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Zusammenfassung

In dieser Arbeit stellen wir eine neuartige Methode für die nichtlineare Frequenzanalyse
von angeregten mechanischen Schwingungen vor. Zur effizienten Ortsdiskretisierung der
partiellen Differentialgleichungen der nichtlinearen Kontinuumsmechanik wenden wir das
Prinzip der isogeometrischen Analyse an. Die isogeometrische Finite Elemente Methode
bietet im Vergleich zu klassischen Finiten Elemente-Diskretisierungen zahlreiche Vorteile,
insbesondere eine exakte Geometriedarstellung und höhere Genauigkeit der numerischen
Approximationen mittels Spline-Funktionen. Anschließend verwenden wir die Harmonic
Balance Methode zur Berechnung der nichtlinearen Schwingungsantwort bei periodischen
externen Anregungen. Dabei wird die Lösung des aus der Ortsdiskretisierung resultie-
renden, nichtlinearen gewöhnlichen Differentialgleichungssystems im Frequenzraum als
abgeschnittene Fourierreihe entwickelt. Um eine effektive Anwendung der Methode auf
große Systeme im Rahmen von industriellen Problemen zu ermöglichen, ist eine Modell-
reduktion der Ortsdiskretisierung der Bewegungsgleichung notwendig. Dazu schlagen wir
eine modale Projektionsmethode vor, die mit modalen Ableitungen und damit Informati-
onen zweiter Ordnung erweitert wird. Wir untersuchen das Prinzip der modalen Ablei-
tungen theoretisch und demonstrieren anhand numerischer Beispiele die Anwendbarkeit
und Genauigkeit der Reduktionsmethode bei der nichtlinearen Frequenzanalyse. Außer-
dem erweitern wir die nichtlineare Vibrationsanalyse mittels gemischter isogeometrischer
Methoden auf inkompressible Elastizität.
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Abstract

In this thesis we present a new method for nonlinear frequency response analysis of me-
chanical vibrations. For an efficient spatial discretization of nonlinear partial differential
equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeo-
metric finite element methods have already been shown to possess advantages over clas-
sical finite element discretizations in terms of exact geometry representation and higher
accuracy of numerical approximations using spline functions. For computing nonlinear
frequency response to periodic external excitations, we rely on the well-established har-
monic balance method. It expands the solution of the nonlinear ordinary differential
equation system resulting from spatial discretization as a truncated Fourier series in the
frequency domain. A fundamental aspect for enabling large-scale and industrial applica-
tion of the method is model order reduction of the spatial discretization of the equation
of motion. Therefore we propose the utilization of a modal projection method enhanced
with modal derivatives, providing second-order information. We investigate the concept
of modal derivatives theoretically and using computational examples we demonstrate the
applicability and accuracy of the reduction method for nonlinear static computations and
vibration analysis. Furthermore, we extend nonlinear vibration analysis to incompressible
elasticity using isogeometric mixed finite element methods.
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1 Introduction

Within the industrial engineering and product development process, numerical simulation
plays a very important role as it allows the investigation of the behavior of a product or
system while it is still in the development stage. These simulations very often rely on
the mathematical modeling of physical phenomena in electromagnetics, fluid and solid
mechanics, or thermal conduction as partial differential equations, a numerical solution
scheme for these equations and its algorithmic computer implementation.

Even though computing powers have manifolded over the past decades [37], there is
still need for the development of more efficient methods and algorithms, since demands
on accuracy and complexity of numerical simulations have evolved to the same degree.
Furthermore, the integration of the computer-aided product development stages, i.e. de-
sign (CAD), analysis, redesign or optimization, and manufacturing (CAM), into a seam-
less computer-aided engineering (CAE) process is rather difficult. As these fields all have
evolved separately, different types of geometry representations and descriptions are em-
ployed in each of them.

1.1 Scope and context

This thesis addresses the simulation of mechanical vibrations with large amplitudes and
nonlinear material behavior, which is particularly important when rubber components
are involved. The aim is to develop a numerical method for the computation of nonlinear
steady-state response of forced vibrations, which is accurate, efficient and easy to be
integrated into the CAE process.

Mechanical motion of a body can be modeled mathematically using a nonlinear partial
differential equation (PDE). This equation of motion of elastodynamics has to be dis-
cretized in space and time in order to be solved numerically, since analytical solutions can
not be found in general.

For the spatial semi-discretization of the structural vibration problem we rely on the
isogeometric finite element method. In order to overcome the gap between computer-
aided design, numerical simulation and manufacturing, isogeometric analysis (IGA) was
introduced by Hughes et al. in 2005 [63]. The substantial idea behind isogeometric meth-
ods is the use of the same geometry representation throughout the whole engineering
process. This is showcased in Figure 1.1, using the so-called “TERRIFIC Demonstrator”,
a mechanical part which we use as application for the methods we develop.
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1 Introduction

(a) CAD representation (b) IGA-suitable model

(c) Stress analysis output (d) Manufactured part

Figure 1.1: Illustration of an integrated isogeometric engineering process, using the TER-
RIFIC Demonstrator part as example: a CAD model (a) has to be translated
into an IGA-suitable multi-patch model (b). Then computational analysis can
be carried out (c) and the approved design can finally be manufactured (d)

As spline functions, such as B-Splines and non-uniform rational B-Splines (NURBS)
[93], are typically employed for geometric design in CAD software, in IGA these functions
are also used for the discretization of geometry and numerical solution in an isoparametric
fashion. This concept has already been implemented into several numerical discretization
methods, such as boundary elements [110], collocation [5], finite volumes [59], and, of
course, isogeometric finite elements [63]. These isogeometric methods have been success-
fully applied for the solution of many kinds of engineering problems, for instance electro-
magnetics [88], mechanical analysis of solids [48, 49, 63] and structures [21, 24, 42, 73],
and also coupled problems like fluid-structure interaction [16, 59] or thermomechanics
[43]. A detailed introduction into IGA and summary of properties and applications of
isogeometric methods can be found in the monograph [39].

Many mathematical properties of isogeometric finite element discretizations have al-
ready been thoroughly investigated, especially focusing on higher continuity of spline
basis functions in comparison with Lagrangian elements [14, 19, 40, 50, 64]. In particular,
it has been shown that spline-based finite elements have substantial advantages over clas-
sical Lagrangian finite elements in the context of linear vibration analysis. In eigenvalue
problems so-called optical and acoustical branches are avoided, which leads to a much
higher accuracy especially in higher eigenfrequencies [42]. IGA is more accurate per de-
gree of freedom (DOF) for numerical solutions of linear elliptic, parabolic and hyperbolic
PDEs than standard finite element methods due to higher continuity of splines, whereas
rates of convergence are the same [39, 64].
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1.1 Scope and context

Isogeometric analysis has also been applied in nonlinear continuum mechanics and in-
compressible elasticity, where the above-mentioned advantages of the approach could also
be verified [6, 48, 84, 118]. The special treatment of incompressible and near incompress-
ible problems using mixed elements [84, 118], reduced integration [24], or strain projection
methods [48] is especially important for the simulation of rubber and elastomer materi-
als. Here, we employ a mixed formulation based on [6, 7, 23, 109] for the isogeometric
finite element discretization of (near) incompressible materials and then also include it
in nonlinear frequency analysis. A special focus lies on comparison of different kinds of
isogeometric mixed elements, namely Taylor-Hood and subgrid elements, which were so
far used and investigated only for the linear Stokes problem [28].

As outlined above, isogeometric finite element methods (IGA-FEM) offer many advan-
tages over classical finite element discretizations, in particular a better integration into
the CAE process, higher accuracy per DOF, especially in frequency analysis, and a simple
and flexible implementation of mixed formulations. Consequently, they are our method
of choice and we use IGA-FEM in this thesis for the spatial semi-discretization of the
equation of motion.

After the spatial semi-discretization of nonlinear elastodynamics equation, which yields
a system of nonlinear ordinary differential equations (ODEs), we employ the harmonic
balance method (HBM) for time domain discretization [86, 87, 117]. In general, HBM
can be applied for frequency and steady-state vibration analysis of periodic systems of
nonlinear ODEs, and is based on Fourier transformation and solution of the ODE in the
frequency domain.

Though harmonic balance is a well-established method for nonlinear frequency analysis,
for example in the context of integrated circuit simulations [31, 106], it is so far hardly
used in mechanics, only for lower dimensional structural models such as beams and plates
[80, 81, 98, 99, 100]. Within commercial finite element analysis (FEA) software, non-
linear frequency response analysis has to be carried out as transient analysis using time
integration methods, either integrating until steady state is reached or using shooting
methods.

Having studied the use of isogeometric finite elements in combination with harmonic
balance for the nonlinear Euler-Bernoulli beam model already in [126, 127], we extend
the method to 3-dimensional continuum mechanics and elastodynamics [128]. As HBM
uses a truncated Fourier expansion of length m for frequency domain approximation of
each DOF of the spatial discretization, it produces a blow-up of total DOFs: the sparse
linear system to be solved in the end is not only m-times larger, but also with m-times
as many nonzero entries per row than the matrix arising from spatial discretization.

Therefore model order reduction (MOR) of the spatial discretization is needed to reduce
the size of the linear system significantly and make an efficient numerical solution of the
system arising from HBM possible. In linear FEA and vibration analysis, modal reduction
is a well-established technique [62]. There, the equation of motion is projected onto a
subspace spanned by a subset of eigenmodes. However, for nonlinear problems more
advanced methods are needed [94, 130]. For example, nonlinear normal modes (NNMs)
[77, 119] or Proper Orthogonal Decomposition (POD) [17, 60, 112] can be used.

We propose to use a projection with eigenmodes and additionally modal derivatives
[68, 111], which are a second-order enhancement of linear eigenmodes, for the use in non-
linear frequency analysis [128]. In contrast to most other common reduction methods so
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1 Introduction

far used in nonlinear dynamics, it does not require a current state of deformation of the
system and continuous basis updates, thus the projection basis can be fully precomputed
based on the linearized system. Furthermore, there are also similar well-established tech-
niques of second-order enhancements in other fields of computational engineering such as
uncertainty quantification [101].

The reduction method using eigenmodes and modal derivatives has been successfully
applied in nonlinear dynamic analysis by time integration before [11, 12, 96, 112], and we
show that it is especially suitable in our nonlinear vibration framework with harmonic
balance and makes a large-scale application of nonlinear frequency analysis possible.

1.2 Publications and software

Within the course of preparing this thesis, the author has already published intermediate
results and achievements in scientific journals and conference proceedings. Isogeometric
finite elements and harmonic balance with application to the nonlinear Euler-Bernoulli
beam structural model were investigated in the diploma thesis [126] and published in
[127]. The application to 3-dimensional nonlinear elasticity with large deformations and
hyperelastic constitutive laws, as well as the use of reduction with modal derivatives were
published in [128]. Implementation of isogeometric mixed Taylor-Hood elements and their
performance in static nonlinear incompressible elasticity were investigated as part of [33].
Linear elasticity computations for evaluation of an isogeometric segmentation pipeline for
the generation of analysis-suitable multi-patch models from CAD models were contributed
to [89].

We have implemented the methods and tested the computational examples presented in
this thesis in different software packages. The results related to the linear and nonlinear
beam were obtained using a MATLAB implementation. All methods for 3-dimensional elas-
ticity are related to the development of IGAsolvers C++-library within the TERRIFIC
EU-project [53]. They are partially available for download and use under GNU Lesser
General Public License (LGPL) at [121]. Mixed methods for static nonlinear incompress-
ible elasticity were also implemented in C++ using igatools library [91].

1.3 Outline

This thesis is structured in 7 chapters. After this introductory chapter we give a summary
of the main ideas behind isogeometric analysis and isogeometric finite element discretiza-
tions in Chapter 2. As it is an important aspect of the simulation of complex real-life
geometries, we set a focus on the treatment and implementation of multi-patch problems.

In Chapter 3 we review the theory of nonlinear continuum mechanics, including large
deformation kinematics and visco-hyperelastic constitutive relations, and apply the iso-
geometric finite element method for the spatial discretization. We also present theory
and discretization of linear elasticity and the nonlinear Euler-Bernoulli beam, and show
computational applications for validation of our implementations.

Then we treat nonlinear vibration analysis in Chapter 4, introduce the harmonic bal-
ance method and apply it to nonlinear continuum mechanics and dynamics. We use
computational applications to validate the approach and to examine convergence of the
isogeometric discretization and truncated Fourier series.

4



1.3 Outline

Chapter 5 is dedicated to model order reduction and its application to nonlinear vibra-
tion analysis. We motivate the use of a novel projection method with modal derivatives,
explain it in detail, and study it analytically and numerically.

We introduce isogeometric mixed methods for near incompressible elasticity problems
in Chapter 6. We outline their integration into harmonic balance method and study
their performance in numerical examples for static nonlinear deformation and nonlinear
frequency analysis problems.

Finally, Chapter 7 concludes this thesis with a summary and an outlook on future
research directions.
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2 Isogeometric analysis
and finite elements

This chapter provides a basic introduction into the concepts of isogeometric analysis and
isogeometric finite elements, which we use for the spatial discretization of the vibration
problem.

Spline functions have been an essential foundation of CAD over the past decades and
thus we briefly review their definition and properties in Section 2.1. The idea behind
isogeometric analysis is to employ splines also for the numerical solution of PDEs, for
example in a finite element method. Since much research has been done on the field of
isogeometric methods in the past years, we present only the basic ideas and properties
relevant in this work in Section 2.2. We lay a special focus on the treatment of multi-patch
problems, where the computational domain is decomposed into several spline geometries.
In Section 2.3 we present and compare two strategies for the implementation of constraints
for multi-patch problems.

2.1 B-Splines and NURBS

B-Splines and Non-Uniform Rational B-Splines (NURBS) are the tools that are typi-
cally used for describing geometries in computer-aided design and also for representing
the numerical solution in isogeometric analysis [39, 51, 63, 93]. Detailed definitions and
introductions, including proofs and computer implementations can be found in [93], while
[102] also includes an historical perspective on the topic. Here a brief review of the main
definitions and properties is given.

2.1.1 B-Spline and NURBS basis functions

Starting point is the definition of a knot vector Ξ = (ξ1, . . . , ξm) as a non-decreasing
sequence of knots ξi ∈ R (i = 1, . . . ,m) , ξi ≤ ξi+1 (i = 1, . . . ,m − 1) on the parameter
space Ω0 = [ξ1, ξm] ⊂ R.

In the following, some terminology associated with the knot vectors will be useful. If
Ξ is a knot vector we use Ξ0 to refer to the corresponding distinct knot vector where all
knots of Ξ0 have multiplicity one. The half-open interval [ξi, ξi+1) is called the i-th knot
span or element. The total number of nonzero knot spans or elements in Ξ is `. The
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2 Isogeometric analysis and finite elements

length of a knot span is hi = ξi+1 − ξi (i = 1, . . . , `) and h = mini=1,...,` hi is the mesh
parameter. If the knots ξi are uniformly distributed over Ξ, then we call the knot vector
uniform, and if the first and last knot have multiplicity p + 1, i.e. ξ1 = . . . = ξp+1 and
ξm−p = . . . = ξm, the knot vector is called open.

Definition 2.1 (B-Spline basis functions). The B-Spline basis functions Bp
i (ξ) : Ω0 →

[0, 1] of degree p (order p+ 1) are defined for i = 1, . . . , n (n = m− p− 1) by the Cox-de
Boor recursion:

B0
i (ξ) =

1 ξi ≤ ξ < ξi+1

0 else
,

Bp
i (ξ) = ξ − ξi

ξi+p − ξi
Bp−1
i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bp−1
i+1 (ξ).

(2.1)

Here it is assumed that the quotient 0/0 is 0.

There are many useful properties of B-Spline basis functions Bp
i , i = 1, . . . , n, and

among them we point out that they
• are piecewise polynomials of degree p,
• have compact support, i.e. supp(Bp

i ) = [ξi, ξi+p+1),
• are non-negative, i.e. Bp

i (ξ) ≥ 0 ∀ξ ∈ [ξ1, ξm],
• form a partition of unity for an open knot vector, i.e. ∑n

i=1B
p
i (ξ) ≡ 1 ∀ξ ∈ [ξ1, ξm],

• are smooth, i.e. they are p-times continuously differentiable (Cp-continuous) inside
a knot span and at inner knots of multiplicity k (k ≤ p) only Cp−k.

Here we only use B-Spline basis functions on open knot vectors with inner knots of
multiplicity 1 ≤ k ≤ p.

Example 2.1 (Different types of B-Spline basis functions on the same distinct knot
vector). An example of B-Spline basis functions with different degrees and continuities
based on the same distinct knot vector Ξ0 = (0, 0.2, 0.4, 0.6, 0.8, 1) can be found in Figure
2.1:

(a) Ξ = (0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1), p = 1, m = 8, n = 6:
linear with C0-continuity at all inner knots

(b) Ξ = (0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1), p = 2, m = 10, n = 7:
quadratic with C1-continuity at all inner knots

(c) Ξ = (0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1), p = 3, m = 12, n = 8:
cubic with C2-continuity at all inner knots

(d) Ξ = (0, 0, 0, 0.2, 0.4, 0.4, 0.6, 0.8, 0.8, 1, 1, 1), p = 3, m = 15, n = 11:
cubic with C1-continuity at ξ = 0.4, C0-continuity at ξ = 0.8 and C2-continuity at
all other knots

Definition 2.2 (Non-Uniform Rational B-Spline basis functions). The definition of Non-
Uniform Rational B-Spline (NURBS) basis functions Np

i is based on B-Spline basis func-
tions Bp

i on a knot vector Ξ and additional weights wi > 0 (i = 1, . . . , n):

Np
i (ξ) = Bp

i (ξ) wi∑n
j=1B

p
j (ξ) wj

. (2.2)
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2.1 B-Splines and NURBS
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(a) Linear C0 B-Spline basis functions
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(b) Quadratic C1 B-Spline basis functions
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(c) Cubic C2 B-Spline basis functions
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(d) Cubic B-Splines with mixed continuities

Figure 2.1: Different types of B-Spline basis functions on the same distinct knot vector

Efficient algorithms for the evaluation of B-Spline and NURBS basis functions and their
derivatives are described in detail in [93].

NURBS are piecewise rational functions and the essential properties of B-Splines given
above hold for NURBS as well. For equal weights, i.e. wi = const. ∀i = 1, . . . , n, NURBS
reduce to B-Spline basis functions and thus in the following we are only using the term
NURBS.

Definition 2.3 (Spline spaces). The vector space of NURBS basis functions of degree p
and minimum continuity k ≤ p− 1 on the open knot vector Ξ is denoted by

Skp (Ξ) = span{Np
i }i=1,...,n. (2.3)

Note that dim(Skp (Ξ)) = m− p− 1 = n and Np
i actually are a basis of Skp (Ξ), since they

are linearly independent.

2.1.2 Spline geometries

In CAD programs geometry is typically represented by spline curves and surfaces. The
additional benefit of NURBS over B-Splines is the possibility to represent conic inter-
sections exactly, which is very important for designing engineering shapes. Here we in-
troduce spline curves and volumes, since we need to have a solid representation for our
3-dimensional applications.
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(a) Quadratic NURBS basis functions of the circle
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) Circle (blue) with control points (red) and con-
trol polygon (dashed red)

Figure 2.2: A circle as a NURBS curve

Definition 2.4 (Spline curve). A spline curve c : Ω0 → Rd is defined by a spline space
Skp (Ξ) and control points ci ∈ Rd (i = 1, . . . , n):

c(ξ) =
∑̀
i=1

Np
i (ξ) ci. (2.4)

Spline curves as defined above have the following properties:
• The polygon formed by the control points {ci}i=1,...,n is called control polygon.
• Convex hull property, i.e. the curve is completely contained in its control polygon.
• Interpolation of start and end points, i.e. c(ξ1) = c1 , c(ξm) = cn.
• Affine invariance, i.e. affine transformations of the curve can be performed on its

control points.
• Displacing a control point ci only influences the curve locally in the knot interval

[ξi, ξi+p+1).
• The continuity properties of the curve correspond to the ones of B-Spline/NURBS

functions.

Example 2.2 (A circle as a NURBS curve). A typical example used to illustrate the
capabilities of NURBS is the exact representation of a circle. In Figure 2.2 a circle
of radius 1 around the origin is shown. The knot vector of the quadratic NURBS basis
functions is Ξ = (0, 0, 0, 1

4 ,
1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1), i.e. p = 2, m = 12, n = 9, weights are w =

(1, 1
2

√
2, 1, 1

2

√
2, 1, 1

2

√
2, 1, 1

2

√
2, 1) and control points of the curve are ( 1

0 ), ( 1
1 ), ( 0

1 ), ( −1
1 ),

( −1
0 ),

(
−1
−1

)
, ( 0
−1 ), ( 1

−1 ), ( 1
0 ).
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2.1 B-Splines and NURBS

Figure 2.3: A train wheel as a NURBS volume. Showing the control points (blue), the
control point mesh (red) and the volume itself (gray)

It is possible to define multivariate NURBS functions, for example in 3D, as product
of univariate NURBS:

Np1p2p3
i1i2i3 (ξ1, ξ2, ξ3) = wi1wi2wi3B

p1
i1 (ξ1)Bp2

i2 (ξ2)Bp3
i3 (ξ3)∑n1

j1=1
∑n2
j2=1

∑n3
j3=1wj1wj2wj3B

p1
j1 (ξ1)Bp2

j2 (ξ2)Bp3
j3 (ξ3) , (2.5)

where Np1p2p3
i1i2i3 : Ω1

0 × Ω2
0 × Ω3

0 → R.
Since this notation is very laborious and we are going to deal with trivariate NURBS

many more times in this work, in the following n, p, i should be understood as 3-dimension-
al multi-indices n = (n1, n2, n3), p = (p1, p2, p3) and i = (i1, i2, i3), giving the number,
degree and index of trivariate NURBS functions Np

i (ξ) with parameters ξ = (ξ1, ξ2, ξ3).
The reference domain Ω0 = Ω1

0 × Ω2
0 × Ω3

0 and mesh or triangulation Ξ = Ξ1 × Ξ2 × Ξ3

are defined using the Cartesian product of domains resp. knot vectors of each parameter
direction.

Definition 2.5 (Spline volume). A spline volume v : Ω0 → R3 is defined by a trivariate
spline space Skp (Ξ) and a mesh of control points vi ∈ R3:

v(ξ) =
n∑
i=1

Np
i (ξ) vi. (2.6)

Example 2.3 (A train wheel as a NURBS volume). Figure 2.3 shows a simplified model
of a train wheel as a NURBS volume. The volume itself is displayed in gray, the control
points in blue and the control mesh in red. The NURBS basis functions are quadratic in
all three directions and the volume has 504 basis functions and control points in total.
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(a) p-method: knot insertion, then twice order ele-
vation, Ξ∗

a = (0, 0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1, 1)
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(b) k-method: two order elevations, then knot in-
sertion, Ξ∗

b = (0, 0, 0, 0, 0.5, 1, 1, 1, 1)

Figure 2.4: Comparison of refinement strategies: p-method and k-method

2.1.3 Refinement

An important feature of B-Spline and NURBS geometries is the possibility to refine a
spline geometry without changing its shape. There exist three basic types of refinement,
which are described in the following when applied to a univariate spline space (Def. 2.3)
resp. a spline curve (Def. 2.4). For more details see [39].

h-refinement

h-refinement or knot insertion means that a given knot vector Ξ is extended to Ξ∗ by
introducing an additional knot ξ∗ ∈ Ω0 such that Ξ ⊂ Ξ∗. This provides a new set of
n+1 basis functions and a new set of n+1 control points c∗i has to be computed as linear

12



2.1 B-Splines and NURBS

combinations of the original control points ci.
A knot insertion step can be used to split an element into two by adding a new distinct

knot, similar to the h-refinement process in classical finite element analysis. But here the
continuity at the new knot is Cp−1, while it is C0 in FEA. It is also possible to decrease
continuity of basis functions at an existing knot by increasing its multiplicity.

In this work usually h-refinement refers to a uniform refinement of the knot vector.
This means that in every nonempty knot interval [ξi, ξi+1) a new knot ξ∗i = (ξi+1 + ξi)/2
is inserted. Thus the number of knots increases to m∗ = m + `, the number of elements
to `∗ = 2` and n∗ = n+ `. The mesh parameter of the refined knot vector Ξ∗ is h∗ = h/2.

p-refinement

p-refinement or order/degree elevation is used to increase the polynomial degree of the
spline space to p∗ = p + 1. The multiplicity of all distinct knots has to be increased by
one for the new knot vector Ξ∗, in order to maintain Cp−1 continuity at inner knots, i.e.
Skp (Ξ0) is refined to Skp+1(Ξ0).

This strategy is similar to p-refinement in FEA resp. p-FEM, where higher degree
polynomials are used on element level. However, in IGA continuity at inner knots is
maintained and not reduced to C0.

After p-refinement it is m∗ = m+ `+ 1, `∗ = `, n∗ = n+ ` and h∗ = h.

k-refinement

When a series of h- and p-refinements is performed, its order influences the result, i.e. the
refinement strategies do not commute. k-refinement means that p-refinements are carried
out before any h-refinement steps, since this leads to a minimal multiplicity resp. maximal
continuity of inner knots. The differences between refinement strategies are illustrated
with the following example.
Example 2.4 (Comparison of refinement strategies). As simple example for the compar-
ison of different refinement strategies is presented in Figure 2.4. We start from the knot
vector Ξ = (0, 0, 1, 1), Ξ0 = (0, 1), defining the linear B-Spline space S0

1 (Ξ0). We want to
add the knot ξ∗ = 0.5 and degree-elevate twice to p∗ = 3:

(a) p-method: first h-refinement and then two p-refinements lead to Ξ∗a = (0, 0, 0, 0, 0.5,
0.5, 0.5, 1, 1, 1, 1). The final spline space has p∗a = 3, m∗a = 11, n∗a = 7 with C0-
continuity at ξ = 0.5.

(b) k-method: first two p-refinements and then h-refinement, i.e. k-refinement, lead to
Ξ∗b = (0, 0, 0, 0, 0.5, 1, 1, 1, 1). The final spline space has p∗b = 3, m∗b = 9, n∗b = 5
with C2-continuity at ξ = 0.5.

Remark 2.1. In numerical studies for the comparison of performance of isogeometric vs.
classical finite elements, the k-method is typically, and also in this thesis, associated with
IGA and the p-method with FEM [42].

Local refinement

Due to the tensor product structure of spline meshes, the above presented p/h/k-refine-
ment strategies have a global impact on the meshes. Degree elevation can of course only

13



2 Isogeometric analysis and finite elements

(a) Original mesh (b) after one h-ref. (c) after two h-ref.

Figure 2.5: Tensor product refinement with knot insertion

(a) Original mesh (b) after one local ref. (c) after two local ref.

Figure 2.6: True local refinement

be applied to a complete knot vector and also knot insertion in the knot vector of one
parameter dimension has a global effect on the tensor product mesh, see Example 2.5.

For a true local refinement of spline meshes the tensor product structure must be
circumvented or avoided. Several attempts have been developed, such as hierarchical
B-Splines (HB-Splines) [52], splines on T-meshes (T-Splines) [107] and locally refined B-
Splines (LR B-Splines) [44]. They have all been successfully applied also in the context
of isogeometric analysis and isogeometric finite element methods [15, 69, 125], but are
beyond the scope of this thesis.

Example 2.5 (Visualization of global vs. local refinement strategies). The effect of global
refinement is visualized in Figure 2.5, where one would like to refine around the bottom
left corner of the initial 2-dimensional mesh (a). In both knot insertion steps (b) and (c)
one knot in inserted in each knot vector, but this carries on in the tensor product mesh to
the top left and bottom right corners.

Instead, one would like to do a true local refinement of only the bottom left area, as it
is shown in Figure 2.6 and as it is possible for classical finite element meshes or advanced
refinement methods such as hierarchical splines or T-splines.

2.2 Isogeometric finite element method

As discussed in the introductory chapter, the main idea behind isogeometric analysis
(IGA) is to bridge the gap between CAD and FEM. Based on [39, 63] we summarize now
the major properties and discuss the relation to classical finite elements.
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2.2 Isogeometric finite element method

The key ingredients of IGA are spline basis functions and geometries, as introduced in
the previous Section 2.1, which are used for both representing the geometry and spanning
the solution spaces in the Galerkin method. The isoparametric concept of classical FEM
employs also the same function spaces for representation of geometry and solution, but
there a conversion step is applied, where the CAD geometry is approximated by these
piecewise polynomials. On the other hand, IGA with NURBS makes it possible to bypass
this conversion and mesh generation step, and moreover offers higher continuity of the
numerical approximation.

2.2.1 Isogeometric Galerkin discretization

We introduce the concept of an isogeometric finite element discretization of a linear partial
differential equation in a general setting:

Definition 2.6 (Variational formulation of PDE problem). We seek a solution u ∈ S of
the variational or weak formulation of a partial differential equation on a domain Ω ⊂ Rd

using test functions v ∈ V, where S = {u : u ∈ (H1(Ω))r,u|δΩ = h}, V = {v : v ∈
(H1(Ω))r, v|δΩ = 0}, a(·, ·) is a bilinear form, l(v) = 〈v, f〉 a linear form, f the right hand
side function, 〈·, ·〉 the standard L2-scalar product, and r the range of the solution space:

u ∈ S : a(v,u) = l(v) ∀ v ∈ V . (2.7)

Existence and uniqueness of the solution are guaranteed by the theorem of Lax-Milgram
if a(·, ·) is continuous and coercive and l(·) is coercive.

The idea behind isogeometric analysis is that the domain Ω of problem (2.7) is given
in terms of a geometry function g, which maps a reference domain Ω0 ⊂ Rd0 , 1 ≤ d0 ≤ d,
onto the physical domain of the problem:

g : Ω0 → Ω, x = g(ξ). (2.8)

This geometry function or parameterization can be expressed in terms of a spline geometry,
here a NURBS volume, see (2.6):

x = g(ξ) =
n∑
i=1

Np
i (ξ)vi. (2.9)

Then Galerkin’s method is applied, i.e., the infinite-dimensional function spaces S and
V are approximated by finite-dimensional subspaces Sh ⊂ S and Vh ⊂ V . Following the
isoparametric paradigm, these spaces are spanned by the push-forward of the NURBS
basis functions of the geometry function g onto the physical domain Ω (or a refinement
thereof):

Sh ⊂ span
{
Np
i ◦ g−1

}r
, uh(x) =

n∑
i=1

Np
i

(
g−1(x)

)
di

Vh ⊂ span
{
Np
i ◦ g−1

}r
, vh(x) =

n∑
i=1

Np
i

(
g−1(x)

)
δdi,

(2.10)

where di, δdi ∈ Rr are the control points of displacements and virtual displacements.
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2 Isogeometric analysis and finite elements

Substituting uh and vh from (2.10) into the weak form (2.7) and making use of the
bilinearity of a(·, ·) and linearity of l(·) yields

δdT K d = δdT b ∀δd ∈ RN , (2.11)

with N = rn, stiffness matrix K ∈ RN×N and load vector b ∈ RN ,

Kkl
ij = a(Np

i 1k, Np
j 1l) , i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , r, l = 1, . . . , r

bki = l(Np
i 1k) , i = 1, . . . , n, k = 1, . . . , r,

(2.12)

where 1k is the r-dimensional unit vector with a 1 in direction k.
The displacement vector d = (dT1 , . . . ,dTn )T is then computed by solving a linear system

K d = b, (2.13)

which results in the approximate displacement uh in the form of a spline geometry.
For the evaluation of (2.12) integrals over the physical domain Ω in a(·, ·) and l(·)

are transformed and computed on the parameter domain Ω0 using ξ = g−1(x). In the
same fashion, derivatives of uh(x) with respect to x can be transformed to derivatives
with respect to ξ using the chain rule. Thus it is necessary to compute the Jacobian
of the geometry function Dg(ξ) = (∂gi/∂ξj)ij and its inverse, which requires that the
parameterization is invertible and the inverse is also continuous.

The entries of K and b are computed by quadrature rules at the element level and then
assembled into the global stiffness matrix and load vector. A Gaussian quadrature rule is
used with p+ 1 quadrature points on each knot span, very similar to classical FEM, with
knot spans playing the role of elements, see [62, 66] for more details.

2.2.2 Properties of isogeometric finite elements

As the isogeometric finite element discretization is a Galerkin method, just as the classical
finite element method, many mathematical properties of FE discretizations can be car-
ried over to isogeometric finite elements [14, 64, 114]. A summary of numerical analysis
properties of isogeometric finite element methods can be found in [19].

In the following we use some abbreviations for standard norms

‖ · ‖ := ‖ · ‖L2(Ω)r , ‖ · ‖p := ‖ · ‖Hp(Ω)r , ‖ · ‖E :=
√
a(·, ·) (2.14)

and σ = min {p + 1, 2(p + 1 − m)}, where 2m is the order of the differential operator
from which a(·, ·) is derived.

A-priori error estimates

For linear elliptic boundary value problems such as (2.7) with sufficiently regular exact
solution and data, standard error estimates from FEM are also valid for isogeometric FE
[64, 114]:

‖u− uh‖E ≤ Chp+1−m ‖u‖p+1,

‖u− uh‖ ≤ Chσ ‖u‖p+1.
(2.15)
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2.2 Isogeometric finite element method

The major difference between classical finite elements and IGA is the continuity of basis
functions: while a FE discretizations consists of many small elements with polynomials
as element-wise basis functions and C0-continuity over element boundaries, isogeometric
spline discretizations have a higher continuity of maximum Cp−1 over knots, i.e. element
boundaries. But this advantage of IGA, which usually becomes obvious in numerical
results, is not reflected in the standard error estimates (2.15).

However, in [50] it was shown that higher degree spline spaces with maximal continuity
are optimal for the approximation of many function spaces such as L2- and H1-spaces.
In numerical studies the k-method provided much better results than the p-method, thus
suggesting that IGA can be more accurate than FEM per DOF.

Eigenvalue problems

In [41, 42, 65] the properties of IGA in wave propagation and eigenvalue problems, i.e.
modal or linear vibration analysis, were investigated and compared to standard FEM. In
the same fashion of (2.7), we can write the eigenvalue problem as follows:

ui ∈ S, ωi ∈ R : ω2
i 〈v,ui〉+ a(v,ui) = 0 ∀ v ∈ V . (2.16)

The discrete spectra of numerical approximations vs. analytical eigenfrequencies ωhi /ωi
were analyzed for one-, two- and three-dimensional cases. As shown with the example in
Figure 2.7, higher continuity of splines is very beneficial for the accuracy of eigenfrequency
approximations. While the p-method leads to optical and acoustical branches in the
spectra for higher degrees of p ≥ 3 and a very low accuracy with divergent behavior for
i→ n, the spectra for the isogeometric k-method are smooth with a much higher accuracy
over the whole domain. Only at the end of the spectrum a few outliers occur, which are
discussed in detail in [42]. In the 1D cases of linear string and beam vibrations, where
a(u, v) =

∫
Ω v
′ u′dx resp. a(u, v) = −

∫
Ω v
′′ u′′dx, it is even possible to compute the spectra

analytically and verify the numerical results [42].
In [64, 114] the following relations and error bounds for FEM and IGA approximation for

eigenfunctions ui and eigenvalues λi = ω2
i were established, when the smallness condition

hλ
1/(2m)
i ≤ ε is fulfilled:

‖uhi − ui‖2 + λhi − λi
λi

= ‖u
h
i − ui‖2

E

λi
,

λhi − λi
λi

≤ C
(
hλ

1/(2m)
i

)2(p+1−m)
,

‖uhi − ui‖E
λ

1/2
i

≤ C
(
hλ

1/(2m)
i

)p+1−m
,

‖uhi − ui‖ ≤ C
(
hλ

1/(2m)
i

)σ
.

(2.17)

Due to the smallness condition, these approximation estimates only hold for the lower
part of the spectrum up to some wave number i � n. Nevertheless, in [64] it could be
shown numerically that the whole spectrum of eigenfunctions can be approximated much
more accurately with smooth splines than with C0 finite elements.
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Figure 2.7: Comparison of discrete spectra of eigenfrequencies ωhi /ωi for a linear beam for
C1-continuous p-method (FEM) and Cp−1-continuous k-method (IGA)

Time-dependent problems

The impact of approximation accuracy of eigenvalues and eigenfunctions on time-depen-
dent problems, such as parabolic and hyperbolic linear PDEs, was also investigated in
[64]. In the error estimates of parabolic problems, the influence of poorly approximated
higher modes is damped out by an exponentially decaying factor eλit . In contrast to that,
for hyperblic problems, as they are treated in this thesis, the errors in higher modes and
in the modal projection of the initial data persist for all time. Thus significant errors in
eigenfunctions, as they occur for standard FEM already in the mid and higher spectrum,
can also significantly contribute to the error of the time-dependent solution, especially in
nonlinear applications. In these situations much more accurate results can be expected
from IGA, since approximation quality of higher modes is much better.

Computational costs

An important argument for the use of IGA or FEM in practical applications are the
computational costs, which mainly consist of the assembly of the stiffness matrix (2.12)
and solution of the linear system (2.13). [19, 105] feature comparisons of the influence of
continuity of basis functions, C0 (FEM) or Cp−1 (IGA), on computational costs:

Assuming periodicity boundary conditions of maximal continuity and r = d, the number
of DOFs is N = pd` for C0 and N = ` for Cp−1 basis functions. In both cases the local,
element-wise contributions to the stiffness matrix have to be computed using numerical
quadrature with a cost of O(p2d) operations per quadrature point, independent of the
continuity. Using Gaussian quadrature with (p + 1)d points per element, we have `(p +
1)d points in total. In terms of N , this means O(Np3d) operations in the C0 case and
O(Np3(d+1)) in the Cp−1 case. Thus assembly is more costly for the same number of DOFs
in IGA than in FEM. To alleviate this disadvantage of IGA and reduce the quadrature
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2.3 Multi-patch parameterizations

effort, advanced quadrature [8, 66] and assembly strategies have been developed [71, 82].
Higher continuity also influences the number of nonzeros of the stiffness matrix and its

sparsity pattern. In the C0 case the total number of nonzeros is nnz = (p + 2)dpd` =
(p + 2)dN , while it is nnz = (2p + 1)d` = (2p + 1)dN for Cp−1 basis functions [19]. So
for same N there are more nonzeros in the IGA stiffness matrix, i.e. it is more densely-
populated than a FEM matrix. This has a severe impact on the performance of linear
algebra solvers used to solve the system (2.13). Direct solvers consume more memory for
IGA then for FEM and solution times are longer. The performance of iterative solvers
mainly depends on the number of iterations, the cost of one iteration, and preconditioning
and was investigated in [36]. Preconditioning techniques have been adapted to IGA to
make iterative solution of large systems more efficient, where a summary of methods,
including Overlapping Schwarz, BPX, BDDC, multigrid, and FETI, is presented in [19].

In a competitive isogeometric finite element analysis software library, which could keep
up with established and commercial finite element analysis codes and software regarding
computational times, the above-mentioned quadrature strategies and solution techniques
should be implemented. However, due to limited time and resources, they could not be
considered in the IGAsolvers software developed within the course of this thesis [121].

2.3 Multi-patch parameterizations

So far we have assumed that the physical domain Ω can be represented by a geometry
function in terms of a single spline geometry, see (2.8) and (2.9). However, complex
engineering designs available as CAD models can usually not be represented as a single,
tensor product spline geometry, since the topology of the object differs from a rectangle in
2D or a cube in 3D [40]. Then an isogeometric analysis suitable parameterization has to
be generated by splitting the object into several parts (patches), with geometry functions
mapping reference domains onto the physical domains for each patch. In the following we
describe the treatment of multi-patch domains in isogeometric finite element analysis.

2.3.1 Formulation of multi-patch problems

In a multi-patch problem we have a partition of the initial domain Ω into b subdomains
(patches):

Ω =
b⋃
i=1

Ωi, Ωi ∩ Ωj = ∅. (2.18)

If two patches Ωi and Ωj are adjacent, i.e.

Ωi ∩ Ωj = Γij 6= ∅, (2.19)

we call Γij the interface between Ωi and Ωj.
To find the solution u ∈ S of the general PDE problem, see (2.7), we have to solve

it on each patch for ui = u|Ωi and need to add constraints for the displacements to be
continuous on the interfaces of the patches:

i = 1, . . . , b : ui ∈ S i = S|Ωi :
{
a(vi,ui) = l(vi) ∀ vi ∈ V i = V|Ωi ,

ui = uj on Γij. (2.20)
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2 Isogeometric analysis and finite elements

Parameterization of the geometry of the object is now given by a set of geometry functions
gi : Ωi

0 → Ωi as spline geometries for each patch, compare (2.8) and (2.9).
Even though IGA claims to bridge the gap between design and analysis, multi-patch

parameterizations of real-life objects as spline volumes are not trivially found. Typi-
cally in CAD only the boundary surfaces of an object are represented and multi-patch
spline volume parameterizations have to be generated based on these surface descriptions.
These parameterizations may only approximate the original CAD geometries and do not
necessarily represent them exactly. Automated methods for segmentation into patches
and parameterization of patches are still under development [70, 74, 89]. In fact, for a
smooth and lossless isogeometric design through analysis process, the incorporation of
spline functions into numerical methods is not enough, it also requires a change in the
product design approach [45].

An example can be found in Figure 3.8 in Section 3.5.2, which shows the geometry
of the “TERRIFIC Demonstrator” as CAD model and an analysis-suitable multi-patch
parameterization consisting of 15 volume patches.

2.3.2 Enforcement of continuity constraints

For the solution of the multi-patch PDE problem (2.20), discrete isogeometric finite el-
ement solution spaces Shi ⊂ S i and test function space Vhi ⊂ V i have to be generated
based on the patch-wise geometry functions gi, as in (2.10). Then stiffness matrices Ki

and force vectors bi can be assembled for each patch as in (2.12).
Furthermore, the continuity constraints ui = uj on Γij have to be discretized and

enforced. Thereby in general two cases can be distinguished: conforming and non-
conforming parameterizations.

Conforming parameterizations

A multi-patch model has conforming parameterizations, when

gi|Γij ≡ gj|Γij ∀ Γij. (2.21)

In a 3D model this means that the two spline surfaces gi|Γij and gj|Γij of the neighboring
patches i and j of the interface Γij must be identical, i.e. degrees, knot vectors, weights
and control points of the geometry functions coincide. Then the continuity constraint for
the discretized solutions uhi and uhj is simply that corresponding displacement control
points dik and djl have to be equal whenever the associated geometry control points vik
and vjl are equal, i.e.

dik = djl ∀ dik, djl with vik = vjl . (2.22)

For the enforcement of these constraints basically two implementation strategies exist:

(a) Elimination: If dik and djl are two corresponding displacement control points in
patches i and j, the l-th row and column from Kj are removed and added to the k-th
row and column of Ki, same for the right hand side vectors bi and bj. Assembly of
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2.3 Multi-patch parameterizations

the global stiffness matrix looks like this:

K̂ =



K̂
1 ∗ ∗ · · · ∗
∗ K̂

2 ∗ · · · ∗
∗ ∗ . . . . . . ...
... ... . . . . . . ∗
∗ ∗ · · · ∗ K̂

b


, d̂ =



d̂
1

d̂
2

...

...
d̂
b


, b̂ =



b̂
1

b̂
2

...

...
b̂
b


(2.23)

Here K̂
i denotes that some DOFs, i.e. rows and columns, might have been removed

from Ki and ∗ denotes that these blocks might be zero, or contain some contributions
from other blocks in terms of added rows and columns. The size of the global stiffness
matrix K is then Nr minus the number of constraints and the block structure is
broken up.

(b) Lagrangian multipliers: It is also possible to assemble the patch stiffness matri-
ces Ki into one big block-structured matrix and then add the constraints dik = djl
by a Lagrangian multiplier approach as λijkl(dik − djl ) = 0:

K∗ =



K1 0 · · · 0
B12T 00 K2 · · · 0

... ... . . . ... 0 BijT

0 0 · · · Kb ... 0
B12 0 · · · 0 0
0 Bij 0 0 0


, d∗ =



d1

d2

...
db
λ12

λij


, b∗ =



b1

b2

...
bb
0
0


(2.24)

Each row of the matrices Bij contains a 1 at the location of column k of block Ki

and a -1 at column l of block Kj. The linear system described by (2.24) has a saddle
point structure, which is discussed further in Section (2.3.3).

Theorem 2.1. The displacement vector d of a multi-patch problem obtained using La-
grangian multipliers is equal the one obtained using elimination.

Proof. We use the following notations:

K = diag(K1, . . . ,Kb) ∈ Rn×n,

d = (d1T , . . . ,dbT )T ∈ Rn, b = (b1T , . . . ,bbT )T ∈ Rn,

for the stiffness matrix, displacement and load vector of the multi-patch system before
elimination of DOFs or application of constraints and it holds rg(K) = r < n.

Equation (2.24) with Lagrangian multipliers is now written more compactly as

K d + BT λ = b,
B d = 0,

where B ∈ Rm×n, m = n− r, is the constraint matrix of rank m with exactly one 1 and
one -1 in each row and λ ∈ Rm is the vector of Lagrangian multipliers.
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2 Isogeometric analysis and finite elements

Assuming that there exists a projection matrix C ∈ Rn×r of rank r and a vector of
reduced DOFs d̂ ∈ Rr such that

d = C d̂,

it follows:
KC d̂ + BT λ = b,

BC d̂ = 0.

Left-multiplication of the first equation with CT , which is a rank-conserving transforma-
tion on Rr, yields

CTKC d̂ + CTBT λ = CTb,
BC d̂ = 0.

If we showed that BC = O, where O ∈ Rm×r is the m × r null matrix, it would only
remain the equation

CTKC d̂ = CTb,

and using K̂ = CTKC and b̂ = CTb, it would be the same system as in (2.23), i.e.

K̂ d̂ = b̂.

A matrix C which yields BC = O can easily be found: it is a boolean matrix with
exactly one 1 in each row and at least one 1 in each column, where the total number of 1s
is n. This matrix is exactly the one which assigns each of the displacement control points
in d to one of the DOFs in d̂ after elimination and adds the stiffness matrix contributions
of an eliminated DOF from K to the row and column of the matrix after elimination
K̂.

Remark 2.2. Implementation strategies for conforming parameterizations can also be
extended to situations where one geometry function is an h-refinement of the other, as
described in [40]. This allows a simple kind of “local” refinement using multiple patches.

Remark 2.3. The Lagrangian multiplier strategy can also be used to implement general
Dirichlet-type boundary conditions such as
• prescription of displacements: u|ΓD = h,
• symmetry of displacements w.r.t. normal direction: (u · n)|ΓD = 0,
• periodicity of displacements at faces of one parameter direction: u|Γξi=0

= u|Γξi=1
,

where the boundary ΓD ⊂ Γ can be a face of the topological cube (or a iso-subface), an
isoline on a face (or a subline) or a point on a face. Γξi=0 and Γξi=1 refer to the faces of
the topological cube, where the parameter direction i is fixed at the minimal resp. maximal
value.

Non-conforming parameterizations

This is the most general case, as parameterizations of the patches can be chosen arbitrarily,
i.e. degrees, knot vectors and number of control points may be different. Continuity con-
straints have to be enforced weakly by methods such as Nitsche’s method [3, 104], penalty
methods, mortar or Lagrangian multiplier methods [29, 61] and augmented Lagrangian
multiplier methods. These methods mostly have its origins in domain decomposition
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(a) Geometry with the common edge in green. Constraints on two
control points of each patch have to be enforced

1 2

34

(b) Constraints in red are not en-
forced to avoid redundancies

Figure 2.8: Four cubes joining in one edge

of classical FEM and a summary of application in isogeometric multi-patch analysis is
provided in [3].

Due to the design of libraries used for the implementation of software developed in
the course of this thesis, the methods and applications presented here are restricted to
conforming parameterizations. Both presented approaches for treatment of continuity
constraints, Lagrangian multipliers and elimination, have been implemented [121].

2.3.3 Saddle point problems

As described above by (2.24), the Lagrangian multiplier approach for implementation
of multi-patch coupling constraints and Dirichlet-type boundary conditions leads to the
solution of a saddle point problem, i.e. a linear equation system of the form

K∗ d∗ = b∗ ⇔
(

K BT

B 0

)(
d
λ

)
=
(

b
c

)
, (2.25)

where K ∈ Rn×n, B ∈ Rm×n, n > m. The entries of c are zero and may contain nonzeros
only when inhomogeneous Dirichlet conditions are included, see Remark 2.3.

Saddle point problems arise in many engineering and scientific applications, especially
also in mixed formulations [20, 23], which we address in the isogeometric context later
on in Chapter 6. Thus we want to take a closer look at their properties and numerical
solution methods, where [22] serves as a main reference.

Solvability conditions

In our case the matrix K arising from (2.24) is symmetric and positive semi-definite. If
Dirichlet boundary conditions had been incorporated into the patch-wise matrices, which
is usually not the case for all patches, it would be symmetric positive definite. For K to
be non-singular and (2.25) to have a unique solution a necessary and sufficient condition
is that B has full rank and ker(K) ∩ ker(B) = {0} [22].

The full rank condition rg(B) = m is not trivially fulfilled for the multi-patch coupling
matrix arising from (2.24). This can be demonstrated by a simple example of four cubes
joining in one edge, see Figure 2.8(a), or even simpler in 2D by four squares joining in
one vertex. The constraint matrix for the common edge highlighted in green resp. one of
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2 Isogeometric analysis and finite elements

the common control points would look like this:

B =


· · · 1 · · · −1 · · · 0 · · · 0 · · ·
· · · 0 · · · 1 · · · −1 · · · 0 · · ·
· · · 0 · · · 0 · · · 1 · · · −1 · · ·
· · · −1 · · · 0 · · · 0 · · · 1 · · ·

 . (2.26)

By summing up all rows it can be easily seen that this matrix is singular and that rg(B) =
3. This means that one of the constraints is redundant and not to be enforced, as shown
in Figure 2.8(b).

To avoid such redundancies and set up the global constraint matrix, an approach from
graph theory can be used: every control point located on an interface is a vertex and every
constraint is an edge of a directed graph. Then the constraint matrix B can be interpreted
as incidence matrix of that directed graph with vertices in columns and edges in rows.
Finding a full rank sub-matrix of B is then equivalent to finding a forest or spanning
tree of the (undirected) graph, which can be done by a breadth-first or depth-first search
algorithm [129]. In other words, we only include the constraints resp. rows in B which
correspond to the edges contained in the forest of the graph.

We do not explicitly check if the condition ker(K) ∩ ker(B) = {0} is fulfilled, but we
expect it due to the following considerations. In a 3-dimensional elasticity problem, one
needs to restrict 6 degrees of freedom (3 translations and 3 rotations) of the structure
for the stiffness matrix to be non-singular. When no Dirichlet boundary conditions are
applied to each of the patch-wise stiffness matrices, we can expect that rg(K) = n − 6b.
However, since the patch-wise matrices defining K are not coupled, a basis of ker(K) must
be partitioned by patches, i.e. there are 6 basis vectors which are nonzero for the DOFs
corresponding to a certain patch and are zero for all other DOFs. In contrast to that, a
basis of ker(B) must involve nonzero DOFs for at least two patches due to the structure
of B.

Remark 2.4. For the numerical examples presented in this thesis a breadth-first search
algorithm was implemented to determine a full rank constraint matrix of interface and
Dirichlet-type constraints.

Solution methods

Having guaranteed that a unique solution of the saddle point problem (2.25) exist, a nu-
merical algorithm must be selected to actually solve it. However, saddle point problems
may be ill-conditioned, especially when K is only positive semi-definite and the underlying
(isogeometric) finite element spaces are h-refined, which is deteriorating the rate of con-
vergence of iterative solvers and increasing the need of preconditioning [22]. A summary
of different coupled and segregated solution methods for saddle point problems in general
is also given in [22], including direct and iterative solvers with suitable preconditioners.
For isogeometric multi-patch problems the so-called IETI method (Isogeometric Tearing
and Interconnecting) as an adaption of FETI method was proposed in [75].

Remark 2.5. In our computational applications for the solution of the saddle point prob-
lem (2.25) usually a sparse direct linear solver is used. Preconditioning for iterative solvers
as described above was not implemented due to a different focus set in this work.
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Figure 2.9: Comparison of condition numbers κ of stiffness matrix K from multi-patch
implementations using elimination (Elim.) and Lagrangian multipliers (LM)
with and without scaling (scal., unscal.). h- and k-refinement are performed
for degree p = 1, 2.

2.3.4 Numerical study of multi-patch implementations

In the following we compare the two implementation strategies elimination and Lagrangian
multipliers for conforming multi-patch parameterizations presented in Section 2.3.2 re-
garding condition number of the stiffness matrix of the linear system.

The problem discretized with isogeometric finite elements is a simplification of 3-
dimensional linear elasticity, see later Section 3.3, with bilinear form

a(v,u) = µ

2

∫
Ω

(
∇v +∇vT

)
:
(
∇u +∇uT

)
dx. (2.27)

The domain Ω ⊂ R3 consists of four patches as unit cubes sharing one common edge,
see Figure 2.8. The patch domains Ωi are parameterized with linear B-Splines with knot
vectors (0, 0, 1, 1)3. Of course, it is also possible to represent this domain with a single
patch of width and depth 2 and height 1, even with an equivalent parameterization using
knot vectors (0, 0, 1, 2, 2)× (0, 0, 1, 2, 2)× (0, 0, 1, 1).

For this problem the stiffness matrix K is assembled for different uniform refinements
of degree p and mesh parameter h. Then the condition number

κ(K) =
∣∣∣∣∣λmax(K)
λmin(K)

∣∣∣∣∣ , (2.28)

i.e. the ratio of maximal to minimal eigenvalue of the matrix, is computed as a measure
of the accuracy of the numerical solution of the linear system to be solved.

Figure 2.9 shows the development of the condition number κ(K) over several h-refine-
ment steps for p = 1, 2 with K either coming from a multi-patch implementation with

25



2 Isogeometric analysis and finite elements

p h-steps 0 1 2 3 4
1 NElim. 54 225 1,215 7,803 55,539
1 NLM 150 435 1,797 9,705 62,385
1 N -ratio 36% 52% 68% 80% 89%
2 NElim. 225 588 2,178 10,830 66,150
2 NLM 423 948 3,006 13,170 73,818
2 N -ratio 53% 62% 72% 82% 90%

Table 2.1: Comparison of number of degrees of freedom N and DOF-ratios for multi-
patch constraint implementations using elimination (Elim.) and Lagrangian
multipliers (LM)

elimination (Elim.), i.e. K̂ from (2.23), or Lagrangian multipliers (LM ), i.e. K∗ from
(2.24). Elimination is (except for sorting of degrees of freedom) equivalent to the single-
patch parameterization and thus gives the same condition number of the matrix. When
Lagrangian multipliers are used, scaling of the constraints is an important factor: in the
case unscal. the constraints are implemented using 1 and -1, see (2.26), while in the case
scal. a scaling factor fij for each constraint on Γij was introduced as

fij = 1
2
(
µi + µj

)
· 1

2 ·
vol(Ωi) + vol(Ωj)√

`i · `j
, (2.29)

which averages the material parameters µ, volume of patches vol(Ω) and mesh refinement
as number of elements ` of both patches involved. This scaling factor is then of similar
magnitude as the entries of the stiffness matrix.

As expected, the condition number of the unscaled Lagrangian multiplier approach is
the worst, almost an order of magnitude above the elimination approach. However, with
an appropriate scaling of constraints the condition number of the scaled LM approach
stays on the same level as elimination.

We can conclude that scaling of constraints is important factor in improving the con-
dition number of the stiffness matrix of a multi-patch implementation with Lagrangian
multipliers. However, elimination still provides two major advantages: K is not only
symmetric, but also positive definite, which allows the use of iterative solvers for large
problems, and the total number of DOFs is smaller, see Table 2.1, which reduces solution
time for any linear solution method used, but especially for direct solvers.

2.4 Summary

Isogeometric analysis and isogeometric finite element discretizations are essential founda-
tions of the methods we develop and present in this thesis.

Since CAD and IGA both heavily rely on spline functions and spline geometries, we
have recapitulated the fundamental definitions and properties of B-Splines and NURBS
basis functions and geometries.
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2.4 Summary

Then we have introduced the isogeometric finite element discretization of a general
PDE problem and reviewed its main properties. Especially relevant in this work are the
advantages over classical FE in modal analysis and higher accuracy per DOF, which are a
result of the higher inter-element continuity of the spline-based k-method (IGA) compared
to piecewise polynomial formulations with C0-continuity, i.e. the p-method or FEM.

Isogeometric analysis of complex 3D geometries very often requires a multi-patch de-
composition of the domain into several spline volumes. Thus we have outlined two meth-
ods for enforcement of coupling constraints of conforming multi-patch parameterizations,
namely elimination and Lagrangian multipliers (LM). We have shown analytically and
numerically that both methods lead to the same result. As the Lagrangian multiplier ap-
proach requires the solution of a saddle point problem, we have also discussed properties
and solution methods of those. Furthermore, we have shown that scaling of coupling con-
straints is important when LM are used and has a great impact on the condition number
of the linear system to be solved.

The theory on saddle point problems is going to become relevant again in Chapter 6,
when incompressible problems are going to be treated with mixed methods.

27



28



3 Isogeometric finite elements
in nonlinear elasticity

As a first step towards nonlinear frequency analysis, we now apply the isogeometric finite
element method, which we have already introduced in preceding Chapter 2, for the spatial
semi-discretization of nonlinear continuum mechanics and dynamics.

First, we give a basic introduction to the 3-dimensional continuum mechanics back-
ground, i.e. kinematics, constitutive laws for hyperelasticity and visco-hyperelasticity,
and governing partial differential equations in Section 3.1. Then we apply the isogeomet-
ric finite element discretization to nonlinear elasticity, present solution methods for the
arising nonlinear equation system of elastostatics and review its properties in Section 3.2.
Furthermore, we include brief descriptions of linear elasticity (Section 3.3) and of the non-
linear Euler-Bernoulli beam model (Section 3.4), since these problems are also relevant for
feasibility, validation and benchmarking of nonlinear methods. Finally, in Section 3.5, we
use computational examples to demonstrate the properties of the isogeometric approach
and validate the implementations.

3.1 Continuum mechanics introduction

An introduction into continuum mechanics is given based on the monographs [20, 35,
83, 130]. The focus lies on ingredients necessary for the (isogeometric) finite element
formulation of nonlinear elasticity, which is then introduced in Section 3.2.

3.1.1 Kinematics

Motion and deformation of a solid body over time can be described with respect to its
initial or reference configuration given by the domain Ω̄, the closure of an open, bounded
and connected set Ω ∈ R3. At every time t ∈ R+, the current position y ∈ Ωt ⊂ R3 of each
material point x ∈ Ω can be expressed in terms of its initial position and a displacement
vector field u : Ω× R+ → R3 (see also Figure 3.1):

y(x, t) = x + u(x, t). (3.1)
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O

Ω
Ωt

x y(x, t)

u(x, t)

Figure 3.1: Motion of a solid body with domain Ω. At time t the current position y of a
material point is given in terms of its initial position x and displacement u

The term Lagrangian configuration is used when deformation is described with respect
to the initial, reference or material coordinates x. It is also possible to use the Eulerian
description, where deformation is expressed with respect to the current or spatial coor-
dinates y. In the following all kinematic and other quantities are only referring to the
Lagrangian configuration.

Deformation gradient

For the description of the deformation process we need a tensor, which maps material line
elements dx onto spatial line elements dy:

dy = F dx. (3.2)

This deformation gradient F : Ω×R+ → R3×3 can be expressed as the gradient of current
position with respect to initial position of each material point:

F(x, t) = dy
dx

(x, t) = I + du
dx

(x, t) = I +∇u(x, t). (3.3)

Since the mapping in (3.2) must be bijective and self-penetration of the body is excluded,
the Jacobian determinant J = det F must not be singular and J > 0. J is a measure
of the volume change of the body and for incompressible materials, which are addressed
separately in Chapter 6, it must hold J ≡ 1.

Strain measures

Furthermore we need strain measures defined in the initial configuration, such as the
Green-Lagrange strain tensor :

E(x, t) = 1
2
(
C(x, t)− I

)
. (3.4)

It is defined using the right Cauchy-Green tensor

C(x, t) = FTF = I +∇uT +∇u +∇uT∇u, (3.5)
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which is a quadratic expression in terms of the deformation gradient F resp. the displace-
ment gradient ∇u.

Time derivatives

For time-dependent problems and in the case of history resp. time-dependent constitutive
laws the time-derivatives of kinematic quantities also need to be considered. The velocity
and acceleration of a material point in the reference configuration read as:

v(x, t) = dy
dt

= ẏ(x, t) = u̇(x, t),

a(x, t) = d2y
dt2

= ÿ(x, t) = ü(x, t).
(3.6)

The time-derivative of the deformation gradient is

Ḟ(x, t) = ∇u̇ = ∇v, (3.7)

and of the Green-Lagrange and Cauchy-Green strain tensor it is

Ė(x, t) = 1
2Ċ(x, t) = 1

2
(
FT Ḟ + ḞTF

)
. (3.8)

3.1.2 Balance equations

With the kinematic quantities introduced in the preceding Section 3.1.1, we can follow
[20, 130] in formulating the strong form of local balance differential equations in the
Lagrangian configuration. These must hold for all material points x ∈ Ω at times t ∈ R+.
ρ0 being the initial and ρ the current mass density of the object, the conservation of

mass reads as ∫
Ωt

ρ(y, t)dy =
∫
Ω

ρ0(x)dx, (3.9)

which can be simplified to:
ρJ = ρ0. (3.10)

From the conservation of linear momentum the main partial differential equation de-
scribing motion of a body subject to volume forces ρ0b is derived, Cauchy’s equation of
motion:

div F S + ρ0b = ρ0ü. (3.11)

Local balance of angular momentum yields the symmetry of the second Piola-Kirchhoff
(PK2) stress tensor

S = ST , (3.12)

and the first law of thermodynamics, i.e. conservation of energy, reads:

ρ0u̇ = S · Ė− div Q + ρ0R, (3.13)

where u is the specific internal energy, R the heat source and Q heat flux.
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In addition to these equilibrium equations we need boundary conditions for displace-
ments and tractions for the elastostatic problem:

u = h on Γu,
F S n = t on Γn,

(3.14)

where Γu,Γn ⊂ ∂Ω are the parts of the boundary of the domain Ω where prescribed
displacements h and t tractions act, and n is the outer surface normal of a boundary
point.

Furthermore, for time-dependent elastodynamic problems also initial conditions for
displacements u and velocities v are needed:

u(x, 0) = û, v(x, 0) = v̂ ∀x ∈ Ω. (3.15)

3.1.3 Hyperelastic constitutive laws

The local balance equations as introduced in Section 3.1.2 feature a stress measure, namely
the second Piola-Kirchhoff stress tensor S, which is also defined in the material configura-
tion. It is related to the true Cauchy stress σ in the current configuration by the following
equation:

S = JF−1σF−T . (3.16)

For many materials, such as steel, aluminum or rubber, the assumption of Green elas-
ticity or hyperelasticity is valid, which means that the constitutive relation of strain and
stress is defined by a potential ψ, the so-called strain energy function. We only deal with
isotropic materials, which means that the response of the material is indifferent from the
directions. The 2nd Piola-Kirchhoff stress can then be expressed as derivative of the strain
energy function w.r.t. the Green-Lagrange or right Cauchy-Green strain tensors:

S = dψ

dE
= 2 dψ

dC
. (3.17)

General hyperelastic materials

For isotropic materials it is possible to express the strain energy function in a very general
way in terms of the invariants of the Cauchy-Green tensor:

ψ(C) = ψ(IC , IIC , IIIC), (3.18)

where the invariants can be expressed of the principal stretches, i.e. the roots λ1, λ2 and
λ3 of the eigenvalues of C (C is symmetric positive-definite):

IC = λ2
1 + λ2

2 + λ2
3 = tr(C),

IIC = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 = 1

2
(
tr(C)2 + tr(C2)

)
,

IIIC = λ2
1λ

2
2λ

2
3 = det C.

(3.19)
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3.1 Continuum mechanics introduction

Then it follows for the 2nd Piola-Kirchhoff stress:

S = 2
[(

∂ψ

∂IC
+ IC

∂ψ

∂IIC

)
I− ∂ψ

∂IIC
C + IIIC

∂ψ

∂IIIC
C−1

]
. (3.20)

Since the choice of ψ is still arbitrary and material parameters have to be fitted by
experiments, in practice a few choices of strain-energy functions are commonly used,
including Mooney-Rivlin, Ogden and Neo-Hookean laws [130].

Material laws used in this thesis

In this work we utilize to two commonly used choices of isotropic strain energy functions.
The first is the linear St. Venant-Kirchhoff material law, which is also used in linear
elasticity and restricted to large displacements and finite rotations but small strains:

ψ(E) = λ

2 tr(E)2 + µ tr(E2),

S = λ tr(E)I + 2µ E,
(3.21)

The second is a particular choice of a nonlinear Neo-Hookean material law:

ψ(C) = λ

2 (ln J)2 − µ ln J + µ

2 (tr(C)− 3) ,

S = λ ln J C−1 + µ (I−C−1).
(3.22)

Both material laws include two constitutive parameters, the so-called Lamé constants λ
and µ, which can be computed from the modulus of elasticity E (Young’s modulus) and
Poisson’s ratio ν:

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (3.23)

The case of ν → 0.5 and λ → ∞, i.e. (almost) incompressible material behavior, is
addressed in Chapter 6.

Linearization

For linearization within the later described solution process the incremental constitutive
4th order tensor, or elasticity tensor is needed:

C = dS
dE

= d2ψ

dE2 = 2 dS
dC

= 4 d
2ψ

dC2 (3.24)

For the St. Venant-Kirchhoff material it is

Cijkl = λ δijδkl + µ (δikδjl + δilδkj) , i, j, k, l = 1, 2, 3, (3.25)

and for the Neo-Hookean material

Cijkl = λC−1
ij C−1

kl + (µ− λ ln J)
(
C−1
ik C−1

jl + C−1
il C−1

kj

)
, i, j, k, l = 1, 2, 3. (3.26)
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(a) Kelvin-Voigt (b) Maxwell (c) Standard linear solid

Figure 3.2: Spring-dashpot models for linear viscoelastic material behavior (source:
wikipedia.org). E resp. E1 and E2 are the stiffnesses of linear springs and
τ is the relxation time of a damper element

3.1.4 Visco-hyperelasticity

While the static or quasi-static behavior of materials such as rubber or elastomers can be
described by (almost incompressible) hyperelastic materials laws, they show viscoelastic,
time- resp. frequency- (and temperature-) dependent material properties when subject to
harmonic loading [25, 46, 78, 130].

In one dimension several rheological models, i.e. spring-dashpot constitutive models,
exist for describing viscoelastic behavior and among them are (see also Figure 3.2):
• Kelvin-Voigt:

σ = Eε+ τ ε̇ (3.27)

• Maxwell:
Eσ + τ σ̇ = Eτε (3.28)

• Standard linear solid / generalized Maxwell:

E2σ + τ σ̇ = E1E2ε+ (E1 + E2)τ ε̇ (3.29)

Here τ is called relaxation time and η = τ/E = tan(δ) is the loss factor.
We extend 3-dimensional hyperelasticity to time-dependent visco-hyperelasticity by the

following enhancement of the PK2 stress tensor based on the Kelvin-Voigt model [46, 130]:

S = Se + Sv. (3.30)

Here, Se represents the hyperelastic stress contribution and Sv the viscous stress contri-
bution, which depends on the rate of the Green-Lagrange strain Ė. Se is selected from
one of the hyperelastic constitutive laws and possible examples for Sv are

Sv = 2ηµĖ. (3.31)

in analogy to linear viscoelasticity, or from [130]:

Sv = JτC−1ĖC−1. (3.32)

In harmonic motion the material parameters such as Young’s modulus E, loss factor η
and eventually Poisson’s ratio ν are typically not constant, but depend on the frequency
f resp. angular frequency ω = 2πf . An example for a material with strongly frequency-
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Figure 3.3: Example of frequency-dependent material properties: Young’s modulus E,
Poisson’s ratio ν and loss factor η over excitation frequency f for polymer
material Viton R© 50◦ShA

dependent material properties is Viton R© 50◦ShA, a polymer which is frequently used for
sealing rings and gaskets. Measurements of material properties have been obtained at
Siemens and are shown in Figure 3.3.

However, realistic modeling of materials with viscoelastic properties in general is a wide
field of scientific research by itself and thus beyond the scope of this work. As material
properties are very characteristic for a specific material used, we take the frequency-
dependent properties of Viton R© 50◦ShA, as given in Figure 3.3, as an example to test
the methods developed in this thesis.

3.2 Nonlinear isogeometric finite element analysis

Since an analytical solution of problems in nonlinear mechanics is usually not possible
for complicated domains and material laws, we seek a numerical approximation using
an isogeometric finite element discretization of continuum mechanics equations. It is
based on the weak form of the equation of motion (Section 3.2.1) and isogeometric spline
discretizations of geometry and displacement field (Section 3.2.2). The resulting nonlinear
system of equations, which needs to be solved in order to determine the unknown control
point displacements of a static deformation, is solved by a Newton’s method (Section
3.2.3).

3.2.1 Weak form of the equation of motion

To find an approximate solution uh of the exact displacement u of the nonlinear continuum
mechanics problem governed by balance equations introduced in Section 3.1.2, we only
demand that the equation of motion (3.11) is fulfilled in a weak sense [130]. Thus the
residual remaining from (3.11) is multiplied with a test function δu, the so-called virtual
displacement fulfilling the boundary condition δu = 0 on Γu, and then integrated over
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3 Isogeometric finite elements in nonlinear elasticity

the domain Ω:∫
Ω

{
ρ0 δuT üh − δuTdiv

(
F(uh) S(uh)

)
− ρ0 δuTb

}
dx = 0 ∀δu. (3.33)

Integration by parts of this principle of virtual work and application of divergence theorem
yield:∫

Ω

ρ0 δuT üh dx +
∫
Ω

∇(δu) ·
(
F(uh) S(uh)

)
dx =

∫
Ω

ρ0 δuTb dx +
∫

Γn

δuT t dΓ. (3.34)

This can be rewritten using the variation of the Green-Lagrange strain tensor

δE = 1
2
(
∇(δu)TF + FT∇(δu)

)
(3.35)

as the weak form of the equation of motion:∫
Ω

ρ0 δuT üh dx +
∫
Ω

δE · S(uh) dx =
∫
Ω

ρ0 δuTb dx +
∫

Γn

δuT t dΓ ∀δu. (3.36)

The first term on the left of the equality sign refers to the virtual change in kinetic energy,
the second to the internal virtual work and the terms on the right to the external virtual
work from applied body forces and surface tractions.

In the case of compressible hyperelastic materials, a displacement-based strain energy
function ψ exists, describing the elastic energy stored in the solid. Then the virtual work
equation (3.36) of the static problem, where ü = 0, can also be derived by minimizing an
elastic energy functional [7, 130]:

Πd(u) =
∫
Ω

ψ(C) dx−
∫
Ω

ρ0 b dx +
∫

Γn

t dΓ → min. (3.37)

An approximation of the minimizer uh can then be found by setting the first variation
of (3.37) to zero, i.e. dΠd(uh)[δu] = 0, which leads to the virtual work equation (3.36)
(without the kinetic energy term).

3.2.2 Isogeometric finite element discretization

For the spatial discretization and solution of the virtual work equation (3.36) we use the
isogeometric finite element method as introduced in Section 2.2.1.

Starting point is a trivariate spline volume parameterization of material coordinates,
i.e. the geometry function mapping a parameter domain Ω0 ⊂ R3 onto the material
coordinates x ∈ Ω ⊂ R3:

x = g(ξ) =
n∑
i=1

Np
i (ξ) vi , ξ ∈ Ω0. (3.38)

As already mentioned in Section 2.1.2, degree p, number of basis functions n and index i
should be understood as 3-dimensional vectors resp. multi-indices.
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3.2 Nonlinear isogeometric finite element analysis

The discretized spaces for displacements uh ∈ Sh ⊂ S and virtual displacements δuh ∈
Vh ⊂ V are selected as push-forward of the spline spaces defining the geometry onto the
material coordinates, see (2.10):

uh(x, t) =
n∑
i=1

Np
i

(
g−1(x)

)
di(t),

δuh(x) =
n∑
i=1

Np
i

(
g−1(x)

)
δdi.

(3.39)

The kinematic quantities described in Section 3.1.1 have to be evaluated depending on
the discretized displacements. For the deformation gradient this means:

F(x, t) = I +∇uh(x, t) = I +
n∑
i=1

di(t)∇Np
i (x)

= I +
n∑
i=1

di(t)
dNp

i

dξ

(
g−1(x)

)
·
(
dg
dξ

)−1

.

(3.40)

Cauchy-Green and Green-Lagrange strain tensors can then be computed from F and the
2nd Piola-Kirchhoff stress can be evaluated. Switching to the Voigt vector notation for
matrices E and S (see [130])

~E = (E11, E22, E33, 2E12, 2E23, 2E13)T ,
~S = (S11, S22, S33, S12, S23, S13)T ,

(3.41)

the virtual Green-Lagrange strain tensor can be written as

δ~Ei(x) = Bi(x) δdi, (3.42)

with virtual displacement control points δdi and the matrix Bi ∈ R6×3 as:

Bi(x) =



F11N
p
i,1 F21N

p
i,1 F31N

p
i,1

F12N
p
i,2 F22N

p
i,2 F32N

p
i,2

F13N
p
i,3 F23N

p
i,3 F33N

p
i,3

F11N
p
i,2 + F12N

p
i,1 F21N

p
i,2 + F22N

p
i,1 F31N

p
i,2 + F32N

p
i,1

F12N
p
i,3 + F13N

p
i,2 F22N

p
i,3 + F23N

p
i,2 F32N

p
i,3 + F33N

p
i,2

F11N
p
i,3 + F13N

p
i,1 F21N

p
i,3 + F23N

p
i,1 F31N

p
i,3 + F33N

p
i,1


=̂ 1

2
(
∇Np

i (x)T F(x) + F(x)T ∇Np
i (x)

)
.

(3.43)

Inserting all the discretized kinematic quantities into the weak form of the equation of
motion (3.36) then yields:

δdTi
∫
Ω

ρ0 N
p
i INp

j dx d̈j + δdTi
∫
Ω

BT
i
~S(d) dx

= δdTi
∫
Ω

ρ0 N
p
i b dx + δdTi

∫
Γn

Np
i t dΓ i, j = 1, . . . , n.

(3.44)

Since this equation has to be fulfilled for all admissible δdi, we finally arrive at the

37



3 Isogeometric finite elements in nonlinear elasticity

discretized equation of motion, just as in standard finite element methods [62, 130]:

M d̈(t) + f (d(t)) = b(t), (3.45)

which needs to be solved for the unknown vector of control point displacements d. There-
for the entries of the internal force vector f ∈ RN ,

fi =
∫
Ω

BT
i
~S(d) dx i = 1, . . . , n, (3.46)

the external force vector b ∈ RN ,

bi =
∫
Ω

ρ0 N
p
i b dx +

∫
Γn

Np
i t dΓ i = 1, . . . , n, (3.47)

and the consistent mass matrix M ∈ RN×N ,

Mij = I
∫
Ω

ρ0 N
p
i N

p
j dx i, j = 1, . . . , n, (3.48)

have to be assembled.

3.2.3 Solution of the static problem

In the elastostatic problem the time-dependence of external force and internal variables
is neglected and the equation of motion (3.11) is

−div F S(u) = ρ0b, (3.49)

and its discretized form, compare (3.45), reads:

f(d) = b. (3.50)

Existence of a solution

As in detail discussed in [35, 83], a number of constitutive assumptions has to be made
in order to show the existence of a solution of the continuous problem of elasticity (3.49).
These include:
• Isotropy and the existence of a stored energy function ψ, see Section 3.1.3
• For small strains the stored energy function must take the form

ψ(E) = λ

2 tr(E)2 + µ tr(E2) +O(‖E‖2) (3.51)

• Large strains must result in large stresses, i.e.

lim
det F→+0

ψ(F) = +∞ ∧ lim
det F→+∞

ψ(F) = +∞ (3.52)

• Poly- or quasi-convexity of the strain energy function
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3.2 Nonlinear isogeometric finite element analysis

Algorithm 1 Newton’s method for nonlinear elasticity
1: Initial guess: d0

2: Tolerances: εd, εr > 0
3: Initialization: s← 0
4: repeat
5: Assembly: f s ← f(ds), Ks

T ← KT (ds)
6: Evaluate residual: rs ← f s − b
7: Compute update: ∆ds ← Solve Ks

T ∆ds = −rs

8: Evaluate error: ed ← ‖∆ds‖
‖ds‖ , er ← ‖rs‖

‖b‖

9: Update: ds+1 ← ds + ∆ds

10: s← s+ 1
11: until ed < εd ∧ er < εr

12: Return value: d← ds

• The Legendre-Hadamard condition, i.e. ellipticity or positive definiteness of the
elasticity tensor C(F) (3.24)

Under these constitutive and further assumptions, such as smoothness of the boundary
of Ω, it is shown in [35, 83] that a nonlinear elasticity problem has a solution in the
neighborhood of the solution of the linearized problem (Section 3.3). However, in practical
applications some of these conditions might be violated and in general several (or even
infinite) solutions may exist and bifurcation of solution paths can occur.

Numerical solution using Newton’s method

To solve the nonlinear system of equations (3.50) for the unknown control point displace-
ments d, it is rewritten in residual form:

r(d) = f(d)− b = 0. (3.53)

Typically, iterative procedures are used to find an approximate solution of the residual
equation, such as fixed-point methods, Newton-Raphson methods, modified or quasi-
Newton methods, and arc-length continuation methods [130].

In Algorithm 1 we describe the use of a classical Newton-Raphson method for the
solution of the static nonlinear elasticity problem (3.53).

As initial guess typically d0 = 0 is used, which yields the solution of the linear problem
as d1 in the first iteration. In case Algorithm 1 is part of a loop with increasing load
factor λ = 1, 2, . . . for the right-hand side b(λ) = λb, the result of the previous load step
is used. Since the solution of (3.50) is not necessarily unique and Newton’s method can
only find a solution in the neighborhood of the initial guess, d0 is a crucial input quantity.

The matrix KT (d) is the so-called tangential stiffness matrix. It is the derivative of the
residual r, resp. the internal force vector f, w.r.t. the displacement vector d:

KT (d) = dr
dd

(d) = df
dd

(d). (3.54)
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It can be computed and assembled as a sum of two matrices:

K(d) = Kgeo(d) + Kmat(d), (3.55)

with the geometric tangent matrix

Kgeo
ij (d) =

∑̀
e=1

I
∫
Ωe

∇Np T
i S(d)∇Np

j dx

 (3.56)

and the material tangent matrix

Kmat
ij (d) =

∑̀
e=1


∫
Ωe

BT
i C(d) Bj dx

 . (3.57)

Here C = d~S
d~E ∈ R6×6 is the matrix form of the constitutive 4th order tensor (3.24).

The internal force vector f s and tangential stiffness matrix Ks
T have to be reassembled in

every step s of the iteration, since they depend on the current displacement ds, while the
right-hand side vector b stays constant, as we do not consider right-hand sides dependent
on d.

The structure and solution procedure of the system Ks
T ∆ds = −rs for the displacement

update ∆ds is also completely analogous to the general linear case, see Sections 2.2.2.
Two convergence criteria are checked: ed is measuring the relative size of the increment

in the s-th step and er is the norm of the residual, normalized by the norm of the right-
hand side. Once the convergence criteria are met, the displacement from the last iteration
step ds is returned and can be used to to compute the current configuration y = x+u(x)
as displaced NURBS volume and other postprocessing results such as evaluation of stresses
and strains.

Remark 3.1. As discussed for general linear problems in Section 2.3, an extension of
the isogeometric finite element discretization of nonlinear elasticity to multi-patch param-
eterizations is possible in a straight-forward manner. It was also implemented for the
numerical examples discussed in this thesis.

3.3 Brief note on linear elasticity

Linear elasticity theory can be interpreted as a linearization of nonlinear theory around the
undeformed and stress-free initial state [83]. It is only valid for small displacements and
strains, i.e. when ‖∇u‖ � 1. Here we briefly review the equations and IGA discretization
of linear elasticity, since we are going to compare results of linear and nonlinear analysis
for validation of methods and implementations, for instance in Section 3.5.

The equation of motion of linear elasticity, compare (3.11), reads

ρü− div σ(u) = ρb, (3.58)

where the Cauchy stress σ is expressed by the linear St. Venant-Kirchhoff constitutive
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3.4 Nonlinear Euler-Bernoulli beam

law, see (3.21),
σ(u) = 2µ ε(u) + λ tr(ε(u))I = C : ε(u), (3.59)

using the linear strain tensor, which is a linearization of the Green-Lagrange strain tensor
(3.4),

ε(u) = 1
2
(
∇uT +∇u

)
, (3.60)

and the 4th order linear elasticity tensor, see (3.25),

Cijkl = λ δijδkl + µ (δikδjl + δilδkj) , i, j, k, l = 1, 2, 3. (3.61)

The corresponding stored energy function can be written as

ψ(ε) = 1
2ε : C : ε = µ tr(ε2) + λ

2 tr(ε)2. (3.62)

For the weak form of the boundary value problem associated with (3.58) it follows:∫
Ω

ρ0 δuT üh dx +
∫
Ω

δε · σ(uh) dx =
∫
Ω

ρ0 δuTb dx +
∫

Γn

δuT t dΓ ∀δu, (3.63)

with δε = 1
2(∇(δu) +∇(δu)T ). Taking advantage of the symmetries of σ and C this can

be rewritten as∫
Ω

ρ0 δuT üh dx +
∫
Ω

∇(δu) · C · ∇uh dx =
∫
Ω

ρ0 δuTb dx +
∫

Γn

δuT t dΓ ∀δu. (3.64)

Note that the linear elastostatic problem∫
Ω

∇(δu) · C · ∇uh dx =
∫
Ω

ρ0 δuTb dx +
∫

Γn

δuT t dΓ ∀δu. (3.65)

has exactly the same form as the abstract linear PDE problem (2.7) used for the intro-
duction of isogeometric finite element methods in Section 2.2.1, where

a(v,u) =
∫
Ω

∇v · C · ∇u dx. (3.66)

An isogeometric finite element discretization of the form uh(x) = ∑n
i=1N

p
i (x)di then leads

to the solution of a linear equation system K d = b, as discussed in detail in Section 2.2.

3.4 Nonlinear Euler-Bernoulli beam

As a proof of concept, in [126, 127] we have already investigated isogeometric finite ele-
ment discretizations and nonlinear frequency analysis for a simpler nonlinear structural
mechanical model, the nonlinear Euler-Bernoulli beam model. Since we also use it for
validation of methods and convergence analysis in this thesis, see Section 4.4.1, we include
here a brief review of nonlinear Euler-Bernoulli beam theory and its discretization, too.
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Figure 3.4: Unsupported beam under external forces line load q and line-edge load f with
transverse deformation w0 and longitudinal deformation u0 of neutral axis
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Figure 3.5: Internal forces and moments on an infinitesimal beam segment

3.4.1 Nonlinear Euler-Bernoulli beam model

A nonlinear beam model based on Euler-Bernoulli hypothesis and von Kármán strains is
presented in detail in [20, 87, 95]. This theory, which is suitable for transverse deforma-
tions with small strains and moderate rotations, will be briefly summarized using [95] as
main reference.

The displacement field (u1, u2, u3) along coordinate axis (x, y, z) is expressed by the
axial and transversal displacements of the neutral axis u0(x) and w0(x), see Figure 3.4:

u1 = u0(x)− z w′0(x), u2 = 0, u3 = w0(x). (3.67)

From the general definition of strains

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ 1

2

3∑
k=1

∂uk
∂xi

∂uk
∂xj

, (3.68)

only the 00- resp. xx-component of the moderately nonlinear von Kármán strain is con-
sidered

εxx = u′0 + 1
2w
′
0

2 − z w′′0 = ε0
xx + z ε1

xx, (3.69)

with the axial strain ε0
xx and curvature ε1

xx:

ε0
xx = u′0 + 1

2w
′
0

2
, ε1

xx = −w′′0 . (3.70)

From the linear constitutive law, i.e. Hooke’s law, for the stress σxx = Eεxx of an
isotropic beam with Young’s modulus E, cross section area A and second moment of
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3.4 Nonlinear Euler-Bernoulli beam

area I, we obtain the internal force in x-direction Nxx and the internal bending moment
around y-axis Mxx,

Nxx = EA ε0
xx, Mxx = EI ε1

xx. (3.71)

The equilibrium of internal forces and moments with axial and transversal external
forces f(x) and q(x) applied on an infinitesimal beam segment ∆x (see Figure 3.5) and
taking the limit ∆x→ 0 leads to the governing equations

−N ′xx = f(x),
− (Nxx w

′
0)′ −M ′′

xx = q(x).
(3.72)

Inserting equations (3.70) and (3.71) into (3.72) then results in the differential equations
for the bending of a nonlinear Euler-Bernoulli beam, depending on axial and transversal
deformations u0 and w0:

−
[
EA

(
u′0 + 1

2w
′
0

2
)]′

= f(x),

−
[
EA

(
u′0 + 1

2w
′
0

2
)
w′0

]′
−
[
−EI w′′0

]′′
= q(x).

(3.73)

3.4.2 Isogeometric finite element discretization

For a finite element discretization of the nonlinear beam formulation we need the weak
form of governing equations (3.72) resp. (3.73). According to [95] these will be derived
directly from the strong form (3.72) using the method of weighted residuals, i.e. multi-
plying the equations with test functions v1 resp. v2, taking the integral over the length L
of the beam and applying integration by parts once resp. twice:

L∫
0

Nxx · v′1 dx =
L∫

0

f · v1 dx+ [Nxx · v1]L0 ,

L∫
0

−Mxx · v′′2 + w′0 ·Nxx · v′2 dx =

L∫
0

q · v2 dx+ [(M ′
xx + w′0 ·Nxx) · v2]L0 + [Mxx · v′2]L0 .

(3.74)

The deformations u0 and w0, as well as test functions v1 and v2 must be included in
appropriate function spaces Su,Sw,Vu,Vw and satisfy prescribed deformation boundary
conditions [62].

To solve the weak equations (3.74), Galerkin discretization is applied, i.e., the problem
is solved on a mesh Ωh with finite-dimensional function spaces Shu ⊂ Su, Shw ⊂ Sw, Vhu ⊂
Vu, Vhw ⊂ Vw defined on Ωh. Then u0 and w0 can be expressed as

u0(x) =
n∑
i=1

uiN
p
i (x), w0(x) =

n∑
i=1

wiN
p
i (x) (3.75)

with {Np
i }i=1,...,n being a spline basis of Shu and Shw.
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3 Isogeometric finite elements in nonlinear elasticity

Inserting these representations into (3.74) leads to the nonlinear system
n∑
j=1

K11
ij uj +

n∑
J=1

K12
iJ (w0) wJ = b1

i , i = 1, . . . , n,

n∑
j=1

K21
Ij (w0) uj +

n∑
J=1

K22
IJ(w0) wJ = b2

I , I = 1, . . . , n,
(3.76)

with stiffness matrices and force vectors

K11
ij =

L∫
0

EA Np
i
′ Np

j
′ dx,

K12
iJ (w0) = 1

2

L∫
0

EA w′0 N
p
i
′ Np

J
′ dx,

K21
Ij (w0) =

L∫
0

EA w′0 N
p
I
′ Np

j
′ dx = 2 K12

jI ,

K22
IJ(w0) =

L∫
0

EI Np
I
′′ Np

J
′′ dx+ 1

2

L∫
0

EA w′′0 N
p
I
′ Np

J
′ dx,

b1
i =

L∫
0

f(x) Np
i dx + Q̂i,

b2
I =

L∫
0

q(x) Np
I dx + Q̄I .

(3.77)

and Q̂i, Q̄I being boundary terms derived from (3.74). More details can be found in [95].
Now (3.77) can be condensed to the following nonlinear equation system for control point
deformations d, with deformation-dependent stiffness matrix K = K(d) and force vector
b:

d =
(

u
w

)
, K(d) =

(
K11 K12

K21 K22

)
, b =

(
b1

b2

)
, (3.78)

f(d) = K(d) d = b. (3.79)

This nonlinear system of equations has the same structure as (3.53) and can be solved
using Newton’s method as in Algorithm 1 to compute the static displacement of the beam.

Computational applications and convergence studies for static displacements of the
nonlinear Euler-Bernoulli beam with isogeometric finite element discretization, i.e. ex-
amples for the solution of (3.79) were computed and discussed in [126, 127]. Results and
numerical convergence analysis for nonlinear frequency analysis were also obtained in the
scope of [126, 127] and are presented here in Section 4.4.1.
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Figure 3.6: Geometry and deformation of thick cylinder

3.5 Computational applications

With the computational examples presented in this section we want to validate the im-
plementation of our isogeometric finite element discretization of 3-dimensional static non-
linear elasticity with large deformations and nonlinear constitutive laws.

3.5.1 Large deformation of thick cylinder

As a first benchmark for the validation of the solution of the nonlinear elastostatic problem
using isogeometric finite elements we take the large deformation of a thick cylinder. This
problem was already investigated in [84] to show the advantages of isogeometric compared
to Lagrangian finite elements.

Due to symmetry, the cylinder can be modeled as a quarter cylinder, which is displayed
in Figure 3.6(a). The geometrical parameters of the quarter cylinder are inner radius r =
0.08 m, thickness t = 0.02 m and length l = 0.15 m. This geometry can be parameterized
exactly as a NURBS volume, using quadratic NURBS in circumferential direction (u) and
linear B-Splines in thickness (v) and length direction (w).

For the analysis, parameters of Neo-Hookean material are chosen the same as in [84]:
E = 16.8 kPa, ν = 0.4 and ρ = 470.0 kg/m3. Opposing surface loads are applied with
t = (0, 0, 235.0)T Pa (Figure 3.6(a)) and cause a very large compression of the quarter
cylinder, as can be seen in Figure 3.6(b).

For the validation of our implementation we refine the spline parameterization of ge-
ometry for the analysis and obtain a mesh with p = (4, 4, 3), ` = (16, 8, 1), n = 3168.
Then we compute the deformation field and evaluate stresses. In Figure 3.6(b) the de-
formed cylinder is visualized and colored by the values of Cauchy stress σyz. These results
correspond optically very well with the ones obtained in [84].

Furthermore, we carry out a small convergence study for k-refinement of the isogeomet-
ric analysis mesh. The load is decreased on 100 instead of 235 Pa in order to ensure conver-
gence of Newton iterations and guarantee a realistic deformation without self-penetration
of the cylinder. k-refinement is performed to obtain degree p = 2, 3 in all three parameter
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3 Isogeometric finite elements in nonlinear elasticity
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Figure 3.7: Convergence of relative errors in L2- and H1-norm for linear and nonlinear
large deformation analysis of thick cylinder. k-refinement was performed to
obtain degree p = 2, 3 and mesh size h of the parameterization

directions of the mesh. For h-refinement the mesh size parameter depends on the number
of elements and the geometry. It is computed as:

h = max
{
π

2
r + t

`u
,
l

`v
,
t

`w

}
. (3.80)

For the comparison we evaluate the relative errors of numerical solutions uh in L2- and
H1-norm:

rel. L2 :
‖u∗ − uh‖L2(Ω)

‖u∗‖L2(Ω)
, rel. H1 :

‖u∗ − uh‖H1(Ω)

‖u∗‖H1(Ω)
, (3.81)

where we take numerical solution for the maximally refined mesh with p = (3, 3, 3), ` =
(16, 16, 2), n = 10830 as reference solution u∗.

Results of the convergence study are shown in Figure 3.7. We can observe roughly the
expected convergence rates of order p + 1 for the L2- and order p for the H1-norm for
both linear and nonlinear analysis. Until convergence criteria of the Newton’s method
are met in the nonlinear case, i.e. a relative error of residual of 10−5 and relative error of
displacement update of 10−6, 7-9 iterations are needed.

With this cylinder example we have validated the implementation of our isogeometric
finite element discretization of nonlinear elasticity by a comparison with the results of
[84] and a convergence study.

3.5.2 TERRIFIC Demonstrator as multi-patch example

The so-called “TERRIFIC Demonstrator” is a mechanical part which was introduced
within the European project “TERRIFIC” [53] to show an isogeometric CAE workflow
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3.5 Computational applications

(a) geometry in CAD system (b) IGA-suitable multi-patch parameterization

Figure 3.8: Geometry of the TERRIFIC Demonstrator as design in a CAD system (a) and
as an analysis-suitable multi-patch volume model (b). Patches are highlighted
in different colors; boundaries Γu and Γn, as well as evaluation point E, are
also shown in (b)

from design, over analysis to manufacturing. It was designed in a CAD system (Fig-
ure 3.8(a)), an IGA-suitable NURBS volume parameterization was generated for me-
chanical simulation (Figure 3.8(b)), and also other models for dip-paint simulation and
computer-aided manufacturing were derived. Acknowledgement for the design goes to
Stefan Boschert from Siemens Corporate Technology in Munich and for the multi-patch
parameterization to Vibeke Skytt from SINTEF in Oslo.

The TERRIFIC Demonstrator serves also as a realistic, industrial-scale application of
the methods developed within this thesis. The isogeometric volume parameterization
consists of 15 patches of quadratic B-Spline volumes, with a total of 6,474 control points
and 19,422 DOFs. When multi-patch coupling with Lagrangian multipliers is used, the
isogeometric finite element discretization of the model has 22,914 DOFs, otherwise when
elimination is used, it is only 15,930 DOFs.

Now we want to compare the results of both types of multi-patch constraint implemen-
tations for static linear and nonlinear analysis. We choose St. Venant-Kirchhoff material
law with the following material parameters:

E = 74.0 GPa, ν = 0.33, ρ = 2800 kg/m3. (3.82)

As boundary conditions we take a clamping of the right bore hole in Figure 3.8(a) by a
zero Dirichlet condition at Γu and a surface traction on the left bore hole as a Neumann
boundary condition on Γn:

u = 0 on Γu,
t = (60.0, −42.0, 0.0)T MPa on Γn.

(3.83)

Running the isogeometric finite element simulations, we find that the results of both
multi-patch implementations are equal up to at least 12 significant digits for linear and
nonlinear analysis for all quantities observed, which are displacement at evaluation point
E in Figure 3.8(b), L2- and H1-norms of displacement field, and potential energy. The
different constraint implementation strategies do not have an influence on assembly times,
but of course on the solution time of the linear system. Here it is around 3-times faster
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3 Isogeometric finite elements in nonlinear elasticity

(a) Colored by displacement magnitude in m

(b) Colored by von Mises stress in Pa

Figure 3.9: Linear (left) and nonlinear (right) deformation of TERRIFIC Demonstrator.
Linear analysis over-estimates displacements (a) and stresses (b) more than
20% compared to nonlinear results

for elimination than for Lagrangian multipliers, since the linear system is smaller and has
better properties, i.e. it is not a saddle-point problem.

Simulation results for the static linear and nonlinear elasticity computations are visu-
alized in Figure 3.9, where the deformed structure is plotted and colored by values of
deformation magnitude 3.9a and von Mises stress 3.9b. Even though the difference be-
tween linear and nonlinear analysis might not look significant, the comparison in Table
3.1 shows that quantities such as deformation at evaluation point E, L2- and H1-norms
of displacement, and potential energy deviate more than 20% and thus justify the use of
nonlinear analysis methods.

In Figure 3.10 it can be noticed that unphysical high stress peaks occur at indentations
in the bending area of the part. These peaks appear for linear and nonlinear analysis, and
are caused by a bad parameterization, which is near-singular at the highlighted positions
on the boundaries, i.e. det(dx/dξ) ≈ 0. This is not so much a problem for the analysis
itself, since quadrature points are located off the boundaries, but for the postprocessing
with strain and stress evaluation. However, it shows both the difficulty of obtaining
parameterizations for realistic geometries and the need for development of sophisticated
methods (see Section 2.3.1).

Altogether, with this computational example we have validated the two alternative
implementations of multi-patch constraints also for nonlinear elasticity. Furthermore we
have seen that near-singular parameterizations may cause problems for stress evaluation
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3.6 Summary

ux [m] uy [m] uz [m] Epot [J] ‖u‖L2 ‖u‖H1

linear 0.0183 0.0086 0.0018 1.23·103 2.03·10−4 1.89·10−3

nonlinear 0.0142 0.0066 0.0011 9.80·102 1.53·10−4 1.47·10−3

nonl./lin. 77.4% 76.0% 57.3% 79.4% 75.3% 77.8%

Table 3.1: Comparison of simulation results for linear and nonlinear deformation anal-
ysis of TERRIFIC Demonstrator. Deviations of more than 20% show that
linearization is not accurate and justify the use of nonlinear analysis

Figure 3.10: Unphysical high stress peaks, which occur at indentations in the bending
area of the part, are highlighted in purple circles. They are caused by a bad,
near-singular geometry parameterization

and should be avoided. However, this is an issue of the generation of analysis-suitable
parameterizations and beyond the scope of this work.

3.6 Summary

We have dedicated this chapter to the spatial discretization of nonlinear elasticity prob-
lems using the isogeometric finite element method, which was already introduced in Chap-
ter 2.

We have started with an introduction to fundamentals of 3-dimensional continuum
mechanics. As we aim at the simulation of vibrations of rubber components, also visco-
hyperelastic constitutive laws with frequency-dependent material parameters need to be
considered.

Then we have explained the application of the isogeometric finite element method to
the discretization of the nonlinear continuum mechanics problem. The displacements of
static deformations can then be computed using a Newton’s method.
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3 Isogeometric finite elements in nonlinear elasticity

For the evaluation of nonlinear analysis, we need to compare the results with linear
elasticity, which is only valid for small displacements. Furthermore, we have introduced
the simpler structural model of the nonlinear Euler-Bernoulli beam, which also serves for
validation and benchmarking of our methods.

Finally, we have used computational applications to validate the implementation of iso-
geometric finite elements for nonlinear elasticity and confirmed the convergence proper-
ties. With the TERRIFIC Demonstrator example, we have proven the ability to simulate
realistic geometries as isogeometric multi-patch models.
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4 Nonlinear frequency analysis

Having introduced the problem formulation of nonlinear structural dynamics and the
spatial discretization using isogeometric finite elements in preceding Chapter 3, we now
target the topic of frequency analysis.

We start with a brief review of methods for linear frequency analysis, i.e. modal analysis
of eigenfrequencies and eigenmodes, and direct frequency response to harmonic excitations
in Section 4.1. Thereafter we give a general survey of methods for nonlinear frequency
analysis in Section 4.2. Then we introduce in detail the method of harmonic balance for
nonlinear steady-state frequency response analysis for periodic excitations, its application
in nonlinear mechanics and its properties in Section 4.3. Finally, in Section 4.4 we discuss
computational examples for nonlinear frequency analysis using harmonic balance and
isogeometric finite element discretizations.

4.1 Overview of linear frequency analysis methods

In Section 3.3 we have introduced the linear elasticity problem, which reads, see (3.58),

ρü− div σ(u) = ρb ∀x ∈ Ω, t ∈ [0, T ], (4.1)

in the strong form. After (isogeometric) finite element discretization we have a system of
N coupled linear ordinary differential equations for control point displacements d:

M d̈(t) + K d(t) = b(t) ∀t ∈ [0, T ]. (4.2)

Furthermore, in vibration problems we have periodicity conditions for the displacement
vectors in time:

d(0) = d(T ) ∧ ḋ(0) = ḋ(T ). (4.3)

In structural dynamics very often velocity-dependent damping is introduced in the
discretized equation of motion:

M d̈(t) + C ḋ(t) + K d(t) = b(t) ∀t ∈ [0, T ]. (4.4)

The damping term C ḋ can relate to viscose effects in the material, internal or external
friction and leads to dissipation of energy [130]. Using ḋ = v, (4.4) can also be rewritten
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4 Nonlinear frequency analysis

as a first order linear symmetric ODE system:(
M 0
0 −K

)(
v̇
ḋ

)
+
(

C K
K 0

)(
v
d

)
=
(

b
0

)
. (4.5)

A typical choice of the damping matrix is so-called Rayleigh or modal damping, where
C = αM + βK. The Rayleigh coefficients α, β > 0 have to be chosen carefully and fit to
the material used and also to a frequency range where they are valid [62].

When linear viscoelastic materials are employed, and can be described using the Kelvin-
Voigt model, see Section 3.1.4, the damping matrix takes the form C = ηK, where η is
the loss factor.

4.1.1 Modal analysis and eigenfrequencies

Modal analysis plays an important role in structural and mechanical engineering, since
eigenfrequencies and eigenforms are important characteristics of the dynamical behavior of
structures. Solutions of the generalized eigenvalue problem indicate resonance frequencies
that should be avoided for forced vibrations [62].

Linear eigenvalue problem

From the equation of motion (4.2) with b(t) ≡ 0 and periodicity conditions (4.3) by
making the ansatz d(t) = φk e

iωkt one can derive the well-known eigenvalue problem

ω2
k M φk = K φk, k = 1, . . . , N, (4.6)

for the N linear natural frequencies ωk > 0, resp. eigenfrequencies λk = ω2
k, and corre-

sponding eigenvectors or eigenmodes φk 6= 0 [39, 62]. Using Λ = diag(ω2
1, . . . , ω

2
N) and

Φ = (φ1, . . . ,φN), the eigenvalue problem can be written as:

Λ M Φ = K Φ. (4.7)

Typically the eigenmodes are normalized such that

ΦT M Φ = I and ΦT K Φ = Λ. (4.8)

As we have already outlined in Section 2.2.2, higher smoothness of isogeometric spline
discretizations is particularly advantageous compared to standard C0 finite elements for
the solution of eigenvalue problems [42, 76].

Complex eigenvalue problem

When damping is included, the ansatz d(t) = φk e
λkt is made with complex λk and it

follows that v(t) = λk φk e
λkt =: ψk e

λkt and thus

λk

(
−M 0

0 K

)(
ψk

φk

)
=
(

C K
K 0

)(
ψk

φk

)
, k = 1, . . . , 2N. (4.9)
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4.1 Overview of linear frequency analysis methods

Algorithm 2 Iterative eigenvalue problem for frequency-dependent materials
1: for k = 1, 2, . . . do
2: Solve: ω0

k
2 M φ0

k = K(0) φ0
k

3: Initialization: s← 0
4: repeat
5: s← s+ 1
6: Assembly: Ks ← K(ωs−1

k )
7: Solve: ωsk

2 M φsk = Ks φsk

8: until |(ωsk − ωs−1
k )/ωsk| < ε

9: Return values: ω̂k = ωsk, φ̂k = φsk

10: end for

This gives N pairs of complex-conjugate eigenvalues of the form

k = 1, . . . , N :

 λ2k−1 = −ζkωk − iωk
√

1− ζ2
k ,

λ2k = −ζkωk + iωk
√

1− ζ2
k .

(4.10)

where ωk are again the natural frequencies and ζk the modal damping ratios, which can
be computed from λ2k−1 = αk − iβk and λ2k = αk + iβk:

ωk =
√
α2
k + β2

k , ζk = −αk/ωk, k = 1, . . . , N. (4.11)

The damped and undamped natural frequencies are equal when the matrix KM−1C is
symmetric [79], which is the case for Rayleigh and viscoelastic Kelvin-Voigt damping:

C = αM + βK ⇒ KM−1C = αK + βKM−1K,

C = ηK ⇒ KM−1C = ηKM−1K.
(4.12)

Here symmetry is obvious since K and M are symmetric.

Frequency-dependent eigenvalue problem

Viscoelastic materials, as introduced in Section 3.1.4, may have strongly frequency-depen-
dent properties constants that should be taken into account also for the solution of eigen-
value problems:

ω̂2
k M φ̂k = K(ωk) φ̂k, k = 1, . . . , N. (4.13)

In [123] an iterative approach for the solution of the linear eigenvalue problem with K =
K(ω) was suggested to determine the frequency-dependent natural frequencies ω̂k and
eigenmodes φ̂k, which is presented here in Algorithm 2.

In general the stiffness matrix K(ω) depends on two frequency-dependent parameters,
Young’s modulus E(ω) and Poisson’s ratio ν(ω). If ν is assumed as constant, only E(ω)
remains as a linear parameter:

K(ω) = E(ω)
E(0) K(0). (4.14)
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4 Nonlinear frequency analysis

In this case it is not necessary to reassemble K(ω) in every iteration step, it can just be
obtained by scaling of K(0). Furthermore, as it is shown in Appendix A.1, the frequency-
dependent eigenvalue problem even reduces to φ̂k = φk and the solution of the following
scalar nonlinear equation for ω̂k:

ω̂k = ωk

√
E(ω̂k)
E0

. (4.15)

However, in situations where K is obtained from an isogeometric multi-patch finite
element discretization, see Section 2.3.1, K(ω) = E(ω)

E(0) K(0) is not necessarily true for the
global stiffness matrix, but maybe only for a patch submatrix with frequency-dependent
material it is Ki(ω) = Ei(ω)

Ei(0) K
i(0). Then the above-mentioned simplification as scalar non-

linear equation for ω̂k cannot be used anymore, but at least in Algorithm 2 the submatrix
can be scaled and need not be reassembled.

Also the complex eigenvalue problem with damping from (4.9) can be formulated for
frequency-dependent materials and an iteration similar to Algorithm 2 can be carried out
to compute natural frequencies and damping ratios.

Modal participation factors

For systems with several hundreds of thousands or even millions of degrees of freedom it
is very costly to compute numerical solutions of the generalized eigenvalue problem, see
subsequent Section 4.1.1. Thus typically only a fraction of the smallest eigenfrequencies
and corresponding modes is computed [62].

Effective modal masses or modal participation factors are a measure of the significance
of modes for the vibration of a system and may provide a guideline for how many and
which modes should be computed to accurately capture the vibrational behavior of a
system, or which modes should be included in a reduction basis when a system is reduced
onto its modes, see Chapter 5.

Modal participation factors are computed with respect to an influence vector r ∈ RN .
Typically, it is r ≡ 1, or to differentiate among spatial directions it can be chosen rx =
(1, 0, 0, 1, 0, 0, . . . , 1, 0, 0)T and ry, rz analogous.

Then for a mass-normalized eigenmode φk with φTkMφk = 1, the modal participation
factor Γk and effective modal mass meff,k are defined as

Γk = φTk M r, meff,k = Γ2
k. (4.16)

When r ≡ 1 it holds for the effective modal masses and the total mass of the system mtot:

N∑
k=1

meff,k = 3mtot. (4.17)

Numerical solution of generalized eigenvalue problems

Typically generalized eigenvalue problems like (4.6) are rewritten as standard eigenvalue
problems [13, 124]:

λkφk = M−1K φk, k = 1, . . . , N, (4.18)
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4.1 Overview of linear frequency analysis methods

which requires M to be positive definite, i.e. invertible. Then, an iterative numerical
algorithm for the approximate solution of the symmetric standard eigenvalue problem for
some k has to be chosen from a wide range of methods, including Householder-QR-inverse,
generalized Jacobi, Krylov subspace or determinant search methods [13, 113].

In multi-patch problems with Lagrangian multipliers, see Section 2.3.2, the generalized
eigenvalue problem (4.6) takes the form

λk M∗ φ∗k = K∗ φ∗k, k = 1, . . . , N,

⇔ λk

(
M 0
0 0

)(
φk
ψk

)
=
(

K BT

B 0

)(
φk
ψk

)
, k = 1, . . . , N,

(4.19)

where the matrix M∗ is only positive semi-definite. A static condensation, as for example
used for lumped mass matrices with zero diagonal entries, is not possible here, since the
(2,2)-block of K∗ is also zero. Instead, it must be reformulated as a standard eigenvalue
problem by inverting K∗:

1
λk
φ∗k = K∗−1M∗ φ̂k, k = 1, . . . , N. (4.20)

4.1.2 Direct frequency response

Another means of linear frequency analysis, which is also available in most FEA software,
is the so-called direct frequency response (DFR) method for computing the steady-state
response of a structure subject to harmonic loading. The method is sometimes also refered
to as harmonic response analysis or simply harmonic analysis, as the external force vector
is of the form

b(t) = bc cosωt+ bs sinωt, ∀t ∈ [0, T ], (4.21)

where ω is the fundamental frequency of the excitation and T = 2π/ω the period of
vibration. Then, the deformation vector is also expressed as a sum of cosine and sine
functions

d(t) = dc cosωt+ ds sinωt, ∀t ∈ [0, T ], (4.22)

which leads to the following form of the discretized equation of motion (4.4):(
−ω2 M dc + ω C ds + K dc − bc

)
cosωt +(

−ω2 M ds − ω C dc + K ds − bs
)

sinωt = 0 ∀t ∈ [0, T ].
(4.23)

Both time-independent terms in brackets have to be zero for (4.23) to fulfilled for all
t ∈ [0, T ], which leads to the following 2N -sized system of equations:(

−ω2 M + K ω C
−ω C −ω2 M + K

)(
dc
ds

)
=
(

bc
bs

)
. (4.24)

Typically (4.24) is solved over a range of frequency values ω in order to obtain the
frequency response curves, which show vibration amplitudes and phase at a certain eval-
uation point on the structure, or the values of kinetic or potential energy. For every time
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t ∈ [0, T ], the kinetic and potential energy are:

Ekin(t) = 1
2 ḋ(t)TM ḋ(t), Epot = 1

2 d(t)TK d(t) = 1
2 d(t)Tb(t). (4.25)

Integrating these expressions over the time interval [0, T ] leads to the total energies of one
period of vibration:

Ekin = 1
T

T∫
0

1
2 ḋ(t)TM ḋ(t) dt

= ω

2π
ω2

2

T∫
0

{
sin2 ωt dTc M dc + cos2 ωt dTs M ds − 2 sinωt cosωt dTc M ds

}
dt

= ω2

4
(
dTc M dc + dTs M ds

)
,

Epot = 1
T

T∫
0

1
2 d(t)TK d(t) dt

= ω

2π
1
2

T∫
0

{
cos2 ωt dTc K dc + sin2 ωt dTs K ds + 2 cosωt sinωt dTc K ds

}
dt

= 1
4
(
dTc K dc + dTs K ds

)
.

(4.26)

4.2 Survey of nonlinear frequency analysis methods

The solution of eigenvalue problems and direct frequency response are two standard meth-
ods in engineering practice for linear frequency and vibration analysis of structures and
implemented in almost every commercial and open-source finite element software for struc-
tural analysis. However, nonlinear vibration analysis is a much more difficult and un-
conventional task, which is lacking efficient numerical methods and implementations for
large-scale applications in structural dynamics. For a general summary of methods for
nonlinear oscillation resp. frequency analysis we refer to [86, 87, 117].

To give an overview of methods for nonlinear frequency analysis methods in structural
dynamics, we recall the semi-discretized equation of motion with periodicity boundary
conditions

M d̈(t) + C ḋ(t) + f(d(t), ḋ(t)) = b(t) ∀t ∈ [0, T ],
d(0) = d(T ), ḋ(0) = ḋ(T ).

(4.27)

This is a nonlinear ordinary differential equation system, in contrast to the linear or
linearized equation of motion in (4.4), which we have treated so far in Section 4.1. The
system arises from the isogeometric finite element discretization of nonlinear continuum
mechanics with large deformations and visco-hyperelastic material models, as we have
derived it in Section 3.2, (3.45).
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4.2.1 Nonlinear counterparts of eigenmodes

We review two kinds of extensions or counterparts of the concept of linear eigenmodes,
which can be used to describe vibrational behavior of nonlinear systems: tangent modes
and nonlinear normal modes. Both can also be employed in reduced-order modeling of
nonlinear systems, see later Section 5.1.

Tangent modes

Tangent modes are the eigenmodes one obtains from the solution of an updated eigenvalue
problem with the tangent stiffness for the current deformation state [96, 112]:

ω2
k M φk = KT (φk) φk. (4.28)

While linear eigenmodes in (4.6) are independent of their scaling, the tangent stiffness
matrix KT (φk) depends on the size and scaling of the tangent mode φk, and thus also
on the mode itself. Tangent modes φαk can be computed depending on a parameter α,
which could be for example the norm of the mode α = ‖φαk‖, or the value of a specific
component α = {φαk}i. Defining φ0

k for α = 0 as the linear eigenmode, one can set up a
hysteresis for computing φαk and observe the nonlinear dependency of the tangent mode
on the parameter α.

We compute tangent modes for example in the numerical application of a thick cylinder
in Section 4.4.2 and Figure 4.6.

Nonlinear normal modes

Another nonlinear counterpart of linear eigenmodes, which are sometimes also called
linear normal modes, are nonlinear normal modes (NNMs). They were first introduced
for single-DOF and multiple-DOF systems in [103, 108, 122]. In this context a sound
theoretical foundation was established, including existence, stability and bifurcation of
NNMs.

However, the concept of NNMs was restricted to weakly nonlinear systems, where the
nonlinearity depends on a perturbation parameter ε. Only since 1990’s NNMs have been
also investigated in nonlinear structural dynamics with stronger nonlinearities [72, 92].

NNMs can be defined either as “a vibration in unison of the system (i.e., a synchronous
periodic oscillation)” [92] or as “two-dimensional invariant manifold in phase space” [92],
which depend on the energy of the system [103, 108] – very similar to tangent modes
depending on the scaling parameter α. For systems with only few DOFs they are com-
puted by an energy-based formulation, an invariant manifold approach using two master
coordinates, the multiple scales method or a truncated Fourier series ansatz for the time
domain [72, 92]. For larger systems numerical techniques must be used, such as numerical
integration, also using shooting methods, the so-called asymptotic-numerical method, or
the autonomous version of the harmonic balance method, see the following Section 4.3.

Tangent modes are relatively simple to compute as iterative solutions of the eigenvalue
problem or using a continuation of the parameter α, but they do not account for internal
resonances and can only be determined in the neighborhood of a linear eigenfrequency
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4 Nonlinear frequency analysis

resp. eigenmode. The concept of NNMs is therefore more general, but numerical algo-
rithms for their computation are more complex. For instance, an autonomous version of
harmonic balance method (see Section 4.3) can be used.

4.2.2 Steady-state response by time integration

The problem of steady-state response to harmonic loading is the nonlinear counterpart
of linear DFR, see Section 4.1.2. In engineering practice it is typically solved by time
integration of the initial value problem (4.27) [20, 54, 130], also in the IGA context [39].

A suitable time integration method, such as explicit or implicit Euler methods, New-
mark, Runge-Kutta, or BDF, has to be selected [20, 113, 130]. Since all of these methods
rely on the approximation of time derivatives of displacements, i.e. velocities, the time-
step size ∆t is a critical quantity. It has to be chosen carefully with ∆t � T = 2π/ω
in order to guarantee the accuracy of the method and be able to capture the oscillatory
behavior of loads and displacements in wave propagation problems [130].

Then, time integration must be carried out over many periods T until a steady-state
of motion is reached. For strongly damped systems this is the case much faster than
for undamped or only lightly damped systems. This indicates that numerical damping
might be needed for stability of the integration method for a conservative system, where
no physical dissipation is included. But then it introduces a phase shift and inaccuracy
of the solution, since angular momentum and energy might not be conserved [130].

Shooting methods can also be employed to solve (4.27) with time integration as a
boundary value problem instead of an initial value problem [54, 113].

Due to the above-mentioned disadvantages of time integration methods, high compu-
tational effort due to small step size and integration over many cycles, we prefer a differ-
ent method for the computation of steady-state response, namely the harmonic balance
method.

4.3 The harmonic balance method

The Harmonic Balance Method (HBM) is a means for the approximation of solutions of
periodic nonlinear ODE systems, which is based on a truncated Fourier series expansion
of the solution. It was originally developed by W. Szemplińska-Stupnicka in 1960’s as
a semi-analytical method and applied to systems with only few DOFs [115, 116, 117].
Sometimes it is also called multi-harmonic balance or describing function method.

Nowadays it is widespread in application to electrical circuits with nonlinear compo-
nents [31, 54, 55, 106], or also for electromagnetic problems [9]. In structural dynamics, it
has been mainly applied to FE discretizations of lower-dimensional beam and shell models
[80, 81, 87, 100, 98, 99].

HBM can be used to compute either the solution of a nonlinear, self-excited system,
i.e. a nonlinear normal mode, see Section 4.2.1, or to determine steady-state response to
a periodic external force, as an alternative to time integration presented in Section 4.2.2
[87].
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4.3 The harmonic balance method

4.3.1 Introduction of the method

Here, we apply the harmonic balance method to compute steady-state response of non-
linear mechanical systems, which are governed by large deformation visco-hyperelasticity.
Starting point is the equation of motion after semi-discretization using isogeometric finite
elements, which was already given in (4.27). It is a nonlinear second-order ODE for the
vector of control point displacements d(t) ∈ RN with periodicity conditions:

M d̈(t) + C ḋ(t) + f(d(t), ḋ(t)) = b(t) ∀t ∈ [0, T ],
d(0) = d(T ), ḋ(0) = ḋ(T ).

(4.29)

As mentioned before, periodic external excitations of the structure are considered with
a fundamental frequency ω, resp. frequency f = ω/(2π) or period T = 2π/ω, which can
be described as an harmonic series with finite number m∗ of cosine and sine terms:

b(ω, t) = 1
2b0 +

m∗∑
k=1

cos(kωt) bk + sin(kωt) b2m∗−k+1. (4.30)

The response to periodic excitation is expected to be ω-periodic as well and thus the
displacement vector d(t) of the spatial discretization uh(x, t) = ∑n

i=1N
p
i (x) di(t) (3.39),

and consequently also the velocities ḋ and accelerations d̈, are expressed as an harmonic
series, or in other words as a truncated Fourier expansion, with m ≥ m∗ harmonic terms
of fundamental frequency ω and amplitudes q =

(
qT0 , . . . ,qT2m

)T
∈ R(2m+1)N :

d(q, ω, t) = 1
2q0 +

m∑
k=1

cos(kωt) qk + sin(kωt) qk̄,

ḋ(q, ω, t) =
m∑
k=1
−kω sin(kωt) qk + kω cos(kωt) qk̄,

d̈(q, ω, t) =
m∑
k=1
−k2ω2 cos(kωt) qk − k2ω2 sin(kωt) qk̄,

(4.31)

using the abbreviation k̄ := 2m− k + 1.
Substitution of the ansatz for displacements from (4.31) into (4.29) results in a residual

vector:

r(q, ω, t) = M d̈(q, ω, t) + C ḋ(q, ω, t) + f
(
d(q, ω, t), ḋ(q, ω, t)

)
− b(ω, t). (4.32)

In order to compute the amplitudes qk, Ritz procedure is applied by projecting the residual
r onto the basis functions of the frequency domain, which results in a Fourier expansion
of the residual r with 2m+ 1 coefficient vectors r̂j that have to be evaluated to 0 (balance
of the harmonics):

r̂j(q, ω) = 2
T

T∫
0

r(q, ω, t) cos(jωt) dt != 0, j = 0, . . . ,m ,

r̂j̄(q, ω) = 2
T

T∫
0

r(q, ω, t) sin(jωt) dt != 0, j = 1, . . . ,m.

(4.33)
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4 Nonlinear frequency analysis

The nonlinear system of (2m+ 1)N equations given by (4.33), which we abbreviate as

r̂(q, ω) = 0, (4.34)

has to be solved to determine the amplitudes q and thus obtain the steady-state frequency
response of the system.

4.3.2 Implementation aspects

Fourier transform of residual

As mentioned above, the projection of the residual vector r onto harmonic basis functions
in (4.33) equals a Fourier transform, or more precisely a Hartley transform, since it
transforms the real-valued residual onto real-valued coefficients [58].

Thus the numerical evaluation of integrals in (4.33) can be performed as a discrete
Hartley transform (DHT, [27]) of the residual. First the integrals are transformed onto a
non-dimensional time τ = ωt, such that the domain of integration becomes [0, 2π]. Then
the residual r(q, ω, τ) has to be sampled at equidistant times τj = 2πj

2m+1 , j = 0, . . . , 2m
and it becomes:

r̂0 = r̂∗0
2m+ 1 , r̂j =

r̂∗j + r̂∗j̄
2m+ 1 , r̂j̄ =

r̂∗j − r̂∗j̄
2m+ 1 , j = 1, . . . ,m, (4.35)

where

r̂∗j = r(q, ω, τ0) +
2m∑
k=1

r(q, ω, τk)
√

2 cos
(

2πjk
2m+ 1 −

π

4

)
, j = 0, . . . , 2m. (4.36)

Aliasing effects due to undersampling do not occur here, since the highest frequency
of the signal, here the highest harmonic of (4.31), is m, which is smaller than half of
the sampling rate, which is 2m + 1. Thus Nyquist-Shannon/WKS sampling theorem is
fulfilled [26, 90].

Solution using Newton’s method

For given ω, (4.34) is a nonlinear system of (2m+1)N equations in r̂ for the same number
of unknowns q. Thus it can be solved using a Newton’s method, just like Algorithm 1
(page 39) for the solution of the static nonlinear elasticity problem.

For that matter also the Jacobian Ĵ ∈ R(2m+1)N×(2m+1)N of residual coefficients r̂j with
respect to amplitudes qk needs to be computed:

Ĵ(q, ω) =
(
dr̂j
dqk

(q, ω)
)
j,k=0,...,2m

:

dr̂j
dqk

(q, ω) = 2
T

T∫
0

dr
dqk

(q, ω, t) cos(jωt) dt, j = 0, . . . ,m ,

dr̂j̄
dqk

(q, ω) = 2
T

T∫
0

dr
dqk

(q, ω, t) sin(jωt) dt, j = 1, . . . ,m.

(4.37)
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4.3 The harmonic balance method

As described above, the integrals in (4.37) are also evaluated using DHT and are thus
transformed onto τ = ωt and sampled at times τj. Furthermore, also the Jacobians
dr̂j
dqk

= Jk ∈ RN×N of the residual vector r with respect to amplitude vectors qk need to
be computed:

Jk(q, ω, t) = dr
dqk

(q, ω, t) =− k2ω2 cos(kωt) M− kω sin(kωt) C + cos(kωt) df
dd

(q, ω, t)

− kω sin(kωt) df
dḋ

(q, ω, t), k = 0, . . . ,m,

Jk(q, ω, t) = dr
dqk̄

(q, ω, t) =− k2ω2 sin(kωt) M + kω cos(kωt) C + sin(kωt) df
dd

(q, ω, t)

+ kω cos(kωt) df
dḋ

(q, ω, t), k = 1, . . . ,m.
(4.38)

Here the terms df
dd(q, ω, t) and df

dḋ(q, ω, t) refer to the tangent stiffness matrix KT (d, ḋ), see
(3.54), and a viscous tangent matrix CT (d, ḋ), which have to be computed and evaluated
for the current displacement and velocity vectors d(t) and ḋ(t), which depend on the
amplitudes q, frequency ω, and time t using (4.31).

Altogether, Newton’s method for the solution of harmonic balance is summarized in
Algorithm 3.

The effort of computing q for a fixed ω using Algorithm 3 is mainly the assembly of
force vectors and tangent matrices for each of the 2m + 1 times τj of the sampling loop
(line 8), which has to be repeated for each iteration step s of the Newton-Raphson loop.
Furthermore, a bottle neck is the solution of the linear system of size (2m + 1)N in line
14, which is addressed with the reduction method proposed in Chapter 5.

Frequency response curves

Response curves (RC) are a wide-spread means of visualizing the frequency response of
steady-state vibrating systems, also for linear DFR (Section 4.1.2). Typically, the total
amplitude ak and phase φk of one or more harmonics k are evaluated at a specific point
on the structure for fixed ω and plotted over a certain range of frequency. They can be
computed as follows:

ak =
√
q2
k + q2

k̄
, φk = arctan qk̄

qk
, (4.39)

qk cos(kωt) + qk̄ sin(kωt) = ak cos(kωt+ φk). (4.40)

The simplest method for generating response curves and functions is simply to start
from a fixed ω, compute the response via HBM using Algorithm 3 or DFR, compute
amplitude and phase at the evaluation point, and then increment the frequency step by
step [86, 87].

However, nonlinear vibrational behavior usually also includes bifurcations with several
solution branches and turning points, which makes it necessary to use homotopy resp.
continuation methods [1, 57, 86, 97]. Usually an arc-length parameter λ = λ(q, ω) is
introduced, which is incremented instead of frequency increments only, and allows a si-
multaneous update of amplitude vector q and frequency ω. Hence Algorithm 3 has to be
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4 Nonlinear frequency analysis

Algorithm 3 Newton’s method for harmonic balance
1: Preassembly: M, C
2: Tolerances: εq, εr > 0
3: Initial guess: q0

4: Initialization: s← 0
5: repeat
6: for j = 0, . . . , 2m do
7: Sampling time: τj = 2πj/(2m+ 1)
8: Current displacement: d(τj) = qs0/2 +∑m

k=1 cos(kτj) qsk + sin(kτj) qs
k̄

9: Assembly: f(τj)← f(d(τj), ḋ(τj)), b(τj)
KT (τj)← KT (d(τj), ḋ(τj)),
CT (τj)← CT (d(τj), ḋ(τj))

10: Evaluate residual: r(τj)←M d̈(τj) + C ḋ(τj) + f(τj)− b(τj)
11: Evaluate Jacobians: Jk(τj)← see (4.38), k = 0, . . . , 2m
12: end for
13: DHT of residual: r̂s ← DHT(r(τ0), . . . , r(τ2m))
14: DHT of Jacobians: Ĵ

s

k ← DHT(Jk(τ0), . . . ,Jk(τ2m)), k = 0, . . . , 2m
15: Compute update: ∆qs ← Solve Ĵ

s ∆qs = −r̂s

16: Evaluate error: eq ← ‖∆qs‖
‖qs‖ , er ← ‖r̂s‖

‖qs‖

17: Update: qs+1 = qs + ∆qs

18: s← s+ 1
19: until eq < εq ∧ er < εr

20: Return value: q← qs

modified such that an additional equation for the arc-length parameter and derivatives
w.r.t. ω are introduced [106].

4.3.3 Theoretical properties

We apply the harmonic balance method for a time-discretization of the equation of motion
of elasticity, which is a hyperbolic, nonlinear PDE boundary value problem and reads in
the continuous form, compare (3.11):

ρ0ü(x, t)− div [F S](x, t) = ρ0b(x, t) ∀x ∈ Ω, ∀t ∈ [0, T ],
u(x, t) = h(x, t) ∀x ∈ Γu, ∀t ∈ [0, T ],

[F S n](x, t) = t(x, t) ∀x ∈ Γn, ∀t ∈ [0, T ],
u(x, 0) = u(x, T ) ∀x ∈ Ω,
u̇(x, 0) = u̇(x, T ) ∀x ∈ Ω.

(4.41)

Using isogeometric finite elements for the spatial discretization (Section 3.2) and the
harmonic balance method for the temporal or frequency domain discretization (Section
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4.4 Computational applications

4.3.1), it follows that a weak solution of this problem can be expressed by separation of
variables as

uh(x, t) =
n∑
i=1

Np
i (x)

(
1
2q0,i +

m∑
k=1

cos(kωt) qk,i + sin(kωt) qk̄,i

)
. (4.42)

Properties of the IGA-FEM discretization have already been outlined in Section 2.2.2.
The harmonic balance method is a Fourier spectral method [26], i.e. a Galerkin method
where the span of the basis functions is global and ranges over the whole domain. Here,
Fourier basis functions cosine and sine are employed on time domain [0, T ], which auto-
matically fulfill the periodicity boundary conditions.

It can be shown that the Fourier coefficients of a C∞-continuous function decrease
exponentially [26]. For spectral methods with sufficiently smooth exact solution and
data, this means that the error in approximating the exact solution of a differential or
integral equation is of order O(m−m), where m is the number of spectral basis functions.
This so-called exponential convergence of spectral methods such as harmonic balance can
be achieved since m is at the same time the order of the basis functions and the mesh
parameter is h = O(1/m) [26].

However, we use a Fourier series for the approximation of the solution of a forced vi-
bration problem in nonlinear elasticity, where an exact solution and its Fourier series
expansion is in general not known. Thus the accuracy of an harmonic balance approxi-
mation may highly depend on the number of harmonics m. Nonlinear effects, such as the
cubic nonlinearity of large deformation kinematics, nonlinear constitutive laws, internal
resonance and coupling of modes, typically cause response in higher harmonics m > m∗

than the highest excited harmonic.
In the numerical examples presented in this thesis, we typically use m ≥ 2m∗.

4.4 Computational applications

Having introduced harmonic balance as our prefered method for steady-state nonlinear
frequency response analysis, we want to use some computational examples to verify the
method and examine its properties numerically. In the first application in Section 4.4.1
we investigate a sub-harmonic resonance of a nonlinear Euler-Bernoulli beam. We study
convergence of HBM regarding the isogeometric spatial discretization and also the influ-
ence of Fourier series length for the time domain discretization. Then we use the forced
vibration of a thick cylinder as example for 3-dimensional nonlinear elasticity in Section
4.4.2. The results of HBM are verified in the comparison to linear DFR and nonlinear
tangent modes.

4.4.1 Convergence studies for the nonlinear Euler-Bernoulli beam

As a first feasibility study for the use of isogeometric finite element discretizations in com-
bination with harmonic balance method for the nonlinear analysis of forced vibrations,
we have investigated the nonlinear Euler-Bernoulli beam. Since the beam is a simplified
structural model with a one-dimensional parameterization and two displacement com-
ponents, see Section 3.4, computational effort of a nonlinear frequency analysis is much
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4 Nonlinear frequency analysis

L = 1.0 m, A = 0.1 m2, E = 0.2 MPa,
I = 0.00081 m−4, r = 0.09 m, ρ = 2000 kg/m3,

p(x, t) = 20 EI r/L3 sin(πx/L) cos(ωt),

p(x)

Figure 4.1: Properties of simply supported beam subject to periodic sinusoidal load

less for the beam than for a 3-dimensional continuum mechanics formulation. Hence it
is especially suitable for the investigation of convergence properties of the methods, i.e.
of the spatial discretization using IGA and of the time/frequency-domain discretization
with harmonic balance. The results presented in this section have been obtained within
the diploma thesis [126] and were published in [127].

The parameters of a simply supported beam subject to a time-periodic, sinusoidal dis-
tributed load are given in Figure 4.1. For the error calculation and convergence study we
focus on the mid span of the beam, where sub-harmonic resonance in the third harmonic
a3 occurs around ω/ω1 ≈ 0.34.

In Figure 4.2 the response curves for degree p = 3 and n = 8, 12 control points around
ω/ω1 ≈ 0.34 are plotted. Fourier series length is fixed at m = 3 and we compare the
response curves for k-refinement method (IGA) and p-method (FEM). As the curves are
hardly distinguishable, in all cases the sub-harmonic resonance in with rapidly growing
amplitude a3 is captured. Only for the p-method with ` = 8 a difference to the other
curves is visible, for the other cases the curves match optically very well.

For a more detailed convergence analysis of the spatial discretization with respect to
p, h = 1/` and continuity, Fourier series length is fixed at m = 3, since the contribution
of higher-frequency amplitudes above a3 is very small. The convergence plot in Figure
4.3 shows the error in the amplitude of the third harmonic |ah3 − a3| at ω/ω1 = 0.338 for
p = 3, 4, 5. As reference solution a3 we take the numerical one obtained from p = 5 and
a sufficient number of DOFs with an accuracy of 8 digits (an error of magnitude 10−9

is assumed to be equal to exact solution a3 = 0.20568197 m). The order of convergence
is again O(h2(p−1)), at least for p = 3, but in general the error for the Cp−1 k-method
(IGA) is much smaller than for C1-continuous p-method (FEM). This matches the error
estimates obtained for linear modal analysis and the static deformation computation, see
Section 2.2.2.

Now we take a deeper look at the m-convergence, i.e. convergence with respect to the
number of harmonics or Fourier series length of the harmonic balance discretization. In
Table 4.1 the amplitudes a3 at ω/ω1 = 0.336 are given for increasing Fourier series length
m with IGA and p = 5, ` = 18. Here, ε = |a11

3 − am3 |/|a11
3 | is the relative error in a3

compared to the value for m = 11, which is also plotted over m in Figure 4.4. It can
be observed that the error decreases very fast with increasing m, which is a sign of the
exponential convergence order m−m of harmonic balance. However, not all increments in
m contribute to a decrease of ε. The reason is probably that the 5th or 8th harmonic
simply do not contribute to the solution due to the type of nonlinearity.

Altogether, with the nonlinear Euler-Bernoulli beam feasibility study we could show
that the convergence properties of isogeometric finite elements carry over to nonlinear
frequency analysis, i.e. a higher accuracy compared to Lagrangian FE, and also that
there is a rapid convergence with respect to the Fourier series length m.
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Figure 4.2: Response curves of beam for C2- (IGA) and C1-continuous (FEM) cubic B-
Splines (p = 3) and n = 8, 12 control points. Amplitudes a1 and a3 are
normalized by beam thickness r and shown at sub-harmonic resonance around
ω/ω1 ≈ 0.34
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Figure 4.3: Convergence plot of the error in third harmonic amplitude a3 at ω/ω1 = 0.338
using k- (IGA) and p-refinement (FEM) for degrees p = 3, 4, 5 and different
mesh sizes h
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m 3 4 5 6
a3 0.08762534 0.11654205 0.11658537 0.12138500
ε 2.774 · 10−1 3.892 · 10−2 3.856 · 10−2 1.018 · 10−3

m 7 8 9 10
a3 0.12126404 0.12126439 0.12126145 0.12126152
ε 2.078 · 10−5 2.367 · 10−5 5.773 · 10−7 1.000 · 10−9

Table 4.1: Convergence of amplitude a3 at ω/ω1 = 0.336 using IGA with p = 5, ` = 18 for
increasing Fourier series length m. ε = |a11

3 − am3 |/|a11
3 | is the normalized error

compared to the solution with m = 11
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Figure 4.4: Relative error ε = |a11
3 − am3 |/|a11

3 | of amplitude a3 for increasing m at ω/ω1 =
0.336 using p = 5, ` = 18, compared to exponential convergence rate m−m

4.4.2 Large amplitude vibration of a thick cylinder

As an example for the verification of the simulation of a nonlinear, large amplitude vi-
bration of a 3-dimensional object, we pick up the thick cylinder application from Section
3.5.1. As before, the cylinder is described by Neo-Hookean material law and subject to
symmetry boundary conditions, but now we only consider one eighth of it. The dimen-
sions of the cylinder, material parameters and loads can be found again in Figure 4.5.
The surface Neumann loads are periodic. For the isogeometric discretization we choose
p = 3, 3, 3, ` = 4, 4, 1, n = 588.

We compute the first linear eigenfrequency as f1 = 1581.9 Hz as an initial step before
the nonlinear frequency analysis. Furthermore, we also compute first tangent modes and
corresponding eigenfrequencies, see Section 4.2.1, which are plotted as “NLEVP” in Figure
4.6.

Now we perform a harmonic balance frequency response analysis with m = 3 (HBM)
near the first eigenfrequency within the frequency range of 0.85 < f/f1 < 1.15 and
compare the results to linear direct frequency response (DFR). Figure 4.6 shows the z-
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l = 0.15 m,
r = 0.08 m,
t = 0.02 m,
E = 74.0 GPa,
ν = 0.33,
ρ = 2800 kg/m3

p1 = −2.0 · 107 cosωt N/m2,

p2 = 2.0 · 107 cos 2ωt N/m2.

Figure 4.5: Geometry, material parameters and loads of the vibrating thick cylinder
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Figure 4.6: Frequency response curves of z-amplitudes of vibrating cylinder ai,z at eval-
uation point E1. Comparison of linear DFR and nonlinear tangent mode φz
with HBM validates nonlinear frequency response analysis

(a) τ = 0 (b) τ = π

Figure 4.7: Snapshots of maxima of large deformation of the vibrating cylinder at τ = 0
(a) and τ = π (b) for f/fh1 = 0.95, colored by von Mises stress
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amplitudes evaluated at the center point of the front surface of the cylinder (E1 in Figure
4.5), normalized by the thickness t.

We can find a typical nonlinear resonance behavior with two branches. For the left
one we have no more convergence at f/f 1 = 0.97, probably due to a turning point that
we can not detected with simple frequency increments. Around f/f 1 ≈ 1.0, where a1
from linear DFR tends to ∞, we can also detect strong contributions of a0, a2 and a3,
which show the nonlinearity of the deformation. Coming from the right, we see that the
nonlinear amplitude a1 also approaches the nonlinear tangent mode φ. Further away
from the resonance amplitudes of DFR and HBM correspond quite well, which means
that there is only little nonlinear influence.

Snapshots of the deformed vibrating cylinder for f/f1 = 0.95 can be seen in Figure 4.7.
At non-dimensional times τ = 0 and τ = π the maxima of amplitudes occur and show a
very large deformation. Nevertheless, the isogeometric harmonic balance still exhibits a
good convergence behavior, with 4-5 Newton iterations per frequency step.

The correspondence of amplitudes of DFR and HBM further away from resonance,
together with the HBM amplitudes approaching the tangent mode near resonance, and
also the good convergence properties of the Newton’s method, all testify to the validation
of the implementation of the HB method.

4.5 Summary

In this chapter we have addressed nonlinear frequency analysis for mechanical applica-
tions, based on the isogeometric finite element discretizations of 3-dimensional nonlinear
elasticity and the nonlinear Euler-Bernoulli beam, which we have introduced in previous
Chapter 3,

First, we have surveyed different methods for free and forced vibration analysis. In the
linear context, modal analysis of eigenfrequencies and eigenmodes is a standard practice,
and its counterparts in the nonlinear regime are tangent modes and nonlinear normal
modes (NNMs). Direct frequency response (DFR) can be used to analyze forced vibrations
of linear systems and time integration is usually employed for nonlinear frequency response
problems.

We set our focus onto the harmonic balance method (HBM), which can be used to
compute both NNMs and forced nonlinear frequency response, where it can be much
more efficient than time integrations methods. With the numerical applications that we
have presented, we could validate our implementations of HBM in comparison to DFR
and tangent modes. Furthermore, the benefits of nonlinear analysis became obvious,
as we could compute complex sub-harmonic resonances and accuracy is higher for large
amplitude vibrations than when DFR is used.

A convergence study with respect to the isogeometric finite element discretization
showed that the advantages of a spatial discretization with higher continuity are also
beneficial in the context of nonlinear vibrations.

68



5 A reduction method for
nonlinear vibration analysis

As we have outlined in Section 4.3.2, the harmonic balance method for nonlinear vibration
analysis requires the solution of a nonlinear system of equations (4.34):

r̂(q, ω) = 0. (5.1)

This system is of size (2m+1)N , where N is the number of DOFs of the spatial discretiza-
tion and m the number of harmonics in the Fourier expansion of each of the spatial DOFs.
Thus in each step of a Newton iteration, see Algorithm 3 (page 62), a linear system of
equations of size (2m+ 1)N × (2m+ 1)N has to be solved.

Furthermore, the linear system is not only (2m+ 1)-times larger than the system to be
solved in a static problem, see Section 3.2.3 and Algorithm 1 (page 39), but also more
densely populated, as each row of the matrix Ĵ has (2m+ 1)-times the number of nonzero
entries of the corresponding row of the tangent stiffness matrix KT . Moreover, Ĵ is not
symmetric anymore.

This is a severe draw-back regarding the solution process of the system using sparse
linear solvers, which are mostly designed for the solution of large, symmetric systems with
only few nonzero entries per row, as they arise for instance in finite element discretizations.
While sampling time for Fourier transform, i.e. (2m + 1)-times the assembly of force
vector and tangent stiffness, increases linearly with m, and time for Fourier transform
itself by m logm, solution time and memory consumption of the system increase at least
quadratically [56]. For complex engineering structures with several hundreds of thousands
or even millions of DOFs in the finite element model, a harmonic balance analysis becomes
even almost impossible.

A possible cure is to use solution methods for the linear system which are more so-
phisticated and tailored to the harmonic balance problem. For example in [10] a special
adaptation of a multigrid preconditioner for iterative solvers of harmonic balance in eddy
current problems was proposed. In [106] a direct solver is presented, which treats the ma-
trix as a sparse N×N matrix with dense (2m+1)×(2m+1) blocks of Fourier coefficients
of a spatial DOF instead of scalar entries.

Another approach, which is pursued in this thesis, is model order reduction (MOR). It
aims at decreasing the complexity and computational effort for solving the linear system
by a reduction of degrees of freedom of the spatial discretization on r � N .
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5 A reduction method for nonlinear vibration analysis

In the following we first give an overview of projection methods typically used for model
order reduction in Section 5.1. Subsequently, we motivate the usage of our method of
choice, i.e. projection with modal derivatives, introduce it in detail and apply it to HBM
in Section 5.2. In Section 5.3 we establish an analytical investigation of the properties of
modal derivatives for continuous problems for a better general understanding. Finally, in
Section 5.1 we show numerical results confirming the quality of the approach.

5.1 Overview of model order reduction methods

Having identified the need for model order reduction to increase the feasibility of harmonic
balance frequency response analysis, we are giving a brief overview of different kinds of
model reduction methods and a classification with regard to application in nonlinear
structural mechanics, dynamics, and especially vibrations [62, 94, 130].

There is a wide range of projection based reduction methods, where the physical co-
ordinate vector d ∈ RN is expressed by a linear transformation of reduced coordinates
p ∈ Rr:

d = Qp. (5.2)

Q ∈ RN×r is the transformation or projection matrix, with rank(Q) = r ≤ N . In case of
r = N (5.2) is a basis transformation, but the intention is to chose r � N and project
onto a smaller subspace of the original solution space.

The most common projection method is modal reduction or truncation [62, 94], where
the transformation matrix is composed from a subset of linear eigenvectors Q = Φr, see
Section 4.1.1. It is widely used in linear structural dynamics, since it leads to a decoupling
of the equation of motion, compare (4.8). However, there is only a limited applicability
to nonlinear problems, as the computational examples presented in Section 5.4 reveal.

Tangent modes, which were introduced in Section 4.2.1, are the eigenmodes one obtains
from the solution of an updated eigenvalue problem with the tangent stiffness KT (d) for
the current state of deformation d. In nonlinear time integration, an updated modal
basis can be determined from these tangent modes in every time step, or after a suitable
number of time steps. In [112] also a reduction method with direct update of tangent
modes in each time step is described. But as we need to approximate the amplitudes for
one whole period of vibration in harmonic balance, there is no specific current state of
deformation in our setting and these methods seem not very applicable.

Nonlinear normal modes (NNMs), which have been introduced in Section 4.2.1, are a
another nonlinear counterpart of linear eigenmodes. They have shown good results already
as reduction basis in nonlinear frequency analysis in terms of self-excited vibrations [2,
77, 119, 120]. However, the computational effort of numerically determining the NNMs
seems very high, as each NNM requires the solution of an autonomous harmonic balance
problem for the full system.

Another possibility for generating a projection basis are Ritz vectors [96, 112]. They are
derived from the load and displacement vectors of a current state; and in nonlinear analysis
basis updates and derivatives may also be included, providing a good approximation
of exact solutions [112]. However, again this method relies on a fixed current state of
deformation and load, and thus seems not suitable for application in harmonic balance.

70



5.2 The modal derivative reduction method

For Proper Orthogonal Decomposition (POD) a set of sample displacement vectors
has to be generated in a preprocessing step, from which an optimal basis is created
[17, 60, 112]. The method leads to good results in structural time integration, but sam-
pling requires a priori knowledge of loads. Since unexpected resonances and states of
deformation are to be found in nonlinear vibration analysis with HBM, the POD method
might not be suitable here.

All of the above-mentioned methods require either continuous basis updates or pre-
computation using known sample states of deformation, which are both not possible in
HBM, or a high cost of precomputing the basis. Thus our choice of reduction method is
modal reduction resp. truncation (MR) with modal derivatives [68, 96, 111, 112], which
has already been employed successfully for time integration of nonlinear solid dynamics
[11, 12]. Modal derivatives (MD) are a second order enhancement of the modal basis
and account for quadratic terms as they appear in large deformation theory and Green-
Lagrange strains. They can be computed from the linear and nonlinear stiffness matrix
and eigenvectors in a preprocessing step and do not require basis updates during the
computation.

5.2 The modal derivative reduction method

The first part of this Section is dedicated to an introduction to and definition of modal
derivatives. Then we derive and show their properties, which motivate their use as a part
of a reduction basis. Finally the application of reduction to nonlinear frequency analysis
and HBM is sketched.

5.2.1 Introduction to modal derivatives

In the following we are presenting an introduction to the concept of modal derivatives,
including two different approaches for the definition resp. computation of modal derivative
vectors.

Introduction of the concept

Modal derivatives were initially introduced and proposed as a reduction basis for nonlinear
structural dynamics by Idelsohn and Cardona [67, 68]. Here we review their derivation
and definition, using references [67, 68, 111]:

In a linear modal truncation, the displacements are expressed in terms of eigenmodes
of the linear problem φi and modal coordinates pi. In our nonlinear setting, the tangent
stiffness matrix Kt depends on displacements d, and thus also the (tangent) modes φi(d)
depend on displacements:

d(p) =
N∑
i=1
φi(d) pi. (5.3)

Now d(p) is developed as second-order Taylor series around the initial configuration of
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zero displacements p = 0 (d = 0):

d = 0 +
N∑
i=1

 ∂d
∂pi

(p = 0) pi +
N∑
j=1

∂2d
∂pi∂pj

(p = 0) pipj2


=

N∑
i=1

φi(0) pi +
N∑
j=1

(
∂φj
∂pi

(0) + ∂φi
∂pj

(0)
)
pipj

2

 .
(5.4)

For computing the modal derivatives ∂φj
∂pi

one can differentiate the eigenvalue problem
(4.28) with K = KT (0) w.r.t. the modal coordinates:

0 = ∂

∂pi

[(
KT − ω2

jM
)
φj
]

=
(
K− ω2

jM
) ∂φj
∂pi

+
(
∂KT

∂pi
−
∂ω2

j

∂pi
M
)
φj. (5.5)

In [111] three different approaches for the solution of (5.5) and the computing of modal
derivatives ∂φj

∂pi
are presented: analytical, analytical excluding inertia effects and purely

numerical using finite differences of the recomputed tangent eigenvalue problem.
Here we use the “analytical approach excluding mass consideration” [111] for computing

the modal derivatives, which leads to the solution of the following linear system for ∂φj
∂pi

:

∂φj
∂pi

= −K−1∂KT

∂pi
φj, (5.6)

with a finite difference approximation of the directional derivatives of the tangent stiffness
matrix

∂KT

∂pi
' KT (∆pi φi)−K

∆pi
. (5.7)

This approximation leads to symmetric modal derivatives ∂φj
∂pi

= ∂φi
∂pj

.

An alternative approach

An alternative approach for the derivation and definition of modal derivatives was intro-
duced by Barbic [12]. The idea is picked up and explained in the following:

In linear analysis, we want to find the solution d ∈ RN of a static deformation problem
where the external force is a superposition of mass-scaled eigenmodes:

Kd = MΦΛp, (5.8)

with stiffness matrix K, mass matrix M, eigenmode matrix Φ = (φ1, . . . ,φN), eigenvalue
matrix Λ = diag(ω2

1, . . . , ω
2
N) and parameter vector p ∈ RN (modal participation factors).

From the eigenvalue problem KΦ = MΦΛ it follows directly that

d = d(p) = Φp. (5.9)

This means also that a projection basis composed from a selection of eigenmodes can
exactly represent the full (non-reduced) solution of a linear problem, where the external

72



5.2 The modal derivative reduction method

force is a superposition of these modes:

b = MΦΛp ⇒ p = Λ−1ΦTb. (5.10)

This justifies and motivates the use of modal reduction in linear (static and especially
dynamic) analysis.

Now we want to find the solution d = d(p) of a corresponding nonlinear problem

f(d) = MΦΛp, (5.11)

with f(0) = 0 and df
dd = KT (d), KT (0) = K. In general it is, of course, not possible

anymore to find a closed-form solution d(p), but assuming that d is C2-differentiable
w.r.t. p and also f is C2-differentiable w.r.t. d, we can expand it into a Taylor series
around p = 0:

d(p) = 0 + dd
dp

(0) p + 1
2

(
d2d
dp2 (0) : p

)
p + . . . . (5.12)

Here d2d
dp2 (0) is a third-order N ×N ×N -tensor and “:” denotes the product of the tensor

with a N -vector (first order tensor), which results in a N×N -matrix (second order tensor).
In order to find the derivatives in (5.12), we differentiate (5.11) w.r.t. p:

df
dd

dd
dp

= MΦΛ. (5.13)

Evaluation at p = 0 leads to
K
dd
dp

(0) = MΦΛ, (5.14)

and from the linear eigenvalue problem it follows

dd
dp

(0) = Φ, (5.15)

i.e. the first derivatives are the linear eigenmodes, as expected.
Differentiating (5.13) once again we obtain(

d2f
dd2 : dd

dp

)
dd
dp

+ df
dd

d2d
dp2 = 0 (5.16)

and evaluate at p = 0: (
d2f
dd2 (0) : Φ

)
Φ + K

d2d
dp2 (0) = 0. (5.17)

Thus the modal derivatives d2d
dp2 (0) = dΦ

dp =: Ψ can be defined by the equation system

K Ψ = − (H : Φ) Φ, (5.18)
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where H is a third-order tensor:

H = dKT

dd
(0) = d2f

dd2 (0). (5.19)

Using the notation Ψ = (ψij)i,j=1,...,N and exploiting that (H : φi) is the directional
derivative of KT w.r.t. φi, i.e.

(H : φi) = lim
∆pi→0

1
∆pi

(KT (∆piφi)−K) =: ∂KT

∂pi
, (5.20)

we can write (5.18) in index notation as

Kψij = −∂KT

∂pi
φj, i, j = 1, . . . , N, (5.21)

and arrive at the same expression for the modal derivatives as we had already in (5.6).
Altogeher, the truncated 2nd order Taylor expansion of d(p) around p = 0 can be

written as:

d(p) = Φ p + 1
2 (Ψ : p) p =

N∑
i=1
φi pi + 1

2

N∑
i=1

N∑
j=i
ψijpipj. (5.22)

The definition of modal derivatives ψij in (5.21) is not the same as in Idelsohn et al.
[68] and (5.5), which is obtained by differentiating the eigenvalue problem. However, it is
equivalent to the simplified approach without mass consideration, see (5.6), and leads to
symmetric modal derivatives.

5.2.2 Modal derivatives as reduction basis

Based on the approach to modal derivatives used by Barbic [12], which was outlined above,
we have further investigated the properties of the Taylor series expansion of the displace-
ment vector using modal derivatives. These findings motivate the use of a reduction basis
composed from eigenmodes and modal derivatives, which is also shown here.

Theorem 5.1. The representation of displacements d(p) as quadratic Taylor series ex-
pansion

d(p) = Φ p + 1
2 (Ψ : p) p

is a 2nd order appoximation of the solution d of the problem

f(d) = MΦΛp

in the neighborhood of p = 0, i.e.

f(d)− f(d(p)) = O(‖p‖3).

Proof. We develop f(d) as Taylor series around d = 0 up to second order:

f(d) = 0 + Kd + 1
2(H : d)d +O(‖d‖3).
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Now we substitute d(p):

f(d(p)) = K d(p) + 1
2 (H : d(p)) d(p) +O(‖d(p)‖3)

= KΦp + 1
2K (Ψ : p) p + 1

2

(
H :

(
Φp +O(‖p‖2)

)) (
Φp +O(‖p‖2)

)
+O(‖p‖3)

= KΦp + 1
2K (Ψ : p) p + 1

2 (H : (Φp)) Φp +O(‖p‖3).

Taking advantage of the definition of modal derivatives in (5.18) we continue:

= KΦp + 1
2K (Ψ : p) p− 1

2K (Ψ : p) p +O(‖p‖3)
= MΦΛp +O(‖p‖3)
= f(d) +O(‖p‖3).

Thus it follows
f(d)− f(d(p)) = O(‖p‖3).

Above we have shown that with the quadratic expression of displacements in terms of
the parameter vector p as in (5.22), using the full sets of linear eigenmodes Φ and modal
derivatives Ψ, it is possible to approximate the solution of the nonlinear problem (5.11)
with an error of third order in p.

Given a general right hand side b, the parameter vector can be computed as p =
Λ−1ΦTb to obtain an expression b = MΦΛp. As the eigenvalues in Λ are arranged in a
growing order, it is assumed that there is an index r such that |pi| < ε ∀i = r + 1, . . . , N
for a certain 0 < ε < 1. Furthermore, it is required that ‖p‖∞ < 1 for the Taylor series
to converge.

Accordingly by selecting a basis consisting of only the first r eigenmodes using Φr =
(φ1, . . . ,φr), pr = (p1, . . . , pr)T and Λr = diag(ω2

1, . . . , ω
2
r), we can compute pr =

Λ−1
r ΦT

r b.
In a linear problem (5.8) it is then:

d− d(pr) = d(p)− d(pr) = Φp−Φrpr =
N∑

i=r+1
φipi, (5.23)

and

‖d− d(pr)‖ =

∥∥∥∥∥∥
N∑

i=r+1
φipi

∥∥∥∥∥∥ ≤
N∑

i=r+1
‖φi‖ |pi| < (N − r)εδ, (5.24)

where δ = maxi=r+1,...,N ‖φi‖.
For the nonlinear problem (5.11) with the same right hand side and reduced modal

derivative tensor Ψr = (ψij)i,j=1,...,r it follows:

d− d(pr) = d(p) +O(‖p‖3)− d(pr)

= Φp + 1
2(Ψ : p)p−Φrpr −

1
2(Ψr : pr)pr +O(‖p‖3)

=
N∑

i=r+1
φipi + 1

2

N∑
i=r+1

N∑
j=r+1

ψijpipj +
N∑
i=1

N∑
j=r+1

ψijpipj +O(‖p‖3),

(5.25)
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and
‖d− d(pr)‖ ≤

N∑
i=r+1

‖φi‖ |pi|+
1
2

N∑
i=r+1

N∑
j=r+1

‖ψij‖ |pi| |pj|

+
N∑
i=1

N∑
j=r+1

‖ψij‖ |pi| |pj|+O(‖p‖3)

< (N − r)εδ + 1
2(N − r)2ε2δ∗

+ (N − r)Nεδ∗ +O(‖p‖3),

(5.26)

with δ∗ = maxi=1,...,N, j=r+1,...,N ‖ψij‖.
Thus we have an error of order ε for a reduced basis in the linear case and in the

nonlinear case also order ε plus the terms of order 3 in terms of all components of p.
This shows that a combination of linear eigenmodes and modal derivatives has very

good capabilities of representing the character and solution of a nonlinear system. It
motivates the use of a reduced basis composed of a selection of linear eigenmodes Φr and
modal derivatives Ψr in nonlinear analysis, since the quadratic approximation is able to
provide a smiliar accuracy as modal truncation in the linear case.

The linear projection for reduction onto this basis of length r = rd + rd(rd + 1)/2 is
thus given by the projection matrix:

Q =
(
φ1, . . . ,φrd ,ψ11,ψ12, . . . ,ψ1rd , . . . ,ψrdrd

)
, (5.27)

and the projection reads:

d = Qp =
rd∑
i=1
φi pi +

rd∑
i=1

rd∑
j=i
ψij pij. (5.28)

Note that from the quadratic Taylor expansion with dependent quadratic coefficients
pipj as in (5.4) and (5.12), we have generated a reduced linear expansion in (5.28) with
independent coefficients pij. Using these additional degrees of freedom, our reduction
should be at least as accurate as the quadratic expression, since we have more degrees of
freedom available and pij = pipj/2 is a possible choice for these additional DOFs.

The computational effort for computing all rd(rd + 1)/2 symmetric modal derivatives
by Algorithm 4 mainly consists of computing the rd linear eigenvectors φj, assembling
rd-times a tangent stiffness matrix in (5.7) and then solving the linear system (5.6)
rd(rd + 1)/2-times. If the problem size is not too large and one can solve (5.6) by LU-
decomposition of K, the computation becomes very efficient.

5.2.3 Application of reduction to harmonic balance

Here we describe the application of the modal projection method with eigenmodes and
modal derivatives, as introduced in the preceding Section 5.2.1, to the harmonic balance
method, see Section 4.3. This idea was already published by the author in [128] and is
presented here with slight modifications.

The displacement vector d in the equation of motion of harmonic balance (4.29) is
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Algorithm 4 Computation of a reduction basis with modal derivatives
1: Assemble: M, K
2: Solve linear EVP: ω2

j M φj = K φj, j = 1, . . . , rd
3: for i = 1, . . . , rd do
4: Assemble: KT ← KT (∆pi φi)
5: Compute: ∂KT

∂pi
← (KT −K)/∆pi

6: for j = i, . . . , rd do
7: Compute MD: ∂φj

∂pi
← Solve K ∂φj

∂pi
= −∂KT

∂pi
φj

8: end for
9: end for

10: Return basis: Q = (φ1, . . . ,φrd ,
∂φ1
∂p1

, . . . , ∂φ1
∂prd

, . . . ,
∂φrd
∂prd

)

projected using modal coordinates p:

d(t) = Qp(t), (5.29)

where Q is the projection matrix with a selection of r � N linear eigenmodes φi and
corresponding modal derivatives ∂φj

∂d̂i
as columns, see (5.28).

Now the equation of motion (4.29) is projected onto modal coordinates by left-multi-
plication with QT :

QTMQ p̈(t) + QTCQ ṗ(t) + QT f(d(t), ḋ(t)) = QTb(t). (5.30)

This equation may be rewritten using the notations

M̃ = QTMQ, C̃ = QTCQ, f̃ = QT f, b̃ = QTb, (5.31)

as
M̃ p̈(t) + C̃ ṗ(t) + f̃(d(t), ḋ(t)) = b̃(t). (5.32)

The spatial discretization of the nonlinear equation system has been reduced from a
sparse N × N to a dense r × r one, but note that the nonlinear term f̃(d(t), ḋ(t)) (and
also the corresponding tangent K̃T (d(t), ḋ(t)) = QTKT (d(t), ḋ(t))Q) still depend on the
physical displacement vector d (and velocities ḋ) and have to be assembled in the usual
way without any speed-up. Complexity reduction methods such as Discrete Empirical
Interpolation [34] might be applied to further decrease the computational effort.

The further procedure of applying the harmonic balance method is equivalent to the
steps described in Section 4.3: Fourier expansion of reduced coordinates p using ampli-
tudes q̃, substitution into (5.32) for a residual vector r̃, Fourier transform of the residual
and its Jacobian, and solution of the equation system for q̃, which has now size r ·(2m+1).
Physical displacements can then be recovered within each sampling or Newton step using
d(t) = Qp(t).

A schematic overview of the algorithm for nonlinear frequency analysis with modal
derivative reduction is presented in Algorithm 5, where the reduction basis with modal
derivatives is computed using Algorithm 4.
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Algorithm 5 Nonlinear frequency analysis with modal derivative reduction
1: Input basis: Q = (φ1, . . . ,φrd ,ψ11, . . . ,ψ1rd , . . . ,ψrdrd

)
2: Initial guess: q0 ← Qq̃0

3: Initialization: s← 0
4: repeat
5: for j = 0, . . . , 2m do
6: Sampling time: τj = 2πj/(2m+ 1)
7: Current displacement: d(τj) = Q

(
q̃s0/2 +∑m

k=1 cos(kτj) q̃sk + sin(kτj) q̃s
k̄

)
8: Assembly: f(τj)← f(d(τj), ḋ(τj)), b(τj)

KT (τj)← KT (d(τj), ḋ(τj)),
CT (τj)← CT (d(τj), ḋ(τj))

9: Evaluate residual: r(τj)←M d̈(τj) + C ḋ(τj) + f(τj)− b(τj)
10: Evaluate Jacobians: Jk(τj)← see (4.38), k = 0, . . . , 2m
11: Reduction: r̃(τj)← QT r(τj)

J̃k(τj)← QTJk(τj)Q, k = 0, . . . , 2m
12: end for
13: DHT of reduced residual: ˆ̃rs ← DHT(r̃(τ0), . . . , r̃(τ2m))
14: DHT of reduced Jacobians: ˆ̃Jsk ← DHT(J̃k(τ0), . . . , J̃k(τ2m)), k = 0, . . . , 2m
15: Compute reduced update: ∆q̃s ← Solve ˆ̃Js ∆q̃s = −̂̃rs

16: Evaluate error: ẽq ← ‖∆q̃s‖
‖q̃s‖ , ẽr ← ‖̂̃rs‖

‖q̃s‖

17: Reduced update: q̃s+1 = q̃s + ∆q̃s

18: s← s+ 1
19: until ẽq < εq ∧ ẽr < εr

20: Return value: q← Φq̃s

5.3 Theoretical analysis of modal derivatives

In previous Section 5.2.1 we have seen that modal derivatives can be used to obtain a
second-order approximation of the solution of a discretized nonlinear problem in matrix-
vector formulation, where the right hand side is a superposition of linear eigenmodes.

In the following we want to transfer the concept of modal derivatives to continuous
problems of nonlinear elliptic partial differential equations and establish a more theoret-
ical analysis and understanding. In Section 5.3.1 we derive modal derivatives also for
continuous PDE operators and show that we can also obtain a second-order approxima-
tion of the solution. To illustrate these analytical results, we compute modal derivatives
of a one-dimensional model problem in Section 5.3.2. We also apply the calculus of modal
derivatives to the nonlinear Euler-Bernoulli beam problem in Section 5.3.2, which helps
us to understand numerical observations made earlier.

78



5.3 Theoretical analysis of modal derivatives

5.3.1 Modal derivatives of a continuous problem

In this Section we derive the definition and calculus of modal derivatives also for bound-
ary value problems of nonlinear PDE operators. Then we can show that a quadratic
Taylor series expansion of the analytical solution of the problem can be obtained using
eigenfunctions and modal derivatives.

Assumption 5.1.
N [·] : H1(Ω)→ L2(Ω)

is a nonlinear, compact, Fréchet-differentiable, 2nd order elliptic partial differential oper-
ator on the open domain Ω ⊂ Rd such that its Fréchet derivatives

L(u)[·] := N ′(u) : H1(Ω)→ L2(Ω)

are linear, compact, Fréchet-differentiable, 2nd order elliptic partial differential operators
for any u ∈ H1(Ω), L := L(0), and

H(u)[·, ·] := L′(u) = N ′′(u, u) : H1(Ω)×H1(Ω)→ L2(Ω),

such that H := H(0) exists.

Under Assumption 5.1 it follows that the linear eigenvalue problem

L[u] = λu in Ω,
u = 0 on ∂Ω,
‖u‖ = 1

(5.33)

has nontrivial solutions (λk, uk)k∈N such that λk ∈ R, 0 < λ1 ≤ λ2 ≤ . . .→∞ and {uk}k∈N
form an orthonormal basis of L2(Ω) and an orthogonal basis of H1

0 (Ω) [85]. Furthermore,
it follows that for pk ∈ R and k ∈ N, the solution of the elliptic boundary value problem

L[u] =
∑
k∈N

λkukpk in Ω,

u = 0 on ∂Ω,
(5.34)

is u = u(p) = ∑
k∈N ukpk, where p = (p1, p2, . . .) serves as a parameter resp. load factor

vector.
Now we are interested in the solution of the following nonlinear problem:

Definition 5.1 (Nonlinear boundary value problem on H1(Ω)). Find u ∈ H1(Ω) such
that

N [u] = f in Ω,
u = 0 on ∂Ω,

(5.35)

where f = ∑
k∈N λkukpk and |pk| < 1 ∀k ∈ N.

We start by developing the exact solution u = u(p) as a Taylor series around p = 0 up
to second order:

u(p) = 0 +
∑
k∈N

∂u

∂pk

∣∣∣∣
0
pk + 1

2
∑
j,k∈N

∂2u

∂pk∂pj

∣∣∣∣
0
pkpj +O(‖p‖3). (5.36)
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Theorem 5.2. The partial derivatives of u w.r.t. the components of the parameter vector
p in the Taylor series expansion (5.36) are:

∂u

∂pk

∣∣∣∣
0

= uk,
∂2u

∂pk∂pj

∣∣∣∣
0

= −L−1 [H [uk, uj]] , (5.37)

where ukj := ∂2u
∂pk∂pj

∣∣∣
0

are called modal derivatives of u.

Proof. For computing the partial derivatives of u w.r.t. the parameters we differentiate
(5.35) w.r.t. the components of p:

∂N
∂pk

= ∂N
∂u

[
∂u

∂pk

]
= L(u)

[
∂u

∂pk

]
!= λkuk. (5.38)

Setting p = 0, i.e u = 0, we obtain the linear problem

L
[
∂u

∂pk

∣∣∣∣
0

]
= λkuk in Ω,

u = 0 on ∂Ω,
(5.39)

and using (5.34) it follows that
∂u

∂pk

∣∣∣∣
0

= uk. (5.40)

We continue by differentiating (5.38) once again:

∂2N
∂pk∂pj

= ∂2N
∂u2

[
∂u

∂pk
,
∂u

∂pj

]
+ ∂N

∂u

[
∂2u

∂pk∂pj

]
= H(u)

[
∂u

∂pk
,
∂u

∂pj

]
+ L(u)

[
∂2u

∂pk∂pj

]
!= 0.

(5.41)
Evaluation at p = 0 yields

H(0)
[
∂u

∂pk

∣∣∣∣
0
,
∂u

∂pj

∣∣∣∣
0

]
+ L(0)

[
∂2u

∂pk∂pj

∣∣∣∣
0

]
= 0, (5.42)

and it follows that the modal derivatives ukj := ∂2u
∂pk∂pj

∣∣∣
0

can be obtained from the following
linear problem:

L [ukj] = −H [uk, uj] in Ω,
u = 0 on ∂Ω.

(5.43)

Theorem 5.3. The quadratic Taylor series expansion

u(p) =
∑
k∈N

ukpk + 1
2
∑
j,k∈N

ukjpkpj, (5.44)

with partial derivatives from Theorem 5.2, is a second-order approximation of the solution
of the nonlinear boundary value problem of Definition 5.1 around u = 0 in terms of the
parameter vector p, i.e.

N [u(p)]−N [u] = O(‖p‖3). (5.45)
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Proof. Using Taylor’s theorem for Banach spaces [85], we can write the Taylor series
expansion of N [u] around u = 0 as

N [u] = 0 + L(0)[u] + 1
2H(0)[u, u] +O(‖u‖3). (5.46)

Substituting the second-order Taylor expansion from (5.44) using Theorem 5.2 we obtain:

N [u(p)] = L(0) [u(p)] + 1
2H(0) [u(p), u(p)] +O(‖u(p)‖3)

= L
∑
k∈N

ukpk + 1
2
∑
j,k∈N

ukjpkpj


+ 1

2H
∑
k∈N

ukpk + 1
2
∑
j,k∈N

ukjpkpj,
∑
k∈N

ukpk + 1
2
∑
j,k∈N

ukjpkpj

+O(‖p‖3).

(5.47)
Making use of the linearity of L and bilinearity of H in the arguments [85], we continue:

N [u(p)] =
∑
k∈N
L[uk]pk + 1

2
∑
j,k∈N
L[ukj]pkpj

+ 1
2

 ∑
j,k∈N
H[uk, uj]pkpj +O(‖p‖3)

+O(‖p‖3)

=
∑
k∈N

λkukpk + 1
2

 ∑
j,k∈N

(
L[ukj] +H[uk, uj]

)
pkpj

+O(‖p‖3).

(5.48)

Using the definition of modal derivatives (5.43), we arrive at:

N [u(p)] =
∑
k∈N

λkukpk +O(‖p‖3). (5.49)

Remark 5.1. In the infinite-dimensional case any right-hand side f of Problem (5.35)
can be written as f = ∑

k∈N λkukpk, since uk are an orthonormal basis of L2(Ω) and thus
it is pk = (f, uk)/λk ∀k ∈ N, where (·, ·) is the L2-scalar product. If f = λkukpk for a
certain k ∈ N, then it follows simply that u(p) = uk pk + 1

2ukk p
2
k.

Remark 5.2. These findings motivate the use of subsets of the eigenfunctions {uk}k∈N
and modal derivatives {ukj}k,j∈N as basis functions of “reduced” resp. finite-dimensional
subspaces of H1(Ω) for the approximation of the exact solution of a nonlinear BVP such
as (5.35).

Only when the L2-projection of the right-hand side f onto a certain linear eigenfunction
uk, i.e. pk = (f, uk)/λk, is significant, i.e. 0 < ε < |pk| < 1, the mode k needs to be
considered for the approximation space. Thus we obtain a set I ⊂ N of modes {uk}k∈I to
be included in the approximation space and also their modal derivatives {ukj}j,k∈I .
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5 A reduction method for nonlinear vibration analysis

5.3.2 Nonlinear model problem

Now we want to demonstrate the above presented concepts for a small model problem.
The 1D problem is chosen as a nonlinear extension of Poisson’s equation with a quadratic
nonlinearity, which resembles the large deformation elasticity problem in 2D or 3D.

Definition 5.2 (1D nonlinear model problem). The model problem is defined by

Ω = (0, π)

and
N [u] = −(1 + u′)u′′ = −

(
u′ + 1

2u
′2
)′
,

where (·)′ = d
dx

(·).

From the definition of N we can compute the Fréchet derivatives:

d

du
N (u)[h1] = lim

t→0

1
t

(
N [u+ th1]−N [u]

)
= −h′1u′′ − h′′1(1 + u′),

d2

du2N (u)[h1, h2] = lim
t→0

1
t

(
L(u+ th2)[h1]− L(u)[h1]

)
= −h′1h′′2 − h′′1h′2,

d3

du3N (u)[h1, h2, h3] = lim
t→0

1
t

(
H(u+ th3)[h1, h2]−H(u)[h1, h2]

)
= 0,

(5.50)

and evaluate them at u = 0:

L[u] = d

du
N (0)[u] = −u′′,

H[u, v] = d2

du2N (0)[u, v] = −(u′v′′ + u′′v′),

d3

du3N (0)[u, v, w] = 0.

(5.51)

Thus the second-order Taylor expansion of N around u = 0 gives the exact operator N :

N [u] = −(1 + u′)u′′ = −u′′ − u′u′′ = L[u] + 1
2H[u, u]. (5.52)

The eigenfunctions and modal derivatives can be computed from:

k ∈ N : L[uk] = λkuk ⇔ −u′′k = λkuk,

k, j ∈ N : L[ukj] = −H[uk, uj] ⇔ −u′′kj = u′ku
′′
j + u′′ku

′
j.

(5.53)

In order to continue with the computation of uk and ukj we need to specify the boundary
conditions.

Homogeneous boundary condition

As in Section 5.3.1, we now assume homogeneous boundary conditions for u, i.e.

u(0) = u(π) = 0. (5.54)
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Obviously then the eigenvalues and eigenfunctions are for k ∈ N:

λk = k2, uk(x) =
√

2/π sin(kx). (5.55)

The modal derivatives can also be computed for k, j ∈ N:

ukj = −
π∫

0

π∫
0

u′ku
′′
j + u′′ku

′
j dx dx = −

π∫
0

u′ku
′
j + C dx =

= − 2
π

π∫
0

kj cos(kx) cos(jx) + C dx = −kj
π

(
sin((k − j)x)

k − j
+ sin((k + j)x)

k + j

)
,

(5.56)

where we have made use of the boundary conditions and for k = j we define 0/0 := 0.
Here the modal derivatives ukj are linear combinations of the eigenfunctions uk! This is
a result of the very special structure of the eigenfunctions in this case.

Now let us assume f = p
√

2
π

sin x = pλ1u1. We choose V 1
h = {u1} and thus have

u1
h = pu1. Then it is

N [u1
h] =

1 +
√

2
π
p cosx

√ 2
π
p sin x =

√
2
π
p sin x+ 2

π
p2 sin x cosx

=
√

2
π
p sin x+ p2

π
sin 2x.

(5.57)

Thus the error of the approximation is

e1 = N [u1
h]− f = p2

π
sin 2x = O(p2). (5.58)

Now we add the modal derivative to the approximation space, i.e. V 2
h = {u1, u11}, where

u11 = − 1
2π sin 2x, and obtain u2

h = pu1 + p2

2 u11:

N [u2
h] =

1 +
√

2
π
p cosx− p2

2π cos 2x
√ 2

π
p sin x− p2

π
sin 2x


=
√

2
π
p sin x+ 2p2

π
sin x cosx− p2

π
sin 2x+O(p3) =

√
2
π
p sin x+O(p3).

(5.59)

Then the approximation error of the residual is, as expected, of order 3 in p:

e2 = N [u2
h]− f = O(p3). (5.60)

Inhomogeneous boundary condition

Now let us assume inhomogeneous boundary conditions for u,

u(0) = 0, u(π) = p > 0. (5.61)
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Then the eigenvalues and eigenfunctions are for k ∈ N:

λk = (k − 0.5)2, uk(x) =
√

2/π sin((k − 0.5)x). (5.62)

Again we compute the modal derivatives from (5.53) for k, j ∈ N:

ukj = −
π∫

0

π∫
0

u′ku
′′
j + u′′ku

′
j dx dx = −

π∫
0

u′ku
′
j + C dx

= − 2
π

π∫
0

(k − 0.5)(j − 0.5) cos((k − 0.5)x) cos((j − 0.5)x) + C dx

= − 1
π

(k − 0.5)(j − 0.5)
(

sin((k − j)x)
k − j

+ sin((k + j − 1)x)
k + j − 1

)
+ C0 + C1x,

(5.63)

For the modal derivatives it should hold ukj(0) = ukj(π) = 0 and thus C0 and C1 are 0.
Here the modal derivatives are no more a linear combination of the eigenfunctions! To
get an impression of the modal derivatives, Figure 5.1 shows the first 4 eigenfunctions
u1, . . . , u4 and corresponding first 10 modal derivatives u11, . . . , u44.

Again we can show that the error of an approximate solution u2
h = pu1 + p2

2 u11 is of
order 3 in p for f = p

4

√
2
π

sin x
2 = pλ1u1:

N [u2
h] =

1 + p

2

√
2
π

cos x2 −
p2

8π cosx
p

4

√
2
π

sin x2 −
p2

8π sin x


= p

4

√
2
π

sin x2 −
p2

8π sin x+ 2p2

8π sin x2 cos x2 +O(p3) = p

4

√
2
π

sin x2 +O(p3).

(5.64)

Thus it is
e2 = N [u2

h]− f = O(p3). (5.65)

5.3.3 Nonlinear Euler-Bernoulli beam

In the diploma thesis [126] we have already briefly numerically investigated the use of
modal truncation (without modal derivatives) for nonlinear vibration analysis of Euler-
Bernoulli beams, see Section 3.4.1. It turned out that a basis consisting of linear eigen-
modes was good enough to approximate the nonlinear frequency response with a high
accuracy.

As in the model problem above, this behavior can now be explained analytically using
the concept of modal derivatives. For the nonlinear Euler-Bernoulli beam with pinned
(simple) support, modal derivatives are also a linear combination of higher linear eigen-
modes, which will be shown in the following. Thus it is sufficient to use a modal reduction
with enough linear eigenmodes.
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Figure 5.1: Eigenfunctions and modal derivatives of the nonlinear model problem Def. 5.2
with inhomogeneous boundary conditions

Definition 5.3. Nonlinear Euler-Bernoulli beam model (with constants E,A, I = 1 and
L = π):

−
(
u′ + 1

2w
′2
)′

= f for x ∈ (0, π),

−
[(
u′ + 1

2w
′2
)
w′
]′

+ wIV = g for x ∈ (0, π),

u = w = w′′ = 0 for x ∈ {0, π}.

(5.66)

Then the corresponding linearized version of (5.66) is:

−u′′ = f for x ∈ (0, π),
wIV = q for x ∈ (0, π),

u = w = w′′ = 0 for x ∈ {0, π}.
(5.67)
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These are the linear string and beam equations, which are decoupled, i.e. there is no more
interaction of the equations involving u and w. Then the solutions of the corresponding
eigenproblems are:

ωuj = j, φuj =
√

2/π sin(jx), j = 1, 2, . . . ,

ωwk = k2, φwk =
√

2/π sin(kx), k = 1, 2, . . . .
(5.68)

Theorem 5.4. The modal derivatives of the nonlinear Euler-Bernoulli beam problem from
Def. 5.3 are linear combinations of sine-functions, i.e. of the eigenfunctions from (5.68).

Proof. The modal derivatives are computed explicitly, see Section A.2 in the Appendix.

In Theorem 5.4 we have shown that the modal derivatives of the Euler-Bernoulli beam
are linear combinations of higher linear eigenfunctions. This means that a second-order
approximation of the problem is already possible using a sufficient number of eigenfunc-
tions and explains why a reduction method with eigenmodes delivers very good results
for this special problem.

5.4 Computational applications

With the computational applications presented in this Section, we want to show that the
projection method with eigenmodes and modal derivatives is a powerful means of model
order reduction in nonlinear static and vibration analysis. First, we carry out a detailed
convergence study for the accuracy of reduction with eigenmodes and modal derivatives
in static nonlinear elasticity (Section 5.4.1). Then we examine the accuracy of reduction
in nonlinear frequency response analysis, using the application of the cylinder (Section
5.4.2). With the TERRIFIC Demonstrator in Section 5.4.3, we show that also larger-
scale applications of nonlinear vibration analysis are now possible using the proposed MD
reduction method. These results were already published in [128] and presented here with
minor adaptions.

5.4.1 Convergence study of reduction in 3D nonlinear elastostatics

Before applying the modal reduction technique from Section 5.2 to nonlinear vibration
analysis, we want to study the accuracy of reduction with eigenmodes and modal deriva-
tives for nonlinear large deformation hyperelasticity in a static 3-dimensional case, i.e.
projecting (3.53)

QT f(d) = QTb, d = Qp, Q ∈ Rn×r, (5.69)

and solving it using a Newton’s method as in Algorithm 1.
We use a 3D geometry with no symmetries, which is parametrized as a linear B-Spline

volume with 8 control points vijk, i, j, k = 0, 1 in lexicographical order:0.0
0.0
0.0

 ,
0.2

0.0
0.0

 ,
0.0

0.2
0.0

 ,
0.2

0.2
0.0

 ,
0.4

0.2
0.3

 ,
0.4

0.2
0.2

 ,
0.4

0.3
0.3

 ,
0.4

0.3
0.2

 [m]. (5.70)
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(a) Geometry as B-Spline volume
with control points {vijk}i,j,k=0,1

(b) Static displacement: undeformed geometry (gray), linear dis-
placement (blue), nonlinear displacement (red) and nonlinear
displacement with modal reduction r = 50 (green). Modal
derivative reduction with rd = 10, r = 65 would be almost
indistinguishable from the red plot

Figure 5.2: Geometry of 3D object in (a) and static displacement without and with re-
duction methods in (b)

The geometry of the object together with results of subsequent computations is visualized
in Figure 5.2. Large deformations kinematics and linear St. Venant-Kirchhoff material
law with material parameters

E = 71.72 GPa, ν = 0.3, ρ = 2800 kg/m3 (5.71)

are employed. The bottom or {ξ3 = 0} boundary face of the object is fixed by Dirich-
let boundary conditions and then eigenvalues and eigenvectors are computed for setting
up the modal matrix Q with first r eigenmodes as columns. For reduction with modal
derivatives we compute the modal derivative basis Q with rd eigenmodes and correspond-
ing modal derivatives using Algorithm 4. For static computations a Neumann boundary
condition is applied to the top or {ξ3 = 1} face with force contributions in all 3 dimen-
sions, t = (1.0, 3.0, 2.0)T GPa. It causes a large deformation up to 100% of the object’s
dimensions.

For a quite coarse isogeometric discretization with p = (2, 2, 2), ` = (2, 2, 4), n =
(4, 4, 6), N = 288, we compare the accuracy of modal reduction (MR) and modal reduc-
tion with derivatives (MD) with the full, unreduced nonlinear computation. In Figure
5.3 we compare the relative errors in L2- and H1-norms of the full and reduced solutions,
e.g. ‖ufull− uMD‖L2/‖ufull‖L2 , for the linear case with MR and the nonlinear case with
MR and MD. While no significant improvement of accuracy with increasing basis length
(number of modes) is noticeable for MR in the nonlinear case, MD provides a similar
convergence behavior as MR in the linear case. Note that for r = 240 we are already con-
sidering the full set of displacement modes and for r = N the transformation is bijective
and thus must reproduce the results of the full system.
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Figure 5.3: Convergence of reduction methods w.r.t. basis length r in relative L2- and
H1-norms. Modal derivatives (MD) in nonlinear analysis (red) are as good as
modal reduction (MR) in linear analysis (blue), while MR fails in nonlinear
analysis (green)

Furthermore, we have also investigated the behavior of modal reduction and modal
derivatives for different load factors. Figure 5.4 shows the displacement at the evaluation
point for load factor 1 to 1000 (100 corresponds to the load level of previous results).
In Figure 5.5 the relative errors of displacements in L2- and H1-norm are shown over
increasing load factor. While errors for MD are small and roughly stay constant up to
very large load factors and thus displacements, relative errors for MR grow fast and to a
very high, completely unacceptable level.

The increasing error for MD for high load factors can be explained with the validity of
the Taylor series expansions of d(p) and f(d) used in the definition of modal derivatives,
since they only converge when the parameter vector p is small, i.e. ‖p‖∞ < 1. Computing
the parameter vector from the projection of the right hand side vector as p = Λ−1ΦTb,
compare (5.10), we notice that ‖p‖∞ > 1 for a load factor over 300.

With this numerical study we have examined the approximation properties of our pro-
jection method for large deformations in a static setting. We can conclude that modal
reduction is unsuitable for reduction of large deformation problems, while a reduction
basis with eigenmodes and modal derivatives provides a high accuracy in the nonlinear
static problem setting and opens a perspective for the use in nonlinear vibration analysis.
In [128] we have furthermore shown that the picture stays the same when a constitutive
nonlinearity is included using Neo-Hookean material.
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Figure 5.4: Displacement at evaluation point for full computation (full, blue), modal re-
duction with 50 modes (MR r = 50, green) and modal derivatives for 10 modes
(MD rd = 10, r = 65, red) for increasing load factor. Curves for full system
and MD-reduction are optically indistinguishable
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Figure 5.5: Relative error of displacements in L2- and H1-norm of MR (r = 50, green)
and MD (rd = 10, r = 65, red) w.r.t. full computation for increasing load
factor. Accuracy of MD is much better than MR and up to a certain level
independent from load factor
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Figure 5.6: Frequency response curves of vibrating cylinder: normalized z-amplitudes of
first harmonic a1/t are plotted around f/f1 ≈ 1.0. While full harmonic bal-
ance (full, blue) and modal derivatives (MD, red) are almost identical, modal
reduction (MR, green) completely fails to capture the resonance

5.4.2 Large amplitude vibration of a thick cylinder

In Section 4.4.2 we have already investigated a large amplitude forced vibration of a thick
cylinder using the harmonic balance method. Now we want to use this application to
validate the reduction approach with modal derivatives in nonlinear frequency analysis.

Geometry and parameters are the same as shown in 4.5, but for the comparison of
reduction methods with the “exact” or “full” HBM solutions, we have changed the refine-
ment of isogeometric parameterization to p = (2, 2, 2), ` = (4, 4, 1), n = (6, 6, 3), N = 324
and the evaluation point to the top right corner of the front surface E2. The number of
harmonics is m = 3 and thus the total number of DOFs of HBM is N · (2m+ 1) = 2, 268.

We investigate the frequency response of the cylinder at resonance in the neighborhood
of the first eigenfrequency, i.e. f/f1 ≈ 1.0. We compare full harmonic balance (full) with
conventional modal reduction (MR) with r = 50 eigenmodes and with modal derivative
reduction (MD) with rd = 10 eigenmodes and corresponding modal derivatives, i.e. total
basis length r = 65.

In Figure 5.6 we have plotted the z-amplitudes of the first harmonic a1 at the evaluation
point, normalized by the cylinder thickness t. For modal reduction we have a complete
failure with no meaningful reproduction of the results of full HBM, as the resonance is
not captured. In contrast to that, the extended basis with modal derivatives reproduces
the amplitudes of the full harmonic balance with high accuracy up to a level where strong
resonance with very large amplitudes occurs. Then for a1/t > 2 deviations become visible
and the reduced MD solution over-estimates the exact amplitudes.

Figure 5.7 shows the other z-amplitudes a0, a2, a3, which have smaller magnitudes than
a1. Here the picture is very similar to Figure 5.6, as MD reduction can approximate the
full computation very well, whereas amplitudes of MR are almost zero.
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Figure 5.7: Frequency response curves of vibrating cylinder: normalized z-amplitudes
ai/t, i = 0, 2, 3 are plotted around f/f1 ≈ 1.0. While full harmonic bal-
ance (full, blue) and modal derivatives (MD, red) correspond very well, modal
reduction (MR, green) completely fails with zero amplitudes

As explained already in the preceding example, the reason for the lower accuracy of MD
at resonance is probably that very large deformations occur, compare Figure 4.7, which
exceed the range of validity of the quadratic Taylor series approximation provided by the
modal derivative approach.

Using the reduction methods, the problem size of HBM could be lowered from 2,268
(full) to 455 (MD) resp. 350 (MR) degrees of freedom. Regarding the solution time of the
linear system using a direct solver, which is not the main focus here as the full system is
quite small anyway, a reduction from around 4.0 seconds (full) to less than 0.05 seconds
(MD & MR) could be achieved.

Altogether, with this application we have shown that reduction with modal derivatives
is vey well capable of reproducing the nonlinear frequency response behavior, as long as
deformations are not too large and the nonlinear effects are moderate. On the contrary,
ordinary modal reduction with only eigenmodes cannot be used at all.

5.4.3 TERRIFIC Demonstrator as large-scale application

In Section 3.5.2 we have already introduced the “TERRIFIC Demonstrator” as a realistic
component, which has to be parameterized for isogeometric analysis as a multi-patch
model, see Figure 3.8.

As mentioned before, the volume parameterization consists of 15 patches with a total of
19,422 DOFs. Enforcing interface constraints on the patches with Lagrangian multipliers,
the isogeometric finite element discretization of the model has 22,914 DOFs. Taking a
Fourier series length of m = 3, the problem size of a harmonic balance nonlinear frequency
analysis grows in this case to a total of 160,398 DOFs and due to its low sparsity the
linearized equation system is not solvable on a personal computer. Hence we need to
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5 A reduction method for nonlinear vibration analysis

full rd = 5 (r = 15) rd = 10 (r = 65)

abs. val. abs. val. rel. err. abs. val. rel. err.

ux 1.42·10−2 1.33·10−2 5.7% 1.41·10−2 0.04%

uy 6.57·10−3 5.85·10−3 11.0% 6.59·10−3 0.27%

uz 1.05·10−3 2.69·10−3 155.8% 1.05·10−3 0.48%

L2 1.53·10−4 1.45·10−4 11.8% 1.53·10−4 0.24%

H1 1.47·10−3 1.40·10−3 8.4% 1.47·10−3 0.80%

Table 5.1: Nonlinear static analysis of TERRIFIC Demonstrator. Accuracy of reduction
with modal derivatives in comparison to full problem. MD reduction with
rd = 10 provides an acceptable error of less than 1.0%

apply model reduction to make the problem resp. the linear system solvable.
For a frequency analysis, the material parameters and boundary conditions remain the

same as in (3.82) and (3.83), only the load is now time-dependent and multiplied by an
harmonic factor cosωt.

We start the computational analysis procedure by computing the first four eigenfre-
quencies (fi = 2π/ωi) of the part:

f1 = 223.66 Hz, f2 = 358.05 Hz,
f3 = 740.78 Hz, f4 = 1233.54 Hz.

(5.72)

Then a frequency response analysis of the part around the first two eigenfrequencies, i.e.
in the range of 150 Hz < f < 450 Hz shall be carried out. As the surface tractions cause
a large deformation of the demonstrator, we expect a significant difference between the
results of a linear DFR and the nonlinear HBM with reduction.

As part of preprocessing we use the results of Section 3.5.2, where the nonlinear static
displacement caused by a static load of the same magnitude was computed. Then we
use Algorithm 4 to set up a reduction basis with 5 resp. 10 linear eigenmodes and all
corresponding modal derivatives, and solve the reduced versions of the nonlinear static
problem. The comparison of absolute values and relative errors of displacements at eval-
uation point E, L2- and H1-norms in Table 5.1 reveals that rd = 5 is not sufficient
to capture the nonlinear displacement behavior, whereas rd = 10 provides a sufficient
accuracy of ‖ufull − urd‖L2/‖ufull‖L2 < 1.0%.

We proceed with the harmonic balance frequency response analysis in conjunction with
modal derivative reduction with rd = 10, i.e. the first 10 linear eigenmodes and the
rd(rd + 1)/2 = 55 corresponding modal derivatives. The HBM-MD problem size is now
455 DOFs, compared to 160,398 DOFs of full HBM.

In Figure 5.8 we have plotted the frequency response curves of x-, y- and z-amplitudes
evaluated at evaluation point E for the frequency range 150 Hz < f < 450 Hz, together
with corresponding amplitudes computed from linear DFR. Around f = 179.0 Hz = 0.5f2
there is a remarkable sub-harmonic response in a2, which can not be determined with
linear frequency analysis. In the vicinity of the first eigenfrequency f1 = 223.7 Hz we

92



5.4 Computational applications

150 200 250 300 350 400 450
−0.10

−0.05

0.00

0.05

0.10

excitation frequency f [Hz]

am
pl

itu
de

s
a
i,
x

[m
]

DFR
a1,x
HBM-MD
a0,x
a1,x
a2,x
a3,x

(a) x-amplitudes

150 200 250 300 350 400 450
−0.10

−0.05

0.00

0.05

excitation frequency f [Hz]

am
pl

itu
de

s
a
i,
y

[m
]

DFR
a1,y
HBM-MD
a0,y
a1,y
a2,y
a3,y

(b) y-amplitudes

150 200 250 300 350 400 450
−4.00

−2.00

0.00

2.00

·10−2

excitation frequency f [Hz]

am
pl

itu
de

s
a
i,
z

[m
]

DFR
a1,z
HBM-MD
a0,z
a1,z
a2,z
a3,z

(c) z-amplitudes

Figure 5.8: Frequency response curves of amplitudes of vibrating TERRIFIC Demonstra-
tor for DFR (dashed lines) and HBM with MD reduction (solid lines). HBM-
MD shows strong nonlinear contributions of higher harmonics at f ≈ 358 Hz
and can also detect a sub-harmonic resonance at f ≈ 179 Hz
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5 A reduction method for nonlinear vibration analysis

Figure 5.9: Snapshots of vibrating TERRIFIC Demonstrator for f = 331.3 Hz at non-
dimensional times τ = 0, π/2, π, 3π/2. Significant deviations between non-
linear deformation from HBM-MD (colored by von Mises stress in Pa), and
linear DFR deformation (in gray) are visible. Undeformed configuration is
also shown in gray
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Figure 5.10: Displacement of evaluation point on TERRIFIC Demonstrator over one pe-
riod of vibration for f = 331.3 Hz for HBM-MD (solid lines) and DFR
(dashed lines). Significant deviations due to nonlinear effects are visible

notice that the nonlinear response behavior in z-amplitudes is different from the linear
one obtained from DFR, but with our simple frequency stepping method we cannot follow
complex solution paths here. The resonance behavior around f2 = 358.0 Hz is very
strong and we have convergence problems with our method for 335 Hz < f < 355 Hz.
There are strong contributions from higher harmonics here, which lead to much more
realistic deformations as we discuss in more detail below. Rapidly growing z-amplitudes
at resonance indicate that there might by turning points in the frequency response curves
here, which we could only follow using continuation methods.

Figure 5.9 shows the vibrating structure at a frequency of f = 331.3 Hz, i.e. near
the first eigenfrequency of f1 = 358.1 Hz, where resonance with very large deformation
occurs. The four snapshots are taken at times τ = 0, π/2, π, 3π/2 display the deformed
structure from the HBM-MD computation colored by von Mises stress in Pa. As references
the deformed structure from DFR linear frequency analysis and undeformed structure
both also shown in gray. It is obvious that the nonlinear results lead to a much better
prediction of the small volume change of the structure and thus much more realistic states
of deformation than linear DFR. Furthermore, it is interesting that the bending of the
structure is stronger in the nonlinear case than in the linear case for τ = π.

These findings can also be observed in Figure 5.10, where we have plotted the x-, y-
and z-displacement at the evaluation point over one vibration period of τ ∈ [0, 2π] for
f = 331.3 Hz for both HBM-MD and DFR. Significant differences are visible between the
nonlinear deformation from HBM-MD (solid lines) and the linear deformation from DFR
(dashed lines).

Altogether, the results presented here for the “TERRIFIC Demonstrator” show that a
reduction with modal derivatives makes harmonic balance nonlinear frequency response
analysis feasible for larger scale applications. Although we do not have the solutions
of a full, unreduced nonlinear frequency analysis here as reference, the results could be
validated in comparison to linear DFR. It could be shown that HBM-MD is able to capture
nonlinear effects such as sub-harmonic resonance and provide much more realistic results
than DFR for large amplitude vibrations.
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5 A reduction method for nonlinear vibration analysis

5.5 Summary

The harmonic balance method, as we have introduced it in Chapter 4, is a powerful means
for nonlinear steady-state frequency analysis. However, its major drawback is the size of
the resulting linear system to be solved, which makes HBM unfeasible for large problems.
In this chapter we have addressed this issue and proposed a model order reduction method
for the spatial discretization, which reduces the problem size significantly and enables
large-scale applications.

After a review of commonly used projection methods for model order reduction, we have
decided to use a modal projection basis, which is enhanced with modal derivatives (MD).
We have introduced the concept of modal derivatives and shown that modal derivatives
can be used to obtain a second-order approximation of displacements. This motivated
the use of MD for model reduction in nonlinear frequency analysis and HBM.

In order to gain a better understanding of the concept, we have established a more
theoretical framework by transferring the idea of modal derivatives to the continuous
formulation of PDE problems. Using a model problem and the nonlinear Euler-Bernoulli
beam as examples, we could show that MDs can be analytically computed and used to
approximate the exact solutions.

With computational examples we could demonstrate that reduction with modal deriva-
tives is very accurate for moderate nonlinearities. Also the application in nonlinear fre-
quency response analysis was successful and HBM-MD could approximate the results of
full HBM very well. It provides a substantial reduction of the total number of DOFs,
but is at the same time still able to reproduce the main characteristics of nonlinear vi-
brations, such as sub-harmonic resonances. With the TERRIFIC Demonstrator we have
shown that a larger scale nonlinear frequency analysis is now feasible with HBM-MD.
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6 Isogeometric mixed methods for
near incompressible vibrations

An important practical application of the method for nonlinear vibration analysis using
isogeometric finite elements, harmonic balance, and modal derivative reduction, which we
have developed over the preceding chapters, is the simulation of rubber and elastomer
components. These are described using incompressible and near incompressible visco-
hyperelastic materials laws, which have a Poisson’s ratio ν equal or very close to 0.5. In
this situation, finite element methods used without particular care can lead to locking
phenomena, and consequently unreliable numerical simulations [23].

In the following we discuss the phenomenon of volumetric locking and review possi-
ble cures in Section 6.1. To avoid locking in near incompressible elasticity, we present
isogeometric mixed finite element methods in Section 6.2. We integrate these mixed meth-
ods also into our framework for nonlinear frequency analysis, i.e. the harmonic balance
method, in Section 6.3 and study their performance for application in nonlinear static
and frequency response analysis numerically in Section 6.4.

6.1 Near incompressibility and locking

Locking phenomena can be observed for all kinds of physical problems subject to con-
straints, such as fluid mechanics with incompressible Stokes and Navier-Stokes equations,
continuum mechanics with near incompressible elasticity and plasticity (volumetric lock-
ing), and structural elements such as thin plates, shells and beams (shear and membrane
locking) [23, 130]. The term locking means that a finite element formulation underes-
timates the true or analytical solution of a problem, i.e. it shows an unphysically stiff
behavior and only converges very slowly, as can be seen in later presented numerical
examples in Section 6.4.

In elasticity, the constitutive equation dependends on the two parameters µ and λ, the
so-called Lamé constants, compare Section 3.1.3. When Poisson’s ratio ν → 0.5, it follows
that

µ→ E

3 , λ→∞, (6.1)

which leads for near incompressible problems to an ill-conditioning of the stiffness matrix
and thus volumetric locking, and for full incompressiblity conventional methods cannot
be used at all.
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The incompressibility condition, which is div u = 0 in linear and J = 1 in nonlinear
elasticity, acts as an additional constraint for the deformation control points or nodes.
For example, a linear triangular finite element can completely lock in incompressible 2D
plain strain problems and allows no deformation at all for a whole mesh [39].

For higher-order finite elements, such as p-FEM and isogeometric methods, volumetric
locking effects are alleviated or even totally disappearing for very high degree p. However,
it is not always desireable to use very high orders due to limited regularity of the exact
solution and lower sparsity of resulting stiffness matrices [130], which applies for both
p-FEM and IGA.

A number of alternative methods have been developed for locking-free finite element dis-
cretizations and many of them have been adapted to the context of isogeometric analysis
already: Mixed formulations for the incompressible Stokes problem in 2D where inves-
tigated in [30] and mixed three-field formulations based on the Hu-Washizu functional
for (near) incompressible linear and nonlinear elasticity and plasticity in [84, 118]. A
stream function formulation, where the divergence-free constraint is directly imposed on
the discretization space, was studied for plain elasticity problems in [4]. The same class of
problems was treated by B̄- and F̄ -projection methods in [48]. Furthermore, the assumed
natural strain (ANS) method for shells [32] and descrete shear gap (DSG) and reduced
integration methods for Timoshenko beams [24, 47] were investigated.

6.2 Isogeometric mixed finite element discretizations

In order to cure volumetric locking and be able to accurately solve near and fully incom-
pressible elasticity problems, we employ a mixed method. In a mixed method applied to
a certain formulation, such as the elasticity equations, different variables are discretized
independently from each other. In [33] we have already described the isogeometric finite
element discretization of mixed formulations and their implementation using igatools
software library [91]. Here we review the derivation of mixed formulations for near and
fully incompressible, linear and nonlinear elasticity based on references [6, 7, 23, 109, 130],
and outline the discretization using different kinds of mixed isogeometric elements.

6.2.1 Formulation for linear (near) incompressibility

To describe the mixed methods, we begin with the static linear elasticity equation and the
corresponding energy functional, which was already introduced in Section 3.3 as (3.62),
and is only displacement-based:

ψd(u) = µ tr(ε2(u)) + λ

2 tr(ε(u))2. (6.2)

Now we introduce the pressure-like scalar variable p = λ tr(ε(u)) and rewrite the strain
energy functional in a mixed form depending on both u and p [6]:

ψm(u, p) = µ tr(ε2(u)) + p tr(ε(u))− 1
2λ p

2. (6.3)
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Differentiation of the mixed energy functional ψm w.r.t. both variables leads to the ex-
pression for the stress and the equation of the incompressibility constraint:

σ(u, p) = dψm
du

= 2µε(u) + pI = µ(∇u +∇uT ) + pI,

dψm
dp

= tr(ε(u))− 1
λ
p = div u− 1

λ
p

(6.4)

This leads to the strong form of the near incompressible linear elasticity problem in mixed
formulation: 

−div σ(u, p) = ρ0b in Ω,
div u− 1

λ
p = 0 in Ω,
u = h on Γu,

σ(u, p) n = t on Γn.

(6.5)

For the isogeometric finite element discretization the weak form of (6.5) is needed and
as usually derived using integration by parts of the momentum equation:∫

Ω

2µ δε · ε(u) + p div δu dx =
∫
Ω

ρ0 δuTb dx +
∫

Γn

δuT t dΓ ∀δu ∈ V ,

∫
Ω

q div u− 1
λ
qp dx = 0 ∀q ∈ Q.

(6.6)

For a fully incompressible material, i.e. where ν = 0.5 and thus λ → ∞, all terms
with a factor 1

λ
in the above-stated equations (6.3)-(6.6) vanish and the incompressibility

constraint becomes
div u = 0. (6.7)

6.2.2 Formulation for nonlinear (near) incompressibility

The nonlinear elasticity problem was in detail introduced in the displacement-based for-
mulation in Section 3.1. For the derivation of the mixed formulation we proceed in the
same fashion as for the linear case. Starting point is again the strain energy function for
the Neo-Hookean material (3.22):

ψd(C) = µ

2 (tr(C)− 3)− µ ln J + λ

2 (ln J)2. (6.8)

Now the new pressure-like variable is introduced as p = λ ln J and inserted for the mixed
form of the strain energy function [6]:

ψm(C, p) = µ

2 (tr(C)− 3)− µ ln J + p ln J − 1
2λp

2. (6.9)

Differentiation yields the 2nd Piola-Kirchhoff stress and the constraint equation:

S(u, p) = 2dψm
dC

= µ(I−C−1) + pC−1,

dψm
dp

= ln J − 1
λ
p.

(6.10)
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It follows the strong form of the near incompressible nonlinear hyperelasticity problem in
mixed formulation: 

−div (F S(u, p)) = ρ0b in Ω,
ln J − 1

λ
p = 0 in Ω,
u = h on Γu,

F S(u, p) n = t on Γn.

(6.11)

As in Section 3.2.1, the weak form of (6.11) is be derived before a mixed finite element
discretization can be applied:∫

Ω

δE · S(u, p) dx =
∫
Ω

ρ0δuTb dx +
∫

Γn

δuTg dΓ ∀δu ∈ V ,

∫
Ω

q ln J − 1
λ
qp dx = 0 ∀q ∈ Q.

(6.12)

In the case of a fully incompressible material with λ→∞, again all terms with a factor
1
λ

vanish and the incompressibility constraint becomes

ln J = 0, (6.13)

which is equal to the earlier mentioned constrained J = det F = 1. Depending on the non-
linear material law, different incompressibility constraints may be chosen as alternatives
to (6.13). Commonly used are also J2 − 1, J − 1 and 1− 1/J [7, 130].

6.2.3 Mixed isogeometric elements

Having derived the weak forms of the (near) incompressible elasticity problem in the linear
and nonlinear setting as mixed formulations with (6.6) and (6.12), the next step in the
solution of these equations is the discretization of spaces V ⊂ H1(Ω)3 and Q ⊂ L2(Ω). In
our setting we certainly choose the discrete spaces Vh ⊂ V and Qh ⊂ Q as (refinements
of) the push-forward of spline function spaces on the domain Ω.

For the linear problem, this results in a symmetric, block-structured system of equations
of size Nu +Np: (

K BT

B Q

)(
d
λ

)
=
(

b
0

)
, (6.14)

with d ∈ RNu and λ ∈ RNp .
In the incompressible case the matrix Q is zero and in the near-incompressible it is

almost zero due to the factor 1
λ
. The pressure like variable p, which is discretized using

the coefficient vector λ, acts as a Lagrangian multiplier for the incompressibility constraint
and this means that (6.14) is a (perturbed) saddle point problem. In Section 2.3.3 we
have already encountered saddle point problems arising from multi-patch discretizations
and seen that the rank of the sub-matrix B is crucial for the solvability of the system.

In the context of a mixed discretization, B arises from the assembly of the term b(v, q) =∫
Ω q div v dx, where both discretization spaces are mixed since vh ∈ Vh and qh ∈ Qh. The

full-rank condition for B then leads to the well-known Babuška-Brezzi or inf-sup condition
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for Vh and Qh [7, 23, 35]:

inf
q∈Qh,q 6=0

sup
v∈Vh,v 6=0

b(v, q)
‖q‖L2‖v‖H1

≥ ε > 0. (6.15)

Furthermore, as for the displacement-based case, the following coercivity condition must
hold for the bilinear form a(v,u) =

∫
Ω 2µ ε(v) · ε(u) dx [7, 23, 35]:

inf
v∈Vh,v6=0,
div v=0

a(v,v)
‖v‖2

H1
≥ ε > 0. (6.16)

Thus the choice of a combination of spaces for the discretization of displacement and
pressure, i.e. the choice of a mixed element Vh/Qh, is crucial for the stability of the method
[7]. For the linear Stokes problem a mathematical analysis of mixed isogeometric finite
element types based on NURBS discretizations has been carried out in [28], and the two
proposed inf-sup-stable element types are presented in the following.

In the nonlinear case, the discretization of (6.12) leads to a nonlinear system of the
form (

f(d,λ)
c(d,λ)

)
=
(

b
0

)
. (6.17)

For an iterative solution of this nonlinear system of equations, compare the Newton’s
method for the displacement-based formulation presented in Algorithm 1, the linearization
of (6.17) is needed and leads to a linear system with the very same block structure as
(6.14).

Taylor-Hood elements

Taylor-Hood elements (TH) are well-established in classical finite element analysis and
their isogeometric counterparts have already been employed in [14] for incompressible
elasticity. Isogeometric TH elements are denoted by Srp+1/Srp and based on the same
mesh Th(Ω) for the discretization of displacements and pressure, but the degree of Vh is
one higher than of Qh:

Qh = Srp
(
Th(Ω)

)
, Vh =

(
Srp+1

(
Th(Ω)

))d
. (6.18)

This means that Vh is obtained from Qh by one step of p-refinement, i.e. an order elevation
that maintains the regularity r < p of the pressure space also for the displacement space.
In [28] it is proven that the isogeometric Taylor-Hood elements Srp+1/Srp are inf-sup stable
for p ≥ 1.

As introduced before in Section 2.1, the notation Srp
(
Th(Ω)

)
refers to a tensor product

spline space, which is defined as push-forward of spline functions on the physical domain
Ω, based on the mesh Th(Ω).

Example 6.1 (Isogeometric Taylor-Hood element S1
3/S1

2 ). Figure 6.1 shows the B-Spline
basis functions of a one-dimensional isogeometric Taylor-Hood element S1

3/S1
2 with the
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Figure 6.1: B-Spline spaces of isogeometric Taylor-Hood element S1
3/S1

2 from Ex. 6.1
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Figure 6.2: B-Spline spaces of isogeometric subgrid element S1
2 (h/2)/S1

2 (h) from Ex. 6.2

following parameters:

pp = 2, rp = 1, np = 6, mp = 9, Ξp =
{

0, 0, 0, 1
4 ,

1
2 ,

3
4 , 1, 1, 1

}
,

pu = 3, ru = 1, nu = 10, mu = 14, Ξu =
{

0, 0, 0, 0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1, 1

}
.

(6.19)

Remark 6.1. In [48] the corresponding spline spaces for isogeometric B̄- and F̄ -projection
are chosen as Sp−1

p /Sp−2
p−1 . This is a similar, but not the same choice as TH-spaces, since

the pressure space is generated from the displacement space by an order reduction, which
keeps the multiplicity of inner knots constant, except when they have multiplicity p. These
spaces seem to work well in most cases, but are not proven theoretically to be inf-sup
stable.

Subgrid elements

For subgrid elements (SG) the displacement space is based on a refinement or subdivision
Th/2(Ω) of the mesh of the pressure space Th(Ω):

Qh = Srp
(
Th(Ω)

)
, Vh =

(
Srp
(
Th/2(Ω)

))d
. (6.20)

These elements are particularily interesting in the context of isogeometric analysis, since
the generation of the subgrid Th/2(Ω) with 2d elements for every element of the original
mesh Th(Ω) can be easily realized with one step of uniform h-refinement.

In [28] it was also shown that these elements are inf-sup stable for p ≥ 1, and even
further that also a k- instead of h-refinement can be applied, which results in a displace-
ment space Vh =

(
Srp+1

(
Th/2(Ω)

))d
with maximal Cp-continuity at the new knots of the

102



6.3 Application to nonlinear vibration analysis

subgrid and Cr-continuity at existing inner knots.

Example 6.2 (Isogeometric subgrid element S1
2 (h)/S1

2 (h/2)). Figure 6.2 shows the B-
Spline basis functions of a one-dimensional isogeometric subgrid element S1

2 (h)/S1
2 (h/2)

with the following parameters:

pp = 2, rp = 1, np = 6, mp = 9, Ξp =
{

0, 0, 0, 1
4 ,

1
2 ,

3
4 , 1, 1, 1

}
,

pu = 2, ru = 1, nu = 10, mu = 13, Ξu =
{

0, 0, 0, 1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1, 1, 1

}
.

(6.21)

6.3 Application to nonlinear vibration analysis

For a nonlinear frequency response analysis involving near incompressible materials such
as rubber, we have to integrate the spatial semi-discretization using mixed elements into
the harmonic balance framework, which was introduced in Section 4.3.

Starting point is again the semi-discretized dynamic equation of motion, which is now
also involving the degrees of freedom of the pressure-like Lagrangian multipliers:(

M 0
0 0

)(
d̈(t)
λ̈(t)

)
+
(

C 0
0 0

)(
ḋ(t)
λ̇(t)

)
+
(

f(d(t), ḋ(t),λ(t))
c(d(t),λ(t))

)
=
(

b(t)
0

)
. (6.22)

It is a differential-algebraic equation (DAE) with DAE-index 3 in-case of incompressible
material and index 1 for near incompressibility [109], which is very important in case a
time integration method is used for the solution.

Before applying harmonic balance method to (6.22), we rewrite it using the notation
d∗ =

(
dT ,λT

)T
∈ RNu+Np :

M∗ d̈∗(t) + C∗ ḋ∗(t) + f∗(d∗(t), ḋ∗(t)) = b∗(t). (6.23)

In this formulation the equation has the same structure as we had it in (4.29) for the
introduction of the harmonic balance method. Thus the integration of mixed methods
into harmonic balance is straight-forward and follows the routine described in Section 4.3:
• Truncated Fourier series expansion of d∗ using 2m+ 1 amplitude vectors q∗k.
• Substitution into (6.23) for a residual vector r∗(q∗, ω, t).
• Fourier transform of the residual onto 2m+ 1 coefficient vectors r̂∗j.
• Solution of the nonlinear system of equations r̂∗(q∗, ω) = 0.

This means that Algorithm 3 can be reused just by replacing the vectors and matrices of
the displacement-based formulation with the mixed formulation.

The mass matrix M∗ and damping matrix C∗ are singular, but this is also the case for
a multi-patch parameterization using Lagrangian multipliers as in Section 2.3.2. It does
not cause any problems in harmonic balance, since we only have to evaluate the residual
r∗ of (6.23) and its Jacobian K∗T , which is non-singular when appropriate mixed element
spaces are used, as discussed in Section 6.2.
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6 Isogeometric mixed methods for near incompressible vibrations

Near incompressible, visco-hyperelastic materials

In (6.22) we have stated that the internal force vector f(d(t), ḋ(t),λ(t)) may also depend
on the velocities, as it is the case for visco-hyperelastic materials (Section 3.1.4), but so
far in the derivation of nonlinear near incompressible elasticity in Section 6.2.2 this wasn’t
considered yet.

Hence we now introduce a near incompressible, visco-hyperelastic constitutive rela-
tion by augmenting the 2nd Piola-Kirchhoff stress term of the near incompressible Neo-
Hookean material model from (6.10) with the viscous stress term from (3.31):

S(u, u̇, p) = Se(u, p) + Sv(u, u̇) = µ(I−C−1) + pC−1 + 2ηµĖ. (6.24)

6.4 Computational applications

In the following computational examples we want to study the performance of different
isogeometric mixed finite element formulations, i.e. Taylor-Hood and subgrid elements,
in application to nonlinear near incompressible elasticity and compare the to purely dis-
placement based formulations. Furthermore, the use of mixed formulations within the
nonlinear frequency response analysis framework is investigated.

6.4.1 Cook’s membrane as benchmark problem

A popular test problem for validation and benchmarking of locking-free finite element
discretizations is Cook’s membrane problem [38]. It has also been used in the context of
isogeometric methods [48, 84], and we have employed it in [33] to validate our implemen-
tation using igatools library [91].

Cook’s membrane is a 2D panel, clamped on the left side and subject to a shear load on
the right side, causing combined bending and shear deformation. Geometry, dimensions
and values of parameters can be found in Figure 6.3(a). Large deformation kinematics
and the nonlinear, near incompressible Neo-Hookean constitutive law are employed. The
quantity of interest is the horizontal deformation of the top right corner of the panel
uy, which is used to study p/k- and h-convergence and locking-free behavior of mixed
elements. An example for a large deformation of the panel is visualized in Figure 6.3(b).

First, the convergence behavior of isogeometric finite element formulations is studied
for near incompressibility with ν → 0.5 and summarized in Table 6.1 and Figure 6.4. The
mixed Taylor-Hood element S1

3(h)/S1
2(h) and mixed subgrid element S1

2(h/2)/S1
2(h) are

compared to the displacement-based element S2
3(h) for ν being increased from 0.4 to 0.5.

For increasing incompressibility, i.e. ν → 0.5 and λ/µ = 2ν
1−2ν →∞, it can be seen that

the accuracy of the displacement-based element S2
3 decreases due to volumetric locking,

while the mixed methods converge. Furthermore, for the mixed elements the number
of iterations for convergence of the Newton’s method is independent of ν, while it in-
creases also for the non-mixed element and even load-stepping has to be applied to ensure
convergence in the very near incompressible regime, which is another indicator of locking.

In Figure 6.5 convergence behavior of uy with respect to the number of elements per
side (` ∼ 1/h) of the discretization of the panel is shown. We compare the isogeomet-
ric Taylor-Hood and subgrid elements with pure displacement formulations for a fixed
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x

y

48 mm

44 mm

16 mm F

uy

E = 240.565 MPa
νd = 0.499
νm = 0.5
F = 100 kN

(a) Geometry and parameters of Cook’s membrane
problem

(b) Deformed Cook’s membrane colored by
pressure in Pa

Figure 6.3: Problem setting of Cook’s membrane and deformation plot

TH S1
3/S

1
2 SG S1

2/S
1
2 displ. S2

3

ν λ/µ uy it. uy it. uy it.
0.4 4 7.4045 5 7.3955 5 7.3324 5
0.45 9 7.1660 5 7.1551 5 7.0572 6
0.49 49 6.9393 5 6.9262 5 6.7398 9
0.495 99 6.9085 5 6.8951 5 6.6627 8
0.499 499 6.8834 5 6.8698 5 6.5089 8
0.4999 4999 6.8778 5 6.8640 5 6.3179 2 · 8
0.49999 49999 6.8772 5 6.8635 5 6.0424 4 · 9
0.499999 499999 6.8771 5 6.8634 5 5.7274 10 · 8

Table 6.1: Convergence study of Cook’s membrane for near incompressibility with Pois-
son’s ratio ν → 0.5, comparison of uy in mm and number of Newton iterations

Poisson’s ratio ν = 0.499. The classical displacement-based Sp−1
p elements show a rather

slow convergence behavior due to locking, while both mixed elements, Taylor-Hood and
subgrid, converge quickly for p/k- and h-refinement. These results also match very well
with the ones obtained by [48], where an isogeometric F̄ -method was used instead of a
mixed formulation. The accuracy of Taylor-Hood elements Sp−1

p+1(h)/Sp−1
p (h) is a bit higher

than of subgrid elements Sp−1
p (h/2)/Sp−1

p (h). For same degree p both elements have the
same number of degrees of freedom, since the increase in DOFs is the same for p- and
h-refinement, but the benefit of a higher degree is larger than the one of a finer mesh.

Even though the purely displacement formulation also converges toward the correct
value of uy for higher polynomial degree and number of degrees of freedom, the approxi-
mation of stresses exhibits spurious oscillations, which are typical for locking phenomena.
In Figure 6.6 we plot the stress component σxx. The non-mixed elements show a highly
oscillatory behavior of volumetric stress components – a typical sign of volumetric locking
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6 Isogeometric mixed methods for near incompressible vibrations
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Figure 6.4: Convergence of displacement uy of Cook’s membrane over incompressibility
ratio λ/µ for near incompressibility as Poisson’s ratio ν → 0.5
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Figure 6.5: p/h/k-convergence of y-displacement uy of Cook’s membrane over number of
elements per side ` for displacement-based and mixed formulations

– while the stress distributions for mixed Taylor-Hood elements are smooth.
Altogether, we have demonstrated the signs of locking of purely-displacement based

elements in the near incompressible regime, which are a deterioration of convergence and
stress oscillations, and we have seen numerically that mixed methods can resolve this
problem.

6.4.2 Nonlinear vibration of a thick rubber cylinder

Having studied the convergence of mixed elements, we now want to move to nonlinear
vibration analysis. As an application we choose a thick rubber cylinder with the same
geometry, dimensions and symmetry boundary conditions as the one used in Section 3.5.1,
Figure 3.6(a).
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(a) S2
3 with 4 elements per side (b) S1

3/S
1
2 with 4 elements per side

(c) S2
3 with 16 elements per side (d) S1

3/S
1
2 with 16 elements per side

Figure 6.6: Comparison of stress component σxx for displacement-based S2
3 and mixed

S1
3/S

1
2 Taylor-Hood element for 4 (top) resp. 16 (bottom) elements per side at

ν = 0.499. Displacement-based elements exhibit strong oscillations of stresses

Convergence for static displacement and eigenfrequencies

First we want to check the accuracy and convergence of the mixed and displacement-
based formulations and elements for static nonlinear deformation and eigenfrequencies.
The results are summarized in Figure 6.7. S1

2 and S2
3 refer to displacement-based elements,

with p = 2, 3 in all three parameter directions, h-refined such that at maximal mesh size
parameter h was obtained, and C1- resp. C2-continuous at inner knots, since the original
geometry did not contain any inner knots. S0

2/S
0
1 and S1

3/S
1
2 refer to mixed Taylor-

Hood elements, where the displacement space is obtained from the pressure space by
p-refinement, with preceding h-refinement to obtain maximal mesh size parameter h. A
summary of number of degrees of freedom for these discretizations is given in Table 6.2.

For static nonlinear deformation we assume a vertically directed surface load (Neumann
boundary condition) on the outer shell of the cylinder with magnitude −3.0 kN, a constant
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6 Isogeometric mixed methods for near incompressible vibrations

h
S1

2 S2
3 S0

2/S
0
1 S1

3/S
1
2

nu N nu N nu np N nu np N

0.08 48 144 100 300 48 18 162 144 48 480
0.04 108 324 196 588 108 50 374 400 108 1308
0.02 300 900 484 1452 300 162 1062 1296 300 4188
0.01 1296 3888 1805 5415 1296 867 4755 6936 1296 22104

Table 6.2: Number of control points and degrees of freedom of spline spaces for mixed and
displacement-based elements for thick rubber cylinder

Young’s modulus E = 2.432 MPa and constant, nearly incompressible Poisson’s ratio
ν = 0.495. The mass density of the rubber material is ρ = 1905.7 kg/m3.

Figure 6.7(a) shows the z-displacement at evaluation point E2 and Figure 6.7(b) the
L2-norm of displacements for h/k-refinement. With uz = −1.78 cm, the magnitude of the
displacement is about the thickness of the cylinder, which is t = 2.0 cm. We can observe
a very slow convergence of S1

2 and a faster convergence of other elements, which is in
accordance with previous results. Especially the mixed element S1

3/S
1
2 is very accurate

already for the coarsest mesh.
The performance of mixed and displacement-based elements exhibits also a huge differ-

ence regarding the convergence behavior of the Newton’s method, see Algorithm 1. For
displacement-based elements we have to apply load stepping, otherwise the tangent stiff-
ness matrix might become singular within the initial few steps of the Newton algorithm.
This behavior seems to become worse with increasing degree p and smaller h, and makes
the Sp-elements unreliable. For mixed elements we do not observe any convergence issues.

Furthermore, we also examine the first eigenfrequency f1 and its frequency-dependent
counterpart f1(f), which is obtained using frequency-dependent Young’s modulus E(f)
and constant ν = 0.495. The results in Figure 6.8 reveal a very similar convergence
behavior as for the static nonlinear displacement. The values converge to f1 = 10.79 Hz
and f1(f) = 20.85 Hz.

Nonlinear frequency response

Now we can compare the mixed and displacement-based elements in a nonlinear fre-
quency response analysis with harmonic balance method. We use a visco-hyperelastic
Neo-Hookean material and consider the full frequency-dependency of E(f), ν(f) and also
the loss factor η(f), see Figure 3.3.

We compute the response amplitudes within the range 10.0 Hz ≤ f ≤ 30.0 Hz, i.e.
around the first frequency-dependent eigenfrequency f1(f). The magnitude of the surface
load is increased on −10.0 kN, since E(f) ≈ 3E(0) in the frequency range of interest, and
the load is now harmonic in time with a factor cosωt.

For the isogeometric discretization we use the elements S2
3 and S1

3/S
1
2 for h = 0.08,

which was the coarsest mesh of our preceding convergence analysis, but already lead to
sufficiently accurate results, especially for the mixed method. In the Fourier series ansatz
of harmonic balance we include the first two harmonics, i.e. m = 2.
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6 Isogeometric mixed methods for near incompressible vibrations

(a) displacement-based S2
3 element (b) mixed S1

3/S
1
2 element

Figure 6.9: Deformed rubber cylinder at f = 20.23 Hz and non-dimensional time τ = π
2 ,

colored by von Mises stress

The frequency response curves of z-amplitudes ai and -phases φi at the evaluation point
E2 are plotted in Figure 6.10. Due to the increasing stiffness and strong damping of the
viscoelastic material, the amplitude is in general only moderately growing at resonance.
However, for the dominating first harmonic, a remarkable difference occurs between the
curves of the S1

3/S
1
2 (solid lines) and the S2

3 (dashed lines) element. Taking into account
the results of the nonlinear static and eigenfrequency analysis, it can be seen that the
relative difference between the maxima of the two curves is very similar to the static
deformation results, and that the resonance peaks occur at the corresponding frequency-
dependent first eigenfrequencies. Thus the approximation errors of displacements and
eigenfrequencies are carried over to the results of frequency response analysis. Deviations
are also evident for the constant amplitude a0 and the second harmonic a2, which reflect
the nonlinearity of the deformation resp. vibration, as well as the phases φ1 and φ2.

Figure 6.9 shows the deformed rubber cylinder during a vibration at f = 20.23 Hz, i.e.
at peak of resonance, at non-dimensional time τ = π

2 . Comparison of the displacement-
based and mixed element visualizes a difference in amplitudes and thus also von Mises
stresses, which was already indicated in Figure 6.10.

Also here convergence of the Newton’s method of an harmonic balance step, see Algo-
rithm 3, is more critical for the displacement-based method than for the mixed method.
Especially the initial frequency step for large amplitude vibrations might fail, as we have
already observed it above for the static displacements.

Furthermore, we have also tried the modal derivative reduction method in combination
with the mixed method in a first shot. Figure 6.10 includes the results for a reduction
with rd = 10 eigenmodes and corresponding modal derivatives (r = 65) as dotted lines.
In the response curves the correspondence of amplitudes a0, a1 and a2 and phases φ1 and
φ2 with the ones obtained from the full solution is in general very good for all harmonics
and over the whole frequency range.

Altogether, with this example we have demonstrated that mixed methods can be easily
implemented inside the harmonic balance framework. We have shown that isogeometric
mixed methods provide much more accurate and reliable results for nonlinear frequency
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Figure 6.10: Nonlinear frequency response curves for thick rubber cylinder. Amplitudes
and phases of harmonics at evaluation point for displacement-based S2

3 -
element (dashed), mixed S1

3/S
1
2 -formulation (solid line), and mixed formula-

tion with reduction with rd = 10, r = 65 (MD, dotted line)

response analysis with nearly incompressible materials than displacement-based methods.
Reduction with modal derivatives seems to work well in the setting of mixed elements and
visco-hyperelasticity, too, but as amplitudes are still moderate here due to damping effects,
this has to be investigated in more detail in the future.
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6 Isogeometric mixed methods for near incompressible vibrations

6.5 Summary

Rubber components are an important application of the nonlinear frequency analysis
method developed over preceding chapters, as they can undergo large amplitude vibra-
tions.

However, rubber is a nearly incompressible material and to avoid inaccuracy of numer-
ical simulations the phenomenon of volumetric locking has to be considered. Thus we
have first described and explained volumetric locking and reviewed possible cures.

In the context of isogeometric analysis, mixed finite element methods are an auspi-
cious method for preventing locking in both linear and nonlinear near incompressible
elasticity. We have outlined the use of two particular isogeometric mixed element types,
namely Taylor-Hood and subgrid elements. Both are based on a two-field approach with
independent discretizations of displacement field and a pressure-like variable.

Then we have presented the successful integration of these mixed formulations for near
incompressible, visco-hyperelastic materials into HBM.

Using computational examples, we could demonstrate that Taylor-Hood and subgrid
elements both perform well also in the nonlinear near incompressible regime. In contrast
to purely displacement-based formulations, they prevent locking and exhibit a fast con-
vergence behavior without stress oscillations. We could also confirm that the advantages
of mixed methods carry over to nonlinear vibration analysis, where frequency response
curves are captured much more accurately using the mixed methods. Finally, we have
also tested the modal derivative reduction method and it indicated to be very accurate
also for near incompressible applications.
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7 Conclusion

7.1 Summary

In this thesis we have developed a novel method for the computational analysis of nonlin-
ear steady-state frequency response, which is capable of simulating vibrational behavior
of large-scale applications in solid mechanics. It is mainly based on three pillars: a spa-
tial semi-discretization of the nonlinear elastodynamic partial differential equation using
isogeometric finite elements; model order reduction of the resulting ordinary differen-
tial equation system using a projection method with so-called modal derivatives; and a
frequency-domain solution of the reduced nonlinear ODE system using the method of
harmonic balance.

Isogeometric finite elements based on splines have proven to be advantageous compared
to classical finite elements with Lagrange polynomials due to their higher inter-element
continuity, especially in linear vibration analysis and computation of eigenfrequencies.
Using the nonlinear-Euler Bernoulli beam structural model, we could show that these
properties also carry over to nonlinear frequency analysis. Although IGA claims to close
the gap between computer-aided design and computational simulation, it is necessary to
generate analysis-suitable volume models from CAD surface models. For complex, real-
life engineering geometries this leads to multi-patch volume parameterizations. Many
techniques for implementation and coupling of multi-patch parameterizations have been
established already, but here we deal with them for the first time in the setting of 3-
dimensional nonlinear continuum mechanics, with large deformations, visco-hyperelastic
materials, and larger scale applications.

The harmonic balance method can be used for nonlinear modal and frequency response
analysis of nonlinear ODE and DAE systems. It is based on a transformation from the
time to the frequency domain and approximates the solution as a truncated Fourier series.
Here we apply it successfully for nonlinear steady-state frequency response analysis of the
discretized equation of motion coming from an isogeometric finite element discretization
of nonlinear visco-hyperelasticity. With our numerical examples we could highlight the
benefits of nonlinear frequency analysis and the differences to linear results. Furthermore,
we could observe exponential convergence of this spectral method with respect to the
number of Fourier harmonic terms.

However, the Fourier series expansion of each spatial DOF within the harmonic balance
method leads to a blow-up of degrees of freedom of the final nonlinear equation system
to be solved iteratively. As the resulting linear systems are not only large, but also of low
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sparsity, this is a very limiting factor for the applicability of the method for large-scale
problems. Thus we have introduced a model order reduction method into the nonlin-
ear frequency analysis framework, which is based on a linear projection onto a subspace
spanned by linear eigenmodes and modal derivatives, providing a second-order enhance-
ment of the projection basis. We have extended the motivation and theoretical foundation
of the concept of modal derivatives and could show that it can also be applied to contin-
uous problems. Numerical results revealed that the vibrational behavior, i.e. resonance
frequencies and response amplitudes, can be very well reproduced for moderately large
amplitudes and nonlinearities. Nonlinear frequency analysis becomes even feasible for
realistic applications with large spatial discretizations, as the effort for numerical solution
of the harmonic balance equation system is significantly reduced.

As mixed finite element methods are a means for solving incompressible elasticity prob-
lems and a cure of volumetric locking in the near incompressible setting, which is partic-
ularly important for the simulation of rubber components, we have also included them
into our nonlinear frequency analysis framework. We have investigated the usage and
convergence properties of two isogeometric element types, Taylor-Hood and subgrid, in
nonlinear incompressible elasticity. We could show that these mixed elements can be eas-
ily implemented also into the harmonic balance method for nonlinear frequency analysis
and provide much higher accuracy for near incompressible vibrations.

7.2 Outlook

We have applied the isogeometric discretization and harmonic balance frequency analysis
method to two mechanical models, namely the nonlinear Euler-Bernoulli beam and 3-
dimensional nonlinear continuum mechanics. As isogeometric methods have shown to
be advantageous also for application to other structural models, the framework could
be extended to Timoshenko beams, Cosserat rods, Kirchhoff-Love shells and Reissner-
Mindlin plates [18, 73]. This might open the scope to many more interesting engineering
applications of our nonlinear frequency analysis framework.

In realistic applications with large amplitude vibrations of rubber components self-
contact might occur, which is a field where the benefits of isogeometric methods have
been explored already and could be implemented to extend the usability of the method.

An interesting feature of isogeometric methods is also the combination with shape
optimization, where the consistent geometry representation allows a direct optimization
of the spline control points. Shape optimization methods could be developed, which
take the characteristics of nonlinear frequency analysis, such as resonance frequencies,
amplitudes, stress maxima or vibration energy, as objective functions or constraints.

From the algorithmic point of view, a continuation method could be added to harmonic
balance in order to be able to find more complex solution paths with turning points and
bifurcations. Then the solution of homogeneous problems without external excitation for
nonlinear normal modes and self-excitation resonance frequencies would be possible as
well.

The proposed reduction method makes nonlinear frequency response analysis feasible for
3-dimensional structural problems, but it still remains a time-consuming task. Especially
for very large spatial discretizations, a speed-up of the sampling process is necessary,
since currently the full residual vector and tangent matrix have to be assembled for every
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sample. A complexity reduction might be achieved by methods such as Discrete Empirical
Interpolation [34]. It might also be possible to develop a complexity reduction method
based on the modal derivative concept.

We also see a great potential for the application of the reduction method using modal
derivatives for other applications, such as DAE systems in multi-body dynamics or sim-
ulation of networks and electric circuits.
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A Appendix

A.1 Frequency-dependent eigenvalue problem

In Section 4.1.1 we have introduced an iterative eigenvalue problem for computing eigen-
frequencies of structures with frequency-dependent material properties.

Now we want to explore the properties of this eigenvalue problem for the special case
of a quasi-linear frequency-depedency of the stiffness matrix:

K(ω) = E(ω)
E0

K0 ,

where E0 = E(0) and K0 = K(0).

Assumption A.1. The frequency-dependent Young’s modulus E(ω) is a nonlinear func-
tion of ω with the following properties:

E : [0,∞)→ (0,∞) ,
dE

dω
(ω) ≥ 0 ,

inf
ω
E(ω) = E(0) = E0 ,

sup
ω
E(ω) = lim

ω→∞
E(ω) = E∞ .

Theorem A.1. When Assumption A.1 holds, the solutions ω̂k, φ̂k, k = 1, . . . , N of the
frequency-dependent eigenvalue problem (4.13) are

φ̂k = φk ∧ ω̂2
k = ω2

k

E(ω̂k)
E0

. (A.1)

Proof. From the linear eigenvalue problem for eigenfrequencies ωk and eigenmodes φk:

ω2
k M φk = K0 φk ,

we get by scalar multiplication with E(ω)
E0

for arbitrary ω:

ω2
k

E(ω)
E0

M φk = K(ω) φk . (A.2)
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In (4.13) we want to find ω̂k and φ̂k such that:

ω̂2
k M φ̂k = K(ω̂k) φ̂k ,

i.e. ω̂k shall be an eigenfrequency for the eigenvalue problem with M and K(ω̂k) with
eigenmode φ̂k, and comparison with (A.2) shows that it must hold:

φ̂k = φk ∧ ω̂2
k = ω2

k

E(ω̂k)
E0

.

Thus with (A.1) we have found a scalar nonlinear equation for the frequency-dependent
eigenfrequency ω̂k, which is already a fixed-point equation, and can solve this (much more
simpler) problem compared to the iterative eigenvalue problem (4.13).

Theorem A.2. There exists a unique solution ω̂k, k = 1, . . . , N of

ω̂k = ωk

√
E(ω̂k)
E0

(A.3)

for ωk < 2 E0
λE

with λE = supω dE
dω

.

Proof. The existence and uniqueness of ω̂k is given by the Banach fixed-point theorem
once we can show that the map Tk(ω) = ωk

√
E(ω)
E0

defined by (A.3) is a contraction:

|Tk(ω1)− Tk(ω2)| =

∣∣∣∣∣∣ωk
√
E(ω1)
E0

− ωk

√
E(ω2)
E0

∣∣∣∣∣∣
= ωk√

E0

∣∣∣∣√E(ω1)−
√
E(ω2)

∣∣∣∣
= ωk√

E0

1√
E(ω1) +

√
E(ω2)

|E(ω1)− E(ω2)|

≤ ωk
2 E0

|E(ω1)− E(ω2)|

≤ ωk
2 E0

λE |ω1 − ω2| .

For Tk(ω) to be a contraction it must hold:

ωk
2 E0

λE < 1 ⇔ ωk <
2 E0

λE
.

Thus the solution is guaranteed by Banach fixed-point theorem for sufficiently small k
resp. ωk.

Theorem A.3. Properties of ω̂k, k = 1, . . . , N :

ω̂k > ωk ,

ω̂k+1 ≥ ω̂k for ωk+1 ≥ ωk .
(A.4)
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Proof. From the Banach fixed-point theorem it follows that for arbitrary ω̂0
k the sequence

ω̂sk = Tk(ω̂s−1
k ) converges ω̂sk → ω̂k, when the contraction criterium ωk <

2 E0
λE

is fulfilled.
When we use ω̂0

k = ωk, it follows

ω̂1
k = ωk

√
E(ω̂0

k)
E0

= ωk

√
E(ωk)
E0

> ωk = ω̂0
k ,

since ωk > 0 and inductively that

ω̂s+1
k > ω̂sk > ωk .

For the first inequality we then have

ω̂k = lim
s→∞

ω̂sk = lim
s→∞

ωk

√√√√E(ω̂s−1
k )
E0

> ωk ,

since E(ω̂s−1
k ) > E0 = E(0).

For the second inequality we use induction starting with

ω̂0
k+1 = ωk+1 ≥ ωk = ω̂0

k .

It follows for s→ s+ 1:
ω̂s+1
k+1
ω̂s+1
k

=

√√√√E(ω̂sk+1)
E(ω̂sk)

≥ 1 ,

since the induction assumption is ω̂sk+1 ≥ ω̂sk and E(ω) is montonously increasing. Thus
we have

ω̂k+1

ω̂k
= lim

s→∞

ω̂sk+1
ω̂sk
≥ 1 .

Remark A.1 (Computing ω̂k). ω̂k can be compute from (A.1) using the fixed-point iter-
ation as in the proof above with linear convergence, or also use a Newton’s method with
quadratic convergence:

r(ω) = ω − ωk

√
E(ω)
E0

,

dr

dω
(ω) = 1− ωk

1
2 E0

√
E0

E(ω)
dE

dω
(ω) .

(A.5)
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A.2 Modal derivatives of nonlinear Euler-Bernoulli beam

Here we present the proof of Theorem 5.4 of Section 5.3.3.

Proof. We derive the modal derivatives of Problem 5.3 by the procedure presented in
(5.2.1):

The external forces f and g are expressed in terms of the solution of the eigenvalue
problem (5.68):

f = f(p) =
∑
j

ωuj
2 φuj pj =

∑
j

j2
√

2/π sin(jx) pj,

g = g(q) =
∑
k

ωwk
2 φwk qk =

∑
k

k4
√

2/π sin(kx) qk.
(A.6)

Thus it is u = u(p,q), w = w(p,q) for the exact solutions of (5.66).
From the first equation in (5.66) it follows by ∂

∂pj
:

−
(
∂u′′

∂pj
+ ∂w′

∂pj
w′′ + ∂w′′

∂pj
w′
)

= j2
√

2/π sin(jx) (A.7)

and evaluation at p = q = 0 yields:

−∂u
′′

∂pj

∣∣∣∣∣
0

= j2
√

2/π sin(jx) (A.8)

and it follows by integration w.r.t. x:

∂u

∂pj

∣∣∣∣∣
0

=
√

2/π sin(jx) = φuj . (A.9)

Note that here and in the following integration constants vanish due to the boundary
conditions for u and w (third equation in (5.66)).

From the first equation in (5.66) it follows by ∂
∂qk

:

−
(
∂u′′

∂qk
+ ∂w′

∂qk
w′′ + ∂w′′

∂qk
w′
)

= 0 (A.10)

and evaluation at p = q = 0 yields:

−∂u
′′

∂qk

∣∣∣∣∣
0

= 0 (A.11)

and it follows by integration w.r.t. x:

∂u

∂qk

∣∣∣∣∣
0

= 0. (A.12)
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From the second equation in (5.66) it follows by ∂
∂pj

:

−
(
∂u′

∂pj
+ ∂w′

∂pj
w′
)
w′′ −

(
u′ + 1

2w
′2
)
∂w′′

∂pj

−
(
∂u′′

∂pj
+ ∂w′

∂pj
w′′ + ∂w′′

∂pj
w′
)
w′ − (u′′ + w′w′′) ∂w

′

∂pj

+∂w
IV

∂pj
= 0

(A.13)

and evaluation at p = q = 0 yields:

∂wIV

∂pj

∣∣∣∣∣
0

= 0 (A.14)

and it follows by integration w.r.t. x:

∂w

∂pj

∣∣∣∣∣
0

= 0. (A.15)

From the second equation in (5.66) it follows by ∂
∂qk

:

−
(
∂u′

∂qk
+ ∂w′

∂qk
w′
)
w′′ −

(
u′ + 1

2w
′2
)
∂w′′

∂qk

−
(
∂u′′

∂qk
+ ∂w′

∂qk
w′′ + ∂w′′

∂qk
w′
)
w′ − (u′′ + w′w′′) ∂w

′

∂qk

+∂w
IV

∂qk
= k4

√
2/π sin(kx)

(A.16)

and evaluation at p = q = 0 yields:

∂wIV

∂qk

∣∣∣∣∣
0

= k4
√

2/π sin(kx) (A.17)

and it follows by integration w.r.t. x:

∂w

∂qk

∣∣∣∣∣
0

=
√

2/π sin(kx) = φwk . (A.18)

As expected, we have so far the results that the derivatives of the solutions w.r.t. the
modal participation factors correspond to the linear eigenfunctions:

∂u

∂pj

∣∣∣∣∣
0

= φuj ,
∂u

∂qk

∣∣∣∣∣
0

= 0, ∂w

∂pj

∣∣∣∣∣
0

= 0, ∂w

∂qk

∣∣∣∣∣
0

= φwk . (A.19)

Now we continue with the second derivatives of (5.66) in order to determine the modal
derivatives:
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We apply ∂
∂pr

to (A.7):

∂2u′′

∂pj∂pr
+ ∂2w′

∂pj∂pr
w′′ + ∂w′

∂pj

∂w′′

∂pr
+ ∂2w′′

∂pj∂pr
w′ + ∂w′′

∂pj

∂w′

∂pr
= 0 (A.20)

Evaluation at p = q = 0 yields:

∂2u′′

∂pj∂pr

∣∣∣∣∣
0

= 0 (A.21)

and it follows by integration w.r.t. x:

∂2u

∂pj∂pr

∣∣∣∣∣
0

= 0. (A.22)

We apply ∂
∂qs

to (A.7):

∂2u′′

∂pj∂qs
+ ∂2w′

∂pj∂qs
w′′ + ∂w′

∂pj

∂w′′

∂qs
+ ∂2w′′

∂pj∂qs
w′ + ∂w′′

∂pj

∂w′

∂qs
= 0 (A.23)

Evaluation at p = q = 0 yields:

∂2u′′

∂pj∂qs

∣∣∣∣∣
0

= 0 (A.24)

and it follows by integration w.r.t. x:

∂2u

∂pj∂qs

∣∣∣∣∣
0

= 0. (A.25)

We apply ∂
∂qs

to (A.10):

∂2u′′

∂qk∂qs
+ ∂2w′

∂qk∂qs
w′′ + ∂w′

∂qk

∂w′′

∂qs
+ ∂2w′′

∂qk∂qs
w′ + ∂w′′

∂qk

∂w′

∂qs
= 0 (A.26)

Evaluation at p = q = 0 yields:

∂2u′′

∂qk∂qs

∣∣∣∣∣
0

+ ∂w′

∂qk

∂w′′

∂qs

∣∣∣∣∣
0

+ ∂w′′

∂qk

∂w′

∂qs

∣∣∣∣∣
0

= 0

⇔ ∂2u′′

∂qk∂qs

∣∣∣∣∣
0

= 2
π

(
ks2 cos(kx) sin(sx) + k2s sin(kx) cos(sx)

)
(A.27)

and it follows by integration w.r.t. x:

∂2u

∂qk∂qs

∣∣∣∣∣
0

= −ks
π

(
sin((k − s)x)

k − s
+ sin((k + s)x)

k + s

)
. (A.28)
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We apply ∂
∂pr

to (A.13):

−
(
∂2u′′

∂pj∂pr
+ ∂w′

∂pj

∂w′

∂pr
+ ∂2w′

∂pj∂pr
w′
)
w′′ −

(
∂u′

∂pj
+ ∂w′

∂pj
w′
)
∂w′′

∂pr

−
(
∂u′

∂pr
+ ∂w′

∂pr
w′
)
∂w′′

∂pj
−
(
u′ + 1

2w
′2
)
∂2w′′

∂pj∂pr

−
(
∂2u′′

∂pj∂pr
+ ∂2w′

∂pj∂pr
w′′ + ∂w′

∂pj

∂w′′

∂pr
+ ∂2w′′

∂pj∂pr
w′ + ∂w′′

∂pj

∂w′

∂pr

)
w′

−
(
∂u′′

∂pj
+ ∂w′

∂pj
w′′ + ∂w′′

∂pj
w′
)
∂w′

∂pr

−
(
∂u′′

∂pr
+ ∂w′

∂pr
w′′ + ∂w′′

∂pr
w′
)
∂w′

∂pj
− (u′′ + w′w′′) ∂2w′

∂pj∂pr

+ ∂2wIV

∂pj∂pr
= 0.

(A.29)

Evaluation at p = q = 0 yields:

∂2wIV

∂pj∂pr

∣∣∣∣∣
0

= 0 (A.30)

and it follows by integration w.r.t. x:

∂2w

∂pj∂pr

∣∣∣∣∣
0

= 0. (A.31)

We apply ∂
∂qs

to (A.13):

−
(
∂2u′′

∂pj∂qs
+ ∂w′

∂pj

∂w′

∂qs
+ ∂2w′

∂pj∂qs
w′
)
w′′ −

(
∂u′

∂pj
+ ∂w′

∂pj
w′
)
∂w′′

∂qs

−
(
∂u′

∂qs
+ ∂w′

∂qs
w′
)
∂w′′

∂pj
−
(
u′ + 1

2w
′2
)
∂2w′′

∂pj∂qs

−
(
∂2u′′

∂pj∂qs
+ ∂2w′

∂pj∂qs
w′′ + ∂w′

∂pj

∂w′′

∂qs
+ ∂2w′′

∂pj∂qs
w′ + ∂w′′

∂pj

∂w′

∂qs

)
w′

−
(
∂u′′

∂pj
+ ∂w′

∂pj
w′′ + ∂w′′

∂pj
w′
)
∂w′

∂qs

−
(
∂u′′

∂qs
+ ∂w′

∂qs
w′′ + ∂w′′

∂qs
w′
)
∂w′

∂pj
− (u′′ + w′w′′) ∂2w′

∂pj∂qs

+ ∂2wIV

∂pj∂qs
= 0.

(A.32)
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Evaluation at p = q = 0 yields:

− ∂u′

∂pj

∂w′′

∂qs

∣∣∣∣∣
0
− ∂u′′

∂pj

∂w′

∂qs

∣∣∣∣∣
0

+ ∂2wIV

∂pj∂qs

∣∣∣∣∣
0

= 0 (A.33)

⇔ ∂2wIV

∂pj∂qs

∣∣∣∣∣
0

= − 2
π

(
js2 cos(jx) sin(sx) + j2s sin(jx) cos(x)

)
(A.34)

and it follows by integration w.r.t. x:

∂2w

∂pj∂qs

∣∣∣∣∣
0

= js

π

(
sin((j − s)x)

j − s
+ sin((j + s)x)

j + s

)
. (A.35)

We apply ∂
∂qs

to (A.16):

−
(
∂2u′′

∂qk∂qs
+ ∂w′

∂qk

∂w′

∂qs
+ ∂2w′

∂qk∂qs
w′
)
w′′ −

(
∂u′

∂qk
+ ∂w′

∂qk
w′
)
∂w′′

∂qs

−
(
∂u′

∂qs
+ ∂w′

∂qs
w′
)
∂w′′

∂qk
−
(
u′ + 1

2w
′2
)
∂2w′′

∂qk∂qs

−
(
∂2u′′

∂qk∂qs
+ ∂2w′

∂qk∂qs
w′′ + ∂w′

∂qk

∂w′′

∂qs
+ ∂2w′′

∂qk∂qs
w′ + ∂w′′

∂qk

∂w′

∂qs

)
w′

−
(
∂u′′

∂qk
+ ∂w′

∂qk
w′′ + ∂w′′

∂qk
w′
)
∂w′

∂qs

−
(
∂u′′

∂qs
+ ∂w′

∂qs
w′′ + ∂w′′

∂qs
w′
)
∂w′

∂qk
− (u′′ + w′w′′) ∂2w′

∂qk∂qs

+ ∂2wIV

∂qk∂qs
= 0.

(A.36)

Evaluation at p = q = 0 yields:

∂2wIV

∂qk∂qs

∣∣∣∣∣
0

= 0 (A.37)

and it follows by integration w.r.t. x:

∂2w

∂qk∂qs

∣∣∣∣∣
0

= 0. (A.38)
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All in all we have:

∂φuj
∂pr

= ∂2u

∂pj∂pr

∣∣∣∣∣
0

= 0,

∂φuj
∂qs

= ∂2u

∂pj∂qs

∣∣∣∣∣
0

= 0,

∂2u

∂qk∂pr

∣∣∣∣∣
0

= 0,

∂2u

∂qk∂qs

∣∣∣∣∣
0

= − ks√
2π

( 1
k − s

φwk−s + 1
k + s

φwk+s

)
,

∂2w

∂pj∂pr

∣∣∣∣∣
0

= 0,

∂2w

∂pj∂qs

∣∣∣∣∣
0

= js√
2π

(
1

j − s
φwj−s + 1

j + s
φwj+s

)
∂φwk
∂pr

= ∂2w

∂qk∂pr

∣∣∣∣∣
0

= kr√
2π

( 1
k − r

φwk−r + 1
k + r

φwk+r

)
,

∂φwk
∂qs

= ∂2w

∂qk∂qs

∣∣∣∣∣
0

= 0.

(A.39)
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[116] W. Szemplińska-Stupnicka. The generalized harmonic balance method for deter-
mining the combination resonance in the parametric dynamic systems. Journal of
Sound and Vibration, 58(3):347 – 361, 1978.
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