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Abstract

Industrial design has a long history. With the introduction of Computer-Aided En-
gineering, industrial design was revolutionised. Due to the newly found support, the
design workflow changed, and with the introduction of virtual prototyping, new chal-
lenges arose. These new engineering problems have triggered new basic research ques-
tions in computer science.

In this dissertation, I present a range of methods which support different compon-
ents of the virtual design cycle, from modifications of a virtual prototype and optim-
isation of said prototype, to analysis of simulation results.

Starting with a virtual prototype, I support engineers by supplying intuitive discrete
normal vectors which can be used to interactively deform the control mesh of a surface.
I provide and compare a variety of different normal definitions which have different
strengths and weaknesses. The best choice depends on the specific model and on an
engineer’s priorities. Some methods have higher accuracy, whereas other methods are
faster.

I further provide an automatic means of surface optimisation in the form of min-
imising total curvature. This minimisation reduces surface bending, and therefore, it
reduces material expenses. The best results can be obtained for analytic surfaces, how-
ever, the technique can also be applied to real-world examples.

Moreover, I provide engineers with a curvature-aware technique to optimise mesh
quality. This helps to avoid degenerated triangles which can cause numerical issues. It
can be applied to any component of the virtual design cycle: as a direct modification
of the virtual prototype (depending on the surface definition), during optimisation, or
dynamically during simulation.

Finally, I have developed two different particle relaxation techniques that both sup-
port two components of the virtual design cycle. The first component for which they
can be used is discretisation. To run computer simulations on a model, it has to be
discretised. Particle relaxation uses an initial sampling, and it improves it with the goal
of uniform distances or curvature-awareness. The second component for which they
can be used is the analysis of simulation results. Flow visualisation is a powerful tool
in supporting the analysis of flow fields through the insertion of particles into the flow,
and through tracing their movements. The particle seeding is usually uniform, e.g.
for an integral surface, one could seed on a square. Integral surfaces undergo strong
deformations, and they can have highly varying curvature. Particle relaxation redistrib-
utes the seeds on the surface depending on surface properties like local deformation or
curvature.
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Chapter 1

Introduction

In industrial surface design, the traditional approach to designing a model typically
started with a blank sheet of paper. It involved various trial-and-error iterations of
designing a masterpiece, and manually calculating static geometric and physical prop-
erties. Physical prototypes had to be built, and experiments were conducted on the
prototype to test its physical properties [LHK+08]. The model was then optimised
based on expert knowledge and experience. This process was tedious and expensive
due to its high amount of material expenses, and the cost of experimenting on a physical
prototype, e.g. material, equipment, and personnel.

Computer-Aided Engineering (CAE) improved this process through the introduc-
tion of virtual prototyping. It eliminated the need to design the masterpiece drawing
on paper, and having to repeatedly draw similar versions of the model. Instead, indus-
trial surface designers can use Computer-Aided Design (CAD) tools to design a model
once, and they can easily make small changes to optimise it. It is possible to interact-
ively view the CAD model as a 3D object from different angles, where originally, each
additional view was time-consuming to draw. The capability to virtually model a pro-
totype allows engineers to quickly conduct evaluations for different sets of parameters,
based on the virtual prototype, static geometric and physical properties. As each phys-
ical prototype can take days or weeks to produce, this results in a significant reduction
of not only time, but also cost.

Using virtual prototypes, engineers can evaluate dynamic physical properties early
on in the design process without having to wait for the model to be manufactured to
do experiments. They can examine the impact of small changes, and see how the
model behaves in different scenarios based on an underlying physical model. Most
importantly, virtual prototyping facilitates identifying and fixing problems early on in
the design process. This substantially reduces cost as it becomes much more expensive
if a problem is found during the physical prototyping phase, on the shop floor, or even
by a customer [McL01].

Over the past decade, computer hardware has improved tremendously, both in terms
of processing power, and in terms of storage capacities. This has led to an increasing
amount of research in parallel computing and simulation, which has facilitated the
development of complex physical models. Using these models, it is possible to con-
duct virtual experiments under physically accurate conditions. Simulations can be run
within a much shorter time span than the time required to build a physical model, con-
duct experiments, and measure physical quantities.

1



2 CHAPTER 1. INTRODUCTION

The possibilities arising from these new technologies lead to interesting new applic-
ation problems. These application problems, in turn, trigger basic research questions
in computer science.

Computer simulation plays a valuable role in providing essential results for ap-
plication problems such as statistical mechanics problems [AT89]. It can be used to
evaluate and to improve models of the real world by comparing the results of physical
experiments to those of simulations of the model. Furthermore, it can also be used to
evaluate theories by predicting an outcome, and then comparing the predictions to sim-
ulation results. As such, simulation builds a bridge between theory and experimental
work, and it can provide insight into physical reality.

Historically, computer simulation evolved from physical manipulation and analysis
of models, e.g. of gelatine balls [MH36] or metal ball bearings [PMKW78] represent-
ing molecules in a liquid. However, using physical objects is time-consuming, expens-
ive, and limited by real-world physical properties like gravity [AT89].

Simulation is based on a mathematical model of reality which is defined through a
system of differential equations. Solving this system of equations is computationally
expensive. To reduce complexity, the continuous model defined through the system of
equations can be discretised and solved numerically. This is particularly relevant in ap-
plications like flow simulation, which require a discretisation of the continuous model.
In flow visualisation, scientists create visual representations of a vector field’s simu-
lated flow behaviour. They achieve this by inserting massless seed particles into the
flow, and tracing their movement over time. A single particle can be traced individu-
ally, or one can trace group of particles that are seeded on a line or on a surface. This
raises a number of questions. First of all, it is not clear what constitutes a good initial
seeding. This is the step during which discretisation occurs: a set of discrete points
is created from a (potentially) continuous model. Second, all interesting application-
oriented flow fields are non-uniform, and scientists are very interested in finding singu-
larities in the field. With a non-uniform vector field, it is worth investigating if it makes
sense to adapt the discretisation over the course of simulation to improve sampling.
Finally, there is the question of how to adapt the discretisation.

For virtual prototyping, a combination of CAD tools and simulation is employed.
First, a model is created using a CAD tool. This model usually attempts to mimic
the visuals imagined by the product designer. Then, it is exported into a simulation
environment to determine its physical properties. The simulation results are then eval-
uated to find out strengths and weaknesses. Based on this evaluation, the model is
adapted manually, fully automated, or with CAE support. This process is iterated until
one obtains a model, which fulfils visual design criteria, and which possesses required
physical properties.

Adapting the model requires user interaction with large and complex models and
datasets. If these models are given analytically, the entire experimentation process has
to be repeated every time the model is adjusted. In many applications, models are
(also) given in discretised form. This confronts the user with the painstaking process
of moving each point individually. There is a wide range of options to support the user,
ranging from fully automated optimisation to user-guided modification with a large
degree of direct control. One possibility lies within global optimisation of a parameter
of interest such as a surface’s curvature or bending energy. Another possibility is to
locally optimise the model based on information from a point’s neighbourhood. While
this may not result in a globally optimal solution, the methods are a lot more efficient,
and it is easier to predict results of local optimisation than to predict those of global
optimisation. In addition, optimisation parameters are easier to modify, resulting in
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easier steering of the modification. Finally, one can give the user a large degree of direct
control of the model without requiring them to deal with individual surface points. This
can be achieved through intuitive controls, e.g. through a coarser version of the model
which acts as a control structure for the surface.

In this thesis, I focus on the interconnection of Computer-Aided Geometric Design
(CAGD) methods for surface transformation, and visualisation, keeping in mind the
potential for virtual prototyping. I combine discrete geometric methods with visual-
isation, through which I contribute to a variety of fields (CAGD, CAE, Visualisation,
Simulation). The methods I have developed tie into different parts of the virtual design
cycle, which is depicted in Figure 1.1. I support CAGD in their development of vir-
tual prototypes. Furthermore, I provide CAE with a variety of semi-automatic and
automatic surface optimisation methods. Finally, I supply strategies to improve dis-
cretisation and mesh quality during simulation.

Figure 1.1: Virtual prototyping workflow.

In Chapter 3, I present the results emerging from the work presented in [BHH15].
The main contribution of this work to the field of CAGD lies in a global deforma-
tion method which preserves geometric properties, in particular total curvature. This
serves to minimise material usage and bending energy. Surface prototyping generates
a so-called masterpiece of a new product. Usually, a masterpiece is very similar to
the final product, so only small modifications are supposed to be made. I present a
linear deformation technique for this kind of modification, preserving total curvature
of the masterpiece under infinitesimal deformation. Total curvature is directly connec-
ted to the topology of the surface, which is also directly related to the index sum of
the singularities of a vector field acting on this surface. This means that the proposed
deformations modify the functionality of this surface in a controlled way.

In Chapter 4, I present the results emerging from a work which is currently in sub-
mission [BH15]. The main contribution of this work to the field of CAE lies in the
development of an intuitive tool to modify a model. Intuitive interaction tools are in-
dispensable in supporting the adoption of virtual prototyping into the manufacturing
process, as lack of skill in its use is one of the main reasons for late adoption [McL01].
I employ visualisation and discrete geometric methods to facilitate computer-guided
optimisation. Bézier surface patches are particularly well-suited for industrial model-
ling. First of all, they provide an intuitive control over surface shape. Second, they
possess a number of very useful properties such as the variation-diminishing property
which ensures that the surface does not wiggle more than the control mesh. Finally,
surface patches seam together very well, as two patches with identical control points
along the shared border will automatically have identical border curves. This ensures
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that there is at least C0 continuity along the border. In this chapter, I define a variety of
different discrete normal operators on control points of Bézier surface patches. I com-
pare their performance on various challenging Bézier curve polygons and demonstrate
the suitability of the techniques on Bézier surface patches.

In Chapter 5, I present the results emerging from the work presented in [BOJH15],
as well as further advances on this project. There are two main contributions of this
work. First of all, I contribute to the field of simulation through the development of a
discretisation, and surface deformation based on geometric properties. Second, I con-
tribute to the field of CAE through a local method to optimise the discretisation, and the
surface as a whole. Simulation of flow behaviour requires a discretisation of the flow
information to discrete points. Time surfaces are a common tool in flow visualisation.
They visualise advection and deformation in flow fields through a triangulated mesh
that is comprised of a discretised surface. Time surfaces are a versatile tool to visualise
advection and deformation in flow fields. Due to complex flow behaviours involving
stretching, shearing, and folding, straightforward mesh-based representations of these
surfaces tend to develop artifacts and degenerate quickly. Common counter-measures
rely on refinement and adaptive insertion of new flow particles into the surface repres-
entation. This leads to an unpredictable increase in memory requirements and has a
strong impact on parallel surface extraction techniques. I propose a novel time surface
extraction technique that keeps the number of required flow particles constant, while
providing a high level of fidelity and enabling straightforward load balancing. My solu-
tion implements a 2D particle relaxation procedure that makes use of local surface met-
ric tensors to model surface deformations. Furthermore, I propose a feature-dependent
relaxation procedure, which makes use of local curvature information to produce a sur-
face sampling that faithfully represents surface features. I combine these techniques
with an accurate bicubic surface representation to provide an artifact-free surface visu-
alisation. I demonstrate and evaluate benefits of the proposed methods with respect to
surface mesh quality, and performance based on three different benchmark datasets.



Chapter 2

Mathematical Background

2.1 Differential Geometry
Differential geometry is a view on geometry that is primarily concerned with the curvature
of a surface. The difference to other views is best illustrated by an example [Hag09].

Example 2.1. Consider a circle. Let x,y ∈ R be x and y coordinates, r ∈ R the radius
and ϕ ∈ R an angle.

Fundamental geometry A circle is the set of all points which have the same distance
from a fixed centre point.

Algebraic geometry A circle with centre (0,0) consists of all points (x,y) satisfying
x2 + y2 = r2 for a fixed r.

Analytic geometry A circle consists of all ϕ satisfying
( r·sinϕ

r·cosϕ

)
for a fixed r.

Differential geometry A circle is function that has the curvature κ = 1
r and the torsion

τ = 0.

2.2 Topology
A topology [Lee11, p. 20] is defined by neighbourhood structures and connectivity of
a set.

Definition 2.1 (topology). If X is a set, a topology on X is a collection T of [open]
subsets of X satisfying the following properties:

1. X and /0 are elements of T.

2. T is closed under finite intersections: if U1, . . . ,Un are elements of T, then their
intersection

⋃n
i=0 Ui is an element of T.

3. T is closed under arbitrary unions: if (Ua)a∈A is any (finite or infinite) family of
elements of T, then their union

⋃
a∈A Ua is an element of T.

A topological space [Lee11, p. 20] is a space that is defined by a topology. Unlike
a metric space, it does not necessarily permit to measure distances between elements.

5



6 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.2 (topological space). A pair (X ,TX ) consisting of a set X and a topology
TX on X is called a topological space.

In a Hausdorff space, points can be separated by open subsets.

Definition 2.3 (Hausdorff space). A topological space X is said to be a Hausdorff space
[Lee11, p. 31] if, given any pair of distinct points x,y ∈ X , there exist neighbourhoods
U of x and V of y with U ∩V = /0.

Figure 2.1: The points x and y can be separated by their neighbourhoods.

2.2.1 Neighbourhood
Definition 2.4 (one-ring and two-ring of neighbours). The one-ring of neighbours
N1(pi) is defined as all points p j which are connected to a point pi via one edge:

N1(pi) =
⋃

∃edge(pi,p j)

p j .

Based on this neighbourhood definition, one can define the two-ring of neighbours
N2(pi) as all points that are connected to a point pi via at most two edges:

N2(pi) =
⋃

p j∈N1(pi)

N1(p j) .

Definition 2.5. The one-ring of triangles around a point p is called a star set [LP82].
Figure 2.2 illustrates a star set, where ϕi is the enclosed angle between two neighbour-
ing edges fanning out around the vertex, Ai are areas of triangles, and ai is the triangle
edge opposing p.

Figure 2.2: Star set attached to p. [LP82]
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2.3 Manifolds

A manifold is a topological space that locally resembles a metric space, e.g. Euclidean
space or Minkowski space (a space from relativity theory in which the scalar product
is singular).

Definition 2.6 (manifold). An n-dimensional (topological) manifold [Lee11, p. 39]
is a Hausdorff space that is locally Euclidean of dimension n. I.e. the space is com-
pletely separable, and since it is locally Euclidean, it possesses an integral form that is
invariant.

Remark 2.1. The dimension of a manifold is determined by the number of independent
parameters needed to specify a point.

1-manifold One parameter, e.g. curve, circle. This also applies to curves in space.
You can write (x,y,z) = ( f (t),g(t),h(t)) for continuous functions f ,g,h.

2-manifold Two parameters, e.g. surface, sphere, torus, cylinder.

A differentiable manifold allows to examine derivatives etc.

Definition 2.7 (differentiable manifold). A differentiable manifold consists of a topo-
logical manifold and a Ck atlas.

Definition 2.8 (smooth manifold). A smooth manifold is a differentiable manifold with
a C∞ atlas.

A Riemannian manifold (M,g) is a manifold M with a metric g which allows for
measurements on the manifold independent of any embeddings.

Definition 2.9 (Riemannian manifold). A Riemannian manifold [Lee11, p. 9] is a man-
ifold on which there is a rule for measuring distances and angles, subject to certain nat-
ural restrictions to ensure that these quantities behave analogously to their Euclidean
counterparts.

2.3.1 Tangent Bundles

At each point of an n-dimensional differentiable manifold, one can find a tangent space
consisting of all possible derivative vectors at that point.

A tangent bundle is the union of all tangent spaces of a manifold. It can be obtained
by taking all tangent spaces and arranging them in a smooth and non-overlapping man-
ner.

Definition 2.10 (tangent bundle). The collection of all tangent spaces TpM at all points
p of an n-dimensional manifold M can be turned into another, 2n-dimensional mani-
fold, the tangent bundle T M.

T M =
⊔

p∈M

TpM =
⋃

p∈M

×TpM .

T M is a pair (p,~v), where p is a point of M and~v is a tangent to M at p.
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2.3.2 Parametrisation

Definition 2.11 (parametrisation). In differential geometry, one usually looks at the
parametric forms of curves and surfaces rather than their implicit forms.

A parametric curve C [Far02a, p. 179] can be given as

C = C(t) =

x(t)
y(t)
z(t)

 , t ∈ [a,b]⊂ R .

It is regular iff Ċ(t) 6= 0.
A parametric surface S [Far02a, p. 349] can be given as

S = S(u,w) =

x(u,w)
y(u,w)
z(u,w)

 ,u =

(
u
w

)
∈ [a,b]× [c,d]⊂ R2 .

It is regular iff Su×Sw 6= 0.
A parametrised Cr surface is a Cr-differentiable mapping S : U → E3 of an open

domain U ⊂ E2 into the Euclidean space E3, whose differential dS is one-to-one for
each q ∈U .

Remark 2.2.

(a) A change of variables of S is a diffeomorphism τ : Ũ →U , where Ũ is an open
domain in E2, such that τ’s differential dτ always has rank = 2, if the determinant
of its Jacobian matrix det(τ∗) is positive and orientation-preserving.

(b) Relationship: the change of variables defines an equivalence relation on the class of
all parametrised surfaces. An equivalence class of parametrised surfaces is called
a surface in E3.

Figure 2.3: Standard surface parametrised with u and w.

Definition 2.12 (derivative). For a curve C(t), derivatives with respect to the parameter
t are written as Ċ(t), C̈(t) [Far02a, p. 179].

Ċ(t) =

ẋ(t)
ẏ(t)
ż(t)

 .
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For a surface, the first derivatives are written as Su(u,w),Sw(u,w), e.g.

Su(u,w) =

xu(u,w)
yu(u,w)
zu(u,w)

 .

The second derivatives are Suu(u,w),Suw(u,w),Swu(u,w) and Sww(u,w), where Suw(t)
is first derived in u-direction, and then in w-direction.

In the remainder of this thesis, the following shorthand is used:

Su :=
∂S
∂u

,Sw :=
∂S
∂w

,Suv :=
∂ 2S

∂u∂w
,

or alternatively,
Si,S j,Si j, i, j ∈ {u,w} .

The differential ∂S is one-to-one if and only if ∂S
∂u and ∂S

∂w are linearly independent.

Remark 2.3 (symmetry of second derivatives). It is possible to change the order of
partial derivatives [Wik12, Satz von Schwarz], i.e.

Suw(t) = Swu(t)

holds.

Definition 2.13 (arc length). A curve’s arc length parametrisation [Far02a, p. 180]

s = s(t) =
∫ t

a
||ẋ||dt

is independent of any regular parametrisation (i.e. ẋ(t) 6= 0) because

ẋdt =
∂x
∂u

∂u
∂ t

∂ t =
∂x
∂u

∂u

holds. ds = ||ẋ||dt is called the arc element of the curve.
The derivative with respect to the arc length of a curve is denoted by a prime:

x′,u′,w′.

2.4 Moving Frames
The moving frames are a good indicator of a curve’s or surface’s properties. They move
along the curve, or over the surface and change depending on local properties.

Definition 2.14 (Frenet frame). The Frenet frame [Far02a, p. 181] of a curve consists
of the three vectors t,m,b, where

t =
ẋ
||ẋ||

is the tangent vector,

m = b× t is the main normal vector, and

b =
ẋ× ẍ
||ẋ× ẍ||

is the binormal vector.

Since the vectors are orthonormal (orthogonal to each other and normalised), a local
orthonormal system is obtained.
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Definition 2.15 (Frenet-Serret formulae). The Frenet frame yields the Frenet-Serret
formulae [Far02a, p. 183]:

t′ = +κm
m′ = −κt +τb
b′ = − τm

Definition 2.16 (Gauß frame). For a given surface, the vectors xu,xv span the tangent
plane to the surface S at x. Their cross product xu×xv coincides with the surface nor-
mal at x. The Gauß frame [Far02a] of a surface consists of the three vectors xu,xv,n,
where n = xu×xv

||xu×xv|| is the unit normal field. Since xu,xv are not normalised, one can
only obtain a local affine system which is dependent on the parametrisation.

(a) Local affine frame for
curves.

(b) Frenet frame for curves (c) Gauß frame for surfaces.

Figure 2.4: Moving frames for curves and surfaces.

2.5 Curvature and Torsion
The curvature describes the curviness of a curve at a given point.

Definition 2.17 (curvature). The curvature [Far02a, p. 184] is the change of direction
between two tangent vectors t(s) and t(s+∆s).

κ = κ(t) =
||ẋ× ẍ||
||ẋ||3

.

Alternatively, it can also be computed from the arc length parametrisation:

κ = κ(s) = ||x′′||= ∂ϕ

∂ s
,

where ϕ is the angle between t(s) and t(s+∆s).
At the point p (at parameter t), an osculating circle can be drawn. This is a circle

with radius r = 1
κ(t) , which has the same curvature at p, and which has a tangent that is

tangential to the curve.

Example 2.2. The circle has a constant curvature. It is always κ = 1
r . This is obvious,

because the osculating circle is identical to the curve itself at every point.

The torsion describes, how much a curve twists out of the plane at a given point.
Torsion and curvature of a spatial curve are equivalent to the curvature of a planar
curve.
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Figure 2.5: A curve C(t) with an osculating circle at p. [Wik12, Osculating circle]

Definition 2.18 (torsion). The torsion [Far02a] is the change of direction between two
binormal vectors b(s) and b(s+∆s).

τ = τ(t) =
det[ẋ(t), ẍ(t), ...x (t)]
||ẋ(t)× ẍ(t)||

.

Alternatively, it can also be computed from the arc length parametrisation:

τ = τ(s) =
1

κ2 det[x′,x′′,x′′′] =−∂ϑ

∂ s
,

where ϑ is the angle between t(s) and t(s+∆s).

We can define a tangent plane which is spanned by the tangents of the surface. This
tangent plane, in conjunction with the surface normal, defines a local coordinate system
on the manifold.

Definition 2.19.

(a) The tangent plane is a two-dimensional linear subspace TuS of E3 generated by
span{Su,Sw}, and it is called the tangent space of S at u = (u,w) ∈U .

(b) Elements of TuS are called tangent vectors.

(c) The vector field n := [Su,Sw]
||[Su,Sw]|| , where [., .] is the cross product, is called a unit

normal field.

(d) The map n : U → S2 ⊂ E3 is called Gauß map, and the moving frame {Su,Sw,n}
is called the Gauß frame of the surface as displayed in Figure 2.6.

Some properties of the surface can be determined using the first and second funda-
mental forms. The first fundamental form allows to make measurements on the surface:
lengths of curves, angles between tangent vectors, areas of regions, etc. without refer-
ring back to the ambient space E3.

Definition 2.20 (First fundamental form). Let S : U → E3 be a surface. The bilinear
form of TuS induced by the scalar product 〈·, ·〉 of E3 by restriction is called the first
fundamental form Iu of the surface [Far02a, p. 350][Kre68, p. 68].
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Figure 2.6: Gauß frame {Su,Sw,n} for the surface S.

Remark 2.4. Properties of the first fundamental form:

(a) The matrix representation of the first fundamental form with respect to the basis
{Su,Sw} of TuS is given by(

g11 g12
g21 g22

)
=

(
〈Su,Su〉 〈Su,Sw〉
〈Sw,Su〉 〈Sw,Sw〉

)
. (2.1)

(b) Let
g := det(gi j)

denote the determinant of the first fundamental form.

(c) The first fundamental form is symmetric, positive definite, and a geometric invari-
ant.

(d) The derivative of a surface S with respect to t is
Ṡ = Suu̇+Swẇ .
The first fundamental form corresponds to the squared arc element ds2:

ds2 = ||Ṡ||2dt2

=(S2
uu̇2 +2SuSwu̇ẇ+S2

wẇ2)dt2

=g11du2 +2g12dudw+g22dw2 ,

where

g11 = SuSu ,g12 = SuSw ,g22 = SwSw .

(e) (
g11 g12
g12 g22

)
(2.2)

is called the metric tensor, and its inverse,(
g11 g12

g21 g22

)
=

(
g11 g12
g21 g22

)−1

=
1

det(g jk)

(
g22 −g12
−g21 g11

)
. (2.3)

is called the conjugate metric tensor [Kre68, p. 113].
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Definition 2.21 (Second fundamental form). Let u(t) define a curve on the surface
S(u). We know that t′ = κm and t = S′,u′ = ∂u

∂ s ,w
′ = ∂w

∂ s , therefore

t′ = S′′ = Suu(u′)2 +2Suwu′w′+Sww(w′)2 +Suu′′+Sww′′ .

Let ϕ denote the angle between the main normal m and the surface normal n. Then

κ cosϕ = κmn t′=κm
= t′n = nSuu(u′)2 +2nSuwu′w′+nSww(w′)2 + nSu︸︷︷︸

=0

u′′+ nSw︸︷︷︸
=0

w′′ .

Furthermore, nSu = 0 implies nuSu +nSuu = 0 etc., thus,

h11 = −Sunu = nSuu ,

h12 = −
1
2
(Sunw +Swnu) = nSuw ,

h22 = −Swnw = nSww .

The second fundamental form [Far02a, p. 352ff] corresponds to κ cosϕds2:

κ cosϕds2 = h11du2 +2h12dudw+h22dw2 .

The second fundamental form permits to study surface curvature and torsion. One
especially interesting consequence of the second fundamental form can be found in the
Weingarten equations which will prove useful when considering the main theorem of
this paper.

Definition 2.22. Let S : U → E3 be a surface and u ∈U .

(a) The linear map L : TuS→ TuS defined by L :=−dnu ·dSu is called the Weingarten
map, or shape operator.

(b) The bilinear form IIu defined by IIu(A,B) := 〈L(A),B〉 for each A,B∈ TuS is called
the second fundamental form of the surface.

Remark 2.5. Properties of the second fundamental form:

(a) The matrix representation of IIu with respect to the canonical basis {e1,e2} of TuE2

(identified with E2) and the associated basis {Su,Sw} of TuS is given by(
h11 h12
h21 h22

)
=

(
〈−nu,Su〉 〈−nu,Sw〉
〈−nw,Su〉 〈−nw,Sw〉

)
=

(
〈n,Suu〉 〈n,Suw〉
〈n,Swu〉 〈n,Sww〉

)
, (2.4)

i.e.
hi j := 〈−ni,S j〉= 〈n,Si j〉 .

One can assume that h12 = h21 since the surfaces under consideration are Cr-
continuous.

(b) Let
h := det(hi j)

denote the determinant of the second fundamental form.

(c) We call two geometric objects congruent to each other iff there is an isometric
transformation (i.e. only translation, rotation, and reflection are employed) from
one to the other. Congruences preserve lengths and angles.
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(d) The second fundamental form is invariant under congruences of E3 and orientation-
preserving changes of variables.

Definition 2.23 (principal curvatures). The minimal and maximal curvatures κ1,κ2 at
a point are called the principal curvatures of a surface at p.

The Gauß curvature K = κ1κ2 is computed as

κ1κ2 =
h11h22−h2

12

g11g22−g2
12

.

The mean curvature is computed as H = 1
2 (κ1 +κ2), where

κ1 +κ2 =
h22g11−2h12g12 +h11g22

g11g22−g2
12

.

Figure 2.7: κ1,κ2 are determined by rotating a plane around a point’s normal vector
and finding the minimal and maximal curvature at the given point.

Definition 2.24 (point characteristics). Depending on the signs of κ1,κ2, the point on
the surface has different characteristics.

K > 0 elliptic point κ1 and κ2 have the same sign.
K < 0 hyperbolic point κ1 and κ2 have different signs.
K = 0,H 6= 0 parabolic point either κ1 = 0 or κ2 = 0
K = 0,H = 0 flat point κ1 = κ2 = 0

Curvature is of great interest in the context of differential geometry. The minimal
and maximal curvatures κ1,κ2 at a surface point are the basis for the more interest-
ing definitions of mean curvature and Gauß curvature. In Chapter 3, I examine total
curvature of surfaces under deformation in normal direction.

Considering surface curves, one can derive the geometric interpretations of the
second fundamental form:

Let e := λ 1Su + λ 2Sw be a tangent vector with ‖e‖ = 1. If the intersection of a
surface with a plane is given by n and e, an intersection curve Cy emerges with the
following properties:

C′y(s) = e and e2 =±n ,
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where e2 is the principal normal vector of the space curve Cy.
The implicit function theorem implies the existence of this so-called normal section

curve. To calculate the minimal and maximal curvature of a normal section curve (the
so-called normal section curvature), one can use the method of Lagrange multipliers.

As a result of these considerations, one can define various notions of curvature:

Definition 2.25. Let S : U → E3 be a surface and e = λ 1Su +λ 2Sw a tangent vector of
S at u.

(a) The Weingarten map L is self-adjoint.

(b) The normal section curvature κn(λ
1,λ 2) can be computed as:

κn(λ
1,λ 2) =

hi jλ
iλ j

gi jλ iλ j .

Unless the normal section curvature is the same for all directions (umbilical points),
there are two perpendicular directions e1 and e2, in which κn attains its absolute
maximum and its absolute minimum.

(c) e1 and e2 are the principal directions.

(d) The corresponding normal section curvatures, κ1 and κ2, are called principal curvatures
of the surface.

(e) Let S : U → E3 be a surface and Cy : I → E3 be a surface curve. We denote by
Ĉy(t) the orthogonal projection of Cy(t) on the tangent plane TuS at (an arbitrary)
point p := S(u). The geodesic curvature κg of y at p is defined as the curvature of
the projected curve Ĉy(t) at p. A curve Cy(t) on a surface S is called geodesic if
its geodesic curvature κg vanishes identically.

(f) κg = det(Ċy, C̈y,n), where dots denote derivatives with respect to the arc length of
Cy.

(g) H := trace(L) = 1
2 · (κ1 +κ2) is called the mean curvature.

(h) K := κ1 ·κ2 = det(L) = det(II)
det(I) is called the Gauß curvature.

(i) Total Gauß curvature, or short, total curvature, is defined as Ktot =
∫∫

S KdS.

Remark 2.6 (Geodesics and curvature). (a) An arc of minimum length on a surface
joining two arbitrary points must be an arc of a geodesic.

(b) Assuming the boundary of a surface is given, and a surface patch of minimal area
has to be fit, the minimal curvature of this patch has to vanish. In this case, the
mean curvature H ≡ 0 will also vanish.

Definition 2.26 (Bending Energy). Do Carmo [Do 76, p. 307] defined the energy of a
curve as

EC(ϕ) =
∫ b

a
|ϕ(t)|2∂ t .

Similarly, based on the notion of curvature, I can define bending energy of a surface S
as follows

E(S) =
∫

S
‖κmin‖2 +‖κmax‖2

∂S .
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2.6 Metrics
Metrics are tools to permit comparisons between elements or sets of elements.

Definition 2.27 (metric). A distance function d(P,Q) is called a metric [Kre68, p. 6] if
it has the following properties:

1. d(P,Q) is real, finite and non-negative.

2. d(P,Q) = 0 iff P = Q.

3. d(P,Q) = d(Q,P).

4. d(P,Q)≤ d(P,R)+d(R,Q)

where P,Q,R are points.

A very well-known example of a metric is the Euclidean distance:

Definition 2.28 (Euclidean distance). For a given vector

a =

(
a1
a2

)
= a1 ·

(
1
0

)
+a2 ·

(
0
1

)
= a1 ·xu +a2 ·xw ,

the Euclidean distance describes the length of the vector as follows:

d(a,a) =
√
〈a,a〉=

√
a2

1 +a2
2 .

Once the surface the distance is measured on, is not flat but curved, additional
information is needed:

〈a,a〉= 〈a1xu +a2xw,a1xu +a2xw〉= a2
1 〈xu,xu〉︸ ︷︷ ︸

g11

+2a1a2 〈xu,xw〉︸ ︷︷ ︸
g12

+a2
2 〈xw,xw〉︸ ︷︷ ︸

g22

.

Remark 2.7 (Euclidean Norm). The Euclidean distance is also known as the Euclidean
Norm. Given a vector x = (x1, . . . ,xn)

T , its norm is denoted by

‖x‖2 =

√
n

∑
i=0

x2
i .

2.7 Morse Theory
The basic concept of Morse theory can be illustrated with a mountainous landscape M
that is flooded (since it is a theoretical landscape, the ground is not porous so all water
will remain on top). The water level (or level set) is a value a∈R A function f : M→R
describes the elevation, and f−1(R) corresponds to a contour line. The region covered
by water at elevation a corresponds to f−1(−∞,a]. The topology of this region does
not change except when a is the height of a critical point [EH10].

Definition 2.29 (critical point). A critical point is a point at which the gradient ∇ f = 0.
Each critical point has an index that equals the number of independent directions in
which f decreases., Peaks, passes, and basins of a landscape have indices 2, 1, and 0
respectively.



Chapter 3

Preserving Total Curvature
Under Infinitesimal
Deformations

3.1 Motivation

In industrial surface generation, it is important to consider surfaces with minimal areas
for two main reasons: these surfaces require less material than non-minimal surfaces,
and they are therefore cheaper to manufacture. Based on a prototype, a so-called mas-
terpiece, the final product is created by optimising the surface through small deforma-
tions, either manually or automatically.

Automated surface optimisation has the main advantage that it is cheap, fast, and
it does not require user intervention. However, it requires that optimisation criteria
are defined in advance. Many criteria are based on geometric properties. One such
criterion is the preservation of total Gauß curvature. A low Gauß curvature indicates
low bending energy. Therefore, it is useful to limit, or even minimise, total Gauß
curvature in order to minimise the material cost and waste, as well as bending energy
[JS07, GU02].

This chapter is based on the work presented in [BHH15]. I present a global bilinear
deformation technique which preserves the total curvature of a masterpiece. In partic-
ular, I derive sufficient conditions for these bilinear deformations to be total curvature
preserving when applied to an analytically defined masterpiece. Furthermore, I demon-
strate how linear deformation can be utilised to minimise total curvature.

Total curvature is used as a tool to restrict deformation by deriving a compatible
bilinear deformation function from the analytical surface definition. With the help of
this function, the surface is deformed in normal direction in a manner that preserves
total curvature. As such, this technique requires an analytically defined surface, with
analytically defined normals to be carried out in its pure form. However, it is possible to
empirically determine a deformation function for surfaces which are defined as discrete
meshes. Since every surface point is moved using the same global criterion, this is a
global deformation technique.

In Section 3.2, I give an overview of related work. In Section 3.4, I describe and

17
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prove my approach. I apply the technique to a helicoid surface in an example in Sec-
tion 3.5, In Section 3.6, I perform a case study on a more complex model, during
which the deformation is more than just infinitesimal. I deform a part of a fandisk
model which is composed of Bézier surface patches using a variety of linear deforma-
tion functions. Then, I analyse error for each of the functions. Finally, I conclude the
chapter in Section 3.7.

3.2 Related Work

Efimov was the first to introduce partial differential equations as a tool to study infin-
itesimal bending. He gives an overview of the state of the art of infinitesimal bendings
in his textbook [Efi57]. Hagen et al. [HH98] visualise the momentarial rotation field
that is associated with infinitesimal bending. They then use the structure of this ro-
tation field as a tool to analyse the deformations that were generated by this bending.
Hahmann et al. [HH96] investigate numerical aspects of discretising the deformation
vector field. Ivanova and Subitov [IKS95] examine infinitesimal bendings of surfaces
of revolution and of polyhedra. Meziani [Mez07] studies infinitesimal bending of ho-
mogeneous surfaces that have a flat point and positive curvature.

More recent works on infinitesimal bending for curves and non-parametric surfaces
have been published by L. Velimirović et al. They study total mean curvature vari-
ation on oriented, boundary-free surfaces [VRZ11], and they visualise changes of bent
curves as surfaces constructed from different stages of deformation [VC11]. Eigensatz
et al. [ESP08] use curvature as a tool to control surface deformation. They extend this
work to allow various user-specified local restrictions on deformation [EP09].

Other works have addressed perturbations preserving the topological form of poly-
hedra [ADPS95], and deformations preserving ambient isotopy of curves [JMM+08,
LP12].

To be applicable to discrete surfaces, the technique presented in this chapter re-
quires discrete curvature measures. Dyn et al. [DHKL01] compute discrete total Gauß
curvature and absolute discrete total mean curvature with the goal of mesh optim-
isation. Various other scientists have extended this work to include an area-based
weighting [LP82, Boi95, KKL02, MDSB03, LLV05, Xu06]. Kerautret et al. [KLN08]
compare different discrete curvature estimators for curves with the goal of detecting
corners. They compare osculating circle curvature estimators [CMT01], global min-
imisation curvature estimators [KL08], and binomial convolution curvature estimators
with each other. Bousquet [Bou97] introduced discrete mean curvature for an edge.
Others have extended this definition to vertices [LBS05], and to neighbourhoods with
non-uniform edges [LP82, Boi95, KKL02, MDSB03, LLV05].

In this work, rather than studying total curvature changes after bending, or using
curvature as a tool to deform surfaces, I employ total curvature as a tool to restrict
bending and avoid large changes. I assume a rigid material which can be bent out of
shape through exterior deformations, but which cannot be stretched in tangent direction
through interior deformations, as common in engineering [BWFS11, BIA12].
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3.3 Background

3.3.1 Weingarten Equations
It can be shown that 〈ni,n〉 = 0; i = 0,1, where n0 = nu,n1 = nw (cf. Equation 2.4).
Thus, ni can be represented by the local frame of the tangent plane, and the following
relation holds

ni =−
2

∑
k=1

hk
i Sk , (3.1)

where the following equations

h1
1 =

h11g22−h12g12

g
, h2

1 =
h12g11−h11g12

g
, (3.2)

h1
2 =

h12g22−h22g12

g
, h2

2 =
h22g11−h12g12

g
, (3.3)

are called Weingarten equations [Do 76]. Further, the normals can be expressed in
terms of the Gauß frame, and it can be shown that the following relation holds

Si j = hi jn+
2

∑
k=1

Γ
k
i jSk . (3.4)

where Γk
i j = 〈Sk,Si j〉 are called the Christoffel Symbols.

Definition 3.1 (Christoffel Symbols). Let S : u→ E3 be a surface with

Si j =
∂ 2S

∂u∂w
= Γ

k
i jSk +ki j ·n ,

where ki j = Si j ·n, and tm is a tangent vector of the surface, i.e. tm ·n = 0.

Si j · tm = Γ
k
i jSk · tm +ki j n · tm︸︷︷︸

=0

= Γ
k
i jSk · tm = Γ

k
i jgkm .

The Christoffel symbols Γi jm of the first kind [Kre68, p. 127] can be defined as

Γi jm = 〈Si j, tm〉 = gkmΓ
k
i j =

1
2

(
∂gi j

∂um +
∂g jm

∂ui +
∂gmi

∂u j

)
.

Thus, the Christoffel symbols Γl
i j of the second kind can be defined as

Γ
l
i j = glm

Γi jm .

Remark 3.1. Christoffel symbols can not be interpreted as tensors.

3.4 Deformations
Let S(u,w) be the masterpiece of an industrial surface. Let it further be a minimal
surface (i.e. H ≡ 0), such that it covers a minimal area. This masterpiece should be
deformed along its normal direction n(u,w) by applying a deformation function f (u,w)
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Figure 3.1: Christoffel symbols Γi for the derivative of the tangent vector t.

( f : U → E). Deformations along the normal mean that interior deformations of the
surface are not permitted, i.e. inner bending is not possible.

I consider bilinear deformations of the form

S̃(u,w, t) := S(u,w)+ t · f (u,w) ·n(u,w) , (3.5)

for t ∈ (−ε,ε) , g̃ = g+o(t2) , such that o(t2) constitutes an infinitesimal change. The
more general case of bilinear deformations

S̃(u,w, t) = S(u,w)+ t ·Z(u,w) , (3.6)

where Z(u,w) is a continuous vector field (Z : U→E3), is called an infinitesimal bend-
ing if ∂ s2

t = ∂ s2 +o(t2), i.e. the difference of the squares of the line elements of these
surfaces has at least second order [Efi57, HH96, HH98].

Let me first prove two properties of minimal surfaces. These properties will be
needed to prove Theorem 3.1.

Lemma 3.1. For a minimal surface S(u,w), i.e. a surface with H ≡ 0, the following
statements hold

(a) [Su,nw]+ [nu,Sw] = 0 ,

(b) 〈n,h11nww +h22nuu−h12nuw−h12nwu〉= 0 ,

where n = [Su,Sw]
g for g = det

(
g11 g12
g21 g22

)
= g11g22−g2

12 .

I will prove part (a) and part (b) of this Lemma separately.

(a) Proof. To prove Lemma 3.1a, I can expand Equation 3.1 to

nu =
h12g12−h11g22

g
Su +

h11g12−h12g11

g
Sw , (3.7)

nw =
h22g12−h12g22

g
Su +

h12g12−h22g11

g
Sw , (3.8)
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from which I can immediately conclude the assumption:

[Su,nw]+ [nu,Sw] =
h12g12−h22g11

g
[Su,Sw]+

h12g12−h11g22

g
[Su,Sw]

= (h12g12−h22g11 +h12g12−h11g22) ·
[Su,Sw]

g
=−(h11g22 +h22g11−2h12g12) ·n

=−h11g22 +h22g11−2h12g12

g
·g ·n

=−(κ1 +κ2) ·g ·n
=−2H ·g ·n = 0 .

(b) Proof. To prove Lemma 3.1b, I first compute the second derivatives of n. Then,
using the Weingarten equations, I can conclude the following relations:

nuu =−
∂h1

1
∂u

Su−h1
1Suu−

∂h2
1

∂u
Sw−h2

1Swu ,

nww =−∂h1
2

∂w
Su−h1

2Suw−
∂h2

2
∂w

Sw−h2
2Sww ,

nuw =−∂h1
1

∂w
Su−h1

1Suw−
∂h2

1
∂w

Sw−h2
1Sww ,

nwu =−
∂h1

2
∂u

Su−h1
2Suu−

∂h2
2

∂u
Sw−h2

2Swu .

Next, I look at the scalar product of the normal vector and its second partial deriv-
atives. From this computation, I receive all basic components needed to express
part of the formula given in Lemma (3.1)(b):

〈n,nuu〉=−h1
1〈n,Suu〉−h2

1〈n,Swu〉 =−h1
1h11−h2

1h12

〈n,nww〉=−h1
2〈n,Suw〉−h2

2〈n,Sww〉 =−h1
2h12−h2

2h22

〈n,nuw〉=−h1
1〈n,Suw〉−h2

1〈n,Sww〉 =−h1
1h12−h2

1h22

〈n,nwu〉=−h1
2〈n,Suu〉−h2

2〈n,Swu〉 =−h1
2h11−h2

2h12 .
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I want to show that 〈n,h11nww +h22nuu−h12nuw−h12nwu〉= 0 . Taking the above
results, combined with Equation 3.2, I arrive at

〈n,h11nww +h22nuu−h12nuw−h12nwu〉
= 〈n,h11nww〉+ 〈n,h22nuu〉−〈n,h12nuw〉−〈n,h12nwu〉
=+h12h1

1〈n,Suw〉+h12h2
1〈n,Sww〉+h12h1

2〈n,Suu〉+h12h2
2〈n,Swu〉

−h11h1
2〈n,Suw〉−h11h2

2〈n,Sww〉−h22h1
1〈n,Suu〉−h22h2

1〈n,Swu〉
=−h11h1

2h12−h11h2
2h22−h22h1

1h11−h22h2
1h12

+h12h1
1h12 +h12h2

1h22 +h12h1
2h11 +h12h2

2h12

=−h11h22(h1
1 +h2

2)+(h12)
2(h1

1 +h2
2)

= (h11h22− (h12)
2)(−h2

2−h1
1)

=
h
g
(h12g12−h11g22 +h12g12−h22g11)

=
h
g
(−2Hg)

=−2hH = 0 .

I am interested in shape-preserving modification of the masterpiece. I consider in-
finitesimal deformations which do not change the Gauß curvature, and which therefore
preserve the total curvature of the surface. A further advantage of infinitesimal deform-
ations is that the genus of a model will be preserved. Large deformations can introduce
self-intersections.

I restrict myself to exterior deformations, i.e. deformations in normal direction.
Interior deformations, such as perturbations in the tangent plane, are not permitted.
Restricting deformation serves the purpose of exaggerating or reducing features that
are present in the masterpiece but refraining from introducing additional perturbations.
This leads to the main theorem of this chapter:

Theorem 3.1. A linear deformation

S̃(u,w, t) = S(u,w)+ t · f (u,w) ·n(u,w) (3.9)

of a minimal surface S(u,w) with t ∈ (−ε,ε), and g̃= g+o(t2) preserves Gauß curvature
if

D f := h11 fww +h22 fuu−2h12 fuw− fu(h11Γ
1
22−h12Γ

1
12 +h22Γ

1
11)
√

g

+ fw(h11Γ
2
22−h12Γ

2
12 +h22Γ

2
11)
√

g

= 0 ,

and therefore preserves the total curvature
∫∫

S K∂ s of a minimal surface S(u,w).

S̃(u,w, t) = S(u,w)+ t · f (u,w) ·n(u,w) .

Proof. To examine the impact of linear deformation as given in Equation 3.9, I need to
observe changes in some surface properties. I start with normal vectors along which I
perturb the surface. Normal vectors deform as follows:

ñ(u,w, t) =
[Su,Sw]+ t · [ fwSu− fuSw,n]
‖[Su,Sw]+ t · [ fwSu− fuSw,n]‖

+o(t2) .



3.4. DEFORMATIONS 23

The deformed second fundamental form ĨI, defined as(
h̃11 h̃12
h̃12 h̃22

)
=

(
〈ñ, S̃uu〉 〈ñ, S̃uw〉
〈ñ, S̃wu〉 〈ñ, S̃ww〉

)
,

can be written as

h̃11 = 〈n+ t · [ fwSu− fuSw,n],Suu + t fuun+2t funu + t f nuu〉+o(t2)

= 〈n,Suu〉+ t · 〈[ fwSu + fuSw,n],Suu〉+ t fuu〈n,n〉+ t f 〈n,nuu〉+o(t2)

= h11 + t · { fuu +det( fwSu− fuSw,n,Suu)+ f 〈n,nuu〉}+o(t2) ,

h̃22 = h22 + t · { fww +det( fwSu− fuSw,n,Sww)+ f 〈n,nww〉}+o(t2) ,

h̃12 = h12 + t · { fuw +det( fwSu− fuSw,n,Suw)+ f 〈n,nuw〉}+o(t2) ,

h̃21 = h21 + t · { fwu +det( fwSu− fuSw,n,Swu)+ f 〈n,nwu〉}+o(t2) .

I know that K̃ = det(ĨI)
det(Ĩ) holds, and the determinant det(Ĩ) = g of the first fundamental

form is given. This determinant remains identical to det(I) up to an infinitesimal change
under deformation. To compute K̃, I have to compute the determinant of the second
fundamental form, det(ĨI) = h̃11 · h̃22− h̃12 · h̃12 .

det(ĨI) = h̃11 · h̃22− h̃12 · h̃12

= h11h22−h12h12 +o(t2)

+ t · {h11 fww +h11 det( fwSu− fuSw,n,Sww)+h11 f 〈n,nww〉}
+ t · {h22 fuu +h22 det( fwSu− fuSw,n,Suu)+h22 f 〈n,nuu〉}
− t · {h12 fwu +h12 det( fwSu− fuSw,n,nwu)+h12 f 〈n,nwu〉}
− t · {h12 fuw +h12 det( fwSu− fuSw,n,nuw)+h12 f 〈n,nuw〉}

= h11h22−h2
12 +o(t2)

+ t{h11 fww +h11 det( fwSu− fuSw,n,Sww)

+h22 fuu +h22 det( fwSu− fuSw,n,Suu)

−2h12 fuw−2h12 det( fwSu− fuSw,n,nuw)} .

As proven in Lemma 3.1b, 〈n,h11nww +h22nuu−h12nuw−h12nwu〉= 0 holds. Assum-
ing fuw = fwu, one can conclude that

K̃ =
h̃11h̃22− h̃2

12
g

+o(t2)

= K + t · {h11 fww +h22 fuu−2h12 fuw

+h11( fwΓ
2
22− fuΓ

1
22)det(Su,n,Sw)

+h22( fwΓ
2
11− fuΓ

1
11)det(Su,n,Sw)

+2h12( fwΓ
2
12− fuΓ

1
12)det(Su,n,Sw)} .

Since det(Su,n,Sw)=−det(n,Su,Sw)=−〈n, [Su,Sw]〉=−
√

g, the Gauß curvature
changes als follows under deformation:

K̃ = K + t · {h11 fww +h22 fuu−2h12 fuw +h11( fwΓ
2
22− fuΓ

1
22)
√

g

+h22( fwΓ
2
11− fuΓ

1
11)
√

g−2h12( fwΓ
2
12− fuΓ

1
12)
√

g} .

This concludes the proof of the main theorem of this chapter.
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3.5 Example

In the following examples, I consider linear deformations, assuming bilinear deforma-
tion function

f (u,w) = au+bw+ c

which has the derivatives fu = a, fw = b, and fuw = fwu = 0.

Example 3.1 (Helicoid). I deform a helicoid S which is a minimal surface of the form

S(u,w) =

ucosw
usinw
d ·w

 ,

with d = d0
2π

, where d0 is the number of windings.
This gives us the following derivatives and normal vector:

Su =

cosw
sinw

0

 Sw =

−usinw
ucosw

d

 Suw =

−sinw
cosw

0

 ,

n =
[Su,Sw]

||[Su,Sw]||
=

cosw
sinw

0

 ,

−usinw
ucosw

d


∣∣∣∣∣∣
∣∣∣∣∣∣
cosw

sinw
0

 ,

−usinw
ucosw

d

∣∣∣∣∣∣
∣∣∣∣∣∣
=

1√
u2 +d2

 d sinw
−d cosw

u

 .

Figure 3.2: A helicoid with u,w ∈ [0,6π],d = 3
2π

.
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Next, I compute the elements gi j of the first fundamental form, and the elements
hi j of the second fundamental form.

g11 = 〈Su,Su〉= cos2 w+ sin2 w+0 = 1
g12 = 〈Su,Sw〉=−usinwcosw+usinwcosw+0 = 0

g22 = 〈Sw,Sw〉= u2 sin2 w+u2 cos2 w+d2 = u2 +d2

h11 = 〈n,Suu〉=
d sinwcosw−d coswsinw√

u2 +d2
= 0

h12 = 〈n,Suw〉=
−d sin2 w−d cos2 w√

u2 +d2
=

−d√
u2 +d2

h22 = 〈n,Sww〉=
−ducoswsinw+ducoswsinw√

u2 +d2
= 0 .

Computing D f for surface S and a deformation function f , and setting D f = 0
(Theorem 3.1) yields

D f = h11 fww +h22 fuu−2h12 fuw− (h11Γ
1
22−h12Γ

1
12 +h22Γ

1
11) · fu

√
g

+(h11Γ
2
22−h12Γ

2
12 +h22Γ

2
11) · fw

√
g

= 0 · fww +0 · fuu−2
−d√

u2 +d2
· fuw

−
(

0 ·Γ1
22−

−d√
u2 +d2

Γ
1
12 +0 ·Γ1

11

)
· fu

√
u2 +d2

+

(
0 ·Γ2

22−
−d√

u2 +d2
Γ

2
12 +0 ·Γ2

11

)
· fw

√
u2 +d2

=
2d√

u2 +d2
· fuw +d ·0 · fu +d ·u · fw

=
2d√

u2 +d2
·0+du · fw

= du · fw

= du ·b !
= 0

⇔ b = 0 ,

since Γ1
12 = 〈Suw,Su〉= 0 and Γ2

12 = 〈Suw,Sw〉= u .
Therefore, to make the deformation (total) curvature-preserving, the bilinear distri-

bution function has to be simplified to the form au+ c.
The resulting deformation is shown in Figure 3.3. The influence of the linear coeffi-

cient a ∈ {0,0.5,1} is given in the first row: in the beginning, the surface is a helicoid,
but with increasing a, it deforms to a funnel. This effect is amplified by the scaling
parameter t ∈ {1.2,1.4,1.6}, since both are multipliers for the normal, as seen in the
second row. The influence of the constant coefficient c∈ {0,0.5,1} is given in the third
row: in the beginning, the helicoid’s centre curve is a straight line, but with increasing
c, it deforms into a helix, dragging along the adjacent portions of the surface. The last
row demonstrates the effect of t ∈ {2,3,4} on this additive portion: the almost vertical
surface parts are stretched from little more than a line to long sheets hanging down.

In real-world examples, parameters have to be chosen carefully (and small) to avoid
such drastic deformations. I used extremely large parameters for the example in Fig-
ure 3.3 to exaggerate the effect of each parameter on the deformation. Realistically,



26 CHAPTER 3. PRESERVING TOTAL CURVATURE

(a) f = 0 , t = 1 (b) f = 0.5u , t = 1 (c) f = u , t = 1

(d) f = u , t = 1.2 (e) f = u , t = 1.4 (f) f = u , t = 1.6

(g) f = 0 , t = 1 (h) f = 0.5 , t = 1 (i) f = 1 , t = 1

(j) f = 1 , t = 2 (k) f = 1 , t = 3 (l) f = 1 , t = 4

Figure 3.3: The impact of deformation on the helicoid, shown separately for a,c, t. In
the first and third row, only f = au+ c is varied. The first row shows a varying coef-
ficient a with a fixed coefficient c = 0, while the third row shows a varying coefficient
c with a fixed coefficient a = 0. For the second and fourth row, I keep f fixed, while
varying the scaling parameter t in order to demonstrate the influence of scaling on the
linear and constant coefficients. Figures (3.3a) and (3.3g) display the same surface
from different perspectives.
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(a) f = 0.5u. (b) f = 1u.

(c) f = 0.5. (d) f = 1.

Figure 3.4: Plot of ∆Ktot (vertical) over increasing t (horizontal) up to |∆Ktot|= 1.

one has to choose a much smaller t since I assume o(t2) to be negligible in my proof.
Thus t < 1 arises as a necessary reqirement.

With an initial Ktot = 0.0011, I examine changes of up to a total of ∆Ktot = 1.
The discretised helicoid consists of 10201 points, so this results an average change of
0.000098 in Gauss curvature per point. This threshold is first reached for t = 0.015
with f = 1, and it is last reached for t = 0.086 with f = u in the presented example.

In Figures 3.4 and Figures 3.5, I use the same deformation function parameters as
in Figure 3.3. Both Figures illustrate how ∆Ktot changes with increasing t. In Fig-
ure 3.4, I show the change until the threshold of ∆Ktot = 1 is reached. In Figure 3.5,
I continue deforming until t = 1.6, the maximum deformation used for the upper half
of Figure 3.3, to demonstrate the instabilties occuring for large t. In these cases, the
prototype of a model has to be adapted before applying further infinitesimal bendings.

For this particular example, the signs of a and c do not affect ∆Ktot when varied
individually since the helicoid is symmetric and applying the deformation with the
opposite sign results in a similar deformation in opposite direction.

3.6 Case Study

Large industrial surface models are typically composed of smaller parts. E.g. consider
a turbine: it is composed of fan blades, fandisks, and many other components. It would
not necessarily make sense to deform the entire model at once, but it is relatively easy
to modify a single part like a fan blade or a fandisk.
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(a) f = 0.5u. (b) f = 1u.

(c) f = 0.5. (d) f = 1.

Figure 3.5: Plot of ∆Ktot (vertical) over increasing t (horizontal) up to t = 1.6.

Example 3.2 (Fandisk). In this example, I present deformations on Hoppe’s fandisk
model [Hop96]. I have recreated the part marked in the rendering of the original model
(Figure 3.6a) from Bézier surface patches (Figure 3.6b). As most real-world examples,
this model has hard edges. I preserve them as surface patch boundaries between adja-
cent patches. To deform the entire model rather than a single patch at a time, I take the
average of adjacent surface normals to perturb edges. Note, that this is only possible
for oriented manifolds.

I now take the technique I developed for minimal surfaces and adapt it to general
surfaces. My goal remains to keep the surface area as low as possible.

Now, I deform all surface patches with

S̃(u,w, t) = S(u,w)+ t · f (u,w) ·n(u,w) ,

where
f (u,w) = au+bw+ c

is my deformation function.
In Figure 3.7, I demonstrate the effect of isolated changes of a,b,c on the deform-

ation. Figure 3.8 extends this by illustrating deformations for a range of different para-
meter combinations. Note that the colour map in Figures 3.6b, 3.7, and 3.8 depends
on the Gauß curvature at each point. This means that blue areas are minima of Gauß
curvature, red areas are maxima of Gauß curvature relative to the rest of the model, and
white areas are close to the median Gauß curvature.

In Figure 3.9, I show changes in ∆Ktot over a deformation with t ∈ [0,10]. For
relatively small values of t, the deformation-induced change is stable. However, as
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(a) Model shown in Blender. (b) Recreated as surface patches.

Figure 3.6: Fandisk model by Hoppe [Hop96] and a portion of it recreated from Bézier
surface patches.

(a) f (u,w) = u. (a > 0) (b) f (u,w) = w. (b > 0) (c) f (u,w) = 1. (c > 0)

(d) f (u,w) =−u. (a < 0) (e) f (u,w) =−w. (b < 0) (f) f (u,w) =−1. (c < 0)

Figure 3.7: Fandisk model under deformation with t = 0.1.
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(a) f (u,w) = u−w (b) f (u,w) =−u+w

(c) f (u,w) = 2u−2w (d) f (u,w) =−2u+2w

Figure 3.8: Isolated change of one parameter at a time with t = 0.1.
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(a) f = u. (b) f = w. (c) f = 1.

Figure 3.9: Change in ∆Ktot for t ∈ [0,10].

the deformation grows, instabilities begin to occur for t approximately between 0.5
and 2.0. For extremely large values of t, the deformation is stable again, however the
deformed surface no longer looks similar to the original one.

3.7 Conclusion
The goal of this work is to deform the masterpiece in a meaningful way, i.e. enhance
or decrease features. This can be done by perturbing in normal direction. Since there is
a direct connection between total curvature and bending energy, the restriction of total
curvature serves to restrict the bending energy. This maintains a surface area that is as
minimal as possible and therefore reduces material cost.

I have presented a method to perturb surfaces without altering their total curvature,
thereby keeping their bending energy low. This results in surfaces with a small surface
area which can be manufactured at lower cost than surfaces, which have a higher total
curvature or a higher bending energy. The surface and the deformation function given
in Example 3.1 have simple analytic descriptions, so it is possible to make all compu-
tations manually. For the surface in Example 3.2, this is not possible since it requires
the definition of normals on sharp edges.

I can deform a surface in normal direction, both outward ( f (u,w)> 0) to increase
features, and inward ( f (u,w) < 0) to decrease features. While the examples in Fig-
ure 3.3 only present the results for deformation with a positive f , the results look very
similar (but upside down) for a negative f .

In real-world examples, the surface description is a lot more complicated, making it
more difficult to comprehend, what exactly happens to the surface during deformation.
A lot of such complex models possess sharp edges on which tangents and normals are
not clearly defined. In these cases, they have to be estimated from the neighbourhood
of an edge, which can be achieved using the methods presented in the next chapter.

My method is subjected to the same numerical limitations as partial differential
equations. Correctness has been proven for objects with an analytic description. How-
ever, total curvature preserving deformation can also be used for discrete surfaces.
The biggest challenge with discrete surfaces is finding a suitable deformation func-
tion. It requires expert knowledge to empirically determine it, so user intervention
is required. However, given such a function, the technique is applicable to discrete
meshes at the sacrifice of accuracy. In my first example, I computed normals, tangents,
and the deformation function analytically, but the actual deformation is performed on
a discretised version of the model. Given an arbitrary mesh, the technique is lim-
ited by the availability of tangents and normals. Solutions to this are presented by
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[MDSB03, TDR99, TW97], as well as in Chapter 4. If the surface has a boundary, I
am, again, limited by the availability of tangents and normals. However, given this in-
formation, the deformation procedure does not discriminate between boundary points
and interior points. For a single surface patch, the normal vectors and tangent vectors
on the boundary can be assumed to be identical to those in their neighbourhood.

In this chapter, I have presented a global deformation method which uses curvature
as a tool to restrict deformation. While normals are computed analytically for this
method, I present a variety of semi-local methods to determine normals from a discrete
surface structure in Chapter 4. In Chapter 5, I present a fully local technique which
uses curvature as a tool to drive deformation rather than restricting it. Once the surface
model of a virtual prototype has been constructed, engineers can investigate physical
properties, or interaction of the environment (e.g. air) with the surface model by us-
ing simulation. Chapter 5 provides solutions to some of the challenges arising during
simulation.

One challenge for possible future work is to apply my deformations in a way that
preserves the index sum of all singularities of a vector field defined on this surface, and
that also leaves the indices of each singularity unchanged.



Chapter 4

Discrete Normal Fields for
Bézier Polygons and Bézier
Meshes

4.1 Motivation

Surface prototyping is a prevalent method in engineering, which is used during the
manufacturing process. As a first step, a masterpiece is created, which constitutes
a draft that already provides a general idea of surface shape, but which allows for
small additional changes. This first draft already contains all desired features but it still
requires optimisation by an industrial surface designer to make it suitable for its task.
In order to manipulate the model, e.g. by deforming the surface in normal direction,
the engineer has to interact with the model. Moving each surface point individually
is inefficient, and it requires tedious work. Often, models are given as collection of
Bézier surface patches to facilitate interaction. Instead of manipulating the surface
directly, an industrial surface designer can work with the control mesh, a much coarser
representation of the surface. Complex models can be obtained by stitching together
surface patches that share boundary vertices.

In the previous chapter, I presented a deformation technique that deforms the entire
surface in normal direction. This requires an analytic surface description, even for dis-
cretised surfaces, since one has to define a normal vector for each point of the surface.
If a normal field is provided, it is possible to minimise total Gauß curvature of a discrete
surface (e.g. a surface mesh). One of the main issues with analytically given surfaces
is that in most applications, engineers think in terms of shapes and surface properties
(e.g. aerodynamics) rather than equations.

To an industrial surface designer, the shape and features of a surface are more
relevant than its exact geometric properties. During the design process, features are
enhanced or diminished. In this process, support through intuitive and efficient means
of interaction is essential. This is especially true for interaction with large and complex
models.

For surfaces that have a simple analytical description, such as the helicoid, the nor-
mal field along which a surface is deformed can be computed easily. If I want to apply
the same kind of deformation to a Bézier curve or surface, determining the normal for

33
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every point on the surface is technically possible, however it is computationally ex-
pensive. Instead, one can exploit the properties of Bézier curves and surfaces: rather
than moving each surface point in normal direction, it is possible to move the control
points. If a mesh point is moved, the entire surface patch is adapted automatically,
and the surface remains continuous. If normals are provided, moving control points in
normal direction is a fast, easy, and efficient interaction device for industrial surface
designers. However, this requires the presence of normals for the control polygon or
control mesh.

In this chapter, I propose the construction of a discrete normal field on the polygon
to achieve this goal. This saves a lot of computation time, but it also poses the question
of how the normal of a control point should be defined.

My goal is to preserve the end points as given and only modify the inner control
points of a polygon or mesh. This means that several patches can be combined to
represent a surface without creating holes during deformation1. If I wanted to move
the end points, the normal would be very easy to compute since the tangent vector or
tangent plane is given immediately by the Bézier structure.

After an overview of related work, and a short introduction to the notation used in
this paper, I present four different possibilities to compute normals at control points
for curves and surfaces (Section 4.4), as well as two steps to considerably improve the
results and to ensure a higher degree of robustness (Section 4.5). In Section 4.6, I give a
detailed comparison of the different methods, their advantages and limitations. Finally,
Section 4.7 concludes my work and highlights some special cases which are unlikely
to occur in industrial surface design, yet may be of value to other applications.

4.2 Related Work
On an analytic surface, normal vectors can be defined analytically. For discrete sur-
faces this is not possible. Instead, vertex normals have to be defined based on the
neighbourhood of each point. There have been various works focusing on discrete
normal definitions.

Grinspun et al. [GGRZ06] use a normal map to determine the normal at each point.
They approximate the mid-edge normal by fitting a quadratic curve interpolating the
edges’ end point.

Vertex normals are assumed to be provided for Phong Shading [BB06], which uses
normals to produce a visually smooth rendering of discrete surfaces. Intermediate nor-
mals along an edge are interpolated linearly, and normalised.

Langer et al. [LBS05] approximate vertex normals by using a weighted average of
the surrounding one-ring of triangles.

Mitra et al. [MNG04] present a normal estimation for point cloud data in R2 and
R3, which attempts to bound error through a least square approach. They prove the
existence of bounds of errors which are introduced through curvature and noise.

Max [Max99] derive weights for vertex normals computed from face normals by
assuming that the surface locally approximates a sphere. These weights are therefore
exact if the object is a (even irregular) tessellation of a sphere. However, it is unclear
how this approximation behaves on more complex meshes, since no error bounds are
defined [MDSB03].

1Preserving higher order continuity requires more constraints than this, but at least I keep the topological
classification.
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Nehab et al. [NRDR05] improve point positions and normals from 3D scans by
optimising position error first and then using surface tangents to correct the normal
error.

Thürmer and Wüthrich [TW97, TW98] estimate normals on the surface of a voxel-
ised object by looking at the three-ring of neighbours and combining the values at these
points with weighting factors that take distance on the (regular) grid into account. This
results in a definition of the normal vector which is independent of the shape or length
of the adjacent faces. Therefore, it is not suitable for irregular meshes.

Meyer et al. [MDSB03] define local vertex areas AM which are used based on the
work of Pinkall and Polthier [PP93]. Vertex normals are computed as the weighted
sum of all edges .

Dyn et al. [DHKL01] present a method for 3D triangulation optimisation through
discrete curvature. They employ a local cost function based on discrete total Gauß
curvature and discrete total mean curvature and minimise it. An optimal triangula-
tion is obtained through sequential edge flipping. Subsequently, they employ butterfly
subdivision. The resulting meshes seem to be smoothed.

4.3 Notation
Bézier surfaces are a prevalent tool for surface modelling in the automotive industry
since they are intuitive and easy to use. They build on the same concept as Bézier
curves but they possess slightly different properties

Definition 4.1 (Bézier curves). A Bézier curve C(t) of degree n for control points pi
is defined as

C(t) =
n

∑
i=0

Bn
i (t)pi ,

where

Bn
i (t) =

(
n
i

)
(1− t)n−it i

are called the Bernstein polynomials.
Its derivative is given as

C′(t) = n
n−1

∑
i=0

Bn−1
i (t)(pi+1−pi) .

Bézier curves possess a couple of important properties [Far02b]:

Affine Invariance The curve is invariant under affine maps. This allows us to deform
the control polygon instead of changing the curve directly.

Convex Hull The curve always lies inside the convex hull of all control points. This
makes its shape intuitive to approximate from its polygon.

Endpoint Interpolation The curve interpolates the polygon at the end points. In
design, it is usually required that the end points of a curve are in specific po-
sitions.

Pseudo-Local Control Each Bernstein polynomial Bn
i (t) has exactly one maximum

which lies at tk = i
n . This means that control point pi has the biggest influ-

ence near the curve point C(tk). This gives a pseudo-local control over the
curves [Far02b, p. 62].
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Variation-Diminishing The curve mimics the shape of the polygon. If it is intersected
with any line (or plane in 3D), there are at most as many curve intersections
as there are polygon intersections [Far02b, p. 84]. This means that a convex
polygon will always produce a convex curve, but a non-convex polygon may not
necessarily produce a non-convex curve.

Definition 4.2 (Bézier surfaces). A Tensor Product Bézier patch (in the following:
Bézier surface) S(u,w) of degree m×n for control points pi j is defined as

S(u,w) =
m

∑
i=0

n

∑
j=0

Bm
i (u)B

n
j(w)pi j .

Its derivatives in u– and w–direction are given as

Su(u,w) = n
m−1

∑
i=0

n

∑
j=0

Bm−1
i (u)Bn

j(w)(pi+1, j−pi j) ,

Sw(u,w) = m
m

∑
i=0

n−1

∑
j=0

Bm
i (u)B

n−1
j (w)(pi, j+1−pi j) .

Bézier surfaces possess a couple of important properties:

Affine Invariance and Convex Hull The surface is invariant under affine maps, thus
allowing deformation of the control mesh instead of each surface point. In addi-
tion, the surface always lies inside the convex hull of all control points.

Boundary Curves The surface interpolates the control mesh at the end points. Since
the mesh has Bézier polygons along its border, the surface borders are com-
prised of Bézier curves. This is very useful in design since you can achieve
C0-continuity simply by re-using border control points.

No Variation-Diminishing This property is not well-defined for Bézier surfaces. E.g.
it is easy to imagine a line that intersects the surface but not its polygon.

Definition 4.3 (Hessian Normal Form). A plane can be defined by its normal and its
distance from the origin:

ax+by+ cz+d = 0 ⇔
nxx+nyy+nzz+d0√

a2 +b2 + c2
= 0 ,

where n = (nx,ny,nz)
T . I get n ·x = −d0, where x is a random point on the plane and

d0 can be calculated using scalar projection. This is called the Hessian Normal Form
[GGH+89].

Then the point-plane distance for a given point x0 is given by

D =
n
‖n‖

x0 +d0 .

An illustration of this relationship can be found in Figure 4.1.
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Figure 4.1: The Hessian Normal Form can be used to determine the distance D of point
x0 to the plane defined by x and n.

4.4 Normal Approximation Methods
When deforming a Bézier curve or a Bézier surface in normal direction, it is very in-
efficient to perform this for every single surface point since each point’s normal would
have to be computed, and then every single point would have to be moved. Instead, one
can deform the control polygon and simply recompute the curve or surface afterwards.
Hence, it is sufficient to determine normals for the control polygon. The elongated
normals of control points should be orthogonal to a curve or surface, while avoiding
unnecessary intersections with other parts of the control polygon or curve between the
given curve and control as demonstrated in Figure 4.2.

Figure 4.2: Ideal normals for a curve’s control polygon.

Some of the methods I present in this section assume the presence of normal vectors
for the curve or surface. For the purpose of this section, I assume that these normal
vectors can be computed upon request, and that all normal vectors point towards the
same side of the surface.

I compare four different normal approximation strategies. First of all, the nor-
mal can be approximated from the control structure, as presented by Grinspun et
al. [GGRZ06]. While the results are not very exact, polygon-based (or mesh-based)
normals are very easy to compute and provide a good first intuition of the effect a de-
formation will have, as summarised in Section 4.4.1. Second, I consider the curve point
that has the same relative position on the curve as the control point has on the polygon.
These parameter-based normals are presented in Section 4.4.2. Inspired by the concept
shown in Figure 4.2, I determine direction-based normals. This is achieved by finding
the curve point for which a straight line in normal direction runs through the control
point, as outlined in Section 4.4.3. Finally, distance-based normals can be obtained by
choosing the normal of the curve point that has the smallest distance from a control
point. I present this in Section 4.4.4.
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4.4.1 Control Structure Based Normal Approximation
Discrete normals can be computed for any discrete curve or surface by averaging the
normals of adjacent edges or faces, as covered in literature [GGRZ06, LBS05].

Polygon-Based Normals for Curves

Assume Bézier curve is defined by control points pi as seen in Figure 4.3a. Each edge
pi−1pi has a normal ni−1 from which the control point normals are approximated.

These edge normals are computed as follows:
Let ci−1 = pi−pi−1,ci = pi+1−pi be edge vectors pointing from one control point

to the next, and let v = pi+1−pi−1 be the vector completing a triangle between these
points, as illustrated in Figure 4.3. Then, I can define normal of the plane spanned by
points pi−1,pi,pi+1:

nspan = v× ci−1 = ci×v ,

which can be used to define the desired normals

ni−1 = nspan× ci−1 ,

ni = nspan× ci .

If the control polygon is not planar, the edge normals for inner edges (i.e. edges
which do not contain an end point of the polygon) are not unique as both end points
contribute a normal calculation. As inner edges are only used to determine control
point normals, this does not impact the method at hand. However, if they are needed
independently, an average of the two normals can be used.

(a) For curves, the control point’s normal is com-
puted as the weighted average of the adjacent
edges’ normals.

(b) For surfaces, the it is computed as the
weighted average of the spanned triangles’ nor-
mals.

Figure 4.3: Approximation of normals from the control structure.

By taking the unweighted average of the two normals ni−1,ni, the control point’s
normal n′i corresponds to the bisecting line of the angle between the neighbouring
polygon edges. Long edges have a bigger influence on curve shape than short ones.
Hence, I adapt the method and compute the normal direction n′i−1 at control point pi as
the weighted arithmetic average of the adjacent edges’ normals

n′i−1 =
1

‖pi−pi−1‖
ni−1 +

1
‖pi+1−pi‖

ni .
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For the end points, the edge normal of the edge starting from the end point is used.
A comparison of these two approaches is presented in Figure 4.4. The difference

between these two approximations is noticeable, as the distance between the original
curve and the deformed curve changes much more when deforming with non-weighted
normals, and it stays more uniform for weighted normals.
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(b) Weighted average.

Figure 4.4: Comparison of unweighted and weighted polygon-based normals for con-
trol points.

Polygon-Based Normals for Surfaces

For a Bézier surface with a given control mesh as sketched in Figure 4.3b, pi j denote
the points, Ai j are the areas of adjacent triangles that are spanned by corresponding
edges, and ni j are the normals at control points.

The normal is now computed as the weighted average of neighbouring face nor-
mals. This neighbourhood consists of the star set. A star set is defined as the set of all
triangles which are spanned by adjacent edges that fan out from a point. As weights, I
use the relative area of each triangle Ai j in relation to the area of the entire star set Ā.

ni j =
n

∑
k=0

Ak

∑
n
l=0 Al

(ck× ck+1 mod n) , 0≤ k ≤ n ,

where ck are the edges fanning out from pi j, n is the number of triangles spanned
by the edges, and Ak are the areas of these triangles.

Along the control mesh boundary, each control point normal is computed from only
two triangle normals, and for corner points, only a single triangle normal is used.

4.4.2 Parameter-Based Normal Approximation
In order to approximate a normal based on parameters, I compute the relative position
of a control point in the polygon. Then, I obtain the normal of the curve or surface
point with corresponding relative position on the curve or surface.

Parameter-Based Normals for Curves

A simple solution would be to set the relative position parameter tr to tr = i
n+1 , mim-

icking the pseudolocal control property provided by Bézier curves. However, this only
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produces sensible results if all control polygon edges have similar lengths. Therefore,
the edge length should be considered for the relative parameter. A comparison of para-
meters with and without this consideration is given in Figure 4.5. If the edges of a
control polygon have different lengths, this should be considered during the computa-
tion. Therefore, I compute the relative position tr of a control point pr as the sum of
edge lengths from the first control point to the current control point divided by the edge
length of the entire polygon:

tr =
∑

r−1
i=0 ‖pi+1−pi‖

∑
n−1
i=0 ‖pi+1−pi‖

.

This tr ∈ [0,1] can be used as a parameter for C to get the point C(tr). Then, the
normal of curve point pr is the normal of C(tr), i.e. n(tr). If a control polygon’s edges
have uniform length, this corresponds exactly to tr = i

n+1 .
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Figure 4.5: The relative parameters tr, independent of edge length (left) and considering
edge length (right). The very short second edge and the very long third edge lead to a
distortion of the relative parameter.

Parameter-Based Normals for Surfaces

Similarly, the relative positions urs,wrs with respect to a row or a column of control
points prs of the mesh are computed as

urs =
∑

r−1
i=0 ‖pi+1,s−pi,s‖

∑
n−1
i=0 ‖pi+1,s−pi,s‖

,

wrs =
∑

s−1
j=0 ‖pr, j+1−pr, j‖

∑
m−1
j=0 ‖pr, j+1−pr, j‖

.

Using these parameters, one can obtain the surface point S(urs,wrs) which provides
its normal n(urs,wrs) for the control point prs.
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First, the relative parameters u0 j,um j along the boundary columns, and wi0,win
along the boundary rows have to be determined. Then, all ui j can be computed by
marching along the polygon column from wi0 to win. Similarly, all wi j can be computed
by marching along the polygon row from u0 j to um j.

For example, urs,wrs can be determined by computing u0s,ums,wr0,wrn and then
finding the appropriate point between each pair.

Figure 4.6 sketches how the relative parameter is computed.

(a) Parameter-based normals for curves
(r = 2).

(b) Parameter-based normals for surfaces (r =
1,s = 2).

Figure 4.6: Approximation of normals from parameter values.

4.4.3 Direction-Based Normal Approximation

My goal is to determine a normal for each control point such that a straight line in
normal direction through the control point and the curve itself are orthogonal at the
intersection point, as demonstrated in Figure 4.2. It is possible to determine this normal
exactly by finding the curve parameters for which this is the case.

Direction-Based Normals for Curves

I want to find a normal n(tk) such that the following holds for a parameter tk and a
sufficiently large constant s > 0.

C(tk)+ s ·n(tk) = pi for i ∈ {1, . . . ,n−1} .

For each parameter t, the tangent C′(t) is orthogonal to the normal plane of the
curve. Using the Hessian Normal Form, the normal plane for a point on the curve
can be defined using the corresponding tangent vector. This is the plane to which the
tangent vector is orthogonal:

C′(tk)
‖C′(tk)‖

x =−d0 .

The distance d0 of this plane from the origin is the scalar projection of C(tk) onto
the plane’s normal (the curve’s tangent vector C′(tk)):

d0 =
C(tk) ·C′(tk)
‖C′(tk)‖

.
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Therefore, I only need to test if a control point lies in the normal plane. This is the
case when its distance to the plane equals zero:

D =
C′(tk)
‖C′(tk)‖

pi +d0
!
= 0 .

Figure 4.7 sketches this construction: if pi lies inside the plane, then D = 0. In
case of discrete curves, D = 0 may never occur. Then, the parameter tk leading to the
minimal D is chosen:

min
tk
|D|= min

tk

∣∣∣∣ C′(tk)
‖C′(tk)‖

pi +d0

∣∣∣∣ .

Figure 4.7: Determining the distance Di between a normal plane and a control point pi
using the Hessian Normal Form.

Direction-Based Normals for Surfaces

I want to find a normal n(uk,wl) such that the following holds for parameters uk,wl
and a sufficiently large constant s > 0.

S(uk,wl)+ s ·n(uk,wl) = pi j for i ∈ {1, . . . ,n−1}, j ∈ {1, . . . ,m−1} .

For each parameter set u,w, the tangents Su(u,w),Sw(u,w) are orthogonal to the
normal plane of the surface. Using the Hessian Normal Form, the normal planes for a
point on the surface can be defined using the corresponding tangent vectors.

Su(u,w)
‖Su(uk,wl)‖

x =−du0 ,
Sw(u,w)
‖Sw(uk,wl)‖

x =−dw0 .

The distances du0,dw0 of these planes from the origin are the scalar projections of
S(uk,wl) onto the planes’ normals:

du0 =
S(uk,wl) ·Su(uk,wl)

‖Su(uk,wl)‖
dw0 =

S(uk,wl) ·Sw(uk,wl)

‖Sw(uk,wl)‖
.

Therefore, I only need to test if a control point lies in the normal plane. This is the case
when its distance to a plane equals zero:

Du =
Su(uk,wl)

‖Su(uk,wl)‖
pi j +du0

!
= 0 ,

Dw =
Sw(uk,wl)

‖Sw(uk,wl)‖
pi j +dw0

!
= 0 .
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In case of discrete surfaces, Du 6= 0 and Dw 6= 0 can occur. Then, we use parameters
uk,wl which lead to minimal Du,Dw:

min
uk
|Du|= min

uk

∣∣∣∣ Su(uk,wl)

‖Su(uk,wl)‖
pi j +du0

∣∣∣∣ ,
min

wl
|Dw|= min

wl

∣∣∣∣ Sw(uk,wl)

‖Sw(uk,wl)‖
pi j +dw0

∣∣∣∣ .
The normal n is then given by n(uk,wl).

4.4.4 Distance-Based Normal Approximation

The normal of a curve or surface point closest to a control point often runs through the
control point. Therefore, I can compute this normal in an alternative way. For direction-
based normals, I searched for the curve or surface point which has the smallest distance
to the control point. Now, I minimise the distance between a control point and the curve
or surface points directly.

Distance-Based Normals for Curves

The closest curve point can be found by computing the parameter tk with minimal
distance

min
tk
‖pi−C(tk)‖ .

The normal at point C(tk) is n(tk), so the control point pi is assigned n(tk) as its
normal.

Since I have to go over the whole parameter vector t for n− 2 of the n control
points, I end up with a complexity of O(n · t).

Distance-Based Normals for Surfaces

The corresponding surface point can be found very easily by computing the pair of
parameters (uk,wl) with minimal distance

min
(uk,wl)

‖pi j−S(uk,wl)‖ .

The normal at point C(uk,wl) is n(uk,wl), so the control point pi j is assigned
n(uk,wl) as its normal.

Since I have to go over the whole parameter vectors u,w for (m− 2)× (n− 2) of
the m×n control points, I end up with a complexity of O(mn ·uw).

4.5 Adjustments
In Figure 4.8, the results of all previously introduced strategies are depicted for curves.
As one can see, deforming the control polygon in normal direction yields results which
no longer resemble the original curve. There are two main improvements to be made
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Normal Orientation I adapt normal orientation to improve feature preservation. If
all normals point towards the same side of a non-convex object, deforming in
this direction eventually results in a convex shape, and therefore in a loss of
features. Instead, normals should always point from the curve or surface towards
the control structure. E.g. curve normals should point left during a right turn,
and right during a left turn.

Local Influence I restrict the search for a normal to the neighbourhood around the
control point. This increases efficiency as fewer points have to be considered,
and the resulting normals lead to a more faithful representation of the curve or
surface.
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Figure 4.8: Comparison of the different normal computations prior to adjustments.
Figures (a) through (d) display the normals at the control point and at the curve point
they belong to.

4.5.1 Normal Orientation
I want normal vectors which provide the basis for feature-preserving deformation if the
control points are moved along them. If all normals point to the same side of the curve,
this is only possible for convex curves. A curve with an inflection point, i.e. a curve
that has left turns and right turns, will suffer a loss of features if such normals are used.

As Figure 4.9 demonstrates, there is a large difference between deformation result-
ing from the original, uniformly oriented normals, and the deformation resulting from
flipped normals that change direction if the curve is non-convex, i.e. it has at least one
inflection point. For the original normals, the right turn is enhanced whereas the left
turn vanishes. If the two points were moved by another normal length, the previously
non-convex polygon would become convex. This can be avoided if normals are flipped
depending on the turning direction. For curves in a plane, one can compute the turn-
ing direction, however, in three-dimensional space, turning directions are not properly
defined. However, at the inflection point, the relative position of the curve with respect
to the polygon changes (e.g. left/right).

This relationship can be exploited to flip normals easily by applying the signs of
the distance vector from curve point to control point to the normal:

n(pi) = sign(pi−C(tk)) · (|nx|, |ny|, |nz|)T ,
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(a) Original, uniformly oriented normals.

(b) Flipped normals.

Figure 4.9: Control points p1 and p2 are moved in normal direction: changing the
normal orientation when the polygon changes its turning direction preserves features.

where tk is the curve parameter for the respective normal computation strategy. This
assumes that normals point from the curve towards the control point, as described in
the motivation of Section 4.4. Normals approximated from the control polygon do not
have any corresponding curve points. In this case, I use the same point that is used for
parameter-based normals (cf. Section 4.4.2) to compute the sign.

For surfaces, normals are flipped in a similar manner:

n(pi j) = sign(pi j−S(uk,wl)) · (|nx|, |ny|, |nz|)T ,

where uk,wl are the surface parameters for the respective normal computation
strategy. Normals approximated from the control mesh do not have any corresponding
surface points, so we use the same point that is used for parameter-based normals to
compute the sign.

At curve end points and surface corners, the sign is not defined as the distance
between control structure and curve/surface is zero. As I only move inner points, curve
end points and the entire surface border are left facing in the original direction.

Note, that the possibility to adapt normal orientation for feature preservation is a
major strength of control structure-based curve and surface definitions. At inflection
points, the sign of a normal switches, so the sign function has a singularity, i.e. it is not
defined for these curve points. Similarly, the sign changes at saddle points, so again,
the sign function has a singularity, i.e. it is not defined for these surface points.
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So far, I have assumed that normals are provided along with the curve or surface.
In the following section, I present a technique to define normal vectors for curves if the
tangent vector C′(tk) is known.

Computing a Normal Vector Given a Tangent Vector

All normal approximation methods I present are based on a tangent vector. A 3D vector
and its starting point define a plane according to the Hessian Normal Form. The normal
vector I am looking for has to lie in this plane. However, its direction on the plane can
be chosen.

I want the normal vector to point towards the control polygon as I want the normal
direction to be a good representative for both control point and curve. Therefore, I
want the normal vector to lie in the plane spanned by the tangent vector and the vector
pointing from the curve point to the control point. Given the restriction to both this
spanned plane and the normal plane, the normal vector can be uniquely determined.

Let t = C′(tk) be the tangent vector at parameter tk, and v = pi−C(tk) the vector
pointing from C(tk) to pi. Then I can define the spanned plane’s normal

nspan = t×v

which can be used to define the desired normal

n = nspan× t .

This is illustrated in Figure 4.10.

Figure 4.10: Computing a normal vector, given a tangent vector.

4.5.2 Local Influence
The methods I have presented so far use the entire curve or surface as a basis, so
they have global influence of the curve on the normals. One of the main drawbacks of
direction-based normals and distance-based normals as defined in Section 4.4 is the fact
that they are not always uniquely defined. When there are several optimal solutions, it
is not clear which solution is the most desirable. Matlab, for instance, automatically
chooses the first optimum if there are several identical values. This leads to a bias
towards the values that appear earlier in arrays.

As seen in Figure 4.8c, a non-convex curve can have several points with normals
which run exactly through a control point. The last (right-most) curve point’s normal
runs exactly through the second control point, thus it was chosen as a normal although
it is not a desirable result. In this particular case, the issue lies in discretisation. The
resulting normal was a slightly better match (i.e. passed closer to the control point)
than the expected curve point’s normal.
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A non-convex curve (or a self-containing curve, e.g. a spiral) can have curve points
that are far away from a control point in parameter space, but very close to it in Euc-
lidean space. As seen in Figure 4.8d, the first (bottom left) curve point is much closer
to the fourth control point than any other curve point, including all points which would
yield a suitable result.

I want to restrict the search space for a suitable normal vector to the neighbourhood
of each control point. The question is: how do you define a neighbourhood?

Bézier curves are constructed using Bernstein polynomials as basis functions. Fig-
ure 4.11 shows the Bernstein polynomials Bn

i (t) of degree n = 5. Each basis function
has its maximum at t = i

n [Far02b].
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Figure 4.11: Bernstein polynomials.

I propose the introduction of local influence, similar to the concept of local control
as provided by B-Splines. Instead of using a knot vector, each control point pk can be
assigned a normal n(tk) for which tk lies in the range of values between the maxima of
Bernstein polynomials of the two adjacent control points:

k−1
n
≤ tk ≤

k+1
n

.

These regions of interest are illustrated in Figure 4.12.
To determine the normal n(tk), only points C(t)∈ [C( k−1

n ),C( k+1
n )] are considered.

4.6 Comparison

In the previous section, I introduced four different strategies to compute normal vectors
for control structure-based curves and surfaces. In this section, I compare how well
they fulfil the requirement of feature preservation given in Figure 4.2, and examine the
differences in computational complexity.
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Figure 4.12: Each point only considers a part of the curve for its normal.

Figure 4.13 shows a comparison of all different normal computation strategies at
the example of three different Bézier curves which present a variety of challenges.
These examples are the basis on which I evaluate each method.

The top row presents the results for the previously used wave-shaped curve. This
example exhibits typical properties of industrial surfaces: it bends in different direc-
tions but it does not self-intersect and it is not self-containing.

In addition, I examine some special cases which, although they are not desirable in
industrial modelling, may be of interest to other applications. The middle row presents
the results for a loop-shaped curve: this is a self-intersecting convex curve with a self-
intersecting polygon. The bottom row presents the results for a non-intersecting, self-
containing spiral control polygon with a self-intersecting curve.

Figures 4.15 and 4.16 show a comparison of each of the four stategies for surfaces.
In both figures, I compare the results for global influence and local influence side by
side. While Figure 4.15 shows a convex surface for which uniform normal orientation
yields correct results, Figure 4.16 shows a non-convex surface, and it highlights the
effect of adjusting normal orientation.

4.6.1 Feature Preservation

Let me first look into the feature-preserving qualities of all methods. I start with curves,
and I move on to surfaces.

For the wave polygon (Figure 4.13a–4.13d), the most significant difference between
the four strategies is that polygon-based normals and parameter-based normals intro-
duce self-intersections in the polygon, whereas direction-based normals and distance-
based normals preserve polygon topology. A comparison between direction-based
normals and distance-based normals shows that the inflection point before and after
deformation stays the same for distance-based normals but not for direction-based nor-
mals. Therefore, distance-based normals produce the most faithful representation for
this example.

For the loop polygon (Figure 4.13e–4.13h), the results of 4.13f–4.13h look almost
identical. In all three cases, the loop grows uniformly in all directions such that the
original loop is centred in the deformed loop curve. One aspect that is noteworthy is the
slight variation in the top normal of Figure 4.13h, which does not point up vertically.
This is a discretisation issue: at a low resolution (100 points in this example), it is
less likely that the optimal point is contained in the dicretised curve than for a higher-
resolution curve. The same effect is present for parameter-based normals and direction-
based normals, but it has less impact. Polygon-based normals result in a slightly less
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convincing representation than the other three strategies as the centre of the loop curve
changes noticably through deformation, as seen in Figure 4.13e.

For the spiral polygon (Figure 4.13i–4.13l), the first thing of note is that for three
methods (polygon-based normals, direction-based normals, and distance-based nor-
mals), the edges of the deformed polygon are almost parallel to those of the original
polygon. However, for parameter-based normals, the results differ significantly. This
leads to a shift in clockwise direction for the polygon, and a shift to the right for the
curve, both of which are not present for the other methods. Polygon-based normals
have a similar issue but to a lesser extent. Here, the different edge lengths at two
control points lead to slightly skewed normals. Direction-based normals and distance-
based normals yield very similar results which are faithful representations of the ori-
ginal polygon and curve.

Overall, there are two equivalence classes: as a whole, direction-based normals
and distance-based normals provide better results than polygon-based normals and
parameter-based normals. Within each equivalence class, performance depends on the
specific example.
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Figure 4.13: Comparison of the different normal computations using local influence
with changed normal orientations for three different polygons.

For surfaces, one can see particularly well how much difference it makes to reduce
search space to the neighbourhood of a control point . In Figures 4.15 and 4.16, each
column contains all four normal approximation strategies. In each row, I compare the
normals based on global influence to those based on local influence.
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One noteable difference between strategies is that direction-based normals and
distance-based normals perform much better using local influence than using global
influence. In comparison, mesh-based normals and parameter-based normals stay the
same. The main reason for this lies in their local nature: mesh-based normals do not de-
pend on the surface at all, and parameter-based normals naturally end up with a normal
from the neighbourhood unless the control mesh has very different edge lengths.

One major drawback of mesh-based normals is the difficulty to adjust normal ori-
entation as this strategy relies solely on the control structure. A possible solution would
be to use surface points determined using the strategy described in Section 4.4.2 to de-
termine orientation. Alternatively, one could determine local minima, local maxima,
and saddles. This can be achieved by using discrete curvature definitions to determine
these structures.

This drawback of parameter-based normals is demonstrated in Figure 4.14. In this
example, the surface is planar in order to emphasise the connection between para-
metrisation and control mesh. The control polygon is plotted in colours, whereas the
surface and the distribution of its parameters is plotted in black (for u,w∈

{
0, 1

3 ,
2
3 ,1
}

).
As one can see, the parameter values corresponding to the control points do not line
up: the control point at (2,0) lies at u = 1

3 of the length of the mesh border. The value
on the surface for u = 1

3 lies at about (1,0), however the value of the surface at about
u = 0.5 would be a more appropriate choice.
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Figure 4.14: Distortion in parameter distribution resulting from large differences in
edge lengths.

As pointed out before, when there are several optimal solutions, it is not clear how
to choose the correct one. Both direction-based normals and distance-based normals
exhibit a noticeable shift of normal vectors in one direction as the first optimal match
is chosen. This can be seen in Figures 4.15e, 4.15g, 4.16e, and 4.16g. These two
strategies are the strategies which benefit most in runtime from a reduction of search
space.

Overall, direction-based normals and distance-based normals always provide good
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results if combined with the suggested adjustments, whereas control structure-based
normals and parameter-based normals depend heavily on the specific example at hand.

4.6.2 Computational Complexity
For the complexities given here, I assume that n is the number of control points, and t̄
is the number of curve points.

Control structure based normals are one of the fastest methods at an efficiency in
O(n). Each edge normal has to be computed [n−1 edges, since computing a normal is
assumed to be constant]. Then, each pair of neighbouring edges is averaged using the
edge lengths as a weight [n−2 pairs].

Parameter-based normals also have an efficiency in O(n). Each edge’s length has
to be computed [n−1]. There are r ≤ n edges which are visited twice [n].

Both direction-based normals and distance-based normals require the search for a
minimum over the whole parameter space. Depending on the desired normal accuracy,
the number of parameter values t̄ can be chosen.

Direction-based normals further require calculating the distances Di between nor-
mal planes and each control point [n] for each parameter [t], so the efficiency lies in
O(n2t̄). Computing D has quadratic complexity since two polynomials are multiplied.

Similarly, distance-based normals require computing the distances between n− 2
control points and each parameter [t̄]. Their complexity therefore lies in O(nt̄).

As n� t̄, both methods have complexities in O(t̄).
Overall, the complexity rises with the expected result quality.

4.7 Conclusion
The main objective of this chapter was to develop a method to define normals on a
discrete mesh, wish special focus on Bézier surface patches.

I have presented four different methods to compute normals and evaluated their
impact during deformation. Polygon-based normals can be used for arbitrary meshes,
whereas the remaining three techniques are more specifically aimed at Bézier surface
patches. However, the same concepts can be applied to other techniques which define
curves or surfaces through control structures. Some examples include Bézier triangle
patches, or Coons patches.

One major problem of direct manipulation of a curve (or surface) is, that it only
provides continuous results for convex curves (or surfaces). A non-convex curve’s
normals should flip at inflection points to preserve characteristic features. Similarly,
a non convex surface’s normals should flip at saddle points to preserve characteristic
features.

Control structure-based normals provide a very fast normal approximation. They
work well on convex structures but have difficulties with non-convex structures. The
major advantage of this technique is its independence of curve or surface resolution.
Overall, the results are not as good as those produced by other strategies.

Parameter-based normals provide a fast normal approximation. They work well
on control structures with edges of uniform length, however, large differences in edge
length can result in significant errors. This can be seen in Figures 4.13j and 4.14.
Resolution plays a noticeable role in quality, as a curve or surface point of similar
parameter value as the control point are required. For applications which value speed
over accuracy, this method may be a profitable choice.



52 CHAPTER 4. DISCRETE NORMAL FIELDS

Direction-based normals provide accurate normal approximations if combined with
local influence. Accuracy depends on curve or surface resolution as a higher number
of points increases the likelihood of an exactly fitting normal. They are slightly slower
than the first two strategies but still perform very well.

Distance-based normals provide a very accurate approximation if combined with
local influence. Like direction-based normals, they are slightly slower than the first two
strategies as the efficiency depends on resolution. However, they balance the additional
effort with very good results. In most examples, distance-based normals performed
slightly better than direction-based normals.

In addition to these normal definitions, I have introduced two additional techniques
which can be combined with a variety of methods.

First of all, I have adjusted normal orientation to preserve surface features through-
out the deformation process. This is not possible for analytically defined curves or
surfaces. Re-orienting normals and directly deforming the curve in normal direction
introduces discontinuities to the curve. This problem can be solved by deforming
the control polygon or control mesh, as presented in this chapter. Therefore, con-
trol structure-based methods are at a distinct advantage for feature preservation. If
adequately oriented normals are provided, interaction with the surface model becomes
much more intuitive for industrial surface designers: pulling on a surface in normal
direction makes a feature bigger, and pushing on it makes it smaller, no matter where
on the surface the feature is located, and in which direction it bends.

The second technique introduces the concept of local influence to all techniques
except polygon-based normals which are local by nature. Instead of basing the nor-
mal computation on the entire surface (e.g. searching through all points when trying
to find the closest one), only points that are reasonably close in parameter space are
considered. This has the advantage that the three-dimensional location in space can
be arbitrary. While this technique is aimed at normal computation, it can serve as a
(slightly more dynamic) neighbourhood definition for any neighbourhood-based tech-
nique.
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(a) Global influence mesh-based normals.
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(b) Local influence mesh-based normals.
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(c) Global influence parameter-based normals.
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(d) Local influence parameter-based normals.
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(e) Global influence direction-based normals.
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(f) Local influence direction-based normals.
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(g) Global influence distance-based normals.
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(h) Local influence distance-based normals.

Figure 4.15: Surface mesh normals for a convex mesh using global influence and local
influence. As all normals point to the same side of the surface, normal reorientation is
not demonstrated in this figure.
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(b) Local influence mesh-based normals.
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(c) Global influence parameter-based normals.
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(d) Local influence parameter-based normals.
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(e) Global influence direction-based normals.
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(f) Local influence direction-based normals.
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(g) Global influence distance-based normals.
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(h) Local influence distance-based normals.

Figure 4.16: Surface mesh normals for a non-convex mesh using global influence and
local influence. The normals along the boundary all point in the same direction, the
normals at inner points are reoriented as described in Section 4.5.1.



Chapter 5

Adaptive Particle Relaxation for
Time Surfaces

5.1 Motivation

Computer simulation has become a staple of virtual prototyping. After a masterpiece
has been modeled, engineers can run simulations on the model. This serves to evalu-
ate physical properties and behaviour of the model and its environment under different
conditions, i.e. different parameter settings. In a further step the model can be tweaked
to optimise properties or behaviour. This simulation-and-optimisation process is iter-
ated until a satisfactory result has been achieved.

Simulations can be run to evaluate the model’s material, or to evaluate what hap-
pens in the model’s environment. One typical application is to analyse flow behaviour
(e.g. air or water) around a model. First, a simulation is run to determine how a flow
evolves in the proximity of an object. Then, the resulting flow field can be analysed
to identify potential problems in flow behaviour. In case of undesirable behaviour, the
model can be adapted to avoid the problems. To analyse flow behaviour, it is very
helpful to visualise it. This can be achieved by inserting particles into the flow field
and tracing their movements individually or as a group. There are a variety of different
particle-based flow visualisation techniques.

Integral surfaces are a versatile tool for flow visualisation. They build on the
strengths of particle-based approaches for the illustration of fluid transport, while at
the same time providing a more continuous display of flow manifolds than particles
or line-based techniques. Recent improvements in extraction and visualisation meth-
odology have made flow surfaces a key analysis and visualisation tool. They are used
in application areas such as the design and optimisation of aerodynamic vehicles or
industrial mixing devices.

Extracting flow surfaces is a highly non-trivial task. The complexity of surface
extraction and visualisation procedures is heavily influenced by properties of the flow
field at hand. Complex and turbulent, time-varying flow fields, for example, frequently
cause parts of the flow surface to undergo strong stretching, folding, and shearing.
Since flow surfaces are typically represented as triangular meshes of flow particles, this
excessive stretching and deformation of the mesh may result in degenerate or highly
distorted triangles and a generally bad sampling of the actual surface. In order to avoid
numerical and visual artifacts, such degenerate surface meshes are to be avoided.

55



56 CHAPTER 5. ADAPTIVE PARTICLE RELAXATION

A solution to this problem is given in the form of adaptive surface extraction tech-
niques. These techniques dynamically insert and remove flow particles from the surface
representation to maintain an appropriate mesh quality and resolution. However, such
refinement strategies are not without disadvantages: they generally lead to unpredict-
able increases in computational complexity (advection times and load-imbalance) and
memory requirements (mesh complexity).

In this chapter, I propose a novel strategy for the adaptive extraction of time sur-
faces in large time-varying datasets, which is partially based on [BOJH15]. Instead of
performing dynamic mesh refinement during integration, I employ a relaxation method
that distributes a fixed-size, large set of flow particles evenly across an accurate, bicubic
representation of the time-surface. I achieve such a particle redistribution efficiently by
performing a highly parallel energy-based optimisation of particle locations in 2D sur-
face parameter space. This two-dimensional optimisation is enabled through the use
of CAGD fundamentals. Metric tensors allow for the encoding of three-dimensional
surface stretching in a two-dimensional surface parameter space. They can therefore be
used to counteract the negative effects of surface stretching and shearing on the mesh.
Gauß curvature encodes the local bending of a surface. It can therefore be used to adapt
surface resolution for a better sampling of smaller features.

I demonstrate how this novel form of time surface adaptivity can contribute to a
more balanced and concurrent surface extraction, and I evaluate accuracy and perform-
ance benefits of the proposed approach.

In summary, this chapter makes the following contributions to the field of flow
visualisation:

• An adaptive particle system for flow surface representation.

• A technique for metric-tensor based time surface relaxation.

• A technique for curvature-based time surface relaxation.

• A method for accurate bicubic time-surface approximation.

• Techniques to optimise mesh quality.

After establishing a scientific and mathematical background in Sections 5.2 and
5.3, I detail these contributions in Section 5.4 and 5.5. Section 5.6 discusses the value
of the proposed techniques in the context of multiple benchmark datasets.

5.2 Related Work
Flow surfaces are an integration-based geometric flow visualisation tool [MLP+10]
whose use in various application domains has increased steadily since Hultquist [Hul92]
defined adaptive stream surfaces for steady flows in the 1990s.

Advection of flow surfaces through a velocity field may cause strong shape changes,
including stretching and folding, requiring the implementation of surface maintenance
techniques. Modern adaptive flow surface extraction techniques [GKTJ08, KGJ09,
OHBKH11] perform mesh maintenance throughout the surface generation process, to
balance computational costs due to integration with low surface accuracy due to insuffi-
cient resolution. Mesh adaptivity measures include edge flipping, splitting and merging
and typically result in strongly increased flow surface particle numbers. Especially in
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regions with strong flow divergence, i.e., strong surface stretching, the resulting num-
ber of particles in the refined mesh is high and extremely hard to predict.

In typical compute environments, the involved increases in particle numbers take a
significant toll on space and time complexity of adaptive surface extraction algorithms.
In settings, where multi-core computing environments are used [CCG+12, CKP+13],
such adaptive surface extraction techniques lead to increased communication between
compute units and create spatially unbalanced data reads – two of the typical bot-
tlenecks of parallel computing. The computational efficiency of such approaches,
including surface extraction techniques based on Graphics Processing Units (GPU)
[BFTW09], may therefore benefit from keeping the number of particles constant and
their positions evenly distributed.

In this work, I propose the use of relaxation techniques to allow for this type of sur-
face mesh adaptation. The incremental nature of time surface advection together with
the availability of an underlying vector field make it possible to maintain a well-formed
mesh by distributing a fixed number of flow particles in an 2D anisotropic metric tensor
field. General relaxation techniques are not uncommon in visualisation, and have, for
example, been extensively used for implicit surface meshing [MWK+08, Mey08] or
other scalar field feature extraction techniques such as crease sampling [KESW09].

Additionally, anisotropic sampling of (static) parametric surfaces is a well-researched
topic in CAGD. Examples of surface refinement through particle insertion is given
in work by Szelinski et al. [ST92]. Others [BH96] use metric tensors to remesh 2D
domains. Both types of techniques rely on the insertion or deletion of mesh nodes,
whereas I favor the redistribution of an existing set of particles. Shimada et al. [SYI+97]
solve the anisotropic meshing problem by packing ellipsoidal bubbles in meshes of
static surfaces.

More recently, such techniques have been adapted to evolving meshes [JCNH10].
Jiao et al. propose an algorithmic technique that makes use of non-physically motiv-
ated vertex redistribution similar to Laplacian smoothing, and mesh maintenance. The
latter involves edge splits and merges, effectively changing the number of overall mesh
nodes/surface particles. Recently, a general metric-based particle remeshing strategy
for surfaces was proposed by Zhong et al. [ZGW+13].

I refer to Owen [Owe98] for a survey of mesh generation techniques that includes
particle-based relaxation strategies. In visualisation, Obermaier et al. [OJ12] pack el-
lipses in surface parameter-space to enhance the visualisation of flow surface prop-
erties. Similar mathematical concepts may be used to improve the quality of recon-
structed surfaces. Schneider et al. [SWS09], for example, use these velocity gradient
tensors to produce more accurate stream surface representations by means of provid-
ing tangents for higher-order reconstruction, a goal that is also shared by the present
work. I extend these previous works to efficient, adaptive time-surface generation in
time-varying vector fields.

It is notable that behaviours of my surface generation technique are closely in-
terconnected with divergence measures well-known in the flow visualisation com-
munity. Haller’s [HY00] notion of Lagrangian Coherent Structures and related di-
vergence measures have been used in one form or the other in several works focused
on the visualisation of volume or surface deformations [OHBKH09, AOJ13].
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5.3 Flow Surfaces

5.3.1 Basic Definition

A flow surface S(u,w), S : Ω ⊂ R2 → R3 is a two-manifold with parameterisation
(u,w), whose shape is governed by advection properties of a flow field V .

In the context of this paper, I focus on a subset of flow surfaces, so called time
surfaces. A time surface St is a flow surface that tracks the evolution of a set of flow
particles p(u,w). Given a time-varying 3D flow field V : R3 ×R→ R3, the shape
of the surface over time is defined by advection of these flow particles. Specifically,
individual positions p(u,w) on the surface over time evolve along path-lines

pt(u,w; t0) = pt0(u,w; t0)+
∫ t

t0
v(pτ(u,w; t0),τ)dτ , (5.1)

with pt0(u,w; t0) being the original position on the seed surface. In practice, this
evolution of particle positions – resulting in a change of surface shape and location – are
computed through numerical advection. Since continuous representations of flow sur-
faces are generally not available, a time surface St typically consists of a discrete set of
flow particles p(ui,wi) which are advected and tracked over time. Specific continuous
instances of the time-surface are represented by a triangulation of this set, the surface
mesh. The most practicable solution to the surface meshing problem is to define an ini-
tial surface mesh for St0 , which is then adjusted and maintained as the surface evolves
over time.

5.3.2 Adaptivity Measures

The representation of time surfaces as sets of discrete flow particles leads to sev-
eral challenges during surface generation. First and foremost, unsteady flow often
induces significant relative stretching and shearing motions, resulting in the separ-
ation of neighbouring flow particles. Together with a mesh-based surface repres-
entation, this frequently leads to ill-formed, degenerated, or very thin or large tri-
angles. Additionally, it is not clear how to define the desired number of discrete flow
particles in a way such that the surface is optimally sampled. These observations
have lead to the development of a number of adaptive surface generation techniques
[GKTJ08, Hul92, KGJ09, OHBKH11]. These techniques control surface mesh qual-
ity by inserting new flow particles into the surface representation. Several heuristics
may govern this insertion process. Typically, flow particles are inserted along stretched
edges of the surface mesh, or on overly large triangles. Together with Delaunay-based
edge flipping, this ensures that the quality of triangles in the surface mesh does not de-
generate. However, these adaptivity measures have several drawbacks. First, purely
mesh-based refinement leads to the introduction of errors during particle insertion,
since piece-wise linear surface representations tend to be inaccurate. Second, the inser-
tion of new triangles makes surface size, memory usage, and extraction times highly
unpredictable, and – in the worst case – may lead to strongly unbalanced surfaces and
particle densities. I aim at resolving these issues by keeping flow particle numbers con-
stant and counteracting stretching by particle redistribution. This redistribution hap-
pens in u−direction and w−direction on the surface. However, points that lie on the
surface border are restrained to movement parallel to the border to preserve parameter
space. To further improve accuracy, particles are not moved by linearly interpolating
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between end points. Instead, I fit a cubic Coons patch that represents positions as well
as local curvature.

5.3.3 Metric Tensors

Stretching of a parameterised surface can be represented mathematically in the form of
metric tensors. Given two 3D surface tangents in parameter-space, tu, tw, the corres-
ponding 2D metric tensor in the surface is

M =

(
g11 g12
g21 g22

)
, (5.2)

where gi j = ti · t j are the components of the first fundamental form.
This metric tensor describes the local stretching of space in 3D with respect to a

given parameterisation. As indicated in previous work [OJ12], these metric tensors are
useful representations of surface stretching, deformation, and mesh quality. The ability
to quantify the amount of stretching undergone by a surface allows us to develop a re-
laxation strategy to balance the surface sampling and improve overall surface sampling
and mesh quality.

5.3.4 Surface Properties

For the remainder of the paper, I assume the availability of the following data. An
initial time surface St0 together with a 2D parameterisation and a time-varying vector
field V . The time surface consists of a set of m flow particles p with initial positions
pt0(ui,wi), velocities v, tangent vectors tu, tw ∈ R3 and normals n. Additionally, the
initial surface is triangulated with a surface mesh consisting of triangles, vertices (the
flow particle positions) and edges. Each triangle knows all triangles that it shares an
edge with, while every vertex keeps a list of neighbouring vertices and triangles.

In reference to the notion to doubly-linked edge lists and to avoid confusion with
vertices’ neighbour triangles, I call the triangle neighbours twins.

5.4 Adaptive Particle Relaxation

My examples start as planar surfaces on a uniform grid, however, my method works
for any triangulated and parametrised 2-manifold.

For a uniform relaxation, each particle has an energy function that is highest at its
position and decreases with distance. This gives us a scalar field of energies. For a more
even particle distribution, one can move the particle opposite to the gradient towards
lower energy. For a feature-dependent particle distribution, the energy is based on local
curvature. Instead of moving away from the gradient, I move the particle in gradient
direction towards higher energy, I start with particles moving in parameter space and
determine what happens to the particle in 3D.

One of the advantages of computing the change of a metric tensor is that I am
able to use it to improve particle placement. Time surfaces are usually created by
integrating a set of pathlines and connecting the particle positions at specific instances
in time to form a surface. Since pathlines (particle traces) can diverge strongly, the
surface resolution becomes unbalanced after a few advection steps.
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(a) Original surface. (b) Surface after uniform relaxation.

(c) Surface after feature-dependent relaxation. (d) High-resolution surface.

Figure 5.1: Comparison of lower-resolution surfaces (50x50) prior to relaxation and
after each relaxation technique, to a higher-resolution surface (300x300).

The advantage of a curvature-based energy function is that one can adapt the sampling
to feature size, as small surface features tend to have higher curvature, and large surface
features tend to have lower curvature.

Figure 5.2 shows a schematic overview of my method.

5.4.1 Particle Advection

A time surface S in t0 is represented by a set of m particles pi. In order to trace the
surface through the flow field V , these particles are advected by numerical integration.
For mathematical simplicty, I limit my description to simple Euler integration. Higher-
order schemes may be used to increase the accuracy of particle traces.

At time t the motion of a particle (vertex of the surface mesh) with parameters
ui,wi ∈Ω and position in space pt(ui,wi) is governed by the value of the velocity field
at p. Following Euler integration the particle position at time t +∆t is computed as

pt+∆t(ui,wi) = pt(ui,wi)+∆t ·v(pt(ui,wi), t) .

Higher-order schemes may be used to increase the accuracy of particle traces. Ve-
locity vectors at particle positions are obtained through interpolation.

In addition, there are some properties that can be derived from the surface. Tangent
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(a) Workflow illustration of the proposed relaxation-based time-surface extraction process.

(b) The surface relaxation step consists of multiple tasks.

Figure 5.2: Workflow illustration of the proposed relaxation-based time-surface extrac-
tion process.

vectors of flow particles tu, tw may also be integrated alongside the velocity field. They
define the normal n = tu× tw.

To integrate these tangents, I make use of the velocity gradient tensor ∇v(pi), where
p+

x = pi +(ε,0,0)T , p−x = pi− (ε,0,0)T etc. the velocity gradient tensor is obtained
through finite differencing as

∇v(pi) =
(

v(p+x )−v(p−x )
2ε

,
v(p+y )−v(p−y )

2ε
,

v(p+z )−v(p−z )
2ε

)T
.

For points at the boundary of the dataset, I use forward/backward differencing. The
evolution of tangent vectors during advection may now be computed as (c.f., [OJ12])

tu;t+∆t = tu;t +∆t · 〈∇v(pi), tu;t〉 (5.3)
tw;t+∆t = tw;t +∆t · 〈∇v(pi), tw;t〉 . (5.4)

The availability of accurate flow particle positions and tangent vectors allows for
precise modeling of the extracted time-surfaces. While positions are generally enough
to construct piece-wise constant surface meshes, the availability of correct tangent in-
formation facilitates the computation of tangent-space stretching as well as the con-
struction of higher-order surface representations. The particle information obtained
during advection is the basis for the proposed relaxation procedure.

5.4.2 Particle Relaxation
During advection, neighbouring flow particles may have separated, or moved closer
together, resulting in spatially varying particle densities across the surface. Often, this
leads to a less balanced surface and flow field sampling. I aim to improve surface
sampling using two different methods to redistribute flow particles across the surface
in procedures which are termed particle relaxation in the following.
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Uniform Particle Relaxation achieves a more uniform surface sampling by employ-
ing a density-based relaxation function. This function employs a deformation
tensor to counteract surface shearing and stretching resulting from particle ad-
vection.

Feature-Dependent Particle Relaxation achieves a feature-dependent surface sampling
by employing a curvature-based relaxation function. This function redistributes
particles from low-curvature areas with few (and large) features to high-curvature
areas with smaller features.

Since particles move in surface tangent space during relaxation, I am able to per-
form the involved relaxation procedures in a 2D space, followed by a projection onto a
local, accurate 3D representation of the surface. Both methods compute a local scalar
field in the particle neighbourhood, and they perform relaxation in 2D surface para-
meter space based on its gradient (see Figure 5.2(b)). This scalar field encodes the en-
ergy which can be based on the neighbourhood of a particle. In energy-based particle
relaxation procedures, particle positions are optimised based on a globally nonlinear
energy minimisation scheme. Mathematically, I estimate this energy function locally
as follows.

Given a particle in parameter-space pi = (ui,wi) with n neighbours p j = (u j,w j),
the energy e at pi is given as a summation of 2D energy kernels E:

e(pi) = ∑
p j∈N2(pi)

E(pi,p j) , (5.5)

where N2 is the two-ring of neighbours as given by Definition 2.4.
Based on these energy kernels, a direction of force fi along which the particle is

moved can be computed. This direction is equal to the negative gradient direction of e:

fi =−5 e =−

(
∂e(pi)

∂u
∂e(pi)

∂w

)
. (5.6)

Figure 5.3: An illustration of the force function fi in 1D and 2D. The 2D representation
includes isocontours and examples of inverse gradient directions.

An explicit form of this gradient can be derived directly from Equation (5.5). A
schematic representation is presented in Figure 5.3.
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∂e(pi)

∂u
=

∂

∂u ∑
p j∈N2(pi)

E(pi,p j) = ∑
p j∈N2(pi)

∂

∂u
E(pi,p j) , (5.7)

∂e(pi)

∂w
=

∂

∂w ∑
p j∈N2(pi)

E(pi,p j) = ∑
p j∈N2(pi)

∂

∂w
E(pi,p j) . (5.8)

Computing this gradient allows me to move particles in parameter-space. Each
iteration of particle relaxation accelerates the particle according to fi

vi+1 = vi + fi · steprelax , (5.9)

and causes immediate displacement in parameter-space as

pi+1 = pi +vi+1 · steprelax . (5.10)

The relaxation step width steprelax can be varied to adapt the amount of change in
each iteration of the relaxation.

steprelax =
maxedge+minedge

2
· c ,

where c = 0.08 · fmax.
Note that, because values of e itself are not required for the proposed relaxation

techniques, it is sufficient to give a definition of ∇E.
To constrain particle movement to surface parameter-space Ω, I impose the follow-

ing restrictions on particle movement:

Corners Corner particles remain fixed in parameter-space

Borders The movement of particles located on the boundary of surface parameter-
space is constrained to displacement parallel to the boundary.

These two restrictions ensure an accurate representation of ∂Ω, and at the same
time they constrain particle movements to inner regions of parameter space (i.e., avoid
an explosion of the particle system). For some datasets, border particles require addi-
tional weights to avoid accumulating particles along borders.

Uniform Particle Relaxation

The goal of uniform particle relaxation is to counteract the deteriorating sampling
caused by particle advection, and to achieve a uniform sampling of the surface. As
pointed out in Section 5.3.3, metric tensors encode surface stretching and shearing.
Since I want to counteract this stretching and keep the particles well-distributed on the
surface, I use the conjugate metric tensor T as a deformation tensor to adapt spherical
energy kernels:

T = M−1 =

(
g11 g12
g21 g22

)−1

=
1

det(g jk)

(
g22 −g12
−g21 g11

)
. (5.11)

Spherical energy kernels E, e.g., isotropic Gaussian functions, directly represent
local particle density as energy. A higher value in energy indicates a denser particle
distribution, and a lower value in energy indicates a sparse particle distribution. As a
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consequence, moving particles away from regions with a relatively high density auto-
matically results in more even particle distributions on the surface.

Let pi j = p j−pi be the directional vector of pi to its neighbour, then

∇E(pi,p j) = d(pi,p j)
2 ·

pi j

‖pi j‖
(5.12)

is the energy kernel of p j influencing pi, and the function

d(pi,p j) = r · c ·

√
pi j

‖pi j‖
T
·Ti ·

pi j

‖pi j‖
−‖pi j‖ , (5.13)

where c = 45
πr6 is constant, gives a distance-based energy which depends on local

surface distortion.
The scaling radius r is determined by relative scaling of surface to parameter-space.

It depends on the number of points in u- and w-direction: r = a · ( 1
#u +

1
#w ), where a

depends on the dataset.
This kernel function is conceptually similar to quadratic (spiky) gradient functions

found in previous work (e.g., Clavet et al. [CBP05]) and is illustrated in Figure 5.3.
However, introducing the conjugate metric tensor generally creates anisotropic dens-
ity kernels. Including this tensor has the following effect: particles that separate in
3D cause a stretching of parameter-space. This stretching is directly represented by
the metric tensor. Its conjugate represents the inverse of this stretching. As a con-
sequence, the radius of the kernel function is compressed in directions of stretching
(causing particles to move closer to one another) and extended in directions of contrac-
tion (causing particles to move further apart). This situation is depicted in Figure 5.4:
particles move away from high-density areas. Through the deformation of the radial
energy function, density increases further in regions particles were advected to, and it
decreases in the direction they came from. For more intense stretching through advec-
tion, the density is decreased more. This leads to particle movement in the opposite
direction of previous stretching, and therefore, to a more uniform particle distribution.

Figure 5.4: Role of the metric tensor (shown as ellipses) and its inverse during particle
relaxation.

Figure 5.5 illustrates what the density function looks like. Some particles are high-
lighted for illustrative purposes. For each of its neighbours, the density function is
represented as a fuzzy ellipsoid. Particles are represented by glyphs.

Feature-Dependent Particle Relaxation

The goal of feature-dependent particle relaxation is to achieve a feature-dependent sur-
face sampling. Fine features should be sampled with a finer resolution than coarse
features. Surface features occur where the surface bends. This bending results in an
increased local curvature.
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Figure 5.5: Glyph visualisation of particles in parameter space. Some particles are
surrounded by an ellipsoidal representation of their force function.

Gauß curvature is a useful tool to measure and compare curvatures of different
surface points. It is defined as

K(p) = κ1(p) ·κ2(p) ,

where κ1(p),κ2(p) are the principal curvatures of a surface at point p.
For local minima and maxima, Gauß curvature is greater than zero, whereas for

saddle points, it is less than zero. If it is exactly zero, the surface point is either para-
bolic (i.e. it bends in one direction but is flat in the other direction), or it is flat.

A large Gauß curvature signifies large principal curvatures which occur in tight
folds where there are small osculating ellipsoids. A small Gauß curvature signifies at
least one small principal curvature which occurs in slight bends with large osculating
ellipsoids.

As the algorithm operates on a mesh-based surface, a discrete version of Gauß
curvature is needed. There are a variety of different definitions. The most common is
given as follows [LP82, KKL02, MDSB03, LLV05, Xu06]:

K(p) =
2π−∑

n
i=1 αi

1
3 ∑

n
i=1 Ai

,

where n edges span the one-ring of neighbours around p, αi is the angle between
two neighbouring edges, and Ai are the areas of spanned triangles.

Based on this definition, one can build a curvature-based energy Kernel:

E(pi,p j) =−
2 ·K|max|

|K(pi)−K(p j)|
· (p j−pi) ,

where K(pi),K(p j) are the Gauß curvatures of pi,p j, and

K|max| = max(max
i
|K(pi)|,1)
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is the maximal absolute Gauß curvature of the surface.

As for uniform relaxation, the energy kernel creates a spiky gradient function, as
sketched in Figure 5.3. The scaling factor

2·K|max|
|K(pi)−K(p j)| depends on curvature. Since

K|max| > 1 and s := |K(pi)−K(p j)| ≤ 2 ·K|max|, it is always greater than one.

The avid reader will wonder if the inverse, s−1 =
|K(pi)−K(p j)|

2·K|max|
, would produce

good results. However, |K(pi)−K(p j)| can take values greater as well as less than
1. If |K(pi)−K(p j)|> 1, it produces strong oscillations in the energy function, which
makes them numerically unstable. Using s rather than s−1 results in a damped oscilla-
tion [PM88], and therefore, in a numerically stable energy function.

As a result of this method, there are many small triangles in regions of high curvature
in order to preserve the features present in these regions. In exchange, there are fewer
and larger triangles in regions of low curvature in order to save storage and to pre-
serve the total particle count. As the features are coarse, they do not require the same
sampling as finer features.

5.4.3 Particle Placement

In order to determine the relaxed 3D position of a particle, I need to identify the con-
taining surface mesh triangle.

I am looking for the triangle that contains the new parametric coordinates of a
particle as determined in Equation (5.10). To locate this triangle, I examine the neigh-
bour triangles of the particle and perform a 2D point-in-triangle test for the new para-
meters (u′i,w

′
i)

T . If successful, I estimate the new 3D position of the particle by per-
forming a local fitting of a smooth Coons patch as described in the following section.
If the point is not contained in any triangle of this neighbourhood, it is not moved.
This ensures locally constrained evolution of the particle set during each iteration of
the relaxation procedure.

Local Coons Patch Fitting

Once the correct triangle has been located, I fit a cubic triangular Coons Patch as
defined by Farin [Far02b, pp. 414 – 416] into the triangle. Construction of the Coons
patch requires the 3D coordinates of triangle vertices as well as tangent informa-
tion along the edges. I further assume knowledge of the barycentric coordinates b =
(b0,b1,b2) of pk in relation to the triangle defined by p0,p1,p2 in parameter space.

The tangents of a Hermite curve along the edge from point pi to point p j should
lie in the tangent plane of their respective end points – the corner points of the surface
patch. For each edge, I can express 2D tangents using a linear combination (ui j,wi j)

T

which I apply to the 3D tangents at the end points to obtain tangent vectors tu, tw in
edge direction.

With these new tangent vectors tu, tw, I am able to define cubic Hermite curves on
each edge between end points pi,p j. These curves interpolate end point positions and
tangents, leading to an accurate, locally C1 representation of the surface.
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I make use of the standard cubic Hermite base functions:

H3
0 (r) = B3

0(r)+B3
1(r) = 2r3−3r2 +1 ,

H3
1 (r) =

1
3

B3
1(r) = r3−2r2 + r ,

H3
2 (r) =−

1
3

B3
2(r) = r3− r2 ,

H3
3 (r) = B3

2(r)+B3
3(r) =−2r3 +3r2 .

To interpolate along the edges of the triangle, I interpolate using relative barycentric
coordinates:

r =
b1

b1 +b2
, s =

b2

b0 +b2
, t =

b1

b0 +b1
.

This results in Hermite curves along each patch boundary:

C0(r) = p2 ·H3
0 (r)+ t2 ·H3

1 (r)+ t1 ·H3
2 (r)+p1 ·H3

3 (r) ,

C1(s) = p0 ·H3
0 (s)+ t0 ·H3

1 (s)+ t2 ·H3
2 (s)+p2 ·H3

3 (s) ,

C2(t) = p0 ·H3
0 (t)+ t0 ·H3

1 (t)+ t1 ·H3
2 (t)+p1 ·H3

3 (t) .

Figure 5.6: Ruled surfaces are constructed between each pair of boundary curves.

Now, I can define ruled surfaces between each pair of boundary curves, as illus-
trated in Figure 5.6:

S0(r) = (1− r) ·C1(s)+ r ·C2(t) ,

S1(s) = (1− s) ·C2(t)+ s ·C0(r) ,

S2(t) = (1− t) ·C1(s)+ t ·C0(r) .

and construct the Coons surface patch (Figure 5.7) as a convex combination of ruled
surfaces:

S(b) = b0 ·S0 +b1 ·S1 +b2 ·S2 .

This local surface approximation makes use of accurate tangent and position in-
formation and produces smoother surface representations than standard piece-wise lin-
ear meshes. Using this higher-order surface representation ensures that positions of
relaxed particles lie close to the true time-surface location. This yields a much more
faithful, C1-continuous representation of the surface to the influence of tangents on sur-
face shape and on the transition between neighbour patches. Note that moving particles
on a piece-wise linear representation of the surface would introduce significant errors
to relaxed surfaces.
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Figure 5.7: The 3D position of a point in parameter space can be determined by using
the same barycentric coordinates.

5.4.4 Particle Update
Once the new position of the point on the surface is determined, I interpolate tangents
from the available surface information and adapt the particle’s parameters. Points on
the border of the time surface are moved along the border. They are moved along the
Hermite curves Ci defined in the previous section. This avoids growth or shrinkage
during relaxation.

If the new position is on the edge that is shared between the current triangle and
one of its neighbours, this shared edge is flipped to maintain a well-formed mesh. This
is carried out by the same criteria which are used for mesh quality.

5.5 Mesh Quality Preservation
Mesh quality is an important property of triangulated surfaces. Long and thin triangles
are prone to degeneration. This makes it difficult to compute numerically correct nor-
mals. As seen in the previous chapters, normals are powerful tools for virtual prototyp-
ing. Furthermore, they are used for a variety of other tasks such as producing visually
smooth renderings of the virtual prototype. Rendering methods, like Phong shading or
raytracing [BB06], rely on normals to determine how light interacts with the surface.

5.5.1 Delaunay Condition
The Delaunay condition is one of the most common criteria to judge mesh quality. It
is used for Delaunay triangulation, a method that creates an optimal triangulation for a
given set of (planar) points [DBVKOS00]. The Delaunay condition is defined on a pair
of triangles which share an edge, as illustrated in Figure 5.8. To assess the quality of
a triangulation, the two opposing angles ϕ1,ϕ2 are examined. The Delaunay condition
is fulfilled if

ϕ1 +ϕ2 ≤ 180◦

holds. If the sum of opposing angles is greater than 180◦, triangulation of the four
corner points is not optimal as the triangles are narrow. To improve the triangulation,
the edge can be flipped, as demonstrated in Figure 5.8.

In order to avoid oscillating edges, i.e. frequent back and forth flipping of edges, I
relax the condition as follows:

ϕ1 +ϕ2 ≤ 190◦ .
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Figure 5.8: Delaunay criterion for neighbouring triangles. If the sum of ϕ1 and ϕ2 is
greater than 180◦, the edge is flipped.

After each relaxation step, this criterion is checked for all vertex neighbourhoods.
To avoid artefacts, both triangles are marked as flipped and cannot be flipped again
during this relaxation iteration. Retriangulation is computationally expensive, and al-
lowing several flips per triangle would further increase computational cost. Over the
course of a number of relaxation steps, it is possible for the triangulation to progress
towards a globally improved state.

5.5.2 Mean Curvature
The Delaunay condition was developed for triangulation in a plane. For triangulated
surfaces which bend in space, this is more challenging. Blindly flipping normals re-
gardless of surface properties leads to a loss of three-dimensional surface features like
bulges or cavities. To avoid these issues, I require that convex edges remain convex,
and concave edges remain concave.

This can be achieved by considering the mean curvature H at an edge. If it is greater
than zero, there is a bulge, and if it is less than zero, there is a cavity. If it is equal to
zero, the two triangles lie inside a plane.

I compute discrete mean curvature for edge e as defined by [Bou97]:

He =
1
2

ϑ‖e‖ ,

where ϑ is the angle between the triangle normals, as illustrated in Figure 5.9.
The resulting triangulations can exhibit an increase or decrease in the size of surface

features, but convex surface parts do not become concave, and concave surface parts
do not become convex.

5.6 Results and Discussion
I present results obtained by applying the proposed relaxation-based time-surface ex-
traction algorithm to the following three benchmark datasets.

Jet Stream The Jet Stream dataset simulates the effects of four high-velocity jet
streams. The dataset contains large amounts of turbulence along lateral regions of
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Figure 5.9: Discrete mean curvature of an edge depends on the dihedral angle between
adjacent triangles [Bou97].

the streams. The dataset is represented as 128×256×128 cells in a uniform grid with
5 time steps.

Dam Break The Dambreak dataset is a two-phase flow simulating the collapse of
a column of water under gravitational forces. The motion of phases (water and air)
are encoded in a joint vector field. The collapse of the water column creates signific-
ant distortion effects at the fluid interface, providing an environment for time-surface
extraction. The dataset is a uniform grid with 68×68×68 cells and 91 time steps.

Rayleigh-Taylor Instability The Rayleigh-Taylor Instability simulation models the
effects of motion along a fluid interface with a large density discontinuity. The typ-
ical chaotic nature of Rayleigh-Taylor Instabilities forms multiple seemingly random
Rayleigh-Taylor “fingers” at the fluid boundary, resulting in significant stretching of
the interface. The dataset contains 68×68×68 cells and 61 time-steps.

5.6.1 Performance Statistics
All performances evaluations were carried out on a laptop with an Intel R© CoreTM i7-
2860QM CPU (8 cores with 2.50GHz) and 16GB RAM, using a 64 bit Linux. Note
that these measurements presented here do not reflect the performance of optimised
code, but that of a prototype implementation with basic parallelisation.

Table 5.1 presents average run times for advection and relaxation over all time
steps of each dataset. Surface advection is consistently fast at only 0.035 seconds of
advection time per time step. On average, a single relaxation step takes between twice
as long and three times as long as surface advection. Uniform relaxation is slightly
faster than feature-dependent relaxation, and both techniques vary depending on the
dataset.

5.6.2 Quantitative Analysis
To assess the quality of the resulting surfaces, I use quality metrics based on the min-
imal angle ϕmin(Ti) of each triangle Ti in the mesh. I compare surfaces prior to relax-
ation with surfaces after the application of each relaxation method.

As a first quality metric for a surface S with n triangles, I am interested in the worst
case, so I examine the smallest angle of the entire mesh. The smallest angle of a surface
S can be computed as

ϕmin(S) = min
i

ϕmin(Ti) .
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Dataset Advection Uniform Relaxation Feature-Dependent
Relaxation

1 step 50 steps 1 step 50 steps

Jet 0.037 s 0.097 s 4.85 s 0.099 s 4.95 s
Dam Break 0.041 s 0.084 s 4.20 s 0.091 s 4.56 s
Rayleigh-Taylor 0.033 s 0.084 s 4.18 s 0.103 s 5.14 s

Average 0.035 s 0.088 s 4.41 s 0.098 s 4.89 s

Table 5.1: Run times of advection and both relaxation techniques for all datasets at a
resolution of 50x50 points.

As a second quality metric, I am interested in the average case, so I examine the
average minimal angle of all triangles. The average minimal angle of all triangles of a
surface S can be computed as

ϕavg(S) =
1
n

n

∑
i=1

ϕmin(Ti) .

In Table 5.2, I present the smallest minimal angles and the average minimal angles
for each dataset. I compare the angles of unrelaxed surfaces with those of surfaces
after relaxation using either of the techniques. As one can see, the overall mesh quality
improves significantly: in almost all cases, both the smallest minimal angle and the
average minimal angle increase through relaxation. The only exception to this happens
for the Dam Break dataset during uniform relaxation: two particles move towards each
other independently, resulting in a very narrow triangle. Restricting particle movement
to the one-ring of neighbours avoids complete degeneration. Furthermore, mesh optim-
isation can usually repair the triangulation in such cases through an edge flip. However,
the very strong stretching that takes place where the surface folds over makes it difficult
to repair the triangulation.

Relaxation Jet Stream Dam Break Rayleigh-Taylor
ϕmin(S) ϕavg(S) ϕmin(S) ϕavg(S) ϕmin(S) ϕavg(S)

Original 0.59 28.74 0.62 35.43 9.45 35.85
Uniform 2.31 37.92 0.04 38.42 12.22 41.12
Feature-dependent 6.66 38.00 0.89 38.41 12.71 40.71

Table 5.2: Smallest minimal angles and average minimal angles over all triangles of
the surface mesh. Each surface mesh has a resolution of 50x50 points.

The biggest improvement can be seen for the Jet Stream dataset, while the highest
mesh quality is achieved for the Rayleigh-Taylor dataset. The average minimal angle
increased from ϕavg(S) ∈ [28.74,35.85] to ϕavg(S) ∈ [37.92,41.12] for uniform relax-
ation and ϕavg(S) ∈ [38.00,40.71] for feature-dependent relaxation.

A direct comparison between uniform relaxation and feature-dependent relaxation
shows that for the Jet Stream dataset, feature-dependent relaxation yields better results,
whereas for the Rayleigh-Taylor Instability dataset, uniform relaxation performs bet-
ter. For the Dam Break dataset, the average minimal angles are almost identical. The
smallest minimal angle improves with respect to the unrelaxed surface in the feature-
dependent case, while for the uniform case, it deteriorates. Overall, the results are very
similar, and the choice of an optimal relaxation method depends on the dataset.
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5.6.3 Qualitative Analysis

Quantitative analysis can give some insight into the quality of results. However, it is
difficult to judge how well-balanced or poorly balanced a surface sampling is without
considering visuals.

In this section, I give a side-by-side comparison of surface meshes before, dur-
ing, and after relaxation. Results of both strategies – uniform relaxation and feature-
dependent relaxation – are shown in these figures.

(a) 0 relaxation steps, side view. (b) 0 relaxation steps, top view.

(c) 10 relaxation steps, side view. (d) 10 relaxation steps, top view.

(e) 50 relaxation steps, side view. (f) 50 relaxation steps, top view.

Figure 5.10: Jet during uniform relaxation for a surface of resolution 50x50.

A detailed overview of differences between the methods can be seen in Figures 5.10
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and 5.11, in which I applied both relaxation techniques to the Jet Stream dataset. In
both figures, the top row shows the surface immediately after advection, the middle
row shows results after 10 relaxation steps, and the bottom row shows results after
50 relaxation steps. The most significant change can be observed for the switch from
the surface prior to relaxation to the surface after 10 relaxation steps. On the neck of
the plume, the triangulation changes tremendously from very long and thin triangles
which are stacked next to each other, to a much more balanced triangulation with well-
distributed particles. After relaxation, the discretisation gives a much better surface
sampling than prior. On top of the plume, turbulence in the vector field has led to the
formation of pockets. Both relaxation techniques result in a much better triangulation
in these areas.

While the results of uniform relaxation and feature-dependent relaxation are very
similar in most areas of the jet stream surface, they differ in the pockets, as shown in
Figures 5.10f and 5.11f. Here, uniform relaxation evens out the particle distribution,
which leads to a slight reduction in pocket depth. Feature-dependent relaxation, on the
other hand, was designed especially for such features. As expected, it preserves pocket
depth much better.

In Figure 5.12, I present the results of applying each relaxation technique to the
Dambreak dataset. Part of the surface remains upright, and another part bends down
(seen in the left column) and folds back to curl further down (seen in the right column)
and flow down towards the front (not pictured). There are two regions in which the
two methods differ greatly. The first region is located where the surface bends down
(pictured in the left column). On this part of the surface, there are a lot of narrow tri-
angles, however, the curvature is rather low. Therefore, uniform relaxation spreads out
the triangles over a larger area to counteract the stretching, whereas feature-dependent
relaxation mainly focuses on the surface part closer to the fold as the curvature in-
creases in this area. The second region is located where the surface curls up in the
back (pictured in the right column), and in the crease between the bent part and the up-
right part of the surface. Again, uniform relaxation spreads out triangles to counteract
the compression taking place during advection. However, feature-dependent relaxation
preserves and further reduces triangle size towards the crease where the curvature is
highest.

Overall, both methods behave as expected. Uniform relaxation performs better
than feature-dependent relaxation in areas with strong stretching but low curvature,
and feature-dependent relaxation performs better in areas with high curvature but less
stretching.

There are three main differences between the two methods. First of all, uniform
relaxation computes energy based on local deformation information, whereas feature-
dependent relaxation computes it based on Gauß curvature. Second, the uniform method
moves particles away from high energy, whereas the feature-dependent method moves
them towards high energy. Finally, uniform relaxation bases its energy function on
information from a single point, whereas feature-dependent relaxation bases it on in-
formation from the star set of each point.

In Figure 5.13, I present the results obtained by applying both methods to the
Rayleigh-Taylor Instability dataset. As there is a lot of turbulence in this dataset, it
is difficult to compare it side by side in static images. On the left of each image, there
is a close-up of a region in which the differences are easily seen. Feature-dependent
relaxation is able to preserve the peak in its full size, wherease it shrinks under uniform
relaxation. Uniform relaxation, however, provides a more balanced triangulation on
the side of the peak that descends towards the viewer. There are more examples like
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this throughout the surface, e.g. there is a double peak at about a quarter from the left
of the front border. Feature-dependent relaxation preserves the depth of the minimum
between the peak, whereas with uniform relaxation it becomes more shallow. As the
Rayleigh-Taylor Instability produces high curvature almost everywhere on the surface,
feature-dependent relaxation is much better suited for this particular example.

Overall, each technique has its own strengths and weaknesses as they were both
developed with a specific goal in mind. One question remains, however: how many
relaxation steps are adequate? Throughout this chapter, almost all images and statistics
were generated using 50 iterations. However, 10 iterations can produce similar results
to those obtained after 50 steps, as seen in Figures 5.10 and 5.11. It is possible to define
termination critera such as minimum required change between iterations. This choice
depends on the dataset. For the Dambreak dataset, the changes shown in Figure 5.12c
have spread significantly starting from the surface border between 10 iterations and 50
iterations (not shown).

5.7 Conclusion
The goal of this chapter is to support simulation through the development of a time-
surface extraction technique that performs adaptive particle relaxation to keep the sur-
face well-sampled and balanced.

I have presented two different particle relaxation techniques. The first technique
performs local energy optimisation based on the metric tensor, such that particles move
away from regions with high energy (i.e. high particle density) and towards regions
with low energy (i.e. low particle density). The metric tensor is computed from dis-
crete tangents on each particle and it provides a measure for local surface deformation.
The second technique performs local curvature optimisation based on discrete Gauß
curvature at a particle. Particles move away from low-curvature regions towards high-
curvature regions.

Both approaches operate on a 2D scalar field in parameter space. To transfer point
movement from 2D parameter space to 3D Euclidean space, it is necessary to inter-
polate point positions on the surface. I utilise Coons patches as a higher-order surface
representation to enable faithful reconstruction.

Furthermore, I optimise the mesh in order to achieve accurate surface representa-
tions with good mesh quality. Checking the Delaunay criterion for neighbouring tri-
angles to avoid degenerated triangles is the basis for this optimisation. Moreover, I
employ discrete mean curvature as a restriction for the Delaunay criterion. This serves
to preserve convex and concave surface features.

As seen in Section 5.6, both relaxation techniques result in a better surface sampling.
Unsurprisingly, uniform relaxation is better at providing a more uniform surface sampling,
whereas feature-dependent relaxation is better at preserving surface shape in regions of
high curvature.

Both relaxation techniques work on a copy of the previous relaxation iteration (or
the freshly advected surface). Furthermore, they work locally in the neighbourhood of a
point. This means that almost all computations can be executed in parallel. Therefore,
particle relaxation could benefit greatly from parallel execution on GPUs, and from
executing in a high-performance computing environment.
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(a) 0 relaxation steps, side view. (b) 0 relaxation steps, top view.

(c) 10 relaxation steps, side view. (d) 10 relaxation steps, top view.

(e) 50 relaxation steps, side view. (f) 50 relaxation steps, top view.

Figure 5.11: Jet during feature-dependent relaxation for a surface of resolution 50x50.
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(a) Front view, no relaxation. (b) Back view, no relaxation.

(c) Front view, uniform relaxation. (d) Back view, uniform relaxation.

(e) Front view, feature-dependent relaxation. (f) Back view, feature-dependent relaxation.

Figure 5.12: Relaxation of the Dambreak dataset for a surface of resolution 50x50.
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(a) No relaxation.

(b) Uniform relaxation.

(c) Feature-dependent relaxation.

Figure 5.13: Relaxation of the Rayleigh-Taylor Instability dataset for a surface of res-
olution 50x50.



78 CHAPTER 5. ADAPTIVE PARTICLE RELAXATION



Chapter 6

Conclusion

In this thesis, I have presented a range of methods supporting the virtual prototyp-
ing workflow of industrial surface design (Figure 6.1). From a masterpiece to a final
product, several iterations of refinement are required to improve the prototype. A vir-
tual prototype is built consisting of analytic or discrete surface patches, e.g. Bézier
patches. It can be modified interactively by deforming along normal vectors, or one
can optimise geometric properties automatically. Alternatively, one can run simula-
tions to identify issues of the model or its interaction with the environment, and one
can then reiterate through the virtual design cycle to solve these issues.

After sufficiently many iterations of the virtual design cycle, a physical prototype
can be constructed and tested. Depending on the outcome of testing, one can either go
back to the virtual design cycle to solve potential real-world issues. Finally, if all tests
yield satisfactory results, the final product can be built.

Figure 6.1: Virtual prototyping workflow: from a masterpiece to the final product.

In Chapter 3, the main focus lies on automated surface optimisation. I have presen-
ted how to preserve total Gauß curvature during an automatable deformation process
that takes place in normal direction. As I have proven in this chapter, infinitesimal
changes in normal direction do not affect total Gauß curvature. Minimal total Gauß
curvature leads to minimal bending energy and a reduction of material use. Therefore,
overall production cost is reduced. This surface optimisation procedure can be em-
ployed at the end of the virtual design cycle, after larger changes to the model have
already occurred.

In Chapter 4, the main focus lies on interactive surface optimisation. I have provided
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discrete normals as a tool for interactive surface deformation. Furthermore, I have
compared different stategies for discrete normal estimation for both curves and sur-
faces. The resulting normals provide an intuitive and effective means of manipulation
for a virtual prototype consisting of surface patches. Depending on the specific sur-
face model, different types of normals may be the best choice. The industrial surface
designer has to judge which set of normals best fits his or her purposes.

In Chapter 5, the main focus is two-fold. Both contributions tie into simulation,
but they can also be applied to meshes directly. I have improved surface discretisa-
tion through two different relaxation procedures to achieve a better-suiting sampling of
the surface. Moreover, I have improved mesh quality in order to better represent and
preserve surface shape.

One of the focus areas is the interface between a virtual prototype and simulation,
as this step requires discretisation. I have presented two different strategies for surface
discretisation, which both use a relaxation procedure to adapt the surface discretisation
through redistribution of particles. The first strategy creates a more uniform distribution
by using a deformation tensor-based energy function which counterbalances the local
distortion. It is well-suited for models which possess features of similar sizes, as the
discretisation provides a spatially uniform sampling of the surface. The second strategy
creates a non-uniform distribution that has finer sampling for small-scale features, and
coarser sampling for large-scale features. This is achieved using curvature-based re-
laxation which effectively detects surface features. It is well-suited for models which
have varying feature sizes, as the sampling is denser in regions with small features than
in regions with large features.

The other focus area of this chapter is automated mesh optimisation. Due to the
change in sample positions through advection as well as through relaxation, mesh qual-
ity suffers while the discretisation becomes better. I have optimised mesh quality by
using a combination of the Delaunay criterion and discrete mean curvature as a cri-
terion to steer retriangulation. The resulting meshes have much larger average minimal
angles than unrelaxed surfaces, as shown in Section 5.6.2.

Overall, I have contributed the following techniques to support the virtual proto-
typing workflow:

a discretisation method that can either be applied to the surface model of a virtual
prototype, or to integral surfaces during simulation. On the virtual prototype, it
supports optimisation of an initial sampling prior to conducting simulations on
the model. During the simulation process, it counteracts local deformation of
integral surfaces, and it provides a better sampling of differently sized features
of the surface.

curvature-aware mesh optimisation which can be used to optimise triangulations of
the virtual prototype, or of integral surfaces. In either case, it assists engineers
in producing faithful samplings of a surface, which do not sacrifice convex or
concave surface features, while keeping the required number of mesh points low.

an interactive modification tool in the form of discrete surface normals for control
structure. It can be used to modify the initial design, or to optimise the surface
model during the virtual design cycle.

automatic optimisation of total curvature, which can be employed on the virtual pro-
totype initially during the design phase, or before constructing physical proto-
types.
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Finally, to round off my work, I will conclude this thesis with an exemplary virtual
prototyping workflow which incorporates all of these contributions.

6.1 Examplary Workflow
Automobile industry relies heavily on the use of CAGD methods. Some of the geo-
metric foundations of this thesis were, in fact, developed in an automotive engineering
context.

When the coachwork of a car is developed, the process starts with a visual idea, e.g.
a sketch on paper. This sketch is then constructed as a virtual prototype in a CAGD
environment. Next, industrial designers can interactively modify and refine the virtual
prototype within this CAGD environment, or possibly even a virtual reality environ-
ment. For this modification step, efficient tools for interaction are vital. Discrete nor-
mals, as introduced in Chapter 4, are an easy and efficient tool to deform the surface
model. They work particularly well if the model is given as Bézier surface patches, as
the user can restrict interaction to a small number of control points instead of a large
number of individual surface points. After manual modifications are made, the indus-
trial designer can apply automatic optimisation with respect to total curvature in order
to minimise material expenses at an early stage, as presented in Chapter 3.

Once the designer is satisfied with the surface model of the virtual prototype, he
or she can run simulations. For this purpose, the prototype surface has to be discret-
ised. Initially, this can be achieved by using an equidistant sampling in parameter
space. However, as demonstrated in Figure 4.14, equidistant parameters do not always
provide a good sampling of a surface. Therefore, it makes sense to optimise the initial
sampling using one of the relaxation methods presented in Chapter 5 (and using the
vertices as particles). On a single surface patch, uniform relaxation is a suitable choice
as large curvature changes are unlikely to occur. If the surface model is constructed
from a collection of Bézier patches, large curvature changes within a patch are still un-
likely, however, they can occur across surface patch boundaries. When relaxing such
a surface, points can travel across patch boundaries after discretisation. In this case,
either technique (uniform relaxation or feature-dependent relaxation) could be a good
choice, depending on the surface model. For example, the side mirror of a can like the
one displayed in Figure 6.2 has much finer features than the roof of a car. Therefore,
it makes sense to have a higher resolution sampling of the mirror than of the roof, so
feature-dependent relaxation would be a good choice.

When the virtual prototype has been discretised, simulations can be conducted.
Wind tunnel simulation is a typical simulation used in automotive engineering. An
object, such as a vehicle, is placed in a virtual wind tunnel. The flow behaviour of
the air is represented by a three-dimensional vector field. It serves to evaluate the
aerodynamic resistance of the vehicle (e.g. to reduce gas consumption), and to identify
potential stability issues (e.g. to reduce potential breakage). Turbulence in the air flow
is one of the features that engineers are interested in. To aid flow analysis, the flow
field can be visualised using integral surfaces. These integral surfaces can be optimised
using the relaxation techniques presented in Chapter 5. Figure 6.2 shows an example
of visualisation by computing and rendering integral surfaces (without relaxation). As
one can see in this rendering, there is a lot of turbulence behind the side mirror. If
the engineer is not satisfied with the aerodynamic properties of the surface model, he
or she can recycle to the optimisation stage to modify it. After a discretisation of the
modified surface model, the simulation can be run again.
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Figure 6.2: Flow visualisation of simulated flow around the surface model of a car.
This image is included with kind permission from Mathias Hummel. It was generated
using illustrative rendering as presented in [HGH+10].

When sufficiently many iterations of modifying and analysing the virtual prototype
have been conducted, the results meet all criteria that the engineer has defined. At this
point, the virtual prototype can be built as a physical prototype for further testing, and
eventually, it can go into production.



Appendix A

Index of Notations

Lower Case Greek Alphabet

ϕ,ϑ angles
κ curvature
κ1,κ2 minimal/maximal curvature
λ i choice operator (chooses ith element of a vector
τ torsion
ω weight

Upper Case Greek Alphabet

Γi jk Christoffel symbols of the first kind
Γk

i j Christoffel symbols of the second kind
Ω parameter space

Lower Case Standard Letters

d(P,Q) distance between P,Q
dH(P,Q) Hausdorff distance between P,Q
f ,g,h function
g11,g12,g22 first fundamental form
g jk metric tensor
glm conjugate metric tensor
h11,h12,h22 second fundamental form
i, j,k, l,m indices
n n ∈ N
r radius
s arc length
t time parameter
u,v,w spatial parameters
x,y,z 3D coordinates
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Upper Case Standard Letters

Ck k-times continuously differentiable
E energy kernel
H mean curvature
K Gauß curvature
M metric tensor
N(x) neighbourhood of x
T (deformation) tensor
S submanifold
TpM collection of all tangent spaces at all points p of n-dimensional manifold M
T M tangent bundle (2n-dimensional manifold)
U,Ui,Ua subspace
X ,Y set

Lower Case Altered Letters

a,c edges
b binormal vector
e eigen vector
f force vector
m main normal vector
n normal vector
p,q points
t, tu, tw, tuw tangent vector
v velocity vector
x vector
ẋ, ẍ, ...x derivatives w.r.t. t
x′,x′′,x′′′ derivatives w.r.t. a different variable
xu,xw,xuw directional derivatives

Upper Case Altered Letters

A (x) adjacency set of x
C curve
E3 Euclidean space
M manifold
N natural numbers
Z integers
R real numbers
S surface
T triangle
T topology
TX topology on X
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Other
‖x‖ Euclidean norm
∇ f gradient of f
∂ partial derivative
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