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Preface and acknowledgements

This thesis is divided into two independent parts. As such, it contains
two different introductions, one for each part respectively.

The first part contains the main focus of my studies in tropical geom-
etry, which I have worked upon for the vast majority of my time together
with my advisor apl. Prof. Thomas Markwig. It presents an approach for
computing tropical varieties over fields with valuation using classical stan-
dard basis techniques building upon the techniques developed by Bogart,
Jensen, Speyer, Sturmfels, Thomas [BJS+07]. All algorithms have been im-
plemented in the computer algebra system Singular [DGPS14] using its
native standard basis engine.

The second part represents one of several side-projects I pursued with
other collaborators outside of tropical geometry. It is a project in toric geom-
etry with Prof. Michael Cuntz from Hanover and Prof. Günther Trautmann
from Kaiserslautern and revolves around classifying smooth toric varieties
that arise from hyperplane arrangements.

While the two parts are independent, it should be noted that the practi-
cal foundation that was laid for the main topic, namely support for convex
geometry inside Singular, proved to be of great help for me and my col-
laborators in studying the second topic.

Two other projects that I would have loved to include in this thesis,
however it was impossible to do so without overcrowding it: one is on ex-
ploiting symmetries in the computation of GIT-fans in collaboration with
Janko Böhm and Simon Keicher; the other is an algorithmic approach to
localizations of affine coordinate rings at prime ideals in collaboration with
Magdaleen Marais.
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Part 1

Computing tropical varieties over
fields with valuation





CHAPTER 0

Introduction

0.1. Motivation

Tropical geometry is a field of mathematics which can be studied from
numerous perspectives. And while this does not come surprising for an area
rich in combinatorics, the wide range of the perspectives is.

One perspective comes from the study of max-plus or min-plus semirings,
which have caught the interest of theoretical computer scientists long time
ago [Sim78]. It was this context, in which the adjective tropical was coined
by French mathematicians honoring the pioneering work of the Brazilian
mathematician Imre Simon [Sim88] [Pin98]. Other perspectives and appli-
cations of tropical geometry come from problems arising in biology [PS04]
[PS07], physics [CGQS05] and economics [BK14].

This thesis takes a perspective originating from Bergman, who made
the surprising observation that complex algebraic sets in logarithmic scale
resemble polyhedral complexes [Ber71]. Bieri and Groves later expanded
that observation to general fields with valuation [BG84]. Decades later,
these polyhedral complexes are referred to as tropical varieties, and they are
widely regarded as combinatorial shadows of algebraic varieties. Given an
affine algebraic variety X in a torus (K∗)n, its tropical variety Trop(X) in
Rn carries enough information to shed some light on its classical counterpart,
yet at the same time it is light enough to be reduced to an almost purely
combinatorial structure. One of the more intriguing pieces of information
it carries is described in “Mikhalkin’s Correspondence Theorem” [Mik05],
which established tropical geometry as a powerful tool to study enumerative
geometry. Since then, tropical geometers have developed new combinatorial
approaches to classical theories [GM07] [GM08] and pushed their knowl-
edge beyond what was known classically [IKS13a] [IKS13b].

A centerpiece in studying tropical geometry with a view towards alge-
braic geometry and the main topic of this thesis is the tropicalization, a pro-
cess which maps an affine algebraic variety X to its tropical variety Trop(X).
Computing the tropical variety of an ideal I EK[x±1], i.e. that of its affine
variety V (I) ⊆ (K∗)n, can be surprisingly simple in some cases. If I happens
to be generated by a single polynomial f , its tropical variety Trop(I) is, at
least combinatorially, completely determined by the subdivision of the New-
ton polytope of f induced by the valuation of the coefficients (see [MS14]
Chapter 1.2). Generally however, it is a computationally hard problem to
solve.
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8 0. INTRODUCTION

Bogart, Jensen, Speyer, Sturmfels and Thomas were the first to describe
an algorithm for computing tropical varieties [BJS+07], which is then fur-
ther expanded upon in Jensen’s thesis [Jen07]. It covers ideals over the
complex numbers C as well as the Puiseux series C{{t}} thanks to a trick
described in Chapter 6.3 of the aforementioned thesis. The algorithms are
implemented in gfan [Jen11], a software package for computing Gröbner
fans and tropical varieties by Anders Jensen.

In order to apply their techniques to other fields with valuation however,
say the p-adic numbers Qp, one seemingly reaches the limit of classical Gröb-
ner basis theory, as it ignores the valuation on the ground field. This urged
Chan and Maclagan to extend the classical Gröbner basis theory by taking
valuations on the ground field into account [CM13], which in turn inspired
other people to apply new experimental ideas for Gröbner basis computa-
tions to the newly founded framework [Vac14]. Algorithms for computing
Gröbner complexes based on this can also be found in gfan, though none
exist for tropical varieties yet.

This thesis takes a step back to the seeming limit and explores a small
detour around the dead end. The detour will eventually lead to the tropical
variety Trop(I) of an ideal I E K[x] over a valued field K, and it will be
accessible with the classical notions of computer algebra. Albeit not of better
complexity than an approach using Chan and Maclagan’s idea at first glance,
this approach enables the usage of the newest cutting-edge techniques in
Gröbner bases computation, which is a highly active field of research [EF14],
[Neu13].

Before continuing with the summary, it is also noteworthy that the fasci-
nation of tropical varieties did not take long to convince mathematicians to
study them on a firm axiomatic footing. Definitions of tropical varieties sur-
faced that were detached from any algebraic variety they might arise from.
While the axiomatic footing provided tropical geometers with a solid foun-
dation to work on, examples of tropical varieties emerged that were not re-
alisable as tropicalizations of algebraic varieties [Spe07]. Since then, driven
by the advances in tropical geometry, the realizability of tropical varieties
has developed into a worthwhile and challenging problem of its own. While
the computation of tropical varieties is not of immediate theoretical interest
for the realizability of tropical varieties, it is central for experiments while
hunting for new insights.
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0.2. Summary of Results

Chapter 1. At the end of this chapter, in Definition 1.2.11, we introduce
tropical varieties over rings and we will show how tropical varieties over
valued fields can be traced back to them, despite the rings not carrying any
non-trivial valuation themselves.

By restricting our ground field to its valuation ring, forgetting the valua-
tion in the process, and introducing a power series variable t responsible for
tracking a fixed uniformizing parameter as in Definition 1.2.5, it is easy to
imagine how the old valuations of the coefficients reflect in the new degrees of
t when working with monomial orderings such that t < 1. Proposition 1.2.9
essentially captures this observation in the terminology of initial ideals, its
proof is fairly straight forward, once broken down into digestible cases. The-
orem 1.2.13 then establishes the crucial connection between tropical varieties
over valued fields and tropical varieties over their valuation rings without the
valuation.

On a side note, it is refreshing to see these tropical varieties play a central
role in our approach. Though a little bit neglected in tropical geometry when
studied with a view towards algebraic geometry, tropical varieties over the
integers have actually been one of the focal points in the origin of tropical
geometry. Studied by Bieri, Groves, Neumann and Strebel [BS80] [BG84]
[BNS87], these objects yielded surprising insights in a wide class of discrete
groups. A short exposition on their collaborate work can be found in Chapter
1.6 of [MS14], which concludes with the words: The beautiful group theory
results by Bieri, Groves, Neumann and Strebel suggest that further research
on this topic is desirable.

Chapter 2. There is little to no doubt that standard basis theory, re-
spectively Gröbner basis theory, is a major driving force behind any computa-
tional algebra that studies anything remotely similar to ideals in polynomial
rings. It should therefore be no surprise that our first priority is to delve
into it.

The idea of standard bases goes back to Gordan [Gor99] in 1899. Later,
monomial orderings were used by Macaulay and Gröbner to study Hilbert
functions of graded algebras and, more generally, to find K-bases of zero
dimensional quotient rings. Formally, the notion of standard bases was in-
troduced independently by Hironaka [Hir64] and Grauert [Gra72], though
only for special local orderings. Around the same time, the name Gröbner
basis was coined by Buchberger [Buc65] for global orderings, who introduced
them together with the famous algorithm bearing his name, acknowledging
the influence of his adviser Gröbner in his work.

In this chapter, we combine techniques from Markwig [Mar08] and
Wienand [Wie11] to extend the classical standard basis theory to a mixed
polynomial and power series ring RJtK[x], where R is a noetherian ring, and
t = (t1, . . . , tm), x = (x1, . . . , xn) stand for a tuples of variables. Note that
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while in theory R is only required to be noetherian, for our algorithm we
additionally require in Convention 2.1.1 that some specific computational
problems can be solved in it.

[Mar08] unifies the division theorems from Grauert [Gra72] and Mora
[Mor82] to KJtK[x], where K is a field and t, x are as before, and establishes
a standard basis theory over it, following the guideline of the classical theory.
Also of great importance are its statements about weighted orderings and
〈t〉-adic convergence, which we will use one-to-one as Lemma 2.1.13 and
Lemma 2.1.14.

[Wie11] generalizes Adams and Loustaunau’s work on Gröbner bases
over rings [AL94] and Mora’s work on standard bases over fields [Mor82].
Establishing a standard basis theory for polynomial rings over a ground rings,
it analyses which computational problems are required to be solvable in the
ground ring and provides several optimizations for special cases of ground
rings. The previously mentioned conditions in Convention 2.1.1 were taken
from it.

Structurally and logically, introducing the division with remainder in
Section 2.1 follows [Mar08], applying ideas from [Wie11] whenever the
theory needs to be adjusted to ground rings. There is some slight divergence
from the source material in Algorithm 2.1.16 for the homogeneous division
with remainder which is explained in Example 2.1.19. Introducing standard
bases in Section 2.2 in turn borrows heavily from [Wie11]. Therefore, this
chapter is more to be regarded as a fitting together of two existing theories
rather than a purely original work.

It should be pointed out that, similar to [Mar08], we put an emphasis
on termination in the case our input data is polynomial, i.e. bounded in
degree of t. While one might think of this as the triviality it is at times,
we observe in Example 2.2.24 that reducing a standard basis is no finite
process. No surprising side effect when working with orderings under which
the monomials are not well ordered, this is nevertheless an essential problem
that needs to be worked around.

Chapter 3. In this chapter, we introduce Gröbner fans of x-homogeneous
ideals in RJtK[x] = RJtK[x1, . . . , xn] and describe an algorithm for their com-
putation by applying techniques developed by Fukuda, Jensen and Thomas
[FJT07].

Originally introduced as an invariant for homogeneous ideals I in poly-
nomial rings K[x] by Mora and Robbiano [MR88], the Gröbner fan of I
describes the variation of initial ideals inw(I) as the weight vector w ranges
over the whole weight space Rn. Therefore Gröbner fans naturally appear in
theories in which the monomial ordering is not fixed, for example in Gröb-
ner walks or in dynamical Gröbner basis computations [CP12]. For tropical
geometry, Gröbner fans are important because they provide a natural poly-
hedral structure compatible with the tropical variety.
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The biggest challenge when trying to apply the techniques of Fukuda,
Jensen and Thomas is to find a suitable replacement for the reduced Gröbner
bases that play a central role in their theory. As we have seen in Example
2.2.24, their canonical counterparts in our setting, reduced standard bases,
are useless for practical purposes. Hence we begin Section 3.1 by introducing
initially reduced standard bases in Definition 3.1.7, and we will show over the
course of the chapter that initially reduced standard bases are weak enough
to be computed in finite time, yet strong enough to do justice to their role
in the Gröbner fan construction.

In this chapter, we restrict ourselves to ideals in RJtK[x] which are homo-
geneous in x, see convention 3.1.1, and Convention 2.1.1 on the ground ring
is also assumed to be true. Structurally, the construction of the Gröbner
fan follows [FJT07], substituting Gröbner bases with standard bases and
reduced Gröbner bases with initially reduced standard bases. It becomes
apparent that the proofs only require minimal adjustments, as the notion
of initially reduced standard bases were specifically designed with them in
mind. One additional ingredient that needs to be provided, however, is the
finiteness of leading ideals. A well known result in the classical Gröbner
basis theory, it is proven similarly for ideals in RJtK[x] in 3.1.4 by abusing
the t-local property of our monomial orderings.

In the end, we obtain a generalized Gröbner fan theory, which specializes
to the classical theory if R is a field and t does not exist. It also goes beyond
the classical theory as we weaken the classical homogeneity constraint which
is too restrictive on our ideals. This is crucial because the ideals arising from
Theorem 1.2.13 are never homogeneous, unless we are dealing with examples
in which the valuation can be neglected in the first place.

We then continue in Section 3.2 by developing an algorithm to reduce
a standard basis initially in finite time. The proof of correctness is, as one
might expect, a little bit technical, while the proof of termination uses a
standard exhaustion argument that has, in its essence, appeared in several
works before, for example [CM13] Lemma 2.6.

Finally, we conclude the chapter with Section 3.3 by transcribing the
algorithms in [FJT07] for computing the Gröbner fans, which only requires
very little adjustments thanks to the groundwork done in the previous sec-
tions.

Chapter 4. In this chapter, we apply the ideas of Bogart, Jensen,
Speyer, Sturmfels and Thomas [BJS+07] to describe an algorithm for com-
puting the tropical varieties over rings for ideals that arose from Theo-
rem 1.2.13. Combined with the theorem, we thus obtain an algorithm for
computing tropical varieties over valued fields requiring only classical stan-
dard bases techniques, i.e. without taking valuations on coefficients into
account.

As a caveat, note that Theorem 1.2.13 imposes several nice properties
on the tropical varieties, which we exploit in our algorithm. In particular,
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we rely on the fact that our tropical varieties are pure and connected in
codimension 1, which in general tropical varieties over rings are not.

Lastly, we introduce some important optimizations specifically tailored
to our class of ideals. These optimizations imply that, amongst others, all
but one standard basis computation over the ground ring can be reduced to
Gröbner basis computations over the residue field. Moreover, these Gröb-
ner basis computations will run on essentially homogeneous data. This is
especially nice when working with the p-adic valuation, as it allows us to
work over a finite field Fp. It also allows us to use monomial orderings under
which the monomials are well-ordered.

Apart from the obvious decrease in complexity of the setting our compu-
tations run in, it gains special importance due to the vast majority of software
libraries for Gröbner basis computation which specialize in this case, for ex-
ample [Neu13]. This is because the finiteness of the coefficients represents
a hard bound on its internal size and the well-ordering yields a hard bound
on the amount of monomials appearing during the computation.

Chapter 5. Chapter 5 contains information about the implementation
of the algorithms in Singular, as well as the interface to Gfanlib [Jen11]
and Polymake [GJ00], which were a necessary prerequisite.

Moreover, we benchmark our software to Gfan by looking at a selection
of determinantal ideals, Plücker ideals and tropical linear spaces.



CHAPTER 1

Tropical Varieties

1.1. Tropical varieties over fields with valuation

In this section, we recall some fundamental notions of tropical geometry
from the book of Maclagan and Sturmfels [MS14]. We will only cover the
concepts that are of immediate relevance and refer to the said book for a
wider exposition of the theory.

Recap 1.1.1 (basic concepts of valuation theory) Let K be a field. A
valuation on K is a function ν : K → R ∪ {∞} such that

(1) ν(a) =∞ if and only if a = 0,
(2) ν(a · b) = ν(a) + ν(b) for all a, b ∈ K∗,
(3) ν(a+ b) ≥ min(ν(a), ν(b)) for all a, b ∈ K∗.

We call a valuation ν trivial, if ν(a) = 0 for all a ∈ K∗.
Given a field K with valuation ν, its valuation ring is defined to be

Rν := {a ∈ K | ν(a) ≥ 0} .

It is a local ring with maximal ideal m := {a ∈ Rν | ν(a) > 0}, and K :=

Rν/m is referred to as its residue field.
We call Rν a discrete valuation ring, if it is not a field and satisfies one

of the following equivalent conditions:
(1) Rν is noetherian,
(2) (ν(K),+) ≤ (R,+) is isomorphic to (Z,+),
(3) Rν is a principal ideal domain.

In that case, its maximal ideal m is generated by a single element p ∈ Rν ,
which we refer to as a uniformizing parameter.

Example 1.1.2 (Puiseux series, Laurent series) The field of Puiseux series
is defined to be the set

C{{t}} =


∞∑
k=k0

akt
k/n

∣∣∣∣∣∣ k0 ∈ Z, n ∈ N>0, ak ∈ C


equipped with the natural addition and multiplication, which extend the
operations in the ring of power series. It is the algebraic closure of the field
of Laurent series

C((t)) =


∞∑
k=k0

akt
k

∣∣∣∣∣∣ k0 ∈ Z, ak ∈ C

 .

13



14 1. TROPICAL VARIETIES

The order function in the ring of power series extends naturally to a valuation
on both fields:

ν
( ∞∑

k=k0

akt
k/n
)

= min
(
{k/n | k ≥ k0, ak 6= 0} ∪ {∞}

)
,

ν
( ∞∑

k=k0

akt
k
)

= min
(
{k | k ≥ k0, ak 6= 0} ∪ {∞}

)
.

The valuation ring of the Laurent series is the ring of power series CJtK,
which is local with maximal ideal generated by a uniformizing parameter t.
Its residue field is therefore C.

Example 1.1.3 (p-adic numbers, p-adic integers) Let p ∈ N be prime. Then
the field of p-adic numbers can be thought of as the set of formal Laurent
series in p

Qp =


∞∑
k=k0

akp
k

∣∣∣∣∣∣ k0 ∈ Z, ak ∈ N, 0 ≤ ak ≤ p− 1


with the same operations, except the minor addition that coefficients above
p − 1 need to be carried over to the next power in p. And similarly to the
Laurent series, the valuation on it is defined to be

ν
( ∞∑

k=k0

akp
k
)

= min
(
{k | k ≥ k0, ak 6= 0} ∪ {∞}

)
.

Its valuation ring is the ring of p-adic integers

Zp =

{ ∞∑
k=0

akp
k

∣∣∣∣∣ ak ∈ N, 0 ≤ ak ≤ p− 1

}
with a maximal ideal generated by the uniformizing parameter p ∈ Zp. Con-
sequently, its residue field is Fp.

Convention 1.1.4 For the remainder of the section, fix a field K with
valuation ν and all its associated objects. Consider the ring of multivariate
Laurent polynomials K[x±1] = K[x±1

1 , . . . , x±1
n ].

Definition 1.1.5 (initial form, initial ideal) For a Laurent polynomial f =∑
α∈Zn cα · xα ∈ K[x±1] and a weight vector w ∈ Rn, we define the valued

initial form of f with respect to w to be:

inν,w(f) :=
∑

w·α−ν(cα)
maximal

cα · p−ν(cα) · xα ∈ K[x±1].

Similarly, for an ideal I EK[x±1] and a weight vector w ∈ Rn, we define the
valued initial ideal of I with respect to w to be:

inν,w(I) := 〈inν,w(f) | f ∈ I〉E K[x±1].

Should the valuation be trivial, then we will omit the subscript ν.
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Example 1.1.6 For f1 := x + y + 1, f2 := t2x + y + t ∈ C{{t}}[x±1, y±1]

and weight vector w := (wx, wy) ∈ R2 we have, amongst other cases,

C[x±1, y±1] 3 inν,w(f1) =


x, if wx > wy and wx > 0,

y, if wy > wx and wy > 0,

1, if 0 > wx and 0 > wy,

C[x±1, y±1] 3 inν,w(f2) =


x, if wx − 2 > wy and wx − 2 > −1,

y, if wy > wx − 2 and wy > −1,

1, if − 1 > wx − 2 and − 1 > wy.

In particular, for I := 〈f1, f2〉 this implies

inw(I) = 〈1〉, if (wx < 0 and wy < 0) or (wx < 1 and wy < −1).

In fact, it can be shown that the condition above is not only sufficient, but
also necessary, which means that the set of weight vectors w ∈ R2 for which
inw(I) = 〈1〉 is not convex. However, note that I is not homogeneous.

Definition 1.1.7 (tropical variety) Let I E K[x±1] be an ideal. Then we
refer to the following set of weight vectors as the tropical variety of I:

Tropν(I) := {w ∈ Rn | inν,w(I) 6= 〈1〉} .

As before, we will omit the subscript ν should the valuation be trivial.

Example 1.1.8 (tropical varieties of polynomials) Note that for a principal
ideal I = 〈f〉EK[x±1] we have

Tropν(I) = {w ∈ Rn | inν,w(f) no term} =: Tropν(f),

in which case we will refer to Tropν(I) also as the tropical variety of f .
Figure 1 shows the tropical varieties of the two polynomials of the pre-

vious Example 1.1.6,

f1 = x+ y + 1, f2 = t2x+ y + t ∈ C{{t}}[x±1, y±1],

as well as that of their product f1 · f2, which turns out to be the union of
their tropical varieties.

It can be shown that the weight vector (1,−1) highlighted in red is
the tropical variety of Tropν(I) with I = 〈f1, f2〉. It is the intersection of
Tropν(f1) and Tropν(f2), so that f1, f2 form a tropical basis of I.

Tropical varieties such as those of f1 and f2 are commonly refered to as
tropical lines. The vertex in the intersection of the three edges is also called
the apex.

Next comes a theorem that states that tropical varieties behave nicely un-
der field extensions. This is essential, because computationally we will gener-
ally be restricted to practially manageable fields, see Convention 1.2.2, while
geometrically we are traditionally more interested in algebraically closed
fields, see Theorem 1.1.12.
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Tropν(f1)

(0, 0)

inw(f1) = y + 1

inw(f1) = x+ 1

inw(f1) = x+ y

Tropν(f2)

(1,−1)

inw(f2) = y + 1

inw(f2) = x+ 1

inw(f2) = x+ y

(0, 0)

(1,−1)

y2 + y

y + 1

xy + y2

x2 + xy

x2 + x

xy + y

x+ 1

xy + x

Tropν(f1 · f2)

Tropν(I)

Figure 1. Tropν(f1),Tropν(f2) and Tropν(f1 · f2)

Recap 1.1.9 (valued field extentions) Let K and L be two fields with val-
uations νK : K → R ∪ {∞} and νL : L→ R ∪ {∞}. We say L|K is a valued
field extension, if L|K is a field extension and νL|K = νK .

Theorem 1.1.10 ([MS14] Theorem 3.2.4) Let I EK[x±1] be an ideal, and
let L|K be a valued field extension with valuation νL on L extending our
valuation ν on K. Then

Tropν(I) = TropνL(I · L[x±1]).

In particular, if L := K is the algebraic closure of K, then

Tropν(I) = TropνK (I ·K[x±1]).

Example 1.1.11 Consider the ideal

I := 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉EQ2[x±1] := Q2[x±1
1 , . . . , x±1

4 ].

Since it can clearly be generated over the subfield Q ⊆ Q2, we restrict
ourselves to Q (but equipped with the 2-adic valuation) while computing its
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tropical variety, and we will also obtain its tropical variety over the algebraic
closure Qp at the same time,

Tropν2|Q(I ∩Q[x±1]) = Tropν2(I) = Tropν2(I ·Qp[x±1]).

With this out of the way, we now introduce two well-known theorems of
tropical geometry. The first is the Fundamental Theorem of tropical alge-
braic geometry, which connects tropical geometry with algebraic geometry,
and the latter is the Structure Theorem, which states that tropical varieties
are the support of nicely structured polyhedral complexes.

Theorem 1.1.12 (Fundamental Theorem of Tropical Algebraic Geometry,
[MS14] Theorem 3.2.3) Let I E K[x±1], and let K be algebraically closed.
Let X = V (I) be the affine variety of I in the torus (K∗)n. Then, if the
valuation ν is non-trivial,

Tropν(I) = {(ν(z1), . . . , ν(zn)) ∈ Rn | (z1, . . . , zn) ∈ X} ⊆ Rn,

where (·) denotes the closure in the euclidean topology of Rn.

Recap 1.1.13 (polyhedral complexes) A polyhedral complex is a finite col-
lection Σ of closed polytopes, also referred to as its cells, in a common real
vector space Rn, such that

(1) for each σ ∈ Σ and each face τ ≤ σ we have τ ∈ Σ,
(2) for two σ1, σ2 ∈ Σ the intersection σ1 ∩ σ2 is a face of both.

Naturally, it is partially ordered by the relation

τ ≤ σ :⇐⇒ τ is a face of σ,

and we call Σ pure, if all its maximal cells are of the same dimension.
The support of Σ is the union of all its cells in Rn, and we say a pure Σ

is connected in codimension 1, if its support minus the cells of codimension
2 and higher remains connected in Rn. Visually, this means that one can
reach any maximal cell from any maximal cell by crossing only the relative
interiors of maximal and one-codimensional cells.

The lineality space of Σ is the maximal linear subspace, that is, up to
translation, included in every cell of Σ. It represents a redundancy which can
be divided out without changing the combinatorial structure of a polyhedral
complex.

Note that we have a distinguished lattice Zn ≤ Rn. We say that Σ has
rational slopes, if every σ ∈ Σ is of the form

σ = {w ∈ Rn | A · w ≥ b}, for some A ∈ Mat(m× n,Z) and b ∈ Rm,

where m ∈ N is the number of defining inequalities for σ. We call a vector
w ∈ Zn primitive, if for v ∈ Z and k ∈ Z, k 6= 0, the inclusion k · v ∈ w · Z
implies v ∈ w · Z.

A polyhedral complex Σ is weighted, if its maximal cones σ ∈ Σ are
endowed with multiplicities mult(σ) ∈ Z, also referred to as weights. And
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we say a pure, weighted polyhedral complex is balanced, if for all τ ∈ Σ of
codimension one we have∑

τ≤σ∈Σ

mult(σ) · uσ,τ = 0 ∈ Rn/R(τ),

where uσ,τ ∈ Zn is a primitive inner normal vector of τ in σ, and R(τ) is the
subspace spanned by the translation of τ to the origin.

Example 1.1.14 (polyhedral fans) A very important class of polyhedral
complexes are the so-called polyhedral fans, which consist solely of convex
polyhedral cones. In fact, every polyhedral complex can be represented as a
polyhedral fan, intersected by an affine hypersurface, as pictured in Figure
2 showing the tropical variety of Example 1.1.8. The cone generated by the
two highlighted rays in the polyhedral fan yield the highlighted unbounded
one-dimensional cell in the polyhedral complex when intersected with the
affine hypersurface in blue.

{−1} × R2

(0, 0, 0)

Figure 2. fans giving rise to complexes and vice versa

Software systems that deal with convex geometry such as polymake
[GJ00] or gfan [Jen11] use this to safe the work of implementing sepa-
rate frameworks for polyhedral fans and polyhedral complexes. These two
have a framework for polyhedral fans and represent polyhedral complexes in
the way explained above.

Recap 1.1.15 (primary decomoposition) An ideal Q E K[x±1] over the
residue field is called primary, if f · g ∈ Q implies f ∈ Q or gm ∈ Q for
some m > 0, and any ideal I E K[x±1] can be written as an intersection
of primary ideals, I = Q1 ∩ . . . ∩ Qk, the so-called primary decomposition.
The decomposition is called irredundant, if no Qi can be omitted in the
decomposition and

√
Qi 6=

√
Qj for i 6= j.

The set of associated primes of I is defined to be the set

Ass(I) = {P E K[x] | P prime and P = I : 〈b〉 for some b ∈ K[x]},

and it is an important theorem in commutative algebra that, given an irre-
dundant primary decomposition as above, we have

Ass(I) =
{√

Q1, . . . ,
√
Qk

}
,
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which proves that the radicals of an irredundant primary decomposition are
unique.

The set Ass(I) is partially ordered by inclusion and its minimal elements
are of special interest to us. Amongst other properties, for a minimal P ∈
Ass(I), the primary ideal Q in the irredundant decomposition of I with√
Q = P does not depend on the choice of the decomposition. In particular,

we can define its multiplicity to be

mult(P, I) = lengthK[x±1]P (K[x±1]/Q)P .

Example 1.1.16 We will anticipate some calculations of Example 1.1.19 in
the ring F2[x±1, y±1]. Over F2, the ideal 〈y2 +1〉 has an irredundant primary
decomposition 〈y2 + 1〉 = 〈y + 1〉2, and therefore Ass(〈y2 + 1〉) = {〈y + 1〉}.
For the multiplicity mult(〈y + 1〉, 〈y2 + 1〉), note that

0 ( 〈y + 1〉 · (F2[x±1, y±1]/〈y2 + 1〉)〈y+1〉 ( (F2[x±1, y±1]/〈y2 + 1〉)〈y+1〉

is a composition series of F2[x±1, y±1]〈y+1〉-modules. Hence the length of the
last module and the wanted multiplicity equals 2.

Next consider the ideal 〈xy+y2〉 = 〈x+y〉. Because it is prime itself, its
primary decomposition is rather trivial and we get Ass(〈x+ y〉) = {〈x+ y〉}.
It follows that mult(〈x+ y〉, 〈x+ y〉) = 1. The same holds true for the ideals
〈x2 + xy〉 = 〈x+ y〉, 〈x2 + x〉 = 〈x+ 1〉 and 〈xy + x〉 = 〈y + 1〉.

Theorem 1.1.17 (Structure Theorem for Tropical Varieties, [MS14] Theo-
rem 3.3.5) Let IEK[x±1] be a prime ideal of dimension d. Then Tropν(I) is
the support of a pure polyhedral complex of dimension d with rational slopes
that is connected in codimension 1.

Moreover, let ∆ be a polyhedral complex ∆ with support Tropν(I) such
that for any cell σ ∈ ∆ we have inν,u(I) = inν,w(I) for all u,w ∈ relint(σ).
Then ∆ is balanced when each maximal cone σ ∈ ∆ is equipped with the
following multiplicity:

mult(σ) =
∑

P∈Ass(inν,w(I))
minimal

mult(P, inν,w(I)), for any w ∈ relint(σ).

Next, we illustrate the Structure Theorem on some examples that stem
from some of applications mentioned in the introduction.

Example 1.1.18 Consider the polynomial

f = t3x3 +tx2y+txy2 +t3y3 +tx2 +xy+ty2 +tx+ty+t3 ∈ C{{t}}[x±1, y±1].

The structure of Tropν(f) is shown in Figure 3. The x and the y for example
are representing that the edge between them is the closure of all weights
w ∈ R2 such that inw(f) = x+ y. All edges have weight 1.
Since the discovery of Mikhalkin’s Correspondence Theorem in [Mik05],
tropical geometry has gained a lot of positive attention from the enumerative
geometers, and mathematicians began translating established concepts of
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(2, 0)

(1, 1)

(0, 2)

(1, 0)

(0,−1)

(−2,−2)

(0, 1)

(−1,−1)

(−1, 0)

1 x x2 x3

y

y2

y3

xy

xy2

x2y

Figure 3. a tropical cubic

algebraic geometry to the newly discovered tropical world. The tropical
variety above is an example of a smooth tropical curve of degree 3 with
genus 1. You can find it as Example 2.2 in Block’s survey on counting
curves with tropical geometry [Blo12].

Example 1.1.19 Let f = 1+64x+16y+128x2+32xy+256y2 ∈ Q2[x±1, y±1],
then Tropν2(f) is of the form shown in Figure 4. The bold 2 indicates the
weight of the edge next to it, while the remaining edges all have weight 1,
see Example 1.1.16 for the computation.

2
(−1,−3)(−4,−3)

(−6,−4)

1 x

y2 xy

x2

Figure 4. Tropν2(1 + 64x+ 16y + 128x2 + 32xy + 256y2)

In [BK14], Baldwin and Klemperer demonstrate how tropical Geometry
can be used to analyze demand. In so called product-mix auctions, in which
bidders offer prices for alternative bundles of goods, each bidder has a well-
defined set of vectors in price space for which there is no unique bundle of
interest. These sets are tropical varieties, and the tropical variety above is
the negative of Example 2.9 in the cited paper. It represents a bidder, in an
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auction offering following bundles of goods:

{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.

The bidder puts the bundles (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2) at val-
ues 0, 6, 4, 7, 9, 8 respectively, and the tropical variety is the set of price vec-
tors with respect to which there is no unique bundle to buy for maximizing
his profit.

Example 1.1.20 Consider the ideal

I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉EQ2[x1, . . . , x4].

Because the ideal is homogeneous, we have

inw(I) = inw+λ·(1,1,1,1)(I) for all λ ∈ R.

Therefore, its tropical variety is invariant under translation by scalar mul-
tiples (1, 1, 1, 1). Hence Tropν2(I) can be covered by polyhedral complexes
with lineality space generated by that vector.

Figure 5 shows the combinatorial structure of one possible polyhedral
complex covering Tropν2(I). The Figure has two vertices, each represen-
ing an one-dimensional polytope generated by the weight vector next to
it and the lineality space. It has a bounded edge, which represents a two-
dimensional polytope generated by the two adjacent vertices and the lineality
space. It also has four unbounded edges, each representing a two-dimensional
pohedron generated by the adjacent vertices and unbounded in the direction
of the arrows. All edges have weight 1.

<

<

>

>

(1,−1, 1,−1)

1
2

(1,−1, 1,−1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Figure 5. Tropν(〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉)

Definition 1.1.21 For a weight vector w ∈ Rn we define its Gröbner poly-
tope or Gröbner cell to be

Cν,w(I) := {v ∈ Rn | inν,v(I) = inν,w(I)} ⊆ Rn,

where (·) denotes the closure in the euclidean topology.
We will refer to the collection Σ(I) := {Cν,w(I) | w ∈ Rn} as the Gröbner

complex of I.

Theorem 1.1.22 (Gröbner complex, [MS14] Theorem 2.5.3) Let IEK[x±1]

be a homogeneous ideal. Then the Cν,w(I) are convex polytopes and Σ(I) is
a complete polyhedral complex.
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Example 1.1.23 Note that for the guaranteed convexity of the Gröbner
cells, I needs to be homogeneous. Consider for example the inhomogeneous
ideal I = 〈x + 1, y + 1〉 E Q[x±1, y±1], where Q is endowed with the trivial
valuation. Figure 6 shows the decomposition of the weight space R2 into two
Gröbner cells, one of which is clearly not convex.

(0, 0)

{w ∈ R2 | inw(I) = 〈x, y〉}

{w ∈ R2 | inw(I) = 〈1〉}

Figure 6. Gröbner cells of 〈x+ 1, y + 1〉

However suppose the valuation is trivial. Then the Gröbner cells of the
positive weights are guaranteed to be convex polytopes even in the inhomo-
geneous case (see [Jen07] Chapter 3).

The ideal J = 〈x+z, y+z〉EQ[x±1, y±1, z±1], where Q is again endowed
with the trivial valuation, is the homogenization of I. Its Gröbner complex
therefore has a lineality space generated by (1, 1, 1) and a section through it
has the form shown in Figure 7, cf. Example 3.3.8.

(1, 1, 1)
(2, 1, 1)

(1, 2, 1) inw(I) = 〈x, y〉

inw(I) = 〈x, z〉

inw(I) = 〈z, y〉

R3 ∩ {wz = 1}

Figure 7. Gröbner cells of 〈x+ z, y + z〉

The Gröbner complex Σ(I) plays a central role in the computation of
tropical varieties Tropν(I). In fact, computing tropical varieties is not possi-
ble unless there is a warrant that Σ(I) is a well-defined polyhedral complex,
which can then be naturally restricted to a subcomplex on Tropν(I) satis-
fying the conditions in the Structure Theorem 1.1.17. Naturally, these sub-
complexes are the coarsest polyhedral complexes satisfying the conditions in
the Structure Theorem 1.1.17.
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The go-to solution for computing tropical varieties of inhomogeneous
ideals I is to compute that of their homogenization Ih. One can show that

Tropν(Ih) ∩ {wz = 0} = Tropν(I)× {0} ⊂ Rn+1,

where z denotes the homogenization variable. In our example above, this
simply means

Tropν(Ih) ∩ {wz = 0} = Tropν(I) × {0}.

(1, 1, 1) · R {(0, 0)}

= =

Also note that while everything up to know was in the ring of Laurent
polynomials K[x±1], we may easily restrict ourselves to the polynomial ring
K[x] for computational purposes, for which there exist similar notions. This
is important, as the majority of prominent computer algebra systems spe-
cialize in polynomial rings.

Definition 1.1.24 Given a weight vector w ∈ Rn, a polynomial f =
∑

α∈Nn cα·
xα ∈ K[x] and an ideal I EK[x], we define the valued initial form of f and
the valued initial ideal of I with respect to w to be respectively:

inν,w(f) :=
∑

w·α−ν(cα)
maximal

cα · p−ν(cα) · xα ∈ K[x].

and
inν,w(I) := 〈inν,w(f) | f ∈ I〉E K[x].

Moreover, the tropical variety of I is defined to be

Tropν(I) := {w ∈ Rn | inν,w(I) monomial free} .

Should the valuation be trivial, then we will omit the subscript ν.

Lemma 1.1.25 Let I EK[x±1] be an ideal, then we have

Tropν(I) = Tropν(I ∩K[x]).

Proof. Follows from the equivalence

inν,w(I) = 〈1〉 ⇐⇒ inν,w(I ∩K[x]) monomial free

for all weight vectors w ∈ Rn. �
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1.2. Reduction to a trivial valuation

In this section, we will show how the case of non-trivial valuations can
be traced back to the case of trivial valuations, ultimately allowing us to
apply classical Gröbner basis techniques to compute tropical varieties over
fields with valuation.

Recap 1.2.1 (topological rings and completion) If the valuation ν is non-
trivial, then Rν is a local ring with maximal ideal mERν , giving it the natural
structure of a topological ring, where the subsets mk, k ∈ N, form a basis
of open neighbourhoods around 0. If Rν is additionally noetherian, then
Krull’s intersection theorem implies

⋂
k∈Nm

k = 0 and, by the Artin-Rees
Lemma, the topology is Hausdorff.

The completion of Rν is defined to be the inverse limit lim←−Rν/m
k and we

say Rν is complete, if Rν = lim←−Rν/m
k. A subring R ≤ Rν naturally inherits

a topology from Rν , a topology induced by m∩R, and we call R ≤ Rν dense,
if Rν is contained in the completion of R with respect to it.

Let p ∈ R be a uniformizing parameter, that is a generator of the maximal
ideal in Rν . Should Rν be complete and noetherian, elements of Rν can
be thought of as formal power series in a uniformizing parameter p and
coefficients in R.

Note that the valuation ν induces a norm on K by ||x|| := a−ν(x) for a
fixed a ∈ R, a > 1. If K is complete with respect to the metric induced by
its norm, then Rν is complete with respect to its topology.

Convention 1.2.2 In this section, we require the valuation on K to be
non-trivial and discrete, making Rν a discrete valuation ring and hence in
particular noetherian. Moreover, we assumeK and hence Rν to be complete.
Let R ≤ Rν be a dense, noetherian subring, and let p ∈ R be a uniformizing
parameter of Rν .

From Theorem 8.13 in [Mat89] we obtain two exact sequences

0 〈p− t〉 ·RJtK〈p−t〉 RJtK〈p−t〉 K 0,

0 〈p− t〉 ·RJtK RJtK Rν 0.
t 7−→ p

and it immediately follows that

R/〈p〉 = RJtK
/
〈p, t〉 = RJtK/〈t− p〉

/
〈p〉 = Rν

/
〈p〉 = K,

where K is the residue field of Rν .

Remark 1.2.3 For all practical applications, requiring the valuation on K
to be discrete is a sensible assumption. As mentioned in Theorem 1.1.10,
given an ideal I EK[x], we are free to restrict ourselves to any subfield of K
over which I can be generated. And examples for which we cannot restrict
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ourselves to a discretely valued subfield are very likely to be computationally
unmaneagable in the first place, see Example 1.2.6.

Also, assuming K to be complete is merely done for the sake of conve-
nience and poses no restriction on the examples we can study. Were K not
complete, Theorem 1.1.10 would allows us to pass to its completion without
changing the tropical variety.

Example 1.2.4 Here are some examples which satisfy Convention 1.2.2:

(1) K = Qp the field of p-adic numbers, Rν = Zp the ring of p-adic integers,
R = Z and the prime number p as uniformizing parameter.

(2) K = Q((t)) the field of Laurent series, Rν = QJtK the ring of power series,
R = Q[t] and p = t.

(3) Rν the completion of Z[i](1+i) at the ideal generated by p = i + 1 and
R = Z[i].

(4) Rν the completion of R = Q[x](f) at the ideal generated by f ∈ Q[x] for
some p = f ∈ Q[x] irreducible.

(5) Rν the completion of R = S−1Q[x, y] with respect to 〈x〉, where S =

Q[x, y]\ (〈x−1, y〉∪ 〈x〉), which is multiplicatively closed as the comple-
ment of a union of two prime ideals, and let p = x. Note that R is not
catenarian. Of course replacing R by Q(y)[x] would lead to the same
Rν . This example merely shows that the assumption on R does allow
some odd rings as well.

(6) Rν any completion of a localization of a Dedekind domain R at a prime
ideal P E R, p ∈ P a suitable element. Note that p does not need to
generate P , e.g. R = Z[

√
−5], P = 〈2, 1 +

√
−5〉 and p = 2.

Definition 1.2.5 Let π denote the map below:

0 〈p− t〉 ·RJtK〈p−t〉[x] RJtK〈p−t〉[x] K[x] 0,

0 〈p− t〉 ·RJtK[x] RJtK[x] Rν [x] 0.
t 7−→ p

π

Since Rν [x] ⊆ K[x], we will abuse the notation and use π to refer to both the
map RJtK[x]→ Rν [x] as well as the composition RJtK[x]→ Rν [x] ↪→ K[x].

Example 1.2.6 (Puiseux series) Consider the ideal

I = 〈t3x3 + tx2y + txy2, t5x2y + t3xy2 + t5y3〉 ∈ C{{t}}[x, y].

Since the coefficients of the generators only have integral powers of t, we
may restrict ourselves to the subfield K := Q((t)).

More generally, given any generators whose coefficients in C{{t}} have a
finite amount of terms, we may restrict ourselves to the subfield Q((t1/N )),
where N is the lowest common denominator of all exponents. And should
the coefficients of our generators have an infinite amount of terms, then we
are well beyond the limit of the practically manageable.
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Now suppose K := Q((t)) as above. In this case, Rν = QJtK, and
R := Q[t] and p := t would be a natural choice for a dense subring and
a uniformizing parameter that are easy to handle. Changing the power se-
ries variable in Convention 1.2.2 from t to u, as the first is already taken, we
obtain:

0 〈t− u〉 ·Q[t]JuK〈t−u〉[x] Q[t]JuK〈t−u〉[x] Q((t))[x] 0

0 〈t− u〉 ·Q[t]JuK[x] Q[t]JuK[x] QJtK[x] 0
π

Q[t]JuK[x]/(u− t) ∼= QJuK[x] t 7−→
t′

This diagram reflects a known trick for computing tropical varieties over the
field of Puiseux series, see Chapter 6.3 in [Jen07], in which we stop thinking
of t as a uniformizing parameter in our ground field, and start thinking of it
as a variable in our polynomial ring.

Definition 1.2.7 (initial form, initial ideal) Given an element f =
∑

β,α cα,β·
tβxαERJtK[x] and a weight vector w′ ∈ R<0×Rn, we define the initial form
of f with respect to w′ to be

inw′(f) :=
∑

w′·(β,α) maximal

cαt
βxα ∈ R[t, x].

And given an ideal JERJtK[x] and a weight vector w′ ∈ R<0×Rn, we define
the initial ideal of J with respect to w′ to be:

inw′(J) := 〈inw′(f) | f ∈ J〉ER[t, x].

This can be thought of as a natural extension of Definition 1.1.24 in the case
that the valuation on R is trivial. Note that we only allow weight vectors
with negative weight in t, so that our result lies in a polynomial ring.

Example 1.2.8 (p-adic numbers) Let K := Qp be the field of p-adic num-
bers, Rν := Zp the ring of p-adic integers. Then Z ≤ Zp is a natural dense
subset to choose and we obtain:

0 〈p− t〉 · ZJtK〈p−t〉[x] ZJtK〈p−t〉[x] Qp[x] 0,

0 〈p− t〉 · ZJtK[x] ZJtK[x] Zp[x] 0.
t 7−→ p

π

This diagram merely reflects our definition of the p-adic integers as Zp as
power series in p.

Now consider one of the unnumbered examples in Chapter 3.6 of [Cha13],
namely the ideal

I = 〈2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉EQ3[x1, . . . , x4]
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and a monomial ordering >w with weight vector w = (1, 11, 3, 19) ∈ R4.
Then

π−1I = 〈3− t, 2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉E ZJtK[x]

and, anticipating Chapter 2 and Chapter 3, a standard basis computation
of π−1I with respect to a weighted monomial ordering on Mon(t, x) with
weight vector (−1, w) ∈ R<0 × R4 yields the abomination

G = {3− t, x2
1 − tx2

1 − 3x1x2 − 24x3x4,

tx1x3x4 + 2t2x1x
2
2 − 11t2x1x3x4 + 18x2

3x4 + 145x2x3x4,

t3x1x
2
2x3 − 22t3x1x

2
3x4 + 36tx3

3x4 + t4x1x
2
2x3 + 27x1x

3
2 − 289x1x2x3x4

+ 290tx2x
2
3x4 + 216x2

2x3x4 − 1152x2
3x

2
4,

t4x1x
4
2 + 56t4x1x

2
2x3x4 − 18t2x2

2x
2
3x4 − 242t4x1x

2
3x

2
4 + 408t2x3

3x
2
4

− t5x1x
4
2 + 27x1x

3
2x4 − 289x1x2x3x

2
4 + 290tx2x

2
3x

2
4 − 145t2x3

2x3x4

+ 3190t2x2x
2
3x

2
4 + 216x2

2x3x
2
4 − 1152x2

3x
3
4,

t3x4
3x

2
4 − t4x4

3x
2
4 − 81x1x

5
2 + 1299x1x

3
2x3x4 − 4624x1x2x

2
3x

2
4

− 435x2x
3
3x

2
4 − 648x4

2x3x4 + 6912x2
2x

2
3x

2
4 − 18432x3

3x
3
4},

from which we can deduct that

in(−1,w)(π
−1I) = 〈3, x2

1, tx1x3x4, t
3x1x

2
2x3, t

4x1x
4
2, t

3x4
3x

2
4〉,

The similarity to the following result of Chan result is no coincidence:

inν,w(I) = 〈x2
1, x1x3x4, x1x

2
2x3, x1x

4
2, x

4
3x

2
4〉E F3[x1, . . . , x4].

Proposition 1.2.9 For any ideal I ERν [x] and any weight vector w ∈ Qn,
we have:

in(−1,w)(π−1I)|
t=1

= inν,w(I),

where (·) denotes the canonical projection (·) : R[x]→ K[x].

Proof. ⊇: Any term s ∈ Rν [x] is of the form s = (
∑

β cβp
β) · xα with

p - cβ for all β ∈ N. Then the element s′ := (
∑

β cβt
β) · xα ∈ RJtK[x] is a

natural preimage of it under π for which we have

inν,w(s) = cβ0 · xα = in(−1,w)(s′)|t=1
, where β0 = min{β ∈ N | cβ 6= 0}.

And because the valued weighted degree in Rν [x] and the weighted degree
in RJtK[x] coincide,

degw(xα)− val(
∑

β cβp
β) = deg(−1,w)(

∑
β cβ · tβxα),

this implies any f ∈ Rν [x] has a preimage f ′ ∈ RJtK[x] under π such that

inν,w(f) = in(−1,w)(f ′)|t=1
,

simply by applying the above argument to each of its terms.
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⊆: Once again consider a term s =
∑

β cβp
β · xα ∈ Rν [x] with p - cβ for all

β ∈ N. Then any preimage of it under π is of the form s′ =
∑

β cβt
βxα + r

for some r ∈ 〈t− p〉.
If deg(−1,w)(r) > deg(−1,w)(

∑
β cβt

βxα), we would have

in(−1,w)(s′)|t=1
= in(−1,w)(r)|t=1

= 0,

since in(−1,w)(r) ∈ in(−1,w)〈p− t〉 = 〈p〉.
And if deg(−1,w)(r) < deg(−1,w)(

∑
β cβt

βxα), we would have

in(−1,w)(s′)|t=1
= in(−1,w)(

∑
β cβt

βxα)|t=1 = cβ0 · xα

= inν,w(
∑

β cβp
β · xα) = inν,w(s),

where β0 := min{β ∈ N | cβ 6= 0}.
Now suppose deg(−1,w)(r) = deg(−1,w)(

∑
β cβt

βxα). First observe that
because t is weighted negatively, there can be no cancellation amongst the
highest weighted terms of r and the terms of

∑
β cβt

βxα, as the terms of∑
β cβt

βxα are not divisible by p, unlike the terms of the highest weighted
terms of r. Therefore, we have

in(−1,w)(s′)|t=1
= in(−1,w)(

∑
β cβt

βxα)|t=1︸ ︷︷ ︸
=inν,w(

∑
β cβp

β · xα)

+ in(−1,w)(r)|t=1︸ ︷︷ ︸
=0

= inν,w(s).

Either way, we always have in(−1,w)(s′)|t=1
∈ 〈inν,w(s)〉 for any arbitrary

preimage s′ ∈ π−1(s), and, as before, the same hence holds true for any
arbitrary element f ∈ Rν [x]. �

Corollary 1.2.10 Let I E K[x] be an ideal. Then for any weight vector
w ∈ Qn we have

in(−1,w)(π−1I)|
t=1

= inν,w(I).

Proof. Follows from inν,w(I) = inν,w(I ∩Rν [x]). �

Definition 1.2.11 (tropical variety) For an ideal J E RJtK[x] we define its
tropical variety to be

Trop(J) = {w ∈ R<0 × Rn | inw(J) monomial free} ⊆ R≤0 × Rn,

where (·) denotes the closure in the euclidean topology.

Example 1.2.12 Note that, unlike when working over fields, we have over
rings

inw(J) monomial free 6⇐⇒ inw(J) term free.
In fact, this is the main reason why tropical varieties over rings are not
as nicely structured as their pendants over fields, see Theorem 1.1.17 and
Example 1.1.23.

For an easy example, consider the principal ideal I generated by the
polynomial g := x + y + 2z ∈ ZJtK[x, y, z], which is both homogeneous and
prime as required in the Theorem. Because g is homogeneous as a polynomial
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in x, y, z, its tropical variety is invariant under translation by (0, 1, 1, 1), and
since no variable t is occuring in g, it is also closed under translation by
(−1, 0, 0, 0). Note that it is not invariant under the last translation because
we are restricted to the lower halfspace R≤0 × Rn.

Figure 8 shows the intersection of the tropical variety with an affine sub-
space of codimension 2, the remaining points are then uniquely determined
due to symmetry. Since in(−1,−1,−1,1)(g) = 2z does not count as a monomial,
the lower left quadrant is included in our tropical variety, while the two other
maximal cones are not. And because, in(−1,1,1,0)(g) = x+ y is no monomial
either, the edge containing it is also part of our tropical variety. Therefore,
the tropical variety cannot be the support of a pure polyhedral complex.

(−1, 0, 0, 0)

(−1, 1, 1, 0)
inw(I) = 〈x〉

contains monomial

inw(I) = 〈y〉
contains monomial

inw(g) = 〈2z〉
monomial free

R≤0 × R3 ∩ {wt = −1, wz = 0}

Figure 8. section of Trop(〈x+ y + z2〉)

Now, with our previous considerations, we can show that these tropical
varieties over R can be used to compute tropical varieties over the valued
field K.

Theorem 1.2.13 Let I EK[x] be an ideal. Then the linear map

R≤0 × Rn −→ Rn, (w0, . . . , wn) 7−→ (w1, . . . , wn)

induces a bijection

Trop(π−1I) ∩ ({−1} × Rn)
∼−→ Tropν(I).

Proof. For the bijection, we show that

inν,w(I) monomial free ⇐⇒ in(−1,w)(π
−1I) monomial free.

⇒: Assume that in(−1,w)(π
−1I) contains some monomial tβxα ∈ RJtK[x].

Then, by Corollary 1.2.10, we have inν,w(I) = in(−1,w)(π−1I)|
t=1

, which
means inν,w(I) must contain the monomial xα ∈ K[x].
⇐: Assume that inν,w(I) contains some monomial xα ∈ K[x]. Then, by
Corollary 1.2.10, in(−1,w)(π

−1I) must contain an element of of the form
xα+(t−1)·r+p·s, for some r, s ∈ R[t, x]. Recall that p lies in in(−1,w)(π

−1I),
therefore so does p · s, and hence we have xα + (t− 1) · r ∈ in(−1,w)(π

−1I).
Let r = hl + . . .+h1 be a decomposition of r into its (−1, w)-homogeneous
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layers with deg(−1,w)(h1) < . . . < deg(−1,w)(hl). For sake of simplicity, we
now distinguish between three cases:
1. deg(−1,w)(x

α) ≥ deg(−1,w)(hl): Set g1 := r − h1 = hl + . . .+ h2. Then

xα + (t− 1) · r = xα + (t− 1) · (g1 + h1) = xα + (t− 1) · g1 − h1︸ ︷︷ ︸
higher weighted degree

+ t · h1.

Hence t · h1, x
α + (t− 1) · g1 − h1 ∈ in(−1,w)(π

−1I) and, more importantly,

t · (xα + (t− 1) · g1 − h1) + t · h1 = txα + (t− 1) · t · g1 ∈ in(−1,w)(π
−1I),

effectively shaving off the h1 layer. We can continue this process by setting
g2 := g1 − h2 = hl + . . .+ h3. Then

txα + (t− 1) · t · g1 = txα + (t− 1) · t · (g2 + h2)

= txα + (t− 1) · t · g2 − t · h2︸ ︷︷ ︸
higher weighted degree

+t2 · h2.

Hence t2 · h2, tx
α + (t− 1) · t · g2 − t · h2 ∈ in(−1,w)(π

−1I) and, as above,

t · (txα + (t− 1) · t · g2 − t · h2) + t2 · h2

= t2xα + (t− 1) · t2 · g2 ∈ in(−1,w)(π
−1I)

removing the h2 layer. Eventually, we will obtain tl · xα ∈ in(−1,w)(π
−1I).

2. deg(−1,w)(x
α) ≤ deg(−1,w)(h1): Set g1 := r − hl = hl−1 + . . .+ h1. Then

xα + (t− 1) · r = xα + (t− 1) · (g1 + hl) = xα + (t− 1) · g1 + t · hl︸ ︷︷ ︸
lower weighted degree

−hl.

Thus hl, xα + (t− 1) · g1 + t · hl ∈ in(−1,w)(π
−1I) and, more importantly,

xα + (t− 1) · h1 + t · g1 − t · g1 = xα + (t− 1) · h1 ∈ in(−1,w)(π
−1I),

shaving off the the hl layer this time. Continuing this pattern eventually
yields xα ∈ in(−1,w)(π

−1I).
3. deg(−1,w)(h1) < deg(−1,w)(x

α) < deg(−1,w)(hl): In this case we can use a
combination of the steps in the previous cases to see ti ·xα ∈ in(−1,w)(π

−1I)

for the 1 ≤ i ≤ k such that deg(−1,w)(hi−1) < deg(−1,w)(x
α) ≤ deg(−1,w)(hi).

In either case, we see that in(−1,w)(π
−1I) contains a monomial. �

As an immediately corollary, we obtain:

Corollary 1.2.14 Suppose that IEK[x] is prime and of dimension d. Then
Trop(π−1I) is the support of a pure polyhedral fan of dimension d + 1 with
rational slopes that is connected in codimension 1.

Proof. By Theorem 1.1.17, there exists a pure polyhedral complex ∆

in Rn of dimension d such that

Tropν(I) =
⋃
σ∈∆ σ.

Theorem 1.2.13 now implies for the lower open halfspace,

Trop(I) ∩ (R<0 × Rn) =
(⋃

σ∈∆ Cone({−1} × σ)
)
∩ (R<0 × Rn),
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where Cone({−1} × σ) stands for the polyhedral cone over the origin which
is spanned by all points of {−1} × σ ⊆ {−1} × Rn. These cones generate a
pure polyhedral fan of dimension d+ 1 in R≤0 ×Rn, and taking the closure
on both sides now yields

Trop(I) =
⋃
σ∈∆ Cone({−1} × σ). �

Example 1.2.15 Let IEQ((t))[x, y] be the principal ideal generated by the
element (x + y + 1) · (t2x + y + t). In Example 1.1.8, we have seen that
Tropν(I) is the union of two tropical lines, one with vertex at (0, 0) and one
with vertex at (1,−1).

Its preimage in the diagram of Example 1.2.6 is then given by

π−1I = 〈(x+ y + 1) · (t2x+ y + t), t− u〉

= 〈(x+ y + 1) · (u2x+ y + u), t− u〉EQ[t]JuK[x, y].

Anticipating Chapter 2 and 3, it is not hard to see that the last pair of
generators form a standard basis with respect to any t-local monomial or-
dering. Therefore, by Chapter 3, initial ideals of π−1I with respect to weights
w ∈ R<0 × R2 will always be of the form

inw(π−1I) = 〈inw((x+ y + 1) · (u2x+ y + u)), t〉.

Note here that t represents the uniformizing parameter in our ground ring
and hence does not yield a monomial. Thus, for any weight vector w =

(wu, wx, wy) ∈ R<0 × R2 in the lower open halfspace and λ ∈ R such that
λ · w ∈ {−1} × R2, it is easy to see that

w ∈ Trop(π−1I) ⇐⇒ λ · (wx, wy) ∈ Tropν(I).

This implies that Trop(π−1I) is as shown in Figure 9. The polyhedral com-
plex consists of 6 rays and 8 two-dimensional cones in a way that the inter-
section with the affine hyperplane yields the highlighted polyhedral complex,
Tropν(I) from Example 1.1.8.

{−1} × R2

(0, 0, 0)

Figure 9. Trop(π−1I)
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Example 1.2.16 Consider again the ideal from Example 1.1.20,

I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉EQ2[x1, . . . , x4].

Its preimage is given by

π−1I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2− t〉E ZJtK[x1, . . . , x4].

and the tropical variety of its preimage can be covered by a polyhedral com-
plex of the combinatorial form as in Figure 10 and a one-dimensional homo-
geneity space generated by (0, 1, 1, 1, 1), see Definition 4.1.10. Each of the
six vertices represents a two-dimensional cone generated by the correspond-
ing weight vector and the homogeneity space. And each of the five edges
represents a three-dimensional cone generated by the two adjacent weight
vectors and the homogeneity space.

(−1, 1,−1, 1,−1)

(−2,−1, 1,−1, 1)

(0,−3, 1, 1, 1)

(0, 1, 1,−3, 1)

(0, 1,−3, 1, 1)

(0, 1, 1, 1,−3)

Figure 10. Trop(〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2− t〉)

Intersected with the affine hyperplane {−1}×R4, we obtain a polyhedral
complex of the combinatorial form as in Figure 11, further explained in
Example 1.1.20. Note that any maximal cone, that contains a ray in the
coordinate hyperplane {0} × R4, becomes an unbounded polytope in the
intersection. Projectively speaking, these rays become points at infinity.

<

<

>

>

(1,−1, 1,−1)

1
2

(−1, 1,−1, 1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Figure 11. Tropν2(〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉)

We see how the problem of computing Tropν(I) for some I E K[x] is
equivalent to computing Trop(π−1I) with π−1I E RJtK[x]. To see how the
latter can be achieved, we will a notion of standard bases in RJtK[x].



CHAPTER 2

Standard bases in RJtK[x]s

In this chapter, we combine techniques from [Mar08] and [Wie11] to
construct a division with remainder over RJtK[x], the ring of multivariate
power series and polynomials over a ground ring R, and use them to intro-
duce standard bases theory for free modules over it. While doing that, we
will pay special attention to the termination of our algorithms for strictly
polynomial input. The standard bases theory will be a foundation for estab-
lishing Gröbner fans of ideals in RJtK[x] in the next chapter.

2.1. Division with remainder

In this section, we construct a division with remainder following the first
three chapters of [Mar08]. Please mind the assumptions on our ground
ring in Convention 2.1.1 for that, which were taken from Definition 1.3.14 in
[Wie11].

After a quick introduction of the basic terminology, we begin with a divi-
sion algorithm over the ground ring in the form of Algorithm 2.1.11. We then
continue with homogeneous division with remainder in Algorithm 2.1.16, and
finally end with a weak division with remainder in Algorithm 2.1.21. See Fig-
ure 1 for a rough sketch with numbering.

Convention 2.1.1 For this chapter, let R be a noetherian ring in which
linear equations are solvable as in Definition 1.3.14 of [Wie11]. The latter
means that, given any finite tuple of arbitrary length (c1, . . . , ck) with ci ∈ R,
we must be able to:
(1) for b ∈ R decide whether b ∈ 〈c1, . . . , ck〉, and, if yes, find a1, . . . , ak ∈ R

such that
b = a1 · c1 + · · ·+ ak · ck.

(2) find a finite generating set S ⊆ Rk of its syzygies as module over R,

syzR(c1, . . . , ck) = {(a1, . . . , ak) ∈ Rk | a1 · c1 + . . .+ ak · ck = 0} = 〈S〉R.

Moreover, we will use the notion RJtK[x] := RJt1, . . . , tmK[x1, . . . , xn] to de-
note a mixed power series and polynomial ring over R in several variables
t = (t1, . . . , tm) and x = (x1, . . . , xn), and we fix a free module RJtK[x]s over
it.

R being noetherian is most notably required for the conditional termi-
nation of Algorithm 2.1.21, while linear equations being solvable is required
in the instructions of Algorithm 2.1.11 and Algorithm 2.2.17.

33
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2.2.1 - 2.1.7

basic definitions

2.1.8 - 2.1.10

division with remainder background

Algorithm 2.1.11

division in ground ring

Lemma 2.1.13 Lemma 2.1.14

Algorithm 2.1.16

homogeneous division with remainder

Recap 2.1.20

Algorithm 2.1.21

weak division with remainder

=⇒
=⇒

Figure 1. outline of Section 2.1

Example 2.1.2 Viable ground rings satisfying Convention 2.1.1 include:
• Obviously any field, assuming we are able to compute inverse elements.
• The ring of integers Z. The division with remainder in Z allows us to solve
the ideal membership problem, while the least common multiple allows us
to compute finite generating sets of syzygies, see Theorem 2.2.5 in [Wie11]
for the latter.

• Also, Z/mZ for an arbitrarym ∈ Z. While it generally is neither euklidean
nor factorial like Z, many problems can nonetheless be solved by tracing
them back to the integers.

• Similarly, any euklidean ring for which we are able to compute its division
with remainder, or, more generally, any factorial ring for which we can
compute the unique factorization. Classical examples hereof are Z[i], Q[x],
QJtK or multivariate polynomial rings.

• Moreover, thanks to the theory of Gröbner bases, any quotient ring of a
polynomial ring, e.g. the ring of Laurent polynomials K[x±1

1 , . . . , x±1
n ] =

K[x0, . . . , xn]/(1− x0 · · ·xn).
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• And, thanks to the theory of standard bases, any localization of a poly-
nomial ring at a prime ideal, as it can be traced back to a quotient of a
polynomial ring localized at a mixed ordering, see [Mor91].

• Also, Dedeking domains. A solution to the ideal membership problem and
the computation of syzygies can be found in [HKY10].

• Finally, product rings like Z× Z, because any ideal in it is the product of
two ideals in Z.

We now begin with introducing some very basic notions of Gröbner basis
theory to our ring resp. module, definitions such as monomials, monomial
orderings and leading monomials.

Definition 2.1.3 The set of monomials of RJtK[x] is defined to be

Mon(t, x) := {tβxα | β ∈ Nm, α ∈ Nn} ⊆ RJtK[x],

and a monomial ordering on Mon(t, x) is an ordering > that is compatible
with its natural semigroup structure, i.e.

∀a, b, q ∈ Mon(t, x) : a > b =⇒ q · a > q · b.

We call a monomial ordering > t-local, if 1 > tβ for all β ∈ Nm.
Let > be a t-local monomial ordering on Mon(t, x), and let w ∈ Rm<0×Rn

be a weight vector. Then the ordering >w is defined to be:

tβxα >w t
δxγ · :⇐⇒ w · (β, α) > w · (δ, γ) or

w · (β, α) = w · (δ, γ) and tβxα > tδxγ .

We will refer to orderings of the form >w as a weighted ordering with weight
vector w and tiebreaker >.

Definition 2.1.4 The set of module monomials of RJtK[x]s is defined to be

Mons(t, x) := {tβxα · ei | β ∈ Nm, α ∈ Nn, i = 1, . . . , s} ⊆ RJtK[x]s.

A monomial ordering on Mons(t, x) is an ordering > that is compatible with
the natural Mon(t, x)-action on it, i.e.

∀a, b ∈ Mons(t, x) ∀q ∈ Mon(t, x) : a > b =⇒ q · a > q · b,

and that restricts onto the same monomial ordering on Mon(t, x) in each
component, i.e.

∀a, b ∈ Mon(t, x) ∀i, j ∈ {1, . . . , s} : a · ei > b · ei ⇐⇒ a · ej > b · ej .

We call a monomial ordering > t-local, if 1 · ei > tβ · ei for all β ∈ Nm and
i = 1, . . . , s.
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Let > be a t-local monomial ordering on Mons(t, x), and let w ∈ Rm<0 ×
Rn × Rs be a weight vector. Then the ordering >w is defined to be:

tβxα · ei >w tδxγ · ej ⇐⇒
w · (β, α, ei) > w · (δ, γ, ej) or

w · (β, α, ei) = w · (δ, γ, ej) and tβxα · ei > tδxγ · ej .

We will refer to orderings of the form >w as a weighted ordering with weight
vector w and tiebreaker >.

From now on, we will simply refer to module monomials as monomials.

Definition 2.1.5 Given a t-local monomial ordering > on Mons(t, x) and an
element f =

∑
α,β,i cα,β,i ·tβxα ·ei ∈ RJtK[x]s, we define its leading monomial,

leading coefficient, leading term and tail to be

LM>(f) = max{tβxα · ei | cα,β,i 6= 0},

LC>(f) = cα,β,i, where tβxα · ei = LM>(f),

LT>(f) = cα,β,i · tβxα · ei, where tβxα · ei = LM>(f),

tail>(f) = f − LT>(f).

For a submodule M ≤ RJtK[x]s, we set

LM>(M) = 〈LM>(f) | f ∈M〉R[t,x] ≤ R[t, x]s,

LT>(M) = 〈LT>(f) | f ∈M〉R[t,x] ≤ R[t, x]s.

Note that we regard the two modules above as submodules of R[t, x]s, while
the original module lies in RJtK[x]s. We refer to LT>(M) as the leading
module of M with respect to >.

Example 2.1.6 Similar to Example 1.2.12, observe that generally

LM>(M) 6= LT>(M).

Consider the ideal

I := 〈1 + t6x+ t4y + t7x2 + t5xy + t8y2, 2− t〉E ZJtK[x],

which is the preimage of the polynomial giving the tropical cubic in Exam-
ple 1.1.18 under the map π of Definition 1.2.5. Let >w be the weighted
ordering with weight vector w = (−1, 3, 3) and any arbitrary tiebreaker.
Then by weighted degree alone we have

LT>w(I) = 〈t5xy, 2〉 6= LM>w(I) = 〈1〉, since LM>w(2− t) = 1.

In fact, the last equation holds true for any t-local monomial ordering, while
the former varies depending on the ordering. This is why the role of leading
monomials in the classical standard basis theory over fields is played by
leading terms over rings.



2.1. DIVISION WITH REMAINDER 37

Remark 2.1.7 Note that the t-locality of the monomial ordering > is essen-
tial for leading monomials and other associated objects to exist, as elements
of RJtK[x] resp. RJtK[x]s may be unbounded in their degrees of t.

However, given a weight vector in Rm<0 × Rn resp. Rm<0 × Rn × Rs, a
weighted monomial ordering does not need a t-local tiebreaker for leading
monomials to be well-defined. But for sake of simplicity, we nevertheless
assume all occuring monomial orderings to be t-local.

Mon(t, x) comes equipped with a natural notion of divisibility and least
common multiple. For module monomials, we define:

Definition 2.1.8 For two module monomials tβxα·ei and tδxγ ·ej ∈ Mon(t, x)s,
we say

tβxα · ei divides tδxγ · ej :⇐⇒ ei = ej and tβxα divides tδxγ ,

and in this case we set

tβxα · ei
tδxγ · ej

:=
tβxα

tδxγ
∈ Mon(t, x).

We define the least common multiple of two module monomials tβxα · ei and
tδxγ · ej ∈ Mon(t, x)s to be

lcm(tβxα · ei, tδxγ · ej) :=

{
lcm(tβxα, tδxγ) · ej , if i = j,

0, otherwise.

We now devote the remaining section to proving the existence of a divi-
sion with remainder, starting with its definition.

Definition 2.1.9 Let > be a t-local monomial ordering on Mons(t, x).
Given f ∈ RJtK[x]s and g1, . . . , gk ∈ RJtK[x]s we say that a representation

f = q1 · g1 + . . .+ qk · gk + r

with q1, . . . , qk ∈ RJtK[x] and r =
∑s

j=1 rj · ej ∈ RJtK[x]s satisfies

(ID1): if LM>(f) ≥ LM>(qi · gi) for all i = 1, . . . , k,
(ID2): if LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless r = 0,
(DD1): if no term of qi ·LT>(gi) lies in 〈LT>(gj) | j < i〉 for all i = 1, . . . , k,
(DD2): if no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,
(SID2): if LT>(rj · ej) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless rj = 0, for all j =

1, . . . , s.

A representation satisfying (ID1) and (ID2) is called an (indeterminate)
division with remainder, and a representation satisfying (DD1) and (DD2)
is called a determinate division with remainder.

A division with remainder of u · f for some u ∈ RJtK[x] with LT>(u) = 1

is also called a weak division with remainder of f .
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Proposition 2.1.10 Consider a representation

f = q1 · g1 + . . .+ qk · gk + r or u · f = q1 · g1 + . . .+ qk · gk + r

with f, g1, . . . , gk, r ∈ RJtK[x]s, q1, . . . , qk ∈ RJtK[x] and LT>(u) = 1. Then:
(1) if the representation satisfies (DD2), then it also satisfies (SID2),
(2) if the representation satisfies (SID2), then it also satisfies (ID2),
(3) if it satisfies both (DD1) and (ID2), then it also satisfies (ID1).
In particular, (DD1) and (DD2) imply (ID1) and (ID2).

Proof. (1) and (2) are obvious, so suppose the representation satisfies
both (DD1) and (DD2).

Take the maximal monomial tβxα occurring in any of the expressions
qi · gi or r on the right hand side, and assume tβxα > LM>(f). Because of
maximality, it has to be the leading monomial of each expression it occurs
in. And because it does not occur on the left hand side, the leading terms
have to cancel each other out. Let qi1 ·gi1 , . . . , qil ·gil be the qi ·gi containing
tβxα with i1 < . . . < il.

If r contains a, then
∑l

j=1 LT>(qij · gij ) + LT>(r) = 0, and hence

LT>(r) = tβxα ∈ 〈LT>(g1), . . . ,LT>(gk)〉,

contradicting (ID2).
If r does not contain a, then we have

∑l
j=1 LT>(qij · gij ) = 0, thus

LT>(qil · gil) ∈ 〈LT>(gj) | j < il〉,

contradicting (DD1). �

Next, we pay a little attention to our ground ring. Convention 2.1.1
states that our ring already comes equipped with everything we need to
compute representations of members in given ideals, but we still need to
make sure that these representations satisfy our needs.

Algorithm 2.1.11 (DivR, division in the ground ring)
Input: (b, C), where C = {c1, . . . , ck} ⊆ R is an indexed set and b ∈ 〈C〉.
Output: {a1, . . . , ak} ⊆ R, an indexed set such that

b = a1 · c1 + . . .+ ak · ck

with ai · ci /∈ 〈cj | j < i〉 unless ai · ci = 0, for all i = 1, . . . , k.
1: Find a1, . . . , ak ∈ R with b = a1 · c1 + . . .+ ak · ck, which is possible by

Convention 2.1.1.
2: for i = k, . . . , 1 do
3: if ai · ci 6= 0 and ai · ci ∈ 〈cj | j < i〉 then
4: Find h1, . . . , hi−1 ∈ R such that ai · ci = h1 · c1 + . . .+ hi−1 · ci−1.
5: Set aj := aj + hj for all j < i, and ai := 0.
6: return (a1, . . . , ak)

Proof. Termination and correctness are obvious. �
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Now we will make use of two Lemmata of [Mar08] to construct a ho-
mogeneous determinate division with remainder. The first Lemma allows
us to restrict ourselves to weighted monomial orderings, while the second
guarantees 〈t〉-adic convergence.

Definition 2.1.12 For an element f =
∑

β,α,i cα,β,i · tβxα · ei ∈ RJtK[x]s we
define its x-degree to be

degx(f) := max{|α| | cα,β,i 6= 0},

and we call it x-homogeneous, if all its terms are of the same x-degree.
Given a weight vector w ∈ Rm<0 ×Rn ×Rs, we define its weighted degree

with respect to w to be

degw(f) := max{w · (β, α, ei) | cα,β,i 6= 0},

and we call it weighted homogeneous, if all its terms are of the same weighted
degree.

Lemma 2.1.13 ([Mar08] Lemma 2.5) Let > be a t-local monomial ordering
on Mons(t, x), and let g1, . . . , gk ∈ RJtK[x]s be x-homogeneous. Then there
exists a weight vector w ∈ Rm<0 × Rn+s such that any t-local weight ordering
with weight vector w, say >w, induces the same leading monomials as > on
g1, . . . , gk, i.e.

LM>w(gi) = LM>(gi) for all i = 1, . . . , k.

Lemma 2.1.14 ([Mar08] Lemma 2.6) Let >w be a t-local monomial order-
ing on Mons(t, x) with weight vector w ∈ Rm<0 × Rn+s, and let (fk)k∈N be a
sequence of x-homogeneous elements of fixed x-degree in RJtK[x]s such that
LM>w(fk) > LM>w(fk+1) for all k ∈ N. Then (fk)k∈N converges to zero in
the 〈t〉-adic topology, i.e.

∀N ∈ N ∃M ∈ N : fk ∈ 〈t〉N ·RJtK[x]s ∀k ≥M.

In particular, the element
∑∞

k=0 fk ∈ RJtK[x]s exists.

Example 2.1.15 A monomial ordering can always be expressed by an in-
vertible matrix. For example, the lexicographical ordering > on Mon(t, x)

with x1 > x2 > 1 > t is given by

tβxα > tδxγ ⇐⇒ A · (β, α)t > A · (δ, γ)t, where A =
(

0 1 0
0 0 1
−1 0 0

)
,

where the > on the right hand side denotes the lexicographical ordering
on R3.

Consider the polynomial g = t5x1 +t2x2. In order to find a weight vector
w ∈ R<0 × R2 such that LM>w(g) = LM>(g) = t5x1, consider the first row
vector of A, a1 = (0, 1, 0) ∈ R3. Since a1 /∈ R<0 × R2 it represents no viable
choice for w. But because dega1(t5x1) > dega1(t2x2), adding a sufficiently
small negative weight in t will not break the strict inequality. Hence we
obtain w = (−1

5 , 1, 0) ∈ R<0 × R2:
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deg(0,1,0)(t
5x1) = 1 > 0 = deg(0,1,0)(t

2x2)

deg(−1/5,1,0)(t
5x1) = 0 > −2

5 = deg(−1/5,1,0)(t
2x2).

−(1/5, 0, 0) −(1/5, 0, 0)

In particular, a determinate division with remainder with respect to >w
will also be a determinate division with remainder with respect to >, as
(DD1) and (DD2) are only dependant on the leading terms.

With the two Lemmata, we can now construct a division with remainder
for the homogeneous case.

Algorithm 2.1.16 (HDDwR, homogeneous determinate division with re-
mainder)
Input: (f,G,>), where f ∈ RJtK[x]s x-homogeneous, G = {g1, . . . , gk} ⊆

RJtK[x]s an indexed set of x-homogeneous elements and>=>w a weighted
t-local monomial ordering with w ∈ Rm<0 × Rn+s.

Output: (Q, r), where Q = {q1, . . . , qk} ⊆ RJtK[x] an indexed set and r ∈
RJtK[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

satisfies

(DD1): no term of qi · LT>(gi) lies in 〈LT>(gj) | j < i〉 for all i,
(DD2): no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,
(DDH): the q1, . . . , qk, r are either 0 or x-homogeneous of x-degree

degx(f)−degx(g1), . . . ,degx(f)−degx(gk),degx(f) respectively.

1: Set qi := 0 for i = 1, . . . , k, r := 0, ν := 0, fν := f .
2: while fν 6= 0 do
3: if LT>(fν) ∈ 〈LT>(g1), . . . ,LT>(gk)〉 then
4: Let Dν := {gi ∈ G | LM>(gi) divides LM>(fν)}{gi1 , . . . , gil}.
5: Compute {ai1 , . . . , ail} = DivR(LC>(fν), {LC>(gi1), . . . ,LC>(gil)}).
6: Set

qi,ν :=

{
ai · LM>(fν)

LM>(gi)
, if gi ∈ Dν ,

0 , otherwise,

for i = 1, . . . , k, and rν := 0.
7: else
8: Set qi,ν := 0, for i = 1, . . . , k, and rν := LT>(fν).
9: Set qi := qi + qi,ν for i = 1, . . . , k and r := r + rν .

10: Set fν+1 := fν − (q1,ν · g1 + . . .+ qk,ν · gk + rν) and ν := ν + 1.
11: return ({q1, . . . , qk}, r)

Proof. Note that we have a descending chain of terms to be eliminated

LM>(f0) > LM>(f1) > LM>(f2) > . . . ,
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which implies that, except the terms that are zero, we have k+ 1 descending
chains of factors and remainders

LM>(qi,0) > LM>(qi,1) > LM>(qi,2) > . . . ,

LM>(r0) > LM>(r1) > LM>(r2) > . . . .

By construction, each qi,ν , i = 1, . . . , k, is x-homogeneous of x-degree
degx(f)−degx(gi), and each rν is x-homogeneous of x-degree degx(f), unless
they are zero. Thus, by Lemma 2.1.14, the qi,ν and rν converge to zero in
the 〈t〉-adic topology, so that

qi :=
∞∑
ν=0

qi,ν ∈ RJtK[x] and r :=
∞∑
ν=0

rν ∈ RJtK[x]s

exist and the following representation satisfies (DDH):

f = q1 · g1 + . . .+ qk · gk + r. (1)

Observe that, because all qi,ν and rν are terms with distinct monomials, each
non-zero term of qi · LT>(gi) or r equals qi,ν · LT>(gi) or rν respectively, for
some ν ∈ N.

So first, let p be a non-zero term of qi · LT>(gi), say p = qi,ν · LT>(gi)

for some ν ∈ N. Then LC>(qi,ν) 6= 0 implies that LC>(qi,ν · gi) /∈ 〈LC>(gj) |
j < i with gj ∈ Dν〉R. In particular, we have LT>(qi,ν · gi) = qi,ν ·LT>(gi) /∈
〈LT>(gj) | j < i with gj ∈ Dν〉. Therefore we also get qi,ν · LT>(gi) /∈
〈LT>(gj) | j < i〉, since the leading monomials of all gj /∈ Dν do not divide
LM>(fν) = LM>(qi,ν · gi). Thus (1) satisfies (DD1).

Lastly, let p be a non-zero term of r, i.e. p = rν for a suitable ν. But
because rν 6= 0, we have rν = LT>(fν) /∈ 〈LT>(g1), . . . ,LT>(gk)〉 by default.
Therefore, our representation (1) also satisfies (DD2). �

Remark 2.1.17 (polynomial input) In case m = 0, i.e. RJtK[x]s = R[x]s,
all f, g1, . . . , gk ∈ R[x]s are homogeneous and so is any polynomial appearing
in our algorithm. Moreover, all fν , unless fν = 0, have the same x-degree
as f . And since there are only finitely many monomials of a given degree,
there cannot exist an infinite sequence of decreasing leading monomials

LM>(f0) > LM>(f1) > LM>(f2) > . . . ,

and Algorithm 2.1.16 has to terminate.

Remark 2.1.18 (weighted homogeneous input) Similar to how the output is
x-homogeneous because the input is x-homogeneous, note that if the input is
weighted homogeneous with respect to a certain weight vector w ∈ Rm<0×Rn,
then so is the output. This will be essential for the proof of Lemma 4.1.9.
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Example 2.1.19 Over a ground field, as in the proof of Theorem 2.1 in
[Mar08], all the terms of fν can be simultaneously checked for containment
in 〈LT>(g1), . . . ,LT>(gk)〉, eliminating the terms which lie in the ideal us-
ing g1, . . . , gk and discarding the terms which are outside the ideal to the
remainder. However, this is not possible if R is no field.

Let f = 2x, g = 2x+ 2tx+ t2x+ 3t3x ∈ ZJtK[x] and consider a weighted
ordering >=>w with weight vector w = (−1, 1) ∈ R<0 × R. Then Figure 2
illustrates a division algorithm, which discards any term of fν not divisible by
LT>(g) directly to the remainder. The underlined term marks the respective
leading term.

f0 = 2x r

f1 = −2tx−

to remainder︷ ︸︸ ︷
t2x− 3t3x

f2 = 2t2x+

to remainder︷ ︸︸ ︷
t3x+ 3t4x

f3 = −2t3x−

to remainder︷ ︸︸ ︷
t4x− 3t5x

−g

+tg

−t2g

...

−t2x

3t3x

t3x

3t4x

t4x

3t5x
...

=
−

+
+

−
−

Figure 2. division slice by slice

Not only would this process continue indefinitely, every term in our re-
mainder but the first would actually be divisible by LT>(g):

r = −t2x− 3t3x+ t3x+ 3t4x− t4x− . . . = −xt2 − 2xt3 + 2xt4 − 2xt5 + . . . .

As we see, it is important to know when terms can be safely discarded
to the remainder, and the only way to guarantee that is by proceeding term
by term instead of slice by slice. And in order to guarantee that our result
converges in the 〈t〉-adic topology, the order needs to be compatible with a
weighted monomial order >w with w ∈ Rm<0 × Rn+s. Figure 3 shows the
same example in our algorithm.

We obtain a representation satisfying (DD1), (DD2) and (DDH):

f = (1− t− t3︸ ︷︷ ︸
=q

) · g + (xt2 + 5xt4 + xt5 + 3xt6︸ ︷︷ ︸
=r

).

Having constructed a homogeneous determinate division with remainder,
we will now introduce homogenization, dehomogenization and the ecart to
continue with a weak division with remainder.
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f0 = 2x r

f1 = −2tx−

to be processed︷ ︸︸ ︷
t2x− 3t3x

f2 = t2x− 2t3x+ 3t4x t2x

f3 = −2t3x+ 3t4x

f4 = 5t4x+ t5x+ 3t6x 5t4x

... t5x

f7 = 0

−g

+tg

to remainder

+t2g

to remainder

to remainder 3t6x

=

+

+

+

Figure 3. division term by term

Recap 2.1.20 (Homogenization and dehomogenization) For an element f =∑
β,α,i cα,β,i · tβxα · ei ∈ RJtK[x]s we define its homogenization to be

fh :=
∑
α,β,i

cα,β,i · tβx
degx(f)−|α|
0 xα · ei ∈ RJtK[xh]s := RJtK[x0, x]s.

And for an element F ∈ RJtK[xh]s we define its dehomogenization to be
F |x0=1 ∈ RJtK[x]s.

Any monomial ordering > on Mons(t, x), can be naturally extended to
an ordering >h on Mons(t, x0, x) through

a >h b :⇐⇒ degxh(a) > degxh(b) or

degxh(a) = degxh(b) and a|x0=1 > b|x0=1.

Defining the ecart of an element f ∈ RJtK[x]s with respect to > to be

ecart>(f) := degx(f)− degx(LM>(f)) ∈ N,

one can show that for any elements g, f ∈ RJtK[x]s and any xh-homogeneous
F ∈ RJtK[xh]:

(1) f = (fh)d,

(2) F = x
degxh

(F )−degx(F d)

0 · (F d)h,
(3) LT>h(fh) = x

ecart>(f)
0 · LT>(f),
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(4) LT>h(F ) = x
ecart>(F d)+degxh

(F )−degx(F d)

0 · LT>(F d),

(5) LM>h(gh)|LM>h(fh) ⇐⇒
LM>(g)|LM>(f) and ecart>(g) ≤ ecart>(f),

(6) LM>h(gh) | LM>h(F ) ⇐=

LM>(g)|LM>(F d) and ecart>(g) ≤ ecart>(F d).

Algorithm 2.1.21 (DwR, weak division with remainder)
Input: (f,G,>), where f ∈ RJtK[x]s and G = {g1, . . . , gk} ⊆ RJtK[x]s an

indexed set and >=>w a weighted t-local monomial ordering with w ∈
Rm<0 × Rn+s.

Output: (u,Q, r), where u ∈ RJtK[x] with LT>(u) = 1, Q = {q1, . . . , qk} ⊆
RJtK[x] an indexed subset and r ∈ RJtK[x]s such that

u · f = q1 · g1 + . . .+ qk · gk + r

satisfies
(ID1): LM>(f) ≥ LM>(qi · gi) for i = 1, . . . , k and
(ID2): LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless r = 0.
Moreover, the algorithm requires only a finite number of recursions.

1: if f 6= 0 and LT>(f) ∈ 〈LT>(g1), . . . ,LT>(gk)〉 then
2: Set D := {gi ∈ G | LM>(gi) divides LM>(f)} and D′ := ∅.
3: while LT>(f) /∈ 〈LT>(gi) | gi ∈ D′〉 do
4: Pick g ∈ D with minimal ecart.
5: Set D′ := D′ ∪ {g} and D := D \ {g}.
6: if e := max{ecart>(g) | g ∈ D′} − ecart>(f) > 0 then
7: Compute

({Q′1, . . . , Q′k}, R′) := HDDwR(xe0 · fh, {LT>(gh1 ), . . . ,LT>(ghk )}, >h).

8: Set f ′ := (xe0 · fh −
∑k

i=1Q
′
i · ghi )d.

9: Run

(u′′, {q′′1 , . . . , q′′k+1}, r) := DwR(f ′, {g1, . . . , gk, f}, >).

10: Set qi := q′′i + u′′ ·Q′di , i = 1, . . . , k.
11: Set u := u′′ − q′′k+1.
12: else
13: Compute

({Q′1, . . . , Q′k}, R′) := HDDwR(fh, {gh1 , . . . , ghk}, >h).

14: Run

(u, {q′′1 , . . . , q′′k}, r) := DwR((R′)d, {g1, . . . , gk}, >).

15: Set qi := q′′i + u ·Q′di , i = 1, . . . , k.
16: else
17: Set (u, {q1, . . . , qk}, r) := (1, {0, . . . , 0}, f).
18: return (u, {q1, . . . , qk}, r).
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Proof. Finiteness of recursions: For sake of clarity, label all the objects
appearing in the ν-th recursion step by a subscript ν. For example the ecart
eν ∈ N, the element fν ∈ RJtK[x]s and the subset Gν ⊆ RJtK[x]s.

Since Gh1 ⊆ Gh2 ⊆ Gh3 ⊆ . . ., we have an ascending chain of leading ideals
in RJtK[xh]s, which eventually stabilizes unless the algorithm terminates be-
forehand

LT>h(Gh1) ⊆ LT>h(Gh2) ⊆ . . . ⊆ LT>h(GhN ) = LT>h(GhN+1) = . . . .

Assume eN > 0. Then we’d have fN ∈ GN+1, and thus

LT>h(fhN ) ∈ LT>h(GhN+1) = LT>h(GhN ).

To put it differently, we’d have

LT>h(fhN ) ∈ 〈LT>h(gh) | gh ∈ GhN with LM>h(gh) divides LM>h(fhN )〉,

which by Recap 2.1.20 (5) would imply that

LT>(fN ) ∈ 〈LT>(g) | g ∈ GN with LM>(g) divides LM>(fN ),

and ecart>(g) ≤ ecart>(fN )〉.

Consequently, we’d get

D′N ⊆ {g ∈ GN | LM>(g) divides LM>(fN ) and ecart>(g) ≤ ecart>(fN )},

contradicting our assumption

eN = max{ecart>(g) | g ∈ D′N} − ecart>(fN )
!
> 0.  

Therefore we have eN ≤ 0. By induction we conclude that eν ≤ 0 for all
ν ≥ N , i.e. that we will exclusively run through steps 14-16 of the “else”
case from the N -th recursion step onwards.

By the properties of HDDwR we know that in particular

LT>h(R′N ) /∈ LT>(GhN ).

Now assume that the recursions would not stop with the next recursion.
That means there exists a D′N+1 ⊆ DN+1 with

LT>((R′N )d) = LT>(fN+1) ∈ 〈LT>(g) | g ∈ D′N+1〉

such that eN+1 = max{ecart>(g) | g ∈ D′N+1} − ecart>((R′N )d) ≤ 0. From
Recap 2.1.20 (6), this immediately implies the following contradiction

LT>h(R′N ) ∈ LT>h(GhN+1) = LT>h(GhN ).  

Hence the algorithm terminates after the N + 1-th recursion step.
Correctness: We make an induction on the number of recursions, say

N ∈ N. If N = 1 then either f = 0 or LT>(f) /∈ 〈LT>(g1), . . . ,LT>(gk)〉,
and in both cases

1 · f = 0 · g1 + . . .+ 0 · gk + f

satisfies (ID1) and (ID2).
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So suppose N > 1 and consider the first recursion step. If e ≤ 0, then
by the properties of HDDwR the representation

fh = Q′1 · gh1 + . . .+Q′k · ghk +R′

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1), which
means that for each i = 1, . . . , k we have

x
ecart>(f)
0 · LM>(f) = LM>h(fh)

(ID1)

≥h LM>h(Q′i) · LM>h(ghi ) = . . .

. . . = x
ai+ecart>(gi)
0 · LM>(Q′di ) · LM>(gi)

for some ai ≥ 0. Since fh and Q′i · ghi are both xh-homogeneous of the same
xh-degree by (DDH), the definition of the homogenized ordering >h implies

LM>(f) ≥ LM>(Q′di ) · LM>(gi) for all i = 1, . . . , k. (2)

Moreover, by induction the representation u ·R′d = q′′1 · g1 + . . .+ q′′k · gk + r

satisfies (ID1), (ID2) and LT>(u) = 1, the first implying that

LM>(f)
(2)

≥ LM>

(
f −

k∑
i=1

Q′di · gi

)
︸ ︷︷ ︸

=R′d

(ID1)
≥ LM>(q′′i · gi). (3)

Therefore, the representation

u · f =
k∑
i=1

(q′′i + u′′ ·Q′di ) · gi + r

satisfies (ID1) by (2), (3), LT>(u) = 1 and (ID2) by induction.
Similarly, if e > 0, then by the properties of HDDwR the representation

xe0 · fh = Q′1 · LT>h(gh1 ) + . . .+Q′k · LT>h(ghk ) +R′

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1), which
means that for each i = 1, . . . , k we have

x
e+ecart>(f)
0 · LM>(f) = LM>h(xe0 · fh) ≥ . . .

. . . ≥ LM>h(Q′i) · LM>h(LT>h(ghi )) = x
ai+ecart>(gi)
0 · LM>(Q′di ) · LM>(gi),

for some ai ≥ 0. Since xe0 · fh and Q′i · LT>h(ghi ) are both xh-homogeneous
of the same xh-degree by (DDH), the definition of the homogenized ordering
>h implies

LM>(f) ≥ LM>(Q′di ) · LM>(gi). (4)

Moreover, by induction the representation u′′ · f ′ =
∑k

i=1 q
′′
i · gi + q′′k+1 · f + r

satisfies (ID1), (ID2) and LT>(u′′) = 1 with the first implying that

LM>(f)
(4)

≥ LM>

(
f −

k∑
i=1

Q′di · gi

)
︸ ︷︷ ︸

=LM>(R′d)

(ID1)
≥ LM>(q′′i · gi). (5)



2.1. DIVISION WITH REMAINDER 47

Therefore, the representation

u · f =

k∑
i=1

(q′′i + u′′ ·Q′di ) · gi + r, with u = u′′ − q′′k+1

satisfies (ID1) by (4), (5), LT>(u′′) = 1 and (ID2) by induction.
To see that LT>(u) = 1, observe that

LT>h(xe0 · fh) ∈ 〈LT>(gh1 ), . . . ,LT>(ghk )〉,

which is why

LM>(f) = LM>h(xe0 · fh)d > LM>h

(
xe0 · fh −

k∑
i=1

Q′i · ghi

)d
= LM>(f ′).

Thus LM>(f) > LM>(f ′) ≥ LM>(q′′k+1) ·LM>(f), which necessarily implies
LM(q′′k+1) < 1. By induction we get LT>(u) = LT>(u′′) = 1. �

Remark 2.1.22 (polynomial input) If the input is polynomial, f, g1, . . . , gk ∈
R[t, x]s, then we can regard them as elements of RJt′K[x′] = R[t, x] with
t′ = () and x′ = (t, x). In that case, our homogeneous determinate divi-
sions with remainder terminates by Remark 2.1.17, and hence so does our
weak division with remainder. In particular, the output q1, . . . , qk, r will be
polynomial as well.

The next corollary will prove to be very useful in Theorem 2.2.15, though
not for elements in RJtK[x]s, but for elements in RJtK[x]k under the Schreyer
ordering.

Corollary 2.1.23 Let > be a t-local monomial ordering and g1, . . . , gk ∈
RJtK[x]s. Then any f ∈ RJtK[x]s has a weak division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r

with r =
∑s

j=1 rjej ∈ RJtK[x]s satisfying

(SID2): LT>(rj · ej) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless rj = 0, for j =

1, . . . , s.

Proof. We make an induction on s, in which the base case s = 1 follows
from Algorithm 2.1.21, as condition (SID2) coincides with (ID2).

Suppose s > 1. By Algorithm 2.1.21 there exists a weak division with
remainder

u · f = qi · g1 + . . .+ qk · gk + r. (6)

If r = 0, then the representation satisfies (SID2) and we’re done. If r 6= 0,
there is a unique j ∈ {1, . . . , s} such that LT>(r) ∈ RJtK[x] · ej . For sake of
simplicity, suppose that j = s and that g1, . . . , gk are ordered in such that

LT>(g1), . . . ,LT>(gl)︸ ︷︷ ︸
/∈RJtK[x]·es

, LT>(gl+1), . . . ,LT>(gs)︸ ︷︷ ︸
∈RJtK[x]·es

for some 1 ≤ l < s.
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Consider the projection

σ : RJtK[x]s −→ RJtK[x]s−1, (p1, . . . , ps) 7−→ (p1, . . . , ps−1),

the inclusion

ι : RJtK[x]s−1 −→ RJtK[x]s, (p1, . . . , ps−1) 7−→ (p1, . . . , ps−1, 0),

and let >∗ denote the restriction of > on Mon(t, x)s−1. Note that we have

(1) for h ∈ RJtK[x]s−1: LM>(ι(h)) = ι(LM>∗(h)),
(2) for i = 1, . . . , l: LM>(gi) = LM>(ι(σ(gi))).

By induction, there exists a weak division with remainder of σ(r) ∈
RJtK[x]s−1 satisfying (SID2), say

u′ · σ(r) = q′1 · σ(g1) + . . .+ q′l · σ(gl) + r′. (7)

Writing r =
∑s

j=1 rj · ej and r′ =
∑s−1

j=1 r
′
j · ej , we want to show that the

following constructed representation

u ·u′ ·f =

l∑
i=1

(u′ · qi+ q′i) ·gi+
k∑

i=l+1

u′ · qi ·gi+ r′′ with r′′ =
s−1∑
j=1

r′j ·ej + rs ·es

is a weak division with remainder satisfying (SID2).

As (6) satisfies (ID2), (7) satisfies (ID1), and LT>(r) ∈ RJtK[x]> · es, we
obtain for i = 1, . . . , l

LM>(f) ≥ LM>(r) > LM>(ι(σ(r))) ≥ LM>(ι(q′i · σ(gi))) = . . .

. . . = LM>(q′i · ι(σ(gi))) = LM>(q′i · gi).

Now since (6) satisfies (ID1) and LT>(u) = 1 = LT>(u′), we have for i ≤ l

LM>(u · u′ · f) = LM>(f) ≥ LM>((u′ · qi + q′i) · gi)

and for i > l

LM>(u · u′ · f) = LM>(f) ≥ LM>(qi · gi) = LM>(u′ · qi · gi),

proving that our constructed representation satisfies (ID1).
Moreover, (SID2) of (7) tells us that for j = 1, . . . , s− 1

LT>∗(r
′
j · ej) /∈ 〈LT>∗(σ(g1)), . . . ,LT>∗(σ(gl))〉, unless r′j = 0,

And because LT>(gi) ∈ RJtK[x] · es for i > l, we get for j = 1, . . . , s− 1

LT>(r′j · ej) /∈ 〈LT>(g1), . . . ,LT>(gs)〉, unless r′j = 0.

In addition, by (ID2) of (6), we have

LT>(r′s · es) = LM>(r) /∈ 〈LT>(g1), . . . ,LT>(gs)〉,

which completes the proof that our constructed representation satisfies (SID2).
By Proposition 2.1.10 this implies (ID2). �
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We will now introduce localizations at monomial orderings. More than
just a convenience to get rid of the u with LM>(u) = 1 in our weak divi-
sion with remainder, localization at monomial orderings allows geometers to
compute in localization at ideals generated by variables. It is a technique
that has been applied in the study of isolated singularities to great success.

Recap 2.1.24 (Localization at monomial orderings) For a t-local monomial
ordering > on Mon(t, x), we define

S> := {u ∈ RJtK[x] | LT>(u) = 1} and RJtK[x]> := S−1
> RJtK[x].

We will refer to RJtK[x]> as RJtK[x] localized at the monomial ordering >.
Let > be a module monomial ordering on Mons(t, x). Recall that it

restricts to the same monomial ordering on Mon(t, x) in each component by
Definition 2.1.4, which we will denote by >RJtK[x]. We then define for any
k ∈ N

RJtK[x]s> := S−1
>RJtK[x]

(RJtK[x]s) .

We will refer to RJtK[x]s> as RJtK[x]s localized at the monomial ordering >.
For s = 1, it coincides with the first definition.

Our definitions on RJtK[x]s extend naturally to RJtK[x]s>, since for any
element f ∈ RJtK[x]s> there exists an element u ∈ S> such that u · f ∈
RJtK[x]s. We define the leading monomial, leading coefficient and leading
term of f with respect to > to be that of u · f ∈ RJtK[x]s. The leading
module of a submodule M ≤ RJtK[x]s> is again the module generated by the
leading terms of its elements.

And given f, g1, . . . , gk, r =
∑s

j=1 rj · ej ∈ RJtK[x]s>, we say a representa-
tion

f = q1 · g1 + . . .+ qk · gk + r

satisfies
(ID1): if LM>(f) ≥ LM>(qi · gi) for all i = 1, . . . , k,
(ID2): if LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉RJtK[x], unless r = 0,
(DD1): if no term of qi · LT>(gi) lies in 〈LT>(gj) | j < i〉RJtK[x] for all

i = 1, . . . , k,
(DD2): if no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,
(SID2): if LT>(rj · ej) does not lie in 〈LT>(g1), . . . ,LT>(gk)〉RJtK[x], unless

rj = 0, for j = 1, . . . , s.
We will refer to a representation satisfying (ID1) and (ID2) as (indetermi-
nate) division with remainder, and we will refer to a representation satisfying
(DD1) and (DD2) as determinate division with remainder.

With these notions, Corollary 2.1.23 then implies:

Corollary 2.1.25 Let > be a monomial ordering and g1, . . . , gk ∈ RJtK[x]s>.
Then any f ∈ RJtK[x]s> has a division with remainder with respect to g1, . . . , gk
satisfying (SID2).
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2.2. Standard bases and syzygies

In this section, we introduce standard bases following [Wie11] closely,
correcting some of the slight inaccuracies. We also incorporate some remarks
on possible optimizations for R being a principal ideal domain. Similar to
the classical theory, it opens with introducing the Schreyer ordering and
syzygies, and finishes with proving Buchberger’s criterion. Moreover, we
recall the notion of reduced standard bases and illustrate the problem we
run into with them. See Figure 4 for a rough outline with numbering.

Recall that by Convention 2.1.1, we assumed R to be noetherian and
linear equations in R to be solvable.

2.2.1 - 2.2.7

standard bases background

Corollary 2.2.8

standard bases criteria

2.2.10 - 2.2.14

constructing syzygies

Theorem 2.2.15

Buchberger’s criterion and Schreyer’s theorem

Algorithm 2.2.17

standard bases algorithm

Figure 4. outline of Section 2.2

Definition 2.2.1 Given a t-local monomial ordering > on Mon(t, x)s and a
module M ≤ RJtK[x]s or M ≤ RJtK[x]s>, a finite set G ⊆M with

LT>(G) = LT>(M), where LT>(G) := 〈LT>(g) | g ∈ G〉

is called standard basis of M with respect to >.
Also, given a division with remainder of an element f with respect to

g1, . . . , gk ∈ RJtK[x]s or g1, . . . , gk ∈ RJtK[x]s>,

f = q1 · g1 + . . .+ qk · gk + r,

with q1, . . . , qk ∈ RJtK[x], r ∈ RJtK[x]s or q1, . . . , qk ∈ RJtK[x]>, r ∈ RJtK[x]s>
respectively, we call r a normal form of f with respect to g1, . . . , gk over
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RJtK[x] resp. over RJtK[x]> and, in case r = 0, we will refer to the repre-
sentation above as a standard representation of f with respect to g1, . . . , gk
over RJtK[x] resp. over RJtK[x]>.

A normal form and standard representation over RJtK[x] of u · f with
LT>(u) = 1 is commonly referred to as a weak normal form and weak stan-
dard representation of f respectively.

It is easy to see that every ideal in RJtK[x] has a standard basis assuming
R is noetherian. The proof is nearly identical to the classical case of ideals
in a polynomial ring K[x] over a field K.

Proposition 2.2.2 If R is noetherian, any submodule M ≤ RJtK[x]s has a
standard basis for any monomial ordering >.

Proof. Let M ≤ RJtK[x]s be a submodule. Since R is noetherian, so
is RJtK[x]s, and LT>(M) ≤ RJtK[x]s has a finite generating set h1, . . . , hk.
Because

LT>(I) = 〈LT>(g) | g ∈M〉 !
= {LT>(g) | g ∈M},

there exist g1, . . . , gk with LT>(gi) = hi forming a standard basis of M . �

Computing weak normal forms is essential in the upcoming standard
bases algorithm. While it can be essentially done by computing a division
with remainder and discarding everything but the remainder, as in the fol-
lowing algorithm, the fact that everything but the remainder is discarded
may be used for some optimization in the division algorithm, which we leave
out for sake of clarity.

Algorithm 2.2.3 normal form
Input: (f,G,>), where f ∈ RJtK[x], G = {g1, . . . , gk} ⊆ RJtK[x]s an indexed

set and > a t-local monomial ordering.
Output: r = NF(f,G,>) ∈ RJtK[x], a normal form of f with respect to G

and >.
1: Use Algorithm 2.1.21 to compute a division with remainder,

(u, {q1, . . . , qk}, r) = DwR(f,G,>).

2: return r.

Remark 2.2.4 (polynomial input) Should the input be polynomial, i.e.
f ∈ R[t, x] and G ⊆ R[t, x], then by Remark 2.1.22 we automatically obtain
a polynomial normal form NF(f,G,>) ∈ R[t, x].

Convention 2.2.5 For the remainder of the section, fix a t-local monomial
ordering > on Mon(t, x)s.
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Proposition 2.2.6 Let M ≤ RJtK[x]s> be a module and let G = {g1, . . . , gk}
be a standard basis of M . Then given an element f ∈ RJtK[x]> and a weak
division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r,

we have f ∈M if and only if r = 0. In particular, we see that M = 〈G〉

Proof. If r = 0, then obviously f ∈ 〈G〉 ⊆ J . Conversely, if f ∈ J , then
r = u·f−q1 ·g1 +. . .+qk ·gk ∈ J and therefore LT>(r) ∈ LT>(J) = LT>(G).
Hence r = 0 by (ID2).

We obviously have M ⊇ 〈G〉. For the converse, note that u ∈ RJtK[x]>
with LT>(u) = 1 is a unit, and hence the weak division with remainder
implies M ⊆ 〈G〉. �

Proposition 2.2.7 LetM ≤ RJtK[x]s> be a module and let G = {g1, . . . , gk} ⊆
M . Then the following statements are equivalent:

(a) G is a standard basis of M .
(b) Every normal form of any element in M with respect to G is zero.
(c) Every element in M has a standard representation with respect to G.

Proof. By Proposition 2.2.6 (a) implies (b), and the implication (b) to
(c) is true by Corollary 2.1.25. And if any f ∈ J has a standard representa-
tion

f = q1 · g1 + . . .+ qk · gk,

then, since LM>(f) ≥ LM>(qi · gi) for i = 1, . . . , k, there can be no total
cancellation of the leading terms on the right hand side. Hence LT>(f) ∈
LT>(G), and (c) implies (a). �

As an immediate consequence, we get:

Corollary 2.2.8 Let M ≤ RJtK[x] be a module and G = {g1, . . . , gk} ⊆M .
Then the following statements are equivalent:

(a) G is a standard basis of M .
(b) Every weak normal form of any element in M with respect to G is zero.
(c) Every element in M has a weak standard representation with respect to

G.

Also note that this in particular implies for x-homogeneous modules that
being a standard basis only depends on the leading monomials.

Corollary 2.2.9 Let G be an x-homogeneous standard basis of an x-homogeneous
module M ≤ RJtK[x] with respect to >. Let >′ be another t-local monomial
ordering on Mons(t, x) such that

LM>′(g) = LM>(g) for all g ∈ G.

Then G is also a standard basis of M with respect to >′.
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Proof. By Algorithm 2.1.16, for any f ∈ M = 〈G〉 we can compute a
determinate division with remainder 0 with respect to >,

f = q1 · g1 + . . .+ qk · gk + 0.

However, since the conditions (DD1) and (DD2) are only dependant on
LM>(gi) = LM>′(gi), this is also a valid determinate division with remainder
under >′. By Proposition 2.1.10, this is in particular a valid division with
remainder, proving that G is also a standard basis with respect to >′. �

Recap 2.2.10 (Syzygies and Schreyer ordering) Given a finite indexed set
G = {g1, . . . , gk} ⊆ RJtK[x]s>, we define the Schreyer ordering >S on Monk(t, x)

associated to G and > to be

tα · xβ · εi >S tα
′ · xβ′ · εj :⇐⇒

tα · xβ · LM>(gi) > tα
′ · xβ′ · LM>(gj) or

tα · xβ · LM>(gi) = tα
′ · xβ′ · LM>(gj) and i > j.

Note that we distinguish between the canonical basis elements ej of the
free module RJtK[x]s> and the canonical basis elements εi of the free module
RJtK[x]k>.

Moreover, observe that >S and > restrict to the same monomial ordering
on Mon(t, x), so that

RJtK[x]k>S = S−1
>S,RJtK[x]

RJtK[x]k = S−1
>RJtK[x]

RJtK[x]k = RJtK[x]k>.

It is therefore not wrong to use RJtK[x]k>, even though working with the
Schreyer ordering >S . In fact, we will generally do this, as it is more advan-
tageous when the Schreyer ordering varies because of different G while the
localization stays the same.

Let ϕ denote the substitution homomorphism

ϕ : RJtK[x]k> =
⊕k

i=1RJtK[x]> · εi −→ RJtK[x]s> =
⊕s

j=1RJtK[x]> · ej ,

7−→εi gi.

We call its kernel the syzygy module or simply the syzygies of G,

syz(G) :=

{
k∑
i=1

qi · εi ∈ RJtK[x]k>S

∣∣∣∣∣
k∑
i=1

qi · gi = 0

}
.

The concept of syzygies is one that can be applied to any ring, and one of the
conditions on our ground ring R in Convention 2.1.1 states that we assume
to be able to compute a finite system of generators for the syzygies of our
leading coefficients,

syzR(LC>(g1), . . . ,LC>(gk)) :=

{(c1, . . . , ck) ∈ Rk | c1 · LC>(g1) + . . .+ ck · LC>(gk) = 0}.
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Definition 2.2.11 For an indexed set G = {g1, . . . , gk} ⊆ RJtK[x]s and a
fixed index 1 ≤ l ≤ k, we will now introduce several objects which will be of
importance in the upcoming theory.

Recall the notions of divisibility and least common multiple of module
monomials in Definition 2.1.8. We denote the set of least common multiples
of the leading monomials up to and including gl with

Cl :=
{

lcm(LM>(gi) | i ∈ J)
∣∣∣ J ⊆ {1, ..., k} with max(J) = l

}
\ {0}.

Note that necessarily Cl ⊆ RJtK[x] · ei for the index 1 ≤ i ≤ s such that
LT>(gl) ∈ RJtK[x] · ei.

And for a least common multiple a ∈ Cl, we abbreviate the set of all
indices j up to l such that LM>(gj) divides it with

Jl,a :=
{
i ∈ {1, . . . , l}

∣∣∣ LM>(gi) divides a
}
.

Now given Jl,a, we can compute a finite generating set for the syzy-
gies of the tuple (LC>(gi))i∈Jl,a , which we will temporarily denote with SR.
Let syzR,l,a be the set of elements of SR with non-trivial entry in l:

〈 SR 〉R =
{

(ci)i∈Jl,a ∈ R|Jl,a|
∣∣∣ ∑i∈Jl,a ci · LC>(gi) = 0

}
,

syzR,l,a =
{

(ci)i∈Jl,a ∈ SR
∣∣∣ cl 6= 0

}
.

⊆

With this, we can write down a finite set of syzygies of the leading terms
of the gi up to and including LT>(gl) with non-trivial entry in l,

syzl :=

∑
i∈Jl,a

ci · a
LM>(gi)

· εi ∈ RJtK[x]k

∣∣∣∣∣∣ a ∈ Cl and c ∈ syzR,l,a

 .

For each ξ′ ∈ syzl, we can then fix a single weak division with remainder
of ϕ(ξ′) ∈ RJtK[x]s with respect to g1, . . . , gl to obtain

Sl :=

{
u · ξ′ −

k∑
i=1

qi · εi

∣∣∣∣∣ ξ′ ∈ syzl and u · ϕ(ξ′) = q1 · g1 + . . .+ ql · gl + r

the fixed weak division with remainder

}
.

As Sl obviously depends on G, we write SG,l instead whenever there might
be confusion. Moreover, we abbreviate

S(G) := SG,|G|.

Also, there is a certain degree of ambiguity in the construction of Sl since we
are actively choosing generating sets and divisions with remainders. Hence
whenever we use Sl, it will represent any possible outcome of our construc-
tion. For example, when we write S ⊆ Sl for a set S ⊆ RJtK[x]k>S , it means
that the elements of S are possible outcomes of our construction of Sl.

Remark 2.2.12 (factorial ground rings) Should R be a factorial ring in
which we have a natural notion of a least common multiple, then the con-
struction above simplifies to extensions of classical techniques.
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Suppose a ∈ Cl is a least common multiple of various leading monomials
including LM>(gl). Let Jl,a be the set of all indices i for which LM>(gi)

divides a. Then the syzygy module of all leading coefficients of gi with
i ∈ Jl,a can be seen to generated by syzygies of the form, see Proposition
2.2.13.
lcm(LC>(gi),LC>(gj))

LC>(gi)
·εi−

lcm(LC>(gi),LC>(gj))

LC>(gj)
·εj , with i, j ∈ Jl,a, i > j.

Abbreviating λi := LC>(gi), we consequently get

syzR,l,a =

{
lcm(λl, λi)

λl
· εl −

lcm(λl, λi)

λi
· εi
∣∣∣∣ i ∈ Jl,a} .

Hence,

syzl =
⋃
a∈Cl

{
lcm(λl, λi) · a

LT>(gl)
· εl −

lcm(λl, λi) · a
LT>(gi)

· εi
∣∣∣∣ i ∈ Jl,a} .

The definition of the Schreyer ordering >S now states

LT>S

(
lcm(λl, λi) · a

LT>(gl)
· εl −

lcm(λl, λi) · a
LT>(gi)

· εi
)

=
lcm(λl, λi) · a

LT>(gl)
· εl.

Therefore, the module generated by the leading terms of syzl is generated
by the leading terms of its elements of the form

lcm(LT>(gl),LT>(gi))

LT>(gl)
· εl −

lcm(LT>(gl),LT>(gi))

LT>(gi)
· εi with l > i ∈ Jl,a,

which we obtain by setting a = lcm(LM>(gl),LM>(gi)). Note that for i /∈
Jl,a the expression would just be zero.

The images of these generators under ϕ are, in the classical case of poly-
nomial rings, commonly known as s-polynomials, and the fixed divisions with
remainder, which we considered for the definition of Sl, represent the nor-
mal form computations of these s-polynomials that are commonly done in
the standard basis algorithm (and also Buchberger’s Algorithm).

The elements of Sl of the form above also commonly appear in the
literature on standard basis algorithms over polynomial rings. They have no
name, but they are commonly denoted by sij (or rather sli for our choice
of indices), see [GP08], [Mar08] and [Wie11]. We continue this train of
thought in Remark 2.2.16.

We quickly prove a statement we used in Remark 2.2.12 on syzygy mod-
ules over factorial ring. The proof is borrowd from Theorem 2.2.5 of [Wie11]

Proposition 2.2.13 Let R be a factorial ring, and let c1, . . . , ck ∈ R. Then

syz(c1, . . . , ck) =

〈
lcm(ci, cj)

ci
· εi −

lcm(ci, cj)

cj
· εj

∣∣∣∣ k ≥ i > j ≥ 1

〉
.

Proof. We make an induction on k with k = 1, 2 being clear. Now let
k > 2 and consider a syzygy a := a1 · ε1 + . . .+ ak · εk. Then

ak · ck ∈ 〈c1, . . . , ck−1〉,
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from which we can infer

ak ∈ 〈c1, . . . , ck−1〉 : 〈ck〉 = 〈c1〉 : 〈ck〉+ . . .+ 〈ck−1〉 : 〈ck〉

=

〈
lcm(c1, ck)

ck

〉
+ . . .+

〈
lcm(ck−1, ck)

ck

〉

Setting

sij :=
lcm(ci, cj)

ci
· εi −

lcm(ci, cj)

cj
· εj and µij :=

lcm(ci, cj)

cj
,

we have shown that there are b1, . . . , bk−1 ∈ R such that

ak = b1 · µk1 + . . .+ bk−1 · µkk−1,

so that, by induction,

a− b1 · sk1 + . . .+ bk−1 · skk−1 ∈ syz(c1, . . . , ck−1)

= 〈sij | k − 1 ≥ i > j ≥ 1〉.

Hence,
a ∈ 〈sij | k − 1 ≥ i > j ≥ 1〉+ 〈sk1, . . . , skk−1〉. �

Now back to the general case that R is a general noetherian ring in which
linear equations are solvable. For the objects in Definition 2.1.8, following
holds:

Lemma 2.2.14 For any a ∈ Cl and any (ci)i∈Jl,a ∈ syzR,l,a there exists a
ξ ∈ Sl such that

LT>S (ξ) =
cl · a

LM>(gl)
· εl.

Proof. By construction in Definition 2.2.11, for any a ∈ Cl and any
(ci)i∈Jl,a ∈ syzR,l,a, there exists a ξ ∈ Sl of the form

ξ = u · ξ′ −
k∑
i=1

qi · εi =
∑

i∈Jl,a

ci · a
LM>(gi)

· εi −
l∑

i=1

qi · εi.

First, recall that Jl,a is the set of indices i up to l for which LM>(gi)

divides a. Hence for all i, j ∈ Jl,a we have

LM>

( ci · a
LM>(gi)︸ ︷︷ ︸
6=0

·gi
)

= a = LM>

( cj · a
LM>(gj)︸ ︷︷ ︸
6=0

·gj
)
.

As an immediate consequence, we get

LT>S

(∑
i∈Jl,a

ci · a
LM>(gi)

· εi
)

=
cl · a

LM>(gl)
· εl, (8)

because the Schreyer ordering prefers the highest component in case of a tie,
and l = max Jl,a, cl 6= 0 by definition.
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Next, recall that (ci)i∈Jl,a ∈ syzR(LC>(gi) | i ∈ Jl,a), which means that∑
i∈Jl,a

ci · a
LM>(gi)

· LT>(gi) =
∑
i∈Jl,a

ci LC>(gi) · a
!

= 0.

Therefore, for all j ∈ Jl,a,

LM>

( cj · a
LM>(gj)

· gj
)
> LM>

( ∑
i∈Jl,a

ci · a
LM>(gi)

· gi
)

= LM>(ϕ(ξ))

as all summands have the same leading monomial a and the leading terms
in the sum cancel each other out.

Finally, recall that ϕ(ξ) = q1 · g1 + . . . + ql · gl + r was a division with
remainder, whose (ID1) property implies for all j ∈ Jl,a and i = 1, . . . , l

LM>

( cj · a
LM>(gj)

· gj
)
> LM>(ϕ(ξ))

(ID1)
≥ LM>(qi · gi).

Thus we have for all j ∈ Jl,a and i = 1, . . . , l

LM>S

( cj · a
LM>(gj)

· εj
)
>S LM>S (qi · εi). (9)

Together, we obtain

LT>S (ξ) = LT>S

(
u ·

∑
j∈Jl,a

cj · a
LM>(gj)

· εj −
l∑

i=1

qi · εi
)

(9)
= LT>S

(
u ·

∑
j∈Jl,a

cj · a
LM>(gj)

· εj
)

(8)
=

cl · a
LM>(gl)

· εl. �

Theorem 2.2.15 Let G = {g1, . . . , gk} ⊆ RJtK[x]s be a generating set of
M ≤ RJtK[x]s> and let S1, . . . ,Sk be constructed as above. Suppose there
exists an S ⊆

⋃k
l=1 Sl such that

(1) LT>S (S) = LT>S (
⋃k
l=1 Sl),

(2) ϕ(ξ) = 0 for all ξ ∈ S.

Then

(1) G is a standard basis of M with respect to >,
(2) S is a standard basis of syz(G) with respect to >S.

Proof. Let q1, . . . , qk ∈ RJtK[x]> = RJtK[x]>S be chosen arbitrarily. We
will proof both statements simultaneously via the standard representation
criteria in Proposition 2.2.7 (c), by considering

χ :=

k∑
i=1

qi · εi and g := ϕ(χ) =

k∑
i=1

qi · gi.

Here g represents an arbitrary element ofM , and, in case g = 0, χ represents
an arbitrary element of syz(G).



58 2. STANDARD BASES IN RJtK[x]s

First compute a division with remainder of χ with respect to S and the
Schreyer ordering,

χ =
∑
ξ∈S

aξ · ξ + r.

Should r be zero, then the expression above is a standard representation of
χ with respect to >S . Moreover, as ϕ(ξ) = 0 for all ξ ∈ S by assumption,
g = ϕ(χ) = 0 trivially possesses a standard representation. Hence, in case
r = 0, both g and χ satisfy the standard representation criteria. So suppose
r 6= 0 for the remainder of the proof.

By Corollary 2.1.25, we may assume that our division with remainder
satisfies (SID2), i.e. say

r = r1 ·ε1+. . .+rk ·εk with LT>(ri ·εi) /∈ LT>S (S) for all i = 1, . . . , k. (10)

Since by assumption ϕ(ξ) = 0 for all ξ ∈ S, we have

g = ϕ(χ) = ϕ(r) = r1 · g1 + . . .+ rk · gk. (11)

To proof the statement for G ⊆ M , it suffices to show that the expression
above is a standard representation of g. To proof the statement for S ⊆
syz(G), we will show that r 6= 0 contradicts g = 0. This leaves r = 0 as the
only viable case, assuming g = 0, for which we have already established that
χ satisfies the standard representation criteria.

Now assume that LM>(g) < LM>(ri ·gi) for some i = 1, . . . , k, and hence
for J := {i ∈ {1, . . . , k} | LM>(ri · gi) maximal}∑

i∈J
LT>(ri · gi) = 0.

Set l := max(J) and a := lcm(LM>(gi) | i ∈ J), so that obviously J ⊆ Jl,a.
We will now concentrate on rl · εl.

For the leading coefficient of rl · εl, note that the leading coefficients sum
up to zero, i.e.

∑
i∈J LC>(ri) · εi ∈ syz(LC>(gi) | i ∈ Jl,a). Recall that

syzR,l,a are the elements of a generating system of syz(LC>(gi) | i ∈ Jl,a)

with non-trivial entry in l. Hence there are suitable d(ci) ∈ R such that

LC>(rl) · εl =
∑

(ci)∈syzl,a

d(ci) · cl · εl. (12)

For the leading monomial of rl · εl, note that LM>(rl · gl) is divisible by
LM>(gi) for all i ∈ J . Hence it is divisible by a = lcm(LM>(gi) | i ∈ J), i.e.
there exists a tδxγ such that LM>(rl · gl) = tδxγ · a, or equivalently

LM>(rl) = tδxγ · a

LM>(gl)
. (13)

Now, by the previous Lemma 2.2.14 there exists a ξ(ci) ∈ Sl for any (ci) ∈
syzR,l,a such that

LT>S (ξ(ci)) =
cl · a

LM>(gl)
· εl. (14)
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Piecing everything together, we thus get

LT>(rl) · εl
(12)+(13)

= tδxγ
∑

(ci)∈syzl,a

d(ci) ·
cl · a

LM>(gl)
· εl

(14)
= tδxγ

∑
(ci)∈syzl,a

d(ci) · LT>S (ξ(ci)) ∈ LT>S (Sl).

And since LT>S (Sl) ⊆ LT>S (S) by our first assumption, this contradicts
the (SID2) condition in Equation (10). Therefore, Equation (11) has to be
a standard representation, implying that G is a standard basis of M with
respect to >.

Moreover, since r 6= 0, Equation (11) being standard representation
yields an obvious contradiction if g = 0. Hence in the case g = 0, we
have r = 0 and we have already seen how this implies that S is a standard
basis of syz(G) with respect to >S . �

Remark 2.2.16 (R factorial continued) Suppose again that R is a factorial
ring. As we have seen in Remark 2.2.12, that the leading module of

⋃k
l=1 SG,l

is generated by the leading terms of elements of the form
lcm(LT>(gi),LT>(gj))

LT>(gi)
· εi −

lcm(LT>(gi),LT>(gj))

LT>(gj)
· εj , i > j,

which is why they are the only elements we need to keep track of for Theo-
rem 2.2.15. These elements are obviously characterized by a pairs of distinct
elements (gi, gj) ∈ M ×M , by elements in a so-called pair-set, which com-
monly appear in the classical standard basis algorithm and in Buchberger’s
Algorithm.

Algorithm 2.2.17 standard basis algorithm
Input: (G,>), where G an indexed generating set of M ≤ RJtK[x]s and >

a t-local monomial ordering on Mons(t, x).
Output: G′ ⊆M a standard basis of M with respect to >.
1: Suppose G := {g1, . . . , gk}.
2: Pick S ⊆

⋃k
l=1 SG,l ⊆ RJtK[x]k such that

LT>S (S) = LT>S

( k⋃
l=1

SG,l

)
,

where >S is the Schreyer ordering on Monk(t, x) associated to G and >.
3: while S 6= ∅ do
4: Set k := |G|, so that G := {g1, . . . , gk} and S ⊆ RJtK[x]k>.
5: Choose q =

∑k
i=1 qi · εi ∈ S.

6: Set S := S \ {q}.
7: Compute a weak normal form r of q1 · g1 + . . .+ qk · gk with respect to

G

r := NF>(q1 · g1 + . . .+ qk · gk, G,>).
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8: if r 6= 0 then
9: Set gk+1 := r.

10: Set G := G ∪ {gk+1}.
11: Pick S′ ⊆ S(G) ⊆ RJtK[x]k+1 such that

LT>S (S′) = LT>S

(
S(G)

)
,

where >S is the Schreyer ordering on Monk+1(t, x) induced by the
newly extended G and >.

12: Set S := (S×{0}) ∪S′.
13: return G.

Proof. Label all objects in the ν-th iteration of the while loop with a
subscript ν. That is, to be more precise,
• Gν as it exists in Step 4,
• kν as it exists in Step 4,
• qν as chosen in Step 5
• rν as computed in Step 7,
• Sν as S exists in Step 4,
• S′ν+1 as S′ exists in Step 9 if rν−1 6= 0, S′ν+1 = ∅ otherwise, S′1 := S1,

so that
Gν+1 = Gν ∪ {rν} and Sν+1 = (Sν×{0}) ∪S′ν+1.

Termination. Note that we have a nested sequence of modules

LT>(G1) ⊆ LT>(G2) ⊆ LT>(G3) ⊆ . . . ⊆ LT>(Gν) ⊆ LT>(Gν+1) ⊆ . . . ,

which has to stabilize at some point. Because rν 6= 0 implies LT>(Gν) (
LT>(Gν+1), it means that our sets Sν have to be strictly decreasing in
every step beyond the point of stabilization. And since all Sν are finite, our
algorithm terminates eventually.

Correctness. Let N be the total number of iterations, and let G be the
return value, k := |G|. We will prove that G is a standard basis by construct-
ing a set S ⊆ RJtK[x]k that satisfies the two conditions in Theorem 2.2.15.
For that, consider all Sν ⊆ RJtK[x]kν> canonically embedded in RJtK[x]k> due
to Gν ⊆ G and kν ≤ k. Let S be the union of all S′ν ,

S :=
N+1⋃
ν=1

S′ν ⊆ RJtK[x]k.

Note that S′ν ⊆ SG,kν , because the construction of SG,kν only depends
on the first kν elements ofG, which are exactly the elements ofGν . Moreover,
Step 9 implies that LT>S (Sν) = LT>S (SG,kν ), which shows that S satisfies
the first condition of our theorem,

LT>S (S) = LT>S

(
k⋃
l=1

SG,l

)
.
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Now for each ξ ∈ S there exists an iteration 1 ≤ ν ≤ N in which it is
chosen in Step 5, ξ =

∑kν
i=1 qi,ν · εi.

If ϕ(ξ) = rν = 0, then ξ satisfies the second condition of our theorem.
However if ϕ(ξ) = rν 6= 0, then gν+1 = rν and ξ can be replaced with ξ−εν+1

so that ϕ(ξ − εν+1) = 0. Note that this does not change the leading term,
since by construction the maximal leading terms of q1 · g1, . . . , qlν · glν cancel
each other out, which implies that qi,ν · εi >S εν+1 for any 1 ≤ i ≤ ν with
qi,ν 6= 0. Hence we obtain a set S completely satisfying the second condition
of our theorem. �

Remark 2.2.18 (polynomial input) Should our input be polynomial, G ⊆
R[t, x], then all normal form computations terminate and yield polynomial
outputs as noted in 2.2.4. In particular, our standard basis algorithm will
terminate and the output will be polynomial as well.

Moreover, if our input is x-homogeneous, then so is the resulting standard
basis.

Should R be a factorial ring, Algorithm 2.2.17 can be simplified to:

Algorithm 2.2.19 standard basis algorithm for factorial rings
Input: (G,>), where G an indexed generating set of M ≤ RJtK[x]s and >

a t-local monomial ordering on Mons(t, x), R a principal ideal domain.
Output: G′ ⊆M a standard basis of M with respect to >.
1: Suppose G := {g1, . . . , gk}.
2: Initialize a pair-set, P := {(gi, gj) | i < j}.
3: while P 6= ∅ do
4: Pick (gi, gj) ∈ P .
5: Set P := P \ {(gi, gj)}.
6: Compute a weak normal form

r := NF>(spoly(gi, gj), G,>),

where

spoly(gi, gj)

=
lcm(LT>(gi),LT>(gj))

LT>(gi)
· gi −

lcm(LT>(gi),LT>(gj))

LT>(gj)
· gj

and

lcm(LT>(gi),LT>(gj))

= lcm(LC>(gi),LC>(gj)) · lcm(LM>(gi),LM>(gj)).

7: if r 6= 0 then
8: Extend the pair-set, P := P ∪ {(g, r) | g ∈ G}.
9: Set G := G ∪ {r}.

10: return G′ := G.
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Next, we will introduce an important type of standard basis for the
classical theory of Gröbner fans, and show why we run into problems with
them in our situation.

Definition 2.2.20 Let G,H ⊆ RJtK[x]s be two finite subsets. Given a t-
local monomial ordering > on Mons(t, x), we call G reduced with respect to
H, if, for all g ∈ G, no term of tail>(g) lies in LT>(H).

And we simply call G reduced, if it is reduced with respect to itself and
minimal in the sense that no proper subset G′ ( G is sufficient to generate
its leading module, i.e. LT>(G′) ( LT>(G).

Observe that we forego any kind of normalization of the leading coeffi-
cients that is normally done in polynomial rings over ground fields.

If our module is generated by x-homogeneous elements, it is not hard to
show that reduced standard bases exist. Given an x-homogeneous standard
basis, one can persue a strategy similar to the classical reduction algorithm
based on repeated tail reduction. Lemma 2.1.14 guarantees its convergence
in the 〈t〉-adic topology.

Algorithm 2.2.21 reduction algorithm
Input: (G,>), where G = {g1, . . . , gk} is a minimal x-homogeneous stan-

dard basis ofM ≤ RJtK[x]s with respect to the weighted ordering >=>w
with w ∈ Rm<0 × Rn+s.

Output: G′ = {g′1, . . . , g′k} an x-homogeneous reduced standard basis of M
with respect to > such that LM>(g′i) = LM>(gi).

1: for i = 1, . . . , k do
2: Set g′i := gi.
3: Create a working list

L := {p ∈ RJtK[x]s | p term of g′i, LM>(g′i) > p},

4: while L 6= ∅ do
5: Pick p ∈ L with LM>(p) maximal.
6: Set L := L \ {p}.
7: if p ∈ LT>(M) then
8: Compute homogeneous division with remainder

({q1, . . . , qk}, r) = HDDwR(p,G,>).

9: Set g′i := g′i − (q1 · g1 + . . .+ qk · gk).
10: Update the working list

L := {p′ ∈ RJtK[x]s | p′ term of gi, LM>(p) > LM>(p′)}.

11: return {g′1, . . . , g′k}

Proof. Pick an i = 1, . . . , k. Labelling all objects occurring in the ν-the
recurring step by a subscript ν, we have a strictly decreasing sequence

LM>(p1) > LM>(p2) > LM>(p3) > . . . .
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And since LM>(pν) ≥ LM>(qj,ν · gj) for all j = 1, . . . , k, the sequence (qj,ν ·
gj)ν∈N must also converge in the 〈t〉-adic topology together with (pν)ν∈N. In
particular, the element g′i = gi −

∑∞
ν=0

∑k
j=1 qj,ν · gj in our output exists.

Also, while setting g′i,ν+1 = g′i,ν − (q1,ν ·g1 + . . .+ qk,ν ·gk) apart from the
term pν cancelling, the terms changed are all strictly smaller than p. Hence
for any term p of g′i, p 6= LT>(gi), there is a recursion step in which it is
picked. Because p is not cancelled during the step, we have p /∈ LT>(M).
Therefore no term of g′i apart from its leading term lies in LT>(M). �

One nice property of reduced standard bases, that is repeatedly used in
the established theory of Gröbner fans of polynomial ideals over a ground
field, is their uniqueness up to multiplication by units. In fact, this property
does not change even if we add power series into the mix.

Lemma 2.2.22 Let R be a field and let M ≤ RJtK[x]s or M ≤ RJtK[x]s>
be a module generated by x-homogeneous elements. Then M has a unique
monic, reduced standard basis.

Proof. Because R is a field, we have LT>(M) = LM>(M) and since
LM>(M) has a unique minimal generating system consisting of monomials,
let’s call it A, so does LT>(M).

Let G = {g1, . . . , gk} be a monic, reduced standard bases of M . Observe
that the leading terms of G form a standard basis of the leading module of
M . That means each a ∈ A ⊆ LT>(M) can be expressed with a standard
representation of the leading terms of G,

a = q1 · LT>(g1) + . . .+ qk · LT>(gk).

Since there is no cancellation of higher terms in the standard representa-
tion, there must exist an i = 1 . . . , k with a = LM>(qi · gi). This implies
LM>(gi) = a because a wouldn’t be a minimal generator of LM>(M) oth-
erwise. And because G is monic, LT>(gi) = a.

Therefore, given a reduced standard basis G, we see that for any minimal
generator a ∈ A there exists an element g ∈ G with LM>(g) = a. And
since reduced standard bases are minimal themselves, it means that there is
exactly one element g ∈ G per minimal generator a ∈ A.

Now let G and H be two different reduced standard basis of M . Let
a ∈ A and let g ∈ G, h ∈ H be the basis element with leading monomial
a. If g − h 6= 0, then g − h ∈ M must have a non-zero leading monomial
which lies in LM>(M). However, that monomial also has to occur in either
g and h, and since R is a field the term with that monomial has to lie in
LT>(M) = LM>(M), contradicting that G and H were reduced. �

However, it can easily be seen that this does not hold over rings.
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Example 2.2.23 Consider the ring Z[x, y] and the degree lexicographical
ordering >, i.e.

xa1ya2 > xb1yb2 :⇐⇒
a1 + a2 > b1 + b2 or

a1 + a2 = b1 + b2 and (a1, a2) > (b1, b2) lexicographically in R2.

Consider the following ideal and its leading ideal:

I := 〈2x2y + 1, 3xy2 + 1〉 and LT>(I) = 〈2x, 9y3, xy2〉.

Two possible standard bases, both reduced, are

G1 = { 2x− 3y, 9y3 + 2, xy2 + 3y3 + 1 },

G2 = { 2x− 3y, 9y3 + 2, xy2 − 6y3 − 1 }.

= = 6=

Hence, unlike their classical counterparts over ground fields, reduced stan-
dard bases over ground rings are not unique up to multiplication with units.
The key problem is that leading modules are not necessarily saturated with
respect to the ground ring. This allowed the third basis element to have
terms with monomials in LM>(M), to which we could add a constant mul-
tiple of the second basis element without changing it being reduced.

Additionally, even if our coefficient ring R were a field and reduced stan-
dard bases are unique, they might not be feasable for practical computations.

Example 2.2.24 Consider the principal ideal generated by the element g =

x + y + tx ∈ QJtK[x, y] and the monomial ordering >w with weight vector
w = (−1, 1, 1) and > the lexicographical ordering with x > y > 1 > t as
tiebreaker. Then {g} is a standard basis and one can show that it converges
to g′ = x+

∑∞
i=0(−1)i · tiy in its reduction process.

Since the reduced standard bases is unique, this implies that I has no
reduced standard basis consisting of polynomials, even though I is generated
by a polynomial itself. Consequently, this means that the reduced standard
bases which play a central role in the established Gröbner fan theory are
useless in our case from a practical perspective.
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x+ y + tx

x+ y − ty− t2x

x+ y − ty + t2y+ t3x

...

−t · g

+t2 · g

x+
∑∞

i=0(−1)i · tiy

Figure 5. reduction of tx+ t2x+ y





CHAPTER 3

Gröbner fans in RJtK[x]

In this chapter, we introduce the notion of initially reduced standard
bases and construct the Gröbner fan of an x-homogeneous ideal in RJtK[x],
the latter following the lines of [FJT07]. We present algorithms to reduce
standard bases initially in finite time, and algorithms to compute Gröbner
fans of x-homogeneous ideals. For necessary conditions on our ground ring,
please note Convention 3.1.1.

Based on the standard bases introduced in the last chapter, the Gröbner
fans introduced in this chapter will provide us with a natural polyhedral
structure on our tropical varieties. This will prove very useful in the compu-
tation of tropical varieties in the next chapter.

3.1. Construction

In this section, we construct the Gröbner fan of an x-homogeneous ideal
IERJtK[x] satisfying Convention 3.1.1. The construction is similar to Section
2 of Fukuda, Jensen and Thomas’ work on computing Gröbner fans of poly-
nomial ideals over a ground field [FJT07] with some changes to encompass
initially reduced standard bases. Also, caution is warranted since we only
allow weight vectors with strictly negative weight in t, while the Gröbner fan
is defined on the closed half space R≤0 ×R. The Gröbner fan was originally
introduced as early as in Mora and Robbiano’s work [MR88], and many
ideas in the construction originate from there.

The crucial step is proving that standard bases of initial ideals can be
derived from standard bases of the original ideal. From this, one can show
that the Gröbner cones satisfy all properties to form a polyhedral fan, as
defined in Definition 1.1.13 and Example 1.1.14:

(1) every Gröbner cone is a polyhedral cone,
(2) the intersection of two Gröbner cones is a face of each,
(3) there are only finitely many Gröbner cones.

See Figure 1 for a rough outline of the chapter with numbering.

Convention 3.1.1 For the entirety of the chapter, let R continue to satisfy
Convention 2.1.1, i.e. R is noetherian and linear equations in R are solvable,
so that, fixing the ring RJtK[x] := RJtK[x1, . . . , xn] with a single variable t,
standard bases exist and are computable (in finite time and with polynomial
output, if the ideal is generated by polynomials).

67
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Lemma 3.1.9 to Proposition 3.1.13

standard bases of initial ideals

Proposition 3.1.17

Proposition 3.1.19

Cw(I), C0
w(I) polyhedral cones

Corollary 3.1.16

Cw(I), C0
w(I) finitely many

Corollary 3.1.20

faces of Cw(I), C0
w(I)

have same form

Proposition 3.1.16 to
Proposition 3.1.23

recession fan on boundary

Corollary 3.1.24

intersection of two Cw(I) is face of both

Figure 1. outline of Section 3.1

Before we begin with the actual constructing the Gröbner fan, let us
quickly prove some necessary statements about polynomial ideals over a
ground ring. The first is an easy generalization of a well-known fact about
monomial ideals, in fact so is its proof.

Lemma 3.1.2 Let J ER[t, x] be an ideal generated by terms and let f ∈ J .
Then each term of f is again contained in J .

Proof. Let > be a t-local monomial ordering on Mon(t, x), and let
p1, . . . , pk ∈ R[t, x] be terms generating J . Because R is noetherian, so is
R[t, x], and hence there exist q1, . . . , qk ∈ R[t, x] such that

f = q1 · p1 + . . .+ qk · pk,

and we may assume that LM>(f) ≥ LM>(qi · pi), because we may drop
all terms si of qi with LM>(f) < LM>(si · pi) and still retain the equality.
Hence there are suitable 1 ≤ i1 < . . . < il ≤ k contributing to the leading
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term such that

LT>(f) = LT>(qi1 · pi1) + . . .+ LT>(qil · pil)
= LT>(qi1) · pi1 + . . .+ LT>(qil) · pil ∈ J.

Moreover, this also means f −LT>(f) ∈ J and we can continue this process
leading term by leading term to see that every term of f lies in J . �

As an immediate consequence, we get:

Lemma 3.1.3 Let J ER[t, x] be an ideal generated by terms and let > be a
t-local monomial ordering on Mon(t, x). Let f ∈ R[t, x] such that u · f ∈ J
for some u ∈ R[t, x] with LT>(u) = 1. Then f ∈ J .

Proof. Lemma 3.1.2 implies LT>(u · f) = LT>(f) ∈ J . Moreover, this
implies u · LT>(f) ∈ J and therefore we also obtain

LT>(f − LT>(f)) = LT>(u · (f − LT>(f))) = LT>(u · f − u · LT>(f)) ∈ J.

We can again continue this process leading term by leading term to see that
every term of f lies in J . In particular, because f consists of only finitely
many terms, f ∈ J . �

The next is another generalization of a statement from the classical Gröb-
ner basis theory. The proof of is an adaptation of the proof of Theorem 4.1
in [CLO05].

Proposition 3.1.4 Any x-homogeneous ideal I E RJtK[x] has only finitely
many possible leading ideals.

Proof. Observe that any element g ∈ RJtK[x] has only finitely many
possible leading terms, since there are only finitely many distinct monomials
in x and a leading term with respect to a t-local monomial ordering has to
have minimal power in t.

Now assume there are infinitely many leading ideals. For each leading
ideal J , let >J be a t-local monomial ordering such that LT>J (I) = J . Set
∆0 := {>J | J leading ideal of I}, so that different orderings in ∆0 yield
different leading ideals. By our assumption, ∆0 is infinite.

Let G1 ⊆ I be a finite x-homogeneous generating set of I and set Σ1 to
be the union of all potential leading terms of elements of G1. Then Σ1 is
finite and hence, by the pigeonhole principle, there must be infinitely many
monomial orderings ∆1 ⊆ ∆0 which agree on Σ1. Corollary 2.2.9 now implies
that if G1 ⊆ I were a standard basis for one of them, it would be a standard
basis for all of them. As this cannot be the case, given an ordering >1 ∈ ∆1

there must be an element g2 ∈ I such that LT>1(g2) /∈ J1 := 〈LT>1(g) | g ∈
G1〉 with J1 being independent from the ordering chosen.

Since I is x-homogeneous, we may choose g2 to be x-homogeneous. More-
over, by computing a determinate division with remainder with respect to
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G1 and >1, we may assume that no term of g2 lies in J1, see condition (DD2)
in Algorithm 2.1.16. In particular,

LT>(g2) /∈ J1 := 〈LT>(g) | g ∈ G1〉 for any ordering > ∈ ∆1.

Setting G2 := G1 ∪ {g2}, we can repeat the entire process, and find an
infinite subset of monomial orderings ∆2 ⊆ ∆1 such that G2 is either a
standard basis for all of them or for none of them. Consequently, there is
a g3 ∈ I such that LT>(g3) /∈ J2 := 〈LT>(g) | g ∈ G2〉 for all monomial
orderings > ∈ ∆2. We thus obtain an infinite chain of strictly ascending
ideals J1 ( J2 ( . . ., which contradicts the ascending chain condition of our
noetherian ring RJtK[x]. �

With this out of the way, the remaining section is now dedicated to the
construction of the Gröbner fan, as roughly outlined in Figure 1.

Definition 3.1.5 Recalling the definition of initial ideals in Definition 1.2.7,
the initial ideals of I define an equivalence relation on the space of weight
vectors R<0 × Rn:

w ∼ v :⇐⇒ inw(I) = inv(I).

We denote the closure the equivalence class of a weight vector w ∈ R<0×Rn
in the euclidean topology with

Cw(I) := {v ∈ R<0 × Rn | inv(I) = inw(I)} ⊆ R≤0 × Rn,

and call it an interior Gröbner cone of I. We then call the intersection of
the closure with the boundary,

C0
w(I) := Cw(I) ∩ ({0} × Rn),

a boundary Gröbner cone of I, and we refer to the collection

Σ(I) := {Cw(I) | w ∈ R<0 × Rn} ∪ {C0
w(I) | w ∈ R<0 × Rn},

of all cones as the Gröbner fan of I.
Moreover, given any t-local monomial ordering >, we set

C>(I) := {v ∈ R<0 × Rn | inv(I) = LT>(I)} ⊆ R≤0 × Rn.

Example 3.1.6 Consider the principal ideal

I = 〈tx2 + xy + ty2︸ ︷︷ ︸
=:g

〉E ZJtK[x, y].

Because inw(I) = 〈inw(g)〉 for any w ∈ R<0×R2 and g is (x, y)-homogenous,
it is easy to see that every Gröbner cone of I is invariant under translation
by (0, 1, 1). Its Gröbner fan divides the weight space R≤0 × R2 into three
distinct maximal Gröbner cones, see Figure 2. Note that two red maximal
cones intersect each other solely in the boundary {0} × R2, while the third
maximal cone intersects the boundary in codimension 2.
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R · (0, 1, 1)

C0
(−1,1,1)(I)

=

C(−1,1,0)(I)

〈xy〉

〈tx2〉 〈ty2〉
C(−1,0,1)(I)

〈tx2 + xy〉 〈xy + ty2〉

C(−1,1,1)(I)

C0
(−1,1,0)(I) C0

(−1,0,1)(I)

Figure 2. Σ(〈tx2 + xy + ty2〉)

Definition 3.1.7 Let G,H ⊆ RJtK[x] be two finite subsets, and suppose
G = {g1, . . . , gk} with gi =

∑
α∈Nn gi,α · xα, gi,α ∈ RJtK.

Given a t-local monomial ordering >, we call G initially reduced with
respect to H, if the following set is reduced with respect to H:

G′ :=
{∑
α∈N

LT>(gi,α) · xα︸ ︷︷ ︸
=:g′i

∣∣∣ i = 1, . . . , k
}
,

i.e. no term of tail>(g′i) lies in LT>(H).
We call a standard basis G initially reduced, if it is minimal and initially

reduced with respect to itself.

For now, note that every x-homogeneous ideal has an initially reduced
standard basis. We will show how it can be computed in finite time, provided
polynomial input, in the next section.

Proposition 3.1.8 Let I ERJtK[x] be an x-homogeneous ideal. Then I has
an initially reduced standard basis.

Proof. Since IERJtK[x] is x-homogeneous, there exists a reduced stan-
dard basis G by Algorithm 2.2.21. In particular, G is initially reduced. �

We will now use initially reduced standard bases to construct the Gröbner
fan of an x-homogeneous ideal, or rather show that the definition above
indeed yields a polyhedral fan.

Lemma 3.1.9 Let > be a t-local monomial ordering, G an initially reduced
standard basis of I with respect to it. Then for all w ∈ R<0 × Rn we have

inw(I) = LT>(I) ⇐⇒ ∀g ∈ G : inw(g) = LT>(g).

Proof. ⇒: Let g ∈ G. Then inw(g) ∈ inw(I) = LT>(I). Writing
g =

∑
α∈Nn gα · xα with gα ∈ RJtK, note that the only terms of g which can

occur in inw(g) are of the form LT>(gα)·xα for some α ∈ Nn. And since our
leading ideal is naturally generated by terms, these terms of inw(g) also lie
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in LT>(I) by Lemma 3.1.2. Because G is initially reduced, we see that the
only term of g which can occur in inw(g) is LT>(g), i.e. inw(g) = LT>(g).
⇐: It is clear that inw(I) ⊇ LT>(I). For the converse, it suffices to show
inw(f) ∈ LT>(I) for all f ∈ I. For that, consider the weighted ordering >w
with weight vector w and tiebreaker >, and note that G is also a standard
basis with respect to that ordering. Hence any f ∈ I will have a weak
division with remainder 0 with respect to G and >w:

u · f = q1 · g1 + . . .+ qk · gk.

The weighted monomial ordering ensures, that there is no cancellation of
highest weighted degree terms on the right hand side, and that 1 is amongst
the highest weighted degree terms in u. Taking the initial form with respect
to w on both sides then yields:

inw(u) · inw(f) = inw(qi1) · inw(gi1) + . . .+ inw(qil) · inw(gil)

= inw(qi1) · LT>(gi1) + . . .+ inw(qil) · LT>(gil) ∈ LT>(I)

for the 1 ≤ i1 < . . . < il ≤ k whose terms contribute to the highest weighted
degree. Now since LT>(I) is generated by terms, any term of inw(u)·inw(f)

is contained in it. In particular, that means inw(f) ∈ LT>(I) by Lemma
3.1.3. �

Example 3.1.10 Consider the ideal

〈x− t3x+ t3z − t4z︸ ︷︷ ︸
=:g1

, y − t3y + t2z − t4z︸ ︷︷ ︸
=:g2

〉E ZJtK[x, y, z]

and the weighted ordering >=>v on Mon(t, x, y, z) with weight vector v =

(−1, 3, 3, 3) ∈ R<0 × R3 and t-local lexicographical ordering x > y > 1 > t

as tiebreaker.
Since g1 and g2 already form an initially reduced standard basis, the set

whose euclidean closure yields C>(I) is, by our previous Lemma 3.1.9, given
by

{w ∈ R<0 × R3 | inw(I) = LT>(I)} =

{w ∈ R<0 × R3 | inw(g1) = LT>(g1) = x and inw(g2) = LT>(g2) = y}.

Hence it is cut out by the following two systems of inequalities:

inw(g1) = x ⇐⇒


degw(x) > degw(t3x)

degw(x) > degw(t3z)

degw(x) > degw(t4z)

⇐⇒


0 > w0

w1 > 3w0 + w3

w1 > 4w0 + w3

and

inw(g2) = y ⇐⇒


degw(y) > degw(t3y)

degw(y) > degw(t2z)

degw(y) > degw(t4z)

⇐⇒


0 > w0

w2 > 2w0 + w3

w2 > 4w0 + w3.
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Note that the third inequalities stemming from the terms t4z in g1 and
g2 are made redundant by the second inequalities because w0 < 0 always.
Similarly, the first inequalities coming from the terms t3x in g1 and t3y in
g2 become redundant in the euclidean closure. This is why these terms may
be ignored for our purposes in the initial reduction.

Observe that the set above is invariant under translation by (0, 1, 1, 1).
Figure 3 shows an image in which we restrict ourselves to the affine subspace
{w0 = −1, w3 = 1}. Due to the invariance under translation, no information
is lost by doing so.

w1

w2

(−1, 0, 0, 1)

{w1 > −3 + 1}

−2

{w2 > −2 + 1}
−1 inw(g1) = x

inw(g2) = y + t2z

inw(g2) = y

inw(g1) = x

R<0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 3. C>(I) having the structure of a polyhedral cone

Also note that while the weight vectors on the euclidean boundary may
not induce initial forms of g1 and g2 coinciding to the leading terms, the
initial forms still contain the leading terms. This is a direct consequence of
our last lemma.

Lemma 3.1.11 Let > be a t-local monomial ordering and G an initially
reduced standard basis of I with respect to it. Then for all w ∈ R<0×Rn we
have

w ∈ C>(I) ⇐⇒ ∀g ∈ G : LT>(inw(g)) = LT>(g).

Proof. Suppose G = {g1, . . . , gk}. As explained in Example 3.1.10,
Lemma 3.1.9 implies that the set {w ∈ R<0 × Rn | inw(I) = LT>(I)} is cut
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out by a system of strict inequalities of the form:

degw(LT>(g1)) > degw(tail>(g1)),

degw(LT>(g2)) > degw(tail>(g2)),
...

degw(LT>(gk)) > degw(tail>(gk)).

Note that each line, despite gi ∈ RJtK[x], only yields a finite amount of
minimal inequalities, since higher degrees of t yield redundant inequalities.
Therefore, its euclidean closure C>(I) is given by a system of inequalities of
the form

degw(LT>(g1)) ≥ degw(tail>(g1))

degw(LT>(g2)) ≥ degw(tail>(g2))
...

degw(LT>(gk)) ≥ degw(tail>(gk))

which is equivalent to LT>(gi) occuring in inw(g) and translates to the con-
dition in the claim. �

This allows us to prove the final lemma necessary for our statement about
the standard bases of initial ideals.

Lemma 3.1.12 Let > be a t-local monomial ordering. Then for all w ∈
C>(I), w ∈ R<0 × Rn, we have

LT>(inw(I)) = LT>(I).

Proof. Let G be an initially reduced standard basis of I with respect
to >. Since LT>(inw(g)) = LT>(g) for all g ∈ G by Lemma 3.1.11, we have

LT>(I) = 〈LT>(g) | g ∈ G〉 Lem.
=

3.1.11
〈LT>(inw(g)) | g ∈ G〉 ⊆ LT>(inw(I)).

For the opposite inclusion, we can again consider the weighted ordering >w.
Any h ∈ inw(I) with h = inw(f) for some f ∈ I has a weak division with
remainder 0 with respect to G = {g1, . . . , gk} and that ordering:

u · f = q1 · g1 + . . .+ qk · gk.

Because no cancellation of highest weighted degree terms occurs on the right,
taking the initial forms on both sides yields:

inw(u) · inw(f) = inw(qi1) · inw(gi1) + . . .+ inw(qil) · inw(gil)

for the 1 ≤ i1 < . . . < il ≤ k whose terms contribute to the highest weighted
degree. Moreover, LT>(inw(u)) = LT>w(u) = 1. Therefore taking the
leading terms on both sides produces:

LT>(inw(f)) = q′i1 · LT>(inw(gi1)) + . . .+ q′il · LT>(inw(gil))

Lem.
=

3.1.11
q′i1 · LT>(gi1) + . . .+ q′il · LT>(gil) ∈ LT>(I),

where we abbreviated q′ij := LT>(inw(qij )) for j = 1, . . . , l. �
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Proposition 3.1.13 Let > be a t-local monomial ordering and let G be an
initially reduced standard basis of I with respect to it. Then for all w ∈
C>(I), w ∈ R<0 × Rn, the set

H := {inw(g) | g ∈ G}

is an initially reduced standard basis of inw(I) with respect to the same or-
dering.

Proof. By the previous Lemmata, we have

LT>(inw(I))
Lem.
=

3.1.12
LT>(I) = 〈LT>(g) | g ∈ G〉 Lem.

=
3.1.11

〈LT>(inw(g)) | g ∈ G〉,

and therefore H is a standard basis of inw(I). Moreover, because G was
initially reduced, so is H. �

Example 3.1.14 Given the same ideal and ordering as in Example 3.1.10,
g1 = x − t3x + t3z − t4z and g2 = y − t3y + t2z − t4z form an initially
reduced standard basis. Because w := (−1, 2,−1, 1) ∈ C>(I), Proposition
3.1.13 implies that the initial ideal with respect to it has the initially reduced
standard bases

{inw(g1), inw(g2)} = {x, y + t2z}.

As we go over all weight vectors in C>(I) in the affine subspace, we obtain
four distinct initial ideals as illustrated in Figure 4.

w1

w2

−2

−1

{x, y}

{x, y + t2z}

{x+ t3z, y}

{x+ t3z, y + t2z}

(−1, 2,−1, 1)

R<0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 4. standard bases of initial ideals with various weights

The finiteness of distinct leading ideals holds in general and it can be
stated as an easy corollary.
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Remark 3.1.15 Let JER[t, x] be an x-homogeneous ideal in the polynomial
ring R[t, x], and consider the ideal I := J · RJtK[x] E RJtK[x] it generates in
the mixed power series and polynomial ring RJtK[x].

Any generating system F ⊆ J of J also represents a generating system
of F ⊆ I of I, and if we use F to compute an initially reduced standard
basis of I, no step of the calculation will leave J ⊆ R[t, x], cf. Section 2.2.
Because F is polynomial, we hence obtain a polynomial standard basis of
I that is in particular still contained in J . Due to Proposition 3.1.13, this
shows

inw(I) = 〈inw(g) | g ∈ G〉 = 〈inw(f) | f ∈ J〉 =: inw(J),

i.e. the initial ideal of I is generated by the initial forms of elements in J .
We will make frequent use of this fact hereinafter, when we consider initial
ideals of the form inv(inw(I)), as in Proposition 3.3.4 and Definition 4.1.6.
Note also, that we can compute initial forms of polynomials with respect to
arbitrary weight vectors in Rn+1.

Corollary 3.1.16 There are only finitely many distinct initial ideals of I.
In particular, there are only finitely many Gröbner cones of I.

Proof. Note that an arbitrary element g =
∑

α∈Nn gαx
α ∈ RJtK[x] with

gα ∈ RJtK has only finitely many distinct initial forms. Consider a weight
vector w = (w0, w1, . . . , wn) ∈ R<0 × Rn, and let > be a t-local monomial
ordering. The initial forms of g with respect to it are of the form

inw(g) =
∑
α∈Λ

LT>(gα) · xα

for the finite set Λ ⊆ {α ∈ Nn | gα 6= 0}.
Now since there are only finitely many leading ideals by Proposition 3.1.4,

Proposition 3.1.13 thus implies that there can only be finitely many initial
ideals of I. Thus the number of cones in Σ(I) of the form Cw(I) and hence
also of the form C0

w(I) is finite. �

The next proposition allows us to read off the inequalities and equations
of the Gröbner cones, from which we can derive the remaining properties
needed to show that they form a polyhedral fan.

Proposition 3.1.17 Let > be a t-local monomial ordering, G an initially
reduced standard basis of I with respect to it and w ∈ C>(I), w ∈ R<0×Rn.
Then for all v ∈ R<0 × Rn we have

inv(I) = inw(I) ⇐⇒ ∀g ∈ G : inv(g) = inw(g).

Proof. ⇐: Note that

LT>(inv(g)) = LT>(inw(g))
Lem.
=

3.1.11
LT>(g),
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thus v ∈ C>(I), again by Lemma 3.1.11. This allows us to use Proposition
3.1.13, which says that inw(I) and inv(I) share a common standard basis,
therefore they must coincide.
⇒: Let g ∈ G. On the one hand, Lemma 3.1.11 implies that LT>(g) is a
term of inw(g). On the other hand,

LT>(inv(g)) ∈ LT>(inv(I)) = LT>(inw(I))
Lem.
=

3.1.12
LT>(I).

But because G is initially reduced, the only term of g occurring in inv(g)

and LT>(I) is LT>(g). Thus LT>(g) is also a term of inv(g).
Now consider inw(g) − inv(g) ∈ inw(I) = inv(I). Our previous argu-

ments show that LT>(inw(g)− inv(g)) 6= LT>(g). However, because

LT>(inw(g)− inv(g)) ∈ LT>(inw(I))
Lem.
=

3.1.12
LT>(I),

it represents another term of inw(g) or inv(g) in LT>(I), which can only be
0. �

Example 3.1.18 Consider the same ideal and ordering as in Example 3.1.10
and Example 3.1.14, where g1 = x−t3x+t3z−t4z and g2 = y−t3y+t2z−t4z
form an initially reduced standard basis.

For w = (−1, 2,−1, 1) ∈ C>(I)∩R<0×R3 we have by Proposition 3.1.17:

inw′(I) = 〈x, y + t2z〉 ⇐⇒

{
inw′(g1) = x,

inw′(g2) = y + t2z.

Therefore, its equivalence class of weight vectors w′ ∈ R<0 × R3 such that
inw′(I) = inw(I) is determined by the following system of inequalities and
equations:

inw′(g1) = x ⇐⇒


degw′(x) > degw′(t

3x)

degw′(x) > degw′(t
3z)

degw′(x) > degw′(t
4z)

⇐⇒


0 > w′0

w′1 > 3w′0 + w′3

w′1 > 4w′0 + w′3

inw(g2) = y+t2z ⇐⇒


degw′(y) > degw′(t

3y)

degw′(y) = degw′(t
2z)

degw′(y) > degw′(t
4z)

⇐⇒


0 > w′0

w′2 = 2w′0 + w′3

w′2 > 4w′0 + w′3

In particular, its euclidean closure, the Gröbner cone Cw(I), is the face of
C>(I) cut out by the hyperplane {w′2 = 2w′0 + w′3}.

In fact, Proposition 3.1.17 implies that C>(I) is stratified by equivalence
classes of weight vectors as Figure 4 already suggested. Each equivalence
class is an open polyhedral cone whose euclidean closure yields a face of
C>(I).
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Proposition 3.1.19 The Gröbner cones Cw(I) and C0
w(I), w ∈ R<0 × Rn,

are closed polyhedral cones.

Proof. Let > be a t-local weighted monomial ordering with respect to
weight vector w, and let G be an initially reduced standard basis of I with
respect to it.

Suppose G = {g1, . . . , gk} with gi =
∑

β,α cα,β,i · tβxα. Let Λi be the
finite set of exponent vectors with minimal entry in t,

Λi :=
{

(β, α) ∈ N× Nn
∣∣ α ∈ Nn, β = min{β′ ∈ N | cα,β′,i 6= 0}

}
.

As demonstrated in Example 3.1.18, Proposition 3.1.17 implies that the
equivalence class of w, {v ∈ R<0 × Rn | inv(I) = inw(I)}, is cut out by
a system of inequalities and equations

v · (β, α) > v · (δ, γ), for all (β, α), (δ, γ) ∈ Λi with w · (β, α) > w · (δ, γ),

v · (β, α) = v · (δ, γ), for all (β, α), (δ, γ) ∈ Λi with w · (β, α) = w · (δ, γ).

Therefore, the equivalence class forms a relative open polyhedral cone con-
tained in the open lower half space R<0 ×Rn and its closure Cw(I) yields a
closed polyhedral cone in the closed lower half space R≤0×Rn. In particular,
C0
w(I) = Cw(I) ∩ ({0} × Rn) is also a closed polyhedral cone. �

Corollary 3.1.20 Let w ∈ R<0 × Rn. Then any face τ ≤ Cw(I) with
τ * {0} × Rn coincides with the closure of the equivalence class of any
weight vector in its relative interior.

In particular, each face τ ≤ Cw(I) is of the form τ = Cv(I) or τ = C0
v (I)

for some v ∈ Cw(I) and each face τ ≤ C0
w(I) is of the form τ = C0

v (I) for
some v ∈ Cw(I).

Proof. Consider again the system of inequalities and equations that
are determined by Λ1, . . . ,Λk and cut out Cw(I) in the proof of the previ-
ous Proposition 3.1.19, which we obtained from the exponent vectors of an
initially reduced standard basis with respect to a weighted ordering >w.

A face τ ≤ Cw(I) is cut out by supporting hyperplanes, on which some
of the inequalities above become equations. Assuming that there are weights
v ∈ τ ∩ (R<0 ×Rn), all weight vectors in the relative interior yield the same
initial forms on g1, . . . , gk ∈ G, since they satisfy the same equations and
inequalities determined by Λ1, . . . ,Λk. This implies that they belong to the
same equivalence class whose closure is then τ . In particular, τ = Cv(I).

And any face τ ≤ C0
w(I) ≤ Cw(I) can be cut out by a supporting hy-

perplane which also cuts out a face Cv(I) ≤ Cw(I). It is then clear that
τ = C0

v (I). �

Proposition 3.1.21 Let Cu(I) and Cv(I) be two interior Gröbner cones
such that Cu(I)∩Cv(I) * {0}×Rn. Then Cu(I)∩Cv(I) = Cw(I) for some
w ∈ R<0 × Rn, and Cw(I) is a face of both Cu(I) and Cv(I).
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Proof. By Proposition 3.1.19, both Cu(I) ∩ (R<0 × Rn) and Cv(I) ∩
(R<0×Rn) can be decomposed into a union of equivalence classes, and hence
so can (Cu(I) ∩ Cv(I)) ∩ (R<0 × Rn) 6= ∅.

Suppose dim(Cu(I)∩Cv(I)) = k. Then the intersection contains exactly
one equivalence class of dimension k. If there were none, then the intersection
would be covered by a collection of lower dimensional open cones of which
there are, however, only finitely many by Corollary 3.1.16. If there were
more than one, then that would contradict Proposition 3.1.19, which states
that the closure of each equivalence class yields a distinct face of both Cu(I)

and Cv(I), and no two k-dimensional faces of a polyhedral cone may be cut
out by the same k-dimensional supporting hyplerplane.

So let w be in the maximal equivalence class in Cu(I) ∩ Cv(I). Taking
the euclidean closure, we necessarily have Cw(I) = Cu(I) ∩ Cv(I), and, by
Corollary 3.1.19, it is a face of both Cu(I) and Cv(I). �

Note that the proposition above falls a bit short in proving that the
intersection of two Gröbner cones yields a face of both, as it only covers
Gröbner cones with an intersection in the open part of the lower halfspace.
Nevertheless, it is has big implications on the interior of the Gröbner fan,
which is the relevant part for the tropical varieties, as well as the boundary
of it.

Definition 3.1.22 For an interior Gröbner cone Cw(I), w ∈ R<0 × Rn,
let C−1

w (I) denote the intersection

C−1
w (I) := Cw(I) ∩ ({−1} × Rn).

It is a polytope whose recession cone is defined to be the set of all weight
vectors in R≤0 × Rn under whose translation it is closed,

rec(C−1
w (I)) := {v ∈ R≤0 × Rn | v + C−1

w (I) ⊆ C−1
w (I)}.

Note that C−1
w (I) ⊆ {−1}×Rn necessarily implies rec(C−1

w (I)) ⊆ {0}×Rn.

Proposition 3.1.23

(1) The collection

Σ(I) ∩ ({−1} × Rn) = {C−1
w (I) | w ∈ R<0 × Rn}

is a polyhedral complex whose support is the affine hyperplane {−1}×Rn.
(2) For any weight vector w ∈ R<0 × Rn, C0

w(I) = rec(C−1
w (I)).

(3) The collection

Σ(I) ∩ ({0} × Rn) = {C0
w(I) | w ∈ R<0 × Rn}

is a polyhedral fan whose support is the boundary hyplerplane {0} ×Rn.

Proof. (1) follows from Proposition 3.1.19, Corollary 3.1.20 and Propo-
sition 3.1.21. (2) is clear, and (3) follows from Corollary 3.10 in [BGS11].

�
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We can now complete the missing intersections in Proposition 3.1.21.

Corollary 3.1.24 Consider two weight vectors u, v ∈ R<0 × Rn. Then

C0
u(I) ∩ C0

v (I) = C0
w(I) for some w ∈ R<0 × Rn,

C0
u(I) ∩ Cv(I) = C0

w(I) for some w ∈ R<0 × Rn.

Proof. Since the number boundary Gröbner cones form a polyhedral
fan by Proposition 3.1.23, the intersection C0

u(I)∩C0
v (I) is a face of both. In

particular, by Corollary 3.1.20, there is a weight vector w ∈ R<0 × Rn with

C0
u(I) ∩ C0

v (I) = C0
w(I).

And for the intersection of a boundary Gröbner cone and an interior Gröbner
cone, note that

C0
u(I) ∩ Cv(I) = C0

u(I) ∩ C0
v (I) = C0

w(I). �

We therefore have shown:

Theorem 3.1.25 Let IERJtK[x] be an x-homogeneous ideal, then the Gröb-
ner fan

Σ(I) = {Cw(I) | w ∈ R<0 × Rn} ∪ {C0
w(I) | w ∈ R<0 × Rn}

is a polyhedral fan with support R≤0 × Rn.

Proof. Proposition 3.1.19 shows that each Gröbner cone is a polyhe-
dral cone, while Corollary 3.1.20 proves that the face of a Gröbner cone is
again a Gröbner cone. Proposition 3.1.21 and Corollary 3.1.24 infer that the
intersection of two Gröbner cones is again a Gröbner cone, and Corollary
3.1.16 shows that there are only finitely many of them. �

Example 3.1.26 Consider the following ideal generated by polynomials

〈2x+ 2y, t+ 2〉E ZJtK[x, y].

Now because the ideal is generated by elements in Z[t, x, y], one might be
tempted to believe that restricting ourselves to the polynomial ideal

〈2x+ 2y, t+ 2〉E Z[t, x, y],

might allow us to work with weight vectors R≥0 × R2 with positive weight
in t, obtain similar results about the existance of a Gröbner fan there and
patch the two Gröbner fans in R≤0 × R2 and in R≥0 × R2 together.

While the existence of a Gröbner fan in the positive halfspace is true
for our specific example, note that the two Gröbner fans cannot be glued
together to a polyhedral fan on R× R2, as illustrated in Figure 5.

As demonstrated in Example 3.1.18 and used in the proof of Proposition
3.1.19, Proposition 3.1.17 allows us to read of the inequalities and equations
of a Gröbner cone from an initially reduced standard basis. This can be done
as described in the following algorithm.
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〈2〉

〈2x, t〉 〈2y, t〉

〈2x+ 2y, t〉

?? ??

R× R2 ∩ {wx = wy}

Figure 5. Σ(〈2x+ 2y, t+ 2〉) on R× R2...?

Algorithm 3.1.27 Inequalities and equations of a Gröbner cone
Input: (G,w), where G = {g1, . . . , gk} ⊆ RJtK[x] an initially reduced stan-

dard basis of an x-homogeneous ideal I with respect to a t-local monomial
ordering > such that w ∈ C>(I) ∩ (R<0 × Rn).

Output: (A,B), a pair of matrices

A ∈ Mat(lA × (n+ 1),R), B ∈ Mat(lB × (n+ 1),R)

such that

Cw(I) = {v ∈ R≤0 × Rn | A · v ∈ (R≥0)lA and B · v = 0 ∈ RlB}.

1: for i = 1, . . . , k do
2: Suppose gi =

∑
β,α cα,β,i · tβxα.

3: Construct the set of exponent vectors with minimal entry in t,

Λi :=
{

(β, α) ∈ N× Nn
∣∣ α ∈ Nn, β = min{β′ ∈ N | cα,β′,i 6= 0}

}
.

4: Construct a set of vectors that will yield the inequalities,

Ωi := {a− b ∈ R× Rn | a, b ∈ Λi, a · w > b · w} .

5: Construct a set of vectors that will yield the equations,

Θi := {a− b ∈ R× Rn | a, b ∈ Λi, a · w = b · w} .

6: Let A be a matrix whose row vectors consists of
⋃k
i=1 Ωi.

7: Let B be a matrix whose row vectors consists of
⋃k
i=1 Θi.

8: return (A,B).

Alternatively, it is possible to compute a Gröbner cone without knowing
a predetermined weight w in it. This is important for computing initial ideals
with respect to generic weights in Chapter 4, where we compute the initial
ideal without computing a weight beforehand.
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Algorithm 3.1.28 Inequalities and equations of a Gröbner cone
Input: (H,G,>), where for an x-homogeneous ideal I and an undetermined

weight vector w ∈ R<0 × Rn

(1) > a t-local monomial ordering such that w ∈ C>(I),
(2) G = {g1, . . . , gk} an initially reduced standard basis of I w.r.t. >,
(3) H = {h1, . . . , hk} with hi = inw(gi).

Output: (A,B), a pair of matrices

A ∈ Mat(lA × (n+ 1),R), B ∈ Mat(lB × (n+ 1),R)

such that

Cw(I) = {v ∈ R≤0 × Rn | A · v ∈ (R≥0)lA and B · v = 0 ∈ RlB}.

1: for i = 1, . . . , k do
2: Suppose gi =

∑
β,α cα,β,i · tβxα and LM>(g) = tδxγ .

3: Construct the set of exponent vectors with minimal entry in t,

Λi :=
{

(β, α) ∈ N× Nn
∣∣ α ∈ Nn, β = min{β′ ∈ N | cα,β′,i 6= 0}

}
.

4: Construct a set of vectors that will yield the inequalities,

Ωi := {(δ, γ)− (α, β) ∈ R× Rn | (α, β) ∈ Λi, (α, β) 6= (δ, γ)} .

5: Let A be a matrix whose row vectors consists of
⋃k
i=1 Ωi.

6: for i = 1, . . . , k do
7: Suppose hi =

∑
β,α dα,β,i · tβxα.

8: Construct the set of exponent vectors with minimal entry in t,

Λ′i :=
{

(β, α) ∈ N× Nn
∣∣ α ∈ Nn, β = min{β′ ∈ N | dα,β′,i 6= 0}

}
.

9: Construct a set of vectors that will yield the equations,

Θi :=
{
a− b ∈ R× Rn | a, b ∈ Λ′i

}
.

10: Let B be a matrix whose row vectors consists of
⋃k
i=1 Θi.

11: return (A,B).

In particular, for maximal Gröbner cones we obtain:

Algorithm 3.1.29 Inequalities of a maximal Gröbner cone
Input: (G,>), where G = {g1, . . . , gk} ⊆ RJtK[x] an initially reduced stan-

dard basis of an x-homogeneous ideal I with respect to a t-local monomial
ordering >.

Output: A ∈ Mat(l × (n+ 1),R), a matrix such that

C>(I) = {v ∈ R≤0 × Rn | A · v ∈ (R≥0)l}.

1: for i = 1, . . . , k do
2: Suppose gi =

∑
β,α cα,β,i · tβxα and LM>(g) = tδxγ .

3: Construct the set of exponent vectors with minimal entry in t,

Λi :=
{

(β, α) ∈ N× Nn
∣∣ α ∈ Nn, β = min{β′ ∈ N | cα,β′,i 6= 0}

}
.
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4: Construct a set of vectors that will yield the inequalities,

Ωi := {(δ, γ)− (α, β) ∈ R× Rn | (α, β) ∈ Λi, (α, β) 6= (δ, γ)} .

5: Let A be a matrix whose row vectors consists of
⋃k
i=1 Ωi.

6: return A
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3.2. Initial Reduction

In this section, we present an algorithm for the initial reduction of an
polynomial x-homogeneous standard basis in finite time. For the sake of
simplicity, we will restrict ourselves to ideals obtained via Theorem 1.2.13,
see Convention 3.2.1, though the basic ideas behind the algorithm should
also apply to the general case as well.

This section has a simple monolithic structure. Because our ideals are
all x-homogeneous, the problems that commonly arise when lacking a well-
ordering actually root in the inhomogeneity in t alone. It turns out that these
problems can be circumvented by reducing with respect to p − t diligently.
Hence we begin with a dedicated algorithm for tha.t

Next, we continue with an algorithm for reducing a set of elements of
same x-degree with respect to themselves and p − t. Having all elements
sharing the same x-degree makes the inhomogeneity in t easy to handle.
Using it, we construct an algorithm for reducing a set of elements of same
x-degree with respect to themselves, p − t and another set of elements of
strictly lower x-degree. This is the part in which the difficulty of our lack
of well-ordering becomes apparent. With that algorithm, we conclude the
section with an 3.2.9 for reducing a standard bases with respect to itself.

g
(1)
1 . . . . . . . . . g

(1)
k1

g
(2)
1 . . . . . . . . . g

(2)
k2

...
...

g
(l)
1 . . . . . . . . . g

(l)
kl

Alg. 3.2.3

Alg. 3.2.4

Alg. 3.2.7

Alg. 3.2.9

reduces
element

w.r.t. p − t reduces same
x-degrees
w.r.t. itself
and p− t

reduces same
x-degrees

w.r.t. itself,
lower degrees

and p − t

overall
reduction

Figure 6. reduction algorithms in Section 3.2, given a set
{g(1)

1 , . . . , g
(1)
k1
}∪. . . {g(l)

1 , . . . , g
(l)
kl
} of x-homogeneous elements

split up by x-degree

Convention 3.2.1 For this section, we adopt Convention 1.2.2, in which
we have: K a field with non-trivial discrete valuation, K its residue field, Rν
its discrete valuation ring, p ∈ Rν a uniformizing parameter and R ⊂ Rν a
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dense noetherian subring with p ∈ R. Both K and Rν are assumed to be
complete, so that we have exact sequences

0 〈p− t〉 ·RJtK〈p−t〉[x] RJtK〈p−t〉[x] K[x] 0,

0 〈p− t〉 ·RJtK[x] RJtK[x] Rν [x] 0.
t 7−→ p

and R/〈p〉 = K.
As stated in the beginning of the last section, we still require that R con-

tinues to satisfy Convention 2.1.1, i.e. R is noetherian and linear equations
in R are solvable, so that standard bases in RJtK[x] exist and are computable.

Fix a preimage I E RJtK[x] of a homogeneous ideal in K[x], which in
particular implies that I is x-homogeneous and p − t ∈ I. Moreover, fix a
t-local monomial ordering > on Mon(t, x).

Before we begin with the reduction algorithms, let us recall again why
initially reduced standard bases are important.

Example 3.2.2 Let RJtK[x] = ZJtK[x, y, z], and let >=>v be a weighted
ordering with weight vector v = (−1, 1, 1, 1) ∈ R<0 ×R3 and the t-local lex-
icographical ordering x > y > 1 > t as tiebreaker. Then given the following
ideal I a possible standard basis G would be, leading terms highlighted:

I = 〈2− t, 3x− tx+ t2y + t3z, 5y + tx− t2y + t2z〉 E ZJtK[x, y, z]

G = {2− t, x+ t2y + t3z, y + tx+ t2z}.

⊆

In the previous section, we have seen how initially reduced standard bases
play a central role in determining the inequalities and equations of Gröbner
cones, see for example Algorithm 3.1.27. To illustrate that initially reduced
standard bases are indeed necessary, let g0, g1 and g2 denote the standard
basis elements above.

It is easy to see that G is a standard basis, but it is not yet initially
reduced as the terms t2y in g1 and tx in g2 still lie in the leading ideal
LT>(I) = 〈2, x, y〉. Consequently, these two terms yield meddling inequali-
ties, so that (the overline denoting the closure in the euclidean topology)

{w ∈ R<0 × R3 | inw(gi) = inv(gi) for i = 0, 1, 2} ( Cv(I).

Ignoring g0, as it yields no non-trivial inequalities in R≤0×R3, the former is
the euclidean closure of the open polyhedral cone given by the inequalities

inw(g1) = x ⇐⇒

{
degw(x) > degw(t2y)

degw(x) > degw(t3z)
⇐⇒

{
w1 > 2w0 + w2

w1 > 3w0 + w3

and

inw(g2) = y ⇐⇒

{
degw(y) > degw(tx)

degw(y) > degw(t2z)
⇐⇒

{
w2 > w0 + w1

w2 > 2w0 + w3
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see Figures 7 and 8.

w1

w2

(−1, 0, 0, 1)

{w1 > −2 + w2}{w1 > −3 + 1}

−2 (−1, 2, 0, 1)

R≤0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 7. inequalities given by inw(g1) = x

w1

w2

(−1, 0, 0, 1)

{w2 > −1 + w1}

{w2 > −2 + 1}
−1

(−1, 2, 0, 1)

R≤0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 8. inequalities given by inw(g2) = y

Clearly, the weight vector w := (−1, 2, 0, 1) lies outside the euclidean
closure. However, choosing suitable elements one can see that inw(I) =



3.2. INITIAL REDUCTION 87

inv(I), since

inw(g1 − t2 · g2) = inw(x− t3x+ t3z − t4z) = x,

inw(g2 − t · g1) = inw(y − t3y + t2z − t4z) = y,

implying that w ∈ Cv(I). Replacing {g1, g2} with the initially reduced stan-
dard basis {g1−t2 ·g2, g2−t·g1}, we see that we are replacing the unnecessary
inequalities above, induced by t2y and tx, with the redundant inequalities of
Example 3.1.10, induced by t3x, t3y and t4z.

As we explained in the beginning of the section, the element p− t plays a
central role in our reduction process and reductions with it have to be made
diligently. Hence, we dedicate an own algorithm to it.

Algorithm 3.2.3 (p− t)-Reduce
Input: (g,>), where> a t-local monomial ordering and g ∈ I x-homogeneous

and polynomial, i.e. g ∈ R[t, x].
Output: g′ ∈ I x-homogeneous and polynomial with LT>(g′) = LT>(g)

and initially reduced with respect to p − t under >, i.e. no term of
tail>(g) is divisible by LT>(p− t) = p.

1: Suppose g =
∑

α gα · xα with gα ∈ R[t] and LT>(g) = LT>(gγ) · xγ .
2: Set g′ := gγ · xγ and g′′ := g − gγ · xγ , so that g = g′ + g′′.
3: while g′′ 6= 0 do
4: Suppose g′′ =

∑
α g
′′
α · xα with g′′α ∈ R[t] and LT>(g′′) = LT>(g′′γ) · xγ .

5: if p | LT>(g′′γ) then
6: Let l := max{m ∈ N | pm divides LT>(g′′γ)} > 0.

7: Set g′′ := g′′ − LT>(g′′γ )

pl
· (pl − tl).

8: else
9: Set g′ := g′ + g′′γ · xγ and g′′ := g′′ − g′′γ · xγ .

10: return g′

Proof. Termination: We need to show that g′′ = 0 eventually. Since
all changes to g′′ during a single iteration of the while loop happen at a
distinct monomial in x, namely that of LM>(g′′), we may assume for our
argument that all terms of g′′ have the same monomial in x. Suppose, in the
beginning of an iteration,

g′′ = (ci1t
i1 + . . .+ cij · tij ) · xγ with i1 < . . . < ij .

Now if p - LT>(ci1), then g′′ will be set to 0 in Step 9 and the algorithm
terminates. If p | LT>(ci1), we substitute the term ci1 · ti1xγ by the term
ci1/p

l · ti1+lxγ in Step 7, increasing the minimal t-degree strictly.
Let νp(c) := max{m ∈ N | pm divides c} denote the p-adic valuation on

R, so that l = νp(ci1), and consider the valued degree of g′′ defined by

max{νp(ci1) + deg(ti1), . . . , νp(cij ) + deg(tij )}.

This is a natural upper bound on the t-degree of our substitute, and hence
also for the t-degree of all terms in our new g′′.
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If the monomial of the substitute, ti1+lxγ , does not occur in the original
g′′, then this upper bound remains the same for out new g′′. If it does occur
in the original g′′, then this valued degree might increase depending on the
sum of the coefficients, however the number of terms in g′′ strictly decreases.

Because g′′ has only fintely many terms to begin with, this upper bound
may therefore only increase a finite number of times. And since the minimal
t-degree is strictly increasing, if g′′ is not set to 0, our algorithm terminates
eventually.

Correctness: It is clear that g′ remains polynomial and x-homogeneous.
And the only term of g′ that might be divisible by LT>(p − t) = p is
LT>(g′) = LT>(g), since all other terms passed the check in Step 5 neg-
atively. Hence g′ is initially reduced with respect to p− t under >. �

With this, we can begin formulating an algorithm for initially reducing
a set of elements which are x-homogeneous of same degree in x.

Algorithm 3.2.4 initial reduction, same degree in x
Input: (G,>), where > a t-local monomial ordering and G = {g1, . . . , gk} ⊆

I a finite subset such that

(1) g1, . . . , gk x-homogeneous of the same x-degree and polynomial,
(2) LC>(gi) = 1 for i = 1, . . . , k,
(3) LM>(gi) 6= LM>(gj) for i 6= j.

Output: G′ = {g′1, . . . , g′k} ⊆ I such that

(1) g′1, . . . , g′k x-homogeneous of the same x-degree and polynomial,
(2) LT>(g′i) = LT>(gi) for i = 1, . . . , k,
(3) G′ initially reduced with respect to itself and p− t.

1: for i = 1, . . . , k do
2: Run gi := (p− t)-Reduce(gi, >).
3: Reorder G = {g1, . . . , gk} such that

LM>(g1) > . . . > LM>(gk),

and suppose

gi :=
∑
α∈N

gi,α · xα with gi,α ∈ RJtK and LT>(gi) = tβixαi .

4: for i = 1, . . . , k − 1 do
5: for j = i+ 1, . . . , k do
6: if gj,αi 6= 0 then
7: Set

gj :=
gi,αi
tβi
· gj −

gj,αi
tβi
· gi.

8: Run gj := (p− t)-Reduce(gj , >).
9: for i = 1, . . . , k − 1 do

10: for j = i+ 1, . . . , k do
11: if tβj | gi,αj then
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12: Set
gi :=

gj,αj
tβj
· gi −

gi,αj
tβj
· gj .

13: Run gi := (p− t)-Reduce(gi, >).
14: return G′ = {g1, . . . , gk}.

Proof. For the correctness of the instructions note that, by definition
and because > is t-local, gj,αj is divisible by tβj and gi,αi is divisible by tβi
in Step 4. From the assumption in Step 8 it follows that gi,αj in Step 9

will be divisible by tβj . Observe that due to the reordering in Step 1 and
LM>(gj,αi) · xαi being a monomial in gj we have for i < j:

tβi · xαi = LM>(gi) > LM>(gj) > LM>(gj,αi) · xαi .

Now because > is t-local, this implies that tβi divides LM>(gj,αi), hence also
gj,αi .

It is clear that the algorithm terminates since it only consists of a finite
number of steps, and, for the correctness, that the output is x-homogeneous
and polynomial.

Next, we show that the leading terms of the gi are preserved. Observe
that in Step 5 we have LM>(

gi,αi
tβi

) = 1 by definition and LM>(
gj,αj
tβi

) < 1 by
the previous argument. Due to the assumption that LC>(gi) = LC>(gi,αi) =

1 we therefore have
LT>(gj) = LT>

(gi,αi
tβi
· gj
)

and
LM>(gj) > LM>(gj,αi) · xαi = LM>

(gj,αi
tβi
· gi
)
.

In Step 9 we similarly have LM>(
gj,αj

tβj
) = 1 and LM>(

gi,αj

tβj
) ≤ 1, thus

LT>(gi) = LT>

(gj,αj
tβj
· gi
)

and
LM>(gi) > LM>(gi,αj ) · xαj = LM>

(gi,αj
tβj
· gj
)
.

On the whole, we see that the leading terms of the g1, . . . , gk remain un-
changed.

Consequently, the output is initially reduced with respect to p− t. The
leading terms do not divide p as every element is monic and the latter terms
do not divide p because every element of the output was sent through the
Algorithm 3.2.3.

To see that the output G is initially reduced, observe that the first pair of
nested for loops eliminates all terms in gj with xαi for i < j. In particular,
each gj is initially reduced with respect to g1, . . . , gj−1.

Additionally, it will stay reduced with respect to g1, . . . , gj−1 in the sec-
ond pair of nested for loops, because gj+1, . . . , gk contain no monomial xαi ,
i < j, either.

Moreover, once gi is reduced initially with respect to gj for i < j in
Step 12, reducing it initially with respect to say gj+1 will not change that
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out of two reasons. First, gj+1 contains no term with xαj , hence adding a
multiple of it to gi is unproblematic. Secondly, LT>(gj,αj/t

βj ) = 1, which
means multiplying gi by it will not change LT>(gi,αj ). So if tβj does not
divide gi,αj before, because gi is initially reduced with respect to gj , it does
not divide gi,αj after as well.

This shows that the constant changes to gi in the second pair of nested
for loops are unproblematic. Once gi has been initially reduced with respect
to gj , it will stay that way while being reduced initially with respect to
gj+1, . . . , gk. �

Example 3.2.5 Consider the set G = {g1, g2, g3} ⊆ ZJtK[x1, x2, x3] with

g1 := x2
1 + tx2

2 − t2x2
3,

g2 := x2
2 + tx2

1 + tx2
3 + t2x2

3 = x2
2 + tx2

1 + (t+ t2)x2
3,

g3 := t3x2
3 + t4x2

1 + t4x2
2 + t5x2

2 = t3x2
3 + t4x2

1 + (t4 + t5)x2
2,

and the weighted ordering>=>w on Mon(t, x) with weight vector (−1, 1, 1, 1) ∈
R<0 × R3 and the t-local lexicographical ordering with x > y > z > 1 > t

as tiebreaker. The gi, i = 1, 2, 3 as well as their terms have already been
ordered above. Suppose p− t = 2− t.

We can illustrate the process with the help of the following 3 by 3 matrix:1 t −t2
t 1 t+ t2

t4 t4 + t5 t3

 .

The first row represents g1. Writing g1 =
∑

α gαx
α with gα ∈ RJtK, its first

entry is the gα with xα being the x-monomial of the leading term of g1, its
second entry is the gα with xα being the x-monomial of the leading term of
g2 and its third entry is the gα with xα being the x-monomial of the leading
term of g3. The second row represents g2 and the third row represents g3.
Terms with x-monomial different from all leading monomials, of which there
exist none in our example, would be ignored in this illustration.

In the first pass, we begin by taking g1 and reducing g2 and g3 with
respect to it. To eliminate the term tx2

1 in g2 and t4x2
1 in g3 we set

g2 := g2 − t · g1 = (x2
2 + tx2

1 + tx2
3 + t2x2

3)− t · (x2
1 + tx2

2 − t2x2
3)

= (1− t2) · x2
2 + (t+ t2 + t3) · x2

3,

g3 := g3 − t4 · g1 = (t3x2
3 + t4x2

1 + (t4 + t5)x2
2)− t4 · (x2

1 + tx2
2 − t2x2

3)

= (t3 + t6) · x2
3 + t4 · x2

2.

Since both g2 and g3 remain initially reduced with respect to 2− t, there is
no need to reduce them with respect to it.

g1 g2 g3
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0 1− t2 t+ t2 + t3

0 t4 t3 + t6


Next, we take g2 and reduce g3 with respect to it, i.e.

g3 := (1− t2) · g3 − t4 · g2

= (1− t2) · ((t3 + t6)x2
3 + t4x2

2)− t4 · ((1− t2)x2
2 + (t+ t2 + t3)x2

3)

= (t3 − 2t5 − t7 − t8) · x2
3.

And even though g3 contains a term divisible by 2, it still remains initially
reduced with respect to 2− t.

g1 g2 g31 t −t2
0 1− t2 t+ t2 + t3

0 0 t3 − 2t5 − t7 − t8


This concludes our first pass. For the second pass, we begin by taking

g1 and reducing it with respect to first g2 and then g3. Reducing g1 with
respect to g2 yields

g1 := (1− t2) · g1 − t · g2

= (1− t2) · (x2
1 + tx2

2 − t2x2
3)− t · ((1− t2)x2

2 + (t+ t2 + t3)x2
3)

= (1− t2) · x2
1 + (−2t2 − t3) · x2

3

and reducing that with respect to 2− t we obtain

g1 := g1 − (−t2 − t3)x2
3 · (2− t) = (1− t2) · x2

1 − t4x2
3.

Reducing g1 with respect to g3 yields,

g1 := (1− 2t2 − t4 − t5) · g1 − t · g3 = (1− 2t2 − t4 − t5)(1− t2)x2
1

= (1− 3t2 + t4 − t5 + t6 + t7) · x2
1,

which is initially reduced with respect to 2− t.

g1 g2 g31− 3t2 + t4 − t5 + t6 + t7 0 0

0 1− t2 t+ t2 + t3

0 0 t3 − t6 − t7 − t8


Finally, note that while g2 has a term t3x2

3 divisible by the leading term
t3x3 of g3, it is still initially reduced with respect to g3. This concludes our
second pass and we obtain the initially reduced set

g1 = (1− 5t2 + 3t4 − t5 + t6 + t7) · x2
1,

g2 = (1− t2) · x2
2 + (t+ t2 + t3) · x2

3,

g3 = (t3 − 2t5 − t7 − t8) · x2
3.
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Observe that it is possible to reduce the number of terms at the cost of the
coefficient size, by substituting p for some of the t. One alternative initially
reduced set with the same leading monomials as above would therefore be

g1 := 165 · x2
1, g2 := −3 · x2

2 + 7t · x2
3 and g3 := −55t3 · x2

3.

Next, we need to discuss how to reduce a set H of x-homogeneous el-
ements of same degree in x with respect to themselves and a set G of x-
homogeneous elements of lower degree. There are multiple ways of approach-
ing the problem. Conceptionally, the simplest way would be multiplying the
elements of G up to the same degree in x as the elements of H in all possible
combinations and using Algorithm 3.2.4 on the resulting set. This resembles
a brute force method in which we directly summon the worst case scenario
to be resolved. Consequently, it is an algorithm which is good in cases in
which the worst case is unavoidable.

Algorithm 3.2.6 initial reduction, all at once
Input: (G,H,>), where > a t-local monomial ordering, H = {h1, . . . , hk},

G ⊆ I finite subsets such that

(1) h1, . . . , hk x-homogeneous of the same x-degree d and polynomial,
(2) all g ∈ G x-homogeneous of x-degree less than d and polynomial,
(3) LC>(hi) = 1, for i = 1, . . . , k, and LC>(g) = 1 for all g ∈ G,
(4) LM>(hi) 6= LM>(hj) for i 6= j,
(5) LM>(hi) /∈ 〈LM>(g) | g ∈ G〉 for i = 1, . . . , k.

Output: H ′ = {h′1, . . . , h′k} ⊆ RJtK[x] such that

(1) h′1, . . . , h′k x-homogeneous of the same x-degree d and polynomial,
(2) LT>(h′i) = LT>(hi) for i = 1, . . . , k,
(3) H ′ initially reduced w.r.t. G and itself.

1: Set E := ∅.
2: for α ∈ Nn, |α| = d do
3: if tβxα ∈ LT>(G) for some β ∈ N then
4: Pick g ∈ G with LT>(g) | tβxα for some minimal β ∈ N.
5: Add E := E ∪

{
tβxα

LT>(g) · g
}
.

6: Reduce H ∪ E initially with Algorithm 3.2.4.
7: return H

Proof. Due to the necessary conditions of this algorithm, H ∪ E sat-
isfies the necessary conditions for Algorithm 3.2.4. The correctness of this
algorithm now follows from the correctness of Algorithm 3.2.4. �

A more sophisticated method is only multiplying the elements of G up
to the same degree in x as the elements of H when they are needed. In the
optimal case, we can reduce the complexity drastically with this strategy, in
the worst case we are only delaying the inevitable.
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Algorithm 3.2.7 initial reduction, step by step
Input: (G,H,>), where> a t-local monomial ordering,H = {h1, . . . , hk}, G ⊆

I finite subsets such that
(1) h1, . . . , hk x-homogeneous polynomials of the same x-degree d,
(2) all g ∈ G x-homogeneous polynomials of x-degree less than d,
(3) LC>(hi) = 1, for i = 1, . . . , k, and LC>(g) = 1 for all g ∈ G,
(4) LM>(hi) 6= LM>(hj) for i 6= j,
(5) LM>(hi) /∈ 〈LM>(g) | g ∈ G〉 for i = 1, . . . , k.

Output: H ′ = {h′1, . . . , h′k} ⊆ RJtK[x] such that
(1) h′1, . . . , h′k x-homogeneous polynomials of the same x-degree d,
(2) LT>(h′i) = LT>(hi) for i = 1, . . . , k,
(3) H ′ initially reduced w.r.t. G and itself.

1: Reduce H initially using Algorithm 3.2.4 and set E = ∅.
2: Suppose hi =

∑
α∈Nn hi,α · xα with hi,α ∈ RJtK, create the disjoint union

T := {(LT>(hi,α) · xα, i) | α ∈ Nn and LT>(hi,α) · xα < LT>(hi)},

a working list of terms to be checked for potential reduction with respect
to G.

3: while T 6= ∅ do
4: Pick (s, i) ∈ T with LM>(s) maximal.
5: if LT>(g) | s for some g ∈ G then
6: Pick g ∈ G, LT>(g) | s, and set E := E ∪

{
LM>(s)
LM>(g) · g

}
.

7: Reduce H ∪ E initially using Algorithm 3.2.4.
8: Update the working list:

T := {(LT>(hi,α) · xα, i) | α ∈ Nn and LM>(hi,α) · xα < LM>(s)}.

9: else
10: Set T := T \ {(hi, s)}.
11: return H

Proof. For the termination note that in each iteration of the while
loop either the set of extra polynomials E increases or the working list T
decreases. Also because each s is chosen to be maximal, each other term in
the working list T with the same x-monomial must have a higher t-degree
and is therefore eliminated alongside s in the initial reduction of H ∪ E.
Because the updated T only includes relevant terms smaller than s, the x-
monomial of s is effectively eliminated in all working lists to follow. Hence
each elements of E will always have a distinct x-monomial which is of degree
d. Thus E has a maximal size after which the algorithm will terminate in a
finite number of steps.

For the correctness of the instructions, observe that H ∪ E satisfies the
conditions for Algorithm 3.2.4 by assumption. For the correctness of the out-
put, it is obvious that the leading terms ofH are preserved, thatH is initially
reduced with respect to itself and that its elements are x-homogeneous as
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well as polynomial. To show that H is initially reduced with respect to G,
observe that, apart from the terms eliminated, any term altered in the initial
reduction of H ∪ E is strictly smaller than s. Because s was chosen to be
maximal, the updated working list therefore contains all relevant terms that
have been altered or that have yet to be checked for reduction. Thus in the
output any relevant term has been negatively checked for divisibility by an
element of G. �

Remark 3.2.8 Note that in Step 6 of Algorithm 3.2.7, we are multiplying
g by a power of t even though it is not necessary for its correctness, and the
reason is as follows:

Recall Algorithm 3.2.4, which consists of two big nested for loops. In
the first pass from Step 4 to 8 we take each gi, i = 1, . . . , k − 1, and reduce
all gj , i < j, with respect to it. In the second pass from Step 9 to 13 we take
each gi, i = 1, . . . , k − 1, and reduce it with respect to all gj , i < j.

Now suppose we enter the Algorithm with a set H ∪ {g}, with H =

{h1, . . . , hk} already initially reduced with respect to itself and p−t. Suppose
furthermore

LM>(h1) > . . . > LM>(hl) > LM>(g) > LM>(hl+1) > . . . > LM>(hk).

By assumption, taking each hi, i = 1, . . . , l, and reducing all hj , i < j,
with respect to it is obsolete. The first necessary action is reducing g with
respect to h1, . . . , hl.

h1 h2 . . . hi g hi+1 . . . hk−1 hk

Next, we consider the hi, i = l + 1, . . . , k. Each hi is already reduced
with respect to h1, . . . , hl and remains so after reducing it with respect to
g, as the x-monomials of their leading monomials were already completely
eliminated in g previously. Hence we may reduce each hi, i = l + 1, . . . , k,
with respect to g without inducing the need of reducing them with respect
to h1, . . . , hl again.

h1 h2 . . . hi g hi+1 . . . hk−1 hk

However, g might contain a term with monomial t2x, which might not
be reducible with respect to LT>(hj) = t3x, but if g is multiplied by t while
reducing another element with respect to it, we do create a term that is
reducible. Thus, we need to reduce each hi, i = l + 1, . . . , k with respect to
hj , j = l + 1, . . . , i again and this concludes our first pass.

h1 h2 . . . hi g hi+1 . . . hk−1 hk
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For the second pass, taking each hi, i = 1, . . . , l, and reducing it with
respect to all hj , j = i+ 1, . . . , l, is unnecessary. The first necessary step is
to take each hi, i = 1, . . . , l, and reduce it with respect to the newly added
g. Similar to a previous step, each hi remains reduced with respect to all hj ,
j = i+ 1, . . . , l.

h1 h2 . . . hi g hi+1 . . . hk−1 hk

Afterwards, while each hi remains reduced with respect to all hj , j =

i + 1, . . . , l, it nonetheless needs to be reduced with respect to hl+1, . . . , hk
again.

h1 h2 . . . hi g hi+1 . . . hk−1 hk

Next in the second pass, we take g and reduce it with respect to hl+1, . . . , hk.

h1 h2 . . . hi g hi+1 . . . hk−1 hk

And finally, we take each hi, i = l+1, . . . , k−1 and reduce it with respect
to all hj , i < j, as reducing them with respect to g earlier might have broken
their reducedness property.

h1 h2 . . . hi g hi+1 . . . hk−1 hk

It can be seen that a position of g more to the right minimizes the
number of reductions needed. This implies that LM>(g) should be as small
as possible, and since its monomial in x is fixed, this means that it should
have as high a degree in t as possible.

Note that increasing the degree in t to increase performance is not risk-
free. For example, suppose we had a g ∈ G with LT>(g) = x and we were
to add t5y · g to E in order to reduce a term with monomial t5xy. Then any
subsequent term with monomial t4xy would require adding an additional
multiple of g to E. However, since our working list T is worked off in an
order induced by a t-local monomial ordering >, any later s′ picked in Step
4 with the same monomial in x necessarily has to have a higher degree in t.
Thus this cannot happen in our algorithm.

With Algorithms 3.2.6 and 3.2.7, writing an algorithm for computing an
initially reduced standard basis becomes a straightforward task. All we need
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to adhere is to proceed x-degree by x-degree while repeatedly applying the
previous algorithm.

Algorithm 3.2.9 initially reduced standard basis
Input: (F,>), where F ⊂ I an x-homogeneous, polynomial generating set

of I containing p− t.
Output: G ⊆ I an x-homogeneous, polynomial and initially reduced stan-

dard basis of I.
1: Compute an x-homogeneous standard basis G′′ of I = 〈F 〉 with Algo-

rithm 2.2.17.
2: Set G′ := ∅.
3: for g ∈ G′′ with p - LT>(g) do
4: if LC>(g) 6= 1 then
5: Since 1 ∈ 〈LC>(g), p〉, find a, b ∈ R such that

1 = a · LC>(g) + b · p.

6: Set
g := a · g + b · LM>(g) · (p− t),

so that LC>(g) = 1.
7: Set G′ := G′ ∪ {g}.
8: Minimize the standard basis G′ by gradually removing elements g ∈ G

with LM>(g′) | LM>(g) for some g′ ∈ G, g′ 6= g.
9: Set G := ∅

10: while G′ 6= ∅ do
11: Set

d := min{degx(g) | g ∈ G′},
H ′ := {g ∈ G′ | degx(g) = d},
G′ := {g ∈ G′ | degx(g) > d}.

12: Reduce H ′ initially with respect to G′, p−t and itself using Algorithms
3.2.6 or 3.2.7, let H is the output of the initial reduction.

13: Set G := G ∪H.
14: return G ∪ {p− t}.

Proof. It is clear that G is a standard basis of I, as we are merely
normalizing the leading coefficients of the standard bases G′′. It is also
obvious that G is polynomial and x-homogeneous. The initial reducedness
of G follows from the correctness of Algorithms 3.2.6 or 3.2.7. �
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3.3. Computation

In this section, we describe algorithms for computing the Gröbner fan
of an ideal I E RJtK[x] as in Convention 3.1.1. While computing a Gröbner
fan can be as seemingly simple as computing maximal Gröbner cones C>(I)

with respect to random monomial orderings > until the whole weight space
R≤0 × Rn is filled, sophisticated algorithms revolve around avoiding com-
puting initially reduced standard bases of I from scratch. The algorithms
in this section are adjusted versions of the algorithms found in Chapter 4 of
Jensen’s dissertation [Jen07], though some of the ideas involved originate
in Collart, Kalkbrenner and Mall’s work on the Gröbner walk [CKM97].

We start with an algorithm for computing witnesses of weighted homo-
geneous elements in initial ideals, which can then be used to lift standard
bases of initial ideals to initially reduced standard bases of the original ideal.
Adding in some statements about the perturbation of initial ideals, we ob-
tain an algorithm which allows us to flip initially reduced standard bases
of one ordering to initially reduced standard bases of an adjacent ordering.
This algorithm can then be used to construct the Gröbner fan, requiring us
to compute the standard basis of I from scratch only once. See Figure 9 for
a rough outline with numbering.

Importantly, note that all polynomial computations in our algorithms, if
given polynomial input, terminate and return polynomial output themselves
due to our results in Chapter 2 and Algorithm 3.2.9 from the last section.

Algorithm 3.3.1 Witness
Input: (h,H,G,>), where

• > a weighted t-local monomial ordering on Mon(t, x),
• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of I with
respect to >,

• H = {h1, . . . , hk} ⊆ inw(I) with hi = inw(gi) for some w ∈ C>(I) ∩
R<0 × Rn,

• h ∈ inw(I) weighted homogeneous with respect to w.

Output: f ∈ I such that inw(f) = h

1: Use Algorithm 2.1.16 to compute a homogeneous determinate division
with remainder with respect to >,

({q1, . . . , qk}, r) = HDDwR(h, {h1, . . . , hk}, >),

so that h = q1 · h1 + . . .+ qk · hk and r = 0.
2: return f := q1 · g1 + . . .+ qk · gk

Proof. By Proposition 3.1.13, H is a standard basis of inw(I), therefore
the division of h will always yield remainder 0.
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Algorithm 3.3.1

witness of initial forms

Algorithm 3.3.2

lift of standard bases

Proposition 3.3.4

perturbation of initial ideals

Algorithm 3.3.5

flip of standard bases

Algorithm 3.3.7

Gröbner fan

Figure 9. outline of Section 3.3

By Remark 2.1.18, since h, h1, . . . , hk are weighted homogeneous with
respect to w, so are q1, . . . , qk. Hence

inw(f) = inw(q1) · inw(g1)︸ ︷︷ ︸
=q1·h1

+ . . .+ inw(qk) · inw(gk)︸ ︷︷ ︸
=qk·hk

= h.

Also note that the division with remainder will always terminate, as the
weighted degree cannot become arbitrarily small since the ideal is homoge-
neous in x and weighted homogeneous overall. �

As announced, we immediately obtain an algorithm which allows us to
lift a standard basis of an initial ideal to an initially reduced standard basis
of I, assuming we have a standard basis of I with respect to an adjacent
ordering at our disposal.
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Algorithm 3.3.2 Lift

C>(I)

G standard basis

H standard basis

C>′(I)

G′ standard basis

H ′ standard basisw

Figure 10. lift of standard bases

Input: (H ′, >′, H,G,>), where
• > a weighted t-local monomial ordering on Mon(t, x) with weight vec-
tor in R<0 × Rn,

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of I with
respect to >,

• H = {h1, . . . , hk} ⊆ inw(I) with hi = inw(gi) for some w ∈ C>(I),
• >′ a t-local monomial ordering such that w ∈ C>(I) ∩ C>′(I),
• H ′ ⊆ inw(I) a weighted homogeneous standard basis with respect to
>′.

Output: G′ ⊆ I, an initially reduced standard basis of I with respect to >′

such that
H ′ = {inw(g) | g ∈ G′}.

1: Set G′ := {Witness(h,H,G,>) | h ∈ H ′}.
2: Reduce G′ initially with respect to >′.
3: return G′.

Proof. Consider a witness g := Witness(h,w,G,>) for some h ∈ H ′.
Then, by Lemma 3.1.11, we have LT>′(g) = LT>′(inw(g)) = LT>′(h), and
thus

〈LT>′(g) | g ∈ G′〉 = 〈LT>′(h) | h ∈ H ′〉 = LT>′(inw(I))
Lem.
=

3.1.12
LT>′(I). �

Example 3.3.3 Consider again the ideal

I := 〈x− t3x+ t3z − t4z︸ ︷︷ ︸
=:g1

, y − t3y + t2z − t4z︸ ︷︷ ︸
=:g2

〉E ZJtK[x, y, z]

and the weighted monomial ordering >=>v on Mon(t, x, y, z) with weight
vector v = (−1, 3, 3, 3) ∈ R<0 × R3 and the t-local lexicographical ordering
such that x > y > 1 > t as tiebreaker.

In Example 3.1.10, it is shown that its Gröbner cone is of the form

C>(I) = {w ∈ R<0 × Rn | w1 ≥ 3w0 + w3 and w2 ≥ 2w0 + w3}.



100 3. GRÖBNER FANS IN RJtK[x]

Picking w := (−1, 2,−1, 1) ∈ C>(I), we know by Proposition 3.1.13 that

inw(I) = 〈inw(g1), inw(g2)〉 = 〈x, y + t2z〉.

It is easy to see that {x, y+ t2z} is a standard basis of inw(I) regardless
which monomial ordering is chosen. Since using Algorithm 3.3.1 on inw(g1)

and inw(g2) yields g1 and g2 respectively, Algorithm 3.3.2 therefore implies
that {g1, g2} is also a standard basis for the adjacent monomial ordering >′

on the other side of the facet containing w.
Moreover, since >′ has to induce a different leading ideal by definition,

and the leading terms of g1 and g2 with respect to >′ have to occur in their
initial forms by Lemma 3.1.11, we see that the adjacent leading ideal is
〈x, t2z〉.

An easy way to construct orderings adjacent to > is by connecting two
weight vectors in series, the first a weight vector lying on a facet and the
second an outer normal vector of the facet.

Proposition 3.3.4 Let > be a t-local monomial ordering, w ∈ C>(I) and
v ∈ Rn+1. Let >(w,v) denote the t-local monomial ordering given by

tβ · xα >(w,v) t
β′ · xα′ :⇐⇒

(β, α) · w > (β′, α′) · w,
or (β, α) · w = (β′, α′) · w and (β, α) · v > (β′, α′) · v,
or (β, α) · w = (β′, α′) · w and (β, α) · v = (β′, α′) · v

and tβ · xα > tβ
′ · xα′ .

Then w = C>(I) ∩ C>(w,v)
(I) and

w + ε · v ∈ C>(w,v)
(I) for ε > 0 sufficiently small.

In particular

inw+εv(I) = inv(inw(I)) for ε > 0 sufficiently small.

Proof. By definition we have LT>(w,v)
(g) = LT>(w,v)

(inw(g)) for any
g ∈ RJtK[x], which implies w ∈ C>(w,v)

(I) by Lemma 3.1.11.
Next, let G be an initially reduced standard basis of I with respect to

that ordering. Observe that every g ∈ G,

g = . . . . . . . . . . . . . . .︸ ︷︷ ︸
inw(g)

+ . . . . . . . . . . . . . . .︸ ︷︷ ︸
rest

,

has a distinct degree gap between the terms of highest weighted degree and
the rest. As the weighted degree varies continuously under the weight vec-
tor, choosing ε > 0 sufficiently small ensures that the (w + ε · v)-weighted
degrees of the terms in inw(g) remain higher than those of the rest. Thus
inw+ε·v(g) are the terms of inw(g) that have maximal v-weighted degree, i.e.
inw+ε·v(g) = inv(inw(g)). In particular, we have

LT>(w,v)
(inw+ε·v(g)) = LT>(w,v)

(g),
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and hence w + ε · v ∈ C>(w,v)
(I) by Lemma 3.1.11 again.

The final claim now follows from Proposition 3.1.13:

inw+ε·v(I)
Prop.
=

3.1.13
〈inw+ε·v(g) | g ∈ G〉 = 〈inv(inw(g)) | g ∈ G〉 Prop.

=
3.1.13

inv(inw(I)).

�

With this easy method of constructing adjacent orderings, we are now
able to write an algorithm for flipping initially reduced standard bases.

Algorithm 3.3.5 Flip

C>(I)

G standard basis

C>′(I)

G′ standard basis

w

v

H standard basis

Figure 11. flip of standard bases

Input: (G,H, v,>), where

• > a weighted t-local monomial ordering on Mon(t, x) with weight vec-
tor in R<0 × Rn,

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of I with
respect to >,

• H = {h1, . . . , hk} ⊆ inw(I) with hi = inw(gi) for some w ∈ C>(I) ∩
R<0 × Rn relative interior point on a lower facet τ ≤ C>(I), τ *
{0} × Rn.

• v ∈ R× Rn an outer normal vector of the facet τ .

Output: (G′, >′), where >′ is an adjacent t-local monomial ordering with

τ = C>(I) ∩ C>′(I) and C>(I) 6= C>′(I),

and G′ ⊆ I is an initially reduced standard basis with respect to >′.
1: Compute a standard basis H ′ of inw(I) with respect to >(w,v).
2: Set G′ := Lift(H ′, >(w,v), H,G,>).
3: return (G′, >(w,v))

Proof. By our Lifting Algorithm 3.3.2, G′ is an initially reduced stan-
dard basis of I with respect to >(w,v) and the remaining conditions follow
from Proposition 3.3.4. �
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Example 3.3.6 Consider the ideal

I := 〈2− t, xy2 − t2y3, x2 − t3y2〉E ZJtK[x, y]

and the weighted monomial ordering >=>u on Mon(t, x) with weight vector
u := (−1, 1, 1) ∈ R<0 × R2 and t-local lexicographical ordering such that
x > y > 1 > t as tiebreaker. An initially reduced standard basis of I is then
given by

G := {2− t, xy2 − t2y3, x2 − t3y2, t3y4}.

The maximal Gröbner cone C>(I) ⊆ R≤0×R2 is determined by the inequal-
ities

(wt, wx, wy) ∈ C>(I) ⇐⇒

{
wx + 2wy ≥ 2wt + 3wy

2wx ≥ 3wt + 2wy

⇐⇒

{
wx ≥ 2wt + wy

2wx ≥ 3wt + 2wy

It is easy to see how w := (−4, 1, 7) is contained in C>(I). In fact, it lies
on its boundary since 2wx = 3wt + 2wy = 2. Then v := (3, 5, 1) ∈ R3 is an
outer normal vector, as even for small ε > 0

2(wx + ε · vx)︸ ︷︷ ︸
2+10ε

� 3(wt + ε · vt)︸ ︷︷ ︸
−12+9ε

+ 2(wy + ε · vy)︸ ︷︷ ︸
14+2ε

.

An initially reduced standard basis of inw(I) is then given by

H := {inw(g) | g ∈ G} = {2, xy2, x2 − t3y2, t3y4},

and computing standard basis of inw(I) with respect to the doubly weighted
ordering >(w,v) yields

H ′ := {2, xy2, t3y2 − x2, x3},

which can then be lifted to a standard basis of I with respect to the same
ordering >(w,v) that is adjacent to >

G′ = {2− t, xy2 − t2y3, t3y2 − x2, x3 − t5y3}.

The Gröbner fan algorithm is a so-called fan traversal algorithm. We
start with computing a starting cone and repeatedly use Algorithm 3.3.5 to
compute adjacent cones until we obtain the whole fan. The whole process
is commonly illustrated on a bipartite graph as shown in Figure 12. This
bipartite graph also satisfies the so-called reverse search property, which
can be used for further optimization. See Chapter 3.2 in [Jen07] for more
information about the reverse search property of Gröbner fans.

Note that since the Gröbner fan spans the whole weight space R≤0×Rn,
each facet is contained in exactly two maximal cones. That means, traversing
a facet τ ≤ C>(I) of a maximal Gröbner cone C>(I) can be omitted if τ is
contained in any other of already computed maximal Gröbner cones.
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σ1

σ2

σ3

τ3

τ2

τ1

maximal cones facets

σ0

σ1

σ2

τ1

τ2

τ0

Figure 12. The bipartite graph of a Gröbner fan Σ(〈x+ y + z〉)

Algorithm 3.3.7 Gröbner fan
Input: F ⊆ I ERJtK[x] an x-homogeneous generating set.
Output: ∆ the maximal cones Gröbner fan Σ(I) of I.
1: Pick a random weight u ∈ R<0×Rn and a t-local monomial ordering >.
2: Compute an initially reduced standard basis G of I with respect to >u

using Algorithm 3.2.9.
3: Construct the maximal Gröbner cone C>u(I) = C(G,>u).
4: Initialize the Gröbner fan Σ := {C>u(I)}.
5: Initialize a working list L := {(G,>u, C>u(I))}.
6: while L 6= ∅ do
7: Pick (G,>u, C>u(I)) ∈ L.
8: for all facets τ ≤ C>u(I), τ * {0} × Rn do
9: Compute a relative interior point w ∈ τ .

10: if w /∈ C>′(I) for all C>′(I) ∈ Σ \ {C>u(I)} then
11: Compute an outer normal vector v of τ .
12: Set H := {inw(g) | g ∈ G}.
13: Compute (G′, >′) := Flip(G,H, v,>u) using Algorithm 3.3.5.
14: Construct the adjacent Gröbner cone C>′(I) = C(G′, >′).
15: Compute a relative interior point u′ ∈ C>′(I), so that G′ is a

standard basis with respect to >u′ and C>′(I) = C>u′ (I).
16: Set Σ := Σ ∪ {C>′u(I)}.
17: Set L := L ∪ {(G′, >u′ , C>u′ (I)}.
18: Set L := L \ {(G,>u, C>u(I))}.
19: return ∆

Example 3.3.8 For an easy but clear example, consider the ideal

I := 〈x+ z, y + z〉E ZJtK[x, y, z].

Because it is weighted homogeneous with respect to (−1, 0, 0, 0) ∈ R<0 ×
R3 and (0, 1, 1, 1) ∈ {0} × R3, its Gröbner fan is closed under translation
by (−1, 0, 0, 0) and invariant under translation by (0, 1, 1, 1). We therefore,
concentrate on weight vectors on the hyperplane {0} × R2 × {0}, since any
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other weight vector in the closed lower halfspace can be generated out of
them via the translations.

Looking only at potential leading terms of the generators, one might be
led to believe that the Gröbner fan Σ(I) restricted to {0} × R2 × {0} is of
the form

(0, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0)

〈x, y〉〈z, y〉

〈x, z〉〈z〉

Let us use our algorithm to see why this is not the case:
We start with a random weight vector u, say u = (0, 1, 1, 0), and a

random t-local monomial ordering > to be used as tiebreaker. Then {x +

z, y + z} already is an initially reduced standard basis with respect to >u,
leading terms underlined, so that by Lemma 3.1.11

w′ ∈ Cu(I) ⇐⇒

{
degw′(x) ≥ degw′(z) = 0,

degw′(y) ≥ degw′(z) = 0.

Hence, Cu(I) is the upper left quadrant of the image above, with two facets
available for the traversal.

〈x, y〉

Picking τ to be the upper ray of Cu(I), w = (0, 0, 1, 0) a relative interior
point inside of it and v = (0,−1, 0, 0) an outer normal vector on it, we see
that inw(x+ z) = z+x and inw(y+ z) = y already form an initially reduced
standard basis of inw(I) with respect to >(w,v). Therefore, this standard
basis of inw(I) lifts again to the very same standard basis {z + x, y + z} of
I for the adjacent ordering.

However that standard basis is not initially reduced anymore, and a quick
calculation yields the initially reduced standard basis {z+ x, y− x}, and we
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obtain

w′ ∈ C>(w,v)
(I) ⇐⇒

{
0 = degw′(z) ≥ degw′(x),

degw′(y) ≥ degw′(x).

〈x, y〉

〈z, y〉

Now let τ be the lower ray of our newly computed Gröbner cone, w =

(0,−1,−1, 0) a relative interior point and v = (0, 1,−1, 0) an outer normal
vector. We see that in(z + x) = z and inw(y − x) = −x + y already form
an initially reduced standard basis of inw(I) with respect to >(w,v), which is
why it will lift again to the same standard basis {z+ x,−x+ y} of I for the
adjacent ordering.

As before, this standard basis is not initially reduced anymore, and a
quick calculation yields the initially reduced standard basis {z+ y,−x+ y},
which means

w′ ∈ C>(w,v)
(I) ⇐⇒

{
0 = degw′(z) ≥ degw′(y),

degw′(x) ≥ degw′(y).

〈x, y〉

〈z, y〉

〈z, x〉

And this is how the Gröbner fan Σ(I) actually looks like. The misconception
at the beginning of the example was due to the oversight that inw(x+ z) =
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inw(y + z) = z do not generate inw(I), because {x+ z, y + z} is no initially
reduced standard basis for >w.



CHAPTER 4

Computing tropical varieties

In this chapter, we present algorithms to compute the tropical vari-
eties of x-homogeneous ideals in RJtK[x], applying techniques developed in
[BJS+07]. Moreover, we discuss specific optimizations for ideals which are
obtained through Theorem 1.2.13. For necessary conditions on our ground
ring, please note Convention 4.1.1.

This chapter also concludes our proof, that tropical varieties over val-
ued fields may be computed using normal standard bases techniques. In
Theorem 1.2.13 of Chapter 1, we reduced the problem to computing tropical
varieties over rings, for which we extended the classical standard basis theory
in Chapter 2, allowing us to introduce Gröbner fans in Chapter 3.

4.1. Extension of known techniques

In this section, we present an algorithm to compute the tropical variety
of an x-homogeneous ideal in RJtK[x] (see Definition 1.2.11). Similar to
the techniques developed in Bogart, Jensen, Speyer, Sturmfels and Thomas’
work on tropical varieties of polynomial ideals over ground fields [BJS+07],
this is done in three stages.

First, we begin with an easy algorithm to determine tropical varieties
of principal ideals. From it, we derive an algorithm to compute tropical
varieties with one-codimensional homogeneity space. The simplicity of the
convex geometry makes these kind of tropical varieties significantly easier to
handle with the help of generic weights and tropical witnesses. Finally we
come to the general case, and show how we can apply the previous algorithm
to traverse the tropical variety, scouring for all Gröbner cones contained in
it. See Figure 1 for a rough outline with numbering.

Convention 4.1.1 In this section, we again adopt Convention 1.2.2, in
which we have: K a field with discrete non-trivial valuation, K its residue
field, Rν its valuation ring, p ∈ Rν a uniformizing parameter and R ⊆ Rν is
a dense, noetherian subring with p ∈ R. Both K and Rν are assumed to be
complete, so that we have exact sequences

0 〈p− t〉 ·RJtK〈p−t〉[x] RJtK〈p−t〉[x] K[x] 0,

0 〈p− t〉 ·RJtK[x] RJtK[x] Rν [x] 0.
t 7−→ p

107
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Algorithm 4.1.3

principal ideals

Definition 4.1.5
to Lemma 4.1.9

generic weights and
tropical witnesses

Algorithm 4.1.13

one-codimensional homogeneity space

Algorithm 4.1.17

tropical star

Algorithm 4.1.19

tropical starting cone

Algorithm 4.1.13

tropical varieties

Figure 1. outline of Section 4.1

Moreover, we continue to require that R satisfies Convention 2.1.1 (which
coincides with Convention 3.1.1), so that standard bases and the Gröbner
fans both exist and are computable.

Fix a preimage I E RJtK[x] of a homogeneous prime ideal in K[x]. Re-
call that, by Corollary 1.2.14, Trop(I) is the support of a pure polyhedral
complex of a fixed dimension.

Lemma 4.1.2 Let Σ(I) be the Gröbner fan of the x-homogeneous IERJtK[x].
Then

Trop(I) =
⋃

w∈Trop(I)

Cw(I).

In particular, {Cw(I) ∈ Σ(I) | w ∈ Trop(I)} is a pure subfan of Σ(I) with
support Trop(I).

Proof. Since, by Definition 3.1.5, all weight vectors in the relative in-
terior of any Gröbner cone Cw(I) yield the same initial ideal, it is clear that
either relint(Cw(I)) ⊆ Trop(I) or relint(Cw(I)) ∩ Trop(I) = ∅.

And, since Trop(I) is closed in the euclidean topology by Definition 1.2.11,
and Cw(I) is a closed polyhedral cone by Proposition 3.1.19, relint(Cw(I)) ⊆
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Trop(I) implies Cw(I) ⊆ Trop(I). Therefore,⋃
w∈Trop(I)

Cw(I) ⊆ Trop(I).

The opposite inclusion follows from w ∈ Cw(I) for all weight vectors w. Also,
the subfan is pure by Corollary 1.2.14. �

We now start with the actual algorithms, as described in the beginning
of the section.

Algorithm 4.1.3 Trop(1), tropical varieties of elements inRJtK[x]

Input: g ∈ RJtK[x].
Output: ∆ = Trop(1)(g), a collection of maximal-dimensional polyhedral

cones in R≤0 × Rn covering Trop(g), i.e.

Trop(g) := Trop(〈g〉) =
⋃
σ∈∆ σ.

1: Suppose g =
∑

β,α cα,β · tβxα.
2: Construct the finite set of exponent vectors with minimal entry in t,

Λ :=

{
(β, α) ∈ N× Nn

∣∣∣∣ α ∈ Nn with cα,β′ 6= 0 for some β′ ∈ N
β = min{β′ ∈ N | cα,β′ 6= 0}

}
.

3: Initialize ∆ := ∅.
4: for any two exponent vectors a, b ∈ Λ, a 6= b do
5: Construct

σ :=
{
w ∈ R≤0 × Rn

∣∣ w · a = w · b ≥ w · a′ for all other a′ ∈ Λ
}
.

6: if dim(σ) = n then
7: Set ∆ := ∆ ∪ {σ}.
8: return ∆.

Proof. Follows from

w ∈ Trop(g) ⇐⇒ inw(g) is no monomial. �

Example 4.1.4 Given the element

g :=(x+ y + 1)(t5x+ y + t2)

=t5x2 + (t5 + 1)xy + y2 + (t5 + t2)x+ (t2 + 1)y + t2 ∈ ZJtK[x, y].

its tropical variety is shown as in Figure 2. The polynomials next to the
edges signify the initial form of g with respect to weights on them.

Note that unlike the easy example above suggests, not all initial forms
with respect to weights in the tropical varieties need to be binomials. For
example, for g := x2 +xy+ y2 it is easy to see that if inw(g) were to contain
two of the terms, then it would also contain the third.

Next, we introduce generic weights and show how initial ideals with re-
spect to generic weights can be computed without knowing what the generic
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y2 + y

xy + y

t2x+ t2

xy
+
y
2

y + t2 xy + t2x

t5x2 + t2x

t
5 x

2 +
xy

(−1, 0, 0)

(−1, 3,−2)

Figure 2. Trop((x+ y + 1)(t5x+ y + t2)) ∩ {−1} × R2

weight is. This is similar to Proposition 3.3.4 and will be necessary in Algo-
rithm 4.1.13 to decide whether an arbitrary polyhedral cone, generally not
a Gröbner cone, is contained in the tropical variety.

Definition 4.1.5 (genericity of weight vectors) Let I ERJtK[x] be an ideal,
and let σ ⊆ R≤0 × Rn, σ * {0} × Rn, be a polyhedral cone in the weight
space, not necessarily a Gröbner cone of I. Suppose d = dim(σ). Then we
call a weight w ∈ relint(σ) generic with respect to I, if w does not lie in a
Gröbner cone of I of dimension less than d.

Definition 4.1.6 (multiweights) Given weight vectors w ∈ R<0 × Rn and
v1, . . . , vd ∈ R × Rn, we define the initial form of an element g ∈ RJtK[x]

with respect to the weight vectors (w, v1, . . . , vd) to be

in(w,v1,...,vd)(g) = invd . . . inv1 inw(g),

and we define the initial form of an ideal I E RJtK[x] with respect to the
multidegree (w, v1, . . . , vd) to be

in(w,v1,...,vd)(I) = invd . . . inv1 inw(I) = 〈in(w,v1,...,vd)(g) | g ∈ I〉.

Also given a t-local monomial ordering on Mon(t, x) we define the multi-
weighted ordering >(w,v1,...,vk) to be

tβ · xα >(w,v1,...,vk) t
δ · xγ ⇐⇒ either :

• w · (β, α) > w · (δ, γ) or

• w · (β, α) = w · (δ, γ) and there exists an 1 ≤ l ≤ d with

vi · (β, α) = vi · (δ, γ) for all 1 ≤ i < l and vl · (β, α) > vl · (δ, γ) or

• w · (β, α) = w · (δ, γ) and vi · (β, α) = vi · (δ, γ) for all 1 ≤ i ≤ d

and tβ · xα > tδ · xγ .

Algorithm 4.1.7 initial ideal with respect to a generic weight
Input: (σ,w,G), where

(1) σ ≤ R≤0 × Rn, σ * {0} × Rn, a polyhedral cone,
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(2) w ∈ relint(σ) a relative interior point,
(3) G ⊆ I a generating set of an ideal I ERJtK[x].

Output: (H ′, G′, >′) = in(σ,w)(G), where
(1) >′ a t-local monomial ordering on Mon(t, x),
(2) G′ an initially reduced standard basis of I with respect to >′,
(3) H ′ = {inu(g) | g ∈ G} for a weight vector u ∈ τ that is generic with

respect to I.
Moreover, u can be chosen to lie arbitrary close to w.

1: Choose a basis v1, . . . , vd, d = dim(σ), of the linear span of σ.
2: Pick a t-local monomial ordering > on Mon(t, x) and consider the mono-

mial ordering >(w,v1,...,vd)

3: Compute an initially reduced standard basis G′ of I = 〈g | g ∈ G〉 with
respect to >(w,v1,...,vd).

4: Set H ′ := {in(w,v1,...,vd)(g) | g ∈ G′}
5: return (H ′, G′, >(w,v1,...,vd)).

Proof. For sake of simplicity, let >′ denote the ordering >(w,v1,...,vk).
By definition of >′, it is easy to see that LT>′(g

′
i) = LT>′(inw(g′i)) for all i.

Lemma 3.1.11 then implies that w ∈ C>′(I), and hence Proposition 3.1.13
implies that {inw(g′1), . . . , inw(g′k)} is an initially reduced standard basis of
inw(I).
Similarly, it is easy to see that LT>′(inw(g′i)) = LT>′(inv1 inw(g′i)) for all i,
leading to {in(w,v1)(g

′
1), . . . , in(w,v1)(g

′
k)} being an initially reduced standard

basis of in(w,v1)(I).
Continuing this train of thought, we obtain that {h′i, . . . , h′k} is an initially
reduced standard basis of in(w,v1,...,vd)(I) with respect to >′

Applying Proposition 3.3.4 repeatedly yields

inw,v1,...,vd(I) = invd . . . inv1 inw(I)
Prop.
=

3.3.4
inu(I)

for all u = w+ε1 ·v1 + . . .+εd ·vd ∈ R<0×Rn, provided all εi > 0 sufficiently
small. In particular, these weight vectors u cannot lie in a Gröbner cone
of dimension less than d, making these weights generic with respect to I.
Moreover, w ∈ relint(σ) implies u ∈ relint(σ). �

Next, we introduce tropical witnesses for monomials in initial ideals and
show that Algorithm 3.3.1 is sufficient for computing them. This is a nec-
essary tool for Algorithm 4.1.13 for eliminating Gröbner cones from our
consideration.

Definition 4.1.8 Suppose Cw(I) * Trop(I). We call an element f ∈ I a
tropical witness of Cw(I) if

inv(f) is a monomial for all v ∈ Relint(Cw(I)).

Lemma 4.1.9 Suppose Cw(I) * Trop(I), so that there exists a monomial
m ∈ inw(I). Let G be an initially reduced standard basis of I with respect
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to a t-local monomial ordering > with w ∈ C>(I), and set H := {inw(g) |
g ∈ G}. Then Algorithm 3.3.1 computes a tropical witness given the input
(m,H,G,>).

Proof. We know that the output f ∈ I satisfies inw(f) = m. Now sup-
pose v ∈ Relint(Cw(I)). Then inv(I) = inw(I), which by Proposition 3.1.17
implies inv(g) = inw(g) for all g ∈ G. This means that the input for our
homogeneous division with remainder, (m,H,>), is homogeneous with re-
spect to v, the monomial m being trivially homogeneous with respect to any
weight. By Remark 2.1.18, our output, ({q1, . . . , qk}, 0), is then also homo-
geneous with respect to v, which allows us to show that inv(f) = m using
the very same arguments as in the proof of Algorithm 3.3.1. �

We now come to the algorithm for computing tropical varieties with one-
codimensional homogeneity space. In the final part of its proof it becomes
apparent how the homogeneity space is used to simplify its computation.

Definition 4.1.10 (homogeneity space) Given an ideal IERJtK[x], we define
the homogeneity space of I or of Trop(I) to be the intersection of all its
interior Gröbner cones

C0(I) :=
⋂

w∈R<0×Rn
Cw(I).

Example 4.1.11 In this example, we illustrate that C0(I) in general is no
linear subspace and is not the set of all vectors with respect to whom I is
weighted homogeneous.

Consider the principal ideal

I = 〈x+ y + t · (x+ y)〉E ZJtK[x, y],

whose Gröbner Fan splits the weight space R≤0×R2 into two maximal cones,
cf. Figure 3, and whose homogeneity space is given by

C0(I) = {(wt, wx, wy) ∈ R≤0 × Rn | wx = wy}.

C0(I) = {wx = wy}

{0} × R2

R× (0, 1, 1)

Figure 3. C0(I) ∈ Σ(〈x+ y + t · (x+ y)〉)
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In particular, note that R · (0, 1, 1) ⊆ C0(I), which is not surprising since
I is (x, y)-homogeneous, making all Gröbner cones Cw(I) invariant under
translation by (0, 1, 1).

We also see that every interior Gröbner cone Cw(I) is closed under trans-
lation by weight vectors in C0(I),

u+ v ∈ Cw(I) for all u ∈ C0(I) and all v ∈ Cw(I),

which is again not surprising because C0(I) is a face of every interior Gröbner
cone.

Observe, however, that (−1, 0, 0) ∈ C0(I) despite x + y + t · (x + y)

not being weighted homogeneous with respect to it. This deviates from the
classical of Gröbner fans of homogeneous ideals, in which C0(I) consists of
all weight vectors under which I is weighted homogeneous.

We have seen that the homogeneity space is not the closure of the set of
all weight vectors in R<0×R under which the ideal is weighted homogeneous.
However, this can only happen, if there are none of these vectors. Because
if there are, we do have:

Lemma 4.1.12 Suppose there exists a weight vector w ∈ R<0 × Rn with
inw(I) ·RJtK[x] = I. Then

C0(I) = Cw(I) = {w′ ∈ R<0 × Rn | inw′(I) ·RJtK[x] = I}.

Proof. The inclusion C0(I) ⊆ Cw(I) is clear, as C0(I) is a subset of
every interior Gröbner cone by definition.

For the other inclusion, let v be any vector in R<0×Rn. Then inw+ε·v(I) =

inv(inw(I)) = inv(I) for ε > 0 sufficiently small. Thus w + ε · v is in
Cv(I) for all small ε > 0, which implies that w is in Cv(I), and hence
Cw(I) ⊆ Cv(I). �

Algorithm 4.1.13 Trop(2), tropical varieties in RJtK[x] with one-codimen-
sional homogeneity space
Input: (G,>), where > a t-local monomial ordering on Mon(t, x) and G an

x-homogeneous standard basis of an ideal I ERJtK[x] with respect to >.
such that dim(Trop(I)) = dim(C0(I)) + 1.

Output: ∆ = Trop(2)(I), a collection ∆ of maximal-dimensional polyhedral
cones in R≤0 × Rn covering Trop(I), i.e.

Trop(I) =
⋃
σ∈∆ σ.

1: Use Algorithm 4.1.3 and compute for each g ∈ G a collection ∆(g) :=

Trop(1)(g) of polyhedral cones such that

Trop(g) =
⋃
σ∈∆(g) σ.

2: Compute the common refinement of all these collections,

∆ :=
∧
g∈G ∆(g).

3: Set L := ∆.



114 4. COMPUTING TROPICAL VARIETIES

4: while L 6= ∅ do
5: Pick σ ∈ L maximal and w ∈ relint(σ).
6: Suppose w = (wt, wx) ∈ R<0×Rn, set wneg := (wt,−wx) ∈ R<0×Rn.
7: Use Algorithm 4.1.7 to compute, amongst others, generators H ′ of

an initial ideal inu(I) with respect to a generic weight u ∈ relint(σ)

around w:
(H ′, G′, >′) = in(σ,w)(G).

8: if inu(I) contains a monomial s 6= 0 then
9: Compute g := Witness(s,H ′, G′, >′).

10: Set

G := G ∪ {g},
∆ := ∆ ∧ Trop(g),

L := L ∧ Trop(g).

11: else if wneg ∈ σ then
12: Use Algorithm 4.1.7 to compute, amongst others, generators H ′ an

initial ideal inu(I) with respect to a generic weight u ∈ relint(σ)

around wneg:

(H ′, G′, >′) = in(σ,wneg)(G).

13: if inu(I) contains a monomial s 6= 0 then
14: Compute g := Witness(s,H ′, G′, >).
15: Set

G := G ∪ {g},
∆ := ∆ ∧ Trop(g),

L := L ∧ Trop(g).

16: else
17: Set L := L \ {σ}.
18: return ∆

Proof. To show the termination, observe that the number of Gröbner
cones whose interiors intersect ∆ non-trivially is overall decreasing due to
Lemma 4.1.9. In fact, in each iteration, either the finite working list L or
the number of these Gröbner cones decreases, hence the termination.

To show correctness, first note that Trop(I) ⊆
⋂
g∈G Trop(g) =

⋃
σ∈∆ σ,

because G ⊆ I.
For the opposite inclusion, observe that for all σ ∈ ∆ maximal the first

inclusion implies dim(σ) ≥ dim(Trop(I)). And if dim(σ) > dim(Trop(I)),
any initial ideal with respect to a generic weight would contain a monomial,
which contradicts σ successfully passing the tests for monomials. Hence
dim(σ) = dim(Trop(I)). Moreover, C0(I) ⊆ Trop(I) ⊆ Trop(g) implies that
C0(I) ⊆ σ, so that all σ ∈ ∆ maximal are cones of dimension dim(Trop(I))

with a one-codimensional subset C0(I) ⊆ σ.
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Now consider a weight vector u ∈ σ for some σ ∈ ∆ maximal. Let w ∈ σ
be the relative interior point chosen in Step 5 and wneg the weight vector
constructed in Step 6. Because u and w are linearly dependent modulo the
span of C0(I) for dimensional reasons, there exists a v ∈ C0(J) and a λ > 0

such that one of the following cases holds:

(1) u = λ · w + v,
(2) u+ v = λ · w,

(3) u = λ · wneg + v,
(4) u+ v = λ · wneg.

Because all Gröbner cones are closed under translation by v, the first
case yields

inu(I) = inλ·w+v(I) = inλ·w(I) = inw(I).

Similarly, in the second case we obtain

inu(I) = inu+v(I) = inλ·w(I) = inw(I).

Cases (3) and (4) are analogous, and in either case inu(I) is monomial free,
implying that u ∈ Trop(I). �

Example 4.1.14 Consider the ideal I E ZJtK[x1, . . . , x4] generated by

g0 := 3, g1 := tx3x4 − tx1x2 + x2
1,

g2 := tx1x
2
2 − x2

1x2 − t3x1x2x3 + t2x2
1x3,

which, one can show, is a 3-dimensional ideal with homogeneity space

C0(I) = Cone((−2,−1, 1, 5,−5)) + R · (0, 1, 1, 1, 1).

Figure 4 shows the combinatorial structure of
⋂2
i=0 Trop(gi).

(−2,−1, 1, 5,−5)

(0, 0, 0, 1,−1)

(0, 1,−3,−3, 5)

(0, 1, 1, 1,−3)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

σ

Figure 4. combinatorial structure of
⋂2
i=0 Trop(gi)

For the sake of simplicity, we will omit the computation of
⋂2
i=0 Trop(gi).

Nonetheless, one cone σ that can be easily seen to be contained in it is

σ := Cone((0, 0, 0,−1, 1)︸ ︷︷ ︸
=:w1

, (−2,−1, 1, 5,−5)︸ ︷︷ ︸
=:w2

, (0, 1, 1, 1,−3)︸ ︷︷ ︸
=:w3

) +R · (0, 1, 1, 1, 1).
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Ignoring g0 since Trop(g0) = R≤0 × R4 doesn’t contribute anything to the
intersection, we have

g1 = tx3x4

inw3 (g1)︷ ︸︸ ︷
−tx1x2 + x2

1︸ ︷︷ ︸
inw1 (g1), inw2 (g1)

, g2 =

inw1 (g2)︷ ︸︸ ︷
tx1x

2
2 − x2

1x2−t3x1x2x3 + t2x2
1x3︸ ︷︷ ︸

inw2 (g2), inw3 (g2)

.

Therefore, for any weight w ∈ σ, inw(g1) contains at least the binomial
−tx1x2 + x2

1, while inw(g2) contains at least the binomial tx1x2 − x2
1x2. In

particular, neither are monomials. As a side note, it is not surprising that w2

does not cut out a single proper initial form while w1 and w3 do considering
that it is contained in the homogeneity space.

However, it can be shown that, for

g3 := tx2x3x4 + t2x2
1x3 − t3x1x2x3 ∈ I and w := (−1, 1, 2, 2, 0) ∈ σ,

inw(g3) = tx2x3x4 is in fact a monomial, which implies that σ * Trop(I).
Not that we would have expected otherwise considering the dimensions,
dim(σ) = 4 > 3 = dim(Trop(I)). Figure 5 illustrates the combinatorial
structure of

⋂3
i=0 Trop(gi), red highlighting what has been eliminated when

intersecting our previous structure with Trop(g3).

(−2,−1, 1, 5,−5)

(0, 0, 0, 1,−1)

(0, 1,−3,−3, 5)

(0, 1, 1,−3, 1)

(0, 1, 1, 1,−3)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

σ′

Figure 5. combinatorial structure of
⋂3
i=0 Trop(gi)

Continuing, the following cone can easily seen to be contained in the
intersection of the tropical varieties of g0, . . . , g3,

σ′ := Cone((0, 1, 1,−3, 1)︸ ︷︷ ︸
w1

, (−2,−1, 1, 5,−5)︸ ︷︷ ︸
w2

, (0, 1, 1, 1,−3)︸ ︷︷ ︸
w3

)+R ·(0, 1, 1, 1, 1),

since

g1 = tx3x4

inw1 (g1), inw3 (g1)︷ ︸︸ ︷
−tx1x2 + x2

1︸ ︷︷ ︸
inw2 (g1)

, g2 =

inw1 (g2)︷ ︸︸ ︷
tx1x

2
2 − x2

1x2−t3x1x2x3 + t2x2
1x3︸ ︷︷ ︸

inw2 (g2), inw3 (g2)

,

g3 = tx2x3x4

inw3 (g3)︷ ︸︸ ︷
+t2x2

1x3 − t3x1x2x3︸ ︷︷ ︸
inw1 (g3), inw2 (g3)

.
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However, setting

g4 := tx2x3x4 − t3x2
3x4 ∈ I and w′ := (−1, 3, 4, 5, 0) ∈ σ′,

inw′(g4) = tx2x3x4 is a monomial, implying that σ′ * Trop(I), which is again
not surprising because of the same dimensional reasons. Figure 6 illustrates
the combinatorial structure of

⋂4
i=0 Trop(gi), red highlighting what has been

eliminated when intersecting our previous structure with Trop(g4).

(−2,−1, 1, 5,−5)

(0, 1,−3,−3, 5)

(0, 1, 1, 1,−3)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

Figure 6. combinatorial structure of
⋂4
i=0 Trop(gi)

Further calculations will yield that Trop(I) =
⋂4
i=0 Trop(gi).

Remark 4.1.15 (searching for monomials via saturation) In Algorithm
4.1.13, we are required to decide whether L := inu(I) is monomial free,
and, if yes, find a monomial inside of it. This is a highly non-trivial task,
as the containment of a monomial is generally not a property which can be
easily read off from a Gröbner basis or a standard basis.

Consider for example, the ideal

L = 〈x2 · (x− z), y2 · (y − z), (x+ y) · (x+ y + z)〉EQ[x, y, z],

whose unique reduced Gröbner basis with respect to the degree lexicograph-
ical ordering is

{x2 + 2xy + y2 + xz + yz, y3 − y2z, 3xy2 + 5xyz + 6y2z + 2xz2 + 2yz2,

10y2z2 + xz3 + yz3, 5xyz2 + 2xz3 + 2yz3, xz4 + yz4},

yet who, as the intersection of three lines on the coordinate hyperplanes,
definitely contains a monomial, for example (xyz)2.

One possible way of seeing it, is to compute the saturation of L with
respect to the product of all variables through repeated quotient construc-
tions until it stabilizes, and keep track how many quotients were necessary.
In our example, we would see that the quotients immediately stabilize after
the second iteration,

L : (xyz)1 ( L : (xyz)2 = L : (xyz)2 = . . . = L : (xyz)∞ = 〈1〉.

Because the saturation yields the whole ring, L contains a monomial,
and, since two quotients are necessary, L contains the monomial (xyz)2.
If L : (xyz)∞ 6= 〈1〉, then L would contain no monomial.
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As a caveat, this method will generally not yield the monomial of lowest
degree, which might be desirable for keeping the tropical witness as simple
as possible. For example, it is possible to show that x5 ∈ L in our given
ideal.

There are methods which are guaranteed to find a monomial whose ex-
ponent vector is minimal lexicographically, see Chapter 5 in [Stu96], which
yields strictly smaller monomials than the method above, but those results
are generally not of lowest degree either. Instead of saturating with respect
to the product of all variables, the method saturates with respect to each
variable individually.

Remark 4.1.16 (searching for monomials via Rabinowitsch) Another method
for finding monomials in an ideal is the so-called Rabinowitsch trick. Orig-
inally introduced in order to prove the weak Nullstellensatz, it also works
over general domains.

Let R be a domain, and let I E R be an ideal. Consider a univariate
polynomial ring R[u] over R. Then

f ∈
√
I ⇐⇒ 〈1− u · f〉+ I = 〈1〉 = R[u].

One direction is straight-forward: Suppose f l ∈ I for l ∈ N sufficiently high.
Because

1− ul · f l = (1− u · f) · (1 + uf + u2f + . . .+ ul−1f l−1) ∈ 〈1− u · f〉,

we then have

1 = 1− ul · fn + ul · f l ∈ 〈1− u · f〉+ I.

For the other direction, suppose I = 〈b1, . . . , bk〉ER and let a0, a1, . . . , ak ∈
R[u] so that

1 = a0 · (1− u · f) + a1 · b1 + . . .+ ak · bk.
Substituting u with 1

f , this implies

1 = a0

(
1

f

)
·
(

1− 1

f
· f
)

+ a1

(
1

f

)
· b1 + . . .+ ak

(
1

f

)
· bk

= a1

(
1

f

)
· b1 + . . .+ ak

(
1

f

)
· bk ∈ Quot(R).

Multiplying with a sufficiently high power f l, l ∈ N, we thus obtain f l ∈ I.
Now if our ring is RJtK[x] and f = t · x1 · . . . · xn is the product of all

variables, then

I contains a monomial ⇐⇒ 〈1− u · f〉+ I = 〈1〉 = R[u].

Using syzygies, we are able decide this question and compute a representation

1 = a0 · (1− u · f) + a1 · b1 + . . .+ ak · bk.

Keeping track of the powers of u in all the ai, we can find a monomial in
I as a linear combination of b1, . . . , bk. But as we see, it has the very same
caveat as the method using saturation in 4.1.15.
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Given a facet of a maximal Gröbner cone in the tropical variety Trop(I),
Algorithm 4.1.13 can now be used to determine directions in which adjacent
maximal Gröbner cones the tropical variety lie.

Algorithm 4.1.17 tropical star
Input: (H,G,>), where for a maximal Gröbner cone Cw(I) ⊆ Trop(I) in

our tropical variety and u ∈ Cw(I) ∩ R<0 × Rn a relative interior point
on one of its facets,

(1) > a t-local monomial ordering with Cw(I) ≤ C>(I),
(2) G ⊆ I an initially reduced x-homogeneous standard basis with re-

spect to >,
(3) H = {inu(g) | g ∈ G} ⊆ inu(I).

Output: N ⊆ R × Rn a minimal finite subset such that for any maximal
Gröbner cone Cw′(I) ⊆ Trop(I) with u ∈ Cw′(I) there exists a v ∈ N
such that u+ ε · v ∈ Cw′(I) for ε > 0 sufficiently small.

1: Use Algorithm 4.1.13 to compute

∆ := Trop(2)(H,>),

so that Trop(inu(I)) =
⋃
σ∈∆ σ.

2: for σ ∈ ∆ maximal do
3: Compute a relative interior point vσ ∈ σ.
4: return N := {vσ | σ ∈ ∆ maximal}.

Proof. Let I := inu(I). By Proposition 3.3.4, we have inv(I) = inu+ε·v(I)

for ε > 0 sufficiently small, which implies that u+ ε · v ∈ Trop(I) for ε > 0

sufficiently small if and only if v ∈ Trop(I). This implies the correctness of
our output, provided we may use Algorithm 4.1.13 in the first place.

Because all maximal cones are of a fixed dimension by Lemma 4.1.2,
Cu(I) ⊆ Trop(I) is one-codimensional, say dim(Trop(I)) = k + 1 and
dim(Cu(I)) = k. On the one hand, our previous considerations imply
dim(Trop(I)) = dim(Trop(I)) = k + 1. On the other hand, by Definition
4.1.10 of the homogeneity space, we have Cu(I) ⊆ C0(I).

Therefore, either dim(C0(I)) = k = dim(Trop(I)) − 1 or dim(C0(I)) =

k+1 = dim(Trop(I)). The latter is not possible since any inner normal vector
of Cu(I) ≤ Cw(I) lies in Trop(I) but not in C0(I). Hence all prerequisites
of Algorithm 4.1.13 are fulfilled. �

Example 4.1.18 Consider the ideal I E ZJtK[x1, . . . , x4] generated by

{3− t, 8tx3x4 + tx1x2 + 2x2
1,

tx1x
2
2 + 2x2

1x2 + 2t3x1x2x3 + 4t2x2
1x3 − 64tx3

1}.

Its tropical variety has a homogeneity space generated by (0, 1, 1, 1, 1), which
is not surprising since the ideal is x-homogeneous, and it is combinatorially
of the form as displayed in Figure 7. Note that the upper three vertices and
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the lower vertex have first component 0, thus they yield points at infinite if
intersected with the affine hyperplane {−1} × R4.

(−2,−1, 1, 5,−5)(−1, 0,−1, 1, 0) (−1, 0, 1, 3,−4)

(0, 1,−3, 1, 1)(0, 1, 1, 5,−7)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

Figure 7. combinatorial structure of Trop(I)

In Example 4.1.14 we have computed the tropical variety of its initial
ideal I with respect to w = (−2,−1, 1, 5,−5) ∈ R<0×Rn. Comparing Figure
6 and Figure 7, we see how Trop(I) determines the structure of Trop(I)

around the weight vector w, see Figure 8.

v1

v2 v3

w

(0, 1,−3,−3, 5)

(0, 1, 1, 1,−3)

(0,−1, 1, 1,−1)

w v1

v2

v3

Figure 8. Trop(inw(I)) and Trop(I)

Points v1 that lie in Trop(I) on the edge to (0, 1, 1, 1,−3) and sufficiently
close to w lie in Trop(I) on the edge to (−1, 0, 1, 3,−4), as both edge direc-
tions are linearly dependent,

(0, 1, 1, 1,−3)− (−2,−1, 1, 5,−5) = (2, 2, 0,−4, 2),

(−1, 0, 1, 3,−4)− (−2,−1, 1, 5,−5) = (1, 1, 0,−2, 1).

And obviously, points v2 that lie in Trop(I) on the edge to (0,−1, 1, 1,−1)

also lie in Trop(I) on the edge to (0,−1, 1, 1,−1).
Finally, points v3 that lie in Trop(I) on the edge to (0, 1,−3,−3, 5) lie

in Trop(I) on the edge to (−1, 0,−1, 1, 0), as both edge directions are again
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linearly dependent,

(0, 1,−3,−3, 5)− (−2,−1, 1, 5,−5) = (2, 2,−4,−8, 10),

(−1, 0,−1, 1, 0)− (−2,−1, 1, 5,−5) = (1, 1,−2,−4, 5).

Next we describe an algorithm to compute a starting cone in our tropical
variety.

Algorithm 4.1.19 starting cone
Input: (G,>), where G is an initially reduced standard basis of I with

respect to the t-local monomial ordering >.
Output: (H ′, G′, >′), where

(1) >′ a t-local monomial ordering with Cw′(I) ≤ C>′(I) for a maximal
Gröbner cone Cw′(I) ⊆ Trop(I),

(2) G′ ⊆ I an initially reduced standard basis with respect to >′,
(3) H ′ = {inw′(g) | g ∈ G′} ⊆ inw′(I).

1: if dim(I) = dim(C0(I)) then
2: return (G,G,>)

3: Find a weight vector w ∈ (Trop(I) \ C0(I)) ∩ (R<0 × Rn).
4: Let >w denote a weighted ordering with weight vector w and an arbitrary

tiebreaker.
5: Compute an initially reduced standard basis G′′ of I with respect to >w.
6: Set H ′′ := {inw(g) | g ∈ G′′}.
7: Rerun

(H ′, G′0, >
′
0) = startingCone(H ′′, >w).

8: Let >′ be the weighted monomial ordering with weight vector w and
tiebreaker >′0.

9: Lift G′0 to an initially reduced standard basis G′ of I:

G′ = Lift(G′0, >
′, H ′′, G′′, >w).

10: return (H ′, G′, >′)

Proof. Labelling all the objects appearing in the ν-th recursion step by
a subscript ν we have

dimC0(I0) < dimC0(I1) < dimC0(I2) < . . . ,

as wν /∈ C0(Iν) yet wν ∈ C0(Iν+1) for all ν. And since all dimC0(Iν) are
strictly bounded from above by the dimension of R≤0 × Rn, the recursions
stop eventually and our algorithm terminates.

For the correctness of the output make an induction on the number
of recursions. If there are no recursions, i.e. dim(I) = dim(C0(I)), then
(G,G,>) obviously satisfies the conditions (1), (2) and (3).

If recursions do happen, then, by induction hypothesis, the output
(H ′, G′0, >

′
0) in Step 7 is correct. Setting J := inw(I), this means:

(i) >′0 is a t-local monomial ordering with Cw′0(J) ≤ C>′0(J) for a maximal
Gröbner cone Cw′0(J) ⊆ Trop(J),
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(ii) G′0 ⊆ J is an initially reduced standard basis with respect to >′0,
(iii) H ′ = {inw′0(g) | g ∈ G′0} ⊆ inw′0(J).

Recall that by Proposition 3.3.4, we have inv(J) = inw+ε·v(I) for ε > 0

sufficiently small. Setting w′ := w + ε · w′0 for ε > 0 sufficiently small, this
implies that Cw′(I) ⊆ Trop(I) and

dimCw′(I) = dimCw′0(J)
(i)
= dim Trop(J) = dim Trop(I).

Moreover, because we have set >′ to be a weighted ordering with weight
vector w′, we have Cw′(I) ≤ C>′(I) and condition (1) on the t-local ordering
>′ is fulfilled.

The remaining conditions (2) and (3) now follow directly from the cor-
rectness of our lifting algorithm, which we may use by construction of G′′

and H ′′ and because of w ∈ C>′(I) ∩ C>w(I):
(a) G′ is an initially reduced standard basis with respect to >′,
(b) G′0 = {inw(g) | g ∈ G′}.
Condition (2) is equivalent to condition (a), and condition (3) follows from

H ′
(iii)
= {inw′0(g) | g ∈ G′0}

(b)
= {inw′0 inw(g) | g ∈ G′}

and w′ := w + ε · w′0. �

Remark 4.1.20 In Step 3 of the previous algorithm, it is necessary to find
a non-trivial point w in the tropical variety. This can be achieved by travers-
ing the Gröbner fan as in Algorithm 3.3.7 and checking all Gröbner cones
whether they have a ray that is contained inside the tropical variety.

Due to the repeated transition to initial ideals, see Steps 6 and 7, the ideal
and hence its Gröbner fan become simpler in each iteration. For example,
the dimension of the homogeneity space is strictly increasing, as w /∈ C0(I)

but w ∈ C0(inw(I)).

Example 4.1.21 Consider the ideal I E ZJtK[x1, . . . , x4] from the previous
Example 4.1.18 generated by

{3− t, 24x3x4 + 3x1x2 + 2x2
1, x2x3x4 + 18x2

3x4 + 8x3
1}.

A short calculation reveals that dim(Trop(I)) = dim(I) = 3 > 1 = dim(C0(I))

with
C0(I) = R · (0, 1, 1, 1, 1).

Picking a weighted monomial ordering > with weight vector (−1, 1, 11, 3, 19),
one can show that its maximal Gröbner cone C>(I) has a ray generated by
w := (−2,−1, 1, 5,−5), which is contained in the tropical variety. The initial
ideal inw(I) is then generated by

{3, tx3x4 − tx1x2 + x2
1, tx1x

2
2 − x2

1x2 − t3x1x2x3 + t2x2
1x3}.

Another short calculation shows that dim(inw(I)) = 3 > 2 = dim(C0(inw(I)))

with
C0(inw(I)) = R≥0 · w + R · (0, 1, 1, 1, 1).
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Sticking to the same weighted monomial ordering >, we see that its maximal
Gröbner cone C>(inw(I)) has a ray generated by v := (6,−11, 11,−1, 1),
which is again contained in the tropical variety Trop(inw(I)). The initial
ideal inv inw(I) is then generated by

{3, tx3x4 − tx1x2, x2x3x4 − t2x1x2x3}.

It follows that dim(inv inw(I)) = 3 = dim(C0(inv inw(I))) with

C0(inv inw(I)) = R≥0 · (−1, 1,−1, 1,−1) +R · (0, 1, 0, 0, 1) +R · (0, 0, 1, 1, 0),

so that the recursions end.
Summing up, this proves that w + ε · v ∈ Trop(I) for ε > 0 sufficiently

small. Together with C0(I) generated by (0, 1, 1, 1, 1) that is naturally con-
tained in every Gröbner cone, this determines a maximal Gröbner cone in our
tropical variety. What remains is to compute an initially reduced standard
basis of inw+ε·v(I) and I with respect to >, which we will return. Using that
data, Algorithm 3.1.28 constructs a maximal Gröbner cone in our tropical
variety.

C0(I) = R · (0, 1, 1, 1, 1)

w

R≥0 · w + C0(I) = C0(inw(I))

v

C0(inv inw(I)) = . . .+ C0(inw(I))

1 = dim(C0(I)) < dim(C0(inw(I))) < dim(C0(inv inw(I))) = dim Trop(I) = 3

Figure 9. computing a tropical starting cone

Algorithm 4.1.22 tropical variety
Input: (Ginput, >input), where Ginput is an initially reduced standard basis

of I with respect to the t-local monomial ordering >input.
Output: ∆ = Trop(G,>), a collection of maximal Gröbner cones Cw(I) ⊆

Trop(I) covering Trop(I), i.e.

Trop(I) =
⋃
Cw(I)∈∆Cw(I).

1: Compute an initially reduced standard bases for a starting cone

(H,G,>) = startingCone(Ginput, >input).

2: Construct the corresponding Gröbner cone

Cw(I) = C(H,G,>),

so that w ∈ Trop(I) and Cw(I) ⊆ Trop(I) maximal.
3: Initialize ∆ := {Cw(I)}.
4: Initialize a working list L := {(G,>,Cw(I))}.
5: while L 6= ∅ do
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6: Pick (G,>,Cw(I)) ∈ L.
7: for all τ ≤ Cw(I), τ * {0} × Rn do
8: Compute a relative interior point u ∈ τ .
9: Set H := {inu(g) | g ∈ G}

10: Compute a set of normal vectors based on its tropical star

N = tropicalStar(H,G,>).

11: for v ∈ N do
12: if u+ ε · v /∈ Cw(I), ε > 0 suff. small, for all Cw(I) ∈ ∆ then
13: Compute an initially reduced standard basis with respect to the

adjacent ordering

(G′, >′) := Flip(G,H, v,>).

14: Set H ′ := {in(u,v)(g) | g ∈ G′}.
15: Construct the adjacent Gröbner cone

Cw′(I) := C(H ′, G′, >′).

16: Set ∆ := ∆ ∪ {Cw′(I)}.
17: Set L := L ∪ {(G′, >′, Cw′(I))}.
18: Set L := L \ {(G,>,Cw(I))}.
19: return ∆.

Proof. Termination and correctness follow from Lemma 4.1.2 as well
as the correctness of all the algorithms used. �

Example 4.1.23 For a visual example, consider the 3-dimensional ideal

I = 〈12x2 + 13xy + 16y2 + 9xz + 8z2, 2− t〉

= 〈3t2x2 + 13xy + t4y2 + 9xz + t3z2, 2− t〉 ∈ ZJtK[x, y, z].

It is actually not hard to see that

Trop(I) = Trop(3t2x2 + 13xy + t4y2 + 9xz + t3z2︸ ︷︷ ︸
=:g

),

so that we can actually compute Trop(I) using Algorithm 4.1.3. But if
we were to use the general algorithm for its computation, it would look
something like this:

For the starting cone, we begin with a random monomial ordering, say
the weighted ordering >w, where w = (−3,−7, 4, 3) ∈ R<0 × R3 and >

denotes the t-local lexicographical ordering with x > y > z > 1 > t.
Then we compute an initially reduced standard basis (terms are ordered

by their monomials),

{t3z2 + 13xy + t4y2 + 9xz + 3t2x2, 2− t}.

Because

inw(3t2x2 + 13xy + t4y2 + 9xz + t3z2) = t3z2 + 13xy,
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we see that w ∈ Trop(I). In fact, w lies on a maximal Gröbner cone in the
tropical variety. Because its initial form is binomial, the only weight vectors
w′ such that inw+εw′(g) is no monomial are the w′ such that inw+εw′(g) =

inw(g), i.e. w′ ∈ Cw(I).
Note that all Gröbner cones are invariant under translation by (0, 1, 1, 1).

Hence the 3-dimensional Gröbner cone Cw(I) is spanned by two rays, which
are generated by v1 = (−2,−7, 1, 0) and v2 = (−1,−1, 0, 0) respectively.
This can be seen from their respective initial forms, which only gain one
additional term compared to inw(g),

inv1(g) = t3z2 + 13xy + t4y2 and inv2(g) = t3z2 + 13xy + 9xz.

We have thus finished computing a starting cone and its two facets, which
we need to traverse.

v1 v2

If we pick one of the facets, say the one generated by v1, we see that its
tropical star consists of three rays. One ray points in the direction v1,1 =

(0, 0, 0,−1) so that inv1+ε·v1,1(g) = t4y2 +13xy = inw(g), which undoubtedly
points into our starting cone. Another ray points in the direction v1,2 =

(0, 0, 1, 1) so that inv1+ε·v1,2(g) = t4y2 + t3z2. The last ray points in the
direction v1,3 = (0, 0,−2,−1) so that inv1+ε·v1,3(g) = t3z2 + 13xy.

v1,1
v1,2

v1,3

Continuing with direction v1,2 = (0, 0, 1, 1), to whose side lies the closure of
equivalence class such that inw′(g) = t4y2 + t3z2, we see that the other ray
of the maximal Gröbner cone is generated by v3 = (0, 0, 1, 1) with inv3(g) =

t4y2 + t3z2. The ray lies on the boundary of the maximal Gröbner cone
because it lies on the boundary of the lower halfspace.

Continuing with the direction v1,3 = (0, 0,−2,−1), which is the closure
of the equivalence class such that inw′(g) = t3z2 + 13xy, we get that the
other ray of the maximal Gröbner cone is v4 = (0, 1, 1,−2) with inv4(g) =

13xy + 3t2x2 + t4y2.

v1 v2

v3

v4

Because both v3 and v4 lie on the boundary of the lower halfspace, the
only facet left to traverse is the one generated by v2. The tropical star
around v2 consists of three rays. One ray points in the direction of v2,1 =

(0, 0,−1,−1) so that inv1+ε·v2,1 = 13xy + 9xz. Another ray points in the
direction of v2,2 = (0, 0,−1, 0) so that inv1+ε·v2,2 = 9xz+ t3z2. The final ray
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points in the direction of v2,3 = (0, 0, 2, 1) so that inv1+ε·v2,3 = 13xy + t3z2,
this is the vector pointing into our starting cone.

v2,3
v2,2

v2,1

Continuing in the direction of v2,1, the other ray of the maximal Gröbner
cone is generated by v5 = (−1, 2, 0, 0) as inv5(g) = 13xy + 9xz + 3t2x2.
And continuing in the direction of v2,2, the other ray is generated by v6 :=

(0, 0,−1, 0) as inv6(g) = 9xz + 3t2x2 + t3z2.

v1 v2

v3

v4

v5

v6

Because v5 lies on the boundary of the lower halfspace, v6 generates the
only facet left to traverse. A quick glance at the initial forms imply that it
is connected to the facet generated by v4 and the facet generated by v5.

v1 v2

v3

v4

v5

v6

We obtain that Trop(I) is covered by a polyhedral fans with 6 rays, of
which the ones generated by v1, v2, v6 lie in the interior of the lower halfspace
R≤0 × Rn, while the ones generated by v3, v4, v5 lie on its boundary.

The 6 rays are pairwise connected via 7 cones of one higher dimension.
Note that all of these cones intersect the interior of the lower halfspace non-
trivially, and none of them lies on the boundary. In fact, the edges connecting
(v1, v3), (v2, v5), (v6, v4) and (v6, v5) intersect the boundary in codimension
one, while the cones connecting (v1, v3) and (v2, v6) intersect the boundary
in codimension 2, which has to be the homogeneity space, similar to the
figure in Example 3.1.6.
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4.2. Application to fields with valuation

With the algorithms of the last section, we can now describe an algorithm
for computing tropical varieties over fields with non-trivial valuation.

Lemma 4.2.1 Let IEK[x] be an ideal, and let G = {g1, . . . , gk} ⊆ I∩Rν [x]

be a generating set over the valuation ring. Because π : RJtK[x] → Rν [x] is
surjective, there exist g′1, . . . , g

′
k ∈ RJtK[x] such that π(g′i) = gi ∈ R[x]. Then

π−1I =
(
〈g′1, . . . , g′k〉+ 〈p− t〉

)
: p∞ ERJtK[x].

Proof. π−1I ⊇ (〈g1, . . . , gk〉+〈p−t〉) : p∞ is obvious, as p−t is mapped
to 0 and p is invertible in K.

For the converse inclusion, let f ∈ π−1I. Then there are q1, . . . , qk ∈ K[x]

such that
π(f) = q1 · g1 + . . .+ qk · gk ∈ K[x],

which means that for a sufficiently high power l ∈ N we have

pl · π(f) = plq1︸︷︷︸
∈Rν [x]

·g1 + . . .+ plqk︸︷︷︸
∈Rν [x]

·gk ∈ Rν [x].

Because the map π : RJtK[x] → Rν [x] is surjective, there exist q′1, . . . , q′k ∈
RJtK[x] such that

pl · π(f) = π(q′1 · g′1 + . . .+ q′k · g′k),

or rather
pl · f − q′1 · g′1 + . . .+ q′k · g′k ∈ ker(π) = 〈p− t〉.

Thus pl · f ∈ 〈g′1, . . . , g′k〉+ 〈p− t〉, and hence

f ∈ (〈g′1, . . . , g′k〉+ 〈p− t〉) : p∞. �

Proposition 4.2.2 Let I E K[x] be an ideal, and let G = {g′1, . . . , g′k} ⊆
π−1I such that I = 〈π(g′1), . . . , π(g′k)〉. Then

Trop(π−1I) = Trop(〈g′1, . . . , g′k〉+ 〈p− t〉).

Proof. By Lemma 4.2.1, we have

π−1I =
(
〈g′1, . . . , g′k〉+ 〈p− t〉︸ ︷︷ ︸

=:I′

)
: p∞ ERJtK[x].

Consider a weight vector w ∈ R<0 × Rn and suppose inw(I ′) contains a
monomial tβxα. By Algorithm 3.3.1, there exists a witness f ∈ I ′ with
inw(f) = tβxα. However since I ′ ⊆ π−1I, inw(I) then contains the monomial
tβxα as well.

Now suppose inw(π−1I) contains a monomial tβxα. By Algorithm 3.3.1,
there exists a witness f ∈ π−1I with inw(f) = tβxα. Let l ∈ N be sufficiently
high such that pl · f ∈ I ′. Now since p − t ∈ I ′, this implies tl · f ∈ I ′ and
inw(I ′) then contains the monomial inw(tl · f) = tβ+lxα. �
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Algorithm 4.2.3 tropical variety of an ideal IEK[x]

Input: G, where G ⊆ I EK[x] a generating set.
Output: ∆ = Trop(G), a collection of maximal Gröbner cones Cw(I) ⊆

Trop(I) covering Trop(I), i.e.

Trop(I) =
⋃
Cw(I)∈∆Cw(I).

1: Set G′ := ∅.
2: for g ∈ G do
3: Pick l ∈ N sufficiently high such that pl · g ∈ Rν [x].
4: Find a preimage g′ ∈ RJtK[x] such that π(g′) = pl · g.
5: Set G′ := G′ ∪ {g′}.
6: Construct a set of maximal Gröbner cones covering Trop(〈G′〉+ 〈p− t〉)

using Algorithm 4.1.22.
7: Intersect each cone of ∆ with {−1} × Rn.
8: return ∆.

Proof. Follows from Theorem 1.2.13 and Proposition 4.2.2. �

Example 4.2.4 Consider the ideal from Example 1.1.20,

I := 〈x1 + 2x2 − 3x3, 3x2 − 4x3 + 5x4〉EQ[x].

As one might expect, the tropical varieties differ depending on the valuation.
Figure 10 shows Trop(I) for various p-adic valuations on Q. For p sufficiently
high, it coincides with the tropical variety for the trivial valuation, which is
not surprising because the prime number is simply too high for p− t to play
a role in our standard basis calculations.
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Tropνp(I) = Trop(I) for p = 7, 11, 13, 17

Figure 10. Tropν(I) for various p-adic and the trivial valuations.
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Example 4.2.5 Consider the Grassmann-Plücker ideal from Example 6.2.3
of [Jen07] which sits in a polynomial ring with 10 variables,

I := 〈bf − ah− ce, bg − ai− de, cg − aj − df, ci− bj − dh, fi− ej − gh〉
E Q[a, . . . , j].

Its tropical variety does not seem dependent on any valuation on Q. Fig-
ure 11 shows a shortened output of Singular when computing its tropical
variety with respect to the 2-adic valuation. It is describing a polyhedral fan
whose intersection with the affine hyperplane {−1}×Rn yields a polyhedral
complex ∆ covering Tropν2(I). Here is a list of the cones missing in the
figure, all non-maximal:

CONES
{}# Dimension 5
{0}# Dimension 6
{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}
{9}
{10}
{0 1}# Dimension 7
{0 2}
{0 3}
{0 4}
{0 5}
{0 6}

{0 7}
{0 8}
{0 9}
{0 10}
{1 2}
{1 3}
{1 4}
{2 5}
{2 9}
{3 7}
{4 6}
{3 8}
{4 10}
{5 6}
{5 7}
{6 8}
{7 10}
{8 9}
{9 10}

The cone {} represents the lineality space of the polyhedral complex,
while the cone {0} describes the only vertex of ∆ sitting at the origin. The
cones {0 1} to {0 10} describe ten polyhedra which sit at the origin and are
unbounded in the directions #1 to #10. And the maximal cones {0 i j}
describe polyhedra which are spanned by {0 i} and {0 j}. It is not hard
to realize, that ∆ is in fact a polyhedral fan, with rays {0 1} to {0 10} and
maximal cones {0 i j}.

Note that, from a perspective of ∆ in Rn = {−1}×Rn, all data is given
in projective coordinates, and the cones {i j} with i 6= 0 6= j lie on the
hyperplane at infinite. They distort the f-Vector shown, so that it is not the
f -Vector of ∆.

Figure 12 illustrates the combinatorial structure of ∆. Each vertex rep-
resents a ray of ∆, while each edge represents a maximal cone of ∆. The
graph shown should be thought of as lying on a sphere S2, on which the
colored edges connect with their counterpart on the other side.
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SINGULAR / Development
A Computer Algebra System for Polynomial Computations / version 4.0.1

0<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Sep 2014
FB Mathematik der Universitaet, D-67653 Kaiserslautern \
> LIB "gfanlib.so";
// ** loaded /usr/local/bin/../libexec/singular/MOD/gfanlib.so
> printlevel = 1;
> ring r=0,(a,b,c,d,e,f,g,h,i,j),dp;
> ideal I = bf-ah-ce, bg-ai-de, cg-aj-df, ci-bj-dh, fi-ej-gh;
> tropicalVariety(I,number(2));
cones finished: 1 cones in working list: 4
[...] information on the state of the traversal because printlevel=1 was set
cones finished: 14 cones in working list: 1
cones finished: 15 cones in working list: 0

_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
11

DIM
8

LINEALITY_DIM
5

RAYS
-1 0 0 0 0 0 0 0 0 0 0 # 0
0 -3 1 1 1 1 1 1 -1 -1 -1# 1
0 -1 -1 1 1 -1 1 1 1 1 -3# 2
0 -1 1 -1 1 1 -1 1 1 -3 1# 3
0 -1 1 1 -1 1 1 -1 -3 1 1# 4
0 1 -3 1 1 1 -1 -1 1 1 -1# 5
0 1 -1 -1 1 1 1 -3 -1 1 1# 6
0 1 -1 1 -1 1 -3 1 1 -1 1# 7
0 1 1 -3 1 -1 1 -1 1 -1 1# 8
0 1 1 -1 -1 -3 1 1 1 1 -1# 9
0 1 1 1 -3 -1 -1 1 -1 1 1# 10

LINEALITY_SPACE
0 -1 0 0 0 0 0 0 1 1 1 # 0
0 0 -1 0 0 0 1 1 0 0 1 # 1
0 0 0 1 0 0 1 0 1 0 1 # 2
0 0 0 0 1 0 0 1 0 1 1 # 3
0 0 0 0 0 -1 -1 -1 -1 -1 -1# 4

F_VECTOR
1 11 25 15

MAXIMAL_CONES
{0 1 2}# Dimension 8
{0 1 3}
{0 1 4}
{0 2 5}
{0 2 9}
{0 3 7}
{0 4 6}
{0 3 8}
{0 4 10}
{0 5 6}
{0 5 7}
{0 6 8}
{0 7 10}
{0 8 9}
{0 9 10}

Figure 11. Singular output for the Grassmann-Plücker ideal
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1

3 7 10

2 5 6

4

9

8

Figure 12. tropical variety of the Grassmann-Plücker ideal
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4.3. Optimizations and shortcuts

In this section, we consider some mathematically simple optimizations
for ideals arising from Theorem 1.2.13, which will speed up the computations
considerably for our application. They mainly apply to the ideals J , which
are initial ideals inu(I) of I with respect to some weight vector in u ∈ R<0×
Rn.

Let us recall the previous convention, which we will also require for this
section.

Convention 4.3.1 We assume Convention 1.2.2 to hold, in which we have:
K a field with discrete valuation, K its residue field, Rν its discrete valuation
ring, p ∈ Rν a uniformizing parameter and R ⊂ Rν a dense noetherian
subring with p ∈ R. Both K and Rν are assumed to be complete so that we
have

0 〈p− t〉 ·RJtK〈p−t〉[x] RJtK〈p−t〉[x] K[x] 0,

0 〈p− t〉 ·RJtK[x] RJtK[x] Rν [x] 0.
t 7−→ p

and R/〈p〉 = K.
Moreover, we continue to require that R satisfies Convention 2.1.1 (which

coincides with Convention 3.1.1), so that standard bases and the Gröbner
fans both exist and are computable.

Fix a preimage I E RJtK[x] of a homogeneous ideal in K[x], which in
particular implies that I is x-homogeneous and p − t ∈ I. Moreover, fix a
t-local monomial ordering > on Mon(t, x). Let J ER[t, x] be an initial ideal
of I with respect to a weight vector in R<0 × Rn. In particular, p ∈ J .

We will begin with the obvious: Because p ∈ J , many computations
involving J may be sped up by doing them over R/〈p〉 = K instead.

Definition 4.3.2 Given a residue class f ∈ K[t, x] we call a representative
f :=

∑
β,α cα,β · tβxα ∈ R[t, x] of f a canonical choice, if for all β ∈ N and

α ∈ Nn

cα,β = 0 ∈ K ⇐⇒ cα,β = 0 ∈ R, and
cα,β = 1 ∈ K ⇐⇒ cα,β = 1 ∈ R.

In particular, the monomials occurring in f are the monomials occurring in
f and vice versa.

In Algorithm 3.3.5 for flipping standard bases of I from one ordering to
an adjacent one, it is required to compute a standard basis of J with respect
to that adjacent ordering. Similarly, in Algorithm 4.1.7 for initial ideals
with respect to generic weights, which is repeatedly called from Algorithm
4.1.13, it is required to compute a standard basis of J with respect to a
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multiweighted ordering. This computation can be done entirely over the
residue field.

Algorithm 4.3.3 an initially reduced standard basis of J
Input: (H,>), where H = {h0, . . . , hk} ⊆ J a generating set, J such that

p ∈ J , and > a t-local monomial ordering on Mon(t, x).
Output: G, an initially reduced standard basis of J with respect to >.
1: Let h0, . . . , hk ∈ K[t, x] denote the residues of h0, . . . , hk ∈ R[t, x].
2: Compute a monic, initially reduced standard basis {g1, . . . , gl} of J =

〈h0, . . . , hk〉 with respect to >.
3: Let g1, . . . , gl ∈ R[t, x] be canonical representatives for g1, . . . , gl.
4: return G := {p, g1, . . . , gl}.

Proof. First, we show that G is indeed a standard basis. Since p ∈ J ,
it is clear that 〈G〉 ⊆ J and therefore 〈LT>(g) | g ∈ G〉 ⊆ LT>(J).

For the opposite inclusion, consider a term s = c · tβxα ∈ LT>(J).
Now if p | c, then s ∈ 〈LT>(g) | g ∈ G〉, since p ∈ G and LT>(p) = p.
And if p - c, we may use p ∈ LT>(J) and the fact that 〈p, c〉 = R to
normalize s, and get tβxα ∈ LT>(J). Thus tβxα ∈ LT>(J), and hence there
is a gi such that LM>(gi) | tβxα. Since all gi were chosen to be monic,
this implies LT>(gi) | tβxα, and because all gi were chosen to be canonical
representatives, this implies LT>(gi) | s.

Next, it remains to show that G is initially reduced. This is easy to see.
For each gi let g′i be the sum of all terms of gi with minimal degree in t,
as in Definition 3.1.7, the same for (gi)

′ and gi. Because gi is a canonical
representative of gi, so is g′i for (gi)

′. Now if G were not initially reduced and
one g′i would have a term contained in LT>(J) that is not the leading term,
then so would (gi)

′ because g′i is a canonical representative of (gi)
′. �

In Algorithm 4.1.13 for computing tropical varieties with one-codimensional
homogeneity space, it is repeatedly required to decide whether monomials
lie in J or in the initial ideals of J . This is another problem, that can be
entirely solved over the residue field.

Algorithm 4.3.4 monomial in J
Input: (H,>), where H = {h0, . . . , hk} ⊆ J a generating set and J such

that p ∈ J .
Output: if it exists, a monomial m ∈ J , 0 otherwise.
1: Let h0, . . . , hk ∈ K[t, x] denote the residues of h1, . . . , hk ∈ R[t, x].
2: if there exists a monomial m ∈ 〈h0, . . . , hk〉 then
3: return m

4: else
5: return 0

Proof. Clear, since J contains a monomial if and only if J does. �
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In Algorithm 3.3.2 for lifting standard bases of J to standard basis of I,
it is necessary to compute witnesses in I for the standard basis elements of
J . This is also something, which can be mainly done over the residue field.

Algorithm 4.3.5 Witness in I of an element in J
Input: (h,H,G,>), where

• > a weighted t-local monomial ordering on Mon(t, x),
• G = {g0, g1, . . . , gk} ⊆ J an initially reduced, polynomial standard
basis w.r.t. > such that g0 = p, and all gi with i > 0 canonical
representatives of their residues,

• H = {h0, h1, . . . , hk} ⊆ inw(I) with hi = inw(gi) for some w ∈ C>(I),
• h ∈ inw(I) weighted homogeneous with respect to w and also a canon-
ical representative of its residue.

Output: f ∈ I such that inw(f) = h

1: Let h, hi, gi ∈ K[t, x] denote the residues of h, hi, gi ∈ R[t, x].
2: Compute a homogeneous determinate division with remainder w.r.t. >u:

h = q1 · h1 + . . .+ qk · hk + 0.

3: Let q1, . . . , qk ∈ R[t, x] be canonical representatives of q1, . . . , qk.
4: Set

q0 :=
h− (q1 · h1 + . . .+ qk · hk)

p
∈ R[t, x].

5: return f := q0 · g0 + q1 · g1 + . . .+ qk · gk.

Proof. To show: inw(f) = h.
Because all gi are canonical representatives, so are all hi, and hence the
monomials occurring in h, hi or gi coincide with the monomials occurring in
their residues.

In particular, h and all hi are weighted homogeneous, and thus all qi · hi
are weighted homogeneous with weighted degree degw(h) = degw(h). The
same holds true for qi · hi and hence also q0. Hence

inw(f) = inw(q0) · inw(g0)︸ ︷︷ ︸
=q0·p

+ inw(q1) · inw(g1)︸ ︷︷ ︸
=q1·h1

+ . . .+ inw(qk) · inw(gk)︸ ︷︷ ︸
=qk·hk

= h �

For the final optimization, we look at ways to exploit the weighted ho-
mogeneity of J = inw(I).

First note, as an addendum to Algorithm 4.3.3, that there is no distinc-
tion between initially reduced and reduced standard bases for J , assuming
the standard bases are weighted homogeneous.

Lemma 4.3.6 Let G be a weighted homogeneous standard basis of J with
respect to >. Then G is initially reduced with respect to > if and only if it
is reduced with respect to >.
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Proof. It is clear that any reduced standard basis is initially reduced.
For the converse, suppose that G = {g1, . . . , gk} with gi =

∑
α∈Nn gi,α · xα,

gi,α ∈ R[t]. Recall that, by definition, G is initially reduced if the following
set is reduced:

G′ :=
{∑

α∈N LT>(gi,α) · xα
∣∣ i = 1, . . . , k

}
.

However, since G is weighted homogeneous, we necessarily have LT>(gi,α) =

gi,α and hence G′ coincides with G. �

Also, recall that working with a monomial ordering > on Mon(t, x) is
generally harder, if > is no well-ordering. However, because J E R[t, x]

is polynomial we can apply a well-known trick for homogeneous ideals in
polynomial rings:

Should J be weighted homogeneous with respect to some positive weight
vector w′ ∈ R>0 × Rn>0, we may work with the weighted well-ordering >w′
instead of >. A reduced Gröbner basis of J with respect to >w′ is a reduced
standard basis of J with respect to > and vice versa.

The next lemma shows that all initial ideals J that arise in our compu-
tations satisfy this property, so that the trick mentioned above is applicable.

Lemma 4.3.7 Let I E RJtK[x] be x-homogeneous and J := inw(I)E R[t, x]

for some weight vector w ∈ R<0 × Rn. Then there exists a positive weight
vector w′ ∈ R>0 × Rn>0 such that J is homogeneous with respect to it.

Proof. Because the first entry in w is negative, −w ∈ R>0×Rn. Hence,
for k ∈ N sufficiently high, w′ := k · (0, 1, . . . , 1)− w ∈ R>0 × Rn>0.

And since J is both x-homogeneous, i.e. weighted homogeneous with
respect to (0, 1, . . . , 1), and weighted homogeneous with respect to w, it is
also weighted homogeneous with respect to w′. �
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4.4. Concluding words

In Section 4.1 we have seen that computing the tropical variety Trop(I)

consists of two distinct parts: We first compute a starting cone to begin with
and then traverse the entire tropical variety until all Gröbner cones in it are
known.

Traversing the tropical variety consists of repeated computations of trop-
ical stars using Algorithm 4.1.17 and repeated computations of flips of stan-
dard bases using Algorithm 3.3.5.

Since computing the tropical star boils down to repeated search for mono-
mials in initial ideals with respect to generic weights, which mainly consists
of a single standard basis computation of J with respect to a multiweighted
ordering, and computation of witnesses thereof, it can be entirely done over
the residue field thanks to Algorithm 4.3.4 and Algorithm 4.3.5.

And because computing the flip boils down to computing a standard
basis of an initial ideal and lifting it to the original ideal, it can also be done
over the residue field thanks to Algorithm 4.3.3 and Algorithm 4.3.5.

tropical traversal

tropical star

• checking initial ideals
for monomials

• computing witnesses

over residue field with
Algorithm 4.3.4

over residue field with
Algorithm 4.3.5

flips of standard bases

• compute standard bases
of initial ideals

• lift standard bases

over residue field with
Algorithm 4.3.3

over residue field with
Algorithm 4.3.5

Figure 13. algebraic computations during the traversal

Computing the starting cone using Algorithm 4.1.19 consists of recursive
searches for points in the tropical variety and lifts of Gröbner bases. The lat-
ter is something that can always be done over the residue field by Algorithm
4.3.5.

The first, as explained in Remark 4.1.20, is essentially computing the
Gröbner fan until we encounter a point in the tropical variety. Since we are
working with initial ideals containing p in the recursions, all computations
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can be done over the residue field. For the beginning of the recursions how-
ever, we do need a standard basis computation of I to start our Gröbner fan
traversal.

tropical starting cone computation

start of recursions

• searching for a point in Trop(I) \ C0(I)

- compute a random maximal Gröbner cone
- traverse Gröbner fan until tropical point is found
computations over residue field similar to tropical traversal

• lift standard bases
computations over residue field with Algorithm 4.3.5

later recursions

• [...]

initial ideals, computations over residue field

Figure 14. algebraic computations during the starting cone
computation

We see that, apart from the reduction process which is necessary for
determining the inequalities and equations of the Gröbner cones, the only
computation in RJtK[x] required in the entire algorithm is a single standard
bases computation at the very beginning. The remaining computations such
as divisions with remainder, normal form computations or initially reduced
standard basis computations, all happen over the residue field (and with
respect to well-orderings thanks to Lemma 4.3.7).

However, standard basis computations over coefficient rings, in Singu-
lar as well as in other computer algebra systems, are still in a highly ex-
perimental state. In fact, all examples up till now, which have fail to be
computed in reasonable time, have been because of it. And examples which
managed to pass the initial standard basis computation all successfully fin-
ished in reasonable time.

But this is not surprising. As if finding the right balance between the
plethora of strategies for standard basis computations over fields is not a
hard problem already, the difficulty of having leading coefficients in a ring
adds a whole new dimension to it.

Neverthelss, our ideals π−1I in RJtK[x] always contain a generator p− t,
which has leading term p. And because R/〈p〉 = K is a field, one would
expect that a strategy, which aggressively uses this element to normalize
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every other leading coefficient during our computation to 1, should make the
standard basis computation almost as easy as over a ground field. In the
context of this work, this is certainly something that needs to be investigated
next.

Finally, I want to mention two other interesting topics that are worth
pursuing, though they are not only interesting for this approach of computing
tropical varieties over valued fields, but interesting for computing tropical
varieties over rings in general.

The first is Andrew Chan’s work on computing tropical curves via coordi-
nate projections as in Chapter 4 of [Cha13]. If this method can be adjusted
to work over rings, it might prove very useful for computing tropical vari-
eties with one-codimensional homogeneity spaces. Tests have shown that it
is significantly faster than the technique shown in Algorithm 4.1.13. The
method works by computing several projections of the tropical curve onto
coordinate hypersurfaces and using them to reconstruct the original tropical
curve.

The second is a method by Anders Jensen for finding points in the trop-
ical variety, which is necessary for computing a starting cone, see Algo-
rithm 4.1.19. As of today, there exists no citeable source, but the rough idea
is to compute stable intersections with hyperplanes to reduce the dimension
of our problem to a certain degree. Any point in the stable intersection nat-
urally lies in our original tropical variety to begin with. Computing stable
intersections is something that is made possible by the recent work of Anders
Jensen and Josephine Yu [JY13].

However it is neither clear whether computing stable intersections over a
ring may be done in a similar fashion theoretically, nor whether it is feasible
practically. Computing the stable intersections over fields generally requires
transcendental extensions and, as of today, none of the big computer algebra
systems (Singular, Macaulay2, Magma) supports transcendental extensions
over rings.





CHAPTER 5

Software and examples

5.1. Implementation

Before we come to the implementation of computing tropical varieties
over valued fields, it should be noted that Singular has no native support
for convex geometry. It relies on the following two software packages instead:
(1) Gfanlib is a C++ library by Anders N. Jensen on convex polyhedral

cones, polyhedral fans and fundamental operations thereon. It is part of
the official Gfan ([Jen11]) sources.

(2) Polymake ([GJ00]) is a tool to study the combinatorics and the ge-
ometry of convex polytopes and polyhedra. It is also capable of dealing
with simplicial complexes, matroids, polyhedral fans, graphs, tropical
objects, and other objects.

These software packages are connected to Singular via two interfaces:
Gfanlib.so is a binary Singular interface to Gfanlib. It was written

by Anders Jensen, Frank Seelisch and myself, and it provides Singular
with data structures for polyhedral cones and polyhedral fans, as well as
some basic functionality thereon.

Polymake.so is a binary Singular interface to Polymake. It was
written by myself, and it gives Singular the ability to call the higher algo-
rithms of Polymake, for example routines for computing matroid fans in
a-tint ([Ham12]).

Now if we compare our approach to computing tropical varieties over
valued fields to existing techniques for computing tropical varieties over fields
with trivial valuation, the key difference that springs into mind is that we
are working with inhomogeneous ideals π−1I in RJtK[x] while the existing
techniques deal with homogeneous ideals I in K[x].

Consequently, many fundamental algorithms in computer algebra, nor-
mal form and standard bases computation, reduction algorithm, are com-
pletely different, even though they serve the same purpose respectively. Also,
some central algorithms in convex geometry, computing tropical varieties of
polynomials, computing interior points on facets for flips, differ slightly be-
cause we are either restricting ourselves to a closed lower halfspace R≤0×Rn
or we are working in the whole weight space Rn. Another divergence are the
possible optimizations for ideals π−1I E RJtK[x] resp. initial ideals thereof,
cf. Chapter 4.2. Nevertheless, as we have seen in Chapter 3.3 and Chapter
4.1, the overall structure of the algorithms is very similar.

141
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Therefore, a major challenge during the implementation was designing a
simple, common framework for these two widely similar, yet fundamentally
different settings. And this framework should follow the following rules:
(1) It needs to know which algorithms are eligible and how they are supposed

to be used. For example, when computing a standard basis, we would
like to pass on information whether the ideal is weighted homogeneous
or not, as it can be used for optimizations (see Hilbert driven standard
basis computation).

(2) It needs to know which optimizations are possible and how they are
supposed to be done. For example, when to adjust weight vectors, and
how it can be done, whether using (0, 1, . . . , 1) because π−1IERJtK[x] is
x-homogeneous, or using (1, 1, . . . , 1) because I EK[x] is homogeneous
in general. Note that the latter is always possible, while the first is not.

(3) It needs to know which optimizations are necessary. This is mainly due
to the design of Singular, which is aggressively optimized for standard
basis computations, not for Gröbner fan computations. Suppose we had
several ideals I, J1, . . . , Jk in an active ring RJtK[x] with a fixed weighted
ordering >w. Adjusting the weight vector, would then force us to create
copies of all ideals and change all exponent vectors, as they are stored
in a highly condensed fashion for performance reasons.

(4) The code for the non-trivial valuation case and the trivial valuation case
needs to be as overlapping as mathematically and implementationally
feasible. For example, we want a common black box for computing trop-
ical varieties with a one-codimensional homogeneity space, which takes
as input an ideal as well as recipes for computing generically weighted
initial ideals and tropical varieties of polynomials, rather than two sep-
arate algorithms for the non-trivial valuation and the trivial valuation
case. The reason being, that any improvement for one algorithm, which
does not involve generically weighted initial ideals or tropical varieties
of polynomials, should be a sensible improvement for the other.

To facilitate all that, the library is structured in multiple layers (note that
each bolded name represents a file in the source code):
(0) The zeroth layer consists of functions that are used frequently through-

out the entire library regardless whether the valuation is trivial or not.
std_wrapper contains a wrapper for the standard basis method of
Singular, and initial contains various routines for computing initial
forms of polynomials and initial forms of generators of an ideal.

(1) The first layer represents the mutable part of the framework, capturing
all possible scenarios which might arise in our algorithm. As of now, there
are only three fundamentally different scenarios, which are working with
an ideal π−1I E RJtK[x], one of its initial ideals J = inw(I) or an ideal
I EK[x]. However, for the sake of flexibility, we distinguish between:
(a) whether the valuation is non-trivial,
(b) whether the coefficient ring is a field,
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(c) whether the ideal is homogeneous,
(d) whether the ideal is principal,
(e) whether the homogeneity space has codimension greater than 1.
Depending on which conditions holds, different algorithms will be called
for the same task. For that, tropicalStrategy contains various wrap-
pers and containers, in order to call functions which suit our current
scenario best. Functions wrapped by tropicalStrategy can be found in
the following files:
• witness, lift and flip contain implementations of the algorithms of
the same name in Chapter 3.2.
If our valuation is non-trivial, Algorithms 4.3.3 and 4.3.5 show that
the core computations may be done over the residue field. Calling
these functions through tropicalStrategy therefore may lead to a
temporary switch to the residue field.

• containsMonomial contains functions that search for monomials, see
Remarks 4.1.15 and 4.1.16.
Same as above, calling these functions through tropicalStrategy may
result in a temporary switch to the residue field, see Algorithm 4.3.4.

• adjustWeights consists of routines for adjusting weight vectors.
In case our ideal is homogeneous, a sufficiently high multiple of the
weight vector (1, . . . , 1) is added to the input until it is strictly posi-
tive. If our ideal is x-homogeneous, we use the method described in
Lemma 4.3.7.

• initialReduction consists of functions for reducing an x-homogeneous
ideal initially, which is only needed if our ideal is not homogeneous.
If our ideal is homogeneous, we use the native reduction methods of
Singular, as explained in Lemma 4.3.6.

Moreover, tropicalStrategy computes and stores pieces of information,
which are potentially useful to have at hand during any point of our
computation, such as the expected dimension of the tropical variety.

(2) The second layer consists of methods which are immediately build upon
the first. They do not distinguish between the non-trivial and trivial
valuation case, but rather depend on the first layer to do that for them.
• groebnerCone holds a class that represents a Gröbner cone in our
algorithm. It carries all relevant information such as the inequalities
and equations of the Gröbner cone Cw(I) as well as an initially reduced
standard basis of I with respect to a monomial ordering > such that
w ∈ C>(I).

• tropicalCurves holds an implementation of Algorithm 4.1.13 for com-
puting tropical varieties with a one-codimensional homogeneity space.
It relies on tropicalStrategy to check for monomials in initial ideals to
compute tropical varieties of polynomials and to check initial ideals
with respect to generic weights for monomials.
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(3) In the third layer, startingCone contains Algorithm 4.1.19 for com-
puting a maximal cone in the tropical variety, and tropicalTraversal
contains an algorithm for traversing the remainder of the tropical variety
based on repeated usage of Algorithm 4.1.17 for computing its tropical
neighbours.

(4) On the final layer, there are groebnerFan, groebnerComplex and
tropicalVariety. They contain algorithms for computing their name-
sakes and, building on the layers below them, their implementation be-
comes very simple.
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std_wrapper{.cc/.h} initial{.cc/.h}

Layer 0

witness{.cc/.h}
lift{.cc/.h}
flip{.cc/.h}

containsMonomial
{.cc/.h}

adjustWeights
{.cc/.h}

initialReduction
{.cc/.h}

tropicalStrategy{.cc/.h}

Layer 1

groebnerCone{.cc/.h}
tropVarOfPoly{.cc/.h}
tropicalCurves{.cc/.h}

Layer 2

startingCone{.cc/.h} tropicalTraversal{.cc/.h}

Layer 3

tropicalVariety{.cc/.h}

groebnerFan{.cc/.h} groebnerComplex{.cc/.h}

Layer 4

Figure 1. structure of the source code



146 5. SOFTWARE AND EXAMPLES

5.2. Examples and timings

Figure 2 compares the timings of gfan and Singular on some determi-
nantal and Plücker ideals over Q taken from Chapter 9.2 of [Jen07]. Since
gfan does not support the computation of tropical varieties with respect
to p-adic orderings, all computations were done with respect to the trivial
valuation. We see that the times are relatable, though Singular is un-
doubtedly trailing behind. At one example Singular takes more than four
times longer, while at another examples gfan terminates prematurely with
an exception.

Once again, it should be stressed that Singular depends on gfanlib
for all computations in convex geometry and would not be able to make the
following computations on its own.

Example n h d f -vector gfan Singular
Det3,3,4 12 6 10 (1,12,66,132,90) 2 2
Det3,3,5 15 7 12 (1,45,315,930,1260,630) 30 39
Det3,4,4 16 7 12 (1,50,360,1128,1680,936) 89 377
Detsym3,4 10 4 7 (1,20,75,75) 4 4
Detsym3,5 15 5 9 (1,75,495,1155,855) ∗ 6371
Grass2,5 10 5 7 (1,10,15) 0 0
Grass3,6 20 6 10 (1,65,550,1395,1035) 707 914

n : number of variables in the polynomial ring
h : dimension of the homogeneity space in the tropical variety
d : dimension of the tropical variety

gfan: seconds used by gfan
Singular: seconds used by Singular

Figure 2. comparison: determinantal ideals and Grassmannians

Figure 3 shows the computation of random tropical linear spaces in R10.
For this class of examples, Singular seems to be faster than gfan.

Example n h d f -vector gfan Singular
L1 10 1 6 (1,15,88,263,416,296) 28 10
L2 10 2 6 (1,11,47,108,125) 33 6
L3 10 2 6 (1,12,59,138,149) 32 7

Figure 3. comparison: tropical linear spaces

Here are all ideals in the two figures above:

Example 5.2.1 (determinantal ideals) We set Dett,m,n to be the ideal in
the polynomial ring Q[x11, x12, . . . , xmn] generated by the t× t minors of the
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matrix of variables 
x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...
xm1 xm2 . . . xmn


Renaming the variables x11, x12, . . . , xmn to x1, x2, . . . , xm·n, they can easily
be constructed in Singular as follows:

int t = 3; int n = 3; int m = 5;
ring r = 0,x(1..n*m),dp;
matrix M[n][m] = x(1..n*m);
ideal Det = minor(M, t);

Their tropical variety computation can be timed with:

LIB "gfanlib.lib";
int t = timer;
fan f = tropicalVariety(I);
t = timer-t; t;

Set printlevel = 1; for a log during the tropical traversal.

Example 5.2.2 (symmetric determinantal ideals) We set Detsymt,n to be
the ideal in the polynomial ring in n(n+1)

2 variables generated by the t × t
minors of the symmetric matrix of variables.

Then Detsym3,4 is constructed as follows

ring r = 0,x(1..10),dp;
matrix M[4][4] =
x(1), x(2), x(3), x(4),
x(2), x(5), x(6), x(7),
x(3), x(6), x(8), x(9),
x(4), x(7), x(9), x(10);

ideal Detsym = minor(M,3);

and Detsym3,5 can be constructed by

ring r = 0,x(1..15),dp;
matrix M[5][5] =
x(1), x(2), x(3), x(4), x(5),
x(2), x(6), x(7), x(8), x(9),
x(3), x(7), x(10),x(11),x(12),
x(4), x(8), x(11),x(13),x(14),
x(5), x(9), x(12),x(14),x(15);

ideal Detsym = minor(M,3);
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Example 5.2.3 (Plücker ideals) Let Grassd,n be the ideal in the polynomial
ring in

(
n
d

)
variables generated by the relations on the d×d minors of a d×n

matrix.
For Grass2,5, this ideal is given by

ring r=0,x(1..10),dp;
ideal G25 =
-x(3)*x(5)+x(2)*x(6)-x(1)*x(8),
-x(4)*x(5)+x(2)*x(7)-x(1)*x(9),
-x(4)*x(6)+x(3)*x(7)-x(1)*x(10),
-x(4)*x(8)+x(3)*x(9)-x(2)*x(10),
-x(7)*x(8)+x(6)*x(9)-x(5)*x(10);

and for Grass3,6 it is given by (with courtesy of Sebastian Muskalla)

ring r = 0,(x_1_2_3,x_1_2_4,x_1_2_5,x_1_2_6,
x_1_3_4,x_1_3_5,x_1_3_6,x_1_4_5,x_1_4_6,x_1_5_6,
x_2_3_4,x_2_3_5,x_2_3_6,x_2_4_5,x_2_4_6,x_2_5_6,
x_3_4_5,x_3_4_6,x_3_5_6,x_4_5_6),dp;

ideal G36 =
x_2_5_6*x_3_4_6-x_2_4_6*x_3_5_6+x_2_3_6*x_4_5_6,
x_1_5_6*x_3_4_6-x_1_4_6*x_3_5_6+x_1_3_6*x_4_5_6,
x_2_5_6*x_3_4_5-x_2_4_5*x_3_5_6+x_2_3_5*x_4_5_6,
x_2_4_6*x_3_4_5-x_2_4_5*x_3_4_6+x_2_3_4*x_4_5_6,
x_2_3_6*x_3_4_5-x_2_3_5*x_3_4_6+x_2_3_4*x_3_5_6,
x_1_5_6*x_3_4_5-x_1_4_5*x_3_5_6+x_1_3_5*x_4_5_6,
x_1_4_6*x_3_4_5-x_1_4_5*x_3_4_6+x_1_3_4*x_4_5_6,
x_1_3_6*x_3_4_5-x_1_3_5*x_3_4_6+x_1_3_4*x_3_5_6,
x_1_2_6*x_3_4_5-x_1_2_5*x_3_4_6+x_1_2_4*x_3_5_6
-x_1_2_3*x_4_5_6,

x_1_5_6*x_2_4_6-x_1_4_6*x_2_5_6+x_1_2_6*x_4_5_6,
x_2_3_6*x_2_4_5-x_2_3_5*x_2_4_6+x_2_3_4*x_2_5_6,
x_1_5_6*x_2_4_5-x_1_4_5*x_2_5_6+x_1_2_5*x_4_5_6,
x_1_4_6*x_2_4_5-x_1_4_5*x_2_4_6+x_1_2_4*x_4_5_6,
x_1_3_6*x_2_4_5-x_1_3_5*x_2_4_6+x_1_3_4*x_2_5_6
+x_1_2_3*x_4_5_6,

x_1_2_6*x_2_4_5-x_1_2_5*x_2_4_6+x_1_2_4*x_2_5_6,
x_1_5_6*x_2_3_6-x_1_3_6*x_2_5_6+x_1_2_6*x_3_5_6,
x_1_4_6*x_2_3_6-x_1_3_6*x_2_4_6+x_1_2_6*x_3_4_6,
x_1_4_5*x_2_3_6-x_1_3_5*x_2_4_6+x_1_3_4*x_2_5_6
+x_1_2_5*x_3_4_6-x_1_2_4*x_3_5_6+x_1_2_3*x_4_5_6,

x_1_5_6*x_2_3_5-x_1_3_5*x_2_5_6+x_1_2_5*x_3_5_6,
x_1_4_6*x_2_3_5-x_1_4_5*x_2_3_6-x_1_3_4*x_2_5_6
+x_1_2_4*x_3_5_6,

x_1_4_5*x_2_3_5-x_1_3_5*x_2_4_5+x_1_2_5*x_3_4_5,
x_1_3_6*x_2_3_5-x_1_3_5*x_2_3_6+x_1_2_3*x_3_5_6,
x_1_2_6*x_2_3_5-x_1_2_5*x_2_3_6+x_1_2_3*x_2_5_6,
x_1_5_6*x_2_3_4-x_1_3_4*x_2_5_6+x_1_2_4*x_3_5_6
-x_1_2_3*x_4_5_6,

x_1_4_6*x_2_3_4-x_1_3_4*x_2_4_6+x_1_2_4*x_3_4_6,
x_1_4_5*x_2_3_4-x_1_3_4*x_2_4_5+x_1_2_4*x_3_4_5,
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x_1_3_6*x_2_3_4-x_1_3_4*x_2_3_6+x_1_2_3*x_3_4_6,
x_1_3_5*x_2_3_4-x_1_3_4*x_2_3_5+x_1_2_3*x_3_4_5,
x_1_2_6*x_2_3_4-x_1_2_4*x_2_3_6+x_1_2_3*x_2_4_6,
x_1_2_5*x_2_3_4-x_1_2_4*x_2_3_5+x_1_2_3*x_2_4_5,
x_1_3_6*x_1_4_5-x_1_3_5*x_1_4_6+x_1_3_4*x_1_5_6,
x_1_2_6*x_1_4_5-x_1_2_5*x_1_4_6+x_1_2_4*x_1_5_6,
x_1_2_6*x_1_3_5-x_1_2_5*x_1_3_6+x_1_2_3*x_1_5_6,
x_1_2_6*x_1_3_4-x_1_2_4*x_1_3_6+x_1_2_3*x_1_4_6,
x_1_2_5*x_1_3_4-x_1_2_4*x_1_3_5+x_1_2_3*x_1_4_5;

Example 5.2.4 (random tropical linear spaces) The tropical linear spaces
in Figure 3 are given by

ring s = 0,x(1..10),dp;
ideal L1 =
4*x(1)+7*x(2)+4*x(7),
7*x(1)+2*x(4)+6*x(5)+7*x(9)+4*x(10),
4*x(1)+4*x(3)+8*x(4)+5*x(5)+9*x(6)+4*x(7)+5*x(8)+9*x(10),
x(5)+5*x(7)+8*x(8)+7*x(9);

ideal L2 =
3*x(3)+9*x(4)+8*x(6)+6*x(7)+4*x(8)+x(9),
8*x(2)+x(4)+x(5),
5*x(1)+4*x(2)+9*x(4)+9*x(6)+9*x(7)+9*x(9),
2*x(1)+x(2)+4*x(3)+9*x(6)+7*x(9);

ideal L3 =
8*x(2)+9*x(3)+3*x(4)+8*x(9),
3*x(4)+5*x(5)+2*x(6)+x(8),
9*x(1)+5*x(2)+2*x(4)+7*x(6)+5*x(8)+9*x(9)+4*x(10),
x(1)+8*x(3)+7*x(6)+x(9)+8*x(10);

They were originally created through

LIB "random.lib";
ring s = 0,x(1..10),dp;
ideal L = sparseid(4,1,1,50,9);
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5.3. List of algorithms

Here is a complete list of algorithms found in this thesis.

Chapter 2. Standard bases in RJtK[x]s = R[t1, . . . , tm][x1, . . . , xn]s

(1) division in the ground ring, Algorithm 2.1.11,
(2) homogeneous determiate division with remainder, Algorithm 2.1.16,
(3) weak division with remainder, Algorithm 2.1.21,
(4) normal form, Algorithm 2.2.3,
(5) standard basis, Algorithm 2.2.17,
(6) standard basis over factorial rings, Algorithm 2.2.19,
(7) reduction, Algorithm 2.2.21.

Chapter 3. Gröbner fans in RJtK[x] = R[t][x1, . . . , xn]

(1) Gröbner cone, input (G,w), Algorithm 3.1.27,
(2) Gröbner cone, input (G,H), Algorithm 3.1.28,
(3) maximal Gröbner cone, Algorithm 3.1.29
(4) initial reduction with with respect to (p− t), Algorithm 3.2.3,
(5) initial reduction same x-degree, Algorithm 3.2.4,
(6) initial reduction all at once, Algorithm 3.2.6,
(7) initial reduction step by step, Algorithm 3.2.7,
(8) initially reduced standard basis, Algorithm 3.2.9,
(9) witness of elements in initial ideals, Algorithm 3.3.1,
(10) lift of standard bases, Algorithm 3.3.2,
(11) flip of standard bases, Algorithm 3.3.5,
(12) Gröbner fan, Algorithm 3.3.7.

Chapter 4. Tropical varieties in RJtK[x] = R[t][x1, . . . , xn]

(1) tropical variety of an element, Algorithm 4.1.3,
(2) initial ideal with respect to a generic weight, Algorithm 4.1.7,
(3) tropical variety with one-codimensional homogeneity space, Alg. 4.1.13,
(4) tropical star, Algorithm 4.1.17,
(5) tropical starting cone, Algorithm 4.1.19,
(6) tropical variety, Algorithm 4.1.22,
(7) tropical variety over valued fiels, Algorithm 4.2.3,
(8) optimization: initially reduced standard basis of J , Algorithm 4.3.3,
(9) optimization: monomials in J , Algorithm 4.3.4,

(10) optimization: witnesses of elements in J , Algorithm 4.3.5.
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CHAPTER 6

Strongly symmetric smooth toric varieties

Disclaimer: The content of this chapter is published in the Kyoto
Journal of Mathematics, volume 52 in the year 2012, see [CRT12].

6.0. Introduction

In this part, we investigate toric varieties which are defined by fans of ar-
rangements of hyperplanes, thereby generalizing the definition and construc-
tion of toric varieties which are associated to classical root systems. Toric va-
rieties arising from root systems had previously been considered, investigated
and used by De Concini-Procesi [DCP83], Voskresenskij-Klyachko [KV85],
Procesi [Pro90], Dolgachev-Lunts [DL94], Stembridge [Ste94], Klyachko
[Kly95], and Brion-Joshua [BJ08]. Recently Batyrev-Blume, [BB11a],
[BB11b], found generalizations of the Losev-Manin moduli spaces by inves-
tigating the functor of toric varieties associated with Weyl chambers. The
so called crystallographic arrangements are generalizations of the classical
root systems and their Weyl chamber structure. In this paper we establish a
one to one correspondence between crystallographic arrangements and toric
varieties which are smooth and projective, and which have the property of
being strongly symmetric, see Def. 6.2.1, a property which has not been used
in the previous papers mentioned above.

Crystallographic arrangements have originally been used in the theory
of pointed Hopf algebras: Classical Lie theory leads to the notion of Weyl
groups which are special reflection groups characterized by a certain inte-
grality and which are therefore also called crystallographic reflection groups.
A certain generalization of the universal enveloping algebras of Lie alge-
bras yields Hopf algebras to which one can associate root systems and Weyl
groupoids (see [Hec06], [HS10], [AHS10]). The case of finite Weyl groupoids
has recently been treated including a complete classification in a series of pa-
pers [CH09a], [CH09b], [CH11], [CH12], [CH10].

The theorems needed for the classification reveal an astonishing connec-
tion: It turns out that finite Weyl groupoids correspond to certain simplicial
arrangements called crystallographic [Cun11]: Let A be a simplicial ar-
rangement of finitely many real hyperplanes in a Euclidean space V and let
R be a set of nonzero covectors such that A = {α⊥ |α ∈ R}. Assume that
Rα ∩ R = {±α} for all α ∈ R. The pair (A, R) is called crystallographic,
see [Cun11, Def. 2.3] or Def. 6.1.1, if for any chamber K the elements of
R are integer linear combinations of the covectors defining the walls of K.

153
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For example, crystallographic Coxeter groups give rise to crystallographic
arrangements in this sense, but there are many other.

Thus the main feature of crystallographic arrangements is the integrality.
But integrality is also the fundamental property of a fan in toric geometry.
Indeed, the set of closed chambers of a rational simplicial arrangement is
a fan which is strongly symmetric. A closer look reveals that the property
crystallographic corresponds to the smoothness of the variety. We obtain
(see Thm. 6.3.3):

Theorem 6.0.1 There is a one to one correspondence between crystallo-
graphic arrangements and strongly symmetric smooth fans.

Thus the classification of finite Weyl groupoids [CH10] gives:

Corollary 6.0.2 Any strongly symmetric smooth complete toric variety is
isomorphic to a product of

(1) varieties of dimension two corresponding to triangulations of a con-
vex n-gon by non-intersecting diagonals (see Section 6.5),

(2) varieties of dimension r > 2 corresponding to the reflection arrange-
ments of type Ar, Br, Cr and Dr, or out of a series of r−1 further
varieties,

(3) 74 further “sporadic” varieties.

To each crystallographic arrangement A, we construct a polytope P such
that the toric variety of P is isomorphic to the toric variety corresponding to
A. Thus we obtain that the variety is projective, see Section 6.4. Further,
the strong symmetry of the fan Σ associated to A gives rise to a system
{Y E}E∈L(A) of smooth strongly symmetric toric varieties Y E ⊆ XΣ (here
L(A) is the poset of intersections of hyperplanes of A). This system mirrors
the arrangement A in XΣ in a remarkable way, see Section 6.6.2, and will be
called the associated toric arrangement. The intersections Y H ∩ T with the
torus T of XΣ for H ∈ A are subtori of T and form a toric arrangement.

This note is organized as follows. After recalling the notions of fans
and arrangements of hyperplanes in Section 6.1, we collect some results on
strongly symmetric fans in Section 6.2. We then prove the main theorem
(the correspondence) in Section 6.3. In Section 6.4 we construct a polytope
for each crystallographic arrangement. In Section 6.5 we compare the well-
known classifications of smooth complete surfaces (specified for the centrally
symmetric case) and the corresponding arrangements of rank two. In the
following section we discuss the toric arrangements associated to the crys-
tallographic arrangements. The last section consists of further remarks on
irreducibility, blowups, and automorphisms.

Acknowledgement. We would like to thank M. Brion for helpful re-
marks and hints to literature.
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6.1. Preliminaries

Let us first recall the notions of hyperplane arrangements and of fans for
normal toric varieties.

For subsets A in a real vector space V of dimension r and a subset B of
its dual V ∗ we set

A⊥ = {b ∈ V ∗ | b(a) = 0 ∀ a ∈ A},
B∨ = {a ∈ V | b(a) ≥ 0 ∀ b ∈ B},
B⊥ = {a ∈ V | b(a) = 0 ∀ b ∈ B}.

An open or closed simplicial cone σ is a subset σ ⊆ V such that there
exist linearly independent n1, . . . , nd, d ∈ N with

σ = 〈n1, . . . , nd〉R>0 := R>0n1 + . . .+ R>0nd

or σ = 〈n1, . . . , nd〉R≥0
:= R≥0n1 + . . .+ R≥0nd

respectively.

6.1.1. Fans and toric varieties. Given a lattice N in V of rank r, its
dual lattice M = Hom(N,Z) is viewed as lattice in V ∗. A subset σ ⊆ V

is called a (closed) strongly convex rational polyhedral cone if there exist
n1, . . . , nd ∈ N such that

σ = 〈n1, . . . , nd〉R≥0
and σ ∩ −σ = {0}.

We say that n1, . . . , nd are generators of σ. By abuse of notation we will call
such a cone simply an “N -cone”.
We call σ simplicial, if σ is a closed simplicial cone. If σ is generated by a
subset of a Z-basis of N , then we say that σ is smooth.
Let σ be an N -cone. We write 〈σ〉R := σ + (−σ) for the subspace spanned
by σ. The dimension dim(σ) of σ is the dimension of 〈σ〉R.

Identifying NR = N ⊗Z R with V , we consider fans Σ in NR of strongly
convex rational polyhedral cones as defined in the standard theory of toric
varieties, see [Oda88], [CLS11]:

A face of σ is the intersection of σ with a supporting hyperplane, σ∩m⊥,
m ∈ V ∗, m(a) ≥ 0 for all a ∈ σ. Faces of codimension 1 are called facets.
A fan in N is a nonempty collection of N -cones Σ such that

(1) any face τ of a cone σ ∈ Σ is contained in Σ,
(2) any intersection σ1 ∩ σ2 of two cones σ1, σ2 ∈ Σ is a face of σ1 and

σ2.
For k ∈ N we write Σ(k) = {σ ∈ Σ | dim(σ) = k}. For S ⊆ Σ we write

SuppS =
⋃
σ∈S σ for the support of S.

The fan Σ and its associated toric variety XΣ (over the ground field
C) is called simplicial if any cone of Σ is simplicial. It is well-known that
XΣ for finite Σ is nonsingular (smooth) if and only if each cone σ of Σ is
smooth. Moreover, XΣ is complete (compact) if and only if Σ is finite and
Supp Σ = NR.
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6.1.2. Crystallographic arrangements. Let A be a simplicial ar-
rangement in V = Rr, i.e. A = {H1, . . . ,Hn} where H1, . . . ,Hn are distinct
linear hyperplanes in V and every component of V r

⋃
H∈AH is an open sim-

plicial cone. Let K(A) be the set of connected components of V r
⋃
H∈AH;

they are called the chambers of A.
For each Hi, i = 1, . . . , n we choose an element xi ∈ V ∗ such that

Hi = x⊥i . Let
R = {±x1, . . . ,±xn} ⊆ V ∗.

For each chamber K ∈ K(A) set

WK = {H ∈ A | dim(H ∩K) = r − 1},
BK = {α ∈ R | α⊥ ∈WK , {α}∨ ∩K = K} ⊆ R.

Here, K denotes the closure of K. The elements of WK are the walls of
K and BK “is” the set of normal vectors of the walls of K pointing to the
inside. Note that

K =
⋂

α∈BK
{α}∨,

and that BK is a basis of V ∗ because A is simplicial. Moreover, if α∨1 , . . . , α∨r
is the dual basis to BK = {α1, . . . , αr}, then

K =
{ r∑
i=1

aiα
∨
i | ai > 0 for all i = 1, . . . , r

}
. (15)

Definition 6.1.1 Let A be a simplicial arrangement and R ⊆ V ∗ a finite
set such that A = {α⊥ | α ∈ R} and Rα ∩ R = {±α} for all α ∈ R. For
K ∈ K(A) set

RK+ = R ∩
∑
α∈BK

R≥0α.

We call (A, R) a crystallographic arrangement if for all K ∈ K(A):

(I) R ⊆
∑

α∈BK Zα.

Remark 6.1.2 Notice that one can prove that in fact if (A, R) is crystallo-
graphic, then R ⊆ ±

∑
α∈BK N0α (see [Cun11]).

6.2. Strong symmetry of fans

Definition 6.2.1 We call a fan Σ in V strongly symmetric if it is complete
and if there exist hyperplanes H1, . . . ,Hn in V such that

Supp Σ(r − 1) = H1 ∪ . . . ∪Hn.

We write A(Σ) := {H1, . . . ,Hn}. We call a toric variety XΣ strongly sym-
metric if Σ is strongly symmetric.

We call a fan Σ centrally symmetric if Σ = −Σ. We call a toric variety
XΣ centrally symmetric if Σ is centrally symmetric.
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Remark 6.2.2 One could also call a strongly symmetric fan strongly com-
plete because for any τ ∈ Σ the collection of σ ∩ 〈τ〉R, σ ∈ Σ, is a complete
fan in 〈τ〉R as a subfan of Σ.

Lemma 6.2.3 Let τ be an (r − 1)-dimensional cone in Rr and H1, . . . ,Hn

be hyperplanes in Rr. If τ ⊆ H1 ∪ . . .∪Hn, then τ ⊆ Hi for some 1 ≤ i ≤ n.

Proof. We construct inductively sets Ti ⊆ τ with i + r − 1 elements
such that each subset B, |B| = r − 1, is linearly independent: Let T0 :=

{n1, . . . , nr−1}, where n1, ..., nr−1 ∈ τ are linearly independent and span
〈τ〉R. Given Ti, let

Ξi := {〈v1, . . . , vr−2〉 | v1, . . . , vr−2 ∈ Ti}

be the set of subspaces generated by r − 2 elements of Ti. Since τ has
dimension r−1,

⋃
U∈Ξi

U 6= 〈τ〉R. For any w ∈ τr
⋃
U∈Ξi

U , Ti+1 := Ti∪{w}
has the required property.

Now consider the (r− 1)n elements of T(r−1)(n−1). Let ` be the maximal
number of elements in any Hi. Then ` ≥ r − 1. Then there is an 1 ≤ i ≤ n

such that r − 1 of these elements lie in Hi. These are linearly independent
and belong to τ , so τ ⊆ 〈τ〉R ⊆ Hi. �

Lemma 6.2.4 Let Σ be an r-dimensional fan. Then the following are equiv-
alent:

(1) Σ is complete, and for all τ ∈ Σ(r − 1), σ ∈ Σ,

σ ∩ 〈τ〉R ∈ Σ,

(2) the fan Σ is strongly symmetric.

Proof. Assume (1). Let τ ∈ Σ(r − 1). Since Σ is complete, 〈τ〉R ⊆
Supp Σ. Thus 〈τ〉R =

⋃
σ∈Σ〈τ〉R ∩ σ. By (1), Σ′ := {〈τ〉R ∩ σ | σ ∈ Σ}

is a subfan of Σ. Further, Supp Σ′(r − 1) = Supp Σ′ = 〈τ〉R because Σ′ is
complete in N ∩ 〈τ〉R and the maximal cones in Σ′ have dimension r − 1.
Hence for each τ of codimension 1, 〈τ〉R is a union of elements of Σ(r − 1).
This implies Supp Σ(r − 1) =

⋃
τ∈Σ(r−1)〈τ〉R (finite union by definition of

complete).
Now assume Supp Σ(r−1) = H1∪. . .∪Hn for some hyperplanesH1, . . . ,Hn.

Let τ ∈ Σ(r − 1) and σ ∈ Σ. Then by Lemma 6.2.3, 〈τ〉R = Hi for some
1 ≤ i ≤ n, and there exist η1, . . . , ηk ∈ Σ(r− 1) with Hi = η1 ∪ . . .∪ ηk. But
σ ∩Hi =

⋃k
j=1 σ ∩ ηj , so

◦
σ ∩Hi = ∅, i.e. Hi is a supporting hyperplane and

σ ∩Hi is a face of σ and thus an element of Σ. �

Lemma 6.2.5 Let Σ be an r-dimensional strongly symmetric fan. Then the
set of all intersections of closed chambers of A(Σ) is Σ. In particular, Σ is
centrally symmetric.
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Proof. Let σ ∈ Σ(r). Then the facets of σ are in Supp Σ(r − 1) =

H1 ∪ . . . ∪Hn and
◦
σ⊆ Rr r Supp Σ(r − 1). Since Σ is complete, Σ(r) is the

set of closed chambers of A. �

Definition 6.2.6 Let Σ be a fan in N , δ ∈ Σ, and write κ : V → V/〈δ〉R
for the canonical projection. Then

Star(δ) = {σ = κ(σ) ⊆ V/〈δ〉R | δ ⊆ σ ∈ Σ}

is a fan in N(δ) := κ(N) (compare [CLS11, Ex. 3.2.7]). Its toric variety is
isomorphic to the orbit closure V (δ) in XΣ.

Lemma 6.2.7 Let Σ be an r-dimensional fan. Then the following are equiv-
alent:

(1) The fan Σ is strongly symmetric,
(2) the fan Star(σ) is strongly symmetric for all σ ∈ Σ.

Proof. We use Lemma 6.2.4. Assume (1). Let σ ∈ Σ and consider a
cone τ ∈ Star(σ) of codimension one. Then 〈τ〉R = 〈τ〉R ⊆ V/〈σ〉R and hence
for any cone π ∈ Star(σ) we have π ∩ 〈τ〉R = π ∩ 〈τ〉R ∈ Star(σ), because
π ∩ 〈τ〉R is a cone in Σ containing σ; thus Star(σ) is strongly symmetric.

Since Σ = Star({0}), (1) follows from (2). �

Proposition 6.2.8 Let Σ be an r-dimensional complete fan. Then the fol-
lowing are equivalent:

(1) The fan Σ is strongly symmetric,
(2) the fan Star(σ) is centrally symmetric for all σ ∈ Σ,
(3) the fan Star(δ) is centrally symmetric for all δ ∈ Σ(r − 2).

Proof. The implication (1)⇒ (2) follows from Lemma 6.2.5 and Lemma
6.2.7; (2)⇒ (3) is obvious.

Suppose that Star(δ) is centrally symmetric for any δ ∈ Σ(r − 2). We
have to show that for any τ0 ∈ Σ(r − 1), H := 〈τ0〉R ⊆ S := Supp Σ(r − 1).
Suppose H * S. Let {τ0, . . . , τk} = {τ ∈ Σ(r − 1) | τ ⊆ H}. Then

τ0 ∪ . . . ∪ τk $ H.

Let p be a point of the relative border ∂(τ0∪ . . .∪ τk) in H. Then there is an
i with p ∈ ∂τi and a δ ∈ Σ(r − 2), δ ⊆ τi such that p ∈ δ ⊆ τi ⊆ 〈τi〉R = H.
We have τi ∈ Star(δ), τi ⊆ H, and dimH = 1. Because Star(δ) is centrally
symmetric, −τi ∈ Star(δ). Then −τi = τ ′ for some δ ⊆ τ ′ ∈ Σ(r − 1)

with τ ′ ⊆ H. Then τ ′ ⊆ H, δ ⊆ τi ∩ τ ′ and τ ′ 6= τi. Hence δ = τi ∩ τ ′
because dim(δ) = r − 2. But then p /∈ ∂(τ0 ∪ . . . ∪ τk), contradicting the
assumption. �

Example 6.2.9 There are of course fans which are centrally symmetric but
not strongly symmetric. Here is such an example which is smooth: Let
R be the standard basis of R3 and ΣR be the fan as defined in Lemma
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6.3.1. Blowing up along two opposite cones σ,−σ ∈ ΣR preserves the central
symmetry, but the resulting fan is not strongly symmetric.

In the case of smooth strongly symmetric fans, we obtain

Lemma 6.2.10 Let Σ be a smooth strongly symmetric fan in N , σ ∈ Σ and
E := 〈σ〉R. Then N ∩ E is a lattice of rank dim(σ) and ΣE := {η ∩ E | η ∈
Σ} ⊆ Σ is a smooth strongly symmetric fan in N ∩ E.

Proof. Using a Z-basis of σ one finds that N ∩ E is a sublattice of N
of rank dim(σ) and that the inclusion N ∩ E ↪→ N is split. Consider first
a σ ∈ Σ(r − 1) and let E := 〈σ〉R. By Lemma 6.2.4, η ∩ E ∈ Σ for all
η ∈ Σ. Thus ΣE is a subfan of Σ and it is complete since Supp Σ = V .
Write Supp Σ(r− 1) = E ∪H2 ∪ . . .∪Hn for hyperplanes H2, . . . ,Hn. Then

Supp ΣE(r − 2) = (H2 ∪ . . . ∪Hn) ∩ E = (H2 ∩ E) ∪ . . . ∪ (Hn ∩ E),

i.e. ΣE is strongly symmetric. The claim is true for arbitrary σ ∈ Σ by
induction on dim(σ). �

6.3. The correspondence

Lemma 6.3.1 Let (A, R) be a crystallographic arrangement in V . Set

MR :=
∑
α∈R

Zα ∼= Zr

and let NR be the dual lattice to MR. Then the set ΣR of all intersections of
closed chambers of A is a strongly symmetric smooth fan in NR.

Proof. It is clear that ΣR is a strongly symmetric fan. Let σ ∈ ΣR be
of maximal dimension, i.e. σ = K for a chamber K ∈ K(A). By Equation
15, σ is generated by the basis of NR dual to BK , hence σ is smooth. �

Lemma 6.3.2 Let Σ be a strongly symmetric smooth fan in N ⊆ V =

Rr. Then there exists a set R ⊆ V ∗ such that (A, R) is a crystallographic
arrangement, where

A = A(Σ) = {〈τ〉R | τ ∈ Σ(r − 1)}.

Proof. Since Σ is strongly symmetric, A is a finite set of hyperplanes,
and by Lemma 6.2.5, the set of all intersections of closed chambers of A is
Σ. Further, ⋃

σ∈Σ(r)

◦
σ = V \

⋃
H∈A

H

since each facet of a σ ∈ Σ(r) is contained in a hyperplane of A and since
Σ is complete. The cones

◦
σ in the above union are open simplicial cones,

because σ is smooth, hence A is a simplicial arrangement.
Let σ ∈ Σ be a cone of maximal dimension. Since σ is smooth, there

exists a unique Z-basis of N generating σ. We will prematurely denote BKσ

its dual basis, where Kσ is the chamber with Kσ = σ.
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Now set R to be the union of all the BKσ for σ ∈ Σ(r). Clearly,

R ⊆
∑

α∈BKσ
Zα,

since each BKσ is a Z-basis of M = Hom(N,Z) and R ⊆M .
It remains to show that for each hyperplane H = 〈τ〉R ∈ A, τ ∈ Σ(r−1),

there is a vector x ∈ R such that R ∩H⊥ = {±x}.
Let σ ∈ Σ(r) containing τ , and x be the element with {x} = BKσ ∩H⊥.

In particular x is primitive. Assume λx ∈ R for a λ ∈ Z. Then there exists
a σ′ ∈ Σ with λx ∈ BKσ′ . Thus λ = ±1 since BKσ′ is a Z-basis of M . �

Theorem 6.3.3 The map (A, R) 7→ ΣR from the set of crystallographic
arrangements to the set of strongly symmetric smooth fans is a bijection.

Proof. This is Lemma 6.3.1 and Lemma 6.3.2. �

Corollary 6.3.4 A complete classification of strongly symmetric smooth
toric varieties is now known.

Proof. This is [CH10, Thm. 1.1]. �

Definition 6.3.5 We denote the toric variety of the fan ΣR by X(A, R) or
X(A) and call it the toric variety of the arrangement (A, R).

Remark 6.3.6 For a fixed crystallographic arrangement (A, R), choosing
another lattice than MR may result in a strongly symmetric fan which is
not smooth. Further, the correspondence (A, R) 7→ ΣR extends by its def-
inition to a correspondence between rational simplicial arrangements and
simplicial strongly symmetric fans. However, there exist rational simplicial
non-crystallographic arrangements, i.e., there is a basis with respect to which
all covectors of the hyperplanes have rational coordinates, although there is
no lattice M for which the corresponding fan is smooth. The smallest ex-
ample in dimension three has 12 hyperplanes and is denoted A(12, 1) in
[Grü09] (compare the catalogue [Grü09] with the list in [CH12]).

Remark 6.3.7 Any smooth complete fan in N can be visualized by a tri-
angulation of the sphere S = V r {0}/R>0, see [Oda88, Sect. 1.7]. Such a
fan is centrally symmetric if and only if its triangulation is invariant under
the reflection p ↔ −p of S, and the strong symmetry of the fan ΣR of a
crystallographic arrangement (A, R) means that its triangulation is induced
by the hyperplane sections H ∩ S, H ∈ A.

In particular in dimension 3 Tsuchihashi’s characterization by admissible
N -weights (see [Oda88, Cor. 1.32]) for strongly symmetric fans agrees with
the classification in [CH12]. For higher dimension the correspondence to
Weyl groupoids produces similar conditions if one considers certain products
of reflections.



6.3. THE CORRESPONDENCE 161

Figure 1. The largest crystallographic arrangement in di-
mension three (see Example 6.3.8)

For a geometric interpretation of the strong symmetry of X(A) see Rem.
6.6.9.

Example 6.3.8 The crystallographic arrangement with the largest number
of hyperplanes in dimension three has 37 hyperplanes. Fig. 1 is a projective
image of this sporadic arrangement: The triangles correspond to the maximal
cones; one hyperplane is the line at infinity.

We further obtain a new proof of [BC12, Prop. 5.3]:

Corollary 6.3.9 Let A be a crystallographic arrangement and E be an in-
tersection of hyperplanes of A. Then the restriction AE of A to E,

AE := {E ∩H | H ∈ A, E * H}

is a crystallographic arrangement.
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Proof. This follows from Thm. 6.3.3, the fact that subfans of smooth
fans are smooth, and Lemma 6.2.10. �

6.4. Projectivity

Let (A, R) be a crystallographic arrangement and N,M, V, V ∗ be as in
Section 6.3, Σ := ΣR. We first prove that X(A) = XΣ is projective by
constructing a polytope P such that XP

∼= XΣ.

Proposition 6.4.1 Let A be a crystallographic arrangement. For a chamber
K let

ρK :=
1

2

∑
α∈RK+

α.

Then the set {ρK | K ∈ K(A)} is the set of vertices of an integral convex
polytope P in 1

2M .

Proof. For each chamber K define a simplicial cone by

SK := ρK − 〈α | α ∈ BK〉R≥0
.

Let P be the polytope
P :=

⋂
K∈K(A)

SK .

Let K be a chamber. We prove that ρK is a vertex of P by showing ρK ∈ P :
Let K ′ be a chamber. Notice first that for α ∈ R we have

α ∈ RK+ ⇐⇒ −α ∈ RrRK+ ,

which implies RK′+ rRK+ = −RK+ rRK
′

+ . Thus

ρK = ρK
′ − 1

2

∑
α∈RK′+ rRK+

α+
1

2

∑
α∈RK+rRK

′
+

α = ρK
′ −

∑
α∈RK′+ rRK+

α ∈ SK′ .

�

Remark 6.4.2 The set {ρK | K ∈ K(A)} of the last proposition is the
orbit of one fixed ρK under the action of the Weyl groupoid W(A) since for
a simple root α ∈ BK we have σα(ρK) = ρK − α (see [CH09a]).

Corollary 6.4.3 Let A be a crystallographic arrangement. Then XΣ is a
projective variety isomorphic to XP , where P is the polytope of Prop. 6.4.1.

Proof. This is Prop. 6.4.1 and [Oda88, Thm. 2.22]. �

We now describe an explicit immersion of XΣ into PR1 ∼= P2n
1 .

Definition 6.4.4 For any σ ∈ Σ, α ∈ R let

sα(σ) =


+1 if α(σ) = R≥0

0 if α(σ) = {0}
−1 if α(σ) = R≤0
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and let s(σ) = (sα(σ))α∈R.

Definition 6.4.5 Let 2n = |R|, let V ′ be a 2n-dimensional vector space over
R and (eα)α∈R be a basis of V ′∗. Further, let M ′ := Z{eα | α ∈ R} ⊆ V ′∗

be the lattice generated by this basis and let N ′ be the dual lattice. Then
A′ := {e⊥α | α ∈ R} is a Boolean arrangement and we call the corresponding
fan Σ′ := Σ(A′) a Boolean fan. Notice that

XΣ′
∼= P2n

1 .

Consider the homomorphism M ′ →M , eα 7→ α for α ∈ R and its dual

ϕ : N → N ′, n 7→ (α(n))α∈R.

Lemma 6.4.6 Choose a chamber K. Then with respect to the basis BK∗ of
N the map ϕ is represented by a matrix of the form

1 0
. . .

0 1

∗ · · · ∗
...

...

 .

It follows that ϕ is a split monomorphism and in particular N ′/ϕ(N) is
torsion free.

Lemma 6.4.7

(1) The map ϕ is a map of fans (N,Σ)→ (N ′,Σ′).
(2) For any σ′ ∈ Σ′, ϕ(V ) ∩ σ′ ∈ Σ.

Proof. (1) Let σ ∈ Σ and let σ′ ∈ Σ′ be the cone with s(σ′) = s(σ).
Then ϕ(σ) ⊆ σ′.
(2) If σ′ ∈ Σ′ is maximal, let s(σ′) = (ε1, . . . , ε2n) with εν ∈ {±1}, and let

τ =
⋂
ν

{x ∈ V | εναν(x) ≥ 0}.

Then τ ∈ Σ and τ = ϕ−1(σ′). If σ′ is arbitrary, then σ′ = σ′1 ∩ . . . ∩ σ′k for
maximal σ′i and then ϕ−1(σ′) =

⋂
ϕ−1(σ′i) ∈ Σ. �

Corollary 6.4.8 The induced toric morphism f = ϕ∗ : XΣ → XΣ′ is proper
and XΣ � f(XΣ) is the normalization of the closed (reduced) image.

Proof. See [Oda88, Prop. 1.14]. �

Proposition 6.4.9 The map XΣ → XΣ′ is a closed embedding of nonsin-
gular toric varieties.

Proof. Let σ be a maximal cone, K the corresponding chamber and
BK ⊆ R the basis of M . If σ′ ∈ Σ′ is the cone with s(σ) = s(σ′) (σ =
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ϕ(V ) ∩ σ′), then the dual cone to σ′ is

σ′∨ = 〈eα ∈ R | sα(σ′) = 1〉R≥0
.

The map σ′∨∩M ′ → 〈BK〉Z≥0
is surjective, so C[σ′∨∩M ′]→ C[〈BK〉Z≥0

] is
a surjective homomorphism of C-algebras giving rise to the closed embedding

f |Uσ : Uσ → U ′σ′ ,

where f = ϕ∗ as in Cor. 6.4.8. Because Uσ is dense in XΣ, the closure of
f(Uσ) equals f(XΣ), hence f(Uσ) = f(XΣ) ∩ U ′σ′ . It follows that f(XΣ)

is smooth and that XΣ → f(XΣ) is an isomorphism. The injectivity of f
follows from that of f |Uσ because then f |orb(σ) is an injective map orb(σ)→
orb(σ′) for each cone σ of the orbit decomposition of XΣ. �

6.5. Remarks on surfaces

For 2-dimensional fans of complete toric surfaces obviously strongly sym-
metric is the same as centrally symmetric. The classification of smooth com-
plete toric surfaces, see [Oda88, Cor. 1.29] can be specialized as follows. It
turns out that this classification coincides with the classification of crystal-
lographic arrangements of rank two [CH09b, CH11].

Let Σ be the fan of a smooth complete toric surface with rays ρ1, . . . , ρs
ordered counterclockwise with primitive generators n1, . . . , ns. There are
integers a1, . . . , as such that

nj−1 + nj+1 + ajnj = 0

for 1 ≤ j ≤ s where ns+1 := n1, n0 := ns. The integers aj are the self-
intersection numbers of the divisorsDj associated to the rays ρj . The circular
weighted graph Γ(Σ) has as its vertices on S1 the rays ρj with weights aj .
These weights satisfy the identity(

0 −1

1 −as

)
· · ·
(

0 −1

1 −a1

)
=

(
1 0

0 1

)
.

Conversely, to any circular weighted graph with this identity there is a
smooth complete toric surface with this graph, unique up to toric isomor-
phisms.

All these surfaces are obtained from the basic surfaces P2, P1 × P1, and
the Hirzebruch surfaces Fa, a ≥ 2, by a finite succession of blowing-ups. If
the surface XΣ is centrally symmetric, then the number s of rays is even,
s = 2t, and at+j = aj for 1 ≤ j ≤ t. In this case(

0 −1

1 −at

)
· · ·
(

0 −1

1 −a1

)
=

(
−1 0

0 −1

)
,

which is “dual” to the formula of the classification of crystallographic ar-
rangements of rank two (see [CH09b]).

Note further that sequences a1, . . . , at satisfying this formula are in bijec-
tion with triangulations of a convex t-gon by non-intersecting diagonals. The
numbers in Fig. 2 are −a1, . . . ,−at; these are certain entries of the Cartan
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Figure 2. Triangulation of a t-gon

matrices of the corresponding Weyl groupoid (see [CH11] for more details).
Attaching a triangle to the t-gon corresponds to a double blowing-up on the
variety.

One can subdivide a smooth complete 2-dimensional fan Σ by filling in
the opposite −ρ of each ray ρ in order to get a complete centrally symmetric
fan ΣC . However, ΣC need not be smooth as in Example 6.5.1. But by
inserting further pairs ρ,−ρ of rays one can desingularize the surface XΣC

in an even succession of blowing-ups to obtain a smooth complete centrally
symmetric surface XΣ̃ with a surjective toric morphism XΣ̃ → XΣ.

Example 6.5.1 Let Σ be the fan of the Hirzebruch surface Fa, a ≥ 2, with
the primitive generators

n1 = (1, 0), n2 = (0, 1), n3 = (−1, a), n4 = (0,−1).

The fan ΣC is then obtained by adding the rays spanned by (−1, 0) and
(1,−a). This fan is no longer smooth. After filling in the rays spanned
by (1,−ν) for 1 ≤ ν < a, we obtain a smooth complete centrally symmet-
ric fan Σ̃ with 2a rays. In case a = 2 its circular graph has the weights
(−1,−2,−1,−2;−1,−2,−1,−2) (this corresponds to the reflection arrange-
ment of type B and C).

Example 6.5.2 In good cases the centrally symmetric fan ΣC may already
be smooth. As an example let Σ be the fan of P2 spanned by (1, 0), (0, 1)

and (−1,−1). Then the fan ΣC is spanned, in counterclockwise order, by

(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1).

This is the fan of the blow up P̃2 of P2 at the three fixed points of the torus
action. The corresponding arrangement is the reflection arrangement of type
A2. Its circular graph has the weights

(−1,−1,−1;−1,−1,−1).

The same surface can be obtained by blowing up P1 × P1 in two points cor-
responding to the enlargement of the weighted graph (0, 0, 0, 0) by inserting
−1 after the first and third place, see [Oda88, Cor. 1.29].
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Notice that P1 × P1 corresponds to the reducible reflection arrangement
of type A1×A1. One should also note here that P̃2 and P1×P1 are the only
toric Del Pezzo surfaces which are centrally symmetric.

6.6. Parabolic subgroupoids and toric arrangements

If (A, R) is a crystallographic arrangement in V and E is an intersection
of hyperplanes of A, then by Cor. 6.3.9 the restriction AE is again crys-
tallographic. The dual statement is that Star(δ) for δ ∈ ΣR is the fan of a
crystallographic arrangement which corresponds to a parabolic subgroupoid,
see below. Both constructions may be translated to the corresponding toric
varieties in a compatible way. This gives rise to posets of toric varieties which
we call toric arrangements (see Section 6.6.2).

6.6.1. Star fans and parabolic subgroupoids. Let (A, R) be a crys-
tallographic arrangement, ΣR be the corresponding smooth strongly sym-
metric fan in Rr, δ ∈ Σ, E := 〈δ〉R and d := dim(E). Let RE := R ∩ E⊥
and

AE := {α⊥ ⊆ V/E | α ∈ RE},

and notice that α⊥ are hyperplanes in V/E because α ∈ E⊥. Remark also
that AE only depends on E. By [CH12, Cor. 2.5], RE is a set of real roots of
a parabolic subgroupoid of W(A(Σ)) (see [HW11, Def. 2.3] for the precise
definition of a parabolic subgroupoid). Here,W(A(Σ)) is the Weyl groupoid
of the Cartan scheme given by the crystallographic arrangement A(Σ) as
described in [Cun11, Prop. 4.5]. Thus (AE , RE) is a crystallographic ar-
rangement. It corresponds to the fan Star(δ):

Proposition 6.6.1 Let (A, R) be a crystallographic arrangement and let δ
be a d-dimensional cone of the fan ΣR. Then the orbit closure V (δ) ⊆ X(A)

of orb(δ) corresponds to the crystallographic arrangement

AE = {H ⊆ V/E | H ∈ A} = {〈τ〉R | τ ∈ Star(δ)(r − d− 1)},

where E = 〈δ〉R as above.

Proof. Let H be in the left set. Then δ ⊆ E ⊆ H, thus there exists a
τ ∈ Σ(r − 1) with δ ⊆ τ ⊆ H. Hence 〈τ〉R is in the right hand set.

Now let 〈τ〉R be in the right hand set. Then E ⊆ 〈τ〉R ⊆ H for an
H ∈ A and so 〈τ〉R ⊆ H. But since these have the same dimension, they are
equal. �

Corollary 6.6.2 Let Σ be a strongly symmetric fan in Rr and δ, δ′ ∈ Σ

with 〈δ〉R = 〈δ′〉R. Then Star(δ) = Star(δ′) and V (δ) ∼= V (δ′) even so
V (δ) 6= V (δ′).

Proof. As in Prop. 6.6.1, Star(δ) only depends on 〈δ〉R because Star(δ)

is strongly symmetric. Note that here smoothness is not used. �
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Corollary 6.6.3 Let Σ be a smooth strongly symmetric fan in Rr, W(A(Σ))

the corresponding Weyl groupoid, and δ ∈ Σ. Then the Weyl groupoid
W(A(Star(δ))) is equivalent to a connected component of a parabolic sub-
groupoid of W(A(Σ)).

6.6.2. Associated toric arrangements. Let as before Σ be the fan of
a crystallographic arrangement (A, R) and as in [OT92, Def. 2.1] let L(A)

be the poset of nonempty intersections of elements of A. By Lemma 6.2.10,
for any E ∈ L(A) we are given the strongly symmetric smooth subfan

ΣE = {σ ∩ E | σ ∈ Σ} = {σ ∈ Σ | σ ⊆ E}

of Σ. Let XE denote its toric variety. The inclusion ι : NE = N ∩ E ↪→ N

is then a sublattice and compatible with the fans ΣE and Σ and induces a
toric morphism

fE : XE → X(A) = XΣ.

Lemma 6.6.4 The map fE is a closed immersion with image Y E ⊆ X(A)

of dimension dimE.

Proof. The subspace E is spanned by any cone τ ∈ ΣE of maximal
dimension s := dimE. Using a Z-basis of τ as in the proof of Lemma 6.2.10
one finds that NE = N ∩ E is a sublattice of N of rank s and that the
inclusion ι : NE ↪→ N is split. The induced map ιR sends a cone σ to itself
and thus gives rise to a proper toric morphism fE . Let ME be the dual
lattice of NE and σ ∈ ΣE . Using the duals of bases of NE and N , one finds
that the induced dual map ι∗ : M ∩ σ∨ →ME ∩ σ∨ is surjective. Then

fE |UEσ : UEσ → Uσ

is a closed immersion, where UEσ ⊆ XE and Uσ ⊆ XΣ denote the open affine
spectra defined by ME ∩ σ∨ resp. M ∩ σ∨. As in the proof of Prop. 6.4.9 we
conclude that fE is globally a closed immersion. �

Remark 6.6.5 Note that Y E is not invariant under the torus action on
XΣ but is a strongly symmetric smooth toric variety on its own with torus
TE = NE ⊗ C∗ ⊆ T .

Proposition 6.6.6 With the above notation the subvarieties Y E ⊆ XΣ have
the following properties.

(1) Each Y E, E ∈ L(A), is invariant under the involution of XΣ de-
fined by the central symmetry of Σ.

(2) For each cone σ ∈ Σ,

Y E ∩ orb(σ) =

{
orbE(σ) if σ ⊆ E,
∅ if σ 6⊆ E,
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and

Y E ∩ V (σ) =

{
V E(σ) if σ ⊆ E,
∅ if σ 6⊆ E,

where orbE(σ) resp. V E(σ) denote the images of the orbit of σ resp.
its closure in XE.

(3) When F,E ∈ L(A) with F ⊆ E, then the composition XF ↪→
XE ↪→ XΣ is the inclusion XF ↪→ XΣ.

(4) For any E,F ∈ L(A), Y E∩F = Y E ∩ Y F .
(5) The intersections Y E ∩ T of Y E with the torus T of XΣ are the

subtori TE = NE ⊗C∗ of T of dimension dim(E) and constitute a
toric arrangement.

Definition 6.6.7 We call the system {Y E}E∈L(A) the associated toric ar-
rangement of the strongly symmetric smooth toric variety X(A).

Remark 6.6.8 Prop. 6.6.6 (4) shows that the assignment E 7→ Y E is an
isomorphism of posets.

Remark 6.6.9 Prop. 6.6.6 yields a geometric interpretation of the strong
symmetry of X(A) by its toric arrangement: For any hyperplane H ∈ A the
union of the curves V (τ), τ ⊆ H, dim(τ) = r − 1, is the set of fixed points
of X(A) under the action of the subtorus TH = NH ⊗ C∗ = Y H ∩ T of T .
This union meets the hypersurface Y H exactly in the set of its fixed points
under the action of its torus TH , and does not meet any other Y H′ .

The same holds for any E ∈ L(A) for Y E and the varieties V (τ), τ ⊆ E,
dim(τ) = dimE, inside any other Y F , E ⊆ F ∈ L(A).

Proof. (i) follows from the fact that fE is induced by the map ι between
strongly symmetric fans.

(ii) follows from the orbit decompositions of Y E and V (σ) and the fact
that fE maps orbE(σ) into orb(σ), because ιR(σ) = σ for σ ∈ ΣE . If σ 6⊆ E,
no orbE(τ), τ ⊆ E, can meet orb(σ). If σ ⊆ E, orbE(σ) = orb(σ) ∩ Y E .

(iii) follows directly from the definition of the morphisms fE .
(iv) It is sufficient to assume that F is a hyperplane H ∈ A with E 6⊆ H.

Let s = dimE. Then dimY E∩H = s − 1 and Y E∩H ⊆ Y E ∩ Y H . Suppose
that there is a point x ∈ Y E ∩ Y H and x /∈ Y E∩H . Let then σ ∈ Σ be a
maximal cone with x ∈ orb(σ). Then Y E∩H ∩ orb(σ) ( Y E ∩ Y H ∩ orb(σ).
By property (ii), σ ⊆ E ∩H and

Y E∩H ∩ orb(σ) = orbE∩H(σ), Y E ∩ orb(σ) = orbE(σ),

Y H ∩ orb(σ) = orbH(σ)

are subtori of orb(σ) of dimensions s−1−dim(σ), s−dim(σ), r−1−dim(σ)

and dim(orb(σ)) = r−dim(σ). It follows that Y E∩Y H∩orb(σ) is a subtorus
of dimension s−1−dim(σ) , too. Hence Y E∩H∩orb(σ) = Y E∩Y H∩orb(σ),
contradiction.
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(v) follows from (ii) for the special case T = orb({0}). Then the definition
of a toric arrangement as in [DCP05] is satisfied. �

Property (ii) of Prop. 6.6.6 also includes that the intersections Y E∩V (σ)

are smooth, irreducible and proper of dimension dimE − dimσ. Moreover,
we have the

Proposition 6.6.10 With the above notation:

(1) For any fixed orbit closure V (τ) ⊆ X(A) the intersections Y E ∩
V (τ), τ ⊆ E constitute the toric arrangement {Y E/〈τ〉R} of the
variety V (τ) corresponding to the crystallographic arrangement AD,
D = 〈τ〉R with fan Star(τ) as in Prop. 6.6.1.

(2) The intersections Y E ∩ orb(τ), τ ⊆ E, form a toric arrangement of
subtori in each orbit orb(τ) of X(A).

Proof. Let D = 〈τ〉R ⊆ E and E = E/D. Under the isomorphism
XStar(τ)

∼= V (τ) an orbit orb(σ) ⊆ V (τ), τ ⊆ σ, is identified with the orbit
orb(σ) with σ ⊆ V/D the image of σ. Likewise, an orbit orbE(σ) in XE

with τ ⊆ σ ⊆ E can be identified with the orbit orbE(σ) in the variety
X

Star(τ)E
∼= V E(τ) in XE . It follows that the embeddings XE ↪→ X(A) and

X
Star(τ)E

↪→ XStar(τ) = V (τ) are compatible and thus that Y E ∩ V (τ) is the
image of the latter.

(2) follows from (v) of Prop. 6.6.6 since orb(τ) is the torus of V (τ). �

Example 6.6.11 The system {Y E}E∈L(A) for strongly symmetric toric sur-
faces has the following special features (see Fig. 3). Here each E is a line of
A.

(1) For ρ ⊆ E, Y E ∩Dρ = orbE(ρ) is a point pρ ∈ orb(ρ).

(2) Y E r (Dρ ∪D−ρ) is the torus TE ∼= k∗ of Y E .

(3) Y E ∩Dρ′ = ∅ for ρ′ 6⊆ E.

(4) Y E ∩ Y F = {1} ⊆ T for any E,F ∈ L(A).

Notice here that all the divisors Dρ and Y E are isomorphic to P1 and that
the intersections are transversal.

There is an interesting formula for the divisor classes of the curves Y E

in terms of the toric divisors Dρ as follows. Keeping the notation of Section
6.5, let a1, . . . , a2t be a chosen order of the weights of the circular graph of
the surface X(A) with corresponding divisors D1, . . . , D2t, and let Y1 = Y E

in case E := 〈n1〉R.
Then the standard sequence 0 → M → ZΣ(1) → PicX(A) → 0 can be

represented by the exact sequence

0 −→ Z2 (Q,−Q)−→ Zt ⊕ Zt

(
A I

0 I

)
−→ Zt−2 ⊕ Zt −→ 0
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Y E

Dρ

D−ρ

Figure 3. Example 6.6.11

where Q∨ = (n1, . . . , nt) is the matrix of the first t primitive elements and
A∨ is the matrix

A∨ =



a1 1 −1

1 a2
. . .

. . . . . . . . .
. . . . . . 1

−1 1 at


of rank t− 2 expressing the relations nj−1 + ajnj +nj+1 = 0. To deduce the
formula for Y1 we choose n1, nt as the basis of the lattice N . Then

Q∨ =

(
1 x2 · · · xt−1 0

0 y2 · · · yt−1 1

)
and y2 = 1 since A ·Q = 0.

Proposition 6.6.12 With the above notation,

Y1 ∼ D2 +

t−1∑
ν=3

yνDν +Dt ∼ Dt+2 +

t−1∑
ν=3

yνDν+2 +D2t (16)

up to rational equivalence and Y1 has selfintersection Y 2
1 = 0.

Remark 6.6.13 Choosing n1, nt as a basis, the columns of Q∨ become the
positive roots of the associated Weyl groupoid at the object corresponding
to Y1.

The formula for the other Yν = Y E , nν ∈ E, follows by cyclic permuta-
tion of the indices. Note that the classes of D2, . . . , Dt are part of a basis
of PicX(A). The formula can be derived as follows. If Y1 is equivalent to∑
cνDν , the intersection numbers D2

ν = aν , DµDν ∈ {0, 1} for µ 6= ν and

Y1Dν =

{
1 ν ∈ {1, t+ 1}
0 else
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yield a system of equations for the coefficients c2, . . . , c2t. This system has a
unique solution modulo (Q,−Q) such that c1 = 0, c2 = 1, which is

(c2, . . . , c2t) = (y2, . . . , yt−1, 1, 0, . . . , 0) mod (Q,−Q).

For that one has to use the relations between the weights a1, . . . , at, see
Section 6.5. The proof for Y 2

1 = 0 follows from the second equivalence of
Equation 16.

Remark 6.6.14 The relations between the weights a1, . . . , a2t naturally lead
to the Grassmanian and to cluster algebras of type A, see [CH11] for more
details.

6.7. Further remarks

6.7.1. Reducibility. An arrangement (A, V ) is called reducible if there
exist arrangements (A1, V1) and (A2, V2) such that V = V1 ⊕ V2 and

A = A1 ×A2 := {H ⊕ V2 | H ∈ A1} ∪ {V1 ⊕H | H ∈ A2},

compare [OT92, Def. 2.15]. It is easy to see that a crystallographic arrange-
ment (A, V ) is reducible if and only if the corresponding Cartan scheme
is reducible in the sense of [CH09a, Def. 4.3], i.e. the generalized Cartan
matrices are decomposable. For the fan Σ corresponding to A, reducibility
translates to the fact that there are fans Σ1 and Σ2 such that

Σ = Σ1 × Σ2 = {σ × τ | σ ∈ Σ1, τ ∈ Σ2}.

Notice that by Lemma 6.2.10 the fans Σ1 and Σ2 are strongly symmetric
and smooth as well.

6.7.2. Inserting one hyperplane and blowups. In higher dimen-
sion, the situation is much more complicated. There are only finitely many
crystallographic arrangements for each rank r > 2. Whether the insertion of
new hyperplanes corresponds to a series of blowing-ups is unclear. The case
of a single new hyperplane may be explained in the following way:

Proposition 6.7.1 Let (A, R) and (A′, R′) be crystallographic arrangements
of rank r with A′ = A∪̇{H}. Then the toric morphism XΣ′ → XΣ induced by
the subdivision is a blowup along two-dimensional torus invariant subvarieties
of XΣ.

Proof. Let σ ∈ Σ := ΣR be a maximal cone with H∩ ◦σ 6= ∅. We prove
that H star subdivides σ. The hyperplane H divides σ into two parts σ′1
and σ′2 which intersect in a codimension one cone τ ′. Note that |σ(1)| = r,
|σ′1(1) ∪ σ′2(1)| = r + 1, thus there is exactly one ray ρ′ involved which is
not in Σ. Let ρ1 ⊆ σ′1, ρ2 ⊆ σ′2 be the rays which are not subsets of τ ′,
and τ ⊆ σ be the cone generated by ρ1, ρ2. Then H ∩ τ = ρ′. But by Cor.
6.3.9, A′〈τ〉R is a crystallographic arrangement in which 〈ρ1〉R, 〈ρ′〉R, 〈ρ2〉R
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are subsequent hyperplanes. By 6.5 we obtain that ρ is generated by the
sum of the generators of ρ′1, ρ′2. �

6.7.3. Automorphisms. Let Σ be a strongly symmetric smooth fan,
(A, R) the corresponding crystallographic arrangement.

Definition 6.7.2 If A comes from the connected simply connected Cartan
scheme C = C(I, A, (ρi)i∈I , (Ca)a∈A), and a ∈ A, then we call

Aut(C, a) := {w ∈ Hom(a, b) | b ∈ A, Ra = Rb}

the automorphism group of C at a. This is a finite subgroup of Aut(Zr) ∼=
Aut(M) because the number of all morphisms is finite.

Since C is connected, Aut(C, a) ∼= Aut(C, b) for all a, b ∈ A. The choice
of a ∈ A corresponds to the choice of a chamber and thus of an isomorphism
Zr ∼= M . Every element of Aut(C, a) clearly induces a toric automorphism
of Σ. The groups Aut(C, a) have been determined in [CH10], see [CH10,
Thm. 3.18] and [CH10, A.3]. However, sometimes there are elements of
Aut(Σ) which are not induced by an element of Aut(C, a). For example, we
always have the toric automorphism

N → N, v 7→ −v,

but there is a sporadic Cartan scheme of rank three with trivial automor-
phism group.
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