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Abstract

Lattice Boltzmann Methods have shown to be promising tools for solving fluid flow problems.
This is related to the advantages of these methods, which are among others, the simplicity in
handling complex geometries and the high efficiency in calculating transient flows. Lattice
Boltzmann Methods are mesoscopic methods, based on discrete particle dynamics. This is in
contrast to conventional Computational Fluid Dynamics methods, which are based on the so-
lution of the continuum equations. Calculations of turbulent flows in engineering depend in
general on modeling, since resolving of all turbulent scales is and will be in near future far
beyond the computational possibilities. One of the most auspicious modeling approaches is
the large eddy simulation, in which the large, inhomogeneous turbulence structures are directly
computed and the smaller, more homogeneous structures are modeled.

In this thesis, a consistent large eddy approach for the Lattice Boltzmann Method is intro-
duced. This large eddy model includes, besides a subgrid scale model, appropriate boundary
conditions for wall resolved and wall modeled calculations. It also provides conditions for
turbulent domain inlets. For the case of wall modeled simulations, a two layer wall model is
derived in the Lattice Boltzmann context. Turbulent inlet conditions are achieved by means of
a synthetic turbulence technique within the Lattice Boltzmann Method.

The proposed approach is implemented in the Lattice Boltzmann based CFD package SAM-
Lattice, which has been created in the course of this work. SAM-Lattice is feasible of the
calculation of incompressible or weakly compressible, isothermal flows of engineering interest
in complex three dimensional domains. Special design targets of SAM-Lattice are high autom-
atization and high performance.

Validation of the suggested large eddy Lattice Boltzmann scheme is performed for pump
intake flows, which have not yet been treated by LBM. Even though, this numerical method is
very suitable for this kind of vortical flows in complicated domains. In general, applications
of LBM to hydrodynamic engineering problems are rare. The results of the pump intake vali-
dation cases reveal that the proposed numerical approach is able to represent qualitatively and
quantitatively the very complex flows in the intakes. The findings provided in this thesis can
serve as the basis for a broader application of LBM in hydrodynamic engineering problems.
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Kurzfassung auf Deutsch

Seit einiger Zeit zeigen die Tendenzen im Ingenieurwesen, dass die Produktentwicklung und
Herstellung zunehmend von rechnerbasierten Prozessen beeinflusst bzw. dominiert werden. Ent-
sprechende Programme werden unter dem Begriff Computer-Aided Technologies, abgekürzt
CAx, zusammengefasst. Die Gründe für diese Tendenzen sind vielfältig, zu den treibenden Pa-
rametern sind natürlich die Reduktion von Entwicklungskosten und Zeiten zu zählen. Auf der
Basis einer detaillierten und verlässlichen Produktauslegung, kann die Anzahl der notwendi-
gen, teuren Prototypen und die damit verbunden experimentellen Untersuchungen signifikant
reduziert werden. Der Einsatz von CAx Technologien ist jedoch direkt mit den verfügbaren
Computerressourcen verknüpft, die in den letzten zwei Jahrzehnten unvorstellbar gewachsen
sind. Natürlich erfordert der Einsatz von CAx, neben verfügbaren Rechnerressourcen, auch ge-
naue und brauchbare numerische Verfahren für die entsprechenden Problemstellungen.

Eine Sparte von CAx ist die numerische Strömungsmechanik, gewöhnlich mit dem englisch-
sprachigen Begriff Computational Fluid Dynamics (CFD) bezeichnet. Numerische Verfahren
spielen in der Strömungsmechanik eine bedeutende Rolle, weil die beschreibenden Gleichun-
gen für ziemlich alle Strömungsprobleme nicht analytisch lösbar sind. Ein tieferer Einblick
bzw. tieferes Verständnis ist deshalb nur mit simulativen oder experimentellen Methoden mög-
lich. Zurzeit finden vor allem finite Volumen Diskretisierungen der Navier-Stokes Gleichungen,
welche die Strömung als Kontinuum beschreiben, Anwendung in der numerischen Strömungs-
mechanik. Diese Verfahren stellen hohe Anforderungen an die Qualität der verwendeten Ge-
bietsdiskretisierung, was einen arbeitsintensiven Prozess, das sogenannte Preprocessing, mit
sich bringt. Das Preprocessing erfordert hierbei viele manuelle Eingriffe des Ingenieurs und
die Qualität der resultierenden Diskretisierung ist stark mit dessen Erfahrung verbunden. Die
genannten Punkte erschweren die Standardisierung des Preprocessings und zeigen eine Notwen-
digkeit für Verfahren, die stark automatisierbar sind.

Neben dem oben genannten Kontinuumsansatz, können Strömungen auch durch eine me-
soskopische Betrachtungsweise, mit Hilfe der Boltzmann Gleichung, beschrieben werden. In
den letzten Jahren wurde ein numerisches Verfahren, die Lattice Boltzmann Methode, welches
auf dem mesoskopischen Ansatz basiert, vorgestellt und vorangetrieben. Die aufkommende Be-
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liebtheit dieser Methode im Ingenieurwesen ist mit ihren Vorteilen verbunden. Zu diesen zählen
unter anderem die einfache Behandlung komplexer Geometrien, die hohe Effizienz des Verfah-
rens in der Berechnung zeitabhängiger Strömungen und die einfache Einbeziehung von ver-
schiedenen physikalischen Modellen. Aufgrund des erstgenannten Punktes lässt sich ein stark
automatisierter CFD Prozess realisieren, der keine manuelle Interaktion erfordert und somit die
Anforderungen vieler Anwendungen erfüllt.

Die meisten Strömungen in Ingenieuranwendungen sind turbulenter Art. Eine direkte Be-
rechnung aller turbulenter Schwankungen ist im Allgemeinen nicht umsetzbar, aufgrund des
erforderlichen Berechnungsaufwands. Deswegen werden verschiedene Modellierungsansätze
verwendet, um eine Berechnung zu ermöglichen und den Einfluss der Turbulenz zu berücksich-
tigen. Ein solcher Ansatz ist die Grobstruktursimulation, gemeinhin als Large Eddy Simulation
(LES) bekannt. In der Grobstruktursimulation werden die großen turbulenten Strukturen, die
sehr inhomogen sind und stark von der jeweiligen Strömung abhängen, direkt berechnet und
die kleinskaligen Strukturen modelliert. Die Modellierung der kleinskaligen Strukturen ist aus
physikalischer Sicht einfacher, da diese homogener sind. Weitere Limitierungen sind bei hohen
Reynoldszahlen, wie sie in realen Anwendungen üblich sind, durch die Auflösung der dünnen
Wandgrenzschichten gegeben. In vielen Fällen ist es aus ingenieurstechnischer Sicht nicht trag-
bar und notwendig die Grenzschichten vollständig aufzulösen. Die Effekte nicht aufgelöster
Grenzschichten müssen dann aber anhand eines sogenannten Wandmodells berücksichtigt wer-
den. Grobstruktursimulation mit der Lattice Boltzmann Methode erfordert akkurate Modelle,
die diese Anforderungen erfüllen.

In dieser Dissertation wird ein konsistentes Grobstrukturmodell für Lattice Boltzmann Me-
thoden erarbeitet. Der Ansatz beinhaltet außer einem Feinstrukturmodell, das die kleinen Ska-
len abbildet, die entsprechenden Randbedingungen. Neben den klassischen Randbedingungen
für wandaufgelöste Berechnungen wird ein zwei Schichtenwandmodell für nicht aufgelöste
Grenzschichten im Lattice Boltzmann Kontext entwickelt. Die meisten Strömungen in den In-
genieuranwendungen benötigen darüber hinaus turbulente Randbedingungen am Gebietseintritt.
Zur Erzeugung der stochastischen, turbulenten Fluktuationen am Eintritt wird eine Methode aus
dem Bereich der synthetischen Turbulenz, die Synthetic Eddy Methode, in das Lattice Boltz-
mann Verfahren eingeführt.

Für die Berechnung realer Strömungsprobleme, wird das vorgeschlagene Grobstrukturmo-
dell in das CFD Paket SAM-Lattice integriert, welches im Rahmen dieser Arbeit entwickelt
wurde. SAM-Lattice ermöglicht die Berechnung inkompressibler bzw. schwach kompressibler,
isothermaler Strömungen in beliebigen, dreidimensionalen Geometrien. Der modulare Aufbau
von SAM-Lattice, die Struktur und die Grundlagen der einzelnen Komponenten werden um-
fangreich erläutert.

Darüber hinaus werden ausführlich die theoretischen Grundlagen der Lattice Boltzmann
Methode, wie sie in SAM-Lattice zur Anwendung kommt, erklärt. Diese Darstellung wird, ne-
ben Gründen der Vollständigkeit, aus einem didaktischen Grund vorgenommen. Dieser Teil
der Arbeit soll im weiteren Studenten und Wissenschaftlern, die mit SAM-Lattice arbeiten, als
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theoretisches Nachschlagewerk dienen. Die Lattice Boltzmann Methode wird hierzu, ausgehend
von der kinetischen Theorie bzw. der Boltzmann Gleichung, abgeleitet. Die getroffenen Annah-
men und Vereinfachungen während dieser Herleitung werden aufgezeigt und diskutiert, was die
Möglichkeit eröffnet das Verfahren an diesen Stellen über die momentanen Grenzen hinaus zu
erweitern.

Der Entwicklungsprozess jeglicher numerischer Methode erfordert Verifizierung und Vali-
dierung, was ebenfalls in dieser Arbeit durchgeführt wird. Verifizierung für das Software Paket
und die verwendeten Modelle wird im laminaren Fall mittels analytischer Lösungen der Navier-
Stokes Gleichungen vorgenommen. Mit Hilfe der Beltrami Strömung, der Taylor-Couette Strö-
mung, der Couette Strömung im ebenen Kanal und im Kreisring, sowie der Jeffery-Hamel Strö-
mung werden die akkurate Implementierung der Kernkomponenten, der verschiedenen Kolli-
sionsoperatoren und der verschiedenen Randbedingungen nachgewiesen. Die Ergebnisse zei-
gen das theoretisch erwartete Verhalten: Das Verfahren produziert für transiente Strömungen
zeitgenaue Lösungen und besitzt, bezogen auf die räumliche Diskretisierung, eine Genauigkeit
zweiter Ordnung, solange die Randbedingungen ebenfalls diese Ordnung aufweisen. Die ver-
wendete Gitterverfeinerungsstrategie hat für die Jeffery-Hamel Strömung gleichermaßen ihre
Richtigkeit unter Beweis gestellt. Das vorgeschlagene LES basierte Turbulenzmodell und die
darin verwendeten Komponenten bzw. Randbedingungen werden anhand der turbulenten Kanal-
strömung verifiziert, für die eine große und verlässliche Basis von direkten numerischen Simu-
lationen zur Verfügung steht. Im Falle von wandaufgelösten Berechnungen wird eine exzellente
Übereinstimmung zwischen den SAM-Lattice Ergebnissen und der Referenzlösung festgestellt.
In den wandmodellierten Berechnungen kann ebenfalls eine gute Kongruenz zwischen dem Lat-
tice Boltzmann Resultat und der Referenz gezeigt werden. Zusammen mit dem erfolgreichen
Nachweis für das synthetische Turbulenzverfahren als Eintrittsrandbedingung, ist die Verifizie-
rung des konsistenten Grobstrukturansatzes erbracht.

Um neue Anwendungsfelder für die Lattice-Boltzmann Methode und das vorgeschlagene
Grobstrukturmodell im Bereich der Hydrodynamik zu erschließen und zu motivieren, wird das
vorgestellte Programmpaket für die Strömungen in Einlaufkammern validiert. Die Strömungen
in Einlaufkammern sind in der Regel sehr komplex, da sie stark wirbelbehaftet sind und darüber
hinaus normalerweise in komplizierten Geometrien auftreten. Diese Art von Strömungen wur-
den bisher nicht mit der Lattice Boltzmann Methode behandelt, wenn auch die Methode sehr
passende Eigenschaften hierfür aufweist. Einlaufkammern können prinzipiell in zwei Gattun-
gen unterschieden werden: Kammern mit freien Oberflächen und geschlossene Kammern. Für
jeden dieser Fälle wird zu Validierungszwecken ein repräsentativer Vertreter, der in der Literatur
dokumentiert ist, berechnet. Im Falle der Kammer mit freier Oberfläche wird ein zusätzliches
Modellierungskonzept verwendet und begründet, da SAM-Lattice momentan nur zur Berech-
nung einphasiger Strömungen eingesetzt werden kann. Trotz dieser weiteren Modellierung ist
das entwickelte Verfahren in der Lage, die verschiedenen Wirbelstrukturen in der Einlaufkam-
mer wiederzugeben und auch das zeitabhängige Wandern und Verschwinden bzw. Wiederent-
stehen der Wirbel zu reproduzieren. Quantitative Vergleiche der berechneten und gemessenen
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Wirbelpositionen zeigen sehr gute Vereinbarkeit. Für die geschlossene Einlaufkammer stehen
sehr detaillierte Messungen der Felder für Geschwindigkeit und turbulente kinetische Energie
zur Verfügung, die eine umfassende qualitative und quantitative Validierung des entwickelten
Verfahrens ermöglichen. Die Ergebnisse dieses zweiten Validierungsfalles zeigen erneut, dass
die Grobstruktur-Lattice Boltzmann Methode im Stande ist, die sehr komplexe, stark wirbelbe-
haftete Strömung in der Einlaufkammer qualitativ und quantitativ darzustellen. Somit ist das
entwickelte und vorgestellte Verfahren validiert und hat seine Anwendbarkeit auf komplexe
Strömungen in komplizierten Geometrien unter Beweis gestellt.

Abschließend werden in dieser Arbeit Möglichkeiten und Vorschläge zur Weiterentwick-
lung der Lattice Boltzmann Methode bzw. des CFD Pakets SAM-Lattice gegeben.



CHAPTER 1

Introduction

“The purpose of computing is insight, not numbers."

— Richard Hamming, 1962

1.1 Motivation
Since quite some time, trends in engineering show that product design and manufacturing are
more and more influenced and defined by computational processes. The according tools are
commonly combined under the term computer-aided technologies (CAx). Reasons for these
trends are manifold. Of course the reduction of development costs and times in the design pro-
cess belong to the main influencing parameters. By means of more detailed and more reliable
preliminary product designs, the required number of cost and time intensive prototypes and the
associated experimental testing is significantly reduced. The usage of CAx in engineering is
enabled and related to the available computational resources, which increased tremendously in
the last two decades. Naturally, a critical aspects of this evolution is the availability of accurate
and feasible numerical schemes for the related problems.

A category of CAx are Computational Fluid Dynamics (CFD), which deal with the numeri-
cal calculation of fluid flows. Numerical techniques are of special importance in fluid dynamics,
since the governing equations cannot be solved analytically for almost all problems of engineer-
ing interest. A deeper insight in the nature of flows can thus only be provided by simulation
and experiment. The currently most widely employed CFD schemes are based on finite vol-
ume discretizations of the Navier-Stokes equations, which describe fluid flow at continuum
level. These methods demand a high quality domain discretization, what causes a time inten-
sive preprocessing with many manual interactions and is strongly relying on the experience of
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2 Scope of this Thesis

the engineer. This complicates standardization of preprocessing and brings up the necessity for
schemes, which allow highly automated processes.

Besides the continuum approach, fluid flows can be described on a mesoscopic level with
the help of the Boltzmann equation. In recent years, a numerical technique based on this ap-
proach has been proposed and advanced: the Lattice Boltzmann Method (LBM). Meanwhile,
the Lattice Boltzmann Method has gained popularity for solving fluid flow problems of engi-
neering interest. This is promoted by the advantages of this scheme, which are among others
the simplicity to handle complex geometries, the high efficiency in calculating transient flows
and the natural inclusion of many physical models. By the first mentioned point a highly auto-
mated CFD process with nearly no manual interaction is enabled and meets the need of many
applications.

Most flows in engineering applications are characterized by a turbulent nature. In general, a
direct calculation of all turbulent structures is not feasible, due to the enormous computational
demand. Thus, different modeling approaches are applied to account for turbulence. One such
approach is the large eddy simulation, in which the large turbulent structures are directly com-
puted and the smaller structures are modeled. A further limitation at high Reynolds numbers,
which are common in engineering, is the point that it is in many cases not feasible to resolve the
boundary layers down to the walls. Hence, the effects of the unresolved parts of the boundary
layer must be considered by wall models in these instances. Large eddy simulation for LBM
requires accurate models, which fulfill these demands. The efficiency of a numerical scheme
gets a crucial factor in the light of the large eddy simulation. The more efficient a scheme, the
more turbulent structures can be resolved with a given computational power. LBM, as a highly
efficient numerical scheme, seems promising for this purpose.

From these physical and technical demands the motivation for this thesis is given and the
scope and aims can be defined in the following.

1.2 Scope of this Thesis
A novel, consistent large eddy approach for the Lattice Boltzmann Method is proposed in this
thesis. Large eddy models have been proposed in the Lattice Boltzmann context, but a consis-
tent approach, which includes besides the subgrid scale model accurate boundary conditions, is
still missing. This is addressed by the proposed approach. It includes proper boundary treat-
ment for wall resolved and wall modeled calculations and also provides conditions for turbulent
domain inlets. In the case of wall modeled simulations, a two layer wall model for large eddy
simulation with Lattice Boltzmann Methods is derived. An appropriate turbulent inlet condition
is introduced to the Lattice Boltzmann Method by means of a synthetic turbulence technique.
Thus, a complete and consistent large eddy model for the accurate calculation of technical flows
in complex domains, based on the Lattice Boltzmann Method, is developed.

For application of the Lattice Boltzmann Method and the suggested large eddy approach
to engineering flow problems, the CFD software package SAM-Lattice has been created in the
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course of this work. SAM-Lattice aims at the calculation of incompressible or weakly com-
pressible isothermal flows of engineering interest in arbitrary three dimensional domains. From
an user point of view, primary requirements to the software are a highly automated prepro-
cessing, with minimal manual interaction, and a fast solver, capable to calculate the aforemen-
tioned flows accurately. These demands are considered and realized in the development of
SAM-Lattice. The CFD package is characterized by a modular structure and an object oriented
programming concept in C++.

To expand the area of application of Lattice Boltzmann Methods, the proposed large eddy
scheme is applied to and validated for pump intake flows, a special field of hydraulic engineer-
ing with many links to turbo machinery. Pump intake flows have not yet been treated by LBM,
although LBM is very suitable for this kind of vortical flows in complex domains. In general,
applications of LBM to hydrodynamic engineering problems are rare. So, the research provided
here should serve as the basis for a broader application of LBM in hydrodynamic engineering
problems.

Besides these ambitions, this thesis also addresses educational purposes. It should serve as
a theoretical explanation and documentation of the Lattice Boltzmann Method and its utiliza-
tion in SAM-Lattice for students and researchers, who are working with the CFD tool. This
purpose is found in the composition of the present work, where different details and aspects of
the development process of SAM-Lattice are explained. The outline of the thesis will be shortly
presented in this light. Chapter 2 introduces the kinetic theory, which provides the Boltzmann
equation and the basics for the Lattice Boltzmann Method, which is addressed in Chapter 3.
LBM is presented as a discretization of the Boltzmann equation and the assumptions and restric-
tions associated to this process are highlighted. In this way, the limitations of the method, like
the small Mach number limit, are assignable and expandabilities are identified. Subsequently,
the consistent large eddy approach for Lattice Boltzmann Methods is proposed in Chapter 4 on
a detailed theoretical basis, again highlighting assumptions and restrictions. Chapter 5 gives un-
derstanding of some implementation aspects of LBM in SAM-Lattice. Verification of the CFD
package by means of analytical solutions of the Navier-Stokes equations is provided in Chapter
6. The following chapter, no. 7, is dedicated to the application and validation of LBM for pump
intake flows. Afterwards the thesis is closed by conclusions and suggestions for future work.

1.3 Physical Description of Fluid Flows
From a physical point of view, there are three different ways to describe fluid flows, depending
on different observation scales. Each approach results in different mathematical equations and
has its prospects and limitations.

The first approach based on the smallest molecular scales is the microscopic approach. In
the so called molecular dynamic simulations, the dynamics of every molecule in the fluid are
tracked. The motion of the molecules can be described by Newtonian mechanics. Macroscopic
fluid properties are derived in molecular dynamic simulations by averaging of molecular quanti-
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ties, for details see, e.g., [10]. In principle, the microscopic description of flows is applicable to
all flows, but has radical practical and technical limitations: Flows of technical interest contain
far to many molecules to track them all. Since one mole of a fluid already contains 6.0225 ·1023

particles, it is impossible for today’s and upcoming super computers to compute technical flows
in this fashion. Another fact is that fluid dynamic engineers are normally not interested in such
detailed molecular information. The macroscopic flow quantities are adequate to characterize a
flow for engineering applications.

The mesoscopic approach is based on the molecular level as well. Instead of tracking every
single molecule, a statistical description is used. In kinetic theory, a probability distribution
function is defined, which expresses the probability to find a molecule with a certain velocity
at a certain position in space. From the probability distribution function all macroscopic flow
quantities can be calculated. The probability distribution function is determined from a kinetic
equation, which describes the conservation of the probability distribution function. More details
about this equation, called Boltzmann equation, will be given in the next chapter. Kinetic theory
is in general valid from continuum to free molecular flows.

The third way is the macroscopic approach, which is based on a continuum description of
fluid flow. The macroscopic quantities are calculated from conservation equations according
to the continuum theory. For example, an incompressible isothermal flow is characterized by
the pressure and the velocity field. These quantities are calculated from the continuity and the
Navier Stokes equations (see, e.g., [34] for more details). Macroscopic based schemes are nowa-
days most widely used for Computational Fluid Dynamics. But, the macroscopic approach is
only applicable as long as the continuum theory is valid. The validity of the continuum theory
is identified by the Knudsen number Kn, which is defined as the ratio of mean free path of
molecules λ to a characteristic length L of the flow. The macroscopic description is valid for
Kn ≪ 1.

1.4 Mathematical Notation
For a clear understanding of the mathematical symbols and equations in this thesis, the notation
in use will be shortly announced in this section. If not otherwise stated, vectors are indicated
by bold lower-case symbols, e.g., a and matrices or higher order tensor, respectively, by bold
upper-case symbols, like A. In some cases, where it makes the situation clearer, index notation
of vectors or tensors, respectively, is applied. As common in literature, the index notation is
used in combination with Einstein’s summation convention. The applied definitions of vector
and tensor operations are conform with the standard definitions for Euclidean space, see Table
1.1.

More noteworthy is the description of the Lattice Boltzmann Method. In literature, com-
monly all lattice quantities are non-dimensional by the grid spacing ∆x and the time step ∆t,
what leads to a spacing ∆xl = 1 and a time step ∆tl = 1 in lattice units. Since these quantities
are unity they are often omitted in equations in lattice units. This oftentimes complicates the un-
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Table 1.1: Mathematical Definitions

Operation Definition

Dot product c = a · b = aα bα

Dyadic product C = ab = aα bβ

Matrix product C = A B = Aα,β Bβ,γ

Tensor contraction c = A : B = Aα,β Bα,β

Gradient of a scalar field ∇g = ∂g
∂xα

Gradient of a vector field J = ∇g = ∂gα
∂xβ

Divergence of a vector field ∇ · g = ∂gα
∂xα

derstanding and physical interpretation of formulae. In this thesis all quantities and equations of
LBM are used in a dimensional description, to circumvent these difficulties and allow an unique
interpretation.





CHAPTER 2

Kinetic Theory

The kinetic theory of gases describes a gas on a microscopic or molecular level. As already
said in the previous Section 1.3, the condition of the gas could be completely characterized by
tracking the position and the velocity of every molecule. Due to the unthinkable large number
of molecules in a real gas, this is not feasible and a statistical approach must be used. The
introduction to the essential concept given in this section is mainly based on the textbooks by
Bird [10] and Hänel [50].

2.1 The Distribution Function
The position of a molecule in physical space can be characterized by its x, y and z coordinate,
which can be combined to a position vector x, see Fig. 2.1(a). A volume element in physical
space can be defined by dV = dx · dy · dz. Analog to the physical space, a velocity space can be
defined, cf. Fig. 2.1(b). The velocity ξ of a molecule is a point in the velocity space with the
components u, v and w. In velocity space a volume element can be expressed by dξ = du·dv·dw.
The physical and velocity space are combined to a new six dimensional space called phase space.
For the statistical description of the gas a probability distribution function is now defined by:

f (x, ξ, t) =
dN

dV · dξ . (2.1)

The distribution function can be interpreted in two ways:

• Deterministically, as the number of particles dN per phase space volume dV · dξ at a
position x with a velocity ξ at a given time t.

7
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Figure 2.1: Phase Space

• Statistically, as the possibility to find a molecule in the phase space volume dV · dξ at a
position x with a velocity ξ at a given time t.

The distribution function is the central quantity in the kinetic theory of gases, from which all
macroscopic quantities can be calculated. This is done by averaging of molecular quantities and
is called establishing of moments. A moment M of the distribution function is the integral over
the velocity space of a function φ(ξ), which is either a constant or depending on the molecular
velocity ξ, multiplied with the distribution function f :

M(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ(ξ) · f (x, ξ, t) du dv dw B

∫
ξ

φ(ξ) · f (x, ξ, t) dξ . (2.2)

The definition of the function φ(ξ) is depending on the macroscopic quantity to determine. Re-
ferring to the power n of the molecular velocity ξ in the function φ, the corresponding moment
is called a n-th order moment of the distribution function, e.g., the particle density in Eq. (2.3)
is a zeroth order moment. The particle density is established for φ = 1, what results in:

n(x, t) = lim
dV→0

dN
dV
=

∫
ξ

f (x, ξ, t) dξ . (2.3)



Kinetic Theory 9

The macroscopic variables, which describe a flow in general are density, pressure, momentum,
and temperature. These quantities are recovered by the following moments [50]:

ρ = m ·
∫
ξ

f (x, ξ, t) dξ (2.4)

p =
m
3
·
∫
ξ

(ξ − u)2 · f (x, ξ, t) dξ (2.5)

ρ · u = m ·
∫
ξ

ξ · f (x, ξ, t) dξ (2.6)

ρ · e = 3
2
ρ · R · T =

m
2
·
∫
ξ

(ξ − u)2 · f (x, ξ, t) dξ , (2.7)

(2.8)

where m is the molecular mass. Density, pressure, and temperature in the above equations
are linked by the equation of state for an ideal gas. Additionally, the macroscopic system of
equations, i.e., Navier-Stokes and energy equation, include the momentum flux tensor and the
heat flux vector, which are expressible by moments, too:

Π = m ·
∫
ξ

ξ ξ · f (x, ξ, t) dξ (2.9)

q =
m
2
·
∫
ξ

|ξ − u|2 · (ξ − u) · f (x, ξ, t) dξ . (2.10)

For the definition of the remaining, physically interpretable moments the reader is referred to
[10, 50].

2.2 The Boltzmann Equation
As shown in the previous section, the knowledge of the distribution function permits the calcu-
lation of all macroscopic flow quantities. But, up to now, it is not clear how the distribution
function f itself can be determined. Based on the conservation of molecules in a system, which
is equal to mass conservation for non reacting molecules, a conditional equation for f , the Boltz-
mann equation, can be derived.

The change of the number of molecules dN in a volume element of the phase space dV · dξ
by time, must be related to the following processes (for a more detailed presentation see [10]):

• Convective transport of the molecules in and out of the considered physical space volume
dV due to the molecular velocity ξ.

• Convective transport of the molecules in and out of the considered velocity space volume
dξ due to the acceleration or deceleration of external forces.
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• Gain and loss of molecules in the the considered velocity space volume dξ due to colli-
sions of the molecules.

The mathematical formulation of the above principles leads to the Boltzmann equation (see [10]
or [50] for a full length derivation):

∂ f
∂t
+ ξ · ∂ f

∂x
+

F
m
· ∂ f
∂ξ
=

(
∂ f
∂t

)
coll
. (2.11)

For a better readability the variables of f = f (x, ξ, t) were omitted in Eq. (2.11). The different
terms of the Boltzmann equation can now be readily explained: The left-hand side of Eq. (2.11)
is called transport or advection term and contains the temporal and the convective change of the
distribution function f in physical and velocity space. The right-hand side is referred to as col-
lision term and represents the change of the distribution function f due to molecular collisions.
For the derivation of the collision term, the assumption of dilute gas is made. This means that
the mean free path λ between molecular collisions is much greater than the mean molecular
spacing δ, which expresses the mean volume per molecule. δ in turn is much greater than the
molecular diameter d: λ ≫ δ ≫ d . Consequences of this assumption are that intermolecular
forces are negligible and collisions of three or more molecules are very unlikely, so all colli-
sions are regarded as binary elastic collisions between two molecules. As another consequence,
the collisions can be considered instantaneous, which means the distribution function does not
change during the collision.

The collision term introduced by Boltzmann is presented, for the sake of completeness,
in Eq. (2.12). This collision integral is quite complicated and turns the Boltzmann equation
into a mathematically difficult to solve integro-differential equation. Equation (2.12) shows the
change of the distribution function f = f (x, ξ, t) due to collisions of molecules with speed ξ and
molecules with a different speed ξ1, which are considered in f1 = f1(x, ξ1, t). We see that the
change of f depends on the pre-collision and post-collision (denoted with ′) distributions and
the relative speed ξr = ξ1 − ξ of the molecules. The collision integral has to be evaluated for all
velocities ξ1 ∈ ] − ∞,∞[ and the complete differential cross-section Ac. The reader is referred
to Bird [10] and Hänel [50] for further explanations of Boltzmann’s collision term.(

∂ f
∂t

)
coll
=

∫
ξ1

∫
AC

( f
′ · f

′

1 − f · f1) ·
∣∣∣ξr

∣∣∣ dAC dξ1 (2.12)

According to classical mechanics, the macroscopic properties mass, momentum, and energy are
conserved in elastic collisions. Thus, these quantities are called collisional invariants.

2.3 The Equilibrium Distribution Function
For a physically correct behavior, the Boltzmann equation must satisfy the second law of ther-
modynamics. To prove this, Boltzmann defined the H-function and pointed out its relation to
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the entropy S [50]:

H =
∫
ξ

f ln( f ) dξ = − 1
kV
∆S . (2.13)

He could show from the Boltzmann equation for a homogeneous, closed system that
∂H
∂t
≤ 0⇔ ∂S

∂t
≥ 0 . (2.14)

This proofs the accordance of the Boltzmann equation with the second law of thermodynamics
and is known as H-theorem [10, 50].

A quintessence of the H-theorem is that any distribution function f in a homogeneous,
closed system will tend with time to a certain distribution function, the equilibrium or Maxwellian
distribution. During this process, which is caused by collisions of molecules, the entropy
is monotonically increasing up to a finite upper bound, when thermodynamic equilibrium is
reached [10, 50].

The distribution function in equilibrium state is mathematically expressed by:

f eq =
n

(2 · π · R · T )
3
2

· exp
(
−(ξ − u)2

2 · R · T

)
. (2.15)

Since the transition to the equilibrium state is generated by collisions, the equilibrium distribu-
tion has the same collisional invariants than the primary distribution f .

ρ = m ·
∫
ξ

f (x, ξ, t) dξ = m ·
∫
ξ

f eq(x, ξ, t) dξ (2.16)

ρ · u = m ·
∫
ξ

ξ · f (x, ξ, t) dξ = m ·
∫
ξ

ξ · f eq(x, ξ, t) dξ (2.17)

ρ · e = m
2
·
∫
ξ

(ξ − u)2 · f (x, ξ, t) dξ =
m
2
·
∫
ξ

(ξ − u)2 · f eq(x, ξ, t) dξ (2.18)

2.4 BGK Approximation
The difficulties in the solution of the Boltzmann equation (Eq. (2.11)) are mainly caused by
the collision term (Eq. (2.12)). The approximation of the Boltzmann equation after Bhatnagar,
Gross and Krook (BGK) [9] uses a simplified collision model. The BGK collision term is
defined in the following way:(

∂ f
∂t

)
coll
= −ω · ( f − f eq) = −1

τ
· ( f − f eq) . (2.19)

The collision process in the BGK approximation is replaced by a relaxation of the distribu-
tion function f to the local equilibrium f eq. The relaxation parameter ω is known as collision
frequency and defines the time range in which the relaxation occurs. Besides the collision fre-
quency, its reciprocal value, the collision time τ, is often used in literature. Physically seen, this
model expresses the consequences of the H-theorem and preserves the collisional invariants.
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2.5 The Chapman-Enskog Expansion
By means of the Chapman-Enskog expansion, continuum equations and macroscopic transport
coefficients can be derived from the Boltzmann equation. Since this derivation is a tedious
mathematical action, the procedure will only be roughly described for the BGK approximation
here, according to the approach of [26]. Furthermore, the description is restricted to isothermal
flows. Additional presentations of the Chapman-Enskog expansion can be found in [50, 116,
132].

The Chapman-Enskog expansion is a multiscale expansion of the distribution function f and
the time t, for small departures from equilibrium, what correlates to Kn ≪ 1, i.e., continuum
limit. The distribution function f is expanded as a power series in ϵ around local equilibrium,
where the parameter ϵ can be interpreted as the Knudsen number (see also [26, 116, 132]):

f = f eq + ϵ f 1 + ϵ2 f 2 + ϵ3 f 3 + ... . (2.20)

Analogically, the time t derivative is expanded as power series in ϵ as well:

∂

∂t
=
∂

∂t0
+ ϵ
∂

∂t1
+ ... . (2.21)

The timescales in Eq. (2.21) can be interpreted as advective (t0) and viscous (t1) timescales,
according to departure from equilibrium. The next ingredient is to introduce the parameter ϵ in
the collision time τ = ϵτ̃. For convenience, external forces will be neglected in the following.
The BGK approximation of the Boltzmann equation reads then as:

∂ f
∂t
+ ξ · ∂ f

∂x
= − 1
ϵτ̃

( f − f eq) . (2.22)

Inserting Eqs. (2.20) and (2.21) in Eq. (2.22) and sorting on the basis of ϵ, brings up for O(1)
and O(ϵ):

∂ f eq

∂t0
+ ξ · ∂ f eq

∂x
= −1
τ̃

f 1 (2.23)

ϵ

(
∂ f eq

∂t1
+
∂ f 1

∂t0
+ ξ · ∂ f 1

∂x

)
= −ϵ 1

τ̃
f 2 . (2.24)

The zeroth and first order moments of f n, n ≥ 1, are 0 due to collisional invariance. Equation
(2.23) can be interpreted as a zeroth order truncation of the ϵ expansion. Establishing the zeroth
and first order moments of this equation yields the Euler equations:

∂ρ

∂t0
+
∂ρu
∂x
= 0 (2.25)

∂ρu
∂t0
+
∂Πeq

∂x
= 0 (2.26)
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with: Πeq = m ·
∫
ξ

ξ ξ · f eq dξ = pI + ρuu .

The zeroth and first order moments of Eq. (2.24) produce:

∂ρ

∂t1
= 0 (2.27)

ϵ

(
∂ρu
∂t1
+
∂Π1

∂x

)
= 0 . (2.28)

By combination of Eq. (2.25), (2.27), and Eq. (2.26), (2.28), and neglecting terms of O(ϵ2),
the Navier-Stokes equations are recovered. This correlates to a truncation of the power series at
first order in ϵ.

∂ρ

∂t
+
∂ρu
∂x
= 0 (2.29)

∂ρu
∂t
+
∂
(
Πeq + ϵΠ1

)
∂x

= 0 (2.30)

The difference between the Euler momentum equations (2.26) and the Navier-Stokes momen-
tum equations (2.30) is the friction term, which is expressed by the stress tensor σ = −ϵΠ1.
A relation between Π1 and the equilibrium f eq can be achieved by building the second order
moment of Eq. (2.23):

∂Πeq

∂t0
+
∂
∫
ξ
ξξξ f eq dξ

∂x
= −1
τ̃
Π1 . (2.31)

The terms on the left hand side of Eq. (2.31) can be expressed in terms of macroscopic quantities
[26]:

∂Π
eq
αβ

∂t0
=
∂

∂t0

(
RTρδαβ + ρuαuβ

)
(2.32)∫

ξ

ξαξβξγ f eq dξ = ρuαuβuγ + RTρ
(
uαδβγ + uβδγα + uγδαβ

)
. (2.33)

For incompressible, isothermal flows Eq. (2.31) reduces to [26, 50]:

Π1
αβ = −τ̃RTρ

(
∂uβ
∂xα
+
∂uα
∂xβ

)
. (2.34)

With the continuum definition of the stress tensor [106]

σαβ = µ

(
∂uβ
∂xα
+
∂uα
∂xβ

)
(2.35)
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Newton’s Laws
↓

Liouville equation
↓

Boltzmann equation
↓

Navier Stokes equations
↓

Euler equations

Figure 2.2: BBGKY Hierarchy

and Eq. (2.34), a relationship between the collision time τ and the viscosity of the fluid, which
is the macroscopic transport coefficient of momentum, can be established. Using the relation
σαβ = −ϵΠ1

αβ one gets:

µ = ϵτ̃ρRT = τρRT =
ρRT
ω

(2.36)

ν =
µ

ρ
= τRT =

RT
ω
. (2.37)

As shown above, the zeroth order truncation of the ϵ expansion results in the Euler equations
and the first order truncation in the Navier-Stokes equations. Higher order truncations lead to
Burnett and super Burnett equations. The derivation of the continuum equations from kinetic
equations is part of the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy. This hi-
erarchy expresses the bottom up approach of describing fluid flows, visualized in Fig. 2.2.

Starting at microscopic level, the motion can be described by Newton’s Laws. Apply-
ing kinetic theory, the Liouville equation can be established, which will not be explained here
(see [10] for details). The Liouville equation can, under certain assumptions, be transferred
to the Boltzmann equation, which itself leads to the Navier-Stokes and Euler equations by the
discussed Chapman-Enskog expansion.



CHAPTER 3

The Lattice Boltzmann Method

Historically seen, the Lattice Boltzmann Method emerged from a numerical scheme called Lat-
tice Gas Automata as a solver for the Navier-Stokes equations. But, LBM can also be directly
derived from the Boltzmann equation. Thus, the Lattice Boltzmann Method is a numerical tech-
nique for solving the Boltzmann equation under certain approximations. This derivation and
further essential topics of LBM will be shown in the following section. For a detailed illustra-
tion of Lattice Gas Automata and the historical development of LBM the reader is referred to
the textbooks of Succi [116] and Wolf-Gladrow [132].

In the context of Lattice Boltzmann Methods, the commonly used distribution is slightly
different to the definition in Eq. (2.1):

f (x, ξ, t) = m · dN
dV · dξ (3.1)

The distribution function here includes the molecular mass m compared to Eq. (2.1). This
form of distribution is sometimes called density distribution function and will be used in the
following.

3.1 The Lattice Boltzmann Equation

Every numerical scheme requires a discretization of the continuous equation and the computa-
tional domain. Based on the continuous BGK approximation of the Boltzmann equation (Eqs.
(2.11) and (2.19)), a discrete equation, the Lattice Boltzmann equation, is now established.

15
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3.1.1 Discretization of Velocity Space
Velocity space can be discretized by several mathematical methods. Here, the so called discrete
velocity method ([1, 10, 110]) is used, since it is intuitive and illustrative. In this method the
molecules are restricted to have only a small number of possible velocities, which are discrete
values of the velocity space. The calculation of moments according to Eq. (2.2) by integrating
over the continuous velocity space must then be converted into a discrete evaluation by a Gauss-
Hermite quadrature [52].

M(x, t) =
∫ ∞

−∞
φ(ξ) f (x, ξ, t) dξ =

q−1∑
i=0

φ(ξi) fi (3.2)

fi = w̃i f (x, ξi, t)) (3.3)

The factors w̃i and ξi are the weights and nodes or abscissae (i.e. discrete velocities) of the
quadrature. The parameter q is the number of discrete velocities. Possible arrangements of
discrete velocities, or quadrature points, respectively, will be discussed in the next section. The
identity in Eq. (3.2) implies that the distribution f can be expressed by a polynomial in ξ. This
can indeed be done by an expansion with a Hermite polynomial, see [110, 111] for details.

The equilibrium distribution function needs discretization as well, to establish their mo-
ments in discrete velocity space. The application of the quadrature rules requires the expansion
of f eq as a polynomial. This can be done by a Taylor series in u of Eq. (2.15), which is com-
monly truncated at second order. (Remember that f is multiplied by the molecular mass in the
LBM context.)

f eq =
ρ

(2πRT ) 3
2

exp
(
−ξ2

2RT

) {
1 +

(ξ · u)
RT

+
(ξ · u)2

2(RT )2 −
u2

2RT

}
+ O(u3)

f eq = w(ξ)ρ
{

1 +
(ξ · u)

RT
+

(ξ · u)2

2(RT )2 −
u2

2RT

}
+ O(u3) (3.4)

The coefficients before the curly brackets in the first presentation of the truncated equilibrium
are combined in the weight function w(ξ) in Eq. (3.4). Equation (3.4) can also be seen as a
Taylor expansion of the equilibrium in the Mach number (Ma) :

Ma =
|u|
cs

(3.5)

cs =

√
dp
dρ

∣∣∣∣∣
T
=
√

RT (3.6)

p
ρ
= RT . (3.7)
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The Mach number is the ratio of the magnitude of the fluid velocity |u| to the speed of sound
cs. The isothermal speed of sound cs for an ideal gas is given by Eq. (3.6) and the equation of
state for an ideal gas is specified in Eq. (3.7). The truncation of Eq. (3.4) at u2 corresponds to a
truncation at Ma2 and is therefore only valid for small Mach numbers. Fluid flows are generally
considered incompressible for small Mach numbers, i.e., Ma < 0.3. This approximation is thus
adequate for the restriction made to incompressible, isothermal flows in this thesis.

Moments of the truncated equilibrium distribution, Eq. (3.4), for the discrete velocities ξi
result from Eq. (3.2), where fi = w̃i f eq

i = w̃i f eq(ρ,u, ξi) in this case. Commonly, the discrete
value of the weight function w(ξi) (Eq. (3.4)) and the value of quadrature weight w̃i (Eq. 3.3)
are combined to a single weight factor wi, as done in Eq. (3.8).

f eq
i = w̃iw(ξi)ρ

{
1 +

(ξi · u)
c2

s
+

(ξi · u)2

2c4
s
− u2

2c2
s

}

f eq
i = wiρ

{
1 +

(ξi · u)
c2

s
+

(ξi · u)2

2c4
s
− u2

2c2
s

}
(3.8)

As we can see, the space and time dependence of f eq
i is only indirect through the space and time

dependence of ρ(x, t) and u(x, t).
Since the macroscopic quantities are established from the discrete formulae, the distribution

function needs only to be evolved in space and time for the discrete velocities ξi. In the absence
of external forces, the resulting discrete velocity Boltzmann-BGK equation, hereafter called
discrete Boltzmann equation, is shown in Eq. (3.9) [1, 110]. The treatment of external forces
will be concerned later. Equation (3.9) is a set of q nonlinear first order differential equations
for the discrete values of the distribution function.

∂ fi

∂t
+ ξi ·

∂ fi

∂x
= −1
τ
· ( fi − f eq

i ) (i = 0, ..., q − 1) (3.9)

For recovering the isothermal Navier-Stokes equations in the continuum limit, the moments
up to second order, i.e., density, momentum, and stress tensor, must be correctly recovered
by the discrete model. By applying a Chapman-Enskog expansion to the discrete Boltzmann
equation with the discrete equilibrium distribution presented here, it is shown that this model
approximates the Navier-Stokes equations with second order accuracy in the Knudsen number
Kn [1].

Another, mathematically very formal way to derive the discrete Boltzmann equation is the
expansion of the distribution function with Hermite polynomials. Shan and He [110] show
that this approach is equivalent to the discrete velocity method used here. Nevertheless, the
expansion by Hermite polynomials yields a direct relation between the truncation order of the
polynomial and the representation of the physical system. Equation (3.4) can be interpreted
as a second order truncated Hermite polynomial, see [110, 111]. By truncating the Hermite
polynomial at higher orders, LBM schemes for simulating thermal and higher Mach number
flows can be developed. Higher order truncation means that higher order terms of fluid velocity
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or Mach number, respectively, will occur in the discrete equilibrium distribution function and a
higher number of Gaussian quadrature points ξi are needed [111].

3.1.2 Discretization in Space and Time
After discretization in velocity space, the discretization in physical space and time is now per-
formed to obtain a model, ready for numerical simulation. The discrete Boltzmann equation
can be rewritten with a total or Lagrangian derivative as:

∂ fi

∂t
+ ξi ·

∂ fi

∂x
=

D f
Dt
= −1
τ
· ( fi − f eq

i ) . (3.10)

By introducing the convective scaling ∆x = ξi∆t, Eq. (3.10) can be integrated along a charac-
teristic for a time interval [26, 54]:∫ ∆t

0

D fi(x + ξis, t + s)
Ds

ds =
∫ ∆t

0
−1
τ

[ fi(x + ξis, t + s) − f eq
i (x + ξis, t + s)] ds . (3.11)

While the total derivative on the left-hand side of Eq. (3.11) integrates directly, the right-hand
side needs approximation. Since the discrete Boltzmann equation is second order accurate in
terms of Kn, it is reasonable to preserve the order and use a second order accurate quadrature
rule. Here the trapezoidal rule is applied:

fi(x + ξi∆t, t + ∆t) − fi(x, t) = −
∆t
2τ

[
fi(x + ξi∆t, t + ∆t) − f eq

i (x + ξi∆t, t + ∆t)

+ fi(x, t) − f eq
i (x, t)

]
+ O(∆t2) .

(3.12)

The values of the equilibrium f eq
i (x + ξi∆t, t + ∆t) are not known a priory and depend on fi(x +

ξi∆t, t + ∆t), i ∈ {0, ..., q − 1}. This creates an implicit system of nonlinear, algebraic equations
from Eq. (3.12). By the following substitution, the system of equations is transformed to a fully
explicit system [26, 51, 54]:

f i(x, t) = fi(x, t) +
∆t
2τ

[
fi(x, t) − f eq

i (x, t)
]
. (3.13)

After some algebra one obtains from Eq. (3.12) with (3.13) this explicit set of equations [26,
51, 54]:

f i(x + ξi∆t, t + ∆t) − f i(x, t) = −
∆t

τ + 0.5∆t

[
f i(x, t) − f eq

i (x, t)
]
. (3.14)

The fraction in Eq. (3.14) is from a mathematical point of view a relaxation parameter, which
describes relaxation to equilibrium. In analogy to the BGK model, this parameter is considered
as a dimensionless collision time, denoted by Ω. Compared to the continuous model, the addi-
tional parameter 0.5∆t occurs in the relaxation parameter of the discrete model. This numerical
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viscosity, sometimes called discrete lattice effect [47], is absorbed into the physical model, i.e.,
the relaxation parameter, to obtain correct macroscopic transport coefficients [51]. By using the
relationships (2.37) and (3.6), Ω becomes a function of the kinematic fluid viscosity:

Ω =
∆t
τ
=

∆t
τ + 0.5∆t

=
c2

s∆t
ν + 0.5c2

s∆t
. (3.15)

Finally the Lattice Boltzmann equation (LBE), sometimes called Lattice BGK equation, is
achieved from Eq. (3.16) with the dimensionless collision time. (Note: From Eq. (3.13) it
follows f eq

i = f
eq
i .)

f i(x + ξi∆t, t + ∆t) = f i(x, t) + Ω
[
f

eq
i (x, t) − f i(x, t)

]
(3.16)

The Lattice Boltzmann equation is a set of discrete equations for the evolution of the discrete
values of the distribution function f i. The next step is to evaluate the consequences of the
substitution process on the macroscopic or hydrodynamic variables. Since f eq

i = f
eq
i , i.e., the

collision operator preserves mass and momentum, the zeroth and first order moments remain
unchanged:

ρ =

q−1∑
i=0

f i =

q−1∑
i=0

f̄ eq
i =

q−1∑
i=0

f eq
i =

q−1∑
i=0

fi (3.17)

ρu =
q−1∑
i=0

ξi f i =

q−1∑
i=0

ξi f̄ eq
i =

q−1∑
i=0

ξi f eq
i =

q−1∑
i=0

ξi fi . (3.18)

For the momentum flux tensor things are bit different:

Π =

q−1∑
i=0

ξiξi f i

=

q−1∑
i=0

ξiξi fi +
∆t
2τ

 q−1∑
i=0

ξiξi fi −
q−1∑
i=0

ξiξi f eq
i

 (3.19)

= Π +
∆t
2τ

[Π −Πeq]

with : Π
neq
= Π −Πeq

and Π
eq
= Πeq

⇒ Πneq =

(
1 +
∆t
2τ

)−1 [
Π −Πeq]

Πneq =

(
1 +
∆t
2τ

)−1 q−1∑
i=0

ξiξi

(
fi − f

eq
i

)
=

(
1 +
∆t
2τ

)−1 q−1∑
i=0

ξiξi f
neq
i . (3.20)
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Equation (3.20) shows the influence of the discrete lattice effect on the non equilibrium part of
the momentum flux tensor. The non equilibrium part of the distribution f neq

i = fi − f eq
i is an

approximation for the first order term f 1
i of the Chapman-Enskog expansion (cf. Eq. (2.20)).

An important result of the Chapman-Enskog expansion shown above, is the correlation between
the macroscopic stress tensor of the Navier-Stokes equations σ and Π1. Using this result and
Eqs. (2.37), (3.6), and (3.20) yields an relationship for the macroscopic stress tensor and the
momentum flux tensor of the discrete model:

σ = −ϵΠ1 ≈ −Πneq

σ = −
(
1 +

c2
s∆t
2ν

)−1 q−1∑
i=0

ξiξi

(
fi − f

eq
i

)
= −

(
2ν

2ν + c2
s∆t

) q−1∑
i=0

ξiξi

(
fi − f

eq
i

)
= −

(
ν

ν + 0.5c2
s∆t
· c2

s∆t
c2

s∆t

) q−1∑
i=0

ξiξi

(
fi − f

eq
i

)
σ = − Ων

c2
s∆t

q−1∑
i=0

ξiξi

(
fi − f

eq
i

)
(3.21)

= −
(
1 − 1

2
Ω

) q−1∑
i=0

ξiξi

(
fi − f

eq
i

)
.

The LBE derived here, is a second order accurate discretization of the discrete Boltzmann
equation in space and time and, thus, it recovers in the continuum limit the Navier-Stokes equa-
tion with second order accuracy. In what follows, only the distribution function with an overbar
will be used, thus the overbar notation will be omitted for simplicity.

The discretization procedure shown here is not the only way to discretize the discrete Boltz-
mann equation in space and time. As demonstrated by Chen and Doolen [21] the time derivative
in Eq. (3.9) can be discretized by an Euler forward difference and the convective term by a first
order upwind scheme. After introducing the convective scaling ∆x = ξi∆t, the Lattice Boltz-
mann equation is recovered. But, in contrast to the above derivation, the expression of the
relaxation parameter Ω is not derived during the discretization procedure. Instead, it must be
determined by a subsequent Chapman-Enskog expansion of the Lattice Boltzmann equation.
This procedure reproduces the second order accuracy of LBM to the Navier-Stakes equations
as well [51]. Another way to derive the Navier-Stokes equations from the LBE and to show the
accuracy of the scheme is the so called asymptotic analysis as proposed by Junk et al. [63]. The
different links between the Boltzmann-BGK equation, the discrete Boltzmann equation, and the
Navier-Stokes equations are schematically shown up in Fig. 3.1.
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Figure 3.1: Links to Boltzmann-BGK Equation

3.2 Discrete Phase Space Model

In the preceding section, the Boltzmann equation has been discretized. Therefor, the discrete
velocity space was derived by restricting the molecules to certain velocities, which were not
clearly specified up to now. The set of discrete velocities must fulfill different requirements.

The most important criteria to meet is Eq. (3.2), which means that the moments of the
discrete distribution function are identical to the ones based on the continuous velocity space.
But, it can be shown that matching of all moments requires an infinite number of velocities [17].
Since the goal of the discretization is to use only a finite set of velocities, some limitations are
needed. Thus, the discrete moments are restricted to be equal to their continuous counterparts
up to a certain order m, depending on the physics to be represented. Chen and Shan [17]
state that an accurate calculation of the discrete non-equilibrium moment at order m requires
a correct evaluation of the discrete equilibrium moments at order n = m + 1. Furthermore,
the accurate calculation of discrete moments defines the degree of precision q ≥ m + n of
the Gauss-Hermite quadrature. The precision requirements of the quadrature are equivalent to
satisfying the isotropic tensor conditions of Eq. (3.24) by the discrete velocity set [89]. Meeting
the isotropic conditions results in rotational invariance of the hydrodynamic moments [20, 46].
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Before coming to these isotropic conditions, some definitions are needed:

E(n) =

q−1∑
i=0

wi ξi ξi ... ξi︸    ︷︷    ︸
n

(3.22)

E(n)
α1,α2,...,αn

=

q−1∑
i=0

wiξi,α1ξi,α2 ...ξi,αn . (3.23)

The quantity E(n) is a tensor of n-th order build from the discrete velocities ξi and the weights wi

(cf. Eq. (3.8)), accordingly ξi ξi ... ξi has to be understood as a dyadic product. E(n)
α1,α2,...,αn can be

interpreted as one component of the tensor for fixed α1, α2, ..., αn or by the Einstein convention
as the tensor itself. The index α j = {x, y, z} expresses a component of the j-th velocity vector in
the tensor product.

E(n)
α1,α2,...,αn

=

(RT )n/2∆
(n)
α1,α2,...,αn n = even integer, n ≤ q

0 n = odd integer, n ≤ q
(3.24)

In the isotropic conditions (Eq. (3.24)) ∆(n)
α1,α2,...,αn is the n-th order delta function defined as a

summation of n/2 products of Kronecker deltas, see [17] for details.
In what follows, the conditions of Eq. (3.24) will be applied to a set of 19 discrete velocities

in a 3 dimensional Cartesian space, commonly named D3Q19 lattice. The notation DdQq goes
back to [98], d expresses the dimension of the space and q the number of discrete velocities.
The term lattice is used as a synonym for the discrete phase space or often interchangeable for
the discrete velocity space, only. Details about other popular lattices, like D3Q15 and D3Q27
can be found in [46, 85, 98]. The D3Q19 lattice, which is used in SAM-Lattice, is numerically
more stable than the D3Q15 lattice and provides a good compromise between accuracy and
computational efficiency compared to D3Q15 and D3Q27 [29, 85].

In the D3Q19 lattice, the physical space is discretized by an equally spaced cubic grid. The
D3Q19 lattice is shown in Fig. 3.2, including the following 19 discrete velocities:

ξ(0)
i = (0, 0, 0) i = 18

ξ(1)
i = (±ξ̃, 0, 0), (0,±ξ̃, 0), (0, 0,±ξ̃) i = 0, ..., 5

ξ(2)
i = (±ξ̃,±ξ̃, 0), (±ξ̃, 0,±ξ̃), (0,±ξ̃,±ξ̃) i = 6, ..., 17

ξ̃ =
∆x
∆t
. (3.25)

The velocity vectors originate from every computation node of the cubic grid and end up at
the next neighbor in the according direction. They are categorized into three different groups,
depending on the length of the vectors. This is usually called energy level. Energy level 0
contains only the zero velocity, molecules with this velocity rest at the current node. The six
velocities belonging to energy level 1 point to the next neighbor nodes in Cartesian directions.
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Figure 3.2: D3Q19 Lattice

The left twelve vectors in energy level 2 are chosen to point to the remaining next neighbor
nodes, with exception of the space diagonal neighbors. For every discrete velocity, the D3Q19
lattice contains a velocity vector in the opposed direction. This is called parity symmetry. Due
to the symmetry of the lattice and the required invariance of the hydrodynamic moments, the
weights wi can only be different for the different energy levels, i.e., all velocities in the same
energy level have the same weight [20]. By the definition of the molecular velocity ξ̃, which was
already used for the disrectization of the Boltzmann equation in the previous section, molecules
fly exactly from one node to the according neighbor during one time step.

Let us start with the demonstration of Eq. (3.24) for the D3Q19 lattice. A consequence of
the parity symmetry of the D3Q19 lattice is, that the tensor of Eq. (3.24) is zero for odd integers.
For even integers n ∈ {0, 2, 4}, these three conditions follow [50]:

E(0) =

18∑
i=0

wi = 1 (3.26)

E(2)
α1,α2

=

18∑
i=0

wiξi,α1ξi,α2 = RTδα1α2 = c2
sδα1α2 (3.27)

E(4)
α1,α2,α3,α4

=

18∑
i=0

wiξi,α1ξi,α2ξi,α3ξi,α4

= RT 2 (
δα1α2δα3α4 + δα1α3δα2α4 + δα1α4δα2α2

)
= c4

s
(
δα1α2δα3α4 + δα1α3δα2α4 + δα1α4δα2α2

)
. (3.28)
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The solution of Eqs. (3.26) - (3.28) yields to the ratio of the molecular velocity to the speed of
sound and to the weights for the three different energy levels:

ξ̃

cs
=
√

3 (3.29)

wi =
1
3

i = 18

wi =
1

18
i = 0, ..., 5

wi =
1

36
i = 6, ..., 17 . (3.30)

As said before, modeling of incompressible, isothermal flows requires the correct establish-
ing of moments up to second order, i.e., m = 2. Consequently, the equilibrium moments up
to order n = 3 must be correctly evaluated in the discrete model. Nie et al. [89] show that the
correct calculation of the third order equilibrium moment, which is the equilibrium heat flux
vector, requires in general at least 39 velocity directions in 3D and a third order expansion of
f eq
i . This is not fulfilled by the D3Q19 lattice and leads to a non Galilean invariant viscous

stress [28, 89]. The error in the viscous stress is of O(Ma3) [28] and thus negligible for small
Ma, i.e., incompressible flow, what is also turned out by the numerical investigation of [89]. In
practice, the Galilean invariant D3Q39 lattice or models with even more velocities are hardly
used, due to the considerable higher computational costs and memory demands.

With the quantities derived in this section, the discrete model is completely described. In
the numerical scheme, the Lattice Boltzmann equation (3.16) is solved every time step, at ev-
ery computation node for every discrete velocity. The remaining parts of this section introduce
further basic ingredients of the numerical scheme.

3.3 Collision Operators
Besides the BGK model introduced in detail before, different other collision operators are in
use for Lattice Boltzmann methods. In this section we will present the multiple relaxation
time model (MRT), which is used in SAM-Lattice in detail. Other collision models, like the
entropic [6] or cascaded [43] models will not be discussed here because they are currently not
implemented in SAM-Lattice. The interested reader is referred to the mentioned literature.

3.3.1 Single Relaxation Time Model
The term single relaxation time model (SRT) is often used as a synonym for the classical BGK
model. In the BGK model, a single relaxation parameter Ω (see Eq. (3.16)) is used for relax-
ation to equilibrium. Thus, all physical processes are relaxed with the same rate or time scale,
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respectively, to their according equilibrium. A drawback and direct effect of this is that all phys-
ical transport coefficients, which are related to the relaxation processes, must be equal. If we
consider a Lattice Boltzmann Method feasible for thermal calculations, a constant Prandtl num-
ber of unity is the consequence, since thermal conductivity and kinematic viscosity are equal
[109]. But from a physical point of view the Prandtl number is not fixed to 1.

3.3.2 Multiple Relaxation Time Model
Physically seen, the different quantities or processes and their modes have different time scales
to relax to the according equilibrium. This fact is considered in the LBM by the multiple
relaxation time model, which is still based on the BGK idea of relaxation to equilibrium. The
collision in MRT is performed in the moment space, instead of the velocity space in SRT. In
this way, for every moment a different relaxation time can be used and thus different physical
transport coefficients can be realized. With the MRT collision operator, the LBE or sometimes
called generalized Lattice Boltzmann equation reads as [46]:

fi(x + ξi∆t, t + ∆t) = fi(x, t) +
q−1∑
j=0

(
M−1ŜM

)
i j

[
f eq

j − f j

]
. (3.31)

The transformation matrix M is a linear mapping between the discrete velocity space and the
discrete moment space, the diagonal matrix Ŝ contains the multiple relaxation times and the
inverse matrix M−1 maps from moment back to velocity space. In the following, a isothermal
MRT model for the D3Q19 lattice is presented, based on the work of d’Humières et al. [29],
who proposed this for the first time.

For a linear, invertible mapping from velocity space to moment space, 19 linear independent
moments must be defined, which build the moment vector m:

m =
(
ρ, e, ϵ, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz

)T

= (m0,m1, ...,m18)T . (3.32)

Many of the moments in Eq. (3.32) have a physical interpretation, which is listed below, in
order of occurrence: the fluid density (ρ), the kinetic energy (e), square of the kinetic energy
(ϵ = e2), the fluid momentum ( jx, jy, jz), the energy flux (qx, qy, qz) and the momentum flux
tensor (3pxx, pww, pxy, pyz, pxz). The moments πxx and πww are of quartic order and have no
direct physical interpretation. The same holds for mx,my and mz, which are of cubic order in ξ.

The quadrature for establishing the moments of the discrete distribution (Eq. (3.2)) can
mathematically be expressed as a scalar product of two vectors φi, f ∈ R19. The moments of m
are chosen in a way that the 19 basis vectors φi are an orthogonal basis of the moment space.
Correspondingly, the moment vector can be written as:

m =
(
φ0 · f ,φ1 · f , ...,φ18 · f

)T
= M f . (3.33)



26 Collision Operators

M is a 19x19 matrix and holds the basis vectors φ0, ...,φ18 as row entries (see Appendix A for
a full length description of M and the definition of φ0, ...,φ18). So, the matrix M assigns every
distribution vector f the according moments. Since the matrix M has full rank, it is invertible
and the matrix M−1 can be used for the re-transformation from the moment space into velocity
space.

The equilibrium state of the moments meq, to which the relaxation is performed, is usually
given by:

meq = M f eq . (3.34)

with f eq according to Eq. (3.8). Since f eq is depending solely on density and velocity, all equi-
librium moments meq

i are describable in terms of ρ and u, see Eq. (A.1). In principle, other
forms of the equilibrium moments are possible, as long as the collisional invariants are pre-
served [29]. Since the components of the momentum flux tensor are included in the moment
vector m, the macroscopic stress tensor σ is easily computed from the moments of m [37, 126]
as shown in Eq. (A.3).

We focus now on the matrix Ŝ = diag(s0, s1, ..., s18), which contains the 19 relaxation times
for the different moments. By a Chapman-Enskog expansion of the MRT-LBE (Eq. (3.31)),
a relation between the different relaxation parameters si and the macroscopic transport coeffi-
cients can be established [27, 95]. The result of this analysis is that the relaxation parameters
s9, s11, s13, s14, s15 depend on the kinematic viscosity by Eq. (3.15), what is obvious since they
relax moments related to momentum fluxes. The parameter s1 is related to the bulk viscosity (ζ)
of the fluid [29, 46, 73]. For the collisional invariants density and momentum, the parameters
s0, s3, s5, s7 are arbitrary since mi = meq

i , i ∈ {0, 3, 5, 7}. Commonly, they are chosen to 0 for
simplicity. The remaining relaxation times are free parameters and are grouped, depending on
the physical relation of the according moments:

s0 = s3 = s5 = s7 = 0
s1 = se

s2 = sϵ
s4 = s6 = s8 = sq

s10 = s12 = sπ
s9 = s11 = s13 = s14 = s15 = sΩ = Ω

s16 = s17 = s18 = sm . (3.35)

All relaxation parameters, except of sΩ = Ω can be freely chosen in the range 0 < si < 2 for
incompressible, isothermal flows. [72]. These relaxation times are normally adapted to improve
stability and accuracy of the simulation. The optimal values can be determined through a linear
analysis [72]. But since these optimal values are flow and geometry dependent, the free values
si are commonly chosen to 1, which means that the according moments are relaxed directly to
equilibrium. This approach is also known as regularized scheme [13, 74] and can be interpreted
as a Ehrenfest step for the non-hydrodynamic quantities [13]. The SRT model can be interpreted



The Lattice Boltzmann Method 27

as a particular case of the MRT model presented here. By setting all relaxation times si = Ω,
the MRT model reduces to the SRT model [29]. Another special case of the MRT is derived by
grouping the relaxation parameters for the even (s1 = s2 = s9 = s10 = s11 = s12 = s13 = s14 =

s15) and odd (s4 = s6 = s8 = s16 = s17 = s18) moments of powers in ξ. The model received
in this way is known as two relaxation time model [45]. Beside this intuitive derivation and
description of the MRT model, a formal derivation of the MRT model from the Boltzmann
equation by means of Hermite polynomials is given in literature by Shan and Chen [109].

The main advantage of the MRT model is the drastically increased stability compared to the
SRT model. By relaxing the non-hydrodynamic moments directly to equilibrium, the according
modes are damped quickly, what effects the higher stability [83, 95]. The disadvantage of this
scheme is the higher computational effort. But, by carefully coding, the overhead can be limited
to approximately 20 percent, compared to the SRT model [29].

3.4 Treatment of External Forces
External forces were, for simplicity, neglected in the derivation of the Lattice Boltzmann equa-
tion. The treatment of external forces in the Lattice Boltzmann Method will be considered
afterwards. Since the treatment of forcing terms in the SRT and MRT model is a bit different, a
separate introduction according to [47, 48] is given here.

3.4.1 Single Relaxation Time Model
The presence of a body force is considered in the Lattice Boltzmann equation by an additional
source term [47]:

fi(x + ξi∆t, t + ∆t) = fi(x, t) + Ω
[
f eq
i (x, t) − fi(x, t)

]
+ ∆tFi . (3.36)

Additionally, the first order moment for fluid momentum is redefined:

ρu∗ =
q−1∑
i=0

ξi fi + mf∆t . (3.37)

In Eq. (3.37), the term f identifies the force per unit volume f = ρa, where a is the acceleration
according to Newton’s second law. Consequently, the equilibrium distribution (Eq. (3.8)) for
the evaluation of Eq. (3.36) is performed with u∗.

The introduced forcing term in Fi in Eq. (3.36) is expanded as a power series in ξi [47, 69]:

Fi = wi

A + b · ξi

c2
s
+

C :
(
ξi ξi − c2

s I
)

2c4
s

 . (3.38)

To get a valid model, the parameters A,b,C and m in the above equations need to be defined in
a way that the hydrodynamic equations are correctly recovered. The tool for this derivation of
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the parameters is again the Chapman-Enskog expansion. According to Guo et al. [47], the pa-
rameters must be chosen in the following way, to match the Navier-Stokes equations correctly:

A = 0 b =
Ων

c2
s∆t

f

C =
Ων

c2
s∆t

(u∗ f + f u∗) m =
1
2
. (3.39)

With the parameters given above, Eqs. (3.39) and (3.37) result in the subsequent equations.
Clearly, the influence of the discrete lattice effect on the forcing term can be seen.

Fi = wi
Ων

c2
s∆t

[
ξi − u∗

c2
s
+
ξi · u∗

c4
s
ξi

]
· f (3.40)

ρu∗ =
q−1∑
i=0

ξi fi +
1
2

f∆t (3.41)

The expression for the force term (Eq. (3.40)) can also be deduced a priori in the derivation
of the Lattice Boltzmann equation from the Boltzmann equation. This is done by a Hermite
expansion of the forcing term in Eq. (2.11) [82, 111].

3.4.2 Multiple Relaxation Time Model
Guo et al. [48] adapt the above procedure for the SRT model to the MRT model. Since the
discrete lattice effect depends on the relaxation parameter, this step must be considered in mo-
ment space for the MRT model. The generalized Lattice Boltzmann equation with forcing terms
reads, in analogy to the SRT model, as:

fi(x + ξi∆t, t + ∆t) = fi(x, t) +
q−1∑
j=0

(
M−1ŜM

)
i j

[
f eq

j − f j

]
+ ∆tF̂i . (3.42)

The forcing term F̂i is the i-th component of the source term vector f̂ ∈ R19:

f̂ =M−1
(
I − 1

2
S
)

Mf . (3.43)

where the discrete lattice effects act in the moment space here. The vector f ∈ R19 contains the
effect of the force on the distributions without discrete lattice effects and is derived in the same
way as for the SRT model. f consists out of the following components:

F i = wi

[
ξi − u∗

c2
s
+
ξi · u∗

c4
s
ξi

]
· f . (3.44)
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An important point for the choice of the relaxation times belonging to fluid momentum is given
by Eq. (3.43). Since the fluid momentum in the MRT scheme with external forces is defined
according to Eq. (3.41), the relaxation parameters s3, s5, s7 must be chosen to 1 to end up in the
mentioned definition.

With this forcing term, the MRT scheme recovers the Navier-Stokes equations correctly, as
shown by [46, 48].

3.5 Boundary Conditions
Modeling of fluid flows requires appropriate conditions at the domain boundaries. In this section
we will see how boundary conditions are realized in the Lattice Boltzmann Method. Generally,
boundary conditions are specified by macroscopic values, which have to be transferred to values
of the distribution function for usage in LBM. Our target in applying boundary conditions is to
provide a valid set of distribution functions for all nodes in the fluid domain adjacent to bound-
aries. These distribution values must realize the macroscopic values specified at the boundary.
We will restrict ourselves here to the boundary conditions implemented in SAM-Lattice and
used in this thesis. A comprehensive overview of existing boundary conditions in the Lattice
Boltzmann context is given by [46].

3.5.1 Equilibrium Schemes
The equilibrium distribution (Eq. (3.8)) gives a relation between the distribution functions and
the hydrodynamic variables. So, it is evident to set the missing distribution functions by the
equilibrium values, build from the macroscopic values at the boundary. Oftentimes, only one
hydrodynamic value, pressure or velocity, is specified at a boundary. In such cases the remaining
physical quantity is extrapolated normal to the boundary from the fluid. Setting of equilibrium
values results in general in a first order accurate boundary condition [53].

There are some ideas for improving the accuracy of the scheme. This is done by adding a
non-equilibrium part to the equilibrium at the boundary. Such models are then no longer named
equilibrium schemes, in literature they are sometimes called extrapolation schemes instead. The
non-equilibrium part can be approximated by the stress tensor, if this quantity is known at a
boundary, as suggested from Latt [74]. But in most cases the stress tensor is unknown, what
requires other techniques. A simple example is again the extrapolation of the non-equilibrium
part from the fluid normal to wall. For further schemes, the reader is referred to [46].

3.5.2 Periodic Boundary Conditions
Periodic boundary conditions create an infinitely large domain, in the direction in which they
are applied. Descriptively spoken, the periodic sides of the domain are linked together. In the
Lattice Boltzmann context this is achieved by filling in the molecules, which are leaving the
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Figure 3.3: Periodicity Condition

domain at one side, in the opposite site of the domain. This is schematically shown in 2D in
Fig. 3.3. The molecules leaving the domain, for instance in +x direction, are advected to the
according neighbors at the domain beginning on the left hand side.

3.5.3 Bounce Back Schemes
An intuitive way to model solid walls is by molecular reflection. This is commonly known in
the Lattice Boltzmann literature as bounce back. The physical meaning behind the bounce back
rule is easily explained: Molecules colliding with a solid, impermeable wall are bounced back
to the opposite direction of where they come from. Schematically, this is shown in 2D for one
velocity direction in Fig. 3.4(a). The molecules flying in +x + y direction, which is direction
number 16 in the D3Q19 lattice, hit the solid wall and are bounced to direction 17 (−x − y).
Mathematically, the bounce back rule is expressed by:

fî(x f , t + ∆t) = fi(x f , t) with ξ î = −ξi . (3.45)

for all directions î with ξ î · n < 0, i.e., ξ î pointing from the wall into the fluid. Since the
introduced Lattice Boltzmann scheme is designed in a way that molecules or the according
distribution values move from one node to a next neighbor node in one time step (i.e. convective
scaling), the bounce back scheme has some geometrical constraints on the wall. The wall must
be placed half a grid spacing away from the fluid nodes adjacent to the domain boundary, e.g.,
x f in Fig. 3.4(a), to allow the molecules to hit the wall and fly back to the starting node in one
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Figure 3.4: Bounce Back Schemes

time step. In other words, the wall must be located half way between the fluid node x f and the
first node outside of the fluid domain, called wall node xw, of the equally spaced grid. Therefore,
this boundary condition is often called half way bounce back. An implication of this constraint
is that the wall must be flat.

The macroscopic behavior of the boundary can be determined from the fluxes through the
wall. As shown by Chen et al. [18], mass and momentum fluxes vanish exactly by usage of the
bounce back scheme and a impermeable, no-slip wall is achieved. To model moving boundaries
with a wall velocity uw, Ladd [70] introduced an additional term in the bounce back scheme:

fî(x f , t + ∆t) = fi(x f , t) − 2wiρ(x f , t)
ξi · uw

c2
s
. (3.46)

For flat walls, located half a spacing from the fluid nodes adjacent to the domain boundary,
the bounce back rule is spatially second order accurate [53]. If the actual wall position is
different from ∆x/2, a discretization error of order O(∆x) is introduced and thus the spatial
accuracy reduces to first order. The same holds for curved boundaries, which degenerate to
some stair step shape by application of the bounce back rule [50].

There is another kind of bounce back schemes, called specular reflection. In this scheme
the molecules are reflected specular to the fluid, which means that the normal momentum of the
molecules hitting the wall is reflected and the tangential momentum remains unchanged, see
Fig. 3.4(b). This is mathematically expressed by:

fî(x f1 , t + ∆t) = fi(x f2 , t) with ξ î = ξi − 2(ξi · n) · n . (3.47)
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Due to this treatment, the tangential momentum remains unchanged and a frictionless imperme-
able wall is modeled [46]. This frictionless bounce back has the same geometrical requirements
to the wall as the standard half way bounce back scheme. Therefore, its usage is advisable only
for flat walls, located half way between fluid and wall nodes since the scheme is second order
accurate only in this case.

3.5.4 Bouzidi Scheme

The limitations of the bounce back schemes require advanced boundary conditions, especially
for curved boundary shapes. A very elegant scheme was developed by Bouzidi et al. [11], which
is an interpolation bounce back scheme. As we have seen in the previous subsection, for the
standard bounce back rule the boundary position is forced half way between fluid and wall
nodes. If the boundary position is different, there are direct consequences for the advection of
molecules.

For the following considerations, the boundary position is distinguished into two cases: The
boundary can be located half a spacing or more away from a fluid node x f1 (see Fig. 3.5(a)) or
the boundary is placed closer than ∆x/2 to a fluid node x f1 in Fig. 3.5(b). The distance between
the boundary and the fluid node is measured by the parameter q, see Eq. (3.48). In the first case
we have q ≥ 0.5 and in the second one q < 0.5.

q =
x f − xboundary

∆x
(0 < q ≤ 1) (3.48)

In the case q ≥ 0.5, molecules or distribution functions, respectively, leaving at the node
x f1 at time t, for instance in x direction, will hit the boundary and be reflected (bounced back)
in −x direction. Since q ≥ 0.5, the boundary is too far away for the molecules to reach x f1 in
one time step ∆t. At the end of the time step (t + ∆t) the molecules reside at xs, which is at a
distance s = ∆x(2q− 1) away from the fluid node x f1 , see Fig. 3.5(a). To get a valid distribution
function at the fluid node x f1 at t + ∆t, the distribution function is linearly interpolated from the
known values at the node x f2 and at the end position of the bounced back molecules xs. The
same approach is tracked for q < 0.5, see Fig. 3.5(b). Molecules leaving x f1 at time t will be
reflected in −x direction at the wall and reside at xs at the end of the time step (t + ∆t). Now
this position is located between x f1 and x f2 , since q is less than 0.5. The calculation of the
distribution function at x f1 in −x direction at time t + ∆t would result in an extrapolation if it is
performed in the same fashion as for q ≥ 0.5. Numerically seen, an extrapolation can generate
instability. To avoid this, the basic idea is used the other way around. Molecules starting at xs

at time t, are reflected at the wall and will arrive exactly at x f1 at the end of the time step (t+∆t).
So, the distribution function is interpolated linearly to xs from x f1 and x f2 at time t and then the
advection and bounce back is performed to get a valid distribution function at the fluid node x f1
at t + ∆t.

Mathematically, the Bouzidi scheme can be expressed by [11]: (notice ξ î = −ξi)
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Figure 3.5: Bouzidi Scheme

fî(x f1 , t + ∆t) =

 1
2qi

fi(x f1 , t) +
2qi−1

2qi
fî(x f2 , t + ∆t) − 1

qi
wiρ(x f1 , t)

ξi·uw

c2
s

qi ≥ 0.5

2qi fi(x f1 , t) + (1 − 2qi) fi(x f2 , t) − 2wiρ(x f1 , t)
ξi·uw

c2
s

qi < 0.5 .
(3.49)

The last term on the right hand side of Eq. (3.49) incorporates a potential wall velocity uw. For
q = 0.5, the Bouzidi scheme results exactly in the bounce back rule. By applying this scheme
for all boundary adjacent fluid nodes and all directions pointing to the boundary (see Fig. 3.6),
arbitrary shaped velocity boundaries can be modeled with second order spatial accuracy [11].

A very import result of this gas kinetic treatment of boundary conditions is the fact that no
body conformal grids are needed in LBM to model arbitrary geometrical shapes. The fluid do-
main is meshed with an equally spaced rectangular grid, and the shape of the domain boundaries
is implicitly included in the values of qi.

3.5.5 Yu Scheme

Another interpolation based bounce scheme was proposed by Yu et al. [137]. In the Yu scheme
a single interpolation rule is used, independent of the boundary distance qi. The basic idea
of Yu is summarized in the following with help of Fig. 3.6: The boundary is assumed to be
permeable so that the molecules can pass through. If we look at the molecules flying from x f1
in 0−direction (+x) to the boundary, they will cross the boundary after a distance of q0∆x and
arrive at the wall node xw at the end of a time step t + ∆t. The distribution in 0−direction on the
boundary, i.e., xb = x f1 + ξ0q0∆t, at time t + ∆t is then linearly interpolated from the values at
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x f1 and xw. Generally written, this is expressed by:

fi(xb, t + ∆t) = f (x f1 , t + ∆t) + qi

(
fi(xw, t + ∆t) − fi(x f1 , t + ∆t)

)
. (3.50)

The interpolated distribution at the boundary is subsequently bounced back. To assign a wall
velocity uw the already known term of Eq. (3.45) is used:

fî(xb, t + ∆t) = fi(xb, t + ∆t) − 2wiρ(x f1 , t)
ξi · uw

c2
s
. (3.51)

The missing distribution function at the fluid node x f1 at time t + ∆t is obtained by a linear
interpolation of the distribution functions in î-direction at the boundary (Eq. (3.51)) and at the
neighbor node x f2 :

fî(x f1 , t + ∆t) = fî(xb, t + ∆t) +
qi

1 + qi

(
fî(x f2 , t + ∆t) − fî(xb, t + ∆t)

)
. (3.52)

As we can see from the preceding equations, the Yu scheme does not reduce to the bounce back
rule in the case of qi = 0.5. Nevertheless, this scheme is also second order accurate, as shown
in [137].

Although the physical ideas of the Yu and the Bouzidi schemes are different, they are, from
a mathematical point of view, members of the same class of linear interpolation schemes. They
differ only in their interpolation coefficients, as shown by Ginzburg et al. [45], who introduce
further schemes of this class.
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3.5.6 Mei Scheme
Besides the interpolation bounce back schemes discussed in the last two subsections, there is
another type of boundary schemes for arbitrarily shaped velocity boundaries. These schemes
are sometimes named fictitious equilibrium schemes. The method proposed by Mei et al. [85]
is implemented in SAM-Lattice and a representative of this group. The Mei scheme is based on
the work of [35, 84].

In the fictitious equilibrium schemes, the missing distribution functions are linearly interpo-
lated from the standard bounce back value and a fictitious equilibrium [85]:

fî(x f , t + ∆t) = (1 − χ) fi(x f , t) + χ f eq,∗
i (xw, t) − 2wiρ(x f , t)

ξi · uw

c2
s
. (3.53)

Again î is the counter direction of i in the lattice (ξ î = −ξi) and the last term on the right hand
side of Eq. (3.53) incorporates a potential boundary velocity uw. The fictitious equilibrium f eq,∗

i
is defined as:

f eq,∗
i (xw, t) = wiρ(x f , t)

{
1 +

(ξi · ub f )
c2

s
+

(ξi · u(x f , t))2

2c4
s

−
u2(x f , t)

2c2
s

}
. (3.54)

The interpolation parameter χ and the velocity ub f are chosen as a function of the distance to the
boundary qi for the lattice direction i, see Fig. 3.6. Like the interpolation schemes, the fictitious
equilibrium schemes do neither need body conformal grids to model curved boundaries.

ub f =


(
1 − 3

2qi

)
u(x f , t) + 3

2qi
uw qi ≥ 0.5

u(x f + ξ î∆t, t) qi < 0.5
(3.55)

χ =

 2qi−1
Ω+0.5 qi ≥ 0.5
2qi−1
Ω−2 qi < 0.5

(3.56)

Equation (3.55) shows that the velocity ub f is interpolated between the velocity at the fluid
node x f and the boundary velocity uw for qi ≥ 0.5. In the case qi < 0.5 the velocity at the next
neighbor node of x f in î direction is used. The interpolation parameter χ is defined piecewise
for qi, too. It can be determined by a Chapman-Enskog expansion [84]. The resulting χ is a
function of qi and the relaxation parameter Ω, given in Eq. (3.56).

As shown by [84, 85], this boundary treatment is second order accurate for arbitrarily shaped
boundaries.

3.5.7 Shear Boundaries
All boundary conditions discussed so far are of Dirichlet type, which means that values of
macroscopic quantities are specified on the boundary. In some cases the derivative of a quantity
must be set on a boundary. This is commonly known as Neumann boundary condition. An
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example of a Neumann condition is the specification of the wall shear stress at a boundary,
since the shear stress is related to the derivative of the velocity by:

τw = µ
∂ut

∂n
. (3.57)

The literature on shear stress boundary conditions in LBM is rather limited. Succi [116]
suggests to use a linear combination of bounce back (Eq. (3.45)) and specular reflection (Eq.
(3.47)), what is often called slip-reflection model. But in this approach there are no general
mathematical correlations between the coefficients of the linear combination and the wall shear
stress. This drawback limits the utilization strongly.

Other known schemes for Neumann conditions are hydrodynamic schemes based on the
inter- or extrapolation of the Dirichlet value on the boundary, like it is done in classical finite
difference methods, see, e.g., [34]. For the shear stress, this means that the velocity on the
boundary (Dirichlet value) is inter- or extrapolated from the bulk in a way to match the desired
shear stress and velocity derivative, respectively. With the velocity determined in this way, one
of the already introduced Dirichlet boundary conditions, like the Bouzidi, Yu or Mei scheme can
be applied to finally impose the boundary condition. This procedure was proposed by Izquierdo
and Fueyo [59] and will be presented in the following. In the remaining part of the thesis, this
boundary condition will be called shear bounce back scheme.

As said before, the first step in realizing the shear bounce back scheme is the determination
of the velocity at the wall to meet the desired velocity gradient. Since the wall shear stress
τw is related to the derivative of the wall tangential velocity ut in wall normal direction n (see
Eq. (3.57)) it is convenient to use here a rotated coordinate system in which the wall normal
is a basis vector, cf. Fig. 3.7. To determine the velocity at the wall, a Taylor expansion of the
tangential velocity at the points xI1 and xI2 is performed:

ut(xI1) = ut(xb + hn) = ut(xb) + h
∂ut

∂n
(xb) +

h2

2
∂2ut

∂n2 (xb) + O(h3) (3.58)

ut(xI2) = ut(xb + 2hn) = ut(xb) + 2h
∂ut

∂n
(xb) +

(2h)2

2
∂2ut

∂n2 (xb) + O(h3) . (3.59)

The point xb on the wall is the intersection point of the boundary and the lattice link in the
direction which is missing. The Taylor series are expanded up to second order, since LBM is
second order accurate. The distance in normal direction between xI1 , xI2 , and the wall xb is h
and 2h, respectively. The choice of h is somewhat arbitrary, but it is common to choose h = ∆x.
From these two expansions (Eqs. (3.58), (3.59)) an equation for ut(xb) can be derived, when the
terms of O(h3) are neglected:

ut(xb) =
4ut(xI1) − ut(xI2) − 2∆x ∂ut

∂n (xb)
3

. (3.60)

The same result is obtained if one fits a parabolic polynomial for ut(n) through the values at the
points xI1 and xI2 and uses the derivative ∂ut

∂n at the wall as third constraint. Hence, this proce-
dure will be called quadratic interpolation in the following. The remaining step for solving Eq.
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(3.60) is the calculation of ut(xI1) and ut(xI2). To achieve a consistent scheme, the interpolation
of these values should be second order accurate as well. Tölke and Krafczyk [125] and Geier
et al. [42] proposed compact second order accurate interpolation methods. The advantage of
these methods is that they work locally in one cell and are more accurate than bi-linear methods
since they incorporate the local gradients at nodes which are available from the non-equilibrium
part of the distribution functions. In SAM-Lattice a 3 dimensional extension of the compact in-
terpolation method of [125] is used for this task.

The last steps for the realization of the shear bounce back scheme are to compose the veloc-
ity and perform one of the Dirichlet boundary conditions of this section. The velocity at the wall
consists out of the tangential velocity (according to Eq. (3.60)), which is needed to impose the
desired shear, and the velocity in normal direction, which is set to zero to avoid a mass flux, i.e.,
to ensure the impermeability of the boundary. As Dirichlet boundary condition the Yu scheme
is used in the shear bounce back scheme in SAM-Lattice, because this scheme showed the best
numerical stability of the second order accurate methods in combination with the interpolation
procedure.

In contrast to the quadratic interpolation derived above, Izquierdo and Fueyo [59] use a
linear interpolation for ut(xb), which results from Eq. (3.58) for expansion up to first order:

ut(xb) = ut(xI1) − ∆x
∂ut

∂n
(xb) . (3.61)
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An advantage of the linear scheme is the reduced computational effort, especially in parallel,
distributed calculations. Disadvantageous is the reduced accuracy compared to Eq. (3.60).

Another way to impose shear boundary conditions known in literature is proposed by Chen
et al. [18]. But the scheme of [18] uses a volumetric approach of the Lattice Boltzmann Method.
In the following, the idea of [18] is adapted to create a shear boundary condition for the node
based finite difference Lattice Boltzmann scheme presented in this thesis. This boundary condi-
tion is called shear anti bounce back scheme.

The first step in realizing the shear anti bounce back scheme is again the interpolation of the
fluid velocity. But, in contrast to the shear bounce back, here the velocity is interpolated at a
normal distance of half a spacing from the wall (xI), see Fig. 3.8. For the velocity interpolation
at off lattice positions again the 3 dimensional extension of [125] is used, as it is done for the
shear bounce back scheme. The interpolated velocity uint at xI is decomposed into a wall normal
un

int and a wall tangential part ut
int. Next, the density at the wall ρw needs to be approximated.

This is done by an extrapolation from the fluid node in the missing lattice direction î, which
needs to be constructed by the boundary condition (in Fig. 3.8: x f ).

The distribution in the missing lattice direction î is a composition of different parts:

fî(xw, t) = fî(x f , t + ∆t) = f eq
î
+ f neq

î
+ f shear

î
. (3.62)

f eq
î

is the equilibrium distribution (Eq. (3.8)) in the missing lattice direction, build with the
tangential part of the interpolated velocity ut

int and the extrapolated density ρw. This assumes
that there is no change of these hydrodynamic quantities in the vicinity of the wall. The non-
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equilibrium part of the distribution function is achieved by the anti-bounce back rule [45]:

f neq
î
= − f neq

i = f eq
i − fi(x f , t) . (3.63)

The non-equilibrium part of the distribution is set to the negative value of the incoming non-
equilibrium distribution at the wall, therefore, it is called anti bounce back. f eq

i is here the
equilibrium distribution in the incoming direction, again build with ut

int and ρw. Relation (3.63)
can only be exact if the boundary is half way between fluid and wall node, i.e., qi = 0.5. The
remaining part f shear

î
, used to consider a tangential momentum difference, is neglected for the

following analysis, i.e., f shear
î
= 0, and will be defined later.

To evaluate the forces f on a boundary in LBM, the momentum exchange methods can be
used [44, 70, 86]. The momentum exchange method is based on Newton’s second law and
calculates the force by the change of the momentum per time step. If the momentum exchange
method is applied for a surface element of the boundary, which is represented by a wall node,
the resulting force on the surface element can be analyzed [18]:

f =
∆V
∆t

∑
i∈C

[
fî(xw, t) + fi(xw, t + ∆t)

]
ξ î . (3.64)

This treatment is in principle only valid for qi = 0.5, i.e., flat boundaries. For curved boundaries,
interpolation techniques for the momentum exchange methods have to be considered [44]. If C
is the set of all lattice links intersecting the boundary and ∆V represents the volume of the cell
surrounding the node, then: ∆V =

∣∣∣ξi · n
∣∣∣ A∆t. Inserting the Eqs. (3.62) and (3.63) in Eq. (3.64)

yields to:

f =
∣∣∣ξi · n

∣∣∣ A
∑
i∈C

[
f eq
î
+ f eq

i − fi(x f , t) + fi(xw, t + ∆t)
]
ξ î

σ =
f
A
=

∣∣∣ξi · n
∣∣∣∑

i∈C

[
f eq
î
+ f eq

i − fi(x f , t) + fi(x f , t)
]
ξ î

σ =
∣∣∣ξi · n

∣∣∣∑
i∈C

( f eq
î
+ f eq

i )ξ î

σ = n
∑
i∈C′

f eq
i ξi ξi . (3.65)

The set C′ in Eq. (3.65) consist of all i ∈ C and their counter directions î. Equation (3.65)
is the equilibrium part of the momentum flux tensor, cf. Eq. (3.20), and can be expressed by
hydrodynamic quantities [50]:

Π
eq
αβ =

∑
i

f eq
i ξi,αξi,β = ρuαuβ + pδαβ . (3.66)

Since the velocity ut
int, which was used to build the equilibrium, is tangential to the boundary,

Eq. (3.66) reduces to:
σ = np . (3.67)
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Thus, the resulting force on a surface element acts only in normal direction of the surface
element and is created by the fluid pressure. In general mass conservation is not guaranteed by
the above scheme. To balance the incoming and outgoing mass fluxes of the wall, Chen et al.
[18] introduced an mass flux correction, which is transferred to the node based approach here.
For every wall node, the difference between incoming and outgoing distributions (according to
Eq. (3.62)) is averaged per energy level:

δ f j =


∑
i∈C,
|ξi |=

√
j ξ

1


−1 

∑
i∈C,
|ξi |=

√
j ξ

f in
i −

∑
i∈C,
|ξi |=

√
j ξ

f out
î

 , j ∈ {1, 2} . (3.68)

The averaged mass correction per energy level is added to Eq. (3.62), where the parameter j is
chosen according to the energy level ( j = 1 ∀

∣∣∣ξi

∣∣∣ = ξ and j = 2 ∀
∣∣∣ξi

∣∣∣ = √2 ξ):

fî(x f , t + ∆t) = f eq
î
+ f neq

î
+ f shear

î
+ δ f j . (3.69)

The mass correction according to Eq. (3.68) ensures mass conservation, but introduces a change
of the force and pressure on the surface element, respectively. From a momentum exchange
performed with Eq. (3.69) the modified stress on the boundary element results in:

σ = n (p + δp) . (3.70)

Nevertheless, the modified stress or pressure, respectively, is still acting normal to the surface
element. According to [18] the pressure difference δp is caused by a non-zero normal velocity,
which arises from the mass correction.

The above derivation shows that for f shear
î

= 0, a frictionless surface is created. By f shear
î

the surface friction can be controlled. Chen et al. [18] proposed the following term to create
a specific wall shear stress τw, which is acting in the opposite direction of the interpolated
tangential fluid velocity ut

int:

f shear
î
=

τw

ρc2
s

∣∣∣ut
int

∣∣∣n · ξi

(
f eq
î
− f eq

i

)
. (3.71)

One can show that the desired friction is achieved by considering Eq. (3.71) in the momentum
exchange applied to a surface element [18].

The shear anti bounce back scheme is expected to be only first order accurate in space for
arbitrary flows, since this behavior was reported for the volumetric version of the scheme [77].
In contrast, the shear bounce back scheme should produce second order accurate solutions as
long as all ingredients of the scheme are second order accurate. But, in practice the shear anti
bounce back reveals better numerical stability, especially for high Reynolds number flows. The
numerical accuracy of the different schemes for shear boundary schemes will be investigated
numerically in Section 6.
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3.6 Initial Conditions
From a mathematical point of view the Lattice Boltzmann equation as well as the Navier-Stokes
equations are initial-boundary value problems. After the boundary treatment was discussed in
the last section, now possibilities to specify initial conditions for the distribution values are
presented.

3.6.1 Analytical Schemes
The easiest way to set initial conditions for fi is using the equilibrium distribution values (Eq.
(3.8)) build with initial values for density ρ0 and velocity u0.

To specify a non-equilibrium part of the distributions, the derivatives of the velocity field
are required. With this information the non-equilibrium part can be initialized by [46]:

f neq
i = −Ω ∆t wi ρ0

[
ξi ξi

c2
s

: ∇u − ∇ · u
]
. (3.72)

This procedure for f neq
i is not mandatory for steady or quasi-steady flows, since these flows are

independent of the initial conditions; see [46] for details.
If the derivatives are not known analytically, they can be approximated by numerical stencils

based on the initial values of u0, but this is no longer an analytical approach.

3.6.2 Iterative Schemes
The pressure field p0, which is directly related to ρ0, and the velocity field u0 must be compatible
in a way that the Navier-Stokes equations are fulfilled. If p0 or ρ0, respectively, are not known
analytically, they can be obtained for incompressible flows by solving a Poisson equation [46].
[15, 87] proposed schemes to solve the resulting Poisson equations in a LB like scheme. The
scheme of Mei et al. [87] is implemented in SAM-Lattice, but its usage is strongly limited due
to stability problems of the scheme itself. For this reason, the reader is referred to [87] for more
details.

3.7 Local Grid Refinement
The LBM techniques discussed so far work only on regular, i.e., rectangular and equidistant,
lattices. From numerical viewpoints it is desirable to use irregular grids. For instance, one
might concentrate the grid in some regions, e.g., where high gradients in the flow occur, or
reduce the grid density in other regions to save computational resources.

Different kinds of Lattice Boltzmann techniques for irregular grids have been developed
since the origins of the method. As we have seen at the beginning of this section, LBM is a
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special finite difference technique for solving the Boltzmann equation. From this point of view,
other discretization methods of finite difference, finite volume or finite element type can be used.
These methods work in general on irregular grids, but will also introduce higher computational
and algorithmic effort. Since these types of methods are not used in SAM-Lattice, the reader
is referred to [46] for more details. Another possibility to use irregular grids are the so called
interpolation methods. Here, the computational mesh and the underlying lattice, based on the
discrete velocity set, are decoupled. This means that the molecules are not flying from one node
to their next neighbors in one timestep. Instead, the molecules are flying in the direction of the
underlying lattice and end up at positions, which are not necessarily nodes of the computational
mesh. From the values of the distribution functions at these end positions, the values at the
computational nodes are interpolated. The interpolation methods are neither implemented in
SAM-Lattice and will not be further discussed here, see [46] for an overview.

The use of irregular grids is provided by a grid refinement technique in SAM-Lattice. Local
grid refinement was first proposed by Filippova and Hänel [35]. Details about the scheme
implemented in SAM-Lattice will be given in the following subsections.

3.7.1 General Concept
The computational effectiveness of LBM strongly relies on the use of regular grids. To establish
a scheme which enables the use of different grid resolutions while maintaining the efficiency,
Filippova and Hänel [35] proposed to embed patches or blocks of a refined regular grid into a
coarser regular grid. This basic idea has been advanced by different researchers [25, 31, 136].
The method used in SAM-Lattice is based on an octree grid, as proposed by [25, 37, 126]. Oc-
tree means that a regular coarse cell, called parent cell, is divided into eight regular fine cells,
called child cells, see Fig. 3.9. According to this definition, the ratio between two subsequent
grid levels is 2. The refinement of cells can be recursively continued until the desired refinement
level or the corresponding mesh size, respectively, is achieved. A cell with the largest spacing
∆x0 is named level 0 cell in the following. Hence a nth-level cell has a spacing of ∆xn = ∆x0/2n.
To allow an efficient implementation of this approach, we restrict ourselves to smoothed octrees,
what means that the level of neighboring cells can only differ by one, see ,e.g., [25]. Further-
more, a minimum width of three fine cells per grid level is required. This requirement is to
prevent an overlapping of the mesh areas of the multiple levels, which need special treatment.
The octree structure enables a hierarchical refinement of the computational domain and an effi-
cient computational handling through advanced data structures.

A simple grid layout including local refinement is shown in two dimensions in Fig. 3.10.
From an algorithmic point of view, the standard Lattice Boltzmann scheme can be applied on
every grid level. Nevertheless, some specialties must be met.

Firstly, some distribution values are missing at the boundary of a grid level to another grid
level, which is called interface. This boundary value problem is a bit different to the one at the
domain boundaries. In contrast to the domain boundaries, the information of the neighboring
level is available at the interfaces. As the hydrodynamic moments, i.e., density ρ, velocity u,
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Figure 3.9: Octree Refinement

Figure 3.10: Simple Grid Layout (2D)
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Figure 3.11: Interface Structure (2D)

and stress σ, do not depend on the grid level (neglecting the discretization error), this defines
the conditions for transition from one grid level to another.

Secondly, we have to ensure the temporal correctness of the scheme. This means that all
grid levels must advance synchronously, since LBM is a transient method. There are different
ways to determine the time steps on the refined levels. In SAM-Lattice we use the convective
scaling approach. Here, the speed of sound cs and thus the molecular velocity ξ are kept con-
stant in the complete computational domain [35]. From the definition of the molecular velocity
ξ = ∆xn/∆tn = const, we see directly that the ratio of the time steps on different levels is equal
to grid spacing ratio, or: ∆tn = ∆t0/2n. This implies that a level n + 1 must do two time steps,
while level n is doing one time step. The requirement of multiple time steps on finer levels per
one time step on the coarse level is called nested time stepping. Another possibility for the time
step determination is the diffusive scaling [100]. Here, the molecular velocity and the speed
of sound are doubled when the spacing is halved. The consequence is that a level n + 1 must
do four time steps while level n is doing one. The diffusive scaling causes substantial higher
computational costs compared to the convective scaling. Diffusive and convective scaling will
be examined in more detail in the next section, dealing with accuracy issues.

There are different concepts for the definition and handling of the interface between grid
levels known. These concepts can be subdivided into volumetric and node based approaches.
Volumetric approaches are proposed, e.g., in [19, 49, 102], and will not be explained further,
since they are not used in SAM-Lattice. In SAM-Lattice the node based approach is applied.
The implementation is mainly based on the work of [25, 37, 135, 136]. Figure 3.11 depicts
the interface for the highlighted area of Fig. 3.10 and will be used to schematically explain the
interface definition. As first proposed by [136], the interface is not based on a line, instead it
extends over one coarse cell, as it is highlighted in Fig. 3.11. In these interface cells, the parent
and the child cells are retained for the calculation. In non-interface cells, the parent cells are
not used during the calculation and thus removed after the refinement to save memory. For a
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Figure 3.12: Interface Structure (3D)

better visualization of the overlapping of the coarse and fine level, the grids of the two levels
are virtually decomposed in Fig. 3.11(b). In our node based LB approach, the calculation nodes
reside on the corners of the depicted cells. As we can see in Fig. 3.11, the nodes of parent cells
at the interface have counterparts on the fine level. This relationship is the key element of the
level coupling. The coarse interface nodes are those nodes of the parent interface cells which
are lacking neighbors on the coarse level and thus need a boundary condition. Analogous, the
fine interface nodes are the nodes of the child interface cells, lacking neighbors on the fine level
and having a counterpart on the coarse level. Through the overlapping interface, the distance
between coarse and fine interface nodes is one coarse cell width. The interface nodes have a
conventional node as counterpart on the neighboring level, which is called partner node. The
spatial distance between the interpolation of coarse and fine interface nodes shall reduce the
impact of the interpolations among each other. As said above, the boundary or grid transition
condition at the interface is given by the continuity of the hydrodynamic moments. The calcula-
tion procedure for the distribution values at the interface nodes is performed in a different way
for the SRT and the MRT model and will be introduced in the subsequent subsections. In Fig.
3.11(b) the coupling of the grid levels is indicated by arrows. The notation ” f → c” expresses
that here the information on the fine grid is used to calculate the distributions on the coarse grid,
and ”c→ f ” vice versa.

Beside the fine interface nodes, there are further nodes in the child interface cells missing
neighbors on the fine level. These hanging nodes need a boundary treatment as well. Since
they do not have a partner node on the coarse level, the hydrodynamic quantities or distribution
values, respectively, must be obtained by interpolation from the neighboring nodes on the fine
level. Yu et al. [136] proposed to use a symmetric, cubic polynomial for this interpolation pro-
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cedure, to avoid spatial asymmetry of the quantities. This interpolation process involves four
nodes along a line defined by the cell edge in 2D. If some interpolation partners are missing,
e.g., at domain boundaries, the cubic interpolation is replaced by a lower order interpolation or
extrapolation [25]. In SAM-Lattice all distribution values at the hanging nodes are interpolated
in this fashion. This approach produced better results compared to only interpolating the miss-
ing distribution values.

In 3D, the interface structure is a bit more complex, see Fig. 3.12, but easy to overview
with the knowledge of the 2D case. Again, the interface is an overlapping of the parent cell on
the coarse level and its child cells on the fine level. The coarse and fine interface nodes result
from their definition above and are handled the same way. Differences occur for the hanging
nodes. The hanging nodes on the edges of the coarse interface cells are called mid nodes and
are treated analog to the 2D case by a cubic interpolation along a line, which is defined by the
according cell edge. For the remaining hanging nodes at the center of the cell faces, named
center nodes, a bi-cubic interpolation is used [37]. The order of the interpolation is decreased
for an incomplete number of interpolation nodes, i.e., stencils, analog to 2D.

3.7.2 SRT Scaling

This subsection introduces the calculation procedure for the interface nodes, applied with the
SRT model, which is called scaling. The scaling procedure is performed after the advection and
before the collision step, according to [31]. As said above, at coarse interface nodes we need to
calculate the distribution values from the information at the fine partner node and vice versa for
fine interface nodes. The transition condition requires that the hydrodynamic quantities density
ρ, momentum ρu, and stress σ are equal on both levels, i.e., at the interface node and its partner
node. The starting point of the scaling procedure is the decomposition of the distribution in its
equilibrium and non-equilibrium part, cf. Eq. (3.20):

fi = f eq
i + f neq

i . (3.73)

Since the equilibrium distribution depends only on ρ and u, see Eq. (3.8), the equilibrium part is
equal for the nodes on both levels. (Remember that the convective scaling is applied; c indicates
values on the coarse grid and f on the fine grid):

f eq,c
i = f eq, f

i . (3.74)

For the non-equilibrium part things are different. Due to the discrete lattice effect in Eq. (3.21)
the non-equilibrium must be rescaled to retain the hydrodynamic stresses when changing the
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grid level. The transition condition yields for a component of the stress tensor:

σαβ = −
Ωcν

c2
s∆tc

q−1∑
i=0

ξi,αξi,β f neq,c
i = − Ω

f ν

c2
s∆t f

q−1∑
i=0

ξi,αξi,β f neq, f
i (3.75)

⇒ Ωcν

c2
s∆tc f neq,c

i =
Ω f ν

c2
s∆t f f neq, f

i ∀ i (3.76)

⇔ f neq,c
i =

Ω f∆tc

Ωc∆t f f neq, f
i =

2Ω f

Ωc f neq, f
i ∀ i (3.77)

⇔ f neq, f
i =

Ωc∆t f

Ω f∆tc f neq,c
i =

Ωc

2Ω f f neq,c
i ∀ i . (3.78)

For the last term in Eqs. (3.77) and (3.78), the ratio of the time steps between two subsequent
grid levels, resulting from the convective scaling, was considered.

By means of Eqs. (3.74) and (3.77) or (3.78) the distribution values at the coarse or fine inter-
face nodes are calculated from the values at their partner nodes. In SAM-Lattice all distribution
values at the interface nodes are constructed by this procedure from partner nodes.

3.7.3 MRT Scaling

The SRT scaling procedure can in principle be applied with the MRT model, too. This effects
that all non-equilibrium moments of the MRT are scaled with the same factor as the stresses.
But in general, one has more possibilities for the scaling procedure of the non-equilibrium mo-
ments, since the transition conditions hold only for the hydrodynamic moments ρ, u, and σ.
The remaining moments can be changed between the grid levels, e.g., to increase stability. For
this reason, we apply a different scaling operation in SAM-Lattice, when the MRT model is
used.

Starting point for the scaling operation is the moment vector mp = M f p (Eq. (3.33)) calcu-
lated at the partner node. The equality of ρ and ρu on both grid levels postulates:

mc
0 = m f

0 & mc
3 = m f

3 & mc
5 = m f

5 & mc
7 = m f

7 . (3.79)

From the relation between the hydrodynamic stresses σαβ and the moments mi in Eq. (A.3),
scaling relationships for the moments m1, m9, m11, m13, m14, m15 on the coarse and the fine level
can be established (see Eqs. (A.4) and (A.5)). The remaining moments m2, m4, m6, m8, m10, m12,
m16, m17, m18 at the interface node can be chosen arbitrarily, since they do not represent hydro-
dynamic moments. Positive experience concerning stability has been made by simply copying
the values of these moments from the partner node, i.e., no scaling of these moments. Another
possibility is to set these moments to 0, the scaling reduces in this case to the regularized ap-
proach of [74]. A different approach based on a direct scaling of the moments mp was proposed
by [37, 126].
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Once the moment vector mi at the interface node has been calculated, the distribution val-
ues are achieved by a re-transformation f i = M−1mi. This mathematical operation fixes all
distribution values at the interface node directly.

3.7.4 Nested Time Stepping
The convective as well as the diffusive scaling require nested time stepping, as explained above.
Figure 3.13 depicts the nested time stepping schematically for the convective scaling, i.e., the
time step is halved from level to level. To generate a valid set of distribution values at the inter-
face nodes, the scaling procedure presented in the last subsections is needed in every time step
of the according level. This means that a scaling coarse to fine is necessary for the nested time
steps, too. For example, the scaling for the fine interface nodes on level 1 must be performed at
time t0 + ∆t1, see Fig. 3.13. Since the information of the coarse partner nodes is only available
at time t0 and t0+∆t0, the hydrodynamic quantities or distribution values must be approximated
at time t0 + ∆t1.

Different temporal interpolation techniques were proposed for this purpose, e.g., by Crouse
[25]. An upwind interpolation is sufficient for stationary flows. Here the values at time t0 + ∆t0

are used for scaling of the fine interface nodes at t0 + ∆t1. At least a linear interpolation is
required for transient flows. The values of the coarse partner nodes at time t0 + ∆t1 are then
obtained as means of the values at time t0 and t0 + ∆t0. In addition, quadratic interpolation in
time is proposed in literature. According to [25], the quadratic time interpolation shows only
small improvements compared to the linear one. But it requires the saving of a third value of
the quantity to be interpolated in time. Due to these facts, a linear interpolation in time is used
for the nested time stepping in SAM-Lattice.

3.8 Accuracy and Stability
In the previous sections different issues concerning the accuracy and stability of the Lattice
Boltzmann Method have been addressed. In this section a more general, conclusive descrip-
tion of these topics will be provided, since accuracy and stability play an important role for
theoretical considerations and practical applications.

3.8.1 Accuracy Issues
The Lattice Boltzmann equation is derived by a second order accurate quadrature rule (Eq.
(3.12)) in combination with a coupling of the space and time step from the discrete Boltzmann
equation, which recovers the Navier-Stokes equations with second order accuracy in the Knud-
sen number ϵ. Thus, LBE results in a formally second order accurate scheme in space and time
for the compressible Navier-Stokes equations. The overall error of the scheme E contains the
truncation errors Et = O(∆t2) and Ex = O(∆x2) and an error in the Knudsen number Eϵ = O(ϵ2).
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Figure 3.13: Nested Time Stepping

The Knudsen number can be interpreted as ϵ = ∆x/L in the LBM context [50], where L is a
characteristic length of the flow, and hence the Knudsen error reduces to Eϵ = O(∆x2). Conse-
quently, the overall error is expressed by:

E = Et + Ex = O(∆t2) + O(∆x2). (3.80)

The Lattice Boltzmann Method is a compressible scheme as the density is not a constant
quantity and is proportional to the pressure, cf. Eq. (3.7). As introduced in this thesis, the LBM
is used for flows at small Mach numbers, i.e., Ma < 0.3, which are commonly regarded as
incompressible. Nevertheless, an additional modeling (compressibility) error EMa is introduced,
if an incompressible flow is modeled with LBM [46, 56, 74]. It can be shown [22, 74] that the
compressibility error is of the order EMa = O

(
∆t2
∆x2

)
. The overall error E of the scheme for

incompressible simulations results in:

E = Et + Ex + EMa = O(∆t2) + O(∆x2) + O
(
∆t2

∆x2

)
. (3.81)

From Eq. (3.81) we see that the compressibility error produces a coupling between the discrete
space and time steps ∆x and ∆t. To obtain a scheme that is second order accurate in space, EMa

must reduce to O(∆x2). This behavior can be achieved by choosing ∆t ∝ ∆x2, what is called
diffusive scaling. An effect of the diffusive scaling, which has already been shortly addressed,
is the change of the speed of sound cs in the lattice. In the diffusive scaling cs is doubled, when
∆x is halved. That means, the Mach number Ma is halved, too. The relaxation parameter Ω is
kept constant when the diffusive scaling is applied, since Ω ∝ ∆x2

∆t .
But, the diffusive scaling has an impact on the temporal accuracy as well. We consider the
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following: The spacing ∆x is halved between two grids and thus the error is quartered for a
second order accurate scheme. According to the diffusive scaling, ∆t must be divided by four,
when ∆x is divided by two. Thus, the scheme is only first order accurate in time for incompress-
ible flows, when using diffusive scaling, what is formally shown by [56, 63]. On the other hand
Holdych et al. [56] show that for a fixed grid spacing ∆x, LBM is second order accurate in time
for incompressible flows.

In the convective scaling, we use ∆t ∝ ∆x what yields to constant speed of sound cs on
different grids and thus identical Ma. Due to cs = const, the convective scaling is often called
acoustic scaling. The compressibility error in incompressible flows then reduces to EMa = O(1)
and is thus in general non-convergent [56]. Nevertheless, the overall error E will decrease
quadratically with ∆x until the compressibility error is getting dominant [56, 74].

The effects of convective scaling have consequences on the grid refinement technique pro-
posed in the previous section. As convective scaling is used between the grid levels, we have
to ensure that the second order convergence of the scheme is preserved. This can be achieved
by staying in the over relaxation region (Ω > 1) in all levels, as proposed by [35]. In the over
relaxation region, the compressibility error is not dominating [56] and a second order behavior
of the overall error occurs. This can be seen from the numerical results of [49, 71].

Besides the omnipresent truncation errors Et and Ex of the method and the compressibil-
ity error EMa, which is only present in incompressible flow simulations, further errors may be
added to the overall error E. Another error is introduced by insufficient boundary conditions
EBC. In Section 3.5, we classified boundary conditions as first and second order accurate bound-
ary conditions. In the notation used in this section this means EBC = O(∆x) for first order and
EBC = O(∆x2) for second order accurate conditions. In the case of first order boundary condi-
tions, the global overall error E will be O(∆x). However, some authors, e.g., [35, 57] argue that
locally seen the solution accuracy is only decreased to first order near the boundary. A reversing
of this statement is that a local quantity, which is some distance away from the boundary, can
still converge with second order accuracy in this case.

A further error EIC, generated by insufficient initial conditions, may be addressed shortly.
This error is only of importance for transient flows, since the solutions of steady flows are
independent of the initial conditions. However, for unsteady flows, inconsistent initial condi-
tions can create so called initial layers, which induce large errors EIC [15, 46]. Nevertheless, a
dependence of EIC in terms of ∆x and ∆t is not known.

3.8.2 Stability Issues
From a numerical point of view, the Lattice Boltzmann Method is an explicit finite difference
scheme for the computation of the distribution values fi [114]. As other explicit schemes, LBM
is not unconditionally stable. Sterling and Chen [114] showed by a von Neumann stability
analysis that SRT-LBM is getting unstable forΩ→ 2. From Eq. (2.37) we see that the caseΩ =
2 corresponds to zero viscosity and thus infinite Reynolds number. The instability manifests by
negative distribution values fi, which are physically meaningless since the values fi represent
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densities. Another result of [114] depicts that the stability of the scheme depends on the flow
velocity. Even for smallΩ instabilities occur, if the velocity is high in proportion to cs, i.e., if the
low Mach number assumption is violated. In this case, the nonlinear terms in the equilibrium
distribution (Eq. (3.8)) are getting dominant. The source of the instability is seen by Sterling
and Chen [114] in the missing H-theorem of the discrete LB model. To overcome this drawback,
a class of entropic Lattice Boltzmann methods has been developed, see, e.g., [6], which provide
a H-theorem to obtain higher numerical stability. Besides the entropic LBM, other SRT based
schemes have been developed to improve the stability of the method.

Li et al. [77] propose to modify the relaxation rate to ensure numerical stability, i.e., the
positivity of the distributions fi:

Ω̃ = min
i

(
Ω,

fi

fi − f eq
i

)
. (3.82)

This procedure is also known as positivity rule or fix-up technique [127]. Disadvantages of the
fix-up technique are that by using Ω̃, additional or numerical viscosity, respectively, is intro-
duced and that this scheme does not suppress another numerical artifact called spurious oscilla-
tions, which are in fact numerical waves [12]. The numerical viscosity of the fix-up technique
is especially crucial when a low dissipative method is needed, like in aero-acoustics or large
eddy simulations. Nevertheless, the fix-up rule is used in SAM-Lattice with the SRT model as
a salvation rule in turbulent calculations.

Brownlee et al. [12] propose to use an Ehrenfest step if distributions are getting negative.
In this technique, the distributions at a node are set to their equilibrium values if the collision
process would generate non positive distributions. Sending the distributions to equilibrium cor-
responds to a relaxation rate Ω = 1 and thus adds numerical viscosity. Further techniques based
on filtering operations have been proposed [13, 101], but have not yet been tested in SAM-
Lattice. The implementation and evaluation of such schemes is left for future work.

Stability analyses have been performed for the multiple relaxation time LBM, too [72, 101].
MRT-LBM also holds numerical instability for Ω → 2, but offers the possibility to choose
different relaxation rates for non-hydrodynamic moments, often called kinetic or ghost modes.
In this way the stability of the scheme can be dramatically improved [29, 79] without adding
numerical shear viscosity. Instead, additional dissipation is added to the non-hydrodynamic,
kinetic modes. A positive feature of MRT is that by adjusting the bulk viscosity, spurious os-
cillations can be damped [26, 101]. On the other hand, the additional dissipation of the kinetic
modes can be disadvantageous when dealing with aero-acoustic simulations [83], what shows
that, depending on the physics to be modeled, a compromise between stability and accuracy
must be made.

The considerations on stability made so far, do not include features like boundary conditions
and grid refinement. Imperfect boundary conditions may not only reduce the accuracy, but also
give rise to instabilities. For instance, [84] investigate numerically the stability of interpolation
based bounce back schemes, as a function of Ω and the boundary position q. In general, bound-
ary conditions reduce the stability of the scheme, since they introduce additional disturbances.
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But, a universal relationship between boundary treatment and stability can hardly be made, be-
cause it depends on different parameters like flow geometry and flow conditions.

Similar effects can be observed for grid refinement. The transition from a grid level to an-
other one introduces disturbances, which promote instabilities. Besides the author’s experience
of this mechanism, [101] report similar observations. Different numerical tests performed by
the author revealed that the multi-level MRT scheme in SAM-Lattice is stable, as long as the
relaxation parameter in the coarsest level is restricted to Ω0 < 1.995. This value should be seen
as a guide value, not as a hard limit, since the exact stability limit is again depending on the
flow configuration and flow conditions. As the multi-level SRT scheme is less stable than the
MRT version, no special investigations have been made for SRT. Lagrava et al. [71] suggest
to use a filtering operation for the scaling operation of the coarse interface nodes and tested
this procedure in 2D. A box filter is used for filtering the non-equilibrium part on the fine level
before scaling to the coarse level. This procedure has been implemented and tested by the au-
thor. Nevertheless, it did not improve stability in 3D remarkably. Promising results regarding
the stability on refined grids have been published very recently by Touil et al. [128]. They use
a similar filtering operation for mapping from fine to coarse in combination with a selective
filtering in the entire domain, as proposed by [101]. Due to the novelty of this paper, it has not
yet been tested. This will be done in future work.



CHAPTER 4

Large Eddy Simulation for Lattice Boltzmann Methods

Most flows of technical interest are of turbulent nature. To accurately calculate turbulent flows
with the LBM schemes introduced so far, all structures of the flow need to be resolved spatially
and temporally. In the context of turbulent simulations this is called direct numerical simulation
(DNS). The big drawback of DNS is its tremendous computational demand, due to the high
resolution. It can be shown that for homogeneous and isotropic turbulent flows, which are
considered as the simplest turbulent flows, the computational demand is of O(Re3) [104]. For
typical technical flows, where Reynolds numbers Re ∼ 105 − 108 are not uncommon, a DNS
requires computational resources that are not available by today’s super computers and will
not be available in foreseeable future. Direct numerical simulation is thus restricted to basic
research for simple flows at low Reynolds numbers.

Different techniques and models have been developed to approximate turbulent simulations
at lower computational costs, see, e.g., [34, 104] for an overview. One such technique is the
large eddy simulation (LES). In this chapter a consistent and complete LES module for LBM is
proposed, which is applied in SAM-Lattice.

4.1 Principles of Large Eddy Simulation
The main idea of LES is the scale separation of the flow, i.e., the separation into large and small
scales. The large scale structures, i.e., large eddies, are then computed directly, whereas the
small scale structures, that would need a high spatial and temporal resolution, are considered
by a model. Figure 4.1 depicts this schematically. On the left hand side (Fig. 4.1(a)) the sepa-
ration in physical space is shown. The separation process depends on the cutoff length, which
is commonly associated to the grid spacing ∆x, and thus the small scales are often referred to

53



54 Principles of Large Eddy Simulation
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Figure 4.1: Scale Separation (based on [104])

as subgrid scales. Figure 4.1(b) shows the scale separation in Fourier space, by means of wave
number κ and turbulent kinetic energy E(κ). Here we see that the large scales with wave num-
bers κ < κc are calculated, i.e. resolved, and the remaining part, which contains less energy, is
modeled. The cutoff wave number κc is related to the cutoff length in physical space, see [104]
for details. The LES procedure can be physically justified by different facts [39]: The large
eddies contain most of the turbulent energy and they depend strongly on the flow configuration.
Furthermore, large eddies are characterized to be inhomogeneous, anisotropic, long-lasting and
diffusive. All these properties make the large eddies hard to model. The small eddies, in con-
trary, contain only a minor part of the turbulent kinetic energy, are more homogeneous and
isotropic, relatively short-dated and dissipative, what makes a modeling easier. To get accurate,
reliable results, it is commonly recommended to choose the cutoff length in a way to resolve at
least 80% of the turbulent kinetic energy [38, 94]. By this technique, the computational demand
for calculating turbulent flows is dramatically reduced.

Mathematically, the scale separation is realized by a filtering operation, which is represented
as a convolution product here; for other definitions see [104]. In physical space this operation
correlates to a high-pass filter since the small scales are to be removed. This corresponds to a
low-pass filter in Fourier space for removing the high frequencies or wave numbers. In what
follows, only the physical space is considered. A quantity ϕ(x, t) is decomposed into a resolved
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part ϕ(x, t) and an unresolved part ϕ′(x, t).

ϕ(x, t) = ϕ(x, t) + ϕ′(x, t) (4.1)

The resolved or filtered part is defined by the convolution product [39]:

ϕ(x, t) =
∫ ∞

−∞
G(x − x′)ϕ(x′, t)dx′ = G ∗ ϕ . (4.2)

The convolution kernel G is a characteristic for the applied filter, which is linked to the cutoff
length in physical space ∆c. For convenience, the right hand side of Eq. (4.2) introduces a
short notation of the filtering operation. The filter kernel G in R3 is obtained by tensorizing
mono-dimensional kernels [104]:

G(x − x′) =
3∏

i=0

Gi(xi − x′i) . (4.3)

Common choices for the mono-dimensional kernel Gi are the box filter, the Gaussian filter or
the Fourier cutoff filer. The box filter is defined by (see [39, 104] for the remaining ones):

Gi(xi − x′i) =

 1
∆c

i f
∣∣∣xi − x′i

∣∣∣ ≤ ∆c
2

0 else.
(4.4)

The box filter is visualized in Fig. 4.2 for ∆c = 1. We see that only values in the interval
(xi − x′i) ± ∆c/2 are not equal 0 and are thus incorporated in the averaging process. Commonly
the filter width or cutoff length ∆c is identified with the grid spacing ∆x [39].

The next step to obtain a large eddy scheme is the filtering of the governing analytical
equations, e.g., the Boltzmann equation or the Navier-Stokes equations. Through the filtering
process some quantities in the equations occur, which are not directly computable and thus need
modeling by a so called subgrid scale model. This will be shown in the next subsection. Before,
some considerations on the effective filter of the numerical scheme are in order.

The filtering process introduced so far is applied to the analytical equations and thus often
called analytical filter. Since our aim is to solve the filtered equations with a numerical method
further effects occur, which can be related to a filtering operation [41]. Firstly, the discrete com-
putational grid acts as a filter as well. As a consequence, no scales smaller than the grid spacing
can be resolved, what is a reason for the common choice ∆c = ∆x. In the frequency domain
this restriction from the grid leads to a maximum resolvable frequency, which is given by the
Nyquist-Shannon theorem. Secondly, the errors introduced by the numerical approximation of
derivatives can be interpreted as a numerical filter applied to the exact solution. Thirdly, the
modeling errors introduced by some subgrid scale model can also be interpreted as a numerical
filter. All these filtering operations combined lead to the effective filter of the numerical solu-
tion. Since the determination of the effective filter and the associated effective cutoff length is
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Figure 4.2: Box Filter (∆c = 1)

mathematically a very difficult problem, usually only the cutoff length ∆c = ∆x of the analytical
filter is considered in practice. The other sources remain disregarded, see [104] for more details.

The large eddy approach has some demands on the numerical method used for solving the
filtered equations. On the one hand, the numerical method must be transient due to the intrinsic
time dependence of turbulence. On the other hand, the numerical scheme must be low dissipa-
tive, as numerical dissipation tends to remove energy from the highest resolved wave numbers
[34, 92]. LBM fulfills both criteria, it is a time dependent scheme and known to be low dissipa-
tive, as shown, e.g., by Marié et al. [83]. So, at a first glance the Lattice Boltzmann Method is
well suited for large eddy simulation.

4.2 Application to the Lattice Boltzmann Method

Hou et al. [57] proposed first the use of a large eddy model within the Lattice Boltzmann Method.
They applied the filtering operation of Eq. (4.2) to the discrete velocity Boltzmann equation (Eq.
(3.9)) to obtain a LES scheme. The derivation of LES-LBM presented in the following is mainly
based on the subsequent, more consistent work of [81, 105].



Large Eddy Simulation for Lattice Boltzmann Methods 57

4.2.1 Filtered Lattice Boltzmann Equation
By applying the filtering operation of Eq. (4.2) to the Boltzmann equation (Eq. (2.11)) the
filtered Boltzmann equation is obtained (note: f = G ∗ f ).

∂ f
∂t
+ ξ · ∂ f

∂x
= Ω( f ) (4.5)

For simplicity, the force term of the Boltzmann equation has been omitted in Eq. (4.5). The term
on the right hand side Ω( f ) expresses the filtering operation applied to an arbitrarily collision
operator. For convenience the BGK or SRT model, respectively, is used afterwards. Filtering
the BGK model (Eq. (2.19)) results in:

Ω( f ) = G ∗
[
−1
τ

( f − f eq)
]
= −1
τ

( f − f eq) . (4.6)

The problem in evaluatingΩ( f ) is that for the calculation of f eq (Eq. (2.15)) the unfiltered quan-
tities ρ = ρ+ρ′ and u = u+u′ are needed. In general, these quantities are not computable, since
the unresolved parts ρ′ and u′ are unknown. As proposed by [57] the filtered equilibrium dis-
tribution f eq can be replaced by the equilibrium distribution build with the filtered macroscopic
values f eq(ρ, u) and a correction term R.

Ω( f ) = Ω( f ) + R = −1
τ

[
f − f eq(ρ,u)

]
+ R (4.7)

R =
1
τ

[
f eq − f eq(ρ, u)

]
The correction term is necessary due to the lack of commutativity of the filtering operator and
the nonlinearity in f eq(ρ,u). Missing commutativity is shown by, e.g., uv , u v, see [39, 41,
104] for further mathematical properties of the filtering operator. The filtered macroscopic
quantities as ρ,u are build according to their definition in Eqs. (2.4) et seqq., but with the
filtered distribution values f instead of f . From a physical point of view, the correction term R
includes unresolved subgrid quantities and thus has to be obtained by a model.

Finally, the filtered Boltzmann-BGK equation reads as:

∂ f
∂t
+ ξ · ∂ f

∂x
= −1
τ

[
f − f eq(ρ, u)

]
+ R . (4.8)

The discrete filtered Lattice Boltzmann equation is derived from Eq. (4.8) by first discretiz-
ing in velocity space, as shown in Subsection 3.1.1, and a subsequent discretization in space
and time, as shown in Subsection 3.1.2, what yields to Eq. (4.9). This discretization process is
shown completely in [81].

f i(x + ξi∆t, t + ∆t) = f i(x, t) + Ω
[
f eq
i

(
ρ(x, t),u(x, t)

) − f i(x, t)
]
+ Ri (4.9)
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Compared to the standard, unfiltered Lattice Boltzmann equation (Eq. (3.16)) the filtered ver-
sion in Eq. (4.9) contains additionally the subgrid terms Ri. The discrete equilibrium distribu-
tion f eq

i is identical to Eq. (3.8). But, it is build, as in the continuous filtered case, with ρ and
u. For the treatment of the subgrid terms Ri different ways are known. In SAM-Lattice, we use
the eddy viscosity assumption, which is also called Boussinesq assumption, for modeling of
these subgrid terms. This modeling approach is described by Sagaut [104] with the following
hypothesis:

“The energy transfer mechanism from the resolved to the subgrid scales is analo-
gous to the molecular mechanisms represented by the diffusion term, in which the
viscosity appears."

In conclusion to this, the transfer of turbulent energy to subgrid scales is mathematically mod-
eled in the same way as momentum transfer, i.e., the kinematic viscosity ν in the governing
equations is replaced by an effective kinematic viscosity νe f f . Besides the molecular viscosity
ν, the effective viscosity contains a turbulent contribution, the eddy viscosity νt.

Hou et al. [57] applied the eddy viscosity assumption to LBE by simply introducing the
effective viscosity νe f f in the relaxation parameter τ. They pointed out that the filtered Navier-
Stokes equation, also based on the eddy viscosity assumption, can be derived from this model.
Recently, [81] proofed this formally by a Chapman-Enskog expansion for the continuous, fil-
tered Boltzmann-BGK equation in the incompressible limit. Under these assumptions, the cor-
rection term R can be incorporated through an effective relaxation parameter in the BGK model:
τe f f = τ + τt.

With the eddy viscosity assumption the discrete filtered LBE results in:

f i(x + ξi∆t, t + ∆t) = f i(x, t) + Ωe f f

[
f eq
i

(
ρ(x, t),u(x, t)

) − f i(x, t)
]

(4.10)

Ωe f f =
c2

s∆t
ν + νt + 0.5c2

s∆t
. (4.11)

The effective relaxation parameter Ωe f f includes the eddy viscosity contribution νt, which must
be determined by a model. Such subgrid scale models are subject of the next subsection.

Large eddy schemes based on the eddy viscosity approach can be easily implemented in a
similar way for the MRT collision operator, as proposed by [67]. The outcome of this procedure
is that the relaxation rate Ω for the moments related to the momentum fluxes (see Eq. (3.35)) is
replaced by Eq. (4.11).

For the sake of completeness, a different way to represent the subgrid terms Ri, which is not
based on the eddy viscosity approach will be mentioned here. The basic idea of the Approxi-
mate Deconvolution Method (ADM) [115] is to calculate or at least approximate the unfiltered
quantities by inverting the filtering operation [104]. By means of the unfiltered quantities den-
sity and velocity, which are received this way, the terms Ri can be determined. Recently, ADM
has been adopted to LBM, for further details see [80, 105].
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4.2.2 Subgrid Scale Models
The remaining element in the large eddy scheme is the subgrid model used to evaluate the eddy
viscosity νt, which is needed for the effective relaxation parameter in Eq. (4.11). As already
said, the subgrid model accounts for the energy transfer from large resolved scales to subgrid
scales. The most popular subgrid scale model, which is used in SAM-Lattice as well, is the
Smagorinsky model [113]. In the Smagorinsky model the eddy viscosity is calculated by:

νt = (Cs∆c)2
∣∣∣∣S∣∣∣∣ = (Cs∆x)2

∣∣∣∣S∣∣∣∣ . (4.12)

The eddy viscosity is depending on the dimensionless Smagorinsky constant Cs, the cutoff
length of the filter ∆c, which is set equal to the grid spacing ∆x, and the norm of the resolved
strain rate tensor

∣∣∣∣S∣∣∣∣. The Smagorinsky constant is commonly chosen between 0.1−0.2, whereas
it can be theoretically shown that Cs ∼ 0.18 for homogeneous isotropic turbulence [41]. In prac-
tice, Cs is used as a calibration parameter of the model.

For the solution of Eq. (4.12), the norm of the resolved strain rate tensor needs to be calcu-
lated. The definition of S and the applied norm are:

S αβ =
1
2

(
∂uα
∂xβ
+
∂uβ
∂xα

)
(4.13)∣∣∣∣S∣∣∣∣ = √

2S αβS αβ . (4.14)

The strain tensor S can be calculated from a finite difference stencil, or directly from the values
of the distribution function f i, what is second order accurate as shown by [68]. To realize this
we use the stress-strain relationship for incompressible flows:

σ = 2µe f f S = 2ρνe f f S . (4.15)

Calculation of the filtered stress tensor σ from the distribution function is performed with help
of Eq. (3.21). For convenience some short notation is introduced:

Π
neq
discr. B

q−1∑
i=0

ξi ξi

[
fi − f eq

i (ρ, u)
]

(4.16)

⇒ σ = −
Ωe f f νe f f

c2
s∆t

Π
neq
discr. . (4.17)

From Eqs. (4.15) and (4.17) a relation for the strain rate S in dependence on the distribution
values f i is achieved:

S = −
Ωe f f

2ρc2
s∆t
Π

neq
discr. . (4.18)
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By inserting this in the Smagorinsky model we obtain (please note the difference between the
Smagorinsky constant Cs and the lattice speed of sound cs):

νt = (Cs∆x)2 Ωe f f

2ρc2
s∆t

∣∣∣Πneq
discr.

∣∣∣ . (4.19)

If we bear in mind that the effective relaxation rate depends on νt itself (Eq. (4.11)), Eq. (4.19)
ends up in a quadratic equation for νt, which has only one physical meaningful, i.e., positive
solution:

νt =

√(
ν + 1

2c2
s∆t

)2
+ 2
ρ
(Cs∆x)2

∣∣∣Πneq
discr.

∣∣∣ − (
ν + 1

2c2
s∆t

)
2

. (4.20)

Using this equation, νt can be calculated with the Smagorinsky model locally at every node.
This has a superior computational performance compared to a finite difference rule and is an-
other advantage of LBM in the LES context.

Since Eq. (4.12) is just a model, a critical discussion of the limits is in order. As the depen-
dencies show, the Smagorinsky model is based on the resolved scales, more precisely on the
gradient of the resolved velocity field. So, νt will always be greater zero if a spatial gradient is
present in the flow, even in laminar flows [94, 104]. The Smagorinsky model can thus not calcu-
late laminar or transitional flows and should only be applied for fully turbulent flows. Another
drawback is its too dissipative behavior near walls in wall bounded flows, where the turbulence
is neither homogeneous nor isotropic [76]. To overcome this deficiency, the Smagorinsky con-
stant Cs is multiplied with a damping function according to van Driest [34, 104]:

CvD
s = Cs

[
1 − exp(−y+/A+)

]2 A+ = 25 (4.21)

y+ =
yuτ
ν

(4.22)

uτ =
√
τw

ρ
. (4.23)

The distance to a wall is measured by the dimensionless wall distance y+, which depends on
the distance to the wall y, the friction velocity uτ and the kinematic viscosity ν. The friction
velocity itself is related to the wall shear stress τw. Cs is reduced exponentially with y+ when
reaching the wall. By using CvD

s as constant in the Smagorinsky model (Eq. (4.12)) the near
wall behavior is improved. Furthermore, the eddy viscosity should reduce with νt ∼ y+3 for
decreasing distance to the wall y → 0 [34, 104]. To reproduce this behavior the van-Driest
damping function can be slightly modified [104]:

CvD∗
s = Cs

[
1 − exp(−y+/A+)3

]1/2
A+ = 25 . (4.24)

Besides the above introduced Smagorinsky model, different subgrid scale models have been
proposed in the LBM context. Dong et al. [30] suggested the use of an inertial-range (IR)
consistent Smagorinsky model in LBM. This model is very similar to the standard Smagorinsky
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model, apart from the fact that a different effective viscosity definition is used in [30]. In contrast
to the standard Smagorinsky model (νe f f = ν+νt), in the IR Smagorinsky model νe f f =

√
ν2 + ν2

t
is used, where νt was determined in [30] by Eq. (4.12) with Cs = 0.18. Premnath et al. [96]
adopted the dynamic Smagorinsky model into LBM. In the dynamic Smagorinsky model, Eq.
(4.12) is still applied, but the constant Cs = Cs(x, t) is space and time depending. Cs(x, t)
is calculated by the Germano-Lilly procedure, for details see [104]. Due to this procedure,
the dynamic model is feasible for the calculation of transitional flows, since the constant Cs

vanishes in laminar flow. Furthermore, this model produces the desired y+3 decline in the near
wall region [34]. A more recently developed subgrid scale model with dynamic properties is the
shear improved Smagorinsky model proposed by [76] and used in LBM by [128]. This model is
also designed to reproduce transitional and near wall flows correctly, but is computational less
demanding. The implementation of a dynamic model into SAM-Lattice will be part of future
work.

4.3 Boundary Conditions for Large Eddy Simulation
The treatment of the boundary conditions in large eddy simulation needs some additional con-
siderations. First of all, the interaction between the filter and boundary conditions is addressed.
The isotropic filtering operation defined by Eq. (4.2) is strictly seen only applicable to un-
bounded domains and was used to present the principles of LES. For bounded domains, the
filtering process introduces additional commutation errors arising from the interaction with the
boundary conditions; see [104] for a detailed presentation of this topic. In the so called classic
approach, which is adopted here, these additional errors are neglected and thus the filtered equa-
tions on bounded domains yield the ones presented in the last section (e.g. Eq. (4.10)). The
interested reader is again referred to Sagaut [104] for a detailed motivation of this approach and
a treatment of the additional commutation errors, if these are not neglected.

In the course of this section, methods for the creation of suitable boundary conditions in
LES-LBM will be developed. Since there is in general no special treatment for outlet bound-
aries in LES, this boundary type can be handled with the schemes of Section 3.5 and will not
be explicated any further here.

4.3.1 Wall Boundary Conditions
For a better understanding of the demands on wall conditions in LES, the structure of turbulent
boundary layers will be shortly introduced in the case of canonical boundary layers. The main
characteristics of canonical turbulent boundary layers are the absence of a pressure gradient in
streamwise direction, the two-dimensionality of the boundary layer in the mean, fully developed
turbulence, and that there is no wall curvature or surface roughness. The line plot in Fig. 4.3
shows the mean velocity profile as a result of an accurate DNS calculation of turbulent channel
flow [58] in terms of the dimensionless wall distance y+ (Eq. (4.22)) and a reduced mean
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streamwise velocity:

u+ =
⟨u⟩
uτ
. (4.25)

Additionally, Fig. 4.4 presents the development of different stress parts in the boundary layer
versus y+ (calculated from the data of [58]). Besides the viscous stress τν = µd⟨u⟩/dy, the
so called Reynolds stress τR = −ρu′v′ is shown, where u′ and v′ are the turbulent velocity
fluctuations in x and y direction, respectively. In this context, the mean velocity ⟨u⟩ and the
fluctuations, e.g., u′, are to be understood as a Reynolds decomposition. They should not be
confused with the decomposition in the context of the filtering operation (Eq. (4.1)):

⟨u(x)⟩ = 1
T

∫ t+T

t
u(x, t′)dt′ (4.26)

u′(x, t) = u(x, t) − ⟨u(x)⟩ . (4.27)

More details on Reynolds decomposition can be found in Pope [94].
The Reynolds stress terms actually stem from the decomposition of the convective terms in

the Navier-Stokes equations. Strictly seen, they are momentum terms, not stresses. Since these
terms transfer momentum of the fluctuations and are accountable for the increased flow losses,
they are interpreted analog to the viscous stresses, which transfer momentum at molecular level.
The sum of these both stresses is depicted by τtotal, all stresses are normalized by means of the
wall shear stress τw (Eq. (3.57)).

On the basis of Figs. 4.3 and 4.4 the velocity profile is subdivided into different regions
and layers. The inner region, in which viscosity effects are of importance, contains three layers:

• The viscous layer which is commonly defined by y+ ≤ 5. In the viscous layer the viscous
shear stress is dominant and the Reynolds stresses can be neglected, see Fig. 4.4. In
combination with the assumption that τtotal is constant, the following relation for the mean
flow velocity can be deduced [94]:

u+ = y+ . (4.28)

Equation (4.28) is called lin law in the remaining part of this thesis.

• The buffer layer: 5 < y+ ≤ 30. In the buffer layer turbulent eddies are damped quickly.
Here, viscous and Reynolds stress contribute to the resulting shear stress. According to
Sagaut [104] the mean flow velocity can be described in the buffer layer by:

u+ = A · ln(y+) + B . (4.29)

The constants can be chosen to A = 5.0 and B = −3.05 [104]. Equation (4.29) is called
buffer law in the following.

• The logarithmic layer is defined by 30 < y+ ≤ y+max. This third layer extends to an upper
bound y+max which depends mainly on the Reynolds number [94]. Here the total stress τtotal
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Figure 4.3: Regions of a Turbulent Boundary Layer

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

τ

τ
w

y+

τtotal

τν

τR

Figure 4.4: Stress Contributions in a Turbulent Boundary Layer



64 Boundary Conditions for Large Eddy Simulation

consists basically of the Reynolds stress. At high Reynolds numbers, the length scale of
turbulent structures is increasing linearly with the distance to the wall in the logarithmic
layer [94]. Neglecting the viscous stress, a correlation for this layer can be achieved from
the boundary layer equations, e.g., for channel flows [94]:

u+ =
1
κ

ln(y+) + B . (4.30)

The constant κ is referred to as von Karman constant, which is usually taken to 0.41, and
the other constant B is typically chosen to ∼ 5.5. Equation (4.30) is commonly named
log law.

Besides the inner region, the boundary layer contains the outer region, in which viscosity effects
are negligible. At large Reynolds numbers, the inner and outer region can overlap, so parts of
the logarithmic layer are element of the inner and outer region. Adjacent to the logarithmic
layer, the wake layer follows, which belongs to the outer region. With these details about the
boundary layer structure certain requirements for the boundary conditions in LES calculations
can be deduced.

Two general concepts for wall boundaries can be subdivided: The wall resolved approach
(WR), which performs a LES in the near wall region, and the wall modeled (WM) approach,
which applies some kind of model. We will start with the WR approach.

As explained at the beginning of this chapter, LES aims at resolving the large eddies and thus
calculates the main part (> 80%) of the turbulent kinetic energy directly. Since the turbulent
length scale is rapidly decreasing when approaching the wall, cf. statements above, the grid
size must decrease in a similar manner to resolve the large scales of near wall turbulence in
the WR approach. Furthermore, the accurate resolution of the velocity gradient near the wall
requires that the first grid point is within the viscous layer. From these considerations and
numerical practice, it is commonly accepted that the dimensionless wall distance of the first
grid point is at y+ ∼ 1 [39, 104]. Conventional CFD methods, which perform LES on non-
uniform grids, refine the grid only in wall normal direction and use low aspect ratio grids in the
near wall region to save computational requirements. Commonly, the aspect ratios are ∼ 100 in
streamwise and ∼ 20 in spanwise direction. Since the Lattice Boltzmann Method uses equally
spaced grids, this treatment is not applicable here and a substantial higher amount of cells is
generated. Estimations reveal that the computational demand for resolving the inner region of
the boundary layer is of O(Re1.8), whereas for the outer region it is only O(Re0.4) [39, 104].
These facts make the wall resolved approach computationally expensive and limit its usage
nowadays to Reynolds numbers of Re ∼ 105 [93].

The implementation of the wall resolved approach within the Lattice Boltzmann Method is
quite elementary, all Dirichlet conditions introduced in Section 3.5 can be applied. This is due
to the fact that the turbulent fluctuations vanish at the wall and that the wall velocity is becoming
deterministic. In the WR approach, the subgrid model must be appropriate for describing the
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structure of near wall turbulence. For instance, the eddy viscosity should reduce with y+3, what
is realized by using a van-Driest damping function in combination with the Smagorinsky model
in SAM-Lattice. Alternatively, this could be done by a dynamic subgrid scale model, as stated
above.

The high resolution demand of the inner boundary layer region limits the application of LES
for high Reynolds number flows, as explained above. An engineering workaround to bypass
this demand is the wall modeling strategy. In WM the first grid point is typically placed in the
logarithmic layer and so a huge amount of grid points in the inner region can be saved. Since
there is no information calculated in this area, it must be provided by a model now. This model
must provide different contributions: Firstly, the distance between the wall and the first node
located in the logarithmic layer is larger than the turbulent length scale in this region. So, the
influence of the non resolved turbulent structure on the flow must be considered. Furthermore,
a critical discussion is needed about the validity and reliability of the LES approach in this case.
Secondly, the sharp velocity gradient near the wall can not directly be determined with the first
node located that far from the wall. Thus, the wall model must give a relation between local
flow quantities and the wall shear stress, i.e., the velocity gradient. An accurate wall shear stress
is important to reproduce a correct force balance of the flow.

Let us start, for convenience, with the second point. As it was stated during the definition of
the different layers of the inner region, a functional relation between u+ and y+ can be achieved
for canonical boundary layers. Since both quantities depend on ⟨τw⟩, this relation provides
the desired correlation ⟨τw⟩ = F (⟨u⟩, y, ...), which is called wall function. The usage of wall
functions requires two additional necessities. Due to the definition used here, the wall function
is a correlation between the time averaged dimensionless velocity ⟨u+⟩ and the time averaged
dimensionless wall distance ⟨y+⟩. Both quantities depend on the time averaged wall shear stress.
Within the LES context, we need an instantaneous correlation between u+ and y+. As proposed
by Werner and Wengle [129] the wall function is assumed to hold instantaneous, so ⟨u⟩ and ⟨τw⟩
are replaced by u and τw in the according wall laws. Moreover, the wall function only returns
the absolute value of the wall shear stress. Hence, the direction of the stress vector needs to be
specified. Here, [129] suggested an in-phase correlation between the present tangential velocity
and the wall shear stress:

τw =
ut

|ut|
τw . (4.31)

For complex flows or geometries, respectively, it is not always possible to place the first
node during mesh creation a priory in the logarithmic layer, especially when equally spaced
grids are used. To ensure a valid behavior of the wall function in cases when the first node is
located in the viscous or buffer layer, a piecewise definition of the wall function is commonly
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used. From Eqs. (4.28) to (4.30) follows:

u+ =


y+ y+ ≤ 5
5ln(y+) − 3.05 5 < y+ ≤ 28.178
1
κ
ln(y+) + 5.5 y+ > 28.178 .

(4.32)

Figure 4.5 shows a comparison between the wall function of Eq. (4.32) and DNS data. A good
agreement between the approximations in the different layers and the DNS data is observed,
whereas the deviation in the wake increases. In contrast to the limiting values in the definition
of the layers of the inner region (Fig. 4.3), in Eq. (4.32) the intersection points of the different
curves are used as limits to avoid an noncontinuous curve. Nevertheless, the resulting curve
contains kinks at the intersection points, due to the different derivatives of the pieces. Instead
of the three layer approach of Eq. (4.32), one often finds a two layer approach, which only
contains lin law and log law. The switch between these two laws is at the intersection point, cf.
Fig. 4.5. The two layer approach is a further simplification, but is disadvantageous if nodes are
located in the buffer layer.

The use of Eq. (4.32) entails some difficulties and limitations for arbitrary flows. From
the wall function Eq. (4.32), an implicit equation for τw is recovered, which needs an iterative
solution procedure. This can be done, e.g., by Newton’s method. An approximation to avoid
an iterative procedure is to use the y+ value from the last time step. But, this can ruin the
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time accuracy. Severe limitations come from the validity range of the wall function. Strictly
speaking, the wall function is only valid for canonical turbulent boundary layers, though it is
commonly used for all kinds of flows. There are some extension of Eq. (4.32) for adverse pres-
sure gradients and rough surfaces, but they do not compensate all limitations. A more advanced
strategy is the solution of a simplified boundary layer equation on a subgrid within the wall and
the first node to calculate τw instead of using a wall function. See, e.g., [93, 104] for details
on this technique in the Navier-Stokes context. By following this approach some of the wall
function limitations can be eliminated, however the computational and implementation efforts
are substantially higher. The implementation of such a boundary layer equation based scheme
in SAM-Lattice is recommended for future work.

Werner and Wengle [129] proposed to use a power law based approximation of the velocity
profile in the logarithmic layer instead of the log law. Mathematically, the power law is ex-
pressed by u+ = Ay+B, where A and B are constants. The two layer approach of Werner and
Wengle [129], which divides the velocity profile in a lin law and a power law, is extended to a
three layer wall function here. Thus, the deviation in the buffer layer is reduced:

u+ =


y+ y+ ≤ 7.1
2.73247y+0.487215 7.1 < y+ ≤ 25.19
8.3y+1/7 y+ > 25.19 .

(4.33)
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Figure 4.6 depicts the power law wall function of Eq. (4.33) in comparison with DNS data. The
deviation of the power law to the DNS is slightly higher than for the log law wall function. But,
the power law approach holds the advantage that from Eq. (4.33) an explicit equation for τw is
established. So, there is neither a need for an iterative solver nor for other simplifications. In
literature, e.g., [120], the power law reveals excellent results compared with the log law and
hence it is used as wall function in SAM-Lattice.

Let us now turn our attention to the modeling of turbulence in WM schemes. As already
said, the distance of the first grid node off the wall, which is labeled here with y1, is larger
than the turbulent length scale, if y1 is located in the logarithmic layer. This means that all
turbulent structures below y1 in the inner region need to be modeled or the other way around, no
structures are resolved. For accurate LES calculations we defined the criterion that at least 80%
of the turbulent kinetic energy should be resolved. Accordingly, the requirements for a large
eddy simulation are not fulfilled at the first node off the wall, see also [103]. The idea to remove
this drawback is using an unsteady RANS approach between the wall and the first grid points,
what results in a two layer method. The basic concept in unsteady RANS is only resolving the
very largest turbulent motions [38]. More details about RANS in the Navier-Stokes context can
be found in, e.g., [34, 38]. As stated by Piomelli [93], the spatial filtering performed in LES will
become equivalent to a RANS averaging under certain assumptions. These are the presence of a
very large amount of eddies, located between the wall and the first node, and a time step which is
much larger than the turbulent time scale near the wall. Concerning the mathematical structure
of the governing equations, there are no differences between the filtered LBE and the unsteady
RANS averaged LBE, if both are based on the eddy viscosity assumption. The same holds for
the classical Navier-Stokes framework, as shown by [38]. The first RANS-LBM model was
proposed by Teixeira [119]. Although, there are no differences in the structure of the equations,
we should keep the differences in the physical modeling in mind.

The unsteady RANS approach requires a different consideration of the turbulence. Again,
the eddy viscosity assumption is used, but now for modeling the Reynolds stress tensor instead
of the subgrid stresses. For the near wall layer, the eddy viscosity will be based on a mixing
length model, since this model is computational less demanding and easy to implement. In
principle other statistical models can be applied. The definition of mixing length model is
[131]:

νt = l2
m

∣∣∣∣∣∂u∂y
∣∣∣∣∣ . (4.34)

There are different definitions of the mixing length lm proposed in literature. Balaras et al. [8]
used the following equation:

νt = (κy)2
∣∣∣∣∣∂u∂y

∣∣∣∣∣ . (4.35)

In Eq. (4.35) κ again represents the von Karman constant and y is the distance to the wall. The
derivative of the velocity cannot be calculated accurately in the numerical model, due to the
coarse grid resolution and the sharp gradients. Instead, the derivative is calculated from the
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wall function (Eq. (4.33)). By inserting the derivative of the log law, Eq. (4.35) reduces to:

νt = κyuτ . (4.36)

For the power law approach νt results in:

νt = κ
2AB

uB+1
τ

νB yB+1 . (4.37)

The coefficients A and B can be found in Eq. (4.33). Both formulations of νt can be combined
with the van-Driest damping (νvD

t = νt (1 − exp(−y+/A+))2) to reduce the eddy viscosity in the
buffer layer. In the viscous layer νt is commonly neglected [103].

In the last part of this subsection the application of the wall model to the Lattice Boltzmann
Method is explained. Wall functions have been used in the Lattice Boltzmann context in combi-
nation with RANS models [36, 119]. To the best of the author’s knowledge, this wall modeled
two layer LES approach is an innovation. The implementation of the two layer approach in
LBM is readily described by means of Figs. 3.7 and 3.8, respectively. First of all, the velocity
is interpolated at the point xI1 and decomposed into its normal and tangential ut(xI1) part. With
the tangential velocity and the normal distance h to the wall, the absolute value of the wall shear
stress is obtained from the following relation, which is derived from Eq. (4.33):

τw =


√

utνρ

h y+ ≤ 7.1

ρ
[

ut
2.73247(h/ν)0.487215

] 1
1.487215 7.1 < y+ ≤ 25.19

ρ
[

ut
8.3(h/ν)1/7

] 1
8/7 y+ > 25.19 .

(4.38)

Knowing the absolute value of τw according to the wall function, one of the proposed shear
boundary conditions in Subsection 3.5.7 can be used. The implementation of the shear boundary
conditions already uses the in-phase correlation for the shear stress and the tangential velocity
(Eq. (4.31)). Due to numerical stability advantages the shear anti bounce back is preferred in
the following.

The second step is the specification of the eddy viscosity according to the mixing length
model, instead of the Smagorinsky model. So, all fluid nodes adjacent to the wall have to
calculate νt according to Eq. (4.37).

4.3.2 Inlet Boundary Conditions
Specification of inlet boundary conditions in LES brings up some open questions. In the case of
laminar flow at the inlet, the problem can be solved easily. We can use the Dirichlet boundary
conditions introduced in Section 3.5 to specify velocity or pressure conditions at the boundary
under these circumstances. In the case of turbulent flow at the inlet boundary, the flow cannot
be described deterministically. A solution is sought for generating appropriate turbulent inflow
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Figure 4.7: Schematic Representation of a Precursor Simulation

conditions, since the inflow conditions have a crucial influence on the flow. The easiest and most
impractical way to solve this problem is to extend the fluid domain at the inlet by a transition
region. At the extended inlet a mean velocity profile is specified afterwards and the flow can
emerge to full turbulence before reaching the previous inlet position. This approach is nearly
unfeasible, since the transition region can be quite long and causes high computational costs.
Other trivial possibilities are to use velocity fields from measurements or DNS calculation, but
for general flow problems these data are not available. In this subsection two possible methods
will be introduced which are used in SAM-Lattice to provide appropriate inlet conditions.

The first approach is called precursor simulation. The basic idea is similar to the extension
of the domain at the inlet. But instead of a domain extension, a second auxiliary domain is used,
which is rendered periodically in streamwise direction. By means of the periodicity condition,
the effective length of the domain can be reduced. The auxiliary domain has the same cross
section as the inlet boundary and should have a grid matching to the inlet plane to avoid interpo-
lation. After the flow field in the auxiliary domain has reached the desired state, the calculation
of the actual domain can start. From a cross section of the auxiliary domain, the velocity field is
exported every time step and used as inlet boundary condition for the fluid domain, as exemplary
depicted by Fig. 4.7. The main disadvantage of this approach is the computational demand for
the auxiliary simulation, which is generally lower than extending the fluid domain, but can still
be quite high. Furthermore, the velocity information at the auxiliary cross section needs to be
stored for an adequate amount of time, which should be in the order of the integral timescale
of the flow [104]. After one integral timescale has past, the velocity from the beginning can be
reused. Two last constraints to mention here are that the flow in the auxiliary domain must of
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course be applicable to a periodic treatment and that the streamwise domain size must be large
enough to admit realistic turbulent structures.

To enable simulations of complex flows of engineering interest, a more sophisticated scheme
with affordable computational demand is needed. The schemes which are most promising for
such cases are based on synthetic turbulence, see [41] for an overview. Up to now, the topic
of synthetic turbulence boundary conditions has found only little attention in the LBM context.
As far as the author is aware of, only [97] recently used a member of this class, developed in
[121] for modeling of turbulent structures at the inlet in LBM. We propose to use a different,
more recent scheme, the synthetic eddy method (SEM), within the Lattice Boltzmann Method.
SEM was developed by Jarrin et al. [61] in the Navier-Stokes context. Advantages of SEM are,
among others, its low computational costs and the ability to work on arbitrary shaped inlets
and meshes, what suits ideal to the approach followed by SAM-Lattice. In the following, the
principles of SEM and its implementation are introduced.

The basic concept of SEM relies on constructing coherent structures, i.e., synthetic eddies
in the physical domain. From the superposition of these eddies, the turbulent fluctuations are
obtained. This reflects the classical interpretation of turbulence as a superposition of coherent
structures. By this simple concept, SEM differs from most representatives of synthetic turbu-
lence schemes, which rely on adding perturbations to certain wave numbers in spectral space.

The first step in the implementation of SEM is the creation of the box of eddies. In this
ashlar-formed box the synthetic eddies are constructed and their dynamics are modeled. The
position and the dimensions of this box are determined by the set of grid nodes of the inlet
boundary BI ⊂ R3, see Fig. 4.8, and the desired length scales li j(x) of the turbulent structures
according to Eq. (4.39). Anisotropic turbulence is created by choosing different length scales
li j(x) for each velocity component i and axes directions j and isotropic turbulence by setting
li j(x) = l = const.

x j,min = min
x∈BI , i∈{x,y,z}

(x j − li j(x)) and x j,max = max
x∈BI , i∈{x,y,z}

(x j + li j(x)) (4.39)

In the second step the box is filled with eddies. For this procedure, the number of synthetic
eddies N in the box must be defined. Since the turbulent kinetic energy in the box must be a
constant, which is independent of the number of eddies, the energy per eddy is decreasing for
increasing N and vice versa. In [60] the influence of N on the resulting turbulence statistics was
analyzed. The result of this study is that the LES solution becomes independent of the number
of eddies for N greater than a certain value, which can be estimated from the ratio of the eddy
box volume VB and the turbulent length scales li j(x):

N = max
i∈{x,y,z}

VB

lix(x)liy(x)liz(x)
. (4.40)

To minimize the computational costs, Eq. (4.40) is used in SAM-Lattice for the definition of
N. The initial positions xk of the eddies in the box are set independently by a random operation.
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Additionally, every eddy holds a three component vector εk, which contains the orientation of
the eddy in the three space directions. The components of εk are set independently by random
to −1 or 1. With this step the initialization procedure is completed and the calculation of the
turbulent fluctuations can start.

Step number three is the calculation of the turbulent fluctuations at an inlet node xI . The
turbulent fluctuations result from a superposition of the synthetic eddies in the box [61]:

u′i =
1
√

N

N∑
k=1

ck,i fli j(xI − xk) . (4.41)

The quantity ck,i represents the intensity of k-th eddy in spatial direction i:

ck,i = ai jεk, j . (4.42)

A = ai j is the Cholesky decomposition of the Reynolds stress tensor R which should be met by
the synthetic turbulence [61].

A =


√

u′u′ 0 0

u′v′/a11

√
v′v′ − a2

21 0

u′w′/a11 (v′w′ − a21a31)/a11

√
w′w′ − a2

31 − a2
32

 (4.43)
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The velocity fluctuation created by each eddy in Eq. (4.41) is controlled by the shape function
fli j(xI − xk) of the k-th eddy at position xk [60]:

fli j(xI − xk) =
√

VB
1
√

lix
f
(

xI − xk

lix

)
1√
liy

f
(
yI − yk

liy

)
1√
liz

f
(
zI − zk

liz

)
(4.44)

f (x) =


√

3
2 (1 − |x|) |x| ≤ 1

0 |x| > 1 .
(4.45)

Instead of the tent function Eq. (4.45), other shape functions can be used, see [60] for examples.
But, all shape functions must fulfill the normalization constraint to conserve the turbulent kinetic
energy in the box: ∫ 1

−1
f 2(x)dx = 1 . (4.46)

The above definitions ensure the desired turbulence statistics ⟨u′i⟩ = 0 and u′iu
′
j = Ri j. A detailed

proof of these single point correlations and an investigation of further correlations can be found
in [60]. The calculus of this third step enables the determination of the velocity fluctuations at
all inlet nodes.

In the fourth and last step of SEM the dynamics of the eddies are processed. In SEM it is
assumed that the eddies convect with a characteristic velocity through the box [61] according to
Taylor’s hypothesis. This characteristic velocity uc is defined as the average velocity of all inlet
nodes. Within one time step the center of an eddy moves in the box from xk(t) to xk(t + ∆t).

xk(t + ∆t) = xk(t) + uc∆t (4.47)

If the center of an eddy is leaving the box during this convection process, it is recreated on the
opposite surface (F) of the box through which it left. This recreation process contains some
specifics. The position of recreated eddy on the face F is set randomly and also the orientation
vector εk is again set by random.

The creation of turbulent structures by SEM at the inlet of a LES domain is achieved by
performing the steps 3 and 4 of the procedure every time step of the calculation. Steps 1 and
2 of the procedure need only be performed once during the initialization. Inclusion of SEM
into LBM for velocity inlet conditions is straight forward. The velocity fluctuations generated
by SEM are superimposed to the prescribed velocity at the inlet node to a resulting velocity at
this node. With this resulting velocity, one of the Dirichlet boundary conditions for velocity,
introduced in Section 3.5, can be used.

One problem that remains is the requirement of SEM concerning the turbulence character-
istics. In most cases one will neither know the entire Reynolds stress tensor to calculate the
Cholesky decomposition (Eq. (4.43)) nor the different turbulent length scales li j(x) at the do-
main inlet. This problem can be reduced, under the assumption of isotropic turbulence, to the
commonly known problem of RANS calculations, which need specification of two turbulence



74 Grid Refinement for Large Eddy Simulation

properties, e.g., turbulence intensity and length scale. In the case of isotropic turbulence, we
have u′ = v′ = w′ and the Cholesky decomposition reduces to a11 = a21 = a31 = |u′| and all
other ai j = 0. The remaining quantity u′ can easily be calculated from the turbulence inten-
sity I = u′/

∣∣∣u∣∣∣, for which different empirical correlations are available in literature. As said
before, also the turbulent length scales are equal in the isotropic case li j(x) = const = l. For the
estimation of l empirical correlations can be found in literature, too.

4.4 Grid Refinement for Large Eddy Simulation
The grid refinement as introduced in Section 3.7 needs some special considerations in the case
of large eddy simulation. As explained at the beginning of this chapter, the cutoff length of
the filtering operation is commonly associated with the grid spacing ∆x. A change of the grid
spacing thus results in different cutoff lengths and different resolved and subgrid scales on the
various grid levels. These facts have to be taken into account for the interface treatment. More
precisely, we only need to focus on the scaling operations of interface nodes. The interpolation
procedure of the hanging nodes can be ignored since this operation uses only values from the
same fine grid level.

Let us start with the scaling process from fine to coarse. Here the distribution functions from
the fine grid level are used to calculate the distribution functions on the coarse level. Since we
have resolved scales in the fine level quantities, which cannot be represented on the coarse level,
the fine level quantities need an additional treatment before scaling. This procedure is known
from the Navier-Stokes context as restriction [104]. It is performed by an additional filtering
operation of the fine level quantities, which restricts them to the coarse level. Numerically, this
filtering is realized in SAM-Lattice as averaging f f

i over all lattice neighbors of the fine partner
node before scaling (see [71, 99] for details of the discrete filtering operation):

f f
i (x, t) =

1
q

q−1∑
j=0

fi(x + ξ j∆t, t) . (4.48)

[128] proposed a different form of the discrete filtering, in which the distributions are weighted
according to their lattice direction. The difference in the resolved scales is directly accompanied
by a difference in the subgrid scales on the fine and coarse level, respectively. For this reason
the eddy viscosity, which models these scales, cannot simply be copied from the fine level to
the coarse level. From the Smagorinsky model (Eq. (4.12)), we see that the eddy viscosity
depends on ∆x2. Assuming the change of the norm of the resolved strain rate tensor

∣∣∣∣S∣∣∣∣ on the
different levels is small and negligible, the eddy viscosity on the coarse level is four times the
eddy viscosity on the fine level. That results for the applied refinement ratio of two in:

νc
t = 4ν f

t . (4.49)
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Recently [128] proposed the use of the following relation between the eddy viscosity on the fine
and coarse level, which comes from a dimensional analysis (see also [104]):

νc
t = (2)4/3ν

f
t . (4.50)

Equation (4.50) has not yet been tested by the author, but comparison with Eq. (4.49) shows a
difference of approximately 37 % between both formulations.

With the filtered distributions at the fine partner node (Eq. (4.48)) and the rescaled subgrid
viscosity (Eq. (4.49)), the scaling from fine to coarse can be performed, as described in Section
3.7.

For the scaling from coarse to fine we have the opposite case. The distributions available
on the coarse level, which are used for scaling to the fine level, do not include length scales
smaller than ∆xc. The task here is to create scales in the length scale between ∆xc and ∆x f

for the quantities on the fine level. This is known as enrichment in literature [104]. From a
mathematical point of view this can be interpreted as a deconvolution procedure and the known
deconvolution schemes can be applied. Another way to create these small scales, i.e., high
frequency parts, is the use of synthetic turbulence methods as introduced in the subsection
dealing with inlet boundary conditions. SEM could be used for this problem, even though
an additional filtering operation of the synthetic fluctuations is necessary to obtain only scales
between ∆xc and ∆x f . A more convenient way is to extrapolate the fluctuations in the desired
scale range from the neighbors of the fine interface nodes and to use these at the interface; see
[99] for details of the extrapolation procedure.

Currently, no enrichment procedure is used in SAM-Lattice, since the enrichment procedure
is a demanding process and often leads to numerical instabilities as experienced by the author
and also stated in [128]. Nevertheless, the eddy viscosity of the coarse partner nodes is rescaled
for the fine interface nodes. This is done from Eq. (4.49), thus the eddy viscosity at the fine
interface nodes corresponds to one quarter of the eddy viscosity at the coarse partner nodes.

4.5 Practical Aspects for Large Eddy Simulation
Practical application and result evaluation of large eddy simulation hold some difficulties which
will be shortly addressed. As we already said a couple of times, a sound LES should resolve at
least 80% of the turbulent kinetic energy k [94].

In engineering applications, numerical simulations are often used as a prediction tool in the
design process. Thus, the flow field and the total amount of k are unknown, what complicates
the assessment of uncertainty in LES. In the RANS framework commonly grid studies are per-
formed for quality assessment. For LES, there is theoretically no grid independency, since the
filter width is associated to the grid size. Hence, a grid independent LES is essentially a DNS,
i.e., all scales are resolved [16]. In literature, different grid resolution indices have been pro-
posed to enable quality assessment if no validation data is available, see [40] for an overview.
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One class of these indices are the single-grid estimators, which require only the solution of one
LES calculation. These estimators can be applied after a first LES run and used as a decision-
maker, if further grid refinement is necessary. The simplest single-grid estimator is the ratio of
eddy viscosity to the molecular viscosity νt/ν, which will be used in this thesis. The physical
meaning behind this estimator is that νt represents the subgrid scales and the modeled part of
k, respectively. A drawback of this easy to use estimator is the dependence of the maximum
acceptable value on the Reynolds number [40]. Depending on the reference consulted, this ra-
tio should be less than 25 [16]. Another often used single-grid estimator relies on the power
spectrum of k in the frequency or wave number domain, respectively. From the slope of this
quantity we can see if the inertial range of the turbulent spectrum, characterized by the −5/3
slope, is recovered. More advanced grid estimators relying on a single or multiple solutions can
be found in [16, 40].

Another important point to mention here is the surprising fact that the resolved turbulent
kinetic energy in LES can be larger than k resulting from DNS or experiments. This numeri-
cal artifact is mainly justified in literature with poor resolution of the LES, see [16] for more
detailed attempts of explanation.



CHAPTER 5

Implementation Aspects of the CFD Package SAM-Lattice

The implementation of the previously described Lattice Boltzmann Method is done by an ob-
ject oriented approach in C++. The object oriented programming paradigm has been chosen
due to its advantages, which are the possibility of real-world modeling and the reusability of
code, among others. C++ is used since it is object oriented, includes template capabilities, is
supported on many platforms, and provides many libraries. In the course of this thesis, a mod-
ular structured software package called SAM-Lattice has been developed by the author and his
colleague Dipl.-Ing. Daniel Conrad.

5.1 Conceptual Aspects
The keynote in the design of the software package SAM-Lattice is to create a CFD tool based on
the Lattice Boltzmann Method which is applicable to complex, real-world problems of engineer-
ing interest in 3D. This diversified and generalized area of application demands an elaborated
and sound design of the software. Further development objectives are user-friendliness, high
efficiency and automation. To achieve these goals, we decided to use a modular structure of
the package, consisting out of five components, see. Fig. 5.1. The module SamLattice is a
graphical user interface (GUI), developed with QT, which allows the utilization and control of
the remaining package-modules and also includes features for on-line result monitoring. Sam-
Lattice is devoted to user-friendliness, since the remaining four components can be used and
controlled without the GUI by scripts, e.g., for batch computing. As common in CFD appli-
cations the workflow of a simulation in SAM-Lattice is subdivided into the consecutive steps
of preprocessing, solving, and postprocessing. For preprocessing two modules are included in
SAM-Lattice. The SamGenerator is a highly automated lattice generator for the discretization
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Figure 5.1: Modules of SAM-Lattice

of the domain. For distributed memory parallelization, a domain decomposition is necessary,
which is provided by the SamDecomposer. SamDecomposer makes use of the graph parti-
tioning library METIS for an optimal decomposition of the discretized domain. The actual
implementation of the Lattice Boltzmann Method as a numerical scheme for fluid dynamical
problems is included in the solver SamSolver. After the solution process is completed, result
evaluation can be performed with the postprocessor ParaSam, which is our customized version
of the open-source visualization tool ParaView, which is based on the visualization tool kit (vtk)
and developed by Kitware. ParaSam contains some additional, in-house developments for in-
put/output operations and analysis features.

Every module of SAM-Lattice, execpt the GUI, requires particular input data and produces
specific output data, which is the basis for the next step of the workflow. Through this file
management, it is always possible to go one step back in the workflow and modify certain con-
figuration parameters without the need to restart completely from scratch. In the remaining part
of this chapter some implementation aspects of the two core modules of the package, SamGen-
erator and SamSolver, will be presented. Precise details of the implementations can be found in
the detailed programmer’s guides of the corresponding modules.

5.2 Preprocessor - SamGenerator

As already said, SamGenerator is the discretization module of SAM-Lattice. It calculates the
computational grid for the numerical solution based on the Lattice Boltzmann Method. The
discretization relies on the uses of regular grids, which can be refined in certain areas, as in-
troduced in Section 3.7. Figure 5.2 depicts the basic operations in terms of subroutines, which
are performed during a SamGenerator run. To get a basic understanding how SamGenerator is
working, we will follow the flowchart.
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End
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Read control parameters from input script

Define type of refined cells with Feito-Torres algorithm

Figure 5.2: Flowchart of SamGenerator
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5.2.1 Input Data

The first conceptual block of routines is reading of input data, what consists of control or mesh
parameters, respectively, and the domain geometry. SamGenerator requires the fluid domain
in 3D as geometry input. Geometrical modeling is not part of the capabilities of SAM-Lattice,
but can be done by available CAD systems. The geometry input for SamGenerator must rely
on boundary representation (BREP), i.e., the geometry is completely characterized by its sur-
rounding boundaries. The boundaries itself must be represented by triangulated surface meshes.
Currently, two standard file formats are supported for geometry representation: msh [7] and stl
[14] format. In general the msh format should be preferred since it includes by default informa-
tion like boundary names and their physical types, which are mandatory for the grid generation.
If the stl format is used, it must be extended by these information.

5.2.2 Discretization of Grid Level 0

After reading input data, the discretization process starts at level 0. The bounding box of the
geometry input is calculated and filled with cubes, which are sized according to the user spec-
ification. To represent the geometry by this basic grid, we need to figure out, which cells and
nodes are in-/outside of the fluid domain and which cells are intersected by the fluid domain
boundaries. Such problems typically occur in computer graphics and very efficient algorithms
have been developed for their solution. We use a smart combination of different algorithms
within SamGenerator. First of all an intersection test between the cells and the triangles of
the BREP is performed. This test can be efficiently performed by the separating axis theorem
(SAT), which states that two convex polyhedra are disjoint if an axis can be found, on which
the projections of these two objects do not overlap [2]. See also [22] for more details on the
implementation in SamGenerator. As a result of SAT, we know which cells are intersecting the
boundaries and call them boundary cells. But, we do not know which nodes of the intersection
cells are inside or outside of the domain. By definition, a node on the boundary itself is out-
side. Furthermore, we do not know if the remaining, non-intersection cells and their nodes are
inside or outside. This problem is known in computational geometry as point inclusion test in
polyhedra. A fast, efficient and robust scheme for inclusion tests in general polyhedra is the
Feito-Torres method [33], which will be shortly introduced. In the Feito-Torres method, for
each triangle of the boundary mesh a tetrahedron is built with the origin as fourth point. If a
triangle contains already the origin as a point, an arbitrary translational transformation of the
triangle is performed. To determine if a point P is now inside a polyhedron, the signs of the
tetrahedron volumes, which are build from the boundary mesh and containing P, are summed.
P is inside of the polyhedra, if and only if the resulting sum is > 0. It can be shown that this
algorithm fulfills the Jordan curve theorem [33] and is thus suitable for point inclusion tests. By
some preprocessing operations the Feito-Torres method can be dramatically optimized [90].

To further decrease the computational costs, the Feito-Torres method is used in combina-
tion with a flood fill algorithm. The idea behind this combination is that it is not necessary to
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(a) Unsmoothed Grid (b) Smoothed Grid

Figure 5.3: Grid Refinement and Smoothing

test every point with the inclusion test, since we know the intersection cells. In the following,
nodes inside the domain will be called fluid and outside nodes are named solid. This means
we perform the inclusion test for one grid node of a non-intersection cell and determine if it is
inside or outside. Since it is a non-intersection cell, all other nodes of this cell must have the
same type (fluid/solid), i.e., the whole cell is set to fluid or solid. Even more, we can march in
all directions of space, starting from this cell, and set the according neighbor cells to the same
type, until we encounter a boundary cell. This makes a further inclusion test necessary, since
the node type can change now. By this methodology the necessary inclusion tests are decreased
to a minimum. The node types of the boundary cells are determined by the connectivity to the
neighboring cells or, if this is not possible by further inclusion tests.

The last step of the grid generation on level 0 is the deletion of solid cells and nodes, which
do not participate in the simulation. With this sparse representation of the grid the memory
demand is reduced, what reveals especially for porous media or domains including large holes
or obstacles. On the other hand, this step increases the complexity dramatically. The data
structure must allow the removal of unused cells and their according nodes. This calls for an
unstructured grid layout, which is realized in SamGenerator with help of the map container of
the C++ standard template library.

5.2.3 Local Grid Refinement
As already stated in Section 3.7 the grid refinement in SAM-Lattice relies on an octree structure,
so for refinement a parent cell is divided into eight regular child cells. There are different ways
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to specify the regions, which are to refine. One way is boundary related refinement. Here, the
user can define at which boundary the grid should be refined and also the refinement depth, i.e.,
how many levels are used, can be assigned. The other possibility is region related refinement.
In this way, the user defines a region by a rectangular box or an arbitrarily shaped geometry, via
an BREP of this region. Inside of the box or the geometry, represented by the BREP, the grid
is refined up to the desired level. Since we are using a tree data structure, our refinement tech-
nique can be conceptually classified as a top down approach, because we recursively subdivide
specific cells starting from the root (level 0) of the tree. The result of a boundary refinement
process is exemplary shown in 2D for a sphere in Fig. 5.3(a).

The next routine in the conceptual block of grid refinement in Fig. 5.2 deals with the smooth-
ing of the grid, i.e., this algorithm ensures that the level difference of neighboring cells is not
greater than one. A violation of this requirement is highlighted in Fig. 5.3(a). Furthermore,
the subroutine warrants that the minimum width of cells per grid level and near boundaries are
realized. Both quantities are user inputs. By default, the minimum number of cells in every
direction is three fine cells. For boundary refinement, the default minimum number of refined
coarse cells next to the wall is three. These default values are necessary to prevent an over-
lapping of the interface regions of different levels. Arithmetically, the smoothing operation is
realized by parsing the octree structure and checking if the mandatory child cells (leaves) are
present. Missing child cells are created by calling the refinement routine for the according
coarse cells. The final grid for the example of Fig. 5.3(a) after the smoothing operation is de-
picted in Fig. 5.3(b).

With the end of the grid smoothing, the mesh is according to the requirements of the numer-
ical method and ready to use. Nevertheless, from a numerical point of view it is advisable to
avoid unnecessary interpolations, which can derogate the accuracy and numerical stability. For
these reasons we want to minimize the surface of the interface by further refinement. This is
done by an additional, iterative smoothing process based on rules defined in [25]. The maxi-
mum number of iterations of the improve smoothing routine can also be set by the user.

Finally, we must determine the type of the refined cells and nodes. This is again done with
the Feito-Torres’ method. To reduce the calls of this routine and save thereby computational
costs, we use again the mesh connectivity. The refinement of a fluid cell, for instance, must
result in fluid child cells containing only fluid nodes. In boundary cells, we test the child cells
by the SAT algorithm first. Doing this, we know which child cells are boundary cells itself and
which are not. The type of non-boundary cells and their nodes can be determined from the node
type of the common node with the parent cell. In this fashion the necessary point inclusion tests
for the refinement process are considerably reduced.

5.2.4 Lattice Definition
So far, we calculated a regular grid with local refinement, which is not specific for the Lattice
Boltzmann Method. The intrinsic information needed for the Lattice Boltzmann algorithm is
obtained in next conceptual block of Fig. 5.2. As we rely on an unstructured grid represen-
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tation, we must find the neighbors of every node in the particular lattice, which is D3Q19 in
SAM-Lattice. During this operation we also associate the boundary nodes to their boundary
conditions, as specified in the geometry definition.

The second Lattice Boltzmann specific algorithm is the calculation of the boundary dis-
tances qi according to Eq. (3.48), which are used for the second order accurate boundary
treatment. qi results from the intersection of the lattice links with the triangles of the BREP
and can thus be calculated from geometrical considerations. Details of the implementation in
SamGenerator are provided by Conrad [22]. With this step the lattice calculation is completed.

5.2.5 Output Data
Due to the modular design of SAM-Lattice, the grid information is not internally handed to the
solver and must be written to a file. Of course, this produces some input/output (I/O) overhead,
but enables multiple calculations with the same mesh without the need of multiple mesh cal-
culations. The output block contains mainly two routines. One routine exports the grid in a
vtk-compatible format for ParaSam. At the moment, the legacy vtk-format or the xml-based
vtu and pvtu formats are supported for ASCII as well as for binary file formats. In the vtk-
compatible formats no overlapping of refined cells is included. This means, if a cell is refined,
only the leaves, i.e., the most refined cells are exported. The rest of the octree is removed.

The second routine provides the export capabilities to SamSolver. For data transfer to Sam-
Solver a new file format (.sam) has been designed. This includes besides the standard mesh
structure the lattice specific information of the D3Q19 neighbors, boundary distances qi, and
the definition of the level interfaces. The sam-file is supported in ASCII and binary format. As
for the vtk-compatible format, only the most refined cells are exported, except for the interface
regions, where an overlapping of one coarse cell width is needed for algorithmic reasons, see
Section 3.7. Of course, the sam format can also be handled by ParaSam for visualization pur-
poses. After the file export, the lattice generation is completed and the run of SamGenerator
ends.

There is another export routine implemented in SamGenerator for creation of a CGNS file
of the mesh, which is not shown in Fig. 5.2, since it is not an essential part needed for the
Lattice Boltzmann Method. The main idea of this CGNS export is to use SamGenerator meshes
in conventional CFD tools. Grid generation, especially in complex geometries, is a demanding
task, which is handled automatically by SamGenerator, as it was demonstrated above. Since
standard CFD tools rely on body conformal meshes, an extension of SamGenerator is currently
under development, which modifies the boundary adjacent cells to fit to the boundary shape.

5.3 Solver - SamSolver
Before looking closer at the implementation of the Lattice Boltzmann Method in SamSolver, a
general solution aspect of the Lattice Boltzmann equation, e.g., Eq. (3.16) for the SRT colli-
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sion model, is addressed. For implementation, the LBE is decomposed into a transport and a
collision step:

Transport step : f̃i(x + ξi∆t, t + ∆t) = fi(x, t) (5.1)

Collision step : fi(x + ξi∆t, t + ∆t) = f̃i(x + ξi∆t, t + ∆t)

+ Ω
[
f̃ eq
i (x + ξi∆t, t + ∆t) − f̃i(x + ξi∆t, t + ∆t)

]
. (5.2)

The transport step is a simple copy of a value from one position in memory to another position
and thus free of round off errors. From Eq. (5.2) we see that the collision step uses only
data of the node where it is executed. The resulting procedure for the LBM has therefore
some beneficial features: Firstly, the scheme is explicit, there is no need to solve equations
iteratively. Secondly, the collision step is purely local and the transport step involves only the
lattice neighbors. This locality is the foundation for a highly efficient parallelization of the
scheme.

Let us go into the details of SamSolver, which is currently supported on Windows and
Linux operating systems. The Linux variant includes capabilities for usage and communication
with the Platform LSF job scheduler, which is used as a workload management tool at the
TU Kaiserslautern cluster. There are two versions of SamSolver for both operating systems,
realizing different parallelization paradigms. The version for shared memory parallelism (SMP)
uses the OpenMP API for code parallelization. For distributed memory parallelism, the message
passing interface (MPI) is applied for the inter-process communication.

We will analyze the implementation structure of SamSolver by means of the flowchart of
Fig. 5.3, which shows the basic conceptual subroutines.

5.3.1 Input Data

The first step of a SamSolver run is reading of input data. This starts with the input script,
which holds all physical parameters, like boundary conditions and fluid properties, and control
parameters, like the number of time steps to go in this run. Afterwards, the lattice definition is
read from the sam file created by SamGenerator. In the case of MPI runs, the fluid domain must
be decomposed into different fractions, which are calculated on the respective processors. For
this decomposition task SamDecomposer has been developed. The output of SamDecomposer
is one samd file per processor, which contains the decomposed part of the lattice and informa-
tion about the inter-process communication. Depending on the version of SamSolver which is
executed, the software will autonomously read the required sam or samd files from the specified
input folder.

There is a further routine appendant to the input procedure, which is optional and thus not
shown in Fig. 5.3. This routine reads the resume file of a previous run to resume a simulation.



Implementation Aspects of the CFD Package SAM-Lattice 85

Input Data

Output Data

Preprocessing

Setup of interpolation relationships at the interface

Setup for MPI runs

Initialization of the distributions

SamSolver: .res format (ASCII or binary) 

ParaSam: results in .vtk, .vtu, .pvtu format (ASCII or binary)

Read .sam file (ASCII or binary)

End

Start

Single-Level Solver Multi-Level Solver

Interface interpolation

Timestep

Collide

Transport

Timestep

Collide

Transport

Time loopTime loop

Level loop

Read boundary conditions and control parameters from input script

Figure 5.4: Flowchart of SamSolver
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5.3.2 Preprocessing

After the lattice of the fluid domain is set up in the internal data structure of the SamSolver some
preprocessing operations of administrative nature are necessary. From the interface definition
in the sam file, the various relationships between the interface nodes, their partner nodes and the
hanging nodes and their interpolation partners, need to be created for multi-level runs. In the
case of unrefined grids we will refer to single-level and in the case of refined grids to multi-level
runs in the sequel.

If the MPI version of SamSolver is running, a setup process for the inter-processor commu-
nication is mandatory. In this routine, the data which is send to and received from the other
processes is determined and the according data structures are initialized.

The last step is the initialization of the distribution values for the numerical calculation. Ini-
tialization is done either by usage of the equilibrium distribution or by the iterative scheme of
Mei et al. [87], as stated in Section 3.6. In both cases a global initialization velocity and density
must be prescribed in the input script. In the case of a resumed simulation, the distribution
values are initialized with its values of the previous run.

5.3.3 Solving

To reduce redundancies in the code and increase the ease of maintenance, a flexible way to exe-
cute different methods from the same call is essential. This is achieved in SamSolver by using
C++ functors, which enable us to set the function to be executed during runtime. Depending on
the run type of the simulation, i.e., single or multi-level, a specific solver is started, as depicted
in Fig. 5.3.

The single-level solver consist of a time loop, in which the collision and transport steps are
executed, until the specified number of time steps is reached. In principle, the sequence between
collision and transport is interchangeable, but we experienced a better performance of the code
in performing first collision and then transport. The call of the actual collision implementation
is realized by a functor to permit the usage of the same code for SRT and MRT. Before the col-
lision operation itself can be performed in the collision routine, the relaxation parameter must
be calculated. For laminar calculations, the relaxation times are known a priori. In the case of
turbulent flows, using an eddy viscosity based modeling, νt is determined prior to the calcula-
tion of the relaxation parameter. The case of non-Newtonian fluids is similar to the turbulent
one, as in each case the effective viscosity is varying. In SamSolver, non-Newtonian fluids are
modeled by a power law approach, see Conrad [22] for an extensive introduction and validation
of the non-Newtonian capabilities. The function call associated to the viscosity calculation is
also performed by a functor to allow a great variety of different models.

The routine for the transport step includes the classic advection step for fluid nodes and also
the handling of boundary conditions for boundary and wall nodes as described in Section 3.5.
There are in principle two ways to carry out the transport step. Firstly, a node can push its
distributions to its neighbors. Secondly, a node can pull the distributions from its neighbors. In



Implementation Aspects of the CFD Package SAM-Lattice 87

SamSolver we use the push approach, since it achieved a higher performance.
The structure of the multi-level solver in Fig. 5.3 is obviously more complex than the single

level solver. Again, we have a time loop as most outer loop. Inside this time loop, we loop
over the different lattice levels. This level loop includes, beside collision and transport routines,
a routine for the interface interpolations, as explained in Section 3.7. Due to the nested time
stepping (see Fig. 3.13), a clear sequence of the collision, transport, and interpolation actions
on each particular level must be obeyed. An elegant way to implement this order by different
loops was found by the developers and implemented in SamSolver; Conrad [22] explains this
in more detail.

Another useful feature of SamSolver for batch calculations are the routines of the class
SamCommandInterpreter. The class members of SamCommandInterpreter allow adjustments
of different run parameters during execution. Communication with the solver is achieved by a
script: the sam_cmd file. In every iteration of the time loop, this script is checked for newly
added keywords and according values. If new entries are present, they are checked for consis-
tency and afterwards the associated solver run parameters are changed. For convenience, the
capabilities of sending commands to the solver during runtime are included in the GUI SamLat-
tice.

Of course, SamSolver and the remaining components of SAM-Lattice can be interpreted
and used as a library itself. From this point of view, functors are not essential and the user can
build its own application from the features of the library classes for every case. But as stated
above, an aim of the code design is to create a tool, which can handle arbitrary geometries and
flows, respectively, with a single application.

5.3.4 Output Data
For result evaluation with ParaSam, SamSolver includes the same output capabilities for vtk-
compatible formats as SamGenerator. In MPI runs the output format is limited to pvtu, since
this format is specifically designed for distributed calculations. The write interval as a number
of time steps is a user input. During the time step loop, the solving routine will call the accord-
ing output method, whenever a write interval is complete.

Besides the vtk-compatible output formats, SamSolver creates a resume (res) file at the end
of every run. This res file is used to resume a simulation based on a completed run. The res
file includes the distribution values for all directions at every node, which allows a smooth con-
tinuance of the simulation. Together with the sam file, the res file can be loaded in ParaSam,
too. ParaSam then calculates the macroscopic moments for density, velocity, stress, and eddy
viscosity from the distributions in the res file for result evaluation.

In addition to output of the complete flow field as vtk-compatible or res-file, SamSolver
includes capabilities to monitor flow quantities which are written to a file and evaluated ev-
ery time step. On the one hand, flow quantities at every node of the computational grid or at
arbitrary points in the domain can be tracked. The fluid quantities at the nodes are directly
calculated from the node’s distributions, whereas values at monitor points are interpolated from
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surrounding nodes by trilinear interpolation. On the other hand, SamSolver allows to record
forces and torques on boundaries. Both quantities are calculated internally by the momentum
exchange method [70] as introduced in Subsection 3.5.7. Monitoring of flow quantities, forces,
and torques is very effective for usage as physical convergence criteria.

The output routines of SamSolver include some additional postprocessing capabilities which
will be mentioned in the sequel. As we have seen, LBM is an intrinsic time-dependent scheme.
But, oftentimes engineers are only interested in temporal averages of transient flows. To avoid
excessive recording of transient results, solely for subsequent averaging, SamSolver has built-
in averaging capabilities. The second feature is grid reduction. Especially for transient calcu-
lations where a huge amount of transient results is created, it can be necessary to reduce the
memory requirements for output. With the grid reduction option, n3 cells, n ∈ [2, 3, ..., 6], are
combined to a new coarse cell. This technique permits calculation on a fine grid and result
storage on a coarser grid.



CHAPTER 6

Verification Cases

The development of a numerical scheme always includes verification and validation (V&V)
processes. Purposes of these V&V processes are to benchmark the accuracy and suitability of a
numerical approach to physical problems. The first step of this procedure is verification which
is commonly subdivided into code and solution verification. Code verification aims to show
that the mathematical model, on which the numerical scheme is based, is accurately solved.
This means that the code is free of errors and bugs. In addition, solution verification turns out
the numerical accuracy of the method by means of a certain calculation [3]. This includes the
confirmation of the order of accuracy of the numerical scheme, as introduced in Subsection
3.8.1. For the identification of the solution error at best an exact solution of the verification case
is used. When no exact solution is available, an error estimator can be used, as it is done, e.g.,
by Richardson extrapolation [34].

The definition of validation is given according to the ASME Standard for V&V in CFD [3]:

“Validation is a process determining the degree to which a model is an accurate
representation of the real world."

Validation is performed by comparison of simulation results with experimental measurements
for a specified set of variables at certain conditions. A consequence of this practice is that there
can be no validation without experimental data [3].

In this chapter the verification part of the V&V process will be performed for SAM-Lattice.
By multiple benchmark cases, the different components and models of the CFD package will
be investigated. As far as possible, the verification cases rely on exact solutions of the Navier-
Stokes equations to avoid the use of error estimators. A reason for this is the fact that error
estimators have certain requirements to be exact, like monotonic convergence in the case of
Richardson extrapolation [34]. The solution error is expressed by the global absolute error to
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the analytical solution for a particular flow quantity. This is exemplary expressed by Eq. (6.1)
for the velocity component in x-direction, where the summation is performed over all N nodes
of the grid:

Eu =

√
1
N

∑
x

(
u(x) − uanalytical(x)

)2
. (6.1)

6.1 Core Components

In this section, the basic components of SAM-Lattice will be verified. This means multiple
laminar Newtonian flows, for which exact solutions of the Navier-Stokes equations exist, will
be used for verification of the scheme including different kinds of boundary conditions.

6.1.1 Beltrami Flow

A known exact solution of the unsteady incompressible Navier-Stokes equation is Beltrami
flow, which is characterized by a vorticity field parallel to the velocity. Furthermore, for Bel-
trami flows no term of the Navier-Stokes equations is zero. This is why they are often called
full solutions of the Navier-Stokes equations. The best-known example of Beltrami flow is the
2D Taylor Green vortex flow. A detailed derivation of Beltrami flow and its solution is given by
[32].

For benchmarking, we use here the Beltrami case proposed by [112], which has the follow-
ing solution:

u = − A
k2 + l2

[
λ l cos(kx) sin(ly) sin(mz) + m k sin(kx) cos(ly) cos(mz)

]
exp(−νλ2t)

v =
A

k2 + l2

[
λ k sin(kx) cos(ly) sin(mz) − m l cos(kx) sin(ly) cos(mz)

]
exp(−νλ2t)

w = A cos(kx) cos(ly) sin(mz) exp(−νλ2t) (6.2)
with λ2 = k2 + l2 + m2.

The flow described by Eq. (6.2) consists of a periodic array of viscously decaying counter-
rotating vortices. The parameters k, l,m, which are wave numbers, control the number of vor-
tices in each directions. For the calculations performed with SAM-Lattice, a cubic domain with
an edge length of 2π and periodic conditions on all sides is used. By this configuration, the basic
algorithm can be tested without the influence of particular boundary conditions since periodic
conditions do not alter the basic scheme. All flow parameters used for Beltrami flow are sum-
marized in Table 6.1. With these given parameters, the maximum velocity |umax| in the domain
at t = 0 results to 1 m/s.
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Table 6.1: Parameters for Beltrami Flow

Parameter Value Unit

Domain size Lx · Ly · Lz 2π · 2π · 2π m3

Periodic directions x, y, z −
Amplitude A 1 −
Wave number k, l,m 1 −
Characteristic time T T = 1

νλ2 = 3.333 s

Characteristic length L L = Lx
2π = 1 m

Maximum velocity |umax| 1 m/s

Density ρ 1 kg/m3

Kinematic viscosity ν 0.1 m2/s

Dimensionless velocity un un = u
|umax | −

Dimensionless stress σn
yz σn

yz =
σyz

ρ|umax |2
−

Dimensionless coordinate xn xn = x
L −

Spacing ∆x 2π/64 m

Time step ∆t T/500 s

Reynolds number Re Re = |umax |L
ν
= 10 −

Lattice Mach number Ma Ma = |umax |
cs
= 0.118 −

Relaxation parameter Ω 1.413 −
Free MRT relaxation parameter si 1.0 −

For visualization, the initial flow field at time t = 0 is depicted in Fig. 6.1. In the top picture
(Fig. 6.1(a)), the vortices are illustrated by isosurfaces of the z-velocity component. The two
lower pictures show contour plots of u and v in a plane with constant z-coordinate, again the
vortices are clearly visible. All quantities shown, are non-dimensional, what is indicated by the
superscript n, now and in the following. Normalization is done with |umax|; see Table 6.1.

The calculation for code verification is performed on a 643 cells grid. 500 time steps per
characteristic time interval T are used for temporal resolution. Thus, the maximum lattice Mach
number in the system is 0.118. The Beltrami flow is calculated with the SRT and MRT collision
model. For the MRT calculation all free relaxation parameter si are set to 1.0, as it is always
done throughout this thesis. Solution initialization is performed with the velocity field given
by Eq. (6.2) for t = 0 for the equilibrium part of the distributions. The non-equilibrium part
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(a) Isosurfaces of z-Velocity Component (wn = ±0.5)
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Figure 6.1: Initialization Velocity Field (t = 0)
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Figure 6.2: Comparison of Flow Quantities for Beltrami Flow

is initialized by the stress field which results from the derivatives of Eq. (6.2) and the relation
(2.35). Calculations are conducted for a time period of 32T . All numerical parameters are also
included in Table 6.1 for a general overview.

Let us go on with a comparison of analytical and numerical results for code verification.
Comparisons are given along a line at y = z = π for the normalized x-velocity component
and the normalized σn

yz stress component. σn
yz is turned dimensionless by ρ |umax|2. These two

quantities have been chosen, since they are non-zero along the aforementioned line. Figure 6.2
shows multiple comparisons for the SRT and the MRT collision model at three different instants
of time. The x-velocity reveals an excellent agreement between numerical and analytical results
at all instants of time for the SRT (Fig. 6.2(a)) as well as for the MRT (Fig. 6.2(c)) model. Nu-
merical results for σyz (Fig. 6.2(b) and 6.2(d)) are also in very good accordance with theoretical
values at all instants, especially when we consider that the accurate calculation of stress requires
a high spatial resolution.

Solution verification is done by a grid convergence study for the flow quantities u and σyz.
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Table 6.2: Mesh Dependent Parameters for Beltrami Flow

Mesh size 323 1283

Spacing ∆x [m] 2π/32 2π/128

Time step ∆t [s] T/125 T/2000

Lattice Mach number Ma 0.236 0.059

10−8

10−7

10−6

10−5

10 100

G
lo

b
al

ab
so

lu
te

er
ro

r
in

u

Grid resolution N

Slope -2

SRT

MRT

(a) x-Velocity

10−10

10−9

10−8

10−7

10 100

G
lo

b
al

ab
so

lu
te

er
ro

r
in
σ

y
z

Grid resolution N

Slope -2

SRT

MRT

(b) σyz-Stress SRT

Figure 6.3: Grid Convergence for Beltrami Flow

Two further cases are considered for the convergence study, one coarser case with 323 cells and
one finer case with 1283 cells. The time steps on both grids are determined by diffusive scaling:
∆t ∝ ∆x2. The resulting time steps and lattice Mach numbers are given in Table 6.2, all other
parameters are according to Table 6.1. Results for the absolute error in u at time t = 20T are
given in double logarithmic diagram in Fig. 6.3(a). For comparison the diagram also shows the
−2 slope, which represents the theoretical convergence order. The errors for the SRT and MRT
collision operators are nearly equal, but the SRT convergence rate reduces slightly from grid
two to grid three. Nevertheless, both schemes manifest second order accuracy for u, the average
convergence rate for the SRT model is 1.99 and for MRT is 2.1. Similar observations are taken
from the convergence study for σyz in Fig. 6.3(b). Here, the average convergence rate for SRT
is 2.32 and for MRT is 2.44.

These results for Betrami flow clearly verify the core implementation of the SRT and the
MRT model. They also prove that the LBM scheme is second order accurate as theoretically
derived in Chapter 3. Furthermore, we see from this unsteady case that LBM is feasible to
recover the correct temporal evolution of the flow. In the subsequent sections the remaining
components of SAM-Lattice will be investigated.
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Figure 6.4: Sketch of Taylor-Couette Flow

6.1.2 Taylor-Couette Flow

The Navier-Stokes equations hold an exact solution for the flow in the annulus between two
concentric rotating cylinders, which is known as Taylor-Couette flow and sketched in Fig. 6.4.
Under certain assumptions, the analytical solution for the velocity field of Taylor-Couette flow
is established in cylindrical coordinates in Eq. (6.3). These assumptions are: incompressible,
steady and laminar flow, steady rotating cylinders, i.e., ω1 and ω2 are constant, the absence of
body forces and L ≫ r2; see [106] for details.

uz = 0
ur = 0

uφ(r) =
1

r2
2 − r2

1

[
r
(
ω2r2

2 − ω1r2
1

)
−

r2
2r2

1

r
(ω2 − ω1)

]
(6.3)

The Taylor-Couette flow has some technical applications, e.g., it is the basis of journal bear-
ing flows. We will use the Taylor-Couette flow in this thesis as verification case for boundary
schemes since the geometry contains complex boundaries. To definitely avoid a flow instability
of toroidal vortices, which are known as Taylor vortices, only the outer cylinder is rotating and
the inner one is standing still, see [106] for more details. In this case Eq. (6.3) reduces to:

uφ(r) =
1

r2
2 − r2

1

[
rω2r2

2 −
r2

2r2
1

r
ω2

]
. (6.4)
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Table 6.3: Parameters for Taylor-Couette Flow

Parameter Value Unit

Inner radius r1 1 m

Outer radius r2 2 m

Axial extension L 0.4 m

Periodic direction z −
Angular velocity ω1 0 rad/s

Angular velocity ω2 5 · 10−3 rad/s

Characteristic length D2 D2 = 2 r2 = 4 m

Velocity at outer cylinder u2 u2 = ω2 r2 = 0.01 m/s

Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.5 · 10−3 m2/s

Dimensionless velocity un
φ un

φ =
uφ
u2

−
Dimensionless radius rn rn = r

r2
−

Reynolds number Re Re = u2D2
ν
= 26.67 −

Cells in gap 80 −
Spacing ∆x 0.0125 m

Time step ∆t 0.009 s

Lattice Mach number Ma Ma = u2
cs
= 0.0125 −

Relaxation parameter Ω 1.316 −
Free MRT relaxation parameter si 1.0 −

All parameters used for the benchmark calculations with SAM-Lattice are listed in Table 6.3.
The computational domain is set periodically in axial direction to obey L ≫ r2 and to simul-
taneously reduce the computational domain size. Since this is a steady case, simulations are
run until steady state is reached. Steady state is assumed if the error defined by Eq. (6.1) is
changing less than 10−12 per time step. Then the simulations are stopped. This criterion will
also be applied to the following steady flow calculations. For initialization of the distributions
the equilibrium distribution with a zero velocity is used.

Calculations are performed with the SRT and MRT model, using the boundary conditions
according to Bouzidi and Mei at the inner and outer cylinder, respectively. The velocity of the
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Figure 6.5: Results for Taylor-Couette Flow

outer cylinder is determined from the angular velocity u2 = ω × r2 and applied in the accord-
ing scheme. For code verification, a comparison between the analytical solution for uφ and the
SAM-Solver results is shown in Fig. 6.5(a) for the MRT Bouzidi case. The velocity un

φ is turned
dimensionless by u2 and, for better clarity, only every second point of the numerical solution is
depicted. We see a perfect match between the analytical and numerical results. A comparison
for the three remaining cases will be omitted here since they show the same excellent qualita-
tive behavior. Instead, we will have a look at the grid convergence of the different boundary
schemes.

Three coarser additional grids are used for the grid convergence study. Again the diffu-
sive scaling is applied for time step determination. Parameters, which change for the additional
grids, are listed in Table 6.4.

The results of the grid convergence study are drawn in Fig. 6.5(b). All error curves are in
a comparable range, there is no distinct favorite resulting from the combination of the different
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Table 6.4: Mesh Dependent Parameters for Taylor-Couette Flow

Cells in annulus 10 20 40

Spacing ∆x [m] 0.1 0.05 0.025

Time step ∆t [s] 0.576 0.144 0.036

Lattice Mach number Ma 0.1 0.05 0.025

Table 6.5: Average Grid Convergence Rate for Taylor-Couette Flow

Case SRT Bouzidi SRT Mei MRT Bouzidi MRT Mei

Average grid convergence in uφ 2.036 2.293 1.96 1.947

boundary schemes with the collision models. From the average convergence rate, listed in Table
6.5, the combination SRT Mei has the highest rate, but obviously the convergence rates of all
schemes are close to 2. This reveals that the advanced bounce back schemes are able to retain
the second order convergence of the method. The convergence rate of the MRT scheme can be
tuned by optimizing the free relaxation parameters si, but this will not be shown here.

Another very interesting point for steady state flows is the choice of the time step. In un-
steady flows the maximum time step is limited, due to the flow physics. In contrast, for steady
flows one tends to use large time steps to reach the steady state fast. As we know from Eqs.
(3.5), (3.25) and (3.29) the time step is directly linked to the lattice Mach number. Thus, in-
creasing ∆t will increase Ma, as we have experienced from the diffusive scaling as well. For a
fixed grid spacing, changes in ∆t also influence the value of the collision parameter Ω. When
dealing with (weakly) compressible flows, one is often willing to match the physical Ma in the
lattice as well. But for incompressible flows, the lattice Mach number is an artificial quantitiy
which influences the solution via the compressibility error EMa. From Eq. (3.81), we expect that
EMa decreases quadratically with ∆t on a fixed grid. In the same way, the overall error reduces
until it converges to the spatial discretization error Ex, when Ex gets dominant. To numerically
investigate the behavior of the overall error, Taylor-Couette flow, as defined above, is calculated
on mesh2, for different Ma or ∆t, respectively. The results of this parameter study are shown
for two cases, SRT Mei and MRT Bouzidi, in Fig. 6.5(c). Here, the global absolute error is
drawn against Ma on the top abscissa and against Ω on the bottom abscissa, respectively.

For both cases, the absolute error first decreases with Ma until a minimum is reached. The
minimum position differs in the SRT and MRT case. The results of [22] show that the location
of the minimum can be varied in the MRT case by changing the free relaxation parameters.
After the minimum, the error is rising again, what is contrary to Eq. (3.81), which predicts a
converging error in the incompressible limit, Ma→ 0. These observations can also be found in
literature [27, 56]. A possible explanation for this behavior is given by [56], who show that the
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LBM scheme can be expressed on the basis of equilibrium distributions only and the effective
stencil needed therefor depends on the relaxation parameterΩ. Hence, Ω directly influences the
scheme and there is a specific value of Ω for which the lowest error occurs. The quintessence of
this result is that smaller errors in incompressible flows are not necessarily achieved by reducing
the lattice Mach number. Instead, experience shows that the smallest errors usually occur in a
range of Ω between 1.0 − 1.4.

6.1.3 Couette Flow

In this subsection the accuracy of the shear boundary conditions will be checked. For this pur-
pose the well known Couette flow is investigated. As a first test case, the Couette flow in a
plane channel will be simulated, see Fig. 6.6. In the Couette flow, one of the channel walls
is moving with a certain velocity, while the other one is at rest. In our fictitious test case, we
assume that the upper wall is moving with utop in x-direction and at the lower wall a certain
slip appears. This slip is characterized by a specified shear τbottom. An analytical solution of
the Navier-Stokes equations with these boundary values can be achieved with certain additional
assumptions. These are based on steady, laminar flow in an infinite plane channel without pres-
sure gradients and external forces, see [106] for details. The Navier-Stokes equations simplify
in this case to:

d2u
dy2 = 0, (6.5)
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Table 6.6: Parameters for Plane Couette Flow

Parameter Value Unit

Half channel height H 1 m

Domain size Lx · Ly · Lz H · 2H · 2H m3

Periodic directions x, z −
Density ρ 1 kg/m3

Kinematic viscosity ν 1 m2/s

Velocity top wall utop 3 m/s

Shear at bottom wall τbottom 1 Pa

Dimensionless velocity un un = u
utop

−
Dimensionless coordinate yn yn =

y
Ly

−
Reynolds number Re Re = utop2H

ν
= 6 −

Cells per Ly 20 −
Spacing ∆x 0.1 m

Time step ∆t 9.62 · 10−4 s

Lattice Mach number Ma Ma = utop

cs
= 0.05 −

Relaxation parameter Ω 1.268 −
Free MRT relaxation parameter si 1.0 −

where the axis directions of Fig. 6.6 are used. If we assume that the origin of the coordinate
system is at the bottom wall, the velocity profile is achieved from Eq. (6.5) with the boundary
values:

u(y = Ly) = utop
du
dy

∣∣∣∣∣
y=0
=
τbottom

µ

⇒ u(y) =
τbottom

µ

(
y − Ly

)
+ utop . (6.6)

In the simulations, the domain, as shown in Fig. 6.6, is set periodically in x and z-direction
to reproduce an infinite expansion. The domain size is H x 2H x 2H, where H is half of the
channel height. To model the top wall, the bounce back rule, Eq. (3.45), is used. For the bottom
wall the shear bounce back (SBB) or the shear anti bounce back (SABB) schemes, as introduced
in Subsection 3.5.7, are applied. Once more, initialization is performed with an equilibrium of
zero velocity. Table 6.6 arranges the simulation parameters.
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Figure 6.7: Results for Plane Couette Flow

Since the bounce back rule is used, second order accuracy is only achieved if the top wall
is located half a spacing away from the first fluid node. This fact is considered during mesh
creation and the top and bottom wall are placed half a spacing apart from the adjacent fluid
nodes. Here, only the MRT collision model is considered, but the results are transferable to
SRT as well.

The streamwise velocity profile of the simulation for SBB and SABB are compared to the
analytical solution in non-dimensional formulation in Figs. 6.7(a) and 6.7(b). Normalization
is performed by utop for the ordinate and the channel height Ly = 2H for the abscissa. We
see an excellent agreement between theoretical and numerical results for both shear boundary
conditions. Next, a grid convergence study for both SBB and SABB is performed. Two further
meshes are constructed for this investigation, where the grid spacing is once doubled and once
halved compared to Table 6.6. Diffusive scaling is applied for the determination of the time
steps on the different grids. The parameters which differ to the primary mesh are listed in Table
6.7.
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Table 6.7: Mesh Dependent Parameters for Plane Couette Flow

Cells per Ly 10 20

Spacing ∆x [m] 0.2 0.05

Time step ∆t [s] 3.848 · 10−3 2.405 · 10−4

Lattice Mach number Ma 0.1 0.025

From the results of the convergence study in Fig. 6.7(c), we see that SBB and SABB errors
are about the same order of magnitude and second order spatial convergence is achieved. The
average convergence rate for SABB is about 2.9 and a bit higher than for SBB with 2.7. This
proofs that second order convergence is attained with SBB and SABB for axis aligned walls
located half a spacing off the first fluid nodes. Besides, these results also verify the standard
bounce back.

For verification of the shear schemes in complex domains, the Couette flow is used again,
but in the annulus domain, according to Fig. 6.4. In contrast to Taylor-Couette flow, the outer
cylinder is not rotating now, instead it is sliding in axial direction. If we assume once more
incompressible, steady, laminar flow, the absence of body forces and pressure gradients, and
L ≫ r2, an analytical solution of the Navier-Stokes equations is achieved for this type of flow,
see [130]. The only non-zero velocity component occurs in axial direction and is described by:

uz = C1ln(r) +C2 . (6.7)

The constants C1 and C2 are determined from the boundary conditions of our fictitious test
case. We assume a sliding outer cylinder in z-direction uz(r2) = uoc and a certain slip at the
inner cylinder τw(r1) = τic. Finally, the velocity distribution reads as:

uz =
τic

µ
r1ln

(
r
r2

)
+ uoc . (6.8)

Since the domain is the same as for Taylor-Couette flow, many simulation parameters can be
taken from Table 6.3. Table 6.8 shows only the parameters which are different to Taylor-Couette
flow. Wall modeling of the outer cylinder is performed by the Bouzidi scheme. SBB and SABB
are used at the inner cylinder. Again, the distributions are initialized with an equilibrium result-
ing from zero velocity. Only the SRT collision model is applied for this case, but results are
transferable to MRT.

Figures 6.8(a) and 6.8(b) contrast the simulation results of the SBB and SABB schemes
with the analytical solution in a dimensionless representation. An excellent match for both
shear schemes is also achieved for the more complex case. The remaining graph, Fig. 6.8(c),
depicts the outcome of a grid convergence study. For the grid convergence study three addi-
tional meshes are used and the mesh specific parameters are listed in Table 6.9. The results of
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Table 6.8: Parameters for Annulus Couette Flow

Parameter Value Unit

Angular velocity ω1 0 rad/s

Angular velocity ω2 0 rad/s

Axial velocity of outer cylinder uoc 3 m/s

Shear at inner cylinder τic 1 Pa

Density ρ 1 kg/m3

Kinematic viscosity ν 1 m2/s

Dimensionless velocity un
z un

z =
uz
uoc

−
Reynolds number Re Re = uocD2

ν
= 12 −

Cells in gap 40 −
Spacing ∆x 0.025 m

Time step ∆t 1.2 · 10−4 s

Lattice Mach number Ma Ma = uoc
cs
= 0.025 −

Relaxation parameter Ω 1.02 −

Table 6.9: Mesh Dependent Parameters for Annulus Couette Flow

Cells in annulus 10 20 80

Spacing ∆x [m] 0.1 0.05 0.0125

Time step ∆t [s] 1.92 · 10−3 4.8 · 10−4 3.0 · 10−5

Lattice Mach number Ma 0.1 0.05 0.0125
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Figure 6.8: Results for Annulus Couette Flow

convergence study reveal that absolute errors of SBB and SABB on the first three meshes are
quite equal, afterwards the SABB error is decreasing less than SBB. This is provoked by the
convergence behavior. The SBB scheme shows the expected second order convergence rate,
which comes to 2.4 in average. At first, the SABB’s convergence rate is second order, too. But,
when further refining the mesh, the boundary error gets dominant and the convergence rate re-
duces to first order. This is in accordance with the observations for the volumetric definition of
the scheme, which also offers first order convergence behavior [77].

In summary, the findings of this subsection verify the two proposed shear boundary condi-
tions in simple and complex domains.

6.1.4 Jeffery-Hamel Flow

To close the verification process of the core components, the grid refinement techniques needs
to be tested. This is done with the flow in a diverging channel as a benchmark case, see Fig.
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6.9. For fully developed flows in converging and diverging plane channels Jeffery and Hamel
provided an exact similarity solution of the Navier-Stokes equations. This similarity solution
results in an ordinary differential equation (ODE) for the velocity [130]. For the solution of the
ODE we use the variation of parameter method, as introduced in [65] for Jeffery-Hamel flows.
By applying this technique, an iterative scheme to calculate the velocity is derived, see [65] for
details. The calculation of our reference solution is performed by this iterative procedure with
the commercial software Mathematica.

Let us now introduce the case to be investigated and the numerical model used therefor. In
Fig. 6.9 we see that beside the actual diffusor an inlet and outlet zone is present. The sketch
of the geometry shows only a sectional view of the domain, since the domain is periodic in
z-direction to create an infinitely large channel. Table 6.10 lists the geometrical dimensions of
all parts of this test case. An additional inlet and outlet zone is necessary due to the applied
boundary conditions. At the inlet a constant velocity is specified according to the investigated
flow rate of Q = 5.338 m3/h. At the outlet a constant gauge pressure of pout = 0 Pa is prescribed.
Through the usage of constant values along the boundary, the flow needs some distance to de-
velop correct flow profiles. Within the Lattice Boltzmann model, the top and bottom wall of the
channel are modeled with Bouzidi’s scheme. An equilibrium distribution build with the gauge
pressure and an extrapolated velocity is used at the outlet. The Dirichlet condition at the inlet is
again realized with the Bouzidi scheme and a periodic condition was applied in z-direction. All
parameters of the numerical model are summed up in Table 6.10, too.

To test the refinement techniques, the grid is refined twice towards the upper and lower
channel wall, since high gradients are present in these regions. Both refinement levels contain
at least 6 cells, what is achieved by using the boundary related refinement technique. Due to the
different scaling procedures for SRT and MRT, calculations with both collision operators are
performed for verification. All distributions are initialized with an equilibrium of zero velocity.
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Table 6.10: Parameters for Jeffery Hamel Flow

Parameter Value Unit

Length inlet zone L1 0.6 m

Length diffusor L2 0.8 m

Length outlet zone L3 0.3 m

Half opening angle α 5 ◦

Extension in z-direction Lz 0.08 m

Periodic direction z −
Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.39 · 10−5 m2/s

Flow rate Q 5.338 m3/h

Gauge pressure at domain outlet pout 0 Pa

Dimensionless velocity un un = u
umax

−
Dimensionless angle position φn φn =

φ

α
−

Reynolds number Re Re = umaxrα
ν
= 10 −

Spacing in level 0 ∆x0 0.04 m

Time step in level 0 ∆t0 1.66 · 10−2 s

Lattice Mach number Ma Ma = umax
cs
= 0.1 −

Relaxation parameter in level 0 Ω0 1.8406 −
Free MRT relaxation parameter si 1.0 −

The velocity profiles of the diffusor flow are evaluated at three different x-positions of
0.2, 0.4 and 0.6 m. A result comparison of LBM and the reference solution at the different
positions is depicted in Fig. 6.10 by means of dimensionless parameters. Additionally to the
velocity profiles, the mesh at the according position is drawn in the graphic. The grid spacing
is constant at all positions. The optical change in the different subfigures is due to the normal-
ization and the different channel heights at the multiple diffusor positions. All plots for MRT
and SRT offer a perfect accordance between numerical and reference solution at every position.
At the grid interfaces, which are highlighted by the dashed vertical lines, smooth transitions are
observed, i.e., there are no discontinuities detectable.

An error calculation is omitted here, since there is no closed analytical form of the reference
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Figure 6.10: Results for Jeffery-Hamel Flow
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solution, which is instead achieved by a numerical process as well. The outcomes of the cal-
culation for Jeffery-Hamel flow verify the implemented grid refinements techniques for SRT as
well as for MRT.

6.2 LES Components
After the successful verification of SAM-Lattice’s core components, we will now test the large
eddy model, including the associated boundary conditions. The structure of this section is
orientated on the different boundary treatments, rather than on different flow types, as it is done
in the previous section. This change is motivated by the fact that the LES features will mainly
be tested for turbulent channel flow, since a very good DNS database is available for this case.

6.2.1 Wall Resolved Approach
The LES-LBM concept in combination the Smagorinsky model is applied to turbulent channel
flow for verification. First, the wall resolved approach is used, since no additional wall modeling
is adopted and the focus can be turned on the performance of the LES concept itself. We will
start with a single level grid and a channel flow for a friction Reynolds number Reτ = 180, what
corresponds to a Reynolds number Rec ≈ 4200, build with the according centerline velocity.
The flow domain is equal to Fig. 6.6 and periodic in x and z direction, but the domain size is
now 4H · 2H · 2H according to the minimum specifications of [62]. The flow setup is readily
explained: The two channel walls are handled by the standard bounce back. This implies that
the first fluid nodes off the wall are located 0.5∆x away from the wall and this is considered
in grid generation. Furthermore, to ensure an accurate boundary layer resolution the first fluid
nodes must fulfill y+ ≈ 1. The flow is driven by a uniform body force, which correlates to the
wall shear and the friction velocity, respectively, by:

f = ρa = −dp
dx

x =
τw

H
x =
ρu2
τ

H
x . (6.9)

As said before, Smagorinsky’s model (Eq. (4.12)) is used as subgrid model within the
LES methodology, see Chapter 4. The Smagorinsky constant Cs is chosen to 0.1. Due to the
required wall resolution y+ ≈ 1 and the uniform grid, the dimensionless spacing results in
∆x+ = ∆y+ = ∆z+ ≈ 2. This might be a quite fine resolution for a large eddy simulation, but
according to the numerical model, the LES should reduce to DNS if all scales are resolved.
The MRT collision model is applied, since SRT suffers from numerical stability problems and
spurious oscillations in this case. All distribution values are initialized with a zero velocity
equilibrium. In the course of the simulation the flow is accelerated by the body force and,
as a result, a turbulent flow is established. Evaluation of results is started after a statistically
steady state of the turbulent flow has been reached and performed over a period of 14H/uτ. For
convenience, all parameters of the domain and the simulation setup are summarized in Table
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Table 6.11: Parameters for Turbulent Channel Flow at Reτ = 180

Parameter Value Unit

Half channel height H 1 m

Domain size Lx · Ly · Lz 4H · 2H · 2H m3

Periodic directions x, z −
Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.39 · 10−5 m2/s

Friction Reynolds number Reτ Reτ =
uτH
ν
= 180 −

Friction velocity uτ 2.502 · 10−3 m/s

Acceleration |a| 6.26 · 10−6 m/s2

Dimensionless turbulent kinetic energy En(κ) En(κ) = E(κ)∑
κ E(κ) −

Dimensionless wave number κn κn = 2π f
umax

H −
Cells per H 90 −
Spacing ∆x 0.0111 m

Time step ∆t 1.07 · 10−3 s

Lattice Mach number Ma Ma = 24·uτ
cs
= 0.01 −

Smagorinsky constant Cs 0.1 −
Free MRT relaxation parameter si 1.0 −
Averaging period ∆T 14 H

uτ
s

6.11. The relaxation parameter Ω is not listed in the table since it is a local quantity depending
on the eddy viscosity νt.

Figure 6.11 shows an instantaneous snapshot of the flow field by means of u+ (Eq. (4.25))
for an overview. The turbulent nature of the flow is clearly visible. The next graphic in Fig. 6.12
depicts the mean velocity profile by means of u+ and y+. For comparison, the DNS results of
Moser et al. [88] are used as a reference solution. We see a very good match between the LES-
LBM results and the DNS data in all layers of the velocity profile. The turbulent fluctuations
u′+, v′+ and w′+ are drawn in Fig. 6.13. Again, the SAM-Lattice results agree very well with the
DNS solution. From the turbulent fluctuations we see that the LES is well resolved and most of
the turbulent fluctuations are represented, due to the high resolution. This is also expressed in
the ratio of νt/ν. It will not be shown here, but it is below 1 in the complete domain.
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To conclude this simulation, the spectrum of the turbulent kinetic energy is investigated. The
spectrum has been analyzed at a position y+ ≈ 41 and calculated by a Fourier transformation of
the velocity fluctuation as a function of time using Taylor’s hypothesis, see, e.g., [94] for details.
Figure 6.14 shows the normalized turbulent kinetic energy versus the normalized wave number.
Normalization of kinetic energy was performed by the total resolved kinetic energy and for the
wave number by the half channel height H. The wave number itself was calculated from the
according frequency by the following dispersion relation:

κ =
2π f
umax
, (6.10)

where umax is the average centerline velocity. The normalization of the turbulent energy in the
mentioned way allows us to see directly which percentage of the total energy is contained by
a certain wave number or a range, respectively. Commonly, the energy spectra are subdivided
into three regions [94]: The energy containing range, the inertial range and the dissipation
range. The energy containing subrange is formed from the large scales and extends up to a
dimensionless wave number κn ≈ 1. Afterwards the inertial subrange starts and reaches to
κn ≈ 20. Characteristic for the inertial subrange is a slope of −5/3 in the log-log plot. This slope
is well reproduced by the simulation, as a comparison with the reference line in the diagram
illustrates. Thereafter, the dissipation range begins and extends to the cutoff wave number
of the filter. The cutoff wave number of the numerical grid is in dimensionless description
κn = π

∆x H = 282.74. From Fig. 6.14, we see that the effective cutoff wave number is about 150
and reveals the difference to the analytical filter, as explained in Section 4.1.

Since there is no grid independency in LES, due to the facts stated above, no convergence
studies will be performed here. The results of the presented turbulent channel flow clearly
verify the LES-LBM scheme implemented in SAM-Lattice for single-level grids. Next, we will
perform verification for the multi-level scheme.
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Figure 6.14: Turbulent Kinetic Energy Spectrum

Table 6.12: Parameters for Turbulent Channel Flow at Reτ = 180 with Grid Refinement

Parameter Value Unit

Cells per H 45 −
Spacing in level 0 ∆x0 0.0222 m

Time step in level 0 ∆t0 2.14 · 10−3 s

Again, turbulent channel flow at Reτ = 180 is used as benchmark case for the LES-LBM
multi-level approach. Hence, we can keep it short and list only the differences of the setup
compared to the single-level case in Table 6.12. The grid spacing ∆x0 in level 0 is doubled
compared to the single-level case and the grid is once refined locally from the channel walls up
to y+ ≈ 43. Due to stability reasons only the MRT model is applied.

Let us go on with the results for the multi-level run, which hold the same presentations as
for the single-level run to allow direct comparisons. The instantaneous flow field in Fig. 6.15
visualizes the turbulent character of the flow. There are no disturbances at the grid interface
visible, the results at the grid transition are smooth. Figure 6.16 presents the mean velocity
profile as u+ versus y+. Comparison with the DNS data of [88] shows good agreement. The
velocity profile is smooth at the grid transition, but a slight deviation in the region of grid
transition is observable. Similar findings emerge from the turbulent fluctuations in Fig. 6.17,
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which additionally includes the grid structure as a direct reference. The results fit very well to
the DNS and to the single-level case in the fine level remote from the interface. Differences
between the SAM-Lattice solution and the reference and the single-level case, respectively,
occur in the area near the grid interface. The change of grid resolution seems to introduce slight
disturbances, which result in higher values of the turbulent fluctuations and are nonphysical.
Thus the flow is more turbulent, i.e., has a higher turbulent intensity, what also induces the wider
mean velocity profile in this region. Nevertheless, the results are feasible, since the fluctuations
are very sensitive quantities.

The turbulent kinetic energy spectrum for the multi-level run is depicted in Fig. 6.18 at
y+ ≈ 34. We get the same findings from the energy spectrum as in the single-level case. All
three ranges in the spectrum are recognizable, in the inertial range the slope of −5/3 is well
reproduced. At a dimensionless wave number of κn ≈ 75 a small peak is detectable. It is
assumed that this peak is also caused by the disturbances introduced from the grid transition.

Outcomes of the multi-level LES for turbulent channel flow prove that the scheme is feasible,
but the accuracy in the region of the grid interface is slightly reduced. Thus, grid interfaces
should be avoided in regions of interest as far as possible.

6.2.2 Wall Modeled Approach
After verification of the wall resolved approach, the wall modeled scheme will be verified in
this subsection. For this purpose, again turbulent channel flow is used, but now at a friction
Reynolds number Reτ = 2000 what corresponds to a centerline Reynolds number Rec ≈ 50000.
The fluid domain is still according to Fig. 6.6 with an equal case setup as for Reτ = 180. The
simulation parameters, which differ to the calculations at Reτ = 180 are specified in Table 6.13.

The first grid nodes for the test case are placed at y+ = 50 and the walls are placed in the
middle of the first cell, i.e., halfway between wall and fluid node. Thus, the mesh size is fixed
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Figure 6.18: Turbulent Kinetic Energy Spectrum for Multi-Level Run

Table 6.13: Parameters for Turbulent Channel Flow at Reτ = 2000

Parameter Value Unit

Friction Reynolds number Reτ 2000 −
Friction velocity uτ 0.0278 m/s

Acceleration |a| 7.728 · 10−4 m/s2

Cells per H 20 −
Spacing ∆x 0.05 m

Time step ∆t 4.12 · 10−3 s

Lattice Mach number Ma 0.1 −
Averaging period ∆T 60 H

uτ
s
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Figure 6.19: Instantaneous Velocity Field for Wall Modeled Approach (Cs = 0.1)

to be ∆x+ = 100 in wall units. By means of the two layer approach, as introduced in Subsection
4.3.1, the turbulent flow is treated. At both channel walls the boundary condition is set by the
wall function in combination with the shear anti bounce back scheme, due to stability reasons.
The eddy viscosity calculation is performed for the wall adjacent fluid nodes by the mixing
length model (Eq. (4.35)) and for all other nodes by the Smagorinsky model. As before, only
the MRT collision model is utilized thanks to its higher stability. Initialization is performed
with equilibrium at zero velocity, as used for the preceding simulations.

An instantaneous snapshot of the flow field by means of u+ in Fig. 6.19 depicts the turbulent
nature of the flow. Figure 6.20 presents the mean velocity profile via u+ vs. y+ for different val-
ues of the Smagorinsky constant Cs. For all values of Cs, the velocity at the first node matches
very good to the DNS solution. This confirms that the boundary condition and the wall function,
respectively, are working correctly. Furthermore, we see that for the commonly used value of
Cs = 0.1, the correct centerline line velocity of the DNS is met. But, the velocity profile in be-
tween the first node and the centerline deviates from the DNS. By increasing Cs this difference
and the centerline velocity are rising, as the case Cs = 0.125 reveals. For Cs = 0.075, the solu-
tion adapts to the DNS profile, which is mostly well reproduced. Only the centerline velocity
is underestimated by approximately 4.7%. If we look at the turbulent fluctuations in Fig. 6.21
for Cs = 0.1, the origin for the wider velocity profile gets obvious. All velocity fluctuations are
overpredicted towards the channel center, what is nonphysical and causes higher mean veloci-
ties. A precise reason for this behavior could not be found, yet. Among the possible factors is
the grid spacing (∆x+ = 100), which is relative large for LES, see Section 4.5. An indication for
this comes from the eddy viscosity ratio, which has a maximum value of approximately 36 and
may be to high for this Reynolds number. Also spurious oscillations might be an influencing
factor. The characteristic shape of u′ is met quite well, for v′ and w′ the peaks near the channel
wall are not reproduced.

Since the velocity profile is highly influenced by the Smagorinsky constant and the agree-
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Table 6.14: Mesh Dependent Parameters for Turbulent Channel Flow at Reτ = 2000

y+ 75 150

Cells per H 14 7

Spacing ∆x [m] 0.075 0.15

Time step ∆t [s] 6.19 · 10−3 1.24 · 10−2

ment to the DNS solution is much better for Cs = 0.075, it seems natural that more advanced
eddy viscosity models can improve the solution. At best, a dynamic model increases or de-
creases Cs in the according regions, as it is required by the flow physics and thus adapts to
the correct solution. The combination of a dynamic subgrid scale model and the wall modeled
approach is suggested for future work.

The influence of the grid spacing and the wall distance of the first node, respectively, is
investigated in Fig. 6.22 for the mean velocity profile. Additionally to the y+ = 50 grid, as
specified in Table 6.13, two further grids with y+ = 75 and y+ = 150 are used. All parameters,
which differ to the primary mesh are listed in Table 6.14. The Smagorinsky constant is chosen
to Cs = 0.075 for theses three cases. From the results we see at first that for each mesh the first
grid node lies on the DNS profile and verifies again the wall function implementation. Secondly,
the solution approximates better the DNS for decreasing wall distance or spacing, respectively.
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Figure 6.23: Turbulent Kinetic Energy Spectrum for Wall Modeled Approach (Cs = 0.075)

Figure 6.23 depicts the turbulent kinetic energy spectrum in the channel flow at a position
y+ = 450 from the calculation with y+ = 50 mesh and Cs = 0.075. The inertial range is clearly
reproduced and recognizable. Shortly before the cutoff length, a jump in En is visible, but the
reasons therefor are not clear. Again, possibilities may be the large grid spacing or spurious
oscillations, respectively.

The findings of this subsection reveal that the wall modeled approach captures well the mean
velocity profile in turbulent channel flow. Furthermore a strong dependency of the results on
the Smagorinsky constant is determined. The representation of the turbulent fluctuations is fair,
but here room for improvement, e.g., by another subgrid scale model, is at hand. All in all, the
correct implementation of the wall modeled approach is proven.

6.2.3 Synthetic Eddy Method

The remaining component of the proposed LES approach is the synthetic eddy method, used
for generation of synthetic turbulence at the domain inlet. Verification for SEM is conducted
for a decaying isotropic turbulence flow in an infinite domain. Figure 6.24 shows the domain,
which is set periodically in y and z-direction. The test case is inspired by the experimental setup
of [64]. At the inlet boundary of the domain a constant velocity u0 = 12 m/s in x-direction is
specified, which is superimposed by turbulent fluctuations generated by SEM. The synthetic
eddy method requires certain additional input parameters, which characterize the turbulence
as explained in Subsection 4.3.2. Since we are assuming isotropic turbulence here, things are
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greatly simplified. It is adequate to specify the turbulent intensity I = 15.4% and the turbulent
length scale l = 0.25 m, which are set equal to the values of the experiment [64]. The Dirichlet
boundary condition with the resulting velocity at the inlet is performed with the Bouzidi scheme.
At the outlet a constant gauge pressure is prescribed, which is numerically realized by an equi-
librium condition. The distributions are again initialized with a zero velocity equilibrium and
the MRT model is used. For convenience all simulation parameters are summed up in Table
6.15.

Since the focus of this test case is on the verification of SEM as a domain inlet condition, we
will only consider the flow field at the domain inlet in the sequel. Figure 6.25 shows on the left
hand side the instantaneous velocity components in the inlet plane by means of dimensionless
velocity components for an arbitrary point in time. The sub-figures on the right hand side depict
the dimensionless velocity components as a function of normalized time for a representative
point in the middle of the inlet plane. For clarity, the average velocity is indicated in the graphs
by the green line. All sub-figures of Fig. 6.25 illustrate the turbulent nature of the flow at the
inlet. For a more detailed verification, the statistics of the flow in the inlet plane are calculated
for the averaging period ∆T and are combined in Table 6.16. The statistical results reveal
that the turbulence is fairly isotropic and that the specified mean values are achieved. This data
yields a turbulent intensity of 15.46%. Thus, SEM produces the desired turbulent flow at the
domain inlet. The small differences between the resulting velocity statistics and the prescribed
values are expected to get even smaller for extending the temporal average period.

On the basis of these results, verification of SEM is provided. To close this chapter, it can
be concluded that the LES-LBM is now completely verified.
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Table 6.15: Parameters for SEM Test Case

Parameter Value Unit

Domain size Lx · Ly · Lz 8 · 0.91 · 1.22 m3

Periodic directions y, z −
Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.39 · 10−5 m2/s

Velocity at inlet u0 12 m/s

Turbulent intensity at inlet I I = u′
u = 15.4 %

Turbulent length scale at inlet l l = 0.25 m

Gauge pressure at outlet pout 0 Pa

Dimensionless velocity un un = u
u0

−
Dimensionless time tn tn =

tLz
u0

−
Spacing ∆x 0.02 m

Time step ∆t 1.44 · 10−4 s

Lattice Mach number Ma 0.15 −
Smagorinsky Constant Cs 0.1 −
Averaging period ∆T 15.63 Lx

u0
s

Table 6.16: Turbulent Statics at Inlet Plane

Component Mean Velocity [m/s] Velocity Fluctuation [m/s]

x-Velocity 12.005 1.866

y-Velocity −4.78 · 10−2 1.854

z-Velocity 3.72 · 10−3 1.849
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CHAPTER 7

Pump Intake Flows - Complex Validation Cases

After verification of SAM-Lattice in the last section, the next step in the V&V process is valida-
tion. As already explained, validation is mandatorily based on comparisons with experimental
data. In the scope of this section, validation of the LES module of SAM-Lattice will be per-
formed for pump intake flows. Pump intake flows are complex flows, containing lots of coher-
ent flow structures, and are of engineering interest due to their appearance in many plants. The
Lattice Boltzmann Method exhibits many properties, which are beneficial for handling pump
intake flows. In general, pump intake flows can be categorized into two groups: free surface and
pressurized intake flows. For every group, a representative member is analyzed in the following,
for which experimental data in literature is available. But, before coming to the actual test cases,
an introduction to pump intake flows is given.

7.1 Pump Intakes
The withdrawal of water for closed piping systems from open water, e.g., reservoirs or rivers,
is conducted with special hydraulic structures, which are called pump intakes or simply intakes.
Such intakes can be found, for example, in industrial plants, power plants or waste water sta-
tions. In the simplest case, the intake structure consist of an approach channel, which leads the
water to one or more pumps. Figure 7.1 depicts exemplary a free surface intake. For pressur-
ized intakes there is an additional wall at the top of the structure and the intake is completely
filled with water. Commonly, the intake structure includes flow guiding or flow controlling de-
vices, like floor or sidewall splitters and cleaning devices. In combination with these additional
devices the resulting geometrical structure of intakes is usually quite complicated. The flow
inside pump intakes is in general very complex and contains commonly many coherent vortex
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Figure 7.1: Exemplary Pump Intake and Geometrical Parameters

structures. If such vortices occur in the vicinity of the pump this can lead to unacceptable inflow
conditions for the machine, which have consequences such as loss of efficiency, vibrations, or
uneven impeller loading.

The vortices in intakes are classified, according to the location where they originate, as
free surface or subsurface vortices. Hence, free surface vortices cannot occur in pressurized in-
takes. According to [55] free surface and subsurface vortices are classified into different types,
depending on the vortex strength. The definitions of free surface vortex types are given in Table
7.1 and are schematically drawn in Fig. 7.2(a). Subsurface vortices can form from all wetted
walls, i.e., the side walls, the back wall and from the floor in free surface intakes, cf. Fig. 7.1.
Additionally, in pressurized intakes subsurface vortices can originate from the top wall. Classifi-
cation of the different subsurface vortex types is listed in Table 7.2 and schematically illustrated
in Fig. 7.2(b). According to state of the art criteria, there are only free surface vortices of type
1 or 2, respectively, and no subsurface vortices acceptable in intakes during operation [66].

Intake flow fields are observed to be highly unsteady and the vortices to be intermittent
and meandering. The flow field depends on the geometrical parameters of the intake, as listed
in Fig. 7.1, and the dimensionless parameters summarized in Table 7.3 [23]. Of course, the
flow field is determined by the Reynolds number, which is build here with the mean velocity
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Table 7.1: Types of Free Surface Vortices [66]

Type Definition

1 Weak rotation of fluid at surface

2 Weak rotation with a dimple in the surface swirl

3 Dye core vortex - to be detected only by visualization

4 Vortex pulling trash from the surface downwards

5 Vortex pulling air bubbles from the surface,

at times air bubbles entering the inlet nozzle

6 Constant air entraining vortex

Table 7.2: Types of Subsurface Vortices [66]

Type Definition

1 Vortex visible with dye, but not coherent

2 Coherent swirl

3 Visible through air coming out of solution

4 Visible through a vapor core, coming out of the fluid

Table 7.3: Dimensionless Parameters

Parameter Definition

Reynolds Number Re Re = ud ·d
ν

Circulation Number Nc Nc = Γ·dQ

Froude Number Fr Fr = uch√
g·S

Weber Number We We = u2
d ·ρ·d
γ
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(a) Classification of Free Surface Vortices [66]

(b) Classification of Subsurface Vortices [66]

Figure 7.2: Vortices in Pump Intakes
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ud and the diameter d in the pump. The circulation number specifies the circulation of the flow
in the approach channel and can thus be interpreted as a specification of the inflow boundary
condition. For normalization Nc uses the pump diameter d and the flow rate Q. Froude and
Weber number are of importance for free surface intakes, since they express the behavior of the
free surface. The Froude number, as ratio of inertial and gravitational forces, is build with the
average velocity in the approach channel uch, the gravitational acceleration g and the submer-
gence S of the pump. Lastly, We is the ratio between inertia and surface tension, which is build
with ud, d and the surface tension γ. By all these geometrical and flow parameters, the flow can
be influenced or changed.

Several design standards for pump intakes define rules and criteria to avoid the occurrence
of vortices in the intake and to achieve acceptable operating conditions for the pumps; see, e.g.,
[5]. Usually, physical model investigations are conducted to evaluate and/or optimize the flow
field in the intake. This model testing is expensive and time consuming, but as pump intakes
are big and expensive constructions and the operability of the pumps is one of the most crit-
ical aspects for many plants, intensive design verification is needed. Model tests exhibit the
disadvantage that it is not possible to hold all similarity rules at the same time [66] and thus
engineering estimations are always necessary.

Due to these cost and modeling aspects, it is advisable to analyze the flow field in pump
intakes by numerical methods. In this way, costs and turnaround times are reduced and by in-
vestigating the intake in real world dimensions, the need of estimating the similarity rules is
omitted. Of course, concluding experimental investigations are mandatory to validate the cal-
culations. In literature some studies regarding the numerical analysis of pump intakes can be
found. The first numerical studies of pump intakes used steady RANS approaches with k − ϵ
turbulence models ([23, 117]). In [24] the influence of different turbulence models on the ver-
tex structures in intakes was investigated for RANS schemes. Recent numerical analyses of
intakes were performed using commercial solvers with steady and unsteady RANS approaches,
e.g., [66, 91, 118], or using commercial or in-house LES solvers, e.g., [78, 122]. In all of the
mentioned studies, the governing equations are based on a macroscopic description of the flow.
Remembering the unsteadiness of the flow field in intakes, steady simulations are not feasible
to capture accurately the dynamics of the flow.

Based on the flow characteristics and the geometrical properties of intakes we can directly
highlight the advantages of the Lattice Boltzmann Method for dealing with pump intakes. LBM
is perfectly suited for calculating flows with lots of geometrical details, as it can occur in in-
takes. The marginal preprocessing effort allows us to test various variants during the design
process. As the nature of the flow and previous numerical studies in literature show, modeling
of the flow in a transient manner is essential. Furthermore, the highly vortical structure of the
flow is clearly better represented by a large eddy approach [122], what is obvious since less
modeling and more direct description of the flow physics is used. Pump intake flows are fit
and proper for LES, since the Reynolds number is typically ∼ 105. LBM is very efficient in
calculating transient flows, due to its intrinsic transient nature. In combination with the large
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Table 7.4: Geometrical Parameters of Free Surface Intake

Parameter Value Parameter Value Parameter Value

d 100 mm D/d 1.5 C/d 1.0

X/d 1.1 L1/d 0.65 L2/d 0.85

L/d 25.86 H/d 6.0

eddy approach proposed in this thesis, LBM appears as a high performance tool for intake and
similar flow calculations.

The first computations of pump intakes by LBM have been reported by the author in [107,
108]. The ability of the proposed LES-LBM to capture the flow field in pump intakes is analyzed
in the following sections. Special attention is turned to the potential of the numerical scheme
to reproduce the transient vortex behavior of intake flows, which results in very complex flow
structures and is challenging to model numerically. In the design process, the occurrence of
vortices is the deciding design criteria for modification.

All calculation presented in this chapter rely on the MRT collision operator, due to its su-
perior stability, and regular, non-refined meshes. The usage of multi-level grids in combination
with the wall resolved LES approach is omitted here, since the stability criteria of the multi-
level scheme (Ω0 < 1.995) would require several hundreds of millions of cells and is thus not
economical. Full resolution of boundary layers is not expected to be crucial for representing
the vortices in intake flows, because the flow field is dominated by inertia effects (cf. [4]) and
hence wall modeling should be appropriate.

7.2 Free Surface Intake
The benchmark case for the free surface intake is based upon the laboratory experiment of Oka-
mura et al. [91]. Figure 7.1 depicts the geometrical structure of the intake, which consists of an
approach channel and a single pump. All dimensions are chosen to replicate the experimental
model for comparison with the measurements and are listed in Table 7.4. It is remarkable to
notice that the pump is placed asymmetrically in the intake, what will provoke imbalances in
the flow and promote vortices. This case is one of the best documented free surface intakes
in literature, which contains all geometrical and flow parameters and simultaneously provides
measurement data. We will use this simple structure, although it does not include flow guiding
or cleaning devices and can thus not expose all capabilities of SAM-Lattice in handling com-
plex geometries.

Consistently to the experiment, two different flow rates, i.e., discharges of the intake and
two submergences are investigated. Out of these four parameters, three different operating
points are constructed in [91] and considered for simulation. Table 7.5 lists the operating point
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Table 7.5: Free Surface Intake - Operating Points (OP)

Flow rate Q [ m3

min ] Submergence S
d Re We Fr

OP1 1.0 1.3 2.122 · 105 6189.53 0.2139

OP2 0.6 1.3 1.273 · 105 2228.23 0.1283

OP3 1.0 0.5 2.122 · 105 6189.53 0.3448

dependent quantities and the according dimensionless parameters. The circulation number Nc
is not specified, since the circulation is not provided in the experimental data.

Let us first explain the numerical model applied for the intake flow simulations. Since
SAM-Lattice does currently not include multi-phase capabilities, an engineering workaround
based on single phase flow is used. So, the air above the water is neglected and the free sur-
face is assumed to be plane and treated as a frictionless wall. This modeling is motivated by
the experimental findings and the dimensionless parameters. In the experiments the surface is
described to be smooth, i.e., the amplitudes of the free surface waves are small. Due to the high
Weber number We > 1000, the influence of the surface tension and the resulting shear stress at
the free surface are negligible [23]. From an engineering point of view, this modeling is suffi-
cient. Because, the most important result is if vortices are entering the pump, regardless if they
are of single or multi-phase. Nevertheless, we have to assume that the dynamics of multi-phase,
i.e., air entraining vortices are comparable to single phase vortices at the free surface. Analog
to the experiment, the pump itself is modeled by a dummy. That means it is realized by a pipe
with the shape of the pump casing, but without impeller, see [91] for details.

Numerically, the frictionless free surface is realized by the specular reflection bounce back
scheme. The remaining solid walls of the intake and pump are modeled by the Mei scheme. At
the outlet of the fluid domain, which is at the end of the pipe, see Fig. 7.1, a constant static
pressure of 1 bar is specified by an equilibrium condition. The velocity for this equilibrium
is extrapolated from the fluid domain by a zero gradient assumption. At the inlet of the fluid
domain, which is the open end of the approach channel, the velocity according to the flow
rate is specified. To generate a turbulent flow at the inlet, SEM is used and the fluctuations
are superimposed to the mean velocity. Numerically, the velocity is prescribed by the Bouzidi
scheme. Since no details about the turbulent statistics at the inlet are given in [91], isotropic
turbulence with an intensity of 5% and a turbulent length scale of 7% of the channel inlet width
is assumed. Of course, this assumption will introduce additional errors, if it is far apart from
the experimental conditions. Smagorinsky’s constant Cs is chosen to 0.1. The time step for the
simulations is in the order of 6 · 10−5s, what corresponds to a dimensionless time step of ap-
proximately 1 · 10−3 · d/ud. With this time step size the maximum lattice Mach number is about
0.1. Recording of transient results for instantaneous analyses and averaging is started after an
initial period of 300 · d/ud to obtain a statistically steady state solution. The recording of results
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Table 7.6: Simulation Parameters for Free Surface Intake

Parameter Value Unit

Density ρ 1000 kg/m3

Kinematic viscosity ν 1 · 10−6 m2/s

Gravitational acceleration g 9.81 m/s2

Surface tension γ 72.75 · 10−3 Pa

Turbulent intensity at inlet I 5 %

Turbulent length scale at inlet l l = 0.07 · (L1 + D + L2) m

Gauge pressure at outlet pout 0 Pa

Characteristic length d 0.1 m

Characteristic velocity ud ud =
Q

(d/2)2·π m/s

Dimensionless coordinates xn, yn xn = x
d , y

n =
y
d −

Spacing ∆x 0.003 m

Time step ∆t ∼ 6 · 10−5 s

Lattice Mach number Ma Ma = 1.5·ud
cs
= 0.1 −

Smagorinsky Constant Cs 0.1 −
Free MRT relaxation parameter si 1.0 −
Averaging period ∆T 300 d

ud
s

is performed for another period of 300 · d/ud. Discretization of the fluid domain is done by an
regular grid with a spacing of 0.03 · d, resulting in approximately 7 · 106 cells in the domain for
operating point 1 and 2, and approximately 5 · 106 cells for operating point 3. For convenience
all simulation parameters are summarized in Table 7.6.

The results of these simulations have already been published by the author in [107, 108].
In the following we will focus at the main vortex structures present in the intake at operating
point 1 and 3 and compare them to measurements as far as these are provided by [91]. Results
for operating point 2 and comparison with literature results of other numerical schemes can be
found in the aforementioned publications of the author.

At first, we have to determine if the grid resolution is sufficient for LES. Since the ex-
perimental results do not provide measurements of the turbulent kinetic energy k, the ratio of
eddy viscosity to molecular viscosity νt/ν is used, which is introduced as single-grid estimator
in Section 4.5. The viscosity ratio shows values less than 20 in the intake itself and rises in the
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pump dummy to values less than 50, what is acceptable since the results in the pump itself are
not of particular importance.

Figures 7.3(a) - 7.3(d) illustrate the behavior of the free surface vortex structure at OP1 by
means of streamlines, which are released closely below the free surface. The different snapshots
show the vortex at four different instants of time. In Fig. 7.3(a) one vertex is clearly detected
which arranges between the pump and side wall 1. A period later, no free surface vortex is
present (Fig. 7.3(b)), only some swirl remains. The two remaining snapshots (Figs. 7.3(c) and
7.3(d)) reveal again one free surface vortex between the pump and side wall 1. The different
snapshots demonstrate the change of the vortex location and its structure with time. In the ex-
perimental studies one air entraining free surface vortex, located between pump and side wall
1, is detected. This air entraining vortex is intermittent and present for approximately 70% of
the measurement time (according to [91]). Furthermore, the free surface vortex is identified to
meander. This shows a good qualitative agreement between experimental observations and sim-
ulation results for the free surface vortex at this operating point. Furthermore, it demonstrates
the ability of the presented LES-LBM scheme to capture transient vortex behavior.

The dominating vortex structures in the intake at operating point 1 are illustrated in Fig.
7.3(e) by iso contours of the well-known Q-criterion (see e.g. [75]). In accordance to the pre-
vious streamline pictures, the core of the free surface vortex is detectable between the pump
and side wall 1. Furthermore, different subsurface vortices can be identified. There are sub-
surface vortices from both side walls, from the floor, and from the back wall. A more detailed
description of all vertex structures is given by streamlines of the time averaged in-plane velocity.
For every boundary of the intake, these streamlines are plotted in a plane close to the physical
boundary, what is depicted in Fig. 7.4.

In the free surface plane (Fig. 7.4(a)) the already known dominant vortex between the pump
and side wall 1 can be seen. Additionally, another small vortex is visible in this plane right next
to the dominant one. This small vortex is not documented in the experimental analysis. Maybe
it is too weak for an experimental detection, compared to the dominant vortex. Validation of
the free surface vortex position is performed by the measurements of [91] in Fig. 7.4(b). The
multiple measurement locations in the experiment illustrate the meandering of the free surface
vortex. As we can see, the time averaged position of the simulation fits excellently to the mea-
sured positions.

Unfortunately, there are no further measurements for the subsurface vortices provided at
this operating point. So, we can only interpret the numerical results at the remaining planes. In
the planes next to each side wall, Figs. 7.4(c) and 7.4(d), two vortices can be seen. The large
vortices correlate to the vortex cores visualized by the Q-criterion. Additionally, there is one
small vortex at ground level in each plane. It is noticeable that the vortices at side wall 2 look
more distorted compared to side wall 1. The floor plane, Fig. 7.4(e) shows a floor attached
vortex which is located under the pump bell (dashed line). In the back wall plane (Fig. 7.4(f)),
there is one dominant vortex detectable, corresponding to the Q-criterion.

We will continue with operating point 3, now. Compared to OP1, the water level, i.e., the
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submergence S/d, is reduced at a constant flow rate Q. As a result, the mean velocity in the
approach channel uch is increased, what effects the vortices in the intake. The result presentation
at OP3 is structured as before.

Figures 7.5(a) to 7.5(d) show the vortices at the free surface at four different instants of time.
The flow topology at the free surface is different to OP1. In Fig. 7.5(a) two vortices behind the
pump are present. For a better differentiation, the one next side wall 1 is again colored in yellow
and the other one, next to side wall 2, in blue. A time period later, Fig. 7.5(b), the yellow vortex
disappeared and left only some swirl, whereas the blue vortex is still traceable. Another period
later, both free surface vortices are gone, see Fig. 7.5(c). It is remarkable that all streamlines
run between the pump and side wall 2 here. In the last snapshot, Fig. 7.5(d), only the vortex at
side wall 1 is regenerated and involves the flow passing between the pump and side wall 2, too.
The findings for the free surface are again in good agreement with the experimental observation
of [91], who reported two air entraining vortices, which are intermittend and meandering.

Figure 7.5(e) displays the dominating vortex structures at OP3 with the help of the Q-
criterion. Beside the two free surface vortices, we see again one subsurface vortex originating
from each intake boundary. A detailed analysis of these structures is given by means of stream-
lines of the time-averaged in-plane velocity, as done for OP1, in Fig. 7.6.

At the free surface, the two already identified vortices behind the pump can be detected in
temporal average (see Fig. 7.6(a)). If we compare their position to the experimental locations
in Fig. 7.6(b), we get a perfect agreement. A cavitating subsurface vortex (type 4) underneath
the pump is reported in experimental investigations at this operating point. Of course, we can
not reproduce cavitation with the single-phase model used in this simulation. But, the floor
vortex is reproduced as shown by Fig. 7.6(e) and the time-averaged position of the floor vortex
is reasonable in the area of measured instantaneous locations for this vortex, see Fig. 7.6(f). For
the remaining boundaries, no measurement data is provided, so we can again only interpret the
simulation results. The time-averaged solution shows one dominant subsurface vortex on each
side wall plane. Analog to OP1, the one at side wall 2 is more distinctive. At the back wall (Fig.
7.6(g)), no dominant subsurface vortex can be identified in temporal average.

From these results for the free surface intake we can conclude that the LES-LBM scheme is
feasible to reproduce the multiple vortices in the intake occurring at different operating points.
Furthermore, transient features of the vortices, like meandering and intermittency are repro-
duced. Quantitative comparisons of the calculated and measured vortex positions show very
good agreement. Thus, we can highlight that the LES-LBM is able to reproduce the complex
flow and associated vortices in this pump intake and that the modeling assumptions applied to
the free surface are adequate. More detailed quantitative analyses are given in the next section,
since superior experimental results are available for that benchmark case.
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Table 7.7: Geometrical Parameters of Pressurized Intake

Parameter Value Parameter Value Parameter Value

D 160 mm d/D 0.8125 C/D 0.5

X/D 1.0 L/D 15.625 S/D 1.05

w1/D = w2/D 0.7125 w3/D 0.53125 H/D 1.9

S 1/D 0.5 S 2/D 1.5 S 3/D 3.1875

S 4/D 0.3125 S 5/D 0.21875 B1/D 0.25

B2/D 2.15625 B3/D 0.65625 B4/D 11.6875

7.3 Pressurized Intake

For validation of pressurized pump intake flow, the laboratory experiment published by [133,
134] is calculated. The geometry of the intake is depicted in Fig. 7.7(a) and the according di-
mensions are given in Table 7.7. This intake structure comes closer to a realistic pump intake,
it contains one pump and several splitters in the corners of the pump sump. An additional baffle
is used to create two separate approach channels. In the experimental studies, two dimensional
PIV measurements are conducted in certain planes, which are each perpendicular to one of the
principal axis and depicted in Figs. 7.7(b) and 7.7(c). The exact position of all used planes is
given in Table 7.8, where the notation is according to the original source [134]. From these
measurements, streamline plots and contour plots of the in-plane velocity and turbulent kinetic
energy are available. Additionally, the intake has been studied numerically by Navier-Stokes
based schemes (see, e.g., [122]).

In the benchmark case considered in the following, there is a large imbalance of the flow rate
in approach channel 1, Q1 = 0.905 m3/min, and channel 2, Q2 = 0.385 m3/min, what induces
an asymmetric flow in the pump sump and thus promotes the generation of vortices. Since the
intake is completely filled with water, a single phase modeling is fully correct, if we exclude
cavitation phenomena, and no additional modeling assumptions are needed. According to the
experimental studies, the pump itself is again modeled by a dummy, i.e., it is realized by a pipe
with the shape of the pump casing but without impeller, see [134] for details.

Setting up the numerical model for the pressurized intake is comparable to the free sur-
face intake. The outlet of the fluid domain, which is at the end of the pipe, see Fig. 7.7(a), is
represented by a pressure condition. A constant static pressure of 1 bar is specified by an equi-
librium condition. The velocity for this equilibrium is extrapolated from the fluid domain by a
zero gradient assumption. At the inlets of the fluid domain, which are the open ends of the as-
sociated approach channels, the velocities according to flow rates are specified. For generation
of turbulent fluctuations at the inlet, SEM is used and the fluctuations are superimposed to the
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Table 7.8: Evaluation Planes

Name Position Name Position Name Position

x2 x/D = 1.75 x3 x/D = 1.51875 x4 x/D = 1.25

x5 x/D = 0.98125 x6 x/D = 0.75 x7 x/D = 0.625

y1 y/D = 0.3125 y3 y/D = 1.125 z1 z/D = 0.3125

z2 z/D = 0.5 z3 z/D = 0.75 z5 z/D = 1.15625

mean velocity. Numerically, the velocity is prescribed by the Bouzidi scheme. Again no details
about the turbulent statistics at the inlets are given in the documentation of the experimental
investigations, so isotropic turbulence with an intensity of 5% and a turbulent length scale of
7% of the width of the approach channels is assumed. All solid walls are modeled by the wall
function in combination with the shear anti bounce back scheme. The Smagorinsky constant Cs

is set to 0.1, as usual, and the time step for the simulations is in the order of 2.5 ·105s. Resulting
from the time step size, the maximum lattice Mach number is approximately 0.1. After an initial
period of 100 · d/ud a statistically steady state is reached and after 150 · d/ud, the recording of
transient results for averaging and instantaneous analyses is started. The recording procedure
ranges over another period of 150 · d/ud, what corresponds to approximately 12 s of real time.
Discretization of the fluid domain is done by an regular grid with a spacing of 0.0125 · D, what
produces approximately 32 million cells. The simulation is run on 256 CPUs within 30 hours
of wall clock time. For convenience all simulation parameters are summarized in Table 7.9.

Let us start the result analysis with the evaluation of the grid resolution by means of single
grid estimators. The viscosity ratio ν/νt shows values less than 15 in the intake itself and rises in
the pump dummy up to values less than 37.5, what is acceptable. For a further estimation, Fig.
7.8 depicts the turbulent kinetic energy spectrum at a point P = (xn = 1.25, yn = 1, zn = 0.35)
directly under the pump center. We see that the inertial range, indicated by the −5/3 slope, is
resolved at this point. Both single grid estimators indicate the suitability of the grid. For a
general overview of the vortex structures present in the intake, Fig. 7.9 visualizes the vortex
cores in temporal average by means of the Q-criterion. Four large vortices can be identified at
first glance: one from each side wall, one from the floor and one from the top wall. The side
wall 1 vortex is weaker than the remaining vortices, what is indicated by a lower value of Q and
the blue color, respectively.

To start the validation procedure, we will compare the time averaged in-plane streamlines
of the numerical to the experimental results in Figs. 7.10 to 7.12 for the introduced measure-
ment planes. The numerical results are always drawn on the left hand side of the figures. The
experimental results are the shown on the right hand side of the according figures. Due to tech-
nical reasons of the PIV system, experimental results are only available for a certain area of the
measurements planes. This area is indicated by a red box in the numerical plots. Furthermore,
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Table 7.9: Simulation Parameters for Pressurized Intake

Parameter Value Unit

Density ρ 1000 kg/m3

Kinematic viscosity ν 1 · 10−6 m2/s

Gravitational acceleration g 9.81 m/s2

Flow rate at inlet 1 Q1 0.905 m3/min

Flow rate at inlet 2 Q2 0.385 m3/min

Characteristic velocity ud ud =
Q1+Q2
(d/2)2·π m/s

Reynolds number Re Re = ud ·d
ν
= 2.106 · 105 −

Dimensionless velocity un un = u
ud

−
Dimensionless turbulent kinetic energy kn kn = k

u2
d

−

Dimensionless vorticity ωn ωn = ω·dud
−

Dimensionless coordinates xn, yn, zn xn = x
D , yn =

y
D , zn = z

D −
Turbulent intensity at inlet I 5 %

Turbulent length scale at inlet l l = 0.07 · w1 m

Gauge pressure at outlet pout 0 Pa

Spacing ∆x 0.002 m

Time step ∆t ≈ 2.5 · 10−5 s

Lattice Mach number Ma Ma = 3·ud
cs
= 0.1 −

Smagorinsky Constant Cs 0.1 −
Free MRT relaxation parameter si 1.0 −
Averaging period ∆T 150 d

ud
s
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no results are provided in the pump dummy itself. Additionally to the measurement window,
the pump bell level and the shape of the pump bell are denoted by red lines in the numerical
outcomes.

Figures 7.10(a) and 7.10(b) face numerical and experimental results for the x2 plane. The
numerical result reveals two vortices in temporal average, which can be associated to the top and
side wall 2 vortex in Fig. 7.9. They are both outside of the measurement window. In accordance
to the numerical findings, the experimental result does not show a vortex in the measuring zone.
But, the converging streamlines in the experimental picture are in agreement to numerics and
suggest a similar vortex towards the bottom. In the x3 plane, the side wall 2 and the top vortex
can once again be identified; see Fig. 7.10(c). The side wall 2 vortex is now located in the
measuring zone, but cannot be found in the PIV results in Fig. 7.10(d). This may indicate that
the side wall vortices in the experiment is flatter and/or shorter. The remaining flow structure
in the experimental window is matched well by the simulations. Next, we look at the x4 plane
in Fig. 7.10(e), which cuts through the center of the pump. In addition to the top wall vortex
behind the pump, which is getting bigger from x2 to x4, another top wall vortex in front of the
pump is predicted. Conformity with the PIV result, Fig. 7.10(e), is found for the streamline
behavior in the measurement area.

If we go on to the next plane x5, which is shown in Fig. 7.11(a), we can only identify
one vortex at the top wall in front of the pump. The streamlines in the experimental area agree
well with the experiment, Fig. 7.11(b). Figure 7.11(c) examines the x7 plane. Here, the side
wall 1 vortex is clearly visible at the right end of the measurement window. In the outcome of
PIV (Fig. 7.11(d)), this vortex appears as well. The y position of the vortex in simulation and
experiment match very well, whereas the z position is underestimated in the numerics.

For the y planes no experimental streamline pictures are available in literature. To gain in-
sight in the flow pattern, Fig. 7.11(e) illustrates the numerical results in the y3 plane. Here, one
small vortex at the top wall on the left side of the pump is present.

The flow structure for the z planes is given in Fig. 7.12. In the z1 plane, the floor vortex is
the dominating structure; see Fig. 7.12(a). Besides this, two small vortices at the corners of the
back wall splitters are detectable. In the PIV result in Fig. 7.12(b), the floor vortex is outstand-
ing, too. The numerical and experimental positions of the floor vortex match excellently. For
the z3 planes things are a bit different. The vortex of the experiment (Fig. 7.12(d)) at the bottom
of the PIV window is reproduced in the simulation. However, an additional vortex in front of
the pump is forecast by the calculation, which is not indicated in the experiment. A similar flow
pattern is found in the z5 plane. Numerics predict three vortices in total, a small one in front of
the pump, another small one at side wall 1 and a large one right below the PIV window. The
large vortex is present in the experiment, its y position shows very good agreement between
calculation and experiment, whereas the x positions differ.

For more quantitative comparisons, the literature on the experimental studies provides con-
tour plots of the absolute in-plane velocity for some of the measurement planes. The contour
plots shown in the following are based on the non-dimensional velocity un. In the x6 plane,
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Figure 7.10: Time Averaged In-Plane Streamlines [Reprint of figures (b), (d) and (f) with per-
mission from ASCE. This material may be downloaded for personal use only. Any other use
requires prior permission of the American Society of Civil Engineers.]
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Figure 7.11: Time Averaged In-Plane Streamlines (2) [Reprint of figures (b) and (d) with per-
mission from ASCE. This material may be downloaded for personal use only. Any other use
requires prior permission of the American Society of Civil Engineers.]
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Figure 7.12: Time Averaged In-Plane Streamlines (3) [Reprint of figures (b), (d) and (f) with
permission from ASCE. This material may be downloaded for personal use only. Any other use
requires prior permission of the American Society of Civil Engineers.]
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Fig. 7.13(a), LES-LBM predicts the velocity quite well, all distinctive features of the PIV re-
sult in Fig. 7.13(b) are reproduced. For the x7 plane the conformity between calculation and
measurement is fair. In the simulation, the high velocity area above the pump bell level is not
as much developed as in the experiment, see Figs. 7.13(c) and 7.13(d). Good agreement is
found between Figs. 7.13(e) and 7.13(f) for the y1 plane. The numerical outcomes contain the
characteristics of the PIV image.

Equal conclusions hold for the y3 plane, depicted in Figs. 7.14(a) and 7.14(b). Numerics
represent the measurements excellent in this section. (Remember that no PIV results inside the
pump are available.) The two last pictures show z planes. In Figs. 7.14(c) and 7.14(d) the
findings for the z1 plane are displayed. Both results agree quite well, the simulation manifests a
slightly bigger area of high velocity around the center of the floor vortex. In the z2 plane, which
is located directly under the pump bell (Figs. 7.14(e) and 7.14(f)), the simulation predicts high
velocities nearly over the total bell mouth. In contrast, the PIV data reveals only a high velocity
area around the center of the floor vortex or pump, respectively.

In addition to the contour plots for the mean velocity, the literature contains plots for the
in-plane turbulent kinetic energy, which is build from the fluctuations of the in-plane velocity
components. Again, we will compare the outcomes of PIV and numerics in different planes, for
which experimental plots are available. As always, results are shown dimensionless by means
of kn. From these data, analyses of the reproduction of turbulent statistics can be drawn. We
will start with the x4 plane, which cuts through the pump center, in Figs. 7.15(a) and 7.15(b).
In the floor vortex, the turbulent kinetic energy is high, as it is demonstrated by experiment and
simulation. But, the experiment shows only a small region of very high kinetic energy, whereas
in the numerics nearly the complete floor vortex is of maximum intensity. This overestimation
of kinetic energy must be a numerical artifact, which indicates that the resolution in this area
should be further increased. Of course, the influence of the assumed turbulent intensity and
length scale at the domain inlet can have an effect on this result as well. In the x7 plane, the
accordance between PIV and LES-LBM is good, see Figs. 7.15(c) and 7.15(d). The shape of
the kinetic distribution is well reproduced in the calculation, only the maximum values differ a
bit to the experiment.A similar conclusion can be drawn for the y3 plane. Figures 7.15(e) and
7.15(f) agree excellently. The two remaining planes in Fig. 7.16 are for constant z coordinate.
Both in the z1 and in the z2 plane, the turbulent kinetic energy is high in the region of the floor
vortex. The simulation reproduces the energy distribution of the experiment very well.

Based on the velocity field, the vorticity can be calculated. Literature provides the exper-
imental vorticity fields for the out-of-plane component in the z1 and z2 planes. The vorticity
fields in these planes are compared to the numerical fields in Fig. 7.17, by means of the non-
dimensional vorticity ωn. High vorticities only occur in the area of the floor vortex. In general,
the conformity between experiment and simulation is good. In the z1 plane, the high vorticity
region is more distinctive in the PIV results than in the calculation.
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Figure 7.13: Time Averaged Absolute In-Plane Velocity [Reprint of figure (b) with permission
from IIHR. Reprint of figures (d) and (f) with permission from ASCE. This material may be
downloaded for personal use only. Any other use requires prior permission of the American
Society of Civil Engineers.]
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Figure 7.14: Time Averaged Absolute In-Plane Velocity (2) [Reprint of figures (b), (d) and (f)
with permission from ASCE. This material may be downloaded for personal use only. Any
other use requires prior permission of the American Society of Civil Engineers.]
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Figure 7.15: Time Averaged In-Plane Turbulent Kinetic Energy [Reprint of figure (b) with
permission from IIHR. Reprint of figures (d) and (f) with permission from ASCE. This material
may be downloaded for personal use only. Any other use requires prior permission of the
American Society of Civil Engineers.]
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Figure 7.16: Time Averaged In-Plane Turbulent Kinetic Energy (2) [Reprint of figures (b) and
(d) with permission from ASCE. This material may be downloaded for personal use only. Any
other use requires prior permission of the American Society of Civil Engineers.]

Finally, some pure quantitative comparisons are drawn on the basis of the velocity distribu-
tion and turbulent kinetic energy distribution along lines in some of the measurement planes.
All experimental curves are taken from [122]. Figure 7.18(a) depicts the absolute in-plane ve-
locity along a line in the y3 plane at position zn = 0.284. The numerical solution is able to
reproduce the shape of the velocity distribution of the experiment. Even more, the locations of
the maximum velocities match very well. Although, there are obvious differences. The value
of the maximum velocity in the simulation is remarkably smaller than in the experiment and
also the regions around the velocity maximum are wider in the experiment. At a different line,
zn = 0.138, in the y3 plane the distribution of k is given by the experiment. A comparison with
the simulation is shown in Fig. 7.18(b). Again, the characteristic curve shape is reproduced in
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Figure 7.17: Time Averaged Out-of-Plane Vorticity [Reprint of figures (b) and (d) with per-
mission from ASCE. This material may be downloaded for personal use only. Any other use
requires prior permission of the American Society of Civil Engineers.]

the calculation. The maximum locations differ slightly, even though the agreement is still good.
As a comparison of the maximum values reveals, approximately 90% of the turbulent kinetic
energy is resolved here. Thus, the LES is well resolved in this area.

Results are also available in the z1 plane for a line at xn = 1.25, analogous to the distri-
butions of u and k along the lines in the y3 plane. Figure 7.18(c) presents the numerical and
PIV outcomes for the velocity along this line. The numerics capture the shape and the different
velocity extrema of the experimental distribution, but the location of the extrema and their val-
ues differ. We see a similar behavior in the plot of the turbulent kinetic energy in Fig. 7.18(d).
Qualitatively, the shape is reproduced by the simulation, but higher values for k are predicted.
As said when analyzing the y3 plane, this is a numerical artifact.
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Figure 7.18: Quantitative Comparisons

A final assessment of the existing differences between the numerical results and the PIV mea-
surements is hard to make, since the uncertainty of the measurements is not clearly specified in
the according literature. Of course further calculations with different grids can be performed to
investigate and eliminate the numerical artifact of overpredicting k.

The findings of this section clearly demonstrate the capabilities of the proposed LES-LBM,
which is implemented in SAM-Lattice. The scheme enables a qualitative and quantitative rep-
resentation of the very complex vortical flow in pump intakes. Besides the results in temporal
average, even transient features of the flow field, like intermittency and meandering of vortices,
are captured accurately and realistically.



CHAPTER 8

Conclusions and Future Work

In this thesis a consistent large eddy approach for Lattice Boltzmann Methods has been pre-
sented. The proposed approach includes, in addition to a subgrid scale model for consideration
of the unresolved turbulent fluctuations, adequate boundary conditions. Wall treatment for tur-
bulent flows is distinguished into wall resolved and wall modeled schemes. For wall resolved
calculations, classical wall boundary conditions from the Lattice Boltzmann context are applied.
In the case of wall modeled simulations, the effect of the unresolved part boundary layer must
be considered appropriately. We have derived here a novel two layer wall model in the context
of large eddy simulation for Lattice Boltzmann Methods. Besides wall boundaries, turbulent
domain inlet boundary conditions are needed in most engineering flow problems. To create
appropriate turbulent fluctuations at the inlet, a technique for synthetic turbulence, the synthetic
eddy model, has been introduced into the Lattice Boltzmann Method.

For application to real world flow problems, the LES model has been implemented in the
CFD package SAM-Lattice, which has been created in the course of this work. SAM-Lattice
is capable of the calculation of incompressible or weakly compressible isothermal flows of
engineering interest in arbitrary three dimensional domains. The modular design of the CFD
package, the structure, and the principles of the different components were explained compre-
hensively. The basic principles of the Lattice Boltzmann Method, as it is used in SAM-Lattice,
were documented in detail as well. This documentation has been performed in an educational
sense, as it shall serve as a reference guide for students and researchers using SAM-Lattice.
LBM was derived from kinetic theory, i.e., the Boltzmann equation, where the different assump-
tions and limitations made throughout this process were highlighted. In this way, possibilities
to extent the method beyond its current limits are given.

Every development process of numerical methods requires verification and validation, which
was conducted in this thesis. Verification of SAM-Lattice was performed for different analyt-
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ical solutions of the Navier-Stokes equations in the laminar case. By means of Beltrami flow,
Taylor-Couette flow, Couette flow, and Jeffery-Hamel flow, the different collision models and
boundary conditions were proven. Results show the expected behavior: The program produces
time accurate solutions for transient flows and reveals second order spatial accuracy, as far as
the boundary conditions allow this. Also the applied grid refinement technique demonstrates its
feasibility. The large eddy model and its components, respectively, were verified with help of
turbulent channel flow, for which a large and confident DNS data basis is available. For the wall
resolved cases, excellent agreement between the Lattice Boltzmann results and the reference
solution was found. In the wall modeled example, also good accordance was detected. In com-
bination with the successful prove of the synthetic eddy method, the accuracy and feasibility of
the proposed LES model was shown.

To motivate new and broader applications of the Lattice Boltzmann Method in hydrodynam-
ics, the suggested approach was validated for pump intake flows. Representative intake flows
were considered for a free surface and a presurrized intake structure. In the case of the free sur-
face intake, an additional modeling concept for the free surface was motivated and applied, since
SAM-Lattice currently supports only single phase flows. Despite of this simplification, the pro-
posed Lattice Boltzmann model is feasible to reproduce the multiple vortices in the free surface
intake and the transient features of the vortices, like meandering and intermittency. Quantita-
tive comparisons of the calculated and measured vortex positions showed excellent agreement.
For the pressurized intake very detailed measurement results of velocity and turbulent kinetic
energy fields are available. This allowed comprehensive qualitative and quantitative validations.
As for the free surface intake, this second validation case revealed again that the large eddy Lat-
tice Boltzmann approach is able to qualitatively and quantitatively represent the very complex
vortical flow in the intake.

Some remarks for future work have already been given at the according positions in the text
and will be summarized in the following. Considerable advantages are expected from a dynamic
subgrid scale model within the LES. The dependency on the Smagorinsky constant can be re-
moved in this way and also the capabilities of the scheme can be extended to transitional flows,
by using an appropriate model. Instead of using a static wall function, the two layer approach
could be improved by solving a simplified equation, e.g., the thin layer Navier-Stokes equations
on a subgrid between the wall and the first fluid node. Another interesting and important topic
is the further stabilization of the multi-level scheme to enable wall resolved calculations for
higher Reynolds numbers, i.e., larger relaxation rates Ω. A promising possibility may be the
already mentioned filtering technique.

Additionally to these suggestions, which are direct deductions from the results and experi-
ences of this thesis, the development and application of Lattice Boltzmann schemes for com-
pressible and thermal flows are interesting, upcoming areas for LBM. As explained in this
thesis, the physics for such flows can be treated in LBM by larger discrete velocity sets. One
last field of application to mention here are rarefield gas flows, where conventional continuum
approaches fail. Here, LBM can use its kinetic nature to go beyond the continuum limit.



APPENDIX A

D3Q19 MRT Model

Equilibrium Moments in Terms of Fluid Density and Velocity
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Transformation Matrix M

(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1

(−1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1) ξ̃2

(1 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1) ξ̃4

(0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0) ξ̃

(0 −2 2 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0) ξ̃3

(0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1) ξ̃

(0 0 0 −2 2 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1) ξ̃3

(0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1) ξ̃

(0 0 0 0 0 −2 2 0 0 0 0 1 −1 −1 1 1 −1 −1 1) ξ̃3

(0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2) ξ̃2

(0 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1 −2 −2 −2 −2) ξ̃4

(0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0) ξ̃2

(0 0 0 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 0 0 0 0) ξ̃4

(0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0) ξ̃2
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(0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0) ξ̃3

(0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 1 −1) ξ̃3

(0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1) ξ̃3
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Relation between Macroscopic Stress Tensor σ and Moments mi
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Scaling Rules Coarse to Fine for MRT Scaling
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Nomenclature

Π Momentum flux tensor

ξ Velocity vector

δ Mean molecular spacing

Γ Circulation

γ Surface tension

κ Wave number

λ Free mean path

µ Dynamic viscosity

ν Kinematic viscosity

Ω Relaxation parameter

ω Collision frequency

∆c Cutoff filter length

τ Collision time

τw Wall shear stress

f Force

M Transformation matrix

m Moment vector

n Normal vector

q Heat flux
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160 NOMENCLATURE

S Strain rate tensor

u Fluid velocity

x Position vector

ζ Bulk Viscosity

a Acceleration

Cs Smagorinsky constant

cs Speed of sound

D, d Diameter

dξ Element of velocity space

dN Number of molecules

dV Volume element

E Error

e Internal energy

f Probability distribution function

Fr Froude number

g Gravitational acceleration

h Distance

k Boltzmann constant

Kn Knudsen number

L Length

lm Mixing length

M Moment of the distribution function

m Molecular mass

Ma Mach number

n Particle density

Nc Circulation number

p Pressure

Q Flow rate

qi Dimensionless wall distance
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R Gas constant

Re Reynolds number

S Entropy

T Temperature

t Physical time

uτ Friction velocity

wi Weighting factor

We Weber number

y+ Dimensionless wall distance

API Application programming interface

BREP Boundary representation

CAx Computer-aided technologies

CFD Computational Fluid Dynamics

CGNS CFD General Notation System

DNS Direct numerical simulation

GUI Graphical user interface

LBM Lattice Boltzmann Method

LES Large eddy simulation

MPI Message passing interface

MRT Multiple relaxation time model

ODE Ordinary differential equation

OP Operating point

RANS Reynolds averaged Navier Stokes

SAT Separating axis theorem

SEM Synthetic eddy method

SMP Shared memory parallelism

SRT Single relaxation time model

V&V Verification and validation

WM Wall modeled

WR Wall resolved
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