
Case-Based Knowledge Acquisition,
Learning and Problem Solving for

Diagnostic Real World Tasks1

Klaus-Dieter Althoff & Stefan Weß

University of Kaiserslautern
Dept. of Computer Science

P.O. Box 3049, D-6750 Kaiserslautern
Federal Republic of Germany

e-mail: althoff(wess)@informatik.uni-kl.de

Abstract

Within this paper we focus on both the solution of real, complex problems using expert

system technology and the acquisition of the necessary knowledge from a case-based

reasoning point of view. The development of systems which can be applied to real world

problems has to meet certain requirements. E.g., all available information sources have

to be identified and utilized. Normally, this involves different types of knowledge for

which several knowledge representation schemes are needed, because no scheme is

equally natural for all sources. Facing empirical knowledge it is important to comple-

ment the use of manually compiled, statistic and otherwise induced knowledge by the

exploitation of the intuitive understandability of case-based mechanisms. Thus, an inte-

gration of case-based and alternative knowledge acquisition and problem solving mecha-

nisms is necessary. For this, the basis is to define the "role" which case-based inference

can "play" within a knowledge acquisition workbench. We will discuss a concrete case-

based architecture, which has been applied to technical diagnosis problems, and its inte-

gration into a knowledge acquisition workbench which includes compiled knowledge and

explicit deep models, additionally.

1 Introduction
Within this paper we focus on both the solution of real, complex problems using expert
system technology and the acquisition of the necessary knowledge from a case-based rea-
soning point of view. The development of systems which can be applied to real world
problems has to meet certain requirements. E.g., all available information sources have to
be identified and utilized. Normally, this involves different types of knowledge for which
several knowledge representation schemes are needed, because no scheme is equally nat-
ural for all sources. Facing empirical knowledge it is important to complement the use of
manually compiled, statistic and otherwise induced knowledge by the exploitation of the
intuitive understandability of case-based mechanisms. Thus, an integration of case-based
and alternative knowledge acquisition and problem solving mechanisms is necessary. For

1 The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft, SFB
314: "Artificial Intelligence - Knowledge-Based Systems", projects X6 and X9.

this, the basis is to define the "role" which case-based inference can "play" within a
knowledge acquisition workbench. Up to now all this problems are at most partially
solved. What we need is a complete analysis of the problematic nature of knowledge inte-
gration for a complex real world domain. A first systematic approach is, e.g., given by
van Someren et al. in [SZP90].

 We will discuss a concrete case-based architecture (PATDEX: PATtern Directed
EXpert System), which has been applied to technical diagnosis problems, and its
integration into a knowledge acquisition workbench (MOLTKE: MOdels, Learning and
Temporal Knowledge in Expert Systems for Technical Domains) which includes
compiled knowledge and explicit deep models, additionally. For many of the just
mentioned unsolved problems the proposed research work offers solutions, from an
expert system point of view as well as from a case-based reasoning one. In connection
with the first view these are the utilization of all available knowledge sources, a natural
representation of the involved knowledge types, the exploitation of the intuitive
understandability of case-based mechanisms and its application to diagnosis (including
test selection). Research deficits concerning case-based reasoning are, e.g., the handling
of real complex applications, the integration of case-based mechanisms with alternative
ones for knowledge acquisition and problem solving, the integration of adaptive similarity
measures and explicit deep models as well as the definition of a "role" for case-based
reasoning.

 PATDEX is based on a case representation (diagnostic cases) which is simple, natural
and easy to acquire (a list of attribute-value-pairs). The applied inference engine can easily
be understood because it is controled mainly by a similarity measure (together with two
thresholds). Additionally, the classification task depends on the symptom relevances and
the test selection task on the average diagnostic cost. The similarity measure is an instance
of the Contrast Model proposed by [Tve77] and PATDEX acquires adaptively its analogi-
cal reasoning abilities for the support of the classification task. Thus, it can be applied to
diagnostic problems in general2. PATDEX treats the test selection task itself in a case-
based manner. This mechanism is based on strategy cases which can be automatically
generated from the diagnostic cases. This offers the advantage to improve the classifica-
tion and test selection strategy abilities separately from one another. PATDEX´s task
within the workbench is the handling of exceptional cases which can be "temporary" or
"absolute"3. Therefore PATDEX cooperates with the interpreter of the MOLTKE shell
and utilizes the compiled and model-based4 knowledge of the workbench as background
knowledge. PATDEX is an interactive system and learns incrementally. If overgeneral-
izations are identified they can be corrected directly.

2 PATDEX combines two classification mechanisms, one for the solution process itself and one to
acquire the necessary information while searching for a solution.

3 Exceptional cases are more seldom than typical ones. An exceptional case is called absolute if the
described exception is related to the structure and range of the expertise. Such a case is called
temporary if it refers just to the actual knowledge base and a change of its state may be probable.

4 In this case model denotes a deep functional model of the technical system which is to be diagnosed.
It enables the simulation of the behavior of the technical system on a sufficiently precise level of
abstraction.

 PATDEX is able to handle complex real world applications. E.g., vague cases, default
values for symptoms as well as pathologic symptoms and symptom values can be taken
into consideration. Because of its efficiency and stability PATDEX can work, besides
being integrated in the workbench, as a stand-alone system. PATDEX learns by forget-
ting and is able to dimension its case base explicitly. The efficiency of its procedure is en-
sured by a dynamical classification of the cases on different levels of activation as well as
a Rete-like case network for the support of the inference engine. The latter one results in a
fast exclusion of dissimilar cases, but guarantees that all really similar cases are consid-
ered. Thus, PATDEX offers solutions for many of the above mentioned problems which
represent the current state of the art both in its combination and in some special aspects as
the case-based test selection, the adaptive similarity measure and the integration in the
workbench.

 The next chapter gives an overview of PATDEX´s integration into the MOLTKE work-
bench while chapter 3 concentrates on the basic abilities of PATDEX as well as its coop-
eration with other workbench components. Chapter 4 offers different ways to evaluate
and discuss PATDEX: two trade scenarios will be presented which give a distinct idea of
the advantages and disadvantages of PATDEX. This is completed by a classification and
discussion of PATDEX concerning related research work.

2 Integration of PATDEX into the Workbench
Technical diagnosis usually needs three main sources of information which have to be
represented adequately. These are the compiled diagnostic knowledge, the empirical
knowledge and the knowledge of the technical system which is to be diagnosed. The
MOLTKE workbench allows the integration of all these knowledge types within one
knowledge base [cf. Fig. 1 and 2].

Workbench for Technical Diagnosis

Case-Based Diagnosis

Case-Compiler

Heuristic Diagnosis

Model-Compiler

GGGeeennnRRRuuulll eee MMM AAA KKK EEE

PPPAAA TTT DDDEEEXXX MMM OOOLLL TTT KKK EEE---SSShhheeelll lll

Fig. 1 – Components of the MOLTKE Workbench

The representation language of the workbench can be considered as a design model
[BW89] and forms the basis for the MOLTKE shell (together with the interpreters). A
basic expert system being automatically generated from the explicit model of the technical

system is the starting-point for the development of the knowledge base5. This can be ex-
tended and improved by the use of compiled and empirical knowledge. The generation
and justification of different kinds of heuristic rules as well as the detection of certain in-
consistencies within the knowledge base can be done automatically6. PATDEX´s task is
the direct interpretation of the empirical knowledge which cannot, or at least not immedi-
ately, be integrated into the knowledge base. This kind of knowledge is called absolute or
temporary exceptional cases. At any time there is the possibility of processing the empiri-
cal knowledge (exceptional cases) in parallel to the knowledge base. A procedure operat-
ing on the case memory for all cases decides which empirical knowledge can be integrated
automatically. The actual state of the knowledge base is considered in a snapshot-like
manner, but an automatic update to a changed knowledge base is possible7. All other
cases are available for the PATDEX system in a special case base.

Diagnostic
Cases

Knowledge
Base

Workbench for Diagnosis

Technical Model

Case Memory

Compiled Knowledge

Fig. 2 – Processing of Multiple Knowledge Sources in the Workbench

3 The PATDEX System
In this chapter we describe the classification and the test selection components of PAT-
DEX. They are completed by the description of the underlying similarity measure, the re-
spective learning procedures, and the application of technical background knowledge. In
addition, PATDEX´s cooperation with the other workbench components stated. For clar-
ification purposes we begin with a short introduction into the needed terminology.

5 The basic expert system can be generated by the MAKE system [AMR90 or Reh91], cf. section 3.5.
6 This can be carried out by the GenRule system [AFT+89, AMR90, AMW90 or Alt91].
7 This is done by the KnowledgeBaseExpander, a subcomponent of the GenRule system [Alt91].

3.1 Terminology and Setting of the Task
We assume a fixed number N of symptoms S1,...,SN. With each symptom Si a range Ri
is associated; in principle symptoms are nothing than attributes. Typically Ri is either a
real interval [a,b] or the boolean domain {0,1} or some other finite set. Symptoms may
take on values in their range and these values are assumed to be the only source of infor-
mation. Values of symptoms are obtained by carrying out a test. A test can be an obser-
vation, a measurement or simply the answer to a question. In some situations certain tests
may not be allowed. The information at some stage of the diagnostic process is usually
incomplete and is expressed in the form of an information vector or a situation: A situa-
tion is a vector Sit = (ai1,...,aik), 1 ≤ i,j ≤ N such that each aij Rij . The components of
Sit are the known symptom values whereas the values of the remaining symptoms are
unknown. A situation is complete if every symptom has a value. A diagnosis (or fault
description) is a formula of the first order predicate calculus using constants and relations
over the ranges Ri; the precise form of these formulae is not of interest here. To avoid
technical difficulties we assume always a single fault. This means that the set of complete
situations is partitioned into sets representing these faults; a special set is "no fault" and, if
wanted, another one is "unknown fault". The applicability of this approach relies on the
fact that, at least, the "interesting" faults can be fully described. In the diagnosis of even
complex machines this assumption is usually satisfied; in medical diagnostics this some-
times may be doubtful.

 In a diagnostic problem some complete situations have occurred but are only partially
known, i.e. one is confronted with some incomplete situation Sit. The task is to deter-
mine the diagnosis of the unknown complete situation (at least with some certainty).

3.1.1 Cases

A (diagnostic) case is the protocol of the real classification behavior of a service techni-
cian8. It is represented as a list of symptom-value-pairs (the problem description) com-
pleted by an empirical justified solution. In our diagnostic context the problem is a situa-
tion (Sit) and the solution is the diagnosis (Φ) justified by J, hence a case has the syntac-

tic form C = (Sit,J,Φ). Since real world cases have to be handled three basic possibilities
have to be considered:

• Sit did not have sufficiently many symptom values to determine Φ but one had a
good guess.

• Sit did determine Φ but contained redundant information, i.e. unnecessary symp-
tom values.

• Sit did determine Φ and no smaller situation would do so.

Since one does not know which possibility has occurred PATDEX has to take care of all
of them9. The (implicit) subject of all this considerations has been the classification task.

8 Service technicians are technicians of a manufacturer whose task is to maintain the functionality of
sold technical systems.

9 Especially we point out here, that the occurrence of incompleteness (1) and redundancy (2) is
independent of one another.

For the test selection task we have a similar situation. A strategy case is a protocol of the
real problem solving strategy of a service technician. The representation of strategy cases
is comparable to that of the diagnostic cases whereas the solution is the symptom which is
to ascertain next. Hence we have CS = (Sit,J,Si).

3.2 Overall Algorithm of PATDEX
PATDEX´s problem solving process is started by the user giving some observed symp-
tom values as input to the system. Then the toplevel algorithm of PATDEX reads as fol-
lows (cf. also Fig. 3):

Initial
situation

Similarity Technical
Knowlegde

Diagnosis
?

Test Selection

no

yes

SYNTHESIS

Diagnosis

User

 Feedback

 Feedback

correct ? (yes/no)

Fig. 3 – Toplevel Algorithm of PATDEX

Input: The actual situation Sit

Output: Diagnosis Φ or negative report

1) Find a case in the case base with a situation Sit' most similar to Sit. If there is
no case with a situation at least "minimally similar" to Sit then stop with
negative report.

2) If Sit and Sit' are "sufficiently similar" then accept the diagnosis Φ of Sit'
also for Sit and goto 4).

3) Otherwise select a test in order to obtain an improved situation and goto 1).

4) If the diagnosis is correct then add the case (Sit,J,Φ) to the case base and stop
with success.

5) If the diagnosis is not correct then cancel temporarily (i.e. for the actual
problem) all cases with diagnosis Φ and goto 3).

Here we need an external teacher who says whether a diagnosis is correct or not. We also
have to explain "minimally similar" and "sufficiently similar". For this we need a partition
of the case base which is given after the introduction of the similarity measure. Finally,
we have to describe the selection of the next test.

3.3 Solving the Classification Task
The goal of the classification task is to find a case which can be used to solve the current
problem, i.e. to find a case which can explain the actual situation Sit correctly. Here we
can exploit the characteristics of the domain of technical diagnosis that observable simi-
larities, concerning the fault behavior of the technical system being considered, normally
have similar causes. Thus, our underlying assumption is that similar cases have similar
classifications. The selection of a suitable case uses a similarity measure sim which maps
any combinations of situations into [0,1]. The basic axioms for sim are:

• sim(x,x) = 1 (reflexivity)
• sim(x,y) = sim(y,x) (symmetry)

Given Sit, sim selects C´ = (Sit´,J,Φ) such that Sit´ is most similar to Sit with respect to

the case base. If the current situation Sit is identical to Sit´ then Φ is the correct diagnosis
for Sit. Often such an inference is still correct if Sit´ differs from Sit "a little bit", i.e. the
two situations only have to be "sufficiently similar" with respect to the classification task.

3.3.1 A Static View on Measuring Similarity

A first approach to define "sufficiently similar" is to match the respective situations syn-
tactically where the computed similarity has to exceed a certain threshold δ [0,1], i.e.

sim(Sit,Sit´) > δ. A very general type of appropriate similarity measures for situations
which are used in PATDEX is of the form:

sim(Sit1, Sit2) =
α card(E)

α card(E) + β card(D) + η card(U1) + γ card(U2)

where α, β, γ and η are real numbers, card denotes the cardinality of sets, and

E := set of symptoms with the same values for Sit1 and Sit2;
D := set of symptoms with different values for Sit1 and Sit2;

U1 := set of symptoms with values for Sit1 but not for Sit2;
U2 := set of symptoms with values for Sit2 but not for Sit1.

PATDEX uses, as a first proposal, the parameters α = 1, β = 2, γ = η = 1/2. This special
choice of the parameters is mainly motivated by experimental results. The similarity mea-
sure has a defensive, pessimistic character. A high negative contribution to the measure is
given for conflicting symptom values, i.e. we strongly wish to avoid false diagnoses.

 A case becomes disqualified for further use in a particular diagnosis session as soon as
all symptoms contained in that case do not hold, given a situation encountered during
diagnosis, or if there are no unknown symptom values any more and the specified case
does not exceed the diagnosis-threshold δ. Another reason for disqualification is given if
the case the system chooses as its hypothesis is refused by the user. For performance
purposes a second threshold is introduced with 0 < < δ < 1. Both thresholds are
locally defined for each case of the case base and enable a dynamic organization of all
cases within different levels of activation. Depending on Sit1 and Sit2 these levels are
called as follows:

• indistinguishable ⇔ sim(Sit1, Sit2) = 1;

• sufficiently similar ⇔ δ ≤ sim(Sit1, Sit2) < 1;

• probably similar ⇔ ≤ sim(Sit1, Sit2) < δ;

• at least minimally similar ⇔ 0 ≤ sim(Sit1, Sit2) < ;

• not minimally similar ⇔ sim(Sit1, Sit2) < 0.

3.3.2 Extending the Static View

Within case-based reasoning retrieval can be called "reasonable" only if the solution of the
retrieved case can be applied to the current problem. Thus, a diagnostic case is suffi-
ciently similar to a given situation if they have the same diagnosis. The problem with this
definition of similarity is that the diagnosis of the given situation is not known at retrieval
time (of course). Therefore we have to find a good approximation for this measure. The
complexity of the knowledge which is necessary to define a well-suited static similarity
measure is comparable to the complexity of the whole diagnostic task. Thus, the defini-
tion of a similarity measure for a special domain has to be seen as a learning task.

 This extension results in an improved version of the similarity measure, but still does
not consider any explicit domain knowledge. Within the domain of technical diagnosis
this leads to the following problems:

• the use of compiled diagnostic knowledge
• identification of redundant information
• the handling of pathologic symptom values
• similarity between symptom values

The use of compiled diagnostic knowledge
Real diagnostic situations are characterized by an incomplete information vector, i.e. there
exist some symptoms of which the value is unknown. Technical knowledge can be used

to derive such values from known ones. E.g., from "light = on" it can be derived that
"switch = closed" holds with a certain probability. Here we can differentiate between
causal and heuristic relations. In the MOLTKE workbench both types of knowledge can
be automatically generated by specialized components. Thus, this information is utilized
by the PATDEX system.

Identification of redundant information
The relevance of a symptom for a certain diagnosis depends on the respective context. An
important aspect of our PATDEX approach is to view the relevances of certain symptom
values for special situations as a part of the empirical knowledge which shall be learned.
In PATDEX we combine the case-based reasoning approach for diagnosis with a connec-
tionist approach for learning this empirical knowledge. These relevances wij ∈ [0,1] are
represented by means of a relevance matrix R = [wij] where the symptoms Si and diag-
noses Φj occur as inscriptions of the rows and columns, respectively. In course of time
the weights of the symptoms, i.e. the elements of the relevance matrix, are learned by
PATDEX. The strategy for learning the entries of the relevance matrix is similar to the
competitive learning mechanism proposed in [RZ85].

The handling of pathologic symptom values
We can differentiate between symptom values which are pathologic or not. Pathologic
symptom values are caused by an abnormal system behavior while non-pathologic values
reflect the normal functioning of the technical system. For the degree of relevance of a
certain symptom value it is important whether it is a consequence of the normal function-
ing of the technical system or of a fault. E.g., “relais 21K3 switched” is of the first kind
while “voltage 214 too high” is a pathological symptom value. The differentiation
whether a certain symptom has a pathologic character or not depends on the respective
context, e.g. "light≠on" is not automatically a pathologic one. If "switch=closed" is
known additionally, the previous symptom becomes pathologic. Thus, functional back-
ground knowledge is needed for the handling of such information. Within the PATDEX
system every most similar case has to explain all known pathologic symptom values. This
defines a kind of "minimal correctness".

Similarity between symptoms
Every really flexible similarity match between the current situation and a case of the case
base has to consider the similarity between symptoms and symptom values (Similarity
versus Part-Identity [Smi89]). This can be realized by the additional use of local similarity
measures ωi(aik,ail) ∈ [0,1], which determine the similarity between possible symptom

values aik,ail ∈ Ri of a symptom Si, or by a knowledge-based inference (i.e. ωi(aik,ail)

∈ {0,1}). If one of the symptom values is unknown then the similarity ωi evaluates to 0.

The introduction of R and ωi leads to the following extended definition of the similarity
measure sim:

sim(Sit1, Sit2) =
αE

(α E + β D + η U 1 + γU 2)

For the exploitation of the above described features we have to extend the definition of the
"attribute sets"10. Let aik be the observed symptom value in Sit1 and ail the defined
symptom value in the actual case C = (Sit2, Φj). Then the new definition reads as fol-
lows:

E := ∑
Si∈Ε

w ij ω i(aik,ail)

D = ∑
Si∈D

w ij (1−ωi(aik,ail))

U1 := ∑
Si∈U1

 vij (1−ωi(aik,ail)) = card(U1) with Si pathologic

U2 := ∑
Si∈U2

 wij (1−ωi(aik,ail)) = ∑
Si∈U2

 w i j

We point out here that ωi is zero for symptoms Si which belong to one of the attribute
sets U1 or U2 , because the corresponding symptom values are unknown. Additionally,
we restrict the representation of redundant symptoms (i.e. Si∈U1) to pathological ones.
Thus, observed redundant symptom values representing the normal behavior of the un-
derlying technical system cannot decrease the value of sim any more. Since PATDEX fo-
cuses on the learning of symptom relevances only for the respective diagnosis no entries
for redundant symptoms Si can be created. Here we need an alternative weighting vij . In
PATDEX we define ∀i,j v ij = 1, which is motivated by the above mentioned restriction
of U1.

 By the use of these definitions we get a similarity measure sim which is depending on
the values represented in the relevance matrix. After each erroneous diagnosis the weights
of the relevance matrix are changed. Thus, the similarity measure sim is the result of an
adaptive learning process and the integration of background knowledge available from the
MOLTKE workbench.

3.4 Solving the Test Selection Task
For a case-based reasoning system not only its correctness is of importance but also its
efficieny. The task of the test selection component is to complete a given incomplete sit-
uation as economically as possible, i.e. to avoid redundant tests, such that a diagnosis can
be made. Up to now existing case-based reasoning systems concentrate on the classifica-
tion task only. The test selection task either is not considered11 or realized in very simple
manner. If cases are acquired for the classification task it is on offer to use them for the
test selection task, too. In PATDEX the diagnostic cases reflect the whole diagnostic pro-
cess. Thus, not only the classification process is described but also that of test selection.

10 Here we replace the set cardinalities by the sum of the symptom relevances.
11 This is based on the unrealistic assumption that all needed information is given.

Therefore the diagnostic cases have to represent the strategy of the respective service tech-
nician, i.e. within the case representation we have to assume a temporal order.

 For a stepwise optimization of the classification abilities the user´s feedback can be uti-
lized. A correct diagnosis results in a positive feedback, a wrong one in a negative feed-
back. Here it is clear whether a diagnosis is correct or not. Within the test selection con-
text such a clear definition is not possible, because there do not exist any absolute criteri-
ons whether the ascertaining of a symptom is necessary or not. Thus, for the test
selection task criterions like fault frequency and diagnostic cost, i.e. the cost which is
necessary to ascertain a (special) symptom, come into play which have to be taken under
consideration for the feedback. A possible approach for learning a good test selection
strategy is to adaptively form a test selection order which is not necessarily optimal for a
special case but for the average of all known cases. Of course, it has to be taken into
account that special or exceptional strategies normally are more informative than typical
ones. Thus, in reality a combination of a case focusing and an average cost minimizing
strategy is the best suited approach which is possible.

 Of importance for the feedback is the notion of subsequent cost. Subsequent cost
denotes the cost which still remains to find the correct diagnosis after of a certain strategy
case has been applied. E.g., a simple measure for this is the number of symptoms which
still have been acquired after a strategy case has been applied. More sensible are domain-
specific measures which, additionally, consider diagnostic and temporal cost.

Algorithm for case-based test selection:

Input: Diagnostic case Ck (diagnosis hypothesis), Situation Sit

Output: Symptom Si which is to ascertain

1) Find a strategy case in the case base with a situation Sit' most similar to Sit.

2) If there is no strategy case with a situation at least "minimally similar" to Sit
then use diagnostic case Ck for a case focusing test selection.

3) If several strategy cases are "sufficiently similar" then select that strategy case
which has caused the lowest subsequent cost on the average.

After a diagnostic session has finished every strategy case is charged with the diagnostic
cost it has caused. Strategy cases which encompass redundant symptoms are charged, on
the average, with higher cost than cases which include only necessary symptoms. The
fault frequences are taken into account implicitly by the computation of the averages. If
the system has carried out an unknown strategy then the respective strategy cases are in-
cluded into the strategy case base. In the worst case all symptom orders have to be repre-
sented by strategy cases. Thus, the needed space increases exponentially concerning the
number of symptoms. This is not possible for a real world application. In PATDEX the
number of representable strategy cases is fixed (e.g. 10000). If more cases have to be
represented PATDEX forgets those strategy cases which have not been used for the
longest period of time.

 The idea behind the case-based test selection of PATDEX is to offer good strategies for
frequently occuring situations. Neither the frequency of a fault nor the quality the strategy
taken by the system have to be defined a priori. For faults which appear less frequently
PATDEX can utilize the strategy of the service technician which is represented by the ac-
tual (diagnostic) case, i.e. a case-focusing strategy can be chosen. Of course, such a
strategy is not necessarily globally optimal, but exceptional cases normally are more in-
formative than typical ones.

3.5 Cooperation with other Components of the Workbench
Since we have given an overview of the MOLTKE workbench and described PATDEX in
more detail we are now able to summarize the cooperation of PATDEX with the other
components of the workbench, especially the MOLTKE shell:

• Cooperation with GenRule (Generator of Empirical MOLTKE Rules)
GenRule determines, and regularly updates, the subset of the overall case memory
which is available in the PATDEX case base. PATDEX uses heuristic rules gener-
ated by GenRule for the derivation of additional symptom values (from already
known values).

• Cooperation with MAKE (Model-based Automatic Knowledge Extractor)
PATDEX works in parallel to the basic expert system generated by MAKE which
is the first version of the knowledge base. MAKE generates causal rules which are
used by PATDEX, in a similar way as the heuristic rules of GenRule. In addition,
the MAKE underlying model serves data base-like queries, e.g. for the identifica-
tion of concrete components of the technical system.

• Cooperation with the MOLTKE-Shell
The MOLTKE-Shell controls the test selection while PATDEX does its case-based
classification as a background job. The test selection component of PATDEX is
used for clarification purposes only, i.e. if contradictory classifications of the sys-
tems are present and cannot be solved immediately.
In view of the procedure the following situations are of special interest:
•• The shell classifies correctly and PATDEX does not find a sufficiently similar

case in its case base:
» The diagnosis can be made, because no contradiction has been observed.

•• Both the shell and PATDEX classify correctly:
» The diagnosis can be made. There is the possibility to exclude the cases from

the case base, because the knowledge base already "encompasses" them.
•• PATDEX classifies correctly and the shell does not find any diagnosis:

» There is a gap in the knowledge base. If the most similar case within the
PATDEX case base is a temporary exception, then the knowledge base can
be extended and the case excluded from the case base.

•• The shell and PATDEX classify differently:
» Different conclusions have to be taken depending on the actual situation. It is

possible that PATDEX is overgeneralizing and the shell is classifying cor-
rectly, or that PATDEX is classifying in a more special way than the shell
and an exception can be identified. It is necessary to prove the case chosen
by PATDEX. If the case is proven to be sound, then the knowledge base

does not fit to the current situation. It has to be checked if the knowledge
base still makes sense taking a more general point of view. If it is not
possible to prove the selected case the respective diagnosis threshold has to
be increased.

•• Other situations, e.g. wrong classifications by PATDEX or the shell:
» The correct case can be directly given as input. Afterwards PATDEX can

correctly classify the identical situation. If necessary wrong parts of the
knowledge base have to be corrected.

• Case-based test selection within the shell:
PATDEX´s test selection mechanism is a component of the shell.

4 Evaluation and Discussion
To enable an intuitive evaluation of