
Randomized Jumplists With
Several Jump Pointers

Elisabeth Neumann

Bachelor Thesis

Randomized Jumplists With Several
Jump Pointers

submitted by

Elisabeth Neumann

31. March 2015

TU Kaiserslautern
Fachbereich Informatik

Supervisor: Prof. Dr. Markus E. Nebel

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben. Alle
wörtlich oder sinngemäß übernommenen Zitate sind als solche kenntlich gemacht
worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbe-
hörde vorgelegen.

Kaiserslautern, den 31. March 2015

Elisabeth Neumann

Contents

List of Figures iii

1. Introduction 1

2. Preliminaries 5

3. Algorithms 9
3.1. Search . 9
3.2. Construction of the List . 10
3.3. Insertion . 12
3.4. Correctness . 20

3.4.1. Generation . 20
3.4.2. Insertion . 23

4. Analysis of Expected Search Costs 33
4.1. Expected Internal Path Length of 2-Jumplists 33

4.1.1. Lower bound . 35
4.1.2. Upper bound . 37
4.1.3. Approximation of Expected Internal Path Length 39

4.2. Expected Number of Comparisons . 42
4.2.1. Approximation of Expected Number of Comparisons 44

5. Complexity Analysis 49
5.1. Generation . 49
5.2. Insertion . 50

5.2.1. Usurper . 50
5.2.2. Restore_unif and Bend_procedure 53

6. Conclusion 59

Bibliography 61

Appendices 63

A. Supplementary Proofs 65

i

Contents

ii

List of Figures

1.1. Example of a jumplist of length 5, as defined in [1]. 1
1.2. Binary tree corresponding to the jumplist in Figure 1.1. 2
1.3. Example of a skip-list. 2
1.4. Example of a skip-lift . 3

2.1. Examples of the non-restricted 2-jumplist. 5
2.2. Forbidden configurations. 6
2.3. Overview of the defined notations. 6
2.4. Special cases in the 2-jumplist. 7
2.5. Examples of the (restricted) 2-jumplist. 7

3.1. Special cases in rebalance. 11
3.2. Process flow of the insertion. 13
3.3. Calls of rebalance in relocate_pointer, if the jump-pointer is bent. . . . 14
3.4. Calls of rebalance in relocate_pointer, if the jump2-pointer is bent. . . . 15
3.5. Special cases during insertion. 17
3.6. Special cases in usurp. 18
3.7. Calls of rebalance in usurp, if the jump-pointer is bent. 18
3.8. Calls of rebalance in usurp, if the jump2-pointer is bent. 19
3.9. Special cases in rebalance. 21

4.1. Plots for IPL. 42
4.2. Explanation of the initial conditions of equation (4.8). 43
4.3. Plots for the number of comparisons. 48

5.1. Illustration of the sizes used in equation (5.2). 51
5.2. Illustration of the sizes used in equation(5.3). 54
5.3. Initial conditions with possible insertion positions for the new node. . 55

iii

List of Figures

iv

1. Introduction

Since a long period of time, storing and maintaining information and making it ac-
cessible with ease, has been and still is one of the major tasks of computer science.
Such data structures are called dictionaries and they provide operations such as in-
sertion, deletion and search. Since the introduction of AVL-trees, data structures that
provide these operations in O(log(n)) time, with n the length of the list, are known
[7]. Other data structures that also grant these operations in logarithmic time are for
example randomized or balanced binary search trees (BST), splay trees, skip-lists and
jumplists [8]. The latter are the subject of this bachelor thesis.

h 1 3 4 8 9

Figure 1.1.: Example of a jumplist of length 5, as defined in [1].

Jumplists are based on a very simple data structure: the circularly closed (singly)
linked list. But to avoid long walks along the next-pointers to nodes located near the
end of the list, a jump-pointer is added to every node to provide shortcuts to parts
further ahead in the list.

Jumplists were introduced by Brönnimann, Cazals and Durand [1] in 2003. The struc-
ture of the list, i. e. the targets of the different jump-pointers are independent of the
keys in the list as the targets are randomly chosen to form a nested pointer struc-
ture. This randomized structure allows easier maintenance and search, resulting in
O(log(n)) expected time complexity for these operations. To facilitate the operations,
a header-node containing no key is introduced before the actual list and the last node
points to this header.

A deterministic version of jumplists was presented by Elmasry [6]. Similar to weight-
balanced trees, a balancing condition for every node is introduced. This condition is
fulfilled if the ratio of the number of nodes accessible by the next-pointer and the ones
accessible by the jump-pointer is between α and 1− α (included) for 0 < α < 1

2 . If
however the condition is infringed for a set of nodes, by repeated deletion or inser-
tion, the smallest part of the list containing all these nodes, is rebuilt by choosing for
every pointer the best possible target (considering the nested pointer structure and

1

1. Introduction

the best partition of the partial list). The deterministic jumplists provide the three ba-
sic operations in O(log(n)) amortized time.

Jumplists are very similar to binary trees: the performance of the search operation
in jumplists is linked to the form of the corresponding binary tree, as the necessary
number of pointer to reach a node corresponds to the depth of the same node in the
binary tree [4]. By cutting off superfluous pointers, the ones that are not part of a
shortest path to a node, in the jumplist and “letting it dangle” from the header, a
corresponding binary tree is built.

h

1

3 4

8

9

Figure 1.2.: Binary tree corresponding to the jumplist in Figure 1.1.

Another related data structure is the skip-list. Similar to the jump-lists, skip-lists also
use additional pointers to speed up the search. These pointers are ordered in towers
with the higher located pointers skipping more nodes than the pointers located below.
For each layer in the tower, the node has one jump-pointer leaving and one entering.
Contrary to jump-lists, a node can have more than one jump-pointer, the number can
even vary from node to node.

The search is started at the highest possible layer in the header. If a link of a node in
this layer reaches too far, the layer just below in the same tower is tried.

h 1 3 4 8 9 +∞

Figure 1.3.: Example of a skip-list. The search path for node 3 is colored in red.

2

Skip-lifts [9] are another data structure which are related to jumplists. To save space,
only at most the two highest layers per tower (except for the header) are preserved,
leaving every node, except the header, with exactly 2 jump-pointer. These remaining
layers need to be doubly linked, to ensure that every node can be reached.

The search starts at the highest possible layer of the header. Then the right links are
followed until the element is found or the link reaches too far. If the layer below is not
empty, the search tries to use the element below. If the current element does not have
a pointer in the layer below, the algorithm follows the left pointers until an element
is found whose layer below is not empty. This process is iterated until the searched
element is found.

h 1 3 4 8 9 +∞

Figure 1.4.: Example of the skip-lift corresponding to the skip-list in Figure 1.3. The
search path for node 8 is colored in red.

In this bachelor thesis, a slightly modified form of the jumplists will be analysed:
the 2-jumplist. Instead of having only two pointers per node, the next- and the jump-
pointer, every node will have three: the next-, jump- and jump2-pointer with the latter
reaching even more far ahead than the jump-pointer. The thesis includes a presenta-
tion of the algorithms for generation, insertion and search as well as proofs for their
correctness. Furthermore, expected search costs will be analysed in detail and a time
complexity analysis will be conducted for generation and insertion.

3

1. Introduction

4

2. Preliminaries

The 2-jumplist is the same at its core as the simple jumplist defined by Brönnimann,
Cazals and Durand in [1]. Nevertheless, I provide a brief definition of the 2-jumplist
and present some more restricted variants of the 2-jumplist. I only consider the ran-
domized jump-list version, as a deterministic version is more difficult to maintain
upon insertion and deletion.

A 2-jumplist is a linked list with a header of ordered nodes, according to an ordering
≺ on the labels. Every node has a jump and a jump2-pointer, in addition to a next-
pointer. The next-pointers form a circularly-closed singly-linked list. The jump- and
jump2-pointer of a node h point to nodes a and b respectively picked uniformly at
random from the successors of h. This uniform distribution needs to be preserved and
thus needs to be restored upon insertion or deletion. For a and b holds that a.label �
b.label (x.label is the label of node x).

To this basic definition, a few constraints are added to generate a set of more restric-
ted list-families. These families are defined incrementally, meaning that a constraint
introduced in a family above also applies to the families below.

h

(a) empty 2-jumplist

h 1 3 4 8 9

(b) example of a non-empty 2-jumplist

Figure 2.1.: Examples of the non-restricted 2-jumplist.

1. No crossing edges: This restriction requires that for the order ≺ on the labels
and for the jump- and jump2-pointer, the following must hold:

(6 ∃xy)(x.label ≺ y.label ≺ x.jump.label ≺ y.jump2.label) (1)
and

(6 ∃xy)(x.label ≺ x.jump.label ≺ y.label ≺ x.jump2.label ≺ y.jump2.label) (2)

x.jump resp. x.jump2 refer to the target-node of x’s jump- resp. jump2-pointer.
(a) and (b) equal to the forbidden configuration depicted in Figure 2.2.

5

2. Preliminaries

x ... y ... a ...

(a)

x ... a ... y ... b ...

(b)

Figure 2.2.: Forbidden configurations.

This restriction results in a nested pointer structure. The list is build from the
front backwards and the jump- and jump2-pointer of a node h are not chosen
among all the successors of h, but from the partial list starting behind h and
ending at (including) the first node, which is the target of a pointer originating
from a node located before h (or at the end of the whole list if no such node
exists). h is then called header of this partial list, the node ending the list end
and the partial list itself is referred to as sublist of h. The length of the sublist is
called n.

Similarly, I refer to the following partial lists:

next-list: the partial list starting at h.next and ending but not including
h.jump. The size of this list is called nsize.

jump-list: the list starting at h.jump and ending but not including h.jump2.
The size of this list is called jsize.

jump2-list: and the list starting at h.jump2 and ending at end. The size of
this list is called j2size.

n ... h ... a ... b ... end

next-list jump-list

sublist of h

jump2-list

Figure 2.3.: Overview of the defined notations. Node n is the closest predecessor of
h with (at least) one pointer reaching over it and end is the target of the
closest of these/this pointer(s) to h. If no such node n exists, end is the last
node of the list. end thus limits the sublist of h.

2. The jump- and jump2-pointer of every node point to different nodes, if it is
possible: This restriction requires that if the sublist of node h contains at least
two nodes, the jump- and the jump2-pointer must point to different nodes. This

6

restriction contributes to the quality of the list as search-data-structure, as point-
ers to the same node are a waste of potential.

3. The jump-pointer does not point to the node after it’s origin, if possible: Like
the restriction before, this can only be assured if the sublist has an appropriate
length. To ensure both restrictions, a sublist of length at least three is needed, for
length one, two and three, the special cases displayed in 2.4 are needed. Corres-
pondingly, I refer to the sublist of a node without successor as target-sublist.

y ... h end → y ... h end

(a) length of sublist=1:
nsize=jsize=0, j2size=1.

y ... h a end → y ... h a end

(b) length of sublist=2:
nsize=0, jsize=j2size=1.

y ... h a b end → y ... h a b end

(c) length of sublist=3:
nsize=jsize=j2size=1.

Figure 2.4.: Special cases in the 2-jumplist.

As for the list family before, this restriction makes searching faster, as the jump-
pointer is not wasted on a node already referenced by the next-pointer.

h

(a) empty 2-jumplist

h 1 3 4 8 9

(b) example of a non-empty 2-jumplist

Figure 2.5.: Examples of the (restricted) 2-jumplist.

7

2. Preliminaries

In this thesis, only the third list-family will be covered, as it is the most efficient one
according to search-costs. The restrictions 1-3 will be called conditions of correctness,
as they will be used in the proofs of correctness.

8

3. Algorithms

For this thesis, I wrote algorithms for search, generation and insertion of a node. They
are adjusted versions of the algorithms for the original jumplist as described in [1].
In the following sections, these algorithms are described and implementations are
given in form of pseudo-code.

In my realization of the 2-jumplist, the header as well as the length of the (whole) list
(without the header) are stored for every 2-jumplist under the names list.header resp.
list.length.
Every node contains 6 variables: the label, the next-, jump-, jump2-pointer and the
sizes of the next- resp. jump-list (called nsize resp. jsize).

3.1. Search

Searching in a 2-jumplist is very intuitive. The jump- and jump2-pointers are used as
shortcuts unless they point too far, always using the one that points farthest ahead
without being greater that the label that we look for.

For the search, the if (insert)-statements in lines 7 and 12 can be ignored, as they are
only needed in the insertions algorithm. If a node with the sought label is found, a
reference to the target and the boolean true are returned to indicate that the target has
been found. Upon unsuccessful search, false is output and a reference to the element
which had the largest smaller label compared to the label that is looked for. This
reference will be needed in the insertion algorithm.

9

3. Algorithms

Algorithm 1 search(int k, boolean insert)

1: node current = list.header;
2: while (current.next 6= list.header) do
3: if (current.jump2.label ≤ k) then
4: current = current.jump2;
5: else
6: if (current.jump.label ≤ k) then
7: if (insert) then
8: current.jsize++;
9: current = current.jump;

10: else
11: if (current.next.label ≤ k) then
12: if (insert) then
13: current.nsize++;
14: current = current.next;
15: else
16: if (current.label == k) then . element found
17: return new tuple(current, true);
18: else . element not found
19: if (insert) then
20: current.nsize++;
21: return new tuple(current, false);

return new tuple(current, false); . k is bigger than every label in the list

3.2. Construction of the List

The procedure Preprocessing generates a 2-jumplist from sorted list l. The data struc-
ture of l does not matter, only line 6 needs to be adapted to it, which is done by
altering the method of iteration trough l.

Procedure Preprocessing only produces a circularly-closed list, by generating nodes
with only the label and the next-pointer specified. The more interesting part of the
work is done by the procedure rebalance: setting the jump- resp. jump2-pointer and
the nsize resp. jsize fields.

10

3.2. Construction of the List

Algorithm 2 Preprocessing(list l)

1: list.header = new node();
2: list.length = length(l); . length without the header
3: if (list.length == 0) then . the list is empty
4: list.header.next = list.header;
5: else
6: /*Produce a circulatory closed linked list with list.header as header*/
7: node last = rebalance(list.header, length);
8: last.nsize = 0;
9: last.jsize = 0;

Procedure rebalance iterates trough the list, considering each node exactly once. For
every node h, the jump- and jump2-pointer are determined, as well as nsize and jsize.
To do so, two random integers m and m2 are drawn, which indicate the target-nodes
of the jump- resp. jump2-pointer in the target-sublist of h. Choosing integer i corres-
ponds to pointing at the (i)-th node of the sublist of h.
Lines 1-9 take care of the special cases, which are displayed in Figure 3.1. After the
target-nodes have been chosen, nsize and jsize can be computed. As a reference to
the target nodes is needed to assign them to the pointers, it is necessary to navigate
through the list. This navigation is used, to assign the missing fields to the nodes in
the next- jump and jump2-lists of h (recursive calls in lines 14-16), making random ac-
cess to nodes unnecessary. It is possible that the third recursive call (line 17) is made
with end as header (it happens if m2 = n is chosen). In this case, no pointers need to
be assigned and only the last node, end needs to be returned.

h end

(a) Special case for n = 1. It is handled in
rebalance, line 2.

h a end

(b) Special case for n = 2. It is handled in
rebalance, line 5.

h a b end

(c) Special case for n = 3. It is handled in re-
balance, line 8.

Figure 3.1.: Special cases in rebalance.

11

3. Algorithms

Algorithm 3 rebalance(node h, int n)

1: node end = h; . if n==0, return h
2: if (n == 1) then
3: /*Adjust pointers and sizes according to Figure 3.1 (a)*/
4: node end = h.jump2;
5: if (n == 2) then
6: /*Adjust pointers and sizes according to Figure 3.1 (b)*/
7: node end = h.jump2;
8: if (n == 3) then
9: /*Adjust pointers and sizes according to Figure 3.1 (c)*/

10: node end = h.jump2;
11: if (n > 3) then
12: /*Chose m, m2 with (2 ≤ m < m2 ≤ n) uniformly at random.*/
13: h.nsize = m− 1;
14: h.jsize = m2−m;
15: h.jump = rebalance(h.next, m− 1);
16: h.jump2 = rebalance(h.jump, m2−m);
17: node end = rebalance(h.jump2, n−m2);
18: return end;

3.3. Insertion

Upon insertion, the uniform distribution of the pointers needs to be restored. Of
course, a call of rebalance on the list with the new element would solve the problem,
resulting in a linear time complexity. The algorithm presented below however has a
logarithmic time complexity, significantly improving the naive insertion algorithm.
It does not completely get along without rebalance, but it rarely resorts to it, if it is
impossible to restore uniformity otherwise.

As the insertion is more complex than the search and the generation, I present a brief
overview over the used procedures and their functions:

• Insert:

– unsuccessful search.

– insert new into the linear list.

• restore_uniformity and relocate_pointer:

– restore uniformity of the nodes located before the direct predecessor of
new.

12

3.3. Insertion

• usurp :

– restore uniformity of the direct predecessor of new and the following nodes.

list.header ... pred new ... end

restore_uniformity/relocate_pointer usurpInsert → →

Figure 3.2.: Process flow of procedures used during insertion.

The preprocessing is executed by Insert: To determine where the node with the new
label needs to be inserted, an unsuccessful Search is carried out. This search is also
used to update the nsize and jsize fields of the nodes before the insertion position (lines
7 and 12 in Search). If the jump-pointer of node current is followed during the search,
the new node must be in the jump-list of current and jsize needs to be increased by
one. On the other hand, if the next-pointer is followed, new must be in current’s next-
list, resulting in an increase of nsize of current. Finally a node with the new label is
inserted at the right place in the list and restore_uniformity is called to restore the
uniform distribution of the pointers.

Algorithm 4 Insert(int new)

1: search(new, true);
2: list.length++;
3: node new = new node();
4: /*Insert new in the linked list*/
5: restore_uniformity(list.header, new, list.length, null)

For the nodes h which are located before the immediate predecessor of new and have
new in their sublist, the new node is a possible target for their pointers. Therefore,
the pointers of these nodes h are not uniformly distributed anymore. The uniformity
is restored by restore_uniformity and relocate_pointer. restore_uniformity directs
relocate_pointer by determining in which part of the sublist the new node is located
and relocate_pointer does the actual relocation of pointers.

13

3. Algorithms

Algorithm 5 restore_uniformity(node h, node new, int n, node end)

1: if (h.jump == null) then . new is the last node in the list
2: h.jump = h.jump2 = new;
3: new.nsize = new.jsize = 0;
4: else
5: if (new.label > h.jump2.label) then . new in jump2-list
6: relocate_pointer(h, new, n, "jump2-list", end);
7: else
8: if (new.label > h.jump.label) then . new in jump-list
9: if (h.nsize == 0) then . Special case

10: /* adjust pointers and sizes according to Figure 3.5 (c) */
11: else
12: relocate_pointer(h, new, n, "jump-list", end);
13: else
14: if (new.label > h.next.label) then . new in next-list
15: relocate_pointer(h, new, n, "next-list", end);
16: else . new directly behind h
17: ursup(h, true, end, n);

h ... new ... a ... b ... end ⇒ h ... new ... a ... b ... end

rebalance rebalance

(a) list = next-list in relocate_pointer.

h ... a ... new ... b ... end ⇒ h ... a ... new ... b ... end

rebalance rebalance

(b) list = jump-list in relocate_pointer.

h ... a ... b ... new ... end ⇒ h ... a ... b ... new ... end

rebalance rebalance rebalance

(c) list = jump2-list in relocate_pointer. The names of the pointers need to be switched

Figure 3.3.: Calls of rebalance in relocate_pointer, if the jump-pointer is bent.

14

3.3. Insertion

h ... new ... a ... b ... end ⇒ h ... new ... a ... b ... end

rebalance rebalance rebalance

(a) list = next-list in relocate_pointer. The names of the pointers need to be switched.

h ... a ... new ... b ... end ⇒ h ... a ... new ... b ... end

rebalance rebalance

(b) list = jump-list in relocate_pointer.

h ... a ... b ... new ... end ⇒ h ... a ... b ... new ... end

rebalance rebalance

(c) list = jump2-list in relocate_pointer

Figure 3.4.: Calls of rebalance in relocate_pointer, if the jump2-pointer is bent.

Algorithm 6 relocate_pointer(node h, node new, int n, String list, node end)

1: boolean bend = True with probability 2
n−1 ;

2: if (bend) then . one pointer will be bent
3: boolean bend_jump = True with probability 1

2 ;
4: if (bend_jump) then
5: h.jump=new;
6: /*Adjust sizes and call rebalance

according to Figure 3.3*/
7: else . bend jump2-pointer
8: h.jump2=new;
9: /*Adjust pointers, sizes and call rebalance

according to Figure 3.4*/
10: else . no pointer will be bent
11: if (list == "jump2-list") then
12: restore_uniformity(h.jump2, new, n− h.nsize− h.jsize− 1, end);
13: if (list == "jump-list") then
14: restore_uniformity(h.jump, new, h.jsize,h.jump2);
15: if (list == "next-list") then
16: restore_uniformity(h.next, new, n.jsize, h.jump);

15

3. Algorithms

Starting at list.header, all the nodes h, which are located before the immediate prede-
cessor of new and have new in their sublist, need to be processed.

If h is considered as header by restore_uniformity and it was the last node in the list
before the insertion, new is the last node in the list after the insertion. hs jump- and
jump2.pointer are still null at this point and thus are set to new in the special case
(line 1 in restore_uniformity), which handles this situation. nsize of h has already
been updated during the Search and the sizes of new are updated in line 3 in re-
store_uniformity.

If the sublist of h is at most three, one of the special cases in Figure 3.5 applies. Only
one of them, (c), concerns restore_uniformity/relocate_pointer and is handled at line
9. The others are managed by usurp.

If on the other hand n of h is at least four, other measures need to be taken. Both the
jump- and jump2-pointer can now point to new, which happens with probability 1

n−1
(the successor of h is no possible target) for both. Therefore, the algorithm bends a
pointer of h with probability 2

n−1 and chooses it randomly, restoring the uniformity
of the pointer distribution of h.

If a pointer has been bent, it is quite difficult to restore the uniformity of the nodes
in the sublist of h, as their sublists have changed. Therefore, rebalance is called on
determined parts of the sublist to restore the uniform distribution of the pointers.
The parts which must be restored, depend on the position of new relative to h and on
the pointer that has been bent. The different cases are shown in Figures 3.3 and 3.4.
After the calls of rebalance, the uniformity of the pointers of all the nodes has been
restored and the insertion is terminated.

If the algorithm chooses not to bend, restore_uniformity is called recursively. Which
node will be considered next, depends again on the position of new relative to h. If
new is in the next-list of h, restore_uniformity has to be called on h.next as it has new
in its sublist. But if new is in the jump- or jump2-list of h, the nodes of the next- resp.
of the next- and jump-list of h do not contain new in their sublist and therefore do not
need to be considered. In these cases, restore_uniformity is called on h.jump resp.
h.jump2.

If the execution of restore_uniformity is not stopped by a call of rebalance, the al-
gorithm will eventually consider the predecessor of new as header and usurp needs
to be called.

Procedure usurp can be separated into two phases.

In the first phase, only the immediate predecessor of new, pred is processed. Due to
the insertion of new, the node next that directly followed pred before the insertion is
now a possible target for a pointer of pred. If the sublist of pred has size at most three,
special cases (a) or (b) in Figure 3.5 arise, which also determine the pointers of new and
the insertion is finished. But if the sublist has a length greater than four, the jump- or

16

3.3. Insertion

h end → h new end

(a) Special case n = 2. It is handled in usurp,
line 1.

h a end → h new a end

(b) Special case n = 3. It is handled in usurp,
line 4.

h a end → h a new end

(c) Special case n = 3. It is handled in re-
store_uniformity line 9.

Figure 3.5.: Special cases during insertion. Bending of the pointers occur with prob-
ability 1.

jump2-pointer can target next with probability 1
n−1 (new, the direct successor, is obvi-

ously no target for the pointers of pred) each. Therefore, one randomly chosen pointer
of pred is bent with probability 2

n−1 . As in restore_uniformity/relocate_pointer, if a
pointer is bent, rebalance needs to be called.

Otherwise, usurp is called recursively, entering the second phase, and the node new is
taken into consideration. new had obviously no jump- and jump2-pointer until now.
To avoid a call of rebalance, the pointers need to be determined otherwise.

If (n ≤ 3) for new, the pointers are simply determined by the special cases in Figure
3.6.

Otherwise, the pointers of next, the node following new can be stolen. Since next pos-
sesses pointers with nearly the requested distribution. Only the direct successor of
next was no target for the pointers of next, but is for the pointers of new. Therefore,
the algorithm steals the pointers of next and sets one randomly chosen pointer of
new to next.next with probability 2

n−1 . If a pointer is bent, rebalance has to be called
according to Figures 3.7 and 3.8 and the algorithm can terminate.

If, however, the algorithm chooses to steal the unchanged pointers of new, usurp is
recursively called on next, which now has no valid pointers anymore.

The recursive calls of usurp come to an end either by a call of rebalance or one of the
special cases. Termination is guaranteed as the fourth-to-last node of the list can only
have a sublist containing at most three nodes, leading to special case (b) in Figure 3.6.

17

3. Algorithms

new next end → new next end

(a) Special case: n=2. It is handled in usurp line 1.

new next next.next end → new next next.next end

(b) Special case: n=3. It is handled in usurp line 4.

Figure 3.6.: Special cases in usurp. The bending of the pointers occur with probability
1. new represents the new node or any node whose pointers have been
stolen in the previous iteration.

pred new next ... a ... b ... end

⇓

pred new next ... a ... b ... end

rebalance

(a) (first == true) in usurp.

new next next.next ... a ... b ... end

⇓

new next next.next ... a ... b ... end

rebalance

(b) (first == false) in usurp. Note that this figure is valid for every recursion in the second
phase. Only in the first recursion new is really the inserted node. In the following recur-
sions, new represents the node whose pointers have been stolen in the previous recursive
call.

Figure 3.7.: Calls of rebalance in usurp, if the jump-pointer is bent.
18

3.3. Insertion

pred new next ... a ... b ... end

⇓

pred new next ... a ... b ... end

rebalance

(a) (first == true) in usurp

new next next.next ... a ... b ... end

⇓

new next next.next ... a ... b ... end

rebalance

(b) (first == false) in usurp. Note that this figure is valid for every recursion in the second
phase. Only in the first recursion new is really the inserted node. In the following recur-
sions, new represents the node whose pointers have been stolen in the recursion before.

Figure 3.8.: Calls of rebalance in usurp, if the jump2-pointer is bent.

19

3. Algorithms

Algorithm 7 usurp(node h, boolean first, node end, int n)

1: if (n == 2) then
2: /*Adjust pointers and sizes according to Figure 3.6 (a) */
3: else
4: if (n == 3) then
5: /*Adjust pointers and sizes according to Figure 3.6 (b) */
6: else
7: boolean bend = True with probability 2

n−1 ;
8: if (bend) then . a pointer will be bent
9: boolean bend_jump = True with probability 1

2 ;
10: if (bend_jump) then . bend the jump pointer
11: */Adjust pointers, sizes and call rebalance

according to Figure 3.7/*
12: else . bend the jump2-pointer
13: */Adjust pointers, sizes and call rebalance

according to Figure 3.8/*
14: else . no pointer will be bent
15: if (!first) then
16: /*Steal pointers from next and adjust sizes*/
17: usurp(h.next, false, h.jump, h.nsize);

3.4. Correctness

The correctness of the generation and the insertion procedures will be elaborated,
whereas the search will be omitted, due to its trivial nature.

3.4.1. Generation

As the main part of the work, the setting of the jump- and jump2-pointer, is provided
by the procedure rebalance, a detailed proof of its correctness will be shown. The rest
of the generation, the initialization of the nodes and the generation of the linked list,
will be omitted again due to triviality.

To prove the correctness of rebalance, I show that after the execution, every node
fulfils the following conditions of correctness, which have already been established
in Preliminaries:

20

3.4. Correctness

• (c1): The jump and jump2- pointers do not cross any other pointer in the list.

• (c2): If n ≥ 4:

– (c2.1): Its pointers are chosen uniformly at random from the sublist of the
node.

– (c2.2): The pointers do not point to the same node.

– (c2.3): No pointer points to the node directly after its origin.

(c2’): Otherwise (1 ≤ n < 4), the pointers are arranged according to Figure 3.5.

To this end, I prove a more general theorem concerning rebalance. Correctness then
directly follows from this theorem.

Theorem 1. After the call of rebalance(h, n), all nodes in the partial list starting at h
and ending at (not including) end, fulfil the conditions of correctness and the call returns
end.

Proof. The proof is conducted by induction over n.

Induction Beginning:

If n = 0, only end = h needs to be returned. This is done in line 1.

h end → h end

(a) n = 1.

h a end → h a end

(b) n = 2.

x a b end → x a b end

(c) n = 3.

Figure 3.9.: Special cases in rebalance.

For the other three cases (n = 1, 2, 3), the conditions of correctness need to be verified:

• (c1): In these three cases, no pointers from outside of the considered partial list
(from h to end, each included) can point to any other node than end, by definition
of end. Therefore, it is sufficient to show that no pointers cross in the considered
partial list, which is obvious from Figure 3.9.

21

3. Algorithms

• (c2’): ((c2) does not apply.)
See lines 2, 5 resp. 8 for (n = 1), (n = 2) resp. (n = 3).

Furthermore, end needs to be returned. In lines 4, 7 resp. 10, end is set to the rightmost
node and returned in line 18.

Induction Hypothesis:

For an arbitrary but fixed number n and a node h with a sublist of length l < n, holds
that after the call of rebalance(h, l), all nodes in the partial list starting at h and ending
at (not including) end, fulfil the conditions of correctness and the call returns end.

Induction Step:

From the Induction Hypothesis follows that for a node x and natural number l with
2 ≤ l < n, rebalance(x, l) returns the last node (the l-th one) from the sublist of x.
Therefore, it follows for m and m2 with (2 ≤ m < m2 ≤ n) that:

• rebalance(h.next, m − 1) returns the (m − 1)-th node in the sublist of h.next,
which is the m-th node in the sublist of h.

h h.next ... h.jump ... h.jump2 ... end

m− 1

m

Thus, h.jump must be the m-th node in the sublist of h.

• rebalance(h.jump, m2−m) returns the (m2−m)-th node in the sublist of h.next,
which is the m2-th node in the sublist of h.

h ... h.jump ... h.jump2 ... end

m m2−m

m2

Thus, h.jump2 must be the m2-th node in the sublist of h.

• rebalance(h.jump2, n−m2) returns the (n−m2)-th node in the sublist of h.next,
which is the n-th node in the sublist of h.

22

3.4. Correctness

h ... h.jump ... h.jump2 ... end

m2 n−m2

n

Thus, end must be the last node in the sublist of h.

The conditions of correctness only need to be verified for h. Because the pointers of
the other nodes in the partial list from h to end (not included) are set by the three
recursive calls in lines 15, 16 and 17 and not changed afterwords, the conditions of
correctness for these nodes are ensured by the Induction Hypothesis.

• (c1): By the choice of m and m2, only nodes contained in the sublist of h can
be targeted by its pointers. From outside of the considered partial list, pointers
cannot point to any other node than end, by definition of end. This results in a
nested pointer structure without crossings.

• (c2): ((c2)’ does not apply)

– (c2.1): As the pointers are directly determined by m and m2, which are
chosen uniformly at random with 2 ≤ m < m2 ≤ n, the statement fol-
lows.

– (c2.2): This holds as m and m2 are chosen s. t. m < m2.

– (c2.3): This holds as m and m2 are chosen s. t. 2 ≤ m, m2.

From lines 17 and 18 follows that the last node of the sublist of h is returned.

Corollary 1. Calling rebalance(list.header, list.length) results in a correct 2-jumplist.

3.4.2. Insertion

The main work for the insertion is provided by three procedures, restore_uniformity,
relocate_pointer and usurp, with the first two working closely together. Before the
call of these procedures, a simple preprocessing (inserting new in the right space in
the linked list) has been executed by Insert, which does not need to be considered in
this proof, due to triviality.
The correctness of the procedures restore_uniformity/relocate_pointer and usurp
will be proven separately and joined at the end to prove correctness of the complete
insertion.

23

3. Algorithms

rebalance_insert/bend_procedure

Before working on restore_uniformity/relocate_pointer, two lemmas will be provided
to simplify the following proof.

Lemma 1. If node new is in the sublist of a node h , then h is not skipped by re-
store_uniformity/relocate_pointer.

Proof. The proof is conducted by contradiction.

Assumption: There exists a node, which is skipped by restore_uniformity/
relocate_pointer, but new is part of its sublist. Let h be the first of these nodes. This
leads to two cases:

Case 1: h = list.header. In this case, h must be considered by restore_uniformity/
relocate_pointer as Insert calls restore_uniformity with list.header as argument
(line 5 in Insert).

Case 2: h 6= list.header. As h was chosen to be the first node skipped by restore_uniformity/
relocate_pointer, one node h′must have been the header of restore_uniformity/
relocate_pointer just before skipping h.

To ensure that new is in the sublist of h, h must be in next-, jump- or jump2-list
together with new. But in this case, h would not be skipped.

As both cases lead to contradictions, the assumption must be wrong.

Lemma 2. Let h be a node with a sublist of length n − 1 ≥ 4 before insertion (target
sublist of length (n− 2)). If node new is inserted into the sublist, the procedure of bending
one pointer of h with probability 2

n−1 and choosing the pointer at random restores the
uniformity of the pointer-distribution of h.

Proof. Two cases need to be distinguished:

• before insertion: one pointer points to a.
after insertion: one pointer points to a, the other to new.

n− 3

(n−2
2)︸ ︷︷ ︸

Prob. that one pointer
pointed to a
before the
insertion

· 2
n− 1︸ ︷︷ ︸

Prob. that one
pointer will be bent

· 1
2︸︷︷︸

Prob that the right
pointer is chosen

=
2(n− 3)

(n− 2)(n− 3)
· 2
(n− 1)

· 1
2
=

1

(n−1
2)

24

3.4. Correctness

• before insertion: one pointer points to a, the other to b.
after insertion: one pointer points to a, the other to b.

1

(n−2
2)︸ ︷︷ ︸

Prob. that one pointer
pointed to a and

the other
pointed to b

·
(

1− 2
n− 1

)
︸ ︷︷ ︸

Prob. that no
pointer will be bent

=
2

(n− 2)(n− 3)
·
(

n− 1− 2
n− 1

)
=

1

(n−1
2)

With these lemmas at hand, I can attend to the correctness of restore_uniformity/
relocate_pointer.
For the proof, I consider the nodes h0, h1,. . . ,hk, k ∈N0, which are the different header
elements of restore_uniformity/relocate_pointer. h0 is the first header considered by
these 2 procedures and thus is also the first node of the list, list.header. hk is the last
header of them and its processing will lead to one of four cases, which will be ex-
amined later.

I will show by induction that if node hi is processed by restore_uniformity/
relocate_pointer, all nodes located before hi in the list fulfil the conditions of correct-
ness.

Theorem 2. If the nodes h0, h1,. . . ,hk, k ∈N0, are the different values for header in
restore_uniformity/relocate_pointer, then all nodes before hk fulfil the conditions of
correctness.

Proof. The proof is conducted by induction.

Induction Beginning: i=0

hi is the first node of the list. Thus no nodes are located before hi.

Induction Hypothesis:

For an arbitrary fixed number i ∈ N, i < k holds that all nodes located before hi in
the list fulfil the conditions of correctness.

Induction Step: i→ i + 1

From the Induction Hypothesis, follows that all nodes located before hi fulfil the
conditions of correctness.
We need to distinguish 3 cases:

• Case 1: hi+1 = hi.next

25

3. Algorithms

hi hi+1 ... new ... a ... b ... end

The conditions of correctness only need to be verified for hi.

• Case 2: hi+1 = hi.jump

hi ... a = hi+1 ... new ... b ... end

Because none of the nodes in the next-list of hi contain new in their sublist, the
insertion did not disturb the uniformity of their pointer distribution. Therefore,
all these nodes fulfil the conditions of correctness, as they also fulfilled them
before the insertion.

Therefore, the conditions of correctness only need to be verified for hi.

• Case 3: hi+1 = hi.jump2

hi ... a ... b = hi+1 ... new ... end

Again, the conditions of correctness only need to be verified for hi, because none
of the nodes in the next- and jump-list of hi contain new in their sublist. The in-
sertion did not disturb the uniformity of their pointer distribution and all these
nodes fulfil the conditions of correctness, as they also fulfilled them before the
insertion.

In all three cases, the conditions of correctness only need to be verified for hi:

• (c1): As the pointers of hi are not altered (otherwise hi would be the last node
considered by restore_uniformity/relocate_pointer) and every node in the list
fulfilled the conditions of correctness before the insertion, the pointers do not
cross afterwards.

26

3.4. Correctness

• (c2):

– (c2.1): It needs to be show that every pair of nodes in the target sublist of
hi, including new has the same probability to be the target of the pointers
of hi. This is provided by Lemma 2, setting h = hi.

– (c2.2): Because (n ≥ 4) and new is in the sublist of hi, hi must have had a
sublist of length ≥ 3 before the insertion. In this case, the pointers must
have pointed to different nodes and as they are not altered also do after the
insertion.

– (c2.3): As hi must have had a sublist of length ≥ 3 before the insertion,
its pointers did not point to the direct successor before the insertion. The
pointers of hi are not altered and thus this also holds after the insertion.

(c2’): As hi is not the last node processed by restore_uniformity/relocate_pointer,
the sublist of hi must at least have length 4: A sublist of length one is not pos-
sible, because it had a length of at least one before the insertion and thus has
length at least two after. Length two and three are excluded as they represent
the special cases (a), (b) and (c) in Figure 3.5, which either lead to the end of the
insertion or a call of usurp.

As Lemma 1 guarantees that no node which has new in their sublist is skipped, the
Theorem follows.

Because all the nodes behind the sublist of hk were not affected by the insertion of new
(they neither have new in their sublist nor was their sublists altered by the algorithm),
the conditions of correctness still hold for them after the insertion.

Therefore, it only remains to prove that the conditions of correctness hold for hk and
all the nodes in its sublist.

As mentioned above, four cases can arise when restore_uniformity/relocate_pointer
is called with hk as header:

• hk is the second-last node in the list.

If hk is the second-last node in the list, it must have been the last node before the
insertion. Due to the insertion, new is now the last node in the list. Therefore,
both pointer of hk need to be set to new and the pointer of new to null. This is
executed by the special case in line 1 in restore_uniformity.

• hk.nsize = 0.

The proceeding for this case is shown in Figure 3.5 (c). Afterwards, all nodes in
the sublist of hk, including hk, fulfil the conditions of correctness.

• hk is directly located before new.

In this case, usurp will be called by restore_uniformity. That usurp restores the
conditions of correctness of hk and its sublist, will be shown in the section below.

27

3. Algorithms

• A pointer of hk is bent.

Node hk fulfils the conditions of correctness:

– (c1): As one pointer of hk is bent, rebalance will be called on parts of the
sublist of hk. These parts are chosen s. t. they do not cross the pointers of hk
(see Figures 3.3 and 3.4), thus avoiding any crossings with the pointers of
hk.

– (c2):

∗ (c2.1): It needs to be shown that every pair of nodes in the target sublist
of hn, including new, has the same probability to be the target of the
pointers of hn. This is provided by Lemma 2, setting h = hn.

∗ (c2.2): Before the insertion, new was not contained in the sublist of hk,
thus no pointer of hk could point to it. If one pointer is set to new during
the insertion, the two pointers of hk must point to different nodes.

∗ (c2.3): Because (n ≥ 4) and new is in the sublist of hk, hk must have
had a sublist of length ≥ 3 before the insertion. Therefore, its pointers
did not point to the direct successor before the insertion. By setting one
pointer to new, which can also not be the direct successor of hk (see case
3 above), both pointers do not target the direct successor of hk.

(c2’): For n must hold that(n ≥ 4), otherwise one of the three special cases
above would arise.

Due to the bending of the pointers of hk, the sublists of some nodes have changed
and the conditions of correctness need to be restored for them. Which nodes are
affected is show in Figures 3.3 and 3.4. As rebalance is called on exactly these
parts, it is clear that all nodes in the sublist of hk fulfil the conditions of correct-
ness.

usurper

The proof for the correctness of usurp is quite similar to the one for restore_uniformity/
relocate_pointer.
Consider nodes h′0, h′1,. . . ,h′l, l ∈N0, that are the headers of usurp, with h′0, the direct
predecessor of new = h′1. I will show that if node h′i is considered by usurp, it also
fulfils the conditions of correctness. As h′i+1 = h′i.next, it is sufficient to show the
conditions for only one node in each induction step.

This leads to the following theorem:

28

3.4. Correctness

h′i+1 next next.next ... a ... b ... end

Theorem 3. If h′0, h′1,. . . ,h′l, l ∈N0, are the different values for header in usurp, then all
nodes between h′0 (included) and h′l (not included) fulfil the conditions of correctness.

Proof. The proof is conducted by induction.

Induction Beginning: i=0

h′0 new next ... a ... b ... end

It needs to be shown that h′0 fulfils the conditions of correctness. But because the
arguments are nearly equal to the ones used in the Induction Step in the proof of
Theorem 2 (the only difference being that next is the possible target for h′0 and not
new), the verification of the conditions of correctness is omitted here. Refer to the
Appendix for the missing part.

Induction Hypothesis

For an arbitrary fixed number i ∈N, i < (l − 1) holds that h′i fulfils the conditions of
correctness.

Induction Step: i→ i + 1

h′i+1 fulfils the conditions of correctness:

• (c1): As the pointers of h′i+1 are not altered (otherwise h′i+1 would be the last
node considered by usurp) and every node in the list fulfilled the conditions of
correctness before the insertion, the pointers do not cross afterwards.

• (c2):

– (c2.1): For the pointers of next, next.next was not a possible target. As h′i+1
stole the pointers of next, next.next now needs to be considered as possible
target. Therefore, it needs to be shown that every pair of nodes in the target
sublist of h′i+1, including next.next, has the same probability to be the target
of the pointers of h′i+1. This is provided by Lemma 2, setting h = h′i+1 and
new = next.next.

29

3. Algorithms

– (c2.2): As the sublist of h′i+1 has at least length four, the sublist of next must
have at least length three (the length of sublist of next equals the length of
sublist of h′i+1-1). Therefore the jump- and jump2-pointer of next pointed to
different nodes before the insertion and thus do the stolen pointers of h′i+1.

– (c2.3): As next cannot have pointers on itself, the stolen pointers of h′i+1
cannot point to its direct successor next.

(c2’): If (1 ≤ n < 4), a special case would have been applied and h′i+1 would
have been the last node considered by usurp).

Again, all the nodes behind the sublist of h′l were not affected by the insertion of new
(they neither have new in their sublist nor were their sublist altered by the algorithm.
Therefore, the conditions of correctness still hold for them after insertion. Because
usurp consists of two phases, two cases need to be distinguished: l = 0 and l > 0.
For both of them, it remains to be proven that the conditions of correctness hold for
h′l and its sublist.

usurp can be terminated in two ways:

• n = 2 or n = 3.

The proceeding for this case is shown in Figure 3.6 for (l > 0) and in Figure 3.5
(a) and (b) for (l = 0). Afterwards, h′l and all the nodes in its sublist, fulfil the
conditions of correctness.

• A pointer of h′l is bent.

Node h′l fulfils the conditions of correctness:

– (c1): As one pointer of h′l is bent (if (l > 0) after the pointers have previ-
ously been stolen from next), rebalance will be called on parts of the sublist
of h′l. These parts are chosen s. t. they do not cross the pointers of h′l (see Fig-
ures 3.10 and 3.11), thus avoiding any crossings with the pointers of h′l. By
definition of end, pointers from outside of this considered partial list can
only point to end.

– (c2):

∗ (c2.1): Due to the insertion of new (the theft of the pointers of next),
next (next.next) is now a possible target for the pointers of h′l. Therefore
it needs to be shown that every pair of nodes in the target sublist of h′l,
including next (next.next), has the same probability to be the target of
the pointers of h′l. This is provided by Lemma 2, setting h = h′l (h = h′l
and new = next.next).

∗ (c2.2):

30

3.4. Correctness

h′l new next ... a ... b ... end

⇓

h′l new next ... a ... b ... end

rebalance
or

h′l new next ... a ... b ... end

rebalance

Figure 3.10.: l = 0.

· l=0: Because n ≥ 4, h′l had a sublist of at least length three before
the insertion. Therefore, no pointer of h′l pointed to next before the
insertion and thus the pointers of h′l point to different nodes after
the insertion.

· l>0: Before the insertion, next did not point to its direct successor
next.next, because the length of the sublist of next was at least three
(length of the sublist of next = length of the sublist of h′l-1). If one
pointer is set to next.next during the insertion, the two pointers of
h′l must point to different nodes.

∗ (c2.3):

· l=0: As new was not contained in the list before the insertion and
new is the direct successor of h′l, no pointer of h′l can point to it after
the insertion.

· l>0: As h′l.next cannot have a pointer on itself, the stolen pointers
of h′l cannot point to its direct successor.

(c2’): For n must hold that (n ≥ 4), otherwise the special cases above would
arise.

Due to the bending of the pointers of h′l, the sublists of some nodes have changed
and the conditions of correctness need to be restored for them. Which nodes are

31

3. Algorithms

h′l next next.next ... a ... b ... end

⇓

h′l next next.next ... a ... b ... end

rebalance
or

h′l next next.next ... a ... b ... end

rebalance

Figure 3.11.: l > 0.

affected is show in Figures 3.10 and 3.11. As rebalance is called on exactly these
parts, it is clear that all nodes in the sublist of h′l fulfil the conditions of correct-
ness.

Finally, the discussion in the two sections above leads to the following theorem:

Theorem 4. The insertion of a node in a correct 2-jumplist also results in a correct 2-
jumplist.

32

4. Analysis of Expected Search Costs

To approximate the expected search costs for a node in the jumplist, two different
operations can be counted: the number of pointers that need to be followed or the
number of comparisons during the insertion.

As both of these cost models depend on the position of new, it is easier to compute
the expected costs of a search for all nodes in the list. For the number of pointers, this
corresponds to the internal path length (IPL) of the list. For the number of comparis-
ons, this quantity will be divided by the length of the jumplist to obtain the expected
number of comparisons for one insertion at a random position.

4.1. Expected Internal Path Length of 2-Jumplists

The expected internal path length of a 2-jumplist of length N (header included) is
given by the recurrence equation (4.1).

CIPL(1) = 0, CIPL(2) = 1, CIPL(3) = 2, CIPL(4) = 3

CIPL(N) = (N − 1) +
1

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

(
CIPL(i) + CIPL(j) + CIPL(N − 1− i− j)

)
,

N ≥ 5.
(4.1)

The initial condition CIPL(1) corresponds to an “empty” jumplist, which only con-
sists of the header. In this case, the expected internal path length is zero, as the search
starts at the header and no other nodes exist. The initial conditions CIPL(2), CIPL(3)
and CIPL(4) correspond to the special cases in Figure 3.1 on page 11.
In the recursive characterization, which holds for N ≥ 5, the summand N− 1 repres-
ents the contribution to the expected IPL of the pointers of the header. For each node
located behind the header, one pointer of the header needs to be followed to access
it. The factor 1/(N−2

2) represents the probability for every possible configuration of
the pointers of the header, as the target sublist has length (N − 2). The double sum

33

4. Analysis of Expected Search Costs

includes every possible size for the next-, jump- and jump2-list of the header, which
range from 1 to (N − 3).

The representation as double sum can be simplified using symmetry and reverse
summation:

N−3

∑
i=1

N−2−i

∑
j=1

(CIPL(i) + CIPL(j) + CIPL(N − 1− i− j))

=
N−3

∑
i=1

N−2−i

∑
j=1

CIPL(i) +
N−3

∑
i=1

N−2−i

∑
j=1

CIPL(j) +
N−3

∑
i=1

N−2−i

∑
j=1

CIPL(N − 1− i− j)

=
N−3

∑
i=1

N−2−i

∑
j=1

CIPL(i) +
N−3

∑
j=1

N−2−j

∑
i=1

CIPL(j) +
N−3

∑
i=1

N−2−i

∑
j=1

CIPL(j)

=
N−3

∑
i=1

CIPL(i)
N−2−i

∑
j=1

1 +
N−3

∑
j=1

CIPL(j)
N−2−j

∑
i=1

1 +
N−3

∑
j=1

CIPL(j)
N−2−j

∑
i=1

1

=
N−3

∑
k=1

(N − k− 2)CIPL(k), N ≥ 4.

This leads to the following simplified representation of the expected IPL:

CIPL(1) = 0, CIPL(2) = 1, CIPL(3) = 2, CIPL(4) = 3

CIPL(n) = N − 1 +
6

(N − 2)(N − 3)

N−3

∑
k=1

(N − k− 2)CIPL(k), N ≥ 5.
(4.2)

Unfortunately, I was not able to find a closed form of CIPL(N). It does not qualify
for a transformation similar to the one described in Section 4.2 of [2], even if the
recurrence relation 4.1 of [2] is very similar in shape to CIPL(N). Due to a different
prefactor (1/(N−2

2) vs. 1/(N
2) in [2]) and boundaries in the sum, the transformation

fails at several stages. For the same reasons, the method (in chapter 4.2.2 of [2]) using
a multivariate generating function fails at the solution of the differential equation as
the resulting equation is not an Euler equation.

Lacking other possibilities, I present two sequences, CN resp. CN which are an upper
resp. a lower bounds on CIPL(N). Both are in the required form for the transforma-
tions in [2] and thus the leading term of CIPL(N) can be deduced.

As a similar problem will arise in Section 4.2, the upper and lower bound, as well as
the proofs, will be given for a more general recurrence equation:

34

4.1. Expected Internal Path Length of 2-Jumplists

Cgen(1) = c1, Cgen(2) = c2,
Cgen(3) = c3, Cgen(4) = c4 c1, c2, c3, c4 ∈ R

Cgen(N) = e(N − 1) + d +
6

(N − 2)(N − 3)

N−3

∑
k=1

(N − k− 2)Cgen(k),

with N > 4, e, d ∈N≥0

and c1 ≤ c2 ≤ c3 ≤ c4 ≤ 4e + d + 2c1 + c2 (see monotony in the Appendix).
(4.3)

4.1.1. Lower bound

Lemma 3. If C is defined by:

C1 = 0,

CN = e(N − 2) +
6

N(N − 1)

N−2

∑
k=1

(N − k− 1)Ck N ≥ 2,
(4.4)

then it holds for N ≥ 3 that

CN =
6
5

e(N + 1)HN+1 −
66
25

e(N + 1) +
3
2

e. (4.5)

Proof. Equation (4.4) in [2] is the closed form of an identical recurrence equation. Us-
ing pcN = e(N − 2), a = e, b = −3e and d = 0 (4.3), the following closed form for CN
is obtained from (4.4):

CN = a
6
5
(N + 1)HN+1 +

(
− 87

50
a +

3
10

b +
1

10
d
)
(N + 1)− 1

2
b

=
6
5

e(N + 1)HN+1 +

(
− 87

50
e− 3

3
10

e
)
(N + 1) + 3

1
2

e

=
6
5

e(N + 1)HN+1 −
66
25

e(N + 1) +
3
2

e

Lemma 4. If

c1 ≥ 0 = C1
c2 ≥ 0 = C2
c3 ≥ e = C3

35

4. Analysis of Expected Search Costs

c4 ≥ 2e = C4,

then Cgen(N) ≥ CN for all N ∈N0.

Proof. Proof by induction over N.

Induction Beginning:

For (1 ≤ N ≤ 4), the claim holds by preconditions of them.

Induction Hypothesis:

For an arbitrary fixed number N, holds for all k ∈N with k < N that Cgen(k) ≥ Ck.

Induction Step: for N ≥ 5

Cgen(N) = e(N − 1) + d +
6

(N − 2)(N − 3)

N−3

∑
k=1

(N − k− 2)Cgen(k)

= e(N − 1) + d +
(N − 1)
(N − 3)

· 6
(N − 1)(N − 2)

N−3

∑
k=1

(N − k− 2)Cgen(k)

IV
≥ e(N − 1) + d +

(N − 1)
(N − 3)

· 6
(N − 1)(N − 2)

N−3

∑
k=1

(N − k− 2)Ck

= e(N − 1) + d +
(N − 1)
(N − 3)

(
CN−1 − e(N − 3)

)
=

(N − 1)
(N − 3)

CN−1 + e(N − 1) + d− (N − 1)
(N − 3)

e(N − 3)

=
(N − 1)
(N − 3)

CN−1 + d

Thus it needs to be shown that (N−1)
(N−3)CN−1 + d ≥ CN for d ∈N≥0.

Using the closed form of CN, which is valid for N ≥ 5, I show that:

(N − 1)
(N − 3)

(aN · HN + bN + c) + d ≥ a(N + 1)HN+1 + b(N + 1) + c

(the constants are replaced by a, b and c for readability)

Proof by comparison of the different summands:

1. (N−1)
(N−3) aN · HN ≥ a(N + 1)HN+1

36

4.1. Expected Internal Path Length of 2-Jumplists

⇐⇒ (N − 1)NHN ≥ (N − 3)(N + 1)HN+1

⇐⇒ (N2 − N)HN ≥ (N2 − 2N − 3)HN+1

⇐⇒ N2(HN − HN+1) + N(−HN + 2HN+1) + 3HN+1 ≥ 0

⇐⇒ − N2

(N + 1)
+

N
(N + 1)

+ NHN+1 + 3HN+1

≥ −N(N + 3)HN+1 +
N

(N + 1)
≥ 0

This holds as (N + 3)HN+1 ≥ N for N ≥ 1.

2. (N−1)
(N−3)bN ≥ b(N + 1)

⇐⇒ (N − 1)N ≥ (N − 3)(N + 1)

⇐⇒ (N2 − N) ≥ (N2 − 2N − 3)
⇐⇒ N + 3 ≥ 0

This holds as N ≥ 4.

3. (N−1)
(N−3)c + d ≥ c

This holds as (N−1)
(N−3) ≥ 1 for N ≥ 4 and d ∈N≥0.

Using 1, 2 and 3, it can be deduced that (N−1)
(N−3)CN−1 + d ≥ CN and thus Cgen(N) ≥ CN

for all N ∈N0.

4.1.2. Upper bound

Lemma 5. Let C be defined by:

C0 = c2, C1 = c3, C2 = c4

CN = e(N + 3) + d +
6

N(N − 1)

N−2

∑
k=0

(N − k− 1)Ck, N ≥ 3.
(4.6)

For n ≥ 5 holds that

CN =
6
5

e(N + 1)HN+1

(
3
10

d− 57
50

e
)
(N + 1) +

N + 1
5

(
3c2 + 2c3 + c4

2

)
− 1

2
(2e + d) +

6
(n

4)

(
7

30
e +

1
60

d− 1
6

C5 +
1
5

C4

)
.

(4.7)

37

4. Analysis of Expected Search Costs

Proof. In [3] Appendix A, the closed form of an identical recurrence equation is de-
duced.

Using TN = e(N + 3) + d i. e. (a = e, b = (3e + d), c1 = c2 = c3 = 0), M = 2,
CIS

0 = c2, CIS
1 = c3 and CIS

2 = c4 in (A.3), the following closed form of CN is obtained
for N ≥ M + 3 = 5:

CN =
6
5

a(N + 1)HN+1 +
N + 1

5

(
19
5

a +
6(b− a)
M + 2

− 6aHM+2

)
+

a− b
2

+

N + 1
5

M

∑
k=0

3M− 2k
(M+2

3)
CIS

k +
(M+4

5)

(N
4)

(
6
5

a +
2(a− b)
M + 3

+
5b− 17a
2(M + 4)

− M− 1
M + 4

CM+3 +
M− 1
M + 3

CM+2

)
=

6
5

e(N + 1)HN+1 +
N + 1

5

(
19
5

e +
3
2
(2e + d)− 6eH4

)
− 1

2
(2e + d)

+
N + 1

5

(
6

(4
3)

CIS
0 +

4

(4
3)

CIS
1 +

2

(4
3)

CIS
2

)
+

(6
5)

(N
4)

(
6
5

e− 2
5
(2e + d)

− 1
12

(2e− 5d)− 1
6

C5 +
1
5

C4

)
=

6
5

e(N + 1)HN+1

(
3

10
d− 57

50
e
)
(N + 1) +

N + 1
5

(
3c2 + 2c3 + c4

2

)
− 1

2
(2e + d) +

6
(n

4)

(
7
30

e +
1

60
d− 1

6
C5 +

1
5

C4

)
.

Lemma 6. Cn ≥ Cgen(n + 2) holds for all n ∈N.

Proof. The proof is conducted by induction over N.

Induction Beginning:

N = 0 : C0 = c2 ≥ c2 = Cgen(2).

N = 1 : C1 = c3 ≥ c3 = Cgen(3).

N = 2 : C2 = c4 ≥ c4 = Cgen(4).

Induction Hypothesis:

For an arbitrary fixed number n, holds for all k ∈N with k ≤ N − 2 that
Ck ≥ Cgen(k + 2).

38

4.1. Expected Internal Path Length of 2-Jumplists

Induction Step:

Cgen(N + 2) = e(N + 3) + d +
6

N(N − 1)

N−1

∑
k=1

(N − k)Cgen(k)

= e(N + 3) + d +
6

N(N − 1)

N−2

∑
k=0

(N − k− 1)Cgen(k + 1)

(∗)
≤ e(N + 3) + d +

6
N(N − 1)

N−2

∑
k=0

(N − k− 1)Cgen(k + 2)

IV
≤ e(N + 3) + d +

6
N(N − 1)

N−2

∑
k=0

(N − k− 1)Ck = CN.

(*): The monotony of Cgen(N) is proven in the Appendix.

4.1.3. Approximation of Expected Internal Path Length

Using the results of Subsections 4.1.1 and 4.1.2, the closed form of CIPL(N) can sand-
wiched between the closed forms of a lower bound and an upper bound.

Lemma 7. CIPL(N) ≤ CIPL(N) ≤ CIPL(N) for N ≥ 7,
if CIPL(N) = 6

5(N + 1)HN+1 − 66
25(N + 1) + 3

2 and
CIPL(N) = 6

5(N + 1)HN+1 − 7
50(N + 1)− 1.

Proof. Both bounds follow from Lemmas 3 and 4 (lower bound) resp. 5 and 6 (upper
bound) by setting e = 1, d = 0 and

c1 = 0 ≥ 0, c2 = 1 ≥ 0,
c3 = 2 ≥ e = 1, c4 = 3 ≥ 2e = 2
(with c1 ≤ c2 ≤ c3 ≤ c4 ≤ 2 = 2e + d + 2c1 + c2)

in the definition of Cgen(N).
The lower bound follows directly and for the upper bound, the following calculation

39

4. Analysis of Expected Search Costs

can be made using that CIPL(4) = 12 and CIPL(5) = 79
5 :

CIPL(N) =
6
5

e(N + 1)HN+1

(
3

10
d− 57

50
e
)
(n + 1) +

N + 1
5

(
3c2 + 2c3 + c4

2

)
− 1

2
(2e + d) +

6
(n

4)

(
7

30
e +

1
60

d− 1
6

C5 +
1
5

C4

)
=

6
5
(n + 1)HN+1 −

57
50

(N + 1) +
N + 1

5

(
3 + 4 + 3

2

)
− 1

+
6

(N
4)

(
7

30
− 1

6
79
5

+
1
5

12
)

︸ ︷︷ ︸
=0

=
6
5
(N + 1)HN+1 −

7
50

(N + 1)− 1.

Using the closed forms of CIPL(N − 2) and CIPL(N), an approximate closed form of
CIPL(N) can be deduced. As CIPL(N − 2) and CIPL(N) do not have the same leading
term, I will first transform CIPL(N − 2) to allow a better comparison.

CIPL(N − 2) =
6
5
(N − 1)HN−1 −

7
50

(N − 1)− 1

=
6
5
(N + 1)HN−1 − 2

6
5

HN−1 −
7

50
(N + 1) + 2

7
50
− 1

=
6
5
(N + 1)

(
HN+1 −

1
N + 1

− 1
N

)
− 7

50
(N + 1)− 12

5
HN−1 −

18
25

=
6
5
(N + 1)HN+1 −

6
5
(N + 1)
(N + 1)

− 6
5
(N + 1)

N
− 7

50
(N + 1)− 12

5
HN−1 −

18
25

=
6
5
(N + 1)HN+1 −

6
5
− 6

5
− 6

5
1
N
− 7

50
(N + 1)− 12

5
HN−1 −

18
25

=
6
5
(N + 1)HN+1 −

7
50

(N + 1)− 12
5

HN−1 −
6

5N
− 78

25
.

Using this representation of CIPL(N − 2) and CIPL(N), the following approximate
closed form of CIPL(N) can be given:

Theorem 5. CIPL(N) = 6
5 N · HN + a(N + 1) +O

(
log(N)

)
with

−66
25 ≤ a ≤ − 7

50 .

Proof. With the closed forms of CIPL(N − 2) rsp. CIPL(N) and
12
5 HN−1 +

6
5N + 78

25 , 3
2 ∈ O

(
log(N)

)
(eq. (6.66) in [5]), the following calculation can

40

4.1. Expected Internal Path Length of 2-Jumplists

be made:

CIPL(N) =
6
5
(N + 1)HN+1 + a(N + 1) +O

(
log(N)

)
=

6
5

N · HN+1 +
6
5

HN+1 + a(N + 1) +O
(

log(N)
)

=
6
5

N
(

HN +
1

N + 1

)
+

6
5

HN+1 + a(N + 1) +O
(

log(N)
)

=
6
5

N · HN +
6
5

N
N + 1

+
6
5

HN+1 + a(N + 1) +O
(

log(N)
)

=
6
5

N · HN + a(N + 1) +O
(

log(N)
)
, N ≥ 7.

For a better sense of order of magnitude, the asymptotic representation is given:

Theorem 6. The asymptotic representation of CIPL(N) is given by:

CIPL(N) =
6
5

N ln(N) +

(
6γ

5
+ a
)

N +O
(

log(N)
)

N → ∞

with −66
25 ≤ a ≤ − 7

50 and γ the Euler-Mascheroni constant.

Proof. Using the asymptotic estimate: (eq. (6.66) in [5])

Hn = ln(n) + γ +O
(

1
n

)
the following calculation can be made for N → ∞:

CIPL(N) =
6
5

N · HN + a(N + 1) +O
(

log(N)
)

=
6
5

N(ln(N) + γ +O(1
N
)) + a(N + 1) +O

(
log(N)

)
=

6
5

N ln(N) +
6γ

5
N +O(1) + aN + a +O

(
log(N)

)
=

6
5

N ln(N) + (
6γ

5
+ a)N +O

(
log(N)

)
.

Figure 4.1(a) contains the values of equation (4.2) (red curve) for 1 ≤ N ≤ 1000,
normalized by N ln(N). Unfortunately, the convergence to the prefactor 6

5 = 1.2 (gray
line) is very slow, which explains why the values of (4.2) are that far away from 6

5 for

41

4. Analysis of Expected Search Costs

“small” N. The blue resp. green curve represent the upper resp. lower bound. Even
for N = 1000, they still lie very far apart, which does not allow a precise asymptotic.

Figure 4.1(b) displays the empiric data, collected by generating 100 2-jumplists for
the sizes 1 to 1000 resp., taking the average IPL of each sample and normalizing by
N ln(N). Unfortunately, the convergence is also very slow for these values.

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

1.2

length of the list

Values of equation (4.2)

(a) Values of equation (4.2) (red), CIPL(N− 2)
(blue) and CIPL(N) (green) for 1 ≤ N ≤
1000, normalized by N ln(N).

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

length of the list

Average IPL

(b) Average IPL of 100 2-jumplists of sizes
2-1000, normalized by n ln(n) (violet)
compared to the normalized values of
equation (4.2).

Figure 4.1.: Plots for IPL.

4.2. Expected Number of Comparisons

As mentioned above, the expected number of comparisons needed for a successful
search of all the elements in a 2-jumplist of length N (header included) is considered
to avoid any dependence on the position of an element. As for the IPL, the expected
number of comparisons will be given as a recurrence equation:

42

4.2. Expected Number of Comparisons

Ccomp_all(1) = 4, Ccomp_all(2) = 9, Ccomp_all(3) = 15, Ccomp_all(4) = 22

Ccomp_all(n) = 4 +
1

(n−2
2)

n−3

∑
i=1

n−2−i

∑
j=1

(3i + 2j + 1(n− 1− i− j))

+
1

(n−2
2)

n−3

∑
i=1

n−2−i

∑
j=1

(Ccomp_all(i) + Ccomp_all(j) + Ccomp_all(n− 1− i− j))),

(n > 4).

(4.8)

To access the nodes in the jump2-, jump- or next-list resp., one, two or three compar-
ison are needed resp. (see Search lines 3, 6 and 11). To access the current header, even
4 comparisons are needed (see Search lines 3, 6 , 11 and 16).

For all the nodes in the jump2-, jump- and next-list, the costs to use the jump2-, jump-
and next-pointer, resp., need to be added. Therefore, the toll function consists of the
summand 4 to access the header and the double sum, which traverses all the pos-
sible values for the nsize, jsize and j2size. The factor 1/(N−2

2) before this double sum
averages over the possible pointer targets of the header.

For the initial conditions, refer to Figure 4.2. As list.header contains no label, it will not

h

(a) Initial condition for N = 1. 4 comparison
are needed to access h.

h end

(b) Initial condition for N = 2. 1 comparison
is needed to follow the red arrow and 4
resp. to access end and h.

h a end

(c) Initial condition for N = 3. For end, 5
comparisons are needed in total (See (a)).
For a, 2 comparison are needed to follow
the blue arrow, 4 to access the node and 4
for h.

h a b end

(d) Initial condition for N = 4. For end resp.
b, 5 resp. 6 comparisons are needed in
total (See (a) and (b)). For a, 3 comparison
are needed to follow the green arrow, 4 to
access the node and 4 for h.

Figure 4.2.: Explanation of the initial conditions of equation (4.8).

be accessed during the search. Therefore, the four comparisons to access list.header
need to be subtracted from (Ccomp_all(N)), resulting in Ccomp_all(N)− 4 for the expec-
ted number of comparisons.

43

4. Analysis of Expected Search Costs

By using the same simplifications for second the double sum as in equation (4.2) and
the following calculations, a simplified form of Ccomp_all(N) can be deduced:

4 +
1

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

(3i + 2j + 1(N − 1− i− j))

= 4 +
3

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

i +
2

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

j +
1

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

(N − 1− i− j)

= 4 +
3

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

i +
2

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

j +
1

(N−2
2)

N−3

∑
i=1

N−2−i

∑
j=1

j

= 4 +
6

(N − 2)(N − 3)

N−3

∑
i=1

i
N−2−i

∑
j=1

1 +
4

(N − 2)(N − 3)

N−3

∑
j=1

j
N−2−j

∑
i=1

1+

2
(N − 2)(N − 3)

N−3

∑
j=1

j
N−2−j

∑
i=1

1

= 4 +
6

(N − 2)(N − 3)
1
6
(N − 1)(N − 2)(N − 3) +

4
(N − 2)(N − 3)

· 1
6
(N − 1)(N − 2)(N − 3) +

2
(N − 2)(N − 3)

1
6
(N − 1)(N − 2)(N − 3)

= 4 + (N − 1) +
2(N − 1)

3
+

(N − 1)
3

= 2(N − 1) + 4 = 2(N + 1).

Intuitively, this result can be explained as follows: Every node is with the same prob-
ability in either the next-, jump- or jump2-list. Therefore, the expected number of
comparisons needed to follow either the next-, jump- or jump2-pointer of the header
is 2 for each of the (N − 1) nodes. Adding the 4 comparisons which are needed to
access the header, finally results in 2(N + 1).

Ccomp_all(1) = 4, Ccomp_all(2) = 9, Ccomp_all(3) = 15, Ccomp_all(4) = 22,

Ccomp_all(N) = 2(N + 1) +
6

(N − 2)(N − 3)

N−3

∑
k=1

(N − k− 2)Ccomp_all(k), N ≥ 5.

(4.9)

4.2.1. Approximation of Expected Number of Comparisons

To estimate the closed form of Ccomp_all(N), the same method as in 4.1.3 is used: de-
termine an upper and lower bound for Ccomp_all(N) and use their closed form for the
estimation.

44

4.2. Expected Number of Comparisons

Lemma 8. Ccomp_all(N) ≤ Ccomp_all(N) ≤ Ccomp_all(N) for N ≥ 7,
if Ccomp_all(N) = 12

5 (N + 1)HN+1 − 132
25 (N + 1) + 3 and

Ccomp_all(N) = 12
5 (N + 1)HN+1 +

341
50 (N + 1)− 4.

Proof. The lemma follows from Lemmas 3 and 4 (lower bound) resp. Lemmata 5 and
6 (upper bound) by setting e = 2, d = 4 and

c1 = 4 ≥ 0, c2 = 9 ≥ 0,
c3 = 15 ≥ e = 2, c4 = 22 ≥ 2e = 4
(with c1 ≤ c2 ≤ c3 ≤ c4 ≤ 29 = 2e + d + 2c1 + c2)

in the definition of Cgen(N). The lower bound follows directly and for the upper
bound, the following calculation can be made using Ccomp_all(4) = 115

2 and Ccomp_all(5) =
361
5 :

Ccomp_all(N) =
6
5

e(N + 1)HN+1 +

(
3

10
d− 57

50
e
)
(N + 1) +

N + 1
5

(
3c2 + 2c3 + c4

2

)
− 1

2
(2e + d) +

6
(n

4)

(
7

30
e +

1
60

d− 1
6

C5 +
1
5

C4

)
=

12
5
(N + 1)HN+1 +

(
6
5
− 57

25

)
(N + 1) +

N + 1
5

(
27 + 30 + 22

2

)
− 4 +

6

(N
4)

(
7
15

+
1

15
− 1

6
361
5

+
1
5

115
2

)
︸ ︷︷ ︸

=0

=
12
5
(N + 1)HN+1 +

341
50

(N + 1)− 4.

Again, this representation of Ccomp_all(N− 2) is not very appealing, because it has not
the same leading term as Ccomp_all(N). Therefore, Ccomp_all(N − 2) will be modified

45

4. Analysis of Expected Search Costs

first:

Ccomp_all(N − 2) =
12
5
(N − 1)HN−1 +

341
50

(N − 1)− 4

=
12
5
(N + 1)HN−1 − 2

12
5

HN−1 +
341
50

(N + 1)− 2
341
50
− 4

=
12
5
(N + 1)

(
HN+1 −

1
N + 1

− 1
N

)
+

341
50

(N + 1)− 24
5

HN−1

− 441
25

=
12
5
(N + 1)HN+1 −

12
5
(N + 1)
(N + 1)

− 12
5
(N + 1)

N
+

341
50

(N + 1)

− 24
5

HN−1 −
441
25

=
12
5
(N + 1)HN+1 −

12
5
− 12

5
− 12

5
1
N

+
341
50

(N + 1)

− 24
5

HN−1 −
441
25

=
12
5
(N + 1)HN+1 +

341
50

(N + 1)− 24
5

HN−1 −
12
5N
− 561

25
.

Using this representation of Ccomp_all(N− 2) and Ccomp_all(N), the following approx-
imate closed form of Ccomp_all(N) can be given:

Theorem 7. Ccomp_all(n) = 12
5 nHn + a′(n + 1) +O(log(n)) with −132

25 ≤ a′ ≤ 341
50 .

Proof. With the closed forms of Ccomp_all(n− 2) rsp. Ccomp_all(n) and 24
5 Hn−1 +

12
5n +

441
25 , 4 ∈ O

(
log(N)

)
(eq. (6.66) in [5]), the following calculation can be made:

Ccomp_all(N) =
12
5
(N + 1)HN+1 + a′(N + 1) +O

(
log(N)

)
=

12
5

N · HN+1 +
12
5

HN+1 + a′(N + 1) +O
(

log(N)
)

=
12
5

N
(

HN +
1

N + 1

)
+

12
5

HN+1 + a′(N + 1) +O
(

log(N)
)

=
12
5

N · HN +
12
5

N
N + 1

+
12
5

HN+1 + a′(N + 1) +O
(

log(N)
)

=
12
5

N · HN + a′(N + 1) +O
(

log(N)
)
.

46

4.2. Expected Number of Comparisons

For a better sense of order of magnitude, the asymptotic representation is given in
Theorem 8.

Theorem 8. The asymptotic representation of Ccomp_all(N) is given by:

Ccomp_all(N) =
12
5

N ln(N) +

(
12γ

5
+ a′

)
N +O

(
log(N)

)
N → ∞

with −132
25 ≤ a′ ≤ 341

50 and γ the Euler-Mascheroni constant.

Proof. Using the asymptotic estimate: (eq. (6.66) in [5])

Hn = ln(n) + γ +O
(1

N
)

the following calculation can be made:

Ccomp_all(N) =
12
N

N · HN + a′(N + 1) +O
(

log(N)
)

=
12
5

N
(

ln(N) + γ +O
(1

N
))

+ a′(N + 1) +O
(

log(N)
)

=
12
5

N ln(N) +
12γ

5
N +O(1) + a′N + a′ +O

(
log(N)

)
=

12
5

N ln(N) +
(12γ

5
+ a′

)
N +O

(
log(N)

)
, N → ∞.

In order to estimate the number of comparisons for a search of a single element,
Ccomp_all(N)− 4 needs to be divided by the length of the list (without the header).

As mentioned in [1], the number of comparisons dominate the runtime of the search,
leading to the following theorem:

Theorem 9.

1. The expected number of comparisons for the search of an element in a 2-jumplist of
length N is given by Ccomp(N) = 12

5 ln(N + 1) +
(12

5 γ + a′
)
+O

(log(N)
N
)

with
−132

25 ≤ a′ ≤ 341
50 .

2. The search in a 2-jumplist has an expected time complexity of O(log(N)).

47

4. Analysis of Expected Search Costs

Proof.

Ccomp(N) =
Ccomp_all(N)− 4

N

=
12
5

N ln(N)

N
+
(12

5
γ + a′

)N
N

+O(log(N)

N
)− 4

N

=
12
5

ln(N) +
(12

5
γ + a′

)
+O

(log(N)

N
)
− 4

N

=
12
5

ln(N) +
(12

5
γ + a′

)
+O

(log(N)

N
)
∈ O(log(N)) N → ∞

Figure 4.3(a) contains the values of equation (4.9) (red curve) for 1 ≤ N ≤ 1000,
normalized by N ln(N). As for equation (4.2), the convergence to the prefactor 12

5 is
very slow and the upper bound (blue) is very far apart from the lower bound (green).

Figure 4.1(b) displays empirical data, collected by generating 100 2-jumplists for the
sizes 1 to 1000 resp., averaging the number of comparisons needed for a search for
every key over the sample and normalizing by N ln(N). Unfortunately, the conver-
gence is also very slow for these values.

0 1,000 2,000 3,000 4,000 5,000
0

0.5
1

1.5
2

2.4

3

4

5

length of the list

Values of equation (4.9)

(a) Values of equation (4.9) (red),
Ccomp_all(N − 2) (blue) and Ccomp_all(N)
(green) for 7 ≤ N ≤ 1000, normalized by
N ln(N).

0 1,000 2,000 3,000 4,000 5,000
0

1

2
2.4

3

length of the list

Average number of comparisons

(b) Average number of comparisons of 100 2-
jumplists of sizes 2-1000, normalized by
N ln(N) compared to the normalized val-
ues of equation (4.9).

Figure 4.3.: Plots for the number of comparisons.

48

5. Complexity Analysis

5.1. Generation

The major work for the generation of a 2-jumplist is provided by rebalance. The Pre-
processing needs a linear number of operations, because a singly-linked list needs to
be generated.
To determine the runtime of rebalance inO-term notation, the costs of a call of rebal-
ance on a node h with a sublist of length n will be given as a recurrence equation.

Creb(1) = r1, Creb(2) = r2, Creb(3) = r3, r1, r2, r3 ∈ R+

Creb(n) = r +
1

(n−2
2)

n−3

∑
i=1

n−2−i

∑
j=1

(
Creb(i) + Creb(j) + Creb(n− 1− i− j)

)

= r +
6

(n− 2)(n− 3)

n−3

∑
k=1

(n− k− 2)Creb(k), r ∈ R+.

(5.1)

For every node in the list, a constant number of operations (mainly choosing the tar-
get of the pointers and assigning them) is needed. Therefore, the toll function consists
of a constant r. In the double sum, the recursive calls (lines 15-17) for all the possible
values of nsize, jsize and j2size are handled. The prefactor 1/((n−2

2)) of the sum aver-
ages over all the possible pointer configurations.
To prove that the expected runtime of rebalance is in O(n), I show that Creb(n) ≤ an
for n ∈N≥1 and a suitable constant a:

Lemma 9. Let a = max{r1, r2
2 , r3

3 , r} for n ∈N≥1. Then Creb(n) ≤ an for n ∈N≥1.

Proof. The proof is conducted by induction.

Induction Beginning:

n = 1 : Cusu(1) = r1 ≤ a
n = 2 : Cusu(2) = r2 ≤ 2a
n = 3 : Cusu(3) = r3 ≤ 3a

Induction Hypothesis:

49

5. Complexity Analysis

For an arbitrary fixed number n, holds for all k ∈N with k < n that Cusu(k) ≤ ak.

Induction Step:

Creb(n) =r +
6

(n− 2)(n− 3)

n−3

∑
k=1

(n− k− 2)Creb(k)

IV
≤ r +

6
(n− 2)(n− 3)

n−3

∑
k=1

(n− k− 2)ak

= r +
6a

(n− 2)(n− 3)
· (n− 1)(n− 2)(n− 3)

6
= r + a(n− 1) ≤ an.

Corollary 2. The generation of a 2-jumplist of length (n + 1) has an expected runtime
of O(n).

5.2. Insertion

The time complexity of insertion is dominated by three sub-procedures: the (unsuc-
cessful) search, restore_unif/bend_procedure and usurper. The rest of the insertion,
the preprocessing, is done in constant time.

The complexity of the search, O(log n), has already been determined in Theorem 9.
The complexity of the other two dominating procedures will be determined in the
following, leading to Theorem 10.

Theorem 10. The insertion of a node in a 2-jumplist of length n has expected time com-
plexity of O(log(n))

Proof. See Chapter 4 and Sections 5.2.1 and 5.2.2.

5.2.1. Usurper

The cost of a call of usurp on a header with a sublist of length n (see Figure 5.1 for
further illustrations), can be expressed by a recurrence equation. Although usurper
contains two phases, they are similar enough to be expressed by the same equation.

50

5.2. Insertion

h new next ... a ... b ... end

(n− 1− k)k

n

(a) First phase

new next next.next ... a ... b ... end

k (n− 1− k)

n

(b) Second phase. new represents the new node or a node whose pointers have been stolen in
the previous iteration.

Figure 5.1.: Illustration of the sizes used in equation (5.2).

Cusu(2) = k2, Cusu(3) = k3,

Cusu(4) =
2

4− 1
Creb(4) + (1− 2

4− 1
)Cusu(2) = k4 k2, k3, k4 ∈ R+

Cusu(n) =

≤l︷ ︸︸ ︷
2

(n− 1)
Creb(n) +(1− 2

(n− 1)
)

n−2

∑
k=2

(n− 1− k)
(n−2

2)
Cusu(k)

≤ l +
(n− 3)
(n− 1)

2
(n− 2)(n− 3)

n−2

∑
k=2

(n− 1− k)Cusu(k)

= l +
1

(n−1
2)

n−2

∑
k=2

(n− 1− k)Cusu(k). (n≥ 5), l ∈ R+

(5.2)

In every recursion of usurper, the algorithm chooses whether or not to bend the point-
ers of h resp. new.

The bending occurs with probability 2
n−1 and implies a call of rebalance on parts

of the sublist of h resp. new. As rebalance has a complexity of O(n), there exists an

51

5. Complexity Analysis

l ∈ R+ s. t. Creb ≤ l · n. This argumentation explains the first addend of the recursion.

If however the algorithm chooses not to bend any pointer, which it does with prob-
ability (1− 2

n−1), a recursive call is executed on node next and its sublist. The length
k of this sublist, which determines the complexity of this call, depends on the nsize of
the previous node an thus on his jump-pointer.
If the algorithm is in the first phase, the size k of the sublist of the next recursive call
is determined by the jump-pointer of h. Before the insertion of new, h had a sublist of
length (n − 1), thus having (n−2

2) possibilities for the choice of its pointers (assume
that (n − 1) ≥ 4, the special cases will be handled in the initial conditions). To en-
sure that the next recursive call is on a sublist of length k, one pointer of h needs to
point to the k-th node in its sublist (before the insertion) and the other one needs to
point to a node located after, having (n− 1− k) possible targets, leading to the factor
(n− 1− k)/(n−2

2) in the sum.
The sum starts at 2 as a sublist of length one cannot occur in the first phase (the sublist
contains at least new and next) and during the second phase, a sublist of length one
can only occur if during the previous recursion, the sublist had length two or three,
which are handled by the initial conditions.
The initial conditions for (n = 2) resp. (n = 3) represent the special cases (a) resp. (b)
in Figure 3.5. The one for (n = 4) ensures that (n− 1) ≥ 4 to avoid special cases in
the sum.

To prove that the complexity of usurp is in O(ld(n)), I show that
Cusu(n) ≤ b ld(n) for n ∈N≥2 and a suitably chosen constant b.

Lemma 10. Let b = max{ k2
ld(2) , k3

ld(3) , k4
ld(4) , 4

3 l}. Then Cusu(n) ≤ b ld(n) for n ∈N≥2.

Proof. The proof is conducted by induction.

Induction Beginning:

n = 2 : Cusu(2) = k2 ≤ b ld(2)
n = 3 : Cusu(3) = k3 ≤ b ld(3)
n = 4 : Cusu(4) = k4 ≤ b ld(4)

Induction Hypothesis:

For an arbitrary fixed number n, holds for all k ∈N with k < n that Cusu(k) ≤ b ld(k).

Induction Step:

For s ∈N≥1 holds that ld(s)− ld(s
2) = 1.

Therefore, it holds for (1 ≤ k ≤ n
2) that ld(n) − ld(k) ≥ 1 and for (k ≥ n

2) that
ld(n)− ld(k) ≤ 1.

52

5.2. Insertion

Cusu(n) ≤ l +
1

(n−1
2)

n−2

∑
k=2

(n− 1− k)Cusu(k)

IV
≤ l +

2
(n− 1)(n− 2)

n−2

∑
k=2

(n− 1− k)(b ld(k))

= l +
2

(n− 1)(n− 2)

n−2

∑
k=1

(n− 1− k)b(ld(n)− (ld(n)− ld(k)))

= l +
2b ld(n)

(n− 1)(n− 2)

n−2

∑
k=1

(n− 1− k)

− 2b
(n− 1)(n− 2)

n−2

∑
k=1

(n− 1− k)(ld(n)− ld(k)))

≤ l +
2b ld(n)

(n− 1)(n− 2)

n−2

∑
k=1

(n− 1− k)− 2b
(n− 1)(n− 2)

n/2

∑
k=1

(n− 1− k)1

= l +
2b ld(n)

(n− 1)(n− 2)
1
2
(n− 1)(n− 2)− 2b

(n− 1)(n− 2)
3
8

n(n− 2)

≤ b ld(n) + l − b
3
4

≤ b ld(n)

The desired complexity of O(log(n)) follows directly.

5.2.2. Restore_unif and Bend_procedure

Due to its recursive nature, the complexity of the procedures restore_uniformity/
relocate_pointer will again be represented by a recurrence relation. But, unlike in the
recurrence of usurp, the recurrence for restore_uniformity/relocate_pointer also de-
pends on the position of new in the list. To avoid any problem related to this fact, I
resort to the same method as used by Durand in [4]: Consider the insertion of a node
in every possible position. Dividing by the number of possible insertion positions res-
ults in the expected costs for the procedures restore_uniformity/relocate_pointer.
The argument of the recurrence n will again be the length of the list without its header.
Refer to Figure 5.2 for further illustrations.

53

5. Complexity Analysis

h ... a ... b ... end

nsize jsize j2size

n

Figure 5.2.: Illustration of the sizes used in equation(5.3).

Crst(2) = Cusu(2) = h2, Crst(3) = Cusu(2) + Cspec = h3,

Crst(4) = Cusu(3) + Crst(2) + Crst(2) = h4 h2, h3, h4 ∈ R+

Crst(n) = n
2

n− 1
Creb(n) + (1− 2

n− 1
)

1

(n−2
2)

[n−3

∑
i=2

n−2−i

∑
j=1

Cusu(i + 1)

+
n−3

∑
i=2

n−2−i

∑
j=1

Crst(i)
n−3

∑
i=1

n−2−i

∑
j=2

Crst(j) +
n−4

∑
i=1

n−3−i

∑
j=1

Crst(n− 1− i− j)
]

≤ ln +
1

(n−1
2)

[n−2

∑
k=3

(n− 1− k)b ld(k) + 3
n−3

∑
k=2

(n− 2− k)Crst(k)
]
(n ≥ 5), b, l ∈ R+

(5.3)

As usurp, the algorithm needs to decide whether to bend the pointers of h or not.
With probability 2

n−1 , one pointer of h is bent and rebalance needs to be called. With
n possible positions to insert new, this leads to the first summand n 2

n−1Creb(n) ≤ n · l.

If the algorithm chooses not to bend the pointers, which happens with probability
(1 − 2

n−1), a recursive call needs to be made, depending on the pointers of h and
the position of new. As every possible insert position needs to be taken into account,
equation (5.3) contains a recurrence for all of these positions. The double sums iterates
through the sizes of the next- (i) resp. jump-list (j) and the four sums represent the
following:

• ∑n−3
i=2 ∑n−2−i

j=1 Cusu(i + 1) represents the calls of usurp. The next-size needs to be
at least two, as it was at least one before the insertion (n− 1 ≥ 4).

• ∑n−3
i=2 ∑n−2−i

j=1 Crst(i) represents the recursive calls when new is in the next-list. As
above, the next-size needs to be at least two after the insertion.

• ∑n−3
i=1 ∑n−2−i

j=2 Crst(j) represents the recursive calls when new is in the jump-list.
In this case, the jump-size needs to be at least two.

54

5.2. Insertion

• ∑n−4
i=1 ∑n−3−i

j=1 Crst(n− 1− i− j) represents the recursive calls when new is in the
jump2-list. The jump2-size needs to be at least two, meaning that the next- and
jump-sizes need to be smaller than (n− 3).

Using symmetry of the double sum and reverse summation, as in equation (4.2), and
that the complexity of usurp is in O(log(n)), the final form of equation (5.3) is ob-
tained.
The initial conditions, are illustrated in Figure 5.3.

h end

new

(a) n=2.

h a end

new

(b) n=3.

h a b end

new

(c) n=4.

Figure 5.3.: Initial conditions with possible insertion positions for new.

To prove that Crst(n) ∈ O(n log(n) (I insert at every possible position), I resort to the
same method used for Cusu(n):

Lemma 11. Let d = max{ h2
2 ld(2) , h3

3 ld(3) , h4
4 ld(4) , 4l + 4b

3 }. Then Crst (n) ≤ dn ld(n) for
n ∈N≥2.

Proof. The proof is conducted by induction.

Induction Beginning:

n = 2 : Cusu(2) = h2 ≤ d2 ld(2)
n = 3 : Cusu(3) = h3 ≤ d3 ld(3)
n = 4 : Cusu(4) = h4 ≤ d4 ld(4)

Induction Hypothesis:

55

5. Complexity Analysis

For an arbitrary fixed number n, holds for all k ∈N with k < n that Crst(k) ≤ dk ld(k).

Induction Step:

Using that ld(x) ≤ x− 1 for x > 1 and the same estimation for ld(n)− ld(k) as in the
proof of Theorem 10, it holds for n ≥ 5 that:

Crst(n) ≤ ln +
1

(n−1
2)

[n−2

∑
k=3

(n− 1− k)b ld(k) + 3
n−3

∑
k=2

(n− 2− k)Crst(k)
]

IV
≤ ln +

2
(n− 1)(n− 2)

[n−2

∑
k=3

(n− 1− k)b ld(k) + 3
n−3

∑
k=2

(n− 2− k)dk ld(k)
]

≤ ln +
2b

(n− 1)(n− 2)

n−2

∑
k=3

(n− 1− k)(k− 1)

+
6d

(n− 1)(n− 2)

n−3

∑
k=2

(n− 2− k)(k ld(n)− (k ld(n)− k ld(k))

= ln +
2b

(n− 1)(n− 2)
· (n + 1)(n− 3)(n− 4)

6

+
6d

(n− 1)(n− 2)

[n−3

∑
k=2

(n− 2− k)k ld(n)−
n−3

∑
k=2

(n− 2− k)k(ld(n)− ld(k))
]

≤ ln +
b
3
(n + 1) +

6d ld(n)
(n− 1)(n− 2)

· (n + 1)(n− 3)(n− 4)
6

− 6d
(n− 1)(n− 2)

n/2

∑
k=2

(n− 2− k)k1

= ln +
b
3
(n + 1) +

(n + 1)(n− 3)(n− 4)
(n− 1)(n− 2)︸ ︷︷ ︸
≤n for (n≥5)

d ld(n)

− 6d
(n− 1)(n− 2)

· (n− 4)(n− 2)(2n + 9)
24

≤ dn ld(n) + ln +
b
3
(n + 1)− d

(n− 4)(2n + 9)
4(n− 1)

≤ dn ld(n)

56

5.2. Insertion

because

ln +
b
3
(n + 1)− d

(n− 4)(2n + 9)
4(n− 1)

≤ 0

⇐⇒ ln +
b
3
(n + 1) ≤ d

(n− 4)(2n + 9)
4(n− 1)

⇐⇒ 4l
n(n− 1)

(n− 4)(2n + 9)︸ ︷︷ ︸
≤1 for (n≥5)

+
4b
3

(n + 1)(n− 1)
(n− 4)(2n + 9)︸ ︷︷ ︸
≤1 for (n≥5)

≤ d.

The desired complexity of O(n log(n)) follows directly.

Corollary 3. The procedures restore_uniformity/relocate_pointer have an expected
runtime complexity of O(log(n)).

57

5. Complexity Analysis

58

6. Conclusion

In this thesis, I present an extended form of jumplist defined by Brönnimann, Cazals
and Durand in [1]. Instead of only allowing one jump-pointer per node, every node
possesses two, with the jump2-pointer reaching even further ahead in the list.

This change speeds up the search, as the choice between two jump-pointers allows a
more precise navigation through the list. As seen in Theorem 6, the expected internal
path length of a 2-jumplist has a prefactor 6

5 on the leading term, opposed to the
prefactor 2 (Theorem 1 in [1]) of the regular jumplist. Similarly, the expected number
of comparisons during a search for every node in the list has a prefactor 12

5 on the
leading term (see Theorem 9), opposed to a prefactor of 3 in Theorem 2 ([1]).

Despite the more complex structure of the 2-jumplist compared to the regular jump-
list, the complexity of generation and insertion remains linearithmic.

For further work, even more jump-pointers could be added to every node, to make
the search faster. To speed up the choice for the right jump-pointer to follow, a bin-
ary search could be used on the jump-pointers. But at some point, the costs for the
choice of the right jump-pointer would exceed the savings from the additional jump-
pointers, even using binary search.

To avoid this problem, the number of jump-pointers of a node could be adjusted to
the length of its sublist, to ensure that every additional jump-pointer enhances the
performance. As the size of the sublist for each node is known during generation and
insertion, this modification seems to be feasible.

59

6. Conclusion

60

Bibliography

[1] Hervé Brönnimann, Frédéric Cazals and Marianne Durand Randomized Jumplists:
A Jump-and-Walk Dictionary Data Structure. In H. Alt and M. Habib (Eds.): STACS
2003, LNCS 2607, pp. 283-294, 2003.

[2] Sebastian Wild Java 7’s Dual Pivot Quicksort. Master Thesis (2012), available at
http://wwwagak.cs.uni-kl.de/sebastian-wild.html.

[3] Sebastian Wild, Markus E. Nebel and Ralph Neininger Average Case and Distri-
butional Analysis of Dual Pivot Quicksort. ACM Transactions on Algorithms 11, 3,
Article 22 (January 2015).

[4] Marianne Durand Combinatoire analytique et algorithmique des ensembles de donnés.
PhH Thesis (2004), available at http://algo.inria.fr/durand/.

[5] Ronald L. Graham, Donald E. Knuth, Oren Patashnik Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA ,1994. ISBN:0201558025.

[6] Amr Elmasry Deterministic Jumplists. Nordic Journal of Computing 12, 27-39
(2005).

[7] Luis Barba and Pat Morin Top-Down Skiplists. arXiv:1407.7917.

[8] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, Charles E. Leiserson Intro-
duction to Algorithms. MIT Press, 3rd edition, 2009. ISBN 978-0-262-03384-8..

[9] Bose, Prosenjit, Karim Douïeb, and Pat Morin Skip lift: A probabilistic alternative
to red-black trees. Journal of Discrete Algorithms 14 (2012): 13-20.

61

Bibliography

62

Appendices

63

A. Supplementary Proofs

Conditions of Correctness in the Induction Beginning of Theorem 3

h′0 new next ... a ... b ... end

• (c1): As the pointers of h′0 are not altered (otherwise h′0 would be the last node
considered by usurp) and every node in the list fulfilled the conditions of cor-
rectness before the insertion, the pointers do not cross afterwards.

• (c2):

– (c2.1): Due to the insertion of new, next is now a possible target for the
pointers of h′0. Therefore it needs to be shown that every pair of nodes in
the target sublist of h′0, including next, has the same probability to be the
target of the pointers of h′0. This is provided by Lemma 2, setting h = h′0.

– (c2.2): As the sublist of has at least length 4, it must have had at least length
3 before the insertion. Therefore the jump- and jump2-pointer pointed to
different nodes before the insertion and as they are not altered also do after
the insertion.

– (c2.3): As h′0 must have had a sublist of length ≥3 before the insertion,
its pointers did not point to the direct successor before the insertion. The
pointers of h′0 are not altered and thus this also holds after the insertion.

(c2’): If (1≤ n < 4), a special case would have been applied and h′0 would have
been the last node considered by usurp).

65

A. Supplementary Proofs

Monotony of Cgen(N)

To show that Cgen(N) is monotonically increasing, I prove that Cgen(N + 1)−Cgen(N) ≥
0 for N ≥ 1.

Proof. The proof is conducted by induction.

Induction Beginning:

• N = 1 : Cgen(2)− Cgen(1) = c2 − c1 ≥ 0.

• N = 2 : Cgen(3)− Cgen(2) = c3 − c2 ≥ 0.

• N = 3 : Cgen(4)− Cgen(3) = c4 − c3 ≥ 0.

• N = 4 : Cgen(5)− Cgen(4) = (4e + d + 6
6(2Cgen(1) + Cgen(2)))− c4 = 4e + d +

2c1 + c2 − c4 ≥ 0.

Induction Hypothesis:
For a fixed arbitrary number N, holds that for all k ∈ N with k < N that Cgen(k +
1)− Cgen(k).

Induction Step:

For N ≥ 5 :

Cgen(N + 1)− Cgen(N)

= eN + d +
6

(N − 1)(N − 2)

N−2

∑
k=1

(N − k− 1)Cgen(k)

− e(N − 1) + d +
6

(N − 2)(N − 3)

N−3

∑
k=1

(N − k− 2)Cgen(k)

= e +
6

(N − 1)(N − 2)(N − 3)

[N−2

∑
k=1

(N − 3)(N − k− 1)Cgen(k)

−
N−3

∑
k=1

(N − 1)(N − k− 2)Cgen(k)
]

It is sufficient to show that[N−2

∑
k=1

(N − 3)(N − k− 1)Cgen(k)−
N−3

∑
k=1

(N − 1)(N − k− 2)Cgen(k)
]
≥ 0 :

66

N−2

∑
k=1

(N − 3)(N − k− 1)Cgen(k)−
N−3

∑
k=1

(N − 1)(N − k− 2)Cgen(k)

= (N − 3)Cgen(N − 2) +
N−3

∑
k=1

(N2 − (N − 3)k− 4N + 3)Cgen(k)

−
N−3

∑
k=1

(N2 − (N − 1)k− 3N + 2)Cgen(k)

= (N − 3)Cgen(N − 2) + 2
N−3

∑
k=1

kCgen(k)− N
N−3

∑
k=1

Cgen(k) +
N−3

∑
k=1

Cgen(k)

(∗)
≥ (N − 3)Cgen(N − 2) + (N − 2)

N−3

∑
k=1

Cgen(k)− N
N−3

∑
k=1

Cgen(k)

+
N−3

∑
k=1

Cgen(k)

= (N − 3)Cgen(N − 2)−
N−3

∑
k=1

Cgen(k)

≥ (N − 3)Cgen(N − 2)−
N−3

∑
k=1

Cgen(N − 2)

= (N − 3)Cgen(N − 2)− (N − 3)Cgen(N − 2) = 0

At (*), I use Chebyshev’s sum inequality: m · ∑m
i=1 aibi ≥ (∑m

i=1 ai) · (∑m
i=1 bi) for m ∈

N≥1 and two increasing (in the same direction) sequences ai, bi. As both sequnences
are increasing (see Induction Hypothesis for Cgen(k)), the following estimation can
be made:

2
N−3

∑
k=1

kCgen(k) ≥
2

N − 3
(N−3

∑
k=1

k
)
·
(N−3

∑
k=1

Cgen(k)
)

=
2

N − 3
· (N − 2)(N − 3)

2

N−3

∑
k=1

Cgen(k)

= (N − 2)
N−3

∑
k=1

Cgen(k))

67

	List of Figures
	Introduction
	Preliminaries
	Algorithms
	Search
	Construction of the List
	Insertion
	Correctness
	Generation
	Insertion

	Analysis of Expected Search Costs
	Expected Internal Path Length of 2-Jumplists
	Lower bound
	Upper bound
	Approximation of Expected Internal Path Length

	Expected Number of Comparisons
	Approximation of Expected Number of Comparisons

	Complexity Analysis
	Generation
	Insertion
	Usurper
	Restore_unif and Bend_procedure

	Conclusion
	Bibliography
	Appendices
	Supplementary Proofs

