
UNIVERSIT
� ATDESSA
ARLANDES

FACHBERE
ICHINFOR
MATIK

D-66041SA
ARBR� UCK
EN

GERMANY URL:http://www.
ags.uni-sb.de/

SEKIR
eport

Model Existence for Higher Order LogicChristoph Benzm�uller and Michael Kohlhasechris|kohlhase@cs.uni-sb.deSEKI Report SR-97-09

Model Existence for Higher Order LogicChristoph Benzm�uller and Michael KohlhaseFachbereich Informatik, Universit�at des Saarlandes, Germanychris|kohlhase@cs.uni-sb.deAbstractIn this paper we provide a semantical meta-theory that will support the developmentof higher-order calculi for automated theorem proving like the corresponding methodologyhas in �rst-order logic. To reach this goal, we establish classes of models that adequatelycharacterize the existing theorem-proving calculi and we present a standard methodology ofabstract consistency methods (by providing the necessary model existence theorems) neededto analyze completeness of machine-oriented calculi with respect to this model classes.We further parameterize the introduced semantical structures and the corresponding ab-stract consistency properties with an order k. This provides a �ner proof methodology whichcan be used to show that the primitive substitution rule in resolution calculi as discussed in[And71] or [BK97] can be restricted with respect to the order of the input problems withoutlosing completeness.Contents1 Motivation 22 Informal Exposition 22.1 Higher-Order Logic (HOL) . 22.2 Notions of Models for HOL . 42.3 Applications . 63 Semantics for Higher Order Logic 73.1 Pre-�-Structures . 73.2 �-Structures . 93.3 Functional �-structures . 113.4 �-Models . 123.5 Leibniz Equality . 143.6 Primitive Equality . 164 Model Existence Theorems 184.1 Abstract Consistency . 184.2 Hintikka Sets . 214.3 Primitive Equality . 234.4 Model Existence . 254.5 Order E�ects . 285 Conclusion 306 Index 33
1

2 2 INFORMAL EXPOSITION1 MotivationIn classical �rst-order predicate logic, it is rather simple to assess the deductive power of a calcu-lus: �rst-order logic has a well-established and intuitive set-theoretic semantics, relative to which,completeness can easily be veri�ed using for instance the abstract consistency method (see forinstance the introductory textbooks [And86, Fit90]). This well-understood meta-theory has sup-ported the development of calculi adapted to special applications { such as automated theoremproving (see for instance [Bib98] for an overview).In higher-order logics, the situation is rather di�erent: the intuitive set-theoretic standardsemantics cannot give a sensible notion of completeness, since it does not admit complete cal-culi [G�od31]. However, there is a more general notion of semantics (the so-called Henkin-models [Hen50]), that allows complete calculi and therefore sets the standard for deductive powerof calculi.Peter Andrews' \Unifying Principle for Type Theory" [And71] provides a method of higher-order abstract consistency that has become the standard tool for completeness proofs in higher-order logic, even though it can only be used to show completeness relative to a certain Hilbertstyle calculus T. A calculus C is called complete relative to a calculus C0, i� C proves all theoremsof C0. Since T is not complete with respect to Henkin models, the notion of completeness that canbe established by this method is a strictly weaker notion than Henkin completeness.As a consequence, the calculi developed for higher-order automated theorem proving [Hue73,And71, Mil83, Koh95] and the corresponding theorem proving systems such as Tps [ABI+96],or earlier versions of the authors' Leo1 are not or cannot be proven complete with respect toHenkin models. Moreover, they are not even sound with respect to T, since all of them utilize�-conversion, which is not a theorem of T. In other words, their deductive power lies somewherebetween T and Henkin models.In this situation, the aim of this paper is to provide a semantical meta-theory that will supportthe development of higher-order calculi for automated theorem proving like the correspondingmethodology has in �rst-order logic. To reach this goal, we establish� classes of models that adequately characterize the deductive power of existing theorem-proving calculi (making them sound and complete), and� a standard methodology of abstract consistency methods (by providing the necessary modelexistence theorems, which extend Andrews' Unifying Principle), so that the completenessanalysis for higher-order calculi will become a simple exercise like in �rst-order logic.Due to the inherent complexity of higher-order semantics we will use the next section for aninformal exposition of the issues covered and the techniques applied.2 Informal ExpositionBefore we turn to the exposition of the semantics in section 2.2 and discuss some applications ofthe results (section 2.3), let us specify what we mean by \higher-order logic": any simply typedlogical system that allows quanti�cation over function and predicate variables. Technically, wewill employ a logical system HOL, which is based on the simply typed �-calculus. A related logicalsystem is discussed in detail in [And86].2.1 Higher-Order Logic (HOL)HOL-formulae are built up from the set V of variables, and the signature � (a set of typedconstants) as applications and �-abstractions. The set w��(�) of well-formed formulaeterm consists of those that can be given a type � so that in all applications, the types of the1Based on the results of this paper the resolution calculus underlying newer versions of Leo [Ben97, BK98] canbe proven complete for Henkin models based, see [BK97].

2.1 Higher-Order Logic (HOL) 3arguments are the argument types of the function. We will denote variables with upper-case letters(X�; Y; Z;X1�; X2
 : : :), constants with lower-case letters (c�; f�!�; : : :) and well-formed formulaewith upper-case bold letters (A�;B;C1; : : :)2. Finally, we abbreviate multiple applications andabstractions in a kind of vector notation, so that AUk denotes k-fold application (associating tothe left) and �XkA denotes k-fold �-abstraction (associating to the right) and use the square dotas an abbreviation for a pair of brackets, where stands for the left one with its partner as far tothe right, as is consistent with the bracketing already present in the formula.We will use the terms like free and bound variables or closed formulae in their standardmeaning and use Free(A) for the set of free variables of a formula A. In particular alphabeticchange of names of bound variables as built into our HOL: we consider alphabetic variants to beidentical (viewing the actual representation as a representative of an alphabetic equivalence class)and use a notion of substitution that avoids variable capture, systematically renaming boundvariables. We could also have used de Bruijn's indices [dB72], as a concrete implementation ofthis approach at the syntax level.We denote a substitution that instantiates a free variable X with a formula A with [A=X] andwrite �; [A=X] for the substitution that is identical with � but instantiates X with A.If A has a subterm B at position p, we denote this by A[B]p and we will write the operationof replacing this subterm by a formula C with [C=p]A.The structural equality relation of HOL is induced by ��-reduction(�XA)B �!� [B=X]A (�X CX) �!� CwhereX is not free inC. It is well-known, that the reduction relations �, �, and �� are terminatingand con
uent on w��(�), so that there are unique �� normal forms (see for instance [Bar84] foran introduction).In HOL, the set of base types is fo; �g for truth values and individuals. We will call a formula oftype o a proposition and a sentence, if it is closed. We will assume that the signature �containslogical constants for negation :o!o, conjunction ^o!o!o, quanti�cation3 ��(�!o)!o, andpossibly equality =��!�!o, all other constants are called parameters, since the argumentationin this paper is parametric their choice; we only assume that there are closed formulae for bothbase types, and as a consequence that all types are non-empty. In particular, we do not assumethe existence of description or choice operators. For a detailed discussion of the semantic issuesraised by the presence of these logical constants see [And72b].It is matter of folklore that equality can directly be expressed in HOL e.g. by the Leibnizformula for equality in terms of the other connectivesQ� := (�X�Y� 8P�!o PX) PY)With this de�nition, the formula (A :=� B), which we use as an abbreviation for Q�AB �-reducesto 8P�!o (PA)) (PB), which can be read as: formulae A and B are not equal, i� there existsa discerning property P 4. In other words, A and B are equal, if they are indiscernible. There arealternatives to de�ne equality in terms of the logical connectives (see for example [And86, p. 155]).In this paper we di�erentiate between �ve di�erent notions of equality. In order to preventmisunderstandings we explain these di�erent notions together with their syntactical representationhere:If we de�ne a concept we use := (e.g. let D := fT; Fg) and � represents Meta-equality. Werefer to the equality relation as an object of our semantical domains with q; note that we possiblyhave one q� in each domain D�. The remaining two notions, := and =, are related to syntax. =�may occur as a constant symbol of type � in a signature � and �nally :=� (and sometimes alsoQ�) for Leibniz equality.2We will denote the type of formulae as an index, if it is not clear from the context.3With this quanti�cation constant, standard quanti�cation of the form 8X�A can be regained as an abbreviationfor ��(�X�A)4Note that by contraposition we easily get the backward direction of (and hence it is su�cient to use)instead of ,.

4 2 INFORMAL EXPOSITION2.2 Notions of Models for HOLLet us now explore the semantic notions needed to understand �gure 1. We will discuss themodel classes from bottom to top, from the most speci�c notion of standard models (ST)to themost general notion of �-complexes, motivating the respective generalizations as we go along. Insection 3, we will proceed the other way around, specializing the notion of a �-model (M) moreand more.The symbols in the boxes in �gure 1 denote model classes, the symbols labeling the arrowsindicate the properties inducing the corresponding specialization, and the r-symbols next to theboxes indicate the clauses in the de�nition of abstract consistency class (cf. 4.4) that are neededto establish a model existence theorem for this class of models.A standard model (ST, cf. De�nition 3.30) for HOL provides a �xed set D� of individuals,and a set Do := fT; Fg of truth values. All the domains for the complex types are de�ned induc-tively: D�!� is the set of functions f :D� ! D� . The evaluation function I' with respect to aninterpretation I: � ! D of constants and an assignment ' of variables is obtained by the stan-dard homomorphic construction that evaluates a �-abstraction with a function, whose operationalsemantics is speci�ed by �-reduction.One can reconstruct the key idea behind Henkin models (H, cf. De�nition 3.30) by thefollowing observation. If the set D� is in�nite, the set D�!o of sets of individuals must be uncount-ably in�nite. On the other hand, any semantics that admits sound and complete calculi musthave countable models, because of the compactness theorem that comes with a complete calculus.Leon Henkin generalized the class of admissible domains for functional types. Instead of requiringD�!� to be the full set of functions, it is su�cient to require that D�!� has enough members thatany well-formed formula can be evaluated5. Note that with this generalized notion of a model,there are less formulae that are valid in all models (intuitively, for any given formulae there aremore possibilities for counter-models). In the particular case, the generalization to Henkin models,restricts the set of valid formulae su�ciently, so that all of them can be proven by a Hilbert-stylecalculus [Hen50].It is matter of folklore that primitive notion equality (expressed by a primitive equality constant=2 �) is not strictly needed, since it can be expressed by the Leibniz formula. However, the Leibnizformula only really denotes the semantic equality relation, if D�!o contains enough properties todiscern members of �; in fact, we need that for all a 2 D�, the singleton set fag is in D�!o(see the proof of Lemma 3.35).6 In other words, we are in the somewhat paradoxical situation,that Leibniz Equality (which is commonly used as a substitute for primitive equality) will onlydenote semantical equality, if we can guarantee that the identity relation is already present in themodel (we call this property q, cf. De�nition 3.27). Hence we introduce corresponding semanticalstructures, namely Henkin models without property Q (Mfb), in which property q is not necessarilyvalid and thus Leibniz equality does not necessarily denote the equality relation. An example fora theorem which is valid within the class of Henkin models but not in the class of Mfb's, is givenby the axiom of functional extensionality for Leibniz equality (8F�!� 8G�!�(8X� FX := GX))F :=� G), see lemma 3.36.The next generalization of model classes comes from the fact that we want to characterize thedeductive power of higher-order theorem provers mentioned above on a semantic level (we will takeTps [ABI+96] as an example). Note that Tps cannot be complete with respect to Henkin modelsand is even not generally complete for Mfb's, although there is some `extensionality treatment'build into the proof procedure. The uncompleteness of Tps for Henkin models7 is due to the fact,that it, fails to refute formulae such as cAo ^ :c(::A), where c is a constant of type o ! o orcA�!o ^ cB�!o) c(�X�AX ^BX), where c is a constant of type (� ! o) ! o. The problem5In other words: the functional universes are rich enough to satisfy the comprehension axioms.6On a similar note, Peter Andrews remarked in [And72a] that if the set D�!�!o is so sparse, that semanticidentity relation is not present, then it is possible to construct a Henkin model, where Leibniz equality is non-extensional.7In case the extensionality axioms are not available in the search space. Note that one can add extensionalityaxioms to the calculus in order to achieve, at least in theory, Henkin completeness. But this heavily increases thesearch space and thus is not feasible in practice.

2.2 Notions of Models for HOL 5

STMqb = H Mfb rbMqrq Mf MbrfM rc;r:;r_; r̂ ;r8;r9;r��-Comptotalf fqq q bbb q
full

Figure 1: The landscape of Higher-Order Semanticsin the former example is that the higher-order uni�cation algorithm employed by Tps cannotdetermine that A and ::A denote identical semantic objects (by the extensionality principle ontruth values), and thus returns failure instead of success. In the second example in addition tothis the principle of functional extensionality is needed in order to prove the theorem.The lack of completeness of refutation procedures like Tps occurs especially in these situations,where HOL-formulae contain occurrences of propositional formulae dominated by uninterpretedconstants or variables or where this problem is mixed with the problem of functional extensionality;in our examples the function constant c dominates the proposition Ao or the sets A�!o andB�!o. To give a semantical characterization of the deductive power of the Tps procedure, wehave to generalize the class of Henkin models further, so that there are counter-models to theexamples above. Obviously, this involves weakening the assumption that Do � fT; Fg (we call thisassumption for Henkin models property b), since this entails that the values of A and ::A areidentical: In functional �-models (Mf;Mfb;Mq, cf. De�nitions 3.28 and 3.24) we only insistthat there is a valuation � of Do, i.e. a function �:Do ! fT; Fg that is coordinated with thefunctions I(:), I(^), I(��) and (possibly) I(=�). Thus we have a notion of validity for �: wecall a proposition A valid inM := (D; I; �) under an assignment ', i� �(I'(A)) � T. In our �rstexample, there is a �-model structure M � (D; I; �), where I'(A) 6� I'(::A) and thereforeI'(cA) 6� I'(c(::A)), if we take I(c) to be the identity function on D�. In particular, wecan have �(I'(cA)) 6� �(I'(c(::A))), and therefore �(I'(cAo ^ :c(::A))) � T, since � is avaluation.Clearly, for functional �-models we have the same choices about the role of equality, therefore,we distinguish the classes Mf and Mq of functional �-models without/with property q. Further-more, we have the classMfb of functional �-models with (only) property b, i.e. where Do � fT; Fg.

6 2 INFORMAL EXPOSITIONSince functional �-models with properties b and q are de�ned to be �-Henkin models, we can alsoview Mfb as \Henkin models without property q".Finally, we even drop the requirement of functional extensionality for �-models (cf. De�-nition 3.24). This is the most general semantical notion that we will discuss in this paper; weonly insist that the evaluation function is a homomorphism which respects instantiation. In suchmodels, a function is not uniquely determined by it's behavior on all possible arguments, thereforefor the construction of such models we need labelings for functions (e.g. a green and a red versionof a function f) that allow to discern them, even though they are functionally equivalent. As donefor functional �-models, we analyze properties q and b for non-functional �-Models. Whereas bindeed may or may not hold for non-functional �-Models, it turns out that property q impliesfunctionality and hence there are no non-functional�-Models with property q.Peter Andrews has pioneered the construction of non-functional models with his �-complexesin [And71]. These are even more general constructions than our �-models, since totality ofthe evaluation function is not assumed. His construction is based on Sch�utte's semi-valuationmethod [Sch60], which only needs partial valuations to construct a model for a given Hintikka set.In this paper, we concentrate on the other aspects of higher-order models and ensure totality ofour evaluation functions by a saturation condition (cf. 4.9) in our abstract consistency classes. Thisdoes not restrict the applicability of our model existence theorems, since saturation is relativelysimple to prove for a given calculus (see [Koh98, BK97]). For all of the notions of models (exceptnaturally for standard models, where such a theorem cannot hold), we present model existencetheorems tying the di�erentiating conditions of the models to suitable conditions in the abstractconsistency classes (see section 4.4). We can use the classical construction in all cases: abstractconsistent sets are extended to Hintikka sets (see section 4.2), which induce a valuation on aterm structure (see De�nition 3.14). In some cases, we have to pass to a quotient structure (seeDe�nition 3.12) to ensure that the set of truth values is exactly fT; Fg for property b.The simplest way to ensure property q is by assuming that the signature contains a primitivelogical constant for equality, which is evaluated as semantical identity (we call this property e).We will study the case in section 4.3. On the one hand, the semantical situation becomes simpler(see �gure 2), since M, Mf and Mq are identi�ed, just as Mb, Mfb and H. On the other hand, theexistence of another logical constant induces further conditions in the de�nition of the abstractconsistency classes.Finally in section 4.5 we re�ne our methods further by parameterizing them with a type orderk and by requiring the function universes with an order greater than k to be full, i.e. to containall functions. With this modi�ed semantical notions it is possible to restrict the conditions in theabstract consistency classes with respect to the order k. Concretely, the possible instantions ofuniversally quanti�ed formulas can be restricted to terms with an order less or equal to k. Withthis result it becomes possible to show that the primitive substitution rule in the refutation calculias discussed in [And71] or [BK97, Koh98] can be restricted with respect to the order of the inputproblems without loosing completeness.2.3 ApplicationsApplications of the results presented in this paper, not only comprise automated theorem proving,where calculus development up to now has been guided by Andrew's \Unifying Principle forType Theory" [And71]. This model existence theorem has set the completeness standard forhigher-order calculi such as [Hue73, ALCMP84], even though it is weaker than the intuitive onegiven by Henkin Models. The semantical notions in section 3 come from the attempt to achievecompleteness with respect to Henkin models for higher-order tableaux [Koh95, Koh98] and higher-order resolution [Koh94a, Ben97, BK97].A model existence theorem for a logical system L is a theorem of the form: If a set of sentences� in L is a member of an abstract consistency class �, then there exists a L-model for �. Thusif we want to show the completeness of a particular calculus C, we �rst prove that the class �of sets of sentences � that are C-consistent (cannot be refuted in C) is an abstract consistencyclass, then the model existence theorem tells us that C-consistent sets of sentences are satis�able

7in L. Now we assume that a sentence A is valid in L, so :A does not have a L-model andis therefore C-inconsistent. From this it is easy to verify that A is a theorem of C. Note thatwith this argumentation the completeness proof for C condenses to verifying that � is an abstractconsistency class, a task that does not refer to L-models. Thus the usefulness of model existencetheorems derives from the fact that it replaces the model-theoretic analysis in completeness proofswith the veri�cation of some proof-theoretic conditions (membership in �). In this respect a modelexistence theorem is similar to a Herbrand Theorem, but it is easier to generalize to other logicsystems like higher-order logic. The technique was developed for �rst-order logic by J. Hintikkaand R. Smullyan [Hin55, Smu63, Smu68].Another application of model existence theorems is that they allow for very simple (but non-constructive) proofs of cut-elimination theorems. In [And71] Peter Andrews applies his \UnifyingPrinciple" to cut-elimination in a non-extensional sequent calculus, by proving the calculus com-plete (relative to T) both with and without the cut rule and concludes that cut-elimination isvalid for this calculus. In the extensional case, where a cut-elimination theorem can be foundin [Tak68, Tak87], we can directly model a cut-elimination proof after Andrews' approach, usingthe model existence theorem for Henkin models.A related application lies in proof transformation for higher-order logics [Mil83, Pfe87]. Here,proofs found by higher-order automated theorem provers can be transformed into other calculi,such as natural deduction- or sequent calculi that form the basis of tactic-based theorem proversfor classical logics like Isabelle [Pau94] or
mega [BCF+97]. Dale Miller's original proof trans-formation system for Tps' [Mil83], uses Andrews' \Unifying principle" and only works for non-extensional calculi like higher-order matings. Frank Pfenning's later extensions (by equality andextensionality) build on various cut-elimination theorems. Again, the methods developed in thispaper can shed some light on the situation.In all these applications, the leverage added by this paper is that we can now extend non-extensional results to extensional cases. However, the generalized model classes have a merit oftheir own, for instance in higher-order logic programming [NM94], where the denotational seman-tics of programs can induce non-standard meanings for the classical connectives. For instance,given a SLD-like search strategy as in �-PROLOG [Mil91], conjunction is not commutative anymore. Therefore, various authors have proposed model-theoretic semantics, where property b fails.For instance David Wolfram uses Andrew's �-complexes [Wol94] as a semantics for �-PROLOGand Gopalan Nadathur uses \labelled structures" for the same purpose in [NM94]. It is plausibleto assume that the results of this paper will be useful for further development in this direction.3 Semantics for Higher Order LogicIn this section we will introduce the semantical constructions and discuss their relationships. Wewill start out with by de�ning �-structures (and as an intermediate step pre-�-structures) asalgebraic semantics for the simply typed �-calculus and then specializing them to various notionsof models by requiring a special treatment of propositional formulae.3.1 Pre-�-StructuresDe�nition 3.1 (Pre-�-Structure). A collection D := DT := fD� �� � 2 T g of sets D�, indexedby the set T of types, is called a typed collection (of sets). Let DT and ET be typed collections,then a collection I := fI�:D� ! E� �� � 2 T g of mappings is called a typed mapping I:DT �!ET . indexpre-�-structure We call the triple A := (D;@; I) a pre-�-structure, i� D = DT , isa typed collection of sets and@ := f@��:D�!� �D� �! D� �� �; � 2 T gand I: � �! D are typed total functions.The collection D is called the frame of A, the set D� the universe of type �, the function@ the application operator, and the function I the interpretation of constants.

8 3 SEMANTICS FOR HIGHER ORDER LOGICWe call a pre-�-structure A := (D;@; I) functional, i� the following statement holds for allf; g 2 D�!� : f � g, if for all a 2 D� f@a � g@a. Note that functionality only poses a restrictionon the function universes.Remark 3.2. The application operator @ in a pre-�-structure is an abstract version of functionapplication. It is no restriction to exclusively use a binary application operator, which correspondsto unary function application, since we can de�ne higher-arity application operators from thebinary one by setting (\Currying")f@(a1; : : : ; an) := (: : : (f@a1) : : :@an)Example 3.3. If we de�ne A@B := (AB) for A 2 w��(�) and B 2 w��(�), then @:w��!�(�)�w��(�) �! w��(�) is a total function. Thus (w�(�);@; Id�) is a pre-�-structure. The in-tuition behind this example is that we can think of the formula A 2 w��!�(�) as a functionA:w��(�) �! w��(�) ; B 7! (AB).Analogously, we can de�ne the pre-�-structure (cw�(�);@; Id�) of closed formulae.Example 3.4. The following are (trivial) examples for functional pre-�-structures:1. (; � T ; ;; ;) is the empty pre-�-structure and2. (fag � T ;@a; Ia), where a@aa � a and Ia(c) � a for all constants c 2 � is called thesingleton pre-�-structure.De�nition 3.5 (�-Homomorphism). Let A := (D;@A; I) and B := (E ;@B;J) be pre-�-structures. A �-homomorphism is a typed function �:D �! E such that1. � � I � J .2. For all f 2 D�!� and g 2 D� we have: �(f)@B�(g) � �(f@Ag).The most important method for constructing �-structures with given properties in this paperis well-known for algebraic structures and consists in building a suitable �-Congruence and passingto the quotient structure. We will now develop the formal basis for it.De�nition 3.6 (�-Congruence). Let A := (D;@; I) be a pre-�-structure, then a typed equiv-alence relation � is called a �-congruence on A, i� f � f 0 2 D�!� and g � g0 2 D� implyf@g � f 0@g0.It is called functional, i� for all types �; � and all f; g 2 D�!� the fact that f@a � g@a forall a 2 D� implies f � g. Note that, since � is a congruence, we also have the other direction sowe have f@a � g@a for all a 2 D� ; i� f � gLemma 3.7. The � and �� equality relations �$� and �$�� are congruences on the pre-�-structures w�(�) and cw�(�) by de�nition. Moreover, ��-equality is functional w�(�) andcw�(�).Proof: The congruence properties are a direct consequence of the fact that �� reduction rulesare de�ned to act on sub-term positions. We will establish functionality of �$�� on w�(�) �rstand then use this to obtain the assertion for closed formulae.Let A
!�C
 �$�� B
!�C for all C, then in particular, for any variable X 2 V
 that isnot free in A or B, we have AX �$�� BX and �XAX �$�� �XBX . By de�nition we haveA �$� �X�AX �$�� �X�BX �$� B.To show functionality of �� on closed formulae, let A;B 2 cw��!�(�), such that A 6 �$�� B.Since �� is functional on w�(�), there must be a formula C with AC 6 �$�� BC. Now let C0be a ground instance of C, i.e. C0 = �(C), where � is a closed substitution8, then we haveAC0 6 �$�� BC0. Thus we have shown that A 6 �$�� B entails AC0 6 �$�� BC0, which gives us theassertion.8This has to exist, since we have assumed all types to be non-empty.

3.2 �-Structures 9De�nition 3.8 (Quotient Pre-�-Structure). Let A := (D;@; I) be a pre-�-structure, D�� :=f[[f]] �� f 2 D�g, and I�(c�) := [[I(c�)]] for all constants c� 2 ��. Furthermore let @� be de�nedby [[f]]@�[[a]] := [[f@a]]. To see that this de�nition only depends only on equivalence classes of �,consider f 0 2 [[f]] and g0 2 [[g]], then [[f@g]] � [[f 0@g]] � [[f 0@g0]] � [[f@g0]]. So @� is well-de�ned andtotal, thus A=� := (D�;@�; I�) is also a pre-�-structure. We call A=� the quotient structure ofA for the relation � and the typed function ��:A �! A=�; f 7! [[f]] its canonical projection.This de�nition is justi�ed by the following theorem.Theorem 3.9. Let A be a pre-�-structure and let � be an �-congruence on A, then the canonicalprojection �� is a surjective �-homomorphism. Furthermore, A=� is functional, i� � is functional.Proof: Let A := (D;@; I) be a pre-�-structure. To convince ourselves that �� is indeeda surjective �-homomorphism, we note that by de�nition �� is surjective and I� � �� � I.Now let f 2 D�!�, and g 2 Dom(f) � D� , then g0 2 [[g]] for all g0 2 Dom(f) and therefore[[g]] � ��(g) 2 Dom([[f]]) � Dom(��(f)) and ��(f)@���(g) � [[f]]@�[[g]] � [[f@g]] � ��(f@g).The quotient construction trivializes � to (meta-)equality, so functionality of � is equivalentto functionality of A. Formally we have [[f]] � [[g]], i� f � g, i� f@a � g@a, i� [[f@a]] � [[g@a]], i�[[f]]@�[[a]] � [[g]]@�[[a]] for all a 2 D� and thus for all [[a]] 2 D�� .3.2 �-Structures�-structures are pre-�-structures with a notion of evaluation for w�(�).De�nition 3.10 (�-Structure). Let A := (D;@; I) be a pre-�-structure. A typed function':V �! D is called an assignment into A. We call a total typed mapping9 E :F(V ;D) �w�(�) �! D an evaluation function for A, i� for any assignment ' into A, we have1. E'��� � I and E'��V � '2. E' is a �-homomorphism3. E'(A) � E (A), whenever ' and coincide on Free(A)4. E'([B=X]A) � E';[E'(B)=X](A)We call A := (D;@; E) �-structure, i� (D;@; I) is a pre-�-structure and E is an evaluationfunction for A. We call E'(A�) 2 D� denotation of A� in A for '.If A is a closed formula, then E'(A) is independent of ', since Free(A) = ;. In these caseswe sometimes drop the reference from E'(A) and simply write E(A).Example 3.11. The pre-�-structure T � ; cannot be a �-structure, since we must haveE'(�X�X) 2 D�!�. In contrast to this, the singleton pre-�-structure is a �-structure if wetake E(A) � a, where a is the (unique) member of D�.For a detailed discussion on the closure conditions needed for the function universes to be richenough, we refer the reader to [And72a, And73].Note that the pre-�-structure w�(�) from 3.3 cannot be made into a �-structure by provid-ing an evaluation function, since there is no formula C � I'(�X�B) 2 w��!�(�) such thatC@A � CA � I';[A=X](B). In particular, the \obvious" choice �X�B for C does not work,since (�X�B)A 6� I';[A=X](B). In fact, if w�(�) were a �-structure, �-equality would have tobe valid in w�(�) (cf. 3.17), which it clearly is not.De�nition 3.12 (Quotient �-Structure). Let A = (D;@; E) be a �-structure, � a �-congruence onA and let A=� = (D�;@�; I�) be the quotient pre-�-structure ofA, where I = E���.For any assignment A=�, there exists an assignment ' into A such that � �� �', since ��is a surjective �-homomorphism. So we can de�ne E�' as �� � E , and call A=� := (D�;@�; E�)the quotient �-structure of A modulo �.Theorem 3.13. Let A be a �-structure and � a �-congruence on A, then A=� is a �-structure.9We write F(V;D) for the set of functions f :V ! D

10 3 SEMANTICS FOR HIGHER ORDER LOGICProof: We prove that E� is a legal value function by verifying the conditions in 3.10: Let 'and be assignments, such that � �� � ', then1. E�' ��� � (�� � E)��� � �� � E ��� � �� � I � I� andE�' ��V � (�� � E)��V � �� � E ��V � �� � � '2. E�' � �� � E is a �-homomorphism, since �� and E are.3. E�' (A) � [[E (A)]] � [[E 0(A)]] � E�'0(A), i� ' and '0 coincide on Free(A), since this entailsthat and 0 do too.4. E�' ([B=X]A) � [[E ([B=X]A)]] � [[E ;[E (B)=X](A)]] � E�';[E�' (B)=X](A), since [[E (B)]] �E�' (B) and therefore �� � ; [E (B)=X] � '; [E�' (B)=X]De�nition 3.14 (Term Structures for �). Let cw�(�)#� be the collection of well-formed for-mulae in �-normal form and A@�B be the �-normal form of AB. For the de�nition of anevaluation function let ' be an assignment into cw�(�)#� . Note that � := '��Free(A) is a substi-tution, since Free(A) is �nite. Thus we can choose E�'(A) := �(A)#� , where A#� is the �-normalform of A. We call TS(�)� := (cw�(�)#� ;@�; E�) the �-term structure for �.Analogously, we can de�ne TS(�)�� := (cw�(�)#�� ;@��; E��) the ��-term structure for �.The name \term structure" in the previous de�nition is justi�ed by the following lemma.Lemma 3.15. TS(�)� is �-structure and TS(�)�� is a functional �-structure.Proof: Note that constants are �-normal forms, therefore TS(�)� is the quotient structureof cw�(�) for the congruence �$� . As we have remarked in 3.11, w�(�) is not a �-structure,so we cannot use 3.13, but have to convince ourselves directly that TS(�)� is a �-structure byverifying the conditions of 3.10. The �rst three are direct consequences of the de�nition of E� assubstitution application.1. E�'��� � I� = Id� and E�'��V � '2. E�' is a �-homomorphism3. E�'(A) � �(A) � �0(A) � E'0(A), i� ' and '0 coincide on Free(A)4. E'([B=X]A) � �([B=X]A) � [�(B)=X](�0(A)) � �; [�(B)=X]A � E�';[E�'(B)=X](A), where�0 is �; [X=X].Since �$�� is a sub-relation of �$�, an analogous argumentation shows that TS(�)�� is a �-structure. Furthermore, �$�� is a functional �-congruence on w�(�) (cf. 3.7), so we know by 3.9that TS(�)�� is functional.Remark 3.16. Note that TS(�)� is not a functional �-structure since e.g. (�X
 Y
!�X)@�C
 �Y@�C for all C in TS
(�)� but �X Y X 6� Y .In a general �-structure A := (D;@; E) constants are given a meaning by the interpretationfunction I: � ! D, and variables get their meaning by assignments ':V ! D. Furthermore, theevaluation function has to respect instantiation like in �rst-order logic. This is enough to ensuresoundness of �-equality. We do not have to show soundness of �-equality, since this is trivial aswe have assumed alphabetic variants to be identical.Lemma 3.17 (Soundness of �-equality). Let A := (D;@; E) be a �-structure and ' an as-signment into A, then E'((�XA)B) � E'([B=X]A) provided that X not bound in A.Proof: By the de�nition of �-structures, we have E'((�X A)B) � E'(�XA)@E'(B) �E';[E'(B)=X](A) � E'([B=X]A)

3.3 Functional �-structures 113.3 Functional �-structuresFor functional �-structures, there is another way to de�ne evaluation: Since well-formed formulaeare inductively built up from constants and variables we can extend ' and I to a �-homomorphismon well-formed formulae.De�nition 3.18 (Homomorphic Extension). Let A := (D;@; I) be a functional pre-�-structure and let ' be an assignment into A. Then the homomorphic extension I' of 'to w�(�) is inductively de�ned to be a typed partial function I':w�(�) �! D such that1. I'(X) � '(X), if X is a variable,2. I'(c) � I(c), if c is a constant,3. I'(AB) � I'(A)@I'(B),4. I'(�X�B�) is the function in D�!� such that I'(�X�B)@z := I';[z=X](B). Note thatthis function is unique, since we have assumed A to be functional.Note that we have to assume that the universes of functions D�!� are rich enough to contain avalue for all A�!� 2 w��!�(�) for this construction to yield a total function.Lemma 3.19. Let A := (D;@; I) be a functional pre-�-structure, then E :' 7! I' is an evaluationfunction for A.Proof: To prove the assertion, we have to show the conditions of 3.10. The �rst one is triviallymet by construction, the second is a direct consequence of the fact that I' � Id� � I � Id� � I on�. For the third condition, we prove that the value of a function only depends on its free variablesby induction on the structure ofA. The only interesting case is the one, whereA is an abstraction,since the assertion is trivial for constants and variables, and a simple consequence of the inductivehypothesis for applications. So let A := (�X B), then I'(A)@a � I';[a=X](B) � I ;[a=X](B) �I (A)@a by inductive hypothesis, since '; [a=X] and ; [a=X] coincide on the free variables of B.Thus we obtain the assertion from the de�nition of I'.Finally, we prove the fourth condition by induction on the structure of A. If A is a constantor variable, then the assertion is trivial. The case where A is the application CD is entailed bythe fact, that substitution and homomorphic extension are de�ned inductively on the structure ofapplications: We haveI'([B=X]CD) � I'([B=X]C)@I'([B=X]D)� I';[I'(B)=X](C)@I';[I'(B)=X](D)� I';[I'(B)=X](CD)If A � (�Y D) and � '; [a=Y], thenI'([B=X]A)@a � I'(�Y [B=X]D)@a � I ([B=X]D) � I ;[I (B)=X](D)by inductive hypothesis. Note that and ' coincide on the free variables of A, therefore by thethird condition, which we have proven above, we have I ;[I'(B)=X](D) � I';[I'(B)=X](�Y D)@a,which implies the assertion, since A is functional.In fact, for functional �-structures, the two notions of evaluation coincide, as we shall see inthe next lemma.Lemma 3.20 (Evaluation in functional �-Structures). If A := (D;@; E) is a functional �-structure, then E' � I' for any assignment ' into A.Proof: Let A 2 w�(�), we prove the assertion by induction over the size of A. The assertionis trivial, if A is a constant or variable and a simple consequence of the inductive hypothesis, ifA is an application. So let A := (�X B), furthermore let Y be a variable not in Free(A) and := '; [a=Y]. ThenE'(A)@a � E (A)@a � E'(A)@E (Y) � E (AY) � E ([Y=X]B)

12 3 SEMANTICS FOR HIGHER ORDER LOGICsince �-equality is sound in �-structures. Now [Y=X]B is smaller than A, so we can use theinductive hypothesis to obtainE'(A)@a � I ([Y=X]B) � I (AY) � I'(A)@I (Y) � I'(A)@awhich entails the assertion since A is functional.Lemma 3.21. Let A := (D;@; E) be a functional �-structure and X be a variable that is not freein A, then E'(�X AX) � E'(A) for all assignments ' into A.Proof: With 3.10.3 and the fact that X is not free in A we haveE'(�XAX)@a � E';[a=X](A)@E';[a=X](X) � E'(A)@awhich implies the assertion E'(�XAX) � E'(A), as A is functional.We now specialize the notion of �-structures to the standard general model semantics for �!.De�nition 3.22 (�-Algebra). A pre-�-algebra A := (D; I) is a pre-�-structure (D;@; I) suchthat D�!� � F(D�;D�) and f@a � f(a). A pre-�-algebra is called full, i� D�!� � F(D�;D�).We call a pre-�-algebra an �-algebra, i� it is a �-structure.Remark 3.23. Note that pre-�-algebras are functional, since they are de�ned as structures ofmathematical functions. On the other hand, for any functional �-structure A, we can de�ne anisomorphic �-algebra A0Proof: For a functional �-structure A = (D;@; I) we de�ne a �-algebra A0 = (D0; I 0) and abijective �-homomorphism �:A �! A0 by an induction on the type:� D0� := D� for all � 2 BT and � = IdD; obviously � is bijective.� D0�!� := �(D�!�) and �(f) = �� (@f)���1 for f 2 D�!� . Note that with this construction� is a homomorphism, since�(f)(�(a)) = �(f@(��1(�(a)))) = �(f@a)� is surjective by construction and injective, since A is functional: If f 6= g 2 D�!� , thenthere is an a 2 D�, such that f(a) 6= g(a), in particular, we have�(f(a)) = �(f)@�(a) 6= �(f)@�(a) = �(g(a))since � is injective on D� . Thus and therefore �(f) 6= �(g), since �(f); �(g) 2 F(D�;D�)Now, we only have to choose I 0 := � � I to complete the construction of A0.As a consequence, we can always consider functional �-structures as �-algebras.3.4 �-ModelsUp to now, the semantical notions introduced were totally independent of the set of base typesassumed. Now, we specialize these to obtain a notion of models by requiring specialized behavioron the type o of truth values. For this we use the notion of a �-valuation, which intuitively gives atruth-value interpretation to the domain Do of a �-structure, which is consistent with the intuitiveinterpretations of the logical constants. Since models are semantic entities that are constructedto make statements about truth and falsity of formulae, the requirement that there exists a �-valuation is perhaps the most general condition under which one wants to speak of a model. Thuswe will de�ne our most general notion of semantics as �-structures that have �-valuations.De�nition 3.24 (�-Model). Let A := (D;@; E) be a �-structure, then a surjective total func-tion �:Do �! fT; Fg such that1. �(E(:)@a) � T, i� �(a) � F,2. �(E(_)@a@b) � T, i� �(a) � T or �(b) � T,

3.4 �-Models 133. �(E(��)@f) � T, i� �(f@a) � T for each a 2 D�is called a �-valuation for A and M := (D;@; E ; �) is called a �-model (M).We say that an assignment ' satis�es a formulaA 2 w�o(�) inM (M j=' A), i� �(E'(A)) �T and that A is valid in M, i� M j=' A for all assignments '. Finally, we say that M is a�-model for a set H � w�o(�) (M j= H) i� M satis�es all A 2 H .Lemma 3.25 (Truth and Falsity in �-models). Let M := (D;@; E ; �) be a �-model and 'an assignment. Furthermore let To := Ao _ :(Ao) for some Ao 2 w�o and let Fo := :To. Then�(E'(To)) � T and �(E'(Fo)) � F.Proof: We have �(E'(To)) � T i� �(E'(Ao _ :(Ao))) � T. Evaluation shows that thisstatement is equivalent to �(E'(A)) � T or �(E'(A)) � F, which is valid since ' : Vo ! Do and� : Do ! fT; Fg are total functions.Note further that �(E'(Fo)) � F evaluates to �(E'(To)) � T which we already know.Remark 3.26. Note that we only constrain the functional behavior of the values of the logicalconstants. In particular this does not fully specify these values, since� M need not be functional� there can be more than two truth values.De�nition 3.27 (Properties f, q and b). Given a �-model M = (D;@; E ; �), we say that Mhas propertyf i� M is functional.q i� for all � 2 T there is a function q� 2 D�!�!o, such that for all a; b 2 D� holds�(q�@a@b) � T i� a � b.b i� Do has at most two elements. Note that Do must always have at least the two elementsE'(To) and E'(Fo) by Lemma 3.25, so we can assume without loss of generality thatDo � fE'(Fo) � F; E'(To) � Tg and that � is the identity functionDe�nition 3.28 (Specialized �-model Classes). We de�ne special classes of �-models de-pending on the validity of the properties f, q and b. Thus we obtain Mq;Mb;Mf;Mfb by requiringthat the properties speci�ed in the index are valid.Remark 3.29. We do not introduce Mfq, as we will see later (Lemma 3.37) that q implies f andhence that Mq =Mfq.As Peter Andrews has noted in [And72a], Leon Henkin unintendedly introducedMfb in [Hen50]instead of Henkin models in the sense below. A Mfb does not necessarily have property q and asAndrews has shown in [And72a], a consequence is, that a Mfb may lack the principle of functionalextensionality EXT�!�L , which he corrected by introducing property q.De�nition 3.30 (�-Henkin models). A functional �-model is called a �-Henkin model(H :=Mqb), i� it has properties q and b. If furthermore, all domains D�!� are full then wecall H a �-standard model (ST).Now let us extend the notion of a quotient structure to �-models.De�nition 3.31 (Quotient �-model). Let M := (D;@; E ; �) be a �-model, � a congruenceon the corresponding �-structure A := (D;@; E), and A=� be the quotient �-structure ofA := (D;@; E) modulo � as de�ned in 3.12.If �(A) � �(B) for all A;B 2 w�o(�) with A � B, then � is called a congruence for M.Then M=� := (D�;@�; E�; ��) is called the quotient �-model of M modulo �, if ��([[a]]) ��(a) for all a 2 Do.Remark 3.32. Note the importance of the additional requirement for functional congruence rela-tions stated in 3.31. Without this requirement the quotient �-models are not well-de�ned.

14 3 SEMANTICS FOR HIGHER ORDER LOGICLemma 3.33. Let M be a �-model and � be a congruence for M, then M=� j=' H � w�o(�),i� M j=' H.Proof: Let Ao 2 H . We have ��(E�' (Ao)) � ��([[E'(Ao)]]) � �(E'(Ao)) � T since M j= H .3.5 Leibniz EqualityDe�nition 3.34 (Full Extensionality). We call the following formula schemataEXT�!�L := 8F�!� 8G�!�(8X� FX := GX)) F :=� GEXToL := 8Ao 8Bo (A, B), A :=o Bthe axioms of full extensionality for Leibniz equality; we refer to the �rst as axiom offunctional extensionality and to the latter formula as the extensionality axiom for truthvalues. Note that EXT�!�L speci�es functionality of the relation denoted by the Leibniz formula:=. We will use the terms functionality and extensionality interchangeably.Lemma 3.35 (Leibniz Equality in �-models). Let M := (D;@; E ; �) be a �-model and ' bean assignment.1. If E'(A) � E'(B), then �(E'(A :=� B) � T.2. If M is a Mb and �(E'(A :=o B)) � T, then E'(A) � E'(B).3. If M is a Mq and �(E'(A :=� B)) � T, then E'(A) � E'(B).Proof: Let a; b 2 D� and := '; [a=X]; [b=Y].1. We show that �(E'(Q�)@a@b) � T if a � b, which entails the assertion. By de�nitionE'(Q�) � E'(�X �Y 8P PX) PY) and thus E'(Q�)@a@b � E (8P PX) PY). Nowlet r 2 D�!o, then �(E ;[r=P](PX)) � r@a � F or �(E ;[r=P](PY)) � r@b � r@a � T, since� is total and a � b. So we see that �(E'(Q)@a@b) � �(E ;[r=P](PX) PY)) � T for allr 2 D�!o, which yields the assertion.2. First note that by property b we have Do � fT; Fg and � is the identity function on Do.Let us assume that �(E'(A :=o B)) � E (8P PA) PB) � T but E'(A) 6� E'(B),which means that either E'(A) � T and E'(B) � F or vice a versa. In the �rst case wechoose a predicate r := E'(�XoXo) and get from the �rst assumption that E';[r=P](PA) �E';[r=P](A) � E'(A) � F or E';[r=P](PB) � E';[r=P](B) � E'(B) � T, which gives us thecontradiction. Note that P does not occur free in A or B by de�nition of :=.The second case is analogous with r := E'(�Xo :Xo).3. We show that if �(E'(Q�)@a@b) � T then a � b, which entails the assertion. Sup-pose a 6� b 2 D� and r � q�@a where q� 2 D�!�!o is the function guaranteedby property q. We know that q�@a@a � T and q�@a@b � F, since a 6� b by as-sumption. Hence �(E'(Q�)@a@b) � �(E (8P PX) PY) � F for := '; [a=X]; [b=Y],since �(E ;[r=P](PX) PY)) � F, as �(E ;[r=P](PX)) � q�@a@a � r@a � T and�(E ;[r=P](PY)) � q�@a@b � r@b � F.Lemma 3.36 (Extensionality in �-models).1. There exists a M which is not functional.2. There exists a Mfb for which EXT�!�L is not valid.3. There exists a Mq for which EXToL is not valid.4. EXT�!�L is valid in M, if M is a Mq.5. EXToL is valid in M, if M is a Mb.As a consequence the following table characterizes the di�erent properties of the introduced se-mantical structures. If a formula is valid for a certain semantical structure we use a `+' anda `�' otherwise. Each entry is further marked with a justi�cation referring to one of the abovestatements.

3.5 Leibniz Equality 15valid in M/Mf Mq Mb/Mfb MqbEXT�!�L �(2) +(4) �(2) +(4)EXToL �(3) �(3) +(5) +(5)Proof: For the proof of 1. note that �-models need not to be functional (see also remark 3.26).In the model existence theorem 4.28(AccM) we will later explicitly constructs a functional �-modelbased on the termstructure TS(�)� . For TS(�)� we already know by remark 3.16 that it is notfunctional.For the proof of 2. we refer to [And72a], where Andrews constructs a functional �-Model(actually a Mfb) which lacks the principle of functional extensionality of Leibnizequality.For 3. note that EXToL can only be valid if Do = fo; �g, which is not required for Mq's. For aconcrete example of a Mq which lacks EXToL see 4.28(AccMq).Next we consider 4.: Let := '; [f=F]; [g=G]. From V (8A� FA := GA) � T we get that forall a 2 D� V ;[a=A](FA := GA) � T. By lemma 3.35(3) we can conclude that E ;[a=A](FA) �E ;[a=A](GA) for all a 2 D� and hence E ;[a=A](F)@E ;[a=A](A) � E ;[a=A](G)@E ;[a=A](A). Theapplication of functionality leads to E (F) � E (G) which �nally gives us that V (F :=�!� G) � Twith lemma 3.35(1).And �nally in 5. +we have that for all a; b 2 Do and all assignments ' �(E';[a=A][b=B](A ,B)) � T, i� �(E';[a=A][b=B](A)) � �(E';[a=A][b=B](B)). From b we further know that � is the identityfunction and hence this statement is valid, i� E';[a=A][b=B](A) � E';[a=A][b=B](B) from which we getthe assertion by lemma 3.35(1).We are now in a good position to prove the assertion that property q implies property f statedin remark 3.29. Thus the next lemma shows that requiring property q automatically introduces fand hence there cannot be a distinction between Mq's and Mfq's.Lemma 3.37 (q implies f). Let M be a �-model with property q. Then M has property f.Proof: LetM = (D;@; E ; �) be aMq and let ' := ; [f=F]; [g=G] for an arbitrary assignment and arbitrary f; g 2 D�!� . We show that if for all a 2 D� holds that E';[a=X](FX) � E';[a=X](GX)then E'(F) � E'(G), which entails the assertion. From E';[a=X](FX) � E';[a=X](GX) for alla 2 D� we get with Lemma 3.35(1) that �(E';[a=X](FX := GX)) � T for all a 2 D� and hencethat �(E'(8X� FX := GX)) � T. We can apply EXT�!�L , which is valid in M by 3.36(4), andthus we get that �(E'(F := G)) � T. Now the conclusion follows by Lemma 3.35(3).Next we discuss the role of Leibniz equality within the di�erent semantic structures.Theorem 3.38 (Properties of Leibniz Equality). Let M be a �-model. For all assignments' and all terms A;B;C 2 w��(�) and F;G 2 w��!�(�) we have:M E'(:=�) is an equivalence relation on D� with respect to �. In particular:re �(E'(A :=� A)) � T.sy If �(E'(A :=� B)) � T, then �(E'(B :=� A)) � T.tr If �(E'(A :=� B)) � T and �(E'(B :=� C)) � T, then �(E'(A :=� C)) � T.Mf If M is a Mf, then E'(:=�) is a congruence relation on D� with respect to �. In partic-ular: co If �(E'(A :=� B)) � T then �(E'(FA :=� FB)) � T.Mq If M is a Mq, then E'(:=�) is a functional congruence relation on D� with respect to �.In particular:fu �(E'(F :=�!� G)) � T if �(E'(FA :=� FA)) � T for all A 2 w��.Mqb If M is a H, then E'(:=�) is the equality relation on D�.Proof:M re: �(E'(A :=� A)) � T, i� for all p 2 D�!o we have �(E';[p=P](PA)) � F or�(E';[p=P](PA)) � T which is obvious since � is total and surjective.

16 3 SEMANTICS FOR HIGHER ORDER LOGIC

STeMeb = He rbMe rc;r:;r_; r̂ ;r8r9;r� ;rq;r=r ;r=c�-Comptotalbfull
Figure 2: The landscape of Higher-Order Semantics with primitive equalitysy: Suppose �(E'(A :=� B)) � T but �(E'(B :=� A)) � F. From the latter we getthat �(E';[p=P](PB)) � T and �(E';[p=P](PA)) � F for some p 2 D�!o. Without loss ofgenerality, let p := E'(V) for a fresh variable V 2 ��!o. From the former assumptionwe know that for all q 2 D�!o holds �(E';[q=P](PA)) � F or �(E';[q=P](PB)) � T andhence �(E';[E'(�X V X)=P](PA)) � F or �(E';[E'(�X VX)=P](PB)) � T which is equivalentwith �(E';[p=P](PA)) � T or �(E';[p=P](PB)) � F and contradicts the latter assumption.tr: Similar to sy.Mf co: Suppose �(E'(F :=�!� G)) � T but �(E'(FA :=� GA)) � F. From the latter we getthat �(E';[p=P](P (FA))) � T and �(E';[p=P](P (GA))) � F for some p 2 D�!o. Withoutloss of generality let p := E'(V) for a fresh variable V 2 V�!o. From the former assump-tion we know that for all q 2 D�!o holds �(E';[q=Q](QF)) � F or �(E';[q=Q](QG)) � Tand hence �(E';[E'(�X V (XA))=P](PF)) � F or �(E';[E'(�X V (XA))=P](PF)) � T which isequivalent with �(E';[p=P](P (FA))) � F or �(E';[p=P](P (GA))) � T and contradicts theformer assumption.Mq fu: A direct consequence of lemma 3.36(4).Mqb By property b we know that � is the identity relation on Do and thus we have that :=denotes a relation for which the principles re
exivity, symmetry, transitivity, congruenceand functionality hold. Hence := denotes the equality relation.3.6 Primitive EqualityThe situation of higher-order semantics becomes much simpler if we introduce equality as a prim-itive logical constant = in �, which we will assume for the rest of this section. Since = is logical,we have to specialize the notion of �-valuation (cf. 3.24) by requiring that �(E(=�)@a@b) � T, i�a � b. In this case, we call � a �-valuation with equality.Furthermore, we say that a �-model M has property e, i� for all a; b 2 D� we have�(E(=�)@a@b) � T, i� a � b.A (functional) �-model, which has property e is called a (functional) �-model with fullequality (Me) and a functional one with additional property b is called a �-Henkin modelwith full equality (Meb).Clearly, property e entails property q, since E(=�) is the function required in property q.And we already know that property q implies property f, it is easy to see that the landscape ofhigher-order semantics from �gure 1 collapses to one in �gure 2.

3.6 Primitive Equality 17The connection between property q and e is already discussed in [And72a]. Andrews concludesthat it seems natural to require the existence of logical connectives =� in the signature, if oneis interested in extensionality. In this paper we are especially interested to shed some light onboth: in extensionality of Leibniz equality in case =� =2 � and in extensionality of Leibniz equalityand/or primitive equality in case =�2 �.De�nition 3.39 (Extensionality). Analogous to the extensionality Axioms for Leibniz equality,we can de�ne such for primitive equality.EXT�!� := 8F�!� 8G�!�(8X� FX = GX)) F =� GEXTo := 8Ao 8Bo (A, B), A =o Bthe axioms of full extensionality for primitive equality.The following lemma shows that in a �-model with full equality the denotations of primitiveequations and corresponding Leibniz equations are identical modulo �.Lemma 3.40 (Primitive and Leibniz equality). If M := (D;@; E ; �) 2 Me, then �(E'(A =B)) � �(E'(A := B)) for all A;B 2 w�(�).Proof: By lemma 3.35(3) we have �(E'(A := B)) � T, i� E'(A) � E'(B), since Me �Mq. Byproperty e this is equivalent with �(E'(A = B)) � T.Lemma 3.41 (Extensionality in �-models with full equality).1. There exists a Me which is not functional.2. There exists a Me for which EXTo and EXToL are not valid.3. EXT�!� and EXT�!�L are valid in M, if M is a Me4. EXTo and EXTo is valid in M, if M is a Meb.Thus we can extend the table in Lemma 3.36 to the following one:valid in Me MebEXT�!�L ;EXT�!� + +EXToL;EXTo � +Proof:1. The argumentation is analogous to 3.36(1) and a concrete example of a non-functional Meis given in 4.28(Me).2. The argumentation is analogous to 3.36(2) and 3.36(3). A concrete example of a Me whichlacks EXToL and EXTo is provided by 4.28(Me).3. Note that the only crucial points in the proof of 3.36(4) are functionality, which is givenhere as well, and the application of lemmata 3.35(1) and 3.35(3). Since a Me is also a Mqboth lemmata are applicable here as well and thus for := we get the statement immediately.For = the statement can be proven analogously to 3.36(4) using property e instead of thelemmata 3.35(1) and 3.35(3).4. In the proof of 3.36(5) the only crucial parts are the usage of property b and lemma 3.35(1).Again for := there is nothing to show, since a Meb is also a Mfb. The statement for = canbe proven analogously with property e instead of lemma 3.35(1).Theorem 3.42. Let M 2 Me, then E'(:=�) and E'(=�) are equivalence relations on D� withrespect to � for all assignments '. If M is a Meb, then E'(:=�) = E'(=�) is the equality relationon D�.Proof: Note that for := the proofs are provided by lemma 3.38, sinceMe �Mq andMeb �Mqb.Thus it remains to verify the statements for =. Let M 2 Me, then re
exivity, symmetry andtransitivity follow from their :=-counterparts by lemma 3.40. Functionality is a direct consequenceof lemma 3.41(3) and co follows from the functionality of a Me together with property e.

18 4 MODEL EXISTENCE THEOREMSIfM2Meb, then the argumentation for both, := and =, is analogous to 3.41(Mqb): By propertyb we know that � is the identity relation on Do and thus we have that := and = denote relations forwhich the principles re
exivity, symmetry, transitivity, congruence and functionality hold. Henceboth, := and =, denote the equality relation, since the fact that therer are only two truth valuesdoes not leave any room for other relations with these properties.4 Model Existence TheoremsIn this section we introduce the model existence theorems for the di�erent semanticalnotions discussed in section 3. These theorems have the following form, where � 2fM;Mb;Mf;Mq;Mfb;MqbMe;Mebg:Theorem (Model Existence): For a given abstract consistency class Acc� and a setH 2 Acc� there is a �-model of H .The most important tools used in the proofs of the model existence theorems are the so-called�-Hintikka sets. These sets are maximal elements in abstract consistency classes, and allowcomputations that resemble those in the considered semantical structures (e.g. �-Henkin models).These allow to construct �-valuations for the term structures that turn those into �-models.The key step in the proof of the model existence theorems is an extension lemma, whichguarantees a �-Hintikka set H for any set H of sentences in ��. With this, the proofs for themodel existence theorems are uniform.4.1 Abstract ConsistencyLet us now review a few technicalities that we will need for the proofs of the model existencetheorems.De�nition 4.1 (Compactness). Let C be a class of sets.1. C is called closed under subsets, i� for all sets S and T the following condition holds: ifS � T and T 2 C, then S 2 C.2. C is called compact i� for every set S the following condition holds: S 2 C, i� every �nitesubset of S is a member of C.Lemma 4.2. If C is compact, then C is closed under subsets.Proof: Suppose S � T and T 2 C. Every �nite subset A of S is a �nite subset of T , and sinceC is compact, we know that A 2 C. Thus S 2 C.De�nition 4.3 (Su�ciently Pure). Let � be a signature and T be a set of �-sentences. T iscalled su�ciently �-pure, i� for each type � there is a set of constants P� � �� with equalcardinality to w��(�), such that the elements of P do not occur in T .We will always presuppose that sets of sets of sentences are su�ciently �-pure in order tohave enough witness constants. This can be obtained in practice by enriching the signature withspurious constants. Another way would be to use specially marked variables (which may never beinstantiated) as in [Koh94b].De�nition 4.4 (Properties for Abstract Consistency Classes). Let �� be a class of setsof �-sentences. We need the following conditions, where A;B 2 cw�o(�) and F;G 2cw��!�(�):10rc If A is atomic, then A =2 � or :A =2 �.r: If ::A 2 �, then � �A 2 ��.10In the following we will use ' �A as an abbreviation for ' [fAg.

4.1 Abstract Consistency 19r� If A 2 � and B is the �-normal form of A, then B �� 2 ��.rf If A 2 � and B is the ��-normal form of A, then B �� 2 ��.r_ If A _B 2 �, then � �A 2 �� or � �B 2 ��.r̂ If :(A _B) 2 �, then � [f:A;:Bg 2 ��.r8 If ��F 2 �, then � �FW 2 �� for each W 2 cw��(�).r9 If :��F 2 �, then � �:(Fw) 2 �� for any constant w 2 ��, which does not occur in �.rb If :(A :=o B) 2 �, then � [fA;:Bg 2 �� or � [f:A;Bg 2 ��.rq If :(F :=�!� G) 2 �, then � � :(Fw :=� Gw) 2 �� for any constant w 2 ��, whichdoes not occur in �.(Additional abstract consistency conditions for primitive equality will be introduced later in sec-tion 4.3.)Remark 4.5. Note that for the connectives _;�� there are two conditions { a positive and anegative one { given in the de�nition above, namely r_/r̂ for _ and r8/r9 for ��. For :=o and:=�!� the situation is di�erent, as we need only conditions for the negative cases. The positivecases can be inferred at level of Hintikka sets by expanding the Leibniz de�nition of equality (seethe proofs of rq0 in lemma 4.15 and rb0 in lemma 4.17).De�nition 4.6 (Abstract Consistency Classes). Let � be a signature �� be a class of setsof �-propositions. Using the properties from the previous de�nition we introduce the followingabstract consistency classes:AccM If rc;r:;r� ;r_; r̂ ;r8 and r9 are valid for ��, then �� is called an abstractconsistency class for �-models (AccM).Based upon this de�nition we introduce the following specialized abstract consistency classes:AccMb ;AccMf ;AccMq ;AccMfb ;AccMqb(= AccH), where we indicate by indices which additional prop-erties from frf;rq;rbg are required.Sometimes we do not want to di�erentiate between the particular notions above. In this caseswe simply speak of an abstract consistency class, with which we refer to an arbitrary but onein fAccM;AccMb ;AccMf ;AccMq ;AccMfb ;AccMqbg.Remark 4.7. Note that AccMf corresponds to the abstract consistency property discussed by An-drews in [And71]. The only (technical) di�erence is that Andrews does not consider �-conversionas built-into the logic but needs a condition similar to r� that requires �-standardized forms tobe abstract consistent.Lemma 4.8 (Non-atomic consistency). Let �� be an abstract consistency class and A 2cw�o(�), then for all � 2 �� we have A =2 � or :A =2 �.Proof: Let A 2 w�o(�) and � 2 ��, such that A 2 �. By r� , we can assume that A is a�-normal form. So we prove the assertion by an induction over the structure of A.If A is atomic, then we get the assertion immediately by rc. If A is not atomic, then its headmust be a logical constant, therefore we can proceed by a case-analysis over the connectives andquanti�ers.Suppose A has the form :B and f:B;::Bg � �. By r: we know that f:B;Bg [� 2 ��which contradicts the induction hypotheses. Now supposeA has the form B_C and fB_C;:(B_C)g � �. By r_, r̂ we know that fB _ C;:(B _ C);B;:B;:Cg [� 2 �� or fB _ C;:(B _C);C;:B;:Cg [� 2 ��. In both cases the contradiction is given by the induction hypotheses.Suppose A has the form �(�X B) and f�(�X B);:�(�X B)g � �. By r9, r8 and r� we knowthat f�(�Y B);:�(�Y B); [W=Y]B;:[W=Y]Bg [� 2 �� which contradicts again the inductionhypotheses.In contrast to [And71], we work with saturated abstract consistency classes in order to obtaintotal �-valuations, which makes the proofs of the model existence theorem much simpler and e.g.yield much more natural models.

20 4 MODEL EXISTENCE THEOREMSDe�nition 4.9 (Saturated). We call an abstract consistency class �� atomically saturated,i� for all � 2 �� and for all atomic sentences A 2 cw�o(�), we have � �A 2 �� or � � :A 2 ��.If this property holds for all sentences A 2 cw�o(�), then we call �� saturated.Remark 4.10. Clearly, not all abstract consistency classes are saturated, since the empty set isone that is not, even if � is empty.In the de�nition of abstract consistency class, we only had to require atomic consistency, i.e.that there are no atomic propositions that contradict each other in one abstract consistent set,to ensure consistency (see 4.8). The authors conjecture that a similar theorem can be proven forsaturatedness:Conjecture: Let �� be an atomic saturated abstract consistency class. Then thereexists an saturated abstract consistency class �0�, with �� is a subclass of �0�.Such a result would be of practical importance, as it allows to reduce the problem of provingsaturatedness of a given calculus to proving atomic saturatedness.Lemma 4.11. Let �� be a saturated abstract consistency class, � 2 �� and A an atomic sentence.Then � � (A _ :A) 2 ��.Proof: Since �� is saturated and � 2 ��, we must have � � (A_:A) 2 �� or � �:(A_:A) 2��. We prove the assertion by refuting the second alternative. If � � :(A _ :A) 2 ��, then� [f:(A _ :A);:A;::A;Ag 2 �� by r̂ and r:. Since A is an atomic sentence we get acontradiction with lemma 4.8.Lemma 4.12 (Compactness of abstract consistency classes). For each abstract consis-tency class �� exists an abstract consistency class �0� of the same type, such that �� � �0�, and�0� is compact. Furthermore �� is saturated, i� �0� is.Proof: (following and extending [And86], proposition no. 2506)We choose �0� := f� � cw�o(�) �� every �nite subset of � is in ��g. Now suppose that � 2 ��. ��is closed under subsets, so every �nite subset of � is in �� and thus � 2 �0�. Hence �� � �0�.Next let us show that each �0� is compact. Suppose � 2 �0� and 	 is an arbitrary �nite subsetof �. By de�nition of �0� all �nite subsets of � are in �� and therefore 	 2 �0�. Thus all �nitesubsets of � are in �0� whenever � is in �0�. On the other hand, suppose all �nite subsets of � arein �0�. Then by the de�nition of �0� the �nite subsets of � are also in ��, so � 2 �0�. Thus �0� iscompact.Next we show that if �� satis�es r�, then �0� satis�es r�, by considering the cases of de�ni-tion 4.6. First note that by lemma 4.2 we have that �0� is closed under subsets.rc Let � 2 �0� and suppose there is an atomA such that fA;:Ag � �. Then fA;:Ag 2 ��contradicting rc.r: Let � 2 �0�, ::A 2 �, 	 be any �nite subset of � �A and � := (n fAg) � ::A. � isa �nite subset of �, so � 2 ��. Since �� is an abstract consistency class and ::A 2 �,we get � �A 2 �� by r:. We know that 	 � � � A and �� is closed under subsets,so 	 2 ��. Thus every �nite subset 	 of � � A is in �� and therefore by de�nition� �A 2 �0�.r� ;rf;r_; r̂ ;r8;r9 Analogous to r:.rq Let � 2 �0�, :(F :=�!� G) 2 � and 	 be any �nite subset of � � :(FW := GW).We show that 	 2 ��. Clearly � := (n f:(FW := GW)g) � :(F := G) is a �nitesubset of � and therefore � 2 ��. Since �� satis�es rq and :(F := G) 2 �, we have� � :(FW := GW) 2 �� by rq. Furthermore, 	 � � � :(FW := GW) and �� is closedunder subsets, so 	 2 ��. Thus every �nite subset 	 of � � :(FW := GW) is in ��,therefore by de�nition we have � � :(FW := GW) 2 �0�.rb Let � 2 �0� with :(A := B) 2 � but �[fA;:Bg =2 � and �[f:A;Bg =2 �. Then thereexists �nite subsets �1 and �2 of � such that �1 � fA;:Bg =2 �� and �2 � f:A;Bg =2

4.2 Hintikka Sets 21��. Now we choose �3 := �1 [�2 � :(A := B). Obviously �3 is a �nite subset of� and therefore �3 2 ��. Since �� satis�es rb, we have that �3 [fA;:Bg 2 �� or�3 [f:A;Bg 2 ��. From this and the fact that extensional abstract consistency classesare closed under subsets we get that �1 [fA;:Bg 2 �� or �2 [f:A;Bg 2 ��, whichcontradicts our assumption.For the proof that �0� is saturated, let � 2 �0�, but neither � � A nor � � :A be in �0�. Thenthere are �nite subsets �+ and �� of � such that �+ �A =2 �� and �� � :A =2 �� (since all �nitesubsets of � are in ��). As 	 := �+ [�� is a �nite subset of �, we have 	 2 ��. Furthermore,	 �A 2 �� or 	 � :A 2 ��, because �� is saturated. �� is closed under subsets, so �+ �A 2 ��or �� � :A 2 ��. This is a contradiction, so we can conclude that if � 2 ��, then � �A 2 �0� or� � :A 2 �0�.4.2 Hintikka SetsNow, we de�ne Hintikka sets, which are maximal elements in an abstract consistency class. Hin-tikka sets connect syntax with semantics, as they provide the basis for the model constructions inthe model existence theorem 4.28.De�nition 4.13 (�-Hintikka Set). Let �� be an abstract consistency class, then a set H iscalled a �-Hintikka set for ��, i� it is maximal in ��, i.e. i� for each sentence D 2 cw�o(�)such that H �D 2 ��, we already have D 2 H.In the following we discuss properties of �-Hintikka sets. Since we have di�erent types ofabstract consistency classes, depending on the additional requirements f; q and b, we have todiscuss di�erent Hintikka lemmata.Theorem 4.14 (Hintikka Lemma for AccM). If �� is a saturated AccM and H is maximal in��, then the following statements hold for all A;B 2 cw�o(�), F 2 cw��!o(�) and C;D;E 2cw��(�):rca A =2 H or :A =2 H.rcb A 2 H, i� :A =2 H.rcc :A 2 H, i� A =2 H.r: (::A) 2 H, i� A 2 H.r� If A �$� B, then A 2 H, i� B 2 H.r_ (A _B) 2 H, i� A 2 H or B 2 H.r̂ :(A _B) 2 H, i� :A 2 H and :B 2 H.r8 ��F 2 H, i� for each D 2 cw��(�) we have FD 2 H.r9 :��F 2 H, i� there is a D 2 cw��(�) such that :FD 2 H.r:=r A :=� A 2 Hr:=c If F[C]p 2 H and C :=� D 2 H, then F[D]p 2 Hr:=sy C :=� D 2 H, i� D :=� C 2 Hr:=tr C :=� D 2 H and D :=� E 2 H, then C :=� E 2 Hrt (A _ :A) 2 H for any sentence A.Proof:rca By 4.8.rcb ,rcc Both are direct consequences of the saturation of �� and rca .r: If ::A 2 H, then H �A 2 �� by r:. The maximality of H now gives us that A 2 H.To obtain the converse, let us assume that A 2 H. Then by rcb we know that :A =2 Hand by rcc ::A 2 H.

22 4 MODEL EXISTENCE THEOREMSr� Suppose A �$� B. Since �-reduction is terminating and con
uent there is unique Csuch that C is the �-normal-form of A and B. Without loss of generality we show thatif A 2 H, then B 2 H. For that we suppose that A 2 H but B =2 H. From the latter weget by by rcc that :B 2 H. Note that the �-normal-form of A is C and of :B is :C.By r� and the maximality of H we know that fC;:Cg 2 H which contradicts rca .r_ We get the �rst direction by r_ and the the maximality of H. For the converse directionlet us assume that A 2 H or B 2 H but (A_B) =2 H. Then by rcc we get :(A_B) 2 Hand by the �rst direction of r̂ we have f:A;:Bg � H which contradicts the assumptionwith rca .r̂ Analogous to the r_ case; Note that the argumentation is not circular. In both cases weuse the forward direction of the counterpart to verify the backward direction, whereasforward directions are proven directly. The same holds for the proofs of r8 and r9 below.r8 Again, we get the �rst direction by r8 and the maximality of H. For the conversedirection let us assume that FD 2 H for each D 2 cw��(�), but ��F =2 H. Thenby rcc :��F 2 H and by the �rst direction of r9 there is a D 2 cw��(�), such that:FD 2 H which is a contradiction.r9 Analogous to r8.r:=r Suppose A :=� A =2 H. By rcb , the de�nition of :=, r9 and rb we have :(:QA_QA)) 2H for a Q 2 cw��!o(�). Applying r̂ contradicts rcb .r:=c Suppose F[C]p 2 H and C := D 2 H. From the latter we obtain (�P :PC _PD)(�X F[X]p) 2 H by the de�nition of := and r8. Note that X is free for F[Y]pso we have :F[C]p_F[D]p 2 H by r� . From this we conclude with r_ that :F[C]p 2 Hor F[D]p 2 H. Since the �rst option contradicts our assumption with rca , it must bethe case that F[B]p 2 H.r:=sy By r:=r and r:=c .r:=tr By r:=r , r:=c and r:=sy .rt Saturation of �� and maximality of H entails that A 2 H or :A 2 H. We now get theassertion by r_.Depending on the kind of abstract consistency class we are considering, Hintikka sets havedi�erent properties. We discuss this di�erent properties in the Hintikka lemmata below.Theorem 4.15 (Hintikka Lemma for AccMf). If �� is a saturated AccMf and H is maximal in��, then for all A;B;C 2 cw�o(�)rf If A �$�� B, then A 2 H i� B 2 H.Proof: Analogous to r� in lemma 4.14Theorem 4.16 (Hintikka Lemma for AccMq). If �� is a saturated AccMq and H is maximalin ��, then for all C 2 cw��(�), F;G 2 cw��!�(�):rq :(F :=�!� G) 2 H, i� there is a C 2 cw��(�), such that :(FC :=� GC) 2 H.rq0 F :=�!� G 2 H, i� FC :=� GC 2 H for all C 2 cw��(�)Proof:rq We get the �rst direction by the de�nition of :=, rq and the maximality of H. For theconverse let us suppose that :(FC := GC) 2 H but :(F := G) =2 H. From the latterwe know by rcb , that F := G 2 H and by r:=c we have that :(GC := GC) 2 H whichcontradicts r:=r and rca .rq0 Suppose F := G 2 H but FC := GC =2 H which means by rcc , that :(FC := GC) 2 H.From this we get by the de�nition of :=, r9 and r� , that :(:Q(FC) _ Q(GC)) 2 Hfor some Q 2 w��!o(�). On the other hand we know from F := G 2 H by thede�nition of := and r8 that (�P(�!�)!o :PF _ PG)(�X�!� Q(XC)) 2 H, and henceby r� that :Q(FC)_Q(GC) 2 H which contradicts rca . For the converse assume that

4.3 Primitive Equality 23FC := GC 2 H for all C 2 H but F := G =2 H. We get by rcc that :(F := G) 2 Hwhich contradicts the assumption with rq and rca .Theorem 4.17 (Hintikka Lemma for AccMb). If �� is a saturated AccMb and H is maximalin ��, then for all A;B 2 w�o(�):rb :(A :=o B) 2 H, i� f:A;Bg � H or fA;:Bg � Hrb0 (A :=o B) 2 H, i� fA;Bg � H or f:A;:Bg � H.r:=i (A, B) 2 H, i� (A :=o B) 2 H.r:=tc Either A :=o B 2 H or A :=o :B 2 H.r:=tf :(To := Fo) 2 H, if To and Fo are de�ned as in lemma 3.25.r:=tf0 Either A :=o To 2 H or A :=o Fo 2 H.Proof:rb We get the �rst direction by the de�nition of :=, rb and the maximality of H. Nowassume that f:A;Bg � H or fA;:Bg � H but :(A := B) =2 H. From the latter weknow by the de�nition of := and r8 that f(�Po!o :PA _ PB)(�XoX); (�Po!o :PA _PB)(�Xo :X)g � H and by r� and r_ that one of f:A;::Ag, fB;:Bg, f:A;:Bgor fB;::Ag must be a subset of H. All four cases contradict rca .rb0 Since �� is saturated we have A 2 H or :A 2 H. From this we easily get the �rstdirection by r:=c . For the converse suppose that fA;Bg 2 H or f:A;:Bg 2 H but(A := B) =2 H which means by rcc that :(A := B) 2 H. By rb we have f:A;Bg 2 Hor fA;:Bg 2 H. In each of the four cases the contradiction follows by rca .r:=i If we assume (A , B) 2 H, then by the de�nition of , and r̂ we have f:A _B;A _ :Bg � H, and by r_ that f:A;Ag � H or f:B;Bg � H or f:A;:Bg � H orfA;Bg � H. Note that the �rst two alternatives are impossible because of rca . Nowwe assume that A := B =2 H from which we obtain by rcc and rb that f:A;Bg � H orfA;:Bg � H. We have to consider four cases and in each case we get a contradictionwith rca .r:=tc Assume that A := B =2 H and A := :B =2 H. By rcc we have :(A := B) 2 H and:(A := :B) 2 H, and by rb we get from the former that f:A;Bg � H or fA;:Bg � Hand from the latter that fA;:Bg � H or f:A;::Bg � H. We have to consider fourcases and in each we get a contradiction with rca . Analogous we can show with rb0 thatA := B 2 H and A := :B 2 H leads to a contradiction.r:=tf From rt we know that To 2 H. Hence by rcb and rcc that :Fo 2 H and �nally by rbwe get :(To :=o Fo) 2 H.r:=tf0 Follows immediately from r:=tc .4.3 Primitive EqualityNext we will introduce abstract consistency properties for primitive equality. We have di�erentoptions, e.g. we could introduce primitive equality by postulating = to be a functional congruencerelation or alternatively we could state properties connecting = with :=.Our concrete choice, namely a property postulating re
exivity and substitutivity of =, ismotivated from a practical point of view, as we believe that re
exivity and substitutivity are moreeasy to verify in practical applications.De�nition 4.18 (Abstract Consistency with Primitive Equality). Let � be signature andlet �� be a AccM, then we de�ne the following condition, where � 2 ��:re (r) :(A =� A) =2 �(s) if F[A]p 2 � and A = B 2 �, then � �F[B]p 2 ��Using this properties we introduce the following abstract consistency classes AccMe and AccMebbased upon the de�nition of an AccM.

24 4 MODEL EXISTENCE THEOREMSRemark 4.19. Just as in the case with Leibniz equality, we can extend a abstract consistency classwith primitive equality so that it is compact.Proof: We proceed just as in the proof of Lemma 4.12 but check the cases for re(r) and re(s).For re(r) let � 2 �0� and suppose there is an A 2 w�o(�) with :(A = A) 2 �. Thenf:(A = A)g 2 �� contradicting re(r).For re(s) Let � 2 �0�, fF[A]p;A = Bg � �, 	 be any �nite subset of � �F[B]p and � := (nfF[B]pg) [fF[A]p;A = Bg. � is a �nite subset of �, so � 2 ��. Since �� is an AccMeb andfF[A]p;A = Bg � �, we get � � F[B]p 2 �� by re(s). We know that 	 � � � F[B]p and �� isclosed under subsets, so 	 2 ��. Thus every �nite subset 	 of � �F[B]p is in �� and therefore byde�nition � �F[B]p 2 �0�.The next lemma discusses the connection between Leibniz equality and primitive equality incase we are considering an AccMe .Lemma 4.20 (Leibniz vs. Primitive Equality). Let �� be a saturated AccMe . For all � 2 ��,all A;B 2 w�o(�) and F;G 2 w��!�(�) holds:1. If :(A :=� B) 2 � then � � :(A =� B) 2 ��2. If :(A =� B) 2 � then � � :(A :=� B) 2 ��3. If A :=� B 2 � then � �A =� B 2 ��4. If A =� B 2 � then � �A :=� B 2 ��5. If :(F =�!� G) 2 � then � � :(Fw =� Gw) 2 �� for any constant w 2 ��, which doesnot occur in �.Proof:1. Suppose :(A :=� B) 2 � but � � :(A =� B) =2 ��. Since �� is saturated we have� �A =� B 2 �� and by re(s), that � �A =� B � :(B :=� B) 2 ��. From the de�nition of:= we further conclude with r9 that � �A =� B � :(B :=� B) � :(:pB _ pB) 2 �� for anyconstant p 2 ��!o. From this we get the contradiction with r̂ and lemma 4.8.2. Suppose :(A =� B) 2 � but � �:(A :=� B) =2 ��. Since �� is saturated we have � �A :=�B 2 �� and by de�nition of :=, r8 and the subset closure of �� that � � (�P�!o :PA _PB)(�X�A = X) 2 ��. By r� , r_ and the subset closure of �� we �nally get that� � :(A = A) 2 �� or � � A = B 2 ��. The former is contradictory with re(r) andlemma 4.8, and the latter with the assumption :(A =� B) 2 � and lemma 4.8.3. Suppose A :=� B 2 � but � �A =� B =2 ��. Since �� is saturated we have � � :(A =�B) 2 �� and by (2) and the subset closure of �� that ��:(A :=� B) 2 �� which contradictsthe assumption with lemma 4.8.4. Analogous to (3) with (1).5. From :(F =�!� B) 2 � we can derive with (2), rq, (1) and the subset closure of �� that� � :(FC =�!� BC) 2 ��.Remark 4.21. Lemma 4.20 shows that in an Me the symbol = de�nes the same relation as :=,namely a functional congruence relation modulo �. And if we are considering an Meb then bothdescribe the equality relation. This shows that the conditions re(r) and re(s) are su�cient for thispurpose. We could alternatively introduce primitive equality by requiring the statements 1. and2. of lemma 4.20, but this would lead to more complicated proof obligations when proving thecompleteness of calculi with primitive equality.We now discuss two new Hintikka lemmata, which take the logical nature of = into accountTheorem 4.22 (Hintikka Lemma for AccMe). If �� is a saturated AccMe and H is maximalin ��, then the following statements hold for all A;B;C 2 w��(�), F;G 2 w��!�(�) andD;E 2 w�o(�):r=r (A =� A) 2 H.r=c If D[A]p 2 H and A =� B 2 H, then D[B]p 2 H.r=sy A =� B 2 H, i� (B =� A) 2 H.

4.4 Model Existence 25r=tr A =� B 2 H and B =� C 2 H, then A =� C 2 Hr=q :(F =�!� G) 2 H, i� there is a C 2 w��(�), such that :(FC =� GC) 2 H.r=q0 F =�!� G 2 H, i� FC =� GC 2 H for all C 2 w��(�).r= := A :=� B 2 H, i� A =� B 2 H.r= :=0 :(A :=� B) 2 H, i� :(A =� B) 2 H.Proof:r=r Follows by re(r) and rcb .r=c By maximality of H and re(s).r=sy ,r=tr By r=r and r=cr= := By maximality of H, 4.20(3.) and 4.20(4.)r= :=0 By maximality of H, 4.20(1.) and 4.20(2.)r=q Follows from rq with r= := .r=q0 Follows from rq with r= :=0 .Theorem 4.23 (Hintikka Lemma for AccMeb). If �� is a saturated AccMeb and H is maximalin ��, then for all A;B 2 w�o(�):r=b :(A =o B) 2 H, i� f:A;Bg � H or fA;:Bg � H.r=b0 A =o B 2 H, i� fA;Bg � H or f:A;:Bg � H.r=i A, B 2 H, i� A = B 2 H.r=tc Either A = B 2 H or A = :B 2 H.Proof: The statements follow direct from their counterparts rb { r:=tc in lemma 4.17 with thehelp of r= := and r= :=0 .4.4 Model ExistenceNext we come to the proof of the abstract extension lemma, which will nearly immediately yieldthe model existence theorems. For the proof we adapt the construction of Henkin's completenessproof from [Hen50].Theorem 4.24 (Abstract Extension Lemma). Let � be a signature, �� be a compact abstractconsistency class and let H 2 �� be a su�ciently �-pure set of �-sentences. Then there exists a�-Hintikka set H for ��, such that H � H.Proof: We construct H by inductively constructing a sequence of sets Hi such that Hi 2 ��.Then the �-Hintikka set is H := Si2INHi 2 ��.Let A1;A2; : : : be a sequence of all sentences in w�o(�). We de�ne H0 := H and the set Hn+1according to the table 3. Since the construction is uniform for all kinds of abstract consistencyclasses Hn+1 depends on the respective kind of abstract consistency class �� we are interested inand in the properties of An with respect to this ��.Next we show by induction, that Hn 2 �� for all n 2 IN. The base case holds by construction(for all kinds of abstract consistency classes). So let Hn� 2 ��. We have to show that Hn+1 2 ��.This is trivial in caseHn�An =2 �� (again for all abstract consistency classes). In caseHn�An 2 ��we have to consider four sub cases:1. If An is of form :��B, then we get the conclusion trivially by r9 (for all cases).2. If An is of form :(F :=�!� G) the conclusion is either trivial (by r9 in case of an AccM,AccMb , AccMf or AccMfb) or follows by rq.3. If An is of form :(F =�!� G) the conclusion is either trivial (by r9 in case of an AccM,AccMb , AccMf , AccMfb , AccMq , AccMqb) or follows by 4.20(5).4. If An is of any other form, then the conclusion is trivial (for all cases).

26 4 MODEL EXISTENCE THEOREMSAccM/AccMb/ AccMq/AccMqb/ AccMe/AccMeb/Hn+1 AccMf/AccMfbHn �An =2 �� Hn Hn HnAn of form Hn �An� Hn �An� Hn �An�:��B :Bw :Bw :BwAn of form Hn �An Hn �An� Hn �An�Hn �An :(F :=�!� G) :(Fw :=� Gw) :(Fw :=� Gw)2 �� and An of form Hn �An Hn �An Hn �An�:(F =�!� G) :(Fw =� Gw)An of other form Hn �An Hn �An Hn �Anw 2 �� is a constant which is fresh for HnFigure 3: Construction of Hn+1. How to read the table: Assume �� is an an AccMq and An is ofform :(F :=�!� G). The table de�nes Hn+1 to be Hn �An � :(Fw :=� Gw) for a fresh w 2 ��in case An 2 �� and Hn otherwise.)Since �� is compact, we also have H 2 ��.Now we know that our inductively de�ned set H is indeed in �� and that H � H. It onlyremains to show that H is maximal in ��. So let An 2 w�o(�) be the n-th sentence from the abovesequence, such that H �An 2 ��. Since H is closed under subsets we know that Hn �An 2 ��.By de�nition of Hn+1 we conclude that An 2 Hn+1 and hence An 2 H.Next we de�ne two congruence relations which we need in the model existence theorems belowin order to build quotient models.De�nition 4.25. Let �� be an abstract consistency class and H be a Hintikka set for ��. For allA;B 2 w�(�) we de�ne:A
 :�H B
 , i� A :=
 B 2 H.A
 �H B
 , i� 8<: A � B if
 � �fA;Bg 2 H or fA;Bg \ H � ; if
 � oAC �H BC for all C 2 w��(�) if
 � �! �Lemma 4.26. Let �� be an abstract consistency class and H be a Hintikka set for ��. Then �His a functional congruence relation, if �� is an AccM and :�H is a functional congruence relation,if �� is an AccMqb .Proof::�H is a functional congruence relation by r:=r , r:=sy , r:=tr , rq and rq0 , which are valid in case�� is an AccMqb .Note that �H is a functional congruence by construction.Remark 4.27. Note that in 3.36 EXT�!�L does not hold for := and hence :�H is not a functionalcongruence in case �� is not at least an AccMq . Hence :�H is unsuitable for the model constructionof anMfb (orMb) from a givenMf (orM) as demonstrated below but �ts well for the constructionof an Mqb or Mqb. Fortunately the relation �H is already a functional congruence in case �� is anAccMf .We now use the �-Hintikka sets, guaranteed by lemma 4.24, to construct a �-valuation for the�-term structure that turns it into the desired model M.Theorem 4.28 (Model Existence). Let �� be an saturated Acc and H 2 �� be a su�ciently�-pure set of sentences. For all � 2 fM;Mf;Mfb;Mq;Mqb;Me;Mebg we have: If �� is an Acc�,then there exists a countable model in * that satis�es H.

4.4 Model Existence 27Proof: Let �� be an abstract consistency class. We can assume without loss of generality(see lemma 4.12) that �� is compact, so the preconditions of 4.24 are met, and therefore thereexists a �-Hintikka set H � w�o(�) for ��, such that H � H.Now, for each di�erent kind of abstract consistency class, we will construct a countable modelMH of the corresponding type. These model constructions closely re
ect the relations of thedi�erent model types as discussed in section 3 and shown in �gures 1 and 2. We start withthe construction of a M and a Mf based upon the non-functional termstructure TS(�)� and thefunctional TS(�)��. The remaining model constructions are then based upon these two basicconstructions.M Let �� be an AccM. Given the �-Hintikka set H with H � H from above, we choose�(C) := T, i� C 2 H. Note that we have �(C) := F, i� :C 2 H by rcb . By r� we knowthat � is well-de�ned on cw�(�)#� and by rcb , rcc we have that � is a total function onD�o .Furthermore by rcb , rcc , r_ and r8 we have that � is a �-valuation of the �-termstructure TS(�)� and thus MH := (TS(�)� ; �) is a �-model by construction. We haveMH j= H , since H � H. Note thatMH is indeed countable, since the sets of well-typedformulae are countable.Mf Let �� be an AccMf and hence also an AccM. Analogous to the previous case we constructthe countable �-model MH := (TS(�)�� ; �) with M j= H . Note that in this case � iswell-de�ned on D��T because of rf. By lemma 3.15 we know that M is functional andhence M is an Mf.We proceed with the construction of a Mq and Mb based upon the previous construction of a Mand accordingly of aMq and aMfb based upon aMf. Thus we start out with a countable �-modelM := (TS(�)�; �) or M := (TS(�)��; �) such that M j= H . Property q is easy to verify, as itfollows from the properties discussed in the Hintikka-lemmata 4.14 and 4.16.Mq Let �� be an AccMq . From r:=r , r:=sy , r:=tr , rq and rq0 we can derive that :=� is indeedthe q� required by property q and hence M is a countable Mq.To verify property b instead we have to construct a M0 from M by reducing the set of truthvalues to fT; Fg, which can be done with the help of a functional congruence relation.Mb,Mfb Let �� be an AccMq or AccMfb . By lemma 4.26, rb0 and rcc we can show that the relation�H de�ned in 4.25 is a functional �-congruence for M and thus, by lemma 3.33, thequotient structure M=�H is a functional �-model which satis�es H . From rcb , rcc andthe choice of � we conclude that �H has exactly two equivalence classes on TSo(�)��.Thus we have Do � fT := [[To]]; F := [[Fo]]g, if we de�ne To and Fo as in lemma 3.25.Using rt and rcb we further get that � is the identity relation. Finally note that M=�His countable since M is.We �nish the constructions for the cases without a primitive notion of equality with the construc-tion of a �-Henkin model (H =Mqb) in case we are considering an AccMqb .We start with the Mq M guaranteed by the discussion above. Analogous to the constructionof a Mb, we make use of a functional congruence relation in order to construct a quotient modelwhich ful�lls property b. But instead of the relation �H we had to use before, we apply the simplerrelation :�H which is a functional congruence relation for Mqbs.H =Mqb By lemma 4.26 and rb0 ,rcc we know that the relation :�H is a functional �-congruenceforM, so the quotient structureM=:�H is a Mq with M=:�H j= H by lemma 3.33. Fromrcb , rcc and the choice of �, we conclude that �H has exactly two equivalence classeson TSo(�)��. Thus we have Do � fT := [[To]]; F := [[Fo]]g, if we de�ne To and Fo as inlemma 3.25. Using rt and rcb we further get that � is the identity relation. Finally notethat M=:�H is countable since M is.It remains to discuss the cases with primitive equality and we start with the Mq, resp. Mqb fromabove.

28 4 MODEL EXISTENCE THEOREMSMe Let �� be an AccMe and hence an AccMq . We construct the countable Mq M withM j= H as discussed above. It remains to show that property e is valid for M whichfollows from property q by r= := and r= :=0 .Meb This case is analogous: Let �� be an AccMeb and hence an AccMqb . We construct acountable H M := (TS(�)��; �) with M j= H . It remains to show that property e isvalid for MH which follows again from property q by r= := and r= :=0 .4.5 Order E�ectsIt is common to stratify higher-order logics with respect to the complexity of symbols and typesallowed to occur in formulae. We will use this strati�cation for a �ner analysis of model existencefor functional �-models in this section.Traditionally, the orders of formulae is de�ned by the order of the types of symbols occurring inthem: for any k, the formulae of 2kth order logic are those in which no variable or parameter oforder greater than k occurs and the formulae of 2k�1th order logic are those in which no variableof order greater than k is quanti�ed over. Here, the order ordn(�) of a type � 2 T is de�nedinductively as ordn(�) = 0 and ordn(o) = 1, and ordn(�n ! �) = maxi�n ord(�i) + 1, where� 2 BT . With this convention, �rst-order logic is the classical notion, only individual variablescan be quanti�ed over.In this paper, we will adopt a slightly di�erent de�nition of order that does not distinguishbetween quanti�ed variables or constants as a �ner distinction does not seem to yield suitablerestrictions for our model existence theorems. Moreover, we do not commit to a particular order,since can identify su�cient conditions a general order function �.De�nition 4.29 (Type Ordering). We call a function �: T �! IN a type ordering, if�(�); �(�) � �(� ! �). We say that � is of order k 2 IN, i� �(�) � k. We will say thata formula is of order k, i� the types of all of its its subterms are. Similarly, for a signature � or asubstitution �, where we require all constants (all �(X), where �(X) 6= X) to be of order k.We will denote the sets of (closed) well-formed formulae of order k with w�k(�) (cw�k(�)).Note that the sets w�k�(�), cw�k�(�) are empty if k � �(�), and that w�k(�), cw�k(�) are closedunder substitutions of order k and is therefore also closed under �-reduction.We will call a type ordering � �nite, i� for any given k 2 IN, the set T k� := f� �� �(�) � k; k 2INg is �nite.Example 4.30 (Type Ordering). We have already mentioned the classical ordering scheme forhigher-order types above. Note that ordn is a type ordering and if we de�ne ord(� ! �) =max(�; �) + 1, then ordn is a �nite type ordering.The function �: T �! f0g that gives all types the order zero is trivially a type orderin, albeita very uninteresting one, since with this ordering, all results of this section are subsumed by theresults above.With the notion of type ordering, we can make a �ner distinction between Henkin and Standardmodel.De�nition 4.31 (k-Standard Models). Let � be a type ordering, then we call a �-structure or�-model k-standard wrt. �, i� D�!� is full (i.e. if D�!� = F(D�;D�)) for all types �! � oforder � k. With this de�nition a standard model is a 0-standard one, since the order of functionaltype is positive. Clearly, we can construct from any �-structure or �-model M a k-standard one(which we will denote with Mk), by replacing the function universes related to a type of order� k appropriate full sets of functions and adjusting the application operator accordingly.De�nition 4.32 (k ��-Structure, k ��-Model). We call a pre-�-structure a k��-structure,i� E' meets the conditions in 3.10 for all A 2 w�k(�), and we call a k��-structure a k��-model,i� it has a valuation.

4.5 Order E�ects 29Theorem 4.33 (Term Structure of order k).Let TS(�)��;k := (Dk ;@k; Ik) be the k-standard �-structure induced by TS(�)��, then TS(�)��;kis a functional �-structure, and furthermore for all A 2 w��(�) that Ik'(A) = �(A)#�� iford(A) � k and � = '��Free(A).Proof: We prove that Ik' is a total function and that Ik'(A) = �(A)#�� if ord(A) � k and� = '��Free(A) by an induction on the structure of A 2 w��(�). Note that totality of Ik' ensuresthat TS(�)��;k is a functional �-structure.The case when A = c 2 � is trivial, since totality of Ik' is guaranteed by the totality of I andif ord(A) � k we have Ik'(A) = I(A) = A = �(A)#�� .If A = X 2 V , totality of Ik' follows from totality of � and furthermore in case ord(A) � kwe get since X 2 Dom(�) that �(X)#�� = '(X) = Ik'(X).Next we consider the case when A� is of form B
!�C
 . If ord(A) � k the assertionsimmediately follow from 3.15, since up to order k the construction of TS(�)��;k is identical withTS(�)��. In case ord(A) > k note that D� is full and hence Ik'(A) 2 D�, which is all we have toshow.In the last case A� is of form �X
 B� . If ord(A) > k we only have to show thatIk'(A) 2 D� which holds since D� is full. If ord(A) � k we have Ik'(A)@kc = Ik';[c=X](B)forall c 2 D� and by induction hypothesis that Ik';[c=X](B) = (�; [c=X](B))#�� . Furthermorewe have (�; [c=X](B))#�� = (�([c=X]B))#�� = (�(Ac))#�� = (�(A)c)#�� = (�(A))#��@kc. ThusIk'(A) = �(A)#�� .Now, we are in the position to prove a �ner-grained model-existence theorem. For this wewill �rst weaken the de�nition of an abstract consistency class by weakening the conditions foruniversal quanti�cation in De�nition 4.4 by restricting the sets possible instantiations.De�nition 4.34 (Abstract Consistency Class with Order). Let �k� be an Acc�, where � 2fM;Mb;Mf;Mfb;Mq;Mqb;Me;Mebg and the condition r8 is replaced by the following onerk8 If ��F 2 � and ord(�) = k, then � �FG 2 �� for each G 2 w�k�(�).then we call �k� an Acc� with order k and write Acck� .Lemma 4.35 (k-Hintikka lemmata). Clearly, we can prove analoga to all Hintikka theoremsin section 4.2. The only di�erence lies in the r8 and r9 cases of Theorem 4.14 where we haver8 ��F 2 H, i� for each D 2 cw�k�(�) we have FD 2 H.r9 :��F 2 H, i� there is a D 2 cw�k�(�) such that :FD 2 H.Proof: We get the �rst assertion directly by rk8 and the second by r9 observing that thewitness constant is of type � and therefore �(D) = �(�) � �(� ! o) = ord(��) � �(:��F) ��(�). We have analogous assertions and argumentations for rkq and rkq0 in Theorem 4.16 and forr=q and r=q0 in Theorem 4.22.This gives us the following model existence theorem:Theorem 4.36 (Model Existence). Let �� be a saturated Acck and H 2 �� be a su�ciently�-pure set of sentences. For all � 2 fMf;Mfb;Mqb;Me;Mebg we have: If �� is an Acck�, then thereexists a model in * that satis�es H.Proof: In the extension Lemma 4.24 we can guarantee a ��-Hintikka set H with ord(H) =ord(H) for any set H 2 ��: If we take the sequence A1;A2; : : : to be an enumeration of w�(�)k,where k = �(H) and consider the construction of Hn+1 in table 3, then we see that �(Hn+1) =�(Hn), since the formulae added to Hn are either witness constants of type � or subformulae ofAn. In both cases the order cannot be greater than k.The constructions of the �-models are analogous to the respective constructions in Theo-rem 4.28. The only di�erence is that we will use TS(�)��;k instead of TS(�)�� as a starting

30 REFERENCESpoint. Since the Hintikka set H guaranteed by the extended extension Lemma has order k, andTS(�)��;k is a k-�-algebra by 4.33, the constructions from Theorem 4.28 go through directly.Remark 4.37. An application of this theorem is that we can use this strengthened theorem toprove the long-standing conjecture that that in machine-oriented calculi it is su�cient to restrictprimitive substitutions [And89] to the order of the input formulae. This is important for theimplementation of fair strategies in automated deduction systems, since the primitive substitutionrule without this observation is in�nitely branching (there are in�nitely many quanti�ers ��, sinceT is in�nite). If we employ a �nite type ordering �, then we only have to consider the �nite setof quanti�ers ��, where � 2 T k� . For practical implementations it remains to construct typeorderings that make T k� as small as possible.5 ConclusionIn this paper, we have given an overview over the landscape of semantics for classical higher-orderlogics. We have di�erentiated ten di�erent possible notions and have tied the discerning propertiesto conditions of the abstract consistency classes. The model existence theorems presented in thispaper can serve as an instrument for the design of higher-order calculi.AcknowledgmentsThe work presented in this paper has been supported by the \Deutsche Forschungsgemeinschaft"(DFG) under Grant Hotel.The authors would like to thank Peter Andrews and Frank Pfenning for stimulating discussions.References[ABI+96] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, andHongwei Xi. TPS: A theorem proving system for classical type theory. Journal ofAutomated Reasoning, 16(3):321{353, 1996.[ALCMP84] Peter B. Andrews, Eve Longini-Cohen, Dale Miller, and Frank Pfenning. Automatinghigher order logics. Contemp. Math, 29:169{192, 1984.[And71] Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 36(3):414{432, 1971.[And72a] Peter B. Andrews. General models and extensionality. Journal of Symbolic Logic,37(2):395{397, 1972.[And72b] Peter B. Andrews. General models descriptions and choice in type theory. Journalof Symbolic Logic, 37(2):385{394, 1972.[And73] Peter B. Andrews, 1973. letter to Roger Hindley dated January 22, 1973.[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: ToTruth Through Proof. Academic Press, 1986.[And89] Peter B. Andrews. On Connections and Higher Order Logic. Journal of AutomatedReasoning, 5:257{291, 1989.[Bar84] H. P. Barendregt. The Lambda Calculus. North Holland, 1984.[BCF+97] C. Benzm�uller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, andV. Sorge.
mega: Towards a mathematical assistant. In William McCune, editor,

REFERENCES 31Proceedings of the 14th Conference on Automated Deduction, number 1249 in LNAI,pages 252{255, Townsville, Australia, 1997. Springer Verlag.[Ben97] Christoph Benzm�uller. A calculus and a system architecture for extensional higher-order resolution. Research Report 97-198, Department of Mathematical Sciences,Carnegie Mellon University, Pittsburgh,USA, June 1997.[Bib98] Automated deduction { a basis for applications, 1998. forthcoming.[BK97] Christoph Benzm�uller and Michael Kohlhase. Resolution for henkin models. SEKI-Report SR-97-10, Universit�at des Saarlandes, 1997.[BK98] Christoph Benzm�uller and Michael Kohlhase. LEO, a higher-order theorem prover.submitted to CADE-15, 1998.[dB72] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, atool for automatic formula manipulation, with an application to the Church-Rossertheorem. Indagationes Mathematicae, 34(5):381{392, 1972.[Fit90] Melvin Fitting. First-Order Logic and Automated Threorem Proving. Springer Verlag,1990.[G�od31] Kurt G�odel. �Uber formal unentscheidbare S�atze der Principia Mathematica undverwandter Systeme I. Monatshefte der Mathematischen Physik, 38:173{198, 1931.English Version in [vH67].[Hen50] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,15(2):81{91, 1950.[Hin55] K. J. J. Hintikka. Form and content in quanti�cation theory. Acta PhilosophicaFennica, 8:7{55, 1955.[Hue73] G�erard P. Huet. A mechanization of type theory. In Donald E. Walker and LewisNorton, editors, Proceedings of the 3rd International Joint Conference on Arti�cialIntelligence, pages 139{146, 1973.[Koh94a] Michael Kohlhase. Higher-order order-sorted resolution. Seki Report SR-94-1, Fach-bereich Informatik, Universit�at des Saarlandes, 1994.[Koh94b] Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on theResolution Principle. PhD thesis, Universit�at des Saarlandes, 1994.[Koh95] Michael Kohlhase. Higher-Order Tableaux. In P. Baumgartner, R. H�ahnle, andJ. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods,volume 918 of Lecture Notes in Arti�cial Intelligence, pages 294{309, 1995.[Koh98] Michael Kohlhase. Higher-order automated theorem proving. In Bibel and Schmitt[Bib98]. forthcoming.[Mil83] Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon University,1983.[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function vari-ables, and simple uni�cation. Journal of Logic and Computation, 4(1):497{536, 1991.[NM94] Gopalan Nadathur and Dale Miller. Higher-order logic programming. TechnicalReport CS-1994-38, Department of Computer Science, Duke University, 1994. Toappear in Volume 5 of the Handbook of Logic in AI and Logic Programming.

32 REFERENCES[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS. Springer Verlag,1994.[Pfe87] F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis, Carnegie-Mellon University, Pittsburgh Pa., 1987.[Sch60] Kurt Sch�utte. Semantical and syntactical properties of simple type theory. Journalof Symbolic Logic, 25:305{326, 1960.[Smu63] Raymond M. Smullyan. A unifying principle for quanti�cation theory. Proc. Nat.Acad Sciences, 49:828{832, 1963.[Smu68] Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.[Tak68] Moto-o Takahashi. Cut-elimination in simple type theory with extensionality. Journalof the Mathematical Society of Japan, 19, 1968.[Tak87] Gaisi Takeuti. Proof Theory. North Holland, 1987.[vH67] Jean van Heijenoort, editor. From Frege to G�odel A Source Book in MathematicalLogic, 1879-1931. Source Books in the History of the Sciences. Harvard UniversityPress, 1967.[Wol94] David A. Wolfram. A semantics for �-PROLOG. Theoretical Computer Science,136(1), 1994.

6 Index�-Henkin model, 13�-Hintikka set, 20�-algebra, 11�-congruence, 8�-homomorphism, 8�-model, 5, 12, 13�-model with full equality, 16�-standard model, 13�-structure, 9, 28�-valuation, 12�-valuation with equality, 16��-extension, 20�-term structure for �, 9��-term structure for �, 9k-�-structure, 28k-Hintikka lemmata, 29k-standard model, 28abstract consistency class, 18, 28abstract consistency class with order k, 28abstract consistency class with primitive equality, 23application operator, 7assignment, 9atomically saturated, 19bound variables, 2canonical projection, 8carrier set, 7closed formulae, 2closed under subsets, 18compact, 18compact abstract consistency classes, 20compactness, 18congruence for �-models, 13denotation, 9, 10domain, 7equality relation, 3evaluation function, 9extension lemma, 25extensionality, 3extensionality for truth values, 16extensionality in �-models, 14extensionality in �-models with full equality, 16extensionality of Leibniz equality, 13, 16extensionality principle on truth values, 5, 13falsity, 12free variables, 2full, 11full equality, 16full pre-�-algebra, 11functional extensionality, 16functional �-congruence, 8functional �-model, 5, 13functional extensionality principle, 5, 13functional pre-�-structure, 7Henkin model, 3, 13Henkin-model with full equality, 16Higher-Order Logic, 2Hintikka lemma, 21, 22, 24, 29

Hintikka set, 20homomorphic extension, 10interpretation of constants, 7Leibniz equality, 3, 13, 15Leibniz equality in �-models, 13Leibniz' formulation of equality, 2logical constants, 2maximal ��-extension, 20Meta-equality, 3model existence theorem, 6, 29model existence theorem with order k, 29model existence theorems, 17, 26non-atomic consistency, 19order e�ects, 27pre-�-algebra, 11pre-�-structure, 7primitive equality, 16, 23properties for abstract consistency classes, 18properties of Leibniz equality, 15property b, 5, 6, 13property e, 16property f, 13property q, 5, 13proposition, 2quotient �-model, 13quotient �-Structure, 9saturated, 19sentence, 2signature �, 2specialized �-model classes, 13standard model, 3, 13, 28su�ciently pure, 18term structure for �, 9term structure of order k, 28total pre-�-structure, 7truth, 12type ordering, 27typed collection of sets, 7typed mapping, 7universe of type �, 7value, 10well-formed formulae, 2
33

