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Introduction

It is well known that the structure at a microscopic scale strongly in�uences the macro-
scopic properties of materials. Moreover, the advancement in imaging technologies allows
to capture the complexity of the structures at always decreasing scales. Therefore, more
sophisticated image analysis techniques are needed. This thesis provides tools to facilitate
the extraction of geometric features from images and the processing of the information with
applications to industrial production and to materials science. We consider di�erent types of
three-dimensional structures: particles, �ber systems, and foams. We enhance methods to
geometrically characterize these structures starting from three-dimensional images acquired
with micro-computed tomography (µCT). Moreover, we investigate which characteristics
are su�cient and necessary to infer the desired information. In the analysis of particles,
this consists in de�ning a collection of parameters to describe their size and shape. Just a
few features are su�cient to yield the classi�cation of particles required by the standards
of technical cleanliness. Concerning the application to materials science, we aim at �tting
stochastic models to the microstructures of materials. In particular, we develop techniques
to broaden the possibilities of model �tting without user interaction, while enriching the
features embedded in the models.

Chapter 2 deals with the problem of technical cleanliness in automotive industry. Safety
and e�ciency of assembled products can be reduced by the occurrence of residual dirt par-
ticles in single components. The damage that dirt particles can cause depends on their
shape, size, and material composition. Therefore, a complete geometric description of the
particles serves to evaluate how dangerous they are. International agreed standards provide
rules for the analysis of samples of particles based on two-dimensional images. However,
nowadays, it is possible to acquire images of the whole three-dimensional structures even
with desktop devices. Therefore, also the characterization needs to be extended to 3d. Each
particle is a connected compact set of which we observe a discrete representation in a binary
three-dimensional image. Our contribution is the de�nition of a collection of unambigu-
ous parameters that exhaustively describe three-dimensional shapes and can be e�ciently
estimated from the images. The parameters are obtained combining methods of classical
geometry, mathematical morphology and integral geometry. In particular, we describe the
size of an object via the length of the edges of the minimum volume bounding box, that
is, the cuboid with arbitrary orientation and minimum volume bounding the object. This
is the natural generalization of length and width based on two-dimensional images de�ned
in the current norms. We propose an optimized algorithm based on the results of Barequet
and Har-Peled (2001). An analysis of the estimation error due to discretization is provided
for all characteristics. Moreover, the standards of technical cleanliness require to classify the
particles into �bers and granules. The classi�cation is performed by looking at microscopic
images. Thus, it is left to the user to infer the class of a particle. We aim at generalizing the
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2 Introduction

de�nitions of the classes in the three-dimensional context and at providing objective rules
for the classi�cation based on the features estimated from the images. From the wide set
of features de�ned, we show that only a few su�ce to classify an object. Depending on the
size of the particles, we suggest to base the classi�cation either on the size of the minimum
volume bounding box or on the isoperimetric shape factors. In both cases, the classi�cation
for technical cleanliness can be obtained automatically.

Afterwards, we focus on materials science (Chapters 3-4). Di�erent approaches can be
taken to investigate how the physical properties of materials are in�uenced by the geometry
of their microstructure. One method consists in producing materials with di�erent geometry
at the microscale and then analyzing their physical properties. Another way is to proceed
analogously, but virtually. The geometry of the microstructures is embedded in a model
that has statistically the same characteristics. Simulations of the physical properties on the
model and on its variations improve the understanding of how geometry and physics are
related. Furthermore, this process allows to determine the geometric characteristics yielding
the desired properties in the materials. Thus, new materials are produced according to the
ideal geometry found through simulations only (virtual material design).

Even in high resolution images of materials' microstructures, segmentation of the com-
ponents of interest is not a trivial task. For instance, in case of �ber systems, it is often
impossible to separate the single �bers. Therefore, we cannot apply the same straightforward
methods for geometric characterization employed for the application to technical cleanliness.
Instead, one can only estimate either geometric features based on local information or con-
sider characteristics of the system as a whole. Naturally, the choice of the model is also
in�uenced by the amount of information that can be extracted from the images. The more
sophisticated the model, the wider is the set of characteristics that need to be estimated
from the image data.

Fitting a stochastic model to a sample means to �nd the parameters of the model that
feature statistically the same geometric characteristics as those observed in the sample.
Ideally, the parameters of a model are related to its geometric characteristics by analytical
formulae. However, this is rarely the case and the selection of the parameters needs to be
based on multiple realizations. The features of the realizations are compared with those
of the sample and the set of parameters generating the best �t is chosen. Of course, this
approach is time consuming and requires expert user interaction. Therefore, we examine
which factors mainly in�uence the validity of analytical relations between the parameters
and the characteristics of the model. When these rules are not available, we investigate
alternative strategies to allow automatic model �tting.

When considering �ber systems (Chapter 3), classic models of cylinders, such as the
Boolean model and the Poisson process of dilated lines, bene�t from a complete analyti-
cal description. For isotropic �ber systems, the Miles' formulae relate the intrinsic volume
densities of the union of �bers to the mean characteristics of the cylinders and to the in-
tensity of the process. Thus, theoretically, estimating only four characteristics of the union
of �bers from an image allows to deduce the parameters of the model. Nevertheless, to
optimize mechanical properties of composites or simply due to the production process, we
often observe anisotropic �ber orientations. We investigate this case in details, especially
for Poisson processes of dilated lines. We extend the results of Spiess and Spodarev (2010)
in order to have direct model �tting for polygonal cross sections. This method is applied to
model a sample of medium density �ber board. Its microstructure is characterized by high
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density packing of �bers with squared cross section typically lying in a plane. As �bers are
only a few pixels thick, it is not possible to estimate �ne characteristics of the single �bers.
Nevertheless, estimating the intrinsic volume densities is su�cient to �t Boolean models
and Poisson processes of cylinders with circular or squared cross sections. We observe that
with this coarse resolution, the di�erent cross sections cause only small di�erences in the
quantitative analysis of the realizations.

Di�erent problems arise when dealing with foams. We focus on characterizing and model-
ing the geometry of the pore system. Motivated by the literature (see Chapter 4), the model
of choice is random Laguerre tessellation. Pores or cells are modeled as convex polytopes such
that each facet is shared by two cells, each edge by three cells, and each vertex by four cells.
This property, called normality, is physically motivated and at the same time it allows to
reduce the number of parameters needed to describe the whole geometry of the tessellation.
To gain control of the volume distribution, we consider tessellations generated by systems
of non-overlapping spheres. However, this yields the loss of a full analytical description of
the model. Nevertheless, automatic model �tting can still be obtained by approximating
the characteristics of the tessellation depending on the parameters of the model (Redenbach,
2009). The �rst question we investigate is whether the model �tting procedure can be im-
proved while still allowing the automatic selection of the model parameters. Angles between
facets and between edges show low correlation with the features employed so far for model
�tting, that is, moments of volume, surface area, mean width, and number of facets per
cell. We show that the distributions of angles in Laguerre tessellations depend on the model
parameters. Thus, automatic model �tting can include also this information. Moreover, we
propose an algorithm to estimate angles from images of real foams. Considering samples of
closed cell polymer foams, it turns out that angles in random Laguerre tessellations �t well
to the samples even when not employed in the choice of the model parameters. Secondly,
we concentrate on the edge length distribution. In Laguerre tessellations many more short
edges than in real foams occur. To deal with this problem, the rich literature on models
for soap froth suggests to consider relaxed models, see for instance Kraynik et al. (2003).
Relaxation refers to topological and structural modi�cations of a given tessellation in order
to make it comply with Plateau's laws of mechanical equilibrium. We consider samples of
di�erent types of foams, closed and open cell foams, polymeric and metallic. To each sample,
we �t a random Laguerre tessellation and then relax some realizations. Then, we compare
the geometric characteristics of the model and of the relaxed tessellations. Whether the
relaxation improves the edge length distribution depends on the type and on the regularity
of the foam.

Parts of this work are published in the following articles and conference proceedings:

Irene Vecchio, Katja Schladitz, Michael Godehardt, Markus J. Heneka. Geometric
characterization of particles in 3d with an application to technical cleanliness. Bericht
des Fraunhofer ITWM, Nr. 207, 2011.

Irene Vecchio, Katja Schladitz, Michael Godehardt, Markus J. Heneka. 3D geometric
characterization of particle applied to technical cleanliness, Image Analysis & Stereol-
ogy, 32(3), 2012.

Irene Vecchio, Claudia Redenbach, Katja Schladitz. Fitting Laguerre Tessellations
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to the Microstructure of Cellular Materials. In 1st International Conference on 3D
Materials Science, John Wiley & Sons, 2012.

Irene Vecchio, Katja Schladitz, Claudia Redenbach. Laguerre tessellations: �tting a
model to rigid closed-cell polymer foams. In Proceedings Cellular Materials, Deutsche
Gesellschaft für Materialkunde, 2012.

Irene Vecchio. Stochastic models in materials science. In 2nd Young Researcher Sym-
posium (YRS), Fraunhofer Verlag, 2013.

Irene Vecchio, Claudia Redenbach, Katja Schladitz. Angles in Laguerre tessellation
models for solid foams. Computational Materials Science, 83:171�184, 2014.



Chapter 1

Foundations

In this chapter, we introduce the notation and recall some de�nitions which are fundamental
for our whole work. First, we remind the de�nitions of properties of sets in the d-dimensional
Euclidean space and summarize the basic concepts of image processing (Section 1.1). Then,
we introduce some notions of stochastic and integral geometry (Section 1.2).

Let N, Z and R denote the natural, integer and real numbers, respectively. Rd is the
d-dimensional Euclidean space.

For X,Y subsets of Rd, the Minkowski sum is de�ned as

X ⊕ Y = {x+ y : x ∈ X, y ∈ Y } =
∪
y∈Y

(X + y).

The Minkowski di�erence is de�ned as

X ⊖ Y = {XC ⊕ Y }C =
∩
y∈Y

(X + y),

where XC = Rd\X is the complement of X. Note that X⊖Y ̸= X⊕(−Y ). Moreover,
if Y is constituted by only one element, Y = {y}, then the Minkowski sum X ⊕ Y is
equivalent to the translation X+y. In this case, the Minkowski di�erence corresponds
to the translation X − y.

A set X ∈ Rd is bounded if there exists a ball Br with radius r > 0 such that X ⊂ Br,
it is (topologically) open if for each x ∈ X there exists ε > 0 such that x + Bε ⊂ X.
The interior int(X) of X is the largest topologically open set contained in X. The
(topological) closure of X is X = (int(XC))C . A set X is (topologically) closed if
X = X, it is topologically regular if X = int(X) and int(X) = int(X). A bounded and
topologically closed set in Rd is called compact.

A set X ∈ Rd is called morphologically open if it exists ε > 0 such that X = (X⊖Bε)⊕
Bε, morphologically closed if X = (X ⊕ Bε)⊖ Bε. Furthermore, X is morphologically
regular if it exists ε > 0 such that X is morphologically open and morphologically
closed with respect to Bε.
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6 Chapter 1 Foundations

For X,Y subsets of Rd, the dilation of X with Y is

X ⊕ Y̌ = {x− y : x ∈ X, y ∈ Y },

where Y̌ is the re�ection of Y . The erosion of X with Y is

X ⊖ Y̌ = {x ∈ Rd : Y + x ⊆ X}.

If Y is symmetric then dilation corresponds to the Minkowski sum and erosion to the
Minkowski di�erence.

1.1 Image analysis

We now recall some basics of image analysis. More details are found in Ohser and Schladitz
(2009, Chapter 3) or Redenbach et al. (2012a). A d-dimensional image can be seen as a
d-dimensional array. Its elements are are called pixels, although sometimes the term voxel is
preferred when d = 3. The distances between the pixels de�ne the underlying point lattice.
Usually, images are de�ned on the primitive cubic lattice Ld = aZd, where a > 0 is the
lattice distance or spacing. It is also possible to de�ne a lattice with di�erent spacing in each
direction: Ld

D = DZd, where D is a diagonal d-dimensional matrix. In fact, some imaging
techniques yield a di�erent lattice distance in each axis direction. Moreover, this freedom
can be useful in some applications. For instance, an anisotropic structure observed on Ld

can be made isotropic by a suitable choice of D.
In order to rigorously de�ne properties of discrete sets on Ld, it is necessary to specify the

connectivity rules among the lattice points. These rules are yielded by the adjacency system.
In two dimensions, this is completely determined by de�ning the neighborhood of a pixel. In
3d, however, a neighborhood alone does not su�ce to yield a consistent adjacency system.
The adjacency system has to be de�ned as a set of convex hulls yielded by 2×2×2 pixel
con�gurations. Moreover, it is important that the connectivity chosen for the foreground
is consistent with that of the background. More details and suitable adjacency systems
for background and foreground in three-dimensional images are illustrated in Ohser and
Schladitz (2009).

Let W be a compact window in Rd and V ⊂ R. Then, a d-dimensional image I is the
mapping

I : Ld ∩W → V.

If V is a set of only two elements, typically V = {0, 1}, then I is a binary image. Normally,
0 stands for black and represents the background, whereas 1 stands for white and represents
the foreground, i. e., the component of interest in the image. If the pixels can take more
than two values, we talk about grey-value images. Usually, V is a subset of N0, but images
with real values are also permitted.

Let us consider binary images. The foreground X̃ can be easily interpreted as the dis-
cretization of a set X ⊂ Rd: X̃ = X∩Ld∩W . Image analysis aims at extracting information
on X based on X̃. A way to obtain this, is by investigating the intersections of X̃ with a set
Y , which is called the structuring element. This is the principle of �lters. In general, �lters
can be used for smoothing, denoising, or extraction of features, e. g., edge detection.
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Morphological operations were de�ned and widely treated by Serra (1969) and Matheron
(1975). Dilation and erosion recalled above are two morphological operations that can be
combined to reconstruct the set X. In fact, although in general Minkowski sum and sub-
traction are not reverse operations, in case X and Y are both compact and convex sets, it
holds:

(X ⊖ Y̌ )⊕ Y = X,

(X ⊕ Y̌ )⊖ Y = X.

Therefore, for arbitrary X and Y we de�ne the morphological opening of X with the set Y
as

X ◦ Y = (X ⊖ Y̌ )⊕ Y,

whereas the morphological closing of X with the set Y is

X • Y = (X ⊕ Y̌ )⊖ Y.

Heuristically, morphological opening �cleans� the image of small components of the fore-
ground which do not belong to X. Morphological closing, conversely, �lls up small holes in
the foreground.

So far, we discussed operations on binary images. Nevertheless, �lters and morphological
operations can be de�ned also on grey-value images. Usually, they are applied in the prepro-
cessing step in order to denoise and smooth the structure before binarization. Furthermore,
it is sometimes convenient to work with grey-value images, as for instance obtained with
microscopy or computer tomography, as they contain more information about the original
structures than binary images do. For details see Ohser and Schladitz (2009, Chapter 4).

Further examples of feature extractions, image based characterization, reconstruction of
structures will be given throughout this work.

1.2 Stochastic geometry

Throughout our work, we focus on characterizing three-dimensional objects and complex
structures. Moreover, complex structures such as �ber systems or foams, can be seen as
realizations of stochastic models. These models are strongly based on the concept of random
closed sets. The key idea behind random sets is to generalize the concept of random variable
to a set-valued map. In this section, we �rst introduce a basic set of characteristics to
describe sets (not necessarily random). Then, we will rigorously de�ne random closed sets
(RACS) and the special case of point processes. Extensive treatments of random closed sets
and stochastic geometry can be found, for instance, in Schneider and Weil (2008) and Stoyan
et al. (1995). The �rst formalisms are due to Matheron (1975).

We recall that a σ-algebra in a topological space E is a non-empty collection of sub-
sets of E such that it is closed with respect to complementarity and to countable unions.
Consequently, it is also closed with respect to countable intersectations, the empty set ∅
and the whole set E also belong to the σ-algebra. The Borel σ-algebra of E, B(E) is the
smallest σ-algebra containing all the open (or closed) subsets of E. We will sometimes use
the notation B for B(Rd).
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We denote the sets of all closed, open, and compact subsets of Rd as F , G, and C,
respectively. Moreover, K is the set of all compact convex subsets of Rd and R is the convex
ring:

R = {X ⊂ Rd : X =
m∪
i=0

Ki, Ki ∈ K, m ∈ N, m < ∞}.

The extended convex ring S contains all the sets X ⊂ Rd such that X ∩ K ∈ R for all
K ∈ K. Bene�ting from all the above properties, the empty set belongs to F , G, C, K, R
and S. Moreover, it holds K ⊂ R ⊂ S ⊂ F and R ⊂ C ⊂ F , where all the inclusions are
strict.

For A ⊂ Rd, de�ne the sets

FA = {F ∈ F : F ∩ A = ∅}, FA = {F ∈ F : F ∩ A ̸= ∅}.

Then F can be equipped with the topology generated by

{FC : C ∈ C} ∪ {FG : G ∈ G}

and by the Borel σ-algebra B(F) generated by either {FC : C ∈ C}, {FG : G ∈ G},
{FC : C ∈ C} or {FG : G ∈ G}.

1.2.1 Intrinsic volumes

We begin by de�ning characteristics for compact convex sets and then extend the de�nition
to sets in R. The intrinsic volumes of a convex body K are de�ned starting from the volume
of its parallel set at a distance r ≥ 0:

K ⊕Br = {x+ y : x ∈ K, y ∈ Br}

where Br is the ball of radius r centered in the origin and ⊕ is called Minkowski sum. The
d-dimensional volume Vd of the parallel set can be expressed as a polynomial in r with
coe�cients depending only on K. This is stated in the following theorem (see Schneider
(1993, Chapter 4) for the proof):

Theorem 1.2.1 (Steiner formula)
Let K be a convex non-empty body in K. For r ∈ R, r ≥ 0, it holds:

Vd(K ⊕Br) =
d∑

k=0

rd−kκd−kVk(K), (1.1)

where κk is the volume of a k-dimensional unit ball and Vk(K) for k = 0, .., d are the intrinsic
volumes of K.

An alternative formulation of the Steiner formula de�nes quantities proportional to the
intrinsic volumes called Minkowski functionals or quermassintegrals Wj with j = 0, ..., d

Vd(K ⊕Br) =
d∑

j=0

rj
(
d

j

)
Wj(K). (1.2)
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Intrinsic volumes and Minkowski functionals di�er by a normalization factor

κd−kVk(K) =

(
d

d− k

)
Wd−k(K) (1.3)

for k = 0, ..., d, K ∈ K. However, the advantage of using the intrinsic volumes is that when
K has dimension smaller than d, Vk(K) does not depend on d (Schneider and Weil, 2008).

Inheriting the properties of the Lebesgue measure, the intrinsic volumes have the following
properties:

(a) invariance under rigid motions: Vk(θK + x) = Vk(K), for all θ ∈ SO(n), x ∈ Rn,
K ∈ K;

(b) additivity: Vk(K1 ∪K2) = Vk(K1) + Vk(K2)− Vk(K1 ∩K2), for K1, K2 ∈ K;

(c) continuity: given a sequence {Ki} ⊂ K such that Ki → K for i → ∞, K ∈ K, then
Vk(Ki) → Vk(K) for i → ∞.

Moreover, it holds

Theorem 1.2.2 (Hadwiger)
Let φ be an additive, continuous functional on K being invariant under rigid motions. Then
there exist constants ck with k = 0, ..., d such that

φ(K) =
d∑

k=0

ckVk(K)

for K ∈ K.

Hadwiger's theorem states the importance of the intrinsic volumes. Any functional with
the properties (a), (b), and (c) can be expressed as a linear combination of the intrinsic
volumes. In other words, the intrinsic volumes are a basis for the space of additive, continuous
functionals invariant under rigid motions.

Now, we extend the de�nition of intrinsic volumes to more general sets. This is possible
thanks to the additivity and the inclusion-exclusion principle. For X ∈ R, there exist convex
sets Ki ∈ K, i = 0, ...,m < ∞ such that X =

∪m
i=0Ki, then

Vk(X) =
m∑
i=0

Vk(Ki)−
m−1∑
i=0

m∑
j=i+1

Vk(Ki ∩Kj) + . . .+ (−1)m+1Vk(
m∩
i=1

Ki) (1.4)

for k = 0, ..., d. A generalization of the Steiner formula for polyconvex sets is presented
in Schneider (1993, Chapter 4). Furthermore, the extension for polyconvex sets yields that
the intrinsic volumes of X ∈ S observed on a compact convex window W are well de�ned
(X ∩W ∈ R by de�nition of S).

Geometric interpretation

The intrinsic volumes as well as the Minkowski functionals of convex bodies bene�t from a
straightforward geometric interpretation:
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Vd = W0 = V volume,

2Vd−1 = dW1 = S surface area,

2π
d−1

Vd−2 = dW2 = M integral of mean curvature,

· · ·
2κd−1

ωd
V1 =

2
κd
Wd−1 = b̄ mean width,

V0 =
1
κd
Wd = χ Euler number.

where ωk is the surface area of the unit ball in Rk.
The width of a body in a direction is the length of the orthogonal projection of the body

onto that direction. For a convex body K ∈ K, it can be expressed through the support
function:

h(K, x) = sup{xy : y ∈ K}, x ∈ Rd. (1.5)

Denoting a direction in Sd−1 as θ, the width of K in direction θ is h(K, θ) + h(K,−θ). The
mean width is de�ned as

b̄(K) =
2

ωd

∫
Sd−1

h(K, θ)dHd−1(θ). (1.6)

Moreover, for a convex polygon in R2 with perimeter p, the mean width is p/π. For a convex
polytope P in R3 with m edges, the mean width can be computed based on the length of its
edges ℓi and the angles between facets γi (Ohser and Schladitz, 2009):

b̄(P ) =
1

4π

m∑
i=1

ℓiγi. (1.7)

The integral of mean curvature, in d−dimension proportional to Vd−2, in 3d is equal to
the mean width up to a multiplicative constant. To simplify the geometric interpretation
of curvature, let us temporarily restrict to X being a morphologically regular set in R3,
i. e., a set that is morphologically closed and morphologically open. Then the two principal
curvatures 1/r1(s) and 1/r2(s) are well de�ned and �nite at each surface element s. The
integral of mean curvature, or integral of Germain's curvature, is

M(X) =

∫
∂X

1

2

(
1

r1(s)
+

1

r2(s)

)
ds, (1.8)

and the integral of total curvature or integral of Gaussian curvature is

K(X) =

∫
∂X

1

r1(s)r2(s)
ds. (1.9)

For a ball Br of radius r, both principal curvatures are constant and equal to 1/r. Therefore

M(Br) = 4πr and K(Br) = 4π.
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As done for the Steiner formula 1.2.1 in (1.4), the de�nitions of integral of mean and total
curvature can be extended to bodies in the convex ring. Note that this de�nition holds also
for bodies that do not have a smooth surface.

The integral of total curvature has dimension zero and is proportional to the Euler
number, or Euler-Poincaré characteristic. All convex bodies have Euler number equal to 1.
The Euler number is a topological parameter:

χ(X) = #{connected components} − #{tunnels} + #{holes}.

Holes and tunnels are two di�erent types of concavities. In case the body has a hole, its
complement is divided in two components, whereas in case of a tunnel, the complement is
connected. Roughly speaking, a hollowness inside an object, that cannot be seen from the
outside, is a hole, as for instance the inside of an empty eggshell. A tunnel, in contrast,
refers to a passage as in a torus or the handle of a cup.

The intrinsic volumes can be combined to de�ne factors that describe the shape of objects
or complex sets, more details are given in Section 2.1.2.

1.2.2 Random closed sets

As for random variables, the de�nition of random closed sets is based on an abstract prob-
ability space (Ω,A,P) where Ω is non-empty, A is a σ-algebra on Ω and P is a probability
measure: P : A → [0, 1]. The de�nitions in this section are referred to Matheron (1975).

De�nition 1.2.3 (RACS)
A random closed set Ξ is a Borel-measurable map de�ned on a probability space (Ω,A,P)
with values in F furnished with the σ-algebra B(F), that is, for all F ∈ F the inverse image
under Ξ is measurable, Ξ−1(F ) ∈ A. The image measure PΞ of P under Ξ is the distribution
of Ξ.

The distribution characterizes the random closed set in the sense that two random closed
sets Ξ1 and Ξ2 having the same distribution are said to be stochastically equivalent and
we write Ξ1 ∼ Ξ2. Note that Ξ1 and Ξ2 may be de�ned on di�erent probability spaces.
Moreover, a random closed set Ξ is characterized by the capacity functional T : C 7→ [0, 1]

T (C) = PΞ(FC) = PΞ(Ξ ∩ C ̸= ∅).

The importance of this functional is expressed by the Choquet theorem. It states that the
distribution of a random closed set can be completely determined by a functional on compact
sets, namely the capacity functional. We de�ne by recurrence a set of functionals depending
on T

S0(C) = 1− T (C)

Sk(C0;C1, ..., Ck) = Sk−1(C0;C1, ..., Ck)− Sk−1(C0 ∪ Ck;C1, ..., Ck−1)

for C0, ..., Ck ∈ C, k ∈ N.

Theorem 1.2.4 (Choquet)
Let T : C → R be a function with the following properties
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(a) 0 ≤ T ≤ 1, T (∅) = 0,

(b) if C1, C ∈ C and Ci ↘ C, then T (Ci) → C,

(c) Sk(C0;C1, ..., Ck) ≥ 0 for C0, ..., Ck ∈ C, k ∈ N0.

Then there exists a uniquely determined probability measure P on F with

T (C) = P(FC)

for all C ∈ C.

A function with the properties (a), (b) and (c) is called an alternating Choquet capacity
of in�nite order. Choquet's theorem yields that a function T with such properties is a
capacity functional for some random closed set Ξ with distribution PΞ = P. For example,
one can de�ne Ξ as the identity map on (F ,B(F),P). For the proof, we refer the reader to
Schneider and Weil (2008, Section 2.2).

Further important properties that RACS might have are

two random closed sets Ξ1 and Ξ2 are independent if

P(Ξ1 ∈ A1,Ξ2 ∈ A2) = P(Ξ1 ∈ A1)P(Ξ2 ∈ A2)

for A1, A2 ∈ A;

a random closed set Ξ is stationary or macroscopically homogeneous if its distribution
is invariant under translations, i. e.,

Ξ ∼ Ξ + x, x ∈ Rd;

a random closed set Ξ is isotropic if its distribution is invariant under rotations, i. e.,

Ξ ∼ θΞ, θ ∈ SO(Rd).

Stationarity and isotropy can be equivalently expressed by means of the capacity functional
T as

T (C) = T (C − x), x ∈ Rd, and

T (C) = T (θ−1C), θ ∈ SO(Rd),

(1.10)

respectively, for all C ∈ C.
The mean value function of a RACS Ξ is de�ned by replacing Ξ with the stochastic

process generated by its indicator function 1Ξ

m(x) = E[1Ξ(x)] = P(x ∈ Ξ) =

∫
Ω

1Ξ(ω)(x)P(dω) =
∫
F

1F (x)PΞ(dF ) (1.11)

for x ∈ Rd (Schneider and Weil, 2008). If Ξ is stationary, then the mean value of Ξ is
independent of x. If Ξ is stationary, the covariance of Ξ is de�ned as

C(x) = P(0 ∈ Ξ, x ∈ Ξ) (1.12)

for x ∈ Rd. In case Ξ is also isotropic, the covariance depends only on the norm of x,
C(x) = C(∥x∥).
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Intrinsic volume densities

Now, we extend intrinsic volumes to characterize random closed sets. Let us assume that Ξ
is a stationary RACS with values almost surely in the extended convex ring S. Then X ∩K
can be expressed as a �nite union of convex sets. Let us denote #(Ξ ∩ K) the minimum
number of convex sets necessary to represent Ξ ∩K. We assume that E[2#(Ξ∩K)] < ∞ for
all K ∈ K. Let us suppose to observe Ξ in a compact convex window W with non empty
interior and with positive volume Vd(W ). The intersection of Ξ with the window belongs to
the convex ring, therefore the intrinsic volumes Vk(Ξ ∩W ) are well de�ned, for k = 0, ..., d.
Avaraging stochastically and spatially, the intrinsic volume densities of Ξ are de�ned as
follows

VV,k(Ξ) = lim
a→∞

E[Vk(Ξ ∩ aW )]

Vd(W )
(1.13)

for k = 0, ..., d− 1 and

VV,d(Ξ) =
E[Vd(Ξ ∩W )]

Vd(W )
, (1.14)

that is the volume density or volume fraction of Ξ. The volume density can be interpreted
as the expected volume of Ξ observed in a unit volume window. Moreover, thanks to sta-
tionarity, it holds

VV,d(Ξ) = P(0 ∈ Ξ) = T ({0}) = E[1Ξ(0)].

We remark that the covariance C(x) of Ξ can be interpreted as the volume density of the
stationary random closed set intersected with its translations, for x ∈ Rd

C(x) = VV,d(Ξ ∩ (Ξ− x)).

For the lower dimensional intrinsic volume densities, the existence of the limit is guaran-
teed by the properties of the intrinsic volumes and the integrability condition given above
(Schneider and Weil, 2008). A geometric interpretation analogous to that given for the
intrinsic volumes of polyconvex sets is valid. In 3d:

VV,3 = VV volume density (or speci�c volume),

2VV,2 = SV surface area density (or speci�c surface area),

πVV,1 = MV density of the integral of mean curvature,

VV,0 = χV density of the Euler number.

Intrinsic volume densities can be combined to obtain a shape factor that characterizes
unions of closed sets. The structure model index (SMI) is de�ned as

fSMI = 6
VV S

′
V

S2
V

= 12
VVMV

S2
V

. (1.15)

It is considered a shape factor for systems of objects because it has di�erent values for
qualitatively di�erent structures. For instance, it is equal to 0 for systems of planes, 4 for
systems of non-overlapping balls, 3 for non-overlapping cylinders. It can be estimated on
images of structures without the need to mesh the surface (Ohser et al., 2009b). More
examples will be given in Chapter 3 and 4, where the SMI will be used to characterize �ber
systems and foams.
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1.2.3 Point processes

Point processes are a special case of random closed sets with the property that they are
almost surely locally �nite. To rigorously de�ne point processes, we �rst recall the notion of
counting measures. We refer to Schneider and Weil (2008, Chapter 3) for proofs and more
details.

A measure η de�ned on the Borel sets of Rd is locally �nite if η(C) < ∞ for all compact
sets C ∈ C. We denote the space of all locally �nite measures on Rd as M = M(Rd). This
space can be equipped with the σ-algebra M for which all the maps ΦA for A ∈ B are
measurable, where

ΦA : M → R ∪ {∞}
η 7→ η(A).

A measure η ∈ M such that η(A) ∈ N0 ∪ {∞} for all A ∈ B is a counting measure on
Rd. Let N be the set of all counting measures on Rd. Then N is a measurable subset of M.
We equip N with the σ-algebra N induced by M .

Interpreting a point of Rd as a measure allows to construct a counting measure. We
identify x ∈ Rd with the Dirac measure δx

δx(A) =

{
1 x ∈ A

0 x /∈ A

for A ∈ B. Then, the �nite or countable sum

η =
k∑

i=1

δxi
, for k ∈ N0 ∪ {∞}, xi ∈ Rd

is a counting measure on Rd. If the points xi are pairwise distinct, η({x}) ≤ 1 for all
x ∈ Rd and η is called simple. The space of simple counting measures is referred to as Ns.
Moreover, every counting measure η ∈ N can be expressed as a �nite or countable sum of
Dirac measures (Schneider and Weil, 2008, Lemma 3.1.3). This allows to associate to each
counting measure the set of points xi ∈ Rd for i = 1, ..., k with k ∈ N0 ∪ {∞}, thence the
intuitive interpretation of point processes as random collections of points in space.

De�nition 1.2.5
A (random) point process Φ is a measurable map de�ned on a probability space (Ω,A,P)
with values in N furnished with the σ-algebra N . If Φ is de�ned on Ns supplied with
the induced σ-algebra Ns, then Φ is a simple point process. The distribution of the point
process is the image measure PΦ of P under Φ. The measure Λ(A) = E[Φ(A)] for A ∈ B is
the intensity measure Λ of Φ.

If Φ is simple, the value of Λ on a set A is the mean number of points of Φ in A. If
the point process Φ is stationary, then the intensity measure is absolutely continuous with
respect to the Lebesgue measure, i. e., there exists a constant λ > 0 called the intensity of
Φ such that

Λ(A) = λVd(A) (1.16)

for A ∈ B.
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Theorem 1.2.6 (Campbell)
Let Φ be a point process on Rd with intensity measure Λ and let f : Rd → R be a non-negative
measurable function, then

∫
Rd fdΦ is measurable and

E

∫
Rd

fdΦ

 =

∫
Rd

fdΛ.

The proof is based on the de�nition of the intensity measure and on the fact that the
statement holds for indicator functions on Borel sets (Schneider and Weil, 2008).

Another useful measure to characterize point processes is the Palm distribution. The idea
is to consider the distribution of the process given that the origin belongs to the process.

De�nition 1.2.7 (Palm distribution)
Let Φ be a point process with values in (N ,N ), then the Palm distribution P0 of Φ is given
by

P0(A) =
1

λ
E

[∑
x∈Φ

1[0,1]d(x)1A(Φ− x)

]
for A ∈ N .

For an arbitrary point x ∈ Rd, the Palm distribution is de�ned as Px(A) = P0(A − x),
A ∈ N .

In image processing applications, sometimes an alternative nomenclature for point pro-
cesses is adopted (Ohser and Schladitz, 2009). Instead of the terms point process and
intensity, point �eld and density are preferred as they more clearly indicate the space (and
not time) dependence.

Poisson point process

De�nition 1.2.8
A simple point process Φ on Rd with intensity measure Λ is a Poisson point process if

for each A ∈ B with Λ(A) < ∞, Φ(A) has Poisson distribution with parameter
E[Φ(A)] = Λ(A) (Poisson counting variables), and

for pairwise disjoint Borel sets A1, ..., Am ∈ B, m ∈ N the variables Φ(A1), ...,Φ(Am)
are independent (independent increments).

Note that Φ has Poisson counting variables if and only if it holds

P(Φ(A) = k) = e−Λ(A)Λ(A)
k

k!

for k ∈ N0 and A ∈ B. Moreover, this property yields the property of independent incre-
ments (Schneider and Weil, 2008). If a Poisson point process is stationary, then it is also
isotropic. In fact, stationarity implies that there exists λ > 0 such that Λ = λV , with V the
Lebesgue measure in Rd. Then, if θ ∈ SO(Rd) is a rotation, θΛ = Λ due to the invariance
under rigid motions of the Lebesgue measure. Poisson processes are the most analytically
tractable point processes.
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Generalized point processes

Point processes can be generalized by considering counting measures on a space E more
general than Rd. E is required to be a topological locally compact space with a countable
base on which a Borel σ-algebra is de�ned. Poisson processes on E can be stationary but not
isotropic. For example, E may be a subspace of F with certain properties. A process of k-
�ats is a point process in the space of k-dimensional a�ne subspaces of Rd for k = 0, ..., d−1.
With k = 1 and k = d − 1, we talk about processes of lines and of �ats or hyperplanes,
respectively. By dilating a Poisson line process with a compact structuring element, a Poisson
cylinder process, or Poisson process of dilated lines, is obtained. This process will be widely
treated in Section 3.2.2.

Another class of generalized point processes are marked point processes. Heuristically, to
each point we assign a random mark, or weight, in R or in a general space.

De�nition 1.2.9
Let M be a locally compact topological space with a countable base. A marked point process
in Rd with mark space M is a simple point process Φ in Rd ×M with intensity measure Λ
such that

Λ(C ×M) < ∞
for all C ∈ C.

Projecting the marked point process Φ via the map (x,m) 7→ x, we obtain the ground
process or unmarked point process Φ0. For example, one can de�ne a marked point process
with M = N such that the mark corresponds to the multiplicity of the point. In this way, an
arbitrary point process, also a non simple one, can be interpreted as a marked point process.

Usually, translations and rotations of a marked point process only apply to the �rst
component, i. e., to the ground process. Stationarity and isotropy of the marked process
depend on both the properties of the ground process and of the marks. Given Λ > 0,
the intensity measure of a marked point process Φ with stationary ground process has the
following decomposition (Schneider and Weil, 2008)

Λ = λV ⊗Q (1.17)

where λ > 0 is the intensity of Φ and Q is a probability measure on M called mark dis-
tribution. Moreover, Q is uniquely determined. Note that λ is also the intensity of the
(stationary) ground process Φ0. Thanks to Campbell's theorem, it holds

Q(A) =
1

λ

∑
(x,m)∈Φ

1B(x)1A(m)

for B ∈ B(Rd) with V (B) = 1 and A ∈ B(M).
When the marks are compact sets, we talk about germ-grain processes, then the distri-

bution Q is often referred to as grain distribution (Schneider and Weil, 2008). The Boolean
model (Section 3.2.1) is an example of germ-grain process such that the ground process is
a Poisson point process. The orientation distribution of the grains determines whether the
process is isotropic. Other examples are given by interpreting cells, facets, edges, and vertices
of a random tessellation as marked point processes with marks in the space of k-dimensional
polyhedra, with k = 0, ..., 3, see Section 4.1.



Chapter 2

Characterization of 3d objects

As imaging technologies improve, object characterization based on 2d images becomes less
relevant. It is now possible to capture the whole spatial complexity of objects even with
desktop devices. Consequently, the demand for fast and simple methods to characterize size
and shape in 3d grows. Our contribution to the analysis of unconnected objects is to de�ne
a collection of unambiguous parameters that exhaustively describe three dimensional shapes
and can be e�ciently estimated from the images.

Shape is an essential information in many application �elds. For instance, morphology
of cellular or molecular particles o�ers an insight into the chemical reactions occurring in
the originating process (Merson-Davies and Odds, 1989; Landry et al., 1999). Analyzing
the shape of grains yields information on their material composition (Santamarina and Cho,
2004). Furthermore, in Ehrlich and Weinberg (1970) and Livsey et al. (2013) a morpho-
logical characterization is applied to deduce the environmental formation of grains and the
history of sediments in Antarctica. The shape of graphite particles a�ects the thermal prop-
erties of cast iron (Velichko et al., 2008). In geology (Kaminski et al., 2008), hydrodynamic
(Stückrath et al., 2006), mechanical engineering (Lin and Miller, 2005), and several other
applied sciences, a thorough description of particle shapes improves the understanding of
the physical behavior of rocks and granulate systems. Even in the implementation of robots'
grasping abilities (Huebner et al., 2008), it is crucial to describe three-dimensional objects
by only a few parameters.

Here, we will focus on an application to technical cleanliness. In the production line of
automotive industry, dirt particles collect on the surface of mechanical components. Resid-
ual dirt might reduce the performance and durability of assembled products. The standards
ASTM F1877 (2003) and ISO 16232 (2007) dictate the principles for cleanliness inspection,
including techniques to collect and analyze samples of dirt particles. Geometric characteri-
zation of these particles allows to identify their potential danger. In fact, the size and shape
of particles yield whether a �lter would stop them or not. For instance, a long and thin �ber
would slip through the holes of a �lter while a �at chip would be stopped. So far, the charac-
terization has been based on 2d microscopic images. In ASTM F1877 (2003), the geometric
features of the particles to be measured are de�ned heuristically. From a theoretical point of
view, an even richer list of parameters to characterize two-dimensional bodies is presented
in Stoyan and Stoyan (1994). Mainly, the parameters are divided into size parameters, such
as the diameters of the inscribed and circumscribed circle, and shape factors, e. g., round-
ness. Estimating geometric characteristics in 2d images is computationally easy. However,

17
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a planar image of a three-dimensional object is only a projection on a given �xed plane. On
the one hand, restricting to two dimensions yields a severe loss of information. On the other
hand, the algorithmic complexity to estimate characteristics on 3d images drastically grows.

A detailed geometric characterization of 3d particles is presented in Parra-Denis et al.
(2008). In addition to basic features (e. g., volume and surface area), shape indices and
geodesic features are introduced. The mass distribution is characterized by the axes of
intertia. With this work in mind, we supplemented the collection of geometric descriptors
to adapt to the requirements of technical cleanliness. First of all, the possibility to exactly
reproduce the measurements is particularly important. Secondly, e�cient algorithms to
estimate the characteristics on binary images of the objects are necessary. Furthermore, the
features must su�ce to objectively classify the objects. In fact, in addition to parameters to
characterize planar objects, ASTM F1877 (2003) provides a qualitative guideline to classify
particles according to their shape. Two classes of objects can be naturally distinguished
by means of the aspect ratios. Granular shapes are those with comparable length and
width, while �bers or needles have typically length much larger than the width. If the
third dimension is also available, i. e., the thickness of the object, then another class can
be recognized: ��at� objects, called chips or �akes. The classi�cation tools we provide
are thresholds of the parameters separating the classes. The possibility to compare classes
of particles analyzed in di�erent laboratories is very important, thus the de�nition of the
classes has to be based on objective criteria. The classi�cation is purely geometric and alone
does not yield information on the potential danger of dirt particles. Indeed, the danger of
the particles can only be determined from the whole geometric characterization combined
with information about the material composition. Additionally, it depends on the speci�c
context. For instance, at which point of the factory line was the sample collected? Which
part is being produced? Which is the functionality and the expected life-time of the part?
Note that the material composition can also be extracted from tomographic images of the
samples depending on the mean grey value of the particle. More details are given in Section
2.4.

In the following, we will �rst de�ne parameters to describe the geometry of three-
dimensional objects. With the application to technical cleanliness in mind, shape is un-
derstood as the con�guration of the portion of space �lled by an object. Thus, identifying
surface roughness or �ne structures is out of our scope. For each feature, we also outline
or give references to algorithms for fast computation on volume images. An analysis of the
estimation errors is presented in Section 2.2. In Section 2.3, we discuss how to obtain the
geometric classi�cation of objects in the three classes �ber, chip, and granule. Finally, we
characterize and classify a real sample of dirt particles in Section 2.4.

The main results presented in this chapter are published in Vecchio et al. (2012b). More-
over, the software MAVIparticle (Fraunhofer ITWM, Department of Image Processing, 2012)
has been speci�cally developed to characterize samples of 3d objects based on µCT images.
We developed algorithms to estimate the characteristics introduced in this chapter to sup-
plement some of the features already available in MAVI (Fraunhofer ITWM, Department of
Image Processing, 2005).
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2.1 Object characterization

First of all, it is necessary to distinguish between objects in the real world and their images.
An object is understood as a simply connected compact body X in R3 with non empty inte-
rior. Parameters characterizing objects, i e., bodies, are de�ned in the continuous Euclidean
space. Nevertheless, what we observe is only the digitized image of the body. Such a digital
object X̃ is a collection of lattice points with respect to an adjacency system, see also Section
1.1. By de�nition, an object X̃ is constituted by a �nite number of points, i. e., pixels. It will
be sometimes convenient to think of objects as point clouds. When treating the estimation
of the features, we will assume to deal with a binary image containing one single object.

2.1.1 Basic measures

Volume V and surface area S are the simplest descriptors for the size of an object. These
quantities correspond to the highest dimensional intrinsic volumes of a three dimensional
compact body, V = V3(X) and S = 2V2(X). As discussed in Section 1.2.1, two other
intrinsic volumes exist: V1(X), which is proportional to the integral of mean curvature M ,
and V0(X) = χ, the Euler number. Note that in image analysis this set of characteristics
is often referred to as �object features�.

The mean width of a convex body in R3 is, up to a multiplicative constant, proportional
to the integral of mean curvature. The width is also referred to as Feret diameter or caliper
diameter. While the term caliper is usually applied when measuring the size of real objects
with the instrument of the same name (ASTM D4791, 2010), Feret diameter is preferred in
image analysis. It typically refers to the length of the projection of the body along a given
direction, i. e., the largest distance between parallel planes with normals in that direction
and enclosing the body.

The interpretation of the Euler number yields information on the topology of X. The
number of tunnels can be deduced by comparing the Euler number of X with that of the
complement XC , which in images is the background. Moreover, in the digital representation
of a body, it is possible to morphologically close holes (Soille, 1999). This is helpful for the
computation of other features, as for instance the geodesic length (Section 2.1.4).

The volume of a digital object is simply obtained by pixel count. Estimating the other
intrinsic volumes requires more sophisticated techniques. A well established class of methods
applies a stereological approach based on the Crofton formula (Ohser and Mücklich, 2000;
Ohser and Schladitz, 2009). The advantage is that the surface of the object does not need to
be triangulated, in fact, the estimation of the intrinsic volumes is based on local information.
For surface area and integral of mean curvature, it reduces to computing suitable weighted
sums of occurrences of boundary pixel con�gurations. Typically, boundary con�gurations
are 2×2×2 lattice subsets which contain both background and foreground pixels. In a newer
approach by Ohser et al. (2013), the estimation of the integral of mean curvature is improved
by considering 3×3×3 boundary con�gurations. These estimators are unbiased for compact
bodies being morphologically regular with respect to all line segments connecting vertices
of the lattice unit cell and are multigrid convergent (Ohser et al., 2002). See also (Ohser
and Schladitz, 2009, Theorem 3.1). Nevertheless, for arbitrary objects, the goodness of the
estimation strongly depends on the image resolution. The relative error of the surface area
estimator based on 2× 2× 2 pixel con�gurations is analyzed for decreasing lattice distance
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in Section 2.2.
Hadwiger's Theorem (1.2.2) shows that the four intrinsic volumes are a basis in the

space of regular functionals describing bodies. Hence, other regular functionals would be
redundant.

2.1.2 Isoperimetric shape factors

The isoperimetric problem refers to the question of determining which shape enclosed in
a given perimeter has the largest area. The solution on the plane, already known by the
ancient Greeks, is the circle. Let P and A be perimeter and area of a two-dimensional body.
For the circle P 2 = 4πA, whereas for general shapes the isoperimetric inequality holds:

P 2 ≥ 4πA.

Analogously, in 3d it holds
S3 ≥ 36πV 2, (2.1)

where equality is realized by the sphere.
The isoperimetric inequality can also be seen in a more general setting. Namely, as a

special case of Minkowski's inequalities for mixed volumes of convex bodies ((Schneider, 1993,
Theorem 6.2.1)). From this theorem, one can deduce the generalization of the isoperimetric
inequality in dimension d: (

Vd−1

ωd

)d

≥
(
Vd

κd

)d−1

, (2.2)

which in d = 3 implies the following

M2 ≥ 4πS and S2 ≥ 3VM (2.3)

called the quadratic Minkowski inequalities. By raising these to the power of two and
substituting, two cubic inequalities are derived, so that S and M are split:

S3 ≥ 36πV 2, M3 ≥ 48π2V, (2.4)

where the �rst one is exactly (2.1).
Based on these relations, a set of shape factors is deduced (Stoyan et al., 1995):

De�nition 2.1.1
Let X be a compact simply connected body with non empty interior with intrinsic volumes
V = V (X), S = S(X) and M = M(X). The isoperimetric shape factors of X are

f1 = 6
√
π

V√
S3

, f2 = 48π2 V

M3
, f3 = 4π

S

M2
. (2.5)

In all the inequalities introduced above, equality holds only for balls. Thence, these shape
factors are equal to 1 for balls. They all have values between 0 and 1 for convex bodies, but
f2 and f3 can be larger than 1 for polyconvex objects. Deviations from 1 describe deviations
from the spherical shape. Often, f1 is referred to as sphericity (Parra-Denis et al., 2008),
where conversely the shape factor

IC = 63
V 2

S3
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is called compacity and describes deviations from the cube. This is a combination of the
isoperimetric shape factors and thus carries redundant information.

The precision in estimating the shape factors on images depends in �rst instance on
the accuracy of the estimation of the intrinsic volumes. Furthermore, being ratios, these
parameters are particularly prone to discretization errors. An overview of the most common
problems arising in binary images are outlined in (Montero and Bribiesca, 2009), together
with some possible solutions. An analysis of the error on cylinders with di�erent aspect
ratios is presented in Section 2.2. Note that in this chapter by cylinder we will always mean
a compact cylinder with circular cross section.

2.1.3 Convex hull features

Volume and surface area do not describe how the object extends in space. To measure this,
we consider features which ignore concavities and thus are upper bounds on the space �lled
by the object. More precisely, these features yield the same value if computed on the object
or on its convex hull. Furthermore, considering the vertices of the convex hull instead of
all the points (pixels) constituting the digitized object yields a remarkable reduction of the
computational size of problem.

The computation of the convex hull is based on the QuickHull algorithm (de Berg et al.,
2008). This is a divide and conquer method that consecutively excludes points lying inside
the convex hull. The resulting set of vertices of the convex hull is a subset of the points
forming the original object. We can keep track of the di�erence between the object X and
its convex hull CH(X) via the

convexity factor =
V (X)

V (CH(X))
.

It is equal to 1 for convex shapes and smaller the more concave the object is. When estimating
it on digitized objects, however, it can be smaller than 1 also for convex objects. Possible
reasons are surface roughness or discretization errors in �ne structures. To reduce this e�ect,
the image can be �ltered (e. g., by a median �lter, Section 1.1) to smooth the surface. One
should also be sure to employ the same discretization for the object and for its convex hull.
For instance, computing the volume of X̃ by pixel count and the volume of CH(X̃) based
on the polyhedral approximation, the two measures cannot be correctly compared.

The size of an object can be described by measuring how much X extends in three
signi�cant orthogonal directions. We will refer to these measures by length, width and
thickness, sorted in decreasing order. The standards ASTM F1877 (2003) and ASTM D4791
(2010) suggest to measure the size of objects in 2d and 3d, respectively, by Feret diameters.
The largest is themaximal Feret diameter dF , Figure 2.2(a), that is the largest Euclidean
distance between pairs of points in the object. According to those standards, the maximal
Feret diameter is the length of an object. Width is then de�ned as the maximal Feret
diameter of the projection onto the plane perpendicular to the direction of dF . The thickness
is found projecting the object onto the line perpendicular to both the direction of dF and
of the width and taking the largest distance between the points. With this de�nition, the
spatial diagonals of a cuboid determine its size. However, this does not meet the intuitive
idea of size that for a cuboid corresponds to the measures of its edges. We can achieve this
by the following de�nition:
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De�nition 2.1.2
Call C ⊂ R3 a cuboid with arbitrary orientation (w. a. o.) if there exist xi, yi, zi ∈ R for
i = 1, 2 and a rotation θ ∈ SO(R3) such that C = θC0 with C0 = [x1, x2]× [y1, y2]× [z1, z2].
The minimum volume bounding box (MVBB) of X as above, is a cuboid w. a. o. C such
that:

X ⊆ C,

vol(C) ≤ vol(C ′) for all cuboids w. a. o. C ′ s. t. X ⊆ C ′.

Then the size of X is given by the measures of the edges of C. Sorted in decreasing order,
these are length l, width w and thickness t.

In Figure 2.1, the minimum volume bounding box and the size of a chip-like ellipsoid are
represented. In general, the MVBB of an object is not unique. In fact, bodies with axial
symmetries take in�nitely many MVBB arbitrarily rotated about the axes of symmetry.
Spheres and cylinders with circular cross section belong to this class. However, the size of
the box remains constant. Moreover, we conjecture that the following claim holds

Claim 1 (Uniqueness of l, w, and t)
If C and C ′ are minimum volume bounding boxes of X with measures of the edges l, w, t
and l′, w′, t′, respectively, then l = l′, w = w′ and t = t′.

To our knowledge, this fact has not been proven nor counterexamples are known. We
suppose that multiple orientations of the MVBB are possible only related to some symmetry
in the objects. Thus, also the edge lengths remain constant. In fact, the claim asserts that
if C and C ′ are MVBB for an object X, then there exists a rotation θ such that C = θC ′.
But then, it should hold that X = θX and thus, X has an axis of symmetry.

Figure 2.1: Ellipsoid and its minimum volume bounding box.

Parra-Denis et al. (2008) de�ne the size of an object by the moments of inertia. This def-
inition is based on rotational properties of bodies belonging to a physical space. Conversely,
in our context, we aim at describing bodies only depending on the space they actually �ll.
In fact, it is important to establish whether a particle would be stopped by a �lter of a
given �neness or not. Despite the MVBB and inertia axes yield the same measure of size for
objects with rotational symmetries, they di�er for more complex shapes.

In some applications, e. g., crystallography, the orientation of the grains is very important.
The rotations that move the MVBB into the axis aligned bounding box can be seen as
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de�ning the orientation of the object, e. g., by Euler angles. The direction of the length
corresponds to the direction of the main axis of the object. Alternatively, one can de�ne the
orientation according to the maximal Feret diameter. Note that for long and thin objects,
e. g., straight �bers with small aspect ratio, length and maximal Feret diameter are realized
on almost aligned directions.

Algorithm

E�cient algorithms are based on geometric properties of the MVBB. As mentioned, due to
the convexity of cuboids, a box bounding an arbitrary object bounds its convex hull, too.
Hence, the input for our algorithm is the point set S given by the vertices of the convex
hull CH(X̃). In the 2d case, a polygon has an edge lying on an edge of the minimum area
bounding rectangle (Freeman and Shapira, 1975). Thus, it su�ces to loop once on the edges
of the polygon, construct the enclosing rectangle for each, and take the one with smallest
area. Unfortunately, this property cannot be easily generalized to higher dimensions. In fact,
a polyhedron has in general no face lying on a face of its minimum volume bounding box.
Think for instance of a regular tetrahedron: only the edges lie on the faces of its MVBB. The
best property found so far is that two edges of the polyhedron lie on two adjacent facets of the
MVBB (O'Rourke, 1985). However, an exact algorithm based on this rule (O'Rourke, 1985)
is of cubic complexity in the number of points � computational costs which are in general
too high for applications. Therefore, we rather apply an algorithm approximating the real
minimum volume bounding box in nearly linear time (Barequet and Har-Peled, 2001).

First, we construct a supporting bounding box B∗. Compute the maximal Feret diameter
of the point set S. The segment d0 connecting two points realizing the maximal Feret diam-
eter is the �rst edge of B∗. Then the points in S are projected onto the plane perpendicular
to d0. The maximal Feret diameter of the projection of S in this plane yields the second
edge d1 of the box. The direction of the third edge d2 is now �xed due to orthogonality with
d0 and d1, its length is the maximal distance between pairs of points in S projected in this
direction. Thus B∗ is completely determined.

In general, the box B∗ is not the bounding box of minimum volume. However, based on
B∗, the MVBB can be e�ectively approximated (Barequet and Har-Peled, 2001). The idea is
to use the axes of B∗ as a new reference system. On each edge, de�ne a unit measure equal to
1/N times the length of the corresponding edge. This yields a grid in B∗ with N3 points. Fix
an arbitrary vertex O of B∗ as the origin, connecting O to each grid point de�nes a direction
vi. Now, construct the box bounding S with an edge parallel to vi for i = 0, ..., N3 − 1 (the
segment that connects O with itself does not generate a direction). Once the direction of an
edge is �xed, computing the minimum volume box reduces to projecting the points onto the
plane perpendicular to the �rst edge, then computing the minimum area bounding rectangle
in 2d.

The accuracy of the algorithm depends on N . In fact, the �neness of the grid on B∗

determines the number of directions tested. However, note that not all the N3 points in
the grid yield di�erent directions. For example, with N = 10, 840 di�erent directions are
generated. In practical applications, this proved to be enough. For instance, consider the
ellipsoid displayed in Figure 2.1. Its axes measure 20×60×80 pixels. While it is constituted of
about 50 000 pixels, the number of vertices of its convex hull is only 655. The computation of
the minimum volume bounding box takes about 3 seconds under Windows on an Intel Xeon
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E550 (2.27 GHz core speed, 48 GB RAM, two processors). In this case, the real minimum
volume bounding box is analytically known, so the accuracy can be easily calculated. The
relative error is 0.2% and does not depend on the orientation of the object. The latter fact
is not surprising as the tested directions are chosen from B∗, whose edges induce a reference
system independent of the axes.

(a) Maximal Feret di-
ameter.

(b) Maximal geodesic
path.

(c) Inner diameter.

Figure 2.2: Particle cross section with size features.

Figure 2.3: Examples of non-convex objects: a bended chip and three twisted �bers. Bound-
ing boxes to enhance visualization, do not correspond to the MVBB.

2.1.4 Further size characterization

In the previous section, we worked on the convex hull of bodies. However, the convex hull
is a rather bad approximation for bodies with concavities. Take for example the �bended�
chip and the �twisted� �bers in Figure 2.3. The chip can be seen as a parallelepiped bend
around a cylinder. Thus, one would want to measure the size of the object as the measure
of the edges of the parallelepiped. Analogously for the �bers, natural length and thickness
would be those of the corresponding �unwound� �bers (with axis lying on a line). The size
as measured by the MVBB does not yield these measures. Therefore, in this section we
de�ne features able to measure length and thickness accounting for concavities of objects.
We temporarily restrict to objects with neither holes nor tunnels (this case will be discussed
in the end of the section).
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First, we consider the thickness of bodies. We de�ne a parameter that can be also
interpreted as a measure of the largest core of X, as in Figure 2.2(c).

De�nition 2.1.3
The measure of the diameter of the largest ball completely contained in X is the inner

diameter or maximal local thickness of X.

The inner diameter of a digitized object is computed as the maximum of the Euclidean
distance transform (EDT):

De�nition 2.1.4
Let X be a body in Rd, then the Euclidean distance transform EDTX of X maps to each
point of X its shortest distance to the complementary set:

EDTX : X → [0,∞)

x 7→ dist(x,XC).

The EDT of the foreground X̃ of a binary image can be estimated in linear time in the
number of pixels of the image (Maurer et al., 2003).

Spherical granulometry gives a more detailed measure of the size of an object. The idea,
�rst introduced by Matheron (1975), was inspired by a sieving procedure: letting grains
through a sieve of increasing hole size separates the grains depending on their maximal
thickness. In terms of mathematical morphology, it is a sequence of openings with balls of
increasing radii (Section 1.1). Hence, the spherical granulometry yields the volume weighted
thickness distribution of the particle. The maximum is the inner diameter as obtained by
EDT.

In ASTM F1877 (2003), the length of an unwound �ber is measured by the length of its
medial axis. However, the medial axis of a complex shape or an object with rough surface
can be composed of many branches, thus making the interpretation of its length ambiguous.
An alternative approach consists in considering the geodesic distance between points inside
the object (Lantuéjoul and Maisonneuve, 1984).

De�nition 2.1.5
The geodesic arc between two points x and y in the body X is the shortest continuous path
connecting x and y within X; its length is the geodesic distance between x and y. The length
of the longest path for all pairs x and y from X is the geodesic length or elongation Lg of
X.

In Figure 2.2(b), the path realizing the elongation is represented. As motivated in (Lan-
tuéjoul and Maisonneuve, 1984), the advantages of this de�nition are manifold. First, despite
the fact that we gave the interpretation for �brous shapes, it is well de�ned for all kinds
of objects. Furthermore, the elongation is a global minimum of a continuous function on a
compact domain, its value is unique. Likewise the MVBB, there can exist multiple paths
realizing the elongation for star-shaped objects, as cubes or spheres, but with the same
length. Finally, the de�nition of the elongation is robust: if the object is slightly deformed,
its elongation also varies minimally. Also, it is not a�ected by surface roughness.

The estimation on digitized objects is e�cient. It is based on a two-step procedure.
Given a suitable starting point P ∈ X̃, the geodesic distances to all other points in the
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object are computed. A point realizing the maximum is taken as the new starting point.
Again, the distances to all other points are computed. Then, the value of the maximum
geodesic distance is also the maximum geodesic length among all possible couples of points.
In each step, the computation of the geodesic distance is based on the algorithm presented
in Petres et al. (2005). Although in most cases an arbitrary starting point yields the correct
result, there are counterexamples: for instance a rhombus such that the shortest diagonal d
is longer than the edge, Figure 2.4(a). The elongation of the rhombus is the length of the
largest diagonal D (segment AB in the �gure). However, if P is a vertex adjacent to d, the
maximum of the geodesic map is found on the opposite vertex, also adjacent to d, so that
the second step yields again the maximum on d. This example can be easily extended in 3d
by adding a small thickness to such a rhombus. To guarantee the correctness of the two-step
procedure, it is necessary to start with a point �far enough� from the boundary. A good
choice of P is the center of the ball (or of one of the balls) realizing the inner diameter. This
is by de�nition inside the object, also for non-convex objects, and is at least the length of
the inner diameter of X̃ away from the boundary.

Let Lg be the elongation, then, to compare objects, we can de�ne as in Parra-Denis et al.
(2008), the elongation index

IGg =
πL3

g

6V
.

It equals 1 for balls and gets larger, the more elongated a particle is, where by elongated we
understand thin and long, no matter how arranged in space. Note that it is a generalization
of the length factor proposed in (Lantuéjoul and Maisonneuve, 1984) for 2d objects.

(a) Rhombus. (b) Hollow ellipse.

Figure 2.4: Examples of objects for which the two step procedure to estimate the elongation
would fail when started from the point P .

For the sake of completeness, speaking of geodesic length it is necessary to mention
tortuosity. This is particularly interesting for complex systems, especially porous media.
The idea is to measure how twisted the object (or the medium) is by comparing geodesic
and Euclidean distances. Despite its importance in many application �elds, there is not a
globally agreed de�nition. One possibility is to de�ne the tortuosity of an object X as the
ratio:

tortuosity(X) =
Lg

dFeret

,
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where dFeret is the maximal Feret diameter of X. An alternative de�nition is based on
the ratio between elongation and the Euclidean distance between the extremes of the path
realizing the elongation (Peyrega and Jeulin, 2013). For the object in Figure 2.2, these two
measures have di�erent values, nevertheless qualitatively represent the same information.

The geometric interpretation of inner diameter di�ers if the particle has a hole. One can
take an object obtained rotating the hollow ellipse drawn in Figure 2.4(b) around one of the
main axes. The resulting object can be interpreted as a hollow eggshell. Its inner diameter
is the maximal thickness of the shell, which does not yield information on the core of the
particle as a whole, heuristically, the size of the egg. The application of a �ll-hole algorithm
allows to obviate this issue �lling up all the regions not connected to the background. For
what concerns the elongation, the two-steps procedure might fail to return the correct value
for objects with holes or tunnels. Again, we can think of the shell obtained rotating the ellipse
in Figure 2.4(b) or a stretched torus such that its section is the hollow ellipse. Depending
on the position of P with respect to the concavity, only a local maximum is found. Even
starting with the center of a sphere realizing the maximal thickness does not su�ce to �nd
the longest path within the object. A solution is to test multiple randomized starting points
in case the Euler number of the object is not 1. Furthermore, a measure of the extension of
the hole in an object can be obtained by comparing inner diameter and elongation estimated
on the object before and after applying a �ll-hole algorithm.

volume [px] 1 889 ± 11.35% 2 053 ± 3.18% 2 155 ± 0.001%
surface area [px] 1 209.69 ± 1.87% 1 582.06 ± 6.74% 895.81 ± 3.01%
shape factor f1 0.48 ± 0.08% 0.35 ± 7.50% 0.85 ± 4.71%
shape factor f2 0.10 ± 3.48% 0.26 ± 8.46% 0.71 ± 5.07%
shape factor f3 0.35 ± 2.36% 0.83 ± 8.91% 0.88 ± 4.92%

length [px] 60.82 ± 1.36% 30.64 ± 2.15% 15.42 ± 10.15%
width [px] 8.59 ± 43.17% 30.18 ± 0.58% 14.87 ± 6.18%

thickness [px] 5.81 ± 3.17% 4.12 ± 37.34% 14.12 ± 0.83%
max Feret diam [px] 60.88 ± 0.98% 30.87 ± 2.40% 20.87 ± 5.43%

elongation [px] 62.55 ± 4.25% 33.79 ± 12.07% 20.60 ± 4.04%
elongation index 74.55 ± 9.22% 9.84 ± 4.54% 2.13 ± 12.74%

inner diameter [px] 6.63 ± 10.55% 3.46 ± 15.47% 13.30 ± 4.99%

Table 2.1: Features of reference cylinders. The values are means of estimations on 100
randomly orientated cylinders shifted in the lattice distance. Relative error computed w. r. t.
the theoretical values for radius and height (r, h), which are (3, 60), (15, 3), and (7, 14) pixels,
respectively.
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2.2 Analysis of the estimation error

Estimating geometric characteristics on digital images of objects bears in itself a signi�cant
approximation. For example, the sphericity of a sphere with radius 35 pixels is estimated
as 0.992, while the theoretical value is 1. For this reason, it is important to systematically
analyze the estimation error. In this section, we show empirically that the estimators are
asymptotically unbiased for lattice distance going to zero.

As reference object, we consider a cylinder. This is a morphologically regular body
which can be seen as a basic brick occurring in complex shapes, too. We sample three
di�erent aspect ratios, a prolate (diameter:height = 1:10), an oblate (5:1) and a cuboidal
(1:1) cylinder, that is a �ber, a chip and a granule, respectively. In order to have cylinders
in general position with respect to the lattice in the sense of (Ohser and Mücklich, 2000),
we sample random rotations of the axis and random shifts in the lattice distance. In this
way, the error due to the discretization chosen for the circular section of the cylinders is
balanced. Table 2.1 displays the mean values of the features estimated on the cylinders
with the relative error to the values computed analytically. The volume of these cylinders is
about 2 000 pixels. The relative error of the volume is the highest for the prolate cylinder,
being about 11%. This is caused by the discretization of a circle with a radius of only 3
pixels. Further, not only the oblate and granular cylinders have larger radii, but they also
have smaller height with respect to the diameter, so that the error of discretization of the
circle adds up in less percent to the volume. The estimation errors for the shape factors are
always under 10%. The size of the minimum volume bounding box for the �ber and the chip
shows rather large relative errors, once for the width and once for the length (above 35%).
This is due to the fact that the MVBB is calculated minimizing the volume and not the
edge lengths of the box. Therefore, a large error in one direction might be compensated by
a smaller error in another direction. Moreover, the algorithm only �nds an approximation
of the real MVBB. The relative errors of the volumes of the MVBB are about 29% for �ber
and chip, and 15% for the granule. We calculated these errors assuming that the size of the
minimum bounding box is the same as the size of the cylinders. However, if we increase the
theoretical edge lengths of one pixel in each direction, the relative errors drop down to about
1% for �ber and chip, and 4% for the granular cylinder. This suggests that the lengths of
the edges of the MVBB are overestimated of about one pixel in each direction. The maximal
Feret diameter is estimated better than the elongation for the �ber and the chip. For these
objects, moreover, the inner diameter is on average overestimated and the relative error is
rather large. This shows that there is some variability in the discretizations of the cylinders
depending on the orientation of the axis.

To analyze the convergence of the error we sample a wide range of volumes, namely
sampling 40 sizes per class from about 50 to 20 000 pixels volume. More precisely, we sampled
�bers with radius from 1 pixel (height 20 pixels) to 12 pixels (height 240); chips with radius
from 3 pixels (height 1.2 pixels) to 27.5 pixels (height 11 pixels); granules with diameter
equal to the height, from 4 to 22 pixels. In this way, we can reproduce the behavior of the
estimators when the lattice distance goes to zero. Asymptotic convergence of the estimators
of the intrinsic volumes is guaranteed by the rotations and translations within the lattice of
the cylinders with increasing resolution (Ohser et al., 2002). Therefore, each cylinder was
successively shifted by a random fraction of a pixel in random directions and rotated about
100 random rotations uniformly distributed in the semisphere. The characteristics estimated
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on the images of each cylinder are averaged for each size and compared with the theoretical
values. The results are shown in Figure 2.5. The scale on the y-axis cannot be kept constant
because the maximal errors vary for each class. Adapting the scale for each cylinder type
and characteristic, we can better observe how the relative errors converge.

(a) Surface area. (b) Isoperimetric shape factor f1.

(c) MVBB: length. (d) Maximal Feret diameter.

(e) Elongation. (f) Inner diameter.

Figure 2.5: Relative error for the features estimation on three sets of cylinder with aspect
ratios 1:1 (red), 10:1 (blue) and 10:1 (green), from top to bottom respectively, randomly
rotated and shifted w. r. t. the lattice. The x-axis represents the volume in pixels. The scale
of the y-axis is adapted to each line to allow visualization.

The relative error of theoretical and estimated surface area is shown in Figure 2.5(a).
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It converges to zero as expected. The relative error for the �rst isoperimetric shape factor,
Figure 2.5(b), shows the same trend, but with larger values. This is due to the ratio of
volume and surface area, which yields a numerical error. Moreover, as Table 2.1 reveals, the
error due to the estimation of the volume must be taken into account, too.

For what concerns the MVBB, only the error regarding the length is represented, Figure
2.5(c), which is on average the largest compared to width and thickness. For small objects, it
is rather large (around 20% for granules and chips), but decreases signi�cantly as resolution
increases. Length, width and thickness are in most cases overestimated. This comes from the
de�nition of the MVBB, i. e., a box containing the object completely. In the algorithm, we
used a grid of 1 000 nodes, yielding 840 di�erent test directions. By increasing the �neness
of the grid, the estimation can be further improved.

Maximal Feret diameter and elongation are both equal to the spatial diagonal of the
cylinder. Despite being estimated with very di�erent methods, their values di�er by less than
2 pixels in the worst case. In general, the elongation is larger and the corresponding relative
error, Figure 2.5(e), converges more slowly than the one of the maximal Feret diameter,
Figure 2.5(d). Furthermore, it depends more strongly on the local discretization of the
object, as can be seen by the oscillations of relative error.

The best estimation of the inner diameter is obtained for �bers, see Figure 2.5(f). In fact,
for these long and thin cylinders, the inner diameter is the diameter of the cylinder, much
smaller than the height, allowing an exact estimation for some values of the cylinder radius.
Even if oscillating around zero, it is smaller than 0.5% for large enough objects (volume >
11 000 pixels). For granular and chip�like cylinders, instead, the relative error is on average
larger, but converging to zero as the volumes increase.

2.3 Classi�cation

The classi�cation proposed in ASTM F1877 (2003) distinguishes between objects with small
aspect ratio, i. e., long and thin, and those with comparable dimensions. As the classi�cation
is performed by looking at the microscopic images of the particles, length and width are
not rigorously de�ned. For a human eye, it is easy to infer the class of twisted �bers by
interpreting perspective and shading e�ects in the images. Our goals are to generalize the
classes to objects observed in three-dimensional images and to investigate strategies for
automatic classi�cation based on the features introduced in the previous section.

Let us �rst consider convex objects. Then, the classes in 3d can be de�ned as follows:

De�nition 2.3.1
Let X be a convex compact body with length l, width w, and thickness t, with l ≥ w ≥ t,
then

if l ∼ w ∼ t then X is a granule,

if l ∼ w ̸= t or l ̸= w ̸= t then X is a chip,

if l ̸= w ∼ t then X is a �ber.

The measures of length, width and thickness correspond to those de�ned in De�nition
2.1.2. The reference cylinders simulated for the analysis of the estimation error, Table 2.1,
are representatives of these classes.
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This classi�cation was �rst proposed by Zingg (1935) to classify rocks. It can be easily
visualized in the Zingg-diagram, Figure 2.6. In mineralogy, two measures di�er if the ratio
of the smaller over the bigger one is larger than 2/3. However, this threshold may vary
depending on the application �eld. Typically in technical cleanliness, particles are considered
�brous if their aspect ratio is 1:10.

Figure 2.6: Zingg-diagram for classi�cation based on the size and some reference particles
with MVBB.

For non-convex bodies, however, the measures of the edges of the MVBB are not infor-
mative for the classi�cation. The de�nition of the classes needs to be generalized to not only
depend on measures based on the convex hull of the bodies. Although we do not provide
formal de�nitions of the classes, we heuristically use the terms �granule�, �chip�, and ��ber�
for arbitrary objects. The idea is to distinguish the class of an object depending on its �real�
length and thickness as discussed in Section 2.1.4. Consider again the objects represented in
Figure 2.3, the �rst particle is a chip, followed by twisted �bers. In fact, if unwound, these
�bers have length ten times larger than width and thickness. It seems reasonable to use
the measures of elongation and inner diameter to achieve a classi�cation for these particles
analogous to the Zingg-diagram. De�ne the aspect ratio as inner diameter over elongation,
thus it is a number smaller or equal 1. The values for the three cylinders used as reference
for �bers, chips, and granules, are 0.09, 0.20, and 0.71, respectively. They are su�ciently
di�erent. However, these are simple shapes in which the elongation is the space diagonal
and two dimensions are identical. The limit of a criterion based on this index is that it only
considers two dimensions to describe the three-dimensional size of particles, thus it cannot
su�ce to classify complex shapes.

The isoperimetric shape factors yield information on the sphericity of the objects by
combining volume, surface area, and integral of mean curvature. To investigate if they can
induce a reliable classi�cation, a sample of reference particles with random size and random
orientation is simulated. The sample includes about 750 objects, namely ellipsoids, cuboids,
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cylinders, rounded chips, arcs of tori, and arcs of helices. Rounded chips are de�ned as
cuboids bend around a cylinder, with various radii. Examples of these particles are those in
Figure 2.3, but with di�erent size, orientation, and more or less rounded. To classify these
particles, we refer to the size of the cuboid. Arcs of tori and helices are de�ned as an arc
of a circumference or arc of a helix, respectively, each cut at various random angles, dilated
with a sphere of random radius. The length is thus computed as the curve length of the
arc, while width and thickness correspond to the radius. The aspect ratios vary randomly
according to the standards in technical cleanliness:

granules: w/l ∈ [0.7, 1], t/w ∈ [0.7, 1];

chips: w/l ∈ [0.15, 0.6], t/w ∈ [0.05, 1];

�bers: w/l ∈ [0.05, 0.09], t/w ∈ [0.7, 1].

While the classes are known from the analytical description of the shapes, the features are
estimated from the particles' digitized images. In Figure 2.7, graphs for the estimated isoperi-
metric shape factors are plotted against the increasing volume of the objects, with di�erent
colors for each class. For su�ciently large volumes, the values of the shape factors signi�-
cantly di�er for the classes. Based on this sample, the classi�cation can be accomplished as
follows:

(i) f3 ≤ 0.5 and f2 ≤ 0.1 then �ber,

(ii) if not �ber and f1 ≤ 0.7 and f2 ≤ 0.4 then chip,

(iii) if not �ber and not chip, then granule.

For each class, we consider two shape factors so that the errors due to the estimation on
digitized images can be compensated. In fact, real particles are not as smooth as the reference
ones we simulated. However, since we restrict to large particles that typically do not have
an inner structure, this type of error is not expected to a�ect the classi�cation, as discussed
in Section 2.1.2. Note that these thresholds are chosen with respect to the application to
technical cleanliness. In other �elds, the ratio length over width that de�nes a �ber, for
example, could change, hence also the thresholds determining this classi�cation should be
adapted.

If the resolution is too low, the discretization errors are too high to reliably identify the
shape of the object. Thus, it is not possible to correctly classify digital objects constituted by
a few pixels, namely less than 64 pixels. This threshold is chosen because a cube consisting
of 64 pixels has edges only 4 pixels long, thence, on average, there is not enough freedom to
arrange the pixels in a wide variety of shapes. On the other hand, to rely on the estimations
of the shape factors many more than 64 pixels in an object are needed. Motivated by Figure
2.7, the classi�cation based on the isoperimetric shape factors is used only for objects with
more than 400 pixels. Objects with more than 64 and less than 400 pixels are classi�ed
according to the Zingg-diagram. Indeed, in this range of resolution, concavities cannot be
distinguished from errors due to discretization.

With all the features we collected, it would be possible to perform a hierarchical classi�-
cation. This method is applied in Parra-Denis et al. (2008) to classify the complex shapes of
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Figure 2.7: Isoperimetric shape factors, f1, f2, and f3, plotted against volume of the sim-
ulated particles. Each color represents a class: green for �bers, blue for chips, and red for
granules.

intermetallic particles originating from the solidi�cation process of aluminum alloys. Nev-
ertheless, in the context of technical cleanliness we do not aim at classifying one sample.
The requirements are to classify the particles according to �xed thresholds, so that samples
analyzed in di�erent laboratories can be compared.

2.4 Application to technical cleanliness

In manufacturing industry, a certain level of cleanliness is guaranteed by inspecting residual
particles on the surface of mechanical components during production. Internationally agreed
standards as ASTM F1877 (2003) and ISO 16232 (2007) provide the basic rules for quanti-
tative and qualitative inspection of contaminants. The dirt particles are collected from the
surface of the components on a �lter membrane. While the standards require to visualize the
particles with a microscope, now the membrane is rolled and imaged with micro computed
tomography (µCT). Thus, a three-dimensional image of the particles is obtained. Thresh-
olding yields a good binarization, in fact, the membrane has a grey value very di�erent from
the particles which are usually metallic. Furthermore, the particles are typically very sparse.
Often, it is convenient to include a long steel thread in the sample or to fold the �lter mem-
brane inside a steel cylinder. The luminosity of steel in the µCT helps calibrating the grey
values to determine the material composition of the dirt particles. A volume rendering of a
membrane with some particles is displayed in Figure 2.8.

We analyze a sample of dirt particles collected from the surface of a car engine part.
It consists of 1 061 particles. The mean volume is 2.49·106 µm3 (259 pixels). Applying the
thresholds suggested in the previous section, the particles are labeled as 'small', 'medium',
and 'large' depending on their number of pixels, this results in 469 small, 406 medium, and
186 large particles. The small particles will not be analyzed further. We classify medium
particles according to the minimum volume bounding box, whereas large ones are classi�ed
according to the isoperimetric shape factors. Table 2.2 displays the characteristics of three
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pixel size = 9.88 µm �ber chip granule
volume [px] 823 2968 1023

volume [µm3] 793 726 2 862 429 986 612
Euler number 1 1 1

shape factor f1 0.48 0.56 0.86
shape factor f2 0.19 0.33 0.73
shape factor f3 0.44 0.69 0.89

length [µm] 341.18 393.81 149.05
width [µm] 86.44 160.56 132.93

thickness [µm] 49.14 74.44 91.45
elongation [µm] 340.86 398.56 166.38
elongation index 26.12 11.58 2.44

inner diameter [µm] 4.47 7.21 9.17
convexity factor 0.91 0.95 0.97

Table 2.2: Features of three large particles from the sample analyzed in Section 2.4. Images
and computation of characteristics with MAVIparticle (Fraunhofer ITWM, Department of
Image Processing, 2012).



2.4 Application to technical cleanliness 35

Figure 2.8: 3d rendering of a sample of dirt particles (red) on the rolled �lter membrane
(blue). Tomographic image realized by RJL Micro&Analytic with a SkyScan device. Pixel
size = 9.88µm. Image size 10.86×10.86×2.96 mm. Visualization by MAVI (Fraunhofer
ITWM, Department of Image Processing, 2012).

of the largest particles in the sample, one for each class.
Provided that for technical cleanliness all the features convey useful information, it is

however interesting to analyze if they are correlated. The correlation is analyzed for the
features estimated on large particles of the current sample and from other samples, so that
486 particles are investigated. The pairwise covariance matrix is displayed in Figure 2.9.
Volume and surface area are linearly correlated, implying the correlation of the isoperimetric
shape factors f2 and f3. Also the correlation of length and elongation is linear, as well as
thickness and inner diameter. This suggests that most of the particles have a rather regular
shape: the size of the MVBB su�ces to determine the real length and thickness of the
particles. Among the other features, no signi�cant correlation occurs.

In Figure 2.10(a), the aspect ratios of the MVBB of the medium particles are represented
in the Zingg-diagram. The thresholds are imposed by technical cleanliness requirements:
thickness over width smaller than 2/3 means comparable dimensions and length over width
smaller than 1/10 de�nes �bers. With these thresholds, there are 216 granular particles,
190 chips and no �bers among the medium particles in the sample. For what concerns
the large particles, instead, we consider the isoperimetric shape factors. In Figure 2.10(b),
f1 is plotted against the volume. The classi�cation, which takes into account all three
isoperimetric shape factors, is represented by the colors. There are 9 �bers, 66 chips and
111 granules. The largest particles in the sample are �bers, as typical in residual dirt.

Gathering all the data regarding medium and large particles, we see that the sample
is composed of 55.2% granules, 43.3% chips, and only 1.5% �bers. Though fewer, �bers
constitute 13.7% of the total volume.
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Figure 2.9: Correlation matrix of volume V , surface area S, isoperimetric shape factors f1,
f2, and f3, MVBB length, width, and thickness, elongation, and inner diameter on 486 large
particles from samples of dirt particles. All measurements in pixels assuming lattice spacing
= 1.

Once the classi�cation is achieved, the sample can be further characterized by means of
the other features. All particles have Euler number equal to 1, before and after applying
a �ll-holes algorithm. This means that no particle has holes or tunnels. Moreover, it is
interesting to investigate the degree of straightness of the large �bers in the sample: length
and elongation or thickness and maximal local thickness can be compared to see if the �bers
are twisted. If the convexity factor is much smaller than 1, then the �ber is curved, the more
it is, the larger the elongation index will be.

Observing Table 2.2, we see values for three representatives of the classes. The classi�ca-
tion is based on the isoperimetric shape factors. The elongation index is typically di�erent
for each particle, being 10 times larger for the �ber than for the granule. None of the par-
ticles presents a signi�cant concavity. Indeed, though the �ber has a rather rough surface,
the convexity factor is equal to 0.91.
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Figure 2.10: Classi�cation of dirt particles in the sample. Each color represents a class:
green for �bers, blue for chips and red for granules.

2.5 Discussion

We de�ned a rich set of parameters describing size and shape of objects in 3d. Moreover,
we provided methods to estimate these features based on a digital representation of the
objects. The analysis of errors showed that discretization and resolution play crucial roles
in the goodness of estimation. We proposed a method to classify objects into �bers, chips
and granules according to the requirements of technical cleanliness. We showed that only
few parameters su�ce to identify the class of an object. Besides, the classi�cation can be
obtained automatically with respect to the thresholds we suggested.

In the following chapters, we will deal with more complex structures. Nevertheless, the
focus will be on the geometric characterization based on 3d images. Therefore, we will still
make use of the parameters de�ned in this chapter.
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Chapter 3

Models for �ber systems

Fiber systems occur in a diverse range of materials, both natural and manufactured. Compos-
ite materials, as �ber reinforced polymers or reinforced concrete, are speci�cally engineered
to maximize the performance. As the highest sti�ness corresponds to the axis direction, �bers
are inserted in the matrix material with an anisotropic orientation distribution (Mayer, 1993;
Köpplmayr et al., 2013). Cellulose pulp composites as paper or medium density �ber boards
(MDF) are particularly challenging materials to analyze and model. The relatively thin
sheets are obtained by pressing together the pulp of cellulose �bers. This process results in
a high density structure composed of broken �bers, which typically lie in the plane perpen-
dicular to the direction of pressing. We will inspect a sample of MDF in detail in Section
3.4. Broadly speaking, we can identify two main steps in the analysis and modeling of �ber
systems: the characterization of the structures based on image data and the selection of the
parameters of the best-�tting model.

First of all, estimation of geometric characteristics based on image analysis is hampered
by the di�culty to segment the single �bers, even in high resolution images. Thus, the
methods developed in the previous chapter cannot be applied for complex �ber systems. In
this context, the geometric characterization of the �bers have to rely only on local information
(Altendorf and Jeulin, 2011a; Lux et al., 2006). Techniques to estimate thickness and length
distribution, and curvature are developed for both binary and grey value images. Additional
to shape and size characterization, the orientation distribution is an important feature to
estimate from image data. Details to �t the orientation distribution to anisotropic �ber
systems are given in Section 3.1. Furthermore, anisotropy can a�ect the possibility of full
analytical description of the model. Typically, �bers are modeled either as cylinders with
�nite or in�nite length (Peyrega, 2010; Redenbach and Vecchio, 2011; Schladitz et al., 2006),
as dilated curved lines (Faessel et al., 2005; Gaiselmann et al., 2013), or as chains of balls
(Altendorf, 2011). In all these cases, the cross section is modeled with a circle, thus it is
isotropic. Nonetheless, some �bers feature polygonal cross sections. For instance, wood �bers
in plywood have typically a rectangular cross section, whereas triangular cross sections in
polyester �bers improve the thermal absorption of textiles (Karaca et al., 2012). As polygons
are not isotropic, changing the shape of the cross section in the models requires the �tting of
another orientation distribution. However, very high resolution is needed to reliably estimate
which shape �ts better to the cross section of the �bers. Methods to estimate the orientation
distribution of the cross sections from images still need to be investigated.

Fiber models can be divided into two classes: models without interaction and models

39
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with interaction among the �bers. Interaction yields, for instance, the possibility of gen-
erating systems of non-overlapping �bers. Although non-overlapping and interaction are
physically motivated, they cannot be observed nor measured in images with low resolution.
This is one of the reasons to consider models without interaction. Another reason is the
limited number of free parameters de�ning models in this class. We mainly focus on models
without interaction and consider two classic ones already investigated by Matheron (1975):
the Boolean model (Section 3.2.1) and the Poisson cylinder process, or Poisson process of
dilated lines (Section 3.2.2). With suitable assumptions, only few characteristics of the �ber
system su�ce to infer the model parameters. These characteristics are the intrinsic volume
densities, see Section 1.2.2. They can be estimated from a binarized image of the �ber
system adapting the techniques mentioned in Section 2.1.1. We will illustrate under which
assumptions the model parameters are analytically linked to the these quantities. We are
particularly interested in anisotropic Poisson cylinder processes. For this model, we will
extend results valid only for circular cross sections to polygonal cross sections. Concerning
models with interaction (Section 3.3), we will shortly introduce the main characteristics of
random sequential adsorption (RSA), �ber packing, and sedimentation. While RSA is usu-
ally applied with cylinders, the other two models are based on a more sophisticated model
for the �bers (Altendorf, 2011). This yields the growth of both the set of parameters of the
model and of the number of characteristics to be estimated from the images. References for
further details are given.

Di�culties of the analysis and modeling of �bers are well shown by the sample of MDF
investigated in Section 3.4. The �bers are highly anisotropic and with a thickness of about
32 µm, which are represented by only a few pixels in the image. Boolean models and Poisson
cylinder processes with circular and squared cross sections are �tted to the sample. Compar-
ing the characteristics of some realizations, we will discuss which is the best choice according
to the information we can extract from the image data.

We now recall the intrinsic volumes of compact cylinders with circular, triangular, and
squared cross section. Let V be the volume, S the surface area, and b̄ the mean width, then
if Z is a cylinder with circular cross section with radius r and length h, we get

V (Z) = πr2h, S(Z) = 2πr(r + h), b̄(Z) =
1

2
(πr + h). (3.1)

If Z is a cylinder having an equilateral triangle of edge length a as cross section, it holds
that

V (Z) =

√
3

4
a2h, S(Z) =

√
3

2
a2 + 3ah, b̄(Z) =

3

4
a+

1

4
h, (3.2)

whereas for a squared cross section of edge a, it holds

V (Z) = a2h, S(Z) = 2a(a+ 2h), b̄(Z) = a+
1

2
h. (3.3)

In all cases, the Euler characteristic is equal to one. In the sense of Hadwiger's Theorem 1.2.2,
the intrinsic volumes constitute a complete set of functionals describing cylinders. Moreover,
from their knowledge, the mean height and thickness of the cylinders can be calculated.
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3.1 Orientation distribution

A coarse estimation of the orientation distribution of a �ber system is obtained by measur-
ing the projections on the 13 directions induced by the lattice in 3d (Section 1.1). More
sophisticated methods have been developed to account for the information in grey value im-
ages. The idea of Gaussian �lters is based on sampling a set of directions in each pixel: the
direction that gives the highest �lter response is the estimate of the local orientation (Robb
et al., 2007; Wirjadi et al., 2008). As it is a local method, it is also well de�ned for curved
�bers. However, it has the drawback of a limited number of directions tested. This problem
is overcome by estimating the main �ber direction in a pixel with the minimum eigenvector
of the Hessian matrix (Redenbach et al., 2012a). The second order partial derivatives of
the smoothed grey value image are calculated in each pixel. The local �ber orientation is
then estimated as the eigenvector corresponding to the smallest eigenvalue. In fact, this
corresponds to the direction of least grey value variation. A method based on mathemat-
ical morphology is proposed in Altendorf and Jeulin (2011a). The main axis direction is
locally estimated via the axis of inertia. With both methods, a volume-weighted continuous
orientation distribution is estimated from the image data.

Once an empirical orientation distribution is available, the next step is to model it. The
von Mises-Fisher (or Fisher) distribution (vMF) can be interpreted as the generalization to
the sphere of the Gaussian distribution on the line (Fisher et al., 1987). It depends on two
parameters: the mean µ, i. e., the preferred direction, and the concentration parameter κ > 0,
which determines the width of the distribution around µ. It is unimodal and rotationally
symmetric. For κ → 0, the distribution tends to be uniform on the sphere, i. e., isotropic,
whereas for κ → ∞ it converges to the point distribution in µ. Multimodal asymmetric
distributions can be achieved by mixtures of von Mises-Fisher distributions. While the
preferred direction can be estimated as the mean of the empirical distribution, it is not
possible to derive an analytical expression for the estimator of the concentration parameter
of vMF. Alternative approaches to estimate the parameters of unimodal and multimodal vMF
distributions are outlined in Banerjee et al. (2005) based on maximum-likelihood estimates.
In the multimodal case, the number of mixtures must be chosen by the user. Comparing the
goodness of �t of the distributions found with di�erent numbers of clusters yields a validation
for the model.

Another orientation distribution particularly helpful in materials science applications is
the so-called β-distribution (Schladitz et al., 2006). Its bene�t is that, depending on only
one parameter β > 0, it can represent three qualitatively di�erent distributions: isotropic
(β = 1), girdle (β > 1), i. e., �bers oriented around the equator, or �bers oriented around
an axis (β < 1). The value of β also determines the concentration of the distribution around
the equator or around the axis. The probability density function of the β-distribution with
axis of symmetry µ corresponding to the z-axis is

f(θ, ϕ) =
β sin θ

4π(1 + (β2 − 1) cos2 θ)3/2
, θ ∈ [0, π), ϕ ∈ [0, 2π),

where θ, ϕ are the polar coordinates representing a direction. Of course, the axis of symmetry
can be rotated arbitrarily. As for the von Mises-Fisher distribution, it is possible to consider
mixtures of β-distributions. Di�erent types of distributions can be combined, for instance
summing a girdle distribution, with a distribution with one preferred direction, or considering
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mixtures of girdle distributions with di�erent axes of symmetry. Even in the unimodal case,
an analytical estimator for β could not be found. Again, maximum-likelihood estimates are
investigated to estimate β and µ from empirical data (Zhang, 2013). In the case of mixtures,
previous knowledge on the number and types of distributions improves the estimation of the
axes µi and of the parameters βi. The number of distributions must be given as input.

Additional spherical probability distributions are treated in Fisher et al. (1987) and Zhang
(2013), which provides a comparison between the β-distribution and other classic ones.

3.2 Models without interaction

This class of models is based on �bers which are independent from each other. When
generating realizations of these models in compact windows, the order in which they are
inserted does not a�ect the �nal con�guration. The absence of interaction among �bers
yields systems of overlapping �bers which are computationally fast to simulate. In particular,
we introduce two models which strongly rely on the independence property of Poisson point
processes: the Boolean model and the Poisson cylinder process. They both bene�t from an
analytical description that facilitates model �tting, at least under some assumptions. As it is
often impossible to precisely estimate the real interaction among �bers, these classic models
are still widely used in applications.

We will give de�nitions in general dimension, sometimes exploit 2d for illustration and
investigate the main results only in 3d, as we aim to model materials in the real world.
Detailed theoretical analysis of the general case can be found in (Schneider and Weil, 2008).

3.2.1 Boolean model

The Boolean model is the most famous representative of germ�grain processes. Models
in this family can be interpreted as marked point processes (De�nition 1.2.9), where the
ground process is the germ process and the mark space M is contained in F . The marks are
called grains. Germ�grain processes are a natural model for systems of random independent
objects. Several examples of materials modeled with Boolean models are presented in Jeulin
(2011) and references therein. Beside serving as models for granular structures, Boolean
models can be exploited to simulate complex patterns in multiphase materials (Savary et al.,
1999). Although the interpretation is di�erent, the same analytical results can be applied. A
Boolean cylinder model is �tted to samples of medium density �ber board in Peyrega (2010).
The insulation properties of the material are analyzed based on realizations of the model.
Also the model presented in Faessel et al. (2005) can be interpreted as a Boolean model
with compact non-convex grains. Fibers in that case are not cylinders but are obtained
by dilating a curved line with a given random radius. The construction of the medial axis
of a �ber depends on length, curvature and random orientation distribution. Each �ber is
inserted in the observation window independently of the others. The model is �tted only
to low density materials, thus overlappings are rare. This model is used to test the thermal
conductivity of low density �ber boards. In simulations, a special mechanical behavior is
assigned to the surface of contact.

We will restrict to compact grains. Some realizations of Boolean models of cylinders with
varying parameters of the orientation distribution and circular and polygonal cross sections
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(a) β = 0.1 (b) β = 1.0 (c) β = 4.0

(d) xy (e) yz (f) xy (g) yz (h) xy (i) yz

Figure 3.1: Realizations of Boolean models with di�erent cross sections and parameters of
the β-orientation distributions. Isotropic distribution of the cross sections. Volume fraction
about 15%, length 120 pixels, Left: β = 0.1, triangular cross section with diameter of the
equivalent area circle 15 pixels. Center: β = 1, circular cross section with diameter 15 pixels.
Right: β = 8, squared cross section with edge length 15 pixels. Image size 300×300×300
pixels.

are displayed in Figure 3.1.

De�nition 3.2.1 (Boolean model)
Let Φ = {x1, x2, ...} be a Poisson point process in Rd (germ process). Let the grains X1, X2, ...
be a sequence of random compact sets with center of the circumscribed sphere in the ori-
gin, with non empty interior, mutually independent and identically distributed as X0 and
independent of Φ. Then the Boolean model Ξ with typical grain X0 is

Ξ =
∞∪
i=1

(Xi + xi).

The properties of the union of grains strongly depend on the properties of the underlying
germ process. For instance, the Boolean model is stationary if the underlying point process
is stationary. In this case, the intensity measure of the Poisson point process is absolutely
continuous with respect to the Lebesgue measure. Moreover, the intensity of the underlying
point process λ is also the intensity of the Boolean model.

As discussed in Section 1.2.2, the intrinsic volume densities are a complete set of function-
als to describe unions of bodies. Furthermore, under some conditions, the intrinsic volume
densities of the union of grains in Boolean models can be expressed in terms of the geometric
properties of the typical grain.

Theorem 3.2.2 (Miles' formulae)
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Let Ξ be a stationary isotropic Boolean model with intensity λ > 0 and typical convex grain
X0 and with intrinsic volume densities VV = VV,3(Ξ), SV = 2VV,2(Ξ), MV = πVV,1(Ξ), and

χV = VV,0(Ξ). Let V̄ = E[V3(X0)], S̄ = 2E[V2(X0)], and
¯̄b = 1

2
E[V1(X0)] be the mean values

of the intrinsic volumes of X0. Then it holds

VV = 1− e−λV̄ , (3.4)

SV = e−λV̄ λS̄, (3.5)

MV = e−λV̄ (2πλ¯̄b− π2λ2

32
S̄2), (3.6)

χV = e−λV̄ (λ− λ2

2
¯̄bS̄ +

πλ3

384
S̄3). (3.7)

Suppose we are observing a realization of a Boolean model Ξ in a compact convex window
W , then VV,k are well de�ned for k = 0, ..., 3. Moreover, it is possible to estimate the intrinsic
volume densities of Ξ by means of image analysis techniques. Thus, the lefthand sides of
Equations (3.4)�(3.7) are known. The system can be solved to �nd the intensity of the
model and the mean characteristics of the typical grain. However, we are solving a non-linear
system, thus the solutions are a�ected by numerical errors. Besides, the estimations of the
intrinsic volume densities from images yield an error due to the discretization. Therefore,
in applications it is preferable to use a set of analogous equations which contain numerical
corrections (Ohser et al., 2009a).

The Miles formulae allow to automatically deduce the intensity of the process and the
mean characteristics of the grains starting from quantities estimated from the images. These
formulae are a special case of Theorem 9.1.3 of Schneider and Weil (2008) for additive and
continuous functionals. Due to Hadwiger's theorem, regular functionals other than the
intrinsic volumes only carry redundant information. Therefore, the Miles formulae also yield
that the �rst moments of the characteristics of the grains are the only information that can
be extracted from the intrinsic volume densities of the process. Yet, we can determine only
moments of the �rst order and not deduce information about the whole distributions of the
geometric characteristics.

There are three assumptions for the validity of the Miles' formulae: stationarity, isotropy
and convexity of the grains. The weakest is the convexity of the grains, in fact, the same
results hold for polyconvex grains, given they comply with an additional integrability condi-
tion (Schneider and Weil, 2008). Dropping solely the isotropy condition, then only Equations
(3.4) and (3.5) hold. However, even in the case of circular cross section, these two do not suf-
�ce to extract both the intensity of the germ process and the characteristics of the grains. In
Section 3.4, we will apply them to �t Boolean models of cylinders with circular and squared
cross section to a strongly anisotropic �ber system. To estimate the intensity of the models
from the Miles' formulae, we will extract the mean �ber thickness by other means.

For generalized versions of the Miles' formulae in dimension d for anisotropic systems,
we refer the interested reader to Schneider and Weil (2008, Theorem 9.1.5). Moreover, Weil
(2001) analyzes in details lower dimensions. In the three-dimensional case, formulae based
on mixed volume densities of the typical grain are stated. Nevertheless, not only they are
more di�cult to handle in real applications, but they introduce more unknowns and thus do
not su�ce to determine the mean characteristics of the grains either. Weil (2001) treats also
the case of non-stationary Boolean models. Although some theoretical results are found, it
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is not possible to employ them for estimating the model parameters directly from quantities
estimated in images.

(a) β = 0.1 (b) β = 1.0 (c) β = 4.0

(d) xy (e) yz (f) xy (g) yz (h) xy (i) yz

Figure 3.2: Realizations of Poisson processes of cylinders with di�erent cross sections and
parameters of the β-orientation distributions. Isotropic distribution of the cross sections.
Volume fraction about 12%. Left: β = 0.1, triangular cross section with diameter of the
equivalent area circle 15 pixels. Center: β = 1, circular cross section with diameter 15 pixels.
Right: β = 8, squared cross section with edge length 15 pixels. Image size 300×300×300
pixels.

3.2.2 Poisson cylinder process

We now abandon compact sets and consider generalized cylinders. Such a cylinder is de�ned
as a line dilated with a compact structuring element, hence the name process of dilated lines
(Weil, 1987). Poisson cylinder processes are de�ned as Poisson point processes with value
in the space of generalized cylinders. They are a natural model for systems of long �bers.
Schladitz et al. (2006) �tted a Poisson cylinder process to a highly anisotropic non-woven
�ber material to analyze the acoustic properties of the material. Examples of realizations of
stationary Poisson cylinder processes with di�erent cross sections and orientation distribu-
tions are displayed in Figure 3.2.

De�nition 3.2.3
Let G(k, d) be the Grassmannian manifold of all non-oriented k-dimensional linear subspaces
of Rd. If L ∈ G(k, d) and K ⊂ L⊥, K ∈ R, the convex ring, such that the center of the
circumscribed sphere is in the origin, then the Minkowski sum

Z = L⊕K
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is a cylinder with direction space L(Z) = L and cross section (or base)K(Z) = K. Moreover,
Z0

k is the set of all cylinders with k-dimensional direction space and with cross section
centered in the origin. The set of all cylinders with k-dimensional direction space in Rd is
Zk = {Z + x : Z ∈ Z0

k , x ∈ Rd} ⊂ F .

Analogously to the de�nitions given on Rd in Section 1.2.3, a measure φ on Zk is locally
�nite if

φ({Z ∈ Zk : Z ∩ C ̸= ∅}) < ∞

for compact sets C ∈ Rd. A locally �nite measure φ such that φ(Z) ∈ N0∪{∞} for all Z ⊆ Zk

is a counting measure on Zk. We call N (Zk) the set of locally �nite counting measures on
the space of cylinders Zk. N (Zk) is supplied with the induced σ-algebra N (Zk). Now, we
have all the elements needed to rigorously de�ne a generalized point process:

De�nition 3.2.4 (Poisson cylinder process)
Let Φ be a point process in the space Zk, that is, a Borel-measurable map on a probability
space (Ω,A,P) with values in N (Zk) furnished with the σ-algebra N (Zk). Then Φ is a
cylinder process with intensity measure Λ such that Λ(B) < ∞ for all Borel sets B ⊂ Zk. If
Φ is a Poisson point process on Zk, then Φ(B) has Poisson distribution with mean Λ(B) for
all Borel sets B ⊂ Zk and Φ is called Poisson cylinder process.

We will restrict to d = 3 and k = 1, that is, classic cylinders with in�nite length.
For simplicity, we will write Z for Zk and so on. Moreover, we will only consider simple
Poisson processes. If Φ is stationary, then also Λ is invariant to translations, whereas if Λ
is stationary, the Poisson cylinder process is said to be weakly stationary. The same holds
for isotropy. If Φ is stationary, the intensity measure can be decomposed (Weil, 1987). Let
i : (x, Z) 7→ x+Z for x ∈ R3 and Z ∈ Z0, then there exist λ > 0 and a probability measure
θ on Z0 such that

Λ(i(A× C)) = λ

∫
C

V
L(Z)
2 (A)θ(dZ) (3.8)

for all Borel sets A ⊂ R3 and all C ⊂ Z0, with V
L(Z)
2 being the Lebesgue measure restricted

to L(Z)⊥ ⊂ R2. λ is the intensity and θ is the shape distribution of Φ.

The union set of a Poisson cylinder process can also be interpreted as a generalization of
the Boolean model with non-compact grains (Ohser and Schladitz, 2009). The union of the
cylinders Ξ = ∪Z∈ΦZ is a random closed set which is almost surely locally �nite. Therefore,
the intrinsic volume densities of a Poisson cylinder process observed in a compact window are
well de�ned. As for Boolean models, also in this case it is possible to express these densities
via the mean values of the cylinder characteristics (Ohser and Mücklich, 2000; Weil, 1987;
Miles, 1976). Additional assumptions are necessary.

Theorem 3.2.5 (Miles' formulae)
Let Ξ be the union set of a stationary isotropic Poisson cylinder process with intensity λ
and constituted by cylinders with one dimensional direction space in R3 and circular cross
section. De�ne VV , SV , MV and χV the intrinsic volume densities of Ξ. Let Ā be the mean
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cylinder cross section area and C̄ the mean circumference. Then it holds

VV = 1− e−λĀ, (3.9)

SV = e−λĀλC̄, (3.10)

MV = e−λĀ(πλ− π2λ2

32
C̄2), (3.11)

χV = e−λĀ(−λ2

4
C̄ +

π2λ3

96
C̄3). (3.12)

Assuming that the observed sample is a realization of a stationary isotropic Poisson
process of cylinders allows to estimate the mean geometric characteristics of the cylinders
and the intensity of the process.

An extensive treatment of Poisson processes of dilated �ats in Rd is presented in Weil
(1987). More recently, Ho�mann (2007a,b) focused on anisotropic non-stationary Poisson
processes. He expresses the intrinsic volume densities depending on mixed volumes of the
process observed on intersections with lower dimensional hyperplanes. His results are highly
theoretical and cannot be employed in model �tting. Stationary anisotropic Poisson cylinder
processes are the subject of the work of Spiess and Spodarev (2010). Formulae for the
capacity functional, the covariance, and the speci�c surface area for stationary anisotropic
cylinder processes with polyconvex cross sections are presented. In particular, we can adapt
the formula for the density of the surface area to facilitate model �tting.

From now on, we follow the notation of Spiess and Spodarev (2010). We denote by γA
the set covariance or covariogram or covariance function (Ohser and Mücklich, 2000) of a
measurable set A ⊂ Rd, which is de�ned as

γA(x) = Vd(A ∩ (A− x)),

for x ∈ Rd. The directional derivative in the origin is de�ned as

γ′
A(0, u) = lim

t→0

γA(tu)− γA(0)

t

= lim
t→0

Vd(A ∩ (A− tu))− Vd(A)

t
. (3.13)

where u is a unit vector, t ∈ R. It depends on the direction of derivation.
We recall that a regular closed set is such that it is equal to the closure of its interior.

With V L
d−k we denote the Lebesgue measure restricted to the (d− k)-dimensional space L⊥.

Corollary 1 in Spiess and Spodarev (2010) asserts:

Theorem 3.2.6
Let Ξ be the union set of a stationary Poisson process of cylinders with intensity λ, shape
distribution θ and regular cross section K(Z) ∈ R for θ-almost all Z ∈ Zk, direction L(Z)
and �nite surface area density SV . Then

SV = −λ
dκd

κd−1

∫
Z0

k

∫
G(1,d)

γ′
K(Z)(0, πL(Z)(rξ))[ξ, L(Z)]dξθ(dZ)·

· exp{−λ

∫
Z0

k

V
L(Z)
d−k (K(Z))θ(dZ)},
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where rξ is the unit direction vector of ξ ∈ G(1, d), πL(Z)(rξ) is its orthogonal projection onto
L(Z)⊥, and [ξ, L(Z)] is the volume of the parallelepiped spanned by the direction vectors of
L(Z) and ξ. The integration on G(1, d) is with respect to the Haar probability measure.

Then for d = 3 and k = 1, it holds:

SV = −4λ

∫
Z0

∫
G(1,3)

γ′
K(Z)(0, πL(Z)(rξ))[ξ, L(Z)]dξθ(dZ)·

· exp{−λ

∫
Z0

V
L(Z)
2 (K(Z))θ(dZ)}. (3.14)

Moreover, it holds that ∫
Z0

V
L(Z)
2 (K(Z))θ(dZ) = Ā

where Ā is the mean area of K(Z), i. e., is the expected value of the two-dimensional measure
of the cross section of the cylinders.

The case of circular cross section with constant radius r is presented as an example in
Spiess and Spodarev (2010). Formula (3.14) simpli�es in

SV = 2πrλe−λπr2

which corresponds to Equation (3.10). Thus, assuming isotropic cross section, the �rst two
Miles' formulae are valid also in case of anisotropic orientation distribution, as for Boolean
models. Nevertheless, in this case the shape of the cylinders depends only on one parameter,
thus two equations are su�cient to determine the mean radius and the intensity of the
process. We will apply this for �tting a model to a sample of cellulose �bers in Section 3.4.

Convex polygonal cross section

We now calculate the density of the surface area for processes of cylinders with convex
polygonal cross section K. As these shapes are not isotropic, we need to consider also their
orientation distribution. The information about the shape and orientation distribution of K
is contained in the shape distribution θ(Z) of the cylinders, see Equation (3.8). This can
be further decomposed (Spiess and Spodarev, 2010). Let j : R × G(1, 3) → Z0 such that
j(K,L) = K ⊕ L for K ∈ R with center of the circumscribed sphere in the origin, and
L ∈ G(1, 3). Then there exists a probability measure α, called the directional distribution
of Ξ, and a probability kernel β : B(R)×G(1, 3) → [0, 1] such that β(· , L) is concentrated
on subsets of L⊥ and it holds

θ(j(K ×G)) =

∫
G

β(K,L)α(dL). (3.15)

Note that α corresponds to the orientation distribution of the cylinder axes. We assume
that α is independent of β. Moreover, we assume that for each cylinder the orientation and
the shape of the cross section are independent of the cylinder axis.
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Thanks to Corollary 5.2 in Spodarev (2002), the volume of the parallelepiped [ξ, L(Z)]
in G(1, 3) is equal to 1/2. Moreover, the derivative of the set covariance

γ′
K(Z)(0, πL(Z)(rξ))

is restricted to the plane L(Z)⊥. It depends only on K(Z) and on the projection of the
direction vector rξ onto this plane. We can express rξ in spherical coordinates as rξ =
(sin θ cosϕ, sin θ sinϕ, cos θ). We assume that Z is a cylinder with axis on the z-axis. Then,
the projection of rξ onto L(Z)⊥ is πL(Z)(rξ) = (sin θ cosϕ, sin θ sinϕ, 0), that is a vector of
module sin θ rotated of an angle ϕ from the x-axis. The derivative of the set covariance in
the origin depends only on the angle ϕ which is uniformly distributed in [0, 2π). Therefore,
we can simplify the notation by writing uϕ for πL(Z)(rξ). Furthermore, the following holds:

Lemma 3.2.7
Let K ⊂ R2 be a convex polygon, then

2π∫
0

γ′
K(0, uϕ)dϕ = −2p(K), (3.16)

where uϕ is a unit vector with coordinates (cosϕ, sinϕ) and p(K) is the perimeter of K.

Proof The derivative of the set covariance in direction uϕ is -1 times the length of the
orthogonal projection of the polygon K onto the line spanned by uϕ, see Lemma 2.1 in
Nagel (1993) or Matheron (1975). This is the width of the polygon in the direction uϕ.
Using the notation h(K,ϕ) for the support function (see Equation (1.5)), we have

γ′
K(0, uϕ) = −(h(K,ϕ) + h(K,−ϕ)).

Then,

2π∫
0

γ′
K(0, uϕ)dϕ = −

2π∫
0

(h(K,ϕ) + h(K,−ϕ))dϕ =

= −2

2π∫
0

h(K,ϕ)dϕ = −2πb̄(K),

where we employed the de�nition of the mean width b̄ of K (Equation (1.6)). The mean
width of a convex polygon is p(K)/π and thus the lemma is proved.

We recall that the integral over G(1, 3) is with respect to the Haar probability measure,
which is normalized on G(1, 3). Thus, expressing the integral in spherical coordinates, we
have to divide by the surface area of the semisphere. Substituting Lemma 3.2.7 in Equation
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(3.14), it holds that

SV = −4λe−λĀ

∫
Z0

1

2π

2π∫
0

π
2∫

0

1

2
γ′
K(Z)(0, uϕ)dθdϕθ(dZ)

= − 1

π
λe−λĀ

∫
Z0

π

2
(−2p(K(Z)))θ(dZ) =

= λe−λĀ

∫
Z0

p(K(Z))θ(dZ), (3.17)

where ∫
Z0

p(K(Z))θ(dZ) = p̄

is the mean perimeter of the cross section. Then the surface area density of a Poisson process
of cylinders with a convex polygon as the cross section, is

SV = λp̄e−λĀ (3.18)

This holds for arbitrary orientation distribution of the cylinder axis and of the cross section.

We now verify Lemma 3.2.7 for squares and equilateral triangles where the set covariance
can be calculated explicitely.

Let us assume that K is a square with �xed edge length a. We can assume K = [0, a]2.
In polar coordinates, we have v = (ρ cosϕ, ρ sinϕ), with ρ > 0 and ϕ ∈ [0, 2π). Then, ϕ
is the angle between the vector of translation v and one of the edges of the square, Figure
3.3(a). We suppose that the intersection of K and (K − v) is non-empty, i. e., ρ < a

√
2.

Furthermore, we can consider α ∈ [0, π/2], as the other cases are symmetric. The area is

γK(v) = (a− ρ cosϕ)(a− ρ sinϕ)

= a2 − aρ(cosϕ+ sinϕ) + ρ2 cosϕ sinϕ.

Thus,
γ′
K(0, v) = −a(cosϕ+ sinϕ),

which in absolute value is the length of the projection of K onto the direction spanned by
v. Then the integral over ϕ ∈ [0, 2π) is

2π∫
0

γ′
K(0, vϕ)dϕ =

2π∫
0

(−a(cosϕ+ sinϕ))dϕ =

= −4a

π
2∫

0

(cosϕ+ sinϕ)dϕ =

= −4a(sin
π

2
− sin 0− cos

π

2
+ cos 0) = −8a,
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(a) 0 ≤ α ≤ π
2

(b) 0 ≤ α ≤ π
3

(c) π
3
≤ α ≤ 2π

2

Figure 3.3: Square and triangle translated of a vector x. γK(x) is the area of the intersection.

that is twice the perimeter of the square as claimed in Lemma 3.2.7.
Let us now proceed analogously for triangular cross sections. Let us assume that K is an

equilateral triangle with edge length a and vertices (0, 0), (0, a) and (a/2,
√
3
2
a). Let us con-

sider again v = (ρ cosϕ, ρ sinϕ), with ρ small enough to guarantee a non-empty intersection.
Due to symmetry, it is enough to calculate the set covariance in ϕ ∈ [0, 2π/3]. Furthermore,
the intersection (K ∩K − v) is an equilateral triangle. For ϕ ∈ [0, π/3], the edge length is
a− ρ cosϕ− ρ sinϕ/

√
3 (Figure 3.3(b)) and the area is

γK(v) =

√
3

4

(
a− ρ cosϕ− ρ sinϕ√

3

)2

=

=

√
3

4

(
a2 − 2aρ

(
cosϕ+

sinϕ√
3

)
+ ρ2

(
cosϕ+

sinϕ√
3

)2
)
.

For ϕ ∈ [π/3, 2π/3], the edge length of the intersection is a − 2ρ sinϕ/
√
3 (Figure 3.3(c))

and the area is

γK(v) =

√
3

4

(
a− 2ρ sinϕ√

3

)2

=

=

√
3

4

(
a2 − 4√

3
aρ sinϕ+

4

3
ρ2 sin2 ϕ

)
.

The directional derivative in the origin is

γ′
K(0, v) =

{
−1

2
a
(√

3 cosϕ+ sinϕ
)

ϕ ∈ [0, π/3]
−a sinϕ ϕ ∈ [π/3, 2π/3]

(3.19)

Due to symmetry, the integral over [0, 2π) is three times the integral over [0, 2π/3), which
we can further split according to the value of γ′:

2π∫
0

γ′
K(0, vϕ)dϕ = 3


π
3∫

0

−1

2
a(
√
3 cosϕ+ sinϕ)dϕ+

2π
3∫

π
3

−a sinϕdϕ

 =

= −3a

(
1

2

(√
3 sin

(π
3

)
− cos

(π
3

)
+ cos(0)

)
− cos

(
2π

3

)
+ cos

(π
3

))
=

= −6a.

This corresponds to Lemma 3.2.7.
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3.3 Models with interaction

Although models with overlapping �bers are often capable to embed the signi�cative features
of the materials and can be used for simulations of physical properties, rigid �bers, such as
steel or glass �bers, do not overlap. Thus, it is natural to look for models encompassing this
feature. Avoiding intersections precludes the possibility of purely analytical de�nitions of the
models. Instead, the models in this section are de�ned algorithmically. We will introduce
the main features of three models and give references for further details. The �rst model we
treat is the random sequential adsorption (RSA). It can be seen as the easiest way to insert
cylinders in a compact window without overlapping. The de�nition yields a straightforward
implementation. Then, we will deal with a di�erent model for the �bers that comprises
curvature. The �bers are represented by chains of overlapping balls, such that each ball is
free to move within a certain constraint towards the neighboring balls (Altendorf, 2011).
This model for �bers is applied to generate high density systems of �bers in a force-biased
approach (�ber packing, Section 3.3.2) and in a sedimentation model (Section 3.3.3).

Systems in which intersections between objects are completely forbidden are called hard-
core. However, interaction among �bers does not necessarily mean non-overlapping objects.
Indeed, if only a small overlapping is allowed, the objects are not independent of each other
as they are in Boolean models or in Poisson cylinder processes. If a certain overlapping is
allowed, we talk about soft-core systems. The idea of Rikvold and Stell (1985) is that the
object has a hard impenetrable core, like the pit of a cherry, whereas its shell is �soft�, i. e.,
penetrable. For example, one can construct a system of spheres, which can overlap up to some
percentage of their radii. Alternatively, the soft-core ratio can be de�ned depending on the
volume of the region of intersection. Both these criteria can be easily adapted to cylinders.
Note that a soft-core ratio going to zero (a core of zero volume) yields total overlapping. Let
us suppose to modify the RSA model so that the objects have a soft-core. The limit of an
RSA model for the soft-core ratio going to zero is a Boolean model. Properties of soft-core
systems of spheres have been analyzed in Rikvold and Stell (1985); Elsner et al. (2009). To
our knowledge, analogous analyses for cylinders are still an open problem.

3.3.1 Random sequential adsorption (RSA)

The easiest way to obtain systems of non�overlapping arbitrary objects is by the algorithm
known as random sequential adsorption (Feder, 1980; Hinrichsen et al., 1986). As for the
Boolean model, the objects can be arbitrary compact convex bodies. In biology, RSA models
of spheres are used, for instance, to model protein adsorption (Feder, 1980). Redenbach and
Vecchio (2011) applied the model to a �ber system: an RSA model of cylinders is �tted to
a glass �ber reinforced polymer and to a steel �ber reinforced high performance concrete. A
realization can be seen in Figure 3.4(a).

De�nition 3.3.1 (RSA)
Let X1, X2, ... be a sequence of random convex compact sets with the center of the circum-
scribed sphere in the origin, independent and identically distributed as X0. Let W ⊂ R3 be
a convex compact set (observation window). Then a realization of the random sequential
adsorption model is the system {Yi}Ni=1 obtained by the following procedure:
do
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(a) RSA, β = 0.1 (b) Fiber packing, β = 1.0 (c) Sedimentation

(d) xy (e) yz (f) xy (g) yz (h) xy (i) yz

Figure 3.4: Realizations of models with interaction, volume renderings on top and cross
sections. Radius 15 pixels, height 120 pixels. From left to right: RSA with β = 0.1,isotropic
�ber packing, and sedimentation. Image size 300×300×300 pixels.

1. draw Xm+1,

2. draw a point x uniformly distributed in W ,

3. does Ym+1 = Xm+1 + x overlap with any of the already inserted bodies {Yi}mi=1?

No: insert Ym+1 in {Yi}mi=1, m 7→ m+ 1, and go to step 1.

Yes: go to step 2.

until

(a) m equal to N (desired number of bodies), or

(b) desired volume fraction VV is reached, or

(c) maximum number of trials is reached.

Note that in order to guarantee a uniform �lling of W a suitable edge treatment must be
used in simulations. For the collision test, it is necessary to keep track also of objects lying
outside the observation window. The idea is to employ a plus�sampling of the observation
window: the process is simulated in W ⊕K with a suitable compact and convex K, and then
cut into W . The estimation of VV during the generation of the process should account only
for the parts of cylinders inside W . Employing periodic boundary conditions yields that all
the objects completely lie in W . Therefore, all the inserted objects completely contribute to
the volume fraction reached at each step of the insertion process, thus the second stopping
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criterion can be simply expressed as
∑m

i=1 V (Yi) ≥ VV V (W ). For simplicity, from now on
we will always work with periodic boundary conditions.

If X0 is a random cylinder, then radius, length and orientation are drawn in the �rst step
according to given distributions. These distributions are preserved by not repeating the �rst
step in case a collision is detected. In fact, repeating step 1 would introduce a deviation from
the desired distribution. For instance, small objects or objects with certain orientations are
more likely to �nd a �tting position. A very large number of positions needs to be tested
to show that it is not possible to insert a new cylinder in a given con�guration. In this
case, it is said that the jamming limit is reached. The jamming limit strongly depends on
the distributions of the shape parameters and of the orientation. Also for the simpler case
of spheres, the jamming limit cannot be computed analytically for arbitrary distributions
of the radii, but has been studied by Monte-Carlo simulations (Feder, 1980; Meakin and
Jullien, 1992). According to Altendorf (2011), systems of cylinders with aspect ratio 1:10
and isotropic orientation distribution have jamming limit between 10% and 15%.

Analogously to Boolean models, the parameters of the RSA model are those determin-
ing the distribution of the radius and of the length of the typical cylinder, its orientation
distribution and the intensity of the process λ, i. e., the expected number of objects in a
unit volume. Thanks to the absence of intersections among the objects and the additivity
property of the intrinsic volumes, we have

VV,k =
1

V (W )

N∑
i=1

Vk(Yi)

for k = 0, ..., 3 and N the number of objects inserted in W . In particular, the density of the
Euler number is the expected number of objects in a unit window χV = E[NW ]/V (W ) that
is equal to λ. Moreover, it holds (Ohser and Mücklich, 2000)

VV = λV̄ ,

SV = λS̄,

MV = 2πλ¯̄b,

χV = λ,

where V̄ = E[V3(X0)], S̄ = 2E[V2(X0)] and ¯̄b = 1
2
E[V1(X0)] are the mean values of the

intrinsic volumes of X0. Note that the advantage of these formulae with respect to the Miles
formulae is that these are independent of the orientation distribution and of the shape of
the cylinders.

3.3.2 Fiber packing

We introduce a model of �ber packing developed by Altendorf (2011) and published also in
Altendorf and Jeulin (2011b,c). It was originally thought for glass or carbon �ber reinforced
composites and ultra high performace concrete. This model includes the possibility to achieve
high volume densities and bend �bers, still ensuring the realization of the desired orientation
distribution. A realization of the model can be seen in Figure 3.4(b).

First of all, we present the model for the �bers. Each �ber is a chain of overlapping
balls. The ball chain is generated by a random walk of points pi = (xi, µi, ri), where xi is the
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position of the center, µi is the (local) orientation and ri is the radius. For each �ber, a main
orientation µ0 is drawn according to a β-distribution �tted to the orientation distribution
of the observed �ber system. To generate a new point pi+1 in the random walk, a new
orientation is drawn according to a multivariate von Mises-Fisher distribution with µ0 and
µi as parameters, see Section 3.1. Then the radius ri+1 is chosen, and thus xi+1 =

ri+1

2
µi+1.

The concentration parameter κ1 corresponds to the principal orientation and determines the
reliability to the main �ber orientation. Instead, the concentration parameter κ2 corresponds
to the local orientation and controls the bending of the �ber. Once a ball chain {p0, ..., pl} is
generated, the �ber is completely de�ned and its mean orientation is given by µ̄ = xl−x0

∥xl−x0∥ . In
general, µ̄ di�ers from µ0. Therefore, in order to respect the global orientation distribution,
the �ber is rotated so that µ̄ equals to µ0. The rotation being a rigid motion, radius, length
and mutual positions of the balls are not a�ected. The radius and length follow given random
distributions. Moreover, the radius can vary within a �ber. Note that the number of balls in
each �ber is a compromise between the smoothness of the �ber and reasonable computational
time.

Realizations of the �ber packing are obtained through the following steps. At �rst, each
�ber is generated independently from the others and inserted in the observation window in a
uniformly distributed position. Of course, this generates a system of overlapping �bers. Now,
the second innovative idea of this model comes into play. A hard-core system is obtained by
applying two types of forces to the ball centers: a repulsion force to avoid overlapping and a
recover force to preserve the �ber structure. This method is adapted from the force-biased
approach for sphere packings described by (Mo±ci«ski et al., 1989). Details on the de�nitions
of the forces and on the convergence of the rearrangement step are found in Altendorf (2011).
The fact that collisions are tested and adjusted locally allows a speed up in the computation
time of the algorithm.

Compared to the models previously described, the �ber packing has a larger set of pa-
rameters. Again, we have the volume fraction, radius, length, and orientation distribution
of the �bers. In addition, we need the curvature, expressed by the concentration parameters
κ1 and κ2. The number of balls in each �ber and parameters for the forces are considered
technical parameters and do not need to be estimated for each sample. As the model itself
cannot be described in a compact form, it is not possible to �nd analytical formulations
linking characteristics of the system and of the �ber. The �bers are not overlapping, thus
the volume fraction is the sum of the volumes of the inserted �bers divided by the volume
of the window (assuming periodic edge treatment). The same holds for the other intrinsic
volume densities. However, even to compute the total �ber volume is not trivial as it de-
pends on the overlapping of the balls in the chains. Altendorf (2011) treats the problem
of estimating geometric characteristics directly from CT data thoroughly. To estimate the
curvature, it is necessary to separate the �bers. Starting from binary images, the idea is to
de�ne the probability for each foreground point to belong to a �ber. Then the �bers are
reconstructed as chains of balls. From this representation, the parameters of the multivari-
ate von Mises-Fisher distribution can be estimated. This method was validated on synthetic
data and applied to a �ber reinforced composite with a �ber volume fraction around 15%.
However, the reliability is expected to decrease rapidly for higher volume densities.
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3.3.3 Sedimentation

Sedimentation or deposition models exploit a physically motivated approach to generate
high density systems of non-overlapping objects. The idea is to imitate the process of
particles sedimenting in a medium in order to minimize a potential energy. Models for
the sedimentation of spheres date back to Vold (1960). Coelho et al. (1997) investigate
the sedimentation of ellipsoidal and polyhedral grains. A model for sedimented �bers is
presented in Provatas et al. (2000). Naturally, sedimentation models are best applied when
the �ber systems present a girdle orientation distribution. For instance, the production of
paper sheets can be interpreted as a sedimentation. The model developed in Lavrykov et al.
(2012) embeds the mechanical properties of the pulp �bers to de�ne their shape and simulate
the deposition and pressing in order to achieve a realistic �ber con�guration. Our focus is
however di�erent. We aim at modeling the geometry of the sedimented �bers, independently
from the production process. Therefore, the physics of the system is signi�cantly simpli�ed.
We propose a model which features the classical principles of sedimentation present also in
Coelho et al. (1997) and Provatas et al. (2000), enriched with the de�nition of �bers as ball
chains as in the �ber packing model. A realization can be seen in Figure 3.4(c).

The common features in Coelho et al. (1997) and Provatas et al. (2000) that we will also
apply in our sedimentation model are the following:

The observation window W is oriented so that it makes sense to talk about �top� and
�bottom�. For simplicity, the bottom corresponds to the plane z = 0. Increasing the
value of z yields a higher potential energy. This can be interpreted as the presence of
a gravitation �eld in the z direction.

Overlapping is not allowed.

The objects are inserted one by one from the top of the window. They fall until either
the object reaches the bottom or collisions with other objects are detected.

Once the object is sedimented, it is not possible to modify its shape or its position.

The models di�er with respect to the packing strategy. In Coelho et al. (1997), in order to
minimize the height where the collision occurs, the grains are translated and rotated while
falling. This modi�es the initial position and orientation of the object, but not its shape.
The �brous objects treated in Provatas et al. (2000), instead, are not rigid: when collision
occurs, the shape of the �ber is locally modi�ed to �ll up the empty space at lower heights.
In this approach, the position of the �ber and the orientation in the xy plane are not modi�ed
during the process.

The gravitation �eld yields a non-stationarity in the z direction. Our aim is to keep
stationarity in the xy plane, so that if the model is observed in a planar section (perpendicular
to the z axis), it is stationary. The initial position of the object is a point with uniformly
distributed (x, y) coordinates and z �xed to the top of the window. To not a�ect the planar
stationarity, translations in the xy-plane are not allowed. Moreover, we aim at preserving
the desired orientation distribution. Nevertheless, in this model we can only control the
planar distribution. Although the initial planar orientation will not be a�ected during the
process, the �nal mean orientation will also depend on the bending. The �ber is initially a
rigid cylinder with radius and length drawn from arbitrary distributions. The cylinder falls
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in the observation window. After a collision is detected, the �ber is interpreted as a chain
of overlapping balls. Suppose the i-th ball touches a sedimented �ber, while a ball next to
it does not. Now, di�erent strategies can be applied to further move down the neighboring
ball. We use a �exibility factor k to control the maximal distance on the z-axis between
neighboring balls. While in Provatas et al. (2000) the distance of the centers is compared
with a constant factor, we use:

|zi − zj| ≤ kr (3.20)

where (xi, yi, zi) and (xj, yj, zj) are the coordinates of neighboring balls in a �ber of radius
r. By construction, we �x (xi − xj)

2 + (yi − yj)
2 = r/2. A factor k = 0 yields rigid �bers,

while large k allows more �exibility in the �bers. In this case, higher volume fractions can
be obtained, but at the price of more curvature with the possibility of sharp bending.

The model can be re�ned by initializing the cylindrical �bers with arbitrary (spatial)
orientation. In this case, the distance between the centers of neighboring balls depends on
the z coordinate also in the plane, thus the criterion in (3.20) must be adapted:

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 ≤ kr (3.21)

With small k, the initial orientation of the �ber signi�cantly in�uences the shape of the
sedimented �ber.

It is possible to base the �exibility criterion on more sophisticated rules. For example,
instead of using the distance, one could check the angles formed by three neighboring balls.
It is also possible to introduce a global criterion by de�ning a maximum bending for each
�ber. Di�erent structures can be obtained by allowing balls to increase their z coordinate
after collision. One could approximate the �ber with a spline, locally or globally, so that
the �ber is smoothly curved. Qualitatively, this seems a good approximation for glass �bers.
However, this strategy has not been investigated so far.

The de�nition of the model does not allow an analytical description of its geometric
characteristics. The initial orientation distribution can be �tted to the sample as before,
however, the structure obtained by sedimentation will have a higher concentration around
the equator. The techniques proposed in Altendorf (2011) to estimate the curvature of the
�bers can be exploited also for this model.

3.4 Application to cellulose �ber systems

In this section, we analyze a sample of medium density �ber board. During the production
of this material, the cellulose �bers are pressed together to obtain a high density composite.
MDF boards are widely used for furniture elements and as thermal or acoustic insulators in
constructions. The sample is imaged with micro-computed tomography with spacing 1 pixel
= 7.857 µm. Visualizations of the cross sections and a volume rendering of the binarized
image can be seen in Figure 3.5. The �bers are strongly anisotropic, mainly lying in the xy
plane. At this image resolution, the �bers often overlap and are only a few pixels thick. The
densities of the intrinsic volumes and the structure model index estimated from the binary
image are summarized in Table 3.1.

Although it is not very evident in the image of this sample, wood �bers have typically
rectangular cross sections. We will investigate whether signi�cant di�erences occur in mod-
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(a) MDF

(b) xy

(c) yz

Figure 3.5: Visualizations of the MDF sample. Pixel size 7.857µm, image size 4003 pixels =
3.143 mm3. CT scan by Frank Sieker (GE Measurament & Control phoenix|x-ray, Wunstorf).
Binarization by Oliver Wirjadi (Fraunhofer ITWM).

els with cylinders with squared and circular cross sections. Boolean models and Poisson
processes of cylinders are �tted to the samples and compared.

3.4.1 Model �tting and validation

The parameters of the model are the intensity and the mean thickness of the �bers, i. e., the
diameter for circular cross section and edge length for squared cross section, respectively.
Furthermore, in case of squares, we need to assign an orientation distribution of the cross
section. Due to the low resolution, we cannot measure the distribution of thickness and
length from the image, nor the orientation distribution of the cross section assuming it is
squared. Thus, we model the �bers with cylinders of constant thickness and length, and
isotropic orientation of the cross section.

We start �tting Poisson processes of cylinders with circular and squared cross sections.
Then, the thickness and the intensity of the model can be calculated solving the system
of the two Miles formulae valid for anisotropic processes (Equations (3.9)-(3.10) for circles,
and Equations (3.9)-(3.18) for squares). They su�ce to estimate the mean thickness of the
cylinders and the intensity of the model, in both cases of circular and squared cross section.
We obtain:

circular cross section: λ = 0.0358, radius = 2.08 pixels = 16.32 µm;

squared cross section: λ = 0.0281, edge length = 4.15 pixels = 32.63 µm.

The estimated thickness of the �bers is about the same in both cases. Realizations in a
window of 4003 pixels = 3.143 mm3 (as the observed sample) contain more than 10 000
cylinders for each model.

We now suppose that the sample is a realization of a Boolean model of cylinders. We need
to estimate also the length of the cylinders, thus the two Miles formulae for volume fraction
and surface area density Equations (3.4)-(3.5) do not su�ce to estimate all the parameters
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VV SV MV χV SMI
MDF 0.384031 0.287468 0.021183 -0.002575 1.18126
Boolean circle 0.387229 0.264318 0.015543 -0.002171 1.03375
Boolean square 0.383708 0.251056 0.010354 -0.001717 0.75637
Poisson circle 0.386536 0.260696 0.014413 -0.002103 0.98370
Poisson square 0.384804 0.246903 0.008902 -0.001666 0.67433

Table 3.1: Characteristics of the MDF sample compared to those of the models estimated
on some realizations.

of the model. However, we can suppose that the thickness of the cylinders, whether radius or
edge length, estimated in the case of the Poisson cylinder process is a good estimate for the
mean thickness of the �bers. Therefore, we can use this information in the Miles' formulae.
We obtain in both cases lengths around 150 pixels.

We still need to estimate the orientation distribution of the cylinder axes. The β-
distribution is the obvious choice for girdle orientation (Section 3.1). We look at the dis-
tribution of the diameters in the 13 discrete directions which is a coarse estimation of the
orientation distribution of the �bers. This distribution is uniform around the z-axis and
concentrated mainly on the xy plane. To �nd the value of β we actually proceed via simu-
lations. We generate realizations of the Poisson cylinder processes and Boolean models and
compared not only the diameters, but also other geometric characteristics of the union of
�bers, as they are all in�uenced by the orientation. We found that a good �t is obtained
with β = 5.0.

(a) Circular cross section

(b) xy

(c) yz (d) Squared cross section

(e) xy

(f) yz

Figure 3.6: Realizations of Poisson cylinder processes �tted to the MDF sample with cylin-
ders with circular cross section (left) and squared cross section (right).

Some realizations are shown in Figures 3.6 and 3.7. As the cylinders are only about 4
pixels thick, it is hard to recognize the shape of the cross sections. In fact, the discretization
of a circle of radius 2 pixels ends up being almost indistinguishable from a square of edge
length 4 pixels. The intrinsic volume densities estimated on some realizations of the models
are shown in Table 3.1. Only VV and SV were employed in the model �tting, therefore
comparing the other values gives a validation of the model. The density of the integral of
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(a) Circular cross section

(b) xy

(c) yz (d) Squared cross section

(e) xy

(f) yz

Figure 3.7: Realizations of Boolean models of cylinders �tted to the MDF sample with
cylinders with circular cross section (left) and squared cross section (right).

mean curvature MV of the models is lower than the value estimated from the sample. This
can be easily explained by the choice of straight cylinders. In fact, the cellulose �bers are
sometimes curved. Moreover, MV is particularly low for models of cylinders with squared
cross sections. This is due to the fact that the surface of the squared cylinders is �at, whereas
a cylinder with circular cross section has positive curvature along all directions not parallel to
the axis. Of course, the density of the integral of mean curvature causes also the discordance
in the values of the structure model index. Also the density of the Euler number is better
matched by models with circular cross sections. From these values, the best �tting model is
the Boolean model of cylinders with circular cross section.

Further validation of the models is obtained with the spherical granulometry transform
Suppose that the foreground is the component of interest in a given binary image. Then,
spherical granulometry assigns to each foreground pixel, the radius of the largest sphere
contained in the foreground and covering the pixel. In this way, a map of the local thickness
of the structure is obtained. In our case, we can apply it both to the pore space and to
the �ber system. The results are shown in Figures 3.8 and 3.9 as empirical cumulative
distributions. The trends of the models are similar. For all models, the pore space is locally
larger than in the sample, whereas the �bers are locally thinner. There are almost no
di�erences in the granulometry of the Poisson processes and of the Boolean model inside
the �bers. This is not surprising as the thickness of the cylinders is the same for each cross
section and the length does not a�ect this measurement. Conversely, the cylinder length
a�ects the granulometry in the pore space. The di�erence in the local pore size is small,
but enough to suggest that Boolean models better �t to the sample. Concerning the shape
of the cross section, circles yield a better �t in the local pore size thickness, whereas the
granulometry map inside the �bers is �tted better by squared cross sections. This supports
the fact that the shape of the �bers is better modeled by cylinders with squared cross section.
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(a) Pore space
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(b) Fiber system

Figure 3.8: Comparison of the spherical granulometry on the pore space (left) and on the
�bers (right) estimated from the sample and from realizations of the Poisson process of
cylinders with circular and squared cross section.
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(b) Fiber system

Figure 3.9: Comparison of the spherical granulometry on the pore space (left) and on the
�bers (right) estimated from the sample and from realizations of the Boolean model of
cylinders with circular and squared cross section.
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3.5 Discussion

To characterize �ber systems based on image data, it is rarely possible to estimate geometric
characteristics of each �ber. Due to the numerous overlappings appearing in low resolution
images, even estimates based on local information are unreliable. In these cases, it is not
possible to infer enough information from the samples to �t complex models. However, we
showed that the intrinsic volume densities, theoretically, su�ce to deduce the parameters of
Poisson processes and Boolean models of cylinders with circular cross sections. Moreover,
we derived formulae valid also for polygonal cross sections for anisotropic Poisson cylinder
processes. Nevertheless, in this case also the orientation distribution of the cross section needs
to be estimated. As it is often not possible to estimate it directly from the image data, one
can proceed with repeated simulations of the model. Then, the best �tting distribution can
be chosen comparing geometric characteristics of the system of �bers and of the realizations,
like the intrinsic volume densities and the structure model index. Moreover, one can compare
the granulometry map as we did to validate the models �tted to the MDF sample. We showed
on this sample how to �t Boolean models and Poisson processes of cylinders with circular
and squared cross sections. The same procedure of model �tting can be applied to other
samples. If the �bers are more than a few pixel thick, the di�erences in the characteristics
of models with polygonal cross sections and with circular cross sections are more evident.

We gave a short introduction on three models with interaction among the �bers. The
parameters of the RSA model can also be estimated from the knowledge of the intrinsic
volume densities of the �ber system only. Moreover, this model is well de�ned for arbitrary
objects, e. g., cylinders with arbitrary cross sections, or non-convex �bers. However, an
e�cient implementation for an arbitrary object is not possible. In fact, testing overlapping
in the discritezed realization of the model is time consuming, as it would require multiple
scanning of a 3d image. Analytical tests for collisions of objects with arbitrary orientation
and shape are not trivial.

Modeling the �bers as ball chains, modifying the cross section to convex polygons implies
major changes in the de�nition of the model itself. Many steps of the generation of a
realization would be a�ected, too. Not only the contact between �bers needs to be detected
di�erently, but the strategies to deal with it also have to be adapted. For instance, a cuboid
could be rotated around its axis to avoid overlapping, while this is no use for circular cylinders
or spheres.



Chapter 4

Models for foams

A foam is a highly porous structure. The material has low volume density and is distributed
around a large number of gas or air pores. If the pores, or cells, are interconnected, we talk
about open-cell foams and the material is completely concentrated in the struts. Closed-
cell foams, instead, are characterized by the presence of thin �lms of material between the
pores. Both open and closed foams can be observed in nature at di�erent scales, from bone
tissue to sea-sponges through milk and soap froth. Manufactured foams have been developed
for a wide variety of applications, including medicine, aerospace, and automobile industry.
Mainly, manufactured foams are polymer, ceramic, or metal foams. Industrial polymer foams
are particularly suitable as sandwich-core materials thanks to their low speci�c weight and
sti�ness.

Instead of directly modeling the material, we model the geometry of the pore space of the
foam. Letting the volume of the material shrink to zero, the pores tend to be a collection of
cells which only intersect on their boundaries and such that their union is the whole window.
This is a heuristic de�nition of a tessellation, i. e. a partition of space.

De�nition 4.0.1
A tessellation or mosaic T in Rd is a set T = {Ci ⊂ Rd, i ∈ N} such that for all Ci, Cj ∈ T

(i) Ci is a full dimensional, bounded convex subset of Rd,

(ii) Ci, Cj ∈ T and Ci ̸= Cj, then C̊i ∩ C̊j = ∅,

(iii)
∪

i∈NCi = Rd,

(iv) for every compact Borel set W ⊂ Rd, #{C ∈ T : C ∩W ̸= ∅} < ∞, i. e. T is locally
�nite.

Matheron (1975) gives a more general de�nition of random tessellation which allows
to consider non-convex cells. An example is the Johnson-Mehl tessellation (Møller, 1992).
However, we restrict to convex cells as these are a good approximation when modeling solid
foams, for both open and closed cell foams (Fan et al., 2004; Kanaun and Tkachenko, 2006;
Redenbach et al., 2012b; Wejrzanowski et al., 2013).

First, we will introduce the concept of random tessellations and highlight how to describe
the geometry of a tessellation. Then, we will focus on models based on point processes:
Voronoi and Laguerre tessellations. After motivating the choice of the model, we will present
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a well established method to �t a stochastic model to samples of foams starting from 3d µCT
images. Strategies to improve this method are discussed and veri�ed on some samples of
polymethacrylimide foams in Section 4.3. In the last part of this chapter (Section 4.4), we
will deal with the well known problem of short edges occurring in Laguerre tessellations. We
will apply a method to reduce the number of short edges usually employed in modeling soap
froth (Kraynik et al., 2003). By investigating the geometric characteristics of some samples
of closed and open cell foams, we will discuss when the Laguerre tessellation models need to
be modi�ed to better feature the edge length distribution of the foams.

Parts of the analysis and results presented in this chapter are also published in Vecchio
et al. (2012a,c, 2014). The de�nitions and notations in this chapter are mainly taken from
Lautensack (2007) and Schneider and Weil (2008).

4.1 Random tessellations

A consequence of De�nition 4.0.1 is that the cells are convex polytopes, i. e., convex and
compact intersections of a �nite number of halfspaces generated by hyperplanes (Schneider
and Weil, 2008, Lemma 10.1.1). Therefore, in 3d each cell can be characterized by its facets,
edges and vertices. In general, we de�ne a k-face of a tessellation T for k ∈ N0, k < d as the
k-dimensional intersection of adjacent cells. Let

F (x) =
∩

C∈T,x∈C

C,

for x ∈ Rd. Then F (x) is a k-dimensional polytope. For k = 0, k-faces are the vertices of a
tessellation, which are usually called nodes. Furthermore, the set of the k-faces of T is

Fk(T ) = {F (x) : dimF (x) = k, x ∈ Rd}. (4.1)

De�nition 4.1.1
A tessellation T in Rd is called face-to-face if the k-faces of T coincide with the k-dimensional
faces of the cells, that is,

Fk(T ) =
∪
C∈T

Fk(C),

for k = 0, ..., d− 1. A face-to-face tessellation is said to be normal if every k-face belongs to
exactly d− k + 1 cells.

For d = 3, in normal tessellations nodes are shared by four cells, edges by three and
facets by two.

Following Lautensack and Zuyev (2008), we de�ne Pk ⊂ Rd as the set of all k-dimensional
polytopes and ck : Pk × T → Rd the centroid function, that is

ck(F + x, T + x) = ck(F, T ) + x

for x ∈ Rd, F ∈ Pk, T ∈ T and such that ck(F ) ̸= ck(F
′) for F, F ′ ∈ Pk, with F ̸= F ′. The

point ck(F, T ) is the centroid of the k-face F . One can take, for instance, the geometric
center or baricenter of F . This choice will not a�ect the following results.
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Random tessellations are de�ned as point processes with values in the space of tessella-
tions equipped with a suitable σ-algebra. More precisely, let T be the set of all face-to-face
tessellations with convex cells in Rd and T the σ-algebra generated by the sets

{T ∈ T : Fk(T ) ∩K ̸= ∅}

for all compact sets K ⊂ Rd (Stoyan et al., 1995).

De�nition 4.1.2
A random tessellation T is a measurable mapping from a probability space (Ω,A,P) with
values in T furnished with the σ-algebra T . The distribution of T is the induced probability
measure PT .

We say that a random tessellation is normal if its realizations are almost surely normal.
Again, stationarity and isotropy are de�ned as invariance of the distribution to translations
and to rotations, respectively. They are de�ned with respect to the cells of the tessellation:

T + x = {C + x : C ∈ T}, x ∈ Rd,

θT = {θC : C ∈ T}, θ ∈ SO(Rd).

4.1.1 Geometric characterization

We now introduce other processes induced by a random tessellation T which can be exploited
to geometrically characterize T .

A random tessellation T implicitly de�nes the point processes Nk of the centroids of k-
faces for k = 0, ..., d. From now on, we will assume to deal only with stationary tessellations.
In this case, also the processes of the centroids are stationary. The intensities of the centroid
processes are

γk = E[
∑

F∈Fk(T )

1[0,1]d(ck(F, T ))] (4.2)

for k = 0, ..., d. These intensities can be interpreted as characteristics describing the tessel-
lation. In fact, γk is the mean number of k-faces per unit volume. Furthermore, we consider
the topological numbers of the k-faces. Let njk : Pj → N with k, j = 0, ..., d and such that
njk(P ) is the number of k-dimensional faces in the j-dimensional polytope P . For normal
tessellations it holds (Lautensack, 2007, Theorem 1.6.5)

γk = γd
ENk

[ndk(Fd(0))]

d− k + 1
(4.3)

and

(1− (−1)k)γk =
k−1∑
j=0

(−1)j
(
d− j + 1

k − j

)
γj. (4.4)

Thus for d = 3 we get
2γ0 = γ1 = 2(γ2 − γ3). (4.5)

Recalling the Palm distribution of point processes (De�nition 1.2.7), we denote P0
k the

Palm distribution of Nk. With respect to P0
k, almost surely there exists a k-face Fk(0) with
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centroid in the origin. A random k-dimensional polytope with the same distribution as Fk(0)
is the typical k-face of the random tessellation T . Heuristically, the typical k-face is a k-face
chosen at random such that all the k-faces of the tessellation have the same probability of
being taken. Characterizing the typical k-faces of the tessellation is a way to statistically
characterize the whole tessellation.

Now, we consider the measures

Mk(B) =
∑

F∈Fk(T )

Hk(F ∩B) (4.6)

for B ∈ B(Rd), k = 0, ..., d. They are stationary random measures with intensity

µk = E[
∑

F∈Fk(T )

Hk(F ∩ [0, 1]d)]. (4.7)

The intensities µk represent the mean k-dimensional volume of the k-faces in a unit volume.
In 3d, µ1 is the total edge length per unit volume and is usually written LV , whereas µ2 = SV

is the surface area density. Note that µ3 = 1 due to the property of tessellations to be space
�lling.

There is a relation between the intensities γk and µk (Lautensack, 2007, Corollary 1.6.4):

µk = γkENk
[Hk(Fk(0))].

The parameters γk and µk completely describe the geometry of a random tessellation.
Moreover, thanks to the properties of normal tessellations, in R3 only four characteristics are
not redundant. A classic choice for the four characteristics is the set of Mecke's parameters:
γ0, µ1 = LV , µ2 = SV , and γ3 (Mecke, 1984). Equivalently, one can choose parameters which
describe the typical cell C. The advantage is that characteristics of the cells are easier to
estimate from images. Cells are compact bodies and thus we can exploit the characterization
of Chapter 2.

We denote Njk = E[njk(Fj)], that is, the mean number of k-faces in the j-dimensional
typical face. Then, N32 is the mean number of facets per cell. The Euler formula for
polytopes can be expressed as

N32 −N31 +N30 = 2.

Besides, normality yields

N03 = 4, N02 = 6, N01 = 4,

N13 = 3, N12 = 3, (4.8)

N23 = 2.

(4.9)

From (4.3) and (4.5), it follows

N32 = 2
γ2
γ3

=
2(γ0 + γ3)

γ3
.

N32 is the topological number we use to characterize tessellations. It can also be interpreted
as a measure of the regularity of the tessellation. Broadly spaeking, a large mean number of
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facets per cell is found in irregular tessellations. We will see some examples when discussing
models and analyzing some samples of foams. In the following, we will alternatively use also
the symbol FC for N32. To complete the set of four characteristics equivalent to Mecke's
parameters we choose the mean intrinsic volumes of the typical cell: the mean mean width
b̄ = V1(C)/2, the mean surface area S = V2(C), and the mean volume V = V3(C). Their
relations to Mecke's parameters are

LV =
4¯̄b

V̄
,

SV =
S̄

2V̄
,

γ3 =
1

V̄
.

To �t a random tessellation to a sample of foam we will start by �tting the distributions
of the four characteristics FC , b̄ S, and V . Details are given in Section 4.3.

4.2 Tessellation models

A special foam is soap froth, which deserved the title of �quintessential foam� (Kraynik
et al., 2004) for its properties. Plateau (1873) described the geometry of dry soap froth in
the mechanical equilibrium limit, that is, when surface energy is minimized. Plateau's laws
are the following (Weaire and Hutzler, 1999):

(i) facets have constant mean curvature,

(ii) three facets meet in an edge at an angle of 120◦,

(iii) four edges meet in a node at tetrahedral angles (arccos(1/3) ≈ 109.47◦).

Therefore, each edge is shared by exactly three cells and each node exactly by four cells (and
four edges), which corresponds to the property of normality of tessellations. The �rst model
for soap froth can be historically identi�ed in Kelvin's solution to the problem proposed
by himself: a tessellation of space into cells of equal volumes and minimal surface area
(Weaire, 1996). The Kelvin cell is a truncated octahedron, that is, a polyhedron with 14
facets, of which 6 are squares and 8 are hexagons. This can be used to partition space.
Besides, applying a curvature to the facets, it complies with Plateau's laws. A bit more than
a hundred years later, a better solution to Kelvin's problem was proposed by Weaire and
Phelan (1994). The Weaire-Phelan structure consists of two cells, an irregular dodecahedron
and a polyhedron with 14 hexagonal and pentagonal facets. Plateau's laws are obeyed when
the facets are curved. The question of whether this is the best structure to solve Kelvin's
problem is still open. Although these deterministic models capture some of the characteristics
of soap froth, it has been observed that the number of edges per facet in real soap froth varies
considerably (Matzke, 1946). Therefore, random models have been looked at also for this
application. The idea proposed in Kraynik et al. (2003) is to generate a random tessellation
and then relax it in order to obtain a more regular structure that complies with Plateau's
laws. More details are given in Section 4.4.1.
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The several techniques employed in industrial production in�uence the physics of the
solid foams. However, it is not possible to theoretically predict how far the manufactured
product is from Plateau's equilibrium. In general, open cell foams are more regular than
closed cell foams. This is due to the fact that the material on the facets had enough time
to drain o�. For example, the polymer closed foams analyzed in Section 4.3.3 show rather
�at walls. We model foams with normal tessellations. Simulations of mechanical proper-
ties on such models proved signi�cative for both open and closed cell foams (Kanaun and
Tkachenko, 2006; Liebscher et al., 2012; Redenbach et al., 2012b; Wejrzanowski et al., 2013).
Moreover, all normal tessellations in Rd with d ≥ 3 can be interpreted as Laguerre tessella-
tions (Lautensack and Zuyev, 2008). This is the reason why considering only models based
on Laguerre tessellations is not a restricting choice. We will �rst de�ne the Voronoi tessella-
tion, or Voronoi diagram. Then, the de�nition is generalized to obtain Laguerre tessellations,
or power Voronoi diagram. More details and other variations on Voronoi diagrams can be
found in Okabe et al. (2000).

4.2.1 Voronoi tessellations

A cell of a Voronoi tessellation is simply de�ned as the region of points closest to a given
point in the generated point process.

De�nition 4.2.1 (Voronoi tessellation)
Let Φ be a point process in Rd, then the Voronoi tessellation TΦ generated by Φ is the
collection of cells

CV (x,Φ) = {y ∈ Rd : ∥y − x∥ ≤ ∥y − x′∥, ∀x′ ∈ Φ}, x ∈ Φ.

Consequently, each point in Φ generates a cell and each cell contains its generator point
in Φ. It is possible to construct Voronoi tessellations which are not normal. For instance,
grid points generate cubical cells, such that each edge is shared by four, and each vertex by
eight cells. Such tessellations are considered degenerated (Okabe et al., 2000) and will not be
treated further. Moreover, assuming that the points in a realization of Φ are almost surely
in general position yields that the generated Voronoi tessellation is almost surely normal.
Furthermore, it holds that if Φ is stationary, then also TΦ is stationary. We will restrict to
stationary tessellations.

If Φ is a Poisson point process, the tessellation TΦ generated by Φ is called Poisson-
Voronoi (PV) tessellation. In this case, Φ, and thus TΦ, are completely determined by the
intensity λ of the Poisson point process. Furthermore, all the model characteristics are de-
termined by the only model parameter λ via analytical formulae. Whereas the complete
randomness of Poisson point processes was an advantage to model �ber systems, it is draw-
back when considering foams. In fact, models generated by PV tessellations yield structures
that are often too irregular to embed the geometry of real foams (Fan et al., 2004). For
instance, cells can be arbitrarily small (points can be arbitrarily close). Furthermore, the
mean number of facets per cell is around 15.5 for PV, while in real foams this number is usu-
ally smaller. Nevertheless, we will consider PV tessellations further as the reference model
for random tessellations.

Naturally, a more regular point process yields more regular structures. This can be
obtained by considering a hard-core point process : the distance between each pair of points
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is larger or equal to a given positive length. The terminology is analogous to hard-core �ber
systems. In fact, one can think of a hard-core point process as the process of the centers of
a hard-core system of spheres with constant radii. With this model, it is possible to control
the minimal cell size, however, we lose the possibility of an analytical formulation of the
geometric characteristics without gaining control on the volume distribution.

(a) Voronoi and Laguerre (b) Construction Laguerre

Figure 4.1: Tessellations generated by the system S = {A,B,C}. Left: comparison between
the Voronoi tessellation (dashed red lines) and the Laguerre tessellation (grey lines) for which
the region of in�uence of the generating points is weighted on the radii of the circles centered
in the points. Right: construction of the Laguerre tessellation. The point P belongs to the
cell generated by C because PR < PS, whereas the point Q is the vertex between the three
cells, in fact, the orange segments have the same length.

4.2.2 Laguerre tessellations

An advantage of considering Laguerre tessellations is that the cell volume distribution can
be controlled. To achieve this, a weight or power is assigned to each generating point. The
cells, interpreted as regions of in�uence of the points, are de�ned accounting for the weights.
Instead of using Euclidean distance, we rely on a power distance of the point y ∈ Rd to the
point x ∈ Rd with power r (Okabe et al., 2000):

dpw(y, x, r) = ∥y − x∥2 − r2.

In Figure 4.1(a), the Voronoi and Laguerre tessellations generated by three points are com-
pared. To generate the Laguerre cells, the power of each point is the radius of the corre-
sponding circle.

De�nition 4.2.2 (Laguerre tessellation)
Let Φ be a marked point process in Rd × R+, then the Laguerre tessellation TΦ generated
by Φ is the collection of cells

CL((x, r),Φ) = {y ∈ Rd : ∥y − x∥2 − r2 ≤ ∥y − x′∥2 − r′2, ∀(x′, r′) ∈ Φ}, (x, r) ∈ Φ.



70 Chapter 4 Models for foams

If the mark space is reduced to one point in R+, i. e., all the points have the same weight,
then the Laguerre tessellation has realizations identical to those of the Voronoi tessellation
of the ground point process.

The de�nition of the marked point process Φ can be extended to negative marks. The
Laguerre tessellation is well de�ned also in this case. However, restricting to the positive
real numbers simpli�es the geometric interpretation of the model. In fact, Φ can be seen as
a system of spheres. Then, deciding to which cell a point y belongs, is based on a geometric
construction shown in Figure 4.1(b). It is possible that some spheres do not generate any
cell and also that some spheres do not intersect the cell they generate.

To realize Laguerre tessellations, we do not use the construction depicted in Figure
4.1(b), but we exploit the duality with the Delaunay triangulation (Okabe et al., 2000).
The algorithm is outlined in Sugihara (2000). Let us suppose to deal with a �nite set of
generating points S = {(x0, r0), ..., (xn, rn)} belonging to a compact convex domain W ⊂ Rd.
For each point, we de�ne a point in Rd+1 such that the �rst d coordinates are those of x
and the last coordinate is given by ∥x∥2 − r2. We compute the convex hull of this set of
points. By projecting the lower hull ontoW , we obtain the Delaunay triangulation generated
by S. Thanks to duality, each vertex of the Delaunay triangulation corresponds to a cell
of the Laguerre tessellation and each edge to a neighborhood relation, thus the Laguerre
tessellation can be completely reconstructed. It is important to notice that once the sphere
system is given, the tessellation is completely determined.

As for Voronoi tessellations, particular point patterns yield degenerate tessellations. Nev-
ertheless, if the points are in general position (Okabe et al., 2000), then Laguerre tessellations
are normal. Moreover, every normal tessellation in Rd with d ≥ 3 can be constructed as a
Laguerre tessellation (Lautensack and Zuyev, 2008).

If the ground process Φ0 is a Poisson point process, we talk about Poisson-Laguerre tes-
sellations. The only parameters of this model are the intensity of the point process and the
radius distribution. This case is widely treated in Lautensack (2007). Good theoretical re-
sults are found concerning the mean characteristics and the Palm distribution corresponding
to Mk.

Hard-core sphere systems yield the advantage that each sphere generates a cell in which
it is contained. These systems are often found in literature as random close packings (RCP)
even though generated with di�erent algorithms. The simplest choice to model hard-core
spheres is the RSA algorithm (Section 3.3.1). However, volume fractions that can be achieved
with arbitrary volume distribution are rather low. Therefore, packing based on global re-
arrangements are often preferred (Fan et al., 2004; Kraynik et al., 2003; Redenbach, 2009).
Following Redenbach (2009), we model the sphere packing with the force-biased (FB) al-
gorithm presented in Bezrukov et al. (2002). It is a variation on the molecular dynamics
approach employed for instance in Kraynik et al. (2003). Initially, all the random spheres
are generated according to a given radius distribution and are inserted in an observation
window in uniformly distributed positions. In each iteration step, the radii of the spheres
are modi�ed and centers are shifted to reduce overlapping. The process stops when overlap-
ping is completely avoided or when the desired volume fraction is reached. Up to a scaling
factor, the initial size distribution is preserved. There are some technical parameters to be
set. However, we �x them according to Redenbach (2009) to obtain rather regular con�g-
urations. Some realizations of the sphere packings and the corresponding tessellations are
shown in Figure 4.2.
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(a) FB: c = 0.2 (b) Laguerre (c) FB: c = 2.0 (d) Laguerre (e) VV = 50%, c = 0.6

Figure 4.2: (a)-(d): 2d sections of two realizations of force-biased sphere packings in 3d with
VV = 50% and c = 0.2 (left), c = 2.0 (center) and corresponding Laguerre tessellations. (e):
volume rendering of a force-biased system of spheres with VV = 50% and c = 0.6 and the
edge system of the corresponding Laguerre tessellation.

One advantage of this model is that it depends on only few parameters: the intensity of
the spheres, the desired volume fraction VV , and the radius distribution. The latter depends
on the coe�cient of variation c and on the mean sphere volume, which is equal to the
mean cell volume times the volume fraction. Which distributions are considered and how
to estimate the model parameters from images of samples are topics of the next section. A
drawback of this model is that there are no analytical expressions for the characteristics of
the tessellation obtained from a force-biased packing. Nevertheless, this problem has been
overcome by the results published in Redenbach (2009). More details are given in the next
section.

Unless otherwise speci�ed, from now on by �model� we will refer to random Laguerre
tessellations generated by force-biased sphere packings.

4.3 Model �tting for foams

In this section, we present a well established technique to �t random Laguerre tessellations
to samples of foams. Moreover, we investigate the possibility to enrich the set of features
classically used in model �tting. In particular, we aim at improving the �t, while still
permitting the automatic determination of the parameters of the best-�tting model. The
problem of estimating geometric characteristics from the images will be addressed in Section
4.3.3.

When the coe�cient of variation of the volumes is close to zero, we talk about monodis-
perse foams. Foams with high variability in the cell size distribution are called polydisperse.
Two volume distributions are typically employed to model foams' cell size: lognormal, which
is also observed in polycrystals (Rhines and Patterson, 1982; Okazaki and Conrad, 1972),
and gamma, which corresponds to the volume distribution in PV tessellations. Both gamma
and lognormal distributions depend on two parameters which can be controlled by the mean
sphere volume and the coe�cient of variation c.

The gamma distribution depends on a shape parameter a > 0 and a scale parameter
s < 0 and has the following density

f(x) =
xa−1e−

x
s

saΓ(a)
, x ≥ 0. (4.10)
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The mean is as and the variance is as2. The density of a lognormal distribution with mean
µ ∈ R and standard deviation σ ≥ 0 is

g(x) =
e−

(log x−µ)2

2σ2

√
2πσx

, x ≥ 0. (4.11)

Moreover, if the sphere volume has lognormal distribution, then the radius is also lognormally
distributed with mean 1

3
(µ + ln( 3

4π
)) and variance σ2

9
. Unfortunately, radii of spheres with

gamma distributed volumes cannot be expressed via a known distribution.
The parameters of the volume distributions in terms of the model parameters for gamma

distribution are

a =
1

c2
and s =

c2VV

NV

and for the lognormal distribution

µ =
1

2
log

(
V 2
V

N2
V (c

2 + 1)

)
and σ2 = log(c2 + 1),

where NV is the number of spheres in a unit volume.
Note that the volume distribution is not directly �tted to the empirical distribution esti-

mated from a sample. Instead, the volume distribution is considered an unknown parameter
as volume fraction and coe�cient of variation of the sphere packing. The parameters gen-
erating the best-�tting model are found employing the procedure presented in Lautensack
(2007). It is based on the minimization of a distance function between N characteristics
estimated on the foam sample m̂i and the corresponding characteristics of the model mi:

d(m̂,m) =

√√√√ N∑
i=1

(
m̂i −mi

m̂i

)2

. (4.12)

The characteristics considered are �rst and second moments of volume, surface area, mean
width, and number of facets per cell of the typical cell, hence N = 8.

This approach is independent of the choice of the model. However, it depends on the
model whether the characteristicsmi bene�t of an analytical expression. If not, it is necessary
to proceed by simulations. An mentioned before, for Laguerre tessellations generated by FB
sphere packings, it is possible to approximate the characteristics depending on the model
parameters (Redenbach, 2009). An analysis based on Monte-Carlo simulations of the model
with varying parameters showed that mean values and standard deviations of V , S, b̄, and FC

are well approximated by third degree polynomials in the coe�cient of variation, depending
on the volume fraction and on the volume distribution. Gamma and lognormal distributions
of the volumes and four values of the volume fraction are sampled: VV = 30%, 40%, 50%, 60%.
Therefore, we can write

d(m̂, pVV ,i(c)) =

√√√√ N∑
i=1

(
m̂i − pVV ,i(c)

m̂i

)2

. (4.13)

Now, the minimization of this function with respect to c, VV and the volume distribution
can be done automatically. Thus, also the model �tting is completely automated. The open
question is if it is possible to improve this procedure.
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Distances other than Euclidean have been analyzed in Lautensack (2007), however, they
yield no qualitative di�erence. Another possibility for improvement is to sample other volume
fractions in order to represent the dependency of the characteristics as a two-dimensional
manifold depending continuosly on (VV , c). This idea has not been investigated further
because it is not possible to �nely control VV in realizations of the sphere packings. Therefore,
we decided to enrich the set of characteristics used to �t the model. Moreover, for Poisson-
Voronoi tessellations high correlations between the size features have been observed (Okabe
et al., 2000), whereas angles show low correlation with the four characteristics we considered
so far. The question we aim to answer is whether it is possible to include angles into
this framework for model �tting and what advantages would result. After analyzing the
distributions of angles in random Laguerre tessellations, we will introduce a method to
estimate these quantities from images of foams (Section 4.3.2).

θe θ3
VV c min max mean sd min max mean sd
30% 0.2 65.82◦ 151.21◦ 120.00◦ 10.19◦ 74.30◦ 146.13◦ 119.63◦ 10.28◦

30% 2.0 21.52◦ 179.48◦ 120.00◦ 21.66◦ 28.12◦ 177.29◦ 114.07◦ 21.85◦

60% 0.2 66.47◦ 148.34◦ 120.00◦ 11.48◦ 70.01◦ 145.74◦ 119.78◦ 11.40◦

60% 2.0 11.92◦ 179.36◦ 120.00◦ 22.66◦ 17.52◦ 178.51◦ 110.82◦ 23.73◦

PV 21.63◦ 178.58◦ 120.00◦ 23.80◦ 40.72◦ 173.65◦ 118.52◦ 23.84◦

Table 4.1: Statistics for dihedral angles for some parameters of the model with gamma
volume distribution.

αv α3

VV c min max mean sd min max mean sd
30% 0.2 0.22◦ 179.85◦ 109.89◦ 16.97◦ 0.40◦ 179.70◦ 109.74◦ 16.99◦

30% 2.0 0.04◦ 179.97◦ 109.80◦ 29.61◦ 1.09◦ 179.20◦ 107.30◦ 29.63◦

60% 0.2 0.25◦ 179.82◦ 110.05◦ 20.13◦ 0.68◦ 179.61◦ 110.08◦ 19.80◦

60% 2.0 0.35◦ 179.86◦ 109.09◦ 27.86◦ 0.42◦ 179.26◦ 104.61◦ 28.69◦

PV 0.79◦ 179.71◦ 110.76◦ 35.74◦ 3.62◦ 179.61◦ 110.90◦ 35.43◦

Table 4.2: Statistics for interior angles for some parameters of the model with gamma volume
distribution.

4.3.1 Angles in Laguerre tessellations

In order to investigate angles in random Laguerre tessellations generated by FB sphere
packings, we consider here the same simulations as investigated in Redenbach (2009): �ve
realizations with 10 000 spheres for each parameter set with VV = 30%, 40%, 50%, 60%,
c = 0.2, 0.4, ..., 2.0 and gamma and lognormal volume distributions.
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Let us assume that the tessellation is completely known, that is coordinates of the nodes,
edges' and facets' equations, and all neighbor relations are known. For a cell C, the dihedral
angle θe at edge e is the angle between the two facets of C sharing e. Let n and m be the
outward unit vectors normal to the two facets in C adjacent to e, then

θe = π − arccos(n ·m), (4.14)

where · is the scalar product. Other interesting angles to measure are the ones between two
edges on a facet. We refer to them as interior or bond angles (Kumar and Kurtz, 1995). We
can measure an interior angle via the scalar product of the direction vectors of the adjacent
edges.

Angles in tessellations were so far analyzed only for some special cases of Voronoi tessella-
tions (Kumar and Kurtz, 1995; Lorz and Hahn, 1993). For the Poisson-Voronoi tessellation,
a probability density function of the distribution of dihedral angles is given in Kumar and
Kurtz (1995):

f(θ) = (
4

3π
(2θ(2 + cos 2θ)− 3 sin 2θ) sin2 θ

for θ ∈ [0, π]. Considering the angles between all facet pairs gives a mean value equal to
120◦, due to normality (independent of the model), and standard deviation 23.85◦. In Lorz
and Hahn (1993), instead, only one random angle per cell is taken into account. In this way,
the mean value, estimated from simulations, is 118.5◦ and the standard deviation is about
10◦. The mean interior angle with respect to all vertices in each cell is 111.14◦, which is not
far from the equilibrium angle 109.47◦. Although Voronoi tessellations are a special case of
Laguerre tessellations, the underlying Poisson point process yields a structure signi�cantly
di�erent from the one obtained with non-overlapping spheres and varying radii. PV tessella-
tions cannot be considered as a limit case for the Laguerre tessellations generated by systems
of non-overlapping spheres for coe�cient of variation going to zero. Tables 4.1 and 4.2 dis-
play some statistics of the angles calculated on simulations of Laguerre tessellations with
extreme parameters and PV tessellations. Laguerre tessellations with low volume variations
have mean values closer to Plateau's equilibrium than PV tessellations.

Following Lorz and Hahn (1993) and Okabe et al. (2000), we de�ne θ3 to be a randomly
chosen dihedral angle per cell, where all the angles can be chosen with the same probability.
In other words, θ3 is the typical angle of a cell. The distribution of θ3 is very similar to the
distribution of θe computed on all edges of the tessellation. In Figure 4.3, the distribution of
θ3 for extreme values of the model parameters, VV and c, is presented. While considering θe
for all edges gives a mean value always equal to 120◦ due to normality, the mean values of
θ3 decrease as the tessellation becomes more polydisperse. At the same time, the variance
grows. Naturally, a small coe�cient of variation yields a more regular structure, thus nearer
to Plateau's equilibrium. With a large coe�cient of variation, some large cells with many
facets occur. These cells typically tend to a spherical shape and are characterized by large
angles between facets. However, the amount of small cells with irregular shape and typically
smaller dihedral angles is much larger. Therefore, in this case, the mean value of θ3 is smaller
than in regular structures and the variance is higher. The relation between the mean value θ̄3
and the standard deviation σ(θ3) depending on the model parameters can be seen in Figure
4.4. The values for each parameter set are obtained by ten independent extractions of θ
in each cell. The variances of the repeated extractions are however very small, both for θ̄3
and σ(θ3), thus suggesting that these characteristics are stable. Mean value and standard
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Figure 4.3: Densities of θ3 for Poisson-Voronoi tessellation and Laguerre tessellation with
VV = 30%, 60% and c = 0.2, 2.0. Left: gamma volume distribution. Right: lognormal
volume distribution.

deviation can be �tted by third degree polynomials in c for each VV and volume distribution
(see Appendix A for the coe�cients). Therefore, it is possible to use dihedral angles in
the distance function in Equation (4.13) and still minimize it automatically. Note that for
coe�cients of variation smaller than 1.0, the volume fraction does not in�uence the mean
values.

Proceeding analogously for interior angles, we de�ne α3 as a randomly chosen interior
angle of the typical cell, such that all the interior angles of the cell can be chosen with the
same probability. The densities of α3 for some values of the model parameters are shown in
Figure 4.5. Considering that a cell has an average of about 14 facets, which are most likely
to have 5 edges, there are about 70 interior angles in a cell. Choosing only one among them
might not yield enough information. Again, we considered ten independent extractions of
α3 in each cell. The variance of mean and standard deviation of α3 were higher than for
dihedral angles, especially in the case of the lognormal distribution. Nevertheless, the graphs
in Figure 4.6 show that there are close relations to the model parameters. The mean values
of interior angles decrease and standard deviations grow as the tessellations become more
polydisperse. For the lognormal volume distribution, the range of the mean and standard
deviation is very small. For both distributions, it is possible to �t third degree polynomials
to ᾱ3 and σ(α3) (coe�cients in Appendix A) and thus employ interior angles in automatic
model �tting, too.

Minimizing the distance function in Equation (4.13) with respect to the angles, too, sums
up to N = 12 characteristics. The next step is to verify if some of the characteristics hold
redundant information and thus can be excluded from the model �tting.

Correlation analysis

Figure 4.7 represents the pairwise correlation matrices of V , S, b̄, FC , θ3 and α3 for Laguerre
tessellations with VV = 60% and coe�cient of variation 0.2 and 2.0. Values of the correlations
for less dense packings are summarized in Table 4.3 together with the correlation coe�cients
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Figure 4.4: Mean (left) and standard deviation (right) of θ3 versus the coe�cient of variation
c for volume fraction VV = 30%, 40%, 50%, 60% with �tted polynomials. Top: gamma volume
distribution. Bottom: lognormal volume distribution.

for Poisson-Voronoi diagrams from Okabe et al. (2000). From the pairwise plots, it is easy
to see that the size measures, V , S and b̄, are strongly related, with an approximately linear
dependency. The angles, however, plotted against the other characteristics form clouds
suggesting low correlations.

The relations among these characteristics can be analyzed more thoroughly by a principal
component analysis (PCA). As expected, the angles contain the most variability in the data.
Volume and surface area appear redundant. The graphical representation of the principal
components shows that all the size features, V , S and b̄, contain similar information which
strongly di�ers from the information carried by θ3 and α3. The number of facets per cell FC

is more related with dihedral angles than with interior angles. The same e�ect can be seen
in Table 4.3: the correlation of dihedral angles with FC is higher than their correlation with
the size characteristics. Intuitively, both dihedral angles and the number of facets per cell
contain information about the shape of the polyhedron. Figure 4.8 shows how θ3 correlates
with V and FC and depends on the model parameters. The trends of the correlations with
S and b̄ are analogous. The interior angle α3 has small correlation coe�cients with respect
to all the other characteristics. Its correlation with the volume, Figure 4.9, varies on the
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Figure 4.5: Densities of α3 for Poisson-Voronoi tessellation and Laguerre tessellation with
VV = 30%, 60% and c = 0.2, 2.0. Left: gamma volume distribution. Right: lognormal
volume distribution.

model parameters with the same trend as the correlation between θ3 and the volume, but
with smaller values. These trends can be explained by the structural di�erences occurring
with di�erent coe�cient of variation.

VV c V, θ3 S, θ3 b̄, θ3 FC , θ3 V, α3 S, α3 b̄, α3 FC , α3 θ3, α3

30% 0.2 0.209 0.203 0.168 0.278 0.044 0.043 0.033 0.064 0.040
30% 2.0 0.429 0.458 0.459 0.488 0.118 0.132 0.137 0.144 0.041
60% 0.2 0.194 0.192 0.165 0.249 0.043 0.044 0.040 0.061 0.040
60% 2.0 0.487 0.547 0.572 0.573 0.174 0.207 0.226 0.222 0.114
PV 0.187 0.180 0.170 0.247∗

Table 4.3: Correlation coe�cients between the characteristics of Laguerre tessellations with
gamma volume distribution. Values for Poisson-Voronoi for comparison, from Okabe et al.
(2000). ∗Value for number of edges per cell N13 = 2FC − 4.

4.3.2 Estimation of angles from images

In this section, we outline how to extract geometric and topological characteristics of a
tessellation from an image. First, we reconstruct the whole topology of the tessellation,
then the angles can be calculated. The method we introduce can be applied on images of
tessellations obtained as digitalizations of models or as reconstructions from µCT images of
foam samples. We will exploit realizations of Poisson-Voronoi tessellations to validate the
proposed method.

We assume that the observed tessellation is face-to-face, normal and with convex poly-
hedral cells. The tessellation is observed on an image such that each connected component
has a unique label and two di�erent labels are separated by a layer of background pixels
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Figure 4.6: Mean (left) and standard deviation (right) of α3 versus the coe�cient of variation
c for volume fraction VV = 30%, 40%, 50%, 60% with �tted polynomials. Top: gamma volume
distribution. Bottom: lognormal volume distribution.

(one pixel thick). Any image that complies with these assumptions can be used in our algo-
rithms, no matter how it is produced. For our applications it is convenient to exploit images
generated by the watershed transform as they are already needed for the segmentation of
the cells, Figures 4.18(d) and 4.19(d) (details on the cell reconstruction are given in Section
4.3.3). The method can be adapted to image of space �lling tessellations with few modi�-
cations. Later, we will discuss the consequences of dealing with the image of a tessellation
that does not comply with the assumptions of normality and convexity of the cells. Note
that the topological reconstruction is strongly based on the identi�cation of neighbors. The
neighborhood should be chosen accordingly to the adjacency system employed in the cell
reconstruction.

The idea behind the algorithm is the following:

(i) classify background pixels according to the number of pixels in their neighborhood
(Figure 4.10):

two neighbors → facet pixel,

three neighbors → edge pixel,
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(a) VV = 60%, c = 0.2 (b) VV = 60%, c = 2.0

Figure 4.7: Pairwise correlation between volume (V ), surface area (S), mean width (b),
number of facets per cell (FC), dihedral angle (θ3) and interior angle (α3) for volume fraction
VV = 60%, coe�cient of variation c = 0.2 (left) and c = 2.0 (right), with gamma volume
distribution. Note that FC has only discrete values and the range for tessellations with
c = 0.2 is much smaller than with c = 2.0.

four (or more) neighbors → node pixel;

(ii) from the knowledge of nodes (coordinates) and their neighboring cells, de�ne facets
and edges of the tessellation:

a facet between two neighboring cells,

an edge between two nodes sharing three neighboring cells;

(iii) compute the direction vector of each edge and the normal to each facet;

(iv) compute angles as in the case of analytically known tessellations.

The skeleton classi�cation in step (i) relies strongly on the property of normality of
the structure. Alternative algorithms, as the one presented in Saha and Chaudhuri (1996),
are based on the analysis of 3 × 3 × 3 pixel con�gurations: the positions of other skeleton
pixels in the neighborhood determine how to classify the pixel. An analogous procedure is
applied in Arganda-Carreras et al. (2010) to analyze biological tissues. Here however, we
deal with complex structures with a high number of intersections and loops that may reduce
the e�ciency and reliability of these methods. Therefore, to analyze foams it is wiser to use
the additional information of neighboring cells.

Although we assumed to observe normal tessellations, Plateau's laws apply only for
dry soap froth. The algorithm is designed to detect pixels with more than four di�erent
neighboring cells. These are �rst identi�ed as nodes, however, it is necessary to look at the
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Figure 4.8: Correlation of θ3 with V (left) and FC (right) for Laguerre tessellation with
varying parameters and gamma volume distribution.
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Figure 4.9: Correlation of α3 with V (left) and θ3 (right) for Laguerre tessellation with
varying parameters and gamma volume distribution.

image to correctly classify the structure locally. Often, a node belonging to more than four
cells is due to discretization of short edges and can occur in images of normal tessellations,
too. In case the tessellation is not normal, an edge could belong to four cells, thus its pixels
would be classi�ed as nodes. Nevertheless, the extreme points of such an edge belong to
�ve cells and thus are identi�ed by our algorithm and the local non-normality of the foam
is detected.

It is common to �nd several pixels for only one node in the tessellation. This is again due
to discretization. A robust method to recognize such clusters of nodes consists in looking
at the neighboring labels. Thus, we identify a �node-cluster� with all the pixels sharing the
same set of neighboring cells. The coordinates of the node are obtained as average of the
pixels' coordinates in the cluster. The idea is that the real node lies in the center of the
pixels classi�ed as nodes. It is not necessary to modify the values of the classi�ed pixels in
the image. In fact, for the following steps only the nodes' coordinates and their neighboring
cells are necessary. Applying the rules due to normality expressed in step 2, the whole
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(a) z = −1 (b) z = 0 (c) z = 1 (d) Classi�ed z = 0

Figure 4.10: Three sequential 2d sections of reconstructed cells with watershed and classi�ed
skeleton corresponding to the middle one. Classi�cation depends on the N26-neighborhood:
red for facet pixels, green for edge and blue for node.
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Figure 4.11: Validation on Poisson-Voronoi tessellation. Comparison of number of facets per
cell (left) and number of vertices per facet (right) computed analytically and estimated from
the images.

tessellation can be reconstructed, i. e., assign facets and edges to each cell, vertices to edges
and to facets, edges to facets and vice versa.

The computation of the normals to the facets in step 3 is also a�ected by discretization. In
general, three vertices su�ce to compute the normal: consider the unit vectors corresponding
to the edges between one vertex and the other two, their cross product gives the direction of
the perpendicular to the plane determined by the points. However, here we have to account
for the fact that the nodes of a real foam are not coplanar, hence the vertices detected from
the image, in general, do not lie in a plane. For this reason, we take all triplets of vertices,
compute the corresponding normals, and then average.

We remark that since we assumed the convexity of the cells, we could exploit an alterna-
tive approach to reconstruct the cells in the tessellations. After extracting the nodes from
the image as above, we can de�ne a cell as the convex hull of its nodes. Then, we only need
to compute dihedral and interior angles of the convex hull. Nevertheless, with this approach,
additional facets and edges are generated due to the fact that the vertices of a facet are not
always coplanar. This causes a bias in the distribution of the dihedral angles, namely a
peak close to 180◦. Unfortunately, there is no information in the convex hull that allows us
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Figure 4.12: Validation on Poisson-Voronoi tessellation. Comparison of θ3 computed analyt-
ically and estimated from the images. Left: density, right: empirical cumulative distribution
function.
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Figure 4.13: Validation on Poisson-Voronoi tessellation. Comparison of α3 computed analyt-
ically and estimated from the images. Left: density, right: empirical cumulative distribution
function.

to recognize the additional facets, therefore the reconstruction based on neighbors is more
reliable. Moreover, this is computationally cheaper than generating the convex hull for each
cell.

Validation

First, we analyze our estimation method on discretized realizations of Poisson-Voronoi tes-
sellations. We generate �ve realizations with 1 000 cells each. We compare characteristics
calculated from the simulations, i. e., with the knowledge of the analytical coordinates of the
nodes and edges' and facets' equations, and the characteristics estimated from images of the
tessellations. In this case, edges and facets are reconstructed by a watershed transform to
simulate the cell reconstruction from µCT images. The periodicity in the model realizations
is lost with cell reconstruction. Therefore, to avoid edge e�ects, we apply minus sampling
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(Ohser and Schladitz, 2009). Cells lying outside the minus sampling window are counted as
neighbors but are not analyzed. The same approach is used when dealing with images of
real samples.

As expected, the estimation of angles can be improved by increasing the image size, i. e.,
increasing resolution. However, for samples of 1 000 cells, it is su�cient to use images of
6003 pixels. With images of 8003 pixels, the enhancement in the estimations is so little that
is not worth the additional computational e�ort. Discretization errors are also due to the
skeleton pixels in the images: tessellations are by de�nition space-�lling, thus background
pixels are arti�cial and are only an approximation of the real zero-dimensional boundaries.
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Figure 4.14: Comparison of number of facets per cell (left) and number of vertices per facet
(right) computed analytically and estimated from the images. VV = 60%, c = 0.2 and
gamma volume distribution.
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Figure 4.15: Comparison of θ3 (left) and α3 (right) computed analytically and estimated
from the images. VV = 60%, c = 0.2 and gamma volume distribution.

The estimations of some topological numbers are presented in Figure 4.11. The number
of facets per cell FC is estimated very well from the images. However, the number of vertices
per facet N20 is underestimated in the images. This suggests that some vertices are not
found by the analysis of the skeleton. A closer look at the images shows that some vertices
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are not correctly classi�ed by our algorithm because the watershed skeleton is locally �too
large�: around positions where there should be a node of the tessellation, no background
pixel has four di�erent labels in its neighborhood. Nevertheless, by comparing the number
of vertices and number of edges reconstructed, it is possible to correct the estimation of N20.
However, we can only correct the number of vertices, but cannot know their positions. Since
N20 is not a characteristic necessary for model �tting, this correction is not carried out.
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Figure 4.16: Comparison of number of facets per cell (left) and number of vertices per facet
(right) computed analytically and estimated from the images. VV = 60%, c = 2.0 and
gamma volume distribution.
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Figure 4.17: Comparison of θ3 (left) and α3 (right) computed analytically and estimated
from the images. VV = 60%, c = 2.0 and gamma volume distribution.

In Figure 4.12, the distribution of the dihedral angles is presented. The distribution
calculated based on the simulations is almost indistinguishable from the probability density
function presented in Kumar and Kurtz (1995). The distribution estimated from images of
the realizations is satisfactory. Figure 4.13 shows the interior angles. As a consequence of
the discretization, these are slightly underestimated.

Now, we analogously investigate discretized Laguerre tessellations. We consider the simu-
lations analyzed in the previous section for volume fraction 60% and coe�cients of variation
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0.2 and 2.0. Comparing Figure 4.14 and Figure 4.16, we see that the estimation of the
number of facets per cell from the image is very good for small coe�cients of variation and
slightly worsens as c grows. A wider range of FC has been observed for random polydisperse
foams, in fact the maximum is 22 for c = 0.2 and 81 for c = 2.0. For the number of vertices
per facet, the same as remarked for PV tessellations holds in this case, too. Figures 4.15
and 4.17 display the densities of the angles. Again, the angles are underestimated from the
cell reconstruction. The goodness of the estimations does not seem to depend on the model
parameters. This means that our algorithm for estimating angles from images of tessellations
is not in�uenced by structural di�erences.

4.3.3 Application to closed cell foams

Now, we model the geometric structures of some samples of closed-cell polymer foams,
namely, Rohacell® polymethacrylimide (PMI) foams. These foams are characterized by
low speci�c weight as well as high sti�ness, therefore they are broadly used as sandwich-
core materials. We consider two samples to which we refer as WIND-F and RIST. The
microstructures are imaged with µCT with pixel size about 2.7µm.

First, we will go through the main steps necessary to extract the geometric characteristics
of the cells. Then, the model �tting introduced in the previous section is applied to these
samples. Finally, we will exploit these datasets to investigate which characteristics mostly
in�uence the choice of the model parameters and thus, which are su�cient for model �tting.

(a) µCT (b) Binarization (c) EDT (d) Watershed (e) Reconstructed cells

Figure 4.18: Sample WIND-F RC 100: 2d sections of the cell reconstruction steps.

(a) µCT (b) Binarization (c) EDT (d) Watershed (e) Reconstructed cells

Figure 4.19: Sample RIST RC 71: 2d sections of the cell reconstruction steps.
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Wall system and cell reconstruction

The �rst step is to binarize the wall system of a foam, i. e., the material. Due to thin
structures, often threshold binarization does not su�ce to correctly identify all the walls.
Therefore, some smoothing and morphological closing are also applied. From the binarized
wall system, we can estimate the volume fraction of the material and the structure model
index.

For the model �tting, however, we also need geometric characteristics for each cell. La-
beling of the pore space, even with closed-cell foams, is not enough to separate each cell.
Therefore, we need more sophisticated techniques to reconstruct the cells. A well established
method is based on Euclidean distance transform and watershed transform, see for instance
Lautensack (2008). First, we calculate the EDT on the pore system (see De�nition 2.1.4).
This is inverted so that pixels with lowest values are about the centers of the cells. The idea
of the watershed transform is to interpret the grey values as altitudes and let water �ood from
the valleys. Smoothing like pre�ooding or h-minima transform is necessary before applying
the watershed to samples images Ohser and Schladitz (2009). A study on PMI foams showed
that for these foams the parameter of the h-minima transform can be chosen automatically
depending on characteristics estimated from the binarization of the wall system (Schwarz,
2012). The result is an image of labeled cells separated by one-pixel thick walls. The main
steps of the cell reconstruction of our samples are shown in Figures 4.18 and 4.19.

S b̄ FC θ3 α3

V 0.990 0.961 0.790 0.296 0.105
S 0.989 0.809 0.310 0.117
b̄ 0.808 0.320 0.128
FC 0.354 0.139
θ3 0.110

WIND-F RC 100

S b̄ FC θ3 α3

V 0.987 0.950 0.864 0.306 0.127
S 0.987 0.884 0.317 0.138
b̄ 0.880 0.320 0.144
FC 0.344 0.163
θ3 0.082

RIST

Table 4.4: Correlation coe�cients between the characteristics of the samples.

Model �tting

Once the cells are reconstructed, each cell is a compact connected body, thus the geometric
characteristics can be easily estimated with the methods introduced in Section 2.1.1 and
references therein. Volume, surface area and mean width are estimated on the dilated cells.
In this way, the characteristics are comparable with those of the model, which is space-
�lling. To avoid edge e�ects, cells intersecting the boundaries of the observation window
are excluded from the geometric analysis by minus sampling (Ohser and Schladitz, 2009).
The topological numbers and angles are estimated on an image of the labeled cells with the
watershed skeleton.

The observed PMI foams are stationary and isotropic. The moments of the main char-
acteristics are summarized in Table 4.6. The distributions of dihedral and interior angles
for each sample are represented in Figures 4.22, 4.23. As expected, the foams are not in
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characteristics gamma lognormal

WIND-F RC 100 d̄min VV c d̄min VV c

0 V , S, b̄, FC , -, - 0.076 60 0.798 0.108 60 0.852
1 V , S, b̄, FC , θ3,α3 0.117 50 0.886 0.144 60 0.880
2 V , S, b̄, FC , θ3, - 0.100 60 0.817 0.132 60 0.872
3 V , S, b̄, FC , -, α3 0.107 60 0.808 0.132 60 0.860
4 V , -, b̄, FC , θ3, α3 0.129 60 0.833 0.159 60 0.874

RIST RC 71 d̄min VV c d̄min VV c
0 V , S, b̄, FC , -, - 0.075 60 0.853 0.100 60 0.927
1 V , S, b̄, FC , θ3,α3 0.093 60 0.879 0.120 60 0.955
2 V , S, b̄, FC , θ3, - 0.101 60 0.876 0.129 60 0.951
3 V , S, b̄, FC , -, α3 0.070 60 0.857 0.093 60 0.931
4 V , -, b̄, FC , θ3, α3 0.101 60 0.874 0.130 60 0.940

Table 4.5: Model �tting for the samples. Values of the mean minimal distance with corre-
sponding parameters for gamma and lognormal sphere volume distribution.

Plateau's equilibrium. In fact, the production process of solid foams does not allow the
structures to reach the minimal energy Borovin²ek et al. (2008). The pairwise correlations
between the characteristics are shown in Table 4.4. Comparing these values with Table 4.3,
one can see that they are similar to the correlations in random Laguerre tessellations.

Now, we have all the information needed for model �tting by minimizing the distance
function with respect to the model parameters. The angles are alternatively removed to
investigate their in�uence on the choice of the model. The volume is always included as its
mean value is �tted by choosing the number of cells observed in a window of given volume.
Note that by including a characteristic, we include mean value and standard deviation. A
summary of the results is shown in Table 4.5. To allow comparison, the value of the distance
is normalized according to the number of features included, so that the value of d̄min can be
interpreted as the mean distance of the characteristics of the sample to those of the model.

Figure 4.20: 2d sections of the samples and the corresponding �tted model 0 and model 1.
WIND-F (left) and RIST (right).

In all cases, the minima are found with gamma distributed volumes. For coe�cients
of variation smaller than 1.0, the characteristics have similar mean values for all volume
fractions, see also Redenbach (2009). This can explain some of the jumps in VV . Both
with gamma and lognormal volume distribution, including the angles induces larger mean
distance. This suggests that the moments of the angles in the samples and in the model
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are farther than the other features. Alternating θ3 and α3 we observed that one angle alone
a�ects mostly the value of the distance, hence the choice of the model parameters. Whether
it is the dihedral or the interior angle depends on the sample. For the RIST, inserting only
the interior angles yields the same results as without any angle. The analysis in Lautensack
(2007) showed that V , b̄, and FC alone do not su�ce to determine the parameters of the
best-�tting model. However, if we add the information contained in the angles, then it is
possible to exclude the surface area from the model �tting without a�ecting the choice of
the model.

We generate Laguerre tessellations with the parameters minimizing the distance function
with respect to V , S, b̄, and FC (model 0) and to this quadruple and the two angles (model
1). For each sample, we realize ten models in cubes of edge length 2 mm for the PMI foams.
Visualizations of the models can be seen in Figures 4.20 and 4.21. In Table 4.6, the mean
values and standard deviations of the characteristics of the samples and the models are
summarized. For both models, there is a good agreement with the observed characteristics.
The di�erences between the characteristics of the two �tted models are very small. While
for the sample WIND-F the moments of both angles are �tted better with model 1, for the
other sample only the values of the dihedral angle improve. In Figures 4.22 and 4.23, the
distributions of the angles of the samples can be compared to those of the two �tted models.
The �t obtained with the angles in the model �tting improves only slightly the distribution
of angles. The same result was found by analyzing two samples of open-cell foams in Vecchio
et al. (2014). Therefore, we can conclude that the angles are already �tted well by minimizing
the distance function with respect to the moments of the four characteristics V , S, b̄, and
FC . The computational e�ort of computing angles in images is not necessary to improve
the model �tting. Nonetheless, angles proved to validate the choice of Laguerre tessellations
generated by systems of non-overlapping spheres to model rigid foams.

V̄ σ(V ) S̄ σ(S) ¯̄b σ(b̄) FC σ(FC)

WIND-F 0.021 0.011 0.413 0.154 0.383 0.078 14.34 3.78

model 0 0.021 0.013 0.395 0.151 0.364 0.067 13.78 3.68

model 1 0.021 0.015 0.392 0.170 0.362 0.074 13.70 4.11

RIST 0.014 0.009 0.318 0.130 0.347 0.071 14.09 3.66

model 0 0.014 0.010 0.302 0.126 0.318 0.063 13.74 3.99

model 1 0.014 0.010 0.302 0.129 0.317 0.065 13.71 4.06

θ̄3 σ(θ3) ᾱ3 σ(α3)

WIND-F 116.01◦ 19.87◦ 105.11◦ 28.92◦

model 0 117.69◦ 15.29◦ 108.84◦ 21.32◦

model 1 116.79◦ 16.06◦ 108.60◦ 21.91◦

RIST 115.49◦ 20.65◦ 106.99◦ 23.49◦

model 0 116.99◦ 16.12◦ 107.95◦ 22.78◦

model 1 116.62◦ 16.40◦ 108.46◦ 21.95◦

Table 4.6: Characteristics of the foams and of the best-�tting models w. r. t. V , S, b̄, and
FC for �model 0� and θ3 and α3, too, for �model 1�. Size features in mm.
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(a) WIND-F RC 100 (b) model (c) RIST RC 71 (d) model

Figure 4.21: Volume renderings of the wall system of the samples of PMI foams and
corresponding models �tted w.r.t. V , S, b̄, and FC . WIND-F: window size 6003

pixels=1 6303 µm3, model with 380 cells and periodic edge conditions. RIST: window size
6003 pixels=1 6683 µm3, model with 564 cells and periodic edge conditions.
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Figure 4.22: Sample WIND-F RC 100: dihedral angles (left) and interior angles (right)
distribution estimated on the reconstructed cells. Comparison with the angles distribution
of the �tted models.
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bution estimated on the reconstructed cells. Comparison with the angles distribution of the
�tted models.
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Figure 4.24: Edge length distribution in Laguerre tessellations generated by force-biased
sphere packings with VV = 30%, 60% and c = 0.2, 2.0. Left: gamma volume distribution.
Right: lognormal volume distribution.

4.4 Edge length distribution

A geometric characteristic that we have not regarded so far is the edge length distribu-
tion. Figure 4.24 displays the edge length of some realizations of Laguerre tessellations with
varying parameters of the force-biased sphere packings. Namely, the graphics regard the
same simulations as analyzed in the previous section: �ve realizations with 10 000 cells for
each parameter set with periodic conditions in a window of 1 mm3. Due to the fact that a
small coe�cient of variation yields a more regular structure, the peak is higher in this case.
However, a rather large amount of short edges occur in all the plotted curves. This yields
that, by only modifying the model parameters, it is not possible to signi�cantly improve
the goodness of �t of the edge length distribution. Therefore, instead of using the moments
of this distribution in the model �tting as done with the angles (Section 4.3.1), we take a
di�erent approach inspired by the rich literature on models for soap froth.

Compared to soap froth, random Laguerre tessellations show a much higher number of
short edges (Kraynik et al., 2003). To model the mechanical equilibrium, Laguerre tessella-
tions generated by dense packings of spheres are relaxed with the software Surface Evolver
(Brakke, 1992). Following this approach, we investigate relaxed Laguerre tessellations �tted
to samples of open and closed cell foams. Our goal is to inspect how the geometry of the
models is a�ected by the relaxation and whether the relaxed models better �t to the samples
or not.

4.4.1 Surface Evolver and relaxation

Surface Evolver is an open source software developed by Brakke (1992) to minimize the
energy of a surface under constraints. It has been used in several application �elds, from
rheology to architecture. It is implemented in C and can be easily integrated with user
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de�ned functions. The surfaces, i. e., two-dimensional bodies in 3d, are expressed through
a simplicial representation. Each simplex on a surface is a subset of a hyperplane, therefore
curvature is obtained by non-coplanar neighboring simplices.

For our scope, we follow the work of Kraynik et al. (2003), see also Jang et al. (2008);
Kraynik et al. (2004). The cells of a tessellation are interpreted as thin �lms of liquid soap.
Then, the relaxation process simulates the transition to dry soap froth, hence to the me-
chanical equilibrium in which Plateau's laws apply. Relaxation consists in several topological
transitions. At each step, a short edge is shrunk to zero length, thus causing modi�cations
in the neighbors and topology of the cells containing the edge. This is supplemented with
annealing cycles : the foam is subjected to large homogeneous deformations on the three
axes of the reference system. In this way, additional topological transitions and structure
rearrangements are induced. The constraint for minimization is the cell size distribution,
which is kept constant. The process is stopped when either there are no major changes in the
structure after annealing, or when all the short edges have been removed. Depending on the
number of cells and the meshing of the surface, the relaxation requires long computational
time.

4.4.2 Analysis of solid foams

As mentioned in Section 4.2, it is basically impossible to completely physically motivate
the geometry of solid foams, as there are too many parameters controlling the production
process. Therefore, we study empirically the geometry of di�erent types of foams. We
consider the following samples:

Rohacell® PMI closed cell foam (WIND-F RC100),

Rohacell® PMI closed cell foam (RIST RC71),

Airex® polyvinyl-chloride (PVC) closed cell foam (Airex T92-100),

polymer open cell foam,

aluminum open cell foam (Al),

Duocel® copper open cell foam (Cu).

The PMI samples are those analyzed in the previous chapter. A complete analysis of the
samples of aluminum foam and the open polymer foam are found in Redenbach (2009) and
Vecchio et al. (2014), where also the angles are investigated. The sample of copper foam is
analyzed and modeled in Liebscher et al. (2012). These three samples of open cell foams
feature an anisotropy that has been corrected before further analyses. The anisotropy of
the foams is detected by comparing the mean width of the cells in di�erent directions, for
instance, the 13 discrete direction induced by the lattice. Modifying the spacing of the image
in order to have uniform distribution of the mean width allows to correct the anisotropy.
From now on, we analyze the corrected isotropic foams.

In Table 4.7, the moments of the characteristics of the samples and the parameters of
the best �tting models are summarized. Models are �tted with the procedure outlined in
Section 4.3 with respect to mean value and standard deviation of V , S, b̄, and N32. We
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recall that the topological number N32 can be interpreted as a measure of regularity of the
foam. Compared to the PMI closed cell foams, the metal foams have a lower mean number
of facets per cell. This is not surprising, in fact open foams are typically more regular.
However, despite being a closed cell foam, the sample of Airex does not comply with this
trend. For this sample, N32 is 13.3 and its standard deviation is 5.9, which is much larger
than in the open foams. So, although on average it seems more regular, it contains so much
variability in the cell size that the mean value alone does not su�ce to describe the sample.

V̄ σ(V ) S̄ σ(S) ¯̄b σ(b̄) N32 σ(N32) (VV ,c)

WIND-F 0.021 0.011 0.413 0.154 0.383 0.078 14.34 3.78 (60%,0.798)

RIST 0.021 0.013 0.395 0.151 0.364 0.067 13.78 3.68 (60%,0.853)

Airex 0.019 0.024 0.363 0.301 0.348 0.154 13.35 5.97 (60%,1.742)

Open poly 60.565 11.363 86.855 10.826 5.689 0.384 13.65 1.90 (30%,0.311)

Al foam 21.437 2.855 43.720 3.859 3.807 0.171 13.83 1.21 (60%,0.166)

Cu foam 49.234 9.591 79.777 10.285 5.083 0.322 13.91 1.48 (60%,0.286)

Table 4.7: Characteristics of the foams and parameters of the best-�tting models. Size
features in mm.

The edge length distribution in the samples is estimated with the algorithm proposed to
estimate angles (Section 4.3.2). In fact, when the topology of the foam is reconstructed and
the coordinates of the nodes are known, also the edge length can be easily calculated. The
distributions thus obtained are shown in Figure 4.26.

(a) Airex: model (b) Airex: relaxed (c) Al: model (d) Al: relaxed

Figure 4.25: Visualizations of the models and the corresponding relaxed ones for the samples
of Airex (left) and for the aluminum foam (right). Model parameters: (VV ,c) = (60%,1.742)
for Airex, (VV ,c) = (60%,0.166) for aluminum. Visualizations with Surface Evolver.

For each sample, we generate three realizations of random Laguerre tessellations gener-
ated by a force-biased sphere packing with 1 000 cells each. Each realization is relaxed with
Surface Evolver. In Figure 4.25, the models and the corresponding relaxed ones for two sam-
ples are shown. The high polydispersity of the Airex sample can be easily recognized by the
large cells, whereas the model for the aluminum foam is almost monodisperse. Comparing
the volume rendering, one can see that the geometry of the cells is modi�ed only locally and
that overall the relaxed models look more regular. There are no short edges to be seen and
the facets have fewer small angles. The Laguerre tessellation has been meshed adding one
point in the center of each facet. While relaxing, the triangles in a facet change orientations
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to simulate the curved surfaces typical of soap froth. We chose a rough mesh because we are
mainly interested in characteristics that are independent of the curvature of the facets. In
fact, we investigate edge length and topological numbers, which are also the characteristics
mainly a�ected by the relaxation.

The edge length distribution in the samples and in the models is represented in Figure
4.26. As expected, the number of short edges in all the samples is lower than in the �tted
Laguerre tessellations. In both PMI foams, however, the edge length distribution is wide and
shows rather short edges that are swept o� completely by the relaxation. The high peak of
the edge length distribution in the relaxed models does not �t better to the sample than the
original Laguerre model. There are little di�erences in the number of facets per cell (Figure
4.27), whereas the number of edges per facet is a�ected more by the relaxation (Figure 4.28).
However, even in this case it does not improve the �t to the samples WIND-F and RIST.

The three samples of open cell foams we considered behave similarly. The edge length
distributions show high peaks and no short edges. Consequently, they are �tted much
better by the relaxed models than by the Laguerre tessellations, as can be seen also in the
distributions of the topological numbers. Of course, there is still a gap between the edge
length distribution in the samples and in the relaxed foams. In fact, the samples are solid
foams, thus they are not in Plateau's equilibrium.

The sample of Airex shows a hybrid behavior. The edge length distribution has a high
peak, but the shape of the distribution is di�erent than in the relaxed models and leans
towards short edges. As this sample is highly polydisperse, also the distributions of the
topological numbers are qualitatively di�erent than in the other samples, especially the
number of facets per cell. The distributions of both N32 and N20 are not much a�ected by
the relaxation, thus it is not clear which model �ts better.

The analysis of the characteristics of the relaxed models show that the edge length distri-
bution is at most modi�ed by the relaxation. This yields that our model �tting procedure is
still valid also for the relaxed tessellations, in fact, it is based on other characteristics. There-
fore, it is possible to �t relaxed Laguerre tessellations to samples of solid foams without user
interaction. In fact, one can proceed exactly as described in Section 4.3, thus �nding the
parameter of the best �tting random Laguerre distribution generated by a system of non-
overlapping spheres. Then, insert the model in the Surface Evolver and relax it. The open
question is when exactly relaxation yields a better �t. This depends mainly on the regular-
ity of the foam. Low mean and standard deviation of the number of facets per cell usually
occur in regular foams. Higher variance is typically related with higher polydispersity, i. e.,
a larger coe�cient of variation. In these cases, the edge length distribution should not show
the high peak typical of relaxed models, thus random Laguerre tessellation models are a
better choice. Highly polydisperse foams are solidi�ed rather far away from the equilibrium.
Thus, we have to conclude that for these foams, it is hard to predict the distributions of the
geometric characteristics and which between Laguerre tessellations and relaxed models are
better models.
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Figure 4.26: Edge length distribution estimated from the samples compared with the edge
length distribution in the �tted models and in the relaxed models.
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Figure 4.27: Distribution of the number of facets per cell estimated from the samples com-
pared with the number of facets per cell in the �tted models and in the relaxed models.
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Figure 4.28: Distribution of the number of edges per facet estimated from the samples
compared with the number of edges per facet in the �tted models and in the relaxed models.
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4.5 Discussion

We introduced random tessellations based on point processes. We motivated, geometrically
and physically, why random Laguerre tessellations are suitable models for the pore systems
of real rigid foams. The procedure for model �tting based on image data was outlined and
applied on several samples. Moreover, for the �rst time, angles in Laguerre tessellations were
investigated. Introducing an algorithm to estimate angles in images of foams, we showed
that the models are able to capture the angle distributions observed in the samples.

Furthermore, a method developed for modeling soap froth was adapted to model solid
foams. Combining this with the model �tting procedure optimized for Laguerre tessellations
generated by force-biased sphere packings, it is possible to automatically model a sample
of foam also with relaxed tessellations. Analyzing six samples of di�erent types of foams,
we showed that relaxed models �t better to open cell foams, but worse to some closed cell
foams. We suggested how to relate this result to the geometric characteristics of the foams.
In this context, it would be interesting to investigate how the mechanical properties of the
foams are in�uenced by the relaxation.

Now we are able to model the geometry of the pore system, including angles and edge
length distribution, the open question is how to model the material distribution on the struts
and on the walls of foams. In fact, the material is not uniformly distributed around the pores.
However, to analyze the material distribution of samples, even higher de�nition images are
needed. For instance, the images of the PMI foams are taken with resolution of about 2.7
µm and yet, walls are sometimes only one or two pixels thick.
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Conclusions

The current norms for inspection of dirt particles in the context of technical cleanliness are
based on the analysis of microscopic two-dimensional images. We generalized the character-
ization in order to be applied to three-dimensional images of particles. We de�ned a set of
features to describe compact bodies in R3 and outlined e�cient algorithms to estimate them
from the digital representation of the bodies. The characterization can be easily applied
to describe size and shape of any object. In fact, also in this work, we employed some of
the geometric parameters to characterize the cells of foams. We showed how to exploit the
features to infer a classi�cation of particles based on the standards of technical cleanliness.
This classi�cation is based on thresholding. However, it is possible to employ the features to
induce a more sophisticated classi�cation of objects, for instance, with hierarchical methods.

Analyzing systems of �bers, we highlighted which are the main di�culties in the char-
acterization of the structures and modeling. We illustrated how to �t Boolean models and
Poisson processes of cylinders with circular and polygonal cross section starting from the in-
trinsic volume densities estimated from binary images of samples. Methods to estimate the
orientation distribution of the �bers' cross section still need to be developed. In the overview
on models with interaction, we presented models featuring non-overlapping and bent �bers.
Generalizing these models to allow polygonal cross sections requires a revision of the def-
inition of the models. This might be computationally demanding, but could signi�cantly
enhance the goodness of �t for some composite materials.

Random Laguerre tessellations are widely used to model rigid foams. However, some
features have not been studied in detail before. Our analysis of dihedral and interior angles
showed that these models are able to encompass the same angle distributions observed in
foams. As the moments of the angles do not in�uence the selection of the parameters of the
best �tting model, there is little room for improvement following this approach.

We addressed the well known problem of short edges in Laguerre tessellations. Inspired
by models for soap froth, we adapted the same procedure to model rigid foams. While
we examined the geometric characteristics of some samples, the investigation of mechanical
properties is still an open question. Moreover, models for the cell systems of foams need to
be supplemented by a model for the material distribution. A challenging open problem is
the development of a stochastic model for the wall systems of closed cell foams.
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List of symbols

⊕ Minkowski sum
⊖ Minkowski subtraction
1A indicator function of the set A
Å interior of the set A
∂A boundary of the set A
Br ball of radius r centered in the origin
B = B(Rd) Borel σ-algebra on Rd

C compact subsets of Rd

F closed subsets of Rd

G open subsets of Rd

H d Hausdor� measure in Rd

K convex subsets of Rd

Ld d-dimensional point lattice
N natural numbers
N0 N ∪ {0}
R+ positive real numbers
R convex ring
SO(Rd) = SOd rotation group of Rd

S extended convex ring
Vk k-dimensional intrinsic volume
VV,k k-dimensional intrinsic volume density
κd volume of the d-dimensional unit ball
νd Lebesgue measure in Rd

ωd surface area of the d-dimensional unit ball
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Appendix A

Coe�cients for angles in random

Laguerre tessellations

We report the coe�cients of the polynomials �tted to the moments of dihedral and interior
angles in random Laguerre tessellations depending on the parameters of the force biased
sphere packing, see Section 4.3.1. See Table A.1 for gamma and Table A.2 for lognormal
volume distribution.

VV 1 x x2 x3 SSE

mean(θ3)
30 2.0969 -0.026 -0.0504 0.0184 1.3715e-05
40 2.0937 -0.008 -0.0727 0.0230 1.5643e-05
50 2.0917 0.0027 -0.0876 0.0258 6.3641e-06
60 2.0898 0.0154 -0.1073 0.0302 4.7877e-06
σ(θ3)
30 0.1633 0.0530 0.0989 -0.0353 2.7916e-05
40 0.1702 0.0535 0.0948 -0.0333 4.0510e-05
50 0.1827 0.0384 0.1063 -0.0355 3.4320e-05
60 0.1876 0.0342 0.1133 -0.0371 3.4075e-05

mean(α3)
30 1.9248 -0.0314 -0.008 0.0057 8.9077e-06
40 1.921 -0.0071 -0.0374 0.0128 7.5300e-06
50 1.9188 0.0098 -0.0615 0.0194 4.6682e-06
60 1.9205 0.0119 -0.0686 0.0197 9.4529e-07
σ(α3)
30 0.3016 -0.0730 0.2209 -0.0651 4.1113e-05
40 0.3192 -0.0388 0.1536 -0.0432 1.2699e-05
50 0.3402 -0.0395 0.1323 -0.0358 2.0459e-05
60 0.3519 -0.0461 0.1256 -0.0326 2.3283e-06

Table A.1: Coe�cients of the polynomials �tted to mean values and standard deviations of
the angles depending on c. Values for gamma volume distribution.
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VV 1 x x2 x3 SSE

mean(θ3)
30 2.0977 -0.0372 -0.0169 0.0079 5.4449e-06
40 2.0964 -0.0314 -0.0202 0.0077 4.2953e-06
50 2.0966 -0.0314 -0.0224 0.0081 5.4296e-06
60 2.0960 -0.0278 -0.0282 0.0094 4.7155e-06
σ(θ3)
30 0.1603 0.0849 0.0140 -0.0093 8.7111e-06
40 0.1679 0.0790 0.0178 -0.0107 2.9217e-05
50 0.1784 0.0709 0.0221 -0.0115 1.2502e-05
60 0.1850 0.0658 0.0252 -0.0118 7.5025e-06

mean(α3)
30 1.9208 -0.0165 -0.0127 0.0059 7.7238e-06
40 1.9222 -0.0190 -0.0085 0.0038 1.5116e-06
50 1.9214 -0.0093 -0.0216 0.0077 4.7260e-06
60 1.9231 -0.0100 -0.0230 0.0077 2.6833e-06
σ(α3)
30 0.2943 -0.0019 0.0754 -0.0210 1.5007e-05
40 0.3087 0.01960 0.0485 -0.0156 6.3868e-05
50 0.3303 0.01050 0.0450 -0.0141 1.2254e-05
60 0.3414 0.01030 0.0340 -0.0100 3.3385e-06

Table A.2: Coe�cients of the polynomials �tted to mean values and standard deviations of
the angles depending on c. Values for lognormal volume distribution.
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Curriculum Vitae

12/2010 - 07/2014 PhD Student in Mathematics
Fraunhofer ITWM, Image Processing, Kaiserslautern, Germany
Technische Universität Kaiserslatuern, Kaiserslautern, Germany

11/2009 - 11/2010 ProSAT (Project Study in Advanced Technology)
Fraunhofer ITWM, Image Processing, Kaiserslautern, Germany
Technische Universität Kaiserslatuern, Kaiserslautern, Germany

09/2007 - 10/2009 M.Sc. in Applied Mathematics
Università degli Studi di Milano, Italy

09/2004 - 10/2007 B.Sc. in Applied Mathematics
Università degli Studi di Milano, Italy

09/1999 � 06/2004 Diploma Liceo Scienti�co Galileo Galiei, Erba, Italy

105



106 Appendix B Curriculum Vitae

Lebenslauf

12/2010 - 07/2014 PhD im Fach Mathematik
Fraunhofer ITWM, Bildverarbeitung, Kaiserslautern, Germany
Technische Universität Kaiserslatuern, Kaiserslautern, Germany

11/2009 - 11/2010 ProSAT (Project Study in Advanced Technology)
Fraunhofer ITWM, Bildverarbeitung, Kaiserslautern, Germany
Technische Universität Kaiserslatuern, Kaiserslautern, Germany

09/2007 - 10/2009 M.Sc. in Angewandte Mathematik
Università degli Studi di Milano, Italien

09/2004 - 10/2007 B.Sc. in Angewandte Mathematik
Università degli Studi di Milano, Italien

09/1999 � 06/2004 Abitur Liceo Scienti�co Galileo Galiei, Erba, Italien
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