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Abstract

In this thesis we extend the worst-case modeling approach as Vrst introduced by
Hua andWilmott [48] (option pricing in discrete time) and Korn andWilmott [71]
(portfolio optimization in continuous time) in various directions.

In the continuous-time worst-case portfolio optimization model (as Vrst intro-
duced by Korn and Wilmott [71]), the Vnancial market is assumed to be under
the threat of a crash in the sense that the stock price may crash by an unknown
fraction at an unknown time. It is assumed that only an upper bound on the size
of the crash is known and that the investor prepares for the worst-possible crash
scenario. That is, the investor aims to Vnd the strategy maximizing her objective
function in the worst-case crash scenario.

In the Vrst part of this thesis, we consider the model of Korn and Wilmott [71] in
the presence of proportional transaction costs. First, we treat the problem with-
out crashes and show that the value function is the unique viscosity solution of
a dynamic programming equation (DPE) and then construct the optimal strate-
gies. We then consider the problem in the presence of crash threats, derive the
corresponding DPE and characterize the value function as the unique viscosity
solution of this DPE.

In the last part, we consider the worst-case problem with a random number of
crashes by proposing a regime switching model in which each state corresponds
to a diUerent crash regime. We interpret each of the crash-threatened regimes of
the market as states in which a Vnancial bubble has formed which may lead to a
crash. In this model, we prove that the value function is a classical solution of a
system of DPEs and derive the optimal strategies.
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1. Introduction

One of the classical questions addressed in Vnancial mathematics is the following:
How should an investor optimally allocate her wealth to maximize her expected
utility at some terminal time T > 0 in the future? The objective of this thesis is to
answer this question for market models in which the risk-bearing assets (which
in the sequel will always be assumed to be stocks) are under the threat of crashes.
In particular, we focus on investors with an extremely high level of risk aversion
towards the impact of these market crashes. To be more precise, we assume that
our investor bases her decisions on the worst-possible crash scenario.

This assumption translates to the following optimization approach: For each ad-
missible trading strategy, the investor Vrst determines which crash scenario is the
worst in the sense that her performance criterion is minimized. Among all these
worst-case scenarios, the investor then picks the strategy which maximizes her
performance criterion in the worst-case scenario. Note that the worst-case crash
scenario may be diUerent depending on the trading strategy under consideration.
Typically, if the investor follows a trading strategy which invests a large fraction
of her total wealth in the crash-threatened assets, the worst-case scenario may
be an immediate crash of large size, whereas if the investor takes a short position
in these assets the worst-case scenario may be no crash at all.

These considerations show that the worst-case optimization approach leads to
robust optimal strategies: The optimal strategy protects the investor against the
worst-possible outcome, and she may even beneVt from a particular crash sce-
nario if it is not the worst-case scenario for the optimal strategy.

In this thesis we consider two types of worst-case portfolio optimization prob-
lems. First, we consider an investor facing proportional transaction costs in the
case when only a Vxed (and known) number of crashes can occur within the in-
vestment period. Afterwards, we consider the portfolio problem in the absence
of transaction costs, but with an unknown and possibly unbounded number of
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1. Introduction

market crashes. In both cases we consider an investor aiming to maximize her
expected utility of terminal wealth.

In what follows we give a brief overview of the existing literature and methods
which can be used to tackle these problems. We begin in Section 1.1 with the
portfolio optimization problem in the absence of crashes. In Section 1.2 we give
an overview of the existing literature on the worst-case approach.

1.1. Portfolio optimization

The objective of this section is to present the literature on and the solutions of the
portfolio optimization problem in three particular situations. We Vrst consider
the so-called Merton problem in which the investor aims to maximize her ex-
pected utility from terminal wealth in a Black-Scholes market. Then we consider
an extension of the Merton model which takes transaction costs into account
and Vnally we consider the portfolio optimization problem in a regime-switching
model, i.e. a model in which the market parameters diUer depending on the state
of the economy. These three models are the fundamental market models which
we extend in the main body of this thesis by allowing for market crashes.

1.1.1. The Merton problem

Fix a complete probability space (Ω,F ,P) and a Vltration F = (F(t))t≥0 satisfy-
ing the usual assumptions of completeness and right-continuity. We furthermore
assume that (Ω,F ,P) supports a one-dimensional standard Brownian motion
W = (W (t))t≥0 with respect to F. Let us moreover Vx a Vnite time horizon
T > 0. In what follows we consider the optimal terminal wealth problem in a
Black-Scholes market which was Vrst solved in Merton [82, 83].

We consider a Vnancial market consisting of two assets. One of the assets is
assumed to be risk-free (this could e.g. be a default-free bond or a money mar-
ket account), whereas the other asset is assumed to be risk-bearing (this could
e.g. be a stock). We assume that the prices of these two assets, denoted by

2



1.1. Portfolio optimization

P 0 = (P 0(t))t≥0 and P 1 = (P 1(t))t≥0, respectively, are given by

dP 0(t) = rP 0(t) dt, P 0(0) = 1,

dP 1(t) = αP 1(t) dt+ σP 1(t) dW (t), P 1(0) = 1.

Here r ≥ 0 denotes the interest rate of the bond, α > r the drift and σ > 0 the
volatility of the stock. Taking P 0 to be the numéraire we may without loss of
generality assume r = 0 and we interpret α as the excess return of the stock over
the bond.

We let t ∈ [0, T ) denote the beginning of the investment period and we let x > 0
be the investor’s initial wealth. At any time u ∈ [t, T ] the investor is allowed to
choose which fraction π(u) of her total wealthX(u) she invests in the stock. We
assume that π = (π(u))u∈[t,T ] is a progressively measurable and bounded process.
Assuming that π is a self-Vnancing trading strategy, the investor’s wealth X =
Xπ

t,x = (Xπ
t,x(u))u∈[t,T ] evolves as

dX(u) = απ(u)X(u) du+ σπ(u)X(u) dW (u), X(t) = x.

We say that a strategy π is admissible for initial time t and initial wealth x if the
corresponding wealth process Xπ

t,x(u) is almost surely positive for all u ∈ [t, T ].
We denote the set of all admissible strategies of this form byAM(t, x). With this,
the investor aims to maximize her expected utility of terminal wealth, i.e.

VM(t, x) := sup
π∈AM (t,x)

E
[

Up

(

Xπ
t,x(T )

)]

,

where Up : (0,∞) → R is given by

Up(x) :=

{

1
p
xp, if p < 1, p 6= 0,

log(x), if p = 0,
(1.1)

and extended to [0,∞) by setting Up(0) = limx↓0 Up(x). One can then show (see
e.g. Merton [83] or Pham [90]) that the optimal strategy is given by

πM :=
α

(1− p)σ2

and VM is given explicitly as

VM(t, x) =
1

p
xp exp

(

1

2

p

(1− p)

α2

σ2
(T − t)

)

, if p < 1, p 6= 0, (1.2)
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1. Introduction

and

VM(t, x) = log(x) +
1

2

α2

σ2
(T − t), if p = 0, (1.3)

respectively. We refer to πM as the Merton fraction and we call VM the Merton
value function.
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Figure 1.1. The Merton fraction over time.

Figure 1.1 depicts the Merton fraction over time. Note that since πM is constant,
the investor has to trade continuously and the trading volume is of inVnite vari-
ation on any strictly positive time interval.

1.1.2. Portfolio optimization with transaction costs

In the presence of transaction costs, the strategy πM is no longer feasible since
it would lead to immediate bankruptcy of the investor. It is therefore of inter-
est to consider the Merton problem in the presence of transaction costs. In the
literature, one typically Vnds combinations of the following cost structures:

1. Constant costs: The investor pays a constant fee for each transaction.

4



1.1. Portfolio optimization

2. Management costs: For each transaction, the investor pays a fee propor-
tional to her total wealth.

3. Proportional costs: The investor pays fees proportional to the size of the
transaction.

Constant and management costs punish the frequency of trading whereas pro-
portional costs punish the volume of the transaction.

Constant costs (e.g. treated in Eastham and Hastings [35], Korn [62] and Øksendal
and Sulem [88], among others) turn out to be the most diXcult to handle from a
mathematical point of view and results in this direction are still scarce compared
to the other cost structures. While management costs appear to be too unrealistic
for practical applications, the models are usually more tractable and the resulting
optimal strategies resemble the optimal strategies for constant costs. Hence, a
lot of eUort has been put into the analysis of optimal trading under this cost
structure. We refer to Morton and Pliska [85], Irle and Sass [49], Tamura [106]
and Korn [64] and the references therein for an overview of the results in this
direction.

In this thesis, however, we focus exclusively on proportional transaction costs.
Suppose that the investor is endowed with a capital of b units of money in the
bond, s units of money in the stock and wants to buy shares of the stock worth
∆ units of money. It is then assumed that the investor has to pay a fee of λ∆
for this transaction, where we refer to λ > 0 as the proportional cost component
for buying shares of the stock. After this transaction the investor’s wealth hence
changes to

b̄ = b− (1 + λ)∆, s̄ = s+∆.

In a similar fashion we suppose that the investor has to pay a fee of µ∆whenever
she sells shares of the stock worth ∆ units of money. We refer to µ ∈ (0, 1) as
the proportional cost component for selling shares of the stock. Under such a
transaction the wealth now changes to

b̄ = b+ (1− µ)∆, s̄ = s−∆.

A detailed description of the model and the formulation of the optimization prob-
lem will be given in Chapter 2.

Magill and Constantinides [77] were the Vrst to consider this type of costs in
a continuous-time portfolio optimization context. More precisely, the authors
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1. Introduction

considered an optimal consumption problem over an inVnite time horizon and
heuristically derived insights into the structure of the optimal strategy. Davis
and Norman [26] solved the problem rigorously by means of a stochastic control
approach and Shreve and Soner [97] solved the same problem under weaker as-
sumptions by employing the theory of viscosity solutions. The model was then
extended by Akian et al. [3] and Kabanov and Klüppelberg [56] to a multidimen-
sional setting and by de Vallière and Kabanov [28] to Lévy-driven price processes.
Moreover, starting with Kallsen and Muhle-Karbe [59] and followed by Herczegh
and Prokaj [45] and Choi et al. [19], the optimal lifetime consumption problem
was solved by means of a dual approach.

The inVnite-horizon optimal consumption problem does not admit closed form
solutions and it is hence of interest to consider a more tractable problem formu-
lation. Dumas and Luciano [32] considered the problem of maximizing the ex-
pected utility of terminal wealth in the limit as the time horizon goes to inVnity.
Similar results for the asymptotic growth rate were obtained by Akian et al. [5],
Gerhold et al. [43], and Gerhold et al. [41]. A diUerent approach which also leads
to explicit solutions consists of analyzing the problem asymptotically for vanish-
ing transaction costs. This has been done in Janeček and Shreve [50], Gerhold et
al. [42], Soner and Touzi [102], Possamaï et al. [91], Kallsen and Muhle-Karbe [60]
and Kallsen and Li [58].

It is by now understood that the optimal strategies in these models are so-called
constant-boundary strategies. That is, the optimal strategies in these models can
be represented by two constants π0 < π0, such that the investor sells shares
of the stock whenever her risky fraction is above π0, buys shares of the stock
whenever her risky fraction is below π0 and refrains from trading whenever her
risky fraction is in between π0 and π0. In particular, the optimally controlled
risky fraction is a diUusion reWected at the boundary of the interval [π0, π0]. For
the optimal terminal wealth problem the situation becomes more involved: Since
the optimization problem is now time-dependent one expects that the boundaries
π0 and π0 which characterize the optimal strategy are time-dependent as well.
Figure 1.2 below exempliVes the location of buy and sell boundaries in the optimal
terminal wealth problem.

The optimal terminal wealth problem in the presence of transaction costs was
introduced in Akian et al. [4]. Davis et al. [27] studied the same dynamic pro-
gramming equation (DPE) in the context of utility indiUerence pricing. The au-
thors proved in particular that the value function is a viscosity solution of the

6



1.1. Portfolio optimization
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Figure 1.2. Location of the buy and sell boundaries under transaction costs.

DPE and that it is unique within the class of continuous and bounded solutions.
Dai and Yi [24] studied the same DPE and showed that there exists a classical
solution for terminal conditions corresponding to logarithmic and power utility
at least as long as one restricts the state space to strictly positive stock holdings.
Dai et al. [23] extended this result to include consumption and Chen et al. [18]
considered the case of exponential utility. Moreover, Kunisch and Sass [72], Dai
and Zhong [25] and Herzog et al. [46] proposed algorithms to approximate the
value function and the optimal strategies numerically. Liu and Loewenstein [74]
obtained a closed form solution under the assumption that the terminal time
is random and Bichuch [15] studied the Vnite-horizon problem by means of an
asymptotic analysis.

Despite this wealth of papers on the optimal terminal wealth problem there are
still some open questions which remain to be solved. In particular, there does
not appear to be any proof that the value function for this problem is continuous.
This result is needed to ensure that the value function satisVes the DPE in the
sense of viscosity solutions (all existing proofs of the viscosity property assume
continuity of the value function). Moreover, the uniqueness of solutions of the
DPE is only known to hold in the class of bounded and continuous functions,
which does not include the case in which the investor’s utility function is given
by Up as deVned in (1.1). Finally, the existence of an optimal strategy is yet to
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1. Introduction

be established and it needs to be veriVed that the classical solution of the DPE
(constructed in Dai and Yi [24]) coincides with the value function. All of these
issues will be addressed in Chapter 2. In Chapter 3 we then extend this model to
allow for crashes in the stock price.

1.1.3. Portfolio optimization in regime-switching models

Another possible extension of the Merton problem is to allow for more general
coeXcients of the bond and stock. In order to capture long-term macroeconomic
inWuences one can make the market coeXcients dependent on an exogenously
given Vnite-state Markov process which drives the state of the economy. This
approach has been studied in Bäuerle and Rieder [7], Sotomayor and Cadenil-
las [104] and Escobar et al. [37]. We follow Bäuerle and Rieder [7] in what fol-
lows.

We let Z = (Z(t))t≥0 denote a time-homogeneous Vnite-state Markov process
with state space E = {0, . . . , d}, d > 0. We assume that the transition rate
matrix of Z is given by Q = (qi,j)0≤i,j≤d and we assume that Z is independent
of the Brownian motion W . We interpret each state i ∈ E as a diUerent state of
the economy. Moreover, we assume that the coeXcients of the bond and stock
price, denoted by P 0 = (P 0(t))t≥0 and P 1 = (P 1(t))t≥0, respectively, depend on
the state of the economy. That is, we assume that the dynamics of P 0 and P 1 are
given by

dP 0(t) = 0, P 0(0) = 1,

dP 1(t) = α(Z(t))P 1(t) dt+ σ(Z(t))P 1(t) dW (t), P 1(0) = 1.

Here α(i) = αi, σ(i) = σi for constants αi, σi > 0 for all i ∈ E.

The investor is allowed to choose a risky fraction process πi = (πi(u))u∈[t,T ]

for each state i ∈ E, so that the dynamics of the wealth process X = Xπ
t,x,i =

(Xπ
t,x,i(u))u∈[t,T ] with π = (π0, . . . , πd) can be written as

dX(u) = αjπ
j(u)X(u) du+ σjπ

j(u)X(u) dW (u), on {Z(u) = j}.

Here Xπ
t,x,i denotes the wealth process started at time t with initial wealth x and

where the initial state of the economy is Z(t) = i. This leads to a value function

8



1.1. Portfolio optimization

given by
VRS(t, x, i) := sup

π∈ARS(t,x)

E
[

Up

(

Xπ
t,x,i(T )

)]

,

where the set of admissible strategies ARS(t, x) consists of all π which are pro-
gressively measurable, bounded and Xπ

t,x,i(u) > 0 almost surely for all u ∈ [t, T ]
and all i ∈ E.

Since Z is assumed to be independent of W it is not surprising that the optimal
strategy in state i is given by

πi
M :=

αi

(1− p)σ2
i

,

i.e. in each state the investor applies the Merton strategy which corresponds to
the market coeXcients in the current state. For p < 1, p 6= 0 the value function
can be shown to be of the form

VRS(t, x, i) =
1

p
xpfi(t), (1.4)

where the family (fi)i∈E solves the system of ordinary diUerential equations

∂

∂t
fi(t) = −

1

2

p

1− p

α2
i

σ2
i

fi(t)−
d
∑

j=0

qi,jfj(t), fi(T ) = 1.

In the case of p = 0 the value function can be written as

VRS(t, x, i) = log(x) + fi(t),

where the family (fi)i∈E solves

∂

∂t
fi(t) = −

1

2

α2
i

σ2
i

−
d
∑

j=0

qi,jfj(t), fi(T ) = 0.

Figure 1.3 visualizes the optimal strategies.

In Chapter 4 we generalize the regime-switching model outlined above. In addi-
tion to state-dependent market coeXcients we allow for crashes in the stock in
the states i = 1, . . . , d, and assume that a crash sends the state of the economy
back to state zero. With this, we can interpret the states i = 1, . . . , d as market
states in which a Vnancial bubble is present. Once the bubble bursts (i.e. a crash

9
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Figure 1.3. The optimal strategies in a regime-switching model.

occurs) the economy jumps back into the bubble-free state i = 0. Note that this
implies that we may potentially observe an unbounded number of crashes since
with each jump of the Markov chain Z a new crash threat arises.

The existence, formation and modeling of Vnancial bubbles has been studied ex-
tensively over the last decades. The formation of bubbles on a microeconomic
level has been studied e.g. in Tirole [108], Scheinkman and Xiong [94], and Abreu
and Brunnermeier [2]. There is also a growing literature on bubbles from a pric-
ing point of view, see e.g. Loewenstein andWillard [76, 75], Cox and Hobson [21],
Jarrow et al. [54, 55], Heston et al. [47], Jarrow and Protter [52, 53], Jarrow et
al. [51] and Biagini et al. [14].

1.2. Worst-case portfolio optimization

Chapters 3 and 4 are devoted to extending the models introduced in Section 1.1 to
allow for crashes in the stock prices. The objective of this section is to introduce
the crash model, give an overview of the existing literature and motivate the
extensions considered in the following chapters.
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1.2. Worst-case portfolio optimization

The market models in Section 1.1 share one common feature: The stock price
process has continuous sample paths and hence these asset-price models are not
able to explain extreme jumps in the stock price (in particular large downward
jumps, i.e. crashes). One possible remedy is to consider price processes which are
driven by Lévy processes (see e.g. Aase [1] or Kallsen [57]) or, more generally,
to consider semimartingale models for the prices (see e.g. Goll and Kallsen [44]).
Since in these models the distribution of the jump times and sizes is known to
the investor, this leads to optimal strategies which hedge the risk coming from
the jump possibility on average over the investment period. In particular, at the
moment a large downward jump occurs the investor may still suUer substantial
losses, especially if the crash occurs just before the end of the investment period
at time T .

One way to deal with this eUect is to take a robust approach to modeling the
jumps of the stock price. That is, one assumes that the investor knows an up-
per bound on the number and the size of the jumps but the true distribution
of the jumps remains unknown. Moreover, the investor is assumed to expect
the worst-possible jump scenario to occur. More precisely, given a Vxed trading
strategy, the worst-case jump scenario for this particular strategy is determined
(in the sense that the investor’s optimization criterion is minimized) and the in-
vestor aims to Vnd the strategy which maximizes the optimization criterion in the
worst-case scenario. If the objective is to maximize expected utility of terminal
wealth, this leads to a stochastic diUerential game of the form

sup
π

inf
ϑ
E
[

Up(X
π,ϑ(T ))

]

,

where π denotes a trading strategy and where ϑ denotes a jump scenario. The op-
timization problem is hence a version of Wald’s maximin model (see Wald [109])
in the sense that the investor Vrst chooses a strategy and presents this strategy to
her opponent (which is usually assumed to be the market), who in turn chooses
a jump scenario. We refer to Korn and Menkens [66] and Korn and Seifried [69]
for an overview of diUerent approaches to this type of problem.

The worst-case portfolio optimization problem outlined above has Vrst been stud-
ied in Korn and Wilmott [71] for logarithmic utility. In this paper the authors
consider asset price dynamics as in the Merton model (see Section 1.1.1), but ad-
ditionally assume that the stock price P 1 may drop once by an unknown fraction
of β̃ at an unknown time τ , i.e.

P 1(τ) = (1− β̃)P 1(τ−).

11



1. Introduction

The optimization problem in this model is formulated as

V1(t, x) := sup
π∈A(t,x)

inf
τ∈[t,T ]

β̃∈[0,β]

E

[

log
(

(1− π(τ)β̃)Xπ
t,x(T )

)]

,

where β ∈ (0, 1) denotes the maximum crash size and whereA(t, x) denotes the
set of all trading strategies π for which (1− π(u)β̃)Xπ

t,x(u) > 0 for all β̃ ∈ [0, β]
and all u ∈ [t, T ] (andXπ

t,x is deVned as in the Merton model). Note that since the
investor’s utility function is strictly increasing one can without loss of generality
assume that if a crash occurs it is of maximum size β since the worst-case scenario
is either a crash of maximum size or no crash at all.

Since at most one crash can occur it is straightforward to argue that after the
occurrence of a crash the investor should invest according to the Merton fraction
πM (since after the crash the market coincides with the market in the Merton
model). The authors use this insight to derive a trading strategy π∗ which renders
the investor indiUerent between an immediate crash and no crash at all. This can
be done by solving the equation

E
[

log
(

Xπ∗

t,x(T )
)]

= VM(t, (1− π∗(t)β)x) (1.5)

for π∗. Notice that the left-hand side of (1.5) corresponds to the no-crash scenario
whereas the right-hand side corresponds to an immediate crash of maximum size.
Solving (1.5) leads to the following diUerential equation for π∗:

∂

∂t
π∗(t) =

1

β
(1− π∗(t)β)

[

−
1

2
σ2(π∗(t)− πM)2

]

, (1.6)

π∗(T ) = 0.

From here it is easy to argue that the strategy π∗ must indeed be optimal: First,
since this strategy renders the investor indiUerent between no crash at all and
a crash of maximum size, it suXces to show that for any other strategy π there
exists one crash scenario in which π∗ performs better. If this π is such that π(τ) >
π∗(τ) for some τ ∈ [t, T ], the strategy π∗ performs better in the crash scenario
in which a crash of maximum size β occurs at time τ . On the other hand if π
is dominated by π∗ the strategy π∗ outperforms π in the no-crash scenario and
hence π∗ must be optimal. We note however that for this argument to be true
we require that π∗ < πM since otherwise πM outperforms π∗ in the no-crash
scenario.

12



1.2. Worst-case portfolio optimization

Figure 1.4 exempliVes π∗ and πM . Note that π∗ is decreasing with decreasing time
to maturity T − t, i.e. the investor decreases her relative position in the stock as
she approaches the investment horizon (to protect against losses due to a crash),
but since π∗(t) > 0 for all t ∈ [0, T ) she will always keep a long position in the
stock (i.e. despite the threat of a crash a risky investment still outperforms the
pure bond strategy). Only at terminal time T does the investor close her position
entirely. It is furthermore possible to show that π∗(0) < πM , but π∗(0) → πM

as T → ∞, i.e. the worst-case investor’s position in the stock is strictly less than
the Merton investor’s position in the stock, but the diUerence vanishes as the
investment period becomes inVnitely large.
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Figure 1.4. The worst-case optimal strategy for logarithmic utility.

It is also possible to extend the results of Korn andWilmott [71] to n > 1 crashes.
It can be shown that the optimal strategy πn,∗ in the presence of n crash possi-
bilities is given as the solution of

∂

∂t
πn,∗(t) =

1

β
(1− πn,∗(t)β)

[

−
1

2
σ2(πn,∗(t)− πn−1,∗(t))2

]

, (1.7)

πn,∗(T ) = 0.

Korn andMenkens [67] extend these results to power utility and changing market
coeXcients after the occurrence of a crash by deriving a dynamic programming

13



1. Introduction

equation for the value function and hence embedding the worst-case portfolio
problem into the stochastic control framework. The authors show that if the
market coeXcients do not change after a crash, the strategy π∗ solving

∂

∂t
π∗(t) =

1

β
(1− π∗(t)β)

[

−
1

2
(1− p)σ2(π∗(t)− πM)2

]

, (1.8)

with terminal condition π∗(T ) = 0 is optimal in the class of deterministic strate-
gies. Note that this equation reduces to (1.6) for p = 0 and hence covers the
logarithmic utility case as well.

If the market coeXcients change after the occurrence of a crash the situation be-
comes slightly more complicated. Assume that the market coeXcients before a
crash are given by α1 and σ1, and by α0 and σ0 after the occurrence of a crash.
Similarly, we denote by π1

M and π0
M the Merton fraction with respect to the pa-

rameters before and after a crash, respectively. Finally, we denote by

Ψ1 :=
1

2

α2
1

(1− p)σ2
1

and Ψ0 :=
1

2

α2
0

(1− p)σ2
0

the utility growth potentials in the respective markets (these are the utility-
adjusted growth factors of the portfolio under the Merton strategy in the absence
of crashes, see (1.2) and (1.3)). With this, it is possible to show that the strategy
πind which is given as the solution of

∂

∂t
πind(t) =

1

β
(1− πind(t)β)

[

Ψ1 −Ψ0 −
1

2
(1− p)σ2(πind(t)− π1

M)2
]

, (1.9)

with πind(T ) = 0 renders the investor indiUerent between an immediate crash
of maximum size and no crash at all. Again, note that (1.9) reduces to (1.8) if
the market coeXcients do not change after a crash. The strategy πind obtained
like this need not necessarily be optimal. Indeed, if the market coeXcients after
a crash are strictly better than before a crash (in the sense that Ψ1 > Ψ0) it may
occur that πind(t) > π1

M for some t, in which case π1
M outperforms πind(t) in the

no-crash scenario. Therefore, the optimal pre-crash strategy in this situation is

π∗(t) = min{π1
M , πind(t)}, t ∈ [0, T ].

Figure 1.5 illustrates π∗, πind, π1
M and π0

M . A more detailed discussion of the
eUects of changing market coeXcients and some further extensions of the results
in Korn and Menkens [67] can also be found in Menkens [78].
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Figure 1.5. The worst-case optimal strategy in the case of changing market coeXcients.

Korn and SteUensen [70] consider the situation without changing market coef-
Vcients and show that the value function can be found by solving a system of
dynamic programming equations as follows. Consider the diUerential operator
Lπ deVned as

Lπ :=
∂

∂t
+ αxπ

∂

∂x
+

1

2
σ2x2π2 ∂2

∂x2
.

Assuming that V1 ∈ C1,2([0, T )× (0,∞)), we set

A′(t, x) := {π : LπV1(t, x) ≥ 0} ,

A′′(t, x) := {π : V1(t, x) ≤ VM(t, (1− πβ)x)} .

Under some technical conditions one can then show that V1 solves

0 = min

{

sup
π∈A′′(t,x)

{

LπV1(t, x)
}

,

sup
π∈A′(t,x)

{

V1(t, x)− VM(t, (1− πβ)x)
}

}

(1.10)

and that the strategy obtained from the maximizer of

sup
π∈A′′(t,x)

{

LπV1(t, x)
}
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1. Introduction

is pre-crash optimal. With this, it is possible to show that the optimal strategy
obtained by Korn and Menkens [67] in the power utility case (see (1.8)) is not
only optimal in the class of deterministic strategies, but also in the bigger class of
right-continuous strategies with existing moments of all orders.

Seifried [95] generalizes the existing results by recasting the worst-case portfolio
problem as a controller-vs-stopper game. The idea is to Vnd a strategy πind which
turns the process

(

VM(t, (1− πind(t)β)Xπind

(t))
)

t∈[0,T ]

into a martingale and then show that this is suXcient for πind to be an indiUerence
strategy. Moreover, it is possible to show that no strategy which exceeds πind at
some point in time can be optimal. Hence, by the indiUerence property of πind it
suXces to Vnd the strategy which performs best in the no-crash scenario among
all strategies which are bounded from above by πind. The optimal strategy is
then found to be π∗(t) = min{π1

M , πind(t)} as before. We note that the approach
in Seifried [95] extends to multidimensional jump-diUusion models for the asset
prices.

The worst-case portfolio problem has also been considered in other situations:
Hua andWilmott [48] considered worst-case option pricing in a discrete-time set-
ting. Menkens [79, 80] analyzed the properties of indiUerence strategies in more
detail and Menkens [81] considered the worst-case problem given the probabil-
ity of the crash. Korn [65] and Korn et al. [68] applied the worst-case modeling
approach in an insurance context. Desmettre et al. [30] analyzed the robustness
of the problem with respect to the choice of the maximum crash size. Desmettre
et al. [31] considered the case of optimal consumption over an inVnite time hori-
zon and Mönnig [84] considered a more abstract combined stochastic control and
impulse control game as well as a stochastic target problem.

1.3. Outline of this thesis

Let us conclude this introduction with an outlook on the topics covered in this
thesis. First, we consider the optimal terminal wealth problem under transaction
costs and then we extend this model to allow for crashes. Finally, we consider
the regime-switching model in the presence of crash threats.
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1.3. Outline of this thesis

In the Vrst part of this thesis we consider the optimal terminal wealth problem
under transaction costs in a crash-free setting. As pointed out in Section 1.1.2, de-
spite the wealth of papers on this model there are still some open problems which
have not been addressed yet. The objective of Chapter 2 is to provide the missing
results. To be more precise, we show that there exists at most one solution of the
dynamic programming equation and we construct the optimal strategy. From the
results in Chapter 3 it furthermore follows that the value function is continuous,
the dynamic programming principle holds and that the value function is a vis-
cosity solution of the dynamic programming equation. Finally, we show that the
classical solution constructed in Dai and Yi [24] coincides with the value function
on the domain on which the classical solution is deVned.

In Chapter 3 we extend the transaction costs model to allow for crashes in the
stock price. Our aim is to show that the value function is the unique viscosity so-
lution of the corresponding dynamic programming equation and then to rely on
numerical methods to approximate the optimal strategies. We proceed as follows:
First, we show that the value function in this model is continuous and use this to
prove a version of the dynamic programming principle. The dynamic program-
ming principle in turn allows us to show that the value function is a viscosity
solution of the dynamic programming equation and uniqueness follows from a
straightforward extension of the uniqueness result in the crash-free model.

In Chapter 4 we turn our focus to a regime-switching model with crashes, hence
extending the model in Section 1.1.3. We Vrst consider a simpliVed model in
which there are only two regimes: One in which crashes are possible and one
crash-free regime. We assume that the market switches from the crash-free to
the crash-threatened regime at exponential stopping times, whereas the market
switches from the crash-threatened to the crash-free regime only after the oc-
currence of a crash. Classical indiUerence arguments allow us to compute and
verify the optimal strategies directly. We then turn to a more general setting
in which the switching of regimes occurs at jump times of a continuous time
Markov chain. We derive a system of dynamic programming equations in the
spirit of Korn and SteUensen [70] which allows us to construct and verify the op-
timal strategies as a system of ordinary diUerential equations. Finally, we analyze
some of the features of the optimal strategies numerically.
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2. Portfolio optimization with

transaction costs

In this chapter we study the problem of maximizing expected utility of the liqui-
dation value of terminal wealth in the presence of proportional transaction costs.
The results obtained here build the basis for studying the same problem in the
presence of market crashes. As can be seen from the discussions in Section 1.2,
in order to analyze a Vnancial market under the threat of crashes from a worst-
case perspective, it is crucial to have a good understanding of the corresponding
market in the absence of crashes.

The problem considered in this chapter has received considerable interest over
the last decades (cf. Section 1.1.2). Nevertheless, a careful inspection of the exist-
ing literature shows that not all aspects have yet been treated in suXcient gener-
ality so that they can be readily applied for our subsequent worst-case analysis.
Our objective is hence to extend some of the known results and, in addition,
provide some new previously unknown results.

The Vrst main result of this chapter is a comparison principle for the dynamic
programming equation which allows us to prove uniqueness of the value func-
tion. From the literature it is known that the value function is the unique con-
tinuous viscosity solution of the dynamic programming equation as long as the
investor’s utility function is bounded (see Davis et al. [27]) and a straightforward
adaptation of the results for the inVnite-horizon optimal consumption problem
can be used to show that uniqueness holds also if the absolute value of the utility
function is bounded by C(1 + |x|p) with p ∈ (0, 1) and C > 0 (cf. Akian et al. [3]
and Kabanov and Klüppelberg [56]), which excludes e.g. logarithmic utility and
power utility with a negative power. While the value function corresponding to
logarithmic utility and negative power utility has a nice behavior at inVnity, it
tends to negative inVnity at the boundary of the state space. We adapt an idea
from Soner and Vukelja [103] to deal with this problem.
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2. Portfolio optimization with transaction costs

In the second part of this chapter we construct and verify the optimal strategies.
While Dai and Yi [24] show that there exists a classical solution of the dynamic
programming equation if the state space is reduced to positive holdings in the
stock, it is still an open question whether this classical solution coincides with
the value function. The main problem of the proof is the existence of the optimal
strategies which are expected to be Vnite-variation processes which turn the op-
timally controlled asset holdings process into an obliquely reWected diUusion at
the boundary of some time-dependent region within the state space. We provide
a simple method to construct these strategies and then verify their optimality. In
particular this result shows that the classical solution of the dynamic program-
ming equation obtained by Dai and Yi [24] coincides with the value function on
the reduced state space. Moreover, we study the regularity of the value function
in more detail.

The results of this chapter correspond in large parts to the following preprint and
working paper:

1. C. Belak, O. Menkens, J. Sass (2013): On the uniqueness of unbounded vis-
cosity solutions arising in an optimal terminal wealth problem with trans-
action costs [11].

2. C. Belak, J. Sass (2014): Finite-horizon optimal investment with transaction
costs: Construction of the optimal strategies [13].

2.1. The market model and problem formulation

We assume that W = (W (t))t≥0 is a standard Brownian motion deVned on the
canonical Wiener space (Ω,F ,P), where Ω = C0([0,∞)) denotes the set of con-
tinuous functions ω : [0,∞) → R satisfying ω(0) = 0 and where P denotes
the Wiener measure. We denote the augmented Vltration generated by W by
F = F0 = (F(t))t≥0 and similarly, given t > 0, we denote by Ft = (F t(u))u≥t

the augmented Vltration generated by (W (u)−W (t))u≥t. Moreover, we Vx some
terminal time T > 0 as well as some initial time t ∈ [0, T ).

We consider a market consisting of two assets, namely a risk-free asset (called
bond) with price process P 0 = (P 0(u))u∈[t,T ] and a risk-bearing asset (called
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2.1. The market model and problem formulation

stock) with price process P 1 = (P 1(u))u∈[t,T ]. We assume that the prices of the
two assets evolve as

dP 0(u) = 0, u ∈ [t, T ], P 0(t) = 1,

dP 1(u) = αP 1(u)du+ σP 1(u)dW (u), u ∈ [t, T ], P 1(t) = 1.

We refer to α > 0 as the excess return and σ > 0 as the volatility of the stock.

We assume that the investor faces proportional transaction costs. That is, we
assume that the investor buys shares of the stock at the ask price (1 + λ)P 1

where λ > 0 denotes the proportional costs for purchases of the stock. Similarly,
we assume that the stock is sold at the bid price (1 − µ)P 0, where µ ∈ (0, 1)
denotes the proportional costs for sales of the stock.

To model trading strategies in the presence of the proportional transaction costs
(λ, µ) we take L = (L(u))u∈[t,T ] and M = (M(u))u∈[t,T ] to be two Ft-adapted,
non-decreasing, càdlàg processes such that L(t−) = M(t−) = 0. We assume
that L and M represent the cumulative units of money used for purchases and
sales of the stock, respectively. Let us denote by B = BL,M

t,b = (BL,M
t,b (u))u∈[t,T ]

the investor’s wealth invested in the bond and let S = SL,M
t,s = (SL,M

t,s (u))u∈[t,T ]

denote the investor’s wealth invested in the stock. Under a self-Vnancing con-
dition on the trading strategy (L,M) the evolution of B and S can be written
as

dB(u) = −(1 + λ)dL(u) + (1− µ)dM(u), u ∈ [t, T ], (2.1)

dS(u) = αS(u)du+ σS(u)dW (u) + dL(u)− dM(u), u ∈ [t, T ], (2.2)

where the initial values are given by B(t−) = b and S(t−) = s, respectively.
The net wealth X = XL,M

t,b,s = (XL,M
t,b,s (u))u∈[t,T ] of the investor after liquidation

of the stock position is then given by

X(u) :=

{

B(u) + (1− µ)S(u), if S(u) > 0,

B(u) + (1 + λ)S(u), if S(u) ≤ 0,
u ∈ [t, T ].

We say that such a trading strategy is admissible if it leads to a non-negative net
wealth. For this, we deVne the following solvency cone:

S0 :=
{

(b, s) ∈ R2
∣

∣ b+ (1 + λ)s > 0, b+ (1− µ)s > 0
}

.
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So, whenever (B, S) ∈ S
0
the investor can liquidate her stock holdings to end up

with non-negative wealth. A trading strategy (L,M) is called admissible for an

initial position (b, s) ∈ S
0
if the corresponding pair (BL,M

t,b , SL,M
t,s ) takes values

in S
0
for all u ∈ [t, T ]. The set of all admissible trading strategies of this form is

denoted by A0(t, b, s). Figure 2.1 provides a sketch of the solvency cone.

s

b

b
+
(1

−
µ
)s

=
0

b+ (1 + λ)s = 0

S0

Figure 2.1. A sketch of the solvency cone S0.

With this, the objective of the investor is to maximize the expected utility of the
liquidation value of terminal wealth, i.e. she faces the optimization problem

V0(t, b, s) := sup
(L,M)∈A0(t,b,s)

E

[

Up

(

XL,M
t,b,s (T )

)]

, (2.3)

where the utility function Up is deVned in (1.1) for p < 1 (i.e. we restrict our
attention to power utility and logarithmic utility).
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2.2. Heuristics

2.2. Heuristics

Before we solve the optimization problem (2.3), let us Vrst build up some intuition
by treating the problem heuristically.

We Vrst note that the investor faces a balancing problem: On the one hand, one
expects that the investor would like her risky fraction to be close to the Merton
fraction since this is the optimal strategy in the absence of costs. On the other
hand, the transaction costs punish large transactions so that the investor cannot
keep her risky fraction constant (such a strategy results in immediate bankruptcy
since the trading volume is of inVnite variation within any strictly positive time
period). It is therefore reasonable to expect that the investor refrains from trading
as long as her risky fraction is close to the Merton fraction and that she makes
"minimal" transactions to keep the risky fraction from moving too far away from
the Merton fraction.

In addition, the investor has to take into account the Vnite time horizon. Since
the investor has to liquidate her stock holdings at terminal time T she should
decrease her stock holdings before the investment period comes to an end as
to bound the fees upon liquidation. In a similar fashion, buying shares of the
stock becomes less and less desirable as the investment horizon approaches since
there is no longer enough time left to recoup the losses due to transaction fees
incurred during purchases. This leads to strategies which look like the strategy
π(t) illustrated in Figure 2.2.

To formalize this mathematically, let us recall that the martingale optimality prin-
ciple of optimal stochastic control (see Korn [63]) suggests that the process

(

V0(u,B
L,M
t,b (u), SL,M

t,s (u))
)

u∈[t,T ]

is a supermartingale for every (L,M) ∈ A0(t, b, s) and a martingale for the
optimal (L∗,M∗). In order to Vnd V0 and (L∗,M∗), let us therefore take an
arbitrary (L,M) ∈ A0(t, b, s) and assume that V0 ∈ C1,2,2([0, T ] × S). Let us
furthermore assume for simplicity that L and M are continuous (we can do so
since we expect optimal trading to be "minimal"). By Itô’s formula we then obtain

V0(u,B(u), S(u)) = V0(t, b, s)−

∫ u

t

LntV0(r, B(r), S(r)) dr

23



2. Portfolio optimization with transaction costs

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Time t

R
is
k
y
fr
ac
ti
o
n
π

π(t)

Figure 2.2. Optimal trading under transaction costs.

−

∫ u

t

LbuyV0(r, B(r), S(r)) dL(r)

−

∫ u

t

LsellV0(r, B(r), S(r)) dM(r)

+

∫ u

t

σS(r)
∂

∂s
V0(r, B(r), S(r)) dW (r),

where the diUerential operators Lnt, Lbuy and Lsell are given by

Lnt = −
∂

∂t
− αs

∂

∂s
−

1

2
σ2s2

∂2

∂s2
, (2.4)

Lbuy = (1 + λ)
∂

∂b
−

∂

∂s
, (2.5)

Lsell = −(1− µ)
∂

∂b
+

∂

∂s
, (2.6)

respectively. Assuming that the stochastic integral process
(∫ u

t

σS(r)
∂

∂s
V0(r, B(r), S(r)) dW (r)

)

u∈[t,T ]

is a martingale, we hence need that

LntV0(t, b, s) ≥ 0, LbuyV0(t, b, s) ≥ 0, LsellV0(t, b, s) ≥ 0,
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2.2. Heuristics

for all (t, b, s) ∈ [0, T )×S0 in order for V0(u,B(u), S(u)) to be a supermartingale
for every (L,M).

For the optimal strategy (L∗,M∗) we expect V0(u,B(u), S(u)) to be an honest
martingale. For this to be true we need that the two integrals
∫ u

t

LbuyV0(r, B(r), S(r)) dL∗(r) and

∫ u

t

LsellV0(r, B(r), S(r)) dM∗(r)

vanish. This is certainly the case if dL∗(r) > 0 only if LbuyV0(r, B(r), S(r)) = 0
and similarly dM(r) > 0 only if LsellV0(r, B(r), S(r)) = 0. Moreover, for the
integral

∫ u

t

LntV0(r, B(r), S(r)) dr

to disappear we need that LntV0(r, B(r), S(r)) = 0 along the paths of the opti-
mally controlled (r, B(r), S(r)). This together with the discussion at the begin-
ning of this section suggests that the state space [0, T ) × S0 can be partitioned
into three regions

Rnt
0 :=

{

(t, b, s) ∈ [0, T )× S0 : LntV0(t, b, s) = 0
}

, (2.7)

Rbuy
0 :=

{

(t, b, s) ∈ [0, T )× S0 : LbuyV0(t, b, s) = 0
}

, (2.8)

Rsell
0 :=

{

(t, b, s) ∈ [0, T )× S0 : LsellV0(t, b, s) = 0
}

, (2.9)

and that it is optimal to buy shares of the stock in Rbuy
0 , sell shares of the stock

in Rsell
0 and refrain from trading in Rnt

0 . Moreover, the value function V0 can be
determined by solving the dynamic programming equation

0 = min
{

LntV0(t, b, s),L
buyV0(t, b, s),L

sellV0(t, b, s)
}

(2.10)

with suitable boundary conditions. Indeed, Proposition 2.4 and Corollary 2.6
show that V0 is the unique viscosity solution of the DPE (2.10).

Consider the strategy L ≡ M ≡ 0 and denote the corresponding wealth pro-
cess by (B0, S0). For every classical supersolution ϕ of the DPE (2.10) we have
Lntϕ(t, b, s) ≥ 0, and Itô’s formula together with a suitable localization proce-
dure shows that

ϕ(t, b, s) ≥ E
[

ϕ(τ, B0
t,b(τ), S

0
t,s(τ))

]

for any stopping time τ ∈ [t, T ]. That is, ϕ is space-time superharmonic with
respect to the uncontrolled wealth process (B0, S0). Moreover, the inequalities
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2. Portfolio optimization with transaction costs

Lbuyϕ(t, b, s) ≥ 0 and Lsellϕ(t, b, s) ≥ 0 show that for every l,m ≥ 0 we have

ϕ(t, b, s) ≥ ϕ(t, b− (1 + λ)l + (1− µ)m, s+ l −m),

i.e. ϕ is non-increasing in the direction of transactions. Indeed, by the gradient
theorem we have

ϕ(t, b, s)− ϕ(t, b− (1 + λ)l + (1− µ)m, s+ l −m)

=

∫ l

0

Lbuyϕ(t, b− (1 + λ)x, s+ x) dx

+

∫ m

0

Lsellϕ(t, b− (1 + λ)l + (1− µ)x, s+ l − x) dx

≥ 0. (2.11)

Since V0 is a viscosity solution of the DPE we expect that the same properties
hold for V0 as well and hence the comparison theorem for the DPE (Theorem 2.5)
suggests that V0 is the smallest superharmonic function which is non-increasing
in the direction of transactions. We make use of this idea in Section 2.6 to verify
the optimality of the candidate optimal strategy.

2.3. Some preliminary properties

The aim of this section is to gather some preliminary properties of V0 and the
DPE (2.10). We start by constructing a parametrized family of smooth functions
which dominate V0. For this, recall that p < 1 denotes the parameter associated
with the utility function Up, Vx constantsK ≥ 1 and γ ∈ [1−µ, 1+λ] and deVne

a function ϕγ,p,K : [0, T ]× S
0
→ [0,∞) by

ϕγ,p,K(t, b, s) := Up ((b+ γs)fp,K(t)) (2.12)

with fp,K : [0, T ] → R+ given by

fp,K(t) := exp

(

K
1

2(1− p)

α2

σ2
(T − t)

)

.

Note that ϕγ,p,1(t, b, s) = VM(t, b + γs), where VM is the Merton value func-
tion deVned in (1.2) and (1.3). Hence, we can expect ϕγ,p,K ≥ V0. Indeed, the
next lemma shows that ϕγ,p,K is a supersolution of the DPE (2.10) and a classical
veriVcation argument shows that ϕγ,p,K ≥ V0.
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Lemma 2.1. 1. The function ϕγ,p,K is a supersolution of the DPE (2.10) and a

strict supersolution if γ ∈ (1− µ, 1 + λ) andK > 1.

2. ϕγ,p,K dominates the value function V0. In particular, V0(t, b, s) < +∞ for

all (t, b, s) ∈ [0, T ]× S
0
.

Proof. 1. Direct computations reveal that

Lntϕγ,p,K(t, b, s) =
(b+ γs)p

2(1− p)σ2
(fp,K(t))

p

[(

α−
γσ2s

b+ γs

)2

+ (K − 1)α2

]

≥ 0,

Lbuyϕγ,p,K(t, b, s) = (b+ γs)p−1(fp,K(t))
p(1 + λ− γ) ≥ 0,

Lsellϕγ,p,K(t, b, s) = (b+ γs)p−1(fp,K(t))
p(−(1− µ) + γ) ≥ 0

where the inequalities are strict if γ ∈ (1− µ, 1 + λ) andK > 1.

2. Fix (t, b, s) ∈ [0, T ] × S
0
, ε > 0 and let (L,M) ∈ A0(t, b, s) so that

(L,M) ∈ A0(t, b + ε, s). Let (Kj)j∈N be a sequence of compact sets con-

taining (b, s) and (b + ε, s) such that the Kj increase to S
0
as j → ∞. For

each j ∈ N we deVne a stopping time

τj := inf
{

u ≥ t :
(

BL,M
t,b (u) + ε, SL,M

t,s (u)
)

6∈ Kj

}

∧ T

and note that τj → T as j → ∞.

Note that BL,M
t,b+ε = BL,M

t,b + ε and write Bε := BL,M
t,b+ε as well as S := SL,M

t,s .
Itô’s formula for càdlàg semimartingales (see Protter [92, Theorem II.32])
shows that

ϕγ,p,K(τj, B
ε(τj), S(τj))

= ϕγ,p,K(t, b+ ε, s)−

∫ τj

t

Lntϕγ,p,K(u,B
ε(u), S(u)) du

−

∫ τj

t

Lbuyϕγ,p,K(u,B
ε(u), S(u)) dLc(u)

−

∫ τj

t

Lsellϕγ,p,K(u,B
ε(u), S(u)) dM c(u)
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2. Portfolio optimization with transaction costs

+

∫ τj

t

σS(u)
∂

∂s
ϕγ,p,K(u,B

ε(u), S(u)) dW (u)

+
∑

t≤u≤τj

[ϕγ,p,K(u,B
ε(u), S(u))− ϕγ,p,K(u−, Bε(u−), S(u−))] ,

where Lc and M c denote the continuous parts of L and M , respectively.
Since Lbuyϕγ,p,K ,L

sellϕγ,p,K ≥ 0 we see that ϕγ,p,K is non-increasing in
the directions of the jumps of (u,Bε(u), S(u)) (by the gradient theorem,
see also (2.11)) and hence

∑

t≤u≤τj

[ϕγ,p,K(u,B
ε(u), S(u))− ϕγ,p,K(u−, Bε(u−), S(u−))] ≤ 0.

Moreover, since ϕγ,p,K is a supersolution of the DPE (2.10) it follows that

0 ≤

∫ τj

t

Lntϕγ,p,K(u,B
ε(u), S(u)) du,

0 ≤

∫ τj

t

Lbuyϕγ,p,K(u,B
ε(u), S(u)) dLc(u),

0 ≤

∫ τj

t

Lsellϕγ,p,K(u,B
ε(u), S(u)) dM c(u).

We therefore obtain

ϕγ,p,K(τj, B
ε(τj), S(τj)) ≤ ϕγ,p,K(t, b+ ε, s)

+

∫ τj

t

σS(u)
∂

∂s
ϕγ,p,K(u,B

ε(u), S(u)) dW (u)

and by taking expectations on both sides

ϕγ,p,K(t, b+ ε, s) ≥ E [ϕγ,p,K(τj, B
ε(τj), S(τj))]

for all j ∈ N. Since

ϕγ,p,K(τj, B
ε(τj), S(τj)) ≥ Up (B

ε(τj) + γS(τj)) ≥ Up(ε)

we can send j → ∞ and use Fatou’s lemma to see that

ϕγ,p,K(t, b+ ε, s) ≥ E [ϕγ,p,K(T,B
ε(T ), S(T ))]

= E [Up(B
ε(T ) + γS(T ))] .
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2.3. Some preliminary properties

Next, observe that since γ ∈ [1 − µ, 1 + λ] we have Bε(T ) + γS(T ) ≥
XL,M

t,b+ε,s(T ). This implies that

ϕγ,p,K(t, b+ ε, s) ≥ E

[

Up

(

XL,M
t,b+ε,s(T )

)]

= E

[

Up

(

XL,M
t,b,s (T ) + ε

)]

.

Now send ε ↓ 0 and use monotone convergence to obtain

ϕγ,p,K(t, b, s) ≥ E

[

Up

(

XL,M
t,b,s (T )

)]

and we conclude since (L,M) was chosen arbitrarily.

We now turn our focus to the value function V0. The following results are
straightforward and have already been observed in Shreve and Soner [97] in a
similar context.

Lemma 2.2. 1. Let (b, s) ∈ ∂S0. Then the only admissible strategy is to in-

stantly jump to the position (0, 0) and remain there.

2. For (b, s) ∈ S
0
, the trading strategy of instantly closing the stock position

and no trading afterwards is an admissible strategy. Furthermore, for every

(b, s) ∈ S
0
, we have

V0(t, b, s) ≥

{

Up (b+ (1− µ)s) , if s > 0,

Up (b+ (1 + λ)s) , if s ≤ 0.

Proof. 1. This is proved in Shreve and Soner [97, Remark 2.1]. The idea is ob-
vious: If the investor were not to close the stock position immediately, then
the state process would leave the solvency cone with positive probability.

2. This is obvious. See also Shreve and Soner [97, Remark 2.2].

Note that Lemma 2.2.2 allows us to restrict the admissible strategies inA0(t, b, s)
to those strategies (L,M) which satisfy

E

[

Up

(

XL,M
t,b,s (T )

)]

≥

{

Up (b+ (1− µ)s) , if s > 0,

Up (b+ (1 + λ)s) , if s ≤ 0,

which we will assume in the sequel. With a slight abuse of notation we denote
the restricted set of strategies again by A0(t, b, s).
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2. Portfolio optimization with transaction costs

Lemma 2.3. 1. V0 is homogeneous of order p. That is, for every κ > 0, V0

satisVes

V0(t, κb, κs) =

{

κpV0(t, b, s) if p < 1, p 6= 0,

log(κ) + V0(t, b, s) if p = 0.

for every (t, b, s) ∈ [0, T ]× S
0
.

2. Let l,m ≥ 0. Then

V0(t, b, s) ≥ V0(t, b− (1 + λ)l + (1− µ)m, s+ l −m)

whenever (b, s), (b− (1 + λ)l + (1− µ)m, s+ l −m) ∈ S
0
.

Proof. 1. This is a well-known fact, see for example Shreve and Soner [97,
Proposition 3.5] or Bichuch [15, Equation (2.11)] for a justiVcation.

2. This is again obvious since (b − (1 + λ)l + (1 − µ)m, s + l − m) can be
reached by an immediate transaction from (b, s) by buying l and selling m
shares of the stock. See also Shreve and Soner [97, Proposition 3.5].

The following proposition establishes the link between the value function V0

and the DPE (2.10) by showing that the value function is a viscosity solution
thereof. We refer to Appendix B for a brief introduction to viscosity solutions.
The proof of the following proposition can be found in Davis et al. [27] in a
slightly diUerent context under the assumption that V0 is continuous or can be
established along the lines of Shreve and Soner [97, Theorem 7.7] (also under the
continuity assumption). For a rigorous proof we refer to Chapter 3 in a more
general setting, see Corollary 3.12 and Corollary 3.23.

Proposition 2.4. The value function V0 is continuous and a viscosity solution of

the DPE (2.10) with boundary condition

V0(t, b, s) = Up(0), if (b, s) ∈ ∂S0, t ∈ [0, T ],

and terminal condition

V0(T, b, s) =

{

Up(b+ (1− µ)s), if s > 0,

Up(b+ (1 + λ)s), if s ≤ 0.
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2.4. The comparison principle

In what follows, we show that the value function is unique within a suitable class
of functions.

2.4. The comparison principle

Before we present the comparison principle for the dynamic programming equa-
tion let us Vrst introduce some notation. We deVne

F nt(s, q, ps, X) := −q − αsps −
1

2
σ2s2X22,

F buy(pb, ps) := (1 + λ)pb − ps,

F sell(pb, ps) := −(1− µ)pb + ps,

where (b, s) ∈ S0, q ∈ R, p = (pb, ps) ∈ R2 andX = (Xij)i,j=1,2 ∈ S2. Moreover,
set

F (s, q, p,X) := min
{

F nt(s, q, ps, X), F buy(pb, ps), F
sell(pb, ps)

}

. (2.13)

Then
F (s,DtV0(t, b, s), D(b,s)V0(t, b, s), D

2
(b,s)V0(t, b, s)) = 0

corresponds to the DPE (2.10).

In what follows we prove a comparison theorem for the DPE, which typically
takes the following form: If u and v are viscosity sub- and supersolutions of
the DPE, respectively, and u ≤ v on the boundary of the state space, then u ≤
v everywhere. The main diXculty in our setting is to control the behavior of
the viscosity solutions near ∂S0 since a boundary value of negative inVnity is
possible (V0 = −∞ on ∂S0 for p ≤ 0). More precisely, we cannot guarantee that
u− v ≤ 0 near ∂S0.

We adopt an idea from Soner and Vukelja [103] to deal with this problem: Instead
of merely specifying an upper bound on the growth of the solutions we add an
additional lower bound. Moreover, we shift the supersolution v by ε in the b
direction to ensure that v is Vnite on ∂S0. We can then prove a comparison
principle for the shifted v and conclude the classical comparison result by sending
ε → 0. We note that it is crucial for the following proof that the operators Lnt,
Lbuy and Lsell are independent of b, which in our problem setting is achieved
since the bond is chosen as the numéraire.
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2. Portfolio optimization with transaction costs

Theorem 2.5. Let u, v : [0, T ]×S
0
→ R and Vx ε > 0. Assume that u is an upper

semi-continuous viscosity subsolution of (2.10) and v is a lower semi-continuous

viscosity supersolution of (2.10) such that

Up(b+min{(1− µ)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕγ,p,K(t, b, s) (2.14)

for some p < 1, γ ∈ (1 − µ, 1 + λ) and K > 1. If u(T, b, s) ≤ v(T, b + ε, s)
and u(t, b, s) ≤ Up(0) for every (b, s) ∈ ∂S0, then u(t, b, s) ≤ v(t, b + ε, s) on

[0, T ]× S
0
.

Proof. Step 1: Suppose that there exists some (t∗, b∗, s∗) ∈ [0, T )× S
0
such that

u(t, b∗, s∗)− v(t∗, b∗ + ε, s∗) > 0.

Let us note that by the growth condition (2.14) we have

−v(t, b+ ε, s) ≤ −Up(b+ ε+min{(1− µ)s, (1 + λ)s}) ≤ −Up(ε) < ∞.

We therefore have (b∗, s∗) 6∈ ∂S0 since otherwise

u(t∗, b∗, s∗)− v(t∗, b∗ + ε, s∗) ≤ Up(0)− Up(ε) < 0

is a contradiction.

Step 2: DeVne the set

Dε :=
{

(t, b, s, t̄, b̄, s̄) : (t, b, s) ∈ [0, T )× S0, (t̄, b̄− ε, s̄) ∈ [0, T )× S0
}

.

Now, for some p′ ∈ (p, 1) with p′ > 0, for some δ0 > 0 to be Vxed later and every
n ∈ N we consider the upper semi-continuous functions φn : Dε → R deVned as

φn(t, b, s, t̄, b̄, s̄) := u(t, b, s)− v(t̄, b̄, s̄)− δ0ϕγ,p′,K(t, b, s)

−
n

2

(

|t− t̄|2 + |b− b̄+ ε|2 + |s− s̄|2
)

as well as φ∞ : [0, T ]× S
0
→ R given by

φ∞(t, b, s) := u(t, b, s)− v(t, b+ ε, s)− δ0ϕγ,p′,K(t, b, s).

Note that if (t, b, s, t̄, b̄, s̄) ∈ Dε, then

b̄+min{(1− µ)s̄, (1 + λ)s̄} ≥ ε
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and hence
−v(t̄, b̄, s̄) ≤ −Up(ε) < ∞.

Moreover, since u ≤ ϕγ,p,K ≤ ϕγ,p′,K we have

lim
|b|,|s|→∞

u(t, b, s)− δ0ϕγ,p′,K(t, b, s) = −∞

which implies that the supremum in

Mn := sup
Dε

φn(t, b, s, t̄, b̄, s̄)

is attained at some point (tn, bn, sn, t̄n, b̄n, s̄n) ∈ Dε. Also, note that the sequence
(tn, bn, sn, t̄n, b̄n, s̄n)n∈N is bounded andMn < +∞. Similarly, we have

M∞ := sup
[0,T ]×S

0

φ∞(t, b, s) < +∞

and the supremum is attained at some point (t∞, b∞, s∞) ∈ [0, T ] × S
0
. Let us

now choose

δ0 <
u(t∗, b∗, s∗)− v(t∗, b∗ + ε, s∗)

ϕγ,p′,K(t∗, b∗, s∗)

so that we have

Mn ≥ M∞ ≥ u(t∗, b∗, s∗)− v(t∗, b∗ + ε, s∗)− δ0ϕγ,p′,K(t
∗, b∗, s∗) > 0.

Step 3: We want to show that (up to a subsequence)

(tn, bn, sn, t̄n, b̄n, s̄n) → (t∞, b∞, s∞, t∞, b∞ + ε, s∞), Mn → M∞ (2.15)

and
n
(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

→ 0. (2.16)

First, let us recall that the sequence (tn, bn, sn, t̄n, b̄n, s̄n)n∈N is bounded and hence
so is the sequence

(

u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)
)

n∈N

because u − v − δ0ϕγ,p′,K is upper semi-continuous. Now since Mn ≥ M∞ we
have

0 ≤
n

2

(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)
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= u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)−Mn

≤ u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)−M∞, (2.17)

which implies that the sequence
(n

2

(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

)

n∈N

is bounded. We can hence Vnd a subsequence of (tn, bn, sn, t̄n, b̄n, s̄n)n∈N (which
we again denote by (tn, bn, sn, t̄n, b̄n, s̄n)n∈N for simplicity) such that

(tn, bn, sn, t̄n, b̄n, s̄n) → (t̂, b̂, ŝ, t̂, b̂+ ε, ŝ) ∈ Dε.

Passing to the limit in (2.17) now implies that

0 ≤ lim sup
n→∞

n

2

(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

≤ lim sup
n→∞

u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)−M∞

≤ u(t̂, b̂, ŝ)− v(t̂, b̂+ ε, ŝ)− δ0ϕγ,p′,K(t̂, b̂, ŝ)−M∞ ≤ 0

which proves (2.15) and (2.16).

Step 4: Next we show that t∞ 6= T and (b∞, s∞) 6∈ ∂S0. Suppose that on the
contrary we have t∞ = T . Then

0 < M∞ = u(T, b∞, s∞)− v(T, b∞ + ε, s∞)− δ0ϕγ,p′,K(T, b∞, s∞)

≤ u(T, b∞, s∞)− v(T, b∞ + ε, s∞) ≤ 0

which is a contradiction. Similarly, assuming that (b∞, s∞) ∈ ∂S0 leads to a
contradiction since

0 < M∞ = u(t∞, b∞, s∞)− v(t∞, b∞ + ε, s∞)− δ0ϕγ,p′,K(t∞, b∞, s∞)

≤ Up(0)− Up(ε) < 0.

Hence t∞ 6= T and (b∞, s∞) 6∈ ∂S0 and since tn, t̄n → t∞, bn → b∞, b̄n →
b∞ + ε and sn, s̄n → s∞, we furthermore have (tn, bn, sn, t̄n, b̄n, s̄n) ∈ Dε for n
suXciently large.

Step 5: Let n be large enough such that (tn, bn, sn, t̄n, b̄n, s̄n) ∈ Dε. Then we
can apply Theorem B.4 (Ishii’s lemma) to the upper semi-continuous function
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u− δ0ϕγ,p′,K and the lower semi-continuous function v to obtain the existence of
X, Y ∈ S2 such that

(n(tn − t̄n), n(bn − b̄n + ε), n(sn − s̄n), X) ∈ J
2,+

[u− δ0ϕγ,p′,K ](tn, bn, sn),

(n(tn − t̄n), n(bn − b̄n + ε), n(sn − s̄n), Y ) ∈ J
2,−

v(t̄n, b̄n, s̄n),

and such that
(

X 0
0 −Y

)

≤ 3n

(

I −I
−I I

)

. (2.18)

Since ϕγ,p′,K is smooth, it follows that

(

n(tn − t̄n) + δ0
∂

∂t
ϕγ,p′,K(tn, bn, sn),

n(bn − b̄n + ε) + δ0
∂

∂b
ϕγ,p′,K(tn, bn, sn),

n(sn − s̄n) + δ0
∂

∂s
ϕγ,p′,K(tn, bn, sn),

X + δ0D
2
(b,s)ϕγ,p′,K(tn, bn, sn)

)

∈ J
2,+

u(tn, bn, sn).

To ease notation, let us deVne

pnt := n(tn − t̄n), pnb := n(bn − b̄n + ε), pns := n(sn − s̄n).

Step 6: Since u is a viscosity subsolution of (2.10) and by the linearity of the
operators Lnt, Lbuy and Lsell we have

min
{

F nt(sn, p
n
t , p

n
s , X) + δ0L

ntϕγ,p′,K(tn, bn, sn),

F buy(pnb , p
n
s ) + δ0L

buyϕγ,p′,K(tn, bn, sn),

F sell(pnb , p
n
s ) + δ0L

sellϕγ,p′,K(tn, bn, sn)
}

≤ 0 (2.19)

and since v is a viscosity supersolution we have

min
{

F nt(s̄n, p
n
t , p

n
s , Y ), F buy(pnb , p

n
s ), F

sell(pnb , p
n
s )
}

≥ 0. (2.20)

Our aim is to show that (2.19) and (2.20) lead to a contradiction.

Suppose Vrst that in (2.19) we have

F buy(pnb , p
n
s ) + δ0L

buyϕγ,p′,K(tn, bn, sn) ≤ 0.
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But since by (2.20) we have F buy(pnb , p
n
s ) ≥ 0 it follows that

δ0L
buyϕγ,p′,K(tn, bn, sn) ≤ 0

which is a contradiction since ϕγ,p′,K is a strict supersolution of the DPE by
Lemma 2.1.1 and since γ ∈ (1 − µ, 1 + λ) and K > 1. In a similar fashion
assuming that

F sell(pnb , p
n
s ) + δ0L

sellϕγ,p′,K(tn, bn, sn) ≤ 0

leads to a contradiction. We must therefore have

F nt(sn, p
n
t , p

n
s , X) + δ0L

ntϕγ,p′,K(tn, bn, sn) ≤ 0.

Thus (2.20) implies that

F nt(sn, p
n
t , p

n
s , X)− F nt(s̄n, p

n
t , p

n
s , Y ) + δ0L

ntϕγ,p′,K(tn, bn, sn) ≤ 0.

Direct computations show that

F nt(sn, p
n
t , p

n
s , X)− F nt(s̄n, p

n
t , p

n
s , Y )

= −pnt − αsnp
n
s −

1

2
σ2s2nX22 + pnt + αs̄np

n
s +

1

2
σ2s̄2nY22

= −αn|sn − s̄n|
2 −

1

2
σ2[s2nX22 − s̄2nY22].

DeVne

σ̃(s) :=

(

0 0
0 s

)

, Σ :=

(

σ̃(sn)σ̃(sn) σ̃(sn)σ̃(s̄n)
σ̃(sn)σ̃(s̄n) σ̃(s̄n)σ̃(s̄n)

)

.

Then (2.18) implies that

s2nX22 − s̄2nY22 = tr [σ̃(sn)σ̃(sn)X − σ̃(s̄n)σ̃(s̄n)Y ]

= tr

[

Σ

(

X 0
0 −Y

)]

≤ 3n tr

[

Σ

(

I −I
−I I

)]

= 3n
(

s2n − 2sns̄n + s̄2n
)

= 3n|sn − s̄n|
2.
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Therefore,

F nt(sn, p
n
t , p

n
s , X)− F nt(s̄n, p

n
t , p

n
s , Y )

= −αn|sn − s̄n|
2 −

1

2
σ2[s2nX22 − s̄2nY22]

≥ −αn|sn − s̄n|
2 −

3

2
σ2n|sn − s̄n|

2

≥ −max{α,
3

2
σ2}n|sn − s̄n|

2.

We therefore have

0 ≥ F nt(sn, p
n
t , p

n
s , X)− F nt(s̄n, p

n
t , p

n
s , Y ) + δ0L

ntϕγ,p′,K(tn, bn, sn)

≥ −max{α,
3

2
σ2}n|sn − s̄n|

2 + δ0L
ntϕγ,p′,K(tn, bn, sn)

and since n|sn − s̄n|
2 → 0 as n → ∞ we obtain

0 ≥ δ0L
ntϕγ,p′,K(t∞, b∞, s∞) > 0

which is again a contradiction and hence Vnishes the proof.

The comparison theorem implies the following uniqueness result. In particular,
the value function V0 is the unique viscosity solution of the DPE.

Corollary 2.6. Let u, v be upper semi-continuous viscosity solutions of the DPE

satisfying

Up(b+min{(1− µ)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕγ,p,K(t, b, s)

with u(t, b, s) = v(t, b, s) = Up(0) on ∂S0 and

u∗(T, b, s) = u∗(T, b, s) = V0(T, b, s) = v∗(T, b, s) = v∗(T, b, s). (2.21)

Then u = v.

Proof. Let ε > 0 be arbitrary. Since u and v are viscosity solutions of the DPE,
u∗ is a viscosity supersolution and v∗ = v is a viscosity subsolution. Moreover,
by (2.21),

v(T, b, s) = Up(b+min{(1− µ)s, (1 + λ)s})
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2. Portfolio optimization with transaction costs

≤ Up(b+ ε+min{(1− µ)s, (1 + λ)s})

= u(T, b+ ε, s)

= u∗(T, b+ ε, s).

Hence v(t, b, s) ≤ u∗(t, b + ε, s) ≤ u(t, b + ε, s) everywhere by Theorem 2.5.
Sending ε to zero shows that v ≤ u by the upper semi-continuity of u. Switching
the roles of v and u shows the reverse inequality.

2.5. Construction of the optimal strategies

As pointed out in Section 2.2 we expect the operators Lnt, Lbuy and Lsell deVned
in (2.4)-(2.6) to determine the optimal strategy in the sense that the operators
give rise to the trading regions Rnt

0 , Rbuy
0 and Rsell

0 deVned in (2.7)-(2.9). Note
however that in order for the deVnitions of the trading regions to make sense we
need that V0 ∈ C1,2,2([0, T ) × S0). It is therefore necessary to study the DPE in
more detail for the existence of a suXciently regular solution and hope that this
regular solution coincides with the value function.

The fact that V0 and Up are homogeneous (cf. Lemma 2.3.1) can be used to reduce
the dimension of the DPE (2.10). For this, let us temporarily assume that p 6= 0
and consider the reduced solvency cone

S̃0 :=
{

(b, s) ∈ S0 : s > 0
}

.

For every (b, s) ∈ S̃0 consider the transformation

V0(t, b, s) =: spṼ0(t, b/s), Ṽ0(t, x) := V0(t, x, 1). (2.22)

Then, writing x = b/s, the DPE reduces to

0 = min
{

L̃nt
p Ṽ0(t, x), L̃

buy
p Ṽ0(t, x), L̃

sell
p Ṽ0(t, x)

}

, (2.23)

for (t, x) ∈ [0, T ) × (−(1 − µ),∞). The terminal condition is now given as
Ṽ0(T, x) = Up(x+1−µ) and diUerential operators L̃nt

p , L̃buy
p and L̃sell

p are deVned
as

L̃nt
p Ṽ0 := −

∂

∂t
Ṽ0 −

(

α−
1

2
(1− p)σ2

)

pṼ0

38



2.5. Construction of the optimal strategies

+
(

α− (1− p)σ2
)

x
∂

∂x
Ṽ0 −

1

2
σ2x2 ∂2

∂x2
Ṽ0,

L̃buy
p Ṽ0 := −(x+ 1− µ)

∂

∂x
Ṽ0 + pṼ0,

L̃sell
p Ṽ0 := (x+ 1 + λ)

∂

∂x
Ṽ0 − pṼ0.

For the case p = 0 we can set

V0(t, b, s) =: log(s) + Ṽ0(t, b/s), Ṽ0(t, x) := V0(t, x, 1).

to obtain the same reduced DPE (2.23), but with the diUerential operators L̃nt
0 ,

L̃buy
0 and L̃sell

0 given by

L̃nt
0 Ṽ0 := −

∂

∂t
Ṽ0 −

(

α−
1

2
σ2

)

+
(

α− σ2
)

x
∂

∂x
Ṽ0 −

1

2
σ2x2 ∂2

∂x2
Ṽ0,

L̃buy
0 Ṽ0 := −(x+ 1− µ)

∂

∂x
Ṽ0 + 1,

L̃sell
0 Ṽ0 := (x+ 1 + λ)

∂

∂x
Ṽ0 − 1.

Dai and Yi [24] prove the existence of a regular solution of the reduced DPE (2.23).
By inverting the above transformation it follows that there exists a classical so-
lution to the original DPE (2.10) on the reduced state space [0, T ) × S̃0. The
hope is of course that this classical solution coincides with the value function
on [0, T ) × S̃0 and that the so-obtained regularity is suXcient to construct the
optimal strategy. The following Theorem sums up the results of Dai and Yi [24,
Theorem 5.1, Proposition 3.2].

Theorem 2.7. There exists a function Ṽ0(t, x) ∈ C1,2(([0, T )×(−(1−µ),∞))\F )
with (∂/∂t)Ṽ0(t, x) ≤ 0 which solves the reduced DPE (2.23) in the classical sense.

Here, the set F is given by

F :=











∅, if πM < 1,

{(t, 0) : t ∈ [0, T )}, if πM = 1,

{(tup, 0)}, if πM > 1,

(2.24)

with πM = α/(1− p)σ2 as deVned in Section 1.1 and

tup = T −
log(1 + λ)− log(1− µ)

α− (1− p)σ2
. (2.25)
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2. Portfolio optimization with transaction costs

The classical solution obtained in Theorem 2.7 allows us to deVne the trading
regions as follows:

R̃buy
0 :=

{

(t, x) ∈ [0, T )× (−(1− µ),∞) : L̃buy
p Ṽ0(t, x) = 0

}

,

R̃sell
0 :=

{

(t, x) ∈ [0, T )× (−(1− µ),∞) : L̃sell
p Ṽ0(t, x) = 0

}

,

R̃nt
0 :=

(

[0, T )× (−(1− µ),∞)
)

\ (R̃buy ∪ R̃sell).

Note that we must necessarily have L̃nt
p Ṽ0(t, x) = 0 for all (t, x) ∈ R̃nt

0 . In
order to construct the optimal strategy it is important to determine the geometry
of these sets and the location of the boundaries between them. Dai and Yi [24,
Theorems 4.3, 4.5 and 4.7] provide the following characterization of these free
boundaries.

Theorem 2.8. 1. There exist two non-decreasing functions

x̃b, x̃s : [0, T ) → [−(1− µ),∞],

with x̃b(t) > x̃s(t) for all t ∈ [0, T ) such that

R̃nt
0 = {(t, x) ∈ [0, T )× (−(1− µ),∞) : x̃s(t) < x < x̃b(t)} ,

R̃buy
0 = {(t, x) ∈ [0, T )× (−(1− µ),∞) : x ≥ x̃b(t)} ,

R̃sell
0 = {(t, x) ∈ [0, T )× (−(1− µ),∞) : x ≤ x̃s(t)} .

Moreover, Ṽ0 ∈ C∞(R̃nt
0 ).

2. The function x̃b is continuous and satisVes

x̃b(t)



















> 0, if πM ≤ 1,

< 0, if πM > 1, t < tup,

= 0, if πM > 1, t = tup,

> 0, if πM > 1, t > tup,

where tup is deVned in (2.25). Furthermore, we have x̃b(t) = ∞ for t ∈
[tdown, T ) where

tdown := T −
log(1 + λ)− log(1− µ)

α
. (2.26)
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2.5. Construction of the optimal strategies

3. We have x̃s ∈ C∞([0, T )) and

x̃s(t)











> 0, if πM < 1,

= 0, if πM = 1,

< 0, if πM > 1.

Remark 2.9. A close inspection of the results of Dai and Yi [24] implies the
slightly stronger result

inf
t∈[0,T )

|x̃b(t)− x̃s(t)| > 0.

This can be seen by looking at the double obstacle formulation of the problem in
Equation (3.4) and the discussion in the Vrst paragraph in Section 3.2 in Dai and
Yi [24]. ⋄

Remark 2.10. The point tup turns out to be the time point at which the buy
boundary x̃b crosses the line x = 0 (i.e. all wealth invested in the stock). The
point tdown deVned in (2.26) is exactly the point in time from which onwards it is
no longer optimal to buy shares of the stock. ⋄

Note that since x = b/s we have b = sx̃b(t) and b = sx̃s(t) along the free
boundaries. This shows that for every t the free boundaries deVne a cone in the
original variables. See also Figure 2.3.

Figures 2.4-2.6 visualize the diUerent scenarios for the location of the free bound-
aries. Note that we parametrize the free boundaries in terms of risky fractions
here, i.e.

π0(t) :=
1

1 + x̃b(t)
, π0(t) :=

1

1 + x̃s(t)
.

Note that tup is the time point at which the free boundary in terms of the risky
fractions is equal to one, i.e. π0(tup) = 1 (this may only happen if πM > 1) and
tdown is the time point from which onwards the buy boundary in terms of risky
fractions is equal to zero, i.e. π0(t) = 0 for all t ∈ [tdown, T ].

For obvious reasons we refer to x̃b and x̃s as the buy and sell boundary, respec-
tively. If our conjecture that the buy and sell boundaries characterize the optimal
strategies is indeed correct (and which will be rigorously proved in Section 2.6)
then Theorem 2.8 has the following implications:
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s

b

b =
sx̃b(t

)
b
=
sx̃

s
(t
)

Figure 2.3. The free boundaries in the original variables for a Vxed t.

1. If πM < 1 (c.f. Figure 2.4), i.e. if borrowing is not optimal in the absence of
transaction costs, then it is also not optimal in the presence of transaction
costs. This is because both x̃b > 0 and x̃s > 0, implying that π0, π0 ∈ (0, 1).

2. If πM = 1 (c.f. Figure 2.5), i.e. if it is optimal to invest all money in the stock
in the absence of transaction costs, then two cases must be distinguished
in the presence of transaction costs: If the initial position of the investor is
such that x ≤ 0 (i.e. b ≤ 0) then the bond position is closed and all money is
kept in the stock (since x̃s = 0, i.e. π0 = 1). However, if the initial position
is such that x > 0 (which implies in particular b > 0), then it is not optimal
to close the bond position. This is because we force the investor to close
the stock position at terminal time T and hence it is too expensive to Vrst
buy shares of the stock at initial time just to liquidate the stock position
once the investment horizon is reached.

3. If πM > 1 (c.f. Figure 2.6), i.e. if borrowing is optimal in the absence of
costs, we need to distinguish three cases. Since after the initial transaction
the investor never switches from borrowing to no-borrowing or vice versa
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Figure 2.4. The trading regions for πM < 1.

(x̃s < 0 so that π0 > 1, x̃b non-decreasing so that π0 is non-increasing),
the initial transaction determines whether borrowing or no-borrowing is
optimal.

(a) tup > 0:
In this case borrowing is optimal since x̃b(0) < 0, i.e. π0(0) > 1.

(b) tup = 0:
If the initial position is such that x < 0 (i.e. b < 0) then borrowing is
optimal, otherwise the investor invests all of her wealth in the stock
(since x̃b(0) = 0 and hence π0(0) = 1).

(c) tup < 0: In this case borrowing is optimal if x < 0 (i.e. b < 0) and
no-borrowing is optimal if x ≥ 0 (i.e. b ≥ 0). This is because x̃s(t) <
0 < x̃b(t) and hence π0(t) < 1 < π0(t) for all t ∈ [0, T ).

4. In any case, as soon as t ≥ tdown, the investor refrains from buying shares
of the stock since x̃b(t) = ∞, i.e. π0(t) = 0, see also Remark 2.10.

5. If the initial position (b, s) in the original variables is such that s ≤ 0
then it is not immediately clear what the optimal strategy is. We expect
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Figure 2.5. The trading regions for πM = 1.

that whenever x̃b(t) = ∞ (i.e. π0(t) = 0) then it is optimal to liquidate
to stock position and refrain from further trading. Whenever x̃b(t) < ∞
(i.e. π0(t) > 0) we expect that the investor performs an initial transaction
which takes her position on the boundary of the no-trading region. This
conjecture is proved in Section 2.6, but intuitively this behavior is clear:
Since the excess return α is positive and since the investor has to liquidate
her stock holdings at time T it should never be optimal to have a short
position in the stock before time T .

Remark 2.11. Note that, given the Merton fraction πM , the terminal time T
and the investor’s initial position (b, s), we know whether borrowing is optimal
or not. That is, the investor’s position never changes from borrowing to no-
borrowing (or vice versa) after the initial transaction. With this, Theorem 2.8
and the discussion preceding this remark indicate that we have to distinguish be-
tween the borrowing, the no-borrowing, and the liquidation case (i.e. liquidation
of either the bond or stock position at initial time and no trading afterwards) for
the construction of the optimal strategies. ⋄

For the construction of the optimal strategy we need to prove the existence of
Vnite-variation processes L∗ = (L∗(u))u∈[t,T ] and M∗ = (M∗(u))u∈[t,T ] which

turn the controlled wealth process (BL∗,M∗

t,b , SL∗,M∗

t,s ) into a diUusion reWected
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Figure 2.6. The trading regions for πM > 1.

at the boundary of Rnt
0 . The main diXculty is the geometry of Rnt

0 : It is an
unbounded cone changing over time (see Figure 2.3). There is a vast literature on
the construction of reWected diUusions, most notably Skorohod [98], Strook and
Varadhan [105], Tanaka [107], Lions and Sznitman [73], Dupuis and Ishii [33, 34]
and recently Nyström and Önskog [87], but the assumptions are usually very
technical and are diXcult to verify in our situation. However, Theorem 2.7 and
Theorem 2.8 suggest to Vrst reduce the dimension of the problem so that we only
have to deal with reWection in a time-dependent interval. This problem is by
now well-understood, see e.g. Burdzy et al. [17], Slaby [99] and Słomiński and
Wojciechowski [101, 100].

As pointed out in Remark 2.11 we consider the borrowing, no-borrowing and
the liquidation cases separately. For this, let us Vx an initial datum (t0, b0, s0) ∈

[0, T ) × S
0
. For (b0, s0) ∈ ∂S0 the optimal strategies are known (Lemma 2.2.1),

so let us assume further that (b0, s0) ∈ S0. Next, note that we can without loss of
generality assume that the initial position is inside the closure of the no-trading
region Rnt

0 . Indeed, if (t0, b0, s0) 6∈ Rnt
0 , then we can Vnd (b∗, s∗) and (minimal)

l,m ≥ 0 such that (t0, b∗, s∗) ∈ ∂Rnt
0 and

b∗ = b0 − (1 + λ)l + (1− µ)m, s∗ = s0 + l −m.
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If (L∗,M∗) is now the candidate optimal strategy for (t0, b∗, s∗) then (L∗+l,M∗+
m) is the candidate optimal strategy for (t0, b0, s0). In other words: By a suitable
initial transaction we can always ensure that we start within the closure of the
no-trading region.

Comparing with Figure 2.4, we see that in the case of πM < 1 we have to distin-
guish the following cases (after the initial transaction):

Cases for πM < 1

t0 arbitrary, s0 > 0, b0 > 0 Case (e): No borrowing

t0 ≥ tdown, s0 = 0, b0 > 0 Case (d): Liquidation (stock)

In the case of πM = 1, the following cases may occur after the initial transaction
(compare with Figure 2.5):

Cases for πM = 1

t0 arbitrary, s0 > 0, b0 = 0 Case (a): Liquidation (bond)

t0 ≥ tdown, s0 = 0, b0 > 0 Case (d): Liquidation (stock)

t < tdown, s0 > 0, b0 > 0 Case (f): No borrowing

Finally, if πM > 1 we have to distinguish the following cases (see Figure 2.6):

Cases for πM > 1

t0 < tup, s0 > 0, b0 < 0 Case (h): Borrowing

t0 = tup, s0 > 0, b0 = 0 Case (b): Liquidation (bond)

t0 = tup, s0 > 0, b0 < 0 Case (h): Borrowing

tup < t0 < tdown, s0 > 0, b0 < 0 Case (h): Borrowing

tup < t0 < tdown, s0 > 0, b0 = 0 Case (b): Liquidation (bond)

tup < t0 < tdown, s0 > 0, b0 > 0 Case (g): No borrowing

t0 ≥ tdown, s0 = 0, b0 > 0 Case (d): Liquidation (stock)

t0 ≥ tdown, s0 > 0, b0 < 0 Case (h): Borrowing

t0 ≥ tdown, s0 > 0, b0 = 0 Case (b): Liquidation (bond)

t0 ≥ tdown, s0 > 0, b0 > 0 Case (g): No borrowing
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The cases (a)-(d) are liquidation cases and can be summed up as follows:

(a) πM = 1 with s0 > 0 and b0 = 0.

(b) πM > 1 with s0 > 0, b0 = 0 and t0 ≥ tup.

(c) πM > 1 with s0 = 0, b0 > 0 and t0 = tup.

(d) πM arbitrary, t0 ≥ tdown and s0 = 0.

It is clear that we can exclude these cases in the following since the investor
refrains from further trading after the initial transaction. We are hence left with
the cases

(e) πM < 1 with s0, b0 > 0,

(f) πM = 1 with s0, b0 > 0,

(g) πM > 1 with s0, b0 > 0 and t0 > tup,

(h) πM > 1 with s0 > 0, b0 < 0.

The cases (e)-(g) are no-borrowing cases whereas we expect borrowing to be
optimal in the case (h). It turns out that for the construction of the reWected
diUusions it is advantageous to consider the change of variables s/b in the no-
borrowing case and s/(−b) in the borrowing case (as opposed to the transforma-
tion b/s as considered for the construction of the classical solution of the reduced
DPE (2.23)).

By Theorem 2.7 we see that by reversing the transformation in (2.22) we can
construct a function V0 on [0, T ] × S̃0 from Ṽ0, such that V0 solves the original
DPE given in (2.10) on the reduced state space [0, T ] × S̃0. Note that, with this
and Theorem 2.8, V0 is of class C1,2,2 except for the points (t, b, s) ∈ [0, T ] × S̃0

on which the boundaries of the no-trading region intersect with the set {(t, 0, s) :
t ∈ [0, T ], (0, s) ∈ S̃0} (compare with the set F deVned in Theorem 2.7). Next,
let us deVne

S0
+ :=

{

(b, s) ∈ S0 : b > 0, s > 0
}

, S0
− :=

{

(b, s) ∈ S0 : b < 0, s > 0
}

.
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In the sequel we work on the reduced state space [0, T ]×S0
+ in the no-borrowing

cases (e)-(g) and [0, T ]× S0
− in the borrowing case (h).

2.5.1. Construction in the no-borrowing case (e)

The main idea for the construction of the optimal strategy is to Vnd a suitable
transformation of the state space so that the problem of constructing an obliquely
reWected diUusion in an unbounded and time-dependent cone simpliVes to nor-
mal reWection in a time-dependent interval. The transformation is based on ideas
from Gerhold et al. [41]. We restrict ourselves to the case p < 1, p 6= 0 and
remark that the construction for the case p = 0 follows similarly.

Let us Vrst assume that we are in case (e), i.e. πM < 1 with s0, b0 > 0. In
particular, Ṽ0 is of class C1,2 and hence V0 is of class C1,2,2 everywhere. We
deVne

l(t) :=

{

1/x̃b(t), if x̃b(t) < ∞,

0, if x̃b(t) = ∞,
, u(t) :=

1

x̃s(t)
. (2.27)

By Theorem 2.8 we see that l(t) < u(t), l(t) ∈ C([0, T )) and u(t) ∈ C∞([0, T )).

On the set [0, T ]× S0
+ we consider the transformation

V0(t, b, s) = bp exp

(

−p

∫ 0

log(s/(bu(t)))

w(t, y) dy

)

.

Then, setting x = log(s/(bu(t))),

∂

∂t
V0(t, b, s) = −pV0(t, b, s)

(∫ 0

x

wt(t, y) dy +
u′(t)

u(t)
w(t, x)

)

,

∂

∂b
V0(t, b, s) = pV0(t, b, s)

1

b
[1− w(t, x)] ,

∂

∂s
V0(t, b, s) = pV0(t, b, s)

w(t, x)

s
,

∂2

∂s2
V0(t, b, s) = pV0(t, b, s)

1

s2
(

wx(t, x) + pw(t, x)2 − w(t, x)
)

.

With this and using that V0 satisVes LbuyV0 ≥ 0 and LsellV0 ≥ 0 we see that w
satisVes

1− µ ≤
w(t, x)

u(t)(1− w(t, x))ex
≤ 1 + λ, (2.28)

48



2.5. Construction of the optimal strategies

and where equality holds if LsellV0 = 0 or LbuyV0 = 0, respectively. Moreover,
since LntV0 = 0 whenever LbuyV0 > 0 and LbuyV0 > 0, we see that

∫ 0

x

wt(t, y) dy −
(

α−
1

2
σ2 −

u′(t)

u(t)

)

w(t, x)−
1

2
pσ2w(t, x)2 −

1

2
σ2wx(t, x) = 0,

whenever w/u(1−w)ex 6∈ {1− µ, 1 + λ}. Using that V0 is C∞ in the interior of
the no-trading region (Theorem 2.8) we can take the derivative with respect to x
in the last equation to obtain

1

2
σ2wxx(t, x)

= −wt(t, x)−
(

α−
1

2
σ2 −

u′(t)

u(t)

)

wx(t, x)− pσ2w(t, x)wx(t, x). (2.29)

Consider again the fraction in (2.28), i.e.

f(t, x) =
w(t, x)

u(t)(1− w(t, x))ex
.

Note that, since the points x = 0 and x = log(l(t)/u(t)) constitute the boundary
points of the no-trading region in the new variables by (2.27), we must have

f
(

t, x
)

= 1− µ, if x ≥ 0, (2.30)

f(t, x) = 1 + λ, if x ≤ log(l(t)/u(t)). (2.31)

Note that for the point x = log(l(t)/u(t)) these considerations are only valid for
t ∈ [0, tdown) since otherwise log(l(t)/u(t)) = −∞.

Remark 2.12. We have

f(t, x) =
w(t, x)

u(t)(1− w(t, x)ex)
∈ [1− µ, 1 + λ]

and f(t, x) ∈ {1− µ, 1 + λ} inside the buy and sell regions. This suggests that

f(t,X∗(t))P 1(t)

with X∗(t) = log(S∗(t)/B∗(t)u(t)) (and where (B∗, S∗) denotes the optimally
controlled wealth process) is the shadow price corresponding to our problem.
This is conVrmed in Gerhold et al. [41]. ⋄
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2. Portfolio optimization with transaction costs

The next step is to construct a reWected diUusion in the time-dependent interval
[log(l(t)/u(t)), 0].

Lemma 2.13. There exists a process Ψ = (Ψ(t))t∈[t0,T ) and Vnite-variation pro-

cesses L = (L(t))t∈[t0,T ) and M = (M(t))t∈[t0,T ) such that

dΨ(t) =
[

α−
1

2
σ2−

u′(t)

u(t)

]

dt+σ dW (t)+1[t0,tdown)dL(t)−dM(t), t ∈ [t0, T ),

(2.32)
with

Ψ(t0) = log

(

s0
b0u(t0)

)

,

and such that Ψ is a diUusion reWected on the boundaries of the time-dependent

interval [log(l(t)/u(t)), 0].

Proof. This follows from Słomiński and Wojciechowski [101, Theorem 3.3] to-
gether with Remark 2.9.

Let us now deVne a process N = (N(t))t∈[t0,T ) through

dN(t) = N(t)
(

1− w
(

t, log(l(t)/u(t))
))

1[t0,tdown) dL(t)

−N(t) (1− w(t, 0)) dM(t), t ∈ [t0, T ),

with N(t0) = s0/P
1(t0). Note that since dL(t) = 0 for every t ∈ [tdown, T ) this

can equivalently be written as

dN(t) = N(t)
(

1− w
(

t, log(l(t)/u(t))
))

dL(t)

−N(t) (1− w(t, 0)) dM(t), t ∈ [t0, T ). (2.33)

Remark 2.14. Comparing with Gerhold et al. [41], we interpretΨ as the optimal
stock to bond ratio andN as the optimal cumulative number of shares of the stock
bought up to time t. Furthermore, again as in Gerhold et al. [41], the function
w can be interpreted as the optimal risky fraction and hence 1 − w coincides
with the optimal fraction of wealth invested into the bond which gives a nice
interpretation for all the terms occurring in (2.33). ⋄

With this, we now have all the necessary tools at hand to construct the opti-
mal strategies. Let us deVne a process S∗ = (S∗(t))t∈[t0,T ) through S∗(t) :=
N(t)P 1(t). Then S∗(t0) = N(t0)P

1(t0) = s0 and
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2.5. Construction of the optimal strategies

dS∗(t) = αS∗(t) dt+ σS∗(t) dW (t)

+ S∗(t)
(

1− w
(

t, log(l(t)/u(t))
))

dL(t)

− S∗(t) (1− w(t, 0)) dM(t), t ∈ [t0, T ).

Furthermore, deVne B∗ = (B∗(t))t∈[t0,T ) by B∗(t) := S∗(t)e−Ψ(t)/u(t) to obtain

B∗(t0) =
S∗(t0)

u(t)eΨ(t0)
= b0

and

dB∗(t) = −w
(

t, log(l(t)/u(t))
)

B∗(t) dL(t)

+ w(t, 0)B∗(t) dM(t), t ∈ [t0, T ).

Using the deVnition of B∗, (2.30) and (2.31) we see that

w(t, 0)B∗(t) =
w(t, 0)S∗(t)

u(t)e0
= (1− µ)S∗(t)(1− w(t, 0)),

and similarly

w
(

t, log(l(t)/u(t))
)

B∗(t) =
w
(

t, log(l(t)/u(t))
)

S∗(t)

u(t)elog(l(t)/u(t))

= (1 + λ)S(t)∗
(

1− w
(

t, log(l(t)/u(t))
))

.

So, in total, the dynamics of B∗ simplify to

dB∗(t) = −(1 + λ)S∗(t)
(

1− w
(

t, log(l(t)/u(t))
))

dL(t)

+ (1− µ)S∗(t) (1− w(t, 0)) dM(t), t ∈ [t0, T ).

Hence, if we deVne

dL∗(t) = N(t)P 1(t)
(

1− w
(

t, log(l(t)/u(t))
))

dL(t), t ∈ [t0, T ),

dM∗(t) = N(t)P 1(t) (1− w(t, 0)) dM(t), t ∈ [t0, T ),

with L∗(t0) = 0, M∗(t0) = 0 and if we set (liquidation at terminal time)

L∗(T ) = L∗(T−) + S∗(T−)1{S∗(T−)<0},

M∗(T ) = M∗(T−) + S∗(T−)1{S∗(T−)>0},

S∗(T ) = 0,

B∗(T ) = B∗(T−) + min{(1− µ)S∗(T−), (1 + λ)S∗(T−)},

then (L∗,M∗) ∈ A0(t0, b0, s0), and (B∗, S∗) is a diUusion reWected on the bound-
ary of Rnt

0 .
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2. Portfolio optimization with transaction costs

2.5.2. Construction in the other cases

The construction in the other cases (f)-(h) follows in a similar way as the con-
struction in the case (e). We outline some of the details in the sequel.

Let us Vrst assume that we are in one of the no-borrowing cases (f) or (g). That is,
we either have πM = 1 with s0, b0 > 0, or πM > 1 with s0, b0 > 0 and t0 > tup.
While the construction here is similar to the case (e) we have to be more careful
since the upper boundary in terms of the transformation s/b is now equal to
inVnity which does not allow us to consider the transformation x = log(s/bu(t)).
However, since the upper boundary is now equal to inVnity, we deal with one-
sided reWection which simpliVes matters again (we never have to sell shares of
the stock!). As before, we deVne the lower boundary l(t) to be given by

l(t) :=

{

1/x̃b(t), if x̃b(t) < ∞,

0, if x̃b(t) = ∞,

and consider the slightly diUerent transformation

V0(t, b, s) = bp exp

(

−p

∫ 0

log(s/b)

w(t, y) dy

)

.

Setting x = log(s/b) and arguing in a similar fashion as before the existence of
the candidate optimal strategy follows. Note, however, that the process Ψ now
has to be be constructed without the u′(t)/u(t) term in its drift (see (2.32)).

Let us now turn to the borrowing case (h). That is, assume πM > 1, s0 > 0,
b0 < 0 and t0 ∈ [0, T ). Since b0 < 0 and since we want the optimally controlled
bond wealthB∗ to satisfyB∗ < 0, we have to consider a diUerent transformation.
More precisely, we consider the transformation s/(−b) instead. We Vrst deVne
the trading boundaries to be

l(t) = −
1

x̃s(t)
, u(t) =

{

−1/x̃b(t), if t < tup

∞, if t ≥ tup.

Theorem 2.8 implies 0 < l(t) < u(t) ≤ ∞, l(t) ∈ C∞([0, T )) and u(t) ∈
C([0, T )) (note, however, that in this case the lower boundary l is deVned by
means of x̃s instead of x̃b). The correct transformation of the function V0 has
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2.6. VeriVcation and value function regularity

then to be chosen to be

V0(t, b, s) = (−b)p exp

(

−p

∫ log(s/(−bl(t)))

0

w(t, y) dy

)

,

where we restrict V0 to the set S0
−. This leads to similar calculations as in the case

(e) but with the lower boundary l in place of the upper boundary u in the drift
term of the process Ψ (see (2.32)).

2.6. VeriVcation and value function regularity

We now proceed by verifying that the strategies constructed in the previous sec-
tion are indeed optimal. Since V0 is only deVned on [0, T ] × S̃0 classical veriV-
cation arguments are diXcult (it will turn out that V0 is not suXciently regular
everywhere, see Theorem 2.28). Instead, we adapt the approach introduced in
Christensen [20] for impulse control problems to our setting: The idea is to show
that the value function is the point-wise minimum within a suitable class of su-
perharmonic functions.

More precisely, let us denote by H the set of all continuous functions h : [0, T ]×

S
0
→ R satisfying the following properties:

(i) h(T, b, s) ≥ V0(T, b, s) on {T} × S
0
.

(ii) h is non-increasing in the direction of transactions, i.e. whenever (t, b, s) ∈

[0, T ]×S
0
and if l,m ≥ 0 are such that (b−(1+λ)l+(1−µ)m, s+l−m) ∈

S
0
, then

h(t, b, s) ≥ h(t, b− (1 + λ)l + (1− µ)m, s+ l −m).

(iii) h is space-time superharmonic with respect to the uncontrolled wealth pro-
cess. More precisely, denote by (B0, S0) = (B0

t,b, S
0
t,s) the wealth process

corresponding to the strategy L ≡ M ≡ 0 and let ϑ be the Vrst hitting time
of ∂S0. Then h is called space-time superharmonic (or superharmonic for
short) if and only if

h(t, b, s) ≥ E
[

h
(

τ ∧ ϑ,B0
t,b(τ ∧ ϑ), S0

t,s(τ ∧ ϑ)
)]

53



2. Portfolio optimization with transaction costs

for every [t, T ]-valued stopping time τ .

(iv) There exists γ ∈ (1− µ, 1 + λ) andK > 1 such that

Up(b+min{(1− µ)s, (1 + λ)s}) ≤ h(t, b, s) ≤ ϕγ,p,K(t, b, s).

We expect that V0 is the point-wise minimum of the elements of H. If this is true
we can prove the optimality of (L∗,M∗) as follows:

1. Show that every h ∈ H dominates V0.

2. DeVne the function

h0(t, b, s) := E

[

Up

(

XL∗,M∗

t,b,s (T )
)]

and show that h0 ∈ H.

It follows that V0 ≤ h0, but h0 ≤ V0 since (L∗,M∗) is admissible. Hence h0 = V0

and (L∗,M∗) is optimal.

In Lemma 2.15 below we show that every h ∈ H dominates V0. Then we proceed
by analyzing the regularity of h0 and use these results to show that h0 is super-
harmonic in Proposition 2.25 and show that h0 is non-increasing in the direction
of transactions in Proposition 2.26. The optimality of (L∗,M∗) then follows in
Corollary 2.27.

Lemma 2.15. Let h ∈ H. Then V0 ≤ h.

Proof. We show that h is a viscosity supersolution of the DPE (2.10). By The-
orem 2.5 (comparison principle) it then follows that for every ε > 0 we have
V0(t, b, s) ≤ h(t, b + ε, s) everywhere and by the continuity of h we can send
ε ↓ 0 to conclude.

Let us therefore Vx (t0, b0, s0) ∈ [0, T ) × S0 and let ϕ ∈ C1,2,2([0, T ) × S0) be
such that ϕ ≤ h and ϕ(t0, b0, s0) = h(t0, b0, s0). We have to show that

min
{

Lntϕ(t0, b0, s0),L
buyϕ(t0, b0, s0),L

sellϕ(t0, b0, s0)
}

≥ 0.
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2.6. VeriVcation and value function regularity

Let l > 0 be such that (b0 − (1 + λ)s, s+ l) ∈ S0. Then

ϕ(t0, b0, s0)− ϕ(t0, b0 − (1 + λ)l, s+ l)

≥ h(t0, b0, s0)− h(t0, b0 − (1 + λ)l, s+ l) ≥ 0

since ϕ(t0, b0, s0) = h(t0, b0, s0), ϕ ≤ h and since h is non-increasing in the
direction of transactions. Now divide by l end send l ↓ 0 to obtain

Lbuyϕ(t0, b0, s0) ≥ 0.

By similar arguments we can show that

Lsellϕ(t0, b0, s0) ≥ 0

and hence it only remains to show that

Lntϕ(t0, b0, s0) ≥ 0.

Suppose that on the contrary we have

Lntϕ(t0, b0, s0) < 0.

Then there exist ε, δ > 0 such that t0 + ε < T , Bε(b0, s0) ⊂ S0 and

Lntϕ(t, b, s) < −δ

for all (t, b, s) ∈ [t0, t0 + ε]×Bε(b0, s0). Now deVne the stopping time

τε := inf
{

u ≥ t0 : (B
0
t0,b0

(u), S0
t0,s0

(u)) 6∈ Bε(b0, s0)
}

∧ (t0 + ε).

Since h is space-time superharmonic and by Itô’s formula we have

ϕ(t0, b0, s0) = h(t0, b0, s0)

≥ E
[

h(τε, B
0
t0,b0

(τε), S
0
t0,s0

(τε))
]

≥ E
[

ϕ(τε, B
0
t0,b0

(τε), S
0
t0,s0

(τε))
]

= ϕ(t0, b0, s0)− E

[∫ τε

t0

Lntϕ(u,B0
t0,b0

(u), S0
t0,s0

(u)) du

]

,

i.e.

E

[∫ τε

t0

Lntϕ(u,B0
t0,b0

(u), S0
t0,s0

(u)) du

]

≥ 0.
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This must however imply that

max
u∈[t0,t0+ε]

(b,s)∈Bε(b0,s0)

Lntϕ(u, b, s) ≥ 0.

Sending ε ↓ 0 hence implies that

Lntϕ(t0, b0, s0) ≥ 0

which is a contradiction.

In Section 2.5 and Lemma 2.2.1 we have constructed the candidate optimal strate-

gies (L∗,M∗) = (L∗
t,b,s(u),M

∗
t,b,s(u))u∈[t,T ] for every (t, b, s) ∈ [0, T )×S

0
. More-

over, it is obvious that the candidate optimal strategy (L∗
T,b,s(u),M

∗
T,b,s(u)) is the

strategy which merely liquidates the stock position s. This allows us to deVne
the function

h0(t, b, s) := E

[

Up

(

XL∗,M∗

t,b,s (T )
)]

, (t, b, s) ∈ [0, T ]× S
0
. (2.34)

Our next aim is to show that h0 ∈ H and hence h0 = V0 and (L∗,M∗) is optimal.
As a Vrst step, we show that h0 coincides with V0 on [0, T ]× S̃0.

Proposition 2.16. The function h0 deVned in (2.34) coincides with the classical

solution V0 of the DPE on the reduced state space [0, T ]× S̃0.

Proof. Let (t, b, s) ∈ [0, T ) × S̃0. If (t, b, s) is such that we are in one of the liq-
uidation cases (a), (b), or (c), then direct computations reveal that h0(t, b, s) =
V0(t, b, s) since V0 is explicitly known at these points (cf. Dai and Yi [24, Propo-
sition 3.2]). For example, assume that p = 0, πM > 1 and (t, b, s) = (tup, 0, s).
Then Dai and Yi [24, Proposition 3.2] show that

V0(t, b, s) = log(s) + Ṽ0(t, 0)

= log(s) + log(1− µ) +
(

α−
1

2
σ2
)

(T − t)

= E

[

log((1− µ)SL∗,M∗

t,s (T ))
]

= E

[

U0(b+ (1− µ)SL∗,M∗

t,s (T ))
]

= h0(t, b, s).
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We therefore exclude these cases in the sequel. For ease of notation, we denote
the controlled processes (BL∗,M∗

t,b,s , SL∗,M∗

t,b,s ) by (B∗, S∗).

First, let us remark that by the gradient theorem

V0(t, b, s) = V0

(

t, b− (1 + λ)L∗(t) + (1− µ)M∗(t), s+ L∗(t)−M∗(t)
)

since L∗(t) 6= 0 only if (t, b, s) ∈ Rbuy
0 andM∗(t) 6= 0 only if (t, b, s) ∈ Rsell

0 . For
n ∈ N deVne the stopping times

τn := inf

{

u ≥ t :

∫ u

t

[

σS∗(r)
∂

∂s
V0(r, B

∗(r), S∗(r))

]2

dr ≥ n

}

∧ T.

Since (B∗, S∗) has continuous paths after the initial transaction and V0 is of class
C1,2,2 along the paths of (u,B∗, S∗) we can apply Itô’s formula to obtain

V0(t, b, s) = V0

(

t, b− (1 + λ)L∗(t) + (1− µ)M∗(t), s+ L∗(t)−M∗(t)
)

= V0(τn, B
∗(τn), S

∗(τn)) +

∫ τn

t

LntV0(u,B
∗(u), S∗(u)) du

+

∫ τn

t

LbuyV0(u,B
∗(u), S∗(u)) dL∗(u)

+

∫ τn

t

LsellV0(u,B
∗(u), S∗(u)) dM∗(u)

−

∫ τn

t

σS∗(u)
∂

∂s
V0(u,B

∗(u), S∗(u)) dW (u)

= V0(τn, B
∗(τn), S

∗(τn))−

∫ τn

t

σS∗(u)
∂

∂s
V0(u,B

∗(u), S∗(u)) dW (u)

since V0 is a classical solution of the DPE and by the construction of (L∗,M∗).
Taking expectations on both sides shows that

V0(t, b, s) = E [V0(τn, B
∗(τn), S

∗(τn))] .

We are left with showing that

lim
n→∞

E [V0(τn, B
∗(τn), S

∗(τn))] = E

[

Up

(

XL∗,M∗

t,b,s (T )
)]

= h0(t, b, s). (2.35)

We Vrst note that there exists a constant C > 0 such that

V0(t, b, s) = CV0(t, b, s) (2.36)
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for all (t, b, s) ∈ R
nt

0 . Indeed, by Lemma 2.1.2 and Lemma 2.2.2 we have

Up(b+ (1− µ)s) ≤ V0(t, b, s) ≤ ϕ1,p,1(t, b, s)

and since (∂/∂t)V0 ≥ 0 and by the classical maximum principle (see Evans [38,
Theorem 7.11]) we similarly have

Up(b+ (1− µ)s) ≤ V0(t, b, s) ≤ ϕ1,p,1(t, b, s).

Now since V0 and V0 are both homogeneous of order p we can write (for p 6= 0,
the case p = 0 is similar)

V0(t, b, s) = (b+ s)pV̄0(t, 1− π, π) and V0(t, b, s) = (b+ s)pV̄0(t, 1− π, π)

where π := s/(b + s). Since Up and ϕ1,p,1 are homogeneous as well it follows
that V̄0(t, 1− π, π) and V̄0(t, 1− π, π) are bounded in the no-trading region and
hence (2.36) follows.

Let us now turn to (2.35). We consider the cases p ∈ (0, 1), p = 0 and p < 0
separately.

Case 1: p ∈ (0, 1).
We claim that the sequence (V0(τn, B

∗(τn), S
∗(τn)))n∈N is uniformly integrable,

in which case (2.35) clearly holds. Let ε > 0 such that p(1 + ε) < 1. Then

0 ≤ E
[

|V0(τn, B
∗(τn), S

∗(τn))|
1+ε
]

≤ E
[

|ϕ1,p,1(τn, B
∗(τn), S

∗(τn))|
1+ε
]

≤
1 + ε

pε
E
[

ϕ1,p(1+ε),1(τn, B
∗(τn), S

∗(τn))
]

≤
1 + ε

pε
ϕ1,p(1+ε),1(t, b, s),

where the last inequality follows from the proof of Lemma 2.1.2

Case 2: p < 0.
We write

E [V0(τn, B
∗(τn), S

∗(τn))] = E
[

V0(τn, B
∗(τn), S

∗(τn))1{τn<T}

]

+ E
[

V0(τn, B
∗(τn), S

∗(τn))1{τn=T}

]

.
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Since by monotone convergence

lim
n→∞

E
[

V0(τn, B
∗(τn), S

∗(τn))1{τn=T}

]

= lim
n→∞

E

[

Up

(

XL∗,M∗

t,b,s (T )
)

1{τn=T}

]

= E

[

Up

(

XL∗,M∗

t,b,s (T )
)]

we only have to show that

lim
n→∞

E
[

V0(τn, B
∗(τn), S

∗(τn))1{τn<T}

]

= 0.

We have

0 ≥ lim
n→∞

E
[

V0(τn, B
∗(τn), S

∗(τn))1{τn<T}

]

≥ C lim
n→∞

E
[

V0(τn, B
∗(τn), S

∗(τn))1{τn<T}

]

≥ C lim
n→∞

E

[

Up

(

XL∗,M∗

t,b,s (T )
)

1{τn<T}

]

= 0

by monotone convergence.

Case 3: p = 0.
This follows from case 1 and case 2 by splitting up V0(τn, B

∗(τn), S
∗(τn)) into its

positive and negative part and using that

1

−p
x−p ≤ log(x) ≤

1

p
xp

for every p ∈ (0, 1).

Remark 2.17. Note that the proof of the previous theorem shows that the pro-
cess

(

V0(u,B
L∗,M∗

t,b (u), SL∗,M∗

t,s (u))
)

u∈[t,T ]

is an Ft-martingale whenever (b, s) ∈ S̃0. Indeed, we just have to replace the
sequence of stopping times (τn)n∈N by the sequence (τn ∧ u)n∈N to obtain

V0(t, b, s) = lim
n→∞

E

[

V0(τn ∧ u,BL∗,M∗

t,b (τn ∧ u), SL∗,M∗

t,s (τn ∧ u))
∣

∣

∣F t(t)
]

= E

[

V0(u,B
L∗,M∗

t,b (u), SL∗,M∗

t,s (u))
∣

∣

∣
F t(t)

]

.

This indicates that we really may expect V0 = V0 by the martingale optimality
principle. ⋄
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Proposition 2.16 proves the regularity of h0 on [0, T )×S̃0. The following lemmas
investigate the regularity of h0 for s ≤ 0.

Lemma 2.18. h0 ∈ C1,2,2([0, tdown) × S0 \ S̃0). Moreover, for every (t, b, s) ∈
[0, tdown)×S0 \ S̃0 and every l∗ > 0 such that (t, b− (1+λ)l∗, s+ l∗) ∈ Rbuy

0 and

s+ l∗ > 0 we have

∂

∂t
h0(t, b, s) =

∂

∂t
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗),

∂

∂b
h0(t, b, s) =

∂

∂b
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗),

∂

∂s
h0(t, b, s) =

∂

∂s
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗),

∂2

∂s2
h0(t, b, s) =

∂2

∂s2
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗).

Proof. The idea is to bootstrap the regularity of h0 for non-positive s from the
regularity of h0 = V0 for positive s inside the buy regionRbuy

0 . See Figure 2.7 for
a sketch.

s

b

b =
sx̃b(t0

+ δ)

b =
sx̃b(

t0)

b
=
sx̃
s
(t 0

+
δ)

b
=
sx̃

s
(t
0
)Rsell

0

Rnt
0

Rbuy
0

Bδ(b0, s0)

Bδ(b0 − (1 + λ)l, s0 + l)

Figure 2.7. Bootstrapping the regularity of h0.

Fix (t0, b0, s0) ∈ [0, T ] × S0 with t0 < tdown and s0 ≤ 0 and let δ > 0 be small
enough such that t0 + δ < tdown and Bδ(b0, s0) ⊂ S0. By making δ smaller
if necessary we may furthermore assume that [t0, t0 + δ) × Bδ(b0, s0) ⊂ Rbuy

0 .
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2.6. VeriVcation and value function regularity

Now, for every (t, b, s) ∈ [t0, t0 + δ) × Bδ(b0, s0) there exists some l0 > 0 such
that (b − (1 + λ)l0, s + l0) ∈ ∂Rnt

0 ∩ ∂Rbuy
0 and s + l0 > 0. Moreover, by the

construction of h0 we have

h0(t, b, s) = h0(t, b− (1 + λ)l, s+ l)

for every l ∈ [0, l0]. By the monotonicity of the buy boundary x̃b, making δ even
smaller if necessary, we can therefore Vnd some l∗ ∈ (0, l0) such that [t0, t0+δ)×
Bδ(b0 − (1 + λ)l∗, s0 + l∗) is contained in the interior of Rbuy

0 and s > 0 for all
(b, s) ∈ Bδ(b0−(1+λ)l∗, s0+ l∗). Note that by construction and Proposition 2.16
we have

h0(t, b, s) = h0(t, b− (1 + λ)l∗, s+ l∗) = V0(t, b− (1 + λ)l∗, s+ l∗)

for all (t, b, s) ∈ [t0, t0+ δ)×Bδ(b0, s0). Since V0 is C1,2,2 in [t0, t0+ δ)×Bδ(b0−
(1 + λ)l∗, s0 + l∗) the result follows.

Proposition 2.19. h0 satisVes

Lnth0(t, b, s) ≥ 0, Lbuyh0(t, b, s) = 0 and Lsellh0(t, b, s) > 0

in the classical sense on [0, tdown)× S0 \ S̃0.

Proof. It follows immediately from Lemma 2.18 that

Lbuyh0(t, b, s) = LbuyV0(t, b− (1 + λ)l∗, s+ l∗) = 0, (2.37)

Lsellh0(t, b, s) = LsellV0(t, b− (1 + λ)l∗, s+ l∗) > 0, (2.38)

for a suitable choice of l∗. From (2.37) we obtain

∂

∂s
h0(t, b, s) = (1 + λ)

∂

∂b
h0(t, b, s).

Plugging this into (2.38) yields

(1− µ)
∂

∂b
h0(t, b, s) <

∂

∂s
h0(t, b, s) = (1 + λ)

∂

∂b
h0(t, b, s)

which implies that (∂/∂b)h0(t, b, s) > 0 and hence (∂/∂s)h0(t, b, s) > 0 for all
(b, s) ∈ S0 \ S̃0. It only remains to show that

Lnth0(t, b, s) > 0.
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2. Portfolio optimization with transaction costs

Consider the case s = 0. Fix some l∗ > 0 such that (t, b, l∗) ∈ Rbuy
0 so that

∂

∂t
h0(t, b, 0) =

∂

∂t
V0(t, b− (1 + λ)l∗, l∗) ≤ 0

by Theorem 2.7. Therefore,

Lnth0(t, b, 0) = −
∂

∂t
h0(t, b, 0) ≥ 0. (2.39)

Suppose now that s < 0. Then for some suitable l∗ > 0 we have

∂

∂t
h0(t, b, s) =

∂

∂t
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗) =

∂

∂t
h0(t, b− (1 + λ)s, 0),

∂

∂s
h0(t, b, s) =

∂

∂s
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗) =

∂

∂s
h0(t, b− (1 + λ)s, 0),

∂2

∂s2
h0(t, b, s) =

∂2

∂s2
V0(t, b, s)|(b,s)=(b−(1+λ)l∗,s+l∗) =

∂2

∂s2
h0(t, b− (1 + λ)s, 0).

Therefore,

Lnth0(t, b, s)

= −
∂

∂t
h0(t, b, s)− αs

∂

∂s
h0(t, b, s)−

1

2
σ2s2

∂2

∂s2
h0(t, b, s)

= −
∂

∂t
h0(t, b− (1 + λ)s, 0)− αs

∂

∂s
h0(t, b− (1 + λ)s, 0)

−
1

2
σ2s2

∂2

∂s2
h0(t, b− (1 + λ)s, 0)

By (2.39) we have

−
∂

∂t
h0(t, b− (1 + λ)s, 0) = Lnth0(t, b− (1 + λ)s, 0) ≥ 0.

Moreover, since s < 0 and (∂/∂s)h0(t, b− (1 + λ)s, 0) > 0 we have

−αs
∂

∂s
h0(t, b− (1 + λ)s, 0) > 0

and since (∂2/∂s2)h0(t, b−(1+λ)s, 0) ≤ 0 (since V0 is concave by Dai and Yi [24,
Remark 4.2]) we see that

−
1

2
σ2s2

∂2

∂s2
h0(t, b− (1 + λ)s, 0) ≥ 0.
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2.6. VeriVcation and value function regularity

Putting the pieces together we obtain

Lnth0(t, b, s) > 0,

which completes the proof.

We have similar statements for the case t ≥ tdown with s < 0, the proofs are
however signiVcantly easier.

Lemma 2.20. We have h0 ∈ C∞([tdown, T )× S0 \ {(b, s) ∈ S0 : s ≥ 0}) and h0

is given explicitly as

h0(t, b, s) = Up(b+ (1 + λ)s)

on [tdown, T )× S0 \ {(b, s) ∈ S0 : s > 0}.

Proof. This is an immediate consequence of the deVnition of h0 and (L∗,M∗).
Indeed, if (t, b, s) ∈ [tdown, T )×S0 \ {(b, s) ∈ S0 : s > 0}, then (L∗,M∗) is such
that the stock position is immediately liquidated and the investor refrains from
further trading. That is

h0(t, b, s) = h0(t, b+ (1 + λ)s, 0)

= E

[

Up

(

BL∗,M∗

t,b+(1+λ)s(T ) + 0
)]

= Up(b+ (1 + λ)s)

from which the assertion of the lemma follows.

Proposition 2.21. h0 satisVes

Lnth0(t, b, s) > 0, Lbuyh0(t, b, s) = 0 and Lsellh0(t, b, s) > 0

in the classical sense on [tdown, T )× S0 \ {(b, s) ∈ S0 : s ≥ 0}.

Proof. We consider the case p < 1, p 6= 0. The case p = 0 follows similarly. We
have

∂

∂t
h0(t, b, s) = 0,

∂

∂b
h0(t, b, s) = (b+ (1 + λ)s)p−1,

∂

∂s
h0(t, b, s) = (1 + λ)(b+ (1 + λ)s)p−1,
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2. Portfolio optimization with transaction costs

∂

∂s
h0(t, b, s) = −(1− p)(1 + λ)2(b+ (1 + λ)s)p−2,

and hence direct calculations show that

Lbuyh0(t, b, s) = 0,

Lsellh0(t, b, s) = (λ+ µ)(b+ (1 + λ)s)p−1 > 0.

Finally, we calculate

Lnth0(t, b, s)

= (b+ (1 + λ)s)p
[

−α
(1 + λ)s

b+ (1 + λ)s
+

1

2
(1− p)σ2 (1 + λ)2s2

(b+ (1 + λ)s)2

]

> 0

since b+ (1 + λ)s > 0 and s < 0.

Corollary 2.22. For every t ∈ [tdown, T ) we have h0(t, ·, ·) ∈ C(S
0
).

Proof. We only need to show that h0(t, b, s) is continuous at the point s = 0. By
Lemma 2.20 h0(t, b, s) is given explicitly as h0(t, b, s) = Up(b+(1+λ)s) if s ≤ 0.
By Theorem 2.7 and Theorem 2.8 h0 = V0 is C1,2,2 and solves

0 = −
∂

∂t
h0(t, b, s)− αs

∂

∂s
h0(t, b, s)−

1

2
σ2s2

∂2

∂s2
h0(t, b, s) (2.40)

for s > 0 suXciently small. Sending s ↓ 0 shows that h0(t, b, 0+) solves the
ordinary diUerential equation

∂

∂t
h0(t, b, 0) = 0, h0(T, b, 0) = Up(b),

i.e. h0(t, b, 0+) = Up(b) which shows that h0 is continuous at s = 0.

Remark 2.23. We cannot expect more regularity of h0 at s = 0. Indeed, tak-
ing the derivative with respect to s in (2.40) and sending s ↓ 0 shows that
(∂/∂s)h0(t, b, 0+) solves

0 = −
∂

∂t

∂

∂s
h0(t, b, 0)− α

∂

∂s
h0(t, b, 0), h0(T, b, 0) =

∂

∂s
Up(b+ (1 + λ)s)|s=0,

i.e.
∂

∂s
h0(t, b, 0+) = eα(T−t) ∂

∂s
Up(b+ (1 + λ)s)|s=0.
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2.6. VeriVcation and value function regularity

This is in contrast to

h0(t, b, 0−) =
∂

∂s
Up(b+ (1 + λ)s)|s=0,

showing that the partial derivative of h0 with respect to s is not continuous at
s = 0. ⋄

We are now ready to prove that h0 ∈ H. By construction we have h0 ≤ V0 and
hence we can Vnd γ ∈ (1 − µ, 1 + λ) and K > 1 such that h0 ≤ V0 ≤ ϕγ,p,K .
Moreover, it is clear from the above analysis that

h0(t, b, s) ≥ Up (b+min{(1− µ)s, (1 + λ)s})

since this is clearly satisVed for t = T and h0 is non-increasing in t.

We proceed in three steps: First we show that h0 is continuous, then we show
that h0 is superharmonic and Vnally we show that h0 is non-increasing in the
direction of transactions.

Proposition 2.24. h0 is continuous on [0, T ]× S
0
.

Proof. By Proposition 2.16, Lemma 2.18, Lemma 2.20 and Corollary 2.22 it only
remains to prove that h0 is continuous in (tdown, b, 0) for every b ≥ 0. Let us
therefore take a sequence (tn, bn, sn)n∈N converging to (tdown, b, 0). We note that
by Lemma 2.20 and Corollary 2.22 we may without loss of generality assume that
tn < tdown for all n ∈ N and by the construction of h0 and since (∂/∂t)V0 ≤ 0

we may assume that (tn, bn, sn) ∈ R
buy

0 ∩R
nt

0 . In particular, this implies that

0 = −
∂

∂t
h0(t, bn, sn)− αsn

∂

∂s
h0(t, bn, sn)−

1

2
σ2s2n

∂2

∂s2n
h0(t, bn, sn)

in the classical sense for every t ∈ [tn, T ] and n ∈ N. Sending n → ∞ hence
shows that h∗

0(t
down, b, 0) := lim supn→∞ h0(tn, bn, sn) can be found by solving

the ODE

0 = −
∂

∂t
h∗
0(t, b, 0), h∗

0(T, b, 0) = Up(b),

on [tdown, T ]. We therefore have h∗
0(t

down, b, 0) = Up(b) = h0(t
down, b, 0). On the

other hand, we have h0(tn, bn, sn) ≥ h0(t
down, b, 0) and hence

lim
n→∞

h0(tn, bn, sn) = h0(t
down, b, 0).
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2. Portfolio optimization with transaction costs

Proposition 2.25. The function h0 is superharmonic.

Proof. Fix (t, b, s) ∈ [0, T )×S0, let τ be a [t, T ]-valued stopping time and denote
by ϑ the Vrst exit time of the uncontrolled wealth process (B0

t,b, S
0
t,s) from S0.

Suppose Vrst that s > 0. Then S0
t,s(u) > 0 for all u ∈ [t, τ ∧ϑ] and hence h0 = V0

is C1,2,2 along the paths of (u,B0(u), S0(u)) by Proposition 2.16. Let ε > 0 and
denote by ϑε the Vrst exit time of (B0

t,b + ε, S0
t,s) from S0. Then clearly ϑε ≥ ϑ.

For every n ∈ N let us deVne a stopping time

τn := inf

{

u ≥ t :

∫ u

t

[

σS0
t,s(r)

∂

∂s
h0(r, B

0
t,b(r) + ε, S0

t,s(r))

]2

dr ≥ n

}

∧ τ ∧ ϑ.

Application of Itô’s formula shows that

h0(t, b+ ε, s) = h0(τn, B
0
t,b(τn) + ε, S0

t,s(τn))

+

∫ τn

t

Lnth0(u,B
0
t,b(u) + ε, S0

t,s(u)) du

+

∫ τn

t

σS0
t,s(u)

∂

∂s
h0(u,B

0
t,b(u) + ε, S0

t,s(u)) dW (u).

Taking expectations reveals that

h0(t, b+ ε, s) = E

[

h0(τn, B
0
t,b(τn) + ε, S0

t,s(τn))

+

∫ τn

t

Lnth0(u,B
0
t,b(u) + ε, S0

t,s(u)) du

]

.

Since by Proposition 2.16 h0 is a classical solution of the DPE on [0, T ] × S̃0 we
see that

∫ τn

t

Lnth0(u,B
0
t,b(u), S

0
t,s(u)) du ≥ 0

and hence
h0(t, b+ ε, s) ≥ E

[

h0(τn, B
0
t,b(τn) + ε, S0

t,s(τn))
]

. (2.41)

Next, since (∂/∂t)h0 ≤ 0 and since h0(T, b, s) = V0(T, b, s) = Up(b + (1− µ)s),
we have h0(t, b, s) ≥ Up(b+ (1− µ)s) and hence

h0(τn, B
0
t,b(τn) + ε, S0

t,s(τn)) ≥ Up(ε).
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2.6. VeriVcation and value function regularity

We can therefore send n → ∞ in (2.41) and use Fatou’s lemma to obtain

h0(t, b+ ε, s) ≥ E
[

h0(τ ∧ ϑ,B0
t,b(τ ∧ ϑ) + ε, S0

t,s(τ ∧ ϑ))
]

.

Now since (∂/∂b)h0 ≥ 0 we can send ε ↓ 0 and use monotone convergence to
obtain

h0(t, b, s) ≥ E
[

h0(τ ∧ ϑ,B0
t,b(τ ∧ ϑ), S0

t,s(τ ∧ ϑ))
]

,

i.e. h0 is superharmonic.

Consider now that case s ≤ 0. For simplicity, let us denote τ̃ := τ∧ϑ. If t ≥ tdown,
then (L∗,M∗) performs an initial transaction from (b, s) to (b + (1 + λ)s, 0) so
that

h0(t, b, s) = h(t, b+ (1 + λ)s, 0) = Up(b+ (1 + λ)s). (2.42)

On the other hand, by the same arguments and using Jensen’s inequality we see
that

E
[

h0(τ̃ , B
0
t,b(τ̃), S

0
t,s(τ̃))

]

= E
[

h0(τ̃ , B
0
t,b(τ̃) + (1 + λ)S0

t,s(τ̃), 0)
]

= E
[

Up

(

B0
t,b(τ̃) + (1 + λ)S0

t,s(τ̃)
)]

≤ Up

(

E
[

B0
t,b(τ̃) + (1 + λ)S0

t,s(τ̃)
])

= Up

(

b+ (1 + λ)E
[

S0
t,s(τ̃)

])

.

Now since S0
t,s is a supermartingale for every s ≤ 0 it follows that

E[S0
t,s(τ̃)] ≤ s

and hence

E
[

h0(τ̃ , B
0
t,b(τ̃), S

0
t,s(τ̃))

]

≤ Up (b+ (1 + λ)s) = h0(t, b, s)

by the monotonicity of Up and (2.42).

Finally, let us assume that s ≤ 0 and t < tdown. We have

h0(τ̃ , B
0
t,b(τ̃), S

0
t,s(τ̃))

= h0(τ̃ , B
0
t,b(τ̃), S

0
t,s(τ̃))1{τ̃<tdown} + h0(τ̃ , B

0
t,b(τ̃), S

0
t,s(τ̃))1{τ̃≥tdown}

On {τ̃ ≥ tdown} we have as before

E
[

h0(τ̃ , B
0
t,b(τ̃), S

0
t,s(τ̃))

]

≤ Up(b+ (1 + λ)s) = h0(t, b, s),
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2. Portfolio optimization with transaction costs

so we may without loss of generality assume that τ̃ < tdown. However, since we
know by Lemma 2.18 and Proposition 2.19 that h0 is C1,2,2 and satisVes the DPE
in the classical sense we obtain

h(t, b, s) ≥ E
[

h0(τ̃ , B
0
t,b(τ̃), S

0
t,s(τ̃))

]

as in the case s > 0.

Proposition 2.26. The function h0 is non-increasing in the directions of transac-

tions.

Proof. Fix (t, b, s) ∈ [0, T ]×S
0
and let l,m ≥ 0 be such that (b− (1+λ)l+(1−

µ)m, s+ l −m) ∈ S
0
. We have to show that

h0(t, b, s) ≥ h0(t, b− (1 + λ)l + (1− µ)m, s+ l −m).

However, since by Proposition 2.24 h(t, ·, ·) is continuous and satisVes

Lbuyh0(t, b, s),L
sellh0(t, b, s) ≥ 0

in the classical sense for every (t, b, s) ∈ ([0, T ) × S0) \ {(t, b, s) ∈ [0, T ) ×
S0 : t ≥ tdown, s = 0} and (t, b/s) 6∈ F (deVned in (2.24)) by Proposition 2.16,
Proposition 2.19 and Proposition 2.21. Therefore, by the gradient theorem, we
immediately obtain the claim.

Combining Propositions 2.24, 2.25 and 2.26 proves the optimality of (L∗,M∗).

Corollary 2.27. We have h0 ∈ H. In particular, h0 = V0 and (L
∗,M∗) is optimal.

Since h0 = V0 we furthermore have the following regularity result.

Theorem 2.28. The value function V0 is continuous everywhere and (at least) of

class C1,2,2 except for possibly the points (t, b, s) for which one of the following

statements is true:

1. b = 0 and (t, b, s) is on the buy boundary.

2. πM = 1 and b = 0.

68



2.7. Numerical results

3. t = tdown and s ≤ 0. However, V0(t
down, ·, ·) ∈ C2(S0 \ {(b, s) ∈ S0 : s =

0}).

4. t ≥ tdown and s = 0. However, V0(·, b, 0) ∈ C∞((tdown, T )) for every b ≥ 0.

Moreover, V0 ∈ C∞(Rnt
0 ).

2.7. Numerical results

We conclude this chapter with numerical examples. By the homogeneity of the
value function (Lemma 2.3.1) we Vrst reduce the dimension of the problem by
expressing the value function in terms of risky fractions. Then we use the algo-
rithm developed in Kunisch and Sass [72] to simulate the value function and the
optimal trading regions. We Vx the following parameters:

α := 0.096, σ := 0.4, T := 10

p := 0.1, µ := 0.01, λ := 0.01.

This implies in particular that

πM =
α

(1− p)σ2
=

2

3
∈ (0, 1)

and hence V0 ∈ C1,2,2([0, T )×S̃) by Theorem 2.7. Hence, if we restrict simulation
of V0 to [0, T )× S̃ , then the regularity assumptions in Kunisch and Sass [72] are
satisVed so that we can be assured that our numerical approximation converges
to the value function.

2.7.1. Outline of the algorithm

Let us Vrst give a quick outline of the algorithm introduced in Kunisch and
Sass [72]. As a preliminary step, we need to reduce the dimension of the problem
by introducing the following transformation of the value function:

V0(t, b, s) =: (b+ s)pV̄0(t, s/(b+ s)), V̄0(t, π) := V0(t, 1− π, π).
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2. Portfolio optimization with transaction costs

By formally expressing the derivatives of V0 in terms of the derivatives of V̄0 one
can show (as in Shreve and Soner [97, Proposition 8.1]) that V̄0 is the unique
viscosity solution of

0 = min
{

L̄ntV̄0(t, π), L̄
buyV̄0(t, π), L̄

sellV̄0(t, π)
}

, (2.43)

on [0, T )× (−1/λ, 1/µ) with terminal condition

V̄0(T, π) = V0(T, 1− π, π) =

{

1
p
(1− µπ)p, if π > 0,

1
p
(1 + λπ)p, if π ≤ 0,

and where the operators L̄nt, L̄buy and L̄sell are given by

L̄ntV̄0 := −
∂

∂t
V̄0 −

(

απ −
1

2
(1− p)σ2π2

)

pV̄0 −
1

2
σ2π2(1− π)2

∂2

∂π2
V̄0

−
(

α(1− π)− (1− p)σ2π(1− π)
)

π
∂

∂π
V̄0, (2.44)

L̄buyV̄0 := pλV̄0 − (1 + λπ)
∂

∂π
V̄0, (2.45)

L̄sellV̄0 := pµV̄0 + (1− µπ)
∂

∂π
V̄0. (2.46)

Note that since V0 ∈ C1,2,2([0, T ) × S̃) we have V̄0 ∈ C1,2([0, T ) × (0, 1/µ))
and hence V̄0 is a classical solution of (2.43) on [0, T ) × (0, 1/µ). This is the
requirement for the algorithm in Kunisch and Sass [72] to converge.

Let us now give a brief outline of the algorithm. First, we restrict the approxi-
mation of V̄0 to [0, 1] ⊂ (−1/λ, 1/µ). We discretize [0, T ] using an equidistant
grid with mesh size ∆t. Similarly, we discretize [0, 1] with an equidistant grid
with mesh size ∆x. The derivatives in the operators L̄nt, L̄buy and L̄sell are ap-
proximated using a central Vnite-diUerence scheme. We solve the diUerential
equation (2.43) backwards in time. In every time step (say, we are at time t < T ),
we make an initial guess N0 := [a0, b0] for the no-trading region. On [a0, b0] we
solve L̄ntv̄10(t, π) = 0 for v̄10 . Since L̄buyv̄10(t, π) = 0 and L̄sellv̄10(t, π) = 0 can
be solved explicitly on [0, a0) and (b0, 1], respectively, we can extend v̄10 to [0, 1]
using a smooth pasting condition on a0 and b0. For every π ∈ [0, 1] we then
deVne

λB
1 (t, π) := −L̄ntv̄10(t, π)1[0,a0], λS

1 (t, π) := −L̄ntv̄10(t, π)1[b0,1],
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2.7. Numerical results

and we introduce the sets

B1 :=
{

π ∈ [0, 1] : λB
1 (t, π) + L̄buyv̄10(t, π) < 0

}

, (2.47)

S1 :=
{

π ∈ [0, 1] : λS
1 (t, π) + L̄sellv̄10(t, π) < 0

}

. (2.48)

We set N1 = [0, 1] \ (B1 ∪ S1) to be the new guess for the no-trading region
and repeat the procedure until Nk ≈ Nk−1 for some k > 0. Once the no-trading
region converges we proceed with the next time step t−∆t.

2.7.2. A numerical example

The algorithm outlined above allows us to simulate V̄0. Figure 2.8 depicts the re-
sulting free boundaries. Whenever the investor holds a position which is below
the buy boundary π0(t) it is optimal to buy shares of the stock and if the position
is above the sell boundary π0(t) it is optimal to sell shares of the stock. If the po-
sition is in between the buy and sell boundary the optimal action of the investor
is not to trade at all. Moreover, the optimally controlled risky fraction process is
a diUusion reWected at π0(t) and π0(t). We emphasize that the optimal strategy
in the absence of costs πM is located in the no-trading region. This feature is
always observed whenever πM ∈ (0, 1).

Note that if the investment horizon is suXciently large, the boundaries become
stationary. When the investment horizon becomes smaller we have two eUects.
First, the sell boundary decreases. This is because we optimize the total wealth
after liquidation of the stock, i.e. the investor has to close the risky position at
terminal time. Since she has to pay transaction costs in the process of liquida-
tion a lower risky position at terminal time is preferable. On the other hand the
buy boundary also decreases. This shows that as the investor approaches the in-
vestment horizon, the less she wants to engage in transactions since there is not
enough time left to gain the transaction costs back.

Figure 2.9 illustrates the simulated value function V̄0. In order to visualize the
qualitative properties of V̄0 more clearly we restrict ourselves to the smaller in-
vestment horizon T = 1. Note that for a Vxed time t the value function is rel-
atively Wat along diUerent values for the risky fraction. Furthermore, it can be
seen that the value function is a concave function of π, a property inherited from
the concavity of V0. The solid black lines highlight the location of the buy and
the sell boundary.

71



2. Portfolio optimization with transaction costs

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Time t

R
is
k
y
fr
ac
ti
o
n
π

π0(t)

π0(t)
πM

Figure 2.8. Optimal trading regions under transaction costs.

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1
9.98

10

10.02

10.04

Risky fraction π

Time t

E
x
p
ec
te
d
u
ti
li
ty

Figure 2.9. The value function V̄0.

72



3. Worst-case portfolio

optimization with transaction

costs

In this chapter we extend the model considered in Chapter 2 to allow for crashes
in the stock. We assume that the price of the stock drops at some unknown stop-
ping time by an unknown fraction which is bounded from above by a maximum
crash size known to the investor. We do not specify any distribution on the time
and size of the crash, but assume that the investor takes a worst-case perspective
towards the impact of a crash. That is, for each admissible strategy we deter-
mine the worst-case crash in the sense that expected utility of terminal wealth is
minimized. We call a strategy worst-case optimal if the corresponding expected
terminal utility in its worst-case scenario dominates the expected terminal utility
in the worst-case scenario of any other strategy.

Similar to the Vrst part of Chapter 2 it is our objective to characterize the value
function as the unique viscosity solution of the corresponding dynamic program-
ming equation. More precisely, we prove the continuity of the value function, we
establish a version of the dynamic programming principle and use this to show
that the value function is a viscosity solution of the DPE. Then we extend the
comparison principle obtained in the previous chapter to prove uniqueness of
the value function and we conclude with numerical examples.

The numerical results suggest that some of the features of the optimal strategy in
the presence of crashes change compared to the optimal crash-free and/or zero-
costs strategies. For example, we always observe that the sell boundary of the
no-trading region falls below the optimal strategy in the case without transaction
costs close to terminal time, which in the absence of crashes can only occur when
leverage is optimal. Moreover, not only is the buy boundary (parametrized in
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3. Worst-case portfolio optimization with transaction costs

terms of risky fractions) zero before the investment horizon T is reached (as in
the no-crash case), but the sell boundary is also zero strictly before the investment
horizon T (unlike in the no-crash case). In other words, the worst-case optimal
strategy in the presence of transaction costs for short investment periods is the
pure bond strategy.

The results of this chapter correspond in large parts to the following article:

1. C. Belak, O. Menkens, J. Sass (2013): Worst-case portfolio optimization with
proportional transaction costs [12].

The problem considered in this chapter was treated before in the diploma thesis
Belak [8], the methods and results are however diUerent. First, let us mention
that the general solution approach is the same in the sense that the main goal is
to characterize the value function as the unique continuous viscosity solution of
the DPE. The setup of our model here and in Belak [8] is diUerent in the sense
that we consider the strong formulation of the control problem on the canonical
Wiener space, whereas in Belak [8] we consider the weak formulation (in the
spirit of Yong and Zhou [110]) in which an admissible control consists not only
of the trading strategy, but of the underlying probability space as well. Regard-
ing the continuity of the value function we prove stronger growth estimates and
stronger convergence results and Vx several gaps in the proofs in Belak [8]. The
proof of the dynamic programming principle is diUerent since we use a diUerent
approach to construct the ε-optimal strategies which does not require continuity
of the worst-case bound for arbitrary trading strategies. Our proof of the viscos-
ity property of the value function is diUerent as well, but essentially boils down
to the same ideas. Finally, we obtain several additional results here, most notably
the uniqueness of the value function and the numerical results.

3.1. The market model and problem formulation

In this section we specify the market model and formulate the optimization prob-
lem. The market is an extension of the model considered in Chapter 2 which
allows for a crash in the stock price. Let us hence assume that W = (W (t))t≥0

is a standard Brownian motion on the canonical Wiener space (Ω,F ,P). We let
F = F0 = (F(u))u≥0 be the augmented Vltration generated by W and for ev-
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3.1. The market model and problem formulation

ery t > 0 we denote by Ft = (F t(u))u≥t the augmented Vltration generated by
(W (u)−W (t))u≥t. Moreover, we Vx some terminal time T > 0 as well as some
initial time t ∈ [0, T ).

We consider a market consisting of a risk-free bond P 0 = (P 0(u))u∈[t,T ] and one
risky stock P 1 = (P 1(u))u∈[t,T ]. We assume that in normal times (i.e. in crash-
free times) the prices of the two assets evolve according to

dP 0(u) = 0, u ∈ [t, T ], P 0(t) = 1,

dP 1(u) = αP 1(u)du+ σP 1(u)dW (u), u ∈ [t, T ], P 1(t) = 1.

As before, we refer to α > 0 as the excess return and σ > 0 as the volatility of
the stock.

A crash is modeled as a pair (τ, β(τ)) consisting of a crash time τ and anF t(τ−)-
measurable crash size β(τ) ∈ [0, β], where β ∈ (0, 1) denotes some maximum
deterministic crash size. τ is assumed to be a [t, T ] ∪ {∞}-valued Ft-stopping
time. On {τ ≤ T}, we assume that the price of the stock drops by the fraction
β(τ) at time τ , i.e.

P 1(τ) =
(

1− β(τ)
)

P 1(τ−), on {τ < ∞}.

We interpret the event {τ = ∞} as the crash (τ, β(τ)) not occurring within the
investment period [t, T ]. We assume for simplicity that the crash size is constant
and equal to the maximum crash size β. In light of Korn and SteUensen [70, Re-
mark 1(a)] this does not pose any restriction on our model since the monotonicity
of the utility function Up implies that the worst-case optimal crash scenario is ei-
ther a crash of maximum size β or no crash at all. We denote the set of all crash
times of the above form by B(t).

Throughout this chapter we assume that at most one crash can occur within the
investment period [t, T ]. However, our results can be extended to the general case
of at most n crashes by an iterative procedure. We outline some of the details in
Section 3.8.

A crucial point about the worst-case model (see Section 1.2) for a crash (τ, β) is
that we do not assume that it has a pre-speciVed distribution. Instead, a crash
is regarded as a control variable which can be chosen as to minimize expected
utility of terminal wealth. We make this more precise in the problem formulation
below.
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3. Worst-case portfolio optimization with transaction costs

In the presence of crashes, the model for the trading strategies becomes more
involved since we want to allow the investor to observe crashes and to be able
to switch to a diUerent strategy afterwards. First, the investor chooses a strategy
(L1,M1) = (L1(u),M1(u))u∈[t,T ] which is used as long as no crash has been
observed. We assume that L1 and M1 are Ft-adapted, non-decreasing càdlàg
processes with L1(t−) = M1(t−) = 0. We refer to such a strategy as a pre-crash
strategy.

After the crash time τ , the investor is allowed to switch to a diUerent strategy
(Lτ

0,M
τ
0 ) = (Lτ

0(u),M
τ
0 (u))u∈[τ,T ] possibly depending on τ . Since the investor

does not know τ a priori this implies that the investor chooses a whole family of
post-crash strategies (Lτ

0,M
τ
0 )τ∈B(t) and is hence prepared to react on every crash

scenario τ ∈ B(t). As usual, we assume that the pair (Lτ
0,M

τ
0 ) is F

τ -adapted,
non-decreasing and càdlàg and we set Lτ

0(τ−) = M τ
0 (τ−) = 0. With this setup,

the investor is able to observe crashes and react on the new information made
available to her. Note that this approach is the same as in Seifried [95].

In order to simplify notations we write π1 = (L1,M1) for pre-crash strategies
and π0 = (Lτ

0,M
τ
0 )τ∈B(t) for a family of post-crash strategies. More generally,

we make the following convention: We denote pre-crash quantities by ℵ1 and we
denote the corresponding post-crash quantities by ℵ0.

Given a pre-crash trading strategy π1 = (L1,M1), a family of post-crash strate-
gies π0 = (Lτ

0,M
τ
0 )τ∈B(t) and a crash time τ ∈ B(t), the investor’s wealth

B = Bπ1,π0,τ
t,b = (Bπ1,π0,τ

t,b (u))u∈[t,T ] invested in the risk-free bond is given by

dB(u) = −(1 + λ)dL1(u) + (1− µ)dM1(u), u ∈ [t, τ) ∩ [t, T ], (3.1)

B(τ) = B(τ−)− (1 + λ)Lτ
0(τ) + (1− µ)M τ

0 (τ), on {τ < ∞}, (3.2)

dB(u) = −(1 + λ)dLτ
0(u) + (1− µ)dM τ

0 (u), u ∈ (τ, T ], (3.3)

with initial wealth B(t−) = b. Similarly, the investor’s wealth S = Sπ1,π0,τ
t,s =

(Sπ1,π0,τ
t,s (u))u∈[t,T ] invested in the stock is given by

dS(u) = S(u)(αdu+ σdW (u)) + dL1(u)− dM1(u), u ∈ [t, τ) ∩ [t, T ], (3.4)

S(τ) = (1− β)S(τ−) + Lτ
0(τ)−M τ

0 (τ), on {τ < ∞}, (3.5)

dS(u) = S(u)(αdu+ σdW (u)) + dLτ
0(u)− dM τ

0 (u), u ∈ (τ, T ], (3.6)

with initial wealth S(t−) = s.
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3.1. The market model and problem formulation

Remark 3.1. Observe that (3.5) is set up such that the crash is executed Vrst,
since it is applied to S(τ−). The control of the investor (Lτ

0,M
τ
0 ) is applied only

thereafter. Thus, the investor can only react to a crash, but she cannot prevent
being negatively aUected by a crash at time τ by selling all risky holdings at time
τ since her transaction is executed after the crash. ⋄

The net wealth X = Xπ1,π0,τ
t,b,s = (Xπ1,π0,τ

t,b,s (u))u∈[t,T ] of the investor after liquida-
tion of the stock position is given by

X(u) :=

{

B(u) + (1− µ)S(u), if S(u) > 0,

B(u) + (1 + λ)S(u), if S(u) ≤ 0.
u ∈ [t, T ].

Let us now turn to the question of solvency and admissibility of strategies. Taking
into account that in case of a positive stock position a crash decreases the net
wealth and that in case of a negative stock position a crash increases the net
wealth, the following open solvency cones can be deVned:

S1 :=
{

(b, s) ∈ R2
∣

∣ b+ (1 + λ)s > 0, b+ (1− µ)(1− β)s > 0
}

,

S0 :=
{

(b, s) ∈ R2
∣

∣ b+ (1 + λ)s > 0, b+ (1− µ)s > 0
}

.

So, whenever (b, s) ∈ S
1
, the investor can liquidate the stock holdings and end

up with non-negative wealth even if a crash occurs momentarily. The boundaries
of the solvency regions are parametrized as follows:

∂S1
− := ∂S0

− :=
{

(b, s) ∈ R2
∣

∣s ≤ 0, b+ (1 + λ)s = 0
}

,

∂S1
+ :=

{

(b, s) ∈ R2
∣

∣s > 0, b+ (1− µ)(1− β)s = 0
}

,

∂S0
+ :=

{

(b, s) ∈ R2
∣

∣s > 0, b+ (1− µ)s = 0
}

.

Figure 3.1 sketches the location of the boundaries of the solvency cones.

With this, we say that a pre-crash trading strategy π1 is admissible for initial

positions (b, s) ∈ S
1
if the corresponding pair (B, S) given by Equations (3.1)

and (3.4) with initial values B(t−) = b and S(t−) = s and for τ ≡ ∞ takes

values in S
1
for all u ∈ [t, T ]. The set of all admissible pre-crash trading strategies

of this form is denoted by A1(t, b, s).

A family of post-crash strategies π0 = (Lτ
0,M

τ
0 )τ∈B(t) corresponding to a pre-

crash strategy π1 ∈ A1(t, b, s) is called admissible if for every τ ∈ B(t) and for
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Figure 3.1. Sketch of the solvency cones.

every u ∈ [τ, T ] the corresponding pair (B, S) given by Equations (3.1) to (3.6)

takes values in S
0
. The set of all admissible families of post-crash trading strate-

gies of this form is denoted by A0(π1). Note that this implies that

(Lτ
0,M

τ
0 ) ∈ A0

(

τ, Bπ1,π0,τ
t,b (τ−), (1− β)Sπ1,π0,τ

t,s (τ−)
)

,

i.e. (Lτ
0,M

τ
0 ) is admissible in the corresponding crash-free market.

Fix p < 1, (b, s) ∈ S
1
and let π1 ∈ A1(t, b, s), π0 ∈ A0(π1) and τ ∈ B(t). We

deVne the performance criterion of π1, π0 and τ by

J1(π1, π0, τ, t, b, s) := E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

.

The worst-case bound of π1 and π0 is deVned as

W1(π1, π0, t, b, s) := inf
τ∈B(t)

J1(π1, π0, τ, t, b, s). (3.7)

Finally, the value function is deVned as

V1(t, b, s) := sup
π1∈A1(t,b,s)
π0∈A0(π1)

W1(π1, π0, t, b, s).
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It is sometimes helpful to interpret the optimization problem as a game between
the investor and the market. The investor decides on a trading strategy and aims
to maximize expected utility of terminal wealth, whereas the market decides on a
crash scenario with the objective of minimizing the investor’s expected utility of
terminal wealth. In this spirit we refer to a crash τ ∗ ∈ B(t) as optimal for given
strategies π1 ∈ A1(t, b, s) and π0 ∈ A0(π1), if it attains the inVmum in (3.7).

3.2. Heuristics

Before we start proving some of the basic properties of V1 let us Vrst gather some
insights into the nature of the optimal trading strategies and the corresponding
optimal crash time. First of all, note that given some arbitrary π1 ∈ A1(t, b, s),
π0 ∈ A0(π1) and τ ∈ B(t) we have

J1(π1, π0, τ, t, b, s) ≤ J1(π1, π
∗
0, τ, t, b, s), (3.8)

where π∗
0 := (Lτ,∗

0 ,M τ,∗
0 )τ∈B(t) and where (Lτ,∗

0 ,M τ,∗
0 ) is the optimal strategy in

the crash-free market corresponding to initial values

(

τ, B
π1,π∗

0 ,τ
t,b (τ−), (1− β)S

π1,π∗

0 ,τ
t,s (τ−)

)

whenever this makes sense (i.e. on {τ ≤ T}). Indeed, a simple calculation shows
that

J1(π1, π0, τ, t, b, s)

= E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

= E

[

Up

(

Xπ1,π0,τ

τ,B
π1
t,b

(τ−),(1−β)S
π1
t,s(τ−)

(T )
)

1{τ≤T} + Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{τ=∞}

]

≤ E
[

V0

(

τ, Bπ1
t,b(τ−), (1− β)Sπ1

t,s(τ−)
)

1{τ≤T} + Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{τ=∞}

]

= E

[

Up

(

X
π1,π∗

0 ,τ
t,b,s (T )

)

1{τ≤T} + Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{τ=∞}

]

= J1(π1, π
∗
0, τ, t, b, s).

Therefore, taking the inVmum over all τ ∈ B(t) in (3.8) we see that

W1(π1, π0, t, b, s) ≤ W1(π1, π
∗
0, t, b, s)
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and since π0 was chosen arbitrarily we have

sup
π0∈A(π1)

W1(π1, π0, t, b, s) ≤ W1(π1, π
∗
0, t, b, s)

and hence
V1(t, b, s) ≤ sup

π1∈A(t,b,s)

W1(π1, π
∗
0, t, b, s).

On the other hand we clearly have

V1(t, b, s) = sup
π1∈A1(t,b,s)
π0∈A0(π1)

W1(π1, π0, t, b, s) ≥ sup
π1∈A(t,b,s)

W1(π1, π
∗
0, t, b, s),

and hence the family π∗
0 is post-crash optimal for all π1 ∈ A1(t, b, s) and all

τ ∈ B(t).

We would like to point out that the results of this chapter are not contingent on
the existence of the optimal strategies in the crash-free market. This allows us to
extend our results to more than one crash in Section 3.8.

Regarding the optimal pre-crash strategy π∗
1 , we expect that it behaves similarly

to π∗
0 in the sense that trading occurs continuously at two time dependent bound-

aries, but the optimal trading boundaries π1(t) and π1(t) in terms of risky frac-
tions should be distinctly lower than the optimal trading boundaries π0(t) and
π0(t) in the absence of crashes. In particular, we expect π1(T−) = π1(T−) = 0
since otherwise the investor would make signiVcant losses if a crash occurs just
before the investment horizon is reached. Figure 3.2 below illustrates how the
optimal trading regions in the presence of crash threats might look like.

Suppose that the optimal pre-crash trading strategy π∗
1 exists and is continuous.

Classical dynamic programming arguments suggest that

V1(t, b, s) = W1(π
∗
1, π

∗
0, t, b, s) = inf

τ∈B(t)
E

[

V0

(

τ, B
π∗

1
t,b (τ−), (1− β)S

π∗

1
t,s(τ−)

)]

.

By the general theory of optimal stopping (see e.g. Peskir and Shiryaev [89]) this
suggests that V1(t, b, s) ≤ V0(t, b, (1 − β)s) and that the optimal crash time τ ∗

corresponding to π∗
1 is given as

τ ∗ := inf
{

u ≥ t : V1

(

u,B
π∗

1
t,b (u), S

π∗

1
t,s(u)

)

= V0

(

u,B
π∗

1
t,b (u), (1− β)S

π∗

1
t,s(u)

)}

.
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Figure 3.2. Optimal trading regions under transaction costs and crash threats.

This implies in particular that the investor can ignore the threat of crashes when-
ever V1(t, b, s) < V0(t, b, (1− β)s) and hence the value function can be expected
to be given as the solution of

min
{

LntV1(t, b, s),L
buyV1(t, b, s),L

sellV1(t, b, s)
}

= 0

as in the crash-free case. On the other hand, if V1(t, b, s) = V0(t, b, (1 − β)s)
the optimality of τ ∗ suggests that an optimally trading investor may beneVt if no
crash occurs. In other words, we expect that whenever V1(t, b, s) = V0(t, b, (1−
β)s), then at least one of the operators Lnt, Lbuy or Lsell applied to V1 should
be non-positive. Putting the pieces together this implies that we expect that
V1(t, b, s) solves the dynamic programming equation

0 = max
{

V1(t, b, s)− V0(t, b, (1− β)s),

min
{

LntV1(t, b, s),L
buyV1(t, b, s),L

sellV1(t, b, s)
}

}

(3.9)

if we specify the correct boundary conditions. Indeed, we show in Theorem 3.19
that V1 is a viscosity solution of this DPE.
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3. Worst-case portfolio optimization with transaction costs

3.3. Some preliminary properties

Let us now analyze some of the basic properties of the value function V1. Note
that most of the results in this section are very similar to those obtained in Chap-
ter 2 and Shreve and Soner [97]. We therefore keep the exposition to a minimum.

Since the investor can always liquidate the stock position immediately at initial
time t and stop trading afterwards we naturally obtain a lower bound on the value
function. Furthermore, this strategy is the only admissible (and hence optimal)
strategy on the boundary of the solvency region. The following lemma (which is
the worst-case equivalent of Lemma 2.2) makes this statement precise.

Lemma 3.2. 1. Let (b, s) ∈ ∂S1. Then the only admissible strategy is to in-

stantly jump to the position (0, 0) and remain there.

2. For (b, s) ∈ S
1
the trading strategy of instantly closing the stock position

and no trading afterwards is an admissible strategy. Furthermore, for every

(b, s) ∈ S
1
, we have

V1(t, b, s) ≥

{

Up (b+ (1− µ)(1− β)s) , if s > 0,

Up (b+ (1 + λ)s) , if s ≤ 0.
(3.10)

Proof. 1. The proof is very similar to the proof of [97, Remark 2.1] by Shreve
and Soner and will thus not be reproduced here. The only additional diX-
culty arises due to the presence of crashes. This can be handled as follows:

a) If (b, s) ∈ ∂S1
−, then s ≤ 0. In this case a crash would be beneVcial for

the investor in the sense that the net wealth increases. Thus, it cannot be
optimal from the market’s point of view to trigger a crash. At this point
the proof follows exactly as in Shreve and Soner [97, Remark 2.1].

b) If (b, s) ∈ ∂S1
+, then it must be optimal for the market to crash imme-

diately. To see this, note that in this case the investor’s position after the
crash at time t is given by (b, (1 − β)s) ∈ ∂S0

+. Since we are in the crash-
free market at this point, following Shreve and Soner [97, Remark 2.1], we
can conclude that the only admissible strategy is to close the position in
the stock and that the crash is indeed optimal since it leads to a terminal
net wealth of X(T ) = 0.
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2. See Shreve and Soner [97, Remark 2.2]. Note that the worst-case crash
scenario for s > 0 is an immediate crash at time t, since once the stock
position is closed, crashes do not aUect the net wealth. This explains the
factor (1− β) in the Vrst case of (3.10).

If (b, s) ∈ S
1
, Lemma 3.2 allows us to restrict the sets of admissible strategies

A1(t, b, s) and A0(π1) to those strategies π1 and π0 which have a worst-case
bound satisfying

W1(π1, π0, t, b, s) ≥

{

Up (b+ (1− µ)(1− β)s) , if s > 0,

Up (b+ (1 + λ)s) , if s ≤ 0.

Abusing notations, we denote the sets of such strategies again by A1(t, b, s) and
A0(π1), respectively. We therefore have

W1(π1, π0, t, b, s) = −∞ if and only if (b, s) ∈ ∂S1 and p ≤ 0

for all pre-crash strategies π1 ∈ A1(t, b, s) and post-crash strategies π0 ∈ A0(π1).

The next lemma gathers some further properties of the value function V1. Com-
pare also with Lemma 2.1 and Lemma 2.3 for the equivalent results in the crash-
free case and recall the function ϕγ,p,K deVned in (2.12).

Lemma 3.3. 1. Let γ ∈ [1−µ, 1+λ],K ≥ 1. Then V1 ≤ V0 ≤ ϕγ,p,K < +∞.

2. For every (t, b, s) ∈ [0, T ]× S
1
we have

V1(t, b, s) ≤ V0(t, b, (1− β)s). (3.11)

3. Let t ∈ [0, T ]. Then V1(t, ·, ·) is concave on S
1
. In particular, V1(t, ·, ·) is

locally Lipschitz-continuous on S1.

4. V1 is homogeneous of order p, i.e. for every κ > 0 and (b, s) ∈ S
1
we have

V1(t, κb, κs) =

{

κpV1(t, b, s) if p < 1, p 6= 0,

log(κ) + V1(t, b, s) if p = 0.
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3. Worst-case portfolio optimization with transaction costs

Proof. 1. The relation V1 ≤ V0 is obvious. The inequality V0 ≤ ϕγ,p,K is
proved in Lemma 2.1.2.

2. Consider the crash time τ ∗ ≡ t. Then

V1(t, b, s) ≤ sup
π1∈A1(t,b,s)
π0∈A0(π1)

E

[

Up

(

Xπ1,π0,τ∗

t,b,s (T )
)]

= sup
π0∈A0(t,b,(1−β)s)

E

[

Up

(

Xπ0

t,b,(1−β)s(T )
)]

= V0

(

t, b, (1− β)s
)

.

3. The concavity is inherited from the utility function Up. The details can be
found in Shreve and Soner [97, Proposition 3.1]. Note that every concave
function is locally Lipschitz-continuous in the interior of its domain.

4. The result follows from the linearity of the dynamics of the wealth invested
in the bond and stock, respectively, and using the homogeneity of Up. See
also Shreve and Soner [97, Proposition 3.3].

Remark 3.4. The proof of Lemma 3.3 shows that a crash at time t cannot be
optimal if V1(t, b, s) < V0(t, b, (1− β)s). ⋄

3.4. Continuity of the value function

The aim of this section is to prove that V1 is continuous. We note that the same
line of arguments (with some obvious adaptations) can be used to prove the con-
tinuity of V0 and hence establishes the Vrst claim of Proposition 2.4.

We start by proving a time-shifting property of V1 so that we can prove the time-
continuity by varying the terminal time T instead of the initial time t.

Lemma 3.5. Denote the value function corresponding to terminal time T by VT
1 .

Let t ∈ [0, T ] and h ≥ −t. Then

VT
1 (t, b, s) = VT+h

1 (t+ h, b, s).
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3.4. Continuity of the value function

Proof. We denote by AT
1 (t, b, s), A

T
0 (π1) and BT (t) the respective sets of admis-

sible strategies corresponding to terminal time T . Let π1 ∈ AT
1 (t, b, s). Since π1

is Ft-adapted it follows that there exists a measurable function g1 such that we
can write

π1(u, ω) = g1
(

u, (ω(r))r∈[t,u] − ω(t)
)

, (u, ω) ∈ [t, T ]× Ω.

Given ω ∈ Ω we set ω̃(r) := ω(r + h) for all r ≥ 0 and deVne

πh
1 (u+ h, ω) := g1(u, (ω̃(r))r∈[t,u] − ω̃(t)), (u, ω) ∈ [t, T ]× Ω.

Then πh
1 ∈ AT+h

1 (t + h, b, s). In a similar fashion we can construct strategies
πh
0 ∈ AT+h

0 (πh
1 ) from every π0 ∈ AT

0 (π1) and crash times τh ∈ BT+h(t+ h) from
every τ ∈ BT (t). Then

E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

=

∫

Ω

Up

(

Xπ1,π0,τ
t,b,s (T, ω)

)

P(dω)

=

∫

Ω

Up

(

X
πh
1 ,π

h
0 ,τ

h

t+h,b,s (T + h, ω̃)
)

P(dω̃)

= E

[

Up

(

X
πh
1 ,π

h
0 ,τ

h

t,b,s (T + h)
)]

.

Since we can similarly construct π1, π0 and τ from given πh
1 , π

h
0 and τh the claim

follows.

The next lemma provides growth estimates on the investor’s wealth processes.

Lemma 3.6. Let π1 ∈ A1(t, b, s), π0 ∈ A0(π1) and τ ∈ B(t) and denote

B(u) := Bπ1,π0,τ
t,b (u), S(u) := Sπ1,π0,τ

t,s (u).

Assume that τ is such that S(τ) ≤ S(τ−).

1. There exists a constant C0 > 0 independent of (π1, π0) such that

E [B(T ) + S(T )] = E [|B(T ) + S(T )|] ≤ C0(b+ s).

2. There exists a constant C1 > 0 independent of (π1, π0) such that

E
[

(B(T ) + S(T ))2
]

≤ C1(1 + b2 + s2).
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3. Worst-case portfolio optimization with transaction costs

Proof. We frequently make use of the fact that on S1 and S0 we have

s ≤ |s| ≤ C(b+ s), b ≤ |b| ≤ C(b+ s)

for C = 1 + max{1/µ, 1/λ}. We note further that by (3.1)-(3.6) and by the
condition on τ it can easily be veriVed that for every stopping time θ ≤ T we
have

B(θ) + S(θ) ≤ b+ s+

∫ θ

t

αS(u) du+

∫ θ

t

σS(u) dW (u).

1. Let τn := inf{u ≥ t : |S(u)| ≥ n} ∧ T . SettingK := αC we have

B(τn) + S(τn) ≤ b+ s+

∫ τn

t

αS(u) du+

∫ u

t

σS(u) dW (u)

≤ b+ s+K

∫ τn

t

B(u) + S(u) du+ σ

∫ τn

t

S(u) dW (u).

Taking expectations on both sides implies that

E [B(τn) + S(τn)] ≤ b+ s+KE

[∫ τn

t

B(u) + S(u) du

]

.

Since B(u) + S(u) ≥ 0 we have

E [B(τn) + S(τn)] ≤ b+ s+KE

[∫ T

t

B(u) + S(u) du

]

.

Taking the limit n → ∞ together with Fatou’s lemma and using that τn →
T this implies that

E [B(T ) + S(T )] ≤ b+ s+K

∫ T

t

E [B(u) + S(u)] du

and we conclude by Gronwall’s inequality.

2. We have

(B(T ) + S(T ))2 ≤ (1 +B(T ) + S(T ))2

≤

(

1 + b+ s+K

∫ T

t

B(u) + S(u) du+ σ

∫ T

t

S(u) dW (u)

)2

.
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3.4. Continuity of the value function

Using the fact that (a+b)2 ≤ 2a2+2b2 and Hölder’s inequality, this implies
that there exists a constant L > 0 such that

(B(T ) + S(T ))2

≤ L

(

1 + b2 + s2 +K2(T − t)

∫ T

t

(B(u) + S(u))2 du

+ σ2

[∫ T

t

S(u) dW (u)

]2)

. (3.12)

Note that

E

[

(∫ T

t

S(u) dW (u)

)2
]

= E

[∫ T

t

S(u)2 du

]

≤ E

[∫ T

t

(B(u) + S(u))2 du

]

.

Hence, taking expectations in (3.12) we see that

E
[

(B(T ) + S(T ))2
]

≤ L

(

1 + b2 + s2

+K2(T − t)

∫ T

t

E
[

(B(u) + S(u))2
]

du

+ σ2

∫ T

t

E
[

(B(u) + S(u))2
]

du

)

and we can again conclude by Gronwall’s inequality.

Remark 3.7. Since we take a worst-case perspective the condition on the crash
time τ in Lemma 3.6 poses no restriction to our subsequent analysis since clearly
an optimal crash should never increase the net wealth. We therefore assume from
now on that this condition always holds. ⋄

We can now prove the continuity in time. As a Vrst step we prove the result in the
case p ∈ (0, 1) and then extend the result to p ≤ 0 by means of an approximation
procedure.

Proposition 3.8. Assume that p ∈ (0, 1) and let (b, s) ∈ S1 be Vxed. Then

V1(·, b, s) is uniformly continuous on [0, T ].

87



3. Worst-case portfolio optimization with transaction costs

Proof. By Lemma 3.5 we have
∣

∣VT
1 (t, b, s)− VT

1 (t+ h, b, s)
∣

∣ =
∣

∣VT
1 (t, b, s)− VT−h

1 (t, b, s)
∣

∣

for every h ≥ −t and hence in order to prove continuity in t it suXces to prove
continuity in T .

1. We Vrst show that VT
1 is increasing in T . For this, let T− < T+ and Vx

t ∈ [0, T−]. Let π
−
1 ∈ AT−

1 (t, b, s), π−
0 ∈ AT−

0 (π−
1 ) and deVne π+

1 and π+
0

such that π+
1 = π−

1 and π+
0 = π−

0 (componentwise) on [t, T0) and such

that Sπ+
1 ,π+

0 (u) = 0 on [T−, T+] (i.e. liquidation of the stock position at T−

and no trading afterwards). Then π+
1 ∈ AT+

1 (t, b, s), π+
0 ∈ AT+

0 (π+
1 ) and

noticing that every crash time for time horizon T− is also admissible for
horizon T+ it follows that

X
π+
1 ,π+

0 ,τ

t,b,s (T+) = X
π−

1 ,π−

0 ,τ

t,b,s (T−)

for every τ ∈ BT−(t). Thus, since the position in the stock is closed on
(T−, T+] and hence the worst-case bound of (π+

1 , π
+
0 ) is not attained for

stopping times with values in this interval, we get

WT+

1 (π+
1 , π

+
0 , t, b, s) = WT−

1 (π−
1 , π

−
0 , t, b, s)

and since π−
1 and π0

− were chosen arbitrarily it follows that

VT+

1 (t, b, s) ≥ VT−

1 (t, b, s).

2. Let ε > 0. We are left with showing that

VT+

1 (t, b, s)− VT−

1 (t, b, s) ≤ ε,

if T+ − T− is suXciently small. Choose π+
1 ∈ AT+

1 (t, b, s) and π+
0 ∈

AT+

0 (π+
1 ) to be ε-optimal, i.e.

WT+

1 (π+
1 , π

+
0 , t, b, s) + ε ≥ VT+

1 (t, b, s).

Denote by π−
1 and π−

0 the restrictions of the strategies π+
1 and π+

0 to [t, T−].
Then π−

1 ∈ AT−

1 (t, b, s) and π−
0 ∈ AT−

0 (π−
1 ). Furthermore, there exists a

crash time τ ε ∈ BT−(t) which is ε-optimal in the sense that

WT−

1 (π−
1 , π

−
0 , t, b, s) + ε ≥ J T−

1 (π−
1 , π

−
0 , τ

ε, t, b, s)

88



3.4. Continuity of the value function

and since it is possible to consider BT−(t) ⊂ BT+(t), τ ε also deVnes an
admissible crash time for time horizon T+. Then the sub-additivity of Up

and Jensen’s inequality show that

VT+

1 (t, b, s)− VT−

1 (t, b, s)

≤ WT+

1 (π+
1 , π

+
0 , t, b, s)−WT−

1 (π−
1 , π

−
0 , t, b, s) + ε

≤ J T+

1 (π+
1 , π

+
0 , τ

ε, t, b, s)− J T−

1 (π−
1 , π

−
0 , τ

ε, t, b, s) + 2ε

≤ Up

(

E

[(

X
π+
1 ,π+

0 ,τε

t,b,s (T+)−X
π−

1 ,π−

0 ,τε

t,b,s (T−)
)

1A

])

+ 2ε, (3.13)

where
A :=

{

X
π+
1 ,π+

0 ,τε

t,b,s (T+)−X
π−

1 ,π−

0 ,τε

t,b,s (T−) > 0
}

.

Next, since (π+
1 , π

+
0 ) = (π−

1 , π
−
0 ) on [t, T−] and since τ ε is [t, T−] ∪ {+∞}-

valued it is not hard to see that
(

X
π+
1 ,π+

0 ,τε

t,b,s (T+)−X
π−

1 ,π−

0 ,τε

t,b,s (T−)
)

1A

≤ (1 + λ)
∣

∣

∣

∫ T+

T−

αS(u) du
∣

∣

∣+ (1 + λ)
∣

∣

∣

∫ T+

T−

σS(u) dW (u)
∣

∣

∣

with
B(u) := B

π+
1 ,π+

0 ,τε

t,b (u), S(u) := S
π+
1 ,π+

0 ,τε

t,s (u).

With this, we see that there exists a constant C > 0 such that

E

[(

X
π+
1 ,π+

0 ,τε

t,b,s (T+)−X
π−

1 ,π−

0 ,τε

t,b,s (T−)
)

1A

]

≤ (1 + λ)E

[

∣

∣

∣

∫ T+

T−

αS(u) du
∣

∣

∣+
∣

∣

∣

∫ T+

T−

σS(u) dW (u)
∣

∣

∣

]

≤ CE

[∫ T+

T−

|B(u) + S(u)| du

]

+ CE

[

∫ T+

T−

S(u)2 du

]1/2

≤ C

∫ T+

T−

E[B(u) + S(u)] du+ C

[

∫ T+

T−

E[(B(u) + S(u))2] du

]1/2

.

By Lemma 3.6 we can hence Vnd a constant K > 0 independent of π+
1 , π

+
0

and τ ε such that

E

[(

X
π+
1 ,π+

0 ,τε

t,b,s (T+)−X
π−

1 ,π−

0 ,τε

t,b,s (T−)
)

1A

]
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3. Worst-case portfolio optimization with transaction costs

≤ K(b+ s)(T+ − T−) +K(1 + b2 + s2)1/2(T+ − T−)
1/2.

Combining this with (3.13) yields the desired result.

Note that the only reason why the proof of Proposition 3.8 does not work for
p ≤ 0 is because Up is not sub-additive and hence we cannot derive (3.13). Nev-
ertheless, we can deVne

U j
p (x) := Up(x+ 1/j), Ũ j

p (x) = U j
p (x)− U j

p (0), x ∈ [0,∞),

where j ∈ N. Note that with this Ũ j
p (0) = 0 and hence Ũ j

p is sub-additive. We

denote by Vj
1 the value function corresponding to U j

p (x). It can then be veriVed

that Vj
1(·, b, s) is also uniformly continuous on [0, T ] for all (b, s) Vxed. Indeed,

in the proof of Proposition 3.8 we only need to replace Up by Ũ j
p in (3.13) to make

the same proof work.

Lemma 3.9. Let p ≤ 0 and Vx (b, s) ∈ S1. Then

lim
j→∞

Vj
1(t, b, s) = V1(t, b, s)

uniformly in t.

Proof. We consider the case p < 0 only. The case p = 0 follows similarly. First,
note that the family

{

Up

(

Xπ1,π0,τ
t,b,s (T )

)}

t∈[0,T ],π1∈A1(t,b,s),π0∈A0(π1),τ∈B(t)
(3.14)

is uniformly integrable. Indeed, choose q > 1 arbitrary. Then

E
[∣

∣Up

(

Xπ1,π0,τ
t,b,s (T )

)∣

∣

q]
=

pq

|p|q
E
[

Upq

(

Xπ1,π0,τ
t,b,s (T )

)]

,

and since

Upq

(

b+min{(1− µ)(1− β)s, (1 + λ)s}
)

≤ E
[

Upq

(

Xπ1,π0,τ
t,b,s (T )

)]

≤ ϕ1,pq,1(0, b, s)

by Lemma 3.2.2 and Lemma 3.3.1 the uniform integrability follows.
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3.4. Continuity of the value function

Let us now Vx some j ∈ N, (t, b, s) ∈ [0, T ] × S1, π1 ∈ A1(t, b, s), π0 ∈ A0(π1)
and τ ∈ B(t). Let furthermore δ > 0. We calculate

0 ≤ E
[

U j
p

(

Xπ1,π0,τ
t,b,s (T )

)]

− E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

= E

[

(

U j
p

(

Xπ1,π0,τ
t,b,s (T )

)

− Up

(

Xπ1,π0,τ
t,b,s (T )

))

1{X
π1,π0,τ
t,b,s

(T )>δ}

]

+ E

[

(

U j
p

(

Xπ1,π0,τ
t,b,s (T )

)

− Up

(

Xπ1,π0,τ
t,b,s (T )

))

1{X
π1,π0,τ
t,b,s

(T )≤δ}

]

≤ U j
p (δ)− Up(δ)− E

[

Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{X
π1,π0,τ
t,b,s

(T )≤δ}

]

,

where the last inequality follows from the fact that the diUerence U j
p (x)− Up(x)

on [δ,∞) is maximal at δ and since U j
p ≤ 0. Let now ε > 0. By the uniform

integrability of (3.14) it follows that if δ is small enough, then

E

[∣

∣

∣Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{X
π1,π0,τ
t,b,s

(T )≤δ}

∣

∣

∣

]

≤ ε/2,

uniformly in t, π1, π0 and τ . Next, for this choice of δ there exists J ∈ N large
enough such that

U j
p (δ)− Up(δ) ≤ ε/2

for all j ≥ J . In total, this implies that

sup
t∈[0,T ]

sup
π1∈A1(t,b,s)
π0∈A0(π1)

inf
τ∈B(t)

∣

∣E
[

U j
p

(

Xπ1,π0,τ
t,b,s (T )

)]

− E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]∣

∣ ≤ ε

for all j ≥ J .

Proposition 3.10. Assume that p ≤ 0 and let (b, s) ∈ S1 be Vxed. Then V1(·, b, s)
is uniformly continuous on [0, T ].

Proof. Let ε > 0, t ∈ [0, T ] and let (tn)n∈N be a sequence in [0, T ] converging to
t. By Lemma 3.9 there exists j ∈ N such that

sup
t∈[0,T ]

|V1(t, b, s)− Vj
1(t, b, s)| ≤ ε/3

and by the continuity of Vj
1 there exists some N ∈ N such that

|Vj
1(tn, b, s)− Vj

1(t, b, s)| ≤ ε/3

for all n ≥ N . Hence
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3. Worst-case portfolio optimization with transaction costs

|V1(tn, b, s)− V1(t, b, s)|

≤ |V1(tn, b, s)− Vj
1(tn, b, s)|+ |Vj

1(tn, b, s)− Vj
1(t, b, s)|

+ |Vj
1(t, b, s)− V1(t, b, s)| ≤ ε

for all n ≥ N .

Putting the pieces together we can prove the joint continuity of V1.

Theorem 3.11. The value function V1 is continuous.

Proof. Since V1(t, b, s) is locally bounded in a small neighborhood of (b, s) uni-
formly in t, the local Lipschitz continuity (Lemma 3.3.3) of V1 holds uniformly
in t. With this, it is easy to prove the joint continuity on [0, T ] × S1. Indeed,
let t ∈ [0, T ] and (b, s) ∈ S1 and choose a sequence (tn, bn, sn) converging to
(t, b, s). Note that (bn, sn) is contained in a compact subsetK of S1. By the local
Lipschitz continuity of V1 there exists a constant L > 0 such that

|V1(u, bn, sn)− V1(u, b, s)| ≤ L(|bn − b|+ |sn − s|)

for all u ∈ [0, T ] and all n. Hence

lim
n→∞

|V1(tn, bn, sn)− V1(t, b, s)|

≤ lim
n→∞

|V1(tn, bn, sn)− V1(tn, b, s)|+ |V1(tn, b, s)− V1(t, b, s)|

= lim
n→∞

L(|bn − b|+ |sn − s|) + |V1(tn, b, s)− V1(t, b, s)| = 0.

In order to show that the continuity of V1 extends to the boundary of S1 we let
(t, b, s) ∈ [0, T ]×∂S1 and let (tn, bn, sn)n∈N be a sequence converging to (t, b, s).
If s ≤ 0 we have

lim
n→∞

V1(tn, bn, sn) ≤ lim
n→∞

ϕ1+λ,p,1(tn, bn, sn) = Up(0),

and if s > 0 we have

lim
n→∞

V1(tn, bn, sn) ≤ lim
n→∞

V0(tn, bn, (1− β)sn)

≤ lim
n→∞

ϕ1−µ,p,1(tn, bn, (1− β)sn) = Up(0).

Since V1(t, b, s) = Up(0) this concludes the proof.
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3.5. The dynamic programming principle

We note that the same arguments presented in this section can also be used to
prove the continuity of V0.

Corollary 3.12. The value function V0 is continuous.

3.5. The dynamic programming principle

Equipped with the continuity of the value function we are now in the position
to prove the dynamic programming principle. The main problem arising in the
proof is the construction of strategies πε

1 ∈ A1(t, b, s) and πε
0 ∈ A0(π

ε
1) which

are ε-optimal in the sense that

V1(t, b, s) ≤ W1(π
ε
1, π

ε
0, t, b, s) + ε

and similarly crash times τ ε ∈ B(t) which are ε-optimal in the sense that

J1(π1, π0, τ
ε, t, b, s) ≤ W1(π1, π0, t, b, s)− ε

for a given pair of trading strategies π1 ∈ A1(t, b, s) and π0 ∈ A0(π1). The
existence of such controls is clear if the initial time t as well as the initial holdings
b and s are deterministic. The Vrst aim is the construction of such strategies for
random t, b and s.

3.5.1. Existence of ε-optimal strategies

The problem with the construction of ε-optimal strategies is the following: De-
note by θ a random initial time and by (B, S) a random initial position of the in-
vestor. Then for every ω ∈ Ωwe can Vnd a strategy πε,ω

1 ∈ A1(θ(ω), B(ω), S(ω))
which is ε-optimal. However, if we compose such strategies πε,ω

1 into a single
strategy πε

1 then it is not clear if πε ∈ A1(θ, B, S) since it is not clear if the
mapping ω 7→ πε,ω

1 is measurable.

Since we can construct ε-optimal strategies for deterministic initial data (t, b, s)
the idea of the construction of ε-optimal strategies for random initial data is to
Vnd a suitable sequence of points (tn, bn, sn)n∈N in (t, T ] × S1, construct an ε-
optimal strategy πε,n

1 for every such (tn, bn, sn) and then construct the ε-optimal

93
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strategy for the random initial datum (θ, B, S) by setting it equal to a strategy
closely related to πε,n

1 whenever (θ, B, S) is close to (tn, bn, sn). We note that a
crucial component for this construction is the continuity of V1.

We start by constructing a suitable decomposition of (t, T ]×S1. Given (b, s) ∈ S1

and r > 0we denote byK(b, s; r) the set of all (b̄, s̄) such that |(b, s)− (b̄, s̄)| < r
and such that there exist l,m ≥ 0 with

b = b̄− (1 + λ)l + (1− µ)m, s = s̄+ l −m,

i.e. (b, s) can be reached by the transaction (l,m) from (b̄, s̄). See also Figure 3.3
for a sketch of the setK(b, s; r).

s

b

b
+
(1

−
µ
)(1

−
β
)s

=
0

b
+
(1
−
µ
)s

=
0

b+ (1 + λ)s = 0

(b, s)

K(b, s; r)

Figure 3.3. A sketch of the setK(b, s; r).

Let us now Vx ε > 0 and (u, b, s) ∈ (t, T ] × S1. By the continuity of V1 there
exists r(u, b, s) > 0 such that u− r(u, b, s) ≥ t,K(b, s; r(u, b, s)) ⊂ S1 and

|V1(ū, b̄, s̄)− V1(ũ, b̃, s̃)| ≤ ε

for all (ū, b̄, s̄), (ũ, b̃, s̃) ∈ (u− r(u, b, s), u]×K(b, s; r(u, b, s)). The family
(

(u− r(u, b, s), u]×K(b, s; r(u, b, s))

)

(u,b,s)∈(t,T ]×S1
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forms an open covering of (t, T ]×S1 (in the topology induced by the sets of the
form (v, u]×K(b, s; r)) and hence there exists a countable sub-covering

(

(ti − r(ti, bi, si), ti]×K(bi, si; r(ti, bi, si))

)

i∈N

.

We furthermore setKi := (ti−r(ti, bi, si), ti]×K(bi, si; r(ti, bi, si)) as short-hand
notation.

Lemma 3.13. Let ε > 0, let θ be a [t, T ]-valued stopping time and Vx an arbitrary

pre-crash trading strategy π1 ∈ A1(t, b, s). For every crash time τ ∈ B(t) there
exists πε

1 ∈ A1(t, b, s) which coincides with π1 on [t, τ ∧ θ) and a family of post-

crash strategies πε
0 = (πε,τ

0 )τ∈B(t) such that πε
0 ∈ A0(π

ε
1) and

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣
F t(τ ∧ θ)

]

+ ε

≥ V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θ} + V1

(

θ, B(θ), S(θ)
)

1{τ>θ}.

Proof. Let ε > 0 and let (Ki)i∈N and (ti, bi, si)i∈N be the sequences constructed
in the beginning of this section. For every i ∈ N there exists some πε,i

1 ∈
A1(ti, bi, si) and πε,i

0 ∈ A0(π
ε,i
1 ) such that

inf
τ∈B(ti)

E

[

Up

(

X
πε,i
1 ,πε,i

0 ,τ

ti,bi,si

)]

≥ V1(ti, bi, si)− ε

so that in particular

J1(π
ε,i
1 , πε,i

0 , τ, ti, bi, si) ≥ V1(ti, bi, si)− ε

for every τ ∈ B(ti) and every i ∈ N.

Given any [t, T ]-valued stopping time θ and π1 ∈ A1(t, b, s) we deVne

ι(ω) := min
{

i ∈ N :
(

θ(ω), Bπ1(θ(ω), ω), Sπ1(θ(ω), ω)
)

∈ Ki

}

.

We denote by Di = {τ > θ} ∩ {ι = i} so that
(

θ(ω), Bπ1(θ(ω), ω), Sπ1(θ(ω), ω)
)

∈ Ki

on Di and Di ∩Dj = ∅ if i 6= j. Finally, we set

A1 := {τ > θ} ∩ {θ = t},
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A2 := {τ > θ} ∩ {(Bπ1(θ), Sπ1(θ)) ∈ ∂S1}.

Then the sets {τ ≤ θ}, A1, A2 and (Di)i∈N form a partition of Ω.

Let us now deVne

πε
1 := π11[t,τ∧θ] + 1[τ∧θ,T ]

[

πA1
1 1A1 + πA2

1 1A2 +
∞
∑

i=1

π̃ε,i
1 1Di

]

, (3.15)

where πA1
1 , πA2

1 and π̃ε,i
1 are deVned below. Note that since πA1

1 , πA2
1 and π̃ε,i

1 only
enter into the deVnition of πε

1 on the sets A1, A2 and Di, respectively, it does
not matter how the strategies are deVned outside these sets. Moreover, since the
investor switches to a diUerent strategy at time τ we see that the performance of
πε
1 does not depend on the choice of τ . Similarly, we set

πε,τ
0 := πτ

01{τ≤θ} + 1{τ>θ}

[

πA1
0 1A1 + πA2

0 1A2 +
∞
∑

i=1

π̃ε,i
0 1Di

]

, (3.16)

for πτ
0 , π

A1
0 , πA2

0 and π̃ε,i
0 to be deVned later. Our objective is to choose the strate-

gies in such a way that πε
1 and πε

0 := (πε,τ
0 )τ∈B(t) are ε-optimal from time τ ∧ θ

onwards.

We choose πτ
0 in (3.16) to be ε-optimal in the crash-free market corresponding to

initial values (τ, Bπ1(τ−), (1− β)Sπ1(τ−)). On {τ ≤ θ} we then have

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ ∧ θ)
]

= E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ)
]

= E

[

Up

(

X
πε
1,π

ε
0,τ

τ,Bπ1 (τ−),(1−β)Sπ1(τ−)(T )
)∣

∣

∣F t(τ)
]

= E

[

Up

(

X
πε,τ
0

τ,Bπ1 (τ−),(1−β)Sπ1(τ−)(T )
)]

≥ V0

(

τ, Bπ1(τ−), (1− β)Sπ1(τ−)
)

− ε.

On A1 we have θ = t and therefore Bπ1(θ−) = b and Sπ1(θ−) = s so that
Bπ1(θ) = b− (1+λ)l+(1−µ)m and Sπ1(θ) = s+ l−m for some l,m ≥ 0 such
that l and m are deterministic almost everywhere on A1. Hence if we choose
πA1
1 and πA1

0 in (3.15) and (3.16) to be any ε-optimal strategy for initial values
(t, B(θ), S(θ)) we have

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ ∧ θ)
]

= E

[

Up

(

X
πε
1,π

ε
0,τ

θ,B(θ),S(θ)(T )
)]
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= J1(π
ε
1, π

ε
0, τ, θ, B(θ), S(θ))

≥ V1(θ, B(θ), S(θ))− ε.

On A2 we have (Bπ1(θ), Sπ1(θ)) ∈ ∂S1 and hence if we choose πA2
1 and πA2

0 to
be the strategies which immediately liquidate the stock position and refrain from
further trading we obtain

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ ∧ θ)
]

= E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(θ)
]

= E

[

Up

(

X
π
A2
1 ,π

A2
0 ,τ

θ,Bπ1 (θ),Sπ1 (θ)(T )

)]

≥ inf
τ∈B(θ)

E

[

Up

(

X
π
A2
1 ,π

A2
0 ,τ

θ,Bπ1 (θ),Sπ1 (θ)(T )

)]

= V1

(

θ, Bπ1(θ), Sπ1(θ)
)

on A2. The last equality follows from Lemma 3.2.1 (optimality of πA2
1 and πA2

0 )
since (Bπ1(θ), Sπ1(θ)) ∈ ∂S1 on A2.

Let us now turn to the deVnition of the strategies π̃ε,i
1 . On the set Di we have

(θ, Bπ1(θ), Sπ1(θ)) ∈ Ki and hence θ ≤ ti. Now let π̄ε,i
1 be arbitrary oU Di and

on Di be equal to the strategy πε,i
1 shifted from [ti, T ] to [θ, T − (ti − θ)] (as in

Lemma 3.5) and extended to [θ, T ] through the convention that π̄ε,i
1 liquidates the

stock position at time T − (ti− θ) and refrains from further trading on (T − (ti−
θ), T ]. Similarly, we let π̄ε,i

0 be the time-shifted version of πε,i
0 . Since the time-

shift operation is measurable we see that π̄ε,i
1 ∈ A1(θ, bi, si), τ + (ti − θ) ∈ B(ti)

and π̄ε,i
0 ∈ A0(π̄

ε,i
1 ). We therefore have

J1(π̄
ε,n
1 , πε,i

0 , τ, θ, bi, si) = J1(π
ε,i
1 , πε,i

0 , τ + (ti − θ), ti, bi, si) (3.17)

as in Lemma 3.5. By the deVnition of Di and Ki we know that (bi, si) can be
reached by a transaction from (Bπ1(θ), Sπ1(θ)) on Di. That is, there exist l,m ≥
0 such that

bi = Bπ1(θ(ω), ω)− (1 + λ)l(ω) + (1− µ)m(ω),

si = Sπ1(θ(ω), ω) + l(ω)−m(ω).

Hence, if we deVne π̃ε,i
1 to be arbitrary oUDi and equal to π̄

ε,i
1 +(l,m) onDi then

π̃ε,i
1 ∈ A1(θ, B

π1(θ), Sπ1(θ)). Using that τ > θ onDi it follows that π̃
ε,i
0 := π̄ε,i

0 ∈
A0(π̃

ε,i
1 ) and

J1

(

π̃ε,i
1 , π̃ε,i

0 , τ, θ, Bπ1(θ), Sπ1(θ)
)

= J1(π̄
ε,i
1 , π̄ε,i

0 , τ, θ, bi, si)
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= J1(π
ε,i
1 , πε,i

0 , τ + (ti − θ), ti, bi, si)

by (3.17). With this and the ε-optimality of πε,i
1 and πε,i

0 we therefore have

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ ∧ θ)
]

= E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(θ)
]

= E

[

Up

(

X
π̃ε,i
1 ,π̃ε,i

0 ,τ

θ,Bπ1 (θ),Sπ1 (θ)(T )
)]

= J1

(

π̃ε,i
1 , π̃ε,i

0 , τ, θ, Bπ1(θ), Sπ1(θ)
)

= J1(π
ε,i
1 , πε,i

0 , τ + (ti − θ), ti, bi, si)

≥ V1(ti, bi, si)− ε

≥ V1

(

θ, Bπ1(θ), Sπ1(θ)
)

− 2ε

on Di. Here the last inequality follows from (θ, Bπ1(θ), Sπ1(θ)) ∈ Ki on Di and
the construction of Ki.

In a similar fashion we need to construct ε-optimal crash times τ ε to prove the
dynamic programming principle. More precisely, given π1 ∈ A1(t, b, s), π0 ∈
A0(π1) and τ̄ ∈ B(t) we need to Vnd τ ε ≥ τ̄ ∧ θ such that

E
[

Up

(

Xπ1,π0,τε
t,b,s (T )

)∣

∣F t(τ̄ ∧ θ)
]

− ε

≤ V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + V1

(

θ, B(θ), S(θ)
)

1{τ̄>θ}. (3.18)

Let us comment on some of the issues involved here. The Vrst big issue is that we
have to construct τε for arbitrary pre-crash strategies π1 ∈ A1(t, b, s). Since we
cannot guarantee that the controlled wealth process (Bπ1 , Sπ1) runs through the
grid points (ti, bi, si)we need a diUerent method as compared to the construction
of the ε-optimal trading strategies.

Our construction of τ ε is based on the existence of the Snell envelope of a suit-
able optimal stopping problem. In the literature, the existence of the Snell enve-
lope is typically proved under the assumption that the process to be stopped is
right-continuous. Even though in our setting the wealth process (B, S) is right-
continuous, the general theory of optimal stopping does not apply without modi-
Vcation since a crash acts on the left limits of the process S, i.e. on (S(u−))u∈[t,T ].

The remedy is to Vrst consider the situation in which a crash acts on S(u) instead
of S(u−) to establish the existence of the Snell envelope. The construction of
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an ε-optimal stopping time for the right-continuous problem is then classical,
but this stopping time need not be ε-optimal for the left-continuous problem.
Nevertheless, it is intuitively clear how to construct such a stopping time for the
left-continuous case: Simply stop a little bit later. However, since this can only be
done on an event of probability arbitrarily close to one, we are not able to prove
ε-optimality ω-wise as in (3.18), but can only show that

E
[

Up

(

Xπ1,π0,τε
t,b,s (T )

)]

− ε

≤ E
[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + V1

(

θ, B(θ), S(θ)
)

1{τ̄>θ}

]

.

The details of the construction of the Snell envelope for the left-continuous prob-
lem can be found in Appendix C.

Let us Vrst formulate the correct (right-continuous) optimal stopping problem for
our situation and prove the existence of the Snell envelope.

Lemma 3.14. Fix (t, b, s) ∈ [0, T ] × S1. Let π1 ∈ A1(t, b, s) be an arbitrary pre-

crash strategy and let π0 ∈ A0(π1) be an arbitrary family of post-crash strategies

corresponding to π1. DeVne a process Y = (Y (u))u∈[t,T ]∪{∞} through

Y (u) :=











V0(u,B
π1,π0,∞
t,b (u), (1− β)Sπ1,π0,∞

t,s (u)), if u ∈ [t, T ),

V0(u,B
π1,π0,∞
t,b (u−), (1− β)Sπ1,π0,∞

t,s (u−)), if u = T,

Up

(

Xπ1,π0,∞
t,b,s (T )

)

, if u = ∞.

Then there exists a process Z = (Z(u))u∈[t,T ]∪{+∞} which is càdlàg on [t, T ] and
such that

Z(θ) = ess inf
τ∈B(θ)

E
[

Y (τ)
∣

∣F t(θ)
]

for every Ft-stopping time θ with values in [t, T ]. Moreover, Z is the smallest sub-

martingale which is càdlàg on [t, T ] and which is dominated by Y . Finally, Z
satisVes

E[Z(t)] = inf
τ∈B(t)

E[Y (τ)].

Proof. We note that the process Y is càdlàg by deVnition and left-continuous at
time T . The existence of Z is proved in Theorem C.6 in the appendix under the
assumption that Y is uniformly integrable over all stopping times τ ∈ B(t). To
show this we proceed in three steps.

99



3. Worst-case portfolio optimization with transaction costs

Step 1: We show that the positive part of Y is uniformly integrable. The result
is clear for p < 0 and since log(x) ≤ xp/p for every p ∈ (0, 1) we can restrict
ourselves to the case p ∈ (0, 1). Let us Vx some ε > 0 such that p(1 + ε) < 1 and
let τ ∈ B(t) be given.

We Vrst note that on {τ < T} there exists a constant K ≥ 1 such that

V0

(

τ, Bπ1,π0,∞
t,b (τ), (1− β)Sπ1,π0,∞

t,s (τ)
)

≤ KV0

(

τ, Bπ1,π0,∞
t,b (τ), Sπ1,π0,∞

t,s (τ)
)

. (3.19)

On {Sπ1,π0,∞
t,s (τ) ≥ 0} this is trivially satisVed for any choice of K ≥ 1 since V0

is non-decreasing in its last argument. By the deVnition of the function ϕ1+λ,p,1

we can Vnd a constantK > 1 such that

ϕ1+λ,p,1(t, b, s) ≤ KUp(b+ (1 + λ)s)

for every t ∈ [0, T ] and (b, s) ∈ S1 with s < 0. On {Sπ1,π0,∞
t,s (τ) < 0} this implies

that

V0

(

τ, Bπ1,π0,∞
t,b (τ), (1− β)Sπ1,π0,∞

t,s (τ)
)

≤ ϕ1+λ,p,1

(

τ, Bπ1,π0,∞
t,b (τ), (1− β)Sπ1,π0,∞

t,s (τ)
)

≤ KUp

(

Bπ1,π0,∞
t,b (τ) + (1 + λ)(1− β)Sπ1,π0,∞

t,s (τ)
)

≤ KV1

(

τ, Bπ1,π0,∞
t,b (τ), (1− β)Sπ1,π0,∞

t,s (τ)
)

≤ KV0

(

τ, Bπ1,π0,∞
t,b (τ), Sπ1,π0,∞

t,s (τ)
)

,

proving (3.19). By the left-continuity of Y at T we furthermore have

V0

(

τ, Bπ1,π0,∞
t,b (τ−), (1− β)Sπ1,π0,∞

t,s (τ−)
)

≤ KV0

(

τ, Bπ1,π0,∞
t,b (τ−), Sπ1,π0,∞

t,s (τ−)
)

.

Let us now prove the uniform integrability of the positive part of Y . Using (3.19)
and the elementary fact that (a + b)1+ε ≤ 21+ε(a1+ε + b1+ε) whenever a, b ≥ 0
we calculate

E
[

|Y (τ)|1+ε
]

≤ 41+εE

[

V0

(

τ, Bπ1,π0,∞
t,b (τ), (1− β)Sπ1,π0,∞

t,s (τ)
)1+ε

1{τ<T}
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+ V0

(

τ, Bπ1,π0,∞
t,b (τ−), (1− β)Sπ1,π0,∞

t,s (τ−)
)1+ε

1{τ=T}

]

+ Up

(

Xπ1,π0,∞
t,b,s (T )

)1+ε
1{τ=∞}

]

≤ 41+εE

[

K1+εV0

(

τ, Bπ1,π0,∞
t,b (τ), Sπ1,π0,∞

t,s (τ)
)1+ε

1{τ<T}

+K1+εV0

(

τ, Bπ1,π0,∞
t,b (τ−), Sπ1,π0,∞

t,s (τ−)
)1+ε

1{τ=T}

]

+ Up

(

Xπ1,π0,∞
t,b,s (T )

)1+ε
1{τ=∞}

]

≤ 41+εK1+εE

[

ϕ1,p,1

(

τ ∧ T,Bπ1,π0,∞
t,b (τ ∧ T ), Sπ1,π0,∞

t,s (τ ∧ T )
)1+ε

]

= 41+εK1+ε1 + ε

pε
E
[

ϕ1,p(1+ε),1

(

τ ∧ T,Bπ1,π0,∞
t,b (τ ∧ T ), Sπ1,π0,∞

t,s (τ ∧ T )
)]

≤ 41+εK1+ε1 + ε

pε
ϕ1,p(1+ε),1(t, b, s),

where the last inequality follows from the fact that π1 ∈ A0(t, b, s) and since by
the proof of Lemma 2.1.2 the process

(

ϕ1,p(1+ε),1

(

u,Bπ1,π0,∞
t,b (u), Sπ1,π0,∞

t,s (u)
)

)

u∈[t,T ]

is a supermartingale.

Step 2: Consider the process Ỹ = (Ỹ (u))u∈[t,T ]∪{∞} deVned through

Ỹ (u) := V0

(

u,Bπ1,π0,u
t,b (u−), (1− β)Sπ1,π0,u

t,s (u−)
)

1{u≤T}

+ Up

(

Xπ1,π0,u
t,b,s (T )

)

1{u=∞}. (3.20)

We show that the negative part of Ỹ is uniformly integrable over all τ ∈ B(t).
The result is obvious for p ∈ (0, 1) and since log(x) ≥ xp/p for all p < 0
it suXces to consider the case p < 0 only. We Vx τ ∈ B(t). Since πτ

0 ∈
A0(τ, B

π1,π0,τ
t,b (τ−), (1− β)Sπ1,π0,τ

t,s (τ−)) we have

V0

(

τ, Bπ1,π0,τ
t,b (τ−), (1− β)Sπ1,π0,τ

t,s (τ−)
)

1{τ≤T}

≥ E

[

Up

(

X
πτ
0

τ,B
π1,π0,τ
t,b

(τ−),(1−β)S
π1,π0,τ
t,s (τ−)

(T )
)]

1{τ≤T}

= E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

1{τ≤T}.
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It therefore follows that

E

[

|Ỹ (τ)|1+ε
]

= E

[∣

∣

∣

∣

V0

(

τ, Bπ1,π0,τ
t,b (τ−), (1− β)Sπ1,π0,τ

t,s (τ−)
)

1{τ≤T}

+ Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{τ=∞}

∣

∣

∣

∣

1+ε]

≤ 21+εE

[∣

∣

∣

∣

V0

(

τ, Bπ1,π0,τ
t,b (τ−), (1− β)Sπ1,π0,τ

t,s (τ−)
)

∣

∣

∣

∣

1+ε

1{τ≤T}

+

∣

∣

∣

∣

Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{τ=∞}

∣

∣

∣

∣

1+ε]

≤ 21+εE

[

E

[

∣

∣Up

(

Xπ1,π0,τ
t,b,s (T )

)∣

∣

1+ε
]

1{τ≤T}

+

∣

∣

∣

∣

Up

(

Xπ1,π0,τ
t,b,s (T )

)

∣

∣

∣

∣

1+ε

1{τ=∞}

]

≤ 22+εE

[

∣

∣Up

(

Xπ1,π0,τ
t,b,s (T )

)∣

∣

1+ε
]

=
p(1 + ε)22+ε

|p|1+ε
E

[

Up(1+ε)

(

Xπ1,π0,τ
t,b,s (T )

)

]

≤
p(1 + ε)22+ε

|p|1+ε
inf

τ∈B(t)
E

[

Up(1+ε)

(

Xπ1,π0,τ
t,b,s (T )

)

]

.

We conclude since

inf
τ∈B(t)

E

[

Up(1+ε)

(

Xπ1,π0,τ
t,b,s (T )

)

]

= W1(π1, π0, t, b, s) > −∞.

Step 3: We now show that the uniform integrability of Ỹ implies the uniform
integrability of Y . For this, we Vrst show that

Ỹ (u) = Y (u−)

for every u ∈ [t, T ]. Indeed, for u = t the result is immediate. For u ∈ (t, T ] we
take a sequence (un)n∈N such that un ↑ u. Then

Y (u−) = lim
n→∞

Y (un) = lim
n→∞

V0(un, B
π1,π0,∞
t,b (un), (1− β)Sπ1,π0,∞

t,s (un))

= lim
n→∞

V0(un, B
π1,π0,u
t,b (un), (1− β)Sπ1,π0,u

t,s (un))
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= V0(u,B
π1,π0,u
t,b (u−), (1− β)Sπ1,π0,u

t,s (u−))

= Ỹ (u).

We make the convention that Y (τ−) = Y (τ) on {τ = ∞}. Then

E
[

|Y (∞)|1+ε
]

= E

[

|Ỹ (∞)|1+ε
]

< +∞.

and

E
[

|Y (T )|1+ε
]

= E

[

∣

∣V0(T,B
π1,π0,∞
t,b (T−), (1− β)Sπ1,π0,∞

t,s (T−))
∣

∣

1+ε
]

= E

[

∣

∣

∣
Up

(

Xπ1,π0,T
t,b,s (T )

)∣

∣

∣

1+ε
]

≤
p(1 + ε)

|p|1+ε
E

[

Up(1+ε)

(

Up

(

Xπ1,π0,T
t,b,s (T )

))]

< +∞,

where the Vniteness follows from the admissibility of π1 and π0. Now given
τ ∈ B(t) and n ∈ N we deVne

τn :=

{

(τ + 1/n) ∧ T, on {τ < T},

∞, otherwise.

Then τn ↓ τ on {τ < T} and Ỹ (τn) → Y (τ) on {τ < T} as n → ∞. An
application of Fatou’s lemma then shows that

E
[

|Y (τ)|1+ε
]

= E
[

|Y (τ)|1+ε
1{τ<T} + |Y (T )|1+ε

1{τ=T} + |Y (∞)|1+ε
1{τ=∞}

]

≤ E

[

lim
n→∞

|Ỹ (τn)|
1+ε

1{τ<T}

]

+ E
[

|Y (T )|1+ε
]

+ E
[

|Y (∞)|1+ε
]

≤ lim inf
n→∞

E

[

|Ỹ (τn)|
1+ε

1{τ<T}

]

+ E
[

|Y (T )|1+ε
]

+ E
[

|Y (∞)|1+ε
]

and we conclude since Ỹ is uniformly integrable.

We refer to Z as the Snell envelope of Y . We note that we are actually not
interested in optimally stopping the process Y but want to stop the process Ỹ
deVned in (3.20) instead. Nevertheless, the existence of Z is suXcient to prove
the existence of ε-optimal stopping times. We refer to Proposition C.9 in the
appendix for the proof.

103



3. Worst-case portfolio optimization with transaction costs

Lemma 3.15. Let ε, δ > 0 and let θ be a [t, T ]-valued Ft-stopping time. Then there

exists τ ∗δ ∈ B(θ) such that

Z̃(θ) := ess inf
τ∈B(θ)

E

[

Ỹ (τ)
∣

∣

∣F t(θ)
]

≥ E

[

Ỹ (τ ∗δ )
∣

∣

∣F t(θ)
]

− ε,

on a set A ⊂ Ω with P[A] ≥ 1− δ and τ ∗δ = ∞ on Ac.

A crucial point which will become very important later is that we can bound Z̃(θ)
from above by V1(θ, B(θ), S(θ)) which essentially boils down to the question of
whether or not we are allowed to replace the essential inVmum in the deVnition
of Z̃ by the inVmum.

Lemma 3.16. We have Z̃(θ) ≤ V1(θ, B(θ), S(θ)).

Proof. We Vrst show that for every ε > 0 there exists πε
0 ∈ A0(π1) such that

Z̃(θ) ≤ ess inf
τ∈B(θ)

E

[

Up

(

X
π1,πε

0,τ

θ,B(θ),S(θ)

)∣

∣

∣F t(θ)
]

+ ε.

Indeed, for every τ ∈ B(t) we let πτ,ε
0 ∈ A0(τ, B(τ−), (1 − β)S(τ−)) be an

ε-optimal strategy in the crash-free market and write πε
0 = (πτ,ε

0 )τ∈B(t). Then

Z̃(θ) = ess inf
τ∈B(θ)

E

[

Ỹ (τ)
∣

∣

∣F t(θ)
]

= ess inf
τ∈B(θ)

E

[

V0

(

τ, Bπ1,π0,τ
t,b (τ−), (1− β)Sπ1,π0,τ

t,s (τ−)
)

1{τ≤T}

+ Up

(

Xπ1,π0,τ
t,b,s (T )

)

1{τ=∞}

∣

∣

∣

∣

F t(θ)

]

≤ ess inf
τ∈B(θ)

E

[

E

[

Up

(

X
πτ,ε
0

τ,B(τ−),(1−β)S(τ−)(T )
)]

1{τ≤T}

+ Up

(

Xπ1,π0,τ
θ,B(θ),S(θ)(T )

)

1{τ=∞}

∣

∣

∣

∣

F t(θ)

]

+ ε

= ess inf
τ∈B(θ)

E

[

E

[

Up

(

X
πτ,ε
0

τ,B(τ−),(1−β)S(τ−)(T )
)

1{τ≤T}

]

+ Up

(

Xπ1,π0,τ
θ,B(θ),S(θ)(T )

)

1{τ=∞}

∣

∣

∣

∣

F t(θ)

]

+ ε

= ess inf
τ∈B(θ)

E

[

Up

(

X
π1,πε

0,τ

θ,B(θ),S(θ)(T )
)

1{τ≤T}
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+ Up

(

X
π1,πε

0,τ

θ,B(θ),S(θ)(T )
)

1{τ=∞}

∣

∣

∣

∣

F t(θ)

]

+ ε

= ess inf
τ∈B(θ)

E

[

Up

(

Xπ1,π0,τ
θ,B(θ),S(θ)(T )

)

∣

∣

∣

∣

F t(θ)

]

+ ε.

Let us now Vx some ω ∈ Ω. For every s ≥ 0 we denote the path stopped at s by
ωs
· := ω(· ∧ s). Moreover, we deVne the shift operator

T s(ω)(·) = ω(· ∨ s)− ω(s).

We note that this implies that ω(·) = ωs
· + T s(ω)(·). We can therefore write

π1(ω) = π1(ω
s + T s(ω)), π0(ω) = πε

0(ω
s + T s(ω)),

and therefore

πω
1 (ω̃) := π1(ω

s + T s(ω̃)) ∈ A1(θ(ω), B(θ(ω), ω), S(θ(ω), ω)),

πω,ε
0 (ω̃) := πε

0(ω
s + T s(ω̃)) ∈ A0(π

ω
1 ).

Then, for almost all ω ∈ Ω,

E

[

Up

(

X
π1,πε

0,τ

θ,B(θ),S(θ)(T )
)

∣

∣

∣

∣

F t(θ)

]

(ω)

=

∫

Up

(

X
π1(ωs+T θ(ω)(ω)),π

ε
0(ω

s+T θ(ω)(ω)),τ(T θ(ω)(ω))

θ(ω),B(θ)(ω),S(θ)(ω) (T )(T θ(ω)(ω))
)

dP(T θ(ω)(ω))

=

∫

Up

(

X
π1(ωs+T θ(ω)(ω̃)),π

ε
0(ω

s+T θ(ω)(ω̃)),τ(T θ(ω)(ω̃))

θ(ω),B(θ)(ω),S(θ)(ω) (T )(T θ(ω)(ω̃))
)

dP(ω̃)

= J1(π
ω
1 , π

ω,ε
0 , τ, θ(ω), B(θ)(ω), S(θ)(ω)).

Now J1(π
ω
1 , π

ω,ε
0 , τ, θ(ω), B(θ)(ω), S(θ)(ω)) is constant for ω Vxed and hence

Z̃(θ)(ω) ≤ ess inf
τ∈B(θ(ω))

J1(π
ω
1 , π

ω,ε
0 , τ, θ(ω), B(θ)(ω), S(θ)(ω)) + ε

= inf
τ∈B(θ(ω))

J1(π
ω
1 , π

ω,ε
0 , τ, θ(ω), B(θ)(ω), S(θ)(ω)) + ε

≤ V1(θ(ω), B(θ)(ω), S(θ)(ω)) + ε

for almost all ω ∈ Ω and we conclude since ε was chosen arbitrarily.

We can now put the pieces together to prove the existence of an ε-optimal crash
time.
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Lemma 3.17. Let π1 ∈ A1(t, b, s) be an arbitrary pre-crash strategy and let π0 ∈
A0(π1) be an arbitrary family of post-crash strategies corresponding to π1. Let ε > 0
and let θ be a [t, T ]-valued stopping time. Then for every τ̄ ∈ B(t) there exists a
crash time τ ε ∈ B(t) such that τ ε ≥ τ̄ ∧ θ and such that

E

[

Up

(

Xπ1,π0,τε

t,b,s (T )
)]

≤ E

[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ}

+ V1

(

θ, B(θ), S(θ)
)

1{τ̄>θ}

]

+ ε.

Proof. We deVne
τ ε := τ̄1{τ̄≤θ} + τ ∗δ 1{τ̄>θ},

where τ ∗δ is an ε/2-optimal stopping time from Lemma 3.15 satisfying

E

[

Ỹ (τ ∗δ )
∣

∣

∣
F t(θ)

]

≤ Z̃(θ) +
1

2
ε

on a set A ⊂ Ω with P[A] ≥ 1− δ and τ ∗δ = ∞ on Ac. We choose δ > 0 such that

P[Ac] ≤
ε

2E[|Z̃(θ)|1+κ + |Y (+∞)|1+κ]

and where κ > 0 is a constant such that p(1 + κ) < 1.

It is clear that τ ε ∈ B(t) and τ ε ≥ τ̄ ∧ θ. Then

E

[

Up

(

Xπ1,π0,τε

t,b,s

)∣

∣

∣
F t(τ̄ ∧ θ)

]

= E

[

Up

(

Xπ1,π0,τε

t,b,s

)∣

∣

∣
F t(τ̄)

]

1{τ̄≤θ} + E

[

Up

(

Xπ1,π0,τε

t,b,s

)∣

∣

∣
F t(θ)

]

1{τ̄>θ}

= E

[

Up

(

Xπ1,π0,τ̄
τ̄ ,B(τ̄−),(1−β)S(τ̄−)

)∣

∣

∣
F t(τ̄)

]

1{τ̄≤θ}

+ E

[

Up

(

X
π1,π0,τ∗δ
τ∗
δ
,B(τ∗

δ
−),(1−β)S(τ∗

δ
−)

)∣

∣

∣F t(θ)
]

1{τ̄>θ}

≤ V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + E

[

Ỹ (τ ∗δ )
∣

∣

∣F t(θ)
]

1{τ̄>θ}

≤ V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} +
(

Z̃(θ) +
1

2
ε
)

1{τ̄>θ}1A

+ E

[

Ỹ (∞)
∣

∣

∣
F t(θ)

]

1{τ̄>θ}1Ac

≤ V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + Z̃(θ)1{τ̄>θ} +
1

2
ε
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+
(

E

[

Ỹ (∞)
∣

∣

∣F t(θ)
]

− Z̃(θ)
)

1{τ̄>θ}1Ac .

Taking expectations on both sides hence shows that

E

[

Up

(

Xπ1,π0,τε

t,b,s

)]

≤ E
[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ}

]

+ E

[

Z̃(θ)1{τ̄>θ}

]

+
1

2
ε

+ E

[(

E

[

Ỹ (∞)
∣

∣

∣
F t(θ)

]

− Z̃(θ)
)

1{τ̄>θ}1Ac

]

.

We now show that

E

[(

E

[

Ỹ (∞)
∣

∣

∣F t(θ)
]

− Z̃(θ)
)

1{τ̄>θ}1Ac

]

≤
1

2
ε.

To this end, let us note that the uniform integrability of Y implies the uniform
integrability of Z̃ (see the proof of Proposition C.9 in the appendix). We conclude
from Hölder’s and Jensen’s inequality that

E

[(

E

[

Ỹ (∞)
∣

∣

∣F t(θ)
]

− Z̃(θ)
)

1{τ̄>θ}1Ac

]

≤ E

[

E

[

|Ỹ (∞)|
∣

∣

∣F t(θ)
]

1Ac

]

+ E

[

|Z̃(θ)|1Ac

]

≤ E

[

|Ỹ (∞)|1+κ
]

P[Ac] + E

[

|Z̃(θ)|1+κ
]

P[Ac]

≤
1

2
ε

by our choice of δ. Putting the pieces together hence shows that

E

[

Up

(

Xπ1,π0,τε

t,b,s

)]

≤ E

[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + Z̃(θ)1{τ̄>θ}

]

+ ε

≤ E
[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θ} + V1(θ, B(θ), S(θ))1{τ̄>θ}

]

+ ε,

where the last inequality is a consequence of Lemma 3.16.

3.5.2. The dynamic programming principle

With the help of Lemma 3.13 and Lemma 3.17 we can prove the dynamic pro-
gramming principle.
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Theorem 3.18. Let (t, b, s) ∈ [0, T ) × S1 and let (θπ1)π1∈A1(t,b,s) be a family of

[t, T ]-valued stopping times. Then

V1(t, b, s) = sup
π1∈A1(t,b,s)

inf
τ∈B(t)

E

[

V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{θπ1<τ}

+ V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{θπ1≥τ}

]

.

Proof. 1. Let ε > 0 and Vx an arbitrary pre-crash strategy π1 ∈ A1(t, b, s)
and a crash time τ ∈ B(t). By Lemma 3.13 we can Vnd πε ∈ A1(t, b, s)
which coincides with π1 on [t, τ ∧ θπ1) and a family of post-crash strategies
πε
0 ∈ A0(π

ε
1) such that

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ ∧ θπ1)
]

+ ε

≥ V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ>θπ1}
.

We therefore have

V1(t, b, s) ≥ inf
τ∈B(t)

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)]

= inf
τ∈B(t)

E

[

E

[

Up

(

X
πε
1,π

ε
0,τ

t,b,s (T )
)∣

∣

∣F t(τ ∧ θπ1)
]]

≥ inf
τ∈B(t)

E

[

V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ>θπ1}

]

− ε.

Since we can Vnd corresponding πε
1 and πε

0 for every π1 ∈ A1(t, b, s) and
θπ1 and since ε was chosen arbitrarily this implies

V1(t, b, s) ≥ sup
π1∈A1(t,b,s)

inf
τ∈B(t)

E

[

V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ>θπ1}

]

.

2. Let π1 ∈ A1(t, b, s) be an arbitrary pre-crash strategy and let π0 ∈ A0(π1)
be an arbitrary family of post-crash strategies corresponding to π1. Fix an
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arbitrary τ̄ ∈ B(t). By Lemma 3.17 there exists τ ε ∈ B(t) with τ ε ≥ τ̄ ∧θπ1

such that

E

[

Up

(

Xπ1,π0,τε

t,b,s (T )
)]

≤ E

[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ̄>θπ1}

]

+ ε.

It follows that

inf
τ∈B(t)

E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

≤ E

[

Up

(

Xπ1,π0,τε

t,b,s (T )
)]

≤ E

[

V0

(

τ̄ , B(τ̄−), (1− β)S(τ̄−)
)

1{τ̄≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ̄>θπ1}

]

+ ε.

Since τ̄ was chosen arbitrarily this implies that

inf
τ∈B(t)

E
[

Up

(

Xπ1,π0,τ
t,b,s (T )

)]

≤ inf
τ∈B(t)

E

[

V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ>θπ1}

]

+ ε.

Using that π1, π0 and ε were chosen arbitrarily hence shows that

V1(t, b, s) ≤ sup
π1∈A1(t,b,s)

inf
τ∈B(t)

E

[

V0

(

τ, B(τ−), (1− β)S(τ−)
)

1{τ≤θπ1}

+ V1

(

θπ1 , B(θπ1), S(θπ1)
)

1{τ>θπ1}

]

which is the desired inequality.
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3.6. The viscosity property

In Chapter 2 we saw that the value function V0 in the crash-free market is the
unique viscosity solution of the DPE

0 = min{LntV0(t, b, s),L
buyV0(t, b, s),L

sellV0(t, b, s)},

where the diUerential operators Lnt, Lbuy and Lsell are given by

Lnt = −
∂

∂t
− αs

∂

∂s
−

1

2
σ2s2

∂2

∂s2
,

Lbuy = (1 + λ)
∂

∂b
−

∂

∂s
,

Lsell = −(1− µ)
∂

∂b
+

∂

∂s
,

respectively. The aim of this section is to show that V1 is the unique viscosity
solution of

0 = max
{

V1(t, b, s)− V0(t, b, (1− β)s),

min{LntV1(t, b, s),L
buyV1(t, b, s),L

sellV1(t, b, s)}
}

. (3.21)

Let us Vrst address the viscosity property of V1 before we turn to the uniqueness
of solutions of (3.21). We summarize the result in the next theorem.

Theorem 3.19. V1 is a viscosity solution of the DPE (3.21) on [0, T ) × S1 with

boundary condition

V1(t, b, s) = Up(0), if (b, s) ∈ ∂S1, t ∈ [0, T ],

and terminal condition

V1(T, b, s) =

{

Up(b+ (1− µ)(1− β)s), if s > 0,

Up(b+ (1 + λ)s), if s ≤ 0.

Remark 3.20. To see that V1 satisVes the terminal condition note that from the
market’s point of view a crash at terminal time must be optimal whenever the
investor’s stock position is positive. ⋄

We split the proof in two cases, the supersolution and the subsolution property.
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Proposition 3.21. V1 is a viscosity supersolution of the DPE (3.21).

Proof. Let (t0, b0, s0) ∈ [0, T ) × S1 and let ϕ ∈ C1,2,2([0, T ) × S1) with ϕ ≤ V1

and ϕ(t0, b0, s0) = V1(t0, b0, s0). We want to show that

0 ≤ max
{

ϕ(t0, b0, s0)− V0(t0, b0, (1− β)s0),

min{Lntϕ(t0, b0, s0),L
buyϕ(t0, b0, s0),L

sellϕ(t0, b0, s0)}
}

.

Step 1: By (3.11) we have

ϕ(t0, b0, s0) = V1(t0, b0, s0) ≤ V0

(

t0, b0, (1− β)s0
)

.

If equality holds we are done. We are therefore left with showing that

0 ≤ Lntϕ(t0, b0, s0), 0 ≤ Lbuyϕ(t0, b0, s0), 0 ≤ Lsellϕ(t0, b0, s0),

under the assumption that

V1(t0, b0, s0) < V0

(

t0, b0, (1− β)s0
)

. (3.22)

Step 2: Let l0 > 0 be small enough such that (b0− (1+λ)l0, s0+ l0) ∈ S1. By the
continuity of V1 and V0 and making l0 smaller if necessary we can assume that

V1(t0, b0 − (1 + λ)l, s0 + l) < V0(t0, b0 − (1 + λ)l, (1− β)s0 + l) (3.23)

for all l ∈ [0, l0]. For any such l we have

V1(t0, b0, s0) ≥ V1(t0, b0 − (1 + λ)l, s0 + l). (3.24)

Indeed, by Remark 3.4 together with (3.22) and (3.23) we know that a crash at
time t0 cannot be optimal (neither for initial holdings (b0, s0) nor for (b0 − (1 +
λ)l, s0 + l)) and since (b0 − (1+ λ)l, s0 + l) can be reached by a transaction from
(b0, s0) the claim follows. Using that ϕ ≤ V1 and ϕ(t0, b0, s0) = V1(t0, b0, s0) it
follows from (3.24) that

0 ≤ V1(t0, b0, s0)− V1(t0, b0 − (1 + λ)l, s0 + l)

≤ ϕ(t0, b0, s0)− ϕ(t0, b0 − (1 + λ)l, s0 + l).
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Now divide both sides by l and send l ↓ 0 to obtain

0 ≤ Lbuyϕ(t0, b0, s0)

and a similar argument shows that

0 ≤ Lsellϕ(t0, b0, s0).

Step 3: Suppose that on the contrary we have

Lntϕ(t0, b0, s0) < 0.

Then there exists some ε > 0 and δ > 0 such that t0 + ε < T , Bε(b0, s0) ⊂ S1

and
Lntϕ(t, b, s) < −δ

for all (t, b, s) ∈ [t0, t0 + ε]× Bε(b0, s0).

Consider a strategy π1 = (L1,M1) ∈ A1(t0, b0, s0) such that L1 ≡ M1 ≡ 0 on
[t0, τε], where τε is given by

τε := inf {u ≥ t0 : (B(u), S(u)) 6∈ Bε(b0, s0)} ∧ (t0 + ε).

By Theorem 3.18 with θπ1 = τε we have

V1(t0, b0, s0) ≥ inf
τ∈B(t0)

E

[

V1(τε, B(τε), S(τε))1{τε<τ}

+ V0(τ, B(τ−), (1− β)S(τ−))1{τε≥τ}

]

.

For every n ∈ N we can Vnd a stopping time τn ∈ B(t0) such that

V1(t0, b0, s0) ≥ E

[

V1(τε, B(τε), S(τε))1{τε<τn}

+ V0(τn, B(τn−), (1− β)S(τn−))1{τε≥τn}

]

−
1

n
. (3.25)

Using V1(t, b, s) ≤ V0(t, b, (1− β)s) this implies that

V1(t0, b0, s0) ≥ E

[

V1

(

τε ∧ τn, B(τε ∧ (τn−)), S(τε ∧ (τn−))
)

]

−
1

n
.
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Set τ̃n := τε ∧ (τn−) and use ϕ ≤ V1 to conclude that

V1(t0, b0, s0) ≥ E [V1(τ̃n, B(τ̃n), S(τ̃n))]−
1

n

≥ E [ϕ(τ̃n, B(τ̃n), S(τ̃n))]−
1

n
.

Using ϕ(t0, b0, s0) = V1(t0, b0, s0) and Itô’s formula now shows that

ϕ(t0, b0, s0) = V1(t0, b0, s0)

≥ ϕ(t0, b0, s0)− E

[∫ τ̃n

t0

Lntϕ(u,B(u), S(u)) du

]

−
1

n
,

i.e.

E

[∫ τ̃n

t0

Lntϕ(u,B(u), S(u)) du

]

≥ −
1

n
.

On the other hand we have

Lntϕ(t, b, s) < −δ

on [t0, t0 + ε]× Bε(b0, s0) and hence

E

[∫ τ̃n

t0

Lntϕ(u,B(u), S(u)) du

]

≤ −δE[τ̃n − t0].

Therefore

0 ≤ E[τ̃n − t0] ≤
1

δn
.

Sending n → ∞ shows that there exists a subsequence of (τn)n∈N which we again
denote by (τn)n∈N such that limn→∞ τ̃n = t0 and therefore limn→∞ τn = t0.

Since V1 and V0 are bounded on [t0, t0 + ε] × Bε(b0, s0) we can send n → ∞
in (3.25) and use dominated convergence to see that

V1(t0, b0, s0) ≥ lim
n→∞

E

[

V1(τε, B(τε), S(τε))1{τε<τn}

+ V0(τn, B(τn−), (1− β)S(τn−))1{τε≥τn}

]

−
1

n

= E

[

V1(τε, B(τε), S(τε))1{τε<t0}

+ V0(t0, b0, (1− β)s0)1{τε≥t0}

]

= V0(t0, b0, (1− β)s0)

which contradicts (3.22).
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Proposition 3.22. V1 is a viscosity subsolution of (3.21).

Proof. Let (t0, b0, s0) ∈ [0, T ) × S1 and let ϕ ∈ C1,2,2([0, T ) × S
1
) with ϕ ≥ V1

and ϕ(t0, b0, s0) = V1(t0, b0, s0). We want to show that

0 ≥ max
{

ϕ(t0, b0, s0)− V0(t0, b0, (1− β)s0),

min{Lntϕ(t0, b0, s0),L
buyϕ(t0, b0, s0),L

sellϕ(t0, b0, s0)}
}

.

As before we have

ϕ(t0, b0, s0) = V1(t0, b0, s0) ≤ V0(t0, b0, (1− β)s0),

i.e. we only have to show that

min{Lntϕ(t0, b0, s0),L
buyϕ(t0, b0, s0),L

sellϕ(t0, b0, s0)} ≤ 0.

Assume that on the contrary we have

min{Lntϕ(t0, b0, s0),L
buyϕ(t0, b0, s0),L

sellϕ(t0, b0, s0)} > 0.

DeVne
φ(t, b, s) = ϕ(t, b, s) + |t0 − t|2 + |b0 − b|2 + |s0 − s|4.

Then φ(t0, b0, s0) = ϕ(t0, b0, s0) and the relevant partial derivatives of φ and ϕ at
(t0, b0, s0) coincide so that

min{Lntφ(t0, b0, s0),L
buyφ(t0, b0, s0),L

sellφ(t0, b0, s0)} > 0.

We can therefore Vnd some ε > 0 with t0 + ε < T , Bε(b0, s0) ⊂ S1 and

Lntφ(t, b, s) > 0, Lbuyφ(t, b, s) > 0, Lsellφ(t, b, s) > 0 (3.26)

on [t0, t0 + ε]×Bε(b0, s0). Moreover, there exists some δ > 0 such that

φ(t, b, s) ≥ ϕ(t, b, s) + δ (3.27)

for every (t, b, s) 6∈ [t0, t0 + ε)×Bε(b0, s0) with t ≥ t0.

Let π1 = (L1,M1) ∈ A1(t0, b0, s0) and π0 ∈ A0(π1). Choose τ ∗ ∈ B(t) such that
τ ∗ ≡ +∞. Now deVne the stopping time

θπ1 := inf{u ≥ t0 : (B(u), S(u)) 6∈ Bε(b0, s0)} ∧ (t0 + ε).
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Itô’s formula shows that

φ(t0, b0, s0) = φ(θπ1 , B(θπ1), S(θπ1)) +

∫ θπ1

t0

Lntφ(u,B(u), S(u)) du

+

∫ θπ1

t0

Lbuyφ(u,B(u), S(u)) dLc
1(u)

+

∫ θπ1

t0

Lsellφ(u,B(u), S(u)) dM c
1(u)

−

∫ θπ1

t0

σS(u)
∂

∂s
φ(u,B(u), S(u)) dW (u)

−
∑

t0≤u≤θπ1

[

φ
(

u,B(u), S(u)
)

− φ
(

u−, B(u−), S(u−)
)

]

.

By (3.26) it follows that φ is non-increasing in the direction of transactions and
hence again by (3.26) and by taking expectations on both sides we see that

φ(t0, b0, s0) ≥ E [φ(θπ1 , B(θπ1), S(θπ1))] . (3.28)

Note that (θπ1 , B(θπ1), S(θπ1)) 6∈ [t0, t0+ ε)×Bε(b0, s0) and θπ1 ≥ t0. Therefore,
by (3.27) and since ϕ ≥ V1 we have

E [φ(θπ1 , B(θπ1), S(θπ1))] ≥ E [ϕ(θπ1 , B(θπ1), S(θπ1))] + δ

≥ E [V1(θπ1 , B(θπ1), S(θπ1))] + δ. (3.29)

We furthermore have

φ(t0, b0, s0) = ϕ(t0, b0, s0) = V1(t0, b0, s0)

and hence combining (3.28) and (3.29) yields

V1(t0, b0, s0) ≥ E [V1(θπ1 , B(θπ1), S(θπ1))] + δ.

Since π1 was chosen arbitrarily this implies that

V1(t0, b0, s0) ≥ sup
π1∈A1(t0,b0,s0)

E [V1(θπ1 , B(θπ1), S(θπ1))] + δ. (3.30)

On the other hand Theorem 3.18 shows that

V1(t0, b0, s0) = sup
π1∈A1(t0,b0,s0)

inf
τ∈B(t0)

E

[

V1(θπ1 , B(θπ1), S(θπ1))1{θπ1<τ}
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+ V0(τ, B(τ−), (1− β)S(τ−))1{θπ1≥τ}

]

≤ sup
π1∈A1(t0,b0,s0)

E

[

V1(θπ1 , B(θπ1), S(θπ1))1{θπ1<τ∗}

+ V0(τ
∗, B(τ ∗−), (1− β)S(τ ∗−))1{θπ1≥τ∗}

]

= sup
π1∈A1(t0,b0,s0)

E [V1(θπ1 , B(θπ1), S(θπ1))]

which contradicts (3.30).

Clearly, combining Proposition 3.21 and Proposition 3.22 proves Theorem 3.19.
Moreover, simple adaptations of the proofs of the two propositions can be used
to show that V0 is a viscosity solution of the DPE (2.10) and hence proves the
second claim of Proposition 2.4.

Corollary 3.23. The value function V0 is a viscosity solution of the DPE (2.10).

We now turn our focus to the uniqueness of viscosity solutions of (3.21). Since
the DPE (3.21) in the crash setting and the DPE (2.10) in the crash-free setting are
very similar it is not surprising that we can recycle the comparison principle for
the crash-free DPE.

Theorem 3.24. Let u, v : [0, T ]×S
1
→ R and Vx ε > 0. Assume that u is an upper

semi-continuous viscosity subsolution of (3.21) and v is a lower semi-continuous

viscosity supersolution of (3.21) such that

Up(b+min{(1− µ)(1− β)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕγ,p,K(t, b, s)

for some γ ∈ (1−µ, 1+λ) andK > 1. If u(T, b, s) ≤ v(T, b+ε, s) and u(t, b, s) ≤

Up(0) for every (b, s) ∈ ∂S1, then u(t, b, s) ≤ v(t, b+ ε, s) on [0, T ]× S
1
.

Proof. Since u is a viscosity subsolution it follows that u is also a subsolution of
the crash-free DPE (2.10) and satisVes

u(t, b, s) ≤ V0(t, b, (1− β)s), for all (t, b, s) ∈ [0, T )× S1.

Since v is a viscosity supersolution we need to distinguish two cases. Given
(t, b, s) ∈ [0, T )× S1 we either have

v(t, b+ ε, s) ≥ V0(t, b+ ε, (1− β)s)
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and we are done, or v is a viscosity supersolution of the crash-free DPE and we
can conclude as in the proof of Theorem 2.5.

Remark 3.25. Note that the lower bound on u and v in Theorem 3.24 has the
additional factor (1 − β) as compared to Theorem 2.5. Nevertheless we can still
apply the same technique as in the proof of Theorem 2.5 since we only need the
lower bound function to show that −v(t, b+ ε, s) is bounded away from inVnity
near ∂S1. ⋄

Theorem 3.24 implies that the DPE (3.21) characterizes the value function V1

uniquely.

Corollary 3.26. Let u, v be upper semi-continuous viscosity solutions of (3.21) sat-
isfying

Up(b+min{(1− µ)(1− β)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕγ,p,K(t, b, s)

with u(t, b, s) = v(t, b, s) = Up(0) on ∂S1 and

u∗(T, b, s) = u∗(T, b, s) = V1(T, b, s) = v∗(T, b, s) = v∗(T, b, s).

Then u = v.

Proof. The proof is the same as the proof of Corollary 2.6.

3.7. Numerical results

The objective of this section is to study the DPE (3.21) numerically to determine
the optimal trading regions and compare them to the optimal trading regions in
the crash-free case. We Vx the same parameters as in Chapter 2, i.e.

α := 0.096, σ := 0.4, T := 10

p := 0.1, µ := 0.01, λ := 0.01.

Moreover, we assume the maximum crash size to be given by β = 0.5.

117
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3.7.1. The candidate optimal strategies

As in Chapter 2 we can use the homogeneity of V1 to reduce the dimension of
the problem. We deVne

V1(t, b, s) =: (b+ s)pV̄1(t, s/(b+ s)), V̄1(t, π) := V1(t, 1− π, π).

It then follows that V̄1 is the unique viscosity solution of

0 = max
{

V̄1(t, π)− (1− βπ)pV̄0

(

t,
(1− β)π

1− βπ

)

,

min
{

L̄ntV̄1(t, π), L̄
buyV̄1(t, π), L̄

sellV̄1(t, π)
}

}

(3.31)

on [0, T )×S1
π with S1

π := (−1/λ, 1/[1− (1−β)(1−µ)]). The terminal condition
is

V̄1(T, π) = V1(T, 1− π, π) =

{

1
p
(1− π + (1− µ)(1− β)π)p, if π > 0,

1
p
(1 + λπ)p, if π ≤ 0.

The diUerential operators appearing in (3.31) are the same operators as in the
crash-free case, see (2.44)-(2.46). In what follows we assume that V1 is regular
enough to be a classical solution of the DPE.

As a next step, let us take a look at the optimal strategies in the presence of
crashes. Since compared to the crash-free case we have an additional operator
in the DPE (3.31) we have to adjust the deVnition of the three trading regions
slightly. We deVne the crash region in the reduced variables to be

R̄crash
1 :=

{

(t, π) ∈ [0, T )× S1
π : V̄1(t, π) = (1− βπ)pV̄0

(

t,
(1− β)π

1− βπ

)}

.

Note that R̄crash
1 is a closed set. The trading regions are deVned to be

R̄nt
1 :=

{

(t, π) ∈
(

[0, T )× S1
π

)

\ R̄crash
1 : L̄ntV̄1(t, π) = 0

}

,

R̄buy
1 :=

{

(t, π) ∈
(

[0, T )× S1
π

)

\ R̄crash
1 : L̄buyV̄1(t, π) = 0

}

,

R̄sell
1 :=

{

(t, π) ∈
(

[0, T )× S1
π

)

\ R̄crash
1 : L̄sellV̄1(t, π) = 0

}

.

We conjecture that these sets form a partition of ([0, T ) × S1
π) \ R̄

crash
1 and that

the optimal trading strategy on these sets is determined in the same way as in
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the crash-free case, i.e. buying is optimal in R̄buy
1 , selling is optimal in R̄sell

1 and
no-trading is optimal in R̄nt

1 . We furthermore conjecture that selling is opti-
mal within the crash region R̄crash

1 . To see this we show that if V1(t, b, s) =
V0(t, b, (1− β)s) and (t, b, s) is not on the boundary of the crash region then

LsellV1(t, b, s) ≤ 0

whenever

β ≥
µ+ λ

1 + λ
. (3.32)

Indeed, set s̃ = (1− β)s and calculate

LsellV1(t, b, s) = LsellV0(t, b, s̃)

= −(1− µ)
∂

∂b
V0(t, b, s̃) +

∂

∂s
V0(t, b, s̃)

= −(1− µ)
∂

∂b
V0(t, b, s̃) + (1− β)

∂

∂s̃
V0(t, b, s̃).

Now add and subtract (1− β)(1 + λ)(∂/∂b)V0(t, b, s̃) and rearrange to obtain

LsellV1(t, b, s) = −(1− β)

[

(1 + λ)
∂

∂b
V0(t, b, s̃)−

∂

∂s̃
V0(t, b, s̃)

]

+
[

(1− β)(1 + λ)− (1− µ)
] ∂

∂b
V0(t, b, s̃).

Since

(1 + λ)
∂

∂b
V0(t, b, s̃)−

∂

∂s̃
V0(t, b, s̃) = LbuyV0(t, b, s̃) ≥ 0

and (∂/∂b)V0 ≥ 0 we see that

LsellV1(t, b, s) ≤ 0

if (1− β)(1 + λ) ≤ (1− µ) which is equivalent to (3.32).

We therefore have L̄sellV̄1 ≤ 0 in the interior of R̄crash
1 and L̄sellV̄1 ≥ 0 outside

of R̄crash
1 . Since V̄1 is assumed to be of class C1,2 this implies L̄sellV̄1 = 0 on the

boundary of R̄crash
1 . Hence, we expect that the investor should sell whenever she

reaches the crash region.
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3.7.2. A numerical example

Let us now consider a numerical example. First, we need to adjust the algorithm
in Kunisch and Sass [72] to work with the DPE (3.31) in the crash-threatened
case. This is done as follows. Assume that we want to approximate the value
function at time t < T . For the k-th iteration we Vrst solve (as in the crash-free
case)

0 = L̄ntv̄k1(t, π)

inside our guess for the no-trading region [ak−1, bk−1] ⊂ [0, 1] and extend v̄k1 to
[0, 1] using the explicit solutions of L̄buyv̄k1(t, π) = 0 and L̄sellv̄k1(t, π) = 0. Also,
we construct the active sets Bk and Sk as before (see (2.47) and (2.48)). Then we
check if the crash constraint is satisVed for all π ∈ [0, 1]. For this, deVne

Ck :=

{

π ∈ [0, 1] : v̄k1(t, π)− (1− βπ)pV̄0

(

t,
(1− β)π

1− βπ

)

≥ 0

}

.

On Ck we set

v̄k1(t, π) = (1− βπ)pV̄0

(

t,
(1− β)π

1− βπ

)

.

Now set Nk = [0, 1] \ (Bk ∪ Sk ∪ Ck) and proceed with the next iteration.
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Figure 3.4. Optimal trading regions in the presence of crashes.
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The resulting buy boundary π1(t) and sell boundary π1(t) are illustrated in Fig-
ure 3.4. For comparison the Vgure also depicts the optimal strategy π1,∗(t) in the
case without costs, see (1.8) in Section 1.2. We observe a striking feature of the
sell boundary: If the time to maturity becomes small the sell boundary crosses
the optimal strategy without costs. Even more, the sell boundary hits zero strictly
before terminal time T . In the absence of crashes one can also observe that the
sell boundary falls below the optimal strategy without costs (see e.g. Shreve and
Soner [97, Equation (11.4)] for the inVnite-horizon model and Liu and Loewen-
stein [74, Equation (22)] for the Vnite-horizon case). However, in these models
this behavior can only be observed in special cases, e.g. if the Merton fraction is
suXciently high (in particular πM > 1, i.e. borrowing is optimal). See also Ger-
hold et al. [41] for a discussion of this eUect. In our model this behavior can be
observed as soon as β > 0, i.e. as soon as we allow for crashes.

Remark 3.27. Let us consider a (fairly heuristic) example to explain why the
sell boundary reaches zero strictly before terminal time. Intuitively, we expect
that the sell boundary reaches zero in the crash case at least as soon as the buy
boundary in crash-free case reaches zero, that is t0 ≤ tdown (where tdown is de-
Vned in (2.26)). This is because the investor cannot recoup any losses made in the
stock by buying more shares after the crash. Indeed, assume that t0 ∈ [0, T ] is
such that t0 ≥ tdown. Assume moreover that at time t0 the investor has a positive
stock position s > 0 and a positive bond position b > 0 suXciently large such
that s/(b + s) is close to 0. Assume now that we are in the crash-threatened
case and assume that at time t0 a crash of size β occurs, leaving the investor with
(1 − β)s units of money invested in the stock. After the crash we are in the
crash-free setting and since t0 ≥ tdown we see that buying is no longer optimal.
Heuristically, the wealth invested in the stock follows approximately a geometric
Brownian motion starting in (1−β)s (since s/(b+s) is assumed to be close to 0).
The expected terminal utility of wealth is then approximately

U∗ := E

[

Up

(

b+ (1− µ)(1− β)se(α−σ2/2)(T−t0)+σ(W (T )−W (t0))
)]

.

Using Jensen’s inequality and the deVnition of tdown we can estimate

U∗ ≤ Up

(

E

[

b+ (1− µ)(1− β)se(α−σ2/2)(T−t0)+σ(W (T )−W (t0))
])

= Up

(

b+ (1− µ)(1− β)seα(T−t0)
)

≤ Up

(

b+ (1− µ)(1− β)seα(T−tdown)
)

= Up(b+ (1 + λ)(1− β)s).
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On the other hand, the expected terminal utility in the case of immediate liqui-
dation is

Up (b+ (1− µ)s)

which is greater or equal than Up(b+ (1+ λ)(1− β)s) if and only if (3.32) holds.
Hence, for small investment periods it is not optimal to invest any money in the
stock at all! ⋄
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Figure 3.5. Long term behavior of the optimal trading regions.

Let us now turn to the long term behavior of the trading boundaries. Figure 3.5
shows the optimal trading regions for a time horizon of T = 50. In the case with-
out crashes (see Figure 2.8) the diUerence between the sell and the buy boundary
stabilizes quickly as T − t becomes large (see also Gerhold et al. [41] for a rigor-
ous justiVcation). In the presence of crashes this eUect can no longer be observed:
The presence of a crash threat has a signiVcant inWuence on the optimal trading
strategy even if the investment horizon is far into the future.

Figure 3.6 shows this eUect in more detail. It shows the diUerence between the
sell and the buy boundary over a time horizon of T = 100 for both the case with
and without crashes. Without crashes, the diUerence appears to be stable for
maturities greater than approximately two to three years, meaning that the time-
inWuence of the transaction costs on the optimal strategies is only signiVcant
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Figure 3.6. DiUerence of sell and buy boundaries with and without crashes.

for small investment periods. On the other hand, in the presence of crashes
the diUerence is increasing with increasing time to maturity even for large time
horizons, indicating that the sensitivity of the optimal strategies with respect to
time is signiVcantly higher in the presence of crashes. Note however that the
diUerence is always smaller for the case with a potential crash than for the case
with no crash threat.

Let us now turn our focus to the value function V̄1 which is shown in Figure 3.7
for an investment horizon of T = 10. It is interesting to see that V̄1 is decreasing
at a much faster rate than V̄0 for risky fractions above the sell boundary (compare
with Figure 2.9). That is, the kink at the sell boundary is more pronounced in the
crash-threatened case. The reason for this lies in the crash constraint.

We would also like to point out that the sell region R̄sell
1 is empty in our example

and that the crash region R̄crash
1 coincides with the whole region above the sell

boundary. That is, the investor sells shares of the stock because she is afraid of
a crash and not because of the risk caused by the Wuctuations coming from the
stock dynamics in normal times.

Another implication of the above considerations concerns the characterization
of the optimal crash time τ ∗ which is conjectured to be the Vrst hitting time of
R̄crash

1 , see Section 3.2. The numerical example suggests that τ ∗ is the Vrst hitting
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Figure 3.7. The value function in the presence of a crash.

time of the sell boundary. Moreover, the investor beneVts from a crash if her risky
fraction is below the sell boundary since then V1(t, b, s) < V0(t, b, (1 − β)s),
incurs losses at the moment a crash occurs if her risky fraction is above the sell
boundary since V1(t, b, s) = V0(t, b, (1 − β)s) and LsellV1(t, b, s) < 0 and is
indiUerent about the occurrence of a crash on the sell boundary since V1(t, b, s) =
V0(t, b, (1− β)s) and LsellV1(t, b, s) = 0.

Clearly, if no crash occurs an investor following the optimal strategy in the pres-
ence of crashes achieves less expected utility compared to the investor who fol-
lows the optimal strategy for zero crashes. To estimate the trade-oU we plot in
Figure 3.8 the relative loss of utility given by

V̄0(t, π)− V̄1(t, π)

V̄0(t, π)
, (t, π) ∈ [0, T ]× [0, 1].

One can see that the relative loss of utility for protection against a 50% crash is
at most 7.5% and as long as the initial risky fraction is small (meaning that at
time t = 0 it is inside the no-trading region) the relative loss is at most around
3% even for investment periods of 50 years.
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Figure 3.8. Relative loss of utility.

3.8. Extension to multiple crashes

We conclude this chapter with a short outline on how to extend our results to the
case of an arbitrary but Vxed maximal number of crashes. The generalizations of
the previous results are mostly straightforward and can be obtained by iterating
through the number of crashes, but one needs to be careful to setup the model
correctly.

Let us Vrst explain how we deVne admissible crash strategies. A crash is modeled
as a pair (τ, β(τ)) consisting of an Ft-stopping time τ and anF t(τ−)-measurable
crash size β(τ). The crash size β(τ) is assumed to be of the form

β(τ) = βj := 1− (1− β)j,

where β ∈ (0, 1) is Vxed and where j ∈ N. Note that with this, whenever a crash
occurs we have

P 1(τ) = (1− βj)P
1(τ−) = (1− β)jP 1(τ−). (3.33)

We can therefore interpret the crash (τ, βj) as j crashes of size β occurring at
the same time τ but worked oU one after another. Moreover the investor cannot
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3. Worst-case portfolio optimization with transaction costs

react to the crashes in between. In this spirit we call a crash of size βj a crash of
order j.

Remark 3.28. The form of the crash size β(τ) = βj is a technical tool. In the
classical worst-case models multiple crashes at the same time are typically not
allowed (see e.g. Korn and SteUensen [70]). In our setting however it is more
convenient to allow for more than one crash to occur at the same time. The rea-
son is the following: If multiple crashes at the same time were not allowed then
one would need to be very careful about distinguishing whether or not at some
given time t a crash can still occur or not. This would lead to two diUerent value
functions – one for the case where a crash can occur at initial time and one for
the case where a crash cannot occur at initial time. This would for example cause
additional diXculties in the formulation of the dynamic programming principle.
It is therefore easier to allow for multiple crashes to occur at once, but we have
to assume that they are of the form (3.33).

A diUerent modeling approach for multiple crashes would be to assume that if i
crashes occur at the same time, then the investor loses a fraction of (1−iβ) of the
wealth invested in the stock. However, this causes inconsistencies when deter-
mining the optimal strategies. More precisely, if the investor expects two crashes
to occur at the same time then she would choose a diUerent optimal strategy than
if she would expect only one crash to happen. This eUect is demonstrated in Korn
et al. [68, Section 8].

Since the buy and sell boundaries can be expected to be decreasing in the number
of crashes we expect that multiple crashes at the same time are only optimal if
the investor holds a very risky initial position. Once the position is inside the no
trading region multiple crashes are never optimal. ⋄

We restrict the maximal number of crashes to be less or equal to n ∈ N. To
be more precise, a crash strategy is a sequence of crashes ̟ := (τi, βji)i=1,...,n0 ,
n0 ≤ n, such that

n0
∑

i=1

ji ≤ n.

That is, the sum of the orders of the crash sizes is assumed to be bounded by n.
In view of Remark 3.28 this setup allows the market to exercise multiple crashes
of size β at once but limits the total number of crashes to n. The stopping times
τ1, . . . , τn0 are assumed to satisfy τi < τi−1 on {τi < ∞} for i = 2, . . . , n0. Note
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3.8. Extension to multiple crashes

that with this convention we count the number of crashes backwards: If a crash
occurs at time τi then we know that at most n−

∑i
k=1 jk crash times may still be

realized.

The investor’s trading strategies are deVned as in the case of at most 1 crash. The
investor Vrst chooses a trading strategy πn which she follows as long as there are
at most n crashes left. Then for every possible crash scenario (τn0 , βjn0

) the in-
vestor chooses a strategy πn−jn0 which she follows after the observed crash. Then
for every such strategy πn−jn0 with n0 6= n and for every crash (τn0−1, βjn0−1)
the investor chooses a strategy πn−jn0−jn0−1 and so on until no more crashes are
possible. This means that for every possible crash strategy ̟ := (τi, βji)i=1,...,n0 ,
n0 ≤ n, the investor has to come up with trading strategies which she can apply
in between the crash times. For simplicity of notation we denote such families
of trading strategies by π and the set of all such trading strategies by An(t, b, s).
The crash strategies ̟ = (τi, βji)i=1,...,n0 are called admissible if the (τi)i=1,...,n0

are Ft-stopping times. We denote the set of such crash scenarios by Bn(t).

Let π ∈ An(t, b, s) and ̟ = (τi, βji)i=1,...,n0 ∈ Bn(t). Since the crash strategy is
Vxed so are the trading strategies the investor follows. We denote these strategies
by πn0 , . . . , π0 where πi = (Li,Mi) is the trading strategy applied before the
crash at time τi if i = 1, . . . , n0 and π0 = (L0,M0) is the strategy which is used
when no more crashes can occur. Given an initial position of b units of money,
the investor’s wealth invested in the bond is given by B(t−) = b at initial time.
Then on [t, τn0) ∩ [t, T ] the wealth follows

dB(u) = −(1 + λ)dLn0(u) + (1− µ)dMn0(u).

Similarly, on [τi+1, τi) ∩ [t, T ], i = 1 . . . , n0 − 1, the wealth follows

dB(u) = −(1 + λ)dLi(u) + (1− µ)dMi(u)

and Vnally on [τ1, T ] ∩ [t, T ] the wealth invested in the bond is given by

dB(u) = −(1 + λ)dL0(u) + (1− µ)dM0(u).

The equations for the wealth invested in the stock are set up similarly (compare
also with the case n = 1, see (3.4) to (3.6)) keeping in mind that at the time a
crash occurs we have

S(τi) = (1− β)jiS(τi−) + Li−1(τi)−Mi−1(τi).
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3. Worst-case portfolio optimization with transaction costs

We can now deVne the following solvency regions:

S i :=
{

(b, s) ∈ R2 : b+(1+λ)s > 0, b+(1−µ)(1−β)is > 0
}

, i = 0, . . . , n.

We restrict the set An(t, b, s) to those families of strategies such that for every
admissible crash strategy in Bn(t) the corresponding pair (B, S) stays in the
closure of S i whenever there are at most i crashes left up to time T .

The net wealth X of the investor after liquidation of the risky position at time u
is given by

X(u) :=

{

B(u) + (1− µ)S(u), if S(u) > 0,

B(u) + (1 + λ)S(u), if S(u) ≤ 0.

With this, we can formulate the following optimization problem: For (t, b, s) ∈
[0, T )× S

n
we are interested in determining

Vn(t, b, s) := sup
π∈An(t,b,s)

inf
̟∈Bn(t)

E
[

Up

(

Xπ,̟
t,b,s(T )

)]

.

We call Vn the value function in the market with at most n crashes. With this
setup, using the techniques developed for the analysis of V1, the following results
are straightforward.

First, one can show that the value functions Vi, 0 ≤ i ≤ n, are continuous on
their respective domains.

Theorem 3.29. The value function Vn is continuous on [0, T ]× S
n
.

From the continuity it is possible to deduce the existence of ε-optimal strategies
which in turn lead to the dynamic programming principle. The DPP then allows
to deduce the viscosity property of the value functions.

Theorem 3.30. Vn is a viscosity solution of

0 = max
{

Vn(t, b, s)− Vn−1(t, b, (1− β)s),

min{LntVn(t, b, s),L
buyVn(t, b, s),L

sellVn(t, b, s)}
}

,

on [0, T )× Sn with boundary condition

Vn(t, b, s) = Up(0), if (b, s) ∈ ∂Sn, t ∈ [0, T ],
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3.8. Extension to multiple crashes

and terminal condition

Vn(T, b, s) =

{

Up(b+ (1− µ)(1− β)ns), if s > 0,

Up(b+ (1 + λ)s), if s ≤ 0.

Moreover, Vn is unique in the class of upper semi-continuous functions satisfying

Up(b+min{(1− µ)(1− β)ns, (1 + λ)s}) ≤ Vn(t, b, s) ≤ ϕγ,p,K(t, b, s).
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4. Worst-case portfolio

optimization in a market with

bubbles

We now leave the world of transaction costs behind us and consider a frictionless
market underlying the worst-case model. More precisely, the objective of this
chapter is to analyze a regime-switching model in the presence of crashes. The
motivation of this model is to drop the assumption that the maximum number of
crashes is Vnite and Vxed a priori.

In the Vrst part of this chapter we assume that the investor receives warnings
about a potential crash at the jump times of an independent Poisson process.
That is, whenever the Poisson process jumps one crash in the stock is possible
(up to the next jump time of the Poisson process). It turns out that in the case
of logarithmic and power utility it is relatively simple to derive a strategy which
renders the investor indiUerent between an immediate crash and no crash at all
and to verify directly that this strategy is optimal.

In the second part of this chapter we extend this simple model by replacing the
Poisson process by a Vnite-state Markov jump process and associate to every state
of the Markov process diUerent market coeXcients and crash sizes. For this gen-
eral model we derive a system of dynamic programming equations in the spirit of
Korn and SteUensen [70] and use this to construct the optimal strategies, which
turn out to be given as the solution of a coupled system of ordinary diUerential
equations.

In contrast to the existing worst-case models with a deterministic maximum
number of crashes the optimal strategies in our models exhibit some previously
unobserved features. To be more precise, we show the following:
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4. Worst-case portfolio optimization in a market with bubbles

1. In general, the optimal strategies do not converge to the Merton fraction as
the investment horizon tends to inVnity. This shows that a random number
of total crashes introduces an additional long-term eUect on the optimal
strategies.

2. While in the simple Poisson process model the investor is always indiUer-
ent between an immediate crash and no crash at all, this is not necessarily
true in our generalized Markov chain model. As is known from Korn and
Menkens [67] and Seifried [95], this eUect may also occur in the classical
models if the market coeXcients change after a crash. In our model how-
ever this eUect may occur also if the market coeXcients are independent of
the state as soon as we allow for changing crash sizes.

3. Finally, in the generalized model we show that the optimal strategies may
not necessarily be monotonically decreasing in time. For example, in the
numerical examples at the end of this chapter we construct optimal strate-
gies which oscillating.

The results of this chapter correspond in large parts to the following articles:

1. C. Belak, S. Christensen, O. Menkens (2013): Worst-case optimal invest-
ment with a random number of crashes [9].

2. C. Belak, S. Christensen, O. Menkens (2013): Worst-case portfolio optimiza-
tion in a market with bubbles [10].

4.1. The Poisson market model

As in the previous chapters we consider a Vnancial market consisting of one
risk-free bond and one risky stock with price evolutions as in the Black-Scholes
model. Fix an investment horizon T > 0 and assume that the dynamics of the
risk-free asset P 0 = (P 0(t))t∈[0,T ] are given by

dP 0(t) = 0, t ∈ [0, T ], P 0(0) = 1.

To model the price of the stock we let W = (W (t))t≥0 be a standard Brownian
motion on a complete probability space (Ω,F,P) and let (Tk)k∈N denote the jump
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4.1. The Poisson market model

times of an independent Poisson process with parameter λ. Moreover, we set
T0 = 0. We denote the augmented Vltration generated by W and the Poisson
process by (F(t))t≥0. As described in the introduction, the sequence (Tk)k∈N0

models the time points at which the investor receives a warning about a potential
market crash. Note that the sequence (Tk)k∈N0 does not coincide with the crash
times in general. The crash times are given by a sequence (τk)k∈N0 of [Tk, T ] ∪
{∞}-valued stopping times with respect to the Vltration (F(t))t≥0. We assume
that whenever we have

Tk ≤ τk < Tk+1

then a crash occurs at time τk. This condition means that there is at most one
crash between every two warnings. In other words, before each crash the in-
vestor receives a warning. We interpret {τk ≥ Tk+1} as the event that no crash
occurs between Tk and Tk+1 so that with this setup at any given time at most one
crash warning is active. At each crash time τk the stock price drops by a rela-
tive amount 0 ≤ βk ≤ β where βk is a F(τk−)-measurable random variable and
β ∈ (0, 1) denotes the maximum (deterministic) crash size. Note that as before
we can assume without loss of generality that βk = β since we take a worst-case
perspective. We denote the set of all sequences (τk)k∈N0 fulVlling the above re-
quirements by T1. The subset of all crash scenarios such that no crash occurs
until the Vrst warning (that is τ0 ≥ T1) is denoted by T0.

Given a sequence (τk)k∈N0 ∈ T1 of crash scenarios the corresponding stock price
process P 1 = (P 1(t))t∈[0,T ] is given by

dP 1(t) = αP 1(t)dt+ σP 1(t)dW (t), t ∈ [τk, τk+1) ∩ [0, T ],

where α, σ > 0 denote the excess return and volatility of the stock price process.
For the k-th crash time τk we assume that

P 1(τk) = (1− β)P 1(τk−), on {τk < Tk+1} ∧ {τk ≤ T},

P 1(τk) = P 1(τk−), on {τk ≥ Tk+1} ∧ {τk ≤ T}.

The investor acts according to the information given by the Vltration (F(t))t≥0.
Furthermore, the investor does not know the crash scenarios (τk)k∈N0 a priori
but can observe each crash whenever it occurs. However, the investor knows
β and observes (Tk)k∈N0 as well. For the investor two diUerent situations must
be distinguished: Whenever a crash has already happened and no new crash is
announced – that is on an interval [τk, Tk+1) ∩ [0, T ] – the investor does not
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4. Worst-case portfolio optimization in a market with bubbles

have to fear a crash and trades according to the strategy π0 = (π0(t))t∈[0,T ].
At all other times the investor must fear a crash and trades according to the
strategy π1 = (π1(t))t∈[0,T ]. The trading strategies for the investor can therefore
be described by a pair π = (π0, π1) which is assumed to be a pair of adapted,
right-continuous and bounded processes.

Given a crash scenario ϑ = (τk)k∈N0 , a trading strategy π = (π0, π1) and an
initial wealth of x > 0 the investor’s wealth processX = Xπ,ϑ

0,x = (Xπ,ϑ
0,x (t))t∈[0,T ]

is given by

X(0) = x,

dX(t) = απ1(t)X(t)dt+ σπ1(t)X(t)dW (t), on [Tk, τk) ∩ [0, T ],

dX(t) = απ0(t)X(t)dt+ σπ0(t)X(t)dW (t), on [τk, Tk+1) ∩ [0, T ],

X(τk) = (1− π1(τk)β)X(τk−), on {τk < Tk+1} ∩ {τk ≤ T},

X(τk) = X(τk−), on {τk ≥ Tk+1} ∩ {τk ≤ T}.

If no confusion may occur we drop some of the subscripts or superscripts in the
notation of the process Xπ,ϑ

0,x . Note that the explicit solution of the above SDE is
given by

X(t) = x

∞
∏

k=0

(

1− π1(τk)β1{τk<Tk+1}1{τk≤t}

)

· exp

(∫ τk∧t

Tk∧t

σπ1(u) dW (u) +

∫ Tk+1∧t

τk∧t

σπ0(u) dW (u)

)

· exp

(∫ τk∧t

Tk∧t

απ1(u)−
1

2
σ2
[

π1(u)
]2
du

)

· exp

(∫ Tk+1∧t

τk∧t

απ0(u)−
1

2
σ2
[

π0(u)
]2
du

)

. (4.1)

We denote the set of all trading strategies π that correspond to a strictly positive
wealth processes Xπ,ϑ

0,x for all ϑ ∈ T1 by A(x). Note that the strategy π1 in the
crash regime has to satisfy

π1(t) <
1

β
for all t ∈ [0, T ].

If we consider the problem on a sub-interval [t, T ], then we denote the corre-
sponding strategies by A(t, x), T1(t) and T0(t), respectively.
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Fix p < 1. We consider the following worst-case optimization problem: The
investor optimizes her expected utility under the worst possible crash scenario,
i.e.

sup
π∈A(x)

inf
ϑ∈T0

E

[

Up

(

Xπ,ϑ
0,x (T )

)]

and sup
π∈A(x)

inf
ϑ∈T1

E

[

Up

(

Xπ,ϑ
0,x (T )

)]

.

The Vrst problem corresponds to the case in which we start in a situation without
a crash warning at time t = 0. In the second problem the Vrst crash may occur
immediately. We make the problem time-dependent by introducing the value
functions

V(t, x, i) = sup
π∈A(t,x)

inf
ϑ∈Ti(t)

E

[

Up

(

Xπ,ϑ
t,x (T )

)]

, i = 0, 1.

Obviously V(t, x, 1) ≤ V(t, x, 0) since the inVmum is taken over a larger set.

4.2. Heuristic derivation of the optimal strategies

In this section we Vnd a candidate optimal solution π∗ = (π0,∗, π1,∗) for the log-
arithmic utility case, i.e. p = 0. By the usual pointwise maximization argument
(see e.g. Irle and Sass [49, Section 2] in a slightly diUerent context) it is immedi-
ately clear that in times with no crash warning it is optimal for the investor to
use the Merton strategy. That is

π0,∗(t) := πM =
α

σ2
, for all t ∈ [0, T ].

If we start the wealth process at time twith initial wealth x and no crash warning
is present, then by the memoryless property of the exponential distribution the
next warning arrives at an exponential time eλ if this time is less than T . It is
therefore reasonable to assume that we have the following version of the dynamic
programming principle:

V(t, x, 0) = E

[

V(t+ eλ, X
π0,∗

t,x (t+ eλ), 1)1{t+eλ<T}

+ log
(

Xπ0,∗

t,x (T )
)

1{t+eλ≥T}

]

.
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Integrating the exponential time we obtain

V(t, x, 0) =

∫ T−t

0

E
[

V(t+ u,Xπ0,∗

t,x (t+ u), 1)
]

λe−λu du

+ e−λ(T−t)E

[

log
(

Xπ0,∗

t,x (T )
)]

=

∫ T−t

0

E
[

V(t+ u,Xπ0,∗

t,x (t+ u), 1)
]

λe−λu du

+ e−λ(T−t)

(

log(x) +
1

2

α2

σ2
(T − t)

)

. (4.2)

To obtain an expression for V(t, x, 1) we use the indiUerence approach as de-
scribed in Korn and Wilmott [71] and formalized in Korn and Menkens [67]. For
an initial value x and a time point t such that a crash could happen, we try to Vnd
a strategy π1,∗ such that the investor is indiUerent between the scenarios “A crash

of size β happens immediately” and “No crash happens until T ”. We expect this
strategy to be optimal. For the Vrst scenario, after the crash in t, the investor is
faced with the problem without an active crash warning discussed above so that

V(t, x, 1) = V(t, (1− π1,∗(t)β)x, 0). (4.3)

On the other hand, in the second scenario (no crash at all) Itô’s formula leads to

V(t, x, 1) = E

[

log
(

Xπ1,∗

t,x (T )
)]

= log(x) + E

[∫ T

t

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
du

]

, (4.4)

where the stochastic integral vanishes since we assume π1,∗ to be bounded. Com-
bining (4.3) and (4.4) with (4.2) leads to

log(x) + E

[∫ T

t

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
du

]

= V(t, x, 1)

= V(t, (1− π1,∗(t)β)x, 0)

=

∫ T−t

0

E

[

V(t+ u,Xπ0,∗

t,(1−π1,∗(t)β)x(t+ u), 1)
]

λe−λu du

+ e−λ(T−t)

(

log(x) + E
[

log(1− π1,∗(t)β)
]

+
1

2

α2

σ2
(T − t)

)

. (4.5)
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Furthermore, by (4.4) and Itô’s formula we have

E
[

V(t+ u,Xπ0,∗

t,(1−π1,∗(t)β)x(t+ u), 1)
]

= E

[

log
(

Xπ0,∗

t,(1−π1,∗(t)β)x(t+ u)
)

+

∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

]

= E

[

log
(

Xπ0,∗

t,(1−π1,∗(t)β)x(t)
)

+

∫ t+u

t

απ0,∗(r)−
1

2
σ2
[

π0,∗(r)
]2
dr

+

∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

]

= log(x) +
1

2

α2

σ2
u+ E

[

log(1− π1,∗(t)β)

+

∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

]

,

so that we get from (4.5)

E

[∫ T

t

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
du

]

=

∫ T−t

0

E

[

log(1− π1,∗(t)β) +

∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

]

λe−λu du

+

∫ T−t

0

1

2

α2

σ2
uλe−λu du+ e−λ(T−t)

(

E
[

log(1− π1,∗(t)β)
]

+
1

2

α2

σ2
(T − t)

)

=

∫ T−t

0

E

[∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

]

λe−λu du

+ E
[

log(1− π1,∗(t)β)
]

+
1

2

α2

σ2

1− e−λ(T−t)

λ
.

Now we make the ansatz that π1,∗ is deterministic and obtain the integral equa-
tion

∫ T

t

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
du

= log(1− π1,∗(t)β) +
1

2

α2

σ2

1− e−λ(T−t)

λ

+

∫ T−t

0

(∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

)

λe−λu du. (4.6)
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Integration by parts shows that

∫ T−t

0

(∫ T

t+u

απ1,∗(r)−
1

2
σ2
[

π1,∗(r)
]2
dr

)

λe−λu du

=

∫ T

t

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
du

−

∫ T

t

e−λu

(

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
)

du

and hence (4.6) simpliVes to

0 = e−λt log(1− π1,∗(t)β) +
1

2

α2

σ2

e−λt − e−λT

λ

−

∫ T

t

e−λ(u−t)

(

απ1,∗(u)−
1

2
σ2
[

π1,∗(u)
]2
)

du. (4.7)

Note that for the degenerate case λ → 0 (that is, the time until the second warn-
ing can occur is inVnite, i.e. only one crash can happen) this equation simpliVes
to

∫ T

t

απ1,∗(u)−
1

2
σ2π1,∗(u)2 du = log(1− π1,∗(t)β) +

1

2

α2

σ2
(T − t)

which indeed is the equation characterizing the optimal worst case strategy in
the problem with only one crash, see Korn and Wilmott [71, Equation (A.5)].

DiUerentiation with respect to t in (4.7) and rearranging terms yields the follow-
ing ordinary diUerential equation for π1,∗:

∂

∂t
π1,∗(t) =

1

β
(1− π1,∗(t)β)

(

α
(

π1,∗(t)− π0,∗(t)
)

−
1

2
σ2
(

[π1,∗(t)]2 − [π0,∗(t)]2
)

− λ log(1− π1,∗(t)β)

)

=
1

β
(1− π1,∗(t)β)

(

−
1

2
σ2
(

π1,∗(t)− π0,∗(t)
)2

− λ log(1− π1,∗(t)β)

)

, (4.8)

π1,∗(T ) = 0,
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4.3. Direct veriVcation for logarithmic utility

where as before π0,∗(t) = πM = α/σ2 for all t ∈ [0, T ]. The existence and
uniqueness of a solution of this diUerential equation is assured by arguments
similar to the proof in Menkens [78, Theorem 2.5], see also Lemma 4.10 below. In
particular we have π1,∗(t) < 1/β and π1,∗ ≤ π0,∗.

Again, note that for the degenerate case λ = 0 the equation for the candidate
optimal strategy reduces to

∂

∂t
π1,∗(t) =

1

β
(1− π1,∗(t)β)

(

−
1

2
σ2
(

π1,∗(t)− π0,∗(t)
)2
)

which is the equation obtained in Korn and Wilmott [71], see (1.6) in Chapter 1.

4.3. Direct veriVcation for logarithmic utility

In this section we verify that the indiUerence strategy π∗ = (π0,∗, π1,∗) con-
structed in the previous section is indeed optimal. For this let ϑ̂ = (τ̂k)k∈N0

denote the crash scenario such that no crash occurs at all, i.e. τ̂k ≡ ∞ for all
k ∈ N0. The next lemma shows that the strategy π∗ leads to the same expected
utility no matter which crash scenario occurs.

Lemma 4.1. For all crash scenarios ϑ = (τk)k∈N0 ∈ T1 we have

E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

= E

[

log
(

Xπ∗,ϑ̂
0,x (T )

)]

.

Proof. Writing g(y) = αy − 1/2σ2y2 for short we have by (4.1)

E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

= log(x) + E

[

∞
∑

k=0

∫ τk∧T

Tk∧T

g
(

π1,∗(u)
)

du

]

+ E

[

∞
∑

k=0

∫ Tk+1∧T

τk∧T

g
(

π0,∗(u)
)

du1{τk<Tk+1}

]

+ E

[

∞
∑

k=0

log(1− π1,∗(τk)β)1{τk<Tk+1}1{τk≤T}

]

. (4.9)
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4. Worst-case portfolio optimization in a market with bubbles

By construction of the indiUerence strategy π∗ it holds that for each k ∈ N0 on
the set {τk < Tk+1} ∩ {τk ≤ T} we have

E

[∫ T

τk∧T

g
(

π1,∗(u)
)

du

∣

∣

∣

∣

F(τk)

]

= E

[∫ Tk+1∧T

τk∧T

g
(

π0,∗(u)
)

du+

∫ T

Tk+1∧T

g
(

π1,∗(u)
)

du

+ log(1− π1,∗(τk)β)

∣

∣

∣

∣

F(τk)

]

,

i.e. the investor is indiUerent between a crash of size β happening at time τk
(right-hand side) and no crash happening (left-hand side). This can be rewritten
as

E

[∫ Tk+1∧T

τk∧T

g
(

π1,∗(u)
)

du

∣

∣

∣

∣

F(τk)

]

= E

[∫ Tk+1∧T

τk∧T

g
(

π0,∗(u)
)

du+ log(1− π1,∗(τk)β)

∣

∣

∣

∣

F(τk)

]

. (4.10)

Hence, combining (4.9) and (4.10) we see that

E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

= log(x) + E

[

∞
∑

k=0

∫ τk∧T

Tk∧T

g
(

π1,∗(u)
)

du

]

+ E

[

∞
∑

k=0

∫ Tk+1∧T

τk∧T

g
(

π1,∗(u)
)

du1{τk<Tk+1}

]

= log(x) + E

[∫ T

0

g
(

π1,∗(u)
)

du

]

= E

[

log
(

Xπ∗,ϑ̂
0,x (T )

)]

.

Lemma 4.1 implies that the strategy π∗ is indeed an indiUerence strategy, i.e. if
the investor follows this strategy she is indiUerent between which crash scenario
occurs since each scenario leads to the same expected utility. Note also that since
T0 ⊂ T1 and ϑ̂ ∈ T0 the same result also applies for the case in which there is no
crash warning at initial time t = 0. With this it is easy to prove the optimality of
π∗ since we now only need to Vnd one crash scenario in which the indiUerence
strategy outperforms any other given strategy.
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4.3. Direct veriVcation for logarithmic utility

Proposition 4.2. Let π = (π0, π1) ∈ A(x) be arbitrary. Then

inf
ϑ∈T0

E

[

log
(

Xπ,ϑ
0,x (T )

)]

≤ inf
ϑ∈T0

E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

and

inf
ϑ∈T1

E

[

log
(

Xπ,ϑ
0,x (T )

)]

≤ inf
ϑ∈T1

E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

.

Proof. By Lemma 4.1 the right-hand side is independent of ϑ. In order to prove
the Vrst claim it is therefore enough to Vnd at least one ϑ ∈ T0 such that

E

[

log
(

Xπ,ϑ
0,x (T )

)]

≤ E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

.

For this, set τ0 = T1 (since we start without a crash warning) and deVne

τk = inf{u ∈ [Tk, T ] : π
1(u) ≥ π1,∗(u)}

for all k ∈ N. Writing ϑ = (τk)k∈N0 we have

E

[

log
(

Xπ,ϑ
0,x (T )

)]

= log(x) + E

[

∞
∑

k=0

∫ τk∧T

Tk∧T

g
(

π1(u)
)

du

]

+ E

[

∞
∑

k=0

∫ Tk+1∧T

τk∧T

g
(

π0(u)
)

du1{τk<Tk+1}

]

+ E
[

log(1− π1(τk)β)1{τk<Tk+1}1{τk≤T}

]

. (4.11)

On [Tk, τk) ∩ [0, T ] we have π1 ≤ π1,∗ ≤ π0,∗ and hence g(π1) ≤ g(π1,∗) since g
is quadratic and attains its unique maximum at π0,∗. Therefore

E

[

∞
∑

k=0

∫ τk∧T

Tk∧T

g
(

π1(u)
)

du

]

≤ E

[

∞
∑

k=0

∫ τk∧T

Tk∧T

g
(

π1,∗(u)
)

du

]

. (4.12)

Similarly, we have g(π0) ≤ g(π0,∗) on [τk, Tk+1) ∩ [0, T ] and therefore

E

[

∞
∑

k=0

∫ Tk+1∧T

τk∧T

g
(

π0(u)
)

du1{τk<Tk+1}

]

≤ E

[

∞
∑

k=0

∫ Tk+1∧T

τk∧T

g
(

π0,∗(u)
)

du1{τk<Tk+1}

]

. (4.13)
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4. Worst-case portfolio optimization in a market with bubbles

Finally, by the construction of τk and the right-continuity of π1 and π1,∗ we have
π1(τk) ≥ π1,∗(τk) and hence

log(1− π1(τk)β) ≤ log(1− π1,∗(τk)β)

on {τk < Tk+1} ∩ {τk ≤ T}. That is,

E
[

log(1− π1(τk)β)1{τk<Tk+1}1{τk≤T}

]

≤ E
[

log(1− π1,∗(τk)β)1{τk<Tk+1}1{τk≤T}

]

. (4.14)

Combining (4.12)-(4.14) with (4.11) hence shows that

E

[

log
(

Xπ,ϑ
0,x (T )

)]

≤ E

[

log
(

Xπ∗,ϑ
0,x (T )

)]

.

The proof for ϑ ∈ T1 follows similarly.

4.4. Heuristic derivation in the power utility case

Using a change-of-measure approach, the power-utility case p < 1, p 6= 0 can
be handled similarly to the logarithmic utility case p = 0 studied in the previ-
ous sections. For the derivation of the candidate optimal strategies we proceed
similarly to the indiUerence arguments in Section 4.2.

More speciVcally, for each risky fraction process π1,∗ in the scenario without
crashes we can decompose the utility process as follows:

Up

(

Xπ1,∗

t,x (T )
)

=
1

p
exp

(

p log
(

Xπ1,∗

t,x (T )
)

)

= Up(x) exp

(

p

∫ T

t

g
(

π1,∗(u)
)

du+ p

∫ T

t

σπ1,∗(u) dW (u)

)

= Up(x) exp

(

p

∫ T

t

gp
(

π1,∗(u)
)

du

)

Mt(T ),

where

g(y) = αy −
1

2
σ2y2, gp(y) = αy −

1

2
(1− p)σ2y2,
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4.4. Heuristic derivation in the power utility case

andMt = (Mt(u))u∈[t,T ] given by

Mt(u) = exp

(

−
1

2

∫ u

t

p2σ2[π1,∗(r)]2 dr +

∫ u

t

pσπ1,∗(r) dW (r)

)

is a local martingale withMt(t) = 1. Since we assume admissible strategies to be
bounded we see thatMt is even a martingale which deVnes a change of measure.
We denote the expectation under this measure by Eπ1,∗

. In the scenario without
crashes we therefore obtain

E

[

Up

(

Xπ1,∗

t,x (T )
)]

= Up(x) E
π1,∗

[

exp

(

p

∫ T

t

gp
(

π1,∗(u)
)

du

)]

.

If one crash of size β occurs immediately in t, no further crash occurs and we
hold the Merton ratio π0,∗(u) := πM = α/(1− p)σ2 until a new crash is possible
after an exponential time eλ the expected performance is

Up(x) E
π1,∗

[

exp

(

p

∫ T

t

gp
(

π0,∗(u)
)

du

)

(1− π1,∗(t)β)p1{t+eλ≥T}

]

+ Up(x) E
π1,∗

[

exp

(

p

∫ t+eλ

t

gp
(

π0,∗(u)
)

du

+ p

∫ T

t+eλ

gp
(

π1,∗(u)
)

du

)

(1− π1,∗(t)β)p1{t+eλ<T}

]

.

Assuming again that π1,∗ is deterministic, the indiUerence approach suggests that
π1,∗ should solve

exp

(

p

∫ T

t

gp
(

π1,∗(u)
)

du

)

= Eπ1,∗

[

exp

(

p

∫ T

t

gp
(

π0,∗(u)
)

du

)

(1− π1,∗(t)β)p1{t+eλ≥T}

]

+ Eπ1,∗

[

exp

(

p

∫ t+eλ

t

gp
(

π0,∗(u)
)

du

+ p

∫ T

t+eλ

gp
(

π1,∗(u)
)

du

)

(1− π1,∗(t)β)p1{t+eλ<T}

]

.

Integrating the exponential time and some further simpliVcations show that
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4. Worst-case portfolio optimization in a market with bubbles

(1− π1,∗(t)β)−p = exp

(

−p

∫ T

t

gp
(

π1,∗(u)
)

du

)

+ λ

∫ T−t

0

exp

(

−p

∫ t+u

t

gp
(

π1,∗(r)
)

dr

)

du, (4.15)

where gp(y) = gp(y) +
λ−pcp

p
and cp = gp

(

π0,∗
)

is the maximum of the function
gp. DiUerentiating with respect to t in (4.15) and rearranging terms yields the
ordinary diUerential equation

∂

∂t
π1,∗(t) =

1

β
(1− π1,∗(t)β)

(

gp
(

π1,∗(t)
)

−
λ

p
(1− π1,∗(t)β)p

)

=
1

β
(1− π1,∗(t)β)

(

−
1

2
(1− p)σ2

(

π1,∗(t)− π0,∗(t)
)2

−
λ

p

(

(1− π1,∗(t)β)p − 1
)

)

(4.16)

with terminal condition π1,∗(T ) = 0.

Note that (4.16) converges to the ODE for the indiUerence strategy in the loga-
rithmic utility case given by (4.8) if we let p → 0. Moreover, sending λ ↓ 0 shows
that (4.16) converges to the indiUerence strategy in the model with at most one
crash given by (1.8).

At this point one could proceed similarly to the reasoning in Section 4.3 to verify
the optimality of the indiUerence strategy π∗ = (π0,∗, π1,∗). We do not work out
the details here but develop a diUerent approach in a generalized model based on
a system of dynamic programming equations.

4.5. The generalized model

In this section we generalize the model discussed before by introducing a range of
maximum crash sizes and state-dependent market coeXcients as follows: We let
(Ω,F ,P) be a complete probability space which supports a standard Brownian
motionW = (W (t))t≥0 and an independent time-homogeneous continuous-time
Markov chain Z = (Z(t))t≥0 with state space E := {0, . . . , d} for some d ≥ 1.
We denote by Q = (qi,j)0≤i,j≤d the transition rate matrix of Z such that

qi,j ≥ 0 for all i, j ∈ E with i 6= j
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4.5. The generalized model

and we set

λi := −qi,i :=
d
∑

j=0
j 6=i

qi,j for all i ∈ E.

We assume moreover that the state 0 cannot be reached from any other point, i.e.
qi,0 = 0 for all i ∈ E. We denote the augmented Vltration generated byW and Z
by F = (F(t))t≥0.

Let us now Vx some investment horizon T > 0 as well as some initial time
t ∈ [0, T ). We assume that the bond price P 0 = (P 0(u))u∈[t,T ] is given as before,
that is

dP 0(u) = 0, u ∈ [t, T ], P 0(t) = 1.

We denote by Zt,i = (Zt,i(u))u≥t the process (Z(u))u≥t conditioned on Z(t) = i.
We assume that in the absence of crashes the stock price P 1 = (P 1(u))u∈[t,T ] has
state-dependent excess return and volatility, i.e.

dP 1(u) = αjP
1(u)du+ σjP

1(u)dW (u), on {Z(u) = j}, u ∈ [t, T ],

where αj, σj > 0 for all j ∈ E and where we set P 1(t) = 1.

To each state i ∈ E we associate a maximum crash size βi ∈ [0, 1). We assume
that β0 = 0 (i.e. no crash in state 0) and assume the maximum crash sizes to be
ordered:

0 = β0 ≤ β1 ≤ . . . ≤ βd > 0.

Moreover, we set imin = min{i ∈ E : βi > 0} (i.e. if i < imin, then no crashes can
occur in state i, see also Remark 4.4). We denote the jump times of the Markov
chainZt,i by (Tk)k∈N and set T0 = t. The crash times are now given by a sequence
(τk)k∈N0 of F-stopping times taking values in [Tk, T ] ∪ {∞} and we assume that
a crash occurs only if Zt,i(τk−) ≥ imin and

Tk ≤ τk < Tk+1.

The sequence (τk)k∈N0 now acts as an impulse control strategy for Zt,i and P 1 as
follows: Whenever τk < Tk+1 and Zt,i(τk−) ≥ imin the Markov chain Zt,i is sent
to the state 0 at time τk and the asset crashes in the following sense:

P 1(τk) = (1− βj)P1(τk−), on {Zt,i(τk−) = j ≥ imin}.
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4. Worst-case portfolio optimization in a market with bubbles

We write ϑ = (τk)k∈N0 and denote the corresponding controlled Markov chain
by Zϑ

t,i. Moreover, we denote by T (t, i) the set of all sequences of crash times as
deVned above.

We interpret this market model as follows: Whenever Zϑ
t,i is in state 0, then the

market is in a safe regime in the sense that no crashes may occur. As soon as
Zϑ

t,i jumps into a state 0 < j < imin a bubble has formed in the market, and as
soon as Zϑ

t,i jumps into a state l ≥ imin this bubble may potentially burst at the
unknown time τk, leading to a crash in the risky asset and bringing the market
back into the crash-free state 0. Since we will allow the investor to observe the
process Zϑ

t,i we can interpret the jump times Tk (which are not caused by ϑ) of
Zϑ

t,i as the times at which warnings are issued to the investor that a bubble has
formed in the market.

The investor speciVes a strategy π = (π0, . . . , πd) = (π0(u), . . . , πd(u))u∈[t,T ]

where πi denotes the fraction of wealth invested in the stock when the market
is in state i. We assume for now that each πi is adapted, right-continuous and
bounded. Given a crash scenario ϑ = (τk)k∈N0 ∈ T (t, i) and a trading strategy
π = (π0, . . . , πd), the investor’s wealth process X = Xπ,ϑ

t,x,i = (Xπ,ϑ
t,x,i(u))u∈[t,T ] is

given by X(t) = x at initial time,

dX(u) = αjπ
j(u)X(u)du+ σjπ

j(u)X(u)dW (u), u ∈ [t, T ], (4.17)

on {Zϑ
t,i(u) = j} ∩ {u 6= τk},

X(τk) =

{

X(τk−), if Zϑ
t,i(τk−) = j < imin,

(1− πj(τk)βj)X(τk−), if Zϑ
t,i(τk−) = j ≥ imin,

(4.18)

on {τk < Tk+1} ∩ {τk ≤ T} and X(τk) = X(τk−) on {τk ≥ Tk+1} ∩ {τk ≤ T}.
We denote by A(t, x) the set of all trading strategies which lead to a strictly
positive wealth process Xπ,ϑ

t,x,i for every ϑ ∈ T (t, i).

The worst-case optimization problem in this model is given by

V(t, x, i) := sup
π∈A(t,x)

inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

. (4.19)

Remark 4.3. The optimization problem (4.19) is to be understood as follows: The
investor commits to a trading strategy π ∈ A(t, x) and only then does the market
decide on the crash strategy ϑ ∈ T (t, i). This prohibits the investor to set her
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risky fraction equal to zero at the moment a crash occurs, i.e. she cannot prevent
being negatively aUected by a crash. In particular, switching the supremum and
the inVmum in (4.19) leads to a diUerent value. ⋄

Remark 4.4. Note that the case d = 1 corresponds to the situation considered in
the previous sections if the market coeXcients αi and σi are independent of the
state i. One can immediately generalize the situation by considering the case

0 = β0 = ... = βd−1, βd = β > 0,

and the state d is absorbing for Z . Then the time

S = inf{t ≥ 0 : Z(t) = d}

for Z started in 0 is of phase-type, see Asmussen [6, III.4]. Since the distributions
of phase-type are dense in all probability distributions on [0,∞) (with respect to
convergence in distribution) we can approximate arbitrary waiting-time distri-
butions between a crash and the next warning. ⋄

Remark 4.5. Due to the monotonicity of the utility function Up we can without
loss of generality assume that T (t, i) contains only those crash strategies ϑ =
(τk)k∈N0 for which

X(τk) ≤ X(τk−)

for every k ∈ N0. ⋄

4.6. The veriVcation theorem

In this section we provide a system of dynamic programming equations for the
generalized model which is inspired by the system of DPEs introduced in Korn
and SteUensen [70], see (1.10). We then present a veriVcation theorem which
shows that under some technical assumptions any classical solution of the system
of DPEs coincides with the value function. In Section 4.7 we then solve the system
of DPEs and derive a coupled system of ordinary diUerential equations for the
optimal strategies.

We Vx K > 0 and let AK(t, x) be the subset of all π = (π0, . . . , πd) ∈ A(t, x)
such that each πi takes values inK := [−K,K]. We assumeK to be large enough
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4. Worst-case portfolio optimization in a market with bubbles

such that πi
M = αi/(1− p)σ2

i < K andK > 1/βi for all i ∈ E. We denote by

VK(t, x, i) := sup
π∈AK(t,x)

inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

the value function which is restricted to admissible strategies taking values in K.
This restriction of the set of admissible strategies allows us to prove the following
growth estimate.

Lemma 4.6. Let π ∈ AK(t, x) and ϑ ∈ T (t, i). Then there exists a constant C > 0
such that

E

[

sup
u∈[t,T ]

|Xπ,ϑ
t,x,i(u)|

2
]

≤ C(1 + |x|2).

Proof. Denote by ϑ̂ ∈ T (t, i) the no-crash scenario. Then the result for ϑ̂ is
classical and follows e.g. from Pham [90, Theorem 1.3.15]. For an arbitrary ϑ ∈
T (t, i) we note that

E

[

sup
u∈[t,T ]

|Xπ,ϑ
t,x,i(u)|

2
]

≤ E

[

sup
u∈[t,T ]

|Xπ,ϑ̂
t,x,i(u)|

2
]

since the wealth decreases at the moment of crashes (see Remark 4.5).

Assume for now that V(·, ·, i) ∈ C1,2([0, T ) × (0,∞)) for all i ∈ E. For each
(t, x) ∈ [0, T )× (0,∞) we can then deVne

K′
i(t, x) :=

{

π ∈ K : Lπ
i V(t, x, i) +

d
∑

j=0

qi,jV(t, x, j) ≥ 0

}

,

K′′
i (t, x) :=

{

π ∈ K : V(t, x, i) ≤ V(t, (1− πβi)x, 0)

}

,

where the operator Lπ
i is given by

Lπ
i :=

∂

∂t
+ αiπx

∂

∂x
+

1

2
σ2
i π

2x2 ∂2

∂x2
for i ∈ E.

In any state i < imin the investor does not have to fear the consequences of a
possible crash so that she is essentially in the same situation as an investor in a
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4.6. The veriVcation theorem

regime switching model as described in Section 1.1.3. It is therefore reasonable
to expect that the value function in this state solves

0 = sup
π∈K

{

Lπ
i V(t, x, i) +

d
∑

j=0

qi,jV(t, x, j)

}

. (4.20)

On the other hand, if i ≥ imin the investor does fear a crash and hence (up to
the possibility of switching to a diUerent state) we are in a situation very similar
to Korn and SteUensen [70] and hence we expect that the value function in this
state solves

0 = min

{

sup
π∈K′′

i (t,x)

{

Lπ
i V(t, x, i) +

d
∑

j=0

qi,jV(t, x, j)

}

,

sup
π∈K′

i(t,x)

{

V(t, (1− πβi)x, 0)− V(t, x, i)

}

}

. (4.21)

This idea is formalized in the following veriVcation theorem.

Theorem 4.7. Let V : [0, T ] × (0,∞) × E → R and assume that for each i ∈ E
we have V (·, ·, i) ∈ C1,2([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)).

1. Assume that for each i = 0, . . . , imin− 1 the function V (·, ·, i) satisVes (4.20)
with terminal condition V (T, x, i) = Up(x) and for each i = imin, . . . , d the

function V (·, ·, i) satisVes (4.21) with terminal condition V (T, x, i) = Up(x).

2. Assume that V satisVes a quadratic growth condition in x, i.e. there exists a
constant C > 0 independent of t and i such that

|V (t, x, i)| ≤ C
(

1 + |x|2
)

.

3. Suppose moreover that for each i = 0, . . . , imin − 1 there exists a measurable

function π̂i : [0, T )× (0,∞) → K such that

π̂i(t, x) = argmax
π∈K

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

and that for each i = imin, . . . , d there exists a measurable function π̂i :
[0, T )× (0,∞) → K such that

π̂i(t, x) = arg max
π∈K′′

i (t,x)

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

.
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4. Worst-case portfolio optimization in a market with bubbles

Write π̂ = (π̂1, . . . , π̂d) and suppose moreover that for each (t, x, i) ∈ [0, T )×
(0,∞)× E and for every ϑ ∈ T (t, i) the SDE (4.17)-(4.18) admits a solution

X∗,ϑ = Xπ∗,ϑ
t,x,i under the trading strategy π∗ := (π̂(u,X∗(u−)))u∈[t,T ] with

π∗(T ) = 0. Finally, assume that π∗ ∈ AK(t, x).

4. Given any (t, x, i) ∈ [0, T )× (0,∞)×E and π ∈ AK(t, x) we suppose that
we can iteratively deVne a crash strategy ϑ∗(π) = (τ ∗k )k∈N0 ∈ T (t, i) through

τ ∗k := ∞

on {Tk ≤ T} ∩ {Zϑ∗(π)
t,x,i (Tk) < imin} and

τ ∗k := inf
{

u ∈ [Tk, Tk+1 ∧ T ] :

V (u,X(u−), j) ≥ V (u, (1− πj(u)βj)X(u−), 0)
}

on {Tk ≤ T} ∩ {Zϑ∗(π)
t,x,i (Tk) = j ≥ imin}.

Then V (t, x, i) = VK(t, x, i), the strategy π∗ is optimal and the corresponding

optimal crash strategy is ϑ∗(π∗).

Proof. Step 1: Fix (t, x, i) ∈ [0, T )×(0,∞)×E, let θ be any [t, T ]-valued stopping
time, Vx π = (π1, . . . , πd) ∈ AK(t, x) and let ϑ = (τk)k∈N0 ∈ T (t, i). Write
X = Xπ,ϑ

t,x,i, Z = Zϑ
t,i and θk = θ ∧ τk for short. Then Itô’s formula shows that for

each k ∈ N0 we have

V (θk, X(θk), Z(θk))

= V (θk+1−, X(θk+1−), Z(θk+1−))

−
d
∑

j=0

∫ θk+1−

θk

[

Lπj(u)
j V (u,X(u), j)

+
d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} du

−
d
∑

j=0

∫ θk+1−

θk

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
d
∑

j=0

d
∑

l=0

∫ θk+1−

θk

[

V (u,X(u), l)
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4.6. The veriVcation theorem

− V (u,X(u), j)
]

1{Z(u−)=j} νk(du, l), (4.22)

where νk denotes the compensated jump measure of the uncontrolled process Z
started in state 0 at time τk.

Step 2: Consider the strategy π∗ ∈ AK(t, x) together with an arbitrary ϑ ∈
T (t, i). We write X∗,ϑ = Xπ∗,ϑ. Since π̂j ∈ K′′

j (u, y) for each (u, y, j) ∈ [t, T )×
(0,∞) × E with j ≥ imin this implies that for any k ∈ N0 and any j ∈ E with
j ≥ imin we have on {τk ≤ θ} ∩ {Z(τk−) = j}

V (τk, X
∗,ϑ(τk), Z(τk)) = V

(

τk, (1− πj,∗(τk)βj)X
∗,ϑ(τk−), 0

)

≥ V
(

τk, X
∗,ϑ(τk−), Z(τk−)

)

Using this in (4.22) and then iteratively applying (4.22) hence shows that for each
N ∈ N we have

V (t, x, i)

≤ V (θN−, X∗,ϑ(θN−), Z(θN−))

−
N
∑

k=0

d
∑

j=0

∫ θk−

θk−1

[

Lπj(u)
j V (u,X∗,ϑ(u), j)

+
d
∑

l=0

qj,lV (u,X∗,ϑ(u), l)
]

1{Z(u−)=j} du

−
N
∑

k=0

d
∑

j=0

∫ θk−

θk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
N
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θk−

θk−1

[

V (u,X∗,ϑ(u), l)

− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l), (4.23)

where we set τ−1 := t. Now since for j = 0, . . . , imin − 1 the function π̂j is a
pointwise maximizer of

sup
π∈K

{

Lπ
j V (t, x, j) +

d
∑

l=0

qj,lV (t, x, l)

}

≥ 0
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4. Worst-case portfolio optimization in a market with bubbles

and since for j = imin, . . . , d the function π̂j is a pointwise maximizer of

sup
π∈K′′

j (t,x)

{

Lπ
j V (t, x, j) +

d
∑

l=0

qj,lV (t, x, l)

}

≥ 0,

we can estimate the Vrst integral in (4.23) to obtain

V (t, x, i)

≤ V (θN−, X∗,ϑ(θN−), Z(θN−))

−
N
∑

k=0

d
∑

j=0

∫ θk−

θk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
N
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θk−

θk−1

[

V (u,X∗,ϑ(u), l)

− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l).

Now send N → ∞ to obtain

V (t, x, i)

≤ V (θ−, X∗,ϑ(θ−), Z(θ−))

−
∞
∑

k=0

d
∑

j=0

∫ θk−

θk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
∞
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θk−

θk−1

[

V (u,X∗,ϑ(u), l)

− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l). (4.24)

Step 3: Note that for any π ∈ AK(t, x) and ϑ ∈ T (t, i) the last integral in (4.22)
is a martingale. Indeed, by Brémaud [16, Excercise I.E2] we only need to show
that

E

[

∞
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θk−

θk−1

∣

∣

∣V (u,X(u), l)− V (u,X(u), j)
∣

∣

∣ du

]

< +∞.

By the growth condition on V we have for each j, l ∈ E

E

[

∞
∑

k=0

∫ θk−

θk−1

∣

∣

∣V (u,X(u), l)− V (u,X(u), j)
∣

∣

∣

]

≤ 2CT

(

1 + E

[

sup
u∈[t,T ]

|X(u)|2

])
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4.6. The veriVcation theorem

which is Vnite by Lemma 4.6.

Let n ∈ N and deVne θn to be the minimum of T and the Vrst time u after t such
that

d
∑

j=0

∫ u

t

∣

∣

∣
σjπ

j(r)X∗,ϑ(r)
∂

∂x
V (r,X∗,ϑ(r), j)1{Z(r−)=j}

∣

∣

∣

2

dr

exceeds n. Now replace θ by θn in (4.24) and take expectations to obtain

V (t, x, i) ≤ E
[

V (θn−, X∗,ϑ(θn−), Z(θn−))
]

. (4.25)

Note that for each n ∈ N we have

E
[

|V (θn−, X∗,ϑ(θn−), Z(θn−))|
]

≤ C

(

1 + E

[

sup
u∈[t,T ]

|X∗,ϑ(u)|2
])

< +∞

by the growth condition on V and by Lemma 4.6. Hence we can send n → ∞
in (4.25) and use dominated convergence to obtain

V (t, x, i) ≤ E
[

V (T−, X∗,ϑ(T−), Z(T−))
]

.

Since V is continuous, satisVes V (T, x, ·) = Up(x) and since π∗(T ) = 0 it follows
that

V (t, x, i) ≤ E
[

Up

(

X∗,ϑ(T )
)]

.

Since ϑ was chosen arbitrarily this implies that

V (t, x, i) ≤ inf
ϑ∈T (t,i)

E
[

Up

(

X∗,ϑ(T )
)]

≤ VK(t, x, i). (4.26)

Step 4: Consider an arbitrary π ∈ AK(t, x) together with the associated crash
strategy ϑ∗(π) ∈ T (t, i). Write X = Xπ,ϑ∗(π) and θ∗k = θ ∧ τ ∗k . Now for each
k ∈ N0 and each j = 0, . . . , imin − 1 we have

[

Lπ(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} ≤ 0 (4.27)

for all u ∈ [t, T ). Moreover, for each k ∈ N0 and each j = imin, . . . , d we have
for each u ∈ [τ ∗k , τ

∗
k+1) on {τ ∗k+1 ≤ T} ∩ {Z(u−) = j}

V (u,X(u−), Z(u−)) < V (u, (1− πj(u)βj)X(u−), 0) (4.28)
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4. Worst-case portfolio optimization in a market with bubbles

by the construction of ϑ∗(π). We must now distinguish two situations: Either we
are in case (a) in which

[

Lπj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} < 0

or we are in case (b) in which

[

Lπj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} ≥ 0.

The latter case implies in particular that πj(u) ∈ K′
j(u,X(u−)) and hence (4.28)

shows that

sup
π∈K′

j(u,X(u−))

[

V (u, (1− πβj)X(u−), 0)− V (u,X(u−), j)
]

> 0.

Since V solves the system of DPEs and since j ≥ imin we therefore have

sup
π∈K′′

j (u,X(u−))

[

Lπ
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

= 0.

But since by (4.28) we see that πj(u) ∈ K′′
j (u,X(u−)) we conclude that

[

Lπj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} = 0

in case (b). Combining case (a) and case (b) hence implies that

[

Lπj(u)
j V (u,X(u), j) +

d
∑

l=0

qj,lV (u,X(u), l)
]

1{Z(u−)=j} ≤ 0

on {τ ∗k+1 ≤ T}. Using this with (4.27) in (4.22) hence shows that

V (θ∗k, X(θ∗k), Z(θ
∗
k))

≥ V (θ∗k+1−, X(θ∗k+1−), Z(θ∗k+1−))

−
d
∑

j=0

∫ θ∗
k+1−

θ∗
k

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)
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−
d
∑

j=0

d
∑

l=0

∫ θ∗
k+1−

θ∗
k

[

V (u,X(u), l)− V (u,X(u), j)
]

1{Z(u−)=j} νk(du, l), (4.29)

for each k ∈ N0. Moreover, by the construction of ϑ∗(π) and the right-continuity
of π we have for every k ∈ N0 on {τ ∗k ≤ θ} ∩ {Z(τ ∗k−) ≥ imin}:

V (τ ∗k , X(τ ∗k ), Z(τ
∗
k )) = V

(

τ ∗k , (1− πj(τ ∗k )βj)X(τ ∗k−), 0
)

≤ V
(

τ ∗k , X(τ ∗k−), Z(τ ∗k−)
)

.

Using this in (4.29) and then inductively applying (4.29) hence shows that

V (t, x, i)

≥ V (θ−, X(θ−), Z(θ−))

−
∞
∑

k=0

d
∑

j=0

∫ θ∗
k
−

θ∗
k−1

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
∞
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θ∗
k
−

θ∗
k−1

[

V (u,X(u), l)

− V (u,X(u), j)
]

1{Z(u−)=j} νk(du, l). (4.30)

Step 5: DeVne a sequence of stopping times (θn)n∈N as in step 3, but with (π∗, ϑ)
replaced by (π, ϑ∗(π)). Taking expectations in (4.30) hence shows that

V (t, x, i) ≥ E [V (θn−, X(θn−), Z(θn−))] . (4.31)

Sending n → ∞ we conclude by dominated convergence that

V (t, x, i) ≥ E [V (T−, X(T−), Z(T−))] .

By the deVnition of ϑ∗(π) it follows moreover that

E [V (T−, X(T−), Z(T−))] ≥ E [V (T,X(T ), Z(T ))]

= E [Up (X(T ))] (4.32)

≥ inf
ϑ∈T (t,i)

E
[

Up

(

Xπ,ϑ(T )
)]

and since π was chosen arbitrarily this implies

V (t, x, i) ≥ VK(t, x, i).
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4. Worst-case portfolio optimization in a market with bubbles

Hence V (t, x, i) = VK(t, x, i) by (4.26). Replacing V by VK on the right-hand
side of (4.26) hence shows that

VK(t, x, i) ≤ inf
ϑ∈T (t,i)

E
[

Up

(

X∗,ϑ(T )
)]

which proves the optimality of π∗. The optimality of ϑ∗(π∗) follows similarly
by using V (t, x, i) = VK(t, x, i) and the optimality of π∗ together with (4.31)
and (4.32).

Theorem 4.7 is tailor-made for the case p ∈ (0, 1). For p ≤ 0 the corresponding
V does not satisfy the quadratic growth condition used in steps 3 and 5 of the
proof. We will return to this problem in Section 4.7.3 after solving the system of
DPEs since it is easier to verify optimality if we have a speciVc candidate at hand.

Remark 4.8. The veriVcation theorem can be extended to the case in which the
strategies π ∈ A(t, x) are merely assumed to be predictable instead of right-
continuous. In the proof of Theorem 4.7 the right-continuity of π is only needed
to ensure that

V (τ ∗k , X(τ ∗k ), 0) ≤ V
(

τ ∗k , X(τ ∗k−), j
)

(4.33)

on {Tk ≤ T} ∩ {Zϑ∗(π)
t,x,i (Tk) = j ≥ imin} for all k ∈ N0. If π is only assumed

to be predictable then clearly (4.33) need not hold. Nevertheless, it is possible to
show that by the predictable section theorem (Rogers and Williams [93, Theorem
VI.19.1]) we can Vnd stopping times τ lk, l ∈ N, such that

τ ∗k < τ lk ≤ τ ∗k +
1

l
and V (τ lk, X(τ lk), 0) ≤ V

(

τ lk, X(τ lk−), j
)

on {τ lk < ∞}

and P[τ lk = ∞] ≤ 2−k. Moreover, note that

P[τ lk ≥ Tk+1|τ
∗
k < Tk+1] ≤ 1− e−maxj{λj}/l.

Similarly to the reasoning in Step 5 of the proof of Theorem 4.7 one can then
show that

V (t, x, i)− E [V (T−, X(T−), Z(T−))]

≥ −E

[ ∞
∑

k=0

∣

∣

∣

∣

V
(

τ lk, X(τ lk−), Z(τ lk−)
)

− V
(

τ lk, X(τ lk), Z(τ
l
k)
)

∣

∣

∣

∣

1{τ l
k
=∞}∪{τ l

k
≥Tk+1}

]

.
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By the growth condition on V , the boundedness of π and Lemma 4.6 one can
further argue that there exists a constant L > 0 such that

E

[ ∞
∑

k=0

∣

∣

∣

∣

V
(

τ lk, X(τ lk−), Z(τ lk−)
)

− V
(

τ lk, X(τ lk), Z(τ
l
k)
)

∣

∣

∣

∣

1{τ l
k
=∞}∪{τ l

k
≥Tk+1}

]

≤ L
(

1− e−maxj{λj}/l
)

.

Since l is arbitrary it follows that

V (t, x, i) ≥ E [V (T−, X(T−), Z(T−))]

from where one can conclude as before. ⋄

4.7. Derivation of the optimal strategies

Let us now apply Theorem 4.7 to Vnd the value function and determine the opti-
mal strategies. We start with the power utility case p < 1, p 6= 0.

4.7.1. Solution of the system of DPEs for power utility

We expect that V takes the form

V (t, x, i) =
1

p
xpfi(t), i ∈ E. (4.34)

Moreover, we assume that fi is strictly positive on [0, T ] for every i ∈ E. Note
that we must have fi(T ) = 1 for all i ∈ E. Our Vrst aim is to solve

0 = sup
π∈K

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}
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4. Worst-case portfolio optimization in a market with bubbles

for i < imin in order to Vnd V (t, x, i) and πi,∗. Using (4.34) this equation simpli-
Ves to

0 = sup
π∈K

[

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t)

]

.

Formally optimizing with respect to π gives the candidate optimal strategy

πi,∗(t) =
αi

(1− p)σ2
i

= πi
M

which is indeed the maximum if fi(t) > 0 for all t ∈ [0, T ]. Plugging the can-
didate optimal strategy πi,∗ back into the DPE yields the following ODE for fi:

∂

∂t
fi(t) = −

1

2
p

α2
i

(1− p)σ2
i

fi(t)−
d
∑

j=0

qi,jfj(t). (4.35)

Let us now consider the case i ≥ imin such that βi > 0. We have to solve

0 = min

{

sup
π∈K′′

i (t,x)

{

Lπ
i V (t, x, i) +

d
∑

j=0

qi,jV (t, x, j)

}

,

sup
π∈K′

i(t,x)

{

V (t, (1− πβi)x, 0)− V (t, x, i)

}

}

.

With (4.34) the Vrst equation reduces to

0 ≤ sup
π∈K̃′′

i (t)

{

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t)

}

where

K̃′′
i (t) :=

{

π ∈ K :
1

p
(1− πβi)

pf0(t)−
1

p
fi(t) ≥ 0

}

.

Similarly, the second equation reduces to

0 ≤ sup
π∈K̃′

i(t)

{

1

p
(1− πβi)

pf0(t)−
1

p
fi(t)

}

(4.36)

where
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4.7. Derivation of the optimal strategies

K̃′
i(t) :=

{

π ∈ K :
1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t)

+
1

p

d
∑

j=0

qi,jfj(t) ≥ 0

}

.

Let us Vrst consider (4.36). Since f0 is assumed to be strictly positive and since
(1− πβi)

p/p is a decreasing function of π, the supremum in (4.36) is attained for
the smallest value of π which satisVes the constraint in K̃′

i(t), i.e.

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t) ≥ 0. (4.37)

Note that this equation is a quadratic and concave function of π tending to −∞
as |π| → ∞. We must therefore have that the supremum in (4.36) is attained for
the smallest value of π which satisVes the constraint (4.37) with equality. If the
right-hand side of (4.36) is equal to zero we therefore have that πi,∗ and fi are
determined by

fi(t) = (1− πi,∗(t)βi)
pf0(t),

∂

∂t
fi(t) = −p

(

αiπ
i,∗(t)−

1

2
(1− p)σ2

i [π
i,∗(t)]2

)

fi(t)−
d
∑

j=0

qi,jfj(t).

If the supremum in (4.36) is strictly positive then the complementarity of the two
equations in the DPE shows that

0 = sup
π∈K̃′′

i (t)

{

1

p

∂

∂t
fi(t) +

(

αiπ −
1

2
(1− p)σ2

i π
2
)

fi(t) +
1

p

d
∑

j=0

qi,jfj(t)

}

. (4.38)

Formally optimizing with respect to π in this equation yields

πi,∗(t) =
αi

(1− p)σ2
i

= πi
M .

If πi
M ∈ K̃′′

i (t) then it is indeed a maximizer of (4.38). Otherwise we have

1

p
(1− πi

Mβi)
pf0(t) <

1

p
fi(t).
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4. Worst-case portfolio optimization in a market with bubbles

Since the left-hand side of this equation is decreasing as a function of π and since
αiπ − 1

2
(1 − p)σ2

i π
2 is an increasing function of π on (−∞, πi

M) it follows that

if πi
M 6∈ K̃′′

i (t) then the supremum in (4.38) is attained for πi,∗(t) < πi
M which

satisVes
1

p
(1− πi,∗(t)βi)

pf0(t) =
1

p
fi(t).

We have therefore argued that [0, T ) can be decomposed into the set Ii on which
πi,∗ and fi are determined by

fi(t) = (1− πi,∗(t)βi)
pf0(t),

∂

∂t
fi(t) = −p

(

αiπ
i,∗(t)−

1

2
(1− p)σ2

i [π
i,∗(t)]2

)

fi(t)−
d
∑

j=0

qi,jfj(t). (4.39)

and the set Ni on which πi,∗ and fi are determined by

πi,∗(t) = πi
M ,

∂

∂t
fi(t) = −p

(

αiπ
i,∗(t)−

1

2
(1− p)σ2

i [π
i,∗(t)]2

)

fi(t)−
d
∑

j=0

qi,jfj(t).

Moreover, note that on Ii we have πi,∗ < πi
M and by solving

fi(t) = (1− πi,∗(t)βi)
pf0(t)

for πi,∗ we can rewrite the diUerential equation for fi as

∂

∂t
fi(t) = −p

αi

βi

(

1−

[

fi(t)

f0(t)

]1/p
)

fi(t)

+
1

2
p(1− p)

σ2
i

β2
i

(

1−

[

fi(t)

f0(t)

]1/p
)2

fi(t)−
d
∑

j=0

qi,jfj(t).

The two diUerential equations for fi on Ii and Ni can hence by combined to

∂

∂t
fi(t) = −pαi min

{

1

βi

(

1−

[

fi(t)

f0(t)

]1/p
)

, πi
M

}

fi(t)

+
1

2
p(1− p)σ2

i

[

min

{

1

βi

(

1−

[

fi(t)

f0(t)

]1/p
)

, πi
M

}]2

fi(t)
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−
d
∑

j=0

qi,jfj(t). (4.40)

We are left with showing that we can solve the system of diUerential equations
for (fi)i∈E and that fi(t) > 0 for all (t, i) ∈ [0, T ] × E. It then follows that V
is indeed a solution of the system of DPEs and that πi,∗ is the candidate optimal
strategy.

Lemma 4.9. The system of ODEs given by (4.35) for i = 0, . . . , imin − 1 and

by (4.40) for i = imin, . . . , d with terminal condition fi(T ) = 1 for all i ∈ E
possesses a unique solution on [0, T ]. Moreover, this solution is strictly positive.

Proof. Note that (4.35) is globally Lipschitz continuous and (4.40) is locally Lip-
schitz continuous in fi. Hence, by the Picard-Lindelöf theorem there exists a
unique local solution of the system of diUerential equations. In order to show
that there exists a strictly positive solution on [0, T ] it hence suXces to show that
each fi is strictly positive on [0, T ] and fi does not explode on [0, T ]. We only
consider the case p ∈ (0, 1), the case p < 0 can be handled similarly.

Let therefore p ∈ (0, 1). DeVne

gi(y) = αiy −
1

2
(1− p)σ2

i y
2

and note that gi attains its maximum at πi
M . We let

M = max
i∈E

gi(π
i
M) > 0 and λ̄ = max

i∈E
λi.

Now for any i ∈ E and any t ∈ [0, T ] with fi(t) > 0 we have

∂

∂t
fi(t) = −pgi(π

i,∗(t))fi(t)−
d
∑

j=0

qi,jfj(t)

≥ −pMfi(t)− qi,ifi(t)−
d
∑

j=0
j 6=i

qi,jfj(t)

≥ −pMfi(t)−max
j∈E

{fj(t)}
d
∑

j=0
j 6=i

qi,j

161



4. Worst-case portfolio optimization in a market with bubbles

≥ −[pM + λ̄] max
j∈E

{fj(t)}.

Hence Gronwall’s inequality shows that

fi(t) ≤ fi(T ) +

∫ T

t

(pM + λ̄)max
j∈E

{fj(u)} du

for every i ∈ E and therefore

max
j∈E

{fj(t)} ≤ 1 +

∫ T

t

(pM + λ̄)max
j∈E

{fj(u)} du.

Applying Gronwall’s inequality again hence shows that

max
j∈E

{fj(t)} ≤ e(pM+λ̄)(T−t). (4.41)

For each i = 0, . . . , imin − 1 we furthermore have

∂

∂t
fi(t) = −

1

2
p

αi

(1− p)σ2
i

fi(t)−
d
∑

j=0

qi,jfj(t)

≤ λ̄fi(t) (4.42)

as long as fj(t) > 0 for all j ∈ E.

Let us now assume that there exists t0 ∈ [0, T ) such that

lim
t↓t0

fk(t) = 0

for some k ∈ E and that fj(t) > 0 for all t ∈ (t0, T ] and all j ∈ E (Note that
t0 < T is clear from the terminal condition on fi). It follows from (4.41) and (4.42)
that

fj(t) ≤ e(pM+λ̄)(T−t) for all (t, j) ∈ [t0, T ]× E,

fj(t) ≥ e−λ̄(T−t) for all (t, j) ∈ [t0, T ]× E with j < imin.

This implies in particular that k ≥ imin. Moreover, we have

0 ≤
fk(t)

f0(t)
≤ e(pM+2λ̄)(T−t), t ∈ [t0, T ],
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and hence

1

βk

(

1− e
1
p
(pM+2λ̄)(T−t)

)

≤
1

βk

(

1−

[

fk(t)

f0(t)

]1/p
)

≤
1

βk

.

DeVne

L :=
1

β

(

1− e
1
p
(pM+2λ̄)T

)

.

Since πk,∗(t) ≤ πk
M and since gk is increasing on (−∞, πk

M) it follows that

gk(L) ≤ gk(π
k,∗(t)), t ∈ [t0, T ].

Therefore

∂

∂t
fk(t) = −pgk(π

k,∗(t))fk(t)−
d
∑

j=0

qk,jfj(t)

≤ [−pmin{gk(L), 0}+ λ̄]fk(t) (4.43)

for every t ∈ [t0, T ] which shows that

fk(t) ≥ e(−pmin{gk(L),0}+λ̄)(T−t), t ∈ [t0, T ],

in contradiction to
lim
t↓t0

fk(t) = 0.

Combining this with (4.41) hence shows that fi > 0 on [0, T ] and fi is non-
exploding for each i ∈ E.

The next step is to check if the candidate optimal strategy π∗ = (π0,∗, . . . , πd,∗)
is admissible. For every i ∈ E with i ≥ imin we can write

πi,∗(t) = min{πi
M , πi,ind(t)},

where πi,ind is given by

fi(t) = (1− πi,ind(t)βi)
pf0(t). (4.44)

Taking the logarithm and then the derivative with respect to t we arrive at the
following diUerential equation for πi,ind:

∂

∂t
πi,ind(t) =

1

βi

(1− πi,ind(t)βi)

[

1

pf0(t)

∂

∂t
f0(t)−

1

pfi(t)

∂

∂t
fi(t)

]

,
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πi,ind(T ) = 0.

Using the ODE for f0 in (4.35), the ODE for fi in Ii given by (4.39) and using (4.44)
shows that

∂

∂t
πi,ind(t) =

1

βi

(1− πi,ind(t)βi)

[

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

πi,ind(t)− πi
M

)2

+
1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− πi,ind(t)βi)

−p

−
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− πi,ind(t)βi)

p

]

,

where for each i ∈ E we denote by

Ψi =
1

2

α2
i

(1− p)σ2
i

the utility growth potential in regime i. We now show that the strategy πi,ind is
admissible for each i ∈ E with i ≥ imin and hence so is π∗.

Lemma 4.10. There exists a unique solution of the diUerential equation

∂

∂t
y = F (t, y), y(T ) = 0, (t, y) ∈ [0, T ]× (−∞, 1/βi),

where

F (t, y) =
1

βi

(1− yβi)

[

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2

+
1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p

−
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p

]

.

Proof. Since F (t, y) is continuous in t and globally Lipschitz continuous in y
on any closed subinterval of (−∞, 1/βi) it suXces to show that we can Vnd
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4.7. Derivation of the optimal strategies

constants −∞ < a < b < 1/βi such that the solution of the diUerential equation
stays inside the interval [a, b]. We only consider the case p ∈ (0, 1), the case
p ≤ 0 can be proved similarly.

Step 1: We prove the existence of a constant a such that F (t, y) ≤ 0 whenever
y ≤ a. For this, note that the sign of F only depends on the term

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2

+
1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p −
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p.

Furthermore, note that by the proof of Lemma 4.9 there exist constantsM,M > 0
independent of t ∈ [0, T ] and j ∈ E such that

M ≤
fj(t)

f0(t)
≤ M.

Then

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2

+
1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p −
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p

≤ Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2

+
1

p

(

λ0 +
d
∑

j=0
j 6=i

qi,jM(1− yβi)
−p

)

,

which is less or equal to 0 if and only if

1

p

(

λ0 +
d
∑

j=0
j 6=i

qi,jM(1− yβi)
−p

)

≤ Ψ0 −Ψi +
1

2
(1− p)σ2

i

(

y − πi
M

)2
.

Since (1 − yβi)
−p → 0 and (y − πi

M)2 → +∞ as y → −∞ we see that there
exists a constant a such that F (t, y) ≤ 0 whenever y ≤ a.
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4. Worst-case portfolio optimization in a market with bubbles

Step 2: Next we show that there exists a constant b < 1/βi independent of t such
that F (t, y) ≥ 0 whenever y ≥ b. We have

Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2

+
1

p

d
∑

j=0

qi,j
fj(t)

f0(t)
(1− yβi)

−p −
1

p

d
∑

j=0
j 6=i

q0,j
fj(t)

f0(t)
− q0,i

1

p
(1− yβi)

p

≥
1

p

d
∑

j=1
j 6=i

qi,jM(1− yβi)
−p −

1

p
λi −

1

p

d
∑

j=1
j 6=i

q0,jM − q0,i
1

p
(1− yβi)

p

+Ψi −Ψ0 −
1

2
(1− p)σ2

i

(

y − πi
M

)2
,

which is greater or equal than 0 if and only if

1

p

d
∑

j=1
j 6=i

qi,jM(1− yβi)
−p −

1

p
λi −

1

p

d
∑

j=1
j 6=i

q0,jM − q0,i
1

p
(1− yβi)

p

≥ Ψ0 −Ψi +
1

2
(1− p)σ2

i

(

y − πi
M

)2
.

Now as (1−yβi)
−p approaches+∞ and (1−yβi)

p approaches 0 as y → 1/βi and
since (y − πi

M)2 is bounded in y on [0, 1/βi] we see that there exists a constant
b < 1/βi such that F (t, y) ≥ 0 whenever y ≥ b.

Remark 4.11. Assume that d = 1 and that the excess return and the volatil-
ity of the stock are state-independent. Then the diUerential equation for π1,ind

simpliVes to

∂

∂t
π1,ind(t) =

1

β1

(1− π1,ind(t)β1)

[

−
1

2
(1− p)σ2

1

(

π1,ind(t)− π0,∗(t)
)2

−
λ0

p

(

(1− π1,ind(t)β1)
p − 1

)

]

,

which is exactly the candidate optimal strategy derived in the simpliVed model
in (4.16). ⋄

It follows that π∗ is an admissible strategy which leads to a strictly positive wealth
process in every crash scenario. Moreover, the function V (t, x, i) obviously sat-
isVes a quadratic growth condition in x uniformly in (t, i) as long as p ∈ (0, 1).
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Finally, given any trading strategy π = (π0, . . . , πd) ∈ AK(t, x) the correspond-
ing optimal crash time ϑ∗(π) is obviously well-deVned since it is just the Vrst
time at which πi exceeds πi,ind. It follows that V = VK and that π∗ is optimal.
Moreover, since the optimal strategy π∗ attains its values in the interior of K it
is immediately clear that π∗ is also optimal in the class of all bounded trading
strategies A(t, x) and hence V = V .

Remark 4.12. It is furthermore possible to show that π∗ is optimal in the class
of all strategies which are not necessarily bounded but satisfy a growth condition
of the form

sup
i∈E

E

[∫ T

t

|πi(u)|2 du

]

< ∞.

The idea is to argue by contradiction and assume that there exists a π which
performs better than π∗. Then π must be unbounded by our previous discussion,
but we can approximate π by bounded strategies πn simply by cutting oU π at n
and −n. Using that π∗ outperforms every πn and that πn converges to π one can
then lead the optimality of π to a contradiction.

We postpone the veriVcation for p < 0 to Section 4.7.3 and solve the system of
DPEs in the logarithmic utility case Vrst.

4.7.2. Solution of the system of DPEs for logarithmic utility

Let us now turn to the case p = 0. We guess that the value function takes the
form

V (t, x, i) = log(x) + fi(t), i ∈ E (4.45)

for some functions fi with fi(T ) = 0. We can then proceed as in the power
utility case to show that the candidate optimal strategy for i < imin is given by

πi,∗(t) =
αi

σ2
i

= πi
M

and that fi solves

∂

∂t
fi(t) = −

1

2

α2
i

σ2
i

−
d
∑

j=0

qi,jfj(t).
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For i ≥ imin the interval [0, T ] decomposes into a set Ii on which πi,∗ and fi are
determined by

fi(t) = log(1− πi,∗(t)βi) + f0(t),

∂

∂t
fi(t) = −αiπ

i,∗(t) +
1

2
σ2
i [π

i,∗(t)]2 −
d
∑

j=0

qi,jfj(t),

and a set Ni on which πi,∗ and fi are determined by

πi,∗(t) = πi
M ,

∂

∂t
fi(t) = −αiπ

i,∗(t) +
1

2
σ2
i [π

i,∗(t)]2 −
d
∑

j=0

qi,jfj(t).

The existence of (fi)i∈E can be proved in a very similar fashion to Lemma 4.9.
The candidate optimal strategy is given by

πi,∗ = min{πi
M , πi,ind(t)},

where πi,ind solves

∂

∂t
πi,ind(t) =

1

βi

(1− πi,ind(t)βi)

[

Ψi −Ψ0 −
1

2
σ2
i

(

πi,ind(t)− πi
M

)2

+
d
∑

j=0
j 6=i

(qi,j − q0,j)fj(t)

+ (qi,i − q0,i)
[

f0(t) + log(1− πi,ind(t)βi)
]

]

with terminal condition πi,ind(T ) = 0. The admissibility of π∗ and πi,ind follows
by very similar arguments as in Lemma 4.10.

4.7.3. VeriVcation for logarithmic and negative power utility

Let us now verify that the solutions of the system of DPEs constructed in Sec-
tion 4.7.1 and Section 4.7.2 are indeed the value functions. For p ∈ (0, 1) this is
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clear by Theorem 4.7. For p ≤ 0 the function V does not satisfy the quadratic
growth condition which was used in step 3 and step 5 of the proof of Theorem 4.7.
However, the explicit nature of our solutions allows us to verify these two steps
also for p ≤ 0.

Theorem 4.13. Let p = 0 and let V be the solution of the system of DPEs given

in (4.45). Then V = VK = V .

Proof. Let π ∈ A(t, x) and ϑ ∈ T (t, i) be arbitrary. We show that the two
stochastic integrals in (4.22) are martingales and hence we can choose θ = T and
conclude as before. Note that

x
∂

∂x
V (t, x, i) = 1

for every i ∈ E and hence the integrand of the Brownian integral is bounded
(uniformly in t and i) so that the integral is indeed a martingale. Moreover, for
each i, j ∈ E we have

|V (t, x, i)− V (t, x, j)| = |fi(t)− fj(t)|

which is again bounded (uniformly in t, i and j) and hence the integral with
respect to the compensated jump measure is a martingale as well.

For p < 0 we need to rule out some admissible trading strategies Vrst. Note
that since the pure bond strategy π ≡ 0 is admissible we may without loss of
generality assume that every π ∈ AK(t, x) satisVes

Up(x) ≤ inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

(4.46)

Theorem 4.14. Let p < 0 and let V be the solution of the system of DPEs given

in (4.34). Then V = VK = V .

Proof. We simply prove step 3 and step 5 of the proof of Theorem 4.7 without
relying on the quadratic growth condition.

Step 3: Recall that by (4.24) for π∗ and any arbitrary ϑ ∈ T (t, i) we have

V (t, x, i)
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≤ V (θ−, X∗,ϑ(θ−), Z(θ−))

−
∞
∑

k=0

d
∑

j=0

∫ θk−

θk−1

σjπ
j(u)X∗,ϑ(u)

∂

∂x
V (u,X∗,ϑ(u), j)1{Z(u−)=j} dW (u)

−
∞
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θk−

θk−1

[

V (u,X∗,ϑ(u), l)

− V (u,X∗,ϑ(u), j)
]

1{Z(u−)=j} νk(du, l). (4.47)

for any [t, T ]-valued stopping time θ. We have to show that

V (t, x, i) ≤ VK(t, x, i).

Using that V (θ−, X∗,ϑ(θ−), Z(θ−)) ≤ 0 in (4.47) shows that the sum of the
stochastic integrals is a local martingale bounded from above by −V (t, x, i) and
hence a submartingale. Choosing θ = T in (4.47) and taking expectations hence
shows that

V (t, x, i) ≤ E
[

V (T−, X∗,ϑ(T−), Z(T−))
]

.

Since V is continuous, satisVes V (T, x, ·) = Up(x) and since π∗(T ) = 0 it follows
that

V (t, x, i) ≤ E
[

Up

(

X∗,ϑ(T )
)]

.

Since ϑ was chosen arbitrarily this implies that

V (t, x, i) ≤ inf
ϑ∈T (t,i)

E
[

Up

(

X∗,ϑ(T )
)]

≤ VK(t, x, i).

Step 5: Let π ∈ AK(t, x) and let ϑ∗(π) be the corresponding candidate optimal
crash strategy. Recall that by (4.30) we have

V (t, x, i)

≥ V (θ−, X(θ−), Z(θ−))

−
∞
∑

k=0

d
∑

j=0

∫ θ∗
k
−

θ∗
k−1

σjπ
j(u)X(u)

∂

∂x
V (u,X(u), j)1{Z(u−)=j} dW (u)

−
∞
∑

k=0

d
∑

j=0

d
∑

l=0

∫ θ∗
k
−

θ∗
k−1

[

V (u,X(u), l)

− V (u,X(u), j)
]

1{Z(u−)=j} νk(du, l). (4.48)
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for any [t, T ]-valued stopping time θ. We have to show that

V (t, x, i) ≥ VK(t, x, i).

For every n ∈ N we deVne

θn := inf {u ≥ t : |V (u,X(u), Z(u))| ≥ n} ∧ T.

Note that since

x
∂

∂x
V (t, x, i) = pV (t, x, i)

this implies that the stochastic integrals in (4.48) stopped at θn are martingales
and hence replacing θ by θn in (4.48) and taking expectations shows that

V (t, x, i) ≥ E [V (θn−, X(θn−), Z(θn−))] .

If we can show that

lim
n→∞

E [V (θn−, X(θn−), Z(θn−))] = E [V (T−, X(T−), Z(T−))] (4.49)

then we can conclude as in the proof of Theorem 4.7.

First, let us note that

E
[

V (θn−, X(θn−), Z(θn−))1{θn=T}

]

= E
[

V (T−, X(T−), Z(T−))1{θn=T}

]

and hence

lim
n→∞

E
[

V (θn−, X(θn−), Z(θn−))1{θn=T}

]

= E [V (T−, X(T−), Z(T−))]

by monotone convergence. In order to prove (4.49) it is therefore suXcient to
prove that

lim
n→∞

E
[

V (θn−, X(θn−), Z(θn−))1{θn<T}

]

= 0.

Let us note that by Lemma 4.9 there exist constants M,M > 0 such that

MUp(x) ≤ V (t, x, i) ≤ MUp(x). (4.50)

Next, it is clear that there exists a constant L > 0 such that

Up(x) ≤ VK(t, x, i) ≤ LUp(x). (4.51)
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Indeed, the Vrst inequality follows from (4.46) and the second inequality follows
from considering the no-crash strategy in VK(t, x, i) and hence VK ≤ VRS where
VRS denotes the value function in the regime switching model without crashes,
see (1.4). Combining (4.50) and (4.51), we can therefore Vnd a constant C > 0
independent of x such that

V (t, x, i) ≥ CVK(t, x, i).

Using this we obtain

0 ≥ lim
n→∞

E
[

V (θn−, X(θn−), Z(θn−))1{θn<T}

]

≥ lim
n→∞

CE
[

VK(θ
n−, X(θn−), Z(θn−))1{θn<T}

]

≥ lim
n→∞

CE

[

inf
ϑ∈T (θn−,Z(θn−))

E

[

Up

(

Xπ,ϑ
θn−,X(θn−),Z(θn−)(T )

)]

1{θn<T}

]

≥ lim
n→∞

CE

[

inf
ϑ∈T (t,i)

E

[

Up

(

Xπ,ϑ
t,x,i(T )

)]

1{θn<T}

]

≥ lim
n→∞

CE
[

Up(x)1{θn<T}

]

= 0.

4.8. Numerical results

We conclude this chapter with numerical examples. We consider three cases:
logarithmic utility in the simple model, power utility in the generalized model
and phase-type distributed arrival times of warnings.

4.8.1. Logarithmic utility in the simpliVed model

Let us Vrst consider the simpliVed model discussed in the beginning of this chap-
ter for an investor with a logarithmic utility function. We consider the following
parameters throughout this section:

α = 0.096, σ = 0.4, β = 0.5.
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Figure 4.1. Short-term optimal strategies for diUerent λ.

With these parameters the optimal strategy in the absence of crash warnings is
given by

π0,∗ = πM = 0.6.

For the investment horizon we let T ∈ {25, 100} and choose the intensity of the
arrival time of crash warnings to be λ ∈ {1/T, 2/T, 3/T} such that we receive on
average one, two or respectively three warnings during the investment period.

Figure 4.1 shows that the optimal strategy π1,∗
λ in the presence of crash warnings

with intensity λ exhibits similar qualitative features as the worst-case optimal
strategy πn,∗

KW (t) in the Korn/Wilmott model with at most n ∈ {1, 2, 3} crashes.
Recall that the Korn/Wilmott optimal strategy can be formally obtained as the
limiting case of our model as λ → 0 and is given as the solution of (1.7). As can
be seen, the optimal strategy in our model is decreasing in time, strictly positive
for all t < T and equal to zero if and only if t = T . It can also be seen that
π1,∗
n/T is more conservative in the long run than the corresponding Korn/Wilmott

strategy πn,∗
KW (t). This is due to the possibility of more than n crashes in our

model. Clearly, the short term behavior of the Korn/Wilmott strategies changes
signiVcantly the higher the maximum number of potential crashes is, while the
long term behavior is the same for any n, that is all Korn/Wilmott strategies
converge to the optimal Merton fraction π0,∗ = πM as T − t tends to inVnity
(see Figure 4.2). Note that in Figure 4.2 the intensity λ has been adjusted to have
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Figure 4.2. Long-term optimal strategies for diUerent λ.

1, 2 and 3 expected crash warnings within an investment horizon of 100 years
(instead of 25 years in Figure 4.1). Figure 4.2 shows that more potential crashes
impact the Korn/Wilmott strategies only in the short term (which can be rather
long. . . ) but not in the long term, while more potential crashes impact π1,∗

λ not so
much in the short term, but more so in the long term. Randomizing the number
of potential crashes has therefore mainly a long term impact while the short term
impact is minor if compared to the Korn/Wilmott strategy.

It can be seen that in the long run π1,∗
λ is strictly smaller than the corresponding

Korn/Wilmott strategy and does not converge to π0,∗ for λ > 0 as the investment
horizon tends to inVnity (Figure 4.2). Mathematically, this can be seen by taking
a closer look at the diUerential equation for π1,∗ in (4.8). At terminal time T we
have

∂

∂t
π1,∗(t)

∣

∣

∣

∣

∣

t=T

= −
α2

2βσ2
< 0

which implies that π1,∗ is increasing with increasing investment horizon until

0 =
1

2
σ2
(

π1,∗(t)− π∗,0(t)
)2

+ λ log
(

1− π1,∗(t)β
)

. (4.52)

Since
1

2
σ2
(

π1,∗(t)− π∗,0(t)
)2
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is positive and decreasing in π1,∗ on [0, π∗,0), equal to zero if π1,∗ = π∗,0 and since

λ log
(

1− π1,∗(t)β
)

is negative and increasing in π1,∗ on (0, π∗,0] we see that π1,∗ is bounded away
from π0,∗. This veriVes what can be observed in Figure 4.2, i.e. the long term
behavior of the optimal strategies is diUerent from the long term behavior of the
optimal Korn/Wilmott strategies.

Clearly, for a Vxed initial wealth x an investor in our market model obtains less
expected utility at terminal time compared to an investor in the classical Merton
model if no crash occurs. In order to estimate this trade-oU we determine the
eXciency η which is the fraction of the initial wealth x a worst-case investor
requires at time t to obtain the same expected utility as the Merton investor.
More formally, for each t ∈ [0, T ] we want to determine ηλ(t) such that

V(t, ηλ(t)x, 1) = VM(t, x), (4.53)

where VM denotes the Merton value function given by (1.3). Plugging the op-
timal strategy π1,∗

λ and the no-crash scenario into V(t, ηλ(t)x, 1) in (4.53) and
rearranging terms (following e.g. Menkens [79, p. 601]) yields

ηλ(t) = exp







1

2
σ2

T
∫

t

[

π1,∗
λ (u)− π0,∗

]2
du







.

Note that in the Korn/Wilmott model with n crashes the eXciency ηnKW of the
worst-case optimal strategy πn,∗

KW is given by the same formula if we replace π1,∗
λ

by πn,∗
KW .

In Figure 4.3 we see the eXciency for an investment horizon of T = 25 years,
whereas in Figure 4.4 we consider an investment horizon of T = 100 years.
Clearly, the eXciency is bounded from below by 1 and is decreasing in t. If the
investment horizon is 25 years the Korn/Wilmott investor with at most 1 crash
requires about 25.32% of additional initial wealth if she wants to get the same
terminal expected utility as a Merton investor who ignores the possibility of a
crash. Therefore, we call this 25.32% the cost of worst-case scenario optimal
investment (see Menkens [79]). The costs in the case of at most 2 and 3 crashes
in the Korn/Wilmott setting are given by 47.67% and 66.14%, respectively. The
corresponding costs for the investor in our market model are 32.98% (for λ =
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Figure 4.3. The eXciency for terminal time T = 25.
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Figure 4.4. The eXciency for terminal time T = 100.
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1/T ), 39.65% (for λ = 2/T ) and 45.29% (for λ = 3/T ) on an investment horizon
of T = 25 years in order to obtain the same expected utility as a Merton investor.

Figure 4.4 shows the corresponding plot for an investment horizon of T = 100
years. The costs for an investment horizon of 100 are 36.02%, 79.96% and
132.44% for the Korn/Wilmott investor with at most 1, 2 and 3 crashes, respec-
tively, and 56.78% (for λ = 1/T ), 78.53% (for λ = 2/T ), and 100.08% (for
λ = 3/T ) in our model.

Note that the costs of a Korn/Wilmott investor with n crashes have an upper
bound since

ηnKW (t) =
n
∏

i=1

1

1− πi,∗
KW (t)β

→
1

(1− π0,∗β)n
for T − t → ∞.

This is because πi,∗
KW (t) → π0,∗ as T − t → ∞ (cf. Figure 4.2). The asymptotic

behavior (that is for T−t → ∞) of the costs for the crash hedging strategy π1,∗
λ (t)

with λ > 0 is diUerent: It is exponential in the investment horizon since π1,∗
λ (t) is

bounded away from π0,∗ uniformly in t. Note that this exponential growth takes
a long time to become visible and is not to be mistaken by linear growth (see
Figure 4.4).

4.8.2. Power utility in the generalized model

Let us now take a closer look at the generalized model. We assume that

α0 = . . . = αd = α = 0.096 and σ0 = . . . = σd = σ = 0.4,

and let T = 25 and λ = 1/T . We furthermore choose d = 5, p = 0.1 and let the
generator matrix of Z and the crash sizes βi be given by

Q =

















−λ λ 0 0 0 0
0 −λ λ 0 0 0
0 0 −λ λ 0 0
0 0 0 −λ λ 0
0 0 0 0 −λ λ
0 0 0 0 0 0

















,













β1

β2

β3

β4

β5













=













0.1
0.3
0.5
0.7
0.9













.
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Figure 4.5. Optimal strategies in the generalized model.

So, in particular, the process Z can only jump from state i to state i + 1 and the
last state is absorbing.

The numerical approximations of the optimal strategies can be found in Fig-
ure 4.5. As can be seen the optimal strategies are decreasing for an increasing
maximum crash size but still display similar qualitative features as the optimal
strategy obtained in the simpliVed model. Note however that the optimal strategy
in state 1 is equal to the Merton fraction πi

M for small t (approximately t < 2.75),
i.e. for small t we are inside the set N1. In contrast to the simpliVed model and
the models considered in Korn and Menkens [67] and Seifried [95] this is a new
feature. As Korn and Menkens [67] show, the optimal strategy in the presence
of crashes is always smaller than the Merton fraction and only if one considers
changing market coeXcients after a crash it may be optimal for the investor to
follow the Merton strategy despite the presence of a crash threat. In our model
this phenomenon can already occur without considering state-dependent market
coeXcients. However this can only be observed in the generalized model with
d > 1.

In the example considered in Figure 4.5 the market jumps from regimes with
lower crash sizes to higher crash sizes from 0.1 to 0.9. Let us now consider the
opposite direction, i.e. the market jumps from the safe state 0 to the state with
crash size 0.9, from there to the state with crash size 0.7 and so on. This can be
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Figure 4.6. Optimal strategies in the generalized model with decreasing maximum crash

sizes.

modeled by considering the generator matrix

Q =

















−λ 0 0 0 0 λ
0 0 0 0 0 0
0 λ −λ 0 0 0
0 0 λ −λ 0 0
0 0 0 λ −λ 0
0 0 0 0 λ −λ

















,

and keeping the remaining parameters as before.

The resulting optimal strategies can be found in Figure 4.6. First, notice that
by looking time t = 0 the investor is strikingly more conservative since after
a crash has occurred the next warning brings the market right back into the
most dangerous state 5 with a maximum crash size of 0.9. Also, note that in
states 1 and 2 the optimal strategies present a previously unobserved pattern –
the strategies are no longer monotone in t but increasing for small values of t
and decreasing for larger values of t. The rationale behind this observation is as
follows: If a crash occurs at time t << T then the probability of another warning
coming in before terminal time T is quite high (as compared to a crash close to
T ). Hence it is quite likely that the market ends up in the dangerous state 5 again.
In order to avoid big losses the investor hence chooses a small risky fraction. On
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the other hand if t gets closer to T and a crash occurs then the probability of
jumping back into state 5 becomes smaller and smaller and hence the investor
has to be less and less concerned with this threat as t approaches T . In states 1
and 2 this leads to an increase in the optimal strategy. However as t gets even
closer to T the losses due to an immediate crash begin to dominate the threat
of jumping back into state 5 and hence the strategies start to decrease again and
converge to 0 as t → T . This also explains why in states 3 to 5 the strategies
are monotone – because the threat of losing utility due to an immediate crash is
bigger than the threat of jumping back into state 5 after this crash.

Observe that the optimal strategy in the case i = 1 in Figure 4.6 veriVes the
Vndings for the simple model: A Vxed number of possible crashes has just a
short term (meaning close to the investment horizon) impact while a random
(unknown) number of crashes has an additional long term impact. With Fig-
ure 4.6 we can make this more precise. In the short term the imminent threat of a
crash is dominating and the investor can almost ignore the long term threat of the
unknown number of possible crashes (by investing more in the risky asset in the
short term than one would in the long term). On the other hand, the unknown
number of potential crashes has only a long term impact. This becomes clear by
comparing the optimal strategy in state i = 1 with the corresponding optimal
Korn/Menkens strategy π1,∗

KM with exactly one crash (given by (1.8) with β = β1):
While the behavior close to maturity of the two strategies is very similar, the
long-term diUerence between the two strategies is signiVcant.

We investigate the feature of non-monotone optimal strategies again from a dif-
ferent point of view in the next example where we replace the exponential arrival
time distribution of warnings with various phase-type distributions.

4.8.3. Phase-type distributed warning times

We conclude our numerical examples by comparing the optimal strategies which
arise for diUerent choices of the distribution of the arrival times of the crash
warnings. As pointed out in Remark 4.4, by an appropriate choice of the transi-
tion rate matrix Q of the Markov process Z , by making the market coeXcients
state-independent and by setting 0 = β0 = β1 = . . . = βd−1, βd = β = 0.5, the
time S which it takes to reach state d from state 0 is phase-type distributed. In
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this section we consider three diUerent types of phase-type distributions: expo-
nential, Erlang and Coxian.

Remark 4.15. Note that this setup is degenerate in the sense that the investor
receives warnings whenever Z jumps to a state i ≥ 0, but since the maximum
crash size is equal to zero for i < d she does not have to fear a crash as long as
she is in one of these states. ⋄

For our example we choose T = 50. In order to normalize the diUerent types
of distributions and make them comparable we choose the parameters of the
distributions so that we always have

E[S] = 25,

i.e. we expect to see 2 warnings if we start in state 0 at time t = 0 (Actually,
the expectation will be to see 2d warnings. However, 2d− 2 warnings are artiV-
cial/degenerate with no potential interpretation).

To obtain an exponential distribution we need to choose the transition matrix
QExp of the Markov process Z to be

QExp :=

(

q0,0 q0,1
q1,0 q1,1

)

=

(

−2/T 2/T
0 0

)

.

We obtain an Erlang distribution by choosing QErl = (qErli,j )0≤i,j≤dErl such that

qErli,i = −
dErl

25
, qErli,i+1 =

dErl

25
, i = 0, . . . , dErl − 1,

and 0 = qErldErl,0 = . . . = qErldErl,dErl . In our example we consider the two cases dErl = 5

and dErl = 50.

To obtain the Coxian distribution we need to choose QCox = (qCoxi,j )0≤i,j≤dCox such
that

qCoxi,i = −λi, qCoxi,i+1 = piλi, qCoxi,dCox = (1− pi)λi, i = 0, . . . , dCox − 2,

qCoxdCox−1,dCox−1 = −qCoxdCox−1,dCox = −λdCox−1 and 0 otherwise. The constants pi, i =

0, . . . , dCox − 2, have to be chosen such that 0 < pi ≤ 1. For our numerical
example we consider dCox = 2 and

λ0 = 5, λ1 =
1

30
, p0 =

124

150
,
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Figure 4.7. Probability density functions of the phase-type distributions.

so that

QCox =





−5 124
150

· 5 26
150

· 5
0 − 1

30
1
30

0 0 0



 .

The resulting probability density functions and cumulative distribution functions
are depicted in Figure 4.7 and Figure 4.8, respectively. As we can see, the Coxian
distribution puts a lot of mass on small values of t, i.e. the probability of jumping
into the warning state after a short amount of time is quite high compared to the
other distributions. The Erlang distribution with dErl = 50 on the other hand has
a signiVcant peak around the mean arrival time E[S] = 25 and puts almost no
weight in the tails. Note also that the Erlang distribution converges to the Dirac
measure at E[S] = 25 as dErl → ∞.

The resulting optimal strategies can be found in Figure 4.9. The Coxian strategy
is the most conservative for t > 25 which is due to the high mass on the small
time values – since it is more likely to jump back into the crash state shortly after
a crash the investor has to take this into account in order to be indiUerent. The
Erlang strategy with Vve phases (dErl = 5) has a similar behavior as the strategies
for state 1 and 2 in the previous example. That is, the strategy is Vrst increasing
and then decreasing. In the case of dErl = 50 phases we can even see an oscilla-
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Figure 4.8. Cumulative distribution functions of the phase-type distributions.
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Figure 4.9. Optimal strategies for phase-type distributed arrival times.
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tion in the optimal strategy. The reason for this can be found in the density of the
Erlang distribution. As dErl → ∞ the Erlang distribution converges to the Dirac
measure at t = 25. That is, the Erlang distribution puts increasingly more mass
around the point t = 25. This means that after a crash at time t there is a very
high probability that the next crash warning will arrive in roughly 25 years and
the probability of an earlier warning is small. Hence if t is close to T the investor
essentially has to prepare for one more crash – since the likelihood of another
warning after a crash is small. However, as T − t increases so does the proba-
bility of another crash warning occurring after a crash at time t. Hence around
t = 25 the investor begins to fear that another warning may arrive before the
investment horizon – so she has to be afraid of two more crashes. This explains
why the strategy in the dErl = 50 case is increasing for t ∈ [16.5, 29.5] (approx-
imately). For even smaller values of t the strategy is again decreasing since the
probability of only one more crash warning remains high. The eUect becomes
more pronounced as dErl becomes larger due to the convergence property of the
Erlang distribution against the Dirac measure – the investor becomes increas-
ingly more certain of how long it will take for another warning to arrive after a
crash. Also, note that in the long run all strategies considered in the above ex-
ample converge to the same level since the stationary distribution of the Markov
chain dominates the investor’s decisions for large time horizons.

184



A. Notation and conventions

We use this appendix to introduce some notation and settle on some conventions
for the main body of this thesis.

We denote by N, N0,Q and R the sets of natural numbers, non-negative integers,
rational numbers and real numbers, respectively. Given n ∈ N, we denote by Sn

the set of symmetric n× n matrices with entries in R.

We denote by | · | and 〈·, ·〉 the Euclidean norm and scalar product on Rn. On Sn

we consider the usual partial order by agreeing thatX ≥ Y wheneverX, Y ∈ Sn

and X − Y is positive semi-deVnite.

Whenever A is a subset of Rn, we denote by A, ∂A, Ac the closure of A, the
boundary of A and the complement of A, respectively.

Given an open interval (a, b) ⊂ R, an open setA ∈ Rn and a (suXciently regular)
function f : (a, b)× A → R, (t, x) 7→ f(t, x), we denote by Dtf(t, x) the partial
derivative of f with respect to t, i.e.

Dtf(t, x) =
∂

∂t
f(t, x).

We denote by Dxf(t, x) the gradient with respect to the variable x and similarly
we denote by D2

xf(t, x) the Hessian matrix with respect to x. We denote by
Ck((a, b) × A → R) the set of all functions which are k-times continuously
diUerentiable. We write Cj,k((a, b) × A → R) to denote the set of all functions
which are j-times continuously diUerentiable with respect to their Vrst variable
and k-times continuously diUerentiable with respect to there second variable.
The set of continuous functions f : B → R, B ⊂ Rn, is denoted by C(B).

Given any real number x ∈ R, we denote by x+ and x− its positive and negative
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A. Notation and conventions

part, respectively, i.e.

x+ = max{x, 0}, x− = max{−x, 0}.

Let a, b ∈ R with a > b. Then the interval (a, b) is assumed to be the empty set
and we assume the obvious analog statements for closed and half-open intervals
to hold.

Whenever we take the inVmum over the empty set, we make the convention that

inf{∅} = +∞

and similarly
sup{∅} = −∞.

Inequalities and equalities involving random variables on a probability space
(Ω,F ,P) are always to be understood in a P-almost sure sense without explicitly
saying so.

Finally, if T ⊂ R is some index set, t, T ∈ T and ifX = (X(u))u∈T is a stochastic
process, we write

E[Xt,x(T )]

for the expectation of X(T ) conditional on X(t) = x.
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B. Viscosity solutions

The aim of this appendix is to recall several equivalent deVnitions of the notion
of viscosity solutions of parabolic partial diUerential equations and state the fun-
damental results we need in the main body of this thesis. We follow Pham [90]
in our exposition.

Let O ⊂ Rn be open, Vx some T > 0 and let

F : [0, T )×O × R× R× Rn × Sn → R

be a continuous function. We assume that F satisVes the following parabolicity
condition: For each t ∈ [0, T ), x ∈ O, r ∈ R, q, q′ ∈ R, p ∈ Rn and M ∈ Sn, F
satisVes

F (t, x, r, q, p,M) ≥ F (t, x, r, q′, p,M)

whenever q ≤ q′. Moreover, we assume that F satisVes the following ellipticity
condition: For each t ∈ [0, T ), x ∈ O, r ∈ R, q ∈ R, p ∈ Rn and M,M ′ ∈ Sn, F
satisVes

F (t, x, r, q, p,M) ≥ F (t, x, r, q, p,M ′)

wheneverM ≤ M ′.

Let us now Vx a function w ∈ C1,2([0, T ) × O) and assume that w satisVes the
partial diUerential equation

F (t, x, w(t, x), Dtw(t, x), Dxw(t, x), D
2
xw(t, x)) = 0 (B.1)

for each (t, x) ∈ [0, T )×O. Now take another function ϕ ∈ C1,2([0, T )×O) and
assume that w − ϕ attains a local maximum at some point (t0, x0) ∈ [0, T )×O.
By the Vrst- and second-order optimality conditions we have

Dtw(t0, x0) ≤ Dtϕ(t0, x0), where equality holds if t0 > 0,

Dxw(t0, x0) = Dxϕ(t0, x0),
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B. Viscosity solutions

D2
xw(t0, x0) ≤ D2

xϕ(t0, x0).

Replacing the derivatives of w by the derivatives of ϕ in (B.1) we hence have

F (t0, x0, w(t0, x0), Dtϕ(t0, x0), Dxϕ(t0, x0), D
2
xϕ(t0, x0))

≤ F (t0, x0, w(t0, x0), Dtw(t0, x0), Dxw(t0, x0), D
2
xw(t0, x0)) = 0 (B.2)

by the parabolicity and the ellipticity condition on F . Note that in order to make
sense of the left-hand side of (B.2) we only need w to be upper semi-continuous
(so that w − ϕ can attain a local maximum). Similarly, if w − ϕ attains a local
minimum at (t0, x0), we obtain

F (t0, x0, w(t0, x0), Dtϕ(t0, x0), Dxϕ(t0, x0), D
2
xϕ(t0, x0)) ≥ 0, (B.3)

and as before we only need that w is lower semi-continuous to make sense of
this.

The above discussion hence motivates a notion of weak solutions of the PDE (B.1)
by replacing the derivatives of w by the derivatives of smooth test functions ϕ.
In order to ensure that the diUerence w − ϕ attains extremal values, we assume
that w is locally bounded and replace w by its upper and lower semi-continuous
envelopes w∗ and w∗ deVned as

w∗(t0, x0) := lim sup
(t,x)→(t0,x0)

w(t, x) and w∗(t0, x0) := lim inf
(t,x)→(t0,x0)

w(t, x),

respectively. This leads to the following deVnition.

DeVnition B.1. Let w : [0, T )×O be locally bounded.

1. We say that w is a viscosity subsolution of (B.1) if for each (t0, x0) ∈ [0, T )×
O and for each ϕ ∈ C1,2([0, T )×O) such that w∗ − ϕ attains a local maxi-

mum at (t0, x0) we have

F (t0, x0, w
∗(t0, x0), Dtϕ(t0, x0), Dxϕ(t0, x0), D

2
xϕ(t0, x0)) ≤ 0.

2. We say that w is a viscosity supersolution of (B.1) if for each (t0, x0) ∈
[0, T ) × O and for each ϕ ∈ C1,2([0, T ) × O) such that w∗ − ϕ attains

a local minimum at (t0, x0) we have

F (t0, x0, w∗(t0, x0), Dtϕ(t0, x0), Dxϕ(t0, x0), D
2
xϕ(t0, x0)) ≥ 0.
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3. We say that w is a viscosity solution of (B.1) if it is a viscosity subsolution as

well as a viscosity supersolution.

Remark B.2. 1. By shifting the test functions in the above deVnition ap-
propriately we may without loss of generality assume that w∗(t0, x0) =
ϕ(t0, x0) and w∗(t0, x0) = ϕ(t0, x0), respectively.

2. Since the test functions act only locally we may furthermore assume that
the local maximum (or minimum) of w∗ − ϕ (or w∗ − ϕ) is global.

3. By the discussion preceding the deVnition it is clear that every classical
solution of (B.1) is also a viscosity solution. Similarly, if w is a viscosity
solution and w ∈ C1,2([0, T ) × O), then w is also a classical solution:
Simply choose the test function ϕ to be w itself.

4. If the functionw is continuous, thenw∗ = w∗ = w and hence the deVnition
simpliVes correspondingly.

The above deVnition of a viscosity solution is typically useful whenever we want
to show that a given function is a viscosity solution of a certain PDE. In order to
prove uniqueness it is usually easier to work with the equivalent deVnition we
introduce in what follows. Given a locally bounded function w on [0, T ) × O
as before, we deVne the second-order superjet J2,+w∗(t0, x0) of the upper semi-
continuous envelopew∗ ofw at (t0, x0) to be the set of all (q, p,M) ∈ R×Rn×Sn

such that

lim sup
(t,x)→(t0,x0)

1

|t0 − t|+ |x0 − x|

[

w∗(t0, x0)− w(t, x)− q(t0 − t)

− 〈p, x0 − x〉 −
1

2
〈M(x0 − x), x0 − x〉

]

≤ 0.

We deVne the second-order subjet J2,−w∗(t0, x0) of the lower semi-continuous
envelope w∗ of w by setting

J2,−w∗(t0, x0) := −J2,+(−w∗)(t0, x0).

The following deVnition of viscosity solutions is based on the sub- and super-
jets. It follows from Fleming and Soner [40, Lemma V.4.1] that this deVnition is
equivalent to DeVnition B.1.
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B. Viscosity solutions

DeVnition B.3. Let w : [0, T )×O be locally bounded.

1. We say that w is a viscosity subsolution of (B.1) if for each (t0, x0) ∈ [0, T )×
O and for each (q, p,M) ∈ J2,+w∗(t0, x0) we have

F (t0, x0, w
∗(t0, x0), q, p,M) ≤ 0.

2. We say that w is a viscosity supersolution of (B.1) if for each (t0, x0) ∈
[0, T )×O and for each (q, p,M) ∈ J2,−w∗(t0, x0) we have

F (t0, x0, w∗(t0, x0), q, p,M) ≥ 0.

3. We say that w is a viscosity solution of (B.1) if it is a viscosity subsolution as

well as a viscosity supersolution.

The closure J
2,+

w∗(t0, x0) of the superjet J2,+w∗(t0, x0) is deVned to be the set of
all (q, p,M) ∈ R×Rn×Sn for which we can Vnd a sequence (tj, xj , qj, pj ,Mj)j∈N
such that tj ∈ [0, T ), xj ∈ O and (qj, pj,Mj) ∈ J2,+w∗(tj, xj) for all j ∈ N and
such that

lim
j→∞

(tj, xj , w
∗(tj, xj), qj, pj,Mj) = (t0, x0, w

∗(t0, x0), q, p,M).

The closure J
2,−

w∗(t0, x0) of J2,−w∗(t0, x0) is deVned analogously.

With this deVnition and by the continuity of F it follows immediately that w
is viscosity subsolution if and only if F (t0, x0, w

∗(t0, x0), q, p,M) ≤ 0 for all

(t0, x0) ∈ [0, T )×O and all (q, p,M) ∈ J
2,+

w∗(t0, x0). The analogous statement
clearly holds for viscosity supersolutions as well.

The main tool in proving uniqueness of viscosity solutions is the following theo-
rem. We use the formulation in Pham [90, Lemma 4.4.6] and refer to Crandall et
al. [22] for the proof.

Theorem B.4 (Ishii’s lemma). Let u be an upper semi-continuous function on

[0, T ) × O, let v be a lower semi-continuous function on [0, T ) × O and let φ ∈
C1,1,2,2([0, T )2 × Rn × Rn). Suppose that (t0, s0, x0, y0) is a local maximum of
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u(t, x) − v(s, y) − φ(t, s, x, y). Then for each ε > 0 there exist M,N ∈ Sn such

that

(Dtφ(t0, s0, x0, y0), Dxφ(t0, s0, x0, y0),M) ∈ J
2,+

u(t0, x0),

(−Dsφ(t0, s0, x0, y0),−Dyφ(t0, s0, x0, y0), N) ∈ J
2,−

v(t0, x0),

and
(

M 0
0 −N

)

≤ D2
x,yφ(t0, s0, x0, y0) + ε(D2

x,yφ(t0, s0, x0, y0))
2.

We will typically apply Ishii’s lemma for φ(t, s, x, y) = k
2
(|t − s|2 + |x − y|2)

where k ∈ N. We obtain

Dtφ(t0, s0, x0, y0) = −Dsφ(t0, s0, x0, y0) = k(t0 − s0),

Dxφ(t0, s0, x0, y0) = −Dyφ(t0, s0, x0, y0) = k(x0 − y0)

and

D2
x,yφ(t0, s0, x0, y0) = k

(

I −I
−I I

)

,

(D2
x,yφ(t0, s0, x0, y0))

2 = 2k2

(

I −I
−I I

)

,

where I denotes the identity matrix in Sn. Choosing ε = 1/k in Ishii’s lemma
implies that

(k(t0 − s0), k(x0 − y0),M) ∈ J
2,+

u(t0, x0),

(k(t0 − s0), k(x0 − y0), N) ∈ J
2,−

v(s0, y0)

and
(

M 0
0 −N

)

≤ 3k

(

I −I
−I I

)

.
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C. On the existence of the Snell

envelope

In this appendix we prove the existence of the Snell envelope for a càdlàg process
Y = (Y (u))u∈[t,T ]∪{+∞} which is uniformly integrable over all [t, T ] ∪ {+∞}-
valued stopping times. We then use the Snell envelope to construct ε-optimal
stopping times for the problem of optimally stopping the process Y . For ex-
istence results on the Snell envelope in slightly diUerent problem settings we
refer to Fakeev [39], Shiryaev [96], Dellacherie and Meyer [29, Appendix I], El
Karoui [36], Peskir and Shiryaev [89] as well as Karatzas and Shreve [61].

In what follows we Vx a complete probability space (Ω,F ,P). We let T > 0,
t ∈ [0, T ) and write T = [t, T ]∪{+∞}. We consider a Vltration Ft = (F t(u))u∈T
satisfying the usual assumptions. Moreover, we assume thatF t(T ) = F t(∞) and
F t(t) contains only events of probability zero and one. We let Y = (Y (u))u∈T
be an Ft-adapted process which is càdlàg on [t, T ] and we denote by B(t) the
set of all T -valued stopping times. We assume that the family (Y (τ))τ∈B(t) is
uniformly integrable in the sense that (E[|Y (τ)|p])τ∈B(t) is uniformly bounded
for some p > 1.

Our aim is to construct the Snell envelope Z0 = (Z0(u))u∈T associated with the
problem of optimally stopping the process Y , i.e.

inf
ρ∈B(t)

E [Y (ρ)] .

The Snell envelope Z0 is the largest submartingale which is càdlàg on [t, T ], dom-
inated by Y and satisVes

E[Z0(t)] = inf
ρ∈B(t)

E [Y (ρ)] .

The Snell envelope turns out to be a modiVcation of the process Z = (Z(u))u∈T
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C. On the existence of the Snell envelope

deVned through
Z(u) = ess inf

ρ∈B(u)
E
[

Y (ρ)
∣

∣F t(u)
]

. (C.1)

We note that the uniform integrability assumption on Y implies that

Z(t) = inf
ρ∈B(t)

E [Y (ρ)] > −∞. (C.2)

We Vrst need the following result on the essential inVmum, see Neveu [86] or
Karatzas and Shreve [61, Appendix A and Lemma D.1] for the proof.

Lemma C.1. Let τ ∈ B(t). Then the essential inVmum

ess inf
ρ∈B(τ)

E
[

Y (ρ)
∣

∣F t(τ)
]

exists and is unique. Moreover, if for each ρ1, ρ2 ∈ B(τ) there exists some ρ∗ ∈ B(τ)
such that

E
[

Y (ρ∗)
∣

∣F t(ρ)
]

= min
{

E
[

Y (ρ1)
∣

∣F t(τ)
]

,E
[

Y (ρ2)
∣

∣F t(τ)
]

}

,

then there exists a sequence (ρn)n∈N with ρn ∈ B(τ) for each n ∈ N such that the

sequence (E[Y (ρn)|F
t(τ)])n∈N is non-increasing and

lim
n→∞

E
[

Y (ρn)
∣

∣F t(τ)
]

= ess inf
ρ∈B(τ)

E
[

Y (ρ)
∣

∣F t(τ)
]

.

The existence of ρ∗ in the previous lemma is easily veriVed in our setting, see
Karatzas and Shreve [61, Lemma D.1] for a proof. We can hence always Vnd
a sequence (ρn)n∈N such that we can approximate the essential inVmum by a
monotone sequence.

Let us now turn to some properties of the process Z deVned in (C.1). The fol-
lowing lemma is in analogy with Karatzas and Shreve [61, proposition D.2], the
proof is the same.

Lemma C.2. Let τ, σ ∈ B(t) and ν ∈ B(τ). Then

1. Z(τ) = Z(σ) on {σ = τ},

2. E [Z(ν)|F t(τ)] = ess infρ∈B(ν) E [Y (ρ)|F t(τ)],
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3. E [Z(ν)|F t(τ)] ≥ Z(τ),

4. E[Z(ν)] = infρ∈B(ν) E[Y (ρ)] ≥ Z(t) > −∞.

Proof. 1. We denoteA := {σ = τ} and note thatA ∈ F t(σ∧τ). Let ρ ∈ B(τ)
and deVne a new stopping time ρA ∈ B(τ) by

ρA :=

{

ρ, on A,

+∞, on Ac.

It follows that

1AE [Y (ρ)|F(τ)] = 1AE [Y (ρA)|F(τ)]

= 1AE [Y (ρA)|F(τ ∧ σ)] = 1AE [Y (ρA)|F(σ)] ≥ 1AZ(σ).

Since ρ was chosen arbitrarily it follows that

1AZ(τ) = 1A ess inf
ρ∈B(τ)

E [Y (ρ)|F(τ)]

= ess inf
ρ∈B(τ)

1AE [Y (ρ)|F(τ)] ≥ 1AZ(σ).

Reversing the roles of τ and σ yields the desired result.

2. First, note that since Z(ν) ≤ E[Y (ρ)|F t(ν)] for every ρ ∈ B(ν) we have

E
[

Z(ν)|F t(τ)
]

≤ E
[

E[Y (ρ)|F t(ν)]
∣

∣F t(τ)
]

= E
[

Y (ρ)
∣

∣F t(τ)
]

.

Since this holds for every ρ ∈ B(ν) we have

E
[

Z(ν)|F t(τ)
]

≤ ess inf
ρ∈B(ν)

E
[

Y (ρ)
∣

∣F t(τ)
]

. (C.3)

For the reverse inequality, we note that by Lemma C.1 we can Vnd a se-
quence (ρn)n∈N in B(ν) such that (E[Y (ρn)|F

t(ν)])n∈N is non-increasing
and

ess inf
ρ∈B(ν)

E
[

Y (ρ)
∣

∣F t(ν)
]

= lim
n→∞

E
[

Y (ρn)
∣

∣F t(ν)
]

.

The monotone convergence theorem hence shows that

E
[

Z(ν)|F t(τ)
]

= E

[

[

ess inf
ρ∈B(ν)

E
[

Y (ρ)|F t(ν)
]

]

∣

∣

∣

∣

F t(τ)

]
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= lim
n→∞

E

[[

E
[

Y (ρn)|F
t(ν)

]

]∣

∣

∣F t(τ)
]

= lim
n→∞

E
[

Y (ρn)|F
t(τ)

]

≥ ess inf
ρ∈B(ν)

E
[

Y (ρ)
∣

∣F t(τ)
]

.

Combining this with (C.3) gives the desired equality.

3. This follows immediately from the previous step since

E
[

Z(ν)|F t(τ)
]

= ess inf
ρ∈B(ν)

E
[

Y (ρ)
∣

∣F t(τ)
]

≥ ess inf
ρ∈B(τ)

E
[

Y (ρ)
∣

∣F t(τ)
]

= Z(τ).

4. Choosing τ = t in the second step shows that

E[Z(ν)] = E
[

Z(ν)|F t(t)
]

= ess inf
ρ∈B(ν)

E
[

Y (ρ)
∣

∣F t(t)
]

= inf
ρ∈B(ν)

E [Y (ρ)] .

By the third step we therefore have

E[Z(ν)] = inf
ρ∈B(ν)

E [Y (ρ)] ≥ Z(t),

and we conclude by (C.2).

Given any τ ∈ B(t), we denote by B∗(τ) the set of all ρ ∈ B(τ) such that ρ > τ
on {τ < T}. We can then deVne

Z∗(τ) = ess inf
ρ∈B∗(τ)

E
[

Y (ρ)
∣

∣F t(τ)
]

.

We note that the results of Lemma C.2 remain true if we replace Z by Z∗. The fol-
lowing result is in analogy with Karatzas and Shreve [61, Proposition D.3, Corol-
lary D.4].

Lemma C.3. Let τ ∈ B(t).

1. Let (τn)n∈N be a decreasing sequence in B∗(τ) such that τn → τ as n → ∞.

Then for all A ∈ F t(τ) we have

E [Z∗(τ)1A] = lim
n→∞

E [Z∗(τn)1A] .

196



2. We have Z∗(τ) = Z(τ).

Proof. 1. By Lemma C.2.2 for Z∗ we have

E
[

Z∗(τn)
∣

∣F t(τ)
]

= ess inf
ρ∈B∗(τn)

E
[

Y (ρ)
∣

∣F t(τ)
]

≥ Z∗(τ)

for each n ∈ N and hence the sequence (E[Z∗(τn)|F
t(τ)]1A)n∈N is non-

increasing and bounded from below by Z∗(τ)1A so that

lim
n→∞

E [Z∗(τn)1A] = lim
n→∞

E
[

E
[

Z∗(τn)
∣

∣F t(τ)
]

1A

]

≥ E [Z∗(τ)1A] .

For proving the reverse inequality, let us Vx ρ ∈ B∗(τ) and deVne a se-
quence of stopping times (ρn)n∈N through

ρn :=

{

ρ, on {τn < ρ},

+∞, on {τn ≥ ρ}.

Note that ρn ∈ B∗(τn) for every n ∈ N and in particular

Z∗(τn) ≤ E
[

Y (ρn)
∣

∣F t(τn)
]

.

We can decompose

1{τ<T} = 1{τ<T,τn<T,τn<ρ} + 1{τ<T,τn<T,τn≥ρ} + 1{τ<T,τn=T,τn<ρ}

+ 1{τ<T,τn=T,τn≥ρ} + 1{τ<T,τn=+∞,τn<ρ} + 1{τ<T,τn=+∞,τn≥ρ}

= 1{τn<T,τn<ρ} + 1{τn<T,τn≥ρ} + 1{τ<T,τn=T,τn<ρ}

+ 1{τ<T,τn=T,τn≥ρ} + 1{τ<T,τn=+∞}

and observer that

1{τ<T} = lim
n→∞

1{τn<T,τn<ρ}, 0 = lim
n→∞

1{τn<T,τn≥ρ},

0 = lim
n→∞

1{τ<T,τn=T,τn<ρ}, 0 = lim
n→∞

1{τ<T,τn=T,τn≥ρ},

0 = lim
n→∞

1{τ<T,τn=+∞}.

Using this and the dominated convergence theorem, it follows that

lim
n→∞

E
[

Z∗(τn)1{τn<T,τn<ρ}1A

]
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≤ lim
n→∞

E
[

E
[

Y (ρn)
∣

∣F t(τn)
]

1{τn<T,τn<ρ}1A

]

= lim
n→∞

E
[

Y (ρ)1{τn<T,τn<ρ}1A

]

= E
[

Y (ρ)1{τ<T}1A

]

.

and by similar arguments we can show that

lim
n→∞

E
[

Z∗(τn)1{τn<T,τn≥ρ}1A

]

≤ 0,

lim
n→∞

E
[

Z∗(τn)1{τ<T,τn=T,τn<ρ}1A

]

≤ 0,

lim
n→∞

E
[

Z∗(τn)1{τ<T,τn=T,τn≥ρ}1A

]

≤ 0,

lim
n→∞

E
[

Z∗(τn)1{τ<T,τn=+∞}1A

]

≤ 0.

Putting the pieces together we have hence proved that

lim
n→∞

E
[

Z∗(τn)1{τ<T}1A

]

≤ E
[

Y (ρ)1{τ<T}1A

]

.

Similar arguments show that

lim
n→∞

E
[

Z∗(τn)1{τ=T}1A

]

≤ E
[

Y (ρ)1{τ=T}1A

]

and Vnally it is obvious that

lim
n→∞

E
[

Z∗(τn)1{τ=+∞}1A

]

= E
[

Y (ρ)1{τ=+∞}1A

]

.

Combining the last three equations shows that

lim
n→∞

E [Z∗(τn)1A] ≤ E [Y (ρ)1A] . (C.4)

Now choose a sequence (ρk)k∈N in B∗(τ) such that E[Y (ρk)|F
t(τ)] con-

verges monotonically down to Z∗(τ). Then Fatou’s lemma and (C.4) show
that

E [Z∗(τ)1A] = E

[

lim
k→∞

E
[

Y (ρk)
∣

∣F t(τ)
]

1A

]

≥ lim sup
k→∞

E [Y (ρk)1A]

≥ lim sup
k→∞

lim
n→∞

E [Z∗(τn)1A]

= lim
n→∞

E [Z∗(τn)1A] .
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2. First, it is clear that Z(τ) ≤ Z∗(τ)∧ Y (τ). Now take ρ ∈ B(τ) arbitrary so
that

E
[

Y (ρ)
∣

∣F t(τ)
]

= E
[

Y (ρ)
∣

∣F t(τ)
]

1{τ=ρ} + E
[

Y (ρ)
∣

∣F t(τ)
]

1{τ<ρ}

≥ Y (τ)1{τ=ρ} + Z∗(τ)1{τ<ρ}

≥ Y (τ) ∧ Z∗(τ),

and since ρ was arbitrary we conclude that

Z(τ) ≥ Y (τ) ∧ Z∗(τ).

So, in order to conclude we only need to show that Z∗(τ) ≤ Y (τ).

Let (τn)n∈N be a monotone sequence of stopping times in B∗(τ) converging
to τ . Then Fatou’s lemma and the right-continuity of Y show that

Z∗(τ) ≤ lim sup
n→∞

E
[

Y (τn)
∣

∣F t(τ)
]

≤ E

[

lim
n→∞

Y (τn)
∣

∣

∣
F t(τ)

]

= Y (τ),

which is the desired inequality.

We note that Lemma C.2.3 implies in particular that Z is a submartingale. More-
over, the process Z restricted to [t, T ] admits a càdlàg modiVcation. Indeed, by
Rogers and Williams [93, Theorem II.67.7] it suXces to show that the mapping
u 7→ E[Z(u)] is right-continuous on [t, T ] which is an immediate consequence of
Lemma C.3. We denote this modiVcation by Z0 = (Z0(u))u∈T and remark that
Z0 is still a submartingale which is dominated by Y . Finally, we have

E[Z0(t)] = E[Z(t)] = inf
ρ∈B(t)

E [Y (ρ)]

by Lemma C.2.4. We now show that Z0 and Z even coincide on stopping times.
The proof follows Karatzas and Shreve [61, Theorem D.7].

Lemma C.4. For any τ ∈ B(t) we have Z0(τ) = Z(τ).

Proof. Since Z0(T ) = Z(T ) and Z0(+∞) = Z(+∞) we may without loss of
generality assume that τ < T . Let (τn)n∈N be a monotone sequence of stopping
times taking values in D([t, T ]) ∪ {+∞} (where D([t, T ]) denotes the dyadic
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C. On the existence of the Snell envelope

rationals in [t, T ]) such that τn > τ and limn→∞ τn = τ . By the optional sampling
theorem we have for every n, k ∈ N

E
[

Z0(τn)
∣

∣F t(τ)
]

≥ E
[

Z0(τn+k)
∣

∣F t(τ)
]

≥ Z0(τ).

Let now A ∈ F t(τ). Then (E[Z0(τn)|F
t(τ)]1A)n∈N is a non-increasing sequence

bounded from below by Z0(τ)1A, i.e.

lim inf
n→∞

E[Z0(τn)1A] = lim inf
n→∞

E
[

E
[

Z0(τn)
∣

∣F t(τ)
]

1A

]

≥ E[Z0(τ)1A].

On the other hand, the right-continuity of Z0 and Fatou’s lemma (which we are
allowed to apply since Z0 ≤ Y implies the uniform integrability of the positive
part of Z0) show that

lim sup
n→∞

E[Z0(τn)1A] ≤ E[Z0(τ)1A].

Moreover, Lemma C.3 shows that

lim
n→∞

E [Z(τn)1A] = E [Z(τ)1A] .

Finally, since τn attains only countably many values we obtain

E [Z(τn)1A] = E
[

Z0(τn)1A

]

for every n ∈ N. Combining these observations shows that

E [Z(τ)1A] = lim
n→∞

E [Z(τn)1A] = lim
n→∞

E
[

Z0(τn)1A

]

= E [Z(τ)1A] .

Now choosing A = {Z(τ) > Z0(τ)} shows that P[A] = 0 so that Z(τ) ≤ Z0(τ)
almost surely. Interchanging the roles of Z and Z0 then proves the result.

We are left with showing that if Ẑ = (Ẑ(u))u∈T is another submartingale which
is dominated by Y and such that Ẑ restricted to [t, T ] is càdlàg, then Z0 domi-
nates Ẑ . The proof is straightforward an follows as in Karatzas and Shreve [61,
Theorem D.7].

Lemma C.5. Suppose that Ẑ = (Ẑ(u))u∈T is a submartingale which is dominated

by Y and Ẑ restricted to [t, T ] is càdlàg. Then

P

[

Z0(u) ≥ Ẑ(u) for all u ∈ T
]

= 1.
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Proof. Fix u ∈ T and let ρ ∈ B(u) be given. By the optional sampling theorem
we have

E
[

Y (ρ)
∣

∣F t(u)
]

≥ E

[

Ẑ(ρ)
∣

∣

∣F t(u)
]

≥ Ẑ(u)

and therefore

Z0(u) = Z(u) = ess inf
ρ∈B(u)

E
[

Y (ρ)
∣

∣F t(u)
]

≥ Ẑ(u).

Since Z0 and Ẑ are càdlàg on [t, T ] the result follows.

We have thus proved the existence of the Snell envelope. We gather the results
in the following theorem.

Theorem C.6. There exists a process Z0 = (Z0(u))u∈T which is càdlàg on [t, T ]
and such that

Z0(τ) = ess inf
ρ∈B(τ)

E
[

Y (ρ)
∣

∣F t(τ)
]

for every stopping time τ ∈ B(t). Moreover, Z0 is the largest submartingale which

is càdlàg on [t, T ] and which is dominated by Y . Finally, Z0 satisVes

E[Z0(t)] = inf
τ∈B(t)

E[Y (τ)].

We are now going to construct an ε-optimal stopping time. For this, let θ be an
arbitrary [t, T ]-valued Ft-stopping time and deVne

τ ε := inf
{

u ∈ [θ, T ] : Y (u) ≤ Z0(u) + ε
}

. (C.5)

We claim that τ ε is ε-optimal in the sense that

E
[

Y (τ ε)
∣

∣F t(θ)
]

≤ ess inf
ρ∈B(θ)

E
[

Y (ρ)
∣

∣F t(θ)
]

+ ε = Z0(θ) + ε.

For the proof we follow Shiryaev [96, Theorem 3.3.2].

Lemma C.7. For τ ε deVned in (C.5) we have

E
[

Y (τ ε)
∣

∣F t(θ)
]

≤ Z0(θ) + ε.
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Proof. We note that by the right-continuity of Y and Z0 we have

E
[

Y (τ ε)
∣

∣F t(θ)
]

≤ E
[

Z0(τ ε)
∣

∣F t(θ)
]

+ ε

and hence in order to prove the result it suXces to show that

Z0(θ) = E
[

Z0(τ ε)
∣

∣F t(θ)
]

.

For this, we only have to show that

E[Z0(θ)] = E[Z0(τ ε)] (C.6)

since the optional sampling theorem implies that

Z0(θ)− E
[

Z0(τ ε)
∣

∣F t(θ)
]

≤ 0

but assuming that (C.6) holds we obtain

E
[

Z0(θ)− E
[

Z0(τ ε)
∣

∣F t(θ)
]]

= 0

and hence
Z0(θ) = E

[

Z0(τ ε)
∣

∣F t(θ)
]

.

For δ > 0 we deVne B(θ, δ) to be the set of all stopping times ρ ∈ B(θ) such that

P[ρ < τ ε] ≤ δ.

Now, let ρ ∈ B(θ) \ B(θ, δ). On {ρ < τ ε} we have

Y (ρ) > Z0(ρ) + ε

by the deVnition of τ ε and by the deVnition of B(θ, δ) we have

P[ρ < τ ε] > δ.

Therefore,

E
[

Y (ρ)
∣

∣F t(θ)
]

= E
[

Y (ρ)
∣

∣F t(θ)
]

1{ρ<τε} + E
[

Y (ρ)
∣

∣F t(θ)
]

1{ρ≥τε}

≥ E
[

Z0(ρ) + ε
∣

∣F t(θ)
]

1{ρ<τε} + E
[

Z0(ρ)
∣

∣F t(θ)
]

1{ρ≥τε}

= E
[

Z0(ρ)
∣

∣F t(θ)
]

+ ε1{ρ<τε}

≥ Z0(θ) + ε1{ρ<τε}.
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Upon taking expectations on both sides this shows that

E [Y (ρ)] ≥ E[Z0(θ)] + εP[ρ < τ ε] > E[Z0(θ)] + εδ.

Taking the inVmum over all ρ ∈ B(θ) \ B(θ, δ) hence shows that

inf
ρ∈B(θ)\B(θ,δ)

E [Y (ρ)] > E
[

Z0(θ)
]

+ εδ > E
[

Z0(θ)
]

, (C.7)

which together with Lemma C.2.4 implies that

E
[

Z0(θ)
]

= inf
ρ∈B(θ,δ)

E [Y (ρ)] .

Let us now take a sequence (ρn)n∈N such that E[Y (ρn)] converges monotonically
down to E[Z0(θ)]. In light of (C.7) we can assume without loss of generality that
ρn ∈ B(θ, 2−n). We can now deVne a new sequence of stopping times (τn)n∈N by
setting

τn = max{ρn, τ
ε}.

Then τn ∈ B(τ ε) and hence

E[Z0(τ ε)] ≤ E[E[Y (τn)|F
t(τ ε)]] = E[Y (τn)]

for all n ∈ N so that

E[Z0(τ ε)] ≤ lim sup
n→∞

E[Y (τn)].

We furthermore have

lim sup
n→∞

E[Y (τn)] = lim sup
n→∞

E
[

Y (ρn)− Y (ρn)1{ρn<τε} + Y (τ ε)1{ρn<τε}

]

≤ lim sup
n→∞

E [Y (ρn)]

+ lim sup
n→∞

E

[

|Y (ρn)|1{ρn<τε}

]

+ lim sup
n→∞

E

[

|Y (τ ε)|1{ρn<τε}

]

.

By the choice of (ρn)n∈N we have

lim sup
n→∞

E [Y (ρn)] = E
[

Z0(θ)
]

.
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Moreover, since Y is uniformly integrable we have by Hölder’s inequality

E
[

|Y (ρn)|1{ρn<τε}

]

≤ E [|Y (ρn)|
p]P[ρn < τ ε] ≤ 2−nE [|Y (ρn)|

p]

and hence since (E[|Y (ρn)|
p])n∈N is bounded we see that

lim sup
n→∞

E

[

|Y (ρn)|1{ρn<τε}

]

≤ 0.

Similarly, we can show that

lim sup
n→∞

E

[

|Y (τ ε)|1{ρn<τε}

]

≤ 0

and hence
E[Z0(τ ε)] ≤ lim sup

n→∞
E[Y (τn)] ≤ E

[

Z0(θ)
]

.

On the other hand, Z0 is a submartingale and hence an application of the optional
sampling theorem shows that

E[Z0(τ ε)] ≥ E
[

Z0(θ)
]

,

which Vnishes the proof.

In Chapter 3 we are concerned with the construction of ε-optimal stopping times
for the process Ỹ = (Ỹ (u))u∈T deVned through

Ỹ (u) =











y, if u = t,

Y (u−), if u ∈ (t, T ],

Y (+∞), if u = +∞,

where y ∈ R. We assume in addition that Y (T−) = Y (T ), i.e. Y is left-
continuous at T . Finally, we assume that Ft is the augmented Vltration generated
by a standard Brownian motion W = (W (u) −W (t))u≥t. We recall that in this
setup every stopping time ρ is predictable.

For every θ ∈ B(t) we deVne Z̃ = (Z̃(u))u∈T by

Z̃(θ) := ess inf
ρ∈B(θ)

E

[

Ỹ (u)
∣

∣

∣F t(θ)
]

.
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and similarly we deVne Z̃∗ = (Z̃∗(u))u∈T by

Z̃∗(θ) := ess inf
ρ∈B∗(θ)

E

[

Ỹ (u)
∣

∣

∣
F t(θ)

]

.

We note that the results of Lemma C.2 still remain true if we replace Z by Z̃ or
Z̃∗, respectively.

Our Vrst aim is to investigate the relation between Z̃ , Z̃∗ and the Snell envelope
Z0 of Y .

Lemma C.8. Let τ ∈ B(t) and ε > 0. Then

(i) Z̃(τ) ≤ Z0(τ),

(ii) Z0(τ) ≤ Z̃∗(τ),

(iii) Z0(τ) = Z̃(τ) on {Ỹ (τ) > Z̃(τ) + ε}.

Proof. (i) Let ρ ∈ B(τ). Then we can Vnd a sequence of stopping times
(ρn)n∈N in B(τ) such that ρn > ρ on {ρ ∈ [τ, T )}, ρn = ρ on {ρ ∈
{T,+∞}} and such that ρn ↓ ρ. It follows that

E

[

Ỹ (ρn)
∣

∣

∣F t(τ)
]

= E

[

Ỹ (ρn)
∣

∣

∣F t(τ)
]

1{ρ∈[τ,T )} + E

[

Ỹ (ρ)
∣

∣

∣F t(τ)
]

1{ρ∈{T,+∞}}

= E

[

Ỹ (ρn)
∣

∣

∣F t(τ)
]

1{ρ∈[τ,T )} + E
[

Y (ρ)
∣

∣F t(τ)
]

1{ρ∈{T,+∞}}

Sending n → ∞ we obtain from Fatou’s lemma that

Z̃(τ) ≤ lim sup
n→∞

E

[

Ỹ (ρn)
∣

∣

∣F t(τ)
]

= lim sup
n→∞

E

[

Ỹ (ρn)
∣

∣

∣
F t(τ)

]

1{ρ∈[τ,T )} + E
[

Y (ρ)
∣

∣F t(τ)
]

1{ρ∈{T,+∞}}

≤ E
[

Y (ρ)
∣

∣F t(τ)
]

.

Since ρ was chosen arbitrarily this implies Z̃(τ) ≤ Z0(τ).

205



C. On the existence of the Snell envelope

(ii) Let ρ ∈ B∗(τ). Then we can Vnd a sequence of stopping times (ρn)n∈N in
B(τ) such that ρn < ρ on {ρ ∈ (τ, T ]} and ρn = ρ on {ρ = +∞}. Then

E
[

Y (ρn)
∣

∣F t(τ)
]

= E
[

Y (ρn)
∣

∣F t(τ)
]

1{ρ∈(τ,T ]} + E
[

Y (ρ)
∣

∣F t(τ)
]

1{ρ=+∞}

= E
[

Y (ρn)
∣

∣F t(τ)
]

1{ρ∈(τ,T ]} + E

[

Ỹ (ρ)
∣

∣

∣F t(τ)
]

1{ρ=+∞}

Sending n → ∞ we obtain from Fatou’s lemma that

Z0(τ) ≤ lim sup
n→∞

E
[

Y (ρn)
∣

∣F t(τ)
]

= lim sup
n→∞

E
[

Y (ρn)
∣

∣F t(τ)
]

1{ρ∈(τ,T ]} + E

[

Ỹ (ρ)
∣

∣

∣F t(τ)
]

1{ρ=+∞}

≤ E

[

Ỹ (ρ)
∣

∣

∣
F t(τ)

]

and since ρ was chosen arbitrarily we have Z0(τ) ≤ Z̃∗(τ).

(iii) On {τ ∈ {T,+∞}} it is clear that Z0(τ) and Z̃(τ) coincide and hence
we may without loss of generality assume that τ < T . By (i) and (ii) it
suXces to show that Z̃∗(τ) = Z̃(τ) on {Ỹ (τ) > Z̃(τ) + ε}. Let (ρn)n∈N be
a sequence in B(τ) such that

Z̃(τ) = lim
n→∞

E

[

Ỹ (ρn)
∣

∣

∣
F t(τ)

]

.

Then

Z̃(τ) = lim
n→∞

E

[

Ỹ (ρn)
∣

∣

∣
F t(τ)

]

= lim
n→∞

E

[

Ỹ (τ)
∣

∣

∣
F t(τ)

]

1{ρn=τ} + lim
n→∞

E

[

Ỹ (ρn)
∣

∣

∣
F t(τ)

]

1{ρn>τ}

≥ lim
n→∞

E

[

Ỹ (τ)
∣

∣

∣F t(τ)
]

1{ρn=τ} + Z̃(τ) lim
n→∞

1{ρn>τ}.

On {Ỹ (τ) > Z̃(τ) + ε} this implies that

Z̃(τ) ≥ (Z̃(τ) + ε) lim
n→∞

1{ρn=τ} + Z̃(τ) lim
n→∞

1{ρn>τ}

which shows that limn→∞ 1{ρn=τ} = 0 and hence

Z̃(τ) = lim
n→∞

E

[

Ỹ (ρn)1{ρn>τ}

∣

∣

∣F t(τ)
]
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on {Ỹ (τ) > Z̃(τ) + ε}. It is then immediate that if we deVne

τn :=

{

ρn, on {ρn > τ},

+∞, on {ρn = τ},

that
Z̃(τ) = lim

n→∞
E

[

Ỹ (τn)
∣

∣

∣F t(τ)
]

on {Ỹ (τ) > Z̃(τ) + ε}. Since τn ∈ B∗(τ) this implies that

Z̃(τ) ≥ Z̃∗(τ) ≥ Z̃(τ)

on {Ỹ (τ) > Z̃(τ) + ε}.

Proposition C.9. Let θ be a [t, T ]-valued Ft-stopping time. Then for every δ > 0
there exists a stopping time τ ∗δ ∈ B(θ) such that

E

[

Ỹ (τ ∗δ )
∣

∣

∣F t(θ)
]

≤ Z̃(θ) + ε (C.8)

on a set A ⊂ Ω with P[A] ≥ 1− δ and τ ∗δ = +∞ on Ac.

Proof. We Vrst note that the uniform integrability of Y implies the uniform inte-
grability of Z0. Indeed, Vx τ ∈ B(t) and take a sequence (ρn)n∈N in B(τ) such
that

Z0(τ) = lim
n→∞

E
[

Y (ρn)
∣

∣F t(τ)
]

.

Then Jensen’s inequality and Fatou’s lemma show that

E
[

|Z0(τ)|p
]

= E

[∣

∣

∣ lim
n→∞

E
[

Y (ρn)
∣

∣F t(τ)
]

∣

∣

∣

p]

= E

[

lim
n→∞

∣

∣E
[

Y (ρn)
∣

∣F t(τ)
]∣

∣

p
]

≤ E

[

lim
n→∞

E
[

|Y (ρn)|
p
∣

∣F t(τ)
]

]

≤ lim inf
n→∞

E [|Y (ρn)|
p]

≤ sup
ρ∈B(t)

E [|Y (ρ)|p] .

It therefore follows that Z0 admits a Doob-Meyer decomposition on [t, T ], i.e.

Z0(u) = M0(u) + Λ0(u), u ∈ [t, T ],
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where M0 = (M0(u))u∈[t,T ] is a uniformly integrable martingale and Λ0 =
(Λ0(u))u∈[t,T ] is a non-decreasing càdlàg process with Λ0(t) = 0. Consider now
the stopping time τ ε/2 constructed in Lemma C.7. In the proof of the lemma we
have seen that

Z0(θ) = E
[

Z0(τ ε/2)
∣

∣F t(θ)
]

from which we infer that Λ0(u) = Λ0(θ) for every u ∈ [θ, τ ε/2 ∧ T ].

Let us now deVne

τ ∗δ =











θ, on {Ỹ (θ) ≤ Z̃(θ) + ε},

τ ε/2, on {Ỹ (θ) > Z̃(θ) + ε} ∩ {Ỹ (τ ε/2) = Y (τ ε/2)},

τ δ, on {Ỹ (θ) > Z̃(θ) + ε} ∩ {Ỹ (τ ε/2) 6= Y (τ ε/2)},

where τ δ will be deVned below. We note that on {Ỹ (θ) ≤ Z̃(θ) + ε} the ε-
optimality of τ ∗δ in the sense of (C.8) is immediate. On {Ỹ (θ) > Z̃(θ) + ε} ∩
{Ỹ (τ ε/2) = Y (τ ε/2)} we have Ỹ (τ ∗δ ) = Ỹ (τ ε/2) = Y (τ ε/2) and hence

E

[

Ỹ (τ ∗δ )
∣

∣

∣
F t(θ)

]

= E
[

Y (τ ε/2)
∣

∣F t(θ)
]

≤ Z0(θ) +
1

2
ε < Z̃(θ) + ε

by the construction of τ ε/2 and since Ỹ (θ) > Z̃(θ)+ ε implies that Z0(θ) = Z̃(θ)
by Lemma C.8.

Let us now turn to the construction of τ δ on {Ỹ (θ) > Z̃(θ) + ε} ∩ {Ỹ (τ ε/2) 6=
Y (τ ε/2)}. We note that we must necessarily have τ ε/2 < T . Moreover, since Y
jumps at time τ ε/2 we have

Ỹ (τ ε/2) > Z0(τ ε/2) +
1

2
ε and Y (τ ε/2) ≤ Z0(τ ε/2) +

1

2
ε.

We deVne

τΛ := inf

{

u ∈ [τ ε/2, T ] : Λ0(u) > Λ0(τ ε/2) +
1

3
ε

}

∧ T

and

τ̂ := inf

{

u ∈ (τ ε/2, T ] : Ỹ (u) > Z0(u) +
2

3
ε

}

∧ T.

Note that by the right-continuity of Λ0 we have τΛ > τ ε/2. Moreover, by the
right-continuity of Y and Z0 and since Y (τ ε/2) ≤ Z0(τ ε/2) + ε/2 we see that
τ̂ > τ ε/2.
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Since the stochastic interval (τ ε/2, τΛ ∧ τ̂) is a predictable subset of [t, T ]×Ω the
predictable section theorem (Rogers and Williams [93, Theorem VI.19.1]) guar-
antees that for any δ > 0 there exists a stopping time τ δ such that

P[τ ε/2 < τ δ < τΛ ∧ τ̂ ] ≥ 1− δ

and τ δ = +∞ otherwise. We note that by the construction of τΛ and τ̂ we must
have

Λ0(τ δ) ≤ Λ0(τ ε/2) +
1

3
ε

and

Ỹ (τ δ) ≤ Z0(τ δ) +
2

3
ε

whenever τ δ ∈ (τ ε/2, τΛ ∧ τ̂). On {Ỹ (θ) > Z̃(θ) + ε} ∩ {Ỹ (τ ε/2) 6= Y (τ ε/2)}
and τ δ ∈ (τ ε/2, τΛ ∧ τ̂) it therefore follows that

E

[

Ỹ (τ ∗δ )
∣

∣

∣F t(θ)
]

= E

[

Ỹ (τ δ)
∣

∣

∣F t(θ)
]

≤ E
[

Z0(τ δ)
∣

∣F t(θ)
]

+
2

3
ε

= E
[

M0(τ δ) + Λ0(τ δ)
∣

∣F t(θ)
]

+
2

3
ε

≤ E
[

M0(τ δ) + Λ0(τ ε/2)
∣

∣F t(θ)
]

+ ε

= Z0(θ) + ε

= Z̃(θ) + ε,

which proves the ε-optimality of τ ∗δ .

209



210



Bibliography

[1] K. K. Aase, Optimum portfolio diversiVcation in a general continuous-time

model, Stochastic Process. Appl. 18 (1984), no. 1, 81–98.

[2] D. Abreu and M. K. Brunnermeier, Bubbles and crashes, Econometrica 71

(2003), no. 1, 173–204.

[3] M. Akian, J. L. Menaldi, and A. Sulem, On an investment-consumption model

with transaction costs, SIAM J. Control Optim. 34 (1996), no. 1, 329–364.

[4] M. Akian, P. Séquier, and A. Sulem, A Vnite horizon multidimensional port-

folio selection problem with singular transactions, Proceedings of the 34th
IEEE Conference on Decision and Control, vol. 3, 1995, pp. 2193–2198.

[5] M. Akian, A. Sulem, and M. I. Taksar, Dynamic optimization of long-term

growth rate for a portfolio with transaction costs and logarithmic utility,
Math. Finance 11 (2001), no. 2, 153–188.

[6] S. Asmussen, Applied probability and queues, 2nd ed., Stochastic Modelling
and Applied Probability, vol. 51, Springer-Verlag, 2003.

[7] N. Bäuerle and U. Rieder, Portfolio optimization with Markov-modulated

stock prices and interest rates, IEEE Trans. Automat. Control 49 (2004), no. 3,
442–447.

[8] C. Belak, Worst-case portfolio optimization under proportional transaction

costs, diploma thesis, Kaiserslautern University of Technology, 2011.

[9] C. Belak, S. Christensen, and O. Menkens, Worst-case optimal investment

with a random number of crashes, Statist. Probab. Lett. 90 (2014), 140–148.

211



Bibliography

[10] , Worst-case portfolio optimization in a market with bubbles,
Preprint, available at http://ssrn.com/abstract=2319913, 2014.

[11] C. Belak, O. Menkens, and J. Sass, On the uniqueness of unbounded viscos-

ity solutions arising in an optimal terminal wealth problem with transaction

costs, Preprint, available at http://ssrn.com/abstract=2314445, 2013.

[12] , Worst-case portfolio optimization with proportional

transaction costs, to appear in Stochastics, available at
http://ssrn.com/abstract=2207905, 2013.

[13] C. Belak and J. Sass, Finite-horizon optimal investment with transaction costs:

Construction of the optimal strategies, Working paper, 2014.

[14] F. Biagini, H. Föllmer, and S. Nedelcu, Shifting martingale measures and

the birth of a bubble as a submartingale, Finance Stoch. 18 (2014), no. 2,
297–326.

[15] M. Bichuch, Asymptotic analysis for optimal investment in Vnite time with

transaction costs, SIAM J. Financial Math. 3 (2012), no. 1, 433–458.

[16] P. Brémaud, Point processes and queues, Springer-Verlag, New York-Berlin,
1981, Martingale dynamics, Springer Series in Statistics.

[17] K. Burdzy, W. Kang, and K. Ramanan, The Skorokhod problem in a time-

dependent interval, Stochastic Process. Appl. 119 (2009), no. 2, 428–452.

[18] Y. Chen, M. Dai, and K. Zhao, Finite horizon optimal investment and con-

sumption with CARA utility and proportional transaction costs, Stochastic
analysis and applications to Vnance, Interdiscip. Math. Sci., vol. 13, World
Sci. Publ., Hackensack, NJ, 2012, pp. 39–54.

[19] J. H. Choi, M. Sîrbu, and G. Žitković, Shadow prices and well-posedness in

the problem of optimal investment and consumption with transaction costs,
SIAM J. Control Optim. 51 (2013), no. 6, 4414–4449.

[20] S. Christensen, On the solution of general impulse control problems using

superharmonic functions, Stochastic Process. Appl. 124 (2014), no. 1, 709–
729.

212

http://ssrn.com/abstract=2319913
http://ssrn.com/abstract=2314445
http://ssrn.com/abstract=2207905


Bibliography

[21] A. M. G. Cox and D. G. Hobson, Local martingales, bubbles and option prices,
Finance Stoch. 9 (2005), no. 4, 477–492.

[22] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of
second order partial diUerential equations, Bull. Amer. Math. Soc. (N.S.) 27
(1992), no. 1, 1–67.

[23] M. Dai, L. S. Jiang, P. F. Li, and F. H. Yi, Finite horizon optimal investment

and consumption with transaction costs, SIAM J. Control Optim. 48 (2009),
no. 2, 1134–1154.

[24] M. Dai and F. H. Yi, Finite-horizon optimal investment with transaction costs:

A parabolic double obstacle problem, J. DiUerential Equations 246 (2009),
no. 4, 1445–1469.

[25] M. Dai and Y. Zhong, Penalty methods for continuous-time portfolio selection

with proportional transaction costs, J. Comput. Finance 13 (2010), no. 3, 1–
31.

[26] M. H. A. Davis and A. R. Norman, Portfolio selection with transaction costs,
Math. Oper. Res. 15 (1990), no. 4, 676–713.

[27] M. H. A. Davis, V. G. Panas, and T. Zariphopoulou, European option pricing

with transaction costs, SIAM J. Control Optim. 31 (1993), no. 2, 470–493.

[28] D. de Vallière and Y. Kabanov, Consumption-investment problem with

transaction costs for Lévy-driven price processes, Preprint, available at
http://ykabanov.perso.math.cnrs.fr/pdf/94(levy).pdf, 2013.

[29] C. Dellacherie and P.-A. Meyer, Probabilities and potential, North-Holland
Mathematics Studies, vol. 29, North-Holland Publishing Co., Amsterdam-
New York, 1978.

[30] S. Desmettre, R. Korn, P. Ruckdeschel, and F. T. Seifried, Robust worst-case
optimal investment, OR Spectrum (2014), 1–25.

[31] S. Desmettre, R. Korn, and F. T. Seifried, Worst-case consumption-portfolio

optimization, to appear in Int. J. Theor. Appl. Finance, available at
http://ssrn.com/abstract=2238823, 2014.

213

http://ykabanov.perso.math.cnrs.fr/pdf/94(levy).pdf
http://ssrn.com/abstract=2238823


Bibliography

[32] B. Dumas and E. Luciano, An exact solution to a dynamic portfolio choice

problem under transactions costs, J. Finance 46 (1991), no. 2, 577–595.

[33] P. Dupuis and H. Ishii, SDEs with oblique reWection on nonsmooth domains,
Ann. Probab. 21 (1993), no. 1, 554–580.

[34] , Correction: “SDEs with oblique reWection on nonsmooth domains”

[Ann. Probab. 21 (1993), no. 1, 554–580;], Ann. Probab. 36 (2008), no. 5, 1992–
1997.

[35] J. F. Eastham and K. J. Hastings, Optimal impulse control of portfolios, Math.
Oper. Res. 13 (1988), no. 4, 588–605.

[36] N. El Karoui, Les aspects probabilistes du contrôle stochastique, Ninth Saint
Flour Probability Summer School—1979 (Saint Flour, 1979), Lecture Notes
in Math., vol. 876, Springer, Berlin-New York, 1981, pp. 73–238.

[37] M. Escobar, D. Neykova, and R. Zagst, Portfolio optimization

in aXne models with markov switching, Preprint, available at
http://arxiv.org/abs/1403.5247, 2014.

[38] L. C. Evans, Partial diUerential equations, second ed., Graduate Studies
in Mathematics, vol. 19, American Mathematical Society, Providence, RI,
2010.

[39] A. G. Fakeev, The optimal stopping of random processes with continuous time,
Teor. Verojatnost. i Primenen. 15 (1970), 336–344.

[40] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity

solutions, second ed., Stochastic Modelling and Applied Probability, vol. 25,
Springer, New York, 2006.

[41] S. Gerhold, P. Guasoni, J. Muhle-Karbe, andW. Schachermayer, Transaction
costs, trading volume, and the liquidity premium, Finance Stoch. 18 (2014),
no. 1, 1–37.

[42] S. Gerhold, J. Muhle-Karbe, and W. Schachermayer, Asymptotics and dual-

ity for the Davis and Norman problem, Stochastics 84 (2012), no. 5-6, 625–
641.

214

http://arxiv.org/abs/1403.5247


Bibliography

[43] , The dual optimizer for the growth-optimal portfolio under transac-

tion costs, Finance Stoch. 17 (2013), no. 2, 325–354.

[44] T. Goll and J. Kallsen, Optimal portfolios for logarithmic utility, Stochastic
Process. Appl. 89 (2000), no. 1, 31–48.

[45] A. Herczegh and V. Prokaj, Shadow price in the power utility case, Preprint,
available at http://arxiv.org/abs/1112.4385, 2011.

[46] R. Herzog, K. Kunisch, and J. Sass, Primal-dual methods for the computation

of trading regions under proportional transaction costs, Math. Methods Oper.
Res. 77 (2013), no. 1, 101–130.

[47] S. L. Heston, M. Loewenstein, and G. A. Willard, Options and bubbles, Rev.
Financ. Stud. 20 (2007), no. 2, 359–390.

[48] P. Hua and P. Wilmott, Crash courses, Risk Magazine 10 (1997), no. 6, 64–67.

[49] A. Irle and J. Sass, Optimal portfolio policies under Vxed and proportional

transaction costs, Adv. in Appl. Probab. 38 (2006), no. 4, 916–942.

[50] K. Janeček and S. E. Shreve, Asymptotic analysis for optimal investment and

consumption with transaction costs, Finance Stoch. 8 (2004), no. 2, 181–206.

[51] R. A. Jarrow, Y. Kchia, and P. Protter, How to detect an asset bubble, SIAM J.
Financial Math. 2 (2011), 839–865.

[52] R. A. Jarrow and P. Protter, Forward and futures prices with bubbles, Int. J.
Theor. Appl. Finance 12 (2009), no. 7, 901–924.

[53] , Foreign currency bubbles, Rev. Deriv. Res. 14 (2011), no. 1, 67–83.

[54] R. A. Jarrow, P. Protter, and K. Shimbo, Asset price bubbles in complete

markets, Advances in mathematical Vnance, Appl. Numer. Harmon. Anal.,
Birkhäuser Boston, Boston, MA, 2007, pp. 97–121.

[55] , Asset price bubbles in incomplete markets, Math. Finance 20 (2010),
no. 2, 145–185.

215

http://arxiv.org/abs/1112.4385


Bibliography

[56] Y. Kabanov and C. Klüppelberg, A geometric approach to portfolio optimiza-

tion in models with transaction costs, Finance Stoch. 8 (2004), no. 2, 207–227.

[57] J. Kallsen, Optimal portfolios for exponential Lévy processes, Math. Methods
Oper. Res. 51 (2000), no. 3, 357–374.

[58] J. Kallsen and S. Li, Portfolio optimization under small trans-

action costs: a convex duality approach, Preprint, available at
http://arxiv.org/abs/1309.3479, 2013.

[59] J. Kallsen and J. Muhle-Karbe, On using shadow prices in portfolio optimiza-

tion with transaction costs, Ann. Appl. Probab. 20 (2010), no. 4, 1341–1358.

[60] , The general structure of optimal investment and con-

sumption with small transaction costs, Preprint, available at
http://ssrn.com/abstract=2246785, 2013.

[61] I. Karatzas and S. E. Shreve, Methods of mathematical Vnance, Applications
of Mathematics, vol. 39, Springer-Verlag, New York, 1998.

[62] R. Korn, Portfolio optimisation with strictly positive transaction costs and

impulse control, Finance Stoch. 2 (1998), no. 2, 85–114.

[63] , The martingale optimality principle: The best you can is good

enough, Wilmott 1 (2003), 61–67.

[64] , Realism and practicality of transaction cost approaches in

continuous-time portfolio optimisation: the scope of the Morton-Pliska ap-

proach, Math. Methods Oper. Res. 60 (2004), no. 2, 165–174.

[65] ,Worst-case scenario investment for insurers, Insurance: Math. Econ.
36 (2005), no. 1, 1–11.

[66] R. Korn and O. Menkens, On worst-case investment with applications in V-

nance and insurance mathematics, Interacting stochastic systems, Springer,
Berlin, 2005, pp. 397–407.

[67] ,Worst-case scenario portfolio optimization: A new stochastic control

approach, Math. Methods Oper. Res. 62 (2005), no. 1, 123–140.

216

http://arxiv.org/abs/1309.3479
http://ssrn.com/abstract=2246785


Bibliography

[68] R. Korn, O. Menkens, and M. SteUensen, Worst-case-optimal dynamic rein-

surance for large claims, Eur. Actuar. J. 2 (2012), no. 1, 21–48.

[69] R. Korn and F. T. Seifried, A worst-case approach to continuous-time portfo-

lio optimisation, Advanced Vnancial modelling, Radon Ser. Comput. Appl.
Math., vol. 8, Walter de Gruyter, Berlin, 2009, pp. 327–345.

[70] R. Korn and M. SteUensen, On worst-case portfolio optimization, SIAM J.
Control Optim. 46 (2007), no. 6, 2013–2030.

[71] R. Korn and P. Wilmott, Optimal portfolios under the threat of a crash, Int.
J. Theor. Appl. Finance 5 (2002), no. 2, 171–187.

[72] K. Kunisch and J. Sass, Trading regions under proportional transaction costs,
Operations Research Proceedings (K.-H. Waldmann and U. M. Stocker,
eds.), Springer, 2007, pp. 563–568.

[73] P.-L. Lions and A.-S. Sznitman, Stochastic diUerential equations with reWect-

ing boundary conditions, Comm. Pure Appl. Math. 37 (1984), no. 4, 511–537.

[74] H. Liu andM. Loewenstein, Optimal portfolio selection with transaction costs

and Vnite horizons, Rev. Finan. Stud. 15 (2002), no. 3, 805–835.

[75] M. Loewenstein and G. A. Willard, Local martingales, arbitrage, and vi-

ability. Free snacks and cheap thrills, J. Econom. Theory 16 (2000), no. 1,
135–161.

[76] , Rational equilibrium asset-pricing bubbles in continuous trading

models, J. Econom. Theory 91 (2000), no. 1, 17–58.

[77] M. J. P. Magill and G. M. Constantinides, Portfolio selection with transaction

costs, J. Econ. Theory 13 (1976), no. 2, 245–263.

[78] O. Menkens, Crash hedging strategies and optimal portfolios, PhD thesis,
Kaiserslautern University of Technology, 2004.

[79] , Crash hedging strategies and worst-case scenario portfolio optimiza-

tion, Int. J. Theor. Appl. Finance 9 (2006), no. 4, 597–618.

217



Bibliography

[80] , Costs and beneVts of crash hedging, Preprint, available at
http://ssrn.com/abstract=2397233, 2014.

[81] , Worst-case scenario portfolio optimization given the probability of

a crash, to appear in: Glau, K. et al. (eds.) Innovations in Quantitative Risk
Management, Springer Proceedings in Mathematics & Statistics, vol. 99,
2014.

[82] R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous

time case, Rev. Econom. Statist. 51 (1969), no. 3, 247–257.

[83] , Optimum consumption and portfolio rules in a continuous-time

model, J. Econom. Theory 3 (1971), no. 4, 373–413.

[84] L. Mönnig, Aworst-case optimization approach to impulse perturbed stochas-

tic control with application to Vnancial risk management, Ph.D. thesis, Tech-
nische Universität Dortmund, 2012.

[85] A. J. Morton and S. R. Pliska, Optimal portfolio management with Vxed

transaction costs, Math. Finance 5 (1995), no. 4, 337–356.

[86] J. Neveu, Martingales à temps discret, Masson et Cie, éditeurs, Paris, 1972.

[87] K. Nyström and T. Önskog, The Skorohod oblique reWection problem in time-

dependent domains, Ann. Probab. 38 (2010), no. 6, 2170–2223.

[88] B. Øksendal and A. Sulem, Optimal consumption and portfolio with both

Vxed and proportional transaction costs, SIAM J. Control Optim. 40 (2002),
no. 6, 1765–1790.

[89] G. Peskir and A. Shiryaev, Optimal stopping and free-boundary problems,
Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2006.

[90] H. Pham, Continuous-time stochastic control and optimization with Vnan-

cial applications, Stochastic Modelling and Applied Probability, vol. 61,
Springer, 2009.

[91] D. Possamaï, H. M. Soner, and N. Touzi, Homogenization and asymptotics

218

http://ssrn.com/abstract=2397233


Bibliography

for small transaction costs: the multidimensional case, Preprint, available at
http://arxiv.org/abs/1212.6275, 2013.

[92] P. E. Protter, Stochastic integration and diUerential equations, second ed.,
Applications of Mathematics, vol. 21, Springer-Verlag, Berlin, 2004.

[93] L. C. G. Rogers and D. Williams, DiUusions, Markov processes, and martin-

gales. Vol. 1, CambridgeMathematical Library, Cambridge University Press,
Cambridge, 2000, Foundations, Reprint of the second (1994) edition.

[94] J. A. Scheinkman and W. Xiong, OverconVdence and speculative bubbles, J.
Polit. Econ. 111 (2003), no. 6, 1183–1219.

[95] F. T. Seifried, Optimal investment for worst-case crash scenarios: A martin-

gale approach, Math. Oper. Res. 35 (2010), no. 3, 559–579.

[96] A. N. Shiryaev, Optimal stopping rules, Stochastic Modelling and Applied
Probability, vol. 8, Springer-Verlag, Berlin, 2008, Translated from the 1976
Russian second edition by A. B. Aries, Reprint of the 1978 translation.

[97] S. E. Shreve and H. M. Soner, Optimal investment and consumption with

transaction costs, Ann. Appl. Probab. 4 (1994), no. 3, 609–692.

[98] A. V. Skorohod, Stochastic equations for diUusion processes with a boundary,
Teor. Verojatnost. i Primenen. 6 (1961), 287–298.

[99] M. Slaby, Explicit representation of the Skorokhod map with time dependent

boundaries, Probab. Math. Statist. 30 (2010), no. 1, 29–60.

[100] L. Słomiński and T. Wojciechowski, Stochastic diUerential equations with

jump reWection at time-dependent barriers, Stochastic Process. Appl. 120
(2010), no. 9, 1701–1721.

[101] , Stochastic diUerential equations with time-dependent reWecting bar-

riers, Stochastics 85 (2013), no. 1, 27–47.

[102] H. M. Soner and N. Touzi, Homogenization and asymptotics for small trans-

action costs, SIAM J. Control Optim. 51 (2013), no. 4, 2893–2921.

219

http://arxiv.org/abs/1212.6275


Bibliography

[103] H. M. Soner and M. Vukelja, Utility maximization in an illiquid market,
Preprint, 2014.

[104] L. R. Sotomayor and A. Cadenillas, Explicit solutions of consumption-

investment problems in Vnancial markets with regime switching, Math. Fi-
nance 19 (2009), no. 2, 251–279.

[105] D. W. Stroock and S. R. S. Varadhan, DiUusion processes with boundary con-

ditions, Comm. Pure Appl. Math. 24 (1971), 147–225.

[106] T. Tamura, Maximization of the long-term growth rate for a portfolio with

Vxed and proportional transaction costs, Adv. in Appl. Probab. 40 (2008),
no. 3, 673–695.

[107] H. Tanaka, Stochastic diUerential equations with reWecting boundary condi-

tion in convex regions, Hiroshima Math. J. 9 (1979), no. 1, 163–177.

[108] J. Tirole, On the possibility of speculation under rational expectations, Econo-
metrica 50 (1982), no. 5, 1163–1181.

[109] A. Wald, Statistical decision functions which minimize the maximum risk,
Ann. Math. 46 (1945), no. 2, 265–280.

[110] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB

equations, Applications of Mathematics, vol. 43, Springer-Verlag, New
York, 1999.

220



ScientiVc career

05/2005 Abitur, BischöWiches Willigis Gymnasium, Mainz
06/2008 Vordiplom in the study program Mathematical Eco-

nomics, TU Kaiserslautern
08/2008 - 05/2009 Exchange student at the National University of Sin-

gapore
05/2011 Diplom in the study program Mathematics Interna-

tional, TU Kaiserslautern
10/2011 Landesbank Baden-Württemberg Best Thesis in Fi-

nancial Mathematics Award
10/2011 - 09/2013 PhD student at Dublin City University
Since 10/2011 PhD student at TU Kaiserslautern

221



222



Wissenschaftlicher Werdegang

05/2005 Abitur, BischöWiches Willigis Gymnasium, Mainz
06/2008 Vordiplom in Wirtschaftsmathematik, TU Kaiser-

slautern
08/2008 - 05/2009 Austauschstudent an der National University of Sin-

gapore
05/2011 Diplom in Mathematics International, TU Kaiser-

slautern
10/2011 Landesbank Baden-Württemberg Best Thesis in Fi-

nancial Mathematics Award
10/2011 - 09/2013 Doktorand an der Dublin City University
Seit 10/2011 Doktorand an der TU Kaiserslautern

223



224


	Abstract
	Acknowledgements
	Introduction
	Portfolio optimization
	The Merton problem
	Portfolio optimization with transaction costs
	Portfolio optimization in regime-switching models

	Worst-case portfolio optimization
	Outline of this thesis

	Portfolio optimization with transaction costs
	The market model and problem formulation
	Heuristics
	Some preliminary properties
	The comparison principle
	Construction of the optimal strategies
	Construction in the no-borrowing case (e)
	Construction in the other cases

	Verification and value function regularity
	Numerical results
	Outline of the algorithm
	A numerical example


	Worst-case portfolio optimization with transaction costs
	The market model and problem formulation
	Heuristics
	Some preliminary properties
	Continuity of the value function
	The dynamic programming principle
	Existence of epsilon-optimal strategies
	The dynamic programming principle

	The viscosity property
	Numerical results
	The candidate optimal strategies
	A numerical example

	Extension to multiple crashes

	Worst-case portfolio optimization in a market with bubbles
	The Poisson market model
	Heuristic derivation of the optimal strategies
	Direct verification for logarithmic utility
	Heuristic derivation in the power utility case
	The generalized model
	The verification theorem
	Derivation of the optimal strategies
	Solution of the system of DPEs for power utility
	Solution of the system of DPEs for logarithmic utility
	Verification for logarithmic and negative power utility

	Numerical results
	Logarithmic utility in the simplified model
	Power utility in the generalized model
	Phase-type distributed warning times


	Notation and conventions
	Viscosity solutions
	On the existence of the Snell envelope
	Bibliography
	Scientific career

