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Abstract

In this thesis we extend the worst-case modeling approach as first introduced by
Hua and Wilmott [48] (option pricing in discrete time) and Korn and Wilmott [[71]]
(portfolio optimization in continuous time) in various directions.

In the continuous-time worst-case portfolio optimization model (as first intro-
duced by Korn and Wilmott [71]), the financial market is assumed to be under
the threat of a crash in the sense that the stock price may crash by an unknown
fraction at an unknown time. It is assumed that only an upper bound on the size
of the crash is known and that the investor prepares for the worst-possible crash
scenario. That is, the investor aims to find the strategy maximizing her objective
function in the worst-case crash scenario.

In the first part of this thesis, we consider the model of Korn and Wilmott [71] in
the presence of proportional transaction costs. First, we treat the problem with-
out crashes and show that the value function is the unique viscosity solution of
a dynamic programming equation (DPE) and then construct the optimal strate-
gies. We then consider the problem in the presence of crash threats, derive the
corresponding DPE and characterize the value function as the unique viscosity
solution of this DPE.

In the last part, we consider the worst-case problem with a random number of
crashes by proposing a regime switching model in which each state corresponds
to a different crash regime. We interpret each of the crash-threatened regimes of
the market as states in which a financial bubble has formed which may lead to a
crash. In this model, we prove that the value function is a classical solution of a
system of DPEs and derive the optimal strategies.
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1. Introduction

One of the classical questions addressed in financial mathematics is the following:
How should an investor optimally allocate her wealth to maximize her expected
utility at some terminal time 7" > 0 in the future? The objective of this thesis is to
answer this question for market models in which the risk-bearing assets (which
in the sequel will always be assumed to be stocks) are under the threat of crashes.
In particular, we focus on investors with an extremely high level of risk aversion
towards the impact of these market crashes. To be more precise, we assume that
our investor bases her decisions on the worst-possible crash scenario.

This assumption translates to the following optimization approach: For each ad-
missible trading strategy, the investor first determines which crash scenario is the
worst in the sense that her performance criterion is minimized. Among all these
worst-case scenarios, the investor then picks the strategy which maximizes her
performance criterion in the worst-case scenario. Note that the worst-case crash
scenario may be different depending on the trading strategy under consideration.
Typically, if the investor follows a trading strategy which invests a large fraction
of her total wealth in the crash-threatened assets, the worst-case scenario may
be an immediate crash of large size, whereas if the investor takes a short position
in these assets the worst-case scenario may be no crash at all.

These considerations show that the worst-case optimization approach leads to
robust optimal strategies: The optimal strategy protects the investor against the
worst-possible outcome, and she may even benefit from a particular crash sce-
nario if it is not the worst-case scenario for the optimal strategy.

In this thesis we consider two types of worst-case portfolio optimization prob-
lems. First, we consider an investor facing proportional transaction costs in the
case when only a fixed (and known) number of crashes can occur within the in-
vestment period. Afterwards, we consider the portfolio problem in the absence
of transaction costs, but with an unknown and possibly unbounded number of
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market crashes. In both cases we consider an investor aiming to maximize her
expected utility of terminal wealth.

In what follows we give a brief overview of the existing literature and methods
which can be used to tackle these problems. We begin in Section [1.1] with the
portfolio optimization problem in the absence of crashes. In Section [1.2] we give
an overview of the existing literature on the worst-case approach.

1.1. Portfolio optimization

The objective of this section is to present the literature on and the solutions of the
portfolio optimization problem in three particular situations. We first consider
the so-called Merton problem in which the investor aims to maximize her ex-
pected utility from terminal wealth in a Black-Scholes market. Then we consider
an extension of the Merton model which takes transaction costs into account
and finally we consider the portfolio optimization problem in a regime-switching
model, i.e. a model in which the market parameters differ depending on the state
of the economy. These three models are the fundamental market models which
we extend in the main body of this thesis by allowing for market crashes.

1.1.1. The Merton problem

Fix a complete probability space (€2, F,P) and a filtration F = (F(t)):>o satisfy-
ing the usual assumptions of completeness and right-continuity. We furthermore
assume that (2, F,P) supports a one-dimensional standard Brownian motion
W = (W(t))t>0 with respect to F. Let us moreover fix a finite time horizon
T > 0. In what follows we consider the optimal terminal wealth problem in a
Black-Scholes market which was first solved in Merton [82, [83]).

We consider a financial market consisting of two assets. One of the assets is
assumed to be risk-free (this could e.g. be a default-free bond or a money mar-
ket account), whereas the other asset is assumed to be risk-bearing (this could
e.g. be a stock). We assume that the prices of these two assets, denoted by
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PY = (P°(t));>0 and P* = (P'(t));>0, respectively, are given by

dP°(t) = rP°(t) dt, P°(0) =1,
dP'(t) = aP(t) dt + o P'(t) dW (), PY(0) = 1.

Here r > 0 denotes the interest rate of the bond, o > r the drift and ¢ > 0 the
volatility of the stock. Taking P° to be the numéraire we may without loss of

generality assume 7 = (0 and we interpret « as the excess return of the stock over
the bond.

We let ¢ € [0, 7)) denote the beginning of the investment period and we let x > 0
be the investor’s initial wealth. At any time u € [t, T the investor is allowed to
choose which fraction 7(u) of her total wealth X (u) she invests in the stock. We
assume that 7 = (7(u))ucp, 1) is a progressively measurable and bounded process.
Assuming that 7 is a self-financing trading strategy, the investor’s wealth X =
X7, = (X7, (u))uep,1) €volves as

dX (u) = arm(u) X (u) du + om(u) X (u) dW (u), X(t) ==.

We say that a strategy 7 is admissible for initial time ¢ and initial wealth x if the
corresponding wealth process X[, (u) is almost surely positive for all u € [t, T).
We denote the set of all admissible strategies of this form by A, (¢, x). With this,
the investor aims to maximize her expected utility of terminal wealth, i.e.

Vu(t,z) = suwp E[U, (X7,(T))],

meAn (t,x)

where U, : (0,00) — R is given by

Up(z) =

Lop ifp <1 0
{px, ifp <1,p#0, (L.1)

log(x), if p =0,

and extended to [0, 00) by setting U,(0) = lim,o U,(z). One can then show (see
e.g. Merton [83] or Pham [90]) that the optimal strategy is given by

o
M =
M (1 —p)o?
and V) is given explicitly as
1 1 p o
Vy(t,z) = —aP ——— (T —t ifp <1 0 1.2
M(ax) px exp<2(1_p)o_2( ))7 p 7p7£ ) ( )



1. Introduction

and
2

1
Va(t, z) = log(x) + 5%@ —4),  ifp=0, (1.3)

respectively. We refer to 7y, as the Merton fraction and we call V;; the Merton
value function.

1
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Figure 1.1. The Merton fraction over time.

Figure [I.1] depicts the Merton fraction over time. Note that since 7, is constant,
the investor has to trade continuously and the trading volume is of infinite vari-
ation on any strictly positive time interval.

1.1.2. Portfolio optimization with transaction costs

In the presence of transaction costs, the strategy 7, is no longer feasible since
it would lead to immediate bankruptcy of the investor. It is therefore of inter-
est to consider the Merton problem in the presence of transaction costs. In the
literature, one typically finds combinations of the following cost structures:

1. Constant costs: The investor pays a constant fee for each transaction.
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2. Management costs: For each transaction, the investor pays a fee propor-
tional to her total wealth.

3. Proportional costs: The investor pays fees proportional to the size of the
transaction.

Constant and management costs punish the frequency of trading whereas pro-
portional costs punish the volume of the transaction.

Constant costs (e.g. treated in Eastham and Hastings [35]], Korn [62] and @ksendal
and Sulem [88]], among others) turn out to be the most difficult to handle from a
mathematical point of view and results in this direction are still scarce compared
to the other cost structures. While management costs appear to be too unrealistic
for practical applications, the models are usually more tractable and the resulting
optimal strategies resemble the optimal strategies for constant costs. Hence, a
lot of effort has been put into the analysis of optimal trading under this cost
structure. We refer to Morton and Pliska [85], Irle and Sass [49], Tamura [106]]
and Korn [[64] and the references therein for an overview of the results in this
direction.

In this thesis, however, we focus exclusively on proportional transaction costs.
Suppose that the investor is endowed with a capital of b units of money in the
bond, s units of money in the stock and wants to buy shares of the stock worth
A units of money. It is then assumed that the investor has to pay a fee of AA
for this transaction, where we refer to A > 0 as the proportional cost component
for buying shares of the stock. After this transaction the investor’s wealth hence
changes to
b=b—(1+ M)A, s§=s+A.

In a similar fashion we suppose that the investor has to pay a fee of 1A whenever
she sells shares of the stock worth A units of money. We refer to u € (0, 1) as
the proportional cost component for selling shares of the stock. Under such a
transaction the wealth now changes to

b=0b+ (1 —p)A, s=s—A.

A detailed description of the model and the formulation of the optimization prob-
lem will be given in Chapter

Magill and Constantinides [77] were the first to consider this type of costs in
a continuous-time portfolio optimization context. More precisely, the authors
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considered an optimal consumption problem over an infinite time horizon and
heuristically derived insights into the structure of the optimal strategy. Davis
and Norman [26] solved the problem rigorously by means of a stochastic control
approach and Shreve and Soner [97] solved the same problem under weaker as-
sumptions by employing the theory of viscosity solutions. The model was then
extended by Akian et al. [3]] and Kabanov and Kluppelberg [56] to a multidimen-
sional setting and by de Valliere and Kabanov [28] to Lévy-driven price processes.
Moreover, starting with Kallsen and Muhle-Karbe [59] and followed by Herczegh
and Prokaj [45] and Choi et al. [19], the optimal lifetime consumption problem
was solved by means of a dual approach.

The infinite-horizon optimal consumption problem does not admit closed form
solutions and it is hence of interest to consider a more tractable problem formu-
lation. Dumas and Luciano [32] considered the problem of maximizing the ex-
pected utility of terminal wealth in the limit as the time horizon goes to infinity.
Similar results for the asymptotic growth rate were obtained by Akian et al. [5],
Gerhold et al. [43]], and Gerhold et al. [41]]. A different approach which also leads
to explicit solutions consists of analyzing the problem asymptotically for vanish-
ing transaction costs. This has been done in Janecek and Shreve [50], Gerhold et
al. [42], Soner and Touzi [102]], Possamai et al. [91]], Kallsen and Muhle-Karbe [60]]
and Kallsen and Li [58].

It is by now understood that the optimal strategies in these models are so-called
constant-boundary strategies. That is, the optimal strategies in these models can
be represented by two constants 7° < 7, such that the investor sells shares
of the stock whenever her risky fraction is above 7, buys shares of the stock
whenever her risky fraction is below 7° and refrains from trading whenever her
risky fraction is in between 7° and 7°. In particular, the optimally controlled
risky fraction is a diffusion reflected at the boundary of the interval [x°, 7°]. For
the optimal terminal wealth problem the situation becomes more involved: Since
the optimization problem is now time-dependent one expects that the boundaries
7 and 7 which characterize the optimal strategy are time-dependent as well.
Figure[l.2lbelow exemplifies the location of buy and sell boundaries in the optimal
terminal wealth problem.

The optimal terminal wealth problem in the presence of transaction costs was
introduced in Akian et al. [4]. Davis et al. [27] studied the same dynamic pro-
gramming equation (DPE) in the context of utility indifference pricing. The au-
thors proved in particular that the value function is a viscosity solution of the
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Figure 1.2. Location of the buy and sell boundaries under transaction costs.

DPE and that it is unique within the class of continuous and bounded solutions.
Dai and Yi [24] studied the same DPE and showed that there exists a classical
solution for terminal conditions corresponding to logarithmic and power utility
at least as long as one restricts the state space to strictly positive stock holdings.
Dai et al. [23]] extended this result to include consumption and Chen et al. [18]]
considered the case of exponential utility. Moreover, Kunisch and Sass [72], Dai
and Zhong [25] and Herzog et al. [46] proposed algorithms to approximate the
value function and the optimal strategies numerically. Liu and Loewenstein [74]
obtained a closed form solution under the assumption that the terminal time
is random and Bichuch [15] studied the finite-horizon problem by means of an
asymptotic analysis.

Despite this wealth of papers on the optimal terminal wealth problem there are
still some open questions which remain to be solved. In particular, there does
not appear to be any proof that the value function for this problem is continuous.
This result is needed to ensure that the value function satisfies the DPE in the
sense of viscosity solutions (all existing proofs of the viscosity property assume
continuity of the value function). Moreover, the uniqueness of solutions of the
DPE is only known to hold in the class of bounded and continuous functions,
which does not include the case in which the investor’s utility function is given
by U, as defined in (I.1). Finally, the existence of an optimal strategy is yet to
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be established and it needs to be verified that the classical solution of the DPE
(constructed in Dai and Yi [24]) coincides with the value function. All of these
issues will be addressed in Chapter 2 In Chapter 3l we then extend this model to
allow for crashes in the stock price.

1.1.3. Portfolio optimization in regime-switching models

Another possible extension of the Merton problem is to allow for more general
coefficients of the bond and stock. In order to capture long-term macroeconomic
influences one can make the market coefficients dependent on an exogenously
given finite-state Markov process which drives the state of the economy. This
approach has been studied in Bauerle and Rieder [7], Sotomayor and Cadenil-
las [[104] and Escobar et al. [37]. We follow Béuerle and Rieder [7] in what fol-
lows.

We let Z = (Z(t)):>o denote a time-homogeneous finite-state Markov process
with state space £ = {0,...,d}, d > 0. We assume that the transition rate
matrix of Z is given by Q = (¢i;)o<i j<a and we assume that Z is independent
of the Brownian motion W. We interpret each state i € E as a different state of
the economy. Moreover, we assume that the coefficients of the bond and stock
price, denoted by P° = (P°(t));>0 and P' = (P'(t));>0, respectively, depend on
the state of the economy. That is, we assume that the dynamics of P° and P! are
given by

dP°(t) =0, P°(0) =1,
dP'(t) = a(Z(t))P'(t) dt + o(Z(t))P'(t) dW (t), PY0)=1

Here a(i) = a;,0(i) = o, for constants «;, 0; > 0 foralli € E.

The investor is allowed to choose a risky fraction process m* = (7'(w))uep,1]
for each state « € F, so that the dynamics of the wealth process X = X[, =
(XTi(w))uepa with m = (7°,. .., n%) can be written as

dX (u) = a7 (u) X (u) du + o7 (w) X (u) dW (u), on{Z(u)=j}.

Here X[, ; denotes the wealth process started at time ¢ with initial wealth z and

where the initial state of the economy is Z(t) = i. This leads to a value function
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given by
VRS(tvx’i) = sup E [U (erm(T))] )

T€ARs (t,x)

where the set of admissible strategies Agg(t, z) consists of all = which are pro-
gressively measurable, bounded and X7, ;(u) > 0 almost surely for all u € [t, T
andalli € E.

Since Z is assumed to be independent of W it is not surprising that the optimal
strategy in state 7 is given by

i O
Thy i = —————
M (1=p)o?

i.e. in each state the investor applies the Merton strategy which corresponds to
the market coefficients in the current state. For p < 1,p # 0 the value function
can be shown to be of the form

Vins(t, 2, ) = ]%a;p (D), (1.4)

where the family (f;);cr solves the system of ordinary differential equations

%fxw:—l__ | qu T

In the case of p = 0 the value function can be written as

Vrs(t, z, 1) = log(z) + fi(t),

where the family (f;);cp solves

0 o2
afi( % quf] £i(T) = 0.

Figure [1.3] visualizes the optimal strategies.

In Chapter [d we generalize the regime-switching model outlined above. In addi-
tion to state-dependent market coefficients we allow for crashes in the stock in
the states 7 = 1,...,d, and assume that a crash sends the state of the economy
back to state zero. With this, we can interpret the states ¢ = 1,...,d as market
states in which a financial bubble is present. Once the bubble bursts (i.e. a crash
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Figure 1.3. The optimal strategies in a regime-switching model.

occurs) the economy jumps back into the bubble-free state i = 0. Note that this
implies that we may potentially observe an unbounded number of crashes since
with each jump of the Markov chain Z a new crash threat arises.

The existence, formation and modeling of financial bubbles has been studied ex-
tensively over the last decades. The formation of bubbles on a microeconomic
level has been studied e.g. in Tirole [108], Scheinkman and Xiong [94], and Abreu
and Brunnermeier [2]. There is also a growing literature on bubbles from a pric-
ing point of view, see e.g. Loewenstein and Willard [76}[75]], Cox and Hobson [21]],
Jarrow et al. [54, 55]], Heston et al. [47], Jarrow and Protter [52] 53], Jarrow et
al. [51]] and Biagini et al. [14]].

1.2. Worst-case portfolio optimization

Chapters[3landdlare devoted to extending the models introduced in Section[I.1]to
allow for crashes in the stock prices. The objective of this section is to introduce
the crash model, give an overview of the existing literature and motivate the
extensions considered in the following chapters.

10
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The market models in Section share one common feature: The stock price
process has continuous sample paths and hence these asset-price models are not
able to explain extreme jumps in the stock price (in particular large downward
jumps, i.e. crashes). One possible remedy is to consider price processes which are
driven by Lévy processes (see e.g. Aase [1] or Kallsen [57]) or, more generally,
to consider semimartingale models for the prices (see e.g. Goll and Kallsen [44]).
Since in these models the distribution of the jump times and sizes is known to
the investor, this leads to optimal strategies which hedge the risk coming from
the jump possibility on average over the investment period. In particular, at the
moment a large downward jump occurs the investor may still suffer substantial
losses, especially if the crash occurs just before the end of the investment period
at time 7.

One way to deal with this effect is to take a robust approach to modeling the
jumps of the stock price. That is, one assumes that the investor knows an up-
per bound on the number and the size of the jumps but the true distribution
of the jumps remains unknown. Moreover, the investor is assumed to expect
the worst-possible jump scenario to occur. More precisely, given a fixed trading
strategy, the worst-case jump scenario for this particular strategy is determined
(in the sense that the investor’s optimization criterion is minimized) and the in-
vestor aims to find the strategy which maximizes the optimization criterion in the
worst-case scenario. If the objective is to maximize expected utility of terminal
wealth, this leads to a stochastic differential game of the form

sup inf [Up(X™(T))]

where 7 denotes a trading strategy and where ¢ denotes a jump scenario. The op-
timization problem is hence a version of Wald’s maximin model (see Wald [[109])
in the sense that the investor first chooses a strategy and presents this strategy to
her opponent (which is usually assumed to be the market), who in turn chooses
a jump scenario. We refer to Korn and Menkens [66] and Korn and Seifried [69]
for an overview of different approaches to this type of problem.

The worst-case portfolio optimization problem outlined above has first been stud-
ied in Korn and Wilmott [71]] for logarithmic utility. In this paper the authors
consider asset price dynamics as in the Merton model (see Section [I.1.7]), but ad-
ditionally assume that the stock price P! may drop once by an unknown fraction
of B at an unknown time 7, i.e.

Pl(r) = (1= B)P'(1-).

11
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The optimization problem in this model is formulated as

Viltia) = sup inf B llog ((1 = 7(A)X(D))].
pel0,8]

where € (0,1) denotes the maximum crash size and where A(t, z) denotes the
set of all trading strategies 7 for which (1 — W(U)B)Xfx (u) > 0 forall 3 € [0, ]
and allu € [t,T] (and X7, is defined as in the Merton model). Note that since the
investor’s utility function is strictly increasing one can without loss of generality
assume that if a crash occurs it is of maximum size (3 since the worst-case scenario
is either a crash of maximum size or no crash at all.

Since at most one crash can occur it is straightforward to argue that after the
occurrence of a crash the investor should invest according to the Merton fraction
7y (since after the crash the market coincides with the market in the Merton
model). The authors use this insight to derive a trading strategy 7* which renders
the investor indifferent between an immediate crash and no crash at all. This can
be done by solving the equation

E [log (X7,(T))] = Var(t, (1 - " (£)3)a) (15)

for m*. Notice that the left-hand side of corresponds to the no-crash scenario
whereas the right-hand side corresponds to an immediate crash of maximum size.
Solving (L.5)) leads to the following differential equation for 7*:

0 .. 1 " Lo, 2
PO B(l = ()B) | -5 (7" (1) = )| (1.6)
™(T)=0.

From here it is easy to argue that the strategy 7* must indeed be optimal: First,
since this strategy renders the investor indifferent between no crash at all and
a crash of maximum size, it suffices to show that for any other strategy 7 there
exists one crash scenario in which 7* performs better. If this 7 is such that 7(7) >
7*(7) for some 7 € [t,T], the strategy 7* performs better in the crash scenario
in which a crash of maximum size [ occurs at time 7. On the other hand if 7
is dominated by 7* the strategy 7* outperforms 7 in the no-crash scenario and
hence 7* must be optimal. We note however that for this argument to be true
we require that 7* < ), since otherwise ), outperforms 7* in the no-crash
scenario.

12



1.2. Worst-case portfolio optimization

Figure[I.4lexemplifies 7* and 7),. Note that 7* is decreasing with decreasing time
to maturity 7" — ¢, i.e. the investor decreases her relative position in the stock as
she approaches the investment horizon (to protect against losses due to a crash),
but since 7*(¢) > 0 for all t € [0,T") she will always keep a long position in the
stock (i.e. despite the threat of a crash a risky investment still outperforms the
pure bond strategy). Only at terminal time 7" does the investor close her position
entirely. It is furthermore possible to show that 7*(0) < s, but 7*(0) — 7,
as ' — o0, i.e. the worst-case investor’s position in the stock is strictly less than
the Merton investor’s position in the stock, but the difference vanishes as the
investment period becomes infinitely large.

1

e
o0
T
!

o
>

7T )\f
— W*(t)

0.4 .

Risky fraction 7

0.2 |- |

Time ¢t

Figure 1.4. The worst-case optimal strategy for logarithmic utility.

It is also possible to extend the results of Korn and Wilmott [71]] to n > 1 crashes.
It can be shown that the optimal strategy 7" * in the presence of n crash possi-
bilities is given as the solution of

8 n,* _ 1 I _10_2 ﬂ_n,* _ﬂ_n—l,* 2
o (B = g(L=m"()B) | =507 (=" (1) @), @
7 (T) = 0.

Korn and Menkens [67] extend these results to power utility and changing market
coefficients after the occurrence of a crash by deriving a dynamic programming

13
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equation for the value function and hence embedding the worst-case portfolio
problem into the stochastic control framework. The authors show that if the
market coefficients do not change after a crash, the strategy 7* solving

1 * 1 *

G| 50 - —me?], ()
with terminal condition 7*(7") = 0 is optimal in the class of deterministic strate-
gies. Note that this equation reduces to (I.6) for p = 0 and hence covers the

logarithmic utility case as well.

If the market coeflicients change after the occurrence of a crash the situation be-
comes slightly more complicated. Assume that the market coefficients before a
crash are given by oy and o4, and by «a; and oy after the occurrence of a crash.
Similarly, we denote by 7}, and 7, the Merton fraction with respect to the pa-
rameters before and after a crash, respectively. Finally, we denote by

2
Qg

1 2
2(1—p)o?

)

1
U, = - -0
' 2(1 - p)oz

and ARES

the utility growth potentials in the respective markets (these are the utility-
adjusted growth factors of the portfolio under the Merton strategy in the absence
of crashes, see (1.2) and (1.3)). With this, it is possible to show that the strategy

74 which is given as the solution of
D mate) = L1 - w0y [, - wo — 21— proeni) - w2, (19
ot B 2 M7 ]

with 7"4(T) = 0 renders the investor indifferent between an immediate crash
of maximum size and no crash at all. Again, note that (1.9) reduces to (L.8) if
the market coefficients do not change after a crash. The strategy 7'"¢ obtained
like this need not necessarily be optimal. Indeed, if the market coefficients after
a crash are strictly better than before a crash (in the sense that ¥y > W) it may
occur that 7"(¢) > 7}, for some ¢, in which case 7}, outperforms 7'"(#) in the
no-crash scenario. Therefore, the optimal pre-crash strategy in this situation is

7 (t) = min{my,, 7™},  te[0,T].

Figure illustrates 7*, 74, W}/j and 7'('?\/[. A more detailed discussion of the
effects of changing market coefficients and some further extensions of the results
in Korn and Menkens [[67] can also be found in Menkens [[78]).
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1.2. Worst-case portfolio optimization
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Figure 1.5. The worst-case optimal strategy in the case of changing market coefficients.

Korn and Steftfensen [70] consider the situation without changing market coet-
ficients and show that the value function can be found by solving a system of
dynamic programming equations as follows. Consider the differential operator
L™ defined as

1 0?
LT = — 4+ arr— + —oa’n?—.

ot or 2 0x?
Assuming that V; € C*2([0,T) x (0, 00)), we set

A'(t,z) :=={m: LTV (t,z) > 0},
A" (t,z) = {m :Vi(t,2) < Vu(t, (1 —7p)x)}.

Under some technical conditions one can then show that V; solves

O:min{ sup {ﬁﬂ%(t?x)}v

meA (t,x)

sup {Vl(t, ) — Vult, (1 — Wﬁ)x)}} (1.10)

weAl(t,x)

and that the strategy obtained from the maximizer of

sup {E”Vl (t, J;)}

me A (t,x)

15



1. Introduction

is pre-crash optimal. With this, it is possible to show that the optimal strategy
obtained by Korn and Menkens [67] in the power utility case (see (L.8)) is not
only optimal in the class of deterministic strategies, but also in the bigger class of
right-continuous strategies with existing moments of all orders.

Seifried [95] generalizes the existing results by recasting the worst-case portfolio
problem as a controller-vs-stopper game. The idea is to find a strategy 7'"¢ which
turns the process

(Varlt. (1 =7 (0)8) X7 (1))

into a martingale and then show that this is sufficient for ¢ to be an indifference
strategy. Moreover, it is possible to show that no strategy which exceeds 7" at
some point in time can be optimal. Hence, by the indifference property of 7" it
suffices to find the strategy which performs best in the no-crash scenario among
all strategies which are bounded from above by 7"¢. The optimal strategy is
then found to be 7*(t) = min{n},, 7"4(¢)} as before. We note that the approach
in Seifried [95] extends to multidimensional jump-diffusion models for the asset
prices.

te[0,7]

The worst-case portfolio problem has also been considered in other situations:
Hua and Wilmott [48] considered worst-case option pricing in a discrete-time set-
ting. Menkens [79,[80] analyzed the properties of indifference strategies in more
detail and Menkens [81] considered the worst-case problem given the probabil-
ity of the crash. Korn [[65] and Korn et al. [68] applied the worst-case modeling
approach in an insurance context. Desmettre et al. [30] analyzed the robustness
of the problem with respect to the choice of the maximum crash size. Desmettre
et al. [31] considered the case of optimal consumption over an infinite time hori-
zon and Monnig [84] considered a more abstract combined stochastic control and
impulse control game as well as a stochastic target problem.

1.3. Outline of this thesis

Let us conclude this introduction with an outlook on the topics covered in this
thesis. First, we consider the optimal terminal wealth problem under transaction
costs and then we extend this model to allow for crashes. Finally, we consider
the regime-switching model in the presence of crash threats.

16



1.3. Outline of this thesis

In the first part of this thesis we consider the optimal terminal wealth problem
under transaction costs in a crash-free setting. As pointed out in Section[1.1.2] de-
spite the wealth of papers on this model there are still some open problems which
have not been addressed yet. The objective of Chapter[2is to provide the missing
results. To be more precise, we show that there exists at most one solution of the
dynamic programming equation and we construct the optimal strategy. From the
results in Chapter Blit furthermore follows that the value function is continuous,
the dynamic programming principle holds and that the value function is a vis-
cosity solution of the dynamic programming equation. Finally, we show that the
classical solution constructed in Dai and Yi [24] coincides with the value function
on the domain on which the classical solution is defined.

In Chapter [ we extend the transaction costs model to allow for crashes in the
stock price. Our aim is to show that the value function is the unique viscosity so-
lution of the corresponding dynamic programming equation and then to rely on
numerical methods to approximate the optimal strategies. We proceed as follows:
First, we show that the value function in this model is continuous and use this to
prove a version of the dynamic programming principle. The dynamic program-
ming principle in turn allows us to show that the value function is a viscosity
solution of the dynamic programming equation and uniqueness follows from a
straightforward extension of the uniqueness result in the crash-free model.

In Chapter 4 we turn our focus to a regime-switching model with crashes, hence
extending the model in Section [.1.3] We first consider a simplified model in
which there are only two regimes: One in which crashes are possible and one
crash-free regime. We assume that the market switches from the crash-free to
the crash-threatened regime at exponential stopping times, whereas the market
switches from the crash-threatened to the crash-free regime only after the oc-
currence of a crash. Classical indifference arguments allow us to compute and
verify the optimal strategies directly. We then turn to a more general setting
in which the switching of regimes occurs at jump times of a continuous time
Markov chain. We derive a system of dynamic programming equations in the
spirit of Korn and Steffensen [70] which allows us to construct and verify the op-
timal strategies as a system of ordinary differential equations. Finally, we analyze
some of the features of the optimal strategies numerically.
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2. Portfolio optimization with
transaction costs

In this chapter we study the problem of maximizing expected utility of the liqui-
dation value of terminal wealth in the presence of proportional transaction costs.
The results obtained here build the basis for studying the same problem in the
presence of market crashes. As can be seen from the discussions in Section [L.2]
in order to analyze a financial market under the threat of crashes from a worst-
case perspective, it is crucial to have a good understanding of the corresponding
market in the absence of crashes.

The problem considered in this chapter has received considerable interest over
the last decades (cf. Section[1.1.2)). Nevertheless, a careful inspection of the exist-
ing literature shows that not all aspects have yet been treated in sufficient gener-
ality so that they can be readily applied for our subsequent worst-case analysis.
Our objective is hence to extend some of the known results and, in addition,
provide some new previously unknown results.

The first main result of this chapter is a comparison principle for the dynamic
programming equation which allows us to prove uniqueness of the value func-
tion. From the literature it is known that the value function is the unique con-
tinuous viscosity solution of the dynamic programming equation as long as the
investor’s utility function is bounded (see Davis et al. [27]) and a straightforward
adaptation of the results for the infinite-horizon optimal consumption problem
can be used to show that uniqueness holds also if the absolute value of the utility
function is bounded by C'(1 + |z|P) with p € (0,1) and C' > 0 (cf. Akian et al. [3]
and Kabanov and Kliippelberg [56]), which excludes e.g. logarithmic utility and
power utility with a negative power. While the value function corresponding to
logarithmic utility and negative power utility has a nice behavior at infinity, it
tends to negative infinity at the boundary of the state space. We adapt an idea
from Soner and Vukelja [103] to deal with this problem.
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2. Portfolio optimization with transaction costs

In the second part of this chapter we construct and verify the optimal strategies.
While Dai and Yi [24] show that there exists a classical solution of the dynamic
programming equation if the state space is reduced to positive holdings in the
stock, it is still an open question whether this classical solution coincides with
the value function. The main problem of the proof is the existence of the optimal
strategies which are expected to be finite-variation processes which turn the op-
timally controlled asset holdings process into an obliquely reflected diffusion at
the boundary of some time-dependent region within the state space. We provide
a simple method to construct these strategies and then verify their optimality. In
particular this result shows that the classical solution of the dynamic program-
ming equation obtained by Dai and Yi [24] coincides with the value function on
the reduced state space. Moreover, we study the regularity of the value function
in more detail.

The results of this chapter correspond in large parts to the following preprint and
working paper:

1. C. Belak, O. Menkens, J. Sass (2013): On the uniqueness of unbounded vis-
cosity solutions arising in an optimal terminal wealth problem with trans-
action costs [11]].

2. C.Belak, J. Sass (2014): Finite-horizon optimal investment with transaction
costs: Construction of the optimal strategies [13].

2.1. The market model and problem formulation

We assume that W = (WW(t)):> is a standard Brownian motion defined on the
canonical Wiener space (€2, F,P), where Q2 = Cy([0, 00)) denotes the set of con-
tinuous functions w : [0,00) — R satisfying w(0) = 0 and where P denotes
the Wiener measure. We denote the augmented filtration generated by W by
F = F° = (F(t))i>0 and similarly, given ¢ > 0, we denote by F! = (F'(u)),>¢
the augmented filtration generated by (W (u) — W (t)),>t. Moreover, we fix some
terminal time 7" > 0 as well as some initial time ¢ € [0, 7).

We consider a market consisting of two assets, namely a risk-free asset (called
bond) with price process P° = (P°(u))uepr ) and a risk-bearing asset (called
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2.1. The market model and problem formulation

stock) with price process P! = (P*(u))yeft,r)- We assume that the prices of the
two assets evolve as

dP°(u) =0, u € [t,T), PO(t) =1,
dP'(u) = aP'(u)du + o P (u)dW (u), u € [t,T], PY(t) = 1.

We refer to o > 0 as the excess return and o > 0 as the volatility of the stock.

We assume that the investor faces proportional transaction costs. That is, we
assume that the investor buys shares of the stock at the ask price (1 + \)P!
where A > 0 denotes the proportional costs for purchases of the stock. Similarly,
we assume that the stock is sold at the bid price (1 — u)P°, where u € (0,1)
denotes the proportional costs for sales of the stock.

To model trading strategies in the presence of the proportional transaction costs
(A, 1) we take L = (L(u))yepr) and M = (M (u))uep,1) to be two F'-adapted,
non-decreasing, cadlag processes such that L(t—) = M(t—) = 0. We assume
that L and M represent the cumulative units of money used for purchases and
sales of the stock, respectively. Let us denote by B = Btfj l’)M = (BtL éM(u))ue[t,T]

the investor’s wealth invested in the bond and let S = Sf;M = (ng;M(u))ue[t7T]
denote the investor’s wealth invested in the stock. Under a self-financing con-
dition on the trading strategy (L, M) the evolution of B and S can be written
as

dB(u) = —(1 + N)dL(u) + (1 — p)dM (u), u e [t,T],
dS(u) = aS(u)du + oS(u)dW(u) + dL(u) — dM(u), we€lt,T], (2.2)
where the initial values are given by B(t—) = b and S(t—) = s, respectively.
The net wealth X = Xt% b’ﬁ[ = (XtL I;’J\f(u))ue[ngp] of the investor after liquidation
of the stock position is then given by
B 1-— if
o (B0 =08, s =0
B(u) 4+ (1 4+ X)S(u), ifS(u) <0,

We say that such a trading strategy is admissible if it leads to a non-negative net
wealth. For this, we define the following solvency cone:

S%:={(b,s) ER*|b+ (1+A)s>0,b+ (1 —p)s>0}.
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2. Portfolio optimization with transaction costs

So, whenever (B, S) € S the investor can liquidate her stock holdings to end up
with non-negative wealth. A trading strategy (L, M) is called admissible for an

initial position (b, s) € S” if the corresponding pair (BtL M Sf M) takes values
in S’ forall u € [t,T]. The set of all admissible trading strategies of this form is
denoted by A (t, b, s). Figure 21l provides a sketch of the solvency cone.

S

Figure 2.1. A sketch of the solvency cone S°.

With this, the objective of the investor is to maximize the expected utility of the
liquidation value of terminal wealth, i.e. she faces the optimization problem

Vo(t,b,s) == sup E[Up (Xfl;ff(T))}, (2.3)
(L,M)€E Ao (t,b,s) ”

where the utility function U, is defined in (I.I) for p < 1 (i.e. we restrict our
attention to power utility and logarithmic utility).
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2.2. Heuristics

2.2. Heuristics

Before we solve the optimization problem (2.3), let us first build up some intuition
by treating the problem heuristically.

We first note that the investor faces a balancing problem: On the one hand, one
expects that the investor would like her risky fraction to be close to the Merton
fraction since this is the optimal strategy in the absence of costs. On the other
hand, the transaction costs punish large transactions so that the investor cannot
keep her risky fraction constant (such a strategy results in immediate bankruptcy
since the trading volume is of infinite variation within any strictly positive time
period). It is therefore reasonable to expect that the investor refrains from trading
as long as her risky fraction is close to the Merton fraction and that she makes
"minimal” transactions to keep the risky fraction from moving too far away from
the Merton fraction.

In addition, the investor has to take into account the finite time horizon. Since
the investor has to liquidate her stock holdings at terminal time 7" she should
decrease her stock holdings before the investment period comes to an end as
to bound the fees upon liquidation. In a similar fashion, buying shares of the
stock becomes less and less desirable as the investment horizon approaches since
there is no longer enough time left to recoup the losses due to transaction fees
incurred during purchases. This leads to strategies which look like the strategy
7(t) illustrated in Figure

To formalize this mathematically, let us recall that the martingale optimality prin-
ciple of optimal stochastic control (see Korn [63]) suggests that the process

(Vo(u, Blng(u), stM(u))>

u€[t,T)

is a supermartingale for every (L, M) € Ay(t,b,s) and a martingale for the
optimal (L*, M*). In order to find V, and (L*, M*), let us therefore take an
arbitrary (L, M) € Ay(t,b,s) and assume that Vy € C122([0,T] x S). Let us
furthermore assume for simplicity that L and M are continuous (we can do so
since we expect optimal trading to be "minimal"). By It6’s formula we then obtain

Vo(u, B(u), S(u)) = Vo(t, b, s) — /u L™V (r, B(r), S(r)) dr

t
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2. Portfolio optimization with transaction costs

0.8 | |

0.4 .

Risky fraction 7

0.2 |- |

Time ¢

Figure 2.2. Optimal trading under transaction costs.

- /u Eb“yVO(T7 B(r),S(r))dL(r)

t

i /t " Ly (r B(r), S(r)) dM(r)

+ /tu US(T)QVO(T, B(r),S(r))dW (r),

0s

where the differential operators £, £ and L£**" are given by

0 0o 1 0?
nt _ 7 2.2
£ = . “as 277 o
0 0
buy _ -~
L (1+>\)ab B’
0 0
sell __ . . Il

respectively. Assuming that the stochastic integral process

( /t ' US(T)%VO(T, B(r), S(r)) dW(r)> "

is a martingale, we hence need that

LV (t,b,5) >0, LYVy(t,b,5) >0, LVy(t,0b,s)
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2.2. Heuristics

forall (¢,b,s) € [0,7) xS in order for Vo (u, B(u), S(u)) to be a supermartingale
for every (L, M).

For the optimal strategy (L*, M*) we expect Vy(u, B(u), S(u)) to be an honest
martingale. For this to be true we need that the two integrals

/ LYV, (r, B(r), S(r))dL*(r) and / L5Y(r, B(r), S(r)) dM*(r)
t t
vanish. This is certainly the case if dL*(r) > 0 only if L*¥V,(r, B(r), S(r)) = 0
and similarly dM (r) > 0 only if £*"V,(r, B(r), S(r)) = 0. Moreover, for the
integral

/“ L"Vy(r, B(r), S(r)) dr

¢
to disappear we need that L™V, (r, B(r), S(r)) = 0 along the paths of the opti-
mally controlled (r, B(r), S(r)). This together with the discussion at the begin-
ning of this section suggests that the state space [0,T) X S° can be partitioned
into three regions

Ryt = {(t,b,5) € [0,T) x S : L"Vy(t,b,s) =0}, (2.7)
Re = {(t,b,5) €[0,T) x 8 : LVy(t,b,5) =0}, (2.8)
R = {(t,0, s) [ T) x 81 L5Vy(t,b,5) = 0}, (2.9)

and that it is optimal to buy shares of the stock in Rguy, sell shares of the stock
in R and refrain from trading in R%’. Moreover, the value function V), can be
determined by solving the dynamic programming equation

0 = min {L™Vy(t, b, s), LV (t, b, s), L5V (t, b, 5) } (2.10)

with suitable boundary conditions. Indeed, Proposition and Corollary
show that V) is the unique viscosity solution of the DPE (Z.10).

Consider the strategy L = M = 0 and denote the corresponding wealth pro-
cess by (B, S%). For every classical supersolution ¢ of the DPE (2.10) we have
L™p(t,b,s) > 0, and Itd’s formula together with a suitable localization proce-

dure shows that
@(ta ba S) 2 E [‘10(7_7 ng(T), Sto,s(T))]

for any stopping time 7 € [¢t,T]. That is, ¢ is space-time superharmonic with
respect to the uncontrolled wealth process (B, SY). Moreover, the inequalities
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2. Portfolio optimization with transaction costs

LY p(t,b,s) > 0and Lp(t,b, s) > 0 show that for every [, m > 0 we have
p(t,b,s) =2 ot b—(1+ N+ (1—p)m,s+1—-m),
i.e. © is non-increasing in the direction of transactions. Indeed, by the gradient

theorem we have

o(t,b,s) —(t,b— 1+ NI+ (1 —p)m,s+1—m)

I
= / Lot b— (14 Nz, s +z)dr
0

+/ ,Cse”go(t,b—(1+)\)l+(1_ﬂ)xa3+l_x>dx
0
>0. (2.11)

Since V) is a viscosity solution of the DPE we expect that the same properties
hold for V), as well and hence the comparison theorem for the DPE (Theorem [2.5)
suggests that V) is the smallest superharmonic function which is non-increasing
in the direction of transactions. We make use of this idea in Section [2.6] to verify
the optimality of the candidate optimal strategy:.

2.3. Some preliminary properties

The aim of this section is to gather some preliminary properties of V) and the
DPE (2.10). We start by constructing a parametrized family of smooth functions
which dominate V). For this, recall that p < 1 denotes the parameter associated
with the utility function U, fix constants X > 1 and y € [1 — i, 1+ \] and define

a function ¢, , i : [0, 7] X S’ [0, 00) by
Pyt (t,0,5) 1= Up (0 +75) foc (1)) (2.12)
with f, x : [0,7] — R given by
«

Joxe(t) := exp (Kﬁ?z@ — t)) :

Note that ¢, ,1(t,0,5) = Va(t,b + 7s), where V), is the Merton value func-
tion defined in and (L.3). Hence, we can expect ¢, , x > V. Indeed, the
next lemma shows that ., ,, i is a supersolution of the DPE (2.10) and a classical
verification argument shows that ¢, , x > V.
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2.3. Some preliminary properties

Lemma 2.1. 1. The function ., i is a supersolution of the DPE and a
strict supersolution if v € (1 — u, 1 + X) and K > 1.

2. ¢~ p i dominates the value function V,. In particular, Vy(t, b, s) < +oo for
all (t,b,s) € [0,T] x S".

Proof. 1. Direct computations reveal that

b P 26 \”

+ (K — 1)04 >0,
L, px(t,0,5) = (0+78)P " (frr (1))"(L+ A =) 20,
LMoy i (t,0,8) = (b+v8)P (frx(1)P(—=(1 = p) +7) >0

where the inequalities are strictif y € (1 — p, 1+ ) and K > 1.

2. Fix (t,b,s) € [0,7T] x S, & > 0 and let (L,M) € Ay(t,b,s) so that
(L, M) € Ao(t,b+¢,s). Let (K;);en be a sequence of compact sets con-

taining (b, s) and (b + ¢, s) such that the K increase to S’ as j — oo. For
each j € N we define a stopping time

7; := inf {u >t (Bfl;M(u) + ¢, StLSM(u)) ¢ Kj} NT
and note that 7; — 7T as j — oo.

Note that Btl,/l;]—:-/[s = Btl:l;M + ¢ and write B¢ = Bfl;]—:i aswellas S := StI;;M

It6’s formula for cadlag semimartingales (see Protter [92, Theorem I1.32])
shows that

P (T, BE(75), 5(75))

=Py pi(t,b+es)— / E”tcp%p’K(u, B (u), S(u)) du
t

N /tTj Ebuy@%p,K(ua B (u), S(u)) dL(u)

- /tTj ES@”SO%ZLK(U’ B(u), S(u)) dM*(u)
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2. Portfolio optimization with transaction costs

+ /tTj US(U)%SOMLK(U: B (u), S(u)) dW (u)

+ Z [QO%PJ((u? BE(“)? S(u)) - QO’Y,p,K<u_7 Be(u_>> S(u_))] )

t<u<T;

where L and M*¢ denote the continuous parts of L and M, respectively.
Since Eb“ygompy K, ESBZZQO%ZL xk > 0 we see that ¢, , x is non-increasing in
the directions of the jumps of (u, B*(u), S(u)) (by the gradient theorem,
see also (2.11)) and hence

Y [orr(u, B (1), S(u) = @y (u—, B (u=), S(u=))] < 0.

t<u<T;

Moreover, since ., ;, i is a supersolution of the DPE (2.10) it follows that

0< / LM e(u, BE(u), S(u)) du,
t

0

IN

/tTj ﬁbuy9077p,K(“7 Bf(u), S(u)) dL (u),

0

IA

/ " £ e, B (1), () dMC(u)

t

We therefore obtain

Py (Tj, BY(75),5(75)) < @ypic(t, b+ €, 5)
Tj 6
+ /t aS(u)%go%p,K(u, B (u), S(u)) dW (u)
and by taking expectations on both sides
Pypic (6,04 €,8) = Bl (75, B*(75), S(75))]
for all j € N. Since
Prpx (75, BY(73), 5(7;)) 2 Up (B (13) +75(75)) 2 Up(e)
we can send j — oo and use Fatou’s lemma to see that

Oypr(t,b+e,8) > Elpy (T, B5(T),S(T))]
— E[U,(B(T) +S(T))].
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2.3. Some preliminary properties

Next, observe that since v € [1 — p,1 + A] we have B*(T) + vS(T) >

XtL’ I;Jfg,s (T"). This implies that

prpi(tb+2,8) > B U, (X5 ()| =E [0, (x5 (1) +2)].

Now send € | 0 and use monotone convergence to obtain

Prc(t.,5) = E |U, (X5Y(D))]

and we conclude since (L, M) was chosen arbitrarily. O

We now turn our focus to the value function Vy. The following results are
straightforward and have already been observed in Shreve and Soner [97] in a
similar context.

Lemma 2.2. 1 Let (b,s) € OS°. Then the only admissible strategy is to in-
stantly jump to the position (0,0) and remain there.

=0
2. For (b;s) € S, the trading strategy of instantly closing the stock position
and no trading afterwards is an admissible strategy. Furthermore, for every

(b,s) € S°, we have

Up(b+ (L= p)s), ifs >0,

Vol b,5) 2 {Up (b+(1+Ns), ifs<0.

Proof. 1. This is proved in Shreve and Soner [97, Remark 2.1]. The idea is ob-
vious: If the investor were not to close the stock position immediately, then
the state process would leave the solvency cone with positive probability.

2. This is obvious. See also Shreve and Soner [97, Remark 2.2]. [

Note that Lemma[2.212 allows us to restrict the admissible strategies in A (¢, b, s)
to those strategies (L, M) which satisfy

o (i) = {2010 )

which we will assume in the sequel. With a slight abuse of notation we denote
the restricted set of strategies again by Ay (¢, b, s).
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2. Portfolio optimization with transaction costs

Lemma 2.3. 1. Vy is homogeneous of order p. That is, for every Kk > 0, Vy
satisfies

RpVO(t b7 5) lfp < 17p # 07

Vo(t, kb, 1) =
ot #b, ris) {log(li)—f-Vo(t,b,S) ifp=0.

forevery (t,b,s) € [0,T] x S
2. Letl,m > 0. Then
Vo(t,b,s) > Vo(t,b— (L + NI+ (1 —p)m,s+1—m)

whenever (b,s),(b— (1 + ANl + (1 —p)m,s+1—m) € S

Proof. 1. This is a well-known fact, see for example Shreve and Soner [97,
Proposition 3.5] or Bichuch [15] Equation (2.11)] for a justification.

2. This is again obvious since (b — (1 + M) + (1 — u)m,s + [ — m) can be
reached by an immediate transaction from (b, s) by buying [ and selling m
shares of the stock. See also Shreve and Soner [[97, Proposition 3.5]. [

The following proposition establishes the link between the value function V,
and the DPE (2.10) by showing that the value function is a viscosity solution
thereof. We refer to Appendix [Bl for a brief introduction to viscosity solutions.
The proof of the following proposition can be found in Davis et al. [27] in a
slightly different context under the assumption that V), is continuous or can be
established along the lines of Shreve and Soner [97, Theorem 7.7] (also under the
continuity assumption). For a rigorous proof we refer to Chapter B in a more
general setting, see Corollary[3.12]and Corollary[3.23l

Proposition 2.4. The value function V), is continuous and a viscosity solution of
the DPE (2.10) with boundary condition

Volt b,s) = Up(0),  if(b,s) € 0S°, t € [0, T,
and terminal condition

U+ (1= p)s), ifs>0,
V(T ,5) = {U,,(b+ (1+X)s), ifs <0.
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2.4. The comparison principle

In what follows, we show that the value function is unique within a suitable class
of functions.

2.4. The comparison principle

Before we present the comparison principle for the dynamic programming equa-

tion let us first introduce some notation. We define
1
Fnt(37 q7p87X> = —q — asps — 50’282X22,

FP (py, ps) i= (14 N)pp — s,
F(py, ps) := —(1 — p)py + ps,

where (b, s) € 8%, g € R,p = (py,ps) € R?and X = (X;;); =12 € S®. Moreover,
set

F(S7q7p7 X) = min{Fnt(Saq7pSaX>)Fbuy(pb7pS)aFse”(plnpS)}' (213)

Then
F(s, DVo(t,b, 8), D) Vo(t, b, s), Df o Vo(t,b,5)) = 0

corresponds to the DPE (2.10).

In what follows we prove a comparison theorem for the DPE, which typically
takes the following form: If u and v are viscosity sub- and supersolutions of
the DPE, respectively, and v < v on the boundary of the state space, then u <
v everywhere. The main difficulty in our setting is to control the behavior of
the viscosity solutions near OS since a boundary value of negative infinity is
possible (V) = —oo on 98" for p < 0). More precisely, we cannot guarantee that
u — v < 0 near 0S°.

We adopt an idea from Soner and Vukelja [103]] to deal with this problem: Instead
of merely specifying an upper bound on the growth of the solutions we add an
additional lower bound. Moreover, we shift the supersolution v by ¢ in the b
direction to ensure that v is finite on S°. We can then prove a comparison
principle for the shifted v and conclude the classical comparison result by sending
e — 0. We note that it is crucial for the following proof that the operators L™,
£ and £¢!" are independent of b, which in our problem setting is achieved
since the bond is chosen as the numéraire.
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2. Portfolio optimization with transaction costs

3 .
Theorem 2.5. Letu,v : [0,7] xS — R and fixe > 0. Assume that u is an upper
semi-continuous viscosity subsolution of (210) and v is a lower semi-continuous
viscosity supersolution of (2.10) such that

Up(b+min{(1 — p)s, (L + N)s}) <wu(t,b,s),v(t,b,s) < pypr(t,bs) (2.14)

€ (l—p, 14+ A and K > 1. Ifu(T,b,s) < v(T,b+¢,s)

for somep < 1,y
U,(0) for every (b, s) € 9S°, then u(t,b,s) < v(t,b+¢,s) on

1
and u(t, b, s) <
0,7] x 8.

>

Proof. Step 1: Suppose that there exists some (t*, b*, s*) € [0,7T) X S” such that
u(t,b*, s*) —v(t*,b" +¢,5") > 0.

Let us note that by the growth condition we have

—v(t,b+e,5) < =Up(b+e+min{(1 — p)s, (1 + N)s}) < =Uy,(e) < 0.
We therefore have (b*, s*) ¢ S since otherwise

u(t*, b, s") —v(t",b" +¢,5") < U,0)—Uy(e) <0

is a contradiction.
Step 2: Define the set

D, :={(t,b,5,1,b,5) : (t,b,s) € [0,T) x S, (t,b—¢,5) € [0,T) x S°}.

Now, for some p’ € (p, 1) with p’ > 0, for some d; > 0 to be fixed later and every
n € N we consider the upper semi-continuous functions ¢,, : D. — R defined as

Gn(t,b,5,1,0,8) == u(t,b,s) —v(t,b,5) — Sy i (t,b,s)
- g (t—t2+|b—b+e* + s — &)
as well as ¢ : [0, 7] X S SR given by
Goo(t, b, s) == u(t,b,s) —v(t,b+e,5) — oy i(t,b,s).
Note that if (¢,b, s, %, b, 5) € D, then

b+min{(1 — u)5, (1 + N5} >¢
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2.4. The comparison principle

and hence B
—v(t,b,5) < =U,(g) < 0.

Moreover, since u < @y, k < ©r K WE have

lim w(t,b,s) — dopyp i (t,b,8) = —00

[b],| 5|00
which implies that the supremum in

M, := sup ¢, (t,b,s,t,b,3)
D

is attained at some point (tn, by Sy s by, Sn) € D.. Also, note that the sequence
(tns by Sny tiy by S )nen is bounded and M,, < +oo. Similarly, we have

My = sup ¢uoo(t,b,s) < 400
0,7]x8"

and the supremum is attained at some point (too, b0, Soo) € [0,T] X S°. Let us

now choose
u(t*, b, s*) —v(t*, b* + ¢, s%)

Or i (1%, 0%, 5%)

50 <
so that we have

M, > My, > u(t*,b",s") —v(t*,b" +¢€,5") — Soq k(7,07 57) > 0.

Step 3: We want to show that (up to a subsequence)
(t’l’LJb’I’HSTL?En?BTL? gn) — (tOOJbOO7SOOJtOO7bOO +€7SOO)7 MTL — MOO (2‘15)

and B
n ([tn — ta)® + b — by + €]* + |50 — 5a]?) — 0. (2.16)

First, let us recall that the sequence (¢, by, Sp, tn, by, Sn)nen is bounded and hence
so is the sequence

(u(tnv bn7 Sn) - U(Ena Bna gn) - (50(10"/710’,K<tn7 bm S”))nEN

because u — v — 4 / i 1S upper semi-continuous. Now since M,, > M., we
’y!p b
have

0< g (Itn = Eul® + [bn = bn + 2 + |30 — 5a]%)
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2. Portfolio optimization with transaction costs

0|

n) - 5O¢w,p’,K(tna bn; 8n> -

— (tna bna 5n> - U<t_m Em
E 76117 n) - 50907,p/,K<tn7 bna Sn) 00 (217)

u Mn
S u<tnabn7 Sn) - U( n M

W

which implies that the sequence

n _ . _
(5 Ut = Fal? + b = bu + 2 + 50 = 5]%))

neN

is bounded. We can hence find a subsequence of (t1, by Sty O, 5 )men (Which
we again denote by (,,, b, Sn, tn, bn, Sn)nen for simplicity) such that

(tn:bus Sns s Do, 50) — (£,0, 8,8, b+ €,8) € D..
Passing to the limit in (2.17) now implies that

0 < limsup = (|t — £al? + by — b + 22 + |50 — 50]7)

n—oo 2
< limsup u(tp, by, 5) — V(tn, by, 5) — 800y i (tny by Sn) — Mg
n—oo

< 'LL(I?, i)a §) - U(fa I; +é, §) - 5090%P/7K<£7 I;a §) - Moo <0
which proves and (2.16).

Step 4: Next we show that t,, # T and (bs, Soo) & OS°. Suppose that on the
contrary we have ., = T". Then

0 < Moo = u(T,boo, So0) — V(T bes + €, S0) — 009,56 (T, boo, S
< U(T, boo, Soo) — V(T boo + €, 800) < 0

which is a contradiction. Similarly, assuming that (bs, So0) € OS° leads to a
contradiction since

0 < Moo = u(too, boos Soo) — V(teos boo + €, Soo) — 00917 k¢ (toos boos Soo)
< U,(0) = Uy(e) < 0.

Hence to, # T and (b, Soo) & OS° and since t,,t, — toos bn = boos b, —
boo + € and s, 5, — S0, we furthermore have (t,,, by, Sp, tn, b, 5,) € D, for n
sufficiently large.

Step 5: Let n be large enough such that (t,, by, Sn,tn, by, 5,) € D.. Then we
can apply Theorem (Ishii’s lemma) to the upper semi-continuous function
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2.4. The comparison principle

u — o~k and the lower semi-continuous function v to obtain the existence of
X,Y € S? such that

(n(tn — ), (b — by + ), (S0 — 50), X) € T [ — 600450 1) (b by 50,
((tn — ), by — b+ €),10(89 — 50), Y) € T 0(En, by 5),

(%( _OY) <3n (—]I _I]> : (2.18)

Since ¢, ;v i is smooth, it follows that

and such that

_ 0
(n(tn - tn) + 5()&%0%17’,1((% b, S”>’

- 0
n(bn — bn + 8) + 50%80%;;’,]((15717 bm Sn)a

0
’I’L(Sn - gn) + 50%90%1)’,1(@717 bn7 Sn)a
X+ 50D(2b75)g0%p/7;<(tn, by, sn)) € 72’+u(tn, bns Sn)-
To ease notation, let us define

pyi=nty, —tn), ppi=nby, —by+e), pii=n(s, — 3n).

Step 6: Since u is a viscosity subsolution of (2.10) and by the linearity of the
operators L™, £ and £ we have

min{Fnt(3n7p?apZa X) + 50£Nt90%10/7K(tna bna Sn)>
FP(py, p) 4 00L" 0510 1 (b, by 5n),
FoN 0 )+ 00L " ¢t b 5a) } <0 (219)

and since v is a viscosity supersolution we have

min{ F™ (5, pf', 52, V), F™pp, ), (0, p2) | 2 0. (2.20)

Our aim is to show that (2.19) and (2.20) lead to a contradiction.

Suppose first that in (2.19) we have

Fbuy<pg7pg) + 50£buy(p"/,p’,K (t’ru bn7 Sn) S 0.
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2. Portfolio optimization with transaction costs

But since by (2.20) we have F"(p, p?) > 0 it follows that
50£bUy<,0%p/’K(tn, bn, Sn) S O

which is a contradiction since ¢, , i is a strict supersolution of the DPE by
Lemma 2111 and since v € (1 — p,1 + A) and K > 1. In a similar fashion
assuming that

Fo(p, p) + 00L* 0 i (tns by ) <0
leads to a contradiction. We must therefore have
F™ (80, pys 02, X) + 00L™ 0y 1 1ty by 81) < 0.
Thus (2.20) implies that
F" (s, 01055 X) = F" (50,0, 05, Y) + 00L™ 050 1 (E, by 50) < 0.

Direct computations show that

F™ (s, p), 0, X) = F"(50, 01, 18, Y)

= —p' — as,pl — %a%iXQQ + p + as,pl + %JZEELYm

1
= —an|s, — 5> — 502[32X22 — 52Y5).

w9

Then implies that

Define

Qv
—
w
3
S~—
Qr
~~
¥2)
3
~—
Qe
—
¥2)
3
N~—
Qe
—

§2 Xgg — 52Yay = tr[6(8,)5(50) X — 6(5,)5(5,)Y]
[ (5 )]
<5 (1, )

= 3n (si — 25,5, + 5,21)

= 3n|s, — 5,|°.
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2.4. The comparison principle

Therefore,
F™ (50, 07, 05, X) — F™ (5, 0} 05, Y)
1
= —om|sn — §n|2 — 50’2[82)(22 — 5%3/22]

3
> —anls, — 5, — 502n|sn — 5,/

vV

3
— max{a, 502}71\5” — 5,|%
We therefore have
0> Fnt(sn’p?’p;z’ X) - Fnt(gnap?7p27 Y) + 50/~'1m90'y,p’,K(tn, bn7 Sn)

> —max{q, SJQ}n\sn — 5>+ 60L™ ry 1 by by, 1)
and since nl|s,, — 5,|*> — 0 as n — oo we obtain
0> 60L™ 0 1k (too, boo, So0) > 0
which is again a contradiction and hence finishes the proof. O]

The comparison theorem implies the following uniqueness result. In particular,
the value function V) is the unique viscosity solution of the DPE.

Corollary 2.6. Let u,v be upper semi-continuous viscosity solutions of the DPE
satisfying

Up(b+ min{(1 — p)s, (L + N)s}) < wu(t,b,s),v(t,b,s) < pypr(t,b,s)
with u(t, b, s) = v(t,b,s) = U,(0) on 9S° and
u(T,b,s) =u(T,b,s) =Vo(T,b,s) =v"(T,b,s) = vi(T,b,s). (2.21)

Then u = v.

Proof. Let ¢ > 0 be arbitrary. Since u and v are viscosity solutions of the DPE,
u, is a viscosity supersolution and v* = v is a viscosity subsolution. Moreover,

by (2.21),

v(T,b,s) = Uy(b+ min{(1 — pu)s, (1 + N)s})
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2. Portfolio optimization with transaction costs

< Up(b+ e+ min{(1 — u)s, (1 + \)s})
=u(T,b+e,s)
=u(T,b+¢,s).

Hence v(t,b,s) < u.(t,b+¢,5) < u(t,b+ ¢, s) everywhere by Theorem

Sending ¢ to zero shows that v < u by the upper semi-continuity of . Switching
the roles of v and u shows the reverse inequality. O

2.5. Construction of the optimal strategies

As pointed out in Section [Z.2] we expect the operators L™, £ and £ defined
in (2.4)-(2.6) to determine the optimal strategy in the sense that the operators
give rise to the trading regions Ry, R% and R defined in Z7)-(Z9). Note
however that in order for the definitions of the trading regions to make sense we
need that V, € C122([0,T) x S8Y). It is therefore necessary to study the DPE in
more detail for the existence of a sufficiently regular solution and hope that this
regular solution coincides with the value function.

The fact that V), and U, are homogeneous (cf. Lemmal[2.3]1) can be used to reduce
the dimension of the DPE . For this, let us temporarily assume that p # 0
and consider the reduced solvency cone

S0 = {(b,s) € 8" :5>0}.
For every (b, s) € S° consider the transformation
Vo(t, b, s) =: sPVy(t,b/s), Vo(t,z) == Vo(t, z, 1). (2.22)
Then, writing = = b/s, the DPE reduces to
0 = min {r:gtfzo(t, ©), L2y (8, ), L2V t, x)} , (2.23)
for (t,z) € [0,T) x (—(1 — p),00). The terminal condition is now given as

Vo(T, z) = Uy(x+1— ) and differential operators L™, Eg“y and ﬁze” are defined
as

thf/o = —21}0 — (a - —(1- p)a2) Vo
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2.5. Construction of the optimal strategies

+ (a = (1 —p)o?) x_xVO — —o%z 7]/0,

- o - 5
LyWVy = —(x 41— M)%Vo + pVo,

o o - .
E;GHVO =(x+1+ )\)£V0 — pVo.
For the case p = 0 we can set
VO(tv b7 S) = 10g($) + ]}O(ta b/S), ]}0<t7 .CU) = VO(tv z, 1)

to obtain Ehe same reduced DPE , but with the differential operators ﬁ"t,
L3 and L given by
0 ~ 1 0% -

D
EiVy = =20y — (a - —02> o) o =50 5

_ o -
Ly = —(z+1— M)%Vo +1,

S o -~
L3y = (z+ 1+ )\)%VO —1.

Dai and Yi [24] prove the existence of a regular solution of the reduced DPE (2.23).
By inverting the above transformation it follows that there exists a classical so-
lution to the original DPE (2.10) on the reduced state space [0,7") x SY. The
hope is of course that this classical solution coincides with the value function
on [0,7T) x S° and that the so-obtained regularity is sufficient to construct the
optimal strategy. The following Theorem sums up the results of Dai and Yi [24]
Theorem 5.1, Proposition 3.2].

Theorem 2.7. There exists a function Vy(t, z) € CV2(([0,T) x (—(1—p), 00))\ F)
with (0/0t)Vy(t, ) < 0 which solves the reduced DPE in the classical sense.
Here, the set I is given by

@, lf?TM < 1,
F:={(t0):te€[0,T)}, ifmry=1, (2.24)
{(t**,0)}, ifmy > 1,

with myr = /(1 — p)o? as defined in Section[11 and

log(1 4+ A) —log(1l — )
a—(1-po?

o =T — (2.25)
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2. Portfolio optimization with transaction costs

The classical solution obtained in Theorem allows us to define the trading
regions as follows:

RYW = {(t,x) €10,T) x (=(1 — 1), 00) : £29Tp(t,z) = o} ,
J

Rsell .= {(t,:r) € [0,T) x (—(1 — 1), 00) : LMWy (t, ) = 0
Re' = ([0,T) x (=(1 = p),00)) \ (R™ UR™M).

Y

Note that we must necessarily have /:’th/o(t, z) = 0 for all (t,z) € R¥. In
order to construct the optimal strategy it is important to determine the geometry
of these sets and the location of the boundaries between them. Dai and Yi [24]
Theorems 4.3, 4.5 and 4.7] provide the following characterization of these free
boundaries.

Theorem 2.8. 1. There exist two non-decreasing functions
T, s 2 0, T) = [=(1 = p), 0],
with T,(t) > Z4(t) forallt € [0,T) such that
Ry' = {(t,x) €[0,T) x (—(1 = p),00) : &(t) < < Bp(t)},

RE™ = {(t,2) € [0,T) x (—(1 - p), 00) :
Ry = {(t.2) € [0,7) x (~(1 — p), 00) :

Moreover, Vo € C*°(R2).
2. The function x;, is continuous and satisfies

>0, ifmy <1,

<0, ifmy >1,t <t
=0, ifmy >1,t=1t",
>0, ifmy > 1t >t

Ty(2)

where t"P is defined in (2.25). Furthermore, we have T,(t) = oo fort €
[tdown T where

log(1+ \) —log(1l — p)
" :

tdown — T —

(2.26)
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3. We havez, € C*(]0,T)) and

> 0, l.fﬂ'M <1,
{%S(t) = 0, if7TM = 1,
< 0, lfT('M > 1.

Remark 2.9. A close inspection of the results of Dai and Yi [24] implies the
slightly stronger result

inf |Z,(t) — Ts(t 0.
nf [3(6) — 2.(0)] >
This can be seen by looking at the double obstacle formulation of the problem in

Equation (3.4) and the discussion in the first paragraph in Section 3.2 in Dai and
Yi [24]. o

Remark 2.10. The point "7 turns out to be the time point at which the buy
boundary 7, crosses the line z = 0 (i.e. all wealth invested in the stock). The
point %" defined in (Z.26) is exactly the point in time from which onwards it is
no longer optimal to buy shares of the stock. o

Note that since z = b/s we have b = sz,(t) and b = sz,(t) along the free
boundaries. This shows that for every ¢ the free boundaries define a cone in the
original variables. See also Figure

Figures visualize the different scenarios for the location of the free bound-
aries. Note that we parametrize the free boundaries in terms of risky fractions
here, i.e. . )
0 —0

m (t) := — , T (t) := — .

(1) 14 Z(t) ®) 1+ Z4(t)
Note that "7 is the time point at which the free boundary in terms of the risky
fractions is equal to one, i.e. 7(t*?) = 1 (this may only happen if m); > 1) and
tdown js the time point from which onwards the buy boundary in terms of risky
fractions is equal to zero, i.e. 7°(t) = 0 for all ¢ € [td°*™, T1.

For obvious reasons we refer to 7, and Z; as the buy and sell boundary, respec-
tively. If our conjecture that the buy and sell boundaries characterize the optimal
strategies is indeed correct (and which will be rigorously proved in Section [2.6)
then Theorem 2.8 has the following implications:
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42

Figure 2.3. The free boundaries in the original variables for a fixed t.

1. If mpy < 1 (c.f. Figure [2.4), i.e. if borrowing is not optimal in the absence of

transaction costs, then it is also not optimal in the presence of transaction
costs. This is because both 7, > 0 and Z, > 0, implying that 7°, 7° € (0, 1).

. If mpr = 1 (c.f. Figure[2.9), i.e. if it is optimal to invest all money in the stock

in the absence of transaction costs, then two cases must be distinguished
in the presence of transaction costs: If the initial position of the investor is
such that z < 0 (i.e. b < 0) then the bond position is closed and all money is
kept in the stock (since 7, = 0, i.e. 7 = 1). However, if the initial position
is such that x > 0 (which implies in particular b > 0), then it is not optimal
to close the bond position. This is because we force the investor to close
the stock position at terminal time 7" and hence it is too expensive to first
buy shares of the stock at initial time just to liquidate the stock position
once the investment horizon is reached.

. If mpr > 1 (cf. Figure [2.6), i.e. if borrowing is optimal in the absence of

costs, we need to distinguish three cases. Since after the initial transaction
the investor never switches from borrowing to no-borrowing or vice versa
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1
0.8 - |
& —
[=]
o 0.6L B —
g —_— (1)
& w10 (t)
%\ 0.4 | — T
3
0.2 i
0 \ \ \ \ \ \ \ \ \

Time ¢t

Figure 2.4. The trading regions for mp; < 1.

(T, < 0 so that 7 > 1, &, non-decreasing so that 7° is non-increasing),
the initial transaction determines whether borrowing or no-borrowing is
optimal.

(@) t*? > 0:
In this case borrowing is optimal since 7;(0) < 0, i.e. 7°(0) > 1.

(b) t“? = 0:
If the initial position is such that z < 0 (i.e. b < 0) then borrowing is
optimal, otherwise the investor invests all of her wealth in the stock
(since Z3(0) = 0 and hence 7°(0) = 1).

(c) t*? < 0: In this case borrowing is optimal if x < 0 (i.e. b < 0) and
no-borrowing is optimal if z > 0 (i.e. b > 0). This is because Z4(t) <
0 < Zp(t) and hence °(¢) < 1 < 7(¢) for all ¢t € [0, 7).

4. In any case, as soon as t > tdown the investor refrains from buying shares
of the stock since Z;(t) = oo, i.e. m°(t) = 0, see also Remark

5. If the initial position (b, s) in the original variables is such that s < 0
then it is not immediately clear what the optimal strategy is. We expect
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Figure 2.5. The trading regions for mj; = 1.

that whenever 7,(t) = oo (i.e. 7°(f) = 0) then it is optimal to liquidate
to stock position and refrain from further trading. Whenever z,(t) < oo
(i.e. 7°(t) > 0) we expect that the investor performs an initial transaction
which takes her position on the boundary of the no-trading region. This
conjecture is proved in Section [2.6] but intuitively this behavior is clear:
Since the excess return « is positive and since the investor has to liquidate
her stock holdings at time 7' it should never be optimal to have a short
position in the stock before time 7.

Remark 2.11. Note that, given the Merton fraction 7, the terminal time 7'
and the investor’s initial position (b, s), we know whether borrowing is optimal
or not. That is, the investor’s position never changes from borrowing to no-
borrowing (or vice versa) after the initial transaction. With this, Theorem [2.8]
and the discussion preceding this remark indicate that we have to distinguish be-
tween the borrowing, the no-borrowing, and the liquidation case (i.e. liquidation
of either the bond or stock position at initial time and no trading afterwards) for
the construction of the optimal strategies. o

For the construction of the optimal strategy we need to prove the existence of
finite-variation processes L* = (L*(u))ucp,r) and M* = (M™*(u))uepe,r) which

turn the controlled wealth process (BtL b M S,f S ’M*) into a diffusion reflected

44



2.5. Construction of the optimal strategies

qup gdown

[
[=]
= N | =)
& — 1r(1)
'_?4\ — 7T )\
o5 i

0 | | | | | | | | I

0 1 2 3 4 5 6 7 8 9 10

Time ¢t

Figure 2.6. The trading regions for mp; > 1.

at the boundary of R}’. The main difficulty is the geometry of Rj*: It is an
unbounded cone changing over time (see Figure [2.3). There is a vast literature on
the construction of reflected diffusions, most notably Skorohod [98]], Strook and
Varadhan [[105], Tanaka [[107], Lions and Sznitman [73]], Dupuis and Ishii [33} 34]
and recently Nystrom and Onskog [87], but the assumptions are usually very
technical and are difficult to verify in our situation. However, Theorem [2.7] and
Theorem 2.8/ suggest to first reduce the dimension of the problem so that we only
have to deal with reflection in a time-dependent interval. This problem is by
now well-understood, see e.g. Burdzy et al. [17], Slaby [99] and Stominski and
Wojciechowski [101} [100].

As pointed out in Remark [2.11] we consider the borrowing, no-borrowing and
the liquidation cases separately. For this, let us fix an initial datum (o, by, So) €
[0,7") x S". For (bo, o) € OS° the optimal strategies are known (Lemma 2.211),
so let us assume further that (by, so) € S°. Next, note that we can without loss of
generality assume that the initial position is inside the closure of the no-trading
region R{'. Indeed, if (o, bo, s0) € R, then we can find (b*, s*) and (minimal)
[,m > 0 such that (¢, b*, s*) € OR. and

b*=0by— (1 + AN+ (1 — p)m, s"=s0+1—m.
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2. Portfolio optimization with transaction costs

If (L*, M*) is now the candidate optimal strategy for (¢, b*, s*) then (L*+1, M*+
m) is the candidate optimal strategy for (o, by, So). In other words: By a suitable
initial transaction we can always ensure that we start within the closure of the
no-trading region.

Comparing with Figure we see that in the case of 7, < 1 we have to distin-
guish the following cases (after the initial transaction):

Cases for myy < 1

Case (e): No borrowing
Case (d): Liquidation (stock)

to arbitrary, sqg > 0, bg > 0
t() Z tdown’ So = O, b() >0

In the case of 73, = 1, the following cases may occur after the initial transaction
(compare with Figure [2.5):

Casesformy = 1

to arbitrary, sg > 0, bg = 0

Case (a): Liquidation (bond)

t() Z tdown’ Sop = O, b() >0

Case (d): Liquidation (stock)

t < tdown’ s >0,b9 >0

Case (f): No borrowing

Finally, if ), > 1 we have to distinguish the following cases (see Figure [2.6)):

Cases for mpy;y > 1

to < t“P, 59 > 0,by <0

Case (h): Borrowing

to =t"P, 890 > 0,0 =0

Case (b): Liquidation (bond)

to =t"P, 890 > 0,09 <0

Case (h): Borrowing

1P <ty <t g0 > 0,by < 0

Case (h): Borrowing

P <ty <t 50> 0,by =0

P <ty <t 50> 0,b > 0

Case (g): No borrowing

tg > tdoum, Sso =0, b() >0

Case (d): Liquidation (stock)

to Z tdown, Sg > 0, bo <0

Case (h): Borrowing

to > tdown go > 0,by =0

Case (b): Liquidation (bond)

ty > tdown, S0 >0,b9 >0

(
(
(
(
Case (b): Liquidation (bond)
(
(
(
(
(

Case (g): No borrowing




2.5. Construction of the optimal strategies

The cases (a)-(d) are liquidation cases and can be summed up as follows:
(a) mp = 1 with sg > 0 and by = 0.
(b) mar > 1 with sg > 0, by = 0 and ty, > t“P.
(c) mpr > 1 with sg =0, by > 0and ty = t“7.
(d) s arbitrary, to > 9" and 59 = 0.

It is clear that we can exclude these cases in the following since the investor
refrains from further trading after the initial transaction. We are hence left with
the cases

(e) myr < 1 with sq, by > 0,

(f) mar = 1 with s0, b9 > 0,

(g) mp > 1 with sg,b9 > 0 and ty > t"2,
(h) 7 > 1 with sqg > 0, by < 0.

The cases (e)-(g) are no-borrowing cases whereas we expect borrowing to be
optimal in the case (h). It turns out that for the construction of the reflected
diffusions it is advantageous to consider the change of variables s/b in the no-
borrowing case and s/(—b) in the borrowing case (as opposed to the transforma-
tion b/s as considered for the construction of the classical solution of the reduced
DPE (2.23)).

By Theorem [2.7] we see that by reversing the transformation in (2.22) we can
construct a function Vj on [0, 7] x S° from V;, such that V} solves the original
DPE given in on the reduced state space [0, 7] x S°. Note that, with this
and Theorem 2.8, V} is of class C'»>? except for the points (t,b,s) € [0,T] x S°
on which the boundaries of the no-trading region intersect with the set {(¢,0, s) :
t € [0,7],(0,s) € S°} (compare with the set F' defined in Theorem 7). Next,
let us define

S8 :={(bs) eS8 :b>0,5>0}, S ={(b,s) €8 :b<0,5>0}.

47



2. Portfolio optimization with transaction costs

In the sequel we work on the reduced state space [0, 7] x S{ in the no-borrowing
cases (e)-(g) and [0, 7] x S° in the borrowing case (h).

2.5.1. Construction in the no-borrowing case (e)

The main idea for the construction of the optimal strategy is to find a suitable
transformation of the state space so that the problem of constructing an obliquely
reflected diffusion in an unbounded and time-dependent cone simplifies to nor-
mal reflection in a time-dependent interval. The transformation is based on ideas
from Gerhold et al. [41]. We restrict ourselves to the case p < 1, p # 0 and
remark that the construction for the case p = 0 follows similarly.

Let us first assume that we are in case (e), i.e. myy < 1 with s9,bp > 0. In
particular, V; is of class C'? and hence Vj is of class C1?? everywhere. We

define

0, if 7p(t) = oo, To(t)
By Theorem 2.8 we see that [(t) < u(t), [(t) € C([0,T")) and u(t) € C*([0,T)).

I(t) = {Uib(t)’ if2(1) < oo, u(t) := ! : (2.27)

On the set [0, 7] x S} we consider the transformation

Vitt.bs) = vesp (o L uy ).

og(s/(bu(t)))
Then, setting x = log(s/(bu(t))),

0 0 w'(t)

a%(tv b? S) - _p%(tv b? 3) (/x wt<t7 y) dy + U(t) 'lU(t, .Z')) )
0 1

%Vo(t, b,s) = pVu(t, b, S>E 1 —w(t,x)],

0 B w(t, )

%%(ﬂb; 8) _p‘/(](tab75> s 9

82

1
@Vo(t, b,s) = pVu(t,b, s); (wx(t,x) +pw(t,x)2 — w(t,x)) :

With this and using that V}, satisfies £"¥1{ > 0 and £V}, > 0 we see that w
satisfies

w(t, )
1—p< WO = wit,))er <1+ (2.28)
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2.5. Construction of the optimal strategies

and where equality holds if £V = 0 or L'V} = 0, respectively. Moreover,
since L™V, = 0 whenever £V}, > 0 and £V}, > 0, we see that

/a: w(t,y) dy — <04 — %(72 - Zg))>w(t, x) — %paQw(t, r)? — %02wx(t, x) =0,

whenever w/u(l —w)e® € {1 — u, 1 + A}. Using that Vj is C™ in the interior of
the no-trading region (Theorem [2.8) we can take the derivative with respect to x
in the last equation to obtain

2
a Tx ta
50 W (t,z)

1, ()

= —ult,) = (0= 50" = 5

)wx(t,z) — potw(t, v)w,(t, z). (2.29)

Consider again the fraction in (2.28), i.e.
w(t, )
u(t)(1 —w(t,x))e®

Note that, since the points x = 0 and x = log(I(t)/u(t)) constitute the boundary
points of the no-trading region in the new variables by (2.27), we must have

f(t,ZE) =

f(t,x) =1—pu, ifz >0, (2.30)
flt,x) =14+ A, if o <log(l(t)/u(t)). (2.31)

Note that for the point x = log(I(t)/u(t)) these considerations are only valid for
t € [0,t%wn) since otherwise log(I(t)/u(t)) =

Remark 2.12. We have

w(t, )
u(t)(1 —w(t,x)er)

and f(t,x) € {1 — u, 1 4+ A} inside the buy and sell regions. This suggests that
(&, X)) P'(t)

with X*(t) = log(S*(t)/B*(t)u(t)) (and where (B*, S*) denotes the optimally
controlled wealth process) is the shadow price corresponding to our problem.
This is confirmed in Gerhold et al. [41]]. o

flt,a) = el —p,1+ A
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2. Portfolio optimization with transaction costs

The next step is to construct a reflected diffusion in the time-dependent interval
[log(1(t)/u(t)), 0].

Lemma 2.13. There exists a process V. = (V(t))icp,,r) and finite-variation pro-
cesses L = (L(t))ejt,r) and M = (M (t))sepso,r) such that

d\I/(t) = [CV— %O’Q - ,l;<—(;)) dt-f‘O' dW(t) +]l[t07tdown)d.[/(t) —dM(t), t e [to, T),
(2.32)

with

W (to) = log (W) ,

and such that U is a diffusion reflected on the boundaries of the time-dependent
interval [log(I(t)/u(t)), 0].

Proof. This follows from Stominski and Wojciechowski [101, Theorem 3.3] to-
gether with Remark ]

Let us now define a process N = (N (t))sct,,r) through

dN(t) = N(t) (1 — w(t, log(l(t)/u(t)))) Lisp sowny dL(t)
—N@#)(1—w(t,0) dM(t),  telt,T),

with N(tg) = so/P'(ty). Note that since dL(t) = 0 for every t € [t%%" T) this
can equivalently be written as

dN(t) = N(t) (1 —w(t,log(l(t)/u(t)))) dL(t)
— N@) (1= w(t,0)) dM(t),  t€[to,T). (2.33)

Remark 2.14. Comparing with Gerhold et al. [41], we interpret U as the optimal
stock to bond ratio and N as the optimal cumulative number of shares of the stock
bought up to time ¢. Furthermore, again as in Gerhold et al. [41], the function
w can be interpreted as the optimal risky fraction and hence 1 — w coincides
with the optimal fraction of wealth invested into the bond which gives a nice
interpretation for all the terms occurring in (2.33). o

With this, we now have all the necessary tools at hand to construct the opti-
mal strategies. Let us define a process S* = (S*(t))cpo,r) through S*(t) =
N(t)P'(t). Then S*(ty) = N(to)P(ty) = s and
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2.5. Construction of the optimal strategies

dS*(t) = aS*(t) dt + oS*(t) AW (t)

+ S*(t) (1 — w(t, log(L(t)/u(t)))) dL(t)
— 5 () (1 — w(t,0) dM(t),  t€ [to,T).

Furthermore, define B* = (B*(t))icyo.r) by B*(t) := S*(t)e™¥® /u(t) to obtain

and
dB*(t) = —w(t,log(l(t)/u(t))) B*(t) dL(t)
+w(t,0)B*(t) dM(t), t € [to, T).
Using the definition of B*, (2.30) and (Z.31) we see that

(e, 05°(0) = “C2 — (1 )70 - w0,

and similarly

w(t, log(I(t)/u(t))) B*(t) = wlt f(igi(lfiég(ffi%s*(t)

— (14 0)St)" (1 = w(t,log(I(t) /u(t)))) .

So, in total, the dynamics of B* simplify to

dB*(t) = —(1+ X)S*(t) (1 — w(t, log(I(t)/u(t)))) dL
+ (1= p)s*(t )( —w(t,0)) d ( ), et T).

Hence, if we define

dL*(t) = N(@)P'(t) (1 —w(t, log(I(t)/u(t))) dL(t),  t€ [to,T),
dM*(t) = N(t)P'(t) (1 —w(t,0)) dM (1), t € [to,T),
with L*(t9) = 0, M*(t9) = 0 and if we set (liquidation at terminal time)
LY(T) = L(T=) + SY(T=)ls~(r-)<0},
M*(T) = M*(T=) + 5 (T—)Lis=r-)>0},
S*(T) =0,
B*(T) = B*(T—) + min{(1 — u)S*(T—), (1 + \)S*(T—)},
then (L*, M*) € Ay(to, bo, So), and (B*, S*) is a diffusion reflected on the bound
ary of R
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2. Portfolio optimization with transaction costs

2.5.2. Construction in the other cases

The construction in the other cases (f)-(h) follows in a similar way as the con-
struction in the case (e). We outline some of the details in the sequel.

Let us first assume that we are in one of the no-borrowing cases (f) or (g). That is,
we either have m); = 1 with sy, by > 0, or my; > 1 with s¢, by > 0 and £, > t".
While the construction here is similar to the case (e) we have to be more careful
since the upper boundary in terms of the transformation s/b is now equal to
infinity which does not allow us to consider the transformation x = log(s/bu(t)).
However, since the upper boundary is now equal to infinity, we deal with one-
sided reflection which simplifies matters again (we never have to sell shares of
the stock!). As before, we define the lower boundary [(t) to be given by

I(t) := {1/531,(15), if Z(t) < o0,

0, lfi’b<t) = 00,

and consider the slightly different transformation

Vo(t, b,s) = b exp (—p /10 w(t,y) dy) .

og(s/b)

Setting © = log(s/b) and arguing in a similar fashion as before the existence of
the candidate optimal strategy follows. Note, however, that the process W now
has to be be constructed without the u/(t) /u(t) term in its drift (see (2.32)).

Let us now turn to the borrowing case (h). That is, assume 7, > 1, 5o > 0,
bp < 0and ty € [0,T). Since by < 0 and since we want the optimally controlled
bond wealth B* to satisfy B* < 0, we have to consider a different transformation.
More precisely, we consider the transformation s/(—b) instead. We first define
the trading boundaries to be

1 {—1/;f;b(t), ift < ¢

0, if t > t'P,
Theorem 2.8 implies 0 < () < u(t) < oo, I(t) € C*([0,T)) and u(t) €

C([0,T)) (note, however, that in this case the lower boundary [ is defined by
means of 7, instead of ;). The correct transformation of the function V{ has
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2.6. Verification and value function regularity

then to be chosen to be
log(s/(=bl(t)))
Vo(t, b, s) = (=b)" exp —p/ w(t,y)dy |,
0

where we restrict Vj to the set S°. This leads to similar calculations as in the case
(e) but with the lower boundary [ in place of the upper boundary u in the drift
term of the process V¥ (see (2.32)).

2.6. Verification and value function regularity

We now proceed by verifying that the strategies constructed in the previous sec-
tion are indeed optimal. Since V} is only defined on [0, 7] x S° classical verifi-
cation arguments are difficult (it will turn out that V) is not sufficiently regular
everywhere, see Theorem [2.28). Instead, we adapt the approach introduced in
Christensen [20] for impulse control problems to our setting: The idea is to show
that the value function is the point-wise minimum within a suitable class of su-
perharmonic functions.

More precisely, let us denote by H the set of all continuous functions & : [0, 7] x
S SR satisfying the following properties:

) h(T,b,s) > Vo(T,b,s) on {T} x S

(i) h is non-increasing in the direction of transactions, i.e. whenever (¢, b, s) €
[0,T] xS andif |, m > 0 are such that (b— 1+ NI+ (1—p)m,s+l—m) €
=0
S, then

h(t,b,s) > h(t,b— (1 + ANl + (1 —p)m,s+1—m).

(iii) h is space-time superharmonic with respect to the uncontrolled wealth pro-
cess. More precisely, denote by (B°, S%) = (B}, S7,) the wealth process
corresponding to the strategy L = M = 0 and let ¢ be the first hitting time
of OS°. Then h is called space-time superharmonic (or superharmonic for
short) if and only if

h(t,b,s) > E [h(1 A, BY,(T A9), 5P (T A9))]
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2. Portfolio optimization with transaction costs

for every [t, T]-valued stopping time 7.

(iv) There exists v € (1 — u, 1+ A) and K > 1 such that

Up(b+ min{(1 — p)s, (L + N)s}) < h(t,b,s) < @, x(t,b,s).

We expect that V) is the point-wise minimum of the elements of H. If this is true
we can prove the optimality of (L*, M*) as follows:

1. Show that every h € H dominates V.
2. Define the function
ho(t, b, s) = E [Up (Xf,;;M* (T))}
and show that hg € H.

It follows that Vy < hg, but hg < V), since (L*, M*) is admissible. Hence hy = V
and (L*, M*) is optimal.

In Lemma [2.75]below we show that every h € H dominates V. Then we proceed
by analyzing the regularity of iy and use these results to show that A is super-
harmonic in Proposition [2.25]and show that 5 is non-increasing in the direction
of transactions in Proposition The optimality of (L*, M*) then follows in
Corollary

Lemma 2.15. Let h € H. ThenV, < h.

Proof. We show that h is a viscosity supersolution of the DPE (2.10). By The-
orem [2.5] (comparison principle) it then follows that for every ¢ > (0 we have
Vo(t,b,s) < h(t,b+ ¢,s) everywhere and by the continuity of » we can send
¢ } 0 to conclude.

Let us therefore fix (tg,bo, 50) € [0,7) x S° and let p € C*22([0,T) x S°) be
such that ¢ < h and @(to, bo, So) = h(to, bo, So). We have to show that

min { L™ ¢(to, b, so), L (to, by, S0), L p(to, bo, so)} > 0.

54



2.6. Verification and value function regularity

Let [ > 0 be such that (by — (1 + \)s,s + 1) € S°. Then

(IO(t(), bo, 80) — (IO(t(), bo — (]. + /\)l, S + l)
Z h(to,bo, 80> — h(to,bo — (1 + )\)l,S + l) Z 0

since @(to, bo, So) = h(to,bo,S0), ¢ < h and since h is non-increasing in the
direction of transactions. Now divide by [ end send [ | 0 to obtain

L p(to, by, 59) > 0.
By similar arguments we can show that

L5 p(tg, bo, 59) > 0
and hence it only remains to show that

ﬁnt@(to, bo, 80) >0

Suppose that on the contrary we have
L™ (o, by, s0) < 0.
Then there exist ¢, > 0 such that t, + ¢ < T, B.(by, s9) C S” and
L™o(t,b,s) < —6
for all (¢, b, 5) € [to, to + €] X B.(bo, o). Now define the stopping time
. =inf {u >to: (B, (u), Sy o, (W) & Be(bo, s0) } A (to + €).
Since h is space-time superharmonic and by It&’s formula we have

©(to, bo, s0) = h(to, bo, S0)
Z E [h(T‘E’ Bl?o,bo <7-5)7 Stoo,so (7—5))]

Z E [90(7-57 Bl?o,b() (7—5)7 SIE)O,SO (Tf))]

— (i, bo, 50) — E [ | et B ), 8, ) czu] ,

to
ie.

E [/ Lo (u, Bfmbo(u), S?MO (w)) du} > 0.

to
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This must however imply that

max  L"p(u,b,s) > 0.
u€lto,to+e]
(b,S)EBE(bQ,So)

Sending ¢ | 0 hence implies that
L™ (to, bo, 50) > 0

which is a contradiction. O]

In Section[2.5land Lemma[2.2]1 we have constructed the candidate optimal strate-
gies (L*, M*) = (L, ,(u), M}y [(u))ucp,r) for every (t,b,5) € [0,T) x S°. More-
over, it is obvious that the candidate optimal strategy (L7, ,(u), M7, ,(u)) is the
strategy which merely liquidates the stock position s. This allows us to define
the function

ho(t, b, s) = E [Up (Xf;st* (T))] . () el0,T] xS (234)

Our next aim is to show that /g € H and hence hg = Vy and (L*, M*) is optimal.
As a first step, we show that hg coincides with V;; on [0, 7] x S°.

Proposition 2.16. The function h, defined in coincides with the classical
solution Vj of the DPE on the reduced state space [0, T] x S°.

Proof. Let (t,b,s) € [0,T) x S If (t,b, s) is such that we are in one of the lig-
uidation cases (a), (b), or (c), then direct computations reveal that hy(t,b,s) =
Vo(t, b, s) since Vj is explicitly known at these points (cf. Dai and Yi [24, Propo-
sition 3.2]). For example, assume that p = 0, mp; > 1 and (¢,b,s) = (t“7,0, s).
Then Dai and Yi [24}, Proposition 3.2] show that

Vo(t,b, s) = log(s) + Va(t, 0)
= log(s) + log(1 — u) + <a — %O’Q> (T —t)
— E[log((1 - ) S5 (7))

=E[Uy0+ (1 - wSE™ ()]
= ho(t, b, s).
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We therefore exclude these cases in the sequel. For ease of notation, we denote
the controlled processes (B, ", S’ M) by (B*, S%).

First, let us remark that by the gradient theorem
Vo(t,b,5) = Vo(t.b = (14 NL*(8) + (1 = ) M*(t), s+ L*(t) = M*(1))

since L*(t) # 0 only if (¢, b, s) € Rg"™ and M*(t) # 0 only if (,b, s) € R For
n € N define the stopping times

T = inf {u >t /t [as*(r)%vo(r, B*@),S*(@)F dr > n} AT

Since (B*, S*) has continuous paths after the initial transaction and V} is of class
C122 along the paths of (u, B*, S*) we can apply It6’s formula to obtain

Vo(t,b, s) = Vo<t, b— (1+ L () + (1 — p)M*(), s + L*(t) M*(t))

= Vo(Tn, B* (1), S™(T)) + /

t

T

" LWy (u, B (w), S (u)) du
+ /t : LV (u, B*(w), S*(u)) dL* (u)
+ /t ’ L5V (u, B*(u), S*(u)) dM* (u)

- / h aS*(u%%(u, B (u), $*(u)) dW (u)

= Vo(7, B* (1), S™(12)) —/t aS*(u)%Vo(u,B*(u),S*(u))dW(u)

since V} is a classical solution of the DPE and by the construction of (L*, M*).
Taking expectations on both sides shows that

‘/O(t, b, S) =K [%(TTH B*(Tn>7 S*(Tn))] :

We are left with showing that

Tim E [Vo(7, B* (), $*(7)] = E [Up (Xf,j;sM* (T))} = holt,b,s).  (2.35)

We first note that there exists a constant C' > 0 such that

Vo(t, b, s) = CVy(t, b, s) (2.36)
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forall (¢,0,s) € ﬁgt. Indeed, by Lemma[2.112 and Lemma 2212 we have
Up(b + (1 - ;L)S) < Vo(t, b, S) < 901,p71(t7 b, S)

and since (0/0t)Vy > 0 and by the classical maximum principle (see Evans [38]
Theorem 7.11]) we similarly have

Up(b + (1 - M)S) < %(t’ b> 5) < Sol,p,l(t’ b> 5)'

Now since Vj and V), are both homogeneous of order p we can write (for p # 0,
the case p = 0 is similar)

Vo(t,b,s) = (b+s)PVo(t,1 —m,m) and Vy(t,b,s) = (b+ s)"Vy(t,1 — 7, 7)

where m := s/(b + s). Since U, and 1,1 are homogeneous as well it follows
that V(¢,1 — 7, 7) and Vy(t, 1 — m, 7) are bounded in the no-trading region and
hence (2.36) follows.

Let us now turn to (2.35). We consider the cases p € (0,1), p = 0Oand p < 0
separately.

Case 1: p € (0,1).
We claim that the sequence (Vy(7,,, B*(7,), S*(71)) )nen is uniformly integrable,
in which case (2.35) clearly holds. Let £ > 0 such that p(1 + ¢) < 1. Then

0<E UVO(Tn,B*(Tn), 5*(Tn))’1+a}

<E [‘(70171071(7—“7 B*(Tn)a S*(Tn))‘l+g]
1+e¢ . .
P E [()Ol,p(l—ke),l(Tn, B (Tn), S (Tn))]

1+e¢
S pg SDl,p(l—&-a),l(ta b) S)a

<

where the last inequality follows from the proof of Lemma [2.7]2

Case 2: p < 0.
We write

E [%(Tna B*(Tn)7 S*<Tn))] =E [%(Tm B*(Tn)v S*<Tn))1{m<T}]
+E [VO(Tn, B*(1,), S*(Tn))]l{Tn:T}] .
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Since by monotone convergence
. * * : L* ,M*
Tim E [Vo(r, B*(7a), 8" (7)) Lir,my] = lim E |U, (X[5(T)) 1,y
—E |0, (x5 (1)
we only have to show that

lim E [Vo(7, B (), S*(70)) 7, <1y ] = 0.

n—oo

We have
0> lim E [Vo(rn, B*(7), S* (7)) Lr<y]
n—oo
> C lim E Valra, B (1), 5" (7)1 <]

> O lim E [U,, (XfZ,;M*(TD ]l{m<T}]

n—00
=0

by monotone convergence.

Case 3: p = 0.
This follows from case 1 and case 2 by splitting up Vi (7, B*(7,), S*(7,,)) into its
positive and negative part and using that

1 1
—z P <log(z) < —af
—p b

for every p € (0, 1). O

Remark 2.17. Note that the proof of the previous theorem shows that the pro-

Cess

(Yot B S5 )

is an F*-martingale whenever (b,s) € S°. Indeed, we just have to replace the
sequence of stopping times (7,,)nen by the sequence (7, A u),en to obtain

Volt,b,s) = Tim B [Vo(r A, B (ra A), S5 (7 A )| (1)

n—oo

— B [Valu, By (u), SEM ()| F(0)]

This indicates that we really may expect V; = V) by the martingale optimality
principle. o
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2. Portfolio optimization with transaction costs

Proposition[2.16] proves the regularity of g on [0, T") x S°. The following lemmas
investigate the regularity of /, for s < 0.

Lemma 2.18. hy € CY22([0,£%%") x SO\ SP). Moreover, for every (t,b,s) €
[0, tdewn) x SO\ SO and every I* > 0 such that (t,b— (1 + \)I*, s +1*) € Rb“y and
541" > 0 we have

0 0

50, 0:8) = 2 Vot b, 8) | s)=o- 120 541
8 0

% ho(t,b,s) = 81)Vo(t’ b, )| (b,5)=(b— (14 7) 1%, 5+1%)
9, (t,b )—gv(tb )|

Js o1, 0,8) = ds 0\l; 0, S)|(b,s)=(b—(1+X)1*,s+1%)
0? 02
ﬁho(t b,s) = 832V0(t’ b, 5)|(b,5)=(b—(14-7\)1*,5+1%) -

Proof. The idea is to bootstrap the regularity of iy for non-positive s from the
regularity of hy =V} for positive s inside the buy region Rguy. See Figure [2.7 for

a sketch.

D) o) . -

)
Sfy,‘o /’,IJbKtO

"o Bs(bo — (14 N1, 5o+ 1)

\ \
<«_7

Bs(bo, s0)

Figure 2.7. Bootstrapping the regularity of hg.
Fix (to, bo, s0) € [0,T] x 8® with ty < t%“" and s; < 0 and let § > 0 be small

enough such that ¢ty + & < t%%" and Bj(by,sg) C S°. By making & smaller
if necessary we may furthermore assume that [to, to + 0) x Bs(bg, so) C RI™.
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2.6. Verification and value function regularity

Now, for every (t,b,s) € [to,to + ) x Bs(bo, so) there exists some [y > 0 such
that (b — (1 + A)lo,s + lo) € OR2 N IRY™ and s + I, > 0. Moreover, by the
construction of hy we have

ho(t,b, s) = ho(t,b— (1+ A, s +1)

for every [ € [0, y]. By the monotonicity of the buy boundary 7;, making ¢ even
smaller if necessary, we can therefore find some [* € (0, ly) such that [ty, to+0) X
Bs(by — (14 A\)I*, sy + [*) is contained in the interior of R and s > 0 for all
(b, s) € Bs(bgp— (14+\)I*, s9+1*). Note that by construction and Proposition [2.16]
we have

ho(t,b, s) = ho(t,b— (1 + N, s+ 1*) = Vo(t,b — (1 + \)I*, s + 1)

for all (t, b, S) S [to, to —+ (S) X Bg(bo, 80). Since % is 01’2’2 in [to, to + 5) X Bg(bo —
(14 N)I*, sp + 1*) the result follows. O

Proposition 2.19. h satisfies
L"ho(t,b,s) >0, L"ho(t,b,s) =0 and L*"hy(t,b,s) >0

in the classical sense on [0,t%"") x S\ S°.

Proof. 1t follows immediately from Lemma that

LV%ho(t,b,s) = LOVy(t,b— (1 + NI, s +1*) =0, (2.37)
L5Mho(t,b,5) = LMV (t, b — (1 4+ NI, s +17) > 0, (2.38)

for a suitable choice of [*. From (2.37) we obtain

0 0
Eh()(t,b, 8) = (1 + )\)%ho(t,b, S).

Plugging this into (2.38) yields

0 0 0
(1 - M)%ho(t7 b, 3) < Eho(tv b, S) - (1 + )\)%h()(t, b, 8)

which implies that (0/0b)ho(t,b,s) > 0 and hence (9/9s)ho(t, b, s) > 0 for all
(b,s) € 8°\ 8. It only remains to show that

Lho(t, b, s) > 0.
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2. Portfolio optimization with transaction costs

Consider the case s = 0. Fix some [* > 0 such that (¢, b, [*) € R)" so that

0 0
. [ _ * * <
by Theorem [2.7] Therefore,
0
L™ ho(t,,0) = _EhO(t’ b,0) > 0. (2.39)

Suppose now that s < 0. Then for some suitable [* > 0 we have

0 0 (9
&ho(t b, 8) = a%@? b, 5)|(b75):(b—(1+>\)l*,8+l*) = a ( t,b— (1 + )‘>S 0)
0 0 8
ash (t b 8) = &Vb(t?b’ 5)|(b,s):(b—(1+)\)l*,s+l*) = a— ( t,b— (1 + )\)S 0)
0? 0? 0?
Js 2h (t b 8) s 2V<t b S)|(bs b—(14+N\)* s+1*) = @hg(f,b - (1 + /\)S,O)
Therefore,
£nth0(t7 b, S)
0 0 1 0?
= ahg(t,b,s) ozsgho(t b,s) — —023 Who(t b, s)
0 0
= —aho(t, b— (14 M\)s,0) — ozs&ho(t, b—(1+X)s,0)
1, , 0
— —O' S ﬁhg( t,b— (]. + )\)S,O)
By (2.39) we have

—%ho(t, b—(1+\)s,0) = Lg(t,b— (1+N\)s,0) > 0.

Moreover, since s < 0 and (0/0s)ho(t,b — (1 + A)s,0) > 0 we have
0
—ozs%ho(t, b—(1+X)s,0)>0

and since (9?/9s*)ho(t,b—(1+\)s,0) < 0 (since V} is concave by Dai and Yi [24,
Remark 4.2]) we see that

1, 5 0?
_—O' S Who( b— (1 + >\)8,0) 2 0
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2.6. Verification and value function regularity

Putting the pieces together we obtain
Entho(t, b, S) > 0,

which completes the proof. O

We have similar statements for the case ¢ > t%*" with s < 0, the proofs are
however significantly easier.

Lemma 2.20. We have hy € C([t¥" T) x S°\ {(b,5) € 8 : s > 0}) and hy
is given explicitly as

ho(t,b,s) = Upy(b+ (1 + N)s)
on [t?own T) x S°\ {(b,s) € §°: s > 0}.

Proof. This is an immediate consequence of the definition of hy and (L*, M™*).
Indeed, if (¢, b, s) € [t%" T) x S\ {(b,s) € 8° : s > 0}, then (L*, M*) is such
that the stock position is immediately liquidated and the investor refrains from
further trading. That is

ho(t,b,s) = ho(t,b+ (1 + A\)s,0)

—E |0, (B5 0 (D) +0)| = Uplo+ (14 1))
from which the assertion of the lemma follows. ]
Proposition 2.21. hg satisfies

L"ho(t,b,5) >0, L"hy(t,b,s) =0 and L*"hy(t,b,s) >0

in the classical sense on [t*" T) x S°\ {(b,s) € 8°: s > 0}.

Proof. We consider the case p < 1,p # 0. The case p = 0 follows similarly. We
have

0

aho(t, b, S) = 0,

%ho(t, b,s) = (b+ (1+A)s)P™,
0

Sho(tbos) = (L4 N0+ (1+X)s)",
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2. Portfolio optimization with transaction costs

%ho(t, b,s) = —(1—p)(L+N2(b+ (14 N\)s)P?2

and hence direct calculations show that

LY ho(t, b, s) =0,
Lhg(t,b,8) = (A4 ) (b+ (1+N)s)P~! > 0.

Finally, we calculate

ﬁntho(t7 b, S)

(I1+X)s 1 s (1+X)%s?
— b+ (1+N)s)P |—a—" TV 4 2
b+ (M) | —apo s T2 27 s 0
since b+ (1 + A)s > 0 and s < 0. O

Corollary 2.22. For everyt € [t%%" T) we have hy(t,-,-) € 0(30).

Proof. We only need to show that h(t, b, s) is continuous at the point s = 0. By
Lemmal[2.201 (¢, b, s) is given explicitly as ho(t, b, s) = U,(b+ (1 + \)s) if s < 0.
By Theorem[2.7 and Theorem 2.8 hy = Vj is C*?? and solves

0 0 1 02

0= —ahO(ta b7 S) a58_h0<t b S) - _0-282%}10(15 b S) (240)

for s > 0 sufficiently small. Sending s | 0 shows that hy(¢,b,0+) solves the
ordinary differential equation

9
ot
ie. ho(t,b,04) = U,(b) which shows that h is continuous at s = 0. O

ho(t,b,0) =0,  ho(T,b,0) = U,(b),

Remark 2.23. We cannot expect more regularity of hy at s = 0. Indeed, tak-

ing the derivative with respect to s in (2.40) and sending s | O shows that

(0/0s)ho(t,b,0+) solves
0 0

0
0= ———ho(t,b,0) — a—hg(t,b,0), ho(T,b,0) =

0
at Os s _Up(b + (1 + )‘)3)|SZU7

0s
i.e.

0 0
- — e(T—t) Z _
5g0(8,0,04) = e - Up (b 4 (1 + A)s)]s—0
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2.6. Verification and value function regularity

This is in contrast to

0
o(t,,0-) = 5-Uy(b-+ (14 V)s) oo

showing that the partial derivative of hy with respect to s is not continuous at
s =0. o

We are now ready to prove that oy € H. By construction we have hy < V), and
hence we can find v € (1 — p,1 + A) and K > 1 such that hg < Vi < @, k-
Moreover, it is clear from the above analysis that

ho(t,b,s) > U, (b+ min{(1 — p)s, (1 + X)s})

since this is clearly satisfied for ¢ = T" and hy is non-increasing in t.

We proceed in three steps: First we show that h is continuous, then we show
that h( is superharmonic and finally we show that hg is non-increasing in the
direction of transactions.

Proposition 2.24. hy is continuous on [0, T] x S

Proof. By Proposition Lemma [2.18] Lemma and Corollary [2.22] it only
remains to prove that g is continuous in (t%°%" b,0) for every b > 0. Let us
therefore take a sequence (t,,, b, 5, )nen converging to (t9°" b, 0). We note that
by Lemma [2.20/and Corollary [2.22] we may without loss of generality assume that
t, < t%v" for all n € N and by the construction of kg and since (9/9t)V, < 0

we may assume that (¢, b,, s,) € ﬁ(b)uy N ﬁgt. In particular, this implies that
0 0 1, , 0
0= —aho(t;bm Sp) — ozsn%ho(t,bm Sp) — 50 Snf)_s,%ho(t’ bn, Sn)

in the classical sense for every t € [t,,T] and n € N. Sending n — oo hence
shows that hj(t%w" b, 0) := limsup,, ... ho(tn, by, sn) can be found by solving
the ODE 5

0= _ahé(tv b7 0)7 hS<T7 b7 0) - Up<b>7

on [t%" T. We therefore have h(t%“" b,0) = U,(b) = ho(t%*™,b,0). On the
other hand, we have hq(t,,, b,, s,) > ho(t%*",b,0) and hence

im ho(tn, bu, Sn) = ho(t%", 1, 0). O

n—oo
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2. Portfolio optimization with transaction costs

Proposition 2.25. The function hy is superharmonic.

Proof. Fix (t,b,s) € [0,T) x 8° let 7 be a [t, T']-valued stopping time and denote
by ¥ the first exit time of the uncontrolled wealth process (Bg p» Sps) from SO,

Suppose first that s > 0. Then S} (u) > 0 for all u € [t, 7 A¥)] and hence ho = V;
is C'1%? along the paths of (u, B°(u), S°(u)) by Proposition 216l Let ¢ > 0 and
denote by 9° the first exit time of (B, + ¢, S7,) from S°. Then clearly ¥° > .
For every n € N let us define a stopping time

U o 2
Tp := inf {u >t / [USQS(T)%hQ(T, By (r) + e, 528(7’))] dr > n} AT AD.
¢
Application of It6’s formula shows that

ho(ta b+e, 3) = hO(Tm Bw?,b(Tn) +e, Sgs(Tn))
—i—/ L ho(u, BYy(u) + ¢, 87 (w)) du
¢

Tn a
+ / aSﬁs(u)gho(u, ng(u) +e, Sgs(u)) dW (u).
¢

Taking expectations reveals that
ho(t, b + g, S) =E |:h0(7'n, ng(Tn) + g, 525075(7-71))
+ / L ho(u, BYy(u) + €, 57 (1)) du.
t

Since by Proposition hy is a classical solution of the DPE on [0, 7] x S° we
see that

/ L ho(u, ng(u), S?’s(u)) du >0
¢

and hence
ho(t,b+ €, 5) > E [ho(Ty, Bpy(Ta) + €, 504())] - (2.41)
U,

Next, since (0/0t)hy < 0 and since ho(7’,b,s) = Vo(T,b,s) = U,(b+ (1 — p)s),
we have hy(t,b,s) > U,(b+ (1 — p)s) and hence

h0<7—n7 Bz?,b(Tn) +¢, Sz?,s(Tn)) Z Up(s)'
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2.6. Verification and value function regularity

We can therefore send n — oo in (2.41) and use Fatou’s lemma to obtain
ho(t,b+¢,5) > E [ho(T A9, BYy(T ANO) +¢,50 (T A9))] .

Now since (0/0b)hg > 0 we can send € | 0 and use monotone convergence to

obtain
ho(t,b,5) > E [ho(T AU, BYy(T A0), S, (1 A9))]

i.e. hy is superharmonic.

Consider now that case s < 0. For simplicity, let us denote 7 := 7AY. If t > tdown,
then (L*, M*) performs an initial transaction from (b, s) to (b + (1 + \)s,0) so
that

ho(t,b,s) = h(t,b+ (1 +A\)s,0) = Up(b+ (1 + \)s). (2.42)

On the other hand, by the same arguments and using Jensen’s inequality we see
that

E [ho(7, By(7), Spo(7))] = E [ho(7, Byy(T) + (1+A) 1s(7),0)]
=E [U, (B),(7) + (1 +X)S. %)}
< U, (E [B(7) + (1 + A)SP,(7)])
=U, (b+ (1+NE [Sﬁs(”)]).

Now since S)?,s is a supermartingale for every s < 0 it follows that
E[Sp.(7)] < s
and hence
E [ho(7, By(7), Sis(7))] < Up (b+ (14 A)s) = ha(t, b, s)
by the monotonicity of U, and (2.42).

Finally, let us assume that s < 0 and ¢ < tdown We have

ho(7, Byy(7), Sp(T))
— h(] (7:, ng<7~—>, Sgs(%))l{;<tdown} + ho(%, Bl?,b(%)7 Sgs<7’:>>]1{:;-2tdown}

On {7 > t%v"} we have as before

E [ho(7, BYy(7), Sps(T))] < Up(b+ (1 + A)s) = ho(t, b, s),
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2. Portfolio optimization with transaction costs

so we may without loss of generality assume that 7 < %", However, since we
know by Lemma and Proposition that hg is C'"*? and satisfies the DPE
in the classical sense we obtain

h(ta ba S) Z E [hﬂ(%a ng(%% S)?,s(%))}
as in the case s > 0. ]

Proposition 2.26. The function h is non-increasing in the directions of transac-
tions.

Proof. Fix (t,b,s) € [0,T] x S” andlet I, m > 0 be such that (b—(14+ NI+ (1-
wm,s+1—m) e S”. We have to show that

ho(t,b,s) > ho(t,b— (1 + AN+ (1 — p)m,s+1—m).
However, since by Proposition h(t,-,-) is continuous and satisfies

LYo (t, b, s), L5 ho(t, b, 5) >0

in the classical sense for every (¢,0,5) € ([0,T) x 8°) \ {(¢,b,s) € [0,T) x
SOt > tlown g = 0} and (t,b/s) € F (defined in (2.24)) by Proposition [2.16]
Proposition and Proposition 2211 Therefore, by the gradient theorem, we
immediately obtain the claim. ]
Combining Propositions and [2.26] proves the optimality of (L*, M*).

Corollary 2.27. We have hy € H. In particular, hg = V,y and (L*, M*) is optimal.

Since hg = V, we furthermore have the following regularity result.

Theorem 2.28. The value function V), is continuous everywhere and (at least) of
class C1*? except for possibly the points (t,b,s) for which one of the following
statements is true:

1. b=0and (t,b, s) is on the buy boundary.

2.y =1andb=0.
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2.7. Numerical results

3.t = %" and s < 0. However, Vy(t%wn . ) € C*(8%\ {(b,5) € S°: s =

0}).
4. t > t%vn gnd s = 0. However, Vo(,b,0) € C((t%“".T')) for every b > 0.

Moreover, Vy € C*(Ry?).

2.7. Numerical results

We conclude this chapter with numerical examples. By the homogeneity of the
value function (Lemma [2.3]1) we first reduce the dimension of the problem by
expressing the value function in terms of risky fractions. Then we use the algo-
rithm developed in Kunisch and Sass [72] to simulate the value function and the
optimal trading regions. We fix the following parameters:

a = 0.096, o:=04, T:=10
p:= 0.1, w:=0.01, A:=0.01.

This implies in particular that

«

(1—p)o?

and hence V, € C*?2([0, T) xS) by Theorem[27 Hence, if we restrict simulation
of Vo to [0, T) x S, then the regularity assumptions in Kunisch and Sass [72] are
satisfied so that we can be assured that our numerical approximation converges
to the value function.

M € (07 1)

Wl N

2.7.1. Outline of the algorithm

Let us first give a quick outline of the algorithm introduced in Kunisch and
Sass [72]. As a preliminary step, we need to reduce the dimension of the problem
by introducing the following transformation of the value function:

Vo(t, b, s) =: (b+ s)PVo(t, s/ (b+ s)), Vo(t, m) == Vo(t, 1 — 7, 7).
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2. Portfolio optimization with transaction costs

By formally expressing the derivatives of V; in terms of the derivatives of V), one
can show (as in Shreve and Soner [97, Proposition 8.1]) that V), is the unique
viscosity solution of

0 = min{L"Vy(t, ), LVy(t,7), LMV (¢, 7) }, (2.43)
on [0,7T) x (—1/A,1/u) with terminal condition

(1 —pm)P, ifm >0,

Vo(T,m) = Vo(T, 1 — 7, ) = { (14 Ar)p, ifm <0

VIR =

and where the operators £, £ and £**!! are given by

LV = —217 — (ar — 1(1 — p)o’m?)pVy — 102 2(1 — ﬂ)28—217
oo 2 ° 2 or? "
— (a(l=m) = (1 —p)o’m(l - W))Wagpo, (2.44)
T
o ) 9
,Cbuyv() = p)\VO — (1 + )\W)&V(), (245)
o . 9 _
L5y = puVy + (1 — m)%vo. (2.46)

Note that since V, € C**([0,T) x S) we have V, € C2([0,T) x (0,1/))
and hence V) is a classical solution of (2:43) on [0,7) x (0,1/u). This is the
requirement for the algorithm in Kunisch and Sass [72] to converge.

Let us now give a brief outline of the algorithm. First, we restrict the approxi-
mation of Vy to [0,1] C (—1/A,1/p). We discretize [0, T] using an equidistant
grid with mesh size At. Similarly, we discretize [0, 1] with an equidistant grid
with mesh size Ax. The derivatives in the operators £, £ and £ are ap-
proximated using a central finite-difference scheme. We solve the differential
equation backwards in time. In every time step (say, we are at time ¢ < 7)),
we make an initial guess Ny := [ag, bo| for the no-trading region. On [ag, by| we
solve L™} (t, ) = 0 for ©}. Since L*o}(t,7) = 0 and L5v}(t,7) = 0 can
be solved explicitly on [0, ag) and (by, 1], respectively, we can extend o} to [0, 1]
using a smooth pasting condition on ag and by. For every m € [0,1] we then
define

A?(t,w) = —Z"tﬁé(t,ﬂ)ﬂ[o’ao], )\f(t,ﬂ') = —Z”t@é(t,w)]l[boyl],
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2.7. Numerical results

and we introduce the sets
By = {m €[0,1]: AP (t,m) + L") (t, 7) < 0}, (2.47)
S = {m € 0,1] 1 A(t, ) + LT (¢, m) < 0} (2.48)

We set N; = [0,1] \ (B; U S1) to be the new guess for the no-trading region
and repeat the procedure until N ~ N_; for some k£ > (. Once the no-trading
region converges we proceed with the next time step ¢t — At.

2.7.2. A numerical example

The algorithm outlined above allows us to simulate V,. Figure 2.8 depicts the re-
sulting free boundaries. Whenever the investor holds a position which is below
the buy boundary 7°(¢) it is optimal to buy shares of the stock and if the position
is above the sell boundary 7 (#) it is optimal to sell shares of the stock. If the po-
sition is in between the buy and sell boundary the optimal action of the investor
is not to trade at all. Moreover, the optimally controlled risky fraction process is
a diffusion reflected at 7°(¢) and 7°(¢). We emphasize that the optimal strategy
in the absence of costs ), is located in the no-trading region. This feature is
always observed whenever 7y, € (0, 1).

Note that if the investment horizon is sufficiently large, the boundaries become
stationary. When the investment horizon becomes smaller we have two effects.
First, the sell boundary decreases. This is because we optimize the total wealth
after liquidation of the stock, i.e. the investor has to close the risky position at
terminal time. Since she has to pay transaction costs in the process of liquida-
tion a lower risky position at terminal time is preferable. On the other hand the
buy boundary also decreases. This shows that as the investor approaches the in-
vestment horizon, the less she wants to engage in transactions since there is not
enough time left to gain the transaction costs back.

Figure 2.9 illustrates the simulated value function V. In order to visualize the
qualitative properties of Vj; more clearly we restrict ourselves to the smaller in-
vestment horizon 7" = 1. Note that for a fixed time ¢ the value function is rel-
atively flat along different values for the risky fraction. Furthermore, it can be
seen that the value function is a concave function of 7, a property inherited from
the concavity of V. The solid black lines highlight the location of the buy and
the sell boundary.
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3. Worst-case portfolio
optimization with transaction
costs

In this chapter we extend the model considered in Chapter[2lto allow for crashes
in the stock. We assume that the price of the stock drops at some unknown stop-
ping time by an unknown fraction which is bounded from above by a maximum
crash size known to the investor. We do not specify any distribution on the time
and size of the crash, but assume that the investor takes a worst-case perspective
towards the impact of a crash. That is, for each admissible strategy we deter-
mine the worst-case crash in the sense that expected utility of terminal wealth is
minimized. We call a strategy worst-case optimal if the corresponding expected
terminal utility in its worst-case scenario dominates the expected terminal utility
in the worst-case scenario of any other strategy.

Similar to the first part of Chapter [2]it is our objective to characterize the value
function as the unique viscosity solution of the corresponding dynamic program-
ming equation. More precisely, we prove the continuity of the value function, we
establish a version of the dynamic programming principle and use this to show
that the value function is a viscosity solution of the DPE. Then we extend the
comparison principle obtained in the previous chapter to prove uniqueness of
the value function and we conclude with numerical examples.

The numerical results suggest that some of the features of the optimal strategy in
the presence of crashes change compared to the optimal crash-free and/or zero-
costs strategies. For example, we always observe that the sell boundary of the
no-trading region falls below the optimal strategy in the case without transaction
costs close to terminal time, which in the absence of crashes can only occur when
leverage is optimal. Moreover, not only is the buy boundary (parametrized in
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3. Worst-case portfolio optimization with transaction costs

terms of risky fractions) zero before the investment horizon 7 is reached (as in
the no-crash case), but the sell boundary is also zero strictly before the investment
horizon 7" (unlike in the no-crash case). In other words, the worst-case optimal
strategy in the presence of transaction costs for short investment periods is the
pure bond strategy.

The results of this chapter correspond in large parts to the following article:

1. C.Belak, O. Menkens, J. Sass (2013): Worst-case portfolio optimization with
proportional transaction costs [12].

The problem considered in this chapter was treated before in the diploma thesis
Belak [8]], the methods and results are however different. First, let us mention
that the general solution approach is the same in the sense that the main goal is
to characterize the value function as the unique continuous viscosity solution of
the DPE. The setup of our model here and in Belak [8]] is different in the sense
that we consider the strong formulation of the control problem on the canonical
Wiener space, whereas in Belak [8] we consider the weak formulation (in the
spirit of Yong and Zhou [110]) in which an admissible control consists not only
of the trading strategy, but of the underlying probability space as well. Regard-
ing the continuity of the value function we prove stronger growth estimates and
stronger convergence results and fix several gaps in the proofs in Belak [8]]. The
proof of the dynamic programming principle is different since we use a different
approach to construct the e-optimal strategies which does not require continuity
of the worst-case bound for arbitrary trading strategies. Our proof of the viscos-
ity property of the value function is different as well, but essentially boils down
to the same ideas. Finally, we obtain several additional results here, most notably
the uniqueness of the value function and the numerical results.

3.1. The market model and problem formulation

In this section we specify the market model and formulate the optimization prob-
lem. The market is an extension of the model considered in Chapter 2] which
allows for a crash in the stock price. Let us hence assume that W = (W (¢)):>0
is a standard Brownian motion on the canonical Wiener space (€2, F,[P). We let
F = F° = (F(u))u>0 be the augmented filtration generated by W and for ev-
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3.1. The market model and problem formulation

ery t > 0 we denote by F' = (F*(u)),>; the augmented filtration generated by
(W (u) — W (t))u>t. Moreover, we fix some terminal time 7" > 0 as well as some
initial time ¢ € [0, 7).

We consider a market consisting of a risk-free bond P° = (P°(u)),ep 71 and one
risky stock P! = (P'(u))yep, 7). We assume that in normal times (i.e. in crash-
free times) the prices of the two assets evolve according to

dP%(u) =0, u € [t,T), PO(t)

L,
dP'(u) = aP*(u)du + o P*(u)dW (u), u e [t,T), P(t) =1.

As before, we refer to & > 0 as the excess return and o > 0 as the volatility of
the stock.

A crash is modeled as a pair (7, 5(7)) consisting of a crash time 7 and an F*(7—)-
measurable crash size 5(7) € [0, 3], where 5 € (0,1) denotes some maximum
deterministic crash size. 7 is assumed to be a [t,T] U {oo}-valued F*-stopping
time. On {7 < T'}, we assume that the price of the stock drops by the fraction
B(T) at time 7, i.e.

PY(r) = (1= ()P (r—), on {7 < co}.

We interpret the event {7 = oo} as the crash (7, 5(7)) not occurring within the
investment period [t, T']. We assume for simplicity that the crash size is constant
and equal to the maximum crash size 3. In light of Korn and Steffensen [70, Re-
mark 1(a)] this does not pose any restriction on our model since the monotonicity
of the utility function U, implies that the worst-case optimal crash scenario is ei-
ther a crash of maximum size 3 or no crash at all. We denote the set of all crash
times of the above form by B(t).

Throughout this chapter we assume that at most one crash can occur within the
investment period [t, T'|. However, our results can be extended to the general case

of at most n crashes by an iterative procedure. We outline some of the details in
Section 3.8

A crucial point about the worst-case model (see Section [I.2) for a crash (7, 3) is
that we do not assume that it has a pre-specified distribution. Instead, a crash
is regarded as a control variable which can be chosen as to minimize expected
utility of terminal wealth. We make this more precise in the problem formulation
below.
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3. Worst-case portfolio optimization with transaction costs

In the presence of crashes, the model for the trading strategies becomes more
involved since we want to allow the investor to observe crashes and to be able
to switch to a different strategy afterwards. First, the investor chooses a strategy
(L1, My) = (L1(u), Myi(u))uep,r) which is used as long as no crash has been
observed. We assume that L; and M, are F'-adapted, non-decreasing cadlag
processes with L; (t—) = M, (t—) = 0. We refer to such a strategy as a pre-crash
strategy.

After the crash time 7, the investor is allowed to switch to a different strategy
(L, M§) = (L§(u), M (u))ueprm possibly depending on 7. Since the investor
does not know 7 a priori this implies that the investor chooses a whole family of
post-crash strategies (L{, M )-cp() and is hence prepared to react on every crash
scenario 7 € B(t). As usual, we assume that the pair (L, M]) is F™-adapted,
non-decreasing and cadlag and we set L] (7—) = MJ(7—) = 0. With this setup,
the investor is able to observe crashes and react on the new information made
available to her. Note that this approach is the same as in Seifried [95].

In order to simplify notations we write m = (L;, M;) for pre-crash strategies
and myp = (L§, M{)-eB() for a family of post-crash strategies. More generally,
we make the following convention: We denote pre-crash quantities by X; and we
denote the corresponding post-crash quantities by V.

Given a pre-crash trading strategy m; = (L1, M), a family of post-crash strate-
gies 1y = (L{, M{)-eBr) and a crash time 7 € B(t), the investor’s wealth
B = B[}™" = (B (u))uels.r) invested in the risk-free bond is given by

dB(u) = —(1+ N)dLy(u) + (1 — p)dM;(u), welt,T)N[t,T], (3.1)
B(t) =B(t—) — (1 4+ NL{(7) + (1 — p)Mj (1), on{r < oo}, (3.2)
dB(u) = —(1 + N)dL{(u) + (1 — p)dM; (u), u € (1,7T], (3.3)

with initial wealth B(t—) = b. Similarly, the investor’s wealth S = 57,7 =
(S7e™7(u))uept,r) invested in the stock is given by

dS(u) = S(u)(adu + odW (u)) + dLy(u) — dM;i(uw), w € [t,7)N[t,T], (3.4)
S(r)=1-p)S(t—) + L{(1) — Mg (1), on {17 < o0}, (3.5)
dS(u) = S(u)(adu + odW (u)) + dLi(u) — dM; (u), we (r,7T], (3.6)

with initial wealth S(t—) = s.
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3.1. The market model and problem formulation

Remark 3.1. Observe that is set up such that the crash is executed first,
since it is applied to S(7—). The control of the investor (L, M) is applied only
thereafter. Thus, the investor can only react to a crash, but she cannot prevent
being negatively affected by a crash at time 7 by selling all risky holdings at time
T since her transaction is executed after the crash. o

The net wealth X = X[,"7" = (X7 (u))uep,r) of the investor after liquida-

tion of the stock position is given by
X(u) = B(u) 4+ (1 — p)S(u), %fS(u) > 0, we 1],
B(u) 4+ (1 4+ A\)S(u), ifS(u) <0.

Let us now turn to the question of solvency and admissibility of strategies. Taking
into account that in case of a positive stock position a crash decreases the net
wealth and that in case of a negative stock position a crash increases the net
wealth, the following open solvency cones can be defined:

St i={(b,s) eR*|b+(1+A)s>0,b+ (1 —p)(1—8)s>0},
S = {(b,s) eR*|b+ (1+A)s>0,b+ (1 —p)s>0}.

So, whenever (b, s) € 31, the investor can liquidate the stock holdings and end
up with non-negative wealth even if a crash occurs momentarily. The boundaries
of the solvency regions are parametrized as follows:
0S8t =082 :={(b,s) € R*|s < 0,b+ (1 + A)s =0},
0S8, = {(b,s) ER*|s > 0,b+ (1 — pu)(1 - B)s =0},
98 = {(b,s) ER*|s > 0,b+ (1 — p)s=0}.

Figure [3.1] sketches the location of the boundaries of the solvency cones.

With this, we say that a pre-crash trading strategy m; is admissible for initial
positions (b, s) € S' if the corresponding pair (B, S) given by Equations (3.1)
and (3.4) with initial values B(t—) = b and S(t—) = s and for 7 = oo takes

valuesinS forallu € [t,T]. The set of all admissible pre-crash trading strategies
of this form is denoted by A, (¢, b, s).

A family of post-crash strategies my = (L, M{),ep) corresponding to a pre-
crash strategy m € A;(t,b, s) is called admissible if for every 7 € B(t) and for
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3. Worst-case portfolio optimization with transaction costs

Figure 3.1. Sketch of the solvency cones.

every u € [7,T] the corresponding pair (B, S) given by Equations to (3.6)
takes values in S . The set of all admissible families of post-crash trading strate-
gies of this form is denoted by A, (m; ). Note that this implies that

(L, M7) € Ao (7, B, ™7 (=), (1 = B)ST™ 7 (7))
ie. (L], M) is admissible in the corresponding crash-free market.

Fix p < 1, (b,s) € S andlet 1 € Ay(t,b,s), m € Ag(mi) and 7 € B(t). We
define the performance criterion of my, my and 7 by

jl (7T17 To, T, t’ b7 S) =E [Up (XZ}";:;TOW(T))} :
The worst-case bound of 7y and 7y is defined as

Wl(ﬂ-h o, t7 b7 5) = é%{t) jl (7'('1, To, T, t? b7 5)' (37)

Finally, the value function is defined as

Vl(taba S) = sup Wl(ﬂ-laﬂ-())tabas)'
m1 E€A1(t,b,s)
moE€Ap (1)
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It is sometimes helpful to interpret the optimization problem as a game between
the investor and the market. The investor decides on a trading strategy and aims
to maximize expected utility of terminal wealth, whereas the market decides on a
crash scenario with the objective of minimizing the investor’s expected utility of
terminal wealth. In this spirit we refer to a crash 7* € B(t) as optimal for given
strategies m € A;(t,b,s) and my € Ay(my), if it attains the infimum in (7).

3.2. Heuristics

Before we start proving some of the basic properties of V; let us first gather some
insights into the nature of the optimal trading strategies and the corresponding
optimal crash time. First of all, note that given some arbitrary m € A;(t,b, s),
7o € Ap(m ) and 7 € B(t) we have

\71(7T177T077-7t7b75) Sjl(ﬂ-laﬂéaTvtvbvs)7 (38)

where 7§ := (Ly™, My™)repq) and where (L™, M{™") is the optimal strategy in
the crash-free market correspondlng to initial Values

(7. B0 (r=), (1= B)SE (7))

whenever this makes sense (i.e. on {7 < T'}). Indeed, a simple calculation shows
that

Ji(m1, 7o, 7,1, D, 8)

:E[ p(Xtﬂli:O’ ))]

[0, (X7 o (D) Tz + Uy (X207 (D) 1
<E Vo (7 By (=), (L= D)ST (=) Lirery + Up (XI5 (1)) Lresey)
= E [0, (X5757(1)) Lpery + Uy (X2°7(1)) 1 re |

Ji(my, w5, T, b, b, s).
Therefore, taking the infimum over all 7 € B(t) in (3.8) we see that

Wi (1, 7o, t, b, 8) < Wy (1, 15,1, b, 5)
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3. Worst-case portfolio optimization with transaction costs

and since 1y was chosen arbitrarily we have

sup W1(7T1,7T0,t,b, 8) S Wl(ﬂ-lvﬂ—gvta b75>
moEA(m1)

and hence

Vl(t>ba S) S sup Wl(ﬂ—b’ﬁS?tab?S)'
w1 EA(t,b,s)

On the other hand we clearly have

Vl(tvba 8) = sup Wl(ﬂ—hﬂ-Oat?ba S) Z sup W1(717787t7673)7
w1 €A1 (t,b,s) m EA(t,b,s)
7r0€.Ao(7T1)

and hence the family 7 is post-crash optimal for all m € A;(t,b,s) and all
T € B(t).

We would like to point out that the results of this chapter are not contingent on
the existence of the optimal strategies in the crash-free market. This allows us to
extend our results to more than one crash in Section[3.8

Regarding the optimal pre-crash strategy 7}, we expect that it behaves similarly
to 7y in the sense that trading occurs continuously at two time dependent bound-
aries, but the optimal trading boundaries 7' () and 7' (¢) in terms of risky frac-
tions should be distinctly lower than the optimal trading boundaries 7°(¢) and
mY(¢) in the absence of crashes. In particular, we expect 7' (T—) = 7T(T—) = 0
since otherwise the investor would make significant losses if a crash occurs just
before the investment horizon is reached. Figure 3.2] below illustrates how the
optimal trading regions in the presence of crash threats might look like.

Suppose that the optimal pre-crash trading strategy 7} exists and is continuous.
Classical dynamic programming arguments suggest that

Viltbs) = Wilri. 7. b.s) = inf E [V (n B (7). (1= A)STE ()]

By the general theory of optimal stopping (see e.g. Peskir and Shiryaev [89]) this
suggests that V;(¢,b,s) < Vy(t,b, (1 — 5)s) and that the optimal crash time 7*
corresponding to 77} is given as

7 = inf {u >tV (u, Bf})(u), Sf;(u)) =V (u, Bzr})(u), (1-— B)ng@))} :
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0.5

0.4 |

Risky fraction 7

Time ¢t

Figure 3.2. Optimal trading regions under transaction costs and crash threats.

This implies in particular that the investor can ignore the threat of crashes when-
ever Vi (t,b,s) < Vo(t,b, (1 — 3)s) and hence the value function can be expected
to be given as the solution of

min {L"Vi(t,b, ), L2Vi(t,b, s), L2V (t,b,s)} =0

as in the crash-free case. On the other hand, if V;(¢,b,s) = Vy(¢,b, (1 — )s)
the optimality of 7% suggests that an optimally trading investor may benefit if no
crash occurs. In other words, we expect that whenever V; (¢, b, s) = Vy(t, b, (1 —
f3)s), then at least one of the operators L™, £ or L applied to V; should
be non-positive. Putting the pieces together this implies that we expect that
Vi (t, b, s) solves the dynamic programming equation

0= maX{Vl(t, b,s) — Vo(t, b, (1 — B)s),

min {L"Vi(t,b, s), L2V (¢, b, s), L2V (8,0, 5) } } (3.9)

if we specify the correct boundary conditions. Indeed, we show in Theorem 3.19
that V; is a viscosity solution of this DPE.
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3. Worst-case portfolio optimization with transaction costs

3.3. Some preliminary properties

Let us now analyze some of the basic properties of the value function V;. Note
that most of the results in this section are very similar to those obtained in Chap-
ter2land Shreve and Soner [97]. We therefore keep the exposition to a minimum.

Since the investor can always liquidate the stock position immediately at initial
time ¢ and stop trading afterwards we naturally obtain a lower bound on the value
function. Furthermore, this strategy is the only admissible (and hence optimal)
strategy on the boundary of the solvency region. The following lemma (which is
the worst-case equivalent of Lemma [2.2)) makes this statement precise.

Lemma 3.2. 1 Let (b,s) € OS'. Then the only admissible strategy is to in-
stantly jump to the position (0,0) and remain there.

2. For (b,s) € S' the trading strategy of instantly closing the stock position
and no trading afterwards is an admissible strategy. Furthermore, for every

(b,s) € S', we have

Uy b+ (1= u)(1=B)s), ifs>0,

U, (b+ (1+ \)s), fs<o 10

Vl(t, b, S) Z {

Proof. 1. The proof is very similar to the proof of [97, Remark 2.1] by Shreve
and Soner and will thus not be reproduced here. The only additional diffi-
culty arises due to the presence of crashes. This can be handled as follows:

a) If (b, s) € OS!, then s < 0. In this case a crash would be beneficial for
the investor in the sense that the net wealth increases. Thus, it cannot be
optimal from the market’s point of view to trigger a crash. At this point
the proof follows exactly as in Shreve and Soner [97, Remark 2.1].

b) If (b, s) € OS;, then it must be optimal for the market to crash imme-
diately. To see this, note that in this case the investor’s position after the
crash at time ¢ is given by (b, (1 — 3)s) € dS!. Since we are in the crash-
free market at this point, following Shreve and Soner [97, Remark 2.1], we
can conclude that the only admissible strategy is to close the position in

the stock and that the crash is indeed optimal since it leads to a terminal
net wealth of X (7") = 0.
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2. See Shreve and Soner [97, Remark 2.2]. Note that the worst-case crash
scenario for s > 0 is an immediate crash at time ¢, since once the stock
position is closed, crashes do not affect the net wealth. This explains the

factor (1 — /3) in the first case of (3.10). ]

If (b,s) € 31, Lemma [3.2] allows us to restrict the sets of admissible strategies
Aq(t,b,s) and Agy(m;) to those strategies m; and 7y which have a worst-case
bound satisfying

Uy (b+ (1 —p)(1—p)s), ifs>0,

W ) 7t7b7 Z
1(m, To,8,b, ) {Up(b+(1+/\)s), if s < 0.

Abusing notations, we denote the sets of such strategies again by A (¢, b, s) and
Ao (1), respectively. We therefore have
Wi (71, mo, t, b, 8) = —00 if and only if (b,5) € ST and p < 0

for all pre-crash strategies m; € A, (¢, b, s) and post-crash strategies my € Ag(m1).

The next lemma gathers some further properties of the value function V;. Com-
pare also with Lemma [2.7]and Lemma [2.3] for the equivalent results in the crash-
free case and recall the function ¢, , x defined in (2.12).

Lemma3.3. 1. Letye€[l—pu, 1+ X, K >1 ThenV; < V) < p,, x < +00.

2. Forevery (t,b,s) € [0,T] x S' we have
V1<t7 b7 S) < VO(ta b7 (1 - 6)8) (311)

3. Lett € [0,T]. Then Vi(t,-,-) is concave on S'. I particular, V(t,-,) is
locally Lipschitz-continuous on S.

4.V, is homogeneous of order p, i.e. for every k > 0 and (b, s) € S' we have

val(tba 8) lfp < 17p % 07

Vi(t, kb, ks) =
18, b, 5) {log(/@)—i-Vl(t,b,s) ifp=0.
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Proof. 1. The relation V; < V) is obvious. The inequality Vy, < ¢,k is
proved in Lemma 2.1] 2.

2. Consider the crash time 7 = ¢. Then

Vi(t,b,s) < sup E [Up (X;};W* (T))]
m €A1 (t,b,s) ”
mo€Ap (1)

= sup E [Up (XZ,FZ,(l—ﬂ)s(T)ﬂ
1-8)s)

mo€Ao(t,b,(
= V()(t, b, (1 — 6)5)

3. The concavity is inherited from the utility function U,,. The details can be
found in Shreve and Soner [97, Proposition 3.1]. Note that every concave
function is locally Lipschitz-continuous in the interior of its domain.

4. The result follows from the linearity of the dynamics of the wealth invested
in the bond and stock, respectively, and using the homogeneity of U,,. See
also Shreve and Soner [97, Proposition 3.3]. [

Remark 3.4. The proof of Lemma shows that a crash at time ¢ cannot be
optimal if V), (¢,0,s) < Vo(t,b, (1 — B)s). o

3.4. Continuity of the value function

The aim of this section is to prove that V; is continuous. We note that the same
line of arguments (with some obvious adaptations) can be used to prove the con-
tinuity of V), and hence establishes the first claim of Proposition [2.4]

We start by proving a time-shifting property of V; so that we can prove the time-
continuity by varying the terminal time 7" instead of the initial time ¢.

Lemma 3.5. Denote the value function corresponding to terminal time T by V{.
Lett € [0,T) and h > —t. Then

VI (t,b,s) = VTt +h,b, s).
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Proof. We denote by AT (¢,b, s), Al (m) and B (t) the respective sets of admis-
sible strategies corresponding to terminal time 7". Let m; € AT (¢, b, s). Since 7,
is F*-adapted it follows that there exists a measurable function g; such that we
can write

Wl(“? w) =g <u7 (W(T»TE[EU] - w(t))7 (U, W) € [ta T} x Q.
Given w € ) we set 0(r) := w(r + h) for all » > 0 and define
T (u+ hyw) == g1 (u, (1)) e — (1)), (u,w) € [t,T] x Q.

Then 7/ € AT (t + h,b, s). In a similar fashion we can construct strategies
mh € AT () from every my € AY (1) and crash times 7" € BT+ (t + h) from
every 7 € B”(t). Then

B[V, (Y32 7(T)] = [ U (X377 (T,0) Plde)
_ / Uy (X (T 4 0, @) ) P(aa)
Q
—E |0, (X700 m)].

Since we can similarly construct 7, o and 7 from given 7}, ! and 7" the claim

follows. O

The next lemma provides growth estimates on the investor’s wealth processes.

Lemma 3.6. Let m; € A(t,b,s), my € Ag(m1) and T € B(t) and denote
B(u) = By™" (u), S(u) == S{y™ 7 (u).
Assume that T is such that S(1) < S(7—).

1. There exists a constant Cyy > 0 independent of (1, my) such that

E[B(T) +S(T)] = E[|[B(T) + 5(T)[] < Co(b+ s).

2. There exists a constant Cy > 0 independent of (7, mo) such that

E[(B(T)+ S(T))*] <Ci(1+b*+ s%).
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Proof. We frequently make use of the fact that on S and S° we have
s <|s| < C(b+s), b<[b <C(b+s)

for C = 1 + max{1/u,1/\}. We note further that by (31)-(3.6) and by the
condition on 7 it can easily be verified that for every stopping time 6 < 71" we
have

B(6)+ S(6) < b+ s+ /9 aS(u) du + /9 oS (u) AW (1),

t t

1. Let 7, ;= inf{u >t : |S(u)| > n} AT. Setting K := aC we have

B(7a) + S(7) < b+ 5+ / " 0 () du + / " S () dW ()
t t
<bts+ K/;" B(u) + S(u) du + a/t S(u) dW (w).

Taking expectations on both sides implies that

E[B(r,) + 5(12)] < b+ 5 + KE [ /t " Bu) + S(u) du] .

Since B(u) + S(u) > 0 we have

T

E[B(r) + S(r)] < b+ s+ KE Vt B(u) + S(u) du] |

Taking the limit n — oo together with Fatou’s lemma and using that 7,, —
T this implies that

E[B(T)+ S(T)] <b+s+ K /TE B(u) + S(u)] du
t
and we conclude by Gronwall’s inequality.
2. We have
(B(T)+ S(1))* < (1+ B(T) + (1))

< (1+b+S+K/tTB(u)+S(u)du+a/tTS(u)dW(u))2.
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Using the fact that (a+b)? < 2a?+2b? and Hélder’s inequality, this implies
that there exists a constant L > 0 such that

(B(T)+ 8(T))*

< L(l +0*+8*+ K*(T —t) /tT(B(u) + S(u))? du

+ o? {/tT S(u) dW(u)} 2). (3.12)

=E UtTS(uPdu]

<E uT(B(u) + S(u))zdu} |

Note that

2

E

( /t ' S(u) dW(u))

Hence, taking expectations in we see that
E[(B(T) + S(T))*] < L(l + 0 + 5
T
+ KT — 1) / E [(B(u) + S(w))?] du
t

+ o? /tTE [(B(u) 4+ S(w))?] du)

and we can again conclude by Gronwall’s inequality. [l

Remark 3.7. Since we take a worst-case perspective the condition on the crash
time 7 in Lemma 3.6 poses no restriction to our subsequent analysis since clearly
an optimal crash should never increase the net wealth. We therefore assume from
now on that this condition always holds. o

We can now prove the continuity in time. As a first step we prove the result in the
case p € (0,1) and then extend the result to p < 0 by means of an approximation
procedure.

Proposition 3.8. Assume that p € (0,1) and let (b,s) € S' be fixed. Then
V(- b, s) is uniformly continuous on [0, T'.
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Proof. By Lemma [3.5 we have

|V1T(t7 b,S) - VlT(t + ha b7 S)‘ = |V1T(ta b7 8) - VlT_h(tvbfs)‘

for every h > —t and hence in order to prove continuity in ¢ it suffices to prove
continuity in 7".

88

1. We first show that V! is increasing in 7. For this, let 7~ < T, and fix

t€[0,T] Letm; € Al=(t,b,s), 7y € AL~ (n7) and define 7 and 7
such that 7{7 = 7 and 7y = m, (componentwise) on [t,T}) and such
that S™ 0 (u) = 0 on [T, T}] (i.e. liquidation of the stock position at 7"
and no trading afterwards). Then 77 € A" (t,b,s), 7§ € Ay*(n]) and
noticing that every crash time for time horizon 7" is also admissible for
horizon T, it follows that

+ + - =
X DO (Ty) = X[ 70T (T2)

for every 7 € BT-(t). Thus, since the position in the stock is closed on

(T_,T,] and hence the worst-case bound of (7}, 77 ) is not attained for

stopping times with values in this interval, we get
W (mf md 4,6, s) = W] (m7 75,8, b, )
and since 7; and 7 were chosen arbitrarily it follows that

VIt b, s) > Vi (t,b, s).

. Let ¢ > 0. We are left with showing that

Vit(t,b,s) — Vi (t,b,s) <e,

if T, — T_ is sufficiently small. Choose 7 € A" (t,b,s) and 7} €
AL () to be e-optimal, i.e.

Wl ad 8, b,s) +2 2 VI (b, 9).

Denote by 7, and 7, the restrictions of the strategies 7 and 7 to [t, T_].
Then m; € A; (t,b,s) and m; € A~ (). Furthermore, there exists a
crash time 7¢ € B”-(t) which is e-optimal in the sense that

WlT_(Wl_,WO_,t,b,s) +e> le_(ﬂl_77T0_,T€,t,b,S)



3.4. Continuity of the value function

and since it is possible to consider B7-(t) C BT*(t), 7 also defines an
admissible crash time for time horizon 7';. Then the sub-additivity of U,
and Jensen’s inequality show that

VIt(t,b,s) — Vi (t,b,s)
<W (7T177T07tb8) WlTi(ﬂ-liﬂTOiat?bJS)—i_g
<j (WI,W(]L,T t,b,s) — le_(Wl_,’]TO_,TS,t,b,S)—}—QS

<0, (B[(XT70 7 (1) = X007 (1) 1)) + 25, (313)

where

A= X ) - X T () > 0

Next, since (7, 7j) = (7, my ) on [t,T_] and since 7¢ is [¢t, 7] U {+o0}-

valued it is not hard to see that
ot T T T
<Xtés o (T+) Xt,é,; o (T—)> La
T T,
<(1+ )\)‘/ @S (u) du‘ (1 A)]/ S (u) dW (u)
T T

Wlth + _+ e + + e
B(u) =By, 7" (u),  S(u):=55""" (u).

With this, we see that there exists a constant C' > 0 such that

E[(X;?ﬁ (1) = X[ T(T) M

(1+\ME U/T+@s du‘+’/ﬂ )H/
/f*s<u>zdu]

- 1/2
/ E[(B(u)+S(u))2]du] .

SCE[/_ B(u) + ()|du}+OE

<o [ EB) 1 Sw)dus C

T

By Lemma [3.6 we can hence find a constant K > 0 independent of 7}, 74

and 7° such that

af,m Ty T ,T°
E |:<Xtés o (T+) Xt,é,s ° (T*)> ]114:|
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3. Worst-case portfolio optimization with transaction costs

< Kb+ s)(Ty —T-)+ K(1+ b+ sHY(T, —T)Y2

Combining this with yields the desired result. O]

Note that the only reason why the proof of Proposition does not work for
p < 0 is because U, is not sub-additive and hence we cannot derive . Nev-
ertheless, we can define

Ul(z) == Uy(z + 1/j), (j{,(m) = Ul(z) — UJ(0), z € [0, 00),

where j € N. Note that with this U7(0) = 0 and hence U7 is sub-additive. We
denote by V] the value function corresponding to UJ(x). It can then be verified

that 1/ (-, b, s) is also uniformly continuous on [0, 77 for all (b, s) fixed. Indeed,
in the proof of Proposition 3.8l we only need to replace U, by Ug in (3.13) to make
the same proof work.

Lemma 3.9. Letp < 0 and fix (b, s) € S'. Then

lim Vi(t,b,s) = Vi(t,b, s)

j—00

uniformly int.

Proof. We consider the case p < 0 only. The case p = 0 follows similarly. First,
note that the family

{Up (X707 (3.14)

<T) ) }tE [0,T],m1€A1 (¢,b,s),m0E€ Ao (71),7EB()

is uniformly integrable. Indeed, choose ¢ > 1 arbitrary. Then

E [|U, (X7emm(T)|] = %E Uy (X727 (T))]

and since

Upq (b+min{(1 — p)(1 — B)s, (1 + \)s})
< E [Upg (X327 (1))] < €151(0,0, 5)

by Lemma[3.212 and Lemma [3.3]1 the uniform integrability follows.
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3.4. Continuity of the value function

Let us now fix some j € N, (¢,b,s) € [0,T] x S, 71 € Ay(t,b,5), 70 € Ap(m1)
and 7 € B(t). Let furthermore § > 0. We calculate

0 <E[U7 (X7 0""(T))] =B [Up (X5 0""(T))]

=k [(U;‘Z (XZE,’ZO’T(T)) —Up (X;é,’:O’T(T))) 1{XW1’”O’T(T)>5}}

t,b,s
+E[(U(XI7(T)) = Up(XEE7 (1)) gy o s

t,b,s
< UH(6) = Uy(6) —E [Up (XZfé,’;TO’T(T))ﬂ{xﬂvwmga}} ;

t,b,s

where the last inequality follows from the fact that the difference U] (z) — U, (x)
on [d,00) is maximal at 0 and since U]Z < 0. Let now ¢ > 0. By the uniform
integrability of (3.14) it follows that if ¢ is small enough, then

E|

uniformly in ¢, 7, 7y and 7. Next, for this choice of § there exists J € N large
enough such that

Up (X;li:smﬁ(T))IL{X;%::O’T(T)S(s}H < 5/2,

U3(6) — U,(8) < /2
for all 7 > J. In total, this implies that

sup  sup inf [E[UF(X[707(D))] —E[U, (X0 (T)]| < e
t€[0,T] W1€A1(€7b7§) TEB() 10y b,
€A (T

forall j > J. O

Proposition 3.10. Assume thatp < 0 and let (b, s) € S' be fixed. Then V;(-,b, 5)
is uniformly continuous on [0, T.

Proof. Lete > 0,t € [0,7] and let (¢,),en be a sequence in [0, 7] converging to
t. By Lemma 3.9 there exists j € N such that

sup |Vi(t,b,s) — Vf(t,b,s)| <e/3

te[0,7)
and by the continuity of Vf there exists some /N € N such that
|Vf(tn7 b7 8) - Vf(t b7 S)| < 8/3

for all n > N. Hence
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3. Worst-case portfolio optimization with transaction costs

|V1(tn; b7 S) - Vl(tu b7 S>|
< Viltn, b, 8) = Vi(tn, b, )| + V] (ta, b, s) — VI(t,b, )]
+ Vi(t,b,s) — Vi(t,b,s)| < e

foralln > N. [l

Putting the pieces together we can prove the joint continuity of V.

Theorem 3.11. The value function V, is continuous.

Proof. Since V(t,b, s) is locally bounded in a small neighborhood of (b, s) uni-
formly in ¢, the local Lipschitz continuity (Lemma B.313) of V; holds uniformly
in ¢. With this, it is easy to prove the joint continuity on [0,7] x S*. Indeed,
lett € [0,7] and (b, s) € S' and choose a sequence (t,,b,, s,) converging to
(t,b,s). Note that (b, s,,) is contained in a compact subset K of S'. By the local
Lipschitz continuity of V; there exists a constant L > 0 such that

Vi (u, by, $n) — Vi(u, b, s)| < L(|b, — b + |sn — s]|)
for all u € [0, 7] and all n. Hence
nh_)rgo Vi (tn, b, sn) — Vi(t, b, 8)|
< i [Vi(tn, by, $n) = Vi(tn, b, 8)| + Vi(tn, by 5) = Va(t, b, 9)]
= nl1_>rroloL(\bn — b+ |sn = 8|) + Vi(tn, b, s) — Vi(t,b,5)] = 0.

In order to show that the continuity of V; extends to the boundary of S! we let
(t,b,5) € [0,T] x OS* and let (t,,, by, S, )nen be a sequence converging to (¢, b, s).
If s < 0 we have
hm Vl (tny bna sn) S hm (;01+)\,p,1(tn7 bna Sn) = Up(o)a
n—oo

n—o0

and if s > 0 we have
Hm Vi (tn, bn, $n) < Hm Vo(tn, by, (1 — ) sy)
n—oo n—oo
< T 1y (tn. b, (1= B)sa) = U,(0).

Since Vi (t, b, s) = U,(0) this concludes the proof. O
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3.5. The dynamic programming principle

We note that the same arguments presented in this section can also be used to
prove the continuity of V.

Corollary 3.12. The value function V) is continuous.

3.5. The dynamic programming principle

Equipped with the continuity of the value function we are now in the position
to prove the dynamic programming principle. The main problem arising in the
proof is the construction of strategies 75 € A;(¢,b,s) and 75 € Ay(n5) which
are c-optimal in the sense that

Vi(t,b,s) < Wy(n§, 7, t,b,8) + ¢
and similarly crash times 7¢ € B(t) which are e-optimal in the sense that
‘71(71'1, 70, TE, t, b, S) < W1<7Tl, 70, t, b, S) — &

for a given pair of trading strategies m; € A;(¢,b,s) and myp € Ag(m). The
existence of such controls is clear if the initial time ¢ as well as the initial holdings
b and s are deterministic. The first aim is the construction of such strategies for
random ¢, b and s.

3.5.1. Existence of e-optimal strategies

The problem with the construction of e-optimal strategies is the following: De-
note by ¢ a random initial time and by (B, S) a random initial position of the in-
vestor. Then for every w € ) we can find a strategy 77 € A;(0(w), B(w), S(w))
which is e-optimal. However, if we compose such strategies 77 into a single
strategy 7§ then it is not clear if 7° € 4;(0, B, S) since it is not clear if the
mapping w +— ;" is measurable.

Since we can construct -optimal strategies for deterministic initial data (¢, b, s)
the idea of the construction of c-optimal strategies for random initial data is to
find a suitable sequence of points (,, by, S, )nen in (t,T] x S', construct an e-
optimal strategy 77" for every such (t,, b,, s,,) and then construct the e-optimal
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3. Worst-case portfolio optimization with transaction costs

strategy for the random initial datum (0, B, S) by setting it equal to a strategy
closely related to 7;" whenever (0, B, S) is close to (t,, by, $,). We note that a
crucial component for this construction is the continuity of V;.

We start by constructing a suitable decomposition of (¢, 7] xS*. Given (b

and 7 > 0 we denote by K (b, s;7) the set of all (b, 5) such that |(b, s) — (b,
and such that there exist [, m > 0 with

b=b—(1+NI+(1—pum, s=5+l—-m

s) e St
s)|<r

i.e. (b, s) can be reached by the transaction (I,m) from (b, 5). See also Figure B3]
for a sketch of the set K (b, s;7).

S

guEEENg,
. v,

o

Figure 3.3. A sketch of the set K (b, s; 7).

Let us now fix ¢ > 0 and (u,b,s) € (¢,T] x S'. By the continuity of V; there
exists 7(u, b, s) > 0 such that u — r(u, b, s) > t, K(b, s;r(u,b,s)) C S' and

(
Vi (1, b, ) Vi(i,0,8)] < e
for all (@, b, 5), (@1, 0,3) € (w—r(u,b,s),u] x K(b,s;r(u,b,s)). The family

((u —r(u, by s),u] x K (b, s;7(u, b, 3)))

(u;b,s)€(t,T]x St
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3.5. The dynamic programming principle

forms an open covering of (¢, 7] x S* (in the topology induced by the sets of the
form (v, u] x K (b, s;r)) and hence there exists a countable sub-covering

((ti — (i, biy i), ti] X K(bi, si57(ti, by, Sz)))
ieN

We furthermore set K; := (t;—r(t;, b;, s;), t;| X K (b;, i3 7(ti, bi, 5;)) as short-hand
notation.

Lemma 3.13. Lete > 0, let 0 be a [t, T|-valued stopping time and fix an arbitrary
pre-crash trading strategy m; € Ay(t,b,s). For every crash time T € B(t) there
exists 75 € Ay (t,b, s) which coincides with w, on [t,7 A\ 0) and a family of post-
crash strategies 7§ = (7" ) ren) such that m§ € Ao(75) and

E v, (X377 |[Fr n0)] +
> Vo(7, B(r=), (1 = B)S(7=))Lir<0y + Vi (0, B(6),5(0)) Lir0;.
Proof. Let ¢ > 0 and let (K;);en and (¢;, b;, S;);en be the sequences constructed

in the beginning of this section. For every i € N there exists some =
Ay (ti, i, s;) and 5" € Ag(m7") such that

inf B [0, (XI57)] = Vit b o) —
so that in particular

Tyt gt 7ot by si) > Vilti by, si) — €
for every 7 € B(t;) and every i € N.
Given any [t, T'|-valued stopping time 6 and m; € A;(¢,b, s) we define

J(w) == min {z eN: (9(w), B™ (0(w),w), S’”(Q(w),w)) e Ki} .

We denote by D; = {7 > 0} N {v = i} so that

(9(w),B’”(@(w),w),Sm(Q(w),w)> e K,
on D; and D; N D; = () if i # j. Finally, we set

Ay ={r >0} nN{0 =t}
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3. Worst-case portfolio optimization with transaction costs

Ay = {7 > 0} N {(B™(8), 5™ (h)) € 8S,}.

Then the sets {7 < 0}, Ay, A and (D;);cn form a partition of €.

Let us now define

Wi = Wl]l[t,r/\a] + ]l[T/\Q,T] [WflﬂA1 + 71—142]1A2 + Z ﬁiyl]lDz] ) (315)
=1

where 1, 72 and 75" are defined below. Note that since 77", 7112 and 7 only
enter into the definition of 7] on the sets A;, A; and D;, respectively, it does
not matter how the strategies are defined outside these sets. Moreover, since the
investor switches to a different strategy at time 7 we see that the performance of
7} does not depend on the choice of 7. Similarly, we set

o0
7T877' = 7T(7)—]]‘{T§9} + ]1{7->9} [7‘(‘641 ]lAl + 71‘(‘)42]1142 —+ Z ﬁg’lﬂ_Di] s (316)
i=1
for 7§, w5, 742 and 75" to be defined later. Our objective is to choose the strate-
gies in such a way that 7§ and 7§ := (77" )-ep() are e-optimal from time 7 A 6
onwards.

We choose 7] in (3.16)) to be e-optimal in the crash-free market corresponding to
initial values (7, B™ (7—), (1 — 5)S™(7—)). On {7 < 6} we then have

e [un (X)) [P )] = [ (53577 ) |0
X:%:(?’(:—),(l—ﬁ)w<r—)<T)> ‘Jﬁm}

=E U (X:%ﬂ (r=),(1-B)s™ <T—><T)>]
> Vo (r, B™ (1), (1 - B)S™ (7=)) e,

~E|U,

On A; we have § = t and therefore B™(0—) = b and S™(#—) = s so that
B™(0) =b— (14 M)+ (1—p)mand S™(0) = s+ —m for some [, m > 0 such
that [ and m are deterministic almost everywhere on A;. Hence if we choose
Wf ' and 7r64 ' in (3.15) and (3.16) to be any c-optimal strategy for initial values

(t, B(#),S(0)) we have

E U, (X727 () |F(r 7 0)] =B [0, (X750 (D)
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3.5. The dynamic programming principle

= Ji(n5, 75, 7,0, B(6),5(0))
>V(0,B(0),S(0)) —e.

On A, we have (B™ (), S™(6)) € 0S"' and hence if we choose 7:*2 and 7;* to
be the strategies which immediately liquidate the stock position and refrain from
further trading we obtain

E v, (X73707(0) |7 n0)] =E [0, (x75707(1) |7 (0)]

7I_A2 TI'A2 r
=E {Up (Xe,%wl (0).571 (9>(T)>]
Ay Ag
. T 5T THT

—V,(0, B™(6), 5™ (9))

on Ay. The last equality follows from Lemma 3211 (optimality of 7> and 7;?)
since (B™ (), S™(6)) € OS" on A,.

Let us now turn to the definition of the strategies 7;". On the set D; we have
(0, B™ (), S™(#)) € K, and hence # < t;. Now let 7" be arbitrary off D; and
on D; be equal to the strategy 7" shifted from [t;, 7] to [#, T — (t; = 0)] (as in
Lemma[3.5) and extended to [0, T'] through the convention that 7} liquidates the
stock position at time 7" — (¢; — ) and refrains from further trading on (7" — (¢; —
0),T]. Similarly, we let 7" be the time-shifted version of 7". Since the time-
shift operation is measurable we see that 7" € Ay (0, b;, s;), T + (t; — 0) € B(t;)
and 75" € Ao(7]"). We therefore have

‘71(771'?”, 7T87i, T, 9, bi, Si) = %(Wi’i, 7T8’i, T+ (tz - 9), ti, bi, Si) (317)
as in Lemma By the definition of D; and K; we know that (b;, s;) can be
reached by a transaction from (B™ (), S™(0)) on D;. That is, there exist [, m >
0 such that

by = B™(0(w),w) = (1 + A)l(w) + (1 — p)m(w),
si=S5"(0(w),w) + l(w) — m(w).
Hence, if we define 75" to be arbitrary off D; and equal to 7" + (I, m) on D; then
7" € Ai(0, B™(6),S™(0)). Using that 7 > 6 on D it follows that 715" := 7" €
Ao(77") and

T (77750, 7,0, B™(0),S™(0)) = J(7y, 7 T, 0, by i)
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— jl(ﬂ—i:’ia 7T87i> T+ (tl - 9)7 tia bi; Si)
by (3.17). With this and the -optimality of ﬁ’i and 7T8’i we therefore have
E[U, (X707 |7 o) =E [U, (XT507(0) |7 0)

=E [0, (X5 ™)

= ._71(71'11,7'('0 T, 0 B’”(G),S7r (0 ))
= J(r]", g ,T—i—(t —0),t;,b;,5;)
> Vi(ti, by, 8i) —

> Vi (0, B™(0),5™(0)) — 2¢

on D;. Here the last inequality follows from (6, B™(6), 5™ (0)) € K, on D, and
the construction of K. O

In a similar fashion we need to construct s-optimal crash times 7° to prove the
dynamic programming principle. More precisely, given m € A(t,b,s), my €
Ao(m) and 7 € B(t) we need to find 7¢ > 7 A 6 such that

E [U, (X370 (T))|F(7 A 0)] —
< Vo(7, B(T—), (1 = B)S(7=)) Liz<oy + V1 (0, B(0), S(0)) Liz>0y. (3.18)

Let us comment on some of the issues involved here. The first big issue is that we
have to construct 7. for arbitrary pre-crash strategies m; € A;(t,b, s). Since we
cannot guarantee that the controlled wealth process (B™, S™) runs through the
grid points (¢;, b;, s;) we need a different method as compared to the construction
of the e-optimal trading strategies.

Our construction of 7¢ is based on the existence of the Snell envelope of a suit-
able optimal stopping problem. In the literature, the existence of the Snell enve-
lope is typically proved under the assumption that the process to be stopped is
right-continuous. Even though in our setting the wealth process (B, S) is right-
continuous, the general theory of optimal stopping does not apply without modi-
fication since a crash acts on the left limits of the process S, i.e. on (S(u—))uep,11-

The remedy is to first consider the situation in which a crash acts on S(u) instead
of S(u—) to establish the existence of the Snell envelope. The construction of
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an ¢-optimal stopping time for the right-continuous problem is then classical,
but this stopping time need not be c-optimal for the left-continuous problem.
Nevertheless, it is intuitively clear how to construct such a stopping time for the
left-continuous case: Simply stop a little bit later. However, since this can only be
done on an event of probability arbitrarily close to one, we are not able to prove
e-optimality w-wise as in (3.18)), but can only show that

E[U, (X[, 07(T))] — ¢
<E [Wo(7, B(7-), (1 = B)S(7=)) Liz<ay +V1(0, B(9), S(0)) Liroay ] -

The details of the construction of the Snell envelope for the left-continuous prob-
lem can be found in Appendix[C|

Let us first formulate the correct (right-continuous) optimal stopping problem for
our situation and prove the existence of the Snell envelope.

Lemma 3.14. Fix (t,b,s) € [0,T] x S'. Let m € Ay(t,b, s) be an arbitrary pre-
crash strategy and let my € Ag(m1) be an arbitrary family of post-crash strategies
corresponding to . Define a process Y = (Y (u))ucp, 1jufoo} through

Volu, By ™™ (), (1 = B)SE™ " (W), ifue (1),
V() = Volu, By ™™ (=), (1= B)STy™ " (=), ifu=T,
Up (X5 (1)) ifu = co.

Then there exists a process Z = (Z(u))ucpt,ju{+00} Which is cadlag on [t,T] and
such that
Z(0) = essinf E [V ()| F*(0
(6) = essinf E [Y'(7)|F(6)]
for every Ft-stopping time 6 with values in [t,T|. Moreover, Z is the smallest sub-
martingale which is cadlag on [t,T| and which is dominated by Y. Finally, Z
satisfies

E[Z() = inf, EIY(7).

Proof. We note that the process Y is cadlag by definition and left-continuous at
time 7. The existence of Z is proved in Theorem[C.6]in the appendix under the
assumption that Y is uniformly integrable over all stopping times 7 € B(t). To
show this we proceed in three steps.
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Step 1: We show that the positive part of Y is uniformly integrable. The result
is clear for p < 0 and since log(z) < zP/p for every p € (0,1) we can restrict
ourselves to the case p € (0, 1). Let us fix some ¢ > 0 such that p(1 4+ ¢) < 1 and
let 7 € B(t) be given.

We first note that on {7 < T'} there exists a constant ' > 1 such that
Vo(T, By (), (1 - B)S{y™ (1))
< KV (7, B[y™> (1), S{a™ (7). (3.19)

On {57, (1) > 0} this is trivially satisfied for any choice of ' > 1 since Vy
is non-decreasing in its last argument. By the definition of the function ¢4 1
we can find a constant X > 1 such that

Crapa(t,b,8) < KUy b+ (1 + \)s)

foreveryt € [0,T] and (b, s) € S' with s < 0. On {S]}™*(7) < 0} this implies
that
Vo (7, By ™ (7), (1= B)Si™ (7))
< Preapa (7. B ™ (7), (1= )87 (7))
< KU, (B ™™ (1) + (14 A)(1 = 8)S73™(7))
< KVi(r, By ™% (7), (1= )87 (7))
< KVo(r, By ™ (7), ST (7),

proving (3.19). By the left-continuity of Y at 7" we furthermore have

Vo(r, BTy ™ (=), (1 — B)S7L™ (7))
< KVo(r, B{y™ ™ (1=), S5 (1-)).

Let us now prove the uniform integrability of the positive part of Y. Using (3.19)
and the elementary fact that (a + b)!™¢ < 21 (g!*¢ + p'*¢) whenever a,b > 0
we calculate

E [|Y(m)["]

€ 1,700,000 1,770,000 1
< ARV, (7, BIy™ (1), (1= B)STE™ (1) Lprery
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+ Vo (7 By ™™ (=), (L = B) ST (r=)) 1{T=T}]
Uy (X () 1]
< 4R [K”EVO (r, By (7), ST (7)) ey
+ K2V (r, By (1), SEo (r—)) 11{74

+ Up (X0 (T) ﬂ{foo}}

<4TKE [sol,p,l (7 AT, BJ™>(r AT), S;™> (7 AT)) 1“}

1+4+¢

= 41+EK1+€—;; E [@171)(14’_5)71 (’T A T, BZ};WO’OO(T A T), S;;’TFO’OO(T VAN T))]
1

S 41+8K1+€ ;; E@l,p(l-ﬁ-a),l(t ba S)a

where the last inequality follows from the fact that m; € Ay(t, b, s) and since by
the proof of Lemma [2.112 the process

(Protser (u B (w), Sy ()

w€(t,T]

is a supermartingale.
Step 2: Consider the process Y = (Y (u))uc(sju{o0) defined through

Y(u) =V, (u, Bg})’m’u(u—), (1— B)Sﬁm“(u—)) Liu<n

U, (X)) Ty (.20
We show that the negative part of Y is uniformly integrable over all 7 € B(t).
The result is obvious for p € (0,1) and since log(z) > zP/p for all p < 0

it suffices to consider the case p < 0 only. We fix 7 € B(t). Since ©] €
Ao(, Biy ™ (1), (1 = B)S;g™ " (17—)) we have

Vo(r, By (r—), (1 - B)SEY™ T (1=)) L r<ry

|:Up (X:()Bﬂl’WO’T(7’—),(1—,8)57717#0’7—(7'—)(T>>] ]]-{TST}

"t t,s

[Up (XZ%:OT(T))} <ty
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3. Worst-case portfolio optimization with transaction costs

It therefore follows that

Vo (7, B ™7 (r=), (1 = B)STE™ 7 (7=)) Lr<ry

1+5:|

1+¢
Tir<ry

1+2:|

]1{7:00}]

B (17 ()] ~E|

+Up (X732"7(T)) Lr=ocy

§ 21+€E |:

Vo (7, BIy™ (=), (1 = B)STa™ (7))

+ |Up (Xz,ré::mT(T)) Lir—ocy

<2+ [E |, (x5 ()] Lreny

14+e

+ U, (X707(T))

< 2E| |1, (x50 () ]

p(l + 5)22+E T1,70,T
= IM—HEE Upire) (X730 (T))

p(1+e)2%t S
|p|tte Té%%t)E Up(1+2) (Xt,b,so (T)) |-

We conclude since

i%ft)E[Up(Ha) (ng;TOT(T))} = Wi (m,mo,t,b,5) > —00.
TE ™

Step 3: We now show that the uniform integrability of ¥ implies the uniform
integrability of Y. For this, we first show that

for every u € [t,T]. Indeed, for u = t the result is immediate. For u € (¢,7] we
take a sequence (uy, )nen such that u,, T u. Then

Y(u—) = lim Y(u,) = lim Vy(uy, lel,’“o’oo(un), (1= B)Sy™ > (un))

n—o0 n—oo

= lim Vo(un, By ™" (un), (1 — B)Sry™ " (un))

n—oo
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3.5. The dynamic programming principle

= Vo(u, By ™" (u=), (1 = B) 757" (u=))

We make the convention that Y (7—) = Y (7) on {7 = o0}. Then
E [|Y(c0)["*] =E [|f/(oo)|1+f} < +o0.
and

E[|Y (7)) = E |[Wo(T, By ™ (T-), (1 - B)S;a™=(T-))| "]
:E[ ,(xptr )‘HE}

< P E [Uoa (0 (527 @)

< +o0,

where the finiteness follows from the admissibility of 7m; and 7my. Now given
T € B(t) and n € N we define

S {(7’+1/n) AT, on{r <T},

00, otherwise.

Then 7, | 7on {r < T} and Y(7,,) — Y(7)on {r < T} asn — oco. An
application of Fatou’s lemma then shows that
E[|Y(r)]"]
=E[[Y (") Lirary + V(D) Lir=ry + [V (00)[ L ir=ocy]
SB[ lim [V(r)[1pery] +E [V (D] +E ¥ (00)*]

< liminf E [|Y(Tn)|1+€1{T<T}] +E[[Y/(T)]*] +E [|Y (c0)|"+]

n—oo

and we conclude since Y is uniformly integrable. O

We refer to Z as the Snell envelope of Y. We note that we are actually not
interested in optimally stopping the process Y but want to stop the process Y’
defined in instead. Nevertheless, the existence of Z is sufficient to prove
the existence of c-optimal stopping times. We refer to Proposition in the
appendix for the proof.
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3. Worst-case portfolio optimization with transaction costs

Lemma 3.15. Lete,d > 0 and let 6 be a [t, T]-valued F'-stopping time. Then there
exists 7; € B(0) such that

20) = e B [V 0| P O] 2 B[ 63)

0)] -,

onaset A C QwithP[A] > 1— 6 and 7§ = 0o on A°.

A crucial point which will become very important later is that we can bound Z (0)
from above by V; (6, B(#), S(f)) which essentially boils down to the question of
whether or not we are allowed to replace the essential infimum in the definition
of Z by the infimum.

Lemma 3.16. We have Z(0) < V,(0, B(), S(6)).

Proof. We first show that for every ¢ > 0 there exists 7, € A(m) such that

~ . ﬂ—]‘ 7r
700) < el U (X555 50 ) | 710)] +2

Indeed, for every 7 € B(t) we let 7;° € Ao(r, B(t—),(1 — $)S(7—)) be an

e-optimal strategy in the crash-free market and write 7§ = (77°),ep(;). Then

20) = csipt® [V 0| 70)

— esesB1(nf]E lVO (7, Bfy™ " (=), (1 = B)S{E™ 7 (1—)) Lir<ry

U, (X)) mm}]mm]

IN

T {E 0 (X7 0-mse(D) | e

+Up (X;TET(FS)TS(Q) (T)> ]l{T=OO}‘]:t(9)] +e
= sl BB [0, (¥ 0o (T) L)

0y (X550 (D) Lo | 0] 2

= essinfE|U (X’”’”S” T)ﬂ .
eTSeSBl(rG}) { P 9,3(9),5(9)( )) Lir<ry
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3.5. The dynamic programming principle

0y (X750 () Lo F10)] -

- sty =[es (i) 0] +-

Let us now fix some w € (). For every s > 0 we denote the path stopped at s by
w?® := w(- A s). Moreover, we define the shift operator

T,(w)(-) =w(-Vs)—w(s).
We note that this implies that w(-) = w® + T's(w)(-). We can therefore write
7T1(Cd) = m(ws + Ts(w))a WO(W) = WS(C&JS + Ts(w)),

and therefore

3
—E
&
|
3
©

V)
+
N
V)
&
m
=
=

w), B(#(w),w), S(0(w),w)),

Then, for almost all w € €,
{0, (X755 0() |70 @

1 (0 + T () 5 (0" + Ty (), (T ()
N / Up <X9<w>,B(e>ii>),s<e><of> " " (T)(T“w)(”))) AP(To()(w))

71 (0 + T () (8))75 (0 T (@)).7(To(0 @) - -
= / Up (Xa(lm BO@SOW e (T)(Te(w>(w))> dP(w)

= (77, 7", 7, 0(w), B(0)(w), S(0)(w)).

Now Ji(7¢, 755, 7, 0(w), B(#)(w), S(6)(w)) is constant for w fixed and hence

Z(0)(w) < essinf Ji (7%, 75, 7,0(w), B()(w), S(0)(w)) + ¢

TeB(O(w))

= nf  Ji(x w7 0). BO)). S(O)(w) +<
<Vi(0(w), B(6)(w), S(0)(w)) + €

for almost all w € €2 and we conclude since € was chosen arbitrarily. [l

We can now put the pieces together to prove the existence of an e-optimal crash
time.
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3. Worst-case portfolio optimization with transaction costs

Lemma 3.17. Let m; € Ay(t,b, s) be an arbitrary pre-crash strategy and let wy €
Ao (1) be an arbitrary family of post-crash strategies corresponding tom,. Lete > 0
and let 0 be a [t, T]-valued stopping time. Then for every T € B(t) there exists a
crash time 7° € B(t) such that 7° > 7 A\ 6 and such that

E[U’(xiz?7<zv)}SIE@%(ﬁz%f—»<1—wﬁswaa)ﬂﬁgﬂ
+V1(0,B(0),5(0)) 1750
Proof. We define

7= Tlz<o + 75 Lirsay,

where 7 is an £/2-optimal stopping time from Lemma [3.15] satisfying

E [?(T;) (9)] < Z(0) + %g

onaset A C QwithP[A] > 1—§ and 7} = 0o on A°. We choose > 0 such that

PlA] < —— c
2E[|Z(0)|" = + [V (+o00)[**+]

and where x > 0 is a constant such that p(1 + k) < 1.
It is clear that 7° € B(¢) and 7° > 7 A 6. Then
E |0, (X550 )(P (77 0)]
—E [0, (X327 |F0)] 1oy +E [0, (X5377) |70 10509
=E :Up (X;T,léﬂg‘—f),(l—ﬂ)S(%—)> }}—t(%)} Liz<oy
+E [Up (X:-: ;(2;6 ),(1-B)S (75— )’]: ] )| Loy

<Vo(7, B(7=), (1= B)S(7))reoy + E [V ()| F'(0)] 1m0y

S VO (7__7 B(%_% (1 - 5)5(7:_))]1{%39} + (Z(Q) + %8)]1{7>9}]1A
+E [ )ft } irogy Lac

<Vo(7, B7), (1= D) Lprzay + 2O Lgroay + 52
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3.5. The dynamic programming principle

+ (E [Y/(oo)(ft(e)] - Z(e)) Loy Lac.
Taking expectations on both sides hence shows that

E |0, (X7007)| S E a7 B(-), (1= B)S(7-)) Lirco)]

+E [Z(Q)]l{;-yg}} + %8

4E [(E [?(oo)‘ft(e)] . Z(e)) 11{@0}]1/46} .

We now show that
E[(E [V(co)|F0)] = 20)) 1y 1ac] < %

To this end, let us note that the uniform integrability of ¥ implies the uniform
integrability of Z (see the proof of Proposition[C.9in the appendix). We conclude
from Holder’s and Jensen’s inequality that

E[(E [?(o@‘ft(e)} ~ 2(0)) Liroay L
<E [E [moo)wft(e))} M} +E [|Z(9)111Ac}

E.

< E ||V (o0)|**| PIAY] + E ||Z(6)| | P4

< —¢

1
2
by our choice of 4. Putting the pieces together hence shows that
E (v, (x777)]
<E (7, Br=), (1 = A)S(7=))Lircg) + Z(0)Liragy | + 2
<E (7, B(7=), (1 = B)S(7=)) Lizzoy + V1 (0, B(0), S(0))Lizs0y] +e,
where the last inequality is a consequence of Lemma [3.16 [l

3.5.2. The dynamic programming principle

With the help of Lemma and Lemma we can prove the dynamic pro-
gramming principle.
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3. Worst-case portfolio optimization with transaction costs

Theorem 3.18. Let (t,b,s) € [0,T) x S' and let (0, )rca,(t0,5) be a family of
[t, T|-valued stopping times. Then

Vilt,bys) = sup inf B[V, (0r,, B(0r), S(0r,)) Lo, <)
€A (t,b,s) TEB()

+Vo(7, Br=), (1 = 9)S() o, 20|

Proof. 1. Let ¢ > 0 and fix an arbitrary pre-crash strategy m € A;(¢,b, s)
and a crash time 7 € B(¢). By Lemma we can find 7 € A;(¢,b,s)
which coincides with 7 on [t, 7 A6, ) and a family of post-crash strategies
75 € Ap(m5) such that

E[v, (X757 (1) ’Ft(T Abe)| +2
> Vo(7, B(7—), (1 = 8)S(7=)) Lz, )

+V (97T17 B(0m>7 S(‘gﬂl)) ]1{7>97r1}'
We therefore have

Viltbs) > inf E v, (x5 )]

R s o

> inf E(r B(r-), (1= 95(-) Lpsan

+ Vl (07r17 B(eﬂ'l)’ 3(07"1))]]'{7'>07r1}] —-&

Since we can find corresponding 7§ and 7§ for every m € A;(t, b, s) and
0, and since € was chosen arbitrarily this implies

Vi(t,b,s) > sup  inf E[VO(T7 B(1-), (1 - B)S(r=))1{r<o,.;
T1EA; (t,b,s) TEB(®)

+ Vl (97r17 B(9F1)7 S(Qﬂl))]l{7'>97r1}} :

2. Let m; € A;(t,b, s) be an arbitrary pre-crash strategy and let my € Ay ()
be an arbitrary family of post-crash strategies corresponding to ;. Fix an
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3.5. The dynamic programming principle

arbitrary 7 € (). By Lemma[B3.17 there exists 7¢ € B(t) with 7 > 7 A0,
such that

E |0, (X507 (1))
<E [vo (7, B(=), (1= B)S(-—)) L greon
+ V1 (0, B(0x,), S(0,)) Lrse, 3| + ¢

It follows that
inf B[V, (X37(T)]
<E|v, (x50 ()]
<E [Vo (7, B(7=), (1 = B)S(7-)) Liz<o,,)
+ WV (an B(eﬂ'1>7 S(0W1>)]l{7'>97r1} t+e.

Since T was chosen arbitrarily this implies that

5 B 0 (x5

< inf E {Vo (7, B(r=), (1 = B)S(7=)) L{r<o,,3

+W1 (ema B(0x,), S<0ﬂ1))1{T>9“1}} e

Using that 7, my and € were chosen arbitrarily hence shows that

Vilt,bs) < sup inf E[Vo(r, B(r=), (1= B)S(r=))Lrza
€A (t,b,s) TEB()

+W1 (em , B(0r,),5(0x, )) ]1{T>‘9ﬂ1}]

which is the desired inequality. O
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3. Worst-case portfolio optimization with transaction costs

3.6. The viscosity property

In Chapter 2l we saw that the value function V) in the crash-free market is the
unique viscosity solution of the DPE

0 = min{L"V,(t,b, s), L'Vy(t, b, s), L*Vy(t, b, 5)},
where the differential operators £, £ and L£¢! are given by

o 9 1,,5

LV=—— —as— — -0

ot 9s 27 ° 9s2
0 0
buy — -
L (1+ )\)ab R
0 0
sell __ . 7 Il

respectively. The aim of this section is to show that V) is the unique viscosity
solution of

0= maX{Vl(t, b,s) —Vo(t,b, (1 = f)s),
min{L"Vi(t,b,s), LVi(t,b,s), LMV (t,b,s)}}. (3.21)

Let us first address the viscosity property of V; before we turn to the uniqueness
of solutions of (3.21). We summarize the result in the next theorem.

Theorem 3.19. V), is a viscosity solution of the DPE B.Z1) on [0,T) x S' with
boundary condition

Vi(t,b,s) = Up(0),  if(bs) € dS', t €[0, T,
and terminal condition

Up(b+ (1 = p)(1 = P)s), ifs >0,

Vil b,5) = {Up(b +(1+M)s), ifs < 0.

Remark 3.20. To see that V; satisfies the terminal condition note that from the
market’s point of view a crash at terminal time must be optimal whenever the
investor’s stock position is positive. o

We split the proof in two cases, the supersolution and the subsolution property.
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3.6. The viscosity property

Proposition 3.21. V), is a viscosity supersolution of the DPE .

Proof. Let (to, b, s0) € [0,T) x S* and let o € CT22([0,T) x S*) with p < V;
and p(to, bo, so) = V1 (to, bo, So). We want to show that

0 < max{¢p(to, bo, s0) — Vo(to, bo, (1 — B)s0),
min{ﬁnt90<t07 bOa 80)7 ﬁbuy@(t(b b0> 50)7 Ese”gp(t(h b07 SO)}}'

Step 1: By we have
©(to, bo, s0) = Vi(to, bo, s0) < Vo (to, bo, (1 — B)so).
If equality holds we are done. We are therefore left with showing that
0 < L™p(to, bo, 50), 0 < LM(tg, by, 50), 0 < L3 p(tg, b, s0),
under the assumption that

Vl(to, bo, SQ) < V(] (tg, bo, (1 — 5)80). (322)

Step 2: Let [y > 0 be small enough such that (by — (1 + \)lg, so+1y) € S*. By the
continuity of V; and V), and making [, smaller if necessary we can assume that

Vi(to,bo — (1 + M), s0 +1) < Volto,bo — (L +A), (1= B)so+1)  (3.23)
for all [ € [0, y]. For any such | we have
Vi(to, bo, s0) = Vi(to,bo — (1 + A)l, so +1). (3.24)

Indeed, by Remark [3.4] together with (3.22) and (3:23) we know that a crash at
time ¢, cannot be optimal (neither for initial holdings (by, s¢) nor for (by — (1 +
M), s+ 1)) and since (by — (14 A)l, so + () can be reached by a transaction from
(bo, s0) the claim follows. Using that ¢ < V; and @(to, by, so) = Vi(to, bo, So) it
follows from that

0 < Vi(to, bo, so0) — Vi(to, bo — (1 + N, 50 + 1)
S gO(to, bo, 80) — gO(to, bo — (1 + )\)l, So + l)
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3. Worst-case portfolio optimization with transaction costs

Now divide both sides by [ and send [ | 0 to obtain
0 S Lbﬂy@(toa b07 SO)
and a similar argument shows that

0 < Lp(to, bo, 50)-

Step 3: Suppose that on the contrary we have
Lntgo(to, bo, S()) < 0.

Then there exists some ¢ > 0 and § > 0 such that ty + ¢ < T, B.(by, s9) C S*
and
Lp(t,b,s) < —6

for all (¢, b, 5) € [to, to + €] x Be(bo, o).

Consider a strategy m = (L1, M) € Ay(to, by, o) such that L; = M; = 0 on
[to, =], where 7. is given by

7. :=inf {u >ty : (B(u),S(u)) &€ B-(bo, s0)} N (to + €).

By Theorem B.18 with 0, = 7. we have

Vilto.bo.so) > _inf E|[Vi(r, B(r). S(:) sy

+Vo(7, B(7=), (1 = B)S(T=))1ir.2ry |-

For every n € N we can find a stopping time 7,, € B(to) such that

Valto,bo, 50) = E|Vi(re, B(7.), S(7:) L. <ny)
Vol B=), (1 = B)S (=W rzmy| — 1o (329)

Using Vi (t,b,s) < Vy(t, b, (1 — 3)s) this implies that

V1 (to, bo, S0) > ]E[Vl (TE A To, B(1e A (1h—)), S(72 A (Tn—)))] — l

n
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3.6. The viscosity property

Set 7,, := 7. A\ (1,—) and use ¢ < V; to conclude that

Vi(to, bo, s0) = E Vi (70, B(72), S(7))] — %
> E[p(n, B(7), S(7))] - —.

n

Using ¢(to, bo, So) = V1 (to, bo, So) and 1t6’s formula now shows that

©(to, bo, s0) = Vi(to, bo, s0)

> ¢(to, bo, 50) — E [/T L"p(u, B(u), S(u)) du] 1

to n
ie.

E [ / " o, B(u), S(u)) du] >_1

to n
On the other hand we have
Lp(t,b,s) < —6
on [to, to + €] x Be(bo, 59) and hence
E [ / £ (u, B(u), S(u) du] < _OE[F, — to].

to

Therefore )
0 <Elr, —ty] < —.
Sl ol < on
Sending n — 0o shows that there exists a subsequence of (7, ),y which we again
denote by (7, )nen such that lim,, ., 7, = to and therefore lim,, ,,, 7,, = to.

Since V; and V), are bounded on [tg, %y + €] x B.(bg, S9) we can send n — oo
in (3.25) and use dominated convergence to see that

Vi (to, bo, s0) > nh_)fglo E [Vl (72, B(72), S(Te)) L fro ey

+ Vo7, B(ta—), (1 — ﬁ)S(Tn—))]l{TEZTn}} - %

= E[ V(. B(%), S(r) L r. <o)

+ Vo(to, bo, (1 — 5)50)1{752to}]
= Vo(to, bo, (1 — B)s0)
which contradicts (3.22). [
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3. Worst-case portfolio optimization with transaction costs

Proposition 3.22. V), is a viscosity subsolution of .

Proof. Let (tg, by, so) € [0,T) x S' and let ¢ € CV*2([0,T) x SY with ¢ > W,
and ©(to, bo, so) = Vi (to, bo, So). We want to show that

0> max{gp(to, bo, s0) — Vo(to, bo, (1 — ) so),
min{ L™ o (to, bo, s0), L@ (to, by, s0), L3 0 (to, by, 50)}}.
As before we have
©(to, bo, s0) = Vi(to, bo, s0) < Vo(to, bo, (1 — B)s0),

i.e. we only have to show that

min{ L™ o (to, bo, s0), L@ (to, by, s0), L0 (to, by, s0)} < 0.
Assume that on the contrary we have

min{ L™ o (to, bo, 50), Lo (to, bo, 50), L p(to, bo, 50)} > 0.

Define
B(t,b,s) = o(t,b,s) + |to — t|* + |bo — B> + |50 — s|*.

Then ¢(to, by, So) = ¢(to, bo, So) and the relevant partial derivatives of ¢ and ¢ at
(to, bo, So) coincide so that

min{ L™ ¢(to, bo, 50), L é(to, bo, s0), L (o, by, 50)} > 0.
We can therefore find some ¢ > 0 with ¢y + & < T, B.(by, 59) C S* and
Lt b, s) >0, LM(t,b,s) >0, LUt b s)>0 (3.26)
on [to,to + €] x Be(bo, 50). Moreover, there exists some § > 0 such that
o(t,b,s) > o(t,b,s) +6 (3.27)
for every (t,0,s) & [to,to +€) X Be(bo, so) with t > t,.

Let my = (L1, My) € Ay(to, bo, so) and mg € Ag(my). Choose 7* € B(t) such that
T7* = +00. Now define the stopping time

O, = 1inf{u >ty : (B(u),S(u)) & B:(bo, s0)} A (to + €).
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1t0’s formula shows that

Oy
¢(to, bo, 50) :¢(‘9ﬂ173<‘9ﬂ1)a8(0m))+/ L ¢(u, B(u), S(u)) du

to

Oy
4 [ ot Bl S) dLs(w

to

Oy
+ / LU (u, B(u), S(u)) dME(u)

to

0

Oy
_ /t oS (u) -(u, B(u), S(u)) dW (u)

_ {qb(u, B(u), S(u)) — qa(u—,B(u—),S(u—))]

to Sugeﬂl

By (B.26) it follows that ¢ is non-increasing in the direction of transactions and
hence again by (3.26) and by taking expectations on both sides we see that

¢(t07 bO’ 50) Z E [qb(em? B(em)’ S<07r1))] . (3-28)

Note that (0.,, B(6r,),5(0r,)) & [to, to+¢) % B:(bo, so) and 8, > t,. Therefore,
by (3.27) and since ¢ > V; we have

E[¢(0r,, B(Or,), 5(0r,))] 2 B [@(br,, B(6r,), S(0r,))] +

>E
> E Wi (0r,, B(0r,), S(0x,))] + 0. (3.29)
We furthermore have
&(to, bo, s0) = p(to, bo, S0) = V1(to, bo, So)
and hence combining (3.28) and (3.29) yields
Vi (to, bo, s0) > E [V1(0x,, B(0x,), S(0r,))] + 0.
Since m; was chosen arbitrarily this implies that

Vl(t07b0730> > sup E[Vl(eﬂ'uB(eﬁ)?S(eﬂ'l))] + 0. (3~30)

w1 €A1 (to,b0,50)

On the other hand Theorem [3.18 shows that

Vl(t()’b()as()) = sup inf E Vl(em,B(Gm),S(Hm))]l{‘gﬂ@}

w1 €A1 (to,bo,s0) T€B(to)

115
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+Vo(7, B(r=), (1= B)S(r=) 1,27
< sup E\Vi(0r,, B(0x,), S(0r,)) 116, <re}

m1 €A1 (t0,b0,50)
V(7 B =), (1= B)S(r* =)oy, 20
= sup E [Vl ('97r1> B(9ﬂ1>7 S(em))]

m1E€A1(to,bo,50)

which contradicts (3.30)). O]

Clearly, combining Proposition 3.21] and Proposition proves Theorem
Moreover, simple adaptations of the proofs of the two propositions can be used
to show that V) is a viscosity solution of the DPE and hence proves the
second claim of Proposition

Corollary 3.23. The value function V) is a viscosity solution of the DPE (2.10).

We now turn our focus to the uniqueness of viscosity solutions of (3.21). Since
the DPE (3.2]) in the crash setting and the DPE (2.10) in the crash-free setting are
very similar it is not surprising that we can recycle the comparison principle for
the crash-free DPE.

=1

Theorem 3.24. Letu,v : [0,7]xS — R and fixe > 0. Assume that u is an upper
semi-continuous viscosity subsolution of (3.21) and v is a lower semi-continuous
viscosity supersolution of such that

Up(b+min{(1 — p)(1 — B)s, (1 + N)s}) < wu(t,b,s),v(t,b,5) < @ypk(t,b,s)

forsomevy € (1—p, 1+ X) and K > 1. Ifu(T, b, s) < v(T,b+e,s) andu(t,b, s) <
U,(0) for every (b, s) € OS*, then u(t,b,s) < v(t,b+¢,s) on[0,T] x S

Proof. Since u is a viscosity subsolution it follows that u is also a subsolution of
the crash-free DPE (2.10) and satisfies
u(t, b, s) < Vo(t,b, (1 —B)s), for all (t,b,5) € [0,T) x S*.

Since v is a viscosity supersolution we need to distinguish two cases. Given
(t,b,5) € [0,T) x S' we either have

v(t,b+e,8) 2 Vo(t,b+e, (1 —B)s)

116



3.7. Numerical results

and we are done, or v is a viscosity supersolution of the crash-free DPE and we
can conclude as in the proof of Theorem [l

Remark 3.25. Note that the lower bound on v and v in Theorem has the
additional factor (1 — [3) as compared to Theorem Nevertheless we can still
apply the same technique as in the proof of Theorem 2.5 since we only need the
lower bound function to show that —v(¢,b + ¢, s) is bounded away from infinity
near OS". o

Theorem [(3.24] implies that the DPE (3.21) characterizes the value function V,
uniquely.

Corollary 3.26. Let u,v be upper semi-continuous viscosity solutions of (3.21) sat-
isfying

Up<b + min{<1 - ,U)(l - ﬁ)& (1 + )‘)S}) < u(t’ b> 5)7 U(ta b> S) < SO’Y,ILK(t? b7 3)
with u(t, b, s) = v(t,b,s) = U,(0) on dS* and
w(T,b,s) = u(T,b,s) =V (T,b,s) =v"(T,b,s) = v.(T,b,s).

Then u = v.

Proof. The proof is the same as the proof of Corollary O

3.7. Numerical results

The objective of this section is to study the DPE numerically to determine
the optimal trading regions and compare them to the optimal trading regions in
the crash-free case. We fix the same parameters as in Chapter[2] i.e.

a = 0.096, o:=0.4, T:=10
p:= 0.1, w=0.01, A:=0.01.

Moreover, we assume the maximum crash size to be given by 5 = 0.5.
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3. Worst-case portfolio optimization with transaction costs

3.7.1. The candidate optimal strategies

As in Chapter [2l we can use the homogeneity of V; to reduce the dimension of
the problem. We define

Vi (tv b, 8) = (b + 8)p)71(i, S/(b + S))? Vi (ta 7T) =V (tv 1 —m, 7T)'
It then follows that V) is the unique viscosity solution of
1-p)r
1—Br )’
min{ £"Vy (¢, 7), LWy (¢, 7), LDy (¢, ) }} (3.31)

0= max{l_il(t,ﬂ) — (1 — Bm)PVy (t,

on [0,7) x S} with S} := (—=1/A,1/[1— (1 —3)(1— u)]). The terminal condition

1S

l—7m+(1—-—p)(—-p)n)P, ifr>0,

)}1(T,W):V1(T71—7T,7T)= { (1+/\7T)p ifr <0

SRR AT

The differential operators appearing in (3.31) are the same operators as in the
crash-free case, see - . In what follows we assume that V) is regular
enough to be a classical solution of the DPE.

As a next step, let us take a look at the optimal strategies in the presence of
crashes. Since compared to the crash-free case we have an additional operator
in the DPE we have to adjust the definition of the three trading regions
slightly. We define the crash region in the reduced variables to be

RErash .= {(t,ﬁ) c[0,7) x St:Vi(t,m) = (1 — pr)PV, (t, %) } .

Note that R§"*" is a closed set. The trading regions are defined to be

R = {(t,7) € ([0,T) x SE) \ R{*" - L™V, (t,7) = 0},
R = {(t,m) € ([0,T) x S) \ RE*" . L'Vy(t,7) = 0},
Ry = {(t,7) € ([0,T) x Sp) \ RY*" - LMV (¢, 7) = 0} .

We conjecture that these sets form a partition of ([0,7") x S}) \ R§"*" and that
the optimal trading strategy on these sets is determined in the same way as in

118



3.7. Numerical results

the crash-free case, i.e. buying is optimal in Rbw, selling is optimal in R{*" and
no-trading is optimal in R7*. We furthermore conjecture that selling is opti-
mal within the crash region R¢%". To see this we show that if V;(¢,b,5) =
Vo(t,b, (1 — 3)s) and (¢, b, s) is not on the boundary of the crash region then

L5V (t,b,s) <0
whenever

A

. 3.32
1+ A (3:52)

8=

Indeed, set 5 = (1 — f3)s and calculate
LMV (L, b, 8) = LV (t, b, 3)

=—(1- u)gvo(t, b, 5) + %Vo(t, b, 5)

ob 0
= 1= 25,8 + (- B Pw(t,b,5)
- 'uﬁb olt, 0,8 a§ oll,0,8).

Now add and subtract (1 — 3)(1 4+ X\)(9/9b)Vy(t, b, §) and rearrange to obtain

£sellvl(t, b, 3) = —(1 — ﬁ) |:(1 + )\)%Vo(t, b, g’) — %Vo(t, b, §):|
+ [(1 —B)1+A) — (1~ u)] %Vo(t, b, 3).

Since

(1 + )\)%Vg(t, b, §> - %Vo(t, b, §) - EbUyVQ(t, b, §) 2 0

and (0/0b)V, > 0 we see that
L5V (t,b,5) <0
if (1 —0)(1+ X) < (1 — p) which is equivalent to (3.32).

We therefore have £5¢))); < 0 in the interior of 7_2?“5" and £5¢"); > 0 outside
of 72?”“5’1. Since V) is assumed to be of class C'? this implies £V, = 0 on the
boundary of R¢"*". Hence, we expect that the investor should sell whenever she
reaches the crash region.
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3. Worst-case portfolio optimization with transaction costs

3.7.2. A numerical example

Let us now consider a numerical example. First, we need to adjust the algorithm
in Kunisch and Sass [72] to work with the DPE (3.31) in the crash-threatened
case. This is done as follows. Assume that we want to approximate the value
function at time ¢ < T'. For the k-th iteration we first solve (as in the crash-free
case)
0= L™oF(t, )

inside our guess for the no-trading region [a;_1, bx_1] C [0, 1] and extend o} to
[0, 1] using the explicit solutions of L** ¥ (t,7) = 0 and L**o¥ (¢, 7) = 0. Also,
we construct the active sets By, and Sy as before (see and (2.48))). Then we
check if the crash constraint is satisfied for all 7 € [0, 1]. For this, define

Cp = {w c [0,1] : o¥(t,7) — (1 — Bm)PVy (t, %) > 0} :

On C), we set

oy (t, ) = (1 — Br)PVy <t, %) :

Now set N = [0, 1] \ (B U Sk U Cy) and proceed with the next iteration.

0.5

0.4 .

e
W

e
O

Risky fraction 7

0.1

Time ¢

Figure 3.4. Optimal trading regions in the presence of crashes.
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The resulting buy boundary 7!(¢) and sell boundary 7' (¢) are illustrated in Fig-
ure For comparison the figure also depicts the optimal strategy 7'*(¢) in the
case without costs, see (I.8) in Section [[.2] We observe a striking feature of the
sell boundary: If the time to maturity becomes small the sell boundary crosses
the optimal strategy without costs. Even more, the sell boundary hits zero strictly
before terminal time 7'. In the absence of crashes one can also observe that the
sell boundary falls below the optimal strategy without costs (see e.g. Shreve and
Soner [97, Equation (11.4)] for the infinite-horizon model and Liu and Loewen-
stein 74, Equation (22)] for the finite-horizon case). However, in these models
this behavior can only be observed in special cases, e.g. if the Merton fraction is
sufficiently high (in particular 7, > 1, i.e. borrowing is optimal). See also Ger-
hold et al. [41] for a discussion of this effect. In our model this behavior can be
observed as soon as 3 > 0, i.e. as soon as we allow for crashes.

Remark 3.27. Let us consider a (fairly heuristic) example to explain why the
sell boundary reaches zero strictly before terminal time. Intuitively, we expect
that the sell boundary reaches zero in the crash case at least as soon as the buy
boundary in crash-free case reaches zero, that is t; < tdown (where 9" is de-
fined in (2.26))). This is because the investor cannot recoup any losses made in the
stock by buying more shares after the crash. Indeed, assume that t, € [0, 7] is
such that t, > t9°*", Assume moreover that at time t, the investor has a positive
stock position s > 0 and a positive bond position b > 0 sufficiently large such
that s/(b + s) is close to 0. Assume now that we are in the crash-threatened
case and assume that at time ¢ a crash of size /3 occurs, leaving the investor with
(1 — /)s units of money invested in the stock. After the crash we are in the
crash-free setting and since t, > t%“" we see that buying is no longer optimal.
Heuristically, the wealth invested in the stock follows approximately a geometric
Brownian motion starting in (1 — 3)s (since s/(b+ s) is assumed to be close to 0).
The expected terminal utility of wealth is then approximately

0" = B [0 (b+ (1= (1 = Bsee- Ao W)
Using Jensen’s inequality and the definition of +%°“" we can estimate

U < Uy (B b+ (1= p)(1 = B)selemo?/2T -l Vn Wi
— U, (b+ (1= p)(1 - B)se=T~)
<, (b+ (1— ) (1 — B)secT- t‘“““"))
= U,(b+ (1L +N)(1 - B)s).
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3. Worst-case portfolio optimization with transaction costs

On the other hand, the expected terminal utility in the case of immediate liqui-
dation is

Uy (b+ (1 - p)s)
which is greater or equal than U,(b+ (1 + \)(1 — /)s) if and only if (3.32) holds.
Hence, for small investment periods it is not optimal to invest any money in the
stock at all! o

0.8

0.6 g |

0.4

Risky fraction 7

0 | | | | | | | | |
0 ) 10 15 20 25 30 35 40 45 50

Time ¢

Figure 3.5. Long term behavior of the optimal trading regions.

Let us now turn to the long term behavior of the trading boundaries. Figure
shows the optimal trading regions for a time horizon of 7" = 50. In the case with-
out crashes (see Figure the difference between the sell and the buy boundary
stabilizes quickly as T — ¢ becomes large (see also Gerhold et al. [41] for a rigor-
ous justification). In the presence of crashes this effect can no longer be observed:
The presence of a crash threat has a significant influence on the optimal trading
strategy even if the investment horizon is far into the future.

Figure 3.6 shows this effect in more detail. It shows the difference between the
sell and the buy boundary over a time horizon of 7" = 100 for both the case with
and without crashes. Without crashes, the difference appears to be stable for
maturities greater than approximately two to three years, meaning that the time-
influence of the transaction costs on the optimal strategies is only significant
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Figure 3.6. Difference of sell and buy boundaries with and without crashes.

for small investment periods. On the other hand, in the presence of crashes
the difference is increasing with increasing time to maturity even for large time
horizons, indicating that the sensitivity of the optimal strategies with respect to
time is significantly higher in the presence of crashes. Note however that the
difference is always smaller for the case with a potential crash than for the case
with no crash threat.

Let us now turn our focus to the value function V; which is shown in Figure
for an investment horizon of 7' = 10. It is interesting to see that V; is decreasing
at a much faster rate than V), for risky fractions above the sell boundary (compare
with Figure[2.9). That is, the kink at the sell boundary is more pronounced in the
crash-threatened case. The reason for this lies in the crash constraint.

We would also like to point out that the sell region R{* is empty in our example
and that the crash region R$"*" coincides with the whole region above the sell
boundary. That is, the investor sells shares of the stock because she is afraid of
a crash and not because of the risk caused by the fluctuations coming from the
stock dynamics in normal times.

Another implication of the above considerations concerns the characterization

of the optimal crash time 7% which is conjectured to be the first hitting time of
Rsrash see Section[3.2l The numerical example suggests that 7* is the first hitting
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Expected utility
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0.6 < .
0.8 Time t
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Figure 3.7. The value function in the presence of a crash.

time of the sell boundary. Moreover, the investor benefits from a crash if her risky
fraction is below the sell boundary since then V;(¢,b,s) < Vy(t,b, (1 — f)s),
incurs losses at the moment a crash occurs if her risky fraction is above the sell
boundary since V;(t,b,s) = Vy(t,b, (1 — (8)s) and L5V, (¢,b,s) < 0 and is
indifferent about the occurrence of a crash on the sell boundary since V; (¢, b, s) =

Vo(t, b, (1 — B)s) and LV, (L, b, s) = 0.

Clearly, if no crash occurs an investor following the optimal strategy in the pres-
ence of crashes achieves less expected utility compared to the investor who fol-
lows the optimal strategy for zero crashes. To estimate the trade-off we plot in
Figure 3.8 the relative loss of utility given by

]_}O(ta 7'(') — ]_21 (ta 7T>

Vol(t, ) o (6m) €[0,T] %[0, 1].

One can see that the relative loss of utility for protection against a 50% crash is
at most 7.5% and as long as the initial risky fraction is small (meaning that at
time ¢ = 0 it is inside the no-trading region) the relative loss is at most around
3% even for investment periods of 50 years.
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Figure 3.8. Relative loss of utility.

3.8. Extension to multiple crashes

We conclude this chapter with a short outline on how to extend our results to the
case of an arbitrary but fixed maximal number of crashes. The generalizations of
the previous results are mostly straightforward and can be obtained by iterating
through the number of crashes, but one needs to be careful to setup the model
correctly.

Let us first explain how we define admissible crash strategies. A crash is modeled
as a pair (7, 3(7)) consisting of an F'-stopping time 7 and an F*(7—)-measurable
crash size 5(7). The crash size §(7) is assumed to be of the form

Blr) =B =1—(1-3),

where § € (0, 1) is fixed and where j € N. Note that with this, whenever a crash
occurs we have

P 1) = (1= p;)P'(r—) = (1= By P (r—). (3.33)

We can therefore interpret the crash (7, 3;) as j crashes of size 5 occurring at
the same time 7 but worked off one after another. Moreover the investor cannot

125



3. Worst-case portfolio optimization with transaction costs

react to the crashes in between. In this spirit we call a crash of size /3; a crash of
order j.

Remark 3.28. The form of the crash size 3(7) = f3; is a technical tool. In the
classical worst-case models multiple crashes at the same time are typically not
allowed (see e.g. Korn and Steffensen [70]). In our setting however it is more
convenient to allow for more than one crash to occur at the same time. The rea-
son is the following: If multiple crashes at the same time were not allowed then
one would need to be very careful about distinguishing whether or not at some
given time ¢ a crash can still occur or not. This would lead to two different value
functions - one for the case where a crash can occur at initial time and one for
the case where a crash cannot occur at initial time. This would for example cause
additional difficulties in the formulation of the dynamic programming principle.
It is therefore easier to allow for multiple crashes to occur at once, but we have
to assume that they are of the form (3.33).

A different modeling approach for multiple crashes would be to assume that if ¢
crashes occur at the same time, then the investor loses a fraction of (1 —i/3) of the
wealth invested in the stock. However, this causes inconsistencies when deter-
mining the optimal strategies. More precisely, if the investor expects two crashes
to occur at the same time then she would choose a different optimal strategy than
if she would expect only one crash to happen. This effect is demonstrated in Korn
et al. [68, Section 8].

Since the buy and sell boundaries can be expected to be decreasing in the number
of crashes we expect that multiple crashes at the same time are only optimal if
the investor holds a very risky initial position. Once the position is inside the no
trading region multiple crashes are never optimal. o

We restrict the maximal number of crashes to be less or equal to n € N. To
be more precise, a crash strategy is a sequence of crashes w := (7, ﬁji)i:17.,,7n0,

no < n, such that
no
> i<
i=1

That is, the sum of the orders of the crash sizes is assumed to be bounded by n.
In view of Remark [3.28] this setup allows the market to exercise multiple crashes
of size [ at once but limits the total number of crashes to n. The stopping times
Ti, ..., Tn, are assumed to satisfy 7; < 7;_1 on {7; < oo} fori =2,...,ng. Note
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that with this convention we count the number of prashes backwards: If a crash
occurs at time 7; then we know that at most n — ), _, ji crash times may still be
realized.

The investor’s trading strategies are defined as in the case of at most 1 crash. The
investor first chooses a trading strategy 7" which she follows as long as there are
at most n crashes left. Then for every possible crash scenario (7,,, 3;, ) the in-
vestor chooses a strategy 7”770 which she follows after the observed crash. Then
for every such strategy 7" /o with ng # n and for every crash (7,,-1, 3;,, )
the investor chooses a strategy 7" /"0 ~/70-! and so on until no more crashes are
possible. This means that for every possible crash strategy @ := (7, 5, )i=1,...no»
ny < n, the investor has to come up with trading strategies which she can apply
in between the crash times. For simplicity of notation we denote such families
of trading strategies by 7 and the set of all such trading strategies by A, (¢, b, s).
The crash strategies @ = (7;, 5;,)i=1....n, are called admissible if the (7;);—1__n,
are F'-stopping times. We denote the set of such crash scenarios by B,,(t).

Let m € A,(t,b,s) and w = (73, B}, )i=1....ny € Bn(t). Since the crash strategy is
fixed so are the trading strategies the investor follows. We denote these strategies
by T, ..., T wWhere m; = (L;, M;) is the trading strategy applied before the
crash at time 7; if i = 1,...,ng and mop = (Lg, M) is the strategy which is used
when no more crashes can occur. Given an initial position of b units of money,
the investor’s wealth invested in the bond is given by B(t—) = b at initial time.
Then on [t, 7,,,) N [t, T'] the wealth follows

dB(u) = —(1 + N)dLy,(u) + (1 — p)dM,, (u).
Similarly, on [7;41,7) N [t,T],i = 1...,ny — 1, the wealth follows
dB(u) = —(1 + N)dL;(u) + (1 — p)dM;(u)
and finally on [y, 7] N [t, T'| the wealth invested in the bond is given by
dB(u) = —(1+ N)dLo(u) + (1 — p)dMy(u).

The equations for the wealth invested in the stock are set up similarly (compare
also with the case n = 1, see (3.4) to (3.6)) keeping in mind that at the time a
crash occurs we have

S(r;) = (1= BYiS(ri—) + Li—a(rs) — M;_1(73).
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We can now define the following solvency regions:
S'i= {(b,s) ER?: b+ (1+N)s>0,b+(1—p)(1—p)'s > 0}, i=0,...,n.

We restrict the set A, (2,0, s) to those families of strategies such that for every
admissible crash strategy in B, (t) the corresponding pair (B, S) stays in the
closure of S’ whenever there are at most i crashes left up to time 7.

The net wealth X of the investor after liquidation of the risky position at time
is given by

X(u) = 4 B+ (L= p)S(u), i Su) >0,
C | B(w) + (14 N)S(u), if S(u) <0.

With this, we can formulate the following optimization problem: For (¢,b, s) €
[0,7) x S" we are interested in determining

Vo(t,b,s) :=  sup inf E[U, (Xtﬁbf(T))] .

TEA (t,b,s) TEBn (1)

We call V,, the value function in the market with at most n crashes. With this
setup, using the techniques developed for the analysis of V;, the following results
are straightforward.

First, one can show that the value functions V;, 0 < ¢ < n, are continuous on
their respective domains.

Theorem 3.29. The value function V), is continuous on [0,T] x S

From the continuity it is possible to deduce the existence of e-optimal strategies
which in turn lead to the dynamic programming principle. The DPP then allows
to deduce the viscosity property of the value functions.

Theorem 3.30. V), is a viscosity solution of

0 = max{V,(t,b,s) — V,_1(t,b, (1 — B)s),
min{ £V, (t, b, s), LV, (t,b, 5), LV, (t,b,5)} },

on [0,T) x 8™ with boundary condition

Vu(t, b, s) = U,(0), if (b,s) € 9S™, t € [0,T],
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and terminal condition

Up(b+ (1 — p)(1=p5)"s), ifs >0,

ValTob5) = {Up(b + (14 N)s), if s <0.

Moreover, V,, is unique in the class of upper semi-continuous functions satisfying

Up(b+min{(1 — p)(1 — B)"s, (1 + X)s}) <V, (t,b0,5) < oy k(t, b, s).
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4. Worst-case portfolio
optimization in a market with

bubbles

We now leave the world of transaction costs behind us and consider a frictionless
market underlying the worst-case model. More precisely, the objective of this
chapter is to analyze a regime-switching model in the presence of crashes. The
motivation of this model is to drop the assumption that the maximum number of
crashes is finite and fixed a priori.

In the first part of this chapter we assume that the investor receives warnings
about a potential crash at the jump times of an independent Poisson process.
That is, whenever the Poisson process jumps one crash in the stock is possible
(up to the next jump time of the Poisson process). It turns out that in the case
of logarithmic and power utility it is relatively simple to derive a strategy which
renders the investor indifferent between an immediate crash and no crash at all
and to verify directly that this strategy is optimal.

In the second part of this chapter we extend this simple model by replacing the
Poisson process by a finite-state Markov jump process and associate to every state
of the Markov process different market coefficients and crash sizes. For this gen-
eral model we derive a system of dynamic programming equations in the spirit of
Korn and Steffensen [[70] and use this to construct the optimal strategies, which
turn out to be given as the solution of a coupled system of ordinary differential
equations.

In contrast to the existing worst-case models with a deterministic maximum

number of crashes the optimal strategies in our models exhibit some previously
unobserved features. To be more precise, we show the following:
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1. In general, the optimal strategies do not converge to the Merton fraction as
the investment horizon tends to infinity. This shows that a random number
of total crashes introduces an additional long-term effect on the optimal
strategies.

2. While in the simple Poisson process model the investor is always indiffer-
ent between an immediate crash and no crash at all, this is not necessarily
true in our generalized Markov chain model. As is known from Korn and
Menkens [67] and Seifried [95], this effect may also occur in the classical
models if the market coefficients change after a crash. In our model how-
ever this effect may occur also if the market coefficients are independent of
the state as soon as we allow for changing crash sizes.

3. Finally, in the generalized model we show that the optimal strategies may
not necessarily be monotonically decreasing in time. For example, in the
numerical examples at the end of this chapter we construct optimal strate-
gies which oscillating.

The results of this chapter correspond in large parts to the following articles:

1. C. Belak, S. Christensen, O. Menkens (2013): Worst-case optimal invest-
ment with a random number of crashes [9].

2. C.Belak, S. Christensen, O. Menkens (2013): Worst-case portfolio optimiza-
tion in a market with bubbles [[10]].

4.1. The Poisson market model

As in the previous chapters we consider a financial market consisting of one
risk-free bond and one risky stock with price evolutions as in the Black-Scholes
model. Fix an investment horizon 7' > 0 and assume that the dynamics of the
risk-free asset P° = (P°(t));c(0,1) are given by

dP°(t) =0, t € 10,77, P°(0) = 1.

To model the price of the stock we let W = (W (¢)):>0 be a standard Brownian
motion on a complete probability space (€2, F,P) and let (7} )xen denote the jump

132



4.1. The Poisson market model

times of an independent Poisson process with parameter \. Moreover, we set
To = 0. We denote the augmented filtration generated by W and the Poisson
process by (F(t))i>o. As described in the introduction, the sequence (7})ken,
models the time points at which the investor receives a warning about a potential
market crash. Note that the sequence (7} )ken, does not coincide with the crash
times in general. The crash times are given by a sequence (7% )ken, of [T}, 1] U
{oo}-valued stopping times with respect to the filtration (F(t));>0. We assume
that whenever we have
Ty <7 < Thg

then a crash occurs at time 75,. This condition means that there is at most one
crash between every two warnings. In other words, before each crash the in-
vestor receives a warning. We interpret {7, > T .1} as the event that no crash
occurs between T}, and T}, so that with this setup at any given time at most one
crash warning is active. At each crash time 73, the stock price drops by a rela-
tive amount 0 < 3, < 3 where f3;, is a F (7, —)-measurable random variable and
f € (0,1) denotes the maximum (deterministic) crash size. Note that as before
we can assume without loss of generality that 5, = [ since we take a worst-case
perspective. We denote the set of all sequences (7} )xen, fulfilling the above re-
quirements by 7;. The subset of all crash scenarios such that no crash occurs
until the first warning (that is 7y > 7)) is denoted by 7q.

Given a sequence (7x)ren, € 71 of crash scenarios the corresponding stock price
process P! = (P'(t))icjo.17 is given by

dP'(t) = aP(t)dt + o P*(t)dW (t), t € [, Tra1) N[0, T,

where o, 0 > 0 denote the excess return and volatility of the stock price process.
For the k-th crash time 7, we assume that

PY () = (1 — B)PY(1p—), on {7, < T} N{m < T},
P(1) = PY(mx—), on {1 > T} A < T}

The investor acts according to the information given by the filtration (F(t)):>o.
Furthermore, the investor does not know the crash scenarios (7j)ien, a priori
but can observe each crash whenever it occurs. However, the investor knows
( and observes (7})xen, as well. For the investor two different situations must
be distinguished: Whenever a crash has already happened and no new crash is
announced - that is on an interval [7x, Ti41) N [0,7] - the investor does not
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4. Worst-case portfolio optimization in a market with bubbles

have to fear a crash and trades according to the strategy 7° = (7°(t))scqo.17.
At all other times the investor must fear a crash and trades according to the
strategy ' = (7' (t))sepo,r- The trading strategies for the investor can therefore
be described by a pair 7 = (7%, 7!) which is assumed to be a pair of adapted,
right-continuous and bounded processes.

Given a crash scenario ¥ = (73)en,, a trading strategy m = (7%, 7!) and an
initial wealth of z > 0 the investor’s wealth process X = X&f = (Xg:f(t))te[o”]‘]
is given by

X(0) =z,

dX(t) = ar'(t) X (t)dt + or* (t) X (t)dW (t), on [T}, ) N [0,T],

dX(t) = ar®(t) X (t)dt + or(t) X (t)dW (t), on [rg, Tir1) N[0, T,

X(1) = (1 — 7' () 8) X (=), on {7, < Tyt N{m < T},
X () = X (m—), on {7y > T} N{m < T}

If no confusion may occur we drop some of the subscripts or superscripts in the
notation of the process X f. Note that the explicit solution of the above SDE is
given by

[e.9]

= H ]_ — ’7T Tk 6]1{Tk<Tk+1}]l{Tk<t})

exp ( / M ) dW () + / T o) dW(u))

T At TN\
TN\t 1 9
- exp (/ am' (u) — =0 [7' (u)] du)
TNt 2
Tt 0 L 91 o 2
- exp am(u) — 50 [7(u)]"du ). (4.1)
TN\

We denote the set of all trading strategies 7 that correspond to a strictly positive
wealth processes X, Y for all ¥ € T; by A(z). Note that the strategy 7' in the
crash regime has to satlsfy

T (t) < forallt € [0,T.
If we consider the problem on a sub-interval [¢,T], then we denote the corre-

sponding strategies by A(¢, x), 71(t) and T(t), respectively.
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4.2. Heuristic derivation of the optimal strategies

Fix p < 1. We consider the following worst-case optimization problem: The
investor optimizes her expected utility under the worst possible crash scenario,
Le.

. 7r719 . 7'(',’!9
o BER(G (K@) e e (0 (X57(0)]

The first problem corresponds to the case in which we start in a situation without
a crash warning at time ¢ = 0. In the second problem the first crash may occur

immediately. We make the problem time-dependent by introducing the value
functions

V(t,z,i) = sup inf ]E[U (X”fT)], i=0,1.
( ) TrEA(It),m)ﬁeTi(t) P b ( )

Obviously V(t,z,1) < V(t,x,0) since the infimum is taken over a larger set.

4.2. Heuristic derivation of the optimal strategies

In this section we find a candidate optimal solution 7* = (7%* 7w1*) for the log-
arithmic utility case, i.e. p = 0. By the usual pointwise maximization argument
(see e.g. Irle and Sass [49, Section 2] in a slightly different context) it is immedi-
ately clear that in times with no crash warning it is optimal for the investor to
use the Merton strategy. That is

«

70 (t) == myy = pox forallt € [0,T].

If we start the wealth process at time ¢ with initial wealth 2 and no crash warning
is present, then by the memoryless property of the exponential distribution the
next warning arrives at an exponential time e, if this time is less than 7". It is
therefore reasonable to assume that we have the following version of the dynamic
programming principle:

V(t,2,0) = E|V(t+ex, X7 (t 4+ ex), D iey <)

g (X2 (1)) Lo
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4. Worst-case portfolio optimization in a market with bubbles

Integrating the exponential time we obtain

Tt
V(t,z,0) = / E[V(t+u, sz* (t+u),1)]Ae ™ du
0
+ e MR [log (Xt”z (T))}

T—t
— / EV(t +u, X7, (t+u),1)] e ™ du
0

2

+ eI <log(x) + %a—(T — t)) . (4.2

o2

To obtain an expression for V(t,z,1) we use the indifference approach as de-
scribed in Korn and Wilmott [[71]] and formalized in Korn and Menkens [67]]. For
an initial value = and a time point ¢ such that a crash could happen, we try to find
a strategy 71* such that the investor is indifferent between the scenarios “A crash
of size B happens immediately” and “No crash happens until T”. We expect this
strategy to be optimal. For the first scenario, after the crash in ¢, the investor is
faced with the problem without an active crash warning discussed above so that

V(t,z,1) = V(t, (1 — 7" (t)B)x,0). (4.3)

On the other hand, in the second scenario (no crash at all) It6’s formula leads to
V(t,z,1) =E [log (XE;’*(T)H

—log(z) + E [ /t " () — &

502 (75 (w)] *dul | (4.4)

where the stochastic integral vanishes since we assume 7* to be bounded. Com-

bining and with leads to

T—t
0

= 5 [V(t +u, X7 ey (4 1), 1)] Xe™ X du
0

+ e~ AT (log(x) +E [log(1 — 7" ()B)] + = (T — t)) . (4.5)

136



4.2. Heuristic derivation of the optimal strategies

Furthermore, by (4.4) and It6’s formula we have

E[V(t+u, Xt(1 e g)e(t 1), 1)]
=E {log (X ?1* et T U > / (r) — %02 [7‘(‘1’*(7")}2 dr]

=K

1 v/ 12
IOg (Xt (1—mL*()B)x / 502 [7‘(07 (’[”)] dr

+ /t+ am*(r) — %O’Q [7?1’*<7")]2 dr]

2

la 1,%
= log(x) + 552l + E|log(1 —7"(¢)5)

t+u

+ / " arte () - 5 [7?1’*(7")}2d7°],
so that we get from (@3)
E{ /t " o () — Lo ()’ du]
- /0 g {log(l — 7 (1)8) + / ' ar*(r) — %(72 [WL*@)}?dr] Ae M du

t+u

T—t 1 2 1 2
+ / ~ L e duy + e NI (E [log(1 — 7"*(1)B)] + —a—(T — t))
0

202 202
T—t T 1 9
= / E [/ am™*(r) — so*[7"(r)] dr] e du
0 t+u 2

la?1 —e 2T

202 )\ '

Now we make the ansatz that 7'* is deterministic and obtain the integral equa-
tion

+E [log(1 — 7"*(t)B)] + =

la?l—e M=)
A e

- ' : ! * 2 —Au
+/0 ([+u am’ (7') - 50’2 [7‘(1 (7“)} d?") Ae du. (4.6)
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4. Worst-case portfolio optimization in a market with bubbles

Integration by parts shows that

T—t T 1 9
/ (/ art*(r) — 502 (7% (r)] dr) e du
0 t+u
T 1 ,
— / am* (u) — 502 (75 (u)]” du
t

and hence (4.6)) simplifies to

Lot
202 A
T 1 2
_/ o~ Mu—t) (Om'l’*(u) _ 502 [ (u)] ) du. (4.7)
t

Note that for the degenerate case A — 0 (that is, the time until the second warn-
ing can occur is infinite, i.e. only one crash can happen) this equation simplifies
to

2 oM _ AT

0=e M log(1 — 74*(t)B) +

. L o 14/ \2 1 1o?
am (u)—§0 7" (u)” du = log(1 — 7 (t)ﬁ)+§—2(T—t)
t 0-

which indeed is the equation characterizing the optimal worst case strategy in
the problem with only one crash, see Korn and Wilmott [71, Equation (A.5)].

Differentiation with respect to ¢ in (4.7) and rearranging terms yields the follow-
ing ordinary differential equation for 7!*:

9 a(t) = 517 (0)) (a(w1’*<t> - 7% (1))
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4.3. Direct verification for logarithmic utility

where as before 7°*(t) = 7y = a/o? for all t € [0,7]. The existence and
uniqueness of a solution of this differential equation is assured by arguments
similar to the proof in Menkens [[78| Theorem 2.5], see also Lemma[4.10|below. In
particular we have 7*(t) < 1/8 and w1* < 7%*,

Again, note that for the degenerate case A = 0 the equation for the candidate
optimal strategy reduces to

0 . 1% 2 [ 1 0, (1Y) 2
pred (t) = B(l -7 (1)B) (_5‘7 (W7 () =7 (t)) >

which is the equation obtained in Korn and Wilmott [71]], see (1.6)) in Chapter [l

4.3. Direct verification for logarithmic utility

In this section we verify that the indifference strategy 7* = (7%* 7'*) con-
structed in the previous section is indeed optimal. For this let ¥ = (7%)xen,

denote the crash scenario such that no crash occurs at all, i.e. 7, = oo for all
k € Ny. The next lemma shows that the strategy 7* leads to the same expected
utility no matter which crash scenario occurs.

Lemma 4.1. For all crash scenarios 9 = (7 )ken, € 71 we have
E [log (Xg; Z;%T)ﬂ —E [log (Xgi ;‘@(T)ﬂ .

Proof. Writing g(y) = ay — 1/202y? for short we have by

> [ gt du]

k=0 T \NT

E [log (X(’)T’;’ﬁ(T)ﬂ =log(z) + E

+E

00 (T AT
S L el w) dun{wkﬂ}]

k=0 Tk AT

+E

> log(1 - Wl’*(Tk)ﬁ)ﬂ{m<Tk+1}1{m<T}] - (49)
k=0
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4. Worst-case portfolio optimization in a market with bubbles

By construction of the indifference strategy 7* it holds that for each £ € Ny on
the set {7 < Ty41} N {7 < T} we have

E [ / ,iT o (" (u)) du
_ E[ / T 0 () du + / L) du

L AT Tk+l AT

#w)

+ log(1 — wl’*(m)ﬁ)’f(m)} :

i.e. the investor is indifferent between a crash of size [ happening at time 7y
(right-hand side) and no crash happening (left-hand side). This can be rewritten
as

e[/ ot ) i

L AT

f(Tk)}

_E [ / (R0 () du 4 Yog(1 — 71’*(@)&)‘?(@)}  (410)

L NT

Hence, combining (4.9) and (4.10) we see that

> :’;fg(wl’%u)) du]

k=0

00 T AT
Z/ g(””(“)) dU]l{Tk<Tk+1}]

k=0 Tk AT

E [log (X&;%T))] =log(z) + E

+E

~ log(z) + E { /0 " o () du}

—E [1og (Xg;;ﬁ (T))] . O

Lemma [4.1] implies that the strategy 7* is indeed an indifference strategy, i.e. if
the investor follows this strategy she is indifferent between which crash scenario
occurs since each scenario leads to the same expected utility. Note also that since
To C 71 and J e To the same result also applies for the case in which there is no
crash warning at initial time ¢ = 0. With this it is easy to prove the optimality of
m* since we now only need to find one crash scenario in which the indifference
strategy outperforms any other given strategy.

140



4.3. Direct verification for logarithmic utility

Proposition 4.2. Let m = (7%, ') € A(z) be arbitrary. Then
inf B [log (X77(7))] < inf E [log (X5,(T)))]
Inf B |log {Xo: (T) )| < inf E|log {Xo,"(T)
and

i 2o (552)] = g o (3507

Proof. By Lemma [4.1] the right-hand side is independent of ¥J. In order to prove
the first claim it is therefore enough to find at least one 9 € 7T such that

E [log (X7(1))] < E J1og (X5."(D)].
For this, set 1) = 7} (since we start without a crash warning) and define
7, = inf{u € [T}, T) : 7 (u) > 75*(u)}
for all £ € N. Writing ¢ = (7% )ken, We have

> [ o) du]

0 Y TeAT

E [log (ngf (T))} = log(z) + E

+E

Ty AT
Z/ g(wo(u)) dU]l{rk<Tk+1}]

k=0 Y TRAT
+E [log(l — 7Tl(Tk)ﬁ)]l{rk<Tk+1}]l{7—k§T}} . (4.11)

On [Ty, ) N [0, T] we have 7! < 7!* < 7%* and hence g(7') < g(7'*) since g
is quadratic and attains its unique maximum at 7°*. Therefore

E Z/Tk g(ﬂl’*(u)) du] : (4.12)

oo TENT
Z/ g(wl(u)) du| <E
k=0 TuNT

k=0 T NT

Similarly, we have g(7°) < g(7%*) on 73, T11) N [0, T] and therefore

E

o0 Ty NT
Z/ g(ﬂo(u» dU]l{rk<Tk+1}]

k=0 Tk AT

<E

00 Ty AT
Z/ g(7%*(u)) du]l{fk<Tk+1}] . (4.13)

k=0 T NT
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4. Worst-case portfolio optimization in a market with bubbles

Finally, by the construction of 75, and the right-continuity of 7! and 7'* we have
7l(7) > 71*(7;,) and hence

log(1 — 7 (1) 8) < log(1 — w*(73.)B)
on {7y < T41} N{m < T}. Thatis,
E [log(1 — 7' () B)L (<71} U<y
<E [log(l — 7717*(Tk)ﬁ)]l{rk<Tk+1}]l{-rk§T}] . (419)
Combining (4.12))-(4.14) with (4.11) hence shows that
E [log (Xg 2 (T))] <E [log (X&jﬁ (T))] .

The proof for ¥ € 7; follows similarly. N

4.4. Heuristic derivation in the power utility case

Using a change-of-measure approach, the power-utility case p < 1, p # 0 can
be handled similarly to the logarithmic utility case p = 0 studied in the previ-
ous sections. For the derivation of the candidate optimal strategies we proceed
similarly to the indifference arguments in Section

More specifically, for each risky fraction process 7'* in the scenario without
crashes we can decompose the utility process as follows:

Uy (XZZ’*(T)> = %eXp (plog (XZ;’*(T)D
= U,(x) exp (p /tTg(ﬂl’*(u)) du +p/tT o' *(u) dW(u))
=ty e (v [t () ) v,

where
1

1
9(y) = ay — 5021/2, 9(y) = ay = 5(1 —p)o’y?,
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4.4. Heuristic derivation in the power utility case

and M; = (M;(u))ucp,r) given by

1 u u
M;(u) = exp <—§/ pro?[rt* (1)) dr +/ pom*(r) dW(r))
t t
is a local martingale with M;(t) = 1. Since we assume admissible strategies to be
bounded we see that M/, is even a martingale which defines a change of measure.
We denote the expectation under this measure by E™ . In the scenario without
crashes we therefore obtain

T
E [Up <Xt7r;*(T)>] = U,(z) B {exp (p/ gp(ﬂl’*(u)) du)] )
t
If one crash of size 5 occurs immediately in ¢, no further crash occurs and we

hold the Merton ratio 7%*(u) := my; = /(1 — p)o? until a new crash is possible
after an exponential time e, the expected performance is

Uy(z) E™" {exp (p /t ' g (7% (w)) du) (1 -7l (t)ﬂ)p]l{HeAzT}}

t+ey
+ Up<33') EWL* exp (p/ 9Ip (770,* (u)) du
t

+p /t gp (77 (u)) dU) (1- Wl’*(t)ﬁ)p]l{wewﬂ] -

+ex

Assuming again that 7'* is deterministic, the indifference approach suggests that
7* should solve

exp (p /t ' gp (" (w)) dU)
=& o (b [ (a0 o) (1= 7O o)

t+ey
exp (p/ 9p (7°* (w)) du
t

+ Eﬂ.l,*

+ex

+p/t Qp(ﬂl’*(u)) du)(l - Wl’*(t)ﬁ)p]l{wexd}]-

Integrating the exponential time and some further simplifications show that
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4. Worst-case portfolio optimization in a market with bubbles

(1= (t)8) ™" = exp ( / P (7 () d )
exp< Hu 1’*(T))dr) du, (4.15)

where 7,(y) = 9,(y) + A p ~—andc, = gp( *) is the maximum of the function
gp. Differentiating with respect to ¢ in (415) and rearranging terms yields the
ordinary differential equation

%Wl’*@) = %(1 - (1)B) (yp (" (1) = %(1 - wlv*wmp)
= %(1 — 7-(-1 *(t)ﬁ) <—%(1 — p)0-2 (71'1 *(t) - 71_O *(t))2

|
S| >

(1= 7" (t)B)" — 1)) (4.16)

with terminal condition 7!*(7") = 0.

Note that (4.16) converges to the ODE for the indifference strategy in the loga-
rithmic utility case given by (4.8) if we let p — 0. Moreover, sending A | 0 shows
that converges to the indifference strategy in the model with at most one

crash given by (1.8).

At this point one could proceed similarly to the reasoning in Section[4.3]to verify
the optimality of the indifference strategy 7* = (7%*, 7'*). We do not work out
the details here but develop a different approach in a generalized model based on
a system of dynamic programming equations.

4.5. The generalized model

In this section we generalize the model discussed before by introducing a range of
maximum crash sizes and state-dependent market coefficients as follows: We let
(Q2, F,P) be a complete probability space which supports a standard Brownian
motion W = (W (t))¢>0 and an independent time-homogeneous continuous-time
Markov chain Z = (Z(t));>0 with state space £ := {0,...,d} for some d > 1.
We denote by () = (¢ j)o<i,j<a the transition rate matrix of Z such that

gi; >0 foralli,j € E with i # j
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4.5. The generalized model

and we set ;
Ni = —qii = Zqi’j forall: € E.
=0
JF
We assume moreover that the state 0 cannot be reached from any other point, i.e.

¢io = Oforall7 € E. We denote the augmented filtration generated by W and Z
by F = (F(t))e=0-

Let us now fix some investment horizon 7" > 0 as well as some initial time
t € [0,T). We assume that the bond price P° = (P°(u))yep 1] is given as before,
that is

dP°(u) = 0, u € [t, T, PO(t) = 1.

We denote by Z;; = (Z;;(u))u>: the process (Z(u)),>¢ conditioned on Z(t) = i.
We assume that in the absence of crashes the stock price P* = (P'(u)),ef:7) has
state-dependent excess return and volatility, i.e.

dP'(u) = a; P (u)du + o; P (u)dW (v), on{Z(u) =3}, wuel[t,T],
where j,0; > 0 for all j € F and where we set P'(t) = 1.

To each state i € E we associate a maximum crash size 3; € [0,1). We assume
that 8y = 0 (i.e. no crash in state 0) and assume the maximum crash sizes to be
ordered:

0=5<p<...<B>0.

Moreover, we set i,,;, = min{i € E : 3; > 0} (i.e.if i < i, then no crashes can
occur in state 7, see also Remark [4.4). We denote the jump times of the Markov
chain Z; ; by (1)) ren and set Ty = t. The crash times are now given by a sequence
(T )ken, of F-stopping times taking values in [T}, 7] U {oo} and we assume that
a crash occurs only if Z; ;(74,—) > 4 and

T <7 < Thga.

The sequence (74)ken, NOW acts as an impulse control strategy for Z; ; and P! as
follows: Whenever 7, < Tj41 and Z; ;(7x—) > 4min the Markov chain Z;; is sent
to the state 0 at time 75, and the asset crashes in the following sense:

Plm) = (1= B)Pum—),  on{Zi(th—) = J = imin}-
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4. Worst-case portfolio optimization in a market with bubbles

We write ¥ = (7x)ren, and denote the corresponding controlled Markov chain
by Zgi. Moreover, we denote by T (t,4) the set of all sequences of crash times as

defined above.

We interpret this market model as follows: Whenever Z}, is in state 0, then the
market is in a safe regime in the sense that no crashes may occur. As soon as
Zgi jumps into a state 0 < j < 4,,;5, a bubble has formed in the market, and as
soon as Zgi jumps into a state [ > 17,,;, this bubble may potentially burst at the
unknown time 7, leading to a crash in the risky asset and bringing the market
back into the crash-free state 0. Since we will allow the investor to observe the
process Z,}?Z- we can interpret the jump times T} (which are not caused by ¥) of
Zgi as the times at which warnings are issued to the investor that a bubble has
formed in the market.

The investor specifies a strategy 7 = (7%,...,7%) = (7%(u),..., 7 (w))uep.)
where 7 denotes the fraction of wealth invested in the stock when the market
is in state i. We assume for now that each 7' is adapted, right-continuous and
bounded. Given a crash scenario ¥ = (7% )ken, € 7T (f,7) and a trading strategy
7 = (7°,..., %), the investor’s wealth process X = X[, = (X" (4) )uee, is

t,x,n t,x,
given by X (f) = x at initial time,
dX (u) = a7 (u) X (u)du + o7 (u) X (w)dW (u), u € [t,T], (4.17)

on {Z7;(u) = j} N {u # 7},

X(r) = {X(Tk—), if Z0)(1—) = § < imin, w.15)

(1 _ Wj(Tk)5j>X<7—k_)a legl<Tk—) :] > Umins

on {1, < Tpi1} N{m < T}and X () = X(mp—) on {7 > Tp1 } N{m < T}
We denote by A(t, z) the set of all trading strategies which lead to a strictly
positive wealth process X;;?i for every ¥ € T (t,1).

The worst-case optimization problem in this model is given by

V(t,z,i):= sup inf E[U (X”;fl.Tﬂ. 4.19
( ) weA(lz:t),:p) 9eT ) p \ Mz, (T) (4.19)

Remark 4.3. The optimization problem (4.19) is to be understood as follows: The
investor commits to a trading strategy m € A(t, x) and only then does the market
decide on the crash strategy © € T (t,i). This prohibits the investor to set her
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risky fraction equal to zero at the moment a crash occurs, i.e. she cannot prevent
being negatively affected by a crash. In particular, switching the supremum and
the infimum in (4.19) leads to a different value. o

Remark 4.4. Note that the case d = 1 corresponds to the situation considered in
the previous sections if the market coefficients o; and o; are independent of the
state 7. One can immediately generalize the situation by considering the case

0=750=... = Bu-, Ba=p5>0,
and the state d is absorbing for Z. Then the time
S=inf{t >0: Z(t) =d}

for Z started in 0 is of phase-type, see Asmussen [6] II1.4]. Since the distributions
of phase-type are dense in all probability distributions on [0, co) (with respect to
convergence in distribution) we can approximate arbitrary waiting-time distri-
butions between a crash and the next warning. o

Remark 4.5. Due to the monotonicity of the utility function U, we can without
loss of generality assume that 7 (¢,7) contains only those crash strategies ¥ =
(71 ) ken, for which

X(Tk) S X(Tk—)

for every k € Ny. o

4.6. The verification theorem

In this section we provide a system of dynamic programming equations for the
generalized model which is inspired by the system of DPEs introduced in Korn
and Steffensen [70], see (110). We then present a verification theorem which
shows that under some technical assumptions any classical solution of the system
of DPEs coincides with the value function. In Section[4.7lwe then solve the system
of DPEs and derive a coupled system of ordinary differential equations for the
optimal strategies.

We fix K > 0 and let Ag(t,z) be the subset of all 7 = (7°,...,7%) € A(t, )
such that each 7' takes values in K := [— K, K]. We assume K to be large enough
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4. Worst-case portfolio optimization in a market with bubbles

such that 7%, = a; /(1 — p)o? < K and K > 1/; for alli € E. We denote by

Vi (t,z,i) == sup inf |E [Up (Xmﬁ (T))}

. t,x,0
rEAK (t,z) VET (£,7)

the value function which is restricted to admissible strategies taking values in K.
This restriction of the set of admissible strategies allows us to prove the following
growth estimate.

Lemma 4.6. Letm € Ag(t,x) and ¥ € T (t,i). Then there exists a constant C' > 0
such that
E| sup X7 (w)| < C(1+|af).

t,x,
u€(t,T]

Proof. Denote by = T (t,i) the no-crash scenario. Then the result for 3 is
classical and follows e.g. from Pham [90, Theorem 1.3.15]. For an arbitrary ¢ €
T (t,1) we note that

E| sup X0 ()] <E| sup X7 ()

t,x,
u€l(t,T] u€(t,T]

since the wealth decreases at the moment of crashes (see Remark [4.5). [

Assume for now that V(-,-,7) € C**([0,T) x (0,00)) for all i € E. For each
(t,xz) € [0,T) x (0,00) we can then define

d
Ki(t,x) = {71’ ek:LTV(t,x, i)+ qu-V(t,x,j) > 0},
=0
Ki(t,x) := {71’ e :V(t,x, i) <V(t,(1— Wﬂi)x,())},

where the operator L7 is given by

™ 1 o 5 507 -
LT == +oyumr—+ -o;m 1" - fori € £.

! ot oxr 2 0x?

In any state ¢ < i,,;, the investor does not have to fear the consequences of a
possible crash so that she is essentially in the same situation as an investor in a
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regime switching model as described in Section It is therefore reasonable
to expect that the value function in this state solves

TeR

d
0= sup{ﬁfV(t, x,1) + Z ¢ ;V(t, as,j)}. (4.20)

=0
On the other hand, if i > 7.,;, the investor does fear a crash and hence (up to
the possibility of switching to a different state) we are in a situation very similar

to Korn and Steffensen [70] and hence we expect that the value function in this
state solves

wek! (t,x)

d
0= min{ sup {LfV(t,x, i)+ Z(]i,jv(ta $7j>}>

j=0
sup {Wt, (1= 78:)x,0) — V(t, . i)} 421)
TEK](t,x)
This idea is formalized in the following verification theorem.

Theorem 4.7. Let V' : [0,T] x (0,00) X E — R and assume that for eachi € E
we have V (-, -,1) € CH2([0,T) x (0,00)) N C([0,T] x (0,00)).

1. Assume that for eachi =0, ..., iy, — 1 the function V (-, -, 1) satisfies (£.20)
with terminal condition V (T, x,i) = U,(x) and for each i = iy, ..., d the
function V (-, -, i) satisfies @21) with terminal condition V (T, z,i) = U,(x).

2. Assume that V' satisfies a quadratic growth condition in x, i.e. there exists a

constant C' > 0 independent of t and i such that
V(t,z,i)] < C(1+]zf).

3. Suppose moreover that for eachi = 0, . .., i, — 1 there exists a measurable
function 7 : [0, T) x (0,00) — K such that

d
7'(t,x) = arg ?Q%{E?V(t’ x,1) + Zqi,jV(t, :p,j)}

J=0

and that for each i = i, ...,d there exists a measurable function 7t :
[0,7) x (0,00) — K such that

d
#'(t,r) = arg max {E?V(t, x, 1) + ZQi,jV(t, x,j)}.

rek! (t,z) =
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4. Worst-case portfolio optimization in a market with bubbles

Writew = (71, ..., 7%) and suppose moreover that for each (t,x,1) € [0, T)x
(0,00) x E and for every ) € T (t,i) the SDE @17)-(&18) admits a solution
X*? = X7V under the trading strategy 7 = (7 (u, X*(u—)))uept,r) with

t,x,

7*(T) = 0. Finally, assume that 7 € Ak(t,x).
4. Given any (t,x,i) € [0,T) x (0,00) X E andm € Ak(t,x) we suppose that
we can iteratively define a crash strategy 0*(m) = (7} )ren, € T (t, 1) through
T 1= 00

on{T, <T}nN {Zﬂ NT) < imin} and

Ty = inf{u € [Tk, Thx1 NT] -
Vi(u, X (u=),5) > V(u, (1 — 7 (u)B;) X (u—), 0)}

on {Tp < T} N{Z)""(T}) = j > iin}-

t,x,1

Then V (t,x,i) = Vk(t,x,i), the strategy 7" is optimal and the corresponding
optimal crash strategy is V*(7*).

Proof. Step 1: Fix (t,z,i) € [0,T) % (0, 00) x E, let  be any [t, T|-valued stopping
time, fix 7 = (7},...,7%) € Ag(t,x) and let ¥ = (73)pen, € T (t,1). Write
X=X xﬁz, Z = 77, and 0), = 0 A\ 7, for short. Then It&’s formula shows that for

each £ € Ny we have

V(Ok, X(01), Z(0k))
= V(01— X(Ort1—), Z(Or+1—))

- zd: /Gk“_ 27V (0, X (w). )

Ok

~—~

.
Il
=)

+ ) gV (u, X (u), l)] 1z (u—)=j) du

=0

d Ok r1— )
-y / | o7 () X () 2V (a1, X (1), 1)1 20y AWV (1)

= Jo. Ox
d d Opt1—

-y / [V(u,X(u)J)
j=0 1=0 7Ok
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4.6. The verification theorem

—V (u, X (), j)] L 2r—gy vi(du, 1), (4.22)

where vy denotes the compensated jump measure of the uncontrolled process Z
started in state O at time 7.

Step 2: Consider the strategy 7* € Agk(t,z) together with an arbitrary 9 €
T (t,i). We write X" = X™_ Since #/ € K/ (u,y) for each (u,y, j) € [t,T) X
(0,00) x E with j > iy, this implies that for any k& € Ny and any j € E with
J > tmin we have on {7, <0} N{Z(7:—) = j}
V(Tk,X*’ﬂ(Tk), Z(m)) = V(Tk, (1-— Wj’*(Tk)ﬁj)X*’ﬁ(Tk—)7 0)
> V(Tk, X*’ﬁ(Tk—), Z(’Tk—))

Using this in (4.22) and then iteratively applying (4.22)) hence shows that for each
N € N we have

N d Orp— ' P
-3 [ e X @ (X @, e ) AV )

k=0 j=0 7 Ok—
N d d g
-3 [ Xt
k=0 j=0 1=0 ¥ 0k-1
- V(U, X*,19<U')7]>:| ]I{Z(uf):j} Vk’(dua l)7 (423)
where we set 7_; := t. Now since for j = 0,..., %, — 1 the function 7/ is a

pointwise maximizer of

d
Sup{ﬁjv(t Z[',j) + Z qj,lv(tv x, l)} Z 0
Tekl =0
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4. Worst-case portfolio optimization in a market with bubbles

and since for j = 4., . . . , d the function 7/ is a pointwise maximizer of

d
wp (Vi) + 0V een) 2o

ek’ (ta) P
we can estimate the first integral in (4£.23) to obtain
V(t,x,1)
<V(On—, X (On—), Z(0n—))

N d

0 — ) 0
Yy / a7 () X () 2V 1, X 0), ) L g3y Y ()
k=0 j=0 v Ok—1
N d d

-3y /9 ef [v(u,x*%),z)

k=0 j=0 1=0
— V(u, X7 (), ) | Lz(uy=jy vie(du, ).
Now send N — oo to obtain
V(t,x,1)
< V(0—,X(0-), Z(6-))

d

o0 0 — ) . o i} .
S [ X w5 X ), ) e ) W (@
k=0 j=0 V01
co d d

Z Z /99k— [V(u, X*7(u),1)

k=0 j=0 =0

- V(U, X*’ﬁ(u)hj) ]l{Z(u—):j} Vk(dua l) (424)

Step 3: Note that for any 7 € Ak (t,x) and ¥ € T (t,7) the last integral in
is a martingale. Indeed, by Brémaud [[16, Excercise I.LE2] we only need to show
that

E

V (u, X (1), 1) — V(u,X(u),j)) du| < +oo.

oo d d /gk_
k=0 j=0 =0 VOk-1
By the growth condition on V' we have for each j,/ € E

> [

k=0 v Ok—1

E

Vi, X (u),0) = V(u, X (). 5) Ry |X(u)|2]>

<2CT <1+E
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4.6. The verification theorem

which is finite by Lemma [4.6]

Let n € N and define 6" to be the minimum of 7" and the first time u after ¢ such

that ]
i
§=0

exceeds n. Now replace 6 by 0" in (4.24) and take expectations to obtain

2

4 dr

o) (T)X*’ﬁ(r)%V(T, X (), ) ize-)=5

V(t,z,i) <E[V(0"— X (0"-), Z(0"-))] . (4.25)

Note that for each n € N we have

E[|V(0"—, X*"(0"—), Z(0"-))|] < C(1+E[ sup yX*ﬂ(u)\ZD < 400

u€lt,T]

by the growth condition on V' and by Lemma Hence we can send n — 00
in (4.25) and use dominated convergence to obtain

V(t,x,i) <E[V(T—, X" (T-),Z(T-))].

Since V is continuous, satisfies V (7', z, -) = U,(z) and since 7*(7") = 0 it follows
that
V(t,z,i) <E[U, (X*"(T))].

Since ¥} was chosen arbitrarily this implies that

N < *,0 < " .
V(t,z,i) < 19617r'1(ft,i)E (U, (X*U(T))] < Vk(t, x,i) (4.26)

Step 4: Consider an arbitrary m € Ak (t, z) together with the associated crash
strategy 0* () € T (t,i). Write X = X™""(™ and 0} = 6 A 7;. Now for each
k € Ngand each j =0,..., %, — 1 we have

J

d
L7V (u, X (), ) + Y @iV (, X (), 1) | L z0-)=5) < 0 (4.27)
1=0
for all u € [t,T). Moreover, for each k € Ny and each j = 4., . ..,d we have
for each u € [1}, 7}, ;) on {73, < T} N{Z(u—) = j}

V(u, X (u=), Z(u=)) < V(u, (1 — 7/ (u)B;) X (u—),0) (4.28)
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4. Worst-case portfolio optimization in a market with bubbles

by the construction of ¥*(7). We must now distinguish two situations: Either we
are in case (a) in which

27V (X (), ) + S gV . X ]tz <0
=0

or we are in case (b) in which
, d
L7V (u, X (), ) + 3 @iV (0, X (), 0] 1z 2 0,
1=0

The latter case implies in particular that 7/ (u) € K’(u, X (u—)) and hence
shows that

sup | V(w, (1= 7B;) X (u=),0) = V(w, X(u=), )] > 0.
e (u, X (u—))

Since V solves the system of DPEs and since j > %,,,, we therefore have

d
sup [C;V(u, X(u),j)+ Z g1V (u, X (u), l)] =0.
WEIC;-’(u,X(u—)) =0
But since by (@.28) we see that 7/ (u) € K (u, X (u—)) we conclude that
v d
[ﬁ; (")V(u, X(u),7)+ Z g1V (u, X (u), l)] Lizu—=jy =0
1=0
in case (b). Combining case (a) and case (b) hence implies that

‘ d
[ﬁjj (u)v(u’ X(“)? j) + Z Qj7lv(u7 X(U), l)} ]l{Z(U*):J'} <0
=0

on {7;,, < T}. Using this with @27) in hence shows that

V(6 X (6,), Z2(6))
> V(01— X(Op17), Z(0117))

-3 [ X )V X 0. A )
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4.6. The verification theorem

d d 01—
-2 / V(0 X (), 1) = V (1, X (), )] Tz vildens 1), (4.29)
- o*
for each k € Ny. Moreover, by the construction of ¥*(7) and the right-continuity
of ™ we have for every k € Ny on {7} <0} N {Z(7—) > imin}:

V(r, X(70), Z(70) = V (7, (1= 77 (7)) ;) X (7 =), 0)
S V(TI:>X(TI:;_)7 Z(Tl:j_))‘

Using this in (4.29) and then inductively applying (4.29) hence shows that

V(t,x,1)
> V(0—,X(6-),Z(6-))

= V(X (1), )] Tz oy veldu, ). (430)

Step 5: Define a sequence of stopping times (0"),,cy as in step 3, but with (7*, 1)
replaced by (7, 9*(7)). Taking expectations in (£30) hence shows that

V(t,z,i) > E[V(0"—, X(0"—), Z(6"—))]. (4.31)
Sending n — oo we conclude by dominated convergence that
V(t,z,i) >E[V(T—, X(T-),Z(T-))].
By the definition of J* () it follows moreover that

EV(T— X(T-),Z(T-))] 2 E[V(T,X(T), Z(T))]
=E[U, (X(T))] (4.32)
> Jnf E (U, (X™(T))]
and since 7™ was chosen arbitrarily this implies

V(tv Z, l) > VK(t7 Z, Z)
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4. Worst-case portfolio optimization in a market with bubbles

Hence V' (t,z,i) = Vk(t,x,i) by (4.26). Replacing V' by Vi on the right-hand
side of hence shows that

. . *,0
Vi (t,x,1) < 7961%1(fm)1f31 (U, (X=(T))]
which proves the optimality of 7*. The optimality of ¥*(7*) follows similarly
by using V(¢,z,i) = Vk(t,z,i) and the optimality of 7* together with
and (4.32). ]

Theorem [4.7]is tailor-made for the case p € (0, 1). For p < 0 the corresponding
V' does not satisfy the quadratic growth condition used in steps 3 and 5 of the
proof. We will return to this problem in Section after solving the system of
DPEs since it is easier to verify optimality if we have a specific candidate at hand.

Remark 4.8. The verification theorem can be extended to the case in which the
strategies m € A(t,x) are merely assumed to be predictable instead of right-
continuous. In the proof of Theorem (.7 the right-continuity of 7 is only needed
to ensure that

Vi, X (7),0) < V(7 X (=), 4) (4.33)
on {Tp < T} N{Z""(Ty) = j > ipin} for all k € Ny. If 7 is only assumed

t,x,0

to be predictable then clearly (4.33) need not hold. Nevertheless, it is possible to
show that by the predictable section theorem (Rogers and Williams [93, Theorem
V1.19.1]) we can find stopping times 7}, | € N, such that

1
T < T,i <7+ 7 and V(T,i,X(T,i),O) < V(T,i,X(T,i—),j) on {T]i < oo}

and P[7} = oco] < 27*. Moreover, note that
P[T,i > Tk+1|7-]:f < Tk+1] <l—e" maxj{)\j}/l.

Similarly to the reasoning in Step 5 of the proof of Theorem one can then
show that

V(t,z,i) —E[V(T—, X(T-),Z(T-))]

o0

> —E[Z

k=0

V (i, X (=), Z(7-))

- V<Tllc7 X<Tli)7 Z(Tllc)> ]l{T,lc:oo}U{T]lcsz+1} .
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4.7. Derivation of the optimal strategies

By the growth condition on V/, the boundedness of 7 and Lemma one can
further argue that there exists a constant L > 0 such that

k=0

V(. X (1), Z(r}—))

—V(r, X(7}), Z(11)) Lo —oyuri>Ti)
< L(1— e ™t |
Since [ is arbitrary it follows that
V(t,z,i) > E[V(T—, X(T-),Z(T-))]

from where one can conclude as before. o

4.7. Derivation of the optimal strategies

Let us now apply Theorem[4.7] to find the value function and determine the opti-
mal strategies. We start with the power utility case p < 1, p # 0.

4.7.1. Solution of the system of DPEs for power utility

We expect that V' takes the form
N .
V(t,x, i) = —aP fi(t), 1€ B (4.34)
p

Moreover, we assume that f; is strictly positive on [0, 7] for every i € E. Note
that we must have f;(T) = 1 for all i € E. Our first aim is to solve

d
0= sup{ﬁ?V(t, x,1) + Z q,;V(t, a:,j)}

Te =0
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4. Worst-case portfolio optimization in a market with bubbles

for i < 4,y in order to find V (¢, z,4) and 7**. Using (@.34) this equation simpli-
fies to

O_Sup[patﬁ() (aﬂr—%(l p)a7r> Zq”f] ]

TeX

Formally optimizing with respect to 7 gives the candidate optimal strategy

m(E) = ey = Ty
(1 —p)o;

which is indeed the maximum if f;(¢) > 0 for all ¢ € [0, 7. Plugging the can-
didate optimal strategy 7“* back into the DPE yields the following ODE for f;:

9 1
Efl(t) - —517(1 2f’ unfj (4.35)

Let us now consider the case i > i,,;, such that 5; > 0. We have to solve

d
0= min{ sup {ﬁ?V(t,Qﬁ, i)+ ZQi,jv<t7xaj)}?

Tely (t,x) j=0

sup {V(t, (1—7B)z,0) — V(t,z, z)}}

wel(t,x)
With the first equation reduces to
10 1
0< sup {——fit—l— Ozﬂr——l—paﬂ qijfi(t }
o) (im = 5L =plo?r) £it) Z i,
where . |

Similarly, the second equation reduces to

0< sup {%(1 — RB)folt) }jfi(t)} (436)

ek (t)

where
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4.7. Derivation of the optimal strategies

K(t) = {w ek 29w+ (am g p)a§ﬂ2>fi(t)

p Ot 2
L
+ _ZQi,jfj<t) > 0}-
pj:O

Let us first consider (4.36). Since fj is assumed to be strictly positive and since
(1 —7p;)?/p is a decreasing function of 7, the supremum in (£.36)) is attained for
the smallest value of 7 which satisfies the constraint in KC.(%), i.e.

10

1 1
a0 (i = 5L =plo?r) fi(t) + ; ; 6 fiH) = 0. (437)

Note that this equation is a quadratic and concave function of 7 tending to —oo
as || — oo. We must therefore have that the supremum in (£.36) is attained for
the smallest value of ™ which satisfies the constraint (4.37) with equality. If the
right-hand side of (436) is equal to zero we therefore have that 7* and f; are
determined by

filt) = (L =7 ()3)" fo(t).

2 00) = —p(aum* () = 50 = p)otln'* () i) - >t

If the supremum in (4.36)) is strictly positive then the complementarity of the two
equations in the DPE shows that

d
0= sup {%%ﬁ(ﬂ + (Oéﬂ'(' — %(1 — p)a?n2> fz(t> -+ ]1) ;quj(t)} (4.38)

TeKY (t)

Formally optimizing with respect to 7 in this equation yields
Q;

T (t) = —(1 e =

If 7%, € K(t) then it is indeed a maximizer of (#&38). Otherwise we have

%(1 — T Bi)P folt) < %f’t(t)
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4. Worst-case portfolio optimization in a market with bubbles

Since the left-hand side of this equation is decreasing as a function of 7 and since

oy — (1 — p)o?n? is an increasing function of 7 on (—o0, 7},) it follows that

if 7%, ¢ K/(t) then the supremum in (@38) is attained for 7*(¢) < 7%, which
satisfies

1 iyk \p — 1 )
];(1 =7 ()8 folt) = pfz<t>'

We have therefore argued that [0, T") can be decomposed into the set Z; on which
7* and f; are determined by

filt) = (1 =7 () B:)" fo(t),

9 1ut) = —p(oim* (1) — (1~ p)o?l () (1) - Dbt 43

and the set \V; on which 7"* and f; are determined by
T (t) = Ty

o5t = =p (e (1) — 51~ Pl (OF) £te) - > aafi()

Moreover, note that on Z; we have 7* < 7, and by solving

fit) = (L =7 () 8:)" fo(t)

for m%* we can rewrite the differential equation for f; as

0 . Y . fi(t) e :
1 o} fi(t) ) ® :
+Hor =g (1_ kol ) i) = 2 asbi(®)

The two differential equations for f; on Z; and V; can hence by combined to

L2PUP B B U 10N R W
i 1) = e {ﬁi (1 bl ) M}m)

| I A O AN
+§p(1—P)aZ- lmm{ﬂi (1 {fo(t)l )77TM}] fi(t)
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4.7. Derivation of the optimal strategies

d
= ai;fi(t). (4.40)
=0

We are left with showing that we can solve the system of differential equations
for (fi)ice and that f;(t) > 0 for all (¢,7) € [0,7] x E. It then follows that V/
is indeed a solution of the system of DPEs and that 7** is the candidate optimal
strategy.

Lemma 4.9. The system of ODEs given by (4.35) fort = 0,... %y, — 1 and
by @4Q) for i = imin,...,d with terminal condition f;(T) = 1 for alli € E
possesses a unique solution on [0, T]. Moreover, this solution is strictly positive.

Proof. Note that (4.35)) is globally Lipschitz continuous and (4.40) is locally Lip-
schitz continuous in f;. Hence, by the Picard-Lindelof theorem there exists a
unique local solution of the system of differential equations. In order to show
that there exists a strictly positive solution on [0, 7' it hence suffices to show that
each f; is strictly positive on [0, 7] and f; does not explode on [0,7]. We only
consider the case p € (0, 1), the case p < 0 can be handled similarly.

Let therefore p € (0, 1). Define

1
9:(y) = auy — 5(1 —p)ory?

and note that g; attains its maximum at 7%,. We let

rz;gExg,(ﬂM) >0 an A max Ai

Now for any i € F and any ¢ € [0, 7] with f;(f) > 0 we have
0
aﬁ(t) - _pgz( Z%jf]

> _pri( %zfz Z(b]f]
J?él

> —pM fi(t) — max{f] }qu

J#Z
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4. Worst-case portfolio optimization in a market with bubbles

~[pM + X max{ (1))

Hence Gronwall’s inequality shows that

RO < K+ [ GM + X maed £} du

for every 7 € E and therefore

w0} < 1+ [ 0M + 2 max{ (0} du

Applying Gronwall’s inequality again hence shows that

max{f;(1)} < (P,
JEE

Foreachi =0,...,%,,, — 1 we furthermore have

aslong as f;(t) > Oforall j € E.

Let us now assume that there exists ¢, € [0,7") such that

lim fy(t) =

tlto

(4.41)

(4.42)

for some k € E and that f;(t) > O forallt € (fp,7] and all j € E (Note that
to < T is clear from the terminal condition on f;). It follows from (4.41]) and (4.42)

that
() < e®PMINT=) for all (t, ) € [to, T] X E,
i)

This implies in particular that k& > 4,,;,. Moreover, we have

v

-
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4.7. Derivation of the optimal strategies

and hence

1 temeena-n) o L[ [fk(t)]l/p 1
5 )<3 (1 Aol ) S

I = l <1 _ 6%(pM+25\)T> '
B

Since *(t) < 7%, and since g, is increasing on (—oo, 7%,) it follows that

gi(L) < gr(7™*(1)), t € [to, T).

Define

Therefore

d
O I = ~pa e OV ~ D a0

< [-pmin{ge(L),0} + Al fu(t) (4.43)

for every t € [to, T'| which shows that

filt) > e(—pmin{gi(L).0}+A)(T~t) t e [to, T1,
in contradiction to
li =0.
lim /() = 0
Combining this with hence shows that f; > 0 on [0,7] and f; is non-
exploding for each 7 € F. [l

The next step is to check if the candidate optimal strategy 7* = (7%*,... 7%*)
is admissible. For every ¢ € F with ¢ > i,,,, we can write

(1) = min{my,, 7 "(8)},

where 74" is given by

fit) = (L —=a"™()8,) fo(t). (4.44)

Taking the logarithm and then the derivative with respect to ¢t we arrive at the
following differential equation for 7"

o . : 0 R
_ﬂ_z,lnd(t> — i(l — Wl’lnd(t)ﬂi) ;_fO(t) - fj(t) a

ot 5 plo(t) 1 58]
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4. Worst-case portfolio optimization in a market with bubbles

(T = 0.

Using the ODE for f; in (4.35), the ODE for f; in Z; given by (4.39) and using
shows that

9 i 1 i,in 1 i,in i \2
) = (L= TR [~ B = (1= po? (40) — i)
d
1 fi(t) ind () 3.\~
+ =3 g, 280 (1 — i (1) g
d
1 fi () 1 ind
=Y w0 — e (L= B
p 2 g ey O
J#i
where for each ¢ € E/ we denote by
\Ijizla—?
2(1—p)o?

the utility growth potential in regime i. We now show that the strategy 7" is
admissible for each : € F with ¢ > i,,;, and hence so is 7*.

Lemma 4.10. There exists a unique solution of the differential equation

Sy=F(ty),  yT) =0 (ty)€[0,T]x (~00,1/8),

Proof. Since F'(t,y) is continuous in ¢ and globally Lipschitz continuous in y
on any closed subinterval of (—oo,1/f;) it suffices to show that we can find
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4.7. Derivation of the optimal strategies

constants —oo < a < b < 1/[; such that the solution of the differential equation
stays inside the interval [a,b]. We only consider the case p € (0, 1), the case
p < 0 can be proved similarly.

Step 1: We prove the existence of a constant a such that F'(¢,y) < 0 whenever
y < a. For this, note that the sign of /" only depends on the term

1 .
Ui — Wy — 5(1—-p)o o? (y — miy)”
d

1 .Afj(t _ Q) 1 — 3P
+pzquo(t ﬁz Z 0]f t p(l y/Bz) .
3791

=0

Furthermore, note that by the proof of Lemma[9]there exist constants M, M > (
independent of ¢ € [0, 7] and j € E such that

< i) 57
T fo(t) =M.
Then
Wiy~ (1= p)o? (v~ )
1< fi(t 1< St 1 )
+5jzo%,jf0—§t;( —yB)" —Zq Jfogt; ,z;(l_yﬁi)
J?éz

1 ,
<V — W — 5(1 —p)o? (y—74)°
1 d
+ = Ao+ ZQi,jM(l —yB)" |,
p pars
i
which is less or equal to 0 if and only if
1 i \2
<)‘0+Z%] 1_yﬁz) >§\I]0_\I}i+§(1_p)o—i2(y_7rM) :

J#i

Since (1 — yB3;)? — 0 and (y — 7};)? — 400 as y — —oo we see that there
exists a constant a such that F'(¢,y) < 0 whenever y < a.
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4. Worst-case portfolio optimization in a market with bubbles

Step 2: Next we show that there exists a constant b < 1/; independent of ¢ such
that F'(¢,y) > 0 whenever y > b. We have

1 .
U, — ¥y — (1 —p)af (?/ - 7r§\4)2

2
d d
1 fi(t) 51 fi(t) 1
t—) 4 L=yB)™" == > 75— i—(1—yB)"
p; ]f()(t)( ) p];o Ojf()(t) 0 p(
JFi
1< 1 1
> - ZQZJM(l - yﬂz)ip - _)‘i - - ZQOJM - QOz_(l - yﬁz)p
P r o5
j#i JF
1
+‘I’z—‘1’0—§(1 = )i (y— ),
which is greater or equal than 0 if and only if
d d
1 1 1 — 1
- ZQi,jM(l —yBi) P — A~ - Z QoM — qoi—(1 —yBi)"
P R p
j#i J7i

> Wo— Wit (1 p)o? (y— i)

Now as (1 —y/3;)? approaches +oo and (1 —y3;)? approaches 0 as y — 1/[3; and
since (y — m;)? is bounded in y on [0, 1/3;] we see that there exists a constant
b < 1/p; such that F'(t,y) > 0 whenever y > b. ]

Remark 4.11. Assume that d = 1 and that the excess return and the volatil-
ity of the stock are state-independent. Then the differential equation for 7114
simplifies to

8 in 1 in 1 in * 2

oo () = (1= 7"(E)B) | =5 (1 = p)ai () — 7 (2))

ot b1 2

)\0 1,ind P _
- ? ((1 — 7" (t) ) 1) 3

which is exactly the candidate optimal strategy derived in the simplified model

in @I6). o

It follows that 7* is an admissible strategy which leads to a strictly positive wealth
process in every crash scenario. Moreover, the function V' (¢, x, i) obviously sat-
isfies a quadratic growth condition in x uniformly in (¢,7) as long as p € (0, 1).
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Finally, given any trading strategy m = (7°,...,7%) € Ag(t, ) the correspond-

ing optimal crash time ¢*(7) is obviously well-defined since it is just the first
time at which 7 exceeds 7%, It follows that V = Vy and that 7* is optimal.
Moreover, since the optimal strategy 7* attains its values in the interior of K it
is immediately clear that 7* is also optimal in the class of all bounded trading
strategies A(¢, z) and hence V = V.

Remark 4.12. It is furthermore possible to show that 7* is optimal in the class
of all strategies which are not necessarily bounded but satisfy a growth condition
of the form .

supE [/ |7ri(u)|2du} < 00.

i€E ¢
The idea is to argue by contradiction and assume that there exists a m which
performs better than 7*. Then 7 must be unbounded by our previous discussion,
but we can approximate 7 by bounded strategies 7, simply by cutting off 7 at n
and —n. Using that 7* outperforms every 7, and that 7, converges to 7 one can
then lead the optimality of 7 to a contradiction.

We postpone the verification for p < 0 to Section and solve the system of
DPEs in the logarithmic utility case first.

4.7.2. Solution of the system of DPEs for logarithmic utility

Let us now turn to the case p = 0. We guess that the value function takes the
form
V(t,x,1) = log(x) + fi(t), tel (4.45)

for some functions f; with f;(T') = 0. We can then proceed as in the power
utility case to show that the candidate optimal strategy for ¢ < 4,,;, is given by

and that f; solves
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4. Worst-case portfolio optimization in a market with bubbles

For i > 4., the interval [0, T] decomposes into a set Z; on which 7* and f; are
determined by

fi(t) = log(1 = 7" (£)8:) + fo(1),
1 2
o7 fi(t) =~ (t) + 50 unf]

and a set \V; on which 7* and f; are determined by
L (t) = W?V[?

0 1
o filh) = —air"* (1) + 5 o? unf]

The existence of (f;);cg can be proved in a very similar fashion to Lemma
The candidate optimal strategy is given by

7 = min{r},, Wi’ind(t)},

where 7% golves
a 7,in 1 zm 1 7,in i \2
%" W) = E(l Wt)B:) | Ui — Wo — 503 (w0 4(t) — )

+ Z(Qi,j — qo4)[;(t)

=0
JFi

+ (G5 — qoyi) [fo(t) +log(1 — Wi’ind(t)ﬂi)}

with terminal condition 7"4(T") = (. The admissibility of 7* and 71! follows
by very similar arguments as in Lemma [4.10]

4.7.3. Verification for logarithmic and negative power utility

Let us now verify that the solutions of the system of DPEs constructed in Sec-
tion and Section are indeed the value functions. For p € (0, 1) this is
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4.7. Derivation of the optimal strategies

clear by Theorem For p < 0 the function V' does not satisfy the quadratic
growth condition which was used in step 3 and step 5 of the proof of Theorem[4.71
However, the explicit nature of our solutions allows us to verify these two steps
also for p < 0.

Theorem 4.13. Let p = 0 and let V' be the solution of the system of DPEs given
in (@.45). ThenV = Vg = V.

Proof. Let 1 € A(t,z) and 9 € T(t,i) be arbitrary. We show that the two
stochastic integrals in (4.22)) are martingales and hence we can choose § = 7" and
conclude as before. Note that

0 .
x%V(t,x,z) =1

for every ¢ € E and hence the integrand of the Brownian integral is bounded
(uniformly in ¢ and 7) so that the integral is indeed a martingale. Moreover, for
each i, 7 € E we have

|V (t,2,0) =V (t, 2, 4)| = [fi(t) = f;(0)]

which is again bounded (uniformly in ¢, ¢ and j) and hence the integral with
respect to the compensated jump measure is a martingale as well. O

For p < 0 we need to rule out some admissible trading strategies first. Note
that since the pure bond strategy m = 0 is admissible we may without loss of
generality assume that every m € Ak (¢, x) satisfies

Ufz) < inf E [Up (XW (T))] (4.46)

~ 9ET(40) bt
Theorem 4.14. Let p < 0 and let V' be the solution of the system of DPEs given
in (@34). ThenV = Vg = V.

Proof. We simply prove step 3 and step 5 of the proof of Theorem [4.7] without
relying on the quadratic growth condition.

Step 3: Recall that by for 7* and any arbitrary ¥ € T (t,4) we have

V(t,x,1)
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4. Worst-case portfolio optimization in a market with bubbles

< V(0—,X(0-), Z(6-))

O — ‘ )
S [ o )X ) SV (X (), ) iy AW (1)
k=0 j=0 7 Ok—1
co d d

DN /: [V, X2,

k=0 j=0 =0

— V(u, X*’ﬁ(u),j) Lzwo)=5 vi(du,l).  (4.47)
for any [t, T|-valued stopping time 6. We have to show that
V(t,z,i) < Vi(t,z,i).

Using that V(0—, X*?(0—),Z(0—)) < 0 in shows that the sum of the
stochastic integrals is a local martingale bounded from above by —V'(t, z,7) and
hence a submartingale. Choosing # = T in (4.47) and taking expectations hence
shows that

V(t,z,i) <E[V(T—,X""(T-), Z(T-))] .

Since V is continuous, satisfies V (7T’, z, -) = U,(z) and since 7*(7") = 0 it follows
that
V(t,z,i) <E[U, (X*"(T))].

Since v} was chosen arbitrarily this implies that

V(t,z,i) < ﬂei%ft’i)E (U, (X*(T))] < Vi(t,z,i).

Step 5: Let m € Ag(t,x) and let 9*(7) be the corresponding candidate optimal
crash strategy. Recall that by (4.30) we have

—V(u, X (u), j)] 12—y vi(du, ). (4.48)
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4.7. Derivation of the optimal strategies

for any [t, T|-valued stopping time 6. We have to show that

V(t,x,i) > Vi(t,x,i).

For every n € N we define
0" :=inf {u >t: |V(u, X(u), Z(u))| >n} AT.
Note that since

0 _ .
I%V(t x, Z) - pv<t7 x, Z)

this implies that the stochastic integrals in stopped at " are martingales
and hence replacing 6 by 6" in and taking expectations shows that

If we can show that

lim E[V(6"—, X(0"—),Z(0"-)]| =E[V(T—, X(T-),Z(T-))] (4.49)

n—0o0

then we can conclude as in the proof of Theorem 471

First, let us note that
E[V(0"—, X (0"), Z(0"=))Lignery] =E [V(T—, X(T—), Z(T—))L{gn=r}]
and hence

lim E [V(6"—, X(0"—), Z(0"—)L(grery] = E[V(T—, X(T—), Z(T—))|

n—oo

by monotone convergence. In order to prove (4.49) it is therefore sufficient to
prove that
lim E [V(0"—, X (6"—), Z(6"—))1gncry] = 0.

n—o0
Let us note that by Lemma &9 there exist constants M, M > 0 such that
MU,(z) < V(t,x,i) < MU,(z). (4.50)

Next, it is clear that there exists a constant L > 0 such that

Uy(xz) < Vk(t,z,i) < LU(x). (4.51)
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4. Worst-case portfolio optimization in a market with bubbles

Indeed, the first inequality follows from and the second inequality follows
from considering the no-crash strategy in Vi (¢, x, i) and hence Vi < Vg where
Vrs denotes the value function in the regime switching model without crashes,
see (I.4). Combining (4.50) and (4.51), we can therefore find a constant C' > 0
independent of = such that

V(t,z,i) > CVk(t, x,i).

Using this we obtain

v

lim CE

n—o0

n—oo
0" =), Z(60" =)L gn<}]
lim CE
19€T(t 7

> lim CE |V [
7,0

v

0> lim E[V (6" X(O"—),Z(9"—))]1{0”<T}}
inf E Xfmﬁl(T)ﬂ 1{9”<T}}

> lim CE |U,

T n—oo

= 0. U

]1{9"<Tﬂ

4.8. Numerical results

We conclude this chapter with numerical examples. We consider three cases:
logarithmic utility in the simple model, power utility in the generalized model
and phase-type distributed arrival times of warnings.

4.8.1. Logarithmic utility in the simplified model

Let us first consider the simplified model discussed in the beginning of this chap-
ter for an investor with a logarithmic utility function. We consider the following
parameters throughout this section:

a = 0.096, o= 0.4, B =0.5.
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Figure 4.1. Short-term optimal strategies for different A.

With these parameters the optimal strategy in the absence of crash warnings is
given by

0,%

7" = my = 0.6.

For the investment horizon we let 7" € {25,100} and choose the intensity of the
arrival time of crash warnings tobe A\ € {1/7,2/T, 3/T} such that we receive on
average one, two or respectively three warnings during the investment period.

Figure [4.1l shows that the optimal strategy 7T>1\’* in the presence of crash warnings
with intensity A exhibits similar qualitative features as the worst-case optimal
strategy 7y, () in the Korn/Wilmott model with at most n € {1,2, 3} crashes.
Recall that the Korn/Wilmott optimal strategy can be formally obtained as the
limiting case of our model as A — 0 and is given as the solution of (1.7). As can
be seen, the optimal strategy in our model is decreasing in time, strictly positive
for all ¢ < T and equal to zero if and only if £ = T'. It can also be seen that

1

7Tn’/*T is more conservative in the long run than the corresponding Korn/Wilmott

strategy 7y (). This is due to the possibility of more than n crashes in our
model. Clearly, the short term behavior of the Korn/Wilmott strategies changes
significantly the higher the maximum number of potential crashes is, while the
long term behavior is the same for any n, that is all Korn/Wilmott strategies
converge to the optimal Merton fraction 7%* = 7, as T' — t tends to infinity
(see Figure 4.2). Note that in Figure 4.2 the intensity A has been adjusted to have
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Figure 4.2. Long-term optimal strategies for different A.

1, 2 and 3 expected crash warnings within an investment horizon of 100 years
(instead of 25 years in Figure [4£1). Figure [4.2] shows that more potential crashes
impact the Korn/Wilmott strategies only in the short term (which can be rather
long...) but not in the long term, while more potential crashes impact 7T/1\’* not so
much in the short term, but more so in the long term. Randomizing the number
of potential crashes has therefore mainly a long term impact while the short term
impact is minor if compared to the Korn/Wilmott strategy:.

It can be seen that in the long run ﬂ}\’* is strictly smaller than the corresponding
Korn/Wilmott strategy and does not converge to 7%* for A > 0 as the investment
horizon tends to infinity (Figure [4.2). Mathematically, this can be seen by taking
a closer look at the differential equation for 7'* in (£.8). At terminal time 7" we
have

0 a?
(T = — <0
o ®) 2302
=T
which implies that 71* is increasing with increasing investment horizon until
1
0= 502 (1) — W*’O(t))z + Alog (1 —7"*(t)8) . (4.52)

Since
1

50" (T (1) = 0(1))°
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1,

is positive and decreasing in 7* on [0, 7*°), equal to zero if 71* = 7*° and since

Aog (1 —7*(t)p)

is negative and increasing in 7* on (0, 7*°] we see that 7!* is bounded away
from 7%*. This verifies what can be observed in Figure i.e. the long term
behavior of the optimal strategies is different from the long term behavior of the
optimal Korn/Wilmott strategies.

Clearly, for a fixed initial wealth x an investor in our market model obtains less
expected utility at terminal time compared to an investor in the classical Merton
model if no crash occurs. In order to estimate this trade-off we determine the
efficiency 7 which is the fraction of the initial wealth x a worst-case investor
requires at time ¢ to obtain the same expected utility as the Merton investor.
More formally, for each ¢ € [0, 7] we want to determine 7, (¢) such that

V(t, ma(t)x, 1) = Va(t, x), (4.53)

where V), denotes the Merton value function given by (L.3). Plugging the op-
timal strategy 7, and the no-crash scenario into V(t,7(t)z, 1) in @&53) and
rearranging terms (following e.g. Menkens [79, p. 601]) yields

T
1

na(t) = exp 502/ [Wi*(u) — ﬂo’*]2 du

t

Note that in the Korn/Wilmott model with n crashes the efficiency 7%y, of the
worst-case optimal strategy 77y is given by the same formula if we replace 7r/1\’*

T,%*
by T -

In Figure [4.3] we see the efficiency for an investment horizon of 7" = 25 years,
whereas in Figure [4.4 we consider an investment horizon of 7" = 100 years.
Clearly, the efficiency is bounded from below by 1 and is decreasing in ¢. If the
investment horizon is 25 years the Korn/Wilmott investor with at most 1 crash
requires about 25.32% of additional initial wealth if she wants to get the same
terminal expected utility as a Merton investor who ignores the possibility of a
crash. Therefore, we call this 25.32% the cost of worst-case scenario optimal
investment (see Menkens [79]). The costs in the case of at most 2 and 3 crashes
in the Korn/Wilmott setting are given by 47.67% and 66.14%, respectively. The
corresponding costs for the investor in our market model are 32.98% (for A =
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4.8. Numerical results

1/T), 39.65% (for A = 2/T) and 45.29% (for A = 3/T)) on an investment horizon

of T' = 25 years in order to obtain the same expected utility as a Merton investor.

Figure [4.4] shows the corresponding plot for an investment horizon of 7" = 100
years. The costs for an investment horizon of 100 are 36.02%, 79.96% and
132.44% for the Korn/Wilmott investor with at most 1, 2 and 3 crashes, respec-
tively, and 56.78% (for A = 1/T), 78.53% (for A\ = 2/T), and 100.08% (for
A = 3/T) in our model.

Note that the costs of a Korn/Wilmott investor with n crashes have an upper
bound since

n

1 1

Ngew () = — — o forT'—t — oo.
- Hl—ﬂkw(t)ﬁ (1 —a%5)

This is because 7T§’<*W(ﬂ — 7% as T —t — oo (cf. Figure €.2). The asymptotic
behavior (that is for 7'—¢ — 00) of the costs for the crash hedging strategy 7T/1\’* (t)
with A > 0 is different: It is exponential in the investment horizon since 7, (t) is
bounded away from 7%* uniformly in ¢. Note that this exponential growth takes
a long time to become visible and is not to be mistaken by linear growth (see
Figure [4.4).

4.8.2. Power utility in the generalized model

Let us now take a closer look at the generalized model. We assume that
g =...=qaqg=0oa=0.096 and op=...=0g=0 =04,

and let 7' = 25 and A = 1/T. We furthermore choose d = 5, p = 0.1 and let the
generator matrix of Z and the crash sizes 3; be given by

A A 0

0 0
0O =X X 0 0 0 b 0.1
0 0 =X X 0 0 Pa 0.3
Q=10 0 0 -x A 0] bs | = 8‘;’
0 0 0 0 =X A\ ba 09
0O 0 0 0 0 0 B '
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Figure 4.5. Optimal strategies in the generalized model.

So, in particular, the process Z can only jump from state 7 to state ¢ + 1 and the
last state is absorbing.

The numerical approximations of the optimal strategies can be found in Fig-
ure As can be seen the optimal strategies are decreasing for an increasing
maximum crash size but still display similar qualitative features as the optimal
strategy obtained in the simplified model. Note however that the optimal strategy
in state 1 is equal to the Merton fraction 7%, for small ¢ (approximately ¢ < 2.75),
i.e. for small ¢t we are inside the set V. In contrast to the simplified model and
the models considered in Korn and Menkens [[67] and Seifried [95] this is a new
feature. As Korn and Menkens [67] show, the optimal strategy in the presence
of crashes is always smaller than the Merton fraction and only if one considers
changing market coefficients after a crash it may be optimal for the investor to
follow the Merton strategy despite the presence of a crash threat. In our model
this phenomenon can already occur without considering state-dependent market
coefficients. However this can only be observed in the generalized model with
d>1.

In the example considered in Figure the market jumps from regimes with
lower crash sizes to higher crash sizes from 0.1 to 0.9. Let us now consider the
opposite direction, i.e. the market jumps from the safe state 0 to the state with
crash size 0.9, from there to the state with crash size 0.7 and so on. This can be
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Risky fraction 7

Time t

Figure 4.6. Optimal strategies in the generalized model with decreasing maximum crash
sizes.

modeled by considering the generator matrix

~A 0 0 0 0 A
00 0 0 0 0
o x=x 0 0o o0
=10 0 x -x 0 o]
000 0 XA —X 0
00 0 0 XA —\

and keeping the remaining parameters as before.

The resulting optimal strategies can be found in Figure First, notice that
by looking time ¢ = 0 the investor is strikingly more conservative since after
a crash has occurred the next warning brings the market right back into the
most dangerous state 5 with a maximum crash size of 0.9. Also, note that in
states 1 and 2 the optimal strategies present a previously unobserved pattern -
the strategies are no longer monotone in ¢ but increasing for small values of ¢
and decreasing for larger values of ¢. The rationale behind this observation is as
follows: If a crash occurs at time ¢ << 7" then the probability of another warning
coming in before terminal time 7" is quite high (as compared to a crash close to
T'). Hence it is quite likely that the market ends up in the dangerous state 5 again.
In order to avoid big losses the investor hence chooses a small risky fraction. On
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the other hand if ¢ gets closer to 7" and a crash occurs then the probability of
jumping back into state 5 becomes smaller and smaller and hence the investor
has to be less and less concerned with this threat as ¢ approaches 7'. In states 1
and 2 this leads to an increase in the optimal strategy. However as ¢ gets even
closer to 7' the losses due to an immediate crash begin to dominate the threat
of jumping back into state 5 and hence the strategies start to decrease again and
converge to 0 as ¢ — 7. This also explains why in states 3 to 5 the strategies
are monotone — because the threat of losing utility due to an immediate crash is
bigger than the threat of jumping back into state 5 after this crash.

Observe that the optimal strategy in the case ¢ = 1 in Figure verifies the
findings for the simple model: A fixed number of possible crashes has just a
short term (meaning close to the investment horizon) impact while a random
(unknown) number of crashes has an additional long term impact. With Fig-
ure[4.6 we can make this more precise. In the short term the imminent threat of a
crash is dominating and the investor can almost ignore the long term threat of the
unknown number of possible crashes (by investing more in the risky asset in the
short term than one would in the long term). On the other hand, the unknown
number of potential crashes has only a long term impact. This becomes clear by
comparing the optimal strategy in state = 1 with the corresponding optimal
Korn/Menkens strategy W}JW with exactly one crash (given by with 8 = (3):
While the behavior close to maturity of the two strategies is very similar, the
long-term difference between the two strategies is significant.

We investigate the feature of non-monotone optimal strategies again from a dif-
ferent point of view in the next example where we replace the exponential arrival
time distribution of warnings with various phase-type distributions.

4.8.3. Phase-type distributed warning times

We conclude our numerical examples by comparing the optimal strategies which
arise for different choices of the distribution of the arrival times of the crash
warnings. As pointed out in Remark by an appropriate choice of the transi-
tion rate matrix () of the Markov process Z, by making the market coefficients
state-independent and by setting 0 = 5y = 31 = ... = B4_1, fa = 5 = 0.5, the
time S which it takes to reach state d from state 0 is phase-type distributed. In
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this section we consider three different types of phase-type distributions: expo-
nential, Erlang and Coxian.

Remark 4.15. Note that this setup is degenerate in the sense that the investor
receives warnings whenever Z jumps to a state ¢ > 0, but since the maximum
crash size is equal to zero for ¢ < d she does not have to fear a crash as long as
she is in one of these states. o

For our example we choose 7" = 50. In order to normalize the different types
of distributions and make them comparable we choose the parameters of the
distributions so that we always have

E[S] = 25,

i.e. we expect to see 2 warnings if we start in state 0 at time ¢t = 0 (Actually,
the expectation will be to see 2d warnings. However, 2d — 2 warnings are artifi-
cial/degenerate with no potential interpretation).

To obtain an exponential distribution we need to choose the transition matrix
(Qexp of the Markov process Z to be

Oy, = (100 G017} -2/T 2/T
B q1,0 411 0 0o /)

We obtain an Erlang distribution by choosing Qg = (q531)0§i7deErl such that

dErl dErl
Frl Erl o . Erl
Qi7z‘__257 qi,i.H—%, Z—O,...,d —1,
and 0 = sy = ... = ¢fa ga- In our example we consider the two cases d™! = 5
and d®! = 50.

To obtain the Coxian distribution we need to choose Qcox = (qg;’x>0§i,jgd00x such
that

Q’S,LOX — _)\i, qgloil = pl)\’m qg?l)éox — (1 — pz))\“ Z — 0’ . 7dCOX o 27

Q5% geo g = —05% | s = —Ageo_1 and 0 otherwise. The constants p;, i =
0,...,d"™ — 2, have to be chosen such that 0 < p; < 1. For our numerical
example we consider d“>* = 2 and
1 124
)\ == 57 )\ = —, = —,
0 T30 P70
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Figure 4.7. Probability density functions of the phase-type distributions.
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The resulting probability density functions and cumulative distribution functions
are depicted in Figure [4.71and Figure [4.8] respectively. As we can see, the Coxian
distribution puts a lot of mass on small values of ¢, i.e. the probability of jumping
into the warning state after a short amount of time is quite high compared to the
other distributions. The Erlang distribution with ¢ = 50 on the other hand has
a significant peak around the mean arrival time E[S] = 25 and puts almost no
weight in the tails. Note also that the Erlang distribution converges to the Dirac
measure at E[S] = 25 as d® — oo.

The resulting optimal strategies can be found in Figure The Coxian strategy
is the most conservative for ¢ > 25 which is due to the high mass on the small
time values - since it is more likely to jump back into the crash state shortly after
a crash the investor has to take this into account in order to be indifferent. The
Erlang strategy with five phases (d®"! = 5) has a similar behavior as the strategies
for state 1 and 2 in the previous example. That is, the strategy is first increasing
and then decreasing. In the case of d® = 50 phases we can even see an oscilla-
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4.8. Numerical results
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Figure 4.8. Cumulative distribution functions of the phase-type distributions.
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Figure 4.9. Optimal strategies for phase-type distributed arrival times.
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4. Worst-case portfolio optimization in a market with bubbles

tion in the optimal strategy. The reason for this can be found in the density of the
Erlang distribution. As d® — oo the Erlang distribution converges to the Dirac
measure at ¢ = 25. That is, the Erlang distribution puts increasingly more mass
around the point ¢ = 25. This means that after a crash at time ¢ there is a very
high probability that the next crash warning will arrive in roughly 25 years and
the probability of an earlier warning is small. Hence if ¢ is close to 7" the investor
essentially has to prepare for one more crash — since the likelihood of another
warning after a crash is small. However, as 1" — ¢ increases so does the proba-
bility of another crash warning occurring after a crash at time ¢. Hence around
t = 25 the investor begins to fear that another warning may arrive before the
investment horizon — so she has to be afraid of two more crashes. This explains
why the strategy in the d® = 50 case is increasing for ¢ € [16.5,29.5] (approx-
imately). For even smaller values of ¢ the strategy is again decreasing since the
probability of only one more crash warning remains high. The effect becomes
more pronounced as d=! becomes larger due to the convergence property of the
Erlang distribution against the Dirac measure - the investor becomes increas-
ingly more certain of how long it will take for another warning to arrive after a
crash. Also, note that in the long run all strategies considered in the above ex-
ample converge to the same level since the stationary distribution of the Markov
chain dominates the investor’s decisions for large time horizons.
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A. Notation and conventions

We use this appendix to introduce some notation and settle on some conventions
for the main body of this thesis.

We denote by N, Ny, Q and R the sets of natural numbers, non-negative integers,
rational numbers and real numbers, respectively. Given n € N, we denote by S™
the set of symmetric n X n matrices with entries in R.

We denote by | - | and (-, -) the Euclidean norm and scalar product on R™. On S"
we consider the usual partial order by agreeing that X > Y whenever X, Y € S"
and X — Y is positive semi-definite.

Whenever A is a subset of R", we denote by A, DA, A the closure of A, the
boundary of A and the complement of A, respectively.

Given an open interval (a,b) C R, an open set A € R" and a (sufficiently regular)
function f : (a,b) x A = R, (t,x) — f(t,x), we denote by D, f(t, x) the partial
derivative of f with respect to ¢, i.e.

Duf(t,) = o f(1,)

We denote by D, f(t, z) the gradient with respect to the variable x and similarly
we denote by D2 f(t,x) the Hessian matrix with respect to . We denote by
Ck((a,b) x A — R) the set of all functions which are k-times continuously
differentiable. We write C7*((a,b) x A — R) to denote the set of all functions
which are j-times continuously differentiable with respect to their first variable
and k-times continuously differentiable with respect to there second variable.
The set of continuous functions f : B — R, B C R", is denoted by C'(B).

Given any real number x € R, we denote by 2" and x~ its positive and negative
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A. Notation and conventions

part, respectively, i.e.
" = max{x, 0}, x~ = max{—z,0}.

Let a,b € R with a > b. Then the interval (a, b) is assumed to be the empty set
and we assume the obvious analog statements for closed and half-open intervals

to hold.

Whenever we take the infimum over the empty set, we make the convention that
inf{0} = 400

and similarly
sup{(} = —o0.

Inequalities and equalities involving random variables on a probability space
(92, F,P) are always to be understood in a P-almost sure sense without explicitly
saying so.

Finally, if T C R is some index set, ¢, 7" € T and if X = (X (u))er is a stochastic
process, we write

E[Xt,x (T)]
for the expectation of X (7T") conditional on X (t) = .
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B. Viscosity solutions

The aim of this appendix is to recall several equivalent definitions of the notion
of viscosity solutions of parabolic partial differential equations and state the fun-
damental results we need in the main body of this thesis. We follow Pham [90]
in our exposition.

Let O C R" be open, fix some 7" > 0 and let
F:0,T)xOxRxRxR"xS"—=R

be a continuous function. We assume that F' satisfies the following parabolicity
condition: For eacht € [0,7),z € O,r € R, ¢, e R,pe R"and M € S*, F
satisfies

F(t,z,r,q,p, M) > F(t,z,r,q,p, M)

whenever ¢ < ¢’. Moreover, we assume that F' satisfies the following ellipticity
condition: For eacht € [0,T),z € O,r € R, € R,p € R"and M, M’ € S", F
satisfies

F(t,x,r,q,p, M) > F(t,z,r,q,p, M)

whenever M < M.

Let us now fix a function w € C'?([0,T) x O) and assume that w satisfies the
partial differential equation

F(t,z,w(t, z), Dyw(t, x), Dyw(t, z), Diw(t,x)) = 0 (B.1)

for each (t,z) € [0, T) x O. Now take another function ¢ € C*?([0,T) x O) and
assume that w — ¢ attains a local maximum at some point (¢y, zo) € [0,7) x O.
By the first- and second-order optimality conditions we have

Dyw(to, xo) < Dypp(to, o), where equality holds if ¢y > 0,
D,w(to, z0) = Dyp(to, o),
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B. Viscosity solutions

D2w(to, mo) < D2p(to, o).

Replacing the derivatives of w by the derivatives of ¢ in (B.1) we hence have

F(to, z0,w(to, zo), Dep(to, x0), Dup(to, o), Dap(to, zo))
S F(t07 Zo, w(t()) $0)7 th(t07 .T()), D:L‘w(tCH .ZC())7 Diw(t[b .',UO)) = 0 (Bz)

by the parabolicity and the ellipticity condition on F'. Note that in order to make
sense of the left-hand side of (B.2) we only need w to be upper semi-continuous
(so that w — ¢ can attain a local maximum). Similarly, if w — ¢ attains a local
minimum at (¢, zo), we obtain

F(to, mo, w(to, x0), Dip(to, 20), Dap(to, x0), D2o(to, 0)) > 0, (B.3)

and as before we only need that w is lower semi-continuous to make sense of
this.

The above discussion hence motivates a notion of weak solutions of the PDE (B.1)
by replacing the derivatives of w by the derivatives of smooth test functions .
In order to ensure that the difference w — ¢ attains extremal values, we assume
that w is locally bounded and replace w by its upper and lower semi-continuous
envelopes w* and w, defined as

w*(to, o) := limsup w(t,z) and w.(to,zo):= liminf w(t, z),
(t,r)—>(t0,x0) (t,ﬂ?)—)(to,af)o)

respectively. This leads to the following definition.
Definition B.1. Letw : [0,T) x O be locally bounded.

1. We say that w is a viscosity subsolution of (B.) if for each (ty, zo) € [0,T) X
O and for each ¢ € C**([0,T) x O) such that w* — ¢ attains a local maxi-
mum at (to, xo) we have

F<t07I();w*(t(]?x())’Dth(tOuxO)a Dmgo(t()er)? Dig@(to’xo)) S 0

2. We say that w is a viscosity supersolution of (B.) if for each (ty,xo) €
[0,T) x O and for each p € CY*([0,T) x O) such that w, — ¢ attains
a local minimum at (to, o) we have

F(t07 ‘T’.07 w* (t07 xo); Dt@(t07 x0)7 Dﬁgp(tO) x())? D390<t07 :CO)) Z O
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3. We say that w is a viscosity solution of (B.1) if it is a viscosity subsolution as
well as a viscosity supersolution.

Remark B.2. 1. By shifting the test functions in the above definition ap-
propriately we may without loss of generality assume that w*(tg,z¢) =
o(to, xo) and wy (tg, xg) = @(to, xo), respectively.

2. Since the test functions act only locally we may furthermore assume that
the local maximum (or minimum) of w* — ¢ (or w, — ¢) is global.

3. By the discussion preceding the definition it is clear that every classical
solution of (B.1) is also a viscosity solution. Similarly, if w is a viscosity
solution and w € C%2([0,T) x O), then w is also a classical solution:
Simply choose the test function ¢ to be w itself.

4. If the function w is continuous, then w, = w* = w and hence the definition
simplifies correspondingly.

The above definition of a viscosity solution is typically useful whenever we want
to show that a given function is a viscosity solution of a certain PDE. In order to
prove uniqueness it is usually easier to work with the equivalent definition we
introduce in what follows. Given a locally bounded function w on [0,7) x O
as before, we define the second-order superjet J2*w*(ty, xo) of the upper semi-
continuous envelope w* of w at (¢y, z¢) to be the set of all (¢, p, M) € RxR"xS"”
such that

1

lim sup w* (tg, xo) — w(t,z) — q(ty —t
(t.0)— (towro) [to — t] + |T0 — | (to, o) (t, ) —qlto —t)
1
= (P, %0 — 2) — S (M (w0 — &), 20 — 7)| < 0.

We define the second-order subjet J*~w, (g, 7o) of the lower semi-continuous
envelope w, of w by setting

T w, (to, mo) = —J* T (—w,)(to, o).

The following definition of viscosity solutions is based on the sub- and super-
jets. It follows from Fleming and Soner [40, Lemma V.4.1] that this definition is
equivalent to Definition
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B. Viscosity solutions

Definition B.3. Let w : [0,T") x O be locally bounded.

1. We say that w is a viscosity subsolution of (B.1) if for each (ty, zo) € [0,T) %
O and for each (q,p, M) € J*>Tw*(to, xo) we have

F(t07x07w*(t07x0)aQ>pv M) S 0.

2. We say that w is a viscosity supersolution of (B.) if for each (ty,xo) €
[0,7) x O and for each (g, p, M) € J*~w.(ty, o) we have

F(t07$07w*<t07$0)7Q7p7 M) Z O

3. We say that w is a viscosity solution of (B.1)) if it is a viscosity subsolution as
well as a viscosity supersolution.

The closure 72’+w*(t0, ) of the superjet J>Tw*(ty, 7o) is defined to be the set of
all (¢, p, M) € RxR"™xS" for which we can find a sequence (¢}, z;, ¢;, p;j, M;)jen
such that ¢; € [0,T), x; € O and (q;,p;, M;) € J*Tw*(t;,z;) for all j € N and
such that

lim (tjaxjaw*(tjaxj)anvpja M]) = (t07$07w*(t07x0)7Q7p7 M)

j—00
The closure 7w, (fo, xg) of J>"w,(to, 7o) is defined analogously.

With this definition and by the continuity of £ it follows immediately that w
is viscosity subsolution if and only if F'(ty, zo, w*(to, zo),q,p, M) < 0 for all
(to, o) € [0,T) x O and all (¢, p, M) € 72’+w*(t0, o). The analogous statement
clearly holds for viscosity supersolutions as well.

The main tool in proving uniqueness of viscosity solutions is the following theo-
rem. We use the formulation in Pham [90, Lemma 4.4.6] and refer to Crandall et
al. [22] for the proof.

Theorem B.4 (Ishii’s lemma). Let u be an upper semi-continuous function on
[0,T) x O, let v be a lower semi-continuous function on [0,T) x O and let ¢ €
CLL22([0,T)? x R™ x R™). Suppose that (to, so, To,yo) is a local maximum of
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u(t,z) —v(s,y) — &(t,s,x,y). Then for each ¢ > 0 there exist M, N € S" such
that

—2,
(Dé(to, 50, o, Yo), Da(to, S0, To, yo), M) € J +U(t07$0)7
_2,7
(—Dso(to, S0, 0, Yo), —Dyd(to, S0, To, Yo), N) € J v(to, x0),
and

M 0
< 0 —N) < D2 o(to, s0, %0, yo) + €(D3 ,é(to, 50, o, o).

We will typically apply Ishii’s lemma for ¢(t,s,z,y) = 5(|t — s|* + [z — y|?)
where k£ € N. We obtain

Dy¢(to, s0, o, y0) = —Dsd(to, S0, To, Yo) = k(to — s0),
D, ¢(to, S0, To, Yo) = —Dy@(to, S0, %o, Yo) = k(xo — o)

and
I —I
Di,yqb(t(b 50, L0, ZUO) =k (_I I ) )

I —I
(D?:,y(b(t()? 50, 1’073/0))2 = 2k2 (_I I > )

where I denotes the identity matrix in S”. Choosing ¢ = 1/k in Ishii’s lemma
implies that

(k‘(to - SQ), /{Z([EO - yo), M) c 727+U(t0, 1’0),
(k(to = s0), k(o —0), N) € T v(s0, o)

()= ()

and
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C. On the existence of the Snell
envelope

In this appendix we prove the existence of the Snell envelope for a cadlag process
Y = (Y(u))uep,rju{+00} Which is uniformly integrable over all [t,T] U {+o00}-
valued stopping times. We then use the Snell envelope to construct e-optimal
stopping times for the problem of optimally stopping the process Y. For ex-
istence results on the Snell envelope in slightly different problem settings we
refer to Fakeev [39]], Shiryaev [96], Dellacherie and Meyer [29, Appendix I], El
Karoui [36], Peskir and Shiryaev [89] as well as Karatzas and Shreve [61]].

In what follows we fix a complete probability space (2, F,P). We let T > 0,
t € [0,7) and write T = [t, T]U{+00}. We consider a filtration F* = (F*(u))yue1
satisfying the usual assumptions. Moreover, we assume that (7)) = F*(c0) and
F!(t) contains only events of probability zero and one. We let Y = (Y (u))yuet
be an F'-adapted process which is cadlag on [t,T] and we denote by B(t) the
set of all 7T-valued stopping times. We assume that the family (Y (7)).cp() is
uniformly integrable in the sense that (E[|Y(7)[?]);cp() is uniformly bounded
for some p > 1.

Our aim is to construct the Snell envelope Z° = (Z°(u)),c7 associated with the
problem of optimally stopping the process Y, i.e.

inf E[Y(p)].
nf Y(p)]

The Snell envelope Z° is the largest submartingale which is cadlag on [t, 7’|, dom-
inated by Y and satisfies

E[Z°(t)] = Jinf E[Y(p)].

The Snell envelope turns out to be a modification of the process Z = (Z(u))uer
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C. On the existence of the Snell envelope

defined through

Z(u) = isgsg(g)fE [V (p)|F(u)] . (C1)

We note that the uniform integrability assumption on Y implies that

Z(t)= inf E[Y(p)] > —oc. (C.2)
peB(t)

We first need the following result on the essential infimum, see Neveu [86] or
Karatzas and Shreve [61, Appendix A and Lemma D.1] for the proof.

Lemma C.1. Let 7 € B(t). Then the essential infimum

. £
essinf E [Y ()| F'()]

exists and is unique. Moreover, if for each p1, po € B(T) there exists some p* € B(T)
such that

E [ (p")F(p)] = min{E [Y (p1)| F'(r)] . E [V ()| (7)) }.

then there exists a sequence (py,)nen With p, € B(7) for eachn € N such that the
sequence (E[Y (pn)|F*(T)])nen is non-increasing and

lim E [Y(p,)|F ()] = essinf E [Y(p)|F(7)] .

n— 00 peEB(T)

The existence of p* in the previous lemma is easily verified in our setting, see
Karatzas and Shreve [61, Lemma D.1] for a proof. We can hence always find
a sequence (py,)nen such that we can approximate the essential infimum by a
monotone sequence.

Let us now turn to some properties of the process Z defined in (C.1). The fol-

lowing lemma is in analogy with Karatzas and Shreve [61, proposition D.2], the
proof is the same.

Lemma C.2. Let 7,0 € B(t) andv € B(7). Then
1. Z(1)=Z(o) on{oc =1},

2. E[Z(v)|F!(1)] = essinf,cpu) E[Y ()| F' (7)),
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3. E[Z(v)|Fi(T)] > Z(7),

4. E[Z(v)] = int e BY ()] > Z(t) > —oc.

Proof. 1. We denote A := {0 = 7} and note that A € F'(c A7). Let p € B(7)
and define a new stopping time p4 € B(7) by

Y2 on A,
pa= +00, on A°.
It follows that
LAE Y (p)|F ()] = LAE [Y (pa) | F (7))
= LAE[Y (pa)|F(m Ao)] = LAE [Y (pa)|F(0)] > 1aZ(0).

Since p was chosen arbitrarily it follows that

1aZ(7) = ]lAepsé%i(rTl)fE Y (p)|F(7)]

=essinf 14E [Y (p)|F(7)] > 1aZ(0).
pEB(T)

Reversing the roles of 7 and o yields the desired result.

2. First, note that since Z(v) < E[Y (p)|F*(v)] for every p € B(v) we have
E [Z()|F(r)] < E[B[Y (o) F' ()| F(7)] = E [Y ()| F(r)]
Since this holds for every p € B(v) we have
E[Z(v)|F(7)] < essinfE[Y(p)|F'(7)] . (C.3)

pEB(vV)

For the reverse inequality, we note that by Lemma we can find a se-
quence (p,)nen in B(v) such that (E[Y (p,)|F*(V)])nen is non-increasing
and
infE [V (p)|F* = lim E [Y(p,)|F" :
essinf E [Y (o) F'(v)] = lim E [Y(pu)|7*(v)]

The monotone convergence theorem hence shows that

B [20)17'()] = & | [t B [ ()7 0)]] |70

pEB(v)
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C. On the existence of the Snell envelope

= Jim E [[E[Y (o)|7 ()] || 7()]
= lim E [Y(p,)|F'(7)]
> essmfIE[ ‘ft ]

Combining this with (C.3) gives the desired equality.

3. This follows immediately from the previous step since

E[Z(v)|F(7)] = essinf E [V (p)|F'(7)]

pEB(v)

> essinfE Y (p)|F(1)] = Z(r).

4. Choosing 7 = t in the second step shows that

E[Z()] = E[Z0)|F ()] = essinf E [Y (o) F(5)] = inf E[Y(p)].

By the third step we therefore have

E[Z()] = inf EIY(0)] = Z(2)

and we conclude by (C.2). ]

Given any 7 € B(t), we denote by B*(7) the set of all p € B(7) such that p > 7
on {7 < T'}. We can then define

Z*(t) = essinf E [Y (p)| F'(7)] .

pEB*(T)

We note that the results of LemmalC.2lremain true if we replace Z by Z*. The fol-
lowing result is in analogy with Karatzas and Shreve [61] Proposition D.3, Corol-
lary D.4].

Lemma C.3. Let 7 € B(t).

1. Let (7, )nen be a decreasing sequence in B*(T) such that 1, — T asn — o0.

Then for all A € F'(7) we have

E[Z*(T)14] = lim E[Z*(7,,)14] .

n—o0
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2. We have Z*(1) = Z ().

1. By Lemmal[C.212 for Z* we have

E [Z*(Tn)|}"t(7')} = essinf E [Y(p)|.7—"t(7')} > 7*(1)

pEB* (140

for each n € N and hence the sequence (E[Z*(7,)|F"(7)]14)nen is non-
increasing and bounded from below by Z*(7)1 4 so that

lim E[Z*(7,)14] = lim E [E [Z*(7,)|F'(7)] 14] > E[Z*(7)14].

n—oo n—oo

For proving the reverse inequality, let us fix p € B*(7) and define a se-
quence of stopping times (p;, ) en through

_ )P on{m <p},
Pn= {—l—oo, on {1, > p}.
Note that p,, € B*(7,) for every n € N and in particular
Z4(m) < E[Y (o) F'(r)].
We can decompose

]1{T<T} == ]1{T<T,Tn<T,Tn<p} + 1{T<T,Tn<T,Tn2p} + ]1{T<T,Tn=T,Tn<p}
+ ]l{T<T,Tn=T,Tan} + ]l{T<T,Tn:+oo,Tn<p} + ]]'{7'<T77'n:+0077‘n2p}
= ]1{7n<T77—n<ﬂ} + ]l{Tn<T77'nZP} + IL{T<T77—7L:T77'n<p}

+ ]l{T<T,Tn:T,Tn2p} + ﬂ{T<T,Tn:+w}

and observer that

1 = lim 1 0= lim 1 S
{r<T} el {mn<T,Tn<p}> oo {Tn<TyTn>p}>
0= 7}1320 Ve =T \rn<p} 0= Jggo L e =T rn>p}5

0= nlggo ]1{7'<T,Tn:+oo}'

Using this and the dominated convergence theorem, it follows that

lim E [Z* (Tn)]]-{Tn<T,Tn<P}]lA:|

n—o0
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C. On the existence of the Snell envelope

< lim E [E [V (0.)| F'(70)] Lgrmerimnepy La]

n—oo
= lim E [Y(p)1r, <1r, <0y L4]
=E [Y(p)Lir<ryla] -

and by similar arguments we can show that

lim E [Z*(Tn)ﬂ{fn<T7Tn2p}]lA} <0,
lim E [Z*(Tn)]l{KT,Tn:T,Tn@}]lA} <0
lim E [Z* (1) Lir<TmetrnzpyLa] <0,
2" (7)

z* Tn ]l{T<T,Tn:+oo}]1A] <0.
Putting the pieces together we have hence proved that

lim E [Z*(1,)1{reryla] S E[Y(p)liraryLa] .

n—oo

Similar arguments show that

lim E [Z*(Tn)]l{T:T}]lA} <E [Y(P)]l{ﬁT}]lA}

n—oo

and finally it is obvious that

lim E [Z*(1,) 17—t} La] = E [Y(p)Lrmtoo1La] -

n—oo

Combining the last three equations shows that

lim E[Z*(7,)14] <E[Y(p)1a]. (C.4)

n—oo

Now choose a sequence (p;)ren in B*(7) such that E[Y (px)|F*(7)] con-
verges monotonically down to Z*(7). Then Fatou’s lemma and show
that

E[Z*(r)14] = E [’}LIEOE [Y (i) | F(7)] ]14
> lim sup E [V ()1 4]

k—o00
> limsup lim E [Z%(7,)1 4]

k—o00 n—oo

= lim E[Z"(7,)14].

n—o0
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2. First, it is clear that Z(7) < Z*(7) AY (7). Now take p € B(7) arbitrary so
that

E [Y(p)|F'(1)]

E [Y(p)‘]:t(T)] Tepy + E [Y(P)’}—t(ﬂ} Lircpy
Y(T)Lir=py + 27 (7)1 ir<py
Y (1) AN Z¥(7),

IV v

and since p was arbitrary we conclude that
Z(t)>Y(r)NZ*(1).
So, in order to conclude we only need to show that Z*(7) < Y (7).

Let (73, )nen be @ monotone sequence of stopping times in B*(7) converging
to 7. Then Fatou’s lemma and the right-continuity of Y show that

Z*(1) <limsupE [Y(Tn)‘./—:t(T)] <E [lim Y (7.)

n—oo n—00

Fin)] =),

which is the desired inequality. [l

We note that Lemma[C.213 implies in particular that Z is a submartingale. More-
over, the process Z restricted to [t, 7] admits a cadlag modification. Indeed, by
Rogers and Williams [93] Theorem I1.67.7] it suffices to show that the mapping
u +— E[Z(u)] is right-continuous on [¢t, T] which is an immediate consequence of
Lemma We denote this modification by Z° = (Z°(u)),c7 and remark that
ZY is still a submartingale which is dominated by Y. Finally, we have

E[Z°(t)) = B[Z(0)] = inf E[Y(p)

by Lemma[C.214. We now show that Z° and Z even coincide on stopping times.
The proof follows Karatzas and Shreve [61, Theorem D.7].

Lemma C.4. For any T € B(t) we have Z°(1) = Z(7).

Proof. Since Z°(T) = Z(T) and Z°(+00) = Z(+00) we may without loss of
generality assume that 7 < 7. Let (7, ),en be a monotone sequence of stopping
times taking values in D([t,T]) U {+occ} (where D([t,T]) denotes the dyadic
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C. On the existence of the Snell envelope

rationals in [¢, T']) such that 7,, > 7 and lim,, ,, 7, = 7. By the optional sampling
theorem we have for every n, k € N

E [ZO(TnM]—"t(Tﬂ >E [Z0(7n+k)‘.7:t(7')] > 7Z°(7).

Let now A € F'(7). Then (E[Z°(7,,)|F'(7)]1 A)nen is a non-increasing sequence
bounded from below by Z%(7)1 4, i.e.

liminf E[Z°(7,)1 4] = liminf E [E [Z°(7,)| F*(7)] 14] > E[Z°(7)14].

n—oo n—oo

On the other hand, the right-continuity of Z° and Fatou’s lemma (which we are
allowed to apply since Z° < Y implies the uniform integrability of the positive
part of Z°) show that

limsup E[Z%(7,)1 4] < E[Z°(7)1 4].

n—oo

Moreover, Lemma shows that

lim E[Z(1,)14] = E[Z(7)14].

n—o0

Finally, since 7, attains only countably many values we obtain
E[Z(7,)14] = E [Z°(7,)14]
for every n € N. Combining these observations shows that

E[Z(T)14] = lim E[Z(7,)14] = lim E [Z°(7,,)14] = E[Z(7)14].
n—o0 n—oo
Now choosing A = {Z(7) > Z°(7)} shows that P[A] = 0 so that Z(7) < Z°(7)
almost surely. Interchanging the roles of Z and Z° then proves the result. O]

We are left with showing that if Z = (Z(u))uer is another submartingale which
is dominated by Y and such that Z restricted to t,T] is cadlag, then Z° domi-
nates Z. The proof is straightforward an follows as in Karatzas and Shreve [61}
Theorem D.7].

A

Lemma C.5. Suppose that Z = (Z(u))uer is a submartingale which is dominated
byY and Z restricted to [t, T is cadlag. Then

P |Z°%w) > Z(u) forallu € 7'] =1
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Proof. Fix u € T and let p € B(u) be given. By the optional sampling theorem
we have

E[Y ()| F(w)] 2 E | Z(0)| F'(w)] = Z(w)
and therefore

2(u) = Z(w) = essnf E [Y ()| F'(u)] > Z(u),

Since Z° and Z are cadlag on [, T] the result follows. O

We have thus proved the existence of the Snell envelope. We gather the results
in the following theorem.

Theorem C.6. There exists a process Z° = (Z°(u))ue1 which is cadlag on [t, T]
and such that

2°(r) = essinf E [Y ()| F(7)]

for every stopping time T € B(t). Moreover, Z° is the largest submartingale which
is cadlag on [t, T] and which is dominated by Y . Finally, Z° satisfies

E[Z°(t)] = inf E[Y(7)].
2°()] = int E[Y ()
We are now going to construct an e-optimal stopping time. For this, let 6 be an
arbitrary [t, T|-valued F*-stopping time and define
T =inf{ue[0,T]:Y(u) < Z°u)+c}. (C.5)
We claim that 7° is e-optimal in the sense that

E[Y(7%)|F(9)] < %sésgi(%)fE [Y(p)| F'(0)] +2=2°(0) +e.

For the proof we follow Shiryaev [96, Theorem 3.3.2].

Lemma C.7. For 7° defined in (C.5) we have

E [Y(m9)|F(0)] < 2°(0) + <.
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C. On the existence of the Snell envelope

Proof.: We note that by the right-continuity of Y and Z° we have
E [Y(r9)|F(0)] <E[Z2°()|F(9)] +¢
and hence in order to prove the result it suffices to show that
Z°(0) =E [Z2°(7%)| F(0)] .
For this, we only have to show that
E[Z°(0)] = E[Z2°(7%)] (C.6)
since the optional sampling theorem implies that
Z°(0) —E [Z2°(7°)|F'(#)] <0
but assuming that holds we obtain
E[Z2°(0) — E [Z2°(r%)|F'(6)]] =0
and hence
Z°(0) =E [Z2°(7%)| F(0)] .
For § > 0 we define (0, §) to be the set of all stopping times p € B(f) such that
Plp < 7°] <.
Now, let p € B(#) \ B(#, ). On {p < 7°} we have
Y(p) > Z%p) +¢

by the definition of 7¢ and by the definition of B(f, §) we have

Plp < 7°] > 4.
Therefore,
E [Y(p)|F(0)] =E[Y (p)|F ()] Lip<rey + E [Y(0)[F'(0)] Ljprey
> E[Z%p) + ¢|F'(0)] Liparey + E [Z°(0)| FH(0)] Lipzrey
=E[Z%p)|F(0)] + eliperey
> ZO(Q) + 5]1{p<—r€}-
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Upon taking expectations on both sides this shows that
E[Y(p)] > E[Z°(0)] + cP[p < 7°] > E[Z°(0)] + <0.
Taking the infimum over all p € B(0) \ B(6, 0) hence shows that

%mgamﬂﬂY@”>ELT@”+€5>ELTW”, (C.7)

which together with Lemma[C.214 implies that

E[2°0)] = inf E[Y(p)].

Let us now take a sequence (py, )nen such that E[Y (p,,)] converges monotonically
down to E[Z°(6)]. In light of (CZ) we can assume without loss of generality that
pn € B(6,27™). We can now define a new sequence of stopping times (7,,),en by
setting

T, = max{p,, 7 }.
Then 7,, € B(7°) and hence
E[Z°(r%)] < E[E[Y ()| F'(79)]] = E[Y (7,)]

for all n € N so that

E[Z°(79)] < limsup E[Y (7,)].

n—oo

We furthermore have

limsupE[Y (7,,)] = imsupE [Y (pn) = Y (pn) Lipp<rey + Y (75) Ly, <rey ]

n—oo n—o0

< limsup E Y (pn)]

n—0o0

n—oo

limsup |1V (5

+limsup E [|Y(T€)|ﬂ{pn<75}] :

n—o0

By the choice of (p,,)nen We have

limsupE [Y (p,)] = E [Z2°(0)] .

n—oo
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C. On the existence of the Snell envelope

Moreover, since Y is uniformly integrable we have by Holder’s inequality
E [|Y (pn)| Lo, <rey] S E[Y (pn) "] Plon < 75 < 27"E[|Y (p0)I7]

and hence since (E[|Y (p,)|?])nen is bounded we see that

n—oo

limsup E []Y(pn) \]l{pn<75}] <0.
Similarly, we can show that

limsup E |:‘Y(T€)‘]l{pn<7-s}:| <0

n—o0

and hence
E[Z°(7)] < limsupE[Y (r,,)] < E [Z°(9)] .

n—oo

On the other hand, Z° is a submartingale and hence an application of the optional
sampling theorem shows that

E[Z°(r)] = E[2°(0)] ,
which finishes the proof. [l

In Chapter [l we are concerned with the construction of e-optimal stopping times
for the process Y = (Y (u)),e7 defined through

v, ifu=t,
Y(u)=¢Y(u-), ifuel(tT],
Y(4+00), ifu=+o0,

where y € R. We assume in addition that Y(7T—) = Y(7), ie. Y is left-
continuous at 7. Finally, we assume that [’ is the augmented filtration generated
by a standard Brownian motion W = (W (u) — W (t)),>;. We recall that in this
setup every stopping time p is predictable.

For every 0 € B(t) we define Z = (Z(u))yer by
Z(0) = essinf E [?(u)‘}"t(ﬁ)] :

pEB(0)
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and similarly we define Z* = (Z*(u))uer by

Z(0) = ﬁgzsgi?egE [f/(u)’}"tw)} :

We note that the results of Lemma still remain true if we replace Z by Z or
Z*, respectively.

Our first aim is to investigate the relation between Z, Z* and the Snell envelope
Z%of Y.

Lemma C.8. Let 7 € B(t) ande > 0. Then
() Z(r) < 2°(),
(i) 2°(r) < Z7(7),

(iii) Z°(1) = Z(7) on {Y (1) > Z(7) + ¢}

Proof. (i) Let p € B(7). Then we can find a sequence of stopping times

(pn)nen in B(7) such that p, > pon{p € [1,T)}, p, = pon {p €
{T,4+00}} and such that p,, | p. It follows that

E ¥ (p)| F'(7)

~—
1L

= E [V (0)|F'(7)] Lipetriryy + E [V (0)|F'(1)] L peroons

Lipelrryy +E [Y(p)‘]ﬁ(ﬂ} Tipeir, 4001

~—
L 1L

=E |Y(pa)|F'(7
Sending n — oo we obtain from Fatou’s lemma that

Z(t) < limsupE [Y(pn)

n—o0

= limsupE [?(pn)

n—o0

ft(T)]

F! (T)] Lipeirmyy + E [V ()| FH(7)] Liperroopy

<E[Y(p)|F(r)].

Since p was chosen arbitrarily this implies Z(7) < Z°(7).
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C. On the existence of the Snell envelope

(ii) Let p € B*(7). Then we can find a sequence of stopping times (p;,)nen in
B(7) such that p, < pon {p € (7,T]} and p, = p on {p = +o0}. Then
E [Y (pn)|F'(7)]
=E [Y(pa)|F'(N)] Lipeiry +E [Y(0)| FH(T)] Lpmio)
= E [V (0)| F(7)] Liperry +E [V (0) | FH(0)] Doy

Sending n — oo we obtain from Fatou’s lemma that

Z°(7) < limsup E [Y(Pn)|]:t(7)}

n—oo

— limsup E [ ()| F(7)] Tgpery + E [V ()| F(7)] ety

n—oo

<E[V(p)|F(r)]
and since p was chosen arbitrarily we have Z°(7) < Z*(7).

(iii) On {7 € {T,+oc}} it is clear that Z°(7) and Z(7) coincide and hence
we may without loss of generality assume that 7 < 7. By (i) and (ii) it
suffices to show that Z*(7) = Z(7) on {Y (1) > Z(7) 4+ }. Let (pn )nen be
a sequence in B(7) such that

Z(r) = lim E [?(pn)

n—oo

Fi(r)].

Z(t)= lim E ?(pn)

n—0o0

Fi(r)|

= Tim E [V(7)|F(7)] L,y + lim E [V ()

F! (7)} Ly, >

n—oo
S 1 (o t ] B 7 ; .
> Tim B [V(7)|F(7)] L4z + Z(7) lim 15

On {Y(7) > Z(r) + ¢} this implies that

Z(1) > (Z(1) +€) le Lp=ry + Z(7) lim Lo

n—o0

which shows that lim,, ,, 1{,,-r} = 0 and hence

Z(r) = lim E [Y(pn)n{pn>T}

n—oo

Fi(r)]
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on {Y(7) > Z(7) + €}. It is then immediate that if we define

Pn,  on{p, >T},
Tp 1=
+oo, on{p, =71},

that . .
Z(r) = lim E [Y(rn)

n—oo

F()]

on {Y (1) > Z(7) + €}. Since 7,, € B*(7) this implies that

Z(r) > Z*() = Z(r)

on {Y () > Z(1) +¢}. 0

Proposition C.9. Let 0 be a [t, T|-valued F'-stopping time. Then for every § > 0
there exists a stopping time 74 € B(6) such that

E|¥(7)

ft(@)] < Z(0) +¢ (C.8)

onaset A C QwithP[A] > 1— 0 and 7§ = +00 on A°.

Proof. We first note that the uniform integrability of Y implies the uniform inte-
grability of Z°. Indeed, fix 7 € B(t) and take a sequence (p,,),ey in B(7) such
that

20(7) = lim E [Y (p)|F(7)]

Then Jensen’s inequality and Fatou’s lemma show that

E[|Z2°(r)F] =E

lim E [Y(p,)|F'(7)]

n—o0

!

=& [ fim 2 [ ()7 (7)1

<E [ lim E [|V/(p,) | 7(7)]
< liminf E [[Y(pn)"]

< sup E[[Y(p)[].
PEB(t)

It therefore follows that Z° admits a Doob-Meyer decomposition on [t, T1, i.e.

Z%(u) = M°(u) + A°(u), u € [t,T],
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C. On the existence of the Snell envelope

where M? = (M°(u))yetr) is a uniformly integrable martingale and A° =
(A°(w))yep,7) is a non-decreasing cadlag process with A°(t) = 0. Consider now
the stopping time 7°/? constructed in Lemma[CZl In the proof of the lemma we
have seen that

Z°(0) = E [Z°(7</)| F'(0)]

from which we infer that A°(u) = A%(6) for every u € [0, 75/ A T).

Let us now define

where 70 will be defined below. We note that on {Y (6) < Z(0) + ¢} the e-
optimality of 7; in the sense of (C8) is immediate. On {Y(0) > Z(0) + e} N
{Y(75/%) = Y (75/?)} we have Y (7}) = Y (7°/2) = Y (7°/?) and hence
3 1 3
E [Y(Tg) (9)} —E[Y()|F'(9)] < 2°0) + 5= < Z(0) +¢
by the construction of 7°/2 and since Y () > Z(6) + ¢ implies that Z°(0) = Z(6)
by Lemma|[C.8|

Let us now turn to the construction of 7% on {Y' () > Z(#) + e} N {Y (r°/?) #
Y (7%/2)}. We note that we must necessarily have 7/2 < T. Moreover, since Y’
jumps at time 7°/2 we have

- 1 1
Y(Ta/2> > Z0<TE/2)+§€ and Y(T€/2> < ZO(TE/Q) + 58.
We define
1
= inf {u € [r2, 1) : A°(u) > A°(75/%) + 56} AT

and 5
7 :=inf {u e (2,1 : Y (u) > Z°(u) + 56} AT.

Note that by the right-continuity of A° we have 7 > 75/2. Moreover, by the
right-continuity of Y and Z° and since Y (75/2) < Z°(7%/2) + £/2 we see that

7> 72,
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Since the stochastic interval (7/2, 74 A 7) is a predictable subset of [t, T'] x €2 the
predictable section theorem (Rogers and Williams [93] Theorem VI1.19.1]) guar-
antees that for any J > 0 there exists a stopping time 7° such that

IP[T’E/2<T‘S<TA/\%]21—5

and 7° = +oo otherwise. We note that by the construction of 7* and 7 we must
have

A(7%) < A°(75/%) + %5

and

. 2
Y(r') < 2°(r") + 3¢

whenever 70 € (752, 78 A 7). On {Y(0) > Z(0) + £} N {Y (79/?) # Y (7°/?)}
and 7° € (75/2 7% A 7) it therefore follows that

E V(%)

7o) =B [V (|7 (0)]
<E[Z2°(r°)|F(0)] + ;g

[
[MO(7°) + A° ()| F*(6)] + %5
[

which proves the e-optimality of 7;. O]
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