
A new solution approach for solving the 2-facility location

problem in the plane with block norms ∗

Andrea Maier

July 24, 2015

Department of Mathematics, University of Kaiserslautern,
P.O. Box 3049, 67653 Kaiserslautern, Germany

maier@mathematik.uni-kl.de

Abstract

Motivated by the time-dependent location problem over T time-periods introduced in
Maier and Hamacher (2015) we consider the special case of two time-steps, which was shown
to be equivalent to the static 2-facility location problem in the plane. Geometric optimality
conditions are stated for the median objective. When using block norms, these conditions
are used to derive a polygon grid inducing a subdivision of the plane based on normal cones,
yielding a new approach to solve the 2-facility location problem in polynomial time. Com-
binatorial algorithms for the 2-facility location problem based on geometric properties are
deduced and their complexities are analyzed. These methods differ from others as they are
completely working on geometric objects to derive the optimal solution set.

Keywords: optimal dynamic locations, optimal trajectory, block norm, public event

1 Introduction

A location problem is considered which arises from the special case of the dynamic location problem
introduced in Maier and Hamacher (2015). The latter is motivated by the modeling of sales- and
security personnel, that is part of a larger project in which security and commercial issues in public
events are tackled.
At a public event visitors are changing their position depending on their interest. By experience
organizers of the event can often estimate how people are moving and at which time. To improve
profit, security, etc. there is often sales- or security personnel walking around. This staff will
be modeled by a trajectory in the plane which can be identified with a time-dependent location
model over discrete time-steps.
In this report, we will in particular deal with the single facility dynamic location problem with two
time-steps which is equivalent to the static 2-facility location problem. We consider the distance
function induced by block norms and give a new algorithm based on the geometric properties of
the optimality conditions that are given later. For a literature summary on planar time-dependent
location problems we refer to Maier and Hamacher (2015). The problem definition will be given
in Section 2 and optimality conditions will be stated. These optimality conditions are based on a
2-commodity flow in an associated network. That flow defines geometric objects such as convex
polygons (cells), facets (edges) and extreme points (vertices) of these polygons.
In Section 3 the interrelation between the geometric objects and the divergence of the flow is
analyzed. Related work was done by Wagner (2015), who uses methods of functional analysis to

∗This work was in part supported by a grant of the German Ministry of Research and Technology (BMBF)
under grant FKZ 13N12826

1

derive a dual grid which is similar to our results. The two approaches differ from each other as
ours emphasizes geometric properties.
Moreover, in Section 4 this interrelation is used to derive algorithms for the two facility location
problem and to analyze their complexity. In contrast to other approaches the methods in this
report will not only consider single points in the plane to derive the optimal solution set, they
consider whole geometric objects. In the last section, a summary of our results is given and further
improvements are discussed.

2 Problem definition

In the dynamic single facility location problem, the trajectory of a sales or security person is
given by points xt ∈ R2 for a set of equidistant, discrete time-steps t ∈ T := {1, . . . , T}. As
X = (xt)t∈T ∈ R2T can be interpreted as a trajectory in the plane, the dynamic single facility
problem could also be coined optimal trajectory problem.
Each change in the position of the staff induces some cost vt ∈ R>0 (t ∈ T \ T) per unit distance
between xt and xt+1. For each time-step, there are M demand points dtm ∈ R2 and weights wtm ≥
0. We denote the common index set with M := {1, . . . ,M}. With Dt := {dtm ∈ R2,m ∈ M} we
refer to the set of demand points for a specific time-step t ∈ T . For the unweighted version all
weights are equal to 1.
Various possible objective functions and constraints were considered in Maier and Hamacher
(2015). In this paper we focus on the median objective given by

min
X∈R2T

F (X) :=

T−1∑
t=1

vt‖xt+1 − xt‖+

T∑
t=1

M∑
m=1

wtm‖dtm − xt‖. (1)

Using the classification scheme of Hamacher and Nickel (1998) the problem can be classified by
1/R2/dyn/ • /Σ , where the first entry specifies the number of facilities, the second entry denotes
that we are considering the problem in the plane, the third that it is a dynamic problem, the
fourth specifies the distance measure or • is used if we do not want to specify it and the last
entry will show which objective function is used. The optimal solution set will be identified with
X ∗(1/R2/dyn/ • /Σ) or X ∗ if it is clear which problem is considered.
In Maier and Hamacher (2015) it has been shown that 1/R2/dyn/•/Σ is a special case of the static
multi-facility problem N/R2/stat/ • /Σ, therefore known algorithms can be applied. Considering
block norms which have been introduced by Ward and Wendell (1980), there are already several
algorithms in existing literature, cf. Fliege (1998), Idrissi et al. (1989) and Ward and Wendell
(1985). The latter gives an LP-Formulation of the problem, such that it can be solved by linear
programming algorithms in polynomial time.

Subsequently we will use the following notations: For a set S ⊂ R2, bd(S), int(S) stands for the
boundary, resp. interior of S. The dot product will be denoted by 〈·, ·〉.

Definition 2.1
Let B ⊂ R2 be a compact, convex, symmetric polytope with 0 as its center. Then the block norm
with unit ball B is given by

γ(v) := inf{µ ≥ 0 | v ∈ µB}. (2)

With Ext(B) := {b1, . . . , bR} we refer to the extreme points of B.

Definition 2.2
The polar set of B is defined by

B◦ =
{
v ∈ R2

∣∣ 〈br, v〉 ≤ 1,∀r = 1, . . . , R
}

(3)

with extreme points of Ext(B◦) = {b◦1, . . . , b◦R}. Its corresponding norm will be denoted by γ◦(·).

2

We denote the common index set of extreme points of B and B◦ with R. It can be shown that
the block norm can be calculated as (see Ward and Wendell (1985))

γ(v) = min

{
R∑
r=1

|βr|

∣∣∣∣∣ v =

R∑
r=1

βrbr

}
= max {|〈v, b◦r〉| | r = 1, . . . , R} .

(4)

Definition 2.3
The normal cone K(p) to B◦ at p ∈ B◦ is defined by

K(p) := {x ∈ Rn | 〈x, q − p〉 ≤ 0 ∀q ∈ B◦}.

As 1/R2/dyn/•/Σ is a special case of the multi-facility location problem, the following optimality
conditions can be derived using the results of Lefebvre et al. (1990):

Theorem 2.4 (Lefebvre et al. (1990)).
(i) If X is an optimal solution to 1/R2/dyn/ • /Σ , then there exist vectors ptm ∈ R2 for t ∈ T ,

m ∈M and p̃t for t ∈ T ∪ {0} with p̃0 = p̃T = 0, satisfying the conservation constraints:∑
m∈M

wtmptm + vtp̃t − vt−1p̃t−1 = 0 ∀t ∈ T , (5)

the cone conditions

xt ∈ dtm +K(ptm) ∀t ∈ T ,m ∈M, (6)

xt ∈ xt+1 +K(p̃t) ∀t ∈ T \ T, (7)

and ball conditions

ptm ∈ B◦ ∀t ∈ T ,m ∈M, (8)

p̃t ∈ B◦ ∀t ∈ T \ T. (9)

(ii) Let p = (ptm)m∈M,t∈T , p̃ = (p̃t)t∈T and P = (p, p̃) be a vector satisfying the conservation

constraints (5) and the ball conditions (8) and (9) on p and p̃. If there exists an X̃ such
that the pair (X̃, P) also satisfies the cone conditions, then X̃ is optimal. Moreover, X ′ is
also an optimal solution if and only if (X ′, P) also satisfies these cone conditions.

In Lefebvre et al. (1990) a graph is associated with the location problem and P can be identified as
a flow on this graph. Constraints (5) are the flow conservation constraints of this graph. The left
hand side of equation (5) is equal to the divergence value introduced in Lefebvre et al. (1990) and
will be denoted by divt(P). Moreover, if (X,P) fulfills equations (6)-(9), then divt(P) ∈ ∂F (X),
where ∂F (X) denotes the subdifferential of F at X. For the interested reader we refer to Plastria
(1992), Rockafellar (1997) and Wagner (2015).

Definition 2.5
Let p = (ptm)t∈T ,m∈M ∈ R2TM and p̃ = (p̃t)t∈T ∪{0} with p̃0 = p̃T = 0. Then the weighted
divergence for 1/R2/dyn/ • /Σ at time-step t ∈ T for P = (p, p̃) is given by

divt(P) :=
∑
m∈M

wtmptm + vtp̃t − vt−1p̃t−1.

Definition 2.6
Note the ball conditions (8) can be rewritten for each time-step t ∈ T as

pt = (ptm)m∈M ∈ (B◦)
M := {(pm)m∈M | pm ∈ B◦,m ∈M} . (8a)

3

Then for each time-step t ∈ T and p ∈ (B◦)
M

the cone conditions (6) define geometric objects:

Gpt :=

{
x ∈ R2

∣∣∣∣∣ x ∈ ⋂
m∈M

dtm +K(pm)

}
.

More precisely, if Gpt is non-empty, it is either a proper cell of dimension 2, an edge (facet) of a
cell or a vertex (intersection point), i.e., an extreme points of a cell. The set of extreme points
will be denoted by I(Dt). The set of geometric objects for a time-step t ∈ T is given by:

Gt :=
{
Gpt

∣∣∣ Gpt 6= ∅, p ∈ (B◦)
M
}
.

Definition 2.7
Let G ∈ Gt be a geometric object, we define the set of possible flows associated with G as

PGt :=

{
p ∈ (B◦)

M

∣∣∣∣∣ G =
⋂

m∈M
dtm +K(pm)

}
.

Remark 2.8
The sets Gpt and PGt are inverse to each other since p ∈ PGt implies G = Gpt ∈ Gt and G = Gpt ∈ Gt
implies p ∈ PGt .

3 Geometric properties of the divergence values

In Maier and Hamacher (2015) a polynomial algorithm for the 2-facility location problem with
block norms 2/P/stat/γ/Σ is given. This algorithm constructs a finite dominating set and finds
the optimal solution by complete enumeration. How to replace the complete enumeration by a
search along an improving direction is an open question. In this report the basics for a search
direction to find the optimal solution set X ∗(2/P/stat/γ/Σ) more efficiently are introduced.
The conservation constraint for the two facility location problem

div1(P) =
∑
m∈M

w1mp1m + v1p̃1 = 0

div2(P) =
∑
m∈M

w2mp2m − v1p̃1 = 0

imply

v1p̃1 =
∑
m∈M

w2mp2m︸ ︷︷ ︸
A

= −
∑
m∈M

w1mp1m︸ ︷︷ ︸
B

.

The sums (A) and (B) are nothing else than the divergence values for the two static single facility
location problems 1/R2/stat, w = wt/γ/Σ with weights wt = (wtm)m∈M for each t = 1, 2. This
gives the motivation for the following definition.

Definition 3.1
The set of divergence values associated with a geometric object G ∈ Gt is defined as

DiValt(G) =

{ ∑
m∈M

wtmptm

∣∣∣∣∣ (ptm)m∈M ∈ PGt

}
.

Hence, for two geometric objects G1 ∈ G1, G2 ∈ G2 all possible values for v1p̃1 have to lie in
−DiVal1(G1) ∩ DiVal2(G2) to fulfill the conservation constraints. If p̃1 also satisfies the cone
conditions (7), then we have an optimal flow P and we can derive X ∗(2/R2/stat/γ/Σ). Therefore,
we will first take a closer look at the divergence for the single facility location problem.

4

Static Case 1/R2/stat/γ/Σ

The objective function of 1/R2/stat/γ/Σ is given by

min
x∈R2

Fstat(x) :=
∑
m∈M

wmγ(x− dm).

The cone and ball conditions can be restated as

x ∈ dm +K(pm), m ∈M,

pm ∈ B◦, m ∈M,

and the conservation constraints as:

div(p) =
∑
m∈M

wmpm = 0.

As there is only one time-step we omit the index t and denote the sets of geometric objects with
G and for each G ∈ G the set of possible flows with PG .

Theorem 3.2.

Any pair of different proper cells of dimension 2 have different unique divergence sets, i.e., for
C1, C2 ∈ G with dim(C1) = dim(C2) = 2 and C1 6= C2:

DiVal(C1) 6= DiVal(C2), and

|DiVal(C1)| = |DiVal(C2)| = 1.

Proof. Let C1 and C2 be two different proper cells of dimension 2 with flows p1 = (p1
m)m∈M ∈ PC1

and p2 = (p2
m)m∈M ∈ PC2 . As the cells are proper, each flow value pim is one of the extreme points

of B◦ and thus uniquely determined, therefore |DiVal(C1)| = |DiVal(C2)| = 1.
Suppose that div(p1) = div(p2), i.e.,∑

m∈M
wmp

1
m =

∑
m∈M

wmp
2
m. (10)

By (4) and the definition of the normal cones, we also have for all x ∈ int(C1) and m ∈M :

γ(x− dm) = 〈x− dm, p1
m〉

≥ 〈x− dm, p2
m〉.

Since C1 6= C2, there is at least one m ∈ M for which p1
m 6= p2

m holds and as a consequence, we
have a strict inequality for at least one m. Summing up, we get∑

m∈M
〈x,wmp1

m〉 − 〈dm, wmp1
m〉 =

∑
m∈M

wm〈x− dm, p1
m〉

>
∑
m∈M

wm〈x− dm, p2
m〉

=
∑
m∈M

〈x,wmp2
m〉 − 〈dm, wmp2

m〉

= 〈x,
∑
m∈M

wmp
2
m〉 −

∑
m∈M

〈dm, wmp2
m〉

(10)
= 〈x,

∑
m∈M

wmp
1
m〉 −

∑
m∈M

〈dm, wmp2
m〉

=
∑
m∈M

〈x,wmp1
m〉 − 〈dm, wmp2

m〉

=⇒
∑
m∈M

〈dm, wmp1
m〉 <

∑
m∈M

〈dm, wmp2
m〉,

5

which is independent of x. By the same argument, we must have for x ∈ int(C2):∑
m∈M

〈dm, wmp2
m〉 <

∑
m∈M

〈dm, wmp1
m〉,

giving a contradiction.

For the next proof the following definition is needed.

Definition 3.3
Each extreme point of B defines a fundamental direction fr = {λbr | λ ≥ 0} for r ∈ R. A
construction line defined by fr at point d is given by:

Lr(d) :=
{
x ∈ R2

∣∣ x = d+ fr
}
.

Theorem 3.4. Let E be the common edge of two proper adjacent cells C1 and C2, i.e., E = C1∩C2,
each cell identified with a unique flow p1 = (p1

m)m∈M and p2 = (p2
m)m∈M, respectively. Then any

flow pE defining the edge E must lie strictly between div(p1) and div(p2), i.e.,

div(pE) ∈ DiVal(E) =
{
div(p1) + λ

[
div(p2)− div(p1)

] ∣∣ λ ∈ (0, 1)
}
.

Proof. Since the two cells have a common edge E, there must be a construction line separating
them. W.l.o.g. assume that the construction line passes through dj , . . . , dM for a j ∈ M, i.e.,
E ⊂ Lr(dm)(m = j, . . . ,M), r ∈ R.
Note that for all m = 1, . . . j − 1 we have p1

m = p2
m = b◦im for some extreme points b◦im ∈ Ext(B◦).

In case of m ∈ {j, . . . ,M}, the flows of the two cells are different, therefore, we must separate
between those with demand points on one side of the edge and those with demand points on the
other side. W.l.o.g let

p1
m = b◦im = b◦i and p2

m = b◦im+1 = b◦i+1 m ∈ {j, . . . , k},
p1
m = −b◦im+1 = −b◦i+1 and p2

m = −b◦im = −b◦i m ∈ {k + 1, . . . ,M}

for two consecutive extreme points b◦i and b◦i+1 of B◦.
Note, that the only possibility that the flow PE defines this edge is that

pEm = p1
m = p2

m = b◦im ∀m = 1, . . . , j − 1

and either

1. for m = j, . . .M

pEm = p1
m + λm(p2

m − p1
m) =

{
= b◦i + λm(b◦i+1 − b◦i) if m ∈ {j, . . . , k}
= −b◦i+1 + λm(−b◦i + b◦i+1) if m ∈ {k + 1, . . . ,M}

with λm ∈ [0, 1] and there exists at least one m ∈ {j, . . . ,M} such that λm ∈ (0, 1).

2. there exist flows with pEm1
= p1

m1
, pEm2

= p2
m2

for m1 6= m2 and m1,m2 ∈ {j, . . .M}.

In both cases we have

0 ≤ λm ≤ 1 and 0 <

M∑
m=j

λm < M − j + 1. (11)

6

We get the following description of all possible divergence values:

div(pE) =

j−1∑
m=1

wmp
1
m +

M∑
m=j

wm
[
p1
m + λm(p2

m − p1
m)
]

=

j−1∑
m=1

wmb
◦
im +

k∑
m=j

wm
[
b◦i + λm(b◦i+1 − b◦i)

]
+

M∑
m=k+1

wm
[
−b◦i+1 + λm(−b◦i + b◦i+1)

]
=

j−1∑
m=1

wmb
◦
im +

k∑
m=j

wmb
◦
i −

M∑
m=k+1

wmb
◦
i+1︸ ︷︷ ︸

div(p1)

+

M∑
m=j

λmwm(b◦i+1 − b◦i)

=div(p1) +

 M∑
m=j

wmλm

 (b◦i+1 − b◦i)

=div(p1) + λ̄

 M∑
m=j

wm

 (b◦i+1 − b◦i)

=div(p1) + λ̄

M∑
m=j

wm(b◦i+1 − b◦i)

for suitable λ̄ ∈ (0, 1) since
∑
λmwm ∈ (0,

∑
wm) by (11)

=div(p1) + λ̄

M∑
m=1

wm(p2
m − p1

m) by definition of pim

=div(p1) + λ̄
[
div(p2)− div(p1)

]
.

Definition 3.5
For any intersection point x ∈ I(Dt) define the set of surrounding cells of x as

SurCellst(x) := {C ∈ Gt | x ∈ C,dim(C) = 2}.

Since we consider the static case, we will omit t.

Theorem 3.6. The divergence values of the cells around an intersection point x ∈ I(D) form a
convex, symmetric polygon

conv({div(p) | p ∈ PC , C ∈ SurCells(x)})

with {div(p) | p ∈ PC , C ∈ SurCells(x)} as extreme points.

Proof. As seen in the previous proof, going from one cell C1 to an adjacent cell C2 changes the

divergence by
[∑M

m=j wm

] (
b◦i+1 − b◦i

)
adapting the notation from the preceding proof. Moreover,

if br ∈ B is the ray defining the construction line separating C1 and C2, then br is orthogonal
to (b◦i+1 − b◦i) by definition of B◦ and the normal cones. Since the construction lines going
through an intersection point define a symmetric “star”, the statement immediately follows (cf.
Figure 3.1).

Theorem 3.7. The divergence set of an intersection point x ∈ I(D) is the interior of the polygon
formed by the unique divergences of the cells around it:

DiVal(x) = int(conv({div(p) | p ∈ PC , C ∈ SurCells(x)})).

7

C1

C2
C3

C4

C5

C6

fr

div(p1)

div(p2) div(p3)

div(p4)

div(p5)div(p6)

Figure 3.1: Divergence sets of edges orthogonal to construction lines.

Proof.
By the previous Theorem 3.6, we already know that the divergence of the surrounding cells of
an intersection point x form a symmetric polygon. Note that no divergence of a flow px ∈ Px
can be outside conv({div(p) | p ∈ PC , C ∈ SurCells(x)}), otherwise the cone conditions x ∈⋂
m∈M dm +K(pxm) cannot be satisfied.

For convenience, let SurCells(x) = {C1, . . . , Cz} for a z ≤ R and the corresponding flows pi =
(pim)m∈M ∈ PCi for i = 1, . . . , z.

Define

Sm := arg max
b∈B◦

〈x− dm, b〉

=

{
{b◦im} if |arg max{〈x− dm, b〉 | b ∈ B◦}| = 1

conv(b◦im , b
◦
im+1) otherwise

for a suitable im ∈ R.

By (4) and the definition of the normal cone we know that

pm ∈ Sm∀m ∈M =⇒ x ∈
⋂

m∈M
dm +K(pm). (12)

In addition, by defining wmSm := {wmpm | pm ∈ Sm}, we get for the the Minkowski sum the
following equations: ∑

m

conv(wmSm) = conv(
∑
m

wmSm)

= conv({div(p1), . . . , div(pz)})
(13)

where the last equation holds because div(pi) are the extreme points of the convex hull. By
Theorem 3.2 and Theorem 3.4 we know that each p with div(p) ∈ bd(conv({div(p1), . . . , div(pz)})),
the cone conditions yield either cells or edges, therefore, we have to subtract them. By equations
(12) and (13) we get the desired result.

Remark 3.8
The sets DiVal(G) for G ∈ G with dim(G) ≥ 1 form a polygon grid that corresponds to the
dual grid derived in the dissertation of Wagner (2015), which was developed independently and
published while this report was written. The former uses the dual of 1/R2/stat/γ/Σ and methods
of subdifferential calculus to derive this grid. In contrast, this report considers whole geometric

8

shapes for which all possible divergences are derived. The relation between the subdifferential of
Fstat(x) and the theory in this report is given by

∂Fstat(x) =


cl(DiVal(x)), if x ∈ I(D),

cl(DiVal(E)), if x ∈ ri(E) for an edge E,

cl(DiVal(C)), if x ∈ int(C) for a cell C,

where cl(·) is the closure and ri denotes the relative interior of a set.

As consequence of the previous theorems the divergences of the geometric objects form a polygonal
grid.

Theorem 3.9. The set of all points in
{
x ∈ R2 | ∃G ∈ G : x ∈ DiVal(G)

}
is
(∑

m∈M wm
)
B◦.

Proof. From the previous results we know that the sets DiVal(G) for G ∈ G with dim(G) ≥ 1 form
a polygon grid. All the points within the grid cells are in DiVal(x) for some x ∈ I(D). Moreover,
the boundary of this grid is obtained by the unbounded cells and edges in G, thus, by showing
that those objects form the boundary of

(∑
m∈M wm

)
B◦, we are done.

By the structure of the construction lines, there are 2R unbounded cells in G with exactly two
extreme rays br, br+1 ∈ Ext(B). W.l.o.g. these cells are given by

Cr =
⋂

m∈M
dm +K(b◦r) r ∈ R.

Thus, their divergence is given by DiVal(Cr) = {
∑
m∈M wmb

◦
r}, which are the extreme points of(∑

m∈M wm
)
B◦. Again, by the same argument as in the proof of Theorem 3.6, the divergence

of the other unbounded cells lie exactly between those of the extreme points, which finishes the
proof.

4 A geometric method for the 2-facility location problem

In this section a new algorithm based on the set of geometric objects is developed and its complexity
is analyzed. In the end it is shown how to modify the algorithm to improve its running time.

4.1 A new subdivision based on the cone conditions

Going back to the 2-facility case, or equivalently the dynamic location problem with only two time-
steps, we know from the optimality conditions that it is only necessary to consider the geometric
objects with Gt ∈ Gt with DiValt(Gt) ∩ v1B

◦ 6= ∅, otherwise the conservation constraints cannot
be satisfied. This motivates the next definition.

Definition 4.1
For any v ∈ R≥0, t ∈ T , the feasible objects with respect to weight v are

FGt(v) := {G ∈ Gt | DiValt(G) ∩ vB◦ 6= ∅}.

Moreover, for v = v1, where v1 is the weight between the new locations in the two facility case,
the optimal solutions lie in these polygons. Note, that FGt(v) forms a star-like polygon, not
necessarily convex.

Definition 4.2
The boundary objects of FGt(v) are defined as

bdObj(FGt(v)) := {G ∈ FGt(v) | DiValt(G) ∩ bd(vB◦) 6= ∅},

and the interior objects as

intObj(FGt(v)) = FGt(v) \ bdObj(FGt(v)).

9

Definition 4.3
Two geometric objects G1, G2 ∈ bdObj(FGt(v)) are called bdObj(FGt(v))-adjacent if

G1 ∩G2 6= ∅, and

@G ∈ bdObj(FGt(v)) \ {G1 ∪G2} : G ⊂ G1 ∩G2.

If v is very large, the boundary bdObj(FGt(v)) may be empty.

In the following, we will only consider geometric objects inside FGt.

Theorem 4.4. Let v ∈ R≥0 be given. Then the normal cones originating at the objects G ∈ FGt(v)
and defined by their divergence, i.e. the sets that are given by

Conet(G) := G +K(DiValt(G))

:= {x ∈ R2 | ∃g ∈ G, r ∈ K(DiValt(G)) : x = g + r},

with

K(DiValt(G)) :=
⋃

q∈DiValt(G)

K(1/v · q),

give a subdivision of the plane for each t ∈ T .

Proof. Note that for all objects G ∈ intObj(FGt(v)) we have DiValt(G) ⊂ int(vB◦) and as conse-
quence Conet(G) = G. Therefore, we only have to consider the cases where G ∈ bdObj(FGt(v)).
As the divergence values move orthogonal to the position of the geometric objects, none of the
cones on the boundary point to the inside of FGt(v) and, therefore, can only intersect with
intObj(FGt) on the actual boundary of the objects themselves. By similar arguments, we know
that

⋃
G∈FGt(v) Conet(G) = R2.

It remains to show that int(Conet(G1)) ∩ int(Conet(G2)) = ∅ for G1, G2 ∈ bdObj(FGt(v)) with
G1 6= G2. It is enough to consider the bdObj(FGt(v))-adjacent geometric objects.

G1 = C Cell / G2 = E Edge: There are two cases:
Case 1: The edge is contained in the cell:

By definition E and C can only be bdObj(FGt(v))-adjacent if DiValt(C) = {divt(pC)}
and DiValt(E) are on a common facet of B◦. Therefore, it is not possible for them to
have common points in the interior of Conet(C) and Conet(E) as E must be orthogonal
to that facet.

Case 2: In the second case, the edge is not part of the cell. However, by definition of
our adjacency this case it is not possible at all, since otherwise there would be an
intersection point x ∈ bdObj(FGt(v)) with x ∈ C and x ∈ E.

G1 = E Edge / G2 = x intersection point: Since both entities are in bdObj(FGt(v)), x must
be contained in the edge E by the same argumentation as above. Moreover, considering the
closure of DiValt(x), then DiValt(E) must be one of its edges, precisely the edge orthogonal
to E on the same side as E lies to x. As consequence, their cones Conet(E) and Conet(x)
must at least intersect at their boundary. The fact that DiValt(E) defines a half-line {x ∈
R2 | 〈a, x〉 + b = 0}, separating vB◦ into two parts, with DiValt(x) contained in one side,
w.l.o.g. DiValt(x) ⊂ {x ∈ R2 | 〈a, x〉 + b > 0} and DiVal(E) ⊂ {x ∈ R2 | 〈a, x〉 + b = 0}}
finishes this case.

G1 = C Cell / G2 = x intersection point: As argued above the intersection point must be
contained in the cell. There are two unique edges of C containing the intersection point x.
The divergence of these edges are orthogonal to the edges themselves, therefore, int(Conet(C))
cannot contain x, otherwise DiValt(x)∩vB◦ = ∅. The same argumentation holds for showing
Conet(x) ∩ C = ∅. Moreover, since DiValt(p

C) 6∈ DiValt(x), but DiValt(p
C) ∈ cl(DiValt(x)),

Conet(C) and Conet(x) have no common point in the interior.

10

G1/G2: Cell / Cell, Edge / Edge , intersection point / intersection point: By definition
of our adjacency the two objects cannot be one of these combinations.

Example 4.5
Consider the following set of demand points (t = 1) d11 = (2, 5), d12 = (2, 10), d13 = (4, 9), d14 =
(0, 7), d15 = (3, 7), with weights w1m = 1, ∀m ∈ M \ {5} and w15 = 2. Figure 4.1 shows
the subdivision obtained from the block norm defined by the polytope with extreme points
(1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), (0, 1). Its dual ball is given by the extreme points (1, 0),
(1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1). Figure 4.1 illustrates the cones and the divergence sets of
the geometric objects in FG1(4) with v = 4.

bdObj(FG1(4))
demand points

Cone1(G)

d12

Cone1(d12)

−4

−2

0

2

4

6

8

10

12

−4 −2 0 2 4 6

(a) Illustration of the subdivision defined by
Cone1(G) for G ∈ bdObj(FG1(4))

DiVal(d12)

vB◦

−6

−4

−2

2

4

−6 −4 −2 2 4

(b) Illustration of DiVal1(G) for G ∈
FG1(4)

Figure 4.1: Illustration of the cones generated by the boundary of FG1(4)

4.2 The Algorithm

When solving the static location problem 1/P/stat, w = (wtm)m∈M/γ/Σ for each time-step t =
1, 2 separately, one gets solution objects Gt with flow pt satisfying

Gt =
⋂

m∈M
dtm +K(ptm),

ptm ∈ B◦,
M∑
m=1

ptm = 0.

Therefore, the ball and cone conditions for the demand points (6) and (8) are satisfied and by
setting p̃1 = 0 the ball conditions (9) and the flow conservation constraints (5) as well. However,
the only condition that may violate the optimal conditions for the dynamic problem case is the
cone condition (7) which can be rewritten as

G1 ∩ (G2 +K(p̃1)) 6= ∅. (7a)

In the following a process to improve the violated conditions (7a) while the others remain satisfied
will be described. The following notation will be used:

Notation 4.6. For the two facility case, the sets FGt(v1) describe the sets of polygons that have
the possibility to be optimal. We will omit the v1 and denote the sets just as FGt.

11

First we introduce a distance function between two geometric objects to measure this improvement:

Definition 4.7
Between two geometric objects G1 and G2 (not necessarily bounded), the distance is given by

Dist(G1, G2) := min {‖x1 − x2‖2 | x1 ∈ G1, x2 ∈ G2} .

Later, it is shown that each iteration step strictly decreases the distance Dist(G1, G2 + K(p̃1))
until it is 0 and consequently, the cone condition (7a) is satisfied.

Definition 4.8
For any p ∈ R2 the geometric object G = GOt(p) containing p in its divergence set DiValt(G) is
defined as

GOt(p) =

{
Gt, if p ∈ DiValt(Gt),

∅, if no such Gt exists.

Note that GOt is well defined, since GOt(p) is unique.

Next G1 and G2 is updated. It is proved that the algorithm terminates after finitely many of these
updates with the optimal solution set.

Update Step

Consider iteration k and two geometric objects Gkt ∈ Gt (t = 1, 2) with an associated flow qk :=
v1p̃

k satisfying qk ∈ −DiVal1(Gk1) ∩ DiVal2(Gk2) and Dist(Gk1 , G
k
2 + K(p̃1)) > 0, like the initial

solutions of X ∗(1/P/stat, w = (wtm)m∈M/γ/Σ) do if they are not optimal.
Consider moving qk in the direction of ∆p = x̄1− x̄2 with (x̄1, x̄2) ∈ {(x1, x2) ∈ Gk1×Gk2 +K(p̃k1) |
‖x1 − x2‖2 minimal}. Note that it is possible that x̄2 /∈ Gk2 . Define

Ḡ1 =

{
x ∈ Gk1

∣∣∣∣ 〈x,−∆p〉 = max
x̃∈Gk

1

〈x̃,−∆p〉
}

Ḡ2 =

{
x ∈ Gk2

∣∣∣∣ 〈x, ∆p〉 = max
x̃∈Gk

2

〈x̃, ∆p〉
}
.

(14)

Note that Ḡt is either an edge or an intersection point with x̄1 ∈ Ḡ1 and x̄2 ∈ Ḡ2 + K(p̃k1). By
construction of the divergence grid it holds that (−1)t(qk + λ∆p) ∈ DiValt(Ḡt) for λ sufficiently
small. Choose

λ = min{λ1, λ2}, (15a)

with

λ1 := max{λ ∈ R>0 | −(qk + λ∆p) ∈ cl(DiVal1(Ḡ1) ∩ v1B
◦)},

λ2 := max{λ ∈ R>0 | qk + λ∆p ∈ cl(DiVal2(Ḡ2) ∩ v1B
◦)},

(15b)

update

qk+1 := qk + λ∆p,

and

Gk+1
1 := GO1(−qk+1)

Gk+1
2 := GO2(qk+1).

Note, that either Gk+1
1 or Gk+1

2 is an edge or a cell if qk+1 ∈ int(v1B
◦).

The resulting algorithm iterates the update step until Gk1 and Gk2 + K(p̃k) have a nonempty
intersection, i.e Dist(Gk1 , G

k
2 +K(p̃k)) = 0 (see Algorithm 4.1).

12

Algorithm 4.1: Solving 1/P/dyn, T = 2/γ/Σ

input : 1/P/dyn, T = 2/γ/Σ
output: All optimal solutions with corresponding flow P

G0
1 ← X ∗(1/P/stat/w = w1/Σ);

G0
2 ← X ∗(1/P/stat/w = w2/Σ);

q0 ← (0, 0);
k ← 0;

do
p̃k1 ← qk/v1;

(x̄1, x̄2) ∈
{

(x1, x2) ∈ Gk1 ×
(
Gk2 +K(p̃k1)

) ∣∣ ‖x1 − x2‖2 minimal
}

;
∆p← x̄1 − x̄2;
if ‖∆p‖ = 0 then

Calculate X ∗ by using the cone conditions;
return X ∗

end
Calculate Ḡ1, Ḡ2 according to (14);
Calculate λ1, λ2 according to (15b);
λ← min{λ1, λ2};

qk+1 ← qk + λ∆p;

Gk+1
1 ← GO1(−qk+1);

Gk+1
2 ← GO2(qk+1);

k ← k + 1;

while ‖∆p‖ > 0;

Example 4.9
Consider the 1/P/dyn, T = 2/γ/Σ problem with the following data:

• d11 = (2, 5), d12 = (2, 10), d13 = (4, 9), d14 = (0, 7), d15 = (3, 7),
• d21 = (17, 5), d22 = (16, 13), d23 = (17, 11), d24 = (18, 12), d25 = (19, 11)
• wtm = 1, ∀(t,m) ∈ T ×M \ {(1, 5)} and w15 = 2,
• v1 = 4.
• B = conv((1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), (0, 1))

The optimal solutions for the static problems are given by

G0
1 = x̃0

1 := (3, 7)

G0
2 = C0

2 := conv((17, 11), (17, 12), (18, 11)).

The following update steps of Algorithm 4.1 are visualized in Figures 4.2 and 4.3:

1. ∆p =

(
3
7

)
−
(

17
11

)
=

(
−14
−4

)
=⇒ Dist(G0

1, G
0
2 +K(0)) > 0

• Ḡ1 =

(
3
7

)
, Ḡ2 =

(
17
11

)
• λ = 0.2

• q1 = −
(

2.8
0.8

)
• G1

1 = x̃0
1 = GO1(−q1)

• G1
2 := E1

2 := conv((17, 11), (16, 12)) = GO2(q1)

2. ∆p =

(
3
7

)
−
(

16
12

)
=

(
−13
−5

)
=⇒ Dist(G1

1, G
1
2 +K(p̃1)) > 0

13

• Ḡ1 =

(
3
7

)
, Ḡ2 =

(
16
12

)
• λ = 1/70

• q2 = −
(

3
6/7

)
• G2

1 := E2
1 := conv((3, 7), (4, 7)) = GO1(−q2)

• G2
2 := x̃2

2 :=

(
16
12

)
= GO2(q2)

3. - 5. For the iteration steps 3-5 compare with Figures 4.2 and 4.3

6. ∆p =

(
0
−3

)
=⇒ Dist(G5

1, G
5
2 +K(p̃5)) > 0

• Ḡ1 =

(
4
8

)
, Ḡ2 := conv((11, 11), (16, 11))

• λ = 1/3

• q6 = −
(

4
3

)
• G6

1 = GO1(−q6) = C6
1 := conv((3, 9), (4, 9), (4, 8))

• G6
2 = GO2(q6) = C6

2 := conv((12, 11), (16, 11), (16, 6))

7. ∆p =

(
0
0

)
=⇒ Dist(G6

1, G
6
2 +K(p̃6)) = 0.

The optimal solution is given by the objects in X ∗ := {(x1, y1, x2, y2) ∈ X ∗1 × X ∗2 | y1 = y2}
with X ∗1 := C6

1 and X ∗2 := conv((13, 9)(16, 9), (16, 8), (14, 8)). The corresponding flow is

given by p̃1 = q6/v1 =

(
−1
−0.75

)
and

p11 =

(
1
1

)
, p12 =

(
1
0

)
, p13 =

(
−1
−1

)
, p14 =

(
1
1

)
, p15 =

(
1
1

)
p21 =

(
0
1

)
, p22 =

(
−1
−1

)
, p23 =

(
−1
−1

)
, p24 =

(
−1
−1

)
, p24 =

(
−1
−1

)
.

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x̃0
1 = x̃1

1

C0
2

G1
2

G2
1 x̃3

1

x̃2
2

G3
2

G4
1

G4
2 = G5

2

C5
1

C6
1

C6
2

Opt∗2

d2m, m ∈ M

d1m, m ∈ M

Figure 4.2: Visualization of Example 4.9

14

−4. −3. −2. −1. 1. 2. 3. 4. 5.

−4.

−3.

−2.

−1.

1.

2.

3.

4.

0

v1B
◦

q0

−q1

−λ∆p

−q2
−q3

−q4

−q5

−q6

−λ∆q6

(a) DiVal1(Gk
1)

v1B
◦

−4. −3. −2. −1. 1. 2. 3. 4. 5.

−4.

−3.

−2.

−1.

1.

2.

3.

4.

0

q0

q1
λ∆pq2

q3

q4

q5

q6

λ∆q6

(b) DiVal2(Gk
2)

Figure 4.3: Divergence sets of the geometric objects considered in Example 4.9

Correctness

By definition of qk+1 and GOt, we have qk+1 ∈ v1B
◦ and the condition

qk+1 ∈ −DiVal1(Gk+1
1) ∩ DiVal2(Gk+1

2) (16)

still holds after the update step.

By (16) and the definition of DiValt(G
k+1
t) there exists flows pk+1

t = (pk+1
tm)m∈M ∈ P

Gk+1
t

t and
p̃k+1 := qk+1

/v1 fulfilling the conservation constraints:∑
m∈M

w1mp
k+1
1m − v1p̃

k+1 = 0∑
m∈M

w1mp
k+1
2m + v1p̃

k+1 = 0.

Moreover, as pk+1
t ∈ PG

k+1
t

t the cone and ball conditions for the demand points (6) and (8) are
still satisfied

Gk+1
t =

⋂
m∈M

dtm +K(pk+1
tm), t = 1, 2

pk+1
tm ∈ B◦, t = 1, 2;m ∈M.

It only remains to show, that the algorithm will find an optimal solution. First of all, we need the
following Lemma.

Lemma 4.10. In 2/P/stat/γ/Σ, there always exists a flow P = (p, p̃) defining an optimal solution
for which v1p̃1 ∈ bd(−DiVal1(G1)∩ v1B

◦) or v1p̃1 ∈ bd(DiVal2(G2)∩ v1B
◦) for Gt =

⋂
m∈M dtm +

K(ptm).

Proof. We only have to prove the case when v1p̃1 ∈ int(v1B
◦): Assume we have an optimal solution

set X ∗ for which neither v1p̃1 ∈ bd(−DiVal1(G1)∩ v1B
◦) nor v1p̃1 ∈ bd(DiVal2(G2)∩ v1B

◦) holds,
which means G1, G2 are intersection points. Since v1p̃1 lies in the interior of v1B

◦, there is only
one solution X∗ ∈ X ∗ for which x1 = x2 = x∗ ∈ R2 holds. Considering any q ∈ bd(−DiVal1(x∗) ∩
DiVal2(x∗)), then Gt := GOt(q) defines a cell or edge for t = 1 or t = 2 containing x∗. By definition
there exist pt ∈ PGt

t such that the cone, ball and conservation constraints for p̃ = 1/v1 · q are still
satisfied. Note that by Theorem 2.4, it is not possible that q defines more optimal solutions than
X∗.

15

C1
C2

C3

C4

C5

C6C7

C8

C9

C10

Ḡ2

H−
H+

∆p

Ḡ1

(a) Original space

∆p

DiV al(C1)

DiV al(C3)

DiV al(C2)

DiV al(C4)

DiV al(C5)

DiV al(C6)
DiV al(C7)

DiV al(C8)

DiV al(C9)

DiV al(C10)

cl(DiVal2(Ḡ2))

(b) DiVal2(Ḡ2)

Figure 4.4: Possible Gk+1
2 for a flow change ∆p, where Ḡ2 ∈ I(D2).

Lemma 4.11. The cone conditions strictly improve in each iteration step, i.e.:

Dist(Gk+1
1 , Gk+1

2 +K(p̃k+1
1)) < Dist(Gk1 , G

k
2 +K(p̃k1)).

Proof. Consider the two endpoints (x̄1, x̄2) ∈ {(x1, x2) ∈ Gk1×(Gk2 +K(p̃k1)) | ‖x1−x2‖2 minimal}
and ∆p := x̄1 − x̄2. Without loss of generality we consider the case where λ = λ2 in equation
(15a). Let H be the hyperplane orthogonal to ∆p going through x̄2, i.e H = {x ∈ R2 | 〈x,∆p〉 =
〈x̄2,∆p〉}. Let H+ = {x ∈ R2 | 〈x,∆p〉 > 〈x̄2,∆p〉} the side containing Gk1 and H− the other one
like shown in Figure 4.4.
It follows that Gk2 ⊂ H− ∪H and by definition, Ḡ2 ⊂ Gk2 is either an intersection point or an edge
orthogonal to ∆p, therefore Ḡ2 ⊂ H.
However, as all edges of cl(DiVal2(Ḡ2)) are orthogonal to the edges E2 ∈ G2 with Ḡ2 ⊂ E2, ∆p
can only intersect one of the divergence values corresponding to the objects in H+, therefore,
Gk+1

2 + K(p̃k+1
1) ⊂ H+ (cf. Figure 4.4). In the special case where Ḡ2 is an edge E, ∆p is

orthogonal to that edge and points directly to the cell in H+ containing E.
In both cases we have Dist(Gk+1

1 , Gk+1
2 +K(p̃k+1

1)) < Dist(Gk1 , G
k
2 +K(p̃k1)).

Complexity

As we are considering geometric objects, we need to make use of methods in Computational
Geometry (CG) to calculate the worst case complexity of Algorithm 4.1. Not only preprocessing
can affect the running time drastically, but also the way one stores the objects. There might
be the case where preprocessing has a higher theoretically complexity than the algorithm itself,
however, as it is only done once, the practical running time might become a lot faster. About
storing the objects: one can decrease the theoretical running time of an algorithm by using a lot of
storage space, however in praxis, it might not be advisable to overload the memory of a computer,
consequently, one needs to find a trade-off between preprocessing, space and actual running time.
The following paragraphs will give an idea how to calculate the necessary objects in Algorithm
4.1. In the following we will assume that all vertices of a polygon are sorted in clockwise order.
Moreover, we assume that the extreme points of B and B◦ are given, such that

K(b◦i) = {x ∈ R2 | x = λ1bi + λ2bi+1, λ1, λ2 ≥ 0}, (17)

16

starting from the one with minimal angle to the x-axis. This is necessary to find an r ∈ R such that
for a given x ∈ R2 we can find the cone with x ∈ K(b◦r) = {x ∈ R2 | x = λ1br +λ2br+1, λ1, λ2 ≥ 0}
in O(logR).

Calculating Ḡ1, Ḡ2 and ∆p: We distinguish the following two cases

G1 and G2 +K(q
k
/v1) are bounded: If the vertices of two convex polygons with m and n vertices

are sorted in clockwise order, then the minimum distance can be found in O(m+n), using the
methods of Toussaint (1984) and McKenna and Toussaint (1985). Toussaint and McKenna
give an O(m+ n) algorithm to find the closest pair of vertices between those two polygons.
Once we know which vertices are closest, checking whether the minimal distance might be
between an edge and a vertex can be done in constant time. As the number of vertices of
Gt is less than 2M for any Gt ∈ Gt, we have a linear running time O(M).

G1 and/or G2 +K(q
k
/v1) is unbounded: Note, that even if qk ∈ int(v1B

◦) the two polygons can
be unbounded whenever the cell or edge is unbounded itself. Therefore, Gk1 and Gk2 +K(q

k
/v1)

can have at most two rays rt1,2. One gets the same running time of O(M) by consecutively
looking at the rays and iterating through the vertices of both objects successively. Hence,
the unbounded case does not worsen the running time.

In both cases, ∆p and Ḡt can automatically be derived, which gives a worst case of O(M).

Calculating cl(DiVal1(Ḡ1)), cl(DiVal2(Ḡ2)): As there is more than one method to calculate
DiValt(Ḡt), there are different worst case complexities. Note that the worst case is achieved
whenever Ḡt ∈ I(Dt). The pseudo-code in Procedure 4.2 will describe how to calculate DiValt(Ḡt)
in this case.

Procedure 4.2: Calculate DiValt(x) for x ∈ I(Dt)
extreme points← ∅;
previous← None;
for r ∈ R do

DiVal(Cr)← 0;
for m ∈M do

Choose ε = ε(m,x) sufficiently small;

x̃← x+ ε br+1+br
‖br+1+br‖ ;

b◦ ← arg maxb∈B◦〈x̃− dm, b〉;
DiValt(Cr)← DiValt(Cr) + wmb

◦;

end
if DiValt(Cr) 6= previous then

extreme points← extreme points ∪ {DiVal(Cr)};
previous← DiValt(Cr);

end

end
return extreme points

In this procedure ε is chosen sufficiently small, guaranteeing that x̃ ∈ int(Cr) for Cr ∈ SurCellst(x).
By the previous arguments one can find the two fundamental directions closest to x, however, not
intersecting x in O(logR). Calculating the distance between x and the fundamental directions
needs O(1) and choosing any ε smaller than this distance will guarantee that x̃ lies in int(Cr).
Altogether, we have O(MR logR) in the worst case. Note that calculating DiValt(Ḡt) for Ḡt being
an edge or a cell can be done similarly to Procedure 4.2 with the difference that we do not have
to iterate over every r ∈ R. Moreover, the extreme points are already sorted in clockwise order.

17

Calculating λ1, λ2: We need to intersect a ray with a polygon in (15b). The running time
achieves its worst case whenever Ḡt ∈ I(Dt). Assume we have a polygon of R vertices v1, . . . , vR
given in clockwise order and a ray λ∆p with starting point qk. We already know that the ray has
its starting point in the polygon and, therefore, intersects it. It is possible to find the intersection
in O(logR):
Starting with vm = v1 and vn (n = bR/2c) we check on which side of the ray the two vertices are.
This can be done in constant time. Only in the first step, we have to check on which side qk is of
the line from v1 through vn, otherwise we might go in the wrong direction.
W.l.o.g. assume qk + λ∆p is intersecting the polygon in one of the edges from a = vm to b = vn.
Set l := bm+n

2 c. If qk + λ∆p is intersecting the line between vm and vl, set m = l, else set n = l
and repeat this process until n = m+ 1 or qk + λ∆p is intersecting vl.
As calculating DiValt(Ḡt) ∩ v1B

◦ is more time consuming than intersecting the two polygons
separately with qk + λ∆p and taking the one with minimum length, we have to do this procedure
for all three polygons DiVal1(Ḡ1),DiVal2(Ḡ2) and v1B

◦. Also note that in an implementation one
would be using the indices of SurCellst(x) to get the vertices v1, . . . , vR and also return a tuple

• (r, r): qk + λ∆p intersects the divergence of the cell contained in Ḡt +K(b◦r).

• (r, r + 1): qk + λ∆p intersects divergence of the edge contained in Ḡt +K(
b◦r+b◦r+1

2).

Such indices can be calculated in O(logR) once we know where qk+λ∆p is intersecting DiValt(Ḡt).

Calculating Gk+1
t : Note that the running time of calculating Gk+1

t is dominated by the case
where Gk+1

t changes, i.e. qk+1 ∈ bd(DiValt(Ḡt)), otherwise Gk+1
t = Ḡt. Let (r1, r2) be the indices

returned from calculating λ1 and λ2. Assume Ḡt ∈ I(Dt) (the case Ḡt being an edge goes similar).
By (17) we know that Gk+1

t lies in the cone starting at Ḡt and spanned by br1 and br2 . It can
be calculated like shown in Procedure 4.3. The correctness follows by the same argumentation as
used in calculating DiValt(Ḡt).
As argued in the previous paragraphs calculating ε as well as calculating the set A can be done
in O(logR). As each normal cone can be rewritten as an intersection of two half-planes, each
cell or edge is an intersection of at most 4M half-planes. By Preparata and Shamos (1985) this
intersection can be calculated inO(M logM). Therefore, Procedure 4.3 takesO(M(logM+logR))
time.

Procedure 4.3: Calculate Gk+1
t if Ḡt ∈ I(Dt)

r1, r2 ← indices from calculating(λi);
for m ∈M do

Choose ε sufficiently small;

x̃← Ḡt + ε
br1+br2
‖br1+br2‖

;

A← arg maxb∈B◦〈x̃− dm, b〉 ; // |A| ≤ 2
Hm ← calculate halfplanes(dm, b

◦
i) for b◦i ∈ A ; // |Hm| ≤ 4

end
Cr ← intersect(H1, . . . ,HM);
Cr ← sort vertices;
return Cr;

Calculate optimal solution set: Each Gk+1
t has at most 2M extreme points and K(p̃k+1) has

at most two rays. The optimal solution set X ∗ can be calculated by intersecting Gk+1
2 with each

ray starting from the extreme points of Gk+1
1 . Then we get a partition of Gk+1

2 , for which the
corresponding solutions in Gk+1

1 can be described. Obtaining this partition and the description of
X ∗ can be calculated in O(M3).

18

Number of Iterations: Note that there are O(M2R2) geometric objects for each time-step t.
Although, this algorithm is only considering objects with common divergence value, it might hap-
pen that the algorithm is “zigzagging”. Therefore, in the worst case, the algorithm has O(M4R4)
iterations. The previous paragraph can be summarized in the following theorem:

Theorem 4.12. Algorithm 4.1 with Procedures 4.2 and 4.3 runs in O(M5R4(logM + R logR))
time.

Remark 4.13
It is possible to improve this bound by doing preprocessing and storing all the necessary objects,
such that they do not need to be calculated on the spot. However, more storage space is needed.
Assuming that one stores all the cells with extreme points, rays and their divergence values, the in-
tersection points x ∈ I(Dt) with reference to the surrounding cells C ∈ SurCellst(x), Algorithm 4.1
can be implemented in O(M4R4(M + logR)) time using O(M3R2(logM +R logR) preprocessing
and O(M2R2(M +R)) space.

19

4.3 A Hybrid Algorithm for 2/R2/stat/γ/Σ

In this section, we will deal with the zigzagging problem from the previous algorithm. Getting rid
of it would mean needing O(M2R2) iterations. The next algorithm is called hybrid, because it is
a mixture of Algorithm 4.1 and a method to solve the single facility location problem. First it is
checked whether the two facilities coincide checking the optimality conditions for the geometric
objects in the boundary bdObj(FGt) for t = 1, 2 and then it solves the singles facility case.
If
∑
m∈M wtm < v1 for at least one t ∈ {1, 2}, then for any X ∈ X ∗ the two facilities coincide by

Theorem 3.9, as the divergences of the objects lie strictly in the interior of v1B
◦. This result also

confirms the ones by Lefebvre et al. (1990) and Plastria (1992). Suppose
∑
wm ≥ v1 for both

t = 1, 2. Then there is the possibility that x∗1 6= x∗2.
Let us first assume the optimal solution is in bdObj(FGt). By the proof of Lemma 4.10 we know
that one of the optimal geometric objects Gt is either a cell or an edge, or, if both of them are
intersection points, p̃1 has to be an extreme point of B◦.
Using the same update steps like in Algorithm 4.1, we can start with two elements G0

1 and G0
2 that

satisfy qk = v1b
◦
1 ∈ (−1)tDiValt(G

0
t). By the methods described in the previous sections such an

element can be calculated in O(M3R2(logM +R logR)) time. We set r = 1 and in each iteration
k = 1, 2, . . . we set ∆p = br+1 − br until qk = v1br+1. Then we update r to r + 1 and continue
until we reach r = R, like shown in Algorithm 4.4.
However, in this case the procedure can terminate without finding any solution, since we only
considered the boundary bdObj(FGt).
If no solution is found, we know that x1 = x2 as p̃1 ∈ int(B◦). Hence, we can solve a static
problem with 2M facilities 1/R2/stat, w = (wtm)m∈M,t∈T /γ/Σ.
Considering the number of iterations, the set DiValt(Gt) of a geometric object Gt ∈ Gt can intersect
bd(v1B

◦) on more than one position and, therefore, can be considered multiple times. The next
theorem shows that the number of times one element is considered is bounded.

Theorem 4.14. Algorithm 4.4 terminates after O(M2R2) iterations.

Proof. Cells and edges can only be considered once, or respectively twice. Therefore, we assume
that Gkt ∈ I(Dt). All edges of DiValt(G

k
t) must be parallel to some facet of B◦. Therefore, using

the update method in this section a geometric object can only be considered at most R/2 times. To
see this enumerate the edges of v1B

◦ in clockwise order e1, . . . , eR, where er := br+1− br (r ∈ R).
Let DiValt(G

k
t)∩er 6= ∅ for some r ∈ R and Gkt 6= Gk+1

t . Thus, DiValt(G
k+1
t)∩ri(er) 6= ∅. Assume,

Gkt is considered in another iteration, i.e. Gk
′

t = Gkt for some k′ > k. Then Gkt intersects another
edge er′ with r′ > r, however, as all edges of DiValt(G

k
t) are parallel to one in {e1, . . . , er}, it

follows that r′ ≥ r + 2.
Suppose an object DiValt(Gt) intersects v1B

◦ at j occasions (for 3 ≤ j ≤ R/2). Then by the
previous argumentation, there can only be at most O(R/j) objects with that property. Therefore,
summing up over the number of times one object can be considered, one gets a total ofO(1·M2R2+

2 ·M2R2 +
∑R/2
j=3 j · R/j) = O(M2R2) iterations, taking all reconsiderations into account.

The following theorem can be derived using the same complexity results as before.

Theorem 4.15. Algorithm 4.4 runs in O(M3R2(logM +R logR)).

Note that it is also possible to adjust the search direction along the boundary by improving the
distance between the geometric objects like done in the previous subsection. However, this does
not change the worst case running time.

Remark 4.16
By the same argumentation as before, Algorithm 4.4 can be implemented in O(M2R2(M+logR))
using O(M3R3(logM + logR)) preprocessing and O(M2R2(M +R)) space.

20

Algorithm 4.4: Solving 1/P/dyn, T = 2/γ/Σ

input : 1/P/dyn, T = 2/γ/Σ
output: All optimal solutions with corresponding flow P

if
∑
m∈M wtm < v1 for some t ∈ {1, 2} then

return solve(1/R2/static, w = (wtm)m∈M,t∈T /γ/Σ);
end

/* Initialization */ ;
q0 ← v1b

◦
1;

G0
1 ← GO1(−q0);

G0
2 ← GO2(q0);

r ← 1;
k ← 0;

while Dist(Gk1 , G
k
2 +K(q

k
/v1)) > 0 do

if qk = v1b
◦
r+1 then

r ← r + 1;
if r = R+ 1 then

return X ∗(1/R2/stat, w = (wtm)m∈M,t∈T /γ/Σ);
else

∆p← b◦r+1 − b◦r ; // b◦R+1 = b◦1
end

end
/* Calculate step-size */ ;
Calculate Ḡ1, Ḡ2 according to (14);
Calculate λ1, λ2 according to (15b);
λ← min{λ1, λ2};
/* Update step */ ;

qk+1 ← qk + λ∆p;

Gk+1
1 ← GO1(−qk+1);

Gk+1
2 ← GO2(qk+1);

k ← k + 1;

end

Calculate optimal solution set X ∗ with Gk1 , G
k
2 and qk;

return X ∗;

5 Conclusion and Future Research

This report reconsiders the 1/R2/dyn/γ/Σ Problem, focusing on the case with only two time-
steps. The latter is equivalent to the static 2-facility median problem in the plane 2/R2/stat/γ/Σ.
A geometric description of the divergence values for each geometric object induced by the cone
conditions (6) is derived. This representation is used to state two new solution approaches for the
2-facility location problem that are also analyzed in their complexity. As the two algorithms are
using methods of computational geometry the trade-off between preprocessing, space and running
time is pointed out. It is possible to decrease the actual running time at the cost of increasing
preprocessing and storage space. However, it might not be advisable to store all the geometric
objects. How this will effect the running time in praxis has not been tested yet.
Moreover, one can also use polyhedral gauges instead of block norms. Gauges can be defined like
block norms, however, they are lacking the symmetry property. Most of the results in this report
can be adapted to polyhedral gauges. In addition, there are further objectives and extensions
stated in Maier and Hamacher (2015) which have not been considered yet.

21

References

J. Fliege. Solving convex location problems with gauges in polynomial time. Technical report,
Fakultät für Mathematik, TU Dortmund, 1998. Ergebnisberichte des Instituts für Angewandte
Mathematik, Nummer 158.

H. W. Hamacher and S. Nickel. Classification of location models. Location Science, 6(1–4):229
– 242, 1998. ISSN 0966-8349. doi: http://dx.doi.org/10.1016/S0966-8349(98)00053-9. URL
http://www.sciencedirect.com/science/article/pii/S0966834998000539.

H. Idrissi, O. Lefebvre, and C. Michelot. Duality for constrained multifacility location problems
with mixed norms and applications. Annals of Operations Research, 18(1):71–92, 1989. ISSN
0254-5330. doi: 10.1007/BF02097796. URL http://dx.doi.org/10.1007/BF02097796.

O. Lefebvre, C. Michelot, and F. Plastria. Geometric interpretation of the optimality conditions
in multifacility location and applications. Journal of Optimization Theory and Applications, 65
(1):85–101, 1990.

A. Maier and H. W. Hamacher. A finite dominating set algorithm for a dynamic location problem
in the plane. Technical Report 155, Fachbereich Mathematik, 2015.

M. McKenna and G. T. Toussaint. Finding the minimum vertex distance between two disjoint
convex polygons in linear time. Computers & Mathematics with Applications, 11(12):1227 –
1242, 1985. ISSN 0898-1221. doi: http://dx.doi.org/10.1016/0898-1221(85)90109-9. URL http:

//www.sciencedirect.com/science/article/pii/0898122185901099.

F. Plastria. When facilities coincide: Exact optimality conditions in multifacility location. Jour-
nal of Mathematical Analysis and Applications, 169(2):476 – 498, 1992. ISSN 0022-247X.
doi: http://dx.doi.org/10.1016/0022-247X(92)90091-Q. URL http://www.sciencedirect.

com/science/article/pii/0022247X9290091Q.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag
New York, Inc., New York, NY, USA, 1985. ISBN 0-387-96131-3.

R.T. Rockafellar. Convex Analysis. Convex Analysis. Princeton University Press, 1997. ISBN
9780691015866.

G.T. Toussaint. An optimal algorithm for computing the minimum vertex distance between two
crossing convex polygons. Computing, 32(4):357–364, 1984. ISSN 0010-485X. doi: 10.1007/
BF02243778. URL http://dx.doi.org/10.1007/BF02243778.

A. Wagner. A new duality based approach for the problem of locating a semi-obnoxious facility,
2015.

J. E. Ward and R. E. Wendell. A new norm for measuring distance which yields linear location
problems. Operations Research, 28:836–844, 1980.

J. E. Ward and R. E. Wendell. Using block norms for location modeling. Operations Research, 33
(5):1074–1090, 1985.

22

http://www.sciencedirect.com/science/article/pii/S0966834998000539
http://dx.doi.org/10.1007/BF02097796
http://www.sciencedirect.com/science/article/pii/0898122185901099
http://www.sciencedirect.com/science/article/pii/0898122185901099
http://www.sciencedirect.com/science/article/pii/0022247X9290091Q
http://www.sciencedirect.com/science/article/pii/0022247X9290091Q
http://dx.doi.org/10.1007/BF02243778

	Introduction
	Problem definition
	Geometric properties of the divergence values
	A geometric method for the 2-facility location problem
	A new subdivision based on the cone conditions
	The Algorithm
	A Hybrid Algorithm for 2/R2/stat//

	Conclusion and Future Research

