. For certain cases, the corresponding estimates in Chapter [5| are even
sharp up to logarithmic factors.

In the randomized setting the situation is similar as for the non-parametric
integration problem. This means that the bounds depend on the type of the
Banach space in a similar way, but the rates are different. If Z is a type p Banach
space, we obtain

nP2) < (S To) <o n 2P (e {0,1)).

In case of py = p, we therefore get matching upper and lower bounds. However,
for general Banach spaces, an arbitrarily small gap in the exponent remains again.

Remark 3.2.2. The upper bounds are reached by certain multilevel Monte Carlo
algorithms for the definite and the indefinite case, respectively. The correspond-
ing deterministic algorithms are obtained by fixing the random parameter. We
present two versions of these algorithms. In the first version, the algorithm pa-
rameters depend on the problem setting, which provides sharp bounds even up to
logarithmic factors. For the second version, we use the same choice of parameters
for the deterministic and the randomized setting. In this case, additional logarith-
mic factors occur, but the algorithms are still order optimal, and by construction,
every realization of these randomized algorithms satisfies the respective optimal
deterministic error.

At the end of Chapter [5, we present some applications of the general results to
various smoothness classes. As an example, let ry = r, then %y = Beror(QoxQ,2);

31



3 The Thesis in a Nutshell

this is a class of dominating mixed smoothness. For type 2 Banach spaces, which
includes the case Z = R?, it follows that

s
[=)) =}

(S Fo) g 00 ),

ro
> dg

N

ezan(%’ g}) =log n- mm(ng
If 2 is large enough, r/d and r/d +1/2 are the limiting factors and we reach the
same orders as for (non-parametric) integration of functions from C"(Q, Z). This
means that calculating the integral for all s € @) at once has almost the same
cost as calculating just one single integral. This benefit is achieved due to the
multilevel structure and the smoothness of the underlying class.

3.3 Parametric Banach Space Valued
Initial Value Problems

The third problem in consideration is the approximation of parametric initial
value problems with values in an arbitrary Banach space. The problem is related
to the problem of parametric indefinite integration, which will be motivated after
a formal formulation of the problem.

Problem formulation. Let Z be an arbitrary Banach space, —oo < a < b < o0,
and Qg = [0, 1]%. Then the Z valued parametric initial value problem depending
on a parameter s € () is defined by

iu(s,t) = f(s,t,u(s,t)) (s € Qo,t € [a,b]), (3.8)

u(s,a) = wup(s) (s € Qo), (3.9)

where f € C(Qo % [a,b] x Z,Z) and uy € C(Qy, Z). A function u : Qo X [a,b] = Z
is called a solution if for each s € Qq, u(s,t) is continuously differentiable as a
function of t and is satisfied. As mentioned above, the problem is related
to the problem of indefinite parametric integration; choosing f independent with
respect to the third variable and wuy(s) = 0,a = 0,b = 1, we obtain

u(s,t) = /Otf(s,r) dr (s € Qo,t €[0,1]).

Thus, the parametric indefinite integration problem with d = 1 can be understood
as a particular case of an initial value problem. For this reason, we cannot expect
better rates than those obtained for parametric integration.

32



3.3 Parametric Banach Space Valued Initial Value Problems

In the setting above, existence and uniqueness of a solution are not even guaran-
teed. Moreover, we need further smoothness assumptions for the numerical analy-
sis. For a precise introduction of the considered class .# of input functions, we re-
fer to Definition[6.4.2l Here, we only mention that, for r,rq, 7 € Ny, 0 < 0,01 < 1,
and 0 > 0, .F contains all tuples (f,ug) € C(Qo X [a,b] X Z,Z) x 0Bcro(qo,2);
where f considered as a function independent of the third variable z satisfies

fe BCO,T+Q(QO><[Q7I;],Z) N Beorori+e1 (Qox[ab],2)- (3.10)

In contrast to the previous setting , the functions additionally satisfy a o
and p; Holder condition with respect to the second variable, respectively. For
convenience, we can choose ¢ = p; = 0 and we arrive at , where () is replaced
by [a, b]. Without loss of generality, we assume 7+ 9 > r;+ 0;. The justification is
similar to the one in Remark [3.2.1] see also Remark In Chapter [6] we prove
that the convergence order only mildly depends on the third variable. Thus, the
smoothness with respect to z is chosen in an appropriate way, which guarantees
the respective optimal convergence rate.

In terminology of Section [2.2] we set K = Z and define the set of information
functionals Ajy,, by

Aiyp = {0540 s € Qo t € a,b,z€ Z}U {ds: s € Qo}, (3.11)
where, for (f,ug) € Z,

Ot (fouo) = f(s,t,2), 0s(f,uo) = uo(s). (3.12)

So, the admissible information is Z-valued and consists of values of f and wy.
Setting ' = %, G = B(Qo X [a,b],Z) and S = .¥, where . (f,up) = u is the
exact solution of the initial value problem defined by (3.843.9). The corresponding
numerical problem II is defined by

II = (ﬁ,B(QO X [CL, b],Z),&”, ZaAivp)-

Previous results. The complexity of initial value problems for ordinary differ-
ential equations (ODEs) without dependence on a parameter s was studied in
[28, 29] [30], 23], 8] for scalar systems. It turned out that, given certain smooth-
ness with respect to the input functions f, randomized algorithms are superior
to deterministic algorithms by a factor n~2. This shows that the typical speedup
of randomized algorithms for classical integration carries over to the situation
of initial value problems. In [21], the Banach space valued case is considered
and similar results to those for Banach space valued integration are obtained.
Regularity and approximation properties of the solution of parameter dependent
initial value problems for ODEs have recently been considered in [16], however,
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3 The Thesis in a Nutshell

with linear dependence on the parameters and an infinite dimensional parameter
space.

New results. The complexity of general parametric initial value problems has
not been studied so far, not even for the case Z = R. This is catched up on here.
We study the complexity in the deterministic and the randomized setting for
various smoothness classes. These classes are closely related to those considered
in Chapter [5| and include cases of isotropic and dominating mixed smoothness as
well.

We develop a multilevel Monte Carlo algorithm and establish its convergence
rate. The deterministic version, which is obtained from the randomized one by
fixing the random parameters in an arbitrary way, is also studied. The algorithmic
approach is a nonlinear analogue of the method used in Chapter []] We use the
Banach space valued generalizations [21] of the scalar results in [23] and [§] for
the analysis. We also present lower bounds and settle the complexity in this way.

In the deterministic setting, we obtain

n~ W 2 NS, T ) Rigg n 2,

where for 1 <p <2

ro

e (rr1o1) i 3 -
Do(p) = G trre—ri—o (7“—1-@—1- p) %4 ot P
ro T RS

In the randomized setting, we obtain
n0P2) < el P F) <o 2 P) (3.13)

if Z is a type p Banach space. Moreover, in case of p; = p, we obtain matching
upper and lower bounds and we will see in Chapter [6]that the bounds are matching
even up to logarithmic factors for type 2 Banach spaces (except for some limit
cases). Since the considered multilevel algorithms are quite similar to those for
parametric integration, Remark is also valid here.

3.4 Parametric Hilbert Space Valued
Initial Value Problems

In Chapter [7] we restrict ourselves to parametric initial value problems with
values in a Hilbert space. This is not a strong restriction, since it still enables

us to investigate systems of parametric ordinary differential equations by setting
H = R?% On the other hand, this restriction allows us to consider more local
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3.5 Basis of the Thesis

input classes. In Chapter [0 we demand smoothness assumptions for functions
over the whole domain Q) X [a,b] x Z. If Z = H is an arbitrary Hilbert space, we
use a localization technique, which allows us to drop this stronger assumption;
i.e., we consider functions with smoothness over Qo X [a,b] x A\;BY only. This
localization technique cannot be applied to the general Banach space valued case.

Considering these more general local input classes, we prove that the same rates
are obtained as before for type 2 Banach spaces. This means that the considered
multilevel algorithm is order optimal even up to logarithmic factors and that only
in some limit cases a small logarithmic gap remains.

3.5 Basis of the Thesis

The thesis is based on the papers [0, 10, 11, 12]. The first two papers deal with
Banach space valued integration and parametric integration, the remaining ones
with parametric ordinary differential equations having values in Banach or Hilbert
spaces. This structure is kept throughout the thesis. Chapter || corresponds to [9],
Chapter [5|to [10]. Moreover, Chapter 6| corresponds to [I1] and [12] is summarized
in Chapter

However, this work also goes beyond [9]-[12] and contains new, more general
results. Here we consider general Banach space valued parametric integration
in contrast to the scalar valued case covered in [10]. Furthermore, we present
sharper rates for the complexity analysis of the Banach space valued initial value
problem than those obtained in [I1]; in some cases the bounds are sharp even up
to logarithmic factors.
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Chapter 4

Banach Space Valued Integration

The present chapter contains the analysis of deterministic and randomized algo-
rithms for definite and indefinite Banach space valued multivariate integration.
We also prove lower bounds and estimate the complexity of the problems. Finally,
a general multilevel scheme is introduced, which serves as a bridge between the
non-parametric and the parametric problem.

The chapter is organized as follows: Section 1 provides the formulation of
the considered problem. In Section 2, we introduce the algorithms and establish
the convergence analysis. Section 3 deals with the complexity analysis, including
lower bound proofs, and in Section 4, we present the general multilevel approach
mentioned above.

4.1 Problem Formulation

Let Z be an arbitrary Banach space, r € Ny, d € N, and set Q := [0,1]¢. The
definite integration operator Sy : C(Q, Z) — Z is defined by

Sof = / 0 (4.1)

in the sense of a Bochner integral.
The indefinite integration operator S; : C(Q, Z) — C(Q, Z) is given by

(S f)t) = | fludu  (t€Q), (4.2)

(0¢]

where [0, 1] = [1%,[0,t;] for t = (t;), € Q. Notice that using identification 1’
we obtain

S,=1;,8% (1=0,1), (4.3)

where I is the identity operator in Z and SX denotes the scalar valued version

of S,.
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4 Banach Space Valued Integration

4.2 Algorithms and Convergence Analysis

We present algorithms for the two integration problems (4.1)) and (4.2]). We start
with the definite problem.

Algorithm 4.2.1. Let n € Nand let & : Q@ — @ (i = 1,...,n) be indepen-
dent random variables, uniformly distributed on @), defined on some complete
probability space (2,3, P). If r = 0, we set for f € C(Q, Z)

A0 f =237 (6, (1.4

Moreover, if r > 1, let k = [n'/?] and
Ao f = So(PYf) + AVL(f = BLUS). (4.5)
Finally, we set A%" = (A?;L)weﬂ.

In the scalar case for » = 0 this is just the standard Monte Carlo method and
for r > 1 the Monte Carlo method with separation of the main part. Notice that
forreNg,neN,we

Avr =T, @ ALK (4.6)
As before, A%;;K denotes the scalar version of A%L.
Let us turn to the error analysis for this algorithm. Remember, fixing the

random parameter w € () means that we obtain a deterministic method. This
way we consider both, the randomized and the deterministic case.

Proposition 4.2.2. Letr € Ny and 1 < p < 2. Then there are constants ci_3 > 0
such that for all Banach spaces Z, n € N, w € ), we have

card (A7) < ain,
and for all f € C™(Q, Z)

ISof = ADLAIl < con” | fller@.z), (4.7)
(ElISof = AVLAIP)" < eamp(Zn™ 30| fllerio.z). (4.8)

Proof. Let r =0 and f € C(Q, Z). With

nmozéf@w—ﬂmmx
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4.2 Algorithms and Convergence Analysis

we get En;(w) =0 as well as

1 n
_ A00 ¢ _ = ) 4.
S()f An,wf n Zz:; T]Z(w>7 ( 9)
and
[mi(@)]l <2 fllc@.2)- (4.10)
Thus,
1Sof — AV SN < 2l flle.), (4.11)

which yields (4.7)). Furthermore, using (2.14)), (4.9)), and (4.10)), we obtain

P

1 1 "
(B [|Sof — A% fIIP)? = (E s meup)
=1
< 27,(Z)n""! (ZE ||m||p>
k=1
< e (25| fll ooz (4.12)

which is (4.8). In case of r > 1, we obtain

Sof — AV f =So(f — PUUf) — AWL(f — PLYS)
= (So = AW)(f = Prf). (4.13)

Thus, using (4.11]) and relation (2.9)), we get

ISo.f = AYfIl < ellf — PP ez
< en”d||fller@.2),

and accordingly, using (4.12]),

1 1.1 r
(E[Sof = ANLAIP)? < en(Zn™ 2 || f = B fllewa.z

_ 1 _r
crp(Z)n” T en || fller,z),

IN

which yields the statement also for » > 1. O

Next we consider indefinite integration. First, we assume r = 0 and present the
Banach space version of the algorithm from Section 4 of [24]. It is a combination
of Smolyak’s algorithm from Section [2.3.4] and the Monte Carlo method.
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4 Banach Space Valued Integration

Algorithm 4.2.3. Let r = 0 and fix any m € N, m > 2 and L € Nyp. For
I=(l,...,lq) € N§, weset [[| =1y +--- + g and define UF, Vi* € Z(C(Q)) by
UF = (P —Puf) @0 (Phf P e Puts,  (4.14)

ml mld—1 mld—1-1 mld

with the meaning that Prln’f’iK := 0. Furthermore, put

viE = > Uf (4.15)
leNg, |l|=L
and let
U=1;,0U, Vp=I,0V}f (4.16)

be the respective Banach space versions. Notice that V7, coincides with Smolyak’s
algorithm in Section for r = 1. Set

1 ! l l Ld _ pl,l 1,1
1=(1,...,1), m =(m"* ...,md), D=0 X x T
d
and for i = (i1, ...,iq) € N with T <7 < m! (component-wise inequalities)
-1 g i—1 i
Ql,i - [ mh ’mlll X X [ mld ’mld]'

So (Qr7)1<i<mt is the partition of @ corresponding to the grid Fir’;l. Let
Gi:Q=Qu (=L 1<i<m)

be independent random variables on a complete probability space (2, %, P) such
that & ;7 is uniformly distributed on Q;;. Define g;,, € EOO(F;;?, Z) by

gi.t) = Y |Qylf(Gw) teT)) (4.17)
7:Qr3C[0,t]

with the convention that g7, (t) = 0 if there is no j with Q;; C [0,¢] (that is, if
some component of ¢ is zero). Finally, let

L=2d-1 (4.18)
and, given n € N,
m= [(nﬂ)ﬂ. (4.19)
If r =0, we define
A=) Ui (4.20)
leNg, |l|l=L
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4.2 Algorithms and Convergence Analysis

In case of r > 1, we set k = [nl/dw and
A =SuPP ) + AN = Prf). (4.21)

Finally, set AL" = (.A,ll’L)w <o and in a similar way to 1D we obtain for r € Ny,
neN we
At =1, @ AYGE (4.22)

Before we proceed with the analysis of the algorithm, we need additional lem-
mas. The first one is proven in [24] for the scalar case. It is stated for L,(Q)
spaces, but literally carries over to the C'(Q) case. For the sake of completeness,
we recall the lemma and also the proof.

Lemma 4.2.4. There is a constant ¢ > 0 such that for all m, L € Ny with m > 2
ISE — VESE |2y < oL+ 1)+ tm et (4.23)

Proof. Let ]H(g) be the identity operator on C([0,1]¢) and we explicitly identify
by Sf  the indefinite integration operator SE from above for dimension d. First,
notice that for d =1

S e £(C([0,1]),C'([0,1])),

which, by (2.9)), implies

(1) — PSS | gicqony) < em™ (4.24)
and hence
(P = PrD)SE | oy < em™ 0. (4.25)

To prove (4.23), we argue by induction over the dimension d. For d = 1, the
result is just (4.24). Now let d > 1 and assume that (4.23]) holds for d — 1. By
the triangle inequality, we obtain
4K d,K 4K 11K d—1)\ od,K
IS5 = VESH | gcomey < ISHE = (Por™ @ IS #cqon
d—
+ 1B @ IS = VEST |l oy

Using (4.24), (2.4), (2.5), and the fact that S&* = 81" @ S the first term is

estimated as
dyK ’ 7K d—1 d’K
1S5 — (P2 @ ISP 200
1 1,1,K d—1 K d—1,K
= I(1) - Py @ IS @ ST leqo

1 1,1K)\ ol K d—1,K
=1L = Pyi")S oo 18T leqoae
<em™*, (4.26)
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4 Banach Space Valued Integration

since ||Sf_17]K||C([071]d—1) = 1. The second term can be estimated as follows:

1P @ I ST = VEST | sicrouey
L

Z«P:r{lLK . P,i;zliﬂf) ® Iﬂ(gdfl))sf,K
=0

L
Z llK 11K)®P1d IK)SdK

— Z(C(011%)
L
Z pLLE P;l,ll_,Hf)SII,K) 2 ((Iﬂ(g—l) B P;lg LK) gd-1K)
=0 2(C([0,1]%)
L
< OEPLE = PEEOSE || 2o llUIE = Primb ST gieqoe
1=0
L
=0
C(L—l—l)d 1m (L— d+1)’
where we used (4.25)), (2.4)), (2.5)), and the induction hypothesis. O

The next lemma is a direct consequence of the Kolmogorov-Doob inequality.

Lemma 4.2.5. Let 1 < p < oo,k € N? and let {9; : 1 <i <k} be independent,
mean zero, Z-valued random variables with E||%;||P < oo for all 1 <i < k. Then

N
(Elr%eg_c 219 ) <C1( 219; >,
p

1<G<i 1<5<k
(p=1)"
Proof. The proof can be found in [24] for the scalar case. The Banach space
valued case literally carries over. O]

where ¢; =

Proposition 4.2.6. Let r € Ny, 1 < p < 2. Then there are constants c;_3 > 0
such that for all Banach spaces Z, n € N, w € €, we have

card (A7) < cin,
and for all f € C™(Q, Z)

181f = At fllow.z)
ENS1f = AL f 1027

IN

con” || fller@.2), (4.27)
_r_ 1
s (Z)n 1 fllor,2)- (4.28)

IN
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4.2 Algorithms and Convergence Analysis

Proof. We start with the case r = 0. We have

1S1f — Ao fllew@ < IS = ViSifllew.z) + IVeSif — AL flle.z)- (4.29)

The first term is estimated for the scalar case in Lemma The Banach space
case follows by taking tensor products and using (2.3)),(4.3)),(4.16]) as follows:
IS1 = ViSillzic@.2)) = 1z @ S — I @ V'S | 2ze,c(0))
= |1z ® (S = Vi'SP)l zzenc@)
= |[12]l22) |81 = V'Sl 2@
< em EHL (4.30)

where we have in mind that L is fixed, thus, (L + 1)?"! is a constant factor. Now
we consider the second term. We get

IVeSif — Al fllcan < D IIUSIf = Ugiullc@.z) (4.31)
leNg, |l|=L

and

1S = Uigialio@ 2y < 10l 4 (¢ 24, 2),000.2) H(Slf)lrl’ﬂ_l ~ e

m loo(PV9,7)

< cmax fodt— > Qi f(&y) ‘
1;eFW‘lZ [0,¢] Q<0

=cmax || 3 ). (4.32)
N O

where
wy= [ =iy 1< <) (433)
L,j

The random variables {n;7 : 1 < j < m!} are independent, of mean zero, and
satisfy

51l < 21Qi3ll flle.z) = 2m™ | flle.2)- (4.34)
Combining (4.18+4.19) and (4.29) , we obtain

IS1f = AL flle.s < em™  ifllcn +¢ D> m'm™|fllcw.z
leNg, |l|=L

< dflleen (435)
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which proves (4.27)) for r = 0.
For p > 1, we get from Lemma

n
(& max | 30 moll) <e(B] 3w
1<j<i I r

1<i<ml =
1<j<ml

=

p)l.

(4.36)

Moreover, Lemma [2.3.9| gives
P\ ’
& 3 w]) <2n@( > Elmglr)”, (4.37)
I<j<m! I<j<m!

and we conclude with (4.36]) and (4.37) for p > 1

P\ s v
(B max | 3= n5)")" <en@( X Elmsl?)”  (438)

1<j<i 1<j<ml

|

The same relation also holds for p = 1 by the triangle inequality. We obtain from

[@31432), [@34), and (4.38)
1 L
EBIViSLf = A f o) < en(Z) Y mim™"||fllcw.z

TeNd, [|=L

1

< e (Z)m™ 0 flle@.s)- (4.39)
Combining (4.1844.19)), (4.29H4.30)), and (4.39)), we conclude

r 1 _ _ —(1=4Hy
EISf = AL o) <em™ Miflle@sn+c Y, m 9 flloes
leNg, |l|=L

_1 _ (11
< en”2||fllea.z +en” | fllcw.r)
(11
<en” | fllo@n, (4.40)

which proves relation (4.28) for r = 0.
As in the proof of Proposition the case r > 1 follows from the case r =0

and ([2.9)), since
Sif = AT =Sif = P = AL = P°T)
= (S = AL = 5°Y). (4.41)
By (4.144.15) and (4.17-4.21)), the number of function values used by A7 f is

ck? + ¢ g mh . ml < en.
lll=L
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4.3 Complexity Analysis

4.3 Complexity Analysis

For the definite integration problem, we set I’ = Beor(gz), G = Z, K = Z and
A=ANQ,Z)={0;: t € Q} with &(f) = f(t). As mentioned before, we consider
Z-valued information functionals and describe the definite integration problem by

PO - (BC'T(Q,Z)a Za 807 Z7 A(Q7 Z))

Moreover, for the indefinite integration problem, we take G = C(Q, Z), while
F,K, and A are the same as above. So the indefinite integration problem is

7)1 = (BC”"(Q,Z)a C(Qa Z)a 817 Z7 A(Q7 Z))

Theorem 4.3.1. Let r € Ny, ¢ € {0,1}, 1 < p < 2. For all Banach spaces Z,
the deterministic n-th minimal errors satisfy

s

n_g j efft(SL, BCT(Q,Z)) j n d.

Moreover, if Z is of type p and pz is the supremum of all py such that Z is of
type p1, the randomized n-th minimal errors fulfill

1

7 1 r
n" 1Tz < e(S,, Borig.z) < T(Z)nT 1

Proof. The upper bounds follow from Propositions Proposition 4.2.6 and
Holders inequality.

Since definite integration is a particular case of indefinite integration in the
sense that Sof = (S1f) (1), it suffices to prove the lower bounds for Sy. The lower
bounds for the deterministic setting and for the randomized setting with p; = 2
follow from the respective scalar cases, see (3.343.5)), since every Banach space Z
over K contains an isometric copy of K.

It remains to show the lower bound for the randomized setting for Banach
spaces with py < 2. Let n € N and let m € N be such that

(m —1)* < 8n < m?. (4.42)
Let ¢ € C*(R?) be such that 1(t) > 0 for ¢t € (0,1)4, suppy C [0,1]¢, and
SuPefo e |[Y(1)[| = o0 > 0. Let (Q:)™ be the partition of Q into closed cubes

of side length m™! of disjoint interior, let ¢; be the point in (); with minimal
coordinates and define ¢; € C(Q) by

Vi) =v(mt—t)) (i=1,...,m%).
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4 Banach Space Valued Integration

We check that there is a constant ¢y > 0 such that for all (ai)?idl €[-1, 1]md and
all (Zi);idl C BZ

md
com™ " Z ;Z); € Bcr(sz). (443)
i=1
By the chain rule
7 () = mTi(m(t — 1),
thus,

< max ) | zii]|er @) < Moy,
CT(Q) =1,..., m

md
E OéiZﬂPi
i=1

which yields (4.43). Put f; = com™"z;1; and o0 = wi(t)dt. Then for (a;)™) €
R™

md md md
EH Z aiSOfi = Com_rEH Z ;25 /Q @bz(t)dtH = C()O'm_r_dEH Z (0 7¥ 4}
i=1 =1 =1

Since py < 2, Z must be infinite dimensional because a finite dimensional space Z
always satisfies p; = 2. By the Maurey-Pisier Theorem [2.3.12] there is a sequence
(w;)7, C By such that for all (a;)™] C R

rz

1 md md
s (Sl ] < |Saw < (S
=1 =1 ]

Setting z; = w; (i = 1,...,m%), we get
1
md md vz
EH Z a;zi|| > ¢ Z |y [P7 : (4.44)
i=1 i=1

Next we use Lemma [2.2.10] Lemma [2.2.13| and (4.42{}4.44)) to conclude

1 g
ranS’BT > = : EH EiS i
en(So, B (Q»Z)) — 4icq,.., mg]{l,\r}lzmd—‘m icl !

where (ei)?;dl is a sequence of independent centered Bernoulli random variables.
O
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4.3 Complexity Analysis

Notice that the bounds in the randomized case of Theorem are matching
up to an arbitrarily small gap in the exponent. In some cases, they are even of
matching order.

Corollary 4.3.2. Letr € Ng, 1 <p <2, 1€ {0,1}. Let py be the supremum of
all p1 such that Z is of type p1. Then for each € > 0

r_ 1 _r_ 1
n"d ey jeﬁf‘“(SL,Bcr(Qz)) < 71,(Z)n 1 b Te.

If, moreover, the supremum of types is attained that is, Z is of type pz, then

1

_ 1 _r_
n~ iz 2 e™(S,, Boro,z) 2 T (Z)n7 1 Tz,

Remark 4.3.3. The latter holds in particular for spaces of type 2 with py; = p =2
and, if 1 < p; < oo, for spaces Z = L, (N,v) with pz = p = min(pi, 2), where
(N, v) is some measure space.

For general Banach spaces Z, upper and lower bounds of matching order for

en(S, Bergzy)  (1=0,1)

remain an open problem. However, there are new results for Banach spaces satis-
fying equal norm type, see [22]. To state the result, we need further preparations.

Let 1 < p <2 and Z be an arbitrary Banach space. Givenn € N, let 0,,,,(Z) be
the smallest constant ¢ > 0 such that for all zy,..., 2, € Z with ||z1]| = - -+ = ||za]|

n n
p
1=1 k=1

Z is of equal norm type p if there is a constant ¢; > 0 such that

opn(Z) < (n € N).

It is clear that 0,,(Z) < 7,(Z) and type p implies equal norm type p. The
following theorem is the main result of [22].

Theorem 4.3.4. Let 1 < p < 2,0 € {0,1}, and r € Ny. Then there are constants
c1,co > 0 such that for all Banach spaces X and alln € N

T41-1 ran T4+1-1 ran
an™ T e™(S,, Borg.z) < 0pn(Z) < 0 max kiTTr e (S, Ber(g.z)).

A question that arises is a sharp characterization of Banach spaces such that the
optimal randomized rate n~"/¢"*/P ig obtained. This question is answered as a
corollary.
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4 Banach Space Valued Integration

Corollary 4.3.5. Let r € Ny and 1 < p < 2. Then the following are equivalent:
e 7 is of equal norm type p.

o There is a constant ¢ > 0 such that for alln € N

(S, Boro,z) <en i (1 {0,1}).

Remark 4.3.6. Using techniques from [22], it is easy to carry over the results from
above to the situation of equal norm type p. Thus, in the preceding estimates,
and also in estimates that follow, we could easily replace 7,(Z) by 0,,(Z) in the
upper bound estimates.

4.4 A Multilevel Algorithm for Banach Space
Valued Integration

We develop a scheme, which will serve as a bridge between the parametric and
the non-parametric case. It is based on the multilevel Monte Carlo approach
from [I7, 25]. Assume that a Banach space Y is continuously embedded into the
Banach space X and let J be the embedding map. We shall identify elements of
Y with their images in X. For r,r; € Ny, we consider integration of functions
from the set
Ber@x) M Ben@y)-

Let (T})2, C Z(X) (this is intended to be a sequence, which approximates the
embedding J) and set for [ € N

R = 1T/® Ic(Q) € g(C(Q,X)) (445)
The operator R; is just the pointwise application of T; in the sense that for f €
C(Q,X) and t € Q, we get (R, f)(t) =T, f().
Algorithm 4.4.1. Fix any lo, [, € Ny, lp < I3, ny,,...,n, € N and define for
t € {0,1} and f € C(Q, X) an approximation ., f to S,f as follows:

Iy
Af = RAy f+ D (Ri— R ALS (4.46)

I=lp+1

and A" = (A )ueq. Without loss of generality, we demand that the underlying
probability space (€2, 3, P) is such that all random variables that are required on

the levels ly, ..., 1 are defined on it. It follows from (4.6, (4.22)), and (4.45)) that

l1
A, = T, @ AT + D (T —Tio) @ As™. (4.47)

Mg W ny,w
I=lp+1
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4.4 A Multilevel Algorithm for Banach Space Valued Integration

In the sequel, we set
Xi = cx (T (X)) (I € No),
Xy =cx((T1 —T1-1)(X)) (leN),

where cly denotes the closure in X. In particular, X; and X;_;; are endowed with
the norm induced by X. Given a Banach space Z, we introduce the notation

G\(2) = C(Q, Z). (4.50)

Now we estimate the error of 2!, on

(4.48)

Ber@x) N Ber@y)-
Proposition 4.4.2. Let 1 < p < 2, r,r; € Ny, and ¢ € {0,1}. Then there are
constants c1,co > 0 such that for all Banach spaces XY, and operators (1)2,
as above, for all ly,l; € Ng with ly < Iy, and for all (nl)?:lo C N, the so-defined
algorithm A, satisfies
sup 1S.f — A,

feBerq,x)NBeri(q,v)

G, (X)

Qs

<N =Ty I zvix) + all Tl 2x)
Iy r

o Y G- Ti)dllzaxn © (weQ), (4.51)

I=lp+1
and for all I* € Ng with o < 1I* <y
1
sup <EHSLf —Ql;f||’éb(x)>p
feBcT(Q,X)mBCTl (Q,Y)
,£,1+l
<N =Ty Ilzvixy + caTp(Xap) | Tio | 2y,
+or Y (X )T =T | 2wy ’
I=lp+1
I .
teo Y T =T zoxm (4.52)
I=I*+1
Proof. Let f € Berig,x) N Beri(g,y)- From (4.46) and the linearity of S,, we get
1S.f =24 flla,

< |[8f =SBy flle.x) + ISR f — Any wBioflleuxiy)
l1

+ Z IS (R — Bia) f — Ayl (R — Ria) f]

I=lp+1

G(Xi_1.)- (4.53)
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4 Banach Space Valued Integration

For the first part, we estimate

||SLf - SLRhf'

a.x) < IS llzcc@.x).c.conlf — B flle@x)
< |J =Ty, Izl flle@y)
<|[[J =T, | 2vx)- (4.54)

Furthermore, by Propositions 4.2.2] and |4.2.6]
HSLRlof - AL’T Rlof’

Ny W

G.(x,) < ey | Big fllem(@.xi)

< emy, 1T, |2 [ fller@.x)
< ol Ty |l 2y, (4.55)

lo
and similarly,

1 ,I,1+l
b)) < X Thllzpom,” 7. (4.56)

E (ISR f — Ap B
For [y < | <, we obtain

IS (R — Bia) f= AL (B — R ) f

ny,w

GL(lel,l)

—r1/d

<en, (R = Ris) fllem@xi o
—r1/d

< en, VNI~ Tio) I Le oo 1 fllem )

T

_"
< (T = Ti1) I ||z vixyny (4.57)

and

hSA

E (IS.(R = Ria)f = AL (R R )
_"
< erp(Xin )T = Ti) I vy (4.58)

Combining (4.53)),(4.54)),(4.55),(4.57)) yields (4.51). Moreover, using (4.57) and
(4.58)), we obtain

—14

B =

5
1
> EIS(R = Ria) f = AL (R = Re) fllf, )

I=lp+1
L -
,ilfl+l
< Z crp(Xi—) (T — T-) | 2vymy © 7
I=lp+1
I )
+ > dl(T =TI zxm (4.59)
I=l.+1

Thus, (53),[@E54), [@56),@E59) yields [@E52). 0
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Chapter 5

Parametric Banach Space Valued
Integration

The chapter is concerned with the complexity analysis of parametric Banach space
valued multivariate integration. The considered classes of input functions are
chosen in a general way and contain spaces of dominating mixed derivatives as well
as other types of non-isotropic smoothness. We apply the multilevel algorithm of
the previous chapter, and show how it fits to the parametric problem. As before,
the definite and the indefinite cases are included. We state randomized algorithms
and analyze both, the deterministic and the randomized setting. Considering
the complexity of the problem, we further establish lower bounds for the general
Banach space valued setting. Applications to various smoothness classes are given
in the last section, together with some comments on the relation between the
deterministic and the randomized setting.

The chapter is organized as follows: In Section [5.1} we give the formal
definition of the considered problems, and in Section [5.2] the algorithms for the
upper bounds are introduced. In Section [5.3, the main complexity results are
stated and applications to various smoothness classes are given in the last section.

5.1 Problem Formulation

Let dy € N, Qo = [0,1]%, and Z be an arbitrary Banach space. We study definite
and indefinite integration of functions depending on a parameter s € Q.

For ro,r € Ny, let C™"(Qy x @, Z) be the space of continuous functions f :
Qo X Q — Z having, for a = (ap, 1), ag € NSO, oy € Nd with |ag| < ro, |as| <7,

) . .. lo )
continuous partial derivatives gsaof éiiff; endowed with the norm
17 )
rg.r = max su — .
CT0"(QoxQ,2) |ao|<ro,|ar|<r SEQO}?GQ 050 Ot

51



5 Parametric Banach Space Valued Integration

Let furthermore r; € Ny and put

Fo = Boo,r(Qon,Z) N Beron (QoxQ.2)-

The definite parametric integration operator . : C'(Qo X Q, Z) — C(Qo, Z) is
given by

(A)s) = [ 1endt (5 € Q)
Q
and the indefinite parametric integration operator .} : C'(Qo X Q, Z) — C(Qq X
Q,Z) by
(At = [ flowde (s€QoteQ).

[0,¢]
Remark 5.1.1. For r < ry, we obtain
Beor(oxq,2z) N Boror (Qox@,z) = Beror (Qox0,2)
- Bco,rl (QOXQ7Z) N Bcro,rl (QUXQ,Z)' (51)

Hence, we can assume r > r; without loss of generality.

5.2 Algorithms and Convergence Analysis

To connect parametric integration with Banach space valued integration as con-
sidered in Chapter [} we set X = C(Qo, Z) and Y = C™(Qo, Z). Thus, C(Qo x
Q,7)=C(Q,X) and

S, =80@2)  (,=0,1).

Moreover,

Beoroxq@,z) N Berori(@oxq,z) = Ber@,0(o,2)) N Beri(@,cmo(Qo,2))

— BCT(Q,X) ﬂ BCTl (Q,Y)
Let 79 = max(ro, 1) and define for [ € Ny
P, = Pp® e 2(C(Qo, 2)) (5.2)

and set
T, =2 (l S No) (53)
This way the algorithm 2(*, defined in (4.47) becomes
l1

A= D, @A+ Y (P D) @ ALK

Mg W ny,w
I=lp+1
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5.2 Algorithms and Convergence Analysis

For f € C(Qo x @, Z) this means

Iy

Af = P (TS g ) + 30 (2= Pi) (A serrg )

I=lp+1

where we use the notation f; = f(s, -) for s € Q. It is clear, by the definition of
!, that

I
card(«Z!) < cZnﬂdOl (we ). (5.4)
1=lo
First, we estimate the error of «7'. Recall the notation Go(C(Qo)) = C(Qo, Z)
and G1(C(Qo)) = C(Qo x @, Z).

Theorem 5.2.1. Let ro,r,71 € No, 7 > 1y, 0 € {0,1},1 < p < 2, and let Z be
an arbitrary Banach space. Then there are constants ci,co > 0 such that for all
lo,l; € Ng with ly < Iy, and for all (m)?:lo C N, we have

G.(C(Qo))
feZo

I
<2 e, 4 o2 T (weQ), (5.5)
I=lp+1

and forly < 1* <[y
1

sup (Euyf A5 &, o)) )5

fe%o

< 022*7"0[14—62739(2)([0—1- )% S
l*

141 z _r
+co Z Tp(Z)(l%—l)%Q_”’ln;F e + ¢ Z 27"lp . (5.6)

I=lp+1 I=l*+1

Proof. By ,, and ,

| 21| .2c(Q0,2)) < 1 (5.7)
1] = 21 || (cro@02).0@02) < 2277, (5.8)

where J : C™(Qy, Z) — C(Qo, Z) is the embedding operator. Moreover, by (4.48)

and (53), A A A
X, = Po®(C(Qo, Z)) = PR (Lo (T, 7).
Consequently, X;_; C X; for [ > 1. Therefore, X;_;; C X; and
Tp(Xl,Ll) S Tp(Xl). (59)
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5 Parametric Banach Space Valued Integration

Moreover, P;O’do : EOO(F;?’dO, Z) — Xj is an isomorphism which satisfies
1P < e [[(RR) ]| =1

Indeed, the first estimate is just (2.8)), the second estimate is a consequence of
the fact that the inverse of the interpolation operator is just the restriction of
functions in X to F;‘f’do. It follows that

To(Xi1) < 7p(X0) < em (Lo (TR, 2)) < (1 4 1)27,(2). (5.10)

Now relations ([5.5]) and ([5.6)) are a direct consequence of Proposition together
with ((5.7H5.10)). O

Remark 5.2.2. Notice that the natural case of estimate (5.6) would be I* = ;.
However, the more general approach will lead to sharper estimates, including
precise powers of logarithms in several cases.

The further estimate of and will be covered in an additional lemma.
It contains the key estimates for the upper bound proof. It is formulated in
a general way, which allows some shortcuts to use these estimates also directly
for the analysis of parametric initial value problems, where different but related
smoothness classes are considered.

Let 8, 8o, B1, B2 € R. Given o, 1", l; € Ny with lp < I* <l and (ny);L,, C N, we
define

I
M (lo, b, (m)ily,) = 270l 4, P N ™ g Fodolyy -0 (5.11)
I=lp+1
l*
1 1
Bllo "1 (n),) = 2700 (lg 4 )5+ 3 (14 1)h2 bl
I=lp+1

l1
+ Yy oty P (5.12)
I=l*+1
The connection of M and E to and is easily seen. The corresponding
choices of algorithm parameters [y, [*,1; and (nl)?:lo can be found in the proof
of the lemma. Recall that A and V mean logical conjunction and disjunction,
respectively.

Lemma 5.2.3. Let 3,5y, 31 € R with By > 0 and 8 > 1 > 0. Then there are
constants ci_g3 > 0 such that for each n € N with n > 2 there is a choice of
lo, 11 € No, ly < Iy, and (my);,, C N such that

5
> 2%t <en (5.13)

l=lg
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5.2 Algorithms and Convergence Analysis

and
n-v if  Bo>
M(lo, Iy, (mi)iy,) < caq n~®(logn)®*t if By =41 >0 (5.14)
n~Fo if Bo=pB1 =0V B <Ppi,
where
_ Bof3
e (5.15)

Moreover, let 1 <p <2 and set fo = 1 —1+1/p. If 1 > 1—1/p, then for each
n € N with n > 2 there is a choice of ly,1*, 11 € Ng, lop < 1* <y, and (nl)flzlo CN

satisfying (5.13)) and

(n P if Bo>pBi=p
n="(logn)'/? if Bo>PBi AB> B
E(l07 l*a lla (nl)ilzlo) <3 ’)’Liﬁo (10g n)ﬁp(();;:i/ﬁz) Zf BO - 61 (516)
n~f(logn) 2e=0"  if [y < By <
| P (loglogn)®™* if By = pa.

Proof. In the case fy = 0, the statements trivially follow from (5.11)) and (5.12])
with [y = [; = 0 and ng = 1. Therefore, we can assume [y > 0 in the sequel. Let

n €N, n> 2 and put

log ﬂ { B =5 J
L= |20 = |2 5.17
1 [do Al ey 5:17)
(recall that log always means log,). Notice that (5.17)) implies
Bola
lh—lyg> ———, 5.18
R (518)
hence (5 - Bl
_ I, — 1) > 2 FPUPOL g 7
(B =Bk 0)_504‘5—51_600
and thus,
B(ly —lo) > Bolo + Bi(l — lo). (5.19)

Let o € {0,1}, do, 1 > 0 to be fixed later on and set

ny, = 2dizlo) (5.20)
n = Rll + 1)702d0(l17l)*50(lflo)*51(l1fl)—‘ (l =1y + 1,... ;ll)- (521)

95



5 Parametric Banach Space Valued Integration

This gives

I L
an2dol S choll + (ll + 1)—0’ Z 2dol1—50(l—lo)—51(l1—l) S cn, (522)
IEN I=lp+1

provided dg > 0 or §; > 0 or 0 = 1. By (5.19)) and (5.20)), we have

nl;/g — 9=Bdo(i=lo) < 9=Podolo—Frdo(li—lo) < 9=Podolo—Prdo(l1—lo)+B101(11—lo) . (5.23)

and, using (5.21)), for Iy <1 <[4
2—,Bodolnl—51 < (ll + 1)0512—50dol—/31d0(11—l)+ﬂ150(l—lo)+6151(ll—l). (5.24)

Furthermore,

— Podol — Brdo(ly — 1) + Brdo(l — lo) + 101(l1 — 1)
= —Bodolo — (Bodo — Br16o) (I — lo)
= Bi(do—6) (i = 1) (o <1<h). (5.25)

By (5.11) and (5.23 5.29),
M(l07 l17 (In'l)él:lo)

l1
< 2—5odol1+(ll+1)051Z2—/30d0l0—(5odo—515o)(l—lo)—51(d0—51)(l1—l)' (5‘26)
1=lg

If By > B1, we set 0 = d; = 0 and choose g > 0 in such a way that Sydy— 5109 >
f1dy. From ((5.26)), we obtain

l1
M(lo, I, (nl)élzl() < 9—Bodol1 + Z 9—Bodolo—(Bodo—PB180)(I=lo)—B1do (L 1)
I=ly

< 2*5061011 + 02*50d010*51d0(l1*lo)_ (527)
Notice that by (5.15), (5.17), and (5.18),
Bo(B — Bl B15olh
lo+ 510y — 1 — =yt —
Polo+ilh =h) > g ~ Rt B 5
BoBly
- — = vl — 5.28
Bo+ 5 — B bo 1= Fo ( )
and, since [y > [,
Bof3
V= ——— < 3. 5.29
Bt BB (5-29)
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5.2 Algorithms and Convergence Analysis

It follows from (5.17) and ((5.27H5.29) that

M(lo, [y, (nl)élzlo) < 9 Podoli o o—vdoh < po—vdoh < oy,

This together with (5.22)) proves (5.14)) for Gy > .
If Bo=p1 >0, weset 0 =1, 5 =01 =0, and get from ((5.17)) and (5.26))

l1

M(lo, I, (nl)élzlo) < 9= Podol + (ll + 1)50 Z 9—Bodolo—PFodo(I—lo)—Bodo(l1 1)

I=lp

< C(ll + 1)50+12*50d011 < Cn*ﬁo(log n)50+1.

Combining this with ([5.22]) gives the respective estimate of ((5.14]).

Since we assumed [y > 0, it remains to consider the case 5y < 1, where we set

o = dp = 0 and choose §; > 0 in such a way that 51(dy — 91) > Sody. By (5.17)
and ((5.26)

l1
M(lo, I, (nl)?:lo) < 9—Bodoly + Z 9—Bodolo—PBodo(I—lo)—=P1(do—=b1)(l1 1)

I=lp

< 9—Bodoly + 2~ Podolo—PBodo(l1—lo) < en~Po

This together with (5.22]) completes the proof of ((5.14)).
Now, we turn to the proof of (5.16|) and assume that 5y > 1—1/p. If y > 1 =
B, then we set [* = [, 0 = §; = 0, and choose &g > 0 satisfying Sody — $160 > [1dp.

It follows from ([5.17)) that I = 0. Then (5.12)), (5.23)), and ((5.24]) give
E(l07 lla l17 (nl)glzlo)
1

< 2_60d0l1 + z_ﬁldoll + Z(l + 1)%2—50d0l—ﬁ1d0(ll—l)+ﬁl5ol
=1

I
< 9= Podola +Z(l+1)%2—(ﬂ0d0—ﬂ150)z_51d0(11_z)
1=0

< 2—ﬁod011 +62—ﬂd0l1 < Cn_ﬂ,

which together with ([5.22)) proves the first case of ([5.16)).
If (Bg > B1AB> 1) or Sy =p1, we choose I* = [; and get from (5.11H5.12))

Elo, by (m)iy) < (I + 12 M (lo, b, ()i,

and the desired results follow from ([5.17)) and the respective cases of ((5.14]).
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5 Parametric Banach Space Valued Integration

It remains to consider the case

B2 < Bo < Pi- (5.30)

Here we make another choice of the parameters (nl)?:lo (while Iy and I, remain the
same, given by (5.17))). Let o € {0,1}, 01,00 > 0, and I* € Ny with [, < I* < I3

to be fixed later on and set

ny, = 2%l (5.31)
ng = [20GED=0 @ (= 41,0, (5.32)
o= (i =1 1)7o2bD=Rl= g =1 ). (5.33)

In the sequel, we need the following estimate that results from ((5.17) and ([5.3]]
5.33):

15 * 51
Z nl2dol S C2d0l1 + Z 2d0l1—61(l*—l) + (ll I + 1)—0 Z 2d0l1—62(l—l*)
I=lp I=lp+1 l=l*+1

< n (5.34)
whenever (0; > 0Ady > 0) or (60 = 1Ad; > 0). Using (5.19)) and (5.31]), we obtain

’)’Llj)ﬁ _ Q—ﬁdo(ll—lo) S 2—5@d0l0-ﬁ1d0(l1—l0) S 2—Bod0l—61d0(ll—l0)+6151(l*_l0). (535)

From (5.32H5.33)), we get
2_60d0lnl_/81 < 9—Bodol—=Frdo(li=1)+p161 (1" 1) (lp <1 <1, (5_36)
2—,80d0lnl—/32 <(h -l + 1)0,322—,30dol—,32d0(11—l)+5252(l—l*) (" <1<l). (5.37)

Moreover, for Iy <[ < [*

—Bodol — Brdo(ly — 1) + 161 (1" = 1)
= —Bodoly — Brdo(ly — 1*) — Bodo(l — lg) — Bilde — 61)(I* — 1), (5.38)

and for *+1 <1<

— Bodol — Bado(ly — 1) + B202(1 = 17)
= —fodol" — Bado(ly — 1) — (Bodo — B202)(l — 7). (5.39)

Now, (5-12) and (5:35 5.39) imply
E<107 l*7 l17 (nl>§1:l0) S 2750d0[1 + E1 + EQ, (540)
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5.2 Algorithms and Convergence Analysis

where
l*
E, = Z(l_|_1)%2*500l010*51d0(11*l*)*ﬁodo(l*lo)*ﬁl(610*51)(1**1)7 (5.41)
l=lo
I
By = (=l +1)7 3 gl —padolti=—(odo-paba)i=1) (5 49)

I=l*+1

By (5.30), p > 1. We put
(5.43)

and observe that the assumption fy > 0, (5.17)), and (5.43) imply that there is a
constant ¢y € N such that for n > ¢,

lo <" <1y (5.44)

Since for n < ¢q the estimate ((5.16)) trivially follows from | 5.42)) by a suitable
choice of the constant, we can assume n > ¢y, and thus . We choose 6; > 0

in such a way that ﬁodo < Bi(dy — 61). Then by (5.41), (5.43 , and (5.17]
E; c(ly + 1)52*ﬁodolrﬁ1do<hfl*>fﬁodoa ~lo)
(ll + 1) 297 Bodol1+(Bodo—pB1do) (11 —1*)

(
C(ll +1) +p2[f2 ) 2 Bodola

p—1+p(Bo—51)
en (logn)"~ 21
p(Bo—B2)
%o (logn) 2o-1 | (5.45)
Now we deal with Es and distinguish between two sub-cases of (5.30)). If 55 < S,
we set 0 = 0 and choose d; > 0 in such a way that fydy < Body — [F202. Then,

using (7)., and @13,

E, < CQ*ﬁodol**ﬂzdo(h*l*)
02—50d011+(,30d0—,32d0)(11—l*)

IN

IN

< e fodl (g, 4 1) T
(Bo—8B2)
< enP(logn) 2o (5.46)

Combining (5.40)),(5.45)),(5.46|), and taking into account (5.34), we obtain the
fourth case of (5.16)). If 5y = By, we set 0 = 1 and d, = 0. Here we have

Ey < coly — 1" +1)Perig=hodolhs < op=Fo(loglog n)P ™. (5.47)
The last case of (5.16]) is now a consequence of ([5.40)),(5.45)),(5.47)), and ((5.34]).
[
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5 Parametric Banach Space Valued Integration

With help of the previous lemma we are now ready to estimate the error of @7’
For this purpose we only have to connect the setting from Theorem to the
general setting estimated in Lemma |5.2.3|

Corollary 5.2.4. Let ro,r,71 € Ng, r > 1y, d,dg € N, 1 € {0,1},1 < p <2, and
let Z be an arbitrary Banach space. Then there are constants ci_4 such that for
each n € N with n > 2 there is a choice of ly,l; € Ny, and (nl)ﬁlzlo C N such that
lo <y,

card(#!) < ¢in (we ),

and

sup ||-7f — <, flla.c@o)

feﬂ‘o
n-vt if ;—g >
,m ro
< % (logn)o " if =1 >0 (weN) (5.48)
i}
n 9o if 2—3—%20\/2—8<%,
where
To
% r
vVl = e (5.49)
wTa—7d

Moreover, for all Banach spaces Z with 1,(Z) < oo and each n € N with n > 2,
there is a choice of ly,1*,1; € Ny, and (nl)?:lo C N such that Iy < I* <y,

card(<Z!) < c3n (we Q),

and
1
p
sup (EHYf «QfoHp QD))
fe“%o
fn,£,1+% Zf To >4 41— 2 r=r
do ~ d !
n=v2) (log n)3 if >S4+ 1-2Ar>n
0,3
_ B ogmyd U oR=dt1-; 5.50)
S Bogmy (B g omomenig1 O
n 4o (logn)2e=1 \do if T<au<Ttl—y
n%(loglogn)do i if G=7>0
2 I OE<HVE=%=0,
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5.2 Algorithms and Convergence Analysis

where
ro
%(%L —l> if o>n41-1
v(p) = § @raTd A ’ o ’ (5.51)
2 RS-}

Proof. We derive the upper bounds in ({ and - from ( - of The-
orem and Lemma . To deal w1th - we set

T To ]
= - = — = — 5.52
ﬁ d’ 60 dO’ ﬁl d ) ( )
which together with (5.15)) and (5.49)) gives for ro/dy > r1/d (thus Sy > (1)
ro . r
U A A M vy (5.53)

bo+B—-H R+i—7
Furthermore, notice that ((5.5)) and (5.11)) imply
sup |7, f — i fllauc@oy < e M(lo, l, (m)ily,). (5.54)

fe%o

Now the upper bounds in (5.48)) follow from ((5.13H5.14)) and ((5.52{{5.54)). Finally,
we consider ([5.50) and choose

1 To r1 1 1
P B S S L R N B TR S N A 5.55
pa 0 d()’ 1 p) 2 d7 ( )

d
which, using (5.15)) and (5.51)), gives for ro/dy > r1/d + 1 —1/p (thus Gy > b1)
T r 1
T L R,
GtB-B  pii-g
We conclude from (5.6 and (5.12)) that for any [* with [o < * <13

= va(p). (5.56)

1

sup (Euyf AfIE o ) <cB(lo, I 1, (m)y). (5.57)

feZo

The upper estimates in ([5.50|) are now a consequence of ([5.13]),(5.16)), and (5.55)
5.57)); except for the last case of (5.50)), which follows directly from the respective

case of the deterministic setting (/5.48]). O

It is also possible to find a choice of Iy, 1*,l; € Ny and (m)flzlo C N simulta-
neously for the deterministic and the randomized case, having the same order of
convergence as above. This way we show that every realization of the randomized
algorithm at least satisfies the deterministic optimal convergence order. However,
in contrast to the result above, additional logarithmic factors occur.
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5 Parametric Banach Space Valued Integration

Corollary 5.2.5. Assume that the conditions of Corollary are satisfied.
Then there are constants ci_g > 0 such that for all n € N with n > 2 the following

holds. Setting

logn t-4
Iy = [ —‘ ;o= % i,
do wta—d
n, = [zdo(ll_l)—‘ (lo S [ < ll),

the so-defined algorithm (") ,eq fulfills
card(<Z) < cinlogn (w € Q).

Moreover,
sup [.7,(f) = Z;(f, uo)lla.c@o
feZo
n:“; f 2T>7
<cpqn “(logn) if =14
n"d% if m=n
and finally, if T,(Z) < oo,
1
sup (B |-7(/) = (e c@u)”
sup 1= (f) (D&, o)
n=v2®(logn)z if En
< c3 n_ﬁ(logn)% if 3
n_%(logn)% if

=0V <7
T1 _1
d+ p
L _1
d—i_1 p
1 _ 1
d—i—l >

Proof. The estimates are similar to these in Lemma|5.2.3, we omit them. See also

Corollary 4.3 in [II] as a further example.

5.3 Complexity Analysis

]

We consider standard information consisting of values of f, so the class of infor-

mation functionals is

ANQoxQ,Z) ={0s1: s € Qo,t e},

where d5+(f) = f(s,t) and K = Z. In terminology of Section the definite

parametric integration problem is described by the tuple

Iy = (Beor@oxq,2) N Beror (oxq,2), C(Qo, Z), S0, Z, M(Qo x Q, Z))
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5.3 Complexity Analysis

and the indefinite parametric integration problem by

I} = (Beor@ox@,2) N Beror(@ox,z), C(Qo X Q, Z2), %1, Z, AN(Qo x Q, Z)).

What follows is the main complexity result for parametric Banach space valued
definite and indefinite integration in the deterministic and the randomized setting.

Theorem 5.3.1. Let ro,r,r € Ng, with r > ry and let Z be an arbitrary Banach
space. Then in the deterministic setting,

edet (S, Fy) < n~ if >
_ro _ro o .
n h < el Fo) <n W (logn)o T if e=93>0 (5.58)
_n .
edet( S, Fy) < n if =9=0v <2,
where v1 was given in by
ro
% r
v = 5 — = (5.59)
Rriod

Moreover, let 1 < p < 2 and assume that Z is of type p. Let py denote the
supremum. of all p1 such that Z is of type p1. Then in the randomized setting,

n_UQ(pZ) = egEt(%7 ‘g()) '_<log n—U2(p)7 (560)
with ve(p) given in by

;70 r 1 1 r r L
e A AR B A ek R R,

T foTo < T _
@ iof d0§d+1

va(p) =

It is easily seen from ([5.61)) that ve(p) is a continuous, monotonically increasing
function of p € [1,2]. It follows that the bounds in (5.60|) are matching up to an
arbitrarily small gap in the exponent.

Corollary 5.3.2. Assume that the conditions of Theorem hold. Then for
each € > 0

n—v2(pz) < €£Lan(y, y) < nv2(Pz)te

If Z is such that pz is attained, and in particular if Z is of type 2, more precise
estimates can be given. This is the content of the following theorem.
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5 Parametric Banach Space Valued Integration

Theorem 5.3.3. Assume that the conditions of Theorem hold. If the supre-
mum of types is attained, that is, Z is of type pz, then

e (S, Fo) < T of F>G+1l- é AT =1
D) L (S, Fo) D (logn)s i B> AT >
W < e (A, Fo) <m0 (logn) ot if m=ngp1- L

n" % < e (S, Fy) < nf%(logn)ﬂpfl) (%7%) if T<gp<Ttl- z%

n i < e (S, Fo) = n_%(loglogn) o if 2=49>0

e (A Fy) = n o if m=n=0vRcn
Furthermore, if Z is of type 2,

e;ﬂﬂ(%’ﬁo)vn—ﬁ—% if 2—g>%+% ANr=m

e (S, Fo) < n*“2(2)(1ogn)% f T>7 —|—% AT >y
n_%(logn)% < e S, Fo) 2 n_%(logn)%% if 2—8 ="+ %

e (A, Fo) =< n” % (logn)io 4 if B<ncnyl (562)
n" < e (., Fo) < n % (loglogn)d if m=10>0

e (S, Fo) < n if m=n=0vRcn

Remember that for 1 < p < 2 the L,(N,v) spaces satisfy p; = p, where (N, v) is
an arbitrary measure space. Classical examples of Banach spaces satisfying the
type 2 property are finite dimensional Banach spaces (thus also K? for d € N is
included) and the L,(N,v) spaces for 2 < p < 0.

For the proof of Theorem [5.3.1| and Theorem [5.3.3, we need further prepara-
tions. Let g Z 0 be a C* function on R% with support in Qy,

sup |¢o(s)| = 09 > 0,
$€Qo

o (1 1) ~1 (5.63)

and
2’ 92

Moreover, let ¢ be a C* function on R¢ with support in @ and

’/ng(t)dt‘ =0>0.

For mg,m € N, let Qp; (i =1,... ,m&P) be the subdivision of Q, into m% cubes
of disjoint interior of side length mg ', and let Q; (j = 1,...,m?) be the respective

64



5.3 Complexity Analysis

subdivision of (). Let s; and ¢; be the points in Qy; and QJ, respectively, with
minimal coordinates. Define for s € Qp, t € Q, 1 =1, .. mo L j=1,...,m?

©0.i(5) = po(mo(s — si)),
pi(t) = p(m(t —t;)).

Finally, define
Vij(s,t) = po.i(s)p;(t),
and using Fpym = {1,...,mi} x {1,...,m?}, we set for & = (zj);”:dl C By

\Ijgnom(g) = Z 5¢jwijzj : (51‘3' c [—1, 1], (Z,j) € fmo,m . (564)

(4,3) €EImg,m

Let set € {det,ran}. As before, the definite problem is a particular case of the
indefinite problem, thus .#4 reduces to .#; and we conclude

et (S0, Uy (Z)) 2 e (A, Uy n(Z)). (5.65)
Z))

mo,m mo,m

For this reason, it suffices to concentrate on the definite problem e5°t(.%, W0
for the lower bound proofs. We first recapitulate a lemma from [25].

mo, m(

Lemma 5.3.4. Let ny,ny € N and lete;;, (i =1,...,n1,7 =1,...,n9) be inde-
pendent symmetric {—1,1}-valued Bernoulli random variables. Then

1
(122)51 Ze‘” > = (nymin(ny, log(n; +1)))2. (5.66)
Proof. The proof and further remarks can be found in [25], Lemma 5.3. O

Lemma 5.3.5. There are constants cy,cs, c3 > 0 such that for all mg,m,n € N
with

mdom? > 8n (5.67)
there is a choice & C By with
e (L0, Vg (Z)) = 1, (5.68)
and, if py; = 2,
e (F, WO (Z)) > cm ™2 min (m?, log(mg + 1)) . (5.69)
Moreover, in case of py < 2, there is a choice & C By with
e (S, WO () > cym Tz (5.70)
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5 Parametric Banach Space Valued Integration

Proof. For all 6;; € R ((,7) € Finy,m) We have

Z 51‘]‘900,1;23'/62803'(75)61?5

Hyo Z 5ij¢ijzj

(4,)EImg,m c(Q,2) (4,9) EImg,m c(Q,2)
= goom™® max Z iz (5.71)
1Sz’§m00 {5:(i,5) € FImg,m }
For1 <i:< mg" and & C J,, ,, with
7| > miom? — 4n, (5.72)
let
Si=1{j :(i,j) € 7}
and
I'={ieNy: 1<i<mdP |7 >ml/4}. (5.73)
Then
mdo
.70 > 40 , (5.74)

which follows by contradiction. Assume that [.#°] < m@ /4. Then

1
1= 1A+ D 1] < g,

€50 i¢ .90

which is a contradiction to ((5.67)) and (5.72)).

We first prove the lower bound in the deterministic setting. Here we take any
wy € Z with |Jwp|| = 1 and set 20 = (wo)g":dl. Using Lemma |2.2.12| and (]5.71[),
we obtain

e (S0, Wi (Z0)) > min So Y bz
I CImg.ms |7 |2mpOmd—n (i,j)es
> goom™? min max g 2
I C I mgoms |7 |2meOmi—n 1<i<m® || 125
= ogoom™¢ min max ||
IC Imgms |7 |>miOmd—n 1<i<mgo0
> (5.75)

where the last step follows from ((5.73) and ({5.74]).
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5.3 Complexity Analysis

Next we consider the randomized setting. Lemma [2.2.10| and Lemma [2.2.13
. d
give for 2 = (z;)jL, C Bz

e (S0, Uiy (Z)

mg,m

v

)

min ]EH:VO Z gijwijzj

1
4 scs Z1>m0md _4
- mo,m7| |_m0 m n (17])6]

where {€;; : (i,7) € Fmym} are independent Bernoulli random variables with
P{e;j = —1} = P{e;; = +1} = 1/2. Using (5.71), we conclude for m@®m? > 8n

E €iij

JES;

e (F, W0 (Z) > i min E max

mo,m d
’ m I CImg,m, \J\zmgo md—4dn 1§i§mgo

. (5.76)

Now we distinguish between two cases. If p; = 2, we use the same choice Z° as
in the deterministic setting. We set

do d
m m
711:[40—‘ and TLQZIVT—‘.

Using ((5.66)),(5.73)),(5.74)), and the contraction principle (see Theorem [2.3.10), we
obtain

E max Z ij2j|| = E  max Z Eij
1<i<mgo e, 1<i<m{o i,
n2
> E max i
1<i<ni Zé”
j=1
d o0 d 3
> ¢(m® min(m?, log(mg + 1))) 2, (5.77)
whereé;; (1 =1,...,n1,j =1,...,ny) are again independent symmetric Bernoulli

random variables. Together with (5.76]) and (5.67)), we get
e (o, W0 (20)) > em” 2 min(m?, log(mg + 1))2.

mo,m

If p; < 2, we estimate

E max

1<i<m0

E €ij%j .

_]'Eeﬂi

> max E
1<i<m0

E Eiij

je,ﬁi

Since pz < 2, Z must be infinite dimensional, because finite dimensional spaces Z
always satisfy p; = 2. By the Maurey-Pisier Theorem [2.3.12] there is a sequence
(w;)™, C By such that for all ()™ C R

md Pz

5 Sl | <D el < [ D fasl?
j=1 j=1 j=1

Pz
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d

Setting 2} = ()72, = (wj)gnzdl, we get for 1 <4 < mdo

EH E Eijzj
JEI;

Moreover, since mgomd > 8n, we obtain, using 1) and 1)

e (F, W0 (1)) > em ™ min max \fz|i

mo,m m d . )
I C Iy ms | I | >mgOmid—an 1<i<m°

> c||z . (5.78)

> cmfdJr%, (5.79)
which concludes the proof. O
For v,7,71 € R, and & = (zj)g-”zdl C By, let

W07 ( ) = min (m ™, mg 0om ) WO (). (5.80)

mo,m mo,m

As a consequence of the previous lemma, we prove the next lemma, which is also
stated in a more general way. This enables us to use the results for the complexity
analysis of parametric initial value problems in Chapter [6] as well.

Lemma 5.3.6. Let Z be a Banach space. Let v € {0,1} and v,7,71 € R with
Y% >0 and v > v > 0. Then there are constants cy,ca,c3 > 0 such that for each
n € N with n > 2 there is a choice of mg,m € Ny and 2 C By fulfilling (5.67)
and

nfvg Zf 0 > 71
det ¥,70571 do d
en (L%a\llmo,m (Qp)) Z Cl{ n_;% Zf % < ’771’
=
where vs is defined by
0
do Y
Us S moa_myg (5:81)
wTa—ad

Moreover, let 1 < p < 2 and assume that Z is of type p. Then in the randomized
setting for each n € N with n > 2 there is a choice of mg,m € Ny and & C By

fulfilting (:67) and
e;an(%, \Ij7770771 (g)) Z Cniv‘l(pz), (582)

mo,m

with vy(p) given by

20
L(erl_l) if L>umyp] -1
Jo vy 71
v(p) = wta—d \d 8 o d I; (5.83)
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Furthermore, in case of pz = 2, for each n € N with n > 2 there is a choice of

mo,m € Ny and & C By such that (5.67) holds and

_a_1 . 1
n-d 2 Zf }—g>%+§/\7:71
1
n=v@(logn)3 if > LAy
ENSLNT (L) = @ w0
; n do(logn)d < if %<Z_8§%+5
_Jo
n do of ZTES%'

Proof. Let n € N, n > 2. We start with the deterministic setting. If mg(’md > 8n,

it follows from Lemma |5.3.5, Corollary [2.2.15| and (5.65)),(5.80) that
eSS, U0 (Z0)) > emin (m™7,mg 'm ™). (5.84)

n mo,m m
First consider the case 7y/dy > 71/d and put
. it § W Y%
mo =4 [nvodﬂw—“)do—‘ , m=4 {nvod““"”l)do—‘ . (5.85)

It follows that mam? > 8n and

5

a2

min (m ™", my'm ™) > en” IFGE = cp, A td- 4 = e, (5.86)
This together with yields
497, WO (22)) > en.
Next suppose vo/dy < 71/d. Here we put
mo = 8 [nﬂ L om=1. (5.87)
Clearly, m@®m? > 8n and
min (m‘”,mgwm_“) > cn_%g, (5.88)

therefore, by ((5.84]),
edet (L, Y0 (O0)) > oy

n mo,m

Next we consider the randomized case. First let py, < 2. If mgomd > 8n, it

follows from Lemma [5.3.5] Corollary [2.2.15, and (5.65)),(5.80) that

d

e (., o (anll)) > em” %Pz min (m”, ma%mﬂl) . (5.89)

mo,m
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If v0/dy > m/d+ 1 — 1/pz, we take the choice (5.85)), which together with

(59).(559). and (559) gives

S5

)) > cn

nl 1
(15
_% d Pz

54
a2

e (S, WL (] ! = cn v P2),

mo,m m

If v0/dy < 71/d+1—1/py, we set mg = (8n1/d°w, m = 1 and get from ([5.88)),

(59, and

eran(ﬁy@7 \I;'YWO:’Yl(QFn}L)) Z Cn*;*g — Cn7v4(pz)’

n mo,m

which shows the lower bound in ([5.82)).
Now, we turn to the case py = 2. If m@om? > 8n, it follows from Lemma [5.3.5|

Corollary [2.2.15| and ([5.65]),(5.80]) that
en™ (L U (Z0))

mo,m

D=

> em™? min (m?,log(mg + 1)) min (m ™", mg °m ™) . (5.90)

First we consider the case 7o/dy > 71 /d + 1/2. Define mg, m as in (5.85)). Then

we have
s e 1 ?f =
- c(logn)z if >

NI

min(m?, log(mg + 1))

_d____7
2 cn Q’Vod-&-(’y—’ﬂ)ﬂlo7

m

thus, using (5.90|) and estimates as above,

NI

_ 710(2+d/2))d .
cn  "od+(r=71)do I vy=m
k) ) 0
e (L0 Vo (Z0) 29 oora -
cn  "odt(=11)do (log n)i it y>m
T .
_JenTam2 if vy=m
= . .
cen~(logn)z if v >

Next we consider the case v1/d < v /dy < v1/d + 1/2. Here we put

mo = 4 {(bgn)ﬂ, m=4{(1ogn) ]

which again implies mgomd > 8n. Furthermore, we have

=

> cllogn)?,

c(logn)~3,

min(m?, log(mg + 1))

N =

m

v

Jo_7

min (m ™7, my °m ") cn” (logn)d .

v
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Combining this with (5.90)) gives
Y0 71

(SR (20)) 2 % (logm)®

mo,m

Finally, let vo/dy < 71 /d. Here we use the choice ((5.87)) and obtain
min(m?, log(mg + 1)z > c.

This together with (5.88]) yields

_20

ezan(%’ q/7770,71(g72)) > do,

mo,m

O

To prove Theorem and Theorem [5.3.3| we only have to adapt the setting
for the parametric integration problem to the general cases in the previous lemma.

Proof of Theorem and Theorem [5.5.5. The upper bounds are consequences
of Corollary and Holder’s inequality. Thus, let us focus on the lower bounds.
The factor

cmin (m™", mg"m™")

is a correction factor, due to differentiation of ¢ ;, ¢;, similar to the one in the
lower bound proof for Banach space valued integration. Thus, for each 2 =
(zj)gn:dl C By there is a constant ¢ > 0 such that for all mg,m € N

cmin (m™",mg"°m ") U (Z) C F.
Consequently, by ((5.80)),

eSS, Fy) > et (S, Whror () (mg,m € N).

mo,m

Setting v = r, 70 = ro, 71 = 71, we obtain by (5.49)) and (5.81)) for r¢/dy > r1/d

To
vy = do T—U
3 - T0 T 7’1__ i)
d0+d_d d

and by (5.51)) and (5.83)) for ro/dy > r1/d+1—1/p,

To
@ r 1
wulp) = wor o —+1——)=U p)-
= e (1) =)
Now Lemma [5.3.6| yields the lower bounds. O]
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5.4 Some Particular Classes of Functions

If ry = r, then %y = Beror(ox@,7), Which is a class of dominating mixed smooth-
ness. More precisely, the smoothness with respect to the parameter variables s
and the smoothness with respect to the variables ¢ are combined in such a way.
For the sake of simplicity, we concentrate on Banach spaces in this paragraph
that satisfy the type 2 property.

Corollary 5.4.1. Let ro,r € No, 11 =7, d,dy € N, v € {0,1}, and let Z be an
arbitrary Banach space with 19(Z) < oo . Then

in(frLl 7o
ran o — min ( I+, )
€n (:%, Jo) log N d " 27dg )

Let us compare the order of the deterministic and randomized minimal errors
neglecting logarithmic factors. If the smoothness ry with respect to the parameter
satisfies ro/dy > r/d 4+ 1/2, then the order of e}*"(.7,, . %) is the same as that of
the randomized minimal errors for (nonparametric) integration of functions from
C"(Q, Z) and is by n~'/? faster than parametric integration in the deterministic
setting. If r/d < ro/dy < r/d + 1/2, the randomized rate is still superior, but
the gap becomes smaller and reaches zero when ro/dy < r/d. The behavior is
illustrated in Figure [5.1]

order 4

| —

A\

r 1 |
d ﬁ + j 5‘8
Figure 5.1: Convergence order for fixed % with respect to 8 = o on the z-axis.

Next we consider the case r; = 0. This leads to the class

COONOD(Qy x Q. Z) 1= C™(Qy x Q. 2) N C (Qo x Q. Z)
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of continuous functions f : Qy X Q — Z having, for aq € Ngo with |ag| < ry and

: . : o lao] lail
for oy € N? with |ay| < r, continuous partial derivatives Z—L0) gpd Z=Ss0).

0520 ot1 )
endowed with the norm
[ f lewoonor (goxq,2)
= max (|| fllcroo@ox0.2), | flcor@oxa,2))
( ‘aa'ﬂs,t) '6'af<s, t) )
= max | max sup ———=|| ,max sup _— .
lao| <7r0 s€Qo.t€Q 05 = Tlaa|<r SEQo,tEQ ot 7z

Thus, here we consider separate differentiability with respect to the s- and t-
variables. Before we state the result, we want to mention a closely related subclass.
Let C7(Qq x Q, Z) denote the class of continuous functions having continuous

partial derivatives OO (s) g all ap € NO ,ap € N satisfying = |a°| + = |a1| < 1 (with

0s*00t1
the convention 8 =0 and § = +oo for ¢ > 0), equipped with the norm
I oD
- max su
rorl(QoxQ.2) loal y ol sconreq || Dseoater

For ro = r this is just the class C"(Qo x @, Z). Clearly, we have
Crol(Qo x Q, 2) € CrINON(Qy x Q, Z) (5.91)

and
||fHC’[TOvT](Q0><Q,Z) > HfHC(TOvO)A(Ov”(ngQ,Z)'
In general, the inclusion in (5.91)) is strict, see [38, [3].
Corollary 5.4.2. Let Z be an arbitrary Banach space with 19(Z) < oo . Further-
more, let ro,r € No, d,dy € N, 1 € {0,1} and let F, be any set with

Borom@ox.z) © F1 C Botomnom (gex,2)- (5.92)
Then
gt (S, F1) =g 1T,
en (S, F1) X 17,
where
o
o= 4 Brga ¥ >0 (5.93)
0 if rg=20,
o (r 1 g < 1
Vg = o+ <E+§) U (5.94)
do if <3
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5 Parametric Banach Space Valued Integration

Proof. The upper bounds follow from ([5.92)) and Corollary |5.2.4] For the proof of
the lower bounds, we observe that for each 2° = (z;)j, C By there is a constant
¢ > 0 such that for all mg,m; € Nand ¢ € U0 (%)

m(),m1
1]l ctrori (o ,2)

(7)) (65}
< cmaux{mgaomlla1| Cap € NP oy € NG J2ol + Jau] < 1}
To T

lagl lag]
= cmax{(mgo) 0 (m;) o ap € NP oy € Ng, |a_0|+|oz_1| < 1}
To r

0 r
< cmax (mg’,my),
and therefore,

cmin(m;", my") 00 (Z) C Betrorl(Qoxq,2)-

mo,mi1

Arguing as in the proof of the lower bounds for Theorem [5.3.1] gives the desired
result. O

Now, let us compare the exponents vy of the deterministic setting (5.93|) and vg
of the randomized setting (5.94]). We assume 7y > 0, otherwise both exponents
are zero. First consider the case r9/dy > 1/2. If r = 0, then vs = 0, vg = 1/2, so

the randomized rate is by the exponent 1/2 superior to the (trivial) deterministic
one, see also Figure [5.2]

order

T ran

N —

NI—

det

A\

[NC[SUR

Figure 5.2: Convergence order for fixed 7 = 0 with respect to 8 = % on the
0
x-axis.

For r > 0, the gap is smaller than 1/2, but it is never zero. The advantage

of randomization can be arbitrarily close to 1/2 (for large parameter smoothness
ro/dy or small t-smoothness r/d), see Figure 5.3 for the case r/d = 1.

74



5.4 Some Particular Classes of Functions

order 4

N
ran
1
2
L
| 4 e det
2 T T
6. |
iz |
| N
T T /
1 ,
! 1 B
Figure 5.3: Convergence order for fixed 7 = 1 with respect to 8 = g—g on the
T-axis.
If 0 < ro/dy < 1/2, we obtain
5 To To
Us = + - 7 Vg = —.

In this situation, the gain by randomization is also never zero, see Figure [5.3| For
small 7/d it is close to r¢/dy, and it reaches this value only for » = 0. The latter

case is easily seen in Figure [5.2

Notice that for 1o = r and Z = K we recover the results of [9] with the rates

r+% .
r if
_ _ d+d
Us = ) Vg = o
d + do T f
do

S5 &

>
<

NI~ N

I0)






Chapter 6

Parametric Banach Space Valued
Initial Value Problems

In the present chapter, we consider the complexity of parametric Banach space
valued initial value problems. We study the problem in the deterministic and
randomized setting for various classes of smoothness with respect to the input
functions. These classes are closely related to those considered in Chapter [5| and
include cases of isotropic and of dominating mixed smoothness as well.

We develop a randomized multilevel algorithm and determine its convergence
rate. The deterministic version is again obtained from the randomized one. The
algorithmic approach is a nonlinear analogue of the approach in Chapter [ We
use the Banach space valued generalizations [21] of the scalar results in [23] and
[8]. For the complexity analysis, we also prove lower bounds. To assess the
speedup that randomization can bring over deterministic methods, we compare
the optimal rates of the deterministic and randomized setting.

The chapter is organized as follows: First, we give a brief introduction into
the solution theory of Banach space valued ODEs. In Section we consider
Banach space valued ODEs and develop a multilevel approach. The parametric
problem is formulated in Section[6.4] and we show how it fits into the Banach space
valued scheme for a single equation of Section[6.2] In Section[6.5] the algorithm for
the parametric problem is described and convergence rates are derived. Section
contains lower bounds and the complexity is established. Finally, in Section
6.7 we discuss the considered classes and related ones, study special cases of the
obtained results, and provide comparisons between deterministic and randomized
setting.
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6 Parametric Banach Space Valued Initial Value Problems

6.1 Banach Space Valued ODEs

We briefly summarize results about the solution theory of Banach space valued
ordinary differential equations. We refer to the monograph [4] for a more detailed
introduction, all results and their proofs can be found there. For further reading
on ODEs in Banach spaces, we also refer to the monographs [7, 36, 46, 3T, [13].

In order to express the parametric problem as a Banach space valued non-
parametric problem, we have to consider local conditions. Demanding global
smoothness and global Lipschitz conditions would be too strong, even if we as-
sume global conditions for the parametric input sets. For this reason we only
concentrate on local conditions.

Let Z be an arbitrary Banach space and —o0 < a < b < oo, k, L € R. We
consider initial value problems for ODEs with values in Z of the form

u'(t) = f(tu)  (t€la,b]), (6.1)

where f € C([a,b] x Z,Z). A function u : [a,b] — Z is called a solution if u is
continuously differentiable and (§6.1)) is satisfied.

Proposition 6.1.1 (local existence). Let V' be a neighborhood of
(to, 20) € [a,b] x Z.
Let f € C(V,Z) such that for all (t,z), (t,22) € V
Lf (8, 21) = [, 22)||z < Ll|z1 — 2|2
Then there is a § > 0 such that the differential equation has a unique solution
w on [z0 — 9, 20 + 9], with u(ty) = 2.

More precisely: Let 79 > 0,77 > 0 be chosen in such a way that [ty — To, 1o +
70| X (20 + 1 Bz) is contained in 'V and

@2l <r

for |t —to] < 70, ||z — 20|| < 71. Then choosing § as

§ = inf (TO, ﬁ)
K

yields that u : [z0 — 0, 20 + 6] = (20 + T1.Bz).

Proof. See [4], Chap. II, Corollary 1.7.2. ]

78



6.2 Approximation of Banach Space Valued ODEs

A function f: U — Z (with U C [a,b] x Z) satisfies a local Lipschitz condition
with respect to the second variable if for every (¢, 29) € U, there is a neighborhood
V of (to,20) in U and a constant L > 0 such that for all (¢, z1), (t,22) € V

[f(t,21) = f(t, 22)||z < Ll|z1 — 22| 2.

Corollary 6.1.2. If f : U — Z 1is continuous and satisfies a local Lipschitz
condition with respect to the second variable, and if (to, z0) is an inner point of U,
then there exists 6 > 0 such that (6.1)) has a unique solution u : [to—4,to+3] = Z.

The last corollary only ensures the existence of a unique solution in a region
of ty. But if a global solution exists, the solution is unique on the whole interval

la, b].

Proposition 6.1.3 (global uniqueness). Let f : [a,b] X Z — Z be a function
satisfying a local Lipschitz condition with respect to the second variable. Assume
that uy : [a,b] — Z and uy : [a,b] — Z are both solutions of the differential
equation (6.1)). If there is a ty € [a,b] such that u(ty) = ui(to), then

up(t) = uy(t) (t € [a,b]).
Proof. See [], Chap. II, Theorem 1.8.2. O

To prove global existence of a solution on the whole interval [a, b], we have to
demand global Lipschitz condition. However, even in the local case it is possible
to prove existence on a maximal subinterval of [a, b].

Proposition 6.1.4. Let f € C(U, Z) satisfy a local Lipschitz condition and let
(to, 20) be an inner point of U. Then there exists a mazimal interval I with to € J
such that w : 3 — Z is a solution of (6.1) and u(ty) = zo. Due to Proposition

this solution is unique.

Proof. See [4], Chap. II, Theorem 1.8.3. O

6.2 Approximation of Banach Space Valued ODEs

Let Z and Z; be Banach spaces over the reals. This assumption is made because
in the following, we consider only real differentiation. Complex spaces can be
included by simply considering them as spaces over the reals. We introduce the
Banach space valued setting which will be connected to the parametric setting
later on. For the notations used here, we refer to Section [2.1]
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6 Parametric Banach Space Valued Initial Value Problems

Definition 6.2.1. Let —00 < a < b < 400, r € Ny, 0 < p < 1, and let
K, L : (0,+00) = (0,400) be any functions. We define the following class

C™(la,b] x Z,Zy; k) of continuous functions f : [a,b] X Z — Z; (6.2)

having, for o = (a1, ap) € N3 with |a| = a3 +ay < r, continuous partial (Fréchet-)
derivatives

ol f(t,x)
ot Qxe2
such that for all R > 0, t,t1,t5 € [a,b], x,y € RBz, |a| <r

H ol f(t, x)

€ %, (Z,7)

< .
Bto1 o w(R). (6.3)

E-(ZDéQ(Z7ZI)

and, for |a| = r,

alalf(tla I’) . a|a‘f(t27y)
ote10x2 Ote1 Qo2

< K(R)([t1 — t2|® + ||z — y|%). (6.4)
Loy (Z,21)

Moreover, let Cr ([a,b] x Z, Zy; K, L) be the class of all f € C"¢([a,b] x Z, Zy; k)
such that for R > 0, t € [a,b], 2,y € RBy

1t x) = fFty)ll < LR)||lz -yl (6.5)

Remark 6.2.2. The classes introduced above have smoothness (and the Lipschitz
property) bounded on bounded sets. Notice that all functions f € Cji([a,b] x
7, Z1; Kk, L) satisfy the local Lipschitz property, but the reverse is not true in
general. However, if Z is finite dimensional, there exists a finite cover of RBy

and the local Lipschitz property is equivalent to the conditions above.

For the further analysis, we consider initial value problems for ODEs with values
in Z as follows:

u'(t) = f(tu) (L€ la,b]), (6.6)
u(a) = uy, (6.7)
with f € C[2([a,b] X Z,Z;k, L) and uy € Z. We demand that the solution u of

also satpisﬁes . Then, due to and Proposition , the solution is
unique.

Next, we introduce the algorithm for Banach space valued (non-parametric)
initial value problems developed and studied in [21]. The scalar version has been
considered in [§], previously.
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6.2 Approximation of Banach Space Valued ODEs

Algorithm 6.2.3. Let m € Ng, n € N, let tx, =a+ kh (k=0,1,...,n) be the
uniform grid on [a, b] of mesh size h = (b — a)/n. Moreover, for 0 < k <n —1
and 1 < 5 < m let P,z’l be, as defined in , the one dimensional operator of
Lagrange interpolation of degree j on the equidistant grid

h
tk,j,i:tk‘i‘i; (Z:O,,])

on [tg, tgs1]. Let &, ..., &, be independent random variables on some probability
space (€2,3,P) such that &, is uniformly distributed on [t;_1, ;] where (k =
1,...,n). Since we will also consider & (w) for fixed w € ), we assume (without
loss of generality) that

{(6(w), - &n(w)) s w e QF = [to, 1] X - X [tna, 1. (6.8)

Fix f € Crj ([a,b] x Z,Z; kK, L), ug € Z, and define (ux);_, C Z and Z-valued
polynomials py ;(t) for k=0,...,n—1and j =0,...,m by induction as follows:
Assume that 0 < k < n — 1 and that u; is already defined. Then we define py
by

pk70(t) = up+ f(tk7 uk)(t — tk) (t - [tk7 tk+1]). (69)
Now suppose m > 1, 0 < j < m, and py; is already defined. We define py ;11 by
t
Prjri(t) = wp+ / (P qry) ()dr, (6.10)
125
where
g = (F(tgsri prg(tejo)))y - (6.11)

Finally, we put
ki1 = P (1) + 1 (F Gty Pean (Ees1)) — Den (Err1)) - (6.12)

The result of the algorithm, the approximation v € B([a, b], Z) to the solution u
of , is now defined by

o(t) = { pem(t) i tE€[tptrn) and 0<k<n-—1,

Uy, if t=t,. (6.13)

Let
A, Crd(la,b] x Z,Z; ks, L) x Z — B(la,b], Z)

Lip
denote the resulting mapping for w € € fixed, that is,

A?Zw(fa uO) =, (614)

and let A} denote the family of mappings A" = (A],)wen. We write A7 (f, uo)
for the random variable (A}, (f, u0))weq
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6 Parametric Banach Space Valued Initial Value Problems

Observe that for m =0
pk70(t) = U+ f(tk,uk)(t — tk) (t - [tk,tk+1], 0< k <n-— 1), (615)

Ut = U+ I f (€1, Pro(Errr)) (0<k<n-1). (6.16)
Concerning the definition of A7, notice that due to condition , fixing any

w € () is the same as fixing any values of

ka [tk—latk] (k‘:l,...,n).

This way we obtain a deterministic algorithm, where &, are fixed algorithm pa-
rameters.

Definition 6.2.4. Given also o, A > 0, we let F"¢([a,b] X Z,Z;k,L,0,)\) be
the class of all pairs (f,ug) with f € C[2([a,b] x Z,Z;k,L), ugp € 0By such

ip

that the initial value problem ([6.6H6.7)) has a solution u (which is unique, due to
Proposition and assumption (6.5))) satisfying

vl B(la.p,2) < A (6.17)
If r = o =0, we require in addition that (f,ug) is such that for all n € N, w € Q
HAg,w(f? uo)||B(la,2) < A (6.18)

The solution operator
S: F[a,b]| x Z,Z;k,L,0,\) = B([a,b], Z) (6.19)

is defined for (f,ug) € F"([a,b] X Z, Z; k, L, 0, \) by S(f,ug) = u, where u is the
solution of the initial value problem ([6.616.7)) as before.

The next proposition gives a convergence analysis for the Banach space valued
algorithm from above. It is an immediate consequence of results from [21], adapted
to the setting considered here.

Proposition 6.2.5. Let r € Ny, 0 < p <1, k,L: (0,400) = (0,400), o, A > 0,
1<p<2, andletmeNyifr+p0>0andm =0 ifr=0=20. Then there are
constants cy,co > 0 and vg € N such that for all Banach spaces Z and all n > v

sup |S(f, o) — AR (fs o)l B(la.b,2)
(fyuo)eFre(lab|xZ,Z;xk,L,0,\)

< ¢y~ min(remtl) (we Q) (6.20)

and

1/p
sup (B IS (F.0) = Az (F00) By g0
(fyuo)eFme([a,b]x Z,Z;k,L,0,\)

< o7y (Z)n~ min(rremt=141/p (6 91)
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6.3 A Multilevel Algorithm for Banach Space Valued ODEs

Proof. We set
U=lab x AN+1)BY, Uy=0Bz, V =]la,b]x \By.

Let (f,ug) € F"([a,b] X Z,Z; Kk, L,o,\). First we consider the case r + o > 0.
By (6.17)) we have, in the notation of [21],

(flu,uwo) € F7(U,k(A+ 1), LA+ 1),Up, V).

Since ABz + 5Bz C (A + 1)BY, Theorem 3.3 of [21] gives (6.20H6.21). Now let
r =0 =0 and put u = S(f,up). Then for t € [tg, tyi1]

u(te) + KA+ 1)(t = tx) Bz S ABz + k(A + 1)b — B, C (A+1)BY,

whenever n > vy := |k(A+1)(b—a)| + 1. Taking into account (6.17H6.18)), we
see that in the notation of [21],

(flv,uo) € AU, k(A +1), LN+ 1),Up, V,0,n)  (n > 1p).

Therefore, ((6.20H6.21)) follow for n > v from Proposition 3.4 of [21]. O

6.3 A Multilevel Algorithm for Banach Space
Valued ODEs

Lemma 6.3.1. Let Z and Z, be Banach spaces, f € C2([a,b] x Z, Z;k, L), and

Lip
T e Z(Z,Z). Assume that there are k1, Ly : (0,400) — (0, +00) and a function
g€ CO’O([a, bl X Zy, Zy1; k1, L) such that for allt € [a,b], z € Z

Lip
Tf(t, z)=g(t,Tz). (6.22)
Then for all ug € Z the following holds. For m € Ng, n € N, w € ()
TA),(f uo) = A7, (g, Tuo). (6.23)
Moreover, if u is a solution of , then Tu is a solution of the ODFE in Z,
w'(t) = g(t,w(t)) (t € a,b]), w(a) = Tuy. (6.24)
Proof. Applying T to (6.6), we get

(Tu(®)) = Tu'(t) =Tf(tu(t) =g, Tu(t)) (t€[ab]),
Tu(a) = Tuy.
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6 Parametric Banach Space Valued Initial Value Problems

Now the second statement follows from uniqueness of the solution of ([6.24]).

Let ug, pr,j, and g ; be the resulting sequences (6.96.12)) when applying A",
to (f,up). Furthermore, put @y = Ty and let g, py j, and i ; be the respective

functions from applying A}, to (g,to). We show that for 0 <k <n
Tuy = i, (6.25)
and for 0 <k <n-1
Tpe; = pr; (0<j5<m). (6.26)

First we prove that given k with 0 < k <n — 1, (6.25) implies (6.26)). So assume

that (6.25]) holds. We show ([6.26]) by induction over j. Let j = 0. By (6.22)) and
(®5)

Tf(tr, ur) = g(tr, Tug) = g(te, k),
therefore,
Tpkp(t) = TUk + Tf(tk, uk)(t — tk) = ’L~Lk + g(tk, ﬂk)(t — tk) = ﬁkyg(t).
Now we assume that (6.26]) holds for some j with 0 < j < m. Then

Tpy,j(trjs1i) = Prj(tejr1:) (E=0,...,5+1).
It follows that

T f(thjsvii Prg(trjan)) = 9(tegarir Prg (i),

and consequently

t
Tojir(t) = Tup+ T / (Poyirdign)(7)dr

ty
t
— Gt / (Poysrig ) (7)d7 = ogn (£).
173

This completes the induction over j and the proof that (6.25)) implies (6.26)).

Next we show ((6.25)) by induction over k. For k = 0 it holds by definition. Now
suppose (6.25)) and thus (6.26]) holds for some k with 0 < k < n — 1. It follows
that

Tupsr = Tprm(tirt) + (T (€t Prm (Ers1)) — Tl (Eri1))
= Pran(tier) + 1 (9(Eesr, Prom (Ers1)) = o (1)) = k1

This shows (/6.25]) for £+ 1, completes the induction over k and proves (6.25H6.26)).

Now, ((6.23]) follows from ((6.2546.26]) and (6.13H6.14]).
[
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6.3 A Multilevel Algorithm for Banach Space Valued ODEs

Assume that a Banach space Y is continuously embedded into the Banach space
X, and let J be the embedding map. We shall identify elements of Y with their
images in X.

Definition 6.3.2. Let r,r; € Ng, 0 < 0,01 < 1, k,L : (0,400) — (0,400),
o, A > 0, then we define

K = F¢(ja,b] x X, X;5,L,o, ) N F 0 (ja,b] x V,Yik, Lo, N),  (6.27)

which is the set of all (f,ug) € F¢([a,b] x X, X;k, L,0,\) such that f maps
[a,b] x Y to Y and, if f is considered as such a mapping, (f,ug) belongs to
Froei([a, b X Y)Yk, L o, \).

Observe that the solution operator S is correctly defined also on K, since
the respective operators on F"([a,b] x X, X;k, L,0,\) and F™ ([a,b] x Y,V
Kk, L,0,)\) coincide on the intersection. This follows from Lemma with
Z=Y  Z1=X,T=J,and g= f.

Next we state the general multilevel algorithm. The construction is similar to
the one for parametric integration. However, we will see that the analysis is more
involved due to the non-linearity of the problem.

Algorithm 6.3.3. Let (R))°, C Z(X) and fix any lp,l; € Ny, Iy < 3, and
(nl)ﬁlzlo C N. For (f,up) € K and w € Q we define an approximation 20, (f,ug) to
u = S(f,up) in the space B([a,b], X) as follows

I

A,(frug) = RZOA:”O7w(f7 ug) + Z (B — Ria) Ay o (fouo). (6.28)

I=lp+1

Without loss of generality, we demand that the underlying probability space
(©,%,P) is such that all random variables required on the levels ly,...,[; are
defined on it.

Moreover, we assume that there is a constant 79 > 0 such that for all [ € Ny
|Rillzxy < . (6.29)

Furthermore, we assume the existence of a family of operators (7;)52, C Z(X)
with the following properties: There are constants v,y > 0 such that for [ € Ny

1T 2x) < 7 (6.30)
T, maps Y to Y,
172l 20vy < 72, (6.31)
and
RTy = R, (k<. (6.32)
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6 Parametric Banach Space Valued Initial Value Problems

Definition 6.3.4. Let Ky C K be a subset with the following property: If f is
such that there exists a ug with (f,ug) € Ko, then

Tif(t,x) =T, f(t,Tix) (t€|a,b],z e X,leNy). (6.33)
As before we set
X;=cx(Ti(X)), Yi=cy(Li(Y)) (€N,

where cl denotes the closure in the respective space.

Notice that the T; do not enter the algorithm definition, they are only needed
for the error analysis. Furthermore, hold, in particular, for Ky = K
and 1} = Ix. In this case, the error estimate in the randomized setting
of Proposition below requires some type assumption on the spaces X and
Y. However, in Sections and we consider spaces X and Y which have no
nontrivial type, while certain finite dimensional subspaces related to the approx-
imation do have type constants with nontrivial estimates. Therefore, we will also
consider other choices of Ky and T}, see Section [6.5]

Proposition 6.3.5. Let r,r; € Ny, 0 < g,01 < 1, g, L : (0,400) = (0,+00),
o, N Y—2 >0, and 1 < p < 2. Then there are constants ci,co > 0 and vy € N
such that the following holds:

Given Banach spaces X, Y with Y continuously embedded into X, sequences

(R, (T1)72y C Z(X) satisfying (6.29H6.32), let K be defined by (6.27), and let
Ko C K be such that (6.33) is fulfilled. Then for all ly,l; € Ny with ly <l and
(nl)?:lo C N with ny > vy (lp <1 <1y) the so-defined algorithm () satisfies

sup  [|S(f,u0) — Ao (f, uo) || B(fabl.x)
(fyuo)€Ko

<allJ = Ry Jllgyx) +an, ¢

Iy
fo 3= R lwaon ™0 weQ), (634

I=lp+1
and for any I* € Ng with o < I* <y

sup  (E|[S(f,uo) — Ao (f, uO)H%([a,b],X))

A

(fyu0)€Ko
—r—o—1+7
< el — Ry J||l 2 vix) + comp(Xig)ny,
" —
o4 L
+e > MR = Rioa) Tl zvxpm, ’
I=lp+1
I
+or Y (R = Rio)J |z 2 (6.35)
1=l +1
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Proof. Let (f,uo) € Ko. Then by (6.27) and (6.17)
IS(f, wo) || B(ap)y) < A

It follows that

IS(f;u0) = B, S(fwo)llanrx) < Al = By Sl zvx)- (6.36)
We obtain by (6.30) and (6.31)
T'lof € Cﬁi([aa b] X XloaXlo;’yl"iafylL)a (637>
T,f € Cﬁl’)gl([a,b] X Y3, Y vok, 12 L) (lo <1< 1), (6.38)
and therefore, using (6.33) and Lemma with ¢ =T} f,
TS(fiug) = S(Tif, Tiwg) (o <1< 1), (6.39)
,TloAle,w(.ﬂ U0> - 'A:Llo,w (ﬂ0f7 ﬂ0u0> ((,d € Q)? (64())

T’[A;ll’w(f, Uo) = A;lhw(j—’[f,j—’luO) (w € Q, lo <[l < ll) (641)

This together with ((6.30H6.31]) and (/6.37H6.38)) implies

(T’lofv T’ZOUO) € F“Q([C% b] X le Xlo; 71’%771[17710-7 71>‘>7 (642>
(ﬂf’ EUO) € F”'l,Ql([a7b] X }/27}/2;72’%7 72L7720-7 ’72)\) (ZO <l S ll) (643)
By (6.28),

|S(f; o) — A0 (f; wo) || Bl x)
< |IS(f,u0) — Ry, S(f, uo) || B(la.b).x)
+ || Ry S(f, u0) — RIOAZ,O,w(fv UO)HB([a,b],X)

l1
+ > (R = Ria)(S(fu0) = At (frwo)) | Bias x)- (6.44)

I=lp+1

Furthermore, by (6.39), (6.40)), and (6.29),

[ R, S(f s wo) — Bip Ay, (S w0)l| B x)
= 1R, Ty S(f u0) — Ry Ti Ay, o(f5 10) Bl x)
= HRZOS(ﬂmﬁ ﬂ0u0> - RloAr (Eofa 7jlouO) HB([a,b},X)

nygy,w

S ’YOHS(,]}of? ,I’ZOUO) - A;l07w(1—‘lof7 EOUU)HB([a,b],XZO)) (645)
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6 Parametric Banach Space Valued Initial Value Problems

and similarly, by (6.39)) and (6.41)),

(R — Ri1)(S(f wo) — Ap o (s o) )| B(a, %)
= [|(Ry — i) Ti(S(f o) — Apy o (fs u0)) | B(lab,x)
= [[(R — Ri1)(S(T1f, Tiwo) — A, (Tof, Trwo)) || B((a.b).x)
< (B = Riea) || 2 ) IS(T1f, Trwo) — A7 (T2 f, Tiwo) | oy (6.46)

ny,w

By .43, and Proposition , for all w € 2 and (nl)?:lo C Nwith n; > vy
(Ip < l < l

IS(Th f: Tiguo) = ALy (Do fs Tiowo) | Ba i) < myy %, (6.47)
|S(Tif, Tiuo) — AL (T f, Tiwo) | Bapyyy < eng %, (6.48)

and

(BIS(Tin s, Tio) = Ay (T, Tigto) sy ) )

< en(Xigny O (6.49)
1
(BIS(Tif. Tro) — A7t o (Ti Tt )
o141
< en (Ym0 (6.50)

Combining (6.36) and (6.44H6.48) yields (6.34). Relation ([6.35) follows in a similar
way from (6. 36i (6.44}[6.46)), and -—-

]

6.4 The Parametric Problem as a Banach Space
Valued ODE

In this section, we express the parametric problem in terms of a Banach space val-
ued ODE, which allows us to apply the previous results for the general multilevel
algorithm defined above.

Let dy € N, Qo = [0,1]%™. To keep notation consistent, instead of considering
derivatives with respect to single components of s € R% we consider derivatives
with respect to the vector s, in the sense of calculus on vector spaces as in the
previous section. So below % is the Jacobian, 4 I 4 the Hessian, etc. The space
R% is equipped with the Euclidean norm. For r € Ny and a Banach space Z,
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6.4 The Parametric Problem as a Banach Space Valued ODE

we let in the following C"(Qo, Z) be the space of Z-valued r-times continuously
differentiable functions on )y, endowed with the norm

& f(s)
ds’

1flleiqoz = moax sup

‘gj(Rdo \Z)

Notice that for > 1 this is not the standard norm on C"(Qo, Z) as used before,
but it is equivalent to a constant depending only on dy and r.

Definition 6.4.1. Given functions &, L : (0,+00) — (0,+00), 9,7 € Ny, 0 <
0 < 1, and Banach spaces Z, Z;, we define the following class

Qo X |a,b] X Z,Z1; k) of continuous functions f : Qg X [a,b] X Z — Z;

having, for a = (g, a1, az) € N§ with ag < rp, g <7 and ag+ oy + ag < 1o+ 7,
continuous partial derivatives

ol f(s,t,2)

8804082‘:01162@2 S g‘IO:aQ (Rd()? Z? Zl)7

satisfying for R > 0, s € Qq, t € [a,b], z € RBy

and for s € Qo, tl,tg € [CL, b], 21, %2 € RBZ

Moreover, we let 679"¢(Qo % [a,b] X Z, Z1; &, L) be the class of all f € €70"2(Qg x
la,b] x Z, Zy; k) satisfying for o = (ay, 0, ) with ag + s < 19, R > 0, s € Qy,

t e [a,b], 21,29 € RBy

8|a|f(s7 ta 21) . a|a‘f(3a 7(“-7 ZQ)
08%0 0z 08*0 )z

ol f(s,t, 2)

< .
D50 Ot Oz R(R), (6.51)

xfao,oag (Rdovzazl)

9l f(s,t1,21) B O f (s, 12, 29)
0500t 0292 Qs 0t 0z

fao,ag (]Rd()vaZl)

S K<R>|t1 — t2|g + H(R)H,Zl — ZQ”Q. (652)

< L(R)||z1 — |- (6.53)

fao,ag (RdOaZ»Zl)

Clearly, if (), 7" € Ny fulfill 7, < ro, 7’ < r, then
GO (Qo % [a,b] x Z,Zy; k), C €T (Qo x [a,b] x Z, Zy; k), (6.54)
GrQu x [a.b] X Z, 2k, L) € EE(Qu x [0, x Z, Zuik, D).(6.55)

Lip - Lip
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6 Parametric Banach Space Valued Initial Value Problems

Furthermore, if ¢’ < o, then

Gl Qo x [a,b] x Z, Zisk, L) C 65 (Qo x [a,b] x Z, Z4; 2k, L), (6.56)

Lip Lip

where the factor 2 comes from the case max(|t; — ta|,||z1 — 22]|) > 1, in which
(6.51)) with constant  trivially implies (6.52)) with constant 2. Integration yields

ErQ x [a,0] X Z,Ziik L) C G (Qo x a,b] X Z, Zus k. L). (6.57)

Lip Lip

Finally, notice that it would suffice to require (6.52]) and (6.53)) for certain subsets
of the sets of multiindices o to obtain (up to constants) the same classes — we
omit the details, because the definition given above is more convenient for us.

The classes above were introduced for two Banach spaces Z, Z;. Some of the
lemmas below will be formulated in this general form, for technical convenience.
However, for the formulation of the problem and later for the main results we
have Z, = Z.

Now we consider the numerical solution of initial value problems for Z-valued
ODEs depending on a parameter s € (Qq;

%u(s,t) = f(s,t,u(s,t)) (s € Qo,t € [a,b]), (6.58)
u(s,a) = wup(s) (s € Qo), (6.59)
with f € 675"%(Qo X [a,0] x Z, Z;k,L) and ug € C™(Qo, Z). A function u :

Qo X [a,b] — Z is called a solution if, for each s € Qq, u(s,t) is continuously
differentiable as a function of ¢ and (6.58H6.59)) are satisfied.

Similar to the consideration of the parametric integration problem, the class
Gy ?(Qo X [a,b] X Z,Z; K, L) introduced above is a certain class of functions
with dominating mixed smoothness. As before, we consider the intersection of
two such classes. This enables us to exploit the full generality of and, in

particular, to include also functions with isotropic smoothness.

Definition 6.4.2. Let r; € Ny, 0 < o1 < 1, 0, A > 0. Then define .% as the class
of all

(f,uo) = (CK&;’Q(QO X [a,b] X Z,Z;k,L)N %{fﬁ”’gl(Qo X [a,b] X Z, Z; K, L))
X 0Bcroqo,z) (6.60)

such that the parameter dependent initial value problem (/6.58H6.59)) has a solution
u(s,t) (which is unique due to assumption on f) such that

sup  lu(s, t)]| < A, (6.61)

$€Qo, t€[a,b]
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6.4 The Parametric Problem as a Banach Space Valued ODE

and moreover, if r = p=17r; = 9, =0, then for alln € N, w € Q)

Sup HA’E)l,W(fS?uO(S)>HB([a b} Z) S )\7 (662)
s€Qo s0J

where f; denotes the function f(s,-,-) from [a,b] X Z to Z for fixed s € Q. We
define the solution operator

S F = B(Qo x [a,b], Z) (6.63)

for (f,ug) € F by L (f,ug) = u, where u = u(s,t) is the solution of (|6.58+6.59)).

Let us motivate the choice of the smoothness for the class .# in .
This is best explained when looking at the subset of those functions f which de-
pend only on s and t. Then the parameters rg, r,r1, 0, 01 describe the smoothness
of f(s,t) and we arrive at classes analogous to those studied in Chapter .

The smoothness we impose with respect to z can is chosen in an appropriate
way. By this we mean the following: We will show in Section that the com-
plexity only mildly depends on the smoothness in z in the sense that increasing
this smoothness does not result in a higher rate of the minimal errors. In fact,
even if f does not depend on z at all, we get the same rate. Therefore, with the
smoothness parameters 7o, r, 71, 0, 01 set for s and ¢, the smoothness in z has been
chosen in such a way that it just guarantees the respective convergence rate. (Of
course, a challenging problem is to find minimal smoothness requirements in z
that still ensure the same rate. We do not pursue this aspect here.)

The following is the central result of this section. It relates the parametric
problem to the problem of a single Banach space valued ODE considered in Section
6.2 with X = C(Qo, Z) and Y = C™(Qo, Z). As before, for a continuous function
f:Qo X [a,b] x Z — Z, we define a function

fi [a,b] X O(QQ,Z) — O(QQ,Zl)
by setting for ¢ € [a,b], © € C(Qo, Z)

(f(t,2))(s) = f(s,t,2(s)) (s € Qo).

Proposition 6.4.3. Givenrg,r,r1 € No, 0 < 0,01 <1, functions k, L : (0, 4+00) —
(0, +00),0,\ > 0, there are \y > 0 and k1, Ly : (0,400) — (0, +00) such that the
following holds: Let Z be a Banach space and let F be defined by . Then
for all (f,uy) € F

(f_7 UO) S ]_‘r‘,g([a’b] X C(QOa Z)ac(Q(hZ);/{laLlao-) A1)
N Fﬁ,@l([a’ b] X CTO(QO?Z)acwo(QOuZ);ﬁl?Llu(L )\1)

and

S(f,u0) = 7 (f, u0)- (6.64)
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6 Parametric Banach Space Valued Initial Value Problems

Concerning relation (6.64]), notice that we identify functions from B(Q, X
la,b],Z), u = u(s,t), with functions from B([a,b], B(Qo, Z)), u(t) = u(-,t). For
the proof of Proposition [6.4.3] we need some additional lemmas. We emphasize
that the constants (including the functions k1, L;) in the lemmas of this section
do not depend on Z and Z;.

Lemma 6.4.4. Given k, L, there are functions xy, Ly : (0,4+00) — (0, +00) such
that the following holds: for all f € €™%¢(Qq X [a,b] x Z, Zy; k), f maps [a,b] x
C™(Qo, Z) to C™(Qo, Z1) and, considered as such a mapping, satisfies

fec®(la,b] x C™(Qq, Z),C™(Qq, Z1); k1), (6.65)
; 70,0,0 .
and if f € €1 %(Qo X [a,b] X Z, Zy; Kk, L), then

fec(la,b] x C™(Qo, Z),C™(Qo, Z1); k1, Ly). (6.66)

Lip

Proof. To prove the result, we have to show that given f € €%¢(Qq X [a, b] x
7, Zy; k), the mapping f : [a,b] x C™(Qq, Z) — C™(Qy, Z1) is continuous. Fur-
thermore, we need to show that the boundedness condition as well as the o Holder
condition and the Lipschitz condition is satisfied.
e We argue by induction over ry € Ny. Let rg = 0.

Continuity of f : [a,b] x C(Qo, Z) = C(Qo, Z1): We show that if g : Qo X [a, b] X
Z — Zj is a continuous function, then g is continuous from [a,b] x C(Qy, Z) to
C(Qo, Z1). Let t,t, € [a,b], z,z, € C(Qo, Z) (n € N) be such that

lim [t, —#] =0, lim [lz, — z]c@oz) = 0.
It follows that
K={x,(s): s€Qo,neN}U{x(s): s € Qo}

is a compact subset of Z. Consequently, g is uniformly continuous on Qg X [a, b] X
K, and therefore,

lim sup [|g(s, tn, 7a(s)) — g(s,t,2(s))||z, = 0,

n—oo SEQO

which is the continuity of g.
Boundedness: Let x € RB¢(q,,7), hence ||z(s)|| < R, t € [a,b]. Then

17t Mooz = s Ifstx(s)lz < (R).
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6.4 The Parametric Problem as a Banach Space Valued ODE

Holder condition: Let also y € RBc(q,,2), t1,t2 € [a,b]. Then

17t2) = Ft ooz = sup £ (st (s)) = fs:ta ()
< w(R) sup (1t = tal* + [la(s) = y()]1)

= &Rt —tao|? + [lz = YllE 00,20

Lipschitz condition: In a similar way as before we obtain

17.2) = FE )l ignny = S0 (s, t2()) = Fls,t.y(3) 1z

SEQo

< L(R) sup [|z(s) — y(s)||

s€Qo

= LB)|z = yllo@o.2)

e Now let rg > 1 and assume that the statements ) and - hold for
ro — 1. We Start7w1th -
Continuity of f : [a,b] x C™(Qq, Z) — C™(Qo, Z1): Let f € €7%¢(Qq x [a, b] x

Z, Z:; ). Then by (6:51}{6:53)

foe €7(Qo x [a,b] x Z, Zy; k),

G = g_i € ¢N(Qo x [a,b] x Z, Z(R™, Z,); k),
g = % € CTH(Q x [a,0] X Z,L(Z, Z1); k),

therefore, by the induction assumption,

f S CO”Q([(Z,Z?] X Cro_l(Qo,Z),Cro_l(Qo,Zl);K,l), (667)
g € C"([a,b] x C"HQo, Z),C™ " HQo, L(R®, Z1)); k1),  (6.68)
G2 € C%([a,b] x C"™HQo, Z),C™ HQo, L (Z, Z))); k1). (6.69)

Fix t € [a,b] and z € C"™(Qy, Z). Then

(d%f(a w>) (s) = gi(s,t,2(s)) + gz<s,t,x<s>>dfl§>,

which means that J J
T
S F(t) = 9(t2) + Galt ) o

Next we show that (6.671{6.70)) imply that f maps [a, b} x C™(Qo, Z) to C™(Qo, Z1),
and f is a continuous function from [a, b] x C™(Qy, Z) to C™(Qo, Z1). By (6.67-

(6.70)
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and the assumption on x

t (
gilt,z) € CHQo, &L
Got,z) € C™HQy &L

dx o1

= € C"(Qo, Z

f( ,IL') € OTO_I QO,ZI )

which together with (6.70) gives f(t,z) € C™(Qo, Z1) and shows that f maps

[a, b] X CTO(QQ,Z) to Cr()(Qo,Zl).

Now let ¢, € [a,b], x, € C™(Qo, Z) (n=1,2,...

?

lim [t —t,] =0, lim [z — 2,lcroq.z) = 0.

n—o0

Using again ([6.67H6.69), we get

Jim [ 7(t,2) = F(tn, @)

nh_{{.lo Hgl (tv 1’) — g (tm mn)HCTo*l(QO,K(RdO,Zl))

7}1_{120 1G2(t, @) = Ga(tn, n) Hcro—l(QO,z(z,zl))

dr  dx,

ds ds

lim ’

Together with (6.70]), this implies
Tim [ £(t, ) = f(tn, 70|

so f is a continuous function from [a,b] x C™(Qo, Z) to C™(Qo, Z1).

) be chosen such that

Cm0~1(Qo,21)

Cro~1(Qo,.Z(R%,Z1))

C70(Qo,Z1)

Boundedness: We show that f satisfies the boundedness for ry. Let R > 0 and

T,y € RBCTO(QO,Z)-

This implies

‘ dx
ds || oro-1(Qo, 2 (w0, 2))
and together with (6.67H6.69)

Hf(t’ "E)| C0-1(Qo,71)

Hgl (t’ l’) HOTO*l(QO,K(RdO,Zl))

Hg? (tv x) HCTO*l(Qo,f(Z,Zl))
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6.4 The Parametric Problem as a Banach Space Valued ODE

so inserting into ((6.70]) gives

d -
)
< Ng1 (& @)l oro-1(@o, 20, 22))
B dz
+ c||ga(t, x) HCmfl(Qo,z(Z,Zl)) ds
C01(Qo, £ (R%,2))

< k1(R) + ck1(R)R.

Combining this with (6.73]), we obtain

170 o g < Fr(RCR 1)
Holder condition: By (6.71)),
dr dy
1% - 2 < o~ vllowian (6.75
5 @@z @i, 2))
Let t1,t5 € [a,b] and set
My = ri(R) (\tl )+ | — yngm_l@o’z)) . (6.76)

Then ([6.67H6.69) imply

||f(t1a .Z') - f(t27y)| Cro—1(Qo,21) < MOa (677)
||§1 (th :L‘) — 0 <t27 y) ||CT0—1(QO,$(Rd0,Zl)) < Mo, (6'78)
192(t1, 2) = G2(t2, Yl cro-1(0y,2(2,20) S Mo (6.79)

Using (6.70)),(6.72]),(6.74H6.75)), and (6.786.79) it follows that

d - d -
H%f(tl,x)—gf(tmy)

Cro=H(Qo,Z(R%,2,))
S Hgl(tla JI) - gl <t27 y)HCTO*l(QO,z(RdO,Zl))

d_x
ds

£ ellgaltn ) — Galta Dl ion wimm) ‘
CT0~H(Qo,Z(R%,Z))

dr dy

ds ds
< (14 cR)My + crr(R) ||z — yllero(qo,2)-

e ||92(t27 y)HC”"O*l(Qo,f(ZZl)) ‘ Cro=1(Qo,Z(R%,2))
0 ’
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Together with ((6.7646.77)) this gives

H.f(tlax) - f(tQay)l C70(Qo,71) < (1 + CR)I{l( ) <|t1 - Z(:2|g + ||$ - yHCTO 1(Qo, Z))

+ ck1(R) ||z — yllcro(@o,2)-

Taking into account that by (6.71)
12 = yllero(@o.z) < (QR)HHQj — YllEro o2y

this proves p-Holder continuity and thus
Lipschitz condition: To prove for o, 1t remains to show the Lipschitz
property. Let f € €/2%(Qq x [a, b] X Z Zy;k, L). Then

Lip
foe G Qo x [a,b] X Z, Zy; K, L),
af (

L ro—1,0,0
gl.—% < Cngop

0 r
= a_ic € GQy X [0,0] X Z,.2(Z, Z,): v, L).

Therefore, again by the induction assumption,
f e Clglla.b] x € 7H(Q0. 2),C™ 7N (Qo, Z1)i r, L),
g1 € CLlp([aa b] X CTO_I(QO,Z)uOTO_I(QO,Z(RdO721)); FdhLl),
32 € Clg(la.b] x C7HQo, 2),C" "N (Qo, Z(Z, Z1) )i kn, L)
Consequently,

Qo X [a,b] x Z, Z(R%. 7)), k, L),

||f t ‘7: (t y)‘ Cr0~Y(Qo,Z1) < Ll(R)Hx _yHCTO_l(QO,Z)a (680)
lg1(t,z) — g (t, ?/)Hcrrl(Qo,g(Rdo,zl)) < Li(B)[lz — yllcro-1(qo,2)s
192(t, ) — (¢, y)”oro—l(Qo,g(z,zl)) < Li(B)|lz = yllero-1(Qo.2)-

Using (6.70)), (6.72)), and (6.74 , it follows that

d - d -
S Fa) - S f(ty)

CTO_I(QOv’%(RdOﬂZl))

< ||§1(t7$> - gl(ta y)”oro—l(Qo,g(Rdo,Zl))

. ) dx
+ c||g2(t, x) — ga(t, y)HCTO*l(Qo,f(Z,Zl)) ds
Crofl(QOf_f(RdO,Z))
dr dy
+elgalt. )l eroes 1%
Cro~HQo.Z(Z.2)) || ds ~ ds Cro-1(Qo,.Z(R%,2))

< (L+ cR)Li(R)||lz — yllero-1(Qp,2) + cr1(R) ||z — yllcroqo.z)-
Together with ((6.80)), this proves the Lipschitz property. H
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It remains to show the previous result for r > 0.

Lemma 6.4.5. Given k, L, there are k1, Ly : (0,400) — (0,+00) such that for
all f € €707(Qo X [a,b] X Z, Z1; K)

f_ c CT’Q([CL, b] x C"° (Qo, Z), Cr()(Qo, Zl), Iil), (681)
and for all f € G13"%(Qo x [a,0] X Z, Zy; K, L)
f_ S C{’é([@, b] x C"° (Qo, Z), cr (Qo, Zl); K1, Ll) (682)

Proof. First we show (6.81)). We argue by induction over r. The case r = 0 follows
from (6.65)) of Lemma [6.4.4, Now let r > 1 and assume that the statement holds

for r — 1. It follows from (6.51H6.54]) that
foe € (Qo x [a,b] x Z,Zy; k),

g1 = aa_{ c (gm,r—l,g(Qo X [CL, b] X Z7 ZI;K),
92 ‘= g_ﬁ € €"(Qo x [a,0] X 2, L(Z, Zh); k).

The induction assumption implies

Foe erve(a ] x C(Q, Z), C™(Qo, Z0); k), (6.83)
g1 € CT_I’Q([CLJ)] XCTO(Q(),Z),CTO(Q(),21>;:‘il), (684)
B € ([0, b] x C°(Qo, Z),C™(Qo, L(Z, 1)) k1) (6.85)

Now we study the differentiability of f with respect to ¢ and z, as a function
from [a,b] X C"™(Qo, Z) to C™(Qo, Z1). Let t1,ts € [a,b], t; # ta, x € C™(Qy, Z),
s € Qy. Then

fta,x)(s) — f(tr,x)(s)  f(s,ta,2(s)) — f(s,t1,2(8))

t2_t]_ t2_t1

:/O gl(s,tl "—7—<t2 _tl)az(s))dT

:A §1<t1+7(t2—t1),$)(8)d7.

By (6.84]), g1 is a continuous function from [a,b] x C™(Qy, Z) to C™(Qq, Z1),
therefore, with the integral below considered in C™(Qy, Z1),

B 1
[ (ta, Itz - 7{1(151’ 2 - /0 gi(ts +7(ta — 1), x)dr
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and
lim sup ||gi(t: + 7(t2 — t1), ) — g1(t1, 7)||cro(Qo,z1) = O-

t2=11 ¢0,1)

Consequently, with differentiation meant in C™(Qq, Z),
i‘;—{ = q1. (6.86)
Next, we introduce the following mapping
Vi C"(Qo, L(Z, Zy)) = ZL(C™(Qo, Z),C"(Qo, Z1))
given for w € C™(Qo, L (Z, 7)), x € C™(Qo, Z), and s € Qy by
(Vw)z)(s) = w(s)z(s).

Clearly, V' is a bounded linear operator. This together with yields

Viogs € C1([a, ] x C™(Qy, 2), Z(C™(Qo, 2), C™(Qo, Z1)); [VIr) . (6.87)
Next let ¢t € [a,b], x,y € C™(Qo, Z), 0 € R, 0 #0, s € Q. Then we have

ft, 2 +0y)(s) = f(t,2)(s) _ fls.t.x(s) +Oy(s)) — f(s.t, 2(s))

0 1 0
:/0 g2(s,t, 2(s) + T0y(s))y(s)dr

_ /0 (Vaalt, x + 0y))y) (s)dr.

Relation ([6.87)) shows that V o gy is a continuous function from [a, b] x C"(Qy, Z)
to Z(C™(Qo, Z),C™(Qo, Z1)). It follows that

Stz + eye) — () _ /1(V§2(t, x + 70y))y dr, (6.88)
0
moreover,
E—If(l) Te[ﬁ,l]yilgc)m@o,z) ”V§2(t’ o Tey) B ng(t’ x)HX(CTO(QO7Z)7CTO(Q07Z1)) -
and hence
im s [(Vaa(ta+ r0y)y — (Vas(t2)yllonguz = 0. (6.89)

T€[0,1].y€Bcro(qy.2)
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6.4 The Parametric Problem as a Banach Space Valued ODE

From Proposition [2.3.2](6.88)), and (6.89)), we conclude that f is Fréchet differ-

entiable with respect to z as a function from [a,b] x C™(Qy, Z) to C™(Qo, Z1)

and oF
— =V og. 6.90
ox °92 ( )
Combining ((6.83}6.84)),(6.86}{6.87)), and completes the induction and thus

the proof of (6.81)). By (66.55)),
o (Qo % [a,b] x Z, Zy;k, L) C G%7(Qo  [a,b] X Z, Z1; K, L).

Lip Lip

Therefore, relation of Lemma yields the required Lipschitz property,
which proves ([6.82)). ]

Given (f,ug) € %, we recall that we consider the solution v = u(s,t) of (6.58
6.59) also as a function u(t) = u(-,t) in B([a,b], B(Qo, Z)), where the required
boundedness is a consequence of (6.61)).

Lemma 6.4.6. There is a constant \y > 0 such that for all (f,up) € F the
following hold: u(t) € C™(Qo, Z) (t € [a,b]), u is the unique solution of

du(t) _
- = [tu®) (teleb]), ule)=u, (6.91)

considered as an equation in C™(Qy, Z), moreover,

A1 (6.92)
A1 (meNweQ). (6.93)

 ullBap.co@oz) <
AN (f w0) | Blasi.cro(@o,2)) <

Proof. Let (f,up) € .%. We start with a preliminary argument. By Lemma m,

Foe enoab] x C™(Qo, Z), C™(Qo, Z); k1, L1). (6.94)

Lip
From Proposition [6.1.4] we conclude that there exists a solution w(t) of

dl;_it) = Fhw() (teab),  w(a)=u (6.95)

considered as an ODE in C™(Q, Z), on a maximal interval [a, b;) with a < b; < b.
Applying d; to (6.95), we get

000,00 = (G0(0.0.) = (7(e.0(0),0) = f(5.t, (0(0).6) (¢ € fa.b)
and

(w(a),ds) = (ug, ds) = uop(s).
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6 Parametric Banach Space Valued Initial Value Problems

By uniqueness of the solution to (6.586.59)), we conclude

(w(t),ds) = u(s,t) = (u(t),0s) (s € Qo,t € la, b)),

hence
w(t) =u(t) (t€la,b)). (6.96)

Now assume that

sup ||w(t)||oro (g, 2y = Fo < 0. (6.97)

te€la,br)
Then (6.94]) implies that for all ¢ € [a,b], x,y € (Ro + 1) Bcro(Qo,2)
If(t,2)lero@ez) < Fi(Ro+1),
1t 2) = Fty)ller@oz < La(Bo+ Dlle = ylleroqo.z):

Consequently, using Proposition [6.1.1] there is a 6 > 0 such that for any b, €
[a,by) the solution w(t) of (6.95) on [a,bs] can be continued to a solution on
[a, min(be + 6,0)]. It follows that b; = b and w(t) can be continued to a solution

of (6.95)) on [a, b, that is,

w e C([a,b],C™(Qo, Z)) (6.98)

and
)
dt
Since u(s, -) € C'([a,b],Z) (s € Qp), we use continuity to conclude from
and that

= f(t,w®) (t€][a,b]), w(a) = u. (6.99)

w(t) =u(t) (t€la,b]) (6.100)
and

sup [1a(®)lcro o ) < Ro- (6.101)

t€(a,b]

In summary; so far we have shown that (6.97)) implies (6.9846.101)). After this

preparation we prove the lemma.
e We argue by induction over ro. Let rg = 0. By (6.61]) of the definition of .% we
have

sup [[u(t)llogy,zy = sup  uls, )]z < A

tela,by) s€Qo,t€a,b1)
Therefore, (6.97) holds with Ry = A, so (6.100) and (6.101)) imply (6.92)) for
ro = 0. Moreover, if r = o = r; = g1 = 0, then (6.93]) follows by (/6.62)), while for
r 40> 0 or r + 01 > 0 we note that by (6.54) and

fe Eupt(Qoxa,b x Z,Z;k, L),

Lip

f e cgovﬁ’m(Qo X [a,b] X 4,7 FG;L))

Lip
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6.4 The Parametric Problem as a Banach Space Valued ODE

and therefore, by Lemma [6.4.5]

f_ € C}_ﬂ,’li([a7b] X C(Q()?Z)?C(QOuZ);/ihLl)u

f € CE;[’)QI([C% b] X C(Q():Z%C(Qoaz);’%l?[/l)'
Now, (6.93) is a consequence of (the already proven) relation (6.92) for 7o = 0 and
Proposition m (for n < vy it follows directly from the boundedness properties
of f and wy).
e Next let 7o > 1 and assume the statements are true for ro — 1. Let (f,ug) € F
and put

of

g1 = 5o € EVTQo x [ab] X Z, Z(RY, Z): k), (6.102)
g = Z—f e €0 (Qy X [a,b] X Z, L(Z, Z); k). (6.103)

By Lemma |6.4.5

G € C%([a,b] x C™7HQo, Z),C™ HQo, L(R™, Z)); k1),  (6.104)
G» € C"%[a,b] x C™(Qq, Z),C™(Qo, L(Z,Z)); k1). (6.105)

We start with the proof of (6.92). By the induction assumption, u(t) is the
solution of (6.91)), considered in C™~1(Qy, Z)), and

”u”B([a,b],C’“O*l(Qo,Z)) < ¢o. (6.106)

From ([6.104H6.106|) and the assumptions on ug, we conclude that there is a ¢; > 0
such that

sup Hgl(t?u(t))HCTO*l(QO,y(Rdo,Z)) S C1, (6.107)
tela,b]
ts?pb]”g2<t7u(t))“CTO*l(QO,X(Z)) < o (6.108)
c€la,
d
‘ﬂ < o (6.109)
ds || gro-1(Qo, 2 (R0, 2))

By uniqueness, we obtain w(t) = u(t), where w is the solution of (6.95). Thus,
u(t) € C™(Qo, Z) for all t € [a,by) and u(t) is continuously differentiable as a
function from [a, b1) to C"™(Qo, Z). Let D be differentiation <=, considered as an
operator

D e Z2(C™(Qo, Z),C™ HQo, Z(R®, Z2))).
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6 Parametric Banach Space Valued Initial Value Problems

By applying D to ((6.95]) with w = w and inserting (6.102H6.103)), we get

d(Du(t))  _du(t) 5
- D 7 = Df(t,u(t))
= it u(t)) + ga(t, u(t)) Du(t)  (t € [a,b1))
Du(a) = Duy.

Integrating with respect to ¢, we obtain for t € [a, b;)
t
Du(t) = Duo+ [ (@l u(r)) + gl u(r)Du(r) dr.

Using (6.107H6.109)), we conclude for ¢ € [a, b;)

HDu(t>HCTO*l(QO,_Z”(]RdO,Z))
t
< ||DuOHcro—l(Qo,z(Rdo,z))+/ 19:(7 ulrDllero-1@u, 2 wio 2 47

t
+/ ¢2 [192(7, w(T)) | ero-1 (o, 2(2)) 1P cro-1(qo, 2 R0, 2)) AT

t
< o+ (b—a)a+ 0102/ ||DU(T)||cro—1(QO,$(Rdo,Z)) dr.

Since ¢t — Du(t) is a continuous function from [a,b;) to C™7H(Qg, L (R%, 7)),
we can use Gronwall’s lemma to get

cica(b—a)

sup HDu(t)HCTO*l(Qm“Z(RdO,Z)) S (O' + (b — CL)C1>€ = Cs,

te€la,b1)

which together with (6.106|) gives

Sup ”w(t)HC’"O(QO,Z) = Ssup ||U(t)||cro(Q0,Z) < max(co, 3) := 4. (6.110)
t€la,b1) t€fa,b1)

Consequently, (6.97)) holds with Ry = ¢4, so (6.100)) and ((6.101)) give (6.92) for r.
Now we turn to (6-93). By (5.135.10).

Ap o (fu0) = v € B([a, b], C(Qo, Z)),

where

(1) = Dro(t) if te€ty,tgr1) and 0<k<n-—1
W, if t=t, ’
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6.4 The Parametric Problem as a Banach Space Valued ODE

and for k=0,...,n—1

peot) = wp+ flte,un)(t —tr)  (t € [thstrs]), (6.111)
Upsr = U+ hf (Eerrs Pro(Eer))- (6.112)

The induction assumption implies

)l cro- < 6.113
pdnax | max pro(t)llor-1(@oz) < o (6.113)

and
Mmax k]| cro-1(Q0,2) < Co- (6.114)

Using (6.94) and ug € C"™(Qo, Z), it readily follows from (6.111H6.112)) that for

0<k<n-—-1

pkyo(t) € CTO(QO, Z) (t c [tk7tk+1]7 0<k<n-— 1), (6115)
up € C™(Qo,Z) (0<k<mn). (6.116)

Differentiating (6.111)) and (6.112]), we obtain for 0 < k <n —1

dpro(&er1)  duy

duk

s =2 (Ek+1 — o) g1 (b wn) + (Ser — i) Gt Uk:)% (6.117)
du du _
d]jl = d—: + g1 (Ees1, Pro(Eetr))
d
+ hga (1. 0 (Epr1)) %. (6.118)
Inserting (6.117)) into (6.118)), we get
du du du
% = d_sk + hg1 (Ekr1s Pro(Ees)) + B (§k+1,pk,o(§k+1))d—;

+h(Eerr — t1)G2 Sk, Pro(Ept1) ) Gr (te, wr)

+h(Eer — t1) G2 (Sb1, o (Epr1) ) G2 (b, ur) %

Hence,

dug41
ds

d
= (Iz+ hvk)% + hay, (6.119)
where
v = G2(&ha1, Pe0(Er1)) + (St — tr) T2 (St Pro (1)) G (e, ),

wi = G1(&ri1s Peo(Ere1)) T (Eerr — ) G2 (S, Prio (5, Eerr) ) G (b, w)-
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By (6.1046.105) and (6.11316.114) it follows that

Oohan 1 [okllcro-1(qo. 22y < c1 (6.120)
ognk?f,l ”wkHcTO*l(Qo,z(Rdo,Z)) < . (6.121)
Moreover, by the assumption on ug,
d
‘ o s o (6.122)
dS CTO_l(QO7f(Rd0,Z))

We have by (6.119-6.121))

‘ dug4q
ds || oro-1(Qo, 2 (v, 2))
duk
< (1 + coh HUICHCTOJ(QO,:Z(Z))> ‘ Is + I llwgll ero-1 (o, 2 ®0, 2
S llero-1(Qo,2(R%,2))

duk

ds + Clh.

< (1 + Clcgh) ’

Cro~1(Qo,Z(R%,Z))
From this and (6.122)) we conclude for 1 < k <n

k-1
d .
‘ duy < o1+ aeh) +ah Y (1+ceh)
ds || cro-1(Q,2(®b,2)) =0
(1 —+ Clcgh)k -

< 1 h
= a(ltae ) b cich
< (1 + 1/02)(1 + Clczh) < 0'(1 + 1/02)60112271}1

= (14 1/cy)er2b=0) —: ¢,
In combination with (6.114)) this gives

OIEka<X 1wk ||l cro(@o,2) < €4 := max(cy, c3),

which, taking into account ((6.111)) and ((6.94)), also yields

| <
og%?ﬁlte?ﬁ;il] Hpk,o( )HC 0(Qo,Z) = s,

and hence the desired result.
O]

Proof of Proposition [6.4.3. The result follows from Lemmas 6.4.6], taking
into account that (6.92) and (6.93)) for o > 0 imply the respective estimates also

for rq = 0.
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6.5 Approximation of the Parametric Problem

For ry € Ny,dy € N we had 7y = max(rg,1). Moreover, for | € Ny, Fg?’do
was defined as the equidistant grid on (), with mesh size 7 19=l Let further
{Qoui : i =1,2,...,2%"} be the partition of @y into cubes of side length 2.
Define the following operators Ej; and Ry; acting on ®(R%, Z), the space of all
functions from R% to Z, as follows: For f € ®(R%, Z) and s € R% put
(Euf)(s) = flsu+27"s), (6.123)
(Ruf)(s) = [f(2(s—su)), (6.124)
where s;; is the point in ()p;; with minimal coordinates. We also apply these

operators to functions which are defined on subsets of R%. In this case, we assume
that the function is extended to R% by zero. Remember that for f € ®(R%, 7)

PP =" fla))p; (6.125)

Jj=1

is the Z-valued tensor product Lagrange interpolation operator of degree 7, where

(a;)5L, are the points of 7% and (¢5)iL, are the respective scalar Lagrange poly-

nomials, considered as functions on R%. If P;, denotes the space of polynomials
on R% of degree at most 7y, with coefficients in Z, we have

P"®g =g (g€ Ps).
Define & : ®(Qy, Z) — C(Qy, Z) for | € Ny by
(P f)(s) = (Rlino’dOElif)(S) (s € Qoui, [ € B(Qo, 2)),
thus, by ,
(Pu)(s) =D Flsu+27a;)e;(2'(s — s1) (5 € Qoui),
j=1

so &) is Z-valued composite tensor product Lagrange interpolation of degree 7
with respect to the partition (), and coincides with the previous definition from

and (2.7). Hence,
(Z1f)(s) = f(s) (s €™, f € B(Qo, Z))
and &7 is of the form

Pif= > [l (f€B(Qo 2)), (6.126)

70,40
SEFQI
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6 Parametric Banach Space Valued Initial Value Problems

with 1y € C(Qo).
In order to apply Proposition|6.3.5, we next construct operators 1; : C(Qo, Z) —
C™(Qo, Z) with certain suitable boundedness properties. Put

1 1 do
W= |- 1+ ,

max(rg, 1)’ max(rg, 1)

T, ={1,2,...,2%"% ‘and for | € Ny, i € 7
Wiy = s;; +27'W. (6.127)

Let n € C°°(R%) be such that n > 0, n = 1 on Qq, and supp (n) € W. Then

> (Rin)(s) =1 (s € Qo1 € Ny). (6.128)

1€,
Define functions 7; on Qo (i € Z;,1 € Ny) by

(Ruin)(s)
2 jez, (Bij)(s)

We define T} : ®(Qo, Z) — C™(Qo, Z) for [ € Ny and f € ®(Qo, Z) by

(Tif)(s) = Y mils) (RuP" " Euf)(s) (s € Qo), (6.130)

1€1;

consequently, using (6.123)) and ((6.125)),

mi(s) = (s € Qo). (6.129)

@A) =55 Flsit 2a)m(s) Rugs(s) (s€ Qo). (6.131)

icT, j=1

Thus, T; has the form

= Y f5)G (] € D(Q02)), (6.132)

70,do
sEFQl

with ¢, € C™(Qp).

Remark 6.5.1. Notice that T; is supposed to be an operator from C™(Qq, Z) to
C™(Qo, Z). This is for instance satisfied by Hermitian interpolation operators,
too. However, T} is also supposed to map C(Qo, Z) to C(Qo, Z). Both together
cannot be satisfied by Hermitian interpolation operators, due to differentiability
assumptions. For this reason, we use the approach with partition of unity from
above.
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For the proof of the next lemma, we denote for f € C™(Qy)

anf
ds™

|f|m,Qo = ‘

C(QO 7zm (Rdo 7R)) ‘

Lemma 6.5.2. There are constants ¢y, co > 0 such that for all Banach spaces Z
and | € Ny

1Tl 2c@onz) < a, (6.133)
1Tl zcro@ozy < ca (6.134)
Moreover, for f € ®(Qo, Z),

(T.f)(s) = f(s) (s €TH™). (6.135)

Proof. We first prove the result for Z = R. We have
mi(s) = 0 (s € Qo), (6.136)
mi(s) = 0 (s €Qo\ W), (6.137)
D omils) = 1 (s €Qo). (6.138)

€T,
Moreover, there are constants c¢1, ¢y > 0 such that form € Ny, 0 <m < rg, [ € Ny
IRl ommaoy < 2™ (i € Ty) (6.139)

and

< ¢y 2 6.140
\CM(M) <o (6.140)

H Z Rin
i€T,
From (6.128H6.129) and (/6.139H6.140)), we get for 0 < m <

il om oy < €27 (6.141)

First we show . Let s € Fg?’do. If s € Qou, then (R P[> Eyf)(s) = f(s).
On the other hand, by the definition of the support of 7, if s & Qg i, then s & W
(the interior of W};), hence (Ry;n)(s) = 0, and therefore, n;(s) = 0. This together
with and implies ((6.135)).

Relation is an immediate consequence of and ((6.136[H6.138)).
Now we turn to . Due to (6.133)), we can assume that o > 0. By (|6.125)),

for f e C™(W) and 0 < m <

fo,d
1P fllemovy < el fllerowy,
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and consequently,

Fo.d . Fo.d
If =P fllemwy = gg?l)f 1(f—g) =P — 9llemmw)
0
< c inf ||f = gllerow) < el flrow, (6.142)
9€Pr

where the latter relation is an application of Theorem 3.1.1 from [5] (this theorem
is formulated for Sobolev spaces W0 (W), but since f, Pi®® f, g € C™(W), the
corresponding (semi-)norms coincide). Let f € C"(Qo) and let f € C"°(R%) be
an extension of f with

[fllero@aoy < ellfllemo(@os

which exists due to the Whitney extension theorem, see [44] or [26], Theorem

2.3.6. From (|6.137)) and ([6.138)), we conclude
If =T lem@n = || D2 malf = RuP{ Buf)|

i€y

< cmaxn(f — RuP{"Euf)llcogn.  (6.143)
el

C70(Qo)

Furthermore, for 0 < m < rg
[Rugllommwy < 2™ lgllommy (g € C™(W)), (6.144)

and, using (|6.141]),

70

Imsgllero@ormwin < €Y 207 gllem@ormwiy (9 € C™(QoNWas)).  (6.145)

m=0

Applying (6.14416.145)), and ((6.142]), we obtain

Imi(f = RuP*® By f)llcrogo) = lImi(f — RiP® By f) | oo @orma)

0

< e 20 | — RyP{ By fllom o

m=0
o

<c Z 200=ml|| f — Ry PIO% By f || om iy

m=0

r0 _ . B
< 2" 3 B = PP B fllomon)
m=0

<c 2T01|Elif|ro,W- (6.146)
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Finally,

rol

Izréaif |Elz'f|ro,W =27 Illgg{ ‘flTo,le‘

S 27T01’f~|r0,Rd0

< 2"”°’I|f!|cm(wo)
< 27| fllero(@o)- (6.147)

Combining (6.143|) and ((6.146{{6.147]), we obtain
T2 llero@o) < [[fllero@o) + If = Tifllero@o) < cllflleroqo)s

which concludes the proof of for Z = R.

Now let Z be an arbitrary Banach space, and let T; be defined by for Z,
while TF denotes the respective operator for R. Using the already shown scalar
case, the general case follows as in the proof of Lemma . The case (6.133)
follows from

1T fle@o,zy = sup || (Tif,2°) e

z*€Bygx

= sup [T (f.27)
z*€Bgx

c@)

<c sup |[(f,2") lew
z*€Byx

= a1l flle@.2)-
The Banach space case of (6.134)) is derived as

(T f)
T3 fllcro(@o,z) = max  sup <M,Z )

0<j<ro 2+ ¢ B . ds’

B & (T (f,2Y))
= sup max |[|[—————
2*€B v 055<r0 ds?

= sup [|T;°(f.2")

Z*EBz*

<y sup || (f,27) leroqo

2*€EBgx
dfo,
dsi’”®

C(Qo,Z;(R%,R))

C(Qo,Z;(R%,R))

C"0(Qo)

= Cp mMax sup
0=J=70 2*€Byu

C(Qo,%;(R%,R))

= || fllero(@o,z)-
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We define the multilevel algorithm for the approximation of the parametric

problem ([6.586.59)). It is similar to the one chosen in Chapter [

Algorithm 6.5.3. Let (f,ug) € % and ly,l; € No, ly < ly, nyy,...,ny, €N,
w € ). We set

2lo

%(f? UO) = ‘@lo ((A:lzmw(fs’ UO(S»)SEr*Ode)

+ Z (,@l — 92171) ((AZILM(fS’UO(S»)seFZ?’dO) ; (6.148)

I=lp+1

where we use the respective algorithms given by (6.9H6.14)).

As before,

L
card(«,) < canQdol, (6.149)

I=lp

and the number of arithmetic operations of <7, (including additions in Z and
multiplications of elements of Z by scalars) is bounded from above by ¢ card(<7,)
for some ¢ > 0. The results of the analysis of this multilevel algorithm are covered
in the next statements. The proof of Theorem [6.5.4] will be given later on.

Theorem 6.5.4. Let ro,r,71 € Ng, 0 < 0,00 < 1 withr+ 0 > ri + 01, let
K, L : (0,4+00) = (0,400), o,A > 0, and 1 < p < 2. Then there are constants
c1,co > 0 and vy € N such that the following holds. Let Z be a Banach space and
let F be defined by (6.60). For all ly,l; € Ny with ly < Iy and for all ()}, C N
with ny > vy (lp <1< 1), the so-defined algorithm (,).,cq satisfies

sup || (f, wo) — (f, uo)ll Box[ab,2)

(f,uo)eﬂ‘
l1
<27 ten e Y 27T (we ), (6.150)
I=lp+1
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and for all I* with lop < 1* <[y

Sl

sup (E|.Z(f, u0) — A (f, Uo)”%@ox[a,b],Z))

(f,uo)eﬁ?
—r—p—14+1
< 0227710[1 -+ Cg(l[) + 1)%7},(2)”10 ey
I* i
to 3+ 1) (2)270m,
I=lp+1
I
tey » 27 e (6.151)
1=l*+1

Remark 6.5.5. Observe that the restriction r + 0 > r; 4 ¢; in Theorem [6.5.4]is no
loss of generality. Indeed, if 4+ ¢ < 1 + 01, then either r < ry or (r=1r1) A (0 <

01). It follows from ([6.55H6.57) that in both cases
EON Qo X [a, b X Z,Z:k, L) C €7%(Qo X [a,b] X Z, Z; 2k, L).

Lip Lip
Consequently,

Cgro,h,Ql(QO < [a7b] X Z’ Z, /<;/2,L),

Lip
G *(Qo % [a,0) X Z, Z; 5, L) NG (Qo % [a,0] X Z, Z; ki, L),

= Lip Lip

c (gTo,Tth(QO X [a,b] X Z, Z; K7L>7

Lip

which by (6.55) and means that the case r + o < r; + 0; is essentially the
same as the case r =7y, 0 = 01.

Corollary 6.5.6. Assume the conditions of Theorem are satisfied. Then
there are constant c¢1_4 > 0 and vy € N such that for each n € N with n > v
there is a choice of ly, 1y € Ny and (nl)ﬁlzlo C N such that ly <,

card(,) < cin (we ),

and

sup ||-L(f, uo) — A(f, u0)l B@oxap].2)

(fruo)eF
n o1 if 2—2 >7r+ 01
< n_%(log n)ZTgJrl if F=r+o>0 (6.152)
_To
n f F=Entoa=0V g <nto,
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6 Parametric Banach Space Valued Initial Value Problems

where

To

- do
v = r—+ o). 6.153
. ;—E+T+Q—T1—Q1< ) ( )

Moreover, for all Banach spaces Z with 7,(Z) < oo and each n € N with n > vy
there is a choice of ly,1*,1; € Ny and (nl)fl C N such that Iy < I* <y,

=lp

card(<Z,) < e3n (w e ),

and

3=

sup <]E H:Sﬂ(f, uO) - vQ{w(fa uU)H%(QgX[(L,bLZ))

(f,uo)eﬁz
( ppisl P
ne if 2>mtatl-tArte=m+ta
n="0)(log n)2 if Be>mtoa+l-LArto>nta
_To To 43 . TO f
n % (logn)® "2 if R=r+to+l—7
§C4 & ™
”_i(log”)ﬁ(ﬁ_”_m) if mta<P<ntat+l-g
n” b (loglogn) ! if 2=ri+toa>0
-0 . T T
(|n if £<T1+01\/£:7’1+91:0,< )
6.154
with
o
__do _1 f o _1
Uo(p) = G trte—ri—a <T+Q+ 1 P) if &~ to+l p (6.155)
= fp<rm+o+l—;.

Proof. Similar to the case of parametric integration, we derive the upper bounds

in 16.152: and (6.154]) from (6.150]),(6.151])) of Theorem m The deterministic
case ([6.152) follows analogously to the proof of Corollary [5.2.4, by setting

r
B=r+o, 50:d—07 B1 =11+ 01,
0

which yields for the case Z—g > 711+ 01 (thus Gy > 51)

Bo T (r+o .
v = = = = Ul’
bo+B—P FHr+o—r—on
Using
(fSU)P? 1.7 (f, w0) — Ao (fw0) | B@ox(ap,z) < ¢ M (lo, v, (nz)flzlo)- (6.156)
) EJ

112



6.5 Approximation of the Parametric Problem

the statement (6.152)) follows from Lemma and Theorem . Next we
consider the randomized case ([6.154) and set

1 T 1
5=T~|—Q+1—Z—j, 50:0[_0’ 5127“1+91+1—];> By =11+ 01, (6.157)
0

which gives for ro/dy > r1 + 01 + 1 — 1/p (thus 5y > (1)

T 1
BB i(”ﬁl—;) _ 5(p)
Bo+ 58— B 2—g+7’+9—7”1—01 2

We conclude from (6.151]) and (5.12)) that for any [* with I, < I* <[4

hSA

sup (E ||y(f, UO) - L‘Z{w(fa uO)H%(QOX[a,b],Z))

(f,’U‘O)E«?

< cE(lo, 1", 1, (n)},,). (6.158)

With this, the upper estimates in (6.154]) are consequences of (6.149)),(5.13)),(5.16)),

and (6.157))-(6.158)); except for the last case of ((6.154]), which follows directly from
the respective case of the deterministic setting (6.152)). [

Asin Chapter it is also possible to find a choice of Iy, I*,l; € Ny, (nl)ﬁlzlo C Nin
such a way that they depend only on the smoothness class, but not on the setting.
This way the randomized algorithm satisfies the (usually stronger) error bound
of the randomized setting, while each realization also satisfies the deterministic
bound. However, additional logarithmic factors occur in the estimates.

Corollary 6.5.7. Assume the conditions of Theorem [0.5.4] are satisfied. Then
there are constants ci_3 > 0 such that for all n € N with n > 2 the following
holds: Setting

logn r+o0—r1—01
ll - d ) lOZ o ll )
0 o trto—nmn—o

ng = 1l (Qdo(ll_l)—‘ (lo S l S l1>,
the so-defined algorithm (<Z,)ueq fulfills

card(#,) < cynlogn (w € Q).
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6 Parametric Banach Space Valued Initial Value Problems

Moreover,
(f,itl)%,@ |- (f, uo) — ([, o) || B(Qox[ab].2)
n—vt if 2—?)>7’1+Q1
<y nff%(logn) if F=rt+o>0
_rn
n_ if f=rtoa=0Vg<rn+ton.

Finally, if 7,(Z) < o0,

1
sup <E |- (f;uo) — (f, UO)H%(QOX[a,b],Z)) ’
(fiuo)eF
n”’?(p)(logn)% f E>mto+l- ]lj
<c3 n_ﬁ(logn)% if 2—227‘1—1—@1—1-1—%
n_i(logn)% if ;—g:h—i-m—i-l—%.
Proof. The estimates are similar to these in Lemma [5.2.3] we omit them. The
proof can also be found in [12], Corollary 4.3. O

Proof of Theorem|6.5.4). Our goal is to apply Proposition with X = C(Qo, Z
and Y = C™(Qo, Z). Using that F;?;do C Fg?’do for k < [, it follows from (6.126)

and of Lemma [6.5.2] that
2T =2 (k<. (6.159)
We put for [ € Ny
Xi =T (C(Qo, 2)) C C(Qo, 2), Yi=T(C"(Qo, Z)) C C"(CQo, 2),

so X; = Y] algebraically, but X; is endowed with the norm induced by C(Qo, Z)
and Y; with the norm induced by C™(Qo, Z). Next we derive estimates of 7,(X)
and 7,(Y;). For i € Z;, we let V}; be the linear vector space

Vie = sSpan {nllek@HQo,li ke L with VVI(I)C N Qo’li ?é @, ‘] - 1’ Y K} ’
Furthermore, let
X = (‘/2“ || ||C(Q0,li)) ) li = (Wzv || ||CT0(Q0,M)) )
Xli = (Vlz ® Z, ” HC(QO,liaZ)) ) ~li - (Vzl ®Z, ” HCTO(QO’“’Z)) ’

where ® denotes the algebraic tensor product. We observe that by (6.131]), for

f € C(QO) Z) ~
Tlf|Qo,z¢ € X
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6.5 Approximation of the Parametric Problem

Moreover, for m =0,...,rg

ITifllom oz = max || T lgu il con g .20

Consequently, X; can be identified isometrically with a subspace of
X, = (@ Xl> (6.160)
i€y 0o

and Y; with a subspace of

Y, = (@n) . (6.161)

It follows from (6.127)) and (6.137) that there is a constant ¢ > 0 such that for all
leNy,iel

Two Banach spaces Z; and Z; are called c-isomorphic, where ¢ > 1, if there is
an isomorphism T : Z; — Zy with ||T||||T~!|| < ¢. The Banach-Mazur distance
d(Zy, Zy) between Z; and Zj is defined to be the infimum of all such ¢. Next we
show that there is a constant ¢ > 0 such that

d(Xu, 0% (2)) < ¢, d(Yi, % (2) <c¢ (l€NyieT). (6.163)

o0

Indeed, it suffices to consider f/}i, the case Xli follows by setting ro = 0. Let
(gk)‘,:ﬁl be an Auerbach basis of Y};, that is,

dy;

Z OkJk
k=1

Such bases exist in every finite dimensional Banach space, see [35], Prop. 1.c.3.
Now define T : Vj; ® Z — (%i(Z) for

dy;

<> ok (€R E=1,....dy).  (6.164)
k=1

max |ag| <
1<k<dy;

Yy,

dy;
wZE G Rz €V Q7
k=1
by Tw = (2)%,. Then
di; di; )
[wlly, = E Ik @ 2 = max max g (21, 2%) @
¥ - 0<j<rg 2*€Byx ds?
h=t Yii k=1 C(Qo,1i,-Z; (R% R))
i dy;
*
= max | (22) g = max Y (z,2") g
Z*EBZ* Z*EBz*
k=1 C70(Qo,1:) k=1 Yis
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6 Parametric Banach Space Valued Initial Value Problems

Moreover, using (6.164]), it follows that

||Tw||ggéz(z) = lg’llci};“ ||ZkH - znel%x* 12%%}5 | (Zk7 ) ’
di;
= > (2"
Sl P (21, 27) g
= Yi
dlz

VAN

i s 2] = Tl

hence || T||[|T7Y| < dy, which together with (6.162)), gives the second relation of
(6.163).
From (/6.162)), we get

my =Y dy <2 (1€ Ny). (6.165)

1€y

It follows from (6.160)),(6.161)), and (6.163)) that

d(thgL)l(Z)) < ¢, d(f/},fgy(Z)) <c (l € N0)7
and therefore,

7(X1)

(X)) < en(€2(2)),
TP(YE) <c

(1) < en(t(2)).

This together with Lemma [2.3.8[and (6.165)) implies that there is a constant ¢ > 0
such that for all [ € Ny

<
<

() <cl+1)21,(2), 7,(X) <c(l+1)27,(2). (6.166)

Furthermore, if f € CK&S’O(QO X [a,b]x Z,Z; k, L), we get from ((6.132)) and (/6.135))

that for all | € Ny, ¢ € [a,b], x € C(Qo, Z)

ﬂf(t7x) = Z (f(t Cls - Z f S, t ZE Cls

sEF;?’dO seF;? do
= Z f(S,t, (7"[1’)(8))(15 = Z (f(t,’]}l‘))(s) Cls
seF;?'dO serg?*do
= Tif(t, Tix). (6.167)
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6.5 Approximation of the Parametric Problem

Similarly, for all x € C(Qo, Z) and s € Q)

(f(t’x)755) = f(S,t,:L‘(S)) = f(S,t, (I,és)) = fs(tv <m768>>

By Lemma [6.4.4] f € CY?([a,b] x C(Qo, Z),C(Qo, Z); k1, L) for some ky, Ly and

Lip
by definition, see 16.51H6.53 , fs € Cg’i?)([a, bl x Z,Z; k,L). Now we apply Lemma

with T'= §, and g = f, and obtain

(A w(Frwo) b)) = A5 L(fouols) (5 € Q) (6.168)
(A7 (Fouo),65) = AD (fsiuo(s) (s€ Qo lo<I<1h). (6.169)

As a consequence of ([6.28)),(6.148)),(6.168)), and (6.169), we can relate algorithm
7, for the parametric problem to algorithm 2(, for the general Banach space

valued problem of Section [6.2] as follows

A fru) = Py (( ;lo,wuz,w(s)))seﬁg,%)

Iy
D SC R (EERTAE) ey
I=lo+1 2

l1

= ‘@loAZLlO,w<.f7 UO) + Z (‘@l - ‘@l—l)Azll,w<.fu uO)

I1=lp+1
= A (f, uo). (6.170)

We put
Ko ={(f,u0): (f,u0o) € 7}.
Then Proposition [6.4.3] gives

Ko C F2([a,b] x C(Qo, Z), C(Qo, Z); k1, L1, 0, A1)
N F2([a,b] x C™(Qo, Z),C"(Qo, Z); k1, L1, 0, \). (6.171)

Furthermore, ({2.8]),(6.133H6.134),(6.159)),(6.167), and (6.171) show that the as-
sumptions of Proposition [6.3.5] are fulfilled. Therefore (6.34) of Proposition m

together with (6.64)),(2.9)), and (6.170]) prove (6.150). The estimate (6.151) follows
from ([6.35)) of Proposition together with (6.64)),(2.9),(6.166)), and (6.170)).
]
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6 Parametric Banach Space Valued Initial Value Problems

6.6 Complexity Analysis

In terminology of we set K = Z and the set of information functionals Ajp
is given by

Aiyp = {0540 s € Qo t €a,b],z€ Z}U {ds: s € Qo}, (6.172)
where for (f,ug) € F

Ost2(fouo) = f(s,t,2),  0s(f,u0) = uo(s). (6.173)

So the admissible information is Z-valued and consists of values of f and wy.
Setting F' = .7, G = B(Qo X [a,b],Z), and S = .7, the corresponding numerical
problem II is defined by

II=(%,B(Qo x [a,b],2),., Z, Aiyp).

The following theorem, which is the main result of this chapter, gives almost
sharp estimates of the deterministic and randomized minimal errors for arbitrary
Banach spaces and hence, of the complexity of the parametric initial value prob-
lem. In special cases, the estimates are sharp even up to logarithmic factors.

Moreover, combined with Corollary[6.5.7} it shows that the optimal order is real-
ized by the multilevel algorithm presented before; more precisely, in the determin-
istic case by 7, for any w € , and in the randomized case by (,),cq, with pa-
rameters chosen in an appropriate way. Concerning the assumption r+90 > r1+ 01,
we refer to Remark [6.5.5]

Theorem 6.6.1. Let rog,7, 71 € Ng, 0 < 0,00 < 1, withr+0 > 11+ 01, K, L :
(0, +00) = (0,400), and o, A > 0, where we assume that

Ko 1= 0<11%rif+oo k(R) > 0. (6.174)

Let Z be a Banach space and let # be defined by . Then in the

deterministic setting,

(S F) = 7w
T el (S, F) < logm) BT =6y > 0 (6175)
(7, 7)< n FaR=h=0VE <A

where B1 = r1 + 01 and U1 was defined in (6.153)) by
To

- do
v = r+0) . 6.176
'S Emerren-al 7Y (6:-176)
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6.6 Complexity Analysis

Moreover, let 1 < p < 2 and assume that Z is of type p. Let py denote the
supremum. of all p1 such that Z is of type p1. Then in the randomized setting,

B L (S F) S ), (6.077)
with O9(p) given in (m 0.155]) by
d—o 1 — l) f 1o 1-1
Top) = { BTt Ti—ar <T Fetl=g) dazntatl=g g
@ if:l—g§ﬁ+91+1—%

As discussed for the case of parametric Banach space valued integration, 0y (p)
is a continuous, monotonically increasing function of p € [1,2]. It follows that the
bounds in the randomized case of Theorem [6.6.1are matching up to an arbitrarily
small gap in the exponent. Under an additional assumption, upper and lower
bounds are of the same order up to logarithmic factors.

Corollary 6.6.2. Assume that the conditions of Theorem hold. Then for
each € > 0

n~02(pz) < e (S F) < n—02(pz)+e
Furthermore, if Z is such that p is attained, and in particular if Z is of type 2,
more precise estimates can be given. This is the content of the following theorem.

Theorem 6.6.3. Assume that the conditions of Theorem hold. If the supre-
mum of types is attained, that is, Z is of type pz, then

_r_q14-1
e (S, F) <n 4z if 2>p+l-—L Arto=5
~02(pz) < ern( P F) < p0202) (log n)2 if 2>bHh+1- pl—Z N1H40> 0
_r0 _mn To 3 o
n % < e, F) <n” % (logn)h if e=p+1-2L
< (o, F) < n‘%aogn)ﬁ(%“ﬁ) § <<t
n"d% < e F)=n @ (loglogn)doJr if = 51 >0
-2 : r r
e F)=xn if R=5=0V2<p
Furthermore, if Z is of type 2,
e (S F)=n T2 if 2—g>/@1+%/\r+92,81
e (7 F) = n 2@ (logn)z if >0+ TATHO> B
_ro 1 _r0 rogs .
n % (logn)? 2 e(S, F) 2n w(logn)h T2 if L= p+ 3
_ro , .
NS, F) = n W (logn)do e if i<<pfi+i
n % < e F)3In K (loglogn)ﬁJrl if #=06>0
-0 - T T
e F)=xn Qo if 2=Hh=0V <P
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6 Parametric Banach Space Valued Initial Value Problems

For particular examples of Banach spaces that satisfy the conditions above, we
refer to the preceding discussions.
Proof of Theorem and Theorem[6.6.5. The upper bounds follow from Corol-
lary [6.5.6] To show the lower bounds, let .75 : C(Qo x [0,1], Z) = C(Qo, Z) be
given for f € C(Q x [0,1], Z) by

(Aof)(s) = / F(s.0)dt (s € Qo).

This is the operator of Z-valued definite parametric integration, with a one-
dimensional integration domain (thus d = 1), as defined in the previous chapter.
Define

Vo : C(Qo % [0,1], 2) = C(Qo x [a,0], Z)

for f € C(Qo x [0,1], Z) by

t—a

N0 =f(si=2)  GeQuiet). (1

and
Vi:C(Qo X [a,b], Z) — C(Qo X [a,b],Z) x C(Qo, Z)

for f € C(Qo % [a,b],Z) by
Vif =(f.0), (6.180)

and
‘/2 . B(QO X [a,b],Z) — B(Q072>

for g€ B(QO X [CL,b],Z) by

(Vag)(s) = g(s,0) (s € Qo).

Then we have

Vall = 1. (6.181)
For Fpym = {1,...,mP} x {1,...,m} and 2 = (zj)?fl C By set

qjgzo,m(g) = Z 6ijwijzj . (57;]' € [—1, 1], (Z,]) € jmo,m . (6182)

(4,3) € Img,m

with
Vij(s,1) = po.i(s)p;(t)
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as defined in (5.64)) using d = 1. Let

n 1 1
i — Si T ey T
K 2m0 2m0

be the center of Qo ;, and let T;,,, : B(Qo, Z) — C(Qo, Z) be given for v € B(Qo, Z)
by

Then there is a constant ¢; > 0 such that for all mg € N
[ Tono [l < 1, (6.183)
and because of , we have
T =0 (v € span {(poﬂ-z ci=1,. m0 ,Z € Z}) (6.184)

For f € C(Qyx[0,1],Z), we set f := Vf and consider functions f on Qg x [a, b]
as functions on Qg x [a, b] X Z not depending on z € Z. The solution u = .7 (f,0)
of

—u(s,t) = f(s,t) (s€Qu,t € [a,b])
0 (SGQ())

u(s,a) =

is

u(s,t):/Gf( t—a/fsr

(b= @A) = Ty 0 Voo S0 VioVa)(J)  (f € span¥h,, (Z)). (6.185)

Consequently,

Moreover, if f satisfies

£ llc@oxian.z) < (b—a)™'A, (6.186)
then
sup  lu(s, t)|| < A (6.187)
SEQo,tEa,b]

Furthermore according to -—- forn € N, w € Q, s € @y, we have
0 oo 0) = (s, -) with

| Pro(s,t) if té€ [ty tir1), 0<k<n-—1,
U(S;t) - { un(s) if t= tn,
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6 Parametric Banach Space Valued Initial Value Problems

up(s) =0, and for 0 < k <n—1,t € [tg, tpt1],

pk,o(sat) = uk(s) + (t~_ tk)f<3>tk>7
upt1(s) = wk(s) + hf(s, &)

So (6.186]) also implies

sup
s5€Qo

Taking into account (6.174)), we obtain (similar to (4.43])) that there is a con-
stant ¢y > 0 such that for all mg,m € N

AD (s O)H <A (6.188)

B([a,b],2)

com ™ VoW, n(F)) S GLAQo X [0, X Z,Z; L), (6.189)

mo,m Lip
comgy 'm- Y, - . 0 X |a,b] X 4, 45K, L),\0.
o m T AV (W, (2) C (@ bl x Z, Z; k, L),(6.190
coVo(WUpym(Z)) € (b—a) " ABc@oxa,2)- (6.191)

We set
Prtesroriton (D@F) = (pmin (m—T—Q’ marom—ﬁ—@l) Pl (,,@F), (6192)

mo,m mo,m

thus, by (6.189H6.191)),
Vo(Wrtermter( gy ¢000(Qq x [a,b] X Z, Z; k, L)

mo,m = Lip
NGy (Qo x [a,0] x Z, Z;k, L) (6.193)
Voot () € (b— a) " ABogoxia.)- (6.194)
Using ((6.193H6.194)) and (6.186H6.188]), it follows that for all mg,m € N
VioVy (W feronte () C Z. (6.195)

We put Ky = Z and consider the following class of information functionals on
C(QO X [07 1]7 Z)

A={0s+:5€Qo,t €[0,1]}, 05:(f) = f(s,1). (6.196)

We conclude from (6.185)) and (6.195)) that the problem
(‘y07 \IITJFQ’TO,M—FQI (g)7 C(QO? Z)J Z7 A)

mg,m

reduces to
(7, F,B(Qo % [a,b],Z), Z, Niyp)-

Consequently, by (6.181)), (6.185)), and Lemma [2.2.14} for all n,mg,m € N
NS F) > et H, Wrterornten( gy, (6.197)

mo,m
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where set € {det,ran}. Moreover, by linearity of ., Corollary 2.2.15] and (6.192))

en (o, Ut e (L)
= comin (m "%, my "0 m ") e H, VY, (Z)). (6.198)

mo,m

Thus, it suffices to estimate 5™ (.7, ¥, .. (2)) for certain choices of 2. This can

be done, as for parametric integration, using Lemma [5.3.6| In the deterministic
case, we apply Lemma [5.3.6| with

v =71+ o0, Yo = To, Y1 =71+ 01,

and get, using ((5.81]) and (6.176]),

To
do

RATto-—n-o

U3 = (7"_'_9): @17

which proves the lower bounds in (6.175)) using (6.197)),(6.198), and Lemma [5.3.6]
Next we consider the randomized case (6.154]). Using ((5.83) and (6.178)), we get
forr+o>ri+o0+1-1/p

To

1
do ~
U4(p)— T (7 +Q+1‘ ') - Ug(p.

£+7’+Q—T1—Q1 p )

Finally, Lemma5.3.6](6.197), and (6.198)) yield the lower bounds in Theorem [6.6.1]
and Theorem [6.6.3]

O

Remark 6.6.4. Finite systems of d scalar ODEs are included in our analysis by
setting Z = (4. Letting %, stand for .# with Z = /,(N) and denoting the classes
ZF for Z = (3 by Z4 (all with the same dimension of the parameter space dy and
with the same constants k, L, 0, \), it is easily shown that .#; can be embedded
into %, in an uniform way. This shows, in particular, that the error estimates of
the algorithm, see Corollary [6.5.6] hold with constants which are independent of
the dimension d of the system. Taking into account that an ¢4-valued information
functional is equivalent to d scalar-valued information functionals, it follows that
the family (:%#4)4en is polynomially tractable in the randomized setting if ro > 0
and in the deterministic setting if 7o > 0 and r 4+ o > 0. We refer to [40] for the
notion of tractability and more on this direction of research.
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6 Parametric Banach Space Valued Initial Value Problems

6.7 Some Particular Classes of Functions

First let us consider the case of globally bounded functions. Here we have k = kg
and L = Ly with Ko, Ly € ]R, Ko, Ly > 0. Then

F = (€0%(Qo x [a,b] x Z, Z; ko, Lo) N6 (Qo  [a,b] X Z, Z; kg, L))

Lip Lip
X0 Bero@o.2);

provided the constant A involved in the definition (6.60H6.62) of .% satisfies
A >0+ ko(b—a). (6.199)

In other words, for globally bounded classes conditions and are
automatically fulfilled whenever holds.

Next let us consider the case of linear equations and see how it fits the class
F. For kg > 0 let C™"2(Qy % [a,b], Z; ko) denote the subset of all functions in
Ee((Qy X [a,b] X Z, Z; ko) which do not depend on z € Z. Given kg, k1,0 > 0,
let & be the set of all pairs (f, ug) with ug € 0Bcro(q,,z) and [ : Qox|a,b|xZ — Z
of the form

f(s,t,2) = go(s,t) + g1(s, 1)z, (6.200)
with
9o € CO’T’Q(QO X [CL, b], Z, /€0> N Crorer (QO X [CL, b], Z, Ro), (6201)
g1 € CO"(Qq x [a,b], L(Z); k1) N C™"2(Qq x [a,b], L(Z);k1).  (6.202)
This means we consider the linear equation

%u(s,t) = go(s,t) + gi(s, t)u(s,t) (6.203)

u(s,a) = wup(s). (6.204)

Corollary 6.7.1. Letrg,r,r1 € No, 0 < 0,01 < 1, withr+4+0 > r1+ 01, Ko, k1,0 >
0. Then there ezist k, L : (0,+00) — (0,400) and A > 0 such that

G C.7F, (6.205)

where ¢ is defined in (6.200H6.202) and F in (6.60H6.62)), and the statements of
Theorem hold with .7 replaced by 9.

Proof. Tt is easily checked that

9 < (€0°(Qx [a,b] x 2,7k, L)

Lip

NGO (Qo X [a,b] x Z, Z; /{,L)) X 0Bero(Qo,z)

Lip
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6.7 Some Particular Classes of Functions

for suitable x, L. Thus, it remains to verify (6.616.62). Since f is Lipschitz
continuous with constant x, the solution of (6.203H6.204]) exists on [a, b] and is
unique. Integrating with respect to t we get

u(s,t) = w@w+/<%@m»+m@nw@nwda

consequently for ¢ € [a, b]

t
la(- Dllpons < a+w—amwwa/|m«mwm%@dﬂ

which by Gronwall’s lemma gives

HuHB(QOX[a,b],Z) S (0’ —+ (b _ a)l@o)e"ﬂ(b_a)'

By (6.1416.16), we have A ,(fs, uo(s)) = v(s, - ), where

(5.) = pro(s,t) if t e[ty tyr) and 0<k<n-—1,
uist) = Un($) if t=t,,

and for 0 <k <n—1,t € [ty, tg1]
Pro(s,t) = ug(s) + (t —tx)go(s, tr) + (t — ti)gr(s, te)ur(s), (6.206)
ups1(s) = uk(s) + hgo(s, &rs1) + hgi (s, &es1)Pro(s, Eerr).  (6.207)
Inserting with ¢t = &1 into , we get

up1(s) = ur(s) 4+ hgo(s, Erar) + h(Errr — tr) g1 (5, Eer1) go(s, L),
+hg1 (s, Erpr)ur(s) + P(Eyr = tr)gr (s, Era) 91(s, t)un(s),

thus with ¢y = ko(1 + hk), c1 = k1(1 + hkq)
[kl ez < (L+ch) lurllpigyz) + coh-

Using ||uo||B(go,z) < 0, we obtain for 1 <k <n

k—1

lurll pooy < o(1+ah)f +chd (1+ch)
7=0
< (0 + C—0> (1+ch)" < (0 + @> ecr(b=a)
C1 K1

< (g+@> o (1 (b—a)r1) (b—a)
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6 Parametric Banach Space Valued Initial Value Problems

Together with ((6.206)), this implies

t
oJRaX | max lP0( - )| B(Qo,2)

< (14 (b—a)k1) (U + @> errtbam)b=a) 4 () _ g)p,
R1
and hence the desired result (6.205]), which in turn implies the upper bound.
That the lower bounds of Theorem [6.6.1] also hold for ¢ follows directly from
the proof of Theorem and the fact that ¢ contains all pairs (f,0) with

f=g0€C"Qq X [a,b], Z; ko) N C™"™2(Qq X [a,b], Z; ko).
]

The class 675,"%(Qo % [a,b] X Z, Z;k, L) consists of functions with a certain
type of dominating mixed smoothness. We have chosen .# to be given by an
intersection of two such classes, because this way we can also include isotropic
smoothness and certain anisotropic analogues thereof. Let us look at these special
cases in more detail. For the subsequent discussion, we assume, for the sake of
simplicity, that Z is of type 2, which includes in particular the case of finite
systems of scalar equations Z = R%.
First we consider the case r = r{, 0 = ¢1. Then .% is the set of all
(f,uo) € E2"°(Qo x [a,b] x Z,Z; k, L) X 0 Bcro(Qy,2)

Lip

satisfying (6.61)) and, if » = o = 0, (6.62)). Thus, the involved functions f have

dominating mixed smoothness. From Theorem [6.6.1], we obtain

Corollary 6.7.2. Let rg,7 € No, 0 < o < 1, r =11, 0 = 01, assume that ((6.174])
holds and that Z is of type 2. Then

S T o m O D)

)
NS TF) g ),

This is the corresponding case to Corollary in Chapter . Hence, if r¢/dy <
r + o, the rates are the same. If rq/dy > r + p, the best rate of randomized
algorithms is superior to that of deterministic algorithms. If ro/dy > r + o + %,
the best randomized algorithms outperform the best deterministic ones by an
order of n='/2. This is particularly important if, e.g., 7 = 0 and o is small. Then
the deterministic rate n=¢ is slow (for o = 0, there is no convergence rate at all),
while we still have at least n~'/? in the randomized setting. For an illustration,
see also Figure , which coincides if we replace r/d by r + o.
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6.7 Some Particular Classes of Functions

Next we assume r; = o1 = 0, which means that .% is the set of

(f,u0) € (%&;’Q(Qo x [a,b] x Z, Z:#, L)

NG5 (Qo x [0,6] % Z,Z;5,1)) X 0Bom(@uz (6.208)

Lip

fulfilling (6.61)), and if r = o = 0, (6.62), so that here the functions f have
smoothness in s and ¢ separately. In this case, Theorem [6.6.1] yields

Corollary 6.7.3. Let rg,r € Ny, 0 < 0 < 1, 1y = 01 = 0, suppose (6.174]) holds
and Z is of type 2. Then

NS F) Ry 0

eSS F) <iog N1,
where

0 Zf 7"0:()

Us = ® | (6.200)
% (r+ o) otherwise

T0

do 1 . 70 1

. o (rte+tsz) if £=23
by = atrte ( ) Uz (6.210)

o if &<
Except for the trivial case ro = 0, the randomized setting is always superior
to the deterministic one, although the maximum of improvement n~/? is only

reached if r = ¢ = 0 and r9/dy > 1/2 (this case, in fact, has already been
considered above). The rates are similar to these considered in Corollary [5.4.2]
therefore, see also Figure for the case r + ¢ = 0 and Figure for the case
r+o=1.

Next we keep the restriction r; = p; = 0 and assume also ¢ = 0. In this case,
we want to identify certain subclasses of .%. Let r, € Ny and let €omm2l(Qq x
la,b] X Z, Z; k) be the space of continuous functions f : Qg x [a,b] X Z — Z having
for all a = (v, 1, vp) € N3 with

%+%+%§1 (6.211)
To r T9
(we interpret 8 = 0 and § = +4oo if 7 > 0) continuous partial derivatives
aﬁ?gﬁ% such that for R > 0, s € Qq, t € [a,b], z € RBy
ool f(s,t, 2
e
S M Lag g (RY0,2,2)
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6 Parametric Banach Space Valued Initial Value Problems

If rg = ro = r, then this is just isotropic C"-smoothness. Furthermore, if ro > rg,

we let %IE?I‘;’T’TQ](QO X [a,b] X Z,Z;k,L) be the subset consisting of those f €

CKIEZ;’T’TQ](QO X |a,b] x Z,Z; k) which satisfy the Lipschitz conditions

< L(R)[[z1 — 2]
Log,ag (R0,2,7)

8|O“f(s, ta Zl) . 8|a|f(87 t: 22)
0820 ) z2 0520 ) z02

for ag + s <19, R> 0,5 € Qo, t € [a,b], 21,22 € RBz. Finally, we let 5 be
the set of all

(f,u0) € G527 (Qo % [a,b] X Z, Z; 5, L) X 0 Bor(go.2)

Lip

satisfying (6.61]), and if » = 0, (6.62)). Considering the class .# with r; = g =
0 = 0 and taking into account ([6.208)), it follows that for all ro > max(ro, )

HCF. (6.212)

Corollary 6.7.4. Let ro,r,r9 € Ng, ro > max(ro,r), assume that (0.174}) holds
and that Z is of type 2. Then for any A with 7 C .M C F

ei“(&”,///) Slog N2,
eSS M) Xiog N,

where U3 and U4 are as in (6.209H6.210|), with o = 0. In particular, if ro =r > 0,
U3 and Uy take the form

'H‘% r 1
TtEogp o ro>1

Dy= =4 B do = 2 (6.213)
do —+ 1 r . r 1

Proof. The upper bounds follow from ((6.212)) and Corollary 6.7.3] Let us show
the lower bounds. We use the notation from the proof of Theorem [6.6.1. For each

7 = (zj)’]?fl C By there is a constant ¢y > 0 such that for all mg,m € N and
€W m(Z)

mo,m
”wa H clromr2l(Qo x [a,b) x Z,Z)

Qo Q1
< ¢pmax {mg‘omo“ Dag, a1 ENy, — 4+ — < 1}
r

To
= (pmax { (m{?)

< ¢opmax (mg’,m"),

0 o1 [0 «
0 (mT) to aOaaleNOa T_0+71§1}
0
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6.7 Some Particular Classes of Functions

where Vj is defined in (6.179). Setting
U,om(Z) = min (Iio, (b — a)_l)\) ¢yt min(mgy ", m™") W0 (%),

mo,m

it follows that

Vo(Wno(2)) € G107 NQo % [a,] % Z, Z; 5, L),
Vo(Wongm(Z)) € (b—a) " ABo(ox(a.2):

and therefore, by (6.187)) and (6.188)), for all mg,m € N
VioVo(Wmem(Z)) € 0 C M,

where V] is defined in (6.180)). Now the same argument as used in the proof of
Theorem [6.6.1] (with 71 = o1 = o = 0) gives the lower bounds.
O

As we have already discussed before with regard to .%, here, the rates do not
depend on the smoothness ry of f in the variable z as well. We observe that by
, for ro = r and in particular in the isotropic case rqg = ry = r, the maximal
speedup of randomized algorithms over deterministic ones is n='/4, reached for
d() = 1, T Z 1.
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Chapter 7

Parametric Hilbert Space Valued
Initial Value Problems

The main goal of this chapter is the study of parameter dependent finite systems
of scalar ODEs, that is, Z = R? for some d € N. However, we still consider the
more general case Z = H, where H is any Hilbert space over the reals. This way
we also include infinite systems of scalar ODEs.

In Chapter [6] we only considered classes that are defined on the whole space.
Choosing Z as an arbitrary Hilbert space enables us to investigate more general
local classes. For this purpose, we use standard localization methods that cannot
be generalized to the Banach space valued case due to the non-existence of smooth
bump functions, see [I5]. Although we study a much larger class of input function,
we recover the same rates as before for type 2 Banach spaces.

The chapter is organized as follows: Section contains the formula-
tion of the problem and the definition of the considered class of input functions.
Convergence rates are derived in Section [7.2] and in Section [7.3] we present the
complexity analysis.

7.1 Problem Formulation

As before let dy € N, Qg = [0, 1]%. Given ro,7 € Ng, 0 < 0 <1, A\, k, L > 0, and
a real Hilbert space H, we consider the class €77"*(Qo % [a,b] x \\ By, H; K, L)
as defined in Definition , where BY denotes the open unit ball of H. Thus,
concerning the Definition , we set Z = A\ BY, 7, is replaced by H and &, L
are only scalar values yet. We write Cfi([a,b] x A1 By, H; w, L) for the subclass
of CK&;’Q(QO X [a,b] x \yBY%, H; k, L) consisting of functions not depending on s.

Given f € €72"%(Qo % [a,b] x \yB%, H; k, L) and uy € A\ BY, we consider the

Lip
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7 Parametric Hilbert Space Valued Initial Value Problems

parameter dependent initial value problem

%u(s,t) = f(s,t,u(s,t)) (s € Qo,t € [a,b]), (7.1)

u(s,a) = wuo(s) (s € Qo), (7.2)

as in Chapter @ A function u : Qo X [a,b] — H is called a solution if, for each
s € Qo, u(s,t) is continuously differentiable as a function of ¢, u(s,t) € A\ B for

all s € Qo,t € [a,b], and (7.1H7.2) are satisfied.
Next we present a modification of A} from Chapter [6] We have to adjust the

definition since, in contrast to the previous cases, the algorithm may not always

be defined.

Algorithm 7.1.1. Let m € Ny, n € N, and put h = (b—a)/n, ty = a+ kh (k=
0,1,...,n). Furthermore, for 0 <k <n—1and 1 < j <m, let P,g’l be, as in
, the operator of Lagrange interpolation of degree j on the equidistant grid
thji =tk +ih/j (1=0,...,7) on [ty tys1]. Let &, ..., &, be independent random
variables on some probability space (£2, X, P) such that & is uniformly distributed
on [tk—htk] and

{(&i(w), ..., &n(w)) 1 w e Q} = [to, t1] X -+ X [tn1,tn).

We define (uy);_; C H and H-valued polynomials py ;(t) for £ = 0,...,n — 1,
j=0,...,m by induction. Let 0 < k <mn — 1, suppose uy, is already defined and

Then we put
Peo(t) = wp+ fte, )t —te) (¢ € [t thr]). (7.4)

Furthermore, if m > 1, 0 < j <m, py; is already defined, and

Pri(tejri) € MBY (i=0,...,5+1), (7.5)
then we set
G = (v prg(te o)) (7.6)
and
b i1a
Prjt+1(t) = uk—l—/ (P,g+ ’ qk’j) (1)dr. (7.7)
7%
Finally, if
Prm(t) € M By (t € [tr, tiia]), (7.8)
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7.1 Problem Formulation

we set
Uk+1 = pk,m(tk-H) +h (f(§k+1,pk,m(sz+1)) - p;am(fk"rl)) . (7-9)

We define v € B([a,b], H) by

v(t) = { Prm () if t€lty,thy) and 0<k<n-—1,

Un, if t=t,. (7.10)

For w € Q fixed, let
Al CrE(la, b] x M BYy, Hy k, L) x H — B([a,b], H)

Lip
denote the resulting mapping, that is,
An(fuo) = v. (7.11)

We say that A" (f,uo) is defined on [a,b] x A\ By (or, shortly: defined) if this
definition goes through till , that is, ,, are satisfied for all 0 <
k<n—1,andifm > 1, for 0 < 7 < m—1. If any of the conditions ,,
is violated for some w and some k, we leave A7, (f, uo) undefined. We use the

same identifier as in Chapter |§|7 since both operators coincide if A7, (f,uo) is
defined.

Remember that for m = 0, we have
pk,()(t) = up+ f(tk,uk)(t - tk) (t € [tk,tk+1], 0 S k S n — 1), (712)
U1 = U+ hf (&1, Pro(Err1)) (0<k<n-1). (7.13)

Next we define the local version .%. of the previously considered class of input
function .% from Chapter [6]

Definition 7.1.2. Given also ¢ > 0 and \g > 0 with \y < A, let %, be the
class of all

(fru) € (G502(Qo x [a,b] x M BY, Hix, 1)

Lip

Lip

NG (Qo x [a,b] x M By, H r, L)) X 0 Bero(qo.m) (7-14)

such that the parameter dependent initial value problem ((7.1H7.2)) has a solution
u(s,t) with
sup  Ju(s, t)]] < Ao, (7.15)

5€Q07 te [avb]

and moreover, if r = o = r; = p; = 0, then for all n € N, w € Q, s € Q,
A (fs,uo(s)) is defined on [a,b] x A\ By and

sseuQI?) HA?L,w<f87 UO(S)) HB([a,b],H) < Ao (716>
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7 Parametric Hilbert Space Valued Initial Value Problems

The solution operator
S Proc = B(Qo X [a,b], H) (7.17)

is given for (f,ug) € Fioc by - (f,ug) = u as before.

7.2 Multilevel Algorithms and
Convergence Analysis

The following multilevel algorithm for the approximate solution of the parametric
problem (7.1H7.2)) has already been introduced in Chapter[6] We recall it here for

the more general algorithm A7, .

Algorithm 7.2.1. Let Iy, [ € Ny, lo < Iy, nyy,...,n, € Ny w € Q, and set

%(f? Uo) = ‘@lo <<A2107w<f3’ uo(s»)seprbde)

+ Z (c@l - c@l_l) <(A:Lllv°-’(fs’UO(S)))seFZ?’d()) . (718)

I=lp+1
The algorithms
A (fouls) (s € T, (7.19)
A o(fouo(s)) (s eTy™ly <I<h) (7.20)

are given by (7.3H7.11)). We say that <7, (f, ug) is defined if the algorithms ((7.19))
and (7.20) are defined. If o7, (f, uo) is defined, the definition of <7, coincides with

the definition of 27, in Chapter [6] which justifies choosing the same symbol as in
the previous chapter. Moreover, as before

I
card(e7,) < CZ n 2%, (7.21)

I=lp

Theorem 7.2.2. Let ro,r,r1 € No, dg € N, 0 < 9,00 <1, withr+ 0 > 1 + 01,
k,L,o >0, and \y > \g > 0. There are constants ci,cs > 0 and vy € N such that
the following holds. Let H be a Hilbert space and let P, be defined by
@ . Then for all ly,l; € Ng with ly < 1y and for all <”l)§1:lo C N with n; > vy
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(lo <1< 1ly), H,(f,up) is defined for all (f,ug) € Froc, w € Q

sup || (f,u0) — Au(f, wo) || B(Qox[a.5),H)

(f7u0)€5’710C
I

<27 om0+ o Z 27Tl T (W e ), (7.22)
I=lp+1

and for all I* with lop < 1* <[4

sup (Euy(-ﬂ UQ) - ”Q{w(fa uO)H2B(Q0><[a,b},H))

(f,u0)EF1oc
S 62277‘0[1 +C2(lo+ 1)%7/[;07.7971/2
I I
o1 e
oy Y (L 1)E2Tl T ey ST gl e (7.93)
I=lo+1 I=1*+1

Proof. Let 69 = (A — Ag)/4 > 0 and let ¢ be a C*° function on [0, 4+00) with

D=

1/1(7’) =1 if OSTS (/\0+250)2,
Qﬂ(T) =0 if 7 > ()\0 + 3(50)2.

For
fe ‘Kﬂ’;’g(Qox [a, b] x)\lB%,H; K, L)ﬂ%{ﬁ;”’m(Qox [a, b] x)\lB?{,H; k, L) (7.24)
we put
; _ | e ta)p(a]?) i o] <M
flst,z) = { 0 otherwise.
It follows that 3
f(s,t,x) = f(s,t,x)  (||z]] < X+ 2dp). (7.25)

Moreover, due to the (infinite) differentiability of the scalar product (z,z) = ||z||?
there are k1, L; > 0 (not depending on H) such that for all f satisfying (7.24))

fe€(Qo % [a,b] x H, H; ky, L) NE2 2 (Qo X [a,b] x H, H; ky, Ly). (7.26)

Lip Lip

Let uy € 0Bcr(g,,m) and assume that (f,ug) € Fioe. Then, by assumption, the

solution u(s,t) of (7.1H7.2)) exists and fulfills
sup  |lu(s, t)|| < Xo. (7.27)

s€Qo,tE€(a,b]

Consequently,

%u(s,t) = f(s,t,u(s,t)) = f(s,t,u(s,t)) (s € Qo, t € [a,b]),
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7 Parametric Hilbert Space Valued Initial Value Problems

which implies

Let us denote h; = (b — a)/n; and
o r if [= lo
(0 _{ noif ly <<l (7.29)

Now we show that for (f,uy) € P and w € Q, algorithm <7, is defined and
%w(f7 UO) = ‘Q{w(fa U’O)- (730)

First we consider the case r + ¢ > 0. It follows from ([7.26]) and Theorem 3.2 of
[21] that there is a 14 > 0 such that for all [y <1 <y, ny > v, w €Q, s € Qo

17 (s () = AR, (o uo () p(1ain.m) < o,
hence, by (7.27) and (7.28),
A, (fes wo() Biastm < Ao+ do- (7.31)

Now we fix [ with Iy <1 <1l;, ny > v, w € Q, s € Qo Let ug(s) (0 <k < ny),
Dk, (s, - ), and i ;(s) (0 < k <mn;—1,0 < j <r(l)) be the sequences arising in the
definition of AZE{L(fs,uo(s)), and let ui(s), pr (s, -), and g ;(s) be the
corresponding sequences for (f5, ug(s)), as far as they are defined on [a, b] x \; BY

(see (7.3), (7.5), and (7.8)). By (7.31)), for ¢ € [ty, txs1]
[Pr,ry (5, )| < Ao + o,

and therefore, also

[t (s)[| < Ao + do. (7.32)
By ([74) and (7.8 [77), for 0 < j < r(1)
1B, (s,t) = @(s)|| < co(r(l))rahu,

where

j,1
CO(O) — 1, Co(m) = 1I<n]22)§n ||P,g ||$(C([tk,tk+1],H)) (m 2 1).

Notice that c¢o(m) is a constant depending only on m. Together with ([7.32) this
yields

/\0 + 50 + C()(T'(l))lilhl
)\0 + 2(50 (t € [tk,tk+1], 0 S] < T(l)), (733)

1Dr.5 (s, £
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7.2 Multilevel Algorithms and Convergence Analysis

provided n; > 1, with a suitably chosen vy > v.
We prove that for 0 < k& < n; the following holds:

ug(s) is defined and wuy(s) = ux(s), (7.34)
and, if & < mn; — 1, then for all j with 0 < j < r(I)
Pr;(s, - ) is defined and py (s, -) = pr;(s, - ). (7.35)

First we show that ([7.34)) implies ((7.35). Suppose ([7.34]) holds for some 0 < k <
n — 1. We argue by induction over j. Let j = 0. By (7.25)),(7.32), and ([7.34])

f(svtk7uk<5)) = f(svtk7ﬁk(5)) = f(S,tk,ka(S)),

Pro(s, -) is defined, and

pk70<8, t) = Uk(S) + ]i(S, tk, Uk<8))(t — tk)
= Uk(8> + f(S,tk,ka(S))(t — tk) = ﬁk70(8,t).

This is (4.39) for j = 0. Next suppose ((7.35)) holds for some j with 0 < j < r(I).
Then

Prj(8: tejeri) = Prj(s,tryr1a) (0=0,....5+1), (7.36)
and therefore, by ,
1Pk (8, trjr1a) | < Ao+ 20. (7.37)
It follows that py jt1(s, -) is defined. Using ,, and , we get
(55 th i Pros (5 trgni)) = F(85 b i Pry (5 rgin)),

therefore we also have gy, ;(s) = i ;(s) and

Prona(s.) = ux(s)+ / (PI gy (5)) (r)dr

tg

= () + / (PG (5)(1)dr = o (5.1).

This completes the induction over j and the proof that (7.34) implies ([7.35)).
It remains to show ([7.34)). We use induction over k. The case k& = 0 holds by
definition. Now we assume that ([7.34]) and therefore also ([7.35]) hold for some &

with 0 < k <n — 1. From ([7.33)) and (7.35), we conclude

1Px.r@ (8, DNl = 1Prry (5, Ol < Ao +200 (€ [t tena]),
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which shows that wuy1(s) is defined and

Opir

Up1(8) = Prr)(8,tey1) + My <f(87€k+1,Pk,r(z)(8,€k+1)) - gt O (S,€k+1)>
~ r ~ aﬁ ,T

= DPro)(8, tey1) + My (f<57fk—&-l»pk,r(l)(sufk—&-l)) — gt U (S7fk+1)>

= kaH(s).

This gives (7.34]) for £+ 1, completes the induction over k and the proof of ([7.34]
7.35). It follows that ALL(fs, ug(s)) is defined and

A0(fo o)) = AL, (fouo(s)).

Consequently, <7, (f,ug) is defined and ([7.30]) holds for r + o > 0.
In the case r + o = 0, we have by assumption also r; = p; = 0 and therefore,

by (7.29),

By definition of Fiec, Ay, ,(fs: uo(s)) is defined for Iy <1 < I and s € Qp, so
A,(f,up) is defined. Fix [ with lp <1 <1, m € N, w € Q, s € Q. Let (s)
and pro(s, -) (0 < k < ny — 1) be the resulting sequences from A% (fs, uo(s)),

ng,w
and ug(s), pro(s, -) the respective sequences from A} (fs, uo(s)). Then (7.16)

implies

lue(s)| < Ao (0 <k <my), (7.38)
[Peo(s, DIl < Ao (¢ € [th, o], 0 <k <my —1). (7.39)

For 0 < k < n; the following holds:

=g

uk(s) = ax(s), (7.40)
Peo(s, -) = Dro(s, ) (E<mn —1). (7.41)

This follows readily by induction as above. Indeed, the case k = 0 of (7.40) is

clear, and if (7.40) holds for some k, we get, using (7.12H7.13)),(7.25)), and ([7.38]
7.39))

pho(s, t) = Uk(S) + f(S, tk, Uk(S))(t — tk)

= t(s) + f(s, b, k() (t — te) = Pro(s, t)

and

ups1(s) = un(s) +uf (s, Ekrrs Pro(s; Eern))
= Ug(s) + hif(S, Eprrs Pro (S, Err1)) = Urga(s).
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7.3 Complexity Analysis

This shows

Agl,w(f& U()(S)) = Agl,w(f& uO(S))

and consequently ([7.30) for » + o = 0. Now the statements follow by combining

(7-26),(7-28),(7-30)), and Theorem [6.5.4]

O

Remark 7.2.3. From Theorem [7.2.2] we readily conclude that the results of Corol-
lary and Corollary immediately carry over to the situation here. We
don’t repeat them here.

7.3 Complexity Analysis
The parametric initial value problem is given by the tuple
(ya t%oca B(QO X [&, b],H),H, Aivp)a

where A;y, is defined in the previous chapter.

We state the main result of this chapter, which settles the complexity of the
parametric initial value problem. The rates coincide with these of the previous
chapter for Banach spaces with type 2, but here for a larger input class. It also
shows the optimality (in the limit cases up to logarithmic factors) of the multilevel
algorithm (7.18]).

Theorem 7.3.1. Let ro,r,71 € No, dy € N, 0 < p,00 < 1, withr + 0 > r1 + 01,
k,L,o >0, and \y > A\g > 0. Let H be a Hilbert space, and let F .. be defined by
(7.14H7.16)). Then in the deterministic setting,

en (S Proc) =7 if 2_2 > 3
_ _ro 041,
n 4 =< el F) X n % (logn) if 2—8 =3 >0
_o .
en (S, Proc) X % of 2_8:61:0\/ 2_2<51,

where 1 = r1 + 01 and U1 was defined in (6.153)) by

ro
- do
v = r 4+ .
! 2_8+T+Q—T1—Ql( Q)
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7 Parametric Hilbert Space Valued Initial Value Problems

Moreover, in the randomized setting,

(S, Froe) <O if B>BtiArte=5
Cn (YJIOC)AnUQ(logn)% if :l_g>ﬁl‘|‘%/\7’+Q>51
- 1 ran 048 . T
n % (logn)z < e (S, Poc) 21 (logn)d 2ogf =0 +1
e;an(y, Froe) =1 % (log n)#“—m if Bi<i<pi+l
_ro -
n do < e Foe) I N (log log n) 1 if 2= B1>0
_To
ef’ban(y’ ‘%OC) =n 4 Zf Zg - 51 =0 \/ < 617
where

¥ 2_2 <+ —1—1)
Uy = = T 1Y = ].
%‘FT"—Q—Tl—Ql 2

Proof. The upper bounds follow from Theorem and Corollary [6.5.6, The
lower bounds follow in the same way as in the proof of Theorem [6.6.1] case
pz = 2 and the fact that every Hilbert space is of type 2. We only observe that

I fllc@oxiap) < (b—a)~'Ag implies
sup lu(s, )| < Ao,
s€Qo,t€a,b]

and, using (7.12)) and (7.13)), we conclude that, for all n € N, w € Q, s € Qy,
A} (fs,0) is defined on [a,b] x A\; By and

sup
s€Qo

A O, <

B([a,b],H)
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Symbols

Algorithms

A%L for definite multivariate integration, page 38

Ay, for indefinite multivariate integration, page 41

20 general multilevel algorithm for definite multivariate integration, page 48
201 general multilevel algorithm for indefinite multivariate integration, page 48
/% for parametric definite integration, page 52

/! for parametric indefinite integration, page 52

Ay, for initial value problems, page 81

A,  general multilevel algorithm for initial value problems, page 85

4,  for parametric initial value problems, page 110

Solution operators

So
S1
0
S
)
5

definite multivariate integration, page 37

indefinite multivariate integration, page 37
parametric definite multivariate integration, page 52
parametric indefinite multivariate integration, page 52
initial value problems, page 82

parametric initial value problems, page 91

Input sets

Fo

parametric multivariate integration, page 52
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F7e initial value problems, page 82

F parametric initial value problems, page 90

Fe local class for parametric initial value problems, page 133
Function sets

C™([a,b] X Z,Z1; k) , page 80

Clé(la,b] x Z,Zy; K, L) , page 80

Lip
I , page 85
ICO ) pa‘ge 86

%TQ,T,Q(QO X [a,b] X Z7 Z17 /i) , pbage &9

C1 o (Qo X [a,b] X Z, Zy;k, L) , page 89

Lip
D om (Z) , page 65

mo,mi

W0 (%) | page 68

mo,mi
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