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Abstract

In this paper we consider the problem of decomposing a given integer matrix A into

a positive integer linear combination of consecutive-ones matrices with a bound on the

number of columns per matrix. This problem is of relevance in the realization stage

of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf

collimators with limited width. Constrained and unconstrained versions of the problem

with the objectives of minimizing beam-on time and decomposition cardinality are con-

sidered. We introduce a new approach which can be used to find the minimum beam-on

time for both constrained and unconstrained versions of the problem. The decomposition

cardinality problem is shown to be NP-hard and an approach is proposed to solve the

lexicographic decomposition problem of minimizing the decomposition cardinality subject

to optimal beam-on time.

Keywords: intensity modulated radiation therapy, multileaf collimator sequencing, field

splitting, beam-on time, decomposition cardinality.
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1 Introduction

In intensity modulated radiation therapy (IMRT), linear accelerators (linacs) (Figure 1) are

used to deliver radiation to a target volume (the tumor tissue). The linac is mounted on a

gantry which is able to rotate along a central axis while the patient is positioned on a couch

that can rotate as well. In this way, it is possible to irradiate the patient from almost any

angle. A number of radiation beams is selected and optimal fluence profiles for each beam

are determined, which are represented as integer intensity matrices (IMs). The entries of

an intensity matrix represent exposure times for particular bixels or beamlets of a radiation

beam.

Figure 1: Medical linear accelerator from outside and inside.

Images courtesy of Varian Medical Systems, Inc. All rights reserved.

Source: http://varian.mediaroom.com/index.php?s=13&cat=12&mode=gallery

Radiation passes through a multileaf collimator (MLC) (Figure 2) which realizes the flu-

ence profile. The MLC consists of several pairs of identical tungsten alloy leaves. The leaves

are positioned in opposing pairs and can move towards the opposing leaf or away from it to

block or open the radiation beam. Thereby, the intensity of radiation can be individually

controlled for each bixel, which is defined by an area of the radiation field the size of which is

equal to the width of a leaf times the length of a minimal feasible move of the leaf. A beam

shaping region can thus be created as shown in Figure 2. In this beam-shaping region, all

areas not covered are irradiated with the same intensity. Because the dose delivered to the

patient body is proportional to exposure time, by overlaying several beam shaping regions

(or apertures) it is possible to form any intensity matrix. For more details on the planning

process of IMRT please see Schlegel and Mahr [2002] and Ehrgott et al. [2008] and references

therein.

Example 1.1 shows how a multileaf collimator is used to create an IM of different inten-

sities. In Figure 3 the darker cells indicate a higher intensity.

Example 1.1. If each of the light grey cells in Figure 3 corresponds to a radiation intensity
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Figure 2: Multileaf Collimator.

Image courtesy of Varian Medical Systems, Inc. All rights reserved.

Source: http://varian.mediaroom.com/index.php?s=13&cat=22&mode=gallery

of value 1, and each of the dark grey cells corresponds to an intensity of value 2 then the

overall intensity distribution can be modeled by the integer intensity matrix

A =













0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0













.

The planning process of intensity modulated radiation therapy involves three optimization

problems: the optimal selection of the number and angle of the beam directions to be used

(the beam angle or geometry optimization problem), the optimization of the fluence maps

or intensity matrices for each chosen direction (the fluence map or intensity optimization

problem) and finally, the collimator sequencing or realization problem. For an overview of

optimization techniques used in IMRT planning we refer to Ehrgott et al. [2008]. In this

paper we only discuss the realization problem. Therefore we assume that the number and

directions of the beams from which the patient is going to be irradiated are already fixed

and that optimal intensity matrices for each of these beams are known. The realization

problem is to find an efficient delivery sequence, i.e., a sequence of beam shaping regions via

MLC adjustments to deliver the corresponding intensity matrix ensuring the best possible

treatment. Throughout this paper we will consider step-and-shoot static IMRT where the

radiation is turned off during the leaf adjustments, i.e., leaves do not move during irradiation.

Depending on the design of MLCs, there may be several technical constraints that have

to be respected in the realization problem. In this paper, we consider the maximum leaf

spread constraint and the interleaf collision constraint. The maximum leaf spread constraint

restricts the maximum distance between opposing leaves. In other words, the mechanical

design of MLCs restricts the beam-shaping region since no leaf can have a larger distance
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Figure 3: Leaf positions of an MLC and intensity profiles.

from the vertical center line of the MLC than a certain threshold value. For example, size

limits for Elekta and Varian MLCs are 12.5 cm and 15 cm, respectively [Chen et al., 2011].

Therefore, large intensity matrices (radiation fields) need to be split into several (adjacent)

subfields, where the width of each subfield is not allowed to be larger than a given threshold

value. There are two versions of this problem as stated by Chen et al. [2011]:

1. Splitting using vertical lines without overlapping of the subfields,

2. splitting using vertical lines, allowing overlapping of the resulting subfields. In the

literature this is often referred to as field splitting with feathering [Wu et al., 2000, Liu

and Wu, 2010].

In this paper, we focus on field splitting with feathering since the former can be considered

as a special case of the latter.

Example 1.2. Consider the intensity matrix A from Example 1.1,

A =













0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0













.

Suppose that the maximum field width is 3. Then, in order to realize the intensity profile we

need to split it into at least two subfields. For example, one can split the intensity matrix A
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into two subfields

A1 =













0 1

1 1

0 1

1 1













, A2 =













1 1

2 0

1 2

0 0













,

such that no overlapping of the subfields occurs, i.e., each entry of the matrix A is covered

by only one of the subfields:

A =













0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0













,

where the light grey part represents A1 and the dark grey part represents A2.

On the other hand, if overlapping is allowed the desired intensities in the feathering region

are represented by the sum of subfields in the feathering region. Consider the following split

of A into two subfields

A1 =













0 1 1

1 1 0

0 1 0

1 1 0













, A2 =













0 1

2 0

1 2

0 0













.

Then the desired intensity profile is achieved as

A =













0 1 1 + 0 1

1 1 0 + 2 0

0 1 0 + 1 2

1 1 0 + 0 0













,

where the matrices A1 and A2 overlap in the third column of A (colored grey) which is

represented as the sum of the third and first column of the matrices A1 and A2, respectively.

Some commercial MLCs restrict leaf positions in the beam shaping region. More precisely,

a leaf is not allowed to be positioned further than the opposing leaves in the adjacent rows.

This restriction is referred as interleaf collision constraint and extensively studied in Kali-

nowski [2005] and Baatar et al. [2005]. For example, leaf collision occurs in the last row of the

second beam shape in Figure 3, where the right leaf is positioned further than the opposing

left leaf in the third row.

The realization problem has a great impact on the quality of the radiation treatment.

The quality of the segmentation can be characterized by several features of the segmentation

(see, e.g., Ehrgott et al. [2008], Chen et al. [2011], Lim and Lee [2008], Pardalos and Romeijn

[2009]). In this paper we consider the total beam-on time and total number of shape matrices.

The total beam-on time represents the total amount of time a patient is exposed to radiation,
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whereas the number of shape matrices represents the total number of adjustments of the leaves

(beam shapes) of the MLC required to deliver the IM. Although the realization problem is a

multi-objective optimization problem, the algorithms that have been developed for sequencing

with field splitting consider only beam-on time (see, e.g., the exact algorithms introduced

by Kamath et al. [2004] and Chen et al. [2011]). Our paper will address the cardinality

objective function in the sequencing problem with field splitting. This has, to the best of

our knowledge, never been discussed in the literature. We also consider the field splitting

problem as a lexicographic optimization problem. Moreover, we extend our approach to

MLCs with interleaf collision constraints, which also has not been covered in the existing

literature. We would like to mention that some of this research originated in the Diploma

thesis of Raschendorfer [2011].

The rest of the paper is organized as follows. Single field decomposition problems without

field splitting are reviewed in Section 2. The decomposition problem with field splitting is

discussed in Section 3, where we also propose our lexicographic optimization approach. We

address the complexity of the problems with single objectives and introduce new formulations

which can be used for both constrained and unconstrained versions of the problems. Section 4

presents numerical results. In Section 5 we summarize the contributions made by this article

and give suggestions for further work.
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2 MLC sequencing without field splitting

In this section we review the most relevant results in the literature on MLC sequencing without

field splitting. We will follow the notation used in Baatar et al. [2005].

Definition 2.1. An m× n matrix Y = (yi,j), i = 1, ...,m, j = 1, ..., n is called a consecutive

ones matrix or a C1 matrix, if for each row i, i = 1, ...,m, there exists an integer pair [li, ri),

li, ri ∈ {1, ..., n+ 1}, such that

yi,j =

{

1 if li ≤ j < ri,

0 otherwise,

i.e., the ones occur consecutively in a single block in each row.

Obviously, any beam shape can be represented as a C1 matrix [Ahuja and Hamacher, 2004,

Baatar et al., 2005, Ehrgott et al., 2008, Neumann, 2009] where ones and zeros represent the

bixels where radiation is allowed to pass through or is blocked, respectively. The intervals

[li, ri) can be interpreted as the left and right leaf positions, respectively, for the ith pair of

leaves. Totally blocked rows can be represented by any of the intervals [li, ri) with li = ri.

However, it is worth mentioning that they represent different leaf configurations. Some of the

presentations might not be valid for MLC’s with interleaf collision constraint. For example,

the second beam shaping region (leaf configuration) shown in Figure 3 is not valid for such

MLCs since collision occurs between the left leaf in the third row and the right leaf in the

fourth row. Hereafter, we refer to a C1 matrix as a shape matrix if it represents a valid leaf

configuration.

Let us denote the set of all C1 matrices as C. For the sake of brevity, we do not specify

the dimension of the matrices which will be clear from the context.

Definition 2.2. Let A ∈ Z
m×n
≥0 and C′ ⊆ C. Then a C1 decomposition with respect to C′ is

defined by non-negative integers αk and C1 matrices Yk such that

A =
∑

Yk∈C′

αkYk.

Indeed, the realization problem is a decomposition problem – an integer matrix A is

decomposed into a positive integer linear combination of C1 matrices [Ahuja and Hamacher,

2004, Baatar et al., 2005, Ehrgott et al., 2008]. Coefficients αk represent the beam-on time

corresponding to the shape matrices Yk and are measured in monitor units (MU). Then the

problem of minimizing the total beam-on time (BOT) can be formulated as
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(BOT) BOT (A) = min

|C′|
∑

k=1

αk

s.t.

|C′|
∑

k=1

αkYk = A,

αk ∈ Z≥0, k = 1, . . . , |C′|,

Yk ∈ C′, k = 1, . . . , |C′|,

where C′ is the set of all admissible shape matrices and BOT(A) is the minimum total beam-

on time for a C1 decomposition of the matrix A. This formulation can represent both versions

of the problem, i.e., the problem with or without interleaf collision constraints. In the first

case, the subset C′ corresponds to the set of all C1 matrices which can represent beam shaping

regions without violating the constraint. In the latter case, any C1 matrix is a shape matrix,

i.e., C′ = C. From now on, to be short, we say the problem is unconstrained if there is no

interleaf collision constraint and constrained otherwise.

In both versions of the problem, we have an exponential number of possible shape matrices.

Thus, (BOT) is a large scale integer program. However, this problem can be solved efficiently

in linear time. There are different constructive exact algorithms available in the literature,

see, for example, Baatar et al. [2005] and Engel [2005] for the beam-on time problem without

interleaf collision constraint as well as Baatar et al. [2005] and Kalinowski [2005] for the

constrained case.

For the unconstrained problem, the minimum beam-on time can be obtained directly from

the intensity matrix.

Theorem 2.3. [Engel, 2005, Baatar et al., 2005] For the unconstrained problem, i.e., C′ = C,

the minimum total beam-on time is

BOT (A) = max
i=1,...,m

n+1
∑

j=1

max {0, ai,j − ai,j−1} , (1)

where ai,0 = ai,n+1 = 0 for all rows i = 1, . . . ,m.

For the constrained problem, the relationship between the total beam-on time and shape

matrices can be characterized using a pair of integer matrices:

Theorem 2.4. [Baatar et al., 2005] A matrix A ∈ Z
m×n
≥0 has a C1 decomposition w.r.t. C′

with total beam-on time β if and only if there exist m × (n + 1) matrices L = (li,j) and
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R = (ri,j) with non-negative entries such that

li,j − ri,j = ai,j − ai,j−1, i = 1, . . . ,m, j = 1, . . . , n, (2)

β =

n+1
∑

j=1

li,j =

n+1
∑

j=1

ri,j , i = 1, . . . ,m, (3)

k
∑

j=1

li−1,j ≤
k
∑

j=1

ri,j , i = 2, . . . ,m, k = 1, . . . , n+ 1, (4)

k
∑

j=1

li,j ≤
k
∑

j=1

ri−1,j , i = 2, . . . ,m, k = 1, . . . , n+ 1, (5)

where ai,0 = ai,n+1 = 0 for all rows i = 1, . . . ,m.

Constraints (4) and (5) represent the interleaf collision constraints. Note that Theorem 2.4

is valid for MLCs without interleaf collision constraints, in which case we neglect constraints

(4) and (5). Matrices L and R represent a set of C1 decompositions and a decomposition can

be extracted in linear time (for more details see Baatar et al. [2005]).

The minimization of the number of shape matrices can be formulated as

(DC) DC(A) = min

|C′|
∑

k=1

γk

s.t.

|C′|
∑

k=1

αkYk = A,

αk ≤ Mγk, k = 1, . . . , |C′|,

αk ∈ Z≥0, k = 1, . . . , |C′|,

γk ∈ B, k = 1, . . . , |C′|,

Yk ∈ C′, k = 1, . . . , |C′|,

where M is a sufficiently large number. In the literature, the problem (DC) is commonly re-

ferred to as minimum decomposition cardinality problem. We denote by DC(A) the minimum

number of shape matrices required in a C1 decomposition of an integer matrix A.

Obviously, both the (BOT) and (DC) problems are feasible for any positive integer matrix

A and a feasible solution can be obtained easily.

Theorem 2.5. The minimum decomposition cardinality problem is strongly NP-hard. In

particular, the following results hold.

1. The (DC) problem is strongly NP-hard for matrices with a single row [Baatar et al.,

2005].

2. The (DC) problem is strongly NP-hard for matrices with a single column [Collins et al.,

2007].
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However, some special cases of the (DC) problem can be solved in polynomial time. The

following theorem holds for both constrained and unconstrained problems.

Theorem 2.6. [Baatar et al., 2005] If A = pB is a positive integer multiple of a binary

matrix B, then the minimum decomposition cardinality problem can be solved in polynomial

time.

More generally, considering both beam-on time and decomposition cardinality as objec-

tives to be minimized, the field segmentation problem can be presented as the following

multicriteria optimization problem:

min

(

∑|C′|
k=1 αk

∑|C′|
k=1 γk

)

s.t.

|C′|
∑

k=1

αkYk = A,

αk ≤ Mγk, k = 1, . . . , |C′|,

αk ∈ Z≥0, k = 1, . . . , |C′|,

γk ∈ B, k = 1, . . . , |C′|,

Yk ∈ C′, k = 1, . . . , |C′|,

where the objectives represent the total beam-on time and the number of shape matrices.

In the literature, a lexicographic optimization approach is proposed to find a Pareto optimal

solution of the problem (see, for example, Baatar et al. [2005] and Kalinowski [2005]).
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3 The matrix decomposition problem with field splitting

Analogously to Section 2, MLC sequencing with field splitting can in general be formally

presented as the multicriteria optimization problem (FS):

(FS) min

(

∑d
k=1

∑|C′|
t=1 αkt

∑d
k=1

∑|C′|
t=1 γkt

)

s.t.
d
∑

k=1

[ Ak ]sk = A

Ak =

|C′|
∑

t=1

αktYt, k = 1, . . . , d,

αkt ≤ Mγkt, k = 1, . . . , d, t = 1, . . . , |C′|,

Ak ∈ Z
m×w
≥0 , k = 1, . . . , d,

sk ∈ {1, . . . , n} , k = 1, . . . , d,

γkt ∈ B, k = 1, . . . , d, t = 1, . . . , |C′|,

αkt ∈ Z≥0, k = 1, . . . , d, t = 1, . . . , |C′|,

Yt ∈ C′, t = 1, . . . , |C′|,

where d = ⌈ n
w
⌉ and [ Ak ]sk represents a m × n matrix with columns from sk to sk + w − 1

represented by the matrix Ak and the remaining columns all being 0. Here w is the maximum

leaf spread. In other words, the matrix A is split into d submatrices with w columns each,

such that the C1 decompositions of the submatrices yield an as small as possible total beam-

on time and decomposition cardinality. Note that the column indices sk are unknown and

submatrices Ak can be overlapping.

In the literature, the number of subfields is usually defined as d = ⌈ n
w
⌉ (see, for example,

Chen et al. [2011]). However, we were not able to find any reference to explain why this

number of subfields was chosen. We propose the following Proposition 3.1 to provide the

answer to this question.

Proposition 3.1. Splitting increases the beam-on time and cardinality, i.e., for any feasible

split of the matrix A =
∑q

k=1[ Ak ]sk it holds, that

BOT (A) ≤

q
∑

k=1

BOT (Ak),

DC(A) ≤

q
∑

k=1

DC(Ak).

The statement is true since any shape matrix of any subfield Ak can be presented as a

shape matrix of A.
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Example 3.2. Let us consider the following matrices:

A =













0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0













, A1 =













0 1 1

1 1 0

0 1 0

1 1 0













, A2 =













0 0 1

0 2 0

0 1 2

0 0 0













.

One can easily check that the matrices A1 and A2 provide a feasible solution solution

to (FS) that minimizes both objectives of (FS) (also called an ideal solution in multicriteria

optimization) with the following C1 decompositions.

A1 =













0 1 1

1 1 0

0 1 0

1 1 0













,

A2 =













0 0 0

0 1 0

0 1 1

0 0 0













+













0 0 1

0 1 0

0 0 1

0 0 0













,

which can be represented as C1 decomposition of the matrix A by adding all 0 columns to

the shape matrices, i.e.,

A =













0 1 1 0

1 1 0 0

0 1 0 0

1 1 0 0













+













0 0 0 0

0 0 1 0

0 0 1 1

0 0 0 0













+













0 0 0 1

0 0 1 0

0 0 0 1

0 0 0 0













.

In other words, from an ideal solution to (FS) we constructed a feasible C1 decomposi-

tion of the matrix A. Thus, the statement of Proposition 3.1 holds. Indeed, an ideal C1

decomposition of the matrix A is

A =













0 1 1 1

1 1 2 0

0 1 1 2

1 1 0 0













=













0 1 1 1

1 1 1 0

0 1 1 1

1 1 0 0













+













0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0













.

The field splitting problem (FS), to the best of our knowledge, has never been considered

as a multi-objective optimization problem or even as a single objective optimization problem

with the cardinality objective even though both objectives are important in IMRT [Ehrgott

et al., 2008]. Moreover, algorithms minimizing the beam-on time often produce a large number

of shape matrices [Ehrgott et al., 2008]. In the next sections, we develop a lexicographic

optimization approach to find a Pareto optimal solution of the problem (FS). This Pareto
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optimal solution has a practical significance which can be interpreted as prioritization of

reducing the total time a patient is exposed to radiation and then decreasing the treatment

time by minimizing the number of shape matrices within the given beam-on time.

Kamath et al. [2004] and Chen et al. [2011] consider the field splitting problem with a

single objective – total beam-on time. They introduce constructive exact algorithms for the

unconstrained (BOT) problem. In the next sections we develop a linear programming based

approach which can be used to exactly solve both the constrained and unconstrained field

splitting problem with feathering.

Theorem 3.3. The minimization of the number of shape matrices with field splitting is a

strongly NP-hard problem even for a single row intensity matrix and field splitting without

feathering.

Proof. Let us consider a row intensity matrix

A = (a1, a2, . . . , aw, 0, . . . , 0, a2w) ∈ Z
2w

with the last w entries being 0 except for the very last entry. Obviously, d = 2 and the matrix

must be split as

A = [(a1, a2, . . . , aw)]1 + [0, . . . , 0, a2w]w+1.

The second matrix can be realized using a single shape matrix. Thus, the minimization of the

number of shape matrices is equivalent to the minimization of the number of shape matrices

in the C1 decomposition of the row matrix (a1, a2, . . . , aw), which is strongly NP-hard due

to Theorem 2.5.

3.1 Minimization of beam-on time

In this section, we consider the minimization of beam-on time with field splitting. There are

several algorithms available in the literature, for example, see Kamath et al. [2004] or Chen

et al. [2011]. However, those algorithms are for the unconstrained version of the problem.

In this section we develop a new approach which can be used for both the constrained and

unconstrained versions of the problem. The minimization of beam-on time with field splitting

can be formally formulated as (FSBOT):

(FSBOT) min
d
∑

k=1

BOT (Ak)

s.t.
d
∑

k=1

[ Ak ]sk = A,

Ak ∈ Z
m×w
≥0 , k = 1, . . . , d,

sk ∈ {1, . . . , n} , k = 1, . . . , d.

13



Due to Theorem 2.4, each subfield Ak can be presented by a pair of matrices Lk and Rk.

Moreover, the beam-on time and interleaf collision constraints can be displayed using this

pair of matrices. First we reformulate Theorem 2.4 in terms of cumulative sums of the

elements of the matrices. Let us denote by cli,j and cri,j the row-wise cumulative sum of the

entries of the matrices L and R, respectively, i.e.,

cli,j =

j
∑

q=1

li,q, cri,j =

j
∑

q=1

ri,q, i = 1, . . . ,m, j = 1, . . . , n+ 1. (6)

Theorem 3.4. A matrix A ∈ Z
m×n
≥0 has a C1 decomposition w.r.t. C′ with total beam-on

time β if and only if there exist m × (n + 1) matrices C l = (cli,j) and Cr = (cri,j) with

non-negative entries such that

cli,j − cri,j = ai,j , i = 1, . . . ,m, j = 1, . . . , n, (7)

β = cli,n+1 = cri,n+1, i = 1, . . . ,m, (8)

cli,j−1 ≤ cli,j , i = 1, . . . ,m, j = 2, . . . , n+ 1, (9)

cri,j−1 ≤ cri,j , i = 1, . . . ,m, j = 2, . . . , n+ 1, (10)

cli−1,j ≤ cri,j , i = 2, . . . ,m, j = 1, . . . , n+ 1, (11)

cli,j ≤ cri−1,j , i = 2, . . . ,m, j = 1, . . . , n+ 1. (12)

Constraints (9) and (10) ensure that the entries of the matrices C l and Cr represent

cumulative sums. The interleaf collision constraints are given by constraints (11) and (12).

Theorem 3.4 is valid for the unconstrained problem as well, since we can just disregard the

interleaf collision constraints in that case. The existence of matrices C l and Cr represents the

necessary and sufficient condition for a total beam-on time of β in a more compact form than

matrices L and R. Due to (6), matrices L and R can be obtained easily from the matrices C l

and Cr.

The problem (FSBOT) can be represented in terms of the matrices C l and Cr as the

14



following integer program, (FSBOT’):

(FSBOT’) min

d
∑

k=1

βk

s.t.
d
∑

k=1

[ Clk − Crk ]sk = A (13)

βk = clki,w+1 = crki,w+1, k = 1, . . . , d, i = 1, . . . ,m, (14)

crki,j ≤ clki,j , k = 1, . . . , d, i = 1, . . . ,m,

j = 1, . . . , w, (15)

clki,j−1 ≤ clki,j , k = 1, . . . , d, i = 1, . . . ,m,

j = 2, . . . , w + 1, (16)

crki,j−1 ≤ crki,j , k = 1, . . . , d, i = 1, . . . ,m,

j = 2, . . . , w + 1, (17)

clki−1,j ≤ crki,j , k = 1, . . . , d, i = 2, . . . ,m,

j = 1, . . . , w + 1, (18)

clki,j ≤ crki−1,j , k = 1, . . . , d, i = 2, . . . ,m,

j = 1, . . . , w + 1, (19)

clki,j , c
rk
i,j , βk ∈ Z≥0, k = 1, . . . , d, i = 1, . . . ,m,

j = 1, . . . , w + 1,

sk ∈ {1, . . . , n} , k = 1, . . . , d.

The integer program (FSBOT’) can be used for both constrained and unconstrained ver-

sions of the problem. For the unconstrained case we have to remove constraints (18) and

(19) which represent the interleaf collision constraints. Some of the constraints in the formu-

lation are redundant and can be removed or reformulated to make the formulation compact

and tighter. However, we keep the formulation as it is stated in order to avoid complicated

notations and make it easier to follow the main ideas.

For any fixed positions (s1, . . . , sd) of the subfields the corresponding integer program can

be solved efficiently. Indeed, the feasible set is an integral polyhedron.

Theorem 3.5. For any fixed positions of the submatrices the problem (FSBOT’) can be

solved in polynomial time.

Proof. We provide a sketch of the proof. We show that the feasible set defined by constraints

(13) to (19) is an integral polyhedron. The coefficient matrix provided by (13) to (19) can be

represented by a block matrix [C̃ l C̃r] where C̃ l and C̃r represent coefficients corresponding

to the variables clki,j and crki,j , respectively. Consider any subset J l of columns of the matrix

C̃ l. One can show that the set J l can be partitioned into two subsets J l
1 and J l

2 such that the

following inequality holds for any row i of the matrix C̃ l

0 ≤
∑

j∈J l

1

c̃li,j −
∑

j∈J l

2

c̃li,j ≤ 1.
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Note that each row of the matrix C̃ l has at most two non-zero entries. The same statement

is true for the block matrix C̃r. Then the proof immediately follows from the well known

Ghouila-Houri characterization of total unimodularity [Ghouila-Houri, 1962].

One might develop a constructive algorithm to find an optimal splitting of the matrix

A, in the sense of beam-on time, for fixed subfield positions s1, . . . , sd. This can be done

in the same manner as the constructive algorithm developed for the single field realization

problem in Baatar et al. [2005]. However, in this paper we use integer programming to find

the best splitting with the smallest cardinality. An intensity matrix A can be split in many

different ways with the same total beam-on time and using the same positions for the subfields.

Although the total beam-on time is the same, the cardinalities of the decompositions might

differ.

Example 3.6. Consider a field splitting problem with w = 5 and a single row intensity

matrix

A =
(

1 1 1 1 1 2 2 2
)

.

Obviously, there is only one possible position for the first columns of the matrices s1 = 1

and s2 = 4. Moreover, one can easily see that the minimum beam-on time is 3 for the field

splitting with w = 5. The matrix A can be split in two different ways such that minimum

beam-on time is achieved:

(

1 1 1 1 1 2 2 2
)

= [ 1 1 1 0 0 ]1 + [ 1 1 2 2 2 ]4,
(

1 1 1 1 1 2 2 2
)

= [ 1 1 1 1 1 ]1 + [ 0 0 2 2 2 ]4.

The total minimum beam-on time for both cases is 3. However, we need three and two shape

matrices, respectively, to achieve the minimum beam-on time.

The state-of-the-art exact algorithms proposed by Kamath et al. [2004] and Chen et al.

[2011], for unconstrained beam-on time minimization, consider all possible positions of the

subfields and for any fixed positions an optimal split is obtained using constructive algorithms.

In this paper we follow the same exhaustive approach to identify the best positions s∗1, . . . , s
∗
d.

3.2 Decomposition cardinality and lexicographic optimization

We use a lexicographic approach to find a Pareto optimal solution of (FS), i.e., first we

minimize the total beam-on time and then the total number of shape matrices with respect

to the minimum beam-on time. There are cases such that for any fixed positions, different

sets of the matrices Ak can be constructed with the same total beam-on time. For example,

see the instance considered in Example 3.6. Thus, to minimize the number of shape matrices
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we use only the positions of the matrices s∗1, . . . , s
∗
d at which the minimum beam-on time can

be achieved.

In this section, we focus on the constrained problem and formulate it as a mixed integer

program which can be used for the unconstrained problem by removing the interleaf collision

constraints. Suppose that s∗1, . . . , s
∗
d are positions of the subfields at which the minimum beam-

on time can be achived. Then the decomposition cardinality problem in the lexicographic

approach can be formally written as an integer program, (FSDC):

(FSDC) min
d
∑

k=1

|C′|
∑

t=1

γkt

s.t.
d
∑

k=1

[ Ak ]s∗
k

= A,

Ak =

|C′|
∑

t=1

αktYt, k = 1, . . . , d,

αkt ≤ Mγkt, k = 1, . . . , d, t = 1, . . . , |C′|,

β∗ =
d
∑

k=1

|C′|
∑

t=1

αkt,

Ak ∈ Z
m×w
≥0 , k = 1, . . . , d,

γkt ∈ B, k = 1, . . . , d, t = 1, . . . , |C′|,

αkt ∈ Z≥0, k = 1, . . . , d, t = 1, . . . , |C′|,

Yt ∈ C′, t = 1, . . . , |C′|,

where β∗ is the minimum beam-on time.

For each single field the decomposition cardinality and the beam-on time have the rela-

tionship presented in the following. Let us therefore consider a single field realization of an

intensity matrix B.

Theorem 3.7. An intensity matrix B ∈ Z
m×n
≥0 can be realized using p shape matrices if and

only if for some q there exists a decomposition

B =

q
∑

k=1

αkBk (20)

with αk ∈ Z≥0, Bk ∈ Z
m×n
≥0 , k = 1, . . . , q, such that

p =

q
∑

k=1

BOT (Bk) (21)

Proof. The proof is straightforward. If B can be realized using p shape matrices, i.e.,

B =

p
∑

k=1

αkSk
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then by choosing Bk = Sk, k = 1, . . . , p we get the decomposition.

Suppose, for some q, there is a decomposition of B

B =

q
∑

k=1

αkBk

with

p =

q
∑

k=1

BOT (Bk).

For each matrix Bk, k = 1, . . . , q, consider a realization

Bk =

BOT (Bk)
∑

j=1

Skj .

Then the matrix B can be represented as an integer linear combination of p shape matrices

as

B =

q
∑

k=1

αk

BOT (Bk)
∑

j=1

Skj .

Note that in Theorem 3.7 the number of matrices q is not fixed. Moreover, some of the

shape matrices might be used several times. From Theorem 3.7 the following characterizations

of the decompositions with smallest cardinality can immediately be deduced.

Corollary 3.8. Let p be the minimum decomposition cardinality of B. Then

1. The following statements are true for any decomposition B =
∑q

k=1 αkBk with p =
∑q

k=1BOT (Bk) where αk ∈ Z≥0, Bk ∈ Z
m×n
≥0 , k = 1, . . . , q.

(a) Bk 6= Bh for all k 6= h, k, h = 1, . . . , q.

(b) For any realizations of the matrices

Bk =

qk
∑

j=1

γkjSkj with BOT (Bk) =

qk
∑

j=1

γkj , k = 1, . . . , q,

• γkj = 1 for all k = 1, . . . , q, j = 1, . . . , qk;

• Skj 6= Sht for all k 6= h, k, h = 1, . . . , q and j = 1, . . . , qk, t = 1, . . . , qt.

2. There always exists a decomposition of B which satisfies the conditions in 1. and

αk 6= αh

for all k 6= h, k, h = 1, . . . , q.
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Corollary 3.8 characterizes well the decompositions of a matrix B with the smallest cardi-

nality. Moreover, these provide the opportunity to express the decomposition cardinality of a

matrix by the sum of minimum beam-on times of the matrices used in the decomposition. In

other words, the decomposition cardinality problem is equivalent to the decomposition of the

intensity matrix into a positive linear combination of integer matrices such that the sum of

total beam-on times of the integer matrices are minimized. Thus, the problem (FSDC) can

be reformulated as

(FSDC’) min
d
∑

k=1

qk
∑

z=1

BOT (Bkz)

s.t.
d
∑

k=1

[

qk
∑

z=1

zBkz ]s∗
k

= A,

β∗ =
d
∑

k=1

qk
∑

z=1

zBOT (Bkz),

Bkz ∈ Z
m×w
≥0 , z = 1, . . . , qk, k = 1, . . . , d,

where qk is the number of different values of the coefficients of the matrices Bkz in the integer

decomposition of the matrix Ak. The number of different values qk can be determined by the

largest possible entry of the matrix Ak and the coefficients are defined in this range.

Due to Theorem 3.4, we can represent the matrices Bkz by a pair of matrices Ckzl and
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Ckzr which leads us to the following integer program, (FSDC”):

(FSDC”) min

d
∑

k=1

qk
∑

z=1

βkz

s.t.

d
∑

k=1

[

qk
∑

z=1

z(Ckzl − Ckzr) ]s∗
k

= A,

β∗ =
d
∑

k=1

qk
∑

z=1

zβkz,

βkz = ckzli,w+1 = ckzri,w+1, i = 1, . . . ,m, z = 1, . . . , qk,

k = 1, . . . , d,

ckzri,j ≤ ckzli,j , i = 1, . . . ,m, j = 1, . . . , w,

z = 1, . . . , qk, k = 1, . . . , d,

ckzli,j−1 ≤ ckzli,j , i = 1, . . . ,m, j = 2, . . . , w + 1,

z = 1, . . . , qk, k = 1, . . . , d,

ckzri,j−1 ≤ ckzri,j , i = 1, . . . ,m, j = 2, . . . , w + 1,

z = 1, . . . , qk, k = 1, . . . , d,

ckzli−1,j ≤ ckzri,j , i = 2, . . . ,m, j = 1, . . . , w + 1,

z = 1, . . . , qk, k = 1, . . . , d,

ckzli,j ≤ ckzri−1,j , i = 2, . . . ,m, j = 1, . . . , w + 1,

z = 1, . . . , qk, k = 1, . . . , d,

ckzli,j , c
kzr
i,j , βkz ∈ Z≥0, i = 1, . . . ,m, j = 1, . . . , w + 1,

z = 1, . . . , qk, k = 1, . . . , d.
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# m n amax w d #pos # m n amax w d #pos

1 5 6 27 5 2 1 32 10 10 14 5 2 1

2 5 7 27 5 2 1 33 14 10 10 5 2 1

3 5 7 30 5 2 1 34 14 10 10 5 2 1

4 5 8 18 5 2 1 35 14 10 10 5 2 1

5 5 8 25 5 2 1 36 14 10 10 5 2 1

6 11 8 21 5 2 1 37 14 10 10 5 2 1

7 9 9 10 5 2 1 38 15 10 10 5 2 1

8 9 9 10 5 2 1 39 11 11 22 5 3 5

9 10 9 10 5 2 1 40 9 12 29 5 3 4

10 10 9 10 5 2 1 41 9 12 31 5 3 4

11 10 9 10 5 2 1 42 11 12 16 5 3 4

12 11 9 14 5 2 1 43 11 12 19 5 3 4

13 11 9 16 5 2 1 44 11 12 26 5 3 4

14 9 10 10 5 2 1 45 9 13 29 5 3 3

15 9 10 35 5 2 1 46 11 14 22 5 3 2

16 9 10 40 5 2 1 47 10 15 26 14 2 1

17 10 10 10 5 2 1 48 22 15 26 14 2 1

18 10 10 14 5 2 1 49 23 16 33 14 2 1

19 10 10 14 5 2 1 50 23 17 27 14 2 1

20 10 10 14 5 2 1 51 22 18 31 14 2 1

21 10 10 14 5 2 1 52 22 21 31 14 2 1

22 10 10 14 5 2 1 53 22 22 22 14 2 1

23 10 10 14 5 2 1 54 20 23 10 14 2 1

24 10 10 14 5 2 1 55 22 23 24 14 2 1

25 10 10 14 5 2 1 56 20 25 9 14 2 1

26 10 10 14 5 2 1 57 16 27 10 14 2 1

27 10 10 14 5 2 1 58 15 28 9 14 2 1

28 10 10 14 5 2 1 59 16 28 10 14 2 1

29 10 10 14 5 2 1 60 16 28 10 14 2 1

30 10 10 14 5 2 1 61 16 29 10 14 3 14

31 10 10 14 5 2 1 62 16 30 10 14 3 13

Table 1: Description of the 62 instances numbered by #: m number of rows, n number of columns,

amax maximum intensity level, w maximum separation in terms of columns, d number of subfields,

#pos number of possible splitting positions.

4 Numerical results

We tested our approach using CPLEX 12.6 embedded in C++ on a Linux machine with 32Gb

RAM, Intel Xeon 6 core, 3.5 GHz. We used 47 clinical examples varying in size from 5 to

23 rows and 6 to 30 columns, with amax varying between 9 and 40. In addition, we used 15

instances of size 10×10 with entries randomly generated between 1 and 14. In Table 1 we

show the dimensions and maximum intensity levels of the intensity matrices as well as the

number of subfields and possible splitting positions for the subfields. The number of columns

of the intensity matrices ranges from 6 – 30. A split width of 5 columns was used for matrices

with less than 15 columns and a split width of 14 columns for the remaining 16 instances.

First we tested our proposed LP based approaches for constrained and unconstrained
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versions of the (FSBOT’) problems. The computational results are shown in Table 2 and

Table 3 for constrained and unconstrained (FSBOT’) problems, respectively. For most of the

instances the minimum beam-on time was attained at a single set of positions of the subfields.

For several instances the minimum beam-on time was achieved at several different positions

of the subfields, for the unconstrained (FSBOT’) problem in 5 instances, 39, 42, 44, 45 and

62, and for the constrained problem in 4 instances 39, 42, 45 and 62. The C1 decomposition

cardinalities of the solutions are shown in column DC of the tables where for multiple subfield

positions the minimum, mean and maximum cardinalities are presented. All problems were

solved in less than 1 second.

Next we tested the lexicographic optimization approach to the field splitting problem

(FS). The decomposition cardinality was minimized using the optimal subfield positions ob-

tained from solving the (FSBOT’) problems. In this way we obtained the decomposition

with the smallest number of shape matrices among those having the minimum beam-on time.

For instances with multiple subfield positions for the (FSDC”) problem we used the best

decomposition cardinality as an upper bound for the next (FSDC”) problems to reduce the

computational effort. In our tests we set a time limit of 600 seconds for each (FSDC”) prob-

lem. Table 4 and Table 5 present the results for unconstrained and constrained problems,

respectively. The subcolumns ”s”, ”f” and ”a” of the column ”status” represent the num-

ber of (FSDC”) problems solved exactly, for which feasible solutions were found, or aborted

reaching the time limit without finding a better solution than the current incumbent solu-

tion. Column ∆DC shows the percentage of improvement in the number of shape matrices.

In case of multiple positions for subfields the minimum, mean and maximum improvements

are presented.

For the unconstrained case, CPLEX was able to solve 54 instances exactly, for 6 instances

it found a feasible solution and for 2 instances it reached the time limit and could not find

a better solution than the decomposition that is obtained by solving the (FSBOT’) problem.

For the constrained (FSDC”) problem, 50 instances were solved exactly and for 5 instances

a feasible solution was obtained whereas 7 instances failed to produce a feasible solution

within the time limit. The lexicographic approach reduced the number of shape matrices on

average by 55% for unconstrained (FS) and by 49.4% for constrained (FS) in comparison to

the optimal solutions of (FSBOT’) that were computed without consideration of the number

of shape matrices.
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DC DC

# β∗ #pos min µ max # β∗ #pos min µ max

1 37 1 20 32 46 1 37

2 34 1 21 33 26 1 24

3 40 1 16 34 34 1 31

4 36 1 20 35 32 1 32

5 46 1 22 36 27 1 27

6 36 1 30 37 32 1 28

7 19 1 19 38 29 1 27

8 21 1 20 39 50 2 39 40.5 42

9 22 1 21 40 69 1 45

10 21 1 19 41 74 1 42

11 25 1 22 42 29 2 25 25.5 26

12 27 1 23 43 53 1 35

13 26 1 23 44 47 2 38 38 38

14 26 1 22 45 74 2 43 45 47

15 60 1 40 46 50 1 39

16 100 1 37 47 49 1 32

17 22 1 22 48 33 1 28

18 47 1 41 49 35 1 34

19 46 1 41 50 46 1 43

20 48 1 41 51 41 1 41

21 42 1 37 52 55 1 46

22 45 1 40 53 47 1 46

23 45 1 36 54 14 1 14

24 48 1 38 55 44 1 40

25 46 1 34 56 19 1 19

26 49 1 36 57 17 1 17

27 45 1 41 58 20 1 17

28 53 1 46 59 17 1 17

29 49 1 42 60 17 1 17

30 50 1 39 61 19 1 18

31 50 1 40 62 25 4 24 24.75 25

Table 2: Unconstrained (FSBOT’): β∗ – minimum beam-on time, #pos – number of subfield

positions where the minimum is achieved; min, µ and max – minimum, mean and maximum number

of shape matrices, respectively.
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DC DC

# β∗ #pos min µ max # β∗ #pos min µ max

1 37 1 20 32 46 1 38

2 34 1 20 33 31 1 26

3 40 1 17 34 40 1 35

4 36 1 20 35 32 1 31

5 46 1 23 36 27 1 26

6 36 1 30 37 32 1 28

7 19 1 19 38 29 1 28

8 21 1 20 39 50 2 38 40 42

9 22 1 19 40 69 1 46

10 21 1 19 41 76 1 46

11 25 1 24 42 29 2 25 25 25

12 29 1 25 43 53 1 38

13 26 1 22 44 51 1 39

14 26 1 22 45 74 2 44 44.5 45

15 60 1 39 46 52 1 43

16 100 1 36 47 54 1 35

17 22 1 22 48 42 1 35

18 47 1 42 49 48 1 47

19 47 1 39 50 46 1 44

20 48 1 42 51 41 1 41

21 42 1 39 52 58 1 50

22 45 1 40 53 58 1 56

23 45 1 37 54 14 1 14

24 54 1 43 55 44 1 40

25 46 1 36 56 19 1 19

26 49 1 38 57 18 1 18

27 45 1 41 58 20 1 17

28 53 1 45 59 18 1 18

29 49 1 43 60 21 1 19

30 54 1 42 61 20 1 19

31 50 1 41 62 26 10 24 25.2 26

Table 3: Constrained (FSBOT’): β∗ – minimum beam-on time, #pos – number of subfield positions

where the minimum is achieved; min, µ and max – minimum, mean and maximum number of shape

matrices, respectively.
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Status ∆DC(%) Status ∆DC(%)

# DC s f a t (sec.) min µ max # DC s f a t (sec.) min µ max

1 8 1 5 60.0 32 13 1 14 64.9

2 8 1 0 61.9 33 10 1 2 58.3

3 7 1 2 56.3 34 12 1 1 61.3

4 9 1 2 55.0 35 12 1 1 62.5

5 10 1 4 54.5 36 12 1 2 55.6

6 9 1 1 70.0 37 12 1 1 57.1

7 8 1 0 57.9 38 12 1 1 55.6

8 10 1 1 50.0 39 14 2 0 0 9 35.9 51.3 66.7

9 10 1 0 52.4 40 14 1 378 68.9

10 10 1 0 47.4 41 16 1 402 61.9

11 10 1 1 54.5 42 11 2 0 0 2 56.0 56.8 57.7

12 10 1 1 56.5 43 14 1 4 60.0

13 9 1 0 60.9 44 14 2 0 0 8 63.2 63.2 63.2

14 10 1 1 54.5 45 16 2 0 0 338 60.5 63.2 66.0

15 13 1 60 67.5 46 16 1 2 59.0

16 16 1 600 56.8 47 12 1 342 62.5

17 11 1 1 50.0 48 28 1 600 0.0

18 13 1 7 68.3 49 16 1 600 52.9

19 14 1 8 65.9 50 43 1 600 0.0

20 13 1 19 68.3 51 15 1 600 63.4

21 13 1 7 64.9 52 21 1 600 54.3

22 13 1 8 67.5 53 21 1 600 54.3

23 13 1 6 63.9 54 8 1 1 42.9

24 14 1 18 63.2 55 19 1 600 52.5

25 14 1 31 58.8 56 13 1 3 31.6

26 14 1 12 61.1 57 10 1 1 41.2

27 14 1 10 65.9 58 13 1 2 23.5

28 14 1 14 69.6 59 12 1 3 29.4

29 13 1 13 69.0 60 10 1 1 41.2

30 13 1 19 66.7 61 12 1 3 33.3

31 13 1 18 67.5 62 14 4 0 0 36 41.7 42.8 44.0

Table 4: Unconstrained (FS): DC – minimum cardinality; Status (s, f, a) – number of (FSDC”)

problems solved exactly, with feasible solution found or aborted; ∆DC – decomposition cardinality

improvement in percent; t – total time in seconds.
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Status ∆DC(%) Status ∆DC(%)

# DC s f a t (sec.) min µ max # DC s f a t (sec.) min µ max

1 8 1 8 60.0 32 14 1 36 63.2

2 8 1 1 60.0 33 12 1 2 53.8

3 8 1 7 52.9 34 13 1 7 62.9

4 9 1 10 55.0 35 12 1 5 61.3

5 12 1 52 47.8 36 12 1 2 53.8

6 9 1 3 70.0 37 12 1 3 57.1

7 9 1 0 52.6 38 12 1 18 57.1

8 10 1 1 50.0 39 15 2 0 0 33 60.5 62.4 64.3

9 10 1 1 47.4 40 16 1 600 65.2

10 10 1 0 47.4 41 19 1 600 58.7

11 10 1 1 58.3 42 12 2 0 0 3 52.0 52.0 52.0

12 11 1 1 56.0 43 15 1 14 60.5

13 9 1 1 59.1 44 15 1 51 61.5

14 11 1 1 50.0 45 18 2 0 0 1149 59.1 59.5 60.0

15 13 1 83 66.7 46 18 1 11 58.1

16 16 1 600 55.6 47 15 1 600 57.1

17 11 1 0 50.0 48 35 1 600 0.0

18 14 1 26 66.7 49 47 1 600 0.0

19 14 1 15 64.1 50 44 1 600 0.0

20 14 1 51 66.7 51 41 1 600 0.0

21 14 1 22 64.1 52 50 1 600 0.0

22 14 1 12 65.0 53 56 1 600 0.0

23 14 1 10 62.2 54 8 1 0 42.9

24 16 1 61 62.8 55 40 1 600 0.0

25 14 1 21 61.1 56 13 1 17 31.6

26 15 1 600 60.5 57 10 1 5 44.4

27 14 1 19 65.9 58 13 1 12 23.5

28 15 1 32 66.7 59 12 1 6 33.3

29 15 1 23 65.1 60 14 1 3 26.3

30 17 1 24 59.5 61 12 1 17 36.8

31 15 1 53 63.4 62 13 10 0 0 648 45.8 47.9 50.0

Table 5: Constrained (FS): DC – minimum cardinality; Status (s, f, a) – number of (FSDC”)

problems solved exactly, with feasible solution found or aborted; ∆DC – decomposition cardinality

improvement in percent; t – total time in seconds.
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5 Conclusion

In this paper we discussed the realization problem in IMRT with objective functions total

beam-on time and total number of shape matrices. In particular, we focussed on the usage

of linear accelerators and multileaf collimators with limited width (maximum leaf spread

constraint) which led us to the investigation of field splitting with feathering. We addressed

unconstrained and constrained (interleaf collision constraint) versions of the problem and

developed a new approach to determine the minimum beam-on time for both these cases.

Furthermore, we proved the decomposition cardinality problem with field splitting to be NP-

hard even for a single row intensity matrix and without feathering. We then introduced

a lexicographic approach that minimizes the decomposition cardinality subject to minimum

beam-on time. The approaches presented in this article use integer programming formulations

that we implemented to obtain numerical results for clinical as well as randomly generated

examples. In future work we intend to address the problems discussed in this paper by means

of heuristics. This alternative approach will help to produce at least feasible solutions for

those instances of (FSDC) for which the exact methods presented here failed to produce such

solutions within the fixed time limit.
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