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Abstract 

The Event Segmentation Theory (Kurby & Zacks, 2008; Zacks, Speer, Swallow, Braver, & 

Reynolds, 2007) explains the perceptual organization of an ongoing activity into meaningful 

events. The classical event segmentation task (Newtson, 1973) involves watching an online 

video and indicating with key presses the event boundaries, i.e., when one event ends and 

the next one begins. The resulting hierarchical organization of object-based coarse events 

and action-based fine events gives insight into various cognitive processes. I used the Event 

Segmentation Theory to develop assistance and training systems for assembly workers in 

industrial settings at various levels - experts, new hires, and intellectually disabled people.  

Therefore, the first scientific question I asked was whether online and offline event 

segmentation result in the same event boundaries. This is important because assembly work 

requires not only watching activities online but processing the information offline, e.g., while 

performing the assembly task. By developing a special software tool that enables 

assessment of offline event boundaries, I established that online perception and offline 

elaboration lead to similar event boundaries. This study supports prior work suggesting that 

instructions should be structured around event boundaries.  

Secondly, I investigated the importance of fine versus coarse event boundaries when 

learning the sequence of steps in virtual training, both for novices and experts in car door 

assembly. I found memory, tested by ability to predict the next frame, to be enhanced for 

object-based coarse events from the nearest fine event boundary. However, virtual training 

did not improve memory for action-based fine events from the nearest coarse event 

boundary. I conjecture that trainees primarily acquire the sequence of object-based coarse 

events in an initial training. Based on differences found in memory performance between 

experts and novices, I conclude that memory for action-based fine events is dependent on 

expertise. 

Thirdly, I used the Event Segmentation Theory to investigate whether the simple and 

repetitive assembly tasks offered at workshops for intellectually disabled persons utilize their 

full cognitive potential. I analyzed event segmentation performance of 32 intellectually 

disabled persons compared to 30 controls using a variety of event segmentation measures. I 

found specific deficits in event boundary detection and hierarchical organization of events for 

the intellectually disabled group. However, results suggest that hierarchical organization is 

task-dependent. Because the event segmentation task accounted for differences in general 

cognitive ability, I propose the event segmentation task as diagnostic method for the need for 

support in executing assembly tasks.  

Based on these three studies, I argue that the Event Segmentation Theory offers a 

framework for assessment and assistance of important attentional, perceptual, and memory 

processes related to assembly tasks. I demonstrate how practical applications can make use 
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of this framework for the development of new computer-based assistance and training 

systems that are tailored to the users’ need for support and improve their quality of life. 
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Abbreviations 

A‘ sensitivity, non-parametric calculation of the Signal Detection Theory 

measure  

ANOVA analysis of variance 

AR Augmented Reality 

B‘‘ response bias, non-parametric calculation of the Signal Detection Theory 

measure  

C coarse 

e exponential function 

eCALC exponential function calculation 

F fine 

HA hierarchical alignment 

HE hierarchical enclosure 

IBES instructions based on event segmentation 

ID intellectual disability 

ms milliseconds 

PE position errors 

s seconds 

SA segmentation agreement 

SD standard deviation 

SE sequence errors 

SRT simple reaction time 

VR Virtual Reality 

WMT-2 Wiener Matrizen Test-2 

* significant on the 5% level 

** significant on the 1% level 
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1 Introduction 

Assembly workers rely on instructional support in order to execute their complex manual 

tasks successfully, e.g., they have to be acquainted with the correct assembly sequence and 

detect potential errors. Paper instructions are the most prevalent source of information in 

order to support workers’ cognitive processing during task execution. However, the trend is 

towards replacing them with technologies based on advanced human-machine interaction. In 

contrast to conventional means, computer-based assistance and training systems are 

promising because they provide intuitively comprehensive and interactive information and 

feedback. Furthermore, they reduce the development time for authoring new instructions 

because they quickly and (semi-)autonomously adapt to frequent changes in assembly tasks 

with the help of advanced algorithms. In this thesis, I argue that these systems have to be 

tailored to the human cognitive processes to generate appropriate support and prevent 

negative consequences. 

In order to ensure the adaptivity of systems to human users, I aim at scientifically 

investigating the underlying cognitive processes involved in executing assembly work. 

Specifically, the Event Segmentation Theory offers a framework that deals with the 

processing of dynamic information like the sequential manual tasks in assembly work (Kurby 

& Zacks, 2008; Zacks et al., 2007). The theory explains the perceptual organization of an 

ongoing activity into meaningful events. The corresponding classical event segmentation 

task (Newtson, 1973) involves watching an online video and indicating the end of events with 

key presses. The task’s output is the hierarchical organization of object-based coarse events 

and action-based fine events which gives insights into various cognitive processes 

(Radvansky & Zacks, 2014).  

Until now, the cognitive processes in the context of assembly work in automotive industry are 

not well understood. How do daily working experiences lead to certain cognitive structures 

and long-term memory representations and how do they, in turn, influence learning of new 

assembly tasks? I will present an instruction creation paradigm and a research tool with 

which users semi-automatically create instructions based on a video. Assessing underlying 

cognitive structures with the help of this new software tool is theoretically and practically 

relevant; for instance, design suggestions for computer-based assistance and training 

systems can be derived. 

Besides specific expertise in a domain like automotive industry, the general cognitive ability 

of workers is important, too, for instance, in the context of special assembly workshops for 

intellectually disabled people. There is a lack of a comprehensive assessment on their 

cognitive processes and abilities. Therefore, their daily work environment contains mostly 

simple and repetitive tasks. What is their actual cognitive potential to successfully execute 

structured manual tasks and are they able to perform more complex assembly tasks? In this 

thesis, I will use the Event Segmentation Theory to investigate the mentioned open scientific 
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questions concerning assembly workers at various levels - experts, new hires, and 

intellectually disabled people. Once I filled the knowledge gaps with respect to cognitive 

processing and need for support, I will discuss tailored assistance and training means. 

This thesis has the following outline. Chapter 2 describes human-machine interaction at 

assembly workplaces and states the motivation for using Event Segmentation Theory from 

an applied point of view. In Chapter 3, I will describe the theoretical background of event 

cognition research and introduce the theoretical and methodological aims of this thesis. Next, 

the research questions will be elaborated in the empirical part in Chapters 4, 5, and 6. The 

resulting findings are summarized with respect to their contribution to the theoretical 

background of event cognition research as well as to their practical implications in Chapter 7. 
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2 Human-machine interaction at assembly workplaces 

2.1 Assembly work 

Manual assembly plays an important role in the industrial production of large, medium, and 

small sized companies that manufacture complex products like cars, machine parts, and 

electronic devices (Richardson, Jones, Torrance, & Baguley, 2006). 

In this chapter, I will introduce assembly work in two selected domains, namely, automotive 

manufacturing and workshops for adapted work. I will present challenges with respect to 

assistance and training appropriate for workers and I will describe two open questions from 

an applied point of view. 

2.1.1 Automotive manufacturing 

Employees of automotive companies have mixed levels of expertise. Some manual workers 

are highly experienced in assembly operations; some are inexperienced first-time employees 

or seasonal work force. At production lines, assembly processes are predefined and 

rigorous. For instance, workers have to assemble a car door at a special assembly station in 

a strict sequence of assembly steps under specified time constraints with the help of parts 

and tools, i.e., car door windows, proper screws, and screwdrivers. 

With increasing demand for individualization, the variety of car models and variants that are 

produced within the same factory is increasing. Workers have to know different assembly 

procedures for dissimilar cars, e.g., cars with power window versus conventional power lifter. 

Additionally, the product life cycle of a particular car model gets shorter requiring workers to 

frequently update their knowledge of assembly procedures. 

 

Figure 1: Manual assembly workplaces in automotive manufacturing: Production line for assembly of car 
engines (left) and work station for assembly at the car shell (right). Source: Adam Opel AG. 

It becomes clear that appropriate employee training is crucial to enable workers to cope with 

these varying and continuously changing manual assembly tasks. In order to prepare for the 

introduction of a new car model, workers go through repeated practice sessions for acquiring 
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the required procedures for the upcoming task with the help of pre-series hardware 

prototypes and paper instructions (Hermawati et al., 2015). This so-called hardware-based 

training is beneficial because workers can get acquainted with the real assembly procedures 

without much time pressure while interacting with qualified trainers in a safe environment.  

Disadvantages of hardware-based training include the restricted extent of practicing different 

variants because producing appropriate pre-series hardware is costly, the limited number of 

training repetitions due to effortful assembly, disassembly and re-assembly, a late onset of 

training because of late availability of hardware, and partly incomplete or not up-to-date 

training because car characteristics may have been changed even shortly before start of 

production (Gorecky, Mura, von Falkenhausen, Apold, & Arlt, 2013; Hermawati et al., 2015). 

One can overcome these limits by using computer-based assistance and training 

(Malmsköld, Örtengren, Carlson, & Svensson, 2007b; Moskaliuk, Bertram, & Cress, 2013) 

that will be described in the next Section 2.2. 

To sum up, the presented automotive domain constitutes a very dynamic production 

environment because the assembly tasks keep on changing continuously and the work force 

is quite heterogeneous consisting of both experts and novices (Gorecky et al., 2013; 

Hermawati et al., 2015). The complex working environment is amplified by upcoming 

developments like demographic change, an internationalized work force, and rapidly evolving 

new technologies which together challenge workers’ flexibility of continuously coping with 

new tasks. Traditional hardware-based training goes along with a number of shortcomings.  

A part of assembly tasks for the automotive industry is completed in workshops for adapted 

work which will be described in the next section. 

2.1.2 Workshops for adapted work 

Workshops for adapted work (or, formerly, sheltered workshops) provide work places for 

people with different types and degrees of physical and intellectual disabilities. It is estimated 

that 2 to 3 million (Europe) and 135.000 persons (USA) with a variety of physical, mental, or 

psychological deficits are occupied in workshops (European Association of Service Providers 

for Persons with Disabilities [EASPD], 2012a; Migliore, 2010) executing activities like 

assembly tasks and others (Dulaney, 1998; Migliore, 2010; Visier, 1998). 

Workers with intellectual disability can have varying deficits in reasoning, problem solving, 

planning, abstract thinking, judgment, academic learning, or learning from experience 

(American Psychiatric Association [APA], 2013). However, there are no strict inclusion 

criteria for working in workshops and no unified definition of disability (EASPD, 2012a). Most 

workers have an intellectual disability with onset during developmental period (APA, 2013), 

they never worked at the regular job market, and entered workshops for adapted work 

directly after special school. 
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Figure 2: Manual assembly workplaces at the workshops for adapted work: Production line (left) and 
single assembly workplace (right). Source: Westpfalz-Werkstätten im Gemeinschaftswerk Pfalz. 

Workshops can be a good option for disabled persons compared to open labor market 

because workshops aim at fostering workers’ personal growth through manageable, 

interesting, and qualifying work activities as well as providing a fitting task to the worker 

(Migliore, 2010; Tomporowski & Hayden, 1990). In practice, workers can choose from a wide 

range of activities and receive an individually adapted work place as far as necessary and 

possible. For instance, assembly work places may be extended by additional installations like 

gripper arms so that individual motor deficits can be addressed. However, the tasks 

themselves are mostly highly repetitive (Dulaney, 1998); simple routines prevent mental 

overload, but they also lead to monotony and missed chance for personal growth. On the 

other hand, instructing more complex activities requires appropriate support incorporating the 

individual potential and needs of each worker. However, resources for an elaborated 

cognitive assistance through supervisors helping each worker individually are very restricted 

(EASPD, 2012b). These limits can be addressed with the help of computer-based assistance 

and training, for instance, interactive instructions (Korn, Schmidt, & Hörz, 2013b), which will 

be described in more detail in the next Section 2.2. 

To sum up, the presented domain of workshops for adapted work represents a safe 

production environment for a highly heterogeneous group of intellectually disabled people 

with varying cognitive deficits. Due to lack of resources, workshops provide simple and 

repetitive tasks with risk of monotony, boredom, and missed opportunity for personal growth 

on the part of the workers.  

2.2 Assistance and training means 

In the following sections, I will demonstrate the potential of computer-based assistance and 

training systems to address the above introduced challenges. I will be comparing them to 

conventional ways of instructional support, i.e., paper-based assembly instructions.  

2.2.1 Assembly instructions 

In order to support successful execution of assembly tasks, the most predominant method is 

instructions which are “messages that guide people to perform procedural tasks by 
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describing the steps or rules required for completing the task” (after Eiriksdottir & 

Catrambone, 2011, p. 750). Instructions in working context contain textual and graphical 

information and are communicated via paper manuals or by interacting with trainers and 

supervisors. 

Instructional design was influenced by cognitive psychology (e.g., Gagne & Dick, 1983; 

Shneiderman, 1989); for instance, the Dual Coding Theory (Paivio, 1986) and the Cognitive 

Theory of Multimedia Learning (Mayer, Hegarty, Mayer, & Campbell, 2005) suggested that 

pictures together with textual descriptions are superior in communicating procedural 

information compared to pictures or descriptions alone (labeled as multimedia effect). 

Appropriate structure of instructions is important, irrespective of the medium being used for 

giving instructions. Event cognition research (refer to Chapter 3) informed instructional 

design about how to optimally organize manuals (Zacks & Tversky, 2003) and where to place 

pauses in instructional videos (Adamczyk & Bailey, 2004; Spanjers, van Gog, & van 

Merriënboer, 2010; van Gog, Paas, & Sweller, 2010).  

However, usage of paper-based assembly instructions entails shortcomings; they are 

inaccessible for non-native speakers, persons with a reading difficulty, or intellectually 

disabled persons, especially, if graphical information is not self-explaining. Furthermore, 

paper-based assembly instructions are not interactive and do not provide performance 

feedback, for instance, when an error occurs. One-to-one supervision by trainers is a suitable 

alternative but highly limited by available resources. The next Section 2.2.2 introduces 

computer-based methods for assistance and training addressing these limitations. 

2.2.2 Computer-based systems 

Promising ways of assistance and training may be through application of new technologies 

(Wehmeyer, Smith, & Palmer, 2004). Intelligent, context-aware systems autonomously 

provide workers with online virtual instructions directly into or close to the work space, e.g., 

on a monitor mounted at the workplace (Gorecky, Campos, & Meixner, 2012), through optical 

projection into the work space (Korn et al., 2013b) or by displaying information on a head-

mounted display (Bleser et al., 2015). Dependent on the current task, the current assembly 

step, and the correctness of execution, workers receive appropriate guidance and, if 

necessary, correction. This context-aware enrichment of the real world with virtual 

information at the appropriate time and place is called Augmented Reality (Azuma, 1997); in 

contrast, the notion Virtual Reality is used when virtual information is displayed without such 

a connection to the current, real-world context, e.g., a simulation of the assembly task on a 

monitor (Brough et al., 2007). Two exemplary systems will be illustrated in the following.  

A virtual training system supplementing hardware-based training 

Workers may practice new assembly tasks with the help of a virtual training depicted in 

Figure 3 and Figure 4 (Gorecky et al., 2013). Users of this system receive a realistic 

simulation of the car model on a monitor and complete the assembly procedure sequentially 
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by moving car objects to the correct assembly position using their hand motions. Similar 

approaches have been reported elsewhere (Brough et al., 2007) and are available for 

purchase (e.g., from LivingSolids, Magdeburg, Germany; Cortona3D, Dublin, Ireland). 

 

Figure 3: Virtual simulation of a car assembly for training purposes. Source: DFKI GmbH. 

Traditional hardware-based training (see Section 2.1.1) can be enhanced by such a virtual 

training approach (Gorecky et al., 2013) providing the following benefits. 

 Virtual training promotes acquisition of declarative knowledge with the help of realistic 

simulations (Ericsson, 2008; Malmsköld et al., 2007). In contrast to hardware-based 

training, it is not restricted to selected car variants but can include all models and 

variants that need to be learnt (Gorecky et al., 2013). 

 Within virtual training visual, haptic, or auditory performance feedback enhances 

learning (Ericsson, 2004). 

 It involves the opportunity for repeated practice (Ericsson, Krampe, & Tesch-Romer, 

1993). In contrast to hardware-based training, there is no effortful disassembly 

thereby reducing the cost of hardware material wear-off (Gorecky et al., 2013). 

 It may incorporate different difficulty levels ensuring adaptation to learning progress 

and continuous, effortful experiences (Charness, Kelley, Bosman, & Mottram, 2001; 

Sonnentag & Kleine, 2000). 

 

Figure 4: Graphical user interface of virtual training system: The correct placement of the door handle is 
indicated by (green) borders. Source: DFKI GmbH. 
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An Augmented Reality-based assistance system 

Another way of computer-based support is virtual step-by-step instructions. Workers receive 

virtual information on how to execute the assembly while working on an assembly workplace. 

Gorecky, Campos, and Meixner (2012) presented such an Augmented Reality-based 

workstation (see Figure 5). The system previously learned the assembly workflow and now 

provides appropriate step-by-step guidance as well as monitors the assembly steps carried 

out by the worker to enable direct feedback to the current work. Thus, dependent on the 

workers’ actions, the correct next assembly instruction or an error notification can be given. 

 

Figure 5: Manual assembly work station: Step-by-step instructions by virtual animations on a monitor 
(left) or projections into the workspace (right). Source: DFKI GmbH. 

This computer-based assistance system and similar approaches (Bleser et al., 2015; Goto, 

Uematsu, & Saito, 2010; Henderson & Feiner, 2011; Korn et al., 2013b; Nilsson & 

Johansson, 2006; Petersen & Stricker, 2012; Stork & Schubö, 2010; Webel et al., 2011) offer 

the following benefits (see also Biocca, Tang, Owen, and Xiao (2006); Henderson and Feiner 

(2011)): 

 Augmented Reality-based assistance involves in-situ, online instructions supporting 

attention allocation to the right task aspects (Stork & Schubö, 2010) and is usable for 

different people, e.g., intellectually disabled persons (Korn, Schmidt, & Hörz, 2013a). 

 Augmented Reality-based assistance incorporates textual description together with 

dynamic, graphical animations beneficial for understanding and learning (Ainsworth & 

VanLabeke, 2004; Mayer, 2005). 

 Within an Augmented Reality-based assistance different visual, haptic or auditory 

feedback can be immediately given on correct assembly performance (Ericsson, 

2004; Webel et al., 2011). 

 It covers different presentation modes, e.g., it can incorporate more or less detailed 

instructions (Eiriksdottir & Catrambone, 2011). 

2.2.3 Trend towards adaptivity of computer-based systems 

Despite the benefits of computer-based assistance and training systems, they mostly provide 

the same assistance and training for all users disregarding their individual characteristics. In 

contrast, adaptive assistance and training systems (Evenson, Rheinfrank, & Dubberly, 2010; 
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Jipp, Wagner, & Badreddin, 2008) are able to sense the individual user’s potential and need 

for assistance. Adaptive systems adjust their interactions to individual traits like level of 

expertise, manual skills, motivation, learning strategies, and cognitive abilities. Furthermore, 

they address relevant states like increased familiarity with a task (Vicente & Rasmussen, 

1992) and mental overload (Parasuraman, 1990). Whereas the above presented systems 

are able to adapt to the assembly task in question, true adaptive systems address the unique 

particularities of each individual user, too.  

There are good reasons for the development of such adaptive systems. Kalyuga, Ayres, 

Chandler, and Sweller (2003) demonstrated that instructional support which helps 

inexperienced users may not be beneficial for participants with high expertise, or even 

deteriorate their performance. This negative consequence of missing adaptation has been 

noted as expertise reversal effect. In addition, motivation can be negatively affected if 

experienced workers feel not acknowledged or even patronized receiving too detailed 

directions. Furthermore, lack of adaptivity leads to exclusion from usage for some groups 

(Wobbrock, Kane, Gajos, Harada, & Froehlich, 2011), e.g., some intellectually disabled 

persons find these systems too difficult to use (Korn et al., 2013a). Finally, inadequate 

assistance in companies leads to a waste of financial and personal resources. 

Adaptive systems show potential to overcome these negative effects. However, in order to 

be able to provide tailored assistance (Evenson et al., 2010) two questions have to be 

elaborated.  

1. What are relevant work-related user characteristics and how to integrate their 

assessment into a technical system? (User assessment) 

A number of psychometric assessments applies to performance in assembly work, i.e., test 

of perceptual-motor (e.g., Fleishman, 1972) and cognitive abilities (e.g., Formann, Waldherr, 

& Piswanger, 2011; Shepard & Metzler, 1971). Despite the right choice for a relevant test 

battery, additional aspects have to be regarded with respect to the integration in a computer-

based system. The test has to be available as a stand-alone computer-based version so that 

a user can autonomously perform it. Furthermore, an automatic test evaluation should be 

provided. Consequently, vocational testing methods that rely on real world interactions 

cannot be used in this context, e.g., tower of Hanoi (Zook, Davalos, DeLosh, & Davis, 2004) 

or manipulating wires (Lienert, 1976). In contrast, computer-based intelligence tests could be 

used. However, Jipp et al. (2008) noted that integrating intelligence tests into computer-

based systems is not suitable because they need detailed explanation, they incorporate 

artificial, ecologically invalid tasks, and their acceptance by users is low. 

Because of the limitations of standard tests with respect to their integration into computer-

based systems, appropriate assessment methods have to be defined. In this thesis, I will 

introduce and discuss a new diagnostic method as possible solution. Given the work-related 

user characteristics were assessed, the subsequent question is: 
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2. How should tailored instructions be designed? (Adaptation guidelines) 

Informed by the results on a diagnostic assessment, support can be designed accordingly 

with the help of a variety of design means. For instance, Vicente and Rasmussen (1992) 

defined guidelines for interface design depending on user’s familiarity with a situation. For 

assembly instructions, Eiriksdottir and Catrambone (2011) suggested adaptation by fading 

information dependent on expertise level. Similarly, a task can be presented in segments or 

at full length (Moreno, 2007). Other options are to manipulate the output modality, e.g., 

presentation of visual or auditory information, depending on the user’s preference (Vignais et 

al., 2013). Furthermore, communication of task structure can be differently presented, either 

in a hierarchically structured format versus an unstructured step-by-step guidance depending 

on the personal goal (Zacks & Tversky, 2003). This short, incomplete list of examples 

indicates the abundance of design variance. 

Because there is such a high range of possible adaptations that can be made in an adaptive 

computer-based assistance and training system, adaptation guidelines have to be 

elaborated. They inform system developers about the appropriate design decision depending 

on relevant user characteristics. In this thesis, I will discuss a selection of adaptation 

guidelines based on my empirical findings (Section 7.2). 

2.3 Motivation for this thesis 

In this thesis, I propose a theoretical framework to address the previously introduced 

questions concerning user assessment and adaptation guidelines, i.e., the Event 

Segmentation Theory (Kurby & Zacks, 2008; Zacks et al., 2007). Whereas the theory’s 

applicability for assistance and training has been demonstrated for paper-based manuals, 

animations, and instructional videos (Adamczyk & Bailey, 2004; Spanjers et al., 2010; van 

Gog et al., 2010; Zacks & Tversky, 2003), I will further exploit it in the context of adaptive 

computer-based assistance and training systems for assembly work. Thereby, the theory will 

be used as a comprehensive framework for analyzing cognitive processes which are related 

to perceiving, understanding, learning, and executing assembly tasks. I will demonstrate its 

following benefits: 

 It prompts a diagnostic assessment method to investigate assembly work-related 

cognitive ability. Thereby, the diagnostic method is easy to integrate in computer-

based systems and applicable to a wide range of users. 

 Empirical findings based on the Event Segmentation Theory offer suggestions for 

adaptation guidelines. 

 The Event Segmentation Theory is the basis for further investigation of an 

increasingly dynamic human-machine interaction. 
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3 Event cognition literature 

This chapter explains event cognition by introducing the perceptual organization of dynamic 

activities into events (Section 3.1). Further, I will review that the principle of segmenting 

dynamic content into events is not only relevant for perception, but also for actual 

performance (Section 3.1.5) and memory (Section 3.2). In Section 3.3, I will identify three 

gaps in the event cognition literature. They deal with understanding, practicing, and 

perceiving events, respectively. 

3.1 Event perception 

When observing a dynamic sequential activity, observers automatically divide it into 

meaningful, hierarchically structured events. Between two events, people perceive event 

boundaries (Zacks, Tversky, & Iyer, 2001). Despite the immediate comprehensiveness of this 

account, there are many cognitive processes involved in event segmentation. Their complex 

integration is described within the Event Segmentation Theory (Kurby & Zacks, 2008; Zacks 

et al., 2007). 

3.1.1 Event Segmentation Theory 

When watching a dynamic activity, a stream of information enters the human sensory 

channels. For instance, the observer perceives information like physical shapes, person’s 

movements, and environmental features. This perception is guided by a working memory 

model of the event that contains a robust representation of the current event (e.g., “Closing 

the cover” in Figure 6a) influenced by prior knowledge, e.g., facts about human movement 

and own experiences (e.g., familiarity with assembling furniture, see Figure 6a). Based on 

the current observations, the person anticipates future actions. Such predictions are adaptive 

because they enable anticipatory behavior. An error detection mechanism monitors potential 

deviations between predicted future inputs and actual outcomes. As long as predictions are 

accurate, the current event model is valid. (Kurby & Zacks, 2008; Zacks et al., 2007) 

However, prediction errors may increase due to meaningful changes in activities, i.e., time, 

location, character, intention, and causation (Zwaan, Langston, & Graesser, 1995). In 

assembly, a whole new object may appear (see Figure 6b). The more indices change at the 

same time, the more difficult it becomes to integrate this information into the current model 

(Huff, Meitz, & Papenmeier, 2014). The consequence is that the current working memory 

model of the event has to be reset and the observer has to establish a new event model 

(Figure 6b). This updating process incorporates incoming sensory information as well as 

existing knowledge from long-term memory (i.e., schemas; see Section 3.1.2) in order to 

build a stable working memory model of the new event. This stable representation means 



Event cognition literature 

12 

that occlusions and interruptions do not result in changes of the model. The described 

transition between old and new event is perceived as an event boundary. Event boundaries 

are distinct points in time that go along with a higher attention level and go along with an 

elaborated long-term memory encoding (see Section 3.2.1). Therefore, they are important 

strategic points in the course of an activity. (Kurby & Zacks, 2008; Zacks et al., 2007) 

 

Figure 6: Event Segmentation Theory illustration (adapted from Kurby and Zacks (2008), Zacks et al. 
(2007)): (a) If predictions correspond with the outcomes in the video, no prediction errors are detected 

and the current event model “Closing the cover” can remain valid. (b) Updating the event model became 
necessary because of increased prediction error. For this purpose, sensory information may directly 

enter working memory in order to establish a new event model. 

Furthermore, observers perceive dynamic activities at different grains simultaneously, so that 

at a specific point in time, several working memory models of events at different time scales 

can be active. That is, both a coarse-grained representation like assembling a table leg and a 

fine-grained representation like screwing the second screw of table leg may be active at the 

same time. The perception of fine event boundaries is due to bottom up processes, e.g., 

lower-level changes in movement (Zacks, Kumar, Abrams, & Mehta, 2009) and brief 

increases in prediction errors (Radvansky & Zacks, 2014; Zacks, Speer, Swallow, Braver, & 

Reynolds, 2007). Coarse event boundaries are perceived due to higher-level conceptual 

changes (Zacks et al., 2009), represent larger changes in goals (Zacks, Tversky, & Iyer, 

2001), involve more physical change (Hard, Recchia, & Tversky, 2011), and go along with 

more sustained increases in prediction errors (Radvansky & Zacks, 2014; Zacks et al., 

2007). 
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Figure 7: Hierarchical structure of an assembly task: Two coarse event boundaries (EB) frame the 
beginning and end of the superordinate event of assembling a specific car object. Between these coarse 

EB, there are several fine EB that frame several subordinate actions with this object. 

“Assembly is a paradigm case of a complex event” (Zacks & Tversky, 2003, p. 89). Figure 7 

illustrates the relationship between working memory models of both coarse and fine events 

for an exemplary assembly task. A coarse event is represented by attaching a major part and 

fine events are depicted by orienting the part and attaching it with the help of screws (Daniel 

& Tversky, 2012). The sequence of an assembly task may be either strict or allow for 

variations (Zacks & Tversky, 2003). Yet, the domains presented within this thesis, i.e., 

automotive manufacturing and workshops for adapted work, require workers to carry them 

out in a strict sequential order. 

The relation between fine and coarse events has been described by the concepts of 

hierarchical alignment and enclosure (Hard, Lozano, & Tversky, 2006; Zacks & Tversky, 

2001). According to these concepts, it is assumed that several fine events group together 

and precede a common coarse event boundary as outlined in Figure 7. Hierarchical 

alignment and enclosure will be described in more detail (Section 3.1.4).  

3.1.2 Cognitive functions linked to event segmentation 

The last section demonstrated that, in the context of event segmentation, a variety of 

cognitive processes has to be integrated in order to make sense of an activity, i.e., attention, 

visual perception, working memory, and long-term memory. Figure 8 summarizes them. In 

this section, I review the importance of these separate, cognitive functions for performance in 

assembly work. 
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Figure 8: Cognitive functions related to processes during event segmentation when watching dynamic 
activities. 

Visual attention 

Visual attention is crucial for event segmentation, i.e., when an old event model was reset 

(Huff, Papenmeier, & Zacks, 2012). In this case, new incoming sensory information has to be 

brought into focus in order to establish a working memory model of the new event.  

Visual attention is, furthermore, needed when executing assembly work (Stork & Schubö, 

2010), for instance, when the assembly requires a new screw or when the worker has to 

allocate attention to the right box of screws. Thus, attentional processes are important both 

for successful assembly execution and in event segmentation. 

Visual perception 

When segmenting an ongoing activity, it is especially important for an observer to detect 

changes in movement in terms of positions, velocities, and accelerations of visual objects 

(Radvansky & Zacks, 2014). Motion changes yield to increases in prediction error (Zacks et 

al., 2007) and imply perception of event boundaries (Zacks et al., 2009; Zacks, 2004).  

In assembly work, the importance of visually perceiving changes within a task has been 

acknowledged by the Situation Awareness Theory (Endsley, 2013), for instance, when 

workers perform a function test after assembly and interpret whether a component’s 

movement is correct. Furthermore, perception is important because the execution of manual 

actions involves a constant interaction between both perception and action (Stork & Schubö, 

2010). 

Working memory 

The central role of the working memory for event segmentation has been described in detail 

above (Section 3.1.1). Cognitive frameworks for assembly work stress the working memory’s 

importance for successful task execution as well (Endsley, 2013; Richardson & Ball, 2009).  
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Long-term memory 

Besides the described bottom-up processes like detection of movements, top-down 

processes from long-term memory are also important in event segmentation. They guide the 

perception of event boundaries by making prior experiences and higher-level concepts of 

typical situations available. These generalized long-term memory representations are known 

as scripts (Schank & Abelson, 1977) or schemas (Brewer, 1981). They support encoding and 

retrieval of specific event models (also termed as situation models), i.e., a situation or 

episode that a person actually perceived or experienced.  

Long-term memory scripts for assembly tasks contain knowledge about the general 

sequential structure and the typically involved actions and objects. Situation models in the 

context of assembly are supposed to contain the exact assembly sequence, all involved 

objects, the local context, instruments, conditions, and consecutive context (Malmsköld, 

Örtengren, Carlson, & Svensson, 2007a).  

From the previous paragraphs, it became clear that cognitive processes required for event 

segmentation are also needed for successful assembly task execution. The close 

relationship between both perception and actual execution will be further demonstrated in 

Section 3.1.5.  

3.1.3 Assessing online event representations 

So far, we saw how observers automatically divide dynamic activities into events during 

online perception of these activities, i.e., in the course of watching them. In order to assess 

the event boundaries in the classical event segmentation task (Newtson, 1973), subjects 

watch a video depicting a dynamic activity. At the same time, they indicate the end of one 

and the beginning of the next event by pressing a key button, respectively (Figure 9). The 

event segmentation task is executed two times; subjects segment both fine- and coarse-

grained meaningful units (Newtson, 1973; Zacks et al., 2001). In Section 3.2.2, I will contrast 

this online event segmentation with the state of the art in offline event segmentation. 

 

Figure 9: Classical event segmentation task: People watch a video and, thereby, divide the shown activity 
into meaningful events by pressing a key button. The task’s output suggests perception of event 

boundaries. 

In the original online event perception studies by Newtson (1973), videos depicted everyday 

activities like answering a telephone or setting a table. Other authors used a range of 

additional stimuli, for instance, simple moving dots (e.g., Maguire, Brumberg, Ennis, & 
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Shipley, 2011; Zacks, 2004), different assembly tasks (e.g., Zacks & Tversky, 2003), actions 

within a virtual environment (e.g., Radvansky & Copeland, 2006), or long visual narratives in 

terms of movies and sitcoms (e.g., Huff et al., 2014; Zacks, Speer, & Reynolds, 2009). 

Besides watching videos, online event representations can be assessed in verbal stories, 

either when reading (e.g., Zwaan et al., 1995) or listening (e.g., Whitney et al., 2009). Thus, 

the principles of event segmentation apply to varying materials where a stream of information 

is meaningfully structured.  

A characteristic output of an online event segmentation task, i.e., key presses across time, is 

shown for an exemplary subject in Figure 10. The illustration depicts both fine- (Figure 10a) 

and coarse-grained segmentation (Figure 10b). In order to quantify online event 

segmentation, these key presses can be further analyzed. I will review different measures of 

the event segmentation behavior in the following section. 

3.1.4 Measures of event segmentation behavior 

Segmentation data have been analyzed by a variety of different measures treating time as 

either discrete or continuous variable. Treating time discretely involves the binning of data 

into intervals where each bin is interpreted as perceived event boundary if it contains a key 

press (Zacks et al., 2001). Prior work has predominantly used these 1-s bins. The advantage 

is that the statistical analyses are easily understood (Zacks et al., 2001). In contrast, treating 

time continuously retains all information (Royston, Altman, & Sauerbrei, 2006) without 

requiring arbitrary choice of a bin size (Zacks et al., 2001). Each person’s key press is an 

estimate of a perceived event boundary distributed as a Kernel density function around the 

key press (Papenmeier, 2014). The Kernel density function is shifted to the left in order to 

account for the delay between event boundary perception and key press which has been set 

to approximately 1 s (Huff, Papenmeier, & Zacks, 2012). Thus, the underlying theoretical 

assumption of the continuous analysis is a probabilistic relationship between empirical key 

press and actual event boundary perception (compare Figure 10e and Figure 10f). In the 

discrete analysis, the distinction between key press and event boundary is nonexistent 

(compare Figure 10a and Figure 10b). 

Summing up all individual segmentation plots, in both discrete (Figure 10c and Figure 10d) 

and continuous analyses (Figure 10g and Figure 10h), provides segmentation plots with 

characteristic variations including peaks that indicate chronological correspondences across 

individuals. In the discrete analysis, the segmentation plot displays a group histogram of 

identified event boundaries with binned time at the x-axis. Similarly, the continuous analysis 

depicts segmentation magnitudes (y-axis) across time (x-axis).  

In the following sections, different discrete and continuous measures will be explained with 

the help of Figure 10. I will present the respective calculation, report exemplary values from 

existing literature, if available, and inform about the measure’s usage in this thesis. 
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Figure 10: Output dependent on treating time as discrete (left) versus continuous (right) variable: 
Segmentation plots for one exemplary subject (upper plots) and across subjects (lower plots). Horizontal 
(red) lines in panels g and h illustrate critical cutoffs for determining significant event boundaries in the 

continuous analysis, respectively. 

Number of events 

For both fine and coarse grains, the sum of key presses is counted for each individual. As 

can be seen from Figure 10a versus Figure 10b, this typically results in more fine than 

coarse key presses. The respective mean event lengths, i.e., the time between two key 

presses, is the quotient of overall duration divided by number of key presses plus 1. 

Accordingly, the fine segmentation results in shorter events compared to the coarse 

segmentation.  
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The relation between numbers of identified event boundaries in fine to coarse condition has 

been further analyzed by calculating the ratio between them (Zacks et al., 2001). The value 

has been reported to be around 3 (Zacks et al., 2001) meaning that subjects defined three 

times more fine than coarse events (inspect the example in Figure 10 where the sample 

participant’s ratio is 16 fine / 5 coarse events = 3.2). Additional relations between fine and 

coarse event boundaries have been analyzed by measures of hierarchical structure (see 

below for hierarchical alignment and enclosure). I applied the basic measures mentioned 

here, i.e., number of events, to describe event segmentation data in Experiments 1 and 3. 

Significant event boundaries 

As already noted, segmentation plots have characteristic peaks of chronological 

correspondence. Despite this graphical inspection, the continuous analysis offers to 

determine which of the characteristic peaks are significantly higher compared to peaks that 

occur by chance (Papenmeier, 2014). For this purpose, a critical segmentation magnitude is 

determined by simulating key presses under the null hypothesis that they were randomly 

distributed across individuals. Imagine that, even under the null hypothesis of randomly 

distributed key presses, peaks with a certain segmentation magnitude will occur by chance. 

They are called local maxima. Iterating this simulation, for instance, 1000 times, leads to 

1000 local maxima in segmentation magnitude that get ordered according to their size. 

Depending on the choice of a confidence probability, e.g., 95% or 99%, a certain local 

maximum is kept as critical segmentation magnitude. This critical segmentation magnitude is 

unlikely to occur (e.g., probability of 5% or 1%) under the assumption of random key presses 

(Papenmeier, 2014). Consequently, segmentation magnitudes above the derived 

segmentation magnitude cut-off are defined as significant event boundaries. (Papenmeier, 

2014) Exemplary critical cutoffs in segmentation magnitude are added as horizontal (red) 

lines in Figure 10g and Figure 10h. 

With the help of this method, I determined significant event boundaries for groups of 

participants in Experiments 1, 2, and 3, respectively. 

Segmentation agreement  

Oftentimes, it is of interest to determine how similar the segmentation behavior is between 

single individuals and a comparison group, between different groups, or between single 

individuals. The extent to which an individual segmented in agreement with a comparison 

group can be calculated by a point-biserial correlation (e.g., Zacks, Speer, Vettel, & Jacoby, 

2006). Concretely, for each time bin, it has to be checked whether there was a key press or 

not (i.e., a dichotomous variable) and the respective relative frequency of the comparison 

group has to be determined. To illustrate, data as displayed in Figure 10a are correlated with 

data from Figure 10c (note that relative frequencies are used). Furthermore, the point-biserial 

correlation has to be scaled in order to control for individual differences in the number of key 

presses (Kurby & Zacks, 2011).  



Event cognition literature 

19 

This value was reported to be r = .30 when comparing individuals with dementia to a healthy 

comparison group (Bailey, Kurby, Giovannetti, & Zacks, 2013). In contrast, in the same 

study, the segmentation agreement of healthy individuals with the same comparison group 

resulted in a mean segmentation agreement of r = .40. 

In addition to this segmentation agreement between individual and group, segmentation 

agreement between groups can be determined by correlating both groups’ relative frequency 

histograms using the Pearson correlation, as reported in Zacks, Swallow, Vettel, and McAvoy 

(2006). In their experiment, while watching and segmenting a video of two simple objects, 

one group was told that these objects were moving intentionally; the other group thought they 

were moving randomly. In order to determine if their segmentation behavior was similar, the 

correlation of both groups’ respective relative frequency data was calculated and resulted in 

values of rfine = .76 and rcoarse = .56, respectively. To illustrate, imagine correlating two 

segmentation plots that are alike Figure 10c. 

Furthermore, by using pair-wise correlations, i.e., Cohen’s kappa, it has been tested if pairs 

of individuals chose event boundary locations that were more similar to each other than 

expected by chance (Zacks et al., 2006). In order to test for significance, bootstrap 

confidence intervals were constructed for each mean correlation. If the interval did not 

include 0, agreement for chosen pairs was significant. This calculation has been performed 

for pairs of individuals within the same and across different groups, respectively, in order to 

determine the within-group homogeneity as well as the agreement between pairs of different 

groups. Zacks et al. (2006) reported a mean pairwise kfine of .19 when comparing two 

individuals from different groups, i.e., intentional and random group (see above). Respective 

coarse event segmentation resulted in mean pairwise kcoarse = .08 between groups. 

Based on the calculation of these different kappas, the differences between agreement within 

the same group and across different groups can be analyzed. This test reveals if persons 

from the same group are more similar to each other than persons from different groups, and 

vice versa. Again, bootstrap confidence intervals for these differences inform about 

significance of the difference. For instance, if the difference in agreement between pairs of 

individuals from the same group versus different groups is not significantly different from 0, 

this means that the persons within the same group are not more similar to each other than to 

the persons of the other group. 

Finally, in addition to these correlational analyses based on binned data, a continuous 

analysis method to determine segmentation agreement has been proposed as well. Based 

on two segmentation plots produced by two different groups (for instance, imagine two 

segmentation plots similar to Figure 10g), Papenmeier and Sering (2014) suggested 

subtracting these segmentation plots from each other with respect to time in order to define 

the overlap of both groups. In order to further determine critical cutoffs for the differences in 

segmentation magnitude, they provided a similar simulation method as described above (see 

the section on significant event boundaries). That is, for both groups, random key presses 

can be repeatedly simulated and resulting differences in segmentation magnitude are 
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calculated and ordered. This time, two cutoffs, i.e., a local minimum and a local maximum 

value, respectively, are derived. 

In order to determine different types of segmentation agreement, I used point-biserial 

correlations between individual and group in Experiment 3, pair-wise kappas in Experiment 

3, correlations between groups in Experiments 1 and 3, and the difference method based on 

the segmentation magnitude of two groups in Experiments 1 and 3. 

Hierarchical alignment 

Hierarchical alignment is a measure to reveal the quality of hierarchical structure of an 

individual’s segmentation. As indicated by Figure 11, it refers to the temporal closeness 

between perceived fine and coarse event boundaries (Zacks et al., 2001). High hierarchical 

alignment means that a coarse event boundary constantly goes along with the end of a 

respective fine event. Figure 11 illustrates good alignment indicated by five pairs of 

temporally close fine and coarse event boundaries. Zacks et al. (2001) defined both discrete 

and continuous analysis methods. Yet, the continuous alternative has been predominantly 

applied in the subsequent literature and will be described in the following.  

First, the distances between each person’s coarse event boundaries to the nearest fine event 

boundaries are determined and averaged leading to the observed average distance. Figure 

11 displays five coarse event boundaries that have a nearest fine event boundary, 

respectively. The temporal distances between these pairs of time points are calculated (“d1” 

to “d5”) and averaged. Next, an expected average distance under the assumption that coarse 

and fine event boundaries were independent is calculated (refer to Zacks et al. (2001) for a 

detailed discussion). The individual’s alignment score is the difference between the expected 

and the observed average distance. The higher the value, the more hierarchically aligned a 

person segmented. 

 

Figure 11: Temporal closeness between coarse and fine event boundaries: Based on distances between 
the coarse and the nearest fine event boundaries (d1 to d5) the observed average distance is calculated. 

In previous work, mean observed versus expected distances lied around 1.7 versus 4.8 

(Swallow, Zacks, & Abrams, 2009) and 2.8 versus 4.7 s (Zacks et al., 2001), respectively. In 

this thesis, the hierarchical alignment was calculated for segmentation data in Experiments 2 

and 3, respectively. 
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Hierarchical enclosure 

Another measure to reveal the ability to hierarchically structure is the hierarchical enclosure 

measure. It refers to the extent to which an individual segmented according to a “chunking 

pattern”, i.e., fine event boundaries have to precede its corresponding coarse event 

boundary (Hard, Lozano, & Tversky, 2006; Zacks et al., 2001). For calculating the 

hierarchical enclosure score, the nearest fine event boundary for each coarse event 

boundary is determined like in the hierarchical alignment computation. Afterwards, there is a 

check if the nearest fine event boundary is temporally before or after its coarse event 

boundary. The hierarchical enclosure score is the proportion of the nearest fine event 

boundaries preceding the coarse event boundary in relation to all nearest fine event 

boundaries. Consequently, the enclosure value ranges from 0 to 1. In the example in Figure 

11, four of five nearest fine event boundaries precede its respective coarse event boundary. 

This leads to an enclosure value of .80 and indicates a clear chunking pattern of the sample 

participant. 

In the literature, enclosure scores have been reported to be between .40 and .67 (Hard et al., 

2006). In this thesis, I investigated hierarchical enclosure in Experiments 2 and 3, 

respectively. 

3.1.5 Event segmentation behavior and performance 

In Section 3.1.2, I suggested an overlap between event perception and assembly 

performance, because the Event Segmentation Theory and literature on successful 

assembly execution share the required cognitive processes. In a recent study (Bailey et al., 

2013), the close relationship between perception and performance was demonstrated 

empirically. Bailey et al. (2013) instructed participants suffering from Alzheimer’s disease to 

perform both an event segmentation task and a naturalistic action task, i.e., packing a lunch 

box. Quality of event perception was defined as degree of agreement of an individual 

patient’s segmentation with a healthy control group’s segmentation concerning identification 

of event boundaries. The level of segmentation agreement measured by point-biserial 

correlation (see Section 3.1.4) predicted the Alzheimer patients’ task performance. 

Reciprocally, repeated execution, familiarity, and expertise also affect segmentation 

behavior. Graziano, Moore, and Collins (1988) showed that, compared to novices, experts 

segmented familiar material more coarsely (see also Schwan & Garsoffky, 2008). 

Furthermore, Zacks et al. (2001) found evidence for a positive relationship between task 

familiarity and amount of individual hierarchical alignment which indicated that if familiarity 

increases hierarchical structuring improves.  

Finally, segmentation agreement is associated with memory performance (Kurby & Zacks, 

2011; Sargent et al., 2013; Zacks, Speer, Vettel, & Jacoby, 2006). In their study (Sargent et 

al., 2013), the extent to which participants segmented everyday activities in agreement with 

the whole sample predicted how well participants recalled the shown activities afterwards. 
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Similarly, persons with an intellectual disability showed poorer memory performance for 

events dependent on their previous event segmentation ability (Zalla, Labruyère, & Georgieff, 

2013). 

These findings demonstrate that the event segmentation task measures the cognitive ability 

to structure activities into goals and sub-goals. This ability, again, is suggested to be the 

basis for further important functions, most importantly, action performance (Bailey et al., 

2013). Carried over to assembly work, the event segmentation task could offer a diagnostic 

measure that supports assessment of cognitive potential of assembly workers to execute 

assembly tasks. I will investigate this question on the group of intellectually disabled workers 

from workshops for adapted work (Section 3.3 and Experiment 3). 

3.2 Long-term memory for events 

So far, the focus was on the Event Segmentation Theory as framework for perception of 

dynamic events. I presented how existing knowledge from long-term memory influences 

event boundary perception. Here, I focus on how new procedural knowledge finds its way 

into long-term memory. 

3.2.1 Event boundaries as memory anchors 

After persons watched or read about an activity one time, memory is generally better for 

event boundaries than for non-event boundaries (Lassiter & Slaw, 1991; Newtson & 

Engquist, 1976; Schwan & Garsoffky, 2004; Swallow et al., 2009; Zacks, Speer, et al., 2006). 

Because event boundaries go along with increased attention (Huff, Papenmeier, & Zacks, 

2012), they are more likely to be encoded into long-term memory (Radvansky & Zacks, 

2014). Furthermore, deletions, delays, or disturbances at the points of event boundaries are 

more detrimental for memory as compared to time points within event boundaries (Boltz, 

1992; Schwan & Garsoffky, 2004).  

Memory for fine events is more fragile than for coarse events in written and pictorial 

narratives (Bransford, Barclay, & Franks, 1972; Gernsbacher, 1985; Johnson-Laird & 

Stevenson, 1970; Treisman & Tuxworth, 1974). Memory performance is better for coarse 

information but it also takes more effort to recall it compared to fine information (Franklin & 

Bower, 1988 after Zacks, 2001). For instance, participants who were asked to memorize a 

previously read text, answered more slowly when they integrated coarse compared to fine 

events suggesting better processing for coarse information. Furthermore, fine events may be 

more similar and less distinct compared to coarse events (Hard et al., 2011; Radvansky & 

Zacks, 2014; Zacks et al., 2001; Zacks et al., 2009) which further results in differences 

between fine and coarse events concerning their memory representations. 
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3.2.2 Acquisition of new events  

The Event Horizon Model (Radvansky & Zacks, 2014) describes the transition from current 

perception to long-term memory as well as retrieval from long-term memory. Online 

presentation of an event creates a long-term memory representation, called experience 

model (Radvansky & Zacks, 2014) or situation model (Zwaan et al., 1995). Thereby, several 

events of an activity are linked together by their causal relationships. Different events can be 

similar to each other and similarity influences ease of long-term memory retrieval. There is a 

facilitated retrieval of an event element, when this element is represented in multiple event 

models (Radvansky & Zacks, 2014). However, “when several event models are similar, 

accessing any specific event model is more difficult” (Radvansky & Zacks, 2014, p. 29). 

Thus, similarity of events affects retrieval performance from long-term memory. 

The Event Horizon Model does not make predictions about retrieval after repeated 

presentations of events but focuses on one-time presentation. However, the key to acquiring 

new skills is indeed exposing learners to multiple challenging experiences with tasks 

summarized under the Deliberate Practice Framework (Ericsson et al., 1993). For instance, 

effortful, repeated practice is crucial for learning in chess (Charness, Tuffiash, Krampe, 

Reingold, & Vasyukova, 2005), music (Krampe & Ericsson, 1996), and in the workplace 

(Charness, Kelley, Bosman, & Mottram, 2001; Sonnentag & Kleine, 2000). However, it is not 

well understood yet how repeated presentation alters memory for events that may be more 

or less similar to each other. 

The interrelation of both aspects, i.e., material differing in similarity and repeated 

presentations, has been focus of recent research. Reagh and Yassa (2014) compared 

conceptually different versus similar material and found that repetition enhanced 

discrimination only for conceptually different pictures. In their basic research study, 

participants were more likely to correctly detect a target picture when they saw it three times 

compared to only once. However, pictures that were similar to the targets but were not 

presented in the study phase (distractors) were more likely to be falsely identified as a target 

after three repetitions than after one repetition. This provides empirical evidence for a 

deteriorating effect of repetition depending on similarity of stimulus material. 

Even if it is clear that fine and coarse events differ conceptually and lead to different memory 

representations, we do not know how memory performance for fine and coarse events will 

develop after repeated presentation. I will address this gap in this thesis (see Experiment 2). 

3.2.3 Assessing offline event representations 

Until now, it has been indicated that event segmentation plays an important role not only in 

online perception of activities but it is also important when processing information offline 

(Zacks et al., 2001; Zacks & Tversky, 2001), e.g., memorizing events (Black & Bower, 1979), 

planning an action (Hommel, 2004), communicating about events (Tversky, Zacks, Morrison, 

& Hard, 2011), and instruction making (Daniel & Tversky, 2012; Tversky, Zacks, Lee, & 
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Heiser, 2000). The methods used for assessment of offline events were free recall (Zacks et 

al., 2001; Zalla et al., 2013), recognition tests (Radvansky & Copeland, 2006; Swallow et al., 

2009; Zalla et al., 2013), and picture sorting tasks (Zacks, Speer, et al., 2006) amongst 

others.  

In order to investigate free recall data, Zacks et al. (2001) applied detailed language analysis 

and reported qualitative relations. For instance, they found that descriptions of coarse events 

predominantly entail objects whereas descriptions of fine events focus on verbs. They 

compared the offline with the online event descriptions and revealed a meaningful overlap. 

Other support for similarity between online perception and offline elaboration, i.e., memory 

performance (Kurby & Zacks, 2011; Sargent et al., 2013; Zacks, Speer, Vettel, & Jacoby, 

2006), provides Section 3.1.5. However, no attempt has been made, so far, to quantitatively 

compare the exact time points of event boundaries between online and offline event 

segmentation. I will address this gap in this thesis (see the following section and Experiment 

1). 

3.3 Aims of this thesis 

3.3.1 Research questions 

Organizing dynamic activity into events is a cognitive activity that encompasses, uses, and 

influences all crucial processes of cognition, from online perception (Section 3.1) to offline 

elaboration (Section 3.2). Quantification methods have been used to investigate online event 

segmentation and the different measures have been summarized in Section 3.1.4. However, 

there has been no rigorous quantitative analysis of offline event segmentation which has 

been mostly analyzed qualitatively (Section 3.2.3). Since, in working context, workers 

process assembly tasks predominantly offline (Section 2.1), the classical, online event 

segmentation task might not result in ecologically valid event boundaries. Nevertheless, 

event boundaries from online event segmentation have been widely used for creating 

instructions (Section 2.2 and 2.2.1). I aimed at confirming quantitatively whether the online 

event boundaries correspond to the offline event boundaries. Therefore, Experiment 1 deals 

with the following question: 

R1. Are event boundaries during offline event segmentation similar to event 

boundaries during online event segmentation? (Chapter 4) 

Based on earlier studies demonstrating that online and offline processing have similar 

numbers of event boundaries and correspondent verbal descriptions (Section 3.2.3), I expect 

the exact time points of event boundaries to be the same. Empirical validation of this 

statement is necessary to check whether the online event segmentation task offers a valid 

way to investigate the structure of activities regardless of whether they are processed online 

or offline.  
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The event segmentation task yields fine and coarse event boundaries, respectively (Section 

3.1.1), that are encoded in memory differently (Section 3.2.1). So far, memory for dynamic 

events has been tested only after one presentation (Section 3.2.1 and Section 3.2.2). Yet, 

repeated presentation of stimulus material is crucial for learning and repetitions change the 

basic memory processes (Section 3.2.2). An important but unanswered question is whether 

repetition benefits memory for coarse events more than fine events or vice-versa, or whether 

there is no difference between the two. In addition, expertise and familiarity influences event 

cognition (Section 3.1.5), so that memory processes after training could differ between 

experts and novices. Therefore, Experiment 2 aimed at answering the following question: 

R2. How does memory for events develop when repeatedly practicing the 

sequence of events, both in novices and experts? (Chapter 5) 

Finally, the event segmentation task offers an assessment method of event segmentation 

ability (Section 3.1.3) which is understandable by a wide range of persons including 

Alzheimer patients and intellectually disabled participants (Section 3.1.5). Furthermore, it 

was used to predict action performance (Section 3.1.5). In the light of the abundance of 

repetitive and monotonous assembly tasks in workshops for adapted work (Section 2.1.2), 

Experiment 3 will test, with the help of the event segmentation task, if cognitive potential of 

intellectually disabled persons allows them to perform more complex tasks. Therefore, my 

last research question is: 

R3. Do the simple and repetitive assembly tasks offered at workshops for adapted 

work utilize the full cognitive potential of intellectually disabled persons?  

(Chapter 6) 

3.3.2 Methodological aims 

Besides these theoretical aims, I formulated the following methodological goals. First, there 

is no assessment tool available for providing event boundaries during offline event 

segmentation. Since instruction creation represents a way to investigate offline event 

representations (Section 3.2.3) and instruction creation is important for assembly work 

(Section 2.2.1), I pursued the following goal:  

M1. Developing a tool for assessing offline event segmentation by using an 

instruction creation paradigm (Chapter 4) 

Another open question is whether event segmentation measures including the ability to 

hierarchically structure events (Section 3.1.4) holds for groups with varying intellectual 

abilities, if so under what conditions. Therefore, I aimed at: 

M2. Evaluating and refining existing event segmentation measures with respect to 

their suitability for intellectually disabled persons (Chapter 6) 
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4 Experiment 1: Offline event segmentation of assembly tasks 

Since assembly workers process their tasks mostly offline rather than during online 

perception, this experiment investigates event segmentation during offline understanding of 

assembly tasks. 

4.1 Introduction 

The conceptual distinction between online and offline event segmentation has been noted by 

Zacks et al. (2001). Online event segmentation takes place fast, automatically, and in the 

course of perceiving an activity. In contrast, offline event segmentation takes place during 

elaboration of a task. This process is slower, involves no time constraints, and there is an 

explicit aim like planning future actions, understanding narratives, remembering past events, 

or creating an instruction manual. 

In both online and offline processing of a task, people structure activities with respect to 

important, strategic points in time, i.e., event boundaries. Event boundaries during online 

event segmentation have been assessed with the help of the event segmentation task 

(Newtson, 1973). In contrast, there is no such method for assessing event boundaries during 

offline event segmentation. Rather, these event boundaries were derived indirectly from free 

recall data (Zacks et al., 2001; Zalla et al., 2013), recognition tests (Radvansky & Copeland, 

2006; Swallow et al., 2009; Zalla et al., 2013), and picture sorting tasks (Zacks, Speer, et al., 

2006) amongst others.  

The event boundaries conveniently assessed by the classical event segmentation task have 

been used in the applied field in order to provide guidelines for designing instructions, e.g., 

how to sequentially structure them (Zacks & Tversky, 2003) or where to put pauses 

(Adamczyk & Bailey, 2004; Spanjers et al., 2010; van Gog et al., 2010). Hence, users 

received manuals structured according to event boundaries based on online event 

segmentation but they used them for offline elaboration of the task, i.e., during usage of 

instructions. This is appropriate if online and offline event segmentation lead to similar event 

boundaries; otherwise, there could be interferences.  

Yet, there is evidence for a meaningful overlap between online and offline event 

segmentation. Zacks et al. (2001) compared them by collecting both online and offline event 

descriptions. Indeed, language analysis revealed that numbers of respective events were 

similar. They argued that the same cognitive structures guide both online perception and 

offline conception, i.e., scripts (Brewer, 1981; Schank & Abelson, 1977). Further support 

comes from research showing that performance in the event segmentation task is the basis 

for further functions like memory (Kurby & Zacks, 2011; Sargent et al., 2013; Zacks, Speer, 

et al., 2006) and action performance (Bailey et al., 2013). However, the quantitative overlap 
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of event boundaries was not tested yet. Finding similar locations of event boundaries would 

eventually prove that the online event segmentation task provides a valid way to investigate 

the structure of activities regardless of whether they are processed online or offline. 

Until now, an important obstacle to a comparison between both types of event boundaries, 

i.e., online and offline, was the lack of an appropriate tool. More specifically, there is no 

method to assess exact locations of event boundaries during offline event segmentation. In 

the present experiment, I will introduce a tool that solves this problem, namely, the IBES tool 

(Instructions based on event segmentation). With the help of the IBES tool, participants use 

static frames of a video in order to design instructions. I use this instruction creation 

paradigm in order to detect event boundaries during offline event segmentation. I will 

compare this tool’s output to event boundaries labeled during the classical online event 

segmentation task. The question is whether the participants’ mental representation of the 

task assessed during instruction creation is similar to the automatic event perception 

processes involved in online watching of the video. 

In this experiment, one group of participants performed online event segmentations for two 

assembly tasks using the classical event segmentation task. Another group of participants 

executed offline event segmentations for the same assembly tasks by the help of the IBES 

tool. I compared both groups’ event boundaries. 

4.2 Methods 

4.2.1 IBES tool 

Together with Nils Petersen, I developed the IBES tool in order to assess event boundaries 

during offline event segmentation. The IBES tool is released as freeware and is available at 

http://www.ict-cognito.org/demo. It is based on the approach for automatic task segmentation 

and instructions generation, described in Petersen and Stricker (2012). Nils Petersen was 

responsible for the software development of the IBES tool whose detailed technical 

specifications can be found in Mura, Petersen, Huff, and Ghose (2013). In the following, I 

provide an overview of the tool’s characteristics. 

Overall, this computer-based tool uses an instruction creation paradigm in which participants 

are asked to make instructions based on static frames of a task’s video. In the first, most 

important step, participants have to define an appropriate structure for the task in question. 

Second, they choose illustrative static frames from the video in order to add them to their 

instruction manual. Third, they add textual descriptions. Fourth, the manual can be printed. 

Moreover, the IBES tool provides an output file that has a significant impact on psychological 

research. The output file called “results.csv” not only documents the instruction creation 

process but also records time stamps for the starting and ending frames of each assembly 

step. These time stamps can be further used for assessing event boundaries during offline 
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event segmentation. In the following, I will describe the four-step-workflow within the IBES 

tool in more detail. 

On the start screen, the users are asked to segment the sequence of video frames into 

instructional steps (see Figure 12g). More specifically, the users choose segments from the 

stream of frames by mouse clicks. The chosen pictures and the corresponding frame 

numbers are shown in a small, transparent window (Figure 12c) and, additionally, amplified 

in a bigger window below the stream (Figure 12d). If the users hold down the left mouse key 

while moving over the stream of pictures, the big window shows a movie clip consisting of 

the marked pictures.  

  

Figure 12: Screenshot of start screen where offline event segmentation takes place: (a) The subject 
identification may be entered and is hidden. (b) Start and end frames of an event are indicated by two 

(red) marks which can be used to drag the boundaries (additionally amplified on top of this figure). The 
chosen event can be deleted by clicking the (red) circle in the middle. (c) The white window highlights the 

current picture (d). The default frame rate value of 25 fps may be changed (e). The navigation bar (f) 
enables moving back and forth between the four steps. (g) A field for instructions or information for the 

user can be edited. (h) The complete segmentation may be deleted by clicking on “clear”. 

Specifically, for segmenting the stream of pictures, the (white) transparent window in Figure 

12c has to be placed at the starting point of a new step followed by a right mouse click. A 

default time window (see Figure 12b) with two (red) marks appears when the mouse is 

moved a little above the filmstrip. Then the users adjust the end point by dragging the right 

(red) boundary to the appropriate end frame. The two (red) boundary-marks represent the 

start and end frames of an instructional step that should go into the instruction manual. The 

subsequent instructional step for the manual can start with the very next frame after the end 

frame of the preceding segment. However, if the immediate next frames are not meaningful, 

the start point can be moved forward until the next important step begins. The users may 
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delete a step by clicking on the cross displayed above the selection window (see Figure 

12b). By pressing “Clear” on the upper left side of the screen (see Figure 12h) they may 

delete the entire segmentation. 

After the segmentation is complete, the users have to navigate to the second step using the 

navigation bar (Figure 12f). As shown in Figure 13, each of the event segments chosen in 

step 1 of the IBES tool workflow appears in a separate row on a new screen (in Figure 13 

nine steps are displayed for clarity). By default, each of the event segments is displayed as a 

sequence of eleven images. The users’ task is to choose the essential and most 

representative pictures that have to be incorporated into the instruction manual by clicking on 

them. The users usually choose at least one picture from every event segment. Users may 

cancel their selection by clicking on the picture again. 

 

Figure 13: Screenshot for step 2 within the IBES tool: Users choose appropriate pictures representing 
each event. Pictures that have been chosen for the manual are shown more clearly than the rest. 

In the third step within the IBES tool, subjects see their preliminary manual consisting of all 

instructional steps row by row along with their associated pictures (Figure 14). In this phase 

of the instruction design they can add textual descriptions for each step into the 

corresponding text box.  

In step 4 within the IBES tool, the completed manuals are displayed and may be printed out. 

They are either ready for immediate use or users may manually add overlays, like arrows, 

boxes, circles, and so on.  
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Figure 14: Screenshot for step 3 within the IBES tool: Users may edit textual description for each event. 

4.2.2 Material 

In both online and offline event segmentations, I used two industrial tasks in which the actor 

performs some manual operations. One task involved changing a notebook RAM and the 

other task involved assembling a pump system (further screenshots for the pump task may 

be found in Figure 6). The videos of the tasks were recorded from a first-person perspective 

(Figure 15). The notebook task took 1 minute and 12 seconds and the pump task took 3 

minutes and 16 seconds. 

 

Figure 15: Screenshots of videos depicting an installation of a new notebook RAM (a) and an assembly of 
a pump system (b). 
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4.2.3 Participants 

In the offline event segmentation, 20 participants (average age of M = 25.1 years, SD = 1.9) 

including 11 male and 9 female students from the University of Kaiserslautern created 

manuals for both tasks with the help of the IBES tool.  

For the online event segmentation, I recruited 22 new participants from the same university; 

twelve subjects segmented the video of the notebook task (6 female and 6 male with an 

average age of M = 25.5 years (SD = 1.9)) and ten subjects segmented the video of the 

pump task (4 female and 6 male with an average age of M = 24.8 years (SD = 2.5)). 

4.2.4 Procedure 

The participants in the offline event segmentation initially saw a video of the notebook task in 

order to become familiar with it. Then, they were introduced to the functionality of the IBES 

tool. They had to divide the whole task into steps that they thought will be “useful for giving 

instructions” by defining the start and end points of each instructional step, respectively. No 

time limit was given and participants had the opportunity to modify their choice of steps 

during segmentation. Afterwards, they sequentially assigned descriptive pictures and wrote 

textual explanations according to the assembly sequence that they chose within the tool. 

Participants executed the same procedure a second time when they created instructions for 

the pump task. 

During the online event segmentation, participants saw the video in question three times; the 

first time without any instruction in order to get familiar with it, and the second and third time 

to segment it into fine and coarse events while watching the videos. The order of fine and 

coarse segmentation was counterbalanced across participants. While watching the video 

they tapped a button whenever they thought one meaningful event ended and another 

meaningful event had begun. 

To summarize, in the offline event segmentation, the identification of events was without any 

time constraints, with the explicit aim to create instructions, and without specification of grain. 

In the online event segmentation, the participants’ task was to segment the video according 

to their subjective perception of fine and coarse event segments, respectively. 

4.2.5 Data analysis and statistical methods 

In contrast to the statistical analyses with binned data already reported in Mura et al. (2013), 

the present chapter adds the analyses without binning the data. That is, I take advantage of 

treating time as a continuous variable. The continuous analysis provides not only a graphical 

inspection of characteristic peaks assumed to be event boundaries. It offers means to 

determine significance of a segmentation magnitude (Papenmeier, 2014). I estimated a 

person’s perception or definition of an event boundary as a Kernel density distributed 

function around the person’s key press or end point (Newtson, 1973), respectively. Then, I 
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summed up all participants’ individual distributions for determining the online and offline 

segmentation plots, respectively. Simulation methods were applied to check for significance 

of the resulting peaks, on a 95% confidence level. 

Furthermore, I made use of the segmentation difference method (Papenmeier, 2014) in order 

to contrast event boundaries from online and offline event segmentation. I checked for 

significance of the resulting difference values on a 99% confidence level. 

I used R (R Development Core Team, 2008) for all statistical analyses and additional R 

package segmag (Papenmeier, 2014) for plotting segmentation behavior, determining 

significant event boundaries, and subtracting groups’ segmentation data. 

In sum, the following sample of event segmentation measures (Section 3.1.4) applied for this 

Experiment 1. I analyzed the number of events for fine and coarse online event 

segmentation as well as offline event segmentation. I tested for significant event 

boundaries in all segmentation data. I investigated the segmentation agreement between 

online and offline event segmentation groups by, first, correlating both groups’ histograms 

(binning data) and, second, computing the differences in their segmentation magnitudes 

(without binning data). 

4.3 Results 

First, I analyzed the number of events in online and offline event segmentation, respectively. 

Second and third, I defined the exact locations of event boundaries and compared them 

between online and offline event segmentation. Fourth, I analyzed the data qualitatively. 

4.3.1 Number of events 

During online event segmentation, as expected, participants perceived more events 

boundaries in the fine segmentation conditions compared to the coarse ones. More 

specifically, participants defined a mean number of 12.0 fine and 4.6 coarse event 

boundaries in the notebook task and 18.1 fine and 6.1 coarse event boundaries in the pump 

task, respectively (see Table 1). 

In the offline event segmentation, participants segmented only once. The mean number of 

event boundaries1 was 6.6 in the notebook task and 11.0 event boundaries in the pump task, 

respectively (Table 1). That is, for both tasks, the mean number of offline event boundaries 

lied in between the mean number of event boundaries perceived during the online fine and 

coarse event segmentation. This implies that the spontaneous structure chosen for the 

instruction manual creation is a compromise between coarse and fine granularities. 

 

                                                
1
 I counted the end points identified by each participant (Newtson, 1973). 
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Table 1: Number of events during both online and offline event segmentation 

 M Median SD Min Max 

Notebook task 

offline event segmentation (N1 = 20) 

     

 events 6.6 6.5 2.6 2 13 

online event segmentation (N2 = 12)      

 coarse events 4.6 5.0 1.3 3 6 

 fine events 12.0 11.5 4.5 5 19 

Pump task 

offline event segmentation (N1 = 20) 

     

 events 11.0 11.5 3.2 5 16 

online event segmentation (N3 = 10)      

 coarse events 6.1 6.0 1.8 4 10 

 fine events 18.1 18.5 6.7 10 26 

However, since the IBES tool also incorporated graphical content, it is possible that the 

participants initially defined rather coarse offline events in order to subdivide them later into 

more fine-grained events by choosing more pictures. Therefore, I checked if participants 

chose offline events that were actually complete. I correlated the number of events chosen 

within the IBES tool and the number of chosen pictures. If the participants selected fewer 

events during offline event segmentation and more frames during picture selection in order to 

represent sub-events within the event, then I would expect a negative correlation. The 

average number of pictures per event was 2.3 with SD = 0.9 (in a range between 1.1 and 5.0 

pictures) and no significant correlation (Pearson’s r) was found between number of events 

and pictures chosen per event (r = -.28, p = .08). Absence of a negative correlation indicates 

that the information content within an offline event was complete. There are no relevant sub-

events present within each event. 

4.3.2 Significant event boundaries 

Most importantly, I was interested in the exact time points of event boundaries during both 

online and offline event segmentation. The analyses on event boundary locations are 

summarized in Figure 16 (notebook task) and Figure 17 (pump task). For each of the two 

videos, there were three sets of segmentation data: one data set belonged to the offline 

event segmentation (upper plots in Figure 16 and Figure 17, respectively) and two data sets 

accompanied the online event segmentation, i.e., fine and coarse event segmentation (two 

middle plots in Figure 16 and Figure 17, respectively). All three sets of segmentation plots 

show characteristic peaks representing chronological correspondences in event boundary 

perception across participants (Figure 16 and Figure 17). I computed the respective critical 

segmentation magnitude (displayed as a horizontal (red) line, respectively). Values above 

this cutoff are considered as significant event boundaries (highlighted as vertical (green) 

lines). 
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First, I looked at the event boundaries from the offline and the online event segmentation in 

the notebook task (Figure 16). During the offline event segmentation, participants defined 7 

significant event boundaries. During the online event segmentation, not all characteristic 

peaks exceeded the critical cutoff. There were 6 and 2 significant event boundaries in fine 

and coarse condition, respectively. Each peak in the coarse condition was related to a peak 

in the fine condition. This suggests that participants perceived a hierarchically structured 

stream of information (Kurby & Zacks, 2008). 

 

Figure 16: Segmentation plots for the notebook task: The upper plot shows the segmentation behavior 
during offline event segmentation; the two middle plots depict segmentation behavior during online event 

segmentation in fine and coarse condition, respectively. The lower plot displays the segmentation 
magnitude’s difference values when subtracting the two middle plots from the upper plot. Significant 
event boundaries (confidence level of 95%) and differences (confidence level of 99%) are displayed as 

vertical (green) lines. 

When inspecting and comparing the offline and online event segmentation peaks, it becomes 

apparent that for each peak in the offline event segmentation, there was a corresponding 

peak in the fine or the coarse online event segmentation. The relation became even clearer 

when inspecting adversely: Each coarse online event boundary which represents higher-

level changes had a corresponding offline event boundary. Yet, most but not all fine event 

boundaries which represent lower-level changes had a corresponding offline event boundary. 

In sum, the graphical inspection indicates that there are chronological correspondences 

between offline and online event segmentation. Furthermore, definition of offline event 

boundaries seems to incorporate both higher- and lower-level changes. 
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Similarly, I checked the event boundaries for the pump task (Figure 17). During offline event 

segmentation, participants defined 12 significant event boundaries. During online event 

segmentation, I found 8 and 5 significant event boundaries in fine and coarse condition, 

respectively. As can be seen, there were more than 8 peaks in the fine segmentation; yet, 

the segmentation magnitude did not exceed the critical cutoff. This is likely due to the small 

sample size of N = 10. Again, each peak in the coarse condition related to a peak in the fine 

condition (Kurby & Zacks, 2008). 

As in the notebook task, inspection of characteristic peaks in the pump task showed a 

correspondence between the offline and the online event segmentation. That is, each peak in 

the offline event segmentation matches with a peak in the online event segmentation, either 

in fine, coarse, or both conditions. In more detail, for each coarse online event boundary, I 

found a corresponding offline event boundary. Yet, not all of the peaks in the fine condition 

represented an offline event boundary. Again, offline event boundaries represent both 

higher- and lower-level changes in activities. 

 

Figure 17: Segmentation plots for the pump task: The upper plot shows the segmentation behavior during 
offline event segmentation; the two middle plots depict segmentation behavior during online event 
segmentation in fine and coarse condition, respectively. The lower plot displays the segmentation 

magnitude’s difference values when subtracting the two middle plots from the upper plot. Significant 
event boundaries (confidence level of 95%) and differences (confidence level of 99%) are displayed as 

vertical (green) lines. 
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4.3.3 Segmentation agreement 

In order to quantitatively evaluate these observed overlaps between the offline and the online 

event segmentation, I performed two analyses, i.e., the correlation of group histograms and 

the difference method.  

First, I calculated the overlap between the online and the offline event segmentation groups 

by correlating their group histograms based on the binned data. For the notebook task, the 

offline event segmentation behavior substantially correlated with the online event 

segmentation behavior both in fine (r = .59, p < .01) and coarse (r = .66, p < .01) condition. 

The same was true for the pump task. Significant correlations between offline and online 

event segmentation were found for the fine (r = .38, p < .01) and the coarse (r = .48, p < .01) 

condition. 

Second, I compared the offline and the online event segmentation by subtracting the online 

event segmentation data from the offline event segmentation data. Note that, in order to 

compute this difference, I initially collapsed fine and coarse online event segmentation data 

into one by adding them. The resulting differences in segmentation magnitude between the 

offline and the online event segmentation are displayed in the lower plots in Figure 16 and 

Figure 17, respectively. If participants’ event boundaries were the same between the offline 

and the online event segmentation, the difference in segmentation magnitude would 

correspond to a line around 0 (highlighted by a thick, horizontal (grey) line). If there were 

event boundaries detected in the offline event segmentation but not in the online event 

segmentation, the difference value would be positive. Conversely, event boundaries that 

were detected in the online but not in the offline event segmentation would be displayed as 

negative values. By simulation techniques, I determined critical cutoffs for negative and 

positive differences in segmentation magnitude and highlighted these cutoffs as horizontal 

(red) lines. I chose a confidence probability of 99%. 

In the notebook task (Figure 16), collapsing the fine and the coarse event segmentation data 

sets resulted in a mutual data set based on N = 24. The offline event segmentation data set 

was based on N = 20. I found that differences between offline and online event segmentation 

were mostly 0 (lower plot of Figure 16). The significantly negative difference indicates 

perception of online but not offline event boundary. Potentially, participants perceived an 

event boundary due to lower-level changes (supported by the peak in the fine condition in the 

middle plot of Figure 16). However, this lower-level change was not processed as an 

important offline event boundary. Overall, this provides support for the hypothesized, 

quantitative overlap between the offline and the online event boundaries.  

In the pump task (Figure 17), the collapsing of the fine and the coarse event segmentation 

data sets resulted in an overall online data set of N = 20 which equaled the group size in the 

offline event segmentation. Again, I found that subtracting the online from the offline event 

segmentation data resulted in difference values which did not exceed the respective cutoffs 
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most of the time (lower plot in Figure 17). This provides additional support for a close relation 

between offline and online event boundaries.  

However, there were infrequent significant differences. In the pump task, the first significant 

deviation was the positive indicating that the boundary is present in offline but not in online 

event segmentation (see lower plot of Figure 17). By graphical inspection, we can see, 

though, that there is a corresponding online fine event boundary for this offline event 

boundary. Because many participants defined this event boundary during offline event 

segmentation, the sum of the fine and the coarse segmentation magnitudes was insufficient 

to make the difference zero despite of an existing overlap between the online and the offline 

event segmentation. The same is true for the next deviation. This time, the difference is 

significantly negative suggesting that participants defined it during the online but not during 

the offline event segmentation. However, through graphical inspection, we can see that it 

was defined in offline and in both fine and coarse online conditions. The fact that participants 

agreed that strong during fine and coarse event perception led to a high overall magnitude 

when adding fine and coarse segmentation data. This is responsible for the negative 

difference.  

Towards the end of the video, I found a significant negative difference followed by a 

significant positive difference indicating that an offline event boundary was defined a little 

later than the online event boundary. This could be due to the fact that assembly operations 

were faster around this time point. In offline event segmentation, the processing was less 

flustered for the participants compared to the participants in the online event segmentation 

condition who were more under pressure to press the key due to the fact that the video will 

end soon. Finally, the last deviation indicates that an event boundary was defined during 

offline but not during online event segmentation. At this time point, the video abruptly 

stopped so that participants who perceived the last event did not have enough time to press 

the key before the video stopped. 

In sum, the correlational analyses as well as the methods based on continuous treatment of 

time provided evidence for temporal similarity between online and offline event boundaries. 

4.3.4 Qualitative analysis 

In a final step, two independent raters analyzed the identified offline events across all 

participants including the textual descriptions. The aim was to confirm the events found in 

Figure 16 and Figure 17. Furthermore, it provided a more detailed insight into the offline 

event segmentation in the context of the instruction creation process of participants. 

First, the two raters identified a consensus version of an instruction manual for each task. An 

offline event became the part of a consensus version of the task in case both raters agreed 

that it was defined by at least half of all participants (N ≥ 10). This resulted in 7 events for the 

notebook and 11 events for the pump task, respectively (see Table 2). These numbers go 

along with the numbers of significant offline event boundaries, i.e., 7 in the notebook and 12 
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in the pump task (Section 4.3.2). Furthermore, the numbers of offline events again indicate 

that the structure of the manual is a combination of fine and coarse events (Section 4.3.1). 

Table 2: Consensus version for the notebook and pump task, respectively: Events that more than half of 
all participants (N >= 10) identified and described textually within the IBES tool. 

Notebook task Pump task 

1. Turn the notebook upside down  

2. Unscrew both screws of the cover  

3. Remove the cover  

4. Insert the RAM 

5. Put the cover on again 

6. Screw both screws of the cover 

7. Turn the notebook back  

1. Put ball valve into base 

2. Put casing onto base 

3. Fix with four screws 

4. Tighten the screws with spanner 

5. Put positioner covering on positioner 

6. Screw four screws 

7. Put the positioner onto the actuator 

8. Fix it with 2 nuts 

9. Tighten the nuts with spanner 

10. Connect actuator and positioner by pipe 

11. Connect the tube with the positioner 

Second, as already shown in Section 4.3.1, the numbers of events identified across 

participants in the offline event segmentation differed across participants. They ranged from 

2 to 13 in the notebook and 5 to 16 in the pump task (Table 1). This suggests that 

participants varied both towards more detailed and broader segmentations during instruction 

creation compared to the consensus versions listed in Table 2. Therefore, both raters 

analyzed all deviations from consensus and agreed on 7 deviations for the notebook and 9 

deviations for the pump task. In the following two paragraphs, I will describe a few examples 

of deviations in either direction compared to the consensus shown in Table 2. They illustrate 

that the individuals defined different granularities. 

On the one hand, there were participants who created more coarse assembly steps. In the 

manuals for the notebook task, five participants summarized “Putting the cover on again” 

(see step 5 of the notebook task in Table 2) and “Screw both screws of the cover” (step 6) 

into one single step of “Closing the cover”. Similarly, steps 2 and 3 were summarized into 

“Open the cover”. A reduced notebook manual incorporating these consolidations would 

consist of five assembly steps. Consolidations for the pump task would result in a coarser 

pump manual of six steps according to the inspections of the raters. If participants 

segmented in a coarser way compared to the consensus version of the pump task in Table 2, 

then they might merge steps 2 to 4, 5 and 6, and 7 to 9 into one step, respectively. For 

instance, they did not segment “Put the positioner onto the actuator”, “Fix it with two nuts”, 

and “Tighten the nuts with spanner” (steps 7 to 9 from Table 2) into separate steps but 

perceived all three of them as one common step “Assemble the positioner onto the actuator”. 

The number of instructional steps in the coarser instruction manuals equals the mean 

number of coarse event boundaries (5 in the notebook and 6 in the pump task, respectively). 

On the other hand, some manuals created by participants had a more detailed structure than 

indicated in Table 2. A number of participants added steps like “Initial state” and “Final state” 
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to their manual. However, even the most detailed instruction manuals included 13 and 16 

steps but did not reach the levels of fine granularity of the fine event segmentations (see 19 

and 26 fine events in Table 1). For example, no subject understood laying down a tool as a 

separate step whereas during fine event segmentation some participants did. 

Taken together, the initial graphical comparison showed an overlap between offline and 

online event boundaries. Second, the difference values between offline and online data 

confirmed their chronological correspondence. Finally, qualitative results confirmed and 

extended comprehension of the offline event segmentation within the instruction creation 

process.  

4.4 Discussion 

In this experiment, I investigated the question if online event perception results in the same 

event boundaries as offline elaboration. My aim was to show a quantitative overlap. Indeed, 

the event boundaries during the offline event segmentation were at similar temporal locations 

as the event boundaries during the online event segmentation. This demonstrates that 

boundaries in offline elaboration are boundaries in event perception and, vice versa. Thus, 

this finding is in line with the claim that organizing dynamic activity into events is at the 

bottom of different processes from cognition (Radvansky & Zacks, 2014).  

Despite the overlap of respective event boundaries, I found that not all fine event boundaries 

constituted important strategic points during offline elaboration. Fine event boundaries depict 

lower-level movement changes and were not always incorporated as strategic points in the 

offline event segmentation, especially, if they illustrated repetitive actions, e.g., screwing 

screw 1, screwing screw 2, and so on. These fine event boundaries were summarized in the 

offline event segmentation into one. Instead, coarse event boundaries had corresponding 

offline event boundaries throughout. It means that similar higher-level conceptual changes 

guided both online and offline event segmentation. This finding is in line with prior work 

claiming that, regardless of whether perceiving online or elaborating more deeply, persons 

make usage of the same scripts (Radvansky & Zacks, 2014; Zacks et al., 2001). Especially, 

they are guided by the same situation models when it comes to higher-level changes. 

Nevertheless, they also use lower-level changes to define offline event boundaries. To sum 

up, higher-level, object-based as well as lower-level, action-based information is used for 

offline event segmentation.  

As reported for the online event segmentation (Zacks et al., 2001), I found substantial 

interindividual differences in the offline event segmentation, too. My qualitative analysis 

confirmed that individuals differed in number of event boundaries they defined during 

instruction creation. Again, this finding shows that higher- and lower-level information can be 

used for definition of offline event boundaries. Furthermore, this result shows that the IBES 

tool represents a tool that can be further used for investigating the individual differences in 

the offline event segmentation process.  
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For instance, it may be useful for further examining different instruction creation processes of 

participants with differing expertise levels, i.e., novices versus experts, in order to understand 

their situation models potentially differing in granularity and content. It may also support 

further research on theory of mind. For instance, Killingsworth, Saylor, and Levin (2005) were 

interested in finding if their participants would create different instructions when asked to 

create instructions either for humans or for computers. Hence, they showed that participants 

defined more segments for computers likely because they attributed limited reasoning 

capabilities to them. An important contribution of this newly created IBES tool for suchlike 

research is that it supports log files with which investigators can further analyze the offline 

segmentation or the instructional design process. 

Former research in instructional design already elaborated that the structure of instructions 

should be based on event boundaries as important strategic points (e.g., Zacks & Tversky, 

2003). However, it was an empirical question if perceivers of an activity actually share the 

same event boundaries as creators of instruction manuals. My experiment showed that the 

perceivers of a task and the creators of instructions for this task rely on the same strategic 

points. Thus, I provided an additional justification for connecting event cognition research 

with its application in instructional design.  

Another asset is that the IBES tool is the first software tool that makes it possible to create 

instructions based on event segmentation semi-automatically compared to current 

approaches. Thus, manuals based on event boundaries which are important for 

understanding and memory can be created easily. This is advantageous both for research 

and practical application. In research, easy creation of manuals could promote evaluations of 

different types of instructions, for instance, with varying structure (fine- versus coarse-

grained) or differing contents (graphical versus textual). For a more detailed discussion on 

the further usage of the IBES tool refer to Section 7.1. 

The difference method resulted in the same finding as the correlation method, i.e., there was 

a meaningful quantitative overlap between online and offline event segmentation. However, 

the segmentation magnitude is dependent on overall key presses which, in turn, are 

influenced by the sample size. As differences are calculated based on segmentation 

magnitudes, group sizes should be approximately equal. Furthermore, even if both groups 

show a significant event boundary at a given time point, the method is still sensitive to 

differences. Therefore, a high confidence level of 99% should be preferred in order to avoid 

such significant differences based on mathematical interferences. Nevertheless, the more 

sample sizes deviate from each other, the less valid the method gets. Having said that, the 

difference method provides an additional analysis compared to graphical inspection alone 

and it is comprehensive in order to compare segmentation behavior between groups.  

In sum, I concluded from this experiment that the easy to perform classical online event 

segmentation task captures the event structure of assembly tasks which, in working context, 

are processed mostly offline. Consequently, the event segmentation task can be used for my 

further studies because it provides ecologically valid event boundaries. 
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5 Experiment 2: Practicing assembly tasks 

As motivated in Chapter 4, assembly workers process their tasks offline rather than during 

online perception. In addition, they process a specific task not only once but practice it 

repeatedly in order to prepare for their work at the production line. Therefore, the goal of 

Experiment 2 was to test the effects of repeated presentation on processes from event 

cognition. 

I used the classical online event segmentation task in the following experiment to determine 

fine and coarse event boundaries. Based on them, I investigated if workers acquire fine 

versus coarse events differently in the context of training. 

5.1 Introduction 

It was shown that working conditions in manufacturing (Section 2.1.1) are characterized by a 

regular change of assembly sequences due to new car models. Introducing new assembly 

sequences requires workers to regularly practice them on specially built hardware prototypes 

(Hermawati et al., 2015). Additionally, recently, workers have been able to practice new 

assembly tasks in a virtual environment (Gorecky et al., 2013; Malmsköld et al., 2007b). 

According to the Deliberate Practice Framework (Ericsson et al., 1993) all such opportunities 

for repeatedly practicing the same or similar assembly sequences are the key to learning and 

expertise development. According to the Event Segmentation Theory (Kurby & Zacks, 2008; 

Zacks et al., 2007), however, sequences consist of two conceptually different strategic 

points, i.e., coarse event boundaries depicting higher-level conceptual changes and fine 

event boundaries depicting lower-level, less salient changes representing “ongoing activity” 

(Radvansky & Zacks, 2014; Swallow et al., 2009). Consequently, working memory models 

depict content differing in hierarchical level. 

Acquisition of fine and coarsely segmented information after repeated presentation has not 

been in the focus of research until now. Rather, studies exploring memory for dynamic 

events presented the stimulus material only once (Lassiter & Slaw, 1991; Newtson & 

Engquist, 1976; Swallow et al., 2009; Zacks, Swallow, Vettel, & McAvoy, 2006). A number of 

studies indicated that memory for coarse events is better than for fine events (Bransford et 

al., 1972; Gernsbacher, 1985; Johnson-Laird & Stevenson, 1970; Treisman & Tuxworth, 

1974). Yet, as repeated presentation of stimulus material is crucial for learning (Ericsson et 

al., 1993) and repeated presentation changes basic memory processes (e.g., Reagh & 

Yassa, 2014), it is an important but unanswered question whether repetition affects 

development of memory of coarse events more than fine events or vice-versa or whether 

there is no difference between the two processes. 
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In this experiment, I will investigate how repeated practice affects memory for fine and 

coarse events. I will test the Deliberate Practice Framework hypothesis that repeated 

practice enhances the acquisition of assembly sequences. Adding evidence from event 

cognition, I predict that learning curves will differ for different events such that coarse, more 

salient events will be more successfully learned than fine, less salient events. This is 

because fine events are easier to confuse and more similar to each other compared to 

distinct coarse events. In addition, familiarity influences event cognition (Graziano et al., 

1988; Jarodzka et al., 2010; Zacks et al., 2001), therefore memory processes after training 

may differ between domain experts and novices. Therefore, I included students from middle 

school in the age just before potential automotive job entry and production workers with a 

high degree of work experience.  

This experiment consisted of two tasks, i.e., the classical event segmentation task and the 

virtual training task. The purpose of the initial event segmentation task was to confirm that 

the assembly task used as stimulus is hierarchically perceived in coarse and fine events. In 

the virtual training task, another sample of participants consisting of experts and novices 

practiced the assembly task three times in a virtual environment. After each repetition, I 

tested their memory. I assessed memory for coarse events by stopping viewing of the task’s 

video either shortly before a coarse event boundary and asking for the correct next event; or, 

stopping shortly after a coarse event boundary and asking for the correct next fine event. 

5.2 Methods 

5.2.1 Car door assembly material 

The car door assembly used in this experiment consisted of mounting different parts of a car 

door to the rack of the same door in a given sequence (see Figure 18 and Figure 7). The 

assembly contained typical manual operations from the production line of the Adam Opel 

AG, a German automotive company (e.g., picking up a work piece, screwing, etc.). 

Concretely, it consisted of 38 single operations. 

A video of this assembly was shot from a point-of-view perspective using a head-mounted 

camera. On the one hand, this video was used for the initial event segmentation task (see 

Section 5.2.2). On the other hand, this video served as the basis for the development of a 

memory test (see Section 5.2.4). 
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Figure 18: Real door setup: The two upper pictures depict the car door rack from front and back side, 
respectively; the lower picture shows the main objects, screws, and tools. Source: Adam OPEL AG. 

5.2.2 Event segmentation task 

Participants watched the video of the car door assembly and pressed the space bar key 

whenever they thought that one meaningful event ended and another one began. I used this 

event segmentation task (Newtson, 1973) in order to empirically determine the structure of 

the task with respect to its coarse and fine event boundaries. I presented the video which 

was 7 minutes and 16 seconds long without sound. Overall, participants saw the video three 

times. First, they watched it without instruction, and then, they had to segment it both in fine- 

and coarse-grained events. The order of fine and coarse segmentation was counterbalanced 

across participants.  

5.2.3 Virtual training task 

Participants executed the virtual training task by the virtual training setup that was introduced 

in Section 2.2.2 and is shown in Figure 19. Participants saw the 3D simulation of the car door 

assembly on a monitor approximately 2 meters in front of them. Their task was to move an 

object shown on the screen to the correct assembly position using their hand motion tracked 

through a Microsoft Kinect. The correct assembly position was highlighted by a semi-

transparent blue area shaped like the object in question (see Figure 4 in Section 2.2.2), e.g., 

a door part, a screw, or a tool. Red, orange, and green colors were given as visual feedback, 

respectively, in order to indicate how close the object was located with respect to its target 

position. When participants positioned the object correctly, they confirmed this assembly step 

by pressing the button on their Wii Mote controller. Then, they saw the next object. I used 

this so-called “easy mode” for training the participants in executing the door assembly task. 

The virtual training system incorporated a more difficult mode (“advanced mode”) as well. I 

used this mode as an additional final performance measure (see Section 5.2.6 and Section 

5.3.3). In this mode, participants were asked to choose the correct subsequent object on 

their own using a circular menu (see Figure 4 in Section 2.2.2). As a hint for selecting the 

correct part, they could see the blue highlighted area that indicated the shape and target 
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position of the subsequent object. If a wrong part was selected, an error message appeared 

followed by the circular menu with the correct object in the foreground. 

The door assembly within the virtual training system involved 38 assembly steps that 

represented an imitation of the real assembly sequence introduced in Section 5.2.1 and 

Figure 18. 

 

Figure 19: Virtual training system setup: Flat screen for visualization (52 inches), PC on which software 
was running, Microsoft Kinect for motion tracking, Nintendo Wii Mote as controller. Source: DFKI GmbH. 

5.2.4 Memory test based on coarse event boundaries 

In order to test memory performance for the correct assembly sequence, I created a test 

(similar to Swallow et al. (2009) or Zacks, Kurby, Eisenberg, and Haroutunian (2011)) based 

on the video of the real door assembly (Section 5.2.1) and based on the results of the event 

segmentation task (Section 5.2.2) which will be described in detail below (Section 5.3.1). The 

video stopped at time points associated with the coarse event boundaries of the door 

assembly and the test asked for predicting the correct next event frame. In the “predicting 

coarse” condition, the video stopped before a coarse event boundary; this tested memory for 

coarse events. In the “predicting fine” condition, the video stopped after a coarse event 

boundary; this tested memory for fine events. An illustration of the test is given in Figure 20. 

So, depending on stop position of the video clip, i.e., before or after the coarse event 

boundary, there were two different conditions in the memory test. The video clips in the 

“predicting coarse” condition began two fine steps from the respective coarse event 

boundary and stopped shortly before it, i.e., shortly before the person was just about to turn 

back to the table in order to take the next part. The videos in the “predicting fine” condition 

began when the person in the video turned towards the table and stopped when she had 

gripped the main object from the table, so, shortly after the new coarse event began (see the 

overview in Figure 20). The memory test contained 14 video clips (seven “predicting coarse” 

and seven “predicting fine” items). 

Immediately after the video clip stopped, participants saw a static picture frame depicting 

either the correct (target) or wrong next step (distractor) taken from the video. Target pictures 

depicted a screenshot of the next step. Distractor pictures in the “predicting fine” condition 



Experiment 2: Practicing assembly tasks 

45 

depicted the assembly operation two fine steps ahead. Distractor pictures in the “predicting 

coarse” condition depicted one coarse step ahead.  

 

Figure 20: Memory test illustration: I schematically sketched the memory test using three consecutive 
coarse event boundaries from the assembly task, i.e., EB1, EB2, and EB3. Video clips were stopped either 
before or after a coarse event boundary (EB). The video clip that stopped before exemplary coarse event 
boundary, EB 2, was a coarse event item. Its respective target picture was “EB 2” and distractor picture 
was “EB 3”. The video clip that stopped after exemplary coarse event boundary, EB 2, was a fine event 

item. Its target picture was “1
st

 step after EB 2” and distractor picture was “3
rd

 step after EB 2”. 

I presented each video clip twice, one time testing memory with a target and the other time 

with a distractor item. Order of presentation was chosen at random. Participants indicated via 

key press whether the shown picture was the correct next step (“old” response) or not (“new” 

response), respectively. The test was created using PsychoPy software (Peirce, 2007) and 

participants executed it on a conventional notebook PC taking approximately 15 minutes. I 

calculated the non-parametric Signal Detection Theory measures (Stanislaw & Todorov, 

1999) sensitivity (A’) and response bias (B’’), see Section 5.2.7. 

5.2.5 Participants 

Students in the event segmentation task 

For the event segmentation task, I used a sample of N = 10 students (5 male; age: M = 24.6, 

SD = 4.6) from the University of Kaiserslautern and University of Tübingen. 

Experts and novices in the virtual training task 

For the virtual training task, I used a sample of overall N = 37. Novice participants were 

middle school students from the Neues Gymnasium in Rüsselsheim, Germany (N = 19; Mage 

= 14.9 years, SDage = .3) and the experts were production workers from the Volvo Trucks 

plant in Gothenburg, Sweden (N = 18; Mage = 42.2 years, SDage = 7.8). Workers from Volvo 
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differed from students in having been working in production for an average of 17.2 years (SD 

= 7.3).  

Experts had significantly higher self-reported manual skills compared to novices (t(32) = -

3.73, p < .01), but they did not outperform with respect to their spatial ability tested by a 

mental rotation task (t(29.9) = 1.19, p = .24) (see Table 4). Both groups had no prior 

knowledge on the car door task (note that Volvo workers usually assemble trucks not cars). 

5.2.6 Design and procedure 

Event segmentation task 

For the event segmentation task, I used the classical procedure (Newtson, 1973) for all N = 

10 participants. The order of fine and coarse event segmentation was counterbalanced 

across participants. The event segmentation task took place at the University of 

Kaiserslautern and University of Tübingen. 

Virtual training task 

For the virtual training task, I adopted a within-subject design in which both experts and 

novices (N = 37) executed three training repetitions each followed by the memory test based 

on coarse event boundaries introduced in Section 5.2.4. Volvo Gothenburg and Neues 

Gymnasium Rüsselsheim compensated participants’ absence from school or work, 

respectively. 

The data assessment of experts was conducted in Volvo Trucks Factory in Gothenburg, 

Sweden. Novices participated one month later in the Neues Gymnasium in Rüsselsheim, 

Germany. Experimenters were previously trained at the DFKI. Production workers at Volvo 

signed an informed consent right before the experiment started. Student participants brought 

a consent form signed by their parents. 

Table 3: Procedure of the virtual training task in a within-subject design 

1. Tutorial 

2. Virtual assembly training and testing (repeated 3 times) 

a. Easy mode 

b. Memory test 

3. Virtual assembly training: advanced mode 

4. Expertise assessment 

a. Self-reported manual skills 

b. Mental rotation test 

The procedure as summarized in Table 3 was the same for all N = 37 participants. Each 

participant filled in a demographic questionnaire followed by the experimenter’s oral 

introduction about the overall project. Each participant was then calibrated within the virtual 

training system. In order to get familiar with its usage, all participants performed a tutorial 
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consisting of seven practice assembly steps at the front spoiler of a car. After this practice 

trial, they performed the virtual training for the door assembly task three times in the easy 

mode while the experimenter recorded the time required to complete the task with help of a 

stopwatch. After each training repetition, participants were asked to execute the memory test 

(see Section 5.2.4). Next, they performed a final virtual assembly training session in the 

advanced mode while the experimenter noted errors of choosing the next object.  

The expertise assessment consisted of a questionnaire on manual skills including six items 

on a 5-point Likert-scale (e.g., “I find it hard to assemble furniture by myself”). Average 

scores might have ranged between 1 and 5 indicating highest and lowest mean self -reported 

manual skills, respectively (see Table 4). Furthermore, I applied a 5-minute computer mental 

rotation test designed by PsychoPy software (Peirce, 2007) in order to assess potential 

differences between novices and experts. On a conventional notebook monitor, the 

experimenter showed a letter (“R” or “G”) either in mirrored or normal view. Additionally, the 

letter could be rotated. Participants had to indicate by button press as fast as possible if the 

letter was mirrored or not. I calculated the sensitivity A’ based on hits and false alarms for the 

mental rotation test (see Table 4). 

Table 4: Differences in age and expertise measures between novices and experts 

 Experts Novices   

 M (SD) M (SD) t p 

Age [years]  42.2 (7.8) 14.9 (.3) 14.78 <.01 

Manual skillsa 1.5 (.45) 2.2 (.65) -3.73 <.01 

Spatial abilityb .98 (.04) .95 (.07) 1.19 .24 

Note. 
a
Average score with 1 and 5 indicating highest and lowest self-reported manual 

skills, respectively; 
b
Sensitivity A’ based on hits and false alarms in a mental rotation 

test. 

5.2.7 Data analysis and statistical methods 

Event segmentation task 

For analyzing the data in the event segmentation task, I treated time as a continuous 

variable. I estimated a person’s perception of an event boundary as a Kernel density 

distributed function around the person’s key press. Then, I summed up all participants’ 

individual distributions. Simulation methods were applied to check for significance of the 

resulting peaks, on a 90% confidence level. Furthermore, I analyzed perceived hierarchical 

structure of the assembly according to hierarchical alignment and enclosure (Section 3.1.4). 

I used R (R Development Core Team, 2008) for all statistical analyses and additional R 

package segmag (Papenmeier, 2014) for analyzing event segmentation data. 

In order to understand the event structure of the car door assembly task with respect to fine 

and coarse event boundaries, the following event segmentation analyses (Section 3.1.4) 

were used. I tested for significant event boundaries in fine and coarse event segmentation 
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data, respectively. I calculated hierarchical alignment and hierarchical enclosure in order 

to confirm the hierarchical structure of the assembly. 

Virtual training task 

In order to analyze memory performance after repeated practice, I applied Signal Detection 

Theory measures to the memory test (Section 5.2.4). The theory is based on the calculation 

of the hit rate (i.e. the proportion of “old” responses to target items) and the false alarms (i.e. 

the proportion of “old” responses to distractor items). Both of them reflect two factors: the 

sensitivity, i.e. the actual cognitive ability to detect a picture as the target or distractor, and a 

response bias, i.e. the general tendency to respond “old” or “new” in an old/new recognition 

test.  

I calculated the non-parametric values for sensitivity, i.e. A’, ranging from .5 (no ability to 

distinguish between target and distractor) to 1 (perfect performance), and response bias, i.e. 

B’’, ranging from -1 (saying always yes) to 1 (saying always no) with 0 representing no 

response bias. Sensitivity values less than .5 may arise from sampling error or response 

confusion with the minimum value being 0. Furthermore, I analyzed response times of 

memory test answers. Finally, I checked the performance in the virtual training task itself. 

I assessed the need for linear mixed effects analysis by fitting two models, i.e., one with 

constant intercept for all participants and another allowing intercepts to vary across 

participants (Field, Miles, & Field, 2012). If the comparison of fit indices revealed significant 

existence of random effects, I performed a linear mixed effects analysis by the help of R 

package lme4 (Bates, Maechler, Bolker, & Walker, 2015). In case of absence of random 

effects, I computed ANOVAs.  

5.3 Results 

5.3.1 Fine and coarse event boundaries 

Significant event boundaries 

The respective event segmentation plots for both fine and coarse condition are displayed in 

Figure 21. I found 7 meaningful event boundaries in the coarse condition indicated by vertical 

(green) lines in the upper plot of Figure 21. They correspond to 7 main objects that have to 

be assembled successively onto the car door rack. In between those coarse event 

boundaries, participants perceived several fine steps, respectively, i.e., positioning the 

current object, inserting screws, and fixing the screws with the help of a tool. These 

additional fine event boundaries are indicated by the vertical (green) lines in the lower plot of 

Figure 21.  
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Figure 21: Event segmentation plots for the car door assembly task: Upper plot shows event 
segmentation behavior in coarse condition, bottom plot displays fine condition. Significant event 

boundaries (confidence level of 90%) are displayed as vertical (green) lines. 

Hierarchical alignment and enclosure 

Furthermore, participants perceived the activity according to hierarchical alignment and 

enclosure. First, participants observed more temporal closeness between fine and coarse 

event boundaries (M = 2.7 s, SD = 1.1) than expected by chance (M = 4.8 s, SD = 1.2), t(9) = 

-5.24, p < .01. Second, the hierarchical enclosure value was .81 (SD = .24) and significantly 

higher than a proportion of .50 assumed under the null hypothesis (t(9) = 4.12, p < .01). The 

significant deviation means that more than half of the nearest fine event boundaries, more 

specifically, 81%, preceded its respective coarse event boundary. These results suggest that 

perception of the car door assembly was hierarchically structured, i.e., several fine event 

boundaries were chunked under its respective coarse event boundary. 

5.3.2 Memory performance after repeated practice 

After I confirmed the hierarchical structure of the assembly task in question, the main aim of 

this experiment was to investigate whether there is any difference in acquisition of events 

after repeated practice based on their hierarchical level. 

Sensitivity 

In order to investigate memory performance, I analyzed the influence of repetition (1, 2, 3), 

expertise (experts, novices), and item type (predicting coarse, predicting fine) on memory 
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performance. The data is plotted in Figure 22. Because my test for random effects revealed 

individual participant as random factor, I calculated a linear mixed effects model that is 

summarized in Table 5 along with post hoc analyses. I found a significant interaction effect 

between repetition and item type (F(1, 35) = 15.96, p < .01). This suggests an improvement 

in memory with increasing training repetition, but only for coarse events, not for fine events.  

 

Figure 22: Learning curves after virtual training with respect to sensitivity A’: The significant trends for 
the “predicting coarse” condition are indicated by * (95% confidence level). Error bars reflect standard 

errors. 

Further, there was a significant interaction effect between expertise and item type (F(1, 35) = 

4.47, p <.05). Experts performed generally better in predicting fine events (M = .79, SD = .20) 

compared to novices (M = .59, SD = .22). In contrast, memory for coarse events did not differ 

between experts and novices (M = .64, SD = .26 versus M = .64, SD = .24).  

Thus, experts showed initial high performance for memory of fine events indicating existence 

of prior knowledge cued by a specific automotive-related object.  

Table 5: Results of the mixed-effects model for sensitivity A’ in the memory test 

 b SE b 95% CI t p 

baseline A’ .75  .08 .57, .86 9.50 <.01 

repetition -.00 .03 -.07, .06 -.24 .81 

expertise -.17 .03 -.38,.04 -1.59 .12 

item type -.43  0.10 -0.63, -0.23 -4.16 <.01 

item type * repetition .18   0.05 0.09, 0.28 3.81 <.01 

item type * expertise .30  0.15 0.02, 0.58 2.08 <.05 

expertise * repetition .03 .05 -.06, .12 .59 .55 

item type * repetition * expertise  .03 .05 -.06, .12 .59 .55 
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Response time 

By using a linear mixed effects model with individual participant as random effect (see Table 

6), I analyzed if response time to the items in the memory test depended on item type, 

expertise, repetition, and sensitivity A’. I found that time (in seconds) decreased with 

repetition (M1 = 5.77 (SD = 3.00), M2 = 4.58 (SD = 1.94), and M3 = 3.99 (SD = 1.96); F(2, 68) 

= 25.77, p < .01) and that the coarse events required longer response times than the fine 

(Mcoarse = 4.99, SD = 2.84 and Mfine = 4.57, SD = 1.99; F(1, 108) = 4.34, p < .05). However, 

this is true only for experts who differed in response time for coarse versus fine events 

(Mcoarse = 6.30, SD = 3.31 and Mfine = 5.27, SD = 2.09); novices did not show this difference 

(Mcoarse = 3.70, SD = 1.36 and Mfine = 3.86, SD = 1.62), F(1, 102) = 9.02, p < .01 (see Figure 

23). 

Furthermore, response time for predicting coarse events decreased more clearly with 

repetition than for predicting fine events, F(2, 102) = 6.78, p < .01. Slowed responses for the 

coarse events which accelerate with repetition indicate a higher initial difficulty of the coarse 

compared to the fine events which diminishes after repeated training. 

 

Figure 23: Response times to the memory test. Error bars reflect standard errors. 

In order to be able to contrast response time with sensitivity A’, I plotted response time 

curves in Figure 23 analogous to Figure 22. From the illustration, it becomes apparent that, 

overall, experts took longer regardless of repetition and item type. They show clearer 

negative slope in predicting coarse condition compared to novices. They show a zero slope 

for predicting fine events. 
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Table 6: Results of the mixed-effects model for response time in the memory test 

 b SE b 95% CI t p 

baseline 6.26 1.04 4.27, 8.25 6.04 <.01 

repetition -.52 .25 -1.00, -.05 -2.10 <.05 

expertise -.43 1.36 -3.11, 2.24 -.32 .75 

item type 3.56 1.15 1.36, 5.76 3.10 <.01 

sensitivity A’ .08 1.15 -2.13, 2.28 .07 .94 

item type * repetition -1.46 .40 -2.22, -0.70 -3.69 <.01 

item type * expertise -4.02 1.57 -7.04, -1.01 -2.56 <.05 

expertise * repetition .22 .35 -.46, .89 .62 .54 

item type * repetition * expertise  .95 .54 -.09, 1.99 1.75 .08 

Response bias 

Because of absence of random effects for response bias as dependent variable I computed 

an ANOVA (see Table 7) which revealed significant main effects of item type (F(1,35) = 

68.03, p < .01) and expertise (F(1,35) = 4.16, p < .05) and a significant interaction between 

item type and expertise (F(1,35) = 6.98, p < .01). The fine event items were more often rated 

as “old” (M = -.55, SD = .52) compared to the coarse event items (M = -.02, SD = .57). 

Experts had a general higher tendency to rate items as “old” (M = -.38, SD = .59) than 

novices (M = -.20, SD = .60). Novices compared to experts regarded coarse event items 

significantly more often as “new” (M = .15, SD = .60 versus M = -.20, SD = .59). 

However, the analysis of the response bias was of minor interest. Response bias declined in 

conditions with high sensitivity values and was highly negative in fine condition. This 

indicates that participants tended toward distractor-responses in conditions in which they 

were less accurate in distinguishing between targets and distractors. 

Table 7: ANOVA results for response bias B’’ in the memory test 

 df F p 

repetition 2 .01 .91 

expertise 1 4.16 <.05 

item type 1 68.03 <.01 

item type * repetition 2 2.45 .12 

item type * expertise 1 6.98 <.01 

repetition * expertise 2 .16 .70 

item type * repetition * expertise  2 .04 .84 

5.3.3 Performance in the virtual training task 

I also looked at the virtual training execution time (Figure 24). I performed an ANOVA with 

number of repetitions as independent and execution time as dependent variable. Time for a 
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single virtual training session significantly decreased with repetition in novices (F(1, 18) = 

15.39, p < .01. Specifically, there is a significant increase in speed from the second to the 

third training (t(18) = 3.25, p < .01)), however, the experts did not get faster with more 

repetition (F(1, 17) = .21, p = .65). 

 

Figure 24: Time needed for the virtual training task. Error bars reflect standard errors. 

In the final advanced mode training session, experts and novices made 3.9 (SD = 1.5) and 

4.5 (SD = 1.9) errors, respectively (t(33) = -0.92, p = .36), when selecting the correct part out 

of a virtual menu. Qualitative inspection of type of errors made by the participants revealed 

problems with choosing the correct screw, i.e., a fine event. No participant failed to select the 

correct main object. Again, novices performed faster (M = 413.5 s, SD = 61.5) than experts 

(M = 588.8 s, SD = 157.4) in the concluding virtual training, t(22) = 4.42, p < .01. 

5.4 Discussion 

The main hypothesis of this experiment could be confirmed, i.e., repeating an assembly 

affects long-term memory acquisition of coarse and fine events differently. Coarse events 

benefit from repeated presentation. In contrast, I found no benefit after repeated presentation 

for fine events. 

In the context of event cognition research, this study provides evidence that long-term 

memory for fine and coarse events differs and this difference is established after a short 3-

repetitions training. I conjecture to explain this by differences in saliency between successive 

fine and coarse events, respectively. The main object is the same for consecutive fine events 

and they resemble each other more than consecutive coarse events. Coarse events differ 

from each other conceptually, i.e., because of the appearance of a new main object. This 

conceptual change at the coarse event boundary triggers more attention and, as a result, has 

higher chances on being encoded in long-term memory. Thus, repeated practice strengthens 
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the advantage of coarse event boundaries with respect to their long-term memory 

representation. 

Furthermore, I found increased response times in the memory test for coarse events. In line 

with the Deliberate Practice Framework, longer response times may indicate more effortful 

experiences with coarse events which in turn promote successful learning (Ericsson, 2004). 

Furthermore, getting faster in predicting coarse events is in line with improved memory for 

coarse events.  

Even if the fine events did not improve from repetition to repetition, I found an expertise effect 

for the fine events. That is, experts were better in memorizing fine events. This is likely due 

to previous experiences with several automotive objects and their assembly work over years 

of professional life. However, in this context, a potential speed accuracy tradeoff could be 

responsible for improved performance in experts. Experts were better in predicting fine 

events but they were slower in responding. The fact that they took more time to think about 

items could have resulted in better performance. However, if there was a universal speed 

accuracy effect, experts should outperform novices in predicting coarse events, too. This is 

not the case: novices and experts have approximately the same levels and curves for 

predicting coarse events. I conjecture to explain the difference in response time by age. The 

older participants reacted generally more slowly than the younger. This was true for all tasks 

including the virtual training task. Despite these arguments, there was an unavoidable 

confound between expertise and age for my goal to investigate training-relevant groups, i.e., 

students just before potential job training and long-term workers from automotive. Therefore, 

I cannot completely exclude a speed accuracy tradeoff. However, in both groups, I found the 

most interesting interaction effect. 

This hierarchical level effect, i.e., better memory performance for coarse but not for fine 

events, may be further explained by the assembly’s nature and the training design. First, 

decreased discrimination and higher response bias for fine steps across repetitions indicated 

that they were more likely to be confused in the memory test. Objects characterizing coarse 

event boundaries were so characteristic that they could be easily recognized in the video. 

Fine events involved smaller, less characteristic objects that were more similar to each other 

(e.g., screws). They were competing with each other during memory test potentially leading 

to memory interference (in accordance with Radvansky & Zacks, 2014, p. 37). Second, the 

virtual training required going through the door assembly in a fine-grained step-by-step 

manner without pointing to the hierarchical organization. Participants elaborated fine events 

in a segmented way inhibiting chunking of details (Zacks et al., 2006). The repeated 

execution might have reinforced confusion of details. Third, the virtual training setup is likely 

most suitable for communicating declarative knowledge, i.e., higher-level concepts like main 

assembly steps primarily represented by coarse events (Ericsson, 2008). In contrast, virtual 

simulations cannot teach detailed manual operations and motoric skills as effectively as 

hardware-based training involving real prototypes (Ericsson, 2008; Malmsköld et al., 2007). 
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From the results of the memory test, the conclusion could be drawn that the temporal 

connection of a fine event boundary towards its nearest coarse event boundary is 

strengthened in contrast to the other possible connection, i.e., coarse event boundary to the 

next fine event boundary. Prediction was enhanced for object-based coarse events from the 

nearest fine event boundary. However, prediction did not improve for action-based fine 

events from the nearest coarse event boundary. It seems that, after repetition, the 

connection from fine towards the next coarse event boundary is established with priority. This 

effect would be in line with findings that indicate that familiarity with a task increases the 

hierarchical structuring according to hierarchical alignment and enclosure.  

The results reveal that repetition is not always beneficial for memory. Other detrimental 

effects of repetition have been shown by Jacoby et al. (1998) who instructed participants to 

detect words they read but not heard in previous study phases. Increasing the number of 

reading repetitions increased the difficulty in correctly rejecting a word that indeed was read 

but not heard. In this case, repeated presentation increased the familiarity of the read word 

making it more difficult to disentangle if it was additionally heard or not heard. Thus, repeated 

presentation may be beneficial or disadvantageous for learning depending on stimuli 

properties like similarity. 

Since I showed that initial virtual training promotes learning of coarse assembly steps, it 

seems that fine assembly steps require different training strategies. Currently, training design 

foresees spending equal time for fine and coarse events. Instead, I propose a grouping of 

fine steps and an adaptation of training to expertise level. I will elaborate these aspects in 

Chapter 7.2. 
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6 Experiment 3: Cognitive potential of intellectually disabled 

workers in workshops for adapted work 

In contrast to assembly work in the automotive domain, workers in workshops for adapted 

work execute highly simple and repetitive tasks. In this experiment, I study whether the event 

segmentation task can be used to investigate the cognitive potential of intellectually disabled 

workers to perform more complex and interesting tasks. 

6.1 Introduction 

6.1.1 Theoretical and practical relevance 

Workshops for adapted work provide work places for people with different types and degrees 

of physical and intellectual disabilities. One of their aims is fostering workers’ personal 

growth through manageable, interesting, and qualifying work activities. In this context, 

manual assembly offers multifaceted tasks that can be highly structured and simple enough 

but still sufficiently challenging (Richardson & Jones, 2011). In addition, manual assembly 

workplaces can incorporate physical and cognitive support, e.g., additional tools or 

interactive instructions. However, in reality many workers perform only simple, repetitive 

tasks (Dulaney, 1998). This could constitute a missed opportunity for individual development 

and yields boredom and error increment in the long run. There is not sufficient research on 

whether the monotonous assembly tasks offered at the workshops utilize the full cognitive 

potential of intellectually disabled people. In the present experiment, I propose that 

assessment of workers’ ability to segment dynamic events into meaningful events is a way to 

overcome this theoretical and practical gap. 

So far, assessing a worker’s potential for executing assembly tasks is demanding because 

many different cognitive functions are involved in successful work execution (Section 3.1.2). 

Evidence from former research on cognitive impairments in intellectual disability (see below) 

provides a collection of possible deficits varying in individuals but limited insight into selected 

capabilities relevant for executing work in workshops. I suggest that mental representations 

and cognitive processes involved in assembly tasks can be comprehensively analyzed by 

classical event segmentation task (Newtson, 1973). Event segmentation is a complex 

cognitive control mechanism which combines the necessary attentional, perceptional, and 

memory-related processes when dividing ongoing activity into meaningful events. 

Importantly, event segmentation predicts actual action performance (Bailey et al., 2013). 

Both action and perception involve monitoring the current step in the sequence, structuring 

tasks in goals and sub-goals, and long-term memory for all necessary steps. Thus, capability 

of action perception indicates potential ability and problems of actual task performance. 
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The successful assessment of cognitive (dis-)abilities of the intellectually disabled group in 

the context of their work has significant implications for work design. First, it supports the 

choice of right level of task complexity. Second, it guides appropriate assistance and training 

activities, for instance, using upcoming computer-based methods (Section 2.2.2). Now such 

a measure can potentially be designed with the most recent findings on the relation between 

event cognition and performance (Bailey et al., 2013). By using such a measure the practical 

challenges in workshops for adapted work (EASPD, 2012b) and the potential of evolving 

technological means (Gorecky et al., 2012; Korn et al., 2013b) could be addressed. I aim to 

fill up this gap in psychological research with the understanding of action perception and 

performance in intellectually disabled people. Hence, the estimation of their assistance 

needs and application of appropriate support means can be guided by empirical knowledge. 

6.1.2 Cognitive dysfunctions related to intellectual disability 

In this section, I will shortly review potential deficits in intellectually disabled people with 

respect to the cognitive processes required for dynamic event perception (Section 3.1.2), i.e., 

visual attention, visual perception, working memory, and long-term memory. 

Visual attention 

The consequences of attentional deficits were shown for persons with intellectual disability 

(Iarocci & Burack, 1998), yet, there are large interindividual differences (Sterr, 2004). A study 

investigating visual information processing revealed that children have delayed visual 

orienting responses, e.g., in reaction to movement (Boot, Pel, Vermaak, van der Steen, & 

Evenhhuis, 2013).  

Visual perception 

Van Roon, Caeyenberghs, Swinnen, and Smits-Engelsman (2010) showed diminished 

performance in a group of intellectually disabled children when tracking an accelerating 

target red dot shown on a screen with the help of a cursor. The authors suggested a lack of 

anticipation for the target movement. Further deficits in anticipatory behavior of intellectually 

disabled persons have been reported for action planning (Crajé, Aarts, Nijhuis-van der 

Sanden, & Steenbergen, 2010) and movement initiation (de Campos, Cerra, Silva, & Rocha, 

2014).  

Working memory  

Working memory plays a crucial role in intellectual functioning (Cornoldi & Giofrè, 2014). It 

represents the central system for storage, manipulation, and integration of different 

information. Working memory span may be limited (Henry, 2001) to two or three elements 

(Numminen, Lehto, & Ruoppila, 2001) in intellectually disabled people. Other studies treated 

potential impairments of working memory sub-systems, i.e., the central executive (e.g., dual 
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task performance), the phonological loop, and the visuo-spatial sketchpad (Baddeley & 

Jarrold, 2007; Lanfranchi, Baddeley, Gathercole, & Vianello, 2012). 

Carretti, Belacchi, and Cornoldi (2010) aimed at investigating how well intellectually disabled 

people modify and update information in working memory, i.e., incorporate new information 

and exclude old material. Similar to the Event Segmentation Theory, they stress the 

importance of the ability to manage attentional resources and to dynamically adapt working 

memory content depending on current external changes. Their updating task differed from a 

classical span task by not only requiring participants to accumulate information without 

substitution but rather to actively control and process the content. For instance, participants 

were presented with a spoken list of five objects from which they had to recall the two 

smallest in the right order of reading. In order to perform successfully, they had to constantly 

compare object size of the currently read item to formerly read items in the list. In case the 

currently read object was small enough, previous items depicting bigger objects should be 

excluded and previous items still depicting potential smallest objects should be maintained. 

The authors provided evidence that the active attentional control and updating of memory 

operationalized by the mentioned task mainly discriminated intellectually disabled persons 

from persons with typical development (Carretti et al., 2010). 

Long-term memory 

Different deficits in episodic memory have been reported for intellectually disabled people 

(Crane & Goddard, 2008; Merrill, Lookadoo, & Rilea, 2003; Southwick et al., 2011; Stan & 

Mosley, 1988; Zalla et al., 2013). However, there is also evidence that long-term memory in 

intellectually disabled persons from workshops for adapted work improves with practice 

(Dulaney, 1998). 

6.1.3 Overview of experiment 

My research question in this experiment was whether the simple and repetitive assembly 

tasks offered at workshops for adapted work utilize the full cognitive potential of intellectually 

disabled people. In order to analyze cognitive processes related to assembly work in 

intellectually disabled persons from workshops for adapted work, I used the Event 

Segmentation Theory. It offers a comprehensive framework since it combines relevant 

functions from attention, perception, and memory (Kurby & Zacks, 2008; Radvansky & 

Zacks, 2014; Zacks et al., 2007), it provides the event segmentation task as assessment 

method, and it is closely connected to action performance (Bailey et al., 2013). 

In order to answer the research question, I conducted a study with two groups of participants. 

First, the intellectually disabled group consisted of 32 workers from workshops for adapted 

work, with an average IQ of 64.4 (SD = 9.8). The second group was the control group 

consisting of 30 students from University of Kaiserslautern. The intellectually disabled group 

executed two tasks. First, they performed a classical event segmentation task on one every-

day and three assembly-related activities. They segmented the videos into fine- and coarse-
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grained events. I compared their event segmentation behavior with the control group and 

applied several event segmentation measures to the analysis. 

Furthermore, the same 32 workers from workshops for adapted work performed a 7-step 

Lego assembly task. Beforehand, I instructed them with the help of a video and a paper 

manual. I assessed the errors made by them in the assembly task. 

Because intellectual disability goes along with different cognitive deficits which can be linked 

to event segmentation (Section 6.1.2), I expected impairments in event segmentation 

performance as well. As event boundary perception relies on movement and conceptual 

changes, existing deficits of the intellectually disabled group concerning motion perception 

and abstract thinking (Section 6.1.2) should result in lower detection rate of event boundaries 

in fine and coarse conditions. Disturbed updating processes in working memory (Section 

6.1.2) should also contribute to inhibited event boundary perception and extended event 

lengths. Further event segmentation measures assessing the hierarchical structuring should 

give insight into potential improvement of segmentation performance due to task familiarity 

(Section 3.1.5). Finally, since event perception and action performance are closely 

connected (Section 3.1.5), event segmentation behavior should be able to account for 

differences in assembly task execution measured by the Lego assembly task. 

6.2 Methods 

6.2.1 Participants 

I received consent forms from 39 participants working in the workshops for adapted work in 

the Westpfalz-Werkstätten in Landstuhl, Germany. Almost all of them (N = 38) had an 

intellectual disability with onset during the developmental period and they were physically 

able to perform manual tasks. One participant had a brain damage in consequence of an 

accident resulting in intellectual disability. 

Exclusion of incomplete segmentation data sets (N = 7) yielded to my final sample of 32 

participants (13 female). On average, they were 37.6 years old (SD = 11.9) with a mean 

working experience in workshops of 14.0 years (SD = 11.6). Their areas of deployment were 

assembly (N = 27), metalworking (N = 4), or gardening (N = 1). The demographic information 

and performance measures are summarized in Table 8. Intellectually disabled workers were 

granted leave of absence during regular working time. 

The control group consisted of 30 students (15 female) from University of Kaiserslautern 

(one student was excluded beforehand because of incomplete data) with average age of 

25.2 years (SD = 3.5). They received course credit or monetary compensation for their 

participation. 
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Table 8: Descriptive statistics (N = 32 intellectually disabled persons) 

 M SD range 

Age [years] 37.6 11.9 21; 63 

Working years 14.0 11.6 0.75; 39 

IQ 64.4 9.8 50; 84 

SRT 1.2 1.0 0.3; 4.2 

Lego SE 1.7 1.9 0; 7 

Lego PE 2.0 2.2 0; 7 

Note. SRT = simple reaction time in seconds, SE = sequence errors, 

PE = position errors. 

6.2.2 Event segmentation task 

In order to ensure that the intellectually disabled participants understand the classical event 

segmentation task procedure (Newtson, 1973), they segmented a practice video clip before 

the actual event segmentation. The video showed a female actor driving three nails into a 

block by using a hammer and screwing three screws into another block by using a 

screwdriver. The practice segmentation was accompanied by the following experimenter’s 

explanations and demonstrations. 

“I would like to show you videos in which you will observe a person doing a certain task. I am 

interested in how you perceive this activity. The activity can be divided into a sequence of steps. It 

is possible to divide it in many small steps but also in fewer, bigger steps. Whenever, for you, one 

step has ended and another has begun, please indicate it by pressing the button. We will watch a 

practice video together. Here, you can see a person who is driving nails into a block. If it comes to 

fine segmentation, some people would click each time whenever a new nail has been inserted. 

Experimenter demonstrates button presses at time points in which new nails and screws are 

inserted. Other people would define additional detailed steps, for instance, whenever a new nail 

has been taken into hand. Experimenter has restarted the video and demonstrates the more fine 

segmentation by button presses at time points in which new nails and screws are both taken into 

hand and then inserted. In case of a coarse segmentation, some people would only press after all 

nails had been inserted and before the screws were screwed in. Experimenter demonstrates the 

coarse segmentation. Other people would maybe click differently for defining big steps. So, there 

are different possibilities how people perceive the activity in the video and how they divide it. There 

is no wrong or right way. It is important that you press the button whenever you think that one step 

has ended and a new one has begun. I am now interested in how you would segment the video 

with the nails and screws. […] Do you have any more questions concerning the procedure?” 

Afterwards, all participants segmented four video clips (see Figure 25) in fine- and coarse-

grained meaningful events. As in the classical event segmentation task (Newtson, 1973), 

they pressed the space key on a keyboard whenever they thought one meaningful event 

ended and another began. First, they saw the “breakfast” video in which an actress is 

preparing breakfast in a kitchen (see e.g., Swallow, Zacks, and Abrams (2009)). In the 

remaining three videos, an actor was executing an assembly task, respectively. The “valve” 
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video depicted an assembly typical for workshops for adapted work. The “pump” video 

contained an assembly from a soap factory (see also Experiment 1 and screenshots in 

Figure 6). The “saw” video depicted assembly of small parts from a technical construction 

tool kit. Figure 25 shows a representative frame for each video. 

 

Figure 25: Video material used in the event segmentation task: (a) Breakfast (335 s): Everyday activity in 
which a female actor prepares breakfast; (b) Pump (195 s): Assembly task in which parts of a pump are 

put together; (c) Valve (93 s): Work-related task of the workshops for adapted work in which a male actor 
assembles small parts of a valve; (d) Saw (190 s): Female actor assembles parts of a technical 

construction tool kit in order to build a saw. 

6.2.3 Lego assembly task 

I introduced a naturalistic task, i.e., a 7-step Lego car assembly (Figure 26), consisting of 

conventional, different-colored Lego bricks and wheels used in previous studies (Korn et al., 

2013a). The setup included 8 bricks of a Lego car lying at a table covered by a white paper 

sheet. First, in order to introduce the task to the participant, the experimenter lifted the sheet 

for 3 seconds and showed a picture of the completed Lego car on the computer screen for 5 

seconds. Second, the experimenter told the participant to watch a video carefully in which 

he/ she will see how to build the car step by step. The experimenter replayed the video and 

showed a pictorial summary similar to Figure 26 on a paper sheet for 7 seconds. Then, she 

instructed the participant to “assemble the Lego car in the same sequence as was shown”. 

 

Figure 26: Seven steps to assemble a Lego car (adapted from Korn et al. (2013)). 

All participants executed the assembly by themselves with the experimenter noting the 

accomplishment and sequence of steps on an observation sheet without giving additional 

help. In case a participant asked a question, the experimenter said that all what he/she 

needs was lying on a table and he/ she should please try as good as he/ she could 

(procedure adapted from Schwartz, Segal, Veramonti, Ferraro, & Buxbaum, 2002). One out 

of all participants remained inactive even with three-time encouragement. 
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I assessed both the number of sequence errors and the number of position errors made by 

intellectually disabled participants. I defined sequence error as an incomplete step, that is, 

when the person did an assembly step earlier or later or not at all compared to the original 

sequence shown previously. A position error was defined as misplacement of a part, that is, 

when the subject assembled the Lego brick not at the exact location with respect to the other 

bricks. Both error scores may range from 0 to 7, respectively. 

6.2.4 General ability assessment 

Simple reaction time 

I assessed the mean simple reaction time for each intellectually disabled participant by 

instructing him/ her to press the space key as soon as they saw a pictogram appearing on 

the screen. After 10 practice pictures, which did not enter final data analysis, participants 

viewed 36 different pictograms of objects, buildings, and animals twice and in full random 

order. Before each presentation, a fixation cross appeared for the duration of 500 ms. Then, 

the pictogram appeared after a randomly determined interval between 1 and 2 s. 

General cognitive ability 

Intellectually disabled participants completed the nonverbal Wiener Matrizen-Test-2 (WMT-2) 

consisting of 18 matrices (Formann et al., 2011). The experimenter noted the participant’s 

answers. For every intellectually disabled individual, I computed the IQ score as the indicator 

of their general cognitive ability. 

6.2.5 Procedure and design 

This experiment was approved by the local ethics commission of the University of 

Kaiserslautern. 

The experiment with intellectually disabled participants took place in a separated room at the 

workshops site. Each participant came for two sessions within two weeks. In the first session, 

they saw and practiced event segmentation with the practice video clip and performed the 

event segmentation task successively for the four videos (breakfast, valve, pump, and saw) 

in fine and coarse grains, respectively, counter-balanced across participants. Written event 

segmentation instructions were presented on the screen. To ensure adequate understanding 

of the task (despite potential literacy problems), the experimenter read aloud the instruction 

to the participant. Videos were shown on a Notebook PC running PsychoPy software (Peirce, 

2007). Participants could use the keyboard for indicating a new event or, alternatively, use 

the mouse in case they showed difficulties with the keyboard in the practice phase. All 

participants performed the event segmentation task with the keyboard. The whole session 

took 1 hour. 
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In the second session, I showed intellectually disabled participants how to build the Lego car 

using a Notebook PC and a paper sheet. After they completed the assembly on their own, 

they were asked to do the simple reaction task on a Laptop PC using the space bar since all 

of them managed usage of the keyboard before. Finally, they answered the WMT-2. The 

second session also took one hour. 

The control group consisting of student participants completed only the event segmentation 

task. The process was similar to the intellectually disabled participants without the read aloud 

instructions by the experimenter and without a practice phase. I collected data of the control 

group at the University of Kaiserslautern. The session took approximately 35 minutes. 

6.2.6 Data analysis and statistical methods 

Segmentation data of the intellectually disabled group and the control group were analyzed 

by the whole range of existing event segmentation measures introduced in Section 3.1.4. 

Overall, I used the following measures. For each participant, I computed the number of 

events in fine and coarse condition, respectively, as well as their difference and ratio. I 

tested for significant event boundaries for both grains and both groups. I investigated the 

segmentation agreement between the intellectually disabled group and the control group 

by, first, using point-biserial correlations, second, correlating both groups’ histograms, third, 

analyzing pair-wise kappa’s, and, fourth, computing the differences in both groups’ 

segmentation magnitudes. I calculated hierarchical alignment and hierarchical enclosure 

in order to investigate participants’ ability to hierarchically structure activities. 

Again, I used R (R Development Core Team, 2008) for all statistical analyses and additional 

R package segmag (Papenmeier, 2014) for the continuous segmentation analyses, i.e., 

plotting segmentation magnitudes, determining significant event boundaries, and subtracting 

groups’ segmentation data. 

6.3 Results 

6.3.1 Event segmentation ability 

Number of events 

I compared segmentation behavior in fine versus coarse conditions. Correspondent to the 

instructions, the intellectually disabled group segmented descriptively more fine (M = 16.8, 

SD = 14.1) than coarse (M = 11.6, SD = 15.8) events, however, without significance (t(61.36) 

= 1.58, p = .12). Yet, they showed the expected difference concerning event length. They 

defined shorter fine (M = 19.8 s, SD = 13.7) than coarse events (M = 42.5 s, SD = 39.7), 

t(38.42) = -3.60, p < .01. The controls showed both expected differences significantly. In the 

fine condition, they segmented more events (M = 24.5, SD = 15.1) with shorter event length 

(M = 10.9 s, SD = 5.2) compared to the coarse condition where they defined less events (M = 



Experiment 3: Cognitive potential of intellectually disabled workers in workshops for adapted work 

64 

7.3, SD = 3.6) with larger event length (M = 32.6 s, SD = 16.0), tnumber of events(31.96) = 7.66, p 

< .01 and tlength of events (39.18) = -11.00, p < .01.  

Table 9: Event segmentation results aggregated over four videos 

Segmentation measure Persons 

with ID 

(N = 32) 

M (SD) 

Controls 

 

(N = 30) 

M (SD) t, p 

Number of events 

coarse 

fine 

Difference of fine – coarse events (F –C) 

Ratio of fine / coarse events (F / C) 

 

11.6 (15.8) 

16.8 (14.1) 

3.97 (5.37) 

2.5 (1.82) 

 

7.3 (3.6) 

24.5 (15.1) 

12.37 (7.45) 

3.6 (1.60) 

 

-1.72, .09 

2.49, * 

5.06, ** 

2.58, * 

Event length 

coarse 

fine 

 

42.5 (39.7) 

19.8 (13.7) 

 

32.6 (16.0) 

10.9 (5.2) 

 

-1.59, .12 

-4.05, ** 

Segmentation agreement
a
 [group: controls] 

coarse 

fine 

 

.24 (.15) 

.40 (.13) 

 

.61 (.12) 

.71 (.11) 

 

9.28, ** 

10.10, ** 

Segmentation agreement
a
 [group: persons with ID] 

coarse 

fine 

 

.60 (.12) 

.62 (.10) 

 

.54 (.09) 

.62 (.05) 

 

2.18, * 

.36, .72 

Mean pairwise correlation
b
 [within group] 

coarse 

fine 

 

.03* 

.03* 

 

.14* 

.19* 

 

- 

- 

Mean pairwise correlation
b
 [between groups] 

coarse 

fine 

 

.05* 

.06* 

 

- 

- 

Hierarchical alignment
ce 

Observed mean distance [s] 

Expected mean distance [s] 

Observed – expected mean distances 

 

3.50 (3.90) 

7.00 (5.85) 

3.68 (5.24) 

 

1.30 (.91) 

3.54 (2.26) 

2.30 (2.13) 

 

 

 

-1.70, .10 

Hierarchical alignment
de

 – eCALC .55 (.14) .63 (.08) -2.92, ** 

Hierarchical enclosure
e
 .56 (.29) .67 (.21) 3.12, ** 

Note. ID = Intellectual disability. eCALC = exponential function calculation. 
a
Point-biserial correlation between 

individual and group. 
b
Cohen’s kappa with significance tests by constructing bootstrap confidence intervals.

 

c
Computation based on Zacks et al. (2001). 

d
Computation based on exponential transformation of distances (see 

text below).
 e

Analysis involved subgroup of N=20 intellectually disabled participants with a correct difference of F 

– C > 0. *p < .05, **p < .01. 

Furthermore, I calculated the difference between number of fine and coarse events for each 

participant. The controls (Mdifference F-C = 12.4, SDdifference F-C = 7.5) showed a higher difference 

than the intellectually disabled group (Mdifference F-C = 4.0, SDdifference F-C = 5.4), t(60) = 5.06, p < 

.01 (compare Figure 27). The differences in number of events between both groups was 

further evident for each grain, i.e., fine (t(60) = 4.18, p < .01) and coarse segmentation (t(60) 
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= -3.00, p < .01), respectively (see Table 9). From these initial results, it seems that the 

intellectually disabled group did not segment the activities as clearly in accordance with two 

hierarchical levels as the control group did. Figure 27 illustrates the reduced difference in 

number of events between fine and coarse condition when comparing intellectually disabled 

participants with the controls. 

 

Figure 27: Mean number of events per video for each group. Error bars reflect standard errors. 

In order to analyze this finding in more detail, I also calculated the ratio of number of fine to 

coarse events per subject. Again, there were significant group differences between the 

control group (Mratio F/C = 3.60, SDratio F/C = 1.60) and the intellectually disabled group (Mratio F/C 

= 2.50, SDratio F/C = 1.82), tratio F/C (60) = 2.58, p < .05. Whereas the control group showed a 

ratio value similar to previously reported values (Zacks et al., 2001), the mean value of the 

intellectually disabled group was diminished. In more detail, I looked at the individual level 

(see Figure 28) in order to reveal potential interindividual differences within the intellectually 

disabled group. Figure 28 illustrates that there were intellectually disabled participants whose 

ratio values were similarly high compared to those of the controls. However, N = 12 

participants showed ratio values around 1 or even lower. This means that they pressed more 

frequently or equally frequently in the coarse compared to the fine condition.  

Repeating the previous group comparison after excluding those N = 12 “outliers” made the 

significant group differences in ratio and difference between the controls and the intellectually 

disabled participants disperse (tdifference(48) = 1.04, p = .30 and tratio(48) = 1.17, p = .25). 

These results suggest that the intellectually disabled group can be divided into two sub-

groups, i.e., a group of N = 20 persons with correct understanding of different hierarchical 

levels and a group of N = 12 persons with a misconception of hierarchical organization.  
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Figure 28: Ratio of fine to coarse events for each individual from both groups. A ratio of 1 is highlighted 
as a black horizontal line, respectively. Error bars reflect standard errors. 

Significant event boundaries 

In addition to number of events, I was interested in the exact locations of event boundaries. 

Figure 29 displays segmentation behavior across time in the pump video for both groups 

during the fine condition. The upper and middle segmentation plots (Figure 29) indicate 

significant chronological correspondence within groups highlighted by green lines. I 

confirmed these chronological correspondences within groups by correlating individual 

segmentation behavior with own group’s segmentation. The mean point-biserial correlation 

over all intellectually disabled participants was r = .60 in the coarse and r = .62 in the fine 

condition. The control group showed a mean point-biserial correlation of r = .61 in the coarse 

and r = .71 in the fine condition (see also Table 9). 

Despite this evidence for within-group agreement, the upper and the middle plots suggest 

that the controls clearly agreed on location of event boundaries whereas the intellectually 

disabled group was less consistent and noisier. These observations were further supported 

by the mean pairwise kappas within pairs of the same group. These pairwise kappas were 

significant and substantial for the control group (kcoarse = .14, kfine = .19). Intellectually disabled 

participants showed significant kappas close to zero (kcoarse = .03, kfine = .03). Thus, the 

intellectually disabled participants agreed on common event boundaries. However, they were 

not as homogeneous as the control group. 
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Figure 29: Event segmentation plot for the pump task in the fine condition: The controls (upper plot) and 
the intellectually disabled group (middle plot). Significant event boundaries (confidence level of 95%) are 
displayed as vertical (green) lines. The lower plot depicts the difference when subtracting controls and 
intellectually disabled participants. Vertical (green) lines represent significant differences (confidence 

level of 99%). 

The findings just described applied for the coarse condition (see Figure 30), too, and were 

consistent across all four videos. Participants from the control group agreed upon more 

significant event boundaries than participants from the intellectually disabled group. 

Segmentation plots of the intellectually disabled group were noisier. 

In addition to the within-group correspondences, I was interested if event boundaries were 

similar between both groups. I will present these results in the next section. 
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Figure 30: Event segmentation plot for the pump task in the coarse condition: The controls (upper plot) 
and the intellectually disabled group (middle plot). Significant event boundaries (confidence level of 95%) 
are displayed as vertical (green) lines. The lower plot depicts the difference when subtracting the controls 

and the intellectually disabled participants. Vertical (green) lines represent significant differences 
(confidence level of 99%). 

Segmentation agreement 

Initial inspection of Figure 29 and Figure 30 suggests an agreement between the controls 

and the intellectually disabled persons concerning event boundaries because each event 

boundary found for the intellectually disabled group has a corresponding event boundary in 

the control group. In the following, I will analyze this agreement between groups 

quantitatively.  

To test if the intellectually disabled participants pressed at similar locations compared to the 

control group, I looked at the groups’ segmentation agreement between individuals from the 

intellectually disabled group with the control group calculated by point-biserial correlations. I 

found meaningful mean point-biserial correlations between persons from the intellectually 

disabled group and the control group as a whole (rcoarse = .24, rfine = .40). Correlating both 

groups’ histograms using Pearson’s r confirmed the overlap between groups (rcoarse = .41, p < 

.01 and rfine = .48, p < .01). Further evidence for chronological correspondence between the 
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intellectually disabled participants and the controls came from between-group pairwise 

kappas (kcoarse = .05, kfine = .06) which were significantly above 0.  

Despite the overlap, subtracting segmentation plots (compare lower plots in Figure 29 and 

Figure 30) enables illustration of disagreement represented by segmentation magnitude 

differences. As can be seen, there were event boundaries that the control group perceived 

but the intellectually disabled group did not, i.e., significant positive differences. In contrast, 

there were no event boundaries that intellectually disabled persons perceived compared to 

the controls, i.e., no difference was significantly negative. Despite the already discussed 

dependence of the difference method on given segmentation magnitudes and group sizes, it 

provided an additional graphical indication of exact time points of segmentation agreement 

and disagreement. 

As reported in the previous section, intellectually disabled participants were not 

homogeneous within their group. Therefore, my final question was whether they were more 

similar to each other than to the control group. For this, I analyzed whether pairs of 

participants from the same group chose boundaries that were more similar than pairs of 

participants from different groups by subtracting kappas taken from pairs from the same 

group and pairs from different groups. For intellectually disabled participants the differences 

were not statistically significant neither for fine (k = -.03) nor coarse segmentation (k = -.02) 

indicating that intellectually disabled participants did choose boundaries that were not more 

similar to their own group than to control group. For the controls, the differences were 

statistically significant for fine (k = .13) and coarse segmentation (k = .10) indicating that 

agreement within the control group is higher than their agreement with the intellectually 

disabled group. Thus, the intellectually disabled persons cannot be seen as similar to each 

other concerning their segmentation behavior. Rather, it is a heterogeneous group of 

different “segmenters”. 

Hierarchical alignment and enclosure in the intellectually disabled group 

compared to the control group 

I quantified ability to hierarchically structure dynamic activities by hierarchical enclosure and 

alignment, respectively. Since interrelating coarse with fine event boundaries makes sense 

only for participants who correctly pressed more often in the fine than in the coarse condition, 

I excluded those N = 12 intellectually disabled participants who did not meet this requirement 

from all further computations. The analysis of hierarchical enclosure showed that, in the 

control group, more than half of nearest fine event boundaries were hierarchically enclosed 

to their respective coarse event boundary (M = 0.67, SD = .21), t = 9.09, p < .01. 

Intellectually disabled participants had a significantly lower enclosure value (M = 0.56, SD = 

.29) than the controls, t(140) = 3.12, p < .01 (Table 9), and it was not significantly different 

from 0.5 (t = 1.74, p = 0.08). This was initial evidence for a detriment in the intellectually 

disabled group with respect to hierarchical perception.  



Experiment 3: Cognitive potential of intellectually disabled workers in workshops for adapted work 

70 

Further, I analyzed the hierarchical alignment between fine and coarse event boundaries per 

subject, i.e., if they were temporally close to each other. High temporal closeness between 

fine and coarse event boundaries is an indicator of ability to hierarchically structure dynamic 

content. First, I calculated the observed mean distance in time between coarse and nearest 

fine event boundaries. Then, I computed the expected mean distance under the assumption 

that the key presses in the coarse and the fine condition were independent. As can be seen 

in Table 9, observed mean distance was significantly smaller than expected mean distance 

for both intellectually disabled participants (Mobserved distance = 3.50, SD = 3.90 versus Mexpected 

distance = 7.00, SD = 5.85, t(79) = -5.74, p < .01) and the controls (Mobserved distance = 1.3, SD = 

.91 versus Mexpected distance = 3.54, SD = 2.26, t(119) = -11.24, p < .01) indicating that for both 

of the groups segmentation was more temporally aligned than would be expected by chance.  

I compared the intellectually disabled participants and the controls for hierarchical alignment 

by calculating the difference between observed and expected mean distance for each 

participant (Zacks et al., 2001). The higher this value gets, the better the hierarchical 

alignment. I found a descriptively higher average alignment value for the intellectually 

disabled group (M = 3.68, SD = 5.24) compared to the controls (M = 2.30, SD = 2.13) without 

significance (t(22.6) = -1.70, p = .10). Nevertheless, this group result was hard to explain 

because I would have expected that the controls show higher hierarchical alignment than 

intellectually disabled participants. The potential problem could be the assumption that this 

model makes about the relationship between distances and alignment. The distances 

between coarse and nearest fine event boundaries are treated linearly, i.e., a fixed 

proportionality constant is assumed between distance and alignment. 

However, intuitively, the further away a nearest fine event boundary is from its coarse event 

boundary, the less likely it is related to it. Therefore, I postulate an exponential relationship 

between distance and alignment: with increasing distance between the coarse and the 

nearest fine event boundary temporal closeness exponentially decays to zero. Consequently, 

I transformed observed distances (“d”) according to an exponential function: e^-d.  

Figure 31 displays exemplary, empirical fine event boundaries (f1 to f13) of a representative 

participant across time. The curve illustrates exponential distance values on the y axis 

depending on location of coarse event boundaries which are c1 to c3. Observed mean 

exponential distance is, therefore, the average of y values at the locations of c1 to c3 

representing the exponential distance between f4 and c1, f8 and c2, and f11 and c3. In order to 

derive the expected mean exponential distance, I assumed that – like in the classical 

computation (Zacks et al., 2001) – coarse event boundaries were defined by pure guessing. 

This yields to an expected mean exponential distance that equals the area under the upper 

curve in Figure 31, called “a” here (J. M. Zacks, personal communication, November, 2014). 

Observed and expected exponential mean distances can be combined into one formula by 

including “a” as factor: e^-d*a.  

Finally, I introduced a smoothing factor of 1/75 so that the alignment calculation fits a decline 

to close-to-zero for distances higher than 7.5 s (J. M. Zacks, personal communication, 
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November, 2014). The underlying assumption is that nearest fine and coarse event boundary 

with a distance exceeding values of 7.5 s cannot be interpreted as temporally close anymore. 

Typical mean empirical distances have been around 2-3 s (see Section 3.1.4 and 

Experiments 2 and 3 in the present dissertation). So, I am defining zero alignment starting 

from distances that are more than twice as large as the “usual” distances.  

 

Figure 31: Illustration of the hierarchical alignment with exponential function calculation, eCALC = e^-
d*a/75: The upper plot shows perceived fine (f1 to f13) and coarse (c1 to c3) event boundaries of one 

participant. The observed mean exponential distance is the average of exponential distances from coarse 
to their nearest fine event boundaries (see y values at time points c1, c2, and c3 indicated by vertical (red) 

lines). The expected mean exponential distance under the assumption of independence between fine and 
coarse event boundaries is the area under the upper black curve, “a”.  The lower plot displays the curve 

of the final eCALC method: Combining observed and expected mean distances together with a smoothing 
factor of 1/75 results in the final calculation term for hierarchical alignment, e^-d*a/75. 

The new hierarchical alignment measure with exponential function calculation (eCALC), that 

is, e^-d*a/75, may range from 0 (no alignment) to 1 (perfect alignment). It positively 

correlates with the classical computation by Zacks et al. (2001); that is, r = .44, p < .05 for the 

controls and r = .69, p < .01 for the intellectually disabled participants (see Table 10). This 

overlap of the eCALC method with the classical hierarchical alignment measure indicates its 

validity. 

I compared hierarchical alignment for both groups with eCALC and found, as expected, 

significantly higher hierarchical alignment with eCALC in the controls (M = .63, SD = .08) 

compared to intellectually disabled participants (M = .55, SD = .14), t(50) = -2.92, p < .01. A 

general shortcoming of the hierarchical alignment is its dependence on number of key 

presses, i.e., higher numbers of key presses statistically yield to decreased alignment values 

(Zacks et al., 2001). In order to evaluate whether this statistical relation holds for eCALC, too, 

I performed a simulation (see next section). Anticipatory results, the statistical disadvantage 

for higher key presses applies indeed for eCALC. Therefore, I tested if this relation worked in 

favor or against the just reported group difference in hierarchical alignment. Although the 

control group showed higher number of key presses (Table 9), they reached a higher score 

in hierarchical alignment than the intellectually disabled group.  

Hence, the found group effect in hierarchical alignment is valid, i.e., the intellectually disabled 

group perceived less temporal closeness than the control group. Together with impaired 

hierarchical enclosure, these results indicate reduced ability to hierarchically structure tasks 

into goals and sub-goals. 
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Hierarchical alignment in the intellectually disabled group for each video 

Since hierarchical alignment improves with task familiarity (Zacks et al., 2001), I was 

interested in a potential improvement of hierarchical alignment for videos depicting assembly 

tasks compared to the rather unfamiliar breakfast video (Figure 25). I found no significant 

effect of video on hierarchical alignment with eCALC for the intellectually disabled 

participants, F(3, 72) = 0.71, p = .55. However, it could be that the dependence on number of 

key presses dilutes a potential effect. Since the videos differ in length, they also yielded 

different numbers of key presses. In order to control the interference of key presses, I 

simulated the relationship between key presses and hierarchical alignment. Afterwards, I will 

present a graphical way to compare hierarchical alignment between videos with different 

video length and, consequently, different numbers of key presses. 

First, I verified the negative correlation between hierarchical alignment with eCALC and 

number of key presses by a simulation in which I assumed a fixed temporal closeness of the 

coarse and its nearest fine event boundaries. The simulation was executed for each of the 

four videos and will be described using the pump video as example. (Therefore, for the 

following explanations, please refer to the upper right graph of Figure 32 labeled as “pump”.) 

Given a time length equal to the pump video (195 s), I simulated random key presses in fine 

condition ranging in number from 3 to 602 (incrementally increasing in steps of 3). I randomly 

defined 1/33 of fine event boundaries as being a “nearest fine event boundary”. The location 

of the corresponding coarse event boundary was set by a Kernel density function with SD = 1 

s (this value represents a given hierarchical alignment which is high). Then, I computed the 

values for the hierarchical alignment between the notional fine and coarse event boundaries 

according to eCALC. For each of the chosen numbers of fine key presses, I repeated this 

simulation and computation 100 times.  

The resulting average alignment values are displayed below (see upper (green) points in 

Figure 32). Additionally, I plotted a smoothing line connecting these points by using locally-

weighted polynomial regression according to Cleveland (1981) and the respective R function 

(R Development Core Team, 2008). The resulting upper (green) line shows that despite the 

fixed distance setting between nearest fine and coarse event boundaries (SD = 1 s), 

alignment decreased with number of key presses. I repeated the simulation. This time, I 

choose a low given temporal closeness between nearest fine and coarse event boundaries 

(setting SD = 5 s) resulting in average alignment values depicted as bottom (red) points. As 

should be expected, this computation resulted in a lower hierarchical alignment value (see 

red line in Figure 32). The relationship between number of key presses and corresponding 

alignment value pointed in the same direction, i.e., a negative correlation. In sum, no matter if 

persons perceive high or low hierarchical alignment, their alignment value will automatically 

decrease with increasing number of key presses. 

                                                
2
 The chosen spans cover the empirical ranges found in this experiment, respectively. 

3
 This value approximates the ratio found in the present experiment and in prior reports (Zacks et al., 

2001). 
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The resulting bottom (red) and upper (green) lines for each video depict marginal conditions 

of low and high hierarchical alignment. Next, I added the empirical values from intellectually 

disabled person to the plots, respectively (Figure 32). If alignment was high, than individual 

points should be close to the upper (green) line; if alignment in a video is low, the points 

would be close to the bottom (red) line. Furthermore, if alignment gets better with familiarity 

than the plots for the assembly videos should contain more close-to-the-upper empirical 

points compared to the plot for the breakfast video. The inspection showed the expected 

pattern: the unfamiliar breakfast video led to many values that are close to the bottom (red) 

line. In contrast, for all assembly videos more participants had good alignment values.  

 

Figure 32: Hierarchical alignment with exponential function calculation (eCALC) is dependent on key 
presses: The simulation shows that given high (upper, green line) and low (lower, red line) hierarchical 
alignment values decline with decreasing numbers of key presses. Empirical values of the intellectually 

disabled group are added as (black) dots and subject identification. 

Furthermore, there were interindividual differences. Some participants had predominantly 

good alignment values, i.e., in at least two videos they are close to the green line; for 

instance, participants with the numbers 30, 20, 14, 5, and 36 (see Figure 32). Other 
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participants show predominantly low hierarchical alignment, e.g., participants with the 

numbers 21, 30, 3, and 17 (see Figure 32). Thus, the ability to hierarchically structure is both 

person- and task-dependent. 

6.3.2 Segmentation ability, assembly performance, and IQ 

After I presented the detailed analyses of event segmentation behavior in the intellectually 

disabled participants and demonstrated that it is a heterogeneous group, I aimed at 

investigating whether the found interindividual differences in event segmentation account for 

differences in Lego assembly performance.  

First, the following Figure 33 displays the errors in the Lego assembly task, i.e., sequence 

and position errors (see also Table 8). Both distributions indicate that, overall, the Lego 

assembly was a manageable task for the intellectually disabled group. The majority of them 

showed zero or only one error. This was likely due to the detailed instructions given 

beforehand (Section 6.2.3). Nevertheless, there was limited variation so that correlation 

analyses could be performed.  

The correlation analyses (Spearman’s rank correlations) revealed that the ratio between fine 

and coarse events was most promising to account for differences in action execution, i.e., the 

number of sequence errors. The better the conception of hierarchical organization, the fewer 

errors participants made. However, the correlation scarcely missed significance (r = -.35, p = 

.05). Then, I analyzed another measure of hierarchical organization, i.e., the hierarchical 

alignment (note that the correlation was performed for a sub-group of N = 20). The 

relationship with sequence errors was along the same lines (r = -.17, p = .49) but not 

significant. Table 10 summarizes all correlation analyses. In sum, I could not find a clear 

connection between different event segmentation measures and the performance in the Lego 

assembly task. 

 

Figure 33: Lego assembly task performance: Sequence and position errors. 
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Finally, I investigated the relation between event segmentation measures and intelligence. 

As can be seen from Table 10, level of IQ correlated in the expected directions with event 

segmentation. The higher the IQ, the higher the difference (r = .44, p < .05) and the ratio (r = 

.52, p < .05) between fine and coarse events, respectively. Furthermore, IQ was positively 

associated with performance in the Lego assembly task. The higher the IQ, the lower the 

number of sequence (r = -.40, p < .05) and position errors (r = -.53, p < .05), respectively. 

Table 10: Spearman Rank correlation matrix (N = 32 intellectually disabled persons) 

 IQ Age SRT Lego 

SE 

Lego 

PE 

Diff  

F – C 

Ratio 

F / C 

SA  

[F] 

SA  

[C] 

HA HA 

eCALC 

Age .09           

SRT -.54** .20          

Lego SE -.40* .04 .11         

Lego PE -.53* -.21 .28 .55*        

Diff F  –  C .44* .02 -.42* -.27 -.25       

Ratio F / C .52* .00 -.46** -.35(*) -.19 .87**      

SA
a
 [F] .34(*) -.14 -.53** -.07 -.15 .32(*) .34(*)     

SA
a
 [C] .15 .00 -.21 .12 -.03 .18 .22 .68**    

HA
bc

  -.03 .04 .04 .19 .36 -.67** .05 -.02 .27   

HA
c
 eCALC .22 -.10 .02 -.17 .13 -.09 .43(*) .35 .51* .69**  

HE
 c
 -.34 .17 -.07 -.06 -.09 -.38(*) -.19 .05 -.14 .24 .03 

Note. Diff = Difference, SE = Sequence errors, PE = Position errors, SA = Segmentation agreement, F = Fine, C 

= Coarse, HA = Hierarchical alignment, eCALC = exponential function calculation. 
a
Point-biserial correlation of 

individuals from the intellectually disabled group with the controls. 
b
Computation of hierarchical alignment is based 

on Zacks et al. (2001). 
c
Analysis involved subgroup of N=20 intellectually disabled participants who pressed more 

often in fine than in coarse event segmentation (F – C > 0). (*)p < .10. *p < .05. **p < .01. 

6.4 Discussion 

In this experiment, I investigated event perception and action execution in intellectually 

disabled assembly workers. I aimed at evaluating whether the simple and repetitive 

assembly tasks offered at workshops for adapted work utilize their full cognitive potential. 

First of all, it became clear that the group of intellectually disabled people is not 

homogeneous but interindividual differences are predominant. Despite their meaningful 

heterogeneity (which will be discussed later), I came to the conclusion that intellectually 

disabled participants are capable of performing more complex and interesting tasks than they 

have been executing in their every-day lives. The first empirical support for this claim is good 

performance in the Lego assembly consisting of seven assembly steps. After participants 

received a detailed instruction, i.e., video and paper directions, around half of them executed 

the task without errors. Hence, they showed to have the potential to cope with a more 

complex task given instructional support. The second finding pointing at the cognitive 

potential of intellectually disabled participants is their performance in the event segmentation 

task. Despite a number of difficulties (see below), they showed significant agreement with the 
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control group with respect to the location of event boundaries. In other words, intellectually 

disabled participants have the cognitive potential to detect event boundaries. 

However, I also found problems during the event segmentation task. First, intellectually 

disabled participants repeatedly neglected the end of an event, i.e., they maintained an old 

event model without updating it. Second, the intellectually disabled group had problems with 

the conception of hierarchical organization of dynamic activities. This was evident in one sub-

group of participants who pressed the key button more frequently during the coarse 

compared to the fine condition. It remains open if their misconception was due to lack of 

conceptual knowledge about different hierarchical levels or just misunderstanding of the task 

instructions. The other group who managed to press according to two different grains 

showed a diminished hierarchical alignment and enclosure between coarse and fine event 

boundaries compared to the control group. However, the hierarchical structuring got better 

when tasks were familiar. The strengths and problems observed during event perception 

likewise suggest strengths and problems in understanding and executing structured activities 

(Bailey et al., 2013; Kurby & Zacks, 2008; Zacks et al., 2007). Therefore, I believe that 

investigating the mentioned event segmentation ability provides the foundation for 

developing appropriate assistance and training strategies. 

Firstly, the (occasionally) successful detection of event boundaries can be interpreted as 

promising cognitive prerequisite for application of training and assistance means. It points to 

the existence of schemas in long-term memory of the intellectually disabled group based on 

their repeated experience with assembly tasks (Dulaney, 1998). Concretely, their long-term 

memory may contain basic knowledge about assembly activities being executed 

sequentially. Despite recognizing the step-by-step structure, the intellectually disabled group 

seems to need support in reliably detecting the distinct sequential steps, for instance, 

through salient highlights at event boundaries. Besides understanding of sequential 

structure, the intellectually disabled participants are required to perceive different hierarchical 

levels. I could not find selective impairments for neither fine nor coarse grain in contrast to 

prior reports (Zalla et al., 2013). My experiment revealed difficulties in both grains. These 

problems prompt appropriate ideas to communicate the goals and sub-goals of activities. 

One way to improve the hierarchical structuring could be by repeatedly practicing assembly 

tasks since familiarity with a task has the potential to increase hierarchical alignment (Zacks 

et al., 2001). I will enlarge upon concrete assistance and training strategies based on insights 

into cognitive processes in Section 7.2. 

As already mentioned, I found substantial group heterogeneity in event segmentation ability 

which is in line with research on cognitive processes in intellectual disability (Section 6.1.2). 

The prevalence of interindividual differences is further in line with observations from practice 

where workers vary in need for individual support (Section 2.1.2). I could explain the 

interindividual differences found during event segmentation by differences in intelligence 

level. This suggests that, with the help of the event segmentation task, we can assess 

cognitive ability. I will further discuss this finding with respect to the usage of the event 
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segmentation task as ecological diagnostic method in the context of computer-based 

systems in Section 7.2. 

The assessment of event segmentation behavior provides knowledge on strengths and 

weaknesses when intellectually disabled participants structure activities into meaningful 

events. Furthermore, it prompts means to address their problems and reinforce their 

strengths. However, the assessment is limited in explaining the detailed cognitive 

mechanisms behind impaired event segmentation. For instance, disturbed event boundary 

detection could be due to problems in initial stages of event segmentation, i.e., visual 

attention, or due to lack of integration of knowledge from long-term memory in order to 

establish new events. Since intellectually disabled people may show a variety of possible 

cognitive dysfunctions (as shown in Section 6.1.2), the detailed cognitive mechanisms 

behind problems in event segmentation can be only solved by further empirical 

investigations. For instance, prediction experiments requiring workers to guess the correct 

next action after a video stopped (similar to Zalla, Labruyère, Clément, & Georgieff, 2010) or 

reconstruction of assembly instructions (similar to Baron-Cohen, Leslie, & Frith, 1986) could 

provide hints on the existence of appropriate situation models. 

The close connection between perception and action reported in the literature (Bailey et al., 

2013) suggests that the found strengths and weaknesses in event segmentation are relevant 

for assembly performance, too. However, in my experiment, there was limited empirical 

support for this relationship. Event segmentation ability was only weakly associated with 

assembly performance assessed by the Lego assembly task. Specifically, the segmentation 

agreement measure used by Bailey et al. (2013) did not account for differences in action 

performance. Rather, measures of hierarchical organization, i.e., ratio of fine to coarse 

events as well as hierarchical alignment, showed expected tendencies to account for 

sequence errors during assembly. A theoretical explanation for the advantage of these 

hierarchical organization measures could be that, in contrast to key presses alone or to the 

segmentation agreement measure, they rely more on an understanding of goals and sub-

goals. This understanding is also crucial for task execution. I empirically showed that there 

were participants who were generally good in hierarchical structuring. However, I could 

measure the hierarchical alignment only in a reduced sample of N = 20 participants which 

decreased the power for correlation analyses. The limitation of the segmentation agreement 

measure will be discussed in Section 7.1.2. Finally, a general shortcoming that was 

responsible for finding no substantial correlations between perception and action was the low 

variability among the intellectually disabled group in the Lego assembly task. The amount of 

provided instructional support was likely detailed enough so that the sample executed the 

task with a few errors. Despite the missing correlations of event segmentation measures and 

Lego assembly performance, the present experiment gave insights into theoretically and 

practically relevant cognitive processes in workers from workshops for adapted work. 
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7 General discussion 

7.1 Theoretical contributions 

In the following section, I will answer the three research questions and elaborate my main 

contributions with respect to the theoretical and applied research in event cognition (Section 

7.1.1). Afterwards, I will reflect upon the used methodology (Section 7.1.2) and discuss how 

my findings affect future research plans (Section 7.1.3). 

7.1.1 Major findings 

In order to answer the research questions introduced in Section 3.3.1, I conducted the three 

experiments which were described in the previous chapters. The first experiment addressed 

the fact that assembly workers process their tasks mostly offline rather than during online 

perception. Whereas online event segmentation takes place fast and automatically during 

perception of an activity, offline event segmentation takes place during deliberate elaboration 

of a task with no time constraints. This differentiation led to the first research question: 

R1. Are event boundaries during offline event segmentation similar to event 

boundaries during online event segmentation? 

I showed that event boundaries during offline event segmentation are at similar temporal 

locations as event boundaries during online event segmentation (Chapter 4). Hence, the 

principle of segmenting events is a basic process guiding both perception and offline 

elaboration of dynamic activities. Furthermore, the quantitative overlap I found between 

online and offline event boundaries demonstrates that event boundaries for offline 

elaboration could have corresponding event boundaries in event perception (Swallow et al., 

2009). I concluded that the easy to perform classical online event segmentation task 

(Newtson, 1973) yields valid offline event boundaries for assembly tasks and, therefore, used 

it for my further experiments. 

The number of chosen offline event boundaries was a combination between fine and coarse 

event boundaries from online event segmentation. Thus, higher-level, object-based as well 

as lower-level, action-based information was used for defining offline event boundaries. 

Furthermore, the chosen granularity was interindividually different. The variety of possible 

offline event boundaries may indicate different representations in working memory by the 

persons that created the instructions. Either their own expertise level or the expertise level of 

their imagined users of instructions may have influenced their working memory 

representations. For instance, because experts are already familiar with various details of 

assembly tasks, creating instructions for expert users might result in fewer offline event 

boundaries, as a result of leaving out details and focusing on higher-level changes. As was 
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shown in Experiment 2 (see the following paragraph), omitting lower-level information might 

be indeed a reasonable strategy for creating instructions for experienced workers. To sum 

up, the temporal locations of online and offline event boundaries correspond. The eventual 

choice of offline event boundaries is a combination of fine and coarse online event 

boundaries and this choice is person-dependent. 

In Experiment 2, I investigated whether it is valid to make the assumption that experts know 

the fine level details for instruction creation. I conducted experiments to compare how 

experts and novices process the fine and the coarse information of assembly tasks, 

respectively: 

R2. How does memory for events develop when repeatedly practicing the 

sequence of events, both in novices and experts? 

Acquiring the sequence of coarse events was successful after repeated presentation but 

memory for the sequence of fine events did not improve. That is, the performance of 

participants was influenced by the interaction between training repetition and level of 

information, i.e., coarse verses fine events (Chapter 5). In the context of event cognition 

research, this study provides evidence that long-term memory for fine and coarse events 

differs and this difference is established after a short 3-repetitions training. Fine event 

boundaries involved smaller, less characteristic changes, so, consecutive fine events were 

more similar to each other. These similarly represented fine events were competing with 

each other resulting in potential memory interference (Radvansky & Zacks, 2014, p. 37). 

Experts had a high performance in memorizing fine events in comparison to novices, even 

after only one repetition. I suggest that knowledge on these low-level actions is acquired 

predominantly with the help of own actions and actual experiences with the hardware. These 

actions resemble each other across different assembly tasks, i.e., orienting, positioning, and 

using screws and tools. The daily experiences could lead to a high amount of procedural 

knowledge that is transferrable to other assembly tasks. In contrast, object-based 

information, i.e., the sequence of main objects to be assembled, is very specific and has to 

be acquired all over again, with repetition and effort. So, the main assembly sequence 

represents declarative knowledge that is initially present in neither experts nor novices. Only 

with training, can both expert and novice participants improve memory for these coarse 

events. Trainees acquired these events with priority, so, initial training for novices and 

experts should support this cognitive process and highlight the main sequence information. 

Since experts already showed a high performance in fine events, it could be argued that they 

should get a more concise presentation of the fine events rather than going through each 

step in detail. 

In accordance with findings on improved hierarchical alignment when familiar with a task, I 

interpret the improved prediction performance for coarse events as a temporally closer 

relation between the nearest fine and the coarse event boundary. The concept of hierarchical 

alignment does not specify if closeness refers to the direction from the fine to the next coarse 

or from the coarse to the next fine event boundary. In my experiment, I could show that the 
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former direction applies, i.e., from nearest fine to coarse. Because I stopped videos either 

shortly before or shortly after a coarse event boundary and tested prediction performance of 

participants, I could investigate both temporal directions. If the connection was strengthened 

between the nearest fine and the coarse event boundary (to illustrate, see example in Figure 

7: from end of “screwing” to the next coarse event boundary), than performance in predicting 

coarse should improve more clearly than performance in predicting fine. If the connection 

was strengthened between the coarse and the upcoming fine event boundary (example in 

Figure 7: from initial coarse event boundary to end of “positioning”), than performance in 

predicting fine should improve more clearly than performance in predicting coarse. I 

empirically confirmed that the direction of temporal closeness in long-term memory that is 

established after initial training is the one from fine event to coarse event, which is in 

accordance with the enclosure concept formulated for event perception. 

As event segmentation is based on multiple cognitive processes, I further extended the 

research mentioned above to investigate cognitive ability of a group of intellectually disabled 

participants. I investigated the influence of cognitive abilities and daily experiences on event 

segmentation more deeply in the third experiment. Persons working in workshops for 

adapted work are familiar with assembly tasks, too. However, their daily tasks are mostly 

very simple and monotonous. This led to the following research question: 

R3. Do the simple and repetitive assembly tasks offered at workshops for adapted 

work utilize the full cognitive potential of intellectually disabled persons? 

First of all, I found a substantial group heterogeneity in event segmentation ability. This high 

amount of interindividual differences during event segmentation confirms that the 

intellectually disabled people vary concerning their cognitive (dys-)functions (Section 6.1.2). 

Having said that, the results of the experiment suggest that, in general, they are capable of 

performing more complex and interesting tasks than they have been executing so far. The 

first evidence is their good performance in a complex task with Lego bricks with prior detailed 

instructional support. Second, they showed significant agreement with the control group with 

respect to locations of event boundaries. Third, ability to hierarchically structure dynamic 

activities was better for assembly tasks compared to an unfamiliar yet common activity, 

namely, a breakfast making task. 

Further analyses of the event segmentation data provided detailed information on strengths 

and weaknesses during event perception. Because event segmentation is a basic cognitive 

function important for action understanding (see Experiment 1), memory (Sargent et al., 

2013), and action execution (Bailey et al., 2013), I suggest interpreting the empirical findings 

on event segmentation with respect to the workers’ cognitive potential to actually perform 

and their potential need for support. For instance, the (occasionally) successful detection of 

event boundaries at the right temporal location can be interpreted as a promising cognitive 

prerequisite. It points to a basic understanding of the sequential nature of tasks, potentially 

due to existing knowledge from long-term memory (Dulaney, 1998). Despite this capability, 

they also showed a number of difficulties. 
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First, they repeatedly neglected the end of an event during the event segmentation task 

indicating a disturbed updating process. This weakness prompts instructional systems that 

draw their attention towards the end of old events and beginning of new events. Second, the 

intellectually disabled group had problems with the conception of hierarchical organization of 

dynamic activities evident either in a low ratio of fine to coarse events or in diminished 

hierarchical alignment and enclosure values. These problems suggest appropriate means to 

communicate the goals and sub-goals within activities. However, I could show that 

structuring was flexible to some extent, i.e., structuring was better in assembly tasks 

compared to the unfamiliar video. In sum, the strengths and problems observed during event 

perception likewise suggest strengths and problems in understanding and executing 

structured activities because of the close connection of perception, memory, and action 

(Bailey et al., 2013; Kurby & Zacks, 2008; Zacks et al., 2007). I will go into different 

assistance and training strategies addressing the need for support in Section 7.2. 

A final remark addresses the just mentioned improved hierarchical alignment of intellectually 

disabled participants in the assembly tasks. An alternative explanation to the familiarity 

effect, is the fact that assembly tasks per se are highly structured in comparison to the task 

shown in the breakfast video. Supporting evidence comes from relatively high alignment and 

enclosure values throughout this thesis. On the one hand, the assembly task from 

Experiment 2 resulted in an enclosure value of .81; on the other hand, the assembly tasks 

from Experiment 3 led to observed distance values around 1 s for the control group. In 

contrast to values reported in the literature, i.e., enclosure values around .40 to .67 (Hard et 

al., 2006) and observed distances of 1.7 to 2.8 s (Swallow et al., 2009; Zacks et al., 2001), 

the used assembly tasks may prompt especially high temporal closeness and hierarchical 

enclosure compared to other activities. Thus, assembly tasks seem to foster event 

segmentation with a clear chunking pattern. This would explain why the understanding of 

goals and sub-goals is improved in highly structured tasks for intellectually disabled people. 

Therefore, I conclude that assembly tasks are a good choice of potentially manageable tasks 

for intellectually disabled workers in workshops for adapted work.  

Besides the answers to my specific research questions, I will summarize my general 

contributions to the area of event cognition research in the following.  

The Event Segmentation Theory is an ecologically valid and comprehensive 

framework 

Throughout this thesis, I demonstrated that the Event Segmentation Theory offers a 

comprehensive and ecologically valid framework for the investigation of cognitive processes 

in the applied field of assembly work. I demonstrated the range of applications of the event 

segmentation task for investigating cognitive processes during perception, understanding, 

and practicing assembly tasks. In this section, I will review the empirical arguments.  

First, the output of the online event segmentation task is correlated to the event boundaries 

from the offline event segmentation. Hence, I confirmed that this task is an ecologically valid 
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way to assess time points that are important during offline understanding of assembly tasks. 

In my experiment, I showed that there is a close connection between online event 

segmentation and the paradigm of instruction creation. This, in turn, confirms the practical 

relevance of the event segmentation task for investigating both perception and 

understanding of assembly tasks. With the help of the IBES tool that was developed within 

this thesis, the event boundaries can be easily utilized for creating instructions that are 

structured around these important strategic points. 

Second, the output of the event segmentation task, i.e., the hierarchical organization of 

object-based coarse events and action-based fine events, provided a useful framework to 

test memory within a prediction paradigm. Concretely, I stopped a video around coarse event 

boundaries and asked participants to predict next actions in order to test memory on the 

assembly sequence based on similar recommendations by Ericsson (2008). With the help of 

this memory test, I could test declarative knowledge for information differing in level of 

hierarchy.  

Third, the event segmentation task allowed the investigation of assembly work-related 

cognitive processes in the intellectually disabled group. Based on these insights concrete 

assistance means can be derived. Furthermore, performance in the task was able to account 

for differences in general cognitive ability. Based on my empirical findings using a variety of 

available event segmentation measures, I will recommend two of them as potential 

diagnostic measures (see Section 7.1.2). The initial experience with this task in the context of 

special workshops confirmed its ecological validity. First, most intellectually disabled 

participants were able to participate in the event segmentation task. Second, watching a 

video had generally positive effects on their assembly performance (see the video instruction 

before the Lego assembly task). In Section 7.1.3, I will introduce the approach of an event 

segmentation training in order to establish the utilization of this assessment method. Using 

an event segmentation based measure is practically useful because it addresses the lack of 

appropriate assessment in workshops for adapted work (EASPD, 2012b) and the potential to 

be integrated into computer-based systems (Section 7.2)(Gorecky et al., 2012; Korn et al., 

2013b).  

The role of long-term memory in event segmentation 

In the context of the Event Segmentation Theory, long-term memory comes into play twofold 

(see the red arrow in Figure 34 and refer also to Section 3.1.2). First, in the context of 

knowledge acquisition, experiences pass from working memory into episodic long-term 

memory encoded as respective situation models. In Experiment 2, I investigated the transfer 

of sequential events from working memory to long-term memory and showed that there are 

memory differences between consecutive fine event versus consecutive coarse event 

representations after repeated presentation. I demonstrated that, when repeatedly going 

through assembly tasks, people memorize the main sequence of coarse events instead of 

the sequence of details. Hence, it could be that situation models for coarse events are 
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established with priority compared to situation models for fine events, and that this 

advantage of coarse events is amplified with repetition. This finding suggests a 

concretization of the Deliberate Practice Framework (Ericsson et al., 1993). The framework’s 

claim that repetition is beneficial for learning initially only holds for declarative knowledge 

about the sequence of higher-level, coarse events. 

Second, the Event Segmentation Theory stresses the importance of long-term memory when 

perceiving dynamic information (Section 3.1.1 and Section 3.1.2). Knowledge from long-term 

memory influences the working memory processing of new experiences. In Experiment 1, 

participants were likely guided by conceptual knowledge when thinking about events offline 

because they defined event boundaries that resembled online coarse event boundaries 

which are guided by top-down processes from memory (Zacks et al., 2009). They also used 

finely represented information but not all of these fine events from perception were used 

when thinking about events offline.  

The empirical results provide an indication which lower-level changes are not processed as 

important strategic points for instruction creation. Imagine four consecutive fine events 

depicting screwing first, second, third, and fourth screw consecutively. Whereas some 

participants perceived four fine event boundaries for each screwing event during online 

perception, the offline event segmentation led to a summarized representation of these four 

events. The number of changes between these four events was only one, respectively, i.e., 

“next screw”, and this was apparently not enough to justify a new offline event boundary. 

Based on prior studies (Huff et al., 2014), I postulate a quantitative relationship for offline 

event segmentation. Only increasing the number of changes to greater than one, e.g., the 

appearance of a new screwdriver between the 2nd and 3rd screw, would result in the definition 

of an offline event boundary.  

 

Figure 34: Bi-directional exchange between working memory and long-term memory during event 
segmentation. 

Experiment 2 provided further insights into the influence of long-term memory on working 

memory processes. Despite extensive prior knowledge of experts in automotive 

manufacturing, the sequence of object-based coarse events has to be learned with the same 

deliberate practice as in novices. In Experiment 3, intellectually disabled people segmented 

with a higher hierarchical alignment in the familiar tasks. I already discussed that this might 

be due to the structured nature of assembly tasks. Nevertheless, it provides evidence that 

there is fundamental knowledge about activities being executed in a sequential manner 



General discussion 

84 

which is in line with the claim of existent schematic knowledge in long-term memory 

(Dulaney, 1998; Zalla et al., 2013).  

7.1.2 Methodological considerations 

Furthermore, I pursued two methodological goals within this thesis introduced in Section 

3.3.2. First, there was a lack of assessment methods for offline event segmentation and their 

respective event boundaries. This led to the following aim: 

M1. Developing a tool for assessing offline event segmentation by using an 

instruction creation paradigm 

I presented the IBES tool in Chapter 4 which is the first software tool that makes it possible to 

create instructions semi-automatically based on a video of a task. The resulting instructions 

rely on event boundaries important for understanding and learning. The input the IBES tool 

requires is a sequence of static frames of a task’s video. Its output is a ready-to-use 

instruction manual containing text and pictures. In order to create this manual, participants 

execute four steps. First, they define an appropriate structure for the task. Second, they 

choose those static frames from the video that are most illustrative. Third, they add textual 

descriptions. Fourth, the manual can be printed and added by manual overlays, if necessary. 

In the following, I will discuss the potential usage of the IBES tool in instructional design, 

cognitive psychology, and practical applications. 

Researchers interested in instructional design may use this tool to analyze desirable 

characteristics of instruction manuals by letting actual users create them. This may support 

the development of suitable Augmented Reality instructions (Bleser et al., 2015). The IBES 

tool can be used along the lines of “turning users into designers” (Daniel & Tversky, 2012, p. 

303). Furthermore, the easy creation of manuals within the IBES tool promotes manipulation 

of manuals differing in structure. For instance, the structure of the manual could be either 

fine- or coarse-grained, or even completely violate the human event structure. Furthermore, 

the amount of textual and graphical content could be varied. In sum, researchers in 

instructional design have a tool to investigate both the creators and the users of instructions.  

For instance, it could be argued that experts are able to structure activities in different 

granularities depending on specific aims. They can create instructions focusing on the 

superordinate relations or instructions incorporating details that may be especially important 

for novices. In a further evaluation step, their different versions of instructions could be used 

by experts and novices, respectively, in order to validate if novices actually benefit from fine-

grained training while experts prefer a coarse-grained training. 

Research in psychology may use the IBES tool to further explore situation models in long-

term memory (Section 7.1.3). It may also support research on theory of mind. For instance, 

Killingsworth, Saylor, and Levin (2005) were interested if their participants would create 

different instructions given that they made them either for computers or for humans. Hence, 

they showed that participants defined more segments for computers because they attributed 
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limited reasoning capabilities to them. An important contribution of this newly created IBES 

tool for research is that it supports log files with which investigators can analyze the offline 

segmentation or the instructional design process as a whole. 

For practical applications, there is generally little software support targeted to instruction 

generation. Here, the IBES tool can fill a practical gap. Currently, producing efficient 

instruction manuals requires an effortful, labor-intensive process involving creation of 

meaningful structure for the assembly steps and the choice of appropriate media. Engineers 

and trainers typically use existing data from the engineering process, e.g., graphical product 

models and planned production sequence data from CAD software and import this 

information to word processing or image editing programs, to provide additional, manually 

edited descriptions and graphics. Technical writers and editors use these documents as a 

starting point, and may exploit more sophisticated and expensive desktop publishing tools for 

more powerful functionalities for graphic design and media creation. In contrast to this 

complex process, the IBES tool only requires a video of the actual assembly task and a 

computer to run the software. It supports the production of ready-to-use manuals that 

incorporate multimedia and are meaningfully structured according to event boundaries.  

The second methodological goal addressed the lack of an extensive overview of event 

segmentation measures that are suited to analyze the event segmentation ability in 

intellectually disabled people. Therefore, I aimed at: 

M2. Evaluating and refining existing event segmentation measures with respect to 

their suitability for intellectually disabled persons 

In this thesis, I applied a range of event segmentation measures introduced in Section 3.1.4 

to the intellectually disabled group in order to extensively describe their event segmentation 

behavior as well as to evaluate the feasibility and validity of the available measures. My main 

methodological contribution was the refinement of the hierarchical alignment measure. The 

new method is more suitable for the intellectually disabled group, it is theoretically sounder, 

and provides a more convenient way of computation and interpretation. It will be discussed 

below. 

The basic measure, number of key presses, in both fine and coarse segmentation was an 

initial hint whether intellectually disabled participants can follow instructions and can segment 

according to instructions. However, the number of key presses is greatly influenced by video 

length. Furthermore, interindividual differences in the number of key presses are high, even 

within the control group. Therefore, this number is no reliable indication for event 

segmentation performance. In contrast, the ratio of key presses in fine and coarse 

segmentation provides a better way to interpret the event segmentation ability. This method 

incorporates the relation between key presses in fine and coarse condition in one measure. 

Hence, it provides an initial assessment of hierarchical perception. Together with the 

existence of a comprehensive reference value of 3 (based on prior empirical findings), this 

measure allows easy interpretation. 
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Segmentation agreement was intuitively a promising measure because it captures the 

individual overlap with a control group that consists of presumably good “segmenters” 

(represented by the group of students in this thesis). This measure was used successfully in 

prior studies to analyze individual ability to perform the event segmentation task and relate 

this ability to action performance (e.g., Bailey et al., 2013). In contrast, in this thesis, 

segmentation agreement could neither account for differences in assembly performance nor 

explain differences in IQ. As noted in prior work, the segmentation agreement calculation is 

influenced by number of key presses (Kurby & Zacks, 2011). Frequent key presses go along 

with an increased chance to “hit” an event boundary perceived by the control group. 

Consequently, persons in the intellectually disabled group who pressed frequently but rather 

randomly could achieve similar values compared to persons who pressed not frequently but 

at time points actually corresponding to the controls. Even if the segmentation agreement 

calculation has been scaled according to prior work (Kurby & Zacks, 2011), this adaptation 

was insufficient to correct for the key presses in this sample. 

The classical hierarchical alignment model (Zacks et al., 2001) assumes a linear relation 

between distance and alignment. The investigation in my experiment revealed this 

assumption as problematic in the sample of the intellectually disabled participants. 

Concretely, it could be shown that if nearest fine and coarse event boundary are far away 

from each other, the null model is insufficient to correct for this extensive distance. Rather, 

the calculation model had to be adjusted. I proposed a hierarchical alignment with an 

exponential function calculation abbreviated as eCALC. It contains the assumption that the 

further away a nearest fine event boundary is from its coarse event boundary, the less likely 

it is related to it. In other words, with increasing distance between coarse and nearest fine 

event boundary temporal closeness exponentially decays to zero. The positive correlation 

with the classical calculation supported its validity for both the intellectually disabled group 

and the control group. Therefore, this method should be further exploited in future studies.  

In addition, the eCALC method is more convenient because it does not require separate 

calculation of the expected distances and their consecutive subtraction from observed 

distances. Furthermore, eCALC goes along with standardized values ranging from 0 to 1 that 

support comparability across different stimulus material and different empirical investigations. 

In the context of intellectual disability, a shortcoming of the hierarchical alignment 

computation was that a suitable calculation requires the difference between key presses in 

fine minus coarse condition to be greater than 0. If the requirement of right conception of 

coarse and fine granularity is met, it is a method that provides a detailed insight into the 

ability to hierarchically structure dynamic information. To sum up, the hierarchical alignment 

computation with eCALC provides a theoretically sound and convenient way to investigate 

hierarchical alignment. In contrast to the classical method, it is applicable for people with 

intellectual disability as well. 

Finally, I review the determination of significant event boundaries based on treating time 

continuously. Based on my initial experiences with the R package segmag (Papenmeier, 
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2014), I would generally recommend a sample size of at least 20 in order to assess valid 

event boundaries in typical samples. As can be seen from the event segmentation data in 

Experiment 2, a sample size of 10 is adequate to find characteristic peaks. However, they do 

not exceed critical cutoffs with conventional significance levels of 95% or 99%. Furthermore, 

in the context of using the difference method it has to be noted that the computation is highly 

sensitive for group differences in key presses. Therefore, the initial prerequisite is that group 

sizes should approximately equal. However, significant differences may appear even if 

graphical inspection of separate segmentation plots shows significant event boundaries for 

both groups. Therefore, a more strict confidence level and additional graphical evaluation are 

recommended when using the difference method.  

7.1.3 Future directions 

The offline event segmentation, as it was performed in Experiment 1, provided a way to 

assess working memory representations during offline elaboration of dynamic activities. The 

chosen paradigm of offline elaboration was instruction creation. The IBES tool could be 

exploited and further developed for other areas of offline event segmentation. For instance, 

assessment of long-term memory representations of events, i.e., situation models, is still an 

area of open empirical questions. The IBES tool’s instruction paradigm could be adapted 

towards a memory assessment tool in order to use it for free recall or recognition studies. 

Consequently, the video cues would have to be omitted. In retrospect, participants would 

have to segment a black video stream by using the IBES tool, with a time line as orientation. 

Alternatively, a picture frame could be shown to participants. Their task would be to localize 

the right time point where the action happened by using again the IBES tool. Furthermore, 

the software tool allows assessment of verbal descriptions, that is, collection of qualitative 

free recall data. Thus, the IBES tool offers ways to combine traditional memory paradigms 

with offline event segmentation. These different memory measures can be used to 

disentangle how schemata influence long-term memory processes (Brewer, 1981). 

It would be also interesting to further investigate the existence and nature of situation models 

in intellectually disabled participants. Experiments using prediction paradigms (e.g., Huff et 

al., 2014; Zacks et al., 2011) could be used to investigate conceptual knowledge. In the 

context of workers from workshops for adapted work, intellectually disabled participants 

could be asked to watch videos depicting assembly tasks that suddenly stop. Afterwards, 

they have to predict the correct next action, as was previously done in an autistic sample 

(Zalla et al., 2010). Similar to the study by Zalla et al. (2010), distractor frames could be 

varied depicting more or less likely next events or showing the right versus false temporal 

order. This would enable a detailed understanding of potential conceptual problems of 

intellectually disabled people. 

Despite the close connection between perception and action (Bailey et al., 2013), I found 

only weak correlations. The potential methodological reasons with respect to the instructed 

Lego assembly task have been discussed in the experimental discussion in Section 6.4. In 



General discussion 

88 

order to further elaborate the association between perception and action, the reverse 

hypothesis could be postulated and tested. If the assumption that action and perception are 

based on the same basic ability to structure activities holds, the repeated execution of correct 

event segmentation trials should beneficially affect action performance. Concretely, an event 

segmentation training that incorporates cues for event boundaries could be introduced into 

the workshops for adapted work. Afterwards, assembly performance tests could reveal if the 

event segmentation training resulted in action improvement. Furthermore, the event 

segmentation training design could be varied concerning different variables in order to find 

most appropriate means. For instance, highlighting fine and coarse event boundaries 

differently, varying the exact timing of cues, choosing different ways of communicating the 

cues involving graphical highlights, auditory signals, or language cues, and so on. 

Furthermore, cues may be unspecific (“there is an event boundary”) or specific (“there is an 

event boundary: object X”). In sum, I believe that scientific investigations on the link between 

action and perception are theoretically relevant and practically promising with respect to 

improving quality of work and life. 

7.2 Practical contributions 

In Chapter 2, I have introduced the applied field of research which is the human-machine 

interaction in computer-based assistance and training systems for assembly, specifically, 

instructional support in automotive industry and workshops for adapted work. I argued that 

these systems have to be adaptive to the individual user’s need, experience, and cognitive 

potential. In order to be adaptive, two important questions have to be answered. In the 

present chapter, I will revisit the questions from Section 2.2.3 and present the practical 

implications that I derive from my empirical findings. 

1. What are relevant work-related user characteristics and how to integrate their 

assessment into a technical system? (User assessment) 

The empirical evidence from this thesis is that general cognitive ability and expertise 

influence processes from event cognition. In Experiment 3, I used the classical event 

segmentation task to assess cognitive potential in intellectually disabled workers. I argue that 

assessment based on the event segmentation task is an alternative to other diagnostic 

measures. I already mentioned the disadvantages of available tests with respect to their 

integration into computer-based systems (Section 2.2.3). Some of them depend on real world 

interactions. Others need detailed explanation and consistent presence of an experimenter, 

they incorporate artificial, ecologically invalid tasks, or their acceptance by users is low. To 

the contrary, the event segmentation task presented within this thesis can be easily 

integrated into computer-based systems and it addresses the mentioned limitations. 

First, the technical requirements to integrate the task are reasonable. The diagnostic material 

consists of videos depicting assembly tasks that can be shown within the computer-based 

system, e.g., on the monitor (compare the assistance system in Figure 5). An input device 

like mouse or keyboard has to be added. The analysis of event segmentation data can be 
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supported by the system according to pre-defined calculations. The ratio of key presses 

during fine versus coarse event segmentation was promising in order to explain differences 

in performance and general cognitive ability. Second, need for the support of supervisors is 

limited. In order to execute the event segmentation task, written explanations are usually 

used. In the group of intellectually disabled people an additional personal introduction is 

required. However, with repeated execution, users could cope with the event segmentation 

task independently. The task requires understanding the action of key pressing and the 

concepts of fine versus coarse grain so that it is accessible to a wide range of users. A 

respective event segmentation training suggestion has been sketched above. Third, the 

event segmentation task contains no artificial material but videos that depict the actual work 

content. This is important for its ecological validity and the acceptance by the users. In 

addition, watching the videos constitutes an opportunity to increase familiarity with assembly 

tasks and to learn. To sum up, the event segmentation task suggests being a valid, 

convenient, computer-based diagnostic assessment method to investigate assembly work-

related cognitive ability in workshops for adapted work. 

Informed by the results from the event segmentation task, the system can estimate the need 

for cognitive support. Based on that, the following question was to elaborate:  

2. How should tailored instructions be designed? (Adaptation guidelines) 

As a basic guideline, the system’s instructions should match the overall human event 

understanding, i.e., the system’s segmentation of assembly steps should go along with 

human event boundaries (for an appropriate computer algorithm refer to Petersen & Stricker, 

2012). The Event Segmentation Theory gives further hints on adaptive assistance and 

training means. Concretely, the instructional support may address different cognitive 

processes involved when making sense of assembly tasks and also involved when 

performing assembly tasks. The following list illustrates a sample of adaptation guidelines: 

 Visual attention: Assistance systems should provide attentional guidance in assembly 

tasks by salient spatial cues at the relevant position (Stork & Schubö, 2010). This 

thesis adds the suggestion for cues at event boundaries, especially, for intellectually 

disabled workers. These cues would enhance the classical event segmentation task 

and constitute an event segmentation training. Furthermore, salient cues should also 

highlight the end of an old and the beginning of a new assembly step in both 

instructional videos and real-time step-by-step guidance. There is a wide range of 

cues possible including verbal and non-verbal ones. In the context of event 

segmentation processes, the cues could contain, for instance, information about the 

level of change, i.e., fine or coarse event boundaries. 

 Working memory: According to the Event Segmentation Theory, event models can be 

processed at different grains simultaneously. In order to support the correct 

hierarchical representation of object-based coarse events and their respective action-

based fine events, instructions could depict the respective higher-level event for each 

action (similar to the concept of Zacks & Tversky, 2003). Furthermore, training 
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systems with gesture-based interaction (similar to Figure 3) could make the grouping 

of fine events clearer by requiring users to execute only one gesture to trigger all fine 

events instead of triggering each fine event separately. Particularly, experts should be 

able to skip a detailed training mode in favor of a concise version containing only the 

main sequence of objects. 

 Long-term memory: An assistance system could store a sample of similar “situation 

models” that have been executed before. In order to support the establishment of a 

new event model in the context of a new assembly task, the instructional system 

could then present this “prior knowledge”. An assistance system could furthermore 

incorporate learning performance tests in order to derive the state of knowledge and, 

accordingly, reduce or adapt the support (see the concept of fading in Eiriksdottir & 

Catrambone, 2011). Furthermore, incorporating testing elements per se can have 

positive effects on learning (Roediger & Karpicke, 2006). For instance, Hegarty, Kriz, 

and Cate (2003) showed that the challenge to predict the behavior of a mechanical 

system increased the participants’ understanding compared to only passive 

presentation of the mechanical system.  

 Visual perception and anticipation: The just mentioned concept of prediction can be 

also helpful for training the loop process between perceptions, predictions, and error 

detection (see the Event Segmentation Theory in Figure 6). Animations of what is 

coming next (Hegarty et al., 2003) or requests to predict the next action could be 

useful for intellectually disabled persons to foster their anticipatory perception and 

behavior.  

Based on cognitive processes important in event segmentation, existing literature in 

instructional design, and my empirical findings, I presented an overview of selected design 

means like cueing event boundaries, structuring events, and challenging the users. Hence, 

depending on the users’ cognitive processes and needs, several design adaptations – 

inspired by the underlying event structure of assembly tasks – are on hand. They need to be 

evaluated in future work. 

The future technological outlook is a human-machine interaction with advanced systems that 

are more and more able to anticipate, learn, adapt, and collaborate with humans instead of 

only passively following the users’ control (Evenson et al., 2010), for instance, in advanced 

human-robot collaboration. This leads to systems that intrude into our stream of information 

and action. Radvansky and Zacks (2014) noted that segmenting becomes more demanding 

in interactive events compared to passive observation of events. However, the detailed 

underlying cognitive processes and potential practical implications are open for empirical 

investigations. In sum, I believe that the Event Segmentation Theory will remain a relevant 

framework for scientifically solving practical challenges in the context of advanced human-

machine interaction.  
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7.3 Conclusion 

My aim was to contribute to research on event segmentation processes with an applied focus 

on assembly workplaces. In Experiment 1, I demonstrated quantitatively that event 

segmentation processes not only come into effect when online observing activities but also 

when offline thinking about the activities. Thus, when people deliberately process assembly 

tasks, they are guided by similar event boundaries compared to event segmentation during 

online perception. In Experiment 2, I focused on the output of the event segmentation 

processes, i.e., perceiving assembly tasks as hierarchical sequence of object-based coarse 

and action-based fine events. The experiment showed that repeatedly practicing such an 

assembly task leads to an advantageous acquisition of the sequence of coarse events and 

no learning benefit for fine events. Experts outperformed novices in memory for action-based 

fine events. Thus, when workers practice assembly tasks, their learning performance 

depends upon the hierarchical structure of the task and prior experiences. In Experiment 3, I 

investigated the event segmentation processes, for the first time, in a group of intellectually 

disabled employees from the assembly workshops. Event segmentation data correlated with 

general cognitive ability. I suggest interpreting the empirical findings on strengths and 

weaknesses in event segmentation with respect to the intellectually disabled group’s 

cognitive potential to perform more interesting tasks than the current repetitive ones. Hence, 

understanding the event segmentation processes in intellectually disabled people can prompt 

appropriate assistance means at the workplace and improve their quality of life.  

I suggest that assembly workplaces can benefit from these empirical findings with respect to 

the development of user-adaptive computer-based assistance and training systems. First, 

the event segmentation task can be integrated as diagnostic user assessment of the 

individual need for support. Second, the empirical observations prompt adaptation guidelines 

regarding presentation of the structure of events and emphasis on event boundaries.  

I believe that the practical usefulness of research in cognitive psychology, especially in event 

cognition, also applies for other domains of human-machine interaction. More and more 

context-sensitive and “intelligent” systems will step in our daily lives by providing assistance 

and support in an increasingly autonomous way, for instance, advanced driver assistance, 

human-robot collaboration, or home automation systems. They can only provide suitable 

information, suggestions, and automated actions, if they incorporate general knowledge 

about the nature of human activities and if they tailor their assistance to the users’ individual 

perception and understanding of interactive events. 
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