Tools and Methods to Support
Opportunistic Human Activity
Recognition

David Bannach

Thesis approved
by the Department of Computer Science
of the Technical University of Kaiserslautern
for the award of the Doctoral Degree
Doctor of Engineering (Dr.-Ing.)

Thesis Advisor: Prof. Dr. Paul Lukowicz
Co-Advisor: Prof. Dr. Bernhard Sick
Dean: Prof. Dr. Klaus Schneider

Date of Defense: 6.3.2015

D386

ii

Abstract

Today’s pervasive availability of computing devices enabled with wireless com-
munication and location- or inertial sensing capabilities is unprecedented. The
number of smartphones sold worldwide are still growing and increasing numbers
of sensor enabled accessories are available which a user can wear in the shoe or
at the wrist for fitness tracking, or just temporarily puts on to measure vital
signs. Despite this availability of computing and sensing hardware the merit
of application seems rather limited regarding the full potential of information
inherent to such senor deployments. Most applications build upon a vertical de-
sign which encloses a narrowly defined sensor setup and algorithms specifically
tailored to suit the application’s purpose. Successful technologies, however, such
as the OSI model, which serves as base for internet communication, have used a
horizontal design that allows high level communication protocols to be run in-
dependently from the actual lower-level protocols and physical medium access.
This thesis contributes to a more horizontal design of human activity recognition
systems at two stages. First, it introduces an integrated toolchain to facilitate
the entire process of building activity recognition systems and to foster shar-
ing and reusing of individual components. At a second stage, a novel method
for automatic integration of new sensors to increase a system’s performance is
presented and discussed in detail.

The integrated toolchain is built around an efficient toolbox of parametriz-
able components for interfacing sensor hardware, synchronization and arrange-
ment of data streams, filtering and extraction of features, classification of feature
vectors, and interfacing output devices and applications. The toolbox emerged
as open-source project through several research projects and is actively used
by research groups. Furthermore, the toolchain supports recording, monitoring,
annotation, and sharing of large multi-modal data sets for activity recognition
through a set of integrated software tools and a web-enabled database.

The method for automatically integrating a new sensor into an existing sys-
tem is, at its core, a variation of well-established principles of semi-supervised
learning: (1) unsupervised clustering to discover structure in data, (2) assump-
tion that cluster membership is correlated with class membership, and (3) ob-
taining at a small number of labeled data points for each cluster, from which
the cluster labels are inferred. In most semi-supervised approaches, however,
the labels are the ground truth provided by the user. By contrast, the approach
presented in this thesis uses a classifier trained on an N-dimensional feature
space (old classifier) to provide labels for a few points in an (N+1)-dimensional
feature space which are used to generate a new, (N+1)-dimensional classifier.
The different factors that make a distribution difficult to handle are discussed,
a detailed description of heuristics designed to mitigate the influences of such
factors is provided, and a detailed evaluation on a set of over 3000 sensor com-
binations from 3 multi-user experiments that have been used by a variety of
previous studies of different activity recognition methods is presented.

iii

iv

Acknowledgments

I would like to thank Prof. Paul Lukowicz for giving me the opportunity to
work in such an interesting research field. I could not imagine doing my PhD
with somebody else. I'm deeply impressed by his always positive and inspiring
attitude. I would also like to thank Prof. Bernhard Sick for co-examining my
thesis and for the valuable discussions we had. I will never forget our surprising
encounter on a remote island.

I wish to thank all my colleagues at the ESL at University of Passau and
the CSN at UMIT in Tyrol for providing an inspiring and motivating working
atmosphere. I specially like to thank Kai Kunze, Georg Ogris, and Kamil Kloch
for the countless creative and fruitful discussions.

Throughout the WearlT@Work, MonAMI, and OPPORTUNITY projects 1
had the pleasure to work together with so many great colleagues which was an
enormous enrichment. I want to specially thank Oliver Amft, Alberto Calatroni,
Daniel Roggen, Prof. Alois Ferscha, Thomas Ziegert, Tobias Klug, Andreas
Zinnen, Thomas Stiefmeier, Marco Luca Sbodio, Thierry Milin, and Jean-Bart
Bruno for being such wonderful peers and for the great times we spent together.

I'm enormously grateful to all the contributors of the CRN Toolbox. They
made this project coming alive. And I also like to thank the students, which I
had the pleasure to supervise, and which implemented many useful parts of the
entire toolchain.

Finally, I want to thank the most important people to me, my parents and
my brother. They have always been there, supporting me in any way possible.
I thank Yvonne and Arwed Boitel for the great motivation — without them I
certainly would have missed this whole journey. And I thank Emi Auer for all
her love and the support I received in the last years.

Zurich, 9.8.2015
David Bannach

vi

Contents

[Abstractl iii
|Acknowledgments| v
Contents! vii

1 Motivation

[1.3.2 Online Activity Recognition Systems|.

[1.3.3 Activity Recognition Studies|

(1.3.4 Data Labelingl

[1.3.5 Opportunistic Activity Recognition|.

[1.3.6 Thesis Objectives|.

[L.4 Contributionsl
[1.4.1 Software Tools for Creating Online Activity Recognition

| Systems| . . . o. ..o e 9
[1.4.2 Automatic Integration of New Sensors into Existing Systems| 11

L5 Thesis Outlind 12
[1.5.1 Part I: Rapid Prototyping Framework for Activity Recog- |

| nitionlo 12
[1.5.2 Part II: Opportunistic Methods for Activity Recognition|. 13

© © © 00 J O Ut Ut Ww N =

(I Rapid Prototyping FW for Activity Recognition| 15

|2 Prototyping- and Runtime Toolbox| 17
2.1 Related Workl 18
2.2 Toolbox Concept| 19

[2.2.1 Reusable Components for Data Stream Processing| 19
222 Runtime Environment and Data Flow Controll 27
[2.2.3 Synchronizing Independent Data Streams| 27
[2.2.4 Readers: Sensor Hardware Encapsulation| 29
[2.2.5 Writers: Communication for Distributed Processing] . . . 29
[2.2.6 Graphical Tools for Configuration| 29
2.3 Step-By-Step Guide: How to Cook| 30

vii

viii

2.4 Case Studies
2.4.1 Supporting Information Flow in Hospitals|
2.4.2 Monitoring Walking Habits|
2.4.3 A Mixed-Reality Car Parking Game|

2.5 User Evaluationl.
2.5.1 Experience with Students|
[2.5.2 Eivaluation of researchersl

2.6 Conclusionl

[3 Event Based Synchronization|

BI RelatedWorkl

3.2 Challenges of event-based stream synchronization|.

3.3 Spotting and synchronization approach|.
8.3.1 Kvent spottingl
13.3.2 Event-based synchronization|
13.3.3 Specific synchronization properties|

B4 FEvaluationl. o o oo
[3.4.1 Fvaluation 1: force-acceleration-audiol
13.4.2 Evaluation 2: acceleration-positioning|
13.4.3 Livaluation 3: Office scenariol

B.5 Conclusionl

|4 Integrated Tool Chain|

4.1 Related Worklo

4. oncept| L
(21 Data Collectionl L.
4.2.2 Data Management and Annotation Enrichment|
4.2.3 Classifier Training and Online Context Recognition|. . . .
[4.2.4 Availability] oo

4.3 Conclusionl

(I Opportunistic Methods for Activity Recognition|

[FAdding New Sensors to Activity Recognition Systems|
5.1 Scope and Contribution|

5.3.2 Challenges|
b33 Method Overviewl
b.4 Evaluation Strategy and Data Sets|
5.4.1 Synthetic Datal

p.4.3 Evaluation Methodology|.
h44 Metricd
.5 The Label Inferring Method|
p.5.1 Finding Structure in Extended Feature Spacel
5.5.2 Inferring Cluster Labels|

41
42
43
44
45
45
48
49
49
o1
o1
o4

57
99
60
60
63
69
71
71

ix

[5.5.3 Adapting the Classifier Model to the Extended Feature |

| OPACE .« . . e e 93
[6.5.4 Estimating Plausibility and Gain] 93

5.6 Evaluation on Synthetic Datal 96
[5.6.1 Gradually Decreasing Cluster Overlap| 96

[6.6.2 Moving a Single Cluster| 98

BT Evaluation on Real Sensor Dafal. 99
B.8 Conclusionl L 101
|6 Labeling Clusters Based On Distribution Similarity] 103
[6.1 Timitations of the Label Inferring Method] 104
[6.:2 Chapter Outling 104
6.3 'The Similarity Search Method|. 106
6.4 The Bagging Method|. 108
6.4.1 Merging Aggregated Classifiers| 108

6.5 valuation on Synthetic Datal 109
[6.5.1 Evaluation on Real Sensor Datal 110

[6.5.2 Discussion of Resultd, 116

6.6 Conclusionl 117

|7 User Feedback to Support Integration of New Sensors| 121
[r.1 Chapter Outline| 122
[(.2 Related Workl 122
7.3 Approach 1: Pre-Labeling| 123

7.4 Approach 2: Fault Reduction| 125
4.1 uccess Probability Estimation| 125

L5 Fvalualionl. . . . o v oo oo oo e 126
[7.5.1 Evaluation Methodology Update| 127

[(.5.2 Baseline Methods|. 127

[7.5.3 Results on Synthetic Data Sets| 128

[[5.4 Resulis on Rea-Worl[d DataSetd 129

[(.6 Conclusionl 133

|8 Summary of Key Findings and Conclusion| 135
3.1 ctivity Recognition Toolchain| 135
8.2 Opportunistic Activity Recognition|. 137
8.2.1 Lessons Learnedl 139

8.3 Outlookl 140
Bibliograp 143

Chapter 1

Motivation

Recent years have seen a massive growth of mobile, sensor equipped computing
devices. Smartphones recently counted for half of all mobile phones in U.SE|
and for other regions of the world a similar trend is observed, making them
to the first real-world pervasive computing platform. Most of the devices can
locate themselves within world coordinates using cell tower and WIFT access
point information, or a global positioning system (GPS) receiver, and have a
full inertial measurement (3-axis accelerometer, -gyroscope, and -compass) unit
built-in. Publicly available software development kits and distribution channels
for third party applications made development for such platforms very popular.
A vast majority of smartphone applications concentrate on the device’s graphics
capabilities, multi-touch control, and sharing through social networks. Others,
that are context-sensitive, mostly are limited to contextual information such
as location or device orientation, as those are the pieces that are immediately
available. There are only few applications which are going beyond and try to
leverage the potential of the available sensors, e.g., a fitness app counting steps
while running. Accessory sensors are available to be worn on the body (shoe,
wrist) or mounted on bicycles for more accurate fitness tracking, or medical
units to measure blood pressure. Gaming consoles use inertial measurement
units in wireless controllers or vision based body tracking to let players interact
with games in more realistic manner with physical movements.

All those applications that incorporate activity recognition are based on a
rather vertical design. I.e., the activity recognition layer is tailored to a single
application and relying on a narrowly defined set of sensors. The individual
systems may do a good job within their specifications, there are however only
marginal synergies between them. Hence, each new system has to be built from
ground up again. Other, successful technologies have built on a horizontal, lay-
ered design, e.g., the OSI model which serves as the fundamental framework for
all computer communications. The OSI model defines clear abstraction layers
to decouple issues of physical signal transmission from higher level protocols
and applications.

Within this thesis we explore the task of creating and running activity recog-
nition systems and we investigate how opportunistic activity recognition systems

1 http://blog.nielsen.com/nielsenwire/online_mobile/smartphones-account-for-

half-of-all-mobile-phones-dominate-new-phone-purchases-in-the-us

http://blog.nielsen.com/nielsenwire/online_mobile/smartphones-account-for-half-of-all-mobile-phones-dominate-new-phone-purchases-in-the-us
http://blog.nielsen.com/nielsenwire/online_mobile/smartphones-account-for-half-of-all-mobile-phones-dominate-new-phone-purchases-in-the-us

can autonomously improve their performance at runtime by including new sen-
sors which were not known before.

To the first topic we contribute an integrated toolchain which supports all
phases during the development of activity recognition systems. It provides tools
for recording large-scale, multimodal datasets (which are necessary for training
of the recognition algorithms), tools for annotating and sharing of such data
sets, and a flexible toolbox of reconfigurable components for online processing
of sensor data streams for activity recognition. The toolchain has been used
already in various research projects and publications, and it is freely available
as an open-source projec

Secondly, we present a novel method for including new sensors into existing
activity recognition systems to improve its accuracy without or with minimal
user input and to ensure long-term evolution of such systems. The method
builds upon well established principles of semi-supervised learning and enhances
them to be applicable to the particular problem. Specifically, we provide heuris-
tics that cope with the issues apparent when applying the method to activity
recognition systems in real world scenarios, and we present a detailed evaluation
on a set of over 3000 sensor combinations from 3 multi-user experiments that
have been used by a variety of previous studies of different activity recognition
methods.

1.1 Background

In the early 1990s, in a time where computers have just emerged from large
mainframe machines to personal computers on people’s desktops, Mark Weiser
articulated the vision of ubiquitous computing [Wei91] — computers that disap-
pear in the background and unobtrusively interact with the user to deliver their
information:

“Machines that fit the human environment instead of forcing humans
to enter theirs will make using a computer as refreshing as a walk in
the woods.”

Obviously, this vision was well ahead of its time as the hardware and software
technology to realize it was just not there. Nevertheless, it inspired and mo-
tivated researchers all around the world to work in this direction. The term
“pervasive computing” arose to describe the more short-term realizable goals of
Weiser’s idealistic vision. Distributed systems and mobile computing are named
as two basic technologies that enable pervasive computing [Sat01]. Yet, the re-
search agenda goes beyond and also incorporates additional research thrusts
such as smart spaces [Har02, Bru0Q0, Wan02] and invisibility or — as an approx-
imation — minimal user distraction [Gar(2].

Only applications that are aware of the user’s context are able to adapt their
behavior in such a way that minimizes its visibility for the user. Early context-
aware applications focused on the user’s location and presence of other people
or resources [Sch94l [Pri00l [Har02], but soon it became obvious that the user’s
state — whether physical, physiological, or mental — is also an important aspect
of context [Abo99, [Sch99bl [Sch99a], and it turned out to be more difficult to
sense.

?http://contextdb.org/main/_design/contextDB/tools.html

http://contextdb.org/main/_design/contextDB/tools.html

Smart spaces may have difficulties determining the user’s state or high-level
activity as the the specific environment is entered usually for a limited time
only. In contrast, wearable computers worn close to the body over longer pe-
riods of time similar to clothing and accessories have a much higher chance to
capture the user’s state. Early work concentrated on recognizing human modes
of locomotion (e.g., sitting, standing, walking) from body-worn accelerometers
by analyzing signal thresholds [Far99) Lee02] [Sie03] or by applying neural net-
works [VLO0]. Other work extended the range of recognized context to high-
level activities of daily living by just using accelerometer data and machine
learning methods [Bao04] or by investigating additional sensors, e.g., micro-
phones (voice, ambient), temperature sensors (skin, ambient), light, and gal-
vanic skin response [Sie03] [Kra03]. More recent work showed that recognizing
fine-grained physical actions (e.g. opening a door, turning a screw) or gestures
is feasible [War(6l [StiO6b]. Recognizing fine-grained actions may help inferring
higher-level activities which contribute valuable context information that allows
context-aware applications to automatically adapt their behavior in the sense
of minimal user distraction. Gestures that are recognized in real-time may be
used to instantly control applications or computer games in an intuitive way.

1.2 Challenges for Activity Recognition

Activity recognition from body-mounted or environmental sensors is based on
parameters found in data that was previously recorded from the sensors during
execution of the different activities. Often, those parameters are statistical
measures. In theory, finding the same parameters in live data streams is enough
to determine the current activity. However, real world situations raise additional
challenges to activity recognition systems.

Recognition Accuracy The key performance measure for activity recognition
systems is the recognition accuracy. Only accurate information about
the user’s context can help computers or applications to minimize user
distraction. Wrong information instantly leads to the opposite effect. The
recognition accuracy therefore is a crucial measure. There are several
factors that come into play for achieving high accuracy:

Quality of Training Data Most obviously, the machine learning meth-
ods need lots of high quality training data in order to build good
classifier models. Acquiring and annotating such training data is
still an expensive task and it usually has to be repeated for each new
sensor setup.

Overfitting Problem The method must avoid overfitting, i.e., prevent
the case where the classifier model is too tightly fitted to patterns
that are unique to the training data sample and that do not occur
equally well in real-life sensor data. The model must be specific
enough to capture the patterns stemming from the activities to be
recognized and, at the same time, it must be general enough to allow
for enough variation in those patterns. Different users, for instance,
may perform activities in slightly different ways, or even a single user
may change the way how activities are performed, e.g., when getting
tired.

Application-specific Optimization Depending on the application, cer-
tain aspects of the general recognition accuracy may be more impor-
tant than others. A context-aware application which tries to mini-
mize user distraction, for instance, is primarily interested in getting
context information with high precision, i.e., wrong context infor-
mation would make the application to irritate the user more than if
no context information was available. On the other hand, a medi-
cal monitoring system would be interested in a high recall, i.e., it is
important to detect all (or as many as possible) instances of the mon-
itored activities. Furthermore, accurate timing of detected activities
may be of importance. This may be required at different levels. It
may just concern the duration of events, the temporal sequence, or
their exact start and end times.

Sensor Availability The availability of sensors in wearable systems and in
smart spaces is dynamic. Especially with wearable sensors, the user may
put on different sensors at different times, sensors may run out of battery
or just fail for other reasons. Placement of sensors on the body may switch
depending on user’s preferences or they may be moved and rotated unin-
tentionally during wearing. Sensors mounted in the environment may be
affected similarly and if the user is moving from one smart space into an-
other her wearable system suddenly faces different environmental sensors
and services. Activity recognition systems must be able to cope with the
dynamic availability of sensors in order to be useful in real-life situations.

New Sensors During the lifetime of an activity recognition system new sen-
sors can appear eventually which were not known at design time of the
system or which have just not been considered. This may for instance
be a shoe sensor to support sports monitoring or a smartphone being re-
placed by a newer generation device which provides extra sensors. Those
sensors may provide valuable information for recognizing certain activi-
ties or they may help distinguishing some activities in combination with
other sensors, and for many other activities they are just not useful at
all. But for those activities for which they deliver useful information it
would be favorable to integrate them into the activity recognition system
in order to improve its performance. The common scheme for building
activity recognition systems, however, requires the training data for all
sensors to exist beforehand. Methods are necessary to allow for dynamic
integration of new sources of information into existing systems depending
on the source’s usefulness regarding the specific recognition goals of the
system.

The addition of new sensors also rises the question of which feature(s) to
extract from the new data source, in order to achieve the best recognition
accuracy. We will, however, not cover the feature selection in this thesis.

Coding Effort As different the scope of activity recognition systems may be,
they have many system architecture related problems in common. Most
prominently these are the reading of measurements from the attached
sensors, filtering of the sensor signals to reduce unwanted noise and to
extract features, classification of the feature vector, and sending the re-
sult to the context-aware application. For single-sensor systems this seems

quite straightforward. However, as soon as multiple, distributed sensors of
possible different modalities are involved the systems complexity quickly
increases. Issues of temporal synchronization and alignment of unequally
sampled sensor signals arise, data streams from different sources need to
be merged carefully, and selected data channels may require different filter-
ing. Nevertheless, most of such problems occur similarly in many systems
and the basic architecture is primarily data driven. There is a large po-
tential of synergy. A common codebase and framework could facilitate the
construction of activity recognition systems and would enable researchers
to concentrate on problems beyond system architecture. Similarly, the
process of recording and annotating large sets of training data for the
machine learning methods appears repeatedly for new projects and the
required effort is strongly increasing with the number of sensors and the
quality targets. This demands for new methods and tools that support
this process and that allow for collaborative sharing of efforts.

1.3 Related Work

Many of the challenges for real life activity recognition have been addressed in
related work, at least to a certain extent. The achievements are summarized in
this section.

1.3.1 Context-Aware Frameworks and Pervasive Middle-
ware

Many approaches have been presented to establish an abstraction layer between
applications that demand for contextual information and the actual recognition
of context from sensor signals.

Dey [Dey01] proposes an application framework called Context Toolkit for
simplifying and unifying the creation of context sensitive applications. Con-
text is defined here as typically being the location, identity, and state of people,
groups, and computational and physical objects. The framework abstracts from
the possibly complex details of context recognition with the concept of “context
widgets”. The context widgets allow application developers to concentrate on
the core of their application without having to handle the details of how the con-
text information is acquired, similar to how GUI widgets simplify the creation
of GUI applications. The focus is on handling context information within the
application layer. There is no support for improving the accuracy or simplifying
the context recognition from sensor signals.

PCOM [Bec04] is a component system for pervasive computing, focusing
on spontaneously networked environments in which devices are connected on-
the-fly. Interdependencies of components are contractually specified, i.e., appli-
cation developers just need to specify their component’s requirements on the
executing platform, the functionality provided by their component, and its de-
pendencies on other components. The system also provides abstractions for
adaption strategies in case the availability or quality of related components is
changing. Such strategies basically prioritize possible components based on user
preferences.

RUNES [Cos07] is a middleware for networked embedded environments which
is designed for highly dynamic and reconfigurable systems running on heteroge-
nous sensor networks. The individual devices are able to reconfigure their
behavior and their information dissemination strategies as they become dam-
aged, e.g., under emergency conditions. Operators may dynamically reprogram
the networked sensors and actuators. The core of RUNES is designed to be
platform- and language independent such that it may be deployed on small sen-
sor nodes. Middleware components are deployed regarding the dynamic resource
constraints.

These are only a few examples of context-aware frameworks and pervasive
middleware (more can be found in [End05]), still they reveal a mayor issue with
such middleware: while they focus on abstracting and communicating contex-
tual information there is no real support for the complex process of context- or
activity recognition. Yet, without a reliable base of context recognition those
frameworks can not manifest their full potential.

A prominent example of a successful abstraction model is the OSI network
stack [Zim80]. It cleanly separates lower-level data transmission tasks from
higher-level protocol implementations. It does this at seven distinct layers which
cover the complete range from physical media access up to the application.
Hence, it allows applications to communicate independently of underlying pro-
tocol implementations and actual physical connection medium. Frameworks for
context- and activity recognition could profit from such clean abstraction lay-
ers and thorough implementations. One approach of a layered architecture for
pervasive systems is shown e.g. in [Agil2], yet it is still a high-level approach,
neglecting the specific requirements at the lower layers.

In the audio processing and data visualization domains it is common to
model the processing chain as a set of independent processing components which
are configured and connected in a graphical editor [Puc88| [She96]. This ap-
proach may benefit the activity recognition domain where streams of sensor
data need to be processed in real-time.

1.3.2 Online Activity Recognition Systems

The following works highlight the challenges that arise at the level of context
and activity recognition, where the actual sensing hardware is interfaced and
where the sensor signals are processed and evaluated in real time.

Schmidt et al. [Sch99a] proposed a layered architecture for real-time context
recognition from low-level sensors. Raw values received from a sensor are col-
lected in “cues” for which a symbolic value is assigned. Cues either provide a
summary of the values over time or they help to extract features from the raw
data that characterize the data over the last period of time. At the next level, a
set of logical rules transforms the cues from multiple sensors into a description
of current context. Finally, the provided scripting primitives allow applications
to react on context changes to implement the desired behavior.

Randell et al. [Ran00] presented a low power activity recognition system
integrated into a tour guide application. The authors first collected data from a
two-axis accelerometer from 10 subjects performing 6 different activities (sitting,
standing, walking straight/up/down, running) for training and evaluating the
system. Two features (RMS, 2 seconds integral) were computed on each sensor
channel and fed into a neural network classifier. An accuracy of around 95%

was achieved and the system already delivered valuable information to the tour
guide application which could adapt its behavior to the user’s locomotion mode.

In [Cho08] the evolution of an embedded activity recognition system (MSP,
also used in [Les06]) is described. The MSP is an integrated wearable device with
ARM CPU, wireless connectivity, and various sensors. The system architecture
evolved in an iterative process that revealed a core set of activity recognition
component requirements. The initial deployments focused on gathering real-
world activity traces for offline analysis. The unreliable Bluetooth connection
forced them to use a wired connection for logging the data streams. A second
version of the device incorporated enough storage and CPU power to record the
sensor data locally and to process them in real-time for activity recognition. The
classifiers were trained offline and then implemented on the device, configurable
through an XML file. Extended feature selection and classification methods
have been studied but they have still to be implemented on the wearable device.
The system was used in several projects concerning the sensing of user physical
activity level.

The above examples all revealed online activity recognition systems running
on dedicated hardware. The earlier ones had a rather narrow scope and their
algorithms were tightly tailored to the application needs and to the low power
limitations of the hardware platform. The last example could already benefit
from advanced hardware to support more sophisticated activity recognition al-
gorithms. However, those systems were not designed to support a wide range of
applications and have limited flexibility. Particularly, the available algorithms
are tailored to application needs and no efforts are presented to facilitate addi-
tion of new algorithms or recombination of existing ones for different application
targets.

1.3.3 Activity Recognition Studies

Bao et al. [Bao04] presented a study of activity recognition from accelerom-
eters mounted on the body. A set of 20 everyday household activities were
recorded from 20 subjects without direct researcher supervision. The subjects
themselves labeled start and end time of each activity. Before starting a record-
ing, the clocks of the individual sensor boards were synchronized. Additionally,
the boards were shaken together at the beginning and end of each recording
and after the recording, the peaks of the distinct shaking pattern in the sig-
nals were visually aligned to compensate for individual clock skew. From the
recorded data a set of features (mean, energy, frequency-domain entropy, and
correlation) were extracted with a sliding/jumping window method. The feature
vectors were used for training and evaluating different classifiers (C4.5 decision
tree, naive Bayes) with the WEKA machine learning toolkit. C4.5 performed
best with 84% overall accuracy (leave-one-subject-out validation). Only few ac-
tivities such as “stretching” and “folding laundry” were often confused because
of similar feature vectors.

Lester et al. [Les06] presented a study of activity recognition from a single
body-mounted sensing unit covering diverse sensing modalities, including ac-
celeration, magnetic field, ambient sound, air pressure, humidity, temperature,
and ambient light. Data was recorded from 12 subjects performing 8 activities
(sitting, standing, walking straight/up/down, riding elevator up/down, brush-
ing teeth). An observer was instructing the subjects and labeled start and end

times of activities by using a simple annotation program on an iPAQ hand-
held device. The data from the sensing unit was recorded on a small notebook
computer carried by the subject. In an offline analysis, the data was processed
in three stages. First, a set of 9 features (time and frequency domain) was
computed with a jumping window method, resulting in a 651 dimensional fea-
ture vector at 4 Hz. Then, AdaBoost was used to automatically select the 50
best features and to learn an ensemble of discriminative classifiers. Finally, the
output of those classifiers were used as input into HMMs to ensure temporal
smoothness. On the 8 activities an overall accuracy of nearly 90% was achieved,
and limiting the number of sensing modalities to three (audio, pressure, acceler-
ation) did yield similar results. Of the 30 hours of recorded data only 12 hours
could be used because of memory limitations in the offline analysis.

Those studies highlight the effort needed for training and evaluating reliable
activity recognition methods. Besides presenting activity recognition methods
targeted for real world scenarios there is no mention of any tools to facilitate
the process of recording, handling, or utilizing large activity recognition data
sets, except for the WEKA machine learning toolkit.

1.3.4 Data Labeling

A major effort in training of activity recognition methods to specific scenarios
is the creation of properly annotated training data sets. The manual labeling
of training instances, which is normally necessary, is time consuming and error
prone. Below is a selection of works which investigated alternative methods that
reduce the amount of labeled data needed for activity recognition.

Szewcyzk et al. [Sze09] compared four different labeling strategies. They used
data from a smart apartment which had event based sensors installed (e.g., mo-
tion detectors) and the goal was to recognize high-level activities such as sleep-
ing, eating, personal hygiene, preparing meal, working at computer, watching
TV, and “other”. Annotating the raw sensor data (timestamped events) took
the most time and yielded the worst classification accuracy. Including feedback
from the experiment subjects (the residents) reduced the time needed for anno-
tation and improved the classification accuracy. Visualizing the recorded data
in a 3D model of the apartment helped to reduce annotation time by a factor
of 2 (3.3 with feedback) and further increased recognition accuracy. However,
implementing and debugging the visualization took the most time.

Stikic et al. [StilI] investigated new strategies to reduce the amount of la-
beled data needed for long-term activity recognition by applying “weakly su-
pervised” learning methods. Specifically, they propagated labels from known
instances to the unlabeled data using a graph structure. The graph connects
two nodes (data points) if they are close to each other in feature space or in
time. Applying this method on datasets of high-level daily activities, the ex-
perience sampling interval could be increased up to 60 minutes with almost no
accuracy loss, and the method could successfully deal with labeling errors of up
to 20% of the data.

In earlier work, Stikic et al. [StiO8b] explored the use of semi-supervised
techniques for activity recognition. They found self-training and co-training to
be capable to learn from very limited amount of labeled training data. With
a pool based active learning method they achieved comparable or sometimes
higher accuracy than with fully supervised methods.

1.3.5 Opportunistic Activity Recognition

Instead of deploying sensors specific to application scenarios, opportunistic ac-
tivity recognition systems [Rogl3| follow a new paradigm in which the activity
recognition methods themselves adapt to the available sensor data.

Kunze et al. [Kun08] presented a set of heuristics to handle sensor displace-
ment in onbody activity recognition systems. The method is based on ignoring
rotation dominated accelerometer signal segments and using a gyroscope to
compensate for lost rotation information. In making activity recognition dis-
placement tolerant the robustness for long term deployment increases and with
it the usability and user acceptance.

Forster et al. [F6r09] introduced a different approach for robustness against
unintentional sensor displacement. The method is based on online unsupervised
classifier self-calibration. On reoccurring context instances they apply an online
learning algorithm to adjust the decision boundaries according to the changed
statistics of the classes. The approach proved feasible to compensate for small
sensor displacements, e.g., when a sensor is slowly slipping along a limb segment.
Abrupt and larger displacements can not be handled sufficiently by this method.

Calatroni et al. [Callll [Call0] presented a method for transferring the ac-
tivity recognition capability of an existing sensor node to a newly deployed and
untrained node, without user intervention. Labels of recognized activities from
the first nodes are transferred to the latter, which incrementally associate their
sensor signals to the received labels. Using behavioral assumptions such as
“open drawer” implies “standing” or that the user walks away after closing a
drawer, the method is shown to work across different sensing modalities in a
posture and modes of locomotion recognition scenario.

1.3.6 Thesis Objectives

With this thesis we aim to find tools that are structuring and simplifying the
creation of efficient real-world activity recognition systems such that different
activity recognition methods may be studied in real-world situations with less
effort on the implementation side and with more focus on the actual goal of the
methods. Secondly, we aim at methods that enable such systems to continuously
and autonomously evolve over time by opportunistically exploiting available
resources in changing environments.

1.4 Contributions

This thesis makes contributions at two different stages of real-world activity
recognition systems. The first concerning the tools for creating and handling
such systems, the second dealing with long-term automatic adaptation and evo-
lution of the system to address the changing sensor infrastructure.

1.4.1 Software Tools for Creating Online Activity Recog-
nition Systems

We provide an efficient, reconfigurable, software toolbox for rapid prototyp-
ing of online activity recognition systems. This toolbox builds upon reusable,
parametrizable components which can flexibly be connected to establish the

10

specific data acquisition and processing chain needed for each application. It
simplifies the construction of activity recognition systems to just connecting
and configuring components in a GUI in many cases. Specifically, a broad set
of components for

e reading live data from various sensors or external software tools,
e filtering in time and frequency domain and extracting features,

e merging and splitting individual data streams,

e segmentation of data streams,

e classifying data stream segments into defined activity classes, and
e writing live data or results to output devices or external tools

is provided, embedded in a framework which supports the dynamic instantiation
and configuration of individual components and which assures the data flow
between the components. The architecture is designed to be open for extensions
such as, e.g., components for evaluation. The software is freely available as an
open source projectﬂ and is used in various research projects and publications.

We investigate the clock synchronization problem in heterogenous sensor
networks and present a solution for automatically synchronizing data streams
received from such sensors. Our synchronization method is based on the detec-
tion of physical events across multiple sensors of arbitrary modality to determine
the clock offset of the involved sensors. A solution is provided to, among all
detected events, exactly identify the event on each data stream which corre-
sponds to the same physical event, regardless of the sensing modality. We de-
scribe fundamental properties and bounds of our event-based synchronization
approach. In particular, we show that the event timing relation is transitive
for sensor groups with shared members. In three studies with real-world sensor
data, including a data set with four different sensing systems recorded from
5 subjects and 5 hours in total, we show the feasibility of our approach and
achieve automatic stream synchronization with less than 0.3 s error for 80% of
the synchronization actions.

We provide an integrated toolchain to support the entire process of creating
online recognition systems, which includes

e recording of large-scale, multimodal data sets,
e annotating, managing, and sharing of the data sets,

o utilizing the data sets for training and evaluation of activity recognition
algorithms, and

e deploying them in online activity recognition systems.

The toolchain is built around the above mentioned activity recognition toolbox
with additional tools to support the various stages, and a central, web-based
database which serves as a portal to access all components of the toolchain. The
database portal is publicly accessible at |contextdb.org and already provides

Shttp://crnt.sf.net

contextdb.org

11

a large, annotated data set recorded from 72 sensors belonging to 10 different
modalities in totally 60 recording sessions.

The above software tools evolved in the attempt to answer the question if the
creation of activity- and context recognition systems can be structured in a way
that allows for an autonomous reconfiguration and evolution of such systems.

1.4.2 Automatic Integration of New Sensors into Existing
Systems

An important scenario for opportunistic activity recognition systems is the ap-
pearance of a new sensor which possibly can contribute valuable information to
better discriminate the activities to be recognized. The inclusion of such a sen-
sor may hence improve overall system accuracy. Instead of manually retraining
the system with the new sensor we investigate ways for automatic integration
of the new sensor using the existing recognition model and unlabeled or very
sparsely labeled data from the new sensor, but without knowing a priori the
usefulness of the new sensor.

The goal would be that with the addition of the new sensor the recognition
accuracy would increase for at least some occasions without negatively affecting
the performance in other occasions. The trivial approach to achieve this is to

1. find the cluster structure in the extended feature space from the joint
sensors set,

2. identify points within the clusters that can be labeled with high confidence
using the original classifier model,

3. propagate the labels from such points to entire clusters based on the as-
sumption that clusters and classes are correlated, and

4. use the cluster labels to improve accuracy for points that can not be
accurately classified with the old sensor alone.

For trivial setups this approach may provide the desired results but, unfor-
tunately, in real life activity recognition systems three basic assumptions are
not met and those are the ones that make this problem challenging:

1. the cluster structures found in the extended feature space do not always
correspond to the activity classes,

2. the specific relationship between original and new feature space not always
allows to label at least a few data points in each cluster, and

3. the availability of a large amount of representative training data is not
always given.

The core contribution of this thesis, regarding opportunistic activity recogni-
tion, is to explore extensions to the trivial heuristics and to show their potential
to:

1. achieve an improvement with the more complex distributions that usually
appear in real life sensor data, and to

12

Chapter 1: Motivation

: Part Il: Opportunistic
Part I: Tools
Methods
Chapter 5
Chapter 2 || Chapter 3 New Sensor
CRN Synchro- S ————————
Toolbox nization Chapter 6

Distribution Similarity

————
Chapter 4 Chapter 7
Integrated Toolchain User Feedback

Chapter 8: Conclustion

Figure 1.1: Thesis outline.

2. reduce the probability that an unfavorable distribution (or a sensor that
does not provide useful information) leads to a performance decrease.

We discuss different factors that make a distribution difficult to handle, provide
a detailed description of heuristics designed to mitigate the influences of such
factors, and present a detailed evaluation on a set of over 3000 sensor combina-
tions from 3 multi-user experiments that have been used by a variety of previous
studies of different activity recognition methods.

1.5 Thesis Outline

The thesis is structured into two parts with the first part covering tools for build-
ing and maintaining activity recognition system, and the second part presenting
the in-depth study of a novel method for opportunistic activity recognition sys-
tems. Figure illustrates the outline of the thesis. Most chapters are based
on a scientific publication. Table summarizes the relation of the chapters
and the individual publications.

1.5.1 Part I: Rapid Prototyping Framework for Activity
Recognition

The first part is divided into three chapters. It starts out by presenting the
Context Recognition Network (CRN) Toolbox in Chapter [2, a flexible rapid
prototyping and runtime environment for context and activity recognition sys-
tems. Chapter [3| deals with synchronization of multi-modal data streams in
heterogenous sensor networks, and Chapter {| finally consolidates the concepts

13

into an integrated toolchain for creating and maintaining activity recognition
systems.

1.5.2 Part II: Opportunistic Methods for Activity Recog-
nition

The second part of this thesis is a sequence of three chapters pursuing the
same topic of a novel method for opportunistic activity recognition systems.
The basic idea and concept of adding a new sensor to an existing system is
presented in Chapter [§] together the initial evaluation. An advanced approach
based on distribution similarity is investigated in Chapter [6] and in Chapter
we explore two extensions of the latest approach which integrate minimal user
feedback to selectively boost the method’s performance.

The thesis is concluded in Chapter [§] with a summary of the key findings
and outlook.

14

Table 1.1: Relation of thesis chapters and publications.

DO

Chapter

David Bannach, Oliver Amft, and Paul Lukowicz. Rapid
prototyping of activity recognition applications. IEEE Per-
vasive Computing, 7(2):22-31, 2008.

David Bannach, Kai Kunze, Paul Lukowicz, and Oliver
Amft. Distributed modular toolbox for multi-modal con-
text recognition. In Proceedings of the 19th International
Conference on Architecture of Computing Systems, volume
3894 of LNCS, pages 99-113. Springer, 2006.

Chapter

[9%)

David Bannach, Oliver Amft, and Paul Lukowicz. Au-
tomatic event-based synchronization of multimodal data
streams from wearable and ambient sensors. In Proceedings
of the 4th European conference on Smart sensing and con-
text, EuroSSC’09, pages 135-148, Berlin, Heidelberg, 2009.
Springer-Verlag.

[Ny

Chapter

David Bannach and Paul Lukowicz. Integrated tool chain
for recording, handling, and utilizing large, multimodal con-
text data sets for context recognition systems. In Workshop
Proceedings of the 24th International Conference on Archi-
tecture of Computing Systems 2011, pages 311-320. VDE,
2011.

David Bannach, Kai Kunze, Jens Weppner, and Paul
Lukowicz. Integrated tool chain for recording and han-
dling large, multimodal context recognition data sets. In
Proceedings of the 12th ACM international conference ad-
junct papers on Ubiquitous computing, Ubicomp ’10, pages
357-358, New York, NY, USA, 2010. ACM.

Chapters

[

David Bannach, Bernhard Sick, and Paul Lukowicz. Au-
tomatic adaptation of mobile activity recognition systems
to new sensors. In Workshop Mobile sensing challenges,
opportunities and future directions at Ubicomp 2011.

Part 1

Rapid Prototyping
Framework for Activity
Recognition

15

Chapter 2

Prototyping- and Runtime
Toolbox

This chapter introduces the Context Recognition Network (CRN) Toolbox which
permits fast implementation of activity- and context recognition systems. It uti-
lizes parameterizable and reusable software components and provides a broad set
of online algorithms for multi-modal sensor input, signal processing, and pattern
recognition. It features mechanisms for distributed processing and support for
mobile and wearable devices.

Within this chapter we present the concept of the CRN Toolbox and highlight
different case studies indicating its merit in industrial projects, as educational
tool for students, and processing engine in activity recognition demonstrators.
Moreover, we summarize user evaluation results.

David Bannach, Oliver Amft, and Paul Lukowicz. Rapid prototyping of activity recognition
applications. IEEE Pervasive Computing, 7(2):22-31, 2008.

David Bannach, Kai Kunze, Paul Lukowicz, and Oliver Amft. Distributed modular toolbox
for multi-modal context recognition. In Proceedings of the 19th International Conference on
Architecture of Computing Systems, volume 3894 of LNCS, pages 99-113. Springer, 2006.

Today, the development of activity recognition systems is mostly done in
two phases. First the recognition method (sensor setup, feature set, classifiers,
classifier parameters, fusion methods etc.) is designed. In this first phase exper-
imental data is mostly fed offline into conventional rapid prototyping tools such
as Matlab. These tools provide a rich reservoir of “off the shelve”, parameteriz-
able algorithms and visualization methods. Thus, different system variants can
be tested quickly without the need for time consuming implementation work.

Unfortunately most such simulation environments are not suitable for actu-
ally running applications, especially in mobile and pervasive environments. In
general, they depend on custom “engines” or libraries requiring large memory
footprints and high computing power. Consequently, the implementation of ac-
tivity recognition applications is mostly done in a separate, second phase. The
selected algorithms are implemented in an appropriate programming language

17

18

and then distributed to specific devices. Issues that need to be addressed in-
clude sensor interfaces, synchronization of the sensor signals, and optimization
for specific devices (e.g., floating-point or fixed-point calculation).

The Context Recognition Network (CRN) Toolbox (available under LGPL
from http://crnt.sf.net) presented in this chapter has been developed to
combine the two phases and permits quick construction of complex multi-modal
context recognition systems, that can be immediately deployed in the targeted
environment.

2.1 Related Work

The CRN Toolbox is not intended to be a general purpose pervasive middle-
ware such as RUNES [Cos07] or sensor node operating system as TinyOS [Hil00].
Neither it is a high-level framework for rule-based automation, such as Visual-
RDK [WeiQ7]. Instead, it is a tool set specifically optimized for the implemen-
tation of multi-modal, distributed activity and context recognition systems run-
ning on POSIX operating systems. Like conventional rapid prototyping tools,
it contains a collection of ready to use algorithms (e.g., signal processing, pat-
tern classification). Unlike classic event detection in homogeneous sensor net-
works, as DSWare [Li04], the CRN Toolbox supports complex activity detection
from heterogeneous sensors. Moreover, its implementation is particularly opti-
mized for mobile devices. This includes the ability to execute algorithms either
in floating-point or fixed-point arithmetic without recoding. With its mature
functionality, we believe that the CRN Toolbox will not suffer from limited user
acceptance as the Context toolkit framework [Edw03].

The CRN Toolbox contains dedicated building blocks for interfacing a broad
range of sensor nodes and support for synchronization, merging, and splitting
of data streams. In contrast to the PCOM model [Bec04], which focuses on
contract-based spontaneous configuration, the Toolbox relies on a known net-
work topology. Applications can be flexibly distributed among devices (includ-
ing servers) just by starting the configured Toolbox runtime on the appropriate
system. Another important feature is the ability to interface conventional sim-
ulation environments such as WEKA (http://www.cs.waikato.ac.nz/~ml).
The functionality is accessible through a graphical configuration editor that al-
lows the construction of complex applications by connecting and configuring a
set of task icons corresponding to different processing steps.

The concepts utilized by the CRN Toolbox, including graphical program-
ming, data driven computation, parameterizable libraries, and distribution are
themselves not new. Such concepts have been usedj, e.g., for audio process-
ing and data visualization [Puc88], [She96], general signal processing [Sic9§|, or
graphical programming tools [Joh97]. But neither of those frameworks and
tools cover all the specific demands of activity- and context recognition systems.
Specifically, they are lacking the portability between different devices that may
have limited recources, outsourcing of computationally expensive tasks to less
limited devices, abstraction of the algorithms from actual data type, and support
for synchronizing multimodal data streams from heterogeneous sensors with un-
known clocks. The contribution of the CRN Toolbox is having those concepts
adapted and integrated in a way, optimal for rapid and efficient implementation
of activity- and context recognition systems.

http://crnt.sf.net
http://www.cs.waikato.ac.nz/~ml

19

2.2 Toolbox Concept

The concept of the CRN Toolbox stems from the observation that most activity
recognition systems are built from a relatively small set of algorithms. These
include sliding-window signal partitioning, standard time and frequency domain
features, classifiers, and time series or event-based modeling algorithms.

The key differences between systems are in sensor choice, parameterization of
algorithms (e.g., size of sliding-window) and data flow. The data flow can be as
simple as feeding single-dimensional sensor data to a mean filter and a classifier.
This could be a configuration for recognizing sitting and standing from an upper
leg accelerometer, for example. It can be as complex as fusing data from tens
of heterogeneous sensors, working with different sampling frequencies, different
feature computations, and even different classifiers. In such complex systems,
sensor subgroups are often handled by different platforms (e.g., different mobile
devices and servers for stationary sensors). The implementation must take care
of the distributed computation, collection of data, and synchronization of the
different data streams.

The CRN Toolbox simplifies the implementation of even such complex, dis-
tributed context recognition systems to the following three steps:

1. compiling the Toolbox for all platforms that it needs to run on,
2. selecting and configuring the algorithms and data flow for each platform,
3. starting the Toolbox on each platform with the dedicated configuration.

If algorithms should be analyzed that are not present in the current Toolbox
implementation, rapid prototyping tools running on a remote server can easily
be interfaced.

Figure shows an overview of the CRN Toolbox concept. The step-by-
step configuration guide in Section [2.3| presents a simple example for recognizing
kitchen activities from the user’s on-body sensors.

2.2.1 Reusable Components for Data Stream Processing

The basic building blocks provided by the CRN Toolbox are the reusable and
parameterizable components. Conceptually, the components are active objects
that operate on data streams. We refer to them as tasks. They encapsulate
algorithms and data, and have an individual thread of execution. In essence,
all tasks are executed in parallel, waiting for data packets to arrive at their in-
port, process the packet’s payload according to their algorithm and parameter
settings and provide the modified data packet at their out-port. Depending on
the configured data flow, subsequent tasks will receive the packet for further
processing.

The Toolbox provides reader- and writer tasks for interfacing with in- and
output devices, processing algorithms for data filtering and classification as well
as components for splitting, merging, and synchronizing of data streams. A
summary of tasks that evolved during this thesis is listed in Table Every
task has an individual number of parameters that control its operation. For
example, the K-Nearest Neighbor (KNN) classifier task takes the k, a matrix of
training data, and an optional step-size parameter.

20

®

Parameterizable
Components

Sensor Devices

= CRN Toolbox | —» | Ext.
L Runtime |<— | Tool
: @

Configurati“on Editor l l ®
[0 [d

Output Devices

Figure 2.1: Concept of the CRN Toolbox: (1) a repository of parameterizable
software components including I/O device readers and writers, filtering- and
classification algorithms, components for splitting, merging, and synchronizing
data streams, (2) a graphical editor for specifying data flow and configuring
components, (3) the CRN Toolbox runtime environment for online executing
the configured software components, (4) arbitrary external tools, communicat-
ing with the Toolbox runtime, e.g., live data stream plotting or another Tool-
box (local or remote).

Each task is implemented as its own (POSIX) thread to completely decouple
the scheduling from the network design and to exploit the potential of multi-core
processors. Those threads are often idle while waiting for a new data packet to
be available from their in-port queue and they only consume processing power
when actually handling the data packet. As a consequence of the multi-threaded
approach, a task must immediately delete any reference to the data packet after
handing it over to one of its out-ports, because from then on it will be handled
by another task which must have exclusive access. If necessary, new tasks can
easily be added to the Toolbox by implementing a concrete subclass of the
abstract StreamTask class, adding it to the build system, and rebuilding the
Toolbox. They will be available for instantiation and configuration from then
on.

The encapsulation in active objects and the parameterization proved essen-
tial for the reusability of the actual code. Hence, for most applications the fact
that the Toolbox is implemented in C++ is insignificant, and yet they benefit
from the efficient runtime.

21

Table 2.1: Summary of components available in the CRN Toolbox that evolved
during this thesis. Detailed task descriptions are available as Doxygen web pages
from the code repository. The list is constantly growing as more and more users
are contributing to the project.

Generic reader tasks using decoder plug-in:

DirectInputReader
FileReader
KeyboardReader
SerialReader
TCPReader
TCPServerReader

UDPReader

Specific reader tasks:

Passing data through function call (API)

Reading from file

Reading keystrokes

Reading from serial device (including Bluetooth, ZigBee)
Reading from TCP sockets (client mode)

Reading from TCP sockets (server mode)

Reading from UDP sockets

AliveEcgReader
AntGenericReader
ARSBReader
AudioFileReader
AudioReader
BAccReader
BTnodeReader
ContextDBReader
CricketReader
DAMReader
EmoBoardReader
ESLTmoteReader
FBReader
HexamiteReader
HttpInput
JennicDataReader

LukotronicReader

MagneticAccelReaderByte

MTO9Reader

Alive Heart Monitor

ANT protocol

ARSB (walking sensing)

Audio file

Audio device (soundcard)

BAcc (Bluetooth acceleration sensor)
BTnode

ContextDB (Apache CouchDB)

MIT Cricket

DAM (Data Acquisition Module)
Emotion Board (ETH)

Tmote touch-less touchpad

Serial port, frame-based devices
Hexamite (ultrasonic positioning)
HTTP (web interface)

Jennic sensors

Lukotronic (motion capturing)
Magnetic sensor (location & orientation)

Xsens MT9/MTi

continued on next page

22

continued from previous page

NeoAccelReader
NMEAReader
OmTouchPadReader
ParticleReader
PhilipsReader
SCIPIOReader
SensFloorReader
SinGenerator
SuuntoReader
TFSRReader
TMagReader
TMSIFReader
TRFIDReader
UTicker
WiiReader

XbusReader?2

Channel reordering tasks:

Openmoko Neo accelerometer
NMEA protocol (GPS)
Openmoko Freerunner accelero
TecO Particles

MyHeart protocol

SCIPIO (sensor glove)

Future Shape SensFloor

Sinus generator

Suunto wireless sensors (HRM,
Tmote force sensing resistors
Tmote magnetic distance
TMSI fiber protocol

Tmote RFID

Ticker (packet generator)

Wiimote

meter

FootPod, GPSPod, etc.)

Xsens Xbus (up to 12 Xsens MTi units)

ChannelSelect
ChannelSelection
ConstMerger
Demultiplexer
DownsamplingMerger
ResamplingSyncMerger
SelectiveSplitterTask
SimpleMerger

SyncMerger

Filtering tasks:

Dynamic selection of a channel

Select channels by name

Merging multiple streams at constant data rate

Demultiplexing interleaved streams

Merging two streams, downsampling

Merging two streams, choice of sampling methods

Select channels by index

Merging multiple streams, up-sampling (last)

Merging two streams by timest

amp

Distance2Position

Distance2Position3D

Simple position calculation

3D position calculation from distance measurements

continued on next page

23

continued from previous page

Downsample
Einsnorm
FilterTask
FindBlob
FindMax

FreqScanner

Let only fraction of data packets pass

Sum of absolute values

Sliding-window filter task using filter plug-ins (see below)
Find contiguous blobs

Find maximal channel

Determine rate of incoming data

NeoDynamicCalibrationFilter Calibrating Openmoko acceleration data

0ffSet

PeakFinder
ProximityEstimator
RFIDTranslator
Rotate3D
SegmentFilter
SensFloorCamTrigger
Slider

StrMatcher
SwiftSeg
TrailingEdge
TransitionDetector

VecLen

Filter plug-ins:

Add offset vector

Find peaks

Discrete proximity from Particle distance data
Translate RFIDs from ByteBufValue to IntValue
Rotate 3D vectors

Apply filter to whole segment

Transform SensFloor data into heartbeat stream
Convert touch-less touchpad data into “slider” value [0, 1]
String matching

Approximate data stream using polynomials

Detect trailing edges

Only let data packets pass if not identical to previous

Calculate vector length

AbsFilter
ASEFilter*
BERFilter*
BWFilter*
CGFilter*
Cutoff
EntropyFilter*
FFT

FFTW

FluctuationFilter™

Absolute value

ASE (average signal energy)
BER (band energy ratio)
BW (bandwidth)

CG (center of gravity)
Cut-off

Entropy

FFT (fast Fourier transform)
FFT (using libfftw)

fluctuation

continued on next page

24

continued from previous page

IIRFilter

MaxFilter
MeanFilter
MedianFilter
MinFilter
Quat2rotmatFilter
ScaleFilter
SimpleHighpassFilter
SimpleLowpassFilter
SlopeFilter
SumFilter
SFRFilter*
ThresholdFilter

VarFilter

Classification tasks:

IIR (infinite impulse response)
Max

Mean

Median

Min

Convert quaternions to rotation matrix
Scale

high-pass

low-pass

slope

Sum

SFR (spectral rolloff frequency)
Threshold

Variance

CarPositionClassifier

DecisionTree
ESParser
Hexamite2D

HMM

KNN

ParserTask
RangeChecker
SequenceDetector
ShakeDetector

SlidingGestures

Miscellaneous tasks:

Simple position classification

Decision tree classifier

Earley-Stolcke parser (PCFQ)

Simple location-based classification

Hidden Markov models

K-Nearest Neighbor

PCFG (probabilistic context-free grammars) baseclass
Very simple range checker

Spotting known sequences

Detecting shake gesture

Detecting “sliding” gestures

CmdDispatcher

ContextLogic

Specific command dispatcher

Specific data conversions for hospital scenario

continued on next page

25

continued from previous page

ContextMonitor
Correlator
Heartbeat
LabelBasedSegmenter
MagneticDataRefiner
Mapping

Nothing
ProximityWatcher
RFIDWatcher

ScrollCounter

SetStreamDescription

Similarity

SliderCommandsTmoteTouch

StoryTracker

Superpacket2SyncEvent

SWAB
SyncBench
Synchronizer
SyncManager
Tapper
UDPHeartbeat

Valve

‘Writer tasks:

Monitoring context information

Empirical correlation coefficient of two streams
Audible Heartbeat

Segmenting data based on label

Approx. distance & orientation from magnetic sensor
Map vector to scalar

Pass-through (debugging)

Translating output from ProximityEstimator
Translating output from MiminiReader

Specific gesture repeater

Set stream description on passed-through packets
Similarity search

Send discrete slider/scroll commands
Extracting meta-data for story file

Convert superpackets to SyncEvents

Explicit time series segmentation

Stream synchronization tool

Event-based synchronizer

Synchronization event manager

Extracts seqNr fields from superpackets
Broadcasting stream metadata via UDP

Valve-like control of data flow

AudioFileWriter
AudioWriter
ConsoleWriter
CouchWriter
DirectOutputWriter
DisplayGraph
DisplayImage

FileWriter

Audio file

Audio device (soundcard)

Console

ContextDB (Apache CouchDB)

Passing data to callback/polling function (API)
X11 desktop graph

X11 desktop image

File

continued on next page

26

continued from previous page

GizmodWriter
JMSWriter
Nirvana
SerialWriter
Sink
TCPClientWriter
TCPWriter

UDPWriter

Encoder plug-ins:

Gizmo daemon

ActiveMQ messaging service
Quietly discard data

Serial port

Sink

TCP (as client)

TCP (as server)

UDP broadcast/multicast

ARFFEncoder
BinaryEncoder
CmdEncoder
CouchEncoder
IntLinesEncoder
IntToTextEncoder
JsonEncoder
PlottingEncoder
SuperPacketEncoder
TextLabelEncoder

TimestampedLinesEncoder

Decoder plug-ins:

ARFF format (WEKA)

Binary to Int encoding

Command strings encoding (printf-like)
JSON encoder for Apache CouchDB

Integer lines encoding

Map EnumValues to text strings

JSON encoder

ASCIllI-art plotting

Timestamped lines encoder for superpackets
Output EnumValues as text strings

Timestamped lines encoder

ARFFDecoder
ASCIIDecoder
CxdbDecoder
FloatLinesDecoder
IntLinesDecoder
MiminiDecoder
NMEADecoder

StringLinesDecoder

ARFF format (WEKA)
ASCII lines

ContextDB (JSON)

Lines of floating-point values
Lines of integer values
ZigBee-M1mini-RFID format
NMEA (GPS)

Words to StringValues

27

2.2.2 Runtime Environment and Data Flow Control

The Toolbox runtime provides the vital environment for tasks to operate. It
handles dynamic creation and configuration of tasks as well as configuration of
the data flow.

For parameter handling the Toolbox utilizes the JavaScript Object Notation
(JSON) format [Cro06] with an object loader in the “get instance by name”
style. Thus, the Toolbox can be configured at runtime by text-based configu-
ration files that define the settings for tasks and the data flow needed by the
application.

The data flow between tasks is specified through directed connections from
out-ports to in-ports. Fach data packet transmitted along these connections
contains data entities belonging to one time instant. The payload of a packet
is organized as vector of values from an abstract Value data type. Moreover,
the packets contain a timestamp and sequence number. For combining multi-
ple streams the Toolbox provides merger tasks. Mergers combine the payload
of packets from separate in-ports and synchronize data streams with different
sampling rate.

Data packets are passed by pointer reference along the internal connections
through the task network. Packets are cloned only if more than one receiver
is connected to the same out-port. This implementation of the runtime core
ensures high packet-processing performance. Moreover, we preserve process-
ing performance by providing operations to the task-developer that inherently
modify data objects, such as the operator “+=" does, instead of allocating new
result objects for each operation (e.g., like v = vy + v; would).

By implementing POSIX threads, the scheduling of individual components is
subject to the operating system on which the Toolbox is running. The Toolbox
runtime itself only needs to ensure that no deadlocks can occur. Accidental
loops in the data flow, introduced by malicious configurations, could force the
runtime to crash. But multiple connections to the same in-port are allowed only
in special cases and checks for such configurations could be aded if necessary.
Feedback loops for controlling the operation of tasks are intended to be fed into
separate in-ports which are designated by receiving tasks.

With the CRN Toolbox, the same runtime is used during development of new
activity recognition systems (e.g., during recording of sensor data for training
new classifiers) and for actually running the new systems on the target device(s).
Usually the configuration only need to be slightly modified between the two
phases (e.g., exchanging the recording task by a classifier, see Section . The
actual training of the classifier is depending on the individual implementation of
the classification task. The decision tree classifier, as an example, is trained and
evaluated outside the Toolbox using WEKA and the resulting tree structure is
imported into the Toolbox configuration. Other tasks could adopt training and
evaluation modes to completely cover this process within the Toolbox runtime.

2.2.3 Synchronizing Independent Data Streams

Synchronization of the data streams coming from different sensors is a major

issue in multimodal activity recognition. When several independent sensors are

used, their data streams should be synchronized to a common starting point.
Ideally, every sensor would provide samples with an exact clock frequency,

28

global timestamp, or would support an external clock. However, in reality many
simple devices send data with an internally generated rate. Consequently, when
several independent sensors are used, their data streams should be synchronized
to a common starting point. Moreover, synchronization should be repeated
during runtime as the sampling rates may jitter, e.g., due to communication
delays.

Jedi - synchronization.json

File Edit Panels

sensorl

Data Flow

sensorl

sensor2

acceleration (arbitrary scale)

o l
! |

1 1 1 1 1 1
0 2.5 5 7.5 10 12.5 15
time [seconds]

key-press (start) timestamp correction

Figure 2.2: CRN Toolbox graphical configuration editor with a synchroniza-
tion setup for two acceleration sensors. The waveforms demonstrates the data
alignment achieved at an event detected by the Synchronizers.

A feasible concept for this type of synchronization is aligning streams on
events occurring simultaneously in the data from all involved sensors, e.g., a
user’s jumping up with a set of on-body acceleration sensors. The details of this
synchronization method are presented in Chapter |3| It is implemented in the
Synchronizer and SyncMerger tasks. Figure depicts the solution for the
example of two acceleration sensors (Xsens MT9). A characteristic high acceler-
ation amplitude was inserted by the jump. The Synchronizer tasks detect the
peaks caused by these events and adjust data packet timestamps accordingly.

29

The SyncMerger combines the data streams by aligning the timestamps. The
Synchronizer tasks are manually activated, e.g., by the user’s input through a
KeyboardReader, to limit the alignment phases to controlled time frames. The
accelerometer signals plotted in Figure are clearly out of sync during the
first ten seconds, yet after the alignment phase ended (timestamp correction)
the signals are aligned correctly. Our analysis of the method shows that an
alignment of 0.3 seconds and better can be achieved in a real-life scenario (see
evaluation section in Chapter .

2.2.4 Readers: Sensor Hardware Encapsulation

In the CRN Toolbox sensor interfaces are implemented as tasks without in-ports,
called reader tasks. They instantiate new data packets for data samples acquired
from sensors (or other sources) and provide them on their out-port. Our ar-
chitecture supports various reader implementations that can capture different
sensors or other sources, such as databases, web pages, application outputs, or
data files.

For activity annotation, we implemented a keyboard-reader to perform on-
line labeling of data. This reader proved very helpful, since the labeling can be
stored aligned with the raw data for later evaluation.

2.2.5 Writers: Communication for Distributed Processing

The key to distributed execution and use of external tools, are writer tasks.
They forward data received at their in-port to external interfaces, e.g., files, dis-
plays, or network connections. For the latter we use TCPWriter and TCPReader
tasks to communicate via TCP/IP sockets. Data packets are transmitted on
the channel in a serialized form. The serialization is obtained from an Encoder
plug-in in the TCPWriter task. Similarly, the TCPReader uses a Decoder plug-in
for de-serialization. Thus, two CRN Toolboxes running independently, e.g., on
different hosts, can collaborate using the writer-reader communication.

Using this mechanism the Toolbox can link to arbitrary programs based on
compatible interfaces. Currently, such interfaces exist for Matlab and WEKA.
Both are used for data visualization and pattern recognition in experiments and
demonstrators.

2.2.6 Graphical Tools for Configuration

The rapid prototyping capabilities of the Toolbox raised our needs for an easy
and quick configuration editor. The Toolbox configuration files are simple to
create and modify as the JSON format is supported by many editors. Still, an
integrated editor that is aware of the Toolbox specific schemes and the available
components can be convenient.

We provide a Java based, modular, graphical JSON editor for the CRN
Toolbox (JEDI). Users can simply drag tasks from a library into the JSON
document, set their parameters, and interconnect them with just a few mouse
clicks in the data-flow view. The configuration is validated on the fly and
possible problems are highlighted. Configurations are saved to JSON files which
the CRN Toolbox may load. Future modules might directly interface running

30

File Edit Panels

Properties Library
key. value ype | Select Library | /Users/db;
v B/ TaskGroup
v Etasks Vector<StreamTa... (&3 Library
v) #0 (reader) MT9Reader » (@ builtins
[type "MT9Reader” const » [other
. v [StreamTask
[) devicename /dev/ttyl.. string % ARSEReader
[ia "randar” string : BTnodeReader
» E#1 (labels) KeyboardReader ' ChannelSelect
» B3 #2 (merger) SimpleMerger | ClassifierTask
v B9 #3 (logger) LoggerTask _ CmdDispatcher
pre “LoggerTas.. const _ ConsoleWriter
g v | Contextiogic
hame Vector " ContextMonitor
» EH encoder TimestampedLine... " ContextSimulator
B ' CricketReader
orcbiem: - NECEES)) DirectinputReader
o
whrohlems et 9 ' DirectQutputWriter
Problem Location Prablem Description 7 Einsnorm
/.'tasks'.0 Required key 'mode’ is missing (according to schema. .. " FileReader
€3 /. "tasks’.3... Type 'string' expected, but type "Vector' found. Blviicerrask
_ FindMax
_ FindNode
| Heartbeat

Figure 2.3: Screenshot of the graphical Toolbox configuration editor JEDI.

Toolbox instances. Figure [2.3] shows a screenshot of the graphical editor with
two problems spotted in the configuration of the reader and logger tasks.

2.3 Step-By-Step Guide: How to Cook

With the CRN Toolbox building of activity recognition applications becomes
really easy. For example, it takes only five steps to implement your own kitchen
activity recognition including the classifier training. You do not have to write
additional code. This section briefly explains all steps that are necessary to
build the gesture recognition system for kitchen guide applications using the
CRN Toolbox.

The ingredients are: a motion sensor mounted on a glove, a wearable com-
puter or “kitchen PC”, and, of course, the CRN Toolbox. In this guide we use
the MT9 sensor from Xsens featuring accelerometers, gyroscopes, and magnetic
field sensors, all on three axis. From the Toolbox we utilize a reader task for
acquiring data from the sensor, a couple of filtering tasks for computing fea-
tures, the KNN classifier task, and a task for displaying classification results on
a screen. Typical activities that can be recognized and discriminated by setup
include stirring, whisking, cutting bread, slicing onions, and wiping with a cloth.

1. Using the graphical configuration editor, create a configuration for
recording training data as shown in Figure Begin by adding the
MT9Reader, to acquire data from the MT9 sensor at 100 Hz and provide all
nine channels on its out-port. With the SelectiveSplitterTask pick out
the channels of interest and send them through a set of filters: MeanFilter
and VarFilter (variance), both operating on sliding windows. Set the
window size to 100 (1sec). With the SimpleMerger combine the two data
streams again and add the output of a KeyboardReader task. This task is
used to annotate the recording by keystrokes. Finally, add a LoggerTask
for writing the resultant data streams into a file.

31

2. Select an annotation key for training each activity. Connect the sensor
and start the Toolbox with the created configuration. Then, wearing the
sensor glove, perform each activity for about 30 seconds. At the
beginning of each activity press its selected annotation key.

3. Review the recorded training data in the log file and reduce it to
about 100 samples per activity class. The class label is indicated by the
number in the last column.

4. Now, modify the first configuration to include the classifier and the
output task (see Figure . You may remove the KeyboardReader,
because from now on the classifier will do the “annotation”. Specify the
filename of the training data in the properties of the KNN task. Attach
the DisplayImage task to the KNN and specify a pictures that should be
displayed on the screen for each recognized activity category.

5. Start the Toolbox with the new configuration. Now you can work in the
kitchen as you wish and let the Toolbox track your activities or, even
better, feed the results into a context-aware cookbook. Bon appétit!

To improve the system you may add more sensing modalities such as location,
select useful features, and use more sophisticated recognition algorithms.

000 —— o 000 - o

——
W Hep | nsen Task [nemesn | un | Fle Edn View Run Help | nser Task | Retiesn | Run |

ina.ta | acwiyrecognitioncry daarecordingfg_ acviyrecognition.fa
Data Flow View : Data Flow View

Figure 2.4: Configurations for the kitchen activity recognition. @ recording of
training data; @ on-line classification and display of result; example output
of the classification using DisplayImage.

2.4 Case Studies

The vitality of a framework such as the CRN Toolbox stems from its continuous
development and deployment in various projects. The showcase of applications
in industrial projects, student classes, and demonstrators (see Table not
only highlights its maturity and widespread use but also serves as evaluation of
the fundamental concepts. During such projects the Toolbox has been success-
fully deployed on different platforms, including

32

Mac OS X (i386, x86-64),
e i0S (iPhone, iPod touch, iPad),
e Android (smartphones), and

e Cygwin (i386).

Linux (arm32, i386, amd64, x86-64),

Here, we depict three case studies from different areas, outlining the successful

utilization of the CRN Toolbox.

Table 2.2: Summary of major projects using the CRN Toolbox. For student
class projects approximate lines of code (LoC) and components count are shown.

Project description

Utilization of the CRN Toolbox

Industrial projects

Wearl T@Work supporting hospital infor-
mation flow [Ada08| Ban06]: gesture con-
trolled access to patient’s document using
Using RFID

wrist worn motion sensor.
for patient identification.

Data capturing, gesture recognition, con-
trol of hospital’s document browser, run-
ning on QBIC (Linux/arm32). Several
demonstrators and test system built. A
hospital trial was conducted.

WearlT@Work production support: ac-
tivity recognition of car assembly and
maintenance [Sti06a]. The project uti-
lizes inertial motion and indoor location
Sensors.

Recording multimodal sensor data:
Xsens, Hexamite, Ultrasound, muscle
force; various demonstrators. Plat-
form: Linux/i386.

MonAMI dynamic monitoring services

Dynamic re-configuration of the Toolbox
depending on available sensors and regis-
tered services. Platforms: Linux/i386 and
Linux/arm32.

MyHeart walking habits: online classifi-
cation of walking activities and intensities
to support active lifestyle and improve fit-
ness.

Acquisition of heart rate, acceleration,
and air pressure; classification; stream-
ing results to a mobile phone and pro-
fessional coaching center, running on
QBIC (Linux/arm32).

NESD location tracking: GPS-based lo-
cal map visualization

GPS position logging (NMEA protocol)
and conversion for dynamic map display,
forwarding to central mission server, run-

ning on QBIC (Linux/arm32).

continued on next page

33

continued from previous page

Student classes and -projects

ISWC 2006 tutorial “Hands on Activity
Context Recognition”: building a gesture
recognition system for controlling a sim-
ulated car parking game with real waving
gestures, 12 participants.

Testing of algorithms and gesture types
using simulated data streams from a
motion sensor glove. Components: 9,
LoC: 7000. Platform: Linux/amd64.

Number entering game: entering binary
digits using a motion sensor only, prac-
tical exercise and competition for ambi-
ent intelligence lecture, 15 students in 5th
semester.

Understanding of algorithms, modular-
ization and interfacing to sensor data.

Location estimation and activity recogni-
tion: ultrasonic- and motion sensors prac-
tical exercise for ambient intelligence lec-
ture, 12 students in 5th semester.

Components: 7, LoC: 2000. Plat-
form: Linux/i386.

Understanding of algorithms and
challenges of location tracking.
Components: 7, LoC: 2000. Plat-

form: Linux/i386.

Interactive World: software project
to implement gesture control for
games (Pong, Tetris), 3 days, 19 students
in 4th semester.

Implementation of a TCP reader task,
utilization of KNN classifier (gesture
recognition). Components: 5, LoC: 1200.
Platform: Linux/i386.

Activity monitoring: training a classi-
fier to recognize human activities (sitting,
standing, walking, running) and visualiz-
ing results, 10 students in 4th semester.

Learn the concepts and operation of
a classifier, implement and testing.
Components: 7, LoC: 2000. Plat-
form: Linux/i386.

Demonstrators

Parking Game: controlling a virtual
driver and car with real hand gestures in
a parking game [Ban07].

Capturing glove-based inertial sensor
data, gesture spotting using explicit seg-
mentation, gesture event search, and fu-
sion steps; controlling the game visualiza-
tion engine. Platform: Linux/amd64.

Parsing of dietary activity events
using probabilistic context-free gram-
mars (PCFGs): inference of food intake
cycles from activities [Amf07].

Simulation of activity event input, PCFG
parsing, reporting of results. Plat-
form: Linux/amd64.

Hammering-screwdriving demo: recog-
nizing assembly activities (hammering,
screwdriving, sanding, vising) with a mo-
tion sensor in a glove.

Xsens motion sensor capturing, classifi-
cation of activities, display of recognition
result on screen and wireless connection,
running on QBIC (Linux/arm32).

34

2.4.1 Supporting Information Flow in Hospitals

Together with clinical partners in the EU-sponsored WearlT@Work [Luk(07]
project we developed a solution to improve information flow for the doctor’s
ward [Ada08| [Ban06]. At the ward round, doctors decide on further treatment
of patient under tight time limitations. Access to patient documents right at
the bedside would allow the doctor to make decisions based on all available
patient information. Notebooks or PCs are impractical for this task, since their
operation is time-consuming, distracting, and involves touching non-sterilized
devices while in contact with patients.

Our wearable solution simplified the document access. When the doctor
comes to the patient’s bed, the bedside monitor automatically shows up a doc-
ument list for that patient. The doctor could then browse these documents by
pointing at the monitor and swivel the forearm. The system worn by the doctor
consists of the Q-Belt Integrated Computer (QBIC) [Amf04], running the CRN
Toolbox, an Xsens motion sensor, and an RFID reader. The QBIC is worn as a
belt, the latter two are integrated into an armband which is worn at the wrist.
The patient’s name tag is equipped with an RFID tag. At each patient’s bed
there is a bedside monitor to display documents from the hospital’s information
system during the ward and to serve as an entertainment system otherwise.

eo0o CRN Control Center Ver 2,1 =)
File Edit View Run Help Insert Task [Refresh

Data Flow View.

QBIC I

Bedside Monitor / HIS ™

Figure 2.5: Hospital information support system setup and CRN Toolbox con-
figuration.

In the implementation we used a set of three tasks to process each gyro-
scope axis of the motion sensor. The set contained threshold detection and
sequence matching tasks (ThresholdFilter, TransitionDetector, and Se-
quenceDetector). This algorithm can detect forearm gesture sequences such
as swivel left, then right (open document command). The CommandDispatcher
acts as gateway, forwarding the commands only in active state (controlled by
an activation gesture). This task also consumes the patient identification from
RFID. Finally, the commands are transmitted (TCPClientWriter) to the docu-
ment browser of the hospital’s information system. The physical setup and the
Toolbox configuration are shown in Fig.

The complete setup was tested in a two weeks real-life trial with doctors
in an Austrian hospital. While the system performed well for the staff that
was involved in the early prototyping phase, doctors which were new to the

35

system had issues in using it, mainly because the required gestures were not
intuitive to them. Another reason were stability issues of the Bluetooth and
WIFI connections. In a further iteration of the project, we therefore replaced
the wrist mounted motion sensor with a strip of capacitive sensors mounted in
the doctor’s coat [Che08D, [Che08a] which would allow for simpler sliding and
tapping gestures. Also, the belt computer was replaced with an infrastructure
PC. The switch to new, custom sensors and gestures only involved coding of a
new reader- and a gesture recognition task for the Toolbox. Aside from com-
piling the Toolbox for the new platform, only the configuration script (JSON)
had to be adapted to replace the reader- and recognition components.

2.4.2 Monitoring Walking Habits

Together with industrial partners in the EU-sponsored MyHeart project (IST-
2002-507816) we investigated new approaches for preventing cardiovascular dis-
eases and maintaining low disease risks. Since many daily activities involve
walking, we developed a walking habits monitor that supports active walking
and could track activity intensity.

In our implementation, the QBIC served as a central data acquisition and
processing hub, running the CRN Toolbox. The user’s activity was monitored
with a custom sensing unit containing acceleration and air pressure sensors
attached to the belt. Additionally, a heart rate chest belt was connected via
Bluetooth. Based on features from the belt sensor unit we classified walking
straight, -up, -down, and idle as well as using the elevator up or down. The
result along with the heart rate was forwarded to a mobile phone.

LXX:) CRN Control Center Ver 2.1 =

File Edit View Run Help Insert Task | Refresh | Run

wanghabicoRE G |

Data Flow View

Heart rate

Walking
sensing

QBIC

Figure 2.6: Monitoring walking habits phone visualization and CRN Toolbox
configuration.

Figure shows the final Toolbox configuration. This project required
readers to capture data from the belt sensor unit (ARSBReader) and heart rate
belt (ADSReader), several features filters, a classifier (KNN), and a writer to
communicate to the mobile phone application (MyHeartWriter).

36

The visualizations on the phone showed activity level, heart rate and pro-
vided recommendations based on detected activities. In our ongoing work we
use further sensors at the limbs to capture diverse activities.

2.4.3 A Mixed-Reality Car Parking Game

We designed a car parking game to explore the use of wearable systems in
computer games [Ban(7].

The game plot features the player helping a virtual driver to fit the latter’s
virtual car into a parking lot. The player does so by weaving hand and arm
gestures while facing a virtual scene at the roadside where a parking spot is
available between other vehicles. Figure[2.7]shows a screenshot of the scene. The
driver and car’s behavior are simulated and follow the gesture commands. The
goal is to perform this guiding task as fast and safely as possible, in particular
avoiding collisions with other cars and obstacles.

User

Car/Driver
Simulation

Sensor
Gesture Input

Command

CRN Toolbox

CRN Control Center Ver 2.1 =)

nser Task | Retresn | hun |

«

~7 Server

[swas] [swas \ [was \

[Simiary | [Smiy | [simiars] [ty | [smiaiy

CPClientriter

Figure 2.7: Scene of the parking game and CRN Toolbox configuration.

In this application the CRN Toolbox performs the recognition of gestures
from the player’s glove. Its task is to the detect five gesture commands in the
continuous data stream from the glove: forwards, backwards, turn left, turn
right, and stop. We used acceleration and gyroscope sensors in three axes from

37

an Xsens MT9 unit attached to the glove. The gesture spotting procedure uti-
lizes an explicit time series segmentation algorithm (SWAB), followed by a class-
specific feature similarity search (Similarity). Finally, the individual gestures
are fused (ConfidenceMerger). The retrieved gestures are mapped (StringMap)
to game commands and transmitted (TCPWriter) to the game simulation and
graphics engine.

The game was used as demonstrator for tutorials and student courses. We
built recognition models for 16 different gestures. Hence, every player could
customize the system, by selecting five gestures according to individual prefer-
ences. This was easily implemented by exchanging configuration files for the
recognition tasks.

2.5 User Evaluation

Right from its very first days, the CRN Toolbox has been a community project.
The very positive user feedback and the growing number of tasks indicate that
our approach is well perceived. However, a thorough quantitative evaluation of
middleware and programming tools such as the CRN Toolbox is hard [Edw03].

While we have not yet performed a controlled assessment, we do have some
empirical, in some cases even quantitative results that support our view on its
usefulness.

2.5.1 Experience with Students

As presented in Table [2:2] the Toolbox has been widely used in student classes
with over 60 students having worked with it.

A class of 19 fourth semester computer science students implemented an
application with the Toolbox to control the computer games Pong and Tetris by
shaking a motion sensor in different directions. A typical solution for recognizing
these gestures consists of five Toolbox components (approx. ~1200 lines of code
used, but just ~40 lines of configuration):

e acquire data from sensor

e apply filters (mean, variance)

e classify gestures, using KNN algorithm

e send result via TCP

e manage data flow
The exercise also included the implementation of a new Toolbox task for read-
ing from TCP sockets. The students were just Java beginners and never pro-
grammed C++ before, yet with the Toolbox all students were able to solve

the recognition problem within 20 hours. Four of them also completed the Java
game in that time.

38

2.5.2 Evaluation of researchers

The CRN Toolbox was used in a activity recognition tutorial at ISW(E 2006.
The 12 participants were asked to rate their impressions after having worked
with it for 4 hours. Ten completed the tutorial feedback form. On average
they rated themselves as advanced software programmers with some knowledge
of C++, but little experience in context recognition. They reported average
durations of 10 minutes (max. 30 minutes) to understand the four tasks of the
tutorial, 15 minutes (max. 30 minutes) to implement and run solutions with the
Toolbox, and 20 minutes to debug their configuration if needed.

We received many positive comments, such as “good and fast platform for
application development”, “one can click filters together”, “easy to understand,
easy to use” and “you don‘t have to reinvent the wheel”. Critics addressed miss-
ing documentation materials. Our current work addresses this issue by using
automatic documentation tools (Doxygen) and web platforms more intensively.

2.6 Conclusion

The CRN Toolbox was developed to ease the process of building activity recog-
nition systems. We believe that its quick adoption by researchers is due to in-
tuitive design of reusable components and data flow mechanism. The spectrum
of implemented solutions indicates that our approach is viable in the diverse
environments of wearable and server-based applications. Even students which
were new to the theme managed to implement recognition solutions during class
times.

As a framework, the CRN Toolbox introduces processing overhead. A promi-
nent aspect in our design is the between-task communication, required in most
useful configurations. It relies on a common packet format to exchange all media
types. Besides the payload, a packet contains timestamp, sequence number, and
a payload pointer, totally 16 Bytes, independent of the payload size. For a typ-
ical scenario, as the hospital support system, raw sensor-data packets have the
highest transmission rate. In this example, an MT9Reader acquired a 9-channel
Xsens MT9, requiring 36 Bytes for one sample. Each sample was sent separately,
which amounts to 44% overhead. For packet rates above 100 Hz, such as audio,
the effective overhead is reduced by transferring multiple samples in one packet.

Concerning the Toolbox’s implementation, two areas remain open for future
work: One is the addition of other classification methods and filtering tasks
to support an even larger spectrum of applications. Clearly, this is what the
Toolbox is designed for — new components may be added any time and enable the
community re-used them in their projects. Another area is the implementation
of an efficient memory management for allocation of data packet and value
objects to optimize system performance for packet rates well beyond 100 Hz
as required, e.g., for audio signals. The default memory allocation algorithms
can be a bottleneck there. Yet, the Toolbox’s concept encourages a pool based
memory management.

The CRN Toolbox, as presented in this chapter, provides all means neces-
sary to build context- and activity recognition systems which rely on a statically

Thttp:/ /www.iswc.net/iswc06/

39

defined set of sensors and tasks. For the vision of opportunistic activity recog-
nition systems, however, which cope with the dynamic availability of sensor
systems and computing platforms, and which opportunistically take benefit of
sensors that were not available during design time, the Toolbox can only serve
for their implementation at a base level. Beyond the level of configurable tasks,
such opportunistic systems require a higher level of abstraction, e.g., “services”
with dynamic binding. We introduce one such approach that serves the needs
of opportunistic activity recognition systems in Chapter [4 when presenting an
integrated tool chain built around the CRN Toolbox.

A further point for future work is the back propagation of messages through
the processing network for the purpose of resource management. Whenever a
resource is scarce or costly, e.g., memory on a mobile device or a power consum-
ing sensor, it would be favorable to release it as soon as it is no longer needed
such that other processes can use it or the system can save power. This decision
is usually made at a higher abstraction level, and thus raises the demand to
propagate messages back to the components that are in control of the resources.

When combining data streams from different sources, the Toolbox relies on
the timestamps within each stream in order to align them properly. It is there-
fore necessary to synchronize the “clocks” of the data streams before merging
them. In the next chapter we discuss an approach for automatic synchronization
of data streams based on events detected in both signals.

40

Chapter 3

Event Based
Synchronization

A major challenge in using multi-modal, distributed sensor systems for activ-
ity recognition is to maintain a temporal synchronization between individually
recorded data streams. A common approach is to use well defined ‘synchroniza-
tion actions’ performed by the user to generate, easily identifiable pattern events
in all recorded data streams. The events are then used to manually align data
streams. This chapter proposes an automatic method for this synchronization.

We demonstrate that synchronization actions can be automatically identi-
fied and used for stream synchronization across widely different sensors such as
acceleration, sound, force, and a motion tracking system. We describe funda-
mental properties and bounds of our event-based synchronization approach. In
particular, we show that the event timing relation is transitive for sensor groups
with shared members. We analyzed our synchronization approach in three stud-
tes. For a large dataset of 5 users and totally 308 data stream minutes we
achieved a synchronization error of mazimal 0.3s for more than 80% of the
stream.

David Bannach, Oliver Amft, and Paul Lukowicz. Automatic event-based synchronization
of multimodal data streams from wearable and ambient sensors. In Proceedings of the 4th
European conference on Smart sensing and context, EuroSSC’09, pages 135—148, Berlin, Hei-
delberg, 2009. Springer-Verlag.

Multi-modal, distributed sensor systems have been proposed for a variety
of wearable and pervasive computing applications. A major practical concern
to use such systems is how to temporally synchronize data streams between
individual sensors. In particular, methods that rely on sensor fusion (such as
computing joint features from several sensors or jointly feeding a classifier) re-
quire that sensor signals are well synchronized.

The synchronization problem is a well known and widely studied distributed
systems issue [CouO1]. Without precautions, clocks of physically separate pro-
cessors will run asynchronously [Sun05]. A receiving node observes this as skew

41

42

and drift in the incoming sensor data stream. Furthermore, networked nodes
may startup or resume operation independently. This can causes offsets at
stream receivers, similar to not handled data interrupts in wireless links.

Much effort has been devoted to lightweight clock synchronization methods
for wireless sensor networks (see related work). In general these methods rely on
elaborate message passing and time distribution protocols among the network
nodes. The approach presented in this chapter does not aim to compete with, or
improve upon this work. While in theory, it may be assumed that a sensor node
could receive messages and run such synchronization protocols, in practice many
on-body and pervasive sensing setups do not have appropriate capabilities. For
one, leaving out the receiving capability reduces power consumption and makes
node design simpler. Secondly, systems are often built using nodes from differ-
ent manufacturers with insufficient built-in synchronization support. It is not
common that commercial nodes provide access to node-internal communication
routines.

Consequently, we look at a specific problem variation that occurs frequently
in wearable and pervasive systems: dedicated, low-level sensor nodes merely
stream data in a hierarchical topology and are not able to communicate with
each other (e.g., because of incompatibility or just lack of resources). This means
that no message passing protocols can be run between the nodes. Instead, the
synchronization can rely solely on the content of the data stream.

In theory, it may be assumed that a sensor node could receive messages and
run synchronization protocols. In practice, many on-body and pervasive sensing
setups do not have such capabilities. For one, leaving out the receiving capability
reduces power consumption and makes the node design simpler. In addition,
systems are often built using custom nodes from different manufacturers with
insufficient synchronization support. Often such nodes do not provide access to
the internal communication routines.

It is common practice in wearable and pervasive application studies to rely
on event-based synchronization of data streams. To this end, ‘synchronization
actions’ are defined, which are periodically performed by a subject during the
recording (at least once at the start of a data collection, or more often to detect
drift). Such actions are designed to simultaneously activate multiple sensors
and provide an easily identifiable data signature. Often encountered examples
are clapping, jumping, and hitting a surface. The characteristic signature of
a synchronization action can be used to align signal segments from different
sensors. Currently, this is typically done through manual inspection of the data
streams. In this chapter we investigates a method to automate this process.

It is intuiting to rely on natural activity patterns to synchronize sensor data
streams that are performed by users in a pervasive application. However, it
is essential to develop a robust synchronization framework in the first place.
Hence, we chose validation scenarios for this initial work, in which particularly
selected synchronization actions had been inserted into sensor data streams. We
subsequently discuss how our concept could extend on natural activities.

3.1 Related Work

Time synchronization is a well known and widely studied problem in wireless
sensor networks, in particular for subsequent sensor data fusion. Surveys can

43

be found in [Siv04] and [Sun05]. Typically, the solutions target a network-wide
synchronization by aligning the clocks of all physically distributed nodes [Sun05),
Su05]. For this purpose specific messages are exchanged among the nodes.

As detailed above, we target systems where a synchronization based on ex-
changing messages is not feasible due to unidirectional communication channels.
Our approach relies on data signatures (events) embedded in data streams,
hence it does not modify the source clocks. However, it ensures a relative syn-
chronization between data sources at the fusion unit.

Instead of establishing a network-wide clock, various communication systems
use a source synchronization approach for medium access. These techniques tar-
get to align message recipient(s) on a link with the clock provided by the sender,
through monitoring packet reception [Mac01] or protocol-specific features, such
as a preamble. Our approach is similar to source synchronization, as the fusion
unit observes the relative offset in the incoming data streams.

More relevant research looks at correlation of different sensor data streams
for various applications. This includes the use of correlations to determine that
a set of devices are carried by the same person [Les04], as well as attempts
to use correlation between sounds received by different sensors for indoor loca-
tion [Bia05j].

Many researchers experienced clock synchronization failures in deployed sen-
sor networks due to software bugs, communication failures, and frequent re-
boots, rendering large parts of data unusable [WAQG, [Gup09, [Luk09]. Com-
mon solutions try to recover corrupted timestamps in a postmortem process.
Werner-Allen [WAOQ6] corrects errors caused by the time synchronization proto-
col on behalf of a base station that adds its own timestamps to the collected
data. They build piecewise linear models to map local node time to global time
without utilizing the actual sensor data collected by the nodes. Lukac [Luk(9]
proposes data driven time synchronization by utilizing background noise in seis-
mic sensing systems. By building a model of the propagation of micorseisms
(seismic waves that travel through continents, originated by oceans) they can
reconstruct timestamps in large datasets gathered by seismic networks. The
Sundial system [Gup09] uses light sensors to detect length of day and noon time
and compares them offline with the astronomical model to estimate the correct
global timestamps. While this approach is based on a single sensing modality
they also apply a method to correlate rain events with soil humidity events for
finding the correct day. This is very similar to our approach but we do not rely
on additional information about the events to find the correct mapping and we
explicitly allow event spotting errors.

3.2 Challenges of event-based stream synchro-
nization

The conceptual solution for event-based synchronization is straightforward. We
assume that each data item is time-stamped with a local clock (or stream se-
quence number). Once a first synchronization action is localized in all data
streams, offsets between the local clocks or sequence numbers are computed.
Upon locating a second event, differences between sensor clock frequencies can
be computed. Subsequently, the data streams are aligned according to these

44

differences. Additional events may help keeping streams synchronized over time
and could increase synchronization accuracy.

In reality, there are a number of problems related to reliable, automatic spot-
ting of synchronization actions. It is well known that recognizing short actions
embedded in a continuous stream of arbitrary sensor data is a hard problem. To
synchronize data streams based on events, actions must be spotted separately
in each data stream. This is even more difficult than under a multi-modal spot-
ting scheme, where signals from several sensors can be combined. Hence actions
could be confused with other arbitrary actions. As a consequence, the syn-
chronization algorithm has to cope with deleted (missed) and inserted (wrongly
recognized) events in individual streams. Hence it is not a-priori clear which
events should be aligned with each other.

Another particular spotting property is the timing variations among re-
trieved events. For an event-based synchronization approach, this variation
can have two origins. On one hand, a spotting procedure can introduce a tem-
poral jitter due to an assumed segmentation. Typically, this jitter is a fraction
of the expected event size [Amf08]. Secondly, spotting on independent sensors
can impose different event patterns. For example, hitting a table with a fist
will generate a short temporal acceleration at the wrist, while the table will
vibrate longer with a delayed onset. Thus, even if the synchronization actions
are correctly spotted, it is not always clear how to relate events in time.

In this chapter we investigate solutions to the problems described above, fa-
cilitating a practical implementation of automatic, event-based synchronization.
We demonstrate that synchronization actions can be identified across widely dif-
ferent sensors, such as accelerometers and optical motion tracking systems. We
show how using repetitive events can improve synchronization results. More-
over, we show that the timing relation is transitive for sensor groups with shared
members. The latter can be exploited for further reliability improvements and
to synchronize larger multi-modal sensor networks.

3.3 Spotting and synchronization approach

At first, we define two terms on which we rely within this chapter:

action An action describes the physical movement that is conducted by a sub-
ject. Sensors which are able to perceive the action will show a distinct
pattern in their data stream at (and around) the time of perception.

event An event denotes the individual detection of a pattern instance caused
by an action. It has a certain extent in time (duration) and it marks a
single, distinct point in time as its “synchronization point”.

Our approach consists of two steps. In the first step appropriately defined
synchronization actions are spotted in each sensor data stream. Specifically,
we spotted hand ‘clap’, ‘push-release’ of a button, and arm ‘shake’ actions as
described below. In a second step our online synchronization algorithm is used to
establish, which events in two different streams correspond to the same physical
action. This step deals with missing and inserted events, as well as temporal
jitter. The result of this step is a continuous alignment estimation corresponding
to events derived from the participating data streams.

45

The required synchronization performance is application dependent. For a
typical example of motion-related activities in daily life, such as considered in
this work, stream alignment should be well below 1s. Nevertheless, an alignment
performance below 0.1s is typically not needed. In our evaluation we selected
a performance of 0.3s as target alignment.

3.3.1 Event spotting

In our approach, synchronization actions are associated with a single timestamp
from each data stream. Nevertheless, even short physical actions such as a hand
clap exhibit a temporal signal pattern. Figure illustrates such patterns for
acceleration and audio streams. Hence, we specifically modelled a synchro-
nization point in the event patterns using signal features. Two sliding window
algorithms were used to spot ‘clap’, ‘push-release’, and ‘shake’ gestures on indi-
vidual modalities. Figures show these events on four different sensing
modalities (acceleration, force sensitive resistors (FSR), positioning sensors, and
audio). Other event types or sensing modalities may require further spotting
algorithms, which can be easily designed.

For both algorithms we obtained model parameters manually by analyzing
pattern examples. The parameters were chosen to minimize event miss rate.
Recall is more important than precision for the purpose of this work, as false
positives are usually discarded at the subsequent stage.

Trailing edge detection

The patterns produced by ‘clap’ and ‘push-release’ events have similar charac-
teristics. Their signal pattern have a stable phase of “silence” followed by a fast
rise or fall (see Fig. and [3.1D)). The start of a rise/fall phase was considered
as the synchronization point. The two events were distinguished by the features:
minimal length of silence phase, signal range of silence phase, length of rise/fall
phase, and signal range of rise/fall phase.

Shake detection

The detection of shakes was implemented by tracking peaks (alternating local
minima and maxima) over time. The features, minimal peak height, min/max
of time between peaks, and number of peaks had been used. The begin and
end of shake events may vary between sensing modalities (shown in Fig. [3.1¢)).
Consequently, we defined the center point (midpoint between first and last peak
timestamp) as synchronization point for shake events.

3.3.2 Event-based synchronization

While the event pattern structure (such as signal peaks for ‘shake’ events) could
be used to analyze the synchronization between two sensor streams, we found
these patterns to be too variable. Moreover, the patterns may differ between
modalities, which would hamper their alignment. Instead, our approach re-
lies on a sequence of spotted events from both streams to estimate alignment.
In particular, we consider the temporal distribution of the retrieved events as
relevant synchronization property. Thus, as long as events do not occur with

46

4 4
5X 10 s; %’ X 10 s; %
4
5 \ 3 5 F
g \ 3 g
s 0 52 s 0
[} 2 5] | \
8 g \ \
g 1 8 | V
0
-5 -5
0.8 0.9 1 1.1 1.2 1 15 2 25 3 35 0 5 10
time (sec) time (sec) time (sec)
2 ! ¥— 5 MM

auaio
|
N o
acceleration
I
position (am)
o (%))

0.8 0.9 1 1.1 1.2 1 15 2 25 3 35 0 5 10
time (sec) time (sec) time (sec)

(a) (b) (c)

Figure 3.1: Aligned sensor signals: (a) hand ‘clap’ recorded from wrist mounted
accelerometers and a microphone, (b) button push followed by sudden release
recorded from an FSR under thumb and wrist mounted accelerometers (‘push-
release’), (¢) two ‘shake’ motions recorded from accelerometers and a camera-
based positioning system. “SP” indicates synchronization points returned by
our spotting procedure and subsequently used for alignment.

constant frequency, we expect that a match between event sequences of both
streams can be found. Clearly, the probability for a correct event match will
increase with the sequence length of matching events.

Algorithms with similarities to the one proposed here have been used in
different fields, but to the best of our knowledge, such an approach for syn-
chronizing data streams has not been explored before in the field of context
recognition.

Algorithm: The synchronization algorithm compares two event sequences
A = {a1,...,a,} and B = {b1,...,b,} to estimate a sequence match. A
sliding window with a size of 30s was applied on the event sequence for online
operation and retain multiple events for alignment analysis at any considered
stream position. The procedure can be understood as shifting sequence B in
time until an optimal match is found with sequence A.
Let

d(i,j) =t(bj) —t(a;), i€[l,...n], j€[1,...m] (3.1)

be the n-by-m matrix of timestamp differences between all possible events of
sequence A and B, and let

P={(i1,51),--, (e, Ji)}, E>10 <y, i < i Yl€[l,... k=1 (3.2)

be a matching path of length k& between A and B. Each cell (i,7) in path P
denotes a match between event a; and b; and therefore indicates an offset of
d(i,j) between A and B. Matches in P are unique (i; # iy, ji # jp Yl £ 1)

47

but not necessarily include all events (ij41 — iy > 1, ji+1 — 1 > 1). The latter
allows coping with event spotting errors.

We analyze all potential paths (candidate paths) and select the best by ap-
plying a weighting function w(P) = wg (P)-wy (P) on each candidate. Weights
wg and wy were defined with an intend to maximize path length £ and mini-
mize variance of path distances v = var({d(i1,71), ..., d(ik, jx)}). The synchro-
nization algorithm provides a continuous estimation of relative stream offsets
between two sources by selecting Pyes = maz|w(P)].

The path search can be performed incrementally. For a given cell (ij,j;) a
subsequent cell (4,41, j;4+1) in the path is determined by searching in the sub-
matrix of (i, j;):

jiz1 =arg min |dy —d(i; + 1,5")] and (3.3)
J'€lji+1...m]
Qg1 =arg min |di —d(i, ji41)], (3.4)
i/ E€[i;+1...n]

where dy = d(i1, j1) denotes a path’s starting point. If |dy — d(ij41, ji+1)| does
not fall below a tolerance threshold this cell is discarded and searching is re-
peated in submatrix (i;41,ji+1 + 1). In our evaluations a tolerance of 0.3 s was
used to prune non-relevant paths. Multiple candidates of matching paths are
found by starting a new search from each top and left border cell (see Fig.[3.2).
This corresponds to shifting sequence B against sequence A.

d(A,B) | bl b2 b3

al (’2\) (’9“! 1 1 al a2 a3 a4
B "“\7,_\ A —o Q——0- t
a2 |21 5 17 . o
PERN AR - AN AN AN
a3 | cHin2) 4 B o—o—> ¢
- \‘7\‘,:\ NN b1 b2 b3
aa| -7 ‘\(_),' (\2_,’

(a) (b)

Figure 3.2: Two event sequences with the corresponding matching paths high-
lighted in the timestamp differences matrix (a), and the best path displayed on
the timeline (b).

For path weight wx =1 — e~ (k=1)/(2=kE)* was used where k is the actual
path length and kg denotes the expected path length. As variance weight we
used wy = 1—e0-5(v/ R)Q, where regularizer R serves to control variance weight
contribution. Weighting behavior is designed to maximize weight for particular
parameter sets. For wx a maximum is obtained at k = kg, for wy, variance
should be minimized.

Parameters kg and R can be used to adapt our synchronization algorithm.
Expected sequence length kg depends on the targeted synchronization perfor-
mance, where larger kg, hence longer sequences, will result in reduced synchro-
nization errors. Parameter R controls the influence of temporal event jitter in
wy . For this work, we determined R = 0.05 in empirical tests and confirmed it
in all evaluations discussed in Section [3.4

It should be noted that our heuristic algorithm can miss a globally optimal
path as Eqgs. are sequentially evaluated. We consider our approach as
a tradeoff limiting computational complexity compared to a full search which

48

would involve evaluating all potential paths within a submatrix of cell (i, j;).
Our evaluation results confirm that this approach is feasible.

3.3.3 Specific synchronization properties
Transitivity

Synchronization alignments, as determined with our approach, are transitive.
If relative offsets between data streams A and B and between stream B and
C are known, then the offset between stream A and C can be deduced. This
transitive property allows that sensors or sensor subnets, which do not share
common events with other sensors, can still be synchronized on behalf of medi-
ating sensors. We demonstrate how this property can be exploited by analyzing
synchronization pairs in Section[3.4] Moreover, such dependencies could be used
to refine synchronization result, as potentially multiple synchronization sources
become available.

Performance bounds

We analyzed theoretical performance bounds for our synchronization algorithm
with regard to event input. In particular, we considered the following essential
properties:

o cffect of event sequence timing,
e impact of the number of synchronization actions, and

e temporal event jitter introduced through the spotting method.

A sequence of events a = {a1,...,a,} can be described in terms of temporal
distances between subsequent events
s={s1,.., 801} = {t(az) —t(a1),...,t(an) —t(an_1)}, (3.5)

where t(a;) denotes the timestamp of event a;. The worst-case scenario for our
synchronization algorithm is a monotonous sequence of constant event distances,
hence s; = sy = ... = s,. In this specific case, an alignment can not be uniquely
identified using our distance approach. However, in practice this situation will
be rare and difficult to construct.

If we consider some degree of temporal variance in an input event sequence,
we may describe s as a random variable with Gaussian probability distribution
p(s) = N(u,0). We denote § as an actual distance between two spotted events
and t+w as the interval of jitter caused by the spotting method. Consequently,
the probability for obtaining a specific event distance can be derived by:

S+w
P(s:é:ﬁ:w):/ﬁi N(u,0), (3.6)

which has its maximum at s* = u. The lower this probability, the lower the risk
that the distance § randomly appears in a sequence, and the more likely that
a certain interval § & w is unique and thus can uniquely be matched between
sensors. Hence, if o increases, the probability for a unique event match is raised,
as the maximum of P(s) decreases. In contrast, if the temporal event jitter w

49

increases, P(s) increases as well. This means, that it is more likely to randomly
observe a specific event distance.

In the analysis above we considered a distance between two events only,
hence £k = 1. In a more practical setting, however, several synchronization
actions may be considered for estimating alignment and we may safely assume
that the probabilities P(§; & w) are independent. Thus,

k
Ppath(wv E)=P(s1 =8 ftw,...,s, =8 tw)= H P(3; tw) (3.7
i=1

indicates the probability for a matching path of length k. Hence, the risk of a
random match decreases exponentially with increasing event sequence length k.

3.4 Evaluation

We performed three experiments to analyze the synchronization performance for
different events and sensor modalities. All evaluations use sensor modalities that
are relevant in ubiquitous applications and have been used in previous studies.
Initially, two experiments where performed to investigate the synchronization
approach with different sensor modalities and combinations (force-acceleration-
audio, acceleration-positioning). In a subsequent evaluation, we investigate
the performance of the synchronization algorithm in a large data set (totally
308 min. of 5 users) that was recorded for activity recognition in daily living
scenarios [AmfI0]. All synchronization actions were annotated and refined in
a post-recording step by visual inspections of the data streams. For all experi-
ments the correct alignment was manually determined from signal inspections.
Annotation and alignment information was used as ground truth.

3.4.1 Evaluation 1: force-acceleration-audio
Data recording

The dataset was recorded with a single wrist worn motion sensor (Xsens MTx),
one FSR on the desk, and an ambient sound microphone. The MTx comprises
3D sensors for acceleration, rate of turn, and earth-magnetic field. In this
investigation only 3D acceleration was considered. MTx were sampled with a
nominal data rate of 100 Hz, FSR at 16 Hz, and audio at 8 kHz. For FSR and
MTx a wireless connection (Bluetooth) was used to transmit data to a computer.
Audio was acquired and timestamped on a second computer and streamed to
the first computer for archival.

The total recording time was ~20 minutes. During this time five sessions of
‘push-release’ gestures and six sessions of ‘clap’ gestures were performed by one
person. Each gesture was repeated several times during a session resulting in a
total of 20 ‘push-release’ and 24 ‘clap’ gestures. Between these synchronization
sessions normal office activities were conducted and several times the wireless
connection is intentionally broken by increasing the distance to the recording
computer. These link interrupts served to simulate both, connection errors and
temporary sensor failures.

50

5 T T T T T
* + % * * *

MTx-Audio (clap)
offset [sec]

15[+ +truth x i
x_x results ‘ ‘ @

GO 200 400 600 800 1000 1200
time [sec] clap push-release
. o T
o+ 4
.0 "

2
1.9f b
1 i

offset [sec]
N
=

MTx-FSR (push-release)
=
(o)}

1.5F f X

1.4} 4 * x x4

13h|t *truth & ¥

1'2 x_x results ‘ ‘ ‘ + ‘

) 200 400 600 800 1000 1200

time [sec]
(a) (b)

Figure 3.3: Evaluation 1: @ Results for the force-acceleration-audio dataset.
The offsets indicate the actual (truth) and estimated (result) alignments for the
entire dataset. Synchronization pairing scheme.

Synchronization procedure

Using the transitive property of our approach, two synchronization pairs were es-
tablished in this analysis: (1) MTx-FSR using ‘push-release’ and (2) MTx-audio
using ‘clap’ gestures. The synchronization pairs are illustrated in Figure [3:3b
The streams of each synchronization domain were independently aligned using
our synchronization algorithm. We used the trailing edge spotting algorithm to
recognize both event types in all streams.

Results

The event spotting returned 95.5% of the gesture instances correctly. Only
4 instances from the MTx sensor were missed. In total 23 false positives were
returned (26.1%), 19 of them by the clap detection on the accelerometer signals,
which classified most ‘push-release’ events as ‘clap’ events. The remaining false
detections were caused by the FSR spotting, which generated insertions at rising
signal edges.

Figure shows the synchronization algorithm results as a time plot. Blue
‘+’ signs indicate true offsets, manually determined at each event instance.
Green crosses mark the offsets estimated by our synchronization algorithm. At
least one result was found for each session of ‘push-release’ gestures with an
error of ~0.1s. One session of clap gestures did not lead to a result because
of missed events. This session contained only three annotated event instances,
which was also used for kg. Consequently, if one event was not retrieved by the
spotting algorithm, a correct match was no longer possible. The MTx-audio
pair incurred one wrong result with an error of -10s due to event insertions.
Such outliers would be eliminated before actually aligning the streams.

51

3.4.2 Evaluation 2: acceleration-positioning
Data recording

We attached infrared markers of an optical motion capturing system (Lukotronic)
onto two accelerometer-based motion sensors (Xsens MTx). The position data
from the Lukotronic system was streamed over a wired network connection (TCP)
to the recording computer. The acceleration data from the two MTx sensors was
transferred over two independent wireless connections (Bluetooth). All sensing
systems sampled with a nominal data rate of 100Hz. A dataset of ~60 minutes
was recorded during which individual units and both units together were shaken
periodically.

Synchronization procedure

Three synchronization pairs were established: (1) MTx0-Lukotronic, (2) MTx1-
Lukotronic, and (3) MTx0-MTx1. The synchronization pairs are illustrated in
Figure [3.4bl The streams of each synchronization domain were independently
aligned using our synchronization algorithm.

We used the shake detection algorithm to spot ‘shake’ events for both sensor
modalities. As described before, we considered the midpoint of a shake event as
synchronization point. This approach compensated varying detections of peak
begin and ends on both modalities.

Results

The manual data stream alignment revealed that the camera system had an
offset of 8 seconds relative to both accelerometers. This can be explained by
different starting times of both system types and by differences in transmission
delays. In addition to the stream offset, skew and drift seemed to be marginal
for this recording.

The event spotting correctly returned all synchronization actions and did not
incur insertion errors. Figure shows the synchronization algorithm results
as a time plot for all synchronization pairs. The plot can be interpreted as
discussed for evaluation 1 above. The algorithm correctly detected that no offset
existed at multiple time points on each synchronization domain. The algorithm
incurred one error due to a similar event sequence found in one stream.

This experiment demonstrates that repetitive gestures (with an extent in
time) can be used as synchronization actions. Moreover, it confirms the fea-
sibility to use the transitive property for independent synchronization pairs.
Sensors that are members of two independent synchronization pairs could use
both to refine alignment results.

3.4.3 Evaluation 3: Office scenario
Data recording

A setup consisting of a motion sensor at the right wrist (Xsens MTx), left
wrist (Xsens MTx), and ambient sound microphone was worn by the users.
In addition, four FSR sensors were mounted under pads that could sense if
household utensils are placed on them were used. The right wrist motion sensor
was attached to an Xbus, sampled at 30 Hz and interfaced to a laptop computer

52

Ly
A
52 _el
o=
:3‘% =8y X x X
E —-10f
= _127 L L L L L L L L]
0 500 1000 1500 2000 2500 3000 3500 4000 4500
O T T T T T T T T
g%
3¢ —8pk X% 23 ® X '3
=]
E —10
= _127 L L L L L L L L]
0 500 1000 1500 2000 2500 3000 3500 4000 4500
T T T T T T T T
af
,;!,S Lukotronic
QO 2F
s
= [0] 3 X X
EE —of]
s% truth
-4 x_x results |4

.
500 1000 1500 2000 2500 3000 3500 4000 4500
time [sec]

(a) (b)

orT

Figure 3.4: Evaluation 2: @ Results for the acceleration-positioning dataset.
The offsets indicate the actual (truth) and estimated (result) alignments for the
entire dataset. Synchronization pairing scheme.

using a wired connection. For the microphone a wired connection at 8 kHz
sampling rate was used. The left wrist Xsens was connected through a wireless
link (Bluetooth) at 30 Hz. The FSRs were synchronously sampled at 12.5Hz
by another (stationary computer). During the actual study the laptop that
interfaced all wearable sensors, was carried by an experiment observer who
followed the test person. In total, this setup had four unsynchronized data
streams recorded by two computers.

Five test person were individually recorded for sessions of ~60 minutes. Dur-
ing these recording sessions the test persons were asked to perform various ac-
tivities in four different scenarios: office (desktop work, printing, using fax),
eating (preparing sandwich, making coffee, eating), gaming (installing a Wii
console, gaming using the Wii remote), and leisure (reading magazines, speak-
ing at the phoning).

Synchronization procedure

Three times during a recording session (beginning, mid-time, end) the test per-
sons were asked to perform synchronization actions consisting of ‘push-release’
of one FSR pad on the table using the right arm (activation of right MTx
and FSR), and ‘clap’ with both hands (activation of both MTx and audio).
Figure [3:54] illustrates the synchronization action for ‘push-release’. The syn-
chronization actions were repeated three to four times in each synchronization
session, resulting in a total of at least 45 relevant synchronization actions per
test person (when counted on each data stream separately).

Four synchronization pairs were established: (1) right MTx-left MTx us-
ing ‘clap’, (2) right MTx-audio using ‘clap’, (3) left MTx-audio using ‘clap’,
and (4) right MTx-FSR using ‘push-release’. The synchronization pairs are

53

Figure 3.5: I@ Test person during push-release gesture. I@ Synchronization
pairing scheme for evaluation 3.

illustrated in Figure The streams of each synchronization domain were in-
dependently aligned using our synchronization algorithm. We used the trailing
edge spotting algorithm to recognize both event types in all streams.

Results

The event spotting algorithm was used with the same parameter set for all
test persons. In total for all persons, 83% of the synchronization actions were
correctly spotted. The procedure incurred 654 insertion errors (284%) with
low inter-person variances. This result should be considered in relation to the
recording time (total: 300 minutes), resulting in an average of two insertions
per minute. This insertion rate was expected due to the simple spotting proce-
dure and the limited model training. Elaborate spotting procedures, automated
training, and person adaptation could improve the result, but the focus of this
evaluation lies on the synchronization method in the subsequent step. And for
this purpose such event spotting results offer real life test conditions.

Figure shows the cumulative error distribution for individual synchro-
nization path lengths. This result was obtained by analyzing the synchroniza-
tion error for all candidate synchronization paths. The result confirms that
with increasing path length k the probability for large alignment errors de-
creases. When considering the targeted alignment error of 0.3s, ~55% of all
cases for £ > 3, and ~90% of all cases for k > 4 are below this error bar.
In contrast, for path length of & > 2 no useful synchronization performance is
obtained. This means that it is very common to find two events in one stream
that incidentally have the same distance (time difference) as two events in the
paired stream. This observation is related to the relatively high insertion rate
for this dataset and the deployed event spotter. However, path lengths of three
or four events are sufficient to reach a reasonable synchronization performance.
With the simple event spotters considered in this evaluation, we observed that
k = 4 is needed in many cases.

Furthermore, we analyzed the error distribution with regard to the synchro-
nization sessions that were identified by the event spotting. Figure confirms

54

100 T T T T 100:

80 I

60

1

20f —len>=11]
—len>=21]
—len>=3
—len>=4

8.0 0.2 0.4 0.6 0.8 1.0 %,0 0‘,2 0‘_4 O‘,G O‘,S 1.0
error [sec] error [sec]

Synchronization paths [%]
Synchronization sessions [%]

(a) (b)

Figure 3.6: Evaluation 3: Quantitative results of the synchronization. @
Cumulative distribution results for all candidate synchronization paths and dif-
ferent path length k. @ Cumulative distribution of synchronization sessions
that have at least one alignment estimation result with regard to the synchro-
nization error. The synchronization paths length k& was not restricted for this
representation.

that for more than 80% of the synchronization sessions a synchronization error
of less than 0.3s was achieved.

3.5 Conclusion

Our experiments clearly show the potential of an automatic, event-based ap-
proach to synchronize distributed multi-modal sensor systems. We concluded
from the results that our synchronization algorithm can achieve the initially
set target of 0.3s synchronization error. The effort for finding suitable values
for the two parameters kr and R turned out to be negligible, as we achieved
the best results with a single setting (kg=3, R=0.05) for all experiments and
subjects. If synchronization actions are repeated more often per session, kg
may be increased to achieve more reliable results. However, the evaluations also
showed that in realistic scenarios achieving high synchronization performance
is not trivial. In evaluation 3, a synchronization path length of four was re-
quired to achieve a performance greater than 80% for the targeted error level.
This result indicates that an appropriate event spotting and subsequent rea-
soning across different synchronization pairs is the key to good performance.
In addition, more investigation is needed on suitable synchronization actions
for different sensor combinations. We expect that including natural activities
in the event-based synchronization approach will help to further improve the
synchronization performance as such activities will be present throughout the
recordings instead of just within artificially inserted synchronization sessions.
Automatic synchronization is a valuable element for online context recogni-
tion systems as it further relieves the developers and users from manual actions.

55

The method allows for constantly monitoring the temporal alignment of data
streams and to initiate actions to re-synchronize the streams if necessary. In
offline tools operating with recorded data streams, e.g., the annotation tool pre-
sented as part of an integrated tool chain in the next chapter, the method can
automatically suggest corrected alignment of the streams which the user may
refine if desired.

In the context of opportunistic activity recognition systems, automatic syn-
chronization is a key element to guarantee temporal “compatibility” of new
sensors that just appear, or sensors that have previously been used by the sys-
tem but disappeared for a while an then suddenly reconnect with unknown
clock state. Yet, synchronizing an unknown sensor poses new problems to be
addressed in future work. How can synchronization events reliably be detected
on an unknown sensor, and how do such events relate to events seen on the
known sensors?

56

Chapter 4

Integrated Tool Chain

Building activity recognition systems always requires data sets for training of
the involved recognition methods, and retrieving good training sets can be expen-
sive. In Chapter[q we have introduced the CRN Toolbox which already provides
means to define a data flow for recording live sensor data from heterogenous
sources. While it facilitates the setup of recording- and recognition chains, it
does not cover challenges beyond. In this chapter we describe an integrated tool
chain, built around the CRN Toolbox, for the development, testing, and deploy-
ment of multimodal activity- and context recognition systems. The tool chain
aims to support data collection with additional tools, allow structured storage
and retrieval of annotated sensor signals and supporting material, simplify the
labeling and associated post processing, facilitate flexible usage and combination
of different parts of a recording, and allow easy implementation of distributed,
adaptive recognition systems. The tool chain has been implemented around the
established CRN Toolbox rapid prototyping platform (see Chapter @), has been
successfully used in a variety of experiments, and is available to the community
as an open source project.

David Bannach and Paul Lukowicz. Integrated tool chain for recording, handling, and utilizing

large, multimodal context data sets for context recognition systems. In ARCS 2011, 2011.

David Bannach, Kai Kunze, Jens Weppner, and Paul Lukowicz. Integrated tool chain for
recording and handling large, multimodal context recognition data sets. In Proceedings of the
12th ACM international conference adjunct papers on Ubiquitous computing, Ubicomp ’10,
2010. ACM.

The development of context aware systems involves a set of complex steps
that may differ in detail from case to case but in essence reoccur in most ap-
plications. In general the process starts with the collection of a sample data
set. Issues that typically need to be addressed include reliable streaming of
data into appropriately organized storage, detecting faulty sensors and miss-
ing data points, synchronization of sensors and initial data labeling. In most
cases the data collection needs to be followed by a post processing enrichment
step in which the synchronization points and the labels are refined and missing

o7

58

data points and signals dealt with. This requires different sensor channels to
be reviewed, compared with each other and possibly synchronized with a video
record of the experiment. For non trivial data sets such post processing can
be extremely time consuming. In previous work (e.g. [Luk10, [Rogl0]) we have
found around 10 hours of work to be needed for each hour of recorded data.
Once the data has been enriched the core of system development can begin. It
is usually an iterative process consisting of feature selection, classifier training
and tuning, and performance testing. Often the so developed classifier then
needs to be ported to a final platform such as a mobile device or a set of such
devices.

The sum of those steps make it practically impossible for non-experts to suc-
ceed in building an activity recognition system and also for experts it is a tedious
and error-prone process. We want to find out if those steps can be structured
and supported by an easy-to-use toolchain such that less expert knowledge is
needed. Would it be possible to simplify and structure the processes enough
such that higher-level algorithms could control them? We try to answer the
questions with user-centered design and by applying known techniques from dif-
ferent fields, integrating them into an extensive tool chain, making it available
for everybody, and using that toolchain in various projects and experiments.

In this chapter we describe the integrated tool chain that evolved over the
course of several years and a number of experiments [Sti06b), [Sti08al, Luk10] to
support the above described process and make it more efficient. The tool chain
is built around the CRN Toolbox (see Chapter [2) which is already widely used
for collecting and processing sensor data. It allows predefined, parameterizable
algorithms and sensor interfaces to be put together into a complete application
using a simple GUI. The work described in this chapter goes beyond the original
Toolbox presented in Chapter [2]in the following ways:

1. We have built CRN Toolbox compatible context data loggers for common
mobile devices (iPhone, Android).

2. We have implemented a GUI based tool for dynamic monitoring of data
flowing through a toolbox application. This is crucial to ensure data
integrity during long term recordings with a large number of sensors.

3. We have interfaced the CRN Toolbox to a database system (Apache
CouchDB) in order to allow sensor data, annotations and accompany-
ing videos to be stored and accessed in an organized way. The database
uses the map-reduce paradigm to efficiently down-sample data streams for
presentation in a web browser.

4. We have developed a GUI based tool (interfaced to the CRN Toolbox) for
the inspection, annotation, and manual resynchronization of context data
stored in the above database. The tool allows flexible views of selected
sensor streams to be compared to a video recording, moved around in
time, and given ground truth annotations at different concurrent levels of
granularity.

5. We have implemented a trace generation tool that allows combinations of
signals from a subset of sensors referring to certain ground truth events to
be easily retrieved from the database and streamed for system training,
testing or demonstration.

59

6. We have demonstrated how multiple instances of the CRN Toolbox and
context loggers can be combined into a distributed, service oriented system
that includes dynamic resource discovery allowing for easy construction of
distributed, adaptive context recognition systems.

All above functionalities have been implemented and most have been used in
“production mode” in different experiments [Banl0, ILuk10), [Rogl0]. They are
available to the community as an open source project and are used for the
dissemination of different public data setsﬂ

After discussing related work the rest of the chapter describes each of the
above components and its applications.

4.1 Related Work

The number of publicly available activity recognition datasets has grown in re-
cent time [Int06l Ten09, Kas08| cmm]. Each of them is available for download
from their own website. Most of them comprise multiple files per recording
session, one for each sensor system, and are shared together with their own vi-
sualization and annotation tools. Contributing refined annotations, comparing,
or combining datasets can be difficult.

One such tool is the BoxLab Visualizer [box|. It supports playback of several
parallel video and audio streams and the timeline shows color-coded activation
times from binary sensors. Time series data from accelerometers are also vi-
sualized. The tool shows two kinds of annotations, listed in separate windows:
annotations with start- and end time, and partial annotations having a start
time only. Annotations can have certainty ratings. A color code shows which
annotations are active for the current playback time. The software runs on
Windows systems only. Source code is not available.

Anvil [Kip01] is a tool for annotating videos with different levels of label
granularity. It was created for investigating human gestures based on video
recordings. The labels are visualized on a timeline in multiple tracks. The
number and type of label attributes can be defined separately for each track.
It does not support loading, visualizing, and synchronizing time series data
from sensor recordings. The tool is based on Java and therefore runs on many
platforms. It has a rich plug-in interface which would allow for adding support
of time series data to a certain extent but source code for the core framework
is not available.

The MARKER [mar] labeling tool is a Matlab toolkit which allows for vi-
sualizing, synchronizing, and annotating of time series data from sensor record-
ings. Videos are not supported. The toolkit is limited by the performance and
requirements of the Matlab system.

TU-Munich provides a custom, simple labeling tool [kit] for each version of
the kitchen datasets [Ten09, emm]. The tools show multiple videos in parallel,
a timeline for scrolling forth and back in the videos, and provide several tracks
below the timeline where markers can be added. Time series data of sensor
recordings is not displayed. Configurations are made directly in the available
source code.

Thttp://www.contextdb.org

60

In our work we try to integrate good features of existing tools into a sin-
gle tool chain that is suitable for most projects handling multimodal context
recognition data sets, and that allows for easier sharing of such datasets.

There are several toolkits available that support the development of context
sensitive systems in general. However, most of them contribute only parts of
the complete tool chain necessary for creating context recognition systems and
are often not flexible enough to be integrated. The Context Toolkit [Dey01],
for example, focuses mainly the application level. The core qualities of the
CommonSense ToolKit [Lae] are its real-time facilities and embedded systems-
friendly implementation, but not its flexibility for integration.

A much broader coverage of the complete tool chain is presented in [Giin10]
with a lightweight, easy to use tool chain which provides approaches for all
phases from recording, storing, annotating, and processing of context data to
the final classifier for context recognition. The focus of that tool chain lies
on simplicity and robustness and therefore it is limited to a single classification
method and single sensor input. Our approach differs in that we aim to provide a
general and modular solution which may be applied to a broad range of problems
and execution environments. Specifically, our approach covers simultaneous
data recording for a broad range of sensors, progress monitoring and quality
control during recording sessions, synchronization and video-based labeling of
multimodal data streams, storing, browsing, and sharing of context data sets,
and utilizing context data sets in distributed, multimodal context recognition
systems.

4.2 Concept

Our tool chain consists of three integrated phases (see Fig. [4.1). The first
phase is the data collection phase where training data is recorded from real
sensors and video cameras during various experiments. During this process the
status of all sensors can be monitored to ensure the quality of the recordings.
The recorded data sets are stored in a central database which is maintained
in the data management and annotation enrichment phase. Data sets can be
reviewed, organized, and re-labeled using graphical user interfaces. The web-
enabled database also allows for sharing the data sets and annotation efforts with
the community. Furthermore, specific reproducible data traces can be generated
from the database which are necessary for training and evaluating methods for
context recognition. In the classifier training and online context recognition
phase the training data is used to parameterize the context recognition methods.
These methods are connected to sources of live sensor data for online context
recognition on target devices. Results as well as lower level data can be shared
dynamically among such recognition components to allow for adaptations to
changing environments. In the following we discuss each of the tree phases in
detail.

4.2.1 Data Collection

Sometimes it is inevitable to record new sensor datasets, e.g., when there is no
public dataset available that suits the requirements of a new context recognition
method. Collecting good sensor data for training and evaluation of context

61

recognition methods is a tedious work, especially when multiple sensors and
sensors with different modalities are involved. In this section we present three
tools that help recording multimodal sensor data sets for context recognition.

A Toolbox for Rapid Prototyping of Context Recognition Systems

For data recording in general, e.g., with wearable or stationary sensors, we use
the CRN Toolbox presented in Capter [2| Its modular, data-driven concept and
its implementations of reader tasks for various sensors make it a valuable tool
for the recording of multi modal data sets. In its simplest configuration, signals
from sensors may be directly streamed into individual files on the recording
computer(s). On-line annotations may be merged directly to those data streams

i]
-> r
>W

Context CRN Toolbox VASS
Logger V4
documenting
recordmg / Data Collection

Context —> Labeling

Database labeling Tool
W

l

Trace Generator

| Data Management and
\ Annotation Enrichment

tra|n|ng

CRN Toolbox

sharing

Classifier Training and
Service Oriented Extension On-line Context Recognition

Figure 4.1: Overview of the context recognition tool chain.

62

or recorded into separate files for later merging via timestamps. Such a base
configuration is easily extended, using writer tasks, to support streaming of live
data for monitoring purposes (see below) or to upload the recordings directly
to the context database (see Section .

This Toolbox configuration, especially the reader components, can be re-used
later in the third phase (see Figure |4.1)) when live sensor signals are needed for
on-line context recognition.

Context Logger for Smartphones

One kind of largely pervasive sensor nodes are today’s smartphones, most of
them equipped with inertial measurement sensors, location services, and means
to record ambient sound and identify nearby wireless nodes. Yet, they are often
worn in pockets close to the body in differing positions and orientations, making
them an exemplary source for opportunistic sensing. Diverse context sensitive
applications have been developed already for mobile devices, e.g., [Yan09) [Sap08|,
Sie03 [Gel02].

In order to facilitate the recording of sensor data from smartphones we im-
plemented dedicated data logging applications for the Apple IOS and the Google
Android platforms. The application allows for an easy recording and labeling
of all sensors on the device. These include accelerometers, gyroscopes, compass,
GPS, sound, WiFi information (name, MAC address, signal strength, protec-
tion, visibility), light and proximity sensors, and phone events. The apps record
sensor data into local files on the device to ensure a lossless logging of the signals
and in addition can stream live data to a monitoring device. The recordings
can be uploaded to the Context Database described in section [£.2.2]

Live Monitoring of Recordings

During recordings with larger number of sensors it is crucial to monitor the state
of each sensor and also to document the recording sessions. Sensor failures
can occur often (for various reasons) and would make whole multi-hours of
recordings unusable if not detected early enough. For this purpose we developed
MASS (Monitoring Application for Sensor Systems). MASS is a software tool
that helps monitoring and documenting experiments with multimodal sensor
setups. It features graphical and tabular views for visualizing sensor up-times
and dynamic plots of live sensor signals for quick checking of signal quality (see
Fig. . Users may visually place sensor status icons on images and maps to
document sensor positioning and to get an intuitive, location-based overview of
sensor states. All modifications and events during a recording are logged for
documentation purposes.

MASS is implemented in Java and integrates seamlessly with the CRN Tool-
box. The recording tools advertise their service through Multicast-DNS such
that MASS can find them on the local network and connect to them. MASS
receives sensor status updates via UDP multicast messages from the recording
tools and can monitor the sample rate to detect anomalies. For displaying live
sensor signals MASS dynamically opens a TCP connection to the recording tool.

63

8no M.AS.5. - OPP_recording_r2741
File Edit Window Export Help

W o~ QY B B I e— vy
oveVIeWE 7 . L e “ [onbody [1D: 3= Experiment setp ;7] [PR0-iakarin: Ll Evne -
o W /127.0.0.1 - 28 [ID: 4] = Zoom window -
- Experiment setup - o
& shoetacbox et 10: 15) | P e a visualisation Open detail window

®) shoetoebox_right [ID: 16]
) fsr (ID: 27)
¢ W /132.231.16.30

& Xbus [ID: 1]

® MTx [ID: 2]

® bt_acc_5 [ID: 3]

® bt_acc_8 [ID: 28]

® bt_acc_10 [ID: 10]

® bt acc_11 [ID: 11]

® br_acc_21 [ID: 29)

® br_acc_22 [ID: 30)

® br_acc_23 [ID: 31)

® br_acc_24 [ID: 32)

8 br_acc_25 (ID: 33]

8 br_acc_26 (ID: 34]

8 bt acc_27 [ID: 5]

8 bt acc_28 [ID: 4]

8 bt acc_111 [ID: 6]

8 bt acc_123 [

8 bt_acc_117 [

8 bt_acc_125 [

8 btacc_113 [

8 btacc_114 [

L
L
L
[t

1142 [11:43 [11:44 /\
— y/

M shostosbox_left [ID>
NN shoetoebox _right (ID:
s (D 27

Xbus [ID: 1]

MTx [ID: 2]
bt_acc_5 [ID: 3]
bt_acc_s [ID: 28]
bt_acc_10 [ID: 10]
bt_acc_11 [ID: 11]
bt_acc_21 [ID: 29]
bt_acc_23 [ID: 20]
B0 bt_acc 23 [ID: 31
—— bt_acc_24 [ID: 32]
bt_acc_25 [ID: 23]
bt_acc_26 [ID: 24]
bt_acc_27 (1D 51
bt_acc_28 [ID: 4]
bt_acc_111 (ID: 6]
bt_acc_123 [ID: 7]
bt_acc_117
bt_acc_125
bt_acc_113
bt _acc_114
u bt_acc_118

4 3[ctime, v acceleration] ©
ected

D: 2] : Experiment setup

hent setup

8 bt_acc_118 [ID: 14]
) bt_acc_119 [ID: 17]
) bt_acc_124 [ID: 18]
) bt_acc_120 [ID: 19]

bi_acc_120
43 time, v acceleration] S
Connected.

Figure 4.2: A screenshot of the monitoring application MASS, showing (from
left to right) the list of monitored sensors, a timeline view visualizing sensor
uptimes, on-body placement of sensors, live data stream plots, and placement
of sensors on a table.

4.2.2 Data Management and Annotation Enrichment

Once sensor data sets are recorded they need to be maintained and prepared
for use in the context recognition methods. Sharing of such data sets with the
community may provide a common base for researchers to compare their activity
recognition methods and it reliefs from the effort to record own data sets. A
crucial point of an activity recognition data set is its ground truth annotation.
Often it is not possible to do an exact online labeling during recording, e.g., when
actions or gestures are short and suddenly occurring, when many actions are
overlapping in time, or when unforeseen actions occur. In such cases careful re-
labeling is inevitable. In this section we present three tools that help annotating,
sharing, and preparing for utilization of sensor data recordings.

Context Database

Research on context recognition methods tends to require large amounts of real-
life sensor data recordings. Yet, collecting complex data sets is time-consuming
and needs a lot of effort. One way of reducing effort is sharing those datasets
among research groups, which also brings the much desired advantage of having
a common base for comparing different approaches.

For this we store the recordings in a database with web interface. We use the
Apache CouchDB to implement the Context Database because of its scalability
and its support for replication. Users may easily replicate parts of the database
locally, e.g., for performance reasons, and still continue to work on exactly the
same interface.

64

With the experience from past projects and experiments we structured the
Context Database to store documents for the following entities:

Experiment A description and reference for the conducted experiment, hence
the entity for a “data set”.

Session A recording session within an experiment, aggregating a list of con-
current video streams, data streams, and label tracks together with their
individual synchronization data. Many sessions may belong to the same
experiment.

Data Stream An entity to describe the data stream originating from a single
sensor or from a more complex sensor system with synchronized data
channels. Channels inside a data stream all have the same sampling rate
and are synchronized. The actual data is provided as data packets (see
below) or in case of high sampling rate (e.g. audio) as an attached file.

Data Packet The data vector belonging to a timestamp for a data stream. It
stores one value for each channel plus a timestamp, and it is referring the
data stream it belongs to. It is analog to the data packets of the CRN
Toolbox.

Video Stream An entity to describe a video track consisting of a video file.
The video file is stored as attachment to this document and may be avail-
able in multiple encodings.

Label Track A description of a label track, defining the number and type of
attributes per label.

Label A label instance in a label track, defining start- and end time, and the
label’s attribute value(s).

Sensor Type Description of a specific type of sensors used in the experiment.

Sensor Instance An entity to represent a specific instance of a sensor type.
The instance may point to a list of “sub-sensor” instances in case the
entity consists of multiple physical or logical components.

Sensor Placement Image Stores an image (attachment) and positions of sen-
sor instances in the coordinate system of that image.

Using this database structure the data streams for a given recording session can
easily be requested, in total or partially for a given time range, which might be
desired for long recordings. The above set of entities proved to be sufficient for
many data sets. However, future experiments and data sets may require a more
refined structure, but with the underlying CouchDB, which is designed to allow
for adaptations at any time, this is not an issue.

Web-based Database Browser

One of the key requirements for sharing large, multimodal data sets is an accu-
rate description of the recordings, such that the community is able to perceive
the full dimensionality of the recordings. Text documents and images can de-
scribe the recordings at different levels of detail, but obviously, the most detailed
description is the data itself. This led us to the opinion that large, multimodal
datasets should be browsable with little effort when shared with the community.

65

The support of HTML5 web standard in current web browsers allow for such
browsing interfaces without the need of installing additional software.

Experiment: passau

132.231.16.24:5984 fopp-test4/_design /contextDB/_show,/experiment/passau @ | (38~ Google Q W

i
browse query tools philadelphia
plate
salami
spoan
sugar
water

AXIS Fisheye Camera
camera_kitchen
camera_side
camera_top.

Force Sensing Resistor
fsr.fsr1

Figure 4.3: Screenshots of the Context Database web interface showing the
placement of individual sensor instances within images.

We have implemented a web-based front end to the Context Database which
gives access to:

e description of the stored data sets (experiments)

e description of the utilized sensor types in an experiment

visual placement of sensor instances on images

e listing and summary of available recording sessions per experiment

browsing of synchronized videos, label tracks, and data streams
e download of visualized data streams (export to ARFF format)
e querying for labeled segments and export to ARFF format

For each data set the user can find a textual description with images added.
On each image the visible sensor instances are tagged to mark their placement
in the specific setup (see Figure . Each sensor instance is linked to the
respective sensor type, which is described on a separate page. On the sesor type
description page all images with tagged instances of that type are automatically
added. The experiment page also lists all available recording sessions with a brief

66

Session: session_10_3

@ 132.231.16.24:5984 /opp-test4/_design/contextDB/_show/session/passau.session_10_ & | (33~ Google Q) @ # | B -

D . _l‘_\ N NN [Locomation

HL_Activity

| — Lett_arm
| | I — 1 I Right Arm

| | | ' ' i
560 580 600 620 640 660 680 700 [secands]

e

g F‘M’ . MV’T\’""“"L.,"U-’\-W’ I W("Nirm']%'ﬂw»’m Py i
¥ S Hll*wnu b Lt bl g e

rf\.ﬁf}pw%‘ L L Jeif.aceX

add channel

Figure 4.4: Screenshots of the Context Database web interface showing the data
browser. Three video streams, color-coded annotations on four label tracks, and
sensor signals from three selected channels are played back synchronously.

summary statistic of the respective video-, label-, and data tracks. Clicking on
a listed session leads to the session view for browsing the data set.

The session view (Figure by default shows all video streams synchronized
with a timeline visualization of the label tracks (similar to the Labeling Tool
described below). Multiple channels from the available data streams can be
added by selecting them from the “add channel” menu. The menu will first
list all available data streams, and after selecting one, a small preview of each
channel of the selected stream will be shown. Zoom buttons allow to change
the zoom level and the view can be panned with mouse drags (or swipes on a
touchscreen device). Down-sampling of the data streams on the database side
is implemented using the map-reduce paradigm [Dea0s].

In the query view (Figure the user can query the database for labeled
segments and export them to an ARFF formatted file. The view allows to select

e all or a selection of experiments,
e all or a selection of sessions, and
e a label track

After selecting a label track the list of available labels loads. In case of two
attributes (e.g. left- or right arm track with “action” + “object” attributes) a
Sankey diagram is shown which visualizes the different compositions and allows

Segments Selection

segments.html <

67

browse || m query tools v o Breac ggqction:
o 1 experiments
- S 60 sessions
. - Knife cheese 3003 segments
—Sur = = sensor: jacket
:2{}? e has 2026 segments
—-spread Salam available
=——
Sugar 2
Milk
reach E e
Cheese [l
—Bottie []
_ - Lazychair—
SwilchD
% > DishwasherD
e g
/ s, AP " Drawer2 (rniddle)D
/™ '//4/ % /\/\‘5\
release - //9, {/ S -
7 - Drawer3 (lower) I
S
S Drawerd (top) D
- 2 — T
D——' - — FridgeD
——
close —— i
P
—— '% S Door1
— — —~— T -
e -~ 8
= ——
[unlock — Door2
O lock

Figure 4.5: Screenshots of the Context Database web interface showing the data
querying view. The Sankey diagram visualizes the label attribute combinations
available for the chosen data set. Combinations may be selected individually.

for more intuitive selection. These segments can then be downloaded for each
of the listed sensor data streams separately in an ARFF formatted file.

Reviewing and Labeling Recorded Sensor Data

Once a dataset is recorded it has to be prepared for utilization in training
and evaluation of context recognition algorithms. For that purpose all sen-
sor streams must be synchronized properly and the segments of interest must
be determined and labeled. We developed the Labeling Tool for exactly this
purpose. It synchronously displays several video- and sensor data streams in
parallel alongside with several label tracks (see Fig. [4.6). The number and type
of attribute in labels can be specified for each label track separately, fostering
different granularity levels of the annotations. The Labeling Tool allows the
user to

synchronize video- and sensor data streams by aligning them in the time-
line view,

playback and seek all video-, label-, and data streams in parallel,

assign labels with one or more attributes to selected sections,

configure number and type of label tracks, and

export data sets into flat, synchronized files for further exploration in tools
like WEKA, Scipy, and Matlab.

68

It integrates with the tool chain by connecting to the Context Database for
loading and saving the data sets, and by supporting, among others, the format
of data files recorded with the CRN Toolbox. The Labeling Tool is implemented
in Java.

We have used the Labeling Tool recently for labeling the data set described
in [Luk10, with more than 20 hours of recordings and over 70 sensors
installed.

video_kitchen.avi video_side.avi

Frame: 327 Duration: 120.5 Labels and sensor data

Stand Walk

nd Walk Stan Walk and | Walk d Walk Stand

Left Arm move Bread e sen Fridge move Salami

rghea. L2l] o
soo.i
it) . I
s 5] % s 0 o %
* G

data_ace_cup.dat: Ace X ¢l [x: 4,y G/100] data_acc_cup.dat Gyro X [x: ¢,y rad ¢ |
L3

4.1] — - — ~
0s]=

15 % £ 7] 3 £ s 5o
data_ublsense.Jog: SensoriDiL Pos X be 5,y mem) data_ubisenselog: SensoriD: Pas Y [5, v: mm

] i Ll

15 20 5 50 35 o (] S0

G *]
dita_reed i Fidne3 (x5, v 0nOH)dats_reed dat: Fridge2 x:3.y: OnOf] i+

& T) Sarltl-] 2

Figure 4.6: A screenshot of the Labeling Tool showing tree parallel video streams
(top), four label tracks at different granularity (middle), and plots of several data
streams (bottom) around the current master video frame.

Generating Data Traces from Recorded Data Sets

In order to reduce information loss inherent when transforming sensor data into
the form needed by machine learning methods, we store only raw, unmodified
sensor data in the Context Database. As many machine learning methods have
very specific needs for the format and properties of their input data we developed
the Trace Generator which transforms raw sensor data from the database into
specific data traces for each method.

The Trace Generator is designed to select the necessary portions of data
from the Context Database and to transform them into the format suitable
for machine learning methods. Beyond the static training sets for training of
context recognition methods it is capable of generating dynamic data traces
with a story line of appearing, disappearing, rotated, or distorted sensors for
training and evaluating opportunistic context recognition methods. It provides
means to

e select specific recordings among all recording sessions stored in the database,
e select the desired sensors and channels,

69

specify resampling options for each channel,

merge (and synchronize) selected channels from different data streams,
specify filters to apply on single channels,

select and, if necessary, rename the labeled segments,

specify transformations for some channels and time ranges, and to
specify the output file format.

The traces are defined by a configuration script which allows for re-generating
and adapting of the trace. Researchers can share Trace Generator configurations
together with their methods to ensure reproducibility of their results.

The Trace Generator is implemented within the CRN Toolbox. In fact,
the Trace Generator configuration is a Toolbox configuration file utilizing the
specific reader tasks for accessing the Context Database and the desired filter
tasks that can be timed according to the story line. Any other task that supports
the desired transformation of data may be added as long as it does not depend
on sources other than the data stream from the database.

4.2.3 Classifier Training and Online Context Recognition

The tools presented above provide all means necessary to prepare sensor data
recordings for use in context recognition methods. At this stage (see Figure,
the recorded sensor data is ready to be fed into scripts and applications for
training and evaluating machine learning methods. There is a wide spread range
of programming libraries and tools available that help processing and analyzing
numerical data, and training and evaluating classifiers (e.g., WEKA, scikit-
learn (Python), Matlab, just to name a few). For the purpose of online context-
and activity recognition, we provide the CRN Toolbox presented in Chapter 2]
which offers an efficient and flexible runtime environment for this purpose. The
reader tasks involved in the recording of the data set (Section [4.2.1) and the
transformation tasks used in the Trace Generator (Section y simply
be re-used in the configuration at this stage, providing the online recognition
system with exactly the same data format and processing steps as were applied
to the training data. In the simplest case, only the configured classifier and an
appropriate writer task need to be added to the configuration.

In the remainder of this section we present an extension to the Toolbox
which allows for dynamic sharing of sensor data and services.

A Service-Oriented Extension for the CRN Toolbox

Regarding context recognition in well-known and stable surroundings, the CRN
Toolbox is capable of setting up such a scenario and delivering data back to
an application instantly. However, despite the fact that Toolbox instances can
be flexibly distributed amongst numerous devices (this includes mobile devices
such as small wearable computers, phones, PDAs, laptops, as well as desktop
computers, workstations, and servers) and include other applications into their
data flow, a distributed setup is error-prone, as each Toolbox instance relies on
a known and stable network topology due to its static configuration.

It is quite common in environments of mobile, networked devices that devices
leave the current network permanently or are temporarily unavailable due to
lost connections. Once they rejoin the system, they might have another IP

70

address assigned to its network interfaces. Furthermore, mobile devices often
disable their wireless connection to preserve battery power, go into low-power
modes or even shut down automatically once the battery is just about to run
out. Moreover, new sensors or devices — possibly valuable to the application’s
mission — occasionally appear, such as an inertial sensor in a new shoe or a new
edition of a smartphone offering better sensing and processing capabilities.

In these cases, the current Toolbox setup will either no longer function cor-
rectly, hence a manual reconfiguration of the setup is inevitable (i.e., changing
the IP addresses in the configuration file), or the setup is just not optimal any-
more and the configuration would need to be adapted. Consequently, many
applications are hard to incorporate because of the static nature of the Toolbox
configuration.

As a result of these observations, we enhanced the CRN Toolbox to support
service-level interfacing of its instances and rise the system to a more abstract
level of services. Consequently, we can now replace the static Toolbox configura-
tion with dynamic ad-hoc recombination of Toolbox services. In order to achieve
this, two major extensions need to be incorporated into the system, with service
registration and service discovery being the first, and semantic annotations for
these newly available services being the second.

We compared several options for the implementation of the service regis-
tration and service discovery layer: Universal Plug and Play (UPnP)EL Service
Location Protocol (SLP)EL Jinﬁ and DNS Service Discovery (DNS-SD)E Dur-
ing our tests, DNS-SD outperformed the other protocols clearly. With every
Toolbox implementing the DNS-SD protocol, it becomes easy for a third-party
application to register and discover the available services. Basic service data like
the name of the service’s host or the port it is bound to, is provided automati-
cally by the DNS-SD protocol itself. Service-specific data on the other hand, can
be included during service registration. In our case, this service-specific data
represents the current configuration of the Toolbox service, i.e., which tasks are
loaded and how they are connected amongst each other. As the configuration of
a Toolbox itself is semantically not meaningful enough and happens on a rather
low abstraction level, we introduce a semantic layer on top of the Toolbox, that
is capable of describing services.

Basically, two types of CRN Toolbox services can be distinguished: simple
sensing services, that are recording data from sensors, and more complex recog-
nition services, which are encapsulating a concrete recognition algorithm. These
algorithms usually require a specific type of sensor, i.e., sensing service, since
they rely on a certain data format, sampling rate and of course need appropriate
data sets for them to work properly.

The description of sensing services is straightforward: it includes fields char-
acterizing the sensor the service is working on, such as sampling rate, supported
axes and the sensor’s exact location, as well as the sensor service’s output. The
description of the recognition service contains the output of the service as well,
but also defines a set of predefined taxonomies and rules that have to be fulfilled
by any sensing service in order to be considered as a possible candidate, that
could be linked to the recognition service.

2UPnP: http://wuw.upnp.org/

3SLP: http://www.ietf.org/rfc/rfc2608.txt
4Jini: http://www.jini.org/wiki/Main_Page
5DNS-SD: http://www.zeroconf .org/

http://www.upnp.org/
http://www.ietf.org/rfc/rfc2608.txt
http://www.jini.org/wiki/Main_Page
http://www.zeroconf.org/

71

With these extensions being made to the CRN Toolbox, dynamic ad-hoc
recombination of CRN Toolbox services may take place. A context-aware appli-
cation may for example browse for a specific recognition service which realizes
exactly the task the application is looking for. After having found such a ser-
vice, the service itself is able to find matching sensing services by reasoning over
ontology rules. With a match being found, the sensing services are linked to
the recognition service, which then initiates its algorithm and starts processing
the input data and delivers the results back to the context-aware application
for further processing steps. A comparable procedure has to be followed by the
application in case it tries to find a suitable recognition service for a sensing
service the application seeks to interact with.

Ultimately, the extensions described in this section allow for semi-automatic
recombination of context-recognition tasks. Extending this work by making the
step towards fully-automatic recombination might enable self-configuring and
even self-healing sensor networks in the future.

4.2.4 Availability

The tool chain is freely available and the main components are being published
as open-source projects. The Context Database is publicly accessible at http:
//contextdb.org and already contains a data set with more than 20 hours of
recordings from over 70 sensor instances [Luk10, [Rogl0]. The site also links to
all repositories of the tool chain’s components.

4.3 Conclusion

We have presented an integrated tool chain to support all phases of the develop-
ment of a context recognition system. The tool chain extends the basic concept
of the CRN Toolbox presented in Chapter |2 to the entire process of developing
context recognition systems:

e The recording of multi-modal data sets is supported by sensor reading
tasks of the CRN Toolbox, dedicated logging apps for sensor-equipped
smartphones, and a monitoring application to document the experiment
progression and to early detect sensor failures.

e For storing, annotating, and sharing of recorded data sets the tool chain
provides the browsable, web-based Context Database, a graphical annota-
tion tool, and the concept of generating reproducible traces from selected
parts of the database which can be used as base for classifier training and
evaluation.

e Online context recognition from live sensor data streams is supported by
the CRN Toolbox itself and a service oriented extension opens the way for
dynamic sharing of sensor data and recognition services among multiple
Toolbox instances.

The service oriented extension to the CRN Toolbox enables statically con-
figured Toolbox instances to build dynamically composed systems at a higher
abstraction level of sensing- and recognition services. This is an important foun-
dation for building opportunistic activity recognition systems which dynamically

http://contextdb.org
http://contextdb.org

72

involve sensors and other resources as available. We focus on opportunistic ac-
tivity recognition methods in Part [T, where we investigate how a classifier can
opportunistically take advantage of a sensor which was not available during
training of the classifier.

The tool chain has been implemented, used in different projects, and is pub-
licly available to the community. We hope that it will speed up the development
of context aware applications, make it easier for new groups to deal with com-
plex context recognition experiments, and foster the reuse and sharing of data
sets.

The fact that structured and annotated context data is now accessible in an
online database might enable future activity recognition systems to dynamically
fetch training data for new classification problems, which were not known at
design time. Other future work may address the integration of an algorithm-
and results database into the system and continued improvements with respect
to the stability and usability of the tools.

Part 11

Opportunistic Methods for
Activity Recognition

73

Chapter 5

Adding New Sensors to
Activity Recognition
Systems

The tools presented in Part[] may facilitate the development of new online ac-
tivity recognition systems. Still, such systems are tailored to a narrowly defined
sensor setup and any change of that setup forces the system to be redesigned.
Within this chapter we introduce a novel method to address the issue of long term
system evolution by allowing new sensors to be integrated automatically without
any user intervention (in Chapter E?] we consider efficient use of limited user
feedback). The method bases on well established principles of semi-supervised
learning, but instead of relying on a small set of user-labeled data we receive
labeled instances from the initial classifier. More specifically, we apply unsuper-
vised clustering to find structure in the new data, assume correlation of cluster
membership with class membership, and use the initial classifier model to assign
labels to clusters in the extended feature space. We study this approach on real
world activity recognition data sets, discuss the factors that make a distribution
difficult to handle, and elaborate heuristics that, in a majority of cases, are able
to achieve an increase of recognition accuracy by the unsupervised integration of
the new sensor. In the successive chapters the method is further refined.

David Bannach, Bernhard Sick, and Paul Lukowicz. Automatic adaptation of mobile activity
recognition systems to new sensors. In Workshop Mobile sensing challenges, opportunities

and future directions at Ubicomp 2011.

Today, state of the art approaches to activity- and context recognition sys-
tems mostly assume fixed, narrowly defined system configurations dedicated to
often also narrowly defined tasks. Thus, for each application, the user needs to
place specific sensors at certain well-defined locations in the environment and
on his body. For a widespread use of such systems this approach is not realis-
tic. As the user moves around, she/he is at some times in highly instrumented

(6]

76

environments, while at other times she/he stays in places with little or no intel-
ligent infrastructure. Concerning on-body sensing, a user may carry a more or
less random collection of sensor enabled devices (mobile phone, watch, headset,
etc.) on different, dynamically varying body locations (different pockets, wrist,
bag). Thus, systems are needed that can take advantage of devices that just
“happen” to be in the environment rather than assuming specific well-defined
configurations.

In previous work our group investigated how on-body position and orien-
tation of on-body sensors can be inferred [Kun05l [Kun09], how position shifts
can be tolerated [Kun08], and how one sensor can replace another [KunlQ]. In
this thesis we address the question how an activity recognition system that has
been trained on a given set of sensors can be enabled to use a new source of
information that has appeared in its environment without any or with minimal
user input.

5.1 Scope and Contribution

Clearly, a method that would without any training use information provided
by an additional sensor and always guarantee to achieve a performance im-
provement is not feasible. Instead, we investigate an approach that sometimes
provides an improvement and overall does “more good than harm”. Thus, we
claim that:

1. For sensors that provide useful information with respect to the classifica-
tion problem at hand the method should achieve significant improvements
in at least some cases.

2. The improvements should not come at the cost of performance degradation
in other cases. This means that

(a) averaged over all sensors the effect of the method should remain pos-
itive (we require at least a slight overall performance increase) and
(b) no (or very few) single cases experience a significant (more than a

few percent) performance decrease.

As we will discuss in Section [5.3.1] methods achieving the above goals can
be fairly easily constructed for certain particularly simple and well-behaving
problems. Thus, a classifier trained on one sensor (“old” sensor) can be extended
to use a “new” sensor in four steps:

1. clustering within the joint feature space of the old and the new sensor,

2. identifying points within the clusters that can be labeled with high confi-
dence without information from the new sensor,

3. transferring the labels from such points to entire clusters based on the
assumption that cluster and class memberships are correlated, and

4. using the cluster labels to improve accuracy for points that can not be
accurately classified with the old sensor alone (see Figure [5.1)).

Obviously, the above method requires

7

1. a clear correspondence between class distribution and structure (as man-
ifested through clustering),

2. a specific relationship between the old and the new feature space that
ensures that at least some points within each cluster can be reliably labeled
using the old classifier, and

3. the availability of a large amount of representative training data.

Unfortunately, in real life activity recognition systems (and many other prob-
lem domains) the above assumptions often do not hold. The core contribution
of this and the two subsequent chapters is to demonstrate how the basic concept
can be extended to be applicable even in such situations.

General Assumptions

In addition to the above assumptions we make the following general assumptions
for the studies in this and the two subsequent chapters:

e We assume it is known which features to extract from a given sensor. It
might be a set of features that are generally known to work well for the
type of activities, a specific feature set provided with the sensor, or a set
provided from a sophisticated, external feature selection method. If not
stated otherwise we use the word “sensor” in this and subsequent chapters
as synonym for “a specific feature extracted from a sensor”.

e We assume that all classes which should be recognized by the system are
known at design time of the first classifier and that at least some of those
classes are not recognized perfectly with that classifier. I.e., we do not
expect new classes to be discovered but to improve recognition accuracy
of the known classes.

e We assume that the probability distribution of each class remains constant.
More precisely, we assume that for each dimension of the initial feature
space the class-specific probability distributions in the data recorded after
a new sensor was added to the system are the same as within the initial
training data. This means that the way a subject performs the activities
and the setup of the initial sensors (e.g., position, orientation) must remain
the same, even when a new sensor appears. In this sense we are not
requiring more than traditional systems with fixed sensor setups do.

e We assume all sensors to be synchronized and all features to be available at
the same rate. L.e., each data point has a known value for each dimension
of the feature space. A method for synchronizing heterogenous sensor
networks is presented in Chapter

5.2 Related Work

The need for a large amount of annotated training data has widely been rec-
ognized as a major issue for the practical deployment of activity recognition
systems. As a consequence, different approaches were studied to overcome this
problem. One line of work looks at unsupervised discovery of structure in sensor

78

data (e.g., [Min07, [HuyO006]). Another attempts to develop activity models from
online information such as a common sense database, WordNet, or general “how
to” resources (e.g., [Wya05| [Tap06| [Che(09, [Sti08D]). Due to the nature of the
data, such work has a strong focus on interaction with objects.

Beyond fully unsupervised approaches there has also been considerable inter-
est in semi-supervised systems that limit the amount of data needed for training
(e.g., [Sti08D) [GualT]).

The field of transfer learming covers the general problem of transferring
knowledge learned in one domain to another domain where the task may also
differ between the domains [Panl0]. Within this context, a domain comprises
the feature space and a marginal probability distribution, and a task refers to
the label space and the objective predictive function (the classifier). The special
case — resembling the problem discussed in this article — where the source and
target domains differ but the task remains the same is also referred to as do-
main adaptation. Daumé [Dau07] presented an approach for domain adaptation
which takes labeled samples from both domains to construct an augmented fea-
ture space and use the result as input to a standard learning algorithm. Unlike
to our approach, the paper requires both domains to have the same features
and dimension. Duan et al. [Dual2] proposed a domain adaptation method for
heterogenous feature spaces. They first project the source and target feature
spaces into a common subspace on which they apply a standard learning algo-
rithm. The authors achieved promising results on a computer vision data set
with 800- and 600-dimensional feature spaces. In contrast, our work explicitly
assumes the addition of additional sensors, i.e., the target space contains addi-
tional features and the common subspace is equal to the source feature space.
Furthermore, the feature spaces in activity recognition scenarios usually contain
much less dimensions as each dimension is related to a signal from a physical
sensor and the features (derived from the signals) are often manually selected.

In [Dai07], Dai et al. applied co-clustering to learn a classifier for unlabeled
documents of a target domain when only labels for documents in a (different)
source domain are known. Co-clustering can reveal features that are similar and
may help classifying items in different domains, yet it is not capable of using
new features to improve classification.

Co-training [Blu9§] is not applicable in our case because source and target
feature spaces are not conditionally independent (target space contains all fea-
tures of source space). Even for the additional features alone we can not assume
conditional independence to the source features.

Closest to our work is [Call0] which uses other sensors and behavioral as-
sumptions to train a system to take advantage of a new sensor. Unlike our work
it does not consider to add a new sensor to an existing system.

While related to our work at a methodological level, none of the articles men-
tioned above addresses the problem of integrating new sensors into an existing
system.

5.3 Key Challenges and Ideas

We start by introducing the basic idea behind our approach, discuss the key
challenges that arise from real world activity recognition data, and present an
overview of the proposed method.

79

5.3.1 Basic Idea

In its core our method is a variation of well-established principles of semi-
supervised learning;:

1. Unsupervised clustering to discover structure in data.

2. Assumption that structure corresponds to class membership. In the sim-
plest case this means that points in the same cluster belong to the same
class.

3. Obtaining at least one correctly labeled data point for each cluster and
using those data points to label the corresponding clusters.

In most semi-supervised approaches the labels are the ground truth provided by
the user. Our approach uses a classifier trained on N features to provide labeled
data points for a (N+1)-dimensional feature space. For the sake of simplicity
and better understanding we consider the transition from 1D (a single sensor)
to 2D (two sensors) space here.

As with most classification method the number of required training data
points increases quickly with each additional dimension, a phenomenon known
as curse of dimensionality. The clustering method we use in our approach is also
affected by this problem, i.e., for taking the step from N to N+1 dimensions
the clustering method needs to receive enough data points to produce reliable
results in an (N+1)-dimensional feature space. For the rest of our method
the absolute number of dimensions is less important as we only adopt the new
dimension in those regions of the original feature space where the new dimen-
sion is more discriminative. For the purpose of human activity recognition the
number of dimensions usually is limited by the number of physical sensors (and
their features) available. In this work we concentrate on exploiting information
from newly added sensors and we leave it open for future work to cope with
the dimensionality problem, e.g., by discarding less discriminative dimensions
or applying different clustering methods.

We start with a classifier trained on data from a single sensor (sensor 1).
We assume that the classifier is performing reasonably well, but still has some
regions in its feature space where the separation of classes is poor. For our
method it is crucial that it is known in which regions of the feature space the
classifier is confident and in which it has many misclassifications. In a tree
classifier (which we are using for this work) this is trivially given if the purity
of the leaves is retained from training.

At a certain stage a second sensor appears (sensor 2), that can potentially
improve the overall class separation. We can now collect and cluster data points
in the 2D space. The question is how to assign labels to the 2D clusters. The
aim of our work is to do so without or, as discussed in Chapter [7, with minimal
user input. Thus, we use the classifier trained on the 1D feature space to provide
the labels. A naive method to do this proceeds as follows (see Fig. |5.1)):

1. We project the 2D clusters onto the 1D space of sensor 1.

2. We consider regions of the 1D space onto which points from only a single
2D cluster are projected (single cluster regions). From the assumption
about structure corresponding to class distribution we can conclude that

80

20 T T
15F E
10 8
5_ .
0
1.0
A
A A
A, Aa A
L ap |
0.8 5 " A&A AA;‘A
8, “pmtan 4 4
AN
AN
0.6} A fat A

sensor 2

[}
0.4' [u] b
= ogo
o
Em odf o o
- B g oo
o
o O
0.2 =m o o, B O d
- n o
B
o
= oo

O'%.Z 0.3 0.4 0.5 0.6 0.7 0.8
sensor 1

Figure 5.1: Naive method: histogram of a 1D feature space (top) and two
clusters in a 2D space (bottom). Arrows indicate the propagation of labels.

the class distribution within those regions should be representative for the
class distribution in the corresponding clusters.

3. We use the classifier trained on sensor 1 to determine the class distribu-
tion in the single cluster regions and use this distribution to label the
corresponding clusters.

As can be seen in Fig. the performance gain comes from clusters that are
partially projected onto regions where the 1D classifier is confident and partially
onto regions where it produces many errors. For the former, the 1D classifier
provides labels for the 2D clusters. For the latter, the 2D classifier outperforms
the 1D classifier.

Note that the basic method does not necessarily require a one-to-one corre-
spondence between clusters and classes. As an example, consider a region that
in a 1D space corresponds to a 50:50 mixture of two classes (see Figure [5.2)).
Now assume that in 2D that region corresponds to two clusters: one with a
25:75, and one with a 75:25 mixture of those two classes. It then follows that
using the cluster information reduces the probability of misclassification from
50% to just 25% in that region.

81

20
15F decision: blue
10k 50% accuracy
51
0
1.0 x w - w *
]
A] decision: blue
. . = Ny - 75% accuracy
0.8k w U B 'l‘ .] 1
' u u,"s " a2
u Aly N
L s
A
b= m § A g
| | - [] []
~ 0.6 -]
—
o
0
c
(0] .
bt - decision: green
0.4fF R A A ~ 75% accuracy
A
A A N
A A
N
AAA A A ,¢ amA
o T
A [A‘
0.2k A Ay Aaam E
A A
A A AN
CL]
A AAR
[]
1 L I L

0'%.2 0.3 0.4 0.5 0.6 0.7 0.8
sensor 1

Figure 5.2: Example of accuracy increase by adding a decision boundary be-
tween mixed distribution clusters in 2D space.

5.3.2 Challenges

Clearly, the method works well on the sample clusters in Fig. because the 1D
and 2D distributions were carefully constructed to make it work. In most real
data sets such ideal distributions are unlikely. When applied to these data the
naive method described above is not able to achieve any improvement because
the clusters that it can label using the “pure” regions of the classifier do not
appear together with any “impure” region that could be improved. Furthermore,
the variation of distributions between two samples (unlabeled 2D data, 2D test
data) can be significant. This may even lead to a performance decrease.

In the remainder of this section we will systematically go through the chal-
lenges that a more sophisticated method has to face.

Distribution Issues

One distribution-related issue addresses the specific choice of a tree classifier.
With the tree classifier we store class distributions at leaf level. That means that
in order to be able to assign a class distribution to a cluster, that cluster must be
the only cluster appearing in the leaf. Unfortunately, in real data we often have

82

the situation where two or more clusters are projected onto distinct areas of the
1D space, but these areas fall within the same leaf making class distribution
assignment impossible. To address this problem, we create an additional tree
in the 1D feature space using purity with respect to cluster membership rather
than class membership as splitting criterion. We then use the original training
data for the 1D classifier to assign class distributions to the new leaves which
are in turn used to assign distributions to the clusters.

1.0
0.8f 1
0.6 _ .
2 g
c
] #
0
0.41 1
o
0.2f |
gsingle-clusterg single-cluster :
region _ : region
: ! 1 1 1

06).30 0.35 0.46 0.45 0.50 - 0.55 0.60 0.65 0.70
sensor 1

Figure 5.3: Effects of projecting 2D clusters onto 1D space.

The basic method requires that each cluster has a region where, when pro-
jected onto the 1D space, it does not overlap with any other cluster. Unfor-
tunately, this is not always the case. Some clusters can be hidden, as shown
in Figure To assign labels to such hidden clusters we propose a “similar-
ity search” in Chapter [6] To this end we first assign labels to all non hidden
clusters. We then attempt to assign labels to the hidden clusters in such a way
that, when the labels are propagated to the cluster’s data points, the projection
of all data points onto 1D space approximates the original 1D distribution (as
trained for the 1D classifier) as well as possible.

Training Sample Quality and Size

All machine learning algorithms build on the assumption that the training data
are reasonably representative and break down if that assumption is substan-
tially violated. In activity recognition (as in many other fields) training data
variance is often a problem because (1) it is costly to obtain a large amount
of labeled data from users and (2) there are often large variations in the way

83

humans perform even fairly simple actions. At the same time our method is par-
ticularly sensitive to the quality of the training data, because it leverages small
areas of the feature space (regions of the 1D space onto which only parts of a
single cluster are projected) to label larger ones (entire clusters). Using small
areas to derive labels for larger ones effectively means artificially reducing the
sample size and thus making the estimator more sensitive to sample variance.
In practice, we would often use 10% and less of the data for cluster labeling. If
that 10% of the training data happens to have high variance and if they are not
representative, then the addition of the new sensor will not only fail to improve
performance, it may actually drastically reduce the classification accuracy over
the entire feature space. As described later we have found such “erroneous” con-
figurations to be a significant problem in real-world activity recognition data. In
fact, if no additional measures are taken, the risk of ending up with erroneous
configurations that worsen the recognition performance nearly neutralize the
potential improvement from the integration of an additional sensor. To solve
this problem we have developed three approaches for sorting out configurations
that have a high probability of leading to performance degradation.

First, for every assignment of class distributions to clusters we compute
plausibility and gain values. The plausibility is based on the projections of the
labeled clusters onto the 1D feature space. It compares the class distribution
that results from the projection to the class distribution in the original 1D
training data, and thus offers a measure of how plausible the guessed labels are.
The gain compares the “purity” of the labeled clusters to the “purity” of the
corresponding leaves of the original classifier. When weighted with the number
of data points in the respective region it is an estimation of the potential that
the particular cluster labeling has for improving the system performance. The
larger the discrepancy between the two measures, the more likely it is that
the specific cluster labeling has been caused by sample variance and does not
correspond to the true class distribution.

Overall, gain and plausibility proved very useful in deciding whether it makes
sense to use a particular cluster labeling or not. However, they are just estimates
and it is well possible that a solution with high plausibility and high gain is dis-
torted by sample variance and will worsen rather than improve performance (as
compared to the 1D classifier). In Chapter |§| we rely on bagging as an addi-
tional measure to address this problem. That is, we derive the cluster structure
and their class distribution for different subsets of the training data created
from the original set through randomly leaving out and replicating individual
samples [Bre96]. We consider clusters and class distribution assignments that
significantly vary between the subsets to be unstable with respect to training
data variance and penalize their plausibility value.

As a final measure we consider user-provided additional labels to detect
erroneous configurations in Chapter[7] We apply both, the original 1D classifier
and the 2D classifier generated by our method, to new data points and compare
the output. If the output differs, then we ask the user to provide a label to check
if the new classifier would improve (if it was right) or worsen (if it was wrong) the
performance (cf. selection strategies for stream-based active learning). We reject
the new classifier as erroneous (and stay with the initial one) if it makes more
than a pre-defined number of mistakes within a certain number of data points.
When looking at points where the classifiers differ, even only two or four user-
provided labels have a very high probability of spotting erroneous configurations

84

with little (but non-zero) probability of mistakenly rejecting ones that improve
classification rate by a relevant factor.

Clustering Issues

In Fig. the optimal clustering is obvious. However, even in such a simple
case standard clustering algorithms would only return the “optimal” structure
if they were provided with the correct number of clusters and managed to avoid
suboptimal configurations related to local minima. In general neither can be
assumed. We rely on a hierarchical clustering algorithm to provide a set of
possible configurations. We generate cluster labels for each configuration and
use the plausibility and gain metrics to select the most promising one.

5.3.3 Method Overview

We base the work described in this chapter on a tree classifier. In a tree classifier
each region of the classifier is represented by a single leaf of the classifier tree
and its ancestor nodes define the region’s boundaries (hyperplanes, each per-
pendicular to one axis). Additional dimensions can easily be added by simply
replacing a leaf with a new subtree which adds boundaries on the extra axis
without affecting other regions.

From the description above it can be seen that our base method consists of
two stages, as shown in Figure

1. Training and using a 1D tree classifier on sensor 1 in a standard supervised
manner.

2. Collecting and clustering 2D data from sensor 1 and sensor 2 and using
the classifier trained on sensor 1 to label the 2D clusters. This is the core
part of our method.

It is only after all of the above has completed that the 2D classifier is ready for
use. The core part (point two) consists of the following sub-stages, as illustrated
in Figure [5.4b

1. Running a hierarchical clustering algorithm on the 2D data.
2. For each plausible cluster configuration:

(a) Label inferring: assigning class distributions to clusters using those
areas of the 1D feature space onto which only a single cluster is
projected (Section. This involves creating a new 1D tree trained
according to cluster rather than class membership (Section [5.5.2)).

(b) Assigning plausibility and gain values for the resulting class distribu-
tion assignment for each region of the 1D classifier (Section [5.5.4)).

3. Selecting the clustering and label assignment that have the plausibility
and gain measures best matching a predefined policy.

85

Train 1D classifier
on sensor 1

¢
1D classifier running Hierarchical
on sensor 1 Clustering
—

/
Select clu@

NO y

YES
Cluster labeling:
label inferring

Collect 2D data
from sensors 1 & 2

B

Adapt 1D
classifier to 2D

il

2a

Assign plausibility
and gain values

2
2D classifier running Apply solution of
on sensors 1 & 2 best cluster level 3
(a) Overview (b) Adapt 1D to 2D

Figure 5.4: Overview of the overall procedure (a) and its most important step,
the classifier adaptation (b).

5.4 Evaluation Strategy and Data Sets

We follow two different strategies for evaluating our method. First, we evalu-
ate it on several synthetic data sets that allow us to systematically study the
influence of different, specific characteristics of the data set on our method. We
then proceed to investigate the performance on real world data sets previously
used in different published activity recognition experiments.

5.4.1 Synthetic Data

The synthetic data sets contain four equally distributed classes (bivariate nor-
mal distribution with diagonal covariance matrix, i.e., the two dimensions are
uncorrelated). To better assess the influence of the number of unlabeled in-
stances we investigate the performance of our method on two different sizes of
the synthetic data sets. In the first we generate 50 unlabeled 2D instances per
class (the instances used for adapting the classifier), and in the second only 10
instances per class, which is closer to the real world data we use later. In both

86

cases we generate twice the amount of instances each for training and testing
(for real data sets the testing set has the same size as the adapting set).

Gradually decreasing cluster overlap: In the first synthetic data set we ini-
tially place the four clusters vertically stacked in the 2D space such that they
completely overlap in the first dimension but are completely separated in the
second (vertical) dimension as displayed in Figure This means that the
second sensor provides perfect information for classification while the first sen-
sor initially can not help discriminating any class. In subsequent iterations we
gradually move the class centers apart along the first dimension such that they
end up in a diagonal layout with no overlap in any dimension.

Moving a single cluster: In the second synthetic data set we position three
clusters diagonally in the 2D space such that they slightly overlap in both di-
mensions (see Figure and we move the fourth cluster vertically centered
along the horizontal axis. While iterating through different positions of the
fourth cluster, the degree of overlap and the number of clusters that overlap
with the fourth cluster are varying from no overlap at all through partial over-
lap to complete overlap in both dimensions.

5.4.2 Real Sensor Data

We evaluate our method on data from previously published data sets: a bicycle
repair data set [Ogr05], a car maintenance data set [Sti08a], and the OPPOR-
TUNITY data set [Rog09]. Over the three data sets we study 768 different
sensor combinations from 13 users executing 22 different activities (8 in the
OPPORTUNITY, 9 in the bicycle, and 5 in the car maintenance data set) with
over 3000 individual activity instances. The sensors in question have widely
varying recognition rates: from 21.89% to 94.15% with a mean of 51.05% for
an individual sensor and from 20.26% to 97.66% with a mean of 69.25% for a
combination of two sensors trained in a fully supervised manner as baseline.

The evaluation focuses on basic manual actions and on body sensors. The
choice of such actions rather than complex situations (e.g. “breakfast”) is moti-
vated by the fact that complex situations can be decomposed into such simple
actions so that handling and understanding those is an obvious start. Within the
above broad activity class, data sets were chosen to provide actions that cover
different extremes. While the bicycle task has fairly complex, longer actions
(e.g., taking out the seat, disassembling the wheel), the car maintenance and
OPPORTUNITY data contains mostly different types of very short open/close
gestures (see below).

As features on the sensors described below we allow only mean and variance.
This way we decouple the problem investigated in this work from the issue of
feature choice which can be complex and have big influence on the recognition.
At the same time both features are commonly used in motion-related activity
recognition. Looking at the ability to just add a sensor that appears in the
environment to a recognition system using simple features also makes sense.
Given an unknown sensor, the system would certainly not be able to identify
sophisticated features and would have to work with what is known to work
reasonably well across many sensors. In the evaluation we handle both features
separately, as if they were separate sensors.

87

*IOTJISSR]D 9011 UOISIAp pajdepe SUIHNSaI oY} JO SUOISI UO PIE[ISAO BIEP 1S9 :UWI01}0¢ "ISYISSL[D 991} UOISIIOP [BIIUI 9} JO SUOISAI UO
pre[Ioao ejep Sururel) (IT poreqe] oY) jo ureiSoysry :doJ, "WOISUSWIIP }SIY oY} Ul dB[ISA0 I9ISN[D JO JUNOUIR SUISLIIIOP [IM BIeP DIIYJUAS
Jo sdnjoes JuaIohIp INoy 10 synsol ajdurexd pue eiep nduy :defIoa() I9Isny) SuIsLsIdd(A[[enperr)—39g eye(] SNYIUAS ISI :G'G 9InSr

09 =1s1p (p)

0losuas
90

0

e1ep 153} pue (%Z'66) Jayisse|> paidepe
0J0suas

80 90 0 20

ejep bululely pue (%2°66) 4

sadue3sul

og =1s1p (9)

0J0suUas
90 70

e1ep 159} pUe (%S°66) Jayisse|> paidepe

0J05UaS
80 90 0 z0

00T

0ZT

orT

s9dUeISUl

o270 = 3s1p (q)

0Josuas
80 90

v'0

e1ep 153) pue (%0°62) Joyisse|d paidepe
QJosuas

80 90 ©'0 z0

e1ep Bululen pue (%g'Zg) Jayisse]d [eniu

00T

0T

orT

TJ05U3s

saduelsul

0T

0=71sp (®)

0Josuas

90 0

e1ep 153 pue (%0°52) Jayisse|d paidepe
Quosuas

80 90 '0 z0

ejep buluten pue (%0°5z) Jaisserd [eniut

TJ0sUBS

sadue3sul

88

al classifier (98.0%) and training data initial classifier (73.8%) and training data lassifier (83.0%) and training data

80|

instances
instances

60

instances
instances

40

20

0.2 0.4 0.6 0.8 . 0.4 0.
sensor0 sensor0

adapted classifier (98.5%) and test data

6 0.8 .0

sensor0 sensor0

adapted clas: r (92.5%) and test data adapted classifier (73.8%) and test data r (91.0%) and test data

0.4 0.6 0.8 a.w.o 0.2 0.4 0.6
sensor0 sensor0

0.8 1.0 o.m.o 0.2 0.4 0.6 0.8

sensor0 sensor0

(a) posX = 0.1 (b) posX =0.35 (c) posX =0.5 (d) posX = 0.6

Figure 5.6: Second Synthetic Data Set—Moving a Single Cluster: Input data and example results for four different setups of synthetic
data with differing amount of cluster overlap in both dimensions by moving one cluster horizontally. Top: histogram of the labeled 1D

training data overlaid on regions of the initial decision tree classifier. Bottom: test data overlaid on regions of the resulting adapted
decision tree classifier.

89

The Bicycle Data Set

The data set is a simulated bicycle repair task where the subjects were given
broad instructions what to do and a lot of freedom in performing the activities.
We distinguish 9 classes which are

e pumping the front wheel,
e pumping the back wheel,

o screw/unscrew 3 different screws,

testing the pedals,

disassemble/and assemble the front wheel,
e test the back wheel, and
e disassemble/assemble the saddle.

The subjects have inertial sensors on different body parts and the position of
the hands with respect to the bicycle is tracked with an ultrasonic system. For
the evaluation we have used the mean of right hand (1) position x coordinate,
(2) euler psi and (3) euler theta angles (4) and the y component of acceleration.
For (5) the right hand gyro component and (6) left hand gyro z component
we have used the variance. Finally we have used the mean of left hand (7) y
and (8) x position component. The sensor channels were chosen by training a
tree classifier on mean and variance of all sensor channels from the left and right
hand and then retaining those that the tree used.

The OPPORTUNITY Data Set

The data set is a simulated morning scenario where a person gets up prepares
and has breakfast and then cleans up. It has been recorded with a large number
of on body and ambient sensors (over 160 channels) to enable the comparative
study of different sensors. From the data set we have chosen the following 8
classes:

e opening and closing gestures for

— fridge,
— dishwasher,
— 3 different drawers,

— 2 different doors, and
e the action of wiping the table.

These are much more subtle than the complex long bicycle actions and some are
very specific to some sensors (e.g. position to disambiguate the different doors).
Within the data set it can be shown that this type of basic actions is what
more complex activities can be built of. We have used the mean of the following
signals: x, y, z component of the right lower arm (1,2,3) and back (4,5,6)
acceleration, as well as (7,8) = and y component of overall shoulder position
(from a UBISENSE tag [Ste05]). In addition the variance of right lower arm

90

x, y, z acceleration (9, 10, 11) and the vector of reed switches in different drawers
(12) were used. Here, the sensor selection was based on “expert knowledge” and
experience with the data set rather than on a systematic feature selection. We
aimed to have sensors pairs that sometimes make sense together and sometimes
not, as well as good and poor sensor for all actions.

The Car Maintenance Data Set

The data set is recorded in a real life scenario of car manufacturing industry. It
covers tasks of an employee at the last checkpoint in the car manufacturing chain
where all doors and the trunk are inspected for proper function and alignment.
From this data set we select to distinguish 5 classes which are

e opening or closing the car’s hood,

e opening, checking, or closing the trunk lid,
e opening or closing the front left door,

e opening or closing the rear right door, and
e opening or closing the fuel filler cap.

The subjects were wearing a “motion jacket” equipped with inertial sensors at
each upper body limb segment and on the back, and UBISENSE tags to measure
shoulder position within room coordinates. For our evaluation we selected mean
of shoulder horizontal position x and y component (1,2), and from the back
sensor mean of magnetic field y and z component (3,4) and variance of the
magnetic field y component (5), and mean and variance of the right hand sensor
acceleration x component (6,7). Similar to the above data set we selected the
sensors based on “expert knowledge” to arrange combinations of sensors that
are known to work well together and some that have poor contribution to the
classification.

5.4.3 Evaluation Methodology

We evaluate our method on each combination of two different sensors; we train
the base recognition system on the first and then integrate the second one as
the “new sensor”. As mentioned earlier, we treat each feature as a single sensor
in this evaluation. Thus, we also consider improving a classifier with another
feature of the same sensor or even with the same feature on a different axis
of the sensor. Furthermore, this includes cross-modality situations where a
system trained on one sensor (e.g., accelerometer) is improved with a sensor of
a completely different modality (e.g., radio frequency positioning).

In order to avoid improving only the shortcomings of a badly trained recog-
nition system we chose the parameters for the base classifier (minimum number
of instances per leaf) individually for each combination such that the base sys-
tem and the comparison system trained on both features perform best on the
training set.

For evaluating our method we select the C4.5 decision tree classifier (WEKA
J48 implementation [Wit05] with binary decisions) as base classifier. We nor-
malize features from real data sets to the unit interval [0, 1]. For each evaluation

91

we need three separate data sets: for training, adapting, and testing. The train-
ing data set is needed for training the initial classifier. It uses only one feature
and labels. The data set that we need for adapting the original classifier has
two features but no labels, and the data set we use for testing the performance
has both features plus the labels. If not stated otherwise, we set the size of the
adapting and test data sets both to a half the size of the training data set. We
shuffle the data set carefully before splitting to achieve similar class strengths
per split and we repeat the evaluation 5 times with different seeds to avoid
focusing on artifacts caused by a specific splitting choice.

5.4.4 Metrics

Obviously, the relevant performance measure is not the absolute recognition ac-
curacy but the difference in recognition accuracy between the original system
and a system with an additional sensor integrated according to our unsupervised
method. Thus, for each sensor combination we compute the difference between
the two accuracies (each expressed in percent) and refer to it as accuracy change.
The accuracy change itself must be seen in the context of the amount of infor-
mation that the additional sensor can provide. This amount is best quantified
by looking at the classification accuracy when a dedicated classifier is trained
in a fully supervised way on a feature space that includes the new sensor.

We consider the histogram of accuracy change that was achieved with each
evaluated sensor pair (see Figurefor example) and look at those sensor pairs
for which our method realized an improvement (accuracy change > 0) compared
to those that ended up with less accuracy than with the first sensor alone (accu-
racy change < 0). The first measure to consider here is the absolute number
of sensor pairs that ended up with positive or negative accuracy change. While
this measure gives a good estimate for the chance of success it does not quantify
the actual amount of improvement vs. “harm”. The latter is better described
by the overall sum of positive accuracy change and its counterpart, the
sum of negative accuracy change. Additionally, we highlight the median
and 10th- respectively 90th percentiles for positive and negative change.

5.5 The Label Inferring Method

We begin by focusing on the inference of cluster labels from single-cluster regions
within the projection of 2D clusters onto the 1D space of the original sensor.
In Fig. this corresponds to steps 1 (clustering), 2a (cluster label inferring),
2b (plausibility and gain computation), and 3 (taking the solution with best
gain/plausibility ratio).

5.5.1 Finding Structure in Extended Feature Space

We assess the structure of the extended feature space by applying an agglom-
erative, hierarchical clustering algorithm (Ward’s minimum variance method
[War63]). The resulting cluster tree gives us the possibility to explore the struc-
ture at different levels of detail without deciding on the number of clusters yet.
We traverse the cluster tree top down, starting with two clusters and splitting
one cluster at each step until a maximal number of clusters is reached. At each

92

step we attempt to (1) infer a label distribution for each cluster based on in-
formation from the original classifier model, and (2) build an adapted classifier
model on the extended feature space, utilizing the label information of the clus-
ters. All those adapted models are then rated based on the possible gain of
classification accuracy and the best one is selected.

The method of rating different solutions not only allows for automatically
finding an appropriate number of clusters but also makes it possible to choose
the most helpful among different features available for a sensor, or even among
different sensors.

5.5.2 Inferring Cluster Labels

As described in Section [5.3.1] the basic method for assigning labels to clusters
is based on projecting the clustered data points back onto the original feature
space. We then identify regions of the original feature space where (1) a single
cluster is projected onto and (2) where multiple clusters are projected onto.
We refer to them as single-cluster and multi-cluster regions (see Figure[5.3). In
single-cluster regions the class distribution found in the original model (or in the
training data) for that region is directly related to the cluster and may be used
to infer the cluster label distribution. In multi-cluster regions, however, it is not
clear how the class distribution in that region is correctly partitioned among
the involved clusters, unless the distribution is pure, i.e., contains a single class
only.
The problems that need to be solved are, thus,

1. delimiting the single- and multi-cluster regions, and

2. transferring the class distribution from the original classifier onto the
single-cluster regions.

The first problem, distinguishing between single- and multi-cluster regions,
is in essence a classification task by itself. We found the C4.5 decision tree
classifier to be a good choice for solving this problem. The amount of pruning
(B = minimal number of data points in a region/leaf) controls the granularity
and stability against noise. Thus, for the actual process of cluster labeling we
project the clustered data points onto the original feature space and train a C4.5
decision tree based on cluster membership. All regions (leaves) in this tree with
a purity above a preset purity threshold are treated as single-cluster regions.
95% proved to be a good choice for the purity threshold in our data sets as
it yielded a reasonable amount of single cluster regions while keeping labeling
errors low.

For label assignment we then have to go back to the training data used for
the original classifier. We use it to estimate the class density in those leaves of
the tree trained on the clusters that correspond to single-cluster regions. In a
final step, the label distribution is transferred to the corresponding clusters and
normalized.

Note that the above means that we need to retain either the original training
data or at least an adequate representation of it to be able to extend the system
with a new sensor using our method.

93

5.5.3 Adapting the Classifier Model to the Extended Fea-
ture Space

Now, that the clusters have label distributions assigned to all clusters that
appear in single-cluster regions, they can be used to extend the classification
model with the new dimension. Obviously an extension only makes sense for
the multi-cluster regions of the original feature space, since in the single-cluster
regions the class distribution is identical in the new and in the old feature spaces.
Furthermore, the extension is only possible for those multi-cluster regions, in
which all clusters have been labeled. As explained in Section [5.3.2 and Fig. [5-3]
some clusters may be hidden with no points in the cluster being projected onto
a single cluster region (which is the prerequisite for the ability to assign a class
distribution to a cluster).

Thus, multi-cluster regions in which all clusters have been labeled are split
according to the cluster membership of the points. For a decision tree classifier
this means that each leaf of the original classifier which falls into such a multi-
cluster region is replaced by a subtree with each leaf of the subtree corresponding
to a different cluster. Multi-cluster regions which contain a hidden cluster, i.e.,
a cluster that can not be labeled with this method, must be ignored and can
not contribute to improving the classifier.

5.5.4 Estimating Plausibility and Gain

In essence, the above method amounts to generalizing the class distribution
from a small subset of points (the points that project onto single-cluster re-
gions) to the entire cluster from which the subset has been taken. For such a
generalization becoming valid two conditions must be fulfilled.

1. The class distribution must be homogeneous throughout the cluster, i.e.,
when split into separate regions, the class distribution must be the same in
each region. Note that it is not necessary that all points within the cluster
belong to the same class (although it is certainly desirable). Instead the
probability of a point belonging to a given class must be (approximately)
the same everywhere within the cluster. The main questions are

(a) does the new feature space contain enough correspondence between
structure and class distribution to find clusters with homogeneous
class distribution? and

(b) is our clustering algorithm able to reveal those clusters in completely
unlabeled data?

2. The subset of points that we use for labeling must be a good represen-
tation of the class distribution within the cluster. The main concerns
are the sample size in relation to sample variance and the actual homo-
geneity of the distribution within the cluster. We may thus envisage a
situation where, overall, the class distribution within a cluster is homoge-
neous enough to justify assigning a single distribution to the cluster, but
between the small single-cluster regions, from which we collect the labels,
the variations would be considerable. Clearly such regions should not be
used for the derivation of the class distribution.

94

Obviously, if the sensor used to create the new feature space contains addi-
tional information about the classification problem at hand, it is well possible
that the above requirements are (at least to a certain degree) fulfilled. However,
this is by no means guaranteed. Thus, for example, there is no fundamental rea-
son why an additional sensor should not result in a distribution that has two
spatially well separated clusters, but where the separation boundary between
classes is located within the clusters instead of between them. Furthermore,
even if in the new feature space there exists a cluster structure that satisfies
the above conditions, there is no way to guarantee that our clustering algorithm
will find it.

Unfortunately, applying our method to a distribution that does not satisfy
the above conditions in general leads to a significant performance decrease, not
just lack of improvement! At the same time the proposed system should be able
to deal with an arbitrary additional sensor without prior knowledge about the
class distribution in the new feature space. The problem herewith is, that for a
given clustering and label distribution in the new feature space there is no way
to ezactly determine (without additional user provided labels) the quality of the
label assignment. As a consequence our system relies on the following heuristic:

1. A method for the estimation of the plausibility of label assignment.

2. A method for the estimation of the potential gain of accuracy that the
new dimension may bring.

3. A risk-benefit analysis to decide a given label assignment is worth using.

Plausibility

The derivation of plausibility is based on the observation that, while the in-
clusion of the new sensor changes the classification of individual data points,
the overall class distribution within each region of the old feature space should
remain unchanged. Thus, we propose to take a set of data points from the
extended feature space and

1. classify them using the new (extended feature space) decision tree,
2. project them onto the old feature space, and
3. for each region in the old feature space:

(a) compute the resulting class distribution in the old feature space and

(b) compare it to the class distribution in the original training data on
the old feature space.

If the labels assigned to the clusters in the new feature space are correct, then
the two distributions (point 3a and point 3b above) should be identical or at
least very similar. Therefore, we derive the plausibility value for each region r
from this similarity as

N

. 1 R
plausibility, = 3 Z(pm —pm')Q,
i=0

95

where p,; is the probability of class ¢ (estimated using the training data) within
region r and p,; the probability of class ¢ in region r approximated with data
in the extended feature space when classified with the adapted classifier. The
plausibility is normalized by the maximal possible distance of the two class
distributions.

Note that the plausibility value is just an estimation. If the value is high,
then, within sample variations, we can be sure that the label assignment in the
new data space is not useful. On the other hand, when it is low, then it is likely
but by no means assured that label assignment is approximately correct.

Gain

As a second measure we estimate the potential classification accuracy gain.
Since we consider a tree classifier this can be defined as an increase of purity
that we achieve by extending the classifier with the new sensor. As described in
Section [5.5.3] we create the extended classifier by splitting leaves of the old clas-
sification tree according to membership in (labeled) clusters of the new feature
space. For each leaf of the old tree (i.e. for each region 7 in the initial feature
space) we can compute its purity from the training data as

purity, = max(p;.;)-

In the best case the new leaves in a region are all pure and hence the new purity
would be 1. However, if a new leaf would still classify some points incorrectly
(which we can not test without ground truth data) the relative size of the leaf
(in terms of amount of data points falling in that leaf) would be bigger than the
probability of the corresponding class in the original training data within that
regionﬂ Hence, the purity contribution of a new leaf can maximally amount to
the probability of its corresponding class in the original training data. Thus,
we obtain the purity resulting from the new leaves, in each region, from the
histogram intersection of the new class distribution (point 3a above) with the
initial class distribution (point 3b above)

N
purity, = Z min(pr ., pri),
i=0

and we finally obtain the gain value from the difference of both purities

—

gain, = purity,. — purity,..

The gain value is computed separately for each region of the original classifier
and is summed up to a weighted average for the whole solution. The weights
are the relative amount of training data points in each region.

Note that the gain computation is based on the assumption that the label
assignments in the new feature space are correct. In this sense it is, just like
plausibility, an estimation that may or may not be correct.

n case multiple new leaves contribute to the same class they are considered together.

96

Alternative Measures

We chose the above two measures by selecting the formula which complemented
our method reasonably well to demonstrate its feasibility and which delivered
promising results on test data. An alternative approach for computing the gain
value, e.g., could be to rely on the information gain measure inherent with the
(C4.5 decision tree instead of purity, or computing the new purity from the cluster
label distributions instead of the histogram intersection. We, however, preferred
the selected variant because of the following properties: The computation of the
plausibility and gain values using data points classified with the new decision
tree (instead of using the cluster label distributions directly) allows to reflect
the quality of the actual decision tree, i.e., it includes the effects caused by
the actual added decision boundaries and by the leaf’s decision for the single
(most probable) class. The former manifests in case the clusters should not
be perfectly separable along the new dimension within a region, and the latter
allows for different cluster labeling methods such as presented in Chapter [6]

Deducing the new purity from the histogram intersection distance is an op-
timistic estimation. It benefits mixed clusters because they can cause a higher
purity than actually possible. For the example displayed in Figure [5.2[we would
obtain a new purity of 1 for the highlighted region (a gain of 0.5) instead of
0.75 (gain 0.25). This is, however, only a problem when another clustering and
cluster labeling would result in a better (e.g., nearly perfect) classifier but would
not be selected because of a lower gain.

Using the Plausibility and Gain Values

Given that a solution is plausible, the gain value allows us to quantify its utility
for increasing the classification performance. Therefore, this measure is used for
comparing solutions from different cluster levels, after discarding the ones that
are not plausible enough. We simply choose the solution which has the best gain.
This way we automatically select the best number of clusters. Furthermore, the
gain measure may also help to quantify the utility of different sensors or features
in case when multiple are available, which would help selecting the ones that
can best contribute to the problem.

The parameter B denotes the minimal number of data instances allowed in
a leaf of the cluster-based decision tree that is built by our method in order
to find labels for clusters (see Section . Decreasing this parameter means
to allow a more fine-grained search for single-cluster regions which are needed
to reveal labels of clusters that are overlapped by others. While decreasing B
often leads to more single-cluster regions it also rises the sensitivity to noise.

5.6 Evaluation on Synthetic Data

5.6.1 Gradually Decreasing Cluster Overlap

First, we investigate the technique with the first synthetic data set (gradu-
ally increasing cluster overlap). Figure shows the average accuracy of the
adapted classifier resulting from our unsupervised method in relation to ini-
tial feature space cluster distance and compared to fully supervised trained

97

classifiers. Results are averaged over five runs with different random seeds for
increased robustness against particular effects of a single data set.

In this simulation, see Figure the result with the lowest value for B
clearly outperforms others. It is up to 29.3% better than the initial classifier
(supervised 1D) and often meets or even exceeds the performance of the fully
supervised classifier (supervised 2D). Only at distance 0.2 does it make a very
bad initial classifier slightly worse. The results for B = 6 and B = 10 behave
more conservatively. They never fall below the accuracy of the initial classifier
here but they also show fewer occasions with true performance increase.

100,

80

accuracy [%]
Py
3
accuracy [%]

IS
S

— B=2 y — B=2
— B=6 7 ~— B=6
20 B=10 208 B=10
- - supervised 1D - - supervised 1D
- supervised 2D --- supervised 2D
0 1 2 3 4 5 6 00 1 2 3 4 5 6
horizontal distance of class centers horizontal distance of class centers
(a) 50 instances per class (b) 10 instances per class

Figure 5.7: Gradually Decreasing Cluster Overlap: Effect of cluster overlap in
first dimension shown for increasing horizontal distance between cluster centers
(see Fig. and for two different amounts of unlabeled 2D space instances
(adaptation set). The accuracy of the adapted classifier is plotted for three
different parametrizations of our unsupervised method. For comparison the
results of the initial classifier (supervised 1D) and of a fully supervised classifier
(supervised 2D), which is trained with an additional dimension for the ground
truth instances, are given.

The results of this simulation indeed meet our expectations. We do not
impair a good classifier (dist > 4) and for initial classifiers with accuracies
above 74% (dist > 1.6) we can achieve perfect or nearly perfect improvement
resulting at 97.5-100%. For initial classifiers below 74% accuracy we can still
achieve a mean improvement of over 21%. Only at the lowest end there is one
occasion where performance is decreased by 2.6%. These results also confirm the
usefulness of the plausibility and gain measures to decide on the most promising
cluster configuration.

The example results displayed in Figure [5.5] show the detailed regions of the
initial classifier (top) and the adapted classifier (bottom). While in Figure
the four classes completely mix up in the histogram of the initial feature space
and no true classification or improvement is possible at all, in Figure there
is already a slight difference between class centers in the initial dimension which
the initial classifier is exploiting. Our method (B = 2) is able to find single-
cluster regions (and thus labels) for all clusters, but in this example obviously
fails to choose the correct number of clusters (the dark blue cluster is split) and

98

is in the mistaken belief that it found correct labels for all clusters as it splits up
the leftmost region of the classifier. However, the classification accuracy in this
region of the initial classifier is so low that even a wrong modification only does
little harm to the accuracy because most instances are classified wrong anyway.
Figure shows an example of nearly perfect improvement (77% to 99.5%)
and in Figure the initial classifier is perfect enough that we cannot improve
it in the second dimension alone.

Figure shows results for the same simulation but with a much smaller
data set. The set of 2D feature space data that is used for the unsupervised
adaptation only contains 10 instances per class. These harder conditions tribute
in a much lower gain of accuracy compared to Fig. [5.7al Even the fully super-
vised variant, which is provided with the second dimension for the ground truth
data, shows less accuracy on the (larger) test set. Still, our method does not
harm a reasonable good classifier. Above 85% initial accuracy we hardly achieve
any improvement but from there down to 42% initial accuracy (dist = 0.8) we
still realize a mean accuracy gain of 10.2%. With even more cluster overlap
(dist < 0.8) we eventually harm the initial classifier or can only achieve small
improvements.

90

®
3
accuracy (%]

accuracy [%]

~
S

— B=2
— B=6
60r] B=10
-~ supervised 1D -~ supervised 1D
- supervised 2D --- supervised 2D
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
horizontal position of moving class center horizontal position of moving class center
(a) 50 instances per class (b) 10 instances per class

Figure 5.8: Moving a single cluster: Results for a similar situation as in Fig.
but with one single cluster that changes horizontal position and eventually is
completely overlapping an other cluster as shown in Fig.

5.6.2 Moving a Single Cluster

We now evaluate the technique on the second synthetic data set (moving a sin-
gle cluster). The accuracy of the base classifier in Figure (supervised 1D)
clearly reveals the positions of the fixed clusters where it reaches local minima
at 0.33, 0.5, and 0.66. This is where the moving cluster completely overlaps
with one of the fixed clusters in the initial feature space. At the center posi-
tion those clusters also totally overlap in the 2D feature space which makes it
even impossible for the supervised 2D variant to separate them. Notably, our
solution does “no harm” here. At the outer two positions, however, our method
eventually drops below the initial accuracy. This is once the case each for B = 2

99

and B = 6. With B = 10 our method does “no harm” at all but also shows
only little accuracy overall. Between and aside of these three positions our
method can achieve very good to nearly perfect improvement as it comes close
to the results of the fully supervised variant (supervised 2D). Such an example

is depicted in Fig. (.65}

In the case of only 10 instances per class (Fig. |5.8b)) only the variant with
B = 2 drops below the accuracy of the initial classifier at the three critical
positions described above. Overall, the accuracy increase is much less than
with 100 instances per class but there is still a fair increase of 2-10% between
and besides these three positions. With the more conservative variants B = 6
and B = 10 we do not see any performance degradation, but also only very
little improvement, if any.

5.7 Evaluation on Real Sensor Data

The results on all three real data sets are summarized in Figure (.9 The
histograms display the number of sensor combinations per accuracy change.
This is the unsupervised change of accuracy achieved by our method.

The histograms clearly reveal the number of combinations with desirable
(positive accuracy change) and undesirable (negative accuracy change) results.
Regarding Figure lowering the purity threshold (plTH) from 1.0 (unre-
stricted, top) down to 0.001 (strongly restricted, bottom) is clearly reducing
the number and grade of undesirable results while keeping nearly all desirable
results. Only at the lowest threshold (0.001) the number of desirable results
is strongly reduced too. This effect is also visible in the results with less fine
grained cluster based trees (Figures and), but in accordance with the
results on synthetic data discussed above, rising the parameter B, i.e., increasing
the minimal allowed leaf size for the cluster-based tree used for finding cluster
labels, reduces not only undesirable results but also many of the desirable ones.

Judging from the histograms, the “blue” result in Figure (pITH 0.075,
B=2) seems the most reasonable. While it features many high grade desirable
results (1146 of 3840, 29.8%) with a median of 5.3%, it only has 555 (14.5%)
undesirable ones with a smaller median of -3.5% accuracy change. Figure [5.10]
summarizes the results by opposing the sum of positive change to the sum of
negative change. With B=2 the method clearly outperforms other parametriza-
tions in terms of sum of positive change but with a similar increase in sum of
negative change. With B=5 the method behaves much more conservatively,
avoiding large negative change and still achieving some positive change. No-
tably, the sum of positive change always dominates, meaning that our method
actually achieves an improvement over all tested sensor combinations by inte-
grating the new sensor without any user input.

The effects of both parameters (pITH, B) are almost identical when com-
pared between separate results from all three data sets, suggesting that they
will occur on other data sets correspondingly without need for adapting the
parameters.

100

250 T T T T T T 250 T T T T T T 250 T T T T T T
200} change < 0: change > 0: 200} change < 0: change > 0: 200} change < 0: change > 0:
42 of 3840 42 of 3840 o 193 of 3840 330 of 3840 o 1063 of 3840 0 1269 of 3840 o
150f sum:-140.8 sum: 106.2 - 150f sum:-895.4 sum: 1634.5 - 150f sum:-7716.8 ! sum: 9287.1 -
median: -2.7 median: 2.6 T median: -2.8 median: 3.1 T median: -5.6 0 median: 5.6 T
100F 10pct: -6.9 90pct: 4.4 |5 1001 10pct: -9.4 90pct: 9.9 |5 1001 10pct: -14.9 ! 90pct: 15.2 | | &
50 50 50
0 L L L PPN e L L L 0 L L 8 L L 0 | flea s
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
250 T T T T T T 250 T T T T T T 250 T T T T T T
200} change < 0: change > 0: 200} change < 0: change > 0: 200} change < 0: change > 0:
35 of 3840 390f3840 | 154 of 3840 3370f3840 | 839 of 3840 0 1306 of 3840 | |
150F sum:-87.3 sum: 102.1 o 150F sum:-644.4 sum: 1665.0 o 150F sum:-5385.7 ! sum: 9513.7 o
median: -1.8 median: 1.8 T median: -2.7 median: 3.1 T median: -5.2 0 median: 5.6 T
100F 10pct: -5.6 90pct: 4.5 |5 100F 10pct: -8.3 90pct: 10.3 |5 100F 10pct: -13.9 ! 90pct: 14.9 | &
501 501 ; 501
0 . . . plian " . . 0 0 L -
-40 -30 -20 -10 0 10 20 30 40 —-40 -30 -20 20 30 40 -40 -30 -20 -10 0 10 20 30 40
250 T T T T T T 250 T T T T T T 250 T T T T T T
200} change < 0: change > 0: 200} change < 0: change > 0: 200} change < 0: change > 0:
13 of 3840 24 of 3840 0 92 of 3840 272 of 3840 0 555 of 3840 0 1146 of 3840 0
150F sum:-36.6 sum: 54.1 o 150f sum:-358.3 sum: 1323.5 o 150f sum:-2978.9 ! sum: 7552.2 o
median: -1.8 median: 1.8 |2 median: -2.7 median: 2.8 |2 median: -3.5 0 median: 5.3 | |2
100F 10pct: -5.6 90pct: 4.4 .“m 100F 10pct: -6.9 90pct: 9.8 .“m 100F 10pct: -11.7 ! 90pct: 13.9 .uln
sof = s0f - < sof =
0 L L L L L L 0 L L L baéﬁ;?w L L 0 -
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
250 T T T T T T 250 T T T T T T 250 T T T T T T
200f change < 0: change > 0: 200} change < 0: change > 0: 200} change < 0: change > 0:
1 of 3840 3 of 3840 S 9 of 3840 33 of 3840 S 24 of 3840 86 of 3840 S
150F sum:-2.7 sum: 5.7 S 150f sum:-32.9 sum: 140.4 oS 150f sum:-139.4 sum: 453.3 oS
median: -2.7 median: 1.8 e median: -2.7 median: 2.7 e median: -5.4 median: 4.0 =
100} 10pct: -2.7 90pct: 2.5 | & 100} 10pct: -6.5 90pct: 9.2 | E 100f 10pct: -10.7 90pct: 10.5 |E
sof < sof < sof =
0 L L L L L L 0 L L L ou L L L 0 L L L 1| NP L L
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
accuracy change [%] accuracy change [%] accuracy change [%]
(a) label inferring, B = 10 (b) label inferring, B = 5 (c) label inferring, B = 2

Figure 5.9: Results for our mthod with different parameterizations on the three real-world data sets (13 subjects, 768 - 5 tested sensor
combinations in total). Each plot shows results for four plausibility thresholds (plTH). Bounding boxes for positive and negative results
are highlighted, including 10/50/90 percentiles.

101

Vo
\\ D‘
N 0.
. O
AN
N
2000} AN g
N
N
AY ..
N v
A .
N .
Y
—4000} N R
N .
N
81 N
S ® N
S . v
] N :
2 —6000f N : E
© N N
g N :
c N :
g N ;
a N :
\\ V
—8000} N R
N\
A
N
N
A
A
A
A
—10000F .0 |abel inferring (B=10) R 1
o0 label inferring (B=5) AR
v--«v label inferring (B=2) AN
- - zero improvement AN
—-12000 o
0 2000 4000 6000 8000 10000 12000

sum positive change

Figure 5.10: Comparison label inferring results with different parameters. Col-
ors correspond to plausibility thresholds (plTH) as in Figure

5.8 Conclusion

In this chapter we presented an approach to enable an activity recognition sys-
tem based on a decision tree classifier to integrate a new source of information
in a completely unsupervised way. We evaluated the system on two synthetic
data sets and on three previously published real world data sets, one concerning
bicycle repair, one about car maintenance, and one dealing with a home setting
scenario. The method can achieve perfect results on synthetic data sets, which
are comparable to systems trained in a fully supervised manner, even in diffi-
cult situations where multiple clusters overlap each other in the initial feature
space. With the restrictions of real world data sets with limited sample size our
label inferring method can still achieve more improvement than it does “harm”
with 29.8% of the tested sensor combinations the accuracy being increased by
a median of 5.3% and for the best 10% thereof realizing an accuracy increase of
more than 13.9%.

One of the requirements stated in the introduction, however, is not met sat-
isfactorily as we required the system to decrease performance in not more than
a few occasions. When we choose parameters to achieve a reasonable amount of

102

improvement without getting large degradations, we still have nearly 14.5% of
cases where the performance of the initial classifier is slightly decreased with a
median of -3.5%. The reason for this can be sought at several stages. First, the
variation between data samples seen in real world data sets is in conflict with
our assumption made on equal class distributions in training-, adaptation-, and
test set. Second, our label inferring method relies on the ground truth labels
of a small subset of data samples (single-cluster regions) for inferring the class
distributions to entire clusters. The parameter B directly influences the min-
imal size of those regions. If the single cluster regions are not representative
for the entire clusters, then our method is promoting erroneous configurations
which not just diminish or prevent an improvement of the classifier accuracy,
but actually can cause it to perform worse than with the single sensor alone.
The plausibility and gain measures used for assessing the quality of solution
candidates are estimates that may not detect and sort out all such erroneous
configurations.

A second observation from evaluation on real world data sets is, that many
clusters are hidden, such that they do not appear alone in a region when pro-
jected onto the initial dimension, i.e., they are not part of any single-cluster
region. And thus, there is no way for our label inferring method to assign la-
bels to those clusters and taking advantage of them for improving the classifier.
Furthermore, those hidden, unlabeled clusters actually prevent improvement in
all the regions of the initial feature space they cover.

We address both of the above issues in Chapter |§| where we (1) investigate
an advanced method, based on similarity search, to find labels even for hidden
clusters, and (2) utilize bagging to reduce vulnerability to sample noise. In
Chapter [7] we also consider an approach to use user provided labels for sorting
out and discarding erroneous configurations.

Chapter 6

Labeling Clusters Based On
Distribution Similarity

The unsupervised method to integrate a new sensor introduced in the previous
chapter achieved promising results. Yet, the complex class distributions found
in real world activity recognition data sets revealed limited opportunities for our
method to achieve any improvement. Derived from the observations made in
the previous chapter we present here an advanced approach for the unsupervised
assignment of labels to clusters in the extended feature space. The approach is
focused on finding the label assignment that — when projected back to the initial
feature space — best resembles the label distribution found in the training data of
the initial system. Additionally, in order to reduce the influence of sample noise
to our method we integrate a bagging technique. The evaluation on the same
synthetic and real world data sets as used in the previous chapter reveal a clear
advantage in overall yield, i.e., the number of tested sensor pairs for which an
improvement can be achieved. This however comes at cost of increased failure
rate. With bagging we can efficiently reduce this failure rate with only moderately
affecting the yield.

David Bannach, Bernhard Sick, and Paul Lukowicz. Automatic adaptation of mobile activity
recognition systems to new sensors. In Workshop Mobile sensing challenges, opportunities

and future directions at Ubicomp 2011.

The promising results of the unsupervised method for automatically inte-
grating a new sensor into an existing activity recognition system, introduced
in the previous chapter, encourage to further investigate its limits. While on
synthetic data sets that method demonstrates its ability to compete in many
cases with systems trained in a fully supervised manner, it also shows difficulties
when, in real world data sets, the sample size is reduced or when clusters totally
overlap each other in the initial feature space such that they are “hidden” to
the method. Here, we explore the sources of the limitations and address the
issues with an advanced approach.

103

104

6.1 Limitations of the Label Inferring Method

A key component of the label inferring method introduced in the previous chap-
ter is that it attempts to infer labels for all clusters of unlabeled data in the
extended feature space. The ground truth data in the initial feature space and
the structure of the extended feature space clusters are the sources of informa-
tion from which the labels are deduced. In fact, the clusters are projected onto
the initial feature space where the method searches for regions where only data
points of a single cluster fall into and based on the ground truth data of that
region it infers labels to the whole involved cluster.

One obvious parameter which is influencing the performance of the method is
the minimal size of single-cluster regions to look for (B, see Section[5.5.4). With
large regions there is a good chance to capture a representative set of ground
truth instances for the cluster, yet such large single-cluster regions are hard to
find in real world data sets. This can be seen in Figure where for pITH 1.0
and B=10 just 84 of 3840 sensor combinations resulted in any change (accuracy
increase or decrease), while for B=5 and B=10 those numbers increased to 523
and 2332 respectively. Thus, smaller regions occur much more often, yet they
rise the sensitivity to noise, both in the clustered data set and the ground truth
data. The need for sufficient single-cluster regions is intensified by the fact,
that for adapting the classifier in a region where multiple clusters fall into, all
of the involved clusters need to be labeled. Otherwise, it would not be possible
to assess the plausibility of the labeling. Thus, one unlabeled cluster prevents
improvement in all regions it covers.

In Section and Figure [5.3] we have discussed the problem of “hidden”
clusters. These are clusters that have no points that are projected onto a single
cluster region of the original feature space and, thus, can not be assigned a class
distribution using the method described in the previous section. The effect of
such hidden clusters can be seen in the performance graph in Figure Our
label inferring method needs the cluster centers to be at least dist=1.6 apart to
closely approach the accuracy of supervised 2D training and achieve a nearly
perfect improvement. Below a value of dist=1 there is nearly no improvement
compared to what supervised 2D achieves over the original classifier.

The noise that occurs in real data sets with small sample size also affects the
gain estimate. The estimated gain of accuracy is the only way for our method to
decide on the best number of clusters, optimizing the actual improvement. The
gain estimate, based on the estimated overall purity of the modified classifier, is
assuming identical class distributions in the clustered data set (when projected
to the initial feature space) and the training set. Thus, when noise is affecting
the class distributions the gain estimate gets inaccurate and, as a result, the
wrong cluster level might be selected by our method.

6.2 Chapter Outline

With respect to the promising results on synthetic data sets we are encouraged
to advance beyond the shortcomings of the label inferring method. Since one
drawback of inferring labels via single-cluster regions is that it can not always
find labels for all of the clusters, we like to answer the the question: Among all
possible labelings of the given clusters, can we accurately find the correct one?

105

In this chapter we present an extension of the system introduced in the
previous chapter. The extension attempts to assign class labels to clusters of
unlabeled data, based on the similarity of the resulting class distribution to the
class distribution found in the ground truth data. Furthermore, we integrate
the bagging method as a way to avoid overfitting and to cope with noise in data
sets in order to foster reliability of the gain estimate and the labeling results.
We evaluate the advanced method on the same synthetic and real-world data
sets as the label inferring method and compare the results.

Train 1D classifier Hierarchical
on sensor 1 Clustering
\ A \ A
1D classifier running Select cluster level
on sensor 1
Y

Cluster labeling:

label inferring
NO +

YES

Unlabeled
clusters left?

Collect 2D data
from sensors 1 & 2

A

\ Cluster labeling:
Adapt 1D similarity search

classifier to 2D

Y \

Generate
new data

4

Assign plausibility

ing?
Bagging? and gain values

set
" *
Select final solution
A4 NO
" onsensors 182 bee toaer ove
(a) Overview (b) Adapt 1D to 2D

Figure 6.1: Overview of the overall procedure (a) and its most important step,
the classifier adaptation (b). The new steps compared to Figure are high-
lighted

106

6.3 The Similarity Search Method

The similarity search method integrates seamlessly into the system presented in
the previous chapter. The main step of this method — the actual labeling of “hid-
den” clusters — is inserted directly after the label inferring step, as highlighted
in Figure [6.1D]

The basic idea of the similarity search approach is to find class labels for the
clusters, such that, when applied to the cluster data points and projected back
onto the initial feature space, the resulting class distribution for each region of
the original classifier most closely matches the original class distribution of that
region (from the labeled data set). This means, among all possible combina-
tions of cluster label assignments, we search for the labeling which maximizes
plausibility as defined in Section For this approach to work, we assume
a single label per cluster instead of a label distribution as we used to do for
the label inferring method. This is not a limitation for the final classifier as
its leaves, which include the ones generated from cluster information, will each
decide for a single class only. Clusters that have already been labeled in earlier
steps are not touched and count with their most prominent label.

The procedure is as follows:

1. For each possible combination of labels assigned to clusters:

(a) For each region of the original classifier:

i. Retrieve the class distribution the region had in the original
training data.

ii. Compute the class distribution that results from the projection
of the data from all the clusters (with their current label) onto
the region.

iii. Compute the plausibility value pl for the two above distributions
as defined in Section [£.5.41

(b) Sum up the plausibility value retained from each region, weighted by
the number of cluster data points in the respective region.

2. Return the label combination which yields the lowest sum (= the most
plausible one).

Figure [6.2] illustrates the similarity search approach with an example setup.
Three of the 2D clusters have been labeled with the blue, green, and red class
already (by the label inferring method, for instance) and the fourth, gray cluster
needs to be assigned a label still. From the 4 possible labels, the purple one
obviously is the most plausible, as the projection to the sensor1 feature space
then best resembles the original class distribution for each region of the sen-
sor 1 classifier. Note, that even if none of the clusters were labeled beforehand,
our method would reveal the correct labels for all clusters in this example by
evaluating the plausibility of all 256 possible label combinations on each region.

The initial classifier offers a natural way to break down the feature space
into separate regions according to the structure of the data such that entropy
is reduced within the regions. This is clearly the case for the C4.5 decision tree
classifier but is valid for classifiers in general. In our method we utilize this nat-
ural partition of the feature space and evaluate the resulting class distributions

107

sensorl

sensor2
i‘
o

©g
L]
[] i []
L]
(]
ﬂo ® o‘
new £
class <
distri- \\\>
butions
Y
training H’ ‘HHH | ‘
data w0l | PSR J.rhﬂpw 1Ll

Figure 6.2: Illustration of the similarity search method for assigning labels to
2D clusters. Dashed lines show boundaries of the initial decision tree classifier.

individually for each region of the original classifier. The comparison of class
distributions across multiple regions allows us to compensate for ambiguous
cases where different labelings result in the same best local plausibility.

Such ambiguous cases can occur in two situations:

1. When in a class distribution of the labeled data set two labels I; and
lo with identical contribution exist (i.e., same probability), then for each
labeling of the clusters there exists an equally plausible labeling with the
labels /3 and I permuted. Thus, there are two labelings with maximal
plausibility.

2. When in the clustered data two disjoint groups of clusters with identical
size (number of data points) exist, then for each labeling that consistently
assigns label [; to all clusters in one group and label I3 to all clusters of
the second group, there exists an equally plausible labeling with the labels
1 and [y permuted. If this is the case for the most plausible labeling the
solution is ambiguous.

Even if the probability that an ambiguous situations occurs is relatively low,
they still may occur with real-life data. However, if just one of the involved
clusters appears in other regions too, which is often the case, then in sum the
plausibility of all regions can still reveal a single best labeling. It is very unlikely
that a cluster shows the same ambiguity in all regions it covers.

Thus, it seems feasible for our method to identify a single most plausible
labeling among all candidates. Yet, a complete search over all possible labelings

108

leads to a combinatoric explosion: with N classes and K clusters there are N¥
candidates to verify for each region. In order to reduce the number of candidates
we apply two different stages of optimization.

Dependency Graph

First, we build the dependency graph with a node for each cluster and edges
connecting each pair of clusters that appear together in the same region. The
connected components of the dependency graph form disjoint groups of clusters.
The sets of regions in which the groups of clusters appear are disjoint too. This
means that the labeling of the clusters in one group does not affect the labeling
of any other cluster and we may search the best labeling for each group of
clusters individually. Thus, there are maximally N™2*(19:]) candidates to verify,
where |g;| denotes the number of clusters in the i-th group.

The maximal size of connected components max(|g;|) is expected to be no-
tably smaller than N in activity recognition scenarios. It is related to the
maximal number of classes which the initial classifier confuses.

Avoid Evaluating “Impossible” Labelings

We can reduce the number of labeling candidates individually per group when
limiting the search to the set of labels that actually appear in the training data
of the regions affected by the group. Those discarded candidates would not be
more plausible than any of the remaining candidates. This individually reduces
N for each group.

6.4 The Bagging Method

With the similarity search method we now entirely rely on the plausibility es-
timate to determine the cluster labels, without any parameter to control the
amount of “risk” we take. To prevent our method from being misled by noise
and sample variance we include a bagging [Bre96] step: before starting, from the
given unlabeled data set we form 10 replica of the same size, by drawing each
instance at random, but with replacement. Each instance may appear repeated
times or not at all in any of the replica. As highlighted in Figure [6.1a we run
our method individually on each replicated data set and aggregate the resulting
classifiers. Where at least bagging threshold percent of the classifiers agree, the
majority result is taken. Otherwise we fall back to the result from the initial
classifier without any improvement.

When for a small change in the data set our method produces a different
solution, i.e., because of a cluster getting labeled differently or the clustering
deviates, this is a strong indication of either an ambiguous situation or over-
fitting (high model complexity). Both are cases that we want to avoid. Thus,
filtering out those solutions is desirable, and it is exactly what can be achieved
with bagging.

6.4.1 Merging Aggregated Classifiers

In case of decision tree classifiers, on which we base our experiments, we can
merge the aggregated classifiers resulting from the bagging step into a single

109

decision tree. This simplifies classification afterwards, as only a single decision
has to be traversed.

Our method of integrating a new sensor splits up the regions of the original
classifier, which are the leaves in the decision tree, along the new dimension of
the feature space. Thus, each leaf may get replaced by a subtree, providing new
leaves for each split region. When merging the aggregated classifiers we first
overlay the new subtrees in each region and successively (1) assign the majority
label to all split regions (leaves of subtree) where at least bagging threshold
percent of the subtrees agree, and (2) assign the initial label of that region
(from the original classifier) to all other split regions. Adjacent split regions
with identical label are joined.

6.5 Evaluation on Synthetic Data

We begin by evaluating our extended method on the synthetic data sets in-
troduced in Section Consequently, we can investigate the same situations
that resemble real world conditions and compare the results to the label inferring
method presented in the previous chapter.

100,

80

accuracy [%]
Py
3
accuracy [%]

IS
S

[~— similarity search - ~— similarity search
20 —— simple (B=2) I 20 ——- simple (B=2)
- supervised 1D - - supervised 1D
- supervised 2D - supervised 2D

0 1 2 3 4 5 6 0 1 2 3 4 5 6
horizontal distance of class centers horizontal distance of class centers

(a) 50 instances per class (b) 10 instances per class

Figure 6.3: Gradually Decreasing Cluster Overlap: Effect of cluster overlap in
first dimension shown for increasing horizontal distance between cluster centers
(see Fig. and for two different amounts of unlabeled 2D space instances.
The average accuracy is displayed for the similarity search variant of our unsu-
pervised method presented in this chapter and for the simpler variant presented
in Chapter [5| (see Fig. [5.7)). For comparison the results of the initial classifier
(supervised 1D) and of a fully supervised classifier (supervised 2D), which is
trained with an additional dimension for the ground truth instances, are given.

Gradually Decreasing Cluster Overlap

Figure[6.3a] clearly shows the advantage of our similarity search method over the
simpler label inferring method of Chapter [5| (first synthetic data set). While the

110

simple method needs at least dist=1.6 to closely approach the accuracy of super-
vised 2D and achieve a nearly perfect improvement, the similarity search method
achieves this already at dist=0.8. Thus, with less than one time the standard
deviation of horizontal distance between centers of the Gaussian-distributed
clusters the similarity search method can already achieve a nearly perfect re-
sult without any user input. Furthermore, there is still a reasonable amount of
improvement over the initial classifier down to dist=0.2. Only with complete
overlap of the clusters in the initial feature space (dist=0) the similarity search
method does “some harm” and falls below the initial accuracy.

With the more ambitious restriction of only 10 instances per class (see
Fig. , the results are much more noisy and the similarity search method
achieves similar results as the simple method with the difference that it does
even less “harm” and in one case still reaches double the improvement of the
simple method.

Moving a Single Cluster

With the second synthetic data set we observe a better overall performance of
the similarity search method than the simple method achieves, as displayed in
Figure As with the simple method there is also just one single occasion
where accuracy is decreased at a minima of the 1D classifier’s results.

The price that has to be paid for the increased improvement can be best seen
in Fig when considering only 10 instances per class that can be used for
labeling. In this data set there is a critical region (around shift of 0.3 and 0.65)
when the shifted cluster is merged with some of the other clusters and the basic
assumptions described in Section [5.3.1] are violated. In addition, because of a
small sample size of 10 instances per class there is much more sample variance
and the information on which the decisions of the similarity search are based is
much less representative. As a result, in the critical area the similarity search
method leads to a significant performance decrease (nearly -30%) over the 1D
classifier.

With a bagging threshold of 0.7 (see Figure , the performance decrease
in the critical area is reduced to just under -10%. This is achieved at the price of
slightly reducing the overall improvement in other areas as the system is “more
conservative” about using information from the extended data set. In general,
the results are more stable and better reflect the symmetry of the data sets
when bagging is enabled (see Figure .

6.5.1 Evaluation on Real Sensor Data

For the evaluation on real world data sets introduced in Section[5.4.2] we proceed
the same way as described in Chapter bl and compare the results.

We evaluate three different strategies in this chapter. First, we investigate
the performance of both methods in sequence as depicted in Figure first
the label inferring method from the previous chapter followed by the similarity
search method described above. This way, the second method only cares about
clusters which have not been labeled by the first method already. For the second
strategy we completely disable the label inferring stage and solely rely on the
similarity search method to find labels for all clusters. Lastly, we investigate

100[—

accuracy [%]

90

@
3

~
S

— similarity search
~— simple (B=2)
- - supervised 1D

- supervised 2D

horizontal position of moving class center

(a) 50 instances per class

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

accuracy [%]

111

90

®
S

~
=)

I
-~—= similarity search | ’
«—— simple (B=2) ‘ ’
- - supervised 1D
- supervised 2D ’

60

91 02 03 04 05 06 07 08
horizontal position of moving class center

(b) 10 instances per class

100, T T T T T T T 1

TN Voor o

80 N (.7

- e = L i L S
g L " g %] AN A
> | v VT > \ AN ,/\\~ ’ A
2 N \/ \ 2 i , 5 VAN ’
3 - g u/ e f) f
& 70 & 70F “,T :1\/ W 7
\ | [v
— no bagging | | = no bagging (
bagging 0.9 \ / bagging 0.9 ’
60 bagging 0.7 1 608 v’ bagging 0.7 ’
-~ supervised 1D - supervised 1D
- supervised 2D - supervised 2D H

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5%.1 0.2

0.6 0.7 0.8 0.9
horizontal position of moving class center

03 .
horizontal position of moving class center

(¢) 50 instances per class, bagging (d) 10 instances per class, bagging

Figure 6.4: Moving a single cluster: Averaged results for the same situation as
shown in Figure [5.8] where one cluster is horizontally displaced to cross three
fixed clusters and eventually is completely overlapping one of them in 2D space
as shown in Figure Additionally, the results of bagging applied to the
similarity search method are provided with two different thresholds for merging
the aggregated decision trees.

the the influence of bagging (see Figure in conjunction with the first two
strategies.

Results for the first two strategies are displayed in Figure Compared to
results of the label inferring method alone (Figure , the combination with
the similarity search method reveals more occasions where an improvement is
achieved, e.g., for B=2 and plTH 0.075 there are 1514 of 3840 tested sensor pairs
(39.4%) for which an improvement is achieved as opposed to 1146 (29.8%) with
the base method only. On the other hand, the addition of the similarity search
method also increases the number of occasions where the classifier performance
is mistakenly decreased by our unsupervised method, e.g., 1112 of 3840 sensor
pairs (29.0%) with negative change instead of 555 (14.5%) for the base method
alone (same parameters as above).

The results in Figure|6.5|also clearly show that the similarity search method

112

250 T T T T T T 250 T T T T T T
200 change < 0: . change > 0: 2000 change < 0: change > 0:
1664 of 3840 U : 1411 of 3840 P 1662 of 3840 1519 of 3840 |
150} sum:-16307.1 v ! fsum: 12425.0 | 5 150} sum:-16774.0 ! ! sum: 15636.1 | 5
median: -8.3 U : median: 7.0 || T median: -8.3 0 u median: 83 || T
100 10pct: -19.4 ! 90pct: 186 | |5 100 10pct: -20.3 90pct: 216 || &
50 H 50 g g
o o s b Lo holad ol ~
—40 -30 =20 -10 0 10 20 30 40 —40 -30 =20 -10 0 10 20 30 40
250 T T T T T T 250 T T T T T T
S00] change <o: 0 change > 0: 200 Change <0 change > 0:
1392 of 3840 0 1523 of 3840 ~ 1516 of 3840 1571 of 3840 ~
! © sum: 128859 [g 150} sum:-14270.0 ! ! sum: 159455 | g5
U median: 6.5 || T median: -7.8 U u median: 8.3 || T
1 E 100 10pct: -19.4 90pct: 20.8 |5
l 50 : :
0 o
0 —40 -30 -20 -10 0 10 20 30 40
250 T T T T T T
200] change <o: 0 i change > 0: 200 Change <0: change > 0:
1112 of 3840 . 0 : 1514 of 3840 0 1353 0f 3840 . U 1582 of 3840 0
150} = sum:-8103.8 ! ! © sum:11309.1 |9 150} sum:-11488.0 : ! ! sum: 14522.6 |©
median: -5.6 0 0 median: 5.6 |2 median: -6.2 0 0 median: 7.8 |2
100} | 10pct: -16.0 90pct: 15.6 | |[E 100f 10pct:-16.9 ! 90pct: 19.4 || E
. S Ll)
o oun Lol .. o 1 o e Sool kAR ol .
=40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
250 T T T T T T 250 T T T T T T
200 change < 0: change > 0: 200k change < 0: change > 0:
96 of 3840 139 of 3840 a 184 of 3840 213 of 3840 =~
150 sum: -682.4 sum: 778.1 S 150} sum:-1239.7 sum: 1423.0 S
median: -5.6 median: 4.1 |2 median: -4.1 median: 5.3 |2
100[10pct: -13.9 90pct: 111 [E 100[10pct: -14.0 90pct: 13.9 [E
= S
50 ; ; 50 3 :JI T 3
o . v sresre M M I , : o . o oot cud bl fopn & !
—40 -30 =20 -10 [10 20 30 40 -40 -30 -20 -10 [10 20 30 40
accuracy change [%] accuracy change [%]

(a) label inferring (B=2) + similarity search (b) label inferring (B=5) + similarity search

250 T T T T T T 250 T T T T T T
200l change <o: change > 0: 200 change <o: change > 0:
1623 of 3840 1533 of 3840 o 1611 of 3840 N 1541 of 3840 °
150 sum: -16355.7 sum: 15730.1 - 150 sum:-16279.4 sum: 15818.6 -
median: -8.3 median: 8.3 T median: -8.3 median: 8.3 T
100[10pct: -20.7 90pct: 21.4 | & 100f 10pct: -20.7 90pct: 21.4 &
50 g 50 g
all i gl
940 -30 -20 -10 [10 30 40 2 0
250 T T T T T T 250 T T T T T T
J00L change < 0: change > 0: 200 change <o: change > 0:
1490 of 3840 ! 1583 of 3840 ~ 1486 of 3840 N 1584 of 3840 ~
150} sum:-14134.0 ! sum: 15909.7 || S 150} sum:-14160.1 ! sum: 15929.0 | o
median: -7.9 0 median: 8.3 || T median: -7.9 median: 8.3 T
100 10pct: -19.4 90pct: 208 |5 100F 10pct: -19.4 90pct: 20.8 |5
50 B B 500 B B
o o1 1o holood sl) ol 5o o o1 s Lohuda il
—40 -30 =20 -10 0 10 20 30 40 —40 -30 =20 -1 0 10 20 30 40
250 T T T T T T 250 T T T T T T
200 change < 0: change > 0: 200k change < 0: change > 0:
1368 of 3840 u 1584 of 3840 0 1368 of 3840 N v 1576 of 3840 0
150} sum:-11574.7 : ! sum: 14414.0 |S 150} 1672.1 : ! sum: 14401.1 |©
median: -6.2 : U median: 7.8 |2 6.2 median: 7.8 |2
100 10pct: -17.2 90pct: 19.4 | E 100[10pct:-17.2 90pct: 19.4 [E
50 & B i I s
0 ol »2ohdag i botbin]l 0 2 n n.h.l..‘. it ds
—40 -30 =20 -10 0 10 20 30 40 -40 -30 =20 -10 0 10 20 30 40
250 T T T T T T 250 T T T T T T
J00L change <0 change > 0: 200 change <o: change > 0:
203 of 3840 218 of 3840 3 200 of 3840 218 of 3840 =
150 sum: -1356.9 sum: 1456.9 S 150F sum:-1375.6 sum: 1469.4 S
median: -4.4 median: 5.4 |2 median: -5.4 median: 5.4 |2
100F 10pct: -13.9 90pct: 13.9 | £ 100F 10pct: -14.2 90pct: 13.9 £
S S
50] Tl : 50 . ANy :
0 . M BT | Lhob Lo & . 0 . coodoooadilbolh fonon L .
—40 -30 =20 -10 0 10 20 30 40 —40 -30 =20 -10 0 10 20 30 40
accuracy change [%] accuracy change [%]
(c) label inferring (B=10) + similarity search (d) similarity search (only)

Figure 6.5: Results for our similarity search method with different parameter-
izations on the three real-world data sets (13 subjects, 768 - 5 tested sensor
combinations in total). Each plot shows results for four plausibility thresh-
olds (plTH). Bounding boxes for positive and negative results are highlighted,
including 10/50/90 percentiles.

113

OrT
A
Q. -
\B\\s\\
AN o
NN
AY o S
N \\) ~ .
~5000} NN]
[N [¢]
NN
N DN N
N R
N . Fel
N N
g N O, .
N N
S N e D\
< N .\
o N RV
q>) N ‘\\k
5 —10000} \ DN g
© AN N
g N "
c N \ “
N . A
E n X
n N T Y
N \
"\\ \\\
N\
AN
—15000f ! N R
h N
; : ! b
0--0 label !nferr!ng (B=2) o o _
O-0 label inferring (B=2) + similarity search AN
v-v label inferring (B=10) + similarity search AR
&-4 similarity search (only) AN
- - zero improvement AN
—20000 L . -
0 5000 10000 15000 20000

sum positive change

Figure 6.6: Comparison of results from the label inferring and similarity search
methods. Colors correspond to plausibility thresholds (plTH) as in Figure

is able to compensate for situations where the label inferring method is not
able to find a solution for integrating the new sensor: while with increasing
B the label inferring method alone is achieving nearly no improvement (see
Figures and , in combination with the similarity search method the
amount of improvement remains stable (see Figures [6.5b] and [6.5c)). Even with
the similarity search method alone (Figure [6.5d)) the performance remains in a
similar range.

Figure summarizes the above results regarding the total amount of posi-
tive change vs. the sum of negative change. With the integration of the similarity
search method we can almost double the amount of positive change compared
to the results of the label inferring method alone, but at the cost of 3-4 times
more overall negative change. The best result of the similarity search method
alone (plTH 0.075) yields a ratio of just above 1.2:1 for overall positive change
vs. negative change while the more conservative label inferring method already
had a ratio of more than 2.5:1 (same plTH). Those results clearly indicate that
the plausibility estimate, which is considered for detecting and discarding erro-
neous cluster labelings with the plausibility threshold, is less effective with the
similarity search method: for the label inferring method a plausibility threshold

114

250 T T T T T T
200 | change <o: u 0 change > 0:
1133 of 3840 0 0 1676 of 3840 | |
150} | sum:-7319.1 ! ! sum: 11932.6 | 5
median: -5.2 U U median: 5.6 |z
100 10pct: -13.9 ! 90pct: 152 | &
501 g
ol aal .
-40 -30 -20 -10 0 10 30 40
250 T T T T T T
500] . change < 0: change > 0:
951 of 3840 1616 of 3840 | |,
150} sum:-5892.1 sum: 11137.4 o
median: -4.1 median: 5.4 T
100 10pct: -13.9 90pct: 14.3 | &
50|
o : aad alotas .
-40 -30 -20 -10 0 10 20 30 40
250 T T T T T T
200] change < o: u change > 0:
655 of 3840 0 123503840 | [0
150F sum: -4045.0 ! sum: 7804.0 | |S
median: -4.1 U median: 5.2 | |2
100F 10pct: -13.8 ! 90pct: 13.9 | |E
S0 g e
I N 1] ‘
-40 -30 -20 -10 0 10 20 30 40
250 T T T T T T
200} change < 0: change > 0:
2 of 3840 20f3840 |g
150 sum:-19.4 sum: 11.1 S
median: -9.7 median: 5.6 |2
100[10pct: -10.8 90pct: 5.6 | E
sof <
-40 -30 -20 -10 0 10 20 30 40
accuracy change [%]
similarity search + bagging 0.7
250 T T T T T T
S00] change <o: change > 0:
588 of 3840 117203840 |
150 sum:-3141.0 sum: 6565.9 -
median: -3.5 median: 4.1 T
1001 10pct: -11.1 90pct: 111 &
50|
0 L L P! e L
-40 -30 -20 -10 0 10 20 30 40
250 T T T T T T
200] change < o: change > 0:
302 of 3840 963 0f 3840 |
150f sum:-1504.7 sum: 5327.4 |5
median: -2.8 median: 4.1 T
100f 10pct: -11.1 90pct: 11.3 B
501
o
—40 -30 -20 20 30 40
250 T T T T T T
200} change < 0: change > 0:
127 of 3840 517 of 3840 |10
150} sum: -657.6 sum: 2762.4 53
median: -3.1 median: 3.9 |2
100F 10pct: -11.1 90pct: 111 |E£
sof <
0 . . P .
—40 -30 -20 20 30 40
250 T T T T T T
200] change <o: change > 0:
0 of 3840 00f3840 |g
150f sum: 0.0 sum:0.0 |S
median: 0.0 median: 0.0 |2
100F 10pct: 0.0 90pct: 0.0 |E
s0f e
o
40 -30 -20 -10 0 10 20 30 40

accuracy change [%]

(c) similarity search + bagging 0.9

250 : : : - - -
200l Cchange < 0: 0 change > 0:
866 of 3840 4 0 1462 of 3840
150} sum:-4778.4 ! ! sum: 9394.5 |2
median: -3.9 i U median: 5.4 z
100[' 10pct: -11.1 : 90pct: 13.8 |5

=20

20 30 4

—40 -30 -10 0 10 0
250 T T T T T T
200l change <o: . change > 0:
619 of 3840 0 1322 of 3840 ~
150} sum:-3377.8 ! sum: 8265.6 |o
median: -3.9 4 U median: 5.3 | T
100 10pct: -11.1 ! 90pct: 133 | &

20 30 &

—40 -30 0
250 T T T T T T
200 change <o: change > 0:
326 of 3840 859 of 3840 0
150F sum:-1820.2 sum: 5023.6 |S
median: -3.6 median: 4.1 |2
100F 10pct: -11.9 90pct: 111 |E
sof 8 =
0 . I & o .
-40 =30 =20 20 30 40
250 T T T T T T
00 change <o: change > 0:
1 of 3840 0 of 3840 =~
150} sum:-8.3 sum: 0.0 S
median: -8.3 median: 0.0 |2
100[10pct: -8.3 90pct: 0.0 |E
50t <
0
-40 -30 -20 -10 [10 20 30 40

accuracy change [%]

(b) similarity search + bagging 0.8

250 T T T T T T
2001 change <o: change > 0:
529 of 3840 987 of 3840 °
150} sum:-2675.1 sum: 5090.0 -
median: -3.1 median: 3.6 T
100[10pct: -11.1 90pct: 10.8 | &
501
0
—40 -30 -20 -10 0 10 20 30 40
250 T T T T T T
200 change <o: change > 0:
121 of 3840 472 of 3840 ~
150f sum:-505.7 sum: 2362.7 o
median: -2.8 median: 3.1 T
100F 10pct: -8.3 H 90pct: 111 | &
50
o . . PO 179 . .
-40 =30 =20 -10 [10 20 30 40
250 T T T T T T
200 change <o: change > 0:
26 of 3840 180 of 3840 0
150} sum:-109.1 sum: 907.1 o
median: -2.8 median: 2.8 |2
100F 10pct: -9.7 90pct: 111 |E
s0f =
-40 -30 =20 -10 0 10 20 30 40
250 T T T T T T
200l change <o: change > 0:
0 of 3840 0 of 3840 =
150f sum: 0.0 sum: 0.0 S
median: 0.0 median: 0.0 |2
100F 10pct: 0.0 90pct: 0.0 |
sof =
0
—40 -30 =20 -10 0 10 20 30 40

accuracy change [%]

(d) label inf. (B=2) + s.s. + bagging 0.9

Figure 6.7: Results for our similarity search with bagging method with differ-
ent parameterizations on the three real-world data sets (13 subjects, 768 - 5
tested sensor combinations in total). Each plot shows results for four plausi-
bility thresholds (plTH). Bounding boxes for positive and negative results are

highlighted, including 10/50/90 percentile

115

—5000} N A §
N RN
N : <
N . \‘
N : .
N q
g N (o2
N
5 N
< N
© N
[N o
2 -10000F ~ .
© N t.
g . :
c N .
= @
@ N .
N .
A
\ .
N\ .
\]
N .
- L) . N |
15000 4. 4 label inferring (B=2) N
N
O- O similarity search (only) B
V- similarity search + bagging 0.9 AN
~- similarity search + bagging 0.8 AR
<-< similarity search + bagging 0.7 AN
- - zero improvement AN
—20000 L . -
0 5000 10000 15000 20000

sum positive change

Figure 6.8: Comparison of similarity search results with bagging. Colors corre-
spond to plausibility thresholds (pITH) as in Figure

of 0.075 (blue) discards more than 60% of negative change (compared to the
unrestricted, purple result), as opposed to just 28% for the similarity search
method.

The lack of efficiency of the plausibility threshold is compensated by the
bagging method as can be seen in the results of the third evaluation strategy with
bagging enabled in Figure With increasing bagging threshold (a bagging
threshold of 0.7 means that 70% of the aggregated trees must agree for adapting
a region) the number of outcomes with negative accuracy change are strongly
reduced while still keeping most of the results with positive change. This effect is
summarized in Figure [6.8 regarding the total amount of positive change vs. the
sum of negative change. The bagging method brings the results of the similarity
search method back into the range of the label inferring method, but with the
bagging threshold as a powerful means for controlling the amount of risk to
take. The similarity search method in conjunction with a bagging threshold of
0.9 achieves a positive- vs. negative change ratio of over 3.5:1 (pITH 0.2) and
a threshold of 0.7 yields more positive change than the label inferring method
(11137 vs. 9514) at nearly the same level of negative change. (5892 vs. 5386)

116

6.5.2 Discussion of Results

The motivation behind the similarity search approach for cluster labeling is
to avoid the limitations found when evaluating the label inferring approach in
Chapter|[5] specifically to avoid situations where not all clusters could be labeled.
We actually reach this goal on synthetic data sets (see Fig. where the
similarity search method clearly outperforms the label inferring method when
clusters are heavily overlapping in the initial feature space.

However, when it comes to more ambitious situations with only 10 instances
per class the advantage of the new approach vanishes. The noise introduced by
the small sample size hinders accurate estimation of plausibility and gain which
can result in wrong cluster labelings being preferred. We can successfully reduce
the negative effect of noisy data sets with bagging (see Fig. . Yet, when
discarding a vague solution (i.e., a new sub-region with different class label in
a region of the initial classifier) we also loose the chance to improve accuracy
of that class in that region. This is where we reach a similar limitation as seen
with the label inferring method in Chapter [f] Compared to the label inferring
method the limitation is slightly less grave since for the similarity search method
it is still possible to achieve improvement for another class in that region, if the
bagging results sufficiently agree, whereas the label inferring method cannot
improve at all in that region when just one of the clusters present is not labeled.

Figure [6.9] depicts such a difficult situation from the OPPORTUNITY data
set. The initial classifier is trained on one axis of the accelerometer mounted
on the subject’s back (BAC_accY). From the histogram and the regions of the
classifier (top left plot) we see that the initial system reaches an accuracy of
50% on 8 classes. The numbers indicate the (absolute) class distribution in
each region. The new sensor in this example is one axis of an accelerometer
mounted on the right lower arm (RLA_accZ). The unlabeled data recorded with
both sensors is shown in the top right plot.

Regarding the broad blue region in the center (third from right) there are
only slightly more training instances for class A (17 instances, 52%) than for
class C (15 instances, 45%). From the test data (lower left plot) we, as the
supervisors, can see that the upper cluster is actually belonging to class A and
the instances of class C are in the lower half. Unfortunately, the unlabeled data
(upper right plot), which is what our unsupervised method sees, has a different
class distribution; there the upper cluster has 9 instances (45%), while there
are visually two clusters in the lower half with 1 (5%) and 10 (50%) instances
respectively, suggesting class C for the top cluster and classes E and A for the
lower clusters. This seems plausible from the similarity of the distributions but
is obviously wrong. The reason for this is that the assumption of identical class
distributions is not met here.

The importance of identical class distributions is reinforced by the nearly
ambiguous situation of two classes (A and C) having similar probabilities. Es-
pecially with small number of instances (9 vs. 10 in the unlabeled set) the
distribution can easily be inverted with just two instances moved. Our method
addresses this issue with bagging, i.e. we construct 10 slightly different data sets
out of the unlabeled set, apply our method on each of them, and aggregate the
resulting classifiers, accepting only modifications where most results agree (see
also Section . The idea here is, that if a small change in the class distri-
butions is resulting in a different labeling, then it is ambiguous and should be

117

initial classifier (50.0%) and training data unlabeled 2D data, adapted classifier sketch
T T T T 1.0 T T T T T T T
I A: Fridge %go
25k I B: Dishwasher || o @ o°
B C: Drawerl ° s}
W D: Drawer2 0.8t 9 o
B E: Drawer3 3 o)
20}F F: Doorl H o 00”0
G: Door2 - oOC
H: Table N (o))
" g 06 8
o B:3 A: 17 | :
315l B 5o | a1 : F18
1 <
£ c °
S 0.4
10F {1 E
o O [oReIL
Cos B
[x}
5F E 02 ¢ @Pod ©
8 5o
© °8 o
8
L 0. L L 1 L L L L L
%.O 0.2 0.4 0.6 0.8 1.0 %.0 0.1 02 03 04 05 06 0.7 08 09
mean(BAC_accY) mean(BAC_accY)

o adapted classifier (36.5%) and test data

values per cluster level

15
10}
0.8} A: 10 1
) ° e 9
i1 8 _ 5
— L] X
N I
S 0.6F 1 g
® 81 1] 5 or
! EEA 0 I
2 E:2 g 8 G: 7 o
5 g -5
0.4 o 1 5
J B 1 g
C: 49 -
o, °0:2 10
o . Eh L d
02r o 7 e lb 1 gain estimate
of 0. b® -15 A — actual gain
° N winner
)) . . . 2 . . i . : : : :
0 %.0 0.2 0.4 0.6 0.8 1.0 02 3 4 5 6 7 8 9 10 11
mean(BAC_accY) number of clusters

Figure 6.9: Example of negative outcome on the OPPORTUNITY data set.

avoided. Figure [6.10] displays all of the 10 bagging data sets and resulting clas-
sifiers for the example discussed here. Regarding the center region again, there
are seven results which assign the wrong label C (red) to the upper part of the
region. Thus, when accepting bagging results with 70% of agreement (which is
the case in the example shown in Fig. we are sticking to a wrong decision.
In this case it massively influences the accuracy of the classifier because we are
misclassifying exactly those instances that were classified correctly before. With
a higher bagging threshold (e.g. 90%) we would avoid this mistake but at the
same time we would miss the chance to improve in that region. We can avoid
negative influence of noise up to a certain degree but it hinders to fully exploit
the discriminative capabilities of the new sensor.

6.6 Conclusion

The promising results of the unsupervised method to integrate a new source of
information into an existing classification system presented in Chapter [5| has

118

10 seed 0 10 seed 1 10 seed 2
. ‘ —o . ‘ e . ‘ o
W o o s
0.8 7 |° 0.8 © 0.8 7 |°
Reln 7 . »} T Neln »] T
2[F o 6l |57 sl &
od 2 (wa) &
0.6} &I 1 0.6 10/ 9|5 1 0.6 ¥ 1
10 |11 4 10 7 2 11 8 12 |10 6| 8 12
0.4} HIERs { 04 B {1 o.af = | ° 1
NVAY Y
vl7 <) V% GV %) m] D%‘
02t . [WD [o { o2 o { 0.2f K 1
g O o <&
o 9 o % O_ig 0@
g g
0g . ‘ ‘ 0g ‘ ‘ ‘ 0g ‘ ‘ ‘
0 02 04 06 08 1. .0 02 04 06 08 1.0 00 02 04 06 08 1
seed 3 seed 4 seed 5
1.0 ‘ —owe 1.0 ‘ oo 1.0 ‘ ‘
é © o@o DuEE
0.8 ' 0.8 g |° 0.8 e
8f ol S 1 o S 1 osl L i
5(|] VV}% 3| | 0B e S
v 0 o)
0.6} 9|9 { 06 3|35 {1 osf ! 1
12 11 | 6 8 5 4 12 11 9 2| 17 9
0.4f —5 {1 o4 = © 1 o4} :
(L] 7 %E\%\a AR v o] ‘b%%
02 $& 1 02po .Y wif [© 1 025 9 1
ko3 v 5] 8080 v |
%80 02 04 06 08 10°%0 02 04 06 08 10290 02 04 06 08 1
seed 6 seed 7 seed 8
1.0 : —o 1.0 ‘ —o 1.0 ‘ ‘ :
oo o((: (e5] c‘:% c
0.8 12 ° 0.8 9 © 0.8 8 e
. ol o o . 1F o . | = .
& 0 5n 0o
0.6 1M { o6} 0 { o6t * |7/H|H —
18 6 3| 9 6 12 3 13 5 3 16 5
0.4}] e 1 04 B 1 o.af % .
4
Al foce gyl |~a3 | 3%
A , 17l g% , 1l B |
0.2 0.2k (5 0.2 ol
&8 3| o v [afg|
8 o v
0g : : : 0g ol : : 0g ddl, : :
0 02 04 06 08 1. 0 02 04 06 08 1.0 00 02 04 06 08 1
seed 9
1.0 : R
(o]
i
0.8} el 1 b ,
O o
&
0.6/ Y™ 1
6 5 8| 8 11
0.4F = :
(na)
Ol
0.2} 50 1
O
S
%80 02 04 06 08 10

Figure 6.10: Detailed results for the 10 bagging datasets and -results of the
example shown in Fig. (same axes as upper right plot of that figure). The
shape of the data points indicate their cluster membership. The colored regions
show the resulting classifier for each seed.

119

motivated us to address the main drawbacks with an advanced method. In
this chapter we presented the similarity search method which searches the most
plausible among all possible combinations of labels for the clusters by comparing
the resulting class distributions to the class distributions in the training data. In
order to reduce the influence of noise on the labeling decision we integrated the
bagging method and presented a technique for merging the aggregated results
received from the different bagging data sets.

It is interesting to see that while on synthetic data the similarity search
clearly outperforms the label inferring approach (in particular on the first data
set with just 0.8 o distance between class centers), on real world data the con-
clusion is not clear. On one hand it can improve the performance in more cases.
However, the ratio of the sum of positive change to the sum of negative change
is less favorable. For the best configuration (B=2 and plTH=0.075) the ratio is
over 2.5:1 for the label inferring approach and only just around 1.2:1 for similar-
ity search. The bagging approach efficiently reduces the risk of negative change
and raises this ratio across 3.5:1 with a bagging threshold of 0.9 (pITH 0.2). The
results showed that bagging can effectively reduce the negative influence of noise
in the data sets. The costs come at a limited exploit of the true information of
the new sensor.

The approaches presented in this and the previous chapter are completely
unsupervised methods for integrating a new sensor into an existing system as
they only rely on the initial classifier model and unlabeled data from the new
sensor. The training method used for the initial classifier is not relevant. In the
following chapter we investigate how a small number of labels provided for data
points in the extended feature space can be utilized for increasing the amount
of improvement the system generates and for reducing the number of occasions
where the system would decrease the initial performance.

120

Chapter 7

User Feedback to Support
Integration of New Sensors

In succession to Chapters[d] and [0 which introduced unsupervised methods for in-
tegrating a new sensor to improve a a system’s performance, we here investigate
a semi-supervised variation of the method. From the unsupervised variants we
learned that they can achieve perfect results in absence of sample noise. Though
still positive and promising, results on real world activity recognition data sets
were more limited. In this chapter we propose two semi-supervised extensions
to the method that are designed to — with minimal user input — increase the
amount of improvement that can be achieved on real world data sets, respec-
tively decrease the mumber of occasions where the system’s accuracy would be
reduced. We analytically prove our approach and compare it to supervised and
semi-supervised baseline methods applied to real world activity recognition data
sets.

David Bannach, Bernhard Sick, and Paul Lukowicz. Automatic adaptation of mobile activity
recognition systems to new sensors. In Workshop Mobile sensing challenges, opportunities

and future directions at Ubicomp 2011.

The methods for integrating new sensors into existing classifiers described
in Chapter [5] and [6] are unsupervised methods in the sense that they learn from
unlabeled data how to modify the initial classifier model in order to achieve
better classification accuracy with the help of an extra sensor. Nonetheless,
those methods have similarities with semi-supervised learning methods with re-
spect of how they utilize existing knowledge about the class distribution in the
initial feature space to augment the unsupervised clustering of instances in the
extended feature space with information about class membership. With the
label inferring method (Chapter [5]) we project the clustered instances into the
original feature space and look for regions that are covered by a single cluster
only. For those regions the class distribution found in the initial model may be
assigned to the involved cluster. But finding such regions is not always possi-
ble. Thus, with the similarity search method (Chapter @ we take an opposite

121

122

approach (in the way cluster labels are retrieved) and search for the cluster
labels that are most plausible when comparing the resulting class distribution
in the initial feature space with the original model. This allows us to always
find labels for all clusters. Still, sample noise may cause wrong labelings to be
favored occasionally.

The question we address in this chapter is, how our method performs if the
user is providing a small amount of reliable labels for the instances recorded
with the additional sensor. There are two basic strategies for utilizing such
labels, apart from just training a new classifier with them. One would be to
use them directly as trusted labels for the respective cluster structures in order
to increase the effectiveness of the similarity search. The clusters being pre-
labeled this way are regarded as “anchors” on which the method can base its
search for suitable labels for the remaining clusters. The other strategy aims at
detecting if a resulting classifier would perform worse than the initial one (fault
detection), and consequently replace it with a better candidate or reject it to
avoid accuracy decrease. Note that for this strategy labels are only needed in
regions of the feature space where the classifiers disagree.

7.1 Chapter Outline

In this chapter we investigate an extended version of the similarity search
method which supports semi-supervised learning, such that it can integrate user
feedback in form of additional labels for instances recorded with the additional
sensor. We present two possible approaches and for the second one, an active
learning method, we analytically prove its positive influence on accuracy change.
Moreover, we evaluate the method on the same synthetic and real-world data
sets as in the previous chapters and compare the results to different baseline
methods.

7.2 Related Work

Basically, the fields of semi-supervised learning (SSL) and — to a lower extent —
also active learning (AL) are relevant to the work presented in this chapter.

SSL [Rat95, [Cha06] makes use of both labeled and unlabeled data to train a
prediction model. Therefore, SSL falls between unsupervised learning (without
any labeled training data) and supervised learning (with completely labeled
training data). SSL may be based on generative models such as probabilistic
models (e.g., Gaussian mixture models), low density separation algorithms, or
graph-based methods, for instance. The most common example for the second
are the transductive support vector machines (TSVM) [Ben98] that build a
connection between a density model for the data and the discriminative decision
boundary by putting the boundary in sparse regions. Doing so, TSVM uses
unlabeled data in a semi-supervised manner. A typical example for the third
class are Laplacian SVM [GCO08] that use a graph based model, a so called
Lapalacian graph, for semi-supervised learning. A detailed overview of semi-
supervised learning is given in [Zhu0§], for example.

In the field of AL, membership query learning (MQL) [Ang88|, stream-based
active learning (SAL) [Atl90] and pool-based active learning (PAL) [Lew] are

123

the most important learning paradigms. MQL is not relevant here because it
may generate artificial samples that cannot be understood or labeled by hu-
man experts [Set09]. SAL focuses, like our work, on sample streams. That is,
each sample is typically “drawn” once, and the system must decide whether to
query the expert or to discard the sample [Set09]. PAL builds a ranking on a
given pool of unlabeled samples and, depending on a certain selection strategy,
chooses a set of samples that must be labeled. A number of different selection
exists for that purpose and four main categories can be distinguished: uncer-
tainty sampling strategies select samples for which the considered classifier is
most uncertain [Ton02] [Con06, [Set08|, density weighting strategies consider the
samples’ distribution in the input space [Ngu04l [Don07, [Set08], estimated error
reduction strategies aim at reducing the generalization error of the classifier di-
rectly [Mit04] [Guo07], and diversity sampling strategies prevent the selection of
“redundant” samples if more than one sample is selected in each query round
[Dag06].

The two approaches we investigate in this chapter clearly fall within the
SSL category as they both utilize partly labeled data. Yet, unlike classical SSL
methods, we do not expect to have enough labeled instances to directly assign
distributions to all clusters (pre-labeling) or to reliably detect bad classifiers
(fault reduction). Instead, we rely on the amplifying effect of reliably labeled
data points inserted into the, otherwise unsupervised, method presented in the
previous chapter. The fault reduction approach additionally is a SAL method
as it sequentially decides for each new instance if a label should be requested for
it. The criterion for requesting a label is the disagreement of the two classifiers.

7.3 Approach 1: Pre-Labeling

For the pre-labeling approach we add an additional stage to the method that
we presented in the previous chapter, just before any unsupervised labeling of
clusters is happening. This is highlighted in Figure [7.Ib] If, at that stage, any
labels for 2D data points are available we proceed as follows: For each labeled
data point

1. determine the cluster structure corresponding to the data point, and

2. add the label of the data point to the label distribution of the cluster.

Clusters for which no labeled data point is available will remain unlabeled at
this stage. For those clusters the label distribution will be determined by the
subsequent similarity search.

We expect the pre-labeling of clusters using expert knowledge to have an
accelerating effect on the effectiveness of the similarity search, even with a very
small amount of labels provided and only a few clusters affected. The depen-
dency graph introduced in Section [6.3] with clusters as nodes and classifier
regions as edges, clearly shows that a single pre-labeled cluster can influence
the decision for many yet unlabeled clusters. The label information injected to
one cluster propagates along the edges of the dependency graph and influences
the labeling decision on all clusters within a connected component. Ambiguous
situations, where multiple labelings for a subset of clusters are ranked equally
well, may be resolved this way and can itself positively influence decisions on
further nodes.

124

Hierarchical

Train 1D classifier Clustering
on sensor 1

|
‘ A\
4 Select cluster level
1D classifier running

on sensor 1

YES
& Pre-labeling of
NO clusters

YES

3

Collect 2D data
from sensors 1 & 2

Unlabeled
clusters left?

\ 4

Adapt 1D

classifier to 2D Cluster labeling:

similarity search

Y
@ NO Assign plausibility

YES and gain values
Fault Reduction *
< YES
\ NO
2D classifier running Apply solution of
on sensors 1 & 2 best cluster level
(a) Overview (b) Adapt 1D to 2D

Figure 7.1: Overview of the overall procedure (a) and its most important step,

the classifier adaptation (b). The new steps compared to Figure are high-
lighted

Note, in order to study the effects of the pre-labeling and fault reduction
approaches we concentrate on the similarity search method alone, without the
label inferring stage. We also leave away the bagging stage in order to simplify
interpretation of results.

125

7.4 Approach 2: Fault Reduction

While the pre-labeling approach is primarily meant to increase the amount of
performance improvement that the system can generate without increasing the
number of occasions where it causes a performance decrease, the fault reduction
approach aims at reducing the latter without reducing the first.

The fault reduction approach is using user-provided labels to directly detect
and discard classifier variants that lead to performance degradation. The general
idea is based on the observation that, to assess if a classifier using an additional
sensor increases or decreases classification accuracy, we only need to consider
data points where the new and the old classifier disagree. As a consequence we

1. run the old (1D) and the new (2D: old plus new sensor) classifier (C1, Cs)
in parallel,

2. actively ask the user for labels for instances where the classifiers C; and
(5 disagree, and

3. reject the new classifier Cs if it does not fulfill a test criterion which re-
quires C5 to be correct at least a certain predefined number of times. In
general, to keep the number of labels small, we consider only a few in-
stances of disagreement between the old and the new classifier but require
the new one to be correct in at least 75% of the cases.

As illustrated in Figure[7.1a] the fault reduction method is applied right after
all cluster configurations have been labeled and assigned final gain and plausi-
bility values. Without fault reduction, a solution with the best gain/plausibility
trade-off (according to application-specific criteria) would be chosen (if it exists)
and all other solutions discarded. With fault reduction we take a few (we found
three to work well) best solutions and run them in parallel with the old classifier
as described above. If a solution fails the test criterion, it is discarded. If in
the end all solutions have been discarded then we consider the sensor combina-
tion to be not useful and do not use it (we get no improvement but also run
no risk of a performance decrease). Otherwise, we pick the one with the best
gain/plausibility trade-off from the “surviving” classifiers.

7.4.1 Success Probability Estimation

Obviously, such as all the methods presented in this work, fault reduction is a
heuristic that works often but can not be guaranteed to be always right. Thus,
we may have a new classifier that, overall, leads to a significant performance
degradation, but the instances that we acquire labels for (which are random)
happen to be just the ones on which it is right. On the other hand, we may
reject a very good new classifier because of picking just the very few instances
on which it is wrong. However, as shown below, the strength of our method is
that it can be theoretically proven that it is significantly “skewed” in favor of
keeping good classifiers and rejecting poor ones.

The two classifiers disagree exactly at the instances where C; is wrong but
Cy is correct (Dq), and where Cy is wrong but C is correct (Dg). This is
illustrated in Figure

126

<C—)
b
C2 | | I
—_ ——
[Jcorrect M wrong D, D,

Figure 7.2: Schematic of two classifiers C; and Cy applied to test data.

The probability that Cs is correct for a randomly drawn instance from the
disagreement set ID = ID; U D5 hence is

B B |Dq | B a—c
PCQ*P(x?é]B|xE]D)i|]Dl|+|]])2|7(a—c)—|—(b—c)’ (7.1)

where B is the set of all instances classified wrongly by Cs, a the number
of instances classified wrong by C7, b = |B|, and ¢ the number of instances
classified wrongly by both classifiers (0 < ¢ < min(a,b)). When expressing
the improvement which Cy achieves compared to C7 as v = a — b we receive
b =a — v, and hence

a—c

Po,=—2"¢
“ T 20a—c)—v

(7.2)

If we accept the classifier C5 only in case it is correct on all n randomly drawn
instances from ID, we can express the probability of accepting the classifier as a
function of the improvement v:

p(v) = (%i—c)c_v)" (7.3)

From this function and Figure [7.3| we see that better performing classifiers (v >
0) are more likely to be accepted than those that perform worse than the initial
classifier (v < 0). This effect is amplified with increasing number of tested
instances n, but at the same time classifiers with small improvement tend to
be rejected as well. With larger “overlap” ¢, the bad classifiers (v < 0) are
strongly filtered out and even classifiers with small improvement get higher
probability of being accepted, yet the maximal possible improvement (v < a—c)
is more restricted by the “overlap”. With two identical classifiers (c=a,v=0)
the function is undefined. In that case there are no disagreement instances to
test with (D=0).

7.5 Evaluation

In general, we follow the same evaluation methodology as introduced in Chap-
ter ol Only for selecting the user-provided, labeled instances we slightly update
the procedure.

127

p(v)

Figure 7.3: Probability of accepting classifier Cs as a function of its improve-
ment (v). The function is plotted for different “overlap” (¢) and number of
labeled instances drawn from D (n).

7.5.1 Evaluation Methodology Update

For evaluating the pre-labeling approach we proceed as follows. From the un-
labeled 2D data set we chose the first n instances for which the user provides
a label. In our case, obviously, we rely on expert annotations stored with the
data set. The data sets are shuffled randomly before splitting into training-,
improving-, and testing parts. Thus, the first n instances are considered as
randomly drawn.

For the fault reduction approach we proceed nearly identically for choosing
labeled 2D instances. We just select the first n instances that meet the method’s
requirements, i.e., the first n instances for which the classifiers disagree.

As a measure of the amount of user provided information in case of fault
reduction, we use the number of disagreements between the old and the new
classifier that have to be considered for the test criterion. Note that since we
are running the test on several of the new classifiers this is not necessarily equal
to the number of labels. In the best case it may be, in the worst case we need a
different set of labels of each of the new classifiers. Thus, in the evaluation we
provide the average number of labels that the system used, not the setting for
the number of disagreements (which is our control parameter).

7.5.2 Baseline Methods

We compare our semi-supervised method to two different baseline methods.

128

2D Decision Tree Baseline

The decision tree baseline classifier is trained only on the 2D instances for which
a label is provided. This classifier is ignoring any information from 1D training
data or unlabeled 2D instances, just relying on supervised training. We set
a minimal leaf size of 2 instances. Regarding the strongly limited number of
available instances it would not make sense to be more restrictive.

EM/GMM Baseline

As a true representative of semi-supervised learning methods we compare to
the Expectation Maximization algorithm (EM) applied on a gaussian mixture
model. Nigam et al. [Nig00] have successfully used the EM algorithm to itera-
tively train text classifiers from a few labeled and many unlabeled documents.
The model is initialized with the labeled instances and iteratively improved
with unlabeled instances until the likelihood is maximized. In our case we ap-
ply gaussian mixture models (GMM) with multivariate normal distributions and
unrestricted covariance matrix to meet the characteristics of our data sets. Note
that with this model we are making an assumption about the functional form
of the data which our method does not make. Depending on how well the data
matches this model the EM/GMM baseline will achieve different accuracy. We
must keep this in mind when comparing results.

The discrete feature of the reed switches from the OPPORTUNITY data set
would lead to singularities in the covariance matrix of the normal distribution
in case when all instances of a component show the same discrete value, causing
a zero variance in that dimension. To avoid this situation we add artificial noise
with small variance to that feature.

We choose the number of components in the GMM to match the number
of classes. However, this might limit the performance in case of classes that
are better modeled with more than a single component. Still we consider it a
reasonable choice with respect to the data sets at hand.

7.5.3 Results on Synthetic Data Sets

Like in the previous chapters we begin by evaluating our method on the same
synthetic data sets as in Section [5.4.1] which incorporate situations that re-
semble real-world conditions. Yet we concentrate the evaluations on the more
challenging variants of synthetic data sets with just 10 2D instances per class.

Figure displays results of the similarity search method with pre-labeling
on the first synthetic data set with different amounts of labels provided. The
results with only four user-provided labels already clearly outperforms the un-
supervised method in situations with large cluster overlap (dist<1.20) and can
increase the accuracy to over 80% in most cases. When doubling the amount
of 2D instances labels (eight) the overall performance still increases, but less
rapidly and the improvement largely levels off beyond that. On the second syn-
thetic data set, depicted in Figure pre-labeling with just 4 labels prevents
the large performance decrease which the similarity search method had around
a shift of 0.3 and 0.65, and achieves a reasonable improvement instead. This
comes at the cost of decreased performance around shift of 0.5.

The effects of fault reduction best manifest on the second synthetic data set
with just 10 learning instances shown in Figure We look at the critical

129

100 1

\Vf/ﬂp | 9042\” A

80

80

@
S

accuracy [%]
accuracy [%]

IS
S

— 0 labels 1 —— 0labels

~—— 4 labels «— 4 labels
-~ 8 labels - 8 labels
2 40 labels] 801 o o 40 labels

- - supervised 1D - - supervised 1D
- supervised 2D --- supervised 2D
T 3 E] 7 B 6 8102 03 : 0% : 0.9
horizontal distance of class centers horizontal position of moving class center
(a) pre-labeling, dataset 1 (b) pre-labeling, dataset 2
100 T T T T T 1

80

o
S

accuracy [%]
accuracy [%]

1.1 labels (avg.) |

IS
S

«—— 2.0 labels (avg.)

= 3.5 labels (avg.) «— 1.7 labels (avg.)

5.4 labels (avg.) == 3.1 labels (avg.)

20 — 6.2 labels (avg.) | 60— 5.0 labels (avg.)
-~ supervised 1D -~ supervised 1D
- supervised 2D -+~ supervised 2D

0 1 2 3 4 5 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
horizontal distance of class centers horizontal position of moving class center
(c) fault reduction, dataset 1 (d) fault reduction, dataset 2

Figure 7.4: Average accuracy of the pre-labeling and fault reduction approaches

on both synthetic data sets with 10 (unlabeled) learning instances per class
(pITH 1.0).

regions around a shift of 0.3 and 0.65 for which the similarity search alone had
lead to a performance decrease of over 30% (see Figure . Even combined
with an aggressive bagging threshold of 0.9 (i.e., 90% of solutions must agree
when aggregating) a decrease of around 20% remained. As can be seen in Fig.
[7-4d] fault reduction solves this problem without causing degradations at other
places. The performance decrease totally disappears for an average of 1.7 labels
and significant increase is seen from three labels on. This is achieved at the
price of a less pronounced performance increase for simpler data sets such as
the first synthetic one, where similarity search alone was already getting very

good results (see Figure [7.4c)).

7.5.4 Results on Real-World Data Sets

When applied to the real-world data sets the positive effect of pre-labeling is
also clearly visible. Figures and show the results of pre-labeling in
combination with the similarity search method (no bagging). In case of pITH 0.2

130

the number of sensor pairs with negative accuracy change decreases from 1486
(38.7%) down to 949 (24.7%) with just four labels and to 625 (16.3%) with
eight labels (1.15 labels per class on average). At the same time the number
of positive outcomes increase from 1583 (41.2%) to 2060 (53.6%) for four labels
and to 2227 (58%) for eight labels. The improvement is particularly well visible
in the sum over all improvements which goes from 15916 with no labels to 24499
with four and 28810 with eight. The results with pITH 0.075 behave similarly
with increasing number of labels added, just from a slightly different starting
point.

The histograms in Figure confirm the anticipated effect for the fault re-
duction method. An average of four labels already reduces the number of faults
from 1368 (35.6%) to just 320 (8.3%) while still keeping 1365 (35.5%) occasions
where the accuracy is improved. With 11.2 user-provided labels the faults fur-
ther decrease to 3.7% without affecting the positive outcomes too much (33.5%).
Moreover, when combining pre-labeling (with eight labels) and fault reduction
with 10.1 labels (Fig. the positive outcomes can even be increased to 49.3%
with just 3.5% of negative ones.

Figure puts the different variants of the method proposed in this and the
two previous chapters in the context of two standard approaches directly trained
on the new feature space. The first is a supervised tree classifier and the second
one is a well know EM semi-supervised method in conjunction with Gaussian
mixture models (see Section . For all methods we consider the real-world
data sets. The evaluation criteria are the overall amount of improvement that a
method can achieve when the new sensors are added (sum positive change) vs.
the amount of performance decrease that it causes (sum negative change, see
Section [5.4.4). For approaches that rely on user provided labels the results are
plotted as a function of the number of available labels. For our unsupervised
methods we show different thresholds reflecting different amounts of “risk” that
the methods are taking.

It can be clearly seen that our methods are in an entirely different region
of the solution space than the standard supervised and semi-supervised ap-
proaches. The latter are meant for situations where

e A significant number of labels is available.

e The new sensor is consciously chosen in such a way that it is known to
contain useful information and can be handled by the system. In other
words there is no need to worry about potential performance degradation
for unfavorable sensor configurations because we assume that the system
designer makes sure that they do not occur.

By contrast, our methods have been designed with a focus on
e No or minimal number of labels.

e Making sure that they “do as little harm as possible” when facing sensor
combinations that are unfavorable. This is because our system is supposed
to be able to handle any sensor combination that happens to be in the
environment, not just combinations that have been designed to work.

The above differences are best illustrated by the following observations from

Figure [7.6}

250 T T T T

2000 change < 0: change > 0:
1368 of 3840 N 1576 of 3840

150} sum:-11672.1 ! sum: 14401.1
median: -6.2 . median: 7.8

100 10pct: -17.2 90pct: 19.4

—60 -40 0 40 60
250 T T T T
00 change <o: change > 0:
822 of 3840 2018 of 3840 “
150} sum:-5264.9 sum: 20660.2 °
median: -5.2 median: 8.3 || g
1001 10pct: -13.9 90pct: 21.6 ||

50
0 x I
-60 -40 -20 0 20 40 60
250 T T T T
200l change <o0: change > 0:
534 of 3840 2068 of 3840 -
150} sum:-3054.0 sum: 22159.6]
median: -4.1 median: 8.3 |8
100F 10pct: -12.4 90pct: 222 |

—40

250 T T T T
00 change <o: change > 0:
351 of 3840 2120 of 3840
150} sum:-1682.3 sum: 23917.2
median: -3.4 median: 8.9
1001 10pct: -9.5 90pct: 24.1
50

—40

accuracy change [%]

(a) pre-labeling, pITH 0.075

250 T T T T
00 change <o: change > 0: |
1368 of 3840 v 1576 of 3840 H
150} sum:-11672.1 sum: 14401.1 -
median: -6.2 median: 7.8 T
100[10pct: -17.2 90pct: 19.4 |3
50 2
]
260 -40 -20 0 20 40 60
250 T T T T
00l change <o0: change > 0: |3
320 of 3840 1365 of 3840 H
150} sum:-1898.0 sum: 14195.2 s
median: -4.2 ! median: 8.8 | g
100F 10pct: -12.6 90pct: 20.7 |5
50 I :

—60 -40 =20 0 20 40 6
250 T T T T
00 change <o: change > 0:
212 of 3840 1334 of 3840
150+ sum:-1001.6 sum: 14209.6
median: -3.1 N median: 9.4
100[10pct: -11.0 90pct: 21.2
50
-60 -40 =20 0 20 40 6
250 T T T T
200 change < o: change > 0:
143 of 3840 1288 of 3840
150} sum:-618.8 sum: 14031.9
median: -2.8 median: 9.5
100f 10pct: -8.9 : 90pct: 21.9
50

—40 -20

0

20

40

o

accuracy change [%]

(c) fault reduction, pITH 0.075

0 labels

16 labels

5}

o

© 11.2 labels (avg.) © 7.2 labels (avg.)

131

250 T T T T
2000 change < 0: change > 0:
1486 of 3840 1583 of 3840 N
150} sum:-14141.7 sum: 15916.2 o
median: -7.9 median: 8.3 |8
100f 10pct: -19.4 90pct: 20.7 |5
50
0
—60 —40 -20 0 20 40 60
250 T T T T
2001 change < o: change > 0:
949 of 3840 2060 of 3840 "
150f sum: -6886.8 sum: 24498.8 o
median: -5.6 median: 10.3 [g
100F 10pct: -14.9 90pct: 239 |5
50
0 4 =
—60 —40 -20 0 20 40 60
250 T T T T
200l change < o: change > 0:
625 of 3840 2227 of 3840 "
150} sum:-3917.4 sum: 28810.1 o
median: -5.2 median: 11.1 | [g
10pct: -13.7 90pct: 25.5 ©
—40 60
250 T T T T
00 change <o: change > 0:
424 of 3840 2366 of 3840 ©
150} sum:-2284.3 ! um: 32706.7 | | g
median: -3.9 ! median: 11.7 | |®
100F 10pct: -11.1 90pct: 27.8 | | g
ol D
-60 —40 -20 0 20 40 60
accuracy change [%]
(b) pre-labeling, pITH 0.2
250 T T T T
| change < 0: change > 0:
2001 625 of 3840 222703840 || §
150F sum:-3917.4 sum: 28810.1 |8
median: -5.2 median: 11.1 | |5
100F 10pct: -13.7 90pct: 25.5 =
50 ©
0 ot -
—60 —40 -20 0 20 40 60
250 T T T T
| change < 0: change > 0:
2001 391 of 3840 2029 0f 3840 |G
150} sum:-1635.6 ~sum: 27419.7 | 2
median: -4.4 f i median: 11.4 ||,
100F 10pct: -11.1 ! : 90pct: 26.8 T
s :
i A ..
—60 —40 =20 0 20 40 60
250 T T T T
| change < 0: change > 0:
200 216 of 3840 1963 of 3840 %
150} sum:-1028.6 sum: 27065.3 |8
median: -3.5 | : median: 122 ||
100[10pct: -10.6 | } | i oopct274 |
501 @
...
—60 —40 -20 0 20 40 60
250 T T T T
200 change < o: change > 0: | u
136 of 3840 1895 of 3840 2
150} sum: 267549 | ®
8 © median: 12.5 || =
100} 10pct: -8.6 ’ 90pct: 27.3 [S
: +
i)
a0 ..
-60 -40 =20 0 20 40 60

accuracy change [%]

(d) pre-labeling + fault reduction, pITH 0.2

Figure 7.5: Results for our pre-labeling and fault reduction method with dif-
ferent parameterizations on the three real-world data sets (13 subjects, 768 - 5
tested sensor combinations in total). Each plot shows results for four plausi-
bility thresholds (plTH). Bounding boxes for positive and negative results are
highlighted, including 10/50/90 percentiles.

132

sum negative change / 1000

pITH[0.05 —%

—25}

—-30}

—-35}

pITH 0.001 21.9 251181 14.1
i@ plTHO0.2 1498112 & 73, ‘
R o —13.7

64-‘ 128
64 o 32

ST 11316
pITHL.0% > 128
-5t \ 8
pITH 0.28
H0.2:
-
pITH Tom
\
-10} AN
\
\
\
\
0
_15 - \
\
\
\
\
\
\
—20} AN

label inferring, B=2

similarity search + bagging 0.9
pre-labeling (pITH=0.075)

pre-labeling (pITH=0.2)

fault reduction (pITH=0.075, diTH=0.75)
pre. (2) + fault red. (pITH=0.2, diTH=0.75)
pre. (8) + fault red. (pITH=0.2, diTH=0.75)
decision tree (2D only)

EM (2D data only)

- - zero improvement

I

N

\

\
—401 16 \(16: 20379, -76573)
(8:2623,-86856) \ (8: 4030, -13?176)

0 10000 20000 30000 40000 50000 60000
sum positive change

Figure 7.6: Comparison of results from the pre-labeling and fault reduction
methods with previous results and semi-supervised baseline methods. Numbers
in the graph denote the amount of user-provided labels if not stated otherwise.

e For 16 labels, the 2D tree classifier has about the same amount of overall
improvement as the similarity search method with 0 labels (piTH 0.075)
but nearly 4 times more negative change. Compared to the fault reduction
method it also has the same amount of improvement but around 15 times
more negative results for just 2 labels and over 70 times more negative
results for 11 labels.

e For 16 labels, the EM semi-supervised method has just 60% of the im-
provement of our pre-labeling method (less than 15% with 8 labels) with
more than 30 times as many negative results. It has about the same
amount of improvement as the bagging supported similarity search with
no labels while having 30 times more negative results.

e For 128 labels, the 2D tree classifier has about the same number of negative
results as the pre-labeling version of our similarity search with 8 labels
(while having about double as much improvement) and around 2 times
as many negative results as the fault reduction method with just 7 labels
(while having around 4 times more improvement).

133

Figure [7.6] also clearly displays the difference of the pre-labeling and fault
reduction methods. While pre-labeling focuses on increasing the total amount
of improvement using the user-provided labels, the fault reduction method aims
at reducing the sum of negative accuracy change while holding the level of
improvement. The fault reduction method increases the ratio of positive- vs.
negative change for similarity search with pITH 0.075 from 1.2:1 to well over
5:1 with just 2 labels, and to over 14:1 with 7 labels. Pre-labeling with 16
labels reaches the same ratio with more than double the amount of improvement
(pITH 0.2). When combining pre-labeling and fault reduction, a ratio of over
26:1 is achieved with 14 labels (8 for pre-labeling, 6.1 for fault reduction).

7.6 Conclusion

In this chapter we have extended the unsupervised method for automatic inte-
gration of new sensors into existing systems, which we presented in Chapter [6]
to support semi-supervised learning. We proved the method analytically and
we evaluated it on synthetic and real-world data sets by providing random la-
bels for the extended feature space instances. We compared its performance to
supervised and semi-supervised baseline methods.

The information of the added labels were integrated in two different ways.
The first was to pre-label the clusters with the available labels in order to in-
crease the effectiveness of the similarity search. In the second approach, which
we called fault reduction, the labels were actively requested for just the feature
space regions which are relevant to compare the performance of a candidate
solution with the original classifier and to decide which one should be used. For
the fault reduction method we could analytically show its ability to systemati-
cally prefer classifiers that yield better accuracy compared to the initial classifier
and to discard the ones that would decrease the system’s accuracy.

The evaluation on synthetic data sets showed that, with very few extra labels,
the fault reduction approach can effectively prevent our method from eventually
decreasing a systems performance and the pre-labeling approach significantly
increases the amount of improvement. Those effects were also confirmed on
real-world data sets. Compared to the semi-supervised baseline method (EM)
with 16 labels, our method with pre-labeling achieved nearly double the sum
of improvement and 30 times less amount of performance decrease. With less
labels these numbers are more extreme.

The achieved results suggest our method of adapting the initial classifier
to be superior over traditional semi-supervised and supervised methods in case
when very limited amount of labels are available for the data recorded with the
New Sensor.

134

Chapter 8

Summary of Key Findings
and Conclusion

Within this thesis we pursued the goal of making activity recognition better
suitable for real world scenarios. The fundamental idea behind ubiquitous and
pervasive computing demands that the technology itself should be invisible to
the user. In the context of activity recognition systems this would mean that the
system must be accurate, because wrong results would immediately attract the
user’s attention. Additionally, such a system must be easily maintainable in the
long term and should therefore adapt to the sensor hardware that is available,
instead of dictating the set of sensors a user must wear.

In the two parts of this thesis we explored those two basic requirements. We
started with software tools that support and facilitate the creation of activity
recognition systems from the very beginning of a project, when an initial data set
is recorded from diverse sensors, until the deployed online activity recognition
system. In the second part we proposed and evaluated a novel method for
opportunistic activity recognition systems which enables existing systems to
integrate new, unknown sensors in order to improve the recognition accuracy
with no or with minimal user input.

8.1 Activity Recognition Toolchain

In the first part we introduced the CRN Toolbox, a reconfigurable software tool-
box to ease the process of building online activity recognition systems (Chap-
ter . It is based on a repository of parameterizable data stream processing
components which can be connected in the desired order or topology to de-
fine the data flow. The toolbox has been used in various research projects and
scientific publications already. Furthermore, we proposed a novel method for
automatic synchronization of data streams from heterogenous sensor networks
(Chapter . The method is based on detecting physical events in data streams
received from different sensors and then finding the corresponding event on each
data stream for alignment. The method works across different sensing modali-
ties and we were able to achieve automatic synchronization with less than 0.3 s
error in a multi-user real world data set. Ultimately, we introduced additional
software tools which we integrated to a complete toolchain that supports all

135

136

phases of the development of activity recognition systems (Chapter . In sum
those tools cover

e the recording of large, multimodal data sets from a variety of sensing
systems (CRN Toolbox, smartphone data loggers) and monitoring of the
progress (MASS),

e storing, annotating, and sharing of such data sets (ContextDB.org, Label-
ing Tool),

e extracting of reproducible traces from selected parts of the database which
can be used as base for classifier training and evaluation (Trace Generator),
and

e online activity recognition from live sensor data streams (CRN Toolbox)
and dynamic sharing of sensor data and recognition services among mul-
tiple Toolbox instances (service oriented extension).

The toolchain has been developed and implemented over the process of multiple
activity recognition research projects and has most recently been used to estab-
lish a large-scale data set with 72 sensors of 10 different modalities mounted
on body, objects, and in the environment, with totally 60 recording sessions
annotated with nearly 40 000 high- and low-level activity labels.

Its utilization in various projects proved the applicability of the CRN Tool-
box’ concept and user studies confirmed an adequately short learning curve.
New activity recognition systems could be designed and tested conveniently on
desktop computers and later transferred to small, wearable computers with-
out the need of modifications or re-coding. Additional algorithms could either
be implemented as a Toolbox component or just integrated in the data flow
using TCP sockets, and most importantly, the components could be re-used
with different parametrizations in later applications. The acceptance of the
CRN Toolbox among research groups was promising and the main reason for
researchers and developers to hesitate adopting the concept despite its advan-
tages seemed to be the fear of coding additional components in C/C++ and
the strictly data-driven design. This could be alleviated in future by provid-
ing a more complete set of available algorithms and a thorough documentation.
Furthermore, generic components that allow the usage of scripting language for
defining the component’s logic could facilitate adoption.

A frequent problem with recording of data streams from multiple sensors is
their proper synchronization. As manual alignment of the signals may be feasi-
ble in some cases of offline analysis, it is just not practical for real world activity
recognition systems. The method for automatic, event-based synchronization of
data streams we presented in this thesis proved to be a feasible solution to the
problem. Using very simple event detectors the method was able to correctly
align the events found on multiple signals. Moreover, the transitive property
of this method even allowed for synchronization of sensors with completely dif-
ferent modality, i.e., sensors which are not able to sense a common physical
event. While the event detectors were already implemented within the CRN
Toolbox, the synchronization method was optimized for offline analysis and yet
needs to be implemented as Toolbox task. A Toolbox user would configure the
synchronization task to detect the desired events on the individual data streams
and the task would then automatically determine the clock offsets between those

137

data streams and correct the timestamp of each transmitted data packet accord-
ingly. Later tasks in the network can then safely merge data streams according
to timestamps.

We introduced artificial synchronization actions to our experiments (e.g.,
clapping hands, push/release of a button) to explicitly synchronize the involved
sensors. Yet, we are confident that future work will be able to utilize more subtile
actions which naturally appear frequently enough for synchronizing the sensors.
This will further reduce undesirable user interaction in real life deployments and
hence increase the system’s invisibility.

We are convinced that the integrated toolchain presented in thins thesis
significantly reduces the effort for creating new activity recognition systems. It
facilitates the tedious tasks of recording and annotating large, multimodal data
sets and it allows for sharing them with the community to effectively reduce the
necessity of recording new data sets and to increase the quality of the existing
ones instead. As the effort of creating activity recognition systems is reduced we
believe that the toolchain can actually accelerate research. Moreover, with the
easy access to a context database we expect to attract an even larger community
which do not have the resources for recording own activity recognition data sets.

8.2 Opportunistic Activity Recognition

Within the second part of this thesis we proposed and studied a novel method
for automatic adaptation of activity recognition systems to new sensors. Our
method allows an opportunistic activity recognition to benefit from new sensors,
which were not known at design time, without or with minimal user input. It
thus enables a system to autonomously evolve together with its changing sensing
environment.

The core of our method is based on well-established principles of semi-
supervised learning. However, traditional semi-supervised methods usually com-
bine unsupervised clustering with sparse label information retrieved from the
user to infer labels for points throughout the clusters. In our case we do not
rely on label information from the user at first, but we utilize the initial classi-
fier model (n dimensions) to generate labels for the new, n+1 dimensional data
points. As such, our approach can be categorized as unsupervised method. Nev-
ertheless, the variations of our method that additionally incorporate a limited
amount of user feedback actually make it a semi-supervised method again.

In an optimal sensor setup, i.e., when the classifier trained on the initial
sensor perfectly recognizes each activity class in at least some regions of the
1-dimensional feature space but confuses the classes in other regions, and the
2-dimensional feature space extended with the new sensor perfectly separates
the classes, in that case the simplest version of our method already reveals an
adapted classifier with perfect accuracy without any labeled data from the new
sensor. Not surprisingly, such setups are rarely found in real world activity
recognition scenarios. This has two fundamental effects:

1. the regions of labeled data points in the initial feature space that can be
used to infer labels for single clusters are strongly reduced (single cluster
regions), and

138

2. hence the sample noise is strongly amplified when applying those label
distributions to entire clusters in the extended feature space.

In the advanced approach we avoided to infer cluster labels from small samples
by directly choosing the cluster labels such that the resulting distribution is
most similar to the original training data when projected back to the initial
dimension. While this second approach evades the above effects at first, it
happens to be affected by similar symptoms originating from differences in the
two sample distributions that are once more amplified from a small sample size.
Yet, with the bagging technique we found an efficient way to reduce the influence
of sample noise to our method. The occasions where integrating the new sensor
would reduce overall accuracy could be significantly reduced with bagging.

Another efficient way to reduce occasions where the adapted system would
reveal lower accuracy than the initial system and to increase the amount of
improvement that can be achieved, was to include user feedback. We could an-
alytically show that for small number of labels this heuristic is already strongly
biased towards keeping good solutions (which achieve better accuracy than the
initial system) and discarding bad ones. With just two labels requested from
the user, our method already performed better than the baseline methods with
64 or 128 labels when regarding the sum of negative improvement over all tested
sensor pairs. In other words, our method better handled the cases where the new
sensor delivered nonsense data, i.e., where the baseline 2D classifiers achieved
lower accuracy than the initial 1D classifier. In terms of overall accuracy gain
(sum of positive accuracy change) our method significantly outperformed both
baseline methods (fully supervised and semi-supervised) when the number of
labeled data points was low, and with 32 labels we still achieved over 75% of
the improvement which the semi-supervised baseline realized and 10 times less
negative accuracy change.

We have chosen the decision tree classifier for evaluating our method as it
proved a suitable model for real life activity recognition systems in previous
work, and because it can be easily refined locally with new dimensions. For
future work we expect that using more sophisticated classifier models, such as
mixtures of discriminative and generative models, could further increase the
effectiveness of our method. At the same time, the heuristic used to estimate
plausibility could be replaced by a proper measure of the difference between two
probability distributions such as the Kullback-Leibler divergence.

In the context of discussing this method we referred to a “sensor” as a single,
1-dimensional feature extracted from a sensor. And for simplicity, we limited our
investigation to those configurations where the initial classifier was trained with
a single feature (the “old sensor”) and was extended with a different feature (the
“new sensor”). In real world scenarios, however, the addition of a new sensor
(e.g., a 3-axis gyroscope) would provide a whole set of new features which is
primarily limited by the amount of available feature extraction algorithms. Yet,
as our method includes heuristics to rate individual solutions on their expected
accuracy gain, it allows for selecting the most promising feature. Still, the
concept of our method may be extended to support addition of multiple features,
e.g., by incrementally going from N to N+1 dimensions.

139

8.2.1 Lessons Learned

The methods presented in Part [[T]of this thesis are a result of incremental exper-
iments with real world activity recognition data. Exploring and tuning of the
methods was an essential part of this work. It revealed another field for tools
that support such exploration processes. The problem here is that the meth-
ods, which take activity recognition data as input, may produce intermediate
results at different stages. Storing those intermediate results and using them
at subsequent stages may strongly reduce the time needed for executing the
later stages, and hence the effort for exploring the methods. However, without
a thoroughly designed architecture for managing code and intermediate data,
which usually is not the first priority when exploring new methods, the inter-
mediate results and different code versions can quickly get difficult to manage,
e.g., when manipulating an earlier stage after several versions of a subsequent
stage exist already. This calls for tools that support managing and versioning
of hierarchically linked processing stages with their intermediate results. As
suggested already in Chapter 4] a possible solution would be to store the code
and intermediate results for each stage within the same context database, im-
plement versioning, and provide scripts that dynamically execute the necessary
stages and update the intermediate data.

We have restricted the evaluation of our methods to a selected set of sen-
sors and features and to the 1D-to-2D case in order to limit the effort needed
for assessing the method’s performance on each sensor combination. Higher-
dimensional feature spaces would require even more data for learning the initial
decision tree (training set) and clustering of the extended feature space (adapta-
tion set). Yet, with the limited amount of available data it would only emphasize
the effects of limited sample size. Still we believe that given the proper amount
of data it would be possible to successfully apply our method onto the N-to-
(N+1) or N-to-(N+M) case. Compared to traditional, fixed feature set activity
recognition systems which only require a single training set (and a test set), our
methods additionally require a data set for adaptation, recorded from the same
setup but with the extra sensor added. Also, our methods are sensitive to
discrepancies between those data sets (i.e., different probability distributions).

The general N to N+M dimensions case could be solved by sequentially
adding the feature which results in the best gain value until a gain threshold is
no longer exceeded. Such a sequential procedure could, however, only exploit
information from statistically independent features and error propagation could
become an issue. Hence, adapting our methods to allow for considering multiple
additional dimensions at once would be beneficial but it still cannot evade the
issues known as curse of dimensionality.

Our methods may improve the recognition performance of classes which were
recognized poorly or not at all with the initial system, but there must exist at
least some labeled data points for those classes in the initial training data. New
classes, which were not known at design time of the initial system can not be
added. It would require other methods to integrate a new class. Still, in certain
cases, our methods could provide cues for new classes when the clustering phase
would reveal clearly separated clusters for a single class. This is limited to
the cases where the activity associated to the new class was already performed
in the initial training phase but not labeled yet. The other case, when the
subject introduces a new activity at runtime, would violate the assumption of

140

equal distributions in training- and adaptation set. This requirement could be
overcome if the introduction of the new activity could be detected (e.g., by
detecting changes in the probability distributions) and separated into a new
cluster. It would enable us to still compare the two data sets and treating the
new cluster separately.

8.3 Outlook

The current implementation of our method for automatically integrating new
sensors is clearly targeted for offline analysis. Naturally, it needs some adapta-
tion to be suitable for online activity recognition systems but we expect those
modifications to be marginal. There is no need for this method to incremen-
tally execute as new data points arrive, rather it would buffer the data until
enough information is collected for integrating the new sensor. While an imple-
mentation as a CRN Toolbox task would certainly be possible we would prefer
implementing it at a higher level, beyond the concept of stream tasks. This
is because it does not produce continuous output which would be processed
by further tasks in the Toolbox setup, but it would instead adapt the Toolbox
configuration at certain times. Specifically, this would include

1. adding reader- and feature extraction tasks for sensors that appear,
2. collecting a predefined amount of data from the new sensor,

3. applying the method for extending the existing classifier model with the
new dimension, and

4. writing the new classifier model to the classifier task and adapting the
data flow in the Toolbox configuration.

This higher layer utilizes the efficient CRN Toolbox runtime, which usually
was manually configured, and makes it suitable for the autonomous evolution
of opportunistic activity recognition systems, by automatically adapting the
Toolbox configuration.

The automatic synchronization method presented in Chapter [3| would fit
well as a group of CRN Toolbox tasks. Unlike the opportunistic method above,
it has no need to reconfigure the Toolbox configuration. instead, it actually
has to constantly detect events on all data streams. Those event detectors may
be built from multiple Toolbox tasks which are commonly used. The core of
the synchronization method would be implemented in a dedicated task which
would periodically correlate the detected events as described in Chapter [3] and
compute the alignment offset for each data stream. Those offsets would then
be applied to each data stream in a separate task. The event detectors used
in the evaluation of our synchronization method are already implemented using
Toolbox tasks. Only the task for correlating the events to derive the data
stream offsets must be ported to the Toolbox yet. The entire synchronization
method should be wrapped into a task group which automatically instantiates
the necessary tasks and connections for each data stream such that only the
dedicated event detectors would have to be configured manually.

In Chapters we explored three different sources of labels for labeling
the clusters and applied them separately or in sequence: single-cluster regions,

141

distribution similarity, and user feedback. Future work could search for ways to
combine different label sources in a weighted manner in order to better exploit
their individual strengths and to allow for integrating new label sources more
formally. Furthermore, the reasons for clusters that receive labels of multiple
classes and hence are labeled with a class distribution instead of a single label,
could be explored and possibly exploited for improved performance.

Future work could also extend the opportunistic method to not just allow for
adding of new sensors but also dynamically removing or re-adding of previously
known sensors to even better suit real life scenarios. Such a system would for
each sensor keep a record that contains the accumulated knowledge about the
sensor’s contribution to the recognition goal. Using those records the system
can quickly decide which sensors and which features to include in the recognition
process. At a further stage, such knowledge records could also be retrieved from
the public context database in case there are enough recordings uploaded for
the specific scenario. Specifically, sensor type, sensor positioning (location and
orientation), and labeled activities must match for the recordings to be useful.
In some cases, however, recorded sensor data could be transformed to match the
specific setup. Following this approach, the context database that was initially
intended for researchers to share data sets for evaluating and comparing activity
recognition algorithms would then be directly used by the opportunistic methods
themselves.

Simplifying and structuring the process of creating activity recognition sys-
tems allows researchers to better focus on real world applicability of the meth-
ods, and it may enable those methods to themselves take advantage of the
structured process.

142

Bibliography

[Abo99)

[Ada08]

[Agiil2]

[Amf04]

[Amf07]

[Amfo8]

[Amf10]

[Ang88]

[At190]

G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles.
Towards a better understanding of context and context-awareness. In
H.-W. Gellersen, editor, Handheld and Ubiquitous Computing, volume
1707 of Lecture Notes in Computer Science, pages 304—307. Springer
Berlin Heidelberg, 1999. ISBN 978-3-540-66550-2.

K. Adamer, D. Bannach, T. Klug, P. Lukowicz, M. L. Sbodio, M. Tres-
man, A. Zinnen, and T. Ziegert. Developing a wearable assistant for
hospital ward rounds: An experience report. In Proceedings of the In-
ternational Conference on Internet of Things, volume 4952 of Lecture
Notes in Computer Science, pages 289-307. 2008.

J. Agiliero, M. Rebollo, C. Carrascosa, and V. Julidn. Developing
Pervasive Systems as Service-oriented Multi-Agent Systems. pages
78-89, 2012.

O. Amft, M. Lauffer, S. Ossevoort, F. Macaluso, P. Lukowicz,
and G. Troster. Design of the gbic wearable computing platform.
In Application-Specific Systems, Architectures and Processors, 2004.
Proceedings. 15th IEEE International Conference on, pages 398 —410.
2004. ISSN 1063-6862.

O. Amft, M. Kusserow, and G. Troster. Probabilistic parsing of di-
etary activity events. In Proceedings of the International Workshop
on Wearable and Implantable Body Sensor Networks, pages 242-247.
2007.

O. Amft and G. Troster. Recognition of dietary activity events using
on-body sensors. Artificial Intelligence in Medicine, 42(2):121-136,
2008.

O. Amft, D. Bannach, G. Pirkl, M. Kreil, and P. Lukowicz. Towards
wearable sensing-based assessment of fluid intake. Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), 2010
8th IEEE International Conference on, pages 298 — 303, 2010.

D. Angluin. Queries and concept learning. Machine Learning,
2(4):319-342, 1988.

L. Atlas, D. Cohn, R. Ladner, M. A. El-Sharkawi, and R. J. Marks, II.
Training connectionist networks with queries and selective sampling.

143

144

[Ban06]

[Ban07]

[Ban10]

[Bao04]

[Bec04]

[Ben9s]

[Bia05]

[Blu9s]

[box]

[Bre96]

[Bru00]

In Advances in Neural Information Processing Systems 2, pages 566—
573. Morgan Kaufmann, Denver, CO, 1990.

D. Bannach, K. Kunze, P. Lukowicz, and O. Amft. Distributed modu-
lar toolbox for multi-modal context recognition. In Proceedings of the
19th International Conference on Architecture of Computing Systems,
volume 3894 of LNCS, pages 99-113. Springer, 2006.

D. Bannach, O. Amft, K. Kunze, E. Heinz, G. Troster, and P. Lukow-
icz. Waving real hand gestures recorded by wearable motion sensors
to a virtual car and driver in a mixed-reality parking game. In Pro-
ceedings of the IEEE Symposium on Computational Intelligence and
Games, pages 32-39. 2007.

D. Bannach, K. Kunze, J. Weppner, and P. Lukowicz. Integrated tool
chain for recording and handling large, multimodal context recogni-
tion data sets. In Proceedings of the 12th ACM international con-
ference adjunct papers on Ubiquitous computing, Ubicomp 10, pages
357-358. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0283-8.

L. Bao and S. Intille. Activity recognition from user-annotated ac-
celeration data. In A. Ferscha and F. Mattern, editors, Pervasive
Computing, volume 3001 of Lecture Notes in Computer Science, pages
1-17. Springer Berlin / Heidelberg, 2004. ISBN 978-3-540-21835-7.

C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM - a com-
ponent system for pervasive computing. In Proceedings of the Sec-
ond IEEE Conference on Pervasive Computing and Communications,
pages 67-76. 2004.

K. Bennet and A. Demiriz. Semi-supervised support vector machines.
In Advances in Neural Information Processing Systems 11, pages 368—
374. MIT Press, 1998.

X. Bian, G. Abowd, and J. Rehg. Using Sound Source Localization
in a Home Environment. In Proc. of The 3rd Intl. Conference on
Pervasive Computing, pages 19—-36. Springer, 2005.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training. pages 92-100, 1998.

BoxLab Visualizer. http://boxlab.wikispaces.com/Visualizer.
[Online; accessed 13-Jan-2011].

L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140,
1996.

B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving:
Technologies for intelligent environments. In P. Thomas and H.-W.
Gellersen, editors, Handheld and Ubiquitous Computing, volume 1927
of Lecture Notes in Computer Science, pages 12-29. Springer Berlin
Heidelberg, 2000. ISBN 978-3-540-41093-5.

http://boxlab.wikispaces.com/Visualizer

[Call0]

[Calll]

[Cha06]

[Che08a]

[Che08D)]

[Che09]

[ChoO8]

[emu]

[Con06]

[Cos07]

[Cou01]

[Cro06]

145

A. Calatroni, D. Roggen, and G. Troster. A methodology to use
unknown new sensors for activity recognition by leveraging sporadic
interactions with primitive sensors and behavioral assumptions. In
Proc. of the Opportunistic Ubiquitous Systems Workshop, part of 12th
ACM Int. Conf. on Ubiquitous Computing. 2010.

A. Calatroni, D. Roggen, and G. Troster. Automatic transfer of activ-
ity recognition capabilities between body-worn motion sensors: Train-
ing newcomers to recognize locomotion. In Eighth International Con-
ference on Networked Sensing Systems (INSS’11). Penghu, Taiwan,
2011.

O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised learning,
volume 2. MIT Press, 2006.

J. Cheng, D. Bannach, K. Adamer, T. Bernreiter, and P. Lukowicz.
A wearable, conductive textile based user interface for hospital ward
rounds document access. In Smart Sensing and Context, volume 5279
of Lecture Notes in Computer Science, pages 182-191. 2008.

J. Cheng, D. Bannach, and P. Lukowicz. On body capacitive sensing
for a simple touchless user interface. In Medical Devices and Biosen-
sors, 2008. ISSS-MDBS 2008. 5th International Summer School and
Symposium on, pages 113 —116. 2008.

L. Chen and C. Nugent. Ontology-based activity recognition in in-
telligent pervasive environments. International Journal of Web Infor-
mation Systems, 5(4):410-430, 2009. ISSN 1744-0084.

T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca,
L. LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, et al.
The mobile sensing platform: An embedded activity recognition sys-
tem. Pervasive Computing, IEEE, 7(2):32-41, 2008.

Kitchen Capture. http://kitchen.cs.cmu.edu/. [Online; accessed
13-Jan-2011].

C. Constantinopoulos and A. Likas. Active learning with the prob-
abilistic RBF classifier. In Artificial Neural Networks—ICANN 2006,
volume 4131 of Lectures Notes in Computer Science, pages 357-366.
Springer, Berlin, Germany, 2006.

P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola,
G. Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis. The
RUNES middleware for networked embedded systems and its appli-
cation in a disaster management scenario. In Proceedings of the Fifth
IEEE International Conference on Pervasive Computing and Com-
munications, pages 69-78. 2007.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems.
Addison-Wesley Reading, Mass, 2001.

D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), 2006.

http://kitchen.cs.cmu.edu/

146

[Dag06]

[Dai07]

[Dau07]

[Dea08]

[Dey01]

[Don07]

[Dual]

[Edw03]

[End05]

[Far99]

[F6r09]

[Gar02]

[GCO8]

C. K. Dagli, S. Rajaram, and T. S. Huang. Utilizing information
theoretic diversity for SVM active learning. In Proceedings of the 18th
International Conference on Pattern Recognition (ICPR ’06), pages
506-511. Hong Kong, China, 2006.

W. Dai, G.-R. Xue, Q. Yang, and Y. Yu. Co-clustering based classi-
fication for out-of-domain documents. pages 210-219, 2007.

H. Daumé, III. Frustratingly easy domain adaptation. ACL, 2007.

J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107-113, 2008.

A. Dey, D. Salber, and G. Abowd. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions. Human-Computer Interaction (HCI) Journal, 16(2-4):97-166,
2001.

P. Donmez, J. G. Carbonell, and P. N. Bennett. Dual strategy active
learning. In Proceedings of the 18th European Conference on Machine
Learning (ECML ’07), pages 116-127. Warsaw, Poland, 2007.

L. Duan, D. Xu, and I. Tsang. Learning with Augmented Features
for Heterogeneous Domain Adaptation. arXiv.org, 2012.

K. Edwards, V. Bellotti, A. K. Dey, and M. Newman. Stuck in the
middle: The challenges of user-centered design and evaluation for
middleware. In Proceedings of the Conference on Human Factors in
Computing Systems. 2003.

C. Endres, A. Butz, and A. MacWilliams. A survey of software in-
frastructures and frameworks for ubiquitous computing. Mobile In-
formation Systems, 1(1):41-80, 2005.

J. Farringdon, A. Moore, N. Tilbury, J. Church, and P. Biemond.
Wearable sensor badge and sensor jacket for context awareness. In
Wearable Computers, 1999. Digest of Papers. The Third International
Symposium on, pages 107 —113. 1999.

K. Forster, D. Roggen, and G. Troster. Unsupervised classifier self-
calibration through repeated context occurences: Is there robustness
against sensor displacement to gain? In Wearable Computers, 2009.
ISWC ’09. International Symposium on, pages 77 —84. 2009. ISSN
1550-4816.

D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project
aura: toward distraction-free pervasive computing. Pervasive Com-
puting, IEEFE, 1(2):22 31, 2002. ISSN 1536-1268.

L. Gomez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe.
Semisupervised image classification with laplacian support vector ma-
chines. Geoscience and Remote Sensing Letters, IEEE, 5(3):336 —340,
2008. ISSN 1545-598X.

[Gel02]

[Gua07]

[Giin10]

[Guo07]

[Gup09]

[Har02]

[Hil0O]

[Huy06]

[Int06]

[Joh97]

[Kas08]

[Kip01]

147

H. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor context-
awareness in mobile devices and smart artifacts. Mobile Networks
and Applications, pages 341-351, 2002.

D. Guan, W. Yuan, Y. Lee, A. Gavrilov, and S. Lee. Activity Recog-
nition Based on Semi-supervised Learning. In Proc. of the 15th IEEE
Int. Conference on Embedded and Real-Time Computing Systems and
Applications, pages 469—-475. 2007. ISBN 0769529755.

H. Giinther, F. E. Simrany, M. Berchtold, and M. Beigl. A tool chain
for a lightweight, robust and uncertainty-based context classification
system (ccs). In Proceedings of the 1st Workshop on Context-Systems
Design, Fvaluation and Optimisation (CosDEO 2010). VDE Publish-
ing House, Hannover, Germany, 2010.

Y. Guo and R. Greiner. Optimistic active learning using mutual infor-
mation. In Proceedings of the 20th International Joint Conference on
Artifical Intelligence (IJCAI 07), pages 823-829. Hyderabad, India,
2007.

J. Gupchup, R. Musaloiu-E, A. Szalay, and A. Terzis. Sundial: Using
Sunlight to Reconstruct Global Timestamps. In Proc. of The 6th
European Conference on Wireless Sensor Networks. 2009.

A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The
anatomy of a context-aware application. Wireless Networks, 8:187—
197, 2002. ISSN 1022-0038.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. SIGPLAN Not,
35(11):93-104, 2000. ISSN 0362-1340.

T. Huynh and B. Schiele. Unsupervised discovery of structure in
activity data using multiple eigenspaces. Lecture notes in computer
science, pages 151-167, 2006. ISSN 0302-9743.

S. Intille, K. Larson, E. Tapia, J. Beaudin, P. Kaushik, J. Nawyn, and
R. Rockinson. Using a live-in laboratory for ubiquitous computing
research. In Pervasive Computing, pages 349-365. 2006.

G. W. Johnson. LabVIEW Graphical Programming: Practical Appli-
cations in Instrumentation and Control. McGraw-Hill School Educa-
tion Group, 1997.

T. van Kasteren, A. Noulas, G. Englebienne, and B. Krése. Accurate
activity recognition in a home setting. In UbiComp ’08: Proceedings
of the 10th international conference on Ubiquitous computing, pages
1-9. ACM, New York, NY, USA, 2008. ISBN 978-1-60558-136-1.

M. Kipp. Anvil - a generic annotation tool for multimodal dialogue.
In European Conference on Speech Communication and Technoology,
pages 1367-1370. 2001.

148

[kit)

[Kra03]

[Kun05]

[Kun08]

[Kun09]

[Kun10]

[Lae]

[Lee02]

[Les04]

[Les00]

[Lew]

[Li04]

TUM Kitchen data labeling tool. http://ias.cs.tum.edu/
download/kitchen-activity-data/labeling-tools. [Online; ac-
cessed 13-Jan-2011].

A. Krause, D. P. Siewiorek, A. Smailagic, and J. Farringdon. Un-
supervised, dynamic identification of physiological and activity con-
text in wearable computing. In Proceedings of the 7th IEEE Inter-
national Symposium on Wearable Computers, ISWC ’03, pages 88—.
IEEE Computer Society, Washington, DC, USA, 2003. ISBN 0-7695-
2034-0.

K. Kunze, P. Lukowicz, H. Junker, and G. Troester. Where am i:
Recognizing on-body positions of wearable sensors. LOCA’0/: Inter-
national Workshop on Location and Context-Awareness, 2005.

K. Kunze and P. Lukowicz. Dealing with sensor displacement in
motion-based onbody activity recognition systems. In Proceedings
of the 10th international conference on Ubiquitous computing, pages
20-29. 2008. ISBN 978-1-60558-136-1.

K. Kunze, P. Lukowicz, K. Partridge, and B. Begole. Which way am i
facing: Inferring horizontal device orientation from an accelerometer
signal. In Proc. of Int. Symp. on Wearable Computers (ISWC), pages
149-150. IEEE Press, 2009.

K. Kunze, G. Bahle, P. Lukowicz, and K. Partridge. Can magnetic
field sensors replace gyroscopes in wearable sensing applications? In
Proc. 2010 Int. Symp. on Wearable Computers. 2010.

K. van Laerhoven, M. Berchtold, and S. Reeves. Cstk (commonsense
toolkit). http://cstk.sourceforge.net/. [Online; accessed 13-Jan-
2011].

S.-W. Lee and K. Mase. Activity and location recognition using wear-
able sensors. Pervasive Computing, IEEE, 1(3):24 — 32, 2002. ISSN
1536-1268.

J. Lester, B. Hannaford, and G. Borriello. ” Are You with Me?”-Using
Accelerometers to Determine If Two Devices Are Carried by the Same
Person. Lecture Notes in Computer Science, pages 33-50, 2004.

J. Lester, T. Choudhury, and G. Borriello. A practical approach to rec-
ognizing physical activities. Pervasive Computing, pages 1-16, 2006.

D. D. Lewis and W. A. Gale. A sequential algorithm for training text
classifiers. In Proceedings of the Seventeenth Annual International
ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR ’94), pages 3—-12. Dublin.

S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei. Event detection using
data service middleware in distributed sensor networks. Telecommun
Syst, 26(2-4):351-368, 2004. Special issue on Wireless Sensor Net-
works.

http://ias.cs.tum.edu/download/kitchen-activity-data/labeling-tools
http://ias.cs.tum.edu/download/kitchen-activity-data/labeling-tools
http://cstk.sourceforge.net/

[Luk07]

[Luk09)]

[Luk10]

[Mac01]

[mar]

[MinQ7]

[Mit04]

[Ngu04]

[Nig00]

[Ogr05]

[Pan10]

[Pri00]

149

P. Lukowicz, A. Timm-Giel, M. Lawo, and O. Herzog. Wearit@work:
Toward real-world industrial wearable computing. Pervasive Comput-
ing, IEEE, 6(4):8 —13, 2007. ISSN 1536-1268.

M. Lukac, P. Davis, R. Clayton, and D. Estrin. Recovering Temporal
Integrity with Data Driven Time Synchronization. In Proc. of The
8th Intl. Symposium on Information Processing in Sensor Networks.
20009.

P. Lukowicz, G. Pirkl, D. Bannach, F. Wagner, A. Calatroni,
K. Forster, T. Holleczek, M. Rossi, D. Roggen, G. Troester,
J. Doppler, C. Holzmann, A. Riener, A. Ferscha, and R. Chavar-
riaga. Recording a complex, multi modal activity data set for context
recognition. In Proceedings of the 1st Workshop on Context-Systems
Design, Evaluation and Optimisation (CosDEO 2010). VDE Publish-
ing House, Hannover, Germany, 2010.

P. MacWilliams, B. Prasad, M. Khare, and D. Sampath. Source syn-
chronous interface between master and slave using a deskew latch. US
Patent 6209072, 2001.

MARKER labeling tool. http://people.ee.ethz.ch/~oamft/
projects/marker/index.html. [Online; accessed 13-Jan-2011].

D. Minnen, T. Starner, M. Essa, and C. Isbell. Discovering character-
istic actions from on-body sensor data. In Proc. IEEE ISWC' 2006,
pages 11-18. 2007. ISBN 1424405971. ISSN 1550-4816.

P. Mitra, C. A. Murthy, and S. K. Pal. A probabilistic active support
vector learning algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(3):413-418, 2004.

H. T. Nguyen and A. Smeulders. Active learning using pre-clustering.
In Proceedings of the Twenty-First International Conference on Ma-
chine learning (ICML 04), page 79. Banff, AB, 2004.

K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text clas-
sification from labeled and unlabeled documents using em. Machine
Learning, 39:103-134, 2000.

G. Ogris, T. Stiefmeier, H. Junker, P. Lukowicz, and G. Troster. Using
Ultrasonic Hand Tracking to Augment Motion Analysis Based Recog-
nition of Manipulative Gestures. In Proc. IEEE ISWC 2005, pages
152-159. 2005. ISBN 0769524192.

S. J. Pan and Q. Yang. A Survey on Transfer Learning. Knowledge and
Data Engineering, IEEE Transactions on, 22(10):1345-1359, 2010.

N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket
location-support system. In Proceedings of the 6th annual interna-
tional conference on Mobile computing and networking, MobiCom ’00,
pages 32—43. ACM, New York, NY, USA, 2000. ISBN 1-58113-197-6.

http://people.ee.ethz.ch/~oamft/projects/marker/index.html
http://people.ee.ethz.ch/~oamft/projects/marker/index.html

150

[Puc8g]

[Ran00]

[Rat95]

[Rog09]

[Rogl10]

[Rog13]

[Sap08]

[Sat01]

[Sch94]

[Sch99a|

[Sch99b]

M. Puckette. The patcher. In The International Computer Music
Conference. 1988.

C. Randell and H. Muller. Context awareness by analysing accelerom-
eter data. In Wearable Computers, The Fourth International Sympo-
sium on, pages 175 —176. 2000.

J. Ratsaby and S. S. Venkatesh. Learning from a mixture of labeled
and unlabeled examples with parametric side information. In Pro-
ceedings of the eighth annual conference on Computational learning
theory, COLT ’95, pages 412-417. ACM, New York, NY, USA, 1995.
ISBN 0-89791-723-5.

D. Roggen, K. Forster, A. Calatroni, T. Holleczek, Y. Fang,
G. Troster, P. Lukowicz, G. Pirkl, D. Bannach, K. Kunze, A. Fer-
scha, C. Holzmann, A. Riener, R. Chavarriaga, and J. del R. Millan.
Opportunity: Towards opportunistic activity and context recogni-
tion systems. In World of Wireless, Mobile and Multimedia Networks
Workshops, 2009. WoWMoM 2009. IEEE International Symposium
on a, pages 1 —6. 2009.

D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster,
G. Troster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler,
C. Holzmann, M. Kurz, G. Holl, R. Chavarriaga, M. Creatura, and
J. del R. Millan. Collecting complex activity data sets in highly rich
networked sensor environments. In Proceedings of the Seventh Inter-
national Conference on Networked Sensing Systems (INSS), Kassel,
Germany. IEEE Computer Society Press, 2010.

D. Roggen, G. Troster, P. Lukowicz, A. Ferscha, J. del R. Millan, and
R. Chavarriaga. Opportunistic human activity and context recogni-
tion. Computer, 46(2):36 —45, 2013. ISSN 0018-9162.

T. S. Saponas, J. Lester, J. Froehlich, J. Fogarty, and J. Landay. ilearn
on the iphone: Real-time human activity classification on commodity
mobile phones. Proceedings of the 27th international conference on
Human factors in computing systems, pages 1043-1052, 2008.

M. Satyanarayanan. Pervasive computing: vision and challenges. Per-
sonal Communications, IEEE, 8(4):10 -17, 2001. ISSN 1070-9916.

B. Schilit, N. Adams, and R. Want. Context-aware computing applica-
tions. In Mobile Computing Systems and Applications, 1994. WMCSA
1994. First Workshop on, pages 85 —90. 1994.

A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laer-
hoven, and W. V. de Velde. Advanced Interaction in Context, volume
1707 of Lecture Notes in Computer Science, pages 89—101. Springer,
1999.

A. Schmidt, M. Beigl, and H. Gellersen. There is more to context
than location. Computers € Graphics, 23(6):893-901, 1999.

[Set08]

[Set09]

[She96]

[Sic98]

[Sie03]

[SivO4]

[Ste05]

[Sti06a)

[Sti06b)]

[Sti08a)]

[Sti08b]

[Stil1]

[Su05]

151

B. Settles and M. Craven. An analysis of active learning strategies for
sequence labeling tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP 08), pages 1070
1079. Honolulu, HI, 2008.

B. Settles. Active learning literature survey. Computer Sciences Tech-
nical Report 1648, University of Wisconsin, Department of Computer
Science, 2009.

B. Sheehan, S. D. Fuller, M. E. Pique, and M. Yeager. AVS soft-
ware for visualization in molecular microscopy. Journal of structural
biology, 116(1):99-106, 1996.

A. Sicheneder, A. Bender, E. Fuchs, R. Mandl, and B. Sick. A frame-
work for the graphical specification and execution of complex signal
processing applications. 3:1757-1760, 1998.

D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji,
K. Reiger, and J. Shaffer. Sensay: a context-aware mobile phone.
Wearable Computers, 2003 Proc., Seventh IEEE International Sym-
posium on, pages 248-249, 2003.

F. Sivrikaya and B. Yener. Time synchronization in sensor networks:
a survey. Network, IEFE, 18(4):45-50, 2004.

P. Steggles and S. Gschwind. The Ubisense smart space platform.
191:73-76, 2005.

T. Stiefmeier, C. Lombriser, D. Roggen, H. Junker, G. Troster, and
G. Ogris. Event-based activity tracking in work environments. In Pro-
ceedings of the 3rd International Forum on Applied Wearable Com-
puting. 2006.

T. Stiefmeier, G. Ogris, H. Junker, P. Lukowicz, and G. Troster. Com-
bining motion sensors and ultrasonic hands tracking for continuous
activity recognition in a maintenance scenario. Wearable Computers,
IEEE International Symposium, 0:97-104, 2006. ISSN 1550-4816.

T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and G. Troster.
Wearable activity tracking in car manufacturing. IEEE Pervasive
Computing, 7:42-50, 2008. ISSN 1536-1268.

M. Stikic, K. Van Laerhoven, and B. Schiele. Exploring semi-
supervised and active learning for activity recognition. In IEEE ISWC
2008., pages 81-88. 2008. ISSN 1550-4816.

M. Stikic, D. Larlus, S. Ebert, and B. Schiele. Weakly supervised
recognition of daily life activities with wearable sensors. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 33(12):2521—
2537, 2011.

W. Su and I. Akyildiz. Time-diffusion synchronization protocol for
wireless sensor networks. IEEE/ACM Transactions on Networking,
13(2):384-397, 2005.

152

[Sun05]

[Sze09]

[Tap06]

[Ten09]

[Ton02]

[VL0O]

[WA06]

[Wan02]

[War63]

[War06]

[Wei91]

[Wei07]

[Wit05]

B. Sundararaman, U. Buy, and A. Kshemkalyani. Clock synchro-
nization for wireless sensor networks: a survey. Ad Hoc Networks,
3(3):281-323, 2005.

S. Szewcyzk, K. Dwan, B. Minor, B. Swedlove, and D. Cook. Annotat-
ing smart environment sensor data for activity learning. Technology
and Health Care, 17(3):161-169, 2009.

E. Tapia, T. Choudhury, and M. Philipose. Building reliable activity
models using hierarchical shrinkage and mined ontology. Pervasive
Computing, pages 17-32, 2006.

M. Tenorth, J. Bandouch, and M. Beetz. The TUM kitchen data
set of everyday manipulation activities for motion tracking and ac-
tion recognition. In IFEE Int. Workshop on Tracking Humans for
the Evaluation of their Motion in Image Sequences (THEMIS). In
congunction with ICCV2009. 2009.

S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. Journal of Machine Learning Re-
search, 2:45-66, 2002.

K. Van Laerhoven and O. Cakmakci. What shall we teach our pants?
In Wearable Computers, The Fourth International Symposium on,

pages 77 —83. 2000.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In Proc.
of The Tth USENIX Symposium on Operating Systems Design and
Implementation. 2006.

X. Wang, J. Dong, C. Chin, S. Hettiarachchi, and D. Zhang. Semantic
space: An infrastructure for smart spaces. Computing, 1(2):67-74,
2002.

J. H. Ward. Hierarchical grouping to optimize an objective function.
Journal of ASA, 1963.

J. Ward, P. Lukowicz, G. Troster, and T. Starner. Activity recogni-
tion of assembly tasks using body-worn microphones and accelerom-
eters. IEEFE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(10):1553-1567, 2006.

M. Weiser. The computer for the 21st century. Scientific American,
265(3):94-104, 1991.

T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle. Rapid
prototyping for pervasive applications. IEEE Perv Comput, 6(2):76—
84, 2007. ISSN 1536-1268.

I. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

153

[Wya05] D. Wyatt, M. Philipose, and T. Choudhury. Unsupervised activity

[Yan09)

[ZhuO8]

[Zim80]

recognition using automatically mined common sense. In Proc. Na-
tional Conference on Artificial Intelligence, page 21. 2005.

T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner. Demo
abstract: mcrowd - a platform for mobile crowdsourcing. SenSys 09,
2009.

X. Zhu. Semi-supervised learning literature survey. Technical Report
1530, Computer Sciences, University of Wisconsin-Madison, 2008.

H. Zimmermann. OSI Reference Model-The ISO Model of Archi-
tecture for Open Systems Interconnection. Communications, IEEE
Transactions on, 28(4):425-432, 1980.

154

Curriculum Vitae

David Bannach received his diploma in computer science from ETH Zurich in
2003. Since then he has worked as research assistant in the fields of wear-
able and pervasive computing and human activity recognition at the Institute
for Computer Systems and Networks at the University of Medical Informat-
ics and Technology Hall in Tyrol (2004-2006), the Embedded Systems Lab at
the University of Passau (2006-2012), and at the Wearable Computing Lab at
ETH Zurich (2003, 2013, 2015). During that time he was involved in multiple
EU-funded projects (WearlT@Work, MonAMI, Opportunity). In 2014 he co-
founded the ETH spin-off company Bonsai Systems GmbH where he is member
of the board of management and leads the software division.

155

	Abstract
	Acknowledgments
	Contents
	Motivation
	Background
	Challenges for Activity Recognition
	Related Work
	Context-Aware Frameworks and Pervasive Middleware
	Online Activity Recognition Systems
	Activity Recognition Studies
	Data Labeling
	Opportunistic Activity Recognition
	Thesis Objectives

	Contributions
	Software Tools for Creating Online Activity Recognition Systems
	Automatic Integration of New Sensors into Existing Systems

	Thesis Outline
	Part I: Rapid Prototyping Framework for Activity Recognition
	Part II: Opportunistic Methods for Activity Recognition

	I Rapid Prototyping FW for Activity Recognition
	Prototyping- and Runtime Toolbox
	Related Work
	Toolbox Concept
	Reusable Components for Data Stream Processing
	Runtime Environment and Data Flow Control
	Synchronizing Independent Data Streams
	Readers: Sensor Hardware Encapsulation
	Writers: Communication for Distributed Processing
	Graphical Tools for Configuration

	Step-By-Step Guide: How to Cook
	Case Studies
	Supporting Information Flow in Hospitals
	Monitoring Walking Habits
	A Mixed-Reality Car Parking Game

	User Evaluation
	Experience with Students
	Evaluation of researchers

	Conclusion

	Event Based Synchronization
	Related Work
	Challenges of event-based stream synchronization
	Spotting and synchronization approach
	Event spotting
	Event-based synchronization
	Specific synchronization properties

	Evaluation
	Evaluation 1: force-acceleration-audio
	Evaluation 2: acceleration-positioning
	Evaluation 3: Office scenario

	Conclusion

	Integrated Tool Chain
	Related Work
	Concept
	Data Collection
	Data Management and Annotation Enrichment
	Classifier Training and Online Context Recognition
	Availability

	Conclusion

	II Opportunistic Methods for Activity Recognition
	Adding New Sensors to Activity Recognition Systems
	Scope and Contribution
	Related Work
	Key Challenges and Ideas
	Basic Idea
	Challenges
	Method Overview

	Evaluation Strategy and Data Sets
	Synthetic Data
	Real Sensor Data
	Evaluation Methodology
	Metrics

	The Label Inferring Method
	Finding Structure in Extended Feature Space
	Inferring Cluster Labels
	Adapting the Classifier Model to the Extended Feature Space
	Estimating Plausibility and Gain

	Evaluation on Synthetic Data
	Gradually Decreasing Cluster Overlap
	Moving a Single Cluster

	Evaluation on Real Sensor Data
	Conclusion

	Labeling Clusters Based On Distribution Similarity
	Limitations of the Label Inferring Method
	Chapter Outline
	The Similarity Search Method
	The Bagging Method
	Merging Aggregated Classifiers

	Evaluation on Synthetic Data
	Evaluation on Real Sensor Data
	Discussion of Results

	Conclusion

	User Feedback to Support Integration of New Sensors
	Chapter Outline
	Related Work
	Approach 1: Pre-Labeling
	Approach 2: Fault Reduction
	Success Probability Estimation

	Evaluation
	Evaluation Methodology Update
	Baseline Methods
	Results on Synthetic Data Sets
	Results on Real-World Data Sets

	Conclusion

	Summary of Key Findings and Conclusion
	Activity Recognition Toolchain
	Opportunistic Activity Recognition
	Lessons Learned

	Outlook

	Bibliography
	Curriculum Vitae

