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Abstract

In this dissertation, we discuss how to price American-style options. Our aim
is to study and improve the regression-based Monte Carlo methods. In order to
have good benchmarks to compare with them, we also study the tree methods.

In the second chapter, we investigate the tree methods specifically. We do re-
search firstly within the Black-Scholes model and then within the Heston model.
In the Black-Scholes model, based on Müller’s work [36], we illustrate how to
price one dimensional and multidimensional American options, American Asian
options, American lookback options, American barrier options and so on. In the
Heston model, based on Sayer’s research [39], we implement his algorithm to
price one dimensional American options. In this way, we have good benchmarks
of various American-style options and put them all in the appendix.

In the third chapter, we focus on the regression-based Monte Carlo methods
theoretically and numerically. Firstly, we introduce two variations, the so called
"Tsitsiklis-Roy method" and the "Longstaff-Schwartz method". Secondly, we il-
lustrate the approximation of American option by its Bermudan counterpart.
Thirdly we explain the source of low bias and high bias. Fourthly we compare
these two methods using in-the-money paths and all paths. Fifthly, we examine
the effect using different number and form of basis functions. Finally, we study
the Andersen-Broadie method and present the lower and upper bounds.

In the fourth chapter, we study two machine learning techniques to improve
the regression part of the Monte Carlo methods: Gaussian kernel method and
kernel-based support vector machine. In order to choose a proper smooth pa-
rameter, we compare fixed bandwidth, global optimum and suboptimum from a
finite set. We also point out that scaling the training data to [0, 1] can avoid nu-
merical difficulty. When out-of-sample paths of stocks are simulated, the kernel
method is robust and even performs better in several cases than the Tsitsiklis-
Roy method and the Longstaff-Schwartz method. The support vector machine
can keep on improving the kernel method and needs less representations of old
stock prices during prediction of option continuation value for a new stock price.

In the fifth chapter, we switch to the hardware (FGPA) implementation of the
Longstaff-Schwartz method and propose novel reversion formulas for the stock
price and volatility within the Black-Scholes and Heston models. The test for
this formula within the Black-Scholes model shows that the storage of data is
reduced and also the corresponding energy consumption.
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1 Foundations

In this chapter, we deliver the basic mathematical and financial concepts, def-
initions and notations, which build the foundation of this thesis. The research
focuses on the stability and improvement of regression-based Monte Carlo meth-
ods for pricing American-style options. Hence we have five questions to answer:

1. What kind of American-style options do we discuss?

2. What kind of financial models do we use to describe the movement of the
stock prices?

3. What kind of other numerical methods should we apply in order to have
benchmarks to compare with the results by Monte Carlo methods?

4. What kind of techniques can we make use of, so that we can improve the
regression part of the Monte Carlo methods?

5. Do we need some mathematical changes when we design and implement
the Monte Carlo methods on hardware instead of software?

These questions are replied in the following sections. This chapter is mainly
based on Bishop [6], Glasserman [15], Hull [20], Korn [25] [26] and London[32].

1.1 Option Types

A derivative is defined as a financial instrument for which the value depends on
its underlying asset. The derivatives market in the world are divided into five
major classes, see Hull [20]. They are interest rate derivatives, equity deriva-
tives, foreign exchange derivatives, credit derivatives and commodity derivatives.
In the last 30 years derivatives have become more and more important and
frequently traded. The main reason is that they attract many different types
of traders, such as hedgers, speculators and arbitrageurs. A simple financial
derivative is called the option.

Definition 1.1 (European Option / American Option / Bermudan Option).
European call / put options give the holder the right to buy / sell the underlying
asset at a certain date in the future for a certain price. American options can
be exercised at any time before the maturity. Bermduan options are options
whose holder can choose to exercise on a specified finite set of dates before the
maturity.
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Remark 1.2. The price in the contract is known as the strike price K; the date
in the contract is known as the maturity T . It should be emphasized that an
option gives the holder the right to do something. The holder does not have to
exercise this right. We are usually interested in the payoff function of options:

• The discounted payoff functions of European call / put options are:

V Call
European(0) = e−rT (S(T )−K)+ (1.1)

V Put
European(0) = e−rT (K − S(T ))+ (1.2)

where (S(T ) −K)+ .
= max(S(T ) −K, 0) and (K − S(T ))+ .

= max(K − S(T ), 0),
S(T ) is the underlying asset price, e.g stock price S(t), at the maturity T , r
is the risk-free interest rate, e−rT is the discounting factor at T .

• The discounted payoff functions of American call / put options at the opti-
mal exercise time t∗Am are:

V Call
American(0) = e−rt

∗
Am(S(t∗Am)−K)+ (1.3)

V Put
Ameircan(0) = e−rt

∗
Am(K − S(t∗Am))+ (1.4)

where t∗Am ∈ [0, T ], e−rt
∗
Am is the discounting factor at t∗Am.

• The discounted payoff functions of Bermudan call / put options at the
optimal exercise time t∗Be are:

V Call
Bermudan(0) = e−rt

∗
Be(S(t∗Be)−K)+ (1.5)

V Put
Bermudan(0) = e−rt

∗
Be(K − S(t∗Be))+ (1.6)

where t∗Be ∈ {t1, t2, . . . , tm} with 0 ≤ t1 ≤ t2 . . . ≤ tm ≤ T , e−rt
∗
Be is the discount-

ing factor at t∗Be.

Remark 1.3. Most equity options are American-style options, whereas most in-
dex options are European-style. Options traded on future exchanges are mainly
American-style, while those traded over-the-counter are mainly European-style.
Commodity options can be either style.

In the following, we introduce three payoff path-dependent options. Their
payoffs all have three forms: European, Bermudan and American-styles. We
will discuss how to price their Bermudan and American forms in the following
chapters. Here we only define their European forms for simplicity.

Definition 1.4 (Asian Option). A (discrete) Asian option is an option on a time
average of the underlying asset price. Asian calls and puts have payoffs (S̄−K)+

and (K−S̄)+, where S̄ is the average price of the stock prices over the discrete set
of monitoring dates t1, . . . , tn. S̄ has two forms: arithmetic average and geometric
average.
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1.1 Option Types

S̄ = 1
n

n∑
i=1

S(ti) arithmetic average

S̄ = (
n∏
i=1

S(ti))
1
n geometric average

Definition 1.5 (Barrier Option). A barrier option is an option whose payoff de-
pends on whether the path of the underlying asset has reached a barrier B,
which is a certain predetermined level.
Knock-out barrier option is extinguished if the stock price crosses the barrier
with the payments:

(S(T )−K)+ · 1
{

max
t∈[0,T ]

S(t) < B

}
up-and-out barrier call

(K − S(T ))+ · 1
{

max
t∈[0,T ]

S(t) < B

}
up-and-out barrier put

(S(T )−K)+ · 1
{

min
t∈[0,T ]

S(t) > B

}
down-and-out barrier call

(K − S(T ))+ · 1
{

min
t∈[0,T ]

S(t) > B

}
down-and-out barrier put

Knock-in barrier option springs into existence if the stock price crosses the bar-
rier with the payments:

(S(T )−K)+ · 1
{

max
t∈[0,T ]

S(t) ≥ B
}

up-and-in barrier call

(K − S(T ))+ · 1
{

max
t∈[0,T ]

S(t) ≥ B
}

up-and-in barrier put

(S(T )−K)+ · 1
{

min
t∈[0,T ]

S(t) ≤ B
}

down-and-in barrier call

(K − S(T ))+ · 1
{

min
t∈[0,T ]

S(t) ≤ B
}

down-and-in barrier put

Definition 1.6 (Lookback Option). A lookback option is an option whose payoff
depends on the maximum or minimum of the stock price achieved during a
certain period with the payments:(

max
t∈[0,T ]

S(t)−K
)+

maximum lookback call(
K − max

t∈[0,T ]
S(t)

)+

maximum lookback put(
min
t∈[0,T ]

S(t)−K
)+

minimum lookback call(
K − min

t∈[0,T ]
S(t)

)+

minimum lookback put
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1 Foundations

Besides one dimensional American-style options, we also test regression-
based Monte Carlo methods for pricing multidimensional American-style op-
tions, which are introduced as follows.

Definition 1.7 (Basket Option). A basket option is an option on a portfolio of
underlying assets prices {S1, · · · , Sd} and has a payoff of, e.g for equal weight:

(
1
d

d∑
i=1

Si(T )−K
)+

arthimetic average basket call(
K − 1

d

d∑
i=1

Si(T )

)+

arthimetic average basket put(
(
d∏
i=1

Si(T ))
1
d −K

)+

geometric average basket call(
K − (

d∏
i=1

Si(T ))
1
d

)+

geometric average basket put

Definition 1.8 (Outperformance Option). Outperformance options are options
on the maximum or minimum of multiple assets with the payments:

(max{S1(T ), S2(T ), · · · , Sd(T )} −K)+ maximum outperformance call

(K −max{S1(T ), S2(T ), · · · , Sd(T )})+ maximum outperformance put

(min{S1(T ), S2(T ), · · · , Sd(T )} −K)+ minimum outperformance call

(K −min{S1(T ), S2(T ), · · · , Sd(T )})+ minimum outperformance put

Remark 1.9. We notice that although one dimensional Asian geometric aver-
age options and multidimensional basket geometric average options are seldom
traded in practice, they are regarded as useful tools to test cases for computa-
tional efficiency of different numerical methods, if we discuss within a Black-
Scholes model.

1.2 Financial Models

In this dissertation, we study regression-based Monte Carlo methods for pricing
American-style options in two different frameworks: Black-Scholes model and
Heston model. Black-Scholes model is a constant volatility model, while Heston
model is a type of stochastic volatility model. First we study the form of Black-
Scholes model and the Black-Scholes formula.
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Black-Scholes Model

We consider a complete probability space (Ω,F , (Ft)t∈[0,T ],Q) with Q being the
risk-neutral measure, (Ft)t∈[0,T ] denoting the Brownian filtration and W =
(W (t))t∈[0,T ] = (W1(t), · · · ,Wn(t))t∈[0,T ] as a correlated n-dimensional Brownian
motion. The risk-neutral dynamics of the stock prices in the Black-Scholes
model are given by:

dSi(t)

Si(t)
= (r − δ)dt+ σidWi(t), i = 1, . . . , n (1.7)

where r is the risk-free interest rate, δ is the continuous dividend, σi is the
constant volatility of stock Si(t), Si(0) is the initial stock price, each Wi is a
standard one-dimensional Brownian motion, the instantaneous correlation of
Wi and Wj is denoted by ρij:

Corr

[
dSi(t)

Si(t)
,
dSj(t)

Sj(t)

]
= ρijdt

We denote Σ = (σij)i,j=1,...,d = ρijσiσj as the covariance matrix. We assume the
covariance to be symmetric and positive-definite. Then we can apply Cholesky
decomposition to Σ and derive a lower triangular matrix L = (lij) with Σ = LL>.
Thus we can rewrite the Black-Scholes model as:

dSi(t)

Si(t)
= (r − δ)dt+

n∑
j=1

lijdW̃j(t), i = 1, . . . , n (1.8)

with W̃j(t) being uncorrelated Brownian motions.

Theorem 1.10 (Black-Scholes Formula). Consider the Black-Scholes market
model with dimension n = 1. Then the price V Call(0) = EQ(e−rT (S(T ) −K)+) of a
European call option and the price V Put(0) = EQ(e−rT (K − S(T ))+) of a European
put option with strike K > 0 and maturity T are given by:

V Call(0) = e−δTS(0)Φ(d1)−Ke−rTΦ(d2) (1.9)

V Put(0) = Ke−rTΦ(−d2)− e−δTS(0)Φ(−d1) (1.10)

d1 =
ln
(
S(0)
K

)
+
(
(r − δ) + 1

2σ
2
)
T

σ
√
T

d2 = d1 − σ
√
T

Remark 1.11 (Weakness of the Black-Scholes Model). In the Black-Scholes
model, the log-returns of stocks are assumed to be normal distributed with
constant volatility. Although the Black-Scholes model is still a benchmark in
the financial industry, its description of the movements of stocks and options is
said to be too simple by researchers and practitioners. In contrast, the volatility
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of stocks and options in the framework of stochastic volatility model is assumed
to follow a separate stochastic process , which is closer to reality and can be
explained by the fact that the volume of trading or the demand for the stock can
leads to the movement of volatility.

Heston Model

There are different types of stochastic volatility models. Among them, Heston
model is the most popular one. To ensure that the volatility keeps nonnegative,
Heston used a square-root process for the volatility. The risk-neutral dynamics
of the stock price process S(t) and the variance process V (t) are given by:

dS(t)

S(t)
= (r − δ)dt+

√
V (t)dW1(t) (1.11)

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dW2(t) (1.12)

with two Brownian motions having a correlation of:

Corr(W1(t),W2(t)) = ρ

where S(0) and V (0) are the initial values and r and δ are risk-free interest rate
and continuous dividend yield. θ is the long-term level of the variance, κ denotes
the the speed of mean reversion to long-term value, σ is the volatility of the
variance. Typically ρ is negative, which is referred to as a leverage effect.

There exists a (semi-) explicit pricing formula for European options in the
Heston model, which is the main reason for the success of Heston model with
practitioners.

Theorem 1.12 (Heston Formula). The price V Call(0) of a European call in the
Heston model is given as:

V Call(0) =
1

2
(S(0)e−qT −Ke−rT ) +

1

π

∫ ∞
0

(
f1(u)−Ke−rT f2(u)

)
du (1.13)

The values f1(u) and f2(u) are given by:

f1(u) = R

(
e−iu ln(K)ϕ(u− i)

iuerT

)
f2(u) = R

(
e−iu ln(K)ϕ(u)

iu

)

where R(·) denotes the real part of a complex number. The Heston characteristic
function ϕ(·) is given by:

ϕ(u) = eA1(u)+A2(u)+A3(u)
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with

A1(u) = iu[ln(S(0)) + (r − q)T ]

A2(u) =
θκ

σ2

(
(κ− ρσiu− h(u))T − 2 ln

[
1− g(u)e−h(u)T

1− g(u)

])

A3(u) =
V (0)(κ− ρσiu− h(u))(1− e−h(u)T )

σ2(1− g(u)e−h(u)T )

and

g(u) =
κ− ρσiu− h(u)

κ− ρσiu+ h(u)

h(u) =
√

(ρσiu− κ)2 + σ2(iu+ u2)

with i as the imaginary unit.

1.3 Numerical Methods

Monte Carlo Method

Theorem 1.13 (Strong Law of Large Numbers). Let (Ω,F ,P) be a probability
space and (Xn)n∈N be a sequence of integrable, real-valued random variables
that are independent, identically distributed (i.i.d.) on the space. We define
µ = E(X), then we have for P-almost all ω ∈ Ω:

1

N

N∑
i=1

Xi(w)
N→∞−→ µ (1.14)

i.e the arithmetic mean of the realizations of Xi tends to the theoretical mean of
every Xi, its expectation µ.

The basic idea of Monte-Carlo method is the strong law of large numbers.
Computing an option price is computing the discounted expectation (with re-
spect to the equivalent martingale measure) of the payoff B, thus we have the
Algorithm 1.1 below:

The Monte Carlo estimator is an unbiased estimator. We use the standard de-
viation of the error for the Monte-Carlo estimator as a measure for the accuracy
of the Monte Carlo estimator by the central limit theorem:

Theorem 1.14 (Central Limit Theorem). Let (Xn)n∈N be a sequence of inde-
pendent real-valued random variables identically distributed on a probability
space (Ω,F ,P). Assume also that they all have a finite variance σ2 = Var(X).

7
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Algorithm 1.1 Monte Carlo method to price European option
Input: final payoff B
Output: option price PN
1: Simulate N independent realizations Bi of the final payoff B.

2: Choose PN =

(
1

N

N∑
i=1

Bi

)
· e−rT as an approximation for the option price

EQ
(
e−rTB

)
.

Then the normalized and centralized sum of these random variables converges
in distribution towards the standard normal distribution:

1
N

N∑
i=1

Xi − µ
σ√
N

D→ N (0, 1) N →∞ (1.15)

Remark 1.15 (Confidence Interval). As we know that the asymptotic distribu-
tion of the Monte Carlo estimator is approximately normal, we obatin an approx-
imate (1− α)-confidence interval for the expectation µ:[

1

N

N∑
i=1

Xi − z1−α
2

σ√
N
,

1

N

N∑
i=1

Xi + z1−α
2

σ√
N

]
(1.16)

where z1−α
2

is the 1 − α
2 -quantile of the standard normal distribution N (0, 1). If

we choose α = 5%, we get 1 − α
2 = 97.5%. As the 97.5%− quantile of N (0, 1) is

about 1.96, we obtain an approximate 95%− confidence interval for µ:[
1

N

N∑
i=1

Xi − 1.96
σ√
N
,

1

N

N∑
i=1

Xi + 1.96
σ√
N

]
(1.17)

Normally, the variance σ2 is unknown and is estimated by its empirical counter-
part sample variance σ̂2

N :

σ̂2
N =

1

N − 1

N∑
i=1

(Xi −
1

N

N∑
i=1

Xi)
2 (1.18)

Binomial Trees

Binomial trees are useful for pricing a lot of European-style and American-style
options. In this section, we introduce the general tree framework. In the next
chapter, we study different types of trees.

Suppose the stock price S(t) at time t ∈ [0, T ] has the price St. Assume the
stock price can move up with probability p and move down with probability
q = 1−p. After one time period ∆t, if the stock price moves up, we have the value
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St

Stu

Std

p

q

t

∆t

t+ ∆t

Figure 1.1: One-period movement of the stock price in a binomial tree

Stu; and if the stock price moves down, the value is Std. For no-arbitrage reason,
we require u and d to satisfy:

d < e(r−δ)∆t < u (1.19)

The mean and the variance of the stock price at the end of the period ∆t is:

Ebinomial[St+∆t] = p(Stu) + q(Std) (1.20)

Varbinomial[St+∆t] = p(Stu)2 + q(Std)2 − (p(Stu) + q(Std))2 (1.21)

Consider the Black-Scholes model, the price at the end of period ∆t is a lognor-
mal random variable (in the risk-neutral world):

St+∆t = Ste
((r−δ)−σ

2

2
)∆t+σ

√
∆t (1.22)

with the mean and the variance:

EQ[St+∆t] = Ste
(r−δ)∆t (1.23)

VarQ[St+∆t] = S2
t e

(2(r−δ)+σ2)∆t − (Ste
(r−δ)∆t)2 (1.24)

To ensure weak convergence of the tree model to the Black-Scholes model (see
Korn [25]), the mean and the variance should be matched in the binomial tree
and the Black-Scholes model, thus we have:

Ebinomial[St+∆t] = EQ[St+∆t] (1.25)

Varbinomial[St+∆t] = VarQ[St+∆t] (1.26)

Thus, we have:

pu+ (1− p)d = e(r−δ)∆t (1.27)

pu2 + (1− p)d2 = e(2(r−δ)+σ2∆t) (1.28)
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Algorithm 1.2 Binomial tree method to price general options
1: For N � 1 set up a suitable binomial tree for the price process S(ti) in discrete

time.
2: Compute the discounted expected payoff E(N)(e−r∆tBN ) in the discrete-time

model as approximation for EQ(e−r∆tB).

We can solve these equations and obtain the moment-matching equations:

p =
e(r−δ)∆t − d

u− d
(1.29)

q =
u− e(r−δ)∆t

u− d
(1.30)

e(2(r−δ)+σ2)∆t = e(r−δ)∆t(u+ d)− ud (1.31)

The approach is illustrated in Figure 1.1:
The analysis in a one-period binomial tree can be extended to a multi-period

binomial tree. To solve equations (1.29), (1.30) and (1.31) for u, d, p and q in
terms of r, δ and σ, we need an additional equation since we have 3 equations
with 4 unknowns. There are several choices for a second equation, for example:
Cox-Ross-Rubinstein (CRR) approach [11] and Jarrow-Rudd (JR) approach [21],
which will be studied in the next chapter. We present the general frame work of
binomial tree method in Algorithm 1.2.

1.4 Machine Learning Techniques

The core part of the regression-based Monte Carlo methods to price American-
style options is the least-squares linear regression. In order to enhance them, we
need to improve the regression part of these methods. There are some notable
machine learning methods which can do regression better. In this section, we in-
troduce the basic concepts of them, see Bishop [6]. Their powerful performance
will be studied in the section 4.

Machine learning theory tries to answer the questions like "Can machines do
what human can do?". Assume that some training data are generated from a
probability distribution, which is unknown to a machine learning system. After
using some machine learning methods, the system can build a model to estimate
the unknown distribution. Based on this model, the machine learner can predict
accurately for new data generated from the same distribution.

Linear Regression and Bayesian Treatment

The linear regression model is a very popular model in the machine learning
theory. It consists of a linear combination of some basis functions, which are

10
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nonlinear and fixed. Due to its linearity of basis functions, the linear regression
has some good properties, for example, the exact solution of the least-squares
problem. However the number and the form of basis functions has to be defined
previously or according to the training data 1. If it is determined by the training
data by maximizing the likelihood function, the over-fitting problem is likely to
occur and the model can be very complex.

Bayesian linear regression use the Bayesian theorem and assume firstly a
prior probability distribution for the model parameters, and then determine a
posterior distribution for the parameters by observing the training data. It gives
not a point estimate for the model parameters, but a distribution. In this way,
the model complexity can be determined automatically.

Neural Network

Linear regression models have obvious shortcomings. If the number of input
variables is assumed to be D and the polynomial order of the regression curve
function is assumed to be n, we will have Dn number of coefficients, which
should be calculated by the training data. The curse of dimensionality limits its
practical usefulness. One way to modify this is to use a neural network, which
is a nonlinear parametric model. The term "neural network" has the original
meaning from biological science, which tries to find out how a system of neurons
processes information.

Kernel Method

For linear regression models and nonlinear neural networks, the training data
are used to determine the model parameters and then omitted. When we make
predictions for new inputs, we only use the learned parameters. Another alter-
native approach is the kernel methods, in which all of or some of the training
data are kept and will also be used to predict. Kernel methods belong to non-
parametric models, while linear regression models and neutral networks are
parametric approaches. Parametric models have shortcomings that they might
estimate the distribution poorly, which leads to a bad performance for predict-
ing. For example, if the training data are generated in a multimodal way, their
distribution can never be captured by a unimodal model. In kernel methods,
we need a symmetric metric to measure the similarity of any two training data.
This metric is called kernel function. Kernel methods make predictions based
on linear combinations of kernel functions evaluated at the training data.

1Here, in the Monte-Carlo settings, the size of the training data means the number of simulated
stock prices.
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Support Vector Machine

In kernel methods, we must evaluate the kernel function for all possible pairs of
training data. If the number of training data is large, making prediction would
be very slow. Support vector machine (SVM ) is a kind of sparse kernel machine.
It firstly defines basis functions centred on all the training data and then select
a subset of them for predicting. In the training process, it deals with a nonlinear
optimization. Because its objective function is convex, any local optimum is also
a global optimum. Since it has sparse solutions, it requires only a subset (not
the whole set) of the training data to make predictions for new inputs, which
could be much faster than the kernel method.

12



2 Tree Methods for Pricing American-style
Options

2.1 Black-Scholes Model

In the section 1.3 we have introduced the one-period binomial model. In this
chapter we will extend the analysis to multi-period case. We remember we need
to define the up-movement factor u and down-movement factor d. And this
leads to different cases of trees. First we study their form in one-dimension.
And then multidimensional case will also be investigated. After binomial tree is
constructed, we will focus on pricing different American-style options introduced
in the section 1.1 and present their numerical result as benchmarks for testing
various regression-based Monte Carlo methods in the chapter 4. This chapter is
mainly based on Hoek [19], Liang [31], Müller [36] and Sayer[39].

2.1.1 Jarrow-Rudd Tree for One-Dimension

In the Jarrow-Rudd tree (JR tree), Jarrow and Rudd [21] choose equal probabil-
ities for up- and down- movement of stocks:

p = q =
1

2
(2.1)

Put this equality into moment-matching equations (1.29), (1.30) and (1.31), we
obtain:

u+ d = 2e(r−δ)∆t (2.2)

u2 + d2 = 2e(2(r−δ)+σ2)∆t (2.3)

The exact solution is:

u = e(r−δ)∆t(1 +
√
eσ2∆t − 1) (2.4)

d = e(r−δ)∆t(1−
√
eσ2∆t − 1) (2.5)

A most popular choice as an approximate solution is:

u = e((r−δ)− 1
2
σ2)∆t+σ

√
∆t (2.6)

u = e((r−δ)− 1
2
σ2)∆t−σ

√
∆t (2.7)
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S0

S0u

S0d
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S0d
2

S0u
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S0u
N−1d

S0ud
N−1

S0d
N

t0 t1 t2 tN = T

p

q

Figure 2.1: Multi-period movement of the stock price in the JR tree

Although the probabilities are equal in the JR tree, the tree is skewed since:

ud = e2((r−δ)− 1
2
σ2)∆t (2.8)

6= 1 (2.9)

The JR-tree is illustrated in Figure 2.1:

2.1.2 Cox-Ross-Rubinstein Tree for One-Dimension

Cox, Ross and Rubinstein [11] use another equation to construct a symmetric
tree (CR tree):

u · d = 1 (2.10)

While the JR-tree is skewed, the CRR-tree is symmetric, since if the stock price
S first goes up to Su and then goes down to Sud, it actually returns to the same
price as before Sud = S. Wenn terms in ∆t2 and higher powers of ∆t are ignored,
we have an approximate solution:

u = eσ
√

∆t (2.11)

d = e−σ
√

∆t (2.12)

p =
e(r−δ)∆t − d

u− d
(2.13)

q =
u− e(r−δ)∆t

u− d
(2.14)
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Figure 2.2: Multi-period movement of the stock price in the CRR tree

The CRR tree is illustrated in Figure 2.2:
After the CRR tree for the stock price is constructed, we can now price Eu-

ropean, Bermudan and American options. Denote Tex as the set of potential
exercise dates. For European options, Tex = T = {tN}; for Bermudan options,
Tex $ {t1, . . . , tN}; for American options, Tex = {t1, . . . , tN}. We can combine algo-
rithms for pricing these three options in one algorithm, see Algorithm 2.1.
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Algorithm 2.1 CRR tree to price European / Bermduan / American options
1: Forward Step:

Denote node (i, j) as j-th node at the i-th time step, where i = 0, 1, . . . , N and
j = 0, 1, . . . , i. For i = 0, 1, . . . , N , the stock price Si,j at the node (i, j) is:

Si,j = S0u
jdi−j (2.15)

For potential exercise dates ti ∈ Tex, the payoff of the option is denoted as
V E
i,j, computed by:

V E
i,j = max((Si,j −K), 0) for Call

V E
i,j = max((K − Si,j), 0) for Put

The option price at each node is defined as Vi,j, at the end of periods, we
have:

VN,j = V E
N,j (2.16)

2: Backward Step:
For i = N − 1, N − 2, . . . , 0, we compute the option price at each node (i, j) over
one period ∆t backward:

Vi,j = e−(r−δ)∆t(pVi+1,j+1 + qVi+1,j) (2.17)

For potential exercise dates ti ∈ Tex, we should decide whether to exercise the
option immediately or to hold it:

Vi,j = max(Vi,j , V
E
i,j) (2.18)

3: Output: V0,0.
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2.1 Black-Scholes Model

S0,0

S1,1

S1,0

S2,2

S2,1

S2,0

S3,3

S3,2

S3,1

S3,0

(
Max Option
50.00 6.50

)

(
Max Option
56.12 11.42

)

(
Max Option
50.00 1.55

)

(
Max Option
62.99 16.76

)

Max Option
56.12 6.12
50.00 3.08



(
Max Option
50.00 0

)

(
Max Option
70.70 20.70

)

Max Option
62.99 12.99
56.12 6.12



Max Option
56.12 6.12
50.00 0



(
Max Option
50.00 0

)

50

56.12

44.55

62.99

50.00

39.69

70.70

56.12

44.55

35.36

t0 t1 t2 t3 = T

Figure 2.3: Illustration for pricing American-style (maximum) lookback call op-
tion using CRR tree

2.1.3 CRR Tree for American-style Path-Dependent Options

A path-dependent option is an option, whose payoff depends on the whole path
of stock S(t), not only the final value S(tex) at some exercise date tex ∈ Tex. As
presented in the section 1.1, lookback options, Asian options and barrier options
are all path-dependent options. Binomial tree can be extended to price them and
is computationally more efficient than Monte Carlo methods, especially when
pricing their American forms.

American-style Lookback Option

We give a concrete example to explain how to price American-style lookback
option using CRR tree, see Figure 2.3.

Consider a stock S(t) with initial price S(0) = S0 = 50, risk-free interest rate
r = 0.10, dividend δ = 0, volatility σ = 0.4, maturity of the option T = 0.25, fixed
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2 Tree Methods for Pricing American-style Options

strike price K = 50. The option can be exercised at any time before maturity, say
0 < tex ≤ T . If exercised at tex, the payoff is the amount by which the maximum
stock price between 0 and tex exceeds the strike K. We set up a three-step CRR
tree, i.e N = 3. The time step length ∆t = T/N = 0.0833. Up-movement factor
u, down-movement factor d, up-movement probability p and down-movement
probability q can be computed as: u = 1.1224, d = 0.8909, p = 0.5073, q = 0.4927.

In Figure 2.3, the top number above each node is the stock price, the left
number below each node is the possible maximum stock prices for all paths to
this node, the right number below each node is the option value at this node
corresponding to each maximum stock price, assuming that the option is not
exercised before this node.

To illustrate the backwards procedure, we consider a specific node (2, 1). The
stock price at this node is S2,1 = 50. The maximum stock price so far is 56.12 or
50.00.

Consider the first case, where the maximum is 56.12. If the stock price goes
up, it reaches the node (3, 2), the maximum value is still 56.12 and the option
value is 56.12−50 = 6.12. If it goes down, it reaches the node (3, 1), the maximum
value is still 56.12 and the option value is 56.12 − 50.00 = 6.12. Then the value of
holding the option is:

V2,1 = (0.5073× 6.12 + 0.4927× 6.12)× e−0.1×0.0833 = 6.07

The value of exercising the option immediately is:

V E
2,1 = 56.12− 50.00 = 6.12

Thus the option value at node (2, 1) is:

V2,1 = max(6.07, 6.12) = 6.12

The optimal strategy in this case is to exercise the option rather than hold it.
Consider the second case, where the maximum is 50.00. If the stock price goes

up, it reaches the node (3, 2), the maximum value becomes 56.12 and the option
value is 56.12−50 = 6.12. If it goes down, it reaches the node (3, 1), the maximum
value is still 50 and the option value is 50.00−50.00 = 0. Then the value of holding
the option is:

V3,1 = (0.5073× 6.12 + 0.4927× 0)× e−0.1×0.0833 = 3.08

But the value of exercising the option immediately is:

V E
3,1 = 50.00− 50.00 = 0

Thus the option value at the node (3, 1) is:

V3,1 = max(3.08, 0) = 3.08
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2.1 Black-Scholes Model

The optimal strategy in this case is to hold the option rather than exercise it.
Rolling back in the same way gives the option value at the first node (0, 0):

6.50. This method is computationally applicable because the number of different
values of maximum stock price at each node with N time steps is no more than
N .

American-style Asian Option

This procedure can also be extended to price Asian options with slight modifi-
cations. At each node, there are a lot of different values of arithmetic/geometric
average stock price, thus it is often computationally expensive. However we can
choose a small number of representative values, for example, the minimum of
average, the maximum of average and values equally spaced between the min-
imum and the maximum. Then we can calculate the option value for these
representatives using interpolation from known values. We also illustrate with
an example, see Figure 2.4.

Consider a stock price S(t) with initial price S(0) = S0 = 50, risk-free interest
rate r = 0.10, dividend δ = 0, volatility σ = 0.4, maturity of the option T = 1, fixed
strike price K = 50. The option can be exercised at any time before maturity, say
0 < tex ≤ T . If exercised at tex, the payoff is the amount by which the average
of stock prices between 0 and tex exceeds the strike K. We set up a twenty-step
CRR tree, i.e N = 20. The time step length ∆t = T/N = 0.05. Up-movement factor
u, down-movement factor d, up-movement probability p and down-movement
probability q can be computed as: u = 1.0936, d = 0.9144, p = 0.5056, q = 0.4944.

To illustrate the backwards procedure, we consider a specific node (4, 2), which
is the central node at time 0.2 year. The stock price at this node is S4,2 = 50.00.
Forward procedure shows that the maximum of averaged stock price so far is
53.83 and the minimum of averaged stock price so far is 46.65. If the stock price
goes up, it reaches the node (5, 3) with S5,3 = 54.68; if the stock price goes down,
it reaches the node (5, 2) with S5,2 = 45.72. At the node (5, 3), the average price
is between 47.99 and 57.39. At the node (5, 3), the average price is between 43.88
and 52.48.

Suppose we also choose another two representative average price equally
spaced between the minimum and the maximum at each node, which means, at
the node (4, 2), the representatives are: 46.65, 49.04, 51.44 and 53.83; at the node
(5, 3), the representatives are: 47.99, 51.12, 54.26 and 57.39; at the node (5, 2), the
representatives are: 43.88, 46.75, 49.61 and 52.48. Assume the option price for
each representative average price at the nodes (5, 3) and (5, 2) are already calcu-
lated by backwards procedure, for example, at the node (5, 3), if the average is
54.26, the option price is computed as 9.524.

Now we compute the option price for each representative averaged stock price
at the node (4, 2). For instance, we consider the averaged stock price as 51.44 at
the node (4, 2). If the stock price goes up and reaches the node (5, 3), the new
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S4,2 = 50.00

S5,3 = 54.68

S5,2 = 45.72


Average Option

46.65 6.065
49.04 6.429
51.44 6.804
53.83 7.190




Average Option

47.99 8.111
51.12 8.800
54.26 9.524
57.39 10.285




Average Option

43.88 3.670
46.75 4.070
49.61 4.492
52.48 4.942



Figure 2.4: Illustration for pricing American-style (arithmetic-average) Asian call
option using CRR tree

average is:

5× 51.44 + 54.68

6
= 51.98

We notice that 51.98 lies between 51.12 and 54.26 at the node (5, 3), thus we can
compute the corresponding option value for 51.98 by interpolating:

(51.98− 51.12)× 9.524 + (54.26− 51.98)× 8.800

54.26− 51.12
= 8.998

If the stock price goes down and reaches the node (5, 2), the new average is:

5× 51.44 + 45.72

6
= 50.49

The corresponding option value for 50.49 by interpolating is:

(50.49− 49.61)× 4.942 + (52.48− 50.49)× 4.492

52.48− 49.61
= 4.630

Thus the value of holding the option for averaged price 51.44 at the node (4, 2) is:

(0.5056× 8.998 + 0.4944× 4.630)× e−0.1×0.05 = 6.804

This is American-style, thus we also need to compute the value of exercising the
option immediately is:

51.44− 50 = 1.44
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2.1 Black-Scholes Model

As 1.44 < 6.804, the optimal strategy is to hold the option rather than exercise it
and the corresponding option value is 6.804.

Rolling back in the same way gives the option value at the first node (0, 0):
7.17. If the number of time steps and the number of representatives for the
averages increase, the option value converges to the right result.

The same procedure can also be used to price (geometric-average) Asian op-
tions. As the geometric average of log-normally distributed random variables is
again log-normally distributed, there exits another simpler way to price them.
Although (geometric-average) Asian options are seldom traded in practice, they
are mathematically useful to test efficiency for different numerical methods.

From the exact solution of the stock price in the Black-Scholes model:

S(t) = S(0) exp

(
[(r − δ)− 1

2
σ2]t+ σW (t)

)
(2.19)

we obtain:(
n∏
i=1

S(ti)

) 1
n

= S(0) exp

(
[(r − δ)− 1

2
σ2]

1

n

n∑
i=1

ti +
σ

n

n∑
i=1

W (ti)

)
(2.20)

According to Hull [20], the probability distribution of the geometric average of
stock price is the same as that of the stock price with new interest rate rgeo,
new dividend δgeo and new volatility σgeo. To price the (geometric-average) Asian
option is to price a regular option with rgeo, δgeo and σgeo:

rgeo = r (2.21)

δgeo =
1

2

(
r + δ +

σ2

6

)
(2.22)

σgeo =
σ√
3

(2.23)

Typically, for European-style (geometric-average) Asian option, there exits ana-
lytic formulas by Theorem 1.10 with rgeo, δgeo and σgeo as inputs. For American-
style (geometric-average) Asian option, we can set up a one-dimensional bino-
mial tree to price, which is much faster than the previous procedure.

This dimension-reduction procedure can also be used to high dimensional
case, i.e geometric average basket options, e.g with the payoff:(

(

n∏
i=1

Sn(T ))
1
n −K

)+

According to the equations 1.7 and 1.8, we have:

Si(t) = Si(0) exp

[(r − δ)− 1

2
σ2
i ]t+

n∑
j=1

lijW̃j(t)

 , i = 1, 2, . . . , n (2.24)
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where L = (lij)i,j=1,...,n is obtained by using the Cholesky decomposition to the
covaricance matrix Σ = (σij)i,j=1,...,j with Σ = LL>. Thus the geometric average
on those stocks are:(

n∏
i=1

Sn(T )

) 1
n

=

(
n∏
i=1

Si(0)

) 1
n

exp

[(r − δ)− 1

2n

n∑
i=1

σ2
i ]T +

1

n

n∑
i=1

n∑
j=1

lijW̃j(T )


=

(
n∏
i=1

Si(0)

) 1
n

exp

(
[(r − δ)− 1

2n

n∑
i=1

σ2
i ]T +

1

n

n∑
i=1

l·jW̃j(T )

)

=

(
n∏
i=1

Si(0)

) 1
n

exp

[(r − δ)− 1

2n

n∑
i=1

σ2
i ]T +

1

n

√√√√ n∑
i=1

l2·jW̃ (T )


(2.25)

where l·j =
n∑
i=1

lij and l2·j = (
n∑
i=1

lij)
2.

According to Glasserman [15], in the Black-Scholes model, the probability
distribution of the geometric average price of several correlated/uncorrelated
stocks is the same as that of a single stock price with new interest rate rgeo, new
dividend δgeo and new volatility σgeo, which is again easy to be implemented in
the CRR tree.

rgeo = r (2.26)

δgeo = δ +
1

2n

n∑
i=1

σ2
i −

1

2n2

n∑
j=1

l2·j (2.27)

σgeo =
1

n

√√√√ n∑
j=1

l2·j (2.28)

American-style Barrier Option

Barrier options are often traded in the OTC (over the counter) market rather
than on exchanges. Normally the plain vanilla options are too expensive and
do not satisfy client requirements, thus barrier options are introduced. Like in
the previous sections, we also illustrate the pricing for barrier options with an
example. First we discuss the knock-out type, see Figure 2.5

Consider a stock S(t) with initial price S(0) = S0 = 100, risk-free interest rate
r = 0.05, dividend δ = 0, volatility σ = 0.20. An American-style up-and-out barrier
call option can be exercised at any time before maturity T = 1, say 0 < tex ≤ T . If
exercised at tex, the payoff is the amount by which the stock price at tex exceeds
the strike K = 80, given the stock price between 0 and tex does not exceed the
barrier B = 120. We set up a three-step CRR tree, i.e N = 3. The time step
length ∆t = T/N = 0.3333. Up-movement factor u, down-movement factor d,
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Figure 2.5: Illustration for pricing American-style (up-and-out) barrier call op-
tion using CRR tree

up-movement probability p and down-movement probability q are: u = 1.1224,
d = 0.8909, p = 0.5438, q = 0.4562.

The valuation of the barrier option is the same as for the plain vanilla option
except for some adjustment. In Figure 2.5, the top number above each node is
the stock price, the left number below each node denotes whether the option is
"up-and-out" or still "in", the right number below each node indicates the option
price at this node.

First we note that in the last step, S3,3 = 141.39 > 120, thus we label "Out" under
node (3, 3); S3,2, S3,1, S3,0 ≤ 120, thus we label "In" under nodes (3, 2), (3, 1) and
(3, 0). Since the option at the node (3, 3) comes to existence, the corresponding
option value is 0, rather than (S3,3 − K)+ = (141.39 − 80)+ = 61.39. The option
values at other nodes in the last step can be computed the same as for the plain
vanilla option.

Now we compute backwards and consider the node (2, 1) for example, the value
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of holding the option at this node is:

V2,1 = (0.5438× 32.2401 + 0.4562× 9.0947)× e−0.05×0.3333 = 21.3223

The value of exercising the option immediately at this node is:

V E
2,1 = (100− 80)+ = 20

Thus the option value at this node is:

V2,1 = max(21.3223, 20) = 21.3223

Consider another node (2, 2) in the same step. This node is labeled with "Out",
as S2,2 > 120, the value of the option at this node is then equal to 0. By rolling
back we can reach the first node with option value V0,0 = 23.3371.

Second we study the type of knock-in barrier option, for which the tree is slightly
different from the tree of knock-out. We take an American-style up-and-in
barrier call option as an example, see Figure 2.6. The input parameters are:
S(0) = S0 = 100, r = 0.05, δ = 0, σ = 0.20, T = 1, K = 95. This up-and-in option
doesn’t come into existence until the stock price rises to the barrier B = 120. In
order to price such kind of option, we also need to set up a CRR tree for plain
vanilla call option with same combinations of inputs. We still set up a three-step
CRR tree, i.e N = 3. The time step length ∆t = T/N = 0.3333. Then we can
obtain: u = 1.1224, d = 0.8909, p = 0.5438, q = 0.4562.

In Figure 2.6, the number above each node is the stock price. The left one
of two numbers under each node is the option price for a corresponding plain
vanilla American call option without barrier with same input parameters, which
is easier to obtain using the normal CRR tree (see Algorithm 2.1), while the right
one of two numbers under each node is our barrier option price, which will be
shown how to be computed. At the last step of the tree, if the stock price is
above the barrier, the option price is equal to the corresponding price of the
plain vanilla option, otherwise, it is set to be zero. Thus, S3,3 = 141.39 > 120 leads
to the option price V3,3 equal to the vanilla price V Vanilla

3,3 :

V3,3 = V Vanilla
3,3 = (141.39− 95)+ = 46.40

Since S3,2, S3,1, S3,0 are also below the barrier, the option price at those nodes are
all equal to 0:

V3,2 = V3,1 = V3,0 = 0

Then going backwards, we consider the stock price at each node also in two
cases. First case, the stock price is above the barrier, for instance, S2,2 = 125.98 >
120, then the option price is set to be the corresponding plain vanilla option at
this node:

V Vanilla
2,2 = (0.5438× 46.40 + 0.4562× 17.24)× e−0.05×0.3333 = 32.55
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Figure 2.6: Illustration for pricing American-style (up-and-in) barrier call option
using CRR tree

V Vanilla,E
2,2 = (125.98− 95)+ = 30.98

V Vanilla
2,2 = max(32.55, 30.98) = 32.55

V2,2 = V Vanilla
2,2 = 32.55

Second case, the stock price is below the barrier, for instance, S2,1 = 100 > 120,
then the option price V2,1 should be computed by taking the up-movement and
down-movement into account:

V2,1 = (0.5438× 0 + 0.4652× 0)× e−0.05×0.3333 = 0

Finally, the option value at the first node is V0,0 = 9.31, while the corresponding
plain vanilla option price is V Vanilla

0,0 = 13.73. We can see clearly that the barrier
option is cheaper than the corresponding plain vanilla option.
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2.1.4 Boyle-Evnine-Gibbs Tree for High-Dimension

JR tree and CRR tree has proved to be useful in the one-dimensional case. There
might be slight advantages of one tree over the other, but the practical differ-
ences are small. Both of them can be extended to high-dimensional case. The
key idea is still to define up- and down- movement factors and probabilities in a
proper way, such that the characteristic function of the discrete distribution in
the binomial tree converges to the continuous distribution in the Black-Scholes
model when the length of each time step ∆t tends to zero. Boyle, Evnine and
Gibbs [5] study the extension of the CRR tree by first defining the up-/down-
movement factors as in the CRR tree and then choosing suitable up-/down-
movement probabilities to match the expectation and variance and obtain the
BEG tree.

First we study the case of two dimensions and then generalize to high dimen-
sions. Consider a pair of two stocks with stock prices

(
S1
t , S

2
t

)
at time t, with

volatilities σ1, σ2 and correlation coefficient ρ between these stocks. After a small
time interval ∆t, we assume that each stock can move up and move down, thus
there are 22 = 4 states for the pair

(
S1
t+∆t, S

2
t+∆t

)
at time t+∆t. Further we assume

that the up-movement factor u and down-movement factor d satisfy:

u1 · d1 = 1

u2 · d2 = 1

As in the CRR tree, we have:

ui = eσi
√

∆t

di = e−σi
√

∆t

where i = 1, 2.

If both stock prices move up with probability puu, the pair at time t + ∆t is:(
S1
t u1, S

2
t u2

)
; if both stock prices move down with probability pdd, the pair at time

t+ ∆t is:
(
S1
t d1, S

2
t d2

)
; if first stock price moves up and second stock price moves

down with probability pud, the pair at time t + ∆t is:
(
S1
t u1, S

2
t d2

)
; if first stock

price moves down and second stock price moves up with probability pdu, the pair
at time t+ ∆t is:

(
S1
t d1, S

2
t u2

)
. The approach is illustrated in Figure 2.7.
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2
t u2

)
(
S1
t d1, S

2
t d2

)

puu

pud

pdu

pdd

t

∆t

t+ ∆t

Figure 2.7: One-period movement of two stock prices in a BEG tree

The four probabilities can be solved by matching the characteristic functions:

puu =
1

4

(
1 + ρ+

√
∆t

(
r − σ2

1
2

σ1
+
r − σ2

2
2

σ2

))
(2.29)

pud =
1

4

(
1− ρ+

√
∆t

(
r − σ2

1
2

σ1
−
r − σ2

2
2

σ2

))
(2.30)

pdu =
1

4

(
1− ρ+

√
∆t

(
−
r − σ2

1
2

σ1
+
r − σ2

2
2

σ2

))
(2.31)

pdd =
1

4

(
1 + ρ+

√
∆t

(
−
r − σ2

1
2

σ1
−
r − σ2

2
2

σ2

))
(2.32)

We note that all of these four probabilities will be positive if the length of time
step ∆t is small enough.

Now we discuss the high-dimensional case. Consider a group of n stocks with
stock prices (S1

t , S
2
t , . . . , S

n
t ) at time t, with volatilities σ1, σ2, . . . , σn and correlation

coefficient ρij for stock i and stock j. After a small time interval ∆t, we assume
that each stock can move up and move down, thus there are 2n states for the
group

(
S1
t+∆t, S

2
t+∆t, . . . , S

n
t+∆t

)
at time t + ∆t. The up-movement factors ui and

down-movement factors di with i = 1, 2, . . . , n for each stock satisfy:

ui · di = 1 (2.33)

ui = eσi
√

∆t (2.34)

di = e−σi
√

∆t (2.35)

Since each node at time t has 2n successor nodes at time t+∆t, we must choose
suitable probability pi for each state i with i = 1, 2, . . . , 2n, such that the first and
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2 Tree Methods for Pricing American-style Options

second moments of the characteristic function of the log-normal distribution in
the Black-Scholes model can be matched.

First, the sum of all probabilities should be equal to 1:

2n∑
i=1

pi = 1 (2.36)

Second, for each correlation coefficient ρij, there are ((n2 − n)/2) equations to be
satisfied:

2n∑
i=1

ζkm(i)pi = ρkm (2.37)

where 1 ≤ k < m ≤ n, ζkm(i) = 1 if both stock i and stock j move in the same
direction in the state i and ζkm(i) = −1 if both stock i and stock j move in the
opposite directions.
Third, for each sigma σk, there are n equations to be satisfied:

2n∑
i=1

ηk(i)pi =
√

∆t

(
r − σ2

k
2

σk

)
(2.38)

where 1 ≤ k ≤ n, ηk(i) = 1 if stock k moves up in the state i and ηk(i) = −1 if stock
k moves down.

For the equations (2.36), (2.37) and (2.38), there are only in total (n2 + n+ 2)/2
equations, while there are 2n unknown probabilities, the number of which is
more than the number of equations when n ≥ 3. Thus there are infinite number
of solutions. The solution proposed by Boyle, Evnine and Gibbs [5] is:

pi =
1

2n

 n∑
k,m=1
k<m

ζkm(i)ρkm +
√

∆t

n∑
k=1

ηk(i)
r − σ2

k
2

σk

 (2.39)

with i = 1, 2, . . . , 2n. However these probabilities are not well-defined and can still
be negative even the number of time steps N increases to infinite and the length
of time step ∆t tends to 0.

2.1.5 Korn-Müller Tree for High-Dimension

Korn and Müller [27], [28], [36] propose a decoupling approach to the JR tree in
the high-dimensional case by using Cholesky decomposition to transform cor-
related geometric Brownian motions to uncorrelated Brownian motions. Com-
pared with BEG tree in the previous section, KM tree guarantees non-negative
up- and down- movement probabilities and also better convergence performance
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2.1 Black-Scholes Model

for discontinue payoffs, such as barrier options. In this section we study KM tree
by a concrete example in three dimension.

Consider three stocks S(t) = (S1(t), S2(t), S3(t)) within the Black-Scholes model:

dS1(t) = (r − δ1)S1(t)dt+ σ1S1(t)dW1(t)

dS2(t) = (r − δ2)S2(t)dt+ σ2S2(t)dW2(t)

dS3(t) = (r − δ3)S3(t)dt+ σ3S3(t)dW3(t)

with volatilities σ1 = σ2 = σ3 = 0.2, dividends δ1 = δ2 = δ3 = 0.1, interest rate
r = 0.05, initial stock prices S1(0) = S2(0) = S3(0) = 100. Assume the correlation
coefficient of the Brownian motions ρ is:

ρ =

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


=

 1 −0.25 0.25
−0.25 1 0.3
0.25 0.3 1


Then the corresponding variance-covariance matrix Σ can be computed as:

Σ =

 σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ21σ2σ1 σ2
2 ρ23σ2σ3

ρ31σ3σ1 ρ32σ3σ2 σ2
3


=

 0.04 −0.01 0.01
−0.01 0.04 0.012
0.01 0.012 0.04


Consider an American-style geometric-average basket call option of these three
stocks with the payoff at any potential exercise date Tex before or at maturity
T = 1 year and strike K = 100:

g(S(Tex)) =

( 3∏
i=1

Si(Tex)

) 1
3

−K

+

Korn and Müller define a new process X by Xt = (ln(S1(t)), ln(S2(t)), ln(S3(t)))
via log-transformation:

dX1(t) = (r − δ1 − 1
2σ

2
1)dt+ σ1dW1(t)

dX2(t) = (r − δ2 − 1
2σ

2
2)dt+ σ2dW2(t)

dX3(t) = (r − δ3 − 1
2σ

2
3)dt+ σ3dW3(t)

with X1(0) = ln(S1(0)) = 4.6052, X2(0) = ln(S2(0)) = 4.6052 and X3(0) = ln(S3(0)) =
4.6052.
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2 Tree Methods for Pricing American-style Options

The first step of the KM tree is to decompose the variance-covariance matrix
by Cholesky decomposition Σ = LLᵀ, thus we have L as follows:

L =

 0.2000 0 0
−0.0500 0.1936 0
0.0500 0.0749 0.1786


The inverse of L is computed as:

L−1 =

 5.0000 0 0
1.2910 5.1640 0
−1.9412 −2.1651 5.5995


The second step of the KM tree is to transform the stock price process S into

a new process Y , for which the Brownian motions are independent. We define:

S(t) 7→ Y (t) = L−1 ln(S(t)) (2.40)

Consequently we can compute Y (0) as follows:

Y1(0) =
1∑
j=1

l
(−1)
1j ln(S1(0))

= l−1
11 ln(S1(0))

= 5.0000× 4.6052

= 23.0259

Y2(0) =
2∑
j=1

l
(−1)
2j ln(S2(0))

= (l−1
21 + l−1

22 ) ln(S1(0))

= (1.2910 + 5.1640)× 4.6052

= 29.7262

Y3(0) =

3∑
j=1

l
(−1)
1j ln(S3(0))

= (l−1
31 + l−1

32 + l−1
33 ) ln(S3(0))

= (−1.9412− 2.1651 + 5.5995)× 4.6052

= 6.8765

The dynamics of Y are given by:

dY1(t) = α1dt+ dW̃1(t)

dY2(t) = α2dt+ dW̃2(t)

dY3(t) = α3dt+ dW̃3(t)
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2.1 Black-Scholes Model

where the vector α = (α1, α2, α3)> is calculated as:

α = L−1

r − δ1 − 1
2σ

2
1

r − δ2 − 1
2σ

2
2

r − δ3 − 1
2σ

2
3


=

 5.0000 0 0
1.2910 5.1640 0
−1.9412 −2.1651 5.5995

−0.0700
−0.0700
−0.0700


=

−0.3500
−0.4518
−0.1045


KM tree is an extension of JR tree, thus for each node in the Y tree, the up-

and down- movement probability are equal:

pi = qi =
1

2
i = 1, 2, 3

The up-movement factors ui and down-movement factors di with i = 1, 2, 3 satisfy:

ui = αi∆t+
√

∆t

di = αi∆t−
√

∆t

Thus, for each Y i tree:

Y 1 :

{
u1 = −0.3500∆t+

√
∆t

d1 = −0.3500∆t−
√

∆t

Y 2 :

{
u2 = −0.4518∆t+

√
∆t

d3 = −0.4518∆t−
√

∆t

Y 3 :

{
u3 = −0.1045∆t+

√
∆t

d3 = −0.1045∆t−
√

∆t

We illustrate the Y i tree by 3 time steps, i.e N = 3, with Figure 2.8, where
the number above each node is the price of Y i at this node. ∆t = T/N = 0.3333
leads directly to the results u = (u1, u2, u3)ᵀ = (0.4607, 0.4267, 0.5425)ᵀ and d =
(d1, d2, d3)ᵀ = (−0.6940,−0.7280,−0.6122)ᵀ. We can compute all the prices of each
Y i tree as follows:

Y 1 :


23.0259 23.4865 23.9472 24.4079

0 22.3318 22.7925 23.2532
0 0 21.6378 22.0985
0 0 0 20.9438



Y 2 :


29.7262 30.1530 30.5797 31.0064

0 28.9983 29.4250 29.8517
0 0 28.2703 28.6970
0 0 0 27.5423
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Y i
0,0

Y i
1,1

Y i
1,0

Y i
2,2

Y i
2,1

Y i
2,0

Y i
3,3

Y i
3,2

Y i
3,1

Y i
3,0

Yi(0)

Yi(0) + ui

Yi(0) + di

Yi(0) + 2ui

Yi(0) + ui + di

Yi(0) + 2di

Yi(0) + 3ui

Yi(0) + 2ui + di

Yi(0) + ui + 2di

Yi(0) + 3di

t0 t1 t2 t3 = T

pi = 1
2

qi = 1
2

Figure 2.8: Y i tree in the KM tree, i = 1, 2, 3

Y 3 :


6.8765 7.4190 7.9615 8.5040

0 6.2643 6.8068 7.3493
0 0 5.6521 6.1946
0 0 0 5.0399


After each Y i tree is constructed, we build the whole Y tree by:

Y = Y 1 ⊗ Y 2 ⊗ Y 3

∈ 13 × 23 × 33 × 43

Thus at the beginning t0, there is only one node in the Y tree, that is:

Y0,0 = (Y 1
0,0, Y

2
0,0, Y

3
0,0)ᵀ = (23.0259, 29.7262, 6.8765)ᵀ

At time t1, there are two nodes in each Y i tree, thus there are 2× 2× 2 = 8 nodes
(Y1,0, Y1,1, . . . , Y1,7) in the Y tree:

Y1,0 = (Y 1
1,0, Y

2
1,0, Y

3
1,0)ᵀ = (22.3318, 28.9983, 6.2643)ᵀ

Y1,1 = (Y 1
1,0, Y

2
1,0, Y

3
1,1)ᵀ = (22.3318, 28.9983, 7.4190)ᵀ

Y1,2 = (Y 1
1,0, Y

2
1,1, Y

3
1,0)ᵀ = (22.3318, 30.1530, 6.2643)ᵀ

Y1,3 = (Y 1
1,0, Y

2
1,1, Y

3
1,1)ᵀ = (22.3318, 30.1530, 7.4190)ᵀ

Y1,4 = (Y 1
1,1, Y

2
1,0, Y

3
1,0)ᵀ = (23.4865, 28.9983, 6.2643)ᵀ
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Y0,0

Y1,7

Y1,0

Y2,26

Y2,0

Y3,63

Y3,0

t0 t1 t2 t3 = T

Figure 2.9: Y tree in the KM tree

Y1,5 = (Y 1
1,1, Y

2
1,0, Y

3
1,1)ᵀ = (23.4865, 28.9983, 7.4190)ᵀ

Y1,6 = (Y 1
1,1, Y

2
1,1, Y

3
1,0)ᵀ = (23.4865, 30.1530, 6.2643)ᵀ

Y1,7 = (Y 1
1,1, Y

2
1,1, Y

3
1,1)ᵀ = (23.4865, 30.1530, 7.4190)ᵀ

Similarly at time t2, there are 33 = 27 nodes (Y2,0, Y2,1, . . . , Y2,26) and at time t3 = T ,
there are 43 = 64 nodes (Y3,0, Y3,1, . . . , Y3,63) in the Y tree. The Y tree is shown in
Figure 2.9.

As there are two successive nodes after each node with transition probability
p = 1

2 in each Y i tree, there are 23 = 8 successive nodes after each node in the Y
tree, and for each successive node, the transition probability is p = (1

2)3 = 1
8 .

The third step of the KM tree is to construct the tree for the original stock price
S by applying the inverse of transformation (2.40):

Y (t) 7→ S(t) = exp(LY (t)) (2.41)

As the equation (2.41) said that Y ∈ 13×23×33×43, we also have S ∈ 13×23×33×43.
At time t0, S0,0 can be computed by Y0,0 as:

S0,0 = exp(LY0,0)

= exp

 0.2000 0 0
−0.0500 0.1936 0
0.0500 0.0749 0.1786

 ·
23.0259

29.7262
6.8765


=

100
100
100
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S0,0

S1,7

S1,0

S2,26

S2,0

S3,63

S3,0

t0 t1 t2 t3 = T

Figure 2.10: S tree in the KM tree

At time t1, S1,0 can be computed by Y1,0 as:

S1,0 = exp(LY1,0)

= exp

 0.2000 0 0
−0.0500 0.1936 0
0.0500 0.0749 0.1786

 ·
22.3318

28.9983
6.2643


=

87.0399
89.9183
81.9928


Other nodes (S1,1, S1,2, . . . , S1,7) at time t1 can be computed similarly and other

nodes at time t2 and t3 can also be calculated in a similar way. Thus S tree can
be constructed as in Figure 2.10.

The fourth step of the KM tree is to backwards evaluate the option price at
each node of the S tree. Like in the Y tree, each node in the S tree also
has 23 = 8 nodes afterwards, for each the transition probability is (1

2)3 = 1
8 .

We illustrate this procedure by discussing a specific node (1, 7) with S1,7 =
(109.6515, 106.1415, 116.4011)>. The value of exercising the option immediately is:

V E
1,7 = ((109.6515× 106.1415× 116.4011)

1
3 − 100)+

= 10.6504

There are 8 successive nodes after node (1, 7), see Figure 2.11. The stock
prices and option values at those nodes are assumed to be already obtained by
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(Y1,7, S1,7, V1,7)

(Y2,26, S2,26, V2,26)
(Y2,25, S2,25, V2,25)

(Y2,23, S2,23, V2,23)
(Y2,22, S2,22, V2,22)

(Y2,17, S2,17, V2,17)
(Y2,16, S2,16, V2,16)

(Y2,14, S2,14, V2,14)
(Y2,13, S2,13, V2,13)

t1 t2

Y1,7 = (Y 1
1,1, Y

2
1,1, Y

3
1,1)

Y2,26 = (Y 1
2,2, Y

2
2,2, Y

3
2,2)

Y2,25 = (Y 1
2,2, Y

2
2,2, Y

3
2,1)

Y2,23 = (Y 1
2,2, Y

2
2,1, Y

3
2,2)

Y2,22 = (Y 1
2,2, Y

2
2,1, Y

3
2,1)

Y2,17 = (Y 1
2,1, Y

2
2,2, Y

3
2,2)

Y2,16 = (Y 1
2,1, Y

2
2,2, Y

3
2,1)

Y2,14 = (Y 1
2,1, Y

2
2,1, Y

3
2,2)

Y2,13 = (Y 1
2,1, Y

2
2,1, Y

3
2,1)

(Y2,0, S2,0, V2,0)

Figure 2.11: Option evaluation in the KM tree

the backwards computation:

S2,26 = (120.2345, 112.6601, 135.4922)>, V2,26 = 22.4347
S2,25 = (120.2345, 112.6601, 110.2444)>, V2,25 = 14.3015
S2,23 = (120.2345, 90.0863, 124.2696)>, V2,23 = 10.4123
S2,22 = (120.2345, 90.0863, 101.1130)>, V2,22 = 3.5646
S2,17 = (95.4405, 119.3560, 127.8911)>, V2,17 = 13.3633
S2,16 = (95.4405, 119.3560, 104.0597)>, V2,16 = 5.8327
S2,14 = (95.4405, 95.4405, 117.2980)>, V2,14 = 3.1317
S2,13 = (95.4405, 95.4405, 95.4405)>, V2,13 = 0.6891

The value of holding the option at the node (1, 7) is:

V1,7 = (22.4347 + 14.3015 + 10.4123 + 3.5646 + 13.3633

+5.8327 + 3.1317 + 0.6891)× 1

8
× e−0.05×0.3333

= 9.0639

Thus the option value at this node (1, 7) is:

V1,7 = max(10.6504, 9.0639)

= 10.6504
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The optimal strategy at this node is hence to exercise the option immediately
rather than hold it. By rolling back in the same way, we have the option value
at the beginning V0,0 = 2.8763.

2.2 Heston Model

In the previous section, we have studied valuation of various American-style
options within the Black-Scholes model. In this section, we perform research
within the Heston model, which is one of the most popular stochastic volatility
models. This section is mainly based on Sayer [39] and [40]. The main idea of
Ruckdeschel-Sayer-Szimayer approach (RSS tree) is to firstly set up a binomial
tree for the variance process and a trinomial tree for the stock process by match-
ing the first and second moments in the Heston model and then to adjust the
transition probabilities in each node in order to match the correlation parameter
in the Heston model.

2.2.1 Ruckdeschel-Sayer-Szimayer Binomial Tree for Variance

Recall the stochastic differential equations in the section 1.2:

dS(t)

S(t)
= (r − δ)dt+

√
V (t)dW1(t) (2.42)

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dW2(t) (2.43)

Corr(W1(t),W2(t)) = ρ (2.44)

with S(0) = S0 and V (0) = V0. First, we consider the logarithmic transformation
of the equation (2.42) by defining:

dX(t) = d ln
(
S(t)e−(r−δ)t

)
=

1

2
V (t)dt+

√
V (t)dW1(t) (2.45)

with X(0) = X0 = ln(S0). Thus,we have:

S(t) =
(
e(r−δ)t · eX(t)

)
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Vt

V 2
t+∆t

V 1
t+∆t

µt

P 2
Vt

P 1
Vt

t

∆t

t+ ∆t

Figure 2.12: One-period movement of variance in the RSS tree

The approximation of the moments E(X(t)), E(V (t)), Var(X(t)), Var(V (t))
Cov(X(t), V (t)) and E(X(t)2V (t)) can be computed as:

E(X(t)) = X(t)− 1

2
V (t)∆t (2.46)

E(V (t)) = V (t) + κ(θ − V (t))∆t (2.47)

Var(X(t)) = V (t)∆t (2.48)

Var(V (t)) = σ2V (t)∆t (2.49)

Cov(X(t), V (t)) = σρV (t)∆t (2.50)

E(X(t)2V (t)) = V (t)2∆t+X(t)2(V (t) + κθ∆t− κV (t)∆t)

−V (t)X(t)(V (t)− 2σρ)∆t (2.51)

At time t, the variance is assumed to be Vt. After small time interval ∆t, assume
that there are be two nodes at time t + ∆t: V 2

t+∆t and V 1
t+∆t, with transition

probability P 2
Vt

and P 1
Vt

for each. The approach is illustrated in Figure 2.12.
Let µt be the drift at the node Vt:

µt = Vt + κ(θ − Vt)∆t

V 2
t+∆t and V 1

t+∆t must enclose µt, thus they can be defined as:

V 2
t+∆t =

σ2

4
(zt + j2

t

√
∆t)2 (2.52)

V 1
t+∆t =

σ2

4
(zt + j1

t

√
∆t)2 (2.53)

where zt, j1
t and j2

t are defined as follows to ensure that the drift µ always lies
between V 2

t+∆t and V 1
t+∆t and the transition probabilities P 2

Vt
and P 1

Vt
can be well

defined:

zt =
2

σ

√
Vt

37



2 Tree Methods for Pricing American-style Options

j2
t =

 d
2
σ

√
µt−zt√
∆t
e if d

2
σ

√
µt−zt√
∆t
e is odd

d
2
σ

√
µt−zt√
∆t
e+ 1 if d

2
σ

√
µt−zt√
∆t
e is even

j1
t =

 b
2
σ

√
µt−zt√
∆t
c if b

2
σ

√
µt−zt√
∆t
c is odd

b
2
σ

√
µt−zt√
∆t
c − 1 if b

2
σ

√
µt−zt√
∆t
c is even

where d·e denotes the ceiling function and b·c denotes the floor function. The
reason that j2

t and j1
t are allowed only to be odd is that we want to restrict each

node to jump only to valid nodes.
The transition probabilities P 2

Vt
and P 1

Vt
can be determined by matching the first

moment of the variance process in the Heston model:

V 2
t+∆t · P 2

Vt + V 1
t+∆t · P 1

Vt = µt

P 2
Vt + P 1

Vt = 1

Thus we have:

P 2
Vt =

(Vt + κ(θ − Vt)∆t)− V 1
t+∆t

V 2
t+∆t − V 1

t+∆t

(2.54)

P 1
Vt =

V 2
t+∆t − (Vt + κ(θ − Vt)∆t)

V 2
t+∆t − V 1

t+∆t

(2.55)

The so constructed binomial tree for variance process is a recombining tree, we
illustrate it with a concrete example. The input parameters are: V0 = 0.01, κ = 1,
θ = 0.01, σ = 0.1, T = 1, time steps N = 10. time step length ∆t = T/N = 0.1. Look
at this Figure 2.13, we can find several characteristics of this tree:

1. This variance tree is recombining but not symmetric.

2. At each time step ti with i = 0, 1, 2, . . . , 10, the number of nodes is not always
equal to i, for example, at time t9, the number of nodes is 8 rather than 9.

3. No variance node is equal to or smaller than 0, due to the stability condition
2κθ > σ2 satisfied, the smallest one is 0.0004 at nodes (5, 0), (7, 0) and (9, 0).

4. Small variance gives a positive drift, such that the variance tree below is
truncated, for example, at node (5, 0), we have V (5, 0) = 0.000438612, then:

µ(5, 0) = V (5, 0) + κ(θ − V (5, 0))∆t

= 0.000438612 + 1× (0.01− 0.000438612)× 0.1

= 0.00139475

z(5, 0) =
2

σ

√
V (5, 0)

=
2

0.1
×
√

0.000438612

= 0.418861
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Figure 2.13: Multi-period movement of variance in the RSS tree

Then, the jump size j2(5, 0) and j1(5, 0) are:

j2(5, 0) = d
2
σ

√
µ(5, 0)− z(5, 0)
√

∆t
e (+1 or + 0)

= d
2

0.1 ×
√

0.00139475− 0.418861
√

0.1
e (+1 or + 0)

= d1.03744e+ 1

= 3

j1(5, 0) = b
2
σ

√
µ(5, 0)− z(5, 0)
√

∆t
c (−1 or− 0)

= b
2

0.1 ×
√

0.00139475− 0.418861
√

0.1
c (−1 or− 0)

= b1.03744c − 0

= 1
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Thus, the successive nodes V (6, 1) and V (6, 0) can be computed as:

V (6, 1) =
σ2

4
(z(5, 0) + j2(5, 0)

√
∆t)2

=
0.12

4
(0.418861 + 3×

√
0.1)2

= 0.00467544

V (6, 0) =
σ2

4
(z(5, 0) + j1(5, 0)

√
∆t)2

=
0.12

4
(0.418861 + 1×

√
0.1)2

= 0.00135089

2.2.2 Ruckdeschel-Sayer-Szimayer Trinomial Tree for Stock

In this section, we set up a trinomial tree for the logarithmic stock price X(t), see
equation (2.45). Since at each time step, the logarithmic stock price X(t) = Xt

depends on the variance V (t) = Vt, the trinomial tree is generally not recom-
bine. In order to guarantee the characteristic of recombing, a smallest size of
movement for the variance process V̂ = V0 is introduced and thus also the cor-
responding smallest size of movement for the logarithmic stock price X̂ =

√
V̂∆t

is introduced. At time t, conditioned on the variance V (t) = Vt, the number of
smallest movements for the logarithmic stock price κ(Vt) is defined as:

κ(Vt) =


√
Vt∆t+

V 2
t
4 (∆t)2

X̂


=

⌈√
Vt(4 + Vt∆t)

4V̂

⌉
The three successive nodes X3

t+∆t, X
2
t+∆t and X1

t+∆t at time t+ ∆t are defined as:

X3
t+∆t = Xt + κ(Vt)

√
V̂∆t (2.56)

X2
t+∆t = Xt (2.57)

X1
t+∆t = Xt − κ(Vt)

√
V̂∆t (2.58)

The transition probabilities for those three nodes are computed as:

P 3
Xt =

4Vt + V 2
t ∆t+ 2Vtκ(Vt)

√
V̂∆t

8κ(Vt)2V̂
(2.59)

P 1
Xt =

4Vt + V 2
t ∆t− 2Vtκ(Vt)

√
V̂∆t

8κ(Vt)2V̂
(2.60)

P 2
Xt = 1− P 3

t+∆t − P 1
t+∆t (2.61)
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Figure 2.14: One-period movement of logarithmic stock price in the RSS tree

This approach is illustrated in Figure 2.14. We notice that due to the definition
of κ(Vt), the transition probabilities are guaranteed to be positive. And when the
choice of V̂ is fixed, a higher variance Vt leads to a higher movement for Xt.

2.2.3 Joint Probability without Correlation

In the previous two sections, we have constructed separate trees for variance
process and logarithmic stock price process. In the following two sections, we
combine these two trees and define joint transition probabilities. First, we dis-
cuss the case of zero correlation, i.e ρ = 0. At time t, we assume that the
logarithmic stock price is Xt with transition probabilities P 3

Xt
, P 2

Xt
and P 1

Xt
for

up-, mid- or down- movement and the variance is Vt with transition probabilities
P 2
Vt

, P 1
Vt

for up- or down- movement. Then the 3× 2 = 6 joint probabilities can be
defined simply by the product in Table 2.1:

P i,j(Xt,Vt)
= P iXt · P

j
Vt

(2.62)

where i = 1, 2, 3 and j = 1, 2. Take a look at the definitions of P iXt and P jVt
in the equations (2.59), (2.60), (2.61) and (2.54), (2.55), we notice that the 6
probabilities are surprisingly the same for different values of Xt in case of zero
correlation.

V 1
t+∆t V 2

t+∆t

X1
t+∆t P 1,1

(Xt,Vt)
= P 1

Xt
· P 1

Vt
P 1,2

(Xt,Vt)
= P 1

Xt
· P 2

Vt

X2
t+∆t P 2,1

(Xt,Vt)
= P 2

Xt
· P 1

Vt
P 2,2

(Xt,Vt)
= P 2

Xt
· P 2

Vt

X3
t+∆t P 3,1

(Xt,Vt)
= P 3

Xt
· P 1

Vt
P 3,2

(Xt,Vt)
= P 3

Xt
· P 2

Vt

Table 2.1: Joint probability without correlation
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2.2.4 Joint Probability with Correlation

In the case of ρ 6= 0, the transition probabilities need to be adjusted to match the
correlation parameter ρ. We define new transition probabilities P̃ i,j(Xt,Vt)

by:

P̃ i,j(Xt,Vt)
= P i,j(Xt,Vt)

+ θi,jt

with i = 1, 2, 3 and j = 1, 2 in Table 2.2.

V 1
t+∆t V 2

t+∆t

X1
t+∆t P̃ 1,1

(Xt,Vt)
= P 1,1

(Xt,Vt)
+ θ1,1

t P̃ 1,2
(Xt,Vt)

= P 1,2
(Xt,Vt)

− θ1,1
t

X2
t+∆t P̃ 2,1

(Xt,Vt)
= P 2,1

(Xt,Vt)
+ θ2,1

t P̃ 2,2
(Xt,Vt)

= P 2,2
(Xt,Vt)

− θ2,1
t

X3
t+∆t P̃ 3,1

(Xt,Vt)
= P 3,1

(Xt,Vt)
− (θ1,1

t + θ2,1
t ) P̃ 3,2

(Xt,Vt)
= P 3,2

(Xt,Vt)
+ (θ1,1

t + θ2,1
t )

Table 2.2: Joint probability with correlation

From this table, we notice that:

θ1,2
t = −θ1,1

t (2.63)

θ2,2
t = −θ2,1

t (2.64)

θ3,1
t = −(θ1,1

t + θ2,1
t ) (2.65)

θ3,2
t = (θ1,1

t + θ2,1
t ) (2.66)

Thus, in order to determine P̃ i,j(Xt,Vt)
, we only need to determine two unknowns

θ1,1
t and θ2,1

t firstly. Sayer [39] points out that we face an optimization problem
with six constraints. Because we have to guarantee the non-negative property
of the probabilities, we have:

0 ≤ P 1,1
(Xt,Vt)

+ θ1,1
t ≤ P 1

Xt ≡ P
1,1
(Xt,Vt)

+ P 1,2
(Xt,Vt)

0 ≤ P 2,1
(Xt,Vt)

+ θ2,1
t ≤ P 2

Xt ≡ P
2,1
(Xt,Vt)

+ P 2,2
(Xt,Vt)

0 ≤ P 3,1
(Xt,Vt)

− (θ1,1
t + θ2,1

t ) ≤ P 3
Xt ≡ P

3,1
(Xt,Vt)

+ P 3,2
(Xt,Vt)

From the upper inequalities, we can derive six constraints:

−P 1,1
(Xt,Vt)

≤ θ1,1
t ≤ P

1,2
(Xt,Vt)

(2.67)

−P 2,1
(Xt,Vt)

≤ θ2,1
t ≤ P

2,2
(Xt,Vt)

(2.68)

−P 3,2
(Xt,Vt)

≤ θ1,1
t + θ2,1

t ≤ P
3,1
(Xt,Vt)

(2.69)

All the values (θ1,1
t , θ2,1

t ) which satisfy the upper constraints are denoted by A.
The covariance between logarithmic stock price and variance at time t + ∆t

according to old probability measure P and new probability measure P̃ are com-
puted respectively in the following:

CovP (Xt+∆t, Vt+∆t) ≈ CovP (Xt, Vt)

eq.(2.50)
= σρVt∆t (2.70)
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CovP̃ (Xt+∆t, Vt+∆t) = EP̃ (Xt+∆tVt+∆t)− EP̃ (Xt+∆t)EP̃ (Vt+∆t)

≈ EP̃ (Xt+∆tVt+∆t)− EP (Xt+∆t)EP (Vt+∆t)

= V 1
t+∆t(θ

1,1
t X1

t+∆t + θ2,1
t X2

t+∆t + θ3,1
t X3

t+∆t)

+V 2
t+∆t(θ

1,2
t X1

t+∆t + θ2,2
t X2

t+∆t + θ3,2
t X3

t+∆t)

eq.(2.63)−(2.66)
= (V 1

t+∆t − V 2
t+∆t)[θ

1,1
t (X1

t+∆t −X3
t+∆t) + θ2,1

t (X2
t+∆t −X3

t+∆t)]

(2.71)

In order to obtain the best (θ1,1
t , θ2,1

t ), we need to minimize the squared Euclidean
distance between CovP (Xt+∆t, Vt+∆t) and CovP̃ (Xt+∆t, Vt+∆t). Thus we solve an
optimization problem under the constraints described in the equations (2.67)-
(2.69):

min
(θ1,1t ,θ2,1t )∈A

d̃(θ1,1
t , θ2,1

t ) :=
(
CovP (Xt+∆t, Vt+∆t)− CovP̃ (Xt+∆t, Vt+∆t)

)2 (2.72)

The objective function can be simplified further by defining:

m := (V 1
t+∆t − V 2

t+∆t)(X
1
t+∆t −X3

t+∆t)

n := (V 1
t+∆t − V 2

t+∆t)(X
2
t+∆t −X3

t+∆t)

c := −σρVt∆t

Then we have:

d̃(θ1,1
t , θ2,1

t ) = (mθ1,1
t + nθ2,1

t + c)2

=
1

2

(
θ1,1
t θ2,1

t

)︸ ︷︷ ︸
xᵀ:=

(
2m2 2mn
2mn 2n2

)
︸ ︷︷ ︸

H:=

(
θ1,1
t

θ2,1
t

)
︸ ︷︷ ︸
x:=

+
(
2mc 2nc

)︸ ︷︷ ︸
fᵀ:=

(
θ1,1
t

θ2,1
t

)
︸ ︷︷ ︸
x:=

+c2

⇒ d̃(x) =
1

2
xᵀHx+ fᵀx+ c2 (2.73)

The six constrains (2.67)-(2.69) can be rewritten as:(
1 1
−1 −1

)
︸ ︷︷ ︸

A:=

x ≤

(
P 3,1
Xt,Vt

P 3,2
Xt,Vt

)
︸ ︷︷ ︸

b:=

⇒ Ax ≤ b (2.74)

(
−P 1,1

Xt,Vt

−P 2,1
Xt,Vt

)
︸ ︷︷ ︸

lb:=

≤ x ≤

(
P 1,2
Xt,Vt

P 2,2
Xt,Vt

)
︸ ︷︷ ︸

ub:=

⇒ lb ≤ x ≤ ub (2.75)
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Figure 2.15: Second case: the minimizers lie in a line segment

Finding the minimum of the objective function specified by:

min
x

d̃(x) =
1

2
xᵀHx+ fᵀx+ c2 such that

{
Ax ≤ b

lb ≤ x ≤ ub

is to solve a quadratic programming problem, which can be solved using the
function "quadprog" in MATLAB.

Further, Sayer [39] indicates that there are two cases for the minimum.

• First case, the minimum d̃(x?) is greater than 0, which means:
CovP (Xt+∆t, Vt+∆t) 6= CovP̃ (Xt+∆t, Vt+∆t), which leads to the sole minimizer
x? being one of the vertices of the admissible set A.

• Second case, the minimum d̃(x?) is equal to 0, which means:
CovP (Xt+∆t, Vt+∆t) = CovP̃ (Xt+∆t, Vt+∆t), which leads to set of the minimizers
being a line segment It in A, see Figure (2.15), where the polygon ABCDE

is the admissible set A and I1
t I

2
t is the line segment It. In this case, the

covariance is matched exactly. Among those exact matches, we need to
choose the best one by matching a higher moment.
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Now consider the second case. Denote I1
t = (θ1,1

t,1 , θ
2,1
t,1 ) and I2

t = (θ1,1
t,2 , θ

2,1
t,2 ) as the

two boundary points of the line segment It comprised of all the minimizers in A.
Further, I1

t is assumed to be the upper left boundary, I2
t is assumed to be the

lower right boundary. Then each point in the line segment It can be written as:

It(λt) = I1
t + λt(I

2
t − I1

t ), λt ∈ [0, 1] (2.76)

λt can be chosen optimally to match the third moment:

E((Xt+∆t)
3) or E((Xt+∆t)

2Vt+∆t) or E(Xt+∆t(Vt+∆t)
2) or E((Vt+∆t)

3)

In practice, we choose E((Xt+∆t)
2Vt+∆t) to match, since option payoff depends

closer on the logarithmic stock price Xt+∆t than on the variance Vt+∆t. Thus we
want to minimize the squared Euclidean distance between EP ((Xt+∆t)

2Vt+∆t) and
EP̃ ((Xt+∆t)

2Vt+∆t).

EP ((Xt+∆t)
2Vt+∆t) ≈ EP ((Xt)

2Vt)

eq.(2.51)
= (Vt)

2∆t+ (Xt)
2(Vt + κθ∆t− κVt∆t)− VtXt(Vt − 2σρ)∆t

(2.77)

EP̃ ((Xt+∆t)
2Vt+∆t) = V 1

t+∆t

(
(X1

t+∆t)
2P̃ 1,1

(Xt,Vt)
+ (X2

t+∆t)
2P̃ 2,1

(Xt,Vt)
+ (X3

t+∆t)
2P̃ 3,1

(Xt,Vt)

)
+V 2

t+∆t

(
(X1

t+∆t)
2P̃ 1,2

(Xt,Vt)
+ (X2

t+∆t)
2P̃ 2,2

(Xt,Vt)
+ (X3

t+∆t)
2P̃ 3,2

(Xt,Vt)

)
(2.78)

Because:

EP ((Xt+∆t)
2)EP (Vt+∆t) = V 1

t+∆t

(
(X1

t+∆t)
2P 1,1

(Xt,Vt)
+ (X2

t+∆t)
2P 2,1

(Xt,Vt)
+ (X3

t+∆t)
2P 3,1

(Xt,Vt)

)
+V 2

t+∆t

(
(X1

t+∆t)
2P 1,2

(Xt,Vt)
+ (X2

t+∆t)
2P 2,2

(Xt,Vt)
+ (X3

t+∆t)
2P 3,2

(Xt,Vt)

)
(2.79)

we have:

EP̃ ((Xt+∆t)
2Vt+∆t)

eq.(2.79)
= EP ((Xt+∆t)

2)EP (Vt+∆t) +G1 + λtG2 (2.80)

where:

G1 = θ1,1
t,1 ((X1

t+∆t)
2 − (X3

t+∆t)
2)(V 1

t+∆t − V 2
t+∆t) + θ2,1

t,1 ((X2
t+∆t)

2 − (X3
t+∆t)

2)(V 1
t+∆t − V 2

t+∆t)

G2 = (V 1
t+∆t − V 2

t+∆t)
[
(θ1,1
t,2 − θ

1,1
t,1 )((X1

t+∆t)
2 − (X3

t+∆t)
2) + (θ2,1

t,2 − θ
2,1
t,1 )((X2

t+∆t)
2 − (X3

t+∆t)
2)
]

According to Sayer [39], the optimal λ?t is computed as:

λ?t = min(max(0, λt0 , 1)) (2.81)

λ0
t =

EP ((Xt+∆t)
2Vt+∆t)− EP ((Xt+∆t)

2)EP (Vt+∆t)−G1

G2
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where EP ((Xt+∆t)
2Vt+∆t) is given in the equation (2.77), EP ((Xt+∆t)

2)EP (Vt+∆t) is
given in the equation (2.79).

In this way, we obtain quite reliable benchmarks of various American-style
options and we collect all of them in the Appendix (see the section 7.1).
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3 Monte Carlo Methods for Pricing
American-style Options

In this section, we study regression-based Monte Carlo methods to price American-
style options. First we formulate the problem, then we study backward dynamic
programming principle. After that, we present the source of low bias and high
bias. Then we study the Tsitsiklis-Roy method, the Longstaff-Schwartz method
and the Andersen-Broadie method. This section is mainly based on Korn [26],
Glasserman [15] and Wendel [45].

3.1 Theory Study

3.1.1 Problem Formulation

First we give the exact mathematical definition of American contingent claim and
Bermudan contingent claim and their fair prices.

Definition 3.1 (American Contingent Claim). An American contingent claim
consists of a progressively measurable stochastic process B = {(B(t),Ft)}t∈[0,T ]

with B(t) ≥ 0 and a final payment B(τ) at the exercise date τ ∈ [0, T ] chosen by
the holder of the contingent claim.We assume in addition that τ is a stopping
time, that {(B(t), F (t))}t∈[0,T ] possesses continuous paths, and that

EQ

(
sup

0≤s≤T
(B(s))µ

)
<∞

for some µ > 1.

Theorem 3.2 (Fair Price of American Contingent Claim). The fair price p̂ of
an American contingent claim B is given by:

p̂ = sup
τ∈T [0,T ]

EQ(e−rτB(τ))

where T [0, T ] is the set of all stopping times (adapted to the filtration corre-
sponding to the market model) with values in [0, T ] almost surely. There exists
a stopping time τ∗ such that the supremum will be attained for the hedging
strategy π∗ corresponding to τ∗.
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Algorithm 3.1 Monte-Carlo method to price American / Bermudan options
1: Determine the optimal exercise strategy τ∗ for the contingent claim B.
2: Determine the option price EQ(e−rτ

∗
B(τ∗)).

Definition 3.3 (Bermudan Contingent Claim). Consider time instants 0 ≤ t1 ≤
. . . ≤ tm = T . A Bermudan contingent claim consists of a set of F (ti) - measur-
able random variables B(τ) ≥ 0 and a final payment B(τ) at the exercise time
τ ∈ {t1, . . . , tm} chosen by the holder of the option. Here, τ is assumed to be a
stopping time and that

EQ

(
sup

s∈{t1,...,tm}
(B(s))µ

)
<∞

for some µ > 1.

Theorem 3.4 (Fair Price of Bermudan Contingent Claim). The fair price p̂ of
a Bermudan contingent claim is given by

p̂ = sup
τ∈T {t1,...,tm}

EQ(e−rτB(τ))

where T {t1, . . . , tm} is the set of stopping times with values in {t1, . . . , tm} and
there exists a stopping time τ∗ such that the supremum will be attained for the
hedging strategy π∗ corresponding to τ∗.

Further we denote the stock process S(t) as a Markov process in Rd, denote
f as the payoff function, e.g f = (K − S(t))+ for simple American put, denote
B(ti) = f(S(ti)) as the time-ti value of the payoff if the option holder decides
to exercise the option at time ti, denote g(S(ti)) as the discounted time-t0 value
of the payoff if the option holder decides to exercise the option at time ti, i.e
g(S(ti)) = e−rtiB(ti) = e−rtif(S(ti)).

Notice that the fair price of the simple American put is achieved by using an
optimal stopping time τ∗ which has the form:

τ∗ = inf {t ≥ 0 : S(t) ≤ b∗(t)} (3.1)

for some optimal exercise boundary b∗(t), which is shown in Figure 3.1: Thus,
when we price American or Bermudan options, we need to know whether
we should exercise the option or not at each potential exercise opportunity
{t1, . . . , tm}1, this can only be done if we know the optimal exercise strategy τ∗

in the equation (3.1) in advance, which leads to the Monte-Carlo framework to
price American / Bermudan options, see Algorithm 3.1.

1for American option, m −→∞

48



3.1 Theory Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

20

30

40

50

60

time

st
oc

k 
pr

ic
e

 

 
stock path 1
stock path 2
stock path 3
strike price
optimal exercise boundary

τ∗ τ∗ τ∗

Figure 3.1: Optimal exercise boundary for simple American put option with pay-
off (K−S(t))+. The green, yellow and cyan curve are three simulated
paths for the stock price, the red line is the strike, the blue curve
is the calculated optimal exercise boundary b∗(t). The option is opti-
mally exercised at time τ∗, the first time the stock price reaches the
optimal exercise boundary.

3.1.2 Backward Dynamic Programming Principle

In the following we only talk "American" to include both American option and
Bermduan option, since we can let the number of potential exercise dates of
Bermudan option "m" increase to infinity, such that continuous exercise dates
for American option can be approximated by a finite set of exercise dates of
Bermudan option. This approximation will be examined in the section 3.2.1.

The basic idea of backward dynamic programming principle is: starting at the
maturity where the exercise decision is known, one computes one by one time
step backwards until the initial time is reached and updates the optimal exercise
decision. There are two ways to present this principle to price American options,
one is based on time-ti value, the other is based on discounted time-t0 value. We
study both of them and then show the equality of each other.

Denote Ṽ (S(ti)) as the time-ti value for American option at time ti, assum-
ing that the option has not been exercised before ti, where i ∈ {1, 2, . . . ,m},
ti = i

mT . Ṽ (S(ti)) can be interpreted as the value of a at time ti newly issued
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3 Monte Carlo Methods for Pricing American-style Options

option starting from state S(ti) and ending at maturity T . The value process
Ṽ =

(
Ṽ (S(ti))

)
i=1,...,m

of the American option with the payoff function f satisfies

the following time-ti based backward dynamic programming principle:

Ṽ (S(tm)) = f(S(tm)) (3.2)

Ṽ (S(ti)) = max
(
f(S(ti)),E[e−r(ti+1−ti)Ṽ (S(ti+1))|S(ti)]

)
(3.3)

for i = m − 1,m − 2, . . . , 1. And the fair price of the American option, which
we are interested in, is Ṽ (S(t0)) = e−rt1 Ṽ (S(t1)). Notice in the equation (3.3),
at the exercise date ti, the option value is the maximum of the immediate ex-
ercise value f(S(ti)) and the expected time−ti value of continuing the option
E[e−r(ti+1−ti)Ṽ (S(ti+1))|S(ti)], which is main difficulty in pricing American options
by simulation. We also notice that we use the equality E[e−r(ti+1−ti)Ṽ (S(ti+1))|Fti ] =
E[e
−rt(ti+1−ti) Ṽ (S(ti+1))|S(ti)] as we assume S(t) to be a Markov process.

Denote V (S(ti)) as the discounted time-t0 value for American option at time
ti, assuming the option has not been exercised before ti. The value process
V = (V (S(ti)))i=1,...,m of the American option with the discounted payoff function
g = e−rtif satisfies the following time-t0 based backward dynamic programming
principle:

V (S(tm)) = g(S(tm)) (3.4)

V (S(ti)) = max (g(S(ti)),E[V (S(ti+1))|S(ti)]) (3.5)

for i = m − 1,m − 2, . . . , 1. The fair price of the American option, which we are
interested in, is V (S(t0)) = V (S(t1)).

This time-t0 based principle is the same as the previous time-ti based principle.
We proof this as follows. For i = 1, 2, . . . ,m, we have:

g(S(ti)) = e−rtif(S(ti))

V (S(ti)) = e−rti Ṽ (S(ti)) (3.6)

Thus we can prove for i = 0 and i = m:

V (S(t0)) = Ṽ (S(t0)) = e−rt1 Ṽ (S(t1)) = V (S(t1))

V (S(tm)) = e−rtmV (S(tm)) = e−rtmf(S(tm)) = g(S(tm))

Further, for i = m− 1,m− 2, . . . , 1, V (S(ti)) satisfies:

V (S(ti)) = e−rti Ṽ (S(ti))

eq.(3.3)
= e−rti max

(
f(S(ti)),E[e−r(ti+1−ti)Ṽ (S(ti+1))|S(ti)]

)
= max

(
e−rtif(S(ti)),E[e−rtie−r(ti+1−ti)Ṽ (S(ti+1))|S(ti)]

)
= max

(
g(S(ti)),E[e−rti+1 Ṽ (S(ti+1))|S(ti)]

)
eq.(3.6)

= max (g(S(ti)),E[V (S(ti+1))|S(ti)])
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2

At each potential exercise date, the American option holder must decide
whether to exercise the option or to hold the option. The value of holding the
option is called the continuation value, which is defined in terms of time-t0 value
as follows:

C(S(ti)) = E[V (S(ti+1))|S(ti)], i = 1, 2, . . . ,m− 1 (3.7)

Thus the time-t0 value based backward dynamic programming principle (3.4)-
(3.5) can be rewritten as:

C(S(tm)) = 0 (3.8)

C(S(ti)) = E[max(g(S(ti+1)), C(S(ti+1)))|S(ti)] (3.9)

for i = m − 1,m − 2, . . . , 0. The fair price of the American option, which we are
interested in, is C(S(t0)).

From the equation (3.5) and the equation (3.7), we notice the fact that the
discounted process V (S(ti)) determine the continuation value by:

V (S(ti)) = max(g(S(ti)), C(S(ti)))

for i = 1, 2, . . . ,m.
The backward dynamic principle (3.2)-(3.3), (3.4)-(3.5) and (3.8)-(3.9) respec-

tively focus on time-ti option value, time-t0 option value and time-t0 continuation
value. It can also be rewritten in terms of stopping rules and optimal exercise
region as follows:

τ∗(m) = tm (3.10)

τ∗(i) =

{
ti, g(S(ti)) ≥ E[g(S(τ∗(i+ 1)))|S(ti)]

τ∗(i+ 1), g(S(ti)) < E[g(S(τ∗(i+ 1)))|S(ti)]
(3.11)

for i = m− 1,m− 2, . . . , 1.
The region for exercising the option optimally at each potential exercise time

ti is the set:

{S(ti) : g(S(ti)) ≥ E[g(S(τ∗(i+ 1)))|S(ti)]}

while the region for holding the option optimally is the set:

{S(ti) : g(S(ti)) < E[g(S(τ∗(i+ 1)))|S(ti)]}

The stopping rule τ∗ can be understood as the first time the stock price S(ti)
enters the optimal exercise region.
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3 Monte Carlo Methods for Pricing American-style Options

3.1.3 Longstaff-Schwartz Method and Tsitsiklis-Roy Method

In this section, we study two regression-based Monte Carlo Methods to price
American-style options, which are the Longstaff-Schwartz Method [33] and the
Tsitsiklis-Roy Method [43]. Both of them make use of the backward dynamic
programming principle presented in the previous section. At each potential ex-
ercise date, we have to decide whether to exercise or to hold the option. The
discounted time-t0 value of exercising the option g(S(ti)) in equation (3.5) can
be calculated easily while the discounted time-t0 value of holding the option
C(S(ti)) = E[V (S(ti+1))|S(ti)] in equation (3.7) is difficult to compute, because
they are nested conditional expectations. Both methods use an approach of
a least-square linear regression for selected simulated paths to compute the
nested conditional expectations.

Since the stock price S(ti) is assumed to be a Markov process, we have the
following relations:

E[V (S(ti+1))|S(ti)] = u(S(ti))

for some measurable function u. We set up a regression model and approximate
this conditional expectation by minimizing the sum of the squares of errors for
selected paths n = 1, 2, . . . , N̂ among all simulated paths n = 1, 2, . . . , N with
N̂ ≤ N :

min
u∈U

E [E[V (S(ti+1))|S(ti)]− u(S(ti))]
2

≈ min
u∈U

1

N̂

N̂∑
n=1

[
V (S(n)(ti+1))− u(S(n)(ti))

]2
(3.12)

where U is a parametric family of functions u. We specify the function space U
by a linear combination of basis functions:

U : Rd → R

u : x 7→ u(x) =
k∑
l=1

alHl(x) with ai ∈ R

Popular choices for U are monomial polynomials, Laguerre polynomials, Leg-
endre polynomials, Hermite polynomials and Chebyshev polynomials. We will
test the performance of these basis functions in the section 3.2.5. The simplest
choice is monomials with the form of Hl(x) = xl−1. Note that although the form

of u(x) =
k∑
l=1

alHl(x) is nonlinear in the input x, it is linear in the coefficients

al, thus the equation (3.12) is indeed a least-squares linear regression problem,
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which can be solved explicitly.

min
u∈U

E [E[V (S(ti+1))|S(ti)]− u(S(ti))]
2

= min
a∈Rk

1

N̂

N̂∑
n=1

[
V (S(n)(ti+1))−

k∑
l=1

alHl(S
(n)(ti))

]2

(3.13)

where a = [a1, a2, . . . , ak]
ᵀ ∈ Rk. The solution of (3.13) is the optimal coefficient

a∗ = [a∗1, a
∗
2, . . . , a

∗
k]

ᵀ by:

a∗ := [a∗1, a
∗
2, . . . , a

∗
k]

ᵀ

= (XᵀX)−1XᵀY ∈ Rk×1 (3.14)

with Y := [V (S(1)(ti)), . . . , V (S(N̂)(ti))]
ᵀ ∈ RN̂×1 and

X :=

Hᵀ(S(1)(ti))
...

Hᵀ(S(N̂)(ti))

 =

H1(S(1)(ti)) . . . Hk(S
(1)(ti))

... . . .
...

H1(S(N̂)(ti)) . . . Hk(S
(N̂)(ti))

 ∈ RN̂×k

The solution of this regression problem generates an estimate C∗(S(ti)) for the
continuation value C(S(ti)) = E[V (S(ti+1))|S(ti)] by:

C(S(ti)) ≈ C∗(S(ti))

=

k∑
l=1

a∗lHl(S(ti)) (3.15)

In the paper of Longstaff and Schwartz [33], they choose the subset of all
paths ΘN̂ ⊂ {1, . . . , N} for which the option is in-the-money, i.e. f(S(n)(tm)) > 0
holds for n ∈ ΘN̂ , to do regression. Of course we can also choose all paths to do
regression. We compare the performance of these two strategies in the section
3.2.3.

If the estimate of continuation value C∗(Sn(ti)) is bigger than the discounted
exercising value g(Sn(ti)) for some certain path n ∈ ΘN̂ at some certain time
step ti, we should hold the option; otherwise we should exercise it. At this step,
the Longstaff-Schwartz method and the Tsitsiklis-Roy method differ here when
updating the option value backwards:

• Longstaff-Schwartz

V (S(n)(ti)) =

{
g(S(n)(ti)), if n ∈ ΘN̂ and g(S(n)(ti)) ≥ C∗(S(n)(ti))

V (S(n)(ti+1)), otherwise
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• Tsitsiklis-Roy

V (S(n)(ti)) =

{
g(S(n)(ti)), g(S(n)(ti)) ≥ C∗(S(n)(ti))

C∗(S(n)(ti)), otherwise

Besides this difference, in the paper of Tsitiklis and Roy [43], they use all
paths to do regression instead of in-the-money paths as mentioned in the paper
of Longstaff and Schwartz. Now we can summarize the Longstaff-Schwartz algo-
rithm 3.2 and Tsitsiklis-Roy algorithm 3.3 here to price American-style options.
Our numerical experiment in the section 3.2.4 will show that the Longstaff-
Schwartz method performs better than the Tsitsiklis-Roy method.
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Algorithm 3.2 Longstaff-Schwartz method

1. Generate N independent paths for stock at all possible exercise dates:
{S(n)(t1), S(n)(t2), . . . , S(n)(tm)} with n = 1, . . . , N , ti = T

m × i, i = 1, . . . ,m.

2. At maturity tm = T , fix the discounted terminal values of the American
option for each path n = 1, . . . , N : V (S(n)(tm)) = g(S(n)(tm)).

3. Compute backward at each potential exercise date ti for i = m− 1, . . . , 1:

1) Choose k basis functions: {H1, . . . ,Hk}.
2) Consider the subset of paths ΘN̂ ⊂ {1, . . . , N} for which the option is

in-the-money, i.e. g(S(n)(ti)) > 0 holds for n ∈ ΘN̂ .

3) Solve the least-squares linear regression problem:

min
al∈R

1

N̂

N̂∑
n=1

(V (S(n)(ti))−
k∑
l=1

alHl(S
(n)(ti)))

2

and obtain the optimal coefficient a∗:

a∗ := [a∗1, . . . , a
∗
k]

ᵀ = (XᵀX)−1XᵀY ∈ Rk×1

with Y := [V (S(1)(ti)), . . . , V (S(N̂)(ti))]
ᵀ ∈ RN̂×1 and

X :=

H1(S(1)(ti)) . . . Hk(S
(1)(ti))

... . . .
...

H1(S(N̂)(ti)) . . . Hk(S
(N̂)(ti))

 ∈ RN̂×k

4) Calculate the estimated continuation value C∗(S(n)(ti)) and the dis-
counted exercising value g(S(n)(ti)) for each path n ∈ ΘN̂ :

C∗(S(n)(ti)) =
k∑
l=1

a∗lHl(S
(n)(ti))

5) Compare C∗(S(n)(ti)) and g(S(n)(ti)) to decide whether to exercise or to
continue the option:

V (S(n)(ti)) =

{
g(S(n)(ti)), if n ∈ ΘN̂ and g(S(n)(ti)) ≥ C∗(S(n)(ti))

V (S(n)(ti+1)), otherwise

4. Compute V N
k (S(t0)) =

(
1

N

N∑
n=1

V (S(n)(t1))

)
as the American option price.
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Algorithm 3.3 Tsitsiklis-Roy method

1. Generate N independent paths for stock at all possible exercise dates:
{S(n)(t1), S(n)(t2), . . . , S(n)(tm)} with n = 1, . . . , N , ti = T

m × i, i = 1, . . . ,m.

2. At maturity tm = T , fix the discounted terminal values of the American
option for each path n = 1, . . . , N : V (S(n)(tm)) = g(Sn(tm)).

3. Compute backward at each potential exercise date ti for i = m− 1, . . . , 1:

1) Choose k basis functions: {H1, . . . ,Hk}.
2) Consider all paths ΘN̂ = {1, . . . , N} for which the option is either in-the-

money, or out-of-the-money or at-the-money, i.e. g(S(n)(ti)) S 0 holds for
n ∈ ΘN̂ .

3) Solve the least-squares linear regression problem:

min
al∈R

1

N̂

N̂∑
n=1

(V (S(n)(ti))−
k∑
l=1

alHl(S
(n)(ti)))

2

and obtain the optimal coefficient a∗:

a∗ := [a∗1, . . . , a
∗
k]

ᵀ = (XᵀX)−1XᵀY ∈ Rk×1

with Y := [V (S(1)(ti)), . . . , V (S(N̂)(ti))]
ᵀ ∈ RN̂×1 and

X :=

H1(S(1)(ti)) . . . Hk(S
(1)(ti))

... . . .
...

H1(S(N̂)(ti)) . . . Hk(S
(N̂)(ti))

 ∈ RN̂×k

4) Calculate the estimated continuation value C∗(S(n)(ti)) and the dis-
counted exercising value g(S(n)(ti)) for each path n ∈ ΘN̂ :

C∗(S(n)(ti)) =
k∑
l=1

a∗lHl(S
(n)(ti))

5) Compare C∗(S(n)(ti)) and g(S(n)(ti)) to decide whether to exercise or to
continue the option:

V (S(n)(ti)) =

{
g(S(n)(ti)), g(S(n)(ti)) ≥ C∗(S(n)(ti))

C∗(S(n)(ti)), otherwise

4. Compute V N
k (S(t0)) =

(
1

N

N∑
n=1

V (S(n)(t1))

)
as the American option price.
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3.1.4 Convergence Properties

Notice that the value V N
k (S(t0)) computed by the Longstaff-Schwartz method or

the Tsitsiklis-Roy method is only an approximation of the true value V (S(t0)) of
an American-style option. Since V N

k (S(t0)) depends on the number of simulated
paths N and the number and form of basis functions k, there are two sources of
errors leading to the difference between V N

k (S(t0)) and V (S(t0)).

1. The first error by using the Monte Carlo simulation, since the value of
option is an expectation, estimated by an arithmetic mean. This error can
be decreased by increasing the number of simulated paths N .

2. The second error by using a certain set of basis functions {H1, H2, . . . ,Hk} to
estimate of the continuation value C(S(ti)) = E[V (S(ti+1))|S(ti)]. This error
can be decreased by choosing proper number and form of basis functions
according to the specific payoff form of the option to make the projection
better.

Clément, Lamberton and Protter [12] have proved the convergence properties
of the Longstaff-Schwartz method in the following way. They define one term
Vk(S(t0)) by:

Vk(S(t0)) = sup
τ∈Γ (H1,...,Hk)

E(e−rτg(S(τ))) (3.16)

where τ denotes as a stopping time contained in the set of all stopping times (ex-
ercise strategies) Γ (H1, . . . ,Hk) based on solving the regression problem by using
the basis functions {H1, H2, . . . ,Hk}. Then they prove the following properties:

• When the number of simulated paths N increases to infinity while fixing the
number of basis functions k, the option price computed by the Longstaff-
Schwartz method V N

k (S(t0)) converges to the supremum of all option prices
based on the whole functional space spanned by the same basis functions
Vk(S(t0)).

V N
k (S(t0))

N−→∞−−−−−→ Vk(S(t0)) almost surely

if the sequence of basis functions is total in a suitable L2− function space.

• When the number of basis functions k increases to infinity, the supremum
of all option prices computed based on the whole functional space spanned
by the same basis functions Vk(S(t0)) converges to the actual option price
V (S(t0)).

Vk(S(t0))
k−→∞−−−−→ V (S(t0))
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Remark 3.5. 1. If the number of basis functions k is fixed, the option price
computed by the Longstaff-Schwartz method V N

k (S(t0)) only converges to
the solution of the optimal stopping problem Vk(S(t0)) (equation (3.16)) by
increasing the number of simulated paths N , rather to the true option
price V (S(t0)) , which means that the Longstaff-Schwartz method uses a
suboptimal exercise strategy and underestimate the option price.

2. However, they didn’t prove similar convergence result for the number of
basis functions k, thus it’s hard to say how many basis functions should
be used. Glasserman and Yu [16] points out that in many examples we
might need exponential growth in the number of simulated path N when
the number of basis functions k increases.

3.1.5 Source of Bias

All simulation methods to price American-style options may contain two sources
of bias, one is high bias and the other is low bias. Some methods only give
high bias, some only show low bias and others may have a mixture of these two
sources of bias.

• High bias results from applying the backward programming principle and
using the same information to decide whether to exercise the option as to
estimate the continuation value, however in real life future information is
not available.

• Low bias comes from using a suboptimal exercising strategy to price Amer-
ican options, while the true fair value of an American option is computed
by using an optimal stopping strategy.

Glasserman [15] points out that the Longstaff-Schwartz method and the Tsitsiklis-
Roy method both mix high bias and low bias. In order to ensure an estimator
only with low bias, we have to add another step at the end of both algorithms
by resampling new out-of-sample independent paths and use the calculated op-
timal coefficient a∗ to determine the new continuation value, see Algorithm 3.4
and Algorithm 3.5.
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Algorithm 3.4 Modified Longstaff-Schwartz method with low bias

• Step 1 - Step 3.5: Same as in the Longstaff-Schwartz method (Algorithm
3.2) and save the computed optimal coefficient a∗.

• Step 4: Regenerate Nnew new independent paths for stock at all potential
exercise dates:

{
S(n)(t1), S(n)(t2), . . . , S(n)(tn)

}
with n = 1, . . . , Nnew.

• Step 5: Define the stopping rule τ (n) = t1 for each path n and compute
forward at ti for i = 1, . . . ,m:

1) Choose same basis functions as before: {H1, . . . ,Hk}.
2) Calculate the estimated continuation value C∗(S(n)(ti)) and the

discounted exercising value g(S(n)(ti)) for each path n ∈ Nnew:

C∗(S(n)(ti)) =
k∑
l=1

a∗lHl(S
(n)(ti))

3) If τ (n) = t1 and g(S(n)(ti)) > 0 and g(S(n)(ti)) > C∗(S(n)(ti)): exercise the
option at ti, set τ (n) = ti and Vnew(S(n)(t1)) = g(S(n)(ti)), stop;
Else if ti < tm−1: continue the option at ti;
Else: exercise the option at tm and set τ (n) = tm and Vnew(S(n)(t1)) =
g(S(n)(tm)), stop.

• Step 6: Compute V Nnew
k (S(t0)) =

(
1

Nnew

Nnew∑
n=1

Vnew(S(n)(t1))

)
as the American

option price.
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Algorithm 3.5 Modified Tsitsiklis-Roy method with low bias

• Step 1 - Step 3.5: Same as in the Tsitsiklis-Roy method (Algorithm 3.3).

• Step 4: Regenerate Nnew new independent paths for stock at all potential
exercise dates:

{
S(n)(t1), S(n)(t2), . . . , S(n)(tn)

}
with n = 1, . . . , Nnew.

• Step 5: Define the stopping rule τ (n) = t1 for each path n and compute
forward at ti for i = 1, . . . ,m:

1) Choose same basis functions as before: {H1, . . . ,Hk}.
2) Calculate the estimated continuation value C∗(S(n)(ti)) and the

discounted exercising value g(S(n)(ti)) for each path n ∈ Nnew:

C∗(S(n)(ti)) =
k∑
l=1

a∗lHl(S
(n)(ti))

3) If τ (n) = t1 and g(S(n)(ti)) > 0 and g(S(n)(ti)) > C∗(S(n)(ti)): exercise the
option at ti, set τ (n) = ti and Vnew(S(n)(t1)) = g(S(n)(ti)), stop;
Else if ti < tm−1: continue the option at ti;
Else: exercise the option at tm and set τ (n) = tm and Vnew(S(n)(t1)) =
g(S(n)(tm)), stop.

• Step 6: Compute V Nnew
k (S(t0)) =

(
1

Nnew

Nnew∑
n=1

Vnew(S(n)(t1))

)
as the American

option price.
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3.1.6 Snell Envelope and Doob-Meyer Decomposition

In this section, we study the powerful concepts of Snell envelope and Doob-
Meyer Decomposition, which are used in the next section 3.1.7 and show that
the discounted value process V (S(ti)) is the Snell envelope of the discounted
payoff process g(S(ti)) in the equation (3.5). This section is based on Wendel
[45].

Definition 3.6 (Snell Envelope). Let Z = (Z(ti))i=0,...,m with filtration (Fti)i=0,...,m

be an adapted process and E[maxi=0,...,m Z(ti)] < ∞, we define U = (U(ti))i=0,...,m

as follows:

U(tm) = Z(tm)

U(ti) = max (Z(tm),E[U(ti+1)|F(ti)]) , i = m− 1, . . . , 0

We call U the Snell envelope of Z.

Theorem 3.7. Let Z = (Z(ti))i=0,...,m with filtration (Fti)i=0,...,m be an adapted
process and E[maxi=0,...,m Z(ti)] <∞, then the Snell envelope U = (U(ti))i=0,...,m of
Z is the smallest supermartingale dominating Z.

Proof :
From the definition of U , we have:

U(ti) ≥ E(U(ti)|F(ti)), i = 0, . . . ,m

which shows directly that U is a supermartingale.
Define (Ũ(ti))i=0,...,m be another supermartingale dominating Z, we have:

Ũ(tm) ≥ Z(tm) = U(tm)

Assume that Ũ(ti) ≥ U(ti), then:

Ũ(ti−1) ≥ E[Ũ(ti)|Fti−1 ]

≥ E[U(ti)|Fti−1 ]

On the other hand, according to the definition of Ũ , we have:

Ũ(ti−1) ≥ Z(ti−1)

Together with the previous equation, we have:

Ũ(ti−1) ≥ max(Z(ti−1),E[U(ti)|Fti−1 ])

= U(ti−1)

2

61



3 Monte Carlo Methods for Pricing American-style Options

Theorem 3.8 (Doob-Meyer Decomposition). Denote U = (U(ti))i=0,...,m as a su-
permartingale, then there exists a unique decomposition, which is called Doob-
Meyer Decomposition:

U(ti) = U(t0) +M(ti) +A(ti), i = 0, . . . ,m

where M = (M(ti))i=0,...,m is a martingale with M(t0) = 0 and A = A(ti)i=0,...,m is a
predictable nonincreasing process with A(t0) = 0.

Proof :
We define A by recursion as follows:

A(t0) = 0

A(ti)−A(ti−1) = E[U(ti)− U(ti−1)|Fti−1 ], i = 1, . . . ,m (3.17)

Since U is a supermartingale, E[U(ti)− U(ti−1)|Fti−1 ] ≤ 0, A(ti)−A(ti−1) ≤ 0, thus
A is predictable and nonincreasing.

We further define M as follows:

M(t0) = 0

M(ti) = U(ti)− U(t0)−A(ti), i = 1, . . . ,m

We have:

E[M(ti)−M(ti−1)|Fti−1 ] = E[U(ti)− U(ti−1)− (A(ti)−A(ti−1))|Fti−1 ]

= E[U(ti)− U(ti−1)|Fti−1 ]− (A(ti)−A(ti−1))

eq.(3.17)
= 0

Thus M is a martingale with M(t0) = 0. Any process A satisfying the required
properties must satisfy equation (3.17), thus we can prove the uniqueness of the
decomposition.

2

3.1.7 Dual Upper Bound and Andersen-Broadie Method

From the section 3.1.5, we know that the modified Longstaff-Schwartz method
(Algorithm 3.4) and the modified Tsitsiklis-Roy method (Algorithm 3.5) give
only low bias, although the Longstaff-Schwartz method (Algorithm 3.2) and the
Tsitsiklis-Roy method (Algorithm 3.3) contain both high and low biases. But we
also have to assess the lower estimates by the modified algorithms.

Since we need to know how lower than the true option price the result is, we
need an upper bound to pair the lower bound, in order to judge the quality of the
modified algorithms. If the difference between the upper bound and the lower
bound is small, we can conclude that the algorithm can price the option price
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accurately; otherwise, we have to consider choosing other forms or numbers of
basis functions to estimate the continuation value of the option.

Rogers [38], Haugh and Kogan [18], Andersen and Broadie [2], Belomestny,
Bender and Schoenmakers [4] have looked at the dual optimization problem of
the optimal stopping problem and proposed different procedures to give upper
bounds to pair the lower bounds. In this section, we focus only on the Andersen-
Broadie method [2].

Here we show the time-t0 based backward dynamic programming principle (eq.
(3.4) and (3.5)) again:

V (S(tm)) = g(S(tm))

V (S(ti)) = max (g(S(ti)),E[V (S(ti+1))|S(ti)]) , i = m− 1, 1

We notice that at time ti the decision of not exercising the option may not be
the optimal exercise strategy at this moment, in other words, the option value
V (S(ti)) assuming not exercised at time t1, . . . , ti−1 may be bigger than the option
value E[V (S(ti+1))|S(ti)] assuming not exercised at time t1, . . . , ti, i.e:

V (S(ti)) ≥ E[V (S(ti+1))|S(ti)]

which means the discounted option value process V (S(ti)) is a supermartingale.
Besides of this, we also have:

V (S(ti)) ≥ g(S(ti)), i = 1, . . . ,m (3.18)

From the theorem 3.7, we know that V (S(ti)) is the Snell envelope of the dis-
counted payoff process g(S(ti)), which is the smallest supermartingale domi-
nating g(S(ti)). However the Snell envelope is difficult to compute. In order to
compute the upper bound of the option price, we have to find another super-
martingale dominating g(S(ti)).

Before we give another computable supermartingale, we first define M =
(M(ti))i=0,...,m be a discrete martingale with M(t0) = 0 where t1, . . . , tm are poten-
tial exercise dates of the American option. Then for any stopping time τ taking
values in {t1, . . . , tm}, we have:

E[g(S(τ))] = E[g(S(τ))−M(τ)]

≤ E[ max
i=1,...,m

(g(S(ti))−M(ti))] (3.19)

Since the equation (3.19) holds for all martingales M with M(t0) = 0 and for all
stopping times τ , it follows:

V (S(t0)) = sup
τ

E[g(S(τ))]

≤ inf
M

E[ max
i=1,...,m

(g(S(ti))−M(ti))] (3.20)

Thus the right side of the inequality (3.20) provides the upper bound for the
left side of the equation V (S(t0)), which is true option price. Further more, the
inequality (3.20) is indeed an equality, which is the key part of duality.
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Theorem 3.9. With V , g and M defined as before, we have

V (S(t0)) = inf
M

E[ max
i=1,...,m

(g(S(ti))−M(ti))]

Particularly, the infimum is obtained by the martingale component MDoob of the
Doob-Meyer decomposition of V .

Proof :
Since V (S(ti)) is a supermartingale dominating g(S(ti)), we can apply the theo-
rem of Doob-Meyer Decomposition 3.8:

V (S(ti)) = V (S(t0)) +MDoob(ti) +A(ti)

where MDoob(ti) is a martingale with MDoob(t0) = 0 and A(ti) is a predictable
nonincreasing process with A(t0) = 0. Thus:

MDoob(ti) = V (S(ti))− V (S(t0))−A(ti)

Hence:

E[ max
i=1,...,m

(g(S(ti))−MDoob(ti))] = E[ max
i=1,...,m

(g(S(ti))− (V (S(ti))− V (S(t0))−A(ti)))]

= E[ max
i=1,...,m

({g(S(ti))− V (S(ti))}+ V (S(t0)) +A(ti))]

eq.(3.18)

≤ E[ max
i=1,...,m

(V (S(t0)) +A(ti))]

≤ E[V (S(t0)) +A(t0)]

= E[V (S(t0))]

2

According to the theorem 3.9, an upper bound can be constructed via duality
by taking the martingale component of a supermartingale as follows: suppose
τ is a good approximation of the optimal exercise strategy τ∗, e.g by the mod-
ified Longstaff-Schwartz method (Algorithm 3.4) or the modified Tsitsiklis-Roy
method (Algorithm 3.5), V τ

Low(S(ti)) is defined as the corresponding discounted
option value process by using the exercise strategy τ from time ti forwards as-
suming not exercised before ti, which is a supermartingal:

V τ
Low(S(ti)) = E[g(S(τ(i)))|S(ti)], i = 1, . . . ,m (3.21)

V τ
Low(S(t0)) is the option value at time t0 computed by this exercise strategy,

which is a lower bound for the true option price V (S(t0)).
The Doob-Meyer decomosition of V τ

Low(S(ti)) is:

V τ
Low(S(ti)) = V τ

Low(S(t0)) +M τ
Doob(ti) +A(ti), i = 1, . . . ,m
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with M τ
Doob being the martingale component, A being the nonincreasing pre-

dictable component and M τ
Doob(t0) = A(t0) = 0.

Further, we define ∆(ti) as the difference of M τ
Doob(ti) and M τ

Doob(ti−1):

∆(ti) := M τ
Doob(ti)−M τ

Doob(ti−1)

= V τ
Low(S(ti))− E[V τ

Low(S(ti))|S(ti−1)]

= E[g(S(τ(i)))|S(ti)]− E[g(S(τ(i)))|S(ti−1)] (3.22)

which measures the quality of the lower bound for the option price at each time
ti. Thus the upper bound V τ

bound(S(t0)) is according to the theorem 3.9 given by:

V τ
upper(S(t0)) = E[ max

i=1,...,m
(g(S(ti))−M τ

Doob(ti))]

= E[ max
i=1,...,m

(g(S(ti))−
k∑
i=1

∆(ti))] (3.23)

The duality gap of the exercise strategy τ is then computed as:

∆τ = V τ
upper(S(t0))− V τ

low(S(t0))

= E

[
max

i=1,...,m

(
g(S(ti))−

k∑
i=1

∆(ti)

)]
− V τ

low(S(t0))

= E

[
max

i=1,...,m

(
g(S(ti))−

k∑
i=1

(V τ
Low(S(ti))− E[V τ

Low(S(ti))|S(ti−1)])

)]
− V τ

low(S(t0))

= E

[
max

i=1,...,m

(
g(S(ti))−

k∑
i=1

V τ
Low(S(ti)) +

k∑
i=1

E[V τ
Low(S(ti))|S(ti−1)]

)]
− V τ

low(S(t0))

= E

[
max

i=1,...,m

(
g(S(ti))− V τ

Low(S(ti)) +

k∑
i=1

E[V τ
Low(S(ti))− V τ

Low(S(ti−1))|S(ti−1)]

)]

If the exercise strategy τ is the optimal exercise strategy τ∗, then
k∑
i=1

E[V τ∗
Low(S(ti))−

V τ∗
Low(S(ti−1))|S(ti−1)] = 0, thus according to the theorem 3.9, the duality gap

∆τ∗ = 0.
We notice that estimation of the upper bound V τ

upper(S(t0)) requires determina-
tion of the martingale M τ

Doob in the equation (3.23), which furthermore requires
computation of the conditional expectations E[g(S(τ(i)))|S(ti)] and E[g(S(τ(i)))|S(ti−1)]
in the equation (3.22), which is but computationally expensive.

Andersen and Broadie [2] set up a primal-dual algorithm to compute the con-
ditional expectations. Their approach can be conjuncted with any algorithms
generating a lower bound, e.g the modified Tsitsiklis-Roy method (Algorithm
3.5) and the Longstaff-Schwartz method (Algorithm 3.4). For instance, denote
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(τ(1), . . . , τ(m)) as the estimator of the optimal stopping time by the Longstaff-
Schwartz method. The estimation of the continuation value function at each
potential exercise date ti is:

C∗(S(n)(ti)) =
k∑
l=1

a∗liHl(S
(n)(ti))

The exercise rule is determined by comparing the continuation value C∗(S(n)(ti))
and the discounted exercising value g(S(n)(ti)).

Andersen and Broadie use a nested simulation to compute the conditional
expectations V τ

Low(S(ti)) and E[V τ
Low(S(ti))|S(ti−1)], and then ∆(ti) in the equation

(3.22). They use a straightforward Monte Carlo to estimate E[V τ
Low(S(ti))|S(ti−1)]

and rewrite V τ
Low(S(ti)) in terms of E[V τ

Low(S(ti))|S(ti−1)]:

V τ
Low(S(ti)) = E[V τ

Low(S(ti))|S(ti)]

=

{
g(S(ti)), if g(S(ti)) ≥ C∗(S(n)(ti))

E(g(S(τ(i+ 1)))|S(ti)), if g(S(ti)) < C∗(S(n)(ti))

=

{
g(S(ti)), if g(S(ti)) ≥ C∗(S(n)(ti))

E[V τ
Low(S(ti+1))|S(ti)], if g(S(ti)) < C∗(S(n)(ti))

Now we can present the algorithm of Andersen-Broadie 3.6.
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Algorithm 3.6 Andersen-Broadie algorithm
Generate N1 independent paths (out-of-samples) for stock at all possible exercise
dates: {S(n)(t1), S(n)(t2), . . . , S(n)(tm)} with n = 1, . . . , N1, ti = T

m × i, i = 1, . . . ,m.
Repeat the following iteration for each path n = 1, . . . , N1:

1. Set M (n)(t0) = 0, g(S(n)(t0)) = 0.

2. For each i = 0, . . . ,m

1) If 0 ≤ i ≤ m− 1, simulate N2 subpaths for stock S
(n̂)
Sub(ti), . . . , S

(n̂)
Sub(τ(i+ 1))

with n̂ = 1, . . . , N2 and S
(n)
Sub(ti) = S(n)(ti).

Estimate E(V τ
Low(S(n)(ti+1))|S(n)(ti)) by:

E(V τ
Low(S(n)(ti+1))|S(n)(ti)) = E(g(S(n)(τ(i+1)))|S(n)(ti)) =

1

N2

N2∑
n=1

g(S
(n̂)
Sub(τ(i+1)))

2) If 1 ≤ i ≤ m− 1, evaluate g(S(n)(ti)) and C∗(S(n)(ti)), check which is larger
and determine V τ

Low(S(ti)) by:

V τ
Low(S(n)(ti)) = E[V τ

Low(S(n)(ti))|S(n)(ti)]

=


g(S(n)(ti)), if g(S(n)(ti)) > C∗(S(n)(ti))

&& g(S(n)(ti)) > 0

E[V τ
Low(S(n)(ti+1))|S(n)(ti)], else

If i = m, V τ
Low(S(n)(tm)) = g(S(n)(tm)).

3) If 1 ≤ i ≤ m, set:

∆(n)(ti) = V τ
Low(S(n)(ti))− E[V τ

Low(S(n)(ti))|S(n)(ti−1)]

M (n)(ti) = M (n)(ti−1) + ∆(n)(ti)

3. Compute V τ
Upper(S

(n)(t0)) = max
i=1,...,m

(g(S(n)(ti))−M (n)(ti))

The upper bound for the option price is thus: V τ
Upper(S(t0)) = 1

N1
(V τ

Upper(S
(n)(t0))),

which can be paired with the lower bound V τ
Low(S(t0)).
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3.2 Numerical Studies

3.2.1 Approximation of American Option by Bermudan Counterpart

As mentioned in the section 3.1.2, the price of an American option, which can
be exercised at any time t ∈ [0, T ], can be approximated by its corresponding
Bermudan counterpart, which can be exercised only at discrete times, e.g. at
time ti = i Tm , i = 1, . . . ,m.

Approximation without Extrapolation

According to the research of Bally and Pàges [3], if the payoff function is Lip-
schitz continuous, the rate of convergence is 1√

m
and if the payoff function is

semi-convex, the rate of convergence is 1
m . Since most payoff functions include

positive part of extrema (e.g max((S(t) − K), 0)) or linear combinations of the
components of the underlings (e.g 1

2(S1(t) + S2(t))), they belong to the family of
semi-convex functions.

Approximation with Extrapolation

In order to further improve the convergence rate, we notice that methods like
the Longstaff-Schwartz algorithm leads to approximately monotone convergence
of the option price, therefore we can apply Richardson extrapolation techniques.
If the payoff function is Lipschitz continuous, Richardson extrapolation leads to
the aggregated option price estimate as follows:

PA(2m) =

√
2PB(2m)− PB(m)√

2− 1
(3.24)

where PB(m), PB(2m) denotes the Bermudan option price using m and 2m exer-
cise dates and PA(2m) denotes the aggregated American option price estimate
using 2m exercise dates. If the payoff function is semi-convex, Richardson ex-
trapolation gives the following formula:

PA(2m) = 2PB(2m)− PB(m) (3.25)

We test the performance for approximation for 1-D American put option, where
the payoff, parameters and the benchmark value are given in Test Case 1 of the
section 7.1. A series of 1-D Bermudan put option with the same parameters are
computed to approximate the American one. The number of potential exercise
times for the Bermudan options are m ∈ {2, 4, 6, . . . , 50}. The algorithm we use is
the Longstaff-Schwartz method in algorithm 3.2 with number of paths 1000000.
The basis functions chosen in the algorithm are {1, S, S2, f(S)}, where S is the
stock price and f(S) = (K − S)+ is the payoff, which is semi-convex, hence the
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corresponding extrapolation formula (3.25) can be used. The selected values of
the Bermudan options are showed in table 3.1.

We plot the Bermudan option values of Table 3.1 against the number of po-
tential exercise date m. Figure 3.2 makes use of approximation without extrap-
olation while Figure 3.3 makes use of approximation with extrapolation. From
the pictures, we see that when using extrapolation to approximate an American
option by its Bermudan counterparty, exercise times m ≥ 20 gives good approx-
imation, while exercise times m ≥ 10 already approximate well with the help of
extrapolation formula (3.25).

Test Case 1, Benchmark: 7.11
Exercise times m Option price Standard error 95%-confidence interval

2 6.9269 0.0066 [6.9140, 6.9398]
4 7.0197 0.0064 [7.0072, 7.0322]
6 7.0449 0.0063 [7.0326, 7.0572]
8 7.0444 0.0062 [7.0322, 7.0566]
10 7.0601 0.0062 [7.0479, 7.0723]
12 7.0657 0.0062 [7.0535, 7.0779]
14 7.0926 0.0062 [7.0804, 7.1048]
16 7.0735 0.0061 [7.0615, 7.0855]
18 7.0825 0.0061 [7.0705, 7.0945]
20 7.0862 0.0061 [7.0742, 7.0982]
22 7.0831 0.0061 [7.0711, 7.0951]
24 7.0860 0.0061 [7.0740, 7.0980]
26 7.0895 0.0061 [7.0775, 7.1015]
28 7.0885 0.0061 [7.0765, 7.1005]
30 7.0781 0.0060 [7.0663, 7.0899]
32 7.0947 0.0061 [7.0827, 7.1067]
34 7.0897 0.0060 [7.0779, 7.1015]
36 7.0907 0.0060 [7.0789, 7.1025]
38 7.0824 0.0060 [7.0706, 7.0942]
40 7.0923 0.0060 [7.0805, 7.1041]
42 7.0892 0.0060 [7.0774, 7.1010]
44 7.1012 0.0060 [7.0894, 7.1130]
46 7.0819 0.0060 [7.0701, 7.0937]
48 7.0921 0.0060 [7.0803, 7.1039]
50 7.0971 0.0060 [7.0853, 7.1089]

Table 3.1: Approximation of an American option by its Bermudan counterpart
for Test Case 1
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Figure 3.2: Approximation without extrapolation for Test Case 1
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Figure 3.3: Approximation with extrapolation for Test Case 1
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3.2.2 Low Bias, High Bias and Mixture of Bias

As mentioned before, the Longstaff-Schwartz method and the Tsitsiklis-Roy
method mix high bias and low bias. The modified Longstaff-Schwartz method
and the modified Tsitsiklis-Roy method estimate conditional expectation regres-
sion coefficients from an in-sample set of paths and apply this stopping rule to
an out-of-sample set of paths, thus they should show only low bias compared
with the benchmark. However Longstaff and Schwartz [33] pointed that their
method almost give very similar result as the modified one. We will test this
conclusion in this section. 1-D American option for Test Case 2, 2-D American
minimum option for Test Case 12 and 3-D American minimum option for Test
Case 16 in section 7.1 are chosen as showcase settings.

Numerical results are collected in Table 3.2, where "ATM-Benchmark", "ITM-
Benchmark" and "OTM-Benchmark" mean respectively benchmark prices for
American At-the-Money option, American In-the-Money option and American
Out-of-the-Money option and "TR" and "LS" are abbreviation for Tsitsiklis-Roy
method and Longstaff-Schwartz method. The number of paths for in-sample set
to obtain stopping rule is 1000000. The number of new paths as out-of-sample
set to apply stopping rule is also 1000000. The basis functions chosen in the
algorithms are {1, S, S2} for Test Case 2, {1, S1, S2, S

2
1 , S

2
2} for Test Case 12 and

{1, S1, S2, S3, S
2
1 , S

2
2 , S

2
3} for Test Case 16. The standard errors for all simulations

are less than 0.01.
From this table, we notice that the difference between the Longstaff-Schwartz

method and the modified Longstaff-Schwartz method with out-of-sample set of
paths is very small while the difference between the Tsitsiklis-Roy method and
the modified Tsitsiklis-Roy method with out-of-sample set of paths are much
bigger. The option prices by the Longstaff-Schwartz method are in practice
slightly smaller than benchmarks while the ones by the Tsitsiklis-Roy method
are significantly bigger than benchmarks when using the set of chosen ba-
sis functions. Both the modified Longstaff-Schwartz method and the modified
Tsitsiklis-Roy method give very accurate result compared with benchmarks and
are both slightly smaller than the actual option prices. However the modified
Longstaff-Schwartz method seems to deliver even better outputs than the mod-
ified Tsitsiklis-Roy method, as its outputs are more close to the benchmarks.
Whether this observation results from the nature of both algorithms or just from
the choice of certain basis functions, we will keep on testing in the section 3.2.4
by making use of more choices of basis functions.
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Test Case 2
ATM-Benchmark TR Modified TR LS Modified LS

11.28 11.9771 11.2119 11.2819 11.2683
ITM-Benchmark TR Modified TR LS Modified LS

22.74 23.5046 22.6474 22.7099 22.7235
OTM-Benchmark TR Modified TR LS Modified LS

4.97 5.3404 4.9241 4.9591 4.9622

Test Case 11
ATM-Benchmark TR Modified TR LS Modified LS

2.28 4.2995 2.2026 2.2229 2.2241
ITM-Benchmark TR Modified TR LS Modified LS

5.97 8.5706 5.6159 5.8464 5.8437
OTM-Benchmark TR Modified TR LS Modified LS

0.029 0.1169 0.0260 0.0288 0.0291

Test Case 16
ATM-Benchmark TR Modified TR LS Modified LS

0.81 1.3873 0.7942 0.7947 0.7926
ITM-Benchmark TR Modified TR LS Modified LS

2.82 3.8875 2.7476 2.7661 2.7638
OTM-Benchmark TR Modified TR LS Modified LS

0.0022 0.0060 0.0024 0.0023 0.0021

Table 3.2: Low bias, high bias and mixture of bias
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3.2.3 In-the-Money Paths vs All Paths

Longstaff and Schwartz include only in-the-money paths in the regression to es-
timate the continuation value and demonstrate that this increases the efficiency
of the algorithm than using all paths. However Glasserman gives an example on
page 463 of his book [15] and points out that results with in-the-money paths
are even inferior than results with all paths.

In this section, we also use all paths in the regression part of the Longstaff-
Schwartz method and the modified Longstaff-Schwartz method and compare the
numerical results with the original one using in-then-money paths. We choose
3-D American maximum outperformance option for Test Case 15 in the section
7.1 as showcase setting. We don’t make use of one single set of basis functions
as in the section 3.2.2, but multiple sets of basis functions to avoid that the
choice of basis functions to affect the reliability of the test.

Type Number Basis Functions Forms
I 4 1, f(S1, S2, S3), f2(S1, S2, S3), f3(S1, S2, S3)

II 7 1, S1, S2, S3, S
2
1 , S

2
2 , S

2
3

III 10 1, S1, S2, S3, S
2
1 , S

2
2 , S

2
3 , S

3
1 , S

3
2 , S

3
3

IV 12 1, S1, S2, S3, S
2
1 , S

2
2 , S

2
3 , S

3
1 , S

3
2 , S

3
3 , S1S2S3, f(S1, S2, S3)

V 17
1, S1, S2, S3, S

2
1 , S

2
2 , S

2
3 , S

3
1 , S

3
2 , S

3
3 , S1S2, S1S3, S2S3, S1S2S3,

f(S1, S2, f3), f2(S1, S2, f3), f3(S1, S2, f3)

VI 20
1, S1, S2, S3, S

2
1 , S

2
2 , S

2
3 , S1S2, S1S3, S2S3,

S3
1 , S

3
2 , S

3
3 , S

2
1S2, S

2
1S3, S

2
2S1, S

2
2S3, S

2
3S1, S

2
3S2, S1S2S3

VII 22
1, S1, S2, S3, S

2
1 , S

2
2 , S

2
3 , S

3
1 , S

3
2 , S

3
3 , S

4
1 , S

4
2 , S

4
3 ,

S5
1 , S

5
2 , S

5
3 , S

6
1 , S

6
2 , S

6
3 , S

7
1 , S

7
2 , S

7
3

VIII 35

1, S1, S2, S3, S
2
1 , S

2
2 , S

2
3 , S1S2, S1S3, S2S3,

S3
1 , S

3
2 , S

3
3 , S

2
1S2, S

2
1S3, S

2
2S1, S

2
2S3, S

2
3S1, S

2
3S2, S1S2S3,

S4
1 , S

4
2 , S

4
3 , S

3
1S2, S

3
1S3, S

3
2S1, S

3
2S3, S

3
3S1, S

3
3S2,

S2
1S

2
2 , S

2
1S

2
3 , S

2
2S

2
3 , S

2
1S2S3, S

2
2S1S3, S

2
3S1S2

Table 3.3: Sets of basis functions for the test of "In-the-Money Paths vs All Paths"

The sets of basis functions are presented in Table 3.3. They are noted as
from Type I to Type III. In Type I, we use 4 basis functions up to polynomial
degree 3, where f(S1, S2, S3) is the payoff function defined as: f(S1, S2, S3) :=
(max{S1(t), S2(t), S3(t)} −K)+. Type II consists of 10 basis functions with mono-
mial polynomials up to degree 2. Type III consists of 7 basis functions with
monomial polynomials up to degree 3. In Type IV, We add two terms S1S2S2

and f(S1, S2, S3) to Type III. Type V contains 17 basis functions including 14
monomial polynomials up to degree 3 and 3 payoff functions up to degree 3. In
Type VI, we use 20 basis functions purely being monomial polynomials up to
degree 3. Type VII consists of 22 monomial polynomials up to degree 7 as basis
functions. In Type VIII we make use of the most basis functions, namely 35
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monomial polynomials up to degree 4.
All numerical results are collected in Table 3.4, 3.5 and 3.6. "LS" and "Modified

LS" abbreviate the original algorithm of Longstaff-Schwartz method using only
in-the-money paths for regression and its modified one. "LS-All" and "Modified
LS-All" mean the usage of all paths for regression and its modified one.

We test not only at-the-money (ATM) option, but also in-the-money (ITM) and
out-of-the-money (OTM) option. From the tables, we see that the "LS" algorithm
using in-the-money paths present better result than the "LS-All" algorithm using
all paths and are not so sensible to the choice of basis functions. The "Modified
LS" and the "Modified LS-All" algorithm both use out-of-sample paths and there-
fore display a low bias compared with the benchmarks. However the difference
between the "Modified LS" and the corresponding benchmark is much smaller
than the difference between the "Modified LS-All" and the benchmark, which
also shows that the usage of all paths for regression is worse than the usage of
only in-the-money paths.

The reason can be seen intuitively from Figure 3.4 and 3.5. The blue circle is a
sample with stock price as x-coordinates and the value of option as y-coordinates
assuming that the option has not been exercised before at this time. Here we
use 10000 paths for samples. The red curve is the discounted payoff function.
The yellow curve is the real continuation value function. In Figure 3.4, we use
all paths to do regression. In Figure 3.5, we use only in-the-money paths to do
regression. The green curve is the estimated continuation value function, either
using all paths or using in-the-money paths for regression. We see clearly that
the green curve in Figure 3.4 is much closer to the red curve than the one in
Figure 3.5 especially within the area where the stock prices are less than the
strike price 100, i.e out-of-the-money, while the green curve in Figure 3.5 is
much closer to the red curve than the one in Figure 3.4 within the area where
the stock prices are more than 100, i.e in-the-money. Within the out-of-the-
money area, according to the Longstaff-Schwartz algorithm, holding the option
and keeping the option value the same as in the previous time step is a clear
decision. Thus a good fit in Figure 3.4 is not necessary for the whole algorithm.
We are only interested in the estimated continuation value function for the in-
the-money area, a good fit in this area is very important for the accuracy of
the whole algorithm. Especially when the estimated continuation function (the
green curve) is lower than the discounted payoff function (the red curve), the
option holder should make a decision to exercise the option immediately rather
than holding the option. Thus a good fit within the in-the-money area in Figure
3.5 is necessary.

Since the difference and the corresponding error of two kinds of regression is
propagated backwards through time, we see that regression using in-the-money
paths gives more accurate result than the one using all paths.
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Test Case 15, ATM-Benchmark: 17.50
Basis Function Number LS Modified LS LS-All Modified LS-All

I 4 17.1102 17.1499 17.0524 17.0985
II 7 17.4061 17.4208 17.3844 17.3694
III 10 17.3665 17.4053 17.3041 17.3547
IV 12 17.4501 17.4761 17.4642 17.4568
V 17 17.4569 17.4997 17.5049 17.4656
VI 20 17.4625 17.4811 17.3529 17.4047
VII 22 17.3785 17.3963 17.3555 17.3520
VIII 35 17.4626 17.5036 17.4851 17.4482

Table 3.4: In-the-money paths for regression vs all paths for regression for 3-D
American maximum ATM option. Each estimate has a standard error
of approximately 0.03.

Test Case 15, ITM-Benchmark: 25.98
Basis Function Number LS Modified LS LS-All Modified LS-All

I 4 25.2939 25.3114 25.2306 25.2735
II 7 25.7998 25.8376 25.8075 25.8026
III 10 25.7648 25.8063 25.8081 25.7758
IV 12 25.9109 25.9713 25.8950 25.9218
V 17 25.9410 25.9633 25.9400 25.9750
VI 20 25.9189 25.9731 25.8792 25.9018
VII 22 25.7760 25.8130 25.7861 25.8227
VIII 35 25.9645 25.9288 25.9250 25.9258

Table 3.5: In-the-money paths vs all paths for 3-D American maximum ITM op-
tion. Each estimate has a standard error of approximately 0.035.

Test Case 15, OTM-Benchmark: 2.27
Basis Function Number LS Modified LS LS-All Modified LS-All

I 4 2.2688 2.2824 2.2691 2.2720
II 7 2.2685 2.2615 2.1733 2.1682
III 10 2.2862 2.2821 2.2488 2.2483
IV 12 2.2853 2.2819 2.2639 2.2526
V 17 2.2931 2.2741 2.2650 2.2668
VI 20 2.2922 2.2879 2.2465 2.2492
VII 22 2.2879 2.2783 2.2367 2.2495
VIII 35 2.2905 2.2869 2.2466 2.2411

Table 3.6: In-the-money paths vs all paths for 3-D American maximum OTM
option. Each estimate has a standard error of approximately 0.01.
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Figure 3.4: Regression part of the Longstaff-Schwartz Method using all paths
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Figure 3.5: Regression part of the Longstaff-Schwartz Method using only in-the-
money paths
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3.2.4 Longstaff-Schwartz Method vs Tsitsiklis-Roy Method

In this section, we test the accuracy of the Longstaff-Schwartz method and the
Tsitsiklis-Roy method. We test 2-D American maximum option in Test Case 10
in the section 7.1 by these two methods and their modified versions with low
bias.

Type Number Basis Functions Forms
I 7 1, S1, S2, S

2
1 , S

2
2 , S

3
1 , S

3
2

II 8 1, S1, S2, S
2
1 , S

2
2 , S

3
1 , S

3
2 , S1S2

III 9 1, S1, S2, S
2
1 , S

2
2 , S

3
1 , S

3
2 , S1S2,max(S1, S2)

IV 10 1, S1, S2, S
2
1 , S

2
2 , S

3
1 , S

3
2 , S1S2, S

2
1S2, S1S

2
2

V 7 1, S1, S2, S
2
1 , S

2
2 , S1S2, f(S1, S2)

VI 11 1, S1, S2, S
2
1 , S

2
2 , S

3
1 , S

3
2 , S1S2, S

2
1S2, S1S

2
2 , f(S1, S2)

Table 3.7: Sets of basis functions for the test of "Longstaff-Schwartz Method vs
Tsitsiklis-Roy Method"

Different choices of basis functions haven been tested, see Table 3.7. In Type
I, we include 7 basis functions, i.e monomial polynomials with degree up to 3.
Type II contains all basis functions of Type I and plus the the term of S1S2. Type
III contains all basis functions of Type II and plus the new one max(S1, S2). As
Type IV, we take all basis functions of Type II and add two new ones S2

1S2 and
S1S

2
2 . Type V makes use of all basis functions of Type IV and adds the payoff

function f(S1, S2) := max(max(S1, S2)−K, 0). Type VI also use the payoff function
but with fewer monomial polynomials.

Again, we test not only 2-D American at-the-money (ATM) option, but also
in-the-money (ITM) and out-of-the-money (OTM) option. Numerical results are
collected in Table 3.8, 3.9 and 3.10. "LS", "Modified LS", "TR" and "Modified TR"
are respectively abbreviations of the Longstaff-Schwartz method, the modified
Longstaff-Schwartz method with out-of-sample paths, the Tsitsiklis-Roy Method
and the modified Tsitsiklis-Roy Method with out-of-sample paths. For "LS" and
"TR", 1000000 stock price paths are simulated to calculate the estimated contin-
uation value and the corresponding stopping rule. For "Modified LS" and "Modi-
fied TR", again 1000000 new out-of-sample paths are simulated to compute the
modified option price based on the previously obtained stopping rule.

The bechmarks computed by the binomial-tree method are respectively 13,90
for the ATM option, 21,34 for the ITM option and 1,64 for the OTM option.

From the table, we see clearly that the estimator by the Tsitsiklis-Roy Method
have significant high bias than the benchmarks, either in the ATM case, or in
the ITM case or in the OTM case. The choice of basis functions affects the bias.
In Type I, Type II, Type III and Type IV, choices of basis functions all show bad
results for the Tsitsiklis-Roy Method. However including the payoff function
f(S1, S) can improve the estimator in Type V and Type VI. Especially in Type VI,
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additionally adding the interaction term S1S2, S2
1S2 and S1S

2
2 can decrease the

bias to a low level.
Compared with the Tsitsiklis-Roy method, the price estimator by the Longstaff-

Schwartz method gives much smaller bias, and practically it shows often low
bias, either in the ATM case, or in the ITM case or in the OTM case, using any
tested type of basis functions. And the choice of basis functions in the Longstaff-
Schwartz method is not so sensitive as in the Tsitsiklis-Roy method.

When we compared the modified Longstaff-Schwartz method and the modi-
fied Tsitsiklis-Roy method with out-of-sample paths, we notice that both meth-
ods show low bias compared with the benchmarks. And the price estimator
by the modified Longstaff-Schwartz method is closer to the benchmark than
the price estimator by the modified Tsitsiklis-Roy method, which means that
the Longstaff-Schwartz method estimate the continuation value more accurately
than the Tsitsiklis-Roy method.

The reason is threefold:

1. The Longstaff-Schwartz method only use in-the-money stock prices to do
regression while the Tsitsiklis-Roy method use all paths to regress. As
shown in the previous section 3.2.3, the regression using in-the-money
stocks gives a better fit to the continuation value of holding the option
within the in-the-money area than the regression using all stocks. And the
fit of the continuation value within the in-the-money area is very crucial
while the fit within the out-of-the-money area is not so important. Thus
the Longstaff-Schwartz method gives better regression of the continuation
value than the Tsitsiklis-Roy method does.

2. When the discounted payoff value is larger than the estimated continuation
vale, according to the Tsitsiklis-Roy method, we should exercise the op-
tion immediately. However there is one situation that this method doesn’t
think of. When the estimated continuation value is negative and the dis-
counted payoff value is zero, we should exercise the option according to the
Tsitsiklis-Roy method and clearly this decision is wrong, since the payoff
is zero and the option is out-of-the-money and we should definitely hold it.
The reason why we get a negative continuation value comes from regressing
with improper number or form of basis functions. The Longstaff-Schwartz
method takes account of this situation and recommends the option holder
to exercise the option only when the discounted payoff value is bigger than
the estimated continuation value and at the same time the discounted pay-
off should also be positive, which means the option is in-the-money. In
this sense, the Longstaff-Schwartz method is better than the Tsitsiklis-Roy
method.

3. When the discounted payoff value is lower than the estimated continuation
value, the option holder should hold the option. According to the Tsitsiklis-
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3.2 Numerical Studies

Roy method, he should update the option value equaling the estimated
continuation value, while according to the Longstaff-Schwartz method, he
should keep the option value the same as in the previous time step. Since
the strategy of the Longstaff-Schwartz method incorporates all future time
steps up to the maturity of the option, the Longstaff-Schwartz method re-
duces the bias resulting from estimating the continuation value while the
Tsitsiklis-Roy method introduce this bias to the whole algorithm.

We plot the regression process for estimating the continuation value of 1-D
American call option at different exercise dates respectively by the Longstaff-
Schwartz method in Figure 3.6 and by the Tsitsiklis-Roy method in Figure 3.7
using 10000 paths of stocks. Each figure contains two parts. The upper part
shows regression at one time step before maturity of the option, where the real
continuation value function (yellow curve) can be exactly computed by the Black-
Scholes Formula for the European option (see equation (1.10)). The lower part
shows regression at nine time step before maturity, where the real continuation
value function is not clear.

Comparing the first part of Figure 3.6 and Figure 3.7, we notice that the fit
of continuation value within the in-the-money area (stock price > 100) by the
Lonstaff-Schwartz method is better than by the Tsitsiklis-Roy method while the
fit of continuation value within the out-of-the-money area (stock price < 100)
by the Tsitsiklis-Roy method is better than by the Lonstaff-Schwartz method,
because we use only in-the-money paths to regress in the Longstaff-Schwartz
method but use all paths to do regression in the Tsitsiklis-Roy method.

After regressing at 9 potential exercise dates, we reach the lower part of Figure
3.6 and Figure 3.7. Comparing both of them, we find that the estimated con-
tinuation value function in each figure seems similar, which leads to that the
numerical result by both methods are nearly identical. However if we watch the
figures in details and take account of all the previously mentioned bias by the
Tsitsiklis-Roy method, we see that the intersecting point between the estimated
continuation value function (green curve) and the discounted payoff function
(red curve) by both methods are not the same.

For the Longstaff-Schwartz method, the intersecting point is a little bit smaller
than 120. On the other hand, the intersecting point by the Tsitsiklis-Roy method
is slightly bigger than 120. That means, the optimal exercise region and the
corresponding stopping rule by both methods are similar but not the same and
the option value calculated by the Tsitsiklis-Roy method shows practically a high
bias than the benchmark while the option value calculated by the Longstaff-
Schwartz method shows a low bias.
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Test Case 10, ATM-Benchmark: 13.90
Basis Function Number LS Modified LS TR Modified TR

I 7 13.7551 13.7698 15.6548 13.6228
II 8 13.8511 13.8273 15.1730 13.6562
III 9 13.8402 13.8796 15.1644 13.6935
IV 10 13.8417 13.8443 15.0044 13.7458
V 7 13.8649 13.8374 14.0039 13.8069
VI 11 13.8385 13.8659 13.9189 13.8427

Table 3.8: Longstaff-Schwartz Method vs Tsitsiklis-Roy Method for the Test Case
10: 2-D American maximum ATM option. Each estimate has a stan-
dard error of approximately 0.03.

Test Case 10, ITM-Benchmark: 21.34
Basis Function Number LS Modified LS TR Modified TR

I 7 21.1850 21.1601 23.8391 20.9041
II 8 21.2650 21.2955 22.5281 21.0806
III 9 21.2573 21.2895 22.3556 21.0447
IV 10 21.2881 21.2779 22.4270 21.1398
V 7 21.2686 21.2836 21.3361 21.2460
VI 11 21.2655 21.3018 21.3402 21.2932

Table 3.9: Longstaff-Schwartz Method vs Tsitsiklis-Roy Method for the Test Case
10: 2-D American maximum ITM option. Each estimate has a stan-
dard error of approximately 0.03.

Test Case 10, OTM-Benchmark: 1.64
Basis Function Number LS Modified LS TR Modified TR

I 7 1.6370 1.6290 2.3824 1.6380
II 8 1.6494 1.6305 2.2408 1.6441
III 9 1.6386 1.6382 2.2077 1.6395
IV 10 1.6299 1.6237 2.2328 1.6455
V 7 1.6300 1.6402 1.8231 1.6393
VI 11 1.6460 1.6369 1.7818 1.6354

Table 3.10: Longstaff-Schwartz Method vs Tsitsiklis-Roy Method for the Test
Case 10: 2-D American maximum OTM option. Each estimate has a
standard error of approximately 0.01.
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Figure 3.6: Regression using the Longstaff-Schwartz method
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Figure 3.7: Regression using the Tsitsiklis-Roy method
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3.2.5 Choice of Orthogonal Polynomials

Recall the section 3.1.3, we set up a linear regression model to estimate the
conditional expectation. For simplicity, the basis functions we choose in this
model is monomial polynomials. There are of course other choices, such as Leg-
endre polynomials, Laguerre polynomials, Hermite polynomials and Chebyshev
polynomials, see Table 3.11. In this section, we study the impact of choice of
different polynomials as basis functions on American option prices. This section
is mainly based on Abramowitz [1] and Moreno [35].

Polynomial Name fn(x) Polynomial Name fn(x)

Monomial Wn(x) physicists’ Hermite Hn(x)
Legendre Pn(x) probabilists’ Hermite Hen(x)
Laguerre Ln(x) Chebyshev 1st kind Tn(x)

Chebyshev 2nd kind Un(x)

Table 3.11: Examples of orthogonal polynomials

Definition 3.10 (Orthogonal Polynomials). A system of polynomials {fn(x)}
with degree [fn(x)] = n is called orthogonal on the interval a ≤ x ≤ b with respect
to the weight function w(x) if

b∫
a

w(x)fn(x)fm(x)dx = 0

The weight function w(x) controls the system fn(x) up to a constant factor in
each polynomial. The specification of these factors is referred to as standardiza-
tion.

These polynomials satisfy a number of relationships of the same general
form, such as explicit expression, differential equation, recurrence relation and
rodrigues’ formula, see Abramowitz [1] and Moreno [35].

Here we only study the recurrence relation:

a1nfn+1(x) = (a2n + a3nx)fn(x)− a4nfn−1(x)

We collect all coefficients of the recurrence relation for the selected polynomials
in Table 3.12.
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fn(x) a1n a2n a3n a4n f0(x) f1(x)

Wn(x) 1 0 1 0 1 x

Pn(x) n+ 1 0 2n+ 1 n 1 x

Ln(x) n+ 1 2n+ 1 −1 n 1 1− x
Hn(x) 1 0 2 2n 1 2x

Hen(x) 1 0 1 n 1 x

Tn(x) 1 0 2 1 1 x

Un(x) 1 0 2 1 1 2x

Table 3.12: Recurrence relation for the selected polynomials

For example, the first few terms of the selected orthogonal polynomials are
presented in Table 3.13 and drawn in Figure 3.8:

n Pn(x) Ln(x)

0 1 1

1 x −x+ 1

2 1
2(3x2 − 1) 1

2(x2 − 4x+ 2)

3 1
2(5x3 − 3x) 1

6(−x3 + 9x2 − 18x+ 6)

4 1
8(35x4 − 30x2 + 3) 1

24(x4 − 16x3 + 72x2 − 96x+ 24)

5 1
8(63x5 − 70x3 + 15x) 1

120(−x5 + 25x4 − 200x3 + 600x2 − 600x+ 120)

n Hn(x) Hen(x)

0 1 1

1 2x x

2 4x2 − 2 x2 − 1

3 8x3 − 12x x3 − 3x

4 16x4 − 48x2 + 12 x4 − 6x2 + 3

5 32x5 − 160x3 + 120x x5 − 10x3 + 15x

n Tn(x) Un(x)

0 1 1

1 x 2x

2 2x2 − 1 4x2 − 1

3 4x3 − 3x 8x3 − 4x

4 8x4 − 8x2 + 1 16x4 − 12x2 + 1

5 16x5 − 20x3 + 5x 32x5 − 32x3 + 6x

Table 3.13: First few terms of the selected polynomials
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Figure 3.8: First few terms of the selected polynomials

85



3 Monte Carlo Methods for Pricing American-style Options

Here we test two options, namely 7-D American geometric-average basket op-
tion in Test Case 21 and 7-D American geometric-average basket option with
strangle-spread payoff in Test Case 23.

For Test Case 21 and Test Case 23 we only simulate 100000 paths due to
very long run time. In each test, we consider the impact of different orthogonal
polynomials on the Longstaff-Schwartz method and the Tsisiklis-Roy Method re-
spectively. Numerical results are presented in Table 3.14 and Table 3.15. In
each cell of the table, we show not only the option price, but also the corre-
sponding standard error under the option price within the bracket.

The number of basis functions which are used are chosen from 1 to 6, which
also means that the degree of polynomials n ranges from 0 to 5. For more basis
functions, numerical problems might happen since solving the least-squares
linear regression might involve singular matrices. For each class of polynomial,
we highlight the option price which is the most close to the benchmark.

Firstly, we test the 7-D American geometric-average basket option in Table
3.14. Since it is a multi-dimensional option, we choose the average product of

these seven stocks ((
7∏
i=1

Si(Tex))
1
7 )n as the base for the basis functions, where n

is polynomial degree and Tex are potential exercise dates. Clearly, the Longstaff-
Schwartz method delivers much more accurate result than the Tsitsiklis-Roy
method, regardless of the type of the orthogonal polynomials. When n increases,
the option prices calculated by the Tsitsiklis-Roy method changes heavily while
the option prices calculated by the Longstaff-Schwartz method changes slightly.

On the side of the Longstaff-Schwartz method, the influence of different type
of polynomials on option prices are not notable. This is not strange, since ac-
cording to Abramowitz [1], the coefficients of each class of orthogonal polynomial
regarding to monomial polynomial forms a non-singular matrix, which implies
all class of other polynomials generate the same span as the monomial polyno-
mial. All option prices for each class of polynomials range from 4.6763 to 4.8275
(without taking account of the case of n = 0) with similar standard error around
0.0215. The best choice of polynomial degree seems to be n = 3 or n = 4. However
we suggest to use the Laguerre polynomial Ln(x), since the option prices cal-
culated by different degree of Laguerre polynomials range from 4.7211 to 4.7797,
whose interval is the smallest among all classes of polynomials.

On the side of the Tsitsiklis-Roy method, all calculated option prices by dif-
ferent type and number of polynomials are larger than benchmarks and the
standard error is around 0.0085, which is almost half of the standard error by
the Longstaff-Schwartz method. The suggested polynomial degree is n = 4 or
n = 5, which means 5 or 6 basis functions should be used. The best choice of
polynomial is again the Laguerre polynomial Ln(x), since in each row with the
same degree n, the Laguerre polynomial always gives the smallest option price
compared with other polynomials. That is also not strange, since according to
Figure 3.8, Laguerre functions seem most like the payoff function of the option.
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Secondly, we test the 7-D American geometric-average basket option with
strangle-spread-payoff with result in Table 3.15. As before, we still use the
averaged product of these stocks as the base for the basis functions. Since the
payoff function is not the same as before, the best polynomial degree has also
changed. On the side of the Longstaff-Schwartz method, we suggest using 3 ba-
sis functions, namely n = 2; on the side of the Tsitsiklis-Roy method, we suggest
using 6 basis functions, namely n = 5. The best type of polynomial is still the
Laguerre polynomials Ln(x).

In summary, the Longstaff-Schwartz method is quite robust with respect to the
type of the polynomials, while the Tsitsiklis-Roy method is not. The suggested
number of polynomial degree n can range from 3 to 5. The suggested type of
polynomial is the Laguerre polynomial.
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3 Monte Carlo Methods for Pricing American-style Options

Test Case 21, Benchmark: 4.77
Longstaff-Schwartz Method

n Wn(x) Pn(x) Ln(x) Hn(x) Hen(x) Tn(x) Un(x)

0
4.6204 4.6011 4.6670 4.6456 4.6771 4.6447 4.6408

(0.0198) (0.0196) (0.0198) (0.0197) (0.0198) (0.0198) (0.0199)

1
4.7155 4.7004 4.7211 4.7155 4.7079 4.7076 4.6763

(0.0234) (0.0234) (0.0231) (0.0231) (0.0233) (0.0233) (0.0231)

2
4.7149 4.7197 4.7797 4.8275 4.7203 4.7286 4.7479

(0.0219) (0.0217) (0.0223) (0.0221) (0.0218) (0.0218) (0.0218)

3
4.7033 4.7808 4.7698 4.7856 4.7648 4.7813 4.7625

(0.0213) (0.0216) (0.0216) (0.0214) (0.0215) (0.0218) (0.0215)

4
4.7710 4.8101 4.7590 4.7611 4.7891 4.7404 4.7465
(0.0216) (0.0218) (0.0213) (0.0217) (0.0218) (0.0215) (0.0216)

5
4.7577 4.7313 4.7577 4.7337 4.8034 4.7592 4.7412

(0.0216) (0.0217) (0.0213) (0.0216) (0.0219) (0.0218) (0.0214)

Tsitsiklis-Roy Method
n Wn(x) Pn(x) Ln(x) Hn(x) Hen(x) Tn(x) Un(x)

0
13.7221 13.8161 13.6866 13.6761 13.6707 13.7580 13.7670
(0.0010) (0.0011) (0.0011) (0.0010) (0.0012) (0.0010) (0.0010)

1
8.9316 8.8306 8.7523 8.8326 8.8761 8.9054 8.8345

(0.0092) (0.0092) (0.0092) (0.0093) (0.0092) (0.0093) (0.0092)

2
5.3555 5.3601 5.3193 5.3121 5.3766 5.3747 5.3447

(0.0086) (0.0084) (0.0085) (0.0085) (0.0085) (0.0085) (0.0085)

3
5.3492 5.3562 5.3129 5.3626 5.3384 5.3395 5.3461

(0.0084) (0.0084) (0.0083) (0.0085) (0.0083) (0.0084) (0.0084)

4
5.1145 5.1918 5.1390 5.2637 5.1120 5.2149 5.2548
(0.0085) (0.0083) (0.0085) (0.0085) (0.0086) (0.0084) (0.0084)

5
5.1628 5.1347 5.1047 5.3422 5.2270 5.2119 5.1872

(0.0084) (0.0085) (0.0085) (0.0086) (0.0085) (0.0086) (0.0086)

Table 3.14: Test the effect of different choice of orthogonal polynomials on option
prices in Test Case 21
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Test Case 23, Benchmark: 8.31
Longstaff-Schwartz Method

n Wn(x) Pn(x) Ln(x) Hn(x) Hen(x) Tn(x) Un(x)

0
8.3631 8.3852 8.3647 8.3733 8.3707 8.3631 8.3697

(0.0097) (0.0096) (0.0097) (0.0096) (0.0096) (0.0097) (0.0096)

1
8.3954 8.4168 8.3900 8.4066 8.4093 8.3849 8.4044

(0.0094) (0.0094) (0.0094) (0.0094) (0.0094) (0.0094) (0.0094)

2
8.4108 8.3994 8.3771 8.3894 8.3814 8.3949 8.3905

(0.0092) (0.0092) (0.0093) (0.0093) (0.0093) (0.0093) (0.0093)

3
8.4041 8.4067 8.4270 8.4137 8.3927 8.3948 8.4246

(0.0092) (0.0093) (0.0092) (0.0092) (0.0093) (0.0093) (0.0092)

4
8.3992 8.4020 8.4119 8.4047 8.3962 8.4124 8.4086
(0.0091) (0.0092) (0.0091) (0.0092) (0.0091) (0.0092) (0.0092)

5
8.4188 8.4015 8.3859 8.3899 8.3986 8.4022 8.3964

(0.0091) (0.0092) (0.0092) (0.0092) (0.0091) (0.0092) (0.0092)

Tsitsiklis-Roy Method
n Wn(x) Pn(x) Ln(x) Hn(x) Hen(x) Tn(x) Un(x)

0
9.8361 9.8370 9.8359 9.8363 9.8363 9.8364 9.8359

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

1
9.6687 9.6727 9.6750 9.6728 9.6719 9.6692 9.6716

(0.0001) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

2
9.2864 9.2900 9.2805 9.2924 9.2943 9.2771 9.2800

(0.0013) (0.0013) (0.0014) (0.0013) 0.0013 (0.0013) (0.0013)

3
9.1456 9.1678 9.1501 9.1553 9.1507 9.1426 9.1590

(0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0011)

4
9.0470 9.1789 8.9218 9.1861 9.0453 9.1858 9.1760

(0.0014) (0.0013) (0.0014) (0.0014) (0.0013) (0.0013) (0.0014)

5
9.0078 9.0710 8.9407 9.0759 9.0156 9.0787 9.0738
(0.0013) (0.0014) (0.0014) (0.0013) (0.0013) (0.0014) (0.0014)

Table 3.15: Test the effect of different choice of orthogonal polynomials on option
prices in Test Case 23
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3 Monte Carlo Methods for Pricing American-style Options

3.2.6 Lower Bound vs Upper Bound

In this section, we use the Andersen-Broadie method (Algorithm 3.6) to yield the
upper bound for the Longstaff-Schwartz method and the Tsitsiklis-Roy method.
The corresponding lower bounds are computed by the modified Longstaff-
Schwartz method (Algorithm 3.4) and the modified Tsitsiklis-Roy method (Al-
gorithm 3.5). The difference between the upper bound and the lower bound
shows the accuracy of different algorithms when pricing American options.

First we consider a toy exmple – a Bermudan put option on a single stock with
only two exercise date (t1 = T

2 , t1 = T ) with all input parameters shown in Test
Case 3. This example is also examined on page 254-255 of Korn [26]. They
claimed that if we make use of monomial polynomials up to degree 3 as basis
functions (1, S, S2, S3), the variation of Longstaff-Schwartz method with all paths
doing regression (studied in the section 3.2.3) gives very bad lower bounds but
acceptable upper bounds. However we drew different conclusions: the lower
bounds and upper bounds are both acceptable even in this case.

We use 100000 paths to approximate the regression coefficients which can
determine the exercise strategy. For the lower bound, we use again 100000
paths as out-of-samples. For the upper bound, we simulate N1 = 1000 paths as
out-of-samples and N2 = 1000 subpaths at t1 to compute the inner conditional
expectations.

The option prices were respectively computed for 100 times via the Longstaff-
Schwartz method with all paths doing regression ("LSAll") using monomial poly-
nomials up to degree 3, via its lower bound ("LSALLLower") and via its upper
bound ("LSAllUpper"). The benchmark value is 4.313. We show the median of
these 100 option prices, the corresponding standard error and the 95% - confi-
dence interval in Table 3.16 and produce a box plot for them in Figure 3.9. From
the Table and Figure, we see clearly that the "LSAll" method with monomial poly-
nomials up to degree 3 delievers very good result. We also notice one intersting
thing which is the standard error for the "LSAllUpper" method is much smaller
than the "LSAll" and the "LSAllLower" methods.

We keep on using the same example - Test Case 3 with same paths numbers,
same subpath numbers and same basis functions as before to test the origi-
nal Longstaff-Schwartz method using only in-the-money paths doing regression
("LSITM") (Algorithm 3.2), its variation with lower bound ("LSITMLower") and
its variation with upper bound ("LSITMUpper") and the original Tsitsiklis-Roy
method (Algorithm 3.3) using all paths doing regression ("TRAll"), its variation
with lower bound ("TRAllLower") and its variation with upper bound ("TRAllUp-
per"). The simulations run again for 100 times. The box-plot for the 100 op-
tion prices are presented in Figure 3.10. From this figure, we notice that the
Longstaff-Schwartz method either using in-the-money paths or using all paths
approximating regression coefficients delivers good results and the difference be-
tween the lower bounds and the upper bounds for both methods is very small.
However, the result by the Tsitsiklis-Roy method is not very accurate.
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3.2 Numerical Studies

Test Case 3, Benchmark: 4.313
Name Option Price Standard Error 95% - Confidence Interval
LSAll 4.3089 0.0206 [4.2685, 4.3493]

LSAllLower 4.3108 0.0207 [4.2702, 4.3514]

LSAllUpper 4.3138 0.0067 [4.3007, 4.3269]

Table 3.16: Lower and upper bounds for the option price using "LSAll" method
with monomial polynomials up to degree 3
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Figure 3.9: Lower and upper bounds for the option price in Test Case 3 using
"LSAll" method with monomial polynomials up to degree 3
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Figure 3.10: Lower and upper bounds for the option price in Test Case 3 using
"LSITM", "LSAll" and "TRAll" methods
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4 Improvement of the Regression Part by
Machine Learning Techniques

Notice that the Longstaff-Schwartz method (Algorithm 3.2) and the Tsitsiklis-
Roy method (Algorithm 3.3) use least-squares linear regression to estimate the
continuation value (equation 3.7). According to Kohler [22], there are four
paradigms of nonparametric regression to estimate: local averaging, local model-
ing, global modeling (or least squares estimation) and penalized modeling. While
they are studied theoretically with focus on consistency or convergence rate in
the book of Györfi [17], they are also overall studied practically as machine learn-
ing techniques in the book of Bishop [6].

Consider Xi to be the observation data, Yi to be the value of the regression
function m(x) at Xi, εi = Yi −m(Xi) to be the error, where the expectation of the
error E(ε|Xi) is equal to 0:

Yi = m(Xi) + εi i = 1, . . . , n (4.1)

The idea of the local averaging is to estimate m(x) by the average of those Yi
where Xi is close to x. The corresponding estimate is:

mn(x) =
n∑
i=1

Wn,i(x) · Yi (4.2)

with weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depending on X1, . . . , Xn. Some
popular choices of local averaging are partitioning estimate, Nadaraya-Watson
kernel estimate and k-nearst neighbor estimate.

The idea of the local modeling is to fit each data with a general function
depending on several parameters. Define g(·, {ak}lk=1) : Rd → R as a function
depending on parameters {ak}. For each x ∈ Rd, the optimal local parameters
are obtained by:

{a∗k(x)} = arg min
{ak}

1

n

n∑
i=1

K

(
x−Xi

h

)
(Yi − g(Xi, {ak}))2 (4.3)

with K : Rd −→ R+ being kernel function, where the weight of Yi depends on the
distance between Xi and x, and h > 0 being bandwidth. The estimate of m(x) is
then obtained as:

mn(x) = g(x, {a∗k(x)})
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4 Improvement of the Regression Part by Machine Learning Techniques

The most popular choice of local modeling is local polynomial kernel estimate.
The idea of the global modeling is to choose a function space Fn with func-

tions f ∈ Fn : Rd −→ R. The estimate is defined as:

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

|f(Xi)− Yi)|2
}

(4.4)

If Fn is a linear vector space, the minimum can be obtained by solving a linear
equation system, which is indeed solved in the Longstaff-Schwartz Method and
the Tsitsiklis-Roy Method, see the equation 3.13. If Fn is a nonlinear vector
space, the most popular choice is neural networks.

The idea of the penalized modeling is to add a penalty term Jn(f) ≥ 0 to
penalize the "roughness" of a function f . The corresponding estimate is defined
as:

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

|f(Xi)− Yi)|2 + Jn(f)

}
(4.5)

The most popular choice is smoothing spline estimates.
Each estimate above contains a parameter, which can control the smoothness

of the estimate. In order to use these estimates efficiently, we have to choose
proper parameter, which should be data-dependent. The chosen process can be
proceeded either using splitting of the sample or cross validation (see Chapter 7
and 8 in Györfi [17]).

Egloff [13] was the first one who used nonparametric regression with least
squares estimation to approximate continuation value of American option. He
examined rate of convergence for smooth continuation value function. However
his estimate is too hard to implement in practice. Egloff, Kohler and Todorovic
[14] used linear vector space for the least squares spline estimates and make
the implementation much easier than before, for this estimate can be solved by
a linear equation system. Again consistency and rate of convergence was derived
in this paper. Kohler [24] investigated smoothing spline estimates and Kohler,
Krzyzak and Todorovic [23] considered least squares neural network estimates.
Both papers also showed proof for consistency and rate of convergence.

Lee [29] [30] investigated the numerical performance of the kernel method
to price American option within the Black-Scholes model and a jump-diffusion
model. However his papers didn’t give the input of the bandwidth for the kernel
estimate, which is crucial for the option price, since it determines the smooth-
ness of the estimation function. Second, the path numbers of Monte Carlo sim-
ulation were not given in his paper, thus the corresponding confidence inter-
vals were also not clear. Third, for the kernel method only in-samples paths
were simulated to determine the optimal exercise strategy, no additional out-of-
samples paths were generated to give results with low-bias. Thus their results
were mixed with high bias and low bias. Based on Lee’s previous work, we im-
prove the least squares linear regression part of the Longstaff-Schwartz method
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and the Tsitsiklis-Roy method by the kernel method and the support vector ma-
chines. The content is mainly based on Kohler [22], Lee [29] [30], Todorovic [42],
Györfi [17] and Bishop [6].

4.1 Kernel Methods

4.1.1 Fixed Bandwidth

The Nadaraya-Watson kernel method is the most popular choice of local averag-
ing (equation (4.2)). The kernel estimate takes the form as:

mn(x) =

n∑
i=1

K(x−Xihn
)

n∑
j=1

K(
x−Xj
hn

)

Yi (4.6)

where hn > 0 is the bandwidth and depends on the sample size n and K : Rd −→
R is a kernel function. If ||x|| is smaller, usually K(x) is large. Typical choices
of a kernel function are: naive kernel (K(x) = 1||x||≤1), Epanechnikov kernel
(K(x) = (1− ||x||2)+) and Gaussian kernel K(x) = exp(−||x||2/2), see Figure 4.1.
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Figure 4.1: Examples of kernel functions
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4 Improvement of the Regression Part by Machine Learning Techniques

Recall the continuation value function using least-squares linear regression
(see equations (3.13), (3.14) and (3.15)):

C∗(S(ti)) =

k∑
l=1

a∗lHl(S(ti))

= H(S(ti))
>a∗

= H(S(ti))
ᵀ(X>X)−1X>Y

where ti = t1, . . . , tm are potential exercise dates. Thus the continuation value for
each path j = 1, . . . , N is:

C∗(S(j)(ti)) = H(S(j)(ti))
ᵀ(XᵀX)−1XᵀY

= H(S(j)(ti))
ᵀ(XᵀX)−1

N∑
k=1

H(S(k)(ti))V (S(k)(ti))

=
1

N

N∑
k=1

H(S(j)(ti))
ᵀ(

1

N
XᵀX)−1H(S(k)(ti))V (S(k)(ti))

=
1

N

N∑
k=1

K(S(j)(ti), S
(k)(ti))V (S(k)(ti)) (4.7)

where we define a kernel function K as:

K(S(j)(ti), S
(k)(ti)) = H(S(j)(ti))

ᵀ(
1

N
XᵀX)−1H(S(k)(ti))

= H(S(j)(ti))
ᵀ

[
1

N

N∑
l=1

H(S(l)(ti))H(S(l)(ti))
ᵀ

]−1

H(S(k)(ti))

Thus, we see that the solution to the least-squares linear regression problem in
the Longstaff-Schwartz method or in the Tsitsiklis-Roy method can be entirely
expressed in terms of the kernel function using basis functions.

However we can choose another kernel function instead of the kernel above.
Here we apply Gaussian kernel with bandwidth h to estimate the continuation
value function of an American option. The kernel function is:

KGaus(S
(j)(ti), S

(k)(ti)) = exp

(
−||S

(j)(ti)− S(k)(ti)||2

2h2

)
(4.8)

where ||·|| is the Euclidean norm, ||x|| =
√
x2

1 + x2
2 + . . . , x2

n, where x = (x1, x2, . . . , xn).
The corresponding kernel estimate for the continuation value C(S(j)(ti)) for the

j − th path at exercise date ti is:

C∗(S(j)(ti)) =

N∑
k=1

KGaus(S
(j)(ti), S

(k)(ti))
N∑
l=1

KGaus(S(j)(ti), S(l)(ti))

V (S(k)(ti)) (4.9)
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4.1 Kernel Methods

The kernel method by Lee [29] using Gaussian kernel with bandwith h is pre-
sented in Algorithm 4.1. However this method uses same paths to estimate
the continuation value and to compute the option vale. Thus it mixes the low
and high bias. Its modified version using out-of-samples is presented in Algo-
rithm 4.2, which only gives low bias and hence can be used to compare with
algorithms.

Lee’s kernel method performs well when suitable bandwidth h is chosen, see
Figure 4.2. The blue circles are samples consisting of stock prices at potential
exercise date tm−1 as x-coordinate and corresponding option values assuming
that the option has not been exercised before tm−1 as y-coordinate. The red
curve is the discounted payoff function. The yellow curve is the real continuation
value. The green curve is the estimated continuation value by the Longstaff-
Schwartz method and the cyan curve is the estimated continuation value by
Lee’s kernel method. We notice that the cyan curve is closer to the yellow curve
than the green curve, especially within the in-the-money area.
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Figure 4.2: Performance of Lee’s kernel method
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Algorithm 4.1 Lee’s kernel method

1. Generate N independent paths for stock at all possible exercise dates:
{S(n)(t1), S(n)(t2), . . . , S(n)(tm)} with n = 1, . . . , N , ti = T

m × i, i = 1, . . . ,m.

2. At maturity tm = T , fix the discounted terminal values of the American
option for each path n = 1, . . . , N : V (S(n)(tm)) = g(Sn(tm)).

3. Compute backward at each potential exercise date ti for i = m− 1, . . . , 1:

1) Calculate the estimated continuation value C∗(S(n)(ti)) and the dis-
counted exercising value g(S(n)(ti)) for each path:

C∗(S(n)(ti)) =
N∑
k=1

KGaus(S
(n)(ti), S

(k)(ti))
N∑
l=1

KGaus(S(n)(ti), S(l)(ti))

V (S(k)(ti))

2) Compare C∗(S(n)(ti)) and g(S(n)(ti)) to decide whether to exercise or to
continue the option:

V (S(n)(ti)) =

{
g(S(n)(ti)), g(S(n)(ti)) > C∗(S(n)(ti)) && g(S(n)(ti)) > 0

C∗(S(n)(ti)), otherwise

4. Compute V N
k (S(t0)) =

(
1

N

N∑
n=1

V (S(n)(t1))

)
as the American option price.
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4.1 Kernel Methods

Algorithm 4.2 Modified Lee’s kernel method with low bias

• Step 1 - Step 3.2: Same as in Lee’s kernel method (Algorithm 4.1). Save
S(n)(ti) and V (S(n)(ti)) as S(n)

old(ti) and V (S
(n)
old(ti)) for n = 1, . . . , N , n = 1, . . . ,m.

• Step 4: Regenerate Nnew new independent paths for stock at all potential
exercise dates:

{
S(n)(t1), S(n)(t2), . . . , S(n)(tn)

}
with n = 1, . . . , Nnew.

• Step 5: Define the stopping rule τ (n) = t1 for each path n = 1, . . . , Nnew and
compute forward at ti for i = 1, . . . ,m:

1) Calculate the estimated continuation value C∗(S(n)(ti)) and the dis-
counted exercising value g(S(n)(ti)) for each path n = 1, . . . , Nnew:

C∗(S(n)(ti)) =
N∑
k=1

KGaus(S
(n)(ti), S

(k)
old(ti))

N∑
l=1

KGaus(S(n)(ti), S
(l)
old(ti))

V (S
(k)
old(ti))

2) If τ (n) = t1 and g(S(n)(ti)) > 0 and g(S(n)(ti)) > C∗(S(n)(ti)): exercise the
option at ti, set τ (n) = ti and Vnew(S(n)(t1)) = g(S(n)(ti)), stop;
Else if ti < tm−1: continue the option at ti;
Else: exercise the option at tm and set τ (n) = tm and Vnew(S(n)(t1)) =
g(S(n)(tm)), stop.

• Step 6: Compute V Nnew
k (S(t0)) =

(
1

Nnew

Nnew∑
n=1

Vnew(S(n)(t1))

)
as the American

option price.
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4.1.2 Global Optimal Bandwidth

However whether the bandwidth h is given as input or it is chosen as data-
dependent is unknown in his paper. If h is too small, the undersmoothing prob-
lem might happen, see the first plot of Figure 4.3; if h is too big, the oversmooth-
ing problem might occur, see the third plot. The optimal data-dependent (here
we simulate 1000 paths of stock prices) bandwidth is 3.6598, see the second plot.

60 80 100 120 140 160 180
0

20

40

60

stock prices

op
tio

n 
va

lu
es

bandwidth h = 0.3

 

 
samples
discounted payoff
estimated continuation value
real continuation value

60 80 100 120 140 160 180
0

20

40

60

stock prices

op
tio

n 
va

lu
es

bandwidth h = 3.6598

 

 
samples
discounted payoff
estimated continuation value
real continuation value

60 80 100 120 140 160 180
0

20

40

60

stock prices

op
tio

n 
va

lu
es

bandwidth h = 30

 

 
samples
discounted payoff
estimated continuation value
real continuation value

Figure 4.3: Effect of bandwidth for kernel method

Here we obtain the optimal bandwidth by splitting the sample. According to
Györfi [17] and Kohler [22], the idea of splitting the sample is that the sample
is divided artificially into two parts, the first part is called the training data set,
the second part is called the testing data set. The training data set is used to
compute the estimate for different smoothing parameters. The testing data set
is used to compute the error of each of these estimates. The optimal estimate is
obtained by minimizing the error. The kernel method with optimal bandwidth by
splitting the sample is presented in Algorithm 4.3 and its modified version using
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new paths with low bias is shown in Algorithm 4.4. Here we make use of the
Global Search class of MATLAB, along with the run method and the interior-point
algorithm to find the global minimum for the bandwidth.

Take Test Case 2: 1-D Bermudan option with 12 potential exercise dates as
an example for the global search of optimal bandwidth. Figure 4.4 shows the
mean squared error (L2 risk) against the bandwidth at some exercise date. All
optimal bandwidths at 11(= 12− 1) exercise dates are collected in Table 4.1.
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Figure 4.4: Global search of optimal bandwidth for the kernel method

Results for Test Case 2
Exercise Date Optimal Bandwidth Exercise Date Optimal Bandwidth

t1 1.0354 t7 1.2364

t2 4.7922 t8 2.5405

t3 1.8282 t9 4.0521

t4 4.4152 t10 4.2550

t5 1.2956 t11 1.7357

t6 2.1157

Table 4.1: Optimal bandwidths for potential exercise dates for Test Case 2

Since the modified Longstaff-Schwartz method (Algorithm 3.4), the modified
Tsitsiklis-Roy method (Algorithm 3.5), the modified Lee’s kernel method (Algo-
rithm 4.2) and the modified kernel method with optimal bandwidth (Algorithm
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4.4) evaluate the approximative optimal stopping rule via newly generated paths,
all these four algorithms provide lower bounds. Thus a higher option price im-
plies a better performance of the algorithm.

First we compare Algorithm 4.2 and Algorithm 4.3. We simulate N = 1000
paths of stock prices to obtain the kernel estimate. For Algorithm 4.2, we test
bandwidth h = 1, 5, 10 respectively. For Algorithm 4.3, Ntrain = 500 is used for
training the optimal bandwidth and Ntest = 500 is used for testing the optimal
bandwidth. Based on these kernel estimates, we generate NNew = 4000 new paths
and compute the option prices.
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Figure 4.5: Comparison of the modified Lee’s kernel method with different band-
width and the one with optimal bandwidth for Test Case 2: 1-D
Bermudan option with 12 potential exercise dates

We run 100 independent Monte Carlo simulations for each test case of band-
width and generate the box-plot for these 4 × 100 option prices in Figure 4.5.
In the box-plot the median is shown as a red line across the box and the box
stretches from the 25th percentile to the 75th percentile. We notice that the
modified kernel method with optimal bandwidth performs the best. However it
also has a shortcoming, that is, it is very time consuming when searching glob-
ally for the optimal bandwidth, especially for large sample size N . That is also
the reason that we only simulate N = 1000 paths here.
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Algorithm 4.3 Kernel method with optimal bandwidth

1. Generate N independent paths for stock at all possible exercise dates:
{S(n)(t1), S(n)(t2), . . . , S(n)(tm)} with n = 1, . . . , N , ti = T

m × i, i = 1, . . . ,m.

2. At maturity tm = T , fix the discounted terminal values of the American
option for each path n = 1, . . . , N : V (S(n)(tm)) = g(Sn(tm)).

3. Compute backward at each potential exercise date ti for i = m− 1, . . . , 1:

1) Define DN = {(S(1)(ti), V (S(1)(ti))), . . . , (S
(N)(ti), V (S(N)(ti)))}. Set the ini-

tial bandwidth as h0. Randomly sample 50% of DN as training data set
DTrain, put the remaining part into the testing data set DTest.

2) Use the training data set DTrain and the bandwidth h, build a kernel es-
timate (eq. 4.9). Based on this estimate, predict the outputs Ch(S(n)(ti))
of the testing data set DTest.

3) Compare the predicted output Ch(S(n)(ti)) and the actual output
V (S(n)(ti)) of DTest and find the best bandwidth h∗ to minimize the L2

risk (mean squared error) between the predicted and actual outputs.

4) Use this optimal bandwidth h∗ and calculate the estimated continuation
value C∗(S(n)(ti)) and the discounted exercising value g(S(n)(ti)) for each
path of DN :

C∗(S(n)(ti)) =
N∑
k=1

KGaus(S
(n)(ti), S

(k)(ti))
N∑
l=1

KGaus(S(n)(ti), S(l)(ti))

V (S(k)(ti))

5) Compare C∗(S(n)(ti)) and g(S(n)(ti)) to decide whether to exercise or to
continue the option:

V (S(n)(ti)) =

{
g(S(n)(ti)), g(S(n)(ti)) > C∗(S(n)(ti)) && g(S(n)(ti)) > 0

C∗(S(n)(ti)), otherwise

4. Compute V N
k (S(t0)) =

(
1

N

N∑
n=1

V (S(n)(t1))

)
for the American option price.

Algorithm 4.4 Modified kernel method using optimal bandwidth with low bias

1. Step 1 - Step 3.5: Same as Algorithm 4.3.

2. Step 4 - Step 6: Same as Algorithm 4.2.

103



4 Improvement of the Regression Part by Machine Learning Techniques

4.1.3 Scaling, Parameter Selection and Suboptimal Bandwidth

We now take a closer look at the Gaussion kernel function (equation (4.8)), the
kernel values depends on the Euclidean distance between two stocks S(j)(ti)
and S(k)(ti). If we simulate a lot of stocks, we are likely to find that the distance
between certain two stock prices is very large, which leads to that the kernel
values is very close to 0. When we calculate the continuation value C(S(j)(ti))
via the formula (4.9), the sum of all kernel values lies in the denominator. If
this denominator is too small, we might meet numerical difficulty. One way to
avoid this is to scale the stock prices {S1(ti), . . . , S

N (ti)} to the range [0, 1]N while
scaling the option values {V (S(1)(ti)), . . . , V (S(N)(ti))} also via the same ratio κ,
which is the maximum of the stocks:

κ := max(S(1)(ti), . . . , S
(N)(ti)) (4.10)

{S(1)(ti), . . . , S
(N)(ti)} =⇒ {S

(1)(ti)

κ
, . . . ,

S(N)(ti)

κ
} ∈ [0, 1]N (4.11)

{V (S(1)(ti)), . . . , V (S(N)(ti))} =⇒ {V (S(1)(ti))

κ
, . . . ,

V (S(N)(ti))

κ
} (4.12)

After obtaining the calculated continuation value C∗(S(j)(ti)) using the kernel
function via the formula (4.9), we scale it back:

{C∗(S(1)(ti)), . . . , C
∗(S(N)(ti))} =⇒ {C∗(S(1)(ti)) · κ, . . . , C∗(S(N)(ti)) · κ}(4.13)

After the data are scaled, the optimal bandwidth is also different from before -
without scaling, see Figure 4.6. We can set a finite set of parameters Q according
to Györfi [17]:

Q = {2−10, 2−9, . . . , 20, . . . , 29, 210} (4.14)

then select the suboptimal bandwidth h∗ from Q. In this case, the optimal band-
width lies practically in the interval of [0, 1]. However, the difference between
each neighboring element of Q is still large. For accuracy, we can use a coarse
search first and then use a fine search later, according to Chang [9]. Assume
that we find h∗coarse = 2−5 as the suboptimal bandwidth from Q. Then we can
identify a better region [2−6, 2−4] and set another finite set of parameters Qfine as:

Qfine = {2−6, 2−5.8, . . . , 2−5, . . . , 2−4.2, 2−4} (4.15)

After that a fine search for the suboptimal bandwidth h∗ = h∗fine can be processed
in Qfine.
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Figure 4.6: Global search of optimal bandwidth after scaling

In this way, the huge computational cost for searching for the global opti-
mal bandwidth can be heavily reduced, for example, from 3960 seconds to 32
seconds, see Table 4.2. However the performance is still guaranteed, see Fig-
ure 4.7. The suboptimal bandwidths at different potential exercise dates us-
ing coarse search h∗coarse and fine search h∗fine are collected in Table 4.3. Here
we use monomial polynomials with degree 3 as basis functions for the modi-
fied Longstaff-Schwartz method and the modified Tsitsiklis-Roy method, where
N = 10000, Ntrain = 5000, Ntest = 5000 and NNew = 4000. We notice that the mod-
ified Longstaff-Schwartz method and the modified Tsitsiklis-Roy method both
work well. That is not surprising, since both methods perform well for simple
payoff options.

Results for Test Case 2
Fixed Bandwidth Global Optimal Bandwidth Suboptimal Bandwidth

Time 25 s 3960 s 32 s

Table 4.2: Comparison of averaged run time for the kernel method with fixed
bandwidth (Algorithm 4.2), the global optimal bandwidth (Algorithm
4.4) and the suboptimal bandwidth from a finite set for Test Case 2.
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Results for Test Case 2
Suboptimal Bandwidth Suboptimal Bandwidth

Exercise Date Coarse Fine Exercise Date Coarse Fine
t1 0.0078 0.0078 t7 0.0039 0.0034

t2 0.0078 0.0068 t8 0.0078 0.0068

t3 0.0078 0.0059 t9 0.0039 0.0052

t4 0.0156 0.0136 t10 0.0078 0.0059

t5 0.0078 0.0068 t11 0.0039 0.0052

t6 0.0156 0.0136

Table 4.3: Suboptimal bandwidths after scaling and parameter selection at po-
tential exercise dates for Test Case 2
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Figure 4.7: Comparison of the modified Tsitsiklis-Roy method (TR), the modi-
fied Longstaff-Schwartz method (LS) and the modified kernel method
with suboptimal bandwidth from a finite set (Kernel) to price a
Bermudan option in Test Case 2.

In our second example, the pricing problem is more difficult. We consider Test
Case 4: 1-D American option with strangle-spread-payoff. We choose monomial
polynomial with degree 3 as basis functions for the modified Longstaff-Schwartz
method and the modified Tsitsiklis-Roy method in this case, where N = 10000,
Ntrain = 5000, Ntest = 5000 and NNew = 10000. The benchmark is 26.32, denoted
as the green line in Figure 4.8. In this case, the modified kernel method delivers
much higher option prices than the modified Longstaff-Schwartz method and
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the modified Tsitsiklis-Roy method.
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Figure 4.8: Comparison of the modified Tsitsiklis-Roy method (TR), the modi-
fied Longstaff-Schwartz method (LS) and the modified kernel method
with suboptimal bandwidth from a finite set (Kernel) to price 1-D
American option with strangle-spread-payoff in Test Case 4.

In our third example, we consider the high dimensional case, namely the 3-
D American geometric-average option with strangle-spread-payoff in Test Case
19. The benchmark option price is 8.934(±0.001). For the modified Longstaff-
Schwartz method and the modified Tsitsiklis-Roy method, monomial polynomi-
als with degree 1 and payoff function are included in the basis functions. The
simulated paths for estimating continuation value and for obtaining the lower
bound of option price are respectively N = 10000, NNew = 10000. For the modi-
fied kernel method, Ntrain = 5000 is used for training the suboptimal bandwidth,
Ntest = 5000 is used for testing. From Figure 4.9, we notice again that the mod-
ified kernel method is superior to modified Tsitsiklis-Roy method and the modi-
fied Longstaff-Schwartz method.
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Figure 4.9: Comparison of the modified Tsitsiklis-Roy method (TR), the modi-
fied Longstaff-Schwartz method (LS) and the modified kernel method
with suboptimal bandwidth from a finite set (Kernel) to price 3-D
American geometric-average option with strangle-spread-payoff in
Test Case 19.

Finally, we comprehensively test the robustness of the modified kernel method
with suboptimal bandwidth selecting from a finite set of parameters in all our
test cases from Test Case 1 to Test Case 24. We simulated N = 10000 paths
to estimate continuation value (stopping rule) and NNew = 10000 new paths to
compute the lower bound of the option price based on the stopping rule. We
use Ntrain = 5000 as training set and Ntest = 5000 as testing set to obtain the
suboptimal bandwidth. We use monomial polynomial with degree up to 3 as
basis functions in the modified Longstaff-Schwartz method (LS) and the modified
Tsitsiklis-Roy method (TR). We run 100 independent Monte Carlo simulations
and obtain 3×100 option prices for these three methods. The median of each 100
option prices in each Test Case are collected in Table 4.4. Notice that Test Case
1, 4, 5, 6, 7, 8 and 24 are real American-style options with infinite exercise dates.
According to section 3.2.1, approximation by their Bermudan counterparts with
m = 50 potential exercise dates usually works fine and thus 50 potential exercise
dates are simulated here. The other test cases are all Bermudan option with
finite exercise dates and hence finite m for each case is used.

We see clearly that the modified kernel method performs robust in all test
cases both within the Black-Scholes model and within the Heston model (Test
Case 24) and are even superior than the modified Longstaff-Schwartz method

108



4.1 Kernel Methods

and the modified Tsitsiklis-Roy method in several cases.
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Test Case Benchmark Modified TR Modified LS Modified Kernel
1 7.11 7.0064 7.0738 7.0844
2 3.931 3.9030 3.8849 3.9090
3 4.313 4.2800 4.3005 4.3108
4 26.32 24.6784 25.6032 26.1463
5 7.81 7.7717 7.7869 7.8016
6 23.77 22.7103 22.4499 23.1376
7 4.01 3.9525 3.9307 3.9654
8 3.25 3.1858 3.1944 3.1931

9 (ATM) 11.40 11.0163 11.2541 11.2758
9 (ITM) 15.78 15.3611 15.6366 15.6303
9 (OTM) 5.20 5.0521 5.1607 5.1903
10 (ATM) 13.90 13.2687 13.6046 13.8278
10 (ITM) 21.34 20.3205 20.8598 21.3246
10 (OTM) 1.64 1.6108 1.6179 1.6267
11 (ATM) 2.28 2.1818 2.2033 2.2415
11 (TTM) 5.97 5.6962 5.8311 5.9635
11 (OTM) 0.029 0.0248 0.0253 0.0279

12 1.55 1.5335 1.5441 1.5391
13 1.48 1.4744 1.4731 1.4814
14 1.46 1.4056 1.4428 1.4435

15 (ATM) 17.50 17.1719 17.1779 17.3830
15 (ITM) 25.98 25.2877 25.2603 25.6922
15 (OTM) 2.27 2.2253 2.2282 2.2356
16 (ATM) 0.81 0.7932 0.7943 0.8048
16 (ITM) 2.82 2.7579 2.7422 2.7943
16 (OTM) 0.0022 0.0019 0.0017 0.0020

17 1.77 1.7600 1.7651 1.7654
18 0.97 0.9654 0.9656 0.9683
19 8.934 8.8367 8.9066 8.9310
20 3.27 3.2343 3.2153 3.2491
21 4.77 4.7212 4.7072 4.7287
22 4.32 4.2163 4.2934 4.2843
23 8.42 8.3045 8.3944 8.4003

24 (ATM) 4.65 4.5127 4.5858 4.6145
24 (ITM) 10.65 10.4810 10.6086 10.6274
24 (OTM) 1.68 1.6629 1.6590 1.6611

Table 4.4: Performance of the modified kernel method with suboptimal band-
width compared with the modified Longstaff-Schwartz method and
the modified Tsitsiklis-Roy method in all test cases
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4.2 Support Vector Machine

If we simulate N paths of stock prices and use formulas (4.8) and (4.9) of
the kernel method to obtain the continuation value C∗(S(j)(ti)), we have to
store all N stock prices as training points and compute the kernel function
KGaus(S

(j)(ti), S
(k)(ti)) for all possible pairs S(j)(ti) and S(k)(ti). And it also leads

to excessive computational cost when making prediction of continuation value
for new stock price.

This is a significant limitation for the kernel method. The storage requirement
and computational cost during prediction is huge. According to Bishop [6], one
possible improvement is to use the support vector machine (SVM ) such that
prediction of continuation value for a new stock price depending on the kernel
function is only evaluated at a subset of old stock prices (Nsvm < N ). Thus we
have a kernel-based algorithm with sparse solutions. Chang and Lin [8] devel-
oped a free software LIBSVM as a library for support vector machines, which can
be applied in the scenario of American option pricing.

At some potential exercise date ti, assume that we have a set of training data
comprising N stock prices {S(1)(ti), . . . , S

(N)(ti)} as training input vectors and
corresponding option values (assuming that the option has not been exercised
before ti) {V (S(1)(ti)), . . . , V (S(N)(ti))} as training target values.

For simplicity, we define S = {S1, . . . , SN}ᵀ = {S(1)(ti), . . . , S
(N)(ti)}ᵀ and V =

{V1, . . . , VN}ᵀ = {V (S(1)(ti)), . . . , V (S(N)(ti))}ᵀ.
According to Bishop [6], we set up a linear regression model to approximate

the continuation value C(S):

C(S) = ωᵀΦ(S) + b (4.16)

=
m∑
j=1

ωjϕj(S) + b (4.17)

where ϕj(S)j=1,...,m denotes a set of nonlinear functions, ωj is the corresponding
correlation, which needs to be determined and b is a bias parameter. Note that
a Gaussian kernel function will be introduced later so that here we do not have
to solve explicitly for Φ(S). Our aim is to minimize a regularized error function:

1

2

N∑
n=1

{C(Sn)− Vn}2 +
λ

2
||ω||2 (4.18)

Further we define ε-insensitive error function (ε > 0) as:

Eε(C(Sn)− Vn) =

{
0, if |C(Sn)− Vn| < ε
|C(Sn)− Vn| − ε, otherwise

(4.19)

Then via a new regularization parameter c > 0 by convention the regularized
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error function (4.18) is changed to be:

c
N∑
n=1

Eε(C(Sn)− Vn) +
1

2
||ω||2 (4.20)

4.2.1 Standard Form

For each stock price Sn, we define two non-negative slack variables ξn ≥ 0 and
ξ̂n ≥ 0 which should satisfy the following conditions:

• ξn > 0 and ξ̂n = 0 means that Vn > C(Sn) + ε and Sn lies above the ε− tube.

• ξn = 0 and ξ̂n > 0 means that Vn < C(Sn)− ε and Sn lies under the ε− tube.

• ξn = 0 and ξ̂n = 0 means that C(Sn) − ε ≤ Vn ≤ C(Sn) + ε and Sn lies inside
the ε− tube.

– Vn = C(Sn)+ε means that Sn lies on the upper boundary of the ε− tube.

– Vn = C(Sn)− ε means that Sn lies on the lower boundary of the ε− tube.

– C(Sn)− ε < Vn < C(Sn)+ ε means that Sn lies within the ε− tube but not
on the boundaries.

Denote ξ = {ξ1, . . . , ξN}ᵀ and ξ̂ = {ξ̂1, . . . , ξ̂N}ᵀ, we obtain the standard form
of support vector regression by minimizing the regularized ε−insensitive error
function:

min
ω,b,ξ,ξ̂

c

N∑
n=1

(ξn + ξ̂n) +
1

2
||ω||2 (4.21)

subject to ξn ≥ 0, i = 1, . . . , n

ξ̂n ≥ 0, i = 1, . . . , n

Vn ≤ C(Sn) + ε+ ξn, i = 1, . . . , n

Vn ≥ C(Sn)− ε− ξ̂n, i = 1, . . . , n

From the optimization theory, we know that for a convex minimization problem
with convex constraints there is an equivalent dual unconstrained maximization
problem by using nonnegative Lagrange multipliers. Thus we can introduce La-
grange multipliers an ≥ 0, ân ≥ 0, µn ≥ 0 and µ̂n ≥ 0 and maximize the Lagrangian
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function:

L = (c

N∑
n=1

(ξn + ξ̂n) +
1

2
||ω||2)−

N∑
n=1

(µnξn + µ̂nξ̂n)

−
N∑
n=1

an(ε+ ξn + C(Sn)− Vn)−
N∑
n=1

ân(ε+ ξ̂n − C(Sn) + Vn) (4.22)

eq.(4.16)
= (c

N∑
n=1

(ξn + ξ̂n) +
1

2
||ω||2)−

N∑
n=1

(µnξn + µ̂nξ̂n)

−
N∑
n=1

an(ε+ ξn + (ωᵀΦ(Sn) + b)− Vn)−
N∑
n=1

ân(ε+ ξ̂n − (ωᵀΦ(Sn) + b) + Vn)

In order to obtain the optimum, we set the derivatives of L with respect to
ω, b, ξn, ξ̂n:

∂L

∂ω
= 0

∂L

∂b
= 0

∂L

∂ξn
= 0

∂L

∂ξ̂n
= 0

Thus we have:

N∑
n=1

(an − ân)Φ(Sn) = ω (4.23)

N∑
n=1

(an − ân) = 0 (4.24)

an + µn = c (4.25)

ân + µ̂n = c (4.26)

Put equations (4.23) - (4.26) into the Lagrangian function (4.22) and eliminate
variables ξn, ξ̂n, µn, µ̂n, ω, b and define a = {a1, . . . , aN}ᵀ and â = {â1, . . . , âN}ᵀ, we
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obtain:

L̃(a, â) := L

=
N∑
n=1

((c− µn − an)ξn)︸ ︷︷ ︸
=0

+
N∑
n=1

((c− µ̂n − ân)ξ̂n)︸ ︷︷ ︸
=0

−
N∑
n=1

((an − ân)b)︸ ︷︷ ︸
=0

+
1

2
ωᵀω − ωᵀ

N∑
n=1

(anΦ(Sn)− ânΦ(Sn))︸ ︷︷ ︸
=ω

− ε
N∑
n=1

(an + ân) +
N∑
n=1

(an − ân)Vn

= −1

2
ωᵀω − ε

N∑
n=1

(an + ân) +
N∑
n=1

(an − ân)Vn

= −1

2

N∑
n=1

N∑
m=1

(an − ân)(am − âm)K(Sn, Sm)− ε
N∑
n=1

(an + ân) +
N∑
n=1

(an − ân)Vn

(4.27)

where we introduce a kernel function K(Sn, Sm) = Φ(Sn)ᵀΦ(Sm), for example a
Gaussian kernel function KGauss(Sn, Sm) (see equation (4.8)).

4.2.2 Dual Problem

The standard form of support vector regression (equation (4.21)) is switched to
be a dual optimization problem:

min
a,â

1

2

N∑
n=1

N∑
m=1

(an − ân)(am − âm)K(Sn, Sm)

+ε

N∑
n=1

(an + ân)−
N∑
n=1

(an − ân)Vn (4.28)

subject to 0 ≤ an ≤ c, n = 1, . . . , N

0 ≤ ân ≤ c, n = 1, . . . , N
N∑
n=1

(an − ân) = 0

A quadratic optimization problem with one linear constraint has the general
form as:

min
x

f(x) ≡ 1

2
xᵀQx+ pᵀx

subject to 0 ≤ xi ≤ C, i = 1, . . . , n

yᵀx = ∆
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where yi = ±1, i = 1, . . . , n. The constraint yᵀx = ∆ is called a linear constraint.
We notice that the dual optimization problem (equation (4.28)) can also be

written in the form of quadratic optimization:

min
a,â

1

2
[aᵀ, âᵀ]

[
K −K
−K K

] [
a
â

]
+ [εeᵀ − V ᵀ, εeᵀ + V ᵀ]

[
a
â

]
(4.29)

subject to 0 ≤ an, ân ≤ c, n = 1, . . . , N (4.30)

yᵀ
[
a
â

]
= 0 (4.31)

where y := [1, . . . , 1︸ ︷︷ ︸
N

,−1, . . . ,−1︸ ︷︷ ︸
N

]ᵀ

e := [1, . . . , 1]ᵀ

K := (K(Sn, Sm))n,m n,m = 1, . . . , N

Since the matrix K(Sn, Sm) is positive definite, we notice that the dual prob-
lem (equation (4.28)) is a quadratic optimization problem with positive definite
objective function matrix, thus it is a convex optimization problem. We know
that any local optimum of a convex optimization problem must be a global opti-
mum. Thus the support vector regression has a very important property which
is that solving the optimization is equivalent to solve its dual convex quadratic
optimization and thus any local minimum here is also a global minimum. And
this is the reason why we solve the dual problem not the primary one.

After solving this dual optimization problem and putting the equation (4.23)
into the equation (4.16), the continuation value C(S) for a new stock price S can
been computed as:

C(S) =

N∑
n=1

(an − ân)K(S, Sn) + b (4.32)

Support vectors are defined as the stock prices Sn which have a contribution
to predict the continuation value, which means an − ân 6= 0. Those stock prices,
which are not support vectors and have an − ân = 0, are not necessary to be
stored and can be discarded. In this way we can reduce the storage requirement
and computational cost compared with traditional kernel method.

According to the corresponding Karush-Kuhn-Tucker (KKT) conditions, the
product of the dual variables and the constraints is equal to zero:

an(C(Sn) + ε+ ξn − Vn) = 0 (4.33)

ân(Vn + ε+ ξ̂n − C(Sn)) = 0 (4.34)

ξn(c− an) = 0 (4.35)

ξ̂n(c− ân) = 0 (4.36)

From these equations, we see that only when (C(Sn) + ε + ξn − Vn) is equal to
zero, an can be nonzero and only when (Vn + ε + ξ̂n − C(Sn)) is equal to zero,
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4 Improvement of the Regression Part by Machine Learning Techniques

â can be nonzero. an and ân cannot be nonzero at the same time, otherwise
(C(Sn) + ε + ξn − Vn) and (Vn + ε + ξ̂n − C(Sn)) is equal to zero at the same time,
then the sum of these two terms (2ε+ ξn + ξ̂n) is equal to zero, which contradicts
to the nonnegativity of ε, ξn and ξ̂n.

According to the definition of ξn and ξ̂n, (C(Sn) + ε + ξn − Vn) is equal to zero,
which means that the stock price Sn lies either on the upper boundary of the
ε-tube (ξn = 0, ξ̂n = 0) or above the upper boundary (ξn > 0, ξ̂n = 0); (Vn + ε +
ξn−C(Sn)) is equal to zero, means that the stock price Sn lies either on the lower
boundary of the ε-tube (ξn = 0, ξ̂n = 0) or under the lower boundary (ξn = 0, ξ̂n > 0).
C(Sn)− ε− ξ̂n < Vn < C(Sn) + ε+ ξn means that the stock price Sn lies within the
ε-tube (ξn = 0, ξ̂n = 0), in this situation both an and ân are equal to zero. We
summarize all cases in Table 4.5, where we denote Cn as C(Sn) for simplicity.

Thus the support vectors are those stock prices, which are either above the
upper boundary, under the lower boundary or on the boundaries.

Case Explaination ξn ξ̂n Vn Vn an ân
I above upper boundary > 0 = 0 = Cn + ε+ ξn > Cn − ε− ξ̂n = c = 0

II on upper boundary = 0 = 0 = Cn + ε+ ξn > Cn − ε− ξ̂n ∈ (0, c) = 0

III within upper ε-tube = 0 = 0 < Cn + ε+ ξn > Cn − ε− ξ̂n = 0 = 0

IV within lower ε-tube = 0 = 0 < Cn + ε+ ξn > Cn − ε− ξ̂n = 0 = 0

V on lower boundary = 0 = 0 < Cn + ε+ ξn = Cn − ε− ξ̂n = 0 ∈ (0, c)

VI under lower boundary = 0 > 0 < Cn + ε+ ξn = Cn − ε− ξ̂n = 0 = c

Table 4.5: All cases for the relation between stock prices and ε-tube

The bias parameter b can be estimated as follows. Consider that a stock Sm
lies on the upper boundary of the ε-tube, we have ξm = 0, 0 < am < c and
(C(Sm) + ε+ ξm − Vm) = 0

b
eq.(4.32)

= C(Sm)−
N∑
n=1

(an − ân)K(Sm, Sn)

= Vm − ε−
N∑
n=1

(an − ân)K(Sm, Sn) (4.37)

Practically we can average all estimates of b where stocks lie on the boundaries.

4.2.3 ν-SVM

Schölkopf [41] introduced a new parameter ν ∈ (0, 1] which limits the ratio of
stock prices lying outside the ε-tube instead of using the fixed width ε of ε-tube.
That means, at least νN stock prices lie outside the ε−tube. Thus the number
of support vectors is at least νN , which lie either outside or on the ε−tube. In
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4.2 Support Vector Machine

this way, the standard form of support vector regression (equation (4.21)) has
an alternative formulation, which is called ν-support vector regression (ν-SVM):

min
ω,b,ξ,ξ̂

c(νε+
1

N

N∑
n=1

(ξn + ξ̂n)) +
1

2
||ω||2 (4.38)

subject to ξn ≥ 0, i = 1, . . . , n

ξ̂n ≥ 0, i = 1, . . . , n

Vn ≤ C(Sn) + ε+ ξn, i = 1, . . . , n

Vn ≥ C(Sn)− ε− ξ̂n, i = 1, . . . , n

The dual problem is:

min
a,â

1

2

N∑
n=1

N∑
m=1

(an − ân)(am − âm)K(Sn, Sm)

−
N∑
n=1

(an − ân)Vn (4.39)

subject to 0 ≤ an ≤
c

N
, n = 1, . . . , N

0 ≤ ân ≤
c

N
, n = 1, . . . , N

N∑
n=1

(an − ân) = 0

N∑
n=1

(an + ân) ≤ νc

After obtaining a and â, the approximation function for the continuation value
for a new stock price S is the same as before:

C(S) =
N∑
n=1

(an − ân)K(S, Sn) + b (4.40)

Since we use the ε−insensitive function to penalize errors which are bigger
than ε, we usually have sparse representation of the prediction (equation (4.40)).
In this way the support vector regression leads to significant representational
and algorithmic advantages. In MATLAB, a function quadprog is implemented
to solve quadratic programming problems. Besides of this, the free software
LIBSVM designed by Chang and Lin [8] includes functions to solve support vector
regression problems. An introduction of this software can be read in Chang [9].

4.2.4 Grid-Search and Analytic Parameter Selection

In order to avoid numerical difficulty, we should firstly use scaling technique
before using the support vector machine method as what we do for the kernel
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4 Improvement of the Regression Part by Machine Learning Techniques

method in the section 4.1.3.
When using ε−SVM, we should determine three parameters, namely ε, c and

h, where h is the bandwidth of the Gaussian kernel function, see equation (4.8).
Notice that the parameter c controls the balance between two terms of the

regularized error function (equation (4.20)). The first term is about the degree
to which errors larger than ε can be tolerated. The second term is about the
complexity of the model. If c is too big, the objective function is only to minimize
the sum of the errors, without considering the model complexity, which leads to
the flatness of the regression function. The parameter ε defines the width of the
ε−tube and controls the number of support vectors which are used to form the
regression function. If ε is very large, we only select very few support vectors,
which also leads to the flatness of the regression function. Thus, both c and ε
controls the model complexity, but in different ways.

According to Chang [9], ε, c and h can be chosen via a grid-search process.
In practice for pricing American options, we can choose c from a finite set of
parameters {2−5, . . . , 215}, ε from a finite set of parameters {2−15, . . . , 25} and h
from {2−5, . . . , 25}. Each pair of (c, h) is tried and the one with the smallest mean
squared error is chosen as the suboptimal parameter pair. Similar as in the
section 4.1.3, we can first use a coarse search and identify a good region and
then use a fine search in this region to obtain the best parameter pair.

However, the gird-search process for three parameters is very computation
and data-intensive. Cherkassky [10] proposed a rule-of-thumb analytic strategy
for selecting the regularization parameter c and the tube width parameter ε as
follows:

c = max(|V̄ + 3σV |, |V̄ − 3σV |) (4.41)

where V̄ = 1
N

N∑
n=1

Vn is the mean of the option values V = {V1, . . . , VN}ᵀ and σV is

the corresponding standard deviation of V .

ε = 3σ

√
logN

N
(4.42)

where σ is the standard deviation of the input noise level and can be estimated
by σ̂:

σ̂2 =
k ·N

1
5

k ·N
1
5 − 1

1

N

N∑
n=1

(Vn − V̂n)2 (4.43)

where V̂n is estimated via k-nearest-neighbors regression (see Györfi [17]) by
taking a local average of k option values from the set V :

V̂n =
1

k

k∑
i=1

Vi (4.44)
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4.2 Support Vector Machine

where the corresponding stock prices {S1, . . . , Sk}ᵀ $ {S1, . . . , SN}ᵀ are k nearest
ones from the estimation stock price Sn in terms of the increasing Euclidean
distance ||Sn − S1|| ≤ ||Sn − S2|| ≤ . . . ≤ ||Sn − Sk||.

Furthermore, Cherkassky [10] pointed out that the specific k-value does not
affect the estimation of the noise σ very much. Thus he suggested using k = 3
and we obtain:

σ̂2 =
3 ·N

1
5

2 ·N
1
5 − 1

1

N

N∑
n=1

(Vn − V̂n)2 (4.45)

After c and ε is determined, the kernel bandwidth h is chosen firstly by a coarse
search from the set {2−5, . . . , 25} and then by a fine search as in the section 4.1.3.
In this way, the time for searching parameters can be hugely reduced.

Now we test the ε−SVM algorithm to price American-style options in Test Case
4: 1-D American option with strangle-spread-payoff. As before, we simulate
N = 10000 as in-sample paths for obtaining the stopping rule and Nnew = 10000
as out-of-sample paths for computing the option value using this stopping rule.
Ntrain = 5000 and Ntest = 5000 are used respectively for training and testing the
parameter kernel bandwidth h. In Test Case 4, the number of potential exercise
dates m = 12. We collect the sample mean value of each parameter at the last
but one exercise date tm−1 in Table 4.6, where ν is the ratio of stock prices lying
outside the ε−tube, nSV is the practical number of support vectors and nBSV is
the practical number of bounded support vectors (αn = c, see Table 4.5). We run
100 independent simulations by the ε−SVM method to obtain 100 option prices
and illustrate them in Figure 4.10.

V̄ σV c σ̂ ε h ν nSV nBSV

0.0335 0.0241 0.1057 0.0139 0.0013 0.1127 0.8548 8565 8532

Table 4.6: The sample mean value of each parameter at the last but one exercise
date for Test Case 4 using support vector machine method.
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Figure 4.10: Comparison of the modified Tsitsiklis-Roy method (TR), the modi-
fied support vector machine method (SVM), the modified Longstaff-
Schwartz method (LS) and the modified kernel method with sub-
optimal bandwidth from a finite set (Kernel) to price 1-D American
option with strangle-spread-payoff in Test Case 4.

From the figure, we notice that the result by the SVM method is superior to the
TR method, but is still inferior to the LS method and the Kernel method. The rea-
son is that while in the Kernel method, only one parameter h has to be optimized,
in the SVM method, three parameters ε, c and h need to be determined. Although
the SVM method reduces the storage of the number of stock prices by storing
only the support vectors to predict continuation value of a new stock price (here
in Table 4.6 storage is reduced from 10000 to 8565), it loses some extend of ac-
curacy compared with its counterpart the Kernel method, which storage all old
stock prices. Thus we recommend using the Kernel method instead of the SVM
method.
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5 Reversion Formula for Implementation of
the Longstaff-Schwartz Method on FPGA

In the previous sections, all discussed algorithms or their potential improve-
ments to price American-style options are based on implementation on central
processing units (CPU), which can be considered as a fixed hardware with gen-
eral purpose. On the contrary, the field programmable gate array (FPGA) can be
considered as a flexible hardware which can be adjusted according to the ap-
plication. The use of FPGA can run more efficiently and reduce the energy con-
sumption enormously. Although we can map many numeric algorithms to FPGA
directly, there remain a lot of other algorithms which are better to be executed
on CPU. We choose the Xilinx Zynq-7000 hybrid CPU/FPGA device to implement
the Longstaff-Schwartz method (Algorithm 3.2) such that the best of two worlds
- hardware and software can be exploited. For the Black-Scholes model, we pro-
pose a novel Reverse Longstaff-Schwartz algorithm, which does not require to
store the full intermediate stock prices and reduce the requirements on external
memory. Our result is 16x faster and 268x more energy-efficient than an opti-
mized Intel CPU implementation, more details can be found in Varela, Brugger,
Wehn, Korn and Tang [44]. For the Heston model, we also propose a reversion
formula for the stock price and volatility. However its implementation on FPGA
and the corresponding test hasn’t been finished yet by the end of my PhD, for
the embedded architecture is too difficult.

5.1 Black-Scholes Model

5.1.1 Reversion Formula

In this work we apply the Euler discretization to discretize the stochastic dif-
ferential equation of the Black-Scholes model (equation (1.7)) into m steps with
equal step sizes ∆t = T

m :

Ŝ(ti+1) = Ŝ(ti) exp

((
r − δ − σ2

2

)
∆t+ σ

√
∆tW (ti)

)
, (5.1)

with W (ti) being independent standard normal random variables.
In the Longstaff-Schwartz method (Algorithm 3.2), all paths are generated

firstly in step (1) and then go back from maturity to initial date in step (3).
This means the value of each stock price at each potential exercise date for all
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5 Reversion Formula for Implementation of the Longstaff-Schwartz Method on FPGA

paths has to be stored, which totals dmN values, d being the dimension of the
option, N being the number of paths, m being the number of potential exer-
cise dates. We call this standard approach the path storage solutions. However,
this approach leads to the requirement of several external high-speed memory
devices for FPGA, because FPGA only has limited internal storage of a few MB.
And this design is very complex and time consuming. Now we present a novel
idea based on recomputation to avoid storing so many data.

Instead of storing the stock prices at each potential exercise date, we only store
the final stock prices at maturity Ŝ(T ) ≡ Ŝ(tm) and then recompute all the other
stock prices alongside step (3) of the Longstaff-Schwartz algorithm. For that to
work we need to find a way to compute the stock price Ŝ(ti) based on the future
price Ŝ(ti+1):

Ŝ(tm)→ Ŝ(tm−1) . . .→ Ŝ(t1)→ Ŝ(t0). (5.2)

The discretized Black-Scholes equation (equation (5.1)) is reversible if we supply
the same random numbers. Thus we obtain the reversion formula:

Ŝ(ti) = Ŝ(ti+1) exp

((
σ2

2
− (r − δ)

)
∆t− σ

√
∆tW (ti)

)
. (5.3)

In our work, we use the Mersenne twister (MT) 19937 algorithm (see Matsumoto
[34]) to generate a sequence of random numbers. Instead of storing the random
numbers, the idea is to build a random number generator that generates exactly
the opposite sequence, starting from the last one. Fortunately, the Mersenne
twister is a linear random number generator, meaning that its state transition
function is invertible. Based on this a reversed Mersenne twister can be built.
In fact, while the tempering function is kept unchanged, only the internal states
are to be recomputed. As a result, the Reverse Longstaff-Schwartz method only
needs to store and communicate dN values.

5.1.2 Test

The architecture of this design contains three steps:

• Step 1: It consists of the paths generation process until maturity, fully
implemented on FPGA.

• Step 2: FPGA reconfiguration takes places, instantiating all modules re-
lated to the option pricing.

• Step 3: Paths are traversed step by step, backwards from maturity until
the initial date in order to obtain the option price. To increase flexibility to
easily adapt the calculation of the regression, parts of it are done on CPU.
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5.1 Black-Scholes Model

Once the initial date is reached, the values in the cash flow matrix are averaged,
which constitutes the option price.

Paths can be either stored in an external memory chip, following the tradi-
tional approach and shown in orange color in Figure 5.1, or they can be recom-
puted based on our novel Reverse Longstaff-Schwartz approach, shown in green
color.
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Figure 5.1: Design architecture including both solutions: Paths Storage vs Re-
verse Longstaff-Schwartz for pricing high-dimensional American op-
tions on hybrid CPU/FPGA systems

To evaluate the runtime and energy consumption we price an American max-
imum call option on two correlated stocks with 365 time steps and 10K paths
per stock. Figure 5.2 presents the energy consumption breakdown of the whole
architecture when the novel Reverse LS approach is implemented. When com-
paring the recomputation of the paths in FPGA against the storage of all paths
in DRAM (both when writing and reading data), there is a reduction in energy
consumption of 2x, as depicted in Figure 5.3.0 0 0 7.458
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Figure 5.3: Energy required to read and write the paths from DRAM is two times
as high as recomputing it on the FPGA alongside the later part of the
Longstaff-Schwartz algorithm.

5.2 Heston Model

First we use the native Euler scheme to the stochastic differential equations in
the Heston model (equations (1.11)-(1.12)):

V (ti+1) = V (ti) + κ(θ − V (ti))∆t+ σ
√
V (ti)

√
∆tW (ti) (5.4)

X(ti+1) = X(ti) + (r − 1

2
V (ti))∆t+

√
V (ti)

√
∆tZ(ti) (5.5)

where W (ti) and Z(ti) are two correlated standard normal random variables and
X(ti) = log(S(ti)) is the log-stock price, V (ti) is the volatility (see page 226 of Korn
[26]).

While the reversion idea for the Black-Scholes model is intuitive and straight-
forward (equation (5.3)), the reversion formula for the Heston model is much
more complicated. Since in reality the volatility can not be negative, we have
several ways to avoid this. The most popular choices are reflection technique
and full truncation.

5.2.1 Reversion Formula by Reflection Technique

First we introduce the Euler scheme using reflection technique for the Heston
model:

V (ti+1) = |V (ti)|+ κ(θ − |V (ti)|)∆t+ σ
√
|V (ti)|

√
∆tW (ti) (5.6)

X(ti+1) = X(ti) + (r − 1

2
|V (ti)|)∆t+

√
|V (ti)|

√
∆tZ(ti) (5.7)

As long as we have the volatility V (ti), the reversion formula for the log-stock
price is straightforward :

X(ti) = X(ti+1)− (r − 1

2
|V (ti)|)∆t−

√
|V (ti)|

√
∆tZ(ti) (5.8)

We focus on discussion of the reversion formula for the volatility.
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5.2 Heston Model

Positive Reversion Formula

If V (ti) ≥ 0, we have |V (ti)| = V (ti), thus equations (5.6) and (5.7) become:

V (ti+1) = V (ti) + κ(θ − V (ti))∆t+ σ
√
V (ti)

√
∆tW (ti) (5.9)

X(ti+1) = X(ti) + (r − 1

2
V (ti))∆t+

√
V (ti)

√
∆tZ(ti) (5.10)

The equation (5.9) becomes:

V (ti+1) = (1− κ∆t)V (ti) + σ
√

∆tW (ti)
√
V (ti) + κθ∆t (5.11)

Define h, a, b and c as follows:

h :=
√
V (ti) ≥ 0

a := 1− κ∆t

b := σ
√

∆tW (ti)

c := κθ∆t

Thus the equation (5.11) becomes:

V (ti+1) = a · h2 + b · h+ c (5.12)

Define δ := b2 − 4a(c− V (ti+1)), the solutions of the equation (5.12) are:

h1 =
−b−

√
δ

2a

h2 =
−b+

√
δ

2a

There are five cases to be considered:

1. δ < 0, store time step ti and variance V (ti).

2. δ ≥ 0, h1 ≥ 0 and h2 ≥ 0, store time step ti and variance V (ti).

3. δ ≥ 0, h1 ≤ 0 and h2 ≤ 0, store time step ti and variance V (ti).

4. δ ≥ 0, h1 ≥ 0 and h2 ≤ 0, store time step ti and variance V (ti).

5. δ ≥ 0, h1 < 0 and h2 > 0, which occurs most often, we obtain the positive
reversion formula:

V (ti) = h2
2 = (

−b+
√
δ

2a
)2 (5.13)
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Negative Reversion Formula

If V (ti) < 0, we have |V (ti)| = −V (ti), thus equations (5.6) and (5.7) become:

V (ti+1) = −V (ti) + κ(θ + V (ti))∆t+ σ
√
−V (ti)

√
∆tW (ti) (5.14)

X(ti+1) = X(ti) + (r +
1

2
V (ti))∆t+

√
−V (ti)

√
∆tZ(ti) (5.15)

Define V̂ (ti) := −V (ti), the equation (5.14) becomes:

V (ti+1) = V̂ (ti) + κ(θ − V̂ (ti))∆t+ σ

√
V̂ (ti)

√
∆tW (ti)

= (1− κ∆t)V̂ (ti) + σ
√

∆tW (ti)

√
V̂ (ti) + κθ∆t (5.16)

Similarly, define h, a, b and c as follows:

h :=

√
V̂ (ti) ≥ 0

a := 1− κ∆t

b := σ
√

∆tW (ti)

c := κθ∆t

Thus the equation (5.16) becomes:

V (ti+1) = a · h2 + b · h+ c (5.17)

Define δ := b2 − 4a(c− V (ti+1)), the solutions of the equation (5.17) are:

h1 =
−b−

√
δ

2a

h2 =
−b+

√
δ

2a

There are also five cases to be considered:

1. δ < 0, store time step ti and variance V (ti).

2. δ ≥ 0, h1 ≥ 0 and h2 ≥ 0, store time step ti and variance V (ti).

3. δ ≥ 0, h1 ≤ 0 and h2 ≤ 0, store time step ti and variance V (ti).

4. δ ≥ 0, h1 ≥ 0 and h2 ≤ 0, store time step ti and variance V (ti).

5. δ ≥ 0, h1 < 0 and h2 > 0, we obtain the negative reversion formula:

V̂ (ti) = h2
2

=⇒ V (ti) = −V̂ (ti)

= −h2
2

= −(
−b+

√
δ

2a
)2 (5.18)
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5.2.2 Reversion Formula by Full Truncation Technique

Secondly, we introduce the Euler scheme using full truncation technique for the
Heston model, see page 227 of Korn [26]:

V (ti+1) = V (ti) + κ(θ − (V (ti))
+)∆t+ σ

√
(V (ti))+

√
∆tW (ti) (5.19)

X(ti+1) = X(ti) + (r − 1

2
(V (ti))

+)∆t+
√

(V (ti))+
√

∆tZ(ti) (5.20)

Again, as long as we have the volatility V (ti), the reversion formula for the
log-stock price is simple :

X(ti) = X(ti+1)− (r − 1

2
(V (ti))

+)∆t−
√
|V (ti)|

√
∆tZ(ti) (5.21)

Positive Reversion Formula

If V (ti) ≥ 0, we have (V (ti))
+ = V (ti), thus equations (5.19) and (5.20) become:

V (ti+1) = V (ti) + κ(θ − V (ti))∆t+ σ
√
V (ti)

√
∆tW (ti) (5.22)

X(ti+1) = X(ti) + (r − 1

2
V (ti))∆t+

√
V (ti)

√
∆tZ(ti) (5.23)

The equation (5.22) becomes:

V (ti+1) = (1− κ∆t)V (ti) + σ
√

∆tW (ti)
√
V (ti) + κθ∆t (5.24)

Define h, a, b and c as follows:

h :=
√
V (ti) ≥ 0

a := 1− κ∆t

b := σ
√

∆tW (ti)

c := κθ∆t

Thus equation (5.24) becomes:

V (ti+1) = a · h2 + b · h+ c (5.25)

Define δ := b2 − 4a(c− V (ti+1)), the solutions of the equation (5.25) are:

h1 =
−b−

√
δ

2a

h2 =
−b+

√
δ

2a

There are five cases to be considered:

1. δ < 0, store time step ti and variance V (ti).
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2. δ ≥ 0, h1 ≥ 0 and h2 ≥ 0, store time step ti and variance V (ti).

3. δ ≥ 0, h1 ≤ 0 and h2 ≤ 0, store time step ti and variance V (ti).

4. δ ≥ 0, h1 ≥ 0 and h2 ≤ 0, store time step ti and variance V (ti).

5. δ ≥ 0, h1 < 0 and h2 > 0, which occurs most often, we obtain the positive
reversion formula:

V (ti) = h2
2 (5.26)

Negative Reversion Formula

If V (ti) < 0, we have (V (ti))
+ = 0, thus equations (5.19) and (5.20) become:

V (ti+1) = V (ti) + κθ∆t (5.27)

X(ti+1) = X(ti) + r∆t (5.28)

From the equation (5.27), we obtain the negative reversion formula for volatility:

V (ti) = V (ti+1)− κθ∆t (5.29)

From the equation (5.28), we obtain the negative reversion formula for log-stock
price:

X(ti) = X(ti+1)− r∆t (5.30)

5.2.3 Test

In this section we test the validity of our reversion formulas within the Heston
model either using reflection technique or full truncation technique. We also see
how often both positive and negative reversion formulas don’t work and variance
must be stored.

Input parameters: initial stock price S0 = 90, strike price K = 100, ma-
turity T = 1, interest rate r = 0.05, initial variance V0 = 0.04, speed of
mean reversion κ = 3, long term variance level θ = 0.04, volatility of variance
σ ∈ [0.05, 0.10, 0.15, . . . , 0.95, 1.00], correlation ρ = −0.1, number of simulated paths
pathsMC = 10000, number of time steps per path stepsMC = 365.

According to Broadie and Kaya [7], if the parameters obey the stability condi-
tion 2κθ

σ2 > 1, then the variance process Vt is strictly positive.
We denote HZR:=HiteZeroRate as the number of paths, when at any certain

time step t, the variance process hit zero Vt ≤ 0, divided by the total simulated
paths. Denote mDS0:=maxDiffStock0 as the maximum of absolute difference
between the initial stock price S0 and Ŝ0 computed backwards by using the re-
version formula, among all simulated paths. Denote mDV0:=maxDiffVariance0
as maximum of the absolute difference between the initial stock price V0 and
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5.2 Heston Model

V̂0 computed backwards by using the reversion formula, among all simulated
paths. Denote mIF:=maxInvFailCount as the maximum of the counting number,
when the reversion formulas fail to work, among all simulated paths. Denote
sIF:=sumInvFailCount as the sum of all the counting numbers, when the rever-
sion formulas fail to work, among all simulated paths. Denote mNI:=maxNegInv
as the maximum of the counting number, when the negative reversion formulas
works, among all simulated paths. Denote sNI:=sumNegInv as the sum of all
the counting numbers, when the negative reversion formulas works, among all
simulated paths. Denote sR:=storageRate how often we must store:

storageRate =
sumInvFailCount+ sumNegInvCount

pathsMC · stepsMC
× 100%

From the Table Table 5.1 and 5.2, we conclude:

1. In practice, even 2κθ
σ2 > 1, there could still exist variance path which can go

down below zero.

2. Inversion formulas both in the case of using reflection technique and using
full truncation technique perform well for any case of input parameters,
even when the rate of hitting zero is very high.

3. Since Korn [26] points that the full truncation method performs better than
the reflection method and numerical results show that storageRate for both
methods are similar and negative reversion formula for the full truncation
technique is even much simpler than for the reflection technique, we sug-
gest to use the full truncation method and the corresponding reversion
formulas to reduce the memory of storing variances and stock prices.
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6 Conclusion

The contribution of this dissertation is fourfold:

1. We comprehensively study the JR tree, CRR tree, BEG tree, KM tree and
RSS tree for pricing one-dimensional American options, multidimensional
American options, American-style -lookback options, -Asian options, -
barrier options, -basket options, -strangle-spread-payoff options within the
Black-Scholes model and the Heston model and deliver good benchmarks
by increasing the number of tree steps to a very huge number. We collect
all benchmarks for 24 test cases in the Appendix and make use of these
benchmarks to compare with the results by Monte Carlo methods. Our
benchmarks can be definitely valuable for other researchers when investi-
gating efficiency of numerical methods for valuing American-style options.

2. We investigate systematically the regression-based Monte Carlo methods.
We compare the Longstaff-Schwartz method, the Tsitsiklis-Roy method,
their modified variations using all-paths for regression or using only in-the-
money paths for regression, their modified variations using out-of-samples
new paths to value option presenting lower bound, their modified varia-
tions using the Andersen-Broadie method presenting upper bound, by a
variety of number and form of basis functions in a lot of test cases. We also
test the stability of orthogonal polynomials as basis functions for several
multidimensional American options.

3. We study two machine learning techniques to improve the regression part
of the Monte Carlo methods: the kernel method and the support vector
machine. For the kernel method, we test its variations of fixed bandwidth,
global optimal bandwidth and suboptimal bandwidth by data scaling and
parameter selection techniques. The kernel method with suboptimal band-
width works much quicker than the one with global searching and performs
robust in all 24 test cases and sometimes even better than the Longstaff-
Schwartz method and the Tsitsiklis-Roy method, especially when the payoff
is strange and the dimension of the option is high. The support vector ma-
chine can improve the kernel method by selecting only a subset of all old
stock prices to predict for the option continuation value for the new stock
price and thus can reduce the storage of stock prices during training and
decrease the run time during prediction.

4. We also work with the electronic engineering group to design the embed-
ded architecture for the Longstaff-Schwartz method for pricing high dimen-
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6 Conclusion

sional American options on FPGA. Based on our novel reverse formula for
the stock prices, we don’t have to store the intermediate stock prices in ex-
ternal memories with lower speed and more energy consumption and can
make full use of FPGA , which only has a limited memory but works much
quicker and consumes less energy.
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7 Appendix

7.1 Benchmarks

In this section, we present numerical experiments using different trees to price
various American-style options. Denote Q as the risk-neutral measure, S0 as
the initial stock price, K as the strike price, T as the maturity, r as the interest
rate, δ as the dividend, σ as the volatility, B as the barrier, T [0, T ] as the set of
stopping times taking values in [0, T ], Tex as a potential exercise date.

For high dimensional options, we denote Σ as the variance-covariance matrix
and ρ as the correlation coefficient of the Brownian motions.

Further, we denote inputs as values for input parameters above, output as the
American-style option prices and reference as the corresponding European-style
option prices.

When we price one-dimensional American geometric-average Asian options or
high-dimensional American geometric-average basket options, we notice that we
can always simplify the trees to normal 1-D CRR tree using formulas (2.21) -
(2.23) or using formulas (2.26) - (2.28), in order to achieve higher accuracy.
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7 Appendix

7.1.1 1-D Examples in the Black-Scholes Model

Test Case 1: 1-D American option
Optimal expected discounted payoff is:

sup
Tex∈T [0,T ]

EQ [e−rTex (K − S(Tex))+]
Inputs: S0 = 36, K = 40, T = 1, r = 0.06, δ = 0, σ = 0.4.
Output: 7.11 Reference: 6.71
See selected option prices in Table 7.1 and convergence behaviour in Figure 7.1.

number of steps 100 101 200 201 500 501
option price 7.1190 7.1109 7.1091 7.1144 7.1082 7.1114

number of steps 1000 1001 5000 5001 10000 10001
option price 7.1094 7.1099 7.1092 7.1091 7.1090 7.1091

number of steps 20000 20001 40000 40001 100000 100001
option price 7.1090 7.1090 7.1090 7.1090 7.1090 7.1090

Table 7.1: Selected option prices for 1-D American option
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Figure 7.1: CRR tree for 1-D American option
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Test Case 2: 1-D Bermudan option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex (K − S(Tex))+]
Inputs: S0 = 100, K = 90, T = 1, r = 0.05, δ = 0, σ = 0.25, T = T { T12 × 1, T12 ×
2, . . . T12 × 12}
Output: 3.931 Reference: 3.75
See selected option prices in Table 7.2 and convergence behaviour in Figure 7.2.

number of steps 100 101 200 201 500 501
option price 3.9279 3.9475 3.9253 3.9415 3.9340 3.9327

number of steps 1000 1001 5000 5001 10000 10001
option price 3.9327 3.9318 3.9313 3.9318 3.9313 3.9316

number of steps 20000 20001 40000 40001 100000 100001
option price 3.9314 3.9315 3.9314 3.9315 3.9314 3.9314

Table 7.2: Selected option prices for 1-D Bermudan option
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Figure 7.2: CRR tree for 1-D Bermudan option
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Test Case 3: 1-D Bermudan option with only two exercise dates
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex (K − S(Tex))+]
Inputs: S0 = 100, K = 100, T = 1, r = 0.1, δ = 0, σ = 0.2, T = T {T2 × 1, T2 × 2}
Output: 4.313 Reference: 3.75
See selected option prices in Table 7.3 and convergence behaviour in Figure 7.3.

number of steps 100 101 200 201 500 501
option price 4.3084 4.3126 4.3046 4.3216 4.3120 4.3149

number of steps 1000 1001 5000 5001 10000 10001
option price 4.3125 4.3146 4.3133 4.3135 4.3132 4.3136

number of steps 20000 20001 40000 40001 100000 100001
option price 4.3133 4.3135 4.3133 4.3134 4.3134 4.3134

Table 7.3: Selected option prices for 1-D Bermudan option with only two exercise
dates
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Figure 7.3: CRR tree for 1-D Bermudan option with only two exercise dates
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Test Case 4: 1-D American option with strangle-spread-payoff
Optimal expected discounted payoff is:

sup
Tex

EQ [e−rTex ((K2 −K1)+1{S(Tex)<K1} + (K2 − S(Tex))+1{K1≤S(Tex)≤K2}

+0 · 1{K2<S(Tex)<K3} + (S(Tex)−K3)+1{K3≤S(Tex)≤K4} + (K4 −K3)+1{S(Tex)>K4}
)]

Inputs: S0 = 100, T = 1, r = 0.05, δ = 0, σ = 0.5, K1 = 50, K2 = 90, K3 = 110,
K4 = 150. T = T { T48 × 1, T48 × 2, . . . , T48 × 48}
Output: 26.32 Reference: 20.70
See selected option prices in Table 7.4 and convergence behaviour in Figure 7.4.

number of steps 48 96 240 480 720 960
option price 26.5336 26.8897 26.3631 26.3762 26.3380 26.3074

number of steps 4800 4848 7200 7248 9600 9648
option price 26.3278 26.3197 26.3164 26.3200 26.3186 26.3189

number of steps 48000 48048 72000 72048 96000 96048
option price 26.3179 26.3177 26.3178 26.3178 26.3176 26.3177

Table 7.4: Selected option prices for 1-D American option with strangle-spread-
payoff
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Figure 7.4: CRR tree for 1-D American option with strangle-spread-payoff
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Test Case 5: 1-D American lookback option with floating strike
Optimal expected discounted payoff is:

sup
Tex∈T [0,T ]

EQ

[
e−rTex

(
max

t∈[0,Tex]
S(t)− S(Tex)

)+
]

Inputs: S0 = 50, T = 1
4 , r = 0.10, δ = 0, σ = 0.4.

Output: 7.81 Reference: 7.61
See selected option prices in Table 7.5 and convergence behaviour in Figure 7.5.

number of steps 5 10 20 50 80 90
option price 5.9186 6.4333 6.8369 7.2288 7.3786 7.4115

number of steps 100 101 200 201 400 401
option price 7.4396 7.4422 7.5943 7.5953 7.7067 7.7071

number of steps 600 601 800 801 1000 1001
option price 7.7574 7.7575 7.7878 7.7879 7.8086 7.8087

Table 7.5: Selected option prices for 1-D American lookback option with floating
strike
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Figure 7.5: CRR tree for 1-D American lookback option with floating strike
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Test Case 6: 1-D American knock-out barrier option
Optimal expected discounted payoff is:

sup
Tex∈T [0,T ]

EQ
[
e−rTex (S(Tex)−K)+ 1{ max

t∈[0,Tex]
S(t)<B}

]
Inputs: S0 = 100, K = 80, T = 1, r = 0.05, δ = 0, σ = 0.2, B = 120.
Output: 23.77 Reference: 7.74
See selected option prices in Table 7.6 and convergence behaviour in Figure 7.6.

number of steps 3 10 20 50 80 90
option price 23.3371 23.2426 23.7925 23.6636 23.7433 23.6633

number of steps 100 101 1000 1001 2000 2001
option price 23.7663 23.7503 23.7335 23.7322 23.7482 23.7483

number of steps 4000 4001 6000 6001 8000 8001
option price 23.7600 23.7598 23.7641 23.7640 23.7672 23.7672

Table 7.6: Selected option prices for 1-D American knock-out barrier option
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Figure 7.6: CRR tree for 1-D American knock-out barrier option
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Test Case 7: 1-D American knock-in barrier option
Optimal expected discounted payoff is:

sup
Tex∈T [0,T ]

EQ
[
e−rTex (K − S(Tex))+ 1{ max

t∈[0,Tex]
S(t)≥B}

]
Inputs: S0 = 100, K = 95, T = 1, r = 0.05, δ = 0, σ = 0.2, B = 80.
Output: 4.01 Reference: 3.71
See selected option prices in Table 7.7 and convergence behaviour in Figure 7.7.

number of steps 5 10 20 50 80 90
option price 4.1834 4.1152 4.0817 4.0135 4.0121 4.0170

number of steps 100 101 200 201 400 401
option price 4.0202 4.0209 4.0163 4.0177 4.0166 4.0120

number of steps 600 601 800 801 1000 1001
option price 4.0132 4.0152 4.0147 4.0131 4.0126 4.0145

Table 7.7: Selected option prices for 1-D American knock-in barrier option
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Figure 7.7: CRR tree for 1-D American knock-in barrier option

142
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Test Case 8: 1-D American geometric-average Asian option
Optimal expected discounted payoff is:

sup
Tex∈T [0,T ]

EQ

e−rTex((
n∏
i=1

tn=Tex

S(ti))
1
n −K)+


Inputs: S0 = 50, K = 50, T = 1, r = 0.1, δ = 0.2, σ = 0.4.
Output: 3.25 Reference: 2.79
See selected option prices in Table 7.8 and convergence behaviour in Figure 7.8.

number of steps 5 10 20 50 80 90
option price 3.3594 3.1974 3.2272 3.2431 3.2461 3.2470

number of steps 100 101 200 201 400 401
option price 3.2473 3.2574 3.2498 3.2549 3.2510 3.2535

number of steps 600 601 800 801 1000 1001
option price 3.2514 3.2530 3.2516 3.2528 3.2517 3.2527

Table 7.8: Selected option prices for 1-D American geometric-average Asian
option
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Figure 7.8: CRR tree for 1-D American geometric-average Asian option
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7.1.2 2-D Examples in the Black-Scholes Model

Test Case 9: 2-D American spread option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex([S1(Tex)− S2(Tex)]−K)+
]

Inputs: S1(0) = 100, S2(0) = 90, T = 3, r = 0.05, δ = 0.1, ρ = (1 0.1; 0.1 1),
Σ = (0.04 0.002; 0.002 0.01), T = T {T9 × 1, T9 × 2, . . . , T9 × 9}
In this example, we discuss the option prices for three cases: at the money, in
the money and out of the money.
See selected option prices using KM tree in Table 7.9.

At the Money: K = 10

number of steps 5 10 20 50 80 90
option price 10.8037 11.4481 11.4110 11.4063 11.4057 11.4048

number of steps 100 101 200 201 400 401
option price 11.4041 11.4038 11.4022 11.4025 11.4015 11.4017

Output: 11.40 Reference: 10.21

In the Money: K = 1

number of steps 5 10 20 50 80 90
option price 14.7841 15.8455 15.7972 15.7909 15.7916 15.7915

number of steps 100 101 200 201 400 401
option price 15.7895 15.7856 15.7853 15.7863 15.7845 15.7854

Output: 15.78 Reference: 14.00

Out of the Money: K = 30

number of steps 5 10 20 50 80 90
option price 4.9680 5.1723 5.1850 5.1930 5.1956 5.1957

number of steps 100 101 200 201 400 401
option price 5.1960 5.1962 5.1978 5.1979 5.1986 5.1986

Output: 5.20 Reference: 4.75

Table 7.9: Selected option prices for 2-D American spread option
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Test Case 10: 2-D American maximum outperformance option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(max{S1(Tex), S2(Tex)} −K)+
]

Inputs: S1(0) = S2(0) = S, K = 100, T = 3, r = 0.05, δ = 0.1, ρ = (1 0; 0 1),
Σ = (0.04 0; 0 0.04), T = T {T9 × 1, T9 × 2, . . . , T9 × 9}
In this example, we discuss the option prices for three cases: at the money, in
the money and out of the money.
See selected option prices using KM tree in Table 7.10.

At the Money: S = 100

number of steps 5 10 20 50 80 90
option price 11.9666 13.6121 13.8928 13.8686 13.9011 13.8852

number of steps 100 101 200 201 400 401
option price 13.8708 13.9045 13.8994 13.8982 13.8953 13.9027

Output: 13.90 Reference: 11.19

In the Money: S = 110

number of steps 5 10 20 50 80 90
option price 18.5304 21.3772 21.3213 21.3436 21.3629 21.3666

number of steps 100 101 200 201 400 401
option price 21.3530 21.3401 21.3476 21.3423 21.3444 21.3452

Output: 21.34 Reference: 16.93

Out of the Money: S = 70

number of steps 5 10 20 50 80 90
option price 1.2238 1.5455 1.5876 1.6093 1.6262 1.6303

number of steps 100 101 200 201 400 401
option price 1.6236 1.6306 1.6380 1.6303 1.6408 1.6388

Output: 1.64 Reference: 1.44

Table 7.10: Selected option prices for 2-D American maximum outperformance
option
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Test Case 11: 2-D American minimum outperformance option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(min{S1(Tex), S2(Tex)} −K)+
]

Inputs: S1(0) = S2(0) = S, K = 100, T = 3, r = 0.05, δ = 0.1, ρ = (1 0; 0 1),
Σ = (0.04 0; 0 0.04), T = T {T9 × 1, T9 × 2, . . . , T9 × 9}
In this example, we discuss the option prices for three cases: at the money, in
the money and out of the money.
See selected option prices using KM tree in Table 7.11.

At the Money: S = 100

number of steps 5 10 20 50 80 90
option price 1.4649 3.2708 2.8430 2.4518 2.3687 2.3554

number of steps 100 101 200 201 400 401
option price 2.3504 2.3642 2.3108 2.3082 2.2870 2.2868

Output: 2.28 Reference: 0.85

In the Money: S = 110

number of steps 5 10 20 50 80 90
option price 3.0158 7.6047 6.7272 6.1439 6.0969 6.1213

number of steps 100 101 200 201 400 401
option price 6.0957 6.0929 6.0349 6.0347 5.9896 5.9749

Output: 5.97 Reference: 1.82

Out of the Money: S = 70

number of steps 5 10 20 50 80 90
option price 0.0345 0.0363 0.0373 0.0305 0.0300 0.0301

number of steps 100 101 200 201 400 401
option price 0.0293 0.0299 0.0295 0.0290 0.0291 0.0290

Output: 0.029 Reference: 0.019

Table 7.11: Selected option prices for 2-D American minimum outperformance
option
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Test Case 12: 2-D American geometric-average basket option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ

[
e−rTex((

2∏
i=1

Si(Tex))
1
2 −K)+

]

Inputs: S1(0) = 22, S2(0) = 20, K = 20, T = 1, r = 0.1, δ = 0.15, ρ = (1 0.5; 0.5 1),
Σ = (0.04 0.025; 0.025 0.0625), T = T {T5 × 1, T5 × 2, . . . , T5 × 5}
Output: 1.55 Reference: 1.32
See selected option prices in Table 7.12 and convergence behaviour in Figure
7.9.

number of steps 100 101 200 201 500 501
option price 1.5506 1.5504 1.5496 1.5494 1.5484 1.5483

number of steps 1000 1001 5000 5001 10000 10001
option price 1.5480 1.5482 1.5479 1.5479 1.5479 1.5480

number of steps 20000 20001 40000 40001 100000 100001
option price 1.5479 1.5479 1.5479 1.5479 1.5479 1.5479

Table 7.12: Selected option prices for 2-D American geometric-average basket
option
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Figure 7.9: CRR tree for 2-D American geometric-average basket option
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Test Case 13: 2-D American geometric-average basket option with discon-
tinue payoff
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(G−K)+1{G≤B1 orG≥B2}
]

with G = (
2∏
i=1

Si(Tex))
1
2

Inputs: S1(0) = 22, S2(0) = 20, K = 20, B1 = 25, B2 = 30 , T = 1, r = 0.1, δ = 0.15,
ρ = (1 0.5; 0.5 1), Σ = (0.04 0.025; 0.025 0.0625), T = T {T5 × 1, T5 × 2, . . . , T5 × 5}
Output: 1.48 Reference: 1.32
See selected option prices in Table 7.13 and convergence behaviour in Figure
7.10.

number of steps 100 101 200 201 500 501
option price 1.4820 1.5028 1.4951 1.4814 1.4960 1.4871

number of steps 1000 1001 5000 5001 10000 10001
option price 1.4900 1.4839 1.4802 1.4815 1.4793 1.4803

number of steps 20000 20001 40000 40001 100000 100001
option price 1.4820 1.4827 1.4808 1.4818 1.4832 1.4825

Table 7.13: Selected option prices for 2-D American geometric-average basket
option with discontinue payoff
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Figure 7.10: CRR tree for 2-D American geometric-average basket option with
discontinue payoff
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Test Case 14: 2-D American geometric-average basket option with strangle-
spread-payoff
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex ((K2 −K1)+1{G<K1} + (K2 −G)+1{K1≤G≤K2} + 0 · 1{K2<G<K3}

+(G−K3)+1{K3≤G≤K4} + (K4 −K3)+1{G>K4}
)]

with G = (

2∏
i=1

Si(Tex))
1
2

Inputs: S1(0) = 22, S2(0) = 20, K1 = 15, K2 = 20, K3 = 30, K4 = 50, T = 1, r = 0.1,
δ = 0.15, ρ = (1 0.5; 0.5 1), Σ = (0.04 0.025; 0.025 0.0625), T = T {T5×1, T5×2, . . . , T5×5}
Output: 1.46 Reference: 1.40
See selected option prices in Table 7.14 and convergence behaviour in Figure
7.11.

number of steps 100 101 200 201 500 501
option price 1.4613 1.4636 1.4622 1.4614 1.4613 1.4608

number of steps 1000 1001 5000 5001 10000 10001
option price 1.4607 1.4609 1.4607 1.4606 1.4607 1.4607

number of steps 20000 20001 40000 40001 100000 100001
option price 1.4607 1.4607 1.4606 1.4606 1.4606 1.4606

Table 7.14: Selected option prices for 2-D American geometric-average basket
option with strangle-spread-payoff
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Figure 7.11: CRR tree for 2-D American geometric-average basket option with
strangle-spread-payoff
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7.1.3 3-D Examples in the Black-Scholes Model

Test Case 15: 3-D American maximum outperformance option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(max{S1(Tex), S2(Tex), S3(Tex)} −K)+
]

Inputs: S1(0) = S2(0) = S3(0) = S, K = 100, T = 3, r = 0.05, δ = 0.1,
σ1 = σ2 = σ3 = 0.2, ρ = (1 − 0.25 0.25; −0.25 1 0.3; 0.25 0.3 1), Σ =
(0.04 − 0.01 0.01; −0.01 0.04 0.012; 0.01 0.012 0.04), T = T {T5 × 1, T5 × 2, . . . , T5 × 5}
In this example, we discuss the option prices for three cases: at the money, in
the money and out of the money.
See selected option prices using KM tree in Table 7.15.

At the Money: S = 100

number of steps 5 10 20 30 40 50
option price 17.0709 17.2680 17.4709 17.4879 17.4785 17.4881

number of steps 60 70 80 90 100 101
option price 17.5016 17.5073 17.5062 17.5004 17.4965 17.5101

Output: 17.50 Reference: 14.92

In the Money: S = 110

number of steps 5 10 20 30 40 50
option price 25.7732 25.9850 25.9712 25.9576 25.9746 25.9778

number of steps 60 70 80 90 100 101
option price 25.9701 25.9852 25.9900 25.9873 25.9833 25.9716

Output: 25.98 Reference: 22.06

Out of the Money: S = 70

number of steps 5 10 20 30 40 50
option price 1.8183 2.1189 2.1889 2.2270 2.2325 2.2464

number of steps 60 70 80 90 100 101
option price 2.2532 2.2565 2.2611 2.2658 2.2635 2.2698

Output: 2.27 Reference: 2.05

Table 7.15: Selected option prices for 3-D American maximum outperformance
option
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Test Case 16: 3-D American minimum outperformance option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(min{S1(Tex), S2(Tex), S3(Tex)} −K)+
]

Inputs: S1(0) = S2(0) = S3(0) = S, K = 100, T = 3, r = 0.05, δ = 0.1,
σ1 = σ2 = σ3 = 0.2, ρ = (1 − 0.25 0.25; −0.25 1 0.3; 0.25 0.3 1), Σ =
(0.04 − 0.01 0.01; −0.01 0.04 0.012; 0.01 0.012 0.04), T = T {T5 × 1, T5 × 2, . . . , T5 × 5}
In this example, we discuss the option prices for three cases: at the money, in
the money and out of the money.
See selected option prices using KM tree in Table 7.11.

At the Money: S = 100

number of steps 5 10 20 30 40 50
option price 1.1991 0.9966 0.8853 0.8530 0.8309 0.8180

number of steps 60 70 80 90 100 101
option price 0.8142 0.8113 0.8086 0.8060 0.8042 0.8095

Output: 0.81 Reference: 0.24

In the Money: S = 110

number of steps 5 10 20 30 40 50
option price 3.2312 3.2485 2.9919 2.8994 2.8590 2.8440

number of steps 60 70 80 90 100 101
option price 2.8364 2.8316 2.8275 2.8232 2.8189 2.8279

Output: 2.82 Reference: 0.65

Out of the Money: S = 70

number of steps 5 10 20 30 40 50
option price 0 0.0021 0.0023 0.0020 0.0019 0.0021

number of steps 60 70 80 90 100 101
option price 0.0022 0.0022 0.0022 0.0022 0.0021 0.0022

Output: 0.0022 Reference: 0.0015

Table 7.16: Selected option prices for 3-D American minimum outperformance
option
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Test Case 17: 3-D American geometric-average basket option
Optimal expected discounted payoff is:

sup
Tex∈T

EQ

[
e−rTex((

3∏
i=1

Si(Tex))
1
3 −K)+

]

Inputs: S1(0) = 22, S2(0) = 20, S3(0) = 25, K = 20, T = 1, r = 0.1, δ = 0.2, σ1 = 0.2,
σ2 = 0.25, σ3 = 0.15, ρ = (1 0.5 − 0.2; 0.5 1 − 0.4; −0.2 − 0.4 1), Σ = (0.04 0.025 −
0.006; 0.025 0.0625 − 0.015; −0.006 − 0.015 0.025), T = T {T5 × 1, T5 × 2, . . . , T5 × 5}
Output: 1.77 Reference: 0.81
See selected option prices in Table 7.17 and convergence behaviour in Figure
7.12.

number of steps 100 101 200 201 500 501
option price 1.7630 1.7667 1.7653 1.7673 1.7651 1.7659

number of steps 1000 1001 5000 5001 10000 10001
option price 1.7655 1.7659 1.7659 1.7660 1.7659 1.7660

number of steps 20000 20001 40000 40001 100000 100001
option price 1.7660 1.7660 1.7659 1.7660 1.7660 1.7660

Table 7.17: Selected option prices for 3-D American geometric-average basket
option
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Figure 7.12: CRR tree for 3-D American geometric-average basket option
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Test Case 18: 3-D American geometric-average basket option with discon-
tinue payoff
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(G−K)+1{G≤B1 orG≥B2}
]

with G = (
3∏
i=1

Si(Tex))
1
3

Inputs: S1(0) = 22, S2(0) = 20, S3(0) = 25, K = 20, T = 1, r = 0.1, δ = 0.2, σ1 = 0.2,
σ2 = 0.25, σ3 = 0.15, ρ = (1 0.5 − 0.2; 0.5 1 − 0.4; −0.2 − 0.4 1), Σ = (0.04 0.025 −
0.006; 0.025 0.0625 − 0.015; −0.006 − 0.015 0.025), T = T {T5 × 1, T5 × 2, . . . , T5 × 5},
B1 = 22, B2 = 30
Output: 0.97 Reference: 0.22
See selected option prices in Table 7.18 and convergence behaviour in Figure
7.13.

number of steps 100 101 200 201 500 501
option price 0.9495 0.9987 0.9998 0.9732 1.0461 1.0285

number of steps 1000 1001 5000 5001 10000 10001
option price 0.9616 0.9757 0.9547 0.9612 0.9702 0.9748

number of steps 20000 20001 40000 40001 100000 100001
option price 0.9670 0.9702 0.9789 0.9768 0.9674 0.9688

Table 7.18: Selected option prices for 3-D American geometric-average basket
option
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Figure 7.13: CRR tree for 3-D American geometric-average basket option with
discontinue payoff
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Test Case 19: 3-D American geometric-average basket option with strangle-
spread-payoff
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex ((K2 −K1)+1{G<K1} + (K2 −G)+1{K1≤G≤K2} + 0 · 1{K2<G<K3}

+(G−K3)+1{K3≤G≤K4} + (K4 −K3)+1{G>K4}
)]

with G = (

3∏
i=1

Si(Tex))
1
3

Inputs: S1(0) = 100, S2(0) = 100, S3(0) = 100, T = 1, r = 0.05, δ = 0,
Σ = (0.1150 0.0761 0.0353; 0.0761 0.0736 0.0281; 0.0353 0.0281 0.0141), T = T { T48 ×
1, T48 × 2, . . . , T48 × 48}, K1 = 85, K2 = 95, K3 = 105, K4 = 115
Output: 8.934 Reference: 6.34
See selected option prices in Table 7.19 and convergence behaviour in Figure
7.14.

number of steps 48 96 240 480 720 960
option price 9.0445 9.0275 8.9454 8.9227 8.9420 8.9239

number of steps 4800 4848 7200 7248 9600 9648
option price 8.9404 8.9368 8.9310 8.9343 8.9315 8.9347

number of steps 48000 48048 72000 72048 96000 96048
option price 8.9346 8.9342 8.9346 8.9342 8.9341 8.9342

Table 7.19: Selected option prices for 3-D American geometric-average basket
option with strangle-spread-payoff
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Figure 7.14: CRR tree for 3-D American geometric-average basket option with
strangle-spread-payoff
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7.1.4 7-D Examples in the Black-Scholes Model

Test Case 20: 7-D American geometric-average basket option with zero
correlation
Optimal expected discounted payoff is:

sup
Tex∈T

EQ

[
e−rTex((

7∏
i=1

Si(Tex))
1
7 −K)+

]

Inputs: S1(0) = · · · = S7(0) = 100, K = 100, T = 1, r = 0.03, δ = 0.05, σ1 = · · · =
σ7 = 0.4, T = T { T10 × 1, T10 × 2, . . . , T10 × 10}, ρ = (ρij)

>, Σ = (Σij)
>, ρii = 1, ρij = 0,

Σii = 0.16, Σij = 0 with i, j = 1, . . . , 7, i 6= j.
Output: 3.27 Reference: 2.42
See selected option prices in Table 7.20 and convergence behaviour in Figure
7.15.

number of steps 100 101 200 201 500 501
option price 3.2668 3.2826 3.2692 3.2744 3.2696 3.2711

number of steps 1000 1001 5000 5001 10000 10001
option price 3.2702 3.2709 3.2699 3.2701 3.2700 3.2701

number of steps 20000 20001 40000 40001 100000 100001
option price 3.2700 3.2700 3.2700 3.2700 3.2700 3.2700

Table 7.20: Selected option prices for 7-D American geometric-average basket
option with zero correlation
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Figure 7.15: CRR tree for 7-D American geometric-average basket option with
zero correlation

155



7 Appendix

Test Case 21: 7-D American geometric-average basket option with non-zero
correlation
Optimal expected discounted payoff is:

sup
Tex∈T

EQ

[
e−rTex((

7∏
i=1

Si(Tex))
1
7 −K)+

]

Inputs: S1(0) = · · · = S7(0) = 100, K = 100, T = 1, r = 0.03, δ = 0.05, σ1 = · · · =
σ7 = 0.4, T = T { T10 × 1, T10 × 2, . . . , T10 × 10}, ρ = (ρij)

>, Σ = (Σij)
>, ρii = 1, ρij = 0.1,

Σii = 0.16, Σij = 0.016 with i, j = 1, . . . , 7, i 6= j.
Output: 4.77 Reference: 3.93
See selected option prices in Table 7.21 and convergence behaviour in Figure
7.16.

number of steps 100 101 200 201 500 501
option price 4.7618 4.7760 4.7631 4.7712 4.7662 4.7704

number of steps 1000 1001 5000 5001 10000 10001
option price 4.7668 4.7686 4.7670 4.7675 4.7671 4.7673

number of steps 20000 20001 40000 40001 100000 100001
option price 4.7672 4.7673 4.7672 4.7672 4.7672 4.7672

Table 7.21: Selected option prices for 7-D American geometric-average basket
option with non-zero correlation
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Figure 7.16: CRR tree for 7-D American geometric-average basket option with
non-zero correlation
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Test Case 22: 7-D American geometric-average basket option with discon-
tinue payoff
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex(G−K)+1{G≤B1 orG≥B2}
]

with G = (
7∏
i=1

Si(Tex))
1
7

Inputs: S1(0) = · · · = S7(0) = 100, K = 100, B1 = 110, B2 = 120, T = 1, r = 0.03,
δ = 0.05, σ1 = · · · = σ7 = 0.4, T = T { T10 ×1, T10 ×2, . . . , T10 ×10}, ρ = (ρij)

>, Σ = (Σij)
>,

ρii = 1, ρij = 0.1, Σii = 0.16, Σij = 0.016 with i, j = 1, . . . , 7, i 6= j.
Output: 4.32 Reference: 2.76
See selected option prices in Table 7.22 and convergence behaviour in Figure
7.17.

number of steps 100 101 200 201 500 501
option price 4.3615 4.4479 4.3418 4.3945 4.3176 4.3553

number of steps 1000 1001 5000 5001 10000 10001
option price 4.2277 4.3109 4.3184 4.3292 4.3046 4.3123

number of steps 20000 20001 40000 40001 100000 100001
option price 4.3260 4.3208 4.3099 4.3221 4.3170 4.3191

Table 7.22: Selected option prices for 7-D American geometric-average basket
option with discontinue payoff
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Figure 7.17: CRR tree for 7-D American geometric-average basket option with
discontinue payoff

157



7 Appendix

Test Case 23: 7-D American geometric-average basket option with strangle-
spread-payoff
Optimal expected discounted payoff is:

sup
Tex∈T

EQ [e−rTex ((K2 −K1)+1{G<K1} + (K2 −G)+1{K1≤G≤K2} + 0 · 1{K2<G<K3}

+(G−K3)+1{K3≤G≤K4} + (K4 −K3)+1{G>K4}
)]

with G = (
7∏
i=1

Si(Tex))
1
7

Inputs: S1(0) = · · · = S7(0) = 100, K1 = 90, K2 = 100, K3 = 110, K4 = 120, T = 1,
r = 0.03, δ = 0.05, σ1 = · · · = σ7 = 0.4, T = T { T10 × 1, T10 × 2, . . . , T10 × 10}, ρ = (ρij)

>,
Σ = (Σij)

>, ρii = 1, ρij = 0.1, Σii = 0.16, Σij = 0.016 with i, j = 1, . . . , 7, i 6= j.
Output: 8.42 Reference: 6.85
See selected option prices in Table 7.23 and convergence behaviour in Figure
7.18.

number of steps 100 101 200 201 500 501
option price 8.4396 8.4677 8.4632 8.4540 8.4309 8.4274

number of steps 1000 1001 5000 5001 10000 10001
option price 8.4141 8.4133 8.4158 8.4175 8.4165 8.4177

number of steps 20000 20001 40000 40001 100000 100001
option price 8.4177 8.4177 8.4174 8.4174 8.4174 8.4174

Table 7.23: Selected option prices for 7-D American geometric-average basket
option with strangle-spread-payoff
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Figure 7.18: CRR tree for 7-D American geometric-average basket option with
strangle-spread-payoff
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7.1.5 1-D Examples in the Heston Model

Test Case 24: 1-D American option in Heston Model
Optimal expected discounted payoff is:

sup
Tex∈T [0,T ]

EQ [e−rTex (K − S(Tex))+]
Inputs: K = 100, T = 1

2 , r = 0.05, δ = 0, κ = 3, θ = 0.04, σ = 0.1, ρ = −0.1, V0 = 0.04,
V̂ = 0.02
In this example, we discuss the option prices for three cases: at the money, in
the money and out of the money.
See selected option prices using RSS tree in Table 7.24.

At the Money: S = 100

number of steps 5 10 20 30 40 50
option price 4.6660 4.6794 4.6698 4.6607 4.6528 4.6470

number of steps 60 70 80 90 100 200
option price 4.6424 4.6432 4.6431 4.6486 4.6502 4.6532

Output: 4.65 Reference: 4.41

In the Money: S = 90

number of steps 5 10 20 30 40 50
option price 10.5509 10.6547 10.6334 10.6452 10.6505 10.6443

number of steps 60 70 80 90 100 200
option price 10.6451 10.6499 10.6498 10.6477 10.6458 10.6461

Output: 10.65 Reference: 9.86

Out of the Money: S = 110

number of steps 5 10 20 30 40 50
option price 1.7093 1.6644 1.6965 1.68 81 1.6858 1.6854

number of steps 60 70 80 90 100 200
option price 1.6887 1.6782 1.6871 1.6866 1.6796 1.6829

Output: 1.68 Reference: 1.62

Table 7.24: Selected option prices for 1-D American option in Heston Model

159





Bibliography

[1] Abramowitz, W., Stegun, I. (1972). Handbook of mathematical functions
with formulas, graphs and mathematical tables. Dover Publications.

[2] Andersen, L., Broadie, M. (2004). A primal-dual simulation algorithm for
pricing multidimensional American options. Management Sciences, 50:1222-
1234.

[3] Bally, V. and Pàges, G. (2003). Error analysis of a quantization algorithm for
obstacle problems. Stochastic Processes and their Applications, 106:1-40.

[4] Belomestny, D., Bender, C. and Schoenmakers, J. (2009). True upper
bounds for Bermudan products via non-nested Monte Carlo. Mathematical
Finance, 19(1):53-71.

[5] Boyle, P. P., Evnine, J. and Gibbs, S. (1989). Numerical evaluation of mul-
tivariate contingent claims. The Review of Financial Studies, Volume 2(2),
241-250.

[6] Bishop, C. M. (1979). Pattern recognition and machine learning. Springer.

[7] Broadie, M. and Kaya, O. (2006). Exact simulation of stochastic volatility
and other affine jump diffusion processes. Operations Research, 54:2, 217-
231.

[8] Chang, C. and Lin, C. (2011). LIBSVM: A library for support vector machines.
Journal of ACM Transactions on Intelligent Systems and Technology, Vol-
ume 2(3), 27:1-27:27.

[9] Chang, C., Hsu, C. and Lin, C. (2010). A practical guide to support vector
classification.

[10] Cherkassky, V. and Ma, Y. (2004). Practical selection of SVM parameters
and noise estimation for SVM regression. Neural Networks, Volume 17(1),
113-126.

[11] Cox, J. C., Ross, S. A. and Rubinstein, M. (1979). Option pricing: A simpli-
fied approach. Journal of Financial Economics 7, 229-263.

[12] Clément, E., Lamberton, D. and Protter, P. (2002). An analysis of a
least squares regression method for American option pricing. Finance and
Stochastics 6, 449-471.

161



Bibliography

[13] Egloff, D. (2005). Monte Carlo algorithms for optimal stopping and statistical
learning. Annals of Applied Probability 15, 1-37.

[14] Egloff, D., Kohler, M. and Todorovic, N. (2007). A dynamic look-ahead
Monte Carlo algorithm for pricing American options. Annals of Applied Prob-
ability 17, 1138-1171.

[15] Glasserman, P. (2003). Monte Carlo methods in financial engineering.
Springer.

[16] Glasserman, P. and Yu (2004). Number of paths versus basis functions
in American option pricing. The Annals of Applied Probability, 14(4):2090-
2119.

[17] Györfi, L., Kohler, M, Krzyzak, A and Walk, H (2002). A distribution-free
theory of nonparametric regression. Springer Series in Statistics, Springer.

[18] Haugh, M. and Kogan, L. (2004). A duality approach. Operations Research,
52:258-270.

[19] Hoek, J. and Elliott, R. J. (2006). Binomial models in finance. Springer.

[20] Hull, J. C. (2008). Options, futures, and other derivatives. 7 edition, Prentice
Hall.

[21] Jarrow, R. A. and Rudd, A. (1983). Option pricing. Irwin Professional Pub-
lishing.

[22] Kohler, M.. A review on regression-based Monte Carlo methods for pricing
American options (2010). Recent Developments in Applied Probability and
Statistics, 37-58.

[23] Kohler, M., Krzyzak, A. and Todorovic, N. (2010) Pricing of high-
dimensional American options by neural networks. Mathematical Finance,
Volume 20, No. 3, 381-410.

[24] Kohler, M. (2008) A regression based smoothing spline Monte Carlo algo-
rithm for pricing American options. AStA Advances in Statistical Analysis 92,
153-178.

[25] Korn, R. and Korn, E. (2001). Option pricing and portfolio optimization:
modern methods of financial mathematics. 1 edition, American Mathemati-
cal Society.

[26] Korn, R., Korn, E. and Kroisandt, G. (2010). Monte Carlo methods and
models in finance and insurance. CRC Press.

[27] Korn, R. and Müller, S. (2009). Getting multi-dimensional trees into a new
shape. Wilmott Journal, Volume 1(3), 145-153.

162



Bibliography

[28] Korn, R. and Müller, S. (2009). The decoupling approach to binomial pricing
of multi-asset options. The Journal of Computational Finance, Volume 12(3),
1-30.

[29] Lee, H.-J., Yang, S.-H., Han, G.-S. and Lee, J. (2008). Simulations for
American option pricing under a jump-diffusion model: comparison study
between kernel-based and regression-based methods. Advances in Neural
Networks - ISNN 2008. Volume 5263, 655-662.

[30] Lee, J. (2008). Recent advances in American option pricing using simula-
tions.

[31] Liang, Q. (2012). Innovative Techniken und Algorithmen im Bereich
Computational-Finance und Risikomanagement. Dissertation at the Univer-
sity of Kaiserslautern.

[32] London, J. (2004). Modeling derivatives in C++. 1 edition, Wiley.

[33] Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by
simulation: A simple least-squares approach. The Review of Financial Stud-
ies, Volume 14(1), 113-147.

[34] Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM transactions on modeling and computer simulations, Volume 8(1), 3-
30.

[35] Moreno, M. and Navas, J. F. (2003). On the robustness of least-squares
Monte Carlo (LSM) for pricing American derivatives. Review of Derivatives
Research 6, 107-128.

[36] Müller, S. (2009). The binomial approach to option valuation: getting bino-
mial trees into shape. Dissertation at the University of Kaiserslautern.

[37] Quecke, S. (2007). Efficient numerical methods for pricing American options
under Lévy models. Dissertation at the University of Cologne.

[38] Rogers, L.C.G. (2001). Monte Carlo valuation of American options. Mathe-
matical Finance, 12:271-286.

[39] Sayer, T. (2011). Pricing American options in the Heston model: a close look
on incorporating correlation. Report of Fraunhofer ITWM, Nr. 204

[40] Sayer, T. (2012). Valuation of American-style derivatives within the stochas-
tic volatility model of Heston. Dissertation at the University of Kaiser-
slautern.

[41] Schölkopf, A. S., Williamson, R. C. and Bartlett, P. L. (2000). New support
vector algorithms. Neural Computation, 12:1207-1245.

163



Bibliography

[42] Todorovic, N. (2007). Bewertung Amerikanischer Optionen mit Hilfe von
regressionbasierten Monte-Carlo-Verfahren. PhD Dissertation, Universität
Saarland.

[43] Tsitsiklis, J. N. and Van Roy, B. (2001). Regression methods for pricing
complex American style options. IEEE Transactions on Neural Networks,
Vol.12, No.4, 694-701.

[44] Varela, J. A., Brugger, C., Wehn, N., Korn, R. and Tang, S. (2015). Reverse
Longstaff-Schwartz American Option Pricing on hybrid CPU/FPGA Systems.
IEEE Date 2015 conference.

[45] Wendel, S. (2009) Monte Carlo methods for pricing American options.
Diploma thesis at the University of Kaiserslautern.

[46] Zhang, P. G. (1998). Exotic options - a guide to second generation options. 2
edition, World Scientific.

164



Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die Dissertation mit dem Thema

”American-style Option Pricing and Improvement of
Regression-based Monte Carlo Methods by Machine Learning

Techniques”

ohne fremde Hilfe angefertigt habe und nur die im Literaturverzeichnis
angeführten Quellen und Hilfsmittel benutzt habe.





Wissenschaftlicher Werdegang

Wissenschaftlicher und beruflicher Werdegang

09.2004 – 07.2006 Studium der Werkstoffwissenschaft an der Tongji Univer-
sität in Shanghai

10.2006 – 12.2011 Studium der Mathematik an der Technischen Universität
Kaiserslautern, Schwerpunkt Finanzmathematik
Abschluss: Diplom (Dipl.-Math.)

02.2011 – 10.2011 Diplomand/Praktikant bei der UniCredit Bank in München
Abteilung: Structured Fixed Income Trading

01.2012 – 03.2015 Promotionsstudium der Mathematik an der Technischen
Universität Kaiserslautern, Schwerpunkt Finanzmathematik
Abschluss: Doktor (Dr. rer. nat.)

seit 05.2015 Financial Engineer bei dem BearingPoint/RiValue in Frank-
furt am Main

Wissenschaftliche Veröffentlichungen

12.2011 SABR Model in Interest-Rate World and Correction of Labor-
dere’s Option Pricing Formula in the Normal SABR Case,
Diplomarbeit

09.2013 Exact Analytical Solution for the Normal SABR Model, Wilmott

03.2015 Reverse Longstaff-Schwartz American Option Pricing on hy-
brid CPU/FPGA Systems, IEEE Date-Conference 2015

08.2015 American-style Option Pricing and Improvement of Regression-
based Monte Carlo Methods by Machine Learning Tech-
niques, Doktorarbeit

09.2015 FPGA Based Accelerators for Financial Applications, Springer

2015 Brownian Bridge based Longstaff-Schwartz Method for Pric-
ing American Options on FPGA, vorbereitet





Scientific Career

Scientific and professional career

09.2004 – 07.2006 Study of Material Science at the Tongji University in Shang-
hai

10.2006 – 12.2011 Study of Mathematics at the University of Kaiserslautern,
specialization: Financial Mathematics
Degree: Diploma (Dipl.-Math.)

02.2011 – 10.2011 Diplomate/intern at the UniCredit Bank in Munich
Department: Structured Fixed Income Trading

01.2012 – 03.2015 Doctoral study of Mathematics at the University of Kaiser-
slautern, specialization: Financial Mathematics
Degree: Doctor (Dr. rer. nat.)

since 05.2015 Financial Engineer at the BearingPoint/RiValue in Frank-
furt am Main

Scientific Publications

12.2011 SABR Model in Interest-Rate World and Correction of Labor-
dere’s Option Pricing Formula in the Normal SABR Case,
Diploma thesis

09.2013 Exact Analytical Solution for the Normal SABR Model, Wilmott

03.2015 Reverse Longstaff-Schwartz American Option Pricing on hy-
brid CPU/FPGA Systems, IEEE Date-Conference 2015

08.2015 American-style Option Pricing and Improvement of Regression-
based Monte Carlo Methods by Machine Learning Tech-
niques, PhD thesis

09.2015 FPGA Based Accelerators for Financial Applications, Springer

2015 Brownian Bridge based Longstaff-Schwartz Method for Pric-
ing American Options on FPGA, prepared


	Foundations
	Option Types
	Financial Models
	Numerical Methods
	Machine Learning Techniques

	Tree Methods for Pricing American-style Options
	Black-Scholes Model
	Jarrow-Rudd Tree for One-Dimension
	Cox-Ross-Rubinstein Tree for One-Dimension
	CRR Tree for American-style Path-Dependent Options
	Boyle-Evnine-Gibbs Tree for High-Dimension
	Korn-Müller Tree for High-Dimension

	Heston Model
	Ruckdeschel-Sayer-Szimayer Binomial Tree for Variance
	Ruckdeschel-Sayer-Szimayer Trinomial Tree for Stock
	Joint Probability without Correlation
	Joint Probability with Correlation


	Monte Carlo Methods for Pricing American-style Options
	Theory Study
	Problem Formulation
	Backward Dynamic Programming Principle
	Longstaff-Schwartz Method and Tsitsiklis-Roy Method
	Convergence Properties
	Source of Bias
	Snell Envelope and Doob-Meyer Decomposition
	Dual Upper Bound and Andersen-Broadie Method

	Numerical Studies
	Approximation of American Option by Bermudan Counterpart
	Low Bias, High Bias and Mixture of Bias
	In-the-Money Paths vs All Paths
	Longstaff-Schwartz Method vs Tsitsiklis-Roy Method
	Choice of Orthogonal Polynomials
	Lower Bound vs Upper Bound


	Improvement of the Regression Part by Machine Learning Techniques
	Kernel Methods
	Fixed Bandwidth
	Global Optimal Bandwidth
	Scaling, Parameter Selection and Suboptimal Bandwidth

	Support Vector Machine
	Standard Form
	Dual Problem
	-SVM
	Grid-Search and Analytic Parameter Selection


	Reversion Formula for Implementation of the Longstaff-Schwartz Method on FPGA
	Black-Scholes Model
	Reversion Formula
	Test

	Heston Model
	Reversion Formula by Reflection Technique
	Reversion Formula by Full Truncation Technique
	Test


	Conclusion
	Appendix
	Benchmarks
	1-D Examples in the Black-Scholes Model
	2-D Examples in the Black-Scholes Model
	3-D Examples in the Black-Scholes Model
	7-D Examples in the Black-Scholes Model
	1-D Examples in the Heston Model


	Bibliography

