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Abstract

In this paper we propose a phenomenological model for the formation of an interstitial
gap between the tumor and the stroma. The gap is mainly filled with acid produced by the
progressing edge of the tumor front. Our setting extends existing models for acid-induced
tumor invasion models to incorporate several features of local invasion like formation of gaps,
spikes, buds, islands, and cavities. These behaviors are obtained mainly due to the random
dynamics at the intracellular level, the go-or-grow-or-recede dynamics on the population scale,
together with the nonlinear coupling between the microscopic (intracellular) and macroscopic
(population) levels. The wellposedness of the model is proved using the semigroup technique
and 1D and 2D numerical simulations are performed to illustrate model predictions and draw
conclusions based on the observed behavior.

1 Introduction

Irrespective of the sufficiency or deficiency of oxygen supply, cancer cells exhibit excess use
of glycolysis [43, 46]; this is the so-called Warburg effect. The reason may be: (i) reduction
in the number of mitochondrian after successive replication [46], (ii) evolutionary selection of
glycolytic phenotype under hypoxic and stressful conditions prevalent in tumor [31]. These
combined with the enhancement of acid extruders, like MCT, NHE, NDBCE, H+-ATPase,
result in excretion of the acidic metabolic byproducts on the extracellular region [43]. Further-
more, the tumor local environment being poorly and erratically vasculated results in reduced
dissipation of interstitial acid [47, 43]. Altogether, the cancer local environment becomes rela-
tively acidic compared to the normal physiological levels. As a consequence, there is a twofold
boon for cancer cells: (i) the relatively alkaline intracellular pH (pHi) [43, 48] promotes cell
proliferation, evasion of apoptosis, cytoskeleton remodeling, etc. due to rapid acid extrusion
[48, 16, 27], and (ii) the relatively acidic extracellular pH (pHe) results in degradation of ECM
fibers, p53 induced apoptosis of stromal cells, metastatic dissemination [48, 36, 22]. The acidic
pericellular pH also results in accumulation of cathepsin B near the cell membrane and the
subsequent release of active cathepsin B on the extracellular side [38]. This in turn stimulates
the production of proteolytic enzymes. Because of evolutionay selection of stable invasive phe-
notypes [52], cancer cells themselves are not negatively affected by acidic pHe. To summarize,
the reverse pH gradient plays a significant role in contributing to the malignancy of the cancer.
The latter can be qualitatively categorized based on its strength of invasion which in turn can
be judged based on the histological patterns generated by a progressing tumor. Infiltrative
growth pattern (INF) classification is one such classification scheme, as defined by the Japanese
Gastric Cancer Association [1, 20]. Based on this, invasion can be assigned to three categories:

1. INFa : An expanding tumor core with a clear separation between its boundary and the
stromal cells.

2. INFb : An intermediate stage of tumor expansion with or without clear separation from
the stromal cells.
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3. INFc : An expanding tumor core whose boundary cells have infiltrated the stromal cells
and there is mixing of tumor and stromal cells.

The INFa stage marks the appearance of a gap between cancer cells and stromal cells. This
gap may be composed of the cellular byproducts secreted mostly by the cells on the progress-
ing boundary of the tumor core. This progression can be either due to cell proliferation or
due to spatial movement induced by random motion or taxis [39, 12]. In either case the cells
rely on glycolysis for energy production [46, 44, 3], as a result of which the gap consists of
acidic metabolites. The acidic contents enhances in turn cell motility [36] by making room for
movement through degradation of ECM fibres [38, 15] and inducing apoptosis in normal cells
[22].
To our knowledge the first account on an acidity-induced gap was given in [14], where a
reaction-diffusion model with solution-dependent diffusion coefficient was proposed and ap-
proximate travelling wave solutions were obtained under appropriate conditions. The existence
of the gap (in the case of human squamous cell carcinomas of head and neck) was histologically
verified with the success rate of 14/21. More recently a slightly modified version of the model
in [14] was proposed in [30] and using asymptotic analysis the parameter space was classified
for different invasive behaviors of cancer cells mediated by extracellular acid. Thereby, the
dependency of the gap on the model parameters was established, finding that gaps occur in
mildly aggressive cancer cells (i.e., cancer cells having competition strength and acid induced
mortality rate similar to that of normal cells). On the contrary, in [14] the parameter depen-
dency for the gap suggested its presence only in the case of aggressive cancer cells (i.e. cancer
cells inducing high mortatility rate for normal cells via extracellular acidity). This contrast
and a thin 67% success rate of the experimentally observed gap in [14] may suggest that its
appearance is not a common phenomenon of cancer invasion and may vary from one type of
cancer to the other. Moreover, the differences in the model equations point out that additional
nonlinearities and cellular uncertainties may provide dynamics rich enough to generate acid
induced infiltrative patterns.
Motivated by these observations we rely on the go-or-grow hypothesis (see [11, 13]) to propose
a highly nonlinear stochastic model for the gap formation between cancer and stromal cells.
Here we use acidity as the key ingredient regulating the appearance and disappearance of a
gap. Also the nonlinear coupling between the proton dynamics and cell-population dynam-
ics leads to interesting infiltrative patterns of tumor cells. The model builds on the one we
proposed in [19] and extends a deterministic setting proposed in [41] to describe the inter-
dependent behavior of normal tissue and tumor under the effect of intra- and extracellular
proton evolution: the present model includes most of the features therein and moreover ac-
counts for cross diffusion between cancer cells and extracellular protons and for randomness
in the intracellular proton dynamics. In Section 2 we setup the model then prove in Sections 3
and 4 its wellposedness by using the semigroup theory, which is convenient for the analysis in
Lp spaces. Moreover, the mild-form representation of solutions enables us to handle general
a.s. continuous Gaussian processes. Numerical simulations are performed in Section 5 in order
to verify the model predictions and to get a glimpse of different infiltrative patterns of cancer
cells induced by acid dynamics. We conclude this work in Section 6 with a short discussion
of the main findings. The Appendix contains definitions of the employed function spaces,
properties of operators, and some results needed in the proofs.

2 Modeling

In this section we present the equations describing the biological phenomenon of interest and
justify the terms involved. The involved variables Hi, He, C, and N have the following
meaning:

� C denotes the population density of cancer cells; it is measured in cells/vol.

� N is the population density of stromal (normal) cells; it is measured in cells/vol, too.

� Hi represents the concentration of protons in the intracellular region of a cancer cell; it
is measured in Mol/vol.

� He is the concentration of protons in the extracellular region due to cancer cells; it is
measured in Mol/vol, too.
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The system of equations describing the dynamics of the proton concentrations and cell popu-
lation densities writes:

d

dt
Hi = J(C/KC)[−T1 − T2 + T3 −Q+ q1] + γξJ(C/KC)

Hi
Kw

ξt (1a)

∂

∂t
He = J(C/KC)[T1 + T2 − T3]− q2He + γD∆He +∇ ·

(
γgg(

Hi
Kw

,
He
Kw

,
C

KC
)∇C

)
+∇ ·

(
γhh(

He
Kw

,
N

KC
)∇N

)
(1b)

∂

∂t
C = C(1− C

KC
)(Λ1(Hi, He) + Λ2(Hi, He)) +∇ ·

(
γaa(Hi, He, C,N)∇C

)
− γb
Kw

b(Hi, He)∇He · ∇C (1c)

d

dt
N = −γN

C

KC
N +

(
− γΛ3

Λ3(He) + γΛ4
Λ4(He, γΛ4,1

)
)
N(1− N

KN
), (1d)

where Hi, He, C̄ and N̄ are given in Subsection 7.1 of the Appendix.

2.1 Intracellular proton dynamics (IPD) described by (1a):

Cells have various regulators to maintain their intracellular pH in the optimal range [8, 37];
membrane transporters are among those. In cancer cells the Warburg effect is accompanied
by upregulation of NHE (Na+ and H+ exchanger) and NDBCE (Na+ dependent Cl−-HCO−3
exchanger) activities [48, 16, 34], which enables them to keep their pHi relatively alkaline. The
functions T1 and T2 (see Figure 1a and Figure 1b), modeled based on [49, 50, 5] and [19], rep-
resent the efflux of intracellular protons across the cell membrane due to NHE and NDBCE,
respectively. Both T1 and T2 depend of course on the proton concentrations Hi and He. The
countermechanism of intracellular acidification due to AE (Cl−-HCO−3 or anion exchanger) is
modeled by the function T3 (see Figure 1c), which depends on Hi and He as well and relies
on [49, 50, 5] and [19], too. For simplicity, we ignore the effects of the MC (monocarboxylate)
transporter family.
The pHi is also regulated by buffers and acid sequestration by intracellular organelles like
mitochondria, lysosomes, nucleus, etc., [8, 37]. The corresponding loss is characterized by the
function Q (see Figure 2a). The production rate of acid due to metabolic activity (mainly aer-
obic glycolysis) is represented by q1 (see Figure 2b), which is a function of tissue vasculature v.
For simplicity, we ignore the spatial dependence of v, hence it serves as a model parameter. ξt
is a stochastic process which phenomenologically accounts for intracellular fluctuations affect-
ing the proton dynamics. These may be due to: (i) uncertainty of the effects of various other
biochemical process, (ii) random biochemical process like gene expression, random behavior
of membrane transporters, etc.
Since we only account for protons expressed by the cancer cells, their production and cross-
membrane flux must depend on the tumor cell density. As previously stated, cancer devel-
opment and spread is controlled by both cell proliferation and movement, the latter being
influenced by taxis and diffusion. In both cases the cells rely on glycolysis for energy pro-
duction [46, 44, 3]. This in turn endorses the idea that acid dynamics is more pronounced at
the tumor’s invasion edge. The flux modulation function J shown in Figure 2c is designed to
capture this behavior and it also characterizes the above mentioned dependence on the cell
density. In Figure 2c, KC denotes the carrying capacity of the tumor cell population; for the
significance of the other parameters involved in the model we refer to Table 2.

2.2 Extracellular proton dynamics (EPD) described by (1b):

Since the intracellular protons lost (or gained) via membrane transporters correspond to those
gained (or lost) on the extracellular side, the functions T1, T2 and T3 describing membrane
transporters are the same with those in (1a), however with an opposite sign. The loss term
with the rate q2 represents the dissipation of protons through the blood vessels. Therefore,
q2 > 0 is dependent on the tissue vasculature v. The Laplace operator in the next term models
diffusion of extracellular protons. Thereby, γD is the effective proton diffusion coefficient in
the presence of densely packed cells.
The nonlinear operators ∇·(g∇C) and ∇·(h∇N) for non-negative functions g and h character-
ize the effect of proton repulsion from highly dense regions of cancer and normal cells towards
less dense regions. These terms phenomenologically capture the accumulation of extracellular
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Figure 1: Functions representing NDCBE and NHE transporters effects

(a) T1 as a function of Hi and He (b) T2 as a function of Hi and He (c) T3 as a function of Hi and He

Figure 2: Functions used to model production and decay of protons

(a) Q as a function of Hi
(b) q1 as a function of vascularity v (c) J as a function of C/KC

protons near the invasion front of the tumor. The movement of protons away from the tu-
mor region can be, for instance, seen as the pushing of protons towards the areas of low cell
density by the movement and proliferation of tumor cells. The latter reduces the interstitial
(extracellular) space containing the protons, hence driving them towards the regions of lesser
pressure. Alternatively (in order to account for such repulsive effects also in the normal tissue)
one could conjecture the existence of a repulsive force due to the electrical potential of the
interstitial space: the latter having a positive potential relative to the intracellular space [9], it
generates a positive electric field pushing away the (positively charged) protons. 1 From this
perspective, the choice of the flux (h∇N) is motivated by Planck’s flux equation [23, (2.112)]
J ∝ He∇φ where φ denotes the electrical potential. In our case the potential is taken to be
proportional to the normal cell density N . Effects of density and orientation of cells on an
electric field have been experimentally put in evidence e.g., in [32]. In our context it seems
reasonable to assume the cells to form a more or less permeable ’barrier’ for the electric field.
Yet another reason for the repulsive effects could be that the protons buffered by the solution
form larger molecules which are unable to easily diffuse into the normal tissue, as they do in
a region with very few cells, hence the healthy tissue provides some kind of ’resistance’. The
latter is supposed to increase with the gradient of the normal cell density.
The cancer cell repulsion coefficient g is a non-negative function of Hi, He and C, which is
supposed to have the following properties: (i) it is directly proportional to the density of
cancer cells and the concentration of extracellular protons. However, for fixed Hi and large
values of C and He, it saturates to some upper asymptotic value (see Figure 3b and Figure
4b). (ii) As a function of Hi, for fixed values of C and He, it behaves like a Gamma function
(see Figure 3a and Figure 4a).
The normal cell repulsion coefficient h is a non-negative function of He and N . It is directly
proportional to the density of normal cells and the concentration of extracellular protons, how-
ever, for large values of N and He, it saturates to some upper asymptotic value (see Figure
3c).

1Voltage potentials and their influence on cancer development have been addressed e.g., in [10] (see also the
references therein), but there seems to be no concrete reference to this conjecture of a proton-repulsive electric field.
However, it is in a certain sense supported by the fact that cancer cells possess depolarized membrane potential
[54], hence the protons could be pushed by further positive charges (like e.g., K+).
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Figure 3: Repulsion coefficients g and h as functions of their corresponding variables

(a) g as a function of Hi and He = C (b) g as a function of He and C (c) h as a function of He and N

Figure 4: Repulsion coefficient g as a function of one of the variables Hi, He and C

(a) g as a function of Hi with He = C = 1 (b) g as a function of He (and C) with Hi = 0

2.3 Cancer cell population dynamics (CPD) described by (2c):

The growth of the cancer cell population is characterized by the intra-species competition
term C(1 − C/KC), where KC is the carrying capacity of the cancer cell population. This
logistic-type growth is modulated by a proliferation function Λ1 and a recession function Λ2.
Both functions depend on Hi, He and on the difference He −Hi. The proliferation function
models the enhancement of mitosis if the intracellular region is favorably alkaline [48] and if
the difference between the intra and extracellular pH is not too large. Similarly, the recession
function models cell death due to highly acidic or too alkaline intracellular pH and highly acidic
extracellular region [40, 17, 25]. Moreover, the supports of Λ1 and Λ2 are (nearly) disjoint,
which qualitatively captures the behavior of cells either dying or growing. These features of
Λ1 and Λ2 are depicted in Figures 5a and 5b.
The production of acid by the cells at the outer proximity of the tumor core causes degradation
of stromal cells [48, 43, 38, 22]. On the other hand, the increased extracellular acidity enhances
the movement of the cells at the tumor edge [48, 3, 36, 22]. This behavior is captured by the
term modeling pH-taxis (i.e., the movement bias towards increasing He); here, however, the
term involving −∆He for a (signed) cross-diffusion of protons is neglected.
The taxis coefficient b is a non-negative function of both Hi and He: it is nonzero on a compact
region of the (Hi, He) plane and attains its maximum when the difference He−Hi is optimal,
i.e. when a reversed pH gradient (still at a favorable level) is attained. Figure 5c depicts
its qualitative properties. Moreover, its support is (nearly) disjoint from the supports of the
proliferation and recession functions Λ1 and Λ2 respectively. Thus, it incorporates the Go-or-
Grow-or-Recede (GGR) behavior of cancer cells [11, 13] (see Figure 5d). Finally, it is made to
depend on the spatial variable such that the velocity is zero on the boundary and maximum
at the center of the domain. This is merely a modeling simplification which allows us to retain
the standard no-flux Neumann boundary condition.
The spreading behavior of cancer cells is modeled by a nonlinear diffusion operator. The
diffusion coefficient a is inversely proportional to cell densities C and N and proportional
to the product between He − Hi and the cancer cell density C. It is uniformly bounded
from below by a positive constant ma and the support of a − ma is a function of Hi, He
and C with fixed values of N as shown in Figure 6. Additionally, the diffusion coefficient is
uniformly bounded from above by some finite constant Ma. Before ending this subsection, we
would like to remark that our choices of GGR functions and of the diffusion coefficient are
phenomenological, only relying on qualitative biological facts, as no data were available for
fitting. Hence, these particular choices are arguable and others are possible as well.
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Figure 5: Go, grow and recede functions

(a) Λ1 as a function of Hi and He (b) Λ2 as a function of Hi and He

(c) b as a function of Hi and He (d) Support of Λ1, Λ2, and b

2.4 Normal cell population dynamics (NPD) described by (2d):

The dynamics of normal cells is essentially governed by growth and decay terms without
spatial migration. The normal cell depletion is mainly due to interaction with cancer cells and
with the extracellular acid. The first term in (2d) models the degradation of stromal cells by
non-acidic proteolytic enzymes (like Cathepsin B, MMP, urokinase, etc..) secreted by tumor
cells [38, 22, 29, 24, 42, 6] and is taken to be proportional to the cancer cell density. The next
term models the decay due to acid [15, 35, 51] by a logistic degradation term modulated by
the function Λ3. We use this type of decay instead of the more common linear multiplicative
one since we want the effect of acid to be maximum when the normal cell density is bounded
away from its carrying capacity. The last term describes logistic growth modulated by the
function Λ4(He, γΛ4,1

). The growth function phenomenologically captures the effect of an open

buffer system and the immunity response depending on the concentration of He [26, 45]. The
parameter γΛ4,1

controls the amplitude of the growth rate at the alkaline regions of the tissue.

Both Λ3 and Λ4 are positive functions whose qualitative behavior is as shown in Figure 8.

3 Analysis of the stochastic multiscale model

Let I = (0, T ] ⊂ R+ be a finite time interval and D ⊂ Rn (n ∈ {1, 2, 3}) be an open bounded
spatial domain with sufficiently smooth boundary. Furthermore, let (Ω,A,P) be a complete
probability space and (At)t≥0 be a normal filtration with N, the system of all P-nullsets,
contained in A0. Let ξ : I × Ω→ R be a P-a.s. continuous, real-valued, At-adapted, centered
Gaussian process with independent increments and µ-Hölder continuous covariance function.
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Figure 6: Support of a−ma as a function of Hi, He, C and N . The normal cell density N is kept
fixed at different increasing values.

(a) a as a function of Hi, He and C = 1 with N = 0
(b) a as a function of Hi, He and C = 1 with N = 0.3

(c) a as a function of Hi, He and C = 1 with N = 0.4

(d) a as a function of Hi, He and C = 1 with N = 0.5

Figure 7: Diffusion coefficient a as a function of Hi, He and C, N , respectively.

(a) a as a function of Hi and He with C = 1, N = .1 (b) a as a function of C and N with Hi = 1, He = 2

Figure 8: Growth and decay functions Λ4 (dotted) and Λ3 (solid line), respectively.
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Then for each ς ∈ Ω\N we have the following non-dimensionalized system:

d

dt
Hi = J(C)[−T1 − T2 + T3 −Q+ q1] + γξ J(C)Hiξt, in I ×D

(2a)

Hi(0, ς) = Hi,0(ς), in D

∂

∂t
He = J(C)[T1 + T2 − T3]− q2He + γD∆He + γg∇ ·

(
g∇C

)
+ γh∇ ·

(
h∇N

)
, in I ×D

(2b)

He(0, ς) = He,0(ς), in D

∇He(ς) · n̂ = 0, on I × ∂D

∂

∂t
C = C(1− C)

(
γΛ1

Λ1 + γΛ2
Λ2

)
+ γa∇ ·

(
a∇C

)
− γbb∇He · ∇C, in I ×D

(2c)

C(0, ς) = C0(ς), in D

∇C(ς) · n̂ = 0, on I × ∂D

d

dt
N = −γNCN +N(1−N)

(
− γΛ3

Λ3 + γΛ4
Λ4(γΛ4,1

)
)
, in I ×D

(2d)

N(0, ς) = N0(ς). in D.

For the concrete rescaling relations used in the nondimensionalization we refer to Subsection
7.1 in the Appendix. To avoid overloading the notations we will omit in the writing the
dependencies of the coefficients in the transport and (cross-)diffusion terms on the solution,
but will keep these in mind everywhere in the following.

3.1 Assumptions about coefficients:

First we shall make some assumptions about the coefficients involved in the diffusion, repulsion.
Let 1 < p < ∞ and s ∈ R. In the following Hs

p(D) denotes the Bessel potential space (see
Definition 2 in the Appendix) and W s,p(D) is the usual Sobolev space of non-integer exponent.

Model parameters Ξ: The parameters appearing in the model are represented by the
vector Ξ := (ΞR ,ΞM )T . The two sub-vectors ΞR and ΞM are defined as follows:

ΞR := (γN , γΛ1
, γΛ2

, γΛ3
, γΛ4

, γΛ4,1
, γξ )T ∈ R7

+

consists of the growth and decay constants appearing in the reaction terms and

ΞM := (γD , γg , γh , γa , γb)
T ∈ R5

+

consists of the repulsion, diffusion and advection constants. As already indicated in the def-
inition, ΞR and ΞM are strictly positive real numbers. For the functional relevance of the
involved components, please refer to Table 2.

Properties of the repulsion coefficients g(C,He, Hi) and h(N,He):

1. g(t) := g(C(t), He(t), Hi(t)) ∈ H2
p(D) whenever C(t), He(t) ∈ H2

p(D), t ∈ I.

2. h(t) := h(N(t), He(t)) ∈ H2
p(D) if N(t), He(t) ∈ H2

p(D), t ∈ I.

3. g and h are uniformly bounded w.r.t. each of the independent variables t, x, and ω:
|g| ≤ Mg <∞ and |h| ≤ Mh <∞.

4. g(t) and h(t) are Lipschitz continuous in H1
2p

(D) if Hi(t), He(t), C(t), N(t) ∈ H1
2p

(D).

In the following we will omit in the writing the dependence on t of the components of the
solution vector u := [Hi, He, C, N ]T belonging to function spaces of the form Hs

p(D), s > 0.
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Properties of the diffusion coefficient a(Hi, He, C,N):

1. 0 < ma ≤ a ≤ Ma <∞.

2. If He, Hi, C and N ∈ H1
2p(D), then a belongs to H1

2p(D), too.

3. a is Lipschitz continuous in Lp(D) if Hi, He, C and N are in H1
2p

(D), with p > n.

Properties of the go, grow and recede coefficients b(Hi, He), Λ1(He, Hi) and
Λ2(He, Hi):

1. 0 ≤ b ≤ Mb, 0 ≤ Λ1 ≤ MΛ1 , |Λ2| ≤ MΛ2 and Λ2 ≤ 0, where Mb, MΛ1 , and MΛ2 are
bounded constants.

2. If Hi and He belong to H1
2p(D) then b, Λ1 and Λ2 belong to H1

2p(D), as well.

3. b is Lipschitz continuous in Lp(D) if Hi, He, C and N are in H1
2p

(D), with p > n.

Properties of the reaction terms T (Hi, He) and Q(Hi):

1. |T | ≤ MT <∞, 0 ≤ Q ≤ MQ <∞.

2. If both Hi and He are in H1
2p

(D) then T and Q are in H1
2p

(D).

3. T and Q are Lipschitz continuous in H1
2p

(D) norm if the corresponding dependent func-

tions He and Hi are in H1
2p

(D).

Properties of the growth and decay terms Λ3(He) and Λ4(He):

1. 0 ≤ Λ3 ≤ MΛ3
<∞, 0 ≤ Λ4 ≤ MΛ4

<∞.

2. If He is in H1
2p

(D) then Λ3 and Λ4 are in H1
2p

(D).

3. Λ3 and Λ4 are Lipschitz continuous in H1
2p

(D) norm if He is in H1
2p

(D).

Properties of the flux modulation function J(C):

1. J ∈ L∞(D).

2. If C is in H1
2p

(D) then J is in H1
2p

(D), with ‖J‖H1
2p

(D) ≤ MJ (kC ). Here MJ(kC )

represents a positive and polynomial order function of kC with kC being a constant
occurring in the following sections below.

3. J is Lipschitz continuous in the H1
2p

(D) norm if C is in H1
2p

(D).

Further properties of the above functions: The functions J , Tj (j = 1, 2, 3), and Q
are such that (with the notations to follow) R1(Hi, ·, ·) > 0 in a small neighborhood of Hi = 0
and R1(0, ·, ·) = 0.

We will use the following notations for the reaction and source terms involved in our model:

T (Hi, He) := T1(Hi, He) + T2(Hi, He)− T3(Hi, He) (3a)

R1(Hi, He, C) := J(C)[−T (Hi, He)−Q+ q1] (3b)

R2(Hi, He) := J(C)T (Hi, He) (3c)

R3(Hi, C,N) := C(1− C)
(
γΛ1

Λ1 + γΛ2
Λ2

)
(3d)

R4(He, C,N) := −γNCN +
(
−γΛ3

Λ3 + γΛ4
Λ4

)
N(1−N) (3e)

Using the above assumptions, the proof of the following lemma is straightforward.

Lemma 3.1 (Lipschitz continuity of R1, R2 and R3). Let Hi, He, C and N be in H1
2p

(D), with

p > n. Then R1 and R2 are Lipschitz continuous in H1
2p

(D), and R3 is Lipschitz continuous
in Lp(D).

9



3.2 Generating operator:

With the previous notation u := [Hi, He, C, N ]T , define the operator A(u) as

A(u) :=


A1 0 0 0
0 A2 0 0
0 0 B1 B2

0 0 0 B3

 =

[
A 0
0 B

]
(4)

with

A :=

[
A1 0
0 A2

]
A1(C) := −J(C)ξt

A2(C, N) := γNC + (Λ3 − Λ4)(1−N)

B :=

[
B1 B2

0 B3

]
B1 := q2 − γ

D
∆

B2(C, He) := −∇ · (g(C,He)∇)

B3(C, He, N) := −∇ · (a(C, He, N)∇) + q3

where q3 is an arbitrary positive real constant introduced to render B3 to be an injective op-
erator. The constants involved in the vectors ΞR and ΞM above are from now on absorbed
in the respective diffusion, taxis, repulsion etc. coefficients. The original notation for these
coefficients will be preserved in order not to overload the presentation.

3.2.1 Uniformly continuous operators and their domains:

Lemma 3.2. Let N(ω), C(ω), and He(ω) be in C([0, T ];H2
p(D)) for every ω ∈ Ω. Then

A2(ω, t) : H2
p(D) → H2

p(D), p ∈ (n, ∞], is a bounded linear operator. Moreover, it generates
the following uniformly continuous semigroup

e−
∫ t
0 A2(ω,s)ds = e−

∫ t
0 γNC(ω)+(Λ3(ω)−Λ4(ω))(1−N(ω))ds, t ∈ [0, T ]

Proof. Indeed, since H2
p(D) is a Banach algebra for p > n, for any w(ω, t) ∈ H2

p(D) we get
that

‖A2(ω, t)w‖H2
p(D) = ‖[γNC(ω) + (Λ3(ω)− Λ4(ω))(1−N(ω))]w‖H2

p(D)

≤ γNkC + kΛ3,4
(1 + kN )‖w‖H2

p(D).

Hence,
‖A2(ω, t)‖L(H2

p(D)) ≤ kA2
<∞, a.s. ∀t ∈ [0, T ]. (5)

where L(H2
p(D)) denotes the space of bounded linear operators form H2

p(D) into itself, the

constants kC (t), kΛ3,4
(t), and kN (t) are upper bounds (in H2

p(D) 2) for C, He, and N ,

respectively, and kA2
:= γNkC + kΛ3,4

(1 + kN ), with

kC := sup
t∈[0,T ]

kC (t), kΛ3,4
:= sup

t∈[0,T ]

kΛ3,4
(t), kN := sup

t∈[0,T ]

kN (t).

Now for the semigroup claim, let w(ω, t) = e−
∫ t
0 A2(ω,s)dsv. Then it is easy to see the semigroup

property and the following differentiability property:

d

dt
w(ω, t) = −A2(ω, t)w(ω, t).

The following estimates are easily obtained:

‖e−
∫ t
0 A2(ω,s)ds‖L(H2

p(D)) ≤ ekA2
T , (6a)

‖e−
∫ t
0 A2(ω,s)ds − 1‖L(H2

p(D)) ≤
∞∑
k=1

tk‖A2(ω, t)‖kL(H2
p(D))

k!
≤ T kA2

eTkA2 (6b)

‖e−
∫ t
0 A2(ω,s)ds − e−

∫ r
0 A2(ω,s)ds‖L(H2

p(D)) ≤ |t− r|kA2
e2Tk

A2 . (6c)

So the uniform continuity follows from the boundedness of A2. �

2In the following, depending on the context, the norms with respect to which the upper bounds kC (t), kΛ3,4
(t),

and kN (t) are represented may differ from H2
p(D). In general, the norms are taken with respect Hs

p(D) with s ∈ R
such that either Hs

p(D) ↪→ H2
p(D) or Hs

p(D) ↪→ H1
2p

(D) or Hs
p(D) ↪→ L∞(D).
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Lemma 3.3. For T ∈ (0,∞), let C ∈ L∞(Ω;C([0, T ];H2β′
p (D))) with β′ > 1

2
and ξ ∈

L2(Ω;C([0,∞);R)) be a Gaussian process with µ-Hölder continuous covariance function (0 <
µ < 1

2
). Then for each ω ∈ Ω, A1(ω, t) : H1

2p
(D) → H1

2p
(D), p > n, is a bounded linear

operator. Moreover, for each ω ∈ Ω it generates the following uniformly continuous semigroup:

e−
∫ t
0 A1(ω,s)ds = e

∫ t
0 J(C(ω,s))ξs(ω)ds

Proof. First fix ω ∈ Ω, then the mapping t 7→ ξ(ω, t) belongs to C([0, T ],R). So

‖A1(ω, t)w‖H1
2p

(D) = ‖ξt(ω)J(C(ω, t))w‖H1
2p

(D) = |ξt(ω)|‖J(C(ω, t))‖H1
2p

(D)‖w‖H1
2p

(D)

≤ MJ (kC )|ξt(ω)|‖w‖H1
2p

(D)

Hence

‖A1(ω, t)‖
L
(
H1

2p
(D)
) ≤ kA1

(ω, t) (7)

E⇒ ‖A1(t)‖
L2
(

Ω;L(H1
2p

(D))
) ≤ kA1

, (8)

where

kA1
(ω, t) := |ξt(ω)|MJ , kA1

:= kσT MJ , MJ := MJ (kC + k2

C
),

kσT := sup
t∈[0,T ]

σ(t), σ(t) = E(|ξt(ω)|2)
1
2 .

Now the semigroup claim follows like in the previous case for each ω ∈ Ω fixed, with the
following estimates (using Lemma 7.3):

‖e−
∫ t
0 A1(s)ds‖

L2

(
Ω;L(H1

2p
(D))

) ≤√kA1
ek

2

A1 , (9a)

‖e−
∫ t
0 A1(s)ds − 1‖

L2

(
Ω;L(H1

2p
(D))

) ≤ ∞∑
k=1

tk‖A1(ω, t)‖kL(H1
2p

(D))

k!
≤
√
t kA1

ek
2

A1 , (9b)

‖e−
∫ t
0 A1(s)ds − e−

∫ r
0 A1(s)ds‖

L2

(
Ω;L(H1

2p
(D))

) ≤ (kσT |t− r|+ T |t− r|µ)
√
kA1

e2k2

A1 . (9c)

�

3.2.2 Sectorial operators:

Let Hs
p(D) denote as before the Lp-Bessel potential space with s ∈ R and 1 < p < ∞. In

order to characterize the domains of the operators involved in the aanalysis below, we need
the following subspace of Hs

p(D) (which can be identified with the Sobolev space W s,p(D), see
Remark 3 in Subsection 7.3):

H2
p,N :=

{
u ∈ H2

p(D) :
∂u

∂ν
= 0
}
.

Sectorial property of B1

Consider the operator B1 := q2 − γ
D

∆, with D(B1) = H2
p,N . We would like to find out

whether it generates a semigroup on Lp(D). Now we get the following sectorial property of
B1 (see Definition 1 in the Appendix):

Lemma 3.4. The operator B1 is a sectorial operator with spectral angle κB1
< π

2
. The

resolvent Rλ(B1) satisfies the following inequalities:

‖Rλ(B1)‖L(Lp(D)) ≤
1

|Re λ|+ q2
, Re λ ≤ 0

‖Rλ(B1)‖L(Lp(D)) ≤
MB1

|λ| , Re λ ≤ 0, λ 6= 0, (10)

where MB1 :=
γ
D
np

2δ
B1

√
p−1

+ 2.
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Proof. Firstly, due to Theorem 2.4.1.3 in Grisvard [18] we get that, for −λ large enough,
B1 − λ is a bijection from H2

p,N (D) onto Lp(D). This immediately gives us that
R(B1 − λ) = Lp(D). Additionally, we get that B1 is a closed operator. Secondly, since B1 is
also accretive (see [53] Lemma 2.3) we get that B1 is m-accretive. This implies that B1 is
non-negative. Thirdly, since Lp(D) is reflexive, we also get that B1 is densely defined.
Finally, from [53] Lemma 2.3, we get that for all u ∈ Lp(D),

|Im 〈B1u, u
∗〉|

|Re 〈B1u, u∗〉|
≤

γ
D
np

2δB1

√
p− 1

<∞.

where δB1
:= min(q2, γ

D
) and u∗ ∈ F (u), i.e. u∗ is an element of the duality set

F (u) := {u∗ ∈ (Lp(D))′ : 〈u∗, u〉 = ‖u‖2Lp(D) = ‖u∗‖2(Lp(D))′} of u. This implies that the
numerical range W (B1) := {〈B1u, u

′〉 : u ∈ D(B1), ‖u‖ = 1, u′ ∈ F (u)} (see [33]) of B1 is

contained in the sector of angle κB1
≤ arctan

(
γ
D
np

2δ
B1

√
p−1

)
< π

2
. Thus B1 is a sectorial

operator with spectral angle κB1
< π

2
. The estimates are again a consequence of Proposition

2.1 [53]. It is important to observe here that the sector angle κB1
and the constant MB1 are

independent of ω ∈ Ω. �

Sectorial property of B3

Consider the operator B3 := q3 −∇ · (a∇) with D(B3) = H2
p,N . Like in the case of the

operator B1, we want to find out if B3 generates a semigroup on Lp(D). The following
Lemma gives its sectorial property.

Lemma 3.5. Let a(ω, t) ∈ H1
2p

(D) be Lipschitz continuous such that Ma ≥ a ≥ ma > 0 for
all t ≥ 0 and ω ∈ Ω. Then the operator B3 := −∇ · (a(ω, t)∇) + q3 is a sectorial operator on
Lp(D) with a uniform spectral angle κB3

< π
2

for all t ≥ 0 and ω ∈ Ω. Its resolvent satisfies
the following estimates:

‖Rλ(B3)‖L(Lp(D)) ≤
1

|Re λ|+ q3
, Re λ ≤ 0,

‖Rλ(B3)‖L(Lp(D)) ≤
MB3

|λ| , Re λ ≥ 0, λ 6= 0, (11)

where, MB3 := Ma n p
2δ
B3

√
p−1

+ 2, δB3
:= min(q3,ma).

Proof. Since a ∈ H1
2p

(D) and Lipschitz continuous, we can again apply Theorem 2.4.1.3

from Grisvard [18] and get that B3 − λ is a bijection from H2
p,N (D) onto Lp(D) for −λ large

enough. Therefore, by the same arguments as in Lemma 3.4 we get that B3 is a sectorial

operator with spectral angle κB3
≤ arctan

(
Manp

2δ
B3

√
p−1

)
< π

2
and the claimed estimates for its

resolvent hold. Again it is crucial to observe here that the sector angle κB3
and the constant

MB3 are independent of ω ∈ Ω. �

Sectorial property of B

Using perturbation results we now obtain the sectorial property of the matrix operator B.

Theorem 3.6. Consider the operator B2 in (4) and let g(ω) ∈ B([0, T ];Hr
p(D)) (i.e., g is

uniformly bounded, see Definition 4), for every ω ∈ Ω with T > 0 and r ≥ 1 + n
2p

and p > n.
Then the operator B is sectorial on Lp(D)× Lp(D), with spectral angle
κB ≤ max(κB1

, κB3
) < π

2
. Its resolvent satisfies the following:

Rλ(B) =

[
Rλ(B1) Rλ(B1)B2B

−1
3 B3Rλ(B3)

0 Rλ(B3)

]
‖Rλ(B1)‖L(Lp(D)×Lp(D)) ≤

MB

|λ| , λ ∈ {ΣκB ∪ 0}c, (12)

where MB := max
(
MB1 ,MB3 +MB1(1 +MB3)‖B2B

−1
3 ‖Lp(D)

)
. Moreover, its domain is

given by

D(B) = D(B1)×D(B3) = H2
p,N ×H2

p,N

12



Proof. First note that B1 = −γ
D

∆ + q2 is a sectorial operator on Lp(D) with spectral angle

κB1 <
π
2

and domain D(B1) = H2
p,N (D). The operator B3 = −∇ · (a∇u) + q3 is sectorial,

too, with spectral angle κB3
< π

2
and domain D(B3) = H2

p,N (D).
Now, if B2 ∈ L(D(B3);Lp(D)) then by Theorem 2.16 [53] we get that B is a sectorial
operator of Lp(D)× Lp(D) with domain D(B) = H2

p,N ×H2
p,N . To this end we let

u ∈ D(B3). Then

‖∇ · (g(ω, t)∇u)‖p ≤ ‖∇g(ω, t) · ∇u‖p + ‖g‖∞‖∆u‖p
≤ ‖∇g(ω, t)‖2p‖∇u‖2p + ‖g(ω, t)‖∞‖u‖H2

p(D)

≤ kD,p‖g(ω, t)‖Hrp(D)‖u‖H2
p(D) + ‖g(ω, t)‖Hrp(D)‖u‖H2

p(D) (13)

≤ kD,p‖g(ω)‖B([0,T ];Hrp(D))‖u‖H2
p(D) <∞,

where we used the embeddings Hr
p(D) ↪→ H1

2p
(D) and Hr

p(D) ↪→ L∞(D) (see [4] and [53],
respectively). Thus D(B3) ⊂ D(B2) and as a consequence B2 is a bounded linear operator

from D(B3) to Lp(D). This implies that
(
B, D(B)

)
is densely defined and a closed

operator. Moreover, since Re 〈B2u
2, (u2)∗〉 ≥ 0 for u2 ∈ D(B2) and (u2)∗ ∈ F (u2), for

u = (u1, u2)T ∈ D(B1)×D(B3) with u∗ ∈ F (u) we have that

Re 〈Bu,u∗〉 = Re 〈B1u
1, (u1)∗〉+ Re 〈B2u

2, (u2)∗〉+ Re 〈B3u
2, (u2)∗〉

≥ δB1
(u1, (u1)∗) + δB3

(u2, (u2)∗) > 0.

and

|Im 〈Bu,u∗〉|
|Re 〈Bu,u∗〉| ≤

|Im 〈B1u
1, (u1)∗〉|+ |Im 〈B2u

2, (u2)∗〉|+ |Im 〈B3u
2, (u2)∗〉|

|Re 〈B1u1, (u1)∗〉+ Re 〈B2u2, (u2)∗〉+ Re 〈B3u2, (u2)∗〉|

≤
(γ
D

+ Mg + Ma)np

(δB1
+ δB3

)2
√
p− 1

<∞.

Thus B is m-accretive and its numerical range W (B) is contained in a sector of angle

arctan
(

(γ
D

+Mg+Ma)np

(δ
B1

+δ
B3

)2
√
p−1

)
< π

2
. Thus B is a sectorial operator with spectral angle κB < π

2
.

The resolvent estimate follows directly from the matrix column norm and the resolvent
estimates of B1 (see (10)) and B3 (see (11)). �

Corollary 1. For every t ∈ [0, T ] and ω ∈ Ω, the operator −B(ω, t) defined above generates
the analytic semigroup e−zB(ω,t) on L(Lp(D)× Lp(D)), fulfilling the following properties:

1. For every fixed t ∈ [0, T ] and ω ∈ Ω, the mapping z 7→ e−zB(ω,t) ∈ L(Lp(D)×Lp(D)) is
an analytic function of z ∈ Σπ

2
−κ

B
.

2. For every κ′ > κB , the semigroup is uniformly bounded with respect to z ∈ Σπ
2
−κ′ − 0,

i.e.
‖e−zB(ω,t)‖L(Lp(D)×Lp(D)) ≤ Mκ′ .

The upper bound Mκ′ , though it may depend on Σπ
2
−κ′ ⊆ Σπ

2
−κ

B
, is independent of t

and ω.

3. For every fixed t ∈ [0, T ] and ω ∈ Ω, the mapping z 7→ e−zB(ω,t) is strongly continuous
at 0, i.e. e−zB → 1 as z → 0 for all z ∈ Σκ

B
− 0. The constant Mκ′ ≥ 1 is uniform for

all t ∈ [0, T ] and ω ∈ Ω.

Proof. Due to the sectorial property of B(ω, t), the resolvent estimate (12), and the
denseness of D(B(ω, t)) ⊂ X, we can apply Theorem 5.2 of Pazy [33] to get the required
claim. �

This allows us to define the two parameter semigroup UB(t, s), for all t ≥ s ≥ 0, called the
evolution operator. It serves us to represent the mild solution to the system of equations (2)
which will eventually turn out to be the strong solution to the abstract Cauchy problem (20)
below.
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4 Construction of local solutions:

Let

H2β′

p,(N)(D) :=

{
H2β′
p (D), if 0 ≤ β′ < p+1

2p

H2β′

p,N (D), if p+1
2p

< β′ ≤ 1,

then define Zα := H2α
p,(N)(D) for α ∈ [0, 1], Z := H2

p(D), and Y := H1
2p

(D). Now the product
space Z is defined as:

Z := H1
2p

(D)×H1
2p

(D)×H2β′

p,(N)(D)×H2β′

p,(N)(D)

⇔ Z1 × Z2 × Z3 × Z4 := Y × Y × Zβ′ × Zβ′ .

Let u := (u1, u2, u3, u4)T , and k ∈ {1, 2, 3, 4}, then we define the following spaces (see
Definitions 4 and 5 for the notations used):

Zk(T ) :=

{
uk : ukt is At-measurable, uk ∈ L2

(
Ω;B

(
[0, T ];Zk

)
∩ Cµ{0}

(
[0, T ];Zk

))}
. (14)

Next, we need the following non-empty closed subsets of Zk(T ):

K1(T ) :=

{
u1 ∈ Z1(T ) : u1(0) = u1

0, E(‖u1‖2BY )
1
2 ≤ P1,

E
[(

sup
t<s

t,s∈[0,T ]

‖u1(t)− u1(s)‖Y
|t− s| 12 +µ

)2] 1
2 ≤ P2

}
, (15)

K2(T ) :=

{
u2 ∈ Z2(T ) : for a.a. ω ∈ Ω, u2(0, ω) = u2

0(ω),

‖u2(ω)‖BZ ≤ P1, sup
t<s

t,s∈[0,T ]

‖u2(ω, t)− u2(ω, s)‖Z
|t− s|µ ≤ P2

}
,

(16)

For k ∈ {3, 4} we define

Kk(T ) :=

{
uk ∈ Z(T ) : for a.a. ω ∈ Ω, uk(0, ω) = uk0(ω), ‖uk(ω)‖BZ ≤ P3,

‖uk(ω)‖BZ
θ′
≤ P1, sup

t<s
t,s∈[0,T ]

‖uk(ω, t)− uk(ω, s)‖Zθ′
|t− s|µ ≤ P2

}
.

(17)

where P1, P2 and P3 are some nonnegative constants and the constants µ, α, β, θ, and ν are
such that

0 < µ′ < µ := 1− α′, ν := 1
1 ≥ α > α′ > θ > θ′ > β > β′ > 1

2

}
(18)

These relationships will be assumed to hold throughout the whole Section 4.
Therefore, 0 < µ′ < min(β, µ) < β. We also denote

Z(T ) := Z1(T )×Z2(T )×Z3(T )×Z4(T ),

K(T ) := K1(T )×K2(T )×K3(T )×K4(T ).

 (19)

4.1 Abstract Cauchy problem:

Now we formulate the equation system (2) in terms of an abstract Cauchy problem.{
d
dt

u(ω, t) + A(u(ω, t))u(ω, t) = r(u(ω, t)), in X, t > 0, for each ω ∈ Ω.

u(ω, 0) = u0(ω),
(20)
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where X := Lp(D)× Lp(D)× Lp(D)× Lp(D), u := (Hi, N,He, C)T , and

r(u(ω, t)) =


r1(u(ω, t))
r2(u(ω, t))
r3(u(ω, t))
r4(u(ω, t))

 :=


J(u4

t )
(
− T (u1

t , u
3
t ) + q1 −Q(u1

t )
)

0
J(u4

t ) T (u1
t , u

3
t ) +∇ · (h∇u2

t )

u4
t (1− u4

t )
(
Λ1(u1

t , u
3
t ) + Λ2(u1

t , u
3
t )
)

+ q3 u
4
t − b∇u3

t · ∇u4
t


(21)

Next we collect some estimates for r1 and for the vector r3,4 := (r3, r4).

Lemma 4.1. Let the functions J , T , Q, Λ1, Λ2, f , and g satisfy the assumptions in
Subsection 3.1. Then for each ω ∈ Ω, r1(ω) maps K(T ) into Cµ([0, T ];Y ), while r3,4(ω)
maps K(T ) into Cµ([0, T ]; XB), where XB := Lp(D)× Lp(D). This in turn yields that r
maps K(T ) into F 1,µ([0, T ]; X) (for this space see Definition 6).

Proof. Since Y is a Banach algebra, if v ∈ K(T ) then by hypothesis we directly get that all
the functions involved in r1 are also in BY := B([0, T ];Y ) (see Definition 4). Consequently,

‖r1
t ‖Y ≤ ‖J(v4

t )‖Y ‖T (v1
t , v

3
t )‖Y + q1 + ‖Q(v1

t )‖Y
⇒ sup

t∈[0,T ]

‖r1
t ‖Y ≤ ‖J(v4)‖B

Y
‖T (v1, v3)‖B

Y
+ q1 + ‖Q(v1)‖B

Y

⇒ ‖r1‖B
Y
≤ k

r1
, k

r1
:= ksuf (MJ (MT + q1 + MQ)) <∞, (22)

where ksuf <∞ is an sufficiently large constant.3 However, in view of the nonlinearities in
r3 we have that

‖r3,4
t ‖XB

≤ ‖(Λ1(v1
t , v

3
t ) + Λ2(v1

t , v
3
t ))v4

t (1− v4
t )‖

Lp(D)
+ q3‖v4

t ‖Lp(D)
+ ‖b∇v3

t · ∇v4
t ‖Lp(D)

+ ‖J(v4
t )T (v1

t , v
3
t ) + q̃2v

3
t ‖Lp(D)

+ ‖∇h · ∇v2
t ‖Lp(D)

+ ‖h∆v2
t ‖Lp(D)

≤ MJ ‖T‖Z
θ′

+ (MΛ1
+ MΛ2

)
(
‖v4
t ‖Z

θ′
+ ‖v4

t ‖2Z
θ′

)
+ Mb‖v3

t ‖Z
θ′
‖v4
t ‖Z

θ′

+ q3‖v4
t ‖Z

θ′
+ ‖h‖Z

θ′
‖v2
t ‖H2

p(D)

⇒ sup
t∈[0,T ]

‖r3,4
t ‖XB ≤ (‖v4‖B

Z
θ′

+ ‖v4‖2B
Z
θ′

)‖T‖B
Z
θ′

+ (MΛ1
+ MΛ2

)
(
‖v4‖B

Z
θ′

+ ‖v4‖2B
Z
θ′

)
+ Mb‖v3‖B

Z
θ′
‖v4‖B

Z
θ′

+ q3‖v4‖B
Z
θ′

+ ‖h‖B
Z
θ′
‖v2‖BZ

⇒ ‖r3,4
t ‖BXB

≤ k
r3,4

<∞, (23)

k
r3,4

:= ksuf
(

(P1 + P 2
1 )(kΛ1

+ kΛ2
) + MJMT + MbP

2
1 + P1(q3 + kh)

)
.

Using (15) and Lemma 3.1 we can apply Kolmogorov-C̆ensov-Loève theorem to get the
existence of µ-Hölder-continuous modification of the processes Λ1, Λ2 and J . Then due to
the uniform boundedness of Λ1, Λ2 and J the Hölder semi-norms can be estimated
(independent of ω) as

sup
t,s∈[0,T ]

s<t

‖r3,4
t − r3,4

s ‖XB

|t− s|µ ≤ k
L,r3,4

<∞. (24)

Similarly,

sup
t,s∈[0,T ]

s<t

‖r1
t − r1

s‖Y
|t− s|µ ≤ k

L,r1
<∞, (25)

where

k
L,r1

= 3
(

sup
t∈[0,T ]

k
L,r1

(t)
)

(P1 + P2), k
L,r3

= sup
t∈[0,T ]

k
L,r3

(t), k
L,r4

= sup
t∈[0,T ]

k
L,r4

(t),

k
L,r3,4

= 4(P1 + P2)(k
L,r3

+ k
L,r4

),

with the constants depending on P1, P2, and the bounds of the coefficient functions involved
in R2 and R3. �

3The constant ksuf appears in a few more estimates below. In each case it represents an (arbitrarily chosen)
sufficiently large positive real constant.
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The proof of the following lemma is easily obtained from the assumptions about the
coefficient functions made in Subsection 3.1.

Lemma 4.2. Let the functions a, g, Λ3, and Λ4 be in H1
2p

(D). If v ∈ K(T ), then for each

ω ∈ Ω, the operator A1(ω) is in C0,1([0, T ],L(Y )). Moreover, independently of ω, the
operators A2 and B belong to C0,1([0, T ],L(Y )) and C0,1([0, T ],L(D(B); XB)), respectively.

4.2 Evolution operator:

In order to solve the Cauchy problem 20, we first introduce (locally) its mild solution and
then show that this is in fact the strong (local) solution. To this end we need to establish the
corresponding evolution operator. The following lemmas achieve this goal.

Lemma 4.3. As before, let
XB := Lp(D)× Lp(D),

and v ∈ K(T ). Then for each ω ∈ Ω, UB(ω, t, s) is a two parameter semigroup, called the
evolution operator. It is an element of L(XB) and it is defined like in Theorem 3.8 in [53].
Moreover, if B1(ω, t), B2(ω, t), and B3(ω, t) are At-measurable then UB is At-measurable.

Proof. For v ∈ K(T ) Theorem 3.6, Corollary 1, and Lemma 4.2 hold true. This in turn
verifies the structural assumptions in Section 4.1. of [53] for ν = 1. As a result Theorem 3.8
of [53] gives the required claim. As the operator UB(t, s) is the limit of the evolution
operator UBn(t, s) associated with the Yosida approximation Bn(t) of B(t), the
At-measurability claim holds due to B1(t), B2(t), and B3(t) being At-measurable and the
limits of these At-measurable functions being again At-measurable. �

Lemma 4.4. Let
XA := H1

2p
(D)×H2

p(D),

and for each ω ∈ Ω, let u(ω) ∈ K. Then UA(ω, t, s) defined as

UA(ω, t, s) :=

[
UA1(t, s) 0

0 UA2(t, s)

]
,

UA1(ω, t, s) := e−
∫ t
s A1(ω,r)dr = e

∫ t
s J(C(ω,r))ξ(ω,r)dr, (26)

UA2(ω, t, s) := e−
∫ t
s A2(ω,r)dr = e−

∫ t
s [γ

N
C(ω,r)−(Λ3(ω,r)−Λ4(ω,r))(1−N(ω,r))]dr. (27)

is an element of L(XA) and a uniformly continuous semigroup. Moreover, if A1(ω, t) and
A2(ω, s) are At-measurable then UA1 and UA2 are At-measurable as well.

Proof. Since v ∈ K implies that u4 ∈ L∞(Ω;C([0, T ];Z4)), Lemma 3.3 and Lemma 3.2
imply that the operators A1(ω) and A2(ω) are bounded in the uniform topology and that
they generate the respective claimed uniformly continuous semigroups. The
At-measurablility claim holds due to A1(t) and A2(t) being At-measurable and the limits of
measurable functions being still measurable. �

Upon combining the above two lemmas we get the following theorem:

Theorem 4.5. Let
X := XA ×XB,

and for each ω ∈ Ω, let v(ω) ∈ K. Then U(ω, t, s) defined as

U(ω, t, s) :=

UA1(ω, t, s) 0 0T

0 UA2(ω, t, s) 0T

0 0 UB(ω, t, s)


is an element of L(X) and it forms a strongly continuous semigroup.
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4.3 Approximate solution:

For v ∈ K(T ), T > 0 consider the following approximation of the Cauchy problem (20):{
d
dt

u(ω, t) + A(v(ω, t))u(ω, t) = r(v(ω, t)), in X, t ∈ (0, T ], for each ω ∈ Ω

u(ω, 0) = u0(ω)
(28)

This is a non-autonomous inhomogeneous problem, which can be solved uniquely (for each
fixed ω ∈ Ω) due to Theorem 7.5, and its mild solution is given by

u(ω, t) = U(ω, t, 0) u0 +

∫ t

0

U(ω, t, s)r(v(ω, s))ds, (29)

with U(ω, t, s) := U(ω,v(t),v(s)) being the evolution operator for the operator A(v(ω, t))
and B(v(ω, t)), respectively. For the sake of clarity, we write out the mild solution
componentwise:

u1
t (ω) := u1(ω, t) = UA1(ω, t, 0)u1

0 +

∫ t

0

UA1(ω, t, s)r1
s(v(ω))ds (30a)

u2
t (ω) := u2(ω, t) = UA2(ω, t, 0)u2

0 (30b)

u3,4
t (ω) := u3,4(ω, t) = UB(ω, t, 0)u3,4

0 +

∫ t

0

UB(ω, t, s)r3,4
s (v(ω))ds (30c)

where,

r1
s = r1(v(ω, s)) := J(v4

s)
(
− T (v1

s , v
3
s) + q1 −Q(v1

s)
)

(31a)

r3,4
s =

(
r3(v(ω, s))

r4(v(ω, s))

)
:=

(
J(v4

s) T (v1
s , v

3
s) + q̃2v

3
s +∇ · (h∇v2

s)

v4
s(1− v4

s)
(
Λ1(v1

s , v3
s) + Λ2(v1

s , v3
s)
)

+ q3v4
s − b∇v3 · ∇v4

)
. (31b)

Lemma 4.6. Let v ∈ K(T ) and u3,4
0 := (u3

0, u
4
0)T ∈ D(Bα

0 ) be A0-measurable, 1 ≥ α > θ,
2β > 2β′ := 1 + n

2p
and t ∈ [0, T ]. Then for each fixed ω ∈ Ω and Ξ ∈ R12

+ , the vector

u3,4
t (ω) := (u3

t (ω), u4
t (ω))T solves the abstract Cauchy problem

d

dt
u3,4
t (ω) + B(v(ω, t))u3,4

t (ω) = r3,4(v(ω, t)), in XB, t > 0

u3,4(ω, 0) = u3,4
0 (ω).

Moreover, for each ω ∈ Ω we have that

u3,4 ∈ C([0, T ]; XB) ∩ C1((0, T ]; XB), B(vt)
αu3,4 ∈ C((0, T ]; XB), (32)

with ‖u
3,4‖B

XB
+ ‖B(v)αu3,4‖C

XB
≤ ksuf

(
‖Bα

0 u3,4
0 ‖XB + ‖r3,4‖Fα,µ′

)
‖ d
dt

u3,4‖Fα,µ′ + ‖B(v)u3,4‖Fα,µ′ ≤ ksuf
(
‖Bα

0 u3,4
0 ‖XB + ‖r3,4‖Fα,µ′

) (33)

Proof. For v ∈ K(T ) and 2β′ := 1 + n
2p

, we see that the repulsion coefficient

g ∈ B([0, T ];H2β′
p (D)) and the diffusion coefficient a ∈ B([0, T ];H2β′

p (D)) satisfy
ma ≤ a ≤ Ma. Therefore we can apply Theorem 3.6 and get that B(vt) is a sectorial
operator with uniform spectral angle κB < π

2
and its resolvent is satisfying the uniform

upper bound (12). Moreover, D(B(vt)) = D(B(v0)) for all t ∈ [0, T ].
Since u3,4

0 ∈ D(Bα
t ), for t ∈ [0, T ], the mapping t 7→ B(vt)B(vs)

−1 is µ-Hölder continuous for
any fixed s ∈ [0, T ] (due to the Lipschitz continuity of B proved in Lemma 4.2). Therefore,
we can apply Theorem 7.5 with r3,4 ∈ Cµ([0, T ],XB) (due to Lemma 4.1), thus

r3,4 ∈ Fα,µ
′
([0, T ]; XB), α > θ > β, µ > µ′ and ν = 1, to get the required claim.

Finally, the solution process u3,4
t is At-measurable, since u3,4

0 is A0-measurable and
integration of an At-measurable function yields an At-measurable function. �

Lemma 4.7. Let ξ ∈ L2(Ω;C([0,∞);R)) be a centered Gaussian process with µ-Hölder
continuous covariance function, v ∈ K(T ), and u1,2

0 ∈ Z1 × Z2 be A0-measurable. Then for
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each ω ∈ Ω and Ξ ∈ R12
+ the vector u1,2

t (ω) := (u1
t (ω), u2

t (ω))T solves the abstract Cauchy
problem

d

dt
u1,2
t (ω) + A(v(ω, t))u1,2

t (ω) = r1,2(v(ω, t)), in XA, t > 0

u1,2(Ω, 0) = u1,2
0 (ω).

Moreover, for each ω ∈ Ω we have that

u1,2 ∈ C([0, T ]; XA) ∩ C1((0, T ]; XA), A(v)u1,2 ∈ C([0, T ]; XA), (34)

with

‖u1,2‖B
XA

+ ‖ d
dt

u1,2‖B
XA

+ ‖A(v)u1,2‖B
XA
≤ kξ,T (ω)(‖u1,2

0 ‖XA + ‖r1,2(v)‖Fα,µ′ ). (35)

Proof. Since v3 ∈ L∞(Ω;Cµ([0, T ];Zθ′)), from Lemma 3.2 and Lemma 3.3 we get that
A(ω, t) : H1

2p
(D)×H2

p(D)→ H1
2p

(D)×H2
p(D), p > n is a bounded linear operator which

generates an uniformly continuous semigroup. This, along with the Lipschitz continuity of
the reaction terms, yields the existence of a unique mild solution. The C1 regularity of the
mild solution in turn yields the existence of the strong solution. Finally, the solution process
u1,2
t is At-measurable, since u1,2

0 is A0-measurable. The estimates for the claimed
regularities can be obtained in a standard way; details are included in Step1.1 of the task
validating the fact that the mapping defined in (36) below has a fixed point. �

4.4 Construction and properties of a fixed point mapping:

In the light of Lemmas 4.6 and 4.7, our next task is to show that the approximate solution
(29) converges to the actual solution. To this aim we observe that the equation (29) can be
seen as a mapping of a function v in K(T ) into u (hopefully also in K(T )). Therefore we
define the mapping Φ(v(t)) as

Φ(v(ω, t)) := u(ω, t) = U(ω, t, 0)u0(ω) +

∫ t

0

U(ω, t, s)r(v(ω, s))ds (36)

Now the aim is to show that Φ : K(T )→ K(T ) is a fixed point mapping in Z.

4.4.1 Step1: Φ maps K(T ) into K(T ):

Since Φ is a vector mapping with Φ = (Φ1, Φ2, Φ3, Φ4)T , we prove the claim
componentwise, i.e. for each Φk, k ∈ {1, 2, 3, 4}.

1.1 Verification of u1(ω) ∈ K(T ): In order to prove the regularity properties of u1 we
need to assume that the process (ξt)t has independent increments and either u1

0 is
deterministic or the σ- algebra generated by u1

0 is independent of As.

1.1.a Boundedness:

u1
t (ω) = Φ1(v(ω, t)) := UA1(ω, t, 0)u1

0(ω) +

∫ t

0

UA1(ω, t, s)r1
s(v(ω))ds

= e
∫ t
0 J(v4

r(ω))ξr(ω)dru1
0(ω) +

∫ t

0

e
∫ t
s J(v4

r(ω))ξr(ω)drr1(v(ω, s))ds

⇒ ‖u1
t (ω)‖Y ≤ ‖e

∫ t
0 .‖Y ‖u

1
0(ω)‖Y +

∫ t

0

‖e
∫ t
s .‖Y ‖r

1(v(ω, s))‖Y ds

⇒ ‖u1(ω)‖B
Y
≤ ‖e

∫ t
0 .‖B

Y
‖u1

0(ω)‖Y + ‖r1(v(ω))‖B
Y
‖e

∫ t
0 .‖B

Y
T (37)

⇒ E[‖u1(ω)‖2B
Y

] ≤ E[‖e
∫ t
0 .‖2B

Y
]
(
E‖u1

0‖Y + ‖r1(v(ω))‖B
Y
T
)2

(78)

≤ kξTe2k2

ξT

(
E‖u1

0‖Y + ‖r1(v(ω))‖B
Y
T
)2

. (38)

Thus u1 ∈ L2
(

Ω;B
(
[0, T ];Y

))
and E[‖u1‖2B

Y
]
1
2 ≤ P1 for T > 0 small enough.

1.1.b Hölder continuity:
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u1
t − u1

s = Φ1(vt)− Φ1(vs) = [UA1(t, s)− 1]u1
s +

∫ t

s

UA1(t, τ)r1
τ (v)dτ

= [e
∫ t
s A1(τ)dτ − 1]u1

s +

∫ t

s

e
∫ t
τ A1(ρ)dρr1

τ (v)dτ

⇒ ‖u1
t − u1

s‖Y ≤
∥∥∥[e

∫ t
s A1(τ)dτ − 1]

∥∥∥
Y

‖u1
s‖Y

+ sup
τ∈[0,T ]

((
sup

r∈[τ,T ]

∥∥∥e∫ T
r A1(ρ)dρ

∥∥∥
Y

)(
sup

r∈(0,τ ]

‖r1
r(v)‖Y

))∫ t

s

dτ.

By using (88) and r1 ∈ L∞(Ω;BY ), we get that

E
[(

sup
t,s∈[0,T ]

s<t

‖u1
t − u1

s‖Y
|t− s| 12 +µ

)2]
≤ T 1−2µ E

[(
sup

t,s∈[0,T ]

s<t

‖e
∫ t
s A1(τ)dτ − 1‖2

Y

|t− s|

)2

‖u1
s‖2B

Y

]

+ T 1−2µ E
[∥∥∥e∫ τ

0 A1(ρ)dρ
∥∥∥2

B
Y

]
E
[
‖r1(v)‖2B

Y

]
(79),(78),(88)

≤ T 1−2µksufe
ksufk

2

2,ξT1

(
E[‖u0‖2Y ] + E[‖us‖2B

Y
] + E[‖r1‖2B

Y
]
)

≤ T 1−2µksufe
ksufk

2

2,ξT1

(
2P 2

1 + k2

r1

)
. (39)

Therefore, u1 ∈ L2
(

Ω;Cµ([0, T ];Y )
)

with E
[(

sup t<s
t,s∈[0,T ]

‖u1(t)−u1(s)‖
Y

|t−s|
1
2

+µ

)2] 1
2 ≤ P2 for T > 0

small enough.

1.1.c Boundedness in F β,µ: Let ω ∈ Ω be fixed, then

A1(ω, t)u1
t (ω) = −J(v4

t )ξtu
1
t .

Using (83) we immediately have that

E[‖A1u
1
t‖2B

Y
] ≤ M2

J
k2
ξ2,T e

4k2

ξ2,T .

Due to Lemma 4.2 (in particular the Lipschitz continuity of A1) and due to the Hölder
continuity of u4

t and ξt (a.s.) we get that A1(t)u1(t) is Hölder continuous, as a result of which

‖A1(ω, t)u1
t −A1(ω, s)u1

s‖Y ≤ ‖A1(ω, t)−A1(ω, s)‖Y ‖u
1
s‖Y + ‖A1(ω, t)‖Y ‖u

1
t (ω)− u1

s(ω)‖Y
≤ |ξs(ω)|M

J′ ‖v
4(ω, t)− v4(ω, s)‖Y + MJ |ξt − ξs|‖u

1
t‖Y

+ MJ |ξt|‖u
1
t (ω)− u1

s(ω)‖Y .

Due to (83), (84), (39) and to the µ-Hölder continuity of the covariance function of ξt, we get
that

E
[(

sup
t,s∈[0,T ]

‖A1(ω, t)‖Y ‖u
1
t (ω)− u1

s(ω)‖Y
|t− s|µ

)2]
≤ ksuf <∞.

Thus, we have A1u
1
t ∈ L2

(
Ω;Cµ([0, T ];Y )

)
. This immediately ensures that

A1u
1 ∈ L2

(
Ω;F β,µ([0, T ];Y )

)
for β′ ∈ [0, 1] with β′ > µ > 0.

1.1.d C1 continuity: Let ω ∈ Ω be fixed, then

u1
t+h − u1

t = [e
∫ t+h
t A1(s)ds − 1]u1

t +

∫ t+h

t

e
∫ t+h
s A1(τ)dτr1

s(v)ds

⇒ 1

h
[u1
t+h − u1

t ] =
1

h

[ ∞∑
k=2

( ∫ t+h
t

A1(s)ds
)k

k!

]
u1
t +

1

h

∫ t+h

t

A1(s)u1
tds

+
1

h

∫ t+h

t

e
∫ t+h
s A1(τ)dτr1

s(v)ds.
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Due to the a.s. continuity of v4
t in Y and the uniform continuity (for a.e. ω ∈ Ω) of the

semigroup UA1(t, s) in Y with respect to both t and s, by taking the limit h→ 0 we get

d

dt
u1(ω, t) = A1(ω, t)u1

t (ω) + r1
t ((v(ω)).

Due to the continuity of A1(t)u1
t and r1(vt) in Y , we get that for a.e. ω ∈ Ω,

u1(ω) ∈ C1((0, T ];Y ).

1.2 Verification of u2(ω) ∈ K(T ): Analogously to u1(ω) ∈ K(T ).

1.3 Verification of u3,4(ω) ∈ K(T ):

1.3.a Boundedness: For each ω ∈ Ω we have(
u3(t)

u4(t)

)
:=

(
Φ3(v(t))

Φ4(v(t))

)
= UB(ω, t, 0)

(
u3,0

u4,0

)
+

∫ t

0

UB(t, s)

(
r3(v(s))

r4(v(s))

)
ds

= u3,4
0 + (e−t(B(u0)) − 1)u3,4

0 + (UB(t, 0)− e−t(B(v0)))u3,4
0

+

∫ t

0

UB(t, s)[r3,4(v(s))− r3,4(v(t))]ds+

∫ t

0

[UB(t, s)− e−(t−s)(B(vs))]r3,4(v(t))ds

+

∫ t

0

[e−(t−s)(B(vs)) − e−(t−s)(B(v0)]r3,4(v(t))ds+ [e−t(B(v0)) − 1]B−1
0 r3,4(v(t))

⇒ ‖u3,4(t)‖
Z

3,4

θ′
≤ ‖u3,4

0 ‖Z3,4

θ′
+ ‖(e−t(B(u0)) − 1)u3,4

0 ‖Z3,4

θ′
+ ‖(UB(t, 0)− e−t(B(v0)))u3,4

0 ‖Z3,4

θ′

+
∥∥∥ ∫ t

0

UB(t, s)[r3,4(v(s))− r3,4(v(t))]ds
∥∥∥
Z

+
∥∥∥ ∫ t

0

[UB(t, s)− e−(t−s)(B(vs))]r3,4(v(t))ds
∥∥∥
Z

3,4

θ′

+
∥∥∥∫ t

0

[e−(t−s)(B(vs)) − e−(t−s)(B(v0)]r3,4(v(t))ds
∥∥∥
Z

3,4

θ′
+
∥∥∥[e−t(B(v0)) − 1]B−1

0 r3,4(v(t))
∥∥∥
Z

3,4

θ′

Now let us estimate each term on the right hand side.

Term2:∥∥∥(e−t(B(u0)) − 1)u3,4
0

∥∥∥
Z

3,4

θ′
≤ kθ,θ′

∥∥∥B(u0)θ[e−t(B(u0)) − 1]u3,4
0

∥∥∥
XB

≤kθ,θ′
∥∥∥[e−t(B(u0)) − 1]B(u0)θ−α

∥∥∥
L(XB)

‖B(u0)αu3,4
0 ‖XB

[53,(2.129)]

≤ kθ,θ′kB0,θ t
α−θ‖B(u0)αu3,4

0 ‖XB

⇒
∥∥∥(e−t(B(u0)) − 1)u3,4

0

∥∥∥
B

Z
3,4
θ′

≤ kθ,θ′kB0,θ T
α−θ‖B(u0)αu3,4

0 ‖XB .

Term3:∥∥∥UB(t, 0)− e−t(B(v0)))u3,4
0 (ω)

∥∥∥
Z

3,4

θ′
≤ kθ,θ′

∥∥∥B(v0)θ[UB(t, 0)− e−t(B(v0))]u3,4
0

∥∥∥
XB

= kθ,θ′
∥∥∥B(v0)θ[UB(t, 0)− e−t(B(v0))]B(v0)−α

∥∥∥
L
(
XB

)∥∥∥B(v0)αu3,4
0 (ω)

∥∥∥
XB

[53,(3.87)]

≤ kθ,θ′ kB0,θ,α t
α−θ+µ+ν−1

∥∥∥B(v0)αu3,4
0 (ω)

∥∥∥
XB

⇒
∥∥∥UB(t, 0)− e−t(B(v0)))u3,4

0

∥∥∥
B

Z
3,4
θ′

≤ kθ,θ′ kB0,θ T
α−θ+µ+ν−1

∥∥∥B(v0)αu3,4
0 (ω)

∥∥∥
XB

.
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Term4:∥∥∥∥∥
∫ t

0

UB(t, s)[r3,4(s)− r3,4(t)]ds

∥∥∥∥∥
Z

3,4

θ′

≤ kθ,θ′
∫ t

0

∥∥∥B(vt)
θUB(t, s)

∥∥∥
L(XB)

∥∥∥[r3,4(s)− r3,4(t)]
∥∥∥
XB

ds

[53,(3.81)]

≤ kθ,θ′
∫ t

0

(t− s)−θ(t− s)µ
∥∥∥(t− s)−µ[r3,4(s)− r3,4(t)]

∥∥∥
XB

ds

≤ kθ,θ′
∫ t

0

kBt,θ(t− s)
µ−θ sup

s<t,

t,s∈[0,T ]

∥∥∥(t− s)−µ[r3,4(s)− r3,4(t)]
∥∥∥
XB

ds

≤ kθ,θ′kBt,θkr3,4

∫ t

0

(t− s)µ−θds

⇒

∥∥∥∥∥
∫ t

0

UB(t, s)[r3,4(s)− r3,4(t)]ds

∥∥∥∥∥
B

Z
3,4
θ′

≤
kθ,θ′kBt,θkr3,4

µ− θ + 1
Tµ−θ+1.

Term5:∥∥∥∥∥
∫ t

0

[UB(t, s)− e−(t−s)B(vs)]r3,4
t ds

∥∥∥∥∥
Z

3,4

θ′

≤
∫ t

0

kθ,θ′
∥∥∥B(vt)

θ[Uv(t, s)− e−(t−s)B(vs)]
∥∥∥
L(XB)

‖r3,4
t ‖XBds

[53,(3.87)]

≤ kθ,θ′‖r3,4‖BXB

∫ t

0

kBt,θ (t− s)µ+ν−1−θds

≤
kBt,θkθ,θ′
µ+ ν − θ tµ+ν−θ ‖r3,4‖BXB

(since µ+ ν − θ − 1 > −1)

⇒

∥∥∥∥∥
∫ t

0

[UB(t, s)− e−(t−s)B(vs)]r3,4
t ds

∥∥∥∥∥
B

Z
3,4
θ′

≤
kBt,θkθ,θ′
µ+ ν − θ Tµ+ν−θ ‖r3,4‖BXB

.

Term6:∥∥∥∥∥
∫ t

0

[e−(t−s)(B(vs)) − e−(t−s)(B(v0)]r3,4
t ds

∥∥∥∥∥
Z

3,4

θ′

≤
∫ t

0

kθ,θ′
∥∥∥B(vt)

θ[UB(t, s)− e−(t−s)(B(vs))]
∥∥∥
LLp(D)

‖r3,4
t ‖XBds

[53,(3.91)]

≤ kθ,θ′‖r3,4‖BXB

∫ t

0

kBt,θ (t− s)µ+ν−1−θds

⇒

∥∥∥∥∥
∫ t

0

[e−(t−s)(B(vs)) − e−(t−s)(B(v0)]r3,4
t ds

∥∥∥∥∥
Z

3,4

θ′

≤
kθ,θ′ kBt,θ

µ+ ν − θ Tµ+ν−θ ‖r3,4‖BXB
.

Term7:∥∥∥[e−t(B(v0)) − 1]B−1
0 r3,4

t

∥∥∥
Z

3,4

θ′
≤ kθ,θ′

∥∥∥[e−t(B(v0)) − 1]B(v0)θ−1
∥∥∥
L(XB)

‖r3,4
t ‖XB

⇒
∥∥∥[e−t(B(v0)) − 1]B−1

0 r3,4
t

∥∥∥
B

Z
3,4
θ′

≤ kθ,θ′kB0,θ T
1−θ ‖r3,4‖BXB

.

Altogether, we get that ‖u3,4‖B
Z

3,4
θ′
≤ P1 for T > 0 sufficiently small.

Moreover, due to the estimate (33) and by setting(
‖Bα

0 u3,4
0 ‖XB + ‖r3,4(v)‖Fα,µ′

)
≤ ksuf

(
‖Bα

0 u3,4
0 ‖XB + ‖r3,4(v)‖Fα,µ

)
≤ P3 <∞

we also get that ‖u3,4‖BZ ≤ P3.

1.3.b Hölder continuity:

u3,4
t − u3,4

s = Φ3,4(vt)− Φ3,4(vt) = [UB(ω,vt,vs)− 1]u3,4
s +

∫ t

s

UB(ω,vt,vτ )r3,4
τ (v)dτ
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‖u3,4
t − u3,4

s ‖Z3,4

θ′
≤
∥∥∥[UB(t, s)− e−(t−s)B(vs)]B(vs)

−1B(vs)
1u3,4

s

∥∥∥
Z

3,4

θ′

+
∥∥∥[e−(t−s)B(vs) − 1]B(vs)

−1B(vs)
1u3,4

s

∥∥∥
Z

3,4

θ′
+

∫ s

t

∥∥∥UB(t, τ)r3,4
τ (v)

∥∥∥
Z

3,4

θ′
dτ.

Estimating each term on the right hand side similarly as above we obtain

sup
t,s∈[0,T ]

‖u3,4
t − u3,4

s ‖Z3,4

θ′

|t− s|µ ≤ ksufT ε(‖u3,4‖B
Z

3,4
θ′

+ ‖r3,4(v)‖BXB
),

from which it follows that

sup
t,s∈[0,T ]

‖u3,4
t − u3,4

s ‖Z3,4

θ′

|t− s|µ ≤ P2

for T > 0 sufficiently small.

4.4.2 Step2: Φ is a contraction in Z(T ):

Let v1 and v2 be in K(T ). Then Ψ(vkt ) : K(T )→ K(T ), where

Ψk
t := Ψ(vkt ) =

(
Φ3(vkt )

Φ4(vkt )

)
and fkt := f(vkt ) =

(
r3(vkt )

r4(vkt )

)
.

Ψ1
t −Ψ2

t =
(
U1

B(t, 0)− U2
B(t, 0)

)
u3,4

0 +

∫ t

0

(
U1

B(t, s)− U2
B(t, s)

)
f1
s ds+

∫ t

0

U2
B(t, s)

(
f1
s − f2

s

)
ds.

Let u3,4
0 ∈ D(Bα

0 ), with 1 ≥ α > β > 0. Now taking the Z3,4
β′ -norm and using the embedding

D(Bβ
t ) ↪→ Z3,4

β′ under the conditions (18), we get with the notation B1(t)β := B(v1(t))β :

‖Bβ
1 (t)[Ψ1

t −Ψ2
t ]‖XB ≤ ‖B

β
1 (t)[

(
U1

B(t, 0)− U2
B(t, 0)

)
u3,4

0 ]‖XB +

∫ t

0

‖Bβ
1 (t)[

(
U1

B(t, s)− U2
B(t, s)

)
f1
s ]‖XBds

+

∫ t

0

‖Bβ
1 (t)[U2

B(t, s)
(
f1
s − f2

s

)
]‖XBds

= Term1 + Term2 + Term3

Term1: Firstly, using the Yosida approximation Bn(t) of B(t) and its associated evolution
operator UBn(t), we have that (for the properties of UBn see Section 5 in Chapter 3, [53])

U1
Bn(t, 0)− U2

Bn(t, 0) = −
∫ t

0

d

ds
U1

Bn(t, s)U2
Bn(s, 0)ds

=

∫ t

0

U1
Bn(t, s)B2,n(s)U2

Bn(s, 0)− U1
Bn(t, s)B1,n(s)U2

Bn(s, 0)ds

=

∫ t

0

U1
Bn(t, s)B1−ν

1,n (s)Bν
1,n(s)[B−1

1,n(s)−B−1
2,n(s)]B2,n(s)U2

Bn(s, 0)ds.

Therefore,

Bβ
1,n(t)

(
U1

Bn(t, 0)− U2
Bn(t, 0)

)
B−α2,n(0) =

∫ t

0

Bβ
1,n(t)U1

Bn(t, s)B1−ν
1,n (s)Bν

1,n(s)[B−1
1,n(s)−B−1

2,n(s)]

×B2,n(s)U2
Bn(s, 0)B−α2,n(0)ds. (40)

Now due to the following properties:

1. (t, s) 7→ Un(t, s) is continuous in the uniform topology ∀s, t ∈ [0, T ], s ≤ t.
2. Un(t, s)→ U(t, s) strongly in XB, with s < t, s, t ∈ [0, T ].

3. t 7→ U(t, s) is continuous in the strong topology for t ∈ [s, T ], s ∈ [0, T ). Similarly,
s 7→ U(t, s) is continuous in the strong topology for s ∈ [0, t], t ∈ (0, T ].

4. The mapping s 7→ Bβ
1,nU

1
Bn(t, s), for fixed t ∈ (s, T ] is continuous in the uniform

topology with
∥∥∥Bβ

1,nU
1
Bn(t, s)

∥∥∥
XB

≤ ksuf |t− s|−β . Moreover, s 7→ (t− s)−β ∈ L1([0, t]).

Finally, Bβ
1,nU

1
Bn(t, s)

n→∞→ Bβ
1U

1
B(t, s) in the strong topology.
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5. The mapping s 7→ B2(s)U2
B(s, 0)B−α2,n(0), for fixed t ∈ (s, T ] is continuous in the

uniform topology with
∥∥∥B2(s)U2

B(s, 0)B−α2,n(0)
∥∥∥
XB

≤ ksuf |s|α−1 ∈ L1([0, t]). Moreover,

B2(s)U2
B(s, 0)B−α2 (0)

n→∞→ B2(s)U2
B(s, 0)B−α2 (0) in the strong topology.

we can pass to the limit n→∞ on both sides of (40) and use Lebesgue’s dominated
convergence to get

Bβ
1 (t)

(
U1

B(t, 0)− U2
B(t, 0)

)
B−α2 (0) =

∫ t

0

Bβ
1 (t)U1

B(t, s)B1−ν
1 (s)Bν

1(s)[B−1
1 (s)−B−1

2 (s)] (41)

×B2(s)U2
B(s, 0)B−α2 (0) ds, (42)

from which follows

‖Bβ
1 (t)[

(
U1

B(t, 0)− U2
B(t, 0)

)
B−α2 (0)‖L(XB) ≤ ksuf

∫ t

0

(t− s)ν−β−1sα−1‖v3,4
1 (s)− v3,4

2 (s)‖XBds.

This in turn implies that

‖Bβ
1 (t)[

(
U1

B(t, 0)− U2
B(t, 0)

)
u0]‖XB ≤ ‖B

β
1 (t)[

(
U1

B(t, 0)− U2
B(t, 0)

)
]B−α‖L(XB)‖Bαu0‖XB

≤ ksuf‖Bαu0‖XB

∫ t

0

(t− s)ν−β−1sα−1‖v3,4
1 (s)− v3,4

2 (s)‖XBds

(43)

Term2: Using the Yosida approximation Bn(t) of B(t) and its associated evolution
operator Un(t) along with Lebesgue’s dominated convergence, we get that∫ t

0

Bβ
1 (t)[

(
U1

B(t, s)− U2
B(t, s)

)
f1
s ]ds =

∫ t

0

Bβ
1 (t)U1

B(t, τ)B1(τ)[B−1
1 (τ)−B−1

2 (τ)]

×
(
B2(τ)

∫ τ

0

U1(τ, s)f(s)ds
)
dτ. (44)

where we re-expressed the integral on the right hand side by changing the order of
integration. The term B2(τ)

∫ τ
0
U1(τ, s)f(s)ds can be estimated as follows:

B2(τ)

∫ τ

0

U1(τ, s)f(s)ds =

∫ τ

0

B2(τ)U1(τ, s)f(s)ds

=

∫ τ

0

B2(τ)U1(τ, s)[f(s)− f(t)]ds+

∫ τ

0

B2(τ)[U1(τ, s)− e−(τ−s)B2(τ)]f(t)ds

+

∫ τ

0

B2(τ)e−(τ−s)B2(τ)f(t)ds.

By taking the XB norm we get that∥∥∥B2(τ)

∫ τ

0

U1(τ, s)f(s)ds
∥∥∥
XB

≤
∫ τ

0

∥∥∥B2(τ)U1(τ, s)
∥∥∥
L(XB)

‖f(s)− f(τ)‖XBds

+

∫ τ

0

∥∥∥B2(τ)[U1(τ, s)− e−(τ−s)B2(τ)]
∥∥∥
L(XB)

‖f(τ)‖XBds

+
∥∥∥1− e−(τ−s)B2(τ)

∥∥∥
L(XB)

‖f(τ)‖XB

= tr1 + tr2 + tr3

tr1 ≤ ksuf
∫ τ

0

(τ − s)µ−1sα−µ−1ds sup
t,s≤S

s1−α−µ‖f(τ)− f(s)‖XB

(τ − s)µ ≤ τα−1β(µ, α− µ)‖f‖Fα,µ

tr2 ≤ ksuf
∫ τ

0

(τ − s)µ+ν−1−1sα−1ds sup
t≤S

s1−α‖f(t)‖XB ≤ ksufτ
µ+ν+α−2β(µ+ ν − 1, α)‖f‖Fα,µ

tr3 ≤ ksufτα−1 sup
τ≤S

τ1−α‖f(τ)‖XB ≤ ksufτ
α−1‖f‖Fα,µ ,

where β denotes the Euler-Beta function β(m,n) =
∫ 1

0
xm−1(1− x)n−1dx, with m,n > 0.

Altogether, we get that∥∥∥B2(τ)

∫ τ

0

U1(τ, s)f(s)ds
∥∥∥
XB

≤ ksufτα−1‖f‖Fα,µ .
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As a result (44) can be estimated as∥∥∥∥∥
∫ t

0

Bβ
1 (t)[

(
U1

B(t, s)− U2
B(t, s)

)
f1
s ]ds

∥∥∥∥∥
XB

≤ ksuf‖f‖Fβ′,µ
∫ t

0

(t− s)ν−β−1sα−1‖v3,4
1 (s)− v3,4

2 (s)‖XBds. (45)

Term3: ∫ t

0

‖Bβ
1 (t)[U2

B(t, s)
(
f1
s − f2

s

)
]‖XBds

ν=1

≤ ksufT 1−α
∫ t

0

(t− s)ν−β−1sα−1‖v3,4
1 (s)− v3,4

2 (s)‖XBds. (46)

Thus from (43), (45) and (46) we get that

‖Bβ [Ψ1
t −Ψ2

t ]‖XB ≤ ksuf (2 + T 1−α)tµ+α−β+ν−1‖v3,4
1 − v3,4

2 ‖Cµ0
ν=1

≤ ksuf tα−βtµ‖v3,4
1 − v3,4

2 ‖Cµ0
⇒ ‖Ψ1 −Ψ2‖B

Z
3,4
β′
≤ ksufTα−βtµ‖v3,4

1 − v3,4
2 ‖Cµ0 . (47)

By the same computations we can also arrive at

‖Ψ1 −Ψ2‖Cµ0 ≤ ksufT
α−β‖v3,4

1 − v3,4
2 ‖Cµ0 . (48)

The estimates (47) and (48) are valid for every ω ∈ Ω, thus by taking the L2(Ω) norm we get

‖Ψ1 −Ψ2‖Z3,4 ≤ kZ,C,HeT
α−β‖v3,4

1 − v3,4
2 ‖Z3,4 . (49)

Contraction of Φ1: Now consider the mapping Ψ : K ∩ Z → Z where

Ψk
t := Ψ(vkt ) = Φ1(vkt ) and fkt := f(vkt ) := r1(vk)

Ψ1
t −Ψ2

t =
(
U1
A1

(t, 0)− U2
A1

(t, 0)
)
u0 +

∫ t

0

(
U1
A1

(t, s)− U2
A1

(t, s)
)
f1
s ds+

∫ t

0

U2
A1

(t, s)
(
f1
s − f2

s

)
ds

= Term1 + Term2 + Term3

By standard estimates we obtain

Term1:

sup
t∈[0,T ]

‖(U1
A1

(t, 0)− U1
A2

(t, 0))‖Y ≤ ‖C1 − C2‖Cµ0 T
µ+1 MJ sup

t∈[0,T ]

|ξt| e
2M

J

∫ t
0 sup
r∈[0,T ]

|ξr|dr

⇒ E‖(U1
A1
− U1

A2
)u1

0‖2BY
(83)

≤ T 2(µ+1)kξTe16k2

ξT ‖u1
0‖2Y ‖C1 − C2‖2Cµ0 . (50)

Term2:∥∥∥ ∫ t

0

(
U1
A1

(t, s)− U2
A1

(t, s)
)
f1
s ds
∥∥∥
Y
≤ sup

0≤s<t≤T
‖U1

A1
(t, s)− U2

A1
(t, s)

∥∥
Y
‖f1‖BY t

This implies

E sup
t∈[0,T ]

∥∥∥∫ t

0

(
U1
A1

(t, s)− U2
A1

(t, s)
)
f1
s ds
∥∥∥2

Y
≤ E

[(
sup

0≤s<t≤T
‖U1

A1
(t, s)− U2

A1
(t, s)

∥∥
Y

)2]
‖f1‖2Y T 2

(50)

≤ T 2(µ+2)kξTe16k2

ξT ‖f1‖2BY ‖C
1 − C2‖2Cµ0 .

(51)
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Term3:∥∥∥ ∫ t

0

U2
A1

(t, s)
(
f1
s − f2

s

)
ds
∥∥∥
Y
≤
∫ t

0

‖U2
A1

(t, s)‖Y ‖f1
s − f2

s ‖Y ds

≤
∫ t

0

‖U2
A1

(t, s)‖Y ‖f1
s − f2

s ‖Y ds

≤ sup
s∈[0,T ]

(
sup

r∈[s,T ]

∥∥U2
A1

(t, r)
∥∥
Y

sup
r∈(0,s]

‖f1
r − f2

r ‖Y
rµ

)∫ t

0

sµds

≤ sup
0≤s<t≤T

∥∥U2
A1

(·, 0)
∥∥
Y
‖f1 − f2‖Cµ0

∫ t

0

s2µds.

This implies that

sup
t∈[0,T ]

∥∥∥ ∫ t

0

U2
A1

(t, s)
(
f1
s − f2

s

)
ds
∥∥∥
Y
≤ sup

0≤s<t≤T

∥∥U2
A1

(·, 0)
∥∥
Y
‖f1 − f2‖Cµ0 sup

t∈[0,T ]

∫ t

0

sµds

⇒ E
∥∥∥∫ t

0

U2
A1

(t, s)
(
f1
s − f2

s

)
ds
∥∥∥2

BY

≤ E
[(

sup
0≤s<t≤T

∥∥U2
A1

(t, s)
∥∥
Y

)2]
‖f1 − f2‖2Cµ0 T

2(µ+1)

≤ T 2(µ+1)kξTe2k2

ξT ‖f1 − f2‖2Cµ0 . (52)

Thus from (50), (51) and (52), we get that

E‖Ψ1 −Ψ2‖2BY ≤ ksufT
2(µ+1)kξTe2k2

ξT ‖v1 − v2‖2Cµ0 . (53)

By the same computations we also arrive at

E‖Ψ1 −Ψ2‖2Cµ
Z
≤ ksufT 2kξTe2k2

ξT ‖v1 − v2‖2Cµ0 . (54)

Thus, from (53) and (54) we get that

‖Ψ1 −Ψ2‖Z1 ≤ T kZ,Hi ‖v
1 − v2‖Z . (55)

Contraction of Φ2: Consider the mapping Ψ : K ∩ Z → Z, where

Ψk
t := Ψ(vkt ) = Φ2(vkt ) and fkt := f(vkt )

‖Ψ1
t −Ψ2

t‖Y ≤ ‖e
∫ t
0 A

1
2(s)ds − e

∫ t
0 A

1
2(s)ds‖Y ‖u0‖Y

≤
∫ t

0

‖A1
2(s)−A2

2(s)‖Y ds)e
∫ t
0 2‖A2‖Y ds‖u0‖Y

≤

(∫ t

0

kA2
(‖v2

1 − v2
2‖Y + ‖v3

1 − v3
2‖Z

β′
+ ‖v4

1 − v4
2‖Z

β′
)ds

)
e2kΛ2

kCt‖u0‖Y

≤
(
kA2
‖v1 − v2‖Cµ0 )e2kΛ2

kCt‖u0‖Y
)
tµ+1

⇒ ‖Ψ1 −Ψ2‖BY ≤
(
kΛ2,C‖v

1 − v2‖Cµ0 e
2kΛ2

kCt‖u0‖Y
)
Tµ+1. (56)

Similarly, we also get

‖Ψ1 −Ψ2‖Cµ0 ≤
(

(kΛ2,C‖v
1 − v2‖Cµ0 )e2kΛ2

kCt‖u0‖Z
)
T. (57)

Since the estimates (56) and (57) hold for each ω ∈ Ω, by taking the L2(Ω) norm we obtain

‖Ψ1 −Ψ2‖Z ≤ TkZ,N ‖v
1 − v2‖Z . (58)

Theorem 4.8 (Local existence and uniqueness). let (Ω,A,P) be a complete probability space
and (At)t≥0 be a normal filtration with N (the system of all P-nullsets) contained in A0. Let
ξ ∈ L2(Ω;C([0,∞);R)) be an At adapted Gaussian process with independent increments. For
n ∈ {1, 2, 3} let D ⊂ Rn be an open bounded domain with Lipschitz boundary. Let p > n and
the operator A be as in (4), with the involved coefficients a and g satisfying the conditions of
Lemmas 4.6 and 4.7. Moreover, let r be as in Lemma 4.1, so that
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r : K → F 1,µ([0, T ];Y × Y ×XB). Finally, let 1 = α > θ > θ′ > β > β′, 2β′ := 1 + n
2p

and

u3,4
0 ∈ D(B0), u1,2

0 ∈ Y × Z be either deterministic or independent of (At)t≥0.
Then for each Ξ ∈ R12

+ , there exists an unique process (ut)t≥0 ∈ K(T ), whose realizations
solve the abstract Cauchy problem (20) in the pathwise sense (i.e. for a.e. ω ∈ Ω). Moreover,
the paths u(ω) satisfy the estimates (35) and (33).

Proof. From Lemma 4.6 and Lemma 4.7 we get the existence of a unique approximative
solution. From the estimates (49), (55) and (58) we get a time T > 0 such that the mapping
Φ : K ∩ Z → K has a unique fixed point u ∈ K. Thus u is a strong solution to the abstract
Cauchy problem (20). The uniqueness of u follows from a topological argument, details of
which are given below. �

4.5 Uniqueness

Let u1 and u2 be two solutions to the equation (20). Then for a sufficiently small time
horizon 0 < S < T , by similar arguments like in contraction, we get that

‖u1 − u2‖Z ≤ ksufS‖u1 − u2‖Z
‖u1 − u2‖Z(1− ksufS) ≤ 0. (59)

This implies that, the term ‖u1 − u2‖Z is zero. Thus u1 and u2 are identical in the
neighbourhood of 0, i.e. on (0, S]. Now, if we are able to extend this interval to the interval
of existence (0, T ], then we get the uniqueness of the local solution.
The extension can be achieved using the following topological result: For a connected
topological space X, if Y ⊆ X is both open and closed in X then either Y = ∅ or Y = X. To
this end let

O := {s ∈ (0, T ] : u1 = u2 in [0, s]}.
Firstly, O is non-empty since S ∈ O. Now we claim O is open and closed in (0, T ].

O open in (0, T ]: Let t̂ = t−S. Then, since u1(S) = u2(S), by (59) we get a new interval of
uniqueness (S, 2S] ⊂ (0, T ], thus there exists a (0, T ]-neighbourhood of S in O. Analogously,
for every s ∈ O, there exists a (0, T ]-neighbourhood of S is in O. Thus, O is open in (0, T ].

O closed in (0, T ]: Let (sn)n∈N ⊂ O be a sequence converging to s in (0, T ]. Then there
exists N 3 N(ε) <∞ such that for all m > N , we have that |sm − s| < ε. Since sm ∈ O,
u1 = u2 on (0, sm], thus we can define a new interval (sm, s] for which (59) holds.
Consequently, u1 = u2 on (sm, s] and also on (0, s], thus s ∈ O.
Altogether, we have that O = (0, T ] and u = u1 = u1 is a unique solution to (20) in K(T).

Remark 1. Note that since the domain D, the parameters, the coefficients, and the initial
values are real, if u solves (20) then so does its conjugate u. But the uniqueness implies that
u = u, thus the solution u is real valued.

4.6 Global existence

Since the interval (0, T ] for the existence of a unique local solution is closed (relatively to
(0,∞)) and the a priori estimates are in principle only dependent on the difference between
the initial and final times, we can extend the local solution u ∈ K(T ) to the abstract Cauchy
problem (20) in a unique way to any arbitrary time interval (0,T] ⊂ (0,∞).
Indeed, consider the abstract Cauchy problem

d

dt
vt(ω) + A(vt(ω))vt(ω) = r(vt(ω)), on X, t ∈ (t1, T1]

vt1(ω) = v1(ω).

}
(60)

Let t1 < T and v1(ω) := ut1(ω), where ut ∈ K(T ) is the unique solution to the Cauchy
problem (20). Now letting τ := t− t1 we can reformulate the problem on the interval
[0, T1 − t1], for which we can apply Theorem (4.8) to get the existence of a unique solution
vτ ∈ K(T1 − t1) on the interval [t1, T1]. Due to uniqueness, vt(ω) = ut(ω) for t ∈ [t1, T ],
which in turn ensures that the extension preserves the regularity with respect to the time
variable. However, one should note that in order to apply the local existence theorem, we
cannot directly rely on the estimates (38) and (50). Instead, we have to use (87) in the
estimation step (37) and (50) to be able to express E[‖UA1(ω, t2, t1)u1

t1‖] as
E‖UA1(ω, t2, t1)‖]E[‖u1

t1‖] plus some remainder terms. This increases the upper bound,
therefore every extension step N may require larger constants PN1 , PN2 and PN3 to represent
the local bounds. Nevertheless, this allows us to inductively extend the interval of existence
to an arbitrary finite time interval [0,T] ⊂ [0,∞), with T ≤ NT , for some N ∈ N.
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4.7 Non-negativity of the local solution:

Since neither is the sectorial operator B symmetric nor is the off-diagonal operator B2 a
positive operator, it is nontrivial to prove the resolvent positivity of B, which would be a
sufficient condition for the positivity of the evolution operator. Instead, we resort to
standard L2 estimates for proving the non-negativity of u3 and u4.

Lemma 4.9. u3 is non-negative.

Proof. Consider the equation

∂tu
3 = J(u4)T (u1, u3)− q2u3 + ∆u3 +∇ · (g∇u4) +∇ · (h∇u2) (61)

In the following we will denote w− := min(w, 0) for any function w. In view of the estimates
in Section 4.4 we have u ∈ K(T ), thus the right hand side of (61) is finite in the Lp(D)-norm
and it holds that∫

D

∂tu u
−dx =

∫
supp(u−)

∂tu u
−dx =

1

2

∫
supp(u−)

∂t(u
−)2dx

=
1

2

d

dt

∫
supp(u−)

(u−)2dx =
1

2

d

dt

∫
D

(u−)2dx (62)

Assume u3 6= 0. Then, multiplying (61) with u3,− and taking the L2(D) inner product we get

1

2

d

dt
‖u3,−‖22 = (JT , u3,−)− q2‖u3,−‖22 − ‖∇u3,−‖22 + (∇ · g∇u4, u3,−) + (∇ · h∇u2, u3,−)

≤ MJMT ‖u
3,−‖22 − q̃2‖u3,−‖2H1 + (∇ · g∇u4, u3,−) + (∇ · h∇u2, u3,−)

≤ MJMT ‖u
3,−‖22 − (∇u4, g∇u3,−)− (∇u2, h∇u3,−)

= MJMT ‖u
3,−‖22 − (∇u4, ĝu3∇u3,−)− (∇u2, ĥu3∇u3,−), g := u3ĝ and h := u3ĥ.

= MJMT ‖u
3,−‖22 − (∇u4, ĝ

1

2
∇(u3,−)2)− (∇u2, ĥ

1

2
∇(u3,−)2)

= MJMT ‖u
3,−‖22 +

1

2
(∇ · ĝ∇u4, (u3,−)2) +

1

2
(∇ · ĥ∇u2, (u3,−)2)

≤ MJMT ‖u
3,−‖22 +

1

2

(
‖∇ĝ · ∇u4‖2 + Mg‖∆u4‖2 + ‖∇ĥ · ∇u2‖2 + Mh‖∆u2‖2

)
‖u3,−‖22

≤ MJMT ‖u
3,−‖22 +

1

2

(
‖∇ĝ‖24‖∇u4‖24 + Mg‖∆u4‖2 + ‖∇ĥ‖24‖∇u2‖24 + Mh‖∆u2‖2

)
‖u3,−‖22

≤ MJMT ‖u
3,−‖22 +

1

2

(
‖ĝ‖2H1

2p
(D)‖u

4‖2H2
p(D) + Mg‖u4‖H2

p(D)

+ ‖ĥ‖2H1
2p

(D)‖u
2‖2H2

p(D) + Mh‖u2‖H2
p(D)

)
‖u3,−‖22

≤ kĝĥ(t)‖u3,−‖22,

⇒ ‖u3,−‖22 ≤ ‖u3,−
0 ‖22 e

∫ t
0 kg,u4 (s)ds

, (63)

where

kĝĥ := MJMT +
1

2

(
‖ĝ‖2H1

2p
(D)‖u

4‖2H2
p(D) + Mg‖u4‖H2

p(D) + ‖ĥ‖2H1
2p

(D)‖u
2‖2H2

p(D) + Mh‖u2‖H2
p(D)

)
<∞.

Thus u3,−(t) is equal to zero for all t > 0 if u3,−
0 = 0 . This implies that if u3

0 is non-negative
then u3 stays that way for all t > 0. �

Lemma 4.10. u4 is non-negative and bounded by the constant function 1.

Proof. Consider the following equation:

∂tu
4(t) = u4(1− u4)(Λ1 + Λ2) +∇ · (a∇u4)− b∇u3 · ∇u4. (64)
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We apply an argument similar to that used in the previous lemma. Multiplying (64) with
u4,− and integrating over D we get

d

dt
‖u4,−‖22 ≤ (MΛ2

+ MΛ1
)(1 + ‖u4‖H2

p(D))‖u
4,−‖22 − ‖

√
a∇u4,−‖22 − (b∇u3 · ∇u4, u4,−)

= (MΛ2
+ MΛ1

)(1 + ‖u4‖H2
p(D))‖u

4,−‖22 − ‖
√
a∇u4,−‖22 − (b∇u3,

1

2
∇(u4,−)2)

= (MΛ2
+ MΛ1

)(1 + ‖u4‖H2
p(D))‖u

4,−‖22 − ‖
√
a∇u4,−‖22 +

1

2
(∇ · b∇u3, (u4,−)2)

≤ (MΛ2
+ MΛ1

)(1 + ‖u4‖H2
p(D))‖u

4,−‖22 +
1

2
(‖∇b · ∇u3‖2 + ‖b∆u3‖2)‖u4,−‖22

≤ (MΛ2
+ MΛ1

)(1 + ‖u4‖H2
p(D))‖u

4,−‖22 +
1

2
(‖∇b‖24‖∇u3‖24 + Mb‖∆u3‖2)‖u4,−‖22

≤ (MΛ2
+ MΛ1

)(1 + ‖u4‖H2
p(D))‖u

4,−‖22 +
1

2
(‖b‖2H1

2p
(D)‖u

3‖2H2
p(D) + Mb‖u3‖H2

p(D))‖u
4,−‖22

≤ kbΛ12
(t)‖u4,−‖22

⇒ ‖u4‖22 ≤ ‖u4,−
0 ‖22 e

∫ t
0 kbΛ12

(s)ds
.

kbΛ12
(t) := (MΛ2

+ MΛ1
)(1 + ‖u4‖H2

p(D)) +
1

2
(‖b‖2H1

2p
(D)‖u

3‖2H2
p(D) + Mb‖u3‖H2

p(D)).

Thus u4(t) ≥ 0, for all t > 0 if u4
0 ≥ 0.

Now let w := 1− u4 and w0 = 1− u4
0; then w satisfies the following equation

d

dt
w(t) = w(1− w)(−Λ2 − Λ1) +∇ · (a∇w)− b∇u3 · ∇w.

Multiplying this equation with w− we get

d

dt
‖w−‖22 ≤ (MΛ2

+ MΛ1
)(1 + ‖w‖H2

p(D))‖w
−‖22 − ‖a∇w−‖22 − (b∇u3 · ∇w,w−)

≤ kbΛ12
(t)‖w−‖22

⇒ ‖w‖22 ≤ ‖w−0 ‖
2
2 e

∫ t
0 kbΛ12

(s)ds
.

Thus w ≥ 0 for all t > 0 if w0 ≥ 0. This implies that u4 ≤ 1 for all t > 0 if u4
0 ≤ 1. �

Lemma 4.11. The solution u1 in non-negative and u2 is in the interval [0, 1].

Proof. In virtue of the assumptions in Subsection 3.1 and due to the continuity of the
state-dependent noise, we get that u1 = 0 is a steady state and it is unstable, since
R1(Hi, ·, ·) > 0 in the neighborhood of 0.

Similarly, observe that R4(·, ·, 0) = 0, hence u2 = 0 is a steady state. Moreover, R4(·, ·, 1) < 0
implies that R4(·, ·, 1) < 0 in the neighborhood of N = 1, as He(t, x) and C(t, x) are
continuous. Thus, u2 ≤ 1 if u2

0 ≤ 1 and the non-negativity of u2 follows from u2 = 0 being a
steady state. �

5 Numerical simulations

In this section we perform numerical simulations for the proposed model (2) in order to
assess the influence of acidity on the tumor behavior. The simulations are done both in
one-dimensional (1D) and two-dimensional (2D) spatial domains: The former allow to better
visualize the dynamics of the propagating wave fronts, while the latter are better suited to
visualize the infiltrative growth patterns. In both cases we use the Ornstein-Uhlenbeck
process ξt := (Ot)t≥0, with

Ot = e−νtO0 + µ(1− e−νt) + σ

∫ t

0

e−ν(t−s)dWs

as the noise process ξt, with the parameters given in Table 1. We use a RODE-Taylor
scheme [21] for discretizing the intracellular proton dynamics equation (2a) and an
implicit-explicit finite difference scheme for the rest of the equations. The parameters chosen
for 1D and 2D simulations are given in Table 1, as well. The chosen initial conditions are as
shown in Figure 9. For this and all subsequent pictures we will use the following legends:
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� 1D simulations:
Solid curve (——): cancer cell density C; dashed curve (−−−): extracellular proton
concentration He; barred curve (|||): normal cell density N , and solid line with
asterisks (–?–?–): intracellular proton concentration Hi.

� 2D simulations: The solid curves (—) indicate the level sets of cancer cell density C,
while filled regions indicate level sets of normal cell density N . The values
corresponding to these level sets are indicated by the colorbars adjacent on the right
side to the 2D plots. In order to see the effects of spatial heterogeneity, we have added
some random perturbation to the initial value of the normal cell density only on the
left side of the xy-plane. Thus, these perturbations are seen as patches on the left half
of the plot (see Figure 9b).

Figure 9: Initial conditions in the 1D and 2D case

(a) Initial condition in the 1D case (b) Initial condition in the 2D case

Before we begin discussing the simulation results, for the sake of completeness we would like
to give our exact choice of the repulsion, diffusion, advection, and other involved coefficients.
All the variables Hi, He, C,N appearing in the below definitions are in non-dimensionalized
form.

1. The repulsion coefficients g(C,He, Hi) and h(C,He) are defined as

g(C,He, Hi) :=
10(1 + 24Hi)e−H

2
i CHe

1 +H2
e + C2

, (65)

h(N,He) :=
10NHe

.1 +N2 +H2
e

. (66)

2. The diffusion coefficient a(Hi, He, C,N) is defined as follows:

a(C,N,He, Hi) := max

((
10(He −Hi)(He + 1.5)(Hi + .5)

1 + (Hi + .5)4 + (He + 1.5)4 + (He −Hi)4

)

×
(

C

.001 + C +N

)
− 0.3, 0.0

)
+ 0.001 (67)

3. The go, grow and recede functions b(Hi, He), Λ1(He, Hi) and Λ2(He, Hi) are,
respectively, defined as

b(Hi, He) := max

(([
G2(Hi, He)− 0.04

]
−
[
G1(Hi, He)− 0.2

])
− 0.22 , 0

)
(68)

Λ1(Hi, He) := max

(
−
([
G2(Hi, He)− 0.04

]
− 10

[
G1(Hi, He)− 0.2

])
− 0.65 , 0

)
(69)

Λ2(Hi, He) := min

(([
G1(Hi, He)− 0.2

]
+ 3
[
G2(Hi, He)− 0.04

])
+ 0.14 , 0

)
. (70)
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where the auxiliary functions G1 and G2 are given by

G1 := (He + .4)2 e−3((Hi−1.6)2+(He+.4)2−2)2 , G2 :=
4(Hi + 0.15)(He − 0.5)

0.01 + (0.15 +Hi)4 + (1.5−He)4
.

4. The flux modulation function J(C) is defined as

J(C) :=
(C)(1.1− C)

(.599485 + (2C)2 + (C)4)
.

These coefficients satisfy the assumptions made in Section 3.1. We now begin our discussion
of the simulation results.

5.1 1D simulations

Figures 10 -12 depict a temporal sequence of different sample paths of the solution. Several
features can be inferred from these plots:

1. In all sample solutions the dynamics of Hi is dominant at the falling edge of C, i.e.
near the tumor-stroma interface, exceeding the values it takes in the tumor bulk.
Phenomenologically, this captures the high metabolic rates of the cells on the tumor
edge to realize cytoskeleton remodeling and taxis, which results in acidic byproducts.

2. In all sample solutions the concentration of He exceeds that of Hi on the support on
cancer cell density. This is in accordance to the reverse pH gradient observed in the
tumor microenvironment. However, due to fluctuations in Hi (induced by the noise), it
may happen that near the tumor-stroma interface, the concentration of Hi exceeds that
of He for a brief period of time.

3. In all sample solutions the concentration of He is high at the interface between cancer
and normal cells, which captures phenomenologically the accumulation of acid due to
high metabolic rates. This accumulation influences in turn the dynamics at the
population level in the following way:

(a) Depending on the Hi and He concentrations, the cancer dynamics may be in either
one of the go, grow, or recede modes: If the Hi, He values are in the support of b,
then the cancer cells are in the go-mode, so the cells move in the direction of
higher He. If the Hi, He values are in the support of Λ1, then the cancer cells are
in the grow-mode, hence the cells proliferate. Lastly, if the Hi, He values are in
the support of Λ2, the cancer cells are in the recede-mode, meaning a decay of
tumor cell density.

(b) Depending on γN , γΛ3
and γΛ4

, the depletion of normal cells varies based on the
concentration of He and on the density of C. Thus according to the interplay
between the go-grow-recede functions and the decay and remodelling rates of
normal cells, we can expect appearance (opening) and disappearance (closing) of
gaps between cancer and stromal cells.

The interplay between the parameters indicated in Table 2 results in the following trends for
the gaps:

1. Figure 10 represents the time snapshots of the 90th sample solution. There, a gap is
beginning to form at time t = 130. It is not totally closed (i.e. no overlapping of cancer
and normal cells happens), but forms a ∨-shaped profile with both cell densities being
almost zero at the same spatial point. By the time point t = 220 the gap has been
widened by the accumulated acid. When t = 280 (not shown) the gap has already
begun to shrink and is finally closed at time t = 455. However, because of the overlap
of cancer cell and normal cell, and the accumulated acid at the overlapping interface,
the gap reappears at time t = 500. This alternating sequence of gap/no-gap happens
for most of the sample paths and depicts the crawling/hopping/tumbling (shortly
CHT) phenomenon of the tumor edge.

2. In Figure 11 representing the time snapshots of the 63rd sample solution we see that at
time t = 430 a secondary gap appears beyond the cancer-stroma interface resulting in a
kind of isolated patch of normal cells. Such patches are even more prominent in the
sample solution number 64 (Figure 12a), where we can observe two such islands at time
t = 475. However, the one closest to the tumor edge gets wiped out due to the
accumulated acid at round time t = 500. Such islands are a consequence of the
competing growth and decay (Λ4 and Λ3) terms in normal cell dynamics. This
dynamics is among the possible causes for infiltrative patterns.
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Figure 10: Time snapshots of the sample solution 90, in the case of a 1D domain.

Figure 11: Time snapshots of the sample solution 63, in the case of a 1D domain.
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Figure 12: Time snapshots of the sample solutions 64 and 58, in the case of a 1D domain.

(a) Sample solution number 64

(b) Sample solution number 58

3. In contrast to above sample solutions where the cancer edge is progressing due to go
and grow mechanisms, Figure 12b shows that the progression is halted due to the
failure of the Hi and He to be in the support of the go or grow functions. Instead, they
fall in the support of the recede function, thereby undergo decay and become unable to
progress. As a result, the gap widens and remains unclosed till the end of the
simulation.

4. Finally, averaging over the samples and looking at the numerical mean solution (Figure
13), we observe that the gap doesn’t seem to appear, except at the beginning, for a
minute time span. This is intuitively plausible, since the gaps (if they occur) are
formed at different spatial points and at different times and are of different widths.
Thus, on average no gaps seem to appear. However, the probability of gap formation
can be increased by enhancing the normal cell decay rates and decreasing the normal
cell remodeling rates, which results in wider and more frequently occurring gaps.
Thereby, the gap can be observed even in the average behavior (Figure 13b).

5.2 2D simulations

Figures 14 -17 depict time sequences of 5 different sample paths of the solution. The figures
contain contour lines of cancer cell density overlapped with colored contour regions of normal
cell density. To test the influence of spatial heterogeneity we perturb the initial condition of
the normal cell density in such a way that it is smooth on the right three-quarters of the
spatial plane and it is rough and uneven on the left quarter of the spatial plane. The initial
condition is the same for all the sample solutions and is shown in Figure 9b. In each of the
figures the first and third rows depict the level sets of cell densities. The solid curves (—)
indicate the level sets of cancer cell density C, while filled regions indicate level sets of

normal cell density N . The white regions appearing in the center are the gaps
(

regions of

nearly zero cell density (< 10−7)
)

. The second and fourth rows show the level sets of

extracellular proton concentration He. Concretely, the figures illustrate the following:

1. Figure 14 represents time snapshots of the 5th sample solution. At time t = 6 we see
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Figure 13: Time snapshots of the expected values of sample solutions.

(a) Numerical expectation of sample solutions

(b) Numerical expectation of sample solutions for γΛ3
= 1.1144

rosette-like extensions of the tumor boundary (dark purple), while the inner core
(pinkish-purple) is still circular and a small protrusion of the layers adjacent to the
boundary towards the uneven side (left side of the xy-plane) of the stromal region
becomes visible. At time t = 49.5, a gap is formed on the uneven side of the stroma,
with the tumor boundary having a prominent bud-like protrusion into the uneven side
of the stroma. By the time t = 79.5, the gap has widened and several cavities (pure
white region surrounded by greenish-blue or blue region) and islands (greyish-white
surrounded by brownish-grey region) are formed on the left side of the xy-plane.
However, the right side of the xy-plane where the stroma is densely packed without
irregularities, is still preserving the initial tissue structure. This is analogous to the
observation made in the 1D case for sample number 64. Moreover, the tumor boundary
has extended into the gap exhibiting small bud-like formations. By the time t = 150,
the gap has extended with more islands and cavities appearing on the left side, with
the tumor boundary bulging into the gap. The extension towards the smoother side of
the stroma is similar to a CHT-like motion in the case of a 1D domain.

2. Figure 15 represents time snapshots of the 25th sample solution. At time t = 22.5 there
are two spiked protrusions towards the left side, and they develop into a bulge at time
t = 90. Also at the same time there are islands and cavities formed on the left side. At
time t = 120, the gap has widened with the bulge being transformed into pointed
protrusions. Also, there are bulges towards the top and bottom of the stroma. Finally,
by the time t = 150 (figure not shown) the gap has widened even more, with the cancer
boundary exhibiting a bulge towards the gap. For other sample paths (not shown here)
a similar behavior can be observed, however with a relatively slow deterioration of the
farther stroma region, leading to the lack of islands, but still exhibiting cavities.

3. More interestingly, in sample solution 100 (Figure 16) we see a turtle-shaped boundary
being formed at time t = 75, which then transforms to let the left-most part of the
tumor (the ’head of the turtle’) ramify at time t = 115.5 and deforming into a
protruding structure.

4. In contrast to the above sample solutions, in Figure 17 we see like in the 1D case that,
due to rapid deterioration on the stroma, the progression of cancer is more or less
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diffusion-like with the boundary moving in a rather homogeneous fashion, without
prominent protrusions.

5. Averaging over the samples and looking at the numerical mean solution (Figure 19), we
observe as in the 1D case that the gap doesn’t seem to appear, except at the beginning,
for a minute time span. However, for an increased normal cell decay rate we see a gap
even in the average behavior (Figure 20).

6. The above patterns mainly represent the INFa class of infiltrative growth pattern 4. To
create INFb and INFc patterns, consider the case where γb and γΛ4

is relatively larger
while γΛ3

is relatively smaller. Then the forming spikes/protrusions/buds overlap with
the stromal region representing an infiltrative growth pattern of types INFb or INFc.
This is clearly visible in Figure 18. We hypothesize that even more interesting patterns
may be obtained by varying the parameters γN , γΛ4,1

, γΛ3
and γa.

6 Discussion

Acidity plays a pivotal role in the local invasiveness of a tumor. On the one hand it causes
degradation of surrounding tissue and on the other hand it promotes tumor cell motility and
proliferation. The invasiveness can be assessed by its infiltrative growth patterns, whose first
stage is more or less characterized by the formation of gaps between the outer proliferating
tumor edge and the retreating stroma. Several mathematical models have been proposed to
access the local invasiveness of the cancer occurring mainly due to the acid dynamics, the
first being perhaps that in [14], with a degenerate nonlinear setting. A slightly modified
model was proposed in [30] by introducing a pure-decay-term of cancer cell density. In the
former model, gap formation was predicted in aggressive tumors, while in the latter setting
the gap formation was found to appear for less aggressive tumors.
Based on these observations we proposed in Section 2 a stochastic model for the formation of
a gap by the acidic extracellular environment. In Section 3 we proved the well-posedness of
the model, which cleared the way for 1D and 2D simulations. For the chosen parameter
values, the 1D simulations highlight the following:

1. The acid dynamics is dominant mainly at the progressing front of the tumor, i.e. on the
falling edge of the tumor density. This is due to the choice of the modulation function
J(C) attaining its maximum when the cancer density is far below its carrying capacity.

2. A reversed pH-gradient is observed on the support of cancer cell density, with at
exception at the proliferating edge, which occurs in the case of large fluctuations in
intracellular proton concentration. This feature is solely dependent on the strength of
membrane transport flux and the intracellular acid-sequestration rate.

3. The repulsion terms in the extracellular proton dynamics result in the accumulation of
acid at the rarely populated regions. The acid accumulated at the tumor-stroma
interface leads to ∨-shaped or t-shaped or ∪-shaped gaps. Moreover, in case of
non-uniform normal cell density (which is possible even if the initial value is smooth
due to the remodeling term), acid may additionally accumulate at the distant parts of
the stroma, thereby leading to the formation of cavities and islands. Here it is
important to remark that the formation of the gap, cavities, and islands is sensitive to
the migration and reaction parameters ΞM and ΞR, respectively, but also to the choice
of the go-or-grow-or-recede (GGR) function. Although we have chosen these functions
based on qualitative features, it would be practical to make coices that fit to
experimental data.

4. Typically, the cancer edge keeps progressing, which pushes the acid further into the
stromal region. This in turn results in their degradation, thereby forming the gap.
However, the accumulated acid also enhances motility and proliferation; thereby, the
tumor edge progresses towards the stromal region. The advancement of tumor and the
retraction of stroma leads to an alternating sequence of gap and no-gap, representing a
slow encroachment of the stromal region by the CHT type of movement.

For the chosen parameters, in the case of 2D simulations we have the following observations:

1. The heterogeneity of the stromal region has a very strong influence on the acid
accumulation patterns. Larger γD combined with larger γg, γh result in quick
accumulation of acid at some of the local valleys of the stromal region. Now depending

4see Section 1 for the notion of INF
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Table 1: Simulation parameters

Parameters for OU-process Ot

Mean µ 0
Variance σ 1

Mean reverting rate ν .1
Initial value O0 0

Numerical parameters
1D 2D

T (Total time) 500 150
M (# Monte Carlo simulations) 4000 100

τ (Temporal step size) .1 .3
hx1

(Spatial step size along x1) .1 .01
Nx1

(Grid resolution along x1) 30 25
hx2 (Spatial step size along x2) - .01
Nx2

(Grid resolution along x2) - 25

on the choice of γΛ3
and γΛ4

the valleys become deeper and deeper, finally resulting in
an island or a cavity. Thus, shallow valleys (if existing at time t = 0) are the probable
sites for cavity formation and their surrounding area is a probable region for an island
formation.

2. Heterogeneity of the stromal region also affects (indirectly) the deformations and
protrusions of the tumor boundary. As mentioned above, the local valleys of the
stromal regions are the probable sites of acid accumulation. This means that less acid
is left at the tumor-stroma interface. Now depending of the choice of GGR functions,
the cells at the tumor boundary may under undergo migration or proliferation or
recession. Thus, quick deterioration of the normal cells near the stromal interface
followed by diffusion and accumulation of acid at distant stromal region may result in a
stagnant tumor or even in overall decay. This was indeed the case for sample solutions
49 (Figure 17) and 58 (Figure 12b) in the 2D and 1D case, respectively. This case,
although of practical/clinical importance, is not visually appealing. Hence, in the case
where the accumulated acid at the tumor interface is activating the go-or-grow
function, we see protrusions and bud formation on the tumor edge. Moreover, we saw
(in Figures ??-??) that such spikes and buds were mainly in the direction of the
forming gap, suggesting that cancer cells are directing their movement towards the
space created by the acid. Finally, for a suitable choice of parameters γb and γΛ4

, the
model could also reproduce protrusions overlapping with the stromal region, thus it
represents to a fair extent the INFb and INFc classes of patterns.

In summary, for just a few choices of ΞM and ΞR, the model phenomenologically captured
various aspects of the tumor advancement like gap formation, buds and spikes formation,
island and cavity formation in the stromal region, and up to some extent even INFb and
INFc infiltrative growth patterns were observed. Such vast coverage of invasive features was
possible, on the one hand, due to the highly nonlinear coupling via GGR functions and the
flux modulation function J and on the other hand the noisy perturbations could bring about
different variations in the patterns. Moreover, the model also highlighted that spatial
perturbations/unevenness/heterogeneity in structural density of the stroma have a strong
influence on the invasion patterns. Hence, it is expected that the range of possible INF
patters would be enlarged if one were to incorporate spatial noise both in proton and normal
cell dynamics.
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Figure 14: Time snapshots of the sample solution number 5, in the case of a 2D domain.
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Figure 15: Time snapshots of the sample solution number 25, in the case of a 2D domain.
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Figure 16: Time snapshots of the sample solution number 100, in the case of a 2D domain.
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Figure 17: Time snapshots of the sample solution number 49, in the case of a 2D domain.
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Figure 18: Simulation plots for γ
Λ3

= .3144, γb = .8512 and γ
Λ4

= 32.

(a) Sample solution number 2

(b) Sample solution number 3
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Figure 19: Time snapshots of the expected value of sample solutions.
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Figure 20: Time snapshots of the expected values of sample solutions for γΛ3
= 2.4144. Unlike in

Figure 19, here the gap is visible (e.g. at time T=112.5) even in expectation.
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Table 2: Model parameters

Growth and decay parameters ΞR

Phenomenological relevance 1D 2D
γ
N

decay of normal cells due to non-acid related byproducts 5 5
γ

Λ1
decay of cancer cells due to non-physiological intracellular acid levels .004 .004

γ
Λ2

growth of cancer cells due to favorable intracellular acid levels .00001 .00001

γΛ3
growth of normal cells due to acid induced immune response .6144 .8144

γΛ4
decay of normal cells due to extracellular acid levels 8 8

γΛ4,1
decay of normal cells due to extracellular alkalinity 0 500

γ
ξ

intensity of noise for the intracellular proton dynamics 3 3
KC carrying capacity of cancer cells - -
KN carrying capacity of normal cells - -

Migration parameters ΞM

Phenomenological relevance 1D 2D
γ
D

apparent diffusion coefficient of protons .0035 .0001
γg coefficient for repulsion of protons away from cancer cells .0021 .0001
γh coefficient for repulsion of protons away from normal cells .0021 .0001
γa diffusion coefficient for cancer cells .00006 .0000099
γb speed of advection for cancer cells .0046 .0542

7 Appendix

7.1 Non-dimensionalization:

Let τ := 10−7 (measured in min) be a time normalizing constant and Kw := 10−7 (measured
in M

vol
) be the molar concentration of protons in water per unit vol. Let the dependent

variables Hi and He (both measured in M
vol

) be represented in a non-dimensional form as

Hi := Hi
Kw

, He := He
Kw

. Similarly, the time variable t (measured in min) and spatial variable

x (measured in dist5) are non-dimensionalized as t = t
τ
, x = x√

Dτ
, where D (measured in

dist2

min
) is a normalizing constant for the diffusion coefficient of extracellular protons.

Let KC and KN be the carrying capacities of cancer cell density C and normal cell density
N , respectively. Then the non-dimensional formulation can be deduced using the following
rescaling relations:

T 1 := τ
Kw

T1, T 2 := τ
Kw

T2, T 3 := τ
Kw

T3,

q1 := τ
Kw

q1, q2 := τq2, Q := τ
Kw

Q,

∆ := Dτ∆, τ
Kw

:= 1, t := t
τ
,

γg := KC
KwD

γg, γh := KN
KwD

γh, γ
Λ1

:= τγΛ1
,

γ
Λ2

:= τγΛ2
, γa := γa

D
, γb := γb

D
,

γ
Λ3

:= τγΛ3
, γ

Λ4
:= τγΛ4

, γ
Λ4,1

:= γΛ4,1
,

C := C
KC

, N := N
KN

.


(71)

7.2 Concentration inequality

Theorem 7.1. Let Yt ∼ N (0, σ2
t ), t ∈ [0, T ], T <∞, be a real-valued Gaussian process. Let

ρT be the median of sup
t∈[0,T ]

Yt and kσT := sup
t∈[0,T ]

σt <∞. Then for all t > 0, we have

P
(
| sup
t∈[0,T ]

Yt − ρT | ≥ kσT t
)
≤ 2√

2π

∫ ∞
t

e− x
2

2 dx,

P
(
| sup
t∈[0,T ]

|Yt| − ρT | ≥ kσT t
)
≤ 3√

2π

∫ ∞
t

e− x
2

2 dx. (72)

Moreover, the median ρT is unique.

5dist refers to some unit of distance suitable for the macroscopic scale of tissues
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Proof. Theorem 5.4.3 and Remark 5.4.4 from [28, pp. 219, 224]. �

Corollary 2. Let Yt, ρT , kσT be as in Theorem 7.1. Then for T <∞, the following
inequality holds:

E[
∣∣ sup
t∈[0,T ]

|Yt| − ρT
∣∣i] ≤ 3

2
√
π
kiσT 2

i
2 Γ
( i+ 1

2

)
, for all i ∈ N, (73)

where Γ denotes the usual gamma function defined by way of the Euler integral of the second
kind

Proof. Let the random variable ZT be defined as

ZT :=

sup
t∈[0,T ]

|Yt| − ρT

kσT
,

then, using the estimate (72), we get

E[
∣∣ZT ∣∣i] =

∫ ∞
0

P
(
|ZT |i ≥ t

)
dt ≤

∫ ∞
0

P
(
|ZT | ≥ t

1
i

)
dt =

∫ ∞
0

P
(
|ZT | ≥ s

)
dsi, (s := t1/i)

≤ 3√
2π

∫ ∞
0

∫ ∞
s

e− r
2

2 drdsi =
3√
2π

∫ ∞
0

sie− s
2

2 ds =
3√
2π

∫ ∞
0

2
i−1

2 t
i+1
2
−1e−tdt

=
3

2
√
π

2
i
2 Γ
( i+ 1

2

)
.

Multiplying both sides by kiσT we arrive at the claim. �

Lemma 7.2.

2
k
2 Γ
(
k+1

2

)
k!

≤


√
π 2
− k

2

( k
2

)!
if k ∈ N is even,

√
2 2
− k−1

2

( k−1
2

)!
if k ∈ N is odd.

(74)

2
k+2

2 Γ
(
k+3

2

)
k!

≤


√

2π

( k
2

)!
if k ∈ N is even,

2
√

2

( k−1
2

)!
if k ∈ N is odd.

(75)

2
k+4

2 Γ
(
k+5

2

)
k!

≤


4·2

k
2
√
π

( k
2

)!
if k ∈ N is even,

4·2
k−1

2 2
√

2

( k−1
2

)!
if k ∈ N is odd.

(76)

2
k+6

2 Γ
(
k+7

2

)
k!

≤


16·2k

√
2π

( k
2

)!
if k ∈ N is even,

32·2
2(k−1)

2 2
√

2

( k−1
2

)!
if k ∈ N is odd.

(77)

Proof. 1. k = 0: For k = 0 we have that Γ( 1
2
) =
√
π, thus the claim is valid.

2. k = 1: For k = 1 we have that
√

2Γ(1) =
√

2, so the claim is valid, too.

3. k > 1 and k even:

2
k
2 Γ( k+1

2
)

k!
=

2
k
2

k
2

terms︷ ︸︸ ︷
(
k + 1

2
− 1)(

k + 1

2
− 2)(

k + 1

2
− 3) . . . (

k + 1

2
− k

2
) Γ( 1

2
)

k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5) . . . 6 5 4 3 2 1

=
2
k
2 ( k−1

2
)( k−3

2
)( k−5

2
) . . . ( 1

2
)Γ( 1

2
)

k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5) . . . 6 5 4 3 2 1

=
Γ( 1

2
)

k(k − 2)(k − 4)(k − 6) . . . 6 4 2 1

=

√
π

2
k
2 ( k

2
)( k

2
− 1)( k

2
− 2)( k

2
− 3) . . . 4 3 2 1

=
2−

k
2
√
π

( k
2
)( k

2
− 1)( k

2
− 2)( k

2
− 3) . . . 4 3 2 1

=
2−

k
2
√
π

( k
2
)!

.
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4. k > 1 and k odd: Let k := 2n+ 1,

2
k
2 Γ( k+1

2
)

k!
=

2
k
2

n terms︷ ︸︸ ︷
(
k + 1

2
− 1)(

k + 1

2
− 2)(

k + 1

2
− 3) . . . (

k + 1

2
− k − 1

2
))

k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5) . . . 6 5 4 3 2 1

=
2
k
2 ( k−1

2
)( k−3

2
)( k−5

2
) . . . ( 4

2
)( 2

2
)

k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5) . . . 6 5 4 3 2 1

=

√
2

k(k − 2)(k − 4) . . . 7 5 3 1

=

√
2

(2n+ 1)(2n− 1)(2n− 3)(2n− 5) . . . 7 5 3 1

=

√
2

2
k−1

2 (n+ 1
2
)(n− 1

2
)(n− 3

2
) . . . ( 7

2
)( 5

2
)( 3

2
)1

<
2
−(k−1)

2
√

2

(n)(n− 1)(n− 2) . . . 3 2 1
=

2
−(k−1)

2
√

2

( k−1
2

)!
.

This establishes the estimate (74). The estimate (75) is obtained by observing that k ≤ 2
k
2

for k ≥ 4 and

2
k+2

2 Γ
(k + 3

2

)
= (k + 1)2

k
2 Γ
(k + 1

2

)
.

Similarly,

2
k+4

2 Γ
(k + 5

2

)
= (k + 3)(k + 1)2

k
2 Γ
(k + 1

2

)
.

2
k+6

2 Γ
(k + 7

2

)
= (k + 5)(k + 3)(k + 1)2

k
2 Γ
(k + 1

2

)
.

�

Lemma 7.3. Let X be a Banach space. Let ξt ∼ N (µt, σ
2
t ) be a Gaussian process with

σt > ε > 0 for all t ≥ 0. Then for t, s ≥ 0, s 6= t and T <∞ fixed

E
[(

sup
t,s∈[0,T ]

s<t

‖e
∫ t
s A1(r)dr‖X

)2]
≤ kξTe2k2

ξT <∞, (78)

E
[(

sup
t,s∈[0,T ]

s<t

‖e
∫ t
s A1(r)dr − 1‖X
|t− s|

)2]
≤ kξ2,Te

4k2

ξ2,T <∞, (79)

with appropriately chosen constants k2
ξT and kξ2,T .

Proof. For ξt ∼ µt + Yt with Yt ∼ N (0, σ2
t ) and with ZT := sup

t∈[0,T ]

|Yt| we use (73) to obtain

that

E[( sup
t∈[0,T ]

|ξt|)i] ≤ k
i
µT + E[ZiT ] ≤ kiµT + ρiT +

3

2
√
π
kiσT 2i/2Γ

( i+ 1

2

)
.

Next observe that

‖e
∫ t
s A1(r)dr‖X ≤ e

∫ t
s ‖A1(r)‖dr ≤ e

∫ t
s ‖J(C)ξr‖dr ≤ eM

J

∫ t
s |ξr|dr, (80)

where MJ := MJ (kC ) is the constant in Subsection 3.1 introduced as an upper bound of
J(C).

‖e
∫ t
s A1(r)dr‖X ≤ eM

J

∫ t
s |ξr|dr =

∞∑
i=0

1

i!

(
MJ

∫ t

s

|ξr|dr
)i
≤
∞∑
i=0

1

i!
Mi
J
T i sup

r∈[0,T ]

|ξr|i.
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Hence,

E
[(

sup
t,s∈[0,T ]

‖e
∫ t
s A1(r)dr‖X

)2]
≤
∞∑
i=0

2i Mi
J
T i

i!
E( sup
r∈[0,T ]

|ξr|i)

≤
∞∑
i=0

2i Mi
J
T i

i!

(
kiµT + ρiT + 3kiσT 2

i
2 Γ
( i+ 1

2

))
≤
∞∑
i=0

2i
1

i!
Mi
J
T ik̂

i

ξT 2
i
2 Γ
( i+ 1

2

)
, (81)

where we used the recurrence Γ(s+ 1) = sΓ(s) (for s positive) and the notations

kσT := sup
r∈[0,T ]

σ(r), k̂
i

ξT := Mi
J
T i(kiµT + ρiT + 3kiσT ),

kµT := sup
t∈[0,T ]

µt, kρT := Median
(

sup
t∈[0,T ]

Yt
)
.

Using estimate (74) in (81) we get that

∞∑
i=0

2i
1

i!
2
i
2 k̂

i

ξT Γ
( i+ 1

2

)
=

∞∑
i=0
i even

k̂
i

ξT

2i 2
i
2 Γ( i+1

2
)

i!
+ k̂

i+1

ξT

2i+1 2
i+1
2 Γ( i+2

2
)

(i+ 1)!

≤
∞∑
i=0
i even

k̂
i

ξT

2i
√
π

2
i
2 ( i

2
)!

+ k̂
i+1

ξT

2i+1
√

2

2
i
2 ( i

2
)!

≤
√
π(1 + 2k̂ξT )

∞∑
i=0
i even

k̂
i

ξT 2
i
2

( i
2
)!

=
√
π(1 + 2k̂ξT )

∞∑
i=0

k̂
2i

ξT 2i

i!
= kξTe2k2

ξT .

Altogether, we have that

E
[(

sup
t,s∈[0,T ]

‖e
∫ t
s A1(r)dr‖X

)2]
≤ kξTe2k2

ξT ,

(
E
[(

sup
t,s∈[0,T ]

‖e
∫ t
s A1(r)dr‖X

)2]) 1
2

≤
√
kξTek

2

ξT .

The second estimate follows similarly:

‖e
∫ t
s A1(r)dr − 1‖X =

∞∑
i=0

1

(i+ 1)!

(
MJ

∫ t

s

|ξr|dr
)i+1

≤
∞∑
i=0

1

(i+ 1)!

(
MJ

∫ t

s

sup
r∈[0,T ]

|ξr|dr
)i+1

≤ MJ |t− s|
∞∑
i=0

1

i!
Mi
J
T i sup

r∈[0,T ]

|ξr|i+1,

⇒ sup
t,s∈[0,T ]

‖e
∫ t
s A1(r)dr − 1‖X
|t− s| ≤ MJ

∞∑
i=0

1

i!
Mi
J
T i sup

r∈[0,T ]

|ξr|i+1.

Therefore, (
sup

t,s∈[0,T ]

‖e
∫ t
s A1(r)dr − 1‖X
|t− s|

)2

≤ k2
Cp1

∞∑
i=0

2i
1

i!
Mi
J
T i sup

r∈[0,T ]

|ξr|i+2.

Hence,

E
[(

sup
t,s∈[0,T ]

‖e
∫ t
s A1(r)dr − 1‖X
|t− s|

)2]
≤
∞∑
i=0

2i ki+2
Cp1

T i

i!
E
(

sup
r∈[0,T ]

|ξr|
)i+2

≤
∞∑
i=0

2i ki+2
Cp1

T i

i!

(
ki+2
µT + ρi+2

T + 3ki+2
σT 2

i+2
2 Γ

( i+ 3

2

))

≤
∞∑
i=0

2i ki+2
Cp1

T i

i!

(
ki+2
µT + ρi+2

T + 3ki+2
σT

)
2
i+2
2 Γ

( i+ 3

2

)

≤
∞∑
i=0

2ik̂
i+2

ξ2,T

2
i+2
2 Γ

(
i+3
2

)
i!

, (82)
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where k̂
i+2

ξ2,T := (1 + MJ )i+2(1 + T )i+2(ki+2
µT + ρi+2

T + 3ki+2
σT ) and kCp1 := MJ + 1. Using

estimate (75) in (82) analogously as above we get that

∞∑
i=0

2ik̂
i+2

ξ2,T

2
i+2
2 Γ

(
i+3
2

)
i!

= k̂
2

ξ2,T 2
√

2(1 + 2k̂ξ2,T )

∞∑
i=0

k̂
2i

ξT 22i

i!
= kξ2,Te

4k2

ξ2,T .

Altogether we have that

E
[(

sup
t,s∈[0,T ]

‖e
∫ t
s A1(r)dr − 1‖X
|t− s|

)2]
≤ kξ2,Te

4k2

ξ2,T .

�

Remark 2. Under the conditions of Lemma 7.3, we also obtain

E(
∥∥∥|ξt| e∫ t

s A1(r)
∥∥∥2

BX

) ≤ kξTe4k2

ξT <∞, (83)

E(
∥∥∥|ξt|[e∫ t

s A1(r) − 1]
∥∥∥2

BX

) ≤ |t− s|2kξ2,Te
8k2

ξ2,T <∞, (84)

with constants kξT and kξ2,T possibly differing from the respective ones in Lemma 7.3.

Lemma 7.4. Let Y be a Banach space and (ξt)t≥0 be an (At)t≥0-adapted Gaussian process
with independent increments, i.e. for t > s ≥ r ≥ 0, σ(ξt − ξs) is independent of Ar. Then
for an (At)t≥0-adapted process (ut)t≥0 given by

u1
t = e

∫ t
t1
Jsξsdsu1

t1 +

∫ t

t1

e
∫ t
s Jrξrdrr1

sds, for t ∈ [t1, T1], and

u1
t = e

∫ t
t0
Jsξsdsu1

t0 +

∫ t

t0

e
∫ t
s Jrξrdrr1

sds, for t ∈ [t0, t1],

we have that

E

[(
sup

t2∈[t1,T1]

e
∫ t2
t1
‖A1(s)‖

Y
ds‖u1

t1‖Y
)2
]
≤ ksufe

ksufk
2

ξ2,T1

(
E[‖u1

t0‖
2
Y

]+E[‖u1
t1‖

2
B
Y

]+E[‖r1‖2B
Y

]
)
,

and

E

[(
sup

t2∈[t1,T1]

∣∣∣e∫ t2
t1
‖A1(s)‖

Y
ds−1

∣∣∣‖u1
t1‖
)2
]
≤ |t1−t2|2ksufe

ksufk
2

ξ2,T1

(
E[‖u1

t0‖
2
Y

]+E[‖u1
t1‖

2
B
Y

]+E[‖r1‖2B
Y

]
)
.

Proof. Since φ(x) := |x|k is a convex function for k ≥ 1, by Jensen’s inequality we get

φ
(∫ t2

t1

ξsds
)
‖u1

t1‖
2
Y
≤
( 1

t2 − t1

∫ t2

t1

φ((t2 − t1)ξs)ds
)
‖u1

t1‖
2
Y

= (t2 − t1)k−1
(∫ t2

t1

|ξs|kds
)
‖u1

t1‖
2
Y

≤ 2k(t2 − t1)k−1
(∫ t2

t1

|ξs − ξt1 |
kds
)
‖u1

t1‖
2
Y

+ 2k(t2 − t1)k|ξt1 |
k‖u1

t1‖
2
Y

≤ Term1 + Term2 (85)

Term2 = 2k(t2 − t1)k|ξt1 |
k‖u1

t1‖
2
Y

≤ 2k(t2 − t1)k|ξt1 |
k
(
‖e2

∫ t1
t0
Jsξsds‖‖u1

t0‖
2
Y

+ (t1 − t0)

∫ t1

t0

‖e2
∫ t1
s Jrξrdr‖‖r1

s‖2Y ds
)

≤ 2k(t2 − t1)k|ξt1 |
k

(
∞∑
j=0

1

j!

(∫ t1

t0

2|ξs|MJds
)j
‖u1

t0‖
2
Y

+ (t1 − t0)

∫ t1

t0

∞∑
j=0

1

j!

(∫ t1

s

2|ξr|MJdr
)j
‖r1
s‖2Y ds

)

≤ 4k(t2 − t1)k
(
∞∑
j=0

1

j!
(t1 − t0)j−1

(∫ t1

t0

|ξt1 − ξs|
k|ξs|j2jMj

Jds+

∫ t1

t0

|ξs|k|ξs|j2jMj
Jds
)
‖u1

t0‖
2
Y

+ (t1 − t0)

∫ t1

t0

∞∑
j=0

1

j!
(t1 − s)j−1

(∫ t1

s

|ξt1 − ξr|
k|ξr|j2jMj

Jdr +

∫ t1

s

|ξr|k|ξr|j2jMj
Jdr
)
‖r1
s‖2Y ds

)
.
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Taking expectation it follows that

E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤ 2k(t2 − t1)k−1

∫ t2

t1

E[|ξs − ξt1 |
k]ds E‖u1

t1‖
2
Y

+ 2k(t2 − t1)kE[|ξt1 |
k‖u1

t1‖
2
Y

]

≤ 2k(t2 − t1)k−1

∫ t2

t1

E[|ξs − ξt1 |
k]ds E‖u1

t1‖
2
Y

+ 4k(t2 − t1)k
(
∞∑
j=0

1

j!
(t1 − t0)j−1

(∫ t1

t0

E[|ξt1 − ξs|
k]E[|ξs|j ]2jMj

Jds

+

∫ t1

t0

E[|ξs|k+j2jMj
Jds
)
‖u1

t0‖
2
Y

+ (t1 − t0)

∫ t1

t0

∞∑
j=0

1

j!
(t1 − s)j−1

(∫ t1

s

E[|ξt1 − ξr|
k]E[|ξr|j ]2jMj

Jdr

+

∫ t1

s

E[|ξr|k+j2jMj
Jdr
)
‖r1
s‖2Y ds

)
.

Next we note that

E[|ξs − ξt|k] ≤ E[(|ξs|+ |ξt|)k] ≤ E[2k sup
t∈[t1,t2]

|ξs|k] ≤ 2kkkξT Γ
(k + 1

2

)
(86)

Using this estimate we get that

E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤ 2k(t2 − t1)k−1

∫ t2

t1

2kkkξ
T1

Γ
(k + 1

2

)
dsE‖u1

t1‖
2
Y

+ 4k(t2 − t1)k
(
∞∑
j=0

1

j!
(t1 − t0)j−1

(∫ t1

t0

2kkkξ
T1

Γ
(k + 1

2

)
kjξ

T1
Γ
( j + 1

2

)
2jMj

Jds

+

∫ t1

t0

kjξ
T1
kkξ

T1
Γ
( j + k + 1

2

)
2jMj

Jds
)
E‖u1

t0‖
2
Y

+ (t1 − t0)

∫ t1

t0

∞∑
j=0

1

j!
(t1 − s)j−1

(∫ t1

s

2kkkξ
T1

Γ
(k + 1

2

)
kjξ

T1
Γ
( j + 1

2

)
2jMj

Jdr

+

∫ t1

s

kjξ
T1
kkξ

T1
Γ
( j + k + 1

2

)
2jMj

Jdr
)
E[‖r1

s‖2Y ]ds

)

E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤ 4k(t2 − t1)kkkξ

T1
Γ
(k + 1

2

)
E‖u1

t1‖
2
Y

+ 4k(t2 − t1)k
(
∞∑
j=0

1

j!
(t1 − t0)j

[
2kkkξ

T1
Γ
(k + 1

2

)
kjξ

T1
Γ
( j + 1

2

)
2jMj

J

+ kjξ
T1
kkξ

T1
Γ
( j + k + 1

2

)
2jMj

J

]
E[‖u1

t0‖
2
Y

]

+ (t1 − t0)

∫ t1

t0

∞∑
j=0

1

j!
(t1 − s)j

[
2kkkξ

T1
Γ
(k + 1

2

)
kjξ

T1
Γ
( j + 1

2

)
2jMj

J

+ kjξ
T1
kkξ

T1
Γ
( j + k + 1

2

)
2jMj

J

]
E[‖r1

s‖2Y ]ds

)
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E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤ 4k(t2 − t1)kkkξ

T1
Γ
(k + 1

2

)
E‖u1

t1‖
2
Y

+ 4k(t2 − t1)k
∞∑
j=0

1

j!
(t1 − t0)j

[
2kkkξ

T1
Γ
(k + 1

2

)
kjξ

T1
Γ
( j + 1

2

)
2jMj

J

]
E[‖u1

t0‖
2
Y

]

+ 4k(t2 − t1)k
∞∑
j=0

1

j!
(t1 − t0)j

[
kjξ

T1
kkξ

T1
Γ
( j + k + 1

2

)
2jMj

J

]
E[‖u1

t0‖
2
Y

]

+ 4k(t2 − t1)k
∞∑
j=0

1

j!
(t1 − s)j

[
2kkkξ

T1
Γ
(k + 1

2

)
kjξ

T1
Γ
( j + 1

2

)
2jMj

J

]
(t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds

+ 4k(t2 − t1)k
∞∑
j=0

1

j!
(t1 − s)j

[
kjξ

T1
kkξ

T1
Γ
( j + k + 1

2

)
2jMj

J

]
(t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds,

thus

∞∑
k=0

1

k!
E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤
∞∑
k=0

1

k!
4k(t2 − t1)kkkξ

T1
Γ
(k + 1

2

)
E‖u1

t1‖
2
Y

+
[ ∞∑
k=0

1

k!
8k(t2 − t1)kkkξ

T1
Γ
(k + 1

2

) ∞∑
j=0

1

j!
(t1 − t0)jkjξ

T1
Γ
( j + 1

2

)
2jMj

J

]
E[‖u1

t0‖
2
Y

]

+
[ ∞∑
k=0

1

k!
4k(t2 − t1)kkkξ

T1

∞∑
j=0

1

j!
(t1 − t0)jkjξ

T1
Γ
( j + k + 1

2

)
2jMj

J

]
E[‖u1

t0‖
2
Y

]

+
[ ∞∑
k=0

1

k!
8k(t2 − t1)kkkξ

T1
Γ
(k + 1

2

) ∞∑
j=0

1

j!
(t1 − t0)jkjξ

T1
Γ
( j + 1

2

)
2jMj

J

]
(t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds

+
[ ∞∑
k=0

1

k!
4k(t2 − t1)kkkξ

T1

∞∑
j=0

1

j!
(t1 − t0)jkjξ

T1
Γ
( j + k + 1

2

)
2jMj

J

]
(t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds

Now using the estimates (74), (75), (76) and (77) and following the lines of the proof of
Lemma 7.3, we get

∞∑
k=0

1

k!
E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤ e4k2

ξ
T1 E‖u1

t1‖
2
Y

+ e8k2

ξ
T1

+2Mjk
2

ξ
T1 E[‖u1

t0‖
2
Y

]

+ e8k2

ξ
T1

+2Mjk
2

ξ
T1 (t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds+

∞∑
k=0

ak

k!

∞∑
j=0

bj

j!

[
Γ
( j + k + 1

2

)]
E[‖u1

t0‖
2
Y

]

+

∞∑
k=0

ak

k!

∞∑
j=0

bj

j!

[
Γ
( j + k + 1

2

)
2jMj

J

]
(t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds,

where a := 4(t2 − t1)kξ
T1

and b := (t1 − t0)2MJkξ
T1

. By simplifying the last two terms we

finally obtain

∞∑
k=0

1

k!
E

[∣∣∣∣ ∫ t2

t1

ξsds

∣∣∣∣k‖u1
t1‖

2
Y

]
≤ e4k2

ξ
T1 E‖u1

t1‖
2
Y

+ e(8+2Mj)k
2

ξ
T1 E[‖u1

t0‖
2
Y

]

+ e8k2

ξ
T1

+2Mjk
2

ξ
T1 (t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds

+ ksuf
√
π
(

64T1M2
Jk

2
ξ
T1
k2
ξ
T1

)
e8T1

MJkξ
T1
kξ

T1 E[‖u1
t0‖

2
Y

]

+ ksuf
√
π
(

64T1M2
Jk

2
ξ
T1
k2
ξ
T1

)
e8T1

MJkξ
T1
kξ

T1 (t1 − t0)

∫ t1

t0

E[‖r1
s‖2Y ]ds
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Altogether, we get that

E

[(
sup

t2∈[t1,T1]

e
∫ t2
t1
‖A1(s)‖ds‖u1

t1‖
)2
]
≤ e4k2

ξ
T1 E[‖u1

t1‖
2
B
Y

] + e(8+2Mj)k
2

ξ
T1 E[‖u1

t0‖
2
Y

]

+ e8k2

ξ
T1

+2Mjk
2

ξ
T1 T 2

1 E[‖r1
s‖2B

Y
] + ksuf

√
π
(

64T1M2
Jk

2
ξ
T1
k2
ξ
T1

)
e8T1

MJk
2

ξ
T1 E[‖u1

t0‖
2
Y

]

+ ksuf
√
π
(

64T1M2
Jk

2
ξ
T1
k2
ξ
T1

)
e8T1

MJk
2

ξ
T1 T 2

1 E[‖r1‖2B
Y

]

≤ ksufe
ksufk

2

2,ξT1

(
E[‖u1

t0‖
2
Y

] + E[‖u1
t1‖

2
B
Y

] + E[‖r1‖2B
Y

]
)

(87)

Similar calculations yield the estimate

E

[(
sup

t2∈[t1,T1]

∣∣∣e∫ t2
t1
‖A1(s)‖ds − 1

∣∣∣‖u1
t1‖
)2
]

≤ |t1 − t2|2ksufe
ksufk

2

2,ξT1

(
E[‖u0‖2Y ] + E[‖u1

t1‖
2
B
Y

] + E[‖r1‖2B
Y

]
)
. (88)

�

7.3 Definitions and Theorems

In the following (unless otherwise specified) X will denote a Banach space.

Definition 1 (Sectorial operator, see Def. 1.2.1 in [7]). A closed linear operator
A : D(A) ⊆ X → X is said to be a sectorial operator of type κ, with κ ∈ (0, π) if:

σ(A) ⊂ Σκ,Σκ :=

{
λ ∈ C\{0} : |arg(λ)| < κ

}
,

‖Rλ(A)‖L(X) ≤
M

|λ| , ∀λ /∈ Σκ′ , κ
′ ∈ (κ, π).

As usual, σ(A) denotes the spectrum and Rλ(A) the resolvent of the operator A.
The set of sectorial operators on X of the type κ is denoted by Sκ(X). The set of sectorial
operators on X is denoted by S(X) :=

⋃
κ∈(0,π)

Sκ(X). The spectral angle κA of A ∈ S(X) is

given by
κA := inf{κ ∈ (0, π) : A ∈ Sκ(X)}.

Definition 2 (Bessel potential space, see [2]). The space Hs
p(Rn) with s ∈ R and 1 < p <∞

is the function space defined by

Hs
p(Rn) :=

{
f ∈ S ′(Rn) : F−1[(1 + |ξ|2)

s
2 Ff

]
∈ Lp(Rn)

}
(89)

‖f‖Hsp(Rn) := ‖F−1[(1 + |ξ|2)
s
2 Ff

]
‖Lp(Rn), (90)

where S ′(Rn) denotes the dual of the Schwartz space of rapidly decreasing functions

S(Rn) := {u ∈ C∞(Rn) : ∀ α, β ∈ Nn sup
x∈Rn

|xαDβu(x)| <∞}

and F is the usual Fourier transform operator.

Alternatively (see [18]), it can also be defined as the space of all distributions in Rn such that

Gs ∗ g ∈ Lp(Rn),

where Gs := F−1[(1 + |ξ|2)
s
2 ] denotes the Bessel potential of order s and ∗ the convolution

product.

Definition 3. Let D be a bounded Lipschitz domain in Rn. u ∈ Hs
p(D) is an equivalence

class of functions U ∈ Hs
p(Rn) such that U |D = u. That is a function u is said to be in

Hs
p(D) if and only if there exits a function U ∈ Hs

p(Rn) such that U |D = u.
Moreover, Hs

p(D) endowed with the norm

‖u‖Hsp(D) := inf
U|D=u,

U∈Hsp(Rn)

‖U‖Hsp(Rn)

is a Banach space.
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Remark 3 ([18]).

1. For s ∈ R, Hs(D) = W s
2 (D) in norm equivalence. Thereby, Hs(D) := Hs

2(D).

2. For m ∈ N and 1 < p <∞, Hm
p (D) = Wm

p (D) in norm equivalence.

3. W s
p (Rn) ⊆ Hs

p(Rn), 1 < p ≤ 2.

4. Hs
p(Rn) ⊆W s

p (Rn), 2 ≤ p <∞. This implies that: for D ⊂ Rn a bounded Lipschitz
domain, Hs

p(D) ⊂W s
p (D), 2 < p <∞. Indeed, since W s

p (D) is defined in a way
analogous to the definition of Hs

p(D) and due to the inclusion Hs(Rn) ⊂W s
p (Rn),

U ∈ Hs
p(Rn) with U |D = u implies U ∈W s

p (Rn) with U |D = u. Moreover,
‖u‖Hsp(D) ≥ ‖u‖Ws

p (D) since

‖u‖Hsp(D) := inf
U|D=u,

U∈Hsp(Rn)

‖U‖Hsp(Rn) ≥ inf
U|D=u,

U∈Ws
p (Rn)

‖U‖Ws
p (Rn) =: ‖u‖Ws

p (D).

The claim follows from the fact that W s
p (D) = W s

p (D) for a bounded Lipschitz domain
D.

5. Hs1
p (Rn) ⊂W s2

p (Rn) ⊂ Hs3
p (Rn) ⊂W s4

p (Rn), for s1 > s2 > s3 > s4.

As in item 4. this implies that for a bounded Lipschitz domain

Hs1
p (D) ⊂W s2

p (D) ⊂ Hs3
p (D) ⊂W s4

p (D), s1 > s2 > s3 > s4

Definition 4 (Uniformly bounded function space, see Sec. 1.2.1 [53]). Let [a, b] be a closed
interval of R and X a Banach space, then by BX := B([a, b];X) we denote the space of
uniformly bounded functions on [a, b] (not necessarily smooth or measurable) with values in
X.

The space
(
B([a, b];X), ‖ · ‖B

X

)
, with ‖f‖B

X
:= sup

a≤t≤b
‖f(t)‖X is a Banach space.

Definition 5 (Hölder continuous function space, see Sec. 1.2.3 [53]). Let [a, b] be a closed
interval of R and X a Banach space, then for 0 < µ < 1, Cµ{a}([a, b];X) denotes the space of

X-valued functions that are continuous on the [a, b] and are µ-Hölder continuous at least at
a. It is endowed with the norm

‖f‖Cµ{a} := max
t∈[a,b]

‖f‖X + sup
t∈[a,b]

‖f(t)− f(a)‖X
(t− a)µ

The space of continuous functions on [a, b] with values in the Banach space X is denoted by
CX := C([a, b];X). It is endowed with the usual norm ‖f‖C

X
:= max

t∈[a,b]
‖f(t)‖X .

Definition 6 (Weighted Hölder continuous functions, see Sec. 1.2.4 of [53]). The space
F η,ρ((a, b];X) with 0 < ρ < η ≤ 1 consists of X−valued functions on (a, b] (resp. [a, b])
when η < 1 (resp. η = 1) with the following properties:
1. When η < 1, the function (t− a)1−ηf(t) has a limit for t→ a.

2. f is a Hölder continuous function with the weight (s− a)1−η+ρ and with exponent ρ, i.e.

sup
a≤s<t≤b

(s− a)1−η+ρ‖f(t)− f(s)‖X
|t− s|ρ = sup

a<t≤b
sup
a≤s<t

(s− a)1−η+ρ‖f(t)− f(s)‖X
|t− s|ρ <∞.

3. As t→ a, it holds that wf (t)→ 0, where

wf (t) := sup
a≤s<t

(s− a)1−η+ρ‖f(t)− f(s)‖X
|t− s|ρ .

4. The space F η,ρ equipped with the norm

‖f‖Fη,ρ := sup
a≤t≤b

(t− a)1−η‖f(t)‖X + sup
a<t≤b

sup
a≤s<t

(s− a)1−η+ρ‖f(t)− f(s)‖X
|t− s|ρ

is a Banach space.

Remark 4. 1. If 0 < ρ′ < ρ < η ≤ 1, then F η,ρ ⊂ F η,ρ
′
.

2. If η′ < η, then F η,ρ ⊂ F η
′,ρ, with 0 < ρ < η′ < η.

3. Let g ∈ Cρ([0, b];X), with g(0) = 0, then for 0 < ρ < η < 1 the function f(t) := tη−1g(t)
belongs to F η,ρ((0, b];X).
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Theorem 7.5 (Theorem 3.9 and Theorem 3.10, [53]). Consider the Cauchy problem

d
dt
u+A(t)u = f(t) in X, t ∈ (0, T ]

u(0) = u0

}
(91)

Let A(t) be a sectorial operator with a uniform spectral angle κ < π
2

and a uniform resolvent
estimate

‖Rλ(A(t)‖ ≤ M

|λ| , κ /∈ Σκ, t ∈ [0, T ].

Moreover, the domain of A(t) may vary in time, but must satisfy the following conditions:

D(A(t)) ⊂ D(Aν(s)), s, t ∈ [0, T ], ν ∈ (0, 1]

‖Aν(t)(A−1(t)−A−1(s))‖ ≤ C|t− s|µ, µ ∈ (0, 1]

1 < µ+ ν

 (92)

Also, let f ∈ F β,σ((0, T ];X), with σ < min(β, µ+ ν − 1).

Then for every u0 ∈ D(A(0)β) there exists a unique solution u of (91) given by

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)f(s), t ∈ [0, T ],

where U(t, s) denotes the evolution operator as per Theorem 3.8 [?, YAGI09] Also, u satisfies
the following estimates:

u ∈ C([0, T ];X) ∩ C1((0, T ];X), A(t)βu ∈ C([0, T ];X), A(t)u ∈ F β,σ((0, T ];X),

with
‖u(t)‖B

X
+ ‖A(t)βu‖C

X
≤ k(‖A(0)βu0‖X + ‖f‖Fβ,σ ).

‖ d
dt
u(t)‖Fβ,σ + ‖A(t)u‖Fβ,σ ≤ k(‖A(0)βu0‖X + ‖f‖Fβ,σ ),

where k denotes some positive constant.
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