Termination Proofs of Rewriting Systems

Heuristics for Generating Polynomial Orderings")

Joachim STEINBACH
Universitat Kaiserslautern
FB Informatik
Postfach 3049
D-6750 Kaiserslautern
Germany
e-mail: steinba@informatik.uni-kl.de

December 20, 1991

DThis research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

Abstract

Orderings on polynomial interpretations of operators represent a powerful technique for proving the
termination of rewriting systems. One of the main problems of polynomial orderings concerns the
choice of the right interpretation for a given rewriting system. It is very difficult to develop techniques
for solving this problem. Here, we present three new heuristic approaches: (i) guidelines for dealing
with special classes of rewriting systems, (ii) an algorithm for choosing appropriate special polynomials
as well as (iii) an extension of the original polynomial ordering which supports the generation of

suitable interpretations. All these heuristics will be applied to examples in order to illustrate their
practical relevance.

Contents

1 Introduction and Summary

2 Notations

3 Polynomial Orderings

4 Statistics On Some Examples

5 Heuristics for Choosing Interpretations

6 A Method for Simple-Mixed Polynomials
7 An Improved Polynomial Ordering

8 Examples

A Proofs

B Exemplary Sessions

14

17

27

29

36

42

List of Figures

4.1
4.2
4.3
4.4

5.1

6.1

Classes of polynomials 9
Statistics on examples w.r.t. special domainso 11
Statistics on examples without considering domains. 12
Graphical illustration of the most important results of the statistics 13
Graphical representation of the first part of lemma 5.2 15
The algorithm of chapter 6 26

Chapter 1

Introduction and Summary

Term rewriting systems (TRS, for short) provide a powerful tool for expressing non-deterministic
computations and as a result they have been widely used in formula-manipulation and theorem-
proving systems. Moreover, there exists a potential for their application in many other areas of
computer science and mathematics such as abstract data type specifications and program verification.
As programs they have a very simple syntax and their semantic is based on equalities that are used as
reduction rules with no explicit control. For this purpose, it is essential that a TRS has the property
of termination.

There exist various methods of proving (finite) termination of TRS. Most of these are based on
reduction orderings which are well-founded, compatible with the structure of terms and stable with
respect to (w.r.t., for short) substitutions. The notion of reduction orderings leads to the following
description of termination of rewriting systems: A TRS R terminates if, and only if, there exists a
reduction ordering > such that l > r for each rulel —r of R.

One way of constructing reduction orderings consists of the specification of a well-founded set (W, =)
and a mapping ¢ (called termination function) from the set of terms into W, such that ¢(s) = ¢(t)
whenever ¢ can be derived from s ([MN70]). For example, the well-known Knuth-Bendix orderings
([KB70]) are defined using W := IN, >:=>') and ¢ as the weight function. Polynomial orderings
proposed by Lankford ([Lan75a], [Lan79]) are based on the set of polynomials over IN (representing W)
where ¢ denotes a polynomial interpretation (also called norm function) and > represents an ordering
on polynomials (which is, in the case of ground terms, equivalent to >). See [LanT75a], [Lan75b],
[LanT76], [Sti76], [Lan79], [Der79], [HO80], [Der83], [Bend6], [Lan86], [Les86], [BL87], [Der87], [Rouss],
[HL89], [SZ90], [Rou91] and [Ste91] for details about polynomial orderings.

One of the main problems concerning polynomial orderings is the choice of the right interpretation
for a given TRS. The object of this paper is to present new insights into the (semi-) automatic
generation of termination proofs using polynomial orderings. In the following chapter we briefly
recapitulate the most essential notions used in connection with TRS and termination?). Chapter
3 contains the definition of polynomial orderings whereas chapter 4 presents some statistics on the
orientation of TRS conducted with polynomial orderings. Chapter 5 deals with new guidelines for
generating interpretations which can guarantee the termination of special classes of TRS. In chapter
6 we describe an algorithm based on the Simplex method for finding polynomial interpretations for a
given rule system provided that this system can be oriented using special polynomials. Moreover, it is
possible to extend polynomial orderings similar to the Knuth-Bendix orderings with status (see [Ste89])
by using an additional ordering and a status function on operators. This improvement supports the
generation of suitable interpretations and is introduced in chapter 7. Finally, chapter 8 contains some
detailed examples, illustrating the features presented. On the margin of the text we refer to related
examples given in chapter 8.

DIn this paper, > represents the natural ordering on IN.
2)For details, see, for example, [HO80] and [Der&7).

Chapter 2

Notations

We assume familiarity with the standard definitions of the set of function symbols (or operators) F
and their arities’) Ar, the set of variables?) X, the set of terms T(F,X), the set of ground terms
G(F), the set of occurrences Pos(t) as well as with the definition of a substitution to of a term ¢ and
rewriting systems R = {l; — r; | i € [1,n]}.

t|, stands for the subterm of t at position u € Pos(t). The replacement of the term t|, by s is
denoted by t[s],. R defines the rewriting relation =x over 7(F,X) such that s =% t if, and only
if, (3l — r € R)(Fu € Pos(s))(Io) s|lu= lo At = s[ro]y. The transitive reflezive closure of =5 is
referred to by =%. =r is confluent if, and only if, <= - =% C =% - k<. R is canonical if, and
only if, =x is confluent and R is terminating. The Knuth-Bendiz completion procedure ([KB70])
sometimes enables the generation of a canonical rewriting system equivalent to a given one. The
Knuth-Bendix algorithm diverges if it does not terminate, that means it creates infinitely many rules.

The leading function symbol and the tuple of the (direct) arguments of a term t are referred to by
Head(t) and Args(t), respectively. We write A € t’ for depicting the occurrence of the symbol
A in the term t. The empty term is denoted by A. The set of variables of a term ¢ is denoted
by Var(t). A term is linear if no variable occurs more than once. A rule | — r is said to be
complicated if, and only if, both [and r are not linear. A rule | — r is variable-reducing if, and only
if, Var(r) C Var(l). The size of a term ¢ reflects the number of symbols occurring in ¢ and the depth
of ¢ provides the size of the longest path of ¢, i.e. depth(A) = 1 where A is a constant or a variable
and depth(f(t1,...,tn)) = 1 + max{depth(t;)}, otherwise.

A partial ordering > is a transitive and irreflexive binary relation. It is said to be well-founded if there
exists no infinite descending sequence. A partial ordering on F is called a precedence and a partial
ordering on 7 (F, X) is called a term ordering. A reduction ordering > is a well-founded term ordering
which is stable w.r.t. substitutions (s =t ~ so > to) and monotonic (or compatible) w.r.t. the
structure of terms (s =t ~ f(...,s,...) = f(...,t,...)). With simplification orderings we refer to a
special class of reduction orderings that require the so-called subterm property (f(...,t,...) = t) which
ensures that the so-called homeomorphic embedding relation »=.mp is contained in > (see [Der79]).
The ordering >.mp is the irreflexive part of >.,; which is defined® by s = f(s1,--+,5m) =ems
g(t1, .. t) =tiff (1) f =g A (Vi€ [1,n]) 8 =emp t; or (2) (T4 € [1,n]) $i =ems t. A rule I — r is said
to be trivial if, and only if, | >.pp 7.

Note that a term ordering > is used to compare terms. Since operators have terms as arguments,
we define an extension of >, called lezicographically greater (>='*®), on tuples of terms as follows:
(51,52, .., 5m) =% (t1,t2,...,t,) if either m > 0An =0 or sy = t; or 51 = t1 A(52,...,5y) >
(t2,...,tn). The extension of = to multisets of terms is defined as follows: A multiset S is greater than a

1) An operator with no arguments (i.e. whose arity is zero) is called a constant (symbol). A unary (binary) operator
has one (two) arguments.
2)Note that Ar(z)=0ifz € X.

3)We will use this simplified version since we only deal with operators having fixed arity.

CHAPTER 2. NOTATIONS 5

multiset 7', denoted by S =™ Tiff S # TA(Vt € T\S)(3s € S\I') s > t. To combine these two concepts
of tuples and multisets, we assign a status 7(f) to each operator f € F that determines the order
according to which the subterms of f are compared (see [KL80]). Formally, a status is a function which
maps the set of operators into the set {mul, left, right}. Thus, a function symbol can have one of the
following three types of status: mul (the arguments will be compared as multisets), left (lexicographical
comparison from left to right) and right (the arguments will lexicographically be compared from right
to left). The result of an application of the function Args to a term t = f(t1,...,%,) depends on the
status of f: If 7(f) = mul, then Args(t) is the multiset {¢1,...,%,}. Otherwise, Args(t) describes
the tuple (¢1,...,%n).

Chapter 3

Polynomial Orderings

Polynomial orderings have been studied by Manna & Ness ([MN70]), Lankford ([Lan75a], [Lan75b],
[LanT76], [Lan79]), Dershowitz ([Der79], [Der83], [Der87]), Huet & Oppen ([HO80]) and BenCherifa &
Lescanne ([Ben86], [BL87]). Manna & Ness, Lankford, Huet & Oppen and BenCherifa & Lescanne
have proposed a method which maps the set of terms into a well-founded set by attaching monotonic
functions to operators!). Let us now describe this technique.

The set of all polynomials with an arbitrary number of variables and with coefficients from IN is denoted
by Pol(IN). A polynomial is composed of a sum of monomials® Qryrp &1t ..z A polynomial
Er,EIN Qpy p, &7 ...zl based on n distinct variables is represented by p(#1,...,%,). Since every
ground polynomial is equal to a natural number, we will identify the set of ground polynomials with
IN. A polynomial p possesses a strict arity n if there occur n variables in p that differ by pairs.

Definition 3.1 A polynomial interpretation [.]: F U X — Pol(IN) (for variable terms) maps each
n-ary function symbol f € F into a polynomial p € Pol(IN) of strict arity n and each variable x € X
over terms into a variable X € V over IN. This mapping can be extended to [.]: T(F,X) — Pol(IN)
by defining [f(t1,...,t0)] = [f1([t1], - - -, [tn])-

Definition 3.2 ([Lan75a]) Let M be any non-empty set such that [G(F)] C M C INy. The poly-
nomial ordering »por on two terms s and t is defined as

s>=port <= [s]DO[t]
with) pJq <= (VX1,..., X0 € M)p(X1,..., Xn) > q(X1,..., X,)

Example 3.1 We prove the termination of

_ | flzy) - g(z,y)
R—{gw(x),y) — h(f(z,y))

by using >por, based on the interpretations

[FlX,Y) = 2X+Y +1
[G(X,Y) = 2X+Y
h(X) = X+2

DDershowitz uses an arbitrary set by requiring the functions to possess the subterm property.
2)We often use ory...r, for referring to the exponents of the variables (e.g.7 a210z2y + oqolazz).
3)Note that [s] and [¢] are polynomials. Thus, 7 is an ordering on polynomials (p, g).

8.1
8.2
8.5

CHAPTER 3. POLYNOMIAL ORDERINGS 7

Note that [f(z,)|(X,Y)=2X4+Y +1 and [g(z,y)|(X,Y) =2X +Y, [g(h(z), y)|(X,Y) =2X+Y +4
and [h(f(z,y)|(X,Y) = 2X4+Y +3. Since R contains no constant symbols, the set M can arbitrarily
be chosen. We have to show that (VXY e M)2X 4+Y +1>2X+Y A 2X4+Y +4>2X+Y +3
which is valid for any M C IN,.

If F contains at least one constant symbol, i.e. G(F) # 0, the polynomial ordering =por strongly
depends on [G(F)] since definition 3.2 requires [G(F)] C M. Because of the interpretations of ground
terms being natural numbers, M has a unique minimal (w.r.t. > on IN) element. In the remaining
part of this paper, the minimum of the set M is denoted by pu.

Remark 3.1 Note that p = min{[c]() | ¢ is a constant symbol of F} if there exists at least one
constant symbol in F. If p s strictly greater than the minimal interpretation of all constant symbols,
the induced polynomial ordering might no longer be stable w.r.t. substitutions and, as a consequence,
does not need to be well-founded. This can be illustrated by a simple example: Let [g](z) = 22,

[hl(z) =2+ 1 and [a]() = 1. Then,

g(z) >por h(x) if p=2
h(a) >por g¢(a)

The stability of = por must guarantee that g(a) =por h(a) holds if g(x) =por h(z). It is obvious that
the system {g(x) — h(z), h(a) — g(a)} does not terminate. Anyway, the above condition concerning
u must be guaranteed (which implies that g(x) and h(x) are incomparable w.r.t. »por).

Instead of using the set M, we require 1 to be defined as p 1 ¢ iff (VX; > p) p(X1,...,Xn) >
q(X1,...,Xpn). In the remaining part of this paper, we no longer differentiate between capital letters
for denoting variables of polynomials and lower case for representing variables of terms. We adopt
the lower case form for simplicity.

Chapter 4

Statistics On Some Examples

We have integrated the polynomial orderings in our completion environment COMTES ([AMS89]).
One of the main problems concerning polynomial orderings lies in the choice of the right interpretations
for a given TRS (see chapter 8). A series of 320 experiments considering more than 1700 rules!)
occurring in the literature has been conducted (see also [SK90]) to gain more insight into the choice
of interpretations. In order to infer heuristics for generating adequate interpretations we shall split
the examples into various domains and provide some conditions for the interpretations we will need
to use. The next definition represents a possible classification of interpretations. The given classes of
polynomials are constructed w.r.t. the coefficients as well as the exponents of a polynomial.

Definition 4.1 Let p(z1,...,2z,) be any polynomial of Pol(IN) and «;, 3 € IN.

e p(x1,...,x,) is strongly linear iff® p(x1,..., 2,) =3 i+ 3.

o p(x1,...,2,) is linear iff p(z1,...,2,) =D ay2; + 3.

e p(x1,...,%,) is separate iff each monomial contains at most one variable®: (3 aij;l‘g).
i j
o p(x1,...,2,) is mixed iff it is a general polynomial.
e p(x1,...,2,) is simple-mixed iff p(z1,...,2,) is mized and all exponents are not greater than

Torn=1and p(z1) = asx? + ayz1 + B such that oy - as = 0.

For example, z 4+ y + 5 is strongly linear, 22 4+ y + 1 is linear, 22 4 2y is separate and the polynomials
2xy + 3y, 522 + 1 are of simple-mixed form. Figure 4.1 illustrates the set-theoretic interdependencies
between the different classes of polynomials.

Definition 4.2 Let p(21,...,2,) be any polynomial of Pol(IN). Furthermore, let C be any class of
definition 4.1.

o p(x1,...,2,) of a class C is called strict iff it is not contained in any subclass®) of C.

21

o p(z1,...,&,) is called complete iff p(x1,...,2,) = Y. @ry. 1, - T}
condition holds:

Tn
n

~z7m and the following

1)The number of rules in an experiment either refers to the canonical or to the initial (if no canonical could be
generated) rule system. Note also that we do not count the rules which have been removed by other rules during the
normalization process.

2)if, and only if,
3)with arbitrary exponent

Ygee figure 4.1

CHAPTER 4. STATISTICS ON SOME EXAMPLES 9

/ W)

SL} L S

N =)
The following abbreviations are used: SL (strongly linear), L (linear), S (separate), M (mixed), SM
(simple-mixed).

Figure 4.1: Classes of polynomials

If ap, x, >0 then (Vi€ [L,n])ki>1 ~ Qp ki y(ki=1)kigs. kn > 0.

A polynomial p is complete if, and only if, for each monomial ay, . ¢, -m’fl A a:fln (with ag,. x, > 0)
every 'smaller’ monomial is also part of p. A monomial o, ;, -2} ... -z’ is smaller than a monomial
Qjy o jn ;73]11 . JJ%" if (V]C S [1, n]) Ik > .

Example 4.1 (i) The polynomial 2z + y is strictly separate because it is separate but not linear.
Obuiously, it is also mized but not strictly mized.

(ii) The polynomial 2z%y + 3zy + 22 + 5z + 5y + 1 is complete whereas the polynomial zy is not

complete.

In addition to the classification of interpretations, we divided the tested examples into domains. This
way, we are able to make more subtle statements about the interpretations needed. The following
classification for rule systems seems appropriate:

o Algebraic Structures (AS, for short): Groups, rings, etc.

e Boolean Theories (BT, for short): This domain is closely connected with that of algebraic
structures.

o Arithmetic Theories (AT, for short): Addition, multiplication, etc.
o Lists (L, for short): Append, reverse, flatten, etc.

e String Rewriting Systems (SRS, for short): The structure of strings is easier than that of lists
since they use unary operators, only.

o Other Systems (OS, for short): Systems that do not fall into one of the five former domains.

Figure 4.2 and figure 4.3 present detailed statistics on the results of the experiments based on the
given domains and the used interpretations. We made a considerable effort to determine 'minimal’
interpretations, for example, if a system can either be oriented with the help of a strictly separate or
a linear interpretation we preferred the linear one.

The most important results stated in figure 4.2 and figure 4.3 can be summarized as follows:

8.4
8.5

8.3, 8.8
8.6
8.2

8.1

CHAPTER 4. STATISTICS ON SOME EXAMPLES 10

o First of all, there are some interesting observations concerning the structure of the tested TRS:
Each system averagely contains less than five different operators (more unary than binary oper-
ators, nearly no function symbols with an arity more than 2). The average number of different
variables per rule is less than 2. Surprisingly, about 45% of all rules are trivial ones (whose ter-
mination proof is obvious when a simplification ordering is used). Only every 10th rule system
contains a complicated rule.

e Canonical systems (including confluent initial systems) generated: L-81%, OS-79%, AT-71%,
SRS-71%, AS-68%, BT-64%, Total-73%. Linear (including strongly linear) interpretations used:
SRS-97%, 0S-82%, AT-72%, BT-68%, L-68%, AS-48%, Total-71%. Strictly mixed interpreta-
tions needed: AS-50%, BT-32%, L-32%, AT-15%, OS-14%, SRS-0%, Total-23%. Finally, 96 % of
the orientable (w.r.t. =por) systems can also be oriented using simple-mixed interpretations.
Figure 4.4 gives a graphical illustration of these numbers.

e Every 13th rule has a non-linear right-hand side. 35% of these rules cannot be oriented w.r.t.
=por. 6% of the orientable non right-linear rules require strictly mixed interpretations.

e The number of strictly mixed interpretations needed in the class of algebraic structures is rela-
tively big (50%). In contrast to the other classes, only a small quantity (23%) of initial systems
is directly confluent.

o Tt is significant that 90% of the general systems ("other systems’) can be oriented. Furthermore,
these orientations were mainly carried out by using linear interpretations, only.

e The proofs of the termination of the examples on lists and strings can often be successfully
conducted with polynomial orderings. However, while lists require more than 30% of strictly
mixed interpretations, SRS can very often be oriented with the help of linear interpretations.
Note that the SRS R = {ab — bba, ca — aac} can be oriented® but not with linear interpre-
tations. Linear polynomials even permit SRS to produce derivations of exponential length®).
Furthermore, the example cab — acb®a requires exponential functions”).

)using [a](z) = 3z, [b](z) = ¢ + 1 and [¢](z) = =

6)For example, ab — bba with [al(z) = 3z, [b](z) = z + 1 produces a™b X p2tgn using 2" — 1 steps.

Dal(z) = 3z, [b](z) = = + 1 and [¢](z) = 4%

CHAPTER 4. STATISTICS ON SOME EXAMPLES

| [AS[BT [AT | L [SRs [OS]

Number of rule systems tested 57 28 72 36 41 86
Average number of rules per system 6.7 | 5.5 | 51 | 6.1 3.5 5.5
Average size of left-hand sides 4.2 | 3.8 | 3.7 | 40 | 3.5 | 4.0
Average size of right-hand sides 28129 |28 29| 35 | 3.2
Average depth of left-hand sides 28|25 |28 |27 35 | 28
Average depth of right-hand sides 1.9 119 | 21 |20 | 3.5 | 2.2
Average number of constant symbols per system 1.0 | 1.2 | 1.3 | 2.3 0 1.9
Average number of unary operators per system 0.8 107 |18 |14 | 3.6 2.1
Average number of binary operators per system 1.6 | 20 | 1.4 | 2.6 0 1.1
Average number of remaining operators per system 0.0 | 0.3 | 0.0 | 0.2 0 0.1
Average number of variables per rule 3.2 33| 24|31 2 2.2
Average number of different variables per rule 1.6 | 1.3 | 1.2 | 1.7 1 1.1
Average number of variable-reducing rules per system 21| 14|07 |16 0 0.7
Average number of trivial rules per system 3.7 126 | 24 |24 038 2.2
Average number of non-linear left-hand sides per system 2.0 | 1.3 |02 0.3 0 0.7
Average number of non-linear right-hand sides per system | 0.5 | 0.9 | 0.8 | 0.2 0 0.3
Average number of complicated rules per system 0.1 | 0.1 0 0 0 0.1
Confluent initial rule systems 13 15 46 23 20 50
Canonical rule systems generated 26 3 5 6 9 18
Diverging completion processes 7 5 3 2 3 6
Completion processes that stopped with failure 8 2 0 3 1 4
Systems which could not usefully oriented w.r.t. >por 3 18 2 8 8
Systems oriented using strongly linear polynomials 7 11 13 7 15 40
Systems oriented using strictly linear polynomials 19 6 26 16 17 24
Systems oriented using strictly separate polynomials 1 0 7 0 1 3
Systems oriented using strictly mixed polynomials 27 8 8 11 0 11
Systems oriented using simple-mixed polynomials 48 25 53 30 33 77

Figure 4.2: Statistics on examples w.r.t. special domains

CHAPTER 4. STATISTICS ON SOME EXAMPLES

‘ Total ‘
Number of rule systems tested 320
Average number of rules per system 5.4
Average size of left-hand sides 3.9
Average size of right-hand sides 3.0
Average depth of left-hand sides 2.9
Average depth of right-hand sides 2.3
Average number of constant symbols per system 1.3
Average number of unary operators per system 1.7
Average number of binary operators per system 1.5
Average number of remaining operators per system 0.1
Average number of variables per rule 2.7
Average number of different variables per rule 1.3
Average number of variable-reducing rules per system 1.1
Average number of trivial rules per system 24
Average number of non-linear left-hand sides per system 0.8
Average number of non-linear right-hand sides per system | 0.5
Average number of complicated rules per system 0.1
Confluent initial rule systems 167
Canonical rule systems generated 67
Diverging completion processes 26
Completion processes that stopped with failure 18
Systems which could not usefully oriented w.r.t. =poy, 42
Systems oriented using strongly linear polynomials 93
Systems oriented using strictly linear polynomials 108
Systems oriented using strictly separate polynomials 12
Systems oriented using strictly mixed polynomials 65
Systems oriented using simple-mixed polynomials 266

Figure 4.3: Statistics on examples without considering domains

12

CHAPTER 4. STATISTICS ON SOME EXAMPLES

81% 79%
68% 64% 71%

Total

Canomcal systems mcludmg confluent 1n1t1al systems generated

82%
2% les 71%

Total

Linear (mcludmg strongly hnear) mterpretatlons used

50%

32% 32%

) 23%
15% 14%
0%
AS BT AT L SRS 0S Total
Strictly mixed interpretations needed
100% 98% 100% 99% 96%
i I I i I I i

Total

Slmple—mlxed mterpretatlons used

Figure 4.4: Graphical illustration of the most important results of the statistics

13

Chapter 5

Heuristics for Choosing
Interpretations

Based on the experience with examples (see chapter 4), several new heuristics have been developed for
the choice of useful (i.e. successful) interpretations. The following two heuristics provide suggestions
for proving the termination of arithmetic specifications and algebraic structures.

Heuristic 5.1 In the case of arithmetic specifications it has proved helpful to choose the complexity
hierarchy of the interpretations such that it reflects the complexity hierarchy of the corresponding
function symbols.

For example, [+](z,y) = zy + z, [*](z, y) = 2%y + zy? and [exp](z,y) = (z + y)>.

Heuristic 5.2 Let ,i,¢ € F and let £ be a set of group azioms). Appropriate and relatively simple
interpretations for orienting (and completing) £ are the following ones: [](z,y) = 2zy + x (or 2zy +

y), [il(2) = 2* and [¢]() = 2.

It is obvious that heuristic 5.2 can also be applied to systems representing an eztension of the set
& of group axioms. The following lemmas provide tests for deciding whether a strictly separate
interpretation for unary operators as well as a strictly mixed interpretation are necessary for the
orientation of a given rule.

Lemma 5.1 Letl — r be a rule. No linear interpretation for the unary operator i exists if one of the
following conditions holds:

o (JuePos(l)) I, =1i(s)
AN (Yhe Fyi#hel ~ [hl(x1,...,2ar(n)) 15 linear
and
(Fv e Pos(r)) rlo=g(t1,. ., tar(y)
A [gl(x1, .. 2 ar(y)) s not linear A Var(r|,) C Var(l|.)

o 1 =i(f(z,y) and r = f(i(y),i(z))

The main part of the first condition of lemma 5.1 requires that the right-hand side r contains a strictly
separate or strictly mixed operator g while only linear operators (except ¢) appear in /.

1€ includes (z*xy)*z=xx(y*z) and i(z*xy) = i(y) * i(z).

14

8.7

8.4

CHAPTER 5. HEURISTICS FOR CHOOSING INTERPRETATIONS 15

51 . . . Sk . . . Sm

Ty Ty Tj Tr(l) - Ta(n)

{&1, ..., 20} € Var(s;),i £k and 1 =emp Sk

Figure 5.1: Graphical representation of the first part of lemma 5.2

Lemma 5.2 Let | — r be a rule. No separate interpretation for the operator f with Ar(f) > 2 exists
if one of the following conditions holds:

° l:f(Sl,...,Sm) and
(k) Var(sg) N Var(l[A]x) =0
A (E'”U c 7?05(7’)) T’|U = f(tl, .. .,tm) N tp >emb Sk
A Var(r[Aly 1) N Var(sy) # 0

o (JuePos(l)) lu=f(s1,...,8m)
N (YheF)f#hel ~ [hl(x1,...,xarn)) is linear
and
(Fv e Pos(r)) rlo=g(t1,. ., tar(y)
A [gl(x1, .. 2 ar(y)) is strictly mized A Var(rl,) C Var(l].)

o [=i(f(z,y),r = f(i(y),i(x)) and f is associative®)

The first condition of lemma 5.2 requires that the variables of s; do not occur elsewhere in [, at
least one variable of Var(sg) occurs in r outside of ¢, and ¢ is greater than (w.r.t. >emp) sp. A
graphical illustration of the technical conditions of the first part of lemma 5.2 is given in figure 5.1.
The conditions of the second part of lemma 5.2 are slightly modified versions of the first part of lemma
5.1 (applied to operators with an arity greater than 1).

Example 5.1 (i) The orientation of the rule f(i(x),y) — g(x,y) requires a strictly separate inter-
pretation for i if, for example, [g](z,y) = 22 + y and [f](z,y) = x + y, since the first condition
of lemma 5.1 is valid.

(ii) The orientation of the distributivity aziom f(x,9(y,z)) — 9(f(z,y), f(x, 2)) requires a strictly
mized interpretation for f since the first condition of lemma 5.2 is valid: sy =z, v =1, ty = =z,
te >emb Sk and r|o1 = x. Furthermore, according to the second condition, the interpretation of
fin h(f(z, f(y,2))) — h(f(z + y,z)) must be strictly mized if [+](z,y) is strictly mized and
[h](z) is linear.

With the help of lemma 5.1, 91% of the 98 strictly separate interpretations, that were needed for our
examples, were automatically detected. Of the 83 operators with strictly mixed interpretations, 75%
were found by application of lemma 5.2.3)

2) f is associative if either f(f(zy),2) = f(z, f(y,2)) or f(z, f(y,2)) — f(f(z,y),2) is contained in the TRS.

3)399 unary operators and 467 operators where the arity is greater than 1 have been studied.

8.3

8.8

CHAPTER 5. HEURISTICS FOR CHOOSING INTERPRETATIONS 16

During experimentation, the combination of the distributivity and the associativity turned out to be
problematic. The following suggestion can sometimes establish the termination of a system containing

these two axioms®.

Heuristic 5.3 Let x,+ € F and let

[rzx(y+z) — (zxy)+(zx2)

o The termination of Rp can be proved with the help of [+](z,y) = x4+ y+ 1,[*](z,y) = 2y and 8.13
B> 2.

o The system Rp U{x+ (y+2) — (z+y) + 2z} terminates if [+](z,y) = 2 + 2y + 1, [¥](z,y) = 2y
and p > 2.

o The rule system Rp U {(z *xy) * z — x * (y * 2)} can be oriented using the interpretations
[H(z,9)=z+y+2,[+(z,y) =zy+z and p > 3.

o In order to achieve the termination of RpU{(z4+y)+2z =2+ (y+2), (x*xy)*xz — w*(y*2)},
we use the interpretations [+](z,y) = 2 + y+ 4, [*](z,y) = 2y + and p > 5.

4)Note that a lot of completion processes including these axioms will diverge if the associativity is not treated as an
underlying theory.

Chapter 6

A Method for Simple-Mixed

Polynomials

In this chapter, we develop a procedure that attempts to automatically generate interpretations of
operators such that a given TRS terminates. This technique is restricted to simple-mixed polynomials
because it is very difficult to compare two general polynomials. However, since 96% of the interpre-
tations used for the orientation of the tested examples (see chapter 4) are simple-mixed, this is an
acceptable restriction.

According to the algorithm of [Mar87]") for generating an appropriate weight function (i.e. strongly
linear interpretations) for the Knuth-Bendix ordering, we transform the set of rules into a set of
linear inequalities based on the coefficients of the interpretations w.r.t. common variables. We make
use of a relatively simple algorithm, the so-called Simplex method for deciding whether a system of
linear inequalities has a solution. Unfortunately, we do not have linear inequalities, initially, because
there might be sums of products resulting from strictly simple-mixed interpretations (see the following
example). In order to apply the Simplex method we will transform more general inequalities to linear
ones by

1. approximating each side to exactly one product (see lemma 6.2) and then

2. applying a logarithmic function to the resulting products.

Because of the technical complexity of the algorithm, we illustrate the important steps by an example.

Example 6.1 We will prove the termination of the TRS (given in [Mid88])>)

0 b

. g(a — a,b,a

=0 i) ~)
ha,z,y) — g(z)

In order to find a polynomial ordering for orienting R, we have to define variable interpretations®) for
the operators of the used signature. Therefore, we introduce complete®) simple-mized polynomials [f]
with variable coefficients for each f € F.

DSee also appendix of [Lan79)].
2)Note that the second rule and the fourth rule are the problematic ones.
3)i.e. interpretations with variable coefficients

Y)see definition 4.2

17

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 18

Example 6.2 (Example 6.1 continued)

al() = ag
0 Bo

(=, y) = X112Y + X10Z + Xo01¥Y + Xoo
d@) = et et
h(z,y,2) = e112yz + €102y + €10122 + €011Y% + €1002 + €010Y + €0012 + €000

$22? + d12 + do

=

)

—~
&

-
|

Since polynomial orderings are, in general® | simplification orderings, we check the rules of R for being
simplifying®). The following definition represents a special homeomorphic embedding relation such
that a term s is greater than a term ¢ if, and only if, s >.,,; ¢ holds and s will be transformed into ¢
by removing at least one operator with an arity greater than one”.

Definition 6.1 The strong homeomorphic embedding relation >=semp on two terms s and t is defined
as

8 >semb t

< S "emp t and

(Afes) Ar(f) 22 A [¢t

For example, f(z,y) >sems © whereas f(g(z),y) ¥#sems f(z,y). It is obvious that s =por ¢ if
s =sems t. Note that [f(g(z),y)l(z,y) 2 [f(z,y)](z,y) if [g](z) = z.

Example 6.3 (Example 6.2 continued) The initial TRS R will be transformed into

g(a) — h(a,b,a)
R =< i(x) — f(z,2)
hMz,z,y) — g(2)

by using the strong homeomorphic embedding relation since f(2,y) >semp 2.

In order to reduce the number of variable coefficients®), we set superfluous coefficients to minimal
values. A superfluous coefficient is a coefficient which corresponds to an operator which does not
occur on the left-hand side of the rules of R’. The interpretation of such an operator will be a
strongly linear polynomial (which is the ’smallest’ polynomial satisfying the monotonicity condition

of definition 3.1).
Definition 6.2 Let F = |J{fi} be a set of operators, R = {l; — r; | i € [1,n]} be a TRS over

T(F,X) and [] = [{[fil(z1, ..., 2ar(s;))} be a set of polynomial interpretations for operators in F.
Then, the operation ¥ is defined in the following way:

V([R) =Ulfl'(=1, .., 2ar(s,)) such that

u if .AT(fZ) =0 A (V]{? € [1,n])fl &l
Ar(fi)

[fi]l('rl’ . -~a'xAr(fl)) = Zl z; if AT(fZ) >0 A (Vk‘ € [1,n])fZ ¢ I
J:

[fil(z1, . xancs)) otherwise

5)if unary operators are not interpreted as identity functions

6)i.e. | > por 7 independent of the used interpretations.

")Note that s >emp ¢ holds if, and only if, ¢ is identical to s except that at least one (arbitrary) operator is removed.
8)and thus the time complexity of our algorithm

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 19

Note that the interpretation of an operator which has completely been removed®), according to the
relation >g.mp, will be set to a minimal value using the operation ¥. The function ¥ sets the
interpretation of a superfluous constant symbol to the minimal value p'?). It is either possible to use
1 as a variable or to instantiate y with a specific value. Whenever p is treated as a variable, we have
to guarantee that u really represents the minimum of M. Therefore, the inequality [¢;]() > p must
be added for each ¢; € F for which Ar(c;) = 0 holds. To continue with our example, we set p to 1.

Example 6.4 (Example 6.3 continued) Applying the operation ¥ to R’ and [.], we obtain:
fo =1 ~ B =1
X11 = OaXIO = 1:X01 = 1:X00 =0 ~ [f](xay):x—i_y

The remaining coefficients are left unchanged.

The rules of R’ must be transformed into a set of inequalities by

(i) applying the variable interpretations and

(ii) splitting the resulting polynomials into inequalities w.r.t. the coefficients.

The second part will be performed using the following Split-operation.

Definition 6.3 The operation Split transforms a polynomial p into a set of inequalities. Let
p=3i,. i, — Biy.in) 2y . als such that oy, ;. >0 and B, i, > 0.

Then,
Split(p) = {ai,., > By, |1; € N},

The application of the variable interpretations as well as the splitting of the resulting polynomials into
inequalities (w.r.t. the coefficients) will be performed for each rule of R’. Therefore, for each l; —
r; € R/, we firstly generate the polynomial p; = [l;] — [r;] and then compute the set I; = Split(p;).

Example 6.5 (Example 6.4 continued)

[9(a)]() = ajby + apby + &
[h(a,b, a)]() = 0436111 +010€110+Otg€101 + @p€g11 + @o€100 + €010 + @o€oo1 + €ooo
[i(z)](z) = ¢22? 4+ d12+ ¢

fa)@ = 2

x,y)(z,y) = 61111‘23/-1-(6101+€011)él‘y+€110el‘2+(€100+€o10)l‘+€001y+6000
x) = b’ + 8z + 6

I : {01(2)52 + apdy + 60 > 0136111 + ap€r10 + 0136101 + ao€o11 + @o€ro0 + €010 + @o€oo1 + €000}
{¢2>0, 61> 2, ¢o > 0}

I3 := {111 >0, €101 + €011 > 0, €110 > b2, €100 + €010 > 61, €001 > 0, €0po > o}

9)

IQI

i.e. the operator is contained neither in a left-hand side nor in a right-hand side of any rule in R’
10)see remark 3.1

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 20

At this stage, a simplification process removes redundant information from the sets of inequalities
(see the following definition 6.4). This process maps an inequality into an easier one, for example, by
deleting addends or factors occurring on both sides of the inequality. This transformation is described
by inference rules of the form

2V if A

x>y

meaning that =’ > y will be generated if z > y and condition A hold. If A is omitted, it will be
treated as ’true’.

Definition 6.4 (Arithmetic laws) Let z,y, z be arbitrary arithmetical expressions and o, «; be co-
efficients of an interpretation. Then, the set of inference rules AL, that describes arithmetic laws, is

defined as follows:

1) Removing common addends:
rty>z+z
y=>z
2) Removing common factors:
TY>TZ
y=z

3) Removing obvious inequalities:

x_ZOH)

4) Splitting trivial products:
n
(ITa;) <1
i=1 12
(Vie[ln]) aj:=1

5) Dealing with seemingly inconsistent inequalities:
a<0 if the corresponding interpretation [f] to « is of strict arity Ar(f) and o has not been
a:=0 used as x in inference rule 2), otherwise stop with failure

)

Example 6.6 (Example 6.5 continued) I := {¢1 > 2}, Is := {€110 > 82, €100+ €010 > 61, €000 >
80} whereas Iy remains unchanged.

In order to apply the Simplex method, the inequalities of each I; must be linear. This condition will
be achieved by (i) transforming the inequalities into inequalities each side of which represents only one
product and by (ii) applying the binary logarithmic function to these products. The approximation
of each side of an inequality to exactly one product is based on the arithmetic-mean-geometric-mean
inequality (see, for example, [HLP52]):

= >] if(Vie[l,n))p;i>0 A a; >0

A detailed proof of this classical inequality is contained in [HLP52]. For our purpose, the case (Yi €
[1,n]) p; = 1 is sufficient. Therefore, a slight transformation of the above inequality leads to

11)Sometimes, an inequality z > 0 can be helpful if z > 0 (see definition 6.7).
12)Tt is also possible to assign a; := 0 for a particular j instead of o; := 1 for all <.

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 21

3=

ai) .
1

K3

n
doai > n-(
i=1

n

The following lemma concludes the theoretical framework for our approximation.

Lemma 6.1 Letn > 1,a; > 1. Then,

8
vV
s
8

i)
i)

if (Vie[l,n]) a;>2

S

8

N
1l
—

3
&

>

S

=N

The combination of the arithmetic-mean-geometric-mean inequality and lemma 6.1 leads to a method
of transforming a general inequality into an inequality of only two products:

Lemma 6.2 Let a; > 1 and b; > 1. Then,

n m
=1 i=1

I3

S

=N

or i) n

o

For example, 22y + 32 > =+ 2y +yz if 22.(2zy)-(3z) > 22 (2y)? - (y2)%, 2 > 2, 2y > 2 and
yz > 2 by using the first transformation of lemma 6.2.

Example 6.7 (Example 6.6 continued) In this ezample, we use the second case of lemma 6.2:

. 3 243 3 3 3 3 .3 3 3
I i= {27apb06162 > 512a5%€500€001€010€700€011€701€110€111)

{¢1 > 2}

I3 := {e110 > 82, 4€100€010 > 67, €000 > 6o}

IQZ

The power of our algorithm strongly depends on this transformation and thus on lemma 6.2. Accord-
ingly, the better the approximations are the more powerful the algorithm will be. Note that the more
variable coefficients exist the worse the approximation of lemma 6.2 will be because n and m (in lemma
6.2) increase. Moreover, in most cases the right-hand side increases faster than the left-hand side since
b; is transformed into b7 (see I; in example 6.7). In order to reduce the number of variables, we insert
a simplification process (similar to the ¥ operation) before applying lemma 6.2. This simplification is
optional and can be forced by the user or by a heuristic. The basic principle underlying this process
is to assign zero to the coefficient of a constant monomial in an interpretation [f] if Ar(f) > 0.

Definition 6.5 Let F = J{fi} be a set of operators and [fi](x1,..., 2 ar(s,)) = Eai,n...ur(,« = z7t -

TAr(f;)

RETES be the interpretation of f;.

e Coe(fi) = Uai77'1~~~7"Ar(f) be the set of all coefficients® of [fi]-
o v(Coe(fi)) = Uair. rag, U{eio. o:=0}

For example, the operation v sets g to zero in [f](z) = asz?+ a1z + ag. Furthermore, the restriction
to admit only simple-mixed interpretations can be exploited for unary operators:

13) variable coefficients and coefficients which have specific values

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 22

Let f be a unary operator interpreted as [f](z) = @222+ a1z + ag. Then, we can start
the algorithm with ay = 0. If this proves to be successful, the algorithm stops, otherwise
it backtracks to the beginning and sets a7 = 0.

After these assignments, a modified ¥-operation (denoted by ¥y, see the following definition) will be
applied to the variable coefficients w.r.t. the actual set of inequalities, alternating with applications
of the inference rules in AL. The operation ¥y sets superfluous variables (i.e. variables which occur
only on the right-hand side of an inequality14)) to minimal values.

Definition 6.6 Let F = |J{fi} be a set of operators, I a set of inequalities and [.] a set of polynomial
interpretations for the operators in F. Let Coe = |JCoe(f;) be the set of all coefficients. Then, the
operation Wy is defined in the following way:

Wr(Coe, I) = |JCo¢} with Coe; = U{aj; such that

if «;j has no specific value and Ar(f;) > 0 and Coe(f;) \ {ai;} represents a

0 polynomial of strict arity Ar(f;) and (Vly > ry € I ag; & I,
1 if @i has no specific value and Ar(f;) > 0 and Coe(f;) \ {;} does not describe a
af; = polynomial of strict arity Ar(f;) and (Ml > ry € Iy € Uy

I if @i has no specific value and Ar(f;) =0and (Ml > ry € I) oy € Iy

aj; otherwise
where o5 € Coe;

Analogous to W, the operation ¥ sets the interpretation of a superfluous constant symbol to p. The
minimal value g of M can be used as a variable or as an instantiated natural number.

Example 6.8 (Example 6.6 continued) Starting from example 6.6 with 6o := 0, €gpo := 0'%) and
61 :=0'%) leads to the following sets:

I = {adés > adernn + aper10 + aderor + @o€orr + o100 + €010 + o001}
I =={¢1 > 2}

Is :={€e110 > b2, €100 + €010 > 0}

By applying the inference rules of AL we can remove the last inequality of Is. The application of ¥y
leads to €111 := 0, €101 := 0, €911 := 0, €100 := 0, €010 := 017 and

I ={a3bs > agerro0 + aocoor }

Iy :={¢1 > 2}

I3 == {e110 > 62}

The further application of the azioms contained in AL implies simplifying I (by dividing both sides
by a):

14)Remember that U is operating on rewrite rules instead of inequalities. However, the purpose of U and that of ¥
is the same.

15)We apply the operation v to the function symbols g and A.

16) 6, = 0 does not lead to a successful result. Therefore, we have to backtrack and assign zero to 6;.

17)Note that egg; # 0 otherwise [A](%,y, z) would not be of strict arity 3. One should try to generate the coefficients
(which are zero) of an operator such that the resulting interpretation is minimal. A simple-mixed polynomial is 'smaller’
than another one if it contains less strictly mixed monomials. For example, zy + yz > zy + vy + 2.

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 23

I :=={aobs > €110+ €001}
Iy = {¢1 > 2}
I3 = {e110 > 62}

The transformation of the sets Iy, I, and I3 into sets with inequalities both sides of which are products
(applying the second case of lemma 6.2) leads to

I :={apbs > 2e110€001}
I =={¢1 > 2}
I3 :={e110 > 62}

In order to apply the Simplex method, the inequalities must be linear. The transformation of the
inequalities of the sets I, I» and I3 is based on the following fact: [[a; > [b; iff > 1b(a;) > > 1b(b;)
where [b denotes the binary logarithm. Therefore, we apply lb to each side of the inequalities and

rename the variables of the resulting inequalities, i.e. each Ib(«;, ;) will be transformed into O‘;l...jn'

Notation 6.1 The transformation according to lemma 6.2 of a general inequality into an inequality
where both sides contain only one product will be denoted by red: red(d a; > > b;). The trans-
formation of an inequality of two products into a linear inequality (by using lb) is denoted by lin:

Example 6.9 (Example 6.8 continued)

Loi={af+ 85 > 1+ €10+ Gor}
I = {¢7 > 1}
I3 :=A{e10 > 65}

Note that each set I; must contain at least one strict inequality (/;>7;) in order to guarantee that the
corresponding rule of R can be oriented. This will be achieved by adding new variables, one variable
for each inequality:

Definition 6.7 Let I be a set of inequalities. Then, the operation Com is defined as
Com(]) = {ll > + Y | L >r € I} U {El/)z > 0}
such that ; are new variables over IR.

After this process, all sets I; of inequalities will be collected in one set I which represents the final set
of inequalities, that can serve as the input for the Simplex method.

Example 6.10 (Example 6.9 continued)

Ii={ apg+65> 1419+ €0 +¥1,¢1 >0,
¢T21+1/)2:1/}2>0a
€110 > 065 + b3, Y3 >0 }

The last part of our algorithm concerns the computation of a solution of the generated set of inequal-
ities. As noted, we use the Simplex method in order to do this. It is sufficient to apply the first phase
of the Simplex method for computing a feasible solution if it exists. A brief description as well as
some well-known remarks about its time complexity can be found in [Ste91]. Assume now that the
Simplex algorithm provides a solution. For deducing the resulting interpretations of the operators
from this solution, we have to retract the renaming of the coefficients (as used with 1b) by replacing

.
them by their corresponding initial names, i.e. aj, j, = 2%1-in.

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 24

Example 6.11 (Example 6.10 continued) The following assignments represent a solution of the
set I of inequalities:

apg=3,05=0,01 =2, €ef10=1, €501 = 0 (Y1 = Y2 = Y3 = 1).

Therefore, the interpretations [a]() = 8, [b]() = 1, [g](z) = =22, [{](z) = 4z, [fl(z,y) = = + v,
[h)(z,y,z) = 22y + z prove the termination of R.

Before presenting the whole algorithm, a modification of the Split-operation is pointed out which
sometimes proves more profitable. It is a slightly modified version of the approach contained in

[Ste9l].

Definition 6.8 The operation Split¥ transforms a polynomial p into a set of inequalities. Let

p=, i, — Biy i) -2 xin such that ay, 4, >0, Biy i, >0

and let Virodui, ok be new vartables over IR.

Split?(p) = J U{ 3 p® 0 e > By i | B > 0,00, k, > 0}
kj>i;
suchthat J = {5, > 3 Viring, s, | @irin > 0, By, > 0}
kji<ij
If T = J'U{ei, iy 2 Yis iy) then let J o= T U{vi, iy, o0 7= @i)

The operation Split?(p) generates a set of linear inequalities if the coefficients of p are given. For
more details about this technique, see [Ste91].

Example 6.12 The operation Split? is illustrated by applying it to example 6.1. Suppose, we have
the interpretations of the terms given at the beginning of example 6.5. Then, since By = 1, we have
to set the minimum p of M to 1: p=1.

. 2 2 2
I = {agbs + apby + 8o > agerrr + aper1o + ageror + @o€or1 + @o€100 + €010 + @o€o01 + €000}

{d2+01>2, ¢0 >0}

IB = {6111 Z €111410 + €111400 + €111g00 » €101 + €011 2 €101100 + €101gg0 5 €110 Z €110110 + €110100 +
€110000 5+ €100 F €010 = €100100 F €100000 5 €111110 F €110110 = 025 €111100 T €101100 + €110100 + €100100 =
81y €111000 T €101000 T €110000 T+ €100000 + €001 + €000 > 60}

IQZ

The operation Split¥ can be used instead of Split. This means, that our algorithm has this operation
as an option. All in all, algorithm 6.1, which is given in figure 6.1, is parameterized by the following
five features:

e The specification of the mode for splitting the rules into inequalities (Split or Split?).

e The specification of the method for approximating general inequalities by linear ones (choosing
i) or ii) of lemma 6.2).

e The specification of operators with no constant monomial'® (ie. [fl(z1, ... 20) = ailminazlf .

-xin such that ag o = 0).

e The specification of unary operators with square interpretations (i.e. determine whether either
a; =0 or az = 0 for [f](z) = a22? + a1z + ap).

18)by applying the operation v to some operators

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS 25

e The specification of u as to whether it is a variable or fixed representing a certain value.

Theorem 6.1 Algorithm 6.1 always terminates. If it does not fail, R can be directed by a polynomial
ordering (based on simple-mized interpretations) generated by the algorithm.

We have implemented a prototype of algorithm 6.1 (see [Spr91]). Appendix B contains some examples
run with this implementation. However, we do not have detailed experiences concerning the applica-
tion of the algorithm to examples, so far. Thus, a thorough investigation of algorithm 6.1 will be part
of future plans. Additionally, in order to improve its applicability, we intend to merge algorithm 6.1
and the heuristics developed in chapter 5. In particular, the application of lemma 5.1 for detecting
the necessity of the interpretations for a unary operator to be quadratic (instead of linear, only) could
lead to interesting results.

19)Otherwise add the equation o; s ;1 = 0 to the inequalities.

CHAPTER 6. A METHOD FOR SIMPLE-MIXED POLYNOMIALS

Algorithm 6.1 This algorithm determines whether a finite TRS R over T(F,X) can be ori-
ented by a polynomial ordering using simple-mized interpretations for the operators in F. Let

F = Unk
1. Initialization:

1.1 Defining the interpretations (by using variable coefficients):
[] is defined to be the union of all [f;](z1,...,2n,) = p(21,...,Tn,) where Ar(f;) = n;
and p is a complete simple-mized polynomial for n; variables.

1.2 Remowing trivial rules:

R/::R\{l—>7’|l—>T’ER A Z>‘sembr}

1.3 Setting superfluous interpretations to minimal values:

[] = ¥([],R)

2. Splitting the rules into inequalities w.r.t. the coefficients:

(Vlp — rp € R') I, := Split([le] — [rr]) or I := Split?([lx] — [rk])
3. Simplification:

3.1 Removing special coefficients (optional):

Coe(fi) := v(Coe(f;)) for some i, if Ar(f;) >0

aio:=0 or aj1:=0 if Ar(fi) =1 and [fi](z) = a; 22% + aj12 + 0%019)
3.2 Applying arithmetic laws:

(Vk) Iy :={li >ri |l >ri €I, ;:;: EAﬁU{%}}

3.3 Applying the ¥r-operation:
UCoe(fi) =¥ (JCoe(fi), U It)
i i k

Perform these steps (3.1 - 3.3) once again until no changes occur.

4. Eliminating addition and reducing a product to a linear polynomial:
(VE) I} = {lin(red(z > y)) | > y € Iy}

5. Completing and collecting:
I:=JCom(I})
3

6. Applying the Simplex method:
The Simplex method will possibly generate a solution of the derived set I of linear inequal-
ities. Afterwards, each ai of the solution must be replaced by ils corresponding initial
name a;. This will be done by reversing the logarithmic mapping: o; = 2% .

Figure 6.1: The algorithm of chapter 6

Chapter 7

An Improved Polynomial Ordering

In this chapter we present an extension of the polynomial ordering > por, which is also easier to handle
than the original polynomial ordering. It is based on the following approach of Lankford.

Definition 7.1 ([Lan79]) Let > be a precedence on F. If there exists a unary operator f interpreted
as the identity function'), then no other operator is allowed to be greater than f w.r.t. =. For each
constant ¢, [c]() > 2. The polynomial ordering =por> on two terms s and t is defined as

s =porxt
= s=f(t) or
s >=port or
s =port A Head(s) > Head(t) or
s=por t N MHead(s) = Head(t) N Args(s) =55, . Args(t)

Obviously, s =por t holds if, and only if, the interpretations of s and ¢ are syntactically identical, i.e.

s] = [t]. Tt is possible to extend the above definition by using a quasi precedence?) Z and replacin
g g

"Head(s) = Head(t)' by "Head(s) ~ Head(t)".

Note that the conditions (i) Ag = f if [f](z) = « and (ii) for each constant ¢, [¢]() > 2 are responsible
for guaranteeing >por+ to be well-founded. Consider the following examples:

e The rule h(z) — g(h(x)) is not terminating but it would be directed (as indicated) by using
=por~ (based on [¢](z) = # and h > g¢) if (i) was not required.

e The orientation of the non-terminating rule a — f(a,a) could be achieved with the help of
=por~ (based on [fl(z,y) = zy, [a]() = 1 and @ > f) if (ii) was not guaranteed.

The improved polynomial ordering which is an extension of »por~ is based on a status function (see
chapter 2).

Definition 7.2 Let > be a precedence and T a status function on F. If there exists a unary operator
f interpreted as the identity function, then no other operator is allowed to be greater than f w.r.t.

. For each constant ¢, [c]() > 2. The improved polynomial ordering >=rpor on two terms s and t is
defined as

s>=rport <<= s=[f(t) or
s >port or
s =por t A Head(s) > Head(t) or
s=poLt A Head(s) = Head(t) N Args(s) »1por,r(#ead(s)) Args(t)

Die. [fl(z) = «.

2)A quasi ordering Zisa binary, reflezive and transitive relation. ~ denotes the equivalence relation given by Zn3.

27

8.9
8.11
8.12

8.1}

CHAPTER 7. AN IMPROVED POLYNOMIAL ORDERING 28

The index ’r(Head(s))’ denotes the extension of =rpor w.r.t. the status of the operator Head(s).
The idea of this ordering goes back to Lankford (see definition 7.1). His improvement (i.e. »por=)
of the original polynomial ordering is a restricted version of »7por that assigns left-to-right status to
all operators. It is influenced by the Knuth-Bendix ordering ([KB70]).

Theorem 7.1 »;por is a simplification ordering on G(F).

During the computation of a lot of examples (see [SK90]) the generation of appropriate interpretations
for =rpor was easier than for the original polynomial ordering >poyr. This result is based on the
following technique:

We use the ’semantics’ (if known) of the operators as their interpretations. This will

equalize both sides of an equation?’) w.r.t. =por. An additional consideration often
provides an appropriate precedence which causes the orientation of the equation.

Example 7.1 Let

z+0 —z
z—+ s(y) — s(z +y)
R =< f(0) — 0

f(s(2)) = (s(f(z)) +)+ =
(x4 fy) +2z—z+ (z+ f(v))

The operator + describes the addition on IN and s represents the successor function:

[+(z,y) =z+y, [s|(z) ==+ L.

The recursion appearing in the definition of the operator f can be resolved into f(z) = z2. Therefore,
we use

() = 2.

All these interpretations together with [0]() = 2 cause both sides of all rules (except the first one) to
be equivalent w.r.t. =por. According to the definition of the >rpor we have to compare the leading
function symbols: + and s, f and 0, f and +, + and +. An extension of the precedence by

+ =5 f>=0,f>+

and of the status by 7(+) = left will cause the desired orientation. Note that the first rule is oriented
since [x +0]=2+2 3z = [z].

There already exist two other improvements of polynomial orderings. The first one concerns the classes
of functions used as interpretations. It is, for example, possible to include exponential functions (see,
for example, [Der83]). This ordering will be denoted by =gxp.

The second improvement of the original polynomial ordering is based on the concept of concatenation
of well-founded orderings. In [Der83], a convenient set of basic laws is provided by which well-founded
orderings can be constructed. One of these laws implies that a lexicographic ordering of fixed-length
tuples is well-founded if the orderings on the components are well-founded. This idea has been
applied to the polynomial ordering in such a way that several different polynomial orderings (based
on distinct interpretations) can be concatenated. This technique is called polynomial ordering with
interpretations taken from a Cartesian product of polynomials (see, for example, [Ben86] and [BL87]).
In the remaining part of this paper, we refer to this ordering by »cpor -

3)Note that an equation is valid w.r.t. a given theory.

8.9
8.12

8.9
8.10

8.9

Chapter 8

Examples

This chapter deals with the illustration of polynomial orderings by applying them to examples. All
examples will be uniformly presented. They consist of a TRS R and a polynomial ordering >por
(defined in chapter 3), an improved polynomial ordering >rpor or =por+ (both defined in chapter
7), a polynomial ordering ¢ por based on Cartesian products or a polynomial ordering > gxp using
exponential functions (both mentioned in chapter 7) for guaranteeing the termination of R.

Example 8.1
_ [f(f(2)) - g(g(x))
r={ Mt 2 Haeon
and >-por, 15 based on
[flz) = 2¢+1
[g](z) = 2z
Example 8.2 (Fibonacci group)
¢ — ab
d — be
RY = e — cd
de — a
ea — b
and >poyr 15 based on
@) = 241
[bl(x) = 2z+4
[c](x) = 2246
[d(z) = 4a+17
le]l(z) = 8z+41

) The rule system R contains only unary operators. Thus, we use strings to describe R (i.e. f(z) is represented by

)

29

CHAPTER 8. EXAMPLES

Example 8.3 (Prime numbers)

prime(0) — false
prime(s(0)) — false
prime(s(s(z))) — primel(s(s(z)), s(z))
R?) = { primel(z,0) — false
primel(z, s(0)) — true
primel(z, s(s(y))) — ~divp(s(s(y)), s) A primel(z, s(y))
divp(z, y) — rem(z,y) =0
and ~por 1s based on
[prime](z) = 23
[primel](z,y) = zy?
[divp)(z,y) = z4+y+3
reml(c,y) = z+y
Sy = ety
Ny = ety
() = a4l
[s](2) = 2
010 =
falsl) = 2
[true]() = 2
Example 8.4 (Taussky group)
zx(y*z) — (x*y)*z
1%x1 — 1
3 _) zxi(z) — 1
R = i(z*y) — i(y) *i(x)
g(z*xy,y) — flexy, z)
f(1,y) -
and >poyr, 15 based on
Wzy) = 2+
iey) = 2ty
g)(z,y) = 22y’ +z+y*+1
i@ =
o = 2
Example 8.5 (Boolean ring)
rDy — (x*xy)+ (x+1)
R = zVy — (z*xy)+ (x+y)
r=y — z+(y+1)
-z — x+1

and >poyr 15 based on

2)Note that rem(z,y) stands for the remainder when dividing z by y.
3)Note that the group axioms (see heuristic 5.2) are part of the system.

CHAPTER 8. EXAMPLES

[Hl(z,y) = x+y
*(z,y) = z+y
Dl(z,y) = 2x+y+2
Vi(z,y) = 2e+2y+1
Elzy) = z+y+2
[Fl(z) = z+2

(110 =1

Example 8.6 (Iterative version of the reverse function)

niloy — Y
(x.y)oz — z.(yoz)
(IOy)OZ — IO(yOZ)
rev(nil) — nil
R =< rev(z.y) — rev(y) o (z.nil)
reviter(nil, y) — y
reviter(z.y, z) — reviter(y, z.z)
rev(z) oy — reviter(z,y)
rev(z) — reviter(z, nil)
and >-por, 15 based on
[I(z,y) = zy+ty+l1
[o](z,y) = zy+tz
[rev](z) = 222
[reviter](z,y) = zy+z
il =
Example 8.7 (Associativity and Distributivity)
r+(y+2) — (z+y)+2
R:{J;*(y—l—z) — (z*xy)+ (z*2)
(x4 (y*2))+ (y*u) — z+ (y*(z+u))

and >poyr 15 based on

[+](z,y) = z+2y+1
[(z,y) = =y
Example 8.8 (Binomial coefficients)
bin(z,0) — s(0)
R =< bin(0,s(y)) — 0
bin(s(xz), s(y)) — bin(z, s(y)) + bin(z,y)
and >poyr, 15 based on
pinl(e,y) = zy+e
[s](2) = 2z
ey = 2t
[0]() = 2

CHAPTER 8. EXAMPLES 32

Example 8.9 (Addition and Multiplication)

z*x0 — 0
R iiséy) - §+(fv*y)
r+s(y) — s(z+y)
=pxp is based on [Kl(z,y) = 27, [+](z,y) = = + 2y, [s](z) = 2 + 1, [0]() = 2
>cpor 15 based on i) [*(z,y) =2y, [+H(z,y) =2z +y,[s](z) =2z +2,[0]() =2

W) W y)= 2y 1) = ey, (@) = 2+ 2,000 =2
~rpor and =por« are based on [*](z,y) = 2y, [+](z,y) =z + y,[s](z) =2+ 1,[0]) =2, > + > s

There exists no >poy, for orienting the above system.

Example 8.10 (Fibonacci function)

f(0) — s(0)
[s(0) = s(0)
R=0 Js6@) — f6s() +(2)
x4+ 0 — =z
r+s) = s+
and >~gxp 15 based on
[+H(z,y) = z+2
fAlz) = 2o
Sla) = 2+
(010 =1
Note that »1por, cannot orient the above system.
Example 8.11 (Division)
z/x — 1
) 2/l — x
RV~
(x/y)/= — x/(z/i(y))
and >rpor, as well as >por~ are based on
Uzy) = z+y
[(z) = =
(10 = 2

and i > /. Note that there exisis no =poyr, for orienting R.

Example 8.12 (Summation)

sum(0) — 0
sum(()s(x)) — sum(z) + s(z)
. x + — x
R = z + s(y) — s(x +y)
s(z) +y — s(x+y)
+y)+z = zt(y+2)

CHAPTER 8. EXAMPLES

and >rpor, as well as >por+ are based on

[+](z,y) = z+y
[sum](z) = 22
Ble) = 2+l
[0]() = 2
and + > s.
Example 8.13 ([Pau84])
x+0 — x
z*l — x
R= z*x0 — 0
z*x(y+2) — (z*y)+ (x*2)

and >poyr 15 based on

[(z,y) = =y
[Hl(zy) = 2+y+1
(10 = 2
[010) = 2

Example 8.14

and >rpor 15 based on

flz,y) = z+y
[Rl(z) = =
[s](z) = =z+1

and h > s, 7(f) = mul. Note that =por~ cannot orient R.

33

Bibliography

[AMS89]

[Ben86]

[BL87]

[Der79]
[Der83]

[Der87]

[HL89]

[HLP52]

[HOSO]

[KB70]

[KLS0]

[LanT75al

[Lan75b]

[LanT76]

[Lan79]

Jurgen Avenhaus, Klaus E. Madlener, and Joachim Steinbach. COMTES — An experimental
environment for the completion of term rewriting systems. In N. Dershowitz, editor, Proc.

3rd RTA (LNCS 355), pages 542-546, Chapel Hill (North Carolina), April 1989.

Ahlem BenCherifa. Preuves de Terminaison des Systémes de Réécriture — Un Qutil fondé
sur les Interprétations polynomiales. PhD thesis, Univ. of Nancy I, Dept. of Computer
Science, Nancy (France), 1986.

Ahlem BenCherifa and Pierre Lescanne. Termination of rewriting systems by polynomial
interpretations and its implementation. SCP, 9(2):137-160, October 1987.

Nachum Dershowitz. A note on simplification orderings. IPL, 9(5):212-215, 1979.
Nachum Dershowitz. Well-founded orderings. Technical Report ATR-83(8478)-3, Office of

Information Sciences Research, The Aerospace Corporation, El Segundo (California), 1983.
Nachum Dershowitz. Termination of rewriting. JSC, 3:69-116, 1987.

Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of derivations.
In N. Dershowitz, editor, Proc. 3rd RTA (LNCS 355), pages 167-177, Chapel Hill (North
Carolina), April 1989.

G. Hardy, J.E. Littlewood, and G. Pdlya. Inequalities (Second Edition). Cambridge Univer-
sity Press, 1952.

Gérard Huet and Derek C. Oppen. Equations and rewrite rules: A survey. In R. Book, editor,
Formal Languages — Perspectives and Open Problems, pages 349-405. Academic Press, 1980.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon
Press, 1970.

Sam Kamin and Jean-Jacques Lévy. Attempts for generalizing the recursive path orderings.

Urbana (Illinois), February 1980.

Dallas S. Lankford. Canonical algebraic simplification in computational logic. Memo ATP-
25, Univ. of Texas, Austin (Texas), 1975.

Dallas S. Lankford. Canonical inference. Memo ATP-32, Univ. of Texas, Austin (Texas),
1975.

Dallas S. Lankford. A finite termination algorithm. Technical report, Southwestern Univ.
of Georgetown, Georgetown (Texas), 1976.

Dallas S. Lankford. On proving term rewriting systems are noetherian. Memo MTP-3,
Louisiana Technical University, Department of Mathematics, Ruston (Louisiana), May 1979.

34

BIBLIOGRAPHY 35

[Lan86]

[Les86]

[Mar87]

[Mid88]

[MN70]

[Pau84]

[Rou88]

[Roud1]

[SK90]

[Spr9l]

[Ste89]

[Ste9l]

[Sti76]

[SZ90]

Dallas S. Lankford. Some remarks on rewrite rule termination methods which use polynomial
interpretations. Unpublished Manuscript, 1986.

Pierre Lescanne. Divergence of the Knuth-Bendix completion procedure and termination

orderings. Bulletin of the FATCS, 30:80-83, 1986.

Ursula Martin. How to choose the weights in the Knuth-Bendix ordering. In P. Lescanne,
editor, Proc. 2nd RTA, pages 42-52, Bordeaux (France), 1987.

Aart Middeldorp. A sufficient condition for the termination of the direct sum of term
rewriting systems. Technical report, Dept. of Mathematics and Computer Science, Vrije

Univ., Vrije (The Netherlands), September 1988.

Zohar Manna and Stephen Ness. On the termination of Markov algorithms. In Proc. 3rd
International Conference on System Science, pages 789-792, Honolulu (Hawaii), 1970.

Etienne Paul. Proof by induction in equational theories with relations between constructors.
In Proc. 9th Colloquium on Trees in Algebra and Programming (CAAP), pages 211-225,
Bordeaux (France), March 1984.

Jocelyne Rouyer. Preuves de Terminaison des Systémes de Réécriture fondées sur les In-
terprétations polynomiales — Une Méthode basée sur le Théoréme de Sturm. Internal Report,
Univ. of Nancy, Nancy (France), 1988.

Jocelyne Rouyer. Clalcul formel en Géometrie algébrique réélle appliqué a la Terminaison
des Systémes de Réécriture. PhD thesis, Univ. of Nancy I, Nancy (France), 1991.

Joachim Steinbach and Ulrich Kuhler. Check your ordering — Termination proofs and open
problems. SEKI-Report SR-90-25, Univ. of Kaiserslautern, Kaiserslautern (Germany), 1990.

Christof Sprenger. Implementierung eines Verfahrens zur Generierung von Polynomordnun-
gen. Projektarbeit, FB Informatik, Universitat Kaiserslautern, 1991. to appear.

Joachim Steinbach. Extensions and comparison of simplification orderings. In N. Dershowitz,

editor, Proc. 3rd RTA (LNCS 355), pages 434-448, Chapel Hill (North Carolina), April 1989.

Joachim Steinbach. A method to prove the positiveness of polynomials. SEKI-Report, Univ.
of Kaiserslautern, Kaiserslautern (Germany), 1991.

Mark E. Stickel. The inadequacy of primitive recursive complexity measures for determining
finite termination of sets of reductions. Unpublished Memo, 1976.

Joachim Steinbach and Michael Zehnter. Vade-mecum of polynomial orderings. SEKI-
Report SR-90-03, Univ. of Kaiserslautern, Kaiserslautern (Germany), 1990.

Appendix A

Proofs

Lemma A.1 Letl — r be a rule. No linear interpretation for the unary operator i exists if one of
the following conditions holds:

o (FuePos(l)) I, =1i(s)
N (YheF)i#Ehel ~ [hl(x1,...,x4rn)) is linear
and
(Fv e Pos(r)) rlo=g(t1, ..., tar(y)
A [gl(x1, ..., ®ar(y)) is not linear A Var(r|,) C Var(l|.)

o 1=i(f(z,y)) and r = f(i(y),i(z))
Proof:

i) Let [.] be an interpretation such that [g](z1,...,Z4r(y)) is strictly separate. Assume that [](z)
is linear.

~e [T](yl,u-,yn):P—l—ay’fl~...-ny”

since g € r and [g] is not linear
=1

since (Vh € F) [];](le, <.y T Ar(n)) 1s linear
~ [#pror [r]

where P is a polynomial and (3i € [1,n]) k; > 1

ii) Let [f](z,y) = By, e y"2. Assume that [{](z) = Bz + 7.

~ [l] = 6 : Eahwrrlym + Y

[r] = Yo, (By +)" (Br +7)"
~ B = 1 and

7= 0
~ [= Yy, 2" y"?

[7“] = Eahrz $r2 yh

~ [l #pror [r] a

Lemma A.2 Letl — r be a rule. No separate interpretation for the operator f with Ar(f) > 2 exists
if one of the following conditions holds:

36

APPENDIX A. PROOFS 37

o l=1f(s1,...,8m) and
(k) Var(sp)NVar(l[Alx) =0
A (Fv e Pos(r)) rlo = ft1, .., tm) Atk =embd Sk
A Var(r[Aly k) N Var(sg) # 0

o (FuePos(l)) lu=f(s1,...,5m)
AN (YVheF)f#hel ~ [hl(x1,...,x4,n)) is linear
and
(Fv e Pos(r)) rlo=g(t1,. . tar(y)
A [gl(x1, .. 2 ar(y)) is strictly mized A Var(rl,) C Var(l].)

o I =1i(f(z,y),r = f(i(y),i(x)) and f is associative')
Proof:

i) Assume that [f](z1,...,2m) = Y pi(2;) where p;(x;) is the polynomial consisting of z;, only.
i=1

o orsssml = 5 pilor)

Note that t; =.mp sp which implies that p;(¢x) >por pi(sk).
~> The degree of the variables of Var(sy) belonging to [r] is greater than or equal to that
belonging to [I] because the degree of the variables of Var(sy) belonging to [f(t1,...,tm)] is
equal to that of p;(tx) since [f] is separate.

Note that there is any variable z of Var(sy) occurring in r outside of 3 (by precondition).

~» The degree of z in [r] is greater than that of z in [I]

~ U¥porr
ii) Analogous to i) of lemma 5.1.

iii) Let [.] be any interpretation including [¢](z) to be proper separate (see lemma 5.1). Assume that

[f1(z,y) is separate.
~+ The monomials corresponding to must be ’greater’ than those corresponding to y if the

rule f(f(z,y),2) — f(z, f(y, 2)) has to be directed.

~ lfporLr
since the variable z (y) is the first (second) argument in [whereas it is the second (first)

argument in r

The case [— r and f(z, f(y,2)) — f(f(z,y),z) can be proved in the same way. |

Lemma A.3 Letn>1,a; > 1. Then,

8
v
8

i) if (Vie[l,n]) a;>2

i)

8
vV
i
8

3

If=Ee=
il
i

Proof:

i) We will prove this fact by means of contradiction. Assume that
a-...-ap<ai+...+a,

~ 1l 28— 4 4l

ai-...-ap ai-...-ap

1) f is associative if either f(f(zy),2) = f(z, f(y,2)) or f(z, f(y,2)) — f(f(z,y),2) is contained in the TRS.

APPENDIX A. PROOFS 38

~ 1l — 44 1

az-...-Qp a1 ... @p—1

Note that the right-hand side of this inequality is not greater than

1

n-nz "
since a; > 2
~ 1< ﬁ
~+ contradiction
because (n—nﬁ <1 for n>1
The case n = 1 is obvious since a; > a;
ii) We will prove this lemma by induction on n.
e The base case (n = 1) is obvious.
e n—n+l:
(n+Day-...-ap -Gpy1 = N1 ... Uy Gpy1 + 1 ... Ay Angl
> (a14...4+an) g1 + @1 Up - Apga
by using the induction hypothesis
= a1-Gpy1 + ...+ Ap-Gpy1 + A1 ... A - Apgl
> a1+ ...4+ap+apt
Since a; - An41 > @ A A1 ... Ap - Gpgl > Gptil
(because a; > 1)
O
Lemma A.4 Leta; > 1 and b; > 1. Then,
n m n m
a;>> b if i) n"[la>][0 A (Vie[l,m])b >2
i=1 i=1 i=1 i=1
n m
or 1) n"[]a;>m"]] b}
i=1 i=1
n m
Proof: This lemma describes two estimations of the inequality a; > Y b;, i.e. we found a and b
i=1 i=1
n

n m m
such that Y a; > a>b> > b;. It is obvious that a > b implies >~ a; > > b;.
: i=1) i=1

i=1 =1
n * . m (#%y m
) Ya>n-([la) > []b: > > b
i=1 i=1 i=1 i=1

with (*) = ari_thmetic—mgan—geometric—mean inequality and (**) = lemma 6.1 i)
n m

~ n" -] a > [] b7
i=1 i=1

Note that it must be guaranteed that (Vi € [1,m])b; > 2 because it is a precondition for the use
of (*¥*).

i=1 i=1

with (*) = arithmetic-mean-geometric-mean inequality and (**) = lemma 6.1 ii)
n m

~ n" -] a>m"] b} O
i=1 i=1

(%) n . m (x%) m
i) a2 n-([[a)»>m-[[b; > > b
i=1 i=1

Theorem A.1 Algorithm 6.1 always terminates. If it does not fail, R can be directed by a polynomial
ordering (based on simple-mized interpretations) generated by the algorithm.

APPENDIX A. PROOFS 39

Proof: It is easy to see that the transformation process of each part (1. - 6.) of algorithm 6.1
terminates. Therefore, algorithm 6.1 terminates.

The correctness of the algorithm is mainly guaranteed by lemma 6.1, lemma 6.2 and the correctness
of the Simplex method. Furthermore, it is based on the following observations (of which the proofs
are obvious):

o | >semp 7 ~ | >por 7 independent of []
o Setting superfluous interpretations to minimal values is correct (see operations ¢ and y).
e The operations Split and Split? are correct (see also [St91a]).

e The arithmetic laws (AL) are correct. |
Theorem A.2 »ipoyr is a simplification ordering on G(F).

Proof: For being a simplification ordering on G(F) we have to prove the irreflexivity, the transitivity,
the subterm property, the monotony and the stability w.r.t. substitutions.

i) =rpor is irreflexive:
We have to show that (V¢ € 7(F, X)) Frpor t which is true since »poyr is irreflexive.

il) >rpor is transitive:
We must prove that r >~;por, s =rpor t ~ r >rpor t.
Proving this assertion by induction on the size of r, we have to consider three disjoint cases.

o [r]D[s] vV [s]T[H]
~ [r13f]
since 1 is transitive and the fact that [s] = [r] O [¢]
V [s] O [r] = [t] implies [s] O [¢]
o [r] =[s]=[t] A (Head(r) > Head(s) V Head(s) = Head(t))
~ [r]=[s] = [t] A Head(r) > Head(t)
because > is a partial ordering
o [r]=[s] = [t] A Head(r) = Head(s) = Head(t)
Let = f(r1,...,7n), s = f(s1,...,8n),t = f(t1,...,tn).
a) T(Head(t)) = mul
) =L sy s =L ()
~ (V5)(F9) s; =rpor t; A (Yk)(3m)rm >1por sk

© Tm >IPOL Sk(:) »IPOL 1
~ Ty, >rpoL tj
by induction hypothesis
© Tm >IPOL Sk(i) =IPOL lj V Tm =I1POL Sk(i) »1POL {j
~ Tm >~I1POL tj
since s =ypor © >rpor t V s >=rpor * =rpor t implies s =rpor t
* Tm =IPOL Sk(:) =IPOL 1
~+ 1y, will be rtemoved from all multisets (by definition of »™4!)
B) T(Head(t)) = left

~ (34, 5)(Vk < i)(Ym < j) ry =1poL Sk A Sm =1POL tm ATi >1POL Si ASj »>1porL tj

APPENDIX A. PROOFS 40

i
~ 1 >rpor si =rpor t; (if i < j)
Vrj =rpor sj =r1por tj (if i > j)
r; =rporL ti V 1 =1poL i
because s =rpor 7 >rpor t V s >rpor ¥ =rpor t implies s =rpor t
~ T>rport
since all predecessors are equivalent w.r.t. =rpor

¢

=
~+ T >[POL S »IPOL 1
~ 7 >1poL ti
by induction hypthesis
~ r>rporLt

analogous to the case i # j
v) T(Head(t)) = right:
analogous to)

iil) »rpor has the subterm property:
We have to show that A # u € Pos(t) ~ t =rpor -
This is valid, since the condition referring to unary operators is required and g > 2.

iv) =rpor is monotonic, i.e. t[r]y =rpor t[slu if r =1porL s:

i) [r] O8]
~ t[r]lu >rpor t[s]u
since] 1s monotonic

i) [r] = [s]
~ tr]y = ts]u
~+ the t|,’s must be compared because the term structures are identical, otherwise
~ trly >1por t[s]u
because r >rpor s

V) =r1por is stable w.r.t. substitutions:
We must show that (Vo, s,t)s =1por t ~ so =1por to. We will prove this fact by induction on
[¢]:

i) [s] 3]
~+ SO >rpoL to
since T is stable w.r.t. substitutions
ii) [s] = [t] AHead(s) = Head(t)
~ so=1to
because [s] = [t] ~ [so] = [to]
~ 80 =rpoL to
because (Yt € T (F,X))Head(t) = Head(to)

iil) [s] = [t] A Head(s) = Head(t)
Let s = f(s1,...,80),t = f(t1,...,tn).

APPENDIX A. PROOFS 41

a) T(Head(t)) = mul

o

s

{81, .. .,Sn} }Tﬁ(l)L {tl, - ,tn}

by definition of >~;por

(V5)(3i)si =rpor t;

by definition of »>™!

(V])(HZ)SZO' ZIPOL th'

by induction hypothesis and the fact that s =rpor t ~ so =rpor to
{s10,...,sp0} >4, {tio, ... tho}

by definition of >~;por

so ~r1por to

B) T(Head(t)) = left

s

s

s

(3)(Vj < i)sj =rporL tj A si =1poL ti

(3)(Vj < i)sjo =1porL tjo A sio =1porL tio

by induction hypothesis and the fact that s =;por, t ~ so =rpor to
so ~rpor to

by definition of >;por

v) T(Head(t)) = right:
analogous to §) O

Appendix B

Exemplary Sessions

The first session concerns the generation of a polynomial ordering for the TRS given in example 6.1.
It is performed by using the operation Split?.

sk sk sk ok ok ok s ok ok sk ok s s ok sk skok s ok sk skok s sk sk ke s sk kol sk s sk ok sk sk ok ok ok
* Generation System for Polynomial Orderings *
* MENU *
sk sk sk ok ok ok s ok ok sk ok s s ok sk skok s ok sk skl s sk sk sk sk sk skok s s sk sk sk sk ok ok ok
0 : exit.
1 : load a new specification.
2 : set the pathname for the specifications
(actual: #P"//node_19669/data/ulrich/system/inout/intern/*.intern").
(0-2) :1

Please enter the filename of the specification : p-226

ook sk sk ok ok ok s ok ok sk sk s ok sk skok s ok sk skl s sk sk sk s ok skok sk s sk sk sk sk ok sk ok

* Generation System for Polynomial Orderings *

* MENU *

ek sk sk sk ook o ok ok sk o o s ok ok skok o ok ok skok s sk sk ke s sk kol s s sk sk sk sk ok ok

0 : exit.

1 : load a new specification.

2 : set the pathname for the specifications

(actual: #P"//node_19669/data/ulrich/system/inout/intern/*.intern").

3 show current rule system.

4 : change the level of trace (actual : 5).

5 : toggle the mode for splitting the rules (actual : SPLIT-E).
6 specify the operators with no constant monomials.

7 specify the unary operators with quadratic interpretations.
8 specify the lower bound of the variables (actual : 1).

9 : generate the interpretations.

(0-9) :7

Do you want a linear interpretation for every, some or none unary operator (E, S or N): s
Answer Y if you want a quadratic interpretation of the given operator.

G (Yor I): y
E (Yor N): n

42

APPENDIX B. EXEMPLARY SESSIONS 43

(0-9) :686
Do you want to set every, some or none constant monomial to zero (E, S or N): s

Answer Y if you want no constant monomial in the interpretation off the given operator.

G (Yor M): y
E (Yor): n
H (Yor M): y
(0-9) :9

sk ok sk ook sk sk sk sk sk sk sk ko ok ok ok ok sk sk sk sk sk sk sk skok sk sk skok ok ok ok sk ok ok ok

* Generation System for Polynomial Orderings *

sk ok sk ook sk sk sk sk sk sk sk ko ok ok ok ok sk sk sk sk sk sk sk skok sk sk skok ok ok ok sk ok ok ok

Parameters :

The trace-level is 5.

The lower bound of interpretations of constant operators is 1.
The function for splitting the polynomials is SPLIT-E.

rule-system :

1: H(X,X,Y) -—> G(X)

2: G(¢) --> H(C,D,C)

3: E(X) -—> F(X,X)

4: F(X,Y) ——> X

Setting special coefficients to minimum values : H-000 := 0, E-2 := 0,

G-0 := 0, G-1 := 0

Deleting trivial rules
4: F(X,Y) -—> X

Superfluous operators are : D and F.

The operators are interpreted as follows:

[c1() = ¢c-0

[F1(XY) =Y + X

[GI(X) = G-2 X"2

[E]1(X) = E-1 X + E-0

[H1(X Y Z) = H-111 Z Y X + H-011 Z Y + H-101 Z X + H-110 Y X + H-001 Z + H-010 Y + H-100 X
[p1() =1

Splitting the rules into inequalities :
1: { H-011 + H-101 >= O ,
H-001 >= O ,
H-010 + H-100 >= 0 ,
H-111 + H-110 >= G-2 }
2: {C-0"2 G-2 >= (C-0"2 H-101 + C-0"2 H-111 + C-0 H-001 + C-0 H-011 +
C-0 H-100 + C-0 H-110 + H-010 }
3: {E-0 > 0,
E-1 >= 2}

Applying arithmetic laws

APPENDIX B. EXEMPLARY SESSIONS

1: { H-111 + H-110 >= G-2 }

2: { ¢-0"2 G-2 >= (€-0"2 H-101 + C-0"2 H-111 + C-0 H-001 + C-0 H-011 +
C-0 H-100 + C-0 H-110 + H-010 %}

3: {E-1 > 2}

Setting superfluous coefficients to minimum value : E-0 := 0, H-001 := O,
H-010 := 0, H-100 := 0, H-011 := 0, H-101 := 0

1: { H-110 + H-111 >= G-2 }

2: {C-0"2 G-2 >= (C-0"2 H-111 + C-0 H-110 }

3: {E-1 >= 21}

Applying arithmetic laws

1: { H-110 + H-111 >= G-2 }

2: {C-0 G-2 >= C-0 H-111 + H-110 }
3: {E-1 >= 2}

Result of simplification loop :

1: { H-110 + H-111 >= G-2 }

2: {C-0 G-2 >= C-0 H-111 + H-110 }
3: {E-1 > 2}

Remaining variable coefficients with no values : H-111, H-110, E-1, G-2 and C-0.

Result of eliminating the addition by using lemma 2.
1: { 2.0 + H-111% + H-110% >= 2 G-2* }

2: { G-2% + C-0% >= 1.0 + H-111% + H-110*% + C-0* }
3: { E-1*% >= 1.0 }

Result of collecting :

C-0*x >= 1

U-1% >= 1

- U-1% + H-111% + H-110*% - 2 G-2*% >= -2.0
U-2% >= 1

- U-2% - H-111% - H-110* + G-2* >= 1.0
U-3% >= 1

- U-3% + E-1% >= 1.0

Result of eliminating the addition by using lemma 1.
1: { 2.0 + H-111% + H-110% >= 2 G-2%,
1+ G-2% >= 2 }
2: { G-2% + C-0% >= H-111% + H-110% + C-0%,
1 + H-110% >= 2,
1 + H-111% + C-0% >= 2 }
3: { E-1x >= 1.0,
2>= 2737

Result of collecting :
C-0% >= 1
U-1% + U-2% >= 1

44

APPENDIX B. EXEMPLARY SESSIONS

- U-1% + H-111% + H-110*% - 2 G-2*% >= -2.0
- U-2% + G-2% >= 1

U-3% + U-4* + U-b*x >= 1

- U-3% - H-111% - H-110* + G-2* >= -0.0

- U-4*% + H-110% >= 1

- U-5*x + H-111% + C-0% >= 1

U-6% + U-T7* >= 1

- U-6*x + E-1% >= 1.0

- U-7% >= 0

The simplex algorithm returns : H-111% = 1.0, H-110* = 1.0, E-1% = 2.0,
G-2% = 2.0, C-0% = 1.0.

i.e. : H-111 = 2.0, H-110 = 2.0, E-1 = 4.0, G-2 = 4.0, C-0 = 2.0.
The algorithm terminated successfully.

The operators are interpreted as follows:
[c10 = 2.0

[F1(X Y)

[GI1(x) =
[EI(X) =
[(H1(X Y 2Z)
[pJO =1

4.
4.

N o O

+
X~
X
2.0ZYX+2.0YX

The interpreted rules are:

[H(X,X,Y)] = 2.0 Y X*2 + 2.0 X"2 > 4.0 X*2 = [G(X)]
[G(c)] = 16.0 > 12.0 = [H(C,D,C)]
[E(X)] 4.0 X > 2 X = [F(X,X)]

=Y +

[F(X,¥)1 =Y + X > X = [X]
(0-9)

APPENDIX B. EXEMPLARY SESSIONS

46

The second session considers the same rule system as the first one. However, instead of using the

operation Split¥ it applies Split.

ook sk sk ook ok s ok ok sk sk s sk sk skok s ok sk skok s s sk sk ke sk sk skok sk s sk sk sk sk sk ok
* Generation System for Polynomial Orderings *

* MENU *
sk sk ok ok sk ok sk ok ok ok ok ok sk ok ok o sk sk ok sk skok ok sk ok sk ok ok sk ok ok sk ok ok o sk ok sk ok ok ok

0 : exit.
1 : load a new specification.
2 : set the pathname for the specifications

(actual: #P"//node_19669/data/ulrich/system/inout/intern/*.intern").

3 : show current rule system.

4 : change the level of trace (actual : 5).

5 : toggle the mode for splitting the rules (actual : SPLIT-E).

6 specify the operators with no constant monomials
(actual: H G).

7 : specify the unary operators with quadratic interpretations
(actual: G).

8 : specify the lower bound of the variables (actual : 1).

9 : generate the interpretations.

(0-9) :5

The function for splitting the polynomials is now SPLIT.
(0-9) :9

sk koo sk ko sk sk skokskskok ok ok ok ok sk skok sk ok ok sk sk sk sk sk ok ok ok ok skok ok

* Generation System for Polynomial Orderings *

sk koo sk ko sk sk skokskskok ok ok ok ok sk skok sk ok ok sk sk sk sk sk ok ok ok ok skok ok

Parameters :

The trace-level is 5.

The lower bound of interpretations of constant operators is 1.
The function for splitting the polynomials is SPLIT.

rule-system :

H(X,X,Y) ——> G(X)
G(¢c) --> H(C,D,C)
E(X) -—> F(X,X)
F(X,Y) -——> X

B W N -

Setting special coefficients to minimum values : H-000
G-0 := 0, G-1 :=0

0, E-2

Deleting trivial rules
4: F(X,Y) -—> X

Superfluous operators are : D and F.

The operators are interpreted as follows:
[c1() = c-o

[FI(X Y) =Y + X

[61(X) = G-2 X2

APPENDIX B. EXEMPLARY SESSIONS 47

[EI(X) = E-1 X + E-O
[H1(X Y Z) = H-111 Z Y X + H-011 Z Y + H-101 Z X + H-110 Y X + H-001 Z + H-010 Y + H-100 X
[pJO =1

Splitting the rules into inequalities :
1: { H-111 >= o0 ,
H-011 + H-101 >= 0 ,
H-001 >= 0 ,
H-110 >= G-2 ,
H-010 + H-100 >= 0}
2: {C-0"2 G-2 >= (C-0"2 H-101 + C-0"2 H-111 + C-0 H-001 + C-0 H-011 +
C-0 H-100 + C-0 H-110 + H-010 }
3: { E-1 >= 2,
E-0 >= 0}

Applying arithmetic laws
1: { H-110 >= G-2 }
2: { C-0"2 G-2 >= (€-0"2 H-101 + C-0"2 H-111 + C-0 H-001 + C-0 H-011 +
C-0 H-100 + C-0 H-110 + H-010 }
3: {E-1 >= 2}

Setting superfluous coefficients to minimum value : E-0 :=
H-010 := 0, H-100 := 0, H-011 := 0, H-101 := 0, H-111 := 0
1: { H-110 >= G-2 }

2: { €C-0"2 G-2 >= (-0 H-110 + C-0 }

3: {E-1 >= 2}

0, H-001 := 1,

Applying arithmetic laws

1: { H-110 >= G-2 }

2: {C-0 G-2 >= H-110 + 1 }
3: {E-1 >= 2}

Result of simplification loop :
1: { H-110 >= G-2 }

2: {C-0 G-2 >= H-110 + 1 }
3: {E-1 >= 2}

Remaining variable coefficients with no values : H-110, E-1, G-2 and C-O.

Result of eliminating the addition by using lemma 2.
1: { H-110% >= G-2* }

2: { G-2% + C-0% >= 1.0 + H-110% }

3: { E-1*% >= 1.0 }

Result of collecting :

C-0* >= 1
U-1% >= 1
- U-1% + H-110% - G-2*% >= -0.0
U-2% >= 1

- U-2%x - H-110% + G-2*% + C-0* >= 1.0
U-3% >= 1

APPENDIX B. EXEMPLARY SESSIONS

- U-3% + E-1% >= 1.0

The simplex algorithm returns : H-110% = 1.0,

i.e. : H-110 = 1, C-0 =

The algorithm terminated successfully.

The operators are interpreted as follows:

[c1() = 8.0

[FI(X Y) =Y + X

[GI(X) = X"2

[E1(X) = 4.0 X

[HI(X Y Z2) = 2.0Y X + 2

[pJO =1

The interpreted rules are:

[H(X,X,Y)] = 2.0 X"2 + Y

[G(C)] = 64.0 >
[E(X)] = 4.0 X >
[F(X,Y)] = Y + X >

(0-9) :0

E-1% = 2.0, G-2% =

7.999999999999998.

> X2 = [G(X)]
24.0 = [H(C,D,C)]

2 X = [F(X,X)]

X = [X]

