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Abstract

In this work we focus on the regression models with asymmetrical error distribution,

more precisely, with extreme value error distributions. This thesis arises in the frame-

work of the project ”Robust Risk Estimation”. Starting from July 2011, this project won

three years funding by the Volkswagen foundation in the call ”Extreme Events: Mod-

elling, Analysis, and Prediction” within the initiative ”New Conceptual Approaches to

Modelling and Simulation of Complex Systems”. The project involves applications in

Financial Mathematics (Operational and Liquidity Risk), Medicine (length of stay and

cost), and Hydrology (river discharge data). These applications are bridged by the

common use of robustness and extreme value statistics.

Within the project, in each of these applications arise issues, which can be dealt with by

means of Extreme Value Theory adding extra information in the form of the regression

models. The particular challenge in this context concerns asymmetric error distribu-

tions, which significantly complicate the computations and make desired robustification

extremely difficult. To this end, this thesis makes a contribution.

This work consists of three main parts. The first part is focused on the basic notions

and it gives an overview of the existing results in the Robust Statistics and Extreme

Value Theory. We also provide some diagnostics, which is an important achievement of

our project work. The second part of the thesis presents deeper analysis of the basic

models and tools, used to achieve the main results of the research.

The second part is the most important part of the thesis, which contains our personal

contributions. First, in Chapter 5, we develop robust procedures for the risk management

of complex systems in the presence of extreme events. Mentioned applications use time

structure (e.g. hydrology), therefore we provide extreme value theory methods with time

dynamics. To this end, in the framework of the project we considered two strategies. In

the first one, we capture dynamic with the state-space model and apply extreme value

theory to the residuals, and in the second one, we integrate the dynamics by means of

autoregressive models, where the regressors are described by generalized linear models.

More precisely, since the classical procedures are not appropriate to the case of out-

lier presence, for the first strategy we rework classical Kalman smoother and extended

Kalman procedures in a robust way for different types of outliers and illustrate the per-

formance of the new procedures in a GPS application and a stylized outlier situation.



To apply approach to shrinking neighborhoods we need some smoothness, therefore for

the second strategy, we derive smoothness of the generalized linear model in terms of

L2 differentiability and create sufficient conditions for it in the cases of stochastic and

deterministic regressors. Moreover, we set the time dependence in these models by

linking the distribution parameters to the own past observations. The advantage of

our approach is its applicability to the error distributions with the higher dimensional

parameter and case of regressors of possibly different length for each parameter. Further,

we apply our results to the models with generalized Pareto and generalized extreme value

error distributions.

Finally, we create the exemplary implementation of the fixed point iteration algorithm

for the computation of the optimally robust influence curve in R. Here we do not aim to

provide the most flexible implementation, but rather sketch how it should be done and

retain points of particular importance. In the third part of the thesis we discuss three ap-

plications, operational risk, hospitalization times and hydrological river discharge data,

and apply our code to the real data set taken from Jena university hospital ICU and

provide reader with the various illustrations and detailed conclusions.
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Chapter 1

Introduction

1.1 Motivation

From the title of the thesis it becomes clear, that here we focus on the the regression

models with asymmetrical error distribution, more precisely, with extreme value error

distributions. These regression models are applied in a variety of different application

domains, e.g. hydrology, finance and public health. In all these settings classical estima-

tion and inference is enhanced by the common use of robust statistics. The particular

challenge in this context comes from the asymmetric error distributions, which signifi-

cantly complicate the computations and make desired robustification extremely difficult.

While for i.i.d. observations from extreme value distributions there already is a sizable

amount of robustification available, and in particular the approach underlying this the-

sis has been covered by Horbenko (2011). So far these approaches do not make use

of potentially available additional information,in form of predictors and regressors, to

enhance predictable power. As a consequence its scale and shape parameters vary from

observation to observation.

Main focus of the research belongs to two types of the regression models. The first type

covers dynamical regression models, more specifically, state-space models, i.e. typical

observation driven models (compare Cox (1981)). Our interest in this model is caused

by the fact, that it can be treated as dynamical system for the measuring of some sort

of the signal. Later, discussing applications of our research, we motivate the choice of

this model by the hydrological application, concerning river discharge data.

The second type of regression models covered here are generalized linear models, which

are typical example of the parameter driven time dependency. Moreover, in contrast to

1
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the usual definition, here we focus on the generalized linear models with error distribu-

tions not necessarily belonging to an exponential family. In this thesis we apply these

models to public health, focusing on the length of stay and costs prediction.

Working with the real data we usually suspect that it can be contaminated by some

proportion of outliers, therefore the focus of this research is also aimed to compute the

robust versions for the methods we apply to the mentioned models.

More precisely, it is known that the classical Kalman filter does not perform well in the

presence of outliers. Hence, in this work we use robust versions of the Kalman filter

and rework classical Kalman smoother and extended Kalman filter in a robust way for

different types of outliers. To assess the performance of our constructed procedures, we

apply it at real data and stylized outlier situation. Moreover, we compare efficiency of

our procedures to other existing approaches.

The connection to extreme value theory is given by a separation approach where we try

to extract the dynamics fitting an state-space model to the data and delegate extreme

value analysis to the respective residuals, which are then treated as i.i.d.

Talking about robustness for generalized linear models, we are not only interested in

consistency results for specific estimators, but rather in local asymptotic normality in

the sense of Hájek (1972) and LeCam (1970). Hence, following Rieder (1994), we derive

smoothness of the model in terms of L2 differentiability and aim to create its sufficient

conditions for the generalized linear models, covering both cases of stochastic and de-

terministic regressors. Moreover, we set the time dependence in these models by linking

the distribution parameters to the own past observations.

We check suitability of the introduced L2 differentiability conditions on the models with

discrete error distribution (Binomial or Poisson) and then pass over to the generalized

Pareto or generalized extreme value continuous error distributions.

Besides, we review robustness properties of some estimators for the generalized Pareto

model, proven before, and obtain similar robustness results for the generalized extreme

value distribution.

Last, but not least, purpose of this thesis is to give to the reader an idea of the fixed

point iteration algorithm for the computation of the optimally robust influence curve.

Comparing to other similar algorithms, our version of it uses another techniques to get

some intermediate values. We not only discuss it step by step and point out its week

stages, but also implement it in R. Later, we apply our implementation to the real data

set taken from the Jena university hospital ICU.
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1.2 Project ”Robust risk estimation”

This PhD-thesis is written in the framework of the project ”Robust Risk Estimation”,

based on the cooperation of four different institutions: Fraunhofer ITWM (Institut für

Techno- und Wirtschaftsmathematik), Technical University of Kaiserslautern (TU KL),

Furtwangen University (HFU) and University of Natural Resources and Life Sciences in

Vienna (BOKU).

This project was funded by Volkswagen Foundation within the call ”Extreme events:

Modeling, Analyses, and Prediction” in the years 2011-2014. The principal researchers of

this project were Dr. habil. Peter Ruckdeschel (coordinator), Prof. Dr. Ralf Korn (TU

KL and Fraunhofer ITWM), Prof. Dr. Matthias Kohl (HFU) and Dr. Bernhard Spangl

(BOKU). They were supported by the post-docs Dr. Nataliya Horbenko (Fraunhofer

ITWM and TU KL), and after here leaving to KPMG, Frankfurt, Dr. Gerald Kroisandt

(Fraunhofer ITWM) and Dr. Sascha Desmettre (TU KL), as well as by PhD students

M.Sc. Daria Pupashenko (HFU and TU KL) and M.Sc. Mykhailo Pupashenko (TU

KL).

The main goal of the project was to develop robust procedures for risk management

of complex systems in the presence of extreme events, i.e. apply Robust Statistics to

Extreme Value Theory.

Project members were divided into three teams regarding to three reference application

examples, i.e. Financial Mathematics (financial risks, in particular operational and

liquidity risk of a bank), Medicine (unit length of stay and cost in intensive care of a

university clinic), and Hydrology (river discharge data of Austrian rivers). In order to

cover all these applications, in the meantime we discovered some specific problems in the

general approach to be solved. As a benefit of this broad range of applications we could

transfer domain-specific methodologies from one pillar to the other one, and provide a

common infrastructure for all of them in form of a unified robustness approach and a

common R infrastructure. The applications themselves are discussed in details below in

the Chapter 7.

For each example and its parametric model we aimed to determine optimally-robust

estimators minimizing the maximal asymptotic risk on neighborhoods about the ideal

model. The main achievement of the project is the invention of the specific robustness

approach for this estimation and development of the diagnostic tools to quantify and

visualize the influence and outlyingness of data, see Section 2.6.
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1.3 Outline

This PhD thesis consists of three main parts. The first part is focused on the basic no-

tions and gives an overview of the existing results on the Robust Statistics and Extreme

Value Theory.

As every Chapter of this thesis, Chapter 2 starts from the short description of the pre-

vious treatment in literature concerning robustness. Then, we introduce the parametric

model, which is the basis for the further research, and give definition for L2 differentia-

bility notion with the overview of some existing results and simple examples. Further,

we discuss tools which capture local and global robustness and introduce most common

in use classical and optimally robust estimators. We close Chapter 2 by the model diag-

nostics discussion, which is the important achievement of our project work. We also give

the overview of the software infrastructure so far available in R, including our invented

package RobExtremes, and conclude.

The second Chapter of the first part starts with the general discussion of the existing

sources concerning Extreme Value Theory. Then, we present the basic concepts, i.e.

extreme value distributions, limit theorems and approaches of fitting extreme value

distributions. Next, we discuss smoothness conditions for the models with two types of

distributions, generalized extreme value and generalized Pareto distributions. Further,

we review global and local robustness properties of some estimators for the parameters

of generalized Pareto model. The new result, which we prove in the Appendix of the

thesis, concerns the obtaining similar robustness results for the generalized extreme

value distribution. It is presented in the end of the Chapter together with the software

overview and conclusions.

The second part of the thesis starts with the deeper analysis of the basic models and

tools, used to achieve our results. Chapter 4 shows the relation between two main

subjects of the research and describes the procedures of interest in the classical form.

Here we pass over to the main part of the thesis which contains our personal results.

Chapter 5 presents robust Kalman filter and our robust versions of the Kalman smoother

and extended Kalman procedures specialized on the different types of outliers. We also

test all procedures in different outlier situations to conclude about their performance in

the situations they were created for. Moreover, we compare introduced procedures to

one chosen non-parametric filtering method. In the last Section of the Chapter 5 we give

overview of the existing R-software infrastructure for the classical and robust Kalman

procedures.
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Another important Chapter of this research, Chapter 6, is focused on the new approach

for the L2 differentiability of the generalized linear models. Here we extend already

existing approach on L2 differentiability for linear regression models to the case of non-

exponential scale-shape families, e.g. generalized extreme value and generalized Pareto

distributions. Analogically to the previous authors, we treat cases of stochastic and

deterministic regressors separately and compute corresponding L2 differentiability con-

ditions for them. The advantage of our new approach is its applicability to the error

distributions with the higher dimensional parameter and case of regressors of possibly

different length for each parameter. Later, we also test our methods on the linear re-

gression, Binomial and Poisson generalised linear models and generalized extreme value

and generalized Pareto joint shape-scale models. Important step for two last models is

to choose the appropriate componentwise link function, what we discuss in details.

The last Section of this Chapter describes fixed point iteration algorithm for the compu-

tation of the optimally robust influence curve. We write the algorithm itself and present

our exemplary implementation of it in R, under the name FixPglm. Here we do not aim

to provide the most flexible implementation, but rather sketch how it should be done

and retain everything that is necessary. We also test our function FixPglm on the R-data

”carrots” for the generalized linear model with Binomial error distribution.

Last part of the thesis is focused on the application examples, already mentioned in the

previous Section. Chapter 7 contains hydrological, medical and financial applications

concerning river discharge data, unit length of stay and costs and operational and liq-

uidity risk of a bank respectively. Moreover, in the Chapter 8 we apply our FixPglm

algorithm to the real medical data taken from the Jena university hospital ICU. We aim

to conclude about the performance and the speed of our algorithm.





Part I

Foundations
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Chapter 2

Robustness

Why are robust methods needed? When we want to describe a set of observations

in some statistical modeling problem, we often get information about the data which

can be formalized in a number of assumptions. It often happens in practice that this

assumptions hold approximately, describing the majority of observations. But some

observations follow a different pattern or no pattern at all. Such atypical data are called

outliers.
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data
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Figure 2.1: Data with outlier

Even a single outlier can have a large distorting influence on a classical statistical method.

Outliers may also be correct, but they should always be checked for transcription er-

rors. The robust approach to statistical modeling and data analysis aims at deriving

methods that produce reliable results not only when the data follow a given assumption

exactly, but also approximately, in the presence of outliers. So, if the data contains

no outliers, the robust method gives results, which are very close to the results of the

classical method. However, if data carries small proportion of outliers, robust method

gives approximately same results as the classical method applied to the ”typical” data.

9
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Somewhat larger deviations from the model should not cause a catastrophe in the robust

procedures.

We note that outliers are not the only deviation from model assumptions against which

robustness provides a remedy. More precisely, if done properly it protects against any

small deviation in suitable distances of probabilities like Hellinger, total variation, or,

ideally, even Prokhorov. This comprises in particular small shifts of the whole distribu-

tion. On the other hand outliers are also one focus of diagnostics. We will come to this

aspect later on in Chapter 2.6.

The idea of robustness can be traced back at least to the end of the 20th century.

Primarily, robustness is associated with the names Tukey J., Huber P. and Hampel F.;

see Hampel (1968, 1971, 1974), Huber (1964, 1965, 1981), Tukey (1960, 1962). The first

theoretic approach to robust statistics is introduced by Huber (1964). He was working

with neighborhoods of a stochastic model, earlier introduced by Tukey, and he found

estimator that behaves optimally over the whole neighborhood. Later, his basic idea was

extended by other approaches. Large contribution to the development of robust methods

is made by the fundamental work of Hampel et al. (1986), Maronna et al. (2006), Rieder

(1994). For all notions we mention further in this Chapter we refer to these books.

We essentially limit ourselves to the presentation of the theory as far as we will need

it in the subsequent sections rather than full overview of the subject. We also refer to

the corresponding monographs giving a broader view on the respective notions. For a

detailed introduction to robust statistics we mainly refer to Hampel et al. (1986, Ch. 1).

2.1 Model assumptions

2.1.1 Parametric model

A family of distributions, which can be described using a finite number of parameters,

is called a parametric model or a parametric family. More precisely, first we define the

measurable space (Ω,A) with M1(A), the set of probabilities on the σ- algebra A. For

each parameter ϑ from the open domain Θ ⊂ Rk we denote corresponding distribution

as Qϑ. Then the following family of distributions

Q = {Qϑ|ϑ ∈ Θ} ⊂ M1(A) (2.1)

is a parametric model with open parameter domain Θ ⊂ Rk.
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Next, we need the notion of the absolute continuity, which is the weakest generalisation

of the fundamental theory of calculus. Later we use it in order to link the concepts of

the derivative and of the integral of a function.

Definition 2.1 (Absolute continuity). Let I ⊂ R be some interval. A function f : I → R
is said to be absolutely continuous, if for every ε > 0 there exist δ > 0 s.t.

n∑
i=1

|f(bi)− f(ai)| ≤ ε,

for every finite number of non overlapping intervals (ai, bi), i = 1, ..., n, with [ai, bi] ⊂ I
and

n∑
k=i

(bi − ai) ≤ δ.

Remark 2.2. The notion of absolute continuity can be extended to higher dimensions

in the following way. Let I ⊂ Rk and the function f : I → R. We call f absolutely

continuous function, if for all a, b ∈ Rk the function G : [0, 1] → R, s.t. s 7→ G(s) =

f(a+ s(b− a)) is absolutely continuous in the sense of Def. 2.1.

When the model consists of absolutely continuous distributions, the corresponding den-

sity functions can be defined. Following Rieder (1994) and LeCam (1970) we write dQϑ

to denote the densities qϑ w.r.t. some counting or dominating measure ν on the sigma-

algebra A, i.e. dQϑ = qϑdν. Then the parametric model can be alternatively specified

in terms of density functions

Q = {qϑ|ϑ ∈ Θ}

In order to give examples of the parametric model we consider the discrete and contin-

uous cases separately.

Example 2.3 (Binomial parametric model). As an example of a family of discrete prob-

abilities we introduce the Binomial family of distributions for fixed known parameter

n ∈ N. Then, this model is parametrized by success probability p ∈ [0, 1]. The prob-

ability mass function, i.e. the density w.r.t. some counting measure, of the Binomial

distribution is

qp(y) =

(
n

x

)
px(1− p)n−x, (2.2)

for x ∈ {0, . . . , n}. Then, for some open parameter domain Θ ⊂ [0, 1] the Binomial

parametric family is defined as Q = {qp|p ∈ Θ}.

Example 2.4 (Generalized extreme value parametric model). As an example of the

a continuous distribution family we consider the family of generalized extreme value

distributions (GEVD), specified by three parameters µ ∈ R, σ > 0 and ξ ∈ R. Parameter
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µ can be treated as parameter of interest, nuisance parameter or as fixed and known.

Then, the model is parametrized by ϑ = (σ, ξ). In this example, for simplicity, we

restrict ourselves to the case ξ 6= 0 so that the cumulative distribution function of

GEVD is defined for 1 + ξ y−µσ > 0 as

Qσ,ξ(y) = exp
(
− (1 + ξ

y − µ
σ

)
− 1
ξ
)
, (2.3)

and the density function (simply the derivative of the distribution function Qσ,ξ(y), when

it exists) is the following:

qσ,ξ(y) =
1

σ
(1 + ξ

y − µ
σ

)
− 1
ξ
−1

exp
(
− (1 + ξ

y − µ
σ

)
− 1
ξ
)
. (2.4)

For the further use we introduce here the quantile function (the inverse of the cumulative

distribution function Qσ,ξ(y)) of GEV distribution:

Fσ,ξ(y) = Q−1
σ,ξ(y) = µ− σ

ξ
(1− (− log y)−ξ). (2.5)

In principle, knowing one of these functions gives us two others, so the GEVD itself is

defined by any one of the functions (2.3), (2.4) and (2.5).

Then, for some suitable open parameter domain Θ ⊂ R+ × R\{0}, the corresponding

Generalized extreme value parametric model is defined as Q = {Qσ,ξ|(σ, ξ) ∈ Θ}.

We intentionally chose this distribution as an example of a parametric model, since it

will often appear later in this thesis. We discuss this distribution in more detail, with

other options for the parameters µ and ξ and some properties, in Section 3.1.1.

Remark 2.5. We should mention that all our theory only holds for interior points, i.e.

we don’t allow our parameter sitting on the margin of the parameter space. Otherwise

we can face some problems, which are discussed in Pollard et al. (1997, pp.305-314).

2.1.2 Smoothness

Under smoothness we usually understand existence and continuity of the function deriva-

tives up to some desired order over some domain. The smoothness of the parametric

model Q = {qϑ|ϑ ∈ Θ} implies the linearization of the density function, i.e.

qϑ+hn(y) = qϑ(y) + hn
∂

∂ϑ
qϑ(y) + r(y, ϑ, hn), (2.6)
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for |hn| 6= 0, |hn| ≤ h ∈ R and the remainder r(y, ϑ, hn) s.t.

lim
n→∞

r(y, ϑ, hn)

|hn|
= 0, (2.7)

as hn → 0, n→∞ in Rk.

Usual ”pointwise” approach requires convergence condition (2.7) to hold for all y ∈ R,

which is too much to claim, since the density function qϑ(y) is only ν(dy)-a.e. defined.

Therefore density is not even defined for all y. Moreover, we need to be able to inter-

change derivative and expectation operations, i.e. differentiation and integration, which

is not self evident if we use a pointwise approach.

Besides, from the graduate course in analysis we know that pointwise convergence is

not enough to conclude on the convergence of the integrals and we need additional

information like, e.g. dominated or monotone convergence. Therefore, even if we assume

(2.7) to be fulfilled for all y ∈ R, it is not sufficient to conclude the square integrability

of the remaining term, i.e.∫
r2(y, ϑ, hn)ν(dy)

|hn|2
→ 0, as hn → 0, n→∞, (2.8)

which is necessary in order to have a Hilbert space structure.

If we express the remainder in terms of the density function from the linearization (2.6)

and plug it in the integral convergence (2.8), we get the following:∫
(qϑ+hn(y)− qϑ(y)− hn ∂

∂ϑqϑ(y))2ν(dy)

|hn|2
→ 0, as hn → 0, n→∞.

Therefore, to require square integrability of the remaining term (2.8), we need the density

function also to be square integrable, and this is too strong condition to claim.

Nevertheless, there is a way to avoid the demand of the density square integrability,

presented by LeCam (1970) and Hájek (1972). Since the density function is always

positive, idea is to take the square roots of it (see also Rieder (1994, Ch. 2)), i.e.∫
(
√
qϑ+hn(y)−

√
qϑ(y)− hn ∂

∂ϑ

√
qϑ(y))2ν(dy)

|hn|2
→ 0, as hn → 0, n→∞.

In this way we get to the notion of L2 differentiability, which we define following Rieder

(1994, Def. 2.3.6.). Fix ϑ ∈ Θ.
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Definition 2.6 (L2 differentiability). The model Q is called L2 differentiable at ϑ if

there exists a function ΛQϑ ∈ L
k
2(Qϑ) such that∥∥∥∥√dQϑ+h −
√
dQϑ(1 +

1

2
(ΛQϑ )Th)

∥∥∥∥
Lk2

= o(|h|), (2.9)

as h→ 0 and

IQϑ = EϑΛQϑ (ΛQϑ )T > 0. (2.10)

Then the function ΛQϑ is the L2 derivative and the k × k matrix IQϑ is the Fisher infor-

mation of the parametric model Q at ϑ.

We say that the model Q is continuously L2 differentiable at ϑ if, for any h→ 0 ∈ Rk,

sup
t∈Rk:|t|≤1

∥∥∥√dQϑ+h(ΛQϑ+h)Tt−
√
dQϑ(ΛQϑ )Tt

∥∥∥
Lk2

= o(1). (2.11)

Remark 2.7. Condition (2.10) in Rieder (1994, Def. 2.3.6) is required for the local

identifiability and we can drop it when we are only interested in smoothness. We claim

Fisher information to be a symmetric and positive-semidefinite matrix.

Remark 2.8. In Rieder (1994, Thm. 2.3.7) it is proven that if the model Q is L2

differentiable at ϑ, then its L2 derivative ΛQϑ is uniquely determined in Lk2(Qϑ), moreover

EϑΛQϑ = 0.

As the main criteria for the L2 differentiability of the parametric model we would require

the Hájek (1972, Lem. A.1–A.3) conditions to be fulfilled.

Proposition 2.9 (Hájek). Assume that in some ϑ0 ∈ Θ surrounded by some open

neighborhood U , model Q satisfies

(H.1) The densities dQϑ(y) are absolutely continuous in each ϑ ∈ U for Qϑ0-a.e. y.

(H.2) The derivative ∂
∂ϑdQϑ(y) = Λϑ(y) dQϑ(y) exists in each ϑ ∈ U for Qϑ0-a.e. y.

(H.3) The Fisher information Iϑ =
∫

Λϑ(y)ΛT
ϑ (y)Qϑ(dy) exists, (i.e., the integral is

finite) and is continuous in ϑ on U .

Then Q is continuously L2 differentiable in ϑ0 with derivative Λϑ0 and Fisher informa-

tion Iϑ0.

Remark 2.10. The first condition (H.1) gives us the pointwise smoothness of the dis-

tribution and the second (H.2), uniform square integrability of the scores, meaning that

the variance is finite. Apparently, these two conditions are implied by the continuous

differentiability of the densities dQϑ(y) w.r.t. ϑ. Condition (H.3) provides continuity
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of the Fisher information of the distribution, so that the variance for close parameter

values stays close.

We can note that both parametric models from Examples 2.3 and 2.4 satisfy Hájek

conditions (H.1)-(H.3), therefore they are L2 differentiable. Let us take a closer look at

the L2 derivatives and the Fisher information matrices for these examples.

Example 2.11 (Binomial parametric model). In the Binomial modelQ = {qp|p ∈ Θ} let

for simplicity n = 1. Then the first Hájek condition (H.1) is fulfilled by the probability

mass function (2.2), since it is absolutely continuous for each p taken from the open

domain Θ ⊂ [0, 1].

By condition (H.2), the L2 derivative is defined as ΛQϑ (y) = ∂
∂ϑ(qϑ(y))/qϑ(y), which

exists for the Binomial parametric family and for p ∈ Θ:

ΛQp (y) =
y − p
p(1− p)

The last Hájek condition (H.3) requires existence and continuity of the Fisher informa-

tion, which is also fulfilled by

IQp = Ep(Λ
Q
p )2 =

1

p(1− p)
> 0.

Example 2.12 (GEV parametric model). For parametric model Q = {Qσ,ξ|(σ, ξ) ∈ Θ}
with GEV cumulative distribution function (2.3) and domain Θ ⊂ R+ × R, the the L2

derivative takes up the structure of the parameter, so it consists of two coordinates

ΛQσ,ξ(y) = (ΛQσ (y),ΛQξ (y))T,

where ΛQσ is the L2 derivative for parameter σ and ΛQξ for parameter ξ.

The Fisher information for this model is a 2× 2 symmetric matrix of the form:

IQσ,ξ = Eσ,ξΛ
Q
σ,ξ(y)(ΛQσ,ξ(y))T =

(
Iσσ Iσξ

Iσξ Iξξ

)
,

where Iσσ = Eσ,ξ(Λ
Q
σ (y))2 is information only about parameter σ, Iξξ = Eσ,ξ(Λ

Q
ξ (y))2

is the information about parameter ξ and Iσξ = Eσ,ξ(Λ
Q
σ (y)ΛQξ (y)) contains all mixed

information. Additionally, from Remark 2.8 one can see that Iσσ = Cov(ΛQσ (y)), Iξξ =

Cov(ΛQξ (y)) and Iσξ = Cov(ΛQσ (y)ΛQξ (y)).

The Fisher information is a positive-semidefinite matrix, therefore by Sylvester’s crite-

rion, Iσσ ≥ 0 and the determinant det(IQσ,ξ) ≥ 0.
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Remark 2.13. The computation of the Fisher information terms here is not easy,

because it involves integrating w.r.t. large support and slow decay density, that is why

we use the fact that the expectation of a random variable is the integral of its quantile,

i.e.

Iσσ = Eσ,ξ(Λ
Q
σ )2 =

∫
(ΛQσ (y))2dQσ,ξ(y) =

∫ 1

0
(ΛQσ (Fσ,ξ(y)))2dy,

for quantile function of GEV distribution Fσ,ξ from (2.5).

2.2 Neighborhoods

One way of quantifying the distance between measures in mathematics is by metrics.

For further use we introduce here four of them.

The Hellinger distance, defined in terms of the Hellinger integral (see Nikulin (2001)),

can be defined by the expression:

d2
h(Q,Qϑ) =

1

2

∫ ∣∣∣√dQ−√dQϑ∣∣∣2 . (2.12)

The total variation distance is the largest possible difference between the probability

distribution functions assigned to the same event, i.e.

dv(Q,Qϑ) =
1

2

∫
|dQ− dQϑ| = sup

A∈A
|Q(A)−Qϑ(A)|. (2.13)

The Kolmogorov distance is the supremum of the absolute difference between the distri-

bution functions:

dk(Q,Qϑ) = sup
y∈Rk

|Q(y)−Qϑ(y)|. (2.14)

The square of the Cramér-von-Mises distance is given as the integral of the squared

difference between the distribution functions, i.e.

d2
m(Q,Qϑ) =

∫
(Q(y)−Qϑ(y))2ν(dy). (2.15)

The aim of robust methods is, roughly speaking, to develop estimates which have a

”good” behavior in a ”neighborhood” of the ideal distribution. We define

U∗(ϑ, ε) = {Q|d∗(Qϑ, Q) ≤ ε, ε ∈ [0,∞)} ⊂ M1(A)

as the neighborhoods about distribution Qϑ of radius ε generated by some distance

measure d∗. In robust statistics the basic types of such neighborhoods are: Hellinger
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(∗ = h), total variation (∗ = v), Kolmogorov (∗ = k) and Cramér-von-Mises (∗ = m),

which are based on the metrics (2.12), (2.13), (2.14) and (2.15) correspondingly.

From other side, assume that a proportion 1 − ε of the observations is generated by

the (true, ideal) distribution Qϑ, while a proportion ε is generated by an unknown

mechanism. Such real data set can be modeled by the well-known Gross Error Model

(convex contamination) of the form:

Q = (1− ε)Qϑ + εG.

Here the radius ε ∈ [0, 1) is the amount of gross errors (contamination) and G is an

unknown, uncontrollable, unpredictable outlier generating distribution.

The Gross Error Model defines one of the most practicable types of neighborhoods, which

is able to capture deviations of distributions or outlier phenomena. This neighborhood

is called contamination (∗ = c) neighborhood and it consists of convex combinations,

i.e.

Uc(ϑ, ε) = {Q|Q = (1− ε)Qϑ + εG,G ∈ G} ,

where G is a suitable set of distributions (often the set of all distributions).

Remark 2.14. To balance variance and bias in the situation of n observations it turns

out useful to scale the radius by the sample size n i.e.

ε =
r√
n
,

for some radius r ∈ [0,∞) (compare Rieder (1994)). This shrinking can also be moti-

vated by detectability of outliers, compare Rieder (2006).

In one-dimensional case, for esch neighborhood defined above, i.e. U∗(ϑ, ε) where ∗ =

h, v, k, µ, there is an explicit expression for the bias term (see Rieder (1994, Prop. 5.3.3)),

but there is no explicit solution in multivariate case, whereas for the contamination

neighborhood Uc(ϑ, ε) we get explicit expressions for the bias term for all dimensions.

Therefore further in this thesis we focus only on contamination neighborhoods.

Huber (1981) proposed two interpretations for the contamination of the sample. Either

we let large changes in a few observations or small changes in all of them. Similar to

Ruckdeschel et al. (2014b), here and further, we denote the ideal model assumptions

by the suffix ”id”, the distorting (contaminating) situation by ”di” and the suffix ”re”

indicates the realistic contaminated situation. Then, we either replace few observations

of the sample, i.e.

Xre = (1− ε)X id + εXdi, (2.16)
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so that Xdi is generated by the contaminated distribution Q ∈ Uc(ϑ, ε), or we let all

observations Xre be a bit distorted, i.e. they all have distribution Q ∈ Uc(ϑ, ε). In this

thesis we focus on the first interpretation, since it is more convenient for our purposes.

2.3 Measuring Robustness

In robust statistics one is interested in estimators which have certain stability w.r.t. the

contamination of the ideal model. We distinguish between global and local robustness

of an estimator. Local robustness asks how small deviations, in extreme cases a single

outlier, influence the value of the estimator. Global robustness of the estimator describes

the behavior of the estimator under massive distortions.

In this Section we follow the notations of Maronna et al. (2006, Ch. 3) and Hampel et al.

(1986, Ch. 2). For the parametric model {Qϑ|ϑ ∈ Θ}, with open parameter domain

Θ, consider the estimator ϑ̂n(Qϑ) of the parameter ϑ, depending on a sample X =

{X1, ..., Xn} of i.i.d. random variables with distribution Qϑ. In order to formalize

next notions we study the behavior of the estimates when the sample size tends to

infinity (”asymptotic behavior”). We define the asymptotic value of the estimate as

ϑ̂∞(Qϑ), s.t. ϑ̂n(Qϑ) →p ϑ̂∞(Qϑ) as n → ∞. Typical examples are the mean of the

distribution ϑ̂∞(Qϑ) = EQϑX for the sample mean ϑ̂n = X̄ or the distribution median

ϑ̂∞(Qϑ) = Q−1
ϑ (0.5) for the sample median ϑ̂n = Med(X).

Further we are interested in the behavior of the asymptotic estimate ϑ̂∞(Q) when Q

ranges over the contamination neighborhood Uc(ϑ, ε).

2.3.1 Local robustness. Influence function

The local robustness of an estimator may be captured by the influence function (IF).

By Hampel (1974), IF is an approximation to the behavior of ϑ̂∞(Qϑ) when the sample

contains a small fraction ε of identical outliers. It measures the dependency of the esti-

mator on the value of one of the points in the sample. An estimator is considered locally

robust if its IF is bounded, because then we are able to ensure that small deviations

from the model distribution do not cause large changes in the estimate. The classical

definition of IF is taken from Huber (1981).

Definition 2.15 (Influence function). The influence function is the functional derivative

of the estimator with respect to the distribution. It is defined as the Gâteaux derivative
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in the direction of Dirac measure (point-mass) δx in x:

ψϑ(x) := IF (x; ϑ̂n, Qϑ) = lim
ε↓0

(ϑ̂∞((1− ε)Qϑ + εδx)− ϑ̂∞(Qϑ))

ε
,

provided the limit exists. ”↓” stands for ”limit from the right”.

Remark 2.16. If we have a higher dimensional parameter ϑ, then ϑ̂∞(Qϑ) is a p-

dimensional vector and so is its IF.

Definition 2.17 (Asymptotically linear estimator). Assume that the estimator ϑ̂n has

an expansion in the sample X = {X1, ..., Xn}, i.e.

ϑ̂n = ϑ0
n +

1

n

n∑
i=1

ψϑ(Xi) +Rn,

where
√
n |Rn| → ∞, as n → ∞, for the starting estimator ϑ0

n and ψϑ being IF of ϑ̂n,

for which we require the following to hold (see Rieder (1994, Lemma 4.2.18)):

Eψϑ = 0, EψϑΛT
ϑ = Ik.

Then, such an estimator ϑ̂n is called asymptotically linear (ALE).

The asymptotic (co-)variance matrix of the asymptotically linear estimator ϑ̂n is then

determined as the following matrix (see Rieder (1994, Rem. 4.2.17)):

asVar(ϑ̂n) =

∫
ψϑψ

T
ϑ dQϑ

The gross error sensitivity (GES) for asymptotically linear estimator ϑ̂n is defined in

Hampel et al. (1986, Ch. 2.1) as

γ(ϑ̂n) := sup
x
|ψϑ(x)| .

Then, the estimator is locally robust iff its GES is finite.

2.3.2 Global robustness

Maximal asymptotic bias

Here we introduce a global robustness measure called maximal asymptotic bias (maxbias),

which is the most complete and accurate measure of robustness for a point estimate.
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The maxbias is originally defined by Huber (1964) and later developed and applied to

other statistical models.

An estimator of the parameter of a parametric family Fϑ is called consistent if its

asymptotic value fits the true value of the parameter, i.e. ϑ̂∞(Qϑ) = ϑ.

For most distributions Q in the ε-neighborhood Uc(ϑ, ε) of the parametric distribution

Qϑ the Fisher consistency of the model parameters ϑ ∈ Θ does not hold, i.e. ϑ̂∞(Q) 6= ϑ

and this parameter estimate is subject to the asymptotic bias

bϑ̂n(Q,ϑ) = ϑ̂∞(Q)− ϑ.

Definition 2.18 (Maximal asymptotic bias). The overall bias performance in the neigh-

borhood Uc(ϑ, ε) can then be measured by the maximal asymptotic bias defined as

Bϑ̂n(ε, ϑ) = max
{
|bϑ̂n(Q,ϑ)| : Q ∈ Uc(ϑ, ε)

}
.

Remark 2.19. In the shrinking neighborhood setup (see Rieder (1994, Lemma 5.3.3)),

the
√
n-standardized, maximal asymptotic bias of an asymptotically linear estimator ϑ̂n

in the gross error model with the radius given by ε = r/
√
n, is the following

Bϑ̂n(r, ϑ) = rγ(ϑ̂n).

Breakdown point

The global robustness of an estimator may be quantified by the Breakdown Point (BP).

The BP is the largest amount of contamination that the data may contain, s.t. the

estimator ϑ̂n still gives some information about ϑ.

Definition 2.20 (Breakdown Point). The breakdown point (BP) of the estimate ϑ̂n at

Q is the maximal radius ε∗ s.t. the maxbias is finite, i.e.

ε∗ = sup
{
ε : Bϑ̂n(ε, ϑ) <∞

}
.

It is obvious that for ”reasonable” estimates there must be more ”typical” points than

outliers, so ε∗ ≤ 1/2.

Remark 2.21. If Bϑ̂n(ε, ϑ) is differentiable at ε = 0, the corresponding derivative is the

gross error sensitivity of the estimator ϑ̂n, i.e.

γ(ϑ̂n) =
∂

∂ε
(Bϑ̂n(ε, ϑ))ε=0.
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2.4 Estimators

In this Section we present the most common classical estimators and discuss their main

properties. Well-known behavioural properties of the estimators are (weak, strong) con-

sistency, asymptotic normality with the corresponding asymptotic variance, efficiency,

i.e. estimators with smallest possible asymptotic variance in the class of all asymptoti-

cally normal estimators, and robustness. Here we focus more on the robust properties

of the estimators, which can be described by the breakdown point or the influence func-

tion as we mentioned in the Section 2.3. Later in Sections 3.3 and 3.4 we compute

some of these estimates for some certain distributions and discuss in detail their robust

properties.

2.4.1 Maximum likelihood estimator

One of the most useful methods of estimating parameters of a statistical model is the

maximum-likelihood estimation. To give its formal definition, suppose we have i.i.d.

random sample {X1, ..., Xn} with an unknown parametric distribution function Qϑ and

density function qϑ(x) associated with an unknown parameter value ϑ. We define average

log-likelihood by considering observed values X1, ..., Xn to be fixed, i.e.

ln(ϑ|X1, ..., Xn) =
1

n

n∑
i=1

log qϑ(Xi)

Then the maximum likelihood estimate (MLE) is an estimate of the parameter obtained

by maximizing the average log-likelihood function, i.e.

ϑ̂
MLE

= arg max{ln(ϑ|X1, ..., Xn), ϑ ∈ Θ}.

Remark 2.22. The maximum likelihood estimator is often used in the classical setup

due to its properties - consistency, asymptotic normality and efficiency, i.e. it is an

estimator with the minimal asymptotic variance. However, for robust statistics this

estimator is too sensitive to contaminations.

2.4.2 M-estimators

A generalization of the maximum likelihood estimator is given by so-called maximum

likelihood type estimator or M-estimator (see Huber (1964, 1981)). These estimators

use some function ρ instead of the likelihood function for optimization. The M-estimate
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of the unknown parameter ϑ is defined as the solution of the following minimization

problem:

ϑ̂
ME

= ϑ :

n∑
i=1

ρ(ϑ, xi) = min!, (2.17)

where ρ is an arbitrary function.

Note, that the choice ρ(ϑ, x) = − log qϑ(x) gives the ordinary MLE.

Remark 2.23. This is one of the two possible approaches for these estimators. If the

function ρ is differentiable, by denoting ψ(ϑ, x) = ∂/∂ϑρ(ϑ, x), the problem (2.17) can

be described by the implicit equation

n∑
i=1

ψ(ϑ, xi) = 0. (2.18)

The second approach is to search for the zero, as in equation (2.18). Therefore, if the

maximizing value of equation (2.17) is obtained as a zero, the resulting estimator is

called Z-estimators (see van der Vaart (1998)).

Remark 2.24. M-estimators may be more computationally efficient and more robust

(resistant to deviations from the assumptions) than MLE. Moreover, due to their gen-

erality, the high breakdown point, and efficiency, M-estimators now appear to dominate

among other approaches to robust estimation. More details on this can be found in Huber

(1981) and van der Vaart (1998).

2.4.3 Minimum distance estimators

The minimum distance estimation (MDE) is the method to obtain an estimator of a

parameter by minimizing some distance between the empirical distribution function

Q̂n, defined for the sample {X1, ..., Xn} as Q̂n = 1
n

∑n
i=1 1(Xi,∞) and the theoretical

parametric distribution function Qϑ. The MD-estimator is defined as

ϑ̂
MDE

= arg min{d∗(Q̂n, Qϑ), ϑ ∈ Θ},

for Hellinger (2.12), total variation (2.13), Kolmogorov (2.14) and Cramér-von-Mises

(2.15) distance measures, so ∗ = h, v, k,m correspondingly.

Remark 2.25. In the paper of Wolfowitz (1953-1954) it is shown on several problems of

different levels of difficulty that the MDE method compared to the MLE obtains consis-

tent estimators rather cheaply. Moreover, for some distances, e.g. Cramér-von-Mises,

the minimum distance estimator is asymptotically normal and efficient for a variety of
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models. This class of estimators is also sensitive to outliers. Robust properties of the

minimum distance estimations are discussed in details in Rieder (1994, Ch. 6).

Remark 2.26. The maximum likelihood estimator, the M-estimator and the minimum

distance estimator are each minimizing a certain criterion. In a multiparameter setting

this relies on finding the global minimum which computationally is not a trivial task

in general. In extant software, most algorithms to this end require a decent starting /

initial value for the parameter to start their (local) search. This starting estimator of

course then affects the found minimizer as well in general. This is a problem for all

three estimators introduced above.

Looking at the code in the package ismev (based on Coles (2001)) we notice, that what

they do is even more dangerous. For MLE they start with a fixed value ξ = 0.1. It means

that, because it is a local algorithm, it risks to get stuck somewhere and if ξ is far from

0.1 it risks to never get there.

A step forward in this context is not just to consider one fixed value, but consider a sort

of representative grid. So at every starting point we risk to get stuck somewhere, but

if we do it in the whole range, then we know at least that we looked already over all of

them.

2.4.4 k-step estimators

One of the alternatives to the M-estimator is so-called k-step estimator. For the finite

IF ψϑ and for some suitably chosen starting estimator ϑ0 the k-step estimation for

k = 1, 2, 3, ... is defined recursively as

ϑk = ϑk−1 +
1

n

n∑
i=1

ψϑk−1(xi). (2.19)

We fix value of k and iterate this expression k times.

Remark 2.27. Iterating (2.19) until convergence amounts to a fixed point iteration,

which converges to some point quite quickly, and when it converges we get, that equation

(2.19) turns to

1

n

n∑
i=1

ψϑk−1(xi) = 0,

starting from some natural number k, and then computing k-step estimator transforms

to the zero problem, similarly to the Z-estimator (2.18).

Remark 2.28. One should note, that for k = 1 we already achieve the desired expansion.

Moreover, for values k ≤ 2 explicit terms for the higher order asymptotic correction
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terms, for the maximal MSE on the neighborhoods, can be obtained in special case, see

Ruckdeschel (2010a), Ruckdeschel (2010b).

However, there are previous researches, which all deal with the situation of the ideal

model. Ibragimov and Linnik (1971) improve the asymptotics underlying CLT, then

Pfanzagl (1985) tries to optimize higher order behavior and Field and Ronchetti (1990)

uses saddle point approximation. Ibragimov and Linnik (1971) stops on the third iter-

ation for convenience, i.e. terms get too complicated for k ≥ 2. Pfanzagl (1985) and

Field and Ronchetti (1990) stop at the second order with the fundamental reason, i.e due

to the ill-posedness of the optimal problem for the second order. Taniguchi and Kakizawa

(2002) cover third order a bit more generally.

For k = 2 we can specify the asymptotics up to oP (n−3/2). Fixing k ex ante is crucial for

the preservation of the breakdown point (it can degenerate in an unbounded number of

correction steps). Due to the lack of equivariance, each step requires a new computation

of the Lagrange multipliers and hence is computationally demanding. Therefore, we

restrict ourselves to k = 1, 2.

Remark 2.29. The k-step (one-step) estimator inherits the breakdown property of the

starting estimator and yields a high efficiency.

2.4.5 Moment based estimators

The method of moments estimation is based solely on the law of large numbers (LLN).

The idea of the method is to match the sample moments with the corresponding dis-

tribution moments. In some situations the solution can be found explicitly, even if in

the same situation the MLE requires numerical solvers; in these situations this is then

a benefit of the procedure.

For the i.i.d. random sample X = {X1, ..., Xn} with the distribution associated to an

unknown parameter value ϑ ∈ Rp, the j–th moment about 0 is a function of ϑ, denoted

by µj(ϑ) = EϑX
j , for j = 1, ..., p. The j–th sample moment about 0 is defined as

mj(X) = 1
n

∑n
i=1X

j
i . Then the method of moments estimator (MME) is solution to the

system of equations

µj(ϑ̂
MME

) = mj(X).

We often need only the first two moments for this method, i.e. the theoretical and the

empirical means and variances.

Remark 2.30. Under reasonable conditions the moment based estimators in the ideal

model are asymptotically normal. More details about these estimators one can find in

van der Vaart (1998).
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The generalization of MME is called the generalized method of moments estimation

(GMM) and it focuses on the solving specific minimization problems based on the ”mo-

ment conditions”. Here we omit the detailed definition of the method, which can be

found in Hansen (1982).

2.4.6 Quantile based estimators

Instead of moments matching, as it is for the method of moments estimation, we can

also match empirical quantiles of the considered distribution. It leads to solving the

system of equations and obtaining parameter estimates in terms of the quantiles, what

makes the method easy to use. These are the so-called quantile based estimators and

one well known example of such an estimator is the Pickands estimator, first proposed

by Pickands (1975), which is based on the empirical 50% and 75% quantiles.

Remark 2.31. Pickands estimator is consistent and asymptotically normal as one can

see from Embrechts et al. (1997).

2.4.7 Examples in R

Here we give some simple examples for all introduced estimators. For the maximum

Likelihood (MLE) and minimum distance (MDE) estimators we upload R-data ”carrots”

from the package robustbase as follows:

> require(robustbase)

> data(carrots)

> data0 <- as.vector(do.call(rbind, carrots))

The functions for these estimators are implemented in the R-package distrMod, so we

require this package

> require(distrMod)

and having needed functions available, we estimate the success probability of the Bino-

mial distribution with the number of trials equal to the data size. After the estimation

is done, by calling the result we get the following output:

> MLE <- MLEstimator(data0, BinomFamily(size = 96))

> MLE

Evaluations of Maximum likelihood estimate:
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-------------------------------------------

Object of class "Estimate"

generated by call

MLEstimator(x = data, ParamFamily = BinomFamily(size = 96))

samplesize: 96

estimate:

0.12657986

(0.00346356)

fixed part of the parameter:

size

96

asymptotic (co)variance (multiplied with samplesize):

[1] 0.00115164

Criterion:

negative log-likelihood

Inf

Next we apply Cramér-von-Mises minimum distance estimator to the same data set and

get:

> MDE <- MDEstimator(data0, BinomFamily(size = 96), distance = CvMDist)

> MDE

Evaluations of Minimum CvM distance estimate:

---------------------------------------------

Object of class "Estimate"

generated by call

MDEstimator(x = data, ParamFamily = BinomFamily(size = 96), distance = CvMDist)

samplesize: 96

estimate:

prob

0.03713059

fixed part of the parameter:

size

96

Criterion:

CvM distance

0.1541651

For the k-step estimator we require the R-package RobAStBase and compute the classical

optimal influence function

> require(RobAStBase)

> IC <- optIC(model=BinomFamily(size = 96, prob = 0.5),risk=asCov())
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Then, using the function kStepEstimator we get the following output:

> kStep <- kStepEstimator(data0, IC, start = 0.5)

> kStep

Evaluations of 1-step estimate:

-------------------------------

Object of class "Estimate"

generated by call

kStepEstimator(x = data, IC = IC, start = 0.5)

samplesize: 96

estimate:

prob

0.126579861

(0.005208333)

fixed part of the parameter:

size

96

asymptotic (co)variance (multiplied with samplesize):

[1] 0.002604167

Infos:

method

[1,] "kStepEstimator"

[2,] "kStepEstimator"

message

[1,] "1-step estimate for Binomial family"

[2,] "computation of IC, trafo, asvar and asbias via useLast = FALSE"

asymptotic bias:

NULL

(partial) influence curve:

An object of class "IC"

### name: Classical optimal influence curve for Binomial family

### L2-differentiable parametric family: Binomial family

### ’Curve’: An object of class "EuclRandVarList"

Domain: Real Space with dimension 1

[[1]]

length of Map: 1

Range: Real Space with dimension 1

### Infos:

method message

[1,] "optIC" "optimal IC in sense of Cramer-Rao bound"

steps:

[1] 1



28 Chapter 2. Robustness

For the moment-base estimators we can use the functions from the R-package gmm, where

the generalized method of moments is implemented. As an example we estimate a simple

linear model in the following way:

> require(gmm)

> N <- 1000

> u <- rnorm(N)

> x <- 1 + rnorm(N)

> y <- 1 + x + u

> GMME <- gmm(y ~ x, x)

> GMME

Method

twoStep

Objective function value: 8.255603e-29

(Intercept) x

0.99239 1.01498

The last estimator to show is the Pickands estimator from the R-package RobExtremes.

By construction it can be applied only to extreme value distributions, which is introduced

in detail in Section 3.1.1. Here we take the generalized Pareto distribution with some

chosen location, scale and shape parameters:

> N <- 1000 # total sample size

> alpha <- 0.05 # percentage of outliers in the data

> N1 <- floor((1-alpha) * N)

> N2 <- N - N1

>

> GP <- GPareto(loc=100,scale=1000,shape=0.4) #ideal distr

> GPfam <- GParetoFamily(loc=100,scale=1000,shape=0.4)

>

> GP1 <- GPareto(loc=1000,scale=10000,shape=1.4) #contamination distr

>

> GP3 <- r(GP)

> GP4 <- r(GP1)

> data1 <- GP3(N1)

> data2 <- GP4(N2)

> data0 <- c(data1, data2)

Then, by applying the function, we obtain the corresponding estimator:
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> PickandsE <- PickandsEstimator(data0, ParamFamily = GPfam)

> PickandsE

Evaluations of PickandsEstimator:

---------------------------------

Object of class "Estimate"

generated by call

PickandsEstimator(x = data0, ParamFamily = GPfam)

samplesize: 1000

estimate:

scale shape

1139.6189885 0.3636657

( 105.8763514) ( 0.1172541)

asymptotic (co)variance (multiplied with samplesize):

scale shape

scale 11209801.79 -10537.13674

shape -10537.14 13.74853

Infos:

method message

[1,] "PickandsEstimator" ""

2.5 Optimally robust estimators

We discussed a few classical estimation methods, which are sensitive to outliers. In

addition, we would like to give a brief overview of the optimally robust estimators.

In Section 2.3.1 we mentioned that desirable robustness property for an estimator is that

it has a bounded IF. By Hampel et al. (1986) such an estimator is also called B-robust

(bias-robust). In the paper Dupuis and Field (1998) authors construct the Optimal

B-robust Estimator (OBRE), which is originally named Most Bias-robust Estimator

(MBRE) and also defined in Hampel et al. (1986).

The Most Bias-robust Estimator minimizes the maximal bias on convex contamina-

tion neighborhoods Uc(ϑ, ε) of the underlying distribution Qϑ. Unlike Dupuis and Field

(1998) we note, that MBRE and OBRE are not the same. In the case when the law of

the scores is continuous, MBRE can also be obtained as a limit within the class of OBRE

estimators, provided that the bound of the bias converges to the minimum (minimax

bias).

The estimator with the lowest mean square error (MSE) in the asymptotic distribution

neighborhoods is called the Optimal Mean Squared Error Estimator (OMSE). It is very

similar to the previous optimally robust estimators. Moreover, following Rieder (1994),
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or Ruckdeschel and Horbenko (2013) in the context of GPD, it is a special case of the

OBRE.

If the radius r, which expresses the proportion of the outliers (see Remark 2.14), is

not (precisely) known, it can be computed by the minimax-principle introduced by

Rieder et al. (2008). Proposed method is called Radius minimax (RMX) and it consists

of the following steps. First, for starting radius r0, possibly miss-specified, we determine

the relative efficiency of the optimal solution with radius r0 to the solution for the true

radius s. Then, varying, we calculate the ”least favourable” radius s0 for r0, which

corresponds to the minimal relative efficiency. Next, varying the radius r0 we choose

the value, where the efficiency is maximal in r0 and minimal in s0. It turns out, that

the estimator, which corresponds to this chosen radius is again optimally robust and it

is called Radius minimax estimator (RMXE).

All these estimators are defined through their optimal influence functions; we realize

these estimators as k-step estimators, defined in Section 2.4.4. More about optimality

of these estimators can be found in the PhD thesis of Horbenko (2011, Ch. 6.6).

2.6 Diagnostic

After fitting the model to some data it is important to determine whether all the neces-

sary model assumptions are valid. If there are any violations, one can make the wrong

conclusions. Therefore, it is crucial to perform appropriate model diagnostics.

As we have mentioned before, the aim of robustness is protection against outliers. It

is easy to conclude the presence of outliers if by applying some procedure, we get a

complete break down. But we face problems when the procedure is affected by some

proportion of small deviations, which cannot be detected surely, and it is still works. One

approach to deal with such outliers is to use diagnostics. While detecting of such small

deviations is a main purpose of diagnostics, robust statistics offers a more differentiated

view of the data, hence by means of robustness we also can enhance diagnostics. The

research described further can be found later in the paper of Ruckdeschel et al. (2014a).

All functions for diagnostic plots are implemented in the framework of the R-package

RobExtremes.

2.6.1 General Principles

The concept for diagnostic plots in the distr and RobASt families of R-packages follows

some basic principles. The first one to mention is the flexibility, i.e., user should be
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given the full possibility to customize the respective plots.

Other plot functions in the R-package offer a very high level of flexibility. There are good

facilities for setting colors, line types and widths, plot characters, fonts, sizes and other

features. Further capabilities for plotting large amount of data are offered, e.g. alpha

transparency. These additional features significantly improve corresponding plots.

The main principle of setting up the graphical diagnostics, is to pass-through all these

features in the user interfaces so that the user can profit from this built in flexibility.

This distinguishes our approach from several others, where only default settings are

available.

A very important feature is rescaling. While working with data it is possible that very

large ”input” can have a great impact on the procedure. In particular, for the GEVD and

GPD, unboundedness of the IF for the MLE is visible only for very large values. Then,

plotting influence curves we want to display not only some specific observations, but the

whole curve x 7→ ψϑ(x). Therefore, in order to make these vulnerabilities visible, by a

suitable rescaling of the axes, we can plot unlimited observation and parameter regions.

Moreover, user is given guidance how to rescale the axis using his own transformations.

When it comes to regularly repeated diagnostics, it is often helpful to have some text

comments. Therefore a couple of automatic text templates are also offered to the user.

It is very useful to have the information about the creation date, name of the author,

maybe some model details, the respective class of the input and other comments on the

plot, to be able to distinguish it from all attempts, analyze and compare it with others.

What is the most important from our opinion, is to provide user with easy-to-use wrap-

per functions with a restricted flexibility, which is the call to the full-fledged functions in

order to make the first working experience for the user much easier. Wrapper functions

take most of arguments of the original function by default. Only the key parameters,

necessary for producing the plots, have to be given. However, the user has the oppor-

tunity to enter the necessary additional parameters. Beside that, wrapper functions

improve the original functions in handling the parameters. Example of the wrapper

function can be found later in Section 2.6.4.

2.6.2 Diagnostic plots

To show how diagnostics work, we choose a parametric model, which is required to be

smooth, because IF requires smoothness. We take the scale-shape generalized Pareto

(GPD) parametric model, i.e. the location parameter µ is given, whereas scale and

shape parameters σ and ξ are unknown. Since we use this model only for the diagnostics
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example, we prefer to omit the detailed description of the generalized Pareto parametric

model here, but we give its full overview and properties in Section 3.1.

In order to avoid legal problems with original data used in the paper of Ruckdeschel et al.

(2014a), we illustrate all diagnostic procedures on synthetic data. As the ideal model

we take GPD(100, 1000, 0.4). Then, we generate data with 1000 observations and take

around 5% of it from the GPD with all three parameters significantly increased, i.e.

GPD(1000, 10000, 1.4). Then, we apply Maximum likelihood (MLE) and robust Radius-

minimax (RMXE) estimators, defined in Sections 2.4.1 and 2.5 correspondingly. We

construct diagnostic plots for both estimators and compare their results, concluding

about the performence of both estimators.

Influence Curve Plot

We start with the diagnostic plots for the influence curves (see Section 2.3.1 for defini-

tion). For this plot we use the mapping x 7→ ψϑ(x). Recalling here the definition of the

asymptotically linear estimator (Def. 2.17),

ϑ̂n = ϑ0
n +

1

n

n∑
i=1

ψϑ(Xi) +Rn,

it becomes clear that, by plotting influence curves, we can check the local influence of the

data on the estimated parameters of the model. Moreover, one can conclude which way

(up- or downwards) and how much each observation can shift the respective parameter.

For example the value of 2 in the ordinate in the first plot on Figure 2.2 indicates that

the respective parameter in a first order approximation is shifted upwards by 2/n by a

corresponding observation made at the respective abscissa.

From these graphs we obtain two types of information. First, the actual plot line, the

theoretical influence curve, helps us to identify some future potential vulnerabilities.

Here it is particularly important to be able to use the rescaling of the axes. As in our

example for GPD, unboundedness of influence function of MLE shows up only on a

logarithmic scale of the x-axis.

The second type of information can be obtained from the circles on top of the influence

curve, which represent the influence of the actual data in the sample. Observations with

larger overall influence have larger radii.

In the chosen example we work in a setting with a multivariate (two dimensional) pa-

rameter with coordinates shape and scale. So we can plot the influence curve for each of

the parameter coordinates. But if the parameter dimension is much higher it is possible
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to focus only on the most important 3-5 coordinates. It can happen, that some obser-

vation has strong influence if we consider all coordinates simultaneously. But, showing

only these 3-5 coordinates, it may seem to be innocent, having a little impact. There-

fore, by the means of additional plotting the individual coordinate-wise influence of all

observations by the corresponding circle of specific size, we still can see the influence of

the coordinates that are not shown. It is very helpful to identify suspicious observations

in the data set.

To construct the corresponding graphs one can use the command plot(IC, data,...)

or the wrapper function PlotIC(IC, data,...).

Figure 2.2: ”Scale” and ”shape” components for classical optimal influence curve for
Generalized Pareto family

Figure 2.3: ”Scale” and ”shape” components of the influence curve of contamination
type for Generalized Pareto family
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Figure 2.2 represents the influence curves for the scale and shape parameters of GPD (left

and right panel correspondingly) for the MLE and the second Figure 2.3 - for RMXE. As

we already mentioned, each circle on the plot represents the observation and the radius

of the circle reflects the influence of this observation on the corresponding parameter

estimation. Besides, for this graph we have used the alpha-transparency feature. It

describes the concentration of the observation in a specific point, i.e. more transparent

circles have few of them, while the solid ones contain a lot.

On the left panel of the first graph (Figure 2.2) one can see that the influence function

of MLE for the scale is bounded, whereas the one on right panel is unbounded for the

shape. This underlines the well-known fact that the crucial difficulties for the estimation

of the GPD family occur during the estimating of the shape parameter (see Section 3.1).

It is important that, applying the RMXE procedure, the influence function becomes

bounded for both parameters. This shows that the MLE of the shape is much more

vulnerable to outlieres within the data sample than the RMXE and, thus, the RMXE

can cope better with contaminated data.

ComparePlot

There is a function in the R-package RobAStBase, called comparePlot, which plots from

2 to 4 influence curves for the same model. This makes the comparison of the influence

functions of different estimating procedures easier and clearer. This function is called

by the command comparePlot(obj1,obj2,...,data,...) with the arguments obj1,

obj2, which denote the corresponding influence curves, which we compare. Optional

argument data for plotting observations into the plot is followed by other general argu-

ments. The wrapper function is created for an easier use of these general arguments is

ComparePlot.

On the graphs of Figure 2.4 we compare previously seen MLE and RMXE influence

functions, left plot - for scale and right - for shape parameters of GPD family. It can be

easily seen, that the MLE and the RMXE do not differ very much for the scale parameter

in contrast to the shape parameter. As we mentioned before, this is caused by the

difficulties arising while estimating the shape parameter. On the left-hand side we can

see, that both estimators for the scale coincide for small values, then differ moderately

for medium size values and converge against each other for large values. In contrast to

that, looking at the right-hand side for the shape parameter, we see that the MLE and

the RMXE are close to each other for very small values, differ already remarkably for

values of medium size, with even higher influence for the robust estimator. Moreover, as
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can be seen on previous plots, the ML-estimator is unbounded for large values, whereas

the RMXE is bounded.

Information Plots

Another important diagnostic plots are information plots. They can quantify two types

of information, i.e. so called absolute or total and relative information.

Here we note, that highly influential data points are those, which have a large Euclidean

norm of the value of the influence function, which can also be multivariate. In the ideal

situation such points contain much information about the parameter. In the robust

context, however, it might be dangerous to induce correspondingly large bias values if

outliers shift mass to this x value.

From the definition of the ALEs (Def. 2.17) it is easy to see, that the trace of the co-

variance of any ALE is just the expected squared Euclidean norm of the corresponding

influence function. From the other side, the absolute information is simply the squared

Euclidean norm of the influence function evaluated at the trace of the empirical covari-

ance matrix. Hence, the values of the total information also represent the contribution

of each observation to the corresponding trace of the covariance.

Here we use a squared norm scale. The reason is that we can either start with the ag-

gregation over the parameter dimensions, i.e. to sum up all the corresponding squares,

Figure 2.4: ”Scale” and ”shape” components of (partial) influence curve for Gener-
alized Pareto family



36 Chapter 2. Robustness

or just aggregate over the observations. This double linearity in both parameter dimen-

sions and observations also makes it easier to quantify the respective contribution of

each parameter coordinate. This is what we call the relative information.

Hence, relative information plots can check percentage of the information, used per

observation for each parameter coordinate. For example, when some specific observation

assigns much less of its information to the scale than to the shape, it means, that it

contains more information about the tail behavior than about the overall scaling.

For this plot we also can use rescaling of the axes, alpha-transparency, and plot all

observations as circles of some specific sizes, which visualize additionally the total infor-

mation on the top of the relative information curves. As we mentioned before, this is

useful especially for the truly multivariate parameter setting.

To construct this plot we use the command infoplot(IC, data,...), with the wrapper

function InfoPlot(IC, data,...) for easier use.

Figure 2.5: Absolute information and relative information of ”scale” and ”shape”
components of (partial) influence curve for Generalized Pareto family

Using this diagnostic in our GPD context we get Figure 2.5 with three graphs. The

first one for the absolute information and other two for the relative information for each

parameter coordinate, scale and shape correspondingly. From the plots one can see

that most observations are used for the scale parameter of GPD, whereas the shape is

determined by few observations. Therefore we conclude that most observations contain
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more information about the overall scaling, whereas only few of them are used for the

tail behavior.

QQ Plot

The next plot we consider is the QQ plot. It checks the goodness of fit of the statistical

model and describes how well the model fits a set of observations. QQ plots can be

used to compare two probability distributions, either empirical distributions of two data

samples or an empirical distribution with a theoretical one, by plotting their quantiles

against each other.

For QQ plots we use log-rescaling for both axes. Moreover, on the graph, the true log-

quantities on the x-axis are plotted against estimated log-quantities on the y-axis. In

the literature QQ plots are shown in the inverse way, i.e. with interchanged x and y

axes. Here we also have an option to flip the graph, but by default we leave it as it is.

Additionally, assuming that we are aware of 5% outliers in the data, we produce two

types of 95%-confidence intervals: the outlier-adjusted pointwise and simultaneous con-

fidence bands, which are based on the Central Limit Theorem and the Kolmogorov-

Smirnov test statistics correspondingly. Alternatively, for parametric models one can

use the profile based confidence intervals, as it is done in Coles (2001). They are even

narrower than the pointwise or simultaneous bands, but in that case we restrict our-

selves to the parametric models only. In the robust setting it is basically better to have

nonparametric models. Another point here is that these intervals can only distinguish

different parameter values within the GPD model, but we always assume that the model

is GPD model. Therefore, we deside for the outlier-adjusted pointwise and simultaneous

confidence intervals.

The plot is called in general by the command qqplot(data,model, ...).

After applying QQ plot to our GPD model one can see from the Figure 2.6, that the

curve has quite linear behavior. Only after the value of 10 on the abscissa, the curve

starts to deviate a bit from the linearity. Moreover, as expected, the pointwise confidence

interval, which is labeled by the green dotted lines, is narrower than the simultaneous

one, bounded by the red lines. One can see, that most of the observations more or less

fit the simultaneous interval, whereas observations with abscissa value larger than 10,

where the curve deviates from the linearity, also exceed the bounds of the pointwise

confidence interval. Here, as before, each observation is plotted as a circle with the

radius according to the influence on the parameter estimation.
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Outlyingness Plot

Outlyingness plot can be used for the identification of outliers. In the article of Hubert et al.

(2005) distance-distance (dd), distance-projection (dp) and projection-projection (pp)

plots are distinguished. These plots can be constructed by the function dd.plot plugging

various distances in the function.

The first candidate for the distance is the Mahalanobis distance, which is very sensitive

to the presence of outliers. For the observation x and the group of observations with the

mean µ and covariance matrix Σ, the Mahalanobis distance is defined by the expression:

dm(x) =
√

(x− µ)TΣ(x− µ). (2.20)

It might be unclear from the first look, that Mahalanobis distance can be heavily affected

by single extreme observation, or group of outliers. The reason is the sensitivity of the

arithmetic mean µ and the sample covariance matrix Σ to outliers. Moreover, in the

presence of outliers, applying classical methods can lead to masking effects, i.e. large

outliers can hide some group of small ouliers, so they can no longer be identified. The

benefit of robustness here is that we can protect ourselves against this masking effect by

using robust minimum covariance determinant (MCD) estimator, see Todorov (2009),

to estimate the covariance for the Mahalanobis distance.

Therefore, we apply robust estimation to the location and scale in the formula for the

Mahalanobis distance and get the so-called robust distances (RDs). Then, we construct

the distance-distance graph (dd.plot) by plotting the classical Mahalanobis distance

Figure 2.6: QQ plot with outlier-adjusted symmetric pointwise and simultaneous
α = 95%-confidence intervals for Generalized Pareto family
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based on the ordinary sample covariance matrix of the data against the robust distance

obtained using MCD estimator.

A similar technique can be used for the distance-projection plot for the GPD, where

the Mahalanobis distance of the score function is plotted against the log-transformed

theoretical GPD quantiles.

The function outlyingPlotIC(data, IC.class, IC.rob, ...) constructs the corre-

sponding outlyingness plot.

Applying the outlyingness plot we can identify outliers according to both size and influ-

ence. The influence in this case is measured at the classical, non-robust scale. Here it

is crucial to determine parameter by robustness. However, to distinguish observations,

it is important for the plot to use non-robust criteria. For x-axis it is usually more

convenient to use rescaling according to log.

To construct the plot we use small set of the data (100 points) to get better look of the

plot and to be able to recognize particular observations.

Figure 2.7: Outlyingness according to the size (vertical line) and the influence (hori-
zontal line) of the outliers for Generalized Pareto family

On Figure 2.7 one can see two red cutoffs. The vertical line is made for the size and the

horizontal is drawn for the influence of outliers. Both cutoffs are chosen according to

robust procedures. Then, we get the critical area inside right upper quadrant and claim

that all observations which fall into it are suspicious to be outliers. The data taken to

construct the plot contains one outlier, which falls into the quadrant of interest.
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On this plot we use labeling for suspicious observations. This feature is very important,

because it gives us the opportunity to look behind the label and identify particular

observation. Then, user can analyze this data point and decide if it is an outlier. As

one can see in our example, observation in the critical area is labeled by number 98.

Model outlyingness was, to some extent, discovered before, but not in an automated

setting for usage with extreme value distributions as is now achieved in package RobEx-

tremes, which is one of our contributions in this PhD thesis. Therefore, one of our main

contributions is the application of Model Outlyingness in the extreme value context.

Cniper Plot

Using robust estimation we analyze data only on the outliers themselves, but it is also

very important to check their influence on the underlying estimator. Considering con-

tamination of the sample as in (2.16), we have to decide how small Xdi can be so that we

still get considerable bias of the estimator and the candidate robust procedure becomes

profitable, i.e. it beats the classic one. To do so, we do not admit arbitrary outlier gen-

erating distributions, but only contaminations by Dirac measures at some well-chosen

gross error points. The notion of the cniper contamination and its interpretation can be

found in the PhD thesis of Kohl (2005).

The main purpose of the cniper plot is to analyze the effect of an extra outliers on the

estimator. By means of this plot one can distinguish cniper points, i.e. points s.t. under

contamination with Dirac measures at these points the minimax risk for the optimally

robust estimator is smaller than for the classical optimal estimator.

So on the cniper graph we plot the dirac points against the asymptotic risk difference for

classical and robust estimation procedures and pay attention to the observations above

the x-axis. It helps us to find points which cause the optimally robust estimator to

perform better than the classical optimal estimator.

To compute this cniper plot we use the function cniperPointPlot(L2Fam, data, ...).

Analyzing Figure 2.8 we conclude that, as far as the asymptotic risk difference for the

classical and robust estimators is negative, classical procedure is preferable and we do

not suspect outliers presence. However, for all points above the x-axis, robust estimation

is better than the classical one, so these observations become suspicious and, similar to

the previous plot, they can be identified using their labels.



Chapter 2. Robustness 41

2.6.3 Main features

There are some general plotting features, available in any plot function in R. These are

the titles for the whole plot, or for each axis, the coloring, line attributes, e.g the width,

the type of the lines e.g. dashed or dotted, character symbols and others. Of course, it

is not the full list of them, but there are some special features, which we count as our

contribution to the diagnostics. Although each feature is shown only on some or even

none of the plots, they are all available for each diagnostic plots.

On the first plots (2.2, 2.3 and 2.4) we use the alpha-transparency, which describes the

concentration of the observation in one point of coordinate system.

Most of the plots (see e.g. Figures 2.2, 2.3, 2.4, 2.5 and 2.6) plot each observation as

a circle with the radius according to the total influence on the parameter estimation.

We already mentioned before, that it might be very useful for the higher dimensional

parametric models, when it is not possible to display all parameter coordinates. Using

circles one can see the influence of the coordinates which are not displayed on the

parameter estimation.

In Section 2.6.1 we introduced the idea and the importance of rescaling. On the Figures

2.2, 2.3, 2.6 and 2.7 we apply the log-rescaling for some or both axes. Rescaling helps to

draw some very large observations, that have some important impact on the procedure,

but can be omitted due to the limited amount of data.

Here we took the influence curves for the MLE of GPD scale and shape parameters and

rescaled both axes. One can see that for the x-value ”infinity” one can make sure that

the influence function of the MLE is unbounded for the shape.

Figure 2.8: Cniper points for Generalized Pareto family
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In Figure 2.7 we also used labeling, which let us determine observations behind the labels

in order to be able to analyze them.

For the influence curve plot there is the additional option to draw the rug plot. This

is the compact way of illustrating the marginal distributions of the variable along the

axis. The positions of the data points are denoted by tick marks or circles. Formally,

the rug plot is the series of short lines along the axis, positioned at each value of the

data variation.

2.6.4 Wrapper function example

To give an example of the wrapper function we consider the diagnostic we used to plot

Figure 2.2. The wrapper function used there for the influence curve plot is computed for

the ML-estimation (see Section 2.6.2) is PlotIC. It has the following input parameters:

IC - object of class IC - influence curve;

data - optional data argument for plotting observations in the plot;

... - additional parameters of the wrapper function;

alpha.trsp - alpha-transparency argument, made for better view of plots with high

number of points. Any number from 0 to 100 can be given as an input, meaning

a percentage of the transparency of the points. As a default value we use an

automatically adjusted transparency argument which depends on the number of

points to be plotted;

Figure 2.9: Rescaled ”scale” and ”shape” components for classical optimal influence
curve for Generalized Pareto family
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with.legend - indicator for showing the legend of the plot, which by default is set to

be TRUE and the legend is drown;

rescale (scaleX, scaleY) - the flag for rescaling the axes for a better view of the

plot. Rescaling is done automatically for the user if the corresponding argument

rescale of the wrapper functions is set to be TRUE (then both axes are rescaled).

If the user wants to rescale one axis, he may set respective argument, scaleX or

scaleY, to be TRUE. By default, these arguments, however, are set to be FALSE.

withCall - the flag for the call output. Since the wrapper functions are thought to

give some easy first look at the corresponding diagnostic plot, it can be useful for

user to see, which parameters the wrapper have given to the diagnostic plot by

default. For this purpose, the argument withCall is introduced, which has the

default value TRUE.

The wrapper has the following usage:

PlotIC(IC, data, ..., alpha.trsp, with.legend, rescale ,withCall)

The simplest way to use the wrapper function PlotIC, is to take all possible parame-

ters values by default. Additionally, to see these default values, we set the parameter

withCall to be TRUE, i.e. we use the function:

PlotIC(ICmle, data0, with.call=TRUE)}

Figure 2.10: Example of the wrapper function usage when all parameters are taken
by default

Beside drawing this plot, which is the same as in Figure 2.2, except color adjustment

and other style options, this wrapper function gives as an output the true call of the

original diagnostic plot PlotIC:
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plot(adj = 0.5, alpha.trsp = 50, bmar = par("mar")[1], bty = "o",

cex = 1.5, cex.inner = 0.8, cex.lab = 1.5, cex.main = 1.5, cex.pts = 0.3,

col = "blue", col.inner = par("col.main"), col.lab = "black", col.main =

"black", col.MBR = par("col"), col.pts = addAlphTrsp2col(rgb(0, 255, 0,

maxColorValue = 255), substitute(50)), inner = TRUE, jitter.fac = 1,

legend.bg = "white", legend.cex = 0.8, legend.location = "bottomright",

lty.MBR = "dashed", lwd.MBR = 0.8, main = FALSE, MBR.fac = 2, MBRB = NA,

mfColRow = TRUE, panel.first = grid(), pch.pts = 19, return.Order =

FALSE, scaleN = 9, scaleX = FALSE, scaleY = FALSE, sub = FALSE,

tmar = par("mar")[3], with.call = TRUE, with.lab = FALSE, with.legend =

FALSE, withMBR = FALSE, withSweave = getdistrOption("withSweave"),

x = ICmle, y = data0)

We mentioned before in Section 2.6.2, that the wrapper functions already implemented

for diagnostics are follows:

• CniperPointPlot is the wrapper for cniperPointPlot,

• InfoPlot is the wrapper for infoPlot,

• ComparePlot is the wrapper for comparePlot,

• PlotIC is the wrapper for plot.

More about these functions can be found later in the paper of Ruckdeschel et al. (2014a).

2.7 Software infrastructure

RobASt (Robust Asymptotic Statistics) is the family of R-packages, which consists of

distr-family packages created mostly by M. Kohl and P. Ruckdeschel. Version 2.6 of

these packages is used in this thesis. More precisely, these are the following packages:

• The R-package distr provides classes for distributions, including discrete distri-

butions e.g. Binomial, Poisson etc. and absolute continuous distributions, e.g.

Normal, Exponential, Uniform etc. There are corresponding calls for the random

number generator, density, cumulative distribution and quantile functions, which

are identical for both types of distributions. The methods, available in the package,

cover simple arithmetic operations with distributions as well as more complicated

once. The vignette of this package is written by Ruckdeschel et al. (2005), and a

detailed description of it can be found in Ruckdeschel et al. (2006).

• The R-package distrEx extends the package distr, introducing the expectation

operator (see Kohl and Ruckdeschel (2005) and Ruckdeschel et al. (2006)). The
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main benefit of this package is that this expectation operator can be used for

extreme value distributions.

• The R-package distrMod widely uses distribution classes from the package distr,

as well as functions and methods from the package distrEx. In addition, it includes

functions and methods to compute maximum likelihood and the minimum distance

estimators (see Ruckdeschel and Kohl (2008) and Kohl and Ruckdeschel (2010)).

Moreover, it represents the most flexible implementation of the minimum criterion

estimators for the univariate distributions available in R so far.

• The R-package distrSim is created for the standardized treatment of simulations,

also under contaminations (see Ruckdeschel et al. (2006)).

• The R-package distrTEst contains classes and methods for evaluations of sta-

tistical procedures on such simulations and can also be found in the article of

Ruckdeschel et al. (2006).

• The R-package distrTeach creates illustrations for basic statistics courses using all

distribution classes (see more in Ruckdeschel et al. (2008a) and Ruckdeschel et al.

(2008b)).

Except for the distr-family packages, the RobASt-family contains other robust paskages

(for each package the version 1.0 is used), i.e.

• The R-package RandVar provides classes for the random variables or vectors, which

extends and requires the packages distr and distrEx. It applies all arithmetic

(and matrix) operations, possible in R with numeric variables (vectors), to the ran-

dom variables and some further methods which can be found in Kohl and Ruckdeschel

(2013b).

• The R-package RobAStBase (see Kohl and Ruckdeschel (2013e)) includes some nec-

essary S4 class infrastructure like neighborhoods, influence curves and robust mod-

els.

• The R-package ROptEst provides classes for optimally-robust estimation in in-

finitesimal robustness setup (see Kohl and Ruckdeschel (2013c)). Using this pack-

age we are able to construct asymptotically linear estimators, one-step-estimators

etc. and apply various methods to them. Optimally-robust estimators can be

constructed for different neighborhood types, risks, bias-types and norms.

• The R-package RobLox includes functions for the computation of many well known

influence curves (e.g., Huber-, Hampel-, Tukey- etc.) for normal location and scale

in the framework of our asymptotic setup (see Kohl and Ruckdeschel (2013a)).
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• The R-package RobRex, which can be found in Kohl (2013), provides computation

of the optimally robust ICs for regression and scale parameters in regression-type

models.

• The R-package ROptRegTS (see Kohl and Ruckdeschel (2013d)) contains functions

and methods for optimally robust estimation for regression and time series models.

There are another R-packages on robustness submitted to CRAN, e.g package robustbase

(see Todorov and Filzmoser (2009) and Rousseeuw et al. (2012)), based on the book of

Maronna et al. (2006), and package robust which can be found in Wang et al. (2014).

Both are aimed to provide maximum tools for analyzing data with robust methods.

Corresponding versions 0.91.1 and 0.4.16 of those packages are used here.

2.8 R-package RobExtremes

Here we present new member of the RobASt-family of R-packages, package RobExtremes

(see Ruckdeschel et al. (2013)). This package is based on and extends the framework of

most packages mentioned above - distr and RobASt families of R-packages available on

CRAN.

Package RobExtremes provides infrastructure for optimally robust estimation in scale-

shape models, covering Gamma, Weibull, and in particular generalized Pareto distribu-

tion and generalized extreme value distribution models.

As starting estimators for the Generalized Pareto and Generalized Extreme Value Distri-

bution models, RobExtremes implements general Location-Dispersion (LD) estimators

including the high-breakdown point estimators medSn, medQn, and medkMAD discussed in

Ruckdeschel and Horbenko (2012).

To speed-up computation of the optimally-robust estimators and overcome problems

caused by limited equivariance structure of the scale-shape models, package RobExtremes

applies interpolation technique. Moreover, all diagnostics discussed in Section 2.6 belong

to the package RobExtremes. Version of this package used for computing the plots and

for other examples is 1.0.

In the paper Ruckdeschel et al. (2014a) one can find four reference examples from ex-

treme value statistics on how to use this package on the real data sets covering hospital

length of stay, liquidity risk, operational risk of a bank, and hydrology.
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2.9 Conclusions

Main goal of this Chapter is to give some understanding of robustness and get to know

some notions and methods from robust statistics. At the beginning of this Chapter we

have briefly discussed the concept of robustness itself and made some literature overview

concerning this topic.

Next, we introduced parametric model, which is the basis of our further research, and

gave some examples of it. Here we defined notions of the absolute continuity, smoothness

and L2 differentiability. Then, we presented important for our research result of Hájek,

which contains conditions for L2 differentiability of the parametric model and for better

understanding checked this conditions for Binomial and GEV parametric models.

Further, we introduced different types of neighborhoods and then focused on the con-

tamination neighborhoods based on the Gross Error Model.

Then we devoted one Section to the different notions which capture local or global

robustness, including influence function and breakdown point.

In the next two Sections we introduced the most common classical estimators and gave

some simple examples of computing these estimators in software programming language

R. Next we defined optimally robust estimators.

At the end of the Chapter we paid attention to the model diagnostics already imple-

mented in new R-package RobExtremes, which draws diagnostic plots to see different

aspects of the taken model. We also gave the overview of the software infrastructure

including our new package RobExtremes in the last Section.





Chapter 3

Extreme value statistic

Extreme value theory (EVT) has been developed in parallel with the central limit theory,

but instead of the partial sums, EVT is concerned with the stochastic behavior of the

sample extremes, i.e. the minimum or the maximum of i.i.d. random variables. It plays

the same fundamental role in the extremes of the random variables as the central limit

theorem (CLT) in their sum. More precisely, we take the sample of the i.i.d. random

variables and let its size tend to the infinity. Then we get some limiting distributions for

the extreme values of the sample. These distributions are defined as the extreme value

distributions. They are widely used in finance, insurance, economics, telecommunications

and many other industries dealing with extreme events. Extreme value distributions are

also often used in hydrology to model some natural phenomena, e.g. sea levels, river

heights, stream flows, and rainfall, in order to obtain the distribution of the annual

maxima.

Extreme value theory studies these kinds of the distributions and their properties. It

is the theory of modeling events which occur with very small probability, so-called rare

events. Per definition, risky events happen with low probability, therefore, EVT is very

useful in the risk modeling. The statistical analysis of extreme data is important for the

various disciplines, including not only hydrology, insurance, finance, but also engineering

and environmental sciences.

Origins of the extreme value theory go back to the research of Firsher and Tippett (1928)

and Gnedenko (1943), but the first allusion on it appears even earlier, in the articles

of Bortkiewicz (1922), where the distribution of the largest value is introduced for the

first time; of Tippett (1925), in which the exact cumulative distribution function and

moments of the largest order statistic are studied; and Fréchet (1927), where one possible

limit distribution for the largest order statistic is defined. Next year, authors of the

article Firsher and Tippett (1928) showed, that extreme limit distribution can only be

49
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one of three types. Along with Tippett and Fisher, well-known German mathematician

Gumbel plays an important role in the development of the EVT, especially his work

Gumbel (1958).

Due to the large variety of the applications, analysis of the extremes became popu-

lar area for the research and a lot of books and articles on the extreme value the-

ory have appeared. H. Harter wrote an authoritative bibliography of EVT, see Harter

(1978); authors of the book Leadbetter et al. (1983) worked with the extremes of the

stationary processes; books and articles of Kotz and Nadarajah (2000), Coles (2001),

de Haan and Ferreira (2006), Reiss and Thomas (2007) and Falk et al. (2011) provide

a self-contained introduction to the analysis of extremes and their applications in the

different fields. Publications of Castillo (1988) are well-known by applications of EVT

in engineering and science. Beirlant et al. (1996) and Embrechts et al. (1997) provide a

practical analysis of extreme values with emphasis on finance and insurance applications.

Similarly to Chapter 2, here we restrict ourselves to giving only some part of the EVT,

which is used in the next sections of the thesis. In each Section we refer to the relevant

monographs, where detailed overview of one or the other concept can be found. Theo-

retical background of this Chapter is mainly taken from the books of Embrechts et al.

(1997), Kotz and Nadarajah (2000) and Falk et al. (2011).

3.1 Basic concepts

3.1.1 Extreme value distributions

As was already mentioned, extreme value distributions are the limiting distributions for

the extreme values of the i.i.d. sample. Two main members of this family are generalized

extreme value distribution and generalized Pareto distribution.

Generalized extreme value distribution

In probability theory and statistics, the generalized extreme value distribution (GEVD),

derived by Firsher and Tippett (1928), is a family of the continuous probability distribu-

tions, which combines into a single form three possible types of the limiting distribution

for extreme values. In some applications GEVD is also known as Fisher-Tippett distri-

bution.
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In the Example 2.4 we introduced simplified form of the generalized extreme value

distribution, i.e. by the cumulative distribution function (2.3). Here we give the general

definition of GEVD.

Definition 3.1 (GEVD). The generalized extreme value distribution GEVD(µ, σ, ξ) is

defined by the c.d.f. of the following form :

QGEVD
µ,σ,ξ (x) =

{
exp
(
− (1 + ξ x−µσ )

− 1
ξ
)
, ξ 6= 0

exp
(
− exp(−x−µ

σ )
)
, ξ = 0,

(3.1)

for the input domain 1 + ξ x−µσ > 0. Support of GEVD(µ, σ, ξ) corresponds to

x ∈


(µ− σ

ξ ,∞), ξ > 0

(−∞, µ− σ
ξ ), ξ < 0

(−∞,∞), ξ = 0.

GEVD is specified by three parameters: location parameter µ ∈ R, positive scale pa-

rameter σ > 0 and the shape ξ ∈ R, which governs the tail behavior of the distribution.

GEVD can be also described by the density and quantile functions, given in Chapter 2

by the equations (2.4) and (2.5) correspondingly. Just to remind, these are the following

functions:

qGEVD
µ,σ,ξ (x) =

1

σ
(1 + ξ

x− µ
σ

)
− 1
ξ
−1

exp
(
− (1 + ξ

x− µ
σ

)
− 1
ξ
)
,

FGEVD
µ,σ,ξ (y) = µ− σ

ξ
(1− (− log y)−ξ).

Definition 3.2. Family of the probability distributionsQ is called location-scale (affine)

invariant, if for all constants a ∈ R and b ∈ R+, and for all X ∼ Q ∈ Q, affine

transformation a+ bX has is Q′-distributed, i.e. a+ bX ∼ Q′, and Q′ ∈ Q.

Remark 3.3. Note, that GEVD family is location-scale invariant. In other words, using

affine transformations of the data we do not leave the model class.

Definition 3.4. Function F : X 7→ Y is called location-scale (affine) equivariant, if it

is not affected by the affine transformations, i.e. for all constants a ∈ R and b ∈ R+,

and for all x ∈ X, holds that F (a+ bx) = a+ bF (x).

Remark 3.5. If we consider transformation acting on the location and the scale pa-

rameters, T : (0, 1) 7→ (µ, σ), then one can immediately see from the structure of

the quantile function, that GEVD is equivariant w.r.t. location µ and scale σ, i.e.

FGEVD
µ,σ,ξ (y) = FGEVD

T (0,1),ξ(y) = µ+ σFGEVD
0,1,ξ (y).

For the completeness we define standard generalized extreme value distribution GEVD(ξ)

(as in Embrechts et al. (1997, Def. 3.4.4)), specified only by the shape parameter ξ,
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taking the expression (x− µ)/σ as an argument for the distribution function, i.e.

QGEVD
ξ (x) =

{
exp
(
− (1 + ξx)

− 1
ξ
)
, ξ 6= 0

exp
(
− exp(−x)

)
, ξ = 0.

The tail distribution function for any distribution with c.d.f. Q(x) is defined as:

Q(x) = P(X > x),

then one can define the long (right) tail distribution as the one, with the tail distribution

satisfying:

lim
x→∞

P(X > x+ t|X > x) = lim
x→∞

Q(x+ t)

Q(x)
= 1.

Working with the statistical distributions, one also can distinguish the thick or heavy

tails, meaning that they converge to zero slowly in the extremes. More precisely, distri-

bution with c.d.f. Q(x) is called heavy-tailed, if its tail distribution decays slower than

exponentially, i.e.

lim
x→∞

eλxQ(x) =∞ for all λ > 0.

Any long-tailed distribution is heavy-tailed, but not vise versa. It is possible to construct

heavy-tailed distributions that are not long-tailed.

The way to measure the ”thickness” of the tail for heavy-tailed distribution is to use the

tail-index.

Definition 3.6 (Tail-index). For the distribution with c.d.f. Q(x) and quantile function

F (x), the tail-index is defined as follows:

α =
F (0.99)− F (0.5)

F (0.75)− F (0.5)

/Φ(0.99)− Φ(0.5)

Φ(0.75)− Φ(0.5)
,

where Φ(x) is the standard normal quantile function. Obviously, for the Normal distri-

bution tail-index is equal to 1.

Remark 3.7. Another important index, which can be used to measure the degree of

clustering is called extremal index. The definition and the further explanations of it one

can find in the book of Leadbetter et al. (1983).

Remark 3.8. GEVD family depends on the tail index, moreover, the tail-index for it can

be expressed in the terms of the shape parameter, i.e. α = 1/ξ. Often, for the estimation

of the shape, tail-index estimation is used. There are some well-studied estimators for

it, e.g. Hill estimator introduced by Hill (1975).
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Due to this relation between the shape and the tail-index, one can distinguish three

sub-families of the GEVD w.r.t. the shape parameter, which have different types of the

tails.

More precisely, for the zero shape it is called the Gumbel distribution (see Gumbel

(1958)). In Figure 3.1 one can see, that this distribution has light (medium) upper tail

and it is positively skewed. Whereas if the shape is positive, we obtain the Fréchet

distribution (see Fréchet (1927)) with heavy upper tail. For the negative shape it is

called the Weibull distribution (see Weibull (1939, 1951)), the distribution with bounded

(short) upper tail.

The Weibull distribution has a larger index of tail weight than an exponential when the

shape parameter is small, and the index decreases as the shape increases.

Figure 3.1: Generalized extreme value distributions: Gumbel, Fréchet, Weibull

Cumulative distribution functions for these sub-families of the GEVD are:

• Gumbel or type I extreme value distribution (ξ = 0):

Gumbel = QG
µ,σ(x) = e−e

x−µ
σ , x ∈ R (3.2)

• Fréchet or type II extreme value distribution (ξ = α−1 > 0):

Fréchet = QF
µ,σ,ξ(x) =

{
0, x ≤ µ
e−(x−µ

σ
)−α , x > µ.

(3.3)

• Weibull or type III extreme value distribution (ξ = α−1 < 0):

Weibull = QW
µ,σ,ξ(x) =

{
e−(x−µ

σ
)−α , x < µ

1, x ≥ µ.
(3.4)
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Generalized Pareto distribution

Generalized Pareto distribution (GPD) is another extreme value distribution, specified

by the same set of parameters, i.e. the location µ ∈ R, the scale σ > 0 and the shape

ξ ∈ R.

Definition 3.9 (GPD). The cumulative distribution function of the generalized Pareto

distribution GPD(µ, σ, ξ) is of the form:

QGPD
µ,σ,ξ(x) =

{
1− (1 + ξ x−µσ )

− 1
ξ , ξ 6= 0

1− e−
x−µ
σ , ξ = 0.

(3.5)

The support of the GPD(µ, σ, ξ) corresponds to

x ∈

{
(µ,∞), ξ ≥ 0

[0, µ− σ/ξ) , ξ < 0.

GPD can be described by the density function of the form

qGPD
µ,σ,ξ (x) =

{
1
σ (1 + ξ x−µσ )

− 1
ξ
−1
, ξ 6= 0

1
σe
−x−µ

σ , ξ = 0.
(3.6)

Density function qGPD
0,1,0.7(x) is plotted in Figure 3.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
2

0.
6

pd
f

µ = 0
ξ = 0.7
σ = 1

Figure 3.2: Generalized Pareto distribution

Quantile function of the GPD is the following

FGPD
µ,σ,ξ (y) = µ− σ

ξ
(1− (1− y)−ξ). (3.7)
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Remark 3.10. Similarly to the GEVD, the GPD family is location-scale invariant and

equivariant. Moreover, moving the threshold affects the scale but not the shape, i.e. if

we use some transformation to the location parameter µ 7→ µ′, then σ 7→ σ′, but ξ 7→ ξ.

Remark 3.11. The tail-index (see Def. 3.6) of the GPD can be also expressed in terms

of the shape parameter ξ, i.e. α = 1/ξ.

We define standard generalized Pareto distribution GPD(ξ) (as in Embrechts et al. (1997,

Def. 3.4.9)), specified by the shape ξ, taking the expression (x−µ)/σ as an argument x

for the distribution function, i.e.

QGPD
ξ (x) =

{
1− (1 + ξx)

− 1
ξ , ξ 6= 0

1− e−x, ξ = 0.
(3.8)

The special cases of the GPD w.r.t. some specific parameter values are the following

• Exponential distribution (µ = 0, σ = λ−1 and ξ = 0):

QE
λ (x) = 1− e−λx, x ≥ 0. (3.9)

• Uniform distribution (µ = a,σ = b− a and ξ = −1,):

QU
a,b(x) =


0, x < a
x−a
b−a , x ∈ [a, b)

1, x ≥ b.
(3.10)

• Pareto distribution (µ = σ/ξ = xm, σ > 0 and ξ = α−1 > 0):

QP
xm,α(x) =

{
1− (xmx )α, x ≥ xm
0, x < xm.

(3.11)

3.1.2 Extreme value theorems

There are two well-known general results in the extreme value theory regarding asymp-

totic distribution of extreme order statistics. These extreme value theorems are called

Fisher–Tippett–Gnedenko theorem (see Firsher and Tippett (1928), Gnedenko (1943))

and Pickands–Balkema–de Haan theorem (see Balkema and de Haan (1974), Pickands

(1975)). Next we give the statements of these theorems.
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Fisher–Tippett–Gnedenko theorem

Fisher–Tippett–Gnedenko theorem, also called the first theorem in the extreme value

theory, shows that the GEVD is the only possible limit distribution for the properly

normalized maximum of the sequence of i.i.d. random variables. More precisely, follow-

ing the formulation taken from the book of Falk et al. (2011, Thm. 2.1.1), this theorem

states:

Theorem 3.12 (Fisher–Tippett–Gnedenko theorem). Let {X1, ..., Xn} be the sample of

i.i.d. random variables. Denote the maximum of the sample as Mn = max {X1, ..., Xn}.
If for some constants an > 0 and bn ∈ R holds

lim
n→∞

P
(Mn − bn

an
≤ x

)
= Q(x), (3.12)

where Q is the non-degenerate distribution function, then the limit distribution Q is

GEVD, i.e. it belongs to one of three sub-families: the Gumbel, the Frećhet or the

Weibull family.

Remark 3.13. Theorem does not state that a limit distribution exists: this additionally

requires regularity conditions on the tail of the distribution.

Pickands–Balkema–de Haan Theorem

The Pickands–Balkema–de Haan theorem is also called the second theorem in the ex-

treme value theory. It states that the best approximation of any tail distribution for the

data above the threshold is GPD.

To give the statement of the following theorem, first we need to define so-called condi-

tional excess distribution function (see Embrechts et al. (1997, Def. 3.4.6)). It is condi-

tional distribution over a certain threshold u (in practice threshold is sufficiently large),

i.e.

Qu(x) = P(X − u ≤ x|X > u) =
Q(u+ x)−Q(u)

1−Q(u)
,

for the values 0 ≤ x ≤ xQ − u, where xQ is the right endpoint of the distribution Q.

Then Balkema and de Haan (1974) and Pickands (1975) posed the following theorem.

Theorem 3.14 (Pickands–Balkema–de Haan Theorem). Let {X1, ..., Xn} be the sample

of i.i.d. random variables with distribution function Q. Then hold that

lim
u→∞

Qu(x) = QGPD
µ,σ,ξ(x),

for the GPD QGPD
µ,σ,ξ(x) with the c.d.f. (3.6).
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3.1.3 Relation between GEVD and GPD

One can see from the expressions (3.1) and (3.5), that c.d.f. of the GPD can be formu-

lated in terms of the GEVD c.d.f. in the following way

QGPD
µ,σ,ξ(x) = 1 + log(QGEVD

µ,σ,ξ (x)).

From this expression one concludes, that whenever we have convergence in one distribu-

tion, we have it in the other one as well. Moreover, this expression is the key to another

relations between GEVD and GPD, which we present further.

Maximum domain of attraction

We start with the definition of the maximum domain of attraction taken from the book

of Embrechts et al. (1997, Def. 3.3.1).

Definition 3.15 (Maximum domain of attraction). We say that random variable X,

as well as its distribution function Q, belongs to the maximum domain of attraction

of the GEVD, denoting it as X ∈ MDA(QGEVD
µ,σ,ξ ), if convergence (3.12) holds for some

constants an > 0 and bn ∈ R.

Relation between maximum domains of attraction of the GEVD and the GPD can be

described by the property presented in Embrechts et al. (1997, Th. 3.4.13). It states that

for every ξ ∈ R distribution function Q belongs to the MDA of the standard GEVD, i.e.

Q ∈ MDA(QGEVD
ξ ), iff

lim
u↑xQ

sup
0<x<xQ−u

|Qu(x)−QGPD
0,σ(u),ξ(x)| = 0,

for some positive function σ. This characterisation of the MDA of GEVD immediately

leads to the definition of the GPD (see also Embrechts et al. (1997, Th. 3.4.5)).

Remark 3.16. It is important to note, that the scale σ is the function of the threshold

u, whereas the shape is constant. Therefore, changing the threshold has affects on the

scale but not on the shape.

Block maxima and peak-over-threshold

Here we present two approaches of analyzing the extreme values or fitting extreme value

distributions, called block maxima approach and peak-over-threshold (POT) method,

see Embrechts et al. (1997, Ch. 6), Coles (2001) and Ferreira and de Haan (2013). The
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POT method is developed by Pickands (1975), so the block maxima approach is the

older one (see e.g. Gumbel (1958)).

The idea of the block maxima approach is to divide the data into non-overlapping

blocks of equal length and restrict attention to the maximum observation in each block,

e.g. annual maxima of daily precipitation amounts. Right choice of the block size is

very important, because too small size can lead to the bias and with too big size, we

can generate too few block maxima and get large estimation variance (see Coles (2001,

Ch. 3)). Then, by the Fisher-Tippett-Gnedenko theorem, new observations created by

this approach approximately follow GEVD. Therefore, the block maxima approach is

closely associated with the use of the GEVD family.

By the peak-over-threshold method, suggested by hydrologists, we chose some certain

high threshold value and select those of the initial observations, which exceed this thresh-

old. As one can conclude from the Pickands-Balkema-de Haan theorem 3.14, probability

distribution of these selected observations, under extreme value conditions, is approxi-

mately the GPD. Again, a bias may appear, since GPD is not the exact distribution of

the selected observations.

Remark 3.17. These two approaches are closely related. Moreover, we get convergence

in the block maxima to the GEVD iff we have convergence of the POT against the GPD.

Besides, the limiting shapes for both approaches coincide.

On the one hand, the POT seems to make better use, since it picks up all relevant high ob-

servations and it is justified under exact well-known conditions (see Ferreira and de Haan

(2006)). However, the block maxima method is preferable when the observations are not

exactly i.i.d., e.g. seasonal periodicity in the case of the yearly maxima. Moreover, the

block maxima method may be easier to apply, since the block periods appear naturally

in many real situations.

3.2 Model smoothness

In this Section we discuss the Hájek conditions (H.1)-(H.3) from Proposition 2.9 for the

introduced extreme value distributions.

3.2.1 Smoothness of GEVD

We start with the generalized extreme value parametric model from the Example 2.4. We

let location parameter µ be unknown and consider three dimensional general parameter

θ = (µ, σ, ξ) ∈ Θ ⊂ R× R+ × R.
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The density function qGEVD
θ , given by (2.4), is absolutely continuous in each θ ∈ Θ,

except singularity point ξ = 0, therefore, Hájek condition (H1) is fulfilled for all ξ 6= 0.

In order to check the second condition, we compute the derivative ∂
∂θq

GEVD
θ (x) =

ΛGEVD
θ (x) qGEVD

θ (x). As we mentioned in the Example 2.12, the L2 derivative for the

GEVD takes up the structure of the parameter, therefore, it consists of three coordinates,

one for the location, one for the scale and one for the shape, i.e.

ΛGEVD
θ = (ΛGEVD

µ ,ΛGEVD
σ ,ΛGEVD

ξ )T

Next, we compute these L2 derivative coordinates, and using notations z := x−µ
σ and

s := 1 + ξz, we get the following

ΛGEVD
µ =

(ξ + 1)− s−
1
ξ

sσ
,

ΛGEVD
σ =

z(1− s−
1
ξ )− 1

sσ
,

ΛGEVD
ξ =

1

ξ

(
1− s−

1
ξ
)(1

ξ
log s− s

z

)
− s

z
.

Therefore, the L2 derivative for the GEVD exists for all ξ 6= 0 and Hájek condition (H2)

is fulfilled.

Another singularity point for the GEVD is ξ = −1/2. This is reflected by the the Fisher

information matrix IGEVD
θ = EθΛ

GEVD
θ (ΛGEVD

θ )T, which in the case of three parameters

if 3× 3 symmetric matrix of the form:

IGEVD
θ = diag(σ−1, σ−1, ξ−1)


Iµµ Iµσ Iµξ

Iµσ ξ−2Iσσ ξ−2Iσξ

Iµξ ξ−2Iσξ ξ−2Iξξ

 diag(σ−1, σ−1, ξ−1).

We calculate all components of this Fisher information matrix an get the following

Iµµ = (ξ + 1)2Γ(2ξ + 1), Iµσ = (Γ(ξ)− 2(ξ + 1)Γ(2ξ))(ξ + 1),

Iµξ = (2(ξ + 1)Γ(2ξ)− (ξ + 2)Γ(ξ)− ξΓ′(ξ))(ξ + 1),

Iσσ = (ξ + 1)2Γ(2ξ + 1)− 2Γ(ξ + 2) + 1,

Iσξ = −(ξ + 1)2Γ(2ξ + 1) + (ξ + 3)Γ(ξ + 2) + (ξ + 1)(ξ2Γ′(ξ)− 1)− ξΓ′(1),

Iξξ = (ξ + 1)2Γ(2ξ + 1)− 2Γ(ξ + 3)− 2ξ2(ξ + 1)Γ′(ξ)+

+2ξ(ξ + 1)Γ′(1) + ξ2(Γ′′(1) + (Γ′(1))2) + (ξ + 1)2.
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Therefore, the third Hájek condition (H3) is fulfilled, as long as ξ ∈ (−1/2, 0) or ξ > 0.

Then, by Proposition 2.9, generalized extreme value parametric model is continuously L2

differentiable with the L2 derivative ΛGEVD
θ and the Fisher information matrix IGEVD

θ .

3.2.2 Smoothness of GPD

For the generalized Pareto parametric model, only the case of µ known is studied until

now, therefore, we restrict ourselves to this case. We consider parameter θ = (σ, ξ) ∈
Θ ⊂ R+ × R.

The density function qGPD
θ , given by equation (3.6), is absolutely continuous in each

θ ∈ Θ, except the singularity point ξ = 0, therefore, the first Hájek condition is fulfilled

for ξ 6= 0.

In order to check the condition (H2), first, we compute the derivative ∂
∂θq

GPD
θ (x) =

ΛGPD
θ (x) qGPD

θ (x). Similarly to the GEVD case, the L2 derivative for the GPD model

takes up the structure of the parameter, i.e. it consists of two coordinates, one for the

scale and one for the shape. Therefore, with the same notations as before, we obtain L2

derivative for the GPD model of the form

ΛGPD
θ = (ΛGPD

σ ,ΛGPD
ξ )T, (3.13)

where

ΛGPD
σ = − 1

σ
+

(1 + ξ)z

σs
, ΛGPD

ξ =
1

ξ2
log(s)− (

1

ξ
+ 1)

z

s
. (3.14)

Hence, for ξ 6= 0 the L2 derivative exists and the condition (H2) is fulfilled.

For the last Hájek condition we find the Fisher information matrix for the GPD model.

We obtain the following

IGPD
θ = EθΛ

GPD
θ (ΛGPD

θ )T =
1

1 + 2ξ

 1
σ2

1
σ(ξ+1)

1
σ(ξ+1)

2
(ξ+1)

 . (3.15)

From this matrix we get the second singularity point ξ = −1/2. Then, the third Hájek

condition (H3) is fulfilled as long as ξ ∈ (−1/2, 0) or ξ > 0 and, by the Proposition 2.9,

generalized Pareto parametric model is continuously L2 differentiable with the L2 deriva-

tive ΛGPD
θ and the Fisher information matrix IGPD

θ .
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3.3 Robustness properties of the GPD estimator

In this Section we make brief overview of the existing results concerning the different

estimators for the scale and the shape parameters of the generalized Pareto model and

discuss their global and local robustness properties. We focus mainly on the results pre-

sented in the papers of Ruckdeschel and Horbenko (2010) and Ruckdeschel and Horbenko

(2012), and in the PhD-thesis of Horbenko (2011). In particular, these authors consider

maximum likelihood and skipped maximum likelihood estimators, moment-based and

Cramér-von-Mises minimum distance estimators.

In the paper of Ruckdeschel and Horbenko (2012), authors discussed two options for

the highly-robust, easy-to-compute initial estimators,i.e. Pickands-type and Location-

Dispersion-type estimators, e.g. kMedMAD (see Horbenko (2011, Ch. 6.5)). PhD-thesis

of Horbenko (2011) also contains all optimally robust estimators which were presented

in Section 2.5. In the listed researches the estimators are computed together with their

finite sample breakdown points (FSBP), influence functions and statistical accuracy

measured by asymptotic bias, variance, and mean squared error.

3.3.1 Likelihood based estimators

For the parameters of the GPD model there is no explicit solution of the MLE. Influence

function of the MLE is of the form:

IF (x,MLE, QGPD
θ ) = (IGPD

θ )−1ΛGPD
θ (x) = (ψξ(x), ψσ(x))T,

for the score function ΛGPD
θ as in (3.13) and the Fisher information IGPD

θ from (3.15).

According to asymptotic minimax theorem (see Rieder (1994, Thm. 3.3.8)), the MLE

attains the smallest asymptotic variance among all asymptotically linear estimators.

For the shortness we introduce additional notations z := x−µ
σ and u := (1 + ξz)

− 1
ξ , then

influence function of the MLE consists of the following terms

ψξ(u) =
ξ + 1

ξ2
(−(ξ2 + ξ) log u+ (2ξ2 + 3ξ + 1)uξ − (ξ2 + 3ξ + 1)),

ψσ(u) =
ξ + 1

ξ2
(ξ log u− (2ξ2 + 3ξ + 1)uξ + 3ξ + 1).

In the paper of Ruckdeschel and Horbenko (2010, Sec. 2.2.) influence function for the

skipped maximum likelihood estimators is also computed. As well as MLE, the SMLE

enjoys the same asymptotic equivariance.
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3.3.2 Cramér-von-Mises minimum distance estimators

Following Horbenko (2011, Sec. 6.2), the influence function for the Cramér-von-Mises

minimum distance estimator for the GPD model is of the form

IF (x,MDE, QGPD
θ ) = (Jθ)−1(ϕξ(x), ϕσ(x))T,

where the Cramér-von-Mises information matrix is given as

Jθ = 3(ξ + 3)2

(
18(ξ+3)

2ξ+9 −3σ

−3σ 2σ2

)
.

The explicit terms of this influence function are the following

ϕξ(x) =
19 + 5ξ

36(3 + ξ)(2 + ξ)
− 1

2ξ2
(1 +

ξ

σ
x)−2/ξ log(1 +

ξ

σ
x) +

2− ξ
4ξ2

(1 +
ξ

σ
x)−2/ξ−

− 1

ξ2(2 + ξ)
(1 +

ξ

σ
x)−2/ξ−1,

ϕσ(x) =
5 + ξ

6(3 + ξ)(2 + ξ)σ
− 1

2ξσ
(1 +

ξ

σ
x)−2/ξ +

1

ξσ(2 + ξ)
(1 +

ξ

σ
x)−2/ξ−1.

Apparently, the same (asymptotic) in-/equivariance as for the MLE and SMLE holds

for the Cramér-von-Mises minimum distance estimator as well.

3.3.3 Method of moments estimators

Method of moments estimators for the shape and the scale parameters of the GPD are

following

ξ̂
MME

=
m2 − 2m2

1

m2 −m2
1

, σ̂MME =
m1m2

2(m2 −m2
1)
,

with

m1 =
σ

1− ξ
, m2 =

2σ2

(1− ξ)(1− 2ξ)
.

The influence function of the method of moments estimator for the GPD is computed

in the PhD-thesis of Horbenko (2011, Sec. 6.3) and has the following form

IF (x,MME, QGEVD
σ,ξ ) = D(x−m1, x

2 −m2)T,

where matrix D is also calculated, i.e.

D =

(
2(ξ−1)2(2ξ−1)

σ
(2ξ−1)2(ξ−1)2

2σ2

(4ξ − 3)(ξ − 1) (2ξ−1)2(ξ−1)
2σ

)
.
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3.3.4 Starting estimators

In the PhD-thesis of Horbenko (2011), author estimates the GPD parameters in a ro-

bust way, taking as the starting estimator Pickands (-type) estimator or applying newly

developed Median-kMAD (kMedMAD) method. Definition of the Pickands estimator is

introduced in the Section 2.4.6, hence, here we only present the estimators and the influ-

ence function for the GPD parameters. As for the kMedMAD estimator, we give its defi-

nition and link to Horbenko (2011, Ch. 6.5) and the paper of Ruckdeschel and Horbenko

(2010) for the detailed computation.

Quantile-based estimators

For this Section we let location parameter of GPD be known, i.e. µ = 0 and denote

empirical 50% and 75% GPD quantiles as F2 and F3 correspondingly. Then, Pickands

estimators for the GPD scale and shape parameters are

ξ̂
PE

=
1

log 2
log
(F3 − F2

F2

)
, σ̂PE = ξ̂

F 2
2

F3 − 2F2
.

Influence function for the Pickands estimator can be separated to two coordinates, one

for each parameter, i.e.

IF (x,PE, QGPD
σ,ξ ) = (IFξ(x,PE, QGEVD

σ,ξ ), IFσ(x,PE, QGEVD
σ,ξ ))

Following Rieder (1994, Ch. 1.5) one can also calculate influence function for each pa-

rameter by the following expression

IFk(x,PE, QGPD
σ,ξ ) = hk1

0.75− 1(x ≤ F (0.75))

1/σ(0.25)1+ξ
+ hk2

0.5− 1(x ≤ F (0.5))

1/σ(0.5)1+ξ
,

where k distinguishes shape and scale parameter IF, function F is the quantile function

of the GPD and hki, i = 1, 2 are the weights, i.e. hki = ∂k̂/∂Fi+1. For the Pickands

estimator we also have (asymptotic) equivariance.

Location-dispersion estimators

For the computation of the estimates for some specific parametric family of probability

measures with the scale and shape parameters, one can use location-dispersion estimator.

The idea of this estimator is to match location and dispersion functionals against em-

pirical counterparts. There is the R-function LDEstimator in the package RobExtremes,

which provides a general way to do that.
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In particular, in our research we focus on the scale and shape estimators, presented

in the paper of Ruckdeschel and Horbenko (2010). They are based on the matching

empirical median, denoted by m̂n, and the median of absolute deviations (MAD) M̂n

against their population counterparts m and M within the GPD model. For k > 0 we

define

kMAD := inf
{
t > 0|QGPD

σ,ξ (m+ kt)−QGPD
σ,ξ (m− t) ≥ 1/2

}
where k = 1 reproduces MAD. Corresponding estimator for ξ and σ is called kMedMAD

and consists of two estimating equations, one for the median and one for the respective

kMAD. The first equation, using the quantile function of the GPD, FGPD
σ,ξ , converts to

the following

m = m(ξ, σ) = FGPD
σ,ξ (0.5) =

σ(2ξ − 1)

ξ
.

The second equation has to be solved numerically, searching for the unique root M of

the function

fm,ξ,σ;k(M) = −ν+ + ν− − 0.5,

where

ν+ := (1 + ξ
kM +m

σ
)
− 1
ξ , ν− := (1 + ξ

m−M
σ

)
− 1
ξ .

Influence function for such estimator is computed in the paper of Ruckdeschel and Horbenko

(2010). Moreover, it is shown that the reasonable choice of k is the value k = 10. This

estimator is also implemented in the R-package RobExtremes and the function for it is

named medkMAD.

Hybrid estimator

There is the essential drawback of the kMedMAD estimator. Solving corresponding

equations for it, with the value k = 10, can fail even for the small sample size (n = 40).

To be safe from such fails hybrid estimator Hybr can be used. By default this estimator

returns kMedMAD for k = 10, but if procedure fails, it tries another values of k. Hybrid

estimator takes starting value k = 3.23, then, each value of k which results in a failure,

multiplied by factor 3. It stops either when success has been achieved and returns the

first estimator which did not fail, or when after 20 attempts with the different values

of k have been made. medkMADhybr is the R-function for this type of the estimator. It

is available in the package RobExtremes. For more details about hybrid estimator see

Horbenko (2011, Ch. 6.5).
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3.4 Robustness properties of the GEVD estimators

Analogically to the case of GPD from the previous Section, here we construct some

estimators, presented from Section 2.4, for the GEVD, what has not been done yet.

Further, we analyze their robustness properties and compute influence function for each

estimator. We start with the classical moment based estimator and then pass over to

the Cramér-von-Mises minimum distance estimator. All results described in this Section

are new and belong to my own results.

3.4.1 Method of moments estimators

As we mentioned in Section 2.4.5, method of moments estimator can be computed by

matching the sample moments with the corresponding distribution moments. In the case

of GEVD(µ, σ, ξ), with known location parameter µ, the first and the second empirical

moments are enough to estimate scale and shape. These first two theoretical moments

are respectively:

m1 =
σ(g1 − 1)

ξ
, m2 = σ2 g2 − 2g1 + 1

ξ2
(3.16)

where we used notations g1 and g2 for the corresponding Gamma functions, i.e. gk :=

Γ(1−kξ), k = 1, 2. here we restrict ourselves to ξ < 0.5, so that second moment is finite.

in order to construct method of moments estimator, we have to solve system of equations

(3.16) w.r.t. the unknown parameters ξ and σ. We express the scale from the first

equation in terms of the first moment and the shape, i.e.

σ =
ξm1

g1 − 1

and plug it in the second equation, so we get

m2 =
m2

1(g2 − 2g1 + 1)

(g1 − 1)2
.

For the shape we do not get the explicit solution. Estimator ξ̂
MME

is the value of ξ

which satisfies the following equality

m2
1 −m2 = −m2

1Γ(1− 2ξ) +m2Γ2(1− ξ) + 2(m2
1 −m2)Γ(1− kξ),

and for parameter σ we get corresponding estimator

σ̂MME =
ξ̂

MME
m1

Γ(1− ξ̂)− 1
.



66 Chapter 3. Extreme value statistic

Theorem 3.18. The influence function of the method of moments estimator for the

GEVD has the following form

IF (x,MME, QGEVD
σ,ξ ) = D(x−m1, x

2 −m2)T,

where matrix D consists of the terms

d11 =
2ξ2(g2 − 2g1 + 1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1))
,

d12 =
−ξ((g′2 − 2g′1)ξ − 2(g2 − 2g1 + 1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1))
,

d21 =
−ξ3(g1 − 1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1))
,

d22 =
ξ2(g′1ξ − g1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g2 − 2g′1))
,

for the Gamma function gk = Γ(1− kξ) and ξ < 0.5.

Proof of this Theorem can be found in Appendix A.1.

3.4.2 Cramér-von-Mises minimum distance estimators

Theorem 3.19. The influence function of the Cramér-von-Mises minimum distance

estimator is of the from

IF (x,MDE,QGEVD
σ,ξ ) = J −1

θ

(
ϕξ(x), ϕσ(x)

)T
,

where Cramér-von-Mises information matrix contains the following terms

J11 =
1

27ξ2σ

(
− Γ′′(3) + 2 ln 3Γ′(3)− 2(ln(3))2 +

2

ξ3ξ
(Γ′(ξ + 3)− ln 3Γ(ξ + 3))−

−2

ξ
(Γ′(3)− 2 ln 3)− 1

ξ232ξ
Γ(2ξ + 3) +

2

ξ23ξ
Γ(ξ + 3)− 2

ξ2

)
,

J12 =
1

27ξ2σ2

( 1

3ξ
(Γ′(ξ + 3)− ln 3Γ(ξ + 3))− Γ′(3) + 2 ln 3 +

1

ξ32ξ
Γ(2ξ + 3)−

− 2

ξ3ξ
Γ(ξ + 3) +

2

ξ

)
, J22 =

1

27ξ2σ3

(
− 1

32ξ
Γ(2ξ + 3) +

2

3ξ
Γ(ξ + 3)− 2

)
.

Functions ϕξ(x) and ϕσ(x) for the influence function are computed and of the form

ϕξ(x) =
1

ξσ

( 1

2ξ+2ξ
Γ
(
ξ + 2, (1 + ξ

x− µ
σ

)
− 1
ξ

)
− 1

4

(
(1/ξ − log 2)Γ(2, u)+
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+Γ′
(

2, (1 + ξ
x− µ
σ

)
− 1
ξ

))
+
( 1

3ξ+2
− 1

2ξ+2

)1

ξ
Γ(ξ + 2) +

5

36ξ
+

5

36
Γ′(2) +

log 3

9
− log 2

4

)
,

ϕσ(x) =
1

ξσ2

(1

4
Γ
(

2, (1 + ξ
x− µ
σ

)
− 1
ξ

)
− 1

2ξ+2
Γ
(
ξ + 2, (1 + ξ

x− µ
σ

)
− 1
ξ

)
+

+
( 1

2ξ+2
− 1

3ξ+2

)
Γ(ξ + 2)− 5

36

)
.

Proof of this Theorem one can be found in Appendix A.2.

3.4.3 Starting estimator for GEVD and GPD

As we mentioned in Section 3.3.4, author of the PhD-thesis Horbenko (2011) tried the

kMedMAD method and the Pickands (-type) estimators as the starting estimators for the

GPD parameters. Although kMedMAD worked decently well for a wide range of shape

parameters, still, it failed from time to time. In the case of the GEVD for the kMedMAD

and, similarly, for the Pickands estimator, this was much worse and the starting estimator

failed in many occasions. Therefore, there was need for some improvement.

The first promising idea was to use the Cramér-von-Mises MDE. But in the case of the

multidimensional parameter this involves a call to the R-function optim, hence, needs a

starting estimator again. But this is not as bad as it appears on the first glance.

For the one-dimensional parameter Cramér-von-Mises minimum distance estimator uses

the R-function optimize as a line search, which only needs a reasonable search interval.

Therefore, the idea is to fix some value of the shape parameter ξ and robustly determine

scale σ by Cramér-von-Mises MDE. In this way we compute an admissible starting

estimator for the joint-estimation of both parameters σ and ξ, i.e. using notations from

the Chapter 2, estimation of the parameter θ = (σ, ξ) ∈ Θ ⊂ R+ × R.

The only drawback of this idea is the deterministically chosen starting value for the

shape ξ. Moreover, we are not the only ones to fix ξ deterministically (see R-packages

evir, isevm and others).

In order to improve this situation, we decide to use a deterministic grid of the shape

values to start with. For each start ξ we get the corresponding Cramér-von-Mises MDE

scale σ and in the second step, we get the joint minimum distance estimate of both pa-

rameters, together with the corresponding Cramér-von-Mises distance value. By means

of the latter, we can order the obtained (σ, ξ)-pairs so that the ”optimal” θ then is

optimal for the set of all starting ξ-s. This strategy is cumbersome in the sense, that it

involves multiple starting values, but this also adds an insurance not to miss the best

(σ, ξ)-pair due to the falsely chosen suboptimal ξ in the beginning.
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Summarizing, we use the following algorithm for the GPD parameter estimation:

St.1. Try out the hybrid estimator using R-function medkMADhybr,

if medkMADhybr does not fail and no errors appear, we get estimate θ0 = (σ0, ξ0):

St.2. Evaluate the Cramér-von-Mises MDE, with the R-function MDEstimator, for

the pair (σ, ξ) with the starting value obtained from the hybrid estimation

θ0 = (σ0, ξ0), to get new value of the parameter and distance value for it.

St.3. Check whether this parameter estimate is admissible and set current best

value of distance to d0.

if medkMADhybr fails:

St.2. Run through the prescribed grid for the shape parameter
{
ξ0
i

}
. For each

fixed value of the shape from the grid ξ0
i determine the respective univariate

Cramér-von-Mises MDE σ0
i .

St.3. Use the pair (σ0
i , ξ

0
i ) as the start for the Cramér-von-Mises MDE of the pa-

rameter θ to compute estimate θi = (σi, ξi).

St.4. Afterwards, check the admissibility of this estimate, i.e. if the condition

1 + σ/ξ(x− µ) > 0 is satisfied.

St.5. If it is admissible, check whether θi generates new optimal distance di.

St.6. If so, store current optimal distance di and respective θi and return the opti-

mal admissible pair (σi, ξi).

For the GEVD algorithm is similar. The only difference is that instead of the hybrid esti-

mator medkMADhybr, we start with the Pickands estimator (R-function PickandsEstimator)

taken by default.

3.5 Software infrastructure

The order of the packages in this Section is caused by their appearance.

The R-package evd is created by Stephenson (2002) and focused on the distributions

which often arised in the analysis of the extreme values. Moreover, it contains functions

for the simulation and calculation of the distribution, density and quantile functions,

for the various univariate and multivariate parametric extreme value distributions. The

package provides fitting functions which calculate the maximum likelihood estimates
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for the univariate and bivariate models, and for the univariate and bivariate threshold

models. The current version of this package is version 2.3.0.

Later, the R-package evir was submitted to CRAN by Pfaff and McNeil (2012). This

package is primarily designed for applying extreme value methodology to the financial

data. It implements standard stationary univariate extreme value modeling, including

maximum likelihood fitting of the GPD and GEVD. The package provides functions

for the calculating expected shortfalls and quantiles, for the extracting records and

declustering, and for the estimating the extremal index. The version 1.7.3 of the package

is available in CRAN.

One of the main R-packages on the extreme value statistics is the package ismev, created

by Heffernan and Stephenson. (2012). It is based on the book of Coles (2001), which

provides an introduction to the topic at a relatively simple statistical level. The functions

of the package cover estimation of the distributions for the block maxima and threshold

model approaches. The package includes functions for diagnosing the quality of the fitted

distributions e.g., probability and qq-plots, histograms, as well as the functions useful

for the selection of the appropriate threshold for the threshold models. The current

version of this package is 1.39.

The R-package extRemes is essentially a graphical user interface to the package ismev,

created by Gilleland and Katz (2011) the same year. Nevertheless, it includes some

additional functionality. In particular, for the GEVD and GPD it allows L-moments

estimation for the stationary case and has some capability for the extremal index and

the number of clusters calculation. The last version of the package available in CRAN is

2.0.1.

The R-package fExtremes was built by Wur̈tz in 2009 as an open source solution for

teaching financial market analysis (see Rmetrics software collection). It provides explicit

calculation of the financial measure known as value-at-risk. The package is developed

using codes from other R-packages, e.g. evd and evir. Functions for the univariate

simulation and distribution functions are available, as well as the estimation of the

stationary models for the GEVD and GPD using maximum likelihood and probability

weighted moments. Current version of the package 3010.81 can be found in Wuertz

(2013).

Other R-packages on the extreme value theory are POT discussed in Ribatet (2007) and

focused only on the modeling of exceedances over a threshold; SpatialExtremes (see

Ribatet and Singleton (2013)) devoted to the modeling of spatial extremes and others.

More detailed list of the packages and deeper description of them, one can find in the

article of Gilleland et al. (2013).
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The R-package RobExtremes, already mentioned in the Section 2.8, also covers scale-

shape models with Gamma, Weibull, and extreme value distributions, i.e. GPD and

GEVD models. As it was mentioned, it contains infrastructure for the LD estimators

and optimally-robust estimation with speed-up by interpolation technique.

3.6 Conclusions

In the beginning of this Chapter we described the main ideas of the Extreme Value

Theory and gave some overview of the sources concerning this topic. In the first Section

we introduced some basic concepts, used further in this thesis, including two main types

of the extreme value distributions: generalized extreme value and generalized Pareto

distributions. The importance of these distributions is caused by two main theorems

of extreme value theory regarding asymptotic distribution of extreme order statistics,

which were also presented in this Chapter.

Next, we devoted one Section to the discussion of the smoothness of the generalized

extreme value and generalized Pareto parametric models, checking Hájek conditions,

introduced in the previous Chapter. We obtained the explicit form of L2 derivative and

Fisher information matrix for each model.

Then, we discussed robustness properties of some estimators for the generalized Pareto

parametric model, giving the brief overview of the published results. Afterwards, we

proved similar results for the classical moment based and Cramér-von-Mises minimum

distance estimators for the GEVD scale and shape parameters.

At the end of the Chapter, we presented software infrastructure concerning extreme

value theory available in R and stressed the functionality of our package RobExtremes.
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Chapter 4

Structured models

4.1 Regression models

So far GEVD and GPD context potentially ignored additional information available for

each observation. This information could make our statements more precise in the sense

that parameters of extreme value distributions could now vary from the observation to

observation. That is how we come to the idea of regression in our approach.

From the other side, one could also get more precise statements about the time sequences

of the observations, i.e. if we have the dynamic model it would show how observation

today depends on the observation yesterday. Therefore, we set up time-series models for

GEVD and GPD context and state-space models provide very flexible setup to do that.

As we already mentioned in the Section 1.1, time series models with the time-varying pa-

rameters categorized onto two classes: observation driven models and parameter driven

models.

Observation driven time dependency leads to the time variation of the parameters by

making them dependent on their own lagged values, past observations, and exogenous

variables, or even some specific functions of them. Although the parameters are stochas-

tic, they are usually predictable given the past information. Hence, in this context we

introduce state-space models and Kalman filtering procedure as the estimation proce-

dure for the state in the presence of noise.

The alternative to the observation driven models are parameter driven models. Here

parameters are stochastic processes, which are subject to their own source of error.

Therefore, the parameters are not perfectly predictable given the past and the current

observations. Typical example of the parameter driven time dependency is the general-

ized linear model, which is further introduced.

73
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In this Chapter we give the overview of the theory and notions needed for the next

two Chapters of the thesis, where our main achievements are presented. Therefore,

here we cover two main topics, i.e. Kalman filtering for the state-space models and L2

differentiability of the generalized linear models.

One remark to be done here is related to the title of the Section. We claim that both

topics can be considered in the regression context. It is obvious for the generalized linear

models, whereas for the SSM with Kalman filtering one needs some more explanations

of this statement.

The idea of connection between the Kalman procedures and the regression theory can

be obtained from the lemma, which is proved in the articles of Dunkan and Horn (1972)

and Cipra and Romera (1991), and later, is taken over in the PhD thesis Ruckdeschel

(2001, Ch. 3). This lemma states, that classical Kalman filter can be considered as

a weighted least-squares regression estimator. Proof of this statement one can find in

Ruckdeschel (2001, Lemma 3.1.1). Moreover, in the next Section we show that any

state-space model has regression representation.

4.2 Dynamics

As we already mentioned, here we are going to introduce the state-space models, which

build a flexible but still manageable class of the dynamic models. These models are

useful for a wide range of the applications. As an example, master thesis of Pupashenko

(2011) is focused on the engineering application in the context of the GPS problem with

linear and non-linear state-space formulations.

Kalman filter is first described and partially developed in the technical papers of Kalman

(1960) and Kalman and Bucy (1961). Together with the Kalman filtering procedures

and their extensions, state-space models become even more useful. Nevertheless, for the

full use of the Kalman procedures we lack robustness. We discuss this drawback and

our ways out of it later, in Chapter 5.

4.2.1 State-space models

The mathematical notion for a fixed rule which describes the time dependence of a point

in the geometrical space is called dynamical system. At any specific time, dynamical

system has a state, given in the form of the set of real numbers or the vector, that can

be represented by the point in an appropriate state (geometrical) space. To describe

these dynamical systems one can use state-space representation.
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State-space models (SSM) are originally developed by control engineers for some naviga-

tion applications. They are also very useful in many types of the time-series problems,

e.g. forecasting problem. To introduce state-space models we focus on the books of

Chatfield (1996) and Brockwell and Davis (2002) and link to them for the deeper study.

It is typical that when we measure any sort of a signal, we get it contaminated by some

noise, so that the actual observation is given as some combination of the signal and noise.

As in any dynamical system, the signal in the state-space model can be expressed in

terms of so-called state variables, which constitute the state vector. This vector describes

the state of the whole system at some specific moment of time. The state vector cannot

be observed directly, hence we use the observations to make inference about the state

vector.

General state-space model is composed from two equations. We consider SSM consisting

of an unobservable p-dimensional state Xt and the time series of q-dimensional obser-

vations Yt . The state-space models are based on the Markov property, hence the state

vector summarizes all information from the past that is necessary to predict the future.

Therefore, the first equation of the state-space model, so-called state equation, is the

following

State equation: Xt = ft(Xt−1, ut, vt), (4.1)

with p−dimensional random vectors, called innovations vt, some user defined control ut

and sequence of the smooth known state update functions ft.

The second equation of the state-space model is called observation equation. It is an

expression of the q-dimensional observations in terms of the states, involving some addi-

tional error εt, user defined control wt and corresponding sequence of the smooth known

output functions zt,

Observation equation: Yt = zt(Xt, wt, εt) (4.2)

In the ideal setup we work in a Gaussian context, i.e. we assume

vt ∼indep. Np(0, Qt), εt ∼indep. Nq(0, Vt), X0 ∼ Np(a0, Q0), (4.3)

and {X0, vs, εt; s, t ∈ N} stochastically independent.

If there exists a state-space model (4.1) and (4.2) for the time series {Yt} we say that

this time series has the state-space representation.

In general, functions ft and zt are arbitrary. Here, as the special case of the general

SSM, we also consider its linearization, linear SSM. The state and observation equations
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of the linear SSM are autoregressive processes of the first order and the system can be

written in the following matrix form:

State equation: Xt = FtXt−1 + vt, (4.4)

Observation equation: Yt = ZtXt + εt, (4.5)

for the corresponding transition matrices Ft ∈ Rp×p and observation matrices Zt ∈ Rq×p.

The convenience of the linear state-space representation lies in the simple structure of

the state equation 4.4, which makes analysis of the state process relatively simple.

For our research, we assume all hyper–parameters of the SSM, i.e. Ft, Zt, Qt, Vt, a0, to

be known.

4.2.2 Kalman filter

The most important problem in the state-space modeling is the estimation of the signal

in the presence of the noise. In other words, we are interested in the ”best estimator”

of the unobservable states Xt by means of the observations Yt.

Following abbreviation of the paper of Ruckdeschel et al. (2014b), we denote the series

of the observations as Y1:t = (Y1, . . . , Yt), Y1:0 := ∅ and σ-algebra generated by this

series as σ(Y1:t). By the ”best estimator” we mean that it is the minimum mean square

error estimator, i.e. the solution to the following equation

E
∣∣Xt − ft

∣∣2 = minft , ft measurable w.r.t. σ(Y1:s) (4.6)

The general solution of the problem (4.6) is the conditional expectation E[Xt|Y1:s], which

is usually rather expensive to compute. Therefore, Kalman (1960) introduced another

way to obtain the ”best estimator” for the state vectors when the next observation

becomes available, well-known as Kalman filter (KF). Moreover, if all observations are

given in advance, we can further improve estimation procedure by using so-called Kalman

smoother, which computes the estimate of the state vector based on all observation data.

Next, we present both procedures in the classical setup.
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4.2.2.1 Classical Kalman procedures

Classical Kalman filter

Here we present the classical Kalman filter for the linear state-space model (4.4) and

(4.5). Kalman filter is an recursive procedure which has three stages called initialization,

prediction and correction.

The first step, initialization, defines the base of the recursions. Since in the assumptions

(4.3) the initial state vector has multivariate Gaussian distribution, i.e. X0 ∼ Np(a0, Q0),

we take these distribution parameters as the initial values.

On the prediction step of the filter we compute the best one-step predictor Xt|t−1, which

is the random vector whose components are the best linear mean square predictors in

terms of all components of the observations Y1, ..., Yt−1. Afterwards, we pass over to the

correction step and obtain the best estimator Xt|t, based on the observations Y1, ..., Yt.

More precisely, we get the following recursive scheme to compute the optimal linear

filter:

Initialization: X0|0 = a0, Σ0|0 = Q0; (4.7)

Prediction: Xt|t−1 = FtXt−1|t−1, Σt|t−1 = FtΣt−1|t−1F
T
t +Qt; (4.8)

Correction: Xt|t = Xt|t−1 +Kt∆Yt, ∆Yt = Yt − Ztxt|t−1 (4.9)

Kt = Σt|t−1Z
T
t C
−1
t Σt|t = (Ip −KtZt)Σt|t−1, (4.10)

Ct = ZtΣt|t−1Z
T
t + Vt (4.11)

with Kalman gain Kt and covariance matrices Σt|t = Cov(Xt − Xt|t) and Σt|t−1 =

Cov(Xt −Xt|t−1).

One can notice that all steps of the filtering procedure inherit the linearity of the model,

what makes KF very easy to use.

Classical Kalman smoother

So far we considered the best estimator for the state vector Xt in terms of the ob-

servations up to time t, i.e. taking in account only the ”past” information. As we

have mentioned, there is a way to improve the estimator considering also the ”future”

observations related to the state vector. This method is called Kalman smoother.

In this thesis, for simplicity, we assume that all hyper-parameters of the state-space

model are given. In the other case, i.e. when hyper-parameters have to be estimated, one
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can use the Expectation-Maximization-algorithm (EM-algorithm), which can be found

in the article of Shumway and Stoffer (1982). EM-algorithm is an efficient iterative

procedure to compute the MLE in the presence of missing or hidden data. In the

master-thesis of Pupashenko (2011) EM-algorithm was applied explicitly to the linear

and quadratic state-space models.

In many situations, in particular for the estimation of the hyper-parameters applying

EM-algorithm, it is common to use filtered values in retrospective, accounting for the

information (observations) available in the meantime, i.e. use Kalman smoother.

Kalman smoother is the backward recursion, which takes the filtered estimate as the

initial condition. For the observations set {Y1, ..., YT } this procedure can be described

by the following scheme (see Anderson and Moore (1990, Sec.7.4, (4.5))):

Xt|T = Xt|t + Jt(Xt+1|T −Xt+1|t), Jt = Σt|tF
T
t Σ−1

t+1|t (4.12)

with smoothing covariance:

Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J
T
t . (4.13)

This recursive procedure is also easy and especially useful for online-purposes.

4.2.2.2 Extended Kalman procedures

Extended Kalman filter

If we consider the general (nonlinear) state-space model (4.1) and (4.2), we can use

the extended Kalman filter (see Wan and van der Merwe (2002)). The main idea of this

approach is to approximate the nonlinear system with the linear, using first-order Taylor

approximation. In this way one gets the following recursive scheme:

Initialization: X0|0 = a0, Σ0|0 = Q0;

Prediction: Xt|t−1 = ft(Xt−1|t−1, ut, v̄t), Σt|t−1 = FtΣt−1|t−1F
T
t +BtQtB

T
t ;

for Ft = ∂
∂xft(x, ut, vt)|xt−1|t−1

, Bt =
∂

∂v
ft(Xt−1|t−1, ut, v)|vt ,

Correction: Xt|t = Xt|t−1 +Kt∆Yt, ∆Yt = Yt − zt(xt|t−1wt, ε̄t)

Kt = Σt|t−1Z
T
t C
−1
t Σt|t = (Ip −KtZt)Σt|t−1,

Ct = ZtΣt|t−1Z
T
t + Vt

for Zt = ∂
∂xzt(x,wt, εt)|xt−1|t−1

, Dt =
∂

∂ε
ft(Xt−1|t−1, wt, ε)|εt .
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Extended Kalman smoother

Similarly, using linearization, one can write corresponding extended Kalman smoother

recursive equation in the form:

Xt|T = Xt|t + Jt(Xt+1|T −Xt+1|t), Jt = Σt|tF
T
t Σ−1

t+1|t,

for Jacobian matrices Ft = ∂
∂xft(x, ut, vt)|xt−1|t−1

.

4.3 Regression case

It is clear, that for the scale-shape models, e.g. GEVD and GPD models, the param-

eter domain is not the whole set of real numbers R, but one can link scale and shape

parameters to parameters βi ∈ R with the use of the link function. This is exactly the

concept of generalized linear models.

Generalized linear models were first introduced by Nedler and Wedderburn (1972) for

exponential families. There is a large amount of literature on these models and we cannot

refer all of them, hence we give only partial literature overview for the generalized linear

models.

For the basic information about the models we mainly refer to McCullagh and Nedler

(1989) and Fahrmeir and Tutz (2001). When it comes to the regularity assumptions,

we use literature where focus falls on the models from exponential families, e.g. articles

of Fahrmeir (1990) and Fahrmeir and Kaufmann (1985), although in some situations,

exponential families are a too narrow class.

In this thesis we are mainly interested in the asymptotic results and robustness for the

generalized linear models, more precisely, the local asymptotic normality in the sense

of Hájek (1972) and LeCam (1970). Therefore, our goal is to obtain smoothness of the

generalized linear models in terms of L2 differentiability. For the exponential families,

this has already been achieved by Schlather (1994).

In this Section we mostly focus on the book of Rieder (1994) and present the results

on L2 differentiability for linear regression models. Later, in Chapter 5, we generalize

them, covering higher dimensional error distributions and case of regressors of possibly

different length for each parameter.
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4.3.1 Generalized Linear Models

Definition 4.1 (Generalized linear model). Generalized linear model consists of three

elements.

(1) The first component, also called random component of the model, specifies the

conditional distribution of the response vector given the values of the explanatory

variables in the model. Usually, this probability distribution is taken from the

exponential family, denoted as Qϑ, with one or more dimensional parameter ϑ.

(2) If we regress this distribution and retain linearity, we get so-called linear predictor,

i.e. linear combination of the regressors and regression parameters

θ = Xβ = X1β1 + ...+Xpβp. (4.14)

Here regressors are prespecified functions of the explanatory variables.

(3) The last component of the model is smooth and invertible linearizing link function,

usually denoted by l, via which linear model is related to the regressors, i.e. ϑ =

l(θ) = l(Xβ).

Remark 4.2. One of the advantages of GLMs is that the structure of the linear predictor

is the familiar structure of a linear model. Moreover, linear predictor θ may take over

arbitrary real values, whereas ϑ usually is restricted as parameter of some distribution.

Further, we closely follow Rieder (1994, Ch. 2). As an example of a structured model

author considered the linear model with real-valued errors. The error distribution F is

required to have finite Fisher information of the location, i.e. F is dominated by the

Lebesgue measure λ and has absolutely continuous density f with derivative ḟ , s.t.

dF = fdλ, If = E(Λf )2 <∞, Λf = − ḟ
f
.

For the regression we can observe random and deterministic carriers, treating regressors

as random variables or using some given array of regressors correspondingly. Random

carriers can be typically applied to the time series models as (stochastic) past values

of the observation series, e.g. in hydrology. This example is discussed among other

applications, in Section 7.1. As for the deterministic carriers, one of the examples where

we need them is the planned treatment in the hospital context, where each patient gets

some medicine, which is not random and affects length of stay of the patient. More

about medical application one can find in Section 7.2.
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4.3.2 Random Carriers

The linear model may be brought back to the i.i.d. case by handling the regressors as

random variables, i.e. x1, ..., xn are i.i.d. realizations of the regressor x ∼ K for some

probability distribution K. Then, we create n i.i.d. observations of the form

yi = xT
i ϑ+ ui.

Here u1, ..., un are i.i.d. copies of the error u ∼ F , regressor x and error u are stochasti-

cally independent and parameter ϑ ∈ Θ.

The corresponding parametric model Q = {Qϑ|ϑ ∈ Θ} can be written in the form

Qϑ(dx, dy) = F (dy − xTϑ)K(dx) = f(y − xTϑ)λ(dy)K(dx). (4.15)

It is proved in the Rieder (1994, Theorem 2.4.7), that with some additional assumptions

model (4.15) is L2 differentiable at every ϑ ∈ Θ.

4.3.3 Deterministic Carriers

Case of the deterministic carriers for the linear regression is also proved in Rieder (1994,

Theorem. 2.4.2). In this setup we work with a given array of regressors xn,i for n ≥ 1

and 1 ≤ i ≤ in. Then, for unknown regression parameter ϑ ∈ Θ, we compute real-valued

observations in the following way

yn,i = xT
n,iϑ+ un,i,

where the errors un,1, ..., un,in are i.i.d. with distribution F .

The corresponding probabilities of the parametric model Qn,i = {Qn,i,ϑ|ϑ ∈ Θ} can be

written in the form

Qn,i,ϑ(dy) = f(y − xT
n,iϑ)λ(dy), (4.16)

for Lebesgue measure λ.

Next, we reformulate definition of the L2 differentiability (Def. 2.6) in more general

setting, i.e. for the stochastically independent variables which are not identically dis-

tributed (see Rieder (1994, Def. 2.3.8)).

Let (Ωn,i,An,i) be general sample spaces,M1(An,i) is the set of all probabilities on An,i
for n ∈ N and i = 1, ..., in. Consider array of parametric families of probability measures

Qn,i = {Qn,i,ϑ|ϑ ∈ Θ} ⊂ M1(An,i), with open parameter set of finite dimension Θ ⊂ Rp.
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Definition 4.3. Parametric model Q = (⊗ini=1Qn,i) is called L2 differentiable at fixed

ϑ ∈ Θ, if there exist an array of functions ΛQn,i,ϑ ∈ L
k
2(Qn,i,ϑ), s.t. for all i = 1, ..., in and

n ≥ 1 holds

En,i,ϑΛQn,i,ϑ = 0, (4.17)

and, for all ε ∈ (0,∞) and all t ∈ Rp

lim
n→∞

in∑
i=1

∫
{∣∣∣tT(IQn,ϑ)−

1
2 ΛQn,i,ϑ

∣∣∣>ε}
∣∣∣tT(IQn,ϑ)−

1
2 ΛQn,i,ϑ

∣∣∣2 dQn,i,ϑ = 0, (4.18)

and for all b ∈ (0,∞)

lim
n→∞

sup
|t|≤b

in∑
i=1

∥∥∥∥√dQn,i,ϑ+t −
√
dQn,i,ϑ(1 +

1

2
tT(IQn,ϑ)−

1
2 ΛQn,i,ϑ)

∥∥∥∥2

Lk2

= 0. (4.19)

Then, array (ΛQn,i,ϑ) is the L2 derivative and p×pmatrix IQn,ϑ =
∑in

i=1 En,i,ϑΛQn,i,ϑ(ΛQn,i,ϑ)T

is the Fisher information of the parametric model Qn,i at ϑ and time n.

Remark 4.4. Comparing to the Rieder (1994, Def. 2.3.8), we drop the local identifia-

bility condition IQn,ϑ > 0 with the same reasons as in Remark 2.7.

Remark 4.5. Parametric model Q is continuously L2 differentiable at fixed ϑ ∈ Θ, if

it is L2 differentiable and for each sequence hn → 0 ∈ Rp holds

lim
n→∞

sup
|t|≤b

in∑
i=1

∥∥∥√dQn,i,ϑ+hnUn,i,ϑ+hn(t)−
√
dQn,i,ϑUn,i,ϑ(t)

∥∥∥2

Lk2

= 0, (4.20)

where, for simplicity, we use additional notation for the following expression Un,i,ϑ(t) =

tT(IQn,ϑ)−
1
2 ΛQn,i,ϑ.

In Rieder (1994, Theorem 2.4.7) author shows, that for the deterministic carriers con-

ditions (4.18) and (4.19) follow from the (uniform) smallness of so-called hat matrix,

which is of the following form:

Hn = Hn;i,j = xT
n,i(

in∑
k=1

xn,kx
T
n,k)xn,j . (4.21)

This matrix should satisfy Feller type condition, i.e. it should get uniformly small along

with its diagonal,

lim
n→∞

max
i=1,...,in

Hn;i,i = 0, (4.22)

Remark 4.6. Condition (4.18) is also known under the name Lindeberg condition. It

is easy to check that Feller condition (4.22) follows from the Lindeberg condition, but

there are simple examples which prove that vice versa statement does not hold.
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4.4 Conclusions

Main goal of this Chapter was to show the relation between two main subjects of the

research, i.e. state-space models with the Kalman procedures and generalized linear

models with the concept of the L2 differentiability. First, we have explained why we treat

both models as the special models of the regression analysis. Moreover, we distinguished

two classes of the time series models with time-varying parameters and attached each

model to the class.

Then, we gave the overview of notions and methods used for our research, i.e. definition

of the state-space model, classical Kalman filter and smoother and extended Kalman

procedures for nonlinear state-space model. Next, we passed over to the second subject

of the research and introduced generalized linear models. We described the difference

between the random and the deterministic carriers for the regression model. Then,

we made deeper analysis, comparing to Section 2.1.2, of L2 differentiability notion and

presented existing results, concerning L2 differentiability, for the linear regression.





Chapter 5

Kalman filter

As we mentioned in the previous Chapter, classical Kalman filter does not perform very

well in the presence of outliers. However, there is the way to rewrite Kalman procedures

in the robust way. Here the input parameters are the model distributions, so robustness

should be understood in a distributional sense. We define suitable neighborhoods about

the ideal model and allow for the deviations in the respective assumptions, which capture

various types of outliers. Our research is mostly based on the approach of Ruckdeschel

(2001, 2010c) for distributional-robust Kalman filtering.

In this Chapter we summarize main findings of the paper Ruckdeschel et al. (2014b).

This paper presents new robust Kalman filters and smoothers as well as specialized

versions for non-propagating outliers. This is illustrated in the GPS application and at

the stylized outlier situation. Finally, the efficiency of our new procedures in comparison

to competitors is discussed.

As mentioned in the cited references, there is a huge amount of the existing liter-

ature on robustifications of the Kalman procedures. Since these methods are not

the main focus of the thesis, here we only refer the reader to review few articles

as Ershov and Lipster (1978), Kassam and Poor (1985), Stockinger and Dutter (1987),

Schick and Mitter (1994), Künsch (2001), Ruckdeschel (2001), Spangl (2008). For the

full literature overview on this topic we guide reader to the introduction of the paper

Ruckdeschel et al. (2014b).

5.1 Deviations from the ideal model

In Section 2.2, describing contamination of the sample, we used some special notations

borrowed from the paper of Ruckdeschel et al. (2014b). Since we are going to use them

85
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further, we repeat them briefly here. We denote the ideal model assumptions by suffix

”id”, distorting (contaminating) situation by ”di” and suffix ”re” indicates the realistic

contaminated situation.

First, we define different types of outliers. In time series it is common to distinguish

between system-endogenous outliers, which propagate, or -exogenous, non-propagating

outliers. For the notions of the types of outliers we use the terminology of Fox (1972),

but in a some more general sense. Fox distinguishes innovation outliers (IOs), which

affect the state and hence propagate and additive outliers (AOs), which only affect single

observations and do not propagate. Originally, for the linear state-space model AOs and

IOs are defined as follows:

Definition 5.1 (Innovation and additive outliers for linear SSM). The innovation and

additive outliers which affect the innovations and observation errors of the state-space

model (4.4) and (4.5) correspondingly defined as:

IO : vre
t ∼ (1− rIO)L(vid

t ) + rIOL(vdi
t ), (5.1)

AO : εre
t ∼ (1− rAO)L(εid

t ) + rAOL(εdi
t ), (5.2)

where L(vdi
t ) and L(εdi

t ) are arbitrary, unknown and uncontrollable distributions and

0 ≤ rIO ≤ 1, 0 ≤ rAO ≤ 1 are the IO- and AO-contamination radii, which specify the

sizes of the corresponding neighborhoods.

We use these notions of Fox in a wider sense:

• IOs denote endogenous outliers affecting the state equation in general, also covering

level shifts or linear trends;

• AOs denote general exogenous outliers which do not propagate. This also covers

substitutive outliers.

It turns out, that in order to obtain explicit solution it payoff to replace the outlier

model (5.2) by the following substitutive outlier (SO) model:

Y re = (1− U)Y id + UY di, U ∼ Bin(1, r) (5.3)

for SO-contamination radius 0 ≤ r ≤ 1, which specifies size of the corresponding neigh-

borhood. Here U is assumed to be independent of (X,Y id) and (X,Y id), as well as

observations Y di are independent of X. As usual, the contaminating distribution L(Y id)

is arbitrary, unknown and uncontrollable.
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As for the IOs, they assume that the state equation of the SSM is divided into two steps.

For the linear state-space model (4.4) and (4.5) this model is written in the form

X̃t = FtX
re
t−1 +vid

t , Xre
t = (1− Ũt)X̃t+ ŨtX

di
t , Y re

t = ZtX
re
t +(1− Ũt)εid

t , (5.4)

where Ũt and Xdi
t are defined in analogy to Ut and Y di, i.e. with independence from all

ideal distributions and the past.

Due to the different nature of these outliers, we differently react to the presence of IOs

and AOs. AOs are usually downweighted as far as possible, since they are exogenous,

whereas we always try to detect IOs as fast as possible, because they can make structural

changes in the whole system. The situation when we face both types of outliers is more

difficult, since we cannot distinguish IO from AO type immediately after a suspicious

observation, but in reality both types of outliers are usually presented in the data.

IOs and AOs in our sense still do not cover all the possible types of outliers, but in the

framework of this PhD thesis we restrict ourselves to these two types only.

5.2 Robustification of the least squares solution

The idea of the new robust procedures, presented below, is based on the filter, introduced

for the additive outliers by Ruckdeschel (2001), more precisely, so-called robustifying

recursive Least Squares: rLS. Here, we extend this rLS filter for the AOs and denote

it as rLS.AO and construct the IO-robust version of this filter, named rLS.IO. As we

mentioned, our procedures rLS.AO and rLS.IO assume the outlier models (5.3) and (5.4)

correspondingly. We prefer to start with the rLS.AO filter, since it turns out to be easier.

5.2.1 rLS.AO filter

By the definition, AOs enter only observations of the model. In the classical Kalman

filtering scheme (4.7), one can notice, that observations appear only in the correction

step. Therefore, we do not make any changes in the initialization and prediction for

AO-robustification.

As for the correction step, we use the method introduced in Ruckdeschel (2000). The

idea is to replace the term K∆Y by its Huberization Hb(K∆Y ), where vector function

Hb(x) is defined as

Hb(x) = xmin{1, b/
∣∣x∣∣},
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for some suitably chosen clipping height b. Natural candidates for the norm, to be used

in the Huber function, are Euclidean and Mahalanobis norms. There are other options

for the robustification of the Kalman filter, but we prefer this one since it has some

optimality properties (see Ruckdeschel et al. (2014b, Appendix A.2)).

In the master-thesis Pupashenko (2011, Sec, 3.1.1) calculations for the error covariance

matrix in the correction step were made, but it turns out that we do not gain too

much from this change, therefore, in this thesis we leave covariance matrices unchanged.

Hence, the only modification we do to AO-robustufy KF is in the correction step, i.e.

Xt|t = Xt|t−1 +Hb(Kt∆Yt). (5.5)

Another benefit of our choice in favor of this robustification is that, doing only one

substitution in the correction step, we keep Kalman filter simple and non iterative,

hence especially useful for online-purposes.

Choice of the clipping height

To complete rLS.AO filtering scheme we should choose corresponding clipping heights.

This issue was studied by Ruckdeschel (2010c) in detail. Author distinguished two

approaches. Both are based on one additional simplifying assumption, which turns out

to be only approximately correct. Nevertheless, denoting expectation w.r.t. the ideal

distribution as Eid, we let Eid[∆X|∆Y ] be linear.

The first way of choosing the clipping height is to select b = b(δ) according to an

Anscombe (1960) criterion, i.e.

Eid

∣∣∆X −Hb(K∆Y )
∣∣2 !

= (1 + δ)Eid

∣∣∆X −K∆Y
∣∣2, (5.6)

where δ is also called ”insurance premium” to be paid in terms of the efficiency and

usually is given as δ = 0.05. For computational reasons, equation (5.6) is transformed

to expression involving the covariances (e.g. see Pupashenko (2011, Sec, 3.1.1)).

The second possible way to choose the clipping height uses the radius of the SO-

contamination neighborhood, r ∈ [0, 1], and computes b = b(r), s.t.

(1− r)Eid(|K∆Y | − b)+
!

= rb

This approach can be extended to the case when we do not know the radius itself, but

only the interval it lies in, see Rieder et al. (2008) and Ruckdeschel (2010c).
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5.2.2 rLS.IO filter

In this Section we mainly present the results of the papers of Ruckdeschel (2010c) and

Ruckdeschel et al. (2014b). So far the presented approach does not cover IO’s, although

this is an important problem as, e.g. classical Kalman filter in the situation of data with

IOs behaves much better than in the AOs presence. Nevertheless, the classical filter is

too inert and there is a way to improve this procedure.

First let us consider simplest one-dimensional linear state-space model with the obser-

vation coefficient equal to 1, i.e.

Y = X + ε. (5.7)

In the correction step of the classical Kalman filter, based on observation residual, we

want to improve innovation residual. In the case of our simplified model, equation (5.7)

shows useful symmetry of X and ε, moreover, we get the following relation:

E[X|Y ] = Y −E[ε|Y ].

Hence, to obtain corresponding IO-reconstruction, we reconstruct ε in the AO-robust

way, using already studied rLS.AO-filter, and plug new observation error in the last

relation. In this case if rLS.AO(ε) gets damped, rLS.IO value of E[X|Y ] gets closer to

∆Y , hence follows the signal more closely than the classical Kalman filter. We should

note, that in this structure we rely on identically distributed errors ε.

Returning to the general structure, note that in the ideal setting for state-space model

(4.4) and (4.5) we get that

E[εt|∆Yt] = (Iq − ZtKt)∆Yt,

therefore, the correction step for the ideal model can be rewritten as follows:

Xt|t = Xt|t−1 + ZΣ
t [∆Yt −E[εt|∆Yt]],

where ZΣ
t := Σt|t−1Z

T
t (ZT

t Σt|t−1Zt)
−1 is suitably generalized inverse for Zt. This inverse

is necessary for higher dimension case when rank of Z is less than p. If the observation

matrix is invertable, then the matrix ZΣ
t is simply the inverse for it.

Therefore, in the presence of IOs we construct the rLS.IO-filter remaining the initializa-

tion and prediction steps as in the classical Kalman filter and replacing correction step
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by the following:

Xt|t = Xt|t−1 + ZΣ
t [∆Yt −Hb((Iq − ZtKt)∆Yt)] (5.8)

Remark 5.2. Arguments for the choice of the norm and the clipping height here are the

same as for the rLS.AO. For the optimality properties of the rLS.IO see Ruckdeschel et al.

(2014b, Appendix A.3).

5.2.3 Robust smoother

Often, to improve filtered values we apply Kalman smoother (4.12)-(4.13), considering

information available in the meantime. Moreover, it is very important for the further

use of the estimators, e.g. for estimation of the hyper-parameters of the state-space

model applying EM-algorithm. Therefore, robustness of the Kalman smoother is also

very important issue and here we describe new results on it, presented in the paper of

Ruckdeschel et al. (2014b).

To conclude what if the Kalman smoother is robust, we rewrite backward recursive

equation of it (4.12) in the following form:

Xt|T −Xt|t = Jt[(Xt+1|T −Xt+1|t+1) + (Xt+1|t+1 −Xt+1|t)]

One can see that the first summand in the brackets of the right hand side Xt+1|T −
Xt+1|t+1 is just the previous iteration of the left hand side in the recursion Xt|T −Xt|t.

As for the second summand Xt+1|t+1 −Xt+1|t, it is already robustified, as an increment

of the correction step (5.5) in the robust Kalman filter.

Therefore, we conclude that for outlier models with IO and AO contamination (5.3) and

(5.4), modification has to be done only in the second summand Xt+1|t+1−Xt+1|t, treating

it as the one from the robust Kalman filter. There is no further need for robustification

in the Kalman smoother.

5.2.4 Robust versions of extended Kalman procedures

In this Section we reproduce findings of the paper Ruckdeschel et al. (2014b). In Sec-

tion 4.2.2.2 we introduced extended Kalman filter and smoother for the general (non-

linear) state-space models. These procedures can also be robustified for both types of

outliers, AOs and IOs.
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The idea of the reconstruction in the extended procedures is the same as in the clas-

sical ones. In the filter the only changes to be done concern correction step, where

we simply replace the term Kt∆Yt by Hb(Kt∆Yt) in the AO-case and by ZΣ
t (∆Yt −

Hb((I − ZtKt)∆Yt) for IOs. As for the smoother, with the same arguments as in the

Section 5.2.3, there is no need for robustification in the extended Kalman smoother

except the treating second summand of the backward recursion as the one from robust

extended Kalman filter.

5.3 Behavior of the filters at stylized outlier situations

In this Section, we study the behavior of introduced filters in the ideal case as well

as in the stylized outlier situations, for which they are not necessarily designed. We

take some specifically chosen models and display performance of our procedures on the

corresponding plots, also comparing them to another existing methods.

5.3.1 The ideal situation, AO- and IO-contamination

Here we reproduce an illustration from the papaer of Ruckdeschel et al. (2014b). We

analyze the behavior of classical Kalman and rLS filters for three different types of

generated data. First, we aplly these methods to the ideal situation, then we contaminate

data with IOs and AOs correspondingly. As the hyper-parameters for the state-space

model we take the following:

a0 =

(
20

0

)
, Q0 =

(
0 0

0 0

)
,

Ft =

(
1 1

0 0

)
, Zt =

(
0.3 1

−0.3 1

)
, Qt =

(
0 0

0 9

)
, Vt =

(
9 0

0 9

)
.

From the given state matrix Ft one can see that our state process consists of two co-

ordinates, where the first is a random walk, therefore non-stationary, and the second

coordinate is white noise.

We simulate the innovations vt and the observation errors εt from the contaminated

bivariate normal distribution of the form:

CN 2(r, 0, R, µc, Rc) = (1− r)N2(0, R) + rN2(µc, Rc) , (5.9)

where amount of contamination is specified by the radius r = 10%. Notation R can be

replaced by the matrix Qt for the innovations or matrix Vt in the case of the observation
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errors. Moments of this bivariate normal distribution we set as µT
c = (25, 30) and

Rc = diag(0.9, 0.9).

After applying classical Kalman, rLS.IO, and rLS.AO filters we plot the first coordinate

of the state vector in three different contamination situations.
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Figure 5.1: Results of three filters (classical KF, rLSIO and rLSAO) for different
contamination situations

In Figure 5.1 the true state process is plotted by the thick black line, while classical

Kalman, rLS.IO, and rLS.AO filters are plotted by the light red, dotted green and dot-

dashed blue lines respectively.

From the first plot of Figure 5.1 we conclude that in the ideal situation all three filters

perform very similar. Only rLS.IO does not work perfectly well showing some sud-

den jumps. The reason for that is the higher dimensional state-space model with the

observation matrix which is not of full rank.

At IO contamination situation, drawed on the middle plot of Figure 5.1, the rLS.IO

filter almost immediately follows the true state. Classical Kalman filter performs also

well in this case, but it is only able to track the true state with a certain delay, what is

worse comparing to the rLS.IO filter.

What is important to mention in the case of AO contamination, is that by definition

AOs affect only the observation equation, therefore their impact cannot be seen directly

in Figure 5.1. Nevertheless, effect of additive outliers is indirectly observable in the

spikes for the filter estimate of the classical Kalman filter.

5.3.2 Changes in oscillation patterns and level shifts

Here we consider behavior of the classical and robustified versions of the Kalman filter

comparing to the non-parametric filtering method ADORE in three situations. First we

consider IO- and AO-contamination, and then additionally study the case when the part
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of the state is replaced by a completely artificial signal. Chosen non-parametric filter

ADORE is introduced by Schettlinger (2009) and it uses automatic selection of the window

width.

For the state here we take an autoregressive process of order 2. Observations are one

dimensional and hyper parameters are the following:

a0 =

(
0

0

)
, Q0 =

(
0 0

0 0

)
,

Ft =

(
1 −0.9

1 0

)
, Zt =

(
1 0

)
, Qt =

(
1 0

0 0

)
, Vt =

(
1
)
.

To complete state-space model we compute the innovations vt in the IO situation from

the contaminated bivariate normal distribution (5.9) with the following moments

µT
c = (30, 0), Rc =

(
0.1 0

0 0

)
.

As for the observation errors εt, their contaminating distribution is chosen to beN (10, 0.1).

For the case of endogenous contamination, we replace whole parts of the state process

by so called block signal (see Donoho and Johnstone (1994)), which consists of pieces of

the random length and amplitude.
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Figure 5.2: Results of the simulated state-space model for different contamination
situations

In Figure 5.2 the black line again represents the true state process, the red line is drwan

for the classical Kalman filter, whereas rLS and ADORE filters are plotted by the dashed

green and dot-dashed blue lines respectively.

In the situation of the artificial signal rLS.IO filter follows the true state very close

and performs better than other filters. Similarly to the previous example, here classical
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Kalman filter does not track the level shifts. As for the non-parametric filter ADORE, it

displays curve very similar to the true process, but does it with some time delay.

On the middle plot of Figure 5.2 we observe that rLS.IO filter performs very well in

the IO-contamination situation, whereas the classical Kalman filter fails to track the

spikes of the state signal. The ADORE filter in this case fits, but it extremely smoothes

underlying process.

The last plot is drawn for the AO-contamination case. Here one can see that rLS.AO

filter is not affected by the spiky outliers, but the classical Kalman filter is prone to

them. Non-parametric filter ADORE shows similar behavior as in the IO-contamination,

estimating only an overall trend of the true process.

5.3.3 Coping with non observed aspects

In this Section we study behavior of all filters in the special case of some non-observed

aspects, i.e. for the following setup:

T = 50 , F =


1 1 0

0 1 1

0 0 0

 , Z =

(
1 0 0

0 0 1

)
, Q = diag(0, 0, 0.001) ,

V = diag(0.1, 0.001) , a0 = (0, 0, 0)T , Q0 = diag(1, 0.1, 0.001) .

As one can notice observation matrix Zt here has a non-trivial null space. State signals

which are falling to this null space are not visible at filtering time. In this case smooth-

ing can improve results of the filtering with a certain time delay. The reason is that

transitions Fs move the invisible states and at some later stage they become visible to

Zs.

In the contamination models for AO’s and IOs, i.e. (5.3) and (5.4), we take equal

radii rIO = rAO = 0.1. We choose multivariate Cauchy contaminating distribution

for the states Xdi
t ∼ multiv.Cauchy(0, Q) and special form of Cauchy contaminating

distribution for the observations Y di
t ∼ Cauchy/1000 (one can easily compute these

distributions using R-packages mvtnorm and MASS).

Figure 5.3 displays how our filters and smoother can cope with the introduced non-

observed aspects situation. The left plot shows behavior of the classical Kalman filter

and smoother, the middle one is drawn for the IO-robust filter and the right plot reflects

AO-robust filter. Here we plot only the second coordinate of the state process, which
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lies in kerZt. The black line represents the true state process, red line draws the IO-

contaminated state process, i.e., the real situation. rLS filter and smoother are drawn

by the dashed green and dot-dashed blue lines correspondingly.

From all plots of Figure 5.3 we conclude that none of the proposed filters can cope with

this situation.

5.3.4 Application

The application of our procedures used above is described in detail in the paper of

Ruckdeschel et al. (2014b). It is based on the real data, captured from the vehicle

moving on some track. Data consists of four data channels, including time, speed,

altitude and pitch angle speed. The object of interest is the slope, i.e. change of the

altitude over distance. Since the original data is obviously distorted, there is a need

to use robustified methods. Therefore, for three state-space models of the different

levels of complexity, we applied rLS.AO and rLS.IO filters comparing their performance

to the classical one. From this real-data application we conclude not only about the

importance of our filters, but also about the quality of their performance and enough

level of complexity for the model in this case.

5.4 Software infrastructure

Probably due to the simple form of the Kalman recursions there is no great abundance of

the packages implementing them in R. We give the overview of the existing ones though.

The package dse P.Gilbert (2011) counts as the first one offering Kalman filtering. First

version of the package was submitted to CRAN in year 2000. This package is focused
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Figure 5.3: Filter estimates of the simulated state-space model using different filters
and smoothers
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on multivariate time series. It covers state-space representations, and methods for con-

verting between them, including estimation techniques and forecasting models. Kalman

filter and smoother estimates can be obtained with the functions of the dse package.

The state-space model reduction techniques are also implemented in this package.

Another R-package available in CRAN is sspir, created by Dethlefsen et al. (2009). This

package covers state-space models, offering the function ssm, which is based on the

familiar formula notation of the functions like lm, glm, etc. It includes functions for

Kalman filtering and smoothing, returning a new object with the filtered (or smoothed)

estimates of the state, and their covariance matrices. Moreover, the package sspir

contains implementations for the expectation-Maximization algorithm, used for the case

of unknown SSM hyper-parameters.

The R-package dlm first appeared in CRAN in August 2006 and the actual version of

it can be found in Petris (2010). This package contains set of the R-functions, which

help us with the specification of state-space models. Maximum likelihood estimation

and Kalman filtering and smoothing for the linear version of the state-space models are

implemented in the package. It also includes some specific form of square root filter,

that is more robust and general than the standard square root filters. In addition, dlm

package contains the ”outer sum” operator, which combines models for different time

series into a joint model. This eases the usage of the models with components of different

dynamics.

The R-package FKF with the most actual version presented in Luethi et al. (2010), was

submitted to CRAN in year 2009. As we understanfd from the name of the package,

i.e. Fast Kalman Filter, it is mostly focused on the speed of the Kalman procedures.

It also covers maximum likelihood estimation, Kalman filtering and smoothing and

Expectation-Maximization algorithm, which does much faster switching between E and

M steps than before, due to faster computation of the filtered estimates.

One of the most recent packages in R, which contains Kalman procedures, is the package

KFAS, introduced by Helske (2010). It includes functions for Kalman filtering, smoothing,

simulation smoothing and disturbance smoothing for multivariate exponential family

state space models. The package also covers the case of the models with unknown

distributions of some or all elements of the initial state vector.

Features and speed comparison

Here we make quick comparison of the features of all presented R-packages, putting them

together in the Table 5.1.
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dse sspir dlm FKF KFAS

Coded in R+Fortan R R+C R+C R+Fortan
Class model S3 S3 S3 S3
Algorithm CF CF SRCF CF CF
Sequential processing ∗
Exact diffuse initialization ∗
Missing values allowed ∗ ∗
Time varying matrices ∗ ∗ ∗ ∗
Simulator ∗ ∗
Smoother ∗ ∗ ∗ ∗
Simulation smoother ∗ ∗ ∗
Disturbance smoother ∗
MLE routine ∗ ∗ ∗
Non-Gaussian models ∗ ∗

Table 5.1: Quick packages comparison

Abbreviation CF is made for the covariance filter algorithm and SRCF is for the square

root covariance filter. We conclude from the table that the sspir and dlm packages are

quite useful in different situations, i.e. they deal with time-varying state space models

and both have implemented smoother. As we mentioned, the package FKF is focused

on the KF simulation speed, so it is not a surprise that it does not cover most of the

illustrated features. And the package KFAS seems to be the most general, since most of

the procedures are implemented in it.

More detailed overview of the Kalman procedures implemented in R, with examples of

using introduced packages, one can find in the article of Fernando (2011).

5.5 Package robkalman

In the framework of this PhD-thesis, together with P. Ruckdeschel and B. Spangl, we

developed new package based on the Kalman procedures, named robKalman. Last devel-

oper version available in R-Forge is 0.3. The goal of the package is not only to provide

routines for robust Kalman filtering, introduced earlier in this Chapter, but also cover

most of the possible situations.

Function classEKF covers classical extended Kalman filter routines, which include func-

tions to return list of parameters for all three steps of the filter, with error covariance

matrices and Kalman gain.

The R-package robKalman implements rLS-filter in the function rLSeKF including both

types of outliers, AOs and IOs. It also provides function for the (extended) Kalman

filter to create the state and observation matrices and covariance matrices of innovations
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and observation errors. Functions recSmoother and calibrateRLS compute extended

Kalman smoother and clipping height correspondingly.

5.6 Conclusions

In this Chapter we presented the robust versions of the Kalman filter and smoother

which are specialized on the spiky outliers, AOs and IOs. Here is important to note

that we were first to compute general IO-robust filter and introduce new idea for the

smoother.

We have tested our procedures in different stylized outlier situations, i.e. in the presence

of AOs or IOs, where we conclude that our procedures perform very well in the situations

they were created for. Moreover, our procedures also can cover wider variety of outlier

situations.

We also compared rLS.AO and rLS.IO to one non-parametric filtering method and ob-

tained that our filters beat it in all contamination situations.

All our procedures are recursive, therefore they are quite fast and convenient for online

using. They can be used not only for the robustification of the classical filter, but also

for the extended Kalman filter applied to the non-linear state-space models.

Still, there are some open issues in our procedures, which are topics for further research,

e.g. IO-robust smoother have to be essentially improved. Besides, after checking filters

in the case of some non observed aspects, i.e. when the observation matrix of the model

is non invertible, we conclude that all filters cannot cope with this situation.

It is also very important to mention that in reality both types of outliers are usually

presented in the data, therefore using one of two introduced robust filters does not bring

to much. In general we would need some hybrid filter and smoother, which will combine

rLS.IO and rLS.AO procedures in one, used for these mixed situations. First attempts

were made in the Ruckdeschel (2010c, Ch. 5).

In the last Section of this Chapter we also gave overview of the existing software in-

frastructure in R for the Kalman procedures and introduced our R-package robKalman,

which beside classical filter and smoother covers our robust procedures.



Chapter 6

Generalized linear models

6.1 L2 Differentiability of Generalized Linear Models

In this Chapter we extend already existing theory on the L2 differentiability of the

parametric models to the generalized linear models. This has been studied already

for the GLMs, which are exponential families, by Schlather (1994). We consider non-

exponential scale-shape families, e.g. the generalized extreme value and generalized

Pareto distributions.

Here we generalize result of Rieder (1994, Sec. 2.4) on L2 differentiability for the linear

regression models. We also cover higher dimensional error distributions and the case

of regressors of possibly different length for each parameter. We separately treat cases

of stochastic regressors, which is of particular interest for incorporating (space-)time

dependence, and deterministic regressors as occurring in planned experiments.

The results of this Section have been submitted as separate contribution in the paper

Pupashenko et al. (2014).

6.1.1 General settings

Earlier, in Section 4, we introduced the idea of the L2 differentiability for the model

Q = {Qϑ|ϑ ∈ Θ} ⊂ M1(A) parameterized by ϑ from the open parameter domain

Θ ⊂ Rk. Remind, that the notion for the densities of the distributions from the model

are dQϑ = qϑ.

Here we turn model Q into a regression model P parametrized by regression parameter

β. We do it using continuously differentiable link function l : Rk → Θ, with derivative

denoted as l̇.

99
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First, we introduce the partition π = (ph)h=1,...,k, which groups p coordinates of the

regressor into k blocks of dimensions ph, where
∑

h ph = p. With the help of this

function each x ∈ Rp can be represented in the form x = (xh,j) h=1,...,k
j=1,...,ph

.

For the later use, we also need some additional operators based on the function π, i.e.

Tπ : Rp × Rp → Rk, (a, b) 7→ Tπ(a, b) =: aTπb = (

ph∑
j=1

ah,jbh,j)h=1,...,k; (6.1)

ρπ : Rk × Rp → Rp, (c, a) 7→ ρπ(c, a) =: c ·π a = (chah,j) h=1,...,k
j=1,...,ph

; (6.2)

Mπ : Rk×k × Rp × Rp → Rp×p, (C, a, b) 7→Mπ(C, a, b) = (Ch1h2ah1,j1bh2,j2) h1,h2=1,...,k
j1,j2=1,...,ph

.

(6.3)

Later, we also apply operator ρπ to the k × m matrix C, denoting it as C ·π a and

meaning that we obtain corresponding p×m matrix (ch,lah,j) h=1,...,k
j=1,...,ph

;l=1,...,m
.

Then, for the regressor X and regression parameter β we obtain a regression as ϑ = l(θ),

where θ = XTπβ and the corresponding GLM induced by this link function is given by

P = {Pβ(dx, dy) = Ql(xTπβ)(dy|x)K(dx)|β ∈ Rp, Qϑ ∈ Q}. (6.4)

We have already mentioned before, that for the linear regression case Rieder (1994,

Theorem 2.4.7) obtained L2 differentiability with some additional assumptions. We

prove some similar result for the introduced GLM (6.4), distinguishing two cases of

stochastic and deterministic regressors.

6.1.2 Random Carriers

In Section 4.3.2 we already introduced parametric model for the random carriers in the

linear setting. Here we treat regressors x as stochastic variables with distribution K, but

the pairs (x, y) are modeled as i.i.d. observations. We suppose, that the model Q is L2

differentiable, with corresponding L2 derivative ΛQϑ and the Fisher information matrix

IQϑ . Then, we state the following (see also Ruckdeschel et al. (2014b, Thm. 2.5)).

Theorem 6.1. Let β0 ∈ Rp. For the link function l : Rk → Θ holds ϑt = l(θt)

for θt = xTπ(β0 + t), s.t. l̇t = l̇(θt). Denote the Frobenius matrix norm as | · |, i.e.

|A|2 = trA2.

If the following conditions (i)-(iii) hold:
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(i) Model Q satisfies Hájek conditions (H.1)-(H.3) from (2.9), replacing ”Qϑ0-a.e. x”

by expression ”Pβ0-a.e. (x, y)”,

(ii) ∫
|IPϑ0(x)|K(dx) <∞, (6.5)

(iii) for all b > 0 holds

lim
s→0

sup
|t|≤b

∫ ∣∣∣|IPϑst(x)| − |IPϑ0(x)|
∣∣∣K(dx) = 0, (6.6)

then generalized linear model P from (6.4) is L2 differentiable in β0 with the L2 derivative

of the form:

ΛPβ0(x, y) = l̇T0 ΛQϑ0 ·π x (6.7)

and the Fisher information matrix

IPβ0 = Eβ0ΛPβ0(ΛPβ0)T =

∫
IQϑ0(x)K(dx) (6.8)

For the proof of this theorem we need some additional lemma, which we formulate here.

Both proofs, of the lemma and of theorem itself, can be found in Appendix B.1 and

Appendix B.2 correspondingly.

Remark 6.2. Conditions (6.5) and (6.6) can be also strengthened to the following form:∫
|IQϑ0 ||l̇0|

2|x|2K(dx) <∞,

and for all b > 0

lim
s→0

sup
|t|≤b

∫ ∣∣∣|IQϑst ||l̇st|2 − |IQϑ0 ||l̇0|2∣∣∣|x|2K(dx) = 0.

Lemma 6.3 (Chain rule). Assume, that parametric model Q = {Qϑ|ϑ ∈ Θ} with open

parameter domain Θ ⊂ Rk is L2 differentiable in ϑ0 ∈ Θ, with derivative ΛQϑ0 and the

Fisher information IQϑ0.

Let link function l : Θ′ → Θ, Θ′ ⊂ Rk be differentiable in some θ0, s.t. ϑ0 = l(θ0) and

its derivative is l̇0 = l̇(θ0).

Then Q̃ = {Q̃ϑ = Ql(θ)|θ ∈ Θ′} is L2 differentiable in θ0 ∈ Θ′ with derivative ΛQ̃θ =

(l̇(θ0))TΛQϑ0 and the Fisher information IQ̃θ = (l̇(θ0))TIQϑ0 l̇(θ0). Moreover, if model Q is

continuously L2 differentiable in ϑ0 ∈ Θ, then Q̃ is continuously L2 differentiable in θ0.

Remark 6.4. Chain rule 6.3 holds for both, deterministic and random cases.
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6.1.3 Deterministic Carriers

Here we aim to get the analogous result to Rieder (1994, Theorem. 2.4.2) for GLMs.

Hence, we make in ≥ 1 real valued observations yn,i, with given array of the regressors

xn,i ∈ Rp.

For these deterministic regressors we define corresponding GLM in the following way:

P = (⊗ini=1Pn,i), (6.9)

Pn,i = {Pn,i,β0(dy) = Qϑn,i(dy)|β0 ∈ Rp, ϑn,i = l(θn,i), θn,i = xTπ
n,iβ0, Qϑn,i ∈ Qn,i}.

(6.10)

As we have mentioned in Section 4.3.3, idea of the proof of the deterministic carriers

conditions (4.18) and (4.19), described in Rieder (1994, Theorem 2.4.7), is based on the

smallness of hat matrix (4.21). For our general framework we can still define analogical

hat matrix in the following way:

Hn = Hn;i,j;β0 = LT
n;i;β0(IPn,β0)−1Ln;i;β0 , Ln;i;β0 = l̇(θn,i)

T(IPn,i,β0)
1
2 ·π xn,i.

If we perform analogically to the proof of the linear regression case, as in Rieder (1994,

Theorem 2.4.7), first we have the change in the fitted parameter ϑn,i of the form:

ϑ′n,i = ϑn,i +

in∑
j=1

(IPn,β0)−
1
2Hn;i,j(I

P
n,β0)−

1
2 ΛQϑn,j (yn,j).

One should note, that in the linear case distribution of the standardized scores, i.e.

(IPn,β0)−
1
2 ΛQϑn,j (yn,j), is invariant in β0, whereas in our setting it does not hold anymore.

Since this property is used at some stage of the proof of Rieder (1994, Theorem 2.4.7),

we fail at this point.

Therefore, in the general case we have to strengthen hat matrix condition (4.22). We

propose the following theorem:

Theorem 6.5. Suppose that the following conditions (i)-(iii) hold:

(i) Model Q fulfills Hájek conditions (H.1)-(H.3) from (2.9),

(ii) Lindeberg condition (4.18) from the Definition 4.3 holds,

(iii) Let β0 ∈ Rp. For the link function l : Rk → Θ holds ϑn,i,t = l(θn,i,t) for

θn,i,t = xTπn,i (β0 + (IPn,β0)−
1
2 t), s.t. l̇n,i,t = l̇(θn,i,t). For simplicity, we use addi-

tional notations as IQn,i,t = IQϑn,i,t and IPn,i,t = Mπ(l̇Tn,i,tI
Q
ϑn,i,t

l̇n,i,t, xn,i, xn,i). Then,
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for all b > 0 holds

lim
n→∞

sup
|t|≤b

in∑
i=1

tTn (IPn,i,t − IPn,i,0)tn = 0. (6.11)

Then generalized linear model P from (6.9) is continuously L2 differentiable in β0 with

the L2 derivative ΛPn,i,β0(x, y) = ΛPβ0(xn,i, y), where ΛPβ0 is obtained by the chain rule, i.e.

ΛPβ0 = l̇(θ)TΛQϑ (y) ·π x and the Fisher information matrix given in the Definition 4.3.

Proof of this Theorem one can find in Appendix B.3.

Remark 6.6. Similarly to the random carriers, here we also can obtain analogues to

the conditions in Remark 6.2, which are

lim sup
n→∞

sup
|t|≤b
|tn|2

in∑
i=1

|IQn,i,0||l̇(n, i, 0)|2|xn,i|2 <∞,

and for all b > 0

lim
n→∞

sup
|t|≤b
|tn|2

in∑
i=1

∣∣∣|IQn,i,t||l̇n,i,t|2 − |IQn,i,0||l̇n,i,0|2∣∣∣|xn,i|2 = 0.

6.2 Examples

In this Section we give some easy as well as more complicated examples, of applying

presented theorems to show L2 differentiability of the next models.

Example 6.7 (Linear regression). Obviously, Theorem 6.1 can be applied to the linear

regression model P about one dimensional location model Q, i.e. for Q = {Qϑ(dy) =

F (dy − ϑ)} we have the following model

P = {Pβ(dx, dy) = F (dy − xTβ)K(dx)}, (6.12)

for some probability F on (R,B) with finite Fisher information of the location (see

Huber (1981, Def. 4.1/Thm. 4.2)). Then, condition (i) of Theorem 6.1 follows from

the finiteness of the Fisher information of location and condition (ii) boils down to∫
|x|2K(dx) <∞. Condition (iii) here is void.

Example 6.8 (Binomial GLM with logit link and Poisson GLM with log link). Here we

consider Binomial model Binom(m, p) for known size m ∈ N, e.g. m = 1, and unknown

success probability p ∈ (0, 1). Error distribution of such model has counting density

qp(y) =
(
m
y

)
py(1− p)m−y for y ∈ {0, ...,m}.
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Condition (i) of Theorem 6.1 is obviously fulfilled with the Fisher information IQp =

m(p(1− p))−1.

For the link function in this case we take logit link, i.e., l(θ) = eθ/(1 + eθ). Then, we

compute the term IQp l̇(θ)
2 = mp(1− p) and the conditions (ii) and (iii) of Theorem 6.1

turn to

(ii)

∫
ex

Tβ

(1 + exTβ)2
|x|2K(dx) <∞,

(iii)

∫
ex

Tβ (ex
Ts − 1)(1− exT(2β+s))

(1 + exT(β+s))2(1 + exTβ)2
|x|2K(dx)→ 0, s→ 0.

One can see that in both expressions integrands are bounded pointwise in x, hence, if

|x|2 is integrable w.r.t. K, the Binomial GLM with logit link function is continuously

L2 differentiable.

Next, we consider the Poisson model Pois(λ) for parameter (λ ∈ (0,∞)). This paramet-

ric model has error distribution with counting density qλ(y) = e−λλy

y! for y ∈ N.

Condition (i) of Theorem 6.1 is obviously fulfilled with the Fisher information IQλ = λ−1.

Here we take log link for the link function, i.e., l(θ) = eθ, so that IQλ l̇(θ)
2 = λ. Then,

conditions (ii) and (iii) of Theorem 6.1 turn to

(ii)

∫
ex

Tβ|x|2K(dx) <∞, (iii)

∫
ex

Tβ(ex
Ts − 1)|x|2K(dx)→ 0, s→ 0.

Hence, if e|x|(|β|+δ)|x|2 is integrable w.r.t. K, then the Poisson GLM with log-link func-

tion is continuously L2 differentiable.

Conditions additionally required for the L2 differentiability of these models, i.e. |x| ∈
L2(K) for Binomial logit and e|x|(|β|+δ)|x|2 ∈ L1(K) for the Poisson GLM with log-link,

recover the conditions mentioned in Fahrmeir and Tutz (2001, p.47).

Example 6.9 (GEVD and GPD joint shape-scale models with componentwise log link).

Here we check the L2 differentiability of the generalized extreme value distribution

GEVD(µ, σ, ξ) from Definition 3.1 and the generalized Pareto distribution GPD(µ, σ, ξ)

from Definition 3.9.

For the GEVD, three dimensional model is L2 differentiable for the shape values ξ ∈
(−1/2, 0) and ξ ∈ (0,∞). Unfortunately, our theory for L2 differentiable error models

does not cover model including the threshold parameter in the GPD case. This problem

is based on the fact, that observations which are close to the endpoint of the support

in the GPD model, carry extremely much information on the threshold. To avoid such
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problems, we assume µ to be known in both models and, for simplicity, let µ = 0.

Then we work with the two dimensional parameter, which consists of scale and shape

ϑ = (σ, ξ).

If we write the scores ΛQϑ on the quantile scale for both models, i.e., Λϑ(Fϑ(u)) for Fϑ(u)

the respective quantile function (2.5) or (3.7), we see that both scores include terms of

order (1 − u)ξ. Therefore, to fulfill condition (i) we assume that ξ > −1/2. This is

the most general restriction for the shape and in other cases of interest it is natural to

assume ξ > 0, e.g. for the case of Fréchet distributions or ξ ≥ 0 for the GPD.

Here we take continuously differentiable componentwise link function l : R2 → Θ, where

l(θ) = (lσ(xT
σβσ), lξ(x

T
ξ βξ)). We also partition the p-dimensional regressor x and re-

gression parameter β according to the parameter ϑ = (σ, ξ), i.e. x = (xσ, xξ) and

β = (βσ, βξ). Moreover, we get that θ = xTπβ = (xT
σβσ, x

T
ξ βξ).

The Fisher information for these both models is 2× 2 symmetric matrix of the form:

IQσ,ξ = Eσ,ξΛ
Q
σ,ξ(y)(ΛQσ,ξ(y))T =

(
Iσσ Iσξ

Iσξ Iξξ

)
,

therefore we obtain

l̇TIQσ,ξ l̇ =

(
l̇2σIσσ l̇σ l̇ξIσξ

l̇σ l̇ξIσξ l̇2ξIξξ

)
.

Plugging last expressions to the conditions (ii) and (iii) of Theorem 6.1 we rewrite

conditions in the following from

(ii)

∫
l̇2σ(Iσσ + Iσξ)|xσ|2K(dx) +

∫
l̇2ξ(Iξξ + Iσξ)|xξ|2K(dx) <∞,

(iii)

∫
((l̇2σ+sIσ+sσ+s − l̇2σIσσ)|xσ|2 + 2(l̇σ+s l̇ξ+sIσ+sξ+s − l̇σ l̇ξIσξ)|xσ||xξ|+

+(l̇2ξ+sIξ+sξ+s − l̇2ξIξξ)|xξ|2)K(dx) ≤
∫

(l̇2σ+s(Iσ+sσ+s + Iσ+sξ+s)−

−l̇2σ(Iσσ + Iσξ))|xσ|2K(dx) +

∫
(l̇2ξ+s(Iξ+sξ+s + Iσ+sξ+s)−

−l̇2ξ(Iξξ + Iσξ))|xξ|2K(dx)→ 0, s→ 0.

Next, we closer consider case of each model.

GEVD model: We start with the scale-shape model GEVD(0, σ, ξ) which has error

distribution Qϑ(y) = exp
(
− (1 + ξ yσ )

− 1
ξ
)
.
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The Fisher information matrix of this model can be written explicitely in the following

way

IQσ,ξ = ξ−2D

(
Iσσ Iσξ

Iσξ Iξξ

)
D, where D−1 = diag(σ, ξ),

Iσσ = (ξ + 1)2Γ(2ξ + 1)− 2(ξ + 1)Γ(ξ + 1) + 1,

Iσξ = −(ξ + 1)2Γ(2ξ + 1) + (ξ2 + 4ξ + 3)Γ(ξ + 1) + (ξ2 + ξ)Γ′(ξ)Γ(ξ + 1)− ξΓ′(1)− ξ − 1,

Iξξ = (ξ + 1)2Γ(2ξ + 1)− 2Γ(ξ + 3)− 2ξΓ′(ξ)Γ(ξ + 2) + 2ξ(ξ + 1)Γ′(1)+

+ ξ2(Γ′′(1) + (Γ′(1))2) + (ξ + 1)2.

One can see, that the Fisher information matrix has singularities in the values ξ = 0

and ξ = −1/2, what confirms our conclusion, mentioned above, that condition (i) of

Theorem 6.1 are fulfilled only as long as ξ ∈ (−1/2, 0) or ξ > 0.

GPD model: The GPD(0, σ, ξ) scale-shape model has error distribution function

Qϑ(y) = 1− (1 + ξ yσ )
− 1
ξ with the Fisher information matrix:

IQσ,ξ =
1

1 + 2ξ
D

(
1, 1

1, 2(ξ + 1)

)
D, D−1 = diag(σ, ξ + 1).

Again condition (i) is fulfilled for σ > 0 and ξ > −1
2 , what is reflected by a singularity

at ξ = −1/2 of the Fisher information.

Link function: As for the componentwise link function, trivial choice for the scale for

both models is log link, i.e. lσ(xT
σβσ) = exp(xT

σβσ).

Due to a lack of equivariance in the shape, it is harder to choose the link function for it

and none of the canonical link functions fits in this case. The admissible link function

for the shape should be smooth and strictly increasing (for identifiability). Empirical

information (non-regression-based), received from our GEVD and GPD applications,

restricts the shape ξ to be in the interval (0, 2). Therefore, good link function should

not exclude values which are out of this interval ξ /∈ (0, 2), but make them hard to reach.

Moreover, main challenge while modeling parameter driven time dependencies in the

terminology of Cox (1981), with the usage of our GLMs with generalized extreme error

distributions in the time series context, is to design link functions, which let regressors

follow GEVD or GPD distribution themselves. The problem here is that then we have to

integrate against very heavy tails. In particular, we aim to construct autoregressive-type
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time series for the scale and shape of the form

Xt ∼ GEVD(l(XT
(t−1):(t−p1)βσ, X

T
(t−1):(t−p2)βξ)) for X(t−1):(t−p) = (Xt−1, ..., Xt−p)

(6.13)

Here all negative values of βξ dampen clustering of extremes, as then usually the large

value obtained from the large positive shape is followed by an observation with low,

or even negative, shape parameter (hence with much lighter tails), thus, in general a

smaller value; correspondingly βξ positive will foster clustering of extremes.

Therefore, the first idea is to use the log link function for the shape parameters as well

as for the scale. But using this link for GEVD or GLM time series we get that the

integrability condition (ii), equation (6.5), is not be satisfied in this case. From this fact

we conclude that the admissible link function for the shape should also grow very slowly.

To design such link function, we also note, that in the case of GEVD errors all terms of

the Fisher information matrix are dominated by the term Γ(2ξ+1), hence conditions (ii)

and (iii) of Theorem 6.1 are fulfilled if for large positive values θξ, the link function grows

so slowly to ∞ that Γ(2lξ(θξ)) ≈ log(θξ), which for large x behaves like the iterated

logarithm log(log(x)).

Applying similar technique for the case of GPD errors, we obtain link function for the

shape parameter behaving like the logarithm, i.e. lξ(θξ) ≈ log(θξ).

After we collected all required properties for the shape link, we suggest the candidates

of it for GLM with GEVD and GPD error distributions. For simplicity, let p = 1, the

link for the GEVD would be of the form

lξ(θξ) = log(f(log(xξ)
Tβξ)),

where function f(x) behaves like quadratic function, e.g. x2/2 + x + 1 for x > 0, and

for x < 0 it is like the function a1/(log(a2 − x))2 + a3 with a1, a2, a3 > 0 such that f is

continuously differentiable in 0 and f(x) > e−1/2 for all x.

In Appendix B.4 we check if our choice of the link function for the GEVD shape-scale

model fulfills conditions (ii) and (iii) of Theorem 6.1 and calculate approximate values

for the constants a1, a2, a3.

Remark 6.10. Obviously, the next question would concern (asymptotic) stationarity of

the time series (6.13) for t ≥ 0 and for given starting values x−1, . . . , x−max(p1,p2), using

proposed link function. We leave this question open for the further research.
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6.3 Fixed-point algorithm

In this Section we focus on the robust optimality problem described in detail in Rieder

(1994, Ch. 5). Solving this standardized MSE problem for implicitly defined Lagrange

multipliers is a difficult question. This issue was looked already by Hampel (1968). Later,

in the book of Hampel et al. (1986) fixed point iteration algorithm for the computation

of the optimally robust influence curve (also called Hampel-type IC) was proposed. The

notion of the optimal influence function was studied in detail by Rieder (1994, Thm. 5.5.1

and 5.5.7 (b)) and regression optimal influence function was discussed in Rieder (1994,

Ch. 7). Moreover, in our infinitesimal setting described above, there is corresponding

algorithm sketched in Rieder (1994, Rem. 5.5.2). More on the optimal influence function

for regression model one can find it in Kohl (2005).

Here we present general algorithm of computing the Hampel-type optimal influence

curve, which, comparing to other similar algorithms, uses another techniques to get

some intermediate values. We have implemented this algorithm in R in the function

named FixPglm. To keep it simple, we wrote exemplary versions of the code for two

specific cases, Binomial model and Generalized Pareto shape model.

For both cases, FixPglm is a function which requires next input parameters: the matrix

of regressors X; fixed parameters of the corresponding distributions, i.e. number of trials

for Binomial case and location and scale parameters for the GPD; matrix A0 which is

simply the inverse of the Fisher information matrix; the link function l; the regression

parameter β; the clipping hight b, which can be computed solving Anscombe criteria;

and ε for the stopping criteria of the algorithm. In R this function can be called by the

following command:

FixPglm(X, param, A0, link, beta, b, eps)(x,y)

Here, in order to make clear the real structure of the algorithm, we prefer not to explicate

the stages, where we might need to insure against dividing by zero, or check suitability

of some intermediate elements. Later, in Chapter 8 we discuss some challenges of the

algorithm for the case of the GPD model.

FixPglm algorithm

(-1). We start our algorithm with the preparation step inside the function, where we

determine the link function l and its derivative l̇ (as slots of the input link function),

calculate value of the term XTβ and plug it in the both functions in oder to get



Chapter 6. Generalized linear models 109

the values of ϑ = l(XTβ) and its derivative l̇(XTβ). Here we also compute the L2

derivative function correspondingly to the fixed parameters.

(0). After we defined everything needed for the further use, we pass to the introductory

part of the algorithm. First, we rename the matrix A0, assigning it notion A. We

define additional function z of x, and on this stage let it be zero. Then, we denote

the difference between the L2 derivative function and function z as a new function

v, i.e.

z0(x) = 0, , v0(x, y) := ΛQϑ (y)− z0(x).

(1). Here starts the main block of our algorithm, where we define several additional

functions to make the computation easier to follow. We introduce the iteration

symbol i, which provides iteration of the corresponding procedure from i = 1, until

some stopping criteria breaks it. We start with the function

ci(x) :=
b∣∣∣AiXl̇(XTβ)

∣∣∣ . (6.14)

Then, we compute function of two variables x and y, where we divide function c

by the norm of function derived in the zero step

wi(x, y) := min(1,
ci

|vi(x, y)|
). (6.15)

Next, we redetermine function z0 to be the division of two expectation w.r.t. the

parameter ϑ, i.e.

zi+1(x) :=
Eϑ(ΛQϑ (y)wi+1(x, y))

Eϑ(wi+1(x, y))
. (6.16)

We also reassign function v0, similarly to its previous form, but now with the

updated version of the function z, i.e.

vi+1(x, y) := ΛQϑ (y)− zi+1(x) (6.17)

Another intermediate function is the expectation taken w.r.t. to the variable y

ti+1(x) := Eϑ(v2
i+1(x, y)wi+1(x, y)). (6.18)

At last, we rewrite matrix A as the following expectation w.r.t. regressors distri-

bution

Ai+1 := (E(XXT(l̇(XTβ))2ti+1(x)))−1 (6.19)

For simplicity, we suppose that P(X = Xj) = 1/n for j = 1, ..., n, therefore, in

the code we treat this expectation as arithmetic mean of the underlying vectors.
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Note, that in (6.19) we already get not necessarily optimal, but valid influence

function.

(2). We iterate block (1)., i.e. equations (6.14)-(6.19), until one of two stopping criteria

breaks the iteration. Both criteria are based on the relative difference between

current and previous iterations, first for the function z and second for the matrix

A. If such relative difference becomes smaller than the chosen value of ε, iteration

stops. Usually, the first criteria breaks the loop.

(3). After iteration stopped, we compute the optimal IF as a function of pair (x, y),

multiplying last iteration values of the corresponding functions, i.e.

IF (x, y) := AXl̇(XTβ)v(x, y)w(x, y).

Note, that after each iteration in (1) after (6.19) we obtain a valid regression influence

function ψ(x, y) = Ai+1(Λ(y) − zi+1(x)) min(1, ci(X)/|vi(x, y)|), i.e. E[ψ(x, y)|x] = 0

and E[ψ(x, y)Λ(y)T] = Ip.

First what we would like to have, working with any iterative procedure, is the proof

of convergence of the algorithm, but as far as we know, there is no such proof for

our algorithm up to now. What we can check, is the accuracy of the algorithm and

the optimality at each iteration step. Here we can claim, that ones we reached the

stationary point, where function z or matrix A do not change much from the iteration

to the iteration, we know that the influence curve we computed is optimal. Moreover,

this algorithm provides some continuity in the sense, that if we even do not reach the

limiting point, but we are close to it, we are also close to the optimal solution (see Kohl

(2005)).

Main difficulties implementing this algorithm we faced in the block (0).The reason is

that, for the computation of the expectations in the block (1)., we need the L2 family

distribution with different values of the parameters on each iteration. Therefore, already

in the (0). block, we compute list of such L2 family distributions and plug its elements

in the expectation operator one by one.

Binomial example of FixPglm

For this example we took the R-data ”carrots” from the package robustbase, already

mentioned in the Section 2.4.7. To load these data one can use the following commands

> require(robustbase)

> data(carrots)
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Then, we compute corresponding matrix of the regressors X

success<-carrots$success

total<-carrots$total

logdose<-carrots$logdose

block<-carrots$block

blockb1<-c(rep(1,8),rep(0,16))

blockb2<-c(rep(0,8),rep(1,8),rep(0,8))

blockb3<-c(rep(0,16),rep(1,8))

X<-cbind(success,total,logdose,blockb1,blockb2,blockb3)

n <- dim(X)[1] #number of the regressors

k <- dim(X)[2] #dimension of each regressor

As usually we take the logit link function and extract derivative function from it. Then,

we define the fixed parameter of the Binomial distribution

link <- make.link("logit")

linkfct <- link$linkinv

linkder <- link$mu.eta

fixedparam<-total

For the computation of the regression parameter vector β we use the following GLM

model:

Cfit1 <- glm(cbind(success, total-success)~ X-1, data=carrots, family=binomial)

beta=coef(Cfit1)

Next we calculate matrix A0 as inverse of the Fisher information matrix and again for

simplicity we treat the expectation as arithmetic mean (using function rowMeans) of the

underlying vectors, i.e. in our case

vartheta <- X%*%beta

param <- sapply(vartheta,linkfct)

paramder <- sapply(vartheta, linkder)

X1 <- X*paramder*sqrt(fixedparam)/sqrt(param*(1-param))

A <- rowMeans(apply(X1,1,function(x)x%*%t(x)))

dim(A) <- c(k,k)

A <- ginv(A)

A0<-A

and choose clipping hight b and parameter of the stopping criteria ε
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b<-800

eps<-0.05

To get the value of oprimal IF we need to set pair of (x, y), so

x<-X[1,]

y<-carrots$success[1]

Results and the speed of the FixPglm performance for the introduced data are the

following

> FixPglm(X=X, fixedparam=fixedparam, A0=A0, link = "logit", beta=beta,

+ b=b, eps=eps)(x,y)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -66.72038 -90.60094 -2901.978 10776.38 9734.015 8943.32

> system.time(FixPglm(X=X, fixedparam=fixedparam, A0=A0, link = "logit",

+ beta=beta, b=b, eps=eps)(x,y))

user system elapsed

2.26 0.00 2.28

Since we did not face some obvious problems and got reasonable results in this example,

we conclude that our algorithm performs well for the Binomial model. Of course there

might be the way to improve the algorithm and increase the speed of the computation,

but since the main goal was to implement this algorithm in the easiest way, we are more

than satisfied with the result.

Note, that we apply this algorithm for the GPD shape model to the real hospital data

in Chapter 8, where we also point out main challenges or drawbacks of the algorithm.

6.4 Conclusions

In this Chapter we presented our approach of L2 differentiability for the generalized lin-

ear models. The main idea was to generalize theory of Rieder (1994) on L2 differentiabil-

ity for linear regression models to the required case. We focused on the non-exponential

scale-shape families, i.e. generalized extreme value and generalized Pareto distributions.

Our important achievement is that our approach also covers higher dimensional error

distributions and case of regressors of possibly different length for each parameter, what

is new. Similarly to Rieder (1994), we separately considered cases of stochastic and
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deterministic regressors and computed corresponding theorems with L2 differentiability

conditions, L2 derivatives and the Fisher information matrices for each case.

We also tested our approach on the linear regression, Binomial and Poisson GLMs with

respective link functions and, finally, GEVD and GPD joint shape-scale models. Main

challenge for two last models was to obtain the appropriate componentwise link function,

what have been done and discussed in details.

The last Section of this Chapter was focused on the algorithm FixPglm, which com-

putes Hampel-type optimal IC’s. We presented the iteration scheme and discussed its

properties. We tested function FixPglm for the Binomial case, with the R-data ”car-

rots”, and checked the time of its performance. As we could conclude, for the exemplary

implementation of the algorithm, FixPglm showed quite good results.
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Chapter 7

Applications

We have mentioned in Chapter 1, that this thesis is written in the framework of the

project ”Robust Risk Estimation”, based on the cooperation of four different institutions.

We focus on three research areas: hydrological application for modeling discharge data,

clinical application for the estimation of length of stay at an intensive care unit and

operational risk of a banks. Members of the project, who are responsible for each

application, are Bernhard Spangl from University of Natural Resources and Life Sciences,

Matthias Kohl from Furtwangen University and Peter Ruckdeschel from Fraunhofer

ITWM, Kaiseslautern respectively. All other members, i.e. Gerald Kroisandt, Sascha

Desmettre and Mykhailo Pupashenko, focused partially on the problems arising in each

of three applications.

For this dissertation we give the overview on the problematic and reached results of all

three applications, but hydrology and operational risk are not prescribed further in this

thesis, whereas length of stay is considered more explicitly in the real data example.

Each of these applications has its own specific problems, but the ways to solve these

problems are based on the methods described in the previous Chapters, what combines

them together in one project.

7.1 Hydrology

We start with the hydrological application and first, discuss the research questions con-

cerning the river discharge data, done under the guidance of Bernhard Spangl. It is

obvious, that based on environmental reasons , e.g. irregular climate pattern, non-

stationarity (neither geographically, nor temporal), river discharge data are full of ex-

tremes and spikes. Hence, the main challenge in this application is related to the analysis

117
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and modeling of extreme events in discharge data, especially their frequency and mag-

nitude. Our primary research question is to create specific approaches to solve this

problem.

One of the challenges in this application is to distinguish anthropogenic impact and

natural fluctuations. For that we would follow Tukey’s idea of ”borrowing strength”,

where one can use information from other datasets for the estimation at one specific

dataset. The hydrological view on this method was proposed by Hosking and Wallis

(1997), where authors raised the issue of regionalisation and seasonality.

7.1.1 Available data

In this application we worked with data, collected in various sites in Austria over the last

35 years, or in some cases even longer. These data consist of hourly and daily average

discharge time series of rivers from various Austrian regions.

Single time series of the data were measured in the alpine and high-alpine areas. Some of

data were taken from the pre-alps and the Bohemian Massif, as well as from some large

rivers, like the Danube or the Salzach. Each category includes not only the pristine rivers,

but also rivers with an anthropogenic impact caused by water transfers or storages.

Data contain some additional geographical variables, e.g., longitude, latitude, sea-height

or catchment area.

We also had access to data collected in Saxony, where annual maxima based on daily

average discharge data were measured, and two daily average discharge series from

Bavaria.

7.1.2 Main approach

We considered two approaches for this application. The first one is based on the idea

of filtering the average discharge time series in order to get rid of systematic trend or

seasonality in the data and then applying robust extreme value theory. Under ”filtering”

in this method we mean the use of the robust filtering combined with the robust signal

extraction, like in Fried et al. (2007).

Doing so, we extract the dynamic structure from the series and the remainder data

(innovations) do not show any dynamics, that is why we can apply EVT. We get the

estimated resulting innovations which still contain extremes and therefore, keep the

ability to detect extremes and spikes in those data.
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For this approach we apply Kalman filtering procedures, but not the classical ones, since

they will not perform particularly well in this situation. Instead, we use our new robust

recursive filters and smoothers, discussed in Chapter 5. More precisely, to daily average

discharge data we apply methods implemented in the R-package robKalman, which is

described in Section 5.5. To remind, they include classical and robust, extended and

unscented Kalman filters and corresponding smoothers.

Second approach uses generalized linear models for the GPD errors in the way introduced

in Chapter 6. We choose some suitable link function and link parameters of the GPD

to the corresponding regressors. This approach more explicitly models time dependence

for the extremes or exceedances directly.

7.2 Medicine

Length of stay (LOS) is a term to describe the duration of single patient hospitalization.

It is one of the most important notions used for the various purposes in the medical

application. LOS can be treated as an indicator of the hospital activity and applied for

the management of the hospital care, quality control, appropriateness of hospital use.

The second application of our results we considered, guided by Matthias Kohl, is related

to the hospital LOS at an intensive care unit (ICU) and respective costs spent on each

patient. From year 2004, so-called Diagnosis Related Groups (DRG) started to classify

patients of German hospitals, so that the hospitals are paid by cases. Therefore, the

comparison of the length of stay and costs between different departments, clinics or

classification schemes is very important for the health care system and for each hospital

particularly.

LOS is stochastic, therefore it has some natural fluctuations, this is why predictions for

expected LOS have to be complemented by some assessments of fluctuations (some risk

measure).

One should note, that in any hospital we can have some atypical patients, which have

longer LOS than we expected, hence require higher costs. Such extreme cases can

be caused by lots of reasons and can be treated as outliers from the captured data.

Although, for the correct prediction these extreme cases should be modeled as well.

Moreover, since LOS often has very skewed distribution, impact of such atypical patients

with longer length of stay can be dramatic.

Therefore, our main goal is to make robust prediction of the length of stay and the

costs constructing corresponding regression models, i.e. we apply extreme value theory
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in combination with regression-type models. Moreover, we face the problem of model

selection and validation.

7.2.1 Available data

Data used for this application is taken from the Jena university hospital ICU. The depart-

ment for anesthesiology and intensive care medicine in the 1990s adopted the electronic

patient-data-management-system named COPRA (Computer Organized Patient Report

Assistant). COPRA was developed in clinical practice at the University of Leipzig to

get rid of the need in manual or hand-written documentation. COPRA enables the

calculation of expenses for the complex intensive care treatments and additional costs

for medicine and blood.

The current version of the data, ”COPRA V”, includes all relevant vital parameters

for each patient, e.g. diagnoses, laboratory results, medications, LOS etc. It has been

successfully used for the last years and became one of the most complete databases for

critical ill patients. ”COPRA V” includes more than 52000 cases with more than 210000

patient days.

7.2.2 Main approach

The main challenge we faced in this application was a large number of covariates and

in addition a inhomogeneous population. It means, that we had to work with non i.i.d.

EVT, where every patient has his own extreme value distribution parameters. Our

solution to this problem was our GLM approach which could capture that.

First, working with the data described above, we decided that it is too large to use,

as e.g. version of the data we use in Chapter 8 contains 209 variables and over 21000

observations. The way out of the problem is to apply classical and robust variable

selection techniques to the data, in order to reconstruct it and reduce its dimension. In

this way one can select the most informative variables for LOS and costs. Within the

project we spent some time to formalize variable selection techniques.

As we have mentioned, we aim to construct regression models for the robust prediction of

the LOS and costs. Since typical LOS distributions are skewed and contain outliers, main

model candidates here would be Weibull, Gamma, GPD and GEV distributions. All

these distribution are implemented in the R-package RobExtremes, which was discussed

in Section 2.8.



Chapter 7. Applications 121

For linear and GLM context we speed up our algorithms computing algorithm, which,

with usage of the two-dimensional interpolation, quickly calculates and saves Lagrange

multipliers arising in the optimally-robust procedures on a grid of parameter values

offline. Partly it is implemented in the function FixPglm, studied in Section 6.3, which

obtains optimally-robust estimators.

In order to improve the obtained models for robust prediction of LOS and costs, we

developed a concept which we called Bed-at-Risk. It is a high upper quantile of the

LOS distribution and may be used to control average length of stay. The usage of this

concept in the planned surgeries was also sketched in the framework of the project, paper

in preparation.

7.3 Operational risk

Here we would like to present another application of our research, to the financial math-

ematics domain, which was mainly guided by Peter Ruckdeschel. We focus on the notion

of the operational risk (OR). We cite definition from the second of the Basel Accords,

which contain recommendations on banking laws and regulations, Basel II. Operational

risk is ”the risk of direct or indirect loss resulting from inadequate or failed internal

processes, people and systems or from external events”.

Basel II also states, that all banks have to maintain regulatory capital, so that unex-

pected losses caused by these risks will not lead to the bankruptcy. There are various

approaches for this purpose, suggested in Basel II. We focus on so-called Loss Distribu-

tion Approach (LDA). Idea of this method is to group operational risk data into cells,

representing the bank’s business lines and risk events. We fit each cell to historical data

and model separately severity and frequency of losses and determine total loss from the

respective compound distribution. In our research we basically focused on the robustness

issues of the approach.

For this application we also suggested to distinguish ”expected” and ”unexpected” losses

as body and tail of the corresponding distribution. Our propose was to take log-normal

or Weibull body distribution and GPD for the tail.

Main goal of this application was to quantify the regulatory capital, which can be com-

puted as some risk measure evaluated at the distribution, resulting from aggregation

of the cell-wise fitted model distributions. In a realistic modeling, taking into account

possible model deviations, one cannot tell (without error) whether these events are sin-

gular outliers or reproducible and, hence, contribute valuable evidence for future losses.
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Therefore, we aim to create methods of fitting cell-individual severity distributions to

the data, which remain stable under model deviations, hence robust.

7.3.1 Available data

First, one should note that obviously data collected from one bank is rather short.

Hence, in order to increase amount of the given information, banks usually pool their

data in consortia, e.g. the most important data provider in this field is ORX association

(www.orx.org). Since then it is not clear if the used data is appropriate for each bank,

amount of the robustness problems in the approach increases.

Another possible challenge using external data is so-called censoring problem, since data

usually is only reported beyond a certain threshold, whereas very large operational losses

are observed rarely.

The data we worked with is operational loss data collection Algo OpData of Algorithmics

Inc. This database has been collected within last 40 years and the majority of the losses

were observed during last 20 years. By July 2010, Algo OpData contained more than

12,000 operational risk losses from all industry sectors. Moreover, these data provides

detailed information about operational loss events over 1 million USD from 2431 financial

institutions according to Basel II business line and event type definition.

As we just mentioned, usually data collected from public sources is censored, therefore

the severity of losses is likely to be (heavy-tailed). This makes these data different

from other external operational loss data as e.g. ORX database. Here we consider the

”unexpected” losses and use them to model the extreme tails of severity distributions.

7.3.2 Main approach

The main challenges in this application were the aggregation, outliers presence and

intertemporal stability, meaning that the risk figure today should be close to the one

yesterday and two last problems were captured by the robustness.

More precisely, the first step of the research was related to the robust scaling problem

of the data. As we have mentioned, the external operational loss data is collected from

different banks, so in order to estimate operational risk, a scaling step is necessary to

scale the data to make losses comparable among banks. N. Horbenko and P. Ruckdeschel

worked on quantile regression for this scale. Another more direct approach directly

builds up on our GLM-results for scale-shape regression with GPD or GEVD errors.In
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particular the optimally robust estimators sketched in Section 2.5 directly contribute to

a more stable assessment of this scaling.

Using quantile regression on various factors, we tried to assess the bank-individual sever-

ity of operational losses. Here we tried two different approaches, the first based on the

standard quantiles and the second, modeling scale of a GPD with a GLM.

Since both methods are not robust against leverage points in response variables, we have

to use an optimal robust estimation procedure for regression, and the challenge here is

to compute a globally robust starting estimator. After this problem is solved, we can

obtain optimally robust estimator by the one-step reweighting estimation, starting with

a globally robust estimate and using the influence function of the MSE-optimally robust

estimator.

Next we would need simultaneous regression for shape and scale, where we will use

multivariate regression mentioned before in other applications.

7.3.3 Conclusions

In this Chapter we presented the applications, which were studied in the framework

of the project ”Robust Risk Estimation”. For each of them, we discussed main issues,

presented the available data and pointed the specific problems, which can be solved by

using our results.





Chapter 8

Examples

8.1 Example on the real data

8.1.1 Hospital data

In this Section we apply the algorithm, presented in Section 6.3, to the real data taken

from the Jena university hospital ICU. These data contain 309 vital parameters for each

patient, e.g. diagnoses, laboratory results, medications, length of stay etc.

For our example we focus on a couple subjectively selected variables, taking 5 parameters

from the hospital data as the regressors. The main purpose of this variable selection

is to get the relevant parameters using some expert opinion, in our case received from

Dr. Gordon Otto (Clinic for Anesthesiology and Intensive Care department of the Jena

University Hospital). The second important selection criterion is to work with both

types of variables, i.e. boolean and numerical.

More precisely, three of the chosen parameters are boolean, i.e. they have only one of

two values for each patient, i.e. TRUE and FALSE. These parameters indicate whether

each patient has some specific disease, e.g. Cancer or Sepsis, and if this patient receives

special treatments as e.g. Dialyse (used primarily for people with renal failure).

Two remaining of chosen parameters belong to the SOFA (Sepsis-related Organ Failure

Assessment) scoring system, which determines the extent of the person’s organ function

or the rate of failure. The score is based on six different scores for the respiratory, the

cardiovascular, the hepatic, the coagulation, the renal and the neurological systems. In

our example we focus on the parameters Gesamtscore.SOFA and SOFA.max.

X<-cbind(Cancer, Sepsis, Dialyse, Gesamtscore.SOFA, SOFA.max)
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To complete the data, for y we take the parameter ITS.Tage, i.e. number of days, that

were spent in the ICU.

The given data set contains information about 21757 patients, and the same is the

dimension of the observation. First, to be able to apply our algorithm to the data,

we through away all regressors which contain value NA. More precisely, parameters

Gesamtscore.SOFA and SOFA.max contain a large number of the not available values.

After cleaning regressors, we achieve reduced dimension equal to 18623.

For the further analysis, to have better idea about the possible values of these parame-

ters, we draw the histograms for their values.

Figure 8.1: Gesamtscore.SOFA and SOFA.max histogram for 18623 patients

As for the boolean parameters, we calculate amount of the TRUE of 18623 values for each

of them, and get:

> trueCancer

[1] 4258

> trueSepsis

[1] 982

> trueDialyse

[1] 1095

8.1.2 Model description

In this Chapter, we fit described data with the GLM with generalized Pareto error

distribution. We link shape parameter ξ of the GPD to the linear predictor Xβ via
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corresponding link function and, later, estimating regression parameter β, compute un-

known shape parameter. In this Section we discuss how we select all elements of the

corresponding GLM, i.e. nuisance parameters of the GPD and link function.

Threshold selection remains a delicate questions and has not been covered by this the-

sis. Obviously one needs a compromise between a good approximation quality in the

Pickands–Balkema–de Haan theorem 3.14, which encourages high thresholds, and a de-

cent number of remaining observations for inference beyond this threshold which would

speak for the lower threshold. In fact the threshold could be chosen by cross-validation

techniques trying to minimize the MSE.

In our thesis we have selected the threshold by the requirement that n = 1000 obser-

vations are beyond this threshold, which amounts to taking the threshold at the upper

5.4% quantile of the data. Fact that all observations are strictly larger than the thresh-

old is very important for our function, since otherwise, when we compute L2 derivative

for the shape parameter (3.14), we might get problems obtaining the value log 0.

Parallel to the choice of the threshold, which turns to be equal to 19, we reduce the

dimension of the data to 1000.

Next, we do the scale σ selection for our GPD. Since we estimate scale together with the

β estimation up to some point, and compute MLE and robust estimate (using skipping

technique) for the scale, it will be discussed in the next Section in details.

As for the choice of the link function, first, we follow our arguments from Section 6.2.

There we obtained, that for the GPD errors, the link function for the shape parameter

behaves like the logarithm, i.e. lξ(θξ) ≈ log(θξ).

After we applied this link function to our real data, we observed several drawbacks in

the design of the function, therefore, we adjust it to avoid various errors.

The first error we faced is in the argument of the link function θξ. This expression can

get zero value, especially for the small size of the regressors. The problem is that our

logarithm link function is not defined in zero. Therefore, we aim to secure ourselves

from such error.

Next possible error can come from the fact, that observations with the Generalized

Pareto distribution have to lie in the following support:

y ∈

{
(µ,∞), ξ ≥ 0

[0, µ− σ/ξ) , ξ < 0.
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If we reformulate it to create restrictions for the shape parameter of the GPD, we get

the following:

ξ ≥ − σ

y − µ
, when ξ < 0.

therefore, this also has to be satisfied by the link function.

Next what we should keep in mind is the L2 derivative for the GPD is not defined

for ξ = 0, see Section 3.2.2, moreover converging against zero for positive shapes will

explode the Fisher Information, i.e. limξ→0 Iξ = ∞. Therefore, we have to consider

two separate parameter areas, ξ ∈ (−1/2, 0) and ξ > 0. Note, that we do not exclude

zero value from our link, but we make it very hard to achieve. For both areas we

should compute appropriate link functions. Here we compute the link function for ξ > 0

and for ξ ∈ (−1/2, 0) any binomial link l0, with values in (0, 1), after transformation

l(x) = l0(x)/2− 1/2 will fit.

Adjusting link to the data we work with, we choose the following function

lξ(x) =
exp( x20)

(exp( x20) + 1)
h1(x), (8.1)

with

h1(x) =

{
2/5, x < 0

1/5 + log(1 + x), x > 0.

Figure 8.2: Link function for the shape parameter of GPD

In Figure 8.2 one can see the plot of the final choice of the link function for the shape

parameter of the GPD. Derivative of this link is the following:

lξ(x) =
exp( x20)

200(exp( x20) + 1)
h2(x), (8.2)
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with

h2(x) =

{
4/(exp(x/20) + 1), x < 0

log(1 + x)/(exp(x/20) + 1) + 20/(1 + x), x > 0.

8.1.3 Regression parameters selection

In this thesis we do not work out the interpolation step in FixPglm - from theory, the

influence function ψ(x, y) maps arbitrary combinations (x, y) to the (tangent space of)

the parameter space. In particular, in the optimal influence functions, the centering z,

i.e. (6.16), must be a function of x. For the sake of this thesis we limit ourselves to com-

putation of the IF at the actual data, at the set (X[i, ], y[i]), which makes computation

considerably simpler. While this has clear drawbacks for diagnostics (e.g. whatif anal-

ysis gets much harder) it pays off in terms of computational time. With these reasons,

we make our function FixPglm be the function of the index i, i.e.

FixPglm(X, locat, scale, A0, link, beta, b, eps)(i)

Here we describe the selection of the regression parameter β and, as we have mentioned

above, scale parameter of the GPD. We aim to obtain the robust starting estimator for

both parameters.

First, we apply link function to the linear predictor, i.e. to the product of regression

matrix and regression parameter, Xβ. Then, we compute likelihood function, as the

function of two parameters, β and σ, and maximize it (i.e. multiply it with −1 and

minimize) using the R-function optim. In this way we obtain some kind of the MLE for

both parameters. For 1000 observations of dimension 5 we get thetaMLE, where first

coordinate is the MLE of the logarithm of the scale, i.e. log(σ) and remaining are MLE

of β.

> thetaMLE

[1] 2.480620 -7.616404 19.819251 53.171399 1.098835 -4.354091

> scaleMLE

[1] 11.94867

For this estimation we require some robustness, which is obviously not covered by the

ML estimation. Lacking a better robust starting estimator, we use skipping technique

to robustify the classical MLE. First, we compute the vector which contains squared

euclidean norms of the inverse of the Fisher information matrix multiplied with L2

derivative for each observation, more precisely:

Ni = |I−1
β Λβ(yi, xi)|2.
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Then, we drop out of the data 5% of regressors and observations with the largest Ni, i.e.

ones with the largest impact. With the reduced sample we go back to the optimization,

redo it and get some robust estimate of the parameters β and σ. This estimation gives

the following results:

> thetaRob

[1] 2.409787 -7.682626 19.562721 52.655627 -7.812973 -18.443984

> scaleRob

[1] 11.13159

As an effect we have immunized our estimator against the effect of at least the 5% most

influential data. Here we stop the estimation procedure for the scale and further, we use

the obtained values as the nuisance parameters of the GPD.

Getting hand on a (globally) robust, consistent starting estimator in this context is all

but trivial. The usual technique to use a minimum distance estimator to a distance

based on the distribution function (Kolmogorov, Cramér-von-Mises) in our case suffers

from the need to compute the multivariate (i.e., here 6-dimensional) density. Failing to

find a better solution we instead propose the following procedure.

We drop the 5% most influential observations (in terms of the value |I−1Λ|) and compute

the MLE on the remaining data. Obviously, this will already lead to a bias in the ideal

model in general; Dupuis and Morgenthaler (2002) to this end have sketched a general

procedure to tackle this problem, but for the sake of this example we skip this step for

the moment, hoping that the subsequent k steps in the k step iteration will then already

reduce the bias sufficiently again. As a control we compare the resulting parameter

estimates with the ones of the MLE (on the whole data set). When the difference in the

real data set is small, we can expect our hope to be justified.

Applying the link function to the regression matrix multiplied with the corresponding

MLE or robust estimate of the parameter β, we receive the shape parameter estimations.

To compare them, we calculate the mean, minimum and maximum of all coordinates of

the shape estimators, i.e.

mean max min

MLE 0.138 0.564 0.0092
Robust 4.019e-05 0.0103 1.487e-11

Table 8.1: Mean, minimum and maximum of the shape estimators for 1000 observa-
tions

One can see that estimations of the parameter β significantly differ in the two last co-

ordinates, which are the parameters associated with the parameters Gesamtscore.SOFA
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and SOFA.max. This difference causes the visible difference between shape parameter

estimations. The only possible reason for such difference can be the robust issue itself.

We can conclude, that 5% of data with the largest impact significantly influence on the

shape, so when we remove it, we get much lighter tail of the GPD. To be sure that we

have got some reasonable results here, we approximately calculated confidence intervals

for both estimations, and we conclude that they fit them quite well.

Before we start with the k-step estimation, first we decide about the choice of the clipping

hight b. If we want to select it instead of computing, we can face few problems. First,

it is hard to tell how large is the range between the most robust estimator MBRE and

the MLE, which is not robust at all. This range can be extremely small and if our guess

of b does not get into it, we can have problems with the convergence of the fixed point

iteration.

As we have mentioned in Section 6.3, the best way to compute the clipping hight, is to

solve Anscombe criteria, but it is hard and we do not use it here. Another way is to use

one of four explicit equations for the selection of b in presented in Ruckdeschel (2014,

Sec. 4.4).

The second problem of the clipping hight selection is that, usually, it is not easy to

make good prediction of its value before taking look at the whole model. Four men-

tioned equations from Ruckdeschel (2014) give more model-independent criteria for this

selection.

What we do here is, using the following approximation in the classical setting equality

E(|I−1Λ|2) ≈ trI−1, we compute the value of b in the following way

b = c ∗
√

trI−1. (8.3)

Here, choosing appropriate constant c, we search for the first b, for which the whole

algorithm converges after 3-4 iteration. If it does not work for the chosen c, we increase

it. In our real data example with the dimension 200, choice of b = 25∗
√

trI−1 led to the

convergence of the algorithm after 3 iterations, whereas for 1000 observations we took

b = 70 ∗
√

trI−1 to get the influence after 3 iterations.

Next, we compute k-step estimator of the parameter β, and, since k-step procedure is

very durable, we apply it only to the amount of 200 observations. We obtain location

parameter for this dimension to be equal to 38. Then, we compute the MLE and the

robust estimator for this reduced data and obtain:

> thetaMLE

[1] 2.843544 -142.497857 -17.954474 157.657757 -17.762091 1.343739
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> thetaRob

[1] 2.711753e+00 -1.443249e+02 -2.690242e+01 1.570307e+02 -1.857499e+01

[6] -1.118916e-04

Hence, values of the estimated scale parameter are:

> scaleMLE

[1] 17.17653

> scaleRob

[1] 15.05564

Next, starting with the robust estimates of the scale and β parameters, we compute

k-step estimator for k = 1 and k = 2, and on each step we get the following results:

> betaKstep1

[1] -705.419849 -277.536523 274.182498 -8.389895 5.043223

> betaKstep2

[1] -690.699222 -278.729817 276.208028 -8.277089 3.937345

Mean, minimum and maximum of all coordinates of the shape estimators are illustrated

in the Table 8.2.

mean max min

MLE 0.1522 0.7178 1.231e-10
Robust 0.0896 0.706 1.613e-11
k=1 0.2581 0.785 5.175e-23
k=2 0.2147 0.781 4.752e-23

Table 8.2: Mean, minimum and maximum of the shape estimators for 200 observations

For the comparison of the results of the MLE, robust and k-step estimation procedures,

we draw corresponding pp-plot. First we generate random sample of the size 200 for the

GPD with the chosen location parameter and estimated scale and shape. Plotting these

samples against sequence 1/n, ..., 1, we get the plot from the Figure 8.3.

The approximation quality increases with the n getting larger for all 4 estimators. One

should note, that strange behavior of all estimators for the small values is not a surprise.

It is familiar phenomenon for extreme value plots, in particular for GPD, that for the

lower quantiles we do not get good approximation.

Red points on Figure 8.3 represent results of the maximum likelihood estimation, whereas

the blue color is chosen for the robust estimators of the scale and shape. Comparing

results of these two estimations, we cannot easily conclude from the plot, which of them
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Figure 8.3: PP-plot for the MLE, robust, k=1- and k=2-step estimation of the shape
parameter for GPD

performs better. Red points do not perfectly follow the line y = x, since MLE is not

robust, i.e. it is affected by the outliers in the data. The line constructed by the blue

points should perform better in this aspect, but one can see that it is a bit shifted from

the black line due to the bias caused by the construction of the robust estimator.

From the pp-plot we observe that both lines, of light and dark green points, closely

follow line y = x. Light green color here represents the 1-step estimation, and the dark

green in chosen for the 2-step estimator of the shape. As was expected, second step

slightly improves the 1-step estimation results.

Next, we aim to draw analogs of the diagnostic plots from Section 2.6.2 for our results.

First, we plot the influence curves for each of 5 coordinates of the k-step estimation of

the parameter β, comparing them to the MLE influence, obtained from the expression

I−1ΛPβ .

On Figure 8.4, Figure 8.5 and Figure 8.6 coordinates of the vector β are plotted. Since

green color represents influence calculated with the 1-step estimator, it is clear that

it is close to zero for all 5 parameters. Analyzing all plots one can notice, that for

all coordinate, except second, MLE influence, which is drawn by red color, does not

differ too much from the robust estimation influence, which consists of the blue points.

Difference for the second component of the parameter β, which corresponds to the
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Figure 8.4: The first two components of the optimal influence curves for GPD

Figure 8.5: The second two components of the optimal influence curves for GPD

Sepsis parameter, means that removed 5% of the most influential observations had the

only impact on the shape parameter, because after removing them, the general influence

of this parameter on the shape becomes zero.

On this stage by the maximal norms of the influence we detect the most influential

observations. Vector top represents the numbers of the observations with the norms of

the influence infnorms[top]. Then we display top 5 observations themselves and cor-

responding regressors. FixPglm[,top] contains the influences of the top 5 observations

as the columns.

> top

[1] 122 147 143 13 112
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Figure 8.6: The last component of the optimal influence curves for GPD

> FixPglm[,top]

[,122] [,147] [,143] [,13] [,112]

Cancer 117969.949 -44872.1938 -90233.56998 36740.527 -33637.482

Sepsis 5375.379 -21377.8497 76.54543 8410.0869 -7013.071

Dialyse -161287.980 78920.2473 -631.27602 -55436.7673 52632.565

Gesamtscore.SOFA 21898.232 -8061.2293 80.5967 6777.7163 -6075.129

SOFA.max 169.700 -72.126 -0.68553 -10.987 -171.101

> infnorms[top]

[1] 201094.95 93615.81 90235.85 67377.81 63148.92

> y[top]

[1] 172 120 47 126 112

> X[top,]

Cancer Sepsis Dialyse Gesamtscore.SOFA SOFA.max

[122,] 0 0 1 10 18

[147,] 0 0 1 7 15

[143,] 1 1 1 1 15

[13,] 0 1 1 9 16

[112,] 0 1 1 6 13

These top 5 observations are also plotted on Figure 8.4, Figure 8.5 and Figure 8.6 as

dark brown points and labeled by their numbers. E.g. observation number 122 has the

biggest of all observations influence, what can be seen from all 5 plots, as it is far from

the area of the points concentration. Interesting here is that the observation 143 has

low influence on all coordinates except first one, but this one influence is huge enough

to bring it to the top 5 influential observation.
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From this result we can conclude that the most influential parameter coordinates are

Dialyse, as it is TRUE in each regressor, and SOFA.max, which, as one can see from the

Histogram 8.1, has quite big values in the chosen regressors.

To make more accurate conclusion about the percentage of the information, used per

observation for each parameter coordinate, we plot analog to the information plots from

Section 2.6.2.

Figure 8.7: Relative information of first two components of (partial) influence curve
for GPD

Figure 8.8: Relative information of second two components of (partial) influence curve
for GPD

From these plots we confirm the assumption about the big influence of the third co-

ordinate Dialyse, see Figure 8.8. From Figure 8.9 one can see that fifth coordinate

SOFA.max does not have much influence, so this assumption was premature.
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Figure 8.9: Relative information of the last component of (partial) influence curve
for GPD

8.1.4 Speed of the algorithm

In this Section we conclude about the speed of our function FixPglm. First, we try this

function on 1000 observations and 5-dimensional regressors. We measured performance

speed of the algorithm using the R function proc.time() in the following way

begin <- proc.time()

Influence1 <- FixPglm(X=X, A0=A0, locat=myloc, scale=scaleRob, linkfct=linkfct,

beta=betaRob, b=b, eps=eps)(1)

elaspedTime <- proc.time() - begin

In the case of 1000 observations algorithm stops after 3d iteration for the values ε = 0.5

and clipping hight b = 70 ∗
√

trI−1. Time of the algorithm performance in this case is

> elaspedTime

user system elapsed

4836.52 1.35 4924.08

Next, we apply our function to the smaller number of the observations, e.g. 200, and

5-dimensional regressors. In this case we also choose clipping hight to get convergence

after 3 iterations were used and the results were the following:
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> elaspedTime

user system elapsed

219.90 0.16 224.13

Another comparison we do is reducing amount of the regressor dimension. First, we try

it for the 2-dimensions, taking the Cancer and the Gesamtscore.SOFA parameters only.

The problem we face in this case is that we get some two-dimensional zero regressors.

Later, we plug them in the link function and obtain zero shape parameter. This makes

the computation of the L2 derivative function more complicated.

One possible way out of this problem is to use interception. We can replace one of

the chosen regressors or simply add one parameter, which is always equal to 1. In

the regression matrix it is additional column of ones and regressors never become zero

vectors.

Nevertheless, we decide to keep 3 parameters, Cancer, Sepsis and Gesamtscore.SOFA.

Here we are safe from the described problem, hence, we do not use interception. Di-

mension of the regressors is 1000 as in the first example of this Section. Here we get the

following speed of 3 iterations used:

> elaspedTime

user system elapsed

2899.66 0.49 2938.38

Here we conclude about the speed of the algorithm performance. With the computa-

tions described above we track the dependence of our function on the amount of the

observations and the number of the taken parameters. First, we observe conspicuous

time reduction of the algorithm performance of 5-times reduced sample. We expected

that the speed of our algorithm is linearly dependent on the observation dimension, but

here we observe 20-times longer performance of the 1000-dimensional data, than for 200-

dimensional. One also should note, that the most durable stages of our algorithm are

the ones with computation of the expectations, i.e. (6.16) and (6.18). The speed of the

used function for the calculation of these expectations, E from the R-package distrEx,

is also not linear w.r.t. the observation dimension.

However, we also predicted the linear dependence of the function performance time

on the number of the chosen data parameters, what seems to be true. The speed of

the algorithm applied to 3-parametric data turns to be 1,66 faster than the one for

5-parametric regressors.



Chapter 8. Examples 139

8.2 Simulation study

In this Section we check the accuracy of the MLE and the robust estimates of the

parameter β and σ, applying some simulation study. Here we also aim to confirm

or deny the suitability of the generalized linear model with generalized Pareto error

distribution for the real data from above.

First, we compute estimates from these real data, taking 1000 observations and 5-

dimensional regressors. As they are the reference parameters for the simulation discussed

here, we repeat them:

> betaRob

[1] -7.682626 19.562721 52.655627 -7.812973 -18.443984

> scaleRob

[1] 11.13159

For the comparison of the mean, minimum and maximum of the shape estimators we

refer to the Table 8.1.

In order to get some appropriate performance time for the simulation study, we take

the random sample of 100 numbers from 1 to 1000. Using it, we randomly choose 100

regressors from the real data and 100 shape parameters from 1000-dimensional robust

estimate shapeRob. For simplicity we denote the regressors matrix as X100. Then we

plug these robust estimates and the scaleRob in the GPD and simulate random sample

of 100 variables. Note, that each random variable is simulated from the different value

of the shape parameter, according to the respective value of the link function in the

GLM regression. We treat this random sample as new ideal observation vector yid and

then, we contaminate it, replacing around 5% of its values by the data simulated from

GPD with totally different parameters, i.e. we get ycont. Further, we proceed with both

types of the observations, ideal and contaminated.

We use pairs of the regression matrix and observation vector, i.e. (X100, yid) and

(X100, ycont) to estimate parameter β and scale σ. We take values betaRob and sigmaRob

as the starting estimators, and first compute the MLE. Then again, we through 5% of

the observations with the largest impact out of the data and compute robust estimates.

For this simulation we do 100 runs to get 100 values of the estimates computed from

100 different synthetic data pairs (X100, yid) and (X100, ycont). Unfortunetly we cannot

apply k-step optimally robust estimation here, since then we would have to compute 100

optimal influence functions for each run, and it would cost too much time.
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Finally, we calculate MSE of the obtained estimators comparing to betaRob, computed

from the real data and used as starting estimator for the synthetic data simulation. The

resulting MSEs are illustrated in the following table:

ideal contaminated

MLE 1.601 2.35e+18
Robust 2.497 83051.25

Table 8.3: MSE of the estimates obtained from the real and synthetic data

From this table we conclude, that MLE and robust estimation perform very well and

similar to each other, as we expected. Since ML estimator is not robust, its MSE is

quite large in the case of the contaminated data, whereas applying robust estimation to

it evidently reduces MSE.

We can confirm this conclusion looking at absolute difference between means of the shape

parameter computed after simulations, and the mean(shapeRob) from the original data:

ideal contaminated

MLE 3.656e-05 3.759e-05
Robust 3.642e-05 3.641e-05

Table 8.4: Absolute mean difference between estimates of the shape for real and
synthetic data

One should note, that performance of the robust estimation is the same on the shape

scale in both, ideal and contaminated situation, when on the β-scale the difference was

observed and almost disappeared after use of the link function.

For the better illustration of these results we also draw the box plots for the scale and

5 coordinates of the parameter β for each of four cases, see Figure 8.10 - Figure 8.13.

From Figure 8.10 we observe that for the MLE in the ideal situation there are only few,

visible, but not huge, outliers for each coordinate of the estimated parameters. Next,

since robust procedure we use takes out of the data some influential observations, the

slightly bigger number of the outliers on Figure 8.11 was predictable. What is more

dramatic but also expected, are the amount and sizes of the outliers occurred from

the MLE in the case of the contaminated data, Figure 8.12. The good point is that

this amount and the sizes of the outliers are greatly reduced by applying the robust

estimator, what one can see on Figure 8.13

For another analysis of the each coordinate of the estimated parameter β, we draw

the histograms for the difference between the estimated regression parameter in each

situation and betaRob, taken as the starting estimator.
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Figure 8.10: Scale and regressor parameters MLE for ideal observations

Figure 8.11: Scale and regressor parameters robust estimates for ideal observations

From the histograms on Figures 8.14-8.17 we only confirm previous conclusions, that

MLE performs almost perfectly in the ideal situation, but does not handle outliers in

the contaminated case, when performance of the robust estimator is good enough in the

absence and presence of the outliers in the data.
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Figure 8.12: Scale and regressor parameters MLE for contaminated observations

Figure 8.13: Scale and regressor parameters robust estimates for contaminated ob-
servations
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Figure 8.14: MLE for ideal observations

Figure 8.15: Robust estimates for ideal observations
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Figure 8.16: MLE for contaminated observations

Figure 8.17: Robust estimates for contaminated observations



Chapter 9

Conclusions

The main focus of this thesis belongs to the regression models with extreme value error

distributions. Working with real data we usually suspect that it can be contaminated by

some proportion of outliers. Therefore, for the variety of application domains, classical

estimation and inference is not always reliable. Hence, we have set a goal to develop

robust procedures for the systems which contain extreme events, i.e. apply robust statis-

tics to extreme value theory. The main challenge we faced, came from the choice of the

asymmetric error distributions and caused significant complication of the aimed robus-

tification.

Nevertheless, we achieved the desired goal for two types of the regression models. First,

for dynamical regression models, more specifically, state-space models, we used robust

versions of the Kalman filter and reworked classical Kalman smoother and extended

Kalman filter in a robust way for different types of outliers, i.e. spiky outliers, AOs and

IOs. Here, we were first to compute general IO-robust filter and introduce new idea for

the robust smoother.

To assess the performance of new procedures, we applied it at real data and stylized

outlier situation. Thence, we concluded that our procedures perform very well in the

situations they were created for. Moreover, they cover wider variety of outlier situa-

tions comparing to other existing approaches and win in efficiency in all contamination

situations.

Our invented procedures are recursive, therefore they are quite fast and convenient for

online using. We implemented them in R in the framework of the package robKalman

(last developer version available in R-Forge is 0.3).

Still, there are some open issues in our procedures, which are topics for further research,

e.g. IO-robust smoother have to be essentially improved. Besides, after checking filters
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in the case of some non observed aspects, i.e. when the observation matrix of the model

is non invertible, we conclude that all filters cannot cope with this situation. Another

open issue we left for the further considerations is the hybrid filter and smoother, which

can be used for the mixed situations, i.e. presence of both types of outliers in the data.

Although, the first attempts were made by Ruckdeschel (2010c, Ch. 5).

Next, we devoted one Section to the model diagnostics, which draws diagnostic plots to

see different aspects of the taken model. We introduced our new R-package RobExtremes,

which provides infrastructure for optimally robust estimation in scale-shape models,

covering GEVD and GPD. Moreover, it implements general LD estimators, including

the high-breakdown point estimators, and applies interpolation technique.

Further, we reviewed generalized published results on robustness properties of some

estimators for the GPD parametric model, to cover GEVD case, more precisely, for the

classical moment based and Cramér-von-Mises minimum distance estimators.

The second type of regression models, covered by this thesis, were generalized linear

models, studied in some more general form, i.e. with extreme value error distributions,

i.e. GEVD and GPD, instead of distributions from the exponential family. In order

to obtain some robustness for these models, we created sufficient conditions of L2 dif-

ferentiability for them, deriving smoothness in terms of it. We generalized theory of

Rieder (1994) on L2 differentiability for linear regression models, considering cases of

stochastic and deterministic regressors separately. Moreover, we computed correspond-

ing L2 derivatives and the Fisher information matrices for each case. Our important

achievement here was making our approach cover higher dimensional error distributions

and case of regressors of possibly different length for each parameter, what was new.

We checked suitability of the introduced L2 differentiability conditions on the various

models, including GEVD and GPD joint shape-scale models. We discussed in details

the way we obtained the appropriate componentwise link function and proved, that our

choice satisfies all conditions we required for the L2 differentiability of the model.

Important part of this thesis was focused on the fixed point iteration algorithm for

the computation of the optimally robust influence curve. Our version of this algorithm

differ from the similar algorithms by using another techniques to get some intermediate

values. Here, we not only discussed it step by step and pointed out its week stages,

but also implemented it in R under the name FixPglm. Here we did not aim to provide

the most flexible implementation, but rather sketch how it should be done and retain

points of particular importance. We tested function FixPglm for the Binomial case, with

the R-data ”carrots”, and analyzed time of its performance. We concluded that for the

exemplary implementation, FixPglm showed quite good results.
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In the third part of the thesis we discussed three applications, which were studied in the

framework of the project ”Robust Risk Estimation”, i.e. operational risk, hospitalization

times and hydrological river discharge data. For each of them, we discussed main issues,

presented the available data and pointed the specific problems, which can be solved by

using our results. Then, we applied function FixPglm to the real data set taken from

Jena university hospital ICU.

We have fitted these data with the GLM with generalized Pareto error distribution and

estimated its shape parameter by means of the link function and regression parameter

estimation. The most important and difficult stage here was to compute the appropriate

link function, but after several attempts, we got the desired link. Another significant for

the procedure performance choice we made related to the clipping hight, but we have

found good approximation for it.

To the regression parameter we applied three types of estimation, MLE, robust estimator

using skipping technique and k-step procedure with k = 1, 2. With various illustrations

we compared performance of all estimators and analyzed the data pointing out the

most influential observations and parameters, e.g. coordinate responsible for special

treatment Dialyse was the most influential from all five chosen parameters. Duration

of the function FixPglm performance showed quite satisfactory results.

Finally, we made some simulation study which confirmed effectiveness of applied ap-

proach and demonstrated behavior of MLE and robust estimators on the ideal and con-

taminated synthetic data. Here all our expectations were fulfilled, i.e. MLE performed

almost perfectly in the ideal situation, but could not handle outliers in the contaminated

case, when performance of the robust estimator was good enough in both cases.





Appendix A

Robustness properties of the

GEVD estimators

In this Section Qσ,ξ denotes GEVD c.d.f. (3.1) with known location parameter µ.

A.1 Proof of Theorem 3.18

To get influence function of the method of moments estimator we need to compute

Jacobian matrix

D =

(
∂ξ̂
∂m1

∂ξ̂
∂m2

∂σ̂
∂m1

∂σ̂
∂m2

)
=

(
d11 d12

d21 d22

)
.

Since we do not have explicit form of the estimators σ̂ and ξ̂, we compute Jacobian

matrix as the inverse matrix, where all terms can be explicitly calculated, i.e.

D =

 ∂m1

∂ξ̂

∂m1
∂σ̂

∂m2

∂ξ̂

∂m2
∂σ̂

−1

.

Expressions in (3.16) display first two theoretical moments of GEVD, which we repeat

here

m1 =
σ(g1 − 1)

ξ
, m2 = σ2 g2 − 2g1 + 1

ξ2

where gk := Γ(1− kξ), k = 1, 2 and ξ < 0.5.

For simplicity, we introduce some additional notations:

a =
∂m1

∂ξ̂
= σ

g′1ξ − g1

ξ2
; b =

∂m1

∂σ̂
=
g1 − 1

ξ
;
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c =
∂m2

∂ξ̂
= σ

(g′2 − 2g′1)ξ − 2(g2 − 2g1 + 1)

ξ3
; d =

∂m1

∂σ̂
= 2σ

g2 − 2g1 + 1

ξ2
.

Then, Jacobian matrix D can be computed in the following way

D =

(
a b

c d

)−1

=
1

ad− bc

(
d −c
−b a

)
=

(
d11 d12

d21 d22

)

We start with the calculation of the denominator, i.e.

ad− bc =
2σ2

ξ4
(g′1ξ − g1)(g2 − 2g1 + 1)− σ2

ξ4
(g1 − 1)((g′2 − 2g′1)ξ − 2(g2 − 2g1 + 1)) =

=
σ2

ξ4
(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1)).

Next, we compute each component of the Jacobian matrix D and get the following terms

d11 =
d

ad− bc
=

2ξ2(g2 − 2g1 + 1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1))
;

d12 =
−c

ad− bc
=

−ξ((g′2 − 2g′1)ξ − 2(g2 − 2g1 + 1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1))
;

d21 =
−b

ad− bc
=

−ξ3(g1 − 1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g′2 − 2g′1))
;

d22 =
a

ad− bc
=

ξ2(g′1ξ − g1)

σ(2(g′1ξ − 1)(g2 − 2g1 + 1) + ξ(1− g1)(g2 − 2g′1))
.

Influence functions of the first two moments for GEVD are correspondingly

IF (x,m1, Qσ,ξ) = x−m1, and IF (x,m2, Qσ,ξ) = x2 −m2.

Therefore, by the delta method, influence function of the method of moments estimator

can be calculated from the following expression, plugging obtained Jacobian matrix D

in it:

IF (x,MOM, Qσ,ξ) = D(IF (x,m1, Qσ,ξ), IF (x,m2, Qσ,ξ))
T =

= D(x−m1, x
2 −m2)T.
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A.2 Proof of Theorem 3.19

To calculate influence function of the Cramér-von-Mises MDE we follow method of

Horbenko (2011, Sec. 6.2), which is originally based on the results presented in Rieder

(1994, Ex. 4.2.15, Thm. 6.3.8). To do so, we link to the definition of the Cramér-von-

Mises differentiability of the parametric model, taken from Rieder (1994, Def. 2.3.11),

with the corresponding Cramér-von-Mises derivative ∆θ and Cramér-von-Mises infor-

mation matrix Jθ =
∫

∆θ∆
T
θ dQθ.

In Section 3.2.1, we have checked, that GEVD(µ, σ, ξ) is L2 differentiable. More-

over, by Rieder (1994) we know that L2-differentiability implies Cramér-von-Mises-

differentiability, therefore GEVD is also Cramér-von-Mises-differentiable. Cramér-von-

Mises derivative for GEVD can be obtained as derivative of the cumulative distribution

function Qσ,ξ(x) with respect to the unknown parameters σ and ξ, i.e. ∆θ = (∆ξ,∆σ)T,

with the following terms

∆ξ(x) =
∂

∂ξ
Qσ,ξ(x) = exp

(
− (1 + ξ

x− µ
σ

)
− 1
ξ

)(1

ξ
(1 + ξ

x− µ
σ

)
− 1
ξ ln(1 + ξ

x− µ
σ

)
− 1
ξ+

+
x

ξ
(1 + ξ

x− µ
σ

)
− 1
ξ
−1
)
,

∆σ(x) =
∂

∂σ
Qσ,ξ(x) = − exp

(
− (1 + ξ

x− µ
σ

)
− 1
ξ

)x− µ
σ2

(1 + ξ
x− µ
σ

)
− 1
ξ
−1
.

Following Rieder (1994, Ex. 4.2.15, Thm. 6.3.8), we obtain influence function of the

Cramér-von-Mises MDE in terms of the Cramér-von-Mises derivative and information

matrix

IF (x,MDE, Qσ,ξ) = J −1
θ

(∫ ∞
x

(1−Qσ,ξ(y))∆θ(y)dQσ,ξ(y)−
∫ x

0
Qσ,ξ(y)∆θ(y)dQσ,ξ(y)

)
=

= J −1
θ

(∫ ∞
0

∆θ(y)dQσ,ξ(y)−
∫ x

0
∆θ(y)dQσ,ξ(y)−

∫ ∞
0

Qσ,ξ(y)∆θ(y)dQσ,ξ(y)
)

=

= J −1
θ

(
−
∫ x

0
∆θ(y)dQσ,ξ(y) +

∫ ∞
0

∆θ(y)(1−Qσ,ξ(y))dQσ,ξ(y)
)
,

For simplicity, we denote z := x−µ
σ . Since for GEVD we require that 1 + ξz > 0, then

for positive shapes influence function of the Cramér-von-Mises MDE can be computed

by the formula

IF (z,MDE, Qσ,ξ) = J −1
θ

(
−
∫ z

−1/ξ
∆θ(y)dQσ,ξ(y) +

∫ ∞
−1/ξ

∆θ(y)(1−Qσ,ξ(y))dQσ,ξ(y)
)
,

(A.1)
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First, we compute Cramér-von-Mises information matrix Jθ, i.e.

J(σ,ξ) =

( ∫
∆2
ξdQσ,ξ

∫
∆ξ∆σdQσ,ξ∫

∆ξ∆σdQσ,ξ
∫

∆2
σdQσ,ξ

)
=

(
Jξξ Jξσ

Jξσ Jσσ

)
.

To simplify further calculations, we introduce another notation, u := (1 + ξz)
− 1
ξ , and

get the following relations with it

z =
1

ξ
(u−ξ − 1), dz = −u−ξ−1du, Qσ,ξ(z) = exp(−u),

dQσ,ξ(z) =
1

σ
uξ−1 exp(−u)(−u−ξ−1)du = − 1

σ
exp(−u)du.

Then, corresponding Cramér-von-Mises derivative functions can be rewritten w.r.t. the

variable u, i.e.

∆ξ(u) = exp(−u)
(1

ξ
u lnu+

1

ξ2
(u−ξ − 1)uξ+1

)
=

1

ξ
exp(−u)

(
u lnu+

1

ξ
(u− uξ+1)

)
,

∆σ(u) = − exp(−u)
1

ξσ
(u−ξ − 1)uξ+1 = exp(−u)

1

ξσ
(uξ+1 − u).

Since suitable values of z are restricted by 1 + ξz > 0, we get that variable u has to be

positive, i.e. u > 0. Here we do some additional calculations for future reference∫ ∞
0

exp(−3u)u2du =
Γ(3)

33
=

2

27
, (A.2)

∫ ∞
0

exp(−3u)uξ+2du =
Γ(ξ + 3)

3ξ+3
, (A.3)∫ ∞

0
exp(−3u)u2ξ+2du =

1

32ξ+3

∫ ∞
0

exp(−3u)(3u)2ξ+2d(3u) =
Γ(2ξ + 3)

32ξ+3
. (A.4)

We start computation of the Cramér-von-Mises information matrix with the easiest term

Jσσ, i.e.

Jσσ =

∫ ∞
−1/ξ

∆2
σ(z)dQσ,ξ(z) =

1

ξ2σ2

∫ ∞
0

exp(−2u)(uξ+1 − u)2(− 1

σ
exp(−u))du =

= − 1

ξ2σ3

∫ ∞
0

exp(−3u)(u2ξ+2 − 2uξ+2 + u2)du.

Applying calculations (A.2)-(A.4) we get the first term of the matrix

Jσσ = − 1

ξ2σ3

(
Γ(2ξ + 3)

32ξ+3
− 2

Γ(ξ + 3)

3ξ+3
+

2

27

)
=
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=
1

27ξ2σ3

(
− 1

32ξ
Γ(2ξ + 3) +

2

3ξ
Γ(ξ + 3)− 2

)
. (A.5)

Next, we calculate term Jξξ of the Cramér-von-Mises information matrix as follows

Jξξ =

∫ ∞
−1/ξ

∆2
ξ(z)dQσ,ξ(z) =

1

ξ2

∫ ∞
0

exp(−2u)(u lnu+

+
1

ξ
(u− uξ+1))2(− 1

σ
exp(−u))du = − 1

ξ2σ

∫ ∞
0

exp(−3u)u2(lnu)2du+

+
2

ξ3σ

∫ ∞
0

exp(−3u)(uξ+2 − u2) lnudu−− 1

ξ4σ

∫ ∞
0

exp(−3u)(u− uξ+1)2du (A.6)

Each summand in the last expression we compute separately. For the second summand

we get the following result∫ ∞
0

exp(−3u)uξ+2 lnudu =
1

3ξ+3

∫ ∞
0

exp(−3u)(3u)ξ+2 ln(3u)d(3u)−

− ln 3

3ξ+3

∫ ∞
0

exp(−3u)(3u)ξ+2d(3u) =
1

3ξ+3
Γ′(ξ + 3)− ln 3

3ξ+3
Γ(ξ + 3) (A.7)

Then, plugging ξ = 0 in the equality (A.7) we get∫ ∞
0

exp(−3u)u2 lnudu =
1

27
Γ′(3)− ln 3

27
Γ(3) =

Γ′(3)− 2 ln 3

27
.

Combining last results together we get the second summand of the expression (A.6)

calculated as
2

ξ3σ

∫ ∞
0

exp(−3u)(uξ+2 − u2) lnudu =

=
2

ξ3σ

(Γ′(ξ + 3)− ln 3Γ(ξ + 3)

3ξ+3
− Γ′(3)− 2 ln 3

27

)
.

The first term of the expression (A.6) is calculated in the following way

− 1

ξ4σ

∫ ∞
0

exp(−3u)u2(lnu)2du = − 1

ξ4σ

(∫ ∞
0

exp(−3u)u2(ln 3u)2du−

−2 ln 3

∫ ∞
0

exp(−3u)u2 lnudu− (ln 3)2

∫ ∞
0

exp(−3u)u2du
)

=

= − 1

ξ4σ

(Γ′′(3)

27
− 2 ln 3

Γ′(3)− 2 ln 3

27
− (ln 3)2 2

27

)
=

= − 1

27ξ2σ
(Γ′′(3)− 2 ln 3Γ′(3) + 2(ln(3))2).
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The last summand of (A.6) is easy to get from the calculations (A.2)-(A.4), i.e.

− 1

ξ4σ

∫ ∞
0

exp(−3u)(u− uξ+1)2du =
1

ξ4σ

(
− Γ(2ξ + 3)

32ξ+3
+ 2

Γ(ξ + 3)

3ξ+3
− 2

27

)
.

Plugging all these calculations in expression (A.6) we get next term of the Cramér-von-

Mises information matrix

Jξξ =
1

27ξ2σ
(−Γ′′(3) + 2 log 3Γ′(3)− 2(log(3))2) +

2

ξ3σ

(Γ′(ξ + 3)− log 3Γ(ξ + 3)

3ξ+3
−

−Γ′(3)− 2 log 3

27

)
+

1

ξ4σ

(
− Γ(2ξ + 3)

32ξ+3
+ 2

Γ(ξ + 3)

3ξ+3
− 2

27

)
=

=
1

27ξ2σ

(
− Γ′′(3) + 2 log 3Γ′(3)− 2(log(3))2 +

2

ξ3ξ
(Γ′(ξ + 3)− log 3Γ(ξ + 3))−

− 2

ξ
(Γ′(3)− 2 log 3)− 1

ξ232ξ
Γ(2ξ + 3) +

2

ξ23ξ
Γ(ξ + 3)− 2

ξ2

)
. (A.8)

To complete Cramér-von-Mises information matrix J(σ,ξ) term Jξσ is missing, therefore

Jξσ =

∫ ∞
−1/ξ

∆ξ(z)∆σ(z)dQσ,ξ(z) =

= − 1

ξ2σ2

∫ ∞
0

exp(−3u)(u log u+
1

ξ
(u− uξ+1))(uξ+1 − u)du =

= − 1

ξ2σ2

∫ ∞
0

exp(−3u)(uξ+2 − u2) log udu+
1

ξ3σ2

∫ ∞
0

exp(−3u)(u− uξ+1)2du.

Using previous calculations (A.2)-(A.4) and equation (A.7) we get

Jξσ = − 1

ξ2σ2

(Γ′(ξ + 3)− log 3Γ(ξ + 3)

3ξ+3
− Γ′(3)− 2 log 3

27

)
+

+
1

ξ3σ2

(Γ(2ξ + 3)

32ξ+3
− 2

Γ(ξ + 3)

3ξ+3
+

2

27

)
=

=
1

27ξ2σ2

( 1

3ξ
(Γ′(ξ + 3)− log 3Γ(ξ + 3))− Γ′(3) + 2 log 3+

+
1

ξ32ξ
Γ(2ξ + 3)− 2

ξ3ξ
Γ(ξ + 3) +

2

ξ

)
. (A.9)

Inverse of the Cramér-von-Mises information matrix I(σ,ξ) then can be calculated as

follows

J −1
(σ,ξ) =

(
Jξξ Jξσ

Jξσ Jσσ

)−1

=
1

JξξJσσ − J2
ξσ

(
Jσσ Jξσ

−Jξσ Jξξ

)−1

,
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plugging expressions (A.5), (A.8) and (A.9) in. We omit writing inverse matrix explicitly

due to its cumbersome form.

To complete expression (A.1) we calculate integral two integrals for the scale and shape

parameters, i.e. ∫ ∞
−1/ξ

(1−Qσ,ξ(z))∆ξ(z)dQσ,ξ(z) =

= −
∫ ∞

0
(1− e−u)

1

ξ
e−u
(
u log u+

1

ξ
(u− uξ+1)

)(
− 1

σ
e−u
)
du =

=
1

ξσ

(∫ ∞
0

e−2u(u log u+ 1/ξ(u− uξ+1))du−
∫ ∞

0
e−3u(u log u+ 1/ξ(u− uξ+1))du

)
=

=
1

ξσ

(1

4
(Γ′(2)− log 2Γ(2)) +

1

4ξ
Γ(2)− 1

2ξ+2ξ
Γ(ξ + 2)−

−1

9
(Γ′(2)− log 3Γ(2)) +

1

9ξ
Γ(2)− 1

3ξ+2ξ
Γ(ξ + 2)

)
=

=
1

ξσ

(( 1

3ξ+2
− 1

2ξ+2

)1

ξ
Γ(ξ + 2) +

5

36ξ
+

5

36
Γ′(2) +

( log 3

9
− log 2

4

))
.

Analogically we get it for the scale∫ ∞
−1/ξ

(1−Qσ,ξ(z))∆σ(z)dQσ,ξ(z) = −
∫ ∞

0
(1− e−u)e−u

1

ξσ
(uξ+1 − u)

(
− 1

σ
e−u
)
du =

=
1

ξσ2

(∫ ∞
0

e−2u(uξ+1 − u)du−
∫ ∞

0
e−3u(uξ+1 − u)du

)
=

=
1

ξσ2

( 1

2ξ+2
Γ(ξ + 2)− 1

4
Γ(2)− 1

3ξ+2
Γ(ξ + 2) +

1

9
Γ(2)

)
=

=
1

ξσ2

(( 1

2ξ+2
− 1

3ξ+2

)
Γ(ξ + 2)− 5

36

)
.

The last calculation to be doen concerns the second integral in the expression (A.1),

which we calculate separately for shape and scale∫ z

− 1
ξ

∆ξ(y)dQσ,ξ(y) = −
∫ ∞
u

1

ξ
e−s(s log s+

1

ξ
(s− sξ+1)(− 1

σ
e−s)ds =

=
1

4ξσ

(∫ ∞
u

e−2ss log sds+

∫ ∞
u

1

ξ
e−2s(s− sξ+1)ds

)
=

=
1

4ξσ
(Γ′(2, u)− log 2Γ(2, u)) +

1

ξ2σ

(1

4
Γ(2, u)− 1

2ξ+2
Γ(ξ + 2, u)

)
=

= − 1

2ξ+2ξ2σ
Γ(ξ + 2, u) +

1

4ξσ
((1/ξ − log 2)Γ(2, u) + Γ′(2, u)).
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where Γ(2, u) denotes the incomplete Gamma function and∫ z

− 1
ξ

∆σ(y)dQσ,ξ(y) = −
∫ ∞
u

e−s
1

ξσ
(sξ+1 − s)(− 1

σ
e−s)ds =

=
1

ξσ2

( 1

2ξ+2
Γ(ξ + 2, u)− 1

4
Γ(2, u)

)
.

We get IF of Cramér-vom-Mises minimum distance estimator of the form

IF (x,MDE,Qσ,ξ) = I−1
(σ,ξ)

(
ϕξ(x), ϕσ(x)

)T
,

with Cramér-von-Mises information matrix obtained by (A.5),(A.8) and (A.9) and func-

tions

ϕξ(x) =
1

ξσ

( 1

2ξ+2ξ
Γ
(
ξ + 2, (1 + ξ

x− µ
σ

)
− 1
ξ

)
− 1

4

(
(1/ξ − log 2)Γ(2, u)+

+Γ′
(

2, (1 + ξ
x− µ
σ

)
− 1
ξ

))
+
( 1

3ξ+2
− 1

2ξ+2

)1

ξ
Γ(ξ + 2) +

5

36ξ
+

5

36
Γ′(2) +

log 3

9
− log 2

4

)
and

ϕσ(x) =
1

ξσ2

(1

4
Γ
(

2, (1 + ξ
x− µ
σ

)
− 1
ξ

)
− 1

2ξ+2
Γ
(
ξ + 2, (1 + ξ

x− µ
σ

)
− 1
ξ

)
+

+
( 1

2ξ+2
− 1

3ξ+2

)
Γ(ξ + 2)− 5

36

)
.



Appendix B

L2 differentiability for GLM

B.1 Proof of Lemma 6.3

First, we take some non zero k′-dimensional sequence hn, which converges to zero, i.e.

hn 6= 0 and hn → 0, n→∞ in Rk′ . We denote ϑn := l(θ0 + hn) and θ0 := l(θ0).

By using smoothness of the link function l, we get corresponding expression for the

parameter

ϑn = l(θ0 + hn) = ϑ0 + l̇(θ0)hn + r(θ0, hn), (B.1)

with the remainder function r, which satisfies the following convergence

r(θ0, hn)

|hn|
→ 0, n→∞. (B.2)

We suppose, that probabilities Qϑn are dominated by some measure ν. Therefore, we

denote corresponding absolutely continuous densities as qϑn , s.t. dQθn = qθndν.

In Section 6.1 we assumed that parametric model Q is L2 differentiable, therefore, by

the Definition 2.6 for the expression

Rn :=

∫
(
√
qϑn −

√
qϑ0(1 +

1

2
(ΛQϑ0)T(ϑn − ϑ0)))2dν, holds

Rn
|θn − θ0|2

→ 0, n→∞

(B.3)

From the other side, plugging expression (B.1) in the same term Rn, we can rewrite it

in the following way:

Rn =

∫
(An −Bn)2dν, where

An :=
√
qθn −

√
qθ0(1 +

1

2
(ΛQθ0)T l̇(ϑ0)hn) and Bn :=

1

2

√
qθ0(ΛQθ0)Tr(ϑ0, hn).

157
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By using well-known Cauchy-Schwarz inequality, modified in the next way

A2
n = (An −Bn +Bn)2 ≤ 2(An −Bn)2 + 2B2

n

and applying integration w.r.t. the dominating measure ν, we get the following inequality∫
A2
ndν ≤ 2

∫
(An −Bn)2dν + 2

∫
B2
ndν = 2Rn + 2

∫
B2
ndν ≤

≤ 2Rn +
1

2
|r(ϑ0, hn)|2

∫
qϑ0 |ΛQϑ0 |

2dν ≤ 2Rn +
1

2
|IQϑ0 ||r(ϑ0, hn)|2.

Therefore, applying (B.1), (B.2), and (B.3), we get that

1

|hn|2

∫
A2
ndν =

2Rn
|hn|2

+
1

2
|IQϑ0 |
|r(ϑ0, hn)|2

|hn|2
=

=
2Rn

|ϑn − ϑ0|2
(l̇(ϑ0)hn + r(ϑ0, hn))2

|hn|2
+

1

2
|IQϑ0 |
|r(ϑ0, hn)|2

|hn|2
= o(1).

If we return expression under the notation An to the last equality, we get exactly needed

condition (2.9) from the Definition 2.6, therefore, parametric model Q̃ is L2 differentiable

in θ0 ∈ Θ′.

B.2 Proof of Theorem 6.1

We take some sequence in Rp, which converges to zero, i.e. sn → 0, n → ∞ and s.t.

s̃n = sn/|sn| → s̃0 for some s̃0 with |s̃0| = 1.

Here we introduce some additional notations ϑs := l(θs), θs := xT(βo+s) and l̇s := l̇(θs).

As it was in the previous proof, we suppose that probabilities Qϑn are dominated by

some measure ν and denote corresponding densities as qϑn .

Using similar notations as in the proof of the chain rule B.1, we state that by Defini-

tion 2.6, generalized linear model P is L2 differentiable at every β ∈ Rp if holds the

following convergence

1

|sn|2

∫ ∫
Ã2
nν(dy)K(dx)→ 0, n→∞,

for similar expression to An from above, only taking up the dependence on x, i.e.

Ãn = Ãn(x, y) :=
√
qϑn −

√
qϑ0(1 +

1

2
(ΛQ

l(xTβ0)
)T l̇(xTβ0) ·π xTsn). (B.4)
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Applying the chain rule pointwise in (x, y) and the Hájek condition (H.1), leads to the

pointwise existence (for Pβ-a.e. (x, y)) of L2 derivative of the form (6.7).

From the last steps of the proof of Lemma 6.3 we obtain∫
Ã2
nν(dy) = |xTsn|2(z(xTsn))2.

for some function z(s)→ 0, K-a.e. x and s small enough.

Therefore, for K-a.e. fixed x we get that

Ã′n(x) :=
1

|sn|2

∫
Ã2
nν(dy).

From the other side, we can use the Cauchy-Schwarz inequality (a− b)2 ≤ 2(a2 + b2) for

the Ã′n(x) as follows

Ã′n(x) ≤ 2

|sn|2

∫
(
√
qϑsn −

√
qϑ0)2ν(dy)+

1

2|sn|2

∫
qϑ0((ΛQ

l(xTβ0)
)T l̇(xTβ0) ·π xTsn)2ν(dy).

(B.5)

Then, we apply well-known fundamental theorem of calculus for absolutely continuous

functions to the first summand, using Lebesgue measure λ, fixed x ∈ Rp and u ∈ [0; 1].

For K-a.e. fixed x we obtain

1

|sn|2

∫
(
√
qϑsn −

√
qϑ0)2dν =

1

|sn|2

∫ (∫ 1

0

1

2

√
qϑusn ((l̇usn)TΛQϑusn

·π xTsn)λ(du)
)2
dν ≤

≤ 1

4|sn|2

∫ ∫ 1

0
qϑusn ((l̇usn)TΛQϑusn

·π xTsn)2λ(du)dν =
1

4
s̃T
n

∫ 1

0
IQϑusn

(x)λ(du)s̃n =

=
1

4|sn|
s̃T
n

∫ |sn|
0

IQϑusn
(x)λ(du)s̃n =: Bn(x)

Additionally, we introduce the term B0 = s̃Tn
4 I
Q
ϑ0

(x)s̃n.

By using conditions (ii) and (iii), we obtain that in integral
∫
Bn(x)K(dx) is finite

eventually in n. Therefore, applying condition (iii) and Fubini theorem, we get the

following expression∫
Bn(x)K(dx) =

1

4

∫ |sn|
0

∫
|IQϑusn (x)|K(dx)λ(du) =

∫
B0(x)K(dx) + o(1).

Next, using Vitali’s theorem (see Rieder (1994, Prop. A.2.2)), we conclude that Bn is

uniformly integrable (w.r.t. K). Moreover, from the inequality (B.5) we obtain, that

Ã′n(x) ≤ 2Bn(x) + 2B0(x). Therefore, Ã′n(x) is also uniformly integrable (w.r.t. K).
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Hence, again by Vitali’s theorem,
∫
Ã′n(x)K(dx) → 0, what is exactly condition (2.9)

from the Definition 2.6. Hence, by Definition 2.6, generalized linear model P is L2

differentiable at every β ∈ Rp.

Continuity (2.11) also follows from Vitali’s theorem, as it is just continuity of the Fisher

information just proven.

If we replace in the proof Bn and B0 by the terms |IQϑst ||l̇st|
2|x|2 and |IQϑ0 ||l̇0|

2|x|2 respec-

tivly, we get the proof of Remark 6.2.

B.3 Proof of Theorem 6.5

Argument for the condition (4.17) from the Definition 4.3 we reproduce from Rieder

(1994, Thm. 2.3.7). Since parametric model Q is assumed to be L2 differentiable, by

definition (2.9), with the densities qϑ, we get that

|
∫

(
√
qϑ+h−

√
qϑ(1+

1

2
(ΛQϑ )Th)

√
qϑdν|2 ≤

∫
|√qϑ+h−

√
qϑ(1+

1

2
(ΛQϑ )Th)|2dν = o(|h|2),

which leads to the following property

Eϑ(ΛQϑ )Th ≥
∫

(
√
qϑ+h −

√
qϑ)
√
qϑdν + o(|h|) =

=

∫
√
qϑ+h

√
qϑdν − 1 + o(|h|) = −1

2

∫
(
√
qϑ+h −

√
qϑ)2dν + o(|h|) =

= −1

2
hTIQϑ h+ o(|h|2) + o(|h|) = o(|h|).

Therefore, we conclude that EϑΛQϑ = 0, and then the first condition from Definition 4.3

is satisfied, i.e. En,i,β0ΛPn,i,β0 = 0.

Lindeberg condition (4.18) is fulfilled automatically, so it is left to show that condition

(4.19) is also satisfied by the GLM P.

We denote the Qϑn,i,tn -null set as Nn,i and suppose that two Hájek conditions (H.1)

and (H.2) hold for all y ∈ N c
n,i. Then we let N =

⋃
n

⋃in
i=1Nn,i. Then from (H.1) and

the chain rule Lemma 6.3 applied pointwise (in y ∈ N c), analogically to the case of

stochastic regressors, we obtain (pointwise) existence and form and of the L2 derivative.
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We inherit notation Ãn from the previous proof, only replacing sequence sn by tn.

Moreover, here we assume that Ãn from (B.4) takes up the dependence on the regressors

xn,i, i.e. Ãn,i = Ãn(xn,i).

Then for every fixed i we get that

Ã′n,i :=

∫
Ã2
n,iν(dy)→ 0 as tn → 0.

If we show that convergence limn→∞ sup|t|≤b
∑in

i=1

∫
Ã2
n,iν(dy) = 0 holds, then clearly

condition (4.19) is also fulfilled.

We use similar trick as in the previous proof. For some fixed value i we apply fundamental

theorem of calculus for absolutely continuous functions to get the following

Ã′n,i =

∫
(
√
qϑn,i,tn −

√
qϑn,i,0)2dν ≤ 1

2|tn|

∫ |tn|
0

tTn I
P
n,i,uttnλ(du) =: Bn,i,

with Lebesgue measure λ and u ∈ [0; 1]. As before, we also denote B0,i = 1
4 t

T
n I
P
n,i,0tn

and note that
∑in

i=1 I
P
n,i,0 = IPn,β0 , therefore tTn I

P
n,i,0tn = |t|2 ≤ b.

Then by the condition (iii) from the theorem we get that

in∑
i=1

Bn,i =

in∑
i=1

B0,i + 0(1) =
|t|
4

+ o(1).

We again apply the Vitali’s theorem, which leads to the uniform integrability of Bn,i

w.r.t. the counting measure. Since we got that Ã′n,i ≤ 2Bn,i + 2B0,i holds, we obtain

that Ã′n,i is also uniformly integrable. Hence, by using Vitali’s theorem again, we get

that
∑in

i=1 Ã
′
n,i → 0, what is exactly condition (4.19) from the Definition 4.3. Therefore,

by Definition 4.3 generalized linear model P is L2 differentiable.

Continuity (4.20) also follows from Vitali’s theorem, as it is just continuity of the Fisher

information just shown.

Again, if we replace in the proof Bn,i and B0,i by the terms |IQn,i,t||l̇n,i,t|2|xn,i|2 and

|IQn,i,0||l̇n,i,0|2|xn,i|2 respectively, we get the proof of Remark 6.6.



162 Chapter B. L2 differentiability for GLM

B.4 Link function for GEVD joint shape-scale model

In Section 6.2, giving examples of the GEVD and GPD joint shape-scale models, we

designed link function for shape of GEVD of the form lξ(θξ) = log(f(log(xξ)
Tβξ)),

where function f is the following

f(x) = (x2/2 + x+ 1)1(x > 0) + (a1(log(a2 − x))−2 + a3)1(x ≤ 0)

for some a1, a2, a3 > 0. We need function f to be continuously differentiable in 0 and

f(x) > e−1/2, therefore

a1

(log(a2))2
+ a3 =

2a1

a2(log(a2))3
= 1,

a1

(log(a2 − x))2
+ a3 > e−1/2,∀x < 0.

In the last inequality we have that a1(log(a2 − x))−2 > 0, so the choice of the constant

a3 will be a3 = e−1/2 ≈ 0.6063 to ensure this inequality. Then, we solve system of two

first equations with two unknowns, and we get aa22 = e2(1−e−0.5), so a2 ≈ 1.624 and

a1 = 0.5a2(log(a2))3 ≈ 0.00926. Hence, function f approximately turns to

f(x) = (x2/2 + x+ 1)1(x > 0) + (0.00926(log(1.624− x))−2 + 0.6063)1(x ≤ 0).

Figure B.1: Link function for the shape of GEVD

We have mentioned that usually shape is varying in the interval (0, 2). It is visible from

the Figure B.1, that the argument of the link function β log(xt−1), then falls to the

corresponding interval (−∞,
√

1− 2(1− e2)− 1 ≈ 2.712). Therefore, we conclude that

taking β = 1 our link l = log(f(β log(xt−1))) < 2 as long as xt−1 < 15, and l < 3 for

xt−1 < 193.
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Next, we show that our choice of link function for GEVD, fulfills conditions (ii) and (iii)

of the Theorem 6.1. First, we calculate derivative l̇ = ḟ/f and obtain

l̇ = (x+ 1)/(x2/2 + x+ 1)1(x > 0) + 2a1(a2 − x)−1(log(a2 − x))−31(x ≤ 0).

Hence, for large x, l̇ behaves like 2/x, while for x < 0, it essentially behaves like

−x−1(log(−x))−3.

As we mentioned in the example of Section 6.2, all terms of the Fisher information

matrix for GEVD are dominated by the term Γ(2ξ + 1). We use well-known Stirling

approximation, i.e., Γ(x) ≈
√

2π exp(x(log(x)−1/2)) and, due to the iterated logarithm

in the link function, we get that Γ(2lξ(θξ)) ≈ βξ log(xξ). Therefore, by equivariance in

location µ and scale σ, condition (ii) turns to the finiteness of the following terms

B1(ξ) :=
4

βξ

∫
log(xξ)K(dx) for βξ > 0 (B.6)

and

B2(ξ) :=
1

βξ

∫
log(xξ)

(log(−βξ) + log(log(xξ))6
K(dx) for βξ < 0 (B.7)

Finiteness of (B.6) and (B.7) follows from finiteness of E(min{1, (log x)k}) for x ∼
GEVD(0, 1, ξ), k ∈ N, which is based on the fact that expectation of the random

variable is the integral of its quantile, i.e.

Eξ(min{1, (log x)k}) =

∫ 1

u0

(
log(((− log y)−ξ − 1)/ξ)

)k
dy

for u0 > exp(−(1 + ξ)
− 1
ξ ) so that ((− log y)−ξ− 1)/ξ > 1 for y > u0. We use well-known

inequality − log(x) < (1− x)/x for x ∈ (0, 1) to bound quantile in the following way

((− log y)−ξ − 1)

ξ
<

(((1− y)/y)−ξ − 1)

ξ
<

(1/y − 1)−ξ

ξ
,

hence, finiteness of the expectation is equivalent to the followowing
∫ 1

0 (− log(y))kdy <

∞, what is true, since after some transformation one can see that
∫ 1

0 (− log(y))kdy =

Γ(k − 1). Therefore, condition (ii) of the Theorem 6.1 is fulfilled by the chosen link.

Reconsidering (B.6) and (B.7) at ξ + s, for |s| < h, h < 1, we see that sup|s|<hBi(ξ +

s) < ∞ for i = 1, 2, hence condition (iii) of the Theorem 6.1 follows from dominated

convergence and continuity of Fisher information Iξξ in ξ.
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