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Abstract. HOT is an automated higher-order theorem prover based on HTE, an extensional
higher-order tableaux calculus. The first part of this paper introduces an improved variant of the
calculus which closely corresponds to the proof procedure implemented in HOT. The second part
discusses HOT’s design that can be characterized as a concurrent blackboard architecture. We
show the usefulness of the implementation by including benchmark results for over one hundred
solved problems from logic and set theory.

1 Introduction

It is a well known result of Gédel’s Incompleteness Theorem [G6d31] that completeness for
consistent higher-order logics can not be achieved for standard model semantics. On the other
hand, complete higher-order calculi can be obtained for weaker notions of semantics such as
Henkin models [Hen50]. M. Kohlhase’s article Higher-Order Tableauzr [Koh95] presents a
free variable tableau calculus for classical higher-order logic which includes substitutivity of
equivalence. Kohlhase’s HTE calculus is able to prove for instance tautologies with embedded
equivalent formulas like ¢(a)V —¢(——a). The HTE calculus removes a source of incompleteness
that all earlier higher-order machine-oriented calculi exhibited.

However, HTE in its original form is not Henkin complete. For instance, it can not be
used to prove the tautology:

(p(a—w)—)o(fa—w) = p(a—>ﬂ)—>o(9a—>ﬁ)) =>f=y

which states that two functions f and g must be equal if p(g) follows from p(f) for arbitrary
predicates p. This is a direct result of extensionality in Henkin models.

By using two additional inference rules first introduced for the higher-order theorem prover
LEO [Ben97b|, HTE becomes complete relative to Henkin models (see section 2.3). The re-
sulting improved H7TE calculus is the theoretical backbone of our higher-order automated
theorem prover HOT.

This paper is divided into two parts. In the first part (section 2), we will introduce ETAB,
a variant of the extended HTE calculus which closely corresponds to HOT’s actual imple-
mentation. In the second part, we will discuss HOT’s architecture that can be described as a
blackboard system implemented in a concurrent logic programming language (see section 3).

We demonstrate the usefulness of our implementation by including benchmark results for
over one hundred solved problems from logic and set theory.

2 Theoretical Background

2.1 Preliminaries

We consider a higher-order logic based on Church’s simply typed lambda calculus [Chu40]
and choose the set of basetypes B7 to consist of the types ¢ and o, where o denotes the set



of truth values and ¢ the set of individuals. The set of all types 7 is inductively defined over
BT and the right-associative type constructor —. We assume that our signature ' contains
a countably infinite set of variables and constants for every type.

We have the standard logical connectives —,,,, Vo050, Nososoy =000, and
=000 and the quantifier constants V(,_,,)_, and 3(4_0)—,- Furthermore, we postulate
constants for unification constraints #.,_,, ., for all types a.

If the type of a symbol is determined by the given context we avoid its explicit mention. To
ease readability, we follow the usual conventions for logical expressions and A-terms, leaving
out brackets where the construction of an expression is uniquely determined. Also, we will
use infix notation whenever constants denote traditional infix connectives.

We distinguish bound variables such as z in Az. z from free variables. Free variables
are written in upper-case letters X, Y, V etc., while constants and bound variables appear
as lower-case letters.

Terms and formulas are denoted by bold capital letters like e.g., A, or F. We will some-
times write hU™ to abbreviate (hU',...,U™), where function application is considered to be
left-associative. We abbreviate formulas of the form (V(A\z. F)) by Vz. F and (3(Az. F)) by
dz. F.

The notions of a-, §- and 7-conversion, substitutions and the application of substi-
tutions are as usual, see e.g., [Bar84].

We use the uniform notation for higher-order inference systems analogous to the no-
tational system presented for first-order logics in [Fit90]. The idea behind uniform notation
is to classify formulas as implicitly conjunctive («), disjunctive (f3), existentially quantified
(6) or universally quantified (). Using this notation, inference systems can be specified in a
compact way regardless of the actual number of logical connectives or quantifiers.

Tableaux calculi usually decompose a- and S-formulas into their components while in-
stantiating J- and y-formulas. Figure 1 shows the components of a- and S-formulas, and
figure 2 shows the relation between higher-order - and d-formulas and their instantiations.
Note that the notion of « and f-formulas here is neither related to the a- and (-conversion
of higher-order terms nor the use of a and 3 as type variables.

a a1 a2 B B B2
AAB A B|-(AAB) -A -B
-(A VB) -A -B|| AVB A B
—|(A=>B) A -B|| A= B -A B
A=B |[A=BB=A|-(A=B)-AABAA-B

Fig. 1. a- and S-Formulas and Components

7 | (A) 5 | 9(A)
Vz. F | [A/z]F ||-Vz. F|[A/z]-F
—3z. F|[A/z]-F| 3z. F | [A/z]F

Fig. 2. v- and §-Formulas and Instantiations



2.2 A Higher-Order Tableau Calculus

The ETAB calculus presented in this section is an extended variant of HTE. ETAB uses the
“naive” Skolemization known from first-order calculi. Strictly speaking, this form of Skolem-
ization is not sound for classical higher-order logic: it would permit us to prove an instance
of the Axiom of Choice which is known to be independent from higher-order logic [And73].
A solution due to [Mil83] is to associate with each Skolem constant the minimum number of
arguments the constant has to be applied to.

We will now follow Kohlhase’s approach and first introduce a calculus without extension-
ality. We begin with a set of rules that decompose the logical structure of the formulas in the
tableau:

o
beta o “pha delta gamma —— notnot
,31 ,32 o 5((8an1,,Xn)) ’Y(V F
In these rules, V' is a new variable and (sk™ X1, ..., X},) is a Skolem term with a new Skolem

function sk™ requiring a minimum of n arguments. We utilize the sound Skolemization method
presented in [Mil83]. X1,..., X, are all free variables of 4.

The rules above recursively build up the tableau tree by decomposing the logical structure
of formulas and adding new nodes and branches. Before we can close a tableau branch, we
have to select a linked pair of formulas F'; and F in this branch from which we can construct
a contradiction. The two link rules below correspond to the cut-rule of X7 E. They introduce
unification constraints for a linked pair:

A, A,

————link;, ————link,
—-A 75 B A 75 -B

The next group of rules solve the unification constraints® that are introduced by the link
rules:

! For a general introduction to higher-order unification and especially for the definition of a set of general
bindings Gq for a type a and a (head-)constant h, we refer to [GS89].
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In each of these rules, (sk"z1,...,X,) is a Skolem term for the rule’s antecedent and G is a
general binding that approximates the head h.

For both HTE and ETAB there is the tableau substitution rule subst that instantiates
the whole tableau with an elementary substitution [T/X], iff some path ends in a formula
of the form X #7 T such that the X is not free in T. ETAB also inherits from HTE the
primitive substitution rule prim that instantiates a flexible literal with a general binding
that approximates some logical constant in {—,V} U {V(q—0)—0l € T}

We call a branch © in a higher-order tableau closed, iff © ends in a flex/flex pair? or a
formula of the form A #7 A. Note that the subst rule immediately closes the branch © that
ends in a solved pair. A tableau is called closed, iff each branch of it is closed. A formula A is
called a ETAB theorem iff there exists a closed higher-order tableau which can be constructed
from —-A.

2.3 Extensionality

The Leibniz definition of equality defines two terms to be equal if they have the same
properties. We will use = as defined by

=a—a—0'= ATAY. VPa—so PT = py

The following tableau construction rules complement ETAB with regard to extensionality
in Henkin model semantics:

A, #' B, A, # B, Aoss # Basg
—ext, — ext, exto g
-(A =B) -(A =B) ~Vpa- (Ap = Bp)

2 A flex/flex pair is a unification problem with variable heads, e.g., P,—,.a #° Q,—.,b. A flex/flex pair has
infinitely many incomparable solutions, e.g., P = @ = Az. ¢, for all constants c,.



The three rules specify that unification constraints A #° B can be replaced by negated
equality constraints using either equivalence, Leibniz equality or functional extensionality
depending on the type of the constrained terms. Functional extensionality can be formalized
as Az. A\y. Vp(zp = yp). In other words, we consider two functions A and B to be equal if
they map identical arguments p of their domain to equal values.

Both ext,_,3 and ext, have no counterpart in the original H7E specification. The three
rules together correspond to the extensionality rules of the higher-order resolution calculus
ERES as implemented in LEO [Ben97b].

2.4 Soundness and Completeness

Soundness and completeness proofs for extensional higher-order calculi can be found in [BK97]
and [Koh98]. £TAB-like calculi with a different Skolemization are investigated in [Koh95]
and [Koh98|.

The soundness of Skolemization as used in ETAB is discussed in [Mil83]. In [BK97], this
Skolemization technique is used in order to form a sound higher-order resolution calculus
ERES. Benzmiiller and Kohlhase show that ERES is Henkin complete by using the technique
of abstract consistency classes. Considering the strong relationship between ETAB, HTE and
ERES, we conjecture that there is a straightforward proof for soundness and completeness of
ETAB following the same approach.

2.5 Examples

As an example, we discuss the theorem (Ip, p) A (Ipo- —p), i.e., there exists a true and a
false statement. The negation of this is equivalent to the formula at the root of the following
tableau:

(Vpo- =p) V (Vpo- p)

Vpo- —p
P, Pz
—|—|P1 # —|P2 2
* [P - P
* [_|P1 75? Pg] [ 3 75 4]

The negated theorem is a disjunction, and the beta rule splits the formula into two
branches, each one holding a «y-formula. The gamma rule instantiates the y-formula in each
branch twice, creating the literals =P, and =P, for the first branch and P3 and P for the
second branch. All newly introduced variables P; are of type o. The link selects linked pairs
for both branches by introducing the unification constraints =—P; #’ =P, and ~P; #’ P,.
While the left branch becomes a candidate for decomposition (we remove the leading negation
sign), the right branch can directly be closed using the subst rule. In the end, P, gets bound
to =P; and P4 to —P3. Both branches now end in solved pairs and the tableau is closed.

The formula p,—,(as Aby) = p(b A a) is a theorem that requires extensionality of equiva-
lence. The theorem is proved by the following ETAB tableau:



plaAb) A —p(bAa)
p(a AD)
—p(b /\ a)
—p(a Ab) £ —p(b A a)
p(anb) # p(bAa)
(a AD) # (bAa)
~((anb) = (bAa))
=(aAD)A(bAa) (a Ab)A=(bAa)
-a —b a
(bAa) | (BAa) b
b b =(bAa)
a a —b —a

—a #° —a|-b #£" =b | =b#£? =b|-a #° —a
«la 7 a] [+[b #7 8] | *[b# b]|«[a #° a]

Here again, we start with the negated theorem at the root of the tableau. We decompose
its logical structure using the a-rule and create a linked pair p(aAb) #° p(bAa). We decompose
using rule dec and obtain the unification problem a A b #’ b A a. The interesting step here
is the transition from this unification problem which is unsolvable to the refutation proof of
the equivalence a A b = b A a using the extensionality rule ext,. From this point on, we have
a plain propositional problem, and it becomes a trivial task to close the tableau.

3 The Theorem Prover HoT

Theorem provers can be characterized by many different features, for instance by their un-
derlying logical system, programming language, heuristics, and so forth. The first part of this
paper deals with the arguably most important characterization, namely the prover’s underly-
ing logic and the inference rules it employs. The ETAB calculus outlines a proof procedure, but
only on a very abstract level. In the following we describe how this abstract proof procedure
has been realized as an actual theorem proving system. We will also discuss some important
design decisions, especially those that affect completeness.

We conceptualize tableaux implementations as blackboard systems [EM88] where
tableau agents, equipped with abilities that implement parts of their underlying calculus,
manipulate a blackboard-like data structure. The blackboard contains all globally accessible
data such as the tableau itself and all variable assignments. The proof search space is defined
by each agent’s nondeterministic decisions.

Existing tableaux provers, for instance the first-order implementation presented in [Fit90],
construct proofs using only one single tableau agent. We propose an alternative approach
where this task is distributed among multiple concurrent agents, all working together in
order to create a proof on the blackboard (see section 3.2). blackboard systems are considered
a basic form of a quasi-parallel system architecture, and we propose this concept as a natural
and simple implementation of parallel theorem proving® in tableaux calculi. The construction
of each branch in a free-variable tableaux is an isolated task except for the global variable
substitutions which are derived from choosing unifiers and linked pairs when closing a branch.

3 For an overview to different approaches to parallel deduction, we refer to [BH94].



Blackboard systems employ advanced concepts to control search, for instance so-called
referee agents and ambassadors [LT88] that evaluate actions of other agents if there is any
conflict between their decisions. For the current implementation, we have chosen a simple
control strategy that favors short branches and simple unifiers. Basically, each agent tries to
close its branch as fast as possible. The first agent that computes a linked pair and a unifier
decides on the global variable substitution that has to be respected by all other agents, while
a complete search strategy, iterative deepening, ensures that all linked pairs and all possible
unifiers up to a certain complexity will be considered eventually.

3.1 Basic Design

HoT is basically a first-order theorem prover using extended Higher-Order Unification (HOU)
instead of first-order unification. Theorem proving and HOU interact: while HOU is used to
close tableau branches in the theorem proving part, extensionality is implemented by calling
the theorem prover within unification (see section 2.3).

HoT’s theorem proving part has been inspired by the LEANTAP tableau theorem
prover [BP95] that implements a complete and sound theorem prover for classical first-order
logic.

Figure 3 schematically shows HOT’s tableau construction. Theorem proving starts with
a pre-processing step (called read-problem) that constructs an initial tableau. This initial
tableau is the input for the initial tableau agent that tries to extend and contract branches
using a search strategy based on iterative deepening.

Pre-processing Problems Proof problems in HOT are defined as a triple (D, A,T) where
D is a set of higher-order definitions, A is a set of assumptions and 7' is a conjecture (theorem)
to be proved. The pre-processing step expands all defined expressions while simultaneously
checking for type errors. Definitions may be polymorph. For instance, the operator intersection
for sets can be defined as Azy_y0. AYq—or AZa- T2 A Yz with a being an arbitrary type.

Next, the theorem is negated and added to the set of assumptions to form the initial
tableau. A simplification procedure removes all double negations and creates normal forms
in each part of the tableau. The basic simplified tableau is the input for the initial tableau
agent.

Tableau Agents A tableau agent consists of three parts, prove, extend, and contract (see
figure 3). The extend part performs extension on the examined branch of the tableau and
includes extensionality rules, decomposition rules and HOU. The contract part tries to close
branches by systematically applying the link rules to the last member of the branch and all
its literal predecessors. prove chooses between extending and closing a branch, calculating
suitable candidates for contract by a simple filter and indexing mechanism.

The rules alpha, beta, delta and gamma in ETAB have direct counterparts in the implemen-
tation of extend. The notnot-rule is replaced by the preprocessing done in the read-problem
step and a local formula simplification whenever a proof step introduces a new negation.
Whenever HOU is applied, the agent chooses between actually unifying or applying an exten-
sionality step ezt if the selected term pair is not afn-equal. The number of ext applications
is restricted for each branch by an extensionality depth limit.
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Fig. 3. HoT’s schematized proof procedure.

Proof Search Tableau expansion is possibly infinite even for refutable conjectures. Hence,
a naive depth-first strategy for tableau expansion would result in an incomplete search. In
order to circumvent this, HOT performs iterative deepening depending on the y-depth of
branches: it first searches for all proofs which can be found with only one application of the
~-rule per branch, then for all proofs with two applications and so forth.

In the first-order case, for instance when proving theorems with LEANTAP, this search
strategy is sound and complete as long as the choice of y-formulas is fair. We can only have
finitely many first-order tableau proofs for a given ~y-depth, and when we make sure that
eventually each ~y-formulas can be used as often as needed, each possible tableau proof can be
constructed. A fair choice of y-formulas can be realized for instance by keeping all y-formulas
in a queue.

A complete proof search is harder to obtain in the higher-order case. In contrast to first-
order unification, HOU is undecidable, so we can not simply use it as a procedure to decide
unifiability. Instead, HOT restricts the number of general bindings for each unification attempt.
This leads to a finite HOU search space. HOU is not unitary, i.e., a given unification problem
may yield several solutions. HOT must consider all pre-unifiers that can be found within the
unification depth limit. By gradually increasing both the unification limit and the y-depth
for each iteration, we can make sure that all unifiers will be used eventually*.

4 This has not been implemented yet. Section 3.3 comments on this and other possible sources of incomplete-
ness in the current implementation.



3.2 Concurrency and the Blackboard Architecture

HoT has been implemented in Oz [Saa98], a constraint programming language based on a new
computation model providing a uniform foundation for higher-order functional programming,
constraint logic programming, and concurrent objects with multiple inheritance [Smo95]. Oz is
a concurrent programming language, i.e., a procedure may start sub-processes, called threads
which are executed concurrently in a fair way. HOT makes use of this feature when descending
a branching tableau and when solving flex/flex pairs.

Extending Disjunctive Branches A generally useful heuristic for first-order tableaux is
to extend those branches first that have a simpler, less disjunctive structure. Otherwise, a
tableau agent may construct a large tree before it can detect that the variable substitutions
computed so far do not allow to close the simpler parts of the tableau. In this case, the proof
search must backtrack, and most of the previous work may be lost. In order to circumvent
this problem, LEANTAP for instance orders formulas in a pre-processing step while moving
sub-formulas in front which have a smaller, less branching structure.

For higher-order tableaux, this pre-processing can not be fully performed. Flexible heads
may be instantiated either by primitive substitution or unification and change their proposi-
tional structure during proof search. HOT implements an alternative optimization of branch
extension using concurrent tableau agents.

A tableau agent that encounters a disjunctive formula [ will start a new thread that
extends the ;1 component while the original agent continues to extend the (o branch (see
figure 4). Also, we split expansion between distinct agents when decomposing unification
problems. Instead of a single agent that has to decide on the order of branches to visit, we
analyze separate branches by separate agents, each one working autonomously on its own
part of the tableau. Agents communicate with each other by manipulating the global variable
assignments that are part of the blackboard. The first agent which is able to close its branch
by applying a substitution decides on the important choice of the next unifier to explore.
An agent closing a flat, less branching branch will hopefully inhibit unnecessary unification
attempts in other, more complex parts of the tableau. The search strategy backtracks and
considers other possibilities to close a branch if a unifier found in this way can not be used
to construct a refutation.

As long as the concurrent execution of the agents is fair in a small enough time segmen-
tation, this technique implements a weak form of breadth-first tableau expansion. It is not
unusual for a proof search to create several hundred tableau agents.

D
(AvB)vx
(r) (1)

AvB C

Fig. 4. An Agent T splitting up into a concurrent copy 7’ and an original T when analyzing a disjunction.



Solving Flex/Flex Constraints HOT’s concurrent implementation gives us an efficient
treatment of flex/flex pairs. ETAB considers all branches ending in flex/flex pairs as closed,
but an instantiation of one of the flexible heads will open the branch again. Each unification
problem is part of the tableau, and therefore a unique agent deals with it. In the case of a
branch ending in a flex/flex pair, the agent related to the branch simply suspends and waits
for one of the flexible heads to become determined. An instantiation will reactivate the agent,
and the extension/contraction cycle of the branch continues.

The blackboard design leads to a nondeterministic behavior of the whole system. Since
we do not synchronize agents in any way, a proof search is not guaranteed to follow the same
route every time. An instantiation of a flexible head can reactivate several agents at the same
time, and all of these will try to apply general bindings immediately. For a few proof problems
with flexible heads, for instance Cantor’s theorem (see appendix A), it is a matter of luck
for the right agent to “win the race”. The difference between a good and a bad choice for a
unifier results in a difference of more than two orders of magnitude in the case of Cantor’s
theorem.

3.3 Completeness of the Implementation

Implementations of automated theorem provers always feature some trade-offs between the
theoretical concept of completeness and the intended problem solving power. For instance,
completeness relative to a calculus can not be maintained if the rules of a proof procedure
span a search space which is too large for practical purposes. In the following, we will discuss
some design decisions that affect HOT’s completeness relative to ETAB and Henkin model
semantics.

Primitive Substitutions In the case of higher-order theorem proving, the prim rule is a
case where a single inference rule creates a much larger search space without producing more
solutions except for some few examples where primitive substitutions are clearly necessary.
The only flexible heads that are quite common are those introduced by Leibniz equality when
unifying individual constants. As a rule, these flexible heads are better treated in a goal-
oriented way by literal links than by primitive substitutions. Therefore, we have left out an
implementation of prim in HOT.

Literal Links The link rules of the calculus allow to link arbitrary formulas, as long as one
is the negation of the other. Experiments have shown that this feature, together with the ex-
tensionality rule ext,, creates an overwhelming number of unification problems. We therefore
restricted the link rules to literals, which produces deeper proofs on the one hand and less uni-
fication attempts on the other. This approach alone does not lead to incompleteness [Koh98],
but as a result of the missing prim rule, more proofs may become unobtainable. In some way,
linking non-literal formulas can have an identical effect as a sequence of prim applications.
Instead of guessing the right substitutions for a flexible head in order to create a linked pair,
the HOU will directly instantiate the flexible head with the appropriate substitution.

Extensionality The number of applications of the extensionality rule in each tableau branch
as well as the number of general bindings for each unification attempt is restricted because
both are (a) a potential source of infinite loops and (b) can not be simply linked to the



increasing y-depth. Especially extensionality is critical since most proofs are unobtainable if
the extensionality depth limit is too high. Note that HOT can apply ext whenever unification
is attempted. An extensionality depth of 5 or higher usually is devastating.

Hort furthermore implements a possibly incomplete heuristic choice of the extensionality
rule. Basically, we will apply ext,, exclusively to unification constraints of the form A, #’ B,.
Leibniz equality is the potentially most expensive form of equality since it introduces new
flexible heads that can be freely instantiated by unification. We therefore restrict Leibniz
equality to individuals and treat boolean values and functions only by ext, and ext,_,g. Fol-
lowing the same idea, the equality constant = will be substituted by equivalence or functional
extensionality whenever possible.

Indexing Indexing is a source of incompleteness because the prove procedure will not use
terms F; and —F5 for contraction if F; and F5 have incompatible constant heads. Such pairs
can not be solved alone by unification, but extensionality may nevertheless lead to a proof.
On the other hand, removing indexing increases the number of unification attempts even
more. With the help of the extensionality rule, this again makes proof search hopeless for all
except simple examples. The question whether indexing can be implemented at all as a useful
and complete heuristic for extensional higher-order proof procedures such as higher-order
resolution or higher-order tableaux remains open.

4 Conclusion and Future Work

We have presented a calculus and a concurrent implementation for an automated theorem
prover based on an extensional higher-order tableaux calculus. While the theorem prover’s
design is still quite simple, we can demonstrate that extensional higher-order tableaux is a
worthwhile contribution to machine-oriented reasoning (see appendix). Some implementation-
related questions that are raised in this paper are usually neglected in purely theoretical
research. For instance, the problematic interaction of indexing and extensionality discussed
in section 3.3 is important to all automated higher-order theorem proving systems that are
based on full extensionality. HOT helped us to identify these problems and allowed us to
experiment with possible solutions. For instance, HOT’s concurrent architecture evolved from
the observation that many proof problems can not be solved using a standard depth-first
expansion of the tableaux.

HoT’s intended application is the construction of natural language semantics. [KK98] de-
scribes how HOT tableaux can be used to analyze a certain class of natural language utterances
(corrections). So far, there exists no theorem prover that is optimized for inferences in nat-
ural language processing. Full-scale automated theorem proving systems like TPs [ABI*96]
are optimized for mathematical theorems that may require long and deeply nested proofs.
Inferences in natural language processing tend to be shallow, but require answer-complete
or even abductive reasoning techniques that are not as common in mathematical theorem
proving. The author is especially interested in proof techniques and heuristics for semantics
construction. One of these techniques is higher-order coloured unification (HOCU) [HK95]
which can be used to guide the search for unifiers in natural language semantics [GKK97].
HoT’s concurrent HOU module developed by Martin Miiller and the author already includes
the constraint propagation needed for computing coloured unifiers.

The author would like to link HOT to the 2MEGA proof development system [BCF97].
MEGA features a database of mathematical knowledge (e.g., definitions in higher-order for-



malization), a large selection of examples, proof-checking and human-readable proof repre-
sentation. HOT itself only uses a simple pre-processing mechanism for definition expansion
and does not produce compact and easily verifiable proofs.
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A Performance

Figure 5 shows the performance of HOT for some selected problems. The runtime has been
measured on a Pentium Pro 200 using Oz 3.0.2 [Saa98].

Nr.|Theorem msec
1| Cantor 1100
2|3po- p 10
3| Counting 660
451 Cso=>-Jr.x €Es1 Az & $2 20
5la € pa 20
6|s1 C sy => 81 - £S2 340
7|c € p(a\b) =>cCaAcnNb=10 130
8lc€ p(a\b)=cCaAcnNb=10 460
9|0 € pa 10

10{z}Cpa=zx€a 620
11{(and) N (a\b) =0 20
12|p(a A b) = p(b A a) 70
13|p(a) A p(b) = p(a A D) 260
14|p(cV (a Ab)) = p((bAa) Vc) 120
15|(c1 = e2) = ple1) V —p(ce2) 150
16|(c1 = c2) A (f = g) = p(fer) V -p(gez)| 490
17|(e1 = ¢2) = (pe1) V ~(pe2) 1870
18|(f = g) A (c1 = c2) = p(fe1) V —p(ge2) (15170
19|-Vzo. Yyo. z =y 20
20((f=9) = (9= 1) 160
21|f = f 0
22((f = g) = (fc = ge) 2780
23|(Ve. fe = ge) = (pf = pg) 3020
24|(f=g)N(g=h)= (f=h) 12100
25(Santa 10780

Fig. 5. Benchmark results for some selected problems

The first theorem is a variant of Cantor’s theorem. We prove that the set of functions
fa—sp is not enumerable if there exists at least one fix-point free function.



A restricted version of Cantor’s theorem states that the set of functions f,_,, is not
enumerable. In this case, we do not need an additional axiom for the existence of fix-point
free functions, because the existence of such functions can be inferred from the properties of
type o. This version of Cantor’s theorem is one of the few examples where nondeterministic
proof search is really unstable: it is possible to prove the theorem very quickly — in about
70msecs — when HOT’s tableau agents hit upon a favorable choice of unifiers and linked pairs.
In the worst case, it can take over 25 seconds!

Theorem (3) is a plain benchmark that basically makes the theorem prover count to 6
using a unary encoding of numbers. We prove that (f(f(f(f(f(fc)))))) holds if both ¢, and
forol@) = F(f(z)) hold.

Theorems (5)—(10) state some properties of power-sets. Theorem (11) is proposition (111)
from [T'S89]. This problem is trivial for higher-order theorem provers like LEO, TPs or HoT,
while prominent first-order theorem provers are not able to solve it in less than 15 seconds
(see appendix B).

All theorems so far do not require extensionality and all proofs were found with an exten-
sionality depth limit of 0. Theorems (12) to (25) have been proved using extensionality with
a depth limit of 4. The last theorem is a complicated variant of (13). Its formulation is

believes(peter, Iz. santa(zx))A
believes(peter, Iz. toothfairy(z)) =
believes(peter, (3. santa(x)) A (. tooth fairy(z)))

This proposition is quite hard to prove without concurrent branch expansion. An extension-
ality depth of 4 for this proposition will not lead to a solution because of the high branching
factor of the proof search, while an extensionality limit of less than 3 makes it impossible to
close some branches.

B Boolean Properties of Sets

Figure 6 shows benchmark results for propositions from [T'S89], again measured on a Pentium
Pro 200. For comparing these results with those achieved by the extensional higher-order
resolution theorem prover LEO, we refer to [Ben97a].

Each entry documents the plain runtime (Run), the time spend for copying data (Copy)
and the total time for finding the proof (Total), including garbage collection. All values are
given in msec. The table is divided into three parts. The first part are those theorems which
can be found with a y-depth ranging from 2 to 5. The rest are “harder” theorems that require
a y-depth of at least 5 (problems 50, 59, 99, 100, 110, 115, 119 and 120) and those that require
a y-depth of at least 8 (51, 55, 114 and 121) in order to be solvable in less than 15 seconds.
All proofs where found with an extensionality depth of 0.

Note that both LEO and HOT outperform prominent high-speed first-order theorem
provers on this class of examples [Dah97]. Like LEO, HOT can not solve the problems (56)
and (57) that still have a complex first-order structure after definition expansion.



[Nr.] Run|Copy| Total|| Nr.[Run|Copy|Total|

8| 30/ 30| 80| 9| 40/ 30| 70
10{ 40| 30| 70|l 12| 30 0] 30
13| 10| 10| 20|| 15| 20 0] 20
17| 20| 10| 40|| 18| 90| 410 700
19| 180| 450| 810|| 20| 150 410| 780
23| 110| 310| 640 24| 30 0] 30
25| 800| 4620| 8210|| 27| 10 0] 10
28(1200| 1410| 3080 29| 210| 160| 370
30 20| 10| 30| 31| 10 0] 10
32| 410 540| 1130|| 33| 40| 30| 80
34| 590| 620| 1440|| 35| 70| 80| 150
37 10 0| 10| 38| 20 0] 20
39| 260| 260| 610|| 40| 50| 20| 70
41| 310| 260 660| 42| 40| 120| 160
44| 130| 400| 710|| 45| 80| 70| 150
46| 50| 20| 70| 47| 40[ 30| 70
48| 350| 340| 790|| 49| 20 0] 20
52| 100| 150| 250|| 53| 230| 590| 980
54| 90| 90| 180|| 58| 30 0] 30
60| 30 0| 30| 61| 10/ 10| 20
62| 30| 20| 50| 64| 80| 40| 120
65| 20| 10| 40|| 67| 100| 70| 170
68| 40| 20| 60|l 69| 40| 40| 80
70| 100| 170| 450|| 71| 70| 120| 190
72| 290| 1320| 2380|| 73| 20 0] 20
74| 20| 10| 30| 75| 20 0] 20
76| 20| 20| 40| 77| 60| 50| 110
78| 40| 30| 70|| 79| 50| 50| 100
80| 60| 100| 170|| 81| 70| 220| 480
82| 50| 50| 100|| 83| 70| 80| 150
84| 70| 220| 480|| 85| 110| 90| 200
86| 110/ 160| 460|| 87| 100| 200| 480
88| 110| 50| 170|| 89| 150| 200| 550
90| 640| 1810| 2960|| 91| 110| 200| 500
92| 90| 90| 190|| 93| 30| 60| 100
95| 100| 120| 240|| 96| 110| 240| 530
97| 320 760| 1890|| 98| 250| 670| 1090
101 30 0| 30(|102| 40 0] 40
104| 10 0] 10(|111] 10 10
112| 30 0] 30(|113] 30 0] 30
116/ 60 110| 170(|117| 90| 130| 220
118/ 70( 80| 150
50 50| 20| 70|l 59| 130| 140| 480
99| 390| 2270| 3440((100| 310| 1110| 2120
110 130 240| 520||115| 330| 1380| 2410
119| 160 410| 750(|120| 130 160| 420
51| 180| 250| 590|| 55| 200{ 270| 630
114| 160 290| 640(|121| 130| 110 250

(=]

Fig. 6. Benchmark results for set theoretical problems from [TS89]
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