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Table of notation

Sets, ordered sets and level sets

A Ď B A is subset of B
A Ă B A is strict subset of B
N Set t1, 2, 3, . . . u of natural numbers
N0 Set t0, 1, 2, 3, . . . u “ t0u Y N
R Set of real numbers
R`0 The real interval r0,`8q
C Set of complex numbers

MAXďpZq, MAXpZq (Possibly empty) set of maximal elements of an ordered set pZ,ďq
maxďpZq, maxpZq Maximum of a totally ordered set pZ,ďq really having a maximum
minďpZq, minpZq Minimum of a totally ordered set pZ,ďq really having a minimum

levďτΨ, levτΨ (Lower) level set tx P X : Ψpxq ď τu of the function Ψ : X Ñ pZ,ďq
levăτΨ Strict (lower) level set tx P X : Ψpxq ă τu
lev“τΨ Iso-level set tx P X : Ψpxq “ τu

Brpaqrds, Brpaq Closed ball tx P X : dpx, aq ď ru in a metric space pX, dq
Brpaqrds, Brpaq Open ball tx P X : dpx, aq ă ru
Srpaqrds, Srpaq Sphere tx P X : dpx, aq “ ru

Brr} ¨ }s,Br Closed ball tx P X : }x} ď ru around 0 in a normed space pX, } ¨ }q
Brr} ¨ }s,Br Open ball tx P X : }x} ă ru around 0
Srr} ¨ }s,Sr Sphere tx P X : }x} “ ru around 0

Bpnqr paqr} ¨ }s,B
pnq

r paq Closed ball tx P Rn : }x} ď ru in pRn, } ¨ }q

Bpnqr paqr} ¨ }s,Bpnqr paq Open ball tx P Rn : }x} ă ru in pRn, } ¨ }q

Spnqr paqr} ¨ }s,Spnqr paq Sphere tx P Rn`̀̀1 : }x} “ ru in pRn`̀̀1, } ¨ }q
Hď
p,α Closed halfspace tx P Rn : xx, py ď αu

Hă
p,α Open halfspace tx P Rn : xx, py ă αu

H“
p,α Hyperplane tx P Rn : xx, py “ αu

dom Φ E�ective domain tx P X : Φpxq ă `8u of the function Φ
OP pΦ,Ψq The set tτ P R : dom Φ X levτΨ “ Hu of parameters τ P R for

which dom Φ and levτΨ overlap
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Table of notation

Topological spaces and systems of sets

pX,Oq A topological space, i.e. a set X equipped with some topology O
pX8,O8q One point compacti�cation of a topological space pX,Oq
Upxq Neighborhood system of the point x of a topological space pX,Oq
Bpxq A neighborhood basis of the point x of a topological space pX,Oq
KpX,Oq,KpXq System of all compact subsets of a topological space pX,Oq
ApX,Oq,ApXq System of all closed subsets of a topological space pX,Oq
KApX,Oq System of all compact and closed subsets of a topological space pX,Oq
U \O Subspace topology tU X O : O P Ou for the subset U of a topological

space pX,Oq
Oď Usual order topology for a totally ordered set pX,ďq
Tď Right order topology for a totally ordered set pX,ďq
Tě Left order topology for a totally ordered set pX,ďq
T Right order topology for r´8,`8s

pR,Oq R equipped with its natural topology
pRn,O�nq Rn equipped with its natural topology

Hulls and topological operations

copSq Convex hull of the set S
affpSq A�ne hull of the set S

S Closure of the set S
intpSq Interior of the set S
intApSq Interior of the set S, relative to A
ripSq Relative interior intaffpSqpSq of the set S
rbpSq Relative boundary SzripSq of the set S

Linear Algebra

S1 ‘ ¨ ¨ ¨ ‘ Sk Direct sum of the subsets S1, . . . , Sk of some vecotor space
A˚ Transpose of the matrix A
vT Transpose of the vector v
e1, . . . , en Standard basis vectors p1, 0, . . . , 0qT, . . . , p0, 0, . . . 1qT of Rn

N pAq Nullspace of the linear mapping A, resp. of the matrix A
RpAq Range of the linear mapping A, resp. of the matrix A
0X The trivial linear mapping 0X : X Ñ R, x ÞÑ 0
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Operators, functions and families of functions

F1ZF2 Semidirect sum of the functions Fi : Xi Ñ R Y t`8u de�ned on sub-
spaces Xi with X1 `X2 “ X1 ‘X2, given by
pF1ZF2qpx1 ` x2q– F1px1q ` F2px2q

|y| The vector in Rn which is derived from y “ pa, bqT P Rn`n according to
|y|i –

a

a2
i ` b

2
i , i “ 1 . . . n.

∇ Gradient operator (the continuous one or a discrete one)
BΦpxq Subdi�erential of the function Φ at x

Φ˚ (Fenchel) conjugate function of Φ
clΦ Closure of the function Φ
ιS Indicator function ιS : RÑ RY t`8u of S de�ned by

ιSpxq “

#

0 x P S,

8 otherwise

grg Graph of the function g
Γ0pXq Set of all proper convex and lower semicontinuous

functions mapping a nonempty a�ne subset X of Rn to r´8,`8s
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Summary

Many tasks in image processing can be tackled by modeling an appropriate data �delity
term Φ : Rn Ñ RY t`8u and then solve one of the regularized minimization problems

pP1,τ q argmin
xPRn

tΦpxq s.t. Ψpxq ď τu

pP2,λq argmin
xPRn

tΦpxq ` λΨpxqu, λ ą 0

with some function Ψ : Rn Ñ RYt`8u and a good choice of the parameter(s). Two tasks
arise naturally here:

i) Study the solver sets SOLpP1,τ q and SOLpP2,λq of the minimization problems.

ii) Ensure that the minimization problems have solutions.

This thesis provides contributions to both tasks: Regarding the �rst task for a more special
setting we prove that there are intervals p0, cq and p0, dq such that the setvalued curves

τ ÞÑ SOLpP1,τ q, τ P p0, cq

λ ÞÑ SOLpP2,λq, λ P p0, dq

are the same, besides an order reversing parameter change g : p0, cq Ñ p0, dq. Moreover
we show that the solver sets are changing all the time while τ runs from 0 to c and λ runs
from d to 0.

In the presence of lower semicontinuity the second task is done if we have additionally
coercivity. We regard lower semicontinuity and coercivity from a topological point of view
and develop a new technique for proving lower semicontinuity plus coercivity. The key
point is that a function f : Rn Ñ r´8,`8s is lower semicontinuous and coercive, i� a
certain continuation of f to the one point compacti�cation of Rn is continuous with respect
to the right order topology on r´8,`8s.

Dropping any lower semicontinuity assumption we also prove a theorem on the coercivity
of a sum of functions. More precisely, this theorem gives information on which subspaces
of Rn a sum F ` G of functions F,G : Rn Ñ r´8,`8s is coercive, provided that F and
G are of a certain form, namely

F “ F1ZF2 and G “ G1ZG2

with functions F1 : X1 Ñ R Y t`8u, F2 : X2 Ñ R Y t`8u, G1 : Y1 Ñ R Y t`8u,
and G2 : Y2 Ñ RY t`8u, where

Rn
“ X1 ‘X2 “ Y1 ‘ Y2.

For such functions the theorem basically states that F ` G is coercive on X1 ` Y1 “

pX2 X Y2q
K if X1 K X2, Y1 K Y2 and certain boundedness conditions hold true.



Zusammenfassung

Viele Aufgaben in der Bildverarbeitung lassen sich wie folgt angehen: Nach Modellierung
eines Datenterms Φ : Rn Ñ R Y t`8u löst man eines der folgenden regularisierten Mini-
mierungsprobleme

pP1,τ q argmin
xPRn

tΦpxq s.t. Ψpxq ď τu

pP2,λq argmin
xPRn

tΦpxq ` λΨpxqu, λ ą 0

mit einer Funktion Ψ : Rn Ñ R Y t`8u und jeweils gut gewähltem Parameterwert. Es
stellen sich unter anderem folgende Aufgaben:

i) Untersuche die Lösungsmengen SOLpP1,τ q und SOLpP2,λq der Minimierungsprobleme.

ii) Stelle sicher, daÿ die Minimierungsprobleme überhaupt Lösungen besitzen.

Diese Arbeit enthält Beiträge zu beiden Aufgaben: Bezüglich der ersten Aufgabe wird (in
einem spezielleren Rahmen) die Existenz von Intervallen p0, cq und p0, dq bewiesen derart,
daÿ die mengenwertigen Kurven

τ ÞÑ SOLpP1,τ q, τ P p0, cq

λ ÞÑ SOLpP2,λq, λ P p0, dq

die selben sind, bis auf einen ordnungsumkehrenden Parameterwechsel g : p0, cq Ñ p0, dq.
Desweiteren zeigen wir, daÿ die Lösungsmengen SOLpP1,τ q bzw. SOLpP2,λq sich die ganze
Zeit ändern, während τ aufsteigend das Intervall p0, cq durchläuft bzw. λ absteigend das
Intervall p0, dq durchläuft.

Falls Halbstetigkeit von unten gegeben ist, ist die zweite Aufgabe gelöst, wenn zusätzlich
Koerzivität vorliegt.

Wir betrachten in dieser Arbeit sowohl Halbstetigkeit von unten als auch Koerzivität von
einem topologischen Standpunkt. Grundlegend ist hierbei, daÿ eine Funktion f : Rn Ñ

r´8,`8s genau dann halbstetig von unten und koerziv ist, wenn eine gewisse Fortsetzung
von f auf die Einpunktkompakti�zierung von Rn stetig bzgl. der von den Halbstrahlen
pa,`8s, a P r´8,`8q erzeugten Topologie ist. Hieraus wird eine neue Beweistechnik für
den gemeinsamen Nachweis von Halbstetigkeit von unten und Koerzivität entwickelt.



Desweiteren beweisen wir einen Satz über die Koerzivität der Summe zweier Funktionen,
ohne Halbstetigkeit von unten vorauszusetzen. Genauer gesagt liefert dieser Satz Infor-
mationen darüber auf welchen Unterräumen des Rn die Summe F ` G von Funktionen
F,G : Rn Ñ r´8,`8s koerziv ist, wenn diese Funktionen von der Bauart

F “ F1ZF2 and G “ G1ZG2

sind mit Funktionen F1 : X1 Ñ R Y t`8u, F2 : X2 Ñ R Y t`8u, G1 : Y1 Ñ R Y t`8u,
und G2 : Y2 Ñ RY t`8u, worin

Rn
“ X1 ‘X2 “ Y1 ‘ Y2.

Für Funktionen solchen Typs besagt der Satz im Wesentlichen, daÿ F ` G genau dann
koerziv auf dem Unterraum X1`Y1 “ pX2XY2q

K ist, wenn X1 K X2, Y1 K Y2 und gewisse
Beschränktheitsvoraussetzungen erfüllt sind.
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CHAPTER 1

Introduction and overview

Outline

1.1 De�nitions, notations and conventions . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation from image processing . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions and a useful inequality . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 A method for proving coercivity and lower semicontinuity . . . . . . 8

1.3.2 Properties of lower semicontinuous mappings from a topological view-

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Coercivity of a sum of functions . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Relation between the constrained and unconstained problems for a

rather general setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 A simple but useful equality . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 De�nitions, notations and conventions

Writing A Ď B means that A is a subset of B, whereas writing A Ă B indicates that A
is a proper subset of B. A function f : X Ñ Y is genuine or non-trivial, i� X (and
therefore also Y ) is nonempty.

A (direct) decomposition of a vector space V into subspaces V1, V2 . . . Vn is a tupel
pV1, V2, . . . Vnq of subspaces, such that every v P V can be written in a unique way in the
form v “ v1`v2`¨ ¨ ¨`vn with vi P Vi for i “ 1 . . . n. A bit sloppily but practically we will
also write V “ V1‘ V2‘ ¨ ¨ ¨ ‘ Vn and call this a (direct) decomposition or direct sum. For
a given subspace U1 of V a subspace U2 is called complementary to U1 i� V “ U1 ‘ U2.

The set of all n-tuples of real numbers is denoted by Rn, where n P N0. Note that R0,
containing only the empty tupel, is the trivial real vector space. By e1, e2, ¨ ¨ ¨ , en we name
the vectors p1, 0, 0, . . . 0qT , p0, 1, 0, . . . , 0qT , . . . p0, . . . 0, 1qT , which form the standard basis
of Rn. The trivial linear mapping X Ñ R, x ÞÑ 0 between a real vector space X and the

1



1. Introduction and overview

real numbers will be denoted by 0X . The nullspace (kernel) of a matrix/linear operator
A is denoted by N pAq and its range by RpAq. The transpose of a matrix A is denoted
by A˚. For Euclidean vectors v we will also write vT . For a vector y “ pa, bqT P Rn`n let
|y| denote the vector in Rn whose components are

a

a2
i ` b

2
i — |y|i, i “ 1 . . . n. Usually y

appears in the form y “ ∇x with a linear mapping ∇ : Rn Ñ RnˆRn modeling a discrete
gradient.

We also remark that, in the presence of a direct decomposition of Rn into subspaces like
Rn “ X1 ‘ X2 ‘ X3, we will use the unique decomposition x “ x1 ` x2 ` x3 of x P Rn

in its components x1 P X1, x2 P X2, x3 P X3 without emphasizing the underlying direct
decomposition every time. Furthermore we will use the notation S “ S1‘S2‘¨ ¨ ¨‘Sk for
subsets S, S1, . . . , Sk of Rn i� every s P S has a unique decomposition s “ s1` s2`¨ ¨ ¨` sk
into components sj P Sj, j P t1, . . . , ku. For convex subsets C1, C2 of Rn we have C1`C2 “

C1 ‘ C2 i� affpC1q ` affpC2q “ affpC1q ‘ affpC2q, see Theorem B.11 for more details.

The convex hull of a set S Ď Rn is denoted by copSq. The a�ne hull of a set S Ď Rn

is named by affpSq. The (topological) closure and the interior of a set S Ď Rn will be
denoted by S and intpSq, respectively. Note that, for any subset A Ď Rn, the identity

A
B
“ A holds for all B Ě A that are closed subsets of Rn; in particular it does not matter

whether we form the closure of a subset A of Rn with respect to Rn or with respect to
any a�ne supperset of A, including affpAq. The relative interior of a convex set C
will be denoted by ripCq. The relative boundary of a convex set C will be denoted by
rbpCq– CzripCq.

For a totally ordered set pZ,ďq we set

MAXďpZq– tpz P Z : z is a maximum of Zu

If it is clear from the context which total order is given to Z we will shortly also write
MAXpZq. If pZ,ďq has a maximum pz then MAXďpZq “ tpzu. If pZ,ďq has no maximum
then MAXďpZq “ H.

Let R`0 – r0,`8q and let Γ0pRnq denote the set of proper, convex, closed functions
mapping Rn into the extended real numbers R Y t`8u. For nonempty, a�ne subsets
X Ď Rn, we de�ne Γ0pXq in an analogous way. The closure of a convex function f :
Rn Ñ R Y t´8,`8u is denoted by clf . The closure of a proper convex function is its
lower semicontinuous hull. See Theorem B.3 for some of the properties of the closure
operator. For a given function Ψ : X Ñ Z between a set X and a totally ordered set
pZ,ďq we distinguish di�erent types of level sets by the following notations:

levτΨ – levďτΨ – tx P X : Ψpxq ď τu and levăτΨ – tx P X : Ψpxq ă τu.

Usually the term �level set� refers to the �rst type with �ď�.

Important lower level sets are the closed balls Brpaqr} ¨ }s – tx P Rn : }x} ď ru of radius
r P r0,`8q, midpoint a P Rn with respect to a norm } ¨ }. If it is clear from the context

2



1.1 De�nitions, notations and conventions

which norm is meant we use the abbreviation Brpaq. If a “ 0 we even more shortly
write Br. For spheres Srpaqr} ¨ }s – tx P Rn : }x} “ ru and open balls Brpaqr} ¨ }s –
tx P Rn : }x} ă ru with midpoint a, radius r P r0,`8q and r P p0,`8q, respectively,
we apply similar abbreviations. If more general a metric space pX, dq is given we use
the notations BR paq – tx P X : dpx, aq ă Ru,BR paq – tx P X : dpx, aq ď Ru and
SRpaq– tx P X : dpx, aq “ Ru for the open ball, closed ball and sphere of radius R P R
around a P X, respectively. If X “ Rn is endowed with the usual Euclidean metric we also

will use the notations BpnqR paq – tx P Rn : }x´ a} ă Ru,BpnqR paq – tx P Rn : }x´ a} ď Ru

and Spn´1q
R paq – tx P Rn : }x ´ a} “ Ru. If the dimension n of the underlying Euclidean

space is clear from the context we also use the abbreviations BRpaq,BRpaq and SRpaq. If
a “ 0 and/or r “ 1 we sometimes omit the corresponding parts of the notations and write
e.g. Sr, Spaq, S or B.

Further important level sets are half-spaces and hyperplanes. We use the notations Hď
p,α –

tx P Rn : xp, xy ď αu, Hą
p,α – tx P Rn : xp, xy ą αu and H“

p,α – tx P Rn : xp, xy “ αu for
the closed halfspaces, the open halfspaces and hyperplanes, respectively.

The set of overlapping parameters between a set A and a family pBτ qτPT of sets Bτ

with some index set T is OP pA, pBτ qτPT q – tτ P T : A X Bτ “ Hu. In this thesis we will
consider the case A “ dom Φ and Bτ “ levτΨ, τ P R for functions Φ,Ψ : Rn Ñ RY t`8u
and use the notation

OP pΦ,Ψq– OP pdom Φ, plevτΨqτPRq “ tτ P R : dom ΦX levτΨ “ Hu.

Furthermore, the indicator function ιS of a set S is de�ned by

ιSpxq–

"

0 if x P S,
`8 otherwise.

For x0 P Rn the subdi�erential BΨpx0q of Ψ at x0 is the set

BΨpx0q– tp P Rn : Ψpx0q ` xp, x´ x0y ď Ψpxq for all x P Rn
u.

If Ψ is proper, convex and x0 P ripdomΨq, then BΨpx0q “ H.

Additionally we will need the Fenchel conjugate function of Ψ de�ned by

Ψ˚
ppq– sup

xPRn
txp, xy ´Ψpxqu.

Finally the graph of a function g is denoted by gr g.

Topological notations and notions

De�nition 1.1.1. We say that a topological space pX,Oq is nonempty, i� X is nonempty.

3



1. Introduction and overview

De�nition 1.1.2. Let U be a subset of a set X and let O be a system of subsets of X.
Then we denote the system

tU XO : O P Ou
abbreviated by U \O.

If O is a topology on X then U \O is a topology on U ; cf. also Subsection 2.3.1.

De�nition 1.1.3. An open neighborhood of a point x in a topological space pX,Oq is
just a subset O P O that contains x.

A neighborhood of a point x from a topological space pX,Oq is just a subset U Ď X
containing an open neighborhood of x.

The system of all neighborhoods of x will be denoted by UrOspxq or, if the underlying
topological space is clear from the context, simply also by Upxq.

A system Bpxq of open subsets of X is called an O�neighborhood basis of a point x P X,
i� every neighborhood U P Upxq contains some B P Bpxq.

We will feel free to adopt our notations for neighborhood systems according to the notations
for the underlying topological space. For instance in the context of a topological space
pX 1,O1q we usually write U 1px1q instead of Upx1q.

Remark 1.1.4. Having a neighborhood basis Bpxq for every point x of a topological space
pX,Oq we can �rst reconstruct all neighborhood systems Upxq, x P X, and then also the
whole topology by means of the formulas

Upxq “ tU Ď X | DB P Bpxq : U Ě Bu and O “ tO Ď X | @x P O : O P Upxqu.

See [27, 2.9 Satz] and its proof for more details.

Regarding the following de�nition we note that �limit point� is really meant as limit point
and not as accumulation point.

De�nition 1.1.5. A sequence pxnqnPN in a topological space pX,OXq is said to have an
element x P X as limit point i� every neighborhood of x contains almost all sequence
members, i.e. � more formally expressed � i�

@U P Upxq DN P N @n ě N : xn P U

holds true. The set of all limit points will be denoted by OX-limnÑ`8 xn or simply by
limnÑ`8 xn, if it is clear which topology is given to X. If the sequence has at last one limit
point we call the sequence convergent.

De�nition 1.1.6. A topological space pX,Oq is called a Hausdor� space i� any two
distinct points have two disjoint open neighborhoods, i.e. for every pair of distinct point
x1, x2 P X there are open disjoint sets O1, O2 P O with x1 P O1 and x2 P O2.

4



1.1 De�nitions, notations and conventions

De�nition 1.1.7. A topological space pX,Oq is called compact if every covering of X by
sets from O has a �nite subcover.

If the topological space appears as a subspace of another space, see Subsection 2.3.1, the
following equivalent de�nition can also be used:

De�nition 1.1.8. Let p pX, pOq be a topological space. A subspace pX,X \ pOq is called

compact if every open covering of X with open sets from pO has a �nite subcover.

Remark 1.1.9. In some texts the word �compact� is only used for spaces that are in
addition Hausdor� spaces.

De�nition 1.1.10. Let pX,Oq be a topological space. We say that K Ď X is a compact
subset of pX,Oq, i� pK,K \ Oq is a compact space. We denote the system tK Ď X :
K is a compact subset of pX,Oqu by KpppX,Oqqq or sometimes only by KpppXqqq, if it is clear
which topology is given to X.

Similarly we denote the system of closed subsets of pX,Oq by ApppX,Oqqq or by ApppXqqq or
even only by A. Finally the system of compact and closed subsets of pX,Oq will be denoted
by KApppX,Oqqq or by KApppXqqq.

Note that KApX,Oq “ KpX,Oq XApX,Oq Ď KpX,Oq can be a strict subset of KpX,Oq,
cf. Example 2.5.7.

The following de�nition is taken from [15, p. 146].

De�nition 1.1.11. A topological space is locally compact, i� each point has at least one
compact neighborhood.

Example 1.1.12. The Euclidean space Rn, endowed with the natural topology, is not
compact, but locally compact, since B1pxq is a compact neighborhood for an arbitrary point
x P Rn.

Cf. Remark 2.2.3 for the following de�nition.

De�nition 1.1.13. A function f : pX,Oq Ñ pX 1,O1q between topological spaces pX,Oq
and pX 1,O1q is called continuous in x0 i� for all open neighborhoods O1fpx0q

P O1 of

fpx0q there is an open neighborhood Ox0 P O of x0 with f rOx0s Ď O1fpx0q
(which is to say

Ox0 Ď f´rO1fpx0q
s). We call f continuous if f is continuous in all points x P X, i.e. if

for all open sets O1 P O1 the pre-image O – f´rO1s is an open set from O.

For the next two de�nitions cf. e.g. [15, p. 90] and [15, p. 94].

De�nition 1.1.14. A mapping g : pY,OY q Ñ pZ,OZq between topological spaces is called
open i� every open subset of pY,OY q is mapped by g to an open subset of pZ,OZq. Analo-
gously g is called closed i� every closed subset of pY,OY q is mapped by g to a closed subset
of pZ,OZq.

5



1. Introduction and overview

Note that a bijective mapping is open, respectively closed, i� its inverse mapping is con-
tinuous.

1.2 Motivation from image processing

Many tasks in image processing such as deblurring, inpainting, removal of di�erent kinds
of noise or reconstruction of a sparse signal can be tackled by minimizing a (parameter
containing) function, designed for the respective purpose. Often this function can be
written as a weighted sum

Φ` λΨ

of two functions Φ,Ψ P Γ0pRnq, where Φ serves as data �delity term and Ψ as regularization
term which in�uence is controlled by the parameter λ. At this point vectors x P Rn model
gray value images, where n “ nxny is the total number of pixels.

Both the family of penalized problems

argmin
xPRn

pΦpxq ` λΨpxqq

and the related families of constrained problems

argmin
xPRn

pΦpxq s.t. Ψpxq ď τq ðñ argmin
xPRn

pΦpxq ` ιlevτΨq,

argmin
xPRn

pΨpxq s.t. Φpxq ď σq ðñ argmin
xPRn

pΨpxq ` ιlevσΦq

(for certain parameter ranges) are considered in the literature. Some examples are:

‚ The family of penalized problems

argmin
xPRn

`

}Ax´ b}22 ` λ}x}1
˘

,

along with the families of constraint problems

argmin
xPRn

`

}Ax´ b}22 s.t. }x}1 ď τ
˘

ðñ argmin
xPRn

`

}Ax´ b}2 s.t. }x}1 ď τ
˘

ðñ argmin
xPRn

`

}Ax´ b}2 ` ιlevτ p}¨}1qpxq
˘

(LASSO problem) and

argmin
xPRn

`

}x}1 s.t. }Ax´ b}2 ď
?
σ
˘

ðñ argmin
xPRn

`

}x}1 ` ιlev?σp}A¨´b}2q
pxq

˘

,

(Basis pursuit denoising), cf. e.g. [25], [16], [26], [7].
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1.2 Motivation from image processing

‚ The family of penalized problems

argmin
xPRn

`

}Ax´ b}22 ` λ
›

›|∇x|
›

›

1

˘

,

along with the families of constraint problems

argmin
xPRn

`

}Ax´ b}22 s.t.
›

›|∇x|
›

›

1
ď τ

˘

ðñ argmin
xPRn

`

}Ax´ b}2 ` ιlevτ p}|∇¨|}1qpxq
˘

and

argmin
xPRn

`›

›|∇x|
›

›

1
s.t. }Ax´ b}2 ď

?
σ
˘

ðñ argmin
xPRn

`
›

›|∇x|
›

›

1
` ιlev?σp}A¨´b}2q

pxq
˘

,

cf. e.g. [18], [30], [29].

‚ The family of penalized problems

argmin
xPRn

˜

n
ÿ

k“1

`

rAxsk ´ bk logprAxskq
˘

loooooooooooooooomoooooooooooooooon

—Φpxq

`λ}|∇x|}1

¸

,

along with the families of constraint problems

argmin
xPRn

`

Φpxq s.t. }|∇x|}1 ď τ
˘

ðñ argmin
xPRn

`

Φpxq ` ιlevτ p}|∇¨|}1qpxq
˘

and

argmin
xPRn

`

}|∇x|}1 s.t. Φpxq ď σ
˘

ðñ argmin
xPRn

`

}|∇x|}1 ` ιlevσpΦp¨qqpxq
˘

,

cf. e.g. [9], [23], [5].

All this minimization problems are of the form

argminpF `Gηq (1.1)

with functions F,G P Γ0pRnq and some regularization parameter η; for η ‰ 0 the function
Gη is often of the form

Gηp¨q “ GpηL¨q

with a matrix L P Rm,n and a norm Gp¨q “ } ¨ } on Rm in the penalized cases and the
indicator function G “ ιlev1G in the constraint cases, respectively.

Two questions arise naturally: How can a good regularization parameter be chosen? How
can argminpF `Gηq ‰ H be ensured? Regarding the �rst question for penalized problems

argmin
xPRn

`

F pxq ` λ}Lx}
˘

7



1. Introduction and overview

there are for instance methods from statistics for choosing a value for λ, cf. [28], [1], [11].
However, in cases where we have knowledge about the original image xorig, say in the sense
of knowing a good upper bound for }Lxorig}, we can use this upper bound as value for the
regularization parameter in the constrained problem

argmin
xPRn

pF pxq s.t. }Lpxq} ď τq.

If we have knowledge about the noise level, say in the sense of knowing approximately
F pxorigq, we can similar choose this approximate value in the constrained problem

argmin
xPRn

p}Lx} s.t. F pxq ď σq.

But even if we had chosen a good parameter τ , resp. σ, the questions remains how we can
�nd a corresponding value for λ.

Regarding the second question it is well known that the lower semicontinous function
F `Gη — Hη has a minimizer if it is coercive, i.e. ful�lls Hηpxq Ñ `8 as }x} Ñ 8. Often
it is possible to prove coercivity of Hη by hand. Since this can be laboriously it would be
good to have some easy tools which ensure coercivity of such a sum.

This thesis provides contributions to both the question on how to �nd for given τ a corre-
sponding value λ and performs also coercivity investigations.

1.3 Contributions and a useful inequality

1.3.1 A method for proving coercivity and lower semicontinuity

As already mentioned coercivity is a usefull property for proving the existence of a mini-
mizer. The de�ning condition Hpxq Ñ `8 as }x} Ñ `8 looks somewhat like a continuity
condition.

As we will see in Theorem 2.5.16 a lower semicontinous function H : Rn Ñ r´8,`8s

is indeed coercive i� a certain extension pH : pX Ñ r´8,`8s to a compact topological
superspace of Rn — X is continuous with respect to a certain topology Tď on r´8,`8s,
making the latter to a compact space as well. This equivalence between the lower semi-
continuity plus coercivity of the mapping H and the existence of such a certain compact
continuation pH leads to a � as far as the author knows � new technique of proving lower
semicontinuity plus coercivity. The rough idea is as follows: Assume we know that a func-
tion g : Rn Ñ r´8,`8s can be written as, say, composition g “ g2 ˝ g1 of easier functions
g1 : Rn Ñ Y , g2 : Y Ñ r´8,`8s, where Y is some topological space, such that each

of them allows a compact continuation pg1 : pX Ñ pY and ug2 : uY Ñ r´8,`8s. Under
certain conditions then also the existence of the needed compact continuation pg of g can
be concluded. The needed compact continuation pg is simply obtained if we can directly
form the concatenation ug2 ˝ pg1, i.e. if pY “ uY . Also if idY allows a compact continuation
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1.3 Contributions and a useful inequality

xidY : pY Ñ uY we are done after setting pg “ ug2˝
xidY ˝pg1. More surprising and more important

is the fact that the needed compact continuation pg also exists (under certain conditions)

if the mapping idY allows a compact continuation ŇidY : uY Ñ pY , cf. Theorem 2.6.2 and
Theorem 2.6.5. Although the developed theory is quite rudimentary it is already strong
enough to easily prove for example the following often applied result in image restoration
which was indeed the starting point of my work.

Assume that the following mappings are given:

i) Two matrices / linear mappings H : Rn Ñ Rd, K : Rn Ñ Re with

N pHq XN pKq “ t0u.

ii) Two proper, lower semicontinuous and coercive mappings φ : Rd Ñ r´8,`8s,
ψ : Re Ñ r´8,`8s.

Then the mapping h : Rn Ñ r´8,`8s, given by

x ÞÑ φpHxq ` ψpKxq

is lower semicontinuous and coercive. In particular the mapping h takes his in�mum
inf h P r´8,`8s at some point in Rn.

The corresponding proof can be found in Section 2.7.

1.3.2 Properties of lower semicontinuous mappings from a

topological viewpoint

In the previous section we have mentioned the topology T for r´8,`8s. More precise
this is the right order topology which is induced by the natural order on r´8,`8s. This
is the natural topology for studying lower semicontinuity, since a function Rn Ñ r´8,`8s
is lower semicontinuous i� it is continuous with respect to the topology T on r´8,`8s.
After investigating some properties of the topological space pr´8,`8s, T q we will see in
Subsection 2.5.3 that some well known (and easy to prove) properties of lower semicontinous
functions are just special cases of common theorems from topology. For instance the general
statement

�The concatenation g ˝ f of continuous mappings f, g is again continuous.�

becomes in this context the property

�The concatenation g ˝ f of a continuous mapping f with a
lower semicontinuous mapping g is again lower semicontinous.�

9



1. Introduction and overview

In the same way we can also regard the fact that a lower semicontinuous function f takes
its in�mum on every compact set: The general statement

�A continuous function maps compact sets onto compact sets�

reads in our context

�A lower semicontinous function maps compact sets
on sets which contain their in�mum.�

1.3.3 Coercivity of a sum of functions

Theorem 3.3.6 can be used as an easy to apply tool for investigating coercivity of a sum
of functions. More precisely, this theorem gives information on which subspaces of Rn a
sum F `G of functions F,G : Rn Ñ r´8,`8s is coercive, provided that F and G are of
a certain form, namely

F “ F1ZF2 and G “ G1ZG2

with functions F1 : X1 Ñ R Y t`8u, F2 : X2 Ñ R Y t`8u, G1 : Y1 Ñ R Y t`8u,
and G2 : Y2 Ñ RY t`8u, where

Rn
“ X1 ‘X2 “ Y1 ‘ Y2.

For such functions the theorem basically states that F ` G is coercive on X1 ` Y1 “

pX2 X Y2q
K if X1 K X2, Y1 K Y2 and certain boundedness conditions hold true.

If the conditions X1 K X2, Y1 K Y2 are not ful�lled there is no guarantee that F ` G is
coercive on X1 ` Y1. But at least F `G is then still coercive on all those subspaces Z1 of
Rn that are complementary to Z2 – X2 X Y2.

1.3.4 Relation between the constrained and unconstained

problems for a rather general setting

In [5] Ciak et al. considered for an underlying orthogonal decomposition Rn “ X1 ‘X2 of
Rn the primal minimizations problems

pP1,τ q argmin
xPRn

tΦpxq s.t. }Lx} ď τu

pP2,λq argmin
xPRn

tΦpxq ` λ}Lx}u

along with the dual problems

pD1,τ q argmin
pPRm

tΦ˚p´L˚pq ` τ}p}˚u ,

pD2,λq argmin
pPRm

tΦ˚p´L˚pq s.t. }p}˚ ď λu .

10



1.4 Overview

The function Φ there has the special form

Φpxq “ Φpx1 ` x2q “ φpx1q,

where φ : X1 Ñ RY t`8u is a function ful�lling some properties.

In this thesis we extend this setting by allowing a third component in the orthogonal
decomposition of Rn “ X1 ‘X2 ‘X3 and demand

Φpxq “ Φpx1 ` x2 ` x3q “

#

φpx1q if x3 “ 0,

`8 if x3 ‰ 0.

This extension can become interesting when dealing with data in a high dimensional real
vector space if the data is actually contained in a lower dimensional subspace. Moreover,
this extended form has the advantage that a symmetry between Φ and Φ˚ is recognizable
much better in this extended setting as we shall see in Lemma 4.4.1.

1.3.5 A simple but useful equality

Here we want to mention Lemma A.2 from the appendix along with its preceding vivid
explanation. The simple but helpful inequality presented in that lemma is

}h1} ď C}h1 ` h2}

for all h1 and h2 in subspaces X1, X2 of Rn with trivial intersection. Originally this in-
equality was made and proved in the context of Lemma 4.3.11, in which proof it was twice
used for showing di�erentiability. However it turned out that using this inequality also
simpli�es the boundedness proof in [5, Lemma 3.1 (i)] as done in the proof of part ii) of
Lemma 4.3.18. Moreover this inequality was helpful in showing convergence of a sequence
which appeared in the proof of Lemma B.13.

1.4 Overview

This thesis consists of three parts, organized in Chapters 2, 3 and 4. In the �rst part we
develop a theory giving rise to a � as far as the author knows � new technique of proving
lower semicontinuity plus coercivity of functions h. The main ingredients are as follows:

‚ Equivalence of lower semicontinuity plus coercivity to the existence of a certain com-
pact continuation ph of h.

‚ An analysis of compact continuations, giving a criteria for ensuring that a concatenate
function h “ g ˝ f allows a compact continuation ph if g and f have a compact
continuation pf and ug.
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1. Introduction and overview

Having a function h : Rn Ñ r´8,`8s we can hence perform the strategy to write this
mapping as composition h “ g ˝ f with mappings f and g that allow certain compact
continuations in a �rst step. In a second step we can then try to get the needed extension
of h.

The �rst part is organized as follows: After recalling some set theoretic topology we intro-
duce the right order topology for the set r´8,`8s and prove the mentioned equivalence.
Then the concept of compact continuations is introduced. An application of the theory to
an example concludes the �rst part.

The second part also deals with coercivity. However, lower semicontinuity no longer plays a
role in this part. After giving de�nitions and developing some lemmata we address the easy
case of linear mappings before moving towards the main theorem of this chapter, giving
information on which subspaces of Rn certain sums pF1ZF2q ` pG1ZG2q are coercive.

In the third part we are interested in the relation between the convex constrained opti-
mization problem

pP1,τ q argmin
xPRn

tΦpxq s.t. Ψpxq ď τu (1.2)

and the unconstrained optimization problem

pP2,λq argmin
xPRn

tΦpxq ` λΨpxqu, λ ě 0. (1.3)

The constrained problem (1.2) is interesting only for τ P OP pΦ,Ψq and can then be
rewritten as the following unconstrained one:

argmin
xPRn

tΦpxq ` ιlevτΨpxqu. (1.4)

In the inverse problems and machine learning context the problems (1.2) and (1.3) are
referred to as Ivanov regularization and Tichonov regularization of optimization problems
of the form argminxPRntΦpxqu.

Let SOLpP‚q denote the set of solutions of problem pP‚q. While it is rather clear that
under mild conditions on Φ and Ψ a vector x̂ P SOLpP2,λq, λ ą 0 is also a solution of pP1,τ q

exactly for τ “ Ψpx̂q, the opposite direction has in general no simple explicit solution. At
least it is known that, under certain conditions, for x̂ P SOLpP1,τ q there exists λ ě 0 such
that x̂ P SOLpP2,λq. This result, beeing stated in Theorem 4.2.6 and Corollary 4.2.7, can
be shown by using that the relation

R`0 BΨpxq “ BιlevΨpxqΨpxq

from [12, p. 245] holds true under certain conditions. This result is presented in Lemma
4.2.3 and proved by using an epigraphical projection or brie�y inf-projection, cf. [20, p.
18+], which allows reducing the intrinsic problem to one dimension.
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1.4 Overview

After developing some assisting theory we consider particular problems where

Φpxq– φpx1q and Ψ – }L ¨ } with L P Rm,n;

here x1 is the orthogonal projection of x P dom Φ onto a subspace X1 of Rn and φ : X1 Ñ

RY t`8u is a function which ful�lls the following conditions:

i) domφ is an open subset of X1 with 0 P domφ,

ii) φ is proper, convex and lower semicontinuous as well as strictly convex and essentially
smooth, and

iii) φ has a minimizer.

We use the dual problems to prove that in a certain interval there is a one-to-one cor-
respondence between τ and λ in the sense that SOLpP1,τ q “ SOLpP2,λq exactly for the
corresponding pairs. Furthermore, given τ , the value λ is determined by λ – }p̂}˚, where
p̂ is any solution of the dual problem of pP1,τ q. See Theorem 4.4.6 for more details.

The third part is organized as follows: We �rst deal with two ways of interpreting each of
the minimization problems pP1,τ q and pP2,λq and show that these perspectives, though re-
lated, are not equivalent in general. In Section 4.2 we state a known relation between pP1,τ q

and pP2,λq for a rather general setting, see Theorem 4.2.6. In particular, we provide some
novel proofs by making use of an epigraphical projection. We also recall Fenchel's Duality
relation. Finally we discuss the mentioned Theorem 4.2.6 more in detail. In particular a
relation between one of its regularity assumptions and Slaters Constraint Quali�cation is
given. In close connection with Section 4.2 is Section 4.4, where we restrict ourselves to
homogeneous regularizers and to essentially smooth data terms, which are strictly convex
on a certain subspace of Rn. We prove a relation between the parameters τ and λ such that
the solution sets of the corresponding constrained and unconstrained problems coincide and
determine the λ corresponding to τ by duality arguments. The intermediate Section 4.3
provides some theorems and lemmata needed in the proofs of Section 4.4, some of which
are interesting in themselves. In the Appendix some useful theorems are collected. The
parts there which are not own work but are taken from the literature are clearly indicated
by giving references.

Applications can be found in Section 4 of [5]. Ideas from this chapter were also used in
[24].
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2. Coercivity and lower semicontinuity from the topological point of view

2.1 On the relation between closed and compact subsets

In this section we recall a known theorem, describing the relation between compactness
and closeness.

Theorem 2.1.1.

i) Each closed subset of a compact space is compact.

ii) Each compact subset of a Hausdor� space is closed.

The subsequent proof resembles the proof of Bemerkung 2 in [14, ch. 1.8 on p. 26] and
the proof of a Lemma in [14, ch.1.8 on p. 28].

Proof. i) Let pX,OXq be a compact space and A a closed subset of this space. Let A be
covered by open sets Oi P OX , i P I. Adding the open set XzA P OX to the Oi, i P I,
yields an open covering of pX,OXq. Due the compactness of pX,OXq �nitely many of the
Oi together with XzA su�ce to cover X. Due to pXzAq X A “ H these �nitely many Oi

must already cover A. So pA,A\OXq is compact.
ii) Let pX,OXq be a Hausdor� space and A some compact subset. For proving the closeness
of A it su�ces to show that each x P XzA is an interior point of XzA, i.e. that there is
an open neighborhood U of x with U Ď XzA. To this end we �x x P XzA. Since pX,OXq

is a Hausdor� space, there are disjoint open neighborhoods Oa P Upaq and Ua P Upxq for
every a P A. The open cover of the compact set A by the Oa, a P A has a �nite subcover;
i.e. there are �nitely many a1, . . . , an P A with

Ťn
i“1Oai Ě A. The set

Şn
i“1 Uai is an open

neighborhood of x with

n
č

i“1

Uai X A Ď
n
č

i“1

Uai X
n
ď

j“1

Oaj “

n
ď

j“1

˜

n
č

i“1

Uai XOaj

¸

Ď

n
ď

j“1

`

Uaj XOaj

˘

“ H,

i.e.
Şn
i“1 Uai Ď XzA. So x is indeed an interior point of XzA.

We point out that even a compact topological space can have compact subsets which are
not closed. An example for this behavior is obtained when equipping the interval r´8,`8s
with the right order topology, see Example 2.5.7.

2.2 Remarks on the topology induced by a metric space

In this subsection we �rst recall some well known facts for the topology induced by a metric.
Then we recall the equivalence of metric continuity concepts and topological continuity
concepts.
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2.3 Creating topological spaces from given ones

De�nition 2.2.1. Let pX, dq be a metric space. The topology generated by the �open� balls
Brpxq, r ą 0, x P X, i.e. the topology

Ords– tO Ď X : O is union of �open� balls u,

will be called topology induced by d. If it is clear from the context we will also use the
short form O for Ords

Remark 2.2.2. The open balls Brpxq, r ą 0, x P X are really open sets from Ords.

Remark 2.2.3. Let pX, dq, pX 1, d1q be metric spaces and pX,Oq, pX 1,O1q the induced
topological spaces. For a mapping f : X Ñ X 1 the metric continuity notions and the
topological continuity notions are the same; speaking in particular about the continuity in
a single point x0 we have the equivalence of the following statements

i) f : pX, dq Ñ pX 1, d1q is continuous in x0 in the metric sense, i.e.
@ε ą 0 Dδ ą 0 @x P X :
dpx, x0q ă δ ùñ d1pfpxq, fpx0qq ă ε

ii) f : pX,Oq Ñ pX 1,O1q is continuous in x0 in the topological sense, i.e.,
for every open neighborhood O1 P O1 of fpx0q there is an open neighborhood O P O
of x0 with f rOs Ď O1 (which is to say O Ď f´rO1s).

Similarly, speaking about continuity of the whole function, we have the equivalence of the
statements

i) f : pX, dq Ñ pX 1, d1q is continuous in the metric sense, i.e.
@x0 P X @ε ą 0 Dδ ą 0 @x P X :
dpx, x0q ă δ ùñ d1pfpxq, fpx0qq ă ε

ii) f : pX,Oq Ñ pX 1,O1q is continuous in the topological sense, i.e.
@O1 P O1 : f´rO1s P O.

2.3 Creating topological spaces from given ones

In this section we give a short introduction in four known ways of generating topological
spaces from given ones:

‚ In Subsection 2.3.1 we discuss how a subset of a topological space can be made to a
subspace by giving it the �correct� topology.

‚ In Subsection 2.3.2 we show how to equip �nite products of topological spaces with
a meaningful topology.

17



2. Coercivity and lower semicontinuity from the topological point of view

‚ In Subsection 2.3.3 we deal with the vivid notion of glueing a given object and how
we can formalize it in the language of topology.

‚ In Subsection 2.3.4 we extend every topological space to a compact one by adding
one single new point.

In each of this four subsections we give motivations for the de�nition. We remark that our
motivation for the identi�cation topology seems to be new.

2.3.1 Subspaces

Let pX, dq be a metric space and p qX, qdq “ p qX, d|
qXˆ qXq some metric subspace. After choosing

a point qx P qX Ď X and some �radius� r ą 0 we can think of an open ball of radius r around
qx in two ways � on on the one hand with respect to p qX, qdq and the other hand with respect
to pX, dq. Though they are di�erent in general, they are linked via

Brpqxqrqds “tx P qX : dpx, qxq ă ru

“ qX X tx P X : dpx, qxq ă ru

“ qX X Brpqxqrds.

For any qxi P qX and ri ą 0, i P I we therefore have
ď

iPI

Bripqxiqrqds “ qX X
ď

iPI

Bripqxiqrds.

So Orp qX, qdqs “ qX \OrpX, dqs. This gives rise to the following de�nition.

De�nition 2.3.1. Let pX,Oq be a topological space and qX Ď X. We call p qX, qOq a sub-
space of pX,Oq, i� qO “ qX \O. The topology qX \O is called subspace topology for
qX Ď X. To the contrary a topological space pX,Oq is called a superspace of a space

p qX, qOq, i� the latter is a subspace of the �rst.

The following remark illuminates that the above topology is the appropriate topology for
subsets of a already given topological space. It states that the continuity of a function
f : pX,Oq Ñ pY,Pq does not get lost by restricting its domain and by extending its
codomain:

Remark 2.3.2. Let pX,Oq be a topological space with some subspace p qX, qOq “ p qX, qX\Oq
and let pY,Pq be a topological space with some superspace ppY , pPq. Then the following holds
true for all mappings f : X Ñ Y :

i) f : pX,Oq Ñ pY,Pq is continuous ùñ f |
qX : p qX, qOq Ñ pY,Pq is continuous.

ii) f : pX,Oq Ñ pY,Pq is continuous ðñ f : pX,Oq Ñ ppY , pPq is continuous.
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2.3 Creating topological spaces from given ones

2.3.2 Product spaces

Let pY1,O1q, . . . , pYn,Onq be topological spaces. We search a topology O for the Cartesian
product Y – Y1,ˆ ¨ ¨ ¨ ˆ Yn such that for any sequence ypkq in Y the equivalence

p@i P t1, . . . , nu : y
pkq
i Ñ y˚i q ðñ ypkq Ñ y˚

holds true. To this end we express the left hand side as explicit statement

@i P t1, . . . , nu @Ui P Uipy˚i q Dqki P N @k ě qki : y
pkq
i P Ui (2.1)

and compare it with the explicit formulation

@U P Upy˚q Dqk P N @k ě qk : ypkq P U (2.2)

for the right�hand side. On the one hand, to guarantee �(2.2)ñ (2.1)�, we should demand
that every product U – U1 ˆ ¨ ¨ ¨ ˆ Un, where Ui P Uipy˚i q, is already a neighborhood of

y˚. On the other hand, to guarantee �(2.2) ð (2.1)�, all those subsets qY Ď Y , which do
not contain any product U1 ˆ ¨ ¨ ¨ ˆ Un with Ui P Uipy˚i q, should be barred from beeing a
neighborhood of y˚; i.e we should demand that every U P Upy˚q contains some product
U1 ˆ ¨ ¨ ¨ ˆ Un of neighborhoods Ui P Uipy˚i q. Altogether it seems reasonable to demand

U P Upy˚q : ðñ DU1 P U1py
˚
i q, . . . , Un P Unpy˚nq : U Ě U1 ˆ ¨ ¨ ¨ ˆ Un

This leads to the following

De�nition 2.3.3. Let pY1,O1q, pY2,O2q, . . . , pYn,Onq be �nitely many topological spaces.
A topology O on the Cartesian product Y1 ˆ Y2 ¨ ¨ ¨ ˆ Yn — Y is said to be the product
topology of O1,O2, . . . ,On, if one of the following equivalent conditions is ful�lled:

i) The neighborhood system Upy˚q of a point y˚ P Y exactly consists of the sets U “

U1 ˆ ¨ ¨ ¨ ˆ Un, where Ui P Uipy˚i q, i P t1, . . . , nu, and of all subsets of Y which are
supersets of these sets U .

ii) The topology O consists exactly of those subsets O Ď Y , which are of the form
O1 ˆ ¨ ¨ ¨ ˆ On with any Oi P Oi, i P t1, . . . , nu, or can be written as union of sets of
this form.

The product space pY,Oq will be denoted by

pY1 ˆ Y2 ˆ ¨ ¨ ¨ ˆ Yn,O1 � O2 � ¨ ¨ ¨� Onq

or by

pY1,O1q� pY2,O2q� ¨ ¨ ¨� pYn,Onq.

As a shorter notation for pY,Oq� ¨ ¨ ¨� pY,Oq
loooooooooooomoooooooooooon

n times

we will also write pY n,O�nq.
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2. Coercivity and lower semicontinuity from the topological point of view

In most cases we deal with Y “ R equipped with its natural topology O “ Ords, where d
is the natural metric de�ned by dpx, yq “ |x´ y|. The product topology O�n for Rn equals
its natural topology, i.e. the topology generated by every norm on Rn.

Remark 2.3.4. Let O1,O2,O3 be some topologies. Then we have O1 � O2 � O3 “

pO1 �O2q�O3 “ O1 � pO2 �O3q, i.e. building product spaces is an associative operation.

The following remark illuminates that the above de�ned topology is the appropriate topol-
ogy for the Cartesian product of already given topological spaces. It states that a �multi-
valued� function is continuous i� its component functions are continuous.

Remark 2.3.5. A mapping f : pX,Oq Ñ pY1,O1q � pY2,O2q � ¨ ¨ ¨ � pYn,Onq, x ÞÑ

fpxq “ pf1pxq, f2pxq, . . . , fnpxqq is continuous if and only if all its component functions
fi : pX,Oq Ñ pYi,Oiq, i P t1, . . . nu, are continuous.

Next we state Tichonov's Theorem for the simple case of building the product of only
�nitely many compact spaces. For a proof see [17, Theorem 5.7 on p. 167].

Theorem 2.3.6 (Tichonov's Theorem for �nite products). The product space of �nitely
many compact spaces is compact.

Remark 2.3.7. We only introduced the product space of �nitely many topological spaces.
Although it is possible to declare a product space also for in�nitely many topological spaces,
we have decided to avoid this, more complicated and harder to grasp, construction, since
we will not need it.

We conclude this subsection with a remark showing that the order in which the actions of
building subspaces and product spaces are done have no in�uence on the �nally resulting
topological space:

Remark 2.3.8. Given two topological spaces p pX1, pO1q and p pX2, pO2q, the Cartesian product

X1 ˆ X2 of two subsets X1 Ď pX1 and X2 Ď pX2 has to be equipped with a topology. Two
natural ways of equipping X1ˆX2 with a topology seem possible: On the one hand X1ˆX2

can be interpreted as subset of pX1 ˆ pX2 and thus be equipped with the subspace topology

pX1 ˆX2q\ p pO1 � pO2q.

On the other hand X1 ˆ X2 can be seen as Cartesian product of the sets X1 and X2 and
thus be equipped with the product topology

pX1 \ pO1q� pX2 \ pO2q.

Luckily these topologies are actually identical since the sets

p pO1 ˆ pO2q X pX1 ˆX2q “ p pO1 XX1q ˆ p pO2 XX2q,

where pO1 P pO1, pO2 P pO2, form a base for both topologies.
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2.3 Creating topological spaces from given ones

2.3.3 Identi�cation or quotient spaces

In the following example let O be the natural topology of R and S – tx P R2 : }x}2 “ 1u.

Example 2.3.9. Consider the surjective and continuous mapping f : pr0, 2πs, r0, 2πs \
Oq Ñ pS,SXO�2q, given by

x ÞÑ eix “

ˆ

cosx
sinx

˙

.

The impression occurs that the straight line pr0, 2πs, r0, 2πs\Oq is transformed to the circle
line pS,S \ O�2q by gluing the endpoints 0 and 2π to one and the same point p1, 0qT “
fp0q “ fp2πq of the circle line. At any other point x P p0, 2πq, where nothing is glued,
it seems that nothing essential changes: A small interval�like�neighborhood U 1 of fpxq
seems to be just the image f rU s of some small interval�neighborhood U of x. In contrast
it seems that a small interval�like�neighborhood U 1 of p1, 0qT “ fp0q “ fp2πq is obtained
from gluing a small neighborhood, say r0, ε1q, of 0 P r0, 2πs, with a small neighborhood, say
p2π´ ε2, 2πs, of 2π P r0, 2πs. So whatever point x1 P S we consider: It always seems that a
neighborhood U 1 of x1 is build by taking a suitable Ux P Upxq, for every x with fpxq “ x1,
and then getting U 1 as union of the images of the Ux, i.e. via

U 1 “
ď

xPr0,2πs:fpxq“x1

f rUxs, (2.3)

or, to put it more vividly, by glueing neighborhoods Ux, x P f
´rU 1s.

The next remark serves as a bridge between the previous example and the subsequent
de�nition of an identifying mapping. It picks up (2.3) and shows how this naturally lead
to the de�nition of identi�cation topology and identifying mapping. This way of motivating
the identi�cation topology seems to be new.

Remark 2.3.10 (Motivation for the de�nition of the identi�cation topology). Consider a
surjective mapping f : pX,Oq Ñ X 1 between a topological space pX,Oq and some set X 1.
Assume that there is a topology O1 on X 1 such that every neighborhood U 1 of an arbitrarily
chosen point x1 results from gluing neighborhoods of all preimage points x P f´rtx1us; i.e.
assume that there is a topology O1 on X 1 whose neighborhood systems ful�ll

U 1px1q “
"

U 1 Ď X 1

ˇ

ˇ

ˇ

ˇ

@x P f´rtx1us DUx P Upxq : U 1 “
ď

xPf´rtx1us

f rUxs

*

(2.4)
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2. Coercivity and lower semicontinuity from the topological point of view

for every x1 P X 1. Is it then possible to describe O1 in a more direct manner? Due to the
following equivalences for a subset O1 Ď X 1 we can give a positive answer to this question:

O1 P O1

ðñ @x1 P O1 : O1 P U 1px1q
(2.4)
ðñ @x1 P O1 @x P f´rtx1us DUx P Upxq : O1 “

ď

xPf´rtx1us

f rUxs

p˚q
ðñ @x1 P O1 @x P f´rtx1us DĂUx P Upxq : O1 Ě

ď

xPf´rtx1us

f rĂUxs

ðñ @x1 P O1 @x P f´rtx1us DĂOx P Upxq XO : O1 Ě f r
ď

xPf´rtx1us

ĂOxs

ðñ @x1 P O1 DO P O : f´rtx1us Ď O ^O1 Ě f rOs

ðñ D pO P O @x1 P O1 : f´rtx1us Ď pO ^O1 Ě f r pOs

ðñ D pO P O : f´rO1s Ď pO ^ f´rO1s Ě pO

ðñ D pO P O : f´rO1s “ pO

ðñ f´rO1s P O.

Note that the harder implication �ð� in p˚q holds true, since Ux – f´rO1s Ě ĂUx is a
neighborhood for each x P f´rtx1us and ful�lls f rUxs “ O1, in virtue of f 's surjectivity.

Summarizing we can say that necessarily

O1
“
 

O1 Ď X 1 : f´rO1s P O
(

.

This motivates the following de�nition. Take note, though, that we did not prove that the
topology

 

O1 Ď X 1 : f´rO1s P O
(

actually induces neighborhood systems which ful�ll (2.4).

De�nition 2.3.11. We say that a mapping f : pX,Oq Ñ pX 1,O1q between two topological
spaces pX,Oq and pX 1,O1q is identifying or that it glues pppX,Oqqq to pppX 111,O111

qqq, i� it is
surjective and

O1
“ tO1 Ď X 1 : f´rO1s P Ou.

The topology O1 is called quotient topology or identi�cation topology induced by
f and O and pX 1,O1q is called the quotient space or identi�cation space induced
by f and O.

The identi�cation topology is uniquely determined by the surjective mapping f , cf. Remark
2.3.12.

Remark 2.3.12. If a topological space pX,Oq is glued to a topological space pX 1,O1q by a
mapping g then the, by de�nition surjective, mapping g is in particular continuous; to see
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2.3 Creating topological spaces from given ones

this just compare

g is continuous ðñ
`

@S 1 Ď X 1 : S 1 P OX 1 ùñ g´rS 1s P OX

˘

with

g is identifying ðñ
`

@S 1 Ď X 1 : S 1 P OX 1 ðñ g´rS 1s P OX

˘

ðñ ^ g is surjective.

More precisely one can read from the above lines, that a surjective mapping g glues a
topological space pX,Oq to a topological space pX 1,O1q, i� O1 is the �nest topology on X 1

for which g : pX,Oq Ñ pX 1,O1q is still continuous.

The relation between �homeomorphic�, �identifying� and �continuous� is shown in the fol-
lowing diagram.

f : pX,OXq Ñ pX 1,OX 1q is a homeomorphism

��
f : pX,OXq Ñ pX 1,OX 1q glues pX,OXq to pX

1,OX 1q

f bij.

KS

��
f : pX,OXq Ñ pX 1,OX 1q is continuous

f surj. and (open or closed)

KS

The relations between the �rst and second row are easy to see, by Remark 2.3.12. The
implication from the second to the third row is also clear by this Remark. It remains
to deal with the implication from the third to the second row. Before illustrating this
condition and then moving towards its justi�cation in Theorem 2.3.14 we would like to
warn the reader that restricting identifying mappings is more problematic than restricting
continuous mappings or homeomorphisms: The restriction of a continuous mappings resp.
homeomorphism are again continuous mappings resp. homeomorphisms. In contrast the
restriction of an identifying mapping is not necessarily again identifying, cf. Example
2.3.17. Now we return to our discussion of the implication from the third row to the
second row. As stated in Remark 2.3.12, every identifying mapping pX,Oq Ñ pX 1,O1q is
continuous. However, the opposite is not true. The identity mapping idt0,1u : t0, 1u Ñ t0, 1u
between pX,Oq “ pt0, 1u, tX,H, t0uuq and pX 1,O1q “ pX,O1q “ pt0, 1u, tX,Huq is a
simple, but maybe not very natural, example. A more natural example for a surjective
continuous mapping, which is not identifying is given in Example 2.3.15.

The proof of the following lemma, can also be found in [27, p. 109].

Lemma 2.3.13. A continuous mapping g : pY,OY q Ñ pZ,OZq from a compact space
pY,OY q into a Hausdor� space pZ,OZq is always a closed mapping. In particular g is a
homeomorphism if g is additionally bijective.
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2. Coercivity and lower semicontinuity from the topological point of view

Proof. A closed subset of the compact space pY,OY q is again compact by part i) of Theorem
2.1.1; therefore it is mapped by the continuous mapping g to a compact subset of pZ,OZq,
which is a closed subset of this Hausdor� space, by part ii) of Theorem 2.1.1. Hence g is a
closed mapping. If g is in addition bijective then the mapping g is also an open mapping,
since the image grOs of every open subset O P OY can then be written in the form
grOs “ grY zpY zOqs “ grY szgrY zOs “ ZzgrY zOs, showing that grOs is the complement of
the closed set grY zOs and hence an open subset of pZ,OZq. Therefore the mapping g is
open and continuous and hence a homeomorphism.

Each identifying mapping is also continuous. The converse is not true in general. Yet the
next theorem gives some su�cient criteria for ensuring that a continuous function is even
identifying.

Theorem 2.3.14. A surjective continuous mapping g : pY,OY q Ñ pZ,OZq is identifying,
if at least one of the following additional properties is ful�lled:

i) g is a closed or open mapping.

ii) pY,OY q is a compact space and pZ,OZq is a Hausdor� space.

Before proving this theorem, we give an example for a continuous, but not identifying
mapping g, which is de�ned on a simple subset Y of R2 and maps onto a compact interval
Z. By Theorem 2.3.14 it is clear that Y must not be a compact subset of pR2,O�2q and
that g must not be open and closed. We note that our example was inspired by an example,
given by Kelly in [15, ch. Quotient spaces, p. 95], illustrating that there are continuous
mappings which are neither open nor closed. The natural topology of R is denoted by O.

Example 2.3.15. The interval r´1, 1s can be generated by putting a single point, say
p0, 1q P R2, into the gap of r´1, 1szt0u “ r´1, 0q Y p0, 1s. This operation is modeled by the
mapping g : pY,OY q Ñ pZ,OZq, gpyq– y1, where

Y – pr´1, 1szt0u ˆ t0uq Y tp0, 1qu

and

Z – r´1, 1s

are endowed with the subspace topologies OY “ Y \ O�2 and OZ “ Z \ O, respectively.
The projection g is continuous but, however, not identifying: Consider the point 0 P r´1, 1s
and its only preimage point p0, 1q P Y . The isolated point p0, 1q P Y has tp0, 1qu — U as
smallest open neighborhood. Yet grU s “ t0u is no neighborhood of 0. We remark that
the same reasoning shows that g is not an open mapping; moreover g is neither a closed
mapping since it maps the closed subset r´1, 0q ˆ t0u of pY,OY q to r´1, 0q which is not a
closed subset of pZ,OZq.
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2.3 Creating topological spaces from given ones

Proof of Theorem 2.3.14. i) Since g : pY,OY q Ñ pZ,OZq is surjective we have

g is continuous ðñ

´

@ qZ Ď Z : qZ P OZ ùñ g´r qZs P OY

¯

(2.5)

and

g is identifying ðñ

´

@ qZ Ď Z : qZ P OZ ðñ g´r qZs P OY

¯

. (2.6)

So our task of proving �g is continuous ùñ g is identifying� reduces to verify the statement

@ qZ Ď Z : g´r qZs P OY ùñ qZ P OZ . (2.7)

In the �rst case that g is open, i.e. ful�lls grOY s P OZ for all OY P OY we are done by

writing qZ “ grg´r qZss and setting OY – g´r qZs. In the second case that g is closed, i.e.
ful�lls grAY s P AZ for all AY P AY � where AY and AZ are the systems of the closed
subsets of pY,OY q and pZ,OZq, respectively � we translate all involved statements of the
previous reasoning from their �open set viewpoint� formulation (2.5), (2.6) and (2.7) to
the corresponding �closed set viewpoint� formulation, by means of building complements.
Then the reasoning goes the same way as before.

ii) By Lemma 2.3.13 the function g maps every closed subset of pY,OY q to a closed subset
of pZ,OZq and therefore ful�lls i), which implies that g is identifying.

In the next theorem we consider two functions g : pY,OY q Ñ pZ,OZq and g
1 : pY 1,OY 1q Ñ

pZ,OZq which are identical except that their domains of de�nition do not need to be totally
identical; rather pY,OY q shall only to be glued to pY 1,OY 1q by an identifying mapping
I : pY,OY q Ñ pY 1,OY 1q. The theorem states that g is continuous respectively identifying,
i� so is g1.

pY,OY q

I

��

g

&&

pZ,OZq

pY 1,OY 1q

g1

88

Theorem 2.3.16. Let g : pY,OY q Ñ pZ,OZq and g
1 : pY 1,OY 1q Ñ pZ,OZq be mappings

between topological spaces, which are related via g “ g1 ˝ I, with a mapping I that glues
pY,OY q to pY

1,OY 1q. Then the following statements hold true:

i) g is continuous ðñ g1 is continuous.

ii) g glues pY,OY q to pZ,OZq ðñ g1 glues pY 1,OY 1q to pZ,OZq.

See also [15, p. 95 � 96] for the �rst part of the subsequent proof.
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2. Coercivity and lower semicontinuity from the topological point of view

Proof. Since I is identifying we have, for every subset qZ of Z, the equivalences

g1´r qZs P OY 1 ðñ I´rg1´r qZss P OY ðñ g´r qZs P OY .

Having this in mind we get

g is continuous ðñ

´

@ qZ Ď Z : qZ P OZ ùñ g´r qZs P OY

¯

ðñ

´

@ qZ Ď Z : qZ P OZ ùñ g1´r qZs P OY 1

¯

ðñ g1 is continuous

and

g is identifying ðñ

´

@ qZ Ď Z : qZ P OZ ðñ g´r qZs P OY

¯

ðñ

´

@ qZ Ď Z : qZ P OZ ðñ g1´r qZs P OY 1

¯

ðñ g1 is identifying.

We end this subsection with a warning: in general a restriction of an identifying mapping
is no longer identifying as the following example shows. Again O is the natural topology
of R and S – tx P R2 : }x}2 “ 1u.

Example 2.3.17. We consider, once more, the both surjective and continuous mapping
f : pr0, 2πs, r0, 2πs\Oq Ñ pS,SXO�2q, given by

x ÞÑ eix “

ˆ

cosx
sinx

˙

.

This mapping is identifying by part ii) of Theorem 2.3.14. Restricting this mapping to the
subset X̌ – r0, 2πq we get the continuous bijection f |X̌ : pr0, 2πq, r0, 2πq \ Oq Ñ pS, S X
O�2q which is no longer identifying, since an identifying bijection would necessarily be an
homeomorphism, cf. the Diagram on page 23. However the spaces pr0, 2πq, r0, 2πq \ Oq
and pS,SXO�2q are clearly not homeomorphic, since only the latter one is compact.

2.3.4 One-point compacti�cation of a topological space

We start with a well known special case before we give the general de�nition.

Example 2.3.18 (and De�nition). It is often convenient to regard Rn as the subset
Spnqztp0, 0, . . . , 0, 1qu — 9S of the sphere pSpnq,OSpnqq – pSpnq,Spnq \ O�pn`1qq by means of
the homeomorphism

π : p 9S, 9S \OSpnqq Ñ pRn,O�n
q,

π : ps1, s2, . . . , sn; sn`1q
T
ÞÑ 1

1´sn`1
ps1, s2, . . . , snq

T,
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2.3 Creating topological spaces from given ones

known as stereographic projection, cf. [17, p. 350]. The topological superspace pSpnq,OSpnqq

of p 9S, 9S \OSpnqq di�ers not much from the latter: The set

Spnq “ 9S Y tp0, 0, . . . , 0, 1qTu

contains just one point more than 9S and the topology OSpnq Ľ
9S\OSpnq di�ers from 9S\OSpnq

only by additionally containing the open neighborhoods of the �north pole� p0, 0, . . . , 0, 1q—
N as expressed by

OSpnq “ p
9S \OSpnqq 9Y tO P OSpnq : N P Ou

“ p 9S \OSpnqq 9Y tSpnqzA : A P ApSpnqq, A Ď 9Su

“ p 9S \OSpnqq 9Y tSpnqzK : K P KpSpnqq, K Ď 9Su

“ p 9S \OSpnqq 9Y tSpnqzK : K P Kp 9Squ.

Likewise we set Rn
8 – Rn Y t8u with an additional point 8 R Rn and de�ne

O�n
8 – pO�n

q8 – O�n 9Y tRn
8zK : K P KpRn

qu.

Then pRn
8,O�n

8 q is a compact topological space, called the one-point compacti�cation
of pRn,O�nq; it contains pRn,O�nq as dense subspace. Moreover the homeomorphism π :
p 9S, 9S\OSpnqq Ñ pRn,O�nq can be extended to a homeomorphism pSpnq,OSpnqq Ñ pRn

8,O�n
8 q

by setting πpNq– 8. Setting }8}– `8 we then have for any sequence of points xk from
pRn

8,O�n
8 q the relation

xk Ñ 8 ðñ π´1
pxkq Ñ π´1

p8q

ðñ π´1
pxkq Ñ N

ðñ }xk} Ñ `8.

For general topological spaces pX,Oq the procedure is done similarly by adding a new point
8, resulting in the set X8 – X Y t8u, and by equipping 8 with an appropriate system
of neighborhoods. In the latter we have to be careful if pX,Oq is not a Hausdor� space.
Namely, in this case it may happen that there are compact subsets K1, K2 P KpX,Oq
whose intersection K1 XK2 is no longer compact, see Detail 1 in the Appendix; we would
therefore fail here, when we were trying to de�ne the open neighborhoods of the new point
8 as the sets

X8zK, with K P KpX,Oq, (2.8)

since the union of the �open neighborhoods� X8zK1 and X8zK2 is the set pX8zK1q Y

pX8zK2q “ X8zpK1 X K2q which is no longer a �neighborhood� of 8. This problem is
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2. Coercivity and lower semicontinuity from the topological point of view

solved if we restrict us in (2.8) to those compact subsets K of pK,Oq which are additionally
closed, see Detail 2 in the Appendix. Choosing

X8zK with K P KApX,Oq (2.9)

as the open neighborhoods of 8 indeed is the right idea. Before we give the de�nition
of the general one-point compacti�cation in accordance to (2.9) we note that the sets
X8zK in (2.8) and (2.9) coincide if pX,Oq is a Hausdor� space since in this case we have
KpX,Oq Ď ApX,Oq by part ii) of Theorem 2.1.1. The following general de�nition as well
as the subsequent Theorem 2.3.20 are, in essence, taken from [15, p. 150].

De�nition 2.3.19. Let pX,Oq be a topological space and 8 R X an additional point.
The one-point compacti�cation of pX,Oq is the space pX,Oq8 – pX8,O8q, where
X8 – X Y t8u and O8 – O Y tX8zK : K P KApX,Oqu.

Theorem 2.3.20. The one-point compacti�cation pX8,O8q of a topological space pX,Oq
is a compact topological space, which contains pX,Oq as subspace. pX8,O8q is a Hausdor�
space if and only if X is a locally compact Hausdor� space.

2.4 Topologization of totally ordered sets and

topological coercivity notions

In this section's subsections

‚ 2.4.1 Three topologies for totally ordered sets

‚ 2.4.2 The right order topology on an inf-complete totally ordered set

‚ 2.4.3 Topological coercivity notions and continuity interpretations

‚ 2.4.4 Topological coercivity and boundedness below

we introduce for a given totally ordered set pZ,ďq the right order topology (along with two
other topologies), give its very simple form in case of totally ordered sets, use it to de�ne
topological coercivity notions and show its good in�uence when investigating boundedness
from below.

More precisely we introduce in the �rst subsection three di�erent topolgies for a given
totally ordered set pZ,ďq. For us the most important of them is the right order topology
Tď, beeing the suited topology to investigate lower semicontinuity. Also with regard to
coercivity questions this topology is useful.

In the second subsection we will see that pZ, Tďq becomes very simple if the underly-
ing totally ordered set is inf-complete. The topology T “ Tď of the topological space
pr´8,`8s, T q is an important example and will be studied in more detail in Section 2.5.
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2.4 Topologization of totally ordered sets and topological coercivity notions

In the third subsection the notions of topological (strong) coercivity towards a set and some
boundedness notions are introduced. In Theorem 2.4.20 we will see that a mapping f :
pX,Oq Ñ pX 1,O1q is topological coercive (towardsH) i� a certain extension pf : pX,Oq8 Ñ
pX 1,O1q81 is continuous in the newly added point 8. In case of a mapping f : Rn Ñ Rm

this later turns out to be equivalent to the normcoercivity of f , see Theorem 2.5.18. For
a mapping f : pX,Oq Ñ pZ, Tďq another similar relation can be described if the totally
ordered set pZ,ďq has a maximum pz and a minimum. In this case f : pX,Oq Ñ pZ, Tďq
is topological coercive towards tpzu i� another certain extension pf : pX,Oq8 Ñ pZ, Tďq
is continuous in the newly added point 8, see Theorem 2.4.21. In case of a mapping
f : Rn Ñ r´8,`8s this will turn out to be equivalent to the coercivity of f , see Theorem
2.5.16.

In the fourth and last subsection we recall the usual global boundedness de�nition for func-
tions f : pX,Oq Ñ pZ,ďq and add two less common, more easier to check, local bounded-
ness notions and show that the local ones imply the global one if f : pX,Oq Ñ pZ, Těq is
topological strongly coercive towards MAXďpZq. Note that here Z is not equipped with
the right order topology but really with the left order topology!

Finally we mention that the right order topology is a special case of the Scott topology for
a partially ordered set pZ,Ďq. The latter topology is de�ned as the collection of all subsets
O of Z which ful�ll the following conditions:

i) Along with any z P O also the �upper set� trz P Z : rz Ě zu belongs to O;
i.e. � more formally expressed � the condition @z P O @rz P Z : rz Ě z ùñ rz P O
holds true,

ii) Every directed subset S of pZ,Ďq whose supremum exists and belongs to O has
nonempty intersection with O, i.e. ful�lls S XO ‰ H,

cf. [21] where Scott de�ned this topology using the name �induced topology�.

2.4.1 Three topologies for totally ordered sets

Before de�ning topologies out of ď we remark that we use interval notation just as for R
endowed with the natural order. In addition we introduce analogues for the unbounded
real intervals like p´8, bs.

De�nition 2.4.1. Let pX,ďq be a totally ordered set. We use the shortcuts

bq– tx P X : x ă bu,

bs– tx P X : x ď bu,

pa– tx P X : a ă xu,

ra– tx P X : a ď xu.
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2. Coercivity and lower semicontinuity from the topological point of view

If the totally ordered set is denoted with a decoration like in ď1 we feel free to adopt the
notation accordingly and write e.g. p1a instead of pa.

Given a totally ordered set pX,ďq we consider three di�erent topologies for it, namely
two �one sided� topologies and one �two sided� topology. We start with the �one sided�
topologies, cf. [22, p. 74]. But be aware that the de�nition there is not totally correct, see
Detail 3 in the Appendix. A correct de�nition can be found in [32].

De�nition 2.4.2. Let pX,ďq be a totally ordered set. The system of sets, which are H, X
or which can be written as unions of sets of the form pa, with a P X, forms a topology. It
will be called right order topology for pX,ďq and will be denoted by Tď. Analogously the
left order topology Tě for pX,ďq is de�ned as system of sets which are H, X or which
can be written as unions of sets of the form bq, with b P X.

Remark 2.4.3. i) The notations for the right order topology and the left order topology
for a totally ordered set pX,ďq are consistent: De�ne the inverse order ď on X via
x ď y : ðñ x ě y for all x, y P X. Then the left order topology Tě for pX,ďq is
indeed just the right order topology Tď for pX,ďq.

ii) The above systems Tď and Tě are really topologies on X: By the �rst part of this
remark it su�ces to prove that Tď is a topology. H and X belong to Tď by de�nition.
Clearly arbitrary unions of sets from Tď belong again to Tď by de�nition of this
system. Finally also the intersection of two sets T, S P Tď again belongs to that
system: If T or S is empty we have T X S “ H P Tď. Likewise T X S belongs to Tď
if T “ X or S “ X. In the remaining case T “

Ť

iPIpti and S “
Ť

jPJpsj with any
index sets I, J and elements ti, sj P X we �nally have

T X S “

«

ď

iPI

pti

ff

X

«

ď

jPJ

psj

ff

“
ď

iPI

«

pti X
ď

jPJ

psj

ff

“
ď

iPI

ď

jPJ

„

pti X psj



“
ď

iPI,jPJ

pmax tti, sju.

Hence we have shown T X S P Tď also in this case.

Now the �two-sided� topology is introduced, cf. [32] and [27, p. 22].

De�nition 2.4.4. Let pX,ďq be a totally ordered set. The order topology for pX,ďq is
the system Oď consisting of H, X and the �open intervals�

pa, bq or pa or bq

where a, b P X, and all unions of the open intervals.

Example 2.4.5. The order topology for pR,ďq is the natural topology of R which is induced
by | ¨ |.
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2.4 Topologization of totally ordered sets and topological coercivity notions

Remark 2.4.6. The order topology for a totally ordered set pX,ďq really is a topology: In
order to avoid dealing with many cases we �rst represent the sets from the system Oď in a
uni�ed way, which has been mentioned in [32]. To this end let Ð and Ñ be two elements
which are not yet contained in X. Then set

pX – tÐu YX Y tÑu

and extend the total order ď on X to a total order on pX (again denoted by ď) by addi-

tionally setting Ðď x and x ďÑ for all x P pX. Then

X “ pÐ,Ñq pa “ pa,Ñq

H “ pÑ,Ðq bq “ pÐ, bq

for all a, b P X so that the sets from Oď appear now simply as the unions of sets of the form
pa, bq where a, b P pX. This representation makes it clear that arbitrary unions of sets from
Oď belong again to Oď. Moreover the intersection of two arbitrary sets O “

Ť

iPIpai, biq

and P “
Ť

jPJpcj, djq � with ai, bi, cj, dj P pX and any index sets I, J � can be written in
the form

O X P “
ď

iPI
jPJ

rpai, biq X pcj, djqs “
ď

iPI
jPJ

pmaxtai, cju,mintbi, djuq

so that the intersection OXP again belongs to Oď. Finally clearly X,H P Oď so that Oď
really is a topology on X.

Proposition 2.4.7. Let a totally ordered space pZ,ďq be equipped with its right order
topology Tď. If pZ,ďq has some minimum qz then the only pZ, Tďq-neighborhood of qz is the
whole space Z. In particular a mapping f : pX,Oq Ñ pZ, Tďq is continuous in all points x
which are mapped to the minimal element. More formally expressed: UrTďspqzq “ tZu and
@x P X :

`

fpxq “ qz ùñ f is continuous in x
˘

.

Proof. Clearly the whole space Z is a neighborhood of qz. It is also the only neighborhood
of qz since this minimum is never contained in a set pa, a P Z, and hence also not in unions
of such sets. Let x P X be a point with fpxq “ qz. For each neighborhood U of x we
trivially have f rU s Ď Z. Since Z is the only existing neighborhood of qz “ fpxq, this
inclusion already shows that f is continuous in x.

Recall in the next theorem that a mapping f : pX,ďq Ñ pX 1,ď1q between ordered sets is
called an order isomorphism i� f is bijective and ful�lls fpx1q ď

1 fpx2q ðñ x1 ď x2

for all x1, x2 P X.

Theorem 2.4.8. Let pX,ďq and pX
1

,ď1q be totally ordered sets with their corresponding
topological spaces pX, Tďq and pX 1, Tď1q, respectively. For a mapping f : X Ñ X 1 the
following holds true:
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2. Coercivity and lower semicontinuity from the topological point of view

i) If f : pX, Tďq Ñ pX
1

, Tď1q is continuous in x˚ then fpxq ě1 fpx˚q for all x ě x˚

ii) If f : pX, Tďq Ñ pX
1

, Tď1q is continuous then f : pX,ďq Ñ pX
1

,ď1q is monotonically
increasing.

iii) f : pX, Tďq Ñ pX
1

, Tď1q is a homeomorphism, i� f : pX,ďq Ñ pX
1

,ď1q is an order
isomorphism.

Proof.

i) Let f : pX, Tďq Ñ pX
1

, Tď1q be continuous in x˚ P X. For x “ x˚ we trivially have
fpxq ě1 fpx˚q. Assume that there is an x ą x˚ such that fpxq ğ1 fpx˚q. This means
fpxq ă1 fpx˚q, because ď

1 is a total order on X 1. Hence fpx˚q P p
1fpxq — U 1. Since f is

continuous in x˚ there is an open neighborhood U P Upx˚q with f rU s Ď U 1 “ p1fpxq. Since
x ą x˚ assures x P U we would consequently get fpxq P f rU s Ď p1fpxq � a contradiction.

ii) This directly follows from i)

iii) Let f : pX, Tďq Ñ pX
1

, Tď1q be a homeomorphism. The continuity of f : pX, Tďq Ñ
pX

1

, Tď1q and f´1 : pX
1

, Tď1q Ñ pX, Tďq yields the monotonicity of f : pX,ďq Ñ pX
1

,ď1q
and f´1 : pX

1

,ď1q Ñ pX,ďq, respectively, by part ii). Now let, to the contrary, f :
pX,ďq Ñ pX

1

,ď1q be an order isomorphism. Then the bijective mapping f gives a one
to one correspondence between the open sets of pX, Tďq and the open sets of pX

1

, Tď1q �
essentially by pa Ø p1fpaq. Thus f is a homeomorphism between these two topological
spaces.

The following example shows that there are monotone functions between totally ordered
sets which are not continuous in the deduced topologies.

Example 2.4.9. Consider the totally ordered sets pX,ďq “ pr0, 1s,ďq and pX
1

,ď1q “
pt2, 3u,ď1q, with the natural orders ď on r0, 1s and ď1 on t2, 3u. The mapping f : pX,ďq Ñ
pX

1

,ď1q, given by

fpxq–

#

2 if x P r0, 1q

3 if x “ 1.
,

is monotone; yet f : pX, Tďq Ñ pX
1

, Tď1q is not continuous: The preimage of t3u “ tx1 P
X 1 : x1 ą1 2u “ p12 P Tď1 is the set t1u Ď r0, 1s. This nonempty set does not belong to
Tď, because it is neither the full space X, nor can it be written as union of intervals of the
form px where x P r0, 1s.

2.4.2 The right order topology on an inf-complete totally ordered

set

In this subsection we give a remark showing that the right order topology gets very simple
if the underlying totally ordered set pX,ďq ful�lls a property called inf-completeness which
is de�ned as follows:
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2.4 Topologization of totally ordered sets and topological coercivity notions

De�nition 2.4.10. We call a totally ordered set pX,ďq inf-complete, i� each subset
qX Ď X possesses an in�mum inf qX P X.

Remark 2.4.11. The the right order topology becomes very simple if it is given to a totally
ordered set pX,ďq which is inf-complete: Consider the union of sets pai with ai P X where
i runs through some nonempty index set I. Due to the inf-completeness of pX,ďq we know
that inftai : i P Iu— a exists in X so that the union

ď

iPI

pai “ pa

is again of the very same form as the original sets. In particular Tď just consists of X,H
and the sets of the form pa where a P X.

Example 2.4.12. Consider the set X – p0, 1q Y p2, 4q endowed with the usual order ď.
The totally ordered set pX,ďq is not inf-complete since the interval p2, 3q Ă X has many
lower bounds in X but no in�mum in X. Setting ai – 2` 1

i
, i P N we see that the union

ď

iPN

pai “ p2, 4q

is neither H, X nor of the form pa with some a P X.

2.4.3 Topological coercivity notions and continuity interpretations

Recall that KpX,Oq denotes the system of compact subsets of a topological space pX,Oq,
whereas the system of its compact and closed subsets is denoted by KApX,Oq. In the
following we will need the following subsystems.

De�nition 2.4.13. Let pX,Oq be a topological space and S Ď X. Then we set

KASpppX,Oqqq– tK P KApX,Oq : K X S “ Hu,

KSpppX,Oqqq– tK P KpX,Oq : K X S “ Hu.

Note that KAHpX,Oq “ KApX,Oq. The main idea behind the �rst de�nition is to collect
all those closed and compact subsets of pX,Oq in the set system KASpX,Oq, which are
not allowed to hit the set S but which might come �arbitrary close� to S. The idea behind
the second de�nition is similar.

Lemma 2.4.14. Let pZ,ďq be a totally ordered set which has a minimum qz. Then the
following holds true:

i) All closed subsets of pZ, Tďq are compact; in particular KApZ, Tďq “ ApZ, Tďq.

ii) If pZ,ďq contains also a maximum pz then KAtpzupZ, Tďq “ tZzU 1 : U 1 P U 1ppzq X Tďu.
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2. Coercivity and lower semicontinuity from the topological point of view

Proof. i) No open set O P Tď contains the minimum qz except for O “ Z. Except for the
closed set H “ ZzZ, which is anyway compact, every closed subset A of pZ, Tďq contains
hence qz. In particular any open covering pTiqiPI of such a set A must have a member T ,
which is an open neighborhood of qz. However, the only neighborhood of this minimal
element is the full space Z by de�nition of Tď. So picking out T “ Z already gives a �nite
subcovering for A Ď Z. Hence the nonempty closed subsets of pZ, Tďq are compact. In
particular KApZ, Tďq “ KpZ, Tďq XApZ, Tďq “ ApZ, Tďq.
ii) Using the previous part we see that the system KAtpzupZ, Tďq consists of exactly those
closed subsets of pZ, Tďq which do not contain pz, i.e. of exactly the complements of those
open sets which contain pz. In other words the system KAtpzupZ, Tďq consists of exactly
the complements of open neighborhoods of pz. This is what the formula KAtpzupZ, Tďq “
tZzU 1 : U 1 P U 1ppzq X Tďu expresses.

The �rst parts of the following two de�nitions stem from [31] where just the name �coercive�
was used. However we prefer the names �topological coercive� and �strongly topological
coercive� here. The second parts of these de�nitions are new to the best of the author's
knowledge. After stating the de�nitions we give some remarks on them and point out a
relation to the notions of normcoercivity and coercivity.

De�nition 2.4.15. A genuine mapping f : pX,Oq Ñ pX 1,O1q between topological spaces
pX,Oq and pX 1,O1q is called topological coercive, i� for every closed compact subset K 1

of X 1 there is a closed compact subset K of X such that f rXzKs Ď X 1zK 1; i.e. � more
formally expressed � i�

@K 1
P KApX 1,O1

q DK P KApX,Oq : f rXzKs Ď X 1
zK 1.

holds true.
More generally we say that f is topological coercive towards a set S1 Ď X i� for every
closed compact subset K 1 of X 1 which does not hit S 1 there is a closed compact subset K of
X such that f rXzKs Ď X 1zK 1; i.e. � more formally expressed � i�

@K 1
P KAS1pX

1,O1
q DK P KApX,Oq : f rXzKs Ď X 1

zK 1.

holds true.

By replacing �compact and closed� in the codomain in the previous de�nition by �compact�
we get the following de�nition:

De�nition 2.4.16. A genuine mapping f : pX,Oq Ñ pX 1,O1q between topological spaces
pX,Oq and pX 1,O1q is called topological strongly coercive, i� for every compact subset
K 1 of X 1 there is a closed compact subset K of X such that f rXzKs Ď X 1zK 1; i.e. � more
formally expressed � i�

@K 1
P KpX 1,O1

q DK P KApX,Oq : f rXzKs Ď X 1
zK 1
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2.4 Topologization of totally ordered sets and topological coercivity notions

holds true.
More generally we say that f is topological strongly coercive towards a set S1 Ď X
i� for every compact subset K 1 of X 1 which does not hit S 1 there is a closed compact subset
K of X such that f rXzKs Ď X 1zK 1; i.e. � more formally expressed � i�

@K 1
P KS1pX

1,O1
q DK P KApX,Oq : f rXzKs Ď X 1

zK 1

holds true.

Remark 2.4.17. A genuine mapping f : pX,Oq Ñ pX 1,O1q is topological coercive i� it is
topological coercive towards H. Likewise the mapping f is topological strongly coercive i�
it is topological strongly coercive towards H.

Remark 2.4.18. The previous De�nitions 2.4.15 and 2.4.16 coincide if the codomain
pX 1,O1q is a topological space whose compact sets are all closed, e.g. if pX 1,O1q is a
Hausdor� space, cf. Theorem 2.1.1. In later applications however the codomain will be a
totally ordered set equipped with the right order topology which contains compact sets that
are not closed, so that the de�nitions no longer coincide.

Remark 2.4.19. Although the notion of topological coercivity is de�ned in the context of
any topological spaces pX,Oq and pX 1,O1q it is rather made for noncompact spaces pX,Oq
and pX 1,O1q; if one of these spaces is compact the notion of of topological coercivity becomes
uninteresting: If pX,Oq is compact then every genuine mapping f : pX,Oq Ñ pX 1,O1q

from pX,Oq to any topological space pX 1,O1q is trivially topological coercive since we can
always choose K – X. If, on the other hand, the space pX 1,O1q is compact we can choose
K 1 – X 1 so that a genuine mapping f : pX,Oq Ñ pX 1,O1q is topological coercive i� pX,Oq
is compact.

In Subsection 2.5.4 we will de�ne the notion normcoercive for mappings f : Rn Ñ Rm

and the notion coercive for mappings f : Rn Ñ r´8,`8s and see that these notions
are special cases of topological coercivity towards a set: One the one hand a mapping
f : Rn Ñ Rm is normcoercive i� it is topological coercive, i.e. topological coercive towards
H, see Theorem 2.5.18. On the other hand a mapping f : Rn Ñ r´8,`8s is coercive i�
it is topological coercive towards maxr´8,`8s “ t`8u, see Theorem 2.5.16. For proving
these equivalences the subsequent two theorems will be helpful.

The �rst of these theorems states that the topological coervivity of a mapping f : pX,Oq Ñ
pX 1,O1q can be viewed as continuity at �in�nity�:

Theorem 2.4.20. Let pX,Oq and pX 1,O1q be topological spaces and pX,Oq8 and pX 1,O1q81

their one-point compacti�cations. For a mapping f : X Ñ X 1 and its extension pf : X8 Ñ
X 1
81, given by

pfpxq–

#

fpxq, if x P X

81, if x “ 8

the following are equivalent:
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2. Coercivity and lower semicontinuity from the topological point of view

i) f : pX,Oq Ñ pX 1,O1q is topological coercive.

ii) pf : pX,Oq8 Ñ pX 1,O1q81 is continuous at 8.

Proof. Using the de�nitions of topological coercivity and the de�nition of the one point
compacti�cation we get

f : pX,Oq Ñ pX 1,O1
q is topological coercive

ðñ @K 1
P KApX 1,O1

q DK P KApX,Oq : f rXzKs Ď X 1
zK 1

ðñ @K 1
P KApX 1,O1

q DK P KApX,Oq : f rXzKs Y t81u Ď pX 1
Y t8

1
uqzK 1

ðñ @K 1
P KApX 1,O1

q DK P KApX,Oq : pf rX8zKs Ď X 1
81zK

1

ðñ @U 1 P U 1p81q DU P Up8q : pf rU s Ď U 1

ðñ pf : pX,Oq8 Ñ pX 1,O1
q81 is continuous at the point 8.

Regard now a mapping f : pX,Oq Ñ pZ, Tďq where Tď is the right order topology induced
by some total order ď on Z. If Z has a minimum and a maximum we can similar regard
the topological coercivity of f towards maxX 1 as continuity at �in�nity�:

Theorem 2.4.21. Let pX,Oq be a topological space and pZ,ďq a totally ordered set which
has a minimum qz and a maximum pz. For a mapping f : X Ñ Z and its extension
pf : X8 Ñ Z given by

pfpxq–

#

fpxq if x P X

pz if x “ 8
(2.10)

the following are equivalent:

i) f : pX,Oq Ñ pZ, Tďq is topological coercive towards tpzu “ tmaxď Zu.

ii) pf : pX,Oq8 Ñ pZ, Tďq is continuous at the point 8.

Proof. Using part ii) of Lemma 2.4.14 and pfp8q “ pz we obtain

f : pX,Oq Ñ pZ, Tďq is topological coercive towards tpzu
ðñ @K 1

P KAtpzupZ, Tďq DK P KApX,Oq : f rXzKs Ď ZzK 1

ðñ @U 1 P U 1ppzq X Tď DK P KApX,Oq : f rXzKs Ď ZzpZzU 1q

ðñ @U 1 P U 1ppzq DK P KApX,Oq : f rXzKs Ď U 1

ðñ @U 1 P U 1ppzq DK P KApX,Oq : pf rX8zKs Ď U 1

ðñ @U 1 P U 1ppzq DU P Up8q : pf rU s Ď U 1

ðñ pf : pX,Oq8 Ñ pZ, Tďq is continuous at the point 8.
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2.4 Topologization of totally ordered sets and topological coercivity notions

2.4.4 Topological coercivity and boundedness below

In this subsection we deal with the relations between one global and two local bound-
edness notions and give a su�cient criteria when local boundedness implies the global
boundedness, cf. also [4, p. 240f].

We �rst give the de�nitions of the mentioned boundedness notions.

De�nition 2.4.22. Let f : X Ñ Z be a genuine mapping from a topological space pX,Oq
to some totally ordered set pZ,ďq. We call f bounded below, if there is some qz P Z such
that fpxq ě qz for all x P X. We call f locally bounded below, i� every point x0 P X
has a neighborhood U P Upx0q where f |U is bounded below; i.e. � more formally expressed
� i�

@x0 P X DU P Upxq Dqz P Z @x P U : fpxq ě qz

holds true. Similarly, we call f compactly bounded below, i� f is bounded below on
every compact subset of X; i.e. � more formally expressed � i�

@K P KpX,Oq Dqz P Z @x P K : fpxq ě qz

holds true.

The next proposition shows relations between these boundedness notions. Note therein
that the relation between "locally bounded below" and "compactly bounded below" is
similar to the relation between the notions "locally uniform convergence" and "compactly
(uniform) convergence": Local boundedness below always implies compact boundedness
below; in locally compact spaces the two notions even coincide. Note further that all three
boundedness notions for a mapping f : pX,Oq Ñ pZ,ďq coincide if f : pX,Oq Ñ pZ, Těq
is topological strongly coercive towards MAXďpZq.

Proposition 2.4.23. The di�erent boundedness notions for a function f : pX,Oq Ñ pZ,ďq
between a topological space and a totally ordered space are related as follows:

f bounded below

��
f locally bounded below

��
f compactly bounded below

pX,Oq loc. comp.

KS
f :pX,OqÑpZ,Těq top. str. coerc. tow. MAXďpZq

Zb

Proof. Clearly boundedness below implies locally boundedness below. Next, let f : X Ñ Z
be locally bounded below. For every x P X there is then some � without loss of generality
open � neighborhood Ux of x and some zx P Z such that

fprxq ě zx
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2. Coercivity and lower semicontinuity from the topological point of view

for all rx P Ux. Let now K be some � without loss of generality nonempty � compact subset
of X. Clearly the sets Ux, x P K form an open covering of K. By the compactness of K
there are �nitely many x1, x2, . . . xN P K with

N
ď

n“1

Uxn Ě K.

Setting qz – mintzx1 , zx2 , . . . , zxN u we hence get fpxq ě qz for all x P K, so that f is indeed
compactly bounded below.

Assume now that pX,Oq is additionally locally compact and let to the contrary f be
compactly bounded below. Every x0 P X has some compact neighborhood K — U. For
this compact set there is some qz P Z such that fpxq ě qz for all x P K “ U . Thus f
is locally bounded below. Finally we consider a mapping f : pX,Oq Ñ pZ, Těq which is
topological strongly coercive towards MAXďpZq and show that f : pX,Oq Ñ pZ,ďq is
already bounded below if it is compactly bounded below. Assuming the latter we reason
dependent on the cardinality of Z. If Z contains at most one element then f anyway is
bounded below. Otherwise we choose any z1 P ZzMAXďpZq and consider the set

K 1 – tz P Z : z ď z1u.

The set K 1 is a compact subset of pZ, Těq by Detail 4 in the Appendix. Therefore and
since f : pX,Oq Ñ pZ, Těq is topological strongly coercive towards MAXďpZq there is a
compact set K P KpX,Oq with f rXzKs Ď ZzK 1, i.e.

fpxq ą z1 for all x P XzK.

Moreover the compactly lower bounded function f : pX,Oq Ñ pZ,ďq is bounded below on
K, i.e. there is a z2 P Z such that

fpxq ě z2 for all x P K.

Summarizing we have fpxq ě mintz1, z2u for all x P X, so that f is indeed bounded
below.

2.5 The topological space ppprrr´́́888, `̀̀888sss,T qqq
In subsections

‚ 2.5.1 A topology on r ´ 8,`8s suited for lower semicontinuous functions

‚ 2.5.2 Properties of the topological space pr ´ 8,`8s, T q

‚ 2.5.3 Known properties of lower semicontinuous functions revisited
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2.5 The topological space pr ´ 8,`8s, T q

‚ 2.5.4 Coercivity properties versus continuity properties

‚ 2.5.5 Continuous arithmetic operations in pr´8,`8s, T q

we equip r´8,`8s with the right order topology T “ Tď, study some properties of the
resulting topological space pr´8,`8s, T q, allowing us to see known properties of lower
semicontinuous functions in a topological light, show that coercivity can be regarded as
continuity, and that there is a continuous addition on r´8,`8s if the topology T is
installed on r´8,`8s.

A key role for establishing a � as far as the author knows � new topological method for
proving lower semicontinuity plus coercivity of a function is due to Theorem 2.5.16, which
allows us to replace the task of proving the lower semicontinuity and coercivity of a function
h : Rn Ñ r´8,`8s by the task of showing that h admits a certain continuous extension.

2.5.1 A topology on rrr´́́888, `̀̀888sss suited for lower semicontinuous

functions

In this subsection we search for a topology T for the interval r´8,`8s which is suited
when dealing with lower semicontinuous functions.

De�nition 2.5.1. A function f : Rn Ñ r´8,`8s is called lower semicontinuous or
lsc, i� it has one of the following equivalent properties:

‚ @x, x1, x2, x3, ¨ ¨ ¨ P Rn : xl Ñ x ùñ fpxq ď lim inf lÑ`8 fpxlq,

‚ f´rr´8, αss is closed for all α P p´8,`8q.

These conditions are really equivalent, cf. [19, Theorem 7.1].

We start with a consideration which will lead us to the de�nition of our topology for
r´8,`8s.

Let f : Rn Ñ r´8,`8s be a function. Referring to the natural topology of Rn, when
speaking about �open� and �closed� sets, we have

f is lsc ðñ f´rr´8, αss is closed for all α P p´8,`8q (2.11)

ðñ f´rpα,`8ss is open for all α P p´8,`8q. (2.12)

Agreement. In the rest of this thesis the interval r´8,`8s will � unless otherwise stated
� be equipped with the topology created by taking the above sets pα,`8s, α P p´8,`8q as
subbasis, i.e. with the topology

T – tH, r´8,`8s, pα,`8s : α P p´8,`8qu,
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2. Coercivity and lower semicontinuity from the topological point of view

which is the right order topology Tď for the inf�complete, totally ordered space pr´8,`8s,ďq,
cf. Remark 2.4.11. Only in a few situations we will equip r´8,`8s with the �just opposite�
topology

Tě “ tH, r´8,`8s, r´8, βq : β P p´8,`8qu.

By equivalence (2.12) a function f : Rn Ñ r´8,`8s is lower semicontinuous if and only
if the preimages of all sets pα,`8s, α P p´8,`8q, are open sets. Since the intervals
pα,`8s, α P p´8,`8q form a subbasis of T we further have

f´rpα,`8ss is open for all α P p´8,`8q

ðñ f´rT s is open for all T P T
ðñ f : pRn,O�n

q Ñ pr´8,`8s, T q is continuous.

In summary we obtain the following theorem, cf. [10, Examples II � 2.3 (3)]

Theorem 2.5.2. For a mapping f : Rn Ñ r´8,`8s the following are equivalent:

i) f : Rn Ñ r´8,`8s is lower semicontinuous,

ii) f : pRn,O�nq Ñ pr´8,`8s, T q is continuous.

By this theorem the notion of lower semicontinuity can be extended to a broader class of
functions, while staying consistent with the de�nition for functions f : Rn Ñ r´8,`8s.

De�nition 2.5.3. Let a set X be endowed with some topology OX . A mapping f : X Ñ

r´8,`8s is called lower semicontinuous i� f : pX,OXq Ñ pr´8,`8s, T q is continu-
ous.

The topology T on r´8,`8s does not only allow to regard the notion of lower semiconti-
nuity as continuity; also the notion of coercivity can be viewed as continuity property, see
Theorem 2.5.16.

2.5.2 Properties of the topological space ppprrr´́́888, `̀̀888sss,T qqq
The topology T is not induced by a metric on r´8,`8s since otherwise every two dis-
tinct points would have non-overlapping neighborhoods, but this is obviously not the case;
consider for example the points x1 “ 1 and x2 “ 2 and any two neighborhoods N1 and N2

of x1 and x2, respectively � the intersection N1XN2 Ě r2,`8s is not empty. Only by this
fact that pr´8,`8s, T q is not a Hausdor� space the following phenomena are possible:

i) A sequence pykqkPN in pr´8,`8s, T q can have several limit points at the same time.
In particular, ´8 is a limit point of any sequence pykqkPN in pr´8,`8s, T q.
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2.5 The topological space pr ´ 8,`8s, T q

ii) The space pr´8,`8s, T q contains compact subsets that are not closed.

Illustrations of these phenomena can be found in Example 2.5.4 and Example 2.5.7,
respectively. Phenomena i) is completely explained by Theorem 2.5.5.

Example 2.5.4. Consider the constant sequence pynqnPN “ p1qnPN in the topological space
pr´8,`8s, T q. On the one hand every y P p1,`8s is not a T -limit point of pynq; indeed,
the neighborhood U – pz,`8s of y, where z is any point between 1 and y, does not contain
even one single sequence member. On the other hand every y P r´8, 1s is a T -limit point
of pynq; indeed, any neighborhood of y contains the set ry,`8s and hence even all sequence
members.

More generally we have the following theorem:

Theorem 2.5.5 (Limits of sequences in pr´8,`8s, T q). Let pynqnPN be a sequence in
r´8,`8s. A point y P r´8,`8s belongs to T -limnÑ`8 yn, i� y ď lim infnÑ`8 yn. In
particular the point ´8 is T -limit point of every sequence in pr´8,`8s, T q.

Proof. Consider �rst the case y “ ´8. Then clearly y ď lim infnÑ`8 yn and also y P
T -limnÑ`8 yn, because the only T -neighborhood of y “ ´8 is r´8,`8s which contains
trivially all yn. Hence the claimed equivalence holds true in this case. In the other case
y P p´8,`8s we have y R T -limnÑ8 yn i� there is some neighborhood pa,`8s of y where
a P p´8, yq such that yn R pa,`8s for in�nitely many n P N, i.e. i� lim infnÑ`8 yn ă y
holds true. So the claimed equivalence holds true also in that case.

Theorem 2.5.6 (Compact subspaces of pr´8,`8s, T q). For nonempty subsets K Ď

r´8,`8s the following are equivalent:

i) pK,K \ T q is a compact subspace of pr´8,`8s, T q.

ii) inf K belongs to K.

In particular the whole space pr´8,`8s, T q is compact.

Before proving this theorem we give an example that shows that the space pr´8,`8s, T q
has compact subsets which are not closed. It also illustrates that � in contrast to the
in�mum � the supremum of compact subsets of pr´8,`8s, T q needs not to belong to the
compact set.

Example 2.5.7. Consider the set K – r0, 1q. pK,K \ T q is compact by Theorem 2.5.6;
yet K is not a closed subset of pr´8,`8s, T q, since its complement r´8, 0q Y r1,`8s is
obviously not an open set from T . Furthermore K does clearly not contain its supremum
1.
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2. Coercivity and lower semicontinuity from the topological point of view

This examples and part i) of Lemma 2.4.14 shows Apr´8,`8s, T q Ă Kpr´8,`8s, T q.
Such a relation can never be true in Hausdor� spaces pX,Oq, where we rather have
ApX, T q Ě KpX, T q, due to part ii) of Theorem 2.1.1 or even ApX, T q Ą KpX, T q if
the space pX,Oq is not compact.

Proof of Theorem 2.5.6. Let pK,K \ T q be any nonempty compact subspace and let qk P

r´8,`8s denote the in�mum of K. In the �rst case qk “ `8 the nonemptiness of K

yields K “ t`8u and thus qk P K. In the second case qk “ ´8 we must have qk P K, since
otherwise the sets pz,`8s P T , z P t´1,´2,´3, . . . u would form an open covering of K
which can not be reduced to a �nite subcover; so K would not be compact. In the �nal
third case qk P R we similarly must have qk P K since otherwise the sets tqk ` 1

n
u, n P N

would form an open covering of K which has no �nite subcover.

Let, to the contrary, K now be a nonempty subset of r´8,`8s with qk – inf K P K and
let pTiqiPI be an open covering of K with sets Ti from T . Due to

qk P K Ď
ď

iPI

Ti

there is an i˚ P I with qk P Ti˚ . With this open set

Ti˚ P T ztHu
“ tr´8,`8s, pα,`8s : α P p´8,`8su

we already have found a �nite subcover, because Ti˚ Ě rqk,`8s Ě K. So pK,K \ T q is a
compact subspace of pr´8,`8s, T q.

Note �nally that r´8,`8s contains its in�mum ´8, so that pr´8,`8s, T q is compact
by the already proven equivalence.

In the subsequent subsection we will use Theorem 2.5.2 and Theorem 2.5.6 to give a topo-
logical proof of the known results that the composition of a continuous function with a
lower semicontinuous function is again lower semicontinuous and that a lower semicontin-
uous function takes its in�mum on any nonempty compact set, respectively.

2.5.3 Known properties of lower semicontinuous functions

revisited

In this subsection we revisit known properties of lower semicontinous functions. We
will see that these properties stem from Theorem 2.5.2 and the properties of the space
pr´8,`8s, T q. The property we start with is the fact that every composition g ˝ f of a
continuous mapping f with some lower semicontinuous mapping g is lower semicontinous,
cf. [20, 1.40 Exercise].
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2.5 The topological space pr ´ 8,`8s, T q

Theorem 2.5.8. Let pX,OXq and pY,OY q be topological spaces, f : pX,OXq Ñ pY,OY q

be a continuous mapping and g : Y Ñ r´8,`8s be a lower semicontinous mapping. Then
the concatenation h– g ˝ f : X Ñ r´8,`8s is again lower semicontinous.

Proof. The mappings f : pX,OXq Ñ pY,OY q and g : pY,OY q Ñ pr´8,`8s, T q are
continuous by assumption and by de�nition, respectively. Hence their concatenation h “
g ˝ f : pX,OXq Ñ pr´8,`8s, T q is again continuous, i.e. h : X Ñ r´8,`8s is lower
semicontinous.

Phenomenon i) in Subsection 2.5.2 said that a sequence pykqkPN in pr´8,`8s, T q can have
several limit points at the same time and that ´8 is always a limit point. The �rst part of
this phenomenon is re�ected also in the fact that lower semicontinous functions de�ned on
punctured Rn can be usually continued in many ways to a lower semicontinous function on
whole Rn, see Example 2.5.9. The second part of this phenomenon is re�ected in the fact
that a function f : pX,Oq Ñ pr´8,`8s, T q is automatically continuous in all preimage
points of t´8u, see Lemma 2.5.10.

Example 2.5.9. Consider the function f : Rzt0u Ñ r´8,`8s, given by fpxq – 1.
Setting fp0q – c with any c P r´8, 1s we obtain a lower semicontinous function f : R Ñ
r´8,`8s.

The following lemma is directly obtained as special case of Proposition 2.4.7.

Lemma 2.5.10. Let pX,Oq be a topological space and f : pX,Oq Ñ pr´8,`8s, T q a
mapping. For every x P X we have

fpxq “ ´8 ùñ f is continuous in x.

Proof. Let x P X be a point with fpxq “ ´8. For each neighborhood U of x we trivially
have f rU s Ď r´8,`8s. Since r´8,`8s is the only existing neighborhood of ´8 “ fpxq,
this inclusion already shows that f is continuous in x.

The following theorem says that a lower semicontinous function attains a minimum on
every nonempty compact subset, cf. [20, 1.10 Corollary].

Theorem 2.5.11. Let pX,OXq be a topological space and f : X Ñ r´8,`8s be lower
semicontinous. Then f attains its in�mum on any nonempty compact subset of pX,OXq.

Proof. The mapping f : pX,OXq Ñ pr´8,`8s, T q is continuous by De�nition 2.5.3.
Hence every nonempty compact subset K of pX,OXq is mapped by f to a compact subset
of pr´8,`8s, T q. This again compact image f rKs contains its in�mum by Theorem
2.5.6.
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2. Coercivity and lower semicontinuity from the topological point of view

By Theorem 2.5.11 a lower semicontinuous function f : X Ñ r´8,`8s on a topological
space pX,OXq takes its minima on every nonempty compact subset of this space. However
f does not need to takes maxima on nonempty compact subsets as the following example
shows.

Example 2.5.12. The function f : RÑ r´8,`8s given by

fpxq–

#

´|x| for x ‰ 0,

´1 for x “ 0,

is a lower semicontinous function that does not attain its supremum 0 “ supxPr´1,1s fpxq
on the compact subset r´1, 1s of pR,Oq.

We conclude this subsection by giving a table with some properties of the topological
space pr´8,`8s, T q and corresponding properties of lower semicontinuous functions, i.e.
continuous functions pX,Oq Ñ pr´8,`8s, T q.

Space pr´8,`8s, T q Function f : pX,Oq cont.
ÝÝÝÑ pr´8,`8s, T q cf.

A seq. pykqkPN can
have many limit points:
y P T -lim

kÑ`8
yk ùñ

r´8, ys Ď T -limkÑ`8 yk

Making a function value fpx0q

smaller preserves lower semicontinuity:

rfpxq –

#

fpxq if x ‰ x0

c if x “ x0

yields still

continuous mapping rf : pX,Oq Ñ

pr´8,`8s, T q for c P r´8, fpx0qs

Thm. 2.5.5 &
Ex. 2.5.9

´8 P T -lim
kÑ`8

yk for

all sequences pykqkPN in
r´8,`8s.

fpx0q “ ´8 ùñ f cont. in x0 Thm. 2.5.5 &
Lem. 2.5.10

K 1 Ď r´8,`8s is com-
pact ðñ inf K 1 P K 1

f takes a minimum on every compact set
K Ď X

Thm. 2.5.6 &
Thm. 2.5.11

2.5.4 Coercivity properties versus continuity properties

In this subsection we de�ne the notion of coercivity for functions f : Rn Ñ r´8,`8s
and see that f is coercive and lower semicontinuous i� extending f to the one point
compacti�cation of Rn by setting pfp8q – `8 yields a continuous mapping pf : Rn

8 Ñ

r´8,`8s, see Theorem 2.5.16. This equivalence is the key for a � as far as the author
knows � new technique for proving coercivity plus lower semicontinuity. See Section 2.6
and Section 2.7 for more details.

We also de�ne the notion of normcoercivity for mappings f : Rn Ñ Rm and will see that
this property is again equivalent to a continuity property of some continuation of f to the
one point compacti�cation of Rn, see Theorem 2.5.18.

We start with giving the de�nitions.
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De�nition 2.5.13. A function f : Rn Ñ r´8,`8s is called coercive, i�

fpxq Ñ `8 for ‖x‖Ñ `8

A related coercivity notion is given in [6, De�nition 1.12], cf. also [6, Example 1.14]. For
the next de�nition cf. [8, p. 134].

De�nition 2.5.14. A mapping f : Rn Ñ Rm is called normcoercive, i�

‖fpxq‖Ñ `8 for ‖x‖Ñ `8

For a mapping f : Rn Ñ R we can speak both of coercivity and normcoercivity. Clearly
coercivity implies normcoercivity. The contrary holds not true as the following example
shows:

Example 2.5.15. The function f : R Ñ R given by fpxq – x is clearly normcoercive.
Considering the sequence of the numbers xk – ´k for x P N we have |xk| Ñ `8 as
k Ñ `8 but fpxkq “ ´k Ñ ´8 ‰ `8 as k Ñ `8 so that f is not coercive.

The following theorems show that coercivity properties of functions correspond to conti-
nuity properties of special continuations of them � anticipating a name from Section 2.6
� more precisely of special compact continuations of them. The order topology for the
interval r´8,`8s is denoted by Oď, cf. De�nition 2.4.4.

Theorem 2.5.16. A mapping f : Rn Ñ r´8,`8s and its continuation

pf : Rn
8 Ñ r´8,`8s, given by pfpxq –

#

fpxq, if x P Rn

`8, if x “ 8
, are connected by the following

relations:

i)

f : Rn
Ñ r´8,`8s is coercive

ðñ f : pRn,O�n
q Ñ pr´8,`8s, T q is topological coercive towards t`8u

ðñ pf : pRn
8,O�n

8 q Ñ pr´8,`8s, T q is continuous at the point 8 P Rn
8

ðñ pf : pRn
8,O�n

8 q Ñ pr´8,`8s,Oďq is continuous at the point 8.

ii)

f : Rn
Ñ r´8,`8s is lower semicontinous and coercive

ðñ pf : pRn
8,O�n

8 q Ñ pr´8,`8s, T q is continuous.
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Before proving this theorem we give an example to illustrate part ii). O denotes again the
natural topology on R.

Example 2.5.17. The function f : RÑ r´8,`8s, given by

fpxq– x

is lower semicontinous but not coercive. In accordance to part ii) of Theorem 2.5.16 its

continuation pf : pR8,O8q Ñ pr´8,`8s, T q, given by

pfpxq–

#

fpxq “ x if x P R
`8 if x “ 8,

is not continuous; more precise pf is not continuous in the newly added point 8 since
there is no compact subset K of R such that a pf rR8zKs is contained in the neighborhood
p3,`8s — U of `8 for the following reason: Any compact subst K of R is bounded and

hence contained in some interval r´N,N s with some N P N. Hence the image pf
“

R8zK
‰

Ě

pf
“

R8zr´N,N s
‰

“ p´8,´Nq Y pN,`8s Ě p´8,´Nq is not completely contained in
U “ p3,`8s.

Proof of Theorem 2.5.16.
i) We have

f is coercive

ðñ fpxq Ñ `8 for ‖x‖Ñ `8

ðñ @α P R DR ą 0 @x P Rn : ‖x‖ ą Rñ fpxq ą α

ðñ @α P R DR ą 0 : f rRn
zBRp0qs Ď pα,`8s

p˚q
ðñ @α P R DK P KApRn

q : f rRn
zKs Ď pα,`8s

ðñ @U P U 1p`8q X T DK P KApRn
q : f rRn

zKs Ď U 1

p˛q
ðñ @K 1

P KAt`8upr´8,`8s, T q DK P KApRn
q : f rRn

zKs Ď r´8,`8szK 1

ðñ f : pRn,O�n
q Ñ pr´8,`8s, T q is topological coercive towards t`8u.

Explanations for the equivalences in p˚q and p˛q are given in Detail 5 in the Appendix.
So we have proved the �rst of the claimed three equivalences. The second of the claimed
equivalences is just a special case of Theorem 2.4.21. Finally the third of the claimed
equivalences holds true since the system tT P T : `8 P T u of open T �neighborhoods
of `8 is both a T �neighborhood basis of `8 and an Oď�neighborhood basis for `8; a
detailed proof of the third equivalence can be found in Detail 6 in the Appendix.
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2.5 The topological space pr ´ 8,`8s, T q

ii) With Theorem 2.5.2 and part i) we get

f is lsc and coercive

ðñ f : pRn,O�n
q Ñ pr´8,`8s, T q is continuous in every x P Rn

and coercive.
RnPO�n

8
ðñ pf : pRn

8,O�n
8 q Ñ pr´8,`8s, T q is continuous in every x P Rn

and f is coercive.

ðñ pf : pRn
8,O�n

8 q Ñ pr´8,`8s, T q is continuous in every x P Rn

and in x “ 8.

ðñ pf : pRn
8,O�n

8 q Ñ pr´8,`8s, T q is continuous.

Similarly we have the following theorem.

Theorem 2.5.18. For a mapping f : Rn Ñ Rm and its continuation pf : Rn
8 Ñ Rm

8, where
pfp8q– 8, the following are equivalent:

i) f : Rn Ñ Rm is normcoercive.

ii) f : pRn,O�nq Ñ pRm,O�mq is topological coercive.

iii) pf : pRn
8,O�n

8 q Ñ pRm
8,O�m

8 q is continuous in 8 P Rn
8.

Proof. Similar to the proof of part i) in Theorem 2.5.16 we obtain

f is normcoercive

ðñ ‖fpxq‖Ñ `8 for ‖x‖Ñ `8

ðñ @r P R DR ą 0 @x P Rn : ‖x‖ ą Rñ ‖fpxq‖ ą r

ðñ @r P R DR ą 0 : f rRn
zBRp0qs Ď Rm

zBrp0q
p˚q
ðñ @r P R DK P KpRn

q : f rRn
zKs Ď Rm

zBrp0q
ðñ @K 1

P KpRm
q DK P KpRn

q : f rRn
zKs Ď Rm

zK 1

ðñ f : pRn,O�n
q Ñ pRm,O�m

q is topological coercive.

For the equivalence p˚q cf. Detail 5. So the equivalence of the �rst two statements from
Theorem 2.5.18 is proved. The equivalence of the second and the third statement is just a
special case of Theorem 2.4.20.
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2. Coercivity and lower semicontinuity from the topological point of view

2.5.5 Continuous arithmetic operations in ppprrr´́́888, `̀̀888sss,T qqq
In this subsection we consider addition and multiplication on r´8,`8s. In Theorem 2.5.20
we show that there is a continuous addition ` : pr´8,`8s2, T �2q Ñ pr´8,`8s, T q on
pr´8,`8s, T q. This is remarkable, since there is no continuous addition on the topological
space pr´8,`8s,Oďq, no matter which value from r´8,`8s we choose for the critical
´8`p`8q. Regarding multiplication, however, things are more complicated. For instance
we will see in Theorem 2.5.22 that multiplication with λ P p0,`8q is continuous, whereas
multiplication with λ P p´8, 0q is not continuous � but we should rather be happy about
that: The just mentioned properties of the multiplication �t namely to the facts that
multiplying a lower semicontinuous function with some λ P p0,`8q gives again a lower
semicontinuous function, whereas multiplying with λ P p´8, 0q can result in a non lower
semicontinuous function:

Example 2.5.19. Consider the function f : RÑ R given by

fpxq–

#

3 for x ă 0

2 for x ě 0
.

Obviously f is lower semicontinuous (but not upper semicontinuous). Multiplication of f
with ´1 P p´8, 0q results in the non lower semicontinuous function ´f .

The next theorem shows that there is a continuous addition on r´8,`8s.

Theorem 2.5.20. Continuing the addition on R Y t`8u, by setting `8` p´8q – ´8

and ´8` p`8q– ´8, we get a continuous function

` : pr´8,`8s ˆ r´8,`8s, T � T q Ñ pr´8,`8s, T q.

Setting `8`p´8q or ´8`p`8q not to ´8, but to any other value c P p´8,`8s would
result in a non-continuous mapping.

Proof. We set´8`p`8q and`8`p´8q to some values c, d P r´8,`8s, respectively, and
ask if the thereby extended addition ` : pr´8,`8sˆr´8,`8s, T �T q Ñ pr´8,`8s, T q
can be continuous at all in the points p´8;`8q P r´8,`8sˆr´8,`8s and p`8;´8q P
r´8,`8sˆr´8,`8s, respectively. We deal �rst with the point p´8;`8q P r´8,`8sˆ
r´8,`8s and consider the local mapping behavior of our extended addition near this
point. To this end note that any neighborhood U of that point contains a subset of the form
r´8,`8sˆpα,`8s, where α P r´8,`8q, and therefore is mapped to `rU s “ r´8,`8s
all the more. So we can achieve continuity in the point p´8;`8q P r´8,`8sˆr´8,`8s
only by choosing a value c whose only neighborhood is r´8,`8s; clearly only c “ ´8

meets that demand. Analogously, setting d “ ´8 is the only chance to get an extended
addition, which is continuous in the point p`8;´8q P r´8,`8s ˆ r´8,`8s.
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2.5 The topological space pr ´ 8,`8s, T q

Now we prove that setting ´8 ` p`8q – ´8 and `8 ` p´8q – ´8 really yields a
continuous mapping

` : pr´8,`8s ˆ r´8,`8s, T � T q Ñ pr´8,`8s, T q

To this end we show that all preimages

`
´
rpc,`8ss “ tpa1, a2q P r´8,`8s

2 : a1 ` a2 ą cu

“ tpa1, a2q P p´8,`8s
2 : a1 ` a2 ą cu— Ac

of the subbasis forming sets pc,`8s, c P r´8,`8q are again open sets. For this purpose
we show that every pa1, a2q P Ac is an interior point of Ac, i.e. that there are neighborhoods
pqa1,`8s of a1 and pqa2,`8s of a2 with

@b1 P pqa1,`8s, b2 P pqa2,`8s : b1 ` b2 ą c.

In the �rst case a1, a2 P R we can choose qa1 – a1 ´
1
2
ppa1 ` a2q ´ cq ă a1 and qa2 –

a2 ´
1
2
ppa1 ` a2q ´ cq ă a2. In the second case a1 “ a2 “ `8 the job is done by qa1 – c

2

and qa2 – c
2
. In the third case a1 “ `8 and a2 P R we can choose any real qa2 ă a2 and

then set qa1 – c ´ qa2 ă `8. The remaining forth case a1 P R and a2 “ `8 “ a1 can be
handled analogously by switching roles.

Next we will consider multiplication. We start with the following lemma which allows to
transfer some of our results about addition to multiplication.

Lemma 2.5.21. Extending the usual exponential function x ÞÑ ex via e`8 – `8 and
e´8 – 0 gives a homeomorphism pr´8,`8s, T q Ñ pr0,`8s, r0,`8s \ T q. It translates
the, by means of `8` p´8q “ ´8` p`8q “ ´8, extended addition into the, by means
of 0 ¨ p`8q “ `8 ¨ 0 “ 0, extended multiplication; namely in virtue of

exppx1 ` x2q “ exppx1q ¨ exppx2q

for all x1, x2 P r´8,`8s.

Proof. Since the extended exponential function is an order isomorphism between the totally
ordered sets pr´8,`8s,ďq and pr0,`8s,ď |r0,`8sˆr0,`8sq we know, by Theorem 2.4.8, that

exp : pr´8,`8s, T q Ñ pr0,`8s, r0,`8s\ T q;

is an homeomorphism; note here that the subspace topology r0,`8s \ T is the same as
the right order topology on r0,`8s, generated by ď |r0,`8sˆr0,`8s.
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2. Coercivity and lower semicontinuity from the topological point of view

The following theorem deals in its �rst block with multiplication on r0,`8s and with
multiplication on r´8,`8s. Since the results for the latter are not as satisfying as the
results in Theorem 2.5.20 we moreover deal in a second block with multiplication

mλ : pr´8,`8s, T q Ñ pr´8,`8s, T q, mλpxq– λx

by a factor λ P r´8,`8s, distinguishing the cases λ P p0,`8q, λ “ 0, λ P p´8, 0q, λ “
`8 and λ “ ´8. We will see that the continuity properties ofmλ depend heavily on λ. For
instance the following holds true for the mapping mλ : pr´8,`8s, T q Ñ pr´8,`8s, T q.

‚ For λ P p0,`8q it is a homeomorphism and hence in particular continuous.

‚ For λ P p´8, 0q it is discontinuous in every point of r´8,`8q.

More precisely we have the following statements.

Theorem 2.5.22. Considering multiplication as function of two variables the following
statements hold true:

i) Continuing the multiplication of non-negative numbers, by setting the problematic
cases 0 ¨ p`8q– 0 and p`8q ¨ 0 – 0, we get a continuous function

¨ :
`

r0,`8s ˆ r0,`8s, pr0,`8s ˆ r0,`8sq\ pT � T q
˘

Ñ
`

r0,`8s, r0,`8s\ T
˘

Setting 0 ¨ p`8q or p`8q ¨0 not to 0, but to any other value d P p0,`8s, would result
in a non-continuous mapping.

ii) Continuing the multiplication on R, by setting each of the problematic cases 0 ¨
p`8q, p`8q ¨ 0 and 0 ¨ p´8q, p´8q ¨ 0 to any four values from r´8,`8s, we get
a function which is continuous in a point x P r´8,`8s ˆ r´8,`8s, i�

x P tx P r´8,`8s ˆ r´8,`8s : x1 ą 0 and x2 ą 0u

Ytx P r´8,`8s ˆ r´8,`8s : x1 ¨ x2 “ ´8u.

For multiplication by a constant factor the following statements hold true:

iii) The multiplication mλ : x ÞÑ λx by a factor λ P p0,`8q is a homeomorphism

mλ : pr´8,`8s, T q Ñ pr´8,`8s, T q

and thus in particular continuous.

iv) If we agree 0 ¨ x “ x ¨ 0 “ 0 also for x “ ´8 and x “ `8 then the multiplication by
0 is also a continuous mapping

m0 : pr´8,`8s, T q Ñ pr´8,`8s, T q.
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2.5 The topological space pr ´ 8,`8s, T q

v) The multiplication mλ : x ÞÑ λx with λ P p´8, 0q is a mapping

mλ : pr´8,`8s, T q Ñ pr´8,`8s, T q,

which is discontinuous in each point r´8,`8q; the point `8 is the only one where
this mapping is continuous.

vi) Extend the multiplication with `8 by setting the problematic p`8q ¨ 0 to some value
c P r´8,`8s. This extended multiplication

m`8 : pr´8,`8s, T q Ñ pr´8,`8s, T q

x ÞÑ p`8q ¨ x–

$

’

&

’

%

`8 for x ą 0

c for x “ 0

´8 for x ă 0

with the factor `8 is then continuous in all x ą 0 and in all x ă 0. In the point 0
it is continuous, i� we have set c “ ´8.

vii) Extend the multiplication with ´8 by setting the problematic p´8q ¨ 0 to some value
c P r´8,`8s. The, in this way, extended multiplication

m´8 : pr´8,`8s, T q Ñ pr´8,`8s, T q

x ÞÑ p´8q ¨ x–

$

’

&

’

%

´8 for x ą 0

c for x “ 0

`8 for x ă 0

with the factor ´8 is then continuous in all x ą 0, discontinuous in all x ă 0. In 0
it is continuous, i� c “ ´8.

Proof. i) With the help of the homeomorphism exp from Lemma 2.5.21 and its higher
dimensional relative

pr´8,`8s ˆ r´8,`8s, T � T q Ñ pr0,`8s ˆ r0,`8s, pr0,`8s ˆ r0,`8sq\ pT � T qq
px1, x2q ÞÑ pexppx1q, exppx2qq

we can translate our knowledge from Theorem 2.5.20 about the addition to the current i),
since those homeomorphisms yield a bijection β between

C
`

pr´8,`8s, T q�2, pr´8,`8s, T q
˘

and
C
`

pr0,`8s, T q�2, pr0,`8s, T q
˘

,

namely via βpfq – gf , where gf py1, y2q – exp pf pexp´1py1q, exp´1py2qqq . Choosing for f
the extended addition from Theorem 2.5.20 we see that the continuous mapping βp`q is
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2. Coercivity and lower semicontinuity from the topological point of view

just our, by means of 0 ¨ `8 – 0 and `8 ¨ 0 – 0, extended multiplication. It remains to
show the uniqueness of that extension; assume that there is another continuous extension
¨1 of the multiplication with, say, d “ 0 ¨1 p`8q P p0,`8s. Then β´1p¨1q — `1 would be a
continuous extension of the addition with

´8`
1
p`8q “ exp´1

p0 ¨1 p`8qq “ exp´1
pdq ‰ ´8.

But such a continuous extension of the addition does not exist by Theorem 2.5.20.

ii) We show that the (extended) multiplication is continuous in point x with x1, x2 ą 0.
To this end let pβ,`8s, β P r´8, x1 ¨ x2q be some neighborhood of x1 ¨ x2 ą 0. Choose
any qx1, qx2 ą 0 with qx1 ă x1 and qx2 ă x2, β ă qx1 ¨ qx2. Then pqx1,`8s ˆ pqx2,`8s is a
neighborhood of x which is mapped by the (extended) multiplication into pβ,`8s. This
shows the continuity in x.

It remains to show that the (extended) multiplication is continuous in a point

x P pr´8,`8s ˆ r´8,`8sqztpx1, x2q : x1 ą 0 and x2 ą 0u,

i� x1 ¨x2 “ ´8. Assume that x P pr´8,`8sˆ r´8,`8sqztpx1, x2q : x1 ą 0 and x2 ą 0u.
Due to the commutativity of the multiplication we may assume x1 ď x2, without loss of
generality, so that we have x1 ď 0. Since any neighborhood U of x contains a subset of the
form pqx1,`8s ˆ pqx2,`8s with qx1 ă 0 and qx2 ď x2 we see that ¨rU s “ r´8,`8s. Since
the multiplication ¨ has to be continuous in x the latter equation means that r´8,`8s
must be the only neighborhood of x1 ¨ x2; This is only the case if x1 ¨ x2 “ ´8. Finally
Lemma 2.5.10 assures that the multiplication is continuous in points x with x1 ¨ x2 “ ´8.

iii) The multiplication by a constant factor λ P p0,`8q is an order automorphism of
pr´8,`8s,ďq. Because of part iii) of Theorem 2.4.8 it is therefore a homeomorphism
pr´8,`8s, T q Ñ pr´8,`8s, T q.

iv) A constant mapping between topological spaces is continuous.

v) The continuity in `8 is assured by Lemma 2.5.10. Let now x P r´8,`8q and choose
any x2 ą x. Since λx2 ă λx1 we get the discontinuity of mλ in x by part i) of Theorem
2.4.8.

vi) The continuity ofm`8 in x ă 0 is ensured by Lemma 2.5.10. m`8 is also continuous in a
point x ą 0: Let pβ,`8s be any neighborhood of x. Then U – p0,`8s is a neighborhood
of x which is mapped by m`8 into pβ,`8s. Consider the remaining point x “ 0. If we
had set c “ ´8 we have continuity in 0 again by Lemma 2.5.10. If we had set c ą ´8
we can choose any neighborhood pβ,`8s of c. Since every neighborhood U of 0 contains
an element u ă 0 we have ´8 P m`8rU s, so that we get m`8rU s Ę pβ,`8s for all
neighborhoods U of 0; i.e. m`8 is not continuous in 0.

vii) The continuity of m´8 in points x ą 0 is again ensured by Lemma 2.5.10. Yet in
every point x ă 0 this mapping is not continuous by part i) of Theorem 2.4.8, since for
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any x2 ą 0 ą x we have m´8px2q ă m´8pxq. Consider now the remaining point x “ 0. If
we had set c “ ´8 we have continuity in 0 once more by Lemma 2.5.10. If c ą ´8 we
can just argue as before in the case x ă 0 to see that m´8 is not continuous in 0.

2.6 Compact continuations

In this subsection we will introduce and deal with the notion of compact continuation of
functions f : pV,Oq Ñ pV 1,O1q between topological spaces pV,Oq and pV 1,O1q. This notion
is, as far as the author knows, new.

Due to Theorem 2.5.16 the lower semicontinuity and coercivity of a mapping h : Rn Ñ

r´8,`8s can be proven by checking that a certain extension ph : Rn
8 Ñ r´8,`8s of h

is continuous, i.e., in other words, if the mapping ph is a compact continuation of h. If
h “ g ˝ f , as in Section 2.7, then the question arises if h has that compact continuation
provided that both f and g have according compact continuations. An answer to this
question is given in Theorem 2.6.2.

We remark here that this technique goes beyond the technique of proving coercivity of a
mapping h : Rn Ñ r´8,`8s by writing it as composition h “ g ˝ f of a normcoercive
mapping f : Rn Ñ Rm and a coercive mapping g : Rm Ñ r´8,`8s, since the latter
technique works only for decompositions of h where the intermediate space is Rm, whereas
the �rst technique can � at least in principle � work also for decompositions into functions
f : Rn Ñ Y and g : Y Ñ r´8,`8s where the intermediate space can any topological
space Y , like e.g. the product space pr´8,`8sˆ r´8,`8s, T �T q in the decomposition
g “ g2 ˝ g1 in Lemma 2.7.1.

However our topological technique has two disadvantages: It can not be used to prove
coercivity of a non lower semicontinuous function and more important: Even if we have
a straightforward choice of continuing each of the concatenated function in h “ g ˝ f to
functions pf : X̂ Ñ Ŷ and ug : uY Ñ uZ it might still be the case that working with our
technique could be somewhat cumbersome in cases where Ŷ ‰ uY .

We now de�ne the notion of compact continuation. As far as the author knows this notion
is new.

De�nition 2.6.1. A continuous mapping f : pV,Oq Ñ pV 1,O1q between topological spaces
pV,Oq, pV 1,O1q is called compactly continuable if there is a continuation

pf : ppV , pOq Ñ ppV 1, pO1
q

which ful�lls:

i) ppV , pOq is a compact topological space which contains pV,Oq as subspace,

ii) ppV 1,xO1q is a topological space that contains pV 1,O1q as subspace,

53



2. Coercivity and lower semicontinuity from the topological point of view

iii) pf is continuous and ful�lls pfpvq “ fpvq for all v P V.

Each such continuation pf will be called compact continuation of f . If pf ful�lls in
addition pf rpV zV s Ď pV 1zV 1 we call pf a home leaving compact continuation of f .

Theorem 2.6.2. Assume that the two continuous mappings f : pX,OXq Ñ pY,OY q,
g : pY,OY q Ñ pZ,OZq have compact continuations

pf : p pX,O
pXq Ñ ppY ,O

pY q,

ug : puY ,O
uY q Ñ p uZ,O

uZq.

Then g ˝ f — h has a compact continuation

ph : p pX,O
pXq Ñ p uZ,O

uZq

if one of the following conditions is ful�lled:

i) idY : pY,OY q Ñ pY,OY q has a compact continuation
xidY : ppY ,O

pY q Ñ puY ,O
uY q.

ii) idY : pY,OY q Ñ pY,OY q has a compact continuation
ŇidY : puY ,O

uY q Ñ ppY ,O
pY q which, �rstly, glues puY ,O

uY q to ppY ,O
pY q and, secondly,

ful�lls ŇidY py1q “
ŇidY py2q ùñ ugpy1q “ ugpy2q, for all y1, y2 P uY .

iii) idY : pY,OY q Ñ pY,OY q has a surjective compact continuation
ŇidY : puY ,O

uY q Ñ ppY ,O
pY q where, �rstly, p

pY ,O
pY q is a Hausdor� space and, secondly,

the condition ŇidY py1q “
ŇidY py2q ùñ ugpy1q “ ugpy2q holds true for all y1, y2 P uY .

If, in addition to i) or ii) / iii), respectively, both pf and ( xidY or ŇidY , respectively) are

home leaving compact continuations then ph can be chosen such that it ful�lls

phr pXzXs Ď ugruY zY s. (2.13)

Before proving the theorem we show by an example that g ˝ f , does not need to have a
compact continuation p pX,O

pXq Ñ p uZ,O
uZq, if none of the three conditions from the above

theorem is ful�lled. O denotes again the natural topology of R.

Example 2.6.3. Consider three copies

pX,OXq “ pY,OY q “ pZ,OZq “ pp0, 2πq, p0, 2πq\Oq

of the real open interval p0, 2πq along with the identity mappings f “ idp0,2πq : pX,OXq Ñ

pY,OY q and g “ idp0,2πq : pY,OY q Ñ pZ,OZq between them. We will extend the equal

mappings f and g in di�erent ways to compact continuations pf : p pX,O
pXq Ñ ppY ,O

pY q and
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ug : puY ,O
uY q Ñ p uZ,O

uZq such that h– g ˝ f can not be extended to a compact continuation
ph : p pX,O

pXq Ñ p uZ,O
uZq. Let

pf – idp0,2πqYt8u :
`

p0, 2πq, p0, 2πq\O
˘

8
Ñ

`

p0, 2πq, p0, 2πq\O
˘

8
,

ug – idr0,2πs :
`

r0, 2πs, r0, 2πs\O
˘

Ñ
`

r0, 2πs, r0, 2πs\O
˘

and set

p pX,O
pXq– ppY ,O

pY q–
`

p0, 2πq, p0, 2πq\O
˘

8
,

puY ,O
uY q– p uZ,O

uZq – pr0, 2πs, r0, 2πs\Oq.

The functions pf and ug are compact continuations of f and g, respectively, but it is not
possible to extend h – g ˝ f “ idp0,2πq to a compact continuation ph : p pX,O

pXq Ñ p uZ,O
uZq;

indeed, if such a continuous mapping ph existed, it would have to map its compact domain
of de�nition to a compact subspace of p uZ,O

uZq “ pr0, 2πs, r0, 2πs\Oq; however

phr pXs “ phrp0, 2πq Y t8us “ p0, 2πq Y tphp8qu

would never be a compact subset of pr0, 2πs, r0, 2πs \ Oq � regardless whether php8q “ 0,
php8q “ 2π or php8q P p0, 2πq.

So we know by the last theorem that none of the conditions i), ii) and iii) can be ful�lled.
We nevertheless verify this directly, to complete our illustration of the preceding theorem.

i) is not ful�lled as we just have shown by proving the nonexistence of a compact contin-

uation ph : p pX,O
pXq Ñ p uZ,O

uZq, i.e. of a compact continuation pidp0,2πq “ ph : ppY ,O
pY q Ñ

puY ,O
uY q.

Furthermore ii) and iii) are not ful�lled, since any continuation of idp0,2πq : p0, 2πq Ñ p0, 2πq
to a mapping Ŕidp0,2πq : p0, 2πq Y t0, 2πu Ñ p0, 2πq Y t8u is not injective any longer, so that
there is no chance for the injective mapping ug to ful�ll ugpy1q “ ugpy2q in the occurring case
that Ŕidp0,2πqpy1q “

Ŕidp0,2πqpy2q for distinct points y1, y2 P uY .

Proof of Theorem 2.6.2. If i) holds, it su�ces to take ph– ug ˝ xidY ˝ pf .

Assume now that condition ii) holds. The mapping g1 : ppY ,O
pY q Ñ p uZ,O

uZq, given by

g1ppyq– “ugpŇidY
´
rtpyusq“ – ugpuyq, where uy is any element of uY with ŇidY puyq “ py

is well de�ned since ŇidY py1q “
ŇidY py2q ensures ugpy1q “ ugpy2q, for all y1, y2 P uY . The

de�nition of g1 was done in such a way that ug “ g1 ˝ ŇidY .

ppY ,O
pY q

g1

%%

puY ,O
uY q

ŊidY

OO

ug // p uZ,O
uZq
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This implies, �rstly, the continuity of g1, in virtue of Theorem 2.3.16, and, secondly, g1pyq “

ugpyq at least for all y P Y . Thus we have found a compact continuation g1 : ppY ,O
pY q Ñ

p uZ,O
uZq of g : pY,OY q Ñ pZ,OZq. The concatenation ph– g1 ˝ pf is the needed extension.

Finally note that the assumptions in iii) imply the assumptions in ii), in virtue of Theorem
2.3.14.

Next we deal with a special case of Theorem 2.6.2, where the �intermediate� spaces pY,OY q,

puY ,O
uY q, ppY ,OpY q and the continuation ug have special forms, which will occur, when ap-

plying the theory to our example in Section 2.7. We start with the following preparatory
lemma.

Lemma 2.6.4. For locally compact Hausdor� spaces pY 1,O1q and pY 2,O2q the following
is true:

i) Both rpY 1,O1q�pY 2,O2qs8 and pY 1,O1q81�pY 2,O2q82 are compact Hausdor� spaces
which contain pY 1,O1q� pY 2,O2q as subspace.

ii) An extension of id : pY 1,O1q� pY 2,O2q Ñ pY 1,O1q� pY 2,O2q to a surjective, home-
leaving compact continuation id : pY 1,O1q81 � pY 2,O2q82 Ñ rpY 1,O1q � pY 2,O2qs8

is given by

idpy1, y2q–

#

py1, y2q , if y1 P Y 1 and y2 P Y 2

8 , if y1 “ 81 or y2 “ 82.

Proof. i) Theorem 2.3.20 ensures that both pY 1,O1q81 and pY
2,O2q82 are compact Haus-

dor� spaces, which contain pY 1,O1q and pY 2,O2q, respectively, as subspace. Therefore
their product space pY 1,O1q81 � pY 2,O2q82 is compact � in virtue of Tichonov's Theorem
2.3.6 � and contains pY 1,O1q � pY 2,O2q “ pY 1, Y 1 \ O1

81q � pY 2, Y 2 \ O2
82q as subspace,

since Remark 2.3.8 allows the reformulation

`

Y 1, Y 1 \O1
81

˘

�
`

Y 2, Y 2 \O2
82

˘

“
`

Y 1 ˆ Y 2, pY 1 ˆ Y 2q\ pO1
81 � O2

82q
˘

.

By Detail 7 the product space pY 1,O1q�pY 2,O2q of two locally compact Hausdor� spaces is
again a locally compact Hausdor� space, so that its one-point compacti�cation rpY 1,O1q�
pY 2,O2qs8 is a compact Hausdor� superspace of pY 1,O1q � pY 2,O2q, by Theorem 2.3.20.
This show the �rst part of the lemma.

ii) As core part for proving that id is a surjective, homeleaving compact continuation of id
we have to show that id is continuous; it easy to see, by id's de�nition, that it ful�lls the
remaining properties, we had to show. In order to prove the continuity of id we will use that
the projections π1 : pY 1,O1q� pY 2,O2q Ñ pY 1,O1q and π2 : pY 1,O1q� pY 2,O2q Ñ pY 2,O2q

to the �rst and second component, respectively, are continuous and therefore map compact
subsets of pY 1,O1q � pY 2,O2q to compact subsets of pY 1,O1q and pY 2,O2q, respectively.
In every point py1, y2q of the open subset Y 1 ˆ Y 2 P O1

81 � O2
82 the mapping id is clearly
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2.7 Application of the theory to an example

continuous. It remains to show that id is continuous in all points of the form p81, y2q or
py1,82q where y1 P Y 181 and y

2 P Y 282 . In order to show the continuity in all these preimage
points of 8 we consider any neighborhood

V “ pY 1 ˆ Y 2q8zK

of 8, with arbitrary K P KApY 1 ˆ Y 2q
Thm.2.1.1
ùùùùùùù KpY 1 ˆ Y 2q and convince ourselves that

the set U – pY 181ˆY
2
82qzpπ

1rKsˆπ2rKsq “ pY 181zπ
1rKsqˆY 282 Y Y 181ˆpY

2
82zπ

2rKsq, �rstly,
ful�lls idrU s “ pY 1 ˆ Y 2q8zpπ

1rKs ˆ π2rKsq Ď V and, secondly, is an open neighborhood
of all our preimage points of 8. This shows the second part of the lemma.

Using this Lemma we are now going to prove the announced special case of Theorem 2.6.2:

Theorem 2.6.5. Let pY 1,O1q and pY 2,O2q be locally compact Hausdor� spaces and let two
continuous mappings f : pX,OXq Ñ pY 1,O1q� pY 2,O2q, g : pY 1,O1q� pY 2,O2q Ñ pZ,OZq

have compact continuations

pf : p pX,O
pXq Ñ rpY 1,O1

q� pY 2,O2
qs8 ,

ug : pY 1,O1
q81 � pY 2,O2

q82 Ñ p uZ,O
uZq.

Then g ˝ f — h has a compact continuation

ph : p pX,O
pXq Ñ p uZ,O

uZq,

if ug ful�lls
ugp81, y2q “ ugpy1,82q (2.14)

for all y1 P Y 181 and y
2 P Y 282. If, in addition, pf r pXzXs Ď t8u then ph can be chosen such

that it ful�lls

phr pXzXs Ď ugrt81u ˆ Y 2s Y ugrY 1 ˆ t82us Y ugrtp81,82qus. (2.15)

Proof. Setting pY,OY q – pY 1,O1q � pY 2,O2q, ppY ,O
pY q – rpY 1,O1q � pY 2,O2qs8 and

puY ,O
uY q – pY 1,O1q81 � pY 2,O2q82 we get the theorem as special case of Theorem 2.6.2,

since all assumptions of its condition iii) and its additional condition hold true, in virtue
of Lemma 2.6.4 and the condition (2.14).

2.7 Application of the theory to an example

We agree ´8 ` p`8q “ `8 ` p´8q “ ´8 in the following example. Although the
assumptions in this example prevent the occurrence of the value ´8 we nevertheless need
the stated agreement in order to obtain a continuous addition on r´8,`8s, cf. Theorem
2.5.20.

57



2. Coercivity and lower semicontinuity from the topological point of view

Lemma 2.7.1. Assume that the following mappings are given:

i) Two matrices / linear mappings H : Rn Ñ Rd, K : Rn Ñ Re with

N pHq XN pKq “ t0u.

ii) Two proper, lower semicontinuous and coercive mappings φ : Rd Ñ r´8,`8s and
ψ : Re Ñ r´8,`8s.

Then the mapping h : Rn Ñ r´8,`8s, given by

x ÞÑ φpHxq ` ψpKxq (2.16)

is lower semicontinuous and coercive. In particular, the mapping h attains its in�mum
inf h P r´8,`8s at some point in Rn.

Proof. Due to part ii) in Theorem 2.5.16) our task of proving that h is coercive and lower

semicontinuous can be done by showing that setting php8q – `8 gives a continuous

continuation ph : pRn
8,O�n

8 q Ñ pr´8,`8s, T q of h. We will do this in three steps: Firstly
we write h as composition h “ g˝f of easier functions g and f and extend them to compact
continuations ug and pf . Secondly, a compact continuation uh of h is obtained from ug and pf
by applying Theorem 2.6.5. Thirdly we convince us that ph “ uh.

The mapping h can be written as composition h “ g2 ˝ g1
loomoon

—g

˝f of mappings

f : Rn
Ñ Rd

ˆ Re,

g1 : Rd
ˆ Re

Ñ r´8,`8s ˆ r´8,`8s,

g2 : r´8,`8s ˆ r´8,`8s Ñ r´8,`8s

which are given by

f : x ÞÑ

ˆ

Hx
Kx

˙

,

g1 :

ˆ

y1

y2

˙

ÞÑ

ˆ

φpy1q

ψpy2q

˙

,

g2 :

ˆ

a1

a2

˙

ÞÑ a1 ` a2.

After equipping the vector spaces Rn — X and Rd ˆ Re — Y with their natural topology,
the interval r´8,`8s — Z with the Topology T , and r´8,`8s ˆ r´8,`8s with the
corresponding product topology T �T we have continuous mappings f, g1, g2 and g “ g2˝g1.
Due to N pKq XN pLq “ t0u the mapping f is normcoercive and hence the mapping

pf : pRn
8,O�n

8 q Ñ
`

pRd
ˆ Re

q8, pO�d �O�e
q8
˘

pfpxq–

#

fpxq if x P Rn

8 if x “ 8
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2.7 Application of the theory to an example

is a compact continuation by Theorem 2.5.18; furthermore pf ful�lls clearly pf rRn
8zRns Ď

t8u by de�nition. Similar, by part ii) in Theorem 2.5.16, we obtain compact continuations
uφ : pRd

8,O�d
8 q Ñ pr´8,`8s, T q and uψ : pRe

8,O�e
8 q Ñ pr´8,`8s, T q of φ and ψ by

setting uφp8q – `8 and uψp8q – `8, respectively. These two mappings form a compact
continuation ug1 : pRd

8 ˆ Re
8,O�d

8 �O�e
8 q Ñ pr´8,`8s2, T �2q of g1. Then

ug : pRd
8 ˆ Re

8,O�d
8 �O�e

8 q Ñ pr´8,`8s, T q
ug – g2 ˝ ug1 “

uφ` uψ

is a compact continuation of g. In order to apply Theorem 2.6.5 we note that pY 1,O1q –

pRd,O�dq and pY 2,O2q– pRe,O�eq are surely locally compact Hausdor� spaces, and that

the mappings pf : pRn
8,O�n

8 q Ñ
“

pY 1,O1q � pY 2,O2q
‰

8
, ug : pY 1,O1q8 � pY 2,O2q8 Ñ

pr´8,`8s, T q have the needed form, where ug ful�lls ugp8, y2q “ uφp8q ` uψpy2q “ `8 “
uφpy1q` uψp8q “ ugpy1,8q for all y1 P Y 18 and y2 P Y 28, because φ and ψ are proper. Applying
the theorem we obtain a compact continuation

uh : pRd
ˆ Re

q8 Ñ r´8,`8s

of h with

uhrt8us “ uhrRn
8zRn

s Ď ugrt8u ˆ Y 2s Y ugrY 1 ˆ t8us Y ugrtp8,8qus “ t`8u,

i.e. uhp8q “ `8 “ php8q. So ph “ uh is indeed a continuous mapping
`

pRdˆReq8,O�pd`eq
8

˘

Ñ
`

r´8,`8s, T
˘

.
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CHAPTER 3

Coercivity of a sum of functions

Outline

3.1 Extension of coercivity notions to broader classes of functions . . . . . . . . . 61

3.2 Normcoercive linear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Semidirect sums and coercivity . . . . . . . . . . . . . . . . . . . . . . . . . . 67

In this chapter we develop a tool (Theorem 3.3.6) which gives information on which sub-
spaces a sum F ` G of certain functions is coercive. The coercivity assertion of Lemma
2.7.1 is contained as special case in the coercivity assertion of Theorem 3.3.6 if we set
F “ φpHxq “ F1Z 0X2 and G “ ψpKxq “ G1Z 0Y2 with F1 – F |X1 and G1 – G|Y1 ,
where X1 – RpH˚q, X2 – N pHq and Y1 – RpK˚q, Y2 – N pKq, see Detail 8 in the
Appendix.

In contrast to the previous chapter we restrict us in this chapter to coercivity notions with-
out regarding e.g. lower semicontinuity at the same time. Moreover the coercivity notions
in this chapter are rather based on norms instead of compact (or compact and closed)
sets. In case of vector spaces of �nite dimension there is however a strong relation between
topological coercivity notions from the previous chapter and the coercivity notions that
will be given in this chapter, see Lemma 3.1.6 and cf. Theorem 2.5.16. For linear mappings
between vector spaces of �nite dimension normcoercivity is equivalent to injectivity, see
Theorem 3.2.1.

3.1 Extension of coercivity notions to broader classes of

functions

So far we introduced the notions of coercivity and normcoercivity only for mappings
f : Rn Ñ Rm, cf. the de�nitions on page 45. We now extend the notion of coerciv-
ity and normcoercivity to broader classes of functions, show that they behave well under
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3. Coercivity of a sum of functions

concatenation and that the �Cartesian product� of normcoercive mappings is again norm-
coercive, see Theorem 3.1.3 and Lemma 3.1.4, respectively. Then another extension of
the notion of coercivity is performed by replacing the codomain r´8,`8s by a general
totally ordered set pZ,ďq. In Lemma 3.1.6 we will see that this coercivity notion is re-
lated to topological coercivity notions involving the spaces pZ, Těq and pZ, Tďq. Finally
a variant of Proposition 2.4.23 is given in Theorem 3.1.7, saying that a coercive mapping
F : pX, } ¨ }Xq Ñ pZ,ďq from normed space of �nite dimension into a totally ordered set is
already bounded below if it is locally bounded below.

De�nition 3.1.1. Let pX, }¨}Xq be a normed space with nonempty subset X̌ Ď X. We call
a mapping f : X̌ Ñ r´8,`8s coercive, if and only if

lim
}x̌}XÑ`8

x̌PX̌

f px̌q “ `8.

De�nition 3.1.2. Let pX, }¨}Xq and pY, }¨}Y q be normed spaces with nonempty subsets
X̌ Ď X, Y̌ Ď Y . We call a mapping f : X̌ Ñ Y̌ normcoercive, if and only if

lim
}x̌}XÑ`8

x̌PX̌

}f px̌q}Y “ `8.

(I.e. x̌ ÞÑ }f px̌q}Y is coercive.)

Note in theses de�nitions that functions f are vacuously coercive respectively normcoercive,
if the domain of de�nition qX is bounded: The � more explicitly formulated � de�ning
conditions for coercivity and normcoercivity

For all sequences pqxpkqqkPN in qX with }qxpkq} Ñ `8 we have fpqxpkqq Ñ `8,

For all sequences pqxpkqqkPN in qX with }qxpkq} Ñ `8 we have }fpqxpkqq} Ñ `8

are namely both trivially ful�lled in that case since a bounded set qX contains no sequences
pqxpkqqkPN with }qxpkq} Ñ `8 as k Ñ `8. The following tool is obtained directly from the
de�nitions.

Theorem 3.1.3. The following concatenation statements hold:

i) The concatenation of normcoercive mappings is again normcoercive.

ii) The concatenation of a normcoercive mapping E : X̌ Ñ Y̌ with a coercive mapping
F : Y̌ Ñ r´8,`8s is coercive.

In the following lemma we equip the product spaces of X ˆ Y with the norm } ¨ } –

} ¨ }XˆY – } ¨ }X ` } ¨ }Y (or any equivalent norm).
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3.1 Extension of coercivity notions to broader classes of functions

Lemma 3.1.4. Let pX, } ¨ }Xq, pY, } ¨ }Y q and pZ, } ¨ }Zq, pW, } ¨ }W q be normed spaces and

let qF : qX Ñ Z, qG : qY Ñ W be normcoercive mappings, de�ned on subsets qX and qY of X
and Y , respectively. Then the function qA : qX ˆ qY Ñ Z ˆW , given by

qApqx, qyq–

˜

qF pqxq
qGpqyq

¸

is also normcoercive.

Proof. In order to prove that qA : qX ˆ qY Ñ Z ˆW is normcoercive consider an arbitrary
sequence pqxn, qynqnPN in qX ˆ qY with

}pqxn, qynq}XˆY Ñ `8 (3.1)

as n Ñ `8. We have to show that for any C P R there is an N P N such that for
all natural n ě N the inequality } qApqxn, qynq} ě C holds true. Assume that the latter
statement is not true; then there is a C ą 0 and a subsequence pqxnk , qynkqkPN such that

C ą } qApqxnk , qynkq}ZˆW “ } qF pqxnkq}Z ` }
qGpqynkq}W for all k P N. In particular we had

} qF pqxnkq}Z ă C and } qGpqynkq}W ă C (3.2)

for all k P N. Consequently both p}qxnk}qkPN and p}qynk}qkPN would be bounded above by
some B ą 0, see Detail 9 in the Appendix. We thus would obtain }pqxnk , qynkq}XˆY “

}qxnk}X ` }qynk}Y ď 2B for all k P N and hence a contradiction to (3.1).

De�nition 3.1.5. Let pX, } ¨ }q be a normed space and let pZ,ďq be a totally ordered set.
A mapping f : pX, } ¨ }q Ñ pZ,ďq is called coercive i� for any z which is not a maximum
of pZ,ďq there is an R ą 0 such that fpxq ą z for all x P X with }x} ą R, i.e � more
formally expressed � i�

@z P ZzMAXďpZq DR ą 0 @x P X : }x} ą R ùñ fpxq ą z

holds true.

Note in the following lemma that we really mean �Tě� in the second condition and that it
is not a typo.

Lemma 3.1.6. Let pX, } ¨ }q be a real normed space of �nite dimension and let pZ,ďq be a
totally ordered set. Equip X with the topology O which is induced by } ¨ }. For a mapping
f : X Ñ Z the following are equivalent:

i) f : pX, } ¨ }q Ñ pZ,ďq is coercive.

ii) f : pX,Oq Ñ pZ, Těq is topological strongly coercive towards MAXďpZq.
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3. Coercivity of a sum of functions

If pZ,ďq contains a minimum and a maximum the above conditions are also equivalent to

iii) f : pX,Oq Ñ pZ, Tďq is topological coercive towards MAXďpZq.

Proof. If Z contains less than two elements all three statements are clearly all true and
hence equivalent. In the following we may hence assume that Z contains at least two
elements.
�i) ùñ ii)�: Let f : pX, } ¨ }q Ñ pZ,ďq be coercive and let K 1 P KMAXďpZqpZ, Těq.
There is some b P ZzMAXďpZq with K 1 Ď bs, see Detail 10 in the Appendix. Since
f : pX, } ¨ }q Ñ pZ,ďq is coercive there is for that b P ZzMAXďpZq an R ą 0 such that
fpxq ą b for all x P X with }x} ą R. In other words

f rXzBRr} ¨ }ss Ď Zzbs.

Setting K – BRr} ¨ }s we hence have found a compact and closed subset of pX, } ¨ }q with
f rXzKs Ď X 1zbs Ď X 1zK 1.
�ii) ùñ i)�: Let f : pX,Oq Ñ pZ,ďq be topological strongly coercive towards MAXďpZq.
Let z P ZzMAXďpZq. The set zs — K 1 is a compact subset of pZ, Těq, cf. Detail 4
in the Appendix. Moreover K 1 X MAXďpZq “ H so that K 1 P KMAXďpZqpZ, Těq. Since
f : pX,Oq Ñ pZ, Těq is topological strongly coercive towards MAXďpZq there is hence a
K P KpK,Oq such that

f rXzKs Ď ZzK 1.

Let R ą 0 be so large that BRr} ¨ }s Ě K. Then

f rXzBRr} ¨ }ss Ď f rXzKs Ď ZzK 1
“ Zzzs “ pz.

In other words we know that for x P X the inequality }x} ą R implies fpxq ą z. So
f : pX,Oq Ñ pZ,ďq is coercive. Finally assume now additionally that pZ,ďq contains
both a minimum qz and a maximum pz. Set S 1 – MAXďpZq “ tpzu. We have to prove that
the two statements

@K 1
P KS1pZ, Těq DK P KApX,Oq : f rXzKs Ď ZzK 1, (3.3)

@L1 P KAS1pZ, Tďq DK P KApX,Oq : f rXzKs Ď ZzL1 (3.4)

are now equivalent. In order to prove that (3.4) implies (3.3) it is clearly su�cient to
show that for any K 1 P KS1pZ, Těq there is some L1 P KAS1pZ, Tďq with ZzL1 Ď ZzK 1,
i.e. with L1 Ě K 1. For the inverse implication it is likewise su�cient to show that for any
L1 P KAS1pZ, Tďq there is some K 1 P KS1pZ, Těq with K 1 Ě L1. Let �rst K 1 P KS1pZ, Těq.
As we have seen in part �i) ùñ ii)� there is some b P ZzS 1 with K 1 Ď bs. Clearly
L1 – bs “ Zzpb is a closed subset of pZ, Tďq. Moreover L1 “ rqz, bs is surely a compact subset
of pZ, Tďq; cf. Detail 4 with reversed order or note that qz P L1 ca be covered by no open
set from Tď, except for the whole space Z Ě L1. So L1 “ bs ful�lls both L1 P KAS1pZ, Tďq
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3.2 Normcoercive linear mappings

and L1 Ě K 1. Let to the contrary L1 P KAS1pZ, Tďq. Then ZzL1 is an open neighborhood
of pz and contains hence a set of the form pa with some a P ZzS 1 “ Zztpzu. Building
complements transforms pa Ď ZzL1 into L1 Ď as — K 1. Again K 1 is a compact subset of
pZ, Těq, cf. Detail 4 in the Appendix. Moreover K 1 does not hit S 1 so that it ful�lls both
K 1 P KS1pZ, Těq and K 1 Ě L1.

Theorem 3.1.7. Let pX, } ¨ }Xq be a normed space of �nite dimension and pZ,ďq a totally
ordered set. A coercive mapping F : pX, } ¨ }Xq Ñ pZ,ďq is already bounded below if it is
locally bounded below.

Proof. If dimX “ 0, the image F rXs “ F rt0us consists of just one single point, so that F is
bounded below by that value. If n– dimX P N we may without loss of generality assume
that pX, } ¨ }Xq “ pRn, } ¨ }q with some norm } ¨ } on Rn. After equipping the totally ordered
space pZ,ďq with the left order topology Tě the coercivity of the mapping F : pRn,O�nq Ñ

pZ,ďq corresponds to the topological strong coercivity of F : pRn,O�nq Ñ pZ, Těq towards
MAXďpZq by Lemma 3.1.6. Hence Proposition 2.4.23 ensures that the locally bounded
below mapping F : pRn,O�nq Ñ pZ,ďq is even bounded below.

3.2 Normcoercive linear mappings

A linear mapping de�ned in any �nite dimensional space is normcoercive if and only if it
is injective:

Theorem 3.2.1. A linear mapping α : X Ñ Y of a �nite-dimensional normed space
pX, } ¨ }Xq into a normed space pY, } ¨ }Y q is normcoercive if and only if its nullspace N
just consists of 0X .

Proof. In the case X “ t0u we clearly have N “ t0u; moreover there is no sequence pxnqnPN
with }xn} Ñ `8, as n Ñ `8, so that f is trivially normcoercive. Consider now the case
X Ą t0u. If N contains an element x ‰ 0X then α is not normcoercive since the sequence
pxnqnPN de�ned by xn – nx ful�lls }xn}X Ñ `8 but }α pxnq }Y “ n}α pxq }Y “ 0 Û `8

for n Ñ `8. To show the other direction we assume that N “ t0Xu. Then the sphere
S – tx̃ P X : }x̃}X “ 1u is mapped by α to a set which omits 0Y . For this and by the
compactness of the nonempty set S we �nd a point x̌ P S with

min
x̃PS

}α px̃q }Y “ }α px̌q }Y ą 0.

By scaling with a positive number λ ą 0 we see that

min
}x}X“λ

}α pxq }Y “ min
xPλS

}α pxq }Y

“ λmin
xPλS

}α
´x

λ

¯

}Y

“ λmin
x̃PS

}α px̃q }Y

“ λ}α px̌q }Y .
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3. Coercivity of a sum of functions

This means that }α pxq }Y ě }x}X }α px̌q }Y
looomooon

ą0

Ñ `8 for }x}X Ñ `8, i.e. α is normcoercive.

Corollary 3.2.2. Let

#

α1 : X Ñ Y 1

α2 : X Ñ Y 2
be linear mappings of a �nite-dimensional normed

space pX, } ¨ }Xq into normed spaces pY 1, } ¨ }Y 1q, pY
2, } ¨ }Y 2q. If their nullspaces N 1, N 2

have only 0X in common then the linear mapping α : X Ñ Y 1 ˆ Y 2, given by

α pxq–
´

α1pxq
α2pxq

¯

,

is normcoercive.

Proof. Since the nullspaceN of α ful�lls N “ N 1XN 2 “ t

´

0Y 1
0Y 2

¯

loomoon

“0Y

u we obtain the statement

by applying Theorem 3.2.1.

De�nition 3.2.3. Let X “ X1 ‘ X2 be a direct decomposition of a real vector space X.
The linear mapping πX1,X2 : X Ñ X1, given by

πX1,X2pxq “ πX1,X2px1 ` x2q– x1

is called projection to X1 along X2. If X is equipped with some inner product x¨, ¨y such
that X2 “ XK

1 we will also shortly write πX1.

Lemma 3.2.4. Let X “ X1 ‘ X2 and X “ W1 ‘W2 be direct decompositions of a real
vector space X. The following holds true:

i) The nullspace of πX1,X2 is N pπX1,X2q “ X2. In particular, for any subspace ĂX1 of X

which is also complementary to X2, the restriction πX1,X2 |ĂX1
: ĂX1 Ñ X1 is a vector

space isomorphism between ĂX1 and X1.

ii) The linear mapping α : X Ñ X1 ˆW1, given by

αpzq–

ˆ

πX1,X2pzq
πW1,W2pzq

˙

has nullspace X2XW2; in particular restricting α to any complementary subspace Z1

of X2 XW2 yields an injective mapping α|Z1 : Z1 Ñ X1 ˆW1.

iii) If x¨, ¨y is some inner product on X such that X2 “ XK
1 and W2 “ WK

1 then the linear
mapping α : X Ñ X1 ˆW1, given by

αpzq–

ˆ

πX1pzq
πW1pzq

˙

has nullspace XK
1 XW

K
1 . In particular the restriction α|X1`W1 : X1`W1 Ñ X1ˆW1

is injective.
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Proof. i) Writing an arbitrarily chosen x P X in the form x “ x1 ` x2 with uniquely
determined x1 P X1 and x2 P X2 we obtain

x P N pπX1,X2q ðñ πX1,X2px1 ` x2q “ 0 ðñ x1 “ 0 ðñ x “ x2 ðñ x P X2

so that N pπX1,X2q “ X2. This implies that the restricted mapping πX1,X2 |ĂX1
: ĂX1 Ñ X1 is

injective for any subspace ĂX1, which is also complementary to X2, since

N pπX1,X2 |ĂX1
q “ N pπX1,X2q X

ĂX1 “ X2 X ĂX1 “ t0u.

Due to

πX1,X2 |ĂX1
rĂX1s “ πX1,X2r

ĂX1s “ πX1,X2r
ĂX1 ‘X2s “ πX1,X2rXs “ X1

the linear mapping πX1,X2 | rX1
is also surjective and hence a vector space isomorphism.

ii) Applying the just proven part twice we obtain for any x P X the equivalences

αpxq “ 0 ðñ πX1,X2pxq “ 0^ πW1,W2pxq “ 0 ðñ x P X2 ^ x P W2 ðñ x P X2 XW2,

so that N pαq “ X2 XW2. Likewise as in the already proven part i) this implies that the
restricted mapping α|Z1 : Z1 Ñ X1 ˆW1 is injective for any subspace Z1 of X which is
complementary to X2 XW2.
iii) By the just proven previous part ii) we have N pαq “ X2 XW2 “ XK

1 XW
K
1 . Therefore

and since pXK
1 XW

K
1 q X pX1 `W1q “ t0u, see Detail 11, we obtain

N pα|X1`W1q “ N pαq X pX1 `W1q “ pX
K
1 XW

K
1 q X pX1 `W1q “ t0u.

Hence α|X1`W1 is injective.

3.3 Semidirect sums and coercivity

In this subsection we consider functions F,G : Rn Ñ R Y t`8u, which allow a certain
decomposition into coercive and locally bounded from below parts F1 : X1 Ñ R Y t`8u,
G1 : Y1 Ñ R Y t`8u and bounded from below parts F2 : X2 Ñ R Y t`8u, G2 : Y2 Ñ

RY t`8u and prove a su�cient criteria for F `G beeing coercive on a subspace Z1. The
exact result is stated in Theorem 3.3.6.

The mentioned decomposability of F means more precisely that F can be written as some,
to be introduced, semidirect sum F “ F1ZF2. The demanded boundedness assumptions
for F2 and G2 allows us to replace F2 and G2 by the constant zero functions 0X2 and 0Y2 .
Working with the simpler direct decompositions F1Z 0X2 and G1Z 0Y2 is the core of the
proofs in this subsection.

De�nition 3.3.1. Let X “ X1 ‘ X2 be a direct decomposition of a real vector space X.
The semi-direct sum of functions F1 : X1 Ñ RY t`8u and F2 : X2 Ñ RY t`8u is the
function F1ZF2 : X Ñ RY t`8u, given by

pF1ZF2qpx1 ` x2q– F1px1q ` F2px2q
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3. Coercivity of a sum of functions

Remark 3.3.2. Although the notation X1 ‘ X2 for the underlying spaces suggests the
similar notation F1 ‘ F2 for a pair of functions de�ned on X1 and X2, respectively, we
prefer the notation F1ZF2 for the following reason: If ĂF1 : X1 Ñ R Y t`8u and rF2 :

X2 Ñ R Y t`8u are mappings with F1ZF2 “ ĂF1Z rF2 we can in general not conclude

that F1 “ ĂF1 and F2 “ rF2; for real-valued functions we can conclude only that there is a
constant C P R such that F1 “ĂF1`C and F2 “ rF2´C, see Detail 12 � moreover not even
the latter is in general true, if one of the four functions takes the value `8, see Detail 13.
But at least we have

F1ZF2 “ĂF1ZF2 ùñ F1 “ĂF1, (3.5)

if F2 is real-valued; note here that F1 and ĂF1 have the same domain of de�nition!

Lemma 3.3.3. Let Rn “ X1 ‘X2 “ Y1 ‘ Y2 be decompositions of Rn into subspaces and
let F1 : X1 Ñ RY t`8u, G1 : Y1 Ñ RY t`8u be mappings. The following holds true:

i) For every subspace ĂX1 of Rn which is also complementary to X2 there is exactly one

mapping ĂF1 : ĂX1 Ñ RY t`8u with

ĂF1Z 0X2 “ F1Z 0X2 ,

namely the function ĂF1 “ F1 ˝ πX1,X2 |ĂX1
“ pF1Z 0X2q|ĂX1

. In particular F1 is coercive

i� rF1 is coercive.

ii) For any subspace Z1 of Rn which is complementary to X2 X Y2 — Z2 we have

H – pF1Z 0X2q ` pG1Z 0Y2q “ H1Z 0X2XY2 ,

where H1 – H|Z1 “ F1 ˝ πX1,X2 |Z1 ` G1 ˝ πY1,Y2 |Z1. If X1 K X2 and Y1 K Y2 holds
true in addition we can choose Z1 “ X1 ` Y1.

Proof. i) We �rst show the uniqueness of ĂF1. To this end let Φ1 : X1 Ñ R Y t`8u be
a mapping with Φ1Z 0X2 “

ĂF1Z 0X2 . Clearly the mapping 0X2 is real-valued so that

we get Φ1 “ ĂF1 by (3.5). Next we show that ĂF1 “ F1 ˝ πX1,X2 |ĂX1
ful�lls the claimed

equality ĂF1Z 0X2 “ F1Z 0X2 . To this end we write an arbitrarily chosen x P Rn in the

forms x “ x1 ` x2 “ rx1 ` x12 with x1 P X1, rx1 P ĂX1 and x2, x
1
2 P X2. Then πX1,X2prx1q “

πX1,X2px1 ` px2 ´ x12qq “ x1, so that ĂF1prx1q “ F1pπX1,X2prx1qq “ F1px1q. Therefrom we
obtain

pF1Z 0X2qpxq “ pF1Z 0X2qpx1 ` x2q “ F1px1q ` 0 “ĂF1prx1q ` 0 “ pĂF1Z 0X2qprx1 ` x
1
2q

“ pĂF1Z 0X2qpxq
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3.3 Semidirect sums and coercivity

as well as F1 ˝ πX1,X2 |ĂX1
“ pF1Z 0X2q|ĂX1

since

F1 ˝ πX1,X2 |ĂX1
prx1q “ F1px1q “ F1px1q ` 0X2px2 ´ x

1
2q “ pF1Z 0X2qpx1 ` x2 ´ x

1
2q

“ pF1Z 0X2q|ĂX1
prx1q.

It remains to show that F1 is coercive i� rF1 “ F1 ˝ πX1,X2 |ĂX1
is coercive. To this end note

that

π – πX1,X2 |ĂX1
: ĂX1 Ñ X1

is a vector space isomorphism by part i) of Lemma 3.2.4. Since the spaces ĂX1 and X1 are
of �nite dimension the mapping π is even a bicontinuous vector space isomorphism. In
particular the equivalence

} rx1
pnq
} Ñ `8 ðñ }πp rx1

pnq
q} Ñ `8

holds true for all sequences p rx1
pnq
qnPN in ĂX1 so that

ĂF1p rx1q Ñ `8 as } rx1} Ñ `8, rx1 P ĂX1

ðñ F1pπp rx1qq Ñ `8 as }πp rx1q} Ñ `8, rx1 P ĂX1

ðñ F1px1q Ñ `8 as }x1} Ñ `8, x1 P X1.

ii) We �rst show that H1 – H|Z1 “ F1 ˝ πX1,X2 |Z1 `G1 ˝ πY1,Y2 |Z1 . Writing an arbitrarily
chosen z11 P Z1 in the forms z11 “ x11`x

1
2 “ y11`y

1
2, where x

1
1 P X1, x

1
2 P X2 and y

1
1 P Y1, y

1
2 P

Y2, we indeed get

H1pz
1
1q “ pF1Z 0X2qpz

1
1q ` pG1Z 0Y2qpz

1
1q “ pF1Z 0X2qpx

1
1 ` x

1
2q ` pG1Z 0Y2qpy

1
1 ` y

1
2q

“ F1px
1
1q `G1py

1
1q “ F1pπX1,X2px

1
1 ` x

1
2qq `G1pπY1,Y2py

1
1 ` y

1
2qq

“ rF1 ˝ πX1,X2 `G1 ˝ πY1,Y2spz
1
1q.

In order to prove pF1Z 0X2q ` pG1Z 0Y2q “ H1Z 0X2XY2 we write an arbitrarily chosen
x P Rn in the forms x “ x1` x2 “ y1` y2 “ z1` z2 where each vector is an element of the
similar denoted subspace. Using πX1,X2pz1q “ πX1,X2px1 ` px2 ´ z2qq “ x1, πY1,Y2pz1q “ y1

and the previous calculation we obtain

H1Z 0X2XY2pxq “ H1pz1q ` 0 “ F1pπX1,X2pz1qq `G1pπY1,Y2pz1qq “ F1px1q ` 0`G1py1q ` 0

“ pF1Z 0X2qpx1 ` x2q ` pG1Z 0Y2qpy1 ` y2q “ Hpxq.

If X1 K X2 and Y1 K Y2 we can choose Z1 “ X1`Y1 since pX1`Y1q
K “ XK

1 XY
K

1 “ X2XY2

so that in particular Rn “ pX1 ` Y1q ‘ pX2 X Y2q.
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3. Coercivity of a sum of functions

Theorem 3.3.4. Let Rn “ X1 ‘ X2 be a direct decomposition of Rn into subspaces X1

and X2 and let F1 : X1 Ñ R Y t`8u be coercive and F2 : X2 Ñ R Y t`8u be bounded
below. Every function F : Rn Ñ RY t`8u with F ě F1ZF2 is then coercive on all those

subspaces ĂX1 of Rn which are complementary to X2, i.e. which give a direct decomposition
ĂX1 ‘X2 “ Rn “ X1 ‘X2.

Proof. Since F2 is bounded below there is a constant m P R with

F2px2q ě m

for all x2 P X2. Due to F ě F1ZF2 ě pF1Z 0X2q `m it su�ces to show that F1Z 0X2 :

Rn Ñ R Y t`8u is coercive on every subspace ĂX1 of Rn which is complementary to X2.

The latter however follows from part i) of Lemma 3.3.3 after �xing any subspace ĂX1 and

setting ĂF1 – pF1Z 0X2q|ĂX1
.

As word of warning note that, in contrast to part i) in Lemma 3.3.3, the previous theorem

states no equivalence between the coercivity of F1 and rF1 – F1|ĂX1
but states only that the

coercivity of F1 carries over to rF1 if the assumptions of the previous theorem are ful�lled.
If F2 is not constant zero the reverse implication is in general not true as the following
example shows:

Example 3.3.5. Consider the direct decompositions R2 “ X1 ‘ X2 “ ĂX1 ‘ X2 with the
one dimensional subspaces X1 – Rp1, 0qT, X2 – Rp0, 1qT and ĂX1 – Rp1, 1qT. Consider

the functions F1 : X1 Ñ R, F2 : X2 Ñ R and ĂF1 : ĂX1 Ñ R given by

F1 – 0X1 , F2px2q– }x2}
2
2,

ĂF1 – pF1ZF2
loomoon

—F

q|
ĂX1
.

Clearly F2 is bounded below. Moreover ĂF1 : ĂX1 Ñ R is coercive since ĂF1ppξ, ξq
Tq “

F ppξ, ξqTq “ ξ2 Ñ `8 as }pξ, ξqT}2 Ñ `8. However the function F1 is clearly not
coercive. Note that this does not contradict the previous theorem since it is not even pos-
sible to write F “ F1ZF2 in the form F “ĂF1ZΦ2 with a function Φ2 : X2 Ñ RY t`8u;
if that would be possible the function Φ2 would actually be �nite and the mapping

g : x2 ÞÑ F
`

p1, 1qT ` x2

˘

´ F
`

p0, 0qT ` x2

˘

“ĂF1

`

p1, 1qT
˘

´ĂF1

`

p0, 0qT
˘

would be constant on whole X2. That is however clearly not the case; for instance we have
gpp0, 0qTq “ F pp1, 1qTq ´F pp0, 0qTq “ 1´ 0 “ 1 and gpp0, 3qTq “ F pp1, 4qTq ´F pp0, 3qTq “
16´ 9 “ 7.

Theorem 3.3.6. Let Rn “ X1‘X2 “ Y1‘Y2 be direct decompositions of Rn into subspaces
and let F1 : X1 Ñ R Y t`8u, G1 : Y1 Ñ R Y t`8u be both coercive and locally bounded
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below and let F2 : X2 Ñ RY t`8u, G2 : Y2 Ñ RY t`8u be bounded below. Then the sum
F ` G : Rn Ñ R Y t`8u of functions F ě F1ZF2 and G ě G1ZG2 is coercive on all
those vector subspaces Z1 of Rn with Rn “ Z1‘ pX2X Y2q. In particular F `G is coercive
on X1 ` Y1, if X1 K X2 and Y1 K Y2 hold additionally true.

Before proving the theorem we give a remark on two important assumptions.

Remark 3.3.7. It is important to demand locally boundedness of F1 and G1, see Example
3.3.8. In case of a non-orthogonal decomposition there is no guarantee that F ` G is
coercive on X1 ` Y1 as Example 3.3.9 shows.

Proof of Theorem 3.3.6. Since F2 and G2 are bounded below there is a constant m2 P R
with

F2px2q ě m2, G2py2q ě m2

for all x2 P X2, y2 P Y2. Hence F ` G ě pF1Z 0X2q ` pG1Z 0Y2q ` 2m2, so that it
su�ces to show that pF1Z 0X2q ` pG1Z 0Y2q— H is coercive on any subspace Z1 which is
complementary to pX2 X Y2q — Z2. Concerning the domains of de�nition X1, Y1 and Z1

of the mappings F1, G1 and H1 – H|Z1 , respectively, we may, without loss of generality,
assume X1 “ XK

2 , Y1 “ Y K2 and Z1 “ ZK2 , respectively, see Detail 15. In order to prove
that H1 is coercive let any sequence pzkqkPN in Z1 “ pX2XY2q

K “ XK
2 `Y

K
2 “ X1`Y1 with

}zk} Ñ `8 for k Ñ `8 be given. The claimed H1pzkq Ñ `8 as k Ñ `8 holds trivially
true, if there is a K P N such that H1pzkq “ `8 for all k ě K. If there is no such K we
may without loss of generality assume H1pzkq P R for all k P N. Since both F1 and G1 are
bounded below, see Detail 14, there is a constant m1 P R such that

F1pxq ě m1, G1pyq ě m1

for all x P X1, y P Y1. Therefore and by part ii) of Lemma 3.3.3 we obtain

H1pzkq “ F1

`

πX1pzkq
˘

`G1

`

πY1pzkq
˘

ě max
 

F1

`

πX1pzkq
˘

, G1

`

πY1pzkq
˘(

`m1

“

›

›

›

›

ˆ

F1

`

πX1pzkq
˘

G1

`

πY1pzkq
˘

˙
›

›

›

›

8

`m1

“

›

›

›

qApqαpzkqq
›

›

›

8
`m1,

where

qApx, yq–

ˆ

F1pxq
G1pyq

˙

, qαpzq–

ˆ

πX1pzq
πY1pzq

˙

;

the mappings qA : D
qA Ñ R2 and qα : D

qα Ñ D
qA, are here de�ned on the nonempty sets

D
qA – tpx1, y1q P X1 ˆ Y1 : F1px1q, G1py1q P Ru Ď X1 ˆ Y1
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and

D
qα – tz1 P Z1 “ X1 ` Y1 : pπX1pqz1q, πY1pqz1qq

T
P D

qAu Ď X1 ` Y1 Ď Rn,

respectively. The mappings qA and qα are restrictions of the likewise de�ned mappings
A : X1 ˆ Y1 Ñ pR Y t`8uq ˆ pR Y t`8uq and α : Rn Ñ X1 ˆ Y1, respectively. Due

to the previous estimate it su�ces to show that qA ˝ qα : D
qα Ñ R2 is normcoercive. Part

iii) of Lemma 3.2.4 ensures that α|X1`Y1 is injective. The normcoercivity of α|X1`Y1 is
hence obtained by Theorem 3.2.1 and carries over to qα “ α|D

qα
. In order to prove the

normcoercivity of qA we write its domain of de�nition in the form

D
qA “ tpx1, y1q P X1 ˆ Y1 : F1px1q P R, G1py1q P Ru
“ tx1 P X1 : F1px1q P Ru
looooooooooooomooooooooooooon

— qX

ˆty1 P Y1 : G1py1q P Ru
loooooooooooomoooooooooooon

—qY

and restrict the coercive and hence normcoercive functions F1 and G1 to F1| qX — qF and

G1|qY — qG, respectively. Applying Lemma 3.1.4 to

qAp¨, ‚q “

˜

qF p¨q
qGp‚q

¸

gives then the normcoercivity of qA. Finally the concatenation qA ˝ qα of the normcoercive
mappings is again normcoercive by Theorem 3.1.3.

Example 3.3.8. Consider the functions F,G : R2 Ñ R given by

F px1, x2q–

#

x2
1 ´

1
x4

1
for x1 ‰ 0

0 for x1 “ 0
, Gpx1, x2q–

#

x2
2 for x2 ‰ 0

0 for x2 “ 0
.

Setting

X1 – spanpe1q, Y1 – spanpe2q “ X2,

X2 – spanpe2q, Y2 – spanpe1q “ X1,

F1 –F |X1 , G1 –G|Y1 “ G|X2 ,

F2 –0X2 , G2 –0Y2 “ 0X1 ,

we can write F and G as semidirect sums

F “ F1ZF2 G “ G1ZG2.

Clearly all assumptions of Theorem 3.3.6 are ful�lled � except for one: The function F1

fails to be locally bounded below, because of the exceptional point p0, 0q P X1. Setting

xpnq – px
pnq
1 , x

pnq
2 q– p 1

n
, nq
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gives a sequence pxpnqqnPN with }xpnq} Ñ `8 as nÑ `8 for which

F pxpnqq `Gpxpnqq “
´ 1

n

¯2

´
1

p 1
n
q4
` n2

“ ´n4
` n2

` 1
n2 Ñ ´8 ‰ `8

as n Ñ `8. In particular the sum F ` G is not coercive on the complementary subspace
X1 ` Y1 “ R2 of X2 X Y2 “ t0u.

Example 3.3.9. Consider the function H : R2 Ñ R, given by Hpx1, x2q – x2
1 and regard

it with respect to the decompositions

R2
“ span pe1q
looomooon

—X1

‘ span pe2q
looomooon

—X2

“ span pe1 ` e2q
looooooomooooooon

—Y1

‘ span pe2q
looomooon

—Y2

,

the �rst beeing an orthogonal one and the second beeing a non orthogonal one. Clearly H
is coercive both on X1 and Y1. Moreover H is bounded below on X2 “ Y2 since it is even
constant there. Setting

F1 – H|X1 , G1 – H|Y1 ,

F2 – H|X2 ” 0, G2 – H|Y2 ” 0

we can write the functions F – H and G– H as semidirect sums

F “ F1ZF2, G “ G1ZG2.

In accordance with the previous theorem we see that F`G “ 2H is coercive on any subspace
Z1 of R2 with R2 “ Z1‘ pX2X Y2q. However X1` Y1 “ R2 is none of these subspaces and
F `G “ 2H is clearly not coercive on X1 ` Y1 “ R2 Ě spanpe2q.
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4.1 Unconstrained perspective versus constrained

perspective

This section consists of three subsections. In subsections 4.1.2 and 4.1.3, respectively,
di�erent possibilities of de�ning 0 ¨ p`8q and the set argminF of minimizers of a function
F : Rn Ñ R Y t`8u are dicussed among their pros and cons, respectively. We �nially
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choose the de�nitions

0 ¨ p`8q– 0

and

argminF – tx̌ P Rn : F px̌q ď F pxq for all x P Rn
u.

These de�nitions are suggested when regarding minimizations problems of the form

F1 ` λF2 Ñ min

from an �uncounstrained perspecitive�, which we prefer to take instead of the alternative
�constrained perspecitive�.

Subsection 4.1.1 serves as introduction to the already discussed Subsections 4.1.2 and 4.1.3,
giving a summarizing and connecting overview of the main ideas presented there, along
with our concept to keep the gap between the two di�erent perspectives as closed as possible
in the following sections.

We �nally mention that we use quite often quotation marks in this section, usually at places
where, sometimes hidden, unanswered questions lurk. However these implicit questions can
be ignored when regarding this section just as motivation for our way of de�ning 0 ¨ p`8q
and argminF .

4.1.1 A kind of dilemma

Consider for a possibly empty, �xed subset C Ď Rn those pairs of mappings

F : Rn
Ñ RY t`8u, f : C Ñ R,

which are related in a one to one manner by domF “ C and F |domF “ f . We will also
write F “ f̂ and f “ F̌ to indicate that F and f are related in that manner. Two
things need to be de�ned: argminF and 0 ¨ p`8q. If we want to take an �unconstrained
perspective� we should de�ne

argminF – tx̌ P Rn : F px̌q ď F pxq for all x P Rn
u, 0 ¨ p`8q– 0.

If we prefer to take a �constrained perspective� we should de�ne

argminF – tx̌ P domF : F px̌q ď F pxq for all x P domF u, 0 ¨ p`8q– `8.

The decision we have to take will turn out to be in a way a dilemma: On the one hand we
would like the minimization problems argminF vs. argmin f and �especially� the minimiza-
tion problems argminF “ argminpΦ`λΨq vs. argmin f “ argminpφ`λψq, λ P r0,`8q, to
be always equivalent. To this end we should choose the de�nitions �tting to the constrained
perspective. On the other hand we would like to avoid a clash with a de�nition of argmin
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in a general situation and � even more important � want the equation Φ ` 0Ψ “ Φ to
hold true. To that end we should, however, choose the de�nitions from the unconstrained
perspective.

We are aware that it is unfortunately not uncommon to de�ne argmin �tting to the con-
strained perspective and 0 ¨ p`8q – 0 �tting to the unconstrained perspective. We try
to avoid this mixture of, in general not equivalent, perspectives at the level of de�ni-
tions. Instead we will follow the unconstrained perspective here and pursue the strategy
of imposing conditions in our theorems that ensure at least a weak form of equivalence
between the unconstrained and the constrained perspective. For instance conditions like
dom Φ X dom Ψ “ H in Theorem 4.2.6 ensure F – Φ ` λΨ ı `8 for λ P r0,8q, so
that the unconstrained and the constrained perspective of the minimization problem are
equivalent here, at least in the sense of argminF “ argmin f ; for λ P p0,`8q we even have
equivalence in a stronger sense, since

pΦ` λΨq̌ “ Φ̌` λΨ̌.

holds in addition. This is, however, no longer true for λ “ 0, if dom Ψ Ğ dom Φ. It
is the price we have to pay to ensure Φ ` 0Ψ “ Φ without putting further assumptions
like dom Ψ Ě dom Φ. Note that a more general version of this inclusion, was assumed by
Rockafellar in his chapter on Ordinary Convex Problems and Lagrange multipliers, cf. [19,
p. 273].

The following table gives a summarized overview. Some details can be found in the next
subsections.

unconstrained perspective constrained perspective
De�nition of 0 ¨ p`8q 0 `8

De�nition of argminF tx̌ P Rn : tx̌ P domF :
@x P Rn : F px̌q ď F pxqu @x P domF : F px̌q ď F pxqu

argminF “ argmin f for F ı `8 always
argmintF1 ` ιlevτF2u “ for domF1 X levτF2 “ H always
argmintF1 s.t. F2 ď τu

pF1 ` λF2q̌ “ F̌1 ` λF̌2 for λ P Rzt0u for every λ P R
F1 ` 0F2 “ F1 always true only true if domF2 Ě domF1

F lsc ñ λF lsc for λ P r0,`8q in general only for λ P p0,`8q

4.1.2 De�nition of 0 ¨̈̈ ppp`̀̀888qqq

Let φ : Cφ Ñ R and ψ : Cψ Ñ R be mappings with domains Cφ Ď Rn and Cψ Ď Rn,

respectively, and let Φ – φ̂ and Ψ – ψ̂ denote their natural continuations to functions
Rn Ñ R Y t`8u. In the constrained perspective we want Φ ` λΨ to be the �exact� twin
of φ` λψ for all λ P r0,8q, i.e. we want

pΦ` λΨq̌ “ Φ̌` λΨ̌ “ φ` λψ
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4. Penalizers and constraints in convex problems

to hold true. For λ P p0,`8q this equation is always ful�lled. For λ “ 0 it is however
in general only true, if we would set 0 ¨ p`8q to be `8; choosing any other value from
r0,`8q for this product, let us say the value 0, would cause the domain of de�nition of
pΦ` 0Ψq̌ to be di�erent from the domain of de�nition of Φ̌` 0Ψ̌, if dom Ψ Ğ dom Φ: Here
the domain of de�nition of pΦ ` 0Ψq̌ “ Φ̌ equals Cφ “ dom Φ, whereas the domain of
de�nition of Φ̌` 0Ψ̌ is Cφ X Cψ “ dom ΦX dom Ψ Ă dom Φ.

In the unconstrained perspective we concede Φ`λΨ a mode of being that is beyond being
a copy of φ`λψ, made up for technical purposes; Here we consider Φ,Ψ and Φ`λΨ in �rst
line �really� as mappings Rn Ñ R Y t`8u which all have the same domain of de�nition.
This allows us to achieve Φ` 0Ψ “ Φ by setting

0 ¨ p`8q– 0.

With this de�nition we accept that the identity pΦ` λΨq̌ “ Φ̌` λΨ̌ “ φ` λψ may fail for
λ “ 0.

Finally we remark that our de�nition of 0 ¨ p`8q seems to be the �correct� one from the
viewpoint of lower semicontinous functions: If Ψ : Rn Ñ RYt`8u is lower semicontinuous
then so is λΨ for all λ P p0,`8q and also for λ “ 0, thanks to our de�nition 0 ¨ p`8q– 0.
Note that lower semicontinuity would, however, in general not be preserved, if we had
chosen 0 ¨ p`8q to be `8 in the constrained perspective's sense: Consider the function
ψ : p0,`8q Ñ R, given by ψpxq– 1

x
. Its natural continuation Ψ – ψ̂ : Rn Ñ RYt`8u is

lower semicontinous, but its product 0¨Ψ (in the constrained perspective's sense!) would not
be lower semicontinous, since its epigraph would be the non-closed set p0,`8q ˆ r0,`8q.

4.1.3 De�nition of argmin

Let f : C Ñ R be some real-valued function, de�ned on some subset C Ă Rn and let
F – f̂ be its natural continuation to a function Rn Ñ RY t`8u.
In the constrained perspective we regard F as a kind of working copy of f ; in particular
we want the equation argminF “ argmin f to hold always true. De�ning argminF as
tx̌ P domF : F px̌q ď F pxq for all x P domF u would do the job.

In the unconstrained perspective we, however, want to minimize F �really� over Rn, its
whole domain of de�nition, so that we de�ne

argminF – tx̌ P Rn : F px̌q ď F pxq for all x P Rn
u

We then still have argminF “ argmin f , except for the particular case F ” `8 where we
unfortunately get argminF “ Rn “ H “ argmin f .

Despite this small disadvantage we nevertheless de�ne argminF according to the uncon-
strained perspective � not only because we had already decided us for this perspective
when de�ning 0 ¨ p`8q – 0 but also for the sake of consistency with the de�nition of
argmin in the following more general situation: Assume we want to de�ne argminH for a
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4.2 Penalizers and constraints

quite general function H : X Ñ Y between a (possibly empty) set X and a totally ordered
set pY,ďY q. The natural choice for de�ning the (possibly empty) set of minimizers seems
to be

argminH – tx̌ P X : Hpx̌q ďY Hpxq for all x P Xu.

Our de facto de�nition of argminF appears then just as a special case for X “ Rn,
Y “ p´8,`8s with the natural order and H “ F . In contrast, the rejected, constrained
perspective way of de�ning argminF would clash to the general de�nition for F ” `8.

We conclude this section with a remark to the constrained optimization problem

argmintF1 s.t. F2 ď τu– tx̌ P Rn : F2px̌q ď τ and F1px̌q ď F1pxq for all x P levτF2u,

where τ P R and F1, F2 : Rn Ñ R Y t`8u. In the constrained perspective we can always
rewrite it to argmintF1` ιlevτF2u. In the unconstrained perspective we can do this however
only if F1` ιlevτF2 ı `8, i.e. if the overlapping condition domF1X levτF2 “ H is ful�lled.
A similar condition which ensures a stronger overlapping between domF1 and levτF2 is
used in part i) of Theorem 4.2.6. The question is also if we should at all speak of the
'constrained problem' argmintF1 s.t. F2 ď τu, de�ned as above, in the context of our
unconstrained perspective, or if we should consider just the problem argminF1 ` ιlevτF2

instead.

4.2 Penalizers and constraints

This section consists of three subsections: In the �rst subsection we review general relations
between the constrained problem

pP1,τ q argmin
xPRn

tΦpxq s.t. Ψpxq ď τu (4.1)

and the unconstrained, penalized problem

pP2,λq argmin
xPRn

tΦpxq ` λΨpxqu, λ ě 0. (4.2)

This relation is stated in Detail in Theorem 4.2.6. In the second subsection we add to a
primal problem, which can be the constrained or the penalized problem, the correspond-
ing Fenchel Dual problem along with conditions that characterize their solutions. In the
third subsection we discuss Theorem 4.2.6. In particular a relation between one of its
assumptions and Slater's Constraint Quali�cation is given.

4.2.1 Relation between solvers of constrained and penalized

problems

In this subsection there are two lemmas and one theorem along with their proofs and
some examples. The �rst Lemma 4.2.1 is an auxiliary lemma for the second Lemma
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4. Penalizers and constraints in convex problems

4.2.3. The latter lemma gives a relation between the subgradients BΨpx˚q and BιSpx
˚q,

where S – levΨpx˚qΨ. This relation is used to prove Theorem 4.2.6, which gives relations
between solvers of SOLpP1,τ q and SOLpP2,λq. For comments on this subsection see Section
4.2.3.

Lemma 4.2.1. Let Ψ : Rn Ñ R Y t`8u be a proper and convex function, x˚ P domΨ
and S – levΨpx˚qΨ. Let p P Rn such that the half-space Hď

p,α with α – xp, x˚y contains S.
Then we have the equality

inf
xPH“p,α

Ψpxq “ Ψpx˚q, (4.3)

if x˚ P intpdomΨq or if both x˚ P ripdomΨq and S is not completely contained in H“
p,α.

Proof. For n “ 0 the assertion of the Lemma is trivially true. Without loss of generality
we may therefore assume n ě 1 in the following. We �rst consider the case x˚ P intpdomΨq.
Assume that there exists y P H“

p,α such that Ψpyq ă Ψpx˚q. Since y, x˚ P dom Ψ, we see by
the convexity of Ψ that

Ψpλy ` p1´ λqx˚
loooooooomoooooooon

—xλ

q ď λΨpyq ` p1´ λqΨpx˚q ă Ψpx˚q

for all λ P p0, 1q. Since x˚ P intpdomΨq we have xλ P intpdomΨq for λ small enough. Since
Ψ is continuous on intpdomΨq, there exists ε ą 0 such that the Euclidean ball Bεpxλq cen-
tered at xλ with radius ε ful�lls Bεpxλq Ď intpdom Ψq and Ψpxq ă Ψpx˚q for all x P Bεpxλq.
Hence we obtain by the assumption on S and p the inclusion Bεpxλq Ď S Ď Hď

p,α so that

Bεpxλq XHą
p,α “ H. This contradicts xλ P H

“
p,α.

The remaining case can be reduced to this argument: Without loss of generality we may
assume x˚ to be the point of origin, so that H“

p,α and affpdom Ψq — U are vector sub-
spaces of Rn; note herein x˚ P ripdom Ψq Ď affpdom Ψq. For simplicity of perception we
may without loss of generality assume further, that p is of the form p “ p0, . . . , 0, 1q, i.e.
H“
p,α “ Rn´1 ˆ t0u and Hď

p,α “ Rn´1 ˆ p´8, 0s. The level set S Ď Hď
p,α is not completely

contained in H“
p,α. Therefore H

“
p,α, or rather H

“ – H“
p,αXU , must separate U in an upper

part Hě – Hě
p,αXU and a lower part Hď – Hď

p,αXU ; note here that H
ě is a hyperplane

in U “ affpdom Ψq by Detail 16. Due to Hď Ě S and since infxPH“p,α Ψpxq “ infxPH“ Ψpxq
we can consider Ψ only on U “ affpdom Ψq and then argue just as before in this vector
subspace, using x˚ to be an interior point of S (considered of course as subset of U). l

Remark 4.2.2.

i) In cases where affpdom Ψq is the full space Rn, i.e. where intpdom Ψq “ ripdom Ψq,
the condition x˚ P intpdomΨq is, in general, really necessary to get the equality (4.3)
as Fig. 4.1 illustrates.
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4.2 Penalizers and constraints

Figure 4.1: Illustration that relation (4.3) is in general not valid for x˚ P domΨzintpdom Ψq.

ii) In cases where affpdom Ψq Ă Rn, i.e. where intpdom Ψq “ H, the condition x˚ P
ripdom Ψq in general really needs to be complemented by the condition S Ę H“

p,α to
get the equality (4.3), see the second part of Remark 4.2.5 or make the following
gedankenexperiment: Look at Figure 4.1 and regard the two dimensional e�ective
domain of Ψ as x1-x2-plane of R3, i.e. extend the there sketched function Ψ : R2 Ñ

RY t`8u to a function Ψ̂ : R3 Ñ RY t`8u by setting

Ψ̂px1, x2, x3q–

#

Ψpx1, x2q if x3 “ 0

`8 if x3 “ 0.

Move now x˚ and the line H“
p,α to some place in ripdom Ψqz argmin Ψ but change the

direction of H“
p,α, if necessary, in such a way that we still have S – levΨpx˚qΨ Ď Hď

p,α.

Consider �nally the line H“
p,α as part of a plane Ĥ“

p̂,α̂ with p̂ P R3zt0u and α̂ – xp̂, x˚y.

As long as we consider only such planes Ĥ“
p̂,α̂ which are not identical to the x1-x2-

plane affpdom Ψq, but intersect this plane only in H“
p,α, everything keeps essentially

the same as before: Also Ĥ“
p̂,α̂ separates dom Ψ at x˚ P ripdom Ψq into two parts,

such that S is completely contained in Ĥď
p̂,α̂. Such a separation is, however, no longer

performed by Ĥ“
p̂,α̂ if it is identical to the x1-x2-plane. In this case equation (4.3) is

clearly no longer ful�lled.

The following lemma will be used in our proof of Theorem 4.2.6.

Lemma 4.2.3. Let Ψ : Rn Ñ R Y t`8u be a proper, convex function, x˚ P domΨ and
S – levΨpx˚qΨ. Then we have

R`0 BΨpx˚q Ď BιSpx˚q. (4.4)
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If x˚ is not a minimizer of Ψ we moreover have

BιSpx
˚
q “ R`0 BΨpx˚q if x˚ P ripdom Ψq, (4.5)

BιSpx
˚
q “ R`0 BΨpx˚q if x˚ P intpdom Ψq, or in other words (4.6)

if x˚ P ripdom Ψq and affpdom Ψq “ Rn.

A proof of a similar lemma for �nite functions Ψ : Rn Ñ R based on cone relations
can be found, e.g., in [12, p. 245]. Here we provide a proof which uses the epigraphical
projection, also known as inf-projection as de�ned in [20, p. 18+, p. 51]. For a function
f : Rn ˆ Rm Ñ RY t`8u, the inf-projection is de�ned by νpuq – infx fpx, uq. The name
'epigraphical projection' is due to the following fact: epi ν is the image of epi f under the
projection px, u, αq ÞÑ pu, αq, if argminx fpx, uq is attained for each u P dom ν. (Note that
this is not the projection onto epigraphs as used, e.g., in [2, p. 427].) The inf-projection is
convexity preserving, i.e., if f is convex, then ν is also convex, cf. [20, Proposition 2.22].

Proof. 1. First we show that R`0 BΨpx˚q Ď BιSpx˚q. By de�nition of the subdi�erential
we obtain

q P BΨpx˚q ðñ @x P Rn : xq, x´ x˚y ď Ψpxq ´Ψpx˚q,

ùñ @x P S : xq, x´ x˚y ď 0

Hence we obtain the above inclusion by

p P BιSpx
˚
q ðñ @x P S : xp, x´ x˚y ď 0. (4.7)

2. Next we prove BιSpx
˚q Ď R`0 BΨpx˚q if x˚ is not a minimizer of Ψ and the additional

assumptions in (4.6) are ful�lled, so that x˚ P intpdomΨq. Let p P BιSpx
˚q. If p is the

zero vector, then we are done since BΨpx˚q “ H. In the following we assume that p is not
the zero vector. It remains to show that there exists h ą 0 such that 1

h
p P BΨpx˚q. We

can restrict our attention to p “ p0, . . . , 0, pnq
T with pn ą 0. (Otherwise we can perform a

suitable rotation of the coordinate system.) Then (4.7) becomes

p P BιSpx
˚
q ðñ @x “ px̄, xnq P S : pnxn ď pnx

˚
n. (4.8)

Hence we can apply lemma 4.2.1 with p “ p0, . . . , 0, pnq
T and obtain

inf
txPRn:xn“x

˚
nu

Ψpxq “ Ψpx˚q.

Introducing the inf-projection ν : RÑ RY t˘8u by

νpxnq– inf
x̄PRn´1

Ψpx̄, xnq.

this can be rewritten as
νpx˚nq “ Ψpx˚q. (4.9)
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Therefore we have

1

h
p “ p0, . . . , 0,

1

h
pnq

T
P BΨpx˚q ðñ @x P Rn : Ψpxq ě νpx˚nq `

1

h
pnpxn ´ x

˚
nq

ðñ @xn P R : νpxnq ě νpx˚nq `
1

h
pnpxn ´ x

˚
nq

ðñ
1

h
pn P Bνpx

˚
nq,

so that it remains to show that Bνpx˚nq contains a positive number. By (4.9) we verify that
νpx˚nq is �nite. Moreover, x˚ P intpdomΨq implies x˚n P intpdomνq. Therefore Bνpx˚nq “ H.
Let qn P Bνpx

˚
nq, i.e.,

qnpxn ´ x
˚
nq ď νpxnq ´ νpx

˚
nq

for all xn P R. Since x˚ is not a minimizer of Ψ, there exists y P Rn with Ψpyq ă Ψpx˚q and
we get by (4.8) that yn ď x˚n. Since yn “ x˚n would by (4.9) imply that Ψpx˚q “ νpynq ď
Ψpyq, we even have yn ă x˚n. Thus

qnpyn ´ x
˚
nq ď νpynq ´ νpx

˚
nq ď Ψpyq ´Ψpx˚q ă 0

implies qn ą 0 and we are done.
3. Next we prove BιSpx

˚q Ď R`0 BΨpx˚q if x˚ is not a minimizer of Ψ and x˚ P ripdomΨq;

then taking closures in R`0 BΨpx˚q Ď BιSpx
˚q Ď R`0 BΨpx˚q gives the wanted BιSpx

˚q “

R`0 BΨpx˚q since BιSpx˚q is closed.
We have x˚ P dom ιS “ S Ď dom Ψ, so that both e�ective domains are in particular
contained in affpdom Ψq— A. Applying Theorem B.17 two times yields hence

BιSpx
˚
q “ BpιS|Aqpx

˚
q ` UK,

BΨpx˚q “ BpΨ|Aqpx
˚
q ` UK,

where U is the di�erence space of A. By part 2. of the proof we know BpιS|Aqpx
˚q “

R`0 BpΨ|Aqpx˚q. So the claimed BιSpx
˚q Ď R`0 BΨpx˚q is equivalent to R`0 BpΨ|Aqpx˚q`UK Ď

R`0 rBpΨ|Aqpx˚q ` UKs and can hence be proved by showing that the relation

R`0 B `W Ď R`0 pB `W q

holds true for any subsets B,W of Rn with R`0 W “ W . To this end let λ P R`0 , b P B and

w P W be given. In case λ “ 0 we have λb`w “ λpb`λ´1wq P R`0 pB`W q Ď R`0 pB `W q.
In case λ “ 0 we have λb ` w “ 0b ` w “ limkÑ8

1
k
pb ` kwq P R`0 pB `W q. Thus

R`0 B `W Ď R`0 pB `W q really holds true. l

Remark 4.2.4. The condition that x˚ is not a minimizer of Ψ is essential to have equality
in (4.4) as the following example illustrates. The function Ψ given by Ψpxq “ x2 is minimal
at x˚ “ 0 P intpdom Ψq. We have S – levΨp0qΨ “ t0u so that

R`0 BΨpx˚q “ t0u Ă R “ BιSpx˚q.
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Remark 4.2.5. i) The condition x˚ P dom Ψ is not su�cient to get equality in (4.4).
Consider the proper, convex, lower semicontinuous function Ψ given by

Ψpxq–

"

´
?
x if x ě 0,

`8 if x ă 0.

The point x˚ “ 0 is not a minimizer of Ψ and belongs to dom Ψ but not to ripdom Ψq.
Using S – levΨp0qΨ “ R`0 we see that

R`0 BΨpx˚q “ H Ă p´8, 0s “ BιSpx
˚
q.

ii) Even the condition x˚ P ripdom Ψq is not su�cient to guarantee equality in (4.4), if
affpdom Ψq is not the full space Rn: Consider the proper, convex and lower semicontinuous
function Ψ : R2 Ñ RY t`8u, given by

Ψpx1, x2q–

#

x1 if x2 “ 0,

`8 if x2 “ 0.

The a�ne hull affpdom Ψq “ Rˆ t0u is a proper subset of R2. We have S – levΨpx˚qΨ “

p´8, x˚1s ˆ t0u for arbitrarily chosen x˚ “ px˚1 , 0q P R ˆ t0u “ affpdom Ψq “ ripdom Ψq.
Applying Theorem B.17 to affpdom Ψq— A— U yields

BιSpx
˚
q “ BpιS|Aqpx

˚
q ` UK “ R`0 p1, 0qT ` Rp0, 1qT

“ tpp1, p2q
T : p1 P r0,`8q, p2 P p´8,`8qu

and BΨpx˚q “ p1, 0qT ` Rp0, 1qT “ tp1, p2q
T : p2 P p´8,`8qu so that

R`0 BΨpx˚q “ tp0, 0qTu Y tpp1, p2q
T : p1 P p0,`8q, p2 P p´8,`8qu.

We see that the closure R`0 BΨ is just the closed half-plane BιSpx
˚q, as guaranteed by Lemma

4.2.3. However we only have R`0 BΨpx˚q Ă BιSpx˚q.
Concerning Lemma 4.2.1 we note that equation (4.3) holds true here if and only if S is
not completely contained in the straight line H“

p,αppq, where αppq – xp, x˚y: Choosing any

p “ pp1, p2q with p1 ą 0 we see that the line H“
p,αppq intersects affpdom Ψq only in x˚, so

that we clearly have infxPH“p,α Ψpxq “ Ψpx˚q. However this equation is no longer ful�lled if
we choose p in such a way that affpdom Ψq Ď H“

p,α, say e.g. p “ p0, 1q.

Using Lemma 4.2.3 it is not hard to prove the following Theorem 4.2.6 on the correspon-
dence between the constrained problem (P1,τ ) in (1.2) and the penalized problem (P2,λ)
in (1.3). The core part of the theorem has been restated in Corollary 4.2.7 for proper,
convex functions Φ,Ψ : Rn Ñ R Y t`8u, where the e�ective domain dom Ψ is open and
contains dom Φ. In that case the theorem basically states, on the one hand, in its second
part the following: For λ ą 0 any x̂ P SOLpP2,λq which does not minimize Φ, belongs also
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to SOLpP1,τ q exactly for τ “ Ψpx̂q. In its �rst part, on the other hand, it then states
something converse: For any x̂ P SOLpP1,τ q which does neither minimize Φ nor Ψ, there
exists λ ą 0 such that x̂ P SOLpP2,λq. To determine this λ we will later use duality consid-
erations. In the following theorem we give the rigorous statement and take also the case
λ “ 0 into account in both parts of the theorem; note here however that the second part
of the theorem does not state that for given x̂ P SOLpP2,0q there actually is a τ P R with
x̂ P SOLpP1,τ q, cf. Remark 4.2.10. Before proving the theorem we give also one remark to
part i) and one remark to part ii), noting that, on the one hand, several Lagrange Mul-
tiplier values for λ can correspond to the same levelparameter τ , and that, on the other
hand, several levelparameters τ can correspond to one and the same Lagrange Multiplier
value λ.

Theorem 4.2.6. i) Let Φ,Ψ : Rn Ñ R Y t`8u be proper, convex functions. Consider
pP1,τ q for a τ P pinf Ψ,`8q with ripdom Φq X riplevτΨq “ H and let x̂ be a minimizer of
(P1,τ ), which is situated in intpdom Ψq. Then there exists a real parameter λ ě 0 such
that x̂ is also a minimizer of (P2,λ). This parameter λ is positive, if x̂ is in addition not a
minimizer of Φ.

ii) For proper Φ,Ψ : Rn Ñ R Y t`8u with dom Φ X dom Ψ “ H, let x̂ be a minimizer of
(P2,λ). For λ “ 0 and τ P OP pΦ,Ψq the point x̂ is also a minimizer of (P1,τ ) if and only
if τ ě Ψpx̂q. If λ ą 0, then x̂ is also a minimizer of (P1,τ ) for τ – Ψpx̂q P OP pΦ,Ψq.
Moreover, if Φ,Ψ are proper, convex functions and x̂ P intpdom Ψq, this τ is unique among
all values in OP pΦ,Ψq if and only if x̂ is not a minimizer of Φ.

This theorem implies directly the following

Corollary 4.2.7. Let Ψ be a proper and convex function with open e�ective domain and
let Φ be another proper and convex function with dom Φ Ď dom Ψ. For those px P Rn which
do neither belong to argmin Φ nor to argmin Ψ the following holds true:

i) If px P SOLpP1,τ q for some τ P pinf Ψ,`8q then also px P SOLpP2,λq for some λ ą 0.

ii) If px P SOLpP2,λq for some λ ą 0 then there is exactly one τ P OP pΦ,Ψq such that
px P SOLpP1,τ q, namely τ “ Ψppxq.

Before proving Theorem 4.2.6 we give the announced remarks.

Remark 4.2.8. Part i) of the theorem is not constructive. In general, there may exist
various parameters λ corresponding to the same parameter τ as the following example with
m ă ´2 and τ “ 1 shows: Consider the proper and convex functions Φ,Ψ : R Ñ R given
by Ψpxq– |x| and

Φpxq–

#

px´ 2q2 if x ě 1,

mpx´ 1q ` 1 if x ă 1,
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where m ď ´2. Note that Φ is di�erentiable for m “ ´2. Since argminxPR Φpxq “ t2u
we obtain c – minxPargmin Φ |x| “ 2. Having a look at the graph of Φ and noting that it is
strictly monotonic decreasing on p0, cq “ p0, 2q we see that

argmin
xPR

tΦpxq s.t. |x| ď τu “ tτu

for all τ P p0, 2q. On the other hand, we get

argmin
xPR

tΦpxq ` λ|x|u “

$

’

’

’

&

’

’

’

%

t2´ λ
2
u if λ P r0, 2q,

t1u if λ P r2,´mq,

r0, 1s if λ “ ´m,

t0u if λ P p´m,`8q,

so that τ “ 1 corresponds to λ P r2,´ms. It is known that the set of Lagrange multipliers
λ is a bounded, closed interval under certain assumptions, see [19, Corollary 29.1.5]

Remark 4.2.9. Concerning part ii) of the theorem in case that there are di�erent mini-
mizers of pP2,λq, say x̂1 and x̂2, we notice that Ψpx̂1q “ Ψpx̂2q can appear as the following
example shows: For Φpxq– |x´ 2| and Ψpxq– |x| and λ “ 1 we have

pP2,1q Φpxq `Ψpxq “

$

&

%

´2px´ 1q if x ă 0,
2 if x P r0, 2s,

`2px´ 1q if x ą 2,

i.e., argminxPR tΦpxq `Ψpxqu “ r0, 2s. Hence we can choose, e.g., x̂1 “ 1 and x̂2 “ 2 and
obtain Ψpx̂1q “ 1 ‰ 2 “ Ψpx̂2q.

Remark 4.2.10. As warning we �nally note that part ii) of the theorem needs to be
carefully read in case λ “ 0, since the assertion @τ P OP pΦ,Ψq : x̂ P SOLpP1,τ q ô

τ ě Ψpx̂q does not state that there actually is a real τ with x̂ P SOLpP1,τ q. This can be
concluded if and only if x̂ P dom Ψ. In our chosen �unconstrained perspective�, however,
the occurrence of x̂ R dom Ψ can indeed happen. Consider for example the proper, convex
and lower semicontinuous functions Φ : RÑ R, Ψ : RÑ RY t`8u given by

Φpxq– rx´ p´1qs2, Ψpxq–

#

´
?
x if x ě 0,

`8 if x ă 0.

Clearly dom Φ X dom Ψ “ H is ful�lled. For λ “ 0, we see that x̂ “ ´1 is the unique
minimizer of Φ ` 0Ψ “ Φ. Since x̂ R dom Ψ we have in particular x̂ R SOLpP1,τ q for all
τ P R “ OP pΦ,Ψq.

Proof of Theorem 4.2.6. i) Let x̂ P SOLpP1,τ q X intpdom Ψq, where τ P pinf Ψ,`8q. Then
Ψpx̂q ď τ holds true. In case Ψpx̂q ă τ the continuity of Ψ in intpdom Ψq assures Ψpxq ă τ
in a neighborhood of x̂. Consequently x̂ is a local minimizer of Φ and hence also a global
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minimizer of this convex function. In particular x̂ is a solution of SOLpP2,0q. In case
Ψpx̂q “ τ , we get by Fermat's rule, the regularity assumption, BΨpx̂q “ H and Lemma
4.2.3 the relation

0 P B
`

Φ` ιlevτΨ

˘

px̂q “ BΦpx̂q ` BιlevτΨpx̂q “ BΦpx̂q ` R`0 BΨpx̂q.

This means that there exists λ ě 0 such that 0 P BΦpx̂q ` λBΨpx̂q Ď B
`

Φ` λΨ
˘

px̂q so that
by Fermat's rule x̂ is a minimizer of (P2,λ). If x̂ is not a minimizer of Φ, then clearly λ ą 0.

ii) Let x̂ P SOLpP2,λq. If λ “ 0 we have to distinguish � at least in our taken unconstrained
perspective � two cases: In case x̂ R dom Ψ and any τ P OP pΦ,Ψq Ď R neither the point
x̂ is a minimizer of pP1,τ q nor is τ ě `8 “ Ψpx̂q. So the claimed equivalence holds true in
this case. In case x̂ P dom Ψ this equivalence holds also true for any τ P OP pΦ,Ψq : For
real τ ă Ψpx̂q neither x̂ P SOLpP1,τ q holds true nor does τ ě Ψpx̂q. For real τ ě Ψpx̂q we
have x̂ P SOLpP2,0q “ argmin Φ, so that also x̂ P SOLpP1,τ q is ful�lled.

If λ ą 0, we have x̂ P dom Φ X dom Ψ and get x̂ P SOLpP1,τ q at least for τ “ Ψpx̂q P
OP pΦ,Ψq by the following reason: if there would exist x̃ with Φpx̃q ă Φpx̂q ă `8 and
Ψpx̃q ď τ ă `8, then we can conclude Φpx̃q ` λΨpx̃q ă Φpx̂q ` λΨpx̂q, since only �nite
values occur. This contradicts x̂ P SOLpP2,λq. Finally, let in addition Φ,Ψ be convex and
x̂ P intpdom Ψq. If x̂ is a minimizer of Φ then τ “ Ψpx̂q is not the only value in OP pΦ,Ψq
with x̂ P SOLpP1,τ q, since clearly every τ ě Ψpx̂q belongs all the more to OP pΦ,Ψq
while x̂ P SOLpP1,τ q keeps ful�lled. If x̂ is not a minimizer of Φ then there can not exist
another value τ̃ “ Ψpx̂q from OP pΦ,Ψq with x̂ P SOLpP1,τ̃ q: For τ̃ ą Ψpx̂q the condition
x̂ P intpdom Ψq would imply x̂ P argmin Φ, as we already have seen in part i) of the proof,
whereas for τ̃ ă Ψpx̂q the point x̂ would not even ful�ll the constraint condition.

4.2.2 Fenchel duality relation

Using duality arguments we will specify the relations between (P1,τ ) and (P2,λ) for a more
speci�c class of problems in Section 4.4. In particular, we want to determine λ in part
i) of Theorem 4.2.6. To this end, we need the following known Fenchel duality relation,
compare, e.g., [20, p. 505].

Lemma 4.2.11. Let Φ P Γ0pRnq, Ψ P Γ0pRmq, L P Rm,n and µ ą 0. Assume that the
following conditions are ful�lled.

i) ripdom Φq X ripdom ΨpµL¨qq “ H,

ii) RpLq X ripdom Ψpµ¨qq “ H,

iii) ripdom Φ˚p´L˚¨qq X ripdom Ψ˚p ¨
µ
qq “ H,

iv) Rp´L˚q X ripdom Φ˚q “ H.
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Then, the primal problem

pP q argmin
xPRn

tΦpxq `ΨpµLxqu , µ ą 0, (4.10)

has a solution if and only if the dual problem

pDq argmin
pPRm

 

Φ˚p´L˚pq `Ψ˚

ˆ

p

µ

˙

(

(4.11)

has a solution. Furthermore x̂ P Rn and p̂ P Rm are solutions of the primal and the dual
problem, respectively, if and only if

1

µ
p̂ P BΨpµLx̂q and ´ L˚p̂ P BΦpx̂q. (4.12)

Proof. Assumptions i) and ii) assure that we can apply [19, Theorem 23.8] and [19, The-
orem 23.9]. Using these theorems, Fermat's Rule and [19, Corollary 23.5.1] we obtain on
the one hand

SOLpP q “ H,

ô Dx̂ P Rn such that 0 P B
`

Φp¨q `ΨpµL¨q
˘

px̂q “ BΦpx̂q ` µL˚BΨpµLx̂q,

ô Dx̂ P Rn
Dp̂ P Rm such that p̂ P µBΨpµLx̂q and ´ L˚p̂ P BΦpx̂q,

ô Dx̂ P Rn
Dp̂ P Rm such that µLx̂ P BΨ˚

ˆ

p̂

µ

˙

and x̂ P BΦ˚p´L˚p̂q.

Due to the assumptions iii) and iv) we similarly obtain

SOLpDq “ H,

ô Dp̂ P Rm such that 0 P B
´

Φ˚p´L˚¨q `Ψ˚

ˆ

¨

µ

˙

¯

pp̂q “ ´LBΦ˚p´L˚p̂q `
1

µ
BΨ˚

ˆ

p̂

µ

˙

,

ô Dp̂ P Rm
Dx̂ P Rn such that x̂ P BΦ˚p´L˚p̂q and µLx̂ P BΨ˚

ˆ

p̂

µ

˙

,

on the other hand.

4.2.3 Notes to Theorem 4.2.6 and to some technical assumptions

In this subsection we discuss mainly Theorem 4.2.6 with respect to two aspects: In the �st
part we deal with the condition x̂ P intpdom Ψq and illustrate its importance � at least in
the �unconstrained perspective� � by two examples. The second part is dedicated to the
regularity assumptions used in Theorem 4.2.6 and in [5, Theorem 2.4] and their relation
to Slater's Constraint Quali�cation.
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The condition x̂ P intpdom Ψq in Theorem 4.2.6

Concerning part i) of Theorem 4.2.6 we note that the condition x̂ P intpdom Ψq is essential
� at least in our chosen �unconstrained perspective�: It can not be omitted as the next
example shows. We will also see that it can not even be replaced by the weaker condition
x̂ P ripdom Ψq.

Example 4.2.12.

i) Consider the proper, convex and lower semicontinuous functions Φ : R Ñ R, Ψ :
RÑ RY t`8u given by

Φpxq– rx´ p´1qs2, Ψpxq–

#

´
?
x if x ě 0,

`8 if x ă 0.

We have ripdom ΦqXriplevτΨq “ pτ
2,`8q “ H for every τ P p´8, 0s “ pinf Ψ, sup Ψs.

Furthermore argmintΦ s.t. Ψ ď τu “ tτ 2u — tx̂τu does not intersect t´1u “
argmin Φ for all these τ . In case τ P p´8, 0q we have x̂τ P intpdom Ψq and �
as guaranteed by part i) of the previous theorem � there is indeed a λ ě 0 with
x̂τ P argminpΦ ` λΨq i.e. with Φ1pτ 2q ` λΨ1pτ 2q “ 0, namely λ “ ´4τpτ 2 ` 1q ą 0.
In case τ “ 0, however, such a real λ ě 0 does not exist: For λ “ 0 we have
x̂τ “ 0 R t´1u “ argminpΦq “ argminpΦ` 0Ψq � in our unconstrained perspective �
and for λ P p0,`8q we have 0 R H “ BpΦ ` λΨqpx̂τ q so that x̂τ R argminpΦ ` λΨq
as well.

ii) Consider the proper, convex and lower semicontinuous functions Φ : R2 Ñ R, Ψ :
R2 Ñ RY t`8u given by

Φpx1, x2q– x2
1 ` px2 ´ 1q2, Ψpx1, x2q–

#

x1 if x2 “ 0,

`8 if x2 “ 0.

For any τ P pinf Ψ,`8q “ R we have ripdom ΦqX riplevτΨq “ R2Xrp´8, τqˆt0us “
H. Consider

x̂τ P argmintΦ s.t. Ψ ď τu “ argmin
xPp´8,τ sˆt0u

Φpxq “

«

argmin
x1Pp´8,τ s

x2
1 ` 1

ff

ˆ t0u

“

#

tpτ, 0qT u for τ ă 0

tp0, 0qT u for τ ě 0.

In case τ ă 0 there is even a λ P p0,`8q with

pτ, 0qT “ x̂τ P argmintΦ` λΨu
λ “0
“

„

argmin
x1PR

px2
1 ` λx1q



ˆ t0u “ tp´λ
2
, 0qT u,
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namely λ “ ´2τ ą 0. In case τ ě 0, however, there is no λ ě 0 with p0, 0qT “ x̂τ P
argminpΦ` λΨq: On the one hand any λ ą 0 can not do the job, since argminpΦ`
λΨq “ tp´λ

2
, 0qT u S p0, 0qT for all λ P p0,`8q. On the other hand also λ “ 0 can

not do the job, since argminpΦ` 0Ψq “ argmin Φ “ tp0, 1qT u S p0, 0qT .

Regularity assumptions and the related Slater Condition

In part i) of Theorem 4.2.6 the condition

ripdom Φq X riplevτΨq “ H,

from [19, Theorem 23.8] was used as regularity assumption to ensure a certain amount of
overlapping between the sets dom Φ and levτΨ. In [5] we used a di�erent condition which,
however, implies our used condition; that condition was:

�Assume that there exists a point in dom ΦX levτΨ
where one of the functions Φ or ιlevτΨ is continuous.�1

Another related regularity assumptions is Slater's Constraint Quali�cation

Dx0 P dom Φ : Ψpx0q ă τ.

We will shortly discuss the relation between this Slater Condition and the �rst condition
for functions Ψ which additionally have an open e�ective domain dom Ψ. This additional
assumption has the following e�ect on part i) of Theorem 4.2.6: All minimizers of (P1,τ ) are
now automatically situated in intpdom Ψq and for real τ ą inf Ψ the regularity condition
ripdom ΦqX riplevτΨq “ H is equivalent to Slater's Constraint Quali�cation, by the subse-
quent lemma. In this case, the existence of a Lagrange multiplier λ ě 0 is also assured by
[19, Corollary 28.2.1]2 if we note [19, Theorem 28.1].

Dropping this additional assumption again and returning to our general setting in Theo-
rem 4.2.6 we note that it still might be possible to replace the �rst regularity assumption
by this Slater Condition; however the latter does in general no longer imply the �rst reg-
ularity assumption: The condition Ψpx0q ă τ in itself does not ensure x0 P riplevτΨq as
Fig. 4.2 shows. Imaging that we choose Φ now in a way such that dom Φ is a closed
triangle which has x0 as one of its vertices and that dom Φ intersects the sketched dom Ψ
only in x0. In particular dom Φ X levτΨ “ tx0u so that Slater's Condition is ful�lled
here, but our �rst regularity condition ripdom Φq X riplevτΨq “ H does not hold, since

1 We took that condition from the book of Ekeland � Témam, cf. [13, Proposition 5.6 on p. 26] with
caution in case F1 “ `8 and F2 “ ´8.

2 after resetting Φ to `8 outside of dom Ψ in order to achieve dom Φ Ď dom Ψ as demanded by
Rockafellar on p. 273; his other demand ripdom Φq Ď ripdom Ψ) is then automatically ful�lled since dom Ψ
is open here.
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x0 R riplevτΨq here. However, in situations where x0 P intpdom Ψq holds true in addition,
we have x0 P intpdom Ψq X levăτΨ “ riplevτΨq, by Theorem B.9 and we could state the
Theorem 4.2.6 also with the extended slater condition

Dx0 P dom Φ : x0 P intpdom Ψq and Ψpx0q ă τ

by the following Lemma:

Lemma 4.2.13. Let Φ,Ψ : Rn Ñ R Y t`8u be proper and convex functions and let
intpdom Ψq “ H. Then, for any τ P R, the following statements are equivalent:

i) τ ą inf Ψ and ripdom Φq X riplevτΨq “ H

ii) τ ą inf Ψ and there exists an x1 P dom ΦX levτΨ where Φ or ιlevτΨ is continuous.

iii) There is an x0 P dom Φ with x0 P intpdom Ψq and Ψpx0q ă τ .

iv) τ ą inf Ψ and dom ΦX intplevτΨq “ H.

Proof. iv) ñ iii) : Let x0 P dom ΦX intplevτΨq. Then x0 P dom Φ holds banally true. Due
to intpdom Ψq “ H we know that dom Ψ has full dimension n, so that Theorem B.9 yields
x0 P intplevτΨq “ riplevτΨq “ ripdom Ψq X levăτΨ “ intpdom Ψq X levăτΨ. iii) ñ ii) : Let
there exist x0 P dom Φ X intpdom Ψq with Ψpx0q ă τ. This assures directly τ ą inf Ψ. To
see the continuity of ιlevτΨ in x0 — x1, note that the convex function Ψ is continuous in
x0 P intpdom Ψq, assuring Ψpxq ă τ in a whole neighborhood of x0. ii)ñ i) : Let Φ or ιlevτΨ

be continuous in a point x1 P dom Φ X levτΨ. Then at least one of the nonempty, convex
sets A “ dom Φ or B “ levτΨ “ dom ιlevτΨ contains that common point in its interior;
say x1 P intpAq without loss of generality. Choosing any point y1 P ripBq, as permitted by
Theorem B.8, we have

zλ – p1´ λqy1 ` λx1 P ripBq

for all λ P r0, 1q, due to Theorem B.7. So we achieve zλ P ripBq X intpAq by choosing
λ P r0, 1q close enough to 1. In particular ripAq X ripBq “ H holds true. i) ñ iv): Let
x0 P ripdom Φq X riplevτΨq, where τ ą inf Ψ. Then x0 P dom Φ holds banally true. Using
Theorem B.9 we also obtain x0 P riplevτΨq “ intplevτΨq, again due to the fact that levτΨ
has the same full dimension n as dom Ψ.

4.3 Assisting theory with examples

This section provides tools which allow to transfer and re�ne the general relation between
SOLpP1,τ q and SOLpP2,λq, as stated in Theorem 4.2.6 resp. Corollary 4.2.7, to the more
special setting in Section 4.4 with homogeneous penalizers and constraints, resulting in our
main Theorem 4.4.6 of the last Section 4.4.

Among this current section's subsections
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Figure 4.2: Example where Ψpx0q ă τ does not imply x0 P riplevτΨq.

‚ 4.3.1 Convex functions and their periods space

‚ 4.3.2 Operations that preserve essentially smoothness

‚ 4.3.3 Operations that preserve decomposability into a innerly strictly convex and a
constant part

‚ 4.3.4 Existence and direction of argminpF `Gq for certain classes of functions

the last one is the most important one for that transferring; roughly speaking its Theorem
4.3.21 ensures, for given λ ą 0, that the value τ “ Ψppxq “ }Lpx} is independent from the
choice of px P SOLpP2,λq, if Φ is additionally essentially smooth and (essentially) strictly

convex on some a�ne subset qA of affpdom Φq. Demanding such essentially smoothness and
(essentially) strictness properties on Φ is done in the setting of the next section, so that
we can apply directly Theorem 4.3.21 for the primal problems in Subsection 4.4.1.

For the corresponding dual problems we likewise, for given τ , would like the value λ “
}pp}˚ to be independent from the choice of pp P SOLpD1,τ q. However we can not directly
apply Theorem 4.3.21 for the dual problems since here the more complicated, concatenated
function p ÞÑ Φ˚p´L˚pq— rΦppq needs to be considered. In Section 4.4 we will see that Φ˚

has similar essentially smoothness and strictness properties as Φ. So the question remains if
concatenation with a (not necessarily invertible) linear mapping preserve these properties.
Luckily this is the case if certain conditions hold true, see Theorem 4.3.12 and Theorem
4.3.16 in the second and third subsection, respectively.

For the proof of that helpful Theorem 4.3.16 or rather its Lemma 4.3.15 we will use The-
orems and Lemmata developed in Subsection 4.3.1.

4.3.1 Convex functions and their periods space

In this subsection we de�ne and deal with the periods space of a convex functions. The
notion of periods space is closely related to semidirect sums discussed in the previous
chapter: For a convex funtion F : Rn Ñ RYt`8u and any decomposition Rn “ X1‘X2 of
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its domain of de�nition into some subspace X2 Ď P rF s and some complementary subspace
X1 we can write F in the form F “ F1Z 0X2 with F1 “ F |X1 . In subsection 4.3.3 it will
be convenient to allow X1 to be also an a�ne subset of Rn. To this end we extend the
de�nition of semidirect sums from Section 3.3 as follows:

De�nition 4.3.1. Let a nonempty subset X Ď Rn have a direct decomposition X “ X1‘X2

into subsets X1, X2 Ď Rn. The semi-direct sum of functions F1 : X1 Ñ R Y t`8u,
F2 : X2 Ñ RY t`8u is the function F1ZF2, given by

pF1ZF2qpx1 ` x2q– F1px1q ` F2px2q

The next theorem shows that the periods of a convex function form a vector space. This
space is equal to the constancy space, de�ned by Rockafellar, see [19, p. 69].

Theorem 4.3.2 (and De�nition). Let X be a nonempty a�ne subset of Rn with under-
lying di�erence space U Ď Rn and let F : X Ñ R Y t`8u be a convex function. The
set

P rF s– tp P U : F px` pq “ F pxq for all x P Xu

“ tp P U : F px` pq “ F pxq for all x P affpdomF qu

of all periods of F then forms a vector subspace of U . We will call it periods space of F .

Proof. The sets are equal; note herein that in case x R affpdomF q the equation F px`pq “
F pxq is anyway ful�lled for all p P U , since then neither x nor x`p belong to affpdomF q, so
that F pxq “ `8 “ F px`pq. Next we prove that P rF s is a subspace of U by the Subspace
Criterion. Clearly 0 P P rF s. Furthermore P rF s is closed under addition: Let p1, p P P rF s
be arbitrarily chosen. Then F px1`p1`pq “ F px1`p1q “ F px1q for all x1 P X and therefore
p1` p P P rF s. Finally P rF s is closed under scalar multiplication: Let p P P rF s and x P X
be arbitrarily chosen. We have to show that F px` λpq “ F pxq for all λ P R, i.e. that the
function f : RÑ RY t`8u, given by fpλq– F px` λpq is constant. In case f ” `8 this
is clearly true. In case f ı `8 we choose any λ0 P dom f . Since p is a period of F all
values fpλ0 ` kq, where k P Z, equal fpλ0q ă `8. In particular we have λ0 ` k P dom f
for k P Z. Part ii) of Lemma B.1, applied to an “ λ0 ´ n, bn “ λ0 and cn “ λ0 ` n, where
n P N, now just says that the convex function f is constant on all Intervals rλ0´n, λ0`ns,
where n P N, and hence on whole R.

Lemma 4.3.3. Let X be a nonempty a�ne subset of Rn and let E : X Ñ RY t`8u be a
proper and convex function. For any decomposition affpdomEq “ Ǎ‘P̌ of affpdomEq— A
into some a�ne set Ǎ Ď Rn and some subspace P̌ of the periods space P rEs the following
holds true:

affpdomE|Ǎq “ Ǎ, domE “ domE|Ǎ ‘ P̌ (4.13)

intǍpdomE|Ǎq “ ripdomE|Ǎq, intApdomEq “ intǍpdomE|Ǎq ‘ P̌ (4.14)

Moreover all the sets in these equations are nonempty.

93



4. Penalizers and constraints in convex problems

Proof. Since E is proper we have H “ affpdomEq “ Ǎ‘ P̌ so that Ǎ “ H and P̌ “ H as
well. The inclusion domE|Ǎ‘P̌ Ď domE holds true since Epǎ`p̌q “ Epǎq “ E|Ǎpǎq ă `8
for all ǎ P domE|Ǎ and all p̌ P P̌ Ď P rEs. The reverse inclusion domE Ď domE|Ǎ ‘ P̌
holds also true, since every x P domE Ď affpdomEq “ Ǎ ‘ P̌ can be written in the form
x “ ǎ` p̌ with some p̌ P P̌ and ǎ P affpdomE|Ǎq, where we even have ǎ P domE|Ǎ, because
E|Ǎpǎq “ Epǎ` p̌q “ Epxq ă `8. Altogether we have

domE “ domE|Ǎ ‘ P̌,

where E ı `8 guarantees domE “ H, so that domE|Ǎ is nonempty, as well. Due to
the banal domE|Ǎ Ď Ǎ we get the inclusion affpdomE|Ǎq Ď affpǍq “ Ǎ, where actually
equality holds true, since (a slightly transposed) equation (B.11) in Theorem B.15 gives
on the one hand

affpdomE|Ǎq ‘ P̌ “ affpdomE|Ǎ ‘ P̌ q “ affpdomEq “ Ǎ‘ P̌

� whereas the assumption affpdomE|Ǎq Ă Ǎ would, on the other hand, result in the strict
subset relation affpdomE|Ǎq ‘ P̌ Ă Ǎ‘ P̌ , due to P̌ “ H. The therewith proven

affpdomE|Ǎq “ Ǎ

gives now directly
intǍpdomE|Ǎq “ ripdomE|Ǎq,

where these sets are nonempty by Theorem B.8 Using the latter equation and equation
(B.8) from Theorem B.15 we �nally obtain

intApdomEq “ ripdomEq “ ripdomE|Ǎ ‘ P̌ q “ ripdomE|Ǎq ‘ P̌ “ intǍpdomE|Ǎq ‘ P̌,

where intApdomEq “ H ensures that also intǍpdomE|Ǎq is non empty.

Theorem 4.3.4. Let F : Rn Ñ RYt`8u be a convex function, P̌ a subspace of the periods
space P rF s and Ǎ, Ã Ď Rn a�ne sets with Ǎ‘P̌ “ Ã‘P̌ . Then F̌ – F |Ǎ : ǍÑ RYt`8u
and F̃ – F |Ã : ÃÑ RY t`8u are the same mapping, except for an a�ne transformation
between their domain of de�nition: There is a bijective a�ne mapping α̃ : Ǎ Ñ Ã with
F̌ “ F̃ ˝ α̃, namely the mapping given by α̃pǎq “ α̃pã` p̌q– ã.

Proof. Due to Ǎ‘P̌ “ Ã‘P̌ every ǎ P Ǎ can be written in the form ǎ “ ǎ`0 “ ãpǎq`p̌pǎq
with uniquely determined ãpǎq P Ã and p̌pǎq P P̌ . Setting α̃pǎq – ãpǎq gives hence a well
de�ned mapping α̃ : ǍÑ Ã. Geometrically speaking each ǎ P Ǎ is projected parallel to P̌
to a point ã “ α̃pǎq P Ã. This mapping is bijective, since it is both injective and surjective:
Let α̃pǎ1q “ α̃pǎ2q for ǎ1, ǎ2 P Ǎ. Then ǎ1 ´ ǎ2 “ pα̃pǎ1q ` p̌pǎ1qq ´ pα̃pǎ2q ` p̌pǎ2qq “

0 ` p̌pǎ1q ´ p̌pǎ2q — p̌ P P̌ , so that ǎ2 ` p̌ “ ǎ1 ` 0. The directness of the sum Ǎ ‘ P̌
gives thus p “ 0, i.e. ǎ2 “ ǎ1. This shows that α̃ is injective. In order to prove the
surjectivity of α̃ let ã P Ã be given. Thanks to Ã‘ P̌ “ Ǎ‘ P̌ we can write ã in the form
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ã “ ã ` 0 “ ǎ˚ ` p̌˚ with some ǎ˚ P Ǎ and p̌˚ P P̌ . Rearranging the latter to ǎ˚ “ ã ´ p̌˚
gives ã “ α̃pǎ˚q. It remains to show that α̃ : Ǎ Ñ Ã is a�ne. To this end let t P R and
write arbitrarily chosen ǎ1, ǎ2 P Ǎ in the form

ǎ1 “ ã1 ` p̌1, ǎ2 “ ã2 ` p̌2

with ã1, ã2 P Ã and p̌1, p̌2 P P̌ . Then their a�ne combination

ǎ1 ` tpǎ2 ´ ǎ1q “ ã1 ` tpã2 ´ ã1q ` p̌1 ` tpp̌2 ´ p̌2q

is of the same form with ã1`tpã2´ã1q P Ã and p̌1`tpp̌2´p̌2q P P̌ , so that α̃pǎ1`tpǎ2´ǎ1qq “

ã1 ` tpã2 ´ ã1q “ α̃pǎ1q ` tpα̃pǎ2q ´ α̃pǎ1qq really holds true.

Remark 4.3.5. Let F : Rn Ñ R Y t`8u be a convex function. Every p P P rF s ful�lls
domF ` p “ domF .

The previous remark gave a necessary condition for p P P rF s. The following lemma gives
a su�cient condition. It says that, in case of a proper, lower semicontinuous and convex
function, we do not have to check the condition F px ` pq “ F pxq for all x P Rn in
order to prove p P P rF s: It already su�ces to �nd only one single a P domF such that
F px`pq “ F pxq for all x P a` spanppq. We note that it is even su�cient to �nd one single
a P domF such that F is bounded above on the line a ` spanppq by some real α; this is
ensured by [19, Corollary 8.6.1], which contains the next lemma as special case.

Lemma 4.3.6. Assume that a function F : Rn Ñ R Y t`8u from Γ0pRnq is constant on
a line or point a` spanppq Ď Rn which intersects domF . Then p P P rF s.

Proof. In case p “ 0 the assertion is clearly ful�lled. In the main case p “ 0 we have to
show that F is constant on every straight line x ` spanppq parallel, but not identical to
a ` spanppq. In case of F ” `8 we are done. In the remaining case F |x`spanppq ı `8

we consider F on the a�ne plane spanned by the non-identical, parallel straight lines
x` spanppq and a` spanppq, or rather only on the closed strip

Sx – coprx` spanppqs Y ra` spanppqsq

bounded by these lines. We perform our task in two steps: Firstly we will show that F is
constant on every straight line y ` spanppq in ripSxq “ Sxzprx` spanppqs Y ra` spanppqsq.
Secondly we carry this knowledge over to the bounding line x` spanppq of Sx. The whole
straight line a` spanppq belongs to dompF q as well as at least one point x1 P x` spanppq,
since F |x`spanppq ı `8. Using the convexity of domF we hence obtain

domF “ copdomF q Ě coptx1u Y ra` spanppqsq Ě ripSxq,

i.e. F takes only �nite values on every straight line y ` spanppq Ď ripSxq. Assume that F
is not constant on some line y ` spanppq Ď ripSxq, i.e. that there were parameters ť, t̂ P R
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4. Penalizers and constraints in convex problems

with F py ` ťpq ă F py ` t̂pq. De�ning the function Fy,p : R Ñ R via Fy,pptq – F py ` tpq
this reads Fy,ppťq ă Fy,ppt̂q. Since Fy,p is convex the equation (B.2) from Lemma B.1 would
yield

F py ` rp1´ λqť` λt̂spq “ Fy,ppp1´ λqť` λt̂q ě Fy,ppťq ` λpFy,ppt̂q ´ Fy,ppťqq Ñ `8

as λÑ `8. In particular there would exist t1, t2 P R such that

F py ` t2p
loomoon

—y2

q ą F py ` t1p
loomoon

—y1

q ě F paq “ F pa` tpq

for all t P R. So levF py1qpF q would contain not only the point y1 but also the straight line
a` spanppq. The convexity of levF py1qpF q would therefore give

levF py1qpF q “ coplevF py1qpF qq Ě copty1u Y ra` spanppqsq Ě ripSy1q “ ripSyq

with the nonempty closed strip Sy “ copry ` spanppqs Y ra ` spanppqsq. The lower-
semicontinuity of F ensures the closeness of levF py1qpF q so that

levF py1qpF q “ plevF py1qpF qq Ě ripSyq Ě y ` spanppq Q y2,

yielding F py2q ď F py1q which contradicts F py2q ą F py1q. So F is constant on every
straight line y ` spanppq in ripSxq, i.e. F py ` tpq “ F pyq for all t P R. Applying Theorem
B.4 to a P domF and an arbitrarily chosen x˚ “ x` t˚p P x` spanppq we see that

F px˚q “ lim
µÒ1

F pp1´ µqa` µx˚q “ lim
µÒ1

F pp1´ µqa` µx
looooooomooooooon

—yµ

` µt
loomoon

—tµ

pq.

The point yµ belongs to the relatively open strip ripSxq for all µ P p0, 1q, so that F is
constant on the straight line yµ ` spanppq. Therewith and by Theorem B.4 we obtain

F pyµ ` tµpq “ F pyµq “ F pp1´ µqa` µxq Ñ F pxq

as µ Ò 1. Altogether we have F px˚q “ F pxq for all point x˚ P x` spanppq.

Remark 4.3.7. Demanding that F is lower semicontinuous is important to ensure p P
P rF s as the following example shows: Consider the function F : R2 Ñ RY t`8u given by

F px1, x2q–

$

’

&

’

%

`8 for x1 ă 0

x2
2 for x1 “ 0

0 for x1 ą 0

.

and regard e.g. a “ p3, 0q and p “ p0, 4q. Then all assumptions are ful�lled, except for
the lower semicontinuity of F . Moreover the closed right half plane domF clearly ful�lls
domF “ domF ` p; however p R P rF s since F p0` pq “ F p0q.
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Theorem 4.3.8. Let E : X Ñ RYt`8u be a convex function, de�ned on an a�ne subset
X of Rn. For any a�ne subset A Ď X and its di�erence space U we have

P rEs X U Ď P rE|As.

We actually have P rEs X U “ P rE|As, if in addition E P Γ0rXs and AX domE “ H.

Before proving this theorem we show by two examples that both the lower semicontinuity
of E and the condition AXdomE “ H are essential to get the equality P rEsXU “ P rE|As.

Example 4.3.9.

i) Consider the function E : R3 Ñ RY t`8u given by

Epx1, x2, x3q–

$

’

&

’

%

x3 if x3 ą 0,

0 if x3 “ 0 and x2 “ 0,

`8 else .

E is obtained from the mapping R3 Ñ R, x ÞÑ x3 by restricting its e�ective domain
to the non-closed set domE “ Hą

e3,0
Yxe1y. The proper and convex function E is not

lower semicontinuous, so that E R Γ0pR3q. Both the x1x2 plane spante1, e2u— A and
its translate A0 ` e3 — A1 are a�ne subsets of R3 that intersect domE. Although
they have the same di�erence space U “ A the periods spaces P rE|As and P rE|A1s
are di�erent; more precisely

P rE|As “ P rEs X U Ă P rE|A1s

holds true: Clearly P rEs X U “ spanpe1q X A “ spanpe1q “ P rE|As. However
P rEs X U “ spanpe1q Ă spanpe1, e2q “ P rE|A1s.

ii) Consider the function E : R3 Ñ RY t`8u given by

Epx1, x2, x3q–

#

x3 if x3 ď 0 and x2 “ 0,

`8 else .

E is obtained from the mapping R3 Ñ R, x ÞÑ x3 by "restricting" it to the closed
half-plane domE “ tpx1, 0, x3q P R3 : x1 P R, x3 ď 0u. De�ning A,A1 and U as above
we have A X domE “ spanpe1q “ H but A1 X domE “ H. Clearly P rEs X U “

spanpe1q “ P rE|As. However P rEs X U “ spanpe1q Ă spanpe1, e2q “ U “ P rE|A1s,
since E|A1 ” `8.

Proof of Theorem 4.3.10. Let p P P rEs X U . Then

Epx` pq “ Epxq
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for all x P X. For all x P A we have x` p P A and hence

E|Apx` pq “ Epx` pq “ Epxq “ E|Apxq,

for all x P A Ď X. This shows P rEs X U Ď P rE|As. Let now the additional assumptions
be ful�lled and let p P P rE|As. Then p P U . Since E|A ı `8, and Epx ` pq “ Epxq for
all x P A we see by part ii) of Lemma B.1 that E is in particular constant on any line
a ` spanppq, a P A which intersects the nonempty set domE|A. Lemma 4.3.6 gives thus
p P P rEs so that p P P rEs X U . This shows that also the reversed inclusion P rE|As Ď
P rEs X U holds true under the additional assumptions.

4.3.2 Operations that preserve essentially smoothness

Roughly speaking essential smoothness is preserved when performing the following oper-
ations on an essentially smooth function H : A Ñ R Y t`8u, de�ned on some a�ne
subspace A of Rn:

‚ Restrictions H|
qA to an a�ne subspace qA of A which intersects ripdomHq

‚ Extensions F of H of the form F “ H Z 0
qP

‚ Forming concatenations F “ H ˝M with a linear mapping whose range intersects
ripdomHq,

see Lemma 4.3.10, Lemma 4.3.11 and Theorem 4.3.12.

Lemma 4.3.10. Let A be an a�ne subspace of Rn and F : AÑ RY t`8u be essentially
smooth. The restriction F |Ǎ of F to an a�ne set Ǎ Ď A stays essentially smooth, if Ǎ
intersects ripdomF qr“ intApdomF qs.

The condition Ǎ X ripdomF q “ H is essential to preserve the essential smoothness when
restricting F to Ǎ. Cf. example 4.3.13.

Proof of Lemma 4.3.10. By de�nition of �essentially smooth�, cf. [19, p. 251] and nearby
explanations, see [19, Lemma 26.2] and cf. [19, p. 213] we have

aq intApdomF q “ H,

bq F is di�erentiable in every x P intApdomF q “ ripdomF q and

cq the directional derivative F 1px ` λpa ´ xq; a ´ xq Ñ ´8 as λ Œ 0 for every x P
BApdomF q “ rbpdomF q and every a P intApdomF q “ ripdomF q
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Set F̌ – F |Ǎ. Then dom F̌ “ Ǎ X domF , so that equation (B.7) in Theorem B.10 gives
affpdom F̌ q “ Ǎ X affpdomF q “ Ǎ X A “ Ǎ, ensuring intǍpdom F̌ q “ ripdom F̌ q and thus
BǍpdom F̌ q “ rbpdom F̌ q. Equation (B.4) of the same theorem gives

ǎq intǍpdom F̌ q “ ripdom F̌ q “ ripǍX domF q “ ǍX ripdomF q “ H.

Due to intǍpdom F̌ q “ ǍX ripdomF q Ď ripdomF q “ intApdomF q we know that

b̌q F̌ “ F |Ǎ is di�erentiable in every x P intǍpdom F̌ q.

Since equation (B.6) from Theorem B.10 ensures BǍpdom F̌ q “ rbpdom F̌ q “ rbpǍ X
domF q “ ǍX rbpdomF q Ď rbpdomF q “ BApdomF q we �nally � still � have

čq F̌ 1px ` λpa ´ xq; a ´ xq “ F 1px ` λpa ´ xq; a ´ xq Ñ ´8 as λ Œ 0 for every
x P BǍpdom F̌ q Ď BApdomF q and every a P intǍpdom F̌ q Ď intApdomF q.

Therefore F |Ǎ “ F̌ is essentially smooth.

Lemma 4.3.11. Let F : Rn Ñ R Y t`8u be a convex function and let affpdomF q be
decomposed as direct sum affpdomF q “ Ǎ‘ P̌ of some a�ne subspace Ǎ of Rn and some
vector subspace P̌ of the periods space P rF s. Then the following are equivalent:

i) F is essentially smooth on Ǎ‘ P̌ “ affpdomF q.

ii) F is essentially smooth on Ǎ.

Proof. Assume without loss of generality that Ǎ is placed in a way that it even is a vector
subspace of Rn and set A– Ǎ‘ P̌ “ affpdomF q “ spanpdomF q, f – F |A and f̌ – F |Ǎ.
We are going to show the following:

intApdom fq “ H ô intǍpdom f̌q “ H, (4.15)

f is di�erentiable in every a P intApdom fq

õ (4.16)

f̌ is di�erentiable in every ǎ P intǍpdom f̌q.

In case that f and f̌ are di�erentiable in intApdom fq and in intǍpdom f̌q, respectively, we
will �nally show

}Df |ak}AÑR Ñ `8 for all pakqk P BSpdom fq

õ (4.17)

}Df̌ |ǎk}ǍÑR Ñ `8 for all pǎkqk P BSpdom f̌q
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where BSpdom fq consists of those convergent sequences in intApdom fq whose limit point
belongs to the relative boundary BApdom fq. BSpdom f̌q is de�ned accordingly.
Note �rst that dom f “ dom f̌ ‘ P̌ gives by Theorem B.15 the equality Ǎ ‘ P̌ “ A “

affpdom fq “ affpdom f̌q ‘ P̌ . Using Ǎ Ě affpdom f̌q we hence get Ǎ “ affpdom f̌q. By the
very same theorem we obtain analogously BApdom fq “ rbpdom f̌ ‘ P̌ q “ rbpdom f̌q‘ P̌ “
BǍpdom f̌q‘ P̌ and intApdom fq “ ripdom f̌ ‘ P̌ q “ ripdom f̌q‘ P̌ “ intǍpdom f̌q‘ P̌ . The
latter equality already shows that (4.15) is true. In order to prove (4.16) we will make use
of unique decompositions a “ ǎ ` p and h “ ȟ ` q of a, h P A into ǎ, ȟ P Ǎ and p, q P P̌ .
Assume �rst the di�erentiability of f in an arbitrarily chosen a P intApdom fq; i.e. that
there exists a (unique) linear mapping Df |a : AÑ R and a function ra : AÑ R, which is
both continuous in 0 and ful�lls rap0q “ 0, such that

fpa` hq “ fpaq `Df |aphq ` raphq}h}

for all su�ciently small h P A. For any ǎ P intǍpdom f̌q we have ǎ “ ǎ`0 P intǍpdom f̌q‘
P̌ “ intApdom fq. So the latter formula stays valid for a “ ǎ and all su�ciently small
h “ ȟ P Ǎ Ď A. Therefore f̌ “ f |Ǎ is also di�erentiable with Df̌ |ǎpȟq “ Dfapȟq for
all ȟ P Ǎ. Assume now to the contrary the di�erentiability of f̌ in an arbitrarily chosen
ǎ P intǍpdom f̌q; i.e. that there is a (unique) linear mapping Df̌ |ǎ : ǍÑ R and a function
řǎ : ǍÑ R, which is both continuous in 0 and ful�lls řǎp0q “ 0, such that

f̌pǎ` ȟq “ f̌pǎq `Df̌ |ǎpȟq ` řǎpȟq}ȟ}

for all su�ciently small ȟ P Ǎ. Any a P intApdom fq “ intǍpdom f̌q ‘ P̌ can be written
uniquely as a “ ǎ` p with ǎ P intǍpdom f̌q. For h “ 0 the translational symmetry of f in
directions of P̌ therefore gives

fpa` hq “ f̌pǎ` ȟq

“ f̌pǎq `Df̌ |ǎpȟq ` řǎpȟq}ȟ}

“ fpaq ` Df̌ |ǎpȟq
looomooon

—Lapȟ`qq“Laphq

` řǎpȟq
}ȟ}

}h}
looomooon

—rapȟ`qq“raphq

}h}.

Clearly La : A Ñ R is a linear mapping; so we need only to show that extending ra :
Azt0u Ñ R via rap0q – 0 yields a function A Ñ R which is continuous in 0. Lemma

A.2 says that there is a constant C ą 0 such that }ȟ}
}h}

“
}ȟ}

}ȟ`q}
ď C. Consequently

|raphq| “ |rapȟ ` qq| ď C|řǎpȟq| Ñ 0 as h Ñ 0 (i.e. as the components ȟ, q Ñ 0). Thus f
is di�erentiable in a and

Df |aphq “ Lapȟ` qq “ Df̌ |ǎpȟq.

We �nally proof that (4.17) holds true (under the there stated di�erentiability assumption).
For these purpose we will use the found relation between the derivatives of f and f̌ . For
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any a “ ǎ ` p P intǍpdom f̌q ‘ P̌ “ intApdom fq we have |Df̌ |ǎpȟq| “ |Df |apȟq| for all
ȟ P Ǎ with }ȟ} “ 1. In particular }Df̌ |ǎ}ǍÑR ď }Df |a}AÑR on the one hand. Using again
the inequality }ȟ} ď C}ȟ ` p} “ C}h} from Lemma A.2 we get |Df |aphq| “ |Df̌ |ǎpȟq| ď
}Df̌ |ǎ}ǍÑR}ȟ} ď C}Df̌ |ǎ}ǍÑR}h} for all h P A, so that }Df |a}AÑR ď C}Df̌ |ǎ}ǍÑR on the
other hand. Noting that the constant C does not depend on the choice of a we have in
total

}Df̌ |ǎ}ǍÑR ď }Df |a}AÑR ď C}Df̌ |ǎ}ǍÑR

for all a “ ǎ ` p P A. Therefrom and by using BApdom fq “ BǍpdom f̌q ‘ P̌ and
intApdom fq “ intǍpdom f̌q ‘ P̌ we �nally obtain (4.17).

Theorem 4.3.12. Let the convex function E : Rn Ñ R Y t`8u be essentially smooth
on affpdomEq and let M : Rm Ñ Rn be a linear mapping whose range RpMq intersects
ripdomEq. Then the concatenation F – E˝M : Rm Ñ RYt`8u is convex and essentially
smooth on affpdomF q.

Proof. The linearity of M transfers the convexity of E to F . Consider the restricted
functions Ě – E|RpMq and F̌ – F |RpM˚q. Since RpMq X ripdomEq “ H we can apply
Lemma 4.3.10 to see that Ě is essentially smooth on

ǍE – RpMq X affpdomEq “ affpRpMq X domEq “ affpdom Ěq,

where RpMq X affpdomEq “ affpRpMq X domEq holds true by Theorem B.10. The
equation

F̌ “ Ě ˝ M̌,

where M̌ –M |RpM˚q, elucidates that F̌ and Ě are the very same mapping � except for the
bijective linear transformation M̌ : RpM˚q Ñ RpMq between their domains of de�nition.
Hence F̌ is likewise essentially smooth on

M̌´1
rǍEs “ M̌´1

raffpdom Ěqs “ affpM̌´1
rdom Ěsq “ affpdom F̌ q— ǍF .

Applying Lemma 4.3.11 to F , ǍF – affpdom F̌ q “ RpM˚q X affpdomF q and P̌ – N pMq
we �nally see that F is essentially smooth on affpdomF q “ affpdom F̌ q ‘ N pMq, since
F |Ǎ “ F̌ is essentially smooth on affpdom F̌ q; note here that the validity of affpdomF q “
affpdom F̌ ‘N pMqq “ affpdom F̌ q ‘N pMq is guaranteed by Theorem B.15.

We give two related examples to illustrate the role of the assumption RpMqX ripdomEq “
H. Although we start with an example where this assumption is not ful�lled but where
E ˝M is never the less again essentially smooth, we will see in the second example that we
in general can not replace that assumption by the weaker assumption RpMqXdomE “ H.
We use the notationsH andQ for the open upper half plane tw P R2 : w2 ą 0u Ď R2 “ C
and the �rst open quadrant tz P R2 : z1 ą 0, z2 ą 0u Ď C, respectively.

101



4. Penalizers and constraints in convex problems

0
0.5

1
1.5

2
2.5

3

0

1

2

3

−3

−2.5

−2

−1.5

−1

−0.5

0

0
0.5

1
1.5

2
2.5

3

0

1

2

3

−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 4.3: Graphs and contour lines of Eα or rather gα. Left for α “
1
4 P p0,

1
2 q and right for the border

case α “ 1
2 , where }∇gαpz

pkqq}2 Ñ `8 for all boundary points z “ limkÑ`8 z
pkq of domE 1

2
, except the

origin p0, 0q. For better quality of the plot a smaller step size was used near the X-axis and the Y-axis,
where the norm of the gradient of gα is large.

Example 4.3.13. Consider �rst the function g̃α : H Ñ R Y t`8u on the closed upper
half plane H, de�ned by g̃αpwq – ´wα2 “ ´p=pwqqα, with some parameter α P p0,`8q.
Continuing g̃α by setting

Ẽαpwq–

#

g̃αpwq “ ´w
α
2 for w P H

`8 for w P R2zH

we obtain a function Ẽα : R2 Ñ R Y t`8u, which is convex and essentially smooth for
α P p0, 1q. Concatenation with the linear projection M : R2 Ñ R ˆ t0u, Mpzq – pz1, 0q
yields the mapping F̃α “ Ẽα ˝M ; here F̃αpzq “ 0 for all z P R2 elucidates that F̃α is both
convex and essentially smooth, although RpMq does not intersect H “ ripdom Ẽαq.

The essentially smoothness will, however, be no longer preserved by concatenation with M
if we transform g̃α's domain of de�nition, i.e. the upper closed half plane H Ď R2 “ C,
to the �rst closed quadrant Q by means of the bijective mapping h : Q Ñ H, given by
hpzq – 1

2
z2 “ p1

2
pz2

1 ´ z2
2q, z1z2q: The function gα – g̃α ˝ h : Q Ñ H, where gαpzq “

´pz1z2q
α “ ´zα1 z

α
2 and α P p0,`8q, is in�nitely di�erentiable in Q and continuous in Q.

Its Hessian

Hα|z “ αzα´2
1 zα´2

2

ˆ

p1´ αqz2
2 ´αz1z2

´αz1z2 p1´ αqz2
1

˙

is positive de�nite for all z P Q, if α P p0, 1
2
q by virtue of Sylvester's criterion. Therefore

the continuous function gα is strictly convex in Q and convex in Q for α P p0, 1
2
q. For

these α we furthermore have }∇gαpzpkqq}2 Ñ `8 as k Ñ `8 for any sequence pzpkqqkPN
in Q, converging to some boundary point zp8q of Q, see Detail 17. Altogether we see that
continuing gα by setting

Eαpzq–

#

gαpzq “ ´z
α
1 z

α
2 if z P Q

`8 if z P R2zQ
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leads to a function Eα : R2 Ñ R Y t`8u which is convex and essentially smooth for
α P p0, 1

2
q. However Fα “ Eα ˝ M “ ιr0,`8qˆR is not essentially smooth; here RpMq

indeed intersects only domEα but not the relative interior of this e�ective domain, which
is consistent with Theorem 4.3.12.

4.3.3 Operations that preserve decomposability into a innerly

strictly convex and a constant part

Before giving an overview over the current subsection we need to introduce a manner of
speaking, in which we use the extension of semidirect sums F1ZF2 from De�nition 4.3.1.

De�nition 4.3.14. Let X1 be a nonempty a�ne subset of Rn. We call a function E1 :
X1 Ñ R Y t`8u innerly stricly convex i� E1 is strictly convex in ripdomE1q “

intaffpdomE1qpdomE1q. Any semi-direct sum E “ E1ZE2 : X Ñ R Y t`8u of an innerly
strictly convex function E1 : X1 Ñ RYt`8u and some constant function E2 : X2 Ñ R, de-
�ned on some vector subspace X2 will also be called decomposition of E into an innerly
strictly convex part E1 and a constant part E2.

Roughly speaking we show in this subsection that the following operations on a proper
convex and lower semicontinuous function E : X Ñ RY t`8u yield a new function which
still has a decomposition into an innerly strictly convex part and a constant part:

‚ Restrictions E|B to an a�ne subspaceB Ď A— affpdomEq which intersects ripdomEq,

‚ Forming concatenations F “ E ˝M with a linear mapping whose range intersects
ripdomEq,

see Lemma 4.3.15 and Theorem 4.3.16, respectively.

Lemma 4.3.15. Let E : X Ñ R Y t`8u be a proper, convex and lower semicontinuous
function on some nonempty a�ne subset X Ď Rn and let there exist a decomposition
affpdomEq “ Ǎ‘ P̌ of affpdomEq— A into a subspace P̌ of P rEs and an a�ne subspace
Ǎ Ď Rn such that E is strictly convex on intǍpdomE|Ǎq. Then

i) In fact we even have P̌ “ P rEs.

ii) Any a�ne subset B Ď A that intersects ripdomEq has a decomposition B “ B̌ ‘ Q̌
into a vector subspace Q̌ Ď P̌ “ P rEs and some a�ne subspace B̌ Ď Rn such that E
is strictly convex on intB̌pdomE|B̌q.

Moreover intǍpdomE|Ǎq “ ripdomE|Ǎq and intB̌pdomE|B̌q “ ripdomE|B̌q are nonempty
sets.
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4. Penalizers and constraints in convex problems

Proof. Since E is proper and convex we have Ǎ “ H and intǍpdomE|Ǎq “ ripdomE|Ǎq “
H by Lemma 4.3.3. Due to BXripdomEq “ H the function E|B is still proper and convex;
so the same Lemma gives also B̌ “ H and intB̌pdomE|B̌q “ ripdomE|B̌q “ H.

i) Since P̌ is a subspace of the periods space P rEs we clearly have P̌ Ď P rEs. The reverse
inclusion P rEs Ď P̌ also holds true: Let p P P rEs and chose any a0 P intǍpdomE|Ǎq and
think of it as new origin. Since Epa0 ` pq “ Epa0q ă `8 we have a0 ` p P domE Ď

affpdomEq “ Ǎ ‘ P̌ , so that a0 ` p “ ǎ ` p̌, for some ǎ P Ǎ and p̌ P P̌ . Hence ǎ ´ a0 “

p ´ p̌ P P rEs. The a�ne combination a0 ` λpǎ ´ a0q still belongs to Ǎ for all λ P R and
hence even to intǍpdomE|Ǎq for all su�ciently small chosen λ ą 0. Choose such a λ ą 0
and consider the possibly degenerated line segment copa0, a0`λpǎ´a0qq Ď intǍpdomE|Ǎq.
On the one hand E is strictly convex on the latter set and hence on our line segment. On
the other hand ǎ´ a0 P P rEs means that E is constant on this line segment. Both can be
true only if our line segment is degenerated to one single point, i.e. if a0 “ a0 ` λpǎ´ a0q.
This gives 0 “ ǎ´ a0 “ p´ p̌, so that indeed p “ p̌ P P̌ .

ii) Let b0 P B X ripdomEq “ ripdomE XBq “ ripdomE|Bq, where we used Theorem B.10.
Without loss of generality we may assume b0 “ 0; otherwise we could replace E by Ep¨´b0q

without changing the truth value of the other assumptions and assertions of the lemma.
By Theorem 4.3.8 and the already proven part i) we then have

Q̌– P rE|Bs “ P rEs XB Ď P rEs “ P̌.

Choose now �rstly any subspace B̌ of B with B “ B̌ ‘ Q̌, then some subspace Q1 of
P rEs “ P̌ with P̌ “ Q̌‘Q1 and �nally some subspace B1 of A with

A “ B1 ‘ pB̌ ‘ Q̌‘Q1q “ B1 ‘ B̌
loomoon

—Ã

‘ Q̌‘Q1
loomoon

“P̌

.

By Theorem 4.3.4 we know that Ě – E|Ǎ and Ẽ – E|Ã are the very same mapping,
except for a bijective a�ne transformation α̃ : ǍÑ Ã between their domains of de�nitions,
which links these functions via Ě “ Ẽ ˝ α̃. Consequently Ě is strictly convex on a subset
Š Ď Ǎ if and only if Ẽ is strictly convex on α̃rŠs — S̃. Choosing Š – intǍpdom Ěq “
intǍpdomE|Ǎq we see that Ẽ is strictly convex on α̃rintǍpdom Ěqs “ intÃpα̃rdom Ěsq “
intÃpdom Ẽq “ intÃpdomE|Ãq. So B “ B̌ ‘ Q̌ would give the needed decomposition,
if intB̌pdomE|B̌q Ď intÃpdomE|Ãq can be veri�ed. Due to B̌ Ď Ã it su�ces to show
intB̌pdomE|B̌q “ ripdomEq X B̌ and intÃpdomE|Ãq “ ripdomEq X Ã. In order to prove
the �rst equation we note that B̌ intersects ripdomEq in b0 “ 0 so that equation (B.7) in
Theorem B.10 gives affpdomE|B̌q “ affpdomE X B̌q “ affpdomEq X B̌ “ B̌. Therefore
and by equation (B.4) in Theorem B.10 we indeed get intB̌pdomE|B̌q “ ripdomE|B̌q “
ripdomEX B̌q “ ripdomEqX B̌. Just analogously we obtain intÃpdomE|Ãq “ ripdomEqX
Ã.

Theorem 4.3.16. Let E : Rn Ñ RYt`8u be proper, convex as well as lower semicontin-
uous and let M : Rm Ñ Rn be a linear mapping whose range RpMq intersects ripdomEq.
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4.3 Assisting theory with examples

Assume further that there exists a decomposition

affpdomEq “ ǍE ‘ P̌E

of affpdomEq into a subspace P̌E of P rEs and an a�ne subspace ǍE Ď Rn such that E is
strictly convex on intǍEpdomE|ǍEq. Then the function F – E ˝M : Rm Ñ R Y t`8u is
again proper, convex and lower semicontinuous and there exists a decomposition

affpdomF q “ ǍF ‘ P̌F

of affpdomF q into a subspace P̌F of P rF s and an a�ne subspace ǍF Ď Rm such that F is
strictly convex on intǍF pdomF |ǍF q.

Remark 4.3.17. Note that Lemma 4.3.3 implies that all sets that occur in the above
theorem are nonempty.

Proof of Theorem 4.3.16. The mapping F “ E ˝M is surely again convex and lower semi-
continuous. Due to RpMq X domE Ě RpMq X ripdomEq ‰ H it is also again proper.
Since Rm “ RpM˚q ‘N pMq and since clearly N pMq Ď P rF s we have

domF “ domF |RpM˚q ‘N pMq.

It su�ces to prove that there is a decomposition

affpdomF |RpM˚qq “ ǍF ‘QF (4.18)

with a subspace QF Ď P rF |RpM˚qs and some a�ne subset ǍF Ď Rm, such that F is strictly
convex on intǍF pdomF |ǍF q, since this decomposition then yields, by virtue of equation
(B.11) in Theorem B.15, the needed decomposition

affpdomF q “ affpdomF |RpM˚q ‘N pMqq
“ affpdomF |RpM˚qq ‘N pMq
“ ǍF ‘QF ‘N pMq

loooooomoooooon

—P̌F

;

note herein that not only N pMq is a subspace of P rF s but also QF : Let q P QF Ď

P rF |RpM˚qs and write every x
1 P affpdomF q in the form x1 “ a1`q1`n1 with a1 P ǍF , q

1 P QF

and n1 P N pMq Ď P rF s. Since a1 ` q1 P affpdomF |RpM˚qq we then indeed obtain

F px1 ` qq “ F pa1 ` q1 ` q ` n1q “ F pa1 ` q1 ` qq

“ F pa1 ` q1q “ F pa1 ` q1 ` n1q “ F px1q

for every x1 P affpdomF q, i.e. q P P rF s. In order to prove that a decomposition as in
(4.18) really exists we consider the restricted functions F̃ – F |RpM˚q, Ẽ – E|RpMq and

105



4. Penalizers and constraints in convex problems

M̃ – M |RpM˚q. The equation F̃ “ Ẽ ˝ M̃ then elucidates that F̃ and Ẽ are the very

same mapping � except for the linear homeomorphism M̃ : RpM˚q Ñ RpMq between their
domains of de�nition. Hence our task to prove that there is a decomposition as in (4.18)
is equivalent to prove that there exists a decomposition

affpdomE|RpMqq “ B̌E ‘QE

of affpdomE|RpMqq into a subspace QE Ď P rE|RpMqs and some a�ne subset B̌E Ď Rn such
that E is strictly convex on intB̌EpdomE|B̌Eq. To this end we set

B – affpdomE|RpMqq “ affpRpMq X domEq “ RpMq X affpdomEq Ď affpdomEq— A,

where we have used again equation (B.7). The decomposition A “ ǍE ‘ P̌E ful�lls the
assumption of Lemma 4.3.15. Part ii) of this lemma gives now a decomposition

affpdomE|RpMqq “ B̌ ‘ Q̌,

where B̌ Ď Rn is an a�ne subset such that E is strictly convex on intB̌EpdomE|B̌Eq and

where Q̌ Ď P̌E Ď P rEs. Setting B̌E – B and QE – Q̌ we are done, since the demanded
Q̌ Ď P rE|RpMqs really holds true: Due to the banal b` Q̌ Ď B̌‘ Q̌ Ď affpdomE|RpMqq “ B
for any b P B̌ Ď B we see that Q̌ is a subspace of B's di�erence space B´ b— U . Thereby
and by Theorem 4.3.8 we now indeed obtain Q̌ “ Q̌X U Ď P rEs X U Ď P rE|Bs.

4.3.4 Existence and direction of argminpppF `̀̀ Gqqq for certain classes

of functions

The next lemma gives a necessary criterion in order to ensure that a function of the form
F `G has a minimizer. The core of the proof consists in showing that the convex function
F `G has a bounded nonempty level set, i.e. is coercive. The inequality from Lemma A.2
helps in part ii)

Lemma 4.3.18. Let Rn be decomposed as direct sums Rn “ U1 ‘ U2 and Rn “ V1 ‘ V2

of vector subspaces U1, U2 and V1, V2, respectively. Let F,G P Γ0pRnq be functions which
inhere the translation invariances

F pxq “ F px` u2q,

Gpxq “ Gpx` v2q

for all x P Rn, u2 P U2 and v2 P V2. Then the following holds true for levels α, β P R:

i) levαpF q X levβpGq is empty or unbounded, if U2 X V2 Ą t0u.

ii) levαpF q X levβpGq is bounded (possibly empty), if U2 X V2 “ t0u, and levαpF |U1q,
levβpG|V1q are bounded.

106



4.3 Assisting theory with examples

iii) F`G takes its minimum in R, if domFXdomG “ H, U2XV2 “ t0u and levαpF |U1q,
levβpG|V1q are nonempty and bounded. Moreover the set argminpF`Gq of minimizers
is compact in this case.

Proof. We use the abbreviations f – F |U1 and g – G|V1 .

i) Since in case of levαpF q X levβpGq “ H there is nothing to show, we assume that there
is a z1 P levαpF q X levβpGq. Choose any z2 P U2 X V2 with z2 “ 0. Due to z1 ` λz2 P

levαpF q X levβpGq for all λ P R, a whole a�ne line is contained in levαpF q X levβpGq. So
the latter set is unbounded.

ii) Let U2 X V2 “ t0u and let levαpfq, levβpgq be bounded. If the set levαpF q X levβpGq
was unbounded, it would contain an unbounded sequence of points zpkq, k P N. Due to
levαpF q “ levαpfq ‘ U2 and levβpGq “ levβpgq ‘ V2 the zpkq could be written in the form

zpkq “ u
pkq
1 ` u

pkq
2 “ v

pkq
1 ` v

pkq
2 with �rst components u

pkq
1 P levαpfq, v

pkq
1 P levβpgq, forming

bounded sequences, and second components u
pkq
2 P U2, v

pkq
2 P V2, forming unbounded

sequences. Lemma A.2 ensures that there is a constant C ą 0 such that }u
pkq
2 ´ v

pkq
2 } ě

C´1}u
pkq
2 } for all k P N. The unboundedness of the sequence p}u

pkq
2 }qkPN along with the

boundedness of the sequences p}u
pkq
1 }2qkPN and p}v

pkq
1 }2qkPN would therefore result in

0 “ }zpkq ´ zpkq}2 “ }u
pkq
1 ´ v

pkq
1 ` u

pkq
2 ´ v

pkq
2 }2 ě }u

pkq
2 ´ v

pkq
2 }2 ´ }u

pkq
1 ´ v

pkq
1 }2

ě C´1
}u
pkq
2 }2 ´ p}u

pkq
1 }2 ` }v

pkq
1 }2q Ñ `8

� a contradiction.
iii) Since the level sets levαpfq and levβpgq of the proper, convex and lower semicontinuous
functions f, g are nonempty and bounded we know that all level sets of f and g are
bounded, cf. [19, Corollary 8.7.1]. Since domF X domG “ H there are levels α̃, β̃ P R
with levα̃pF q X levβ̃pGq “ H. The bounded sets levα̃pfq and levβ̃pgq are nonempty, due
to levα̃pfq ‘ U2 “ levα̃pF q “ H and levβ̃pgq ‘ V2 “ levβ̃pGq “ H. Consequently f and
g are bounded from below, see Detail 18. Without loss of generality we may therefore
assume f ě 0 and g ě 0 (otherwise we can set mf – infu1PU1 fpu1q, mg – infv1PV1 gpv1q

and replace f , F , α̃ and g, G, β̃ by f ´ mf , F ´ mf , α̃ ´ mf and g ´ mg, G ´ mg,
β̃ ´ mg, respectively), i.e. F ě 0 and G ě 0. Next we show that levα̃`β̃pF ` Gq is a
nonempty compact set. We have levα̃`β̃pF ` Gq Ě levα̃pF q X levβ̃pGq “ H. Furthermore
levα̃`β̃pF `Gq is closed due to being a level set of a lower semicontinuous function. Lastly
levα̃`β̃pF`Gq Ď levα̃`β̃pF qXlevα̃`β̃pGq is bounded by (ii), since the needed boundedness of
levα̃`β̃pfq and levα̃`β̃pgq is only a special case of the already mentioned level boundedness of
f and g and therewith ensured. Hence levα̃`β̃pF`Gq is non empty and compact. Therefore
the (proper) lower semicontinuous function pF `Gq|levα̃`β̃pF`Gq

“ F `G` ιlevα̃`β̃pF`Gq
must

be minimized by an ǔ P levα̃`β̃pF `Gq, see [20, 1.10 Corollary] or Theorem 2.5.11, which

clearly also minimizes F ` G. Finally we set γ – F pǔq ` Gpǔq P p´8, α̃ ` β̃s and note
that argminpF ` Gq “ levγpF ` Gq is a closed subset of the compact set levα̃`β̃pF ` Gq
and hence itself compact.
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4. Penalizers and constraints in convex problems

Next we are interested in the direction of argminpF `Gq. We will see that � under certain
assumptions � we have pargminpF ` Gq ´ argminpF ` Gqq Ď P rF s, which is the core
ingredient to see that F and G are constant on argminpF `Gq.

Lemma 4.3.19. Let the Euclidean space Rn be decomposed into the direct sum Rn “ U1‘U2

of two subspaces U1, U2 and let F : Rn Ñ R Y t`8u be a convex function which inheres
the translation invariance F pxq “ F px ` u2q for all x P Rn and u2 P U2. Furthermore, let
G : Rn Ñ RY t`8u be any convex function. Then the following holds true:

i) If domFXdomG “ H and F is strictly convex on U1 then all x̂, x̃ P argminxPRntF pxq`
Gpxqu ful�ll x̂´ x̃ P U2 and F px̂q “ F px̃q, Gpx̂q “ Gpx̃q.

ii) If ripdomF q X ripdomGq “ H and F is essentially smooth on U1 and strictly con-
vex on ripdomF X U1q then argminxPRnpF pxq ` Gpxqq Ď ripdomF q and all x̂, x̃ P
argminxPRntF pxq `Gpxqu ful�ll x̂´ x̃ P U2 and F px̂q “ F px̃q, Gpx̂q “ Gpx̃q.

Before proving this lemma we illustrate that in general we really need to require F to be
essentially smooth, in order to guarantee the assertions of part ii)
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Figure 4.4: Up: Graph of h and F , Down: argminphq “ r´1, 1s ˆ t0u and some other level sets of h

Example 4.3.20. The shifted Euclidean norm hb : R2 Ñ R given by hbpxq – }x ´ b}2,
where b P R2 is strictly convex on every straight line which does not meet b, by Lemma B.2.
Set b “ p1, 0qT and b1 “ ´b “ p´1, 0qT and consider the function h : R2 Ñ R given by

hpxq “ hbpxq ` hb1pxq “ }x´ b}2 ` }x´ b
1
}2.
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The only straight line which meets both b and b1 is affptb, b1uq “ R ˆ t0u. Therefore h
is strictly convex on all other straight lines in R2, c.f. also Figure 4.4. In particular h is
strictly convex in the open upper half plane H – tx P R2 : x2 ą 0u. Set U1 – R2, U2 – t0u
and consider the functions F,G : R2 Ñ RY t`8u given by

F pxq–

#

hpxq ` x1 for x P H
`8 for x P R2zH

, Gpxq– ´x1

Then all general assumptions of Lemma 4.3.19 are ful�lled just as the assumptions of part
ii) � except that F is not essentially smooth on U1 “ R2; note here that h is continuously
di�erentiable in R2ztb, b1u, so that choosing any boundary point x P B domF “ BH “ R ˆ
t0u, which is di�erent from b and b1, we have limnÑ8 }∇F pxnq}2 “ }∇hpxq`p1, 0qT }2 “ `8
for any sequence pxnqnPN in intpdomF q “ H, which converges to x.

We have argmintF ` Gu “ argminh “ r´1, 1s ˆ t0u here, so that argmintF ` Gu X
ripdomF q “ H. Moreover the minimizers x̂ “ p1, 0qT and x̃ “ p´1, 0qT neither ful�ll
x̂´ x̃ P U2 nor F px̂q “ F px̃q, Gpx̂q “ Gpx̃q.

Proof of Lemma 4.3.19. i) First we prove that for any x, y P domF and the line segment
lpx, yq– tx` tpy ´ xq : t P r0, 1su the following statements are equivalent:

a) F
ˇ

ˇ

lpx,yq
is constant,

b) F
ˇ

ˇ

lpx,yq
is a�ne,

c) y ´ x P U2.

We use the unique decompositions x “ x1`x2, y “ y1`y2 with x1, y1 P U1 and x2, y2 P U2.

a) ñ b): This is clear since a constant function is in particular an a�ne one.
b) ñ c): If F

ˇ

ˇ

lpx,yq
is a�ne, i.e.,

F px` tpy ´ xqq “ F pxq ` tpF pyq ´ F pxqq for every t P r0, 1s,

the translation invariance of F yields

F px` tpy ´ xq ´ x2 ´ tpy2 ´ x2qq “ F px´ x2q ` tpF py ´ y2q ´ F px´ x2qq,

F px1 ` tpy1 ´ x1qq “ F px1q ` tpF py1q ´ F px1qq for every t P r0, 1s,

so that F
ˇ

ˇ

lpx1,y1q
is a�ne as well. On the other hand F is also strictly convex on lpx1, y1q.

Both can be simultaneously only true, if x1 “ y1, which just means that y´x “ y2´x2 P U2.
c) ñ a): Let y ´ x P U2, i.e. y1 “ x1, so that y ´ x “ y2 ´ x2. Therefore and due to the
translation invariance of F we get

F px` tpy ´ xqq “ F px` tpy2 ´ x2qq “ F pxq
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even for all t P R. In particular F is constant on lpx, yq.
Now the assertions of part i) can be seen as follows: Due to the convexity of F`G the whole
segment lpx̂, x̃q belongs to argmintF `Gu so that F `G is constant on lpx̂, x̃q. Thus, the
convex summands F and G must be a�ne on lpx̂, x̃q Ď dompF `Gq. Now the equivalence
b) ô c) tells us that x̂ ´ x̃ “ ´px̃ ´ x̂q P U2 and hence F px̂q “ F px̃q. The remaining
Gpx̂q “ Gpx̃q follows from the last equation and from F px̂q ` Gpx̂q “ F px̃q ` Gpx̃q since
only �nite values occur.
ii) The function f – F |U1 : U1 Ñ RYt`8u is essentially smooth, so that intU1pdom fq is in
particular a nonempty subset of U1. Therefore and by Theorem B.15 we get affpdomF q “
affpdomF |U1 ‘ U2q “ affpdomF |U1q ‘ U2 “ U1 ‘ U2. Lemma 4.3.11 now says that F is
essentially smooth on affpdomF q. The therewith applicable part i) of Lemma B.6 gives
argminpF `Gq Ď ripdomF q. Hence the minimizers of F `G keep unchanged, if we enlarge
the values F pxq outside of ripdomF q by setting

F̃ pxq–

#

F pxq, for x P ripdomF q

`8, for x R ripdomF q
.

Hence we get the remaining assertions for x̂, x̃ P argminpF ` Gq “ argminpF̃ ` Gq by
applying part i) to F̃ and G; note herein that dom F̃ X domG “ ripdomF q X domG “ H,
that F̃ is still convex, see Theorem B.8, and strictly convex on U1, since F is by assumption
strictly convex on ripdomF X U1q “ dompF̃ |U1q, and that �nally U2 still belongs to the
periods space P rF̃ s, since ripdomF q “ ripdomF |U1‘U2q “ intU1pdom fq‘U2, by Theorem
B.15. l

Theorem 4.3.21. Let F,G : Rn Ñ R Y t`8u be convex functions with ripdomF q X
ripdomGq “ H. If there is a decomposition

affpdomF q “ Ǎ‘ P̌

of affpdomF q into a subspace P̌ of P rF s and an a�ne subspace Ǎ Ď Rn such that F is
essentially smooth on affpdomF q (or on Ǎ) as well as strictly convex on intǍpdomF |Ǎq
then

argmin
xPRn

pF pxq `Gpxqq Ď ripdomF q

and

x̂´ x̃ P P̌,
F px̂q “ F px̃q,

Gpx̂q “ Gpx̃q

for all x̂, x̃ P argminxPRnpF pxq `Gpxqq.

Proof. Let å P ripdomF q X ripdomGq. Replacing F and G by F1p¨q “ F p¨ ´ åq and
G1p¨q “ Gp¨ ´ åq, respectively would neither change the truth value of the assumptions
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nor of the assertions; therefore we may without loss of generality assume å “ 0, so that
affpdomF q is a vector subspace of Rn. Write 0 “ a0 ` p0 with some a0 P Ǎ and p0 P P̌ .
Due to F |Ǎ “ F |Ǎ`p0

we see that replacing Ǎ by the vector subspace Ǎ2 “ Ǎ ` p0

would neither change the truth value of the assumptions nor of the assertions; therefore
we may without loss of generality furthermore also assume that Ǎ is a vector subspace of
affpdomF q. Set now U1 – Ǎ and U2 – P̌ . Noting that neither the truth value of the
assumptions nor of the assertions changes when considering F,G and F ` G only on the
vector space U1 ‘ U2 “ affpdomF q and identifying it with some Rn1 we obtain all claimed
assertions by part ii) of Lemma 4.3.19; note here that ripdomF XU1q “ ripdomF q XU1 “

intU1pdomF |U1q, ripdomG|affpdomF qq “ ripdomG X affpdomF qq “ ripdomGq X affpdomF q
by Theorem B.10, and note �nally that F is in any case essentially smooth on affpdomF q
by Lemma 4.3.11.

Remark 4.3.22.

i) The assumptions of the just proven theorem can be only valid if in fact P̌ “ P rF s.

ii) The essentially smoothness as well as the strictly convexity assumptions on F keep
valid if Ǎ is replaced by any other a�ne subset Ã Ď Rn with Ã‘ P̌ “ affpdomF q “
Ǎ‘ P̌ .

Proof. i) Since P̌ is a subspace of P rF s we have P̌ Ď P rF s. For the proof of P̌ Ě P rF s
we may assume without loss of generality that the a�ne space affpdomF q is even a vector
subspace of Rn with origin 0 P domF . Then every arbitrarily chosen p P P rF s belongs to
affpdomF q and can therefore be written in the form p “ ǎ ` p̌ with some ǎ P Ǎ, p̌ P P̌ .
Hence ǎ “ p ´ p̌ P P rF s, i.e. F px ` λǎq “ F pxq for all x P Rn and all λ P R. Choosing
any element å from the nonempty set ripdomF q X Ǎ “ ripdomF |Ǎq, see Theorem B.8 and
Theorem B.10 we have in particular F p̊a` λǎq “ F p̊aq for all λ P R. This is only possible
for ǎ “ 0, since F is strictly convex on t̊a` λǎ : λ P Ru Ď ripdomF q X Ǎ “ ripdomF |Ǎq “
intǍpdomF |Ǎq, where we have used Theorem B.10. Consequently p “ ǎ` p̌ “ p̌ P P̌ .
ii) Writing 0 “ ǎ0`p̌0, 0 “ ã0`p̃0 and noting F |Ǎ “ F |Ǎ`p̌0

, F |Ã “ F |Ã`p̃0
we may without

loss of generality assume that Ǎ and Ã are vector subspaces. Consider the projection
π : AÑ Ã, x “ ã` p̌ ÞÑ ã of the vector space A “ Ǎ‘ P̌ “ Ã‘ P̌ onto its subspace Ã. We
have N pπq “ P̌ , so that α – π|Ǎ : ǍÑ Ã is a vector space isomorphism, which links F |Ǎ
and F |Ã both via F |Ǎ “ F |Ã ˝ α and its consequence intÃpdomF |Ãq “ αrintǍpdomF |Ǎqs.
Therefore F |Ǎ is essentially smooth if and only if F |Ã is essentially smooth. Writing
Ǒ – intǍpdomF |Ǎq and Õ – intÃpdomF |Ãq we likewise have that F |Ǒ is strictly convex
if and only if F |Õ is strictly convex.

4.4 Homogeneous penalizers and constraints

This section is divided into two subsections. In the �rst subsection we restrict the broad
setting of the Section 4.2 to a less general setting by making a particular choice for Ψ and
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by putting some assumptions on Φ. In Lemma 4.4.1 we show some implications of the
assumptions on Φ for Φ itself and its conjugate function Φ˚. In Remark 4.4.2 we will see
that the Fenchel Duality Theorem 4.2.11 can be applied within our setting. The second
subsection deals with properties of the minimizing sets. In Theorem 4.4.3 we show that
the problems pP1,τ q, pP2,λq, pD1,τ q, pD2,λq have a solution for τ ą 0 and λ ą 0, if certain
conditions are ful�lled. In Theorem 4.4.4 we prove that under the same conditions and
an extra condition there are intervals p0, cq and p0, dq such that SOLpP1,τ q, SOLpP2,λq,
SOLpD1,τ q, SOLpD2,λq show similar localization behavior for τ “ 0, λ P rd,`8q; τ P p0, cq,
λ P p0, dq; and τ P rc,`8q, λ “ 0. In Theorem 4.4.6 the localization behavior is re�ned for
τ P p0, cq and λ P p0, dq. The results there say that, while τ runs from 0 to c and λ runs
from d to 0, all solver sets have to move. Moreover the mappings, given by τ ÞÑ SOLpP1,τ q

and λ ÞÑ SOLpP2,λq are the same � besides a (�direction reversing�) parametrization change
g : p0, cq Ñ p0, dq. Similar the mappings, given by τ ÞÑ SOLpD1,τ q and λ ÞÑ SOLpD2,λq are
the same � besides the same parametrization change g : p0, cq Ñ p0, dq. In the remaining
parts of that subsection we deal with g.

4.4.1 Setting

In the rest of this thesis, we deal with the functions

Ψ1 – ιlev1}¨} and Ψ2 – } ¨ },

where } ¨ } denotes an arbitrary norm in Rm with dual norm } ¨ }˚ – max}x}ď1x¨, xy.
Constraints and penalizers of this kind appear in many image processing tasks. Note that
Ψ1pτ

´1xq “ ιlevτ }¨}pxq “ τιlevτ }¨}pxq for τ P p0,`8q. The conjugate functions of Ψ1 and Ψ2

are

Ψ˚
1 “ } ¨ }˚ and Ψ˚

2 “ ιlev1}¨}˚ .

and their subdi�erentials are known to be

BΨ1pxq “

$

&

%

t0u if }x} ă 1,
tp P Rm : xp, xy “ }p}˚u if }x} “ 1,
H otherwise

(4.19)

and

BΨ2pxq “

"

tp P Rm : }p}˚ ď 1u if }x} “ 0,
tp P Rm : xp, xy “ }x}, }p}˚ “ 1u otherwise.

(4.20)

Then the primal problems pP q in (4.10) with µ – τ´1 ą 0 in the case Ψ “ Ψ1 and
µ– λ ą 0 in the case Ψ “ Ψ2 become

pP1,τ q argmin
xPRn

tΦpxq s.t. }Lx} ď τu ,

pP2,λq argmin
xPRn

tΦpxq ` λ}Lx}u
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and the dual problems pDq in (4.11) read

pD1,τ q argmin
pPRm

tΦ˚p´L˚pq ` τ}p}˚u ,

pD2,λq argmin
pPRm

tΦ˚p´L˚pq s.t. }p}˚ ď λu

We will also consider the cases τ “ 0 and λ “ 0. In what follows we will assume that
FP – Φ : Rn Ñ R Y t`8u and FD – Φ˚p´L˚¨q : Rm Ñ R Y t`8u are invariant
under translation in direction of subspaces UP,2 and UD,2, respectively. Speaking now in
terms of a general function F : Rn Ñ R Y t`8u we could of course always make the
uninteresting choice U2 – t0u; so more precisely we are interested in those decompositions
Rn “ U1 ‘ U2 with F pu ` u2q “ F puq for all u P Rn, u2 P U2, in which U2 is chosen as
large as possible, so that the essential properties of F can be revealed by considering F |U1 .
In case of affpdomF |U1q “ U1 we do not need to re�ne the decomposition Rn “ U1 ‘ U2

and can think of F to be essentially given by f “ F |U1 . In case of affpdomF |U1q Ă

U1, however, it can be convenient to re�ne the decomposition Rn “ U1 ‘ U2 by writing
affpdomF |U1q “ a`X1 with some a P affpdomF |U1q and a vector subspace X1 Ď Rn; after
choosing some vector subspace X3 with U1 “ a `X1 ‘X3 and setting X2 – U2 we have
Rn “ a ` X1 ‘ X2 ‘ X3 and can think of F to be given essentially by F |a`X1 , since the
inclusion domF Ď a `X1 ‘X2 just means that F pxq “ F pa ` x1 ` x2 ` x3q equals `8
for x3 “ 0 and F pa` x1 ` x2q “ F pa` x1q for x3 “ 0.

In those cases where 0 P affpdomF |U1q or where F is replaceable by F p¨ ´ aq we can even
assume a “ 0 so that we have Rn “ X1 ‘ X2 ‘ X3 and can think of F to be given in
its essence by F |X1 on X1, then extended to a larger subspace X1 ‘ X2 by demanding
translation invariance in direction X2, and �nally set to `8 on RnzpX1‘X2q. This is the
core structure, which Φ will now be demanded to have. In addition X1, X2 and X3 shall
be pairwise orthogonal:

Let Φ's domain Rn have a decomposition Rn “ X1 ‘ X2 ‘ X3 into pairwise orthogonal
subspaces such that

Φpxq “ Φpx1 ` x2 ` x3q “

#

φpx1q if x3 “ 0

`8 if x3 “ 0
, (4.21)

where φ “ Φ|X1 : X1 Ñ RY t`8u is a function meeting the following demands:

i) domφ is an open subset of X1 with 0 P domφ,

ii) φ belongs to Γ0pX1q and is strictly convex and essentially smooth (compare [19, p.
251]),

iii) φ has a minimizer.
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The following lemma shows that the subdi�erentials of φ and Φ are closely related and that
Φ˚ is of the same basic structure as Φ, whereas the roles of X2 and X3 are interchanged.
Note that for the proof of the �rst two parts we use only the direct decomposition of
Φ's domain Rn into the pairwise orthogonal subspaces X1, X2, X3; none of the additional
properties of φ is needed.

Lemma 4.4.1. For a function Φ ful�lling the setting in (4.21) and any points x, x˚ P Rn

the following holds true:

i) BΦpxq “ BΦpx1 ` x2 ` x3q “

#

H if x3 “ 0

Bφpx1q ‘ t0u ‘X3 if x3 “ 0.

ii) Φ˚px˚q “ Φ˚px˚1 ` x
˚
2 ` x

˚
3q “

#

φ˚px˚1q if x˚2 “ 0

`8 if x˚2 “ 0
, where

iii) ‚ φ˚ belongs to Γ0pX1q and is essentially smooth and essentially strictly convex
(compare [19, p. 253])

‚ 0 P intpdomφ˚q and 0 P ripdom Φ˚q

Proof. i) and ii) We rewrite Φ in the form Φ “ Φ1ZΦ2ZΦ3, where

Φ1 “ φ : X1 Ñ RY t`8u, Φ2 “ 0X2 : X2 Ñ R, Φ3 “ ιt0u : X3 Ñ RY t`8u.

Since Rn “ X1‘X2‘X3 is a direct decomposition into pairwise orthogonal subspaces we
can apply Theorem B.16 and obtain

BΦpxq “ BΦ1px1q ‘ BΦ2px2q ‘ BΦ3px3q “ Bφpx1q ‘ t0u ‘ S3px3q,

where S3px3q “ H for x3 “ 0 and S3px3q “ X3 for x3 “ 0, as well as

Φ˚px˚q “ Φ˚1px
˚
1q ` Φ˚2px

˚
2q ` Φ˚3px

˚
3q “ φ˚px˚1q ` ι0px

˚
2q ` 0

iii) φ P Γ0pX1q implies φ˚ P Γ0pX1q. Changing the coordinate system via an orthogonal
transformation x̃ ÞÑ x “ Qx̃ changes φ and φ˚ in the same way: If φ̃px̃q “ φpQx̃q then
also φ̃˚px̃q “ φ˚pQx̃q. Hence [19, Theorem 26.3] can be extended for functions like φ, φ˚ :
X1 Ñ R Y t`8u, which are only de�ned on a subspace X1 of Rn. So the strict convexity
of φ implies that φ˚ is essentially smooth and the essentially smoothness of φ implies that
φ˚ is essentially strictly convex. In order to prove 0 P intpdomφ˚q we note that argminφ,
consisting of just one element, is a nonempty and bounded level set of φ. Consequently
all level sets levαpφq, α P R, are bounded, compare [19, Corollary 8.7.1]. This implies 0 P
intpdomφ˚q (of course regarded relative to X1), compare [19, Corollary 14.2.2]. Therefrom
we �nally obtain 0 P intpdomφ˚q ‘X3 “ ripdom Φ˚q, because domφ˚ ‘X3 “ dom Φ˚ by
part ii).
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Remark 4.4.2. By our setting � in �rst line by the condition i) on Φ � we have 0 P

dom Φ and also 0 P ripdom Φ˚q by Lemma 4.4.1. Therefore our setting ensures that the
assumptions i) - iv) of Lemma 4.2.11 are ful�lled: Regarding the �rst three assumptions
we note RpLq “ ripRpLqq so that every of these assumptions is of the form

ripAq X ripBq “ H

with convex subsets A,B of some Euclidean space. Both for Ψ “ Ψ1 and Ψ “ Ψ2 we have
0 P A and 0 P intpBq for sets A,B corresponding to condition i), ii) or iii) of Lemma
4.2.11, respectively. Since A is in any case convex and nonempty there is some ak P ripAq
with ak Ñ 0, cf. Theorem B.7. Hence we have also aK P intpBq for a large enough K.
In particular ripAq X ripBq “ ripAq X intpBq “ H. Also the fourth assumption of Lemma
4.2.11 is clearly ful�lled in our setting, since 0 P Rp´L˚q X ripdom Φ˚q.

4.4.2 Properties of the solver sets and the relation between their

parameters

The next theorem shows that all our problems pP1,τ q, pD1,τ q, pP2,λq, pD2,λq have a solution
for τ ą 0 and λ ą 0 if certain conditions on argmin Φ and N pLq “ argmin }L¨} are ful�lled.

Theorem 4.4.3. Let Φ P Γ0pRnq be a function ful�lling the setting (4.21) and let L P Rm,n

so that X2 X N pLq “ t0u and argmin Φ X N pLq “ H. Then all solver sets SOLpP1,τ q,
SOLpD1,τ q, SOLpP2,λq, SOLpD2,λq are nonempty for τ P p0,`8q, λ P p0,`8q and the
corresponding minima are �nite.

Proof. Note in the following that the requirements i) - iv) of Lemma 4.2.11 are ful�lled.
Let λ ą 0. Since Φp´L˚¨q is lower semicontinuous on the compact Ball B – Bλp0qr}¨}˚s–
tp P Rm : }p}˚ ď λu we have SOLpD2,λq “ H. The attained minimum is �nite, because
0 P B X dompΦ˚p´L˚¨qq holds true by part iii) of Lemma 4.4.1. Lemma 4.2.11 ensures
that also SOLpP2,λq “ H, where the attained minimum is �nite, since dompΦ` λ}L ¨ }q “
dom Φ “ H. Let now τ ą 0. We get SOLpP1,τ q “ H, by part iii) of Lemma 4.3.18,
applied to F – Φ, U1 – X1 ‘X3, U2 – X2 and G – ιlevτ }L¨}, V1 – RpL˚q, V2 – N pLq;
the assumption of this Lemma are checked in Detail 19. Due to the therein appearing
relation dom Φ X levτ}L ¨ } “ H the attained minimum is �nite. Lemma 4.2.11 gives now
SOLpD1,τ q “ H, where the attained minimum is also �nite since dompΦ˚p´L˚¨q`τ} ¨}˚q “
dom Φ˚p´L˚¨q “ H.

Recall in the next theorem that infH “ `8 since any m P r´8,`8s is a lower bound
of H Ď r´8,`8s. The theorem states that there are three main areas where our solver
sets SOLpP1,τ q and SOLpP2,λq must be located: either they are completely contained in
argmin }L ¨ } “ N pLq or argmin Φ, or they are located �between� them, in the sense of
SOLpP‚q X N pLq “ H and SOLpP‚q X argmin Φ “ H. Similar relations hold true for
SOLpD1,τ q and SOLpD2,λq. Note that SOLpD1,τ q “ H can happen in the border case
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τ “ 0 as we show in Example 4.4.5. Also notice in the following theorem that OP pΦ, }L ¨ }q
can either be p0,`8q or r0,`8q for a function Φ which ful�lls our setting (4.21). In case
τ R OP pΦ, }L ¨ }q we have to be carefull when regarding the problem

argmin
xPRn

tΦpxq s.t. }Lx} ď τu ,

since rewriting it to

argmin
xPRn

 

Φpxq ` ιlevτ }L¨}pxq
(

is not possible in this case, cf. the table on page 77.

Theorem 4.4.4. Let Φ P Γ0pRnq be a function ful�lling the setting (4.21) and let L P Rm,n

so that X2XN pLq “ t0u, X3XRpL˚q “ t0u and argmin ΦXN pLq “ H. Then the values

c– inf
xPargmin Φ

}Lx} “ min
xPargmin Φ

}Lx}, (4.22)

d– inf
pPargmin Φ˚p´L˚¨q

}p}˚ “

$

&

%

min
pPargmin Φ˚p´L˚¨q

}p}˚, if argmin Φ˚p´L˚¨q “ H

`8, if argmin Φ˚p´L˚¨q “ H
(4.23)

are positive. Their geometrical meaning for the primal and dual problems is expressed by
the equations

c “ mintτ P r0,`8q : SOLpP1,τ q X argmin Φ “ Hu

“ mintτ P r0,`8q : SOLpD1,τ q X t0u “ Hu

and

d “ inftλ P r0,`8q : SOLpP2,λq XN pLq “ Hu
“ inftλ P r0,`8q : SOLpD2,λq X argmin Φ˚p´L˚¨q “ Hu,

where the in�ma are actually minima of the latter two sets, if one of them is not empty.
Furthermore the value of τ allows to locate SOLpP1,τ q and SOLpD1,τ q, according to

SOLpP1,τ q Ď N pLq, SOLpD1,τ q Ď argmin Φ˚p´L˚¨q, if τ “ 0
#

SOLpP1,τ q XN pLq “ H
SOLpP1,τ q X argmin Φ “ H

+

,

#

SOLpD1,τ q X argmin Φ˚p´L˚¨q “ H

SOLpD1,τ q X t0u “ H

+

, if τ P p0, cq

SOLpP1,τ q Ď argmin Φ, SOLpD1,τ q Ď t0u, if τ P rc,`8q.

The value of λ similar allows to locate SOLpP2,λq and SOLpD2,λq, according to

SOLpP2,λq Ď N pLq, SOLpD2,λq Ď argmin Φ˚p´L˚¨q, if λ P rd,`8q
#

SOLpP2,λq XN pLq “ H
SOLpP2,λq X argmin Φ “ H

+

,

#

SOLpD2,λq X argmin Φ˚p´L˚¨q “ H

SOLpD2,λq X t0u “ H

+

, if λ P p0, dq

SOLpP2,λq Ď argmin Φ, SOLpD2,λq Ď t0u, if λ “ 0.
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Proof. In the proof we use the abbreviations Brpaq– Brpaqr} ¨ }s and B˚r paq– Brpaqr} ¨ }˚s.
1. c is really a minimum: We need only to show that the function ιargminpΦq` }L ¨ } attains
somewhere in Rn its minimum. In order to apply part iii) of Lemma 4.3.18 we decompose
Rn into the orthogonal subspaces U1 – X1 ‘X3, U2 – X2 and V1 – RpL˚q, V2 – N pLq,
respectively and set F – ιargminpΦq and G – }L ¨ }, respectively; then all assumptions are
ful�lled for certain α, β, see Detail 20, so that ιargminpΦq`}L ¨ } attains indeed its minimum.
2. d is really a minimum if argmin Φ˚p´L˚¨q “ H : Let p0 P argmin Φ˚p´L˚¨q and set
r – }p0}˚. The set argmin Φ˚p´L˚¨q is closed, due being a level set of the lower semicon-
tinuous function Φ˚p´L˚¨q. Hence C – argmin Φ˚p´L˚¨qXB˚r is a nonempty compact set,
which must provide a minimizer p̌ P argmin Φ˚p´L˚¨q for the continuous function } ¨ }˚|C .
Clearly we also have }p̌}˚ “ infpPargmin Φ˚p´L˚¨q }p}˚, since }p}˚ ě r “ }p0}˚ ě }p̌}˚ for all

p P argmin Φ˚p´L˚¨qzB˚r .
3. Next c ą 0 and d ą 0 are proven, where we consider only the interesting case
argmin Φ˚p´L˚¨q “ H. We have

c “ 0 ô min
xPargmin Φ

}Lx} “ 0

ô Dx̌ P argmin Φ : }Lx̌} “ 0

ô argmin ΦXN pLq “ H.

Since c ě 0 this just means c ą 0 ô argmin ΦXN pLq “ H, so that we really obtain c ą 0.
Using some calculus from Convex Analysis we obtain

d “ 0 ô argmin ΦXN pLq “ H,

see Detail 21. Due to d ě 0 this just means d ą 0 ô argmin Φ XN pLq “ H, so that also
d ą 0.
4. In order to verify that the di�erent views on c and d are really equivalent, we set

T – tτ P r0,`8q : Dx0 P argminpΦq : τ “ }Lx0}u,

TP – tτ P r0,`8q : SOLpP1,τ q X argmin Φ “ Hu,

TD – tτ P r0,`8q : SOLpD1,τ q X t0u “ Hu

and

Λ – tλ P r0,`8q : Dp0 P argmin Φ˚p´L˚¨q : λ “ }p0}˚u,

ΛP – tλ P r0,`8q : SOLpP2,λq XN pLq “ Hu,
ΛD – tλ P r0,`8q : SOLpD2,λq X argmin Φ˚p´L˚¨q “ Hu,

respectively, and show that

T “
ď

x0PIT

t}Lx0}u, TP “ TD “
ď

xoPIT

r}Lx0},`8q

and

Λ “
ď

px0,p0qPIΛ

t}p0}˚u, ΛD “ ΛP “
ď

px0,p0qPIΛ

r}p0}˚,`8q,
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respectively, where IT – tx0 P Rn : 0 P BΦpx0qu and IΛ – tpx0, p0q P Rn ˆ Rm :
Lx0 “ 0, x0 P BΦ

˚p´L˚p0qu are some index sets. The above way of representing T , TP ,
TD and Λ, ΛP , ΛD, respectively, then elucidates c “ minT “ minTP “ minTD and
d “ inf Λ “ inf ΛP “ inf ΛD, respectively; here the headline of part 2 of the proof ensures
that the last three in�ma are actually minima of the respective sets, if one � an thus all �
of them is nonempty. For all τ P r0,`8q we indeed have by Fermat's rule

τ P T

ô Dx0 P Rn : 0 P BΦpx0q ^ τ “ }Lx0}

ô Dx0 P IT : τ P t}Lx0}u

ô τ P
ď

x0PIT

t}Lx0}u

τ P TP

ô Dx0 P Rn : }Lx0} ď τ ^ 0 P BΦpx0q

ô Dx0 P IT : }Lx0} ď τ

ô τ P
ď

x0PIT

r}Lx0},`8q

and � by using again Fermat's Rule as well as the calculus for subdi�erentials, see [19, p.
222-225], x P BΦ˚px˚q ô x˚ P BΦpxq and (4.20) � also

τ P TD

ô Dp0 P Rm : 0 P BpΦ˚p´L˚¨q ` τ} ¨ }˚q|p0 ^ p0 “ 0

ô 0 P BpΦ˚p´L˚¨qq|0 ` τB} ¨ }˚|0

ô 0 P ´LBΦ˚p´L˚0q ` τB1r} ¨ }˚˚s

ô Dx0 P Rn : x0 P BΦ
˚
p0q ^ 0 P ´Lx0 ` Bτ r} ¨ }s

ô Dx0 P Rn : 0 P BΦpx0q ^ }Lx0} ď τ

ô τ P
ď

x0PIT

r}Lx0},`8q

Similar we obtain for λ P r0,`8q the equivalences

λ P Λ

ô Dp0 P Rm : 0 P BpΦ˚p´L˚¨qq|p0 ^ λ “ }p0}˚

ô Dp0 P Rm : 0 P LBΦ˚p´L˚p0q ^ λ “ }p0}˚

ô
Dx0PRn,
Dp0PRm : x0 P BΦ

˚
p´L˚p0q ^ Lx0 “ 0^ λ “ }p0}˚

ô Dpx0, p0q P IΛ : λ “ }p0}˚

ô λ P
ď

px0,p0qPIΛ

t}p0}˚u
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besides

λ P ΛD

ô Dp0 P Rm : 0 P BpΦ˚p´L˚¨qq|p0 ^ λ ě }p0}˚

ô Dp0 P Rm : 0 P LBΦ˚p´L˚p0q ^ λ ě }p0}˚

ô
Dx0PRn,
Dp0PRm : x0 P BΦ

˚
p´L˚p0q ^ Lx0 “ 0^ λ ě }p0}˚

ô Dpx0, p0q P IΛ : λ ě }p0}˚

ô λ P
ď

px0,p0qPIΛ

r}p0}˚,`8q

and

λ P ΛP

ô Dx0 P Rn : 0 P BpΦp¨q ` λ}L ¨ }q|x0 ^ Lx0 “ 0

ô Dx0 P Rn : 0 P BΦpx0q ` λL
˚
B} ¨ }|Lx0 ^ Lx0 “ 0

ô Dx0 P Rn : 0 P BΦpx0q ` λL
˚
B} ¨ }|0 ^ Lx0 “ 0

ô Dx0 P Rn : 0 P BΦpx0q ` L
˚λB˚1 ^ Lx0 “ 0

ô
Dx0PRn,
Dp0PRm : p0 P λB

˚

1 ^ 0 P BΦpx0q ` L
˚p0 ^ Lx0 “ 0

ô
Dx0PRn,
Dp0PRm : }p0}˚ ď λ^´L˚p0 P BΦpx0q ^ Lx0 “ 0

ô
Dx0PRn,
Dp0PRm : x0 P BΦ

˚
p´L˚p0q ^ Lx0 “ 0^ }p0}˚ ď λ

ô Dpx0, p0q P IΛ : λ ě }p0}˚

ô λ P
ď

px0,p0qPIΛ

r}p0}˚,`8q.

5. Finally we prove the 16 claimed relations of the theorem. The subset-relations for
τ “ 0 and λ “ 0 are trivially true. In oder to prove the primal relations for τ P p0, cq
and τ P rc,`8q we make use of c “ mintτ P r0,`8q : SOLpP1,τ q X argmin Φ “ Hu. For
τ P p0, cq we directly get

SOLpP1,τ q X argmin Φ “ H;

this also implies that any x̂ P SOLpP1,τ q, τ P p0, cq must ful�ll }Lx̂} ě τ ą 0. (}Lx̂} ă τ
would mean that x̂ is a local minimizer of Φ, i.e. a global minimizer of the convex function
Φ; so we would end up in the contradictory x̂ P SOLpP1,τ q X argmin Φ “ H). So we have

SOLpP1,τ q XN pLq “ H

for τ P p0, cq. Furthermore the above reformulation of c ensures that there is an x̂ P
SOLpP1,τ q X argmin Φ for τ “ c. Clearly also x̂ P SOLpP1,τ q X argmin Φ for τ ą c, so that
SOLpP1,τ q X argmin Φ “ H for τ P rc,`8q. Since no solvers of pP1,τ q can be outside of
argmin Φ, as soon as one solver of pP1,τ q belongs to this level set of Φ, we even get

SOLpP1,τ q Ď argmin Φ
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4. Penalizers and constraints in convex problems

for τ P rc,`8q.

In order to prove the dual relations for τ P p0, cq and τ P rc,`8q we use c “ mintτ P
r0,`8q : SOLpD1,τ q X t0u “ Hu. For τ P p0, cq this immediately implies

SOLpD1,τ q X t0u “ H

and SOLpD1,cq X t0u “ H. The latter means Φ˚p´L˚0q ` c}0}˚ ď Φp´L˚pq ` c}p}˚ for
all p P Rm. For τ P rc,`8q addition of the inequality pτ ´ cq}0}˚ ď pτ ´ cq}p}˚ yields
Φ˚p´L˚0q ` τ}0}˚ ď Φ˚p´L˚pq ` τ}p}˚ for all p P Rm. This just means 0 P SOLpD1,τ q for
τ P rc,`8q. We even have

SOLpD1,τ q “ t0u

for τ P rc,`8q: Let an additional p̌ P SOLpD1,τ q be given. In order to prove p̌ “ 0 it
su�ces to check that Theorem 4.3.21 can be applied to F p¨q “ Φ˚p´L˚¨q and Gp¨q “ τ} ¨}˚,
since this theorem would then give τ}p̌}˚ “ Gpp̌q “ Gp0q “ 0 and hence the wanted
p̌ “ 0. Indeed all assumptions of this theorem are ful�lled: Clearly F and G are convex
functions with ripdomF q X ripdomGq “ ripdomF q “ H. Next the needed decomposition
affpdomF q “ ǍF‘P̌F is obtained, by using Theorem 4.3.16, see Detail 22. Finally Theorem
4.3.12 ensures that F “ E ˝M is essentially smooth on affpdomF q. So all assumptions of
Theorem 4.3.21 are really ful�lled. Finally we show

SOLpD1,τ q X argmin Φ˚p´L˚¨q “ H

for τ P p0, cq: Assume that there is a p̂ P SOLpD1,τ qXargmin Φ˚p´L˚¨q for a τ P p0, cq. The
functions F p¨q “ Φp´L˚¨q and Gp¨q “ τ} ¨ }˚ ful�ll the assumptions of Theorem 4.3.21, see
Detail 23, so that p̂ P argminpF `Gq Ď intApdomF q. Consider F and G now only on the
vector subspace A – affpdomF q by setting f – F |A P Γ0pAq and } ¨ }

1 – } ¨ }˚|A P Γ0pAq.
Since F pxq “ `8 for x R A we still had p̂ P argminpPApfppq`τ}p}

1q and p̂ P argminpPA fppq.
The function f : AÑ RY t`8u, beeing essentially smooth by Lemma 4.4.1 and Theorem
4.3.12, would be di�erentiable in p̂ P intApdomF q “ intApdom fq. By Theorem B.5 and by
Fermat's rule we had Bfpp̂q “ t0u. Using Fermat's rule and the calculus for subdi�erentials
we hence obtained 0 P Bpf ` τ} ¨ }1q|p̂ “ Bfpp̂q ` τB} ¨ }1|p̂ “ τB} ¨ }1|p̂. The already proven
SOLpD1,τ q X t0u “ H says p̂ “ 0, so that equation (4.20) implied the contradictory
0 P B} ¨ }1|p̂ Ď S1rp} ¨ }

1q˚s.

In order to prove the primal relations for λ P p0, dq we make use of d “ inftλ ě 0 :
SOLpP2,λq X N pLq “ Hu, while for proving the primal relations for λ P rd,`8q we may
assume d ă `8, i.e. d “ mintλ ě 0 : SOLpP2,λq X N pLq “ Hu, since in the vacuous
case d “ `8, meaning rd,`8q “ H, there is nothing to show. For λ P p0, dq we then get
immediately

SOLpP2,λq XN pLq “ H

and for λ “ d we get SOLpP2,dqXN pLq “ H. The latter means Φpx̂q`d}Lx̂} ď Φpxq`d}Lx}
for all x̂ P SOLpP2,dq X N pLq and x P Rn. For λ ě d adding pλ ´ dq}Lx̂} ď pλ ´ dq}Lx}
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hence gives Φpx̂q ` λ}Lx̂} ď Φpxq ` λ}Lx} for all x̂ P SOLpP2,dq X N pLq and x P Rn, so
that we have SOLpP2,λq XN pLq “ H for all λ P rd,`8q. We even have

SOLpP2,λq Ď N pLq

for λ P rd,`8q: Choose any x̂ P SOLpP2,λq X N pLq and consider an arbitrarily chosen
x̃ P SOLpP2,λq. In order to prove Lx̃ “ 0 it su�ces to check that Theorem 4.3.21 can be
applied to F “ Φ and Gp¨q “ λ}L ¨ }, since this theorem would then give λ}Lx̃} “ Gpx̃q “
Gpx̂q “ 0 and hence the needed Lx̃ “ 0. Indeed all assumptions of this theorems are
ful�lled, see Detail 24. Finally we show

SOLpP2,λq X argmin Φ “ H

for λ P p0, dq: It clearly su�ces to show that any minimizer of Φ can never belong to
SOLpP2,λq for any real λ ą 0. To this end �x λ P p0,`8q and let an arbitrary x̂ P argmin Φ
be given. Regard Φ and Φp¨q ` λ}L ¨ } only on spanpx̂q by considering the functions
f, h : RÑ RY t`8u given by fptq– Φptx̂q and hptq– Φptx̂q ` λ}Lptx̂q} “ Φptx̂q `m|t|,
where m – λ}Lx̂} ą 0 due to the assumption argmin Φ X N pLq “ H. Φ is proper,
convex, lower semicontinuous and essentially smooth on the a�ne hull of its e�ective
domain of de�nition. These properties carry over to f , see Detail 25. Since 1 P R is
clearly a minimizer of f we obtain, using part ii) of Lemma B.6, that f is di�erentiable
in 1 P R with derivative f 1p1q “ 0. Hence also h is di�erentiable in 1 with derivative
h1p1q “ f 1p1q `m “ m ą 0. Consequently there is an ε ą 0 such that hp1´ εq ă hp1q. Its
rewritten form Φ pp1´ εqx̂q`λ}Lp1´εqx̂} ă Φpx̂q`λ}Lx̂} shows that x̂ is not a minimizer
of SOLpP2,λq.

In order to prove the dual relations for λ P p0, dq we make use of d “ inftλ ě 0 :
SOLpD2,λq X argmin Φ˚p´L˚¨q “ Hu, while for proving the dual relations for λ P rd,`8q
we may assume d ă `8, i.e. d “ mintλ ě 0 : SOLpD2,λq X argmin Φ˚p´L˚¨q “ Hu, since
in the vacuous case d “ `8 there is again nothing to show. For λ P p0, dq we then get
immediately

SOLpD2,λq X argmin Φ˚p´L˚¨q “ H;

this also implies that any p̂ P SOLpD2,λq with λ P p0, dq must ful�ll }p̂}˚ ě λ ą 0.
(}p̂}˚ ă λ would mean that p̂ is a local minimizer of Φ˚p´L˚¨q and hence a global mini-
mizer of this convex function; so we would end up in the contradictory p̂ P SOLpD2,λq X

argmin Φ˚p´L˚¨q “ H). So we have

SOLpD2,λq X t0u “ H

for τ P p0, dq. Furthermore the above reformulation of d ensures that there is an p̂ P
SOLpD2,λqXargmin Φ˚p´L˚¨q for λ “ d. Clearly also p̂ P SOLpD2,λqXΦ˚p´L˚¨q for λ ą d,
so that SOLpD2,λq X argmin Φ˚p´L˚¨q “ H for λ P rd,`8q. Since no solvers of pD2,λq can
be outside of argmin Φ˚p´L˚¨q, as soon as one solver of pD2,λq belongs to this level set of
Φ˚p´L˚¨q, we even get

SOLpD2,λq Ď argmin Φ˚p´L˚¨q

for λ P rd,`8q.

121



4. Penalizers and constraints in convex problems

Now we give the announced example, showing that SOLpD1,τ q “ H can happen in the
border case τ “ 0.

Example 4.4.5. The particular choice

Φpxq– φpxq–

#

x´ 1` log 1
x

for x ą 0

`8 for x ď 0

gives a functions Φ : RÑ RYt`8u that ful�lls the requirements of our setting along with
the identity matrix L – p1q and } ¨ } “ | ¨ |. The conjugate function Φ˚ : R Ñ R Y t`8u
can explicitely be expressed as

Φ˚ppq “

#

´ logp1´ pq for p ă 1

`8 for p ě 1
,

cf. [5] or [3, p. 50f ]. Here clearly the proper function Φ˚ is not bounded below so that
SOLpD1,0q “ ´ argmin Φ˚ “ H.

The following theorem speci�es the relations between (P1,τ ), (P2,λ), (D1,τ ) and (D2,λ) for
the special setting in this section. We will see that for every τ P p0, cq, there exists a
uniquely determined λ such that the solution sets of (P1,τ ) and (P2,λ) coincide. Note that
by the Remarks 4.2.8 and 4.2.9 this is not the case for general functions Φ,Ψ P Γ0pRnq.
Moreover, we want to determine for given τ , the value λ such that (P2,λ) has the same
solutions as (P1,τ ). Note that part i) of Theorem 4.2.6 was not constructive.

Theorem 4.4.6. Let Φ P Γ0pRnq be of the form (4.21) and let L P Rm,n such that X2 X

N pLq “ t0u, X3 XRpL˚q “ t0u and argmin Φ XN pLq “ H. De�ne c by (4.22) and d by
(4.23). Then, for τ P p0, cq and λ P p0, dq, the problems pP1,τ q, pP2,λq, pD1,τ q, pD2,λq have
solutions with �nite minima. Further there exists a bijective mapping g : p0, cq Ñ p0, dq
such that for τ P p0, cq and λ P p0, dq we have

#

SOLpP1,τ q “ SOLpP2,λq

SOLpD1,τ q “ SOLpD2,λq

+

if pτ, λq P gr g

and for τ P p0, cq, λ P r0,`8q or λ P p0, dq, τ P r0,`8q,

#

SOLpP1,τ q X SOLpP2,λq “ H

SOLpD1,τ q X SOLpD2,λq “ H

+

if pτ, λq R gr g.

For pτ, λq P gr g any solutions x̂ and p̂ of the primal and dual problems, resp., ful�ll

τ “ }Lx̂} and λ “ }p̂}˚.
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4.4 Homogeneous penalizers and constraints

Proof. Note in the following that the requirements i) - iv) of Lemma 4.2.11 are ful�lled
for τ P p0,`8q and λ P p0,`8q.

Theorem 4.4.3 ensures that all solver sets SOLpP1,τ q, SOLpP2,λq, SOLpD1,τ q, SOLpD2,λq

are not empty for τ P p0, cq and λ P p0, dq and that only �nite minima are taken.

The core of the proof consists of two main steps: In the �rst step we use Theorem 4.2.11,
Theorem 4.3.21 and Theorem 4.2.6 ii) to construct mappings g : p0, cq Ñ p0, dq, f : p0, dq Ñ
p0, cq with the following properties:

@τ P p0, cq :

#

SOLpP1,τ q Ď SOLpP2,gpτqq

SOLpD1,τ q Ď SOLpD2,gpτqq

+

, (4.24)

@λ P p0, dq :

#

SOLpP2,λq Ď SOLpP1,fpλqq

SOLpD2,λq Ď SOLpD1,fpλqq

+

. (4.25)

In the second step we verify that f ˝ g “ idp0,cq and g ˝ f “ idp0,dq so that g is bijective and
(4.24) and (4.25) actually hold true with equality. Finally, we deal in a third part with
pτ, λq R grg.

1. First we show that for all x̂ P RnzN pLq, p̂ P Rmzt0u and for all λ, τ ą 0 the following
equivalence holds true:

$

’

&

’

%

x̂ P SOLpP1,τ q,

p̂ P SOLpD1,τ q,

λ “ }p̂}˚

,

/

.

/

-

ô

$

’

&

’

%

x̂ P SOLpP2,λq,

p̂ P SOLpD2,λq,

τ “ }Lx̂}

,

/

.

/

-

. (4.26)

We have on the one hand for x̂ P RnzN pLq, p̂ P Rmzt0u, τ ą 0 and λ ą 0 the equivalences

x̂ P SOLpP1,τ q, p̂ P SOLpD1,τ q

ô τ p̂ P BΨ1pτ
´1Lx̂q, ´ L˚p̂ P BΦpx̂q

ô Ψ1pτ
´1Lx̂q `Ψ˚

1pτ p̂q “ xτ
´1Lx̂, τ p̂y, ´ L˚p̂ P BΦpx̂q

ô }Lx̂} ď τ, τ}p̂}˚ “ xLx̂, p̂y, ´ L˚p̂ P BΦpx̂q

ô }Lx̂} “ τ, τ}p̂}˚ “ xLx̂, p̂y, ´ L˚p̂ P BΦpx̂q

ô }Lx̂} “ τ, }Lx̂}}p̂}˚ “ xLx̂, p̂y, ´ L˚p̂ P BΦpx̂q,

where we used Lemma 4.2.11 in step 1, the Fenchel equality [19, Theorem 23.5] in step 2
and applied in step 4 the inequality xp, p1y ď }p}}p1}˚ for p “ Lx̂, p1 “ p̂. On the other
hand we obtain similar for x̂ P RnzN pLq, p̂ P Rmzt0u, τ ą 0 and λ ą 0 the equivalences

x̂ P SOLpP2,λq, p̂ P SOLpD2,λq

ô λ´1p̂ P Bψ2pλLx̂q, ´ L˚p̂ P BΦpx̂q

ô Ψ2pλLx̂q `Ψ˚
2pλ

´1p̂q “ xλLx̂, λ´1p̂y, ´ L˚p̂ P BΦpx̂q

ô λ}Lx̂} “ xLx̂, p̂y, }p̂}˚ ď λ, ´ L˚p̂ P BΦpx̂q

ô λ}Lx̂} “ xLx̂, p̂y, }p̂}˚ “ λ, ´ L˚p̂ P BΦpx̂q

ô }p̂}˚ “ λ, }Lx̂}}p̂}˚ “ xLx̂, p̂y, ´ L˚p̂ P BΦpx̂q.
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4. Penalizers and constraints in convex problems

Adding the conditions λ “ }p̂}˚ and τ “ }Lx̂}, respectively, we see directly that (4.26)
holds true. Now we can construct the function g on p0, cq as follows: Let τ P p0, cq and set

gpτq– }p̂}˚

with any p̂ P SOLpD1,τ q; this is well de�ned by Detail 26. Theorem 4.4.4 assures SOLpP1,τ qX

N pLq “ H, SOLpD1,τ q X t0u “ H and SOLpD1,τ q X argmin Φ˚p´L˚¨q “ H, so that

}Lx̂} ą 0, }p̂}˚ ą 0, }p̂}˚ ă d (4.27)

for all x̂ P SOLpP1,τ q, and for all p̂ P SOLpD1,τ q; see Detail 27 for the last inequality. By the
second and third inequality in (4.27) we see that gpτq P p0, dq, so that g : p0, cq Ñ p0, dq.
The wanted inclusions in (4.24) follow now from (4.26), which is allowed to apply, by the
�rst and second inequality in (4.27).

The function f on p0, dq is constructed as follows: Let λ P p0, dq and set

fpλq– }Lx̂}

with any x̂ P SOLpP2,λq; this is well de�ned, by Detail 28. Theorem 4.4.4 assures SOLpD2,λqX

t0u “ H, SOLpP2,λq XN pLq “ H and SOLpP2,λq X argmin Φ “ H, so that

}p̂}˚ ą 0, }Lx̂} ą 0, }Lx̂} ă c (4.28)

for all p̂ P SOLpD2,λq, and for all x̂ P SOLpP2,λq; see Detail 29 for the last inequality.

By the second and third inequality in (4.28) we see that fpλq P p0, cq, so that f : p0, dq Ñ
p0, cq. The inclusions in (4.25) follow now from (4.26), which is allowed to apply, by the
�rst and second inequality in (4.28).

2. First we note that

SOLpP1,τ q X SOLpP1,τ 1q “ H, (4.29)

SOLpD2,λq X SOLpD2,λ1q “ H (4.30)

for all distinct τ, τ 1 P p0, cq and all distinct λ, λ1 P p0, dq, respectively, cf. detail 30.
Next we prove the bijectivity of g : p0, cq Ñ p0, dq by showing f˝g “ idp0,cq and g˝f “ idp0,dq.
In doing so we will also see that (4.24) actually holds true with equality. Let τ P p0, cq be
arbitrarily chosen and set τ 1 “ fpgpτqq. Using (4.24) and (4.25) with λ “ gpτq yields

SOLpP1,τ q Ď SOLpP2,gpτqq Ď SOLpP1,τ 1q,

SOLpD1,τ q Ď SOLpD2,gpτqq Ď SOLpD1,τ 1q.

Since SOLpP1,τ q “ H we must have τ “ τ 1 in order to avoid a contradiction to (4.29).
Similarly we can prove for an arbitrarily chosen λ P p0, dq and λ1 – gpfpλqq that λ “ λ1,
see detail 31.

3. It remains to show SOLpP1,τ q X SOLpP2,λq “ H and SOLpD1,τ q X SOLpD2,λq “ H
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for these pτ, λq P rp0, cq ˆ r0,`8qs Y rr0,`8q ˆ p0, dqs with pτ, λq R gr g. Having The-
orem 4.4.4 in mind, we may restrict us to those pτ, λq P p0, cq ˆ p0, dq which are not in
gr g. For such τ , λ we have τ “ g´1pλq and λ “ gpτq. By (4.29) and (4.30) we therefore
have SOLpP1,τ q X SOLpP1,g´1pλqq “ H and SOLpD2,λq X SOLpD2,gpτqq “ H. Substituting
SOLpP1,g´1pλqq by SOLpP2,λq and SOLpD2,gpτqq by SOLpD1,τ q we are done. l

Here are some more properties of the function g.

Corollary 4.4.7. Let the assumptions of Theorem 4.4.6 be ful�lled. Then the bijection
g : p0, cq Ñ p0, dq is strictly monotonic decreasing and continuous.

Proof. Since decreasing bijections between open intervals are strict decreasing and contin-
uous we need only to show that f “ g´1 : p0, dq Ñ p0, cq is decreasing. Let 0 ă λ1 ă λ2 ă d
and x̂i P argminxPRntΦpxq ` λiΨpxqu, i “ 1, 2, where Ψpxq– }Lx}.

Then we know that τi “ Ψpx̂iq, i “ 1, 2. Assume that Ψpx̂1q ă Ψpx̂2q. Then we obtain
with λ2 “ λ1 ` ε and ε ą 0 the contradiction

Φpx̂2q ` λ2Ψpx̂2q “ Φpx̂2q ` λ1Ψpx̂2q ` εΨpx̂2q

ě Φpx̂1q ` λ1Ψpx̂1q ` εΨpx̂2q

ą Φpx̂1q ` λ1Ψpx̂1q ` εΨpx̂1q

“ Φpx̂1q ` λ2Ψpx̂1q.

l

Remark 4.4.8. The function g is in general neither di�erentiable nor convex as the fol-
lowing example shows: The strictly convex function Φ, given by

Φpxq–

#

px´ 4q2 for x ď 2

2px´ 3q2 ` 2 for x ą 2

has exactly one minimizer, namely x0 “ 3. Clearly Φ, } ¨ } – | ¨ | and L “ p1q ful�ll all
assumptions of Theorem 4.4.6 if we set X2 – t0u. For λ ě 0 and τ P p0, cq “ p0, x0q we
have

argmin
xPR

tΦpxq s.t. |x| ď τu “ tτu— tx̂u.

By Theorem 4.4.6 we have argminpΦp¨q ` λ| ¨ |q “ tτu exactly for λ “ gpτq. An explicit
formula for gpτq is obtained by applying Fermat's rule: 0 P BpΦp¨q` gpτq| ¨ |q|τ “ ptΦ

1p¨qu`

gpτqB| ¨ |q|τ “ tΦ
1pτq ` gpτqu; by rearranging we get

gpτq “ ´Φ1pτq “

$

’

&

’

%

2p4´ τq for 0 ă τ ă 2

4 for τ “ 2

4p3´ τq for 2 ă τ ă x0

,

/

.

/

-

Obviously g is neither di�erentiable nor convex.
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APPENDIX A

Supplementary Linear Algebra and

Analysis

Lemma A.1. Let V and W be vector spaces over R. A mapping ϕ : V Ñ W is linear if

i) ϕpv ` v1q “ ϕpvq ` ϕpv1q for all v, v1 P V ,

ii) ϕptvq “ tϕpvq for all v P V and all t P r0, 1s.

Note that only t P r0, 1s is required.

Proof of Lemma A.1. By assumption ϕ is additive. Moreover ϕ is also homogeneous: Let
v P V be arbitrarily chosen. In case t P r0, 1s we have ϕptvq “ tϕpvq by assumption ii). In
case t P p1,`8q application of the same assumption to t1 – 1

t
P r0, 1s and v1 – tv P V

yields ϕptvq “ tt1ϕpv1q “ tϕpt1v1q “ tϕpvq. Using ϕpt̃ṽq “ t̃ϕpṽq for ṽ P V , t̃ P p0,`8q and
ϕp´vq ` ϕpvq “ ϕp´v ` vq “ ϕp0q “ ϕp0 ¨ 0q “ 0ϕp0q “ 0, i.e. ϕp´vq “ ´ϕpvq we �nally
obtain also in case t P p´8, 0q the equation ϕptvq “ ϕp´tp´vqq “ ´tϕp´vq “ tϕpvq.

The following Lemma provides a useful inequality, which re�ects the fact that a direct
decomposition X “ X1 ‘X2 of an Euclidean vector space X of �nite dimension can only
consist of subspaces X1 and X2 which form a strict positive angle α P p0, 1

2
πs, analytically

described by

´1 ă cospπ ´ αq “ inf
h1PX1zt0u,h2PX2zt0u

xh1, h2y

}h1}2}h2}2
.

The equivalent inequality infh1PX1XS1,h2PX2XS1xh1, h2y ą ´1 follows indeed easily from the
inequality of the next theorem for } ¨ } “ } ¨ }2, see Detail 32. Note however that the above
inequality and the inequality in Lemma A.2 are in general only true in �nite-dimensional
spaces. These inequalities do not directly transfer to in�nite dimensional inner product

127



A. Supplementary Linear Algebra and Analysis

spaces as the example X “ spante1u‘ spante1`
1
2
e2, e1`

1
3
e3, e1`

1
4
e4, . . . u Ď l2pRq shows;

recall here that the notation X “ X1‘X2 still shall mean only an inner decomposition in
the sense of pure vector spaces without demanding additional properties like (topological)
closeness on X1 and X2.

Lemma A.2. Let X1, X2 be subspaces of Rn with X1XX2 “ t0u and let } ¨ } be any norm
on Rn. Then there is a constant C ě 1 such that

}h1} ď C}h1 ` h2}

for all h1 P X1 and h2 P X2.

Proof. It su�ces to �nd a constant C ą 0 for which the claimed inequality holds true,
since enlarging the constant then clearly keeps the inequality true. In case h1 “ 0 the
inequality is ful�lled for any C ą 0. Therefore we may assume without loss of generality
that h1 P X1 X S1; note therefore that the following statements are equivalent:

DC ą 0 @h1 P X1zt0u @h2 P X2 : }h1} ď C}h1 ` h2},

DC ą 0 @x1 P X1 X S1 @x2 P X2 : }x1} ď C}x1 ` x2}.

So we need only to �nd a constant C ą 0 such that 1
C
ď }h1 ` h2} for all h1 P X1 X S and

all h2 P X2. We have

}h1 ` h2} ě |}h2} ´ }h1}| “ }h2} ´ 1 ě 2

for }h2} ě 3, on the one hand. The mapping ϕ : pX1 X S1q ˆ pX2 X B3q Ñ R, given
by ϕph1, h2q – }h1 ` h2}, is continuous on its compact domain of de�nition. Therefore
ϕ attains its minimum č “ ϕpȟ1, ȟ2q for some ȟ1 P S X X1, ȟ2 P X2 X B3. Combining
X1 X X2 “ t0u and }ȟ1} “ 0 ensures ȟ2 “ ´ȟ1, so that č “ }ȟ1 ` ȟ2} ą 0 and hence
}h1`h2} ě č ą 0 for all h1 P X1XS and h2 P X2XB3 on the other hand. In total we have
}h1 ` h2} ě mint2, ču ą 0 for h1 P X1 X S and h2 P X2. Setting C – 1

mint2,ču
ą 0 we are

done.

Next we introduce the notion of an a�ne mapping via four equivalent conditions; note
therein that condition i) can also be demanded for a function f which is de�ned only on a
nonempty convex set. For condition ii) and iii) c.f. also [19, p. 7].

De�nition A.3. Let A,A1 be nonempty a�ne subspaces of Rn and U , U 1 Ď Rn the corre-
sponding vector subspaces that are parallel to A and A1, respectively. A mapping f : AÑ A1

is called a�ne, i� one of the following equivalent conditions is ful�lled:

i) fpa1 ` tpa2 ´ a1qq “ fpa1q ` tpfpa2q ´ fpa1qq for all a1, a2 P A and all t P r0, 1s,

ii) fpa1 ` tpa2 ´ a1qq “ fpa1q ` tpfpa2q ´ fpa1qq for all a1, a2 P A and all t P R,
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iii) There is a linear mapping ϕ : U Ñ U 1 such that
fpa2q ´ fpa1q “ ϕpa2 ´ a1q for all a1, a2 P A,

iv) There is a linear mapping ϕ : U Ñ U 1 and a point a0 P A such that
fpaq “ fpa0q ` ϕpa´ a0q for all a P A.

Remark A.4. The four conditions are really equivalent:
�iv) ñ iii)�: Let ϕ : U Ñ U 1 be linear and a0 P A such that fpaq “ fpa0q ` ϕpa ´ a0q for
all a P A. Then we get

fpa2q ´ fpa1q “ fpa2q ´ fpa0q ´ rfpa1q ´ fpa0qs

“ ϕpa2 ´ a0q ´ ϕpa1 ´ a0q

“ ϕpa2 ´ a0 ´ ra1 ´ a0sq

“ ϕpa2 ´ a1q

for all a1, a2 P A.
�iii) ñ ii)�: Using iii) for a11 “ a1 P A and a12 “ a1 ` tpa2 ´ a1q P A we get

fpa1 ` tpa2 ´ a1qq ´ fpa1q “ ϕpa12 ´ a
1
1q “ ϕptpa2 ´ a1qq

“ tϕpa2 ´ a1q “ tpfpa2q ´ fpa1qq

for all a1, a2 P A and all t P R, so that ii) holds true.
�ii) ñ i)� is obviously true.
�i) ñ iv)�: Choose any a0 P A and set ϕpuq – fpa0 ` uq ´ fpa0q for u P U . Then clearly
ϕ : U Ñ U 1 and fpaq “ fpa0q ` ϕpa´ a0q for all a P A “ a0 ‘ U . It remains to show that
ϕ is linear. By Lemma A.1 it su�ces to show that ϕ is additive and ful�lls ϕptuq “ tϕpuq
for all u P U and all t P r0, 1s. In order to prove the latter let u P U be arbitrarily chosen.
Using i) with a1 “ a0 P A and a2 “ a0 ` u P a0 ` U “ A we obtain indeed

ϕptuq “ fpa0 ` tuq ´ fpa0q

“ fpa0 ` tpa2 ´ a0qq ´ fpa0q

“ fpa0q ` trfpa2q ´ fpa0qs ´ fpa0q

“ trfpa0 ` uq ´ fpa0qs

“ tϕpuq

for all t P r0, 1s. In order to prove the additivity of we note that choosing t “ 1
2
in i) gives

the equation fp1
2
pa1 ` a2qq “

1
2
rfpa1q ` fpa2qs for all a1, a2 P A. For arbitrarily chosen

u, u1 P U we obtain therefrom and by 1
2
P r0, 1s the identity

ϕpu` u1q “ fpa0 ` u` u
1
q ´ fpa0q “ f

`

1
2
pra0 ` 2us ` ra0 ` 2u1sq

˘

´ fpa0q

“ 1
2
fpa0 ` 2uq ` 1

2
fpa0 ` 2u1q ´ fpa0q

“ 1
2
ϕp2uq ` 1

2
ϕp2u1q “ ϕp1

2
2uq ` ϕp1

2
2u1q “ ϕpuq ` ϕpu1q.

So ϕ is additive as well.
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APPENDIX B

Supplementary Convex Analysis

Lemma B.1. Let F : Rn Ñ RY t`8u be a convex function.

i) For any two points x, y P domF and λ P R we have

F pp1´ λqx` λyq ď p1´ λqF pxq ` λF pyq if λ P r0, 1s, (B.1)

F pp1´ λqx` λyq ě p1´ λqF pxq ` λF pyq if λ P Rzp0, 1q. (B.2)

ii) If there are three di�erent collinear points a, b, c P domF which yield the same value
F paq “ F pbq “ F pcq then F is constant on the line segment copta, b, cuq spanned by
these three points.

Proof. i) The inequality (B.1) is just the inequality from the de�nition of convexity. In
order to prove (B.2) we set

zλ – x` λpy ´ xq “ p1´ λqx` λy (B.3)

for λ P Rzp0, 1q. If F pzλq “ `8 we clearly have F pzλq “ `8 ě p1 ´ λqF pxq ` λF pyq.
Assume now F pzλq ă `8, i.e. zλ P domF . In case λ ě 1 rewriting equation (B.3) yields
the convex combination y “ ´1´λ

λ
x` 1

λ
zλ “ p1´

1
λ
qx` 1

λ
zλ and hence by the convexity of

F the inequality F pyq ď p1´ 1
λ
qF pxq ` 1

λ
F pzλq. Since only �nite values occur this can be

rewritten as 1
λ
F pzλq ě p

1
λ
´ 1qF pxq ` F pyq which is equivalent to the claimed inequality

in (B.2), since λ ě 1 ą 0. In case λ ď 0 we can similar write x as convex combination
x “ ´ λ

1´λ
y ` 1

1´λ
zλ “ p1´

1
1´λ
qy ` 1

1´λ
zλ so that the convexity of F yields the inequality

F pxq ď p1 ´ 1
1´λ
qF pyq ` 1

1´λ
F pzλq. Since only �nite values occur this can be rewritten as

1
1´λ

F pzλq ě F pxq ` λ
1´λ

F pyq which is equivalent to the claimed inequality in (B.2), since
1´ λ ě 1 ą 0.
ii) Without loss of generality we may assume that b is the point �between� the endpoints
a and c, so that cota, b, cu — lpa, bq is the line segment between a and c. Set v – F paq “
F pbq “ F pcq P R. We have to show that any z P lpa, cq also ful�lls F pzq “ v. In case
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z P lpa, bq, we can write z as convex combination z “ p1´λqa`λb with some λ P r0, 1s and
as a�ne combination z “ p1´λ1qb`λ1c with some λ1 P Rzp0, 1q, respectively. So inequalities
(B.1) and (B.2) give F pzq ď p1´λqF paq`λF pbq “ v and F pzq ě p1´λ1qF pbq`λ1F pcq “ v,
respectively. All in all we thus have F pzq “ v. In case z P lpb, cq “ lpc, bq we get the
assertion analogously by interchanging the roles of a and c.

Of course norms are not strictly convex. However we have the following lemma.

Lemma B.2. The Euclidean norm } ¨ }2 : Rn Ñ R is strictly convex on every straight line,
which does not contain the origin 0.

Proof. Let l be a straight line in Rn with 0 R l and let x, y P l be two distinct points.
The strict Cauchy-Schwarz Inequality xx, yy ă }x}2}y}2 holds true for x and y, since these
vectors are linearly independent. For all λ P p0, 1q we hence get

}λx` p1´ λqy}22 “ }λx}
2
2 ` }p1´ λqy}

2
2 ` 2λp1´ λqxx, yy

ă }λx}22 ` }p1´ λqy}
2
2 ` 2λp1´ λq}x}2}y}2

“ p}λx}2 ` }p1´ λqy}2q
2

and therewith the needed }λx` p1´ λqy}2 ă λ}x}2 ` p1´ λq}y}2.

The following Theorem is obtained from [19, p. 52] and [19, Theorem 7.4].

Theorem B.3. Let f : Rn Ñ R Y t`8u be a proper, convex function. Its closure clf
ful�lls

i) clfpx0q “ lim infxÑx0 fpxq for every x0 P Rn.

ii) clf is a proper convex and lower semicontinuous function which agrees with f except
perhaps at relative boundary points of dom f .

For the proof of the following theorem see [19, Corollary 7.5.1]

Theorem B.4. For a function F P Γ0pRnq one has

F px˚q “ lim
λÒ1

F pp1´ λqa` λx˚q

for every a P domF and every x˚ P Rn.

For the proof of the following theorem cf. [19, Theorem 26.1] after identifying affpdomF q
with some Rm.
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Theorem B.5. Let F P Γ0pRnq be essentially smooth on affpdomF q— A. Then BpF |Aqpxq
contains at most one subgradient for every x P Rn. In case x R ripdomF q we have
BpF |Aqpxq “ H while in case x P ripdomF q there is exactly one subgradient in BpF |Aqpxq.
In particular the function F |A is subdi�erentiable in every x P ripdomF q.

Lemma B.6. Let F : Rn Ñ RYt`8u be a proper and convex function, which is essentially
smooth on A– affpdomF q. Then

i) argminxPRnpF pxq`Gpxqq Ď ripdomF q for every convex function G : Rn Ñ RYt`8u
with ripdomF q X ripdomGq “ H.

ii) argminxPRn F pxq Ď ripdomF q and F |A is di�erentiable in every x̂ P argminF .

Proof. i) Let all assumptions be ful�lled. By Theorem B.3 we may further assume without
loss of generality that F is closed, i.e. lower semicontinuous, since replacing F by clF would
neither a�ect the assumptions nor the assertions of the theorem. Let x̂ P argminpF `Gq.
Restricting F and G to A “ affpdomF q by setting f – F |A and g – G|A we still have
x̂ P argminpf ` gq. Using Theorem B.10 we see that still

ripdom fq X ripdom gq “ ripdomF q X ripdomGX Aq “ ripdomF q X ripdomGq X A

“ pripdomF q X Aq X ripdomGq “ ripdomF q X ripdomGq “ H.

Using the therewith applicable Sum rule and Fermat's rule we obtain

0 P Bpf ` gqpx̂q “ Bfpx̂q ` Bgpx̂q.

In particular Bfpx̂q “ H so that the essentially smoothness of f gives x̂ P intApdom fq “
ripdomF q by Theorem B.5.
ii) The inclusion follows from the just proven by choosing G ” 0 since then ripdomF q X
ripdomGq “ ripdomF q “ H by Theorem B.8. From the inclusion we now also get the
di�erentiability assertion by applying Theorem B.5.

The proofs of the following two theorems can be found in [19, p. 45].

Theorem B.7. Let C be a convex set in Rn. Let x̊ P ripCq and x P C. Then p1´λq̊x`λx
belongs to ripCq (and hence in particular to C) for 0 ď λ ă 1.

Theorem B.8. Let C be any convex set in Rn. Then C and ripCq are convex sets in Rn,
having the same a�ne hull, and hence the same dimension, as C. In particular ripCq “ H
if C “ H.

The following theorem is obtained from [19, Theorem 7.6] and [19, Theorem 6.2].
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Theorem B.9. For a proper, convex function F : Rn Ñ R Y t`8u and τ P pinf F,`8q
we have

riplevτF q “ riplevăτF q “ levăτF X ripdomF q.

Furthermore all these sets have the same dimension as domF .

Theorem B.10. Let C be a convex set in Rn, and let A be an a�ne set in Rn which
contains a point of ripCq. Then

ripAX Cq “ AX ripCq, (B.4)

AX C “ AX C, (B.5)

rbpAX Cq “ AX rbpCq, (B.6)

affpAX Cq “ AX affpCq. (B.7)

Proof. For the proof of the �rst and the second equality see [19, Corollary 6.5.1]. With
these statements we now also get

rbpAX Cq “ AX CzripAX Cq “ pAX CqzpAX ripCqq “ AX pCzripCqq “ AX rbpCq.

For the proof of the remaining forth statement let a P A X ripCq. Since the truth value
of the assertion stays unchanged when translating the coordinate system we may assume
a “ 0, so that affpAq “ spanpAq, affpCq “ spanpCq and affpAXCq “ spanpAXCq. Due to
spanpAXCq “ spanpAXpspanpCqXCqq “ spanppAXspanpCqqXCq and AXspanpCq “ pAX
spanpCqq X spanpCq we may restrict us to subspaces A Ď spanpCq, so that we can identify
spanpCq with Rm where m “ dimpspanpCqq. Choose ε ą 0 so small that Bε Ď C. Then
spanpAq “ spanpAXBεq Ď spanpAXCq Ď spanpAqX spanpCq “ spanpAqXRm “ spanpAq
so that we have in particular spanpAX Cq “ spanpAq X spanpCq “ AX spanpCq.

Theorem B.11. For convex subsets C1 and C2 of Rn the following are equivalent:

i) C1 ` C2 “ C1 ‘ C2,

ii) affpC1q ` affpC2q “ affpC1q ‘ affpC2q.

Proof. Assume without loss of generality that C1 and C2 are not empty. Translating C1 or
C2 does neither change the truth value of the statement C1 ` C2 “ C1 ‘ C2 nor the truth
value of the statement affpC1q` affpC2q “ affpC1q‘ affpC2q. Without loss of generality we
may therefore assume 0 P ripC1q and 0 P ripC2q.

Clearly ii) implies i), since C1 Ď affpC1q and C2 Ď affpC2q. We show the remaining
direction i) ñ ii) by proving its contrapositive; assume that the sum affpC1q ` affpC2q

is not direct, so that there are distinct a1, a
1
1 P affpC1q and distinct a2, a

1
2 P affpC2q such

that a1 ` a2 “ a11 ` a12. Let a be any of the four points and let C be the corresponding
set C1 or C2. We can �nd a λa ą 0 such that λaa P C; indeed, by 0 P ripCq there is
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an ε ą 0 such that Bε X affpCq Ď C. Hence and since affpCq is an a�ne set we get
λaa “ λaa ` p1 ´ λq0 P affpCq X Bε Ď C for λa chosen su�ciently small. For su�ciently
small chosen λ ą 0 the four points c1 – λa1, c

1
1 – λa11 and c2 – λa2, c

1
2 – λa12 belong

hence to C1 and C2, respectively, and ful�ll still c1` c2 “ c11` c
1
2 under preservation of the

distinctions c1 “ c11 and c2 “ c12. In particular the sum C1 ` C2 is also not direct.

Remark B.12. The condition that C1 and C2 are convex is essential to guarantee the
implication C1 ` C2 “ C1 ‘ C2 ñ affpC1q ` affpC2q “ affpC1q ‘ affpC2q as the following
example shows: Consider the sum of the upper circle line C1 – tpcosptq, sinptqq : t P r0, πsu
with the line C2 – tp0, λq P R2 : λ P Ru. We have C1 ` C2 “ r´1, 1s ˆ R “ C1 ‘ C2.
However affpC1q “ R2 and affpC2q “ C2, so that the sum affpC1q ` affpC2q is clearly not
direct.

Lemma B.13. Assume that two nonempty convex sets C1, C2 Ď Rn give a direct sum
C1 ‘ C2. Restricting the vector addition ` : Rn ˆ Rn Ñ Rn to C1 ˆ C2 gives then a
homeomorphism between the product space C1 ˆC2 and the (topological) subspace C1 ‘C2

of Rn.

Proof. By theorem B.11 we know that the sum of affpdomC1q— A1 and affpdomC2q— A2

is also a direct one. Therefore it su�ces to show that `|A1ˆA2 is a homeomorphism between
A1ˆA2 and A1‘A2. Choose any a

˚ “ pa˚1 , a
˚
2q P A1ˆA2 and set X1 – A1´a

˚
1 and X2 –

A2´a
˚
2 . Noting that `|A1ˆA2 is a homeomorphism between A1ˆA2 and A1‘A2 if and only

if f – `|X1ˆX2 is a homeomorphism between X1ˆX2 and X1‘X2 it su�ces to prove the
latter. To this end note that f is clearly continuous and surjective. SinceX1`X2 “ X1‘X2

we see that f is also injective and hence bijective. Finally f´1 : X1 ‘ X2 Ñ X1 ˆ X2 is
continuous: Let x “ x1 ` x2 P X1 ‘ X2 and let xpkq “ x

pkq
1 ` x

pkq
2 P X1 ‘ X2 converge

to x. We have to show that f´1pxpkqq “ px
pkq
1 , x

pkq
2 q converges to f

´1pxq “ px1, x2q. By
Lemma A.2 we know that there exists a constant C ą 0 such that }h1} ď C}h1 ` h2} for
all h1 P X1, h2 P X2. In particular we obtain

}x
pkq
1 ´ x1} ď C}px

pkq
1 ´ x1q ` px

pkq
2 ´ x2q} “ C}xpkq ´ x} Ñ 0

as k Ñ `8, so that x
pkq
1 Ñ x1 as k Ñ `8. By role reversal we obtain also x

pkq
2 Ñ x2 as

k Ñ `8, so that really px
pkq
1 , x

pkq
2 q Ñ px1, x2q as k Ñ `8.

The key in the previous proof was that the directness of the sum of two convex sets C1, C2

keep maintained when enlarging these sets to their a�ne hull. This is, however, in general
not true for a direct sum C1 ‘ C2, where one of the summands C1, C2 is not convex. In
such cases it can happen that `|C1ˆC2 : C1ˆC2 Ñ C1‘C2 is no longer a homeomorphism,
as the following example illustrates:

Example B.14. Consider the non-convex set C1 – t0, 1u and the convex set C2 – r0, 1q.
Although their sum C1`C2 “ r0, 2q “ C1‘C2 is a direct one, the sum affpC1q` affpC2q “

R ` R is not direct and `|C1ˆC2 is not a homeomorphism between C1 ˆ C2 and C1 ‘ C2,
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since these topological spaces are not at all homeomorphic: C1 ‘C2 “ r0, 2q is a connected
space while C1 ˆ C2 “ rt0u ˆ r0, 1qs Y rt1u ˆ r0, 1qs is not a connected space.

Theorem B.15. Let C and A be a convex and an a�ne subset of Rn, respectively, whose
sum C ` A is direct. Then the following holds true:

ripA‘ Cq “ A‘ ripCq, (B.8)

A‘ C “ A‘ C, (B.9)

rbpA‘ Cq “ A‘ rbpCq, (B.10)

affpA‘ Cq “ A‘ affpCq. (B.11)

Proof. Assume without loss of generality that A and C are not empty. Note �rst that the
�largest� sum of the four right hand side sums, i.e. the sum A ` affpCq is a direct one by
Theorem B.11. Hence the other three sums A ` ripCq, A ` C and A ` rbpCq are direct
all the more. Noting that the truth value of the statement affpA ` Cq “ A ` affpCq does
not change when translating A or C we may assume 0 P A and 0 P C without loss of
generality, so that in particular A Ď A` C and C Ď A` C. We then get

A` affpCq “ affpAq ` affpCq Ď affpA` Cq ` affpA` Cq “ spanpA` Cq ` spanpA` Cq

“ spanpA` Cq Ď spanpspanpAq ` spanpCqq “ spanpAq ` spanpCq “ A` affpCq

and therewith A‘ affpCq “ spanpA‘ Cq “ affpA‘ Cq.

Consider now the topological spaces C1 – affpAq “ A and C2 – affpCq and their product
space C1 ˆ C2, equipped with the product topology. We have

intC1ˆC2pAˆ Cq “ intC1pAq ˆ intC2pCq “ Aˆ intC2pCq,

Aˆ C
C1ˆC2

“ A
C1
ˆ C

C2
“ Aˆ C

C2

and

BC1ˆC2pAˆ Cq “ Aˆ C
C1ˆC2

zintC1ˆC2pAˆ Cq

“

´

Aˆ C
C2
¯

z pAˆ intC2pCqq

“ Aˆ
´

C
C2
zintC2pCq

¯

“ Aˆ BC2pCq.

By means of the homeomorphism `|C1ˆC2 : C1 ˆ C2 Ñ C1 ‘ C2 from lemma B.13 these
three equations can be translated to

intC1`C2pA` Cq “ A` intC2pCq,

A` C
C1`C2

“ A` C
C2

and

BC1`C2pA` Cq “ A` BC2pCq,

which gives the equations (B.8), (B.9), (B.10).
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The following theorem is a special case of [33, Corollary 2.4.5] and an equation used in
its proof. Cf. also [20, Theorem 10.5]. Note that we need an orthogonal decomposition
Rn “ X1 ‘X2 ¨ ¨ ¨ ‘Xn in order to guarantee xx, x˚y “

řn
i“1xxi, x

˚
i y.

Theorem B.16. Let Rn “ X1‘¨ ¨ ¨‘X2 be a decomposition of Rn into pairwise orthogonal
vector subspaces X1, . . . , Xn. For any proper functions fi : Xi Ñ R Y t`8u and their

semidirect sum f “ f1Z f2Z . . .Z fn : Rn Ñ RYt`8u, fpxq “ fpx1`¨ ¨ ¨`xnq–
n
ř

i“1

fipxiq

we have

i) rf1Z f2Z . . .Z fns
˚ “ f˚1 Z f

˚
2 Z . . .Z f

˚
n , i.e.

f˚px˚q “ f˚px˚1 ` ¨ ¨ ¨ ` x
˚
nq “

n
ř

i“1

f˚i px
˚
i q for every x

˚ P Rn.

ii) Bfpxq “ Bfpx1 ` ¨ ¨ ¨ ` xnq “
n
À

i“1

Bfipxiq for every x P Rn.

Proof. i) For any x˚ “ px˚1 , . . . , x
˚
nq we have

fpx˚q– sup
xPRn

rxx, x˚y ´ fpxqs “ sup
x1PX1

. . . sup
xnPXn

n
ÿ

i“1

rxxi, x
˚
i y ´ fipxiqs “

n
ÿ

i“1

f˚i px
˚
i q.

ii) Let x “ x1 ` ¨ ¨ ¨ ` xn be arbitrarily chosen. In case xi R dom fi for some i the equation
and the directness of its right-hand side sum holds vacuously true. In case xi P dom fi for
all i P t1, . . . , nu the claimed equation also holds true since for any x˚ “ x˚1 ` . . . x˚n we
have the equivalences

x˚ P Bfpxq

ô @z “ z1 ` z2 ` ¨ ¨ ¨ ` zn P Rn : fpzq ě fpxq ` xz ´ x, x˚y

ô @z “ z1 ` z2 ` ¨ ¨ ¨ ` zn P Rn : fpzq ´ fpxq ´ xz ´ x, x˚y ě 0

ô @z “ z1 ` z2 ` ¨ ¨ ¨ ` zn P Rn :
n
ÿ

i“1

rfipziq ´ fipxiq ´ xzi ´ xi, x
˚
i ys ě 0

ô @i P t1, . . . , nu @zi P Xi : fipziq ´ fipxiq ´ xzi ´ xi, x
˚
i y ě 0

ô @i P t1, . . . , nu : x˚i P Bfipxiq.

Finally note that the directness of the sum Bf1px1q ‘ ¨ ¨ ¨ ‘ Bfnpxnq is inherited from the
direct sum X1 ‘ ¨ ¨ ¨ ‘Xn.

As corollary of the previous Theorem B.16 we get the following theorem.
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B. Supplementary Convex Analysis

Theorem B.17. Let f : Rn Ñ RYt`8u be a proper function and let dom f be contained
in some a�ne subset A of Rn with di�erence space U . Then

Bfpxq “

#

H if x R A

Bf |Apxq ‘ U
K if x P A

for every x P Rn.

Proof. There is an x0 P dom f . Translating the origin of the coordinate system to x0

through replacing f by fp¨ ´ x0q would not a�ect the truth value of the claimed equation.
Therefore we may assume x0 “ 0 without loss of generality, so that A “ U is even a
vector subspace of Rn. Setting X1 – A “ U , X2 – UK and de�ning proper functions
f1 : X1 Ñ RY t`8u, f2 : X2 Ñ RY t`8u by

f1px1q– f |X1px1q and f2px2q–

#

0 if x2 “ 0

`8 if x2 “ 0

allows us to write f in the form fpxq “ fpx1 ` x2q “ f1px1q ` f2px2q for all x P Rn.
Applying Theorem B.16 yields

Bfpxq “ Bfpx1 ` x2q “ Bf1px1q ‘ Bf2px2q

“

#

H if x2 “ 0

Bf1px1q ‘ U
K if x2 “ 0

“

#

H if x R U

Bf1pxq ‘ U
K if x P U

“

#

H if x R A

Bf |Apxq ‘ U
K if x P A

for every x P Rn.
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APPENDIX C

Elaborated details

Detail 1. The intersection of compact subsets of a non-Hausdor� space does not need to be
compact again: We will construct an example for this phenomenon in three steps. First we
will obtain a non-Hausdor� space pX 1,O1q by gluing two copies of the interval pr0, 1s, r0, 1s\
O�1q to an �interval� which has two di�erent right-hand side endpoints 1, 1. Next we will
show that homeomorphic copies of the original spaces are contained in pX 1,O1q as certain
subspaces pX 1

1, X
1
1 \ O1q and pX 1

2, X
1
2 \ O1q. Finally we will show that the intersection

pX 1
1 X X 1

2, pX
1
1 X X 1

2q \ O1q of these compact subspaces is homeomorphic to the half-open
interval pr0, 1q, r0, 1q\O�1q and hence not compact. Consider the space

`

pt´1u ˆ r0, 1sq Y pt1u ˆ r0, 1sq
loooooooooooooooooomoooooooooooooooooon

—X

, X \O�2
R

looomooon

—O

˘

,

consisting of two copies t´1u ˆ r0, 1s — X´1 and t1u ˆ r0, 1s — X1 of the interval r0, 1s,
equipped with the usual topology. In order to glue the space pX,Oq to an �interval� with
two right-hand side endpoints we set

X 1 – r0, 1q Y t1, 1u,

where 1 and 1 are two di�erent elements which are not contained in r0, 1q; moreover we
equip X 1 with the identi�cation topology O1 which is induced by O and the mapping f :
X Ñ X 1 given by

fpt, aq–

$

’

&

’

%

t for t P r0, 1q

1 for t “ 1 and a “ 1

1 for t “ 1 and a “ ´1.

The space pX 1,O1q is not a Hausdor� space since every O1
X�neighborhoods U of 1 has

nonempty intersection with every O1
X�neighborhood U of 1 because both U and U contain

in�nitely many of the points 1 ´ 1
n
, n P N. However 1 and 1 are the only distinct points
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C. Elaborated details

in pX 1,O1q which can not be separated from each other by distinct neighborhoods; i.e. all
subspaces of pX 1,O1q, which contain at most one of these endpoints, are Hausdor� spaces.
In particular the sets

X 1
a – f rXas,

a P t´1, 1u, are Hausdor� spaces. By Lemma 2.3.13 the mapping f |Xa, a P t´1, 1u acts as
a homeomorphism between pXa, Xa \Oq and pX 1

a, X
1
a \O1q for a P t´1, 1u. In particular

both X 1
´1 and X 1

1 are compact subsets of pX 1,O1q. However their intersection

X 1
´1 XX

1
1 “ f |X1

“

t1u ˆ r0, 1q
‰

is homeomorphic to
`

t1uˆ r0, 1q, pt1uˆ r0, 1qq\O
˘

, i.e. to
`

r0, 1q, r0, 1q\O�1
˘

and hence
not compact. We note here that our construction could also be done in a more elegant
way if we had used the mapping idr0,1q : r0, 1q Ñ r0, 1q as �Anheftungsabbildung� in order
to stick two copies of the interval pr0, 1s, r0, 1s \ O�1q together, cf. [14, p. 54]; however
this would bring the need to introduce further topological notions. Moreover the constructed
space pX 1,O1q should be homeomorphic to the space presented by Steen and Seebach in
section �Telophase Topology� of their book �Counterexamples in Topology�, see [22, p. 92].

Detail 2. The intersection of two both compact and closed subsets K1, K2 of a topological
space pX,Oq is again closed and compact: Clearly K1 X K2 is again a closed subset of
pX,Oq. Due to

K1 XK2 “ K1 X pK1 XK2q P K1 \ApX,Oq “ ApK1, K1 \Oq

the intersection K1 X K2 is also a closed subset of the compact space pK1, K1 \ Oq and
hence a compact subset of this space by part i) of Theorem 2.1.1. From the compactness of
the subspace

`

K1 XK2, pK1 XK2q\ pK1 \Oq
˘

of pK1, K1 \Oq we conclude that

`

K1 XK2, pK1 XK2q\ pK1 \Oq
˘

“
`

K1 XK2, pK1 XK2q\O
˘

is also a compact subspace of the original space pX,Oq, since beeing compact is an intrinsic
property of a topological (sub)space, cf. De�nition 1.1.7; i.e. K1 XK2 is a compact subset
of pX,Oq.

Detail 3. The De�nition in [22, p. 74] is not totally correct: In that book the right order
topology for a linearly ordered space pX,ďq is said to be the topology which is generated
by basis sets of the form Sa “ tx|x ą au. However the whole space X needs in general to
be added to that set system in order to really obtain a basis for a topology: Consider for
instance the linearly ordered set pX,ďq– pr´8,`8s,ďq. The union of all sets Sa is only
the set p´8,`8s “ X. Instead of adding the set X to the set system formed by the Sa
the problem could also be repaired by replacing the word �basis� by �subbasis�. For the left
order order topology there is the very same problem. It can be repaired analogously.
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Detail 4. K 1 – tz P Z : z ď z1u is a compact subset of pZ, Těq: Let pO1iqiPI be some open
covering of K 1. At least one of these open sets, lets call it O1, must cover z1 and hence also
every z ď z1, i.e. every z P K 1, by the interval-like structure of the set O1 P Tě. Taking O1
already yields the needed �nite subcover.

Detail 5. The equivalences in p˚q and p˛q in the proof of Theorem 2.5.16 hold true: Note
that the harder direction �ð� of the equivalence in p˚q is true, since every compact set
K P KpRnq “ KApRnq is contained in the closed ball BRp0q, if the radius R is chosen large
enough. The other direction �ñ� is true since we can simply choose K “ BRp0q. Next
we proof the equivalence in p˛q. The totally ordered set pZ,ďq – pr´8,`8s,ďr´8,`8sq
with the natural order on r´8,`8s has both a minimum and a maximum. Hence part
ii) of Lemma 2.4.14 can be applied and we obtain KAt`8upr´8,`8s, T q “ tZzU 1 : U 1 P
U 1p`8q X T u. After taking complements this reads

U 1p`8q X T “ tZzK 1 : K 1
P KAt`8upr´8,`8s, T qu

which directly shows that the equivalence in p˛q is true.

Detail 6. pf : pRn
8,O�n

8 q Ñ pr´8,`8s, T q is continuous at the point 8 if and only if
pf : pRn

8,O�n
8 q Ñ pr´8,`8s,Oďq is continuous at the point 8: Let pf : pRn

8,O�n
8 q Ñ

pr´8,`8s, T q be continuous at the point 8, i.e. for any T �neighborhood T of `8 “

pfp8q there is a neighborhood U P O�n
8 of 8 with pf rU s Ď T . In order to show that

pf : pRn
8,O�n

8 q Ñ pr´8,`8s,Oďq is continuous at the point 8 let any Oď�neighborhood
O of `8 “ pfp8q be given. Since O contains a set of the form pα,`8s — T P T we
obtain with some corresponding neighborhood U P O�n

8 of 8 the inclusion f rU s Ď T Ď O

and have therewith shown one implication. Let now, to the contrary, pf : pRn
8,O�n

8 q Ñ

pr´8,`8s,Oďq be continuous at the point 8, i.e. for any Oď�neighborhood O of `8 “

pfp8q there is a neighborhood U P O�n
8 of 8 with pf rU s Ď O. In particular the mapping

pf : pRn
8,O�n

8 q Ñ pr´8,`8s, T q is also continuous in `8, since every T �neighborhood of
`8 is also a Oď�neighborhood of `8.

Detail 7. The product space pY 1,O1q�pY 2,O2q— pY,Oq of two locally compact Hausdor�
spaces is again a locally compact Hausdor� space: Let px1, x2q, py1, y2q be two di�erent
points in pY,Oq with, say, x1 ‰ y1. Since pY 1,O1q is a Hausdor� space there exist disjoint
neighborhoods U 1 and V 1 of x1 and y1, respectively. Then clearly U – U 1 ˆ Y 2 and V –

V 1 ˆ Y 2 are disjoint neighborhoods of px1, x2q and py1, y2q, respectively, in pY,Oq. So the
latter topological space is again a Hausdor� space. Moreover pY,Oq is also locally compact:
Let y “ py1, y2q P Y . Since pY 1,O1q and pY 2,O2q are locally compact there exist compact
neighborhoods U 1 P U 1py1q and U2 P U2py2q. The neighborhood U – U 1 ˆ U2 of y is then
compact in virtue of Tichonov's Theorem 2.3.6.

Detail 8. The coercivity assertion of Lemma 2.7.1 is contained in Theorem 3.3.6 as special
case: F1 and G1 are coercive; for instance F1 “ φ˝H|RpH˚q is a concatenation of the coercive
mapping φ and the injective and hence normcoercive linear mapping H|RpH˚q : RpH˚q Ñ
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C. Elaborated details

RpHq; cf. also the proof of Theorem 3.2.1. Moreover the mappings F1 : X1 Ñ p´8,`8s
and G1 : Y1 Ñ p´8,`8s are lower semicontinuous and hence in particular locally bounded.
Finally F2 “ 0X2 and G2 “ 0Y2 are clearly bounded below.

Detail 9. Both p}qxnk}qkPN and p}qynk}qkPN would be bounded above by some B ą 0: If one
of this sequences, say pqxnkq without loss of generality, would be unbounded there would be a

subsequence pqxnkj qjPN with }qxnkj }X Ñ `8 as j Ñ `8. Since qF is normcoercive we would

get } qF pqxnkj q}Z Ñ `8 as j Ñ `8. This contradicts (3.2).

Detail 10. There is an element b P ZzMAXďpZq with K
1 Ď bs: If ZzMAXďpZq contains

a maximum pb then clearly K 1 Ď ZzMAXďpZq “ pbs. If ZzMAXďpZq contains no maximum
then we can write

ZzMAXďpZq “
ď

bPZzMAXďpZq

bq

so that the sets bq, where b P ZzMAXďpZq, form in particular an open cover of K 1. Due
to the compactness of K 1 there are �nitely many b1, . . . , bn P ZzMAXďpZq with

K 1
Ď

n
ď

i“1

biq.

Denoting the largest of the bi with b we hence have K 1 Ď
Ťn
i“1 biq Ď bs.

Detail 11. The subspaces X1 `W1 and pXK
1 XW

K
1 q have trivial intersection: Writing an

arbitrarily chosen x P pX1 `W1q XXK
1 XW

K
1 in the form x “ x1 ` w1 with some x1 P X1

and w1 P W1 we get xx, x1y “ 0 and xx,w1y “ 0. Addition gives xx, xy “ 0 and hence
x “ 0.

Detail 12. For real-valued functions F1,ĂF1 : X1 Ñ R Y t`8u, F2,ĂF2 : X2 Ñ R Y t`8u
with F1ZF2 “ĂF1ZĂF2 there is a constant C P R such that F1 “ĂF1`C and F2 “ĂF2´C:
For all x1 P X1 and x2 P X2 we have F1px1q ` F2px2q “ĂF1px1q `ĂF2px2q. Since only �nite

values occur we can rearrange the latter and obtain F1px1q´ĂF1px1q “ĂF2px2q´F2px2q for all

x1 P X1 and x2 P X2. In particular the functions F1´ĂF1 : X1 Ñ R and ĂF2´F2 : X2 Ñ R are
constant on X1 and X2, respectively; by the previous equality, they take the same constant
value. Denoting this value by �C� we are done.

Detail 13. If one of the functions F1, F2,ĂF1,ĂF2 takes the value `8 there is no guarantee
that, e.g. F2 and ĂF2 di�er merely by a real constant; consider for instance the functions
F1 “ĂF1 ” `8 on X1. Then F1ZF2 “ĂF1ZĂF2 for any functions F2,ĂF2 : X2 Ñ RYt`8u.

Detail 14. Both F1 and G1 are bounded below: Let } ¨ }2 be the Euclidean norm in Rn.
After setting

pX, } ¨ }q– pX1, } ¨ }2|X1q pZ,ďq– pp´8,`8s,ďp´8,`8sq
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with the natural ordering ďp´8,`8s on p´8,`8s we can apply Theorem 3.1.7 to F1 :
pX, } ¨ }q Ñ pZ,ďq and obtain that F1 is bounded from below. Likewise we see that also G1

is bounded below.

Detail 15. Without loss of generality, we may assume X1 “ XK
2 , Y1 “ Y K2 and Z1 “ ZK2 ;

otherwise we can replace

F1 by ĂF1 “ F1 ˝ πX1,X2 |XK2
,

G1 by ĂG1 “ G1 ˝ πY1,Y2 |Y K2
,

H1 by ĂH1 “ H1 ˝ πZ1,Z2 |ZK2
,

and continue the proof with theses new functions instead of the original functions due to
the following three reasons:

i) The assumptions on F1, G1 carry over to ĂF1,ĂG1: Using part i) of Lemma 3.2.4 we
see that the new functions di�er from the original functions merely by bijective lin-
ear transformations of their image domains. Since the involved spaces are of �nite
dimension these linear bijections are even homeomorphisms. In particular the locally
boundedness assumption on the original functions carries over to the new functions.
Also the coercivity assumption on the original functions carries over to the new func-
tions by part i) of Lemma 3.3.3.

ii) H stays unchanged when replacing the old function by the new ones: part i) of Lemma

3.3.3 gives F1Z 0X2 “
ĂF1Z 0X2 and G1Z 0X2 “

ĂG1Z 0X2 so that

H “ pF1Z 0X2q ` pG1Z 0Y2q

“ pĂF1Z 0X2q ` p
ĂG1Z 0Y2q

iii) After proving the coercivity of ĂH1 also the coercivity of H1 would follow: Using parts
ii) and i) of Lemma 3.3.3 we can rewrite H in the form

H “ H1Z 0Z2 “
ĂH1Z 0Z2

so that part i) of Lemma 3.3.3 ensures that ĂH1 is coercive i� H1 is coercive.

Detail 16. H“ is a hyperplane in U “ affpdom Ψq: The subspace H“ – H“
p,α X U is of

dimension dimH“ “ dimH“
p,α ` dimU ´ dimpU ` H“

p,αq P n ´ 1 ` dimU ´ tn, n ´ 1u “
tdimU, dimU ´ 1u. The set H“

p,α does not completely contain S; consequently H“ Ď

H“
p,α can not completely contain affpdom Ψq Ě S all the more, so that only dimH“ “

dimpaffpdom Ψqq ´ 1 can be true. Therefore H“ is a hyperplane in affpdom Ψq.

Detail 17. For α P p0, 1
2
q we have }∇gαpzpkqq}2 Ñ `8 as k Ñ `8 for any sequence

pzpkqqkPN in Q, converging to some boundary point zp8q of Q: Since all norms in R2 are
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equivalent it su�ces to show }∇gαpzpkqq}8 Ñ `8. We have ∇gαpzq “ ´αzα´1
1 zα´1

2 pz2, z1q
T

for all z P Q, so that }∇gαpzq}8 “ αzα´1
1 zα´1

2 maxtz2, z1u for these z. In case zp8q “ p0, 0qT

we thus have for α P p0, 1
2
q the estimate

}∇gαpzpkqq}8 ě αrmaxtz
pkq
1 , z

pkq
2 us

α´1
rmaxtz

pkq
1 , z

pkq
2 us

α´1 maxtz
pkq
1 , z

pkq
2 u

“ αrmaxtz
pkq
1 , z

pkq
2 us

2α´1
Ñ `8

as k Ñ `8. In case zp8q “ p0, 0q we may assume, due to symmetry reasons, z
p8q

1 “ 0 and

z
p8q

2 ą 0 without loss of generality. We then obtain

}∇gαpzpkqq}8 “ rzpkq1 s
α´1
pαrz

pkq
2 s

α´1 maxtz
pkq
2 , z

pkq
1 uq Ñ `8

as k Ñ `8, even for α P p0, 1q.

Detail 18. The functions f and g are bounded from below: If, say f , was not bounded from
below there would be a sequence pukqkPN in the compact level set levα̃pfq with fpukq Ñ ´8

for k Ñ `8. However, after choosing a subsequence which converges to some u P levα̃pfq
we had fpuq “ ´8, by the lower semicontinuity of f . But this would mean that f is not
proper � a contradicition.

Detail 19. All assumptions of part iii) of Lemma 4.3.18 are ful�lled for F – Φ, U1 –

X1 ‘X3, U2 – X2 and G – ιlevτ }L¨}, V1 – RpL˚q, V2 – N pLq, for appropriately chosen
α and β:

‚ U2 X V2 “ t0u holds true, beeing an assumption of the current theorem.

‚ domFXdomG “ dom ΦXlevτ}L ¨ } “ H: Each neighborhood of 0 P domF intersects
domF . Since τ ą 0 ensures 0 P intplevτ}L ¨ }q we thus have in particular for this
neighborhood H “ domF X intplevτ}L ¨ }q Ď domF X levτ}L ¨ }.

‚ levαpF |U1q is nonempty and bounded for an α P R: Denoting the unique minimizer
of the strictly convex function φ “ Φ|X1 by x̌ and setting α – φpx̌q we see that
levαpF |U1q “ levαpφq ‘ t0u “ tx̌u is nonempty and bounded.

‚ Finally levβpG|V1q is nonempty and bounded for any β ě 0, since G|V1 is a norm
� namely the norm on V1, which makes pV1, G|V1q isometrically isomorph to pRpLq,
} ¨ }|RpLqq, by virtue of the bijection L|RpL˚q : RpL˚q Ñ RpLq.

Detail 20. All assumptions of part iii) of Lemma 4.3.18 are ful�lled for U1 – X1 ‘X3,
U2 – X2, V1 – RpL˚q, V2 – N pLq and F – ιargminpΦq, G– }L ¨ }, for appropriate choice
of α and β:

‚ F , G are in Γ0pRnq and have the needed translation invariance.

‚ U2 X V2 “ t0u holds true, beeing an assumption of the current theorem.
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‚ levαpF |U1q is nonempty and bounded for an α: Denoting the unique minimizer of φ
with x̌1 we have argmin Φ “ tx̌1u ‘ X2 Ď X1 ‘ X2. For α – F px̌1q “ 0 the set
levαpF |U1q “ tx̌1u is then obviously nonempty and bounded.

‚ Finally levβpG|V1q is nonempty and bounded for any β ě 0, since G|V1 is a norm
� namely the norm on V1, which makes pV1, G|V1q isometrically isomorph to pRpLq,
} ¨ }|RpLqq, by virtue of the bijection L|RpL˚q : RpL˚q Ñ RpLq.

Detail 21. d “ 0 ô argmin Φ X N pLq “ H : Using Fermat's Rule, see [19, p. 264, l.
8]; 0 P ripdom Φ˚q, see part iii) in Lemma 4.4.1, in order to apply the chain rule, see [19,
Theorem 23.9] and x P BΦ˚px˚q ô x˚ P BΦpxq, see [19, Corollary 23.5.1] we obtain

d “ 0 ô 0 P argmin Φ˚p´L˚¨q

ô 0 P BrΦ˚p´L˚¨qs|0

ô 0 P ´LBΦ˚p´L˚0q

ô Dx P Rn : x P BΦ˚p0q ^ 0 “ ´Lx

ô Dx P Rn : 0 P BΦpxq ^ x P N pLq
ô argmin ΦXN pLq “ H.

Detail 22. There is a decomposition affpdomF q “ ǍF ‘ P̌F such that P̌F is a subspace of
P rF s and such that F is strictly convex on intǍpdomF |Ǎq: We set E “ Φ˚ : Rn Ñ R Y
t`8u,Mp¨q “ ´L˚¨. Note now that 0 P ripdomEqXRpMq and that affpdomEq “ X1‘X3,
where X3 is a subspace of P rEs, by Lemma 4.4.1, and where E “ Φ˚ is strictly convex
on intX1pdom Φ˚|X1q “ ripdom Φ˚|X1q, since it is even essentially strictly convex on X1

by Lemma 4.4.1. Thus we can use Theorem 4.3.16 and obtain that affpdomF q can be
decomposed in the claimed way.

Detail 23. The functions F p¨q “ Φp´L˚¨q and Gp¨q “ τ} ¨ }˚ ful�ll the assumptions
of Theorem 4.3.21: Due to 0 “ ´L˚0 P ripdom Φ˚q and dom Φ˚ “ X1 ‘ X3 we see
that Theorem 4.3.16 can be applied to E “ Φ˚ and Mp¨q “ ´L˚¨. Thereby we get a
decomposition affpdomF q “ Ǎ ‘ P̌ of affpdomF q — A into a vector subspace P̌ of the
periods space P rF s and an a�ne subspace Ǎ Ď Rn such that F is strictly convex on
intǍpdomF |Ǎq. Furthermore F is essentially smooth on A by Theorem 4.3.12.

Detail 24. The assumptions of Theorem 4.3.21 are ful�lled for F “ Φ and Gp¨q “ λ}L ¨
}: Clearly F and G are convex functions with ripdomF q X ripdomGq “ H. Moreover
the decomposition affpdomF q “ X1 ‘ X2, or rather their components, have the needed
properties by our setting's assumptions: X2 is a subspace of P rF s, F is strictly convex on
intX1pdomF |X1q “ ripdomF |X1q “ H, and lastly F is essentially smooth on X1.

Detail 25. f is again proper, convex, lower semicontinuous and essentially smooth: f is
proper since Φ — F is proper and because fp1q “ F px̂q ă `8. Moreover f also inherits
convexity and lower semicontinuity from F . Finally f is essentially smooth: Part ii) of
Lemma B.6 gives x̂ P argminF Ď ripdomF q, so that Theorem 4.3.12 can be applied to
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E “ F and Mp¨q “ ¨x̂, giving the essentially smoothness of f “ F ˝M on affpdom fq “ R;
note for the last equality � in the nontrivial case x̂ “ 0 � the above x̂ P ripdomF q and our
setting assumption 0 P domF .

Detail 26. The function g, given by gpτq – }p̂}˚ with any p̂ P SOLpD1,τ q, τ P p0, cq
is well de�ned, since SOLpD1,τ q “ H and since Theorem 4.3.21 ensures }p̂}˚ “ }q̂}˚
for any other q̂ P SOLpD1,τ q: Consider F p¨q “ Φp´L˚¨q and Gp¨q “ τ} ¨ }˚. Due to
0 “ ´L˚0 P ripdom Φ˚q and dom Φ˚ “ X1‘X3 we see that Theorem 4.3.16 can be applied
to E “ Φ˚ and Mp¨q “ ´L˚¨. Thereby we get a decomposition affpdomF q “ Ǎ ‘ P̌ of
affpdomF q— A into a vector subspace P̌ of the periods space P rF s and an a�ne subspace
Ǎ Ď Rn such that F is strictly convex on intǍpdomF |Ǎq. We may assume without loss of
generality that Ǎ is a vector subspace as well, since 0 P A. Furthermore F is essentially
smooth on A by Theorem 4.3.12 and even on Ǎ by Lemma 4.3.11. Theorem 4.3.21 can
thus be applied, giving τ}p̂}˚ “ Gpp̂q “ Gpq̂q “ τ}q̂}˚. Since τ “ 0 we get the claimed
}p̂}˚ “ }q̂}˚.

Detail 27. }p̂}˚ ă d : Theorem 4.2.6 ii) ensures p̂ P SOLpD2,}p̂}˚q; hence we must
have }p̂}˚ ă d since the assumption }p̂}˚ ě d would imply, by Theorem 4.4.4, that p̂ P
SOLpD2,}p̂}q Ď argmin Φ˚p´L˚¨q, resulting in p̂ P SOLpD1,τ qX argmin Φ˚p´L˚¨q. This con-
tradicts the relation SOLpD1,τ q X argmin Φ˚p´L˚¨q “ H from Theorem 4.4.4 which holds
since τ P p0, cq.

Detail 28. The function f , given by fpλq – }Lx̂} with any x̂ P SOLpP2,λq, λ P p0, dq, is
well de�ned, since SOLpP2,λq “ H and since Theorem 4.3.21 ensures }Lx̂} “ }Lx̃} for any
other x̃ P SOLpP2,λq: For F “ Φ and Gp¨q “ λ}L ¨ } all assumptions of Theorem 4.3.21 are
ful�lled; note herein that F and G are convex functions with ripdomF q X ripdomGq “ H
and that the decomposition affpdomF q “ X1‘X2 �ts to the assumptions of Theorem 4.3.21:
X2 is a subspace of P rF s and F is strictly convex on intX1pdomF |X1q “ ripdomF |X1q “ H.
Lastly F is essentially smooth on X1. Applying Theorem 4.3.21 gives now λ}Lx̂} “ Gpx̂q “
Gpx̃q “ λ}Lx̃} and hence the claimed }Lx̂} “ }Lx̃}.

Detail 29. }Lx̂} ă c : Theorem 4.2.6 ii) ensures x̂ P SOLpP1,}Lx̂}q; so we must have }Lx̂} ă
c, since the assumption }Lx̂} ě c would imply, by Theorem 4.4.4, that x̂ P SOLpP1,}Lx̂}q Ď

argmin Φ, resulting in x̂ P SOLpP2,λqXargmin Φ. This contradicts the relation SOLpP2,λqX

argmin Φ “ H from Theorem 4.4.4 which holds since λ P p0, dq.

Detail 30. The equations

SOLpP1,τ q X SOLpP1,τ 1q “ H,

SOLpD2,λq X SOLpD2,λ1q “ H

hold true for all distinct τ, τ 1 P p0, cq and all distinct λ, λ1 P p0, dq, respectively: If there
were e.g. distinct λ, λ1 P p0, dq with, say λ ă λ1, such that there would be a p̂ P SOLpD2,λqX

SOLpD2,λ1q we had }p̂}˚ ď λ ă λ1 and p̂ P argmin Φ˚p´L˚¨q subject to } ¨ }˚ ď λ1, so that p̂
would be a local minimizer of Φ˚p´L˚¨q. Hence, p̂ P argmin Φ˚p´L˚¨q, by the convexity of
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Φ˚p´L˚¨q. This, however, contradicts argmin Φ˚p´L˚¨q X SOLpD2,λ1q “ H, which holds by
Theorem 4.4.4 since λ1 P p0, dq. The proof of the other equation is done just analogously.

Detail 31. For an arbitrarily chosen λ P p0, dq and λ1 – gpfpλqq we have λ “ λ1: Using
(4.25) and (4.24) with τ “ fpλq yields

SOLpP2,λq Ď SOLpP1,fpλqq Ď SOLpP2,λ1q,

SOLpD2,λq Ď SOLpD1,fpλqq Ď SOLpD2,λ1q

Since SOLpD2,λq “ H we must have λ “ λ1, in order to avoid a contradiction to (4.30).

Detail 32. Lemma A.2 implies infh1PX1XS1,h2PX2XS1xh1, h2y ą ´1 by the following reason:
By this lemma there is a constant C ě 1 ą 0 such that 1

C2 }h1}
2
2 ď }h1 ` h2}

2
2 “ }h1}

2
2 `

}h2}
2
2` 2xh1, h2y for all h1 P X1 and h2 P X2. For h1 P X1XS1 and h2 P X2XS1 we obtain

in particular xh1, h2y ě
1
2
r 1
C2 ´1´1s “ ´1` 1

2C2 — γ, so that infh1PX1XS1,h2PX2XS1xh1, h2y ě

γ ą ´1 holds indeed true.
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Some remarks to the thesis

Between the preceding thesis and the �vorgelegte Dissertation� there are some minor dif-
ferences. When handing in the �vorgelegte Dissertation� the �Summary� and the �Zusam-
menfassung� were printed on separate pages outside of the thesis, whereas here they were
included inside the thesis itself. Moreover Typos, obvious small local errors and certain
inconsequencies in notation were corrected. In particular the zerovector of the Euclidean
space Rn should now everywhere be denoted by 0 (with exception for n “ 1 where the
notation 0 might be used).

We �nally note that an electronic version of this work is available via ArXive, see
http://arxiv.org/a/ciak_r_1

The reader may want to check this webpage also for Erata / Update (maybe additionally
containing a new space concept, which was not yet developed enough to be included in the
�vorgelegte Dissertation�)
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