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Preface

The field of research giving rise to the problems considered in this thesis is the represen-
tation theory of finite groups. As the name suggests, this theory is concerned with the
examination of representations of finite groups, that is to say, group homomorphisms

X : G −→ GLn(K)

from a finite group G to a general linear group GLn(K) over some field K. Their smallest
constituents, the irreducible representations, play a special role inasmuch as they may be
regarded as the basic building blocks of all representations. It is well-known that up to
isomorphism for any field K and any finite group G there exist only finitely many dis-
tinct irreducible K-representations of G. Moreover, there is a one-to-one correspondence
between the isomorphism classes of irreducible complex representations of G and the set
of its irreducible complex characters. Similarly, for fields K of positive characteristic the
isomorphism classes of irreducible K-representations of G are in bijection with the set of
irreducible Brauer characters of G.

The irreducible complex characters of finite groups as well as their irreducible Brauer
characters are of considerable interest since, even though information may be lost by
passing from representations to characters, many properties of the group in question are
encoded in the set of its irreducible characters. Moreover, knowledge of the irreducible
complex and Brauer characters of a finite group may provide information about its sub-
groups, and vice versa, from information about irreducible characters of its subgroups it
might be possible to derive information about the group itself, which leads us to the topic
of this thesis.

Alperin’s weight conjecture is classified as a so-called global-local conjecture. This name
originates from the fact that for a prime ` the conjecture relates information about a finite
group G (global) to properties of `-local subgroups of G, that is, normalizers of `-subgroups
of G (local).

An (`-)weight of G is defined as a pair (R,ψ), where

∗ R is an `-subgroup of G, and

∗ ψ is an irreducible complex character of the normalizer NG(R) containing R in its
kernel (that is, ψ(r) = ψ(1) for all r ∈ R) and satisfying

ψ(1)` =
|NG(R) |`
|R|

(that is, the `-part of the degree of ψ coincides with the `-part of the order of the
factor group NG(R)/R).
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It is well-known that in this situation ψ may be considered as an irreducible character of
the quotient NG(R)/R, so the above condition requests ψ to be of (`-)defect zero when
regarded as a character of NG(R)/R. The group G acts on the set of its `-weights by
conjugation, whence it is reasonable to speak about G-conjugacy classes of `-weights of G.

Now the conjecture proposed by J. L. Alperin in 1986 on the Arcata Conference on
Representations of Finite Groups [Alp87] asserts that ...

... the number of G-conjugacy classes of `-weights of a finite group G equals the number
of its irreducible Brauer characters defined over characteristic `.

In addition to the original version of Alperin’s conjecture one can refine the assertion
as follows: The set consisting of both the irreducible complex characters of G and its
irreducible Brauer characters with respect to the prime ` may be partitioned into subsets
called the `-blocks of G. Moreover, each `-weight of G may be assigned to a unique `-block
of G, where the assignment is induced by Brauer block induction (cf. Sections 1.2 and 2.2).
If an `-weight (R,ψ) is associated to the `-block B, then (R,ψ) is called a B-weight of
G. As above, the group G acts by conjugation on the set of its B-weights. The blockwise
Alperin weight conjecture then suggests that ...

... for every `-block B of a finite group G the number of irreducible Brauer characters in
B coincides with the number of G-conjugacy classes of B-weights of G.

Since its proposal in 1986 Alperin’s weight conjecture has attracted a lot of interest
among group and representation theorists, and its validity has been confirmed for a wide
range of finite groups including those groups studied in this thesis. However, it has not
been possible so far to find a general proof of this conjecture for arbitrary finite groups.
Nevertheless, in recent years there has been considerable progress towards a solution for
this question, the central focus of this development being a reduction of the original
problem to a question on finite (quasi-) simple groups. The reduction theorem for the
blockfree version of Alperin’s conjecture was obtained by G. Navarro and P. H. Tiep in 2011
[NT11]. They give an inductive proof showing that if all finite non-abelian simple groups
satisfy a certain system of conditions, the so-called inductive Alperin weight condition,
then Alperin’s weight conjecture holds for any finite group. Two years later, in 2013,
B. Späth [Spä13] refined this result to achieve a reduction theorem for the blockwise
version of the weight conjecture along with a corresponding system of inductive conditions,
the inductive blockwise Alperin weight condition. As for the blockfree case, a verification
of these conditions for every finite non-abelian simple group would prove the blockwise
Alperin weight conjecture. Since the blockwise version of Alperin’s conjecture implies
the blockfree one, particular interest lies in the establishment of the inductive blockwise
Alperin weight condition for every finite non-abelian simple group. For such a finite non-
abelian simple group G, a prime ` dividing |G|, the universal `′-covering group X of G
and an `-block B of X this involves

∗ the construction of a certain partition of the set of irreducible Brauer characters
associated to B respecting the action of automorphisms of X,

∗ the construction of bijections between certain sets of irreducible Brauer characters in
B (coming from the above partition) and sets of B-weights of X equivariant under
the action of automorphisms of X,

∗ the verification of certain conditions regarding the extendibility of the irreducible
(Brauer) characters involved in the bijections above.
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The blockwise Alperin weight condition for a prime ` has already been proven to hold
for many of the 26 sporadic groups by work of various authors. Moreover, G. Malle gave its
verification in [Mal14] for the simple alternating groups as well as for the Suzuki and Ree
groups of types 2B2, 2G2 and 2F4. B. Späth proved it in [Spä13] for finite simple groups
of Lie type defined over characteristic `, and together with S. Koshitani in [KS14, KS15]
for `-blocks of cyclic defect. Apart from some special cases, the problem of establishing
the blockwise Alperin weight condition for finite simple groups of Lie type for all primes
dividing their order is still open for types other than 2B2, 2G2 and 2F4.

By means of this thesis we wish to contribute to a verification of Alperin’s weight
conjecture by proving the inductive condition established by B. Späth concerning the
blockwise version of the conjecture for three infinite series of finite simple groups of Lie
type:

∗ the special linear groups SL3(q) for prime powers q > 2 with q 6≡ 1 mod 3,

∗ the Chevalley groups G2(q) for prime powers q > 5, and

∗ the Steinberg triality groups 3D4(q) for arbitrary prime powers q.

The structure of this thesis is as follows: We divided our work into four main parts
and a fifth part consisting of appendices that provide information on irreducible characters
and decomposition numbers of the groups SL3(q), G2(q) and 3D4(q).

In Part I we create a foundation for the later examination of the three infinite series
of finite simple groups specified above in view of the inductive blockwise Alperin weight
condition. Chapter 1 begins with an introduction of the notation applied throughout this
thesis and a recollection of notions related to group or character theory that play a role for
our purposes. Moreover, we give an overview over important results concerning character
and block theory.

A more detailed introduction to Alperin’s weight conjecture is given in Chapter 2,
and the above mentioned inductive condition by B. Späth for the blockwise version of the
conjecture is presented in detail in Chapter 3, along with a summary of certain cases for
which the inductive blockwise Alperin weight condition has already been verified.

The simple groups in the infinite series we consider here belong to the class of finite
groups of Lie type. Regarding them as such allows us to benefit from the large machinery
of tools and knowledge that has been established for this class of groups over time. Hence,
we give an introduction to such groups in Chapter 4.

In Part II we establish the blockwise Alperin weight condition for the special linear
groups SL3(q) for prime powers q > 2 with q 6≡ 1 mod 3. We start by giving an introduction
to these groups in Chapter 5 including a description of their automorphism group and
further structural properties.

Even though these are already known in principle, a need for more detailed information
motivates a description of the `-blocks and `-decomposition numbers of the groups SL3(q)
for certain primes ` in Chapter 6. This provides us with a convenient description of the
irreducible Brauer characters of SL3(q) with respect to those primes.

In Chapter 7 we then examine the action of automorphisms of SL3(q) on its Brauer
characters. Furthermore, in this chapter we determine the `-weights of SL3(q) in relevant
situations and study also their behaviour under the action of automorphisms of SL3(q).

We recall that a good understanding of the action of automorphisms of SL3(q) on
its Brauer characters and weights is necessary to establish the partitions and equivari-
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ant bijections demanded by the inductive blockwise Alperin weight condition. These are
constructed in Chapter 8.

Subsequently, in Chapter 9 we prove that our partitions and bijections defined for
SL3(q) satisfy the extendibility requirements that are part of the inductive condition.

Then finally, in Chapter 10, Theorem 10.1, we obtain a proof of the inductive blockwise
Alperin weight condition for the groups SL3(q), q > 2 with q 6≡ 1 mod 3, for any prime
dividing their order as a summary of the results of the previous chapters.

Part III is dedicated to the study of the Chevalley groups G2(q) for q > 5. As for
the special linear groups, we begin our investigation by providing an introduction to these
groups in Chapter 11. Moreover, we describe their automorphism group and certain
properties inherent to the groups G2(q) being finite groups of Lie type.

Subsequently, in Chapter 12 we study the action of automorphisms of G2(q) on its
irreducible Brauer characters and its weights. Both the decomposition numbers and the
weights for G2(q) are already well-known and published in detail in a number of papers,
which facilitates our work here.

After having examined the behaviour of Brauer characters and weights of G2(q) under
automorphisms, we establish the partitions and equivariant bijections for the inductive
blockwise Alperin weight condition in Chapter 13.

As it turns out, for the groups G2(q) one may omit the verification of the extendibility
conditions for the characters involved in the constructed bijections. Thus, in Chapter 14
we can already summarize the results of the preceding chapters to obtain a proof of the
inductive blockwise Alperin weight condition for the groups G2(q) with q > 5 and all
primes dividing their order. This is given in Theorem 14.1.

Finally, in Part IV we examine Steinberg’s triality groups 3D4(q) in view of the in-
ductive blockwise Alperin weight condition. Chapter 15 begins with an introduction of
the groups 3D4(q) along with a description of their automorphism group and properties
characteristic to them as finite groups of Lie type. Moreover, we take a look at certain
subgroups of 3D4(q) that are of importance for our work. In particular, we note that G2(q)
occurs as a maximal subgroup of 3D4(q). Having studied the groups G2(q) already, cer-
tain situations permit us to obtain results for 3D4(q) by reducing to questions concerning
problems in G2(q).

In Chapter 16 we examine the behaviour of the irreducible Brauer characters and
weights of the groups 3D4(q) under the action of their automorphisms. Similarly as for
the groups G2(q), the decomposition numbers and weights of 3D4(q) are well-known. As
indicated above, a number of results concerning the action of automorphisms on weights
of 3D4(q) are obtained by reduction to G2(q).

Knowledge of the action of automorphisms of 3D4(q) on Brauer characters and weights
then enables us to construct the desired partitions and equivariant bijections for the in-
ductive blockwise Alperin weight condition in Chapter 17.

As for the groups G2(q), the extendibility conditions may be omitted, such that at
this point sufficient results have been obtained to prove Theorem 18.1 in Chapter 18, the
inductive blockwise Alperin weight condition for Steinberg’s triality groups 3D4(q) and all
primes dividing their order.
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Chapter 1

Characters and Blocks

Character and block theory of finite groups as well as finite group actions play prominent
roles throughout our study of the blockwise version of Alperin’s weight conjecture. For
the sake of consistency and transparency we recall certain notions and introduce notation
related to these topics here, which shall hence be fixed for the rest of this thesis.

Afterwards we summarize more or less well-known statements involving ordinary and
Brauer characters of groups that will be of importance in the course of this thesis. Since
a character’s affiliation to a block of the corresponding group and questions on its ex-
tendibility to larger groups play a major role in the inductive condition for the blockwise
Alperin weight conjecture (see Definition 3.2), our main focus will lie on these issues.

1.1 Notation

General Notation. Let us begin with some general notation. As is customary, for the
course of this thesis we use the following symbols:

• C: the field of complex numbers with

I imaginary unit i ∈ C satisfying i2 = −1 and exp(2πi) = 1, and

I z the complex conjugate of z ∈ C;

• R: the field of real numbers;

• Z: the ring of integers;

• N: the set of natural numbers, where we always assume that 0 ∈ N.

If x, y ∈ Z \ {0} are non-zero integers, then we denote by

• gcd(x, y) the (positive) greatest common divisor of x and y.

For a matrix A we write

• Atr to denote the transpose of A, and

• A = diag(a1, . . . , an) if A is a square diagonal matrix of size n > 1 with diagonal
entries a1, . . . , an.

For a positive integer m ∈ Z>0 (and a prime number `) we denote by

• m`,m`′ ∈ Z>0 the uniquely determined positive integers satisfying m = m`m`′ such
that m` is a power of ` and m`′ is prime to `;

3



Chapter 1. Characters and Blocks

• Φm(X) ∈ Z[X] the m-th cyclotomic polynomial. These polynomials will be impor-
tant to us in the cases m ∈ {1, 2, 3, 6, 12}, where, as is certainly known, we have

I Φ1(X) = X − 1,

I Φ2(X) = X + 1,

I Φ3(X) = X2 +X + 1,

I Φ6(X) = X2 −X + 1,

I Φ12(X) = X4 −X2 + 1.

Certain well-known finite groups occur frequently throughout our work, whence we shall
decide on a fixed notation for these. Let n ∈ N>0. Then we denote by

• Cn the cyclic group of order n,

• Sn the symmetric group on n letters,

• D2n the dihedral group of order 2n,

• GLn(K) or GLn(q) the general linear group of degree n over some field K or over a
finite field consisting of q elements, respectively,

• Spn(q) the symplectic group of degree n over a finite field consisting of q elements.

Furthermore, we use the following symbols for certain products of groups:

• G×H: the direct product of G and H;

• GoH: the semidirect product of G and H with H acting on G;

• G ◦H: the central product of G with H;

• G oH ∼= Gn oH: the wreath product of G and H 6 Sn, n ∈ N>0.

Let us now turn towards notation related to more specific aspects of group and character
theory. Henceforth, until the end of this section we suppose that G is a finite group.

Groups and Their Elements. For group elements g, h ∈ G and a subgroup H 6 G
we adhere to the following notation:

• |G|: the cardinality of G;

• o(g): the order of g;

• [g, h] := g−1h−1gh: the commutator of g and h;

• [G,G] := 〈[x, y] | x, y ∈ G〉: the commutator subgroup or derived subgroup of G;

• Z(G): the center of G;

• CG(h) = {x ∈ G | xhx−1 = h}: the centralizer of h in G;

• NG(H) = {x ∈ G | xHx−1 = H}: the normalizer of H in G;

• |G : H| = |G|/|H|: the index of H in G;
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1.1. Notation

• Aut(G), Inn(G), Out(G) = Aut(G)/ Inn(G): the groups of automorphisms, inner
automorphisms and outer automorphisms of G, respectively.

Moreover, for a prime ` we denote by

• g`, g`′ ∈ G the uniquely determined elements satisfying g = g`g`′ = g`′g` such that
g` is of `-power order and g`′ has order not divisible by `;

• Syl`(G) the set of Sylow `-subgroups of G.

Apart from the cardinality, possibly the order of a group element, the index and the set
of Sylow subgroups, these notations are used in the same way for infinite groups.

Complex Characters. Let us recall that a complex (or ordinary) character of G is a
trace function afforded by a complex matrix representation of G, and that two characters
of G agree if and only if the associated complex representations are similar. We denote by

• Irr(G) the set of all irreducible complex characters of G, that is, the set of all trace
functions associated to the irreducible complex representations of G;

• 1G ∈ Irr(G) the trivial character of G;

• ker(χ) = {g ∈ G | χ(g) = χ(1)} the kernel of a character χ of G.

For a subgroup H 6 G, a character χ of G and ψ ∈ Irr(H) we denote by

• ResGH(χ), or simply χ|H , the character of H obtained by restriction of χ to H;

• Irr(G | ψ) the set of irreducible characters of G lying over ψ ∈ Irr(H), that is, the
set of all χ ∈ Irr(G) such that χ|H has ψ as an irreducible constituent;

• IndGH(ψ), or simply ψG, the induced character of G given by the formula

IndGH(ψ)(g) :=
1

|H|
∑
x∈G

ψ̇(x−1gx)

for g ∈ G, where ψ̇(y) := ψ(y) if y ∈ H and ψ̇(y) := 0 if y ∈ G \H. (Note that, in
more generality, one may define IndGH(ψ) in the same way if ψ is not a character but
only a C-valued class function on H.)

Brauer Characters. Let us now recall the definition of a Brauer character of G. We
adhere to the construction given in [Nav98]. Let ` be a prime and let O denote the ring of
algebraic integers in C. Following [Nav98, Ch. 2] we fix a maximal ideal M of O containing
the ideal `O. Then by [Nav98, Lemma 2.1] the field F := O/M is an algebraic closure of
its prime field F` of characteristic `, and restriction to the group U of `′-roots of unity in
C× of the natural epimorphism

∗ : O −→ F

induces an isomorphism between U and F×.
Henceforth, we shall denote by

• G0 the set of all `-regular elements of G, that is to say, the set of all elements of G
whose order is coprime to `.
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Chapter 1. Characters and Blocks

We recall that the Brauer character ϕ afforded by an F-representation

X : G −→ GLn(F)

is a complex class function on G0 defined by

ϕ(g) := ξ1 + · · ·+ ξn

for g ∈ G0, where ξ1, . . . , ξn ∈ U are the preimages of the eigenvalues of X(g) under the
isomorphism ∗

|U : U −→ F× (see [Nav98, p. 17]). Moreover, we recall that two irreducible
F-representations yield the same Brauer character if and only if they are similar. Note
that in general this does not extend to reducible F-representations of G if ` divides |G|
since in this case the group algebra FG is not semisimple.

From now on we denote by

• IBr`(G) the set of irreducible Brauer characters of G with respect to `, that is, the
set of Brauer characters afforded by the irreducible F-representations of G.

The kernel of a Brauer character ϕ of G afforded by an F-representation X is defined as

• ker(ϕ) = {g ∈ G | X(g) = X(1)}.

Analogously to the case of complex characters, for a subgroup H 6 G, a Brauer character
ϕ of G and ϑ ∈ IBr`(H) we set:

• ResGH(ϕ) or ϕ|H : the restriction of ϕ to H;

• IBr`(G | ϑ): the set of ϕ ∈ IBr`(G) such that ϕ|H has ϑ as an irreducible constituent,
that is, the set of all irreducible Brauer characters of G lying over ϑ;

• IndGH(ϑ), or simply ϑG, the induced Brauer character of G given by the formula

IndGH(ϑ)(g) :=
1

|H|
∑
x∈G

ϑ̇(x−1gx)

for g ∈ G0, where ϑ̇(y) := ϑ(y) if y ∈ H0 and ϑ̇(y) := 0 if y ∈ G0 \ H0. (As
mentioned above for complex characters, this definition may as well be applied in
the case that ϑ is a C-valued class function on H0.)

Decomposition Numbers and Decomposition Matrix. Let ` be a prime as before.
If χ is a complex character of G, then we denote by

• χ0 the restriction of χ to the `-regular elements G0,

which yields a Brauer character of G (cf. [Nav98, Cor. 2.9]). Moreover, if χ ∈ Irr(G), then
we may write

• χ0 =
∑

ϕ∈IBr`(G)

dχϕϕ for uniquely determined integers dχϕ ∈ Z>0 (cf. [Nav98, p. 23]),

which are called (`-)decomposition numbers. The associated matrix (dχϕ)χ∈Irr(G),ϕ∈IBr`(G)

is the (`-)decomposition matrix of G.
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Conjugacy Classes and Class Sums. Regarding the action of G on itself by conju-
gation we stick to the following notation:

• xg := g−1xg, gx := gxg−1 for x, g ∈ G;

• [x]G := {g−1xg | g ∈ G}: the G-conjugacy class of an element x ∈ G;

• Cl(G): the set of G-conjugacy classes of G;

• H ∼G K: the subgroup H 6 G is G-conjugate to the subgroup K 6 G;

• Ĉ :=
∑
x∈C

x ∈ ZG: the class sum of a G-conjugacy class C ∈ Cl(G).

The set {Ĉ | C ∈ Cl(G)} forms a C-basis of Z(CG), the center of the group algebra CG,
and an F-basis of Z(FG) (see, e.g., [Isa94, Thm. 2.4 and p. 271]), and if C1, C2 ∈ Cl(G)
and

Ĉ1Ĉ2 =
∑

C∈Cl(G)

aC1C2CĈ,

then clearly the structure constants aC1C2C are non-negative integers.

Central Characters. Let χ ∈ Irr(G) be afforded by a complex representation X. Then
the central character associated to χ is the algebra homomorphism

• ωχ : Z(CG) −→ C, Ĉ 7−→ ωχ(Ĉ) :=
|C|χ(x)

χ(1)
, for C ∈ Cl(G) and x ∈ C.

Recall that the notion “central character” is derived from the fact that for C ∈ Cl(G) the
class sum Ĉ ∈ Z(CG) is represented under X by the scalar matrix X(Ĉ) = ωχ(Ĉ)1χ(1),
where 1χ(1) denotes the unity matrix of size χ(1) (compare [Isa94, pp. 35/36]).

Let ` be a prime and F be defined as before. By [Isa94, Thm. 3.7] the value ωχ(Ĉ) ∈ C
is an algebraic integer for every C ∈ Cl(G), so it is reasonable to consider its image under
the epimorphism ∗ : O −→ F defined above. This yields an algebra homomorphism

• λχ : Z(FG) −→ F, Ĉ 7−→ λχ(Ĉ) := ωχ(Ĉ)∗, for C ∈ Cl(G)

(cf. [Nav98, p. 48]).
For ϕ ∈ IBr`(G) we may as well define an algebra homomorphism λϕ : Z(FG) −→ F:

If X is an F-representation yielding the Brauer character ϕ, then we obtain an algebra
homomorphism

• λϕ : Z(FG) −→ F induced by X(Ĉ) = λϕ(Ĉ)1ϕ(1) for some scalar λϕ(Ĉ) ∈ F

(see [Nav98, pp. 48/49]).

Blocks and Defect Groups. Let ` be a prime. For the equivalence relation ∼ on the
set Irr(G) ∪ IBr`(G) defined by

χ ∼ ϕ if and only if λχ = λϕ

for χ, ϕ ∈ Irr(G) ∪ IBr`(G) we recall that the `-blocks of G are exactly the equivalence
classes of Irr(G) ∪ IBr`(G) under this relation (compare [Nav98, Def. 3.1]). For the de-
composition numbers introduced above it holds that dχϕ 6= 0 implies λχ = λϕ, so χ and
ϕ belong to the same `-block in this case (see [Nav98, Thm. 3.3]). We denote by
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• Bl`(G) the set of `-blocks of G.

Moreover, for B ∈ Bl`(G) we use the following notation:

• λB: the algebra homomorphism associated to B, that is, λB = λψ for any ψ ∈ B;

• Irr(B) := Irr(G) ∩B;

• IBr(B) := IBr`(G) ∩B;

• k(B) := | Irr(B)|;

• l(B) := | IBr(B)|.

For a (Brauer) character χ ∈ Irr(G) ∪ IBr`(G) we denote by

• bl(χ) the `-block of G containing χ.

The `-block bl(1G) containing the trivial character of G is called the principal `-block of
G and will often be denoted by B0.

Furthermore, we recall that for each `-block B of G there is a unique G-conjugacy
class of `-subgroups of G associated to it, the defect groups of B (see, for instance, [Nav98,
pp. 81/82]). If D 6 G is an `-subgroup of G, then we denote by

• Bl`(G | D) the set of all `-blocks of G having D as a defect group.

The (`-)defect of an `-block B of G is defined as

• d(B) ∈ Z>0 satisfying
|G|`
`d(B)

= min{χ(1)` | χ ∈ Irr(B)},

and a character χ ∈ Irr(B) with χ(1)` = |G|`/`d(B) is called a height zero character of B.
For any defect group D of B its order is given by |D| = `d(B) (see, e.g., [Nav98, Thm. 4.6]).

Group Actions. Suppose that X is a set with a finite group A acting on it. For x ∈ X,
a ∈ A and X ′ ⊆ X we denote by

• ax = a. x, xa = a−1. x the images of a applied to x from left and right, respectively;

• Ax := {a ∈ A | a.x = x} the stabilizer of x in A;

• aX ′ := {a.x | x ∈ X ′} the image of X ′ under a;

• X ′a := {a−1.x | x ∈ X ′} the image of X ′ under a−1;

• AX′ := {a ∈ A | X ′a = X ′} the stabilizer of X ′ in A.

If, moreover, Y is an AX′-stable set, then we denote by

• AX′,y the stabilizer of y ∈ Y in AX′ .

If A acts on the finite group G by automorphisms, then there is an induced action of A
on the set Irr(G) of irreducible characters of G via

• χa(g) = χ(a.g) for χ ∈ Irr(G) and a ∈ A.

As an example consider the case where G is a normal subgroup of A and A acts on G by
conjugation. Then for a ∈ A and g ∈ G we have a.g = aga−1, and hence χa(g) = χ(aga−1).
Analogously, one obtains an action of A on IBr`(G) for every prime `.
For g ∈ G we denote by

• cg : G→ G, x 7→ gxg−1, the automorphism of G induced by conjugation action of g,

where for g, h ∈ G the composition of cg and ch is given by cg ◦ ch = cgh.
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1.2 Blocks of Finite Groups

Let G be a finite group and suppose that ` is a prime. In this section we provide a brief
selection of some well-known facts regarding block theory for G that will occur frequently
throughout this thesis.

We first recall that for a subgroup H of G and an algebraic closure F of the finite field
F` consisting of ` elements one may extend the algebra homomorphism λb : Z(FH) −→ F
associated to an `-block b ∈ Bl`(H) to a linear map

λGb : Z(FG) −→ F, Ĉ 7−→ λb

( ∑
x∈C∩H

x

)
for C ∈ Cl(G).

If this map is an algebra homomorphism, then there exists a unique `-block B ∈ Bl`(G)
such that λGb = λB (see [Nav98, p. 87]), and we say that bG := B is defined and call it the
induced `-block. In this case the following holds by [Nav98, Lemma 4.13]:

Lemma 1.1. Let H be a subgroup of G and let b ∈ Bl`(H) such that bG is defined. Then
any defect group of b is contained in some defect group of bG.

Furthermore, the following criterion is an important result concerning the question as
to when induced blocks are defined (see, for instance, [Nav98, Thm. 4.14]):

Proposition 1.2. Let H be a subgroup of G and suppose that P is an `-subgroup of G
such that P CG(P ) ⊆ H ⊆ NG(P ). Then bG is defined for any `-block b ∈ Bl`(H).

Moreover, the following statement can be found as an exercise in [Nav98, Ex. 4.4]:

Proposition 1.3. Let H be a subgroup of G with b ∈ Bl`(H) such that bG is defined. If
a ∈ Aut(G), then ba = {χa | χ ∈ b}, where

χa(x) = χ(a.x) for x ∈ Ha,

is an `-block of Ha such that (ba)G is defined and equals (bG)a.

So-called canonical characters occur frequently throughout the course of this thesis.
They are defined as follows:

Definition 1.4 (Canonical character). Let P be an `-subgroup ofG and b ∈ Bl`(P CG(P ))
with defect group P . Then there exists a unique character θ ∈ Irr(b) such that P ⊆ ker(θ)
(cf. [NT89, Lemma 5.8.12(ii)]). This character is called the canonical character of b.

Let us now turn to the main theorems of Brauer, which play a major role in the study
of blocks of finite groups. The first of these theorems asserts a relation between certain
`-blocks of a finite group and those of an `-local subgroup (e.g. [Nav98, Thm. 4.17]):

Theorem 1.5 (Brauer’s first main theorem). Let P be an `-subgroup of G. Then the map
Bl`(NG(P ) | P ) −→ Bl`(G | P ), b 7−→ bG, is a bijection.

Definition 1.6 (Brauer correspondent). Let P be an `-subgroup of G and B ∈ Bl`(G | P ).
The (according to Theorem 1.5) unique `-block b ∈ Bl`(NG(P ) | P ) with bG = B is called
the Brauer (first main) correspondent of B.

The first main theorem of Brauer may be extended to the following statement (see, for
instance, [Nav98, Thm. 9.7]):

9
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Theorem 1.7 (Extended first main theorem of Brauer). Let P be an `-subgroup of G and
B ∈ Bl`(G | P ). There exists a unique NG(P )-conjugacy class of `-blocks b ∈ Bl`(P CG(P ))
such that bG = B. Moreover, all these `-blocks b have defect group P , and the Brauer first
main correspondent of B is given by bNG(P ) for any such b.

Definition 1.8 (Root). Let P be an `-subgroup of G and B ∈ Bl`(G | P ). An `-block
b ∈ Bl`(P CG(P ) | P ) as in Theorem 1.7 is called a root of B.

We refrain from stating Brauer’s second main theorem here since it does not play a
role for our purposes. Instead, we continue with the third main theorem (see [Nav98,
Thm. 6.7]).

Theorem 1.9 (Brauer’s third main theorem). Let H be a subgroup of G and denote by
b0 and B0 the principal `-blocks of H and G, respectively. If b ∈ Bl`(H) is such that bG is
defined, then bG = B0 if and only if b = b0.

For a proof of the following theorem we refer to [Nav98, Thm. 9.22]:

Theorem 1.10. Let P be an `-subgroup of G and let b be an `-block of P CG(P ) with
defect group P . Denote by T (b) the stabilizer of b in NG(P ). Then the induced `-block bG

has defect group P if and only the index |T (b) : P CG(P )| is not divisible by `.

In certain situations we will need to decide whether two given `-blocks of G agree.
The following statement, which is given as an exercise in [Nav98, Ex. 4.5], turns out to
be a useful criterion. We recall that the defect groups of a conjugacy class C ∈ Cl(G) are
exactly the Sylow `-subgroups of the centralizers CG(x) for x ∈ C (cf. [Nav98, p. 80]).

Proposition 1.11. Let B1, B2 ∈ Bl`(G | P ) for some `-subgroup P 6 G. Then B1 = B2

if and only if λB1(Ĉ) = λB2(Ĉ) for every C ∈ Cl(G) with defect group P such that the
elements in C are of order prime to `.

Further important information is provided by Lemma 1.13 below, which can, for in-
stance, be found as Theorem 4.8 in [Nav98], and for which we need the following definition:

Definition 1.12 (`-core). We denote by O`(G) the largest normal `-subgroup of G and
call it the `-core of G. Note that O`(G) is uniquely determined in G (e.g. [Gor80, p. 226]).

Lemma 1.13. Any defect group of any `-block of G contains O`(G).

Finally, we recall the following notion concerning blocks of normal subgroups:

Definition 1.14. Let N be a normal subgroup of G and suppose that B is an `-block of
G and b is an `-block of N . Then by [Nav98, Thm. 9.2] the following two statements are
equivalent:

• If χ ∈ B, then every irreducible constituent of χ|N belongs to a G-conjugate of b.

• There exists χ ∈ B such that χ|N has an irreducible constituent lying in b.

In this situation we say that the `-block B covers b. (See also [Nav98, p. 193] for a different
(but equivalent) definition.)
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1.3 Induction and Restriction of Characters

In the following we consider questions concerning the induction and restriction of char-
acters of finite groups. In particular, we state some important results of Clifford theory
that will turn out as valuable tools for our work. Clifford theory establishes a relation
between the irreducible characters of a finite group and those of a normal subgroup. The
first result is the following statement on the behaviour of an irreducible character upon
restriction to a normal subgroup:

Theorem 1.15 (Clifford). Let N E G be finite groups and ` be a prime.

(i) Let χ ∈ Irr(G) and ϑ ∈ Irr(N) be an irreducible constituent of ResGN (χ). Then for
t = |G : Gϑ| we have

ResGN (χ) = e ·
t∑
i=1

ϑi,

where e ∈ N>0 and ϑ1 = ϑ, ϑ2, . . . , ϑt denote the distinct G-conjugates of ϑ.

(ii) Let ϕ ∈ IBr`(G) and θ ∈ IBr`(N) be an irreducible constituent of ResGN (ϕ). Then
for t = |G : Gθ| we have

ResGN (ϕ) = e ·
t∑
i=1

θi,

where e ∈ N>0 and θ1 = θ, θ2, . . . , θt denote the distinct G-conjugates of θ.

Proof. See, for example, [Isa94, Thm. 6.5] for (i) and [Nav98, Cor. 8.7] for (ii).

A further major tool is the so-called Clifford correspondence. In general, induction
of an irreducible character of a finite group to some larger group does not again yield an
irreducible character. However, it turns out that in a particular situation irreducibility is
preserved by induction.

Theorem 1.16 (Clifford correspondence). Let N E G be finite groups and ` be a prime.

(i) Let ϑ ∈ Irr(N). The induction map IndGGϑ induces a bijection

Irr(Gϑ | ϑ) −→ Irr(G | ϑ), ψ 7−→ IndGGϑ(ψ).

In particular, the character IndGGϑ(ψ) is irreducible for every ψ ∈ Irr(Gϑ | ϑ).

(ii) Let θ ∈ IBr`(N). The induction map IndGGθ induces a bijection

IBr`(Gθ | θ) −→ IBr`(G | θ), ϕ 7−→ IndGGθ(ϕ).

In particular, the character IndGGθ(ϕ) is irreducible for every ϕ ∈ IBr`(Gθ | θ).

Proof. See, for example, [Isa94, Thm. 6.11] for (i) and [Nav98, Thm. 8.9] for (ii).

Let us now take a look at the decomposition of characters obtained by applying a
composition of the induction and the restriction map. We refer to [NT89, Thm. 3.1.9] for
the following statement:
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Theorem 1.17 (Mackey formula). Let H,K be subgroups of a finite group G. For an
irreducible character θ ∈ Irr(H) it holds that

ResGK IndGH(θ) =
∑
s∈S

IndKs−1Hs∩K Ress
−1Hs
s−1Hs∩K(θs),

where S denotes a set of (H,K)-double coset representatives, that is, G is the disjoint
union

⋃̇
s∈SHsK.

As is well-known, for a finite group G the set Irr(G) of irreducible characters constitutes
an orthonormal basis of the C-vector space cfC(G) of C-valued class functions of G with
respect to the scalar product

〈 , 〉G : cfC(G)× cfC(G) −→ C, (ϑ1, ϑ2) 7−→ 1

|G|
∑
g∈G

ϑ1(g)ϑ2(g)

(see, for instance, [Isa94, p. 21]). In particular, we may write a complex character ψ of G
as

ψ =
∑

χ∈Irr(G)

〈χ, ψ〉Gχ,

so the multiplicity of χ ∈ Irr(G) as an irreducible summand of ψ may be determined by
means of the scalar product 〈 , 〉G. An important observation is the following statement,
which expresses the scalar product in G involving the induction of a class function of a
subgroup H 6 G as a scalar product in H (see, e.g., [Isa94, Lemma 5.2]):

Proposition 1.18 (Frobenius reciprocity). Let H 6 G be finite groups and suppose that
χ and ϑ are C-valued class functions on G and H, respectively. Then

〈IndGH(ϑ), χ〉G = 〈ϑ,ResGH(χ)〉H .

In particular, χ is an irreducible constituent of IndGH(ϑ) if and only if χ lies over ϑ.

1.4 Extendibility of Characters

Throughout this section we let G denote a finite group and suppose that ` is a prime. Let
us first summarize a few results concerning the question on when a (Brauer) character of
a normal subgroup of G is extendible.

Proposition 1.19. Let N be a normal subgroup of G.

(i) Let ϑ ∈ Irr(N) be G-invariant. If for every prime r dividing the index |G : N | and
every N 6 P 6 G such that P/N is a Sylow r-subgroup of G/N there exists an
extension of ϑ to P , then ϑ extends to G.

(ii) Let ϕ ∈ IBr`(N) be G-invariant. If for every prime r dividing the index |G : N | and
every N 6 P 6 G such that P/N is a Sylow r-subgroup of G/N there exists an
extension of ϕ to P , then ϕ extends to G.

Proof. Part (i) is Corollary 11.31 of [Isa94], part (ii) is [Nav98, Thm. 8.29].
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Proposition 1.20. Let N be a normal subgroup of G.

(i) Let ϑ ∈ Irr(N) be G-invariant. If G/N is cyclic, then ϑ extends to G.

(ii) Let ϕ ∈ IBr`(N) be G-invariant. If G/N is cyclic, then ϕ extends to G.

Proof. This is [Isa94, Problem 6.17] for (i). Part (ii) is [Nav98, Thm. 8.12].

If an extension of an irreducible (Brauer) character of a normal subgroup N of G is
known, then all extensions may be obtained by application of the following theorem (where
we refer to pp. 17/18 for an interpretation of the irreducible (Brauer) characters of the
quotient G/N as irreducible (Brauer) characters of G):

Theorem 1.21 (Gallagher). Let N be a normal subgroup of G.

(i) If χ ∈ Irr(G) satisfies ϑ := χ|N ∈ Irr(N), then the characters η · χ for η ∈ Irr(G/N)
are irreducible, distinct for distinct characters η, and are exactly the irreducible con-
stituents of ϑG.

(ii) If ψ ∈ IBr`(G) satisfies ϕ := ψ|N ∈ IBr`(N), then the Brauer characters β · ψ for
β ∈ IBr`(G/N) are irreducible, distinct for distinct β, and are exactly the irreducible
constituents of ϕG.

Proof. Part (i) is [Isa94, Cor. 6.17], part (ii) can be found in [Nav98, Cor. 8.20].

As a corollary of Gallagher’s theorem, B. Späth states the following result in [Spä09,
Rmk. 9.3(i)], which gives a criterion for when two irreducible characters of G extending
the same character of a normal subgroups coincide:

Corollary 1.22. Let N be a normal subgroup of G and ϑ ∈ Irr(N), χ1, χ2 ∈ Irr(G)
such that χ1|N = χ2|N = ϑ. If T ⊆ G is a subset of G satisfying 〈N,T 〉 = G and
χ1(u) = χ2(u) 6= 0 for every u ∈ T , then χ1 = χ2.

Further extendibility results in the case that G is the semidirect product of two sub-
groups are given below. The first statement may also be found as Exercise 6.18 in [Isa94].

Lemma 1.23. Let G = N o S be a semidirect product of two finite groups N and S, and
let λ ∈ Irr(N) be a G-invariant linear character of N . Then λ extends to G.

Proof. For n ∈ N and s ∈ S we set λ̂(ns) := λ(n). We prove that λ̂ is a group homo-
morphism, in which case it constitutes a linear character of G extending λ. Let hence
m,n ∈ N and s, t ∈ S. We have

λ̂(msnt) = λ̂(m(sns−1)st) = λ(m(sns−1)) = λ(m)λs(n) = λ(m)λ(n) = λ̂(ms)λ̂(nt),

so λ̂ is a group homomorphism, and hence an extension of λ to G as claimed.

Lemma 1.24. Suppose that G = N o S is a semidirect product of two finite groups N
and S. Moreover, let A be a group containing both N and G as normal subgroups. Then
for θ ∈ Irr(N) the following statements hold:

(i) The stabilizer of the induced character θG in A is given by AθG = AθS.

(ii) If Gθ = N and there exists an extension θ̃ of θ to Aθ, then θ̃ AθG is an extension of
θG to AθG.

13



Chapter 1. Characters and Blocks

Proof. For part (i) we first observe that, since N E G, the induced character θG satisfies

θG|N =
∑
s∈S

θs.

Now let x ∈ AθG . Then x acts on N , so θx ∈ Irr(N), and we have (θx)G = (θG)x = θG, so
by the previous observation there exists s ∈ S such that θx = θs. Hence, θxs

−1
= θ and

x ∈ AθS. Suppose now, conversely, that x = ys with y ∈ Aθ and s ∈ S. Then

(θG)x = (θG)ys = (θys)G = (θs)G = θG,

and we conclude that x ∈ AθG . Since for y′ ∈ Aθ, s′ ∈ S we have s′y′ = y′y′−1s′y′ with
y′−1s′y′ ∈ G = N o S and N 6 Aθ, it follows that any element of AθS may be written in
the form ys with y ∈ Aθ and s ∈ S, so the claim follows.

(ii) According to Clifford correspondence, Theorem 1.16, the character θG is irreducible
in the present situation. Following part (i) we have AθG = AθS and by assumption
Gθ = N , so Aθ ∩ S = Gθ ∩ S = N ∩ S = {1}, and hence |AθG : Aθ| = |S|. Therefore, if we
induce θ̃ to AθG , then we obtain a character of degree

θ̃ AθG (1) = |AθG : Aθ| θ(1) = |S| θ(1) = |G : N | θ(1) = θG(1)

with
〈(θ̃ AθG )|G, θ

G〉G = 〈(θ̃ AθG )|N , θ〉N 6= 0

by Frobenius reciprocity, Proposition 1.18, and the fact that θ̃ is an irreducible constituent
of (θ̃ AθG )|Aθ , again by Frobenius reciprocity. Due to the equality of the degrees of θ̃ AθG

and θG and the irreducibility of θG, the character θ̃ AθG must be an extension of θG to
AθG .

Lemma 1.25. Let N be a normal subgroup of G and let ψ ∈ Irr(N). If a is an auto-
morphism of G stabilizing N such that ψa = ψ, then the stabilizer Gψ of ψ in G is left
invariant by a.

Proof. Let h ∈ Gψ and n ∈ N . Then a(h) ∈ G and

ψa(h)(n) = ψ(a(h)na(h)−1)

= ψ(a(ha−1(n)h−1))

= ψa(ha−1(n)h−1)

= ψ(ha−1(n)h−1)

= ψh(a−1(n))

= ψ(a−1(n))

= ψa
−1

(n)

= ψ(n)

since for ψa = ψ also ψa
−1

= ψ. Thus, a(h) ∈ Gψ as claimed.

Later on we will be interested in the action of Aut(G)B on the set IBr(B) of irreducible
Brauer characters of G belonging to an `-block B of G, and moreover, in some cases the
question of extendibility of a Brauer character in B to its stabilizer in Aut(G)B arises. In
certain situations a particular shape of the `-decomposition matrix may be of assistance in
answering this question as the following two results show, for which we need to introduce
the notion of a basic set given below:

14
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Definition 1.26 (Basic set). Let B be an `-block of the finite group G. We call a subset
B ⊆ Irr(B) a basic set for B if {χ0 | χ ∈ B} forms a basis of the abelian group

∑
χ∈Irr(B)

Zχ0.

Lemma 1.27. Let B be an `-block of G and suppose that B ⊆ Irr(B) is a basic set for B.
Assume further that the `-decomposition matrix for B is lower unitriangular with respect
to a suitable ordering of the characters in B and IBr(B), and that every character in B is
left invariant by Aut(G)B. Then every element in IBr(B) is left invariant by Aut(G)B.

Proof. Let l := l(B) denote the number of irreducible Brauer characters contained in B.
Then |B| = l and we may fix orderings B = {χ1, . . . , χl} and IBr(B) = {φ1, . . . , φl} of
B and IBr(B), respectively, with respect to which the decomposition matrix D for B is
lower unitriangular, so dχiφi = 1 for 1 6 i 6 l and dχiφj = 0 for 1 6 i < j 6 l if
D = (dχiφj )16i,j6l. We prove by induction on k that every Brauer character φk is left
invariant by Aut(G)B.

Let k = 1. Then φ1 = χ0
1, and since by assumption χ1 is invariant under Aut(G)B, so

is φ1. Hence, let k > 1 and assume that φi is invariant under Aut(G)B for 1 6 i < k. We
have

φk = χ0
k −

k−1∑
i=1

dχkφiφi,

so for a ∈ Aut(G)B we obtain

φak = (χ0
k)
a −

k−1∑
i=1

dχkφiφ
a
i = (χ0

k)−
k−1∑
i=1

dχkφiφi = φk

as claimed, since (χ0
k)
a = (χak)

0 = χ0
k by assumption and φai = φi for 1 6 i < k by the

induction hypothesis.

Remark 1.28. From the proof above it becomes clear that the statement of Lemma 1.27
remains valid if one does not assume that every character in B is left invariant by Aut(G)B
but only that every χ0, χ ∈ B, is left invariant by Aut(G)B.

Proposition 1.29. Suppose the assumptions of Lemma 1.27 and assume, moreover, that
G is simple. If every character in B extends to Aut(G)B, then every Brauer character in
IBr(B) extends to Aut(G)B.

Proof. Let the notation be as in the proof of Lemma 1.27 such that for 1 6 k 6 l we have

χ0
k = φk +

k−1∑
i=1

dχkφiφi.

Denote by χ̃k an extension of χk to Aut(G)B, which exists by assumption, and let ψ be an
irreducible `-modular constituent of χ̃0

k. Since G is assumed to be simple, we may embed
it as a normal subgroup of Aut(G) such that in particular G E Aut(G)B. Hence, we may
use Clifford theory, Theorem 1.15, to write

ψ|G = e

t∑
j=1

θj

for some irreducible constituent θ = θ1 of ψ|G, where e ∈ N>0, t = |Aut(G)B : Aut(G)B,θ|
and θ1, . . . , θt are exactly the distinct Aut(G)B-conjugates of θ. But since (χ̃0

k)|G = χ0
k,

15



Chapter 1. Characters and Blocks

we conclude that θ is an irreducible constituent of χ0
k, so θ = φi for some 1 6 i 6 k.

In particular, θ is invariant under Aut(G)B by Lemma 1.27, so t = 1 and ψ|G = eθ.
Since (χ̃0

k)|G = χ0
k, we may choose the irreducible constituent ψ of χ̃0

k such that φk is a
constituent of ψ|G. But then by the considerations above we have ψ|G = eφk for some
e ∈ N>0. Now dχkφk = 1, so we must have e = 1, whence ψ is an extension of φk to
Aut(G)B.

16



Chapter 2

The Conjecture

We are now ready to turn towards the central topic of this thesis. This chapter is aimed
at providing an introduction to Alperin’s weight conjecture. We give a definition of the
objects and notions involved and present Alperin’s hypothesis. Afterwards, we shall give
particular attention to the blockwise version of this conjecture, which will be the main
focus of the upcoming discussion.

2.1 Alperin’s Weight Conjecture

Alperin’s weight conjecture asserts that the number of irreducible Brauer characters of a
finite group may be determined by counting the number of conjugacy classes of so-called
weights for the finite group. Before defining these let us first recall the notion of a defect
zero character of a finite group:

Definition 2.1 (Defect zero character). Let G be a finite group and ` be a prime. If a
character χ ∈ Irr(G) satisfies χ(1)` = |G|`, then χ is said to be of (`-)defect zero or an
(`-)defect zero character of G.

The set of `-defect zero characters of G will be denoted by dz`(G) in the following.
One should note that this set might be empty.

Remark 2.2. Let G be a finite group and ` be a prime. Following the definition of the
`-defect of an `-block of G, a character χ ∈ Irr(G) of `-defect zero must lie in an `-block
of G that has `-defect zero. Even more, it is the unique irreducible character of its `-block
since for an `-block B of G the following are equivalent (cf. [Nav98, Thm. 3.18]):

• B is of `-defect zero,

• there exists a character χ ∈ Irr(B) with χ(1)` = |G|`,

• | Irr(B)| = 1,

• | Irr(B)| = | IBr(B)|.

The same reference tells us that the restriction χ0 of χ to the `-regular elements of G is
irreducible in this situation, such that we have IBr(B) = {χ0}.

Let us now recall that for a finite group G with a normal subgroup N there exists a
natural one-to-one correspondence between the set of irreducible characters of the quotient
G/N and the set of those irreducible characters of the group G that are trivial on N , which
is given as follows:

17
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If χ ∈ Irr(G) is such that N ⊆ ker(χ), then χ̂ defined by χ̂(gN) := χ(g) for g ∈ G is
an irreducible character of G/N .

Vice versa, if χ̂ ∈ Irr(G/N), then we obtain an irreducible character of G containing
N in its kernel by setting χ(g) := χ̂(gN). This is also called the inflation of χ̂ to G.

An analogous one-to-one correspondence also exists for the irreducible Brauer charac-
ters of G with N in their kernels and the irreducible Brauer characters of G/N .

Bearing this in mind we may now introduce the concept of weights of finite groups:

Definition 2.3 (`-weights). Let G be a finite group, ` a prime and R an `-subgroup of
G. If ϕ ∈ Irr(NG(R)) with R ⊆ ker(ϕ) is of `-defect zero when regarded as an irreducible
character of NG(R)/R, then the pair (R,ϕ) is called an (`-)weight of G. The character ψ
is called weight character.

Remark 2.4. Let G be a finite group and ` be a prime. If (R,ϕ) is an `-weight of G, then
also

(R,ϕ)a := (Ra, ϕa)

is an `-weight of G for every automorphism a ∈ Aut(G). In particular, we observe that G
acts on the set of its `-weights by conjugation. For the G-conjugacy class of an `-weight
(R,ϕ) we write [(R,ϕ)]G. Moreover, the set of G-conjugacy classes of `-weights of G will
in the following be denoted by W`(G).

Alperin’s weight conjecture [Alp87, p. 369] now reads as follows:

Conjecture 1 (Alperin, 1986). Let G be a finite group and ` be a prime. Then

|W`(G)| = | IBr`(G)|.

Note that Definition 2.3 only requires the subgroup R of the finite group G giving rise
to an `-weight of G to be an `-group. However, it turns out that not every `-subgroup
of G qualifies to constitute the first component of an `-weight of G as we are about to
observe in Lemma 2.7 below.

Definition 2.5 (Radical subgroup). For a prime ` and a finite group G an `-subgroup R
of G is called a radical `-subgroup of G if R = O`(NG(R)). We also say that R is (`-)
radical in G. The set of radical `-subgroups of G will be denoted by Rad`(G).

Example 2.6. If G is a finite group and ` is a prime, then examples for radical `-subgroups
of G are the following:

(i) R ∈ Syl`(G) is trivially `-radical in G;

(ii) if B is an `-block of G with defect group D, then D is `-radical in G (see, for instance,
[Nav98, Cor. 4.18]);

(iii) if G is simple, or more generally, if O`(G) = {1}, then {1} is `-radical in G.

18
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Lemma 2.7. Let G be a finite group and ` be a prime. If (R,ϕ) is an `-weight of G, then
R is a radical `-subgroup of G.

Proof. Since ϕ is of `-defect zero as an irreducible character of the quotient NG(R)/R, the
`-block of NG(R)/R containing ϕ must have defect group {1}. But by Lemma 1.13 the
`-core O`(NG(R)/R) is contained in any defect group of any block of NG(R)/R. Hence,

O`(NG(R)/R) = {1},

or equivalently, R = O`(NG(R)) as claimed.

2.2 The Blockwise Version

In this section we concern ourselves with the blockwise version of Alperin’s conjecture.
Each `-weight of a finite group G may be uniquely assigned to an `-block of G as we will
see below. The weight conjecture may then be refined to a question on the number of
irreducible Brauer characters and `-weights belonging to the `-blocks of G.

Definition 2.8 (B-weights). Let G be a finite group and ` be a prime. An `-weight (R,ϕ)
of G belongs to a unique `-block of G in the following way: Let b be the `-block of NG(R)
containing the weight character ϕ. Then (R,ϕ) is called a B-weight of G, where B := bG.

Remark 2.9. Let G be a finite group, ` a prime and B an `-block of G. In addition, we
suppose that (R,ϕ) is a B-weight. Then for the `-weight (Ra, ϕa), a ∈ Aut(G)B, we have

bl(ϕa)G = (bl(ϕ)a)G = (bl(ϕ)G)a = Ba = B

by Proposition 1.3. Thus, Aut(G)B acts on the set of B-weights of G. In particular, it
follows that the group G acts on the set of its B-weights by conjugation. We denote the
set of G-conjugacy classes of B-weights of G by W(B). Note that we drop the prime ` in
this notation since it is already inherent in the `-block B.

The blockwise version of Alperin’s conjecture [Alp87, p. 371] then asserts the following:

Conjecture 2 (Alperin, 1986). Let G be a finite group, ` a prime and B an `-block
of G. Then

|W(B)| = | IBr(B)|.

Due to the fact that each `-weight of a finite group G is associated to a unique `-block
of G, the sets W(B), B ∈ Bl`(G), form a partition of W`(G). Similarly, the sets IBr(B),
B ∈ Bl`(G), form a partition of IBr`(G). This leads to the observation that the blockwise
variant of Alperin’s conjecture implies the blockfree version.

We are hence particularly interested in counting the number of weights belonging to a
block B of a finite group G. By [AF90, p. 3] the B-weights of G may be constructed in
the following manner:
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Construction 2.10. Let ` be a prime and B be an `-block of a finite group G. For a
radical `-subgroup R of G and an `-block b ∈ Bl`(RCG(R) | R) with bG = B we denote
by θ the canonical character of b. Then for every ψ ∈ Irr(NG(R)θ | θ) with

ψ(1)`
θ(1)`

= |NG(R)θ : RCG(R)|`

the pair

(R, Ind
NG(R)
NG(R)θ

(ψ))

constitutes a B-weight of G. As a result of Clifford correspondence, Theorem 1.16, distinct
characters ψ yield distinct B-weights.

Letting R run over a complete set of representatives for the G-conjugacy classes of
radical `-subgroups of G, and for each such R letting b run over a complete set of repre-
sentatives for the NG(R)-conjugacy classes of `-blocks b ∈ Bl`(RCG(R) | R) with bG = B
provides all B-weights of G.

In general there can be various types of radical `-subgroups giving rise to `-weights
belonging to an `-block B. If, however, B is an `-block of abelian defect, then the situation
is more restrictive. Compare [An94a, pp. 24/25] for the following:

Lemma 2.11. Let ` be a prime and B be an `-block of a finite group G. Suppose, moreover,
that (R,ϕ) is a B-weight of G. If B is an `-block of abelian defect, then R is a defect
group of B.

Proof. Denote by D a defect group of B. Following Construction 2.10 there exists an `-
block b ∈ Bl`(RCG(R) | R) such that B = bG, so by [NT89, Thm. 5.5.21] we may assume
that

Z(D) 6 Z(R) 6 R 6 D.

Thus, if D is abelian, then R = D is a defect group of B.
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Chapter 3

Reduction Theorems

Even though Alperin’s (blockwise) weight conjecture has been verified for a broad range of
finite groups, it has not been possible so far to prove this conjecture in general for arbitrary
finite groups. As a step towards a solution of this problem, G. Navarro and P. H. Tiep
[NT11] reduced the conjecture to a question on finite (quasi-) simple groups, resulting in
the inductive Alperin weight condition. Following this lead, B. Späth [Spä13] presented
a system of inductive conditions, the inductive blockwise Alperin weight condition, and
proved that a verification of these for all non-abelian finite simple groups implies the
blockwise Alperin weight conjecture.

In the following we are interested in the inductive conditions for the blockwise version
of Alperin’s weight conjecture established by Späth. This is explained by the fact that
these conditions constitute a refinement of the conditions given by Navarro and Tiep,
which is to say, their verification implies a proof of the conditions required in the blockfree
reduction.

3.1 The Inductive Blockwise Alperin Weight Condition

There are several versions of the inductive blockwise Alperin weight condition (iBAW).
Apart from the original version given by Späth in [Spä13, Def. 4.1] there is also a ver-
sion treating only blocks with defect groups involved in certain sets of `-groups [Spä13,
Def. 5.17], or a version handling single blocks [KS14, Def. 3.2].

We state here the inductive condition for a single block. For a non-abelian finite simple
group this condition may then be verified block by block, this way proving the original
inductive condition for the whole group.

Notation 3.1. Let G be a finite group and ` be a prime.

(i) If Q is a radical `-subgroup of G and B an `-block of G, then we define the set

dz(NG(Q)/Q, B) := {χ ∈ dz`(NG(Q)/Q) | bl(χ)G = B},

where we regard χ as an irreducible character of NG(Q) containing Q in its kernel
when considering the induced `-block bl(χ)G. One should observe that this set is in
one-to-one-correspondence with the set of all B-weights of G having Q as their first
component.

(ii) By Rad`(G)/∼G we denote a complete system of representatives for the G-conjugacy
classes of radical `-subgroups of G.
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Definition 3.2 ((iBAW) condition for an `-block [KS14, Def. 3.2]). Let ` be a prime, S a
finite non-abelian simple group and X the universal `′-covering group of S. Let B be an
`-block of X. We say that the inductive blockwise Alperin weight (iBAW) condition holds
for B if the following statements are satisfied:

(i) (Partitions) There exist subsets IBr(B | Q) ⊆ IBr(B) for Q ∈ Rad`(X) with the
following properties:

(1) IBr(B | Q)a = IBr(B | Qa) for every Q ∈ Rad`(X), a ∈ Aut(X)B,

(2) IBr(B) =
⋃̇
Q∈Rad`(X)/∼X IBr(B | Q).

(ii) (Bijections) For every Q ∈ Rad`(X) there exists a bijection

ΩX
Q : IBr(B | Q) −→ dz(NX(Q)/Q, B)

such that ΩX
Q (φ)a = ΩX

Qa(φa) for every φ ∈ IBr(B | Q) and a ∈ Aut(X)B.

(iii) (Normally Embedded Conditions) For every Q ∈ Rad`(X) and every Brauer
character φ ∈ IBr(B | Q) there exists a finite group A(φ,Q) and Brauer characters
φ̃ ∈ IBr`(A(φ,Q)) and φ̃′ ∈ IBr`(NA(φ,Q)(Q)), where we use the notation Q := QZ/Z
and Z := Z(X) ∩ kerφ, with the following properties:

(1) for X := X/Z the group A := A(φ,Q) satisfies X E A, A/CA(X) ∼= Aut(X)φ,
CA(X) = Z(A) and ` - |Z(A)|,

(2) φ̃ ∈ IBr`(A) is an extension of the Brauer character of X associated with φ,

(3) φ̃′ ∈ IBr`(NA(Q)) is an extension of the Brauer character of NX(Q) associated
with the inflation of ΩX

Q (φ)0 ∈ IBr`(NX(Q)/Q) to NX(Q),

(4) bl(φ̃|J) = bl((φ̃′)|NJ (Q))
J for every subgroup J satisfying X 6 J 6 A.

(iv) If B is of `-defect zero, then ΩX
{1}(ψ

0) = ψ for every ψ ∈ Irr(B), and φ̃ = φ̃′ for every

φ ∈ IBr(B | {1}).

Definition 3.3 ((iBAW) condition for S and `). Let ` be a prime, S a finite non-abelian
simple group and X the universal `′-covering group of S. We say that the inductive
blockwise Alperin weight (iBAW) condition holds for S and ` if the (iBAW) condition
holds for every `-block of X.

Remark 3.4. For S, ` and X as above note that Späth gives a slightly different definition
of the (iBAW) condition for S and ` in [Spä13, Def. 4.1]. However, the conditions de-
manded there immediately imply those stated in Definition 3.3, and vice versa, by [KS14,
Lemma 3.3] the (iBAW) condition holds for S and ` in the sense of Späth if it holds for
some Aut(X)-transversal in Bl`(X) in the sense of Definition 3.2. Thus, as a matter of
fact both definitions coincide.

Definition 3.5. We call a group K involved in a finite group H if there exist subgroups
H1 E H2 ≤ H such that K ∼= H2/H1.

Due to the following theorem by Späth [Spä13, Th. A] there is considerable interest in
verifying the (iBAW) condition for all finite non-abelian simple groups:
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Theorem 3.6 (Späth). Let G be a finite group and ` be a prime. Assume that every
non-abelian simple group S involved in G satisfies the (iBAW) condition for `. Then
Conjecture 2 holds for every `-block of G.

Let us now state some observations which will later on allow us to construct partitions
and bijections as in parts (i) and (ii) of Definition 3.2 from an Aut(X)B-equivariant
bijection between IBr(B) and W(B), that is, from a bijection

ΩB : IBr(B) −→W(B)

with ΩB(φ)a = ΩB(φa) for every a ∈ Aut(X)B and φ ∈ IBr(B).

Lemma 3.7. Let X be a finite group and ` be a prime. Moreover, let K ∈ W(B) be an X-
conjugacy class of B-weights of X for some `-block B of X. Then for each Q ∈ Rad`(X)
there exists at most one ψ ∈ dz(NX(Q)/Q, B) such that for its inflation ψ to NX(Q) we
have K = [(Q,ψ)]X .

In particular, if K has a representative with first component given by a fixed radical
`-subgroup Q ∈ Rad`(X), then this representative is uniquely determined by Q.

Proof. This is clear since for B-weights (Q,ψ1), (Q,ψ2) of X with (Q,ψ1) = (Q,ψ2)g for
some g ∈ X, we have g ∈ NX(Q) and hence ψ2 = ψg2 = ψ1.

For an `-block B of a finite group X and a radical `-subgroup Q ∈ Rad`(X) we use
the following notation in the lemma below:

Irr0(NX(Q), B) := {ψ ∈ Irr0(NX(Q)) | bl(ψ)X = B},

where

Irr0(NX(Q)) := {ψ ∈ Irr(NX(Q)) | Q ⊆ ker(ψ), ψ(1)` = |NX(Q)/Q |`},

i.e., Irr0(NX(Q), B) consists of exactly those irreducible characters of NX(Q) whose kernel
contains Q, which have `-defect zero as characters of NX(Q)/Q and which lie in `-blocks
of NX(Q) that induce to B. These are exactly the inflations to NX(Q) of the characters
in dz(NX(Q)/Q, B).

Lemma 3.8. Let X be a finite group, ` a prime and suppose that for an `-block B of X
we have a bijection

ΩB : IBr(B) −→W(B)

satisfying ΩB(χ)a = ΩB(χa) for all χ ∈ IBr(B) and a ∈ Aut(X)B. For every Q ∈ Rad`(X)
we set

IBr(B | Q) :=
⋃

ψ∈Irr0(NX(Q), B)

{Ω−1
B ([(Q,ψ)]X)}

and define a map

ΩX
Q : IBr(B | Q) −→ dz(NX(Q)/Q, B),

χ 7−→ Ω̃B(χ),
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where Ω̃B(χ) denotes the unique (compare Lemma 3.7) element in dz(NX(Q)/Q, B) whose
inflation ψ to NX(Q) satisfies ΩB(χ) = [(Q,ψ)]X . Then for every Q ∈ Rad`(X) and every
automorphism a ∈ Aut(X)B it holds that

IBr(B | Q)a = IBr(B | Qa)

and we have a disjoint union

IBr(B) =
⋃

Q∈Rad`(X)/∼X

IBr(B | Q),

so part (i) of Definition 3.2 is fulfilled for the `-block B. Moreover, the map ΩX
Q is well-

defined, bijective, and satisfies part (ii) of Definition 3.2.

Proof. Let a ∈ Aut(X)B, Q ∈ Rad`(X) and ψ ∈ Irr0(NX(Q), B). By assumption we have

ΩB(Ω−1
B ([(Q,ψ)]X)a) = ΩB(Ω−1

B ([(Q,ψ)]X))a = [(Q,ψ)]aX ,

so

Ω−1
B ([(Q,ψ)]X)a = Ω−1

B ([(Qa, ψa)]X),

and we obtain

IBr(B | Q)a =
⋃

ψ∈Irr0(NX(Q), B)

{Ω−1
B ([(Q,ψ)]X)a}

=
⋃

ψ∈Irr0(NX(Q), B)

{Ω−1
B ([(Qa, ψa)]X)}

=
⋃

ψ∈Irr0(NX(Qa), B)

{Ω−1
B ([(Qa, ψ)]X)}

= IBr(B | Qa).

Furthermore, by construction we have IBr(B | Q) ⊆ IBr(B) for every Q ∈ Rad`(X), and
if Q1, Q2 ∈ Rad`(X) are such that there exists ϕ ∈ IBr(B | Q1) ∩ IBr(B | Q2), then there
exist ψ1 ∈ Irr0(NX(Q1), B) and ψ2 ∈ Irr0(NX(Q2), B) with

[(Q1, ψ1)]X = ΩB(ϕ) = [(Q2, ψ2)]X ,

so Q1 and Q2 are X-conjugate. Hence, the union
⋃
Q∈Rad`(X)/∼X IBr(B | Q) is disjoint.

Since ΩB is a bijection, for every ϕ ∈ IBr(B) there exists a B-weight (Q,ψ) such that
ΩB(ϕ) = [(Q,ψ)]X , so ϕ ∈ IBr(B | Q). Thus, indeed

IBr(B) =
⋃̇

Q∈Rad`(X)/∼X
IBr(B | Q),

which completes the first part of the proof.
By construction and Lemma 3.7 it is clear that ΩX

Q is well-defined and bijective for any
Q ∈ Rad`(X). Moreover, for Q ∈ Rad`(X) and χ ∈ IBr(B | Q) we have χa ∈ IBr(B | Qa),
and hence

ΩX
Q (χ)a = Ω̃B(χ)

a
= Ω̃B(χa) = ΩX

Qa(χa)

for any a ∈ Aut(X)B as claimed. This finishes the proof.
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3.2 Special Cases

For certain cases some important results have already been established. One example is
the statement below for blocks of cyclic defect, which S. Koshitani and B. Späth proved in
[KS14] and [KS15]. We benefit greatly from their result since it allows us to omit blocks
with cyclic defect groups in the course of our investigations.

Proposition 3.9. Let ` be a prime, S a finite non-abelian simple group and X its universal
`′-covering group. Then the (iBAW) condition holds for every `-block of X that has cyclic
defect groups.

Proof. For odd ` this is stated in [KS14, Th. 1.1]. For the case ` = 2 the statement follows
from the fact that according to [KS15, Lemma 2.3] any 2-block of X with cyclic defect
groups is nilpotent, and by [KS14, Thm. 1.3] the (iBAW) condition holds for nilpotent
`-blocks of X.

As a direct consequence of the above statement we obtain the following result for finite
simple groups whose Sylow subgroups with respect to a given prime are cyclic:

Corollary 3.10. Let S be a finite non-abelian simple group with cyclic Sylow `-subgroups.
Then the (iBAW) condition holds for S and `.

Even though the notion of a finite group of Lie type will only be introduced in more
detail in the next chapter, we already give an important result for such groups at this
point, which has been proven by B. Späth in [Spä13, Th. C]:

Proposition 3.11. Suppose that S is a finite simple group of Lie type defined over a field
of characteristic p. Then the (iBAW) condition holds for S and p.

Let us now consider the case of simple groups with cyclic outer automorphism groups.
As proven by B. Späth, in this situation the normally embedded conditions, that is, point
(iii) in the (iBAW) condition, will automatically be satisfied for all blocks once these fulfil
the remaining conditions of Definition 3.2:

Proposition 3.12. Let ` be a prime and S be a non-abelian finite simple group such that
the quotient Aut(S)/S is cyclic. Moreover, let X denote the universal `′-covering group
of S and suppose that parts (i) and (ii) of the (iBAW) condition hold for every `-block of
X. Then the (iBAW) condition holds for S and `.

Proof. From the proof of [Spä13, Lemma 6.1] it becomes apparent that in the given situ-
ation the (iBAW) condition holds for S and ` if the following conditions are satisfied:

(i’) There exist subsets IBr`(X | Q) ⊆ IBr`(X) for Q ∈ Rad`(X) with the following
properties:

(1) IBr`(X | Q)a = IBr`(X | Qa) for every Q ∈ Rad`(X), a ∈ Aut(X),

(2) IBr`(X) =
⋃̇
Q∈Rad`(X)/∼X IBr`(X | Q).

(ii’) For every Q ∈ Rad`(X) there exists a bijection

ΩX
Q : IBr`(X | Q) −→ dz`(NX(Q)/Q)

such that

(1) ΩX
Q (φ)a = ΩX

Qa(φa) for every φ ∈ IBr(X | Q) and a ∈ Aut(X),
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(2) bl(φ) = bl(φ′)X , where φ′ ∈ Irr(NX(Q)) denotes the inflation of ΩX
Q (φ).

By assumption we have subsets IBr(B | Q) ⊆ IBr(B) and bijections ΩX
B,Q between the

sets IBr(B | Q) and dz(NX(Q)/Q, B) for all `-blocks B of X and radical `-subgroups
Q ∈ Rad`(X) satisfying parts (i) and (ii) of Definition 3.2. From these we may easily
obtain subsets IBr`(X | Q) ⊆ IBr`(X) and bijections ΩG

Q fulfilling conditions (i’) and (ii’)
above by setting

IBr`(X | Q) :=
⋃

B∈Bl`(X)

IBr(B | Q)

and

ΩX
Q : IBr`(X | Q) −→ dz`(NX(Q)/Q), φ 7−→ ΩX

bl(φ),Q(φ),

for Q ∈ Rad`(X). This proves the claim.
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Chapter 4

Chevalley Groups and Finite
Groups of Lie Type

The finite simple groups we investigate in this thesis with regard to the inductive blockwise
Alperin weight condition are constructed from so-called Chevalley groups. This chapter
is intended to give a short introduction to such groups and provide information on their
properties relevant for our purposes. We mainly follow the construction given in [Car89].

4.1 Root Systems and Simple Lie Algebras over C

In this section we provide a brief overview of certain important properties of simple finite-
dimensional complex Lie algebras. From these we will later construct Lie algebras over
arbitrary fields K. Certain automorphisms of the complex Lie algebra may then be trans-
ferred to the Lie algebra over K, and the corresponding Chevalley group over K will be
defined as the group generated by these automorphisms.

Let us first recall the notion of a root system. Note that there exist several definitions
of root systems. Here we work with the definition given in [Car89, Def. 2.1.1].

Definition 4.1 (Root system, root, base, Weyl group). Let V be a Euclidean vector space
over the field R of real numbers with scalar product ( , ) : V × V −→ R. For a vector
0 6= r ∈ V we denote by ωr the reflection along the hyperplane orthogonal to r, i.e., the
linear map

ωr : V −→ V,

v 7−→ ωr(v) := v − 2
(r, v)

(r, r)
r.

We set 〈r, v〉 := 2 (r,v)
(r,r) for short. Note that this defines a map 〈 , 〉 : V \ {0} × V −→ R

which is linear only in the second component and for which 〈v, v〉 = 2 for all 0 6= v ∈ V .
We call a subset Σ ⊆ V a (crystallographic) root system in V if it fulfils the following

set of conditions:

(R1) 0 6∈ Σ and Σ is a finite set;

(R2) Σ spans V ;

(R3) ωr(s) ∈ Σ for all r, s ∈ Σ;

(R4) 〈r, s〉 ∈ Z for all r, s ∈ Σ;
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(R5) r, λr ∈ Σ for λ ∈ R implies λ ∈ {±1}.

The elements in Σ are called roots.
A linearly independent subset Π ⊆ Σ such that each root r ∈ Σ is a linear combination

of elements in Π with either all coefficients non-negative or all coefficients non-positive is
called a fundamental system or base in Σ. It is a fact that such a base Π always exists in
Σ (see, for instance, [Car89, Prop. 2.1.2] or [MT11, Prop. A.7]).

Let W (Σ) := 〈ωr | r ∈ Σ 〉 be the group generated by all reflections ωr, r ∈ Σ. We
call W (Σ) the Weyl group of Σ. In fact, W (Σ) = 〈ωr | r ∈ Π 〉 if Π is a base in Σ (e.g. by
[MT11, Prop. A.11]).

Definition 4.2. Let Σ be a root system. For a fixed base Π in Σ there exists a unique
element w0 ∈ W (Σ) such that w0(Π) = −Π (see, for instance, [MT11, Cor. A.23]). This
element is called the longest element of W (Σ) (with respect to Π).

Definition 4.3. Let Σ be a root system in some Euclidean vector space over R with scalar
product ( , ). If there exist non-empty subsets Σ1,Σ2 ⊂ Σ such that Σ = Σ1 ∪̇Σ2 and
(r1, r2) = 0 for all r1 ∈ Σ1, r2 ∈ Σ2, then Σ is said to be decomposable. Otherwise we call
Σ indecomposable.

Definition 4.4. Let Σ denote an indecomposable root system with base Π. Then (e.g. by
[GLS98, Thm. 1.8.5(d)] or [MT11, Prop. B.5]) the map

ht: Σ −→ Z,

α =
∑
r∈Π

arr 7−→ ht(α) :=
∑
r∈Π

ar

takes maximum and minimum values on unique roots. These roots are called highest and
lowest roots (with respect to Π), respectively.

As a first step in the construction of Chevalley groups we will consider certain Lie
algebras. The Chevalley groups will then arise as groups of automorphisms for these Lie
algebras. We start with the following well-known result (compare, e.g., [Car05, Ch. 4–6]):

Proposition 4.5 (Cartan decomposition). Let L be a finite dimensional simple Lie algebra
over C. Then there is an indecomposable root system Σ associated to L, and L may be
decomposed as

L = H⊕
⊕
r∈Σ

Lr,

where H is a Cartan subalgebra of L, and Lr is the 1-dimensional root space associated
to r ∈ Σ invariant under the Lie bracket with H. More precisely, the root system Σ may
be regarded as a subset of the dual space H∗ = HomC(H,C) of H such that it holds that
Lr = {x ∈ L | [h, x] = r(h)x for all h ∈ H} for r ∈ Σ.

Remark 4.6 (Scalar product on H∗). The vector space H∗ in Proposition 4.5 is equipped
with a scalar product constructed from the non-degenerate Killing form κ of the Lie algebra
L in the following way:

By [Car05, Lemma 4.16] there is an isomorphism ∗ : H −→ H∗ defined by

h∗ : H −→ C, x 7−→ κ(h, x).

Hence, for each α ∈ H∗ there exists a unique element tα ∈ H such that α = t∗α. Then the
scalar product of α, β ∈ H∗ is given by (α, β) := κ(tα, tβ).
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Let Σ1 and Σ2 be two root systems. Then we call Σ1 and Σ2 equivalent if there exists
a bijection α : Σ1 −→ Σ2 and some scalar λ ∈ R>0 such that

(α(r), α(s)) = λ(r, s)

for all r, s ∈ Σ1. The following two important results, which can be found as Theo-
rems 3.5.1 and 3.5.2 in [Car89], show that up to equivalence of root systems and isomor-
phism of Lie algebras there is a one-to-one-correspondence between indecomposable root
systems and simple Lie algebras over C:

Theorem 4.7. Let Σ be an indecomposable root system. Then there exists a simple Lie
algebra over C such that the root system associated to it is equivalent to Σ.

Theorem 4.8. Let L1 and L2 be two simple Lie algebras over C with associated root sys-
tems Σ1 and Σ2, respectively. If Σ1 and Σ2 are equivalent, then L1 and L2 are isomorphic.

Definition 4.9 (Co-roots). Let L be a simple Lie algebra over C with Cartan subalgebra
H and associated root system Σ ⊆ H∗. For each r ∈ Σ define the co-root associated to r as

hr :=
2tr

κ(tr, tr)
=

2tr
(r, r)

∈ H,

where tr is as in Remark 4.6.

It has been shown that for a simple Lie algebra L over C the set of co-roots associated
to its root system can be extended to a basis of L with particularly nice multiplication
properties, the so-called Chevalley basis. See, for instance, [Car89, Thm. 4.2.1] for the
following:

Theorem 4.10 (Chevalley basis). Let L be a finite dimensional simple Lie algebra over
C with root system Σ and Cartan decomposition

L = H⊕
⊕
r∈Σ

Lr,

and let the co-roots hr for r ∈ Σ be as in Definition 4.9. Moreover, for roots r, s ∈ Σ with
s 6= ±r denote by ρrs the largest integer such that s− ρrsr ∈ Σ. Then for each root r ∈ Σ
there exists an element er ∈ Lr such that

[ere−r] = hr,

[eres] ∈ {±(ρrs + 1)er+s} for s 6= ±r,

and the elements {hr | r ∈ Π} ∪ {er | r ∈ Σ}, where Π denotes a base in Σ, form a basis
for L. This basis is called a Chevalley basis for L. The multiplication of basis elements is
as follows:

[hrhs] = 0,

[hres] = 2
(r, s)

(r, r)
es = 〈r, s〉es,

[eres] =


hr if s = −r,
0 if s 6= −r and r + s 6∈ Σ,

Nrser+s if r + s ∈ Σ,

where Nrs ∈ {±(ρrs + 1)}.
Moreover, the multiplication constants of the Lie algebra L with respect to the Chevalley

basis are all integers.

29



Chapter 4. Chevalley Groups and Finite Groups of Lie Type

Remark 4.11. It should be noted that a Chevalley basis for a simple Lie algebra is not
uniquely determined. Rather, there exist many different Chevalley bases depending on
the chosen Cartan decomposition and the base of the corresponding root system. Even
after fixing a Cartan decomposition and a base inside the associated root system only
the hr’s are uniquely determined. There are still choices to be made for the basis vectors
er. However, once the er’s have been chosen for the fixed base of the root system, the
remaining er’s are determined up to a sign. (See [Car89, Remark after Thm. 4.2.1].)

We are now able to define certain automorphisms of our Lie algebra that will later
play a crucial role in the construction of Chevalley groups.

Definition 4.12. Recall that for a Lie algebra L and any element x ∈ L the map

adx : L −→ L, y 7−→ [xy],

is a derivation of L (see, e.g., [Car89, p. 34]). Now suppose that L is a simple Lie algebra
over C with associated root system Σ and Chevalley basis {hr | r ∈ Π} ∪ {er | r ∈ Σ}.
Then by [Car89, p. 61] the map ad er is nilpotent for each r ∈ Σ, so the map

exp(ad er) : =

∞∑
k=0

1

k!
(ad er)

k

= id + ad er +
1

2!
(ad er)

2 + · · ·+ 1

(n− 1)!
(ad er)

n−1,

where n ∈ N is such that (ad er)
n = 0, is well-defined. By [Car89, Lemma 4.3.1] the map

exp(ad er) is an automorphism of L for every r ∈ Σ since ad er is a nilpotent derivation.
Now let ζ ∈ C. Then also ad(ζer) = ζ ad er is a nilpotent derivation, so exp(ζ ad er)

is an automorphism of L as well according to [Car89, Lemma 4.3.1]. We denote these
automorphisms by

xr(ζ) := exp(ζ ad er)

for all r ∈ Σ and ζ ∈ C.

With respect to a Chevalley basis the automorphisms xr(ζ) may be represented in a
handsome manner (see [Car89, pp. 61–63]):

Proposition 4.13. Let L be a simple Lie algebra over C with associated root system Σ.
For r ∈ Σ and ζ ∈ C let xr(ζ) be defined as in Definition 4.12 for some fixed Chevalley
basis B of L. Denote by Ar(ζ) the matrix representation of xr(ζ) with respect to B. Then
the coefficients of Ar(ζ) are all given as the product of an integer and some non-negative
integral power of ζ, i.e., for each coefficient a of Ar(ζ) there exists i ∈ N and z ∈ Z such
that a = zζi.

The automorphisms defined above will play a key role in the construction of Chevalley
groups in the subsequent section.

4.2 Chevalley Groups

In the previous section we gathered information on simple Lie algebras over C. Here we
apply those results to define certain Lie algebras over arbitrary fields and construct the
Chevalley groups from these. The whole section is a summary of [Car89, Sec. 4.4].

Let Σ be an indecomposable root system and K an arbitrary field. Our aim is to
construct a group defined over K associated to Σ, the Chevalley group, which will then
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be denoted Σ(K). Let L be a simple Lie algebra over C with associated root system Σ.
Such a Lie algebra exists by Theorem 4.7. Moreover, let B be a Chevalley basis of L. By
Theorem 4.10 the multiplication constants with respect to B are integers, so the Z-span
LZ of B is a Lie algebra over Z. In particular, both K and LZ are abelian groups, so one
can define

LK := K ⊗ LZ

as the tensor product of two abelian groups. Then LK is an (additive) abelian group itself,
and if 1K denotes the unit element in K, then each element x ∈ LK may be written as

x =
∑
b∈B

λb(1K ⊗ b)

for suitable scalars λb ∈ K depending on x. If one sets

b := 1K ⊗ b

for b ∈ B, then B := {b | b ∈ B} is a basis for the K-vector space LK .
In our next step we define a multiplication of elements in LK that induces a Lie algebra

structure on LK :

Proposition 4.14. For two elements b1, b2 ∈ B define the product[
b1 b2

]
:= 1K ⊗ [b1 b2].

By linear extension this multiplication induces a Lie algebra structure on LK .
The multiplication constants of LK with respect to the basis B are given by the mul-

tiplication constants of L with respect to the basis B interpreted as elements of the prime
subfield of K.

Proof. This is [Car89, Prop. 4.4.1] and follows from the fact that the multiplication con-
stants of L with respect to B are integers (see Theorem 4.10).

After transferring the Lie algebra structure of L to LK , the next step is to construct
automorphisms of LK from the automorphisms xr(ζ), r ∈ Σ, ζ ∈ C, defined in the previous
section (cf. [Car89, p. 63]).

Definition 4.15. Let Σ, K, L, B, LK , B be defined as before. For r ∈ Σ and ζ ∈ C
let the automorphism xr(ζ) be represented by the matrix Ar(ζ) with respect to B. By
Proposition 4.13 each coefficient of Ar(ζ) is the product of an integer and some non-
negative integral power of ζ.

Now let t ∈ K. For z ∈ Z we let z be the corresponding element of the prime field of
K. Then we denote by Ār(t) the matrix obtained from Ar(ζ) by replacing all entries zζi

by the elements zti of K. Then Ār(t) represents an endomorphism of LK with respect to
the basis B. We denote this endomorphism by xr(t). Note that for K = C this yields
exactly the endomorphism of L started with, whence this choice of notation should not
produce any confusion.

Proposition 4.16. In the notation of Definition 4.15 the endomorphisms xr(t) are in
fact automorphisms of LK for every r ∈ Σ and t ∈ K.

Proof. This is [Car89, Prop. 4.4.2].

We are now ready to define the so-called adjoint Chevalley groups:
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Definition 4.17 (Adjoint Chevalley groups). Let L be a simple Lie algebra over C with
root system Σ and let K be any field. Fix a Chevalley basis for L and let xr(t), r ∈ Σ,
t ∈ K, be the corresponding automorphisms of LK as above. Then we denote by

L(K)ad := 〈xr(t) | r ∈ Σ, t ∈ K〉

the group of automorphisms of LK generated by the automorphisms xr(t), r ∈ Σ, t ∈ K,
the Steinberg generators of L(K)ad. This group is called the adjoint Chevalley group of
type L over K.

The group L(K)ad is well-defined and does not depend on the chosen Chevalley basis
of the Lie algebra L as shown in [Car89, Prop. 4.4.3]:

Proposition 4.18. Up to isomorphism the group L(K)ad is uniquely determined by the
simple Lie algebra L and the field K.

Remark 4.19. Clearly, if L1 and L2 are two isomorphic simple Lie algebras over C, then
L1(K)ad and L2(K)ad are isomorphic for any field K. We have seen that up to equivalence
of root systems and isomorphism of Lie algebras there is a one-to-one-correspondence
between indecomposable root systems and simple Lie algebras over C. Hence, we will in the
following write Σ(K)ad instead of L(K)ad, where Σ is the root system type corresponding
to the simple Lie algebra L over C, and we will call Σ(K)ad the adjoint Chevalley group
of type Σ over K.

Theorem 4.20 (Steinberg relations for adjoint Chevalley groups). Let Σ(K)ad be an
adjoint Chevalley group over some field K. Define

nr(t) := xr(t)x−r(−t−1)xr(t) and hr(t) := nr(t)nr(−1),

where r ∈ Σ and t ∈ K×. Then the following relations hold for all r, s ∈ Σ and t, u ∈ K
(with t, u 6= 0 in part (iii)):

(i) xr(t)xr(u) = xr(t+ u);

(ii) if r and s are linearly independent, then

[xr(t), xs(u)] =
∏
i,j

xir+js(cijrs(−t)iuj),

for certain scalars cijrs ∈ {±1,±2,±3} independent of the field K, where the product
ranges over all pairs i, j of positive integers such that ir + js ∈ Σ, and the terms
occur in a fixed order independent of t and u with i+ j non-decreasing; if there are
no positive integers i, j such that ir + js ∈ Σ, then [xr(t), xs(u)] = 1;

(iii) hr(t)hr(u) = hr(tu).

Proof. Part (i) is given by [Car89, p. 68], (ii) is [Car89, Thm. 5.2.2], and part (iii) follows
from [Car89, p. 92 and Lemma 6.4.4].

Proposition 4.21. For a prime p denote by F an algebraic closure of the finite field Fp
consisting of p elements. Moreover, let G := Σ(F)ad be an adjoint Chevalley group over
F and let T := 〈hr(t) | r ∈ Σ, t ∈ F×〉. Then

NG(T) = 〈T, nr(1) | r ∈ Σ〉,

and there is an isomorphism between the groups W := NG(T)/T and W (Σ) induced by
the map nr(1) 7→ ωr.
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Proof. This follows from [Car89, Thm. 7.2.2] and [GLS98, Thm. 1.9.5(f)].

We will now use the relations in Theorem 4.20 to define the so-called universal Cheval-
ley groups as abstract groups generated by certain elements behaving according to relations
analogous to those stated in Theorem 4.20. See [Car89, Thm. 12.1.1] for the following:

Theorem 4.22. Let Σ be an indecomposable root system not of type A1 and let K be any
field. For every r ∈ Σ and t ∈ K let a symbol x̄r(t) be given. Define Σ(K)uni to be the
abstract group generated by all x̄r(t), r ∈ Σ, t ∈ K, subject to the relations

x̄r(t1)x̄r(t2) = x̄r(t1 + t2) for t1, t2 ∈ K, r ∈ Σ,

[x̄r(t), x̄s(u)] =
∏
i,j

x̄ir+js(cijrs(−t)iuj) for linearly independent r, s ∈ Σ, t, u ∈ K,

h̄r(t1)h̄r(t2) = h̄r(t1t2) for t1, t2 ∈ K×, r ∈ Σ,

where h̄r(t) := n̄r(t)n̄r(−1) for n̄r(t) := x̄r(t)x̄−r(−t−1)x̄r(t), and the product runs over
the same i, j as in Theorem 4.20 with the same scalars cijrs.
Then the center Z(Σ(K)uni) of Σ(K)uni is contained in T := 〈h̄r(t) | r ∈ Σ, t ∈ K×〉, and
the quotient

Σ(K)uni/Z(Σ(K)uni)

is isomorphic to the adjoint Chevalley group Σ(K)ad such that via this isomorphism the
generators xr(t) of Σ(K)ad correspond to the cosets of x̄r(t) for r ∈ Σ, t ∈ K.

Remark 4.23. If Σ is a root system of type A1, then one obtains a statement analogous to
Theorem 4.22 by replacing the commutator relations by the relations

n̄r(t)x̄r(u)n̄r(t)
−1 = x̄−r(−t−2u)

for all u ∈ K, t ∈ K× and r ∈ Σ (cf. [Car89, p. 198]).

Definition 4.24 (Universal Chevalley groups). The group Σ(K)uni in Theorem 4.22 is
called the universal Chevalley group of type Σ over K or the simply connected Chevalley
group of type Σ over K. Its generators x̄r(t), r ∈ Σ, t ∈ K, are the Steinberg generators
of L(K)uni.

From the proof of Theorem 4.22 given in [Car89] one may derive some of the following
relations for universal Chevalley groups:

Theorem 4.25 (Steinberg relations for universal Chevalley groups). Let p be a prime
and denote by F an algebraic closure of the field Fp consisting of p elements. Moreover,
let Σ(F)uni be a universal Chevalley group over F with Σ 6= A1 and with generators x̄r(t),
r ∈ Σ, t ∈ F, and n̄r(t) = x̄r(t)x̄−r(−t−1)x̄r(t), h̄r(t) = n̄r(t)n̄r(−1) for r ∈ Σ and t ∈ F×.

Then the following relations hold for all r, s ∈ Σ and t, u ∈ F (with t 6= 0 or u 6= 0
whenever appropriate):

(i) x̄r(t)x̄r(u) = x̄r(t+ u);

(ii) if r and s are linearly independent, then

[x̄r(t), x̄s(u)] =
∏
i,j

x̄ir+js(cijrs(−t)iuj),

for cijrs as in Theorem 4.20, where the product ranges over all pairs i, j of positive
integers such that ir+ js ∈ Σ, and the terms occur in a fixed order independent of
t and u with i + j non-decreasing; if there are no positive integers i, j such that
ir + js ∈ Σ, then [x̄r(t), x̄s(u)] = 1;
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(iii) [h̄r(t), h̄s(u)] = 1;

(iv) h̄r(t)h̄r(u) = h̄r(tu);

(v) if {r1, . . . , rm} is a base in Σ and we set ř :=
2r

(r, r)
for all r ∈ Σ, then

h̄r(t) =

m∏
i=1

h̄ri(t
ci),

where ci ∈ Z are such that ř =
∑m

i=1 ciři;

(vi) it holds
m∏
i=1

h̄ri(ti) = 1 if and only if ti = 1 for all 1 6 i 6 m,

where {r1, . . . , rm} is a base in Σ as above;

(vii) h̄r(t)x̄s(u)h̄r(t)
−1 = x̄s(t

〈r,s〉u);

(viii) n̄r(t)x̄s(u)n̄r(t)
−1 = x̄ωr(s)(ηr,st

−〈r,s〉u) for some sign ηr,s ∈ {±1};

(ix) n̄r(t)n̄s(u)n̄r(t)
−1 = n̄ωr(s)(ηr,st

−〈r,s〉u) with ηr,s as in (viii);

(x) n̄r(t)h̄s(u)n̄r(t)
−1 = h̄ωr(s)(u);

(xi) n̄r(1)2 = h̄r(−1).

Proof. Relations (i), (ii) and (iv) are the defining relations for Σ(F)uni. The statements
(iii) and (vii) to (xi) can be found in the proof of [Car89, Thm. 12.1.1]. The remaining
statements are part of [GLS98, Thm. 1.12.1].

Remark 4.26. (i) Suppose that Σ(F)ad is an adjoint Chevalley group over the field F
defined in Theorem 4.25. Except for part (vi) the relations in Theorem 4.25 hold true
for the generators xr(t), nr(t) and hr(t) of Σ(F)ad by [GLS98, Thm. 1.12.1] and the
fact that Σ(F)ad is the quotient of Σ(F)uni by its center. We should note, however,
that the notation in [GLS98] differs slightly from our notation and that [GLS98,
Thm. 1.12.1(i)] wrongly claims that nr(1)−1hs(u)nr(1) = hωr(s)(cs,ru) for the sign
cs,r ∈ {±1} satisfying nr(1)−1xs(u)nr(1) = xωr(s)(cs,ru). Moreover, part (vi) may be
replaced by the statement

(vi)’ It holds

m∏
i=1

hri(ti) = 1 if and only if
m∏
i=1

t
〈ri,rj〉
i = 1 for all 1 6 j 6 m,

where {r1, . . . , rm} is a base in Σ.

In [GLS98, Thm. 1.12.1] there can also be found more information on the constants
cijrs occurring for both the adjoint and universal type of Chevalley groups.

(ii) The signs ηr,s in Theorem 4.25 are not uniquely determined by the root system Σ but
rather they also depend on the chosen Chevalley basis of the underlying Lie algebra.
However, they are independent of the prime p (cf., for instance, the proof of [Car89,
Prop. 6.4.3]).
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As in the case of adjoint Chevalley groups the following holds:

Proposition 4.27. Let p be a prime and denote by F an algebraic closure of the finite
field Fp consisting of p elements. Moreover, let G := Σ(F)uni be a universal Chevalley
group over F and define T := 〈h̄r(t) | r ∈ Σ, t ∈ F×〉. Then

NG(T) = 〈T, n̄r(1) | r ∈ Σ〉,

and there is an isomorphism between the groups W := NG(T)/T and W (Σ) induced by
the map n̄r(1) 7→ ωr.

Proof. Let Z denote the center of G. Following Theorem 4.22 it holds that Z 6 T and
G/Z ∼= Σ(K)ad =: G via xr(t) 7→ x̄r(t)Z. Moreover, by Theorem 4.25(x) the group T
is normal in 〈T, n̄r(1) | r ∈ Σ〉, and according to [GLS98, Thm. 1.9.5(f)] the quotient
NG(T)/T is isomorphic to W (Σ). For the subgroup T of G as in Proposition 4.21 it
holds that T ∼= T/Z. Hence, the statement follows from Proposition 4.21 and the fact
that we have NG(T)/T ∼= (NG(T)/Z)/(T/Z) ∼= NG(T)/T.

Definition 4.28 (Chevalley groups). Let Σ(K)uni be a universal Chevalley group of type
Σ over some field K. Then for any subgroup Z 6 Z(Σ(K)uni) of the center of Σ(K)uni the
quotient G := Σ(K)uni/Z will be called a Chevalley group of type Σ over K.

The corresponding cosets of the generators x̄r(t), n̄r(t) and h̄r(t) of Σ(K)uni will simply
be denoted xr(t), nr(t) and hr(t), and analogously we write T and W to denote the images
of T and W.

Proposition 4.29. Let G be a Chevalley group over an algebraically closed field. Then
G is a simple linear algebraic group.

Proof. It was proven in [Ste68, Thm. 6(a)] that G is a semisimple algebraic group. Note,
however, that [Ste68, Thm. 6(a)] is a statement on a larger class of groups than we are
considering here, that is to say, [Ste68, Thm. 6(a)] includes all groups constructed anal-
ogously to our construction of Chevalley groups but under the slightly weaker condition
that the underlying Lie algebra is semisimple (and not simple as we require here), or in
other words, the underlying root system is not required to be indecomposable. Starting
with an indecomposable root system, one can show that G is indeed simple, compare, for
instance, with the proof of [MT11, Thm. 8.21]. Since G is linear by construction, the
claim follows.

4.3 Finite Groups of Lie Type

The Chevalley groups SL3(q) and G2(q), and Steinberg’s triality groups 3D4(q), on which
the main focus of this thesis lies, belong to the class of finite groups of Lie type. In this
section we describe briefly how such groups can be constructed from infinite Chevalley
groups as subgroups of fixed points under certain endomorphisms. Essentially, we follow
the notation and construction given in [MT11, Part III].

Until the end of this chapter we let p be a prime number and denote by F an algebraic
closure of a finite field Fp consisting of p elements. Moreover, for a power q of p we let Fq
be the unique subfield of F consisting of q elements.

Definition 4.30 (Frobenius endomorphism). Let G be a Chevalley group of type Σ over
F with generators xr(t), r ∈ Σ, t ∈ F. The endomorphism Fq defined by

Fq : G −→ G, xr(t) 7−→ xr(t
q), r ∈ Σ, t ∈ F,

is called the Frobenius endomorphism of G with respect to Fq.
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Definition 4.31 (Steinberg endomorphism). Let G be a Chevalley group over F. An
endomorphism F of G is called a Steinberg endomorphism of G if there is some m ∈ N>0

such that Fm is the Frobenius endomorphism of G with respect to some power q of p.

Remark 4.32. The designation of the endomorphisms introduced in the previous two defi-
nitions follows the notation of [MT11]. Note that this is not standard in the literature. For
instance in [GLS98] endomorphisms as in Definition 4.31 are called Frobenius endomor-
phisms, while an endomorphism of G is called a Steinberg endomorphism if it is surjective
and fixes only finitely many elements of G.

Definition 4.33 (Finite group of Lie type). Let G be a Chevalley group over F and let
F be a Steinberg endomorphism of G. Then we denote the subgroup of fixed points of F
on G by GF , i.e.,

GF := {g ∈ G | F (g) = g}.

The group GF is finite (see, for instance, [MT11, Thm. 21.5]), and it will henceforth be
called a finite group of Lie type.

As observed in Proposition 4.29, Chevalley groups are simple linear algebraic groups,
so in particular by [MT11, Thm. 21.7] the following famous result, known as the theorem
of Lang–Steinberg, holds for these groups:

Theorem 4.34 (Lang–Steinberg). Let G be a connected linear algebraic group over F and
let F be a Steinberg endomorphism of G. Then

L : G −→ G, g 7−→ F (g)g−1,

defines a surjective morphism.

The theorem of Lang–Steinberg is of great importance for the theory of linear algebraic
groups and finite groups of Lie type. One well-known consequence that derives from this
result is the following statement:

Corollary 4.35. Let G be a Chevalley group over F with Steinberg endomorphism F .
Then for any element g ∈ G the subgroups of fixed points of G under F and gF , respec-
tively, are G-conjugate.

Proof. Let g ∈ G. By Lang–Steinberg there exists some x ∈ G such that g−1 = F (x)x−1.
We define ι(h) := xhx−1 for h ∈ GF . Then

(gF )(ι(h)) = gF (xhx−1)g−1 = xF (h)x−1 = ι(F (h)) = ι(h),

so ι(h) ∈ GgF for all h ∈ GF . On the other hand, for every y ∈ GgF we have

F (x−1yx) = x−1gF (y)g−1x = x−1yx,

so x−1yx ∈ GF is a preimage in GF of y under ι. Clearly, ι is injective as it is given by
conjugation. Hence, we conclude that ι defines an isomorphism between GF and GgF as
claimed.

In the situation of Corollary 4.35 above we call the finite group GgF twisted since it is
obtained by “twisting” the group GF , that is by conjugating GF with a certain element
of G. At later stages, when we work with concrete examples for groups of Lie type it will
sometimes be convenient to consider twisted versions of the groups in question as they
may provide particularly nice descriptions for maximal tori, which are to be regarded next.
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4.4 Maximal Tori

Chevalley groups over F being algebraic groups it is reasonable to speak about their tori.
In this section we gather some information on this important kind of subgroups. Let us
first note that in Section 4.2 we have already encountered an important example for a
(maximal) torus of a Chevalley group:

Proposition 4.36. Let G be a Chevalley group of type Σ over F. The subgroup T of G
defined in Section 4.2 as

T := 〈hr(t) | r ∈ Σ, t ∈ F×〉

is a maximal torus of G.

Proof. This is [Ste68, Thm. 6(c)]

An important fact about the maximal tori of Chevalley groups over F or, more gener-
ally, of linear algebraic groups is the following (see, e.g., [MT11, Cor. 6.5]):

Proposition 4.37. All maximal tori of a linear algebraic group G defined over the field
F are conjugate in G.

Definition 4.38 (Weyl group). Let G be a Chevalley group over F and suppose that H
is a torus of G. Then the group W(H) := NG(H)/H is called the Weyl group of H.

If G is of type Σ and T is a maximal torus of G, then by Propositions 4.21 and 4.27
we have W := W(T) ∼= W (Σ), and we call W the Weyl group of G.

For a given Chevalley group G over F with Steinberg endomorphism F and an F -stable
maximal torus T let us consider a second F -stable maximal torus T′. By Proposition 4.37
there exists an element g ∈ G such that T′ = gT g−1, and since T and T′ are F -stable,
g−1F (g) normalizes T. We set w := g−1F (g) T ∈ NG(T)/T = W and introduce the
notation Tw := T′.

Definition 4.39 (F -conjugacy). Suppose that G is a Chevalley group over F with a Stein-
berg endomorphism F and let T be an F -stable maximal torus of G with corresponding
Weyl group W. Two elements w1, w2 ∈ W are called F -conjugate if there exists some
w ∈W such that w2 = F (w)w1w

−1. Clearly, this defines an equivalence relation, and the
corresponding equivalence classes are called F -conjugacy classes (cf., for instance, [MT11,
Def. 21.9]).

By [MT11] the following result holds for connected reductive groups, so in particular
for Chevalley groups over F:

Proposition 4.40. Let G be a Chevalley group over F with a Steinberg endomorphism F
and let T be an F -stable maximal torus of G with corresponding Weyl group W.

(i) The map{
GF-conjugacy classes of F -stable

maximal tori of G

}
−→

{
F -conjugacy classes in W

}
[Tw]GF 7−→ [w]F ,

is a bijection, where [Tw]GF denotes the GF -conjugacy class of Tw in G, and [w]F
denotes the F -conjugacy class of w in W.

37



Chapter 4. Chevalley Groups and Finite Groups of Lie Type

(ii) If Tw is an F -stable G-conjugate of T for some w ∈W, then

NGF (Tw)/TF
w
∼= (NG(Tw)/Tw)F ∼= WwF ,

where WwF = {v ∈W | wF (v)w−1 = v} is the group of fixed points of wF on W.

Proof. Part (i) is proven in [MT11, Prop. 25.1], part (ii) is [MT11, Prop. 23.2] for the first
isomorphism and [MT11, Prop. 25.3(a)] for the second. Note that the cited statements in
[MT11] involve an automorphism φ acting on W, and instead of the F -conjugacy classes
in W in part (i) and the group WwF in part (ii) one considers the φ-conjugacy classes in
W and the group Wwφ = {v ∈W | wφ(v)w−1 = v}, respectively. However, as becomes
apparent in the proofs of both statements, the F -conjugacy classes in W agree with the
φ-conjugacy classes, and we have WwF = Wwφ.

In the notation of Proposition 4.40 the group TF of fixed points of the F -stable max-
imal torus T of G under the Steinberg endomorphism F is called a maximal torus of the
finite group GF . Part (i) of this proposition tells us that there is a one-to-one correspon-
dence between GF -conjugacy classes of maximal tori of GF and F -conjugacy classes in
the Weyl group W.

Remark 4.41. Following Proposition 4.40 for every F -stable maximal torus T of a Cheval-
ley group G with Steinberg endomorphism F we have NGF (T)/TF ∼= WF , where W
denotes the Weyl group corresponding to T. It is remarked in [MT11, p. 198], however,
that in general it is not true that NGF (TF ) = NGF (T), for instance in the case where
T 6= 1 but the group of fixed points of F on T is trivial.
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The Special Linear Groups SL3(q)
for q > 2 and 3 - (q − 1)





Chapter 5

Properties of SL3(q)

The special linear groups SL3(q) for prime powers q > 2 such that 3 - (q−1) constitute the
first series of finite groups of Lie type for which we establish the inductive blockwise Alperin
weight condition in this thesis. This chapter gives a brief introduction to these groups and
provides a summary of certain of their properties that will be of importance in due course.
Our main references are Gorenstein–Lyons–Solomon [GLS98], Malle–Testerman [MT11]
and Steinberg [Ste68].

5.1 Construction of SL3(q)

For a fixed prime power q we define the group SL3(q) as the group of fixed points of a
universal Chevalley group under a certain Frobenius endomorphism. Let p be a prime
and f ∈ N>0 such that q = pf . Moreover, let F denote an algebraic closure of the field
Fp consisting of p elements and let Fq be the unique subfield of F containing exactly q
elements. We denote by

G := SL3(F) := {A ∈ GL3(F) | det(A) = 1}

the subgroup of the general linear group GL3(F) consisting of all 3 × 3-matrices defined
over F with determinant 1. According to [Ste68, p. 45] the group G is a universal Chevalley
group of type A2. Now the field automorphism F −→ F, a 7−→ aq, induces an endomor-
phism F acting on G by raising each entry of a matrix in G to its q-th power:

F : G −→ G, (aij)16i,j63 7−→ (aqij)16i,j63.

This endomorphism is a Frobenius endomorphism in the sense of Definition 4.30, hence a
Steinberg endomorphism. The finite group SL3(q) of Lie type is now defined as the group

G := SL3(q) := SL3(F)F := {A ∈ SL3(F) | F (A) = A}

of fixed points of SL3(F) under the Steinberg endomorphism F . Clearly, it consists of all
3×3-matrices with determinant 1 whose entries lie in Fq. Henceforth, until the examination
of the special linear groups is completed, the notation G will always refer to the special
linear group SL3(q). According to [MT11, Table 24.1] the order of this group is as follows:

Lemma 5.1. The order of the finite group SL3(q) is given by

|SL3(q)| = q3(q − 1)2(q + 1)(q2 + q + 1)

= q3Φ1(q)2Φ2(q)Φ3(q).
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For later use we make the following observation on the common divisors of the factors
of the group order |G| = q3Φ1(q)2Φ2(q)Φ3(q):

Lemma 5.2. For q ∈ N>1 a power of a prime p the following statements hold:

(i) gcd(Φ2(q),Φ3(q)) = 1;

(ii) gcd(Φ1(q),Φ2(q)) =

{
2 if q is odd,

1 if q is even;

(iii) gcd(Φ1(q),Φ3(q)) =

{
3 if q ≡ 1 mod 3,

1 otherwise.

In particular, if q 6≡ 1 mod 3 and ` is a prime dividing the order of SL3(q), then either
` = 2, ` = p, or there exists a unique d ∈ {1, 2, 3} such that ` | Φd(q).

Proof. This follows easily from Lemma 5.2 in [Mal07], which states that for a prime r not
dividing q, and e the multiplicative order of q modulo r one has

• r | Φf (q) if and only if f = eri for some i ∈ N, and

• f = er(q) if r2 | Φf (q),

where er(q) = e if r 6= 2 and e2(q) = 1 or 2 for q ≡ 1 mod 4 or q ≡ −1 mod 4, respectively.
In particular, if a prime r divides Φf1(q) and Φf2(q) for f1 < f2, then f2/f1 > 1 is a power
of r, and r2 divides at most one of Φf1(q) and Φf2(q). In our case, this is only possible if
r = 2 or r = 3 with e = 1, f1 = 1 and f2 = 2 or f2 = 3, respectively, and then q must be
odd for r = 2, while for r = 3 it follows that q = qe ≡ 1 mod 3.

Let us now turn to the universal covering group of G. This is relevant to us since
despite the fact that we say that the (iBAW) condition holds “for a finite simple group
S” and a prime `, the conditions that need to be verified are in fact questions concerning
the universal `′-covering group of S and not S itself (cf. Definitions 3.2 and 3.3). In our
case of G = SL3(q) the situation is as follows:

Proposition 5.3. Suppose that q > 2. Then the finite group G = SL3(q) is perfect and its
quotient PSL3(q) = G/Z(G) is simple. Moreover, if q 6= 2, 4, then SL3(q) is the universal
covering group of PSL3(q).

Proof. See, for instance, [MT11, Thm. 24.17 and Rmk. 24.19].

Remark 5.4. The center of SL3(q) consists of all scalar matrices in SL3(q). By reason of
all matrices in SL3(q) having determinant 1 it follows that SL3(q) has a non-trivial center
if and only if 3 | (q − 1). Now the groups PSL3(q) = SL3(q)/Z(SL3(q)) are simple for
all q > 2 according to the above proposition, so if 3 - (q − 1) and q > 2, then the group
SL3(q) = PSL3(q) is simple. If, in addition, q > 2, then again by Proposition 5.3 it even
is its own universal covering group. In this thesis we will focus on this situation.

During the subsequent examination of SL3(q) in view of the inductive condition for
the blockwise Alperin weight conjecture we work under the following assumption:

From now on we assume that q > 2 and q 6≡ 1 mod 3.
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5.2 Weyl Group and Maximal Tori of SL3(q)

In this section we briefly describe the maximal tori of G. Let us denote by T the F -stable
maximal torus of G consisting of the diagonal matrices in G. By Proposition 4.40 there
is a bijection between the G-conjugacy classes of F -stable maximal tori of G and the
F -conjugacy classes of W := NG(T)/T. As is well known, W ∼= S3 and NG(T) consists
of the monomial matrices in G. In particular, the elements of W may be represented
by monomial matrices in G whose non-zero entries are contained in {±1}. Since F acts
trivially on such matrices, W is stabilized pointwise by F , so the F -conjugacy classes
of W coincide with its W-conjugacy classes. Now in W ∼= S3 there exist exactly three
W-conjugacy classes, represented by the permutations id = ( ), (12) and (123). If we set

v2 :=

0 1 0
1 0 0
0 0 −1

 ∈ G and v3 :=

 0 0 −1
−1 0 0

0 1 0

 ∈ G,

then the left cosets w2 := v2 T and w3 := v3 T correspond to the permutations (12) and
(123), respectively, and one easily verifies that 〈v2, v3〉 ∼= S3 (e.g. using GAP [GAP08]).
We obtain three representatives in G for the G-conjugacy classes of maximal tori in G.
These are given in Table 5.1 below.

w ∈W TwF WwF

1
T1 = {diag(z1, z2, z

−1
1 z−1

2 ) | zq−1
1 = zq−1

2 = 1}
∼= Cq−1 × Cq−1

S3

w2
T2 = {diag(z, zq, z−(q+1)) | zq2−1 = 1}
∼= Cq2−1

C2

w3
T3 = {diag(z, zq, zq

2
) | zq2+q+1 = 1}

∼= Cq2+q+1

C3

Table 5.1: Maximal tori of SL3(q)

Definition 5.5. We say that a maximal torus T of G is of type Ti for i ∈ {1, 2, 3} if T is
G-conjugate to the torus Ti defined in Table 5.1.

Remark 5.6. The maximal torus T of G consisting of the diagonal matrices in G is stable
under F and lies in the F -stable Borel subgroup of G given by all upper (respectively
lower) triangular matrices in G. Hence, T is maximally split with respect to F and we
will sometimes refer to the torus T1 = TF as the maximally split torus of G.

Proposition 5.7. For the normalizers of the maximal tori of the special linear group the
following hold (under the assumption that q > 2):

(i) NGF (TF ) = TF o〈v2, v3〉 ∼= TF oS3,

(ii) NGw2F (Tw2F ) = Tw2F o〈v2〉 ∼= Tw2F oC2,

(iii) NGw3F (Tw3F ) = Tw3F o〈v3〉 ∼= Tw3F oC3.
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Proof. These statements are well-known but since they will be used frequently, we give
a short idea of the proof here. Let T be one of the maximal tori TF , Tw2F or Tw3F .
Since we assume that q > 2, the eigenvectors in F3 common to all diagonal matrices in
T are exactly the scalar multiples of the standard basis vectors (1, 0, 0)tr, (0, 1, 0)tr and
(0, 0, 1)tr of F3. Suppose now that N ∈ NG(T ) and let v ∈ F3 be a common eigenvector
for all elements of T . Then also Nv is an eigenvector for all elements of T , hence, a scalar
multiple of a standard basis vector. Letting v run over the three standard basis vectors,
we may thus conclude that N is a monomial matrix, that is, each column and each row of
N contains exactly one non-zero entry. It is now straightforward to check which monomial
matrices of G are fixed points under F , w2F and w3F , respectively.

Proposition 5.8. For a prime ` 6= p dividing |G| (and q 6≡ 1 mod 3) we denote by d an
integer in {1, 2, 3} such that ` | Φd(q) (note that by Lemma 5.2 this is uniquely determined
if ` > 2). Then

(i) NG(O`(T )) = NG(T ) and

(ii) CG(O`(T )) = T

for every maximal torus T of G of type Td.

Proof. (i) If d ∈ {2, 3}, then by Corollary 4.35 we may work in the group GwdF instead
of G and assume that T = TwdF . Else, we assume that T = TF . The claim then follows
by the same arguments as in the proof of Proposition 5.7 if we can ensure that the set of
common eigenvectors in F3 of O`(T ) is the set of F-multiples of the three standard basis
vectors of F3. Since T consists of diagonal matrices, this is the case if and only if for every
i, j ∈ {1, 2, 3} with i 6= j there exists a diagonal matrix diag(t1, t2, t3) ∈ O`(T ) such that
ti 6= tj . This is clearly satisfied if d = 1, that is, if ` | (q − 1).

For d = 2 we have T = {diag(t, tq, t−(q+1)) | tq2−1 = 1}, and for s ∈ F× of order
(q2 − 1)` we hence obtain O`(T ) = 〈diag(s, sq, s−(q+1))〉. Since d = 2, we have ` | (q + 1),
so s 6∈ F×q , that is, sq 6= s, and sq 6∈ F×q , while s−(q+1) ∈ F×q . Thus, the diagonal entries of

diag(s, sq, s−(q+1)) are pairwise distinct, so in particular the set of common eigenvectors
in F3 of O`(T ) is as desired.

For d = 3 the maximal torus T is given by {diag(t, tq, tq
2
) | tq2+q+1 = 1}. Since in

this situation ` | (q2 + q + 1), for s ∈ F× of order (q2 + q + 1)` the matrix diag(s, sq, sq
2
)

generates O`(T ) and has pairwise distinct diagonal entries. Accordingly, also in this case
we can find an element of O`(T ) whose eigenvectors are exactly the F-multiples of the
standard basis vectors of F3.

Proceeding as outlined in the proof of Proposition 5.7 hence proves (i).
For (ii) one easily verifies that the only elements of NG(T ) ⊇ CG(O`(T )) centralizing

all elements of O`(T ) are those contained in T . As in the proof of part (i) this is due
to the fact that for any i, j ∈ {1, 2, 3} with i 6= j one can always find a diagonal matrix
diag(t1, t2, t3) ∈ O`(T ) with ti 6= tj .

For the Sylow `-subgroups of G, where ` 6= p, we observe the following:

Proposition 5.9. Let ` 6= p be a prime dividing |G| (and recall that q 6≡ 1 mod 3). For a
Sylow `-subgroup P ∈ Syl`(G) one of the following holds:

(i) ` > 2 and P = O`(T ), where T is a maximal torus of G of type Td with d the unique
integer in {1, 2, 3} such that ` | Φd(q). Moreover, CG(P ) = T and NG(P ) = NG(T ).

In particular, P is abelian, and P is cyclic if d ∈ {2, 3}.
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(ii) ` = 2 and P ∈ Syl2(NG(T )), where T is a maximal torus of G of type Td such that
d ∈ {1, 2} with 4 | Φd(q). Moreover, NG(P ) = P CG(P ) and P CG(P )/P ∼= C(q−1)2′

.

Proof. The structure of P follows as an easy consequence of Lemma 5.2, Proposition 5.7
and the description of the maximal tori in Table 5.1. The remaining statement in part (i)
follows from Proposition 5.8.

For (ii) suppose hence that ` = 2 and let d ∈ {1, 2} be such that 4 divides Φd(q). We
consider the Sylow 2-subgroup Pd := O2(TwdF )o〈v2〉 of GwdF , where for d = 1 we use the
notation w1 := 1. Since v2 acts on TwdF by interchanging the first two diagonal entries of
the matrices in TwdF , one easily verifies that

[Pd, Pd ] =

{
〈diag(ξ(q+1)(q−1)2′ , ξ−(q+1)(q−1)2′ , 1)〉 if d = 1,

〈diag(ξ(q−1)(q+1)2′ , ξ−(q−1)(q+1)2′ , 1)〉 if d = 2,

where ξ ∈ F× is of order q2−1. In both cases the group [Pd, Pd ] contains matrices with pair-
wise distinct diagonal entries, so as before we may apply the argument on common eigen-
vectors used in the proof of Proposition 5.7 to find that NGwdF ([Pd, Pd ]) = TwdF o〈v2〉.
Now the commutator subgroup [Pd, Pd ] is characteristic in Pd, so in particular we obtain

NGwdF (Pd) ⊆ NGwdF ([Pd, Pd ]) = TwdF o〈v2〉.

Since clearly v2 normalizes Pd, we need to check which elements of TwdF normalize Pd, or,
in other words, which elements of TwdF commute with v2 modulo O2(TwdF ). Straightfor-
ward calculations prove that these are exactly the elements in 〈O2(TwdF ), diag(ζ, ζ, ζ−2)〉,
where ζ := ξq+1. Moreover, we have

CGwdF (Pd) = CN
GwdF

(Pd)(Pd) = CTwdF (v2) = 〈diag(ζ, ζ, ζ−2)〉,

so in summary it follows that

NGwdF (Pd) = 〈O`(TwdF ),diag(ζ, ζ, ζ−2)〉o 〈v2〉 = Pd CGwdF (Pd),

and

Pd CGwdF (Pd)/Pd ∼= O2′(〈diag(ζ, ζ, ζ−2)〉) ∼= C(q−1)2′
.

By application of Corollary 4.35 the claim follows.

5.3 Automorphisms of SL3(q)

In this section we describe the automorphism group of G. Let us begin with the introduc-
tion of certain automorphisms of G.

Definition 5.10. We denote by Fp the automorphism induced on G via the field auto-
morphism Fq −→ Fq, a 7−→ ap, that is,

Fp : G −→ G, (aij)16i,j63 7−→ (apij)16i,j63.

We call the automorphism Fp a field automorphism of G. Note that its order in Aut(G)
is given by f , where we recall that f ∈ N>0 is such that q = pf .
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Definition 5.11. Recall that for a matrix X we denote its transpose by Xtr. The auto-
morphism Γ of G defined by

Γ: G −→ G, A 7−→ (A−1)tr,

is called a graph automorphism of G. This is motivated by the fact that Γ is induced by
the non-trivial symmetry of the Dynkin diagram associated to the root system of type A2

of the Chevalley group G.

The two automorphisms of G defined above play a crucial role throughout the inves-
tigation of G in view of the (iBAW) condition. This is due to the fact they generate the
whole outer automorphism group of G:

Proposition 5.12. For q 6≡ 1 mod 3 the automorphism group of G = SL3(q) is given by

Aut(G) = Go 〈Γ, Fp〉,

where 〈Γ, Fp〉 = 〈Γ〉 × 〈Fp〉 ∼= C2 × Cf for f ∈ N>0 with q = pf .

Proof. Following [GLS98, Thm. 2.5.12 and p. 68] we have Aut(G) = PGL3(q) o 〈Fp,Γ′〉
with 〈Fp,Γ′〉 = 〈Γ′〉 × 〈Fp〉, where Γ′ is defined as

Γ′ : G −→ G, A 7−→ JΓ(A)J−1

with J :=
( 0 0 1

0 −1 0
1 0 0

)
. Now, since q 6≡ 1 mod 3, we have

GL3(q) = SL3(q)× Z(GL3(q)),

so PGL3(q) and G may be identified here. Moreover, the matrix J has determinant 1 and
is, thus, contained in G. Consequently, conjugation by J defines an inner automorphism
of G, and we may replace Γ′ by Γ in Aut(G) = G o 〈Fp,Γ′〉, which yields the proposed
statement, where we clearly have 〈Γ, Fp〉 = 〈Γ〉 × 〈Fp〉 ∼= C2 × Cf as claimed.
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Chapter 6

Blocks and Decomposition
Numbers of SL3(q)

In this chapter we describe the `-blocks of G and the associated `-decomposition numbers
for all primes ` 6= p dividing the order of G such that the Sylow `-subgroups of G are non-
cyclic, that is to say, for all primes ` such that ` | (q − 1) following Proposition 5.9. We
start by describing the distribution of the ordinary irreducible characters ofG into `-blocks.
Afterwards we examine their reductions modulo `, which will yield the `-decomposition
numbers and hence a description of the Brauer characters of G. Most of the results
presented in this chapter are already known in principle. However, we often rely on rather
explicit information, whence this chapter is aimed at providing details concerning `-blocks
and Brauer characters of G in a manner appropriate for our purposes.

6.1 Conjugacy Classes and the Complex Character Table

In order to describe the `-blocks and `-modular characters of G we employ information on
the G-conjugacy classes and the complex irreducible characters of G.

6.1.1 Conjugacy Classes

Let us first describe the conjugacy classes of G. We use the following notation for certain
roots of unity in F×, which shall be fixed from now until the examination of the special
linear groups with regard to the (iBAW) condition is completed:

Notation 6.1. Henceforth, let ζ, ξ and τ denote roots of unity in F× subject to the
following conditions:

ζ ∈ F× is of order Φ1(q) = q − 1,

ξ ∈ F× is of order Φ1(q)Φ2(q) = q2 − 1 such that ξq+1 = ζ,

and τ ∈ F× is of order Φ3(q) = q2 + q + 1.

In particular, we have F×q = 〈ζ〉 and F×
q2 = 〈ξ〉, and τ generates the unique subgroup of

F×
q3 of order q2 + q + 1.

In Table 6.1 below, which is taken from [FS73, Table 1a], we provide a description of
all conjugacy classes of G. There are eight distinct types of G-conjugacy classes, namely
types C1, . . . , C8, which will in the following be described by representatives in Jordan
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normal form (possibly not lying in G but only in the infinite algebraic group G). For a
class type C indexed by parameters the notation

C(a) = C(a′) mod x

for x ∈ Z>1, 0 6 a < x, and a′ ∈ Z indicates that C(a) = C(a′′), where 0 6 a′′ < x is such
that a′ ≡ a′′ mod x.

Class Representative Parameters
Centralizer

order

C1

 1
1

1

 - |G|

C2

 1
1 1

1

 - q3Φ1(q)

C3

 1
1 1

1 1

 - q2

C
(a)
4

 ζa

ζa

ζ−2a

 1 6 a < Φ1(q) qΦ1(q)2Φ2(q)

C
(a)
5

 ζa

1 ζa

ζ−2a

 1 6 a < Φ1(q) qΦ1(q)

C
(a,b)
6

 ζa

ζb

ζ−a−b

 1 6 a < b < Φ1(q) :
∃ b < c 6 Φ1(q) with

a+ b+ c ≡ 0 mod Φ1(q)
Φ1(q)2

C
(a)
7

 ζa

ξ−a

ξ−qa

 1 6 a < Φ1(q)Φ2(q) :
a 6≡ 0 mod Φ2(q),

C(a) = C(aq) mod Φ1(q)Φ2(q)

Φ1(q)Φ2(q)

C
(a)
8

 τa

τaq

τaq
2

 1 6 a < Φ3(q),

C(a) = C(aq) = C(aq2) mod Φ3(q)
Φ3(q)

Table 6.1: Conjugacy classes of SL3(q), q 6≡ 1 mod 3

Remark 6.2. The elements of G belonging to conjugacy classes of type C6 are exactly
those matrices that are G-conjugate to a diagonal matrix with pairwise distinct diagonal
entries in F×q . In particular, these classes may also be parametrized by tuples (a, b), where
a, b ∈ {1, . . . , q− 1} such that a 6= b and a, b 6≡ −(a+ b) mod q− 1. Two conjugacy classes
of type C6 labelled by (a, b) and (a′, b′) then coincide if and only if (a′, b′) is one of (a, b),
(b, a), (a,−(a + b)), (−(a + b), a), (b,−(a + b)), (−(a + b), b), where the components are
regarded modulo q − 1.
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For later use we determine the defect groups of the conjugacy classes of G for all primes
` dividing q − 1. Recall that an `-group D is called a defect group of a conjugacy class C
of G if D ∈ Syl`(CG(x)) for some x ∈ C.

Proposition 6.3. Let ` be a prime such that ` | (q−1). Moreover, let C be a G-conjugacy
class of G and DC a defect group of C with respect to `. Then up to G-conjugation the
following statements hold:

(i) If C = C1, then DC ∈ Syl`(G);

(ii) if C = C2, then DC = O`(〈diag(ζ, ζ, ζ−2)〉);

(iii) if C = C3, then DC = {1};

(iv) if C is of type C4, then DC =
〈(

A
d

) ∣∣ A ∈ D, d = (detA)−1
〉
, D ∈ Syl`(GL2(q));

(v) if C is of type C5, then DC = O`(〈diag(ζ, ζ, ζ−2)〉);

(vi) if C is of type C6, then DC = O`(T ) for a maximal torus T of G of type T1;

(vii) if C is of type C7, then DC = O`(T ′) for a maximal torus T ′ of G of type T2;

(viii) if C is of type C8, then DC = {1}.

Proof. Statement (i) is clear. For (ii) observe that by Table 6.1 the centralizer order of an
element in C2 is given by q3(q−1), and the group 〈diag(ζ, ζ, ζ−2)〉 of order q−1 centralizes
the representative of C2 given in Table 6.1. Since (q3(q − 1))` = (q − 1)`, (ii) follows.

The centralizer order of elements in C3 is given by q2, so the corresponding Sylow
`-subgroups are trivial for ` 6= p. Hence, statement (iii) follows.

For (iv) we observe that the group
〈(

A
d

) ∣∣ A ∈ GL2(q), d = (detA)−1
〉
, which is of

order |GL2(q)| = q(q − 1)2(q + 1), centralizes the representatives of the conjugacy classes
of type C4 given in Table 6.1. Since the centralizer order of elements in classes of type C4

is exactly q(q − 1)2(q + 1), the claim follows.

The group 〈diag(ζ, ζ, ζ−2)〉 of order q − 1 centralizes the representatives of conjugacy
classes of type C5 given in Table 6.1. As the centralizer of elements in classes of type C5

has order q(q − 1) by Table 6.1, part (v) follows.

For (vi), (vii) and (viii) we observe that the maximally split torus T of the algebraic
group G is the centralizer in G of the representatives of the classes of types C6, C7 and
C8 given in Table 6.1, which lie in G = GF , Gw2F and Gw3F , respectively. Taking fixed
points under F , w2F and w3F , respectively, in conjunction with Corollary 4.35 yields the
claim.

6.1.2 Character Table

The complex character table of SL3(q) is provided by Frame–Simpson in [FS73, Table 1b].
We should note, however, that this table contains some misprints. These can, for instance,
be found and emended on comparison with the generic character table of SL3(q) provided
by Chevie ([GHL+96]). Furthermore, let us mention that one inconsistency in Chevie was
found and corrected by our calculations (cf. Remark A.1). We present the complete
complex character table of G in Appendix A, Table A.1.
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Chapter 6. Blocks and Decomposition Numbers of SL3(q)

6.2 Blocks and Decomposition Matrices

In this section we determine the `-blocks and corresponding `-decomposition matrices of
G for primes ` dividing q − 1. In principle, these are already known by work of Fong–
Srinivasan [FS82], Dipper–James [DJ86, DJ89], and James [Jam90], but since we rely on
detailed information on the `-blocks and the `-modular characters of G in the further
course of this thesis, we present some explicit results here.

In a first step we determine how the irreducible ordinary characters of G divide into
`-blocks. This will be accomplished by comparison of the central characters attached to
the irreducible characters of G. As we recalled in Section 1.1, two such characters belong
to the same `-block if and only if the reductions modulo ` of their corresponding central
characters agree. It will hence be our aim to decide when two central characters of G
agree modulo `. Below we state some tools that will prove useful for this purpose. From
[Nav98, Thm. 9.12] we obtain the following statement:

Proposition 6.4. Let H be a finite group, ` a prime and P 6 H an `-subgroup such
that H = P CH(P ). If B ∈ Bl`(H | P ), then there exists a unique ϑ ∈ Irr(B) such that
P ⊆ ker(ϑ). Furthermore, it holds that IBr(B) = {ϑ0}. For λ ∈ Irr(P ) we define

ϑλ(h) :=

{
λ(h`)ϑ(h`′) for h ∈ H with h` ∈ P ,

0 for h ∈ H with h` 6∈ P .

Then the map
Irr(P ) −→ Irr(B), λ 7−→ ϑλ,

is a bijection.

Lemma 6.5. Let H be a finite group, ` a prime and P 6 H an `-subgroup. Suppose,
moreover, that N E H is a normal subgroup of H such that CH(P ) ⊆ N . If χ ∈ Irr(H)
is such that bl(χ) has defect group P and ψ ∈ Irr(N) is an irreducible constituent of χ|N ,

then bl(ψ)H is defined and equals bl(χ).

Proof. Let us set B := bl(χ). Since B has defect group P with CH(P ) ⊆ N E H, from
[Nav98, Lemma 9.20] it follows that this `-block has the property of being regular with
respect to N . Moreover, as ψ ∈ Irr(N) is an irreducible constituent of χ|N with χ ∈ Irr(B),
the `-block B covers bl(ψ), whence by [Nav98, Thm. 9.19] the regularity of B with respect
to N implies that bl(ψ)H is defined and satisfies bl(ψ)H = B = bl(χ).

The above two statements allow us to prove the following lemma regarding the question
of when two blocks of the normalizer of the maximally split torus of G = SL3(q) agree:

Lemma 6.6. Suppose that ` | (q−1) and let T be the maximally split torus of G consisting
of the diagonal matrices in G. Moreover, let θ, θ′ ∈ Irr(T ) and η, η′ ∈ Irr(NG(T )) be such
that η and η′ lie above θ and θ′, respectively. Then it holds that

bl(η) = bl(η′) if and only if θ|O`′ (T ) and θ′|O`′ (T ) are NG(T )-conjugate,

provided that both bl(η) and bl(η′) have defect group O`(T ).

Proof. Let us suppose that both bl(η) and bl(η′) have defect group O`(T ). By assumption
η lies above θ, and moreover O`(T ) is an `-subgroup of NG(T ) with

CNG(T )(O`(T )) = T
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as seen in Proposition 5.8. Hence, we may apply Lemma 6.5 for H := NG(T ), N := T ,
P := O`(T ), χ := η and ψ := θ to find that bl(θ)NG(T ) = bl(η). Analogously, we further
obtain that bl(θ′) induces to bl(η′).

Let us now suppose that bl(η) = bl(η′). Then we have bl(θ)NG(T ) = bl(θ′)NG(T ),
whence by the extended first main theorem of Brauer, Theorem 1.7, there exists an element
n ∈ NG(T ) such that bl(θ′) = bl(θ)n. In particular, there is a character ψ ∈ Irr(bl(θ))
such that θ′ = ψn. As T is abelian, all complex irreducible characters of T are linear and
hence we have ν0 = θ0 for all ν ∈ Irr(bl(θ)) and ν ′0 = θ′0 for all ν ′ ∈ Irr(bl(θ′)). We
conclude that

θ′|O`′ (T ) = θ′0 = (ψn)0 = (ψ0)n = (θ0)n = (θ|O`′ (T ))
n,

so θ′|O`′ (T ) and θ|O`′ (T ) are NG(T )-conjugate.
In order to prove the converse implication let us now assume the existence of an element

n ∈ NG(T ) satisfying

θ′|O`′ (T ) = (θ|O`′ (T ))
n.

Let the characters ϑ ∈ Irr(bl(θ)) and ϑ′ ∈ Irr(bl(θ′)) be defined as in Proposition 6.4 for
H := T and P := O`(T ), that is, O`(T ) lies in the kernels of both ϑ and ϑ′, and let
λ, λ′ ∈ Irr(O`(T )) be such that θ = ϑλ and θ′ = ϑ′λ′ in the notation of Proposition 6.4. By
construction it follows that

ϑ′|O`′ (T ) = (ϑ′λ′)|O`′ (T ) = θ′|O`′ (T ) = (θ|O`′ (T ))
n = ((ϑλ)|O`′ (T ))

n = (ϑ|O`′ (T ))
n.

But ϑn(x) = ϑ(nxn−1) = 1 for all x ∈ O`(T ) since NG(T ) normalizes O`(T ), which lies in
the kernel of ϑ. Hence, we conclude that

ϑn(g) = ϑn(g` · g`′) = ϑn(g`′) = ϑ′(g`′)

for all g ∈ T and thus

ϑn = ϑ′1O`(T )
∈ Irr(bl(θ′))

again in the notation of Proposition 6.4. By uniqueness of ϑ′ with respect to the property
that ϑ′ ∈ bl(θ′) and O`(T ) ⊆ ker(ϑ′) we conclude that ϑ′ = ϑn since ϑn ∈ Irr(bl(θ′)) and
O`(T ) ⊆ ker(ϑn). Thus,

bl(θ′) = bl(ϑ′) = bl(ϑn) = bl(ϑ)n = bl(θ)n.

Consequently, we conclude that bl(θ′)NG(T ) = (bl(θ)n)NG(T ) = bl(θ)NG(T ), and it follows
that bl(η) = bl(η′) as claimed.

In the following we treat the cases of odd and even ` separately. In both situations we
shall adhere to the notation specified below:

Notation 6.7. (i) For integral tuples (u, v), (u′, v′) ∈ Z × Z and x ∈ Z>0 we write
(u, v) ≡ (u′, v′) mod x if it holds that u ≡ u′ mod x and v ≡ v′ mod x.

(ii) For a subset M ⊆ Z×Z and x ∈ Z>0 we use the notation (u, v) ∈ mod x M to indicate
that (u, v) ≡ (u′, v′) mod x for some (u′, v′) ∈M .

(iii) For u, v ∈ Z we set

S(u, v) := {(u, v), (v, u), (−u, v − u), (v − u,−u), (u− v,−v), (−v, u− v)}.
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Chapter 6. Blocks and Decomposition Numbers of SL3(q)

(iv) We define the set

M(Φ2Φ3) := {(u, v) | u, v ∈ Z, u, v, u− v, 2u+ v, 2v + u 6≡ 0 mod q − 1}.

As stated in Remark A.2 the irreducible characters of G of type χΦ2Φ3 may then be
parametrized by the elements in M(Φ2Φ3) such that for (u, v), (u′, v′) ∈ M(Φ2Φ3)
we have

χ
(u,v)
Φ2Φ3

= χ
(u′,v′)
Φ2Φ3

if and only if (u′, v′) ∈ mod (q−1) S(u, v).

6.2.1 The Case 2 6= ` | (q − 1)

The central characters associated to the irreducible characters of G can be retrieved from
Chevie [GHL+96] via the ’Omega’-command (cf. Table A.2 in Appendix A). We are only
interested in `-blocks of non-cyclic defect, so in particular, we will not care about `-blocks
of `-defect zero in the following. In other words, in this case we do not consider `-blocks
containing characters of type χΦ2

1Φ2
. For all other irreducible characters χ of G the `-

modular reduction λχ of the corresponding central character ωχ is given in Table 6.2
below, where the entries are to be regarded modulo ` and where we use the short notation

A(v,u),a := εua−2va + εva−2ua + εua+va,

B(v,u),(a,b) := εva+ub + εvb+ua + ε−v(a+b)+ua + εva−u(a+b) + ε−v(a+b)+ub + εvb−u(a+b),

with ε := exp((2πi)/(q − 1)) and η := exp((2πi)/(q2 − 1)).

C1 C2 C3 C
(a)
4 C

(a)
5 C

(a,b)
6 C

(a)
7 C

(a)
8

λχ1 1 · · 3 · 6 · ·

λχqΦ2
1 · · 3 · 6 · ·

λχq3 1 · · 3 · 6 · ·

λ
χ

(u)
Φ3

1 · · 2εua + ε−2ua · 2(εua + εub + ε−u(a+b)) · ·

λ
χ

(u)
qΦ3

1 · · 2εua + ε−2ua · 2(εua + εub + ε−u(a+b)) · ·

λ
χ

(u,v)
Φ2Φ3

1 · · A(u,v),a · B(u,v),(a,b) · ·

λ
χ

(u)
Φ1Φ3

1 −2 · εua −2εua · −(η−ua + η−uaq) ·

Table 6.2: Central characters of SL3(q), q 6≡ 1 mod 3, modulo ` 6= 2, ` | (q − 1)

Proposition 6.8. Let 2 6= ` | (q − 1). The irreducible characters of SL3(q), q 6≡ 1 mod 3,
divide into five distinct types of `-blocks:
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• the principal `-block B0:

Irr(B0) = {χ1, χqΦ2 , χq3}

∪{χ(u)
Φ3
| u ≡ 0 mod (q − 1)`′}

∪{χ(u)
qΦ3
| u ≡ 0 mod (q − 1)`′}

∪{χ(u,v)
Φ2Φ3

| u, v ≡ 0 mod (q − 1)`′};

• the `-blocks of type B( ):

Irr(B(k)) = {χ(u,v)
Φ2Φ3

| (u, v) ∈ mod (q−1)`′
{(k, 0), (0, k), (−k,−k)}}

∪{χ(u)
Φ3
| u ≡ k mod (q − 1)`′}

∪{χ(u)
qΦ3
| u ≡ k mod (q − 1)`′}

for k ∈ {1, . . . , (q − 1)`′ − 1};

• the `-blocks of type B( , ):

Irr(B(u,v)) = {χ(u′,v′)
Φ2Φ3

| (u′, v′) ∈ mod (q−1)`′
S(u, v)}

for u, v ∈ {1, . . . , (q − 1)`′ − 1} such that (u, v) ∈ M(Φ2Φ3), and for further pa-
rameters w, z ∈ {1, . . . , (q − 1)`′ − 1} such that (w, z) ∈ M(Φ2Φ3) it holds that
B(u,v) = B(w,z) if and only if (w, z) ∈ mod (q−1)`′

S(u, v).

• the `-blocks of type B′( ):

Irr(B′(k)) = {χ(u)
Φ1Φ3

| (u ≡ k mod (q2 − 1)`′) or (uq ≡ k mod (q2 − 1)`′)}

for k ∈ {1, . . . , (q2 − 1)`′}, k 6≡ 0 mod q + 1, and for k′ ∈ {1, . . . , (q2 − 1)`′} with
k′ 6≡ 0 mod q + 1 it holds that B′(k) = B′(k′) if and only if k ≡ k′ mod (q2 − 1)`′ or

kq ≡ k′ mod (q2 − 1)`′;

• the `-blocks of `-defect zero.

Proof. Clearly, the characters χ1, χqΦ2 and χq3 belong to the same `-block of G since their
central characters agree modulo ` according to Table 6.2.

Let us now suppose that two characters χ
(u)
Φ3

and χ
(v)
qΦ3

lie in the same `-block (note
that such characters only exist for q > 2, which is clearly satisfied here since ` | (q − 1)
and ` > 3, so in fact q > 7). By comparison with Table 6.2 this is equivalent to the two
conditions

2εua + ε−2ua ≡ 2εva + ε−2va mod ` for all a ∈ {1, . . . , q − 2},(6.1)

εua + εub + ε−u(a+b) ≡ εva + εvb + ε−v(a+b) mod ` for all a, b ∈ {1, . . . , q − 1}(6.2)

with a 6= b and

a, b 6≡ −(a+ b) mod q − 1.

We choose b = q − 1, so εb = 1. Furthermore, we fix a class parameter a ∈ {1, . . . , q − 1}
with a 6= b, a, b 6≡ −(a + b) mod q − 1, and set ϑ := εa. Then from (6.2) it follows that
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(ϑu − ϑv) (ϑv − ϑ−u) ≡ 0 mod `:

ϑu + ϑ−u ≡ ϑv + ϑ−v mod `

·ϑv
=⇒ ϑu+v + ϑv−u ≡ ϑ2v + 1 mod `

=⇒ ϑu+v + ϑv−u − ϑ2v − 1 ≡ 0 mod `

=⇒ (ϑu − ϑv)
(
ϑv − ϑ−u

)
≡ 0 mod `.

If we suppose that ϑu−ϑv 6≡ 0 mod `, then necessarily ϑv−ϑ−u ≡ 0 mod `. Inserting this
in (6.1) implies

2ϑu + ϑ−2u ≡ 2ϑ−u + ϑ2u mod `

=⇒ ϑ2u − 2ϑu + 2ϑ−u − ϑ−2u ≡ 0 mod `

·ϑ2u

=⇒ ϑ4u − 2ϑ3u + 2ϑu − 1 ≡ 0 mod `

=⇒ (ϑu − 1)3 (ϑu + 1) ≡ 0 mod `.

If ϑu ≡ 1 mod `, then also ϑv ≡ ϑ−u ≡ 1 mod ` in contradiction to the assumption that
ϑu−ϑv 6≡ 0 mod `. But then ϑu ≡ −1 mod `, which gives ϑu ≡ ϑ−u ≡ ϑv mod ` and again
contradicts the assumption. Thus, we have ϑu ≡ ϑv mod `, so ua ≡ va mod (q−1)`′ . This
needs to hold for all a ∈ {1, . . . , q−1} such that a 6= b and a, b 6≡ −(a+ b) mod q−1, so in
particular (since q > 7) a = 1 yields u ≡ v mod (q− 1)`′ . Conversely, it is straightforward

to verify that χ
(u)
Φ3

and χ
(v)
qΦ3

lie in the same `-block if u ≡ v mod (q− 1)`′ . Furthermore, if

u ≡ 0 mod (q−1)`′ , then 2εua+ε−2ua ≡ 3 mod ` and 2(εua+εub+ε−u(a+b)) ≡ 6 mod ` for

all a, b, so in this case χ
(u)
Φ3

and χ
(u)
qΦ3

belong to the principal `-block according to Table 6.2.

Our next step is to consider the characters of type χΦ1Φ3 . By Table 6.2 (for instance on
comparison of the values of the central characters on class C2) these do not share `-blocks
with characters of different types. Hence, let us suppose that u and v are parameters such

that χ
(u)
Φ1Φ3

and χ
(v)
Φ1Φ3

belong to the same `-block of G. Then

εua ≡ εva mod ` for all a ∈ {1, . . . , q − 2},(6.3)

η−ua + η−uaq ≡ η−va + η−vaq mod ` for all a ∈ {1, . . . , q2 − 2}(6.4)

with a 6≡ 0 mod q + 1,

which yields (η−va − η−ua) (η−uaq − η−va) ≡ 0 mod ` as follows: by multiplication of con-
dition (6.4) with the term η−va we obtain

η−ua−va + η−uaq−va − η−2va − η−va(q+1) ≡ 0 mod `

(6.3)
=⇒ η−ua−va + η−uaq−va − η−2va − η−ua(q+1) ≡ 0 mod `

=⇒
(
η−va − η−ua

) (
η−uaq − η−va

)
≡ 0 mod `.

Hence, similarly as above we conclude that χ
(u)
Φ1Φ3

and χ
(v)
Φ1Φ3

belong to the same `-block

of G if and only if (u ≡ v mod (q2 − 1)`′) or (uq ≡ v mod (q2 − 1)`′).

It remains to examine the characters of type χΦ2Φ3 . To handle these we denote by T
the maximally split torus of G consisting of all diagonal matrices in G. The characters of
type χΦ2Φ3 are of degree Φ2(q)Φ3(q), which is prime to `. The only irreducible characters
of G with degree divisible by ` are the `-defect zero characters and those of type χΦ1Φ3 .
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As observed before these do not share blocks with characters of different types. Hence,
the characters of type χΦ2Φ3 belong to `-blocks of maximal `-defect, that is to say, `-
blocks with defect group given by the Sylow `-subgroup O`(T ) of G. For suitable u, v
we let Bu,v denote the `-block of a character χ

(u,v)
Φ2Φ3

and bu,v its Brauer correspondent in
NG(O`(T )) = NG(T ). Then by definition we have

λBu,v(K̂) = λbu,v(
̂K ∩NG(T )) for all K ∈ Cl(G).

However, from the proof of [Nav98, Thm. 4.14] it follows that in fact it holds

λBu,v(K̂) = λbu,v(
̂K ∩NG(T )) = λbu,v(K̂ ∩ T ) for all K ∈ Cl(G)

since T is the centralizer of O`(T ) in G according to Proposition 5.8. Let us now suppose
that θ, θ′ ∈ Irr(T ) satisfy

λBu,v(K̂) = λbu,v(K̂ ∩ T ) = λθ(K̂ ∩ T ) for all K ∈ Cl(G),(6.5)

λBu′,v′ (K̂) = λbu′,v′ (K̂ ∩ T ) = λθ′(K̂ ∩ T ) for all K ∈ Cl(G),(6.6)

respectively. Then the `-blocks bl(θ)NG(T ) and bl(θ)G are defined according to Proposi-
tion 1.2, whence (bl(θ)NG(T ))G = bl(θ)G. Moreover, it holds that bl(θ)G = Bu,v, so we
conclude that

(bl(θ)NG(T ))G = Bu,v.

But bl(θ)NG(T ) is an `-block of NG(T ) with defect group O`(T ) following Lemma 1.1 and
Lemma 1.13, so it is in fact the Brauer correspondent of Bu,v in NG(T ), that is to say,

bl(θ)NG(T ) = bu,v.

Hence, by [Nav98, Thm. 9.4 and Lemma 9.8] there is some irreducible character in bu,v
lying over θ. Moreover, analogous statements hold for bu′,v′ and θ′. Then by Lemma 6.6
we have bu,v = bu′,v′ if and only if θ|O`′ (T ) and θ′|O`′ (T ) are NG(T )-conjugate. Hence,
by Brauer’s first main theorem, Theorem 1.5, we have Bu,v = Bu′,v′ if and only if the
characters θ|O`′ (T ) and θ′|O`′ (T ) are NG(T )-conjugate.

Let ν be the faithful irreducible character of F×q = 〈ζ〉 mapping ζ to ε. For given u, v
we define

θu,v : T −→ C×, diag(t1, t2, (t1t2)−1) 7−→ νu(t1)νv(t2),

and claim that θu,v and θu′,v′ satisfy (6.5) and (6.6), respectively. Since for G-conjugacy
classes K not of type C1, C4 or C6 we have K ∩ T = ∅ and

λB(u,v)
(K̂) = λB(u′,v′)(K̂) = 0

according to Table 6.2, it remains to consider the G-conjugacy classes C
(a)
4 and C

(a,b)
6 . The

class C
(a)
4 consists of all matrices in G with Jordan normal form given by diag(ζa, ζa, ζ−2a),

so

C
(a)
4 ∩ T = {diag(ζa, ζa, ζ−2a), diag(ζ−2a, ζa, ζa), diag(ζa, ζ−2a, ζa)},
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and these three elements each constitute a single conjugacy class in T . Thus, it follows
that

λθu,v(
̂

C
(a)
4 ∩ T ) = λθu,v(diag(ζa, ζa, ζ−2a)) + λθu,v(diag(ζ−2a, ζa, ζa))

+ λθu,v(diag(ζa, ζ−2a, ζa))

=
(
θu,v(diag(ζa, ζa, ζ−2a)) + θu,v(diag(ζ−2a, ζa, ζa))

+θu,v(diag(ζa, ζ−2a, ζa))
)∗

=
(
εua+va + ε−2ua+va + εua−2va

)∗
= λ

χ
(u,v)
Φ2Φ3

(Ĉ
(a)
4 ).

Similarly, one shows that

λθu,v(
̂

C
(a,b)
6 ∩ T ) = λ

χ
(u,v)
Φ2Φ3

(Ĉ
(a,b)
6 ),

so θu,v and θu′,v′ are as claimed. The question now is as to when θu,v |O`′ (T ) and θu′,v′ |O`′ (T )
are NG(T )-conjugate. We may write

O`′(T ) = {diag(ζa(q−1)` , ζb(q−1)` , ζ−(a+b)(q−1)`) | 1 6 a, b 6 (q − 1)`′},

and we recall that NG(T ) ∼= T o S3 by Proposition 5.7, where the action of S3 on T is
given by permutation of the diagonal entries of the matrices in T . Clearly, it is true that
θu,v |O`′ (T ) and θu′,v′ |O`′ (T ) are NG(T )-conjugate if and only if there exists some n ∈ NG(T )

such that

θu,v(diag(ζa(q−1)` , ζb(q−1)` , ζ(−a−b)(q−1)`)n) = θu′,v′(diag(ζa(q−1)` , ζb(q−1)` , ζ(−a−b)(q−1)`))

for all 1 6 a, b 6 (q − 1)`′ , which in turn is the case if and only if

(u′, v′) ∈ mod (q−1)`′
{(u, v), (v, u), (−u, v − u), (v − u,−u), (u− v,−v), (−v, u− v)}.

Straightforward calculations show that χ
(u,v)
Φ2Φ3

belongs to the principal `-block if and only
if u, v ≡ 0 mod (q − 1)`′ . Furthermore, let us fix parameters u, v ∈ {0, . . . , (q − 1)`′ − 1}
such that v ≡ 0 mod (q − 1)`′ . Then it is easy to verify that χ

(u,v)
Φ2Φ3

belongs to the same

`-block as χ
(u)
Φ3

and χ
(u)
qΦ3

, and a further character χ
(u′,v′)
Φ2Φ3

belongs to this `-block if and only
if

(u′, v′) ∈ mod (q−1)`′
{(u, v), (v, u), (−u, v − u), (v − u,−u), (u− v,−v), (−v, u− v)}

={(u, 0), (0, u), (−u,−u)}.

Finally, if u, v 6≡ 0 mod (q−1)`′ , then the `-block of χ
(u,v)
Φ2Φ3

does not contain any characters
of other types, i.e., all characters in this `-block are of type χΦ2Φ3 .

Proposition 6.9. Let 2 6= ` | (q − 1). The decomposition matrices for the `-blocks of G
not of `-defect zero (cf. Proposition 6.8) are as follows:
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• for the principal `-block B0:

B0 ϕ1 ϕ2 ϕ3

1G 1 · ·

χqΦ2 · 1 ·

χq3 · · 1

χ
(u)
Φ3
, u ≡ 0 mod (q − 1)`′ 1 1 ·

χ
(u)
qΦ3

, u ≡ 0 mod (q − 1)`′ · 1 1

χ
(u,v)
Φ2Φ3

, u, v ≡ 0 mod (q − 1)`′ 1 2 1

• for the `-blocks of type B( ):

B(k) ϕ(k;1) ϕ(k;2)

χ
(u)
Φ3
, u ≡ k mod (q − 1)`′ 1 ·

χ
(u)
qΦ3

, u ≡ k mod (q − 1)`′ · 1

χ
(u,v)
Φ2Φ3

, (u, v) ∈ mod (q−1)`′
{(k, 0), (0, k), (−k,−k)} 1 1

for k ∈ {1, . . . , (q − 1)`′ − 1};

• for the `-blocks of type B( , ):

B(u,v) ϕ(u,v)

χ
(u′,v′)
Φ2Φ3

, (u′, v′) ∈ mod (q−1)`′
S(u, v) 1

for u, v ∈ {1, . . . , (q − 1)`′ − 1} with (u, v) ∈M(Φ2Φ3);

• for the `-blocks of type B′( ):

B′(k) ϕ(k)′

χ
(u)
Φ1Φ3

, u ≡ k mod (q2 − 1)`′

or uq ≡ k mod (q2 − 1)`′
1

for k ∈ {1, . . . , (q2 − 1)`′} with k 6≡ 0 mod q + 1.

Proof. In proving our assertion we make use of the fact that under the assumption that
q 6≡ 1 mod 3 it holds GL3(q) = SL3(q) × Z(GL3(q)). Let us assume for a moment that
` 6= p is an arbitrary prime dividing | SL3(q)|. By [DJ86, Thm. 6.5 and Thm. 6.6] and
[DJ89, Thm. 6.1] up to permutation of rows and columns the `-decomposition matrix of
GL3(q) contains a lower unitriangular | IBr`(GL3(q))|×| IBr`(GL3(q))|-submatrix D of the
form

D =

∆(x1) 0
. . .

0 ∆(xm)

 ,
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where for each i ∈ {1, . . . ,m} the term xi indexes a certain set of irreducible ordinary and
modular characters of GL3(q). If x is one of these indices, then to x one can associate an
array

(d1, . . . , dN ; k1, . . . , kN )

with N ∈ N>0 and dj , kj ∈ N>0 for all 1 6 j 6 N such that d1k1 + · · · + dNkN = 3.
Moreover, one has that ∆(x) is the Kronecker product

∆(x) = ∆(d1, k1)⊗ · · · ⊗∆(dN , kN )

of certain p(ki) × p(ki)-matrices ∆(di, ki), where p(ki) denotes the number of partitions
of ki. By [DJ89, Thm. 6.2] such a matrix ∆(di, ki) coincides with the `-decomposition
matrix ∆ki for the unipotent characters of GLki(q

di). These matrices ∆k for k 6 10 and
d ∈ N>0 are given in [Jam90, Appendix 1] and depend not only on k but also on ` and qd,
or rather, they depend on k, ` and eq(d), where eq(d) is the least natural number r such
that ` divides 1 + qd + . . . + q(r−1)d. As noted in [DJ86, (2.1)] we have eq(d) = ` if and
only if ` | (qd − 1). Now in our case it holds that 2 6= ` | (q − 1), so in particular for any
d ∈ N>0 we have eq(d) = `. For given k and d by [Jam90, Thm. 6.4] the matrix ∆k is the
identity matrix of size p(k) if eq(d) > k. Since 2 6= ` | (q − 1) and q 6≡ 1 mod 3, we have
eq(d) = ` > 5. On the other hand every array (d1, . . . , dN ; k1, . . . , kN ) associated to one of
the indices xi, 1 6 i 6 m, is subject to the condition d1k1 + · · ·+dNkN = 3. In particular,
kj 6 3 < eq(d) for 1 6 j 6 N . Hence, any matrix ∆(dj , kj) occurring in this situation is
the identity matrix of size p(ki), so D is the identity matrix of size | IBr`(GL3(q))|.

It is well-known that for a direct product H = H1 ×H2 of two finite groups H1 and
H2 one has

Irr(H) = {χ1 × χ2 | χi ∈ Irr(Hi) i = 1, 2},
IBr`(H) = {ϕ1 × ϕ2 | ϕi ∈ IBr`(Hi), i = 1, 2},

and if B is an `-block of H, then there exist unique `-blocks B1 and B2 of H1 and H2,
respectively, such that

Irr(B) = {χ1 × χ2 | χi ∈ Irr(Bi), i = 1, 2},
IBr(B) = {ϕ1 × ϕ2 | ϕi ∈ IBr(Bi), i = 1, 2}.

Moreover, if DB, DB1 , and DB2 denote the `-decomposition matrices of B, B1, and B2,
respectively, then DB = DB1 ⊗DB2 .

Let now b0 denote the principal `-block of Z(GL3(q)) and let B be any `-block of
SL3(q). Then the decomposition matrix of b0 is a | Irr(b0)| × 1-matrix with all entries
equal to 1 since Z(GL3(q)) is cyclic, so GL3(q) has an `-block with decomposition matrix

DB ⊗Db0 =

DB
...
DB


 | Irr(b0)| times.

From the observation that the matrix D above is the identity matrix we conclude that
also DB⊗Db0 , and hence DB, contains an identity matrix of size | IBr(B)| as a submatrix.
This yields the proposed decomposition matrices for `-blocks of types B( , ) or B′( ).

For an `-block B of type B( ) one easily verifies that characters in B of the same type
reduce modulo ` to the same Brauer character. The characters in B are of types χΦ3 ,
χqΦ3 and χΦ2Φ3 . Since DB contains a 2 × 2-identity matrix, the `-modular reductions
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of the irreducible characters in B of two of these types stay irreducible. The characters
in B of the third type must have both of these irreducible reductions as constituents
because B is a single `-block. Hence, by considering the degrees of the characters in
Irr(B) one may conclude that the characters of types χΦ3 and χqΦ3 stay irreducible under
`-modular reduction, while the reductions of characters of type χΦ2Φ3 split into two distinct
irreducible `-modular characters as claimed.

Finally, let us consider the principal `-block B0. This contains the three unipotent
characters χ1, χqΦ2 and χq3 of SL3(q), and the characters χ1×1Z(GL3(q)), χqΦ2×1Z(GL3(q))

and χq3 × 1Z(GL3(q)) are exactly the unipotent characters of GL3(q). By [Jam90, p. 225]
these have `-decomposition matrix ∆3 for eq(1) = `, which is the identity matrix of size 3
as we have observed before. Hence, the head of the decomposition matrix DB0 is known,
and the remaining proposed decomposition numbers for B0 may easily be verified.

Lemma 6.10. Suppose that 2 6= ` | (q − 1). The `-blocks of G of type B′( ) have cyclic

defect group O`(〈diag(ζ, ζ, ζ−2)〉). Any other `-block of G which is not of `-defect zero has
maximal `-defect.

Proof. By looking at the character degrees one may easily identify the `-blocks of maximal
defect. Let us hence consider an `-block B of type B′( ). Then λB does not take value 0
on Ĉ2 according to Table 6.2. Consequently, by the Min-Max-Theorem [Nav98, Thm. 4.4]
a defect group of B is contained in a defect group of the conjugacy class C2, which is
G-conjugate to O`(〈diag(ζ, ζ, ζ−2)〉) by Proposition 6.3. Moreover, this group has order
|O`(〈diag(ζ, ζ, ζ−2)〉)| = (q − 1)` and one easily verifies that B is of `-defect log`(q − 1)`.
Hence, O`(〈diag(ζ, ζ, ζ−2)〉) is a defect group of B.

6.2.2 The Case ` = 2

The reductions modulo 2 of the central characters of SL3(q), which can be found in Ta-
ble A.2 in Appendix A, are given below, where as for the case 2 6= ` | (q − 1) only the
characters not of 2-defect zero are listed. Moreover, A(u,v),a and B(u,v),(a,b) are defined as
in Section 6.2.1.

C1 C2 C3 C
(a)
4 C

(a)
5 C

(a,b)
6 C

(a)
7 C

(a)
8

λχ1 1 · · 1 · · · ·

λχqΦ2
1 · · 1 · · · ·

λχq3 1 · · 1 · · · ·

λ
χ

(u)
Φ3

1 · · ε−2ua · · · ·

λ
χ

(u)
qΦ3

1 · · ε−2ua · · · ·

λ
χ

(u,v)
Φ2Φ3

1 · · A(u,v),a · B(u,v),(a,b) · ·

λ
χ

(u)
Φ1Φ3

1 · · εua · · η−ua + η−uaq ·

Table 6.3: Central characters of SL3(q), q 6≡ 1 mod 3, modulo 2
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Proposition 6.11. The irreducible characters of SL3(q), q 6≡ 1 mod 3, divide into five
distinct types of 2-blocks:

• the principal 2-block B0:

Irr(B0) = {χ1, χqΦ2 , χq3}

∪{χ(u)
Φ3
| u ≡ 0 mod (q − 1)2′}

∪{χ(u)
qΦ3
| u ≡ 0 mod (q − 1)2′}

∪{χ(u)
Φ1Φ3

| u ≡ 0 mod (q2 − 1)2′}

∪{χ(u,v)
Φ2Φ3

| u, v ≡ 0 mod (q − 1)2′};

• the 2-blocks of type B( ):

Irr(B(k)) = {χ(u)
Φ3
| u ≡ k mod (q − 1)2′}

∪{χ(u)
qΦ3
| u ≡ k mod (q − 1)2′}

∪{χ(u,v)
Φ2Φ3

| (u, v) ∈ mod (q−1)2′
{(k, 0), (0, k), (−k,−k)}}

∪{χ(u)
Φ1Φ3

| u ≡ −(q + 1)k mod (q2 − 1)2′};

for k ∈ {1, . . . , (q − 1)2′ − 1};

• the 2-blocks of type B( , ):

Irr(B(u,v)) = {χ(u′,v′)
Φ2Φ3

| (u′, v′) ∈ mod (q−1)2′
S(u, v)}

for u, v ∈ {1, . . . , (q − 1)2′ − 1} such that (u, v) ∈ M(Φ2Φ3), and for further pa-
rameters w, z ∈ {1, . . . , (q − 1)2′ − 1} such that (w, z) ∈ M(Φ2Φ3) it holds that
B(u,v) = B(w,z) if and only if (w, z) ∈ mod (q−1)2′

S(u, v).

• the 2-blocks of type B′( ):

Irr(B′(k)) = {χ(u)
Φ1Φ3

| (u ≡ k mod (q2 − 1)2′) or (uq ≡ k mod (q2 − 1)2′)}

for k ∈ {1, . . . , (q2−1)2′−1}, k 6≡ 0 mod (q+1)2′, and for k′ ∈ {1, . . . , (q2−1)2′−1}
with k′ 6≡ 0 mod (q+1)2′ it holds that B′(k) = B′(k′) if and only if k ≡ k′ mod (q2−1)2′

or kq ≡ k′ mod (q2 − 1)2′;

• the 2-blocks of 2-defect zero.

Proof. From Table 6.3 we can directly read off that χ1, χqΦ2 and χq3 belong to the principal
2-block B0. Moreover, we observe that for any fixed parameter u the characters χ

(u)
Φ3

and
χ

(u)
qΦ3

belong to the same 2-block. Suppose now that two parameters u and v are given.

Then χ
(u)
Φ3

and χ
(v)
qΦ3

lie in the same 2-block if and only if ε−2ua ≡ ε−2va mod 2 for all
a ∈ {1, . . . , q− 2}, or, equivalently, if and only if −2ua ≡ −2va mod (q− 1)2′ for all those
a. Thus, since (q − 1)2′ is odd, we conclude that the characters in question belong to the
same 2-block exactly if u ≡ v mod (q − 1)2′ . For u ≡ 0 mod (q − 1)2′ the corresponding
characters of types χΦ3 and χqΦ3 belong to the principal 2-block B0.
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Let us now examine the characters of type χΦ1Φ3 . According to Table 6.3 it holds that

χ
(u)
Φ1Φ3

and χ
(v)
Φ1Φ3

belong to the same 2-block if and only if the two conditions

εua ≡ εva mod 2 for all a ∈ {1, . . . , q − 2},(6.7)

η−ua + η−uaq ≡ η−va + η−vaq mod 2 for all a ∈ {1, . . . , q2 − 2}, a 6≡ 0 mod q + 1,(6.8)

are fulfilled. Suppose, hence, that conditions (6.7) and (6.8) are satisfied and set ϑ := ηa.
Then (ϑ−u ≡ ϑ−vq mod 2) or (ϑ−u ≡ ϑ−v mod 2) since

0
(6.8)
≡ ϑ−u

(
ϑ−u + ϑ−uq − ϑ−v − ϑ−vq

)
≡ ϑ−2u − ϑ−u−v − ϑ−vq−u + ϑ−u(q+1)

(6.7)
≡ ϑ−2u − ϑ−u−v − ϑ−vq−u + ϑ−v(q+1)

≡
(
ϑ−u − ϑ−vq

) (
ϑ−u − ϑ−v

)
mod 2.

We conclude that in this case (u ≡ v mod (q2 − 1)2′) or (u ≡ vq mod (q2 − 1)2′) because
the above conditions need to hold true for all possible choices of a in ϑ = ηa. Conversely,

one easily verifies that χ
(u)
Φ1Φ3

and χ
(v)
Φ1Φ3

belong to the same block if (u ≡ v mod (q2−1)2′)

or (u ≡ vq mod (q2 − 1)2′).

From Table 6.3 we deduce that a character χ
(u)
Φ1Φ3

lies in the principal 2-block if and
only if its parameter u satisfies

εua ≡ 1 mod 2 for all a ∈ {1, . . . , q − 2},(6.9)

η−ua + η−uaq ≡ 0 mod 2 for all a ∈ {1, . . . , q2 − 2}, a 6≡ 0 mod q + 1.(6.10)

It is easy to see that (6.9) is satisfied exactly if u ≡ 0 mod (q − 1)2′ . Now for (6.10)
we observe that η−ua + η−uaq ≡ 0 mod 2 if and only if ua(q − 1) ≡ 0 mod (q2 − 1)2′ , so
ua ≡ 0 mod (q + 1)2′ , and since gcd((q − 1)2′ , (q + 1)2′) = 1 we conclude that (6.9) and
(6.10) are satisfied if and only if u ≡ 0 mod (q2 − 1)2′ .

Now suppose that two characters χ
(u)
Φ1Φ3

and χ
(v)
Φ3

(or χ
(v)
qΦ3

) lie in the same 2-block.
Then by Table 6.3 we have

η−ua + η−uaq ≡ 0 mod 2 for all a ∈ {1, . . . , q2 − 2}, a 6≡ 0 mod q + 1,

which by the previous observations means nothing but u ≡ 0 mod (q+ 1)2′ . Furthermore,
we have εua ≡ ε−2va for all a ∈ {1, . . . , q− 2}, or, equivalently, ua+ 2va ≡ 0 mod (q− 1)2′

for all such a, which gives u ≡ −2v ≡ −(q + 1)v mod (q − 1)2′ . But due to the facts that
−(q + 1)v ≡ 0 ≡ u mod (q + 1)2′ and gcd((q − 1)2′ , (q + 1)2′) = 1, we may conclude that
u ≡ −(q + 1)v mod (q2 − 1)2′ .

We are left to determine the distribution of characters of type χΦ2Φ3 into 2-blocks. Let
a character of type χΦ2Φ3 be given. If its parameters u, v satisfy u ≡ v ≡ 0 mod (q− 1)2′ ,
then one easily verifies that this character belongs to the principal 2-block. Now suppose
that u ≡ 0 mod (q − 1)2′ but v 6≡ 0 mod (q − 1)2′ . Then

A(u,v),a = εua−2va + εva−2ua + εua+va ≡ ε−2va + εva + εva ≡ ε−2va mod 2

for all a ∈ {1, . . . , q − 2} and
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B(u,v),(a,b) = εua+vb + εub+va + ε−ua−ub+va + εua−va−vb + ε−ua−ub+vb + εub−va−vb

≡ εvb + εva + εva + ε−va−vb + εvb + ε−va−vb

≡ 0 mod 2

for all a, b ∈ {1, . . . , q− 1} with a 6= b and a, b 6≡ −(a+ b) mod q− 1. Note that the second
condition is only relevant if q > 3. From Table 6.3 we deduce that the character χ

(u,v)
Φ2Φ3

is

contained in the same block as the characters χ
(w)
Φ3

and χ
(w)
qΦ3

, where the parameter w is such
that w ≡ v mod (q−1)2′ . Moreover, the same holds true if either u ≡ w 6≡ 0 mod (q−1)2′

and v ≡ 0 mod (q − 1)2′ or if u ≡ v ≡ −w mod (q − 1)2′ since

χ
(u,v)
Φ2Φ3

= χ
(v,u)
Φ2Φ3

= χ
(v−u,−u)
Φ2Φ3

.

Let us now suppose that we neither have u ≡ 0 mod (q − 1)2′ nor v ≡ 0 mod (q − 1)2′

nor u ≡ v mod (q − 1)2′ . In our next step we determine the defect group D of the 2-

block containing χ
(u,v)
Φ2Φ3

. For this we fix the class parameters a = q − 2 and b = 1 for a
G-conjugacy class of type C6. It follows that

ω
χ

(u,v)
Φ2Φ3

(Ĉ
(a,b)
6 ) = εua+vb + εub+va + ε−ua−ub+va + εua−va−vb + ε−ua−ub+vb + εub−va−vb

≡ (εv − 1)
(
ε−u − 1

) (
εu−v − 1

)
mod 2.

By choice of the parameters u, v to satisfy u, v, u− v 6≡ 0 mod (q− 1)2′ , we may conclude
that

λ
χ

(u,v)
Φ2Φ3

(Ĉ
(a,b)
6 ) 6= 0.

Following [Nav98, Thm. 4.4] this implies that up toG-conjugation the groupD is contained

in a defect group DC of the class C = C
(a,b)
6 . But C

(a,b)
6 =

[
diag(ζa, ζb, ζ−a−b)

]
G

with

mutually distinct diagonal entries, so CG(diag(ζa, ζb, ζ−a−b)) = T , where we denote by
T the maximally split torus of G consisting of the diagonal matrices in G. Thus, the
Sylow 2-subgroup O2(T ) of T is a defect group of C and we obtain that O2(T ) contains
a G-conjugate of D. On the other hand, we have

|D| · χ(u,v)
Φ2Φ3

(1)
2
> |G|2

since D is a defect group of the 2-block containing χ
(u,v)
Φ2Φ3

, that is, to state it differently,

we have |D| · (q+ 1)2 > (q− 1)2
2(q+ 1)2, hence |D| > (q− 1)2

2 = |O2(T )|. Thus, we finally
conclude that D = O2(T ) up to G-conjugation.

We may now apply Lemma 6.6 to compute the distribution of characters χ
(u,v)
Φ2Φ3

with
u, v, u−v 6≡ 0 mod (q−1)2′ into 2-blocks. We have shown that there exists a G-conjugacy
class of type C6 on which the reduction modulo 2 of the central character associated to
χ

(u,v)
Φ2Φ3

does not take value zero, so comparison with Table 6.3 shows that the 2-block
containing χ

(u,v)
Φ2Φ3

only contains characters of type χΦ2Φ3 . Now by the same calculation as
in the case that 2 6= ` | (q− 1) one can prove that two characters χ

(u,v)
Φ2Φ3

and χ
(u′,v′)
Φ2Φ3

belong
to the same 2-block if and only if

(u′, v′) ∈ mod (q−1)2′
{(u, v), (v, u), (−u, v − u), (v − u,−u), (u− v,−v), (−v, u− v)}

as claimed.
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Proposition 6.12. The decomposition matrices for the 2-blocks of G not of 2-defect zero
(cf. Proposition 6.11) are as follows:

• for the principal 2-block B0:

B0 ϕ1 ϕ2 ϕ3

1G 1 · ·

χqΦ2 · 1 ·

χq3 1 · 1

χ
(u,v)
Φ2Φ3

, u, v ≡ 0 mod (q − 1)2′ 2 2 1

χ
(u)
Φ3
, u ≡ 0 mod (q − 1)2′ 1 1 ·

χ
(u)
qΦ3

, u ≡ 0 mod (q − 1)2′ 1 1 1

χ
(u)
Φ1Φ3

, u ≡ 0 mod (q2 − 1)2′ · · 1

• for the 2-blocks of type B( ):

B(k) ϕ(k;1) ϕ(k;2)

χ
(u)
Φ3
, u ≡ k mod (q − 1)2′ 1 ·

χ
(u)
qΦ3

, u ≡ k mod (q − 1)2′ α+ 1 1

χ
(u)
Φ1Φ3

, u ≡ −(q + 1)k mod (q2 − 1)2′ α 1

χ
(u,v)
Φ2Φ3

, (u, v) ∈ mod (q−1)2′
{(k, 0), (0, k), (−k,−k)} α+ 2 1

for k ∈ {1, . . . , (q − 1)2′ − 1} and α ∈ {0, 1};

• for the 2-blocks of type B( , ):

B(u,v) ϕ(u,v)

χ
(u′,v′)
Φ2Φ3

, (u′, v′) ∈ mod (q−1)2′
S(u, v) 1

for u, v ∈ {1, . . . , (q − 1)2′ − 1} with (u, v) ∈M(Φ2Φ3);

• for the 2-blocks of type B′( ):

B′(k) ϕ(k)′

χ
(u)
Φ1Φ3

, u ≡ k mod (q2 − 1)2′

or uq ≡ k mod (q2 − 1)2′

1

for k ∈ {1, . . . , (q2 − 1)2′ − 1} with k 6≡ 0 mod (q + 1)2′.

Proof. The proof works similarly as for the case 2 6= ` | (q − 1). Since 2 divides q − 1,
for any choice of d ∈ N>0 we have eq(d) = 2, where eq(d) is defined as in the proof of
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Proposition 6.9, and for k ∈ {1, 2, 3} the 2-modular decomposition matrices ∆k for the
unipotent characters of GLk(q

d) are given by

∆1 =
[
1
]
, ∆2 =

[
1 0
1 1

]
, ∆3 =

1 0 0
0 1 0
1 0 1


according to [Jam90, Appendix 1]. By the same argument as in the proof of Proposi-
tion 6.9 the decomposition matrix for the three unipotent characters χ1, χqΦ2 and χq3 in
the principal 2-block B0 is given by ∆3. The decomposition numbers for the remaining
characters in B0 follow by easy calculations.

For the 2-blocks B of type B( ) it follows that their decomposition matrix contains
either ∆2 or an identity matrix of size 2 (or both) as a submatrix. Hence, at least one
irreducible character in B stays irreducible under 2-modular reduction. One easily verifies
that if B = B(k), k ∈ {1, . . . , (q − 1)2′ − 1}, then the relations

χ
(k)0
qΦ3

= χ
(k)0
Φ3

+ χ
(u)0
Φ1Φ3

,

χ
(k,0)0
Φ2Φ3

= 2χ
(k)0
Φ3

+ χ
(u)0
Φ1Φ3

hold for u ≡ −(q + 1)k mod (q2 − 1)2′ , and characters of the same type have the same

2-modular reduction. If both χ
(k)0
Φ3

and χ
(u)0
Φ1Φ3

are irreducible, then the claim follows for B
with α = 0. Hence, suppose that this is not the case. Then by the previous observations the

decomposition matrix associated to χ
(k)
Φ3

and χ
(u)
Φ1Φ3

has the form ∆2 with χ
(k)0
Φ3

irreducible
and

χ
(u)0
Φ1Φ3

= χ
(k)0
Φ3

+ ϕ

for some ϕ ∈ IBr(B) with ϕ 6= χ
(k)0
Φ3

. This yields the proposed 2-decomposition matrix for
B with α = 1.

Lemma 6.13. The 2-blocks of G of type B( , ) have defect group O2(T ), where T denotes
a maximal torus of G of type T1, while the 2-blocks of type B′( ) have defect group O2(T ′)
for a maximal torus T ′ of G of type T2. The 2-blocks of G of type B( ) are of maximal
2-defect.

Proof. As we have already seen in the proof of Proposition 6.11 the 2-blocks of type B( , )

have defect group O2(T ).
Now suppose that B is a 2-block of type B′( ). Then λB(Ĉ

(1)
7 ) 6= 0 as can easily be

verified (cf. Table 6.3). Hence, by the Min-Max-Theorem [Nav98, Thm. 4.4] a defect
group of B is contained in a defect group of C

(1)
7 . By Proposition 6.3 the defect groups of

conjugacy classes of type C7 are conjugate to O2(T ′), which is of order (q2 − 1)2. Now a
study of the character degrees for B yields that B has defect log2(q2−1)2, whence O2(T ′)
must be a defect group of B.

For the 2-blocks of type B( ) the examination of the corresponding character degrees
shows that these have maximal 2-defect.
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Chapter 7

Action of Automorphisms

The upcoming chapter is aimed at providing a good understanding of the action of auto-
morphisms of the group G = SL3(q), q 6≡ 1 mod 3, on its weights and Brauer characters.
This is crucial for the successful establishment of the inductive blockwise Alperin weight
condition for G. Let us recall from Section 5.3 that

Aut(G) = Go 〈Γ, Fp〉,

where Γ denotes the transpose-inverse automorphism of G and Fp acts on G by raising
each matrix entry to its p-th power.

7.1 Action on the (Brauer) Characters of SL3(q)

Before we turn to the characters of G let us examine the behaviour of the conjugacy classes
of G under the action of Aut(G). In order to understand the automorphism action on the
semisimple classes of G the following observation will be a helpful tool:

Lemma 7.1. Let s, s′ ∈ G be semisimple elements. If s and s′ are conjugate in the infinite
algebraic group G = SL3(F), then they are conjugate in G.

Proof. Recall that for the Steinberg endomorphism F of G defined in Section 5.1 we have
G = GF . Suppose that s ∈ G is semisimple and define V := [s]G, the G-conjugacy class
of s in G. Then CG(s) is closed and connected by [MT11, Thm. 14.16]. Moreover, G acts
transitively on V , for h ∈ G it holds that F (hsh−1) = F (h)sF (h)−1 ∈ V , so F (V ) ⊆ V ,
and we have

F (g.v) = F (gvg−1) = F (g)F (v)F (g−1) = F (g)F (v)F (g)−1 = F (g).F (v)

for all g ∈ G and v ∈ V . Since G is connected reductive, according to [MT11, Thm. 21.11]
this implies the existence of a one-to-one correspondence

{G-orbits on V F } 1:1←→ {F -classes in CG(s)/CG(s)◦},

where CG(s)◦ denotes the connected component of CG(s). But since CG(s) is connected,
we have CG(s)/CG(s)◦ = {1}, and hence there is only one G-orbit on V F . In particular,
any semisimple s′ ∈ G that is G-conjugate to s must even be conjugate to s under G.

Remark 7.2. Note that an analogous statement to Lemma 7.1 holds true for the general
linear group GLn(F) for any n ∈ N>0 and its group of fixed points GLn(q) under the Stein-
berg endomorphism which raises each entry of a matrix in GLn(F) to its q-th power. Even
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more generally, it holds for any connected reductive algebraic group H such that [H,H] is
simply connected and its finite group Hσ of fixed points under a Steinberg endomorphism
σ. This can be proven by the same arguments employed to verify Lemma 7.1.

Proposition 7.3. Let s ∈ G be semisimple. Then

(i) Γ(s) is conjugate to s−1 in G,

(ii) Fp(s) is conjugate to sp in G.

Proof. Since s is semisimple, there exists a diagonal matrix d ∈ G conjugate to s in G,
i.e., s = x−1dx for some x ∈ G. We obtain

Γ(s) = s− tr = xtrd− trx− tr = xtrd−1x− tr,

and hence Γ(s) is G-conjugate to d−1, which in turn is G-conjugate to s−1. By transitivity,
Γ(s) and s−1 are conjugate in G, so following Proposition 7.1 they must already be
conjugate in G. This gives part (i). Statement (ii) is proven similarly.

Let us now turn to the action of the automorphisms Γ and Fp on the non-semisimple
conjugacy classes of G, that is, the classes C1, C2, C3 and the classes of type C5.

Proposition 7.4. Let C be a non-semisimple conjugacy class of G.

(i) If C ∈ {C1, C2, C3}, then C is left invariant by Aut(G).

(ii) If C = C
(a)
5 for some 1 6 a < q − 1, then Γ(C) = C

((q−1)−a)
5 and Fp(C) = C

(ap)
5 .

Proof. This follows by direct calculation and the fact that Aut(G) = Go 〈Γ, Fp〉.

We can now describe the action of the automorphisms of G on Irr(G) as follows:

Corollary 7.5. For χ ∈ Irr(G) the following statements hold:

(i) If χ ∈ {1G, χqΦ2 , χq3}, then χ is left invariant by Aut(G).

(ii) If χ = χ
(u)
γ for γ ∈ {Φ3, qΦ3, Φ1Φ3, Φ2

1Φ2} and a corresponding parameter u ∈ Z,

then χFp = χ
(up)
γ and χΓ = χ

(−u)
γ .

(iii) If χ = χ
(u,v)
Φ2Φ3

for parameters u, v ∈ Z, then χFp = χ
(up,vp)
Φ2Φ3

and χΓ = χ
(−u,−v)
Φ2Φ3

.

Proof. (i) If χ ∈ {1G, χqΦ2 , χq3}, then it is the unique irreducible character of G of degree
χ(1), hence left invariant by Aut(G).

For (ii) and (iii) suppose that χ is of type χγ for γ ∈ {Φ3, qΦ3, Φ1Φ3, Φ2
1Φ2, Φ2Φ3}.

Under our assumption that q > 3 and q 6≡ 1 mod 3 it follows that irreducible characters
of G of distinct types have distinct degrees (cf. Table A.1). In particular, the type of χ
cannot be changed by Aut(G), that is, both χFp and χΓ are of type χγ . Now a direct
comparison of the character values given in Table A.1 in conjunction with Propositions 7.3
and 7.4 yields the claim.

Concerning the action of automorphisms of G on its irreducible Brauer characters we
recall that we only need to concentrate on the case of characteristic ` dividing q − 1,
and moreover, we note that for `-blocks B of G our interests are in fact restricted to the
behaviour of IBr(B) under Aut(G)B. This question, however, is easily answered below,
even without the use of the results on the action of Aut(G) on Irr(G). Nevertheless, this
information has not been obtained in vain but will be of importance in the investigation of
the extendibility of (Brauer) characters of G in Chapter 9. In particular, in that context
it will once more confirm the following statement:
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Proposition 7.6. Suppose that ` | (q − 1) and let B be an `-block of G. Then Aut(G)B
acts trivially on IBr(B).

Proof. We go through the distinct types of `-blocks of G. Clearly, if B is an `-block of
`-defect zero, then l(B) = 1, i.e., B contains only one irreducible Brauer character, which
is hence left invariant by Aut(G)B. The same holds true if B is of type B( , ) or B′( ) by
Proposition 6.9 for ` 6= 2 and Proposition 6.12 for ` = 2.

Suppose now that B = B0 is the principal `-block. Then by Propositions 6.9 and 6.12
we have l(B) = 3, and the degrees of the irreducible Brauer characters in B are given
by 1, q(q + 1) and q3 if ` 6= 2 and by 1, q(q + 1) and q3 − 1 if ` = 2. Since these three
numbers are distinct for all choices of q > 2, we conclude that Aut(G)B = Aut(G) leaves
each element of IBr(B) invariant.

Let us finally suppose that B is of type B( ). Then by Propositions 6.9 and 6.12
there are two irreducible Brauer characters in B, whose degrees are given by q2 + q + 1
and q(q2 + q + 1) if ` 6= 2 and by q2 + q + 1 and (q − (α + 1))(q2 + q + 1) for some
α ∈ {0, 1} if ` = 2. Now by Proposition 6.11 there can only exist 2-blocks of type B( )

if (q − 1)2′ > 1. Thus, we may assume that q > 7 (even q > 11 since we consider the
case that q 6≡ 1 mod 3), so in particular q − (α+ 1) > 1. Accordingly, the two irreducible
Brauer characters in B are of distinct degrees and cannot be interchanged by any element
of Aut(G)B as claimed.

7.2 Action on the Weights of SL3(q)

In this section we construct the B-weights of G for various blocks B of G of non-cyclic
defect and study their behaviour under Aut(G)B. We start by classifying the radical `-
subgroups of G for primes ` 6= p such that G has non-cyclic Sylow `-subgroups, that is,
for all ` dividing q − 1. Here, we always have ` 6= 3 by the assumption that q 6≡ 1 mod 3.
Afterwards we apply Construction 2.10 to find the B-weights of G for any relevant `-block
B and examine how these behave under automorphisms of G.

7.2.1 Radical Subgroups

We classify the radical `-subgroups of G individually for the two cases 2 6= ` | (q − 1) and
` = 2. As it turns out, this job is easily accomplished for odd `, while for ` = 2 more work
needs to be done. Let us state here the following lemma, which will be applied in both
cases:

Lemma 7.7. Let ζ ∈ F× be of order q − 1 and set Q := 〈diag(ζ, ζ, ζ−2)〉 6 G. Then

CG(Q) = NG(Q) =

{(
A 0
0 (detA)−1

) ∣∣∣ A ∈ GL2(q)

}
∼= GL2(q).

Moreover, we have CG(O`(Q)) = NG(O`(Q)) = NG(Q) for any prime ` dividing q − 1.

Proof. Similarly as in the proof of Proposition 5.7 we consider common Fq-eigenspaces of
the matrices in Q := 〈diag(ζ, ζ, ζ−2)〉. In the notation used there, that is, e1 = (1, 0, 0)tr,
e2 = (0, 1, 0)tr and e3 = (0, 0, 1)tr ∈ F3

q , the Fq-eigenspaces common to all elements in Q
are V1 := 〈e1, e2〉Fq and V2 := 〈e3〉Fq . Note that this requires ζ−2 6= ζ, which is guaranteed
by our assumption that q 6≡ 1 mod 3. Since the common eigenspaces of Q are permuted
by NG(Q), and dimV1 6= dimV2, we conclude that V1 and V2 are stabilized by any element
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of NG(Q), which proves that

NG(Q) ⊆
{(

A 0
0 (detA)−1

) ∣∣∣ A ∈ GL2(q)

}
.

The converse inclusion is obviously satisfied, so indeed NG(Q) is as claimed. Since we have
CG(Q) ⊆ NG(Q) and NG(Q) centralizes Q, this completes the proof of the first claim.

Suppose now that ` is a prime dividing q − 1. Then the same argumentation applies
since the common eigenspaces of O`(〈diag(ζ, ζ, ζ−2)〉) are still given by V1 and V2.

7.2.1.1 The Case 2 6= ` | (q − 1)

Let ` 6= 2 be a prime dividing q−1. As we will see, G possesses three distinct G-conjugacy
classes of radical `-subgroups. Before we prove this, let us state the following lemma.

Lemma 7.8. Let H be a finite almost simple group. Then H does not possess any non-
trivial solvable normal subgroups.

Proof. Let S be a non-abelian simple group such that S 6 H 6 Aut(S). Moreover,
suppose that N E H is a solvable normal subgroup of H. Then we have [N,S] E N ∩ S,
and as a subgroup of N , this is also solvable. But then we have [N,S] = {1} since the
only solvable normal subgroup of S is the trivial one. Hence, N commutes with S, and as
N 6 Aut(S), we obtain N = {1}.

Proposition 7.9. Let 2 6= ` | (q − 1) and suppose that R is a radical `-subgroup of G.
Then up to G-conjugation one of the following holds:

(i) R = {1};

(ii) R = O`(〈diag(ζ, ζ, ζ−2)〉), where ζ ∈ F× is of order q − 1;

(iii) R = O`(T ) ∈ Syl`(G), where T denotes the maximally split torus of G consisting of
diagonal matrices.

Proof. Clearly, the groups in (i) and (iii) are `-radical in G. Hence, let us consider the
group Q := O`(〈diag(ζ, ζ, ζ−2)〉) in (ii). We first show that Q is indeed `-radical in G. To
prove this we use that

Q ∼= O`(〈diag(ζ, ζ)〉) = O`(Z(GL2(q)))

and NG(Q) ∼= GL2(q) according to Lemma 7.7. As PGL2(q) = GL2(q)/Z(GL2(q)) is
almost simple for q > 4 (since PSL2(q) 6 PGL2(q) 6 Aut(PSL2(q)) and PSL2(q) is simple
for q > 4 by [Wil09, p. 46 and pp. 48–50]), we apply Lemma 7.8 to deduce that this group
does not contain any non-trivial solvable normal subgroups. We set Z := Z(GL2(q)). Now
suppose that P/O`(Z) is a normal `-subgroup of GL2(q)/O`(Z) for some group P with
O`(Z) ⊆ P E GL2(q). Then P must be an `-group and PZ/Z is a normal `-subgroup of
PGL2(q), hence solvable, whence by Lemma 7.8 we have PZ/Z = {1}. But then P ⊆ Z
and thus P = O`(Z). We conclude that

O`(NG(Q)/Q) ∼= O`(GL2(q)/O`(Z)) = {1}.

Now suppose that a non-trivial `-subgroup H 6 G is not G-conjugate to any of the
subgroups in the claim. If {1} 6= H 6 Q, then NG(H) = NG(Q) ∼= GL2(q), so H cannot
be `-radical. Thus, assume that H is not G-conjugate to a subgroup of Q and suppose
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that H ( O`(T ) ∈ Syl`(G). Since O`(T ) consists of diagonal matrices, the group H must
contain an element diag(x, y, z) with x, y, z ∈ F×q pairwise distinct. As in the proof of
Proposition 5.8 it follows that

NG(H) 6 {monomial matrices in G} = NG(O`(T )).

Of course we have O`(T ) 6 NG(H) 6 NG(O`(T )), so H ( O`(T ) E NG(H), whence H
cannot be `-radical in G.

7.2.1.2 The Case ` = 2

The aim of this section is to determine the radical 2-subgroups of G = SL3(q), where we
always assume that q is odd. This task turns out to be somewhat more elaborate than the
classification of the radical subgroups of G for odd primes dividing q − 1 in the previous
section. We approach this problem by regarding G as a subgroup of the general linear
group GL3(q). Even more, since by assumption q 6≡ 1 mod 3, we have

GL3(q) = SL3(q)× Z(GL3(q)),

that is, G is a direct factor of GL3(q). By [NT11, Lemma 2.3(b)] there exists a bijection

Rad`(SL3(q))× Rad`(Z(GL3(q))) −→ Rad`(GL3(q)),

(R1, R2) 7−→ R1 ×R2,

where we recall that Rad`(H) denotes the set of all radical `-subgroups of a finite group
H. Since Z(GL3(q)) is cyclic, its only radical `-subgroup is O`(Z(GL3(q))), so in fact we
have a bijection

Rad`(SL3(q)) −→ Rad`(GL3(q))

R 7−→ R×O`(Z(GL3(q))),

with inverse

Rad`(GL3(q)) −→ Rad`(SL3(q))

R 7−→ R ∩ SL3(q).

Hence, in order to find all radical `-subgroups of SL3(q) it suffices to know those of GL3(q).
Here we are in the fortunate position that the radical subgroups of the general linear
groups, however abstract their description may be, are known. The structure of radical
2-subgroups of GLn(q) is described in [An92]. In order to present the result proven there
we first need to introduce the notion of basic subgroups of general linear groups, which
turn out to be the building blocks of radical subgroups for these groups.

Construction/Definition 7.10 (Basic subgroups). In the subsequent construction we
follow [An92, pp. 509–513]. For q odd we let a ∈ N be such that 2a+1 = (q2 − 1)2.

For γ > 0 let Eγ be an extraspecial group of order 21+2γ . Moreover, for α > 0 let Zα
be a cyclic group of order 2a+α if q ≡ 1 mod 4 or α > 1. Then by [An92, pp. 509] the
central product EγZα over Z(Eγ) = Ω1(Zα), where Ω1(Zα) =

〈
z ∈ Zα | z2 = 1

〉
, may be

embedded into the general linear group GL2γ (q2α) in such a way that Zα is identified with
O2(Z(GL2γ (q2α))). For q ≡ −1 mod 4 we set Z0 = Z(Eγ) (where γ > 0 as above), such
that EγZ0 = Eγ , which may be embedded into GL2γ (q) by [An92, (1A)].
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There exists an embedding
GL2γ (q2α) ↪−→ GL2α+γ (q)

induced by the Galois field extension Fq2α/ Fq, i.e., an embedding obtained by regarding a

matrix A ∈ GL2γ (q2α), which represents an invertible Fq2α -linear map of a 2γ-dimensional
Fq2α -vector space V , as an invertible Fq-linear map of the space V viewed as an Fq-vector
space of Fq-dimension 2α · 2γ = 2α+γ . In [An92, p. 509] the author denotes by Rα,γ the
image of EγZα in GL2α+γ (q) under the arising embedding

EγZα ↪−→ GL2γ (q2α) ↪−→ GL2α+γ (q)

and claims that this image is “determined up to conjugacy” in GL2α+γ (q). We should
mention that we are not entirely sure about how the notion determined up to conjugacy is
to be interpreted, that is to say, whether there exists only one conjugacy class of subgroups
of GL2α+γ (q) isomorphic to EγZα, or whether this merely means that all images of EγZα
in GL2α+γ (q) under embeddings of the kind described above are conjugate in GL2α+γ (q).
Due to this uncertainty, we will not assume any knowledge on uniqueness in the following,
but we give a proof of uniqueness in the required manner whenever necessary and possible.

Now for m > 1 we further denote by Rm,α,γ the image of Rα,γ in GLm2α+γ (q) under
the m-fold diagonal mapping

GL2α+γ (q) ↪−→ GLm2α+γ (q), g 7−→


g

g
. . .

g


m times.

Then also the group Rm,α,γ is “determined up to conjugacy” in GLm2α+γ (q) according to
[An92, p. 510].

Assume now that q ≡ −1 mod 4. We denote by P a semidihedral group of order 2a+2

and let EγP be the central product of the extraspecial group Eγ of order 21+2γ with P .
Then by [An92, p. 511] the group EγP may be embedded into GL2γ+1(q) via a faithful
absolutely irreducible representation, and the image S1,γ of EγP under this embedding is
“uniquely determined up to conjugacy”. Moreover, S1,γ is independent of the type of Eγ .
For m > 1 we let Sm,1,γ denote the image of S1,γ in GLm2γ+1(q) under the m-fold diagonal
mapping similar as above. Then Sm,1,γ is “determined up to conjugacy” in GLm2γ+1(q)
by [An92, p. 512].

Now for given integers α > 0, γ > 0 and m > 1 we define two subgroups of GLm2α+γ (q)
by setting

R1
m,α,γ := Rm,α,γ

and

R2
m,α,γ :=

{
Sm,1,γ−1 if q ≡ −1 mod 4, α = 0 and γ > 1,

Rm,α,γ else.

For c > 0 we denote by Ac the elementary abelian 2-group of order 2c represented by its
regular permutation representation. Then for any sequence c = (c1, . . . , ct) with ci ∈ Z>0

we set Ac = Ac1 oAc2 o · · · oAct and define the wreath product

Rim,α,γ,c := Rim,α,γ oAc 6 GLd(q)
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for i = 1, 2, where d = m2α+γ+c1+···+ct . By [An92, p. 513] the group Rim,α,γ,c “is deter-
mined up to conjugacy” in GLd(q). Unless q ≡ −1 mod 4, α = 0, γ = 0 and c1 = 1, the
groups Rim,α,γ,c are called basic subgroups of GLd(q).

We may now move on to the statement about the structure of radical 2-subgroups of
general linear groups which we have already referred to at the beginning of this section.
By [An92, (2B)] the following holds:

Theorem 7.11. Let V be an Fq-vector space and suppose that R is a radical 2-subgroup
of the group GL(V ) of its Fq-linear automorphisms. Then there exists a corresponding
decomposition

V = V1 ⊕ · · · ⊕ Vs ⊕ Vs+1 ⊕ · · · ⊕ Vt
R = R1 × · · · ×Rs ×Rs+1 × · · · ×Rt

such that Ri = {±1Vi} for 1 6 i 6 s and Ri are basic subgroups of GL(Vi) for i > s + 1.
Moreover, if q ≡ 1 mod 4, then s = 0.

This result will be of great use for the determination of the radical 2-subgroups of G.
We now introduce certain 2-subgroups of GL2(q), SL3(q) and GL3(q), respectively, that
will be of interest to us in due course. To this end we recall the following widely known
fact about finite fields:

Lemma 7.12. In any finite field F there exist elements a, b ∈ F such that a2 + b2 = −1.

Proof. This is a well-known result. It trivially holds for finite fields of characteristic 2,
and for odd characteristic see, for instance, [Kap72, p. 15].

Keeping this result in mind we may consider the following subgroup of GL2(q):

Proposition 7.13. Let a, b ∈ Fp such that a2 + b2 = −1 (these exist by Lemma 7.12).
Then the subgroup

Q′8 :=

{
±
(

1 0
0 1

)
,±
(

0 1
−1 0

)
,±
(
a b
b −a

)
,±
(
−b a
a b

)}
of GL2(p) 6 GL2(q) is isomorphic to the quaternion group Q8.

Proof. This is well-known and may easily be verified by straightforward calculations.

Let us observe that we may choose the elements a, b ∈ Fp in the above lemma such
that a2 = −1 and b = 0 if q ≡ 1 mod 4, so in this case one obtains a particularly nice
embedding of the quaternion group into GL2(q).

We wish to prove now that up to GL2(q)-conjugation the group Q′8 as defined above is
the only subgroup of GL2(q) isomorphic to the quaternion group Q8. This information will
be needed later on to determine the basic subgroups of GL2(q). In order to accomplish this
task we use the following statement on the realizability of certain group representations
in a specific situation:

Proposition 7.14. Let H be a finite group and χ ∈ Irr(H) such that χ(h) ∈ Z for all
h ∈ H. If r is a prime such that the Brauer character χ0 with respect to r is irreducible,
then for every s ∈ N>0 there exists an absolutely irreducible Frs-representation affording
the Brauer character χ0.

In particular, if moreover H is an r′-group and χ is the unique faithful character of H
of degree χ(1), then for every s ∈ N>0 there exists a unique GLχ(1)(r

s)-conjugacy class of
subgroups of GLχ(1)(r

s) isomorphic to H.

71



Chapter 7. Action of Automorphisms

Proof. Denote by F an algebraic closure of the finite field Fr consisting of r elements and
let X be an irreducible F -representation with associated Brauer character χ0. Moreover,
let ψ denote the character of X. Then for all h ∈ H the character value ψ(h) is given by the
reduction modulo r of χ(hr′) ∈ Z (see, e.g., [Nav98, Lemma 2.4]). Thus, ψ(h) ∈ Fr 6 Frs
for all h ∈ H and s ∈ N>0.

Now, constituting an irreducible F -representation, X is absolutely irreducible, and
hence by [Isa94, Cor. 9.20] for every s ∈ N>0 there exists an irreducible Frs-representation
Ys affording the character msψ for some positive integer ms. Even more, according to
[Isa94, Thm. 9.21(b)] we have ms = 1 since F has positive characteristic, so we conclude
that Ys is an absolutely irreducible Frs-representation with character ψ affording the
Brauer character χ0.

Let us assume now that H is an r′-group and χ is the unique faithful character of H
of degree χ(1). Then IBrr(H) = Irr(H) and, in particular, up to GLχ(1)(r

s)-conjugation
Ys is the unique faithful Frs-representation of H of degree χ(1). Since non-GLχ(1)(r

s)-
conjugate subgroups of GLχ(1)(r

s) isomorphic to H would yield non-GLχ(1)(r
s)-conjugate

faithful Frs-representations of H of degree χ(1), which would hence afford distinct faithful
characters of H of degree χ(1), we may conclude that there exists a unique GLχ(1)(r

s)-
conjugacy class of subgroups of GLχ(1)(r

s) isomorphic to H as claimed.

Corollary 7.15. Let r 6= 2 be a prime and s ∈ N>0. Then in GL2(rs) there exists exactly
one GL2(rs)-conjugacy class of subgroups isomorphic to the quaternion group Q8.

Proof. It is well-known that the character table of Q8 is given by

C1 C2 C3 C4 C5

χ1 1 1 1 1 1

χ2 1 −1 1 1 −1

χ3 1 1 −1 1 −1

χ4 1 −1 −1 1 1

χ5 2 · · −2 ·

Table 7.1: Character table of Q8

for Irr(Q8) = {χ1, . . . , χ5} and Cl(Q8) = {C1, . . . , C5}. Since χi + χj contains C4 in its
kernel for every choice of i, j ∈ {1, . . . , 4}, we conclude that χ5 is the unique faithful
character of Q8 of degree 2. Moreover, χ5(x) ∈ Z for all x ∈ Q8, and since Q8 is a 2-group
we have χ0

5 ∈ IBrr(Q8), so by Proposition 7.14 the claim follows.

Corollary 7.16. Let r 6= 2 be a prime and s ∈ N>0. Then in GL2(rs) there exists exactly
one GL2(rs)-conjugacy class of subgroups isomorphic to the dihedral group D8 of order 8.

Proof. The proof is the same as for Corollary 7.15 since the character tables of Q8 and D8

agree (in fact, it is commonly known that these two groups provide the smallest example
of non-isomorphic groups having the same complex character table), and the arguments
used for Q8 in Corollary 7.15 apply to D8 as well.

Let us now define the following groups:
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Definition 7.17. We consider the group Q′8 introduced in Proposition 7.13 for elements
a, b ∈ Fp with a2 + b2 = −1 as a subgroup of GL2(q). Then we define the subgroup

Q̃′8 :=
〈
Q′8,O2(Z(GL2(q)))

〉
of the general linear group GL2(q). This group may as well be regarded as a subgroup of
the special linear group G = SL3(q) via the embedding

GL2(q) ↪−→ SL3(q), A 7−→
(
A

(detA)−1

)
.

From now we denote the image of Q̃′8 under this embedding by Q̃8. Clearly, Q̃8 forms a
2-subgroup of G.

Proposition 7.18. Let R = Q̃8 6 G be as in Definition 7.17 and ζ ∈ F× of order q − 1.
Then we have CG(R) = 〈diag(ζ, ζ, ζ−2)〉 and NG(R)/RCG(R) ∼= S3.

Proof. Let us set Q := 〈diag(ζ, ζ, ζ−2)〉. Due to the fact that the group R = Q̃8 is defined

as the image of the embedding of Q̃′8 = 〈Q′8,O2(Z(GL2(q)))〉 into G via the map

ι : GL2(q) ↪−→ SL3(q), A 7−→ ι(A) :=

(
A

(detA)−1

)
with Q′8 as in Proposition 7.13, it holds that CG(R) ⊇ ι(CGL2(q)(Q̃

′
8)). We claim that in

fact we have equality here. Let us observe that by Schur’s lemma and the fact that the
representation yielding Q′8 is absolutely irreducible, we have

CGL2(q)(Q̃
′
8) = CGL2(q)(Q

′
8) = Z(GL2(q)),

whence ι(CGL2(q)(Q̃
′
8)) = Q. Now O2(Q) ⊆ R, so in particular we have

CG(R) ⊆ CG(O2(Q)) = ι(GL2(q))

following Lemma 7.7. We conclude that CG(R) = ι(CGL2(q)(Q̃
′
8)) = Q as claimed.

Let us now concentrate on the normalizer of R in G. As above we have the inclusion
ι(NGL2(q)(Q̃

′
8)) ⊆ NG(R), and indeed it turns out that one has equality here as well. Since

Z(R), which is a characteristic subgroup of R, is given by O2(Q), we have

NG(R) ⊆ NG(O2(Q)) = ι(GL2(q))

according to Lemma 7.7, so as above we conclude that NG(R) = ι(NGL2(q)(Q̃
′
8)). This

implies that we have

NG(R)/RCG(R) ∼= NGL2(q)(Q̃
′
8)/Q̃′8 CGL2(q)(Q̃

′
8).

Suppose that q ≡ 1 mod 4. Then by [An92, (1B)] we have

NGL2(q)(Q̃
′
8)/Q̃′8 CGL2(q)(Q̃

′
8) ∼= S3

as claimed. Hence, we now let q ≡ −1 mod 4. In this case the group O2(Z(GL2(q))) is

contained in Q′8, so Q̃′8 = Q′8, and by [An92, (1C)] there exists a subgroup H 6 GL2(q)
such that Q′8 E H, CH(Q′8) = Z(Q′8) and H/Q′8

∼= S3. Since Z(Q′8) = O2(Z(GL2(q))) in
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this case, we conclude that H ∩ Z(GL2(q)) = O2(Z(GL2(q))). Furthermore, it holds that
Q′8 ∩ Z(GL2(q)) = O2(Z(GL2(q))), so we obtain

H CGL2(q)(Q
′
8)/Q′8 CGL2(q)(Q

′
8) = H Z(GL2(q))/Q′8 Z(GL2(q)) ∼= S3

with H CGL2(q)(Q
′
8) ⊆ NGL2(q)(Q

′
8). We claim that equality holds here. To prove this we

first observe that Aut(Q′8) = S4, which is well-known and easy to verify, and that the
quotient NGL2(q)(Q

′
8)/CGL2(q)(Q

′
8) may be embedded into Aut(Q′8). We have

|H CGL2(q)(Q
′
8)| = |S3| · |Q′8 CGL2(q)(Q

′
8)| = 6 · |Q

′
8| · |Z(GL2(q))|
|Q′8 ∩ Z(GL2(q))|

= 24(q − 1),

which yields ∣∣H CGL2(q)(Q
′
8)/CGL2(q)(Q

′
8)
∣∣ = 24 = |S4|.

Now recall that NGL2(q)(Q
′
8)/CGL2(q)(Q

′
8) embeds into Aut(Q′8) = S4, so we must already

have

NGL2(q)(Q
′
8) = H CGL2(q)(Q

′
8),

and consequently

NG(R)/RCG(R) ∼= NGL2(q)(Q
′
8)/Q′8 CGL2(q)(Q

′
8) ∼= S3

also for q ≡ −1 mod 4 as claimed. This completes the proof.

Definition 7.19. We define the group D′8 to be the subgroup of GL2(q) given by

D′8 :=

{
±
(

1 0
0 1

)
, ±

(
1 0
0 −1

)
, ±

(
0 −1
1 0

)
, ±

(
0 1
1 0

)}
.

Clearly, this group is dihedral of order 8, and by Corollary 7.16 up to GL2(q)-conjugation
it is the unique subgroup of GL2(q) of this isomorphism type. We may embed D′8 into G
via the map

GL2(q) ↪−→ G, A 7−→
(
A

(detA)−1

)
.

The image of D′8 under this embedding will in the following be denoted by D̃8. It should

be noted that in contrast to the subgroup Q̃8 of G given in Definition 7.17 the group D̃8

does not contain the group O2(〈diag(ζ, ζ, ζ−2)〉) if q ≡ 1 mod 4. However, in order to
justify the analogous notation we point out that the group D̃8 will only play a role here if
q ≡ −1 mod 4, in which case we have O2(〈diag(ζ, ζ, ζ−2)〉) = Z(D̃8).

Proposition 7.20. Suppose that q ≡ −1 mod 4 and let R = D̃8 6 G be as in Defini-
tion 7.19. Then we have CG(R) = 〈diag(ζ, ζ, ζ−2)〉, where ζ ∈ F× is of order q − 1, and
NG(R)/RCG(R) ∼= C2.

Proof. Let us first consider the subgroup D′8 of GL2(q) as in Definition 7.19. According
to [An92, (1C)] there is a subgroup H 6 GL2(q) such that D′8 E H, CH(D′8) = Z(D′8) and
H/D′8

∼= C2. We claim that

NGL2(q)(D
′
8) = H CGL2(q)(D

′
8).
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Analogously to the procedure in the proof of Proposition 7.18 we consider the quotient
group H CGL2(q)(D

′
8)/D′8 CGL2(q)(D

′
8). Since the representation of the dihedral group of

order 8 yielding the group D′8 as a subgroup of GL2(q) is absolutely irreducible, we have

CGL2(q)(D
′
8) = Z(GL2(q))

according to Schur’s lemma. Moreover, due to the assumption that q ≡ −1 mod 4 we have
Z(D′8) = O2(Z(GL2(q))), and hence H ∩ Z(GL2(q)) = O2(Z(GL2(q))). Thus, we deduce
that

H CGL2(q)(D
′
8)/D′8 CGL2(q)(D

′
8) = HZ(GL2(q))/D′8Z(GL2(q)) ∼= H/D′8

∼= C2,

and hence we obtain

|H CGL2(q)(D
′
8)| = |C2| · |D′8 CGL2(q)(D

′
8)| = 2 · |D

′
8| · |Z(GL2(q))|
|D′8 ∩ Z(GL2(q))|

= 8(q − 1).

We conclude that

|H CGL2(q)(D
′
8)/CGL2(q)(D

′
8)| = 8 = |D′8|.

Now, as commonly known, the automorphism group of D′8 is given by Aut(D′8) ∼= D′8, and
since H CGL2(q)(D

′
8) ⊆ NGL2(q)(D

′
8) and the quotient NGL2(q)(D

′
8)/CGL2(q)(D

′
8) embeds

into Aut(D′8), we consequently have H CGL2(q)(D
′
8) = NGL2(q)(D

′
8).

Let us now consider the centralizer and normalizer of R in G. Similarly as in the
proof of Proposition 7.18 one can show that CG(R) and NG(R) are given by the images
of CGL2(q)(D

′
8) and NGL2(q)(D

′
8), respectively, under the embedding

GL2(q) ↪−→ G, A 7−→
(
A

(detA)−1

)
,

so in particular the centralizer of R is given by CG(R) = 〈diag(ζ, ζ, ζ−2)〉, and we have an
isomorphism

NG(R)/RCG(R) ∼= NGL2(q)(D
′
8)/D′8 CGL2(q)(D

′
8) ∼= C2

as claimed.

Corollary 7.21. In the situation of Proposition 7.20 the group NG(R)/R centralizes its
subgroup RCG(R)/R.

Proof. This follows immediately from the fact that CG(R) = 〈diag(ζ, ζ, ζ−2)〉 and NG(R)
is contained in the image of GL2(q) in G under the embedding

GL2(q) ↪−→ G, A 7−→
(
A

(detA)−1

)
,

as observed in the proof of Proposition 7.20.

We next determine the basic subgroups of the general linear groups GL1(q), GL2(q) and
GL3(q). Knowing these we may apply Theorem 7.11 to determine all radical 2-subgroups
of GL3(q), and hence of SL3(q) by the considerations at the beginning of this section. The
lemma below will help to understand the structure of some of the arising basic subgroups.
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Lemma 7.22. The central product of C2 with C2k is isomorphic to C2k for any natural
number k > 0.

Proof. The central product of C2 with C2k is isomorphic to (C2 × C2k)/ 〈(−1,−1)〉. We
denote by : C2 × C2k −→ (C2 × C2k)/ 〈(−1,−1)〉 the natural epimorphism. Let x be a
generator of C2k . Then the group C2×C2k is generated by (−1, 1) and (1, x), and we have

(−1, 1) = (1,−1) = (1, x)
2k−1

.

Hence, the quotient (C2×C2k)/ 〈(−1,−1)〉 is generated by (1, x), which is of order 2k.

Proposition 7.23. The basic subgroups of the general linear groups GLn(q), n ∈ {1, 2, 3},
are given as follows, where ζ, ξ ∈ F× are of orders q − 1 and q2 − 1, respectively:

(i) For n = 1 the only basic subgroup of GL1(q) is O2(Z(GL1(q))) = O2(〈(ζ)〉).

(ii) For n = 2 and a basic subgroup R of GL2(q) up to GL2(q)-conjugation one of the
following holds:

(a) R = O2(Z(GL2(q))) = O2(〈diag(ζ, ζ)〉),
(b) R ∼GL2(F) O2(〈diag(ξ, ξq)〉),
(c) R ∈ Syl2(GL2(q)), i.e.,

R = O2(〈diag(ζ, 1)〉 × 〈diag(1, ζ)〉)o 〈( 0 1
1 0 )〉 if q ≡ +1 mod 4,

or R ∼GL2(F) O2(〈diag(ξ, ξq)〉)o 〈( 0 1
1 0 )〉 if q ≡ −1 mod 4,

(d) q ≡ +1 mod 4 and R = Q̃′8,

(e) q ≡ −1 mod 4 and R ∈ {Q′8, D′8}.

(iii) For n = 3 the only basic subgroup of GL3(q) is O2(Z(GL3(q))) = O2(〈diag(ζ, ζ, ζ)〉).

Proof. We use the notation introduced in Definition 7.10 for the basic subgroups, that
is, if R is a basic subgroup of GLn(q), then R = Rim,α,γ,c for certain integers i ∈ {1, 2},
m > 1, α, γ > 0 and a sequence c = (c1, . . . , ct) of non-negative integers cj ∈ Z>0 such
that we have n = m2α+γ+c1+···+ct . Moreover, a ∈ N is such that (q2 − 1)2 = 2a+1.

(i) Let us first determine the basic subgroups of the group GL1(q). In this case we
have n = 1 = 1 · 20, so m = 1, α = γ = ci = 0. We deduce that Ac = 1, whence
it follows that Ri1,0,0,c = R1,0,0 = R0,0. Hence, there exists only one basic subgroup of
GL1(q). For q ≡ 1 mod 4 this is an embedding of the group E0Z0 into GL1(q), which
is the central product of the cyclic groups C2 and C2a , i.e., an embedding of C2a into
GL1(q) by Lemma 7.22. Since GL1(q) is cyclic, this is uniquely determined, given by
O2(Z(GL1(q))) = O2(〈(ζ)〉) as claimed. For q ≡ −1 mod 4 the group Z0 was defined to
be the center of Eγ , so in this case R0,0 is the embedding of E0Z0 = C2 into GL1(q). As
before, this is uniquely determined and given by O2(Z(GL1(q))) = O2(〈(ζ)〉).

(ii) For the basic subgroups of GL2(q) let us first observe that n = 2 = 1 · 21 = 2 · 20,
so we have to consider several cases:

(1) m = 1, α = 1, γ = 0, cj = 0 for all j > 1,

(2) m = 1, α = 0, γ = 1, cj = 0 for all j > 1,

(3) m = 1, α = 0, γ = 0, cj = 0 for all j > 2, c1 = 1,
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(4) m = 2, α = 0, γ = 0, cj = 0 for all j > 1.

In Case (1) we have Rim,α,γ,c = R1,0. This is an embedding of the central product C2C2a+1 ,
which is isomorphic to C2a+1 by Lemma 7.22, into the general linear group GL2(q). We
prove that up to GL2(q)-conjugation there exists only one such subgroup inside GL2(q).
Let A ∈ GL2(q) be of order 2a+1 = (q2−1)2. Then there exists an eigenvalue of A of order
(q2 − 1)2, say β ∈ F×

q2 \ F×q . Since β 6∈ F×q , by [Ste51, p. 226] the second eigenvalue of A

is βq 6= β. Hence, A is a semisimple element of GL2(q), which is conjugate to diag(β, βq)
in GL2(F). Now let A′ ∈ GL2(q) be another element of order (q2 − 1)2 with eigenvalue
β′ ∈ F×

q2 \ F×q of order (q2 − 1)2. As before, the second eigenvalue of A′ is β′q 6= β′. Being

cyclic, the group F×
q2 contains only one subgroup of order (q2 − 1)2, so in particular there

exists an odd element x ∈ N such that β′x = β. The matrix A′x is hence still of order
(q2 − 1)2 and has eigenvalues β and βq. Thus, in GL2(F) it is conjugate to diag(β, βq),
and hence to A. By Remark 7.2 the matrices A and A′x are already conjugate in GL2(q).
In particular, the subgroups of GL2(q) generated by A respectively A′x lie in the same
GL2(q)-conjugacy class. Since A′ and A′x generate the same subgroup of GL2(q), we may
now conclude that any two cyclic subgroups of GL2(q) of order (q2 − 1)2 are conjugate in
GL2(q). In particular, we have

Rim,α,γ,c ∼GL2(F) O2(〈diag(ξ, ξq)〉),

which gives (ii)(b).
Case (2) gives Rim,α,γ,c = R0,1 if q ≡ 1 mod 4. In this situation R0,1 is an embedding of

the central product E1C2a into GL2(q), where E1 is an extraspecial group of order 21+2,
i.e., E1 is either a quaternion group Q8 or a dihedral group D8 of order 8, depending on
the type of E1. By [An92, p. 501] the product E1C2a does not depend on the type of E1, so
we may assume that E1 = Q8. As described in Definition 7.10 the group R0,1 is obtained
by embedding E1C2a into GL2(q) in such a way that C2a is identified with O2(Z(GL2(q))).
Moreover, by Corollary 7.15 there exists exactly one conjugacy class of subgroups in GL2(q)
isomorphic toQ8. Since GL2(q)-conjugation stabilizes the central subgroupO2(Z(GL2(q)))

of GL2(q), we may hence assume that Rim,α,γ,c = 〈Q′8, diag(ζ, ζ)2〉 = Q̃′8 6 GL2(q), so we
obtain (ii)(d).

Assume now that q ≡ −1 mod 4. Then R1
m,α,γ,c = R0,1 and R2

m,α,γ,c = S1,1,0 = S1,0.
Consider first R1

m,α,γ,c. We have R0,1 = E1Z0 = E1, and as for q ≡ 1 mod 4, the group
E1 is either quaternion or dihedral of order 8. If E1 is quaternion, then by Corollary 7.15
we may assume that R1

m,α,γ,c = Q′8, and if E1 is dihedral, then by Corollary 7.16 we have
R = D′8 up to GL2(q)-conjugation. This yields (ii)(e). Let us now examine R2

m,α,γ,c. By
definition S1,0 is the image of the central product E0P embedded into GL2(q), where P is
a semidihedral group of order 2a+2 and E0 = C2. As |GL2(q)|2 = (q− 1)2

2(q+ 1)2 = 2a+2,
we have S1,0 ∈ Syl2(GL2(q)) and hence

R2
m,α,γ,c ∼GL2(F) O2(〈diag(ξ, ξq)〉)o 〈( 0 1

1 0 )〉 ,

which gives (ii)(c) for q ≡ −1 mod 4.
In case (3) we only need to determine the groups Rim,α,γ,c for q ≡ 1 mod 4 since by

definition they do not constitute basic subgroups if q ≡ −1 mod 4. We have

Rim,α,γ,c = Rim,α,γ oAc = R0,0 oS2 6 GL2(q).

As we computed for GL1(q), the group R0,0 is the uniquely determined image of the
embedding of C2a into GL1(q). In particular, it follows that the group Rim,α,γ,c is of order
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given by 2 · (2a)2 = |GL2(q) |2. Hence, it forms a Sylow 2-subgroup of GL2(q), and we
have

Rim,α,γ,c = O2(〈diag(ζ, 1)〉 × 〈diag(1, ζ)〉)o 〈( 0 1
1 0 )〉

up to GL2(q)-conjugation. This gives (ii)(c) for q ≡ 1 mod 4.
Let us now consider case (4). Then Rim,α,γ,c = Rm,α,γ is the image of R0,0 under the

two-fold diagonal embedding, that is, we have Rim,α,γ,c = O2(〈diag(ζ, ζ)〉) 6 GL2(q). This
gives the basic subgroup in (ii)(a).

(iii) It remains to find the basic subgroups of GL3(q). We have n = 3 = 3 · 20, so
m = 3 and α = γ = ci = 0. Then Rim,α,γ,c = Rim,α,γ = Rm,α,γ is the image of R0,0 in
GL3(q) under the 3-fold diagonal mapping, i.e., we have Rim,α,γ,c = O2(〈diag(ζ, ζ, ζ)〉) as
claimed.

We have now obtained all necessary information to construct the radical 2-subgroups
of the special linear group G.

Proposition 7.24. Let R 6 G be a radical 2-subgroup of G. Then up to G-conjugation
one of the following holds:

(i) R = {1},

(ii) R = O2(〈diag(ζ, ζ, ζ−2)〉), where ζ ∈ F× is of order q − 1,

(iii) (q + 1)2′ 6= 1 and R = O2(T ′), where T ′ denotes a maximal torus of G of type T2,

(iv) R = Q̃8,

(v) R = O2(T ), where T denotes a maximal torus of G of type T1,

(vi) R ∈ Syl2(G).

Proof. Let us first verify that the above specified subgroups of G are indeed 2-radical in
G. This is clearly true for the Sylow 2-subgroups of G and for the trivial subgroup {1} as
G is simple.

ForR = O2(〈diag(ζ, ζ, ζ−2)〉) as in (ii) we observe that NG(R) ∼= GL2(q) by Lemma 7.7.
Analogously to the proof of Proposition 7.9 one can show that R is 2-radical in G.

For R = O2(T ′) as in (iii) we recall that by Proposition 5.7 we have NG(T ′) ∼= T ′oC2,
where the generating element c of C2 acts trivially only on elements of T ′ whose order
divides q − 1. Moreover, NG(R) = NG(T ′) by Proposition 5.8, so

NG(R)/R ∼= C(q2−1)2′
o C2

such that c commutes only with elements of C(q2−1)2′
of order dividing q − 1. Now for

(q + 1)2′ 6= 1 there exists an element s in C(q2−1)2′
whose order does not divide q − 1,

for instance the generator of this cyclic group. Hence, s and c do not commute. Now
suppose that t ∈ C(q2−1)2′

is such that the element tc has order 2 in C(q2−1)2′
oC2. Then

s−1tcs = ts−1cs 6= tc, i.e., s does not normalize the subgroup of C(q2−1)2′
oC2 generated by

tc. In particular, NG(R)/R with |NG(R)/R |2 = 2 does not contain a non-trivial normal
2-subgroup, so R is a radical 2-subgroup of G in this case.

Let us now consider the case R = Q̃8 as in (iv). From Proposition 7.18 it follows that
CG(R) = 〈diag(ζ, ζ, ζ−2)〉 and NG(R)/RCG(R) ∼= S3. Hence,

RCG(R)/R ∼= O2′(〈diag(ζ, ζ, ζ−2)〉)
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since R∩〈diag(ζ, ζ, ζ−2)〉 = O2(〈diag(ζ, ζ, ζ−2)〉), so RCG(R)/R is a 2′-group. Let us now
suppose that P is a normal 2-subgroup of NG(R)/R. Then

(P (RCG(R)/R))/(RCG(R)/R)

is a normal 2-subgroup of (NG(R)/R)/(RCG(R)/R) ∼= NG(R)/RCG(R) ∼= S3. But
the symmetric group S3 does not contain any non-trivial normal 2-subgroups, so P is
contained in RCG(R)/R. Since this is a 2′-group, we conclude that P = {1}, that is,
O2(NG(R)/R) = {1} and R is a radical 2-subgroup of G as claimed.

Suppose now that R = O2(T ) as in (v), where T denotes a maximal torus of G of
type T1. By Proposition 5.8 the normalizer of R is given by NG(R) = NG(T ) ∼= T oS3,
so NG(R)/R ∼= (C(q−1)2′

× C(q−1)2′
) o S3, which does not have any non-trivial normal

2-subgroups since S3 does not possess any. Thus, R is 2-radical in G.

It remains to prove that any radical 2-subgroup of G is G-conjugate to one of the
subgroups specified in the proposition. By Theorem 7.11 and the preceding considerations,
in order to prove that we have found all radical 2-subgroups of SL3(q) it suffices to find all
subgroups R′ of GL3(q) that have a decomposition as in Theorem 7.11 and check which
of those are 2-radical. We have GL3(q) ∼= GL(V ) for any 3-dimensional Fq-vector space
V , and the possible decompositions of V up to isomorphism are V = V1 with dimV1 = 3,
V = V1⊕V2 with dimV1 = 2, dimV2 = 1, and V = V1⊕V2⊕V3 with dimVi = 1, i = 1, 2, 3.

Suppose first that V = V1 with dimV1 = 3. Then R′ = R1 is a basic subgroup of
GL(V1) ∼= GL3(q) or possibly R′ = {±1V1} if q ≡ −1 mod 4. According to Proposition 7.23
it holds that the only basic subgroup of GL3(q) is given by O2(〈diag(ζ, ζ, ζ)〉). Moreover,
if q ≡ −1 mod 4, then {±1V1} and O2(〈diag(ζ, ζ, ζ)〉) agree, so in any case we obtain that
R′ = O2(〈diag(ζ, ζ, ζ)〉). Hence, R′ ∩ SL3(q) = {1}, which is 2-radical. This gives (i).

Let now V = V1⊕V2 with dimV1 = 2 and dimV2 = 1. Suppose first that q ≡ 1 mod 4.
Then R′ = R1 × R2 with R1, R2 basic subgroups of GL2(q), GL1(q), respectively. By
Proposition 7.23 up to conjugation (possibly in GL3(F)) one of the following holds:

(a) R′ = O2(〈diag(ξ, ξq, 1)〉)×O2(〈diag(1, 1, ζ)〉), where ξ ∈ F× is of order q2 − 1,

(b) R′ = O2(〈Q′8, diag(ζ, ζ, 1)〉)×O2(〈diag(1, 1, ζ)〉) where we identify Q′8 with its image
under the embedding GL2(q)→ GL3(q), A 7→

(
A

1

)
,

(c) R′ = O2((〈diag(ζ, 1, 1)〉 × 〈diag(1, ζ, 1)〉 × 〈diag(1, 1, ζ)〉))o
〈(

0 1 0
1 0 0
0 0 1

)〉
,

(d) R′ = O2(〈diag(ζ, ζ, 1)〉)×O2(〈diag(1, 1, ζ)〉).

These correspond to the G-conjugacy classes of radical 2-subgroups of G represented by
O2(T ′) ∼G O2(〈diag(ξ, ξq, ξ−(q+1))〉) in (a), Q̃8 in (b), a Sylow 2-subgroup of G in (c) and
O2(〈diag(ζ, ζ, ζ−2)〉) in (d).

For q ≡ −1 mod 4 the groups Ri are either basic subgroups or Ri = {±1Vi}. In
any case, R2 = {±1V2} as we observed above, so the basic subgroups of GL2(q) given in
Proposition 7.23 yield the following candidates for radical 2-subgroups of GL3(q):

(a) R′ = 〈diag(−1,−1, 1)〉 × 〈diag(1, 1,−1)〉,

(b) R′ ∼GL3(F) O2(〈diag(ξ, ξq, 1)〉)× 〈diag(1, 1,−1)〉,

(c) R′ = O2(〈diag(ξ, ξq, 1), diag(1, 1,−1)〉)o
〈(

0 1 0
1 0 0
0 0 1

)〉
,
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(d) R′ = Q′8 × O2(〈diag(1, 1,−1)〉), where we identify Q′8 with its image under the
embedding GL2(q)→ GL3(q), A 7→

(
A

1

)
,

(e) R′ = D′8 × O2(〈diag(1, 1,−1)〉), where we identify D′8 with its image under the
embedding GL2(q)→ GL3(q), A 7→

(
A

1

)
.

The subgroups of GL3(q) specified in points (a), (b), (c) and (d) above correspond to the
conjugacy classes of radical 2-subgroups ofG represented by the groupsO2(diag(ζ, ζ, ζ−2)),

O2(T ′) ∼G O2(〈diag(ξ, ξq, ξ−(q+1))〉), a Sylow 2-subgroup of G, and Q̃8, respectively.

We prove now that the group in (e) does not admit a radical 2-subgroup of G. Suppose

that R′ is as in case (e). Then R′ ∩G = D̃8 and by Proposition 7.20 we have

CG(D̃8) = 〈diag(ζ, ζ, ζ−2)〉

and

NG(D̃8)/D̃8 CG(D̃8) ∼= C2.

In particular, this yields

(NG(D̃8)/D̃8)/(D̃8 CG(D̃8)/D̃8) ∼= NG(D̃8)/D̃8 CG(D̃8) ∼= C2.

Moreover, by Corollary 7.21 the group D̃8 CG(D̃8)/D̃8 lies in the center of NG(D̃8)/D̃8,

and since its index in NG(D̃8)/D̃8 is 2, we conclude that NG(D̃8)/D̃8 is abelian. Now 2

divides the order of NG(D̃8)/D̃8, so we conclude that NG(D̃8)/D̃8 contains a non-trivial

normal 2-subgroup, i.e., D̃8 is not 2-radical in G.

Finally we suppose that V decomposes as V = V1 ⊕ V2 ⊕ V3 with dimVi = 1 for all i.
Then we get

R′ = O2(〈diag(ζ, 1, 1)〉)×O2(〈diag(1, ζ, 1)〉)×O2(〈diag(1, 1, ζ)〉),

which corresponds to the radical 2-subgroup O2(T ) of G as in (v).

We summarize that any subgroup of GL3(q) of the form described in Theorem 7.11
either admits a subgroup of G conjugate to one of the groups specified in the claim of this
proposition or a non-radical 2-subgroup of G. This finishes the proof.

We have now obtained a classification of the radical `-subgroups of G for all primes
` dividing q − 1. Applying Construction 2.10 we will in the following make use of this
classification to find the B-weights of G for all `-blocks B of G of non-cyclic defect.

7.2.2 B-Weights and the Action of Aut(G)B in the Case 2 6= ` | (q − 1)

Let us suppose that ` is an odd prime dividing q − 1. We recall from Proposition 6.8
that there exist five distinct types of `-blocks for G, namely the principal `-block B0, the
`-blocks of types B( ), B( , ) or B′( ), and the `-blocks of `-defect zero. As observed in
Lemma 6.10 only the `-blocks of types

B0, B( ) and B( , )

have non-cyclic defect groups. More precisely, these are of maximal defect, that is to say,
their defect groups are given by the Sylow `-subgroups of G. Since these are abelian ac-
cording to Proposition 5.9, it follows from Lemma 2.11 that R ∈ Syl`(G) for every `-weight
(R,ϕ) belonging to such an `-block. In consequence of Construction 2.10, representatives
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for the G-conjugacy classes of B-weights for an `-block B of type B0, B( ) or B( , ) are
hence constructed as follows:

Throughout this section we let T denote the maximally split torus of G consisting of
the diagonal matrices in G. Its `-core O`(T ) is a Sylow `-subgroup of G by Proposition 5.9
and a defect group of B as observed above. Furthermore, we have

O`(T ) CG(O`(T )) = T

and
NG(O`(T )) = NG(T )

by Proposition 5.9, and by Theorem 1.7, Brauer’s extended first main theorem, there exists
only one NG(T )-conjugacy class of `-blocks b ∈ Bl`(T | O`(T )) inducing to B. Note that
due to T being abelian each of its `-blocks has defect group O`(T ) following Lemma 1.13,
so in other words we have Bl`(T | O`(T )) = Bl`(T ). Hence, according to Construction 2.10
we obtain a complete set of representatives for theG-conjugacy classes of B-weights ofG by
fixing one `-block b ∈ Bl`(T ) with bG = B, determining all characters ψ ∈ Irr(NG(T )θ | θ)
such that ψ(1)` = |NG(T )θ : T |`, where θ ∈ Irr(T ) denotes the canonical character of b,
and finally constructing the `-weights

(O`(T ), Ind
NG(T )
NG(T )θ

(ψ))

for those ψ. The `-weights obtained this way belong to B, they are distinct for distinct ψ
and up to G-conjugation they constitute all `-weights of G associated to B.

Consequently, for each `-block B in question our task is to find a root b ∈ Bl`(T ) of
B with associated canonical character θ ∈ Irr(T ), and then to construct all characters
ψ ∈ Irr(NG(T )θ | θ) satisfying ψ(1)` = |NG(T )θ : T |`. Induction of these characters as
above then yields the B-weights aimed for.

As has become apparent from the considerations above, the irreducible characters of
the maximally split torus T play an important role for the construction of `-weights in
the present situation. It will therefore be convenient to fix the following parametrization
of Irr(T ):

Notation 7.25 (Parametrization of Irr(T )). As before we choose ζ ∈ F× to generate F×q .
Using this notation we consider the linear character θ0 of the cyclic group F×q defined by

θ0 : F×q −→ C×, ζ 7−→ ε := exp

(
2πi

q − 1

)
.

Then θ0 generates the character group of F×q , that is, the set of irreducible characters of
F×q may be written as

Irr(F×q ) = {θi0 | 0 6 i < q − 1}.

Now the maximal torus T is isomorphic to the direct product F×q ×F×q , whence the above
parametrization of Irr(F×q ) yields a parametrization of Irr(T ) given by

Irr(T ) = {θi0 × θ
j
0 × 1 | 0 6 i, j < q − 1},

where we have

(θi0 × θ
j
0 × 1)(diag(t1, t2, (t1t2)−1)) = θi0(t1)θj0(t2)

for every diagonal matrix diag(t1, t2, (t1t2)−1) ∈ T with t1, t2 ∈ F×q .
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Having decided on a parametrization of Irr(T ) we are now interested in the action of
NG(T ) on this set, which will be of importance when it comes to determining the stabilizers
NG(T )θ for various canonical characters θ ∈ Irr(T ).

Lemma 7.26. Let θ = θi0 × θ
j
0 × 1 ∈ Irr(T ), and for n ∈ NG(T ) denote by w ∈ S3 the

image of n in NG(T )/T ∼= S3. Then we have

(i) θn = θj0 × θi0 × 1 if w = (12),

(ii) θn = θi−j0 × θ−j0 × 1 if w = (23),

(iii) θn = θ−i0 × θj−i0 × 1 if w = (13),

(iv) θn = θj−i0 × θ−i0 × 1 if w = (123),

(v) θn = θ−j0 × θi−j0 × 1 if w = (132).

Proof. These are straightforward calculations in view of NG(T )/T ∼= S3 acting on T by
permutation of the diagonal entries of the matrices in T .

We are now fully prepared to construct the B-weights for all `-blocks B of G of non-
cyclic defect, i.e., for the `-blocks of types B0, B( ) and B( , ). For this purpose we treat
each of these three cases individually.

7.2.2.1 The Principal Block B0

Let B = B0 be the principal `-block of G. In consequence of the third main theorem
of Brauer, Theorem 1.9, the principal `-block b0 of T is the unique `-block of T that
induces to B, and the associated canonical character θ is the trivial character of T , whence
NG(T )θ = NG(T ). In particular, the trivial character 1NG(T ) of NG(T ) is an extension of
θ to NG(T )θ = NG(T ), and by Gallagher’s theorem, Theorem 1.21, we have

Irr(NG(T ) | θ) = {1NG(T ) · ν | ν ∈ Irr(NG(T )/T )}.

As a result we obtain the following:

Proposition 7.27. Suppose that 2 6= ` | (q− 1) and let B = B0 be the principal `-block of
G. Then |W(B)| = 3. More precisely, if (R,ϕ) is a B-weight, then up to G-conjugation
it holds that R = O`(T ) and ϕ = 1NG(T ) · ν, where ν denotes one of the three irreducible
characters of NG(T )/T ∼= S3.

Proof. This follows from the previous considerations seeing that the degrees of the irre-
ducible characters of S3 are either 1 or 2, whence, in the notation used above, for all
ψ ∈ Irr(NG(T )θ | θ) we have ψ(1)` = 1 = |6|` = |NG(T )θ : T |`. Accordingly, each of
the three irreducible characters of NG(T )/T gives rise to a distinct G-conjugacy class of
B-weights as claimed.

Let us now consider the action of the automorphisms of G on the G-conjugacy classes
of B-weights. We observe the following:

Proposition 7.28. Suppose that 2 6= ` | (q − 1) and let B = B0 be the principal `-block
of G. Then Aut(G)B = Aut(G) acts trivially on W(B).
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Proof. Let (R,ϕ) be a B-weight and a ∈ Aut(G). By Proposition 7.27 we may assume that
R = O`(T ) ∈ Syl`(G). In particular, constituting a Sylow `-subgroup of G the image of R
under a is a G-conjugate of R, and since our interests only lie in the G-conjugacy classes
of B-weights, we may without loss of generality assume that a ∈ Aut(G)R. Moreover,
following Proposition 7.27 the weight character ϕ is given by ϕ = 1NG(T ) · ν for some
irreducible character ν of NG(T )/T ∼= S3. If ν is the trivial character of NG(T )/T , then ϕ
is clearly fixed by a. Moreover, a also leaves the two non-trivial irreducible characters of
NG(T )/T invariant since they have distinct degrees and can hence not be interchanged by
a. Thus, for any choice of ν ∈ Irr(NG(T )/T ) the character ϕ = 1NG(T ) · ν is left invariant
by a, which finishes the proof.

7.2.2.2 The Blocks of Type B( )

Let us now turn to the `-blocks of G of type B( ). In a first step towards the construction of
the `-weights belonging to such blocks we take a look at the canonical characters associated
to roots of `-blocks of this type.

Lemma 7.29. Suppose that 2 6= ` | (q − 1) and denote by B an `-block of G of type B( ).
Moreover, suppose that b ∈ Bl`(T ) is a root of B. Then there exists 1 6 k < (q− 1)`′ such
that up to NG(T )-conjugation the canonical character of b is given by the linear character

θ = θ
k(q−1)`
0 × 1× 1 ∈ Irr(T ).

Proof. Suppose that B = B(u) for some parameter u ∈ {1, . . . , (q − 1)`′ − 1}. As a result
of Proposition 6.8 the `-block B contains every irreducible character of G of type χΦ3

whose parameter v satisfies u ≡ v mod (q−1)`′ . If v is such a parameter, then there exists
i ∈ {0, . . . , (q − 1)` − 1} such that v = u+ i(q − 1)`′ , and we have

v ≡ 0 mod (q − 1)` if and only if i(q − 1)`′ ≡ −u mod (q − 1)`.

Since gcd((q − 1)`, (q − 1)`′) = 1, the integer (q − 1)`′ is invertible modulo (q − 1)`, so in
particular i(q − 1)`′ ≡ −u mod (q − 1)` has exactly one solution i ∈ {0, . . . , (q − 1)` − 1}.
Consequently, there exists exactly one v ∈ {1, . . . , q − 2} with v ≡ u mod (q − 1)`′ and
v ≡ 0 mod (q− 1)`, say v = k(q− 1)` for some 1 6 k < (q− 1)`′ . Thus, B contains exactly
one character of type χΦ3 whose parameter is a multiple of (q− 1)`, namely the character
with parameter v = k(q − 1)`. We show that the character

θ = θ
k(q−1)`
0 × 1× 1 ∈ Irr(T )

satisfies the claim.
As noted before, any `-block b′ of T has defect group O`(T ) since T is abelian, so in

particular b′G has defect group O`(T ) ∈ Syl`(G) by Lemma 1.1. Following Proposition 1.11
we hence have b′G = B if and only if

λB(Ĉ) = λb′G(Ĉ)

for every `′-conjugacy class C of G with defect group O`(T ). Moreover, by the extended
first main theorem of Brauer, Theorem 1.7, all `-blocks b′ ∈ Bl`(T ) with b′G = B are
conjugate under NG(O`(T )) = NG(T ). Hence, it suffices to prove that b′ := bl(θ) satisfies
this condition.

As a result of Proposition 6.3 the conjugacy classes of G with defect group O`(T ) are

the classes C1, C
(a)
4 and C

(a,b)
6 for appropriate parameters a, b (cf. Table 6.1), where for

the trivial class C1 there is nothing to show. We have

C
(a)
4 ∩ T = {diag(ζa, ζa, ζ−2a), diag(ζa, ζ−2a, ζa), diag(ζ−2a, ζa, ζa)}
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and

C
(a,b)
6 ∩ T = {diag(ζa, ζb, ζ−(a+b)), diag(ζb, ζa, ζ−(a+b)), diag(ζa, ζ−(a+b), ζb),

diag(ζ−(a+b), ζa, ζb), diag(ζb, ζ−(a+b), ζa), diag(ζ−(a+b), ζb, ζa)}.

Hence,

λbl(θ)G(Ĉ
(a)
4 ) = λGbl(θ)(Ĉ

(a)
4 ) = λbl(θ)(

̂
C

(a)
4 ∩ T )

=
(
θ(diag(ζa, ζa, ζ−2a)) + θ(diag(ζa, ζ−2a, ζa)) + θ(diag(ζ−2a, ζa, ζa))

)∗
=
(
θ
k(q−1)`
0 (ζa) + θ

k(q−1)`
0 (ζa) + θ

k(q−1)`
0 (ζ−2a)

)∗
=
(

2εak(q−1)` + ε−2ak(q−1)`
)∗
.

On the other hand, we also have

λB(Ĉ
(a)
4 ) = λ

χ
(k(q−1)`)

Φ3

(Ĉ
(a)
4 ) =

(
2εak(q−1)` + ε−2ak(q−1)`

)∗
by Table 6.2, so λbl(θ)G(Ĉ

(a)
4 ) = λB(Ĉ

(a)
4 ). Moreover, for the conjugacy classes of type C6

we observe that

λbl(θ)G(Ĉ
(a,b)
6 ) =λGbl(θ)(Ĉ

(a,b)
6 ) = λbl(θ)(

̂
C

(a,b)
6 ∩ T )

=
(
θ(diag(ζa, ζb, ζ−(a+b))) + θ(diag(ζb, ζa, ζ−(a+b)))

+ θ(diag(ζa, ζ−(a+b), ζb)) + θ(diag(ζ−(a+b), ζa, ζb))

+ θ(diag(ζb, ζ−(a+b), ζa)) + θ(diag(ζ−(a+b), ζb, ζa))
)∗

=
(

2
(
θ
k(q−1)`
0 (ζa) + θ

k(q−1)`
0 (ζb) + θ

k(q−1)`
0 (ζ−(a+b))

))∗
=
(

2
(
εak(q−1)` + εbk(q−1)` + ε−(a+b)k(q−1)`

))∗
,

which equals λB(Ĉ
(a,b)
6 ) according to Table 6.2. Hence, the claim follows since O`(T ) is

clearly contained in the kernel of θ.

By application of the information provided by the above lemma we may now construct
the `-weights of G belonging to `-blocks of type B( ).

Proposition 7.30. Suppose that 2 6= ` | (q − 1) and let B be an `-block of G of type
B( ). Then |W(B)| = 2. More precisely, denote by θ ∈ Irr(T ) the canonical character of a
root of B and assume that (R,ϕ) is a B-weight. Then up to G-conjugation it holds that
R = O`(T ) and

ϕ = Ind
NG(T )
NG(T )θ

(θ̃ · ν),

where θ̃ is an extension of θ to NG(T )θ and ν ∈ Irr(NG(T )θ/T ) with NG(T )θ/T ∼= C2.

Proof. As discussed before we have R = O`(T ) up to G-conjugation, and by Lemma 7.29

we may assume that θ = θ
k(q−1)`
0 × 1× 1 for a suitable parameter k. Now NG(T )/T ∼= S3

and NG(T ) acts on Irr(T ) = {θi0 × θ
j
0 × 1 | 0 6 i, j < q − 1} as described in Lemma 7.26,

from which we deduce that modulo T there exists only one element in NG(T ) stabilizing
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θ, namely the element corresponding to the transposition (2 3) ∈ S3, so NG(T )θ/T ∼= C2.
By Proposition 1.20(i) the character θ has an extension θ̃ to NG(T )θ, whence the claim
follows from the considerations at the beginning of Section 7.2.2 since by the theorem of
Gallagher, Theorem 1.21, we have

Irr(NG(T )θ | θ) = {θ̃ · ν | ν ∈ Irr(NG(T )θ/T )},

and both characters ψ in this set are linear, hence satisfy ψ(1)` = 1 = |NG(T )θ : T |`.

Proposition 7.31. Suppose that 2 6= ` | (q− 1) and let B be an `-block of G of type B( ).
Then Aut(G)B acts trivially on W(B).

Proof. Let (R,ϕ) be a B-weight. In consequence of Proposition 7.30 we may assume that
R = O`(T ) and ϕ is the induction to NG(T ) of the character θ̃ · ν, where θ̃ ∈ Irr(NG(T )θ)
is an extension of

θ = θ
k(q−1)`
0 × 1× 1

for some k ∈ Z and ν ∈ Irr(NG(T )θ/T ) with NG(T )θ/T ∼= C2. Let a ∈ Aut(G)B and
assume without loss of generality that a stabilizes T and hence also R. Then by Brauer’s
extended first main theorem, Theorem 1.7, the `-block bl(θ)a = bl(θa), which induces to
B by Proposition 1.3, is NG(T )-conjugate to bl(θ), and since θa is the canonical character
of bl(θa), we deduce that θa = θn for some n ∈ NG(T ). Hence, replacing a by acn−1 , where
we recall that

cn−1 : G −→ G, g 7−→ n−1gn,

we may assume that a fixes θ. Due to the fact that Aut(G) = Go 〈Γ, Fp〉 and R = O`(T )
is stable under Γ and Fp, we must have a ∈ cx〈Γ, Fp〉 for some x ∈ NG(R) = NG(T ). One
easily verifies that the element

v := v2v3 =

−1 0 0
0 0 −1
0 −1 0

 ∈ NG(T ) \ T,

which corresponds to the permutation (23) in S3, stabilizes θ, such that NG(T )θ = 〈T, v〉
as a result of Proposition 7.30. Clearly, v is left invariant by both Γ and Fp, so according
to Lemma 1.25 we have cx(v) = a(v) ∈ NG(T )θ. Hence, the elements cx(v) and v agree
modulo T , which leads to the conclusion that

xT ∈ CNG(T )/T (vT ) ∼= CS3((2 3)) = 〈(2 3)〉,

or, in other words, xT ∈ 〈vT 〉, that is, x ∈ 〈T, v〉 = NG(T )θ. Thus,

θ̃a(v) = θ̃cx(v) = θ̃(v),

such that by application of Corollary 1.22 it follows that θ̃a = θ̃ because both θ̃a and θ̃ are
extensions of θ to its stabilizer NG(T )θ = 〈T, v〉 satisfying θ̃a(v) = θ̃(v) 6= 0 since θ̃ is linear.
Clearly, a stabilizes ν being one of the two irreducible characters of NG(T )θ/T ∼= C2, so
in particular a stabilizes θ̃ · ν and hence also ϕ. This proves the claim.
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7.2.2.3 The Blocks of Type B( , )

The last type of `-blocks of G we consider for the present choice of prime ` are the `-blocks
of type B( , ). As for the `-blocks of type B( ) we begin our examination by the following
observation on canonical characters associated to such blocks:

Lemma 7.32. Suppose that 2 6= ` | (q − 1) and let B be an `-block of G of type B( , ).
Moreover, let b ∈ Bl`(T ) be a root of B. Then there exist parameters 1 6 u, v < (q − 1)`′

with (u(q−1)`, v(q−1)`) ∈M(Φ2Φ3) (cf. Notation 6.7) such that up to NG(T )-conjugation

the canonical character of b is given by θ = θ
u(q−1)`
0 × θv(q−1)`

0 × 1 ∈ Irr(T ).

Proof. Similarly as in the proof of Lemma 7.29 one can show that there exists a unique
irreducible character of type χΦ2Φ3 in B both of whose parameters are multiples of (q−1)`,
say parametrized by the tuple (u(q− 1)`, v(q− 1)`) ∈M(Φ2Φ3) with 1 6 u, v < (q− 1)`′ .
We prove that

θ = θ
u(q−1)`
0 × θv(q−1)`

0 × 1 ∈ Irr(T )

meets the claim.

As in the proof of Lemma 7.29 we show that λB(Ĉ) = λbl(θ)G(Ĉ) for every `′-conjugacy
class C of G with defect groupO`(T ), that is, we need to check this condition for the classes

C
(a)
4 and C

(a,b)
6 for appropriate parameters a and b. We have

λbl(θ)G(Ĉ
(a)
4 ) =λGbl(θ)(Ĉ

(a)
4 ) = λbl(θ)(

̂
C

(a)
4 ∩ T )

=
(
θ(diag(ζa, ζa, ζ−2a)) + θ(diag(ζa, ζ−2a, ζa)) + θ(diag(ζ−2a, ζa, ζa))

)∗
=
(
θ
u(q−1)`
0 (ζa)θ

v(q−1)`
0 (ζa) + θ

u(q−1)`
0 (ζa)θ

v(q−1)`
0 (ζ−2a)

+ θ
u(q−1)`
0 (ζ−2a)θ

v(q−1)`
0 (ζa)

)∗
=
(
εa(u+v)(q−1)` + εa(u−2v)(q−1)` + εa(v−2u)(q−1)`

)∗
=λ

χ
(u(q−1)`,v(q−1)`)

Φ2Φ3

(Ĉ
(a)
4 )

=λB(Ĉ
(a)
4 )

according to Table 6.2. Furthermore, for the G-conjugacy classes of type C6 we similarly
observe that

λbl(θ)G(Ĉ
(a,b)
6 ) =λGbl(θ)(Ĉ

(a,b)
6 ) = λbl(θ)(

̂
C

(a,b)
6 ∩ T )

=
(
θ(diag(ζa, ζb, ζ−(a+b))) + θ(diag(ζb, ζa, ζ−(a+b)))

+ θ(diag(ζa, ζ−(a+b), ζb)) + θ(diag(ζ−(a+b), ζa, ζb))

+ θ(diag(ζb, ζ−(a+b), ζa)) + θ(diag(ζ−(a+b), ζb, ζa))
)∗

=
(
θ
u(q−1)`
0 (ζa)θ

v(q−1)`
0 (ζb) + θ

u(q−1)`
0 (ζb)θ

v(q−1)`
0 (ζa)

+ θ
u(q−1)`
0 (ζa)θ

v(q−1)`
0 (ζ−(a+b)) + θ

u(q−1)`
0 (ζ−(a+b))θ

v(q−1)`
0 (ζa)

+ θ
u(q−1)`
0 (ζb)θ

v(q−1)`
0 (ζ−(a+b)) + θ

u(q−1)`
0 (ζ−(a+b))θ

v(q−1)`
0 (ζb)

)∗
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=
(
ε(au+bv)(q−1)` + ε(bu+av)(q−1)` + ε(au−(a+b)v)(q−1)`

+ ε(−(a+b)u+av)(q−1)` + ε(bu−(a+b)v)(q−1)` + ε(−(a+b)u+bv)(q−1)`
)∗

=λB(Ĉ
(a,b)
6 )

on comparison with Table 6.2. We have thus shown that bl(θ)G = B, and since clearly
O`(T ) ⊆ ker(θ), the claim follows.

Proposition 7.33. Suppose that 2 6= ` | (q−1) and let B be an `-block of G of type B( , ).
Moreover, let θ ∈ Irr(T ) be the canonical character of a root of B. Then |W(B)| = 1, and

if (R,ϕ) is a B-weight, then R = O`(T ) and ϕ = Ind
NG(T )
T (θ) up to G-conjugation.

Proof. As before, we have R = O`(T ) up to G-conjugation since R is a defect group of B.
Following Lemma 7.32 we may assume that

θ = θ
u(q−1)`
0 × θv(q−1)`

0 × 1

for suitable parameters 1 6 u, v < (q − 1)`′ with (u(q − 1)`, v(q − 1)`) ∈ M(Φ2Φ3), that
is, u, v, u− v, 2u+ v, 2v + u 6≡ 0 mod (q − 1)`′ . By application of Lemma 7.26 one easily
deduces that NG(T )θ = T . Hence, the considerations at the beginning of Section 7.2.2
imply that there exists only one G-conjugacy class of B-weights, which is represented by

the weight (O`(T ), Ind
NG(T )
T (θ)) as claimed.

As an immediate consequence of this result we obtain the following:

Proposition 7.34. Suppose that 2 6= ` | (q−1) and let B be an `-block of G of type B( , ).
Then Aut(G)B acts trivially on W(B).

Proof. This follows from the fact that |W(B)| = 1 by Proposition 7.33.

As an important result of this section we record the following statement:

Theorem 7.35. Let 2 6= ` | (q − 1). Then the blockwise Alperin weight conjecture holds
for each `-block of G.

Proof. This statement holds for `-blocks of cyclic defect by Proposition 3.9. For an `-block
B of non-cyclic defect we summarize the following:

• |W(B)| = 3 = l(B) if B is the principal `-block B0,

• |W(B)| = 2 = l(B) if B is of type B( ),

• |W(B)| = 1 = l(B) if B is of type B( , )

according to Proposition 6.9 for l(B) and Propositions 7.27, 7.30 and 7.33 for |W(B)|.

7.2.3 B-Weights and the Action of Aut(G)B in the Case ` = 2

Suppose now that ` = 2 and q is odd. As for the previous case, by Proposition 6.11 there
exist five distinct types of 2-blocks for G, which are the principal 2-block B0, the 2-blocks
of type B( ), B( , ) or B′( ), and the 2-blocks of 2-defect zero.

As proposed by Lemma 6.13, the 2-blocks of G of type B′( ) have cyclic defect groups,
whence analogously to the previous case we again only consider the principal 2-block and
the 2-blocks of types B( ) and B( , ).
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Once more we follow Construction 2.10 to obtain all G-conjugacy classes of 2-weights
for these three types of 2-blocks. We note that in contrast to the previous case the Sylow
2-subgroups of G are not abelian, such that in general, if (R,ϕ) is a 2-weight for some 2-
block B of G, the group R does not need to be a defect group of B. In particular, following
Construction 2.10 in principle we have to consider all types of radical 2-subgroups of G.
However, it turns out that in fact some of the sixG-conjugacy classes of radical 2-subgroups
of G (cf. Proposition 7.24) do not give rise to any 2-weights belonging to 2-blocks of types
B0, B( ) or B( , ). These radical 2-subgroups will hence not be taken account of in the
construction of 2-weights for these blocks. Our first result is the following observation:

Proposition 7.36. Let R = {1} be the trivial subgroup of G. If (R,ϕ) is a B-weight of
G for some 2-block B of G, then B is of 2-defect zero.

In particular, R = {1} does not give rise to any 2-weights of G belonging to 2-blocks
of types B0, B( ) or B( , ).

Proof. Clearly, we have NG(R)/R = G, so ϕ is an irreducible character of 2-defect zero
associated to B. Hence, B must have 2-defect zero.

Secondly, the following statement disproves the existence of any 2-weights of G whose
first component is G-conjugate to the radical 2-subgroup O2(〈diag(ζ, ζ, ζ−2)〉), where we
recall that ζ ∈ F× denotes a primitive root of unity of order q − 1.

Proposition 7.37. Let R = O2(〈diag(ζ, ζ, ζ−2)〉) for ζ ∈ F× of order q− 1. Then NG(R)
does not have any irreducible character that is of 2-defect zero if regarded a character of
the quotient NG(R)/R. In particular, there do not exist any 2-weights for G whose first
component is G-conjugate to R.

Proof. As already observed in Lemma 7.7, we have

NG(R)/R ∼= GL2(q)/O2(Z(GL2(q))),

which is of order

|NG(R)/R | = q(q − 1)2(q + 1)

(q − 1)2
.

Hence, an irreducible character ϕ ∈ Irr(NG(R)) that is of 2-defect zero when regarded as
a character of NG(R)/R would satisfy ϕ(1)2 = (q2 − 1)2. However, by [Ste51, Table II]
the degrees of the irreducible characters of GL2(q) are 1, q, q − 1 and q + 1. Hence, such
a character ϕ does not exist, whence R does not admit any 2-weights for G.

As a next step we focus on the question which types of 2-blocks of G hold 2-weights
with first component G-conjugate to the radical 2-subgroup O2(T ′), where T ′ denotes a
maximal torus of G of type T2.

Proposition 7.38. Suppose that T ′ is a maximal torus of G of type T2 and let R = O2(T ′).
Then any 2-weight (R,ϕ) of G belongs to a 2-block of type B′( ).

Proof. Suppose that (R,ϕ) is a 2-weight for G and denote by B the 2-block of G to which
(R,ϕ) is associated. By Propositions 5.7 and 5.8 it holds that NG(R) = NG(T ′) ∼= T ′oC2

and RCG(R) = T ′. Hence, by Construction 2.10 we have

ϕ = Ind
NG(T ′)
NG(T ′)θ

(ψ)

for some ψ ∈ Irr(NG(T ′)θ | θ) with ψ(1)2 = |NG(T ′)θ : T ′|2, where θ ∈ Irr(T ′) is the
canonical character of a 2-block of T ′ inducing to B. Since NG(T ′)/T ′ ∼= C2, it follows
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that |NG(T ′)θ : T ′| ∈ {1, 2}, so in particular NG(T ′)θ/T
′ is cyclic, such that by Proposi-

tion 1.20(i) there exists an extension θ̃ of θ to NG(T ′)θ. Then by Gallagher, Theorem 1.21,
we have

Irr(NG(T ′)θ | θ) = {θ̃ · β | β ∈ Irr(NG(T ′)θ/T
′)}.

Clearly, all characters in this set are linear, so ψ as above satisfies ψ(1)2 = 1. We conclude
that also |NG(T ′)θ : T ′|2 = 1, so NG(T ′)θ = T . Now a defect group of the 2-block bl(θ) is
given by R = O2(T ′) ∈ Syl2(T ′) in consequence of Lemma 1.13, and since NG(T ′)θ = T ,
Theorem 1.10 implies that B must have defect group R′ as well. But by Lemma 6.13 any
2-block of G with defect group R′ is of type B′( ), so the claim follows.

Remark 7.39. We recall from Proposition 7.24 that the group O2(T ′) for a maximal torus
T ′ of G of type T2 is only 2-radical in G if (q + 1)2′ 6= 1. Note that this is in accordance
with the fact that 2-blocks of type B′( ) only exist for G if this condition is satisfied
(cf. Proposition 6.11).

Finally, we observe that only for the principal 2-block B0 and 2-blocks of type B( , )

there exist 2-weights with first component O2(T ) for a maximal torus T of G of type T1:

Proposition 7.40. Suppose that T is a maximal torus of G of type T1 and let R = O2(T ).
If (R,ϕ) is a B-weight for some 2-block B of G, then one of the following holds:

(i) B = B0 is the principal 2-block of G and ϕ = 1NG(R) · χ2, where χ2 denotes the
unique irreducible character of degree 2 of NG(R)/RCG(R) ∼= S3;

(ii) B is of type B( , ), and (R,ϕ) is the unique B-weight with first component R.

Proof. By Proposition 5.8 we have RCG(R) = CG(R) = T and NG(R) = NG(T ) = ToS3,
with S3 acting on T by permutation of the diagonal entries. Let θ ∈ Irr(T ) denote
an irreducible constituent of ϕ|T . Following Construction 2.10 there exists a character
ψ ∈ Irr(NG(R)θ | θ) with ψ(1)2 = |NG(R)θ : T |2 such that

ϕ = Ind
NG(R)
NG(R)θ

(ψ)

and for b = bl(θ) we have bG = B.
Let us assume first that b is the principal 2-block of T . Then B = bG is the principal

2-block of G by Brauer’s third main theorem, Theorem 1.9, and θ = 1T is the trivial
character of T with NG(R)θ = NG(R). By Gallagher, Theorem 1.21, we have

Irr(NG(R) | θ) = {1NG(R) · ν | ν ∈ Irr(NG(R)/T )}.

From the fact that NG(R)/T ∼= S3 we conclude that this set contains exactly one character
ψ satisfying ψ(1)2 = |NG(R) : T |2 = 2, namely the character ψ = 1NG(R) · χ2, where χ2

denotes the unique irreducible character of degree 2 of NG(R)/T ∼= S3. Hence, we have
ϕ = 1NG(R) · χ2 as claimed.

Suppose now that b is non-principal. In the notation of Section 7.2.2 the canonical
character θ of b is given by

θ = θ
u(q−1)2

0 × θv(q−1)2

0 × 1

for some 0 6 u, v < (q − 1)2′ , and since b is non-principal, we may assume without loss of
generality that u 6= 0. Suppose that v = 0. Then NG(R)θ/T ∼= C2 by Lemma 7.26, and
according to Gallagher, Theorem 1.21, we have

Irr(NG(R)θ | θ) = {θ̃ · ν | ν ∈ Irr(NG(R)θ/T )}
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for some extension θ̃ of θ to NG(R)θ, which exists by Proposition 1.20(i) since NG(R)θ/T
is cyclic. Hence, the elements in Irr(NG(R)θ | θ) are linear, while |NG(R)θ : T |2 = 2, in
contradiction to the fact that there exists ψ ∈ Irr(NG(R)θ | θ) with ψ(1)2 = |NG(R)θ : T |2.
Hence, v 6= 0. Similarly, one proves that v 6= u.

Now analogously to the proof of Lemma 7.32 one can show that B = bG is a 2-block
of type B( , ). Moreover, since u, v 6= 0 and u 6= v, we have NG(R)θ = T following
Lemma 7.26. Hence, Irr(NG(R)θ | θ) = {θ}, and we conclude that ϕ is the induction
of θ to NG(R). By Brauer’s extended first main theorem, Theorem 1.7, up to NG(R)-
conjugation b is the unique 2-block of T inducing to B. In particular, θ is determined up
to NG(R)-conjugation, so ϕ is uniquely determined by R.

7.2.3.1 The Principal Block B0

Let us now move on to the determination of the 2-weights of G associated to the principal
2-block of G. These may be classified as follows:

Proposition 7.41. Let B = B0 be the principal 2-block of G. Then |W(B)| = 3, and if
(R,ϕ) is a B-weight, then up to G-conjugation one of the following holds:

(i) R = Q̃8 and ϕ = 1NG(R) · χ2, where χ2 denotes the unique irreducible character of
degree 2 of NG(R)/RCG(R) ∼= S3;

(ii) R = O2(T ) for a maximal torus T of G of type T1, and ϕ = 1NG(R) · χ2, where χ2

denotes the unique irreducible character of degree 2 of NG(R)/RCG(R) ∼= S3;

(iii) R ∈ Syl2(G) and ϕ = 1NG(R).

Proof. We construct the B-weights following Construction 2.10, that is, we go through
the list of radical 2-subgroups of G given in Proposition 7.24. We have already shown
in Propositions 7.36, 7.37 and 7.38 that the radical 2-subgroups G-conjugate to {1},
O2(〈diag(ζ, ζ, ζ−2)〉) for ζ ∈ F× of order q − 1, or O2(T ′) for a maximal torus T ′ of
G of type T2 do not admit any B-weights.

Hence, let us first suppose that we have R = Q̃8. Then according to Proposition 7.18
this satisfies

RCG(R) = 〈R,diag(ζ, ζ, ζ−2)〉

and

NG(R)/RCG(R) ∼= S3.

Moreover, diag(ζ, ζ, ζ−2)2 ∈ R. Now by the third main theorem of Brauer, Theorem 1.9,
the principal 2-block b0 ∈ Bl2(RCG(R)) is the unique 2-block of RCG(R) inducing to B.
Its canonical character is the trivial character 1RCG(R), so according to Construction 2.10
the B-weights with first component R are given by the pairs (R,ψ), where the irreducible
character ψ ∈ Irr(NG(R) | 1RCG(R)) meets the condition ψ(1)2 = |NG(R) : RCG(R)|2 = 2.
Following Gallagher, Theorem 1.21, we have

Irr(NG(R) | 1RCG(R)) = {1NG(R) · ν | ν ∈ Irr(NG(R)/RCG(R))},

which contains exactly one character ψ with ψ(1)2 = 2, namely the character 1NG(R) · χ2,
where χ2 denotes the unique irreducible character of degree 2 of NG(R)/RCG(R) ∼= S3.
Hence, up to G-conjugation (R, 1NG(R) · χ2) is the unique 2-weight of G belonging to B.

Suppose now that R = O2(T ) for a maximal torus T of G of type T1. By Proposi-
tion 5.8 we have CG(R) = T and NG(R) ∼= CG(R) o S3. As before, the unique 2-block
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of RCG(R) inducing to B is the principal 2-block of RCG(R), which has canonical char-
acter 1RCG(R). Again NG(R)/RCG(R) ∼= S3, so by the same argumentation as in the
previous case we obtain that up to G-conjugation (R, 1NG(R) · χ2) is the unique 2-weight
belonging to B, where once more χ2 denotes the unique irreducible character of degree 2
of NG(R)/RCG(R) ∼= S3.

Finally, let R ∈ Syl2(G). By Proposition 5.9 we have NG(R) = RCG(R). Hence, using
the same arguments as before we conclude that the unique B-weight with first component
R is given by the 2-weight (R, 1NG(R)). This completes the proof.

The behaviour of the B-weights under the action of Aut(G) is obtained easily:

Proposition 7.42. Let B = B0 be the principal 2-block of G. Then Aut(G)B = Aut(G)
acts trivially on W(B).

Proof. Clearly, Aut(G)B = Aut(G). Following Proposition 7.41 the G-conjugacy class of a
B-weight is uniquely determined by the isomorphism type of the corresponding radical 2-
subgroup. Since Aut(G) preserves isomorphism types, the claim follows immediately.

7.2.3.2 The Blocks of Type B( )

We next consider the 2-weights associated to 2-blocks of G of type B( ), for which we
observe the following:

Proposition 7.43. Let B be a 2-block of G of type B( ). Then |W(B)| = 2, and if (R,ϕ)
is a B-weight, then up to G-conjugation one of the following holds:

(i) R = Q̃8, there exists a unique 2-block b ∈ Bl2(RCG(R)) with bG = B, and ϕ = θ̃ ·χ2,
where the character θ̃ is an extension of the canonical character θ of b to NG(R) and
χ2 denotes the unique irreducible character of degree 2 of NG(R)/RCG(R) ∼= S3;

(ii) R ∈ Syl2(G), RCG(R) = NG(R), and ϕ is the canonical character of the Brauer
correspondent b ∈ Bl2(NG(R) | R) of B.

Proof. As for the principal 2-block B0, we construct the B-weights (R,ϕ) by following
Construction 2.10 and recall that from Propositions 7.36, 7.37, 7.38 and 7.40 it is known
that we only need to consider radical 2-subgroups of G which are either G-conjugate to
Q̃8 or Sylow 2-subgroups of G.

Hence, let us first suppose that R = Q̃8. Then from Proposition 7.18 it follows that
RCG(R) = 〈R,diag(ζ, ζ, ζ−2)〉, where ζ generates F×q , and NG(R)/RCG(R) ∼= S3. Since
O2(RCG(R)) = R ∈ Syl2(RCG(R)), any 2-block of RCG(R) has defect group R according
to Lemma 1.13. In particular, there exists a bijection between the sets Bl2(RCG(R)) and
Irr(RCG(R)/R) via the associated canonical characters. We have

RCG(R)/R ∼= O2′(〈diag(ζ, ζ, ζ−2)〉),

whence the canonical character corresponding to a 2-block b ∈ Bl2(RCG(R)) may be
described as follows: for the maximally split torus T of G consisting of the diagonal
matrices in G we use the parametrization for Irr(T ) introduced in Notation 7.25 and set
θ(k) := θk0 × 1 × 1 ∈ Irr(T ) for 0 6 k < q − 1. Then the set of irreducible characters of
O2′(〈diag(ζ, ζ, ζ−2)〉) may be parametrized as

Irr(O2′(〈diag(ζ, ζ, ζ−2)〉)) = {(θ(k(q−1)2))|O2′ (〈diag(ζ,ζ,ζ−2)〉) | 0 6 k < (q − 1)2′},
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and the set of irreducible characters of RCG(R) trivial on R, that is, the set of canonical
characters associated to the 2-blocks of RCG(R), is given by

{θ′(k(q−1)2) | 0 6 k < (q − 1)2′} ⊆ Irr(RCG(R)),

where we set

θ′(j)(xd) := θ(j)(d)

for x ∈ R and d ∈ 〈diag(ζ, ζ, ζ−2)〉. If we now take a 2-block b of RCG(R) with canonical
character θ′(k(q−1)2) for some 0 6 k < (q − 1)2′ , then the question is to decide in which
cases b induces to B. As we observed above, a defect group of b is given by R, so up to
G-conjugation the defect groups of bG contain R following Lemma 1.1. From Lemma 6.13
it is known that the 2-blocks of G have defect groups conjugate to {1}, O2(T ′) for a
maximal torus T ′ of type T2, O2(T ) or the Sylow 2-subgroups of G. Of these the Sylow
2-subgroups of G are the only non-abelian groups, and as R is non-abelian, we conclude
that the induced block bG has maximal defect. Hence, by Proposition 1.11 in order to
determine bG it suffices to compute λbG(Ĉ) for every 2′-conjugacy class C with maximal
defect group. The G-conjugacy classes with maximal defect groups are the classes of types
C1 and C4 by Proposition 6.3. We claim that

C
(a)
4 ∩RCG(R) = {diag(ζa, ζa, ζ−2a)}

if the parameter a is such that C
(a)
4 is a 2′-conjugacy class. Suppose y ∈ C(a)

4 ∩RCG(R).
Then y may be written as y = xd for some x ∈ R and d ∈ O2′(〈diag(ζ, ζ, ζ−2)〉). But since
x and d commute and are of coprime order, we have x = 1 as y has odd order and x ∈ R.

Hence, C
(a)
4 ∩ RCG(R) ⊆ O2′(〈diag(ζ, ζ, ζ−2)〉). On the other hand, the only element of

O2′(〈diag(ζ, ζ, ζ−2)〉) contained in C
(a)
4 is diag(ζa, ζa, ζ−2a), so the claim follows. Thus,

λbG(Ĉ
(a)
4 ) = λb(

̂
C

(a)
4 ∩RCG(R))

=
(
θ′(k(q−1)2)(diag(ζa, ζa, ζ−2a))

)∗
=
(
θ(k(q−1)2)(diag(ζa, ζa, ζ−2a))

)∗
=
(
θ
k(q−1)2

0 (ζa)
)∗

=
(
εk(q−1)2a

)∗
,

where we recall that ε = exp(2πi/(q − 1)). Hence, if B = B(u) for some u ∈ Z, then

by comparison with Table 6.3 we see that bG = B if and only if εk(q−1)2a ≡ ε−2ua mod 2
for every a ∈ Z such that C

(a)
4 is a 2′-conjugacy class, that is, if and only if we have

k(q− 1)2a ≡ −2ua mod (q− 1)2′ for every such a, in particular for a = (q− 1)2. It follows
that k(q−1)2 ≡ −2u mod (q−1)2′ . Clearly, (q−1)2 is invertible modulo (q−1)2′ , whence
we conclude that k is uniquely determined by the condition 0 6 k < (q − 1)2′ . Hence,
there exists a unique 2-block b ∈ Bl2(RCG(R)) inducing to B, namely the 2-block with
associated canonical character given by θ = θ′(k(q−1)2), where 0 6 k < (q − 1)2′ is the

unique element satisfying k(q − 1)2 ≡ −2u mod (q − 1)2′ .

As observed in the proof of Proposition 7.18 we have

NG(R) =
{(

X
(detX)−1

) ∣∣∣X ∈ NGL2(q)(Q̃
′
8)
}
,
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from which we deduce that NG(R) acts trivially on RCG(R)/R ∼= O2′(diag(ζ, ζ, ζ−2)), so
in particular NG(R) stabilizes the canonical character θ of b. Since NG(R)/RCG(R) ∼= S3,
there exists an extension θ̃ of θ to NG(R)θ = NG(R) by Propositions 1.19(i) and 1.20(i).
According to Gallagher, Theorem 1.21, we have

Irr(NG(R) | θ) = {θ̃ · ν | ν ∈ Irr(NG(R)/RCG(R))},

and the only element ψ in this set with ψ(1)2 = |NG(R) : RCG(R)|2 = 2 is the character
θ̃ · χ2 with χ2 the unique irreducible character of degree 2 of NG(R)/RCG(R) ∼= S3.
Hence, R admits exactly one B-weight, namely the 2-weight (R, θ̃ · χ2).

Let us now assume that R ∈ Syl2(G). Then according to Proposition 5.9 we have

NG(R) = RCG(R) = 〈R,diag(ζ, ζ, ζ−2)〉.

By Brauer’s first main theorem, Theorem 1.5, block induction yields a bijection between
the sets Bl2(NG(R) | R) and Bl2(G | R), so in particular there exists a unique 2-block b
of RCG(R) = NG(R) with defect group R such that bG = B. Let θ denote its canonical
character. Then θ may be regarded as an irreducible character of

RCG(R)/R ∼= O2′(〈diag(ζ, ζ, ζ−2)〉),

so θ is linear. Thus, we have Irr(NG(R) | θ) = {θ} and θ(1)2 = 1 = |NG(R) : RCG(R)|2,
whence by Construction 2.10 the pair (R, θ) is the unique B-weight of G with first com-
ponent R. This completes the proof.

Proposition 7.44. Suppose that B is a 2-block of G of type B( ). Then Aut(G)B acts
trivially on W(B).

Proof. The proof is the same as for Proposition 7.42 since the G-conjugacy class of a
B-weight is uniquely determined by the isomorphism type of its first component.

7.2.3.3 The Blocks of Type B( , )

Finally, we consider the 2-blocks of G of type B( , ) and describe the 2-weights associated
to such blocks as follows:

Proposition 7.45. Let B be a 2-block of G of type B( , ) and let θ ∈ Irr(T ) be the canonical
character of a root of B, where T is a maximal torus of G of type T1. Then |W(B)| = 1,

and if (R,ϕ) is a B-weight, then up to G-conjugation R = O2(T ) and ϕ = Ind
NG(T )
T (θ).

Proof. Since the 2-blocks of G of type B( , ) have abelian defect groups O2(T ) according
to Lemma 6.13, it follows from Lemma 2.11 that any G-conjugacy class of B-weights may
be represented by a 2-weight with first component O2(T ), so up to G-conjugation we have
R = O2(T ). But following Proposition 7.40 there exists exactly one such 2-weight for B,
which, as seen in the proof of that proposition, has weight character ϕ = Ind

NG(T )
T (θ) as

claimed.

As an immediate consequence of this result we obtain the following:

Proposition 7.46. Let B be a 2-block of G of type B( , ). Then Aut(G)B acts trivially
on W(B).

Proof. This is clear since by Proposition 7.45 we have |W(B)| = 1.
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Analogously to Theorem 7.35 for the case 2 6= ` | (q− 1) we have proven the following:

Theorem 7.47. The blockwise Alperin weight conjecture holds for each 2-block of G.

Proof. This is true for 2-blocks of G with cyclic defect groups by Proposition 3.9. If B is
a 2-block of G of non-cyclic defect, then we summarize that

• |W(B)| = 3 = l(B) if B is the principal 2-block B0,

• |W(B)| = 2 = l(B) if B is of type B( ),

• |W(B)| = 1 = l(B) if B is of type B( , )

following Proposition 6.12 for l(B) and Propositions 7.41, 7.43 and 7.45 for |W(B)|.
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Chapter 8

Partitions and Equivariant
Bijections

After the preparatory work of the previous chapters we are now fully equipped to establish
parts (i) and (ii) of the inductive blockwise Alperin weight condition given in Definition 3.2
for every `-block B of G of non-cyclic defect, where ` is a prime dividing q − 1. More
precisely, since by Proposition 5.3 in our case of q > 2 and q 6≡ 1 mod 3 the group G is its
own universal covering group, we show the following:

(i) There exist subsets IBr(B | Q) ⊆ IBr(B) for Q ∈ Rad`(G) with the following
properties:

(1) IBr(B | Q)a = IBr(B | Qa) for every Q ∈ Rad`(G), a ∈ Aut(G)B,

(2) IBr(B) =
⋃̇
Q∈Rad`(G)/∼G IBr(B | Q).

(ii) For every Q ∈ Rad`(G) there exists a bijection

ΩG
Q : IBr(B | Q) −→ dz(NG(Q)/Q, B)

such that ΩG
Q(φ)a = ΩG

Qa(φa) for every φ ∈ IBr(B | Q) and a ∈ Aut(G)B.

Under consideration of our results on the action of Aut(G) on the weights and Brauer
characters of G and by application of Lemma 3.8 we may easily define partitions and
bijections as demanded by parts (i) and (ii) above:

Proposition 8.1. Let ` be a prime such that ` | (q − 1) and let B be an `-block of G of
non-cyclic defect. Then conditions (i) and (ii) of Definition 3.2 are satisfied for B.

Proof. Let ΩB : IBr(B) −→W(B) be any bijection between the set of irreducible Brauer
characters in B and the set of G-conjugacy classes of B-weights in G (this exists by
Theorems 7.35 and 7.47). According to Proposition 7.6 and Propositions 7.28, 7.31, 7.34,
7.42, 7.44 and 7.46 the group Aut(G)B acts trivially on both IBr(B) and W(B), so in
particular the bijection ΩB is Aut(G)B-equivariant. Hence, in consequence of Lemma 3.8
it is possible to construct subsets IBr(B | Q) of IBr(B) with corresponding bijections
ΩG
Q : IBr(B | Q) −→ dz(NG(Q)/Q, B) for every Q ∈ Rad`(G) such that conditions (i) and

(ii) of Definition 3.2 are satisfied for B.
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Chapter 9

Normally Embedded Conditions

In this chapter we will be concerned with the extendibility of the characters of G we have
studied so far to their stabilizer in Aut(G). The aim is to prove part (iii) of the (iBAW)
condition for all `-blocks of G of non-cyclic defect, where ` | (q − 1), with respect to the
equivariant bijections ΩG

Q, Q ∈ Rad`(G), whose existence we proved in Proposition 8.1. In
our case of G = SL3(q) being its own universal covering group, for an `-block B of G part
(iii) of Definition 3.2 reduces to the conditions below:

(iii) For every Q ∈ Rad`(G) and every φ ∈ IBr(B | Q) there exists a finite group
A(φ,Q) and Brauer characters φ̃ ∈ IBr`(A(φ,Q)) and φ̃′ ∈ IBr`(NA(φ,Q)(Q)) with
the following properties:

(1) the group A := A(φ,Q) satisfiesG E A, A/CA(G) ∼= Aut(G)φ, CA(G) = Z(A)
and ` - |Z(A)|,

(2) φ̃ ∈ IBr`(A) is an extension of φ,

(3) φ̃′ ∈ IBr`(NA(Q)) is an extension of the inflation of ΩG
Q(φ)0 ∈ IBr`(NG(Q)/Q),

(4) bl(φ̃|J) = bl((φ̃′)|NJ (Q))
J for every subgroup J satisfying G 6 J 6 A.

Remark 9.1. Let us fix an `-block B of G and a radical `-subgroup Q ∈ Rad`(G) as above.
Since G is simple, we observe that for every φ ∈ IBr(B | Q) the group A(φ,Q) := Aut(G)φ
satisfies

G E A(φ,Q), CA(φ,Q)(G) = {1} and Z(A(φ,Q)) = {1},

so A(φ,Q) fulfils condition (1) of Definition 3.2(iii). It will hence be our objective to show
that there also exist Brauer characters φ̃ ∈ IBr`(Aut(G)φ) and φ̃′ ∈ IBr`(NAut(G)φ(Q))
satisfying conditions (2) to (4).

9.1 Results on Extendibility

In this section we concentrate on conditions (2) and (3) of Definition 3.2(iii). We prove
that for ` | (q − 1) every φ ∈ IBr`(G) extends to Aut(G)φ, and that, moreover, for every
`-weight (R,ϕ) of G the weight character ϕ extends to Aut(G)R,ϕ.
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9.1.1 Extendibility of (Brauer) Characters of SL3(q)

The aim of this section is to obtain extendibility results concerning the characters of G.
For this purpose it will prove useful to consider the extendibility of characters of general
linear groups first.

As before, q = pf is a power of the prime p. For a general linear group GLn(q) we
denote by Fp the automorphism of GLn(q) induced by the field automorphism Fq −→ Fq,
a 7−→ ap, and let Γ be the transpose-inverse automorphism of GLn(q). Clearly, for n = 3
restricting Γ and Fp to G = SL3(q) gives exactly the automorphisms Γ and Fp that we
have defined for G, which justifies the double use of this notation.

Our first aim is a result on the structure of the subgroups of Out(G). To this end we
state the following lemma:

Lemma 9.2. Let H be a finite abelian group with presentation

H := 〈x, y | x2 = ym = 1, [x, y] = 1〉

for some m ∈ N>0, x, y ∈ H. If K is a subgroup of H such that x 6∈ K, then K is cyclic.

Proof. This is well-known and is easily verified by considering the group homomorphism
ϕ : H −→ 〈y〉 ∼= Cm defined by ϕ(x) = 1 and ϕ(y) = y. This has ker(ϕ) = 〈x〉, and if K
is a subgroup of H, then the restriction ϕ|K : K −→ 〈y〉 has kernel ker(ϕ|K) = 〈x〉 ∩K.
Since K/ ker(ϕ|K) is isomorphic to a (cyclic) subgroup of 〈y〉 and ker(ϕ|K) = {1} if x 6∈ K,
the claim follows.

Corollary 9.3. Let K ≤ 〈Γ, Fp〉 6 Aut(G). Then either Γ ∈ K or K is cyclic. In
particular, if K is not cyclic, then we have K = 〈Γ, F ip〉 for some i ∈ Z with i | f = o(Fp).

Proof. The first part is Lemma 9.2 with H = 〈Γ, Fp〉, x = Γ and y = Fp. Hence, if K is
not cyclic, we have Γ ∈ K, so K = 〈Γ, F ip〉 for some i ∈ Z such that K ∩ 〈Fp〉 = 〈F ip〉.
By replacing i by gcd(i, f), which is possible by Bézout’s identity, we may assume that i
divides f .

The following result by C. Bonnafé is a consequence of a theorem of T. Shintani (which
in fact is not restricted to the case that q 6≡ 1 mod 3):

Proposition 9.4. If a character θ ∈ Irr(GLn(q)) is invariant under F ip for some i | f ,

then there exists an extension θ̃ ∈ Irr(GLn(q)o 〈F ip〉) of θ satisfying θ̃(F ip) ∈ Z>0.

Proof. In [Bon99, Thm. 4.3.1] Bonnafé proves the existence of a certain extension θ̃ of θ
to GLn(q)o 〈F ip〉, which by [Bon99, Lemma 4.3.2] has the property that θ̃(F ip) ∈ Z>0.

We will also need the following statement (compare [Spä09, Lemma 9.7]):

Corollary 9.5. Suppose that χ ∈ Irr(G) with χΓ = χF
i
p = χ for some i ∈ Z. Then χ

extends to Go
〈
Γ, F ip

〉
.

Proof. Following our assumption that q 6≡ 1 mod 3, we have GL3(q) = SL3(q)×Z(GL3(q)).
In particular, the character χ′ := χ× 1Z(GL3(q)) is an extension of χ to GL3(q). Since χ is
invariant under F ip and Γ, so is χ′. As in the proof of Corollary 9.3 we may assume that
i | f , so by Proposition 9.4 there exists an extension

χ′′ ∈ Irr(GL3(q)o 〈F ip〉)
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of χ′ such that χ′′(F ip) 6= 0. Now Γ normalizes GL3(q) o 〈F ip〉 and stabilizes χ′, so χ
′′Γ is

an extension of χ′ to GL3(q)o 〈F ip〉 as well, and since Γ and Fp commute we have

χ
′′Γ(F ip) = χ′′(F ip) 6= 0.

Now denote by ψ and ψ′ the restrictions of χ′′ and χ
′′Γ to SL3(q) o 〈F ip〉, respectively.

Then both ψ and ψ′ are extensions of χ satisfying

ψ(F ip) = ψ′(F ip) 6= 0.

Hence, by Corollary 1.22 we have ψ = ψ′, i.e., ψ is a Γ-invariant extension of χ to
SL3(q)o〈F ip〉. Then by Proposition 1.20(i) there exists an extension of ψ to SL3(q)o〈F ip,Γ〉
as claimed.

Corollary 9.6. Every irreducible character of G extends to its stabilizer in Aut(G).

Proof. Let χ ∈ Irr(G). We have Aut(G)χ = G o 〈Γ, Fp〉χ, and if we set K := 〈Γ, Fp〉χ,
then by Corollary 9.3 either K is cyclic or we may write K = 〈Γ, F ip〉 for some i | f . In the
case of K being cyclic χ extends to Aut(G)χ by Proposition 1.20(i). Otherwise, χ extends
to Aut(G)χ in consequence of Corollary 9.5.

We now turn to the question concerning the extendibility of the Brauer characters
associated to G. In answering this question we will make use of the lower unitriangular
shape of the decomposition matrix of G. More precisely, we use Proposition 1.29 to show
that all irreducible Brauer characters of G with respect to primes ` dividing q − 1 extend
to their stabilizer in Aut(G). Note that for a Brauer character φ ∈ IBr`(G) contained in
an `-block B, its stabilizer in Aut(G) necessarily fixes the whole `-block B, so we always
have Aut(G)φ ⊆ Aut(G)B.

Lemma 9.7. Let ` | (q−1) and suppose that B is an `-block of G. Then there exists a basic
set B ⊆ Irr(B) for B such that the `-decomposition matrix for B is lower unitriangular
with respect to a suitable ordering of the characters in B and IBr(B), and every character
in B is left invariant by Aut(G)B.

Proof. We prove the claim by considering the distinct types of `-blocks of G described in
Propositions 6.8 and 6.11. Clearly, for `-blocks of `-defect zero there is nothing to show.

Suppose first that B is the principal `-block. Then by Propositions 6.9 and 6.12 we
may choose B to consist of the three unipotent characters 1G, χqΦ2 and χq3 , which are
clearly left invariant by Aut(G)B = Aut(G) being the unique irreducible characters of G
of their degree (cf. Table A.1).

Let B be of type B( ). Then similarly as in the proof of Lemma 7.29 one can show that
there exist unique characters in B of types χΦ3 and χqΦ3 , respectively, whose parameter is a
multiple of (q−1)`, say their parameter is given by u (note that this is the same parameter
for both characters in consequence of Propositions 6.8 and 6.11). Let a ∈ Aut(G)B. Since
Aut(G) = Go 〈Γ, Fp〉, the automorphism a is the product of an inner automorphism of G
and powers of Γ and Fp, so by Corollary 7.5 it fixes character types and the parameters of
χ

(u)a
Φ3

and χ
(u)a
qΦ3

are still multiples of (q− 1)`. Since a fixes B, it thus leaves χ
(u)
Φ3

and χ
(u)
qΦ3

invariant. Hence, we choose

B = {χ(u)
Φ3
, χ

(u)
qΦ3
}.

Then by Propositions 6.9 and 6.12 this set is as required.

99



Chapter 9. Normally Embedded Conditions

If B is of type B( , ) or B′( ), then | IBr(B)| = 1 and following Propositions 6.9 and 6.12

any one-element subset of Irr(B) trivially yields a basic set with corresponding lower uni-
triangular decomposition matrix. Similarly as before there exists a unique character in
Irr(B) whose parameter is a multiple of (q2 − 1)` in the case that B is of type B′( ) and
whose parameters are multiples of (q−1)` in the case that B is of type B( , ), respectively.
By the same arguments as for the blocks of type B( ), this character is left invariant by
Aut(G)B. Hence, we may choose B to consist of exactly this character.

Corollary 9.8. Let ` | (q − 1). Then every Brauer character φ ∈ IBr`(G) extends to its
stabilizer Aut(G)φ in Aut(G).

Proof. Let φ ∈ IBr`(G) and B := bl(φ). By Lemma 9.7 there exists a basic set B ⊆ Irr(B)
for B such that the `-decomposition matrix for B is lower unitriangular with respect to
a suitable ordering of the characters in B and IBr(B), and every character in B is left
invariant by Aut(G)B. Hence, for every character χ ∈ B we have Aut(G)χ = Aut(G)B,
and by Lemma 1.27 every element in IBr(B) is left invariant by Aut(G)B as well, so in
particular Aut(G)φ = Aut(G)B. Following Corollary 9.6 every character in B extends to
Aut(G)B. Thus, by Proposition 1.29 every irreducible Brauer character belonging to B
extends to Aut(G)B, so in particular φ does.

9.1.2 Extendibility of Weight Characters

Here we prove that for ` | (q − 1) and (R,ϕ) an `-weight of G associated to an `-block of
non-cyclic defect there always exist extensions of ϕ and the associated Brauer character
of NG(R) to Aut(G)R,ϕ.

9.1.2.1 The Case 2 6= ` | (q − 1)

We assume that ` is an odd prime dividing q−1 and denote by T = TF the maximally split
torus of G consisting of the diagonal matrices in G. If B is an `-block of G of non-cyclic
defect, then according to Propositions 7.27, 7.30 and 7.33 for every B-weight (R,ϕ) of G
we have

R = O`(T ) and ϕ = ψNG(T )

up to G-conjugation, where θ ∈ Irr(T ) is an irreducible constituent of ϕ|T and ψ is an
irreducible character of NG(T )θ lying above θ. In this section we prove that ϕ always
extends to Aut(G)O`(T ),ϕ.

Since we assume that q 6≡ 1 mod 3, one may easily check that the only irreducible
character θ of T such that the quotient NG(T )θ/T has order divisible by 3 is the trivial
character 1T (cf. Lemma 7.26). Consequently, the following proposition does indeed handle
all possibilities that can arise during the examination of irreducible characters of T .

Proposition 9.9. Let D := 〈Fp,Γ〉 6 Aut(G) and θ ∈ Irr(T ). Then

(i) θ extends to (NG(T )oD)θ;

(ii) for NG(T )θ = T the character χ := θNG(T ) ∈ Irr(NG(T )) extends to (NG(T )oD)χ;

(iii) for NG(T )θ/T ∼= C2 the character χ := ψNG(T ) ∈ Irr(NG(T )) has an extension to
(NG(T )oD)χ, where ψ ∈ Irr(NG(T )θ | θ) is an extension of θ to NG(T )θ;

(iv) for θ = 1T the three irreducible characters in Irr(NG(T ) | θ) extend to NG(T )oD.
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Proof. (i) Let us denote by V the group of monomial matrices in G with entries ±1 and
set

W := 〈V,Γ, Fp〉 = V ×D.
Then following Proposition 5.7 we have NG(T ) = 〈T, V 〉 and NG(T ) oD = 〈T,W 〉, and
moreover, there exists a subgroup V ′ ⊆ V with V ′ ∼= S3 and NG(T ) = T oV ′, for instance
V ′ = 〈v2, v3〉. Let now H := V ∩ T and ν := θ|H ∈ Irr(H). Then Wν = Vν ×D since the
elements of H are invariant under Γ and Fp. We have

Vν = (H o V ′)ν = H o (V ′)ν ,

so ν has an extension ν ′ to Vν according to Lemma 1.23. As Wν = Vν ×D, there exists
an extension ν̃ of ν ′ to Wν . Now for t ∈ T and w ∈Wθ 6Wν we set

θ̃(tw) := θ(t)ν̃(w)

and claim that θ̃ defines an extension of θ to (NG(T ) o D)θ = 〈T,Wθ〉. First of all, we
observe that θ̃ is well-defined since any element of 〈T,Wθ〉 may be written in the form
tw as above, and for elements t, t′ ∈ T and w,w′ ∈ Wθ such that tw = t′w′, we have
t−1t′ = ww′−1 ∈ T ∩Wθ = H, and hence ν̃(ww′−1) = θ(ww′−1), so we obtain

θ(t)ν̃(w) = θ(t′t′−1t)ν̃(ww′−1w′)

= θ(t′)θ(t′−1t)ν̃(ww′−1)ν̃(w′)

= θ(t′)θ(t′−1t)θ(ww′−1)ν̃(w′)

= θ(t′)θ(t′−1tww′−1)ν̃(w′)

= θ(t′)θ(1)ν̃(w′)

= θ(t′)ν̃(w′).

Next we prove that θ̃ is a group homomorphism, whence a linear character of (NG(T )oD)θ.
For t, t′ ∈ T and w,w′ ∈Wθ we have

θ̃(twt′w′) = θ̃(twt′w−1ww′)

= θ(twt′w−1)ν̃(ww′)

= θ(t)θw(t′)ν̃(w)ν̃(w′)

= θ(t)ν̃(w)θ(t′)ν̃(w′)

= θ̃(tw)θ̃(t′w′),

so θ̃ is a linear character of (NG(T ) o D)θ satisfying θ̃|T = θ by construction, hence an
extension of θ to (NG(T )oD)θ as claimed.

(ii) Let θ′ be an extension of θ to (NG(T )oD)θ, which exists by (i). Then θ′(NG(T )oD)χ

is an extension of χ to (NG(T )oD)χ by Lemma 1.24(ii) applied to N = T , S ∼= S3 and
A = NG(T )oD.

(iii) Since NG(T ) stabilizes χ, we have

(NG(T )oD)χ = NG(T )oDχ.

By Corollary 9.3 either Dχ is cyclic or we have Dχ = 〈Γ, F ip〉 for some i ∈ Z. If Dχ

is cyclic, then χ extends to NG(T ) o Dχ by Proposition 1.20(i). Hence, suppose that
Dχ = 〈Γ, F ip〉 for some i ∈ Z. Again by Proposition 1.20(i) there exists an extension χ̃ of
χ to NG(T )o 〈Γ〉. We have

χ̃(1) = χ(1) = |NG(T ) : NG(T )θ| = 3,
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so χ̃(Γ) must be the sum of three o(Γ)-th roots of unity. Since o(Γ) = 2, we conclude that
χ̃(Γ) ∈ {±1,±3}, so in particular χ̃(Γ) 6= 0. Moreover, F ip commutes with Γ and hence
normalizes NG(T )o 〈Γ〉, so χ̃F

i
p is an irreducible character of NG(T )o 〈Γ〉 with

(χ̃F
i
p)|NG(T ) = χF

i
p = χ,

and we have χ̃F
i
p(Γ) = χ̃(Γ) 6= 0. Thus, from Corollary 1.22 it follows that χ̃ is F ip-invariant.

Since the quotient

(NG(T )oDχ)/(NG(T )o 〈Γ〉) = (NG(T )o 〈Γ, F ip〉)/(NG(T )o 〈Γ〉)

is cyclic, once again by Proposition 1.20(i) there exists an extension of χ̃ to NG(T )oDχ,
hence an extension of χ to NG(T )oDχ as claimed.

(iv) Since NG(T )/T ∼= S3, we consider the irreducible characters of S3. We write

Irr(S3) = {γ1, γ2, γ3},

where γ1 = 1S3 , γ2 6= 1S3 is linear and γ3 is irreducible of degree two. Then we fix an
isomorphism Θ1 : NG(T )/T −→ S3 such that we may write

Irr(NG(T ) | 1T ) = {ψ1, ψ2, ψ3}

with ψi(n) = γi(Θ1(nT )) for n ∈ NG(T ) and i = 1, 2, 3. Let us now consider the irreducible
characters of NG(T )oD lying above 1ToD. The map

π : NG(T )/T −→ (NG(T )oD)/(T oD),

nT 7−→ n(T oD),

is an isomorphism as one easily checks, so Θ2 := Θ1 ◦π−1 defines an isomorphism between
(NG(T )oD)/(T oD) and S3. Then we may write

Irr(NG(T )oD | 1ToD) = {ψ̃1, ψ̃2, ψ̃3},

where ψ̃i(x) = γi(Θ2(x(T oD))) for x ∈ NG(T )oD and i = 1, 2, 3. Now for any i = 1, 2, 3
and n ∈ NG(T ) we have

ψ̃i(n) = γi(Θ2(n(T oD))) = γi(Θ2(π(nT ))) = γi(Θ1(nT )) = ψi(n),

so (ψ̃i)|NG(T ) = ψi, that is, we have found an extension of ψi to NG(T )oD.

In order to show that for every `-block B of G with non-cyclic defect groups and every
B-weight (R,ϕ) the character ϕ extends to Aut(G)R,ϕ, we need the assertion of the lemma
below.

Lemma 9.10. Let A be a finite group, N E A a normal subgroup and r a prime dividing
the order of N . Moreover, let (R,ϕ) be an r-weight of N such that ϕ extends to AR,ϕ. If
(Q,χ) is an r-weight of N that is N -conjugate to (R,ϕ), then χ extends to AQ,χ

Proof. Let x ∈ N such that (Q,χ) = (R,ϕ)x and denote by ϕ′ an extension of ϕ to AR,ϕ.
We prove that ϕ′x is an extension of χ to AQ,χ. Let us first show that AQ,χ = x−1AR,ϕx.
Suppose that a ∈ AR,ϕ. Then

(x−1ax)−1Q(x−1ax) = x−1a−1(xQx−1)ax

= x−1a−1Rax

= x−1Rx

= Q,
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so x−1ax ∈ AQ. Moreover, for all elements y ∈ NN (Q) we observe that

χx
−1ax(y) = χ((x−1ax)y(x−1ax)−1)

= (χx
−1

)a(xyx−1)

= ϕa(xyx−1)

= ϕ(xyx−1)

= ϕx(y)

= χ(y),

that is, x−1ax ∈ AQ,χ, so we conclude that x−1AR,ϕx ⊆ AQ,χ. Analogously one proves
that xAQ,χx

−1 ⊆ AR,ϕ, and hence AQ,χ = x−1AR,ϕx. Now ϕ′x is an irreducible character
of (AR,ϕ)x = AQ,χ, and since

NN (Q) = NN (Rx) = NN (R)x = x−1 NN (R)x,

for all y ∈ NN (Q) we have xyx−1 ∈ NN (R) and hence

ϕ′x(y) = ϕ′(xyx−1) = ϕ(xyx−1) = ϕx(y) = χ(y),

so ϕ′x is indeed an extension of χ to AQ,χ, which concludes the proof.

We can now prove the desired statement on the extendibility of weight characters:

Proposition 9.11. Suppose that 2 6= ` | (q− 1). Let B be an `-block of G with non-cyclic
defect groups and suppose that (R,ϕ) is a B-weight. Then ϕ extends to Aut(G)R,ϕ.

Proof. Following Propositions 7.27, 7.30 and 7.33 there exists g ∈ G such that Rg = O`(T ).
We set χ := ϕg and consider the weight

(O`(T ), χ) = (R,ϕ)g.

By the propositions referred to above we have χ = ψNG(T ) for some ψ ∈ Irr(NG(T )θ | θ),
where either

• θ = 1T and χ = ψ ∈ Irr(NG(T ) | 1T ) if B = B0 is the principal `-block, or

• NG(T )θ/T ∼= C2 if B is of type B( ), or

• NG(T )θ = T and ψ = θ in the case of B being of type B( , ).

Hence, by Proposition 9.9 there exists an extension χ̃ of χ to (NG(T )o 〈Γ, Fp〉)χ. Now we
have Aut(G) = Go 〈Γ, Fp〉, where Γ and Fp stabilize O`(T ), so

Aut(G)O`(T ) = NG(O`(T ))o 〈Γ, Fp〉 = NG(T )o 〈Γ, Fp〉

according to Proposition 5.8. Thus, the character χ̃ constitutes an extension of χ to its
stabilizer Aut(G)O`(T ),χ = (NG(T ) o 〈Γ, Fp〉)χ. Hence, by Lemma 9.10 also ϕ extends to
Aut(G)R,ϕ as claimed.
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9.1.2.2 The Case ` = 2

In this section we suppose that ` = 2 and q is odd and prove that for every 2-weight (R,ϕ)
of G the weight character ϕ extends to its stabilizer Aut(G)R,ϕ in Aut(G).

Lemma 9.12. Let (R,ϕ) be a 2-weight of G and denote by ϕ the 2-defect zero character of
NG(R)/R associated to ϕ. If ϕ extends to (Aut(G)R/R)ϕ, then ϕ extends to Aut(G)R,ϕ.

Proof. This follows directly from the fact that (Aut(G)R/R)ϕ = Aut(G)R,ϕ/R, so the
extension of ϕ to (Aut(G)R/R)ϕ may be regarded as a character of Aut(G)R,ϕ containing
R in its kernel and extending ϕ.

Lemma 9.13. Suppose that (R,ϕ) is a 2-weight of G and denote by Aut2(G) the subgroup
G oO2(〈Γ, Fp〉) of Aut(G). If the 2-defect zero character ϕ of NG(R)/R associated to ϕ
extends to (Aut2(G)R/R)ϕ, then ϕ extends to (Aut(G)R/R)ϕ.

Proof. Since NG(R)/R E Aut(G)R/R, by Proposition 1.19(i) the character ϕ extends to
(Aut(G)R/R)ϕ if it extends to every group P lying between NG(R)/R and (Aut(G)R/R)ϕ
such that P/(NG(R)/R) is a Sylow r-subgroup of

H := (Aut(G)R/R)ϕ/(NG(R)/R)

for some prime r dividing the order of H. Due to the fact that 〈Γ, Fp〉 ∼= C2 × Cf
is abelian, there exist unique Sylow r-subgroups of H for every prime r dividing |H|,
and moreover these are cyclic whenever r is odd. In particular, for r 6= 2 there exists
an extension of ϕ to P for every Sylow r-subgroup P/(NG(R)/R) of H according to
Proposition 1.20(i). Consequently, if the character ϕ extends to (Aut2(G)R/R)ϕ, then it
extends to (Aut(G)R/R)ϕ since

(Aut2(G)R/R)ϕ/(NG(R)/R)

is the unique Sylow 2-subgroup of the group H = (Aut(G)R/R)ϕ/(NG(R)/R). (This
follows since for every a ∈ Aut2(G)R there exists a 2-power m such that am ∈ G, so even
am ∈ NG(R), and conversely, every element a ∈ Aut(G)R that has 2-power order modulo
NG(R) must also be a 2-element modulo G, i.e., a ∈ Aut2(G)R.)

Proposition 9.14. Let (R,ϕ) be a 2-weight of G. Then the 2-defect zero character ϕ of
NG(R)/R associated to ϕ extends to (Aut(G)R/R)ϕ.

Proof. Let b denote the 2-block of NG(R)/R containing ϕ. Since ϕ is of 2-defect zero, we
have Irr(b) = {ϕ}. Further, denote by Aut2(G) the subgroup G oO2(〈Γ, Fp〉) of Aut(G)
as in Lemma 9.13. We let

b′ ∈ Bl2((Aut2(G)R/R)ϕ)

be a 2-block covering b and we choose a character χ ∈ Irr(b′) of height zero. By Defini-
tion 1.14 every irreducible constituent of the restricted character χ|NG(R)/R is contained in
an (Aut2(G)R/R)ϕ -conjugate of b. But since b is the 2-block containing ϕ, it clearly stays
invariant under the action of (Aut2(G)R/R)ϕ, so in fact every irreducible constituent of
χ|NG(R)/R lies in b. Now Irr(b) = {ϕ}, whence we conclude that χ|NG(R)/R = eϕ for some
integer e > 1. The quotient

(Aut2(G)R/R)ϕ/(NG(R)/R)
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is a 2-group, implying by [Nav98, Cor. 9.6] that the 2-block b′ is the unique 2-block of
(Aut2(G)R/R)ϕ which covers b. Since χ was chosen to be of height 0 in b′, we may apply
[Nav98, Cor. 9.18] to deduce that the integer

e = 〈χ|NG(R)/R, ϕ〉NG(R)/R

is prime to 2. On the other hand, e divides |(Aut2(G)R/R)ϕ : NG(R)/R | according to
[Hup98, Thm. 21.3(a)], so we conclude that e = 1. Thus, χ|NG(R)/R = ϕ, that is, χ is an
extension of ϕ to (Aut2(G)R/R)ϕ. We may finally apply Lemma 9.13 and conclude that
there exists an extension of ϕ to (Aut(G)R/R)ϕ as claimed.

Corollary 9.15. Let (R,ϕ) be a 2-weight of G. Then ϕ extends to Aut(G)R,ϕ.

Proof. By Proposition 9.14 the 2-defect zero character ϕ ∈ Irr(NG(R)/R) associated to
ϕ extends to (Aut(G)R/R)ϕ. Hence, by Lemma 9.12 there exists an extension of ϕ to
Aut(G)R,ϕ.

9.1.3 Summary

Let us briefly outline how far we have progressed up to now in establishing the (iBAW)
condition for SL3(q), q > 2, q 6≡ 1 mod 3. We need Lemma 9.16 below. (We should note
that this lemma does in fact not only hold for G = SL3(q) but for an arbitrary finite
simple group. However, we only need it in the case G = SL3(q).)

Lemma 9.16. Let ` be a prime and B be an `-block of G. Suppose that there exist subsets
IBr(B | Q) ⊆ IBr(B) and bijections

ΩG
Q : IBr(B | Q) −→ dz(NG(Q)/Q, B)

for every Q ∈ Rad`(G) satisfying conditions (i) and (ii) of Definition 3.2. Then for all
Q ∈ Rad`(G) and all φ ∈ IBr(B | Q) we have

NAut(G)φ(Q) = Aut(G)Q,χ,

where χ ∈ Irr(NG(Q)) denotes the inflation of ΩG
Q(φ) ∈ Irr(NG(Q)/Q) to NG(Q).

Proof. Let Q ∈ Rad`(G) and φ ∈ IBr(B | Q) and denote by χ the inflation of ΩG
Q(φ) to

NG(Q). Suppose that a ∈ NAut(G)φ(Q). Since φ ∈ IBr(B), we have a ∈ Aut(G)B, so by
assumption

ΩG
Q(φ)a = ΩG

Qa(φa) = ΩG
Q(φ),

that is, ΩG
Q(φ) is left invariant by a. Hence, also its inflation χ is invariant under a, since

χa(n) = χ(a(n)) = ΩG
Q(φ)(a(n)Q) = ΩG

Q(φ)a(nQ) = χ(n)

for all n ∈ NG(Q). This yields the inclusion NAut(G)φ(Q) ⊆ Aut(G)Q,χ.

Let now a ∈ Aut(G)Q,χ. As the `-block b of NG(Q) containing χ satisfies bG = B by
assumption and χ is left invariant by a, we have

Ba = (bG)a = (ba)G = bG = B
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by Proposition 1.3, so a ∈ Aut(G)B. In particular, φa ∈ IBr(B | Q)a = IBr(B | Q), and
once more, since χ and hence ΩG

Q(φ) is invariant under a, we have

ΩG
Q(φa) = ΩG

Q(φ)a = ΩG
Q(φ).

Thus, by bijectivity of ΩG
Q it follows that φa = φ, i.e.,

a ∈ Aut(G)φ ∩NAut(G)(Q) = NAut(G)φ(Q).

We conclude that NAut(G)φ(Q) = Aut(G)Q,χ.

At this point we have nearly established all parts of the (iBAW) condition for the
`-blocks of G with non-cyclic defect groups, where ` | (q − 1):

Theorem 9.17. Let ` | (q−1) be a prime and B be an `-block of G with non-cyclic defect
groups. The subsets IBr(B | Q) ⊆ IBr(B) and the Aut(G)B,Q-equivariant bijections ΩG

Q

for Q ∈ Rad`(G) defined as in the proof of Proposition 8.1 satisfy conditions (1) - (3) of
Definition 3.2(iii).

More precisely, for every Q ∈ Rad`(G) and every φ ∈ IBr(B | Q) the finite group
Aut(G)φ satisfies the following conditions: There exist characters φ̃ ∈ IBr`(Aut(G)φ) and

φ̃′ ∈ IBr`(NAut(G)φ(Q)) such that:

(1) the group A := Aut(G)φ satisfies G E A, A/CA(G) ∼= Aut(G)φ, CA(G) = Z(A) and
` - |Z(A)|,

(2) φ̃ ∈ IBr`(A) is an extension of φ,

(3) φ̃′ ∈ IBr`(NA(Q)) is an extension of the inflation of ΩG
Q(φ)0 ∈ IBr`(NG(Q)/Q).

Proof. We let Q ∈ Rad`(G) and φ ∈ IBr(B | Q). Then for the group A := Aut(G)φ we
clearly have G E A and

CA(G) = {1} = Z(A),

so (1) is satisfied.

For (2) recall that by Corollary 9.8 every irreducible Brauer character of G extends to
its stabilizer in Aut(G), so in particular there exists φ̃ ∈ IBr`(A) extending φ.

Finally, for (3) we let χ ∈ Irr(NG(Q)) be the inflation of ΩG
Q(φ) to NG(Q). Then χ0 is

the irreducible Brauer character of NG(Q) associated with

ΩG
Q(φ)0 ∈ IBr`(NG(Q)/Q),

so condition (3) demands an extension of χ0 to NA(Q). The pair (Q,χ) is a B-weight,
and hence by Proposition 9.11 for odd ` and Corollary 9.15 for ` = 2 there exists an
extension χ̃ of χ to Aut(G)Q,χ. Now the sets IBr(B | Q) and the bijections ΩG

Q satisfy
conditions (i) and (ii) of Definition 3.2 by Proposition 8.1, so following Lemma 9.16 we
have Aut(G)Q,χ = NAut(G)φ(Q). Hence, χ̃ is an extension of χ to NAut(G)φ(Q) = NA(Q).
We have

(χ̃0)|NG(Q) = (χ̃|NG(Q))
0 = χ0,

so the Brauer character φ̃′ := χ̃0 is an extension of χ0 to NA(Q), and irreducibility of φ̃′

is necessarily implied by irreducibility of χ0. This completes the proof.
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9.2 Block Correspondence

Let ` | (q − 1). So far we have established parts (i), (ii) and (iii)(1)-(3) of the inductive
conditions in Definition 3.2 for all `-blocks of G of non-cyclic defect. The objective of this
section is to show that the extensions in part (iii) can be chosen such that also part (iii)(4)
of the inductive condition is satisfied. In order to reach this goal we exploit a number of
results achieved by Koshitani–Späth in [KS13].

Lemma 9.18. Let K E A be finite groups and H 6 A a subgroup of A. Moreover, let
M := K ∩H, and for a prime r let b′ ∈ Blr(M) and c′ ∈ Blr(H) be an r-block covering
b′. If both (b′)K and (c′)A are defined, then (c′)A covers (b′)K .

Proof. This is [KS13, Lemma 2.3].

Lemma 9.19. Let K E A be finite groups and H 6 A a subgroup of A with A = KH.
Moreover, let r be a prime. For M := K ∩ H let b′ ∈ Blr(M) be an r-block that has a
defect group D with CA(D) ⊆ H. Suppose that some φ̃ ∈ IBrr(A) and φ̃′ ∈ IBrr(H) satisfy
φ := φ̃ |K ∈ IBr(b) and φ′ := φ̃′ |M ∈ IBr(b′), where b := (b′)K . If it holds that r - |A/K|
and bl(φ̃′)A = bl(φ̃), then

bl(φ̃′ |〈M,x〉)
〈K,x〉 = bl(φ̃ |〈K,x〉)

for all x ∈ H.

Proof. This is [KS13, Lemma 2.4].

Lemma 9.20. Let K E A be finite groups and H 6 A a subgroup of A with A = KH.
Moreover, let r be a prime. For M := K ∩ H let b′ ∈ Blr(M) be an r-block that has a
defect group D with CA(D) ⊆ H. Suppose that some φ̃ ∈ IBrr(A) and φ̃′ ∈ IBrr(H) satisfy
φ := φ̃ |K ∈ IBr(b) and φ′ := φ̃′ |M ∈ IBr(b′), where b := (b′)K . If

bl(φ̃′ |〈M,x〉)
〈K,x〉 = bl(φ̃ |〈K,x〉)

for all x ∈ H0 = {y ∈ H | r - o(y)}, then bl(φ̃′)A = bl(φ̃).

Proof. This is [KS13, Lemma 2.5(a)].

Let us now return to our situation of G = SL3(q) with q > 2 and q 6≡ 1 mod 3. By
application of the above tools and use of similar ideas as in the proof of [CS14, Lemma 3.2]
we are finally able to verify the last missing piece for the (iBAW) condition for G:

Proposition 9.21. Suppose that ` | (q−1) and denote by B an `-block of G of non-cyclic
defect. Moreover, suppose that IBr(B | Q) ⊆ IBr(B) and ΩG

Q are defined as in the proof of
Proposition 8.1 for Q ∈ Rad`(G).

Let (R,ψ) be a B-weight of G. Moreover, let φ ∈ IBr(B | R) be defined such that
φ′ := ψ0 ∈ IBr`(NG(R)) is the inflation of ΩG

R(φ)0 ∈ IBr`(NG(R)/R) to NG(R) and denote

by A := Aut(G)φ the stabilizer of φ in Aut(G). Let φ̃′ ∈ IBr`(NA(R)) be an extension of

φ′ to NA(R) (exists by Theorem 9.17). Then there exists an extension φ̃ ∈ IBr`(A) of φ
to A satisfying

bl(φ̃′ |NJ (R))
J = bl(φ̃ |J)

for all groups G 6 J 6 A.
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φ̃ |J A φ̃

J

φ G NA(R) φ̃′

NJ(R)

φ′ NG(R) φ̃′ |NJ (R)

R

In particular, in the situation of Theorem 9.17 for every Q ∈ Rad`(G) and every
φ ∈ IBr(B | Q) the Brauer characters φ̃ ∈ IBr`(Aut(G)φ) and φ̃′ ∈ IBr`(NAut(G)φ(Q)) can
be chosen such that in addition to parts (1) to (3) of the inductive condition in Defini-
tion 3.2(iii) they also satisfy part (4) of Definition 3.2(iii).

Proof. Let us consider the quotient group A/G. Since A 6 Aut(G) = G o 〈Γ, Fp〉 with
[Γ, Fp] = 1, the group A/G is abelian. Hence, there exists a unique subgroup A1 6 A such
that A1/G is a Hall `′-subgroup of A/G, i.e., such that |A1/G| = |A/G|`′ . The Brauer
character φ̂′ := φ̃′|NA1

(R) is an extension of φ′ to NA1(R), and since NG(R) E NA1(R),

the `-block bl(φ̂′) covers bl(φ′) by Definition 1.14. Since bl(φ̂′) and bl(φ′) are `-blocks
of NA1(R) and NG(R), respectively, with R an `-group, the induced blocks bl(φ̂′)A1 and
bl(φ′)G are defined according to Proposition 1.2, and moreover, by assumption we have
bl(φ′)G = bl(ψ)G = B = bl(φ). We may apply Lemma 9.18 for G E A1, H = NA1(R) and

M = NG(R) to deduce that the `-block bl(φ̂′)A1 covers bl(φ). Hence, by [Nav98, Thm. 9.4]
there exists a character in bl(φ̂′)A1 lying above φ, that is

IBr`(A1 | φ) ∩ IBr(bl(φ̂′)A1) 6= ∅.

As we have proven in Theorem 9.17, the Brauer character φ extends to A, so let us suppose
that φ ∈ IBr`(A) is such an extension. Then φ|A1

∈ IBr`(A1) extends φ to A1, and hence
by Gallagher, Theorem 1.21, we have

IBr`(A1 | φ) = {φ|A1
· ν | ν ∈ IBr`(A1/G)},

which consists only of extensions of φ to A1 since A1/G is abelian. Thus, we conclude
that IBr(bl(φ̂′)A1) contains an extension of φ, say φ̂. Again by Gallagher and the fact that
A/G is abelian, the set

IBr`(A | φ) = {φ · ν | ν ∈ IBr`(A/G)}

consists of extensions of φ to A. We have φ̂ = φ|A1
· ν for some ν ∈ IBr`(A1/G), and since

A/G is abelian, ν extends to A/G, say β ∈ IBr`(A/G) with β|A1/G = ν. Hence, there

exists an extension φ̃ ∈ IBr`(A) of φ̂ to A, namely φ̃ = φ · β ∈ IBr`(A | φ).
Note that in our case the representatives of any two distinct G-conjugacy classes of

radical `-subgroups are non-isomorphic, so for any a ∈ Aut(G) there exists g ∈ G such
that Ra = Rg. Hence, for x ∈ A we conclude that x ∈ GNA(R), and since GNA(R) ⊆ A,
we have A = GNA(R). Analogously, it follows that A1 = GNA1(R).
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Moreover, by Lemma 1.13 the group O`(NG(R)) is contained in any defect group of
any `-block of NG(R). Since R is a radical `-subgroup of G, we have O`(NG(R)) = R, so
in particular, R is contained in any defect group of bl(φ′). Hence, for every defect group
D of bl(φ′) we have CA1(D) ⊆ CA1(R) ⊆ NA1(R), and since ` - |A1/G|, we may apply
Lemma 9.19 for G E A1 with H = NA1(R), which gives

bl(φ̂′ |〈NG(R), x〉)
〈G, x〉 = bl(φ̂ |〈G, x〉)

for all x ∈ NA1(R).
Let now G 6 J 6 A. Then G E J and by similar arguments as above it follows that

J = GNJ(R) and CJ(D) ⊆ NJ(R) for every defect group D of bl(φ′). Since A1/G is the
unique Hall `′-subgroup of A/G, the set NJ(R)0 of `′-elements of NJ(R) is contained in
A1, so we have

bl((φ̃′ |NJ (R))|〈NG(R), x〉)
〈G, x〉 = bl(φ̂′ |〈NG(R), x〉)

〈G, x〉

= bl(φ̂ |〈G, x〉)

= bl((φ̃ |J)|〈G, x〉)

for all x ∈ NJ(R)0 ⊆ NA1(R) by the above considerations. Following Lemma 9.20 for

G E J and H = NJ(R) we conclude that bl(φ̃′ |NJ (R))
J = bl(φ̃ |J) as claimed.
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Chapter 10

The Main Result for SL3(q)

Having examined the inductive conditions from Definition 3.2 for all relevant blocks of
SL3(q), q > 2, q 6≡ 1 mod 3, we are now able to combine our observations and results
obtained in the previous chapters to state and verify the one main assertion we were
aiming for in this part of the thesis:

Theorem 10.1. Let q > 2 be a prime power with q 6≡ 1 mod 3. Then the inductive
blockwise Alperin weight condition (cf. Definition 3.3) holds for the group SL3(q) and
every prime ` dividing its order.

Proof. Since according to Remark 5.4 the group G = SL3(q) is its own universal covering
group in the given situation, we need to verify conditions (i) to (iii) of Definition 3.2 for
every `-block B of X = G for every prime ` dividing |G|. If ` is such a prime, then either
` = p, ` = 2 or ` > 2 divides exactly one of Φ1(q), Φ2(q) or Φ3(q) following Lemma 5.2.

For ` = p the claim holds by Proposition 3.11, and for ` > 2 dividing Φ2(q)Φ3(q) the
Sylow `-subgroups of G are cyclic by Proposition 5.9(i), so in consequence of Proposi-
tion 3.9 the assertion is true in this case as well. Hence, it remains to consider the case
where ` | Φ1(q) = q − 1 and B is an `-block of G of non-cyclic defect. This case, however,
is completely solved by our results in Proposition 8.1, Theorem 9.17 and Proposition 9.21.
Hence, the (iBAW) condition holds for SL3(q) and every prime ` dividing its order as
claimed.
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Chapter 11

Properties of G2(q)

The second infinite series of groups of Lie type we examine in this thesis under the objective
of verifying the inductive blockwise Alperin weight condition is the series consisting of the
finite Chevalley groups G2(q). We begin our study by presenting a brief introduction to
these groups and giving a summary of those of their properties that are of importance
in the subsequent investigation. Our main references are Carter [Car89], Chang [Cha68],
Gorenstein–Lyons–Solomon [GLS98], Malle–Testerman [MT11] and Steinberg [Ste68].

11.1 Construction of G2(q)

As a finite group of Lie type the group G2(q) may be constructed as the subgroup of fixed
points with respect to a Frobenius endomorphism of an infinite universal Chevalley group
with root system of type G2.

2a+ b−2a− b

a+ b

−a− b

−a

a

3a+ 2b−3a− b

−3a− 2b 3a+ b

b

−b

Figure 11.1: Root system of type G2

To give a more precise definition of G2(q) we let p be a prime and f ∈ N>0 be such that
q = pf . Moreover, let us consider a root system Σ of type G2, that is,

Σ := {±a, ±b, ±(a+ b), ±(2a+ b), ±(3a+ b), ±(3a+ 2b)} ⊂ R2,

where Π := {a, b} is a base for Σ (see, for instance, [GLS98, Rmk. 1.8.8]). This may be
illustrated as in Figure 11.1 above (cf., e.g., [Car89, p. 46]). Note that the roots in Σ do
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not all have the same length, but rather there are two root lengths in Σ. The roots ±b,
±(3a+ 2b) and ±(3a+ b) are the long roots of Σ, the remaining roots are short.

Let us now come to the definition of G2(q). We denote by F an algebraic closure of
the finite field Fp consisting of p elements and let Fq be its subfield containing exactly
q elements. Moreover, we define G to be a universal Chevalley group over F with root
system Σ and Steinberg generators xr(t), hr(s) and nr(s), r ∈ Σ, t ∈ F, s ∈ F×, as in
Theorem 4.22. The linear map given by

F : G −→ G, xr(t) 7−→ xr(t
q), r ∈ Σ, t ∈ F,

is the Frobenius endomorphism of G with respect to Fq, hence a Steinberg endomorphism
of G, and the finite group GF of fixed points of G under F is exactly the finite group of
Lie type which we will henceforth denote by G := G2(q) := GF . This group is generated
by all xr(t) for r ∈ Σ and t ∈ Fq.

In some cases it will turn out to be convenient to use a different notation for the roots
in Σ obtained by setting ξ1 := a+ b, ξ2 := a and ξ3 := −ξ1 − ξ2, which yields

Σ = {±ξ1,±ξ2,±ξ3,±(ξ1 − ξ2),±(ξ2 − ξ3),±(ξ3 − ξ1)}.

This notation allows a uniform description of the action of the Weyl group of G on the
associated maximal torus as will become apparent in the subsequent section.

Lemma 11.1. The order of the finite group G2(q) is given by

|G2(q)| = q6(q − 1)2(q + 1)2(q2 + q + 1)(q2 − q + 1)

= q6Φ1(q)2Φ2(q)2Φ3(q)Φ6(q).

Proof. This is, for instance, stated in [MT11, Table 24.1].

As it turns out, apart from a few exceptions, the groups G2(q) are simple and constitute
their own universal covering groups:

Proposition 11.2. Suppose that q > 3. Then the finite group G2(q) is simple. Moreover,
if q > 5, then G2(q) has trivial Schur multiplier, that is, it is its own universal covering
group.

Proof. See, for instance, [MT11, Table 24.2, Thm. 24.17 and Rmk. 24.19].

In this thesis we are interested in the case where G2(q) is simple and has trivial Schur
multiplier, whence henceforth, unless stated differently, the following is assumed:

From now on we assume that q > 5.
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11.2 Weyl Group and Maximal Tori of G2(q)

Our next objective is to describe the maximal tori of the finite group G. To this end
we consider the maximal torus T of G generated by all hr(t), r ∈ Σ, t ∈ F×, as in
Proposition 4.36 and denote by W := NG(T)/T the corresponding Weyl group. It is a
well-known fact that W is a dihedral group of order 12 (e.g. [Hum72, Table 12.1]).

Notation 11.3. For the purpose of a convenient description of the action of the Weyl
group W on the maximal torus T, let us introduce a different way of writing the elements
of T following the notation of [Cha68]. We recall the root system Σ of G and consider
the additive group ZΣ generated by Σ. By [Car89, p. 98] each group homomorphism
χ : ZΣ −→ F× (called an F-character of ZΣ) gives rise to an element h(χ) of the maximal
torus T. Even more, according to [Car89, Thm. 7.1.1] we have

T = {h(χ) | χ : ZΣ −→ F× is a group homomorphism}.

Since ZΣ is a free abelian group, it is evident that for any fixed basis B ⊆ ZΣ a group
homomorphism χ : ZΣ −→ F× (and hence h(χ)) is uniquely determined by the images of
the basis elements under χ. Now let us fix the basis B = {ξ1, ξ2} (this clearly constitutes
a basis of ZΣ). Then we denote by h(z1, z2, z3) with z1, z2, z3 ∈ F× the element h(χ) of T
defined by χ(ξ1) = z1, χ(ξ2) = z2, and the condition z1z2z3 = 1. We have

hr(z) = h(z〈r, ξ1〉, z〈r, ξ2〉, z〈r, ξ3〉)

for r ∈ Σ and z ∈ F× (see [Car89, p. 98]).

In the above notation the action of NG(T), and hence of W, on the maximal torus
T may now be uniformly described as follows (note that this statement is also given in
[Cha68, p. 193]):

Lemma 11.4. Let z1, z2, z3 ∈ F× with z1z2z3 = 1 and suppose that i, j, k ∈ {1, 2, 3} are
pairwise distinct. Then we have

nξi−ξj (1)−1h(z1, z2, z3)nξi−ξj (1) = h(zπ(1), zπ(2), zπ(3)),

nξk(1)−1h(z1, z2, z3)nξk(1) = h(z−1
π(1), z

−1
π(2), z

−1
π(3)),

where π denotes the transposition (ij) ∈ S3.

Proof. These are easy calculations applying Theorem 4.25(x) and the fact that for any root
r ∈ Σ and any field element z ∈ F× we have hr(z) = h(z〈r, a+b〉, z〈r, a〉, z〈r, −(2a+b)〉).

Let us now take a look at the maximal tori of G. Up to G-conjugation there exist six
of these, denoted T+, T−, Ta, Tb, T3 and T6 (see, e.g., [Asc87, p. 254]). Representatives in
G of these maximal tori are given in Table 11.1 below, where we write

v2 := nb(1)n−(2a+b)(1),

v3 := n3a+b(1)n−b(1),

v6 := v2v3.

These elements will henceforth occur frequently.
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w ∈W TwF WwF

1
T+ = {h(z1, z2, z3) | zq−1

i = 1, z1z2z3 = 1}
∼= Cq−1 × Cq−1

D12

v2T
T− = {h(z1, z2, z3) | zq+1

i = 1, z1z2z3 = 1}
∼= Cq+1 × Cq+1

D12

na(1)T
Ta = {h(z, zq−1, z−q) | zq2−1 = 1}
∼= Cq2−1

C2 × C2

nb(1)T
Tb = {h(z, zq, z−(q+1)) | zq2−1 = 1}
∼= Cq2−1

C2 × C2

v3T
T3 = {h(z, zq, zq

2
) | zq2+q+1 = 1}

∼= Cq2+q+1

C6

v6T
T6 = {h(z, z−q, zq

2
) | zq2−q+1 = 1}

∼= Cq2−q+1

C6

Table 11.1: Maximal tori of G2(q)

We refer to [Cha68, p. 194] and [Eno70, p. 507] for the statement on the representatives of
the maximal tori TwF and to [Kle88b, Table I] or [Car70, Table 3] for the corresponding
fixed points of the Weyl group W.

For future use we set F+ := F and F− := v2F , and, accordingly, Gε := GFε for
ε ∈ {±} (or ε ∈ {±1} slightly abusing notation). Then G+ = G, and in consequence of
Corollary 4.35 the finite group G− is G-conjugate to G.

11.3 Relations in G2(q)

Let us recall from Remark 4.26 that the signs ηr,s for roots r, s ∈ Σ occurring in the
Steinberg relations given in Theorem 4.25 depend on the chosen Chevalley basis underlying
G, that is, they depend on the parametrization of the generators xr(t) of G. Hence, for
consistency of our future calculations it seems reasonable to fix such a parametrization for
the remainder of this work:

Proposition 11.5. There exists a Chevalley basis {hr | r ∈ Π} ∪ {er | r ∈ Σ} as in
Theorem 4.10 for the simple Lie algebra of type G2 underlying G such that the corre-
sponding multiplication constants Nrs for r, s ∈ Σ with r+ s ∈ Σ are given by the relation
Nrs = −Nsr and the identities

Nξi−ξj ,ξj−ξk = 1,

N−ξi,ξi−ξj = 1,

Nξi−ξj ,ξj = 1,

Nξi,ξj = 2(ijk),

N−ξi,−ξj = −2(ijk),

Nξi,−ξj = 3
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for pairwise distinct i, j, k ∈ {1, 2, 3}, where (ijk) denotes the sign of the permutation
σ ∈ S3 given by σ(1) = i, σ(2) = j and σ(3) = k.

Moreover, with respect to the above Chevalley basis the signs ηr,s, r, s ∈ Σ, occurring
in Theorem 4.25 are given by Table 11.2 and the relations ηr,r = −1, ηr,−s = ηr,s and
η−r,s = ηr,ωr(s):

HHH
HHHr
s

a+ b a −(2a+ b) b 3a+ b −(3a+ 2b)

a+ b −1 −1 1 −1 1 1

a 1 −1 −1 1 −1 1

−(2a+ b) −1 1 −1 1 1 −1

b −1 1 1 −1 1 −1

3a+ b 1 −1 1 −1 −1 1

−(3a+ 2b) 1 1 −1 1 −1 −1

Table 11.2: Signs ηr,s for G2(q)

Proof. This is stated in [Ree61, p. 439 and pp. 441/442].

We shall henceforth assume that the generators xr(t) of G are derived from a Chevalley
basis as in Proposition 11.5, so in particular in our computations we use the signs ηr,s as
given in Table 11.2. As a first observation we obtain the following relations for the elements
v2, v3, v6 ∈ NG(T) defined in Section 11.2 above:

Lemma 11.6. We have v2
2 = v3

3 = v6
6 = 1, [v2, v3] = 1, and moreover

(i) v−1
2 h(z1, z2, z3)v2 = h(z−1

1 , z−1
2 , z−1

3 ),

(ii) v−1
3 h(z1, z2, z3)v3 = h(z3, z1, z2)

for all z1, z2, z3 ∈ F× with z1z2z3 = 1.

Proof. The first part of the claim follows from Theorem 4.25(ix) in combination with
Proposition 11.5. Statements (i) and (ii) are immediate consequences of Lemma 11.4.

Moreover, the following relations hold:

Lemma 11.7. Let t ∈ F (with t 6= 0 in (ii)) and r ∈ Σ. Then

(i) v2xr(t)v
−1
2 = x−r(−t),

(ii) v2nr(t)v
−1
2 = n−r(−t).

In particular, v2 commutes with all nr(1), r ∈ Σ.

Proof. By definition we have v2 = nb(1)n−(2a+b)(1), so by application of Theorem 4.25(viii)
we obtain that

v2xr(t)v
−1
2 = xωb(ω−(2a+b)(r))(ηb,ω−(2a+b)(r)η−(2a+b),rt).

Since b and −(2a+b) are perpendicular to each other, ωb(ω−(2a+b)(r)) = −r for any r ∈ Σ.
Moreover, by Proposition 11.5 we have ηb,ω−(2a+b)(r)η−(2a+b),r = −1 for all r ∈ Σ, hence (i)

follows. Statement (ii) is a direct consequence of (i) since nr(t) = xr(t)x−r(−t−1)xr(t).
Moreover, nr(1) = n−r(−1) by Theorem 4.25(ix), which yields the final implication.
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Let us now come to a well-known statement which does in fact not just hold for type
G2 but also for arbitrary Chevalley groups. Nevertheless, we only state this result here for
Chevalley groups of type G2 as for our purpose it is only needed in the context of these
groups.

Proposition 11.8. For every root r ∈ Σ there exists an epimorphism

φr : SL2(F) −→ 〈xr(t), x−r(t) | t ∈ F〉

such that [
1 t
0 1

]
7−→ xr(t) and

[
1 0
t 1

]
7−→ x−r(t)

for t ∈ F. Moreover, under φr we have

[
t 0
0 t−1

]
7−→ hr(t) and

[
0 1
−1 0

]
7−→ nr(1).

Proof. See, for instance, [Car89, Th. 6.3.1] for the existence of the epimorphism φr. The
statements on the preimages for hr(t) and nr(t) may easily be derived from the identities
nr(t) = xr(t)x−r(−t−1)xr(t) and hr(t) = nr(t)nr(−1).

For later use we also state the values of the Cartan integers 〈r, s〉 for r, s ∈ Σ:

Lemma 11.9. The Cartan integers 〈r, s〉, r, s ∈ Σ, for the root system Σ of type G2 can
be found in Table 11.3 below, where it should be noted that 〈−r, s〉 = 〈r,−s〉 = −〈r, s〉 for
all r, s ∈ Σ.

HHH
HHHr
s

a b a+ b 2a+ b 3a+ b 3a+ 2b

a 2 −3 −1 1 3 0

b −1 2 1 0 −1 1

a+ b −1 3 2 1 0 3

2a+ b 1 0 1 2 3 3

3a+ b 1 −1 0 1 2 1

3a+ 2b 0 1 1 1 1 2

Table 11.3: Cartan integers for a root system of type G2

Proof. Following [Car89, p. 40] the Cartan integers are given by 〈r, s〉 = p(r, s) − q(r, s)
for r, s ∈ Σ with r 6= ±s, where

p(r, s) = max{i > 0 | −jr + s ∈ Σ for all 0 6 j 6 i },
q(r, s) = max{i > 0 | jr + s ∈ Σ for all 0 6 j 6 i }.

For r = s we clearly have 〈r, r〉 = 2. Application of these formulae yields the claim.
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11.4 Automorphisms of G2(q)

The aim of this section is a description of the automorphism group of G. Let us recall that
q = pf for a prime p and f ∈ N>0. Similarly as for the special linear groups we obtain a
first automorphism of G by the following definition:

Definition 11.10. By [Ste68, p. 158] the field automorphism Fq −→ Fq, a 7−→ ap, induces
an automorphism Fp of the group G = G2(q) via

Fp : G −→ G, xr(t) 7−→ xr(t
p), r ∈ Σ, t ∈ Fq.

The automorphism Fp will be called a field automorphism of G. Note that its order in
Aut(G) is given by f .

In the case that p = 3 we may define another automorphism of G:

Definition 11.11. Suppose that p = 3. By [Ste68, p. 156] there exists a unique angle-
preserving and length-changing bijection ρ : Σ −→ Σ satisfying ρ(∆) = ∆. This bijection
may be imagined as reflecting along the line bisecting the angle between a and b, and
interchanging root lengths (see Figure 11.2). Now ρ induces an automorphism Γ of G2(q)
via

Γ: G −→ G, xr(t) 7−→

{
xρ(r)(εrt) if r is long,

xρ(r)(εrt
3) if r is short,

for suitable signs εr ∈ {±1} with εr = 1 if one of ±r is contained in ∆ (compare [Ste68,
pp. 156/157]). This automorphism is called a graph automorphism of G.

2a+ b−2a− b

a+ b

−a− b

−a

a

3a+ 2b−3a− b

−3a− 2b 3a+ b

b

−b

ρ

Figure 11.2: Permutation ρ of root system of type G2

Remark 11.12. Let us assume again that p = 3. The signs εr in the definition of the graph
automorphism Γ above depend, like the signs ηr,s, on the chosen Chevalley basis of the
Lie algebra underlying G. Since we are working with the fixed Chevalley basis given by
Proposition 11.5, the question arises of determining the values of the signs εr with respect
to this particular basis.
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Following the proof of [Car89, Prop. 12.4.1] we may assume that the signs εr equal 1
for all r ∈ Σ if the following condition on the multiplication constants is satisfied:

−1

2
Nξ2,ξ1 =

1

3
Nξ2,−ξ3 = Nξ1−ξ2,ξ2−ξ3 .

In consequence of Proposition 11.5 we have

Nξ2,ξ1 = 2(213) = −2,

Nξ2,−ξ3 = 3,

Nξ1−ξ2,ξ2−ξ3 = 1,

whence the above condition is clearly fulfilled. Thus, in the following we work with the
graph automorphism

Γ: G −→ G, xr(t) 7−→

{
xρ(r)(t) if r is long,

xρ(r)(t
3) if r is short.

We observe that since ρ2 is the identity map on Σ and ρ interchanges root lengths, we
have Γ2(xr(t)) = xr(t

3) for all r ∈ Σ, so Γ2 = F3 = Fp. If for r ∈ Σ we define λr to be 1 if
r is long, and 3 if r is short, then the above definition of Γ reduces to Γ(xr(t)) = xρ(r)(t

λr).

For our future calculations it will be convenient to understand the action of the graph
automorphism Γ on the elements hr(t) and nr(t):

Lemma 11.13. Suppose that p = 3. Then it holds that

(i) Γ(nr(t)) = nρ(r)(t
λr),

(ii) Γ(hr(t)) = hρ(r)(t
λr)

for every root r ∈ Σ and every t ∈ F×q .

Proof. We have

Γ(nr(t)) = Γ(xr(t))Γ(x−r(−t−1))Γ(xr(t))

= xρ(r)(t
λr)xρ(−r)((−t−1)λ−r)xρ(r)(t

λr)

= xρ(r)(t
λr)x−ρ(r)(−(tλr)−1)xρ(r)(t

λr)

= nρ(r)(t
λr)

since ρ(−r) = −ρ(r), the roots r and −r have the same length, and (−1)λr = −1. From
this we deduce that

Γ(hr(t)) = Γ(nr(t))Γ(nr(1))−1

= nρ(r)(t
λr)nρ(r)(1)−1

= hρ(r)(t
λr)

for all r ∈ Σ and t ∈ F×q as claimed.

By means of the two automorphisms Γ and Fp the automorphism group of G may now
be described as follows:
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Proposition 11.14. For G = G2(q) with q = pf one has

Aut(G) =

{
Go 〈Fp〉 if p 6= 3,

Go 〈Γ〉 if p = 3.

In particular, the outer automorphism group of G is cyclic for all primes p.

Proof. This is well-known and follows, for instance, from [GLS98, Th. 2.5.12(a)–(e)] by
taking into account that the algebraic group G is both adjoint and universal (cf. [MT11,
Table 9.2]).

Remark 11.15. (i) As indicated earlier, in certain situations it will be convenient to work
inside the group G− = Gv2F , which we defined in Section 11.2, instead of the group
G = G+. This is due to the fact that inside the group G− the maximal tori of type
T− have a representative lying in the maximal torus T of G (cf. Table 11.1), which
allows a nice description of the action of the field automorphism on this torus. For
this we should note that as for the group G+ the endomorphism of G defined by
xr(t) 7→ xr(t

p) induces an automorphism of G−. Similarly as for G+ we shall denote
this automorphism by Fp, and if p 6= 3, then Aut(G−) = 〈G−, Fp〉. The action of Fp
on the maximal torus T− of G− lying inside T is then given by raising each element
to its p-th power, which is analogous to the action of Fp on the maximal torus T+ of
G+ inside T.
However, contrary to the case of the group G+ it does not hold true any longer that
Fp has order f as an automorphism of G−, where q = pf . Rather, the order of Fp
is given by 2f in this case since (v2Fq)

2 = Fq2 = F 2f
p acts trivially on G−, while

F fp = Fq acts on G− by conjugation with v2.

(ii) Following Definition 11.10 for δ ∈ {±} the field automorphism Fp acts trivially on
the quotient

NGδ(T)/Tδ = NGFδ (T)/TFδ = 〈Tδ, nr(1) | r ∈ Σ〉/Tδ ∼= D12,

where we have NGFδ (T) = 〈Tδ, nr(1) | r ∈ Σ〉 in consequence of Lemma 11.7 (cf. also
Propositions 4.27 and 4.40 for the statement on the isomorphism). Furthermore, any
element of NGδ(T) may be written in the form n · t for some t ∈ Tδ and n ∈ NGδ(T)
with Fp(n) = n.
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Action of Automorphisms

In this chapter we determine the action of the automorphisms of the group G = G2(q) on
its irreducible Brauer characters as well as on its `-weights in the cases ` = 2 and ` = 3,
where ` - q. The case where ` > 5 is not considered here since in this situation the (iBAW)
condition has already been proven to hold for G either by reason of the `-blocks having
cyclic defect groups or by results of Cabanes–Späth [CS13]. More details on this will be
provided in the proof of Theorem 14.1.

In the previous chapter we saw that the outer automorphism group of G is cyclic,
generated either by the field automorphism Fp if 3 - q or by the graph automorphism Γ
in the case where q is a power of 3. Hence, in order to understand the action of Aut(G)
on the Brauer characters and G-conjugacy classes of weights of G it suffices to know how
these behave under the action of Fp or Γ, accordingly.

12.1 Action on the Brauer Characters of G2(q)

Let us first study the action of the automorphism group Aut(G) on the Brauer characters
of G. A set of representatives for the conjugacy classes of G as well as a brief description of
the irreducible characters of G and the `-blocks and `-decomposition numbers for ` ∈ {2, 3}
may be found in Sections B.1, B.2 and B.3 of Appendix B. For the notation used here we
also refer to those sections.

12.1.1 The Case ` = 2

Here we assume that ` = 2 and q is odd.

Proposition 12.1. Let B be a 2-block of G. Then one of the following holds:

(i) B 6= B0 and Aut(G)B acts trivially on IBr(B),

(ii) B = B0, 3 - q, and Aut(G)B = Aut(G) acts trivially on IBr(B),

(iii) B = B0, 3 | q, and Γ interchanges ϕ13 and ϕ14, and leaves the remaining elements
of IBr(B) invariant.

Proof. We go through the different types of 2-blocks of G (cf. Section B.3.1 for the 2-
blocks of G and the corresponding decomposition matrices). Certainly, the claim holds for
2-blocks of defect zero. Suppose now that B is the 2-block B3, in which case we must have
3 - q. Then a basic set for IBr(B) is given by B = {X31, X32, X33}, and since according
to Table B.2 each of the characters in B is the unique irreducible character of G of its
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degree, it follows that Aut(G)B = Aut(G) acts trivially on B. Moreover, the decomposition
matrix for B is unitriangular with respect to a suitable ordering of B and IBr(B), whence
by Lemma 1.27 each element of IBr(B) is left invariant by Aut(G)B = Aut(G).

Let us next assume that B is of type BI for some I ∈ {1a, 1b, 2a, 2b}. Then we
have | IBr(B)| = 2 and the irreducible Brauer characters in B are of degrees ϕ′I(1) and
ϕI(1) = (q − 1)ϕ′I(1) following Table B.2 and Section B.3.1. Since by assumption q > 5,
these degrees are distinct, whence in particular Aut(G)B does not interchange the two
elements of IBr(B).

If B is of type BXI for some I ∈ {1, 2, a, b}, then | IBr(B)| = 1, so the claim follows
trivially. We have thus proven (i).

Let us finally suppose that B is the principal 2-block B0. Then a basic set for IBr(B) is
given by B = {X11, X17, X18, X13, X14, X15, X12}, and, apart from the characters X13 and
X14, according to Table B.2 the elements in this set are the unique irreducible characters
of G of their degree, hence left invariant by Aut(G) = Aut(G)B. We take a closer look
at X13 and X14. These are the only irreducible characters of G of degree 1

3qΦ3(q)Φ6(q),
whence any automorphism of G either stabilizes both of these characters or it interchanges
them. Let us assume first that 3 - q and consider the conjugacy class of G represented by
u2 = x2a+b(1) (cf. Table B.1). Clearly, this class is stabilized by the field automorphism

Fp, so X
Fp
13 (u2) = X13(u2). Now by Table B.3 we have

X13(u2) = q 6= 0 = X14(u2),

from which we deduce that X
Fp
13 6= X14, that is, X

Fp
13 = X13 and X

Fp
14 = X14. By Proposi-

tion 11.14 we have Aut(G) = Go 〈Fp〉 for 3 - q, which implies that also X13 and X14 are
in fact stabilized by all of Aut(G) in this case, yielding (ii).

Let now 3 | q and consider the conjugacy classes of G represented by u1 = x3a+2b(1)
and u2 = x2a+b(1). In this case the automorphism group of G is given by Aut(G) = Go〈Γ〉
according to Proposition 11.14, and from Definition 11.11 and Remark 11.12 it follows that

Γ(u1) = Γ(x3a+2b(1)) = x2a+b(1) = u2.

By Table B.3 we have X13(u1) 6= X13(u2) = XΓ
13(u1) but XΓ

13(u1) = X13(u2) = X14(u1),
and we conclude that XΓ

13 = X14. Let us now take a look at the 2-decomposition numbers
of B0, which are given by the following matrix with respect to the basic set B:

ϕ11 ϕ17 ϕ18 ϕ13 ϕ14 ϕ15 ϕ12

X11 1 · · · · · ·
X17 · 1 · · · · ·
X18 · · 1 · · · ·
X13 1 · · 1 · · ·
X14 1 · · · 1 · ·
X15 · 1 · · · 1 ·
X12 1 α β 1 1 · 1

for suitable α, β > 0 (cf. Section B.3.1). Clearly, since X11, X17 and X18 are invariant
under Aut(G), so are ϕ11, ϕ17 and ϕ18. Now ϕ13 = X0

13 − ϕ11 and ϕ14 = X0
14 − ϕ11,

so by the previous observations Γ interchanges ϕ13 and ϕ14. Since X15 and X12 are left
invariant by Aut(G) and the multiplicity of ϕ13 as an irreducible constituent of X0

15 and
X0

12, respectively, agrees with that of ϕ14 in each case, we conclude that ϕ15 and ϕ12 are
stabilized by Γ, and hence by Aut(G) = Go 〈Γ〉 as claimed in (iii).
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12.1.2 The Case ` = 3

Here we assume that ` = 3 and 3 - q. In particular, we have Aut(G) = Go 〈Fp〉.

Proposition 12.2. Let B be a 3-block of G. Then Aut(G)B acts trivially on IBr(B).

Proof. As for the case ` = 2 we go through the different types of 3-blocks of G (cf. Sec-
tion B.3.2 for the 3-blocks of G and the corresponding decomposition matrices), and we
do not need to deal with 3-blocks of defect zero.

Suppose first that B is the 3-block B2. Then q is odd and | IBr(B)| = 4 with basic set
given by B = {X21, X22, X23, X24}. Following Table B.2 the characters X21 and X22 are
the unique irreducible characters of G of their degrees, hence invariant under the action
of Aut(G) = Aut(G)B, while X23(1) = X24(1). However, there are no further irreducible
characters of G of this degree, so an element of Aut(G) not stabilizing X23 and X24 has
to interchange these. But by Table B.4 the character X23 takes the value q(q2 + 1) on
the conjugacy class represented by u1, while the character X24 does not take this value
on any conjugacy class, so in consequence X23 and X24 cannot be interchanged by any
automorphism of G. We conclude that Aut(G)B = Aut(G) acts trivially on B, and since
the decomposition matrix for B with respect to suitable orderings of B and IBr(B) is
unitriangular, we may apply Lemma 1.27 to deduce that IBr(B) is stabilized pointwise by
Aut(G)B.

Similarly as in the case ` = 2, for 3-blocks B of type BI , where I ∈ {1a, 1b, 2a, 2b},
there exist exactly two irreducible Brauer characters in B, which are of distinct degrees
since q > 5. Hence, Aut(G)B acts trivially on IBr(B).

If q ≡ 1 mod 3 and B is a 3-block of type BXI for I ∈ {1, 3, a, b} or if q ≡ −1 mod 3
and B is a 3-block of type BXI for I ∈ {2, 6, a, b}, then IBr(B) contains only one element,
which is hence trivially stabilized by Aut(G)B.

Finally, we suppose that B = B0 is the principal 3-block of G. Then a basic set for
IBr(B) is given by the set B = {X11, X18, X19,1, X14, X15, X16, X12} for q ≡ 1 mod 3 or by
the set B = {X11, X18, X19,1, X14, X17, X16, X12} for q ≡ −1 mod 3. With the exception of
the character X19,1 any element of B is the unique irreducible character of G of its degree
(see Table B.2), hence invariant under Aut(G). For the character X19,1 we have

X19,1(1) =
1

3
qΦ1(q)2Φ2(q)2,

and according to Table B.2 it holds that X19,2 is the only other irreducible character of G of
this degree. Moreover, by Remark B.3 we have X0

19,1 = X0
19,2, so we conclude that Aut(G)

leaves X0
19,1 invariant (even though some automorphism of G might interchange X19,1 and

X19,2). In summary, we conclude that for any element χ ∈ B the Brauer character χ0

must be left invariant by Aut(G) = Aut(G)B. With respect to a suitable ordering of
both B and IBr(B) the corresponding decomposition matrix is unitriangular according to
Section B.3.2, so again by application of Lemma 1.27 and Remark 1.28 we conclude that
the irreducible Brauer characters in B are left invariant by Aut(G)B as claimed.

12.2 Action on the Weights of G2(q)

The B-weights of G for `-blocks B of non-cyclic defect have already been determined by
J. An in [An94a] for various primes ` dividing the order of G. We give here a summary
of his results for the primes 2 and 3. Furthermore, our task is now to examine how these
weights behave under the action of automorphisms of G.
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For the course of this section we also allow q < 5. The reason for this is that in certain
cases we need to consider weights of the subgroup G2(p) of G2(q) defined over the prime
field Fp of Fq, which makes it necessary to include the groups G2(2) and G2(3) in our
investigations. However, this shall not cause any problems here since neither any of our
proofs nor any of the results we refer to rely on the condition that q > 5.

12.2.1 The Case ` = 2

Throughout this section we assume that ` = 2 and q is odd. Moreover, we let ε ∈ {±1}
be such that q ≡ ε mod 4. In the first part of this section we examine certain 2-subgroups
and 2-weights of G in particular situations in order to understand their behaviour under
the action of Aut(G). These groups will occur in Proposition 12.16 as radical 2-subgroups
of G giving rise to 2-weights belonging to the principal 2-block of G.

To begin with, note that any Sylow 2-subgroup of G is contained in the centralizer
of an involution, and thus so is any 2-subgroup of G. Let us hence fix the involution
y := ha(−1)hb(−1) ∈ G for the following investigations. By application of Lemma 11.9
and the fact that

hγ(z) = h(z〈γ, ξ1〉, z〈γ, ξ2〉, z〈γ, ξ3〉)

for γ ∈ Σ and z ∈ F× (cf. Section 11.2) we obtain that y = h(1,−1,−1) ∈ T+. Moreover,
by [Ree67, Thm. 2.5] all involutions in G are G-conjugate to y.

Lemma 12.3. The centralizer in G of the involution y = ha(−1)hb(−1) is given by

CG(y) = 〈T+, xa+b(t), x3a+b(t), na+b(1), n3a+b(1) | t ∈ Fq〉.

Proof. As observed in Section 11.2, there exists an F-character χ such that y = h(χ) since
y ∈ T+ ⊆ T. By [Cha68, Th. 4.1] (for p > 5) and [Eno70, Prop. 3.1 and Sec. 7] (for p = 3)
we have

CG(h(χ)) = 〈T+, x±r(t) | r ∈ Σ, χ(r) = 1, t ∈ Fq〉.

We have already noted above that y = h(1,−1,−1). Hence, it follows that y corresponds
to the F-character χ : ZΣ −→ F× with χ(a+ b) = 1 and χ(a) = −1, and since

χ(c1a+ c2b) = χ(a)c1χ(b)c2 = (−1)c1+c2

for c1, c2 ∈ Z, we deduce that χ(r) = 1 for r ∈ Σ if and only if r ∈ {±(a+b),±(3a+b)}.

In the following we will consider a number of statements involving certain orthogonal
groups. Let us fix some notation:

Notation 12.4. For an even natural number n > 2, a prime power q and a sign δ ∈ {±}
we denote by COδ

n(q), GOδ
n(q) and SOδ

n(q) with

COδ
n(q) D GOδ

n(q) D SOδ
n(q) and COδ

n(q) D SOδ
n(q)

the conformal orthogonal group, the general orthogonal group and the special orthogonal
group over Fq of degree n and δ-type, respectively. We refer to [KL90, Sec. 2.5] for a
detailed description of these groups. One should note that the notation in [KL90] differs
from the notation used here in the way that in [KL90] the conformal orthogonal groups
are denoted by GO±n (q), while the general orthogonal groups are written as O±n (q).
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Remark 12.5. Since by [Ree67, Thm. 2.5] all involutions of G are conjugate in G, it follows
from [An94a, (1A) and (3D)] that CG(y) is isomorphic to SO+

4 (q), the special orthogonal
group over Fq of degree 4 and plus type.

The first type of 2-weights we consider now are those arising from 2-subgroups of G
isomorphic to the extraspecial group 21+4

+ of order 21+4 and plus type.

Lemma 12.6. Suppose that q ≡ ±3 mod 8. Then any two subgroups of SO+
4 (q) that are

isomorphic to 21+4
+ are conjugate in CO+

4 (q).
Moreover, any subgroup R 6 SO+

4 (q) isomorphic to 21+4
+ is 2-radical in SO+

4 (q) with

NSO+
4 (q)(R)/R ∼= (C3 × C3)o C2,

where the non-trivial element of C2 acts on C3 × C3 by inversion.

Proof. The first statement is part of [An93, (1G)(b)]. For the second statement we note
that, in consequence of the first part, for subgroups R1, R2 6 SO+

4 (q) isomorphic to 21+4
+

we have
NSO+

4 (q)(R1)/R1
∼= NSO+

4 (q)(R2)/R2,

so R1 is a radical 2-subgroup of SO+
4 (q) if and only if R2 is. Moreover, according to

[An94a, (2B)] the group SO+
4 (q) contains a radical 2-subgroup R ∼= 21+4

+ , which satisfies
NSO+

4 (q)(R)/R ∼= (C3 × C3)o C2 with the non-trivial element of C2 acting on C3 × C3 by

inversion. Hence, the claim follows.

Before we state the next result let us observe that in the case of 3 | q we always have
q ≡ 1 mod 8 if q is an even power of 3, and q ≡ 3 mod 8 otherwise. Hence, q ≡ ±3 mod 8
immediately implies that q ≡ 3 mod 8 in this situation.

Proposition 12.7. Suppose that 3 | q and let q ≡ 3 mod 8. Moreover, define

R := 〈x3a+b(−1)x−(3a+b)(−1), xa+b(−1)x−(a+b)(−1), n3a+b(1), na+b(1)〉 6 G2(3) 6 G.

Then R ∼= 21+4
+ is a radical 2-subgroup of both G2(3) and G2(q).

Proof. We first prove that R ∼= 21+4
+ by making use of the fact that 21+4

+
∼= D8 ◦D8 is the

central product of two dihedral groups of order 8. For r ∈ Σ recall the epimorphisms φr
from Proposition 11.8. As 3 | q, we have

xa+b(−1)x−(a+b)(−1) = φa+b

([
1 −1
0 1

])
φa+b

([
1 0
−1 1

])
= φa+b

([−1 −1
−1 1

])
with

[−1 −1
−1 1

]2
=
[−1 0

0 −1

]
. Since by Proposition 11.8 it holds that

φa+b

((−1 0
0 −1

))
= ha+b(−1),

which does not equal 1 by Theorem 4.25(v),(vi), we conclude that xa+b(−1)x−(a+b)(−1)
has order 4. Analogously, one can show that x3a+b(−1)x−(3a+b)(−1) has order 4. Moreover,
from Theorem 4.25(ii) it follows that xa+b(−1)x−(a+b)(−1) and x3a+b(−1)x−(3a+b)(−1)
commute, and by part (v) of that theorem we have

ha+b(−1) = h3a+b(−1) = y.

By Theorem 4.25(viii) and Proposition 11.5 the element na+b(1) acts trivially on the group
〈x3a+b(−1)x−(3a+b)(−1)〉 and inverts the elements of 〈xa+b(−1)x−(a+b)(−1)〉. The same
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holds true if one interchanges the roles of a+ b and 3a+ b. Finally, from Theorem 4.25(ix)
and Proposition 11.5 we deduce that [na+b(1), n3a+b(1)] = 1. Hence, we conclude that

R =
(
〈xa+b(−1)x−(a+b)(−1)〉o 〈na+b(1)〉

)
◦
(
〈x3a+b(−1)x−(3a+b)(−1)〉o 〈n3a+b(1)〉

)
∼= D8 ◦D8

as claimed.

As observed before, we have y = h3a+b(−1) = n3a+b(1)2 ∈ R, and moreover one easily
verifies that Z(R) = 〈y〉. Hence, R ⊆ CG(y) ∼= SO+

4 (q) (and R ⊆ CG2(3)(y) ∼= SO+
4 (3),

respectively), and from Lemma 12.6 it thus follows that R is 2-radical in both SO+
4 (q) and

SO+
4 (3). The center of R is a characteristic subgroup of R, so in particular we obtain that

NG(R) ⊆ NG(Z(R)) = CG(y). Consequently, R is 2-radical in G2(q), and analogously it
also follows that R is 2-radical in G2(3).

Proposition 12.8. Assume that 3 | q and let q ≡ 3 mod 8. Moreover, suppose that the
group R ∼= 21+4

+ is as in Proposition 12.7. Then NG(R) = CG2(3)(y).

Proof. In the proof of the Proposition 12.7 we observed that NG(R) ⊆ CG(y) ∼= SO+
4 (q),

whence we may apply Lemma 12.6 to deduce that

NG(R)/R ∼= (C3 × C3)o C2,

with the action of the non-trivial element of C2 on C3 × C3 given by inversion. E.g. by
application of Theorem 4.25 one verifies that the group

CG2(3)(y) = 〈ha(−1), hb(−1), xa+b(1), x3a+b(1), na+b(1), n3a+b(1)〉 > R

(cf. Lemma 12.3) is contained in NG(R). Now ha(−1) and hb(−1) agree modulo R since
y = ha(−1)hb(−1) lies in R, and hence according to Theorem 4.25(ii),(vii) and Lemma 11.9
we have

CG2(3)(y)/R = 〈ha(−1), xa+b(1), x3a+b(1)〉
= (〈xa+b(1)〉 × 〈x3a+b(1)〉)o 〈ha(−1)〉

with the action of ha(−1) given by inversion and : CG2(3)(y) � CG2(3)(y)/R denoting
the natural epimorphism. Since 3 | q, it follows that xa+b(1)3 = x3a+b(1)3 = 1, and hence
we may conclude that NG(R) = CG2(3)(y).

With R as above, the previous result allows us to examine the action of the graph
automorphism Γ on NG(R)/R in the situation of 3 | q and q ≡ 3 mod 8.

Lemma 12.9. Assume that 3 | q and let q ≡ 3 mod 8. Moreover, let R ∼= 21+4
+ be as in

Proposition 12.7 and suppose the notation of the proof of Proposition 12.8, that is,

NG(R)/R = (〈xa+b(1)〉 × 〈x3a+b(1)〉)o 〈ha(−1)〉.

Let us parametrize the elements of NG(R)/R by setting

((s, t), z) := xa+b(s) x3a+b(t) z ∈ NG(R)/R

for s, t ∈ F3 and z ∈ 〈ha(−1)〉. Then Γ(((s, t), z)) = ((t, s), z).
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Proof. This is obvious since by definition of Γ it holds that Γ(xa+b(t)) = x3a+b(t
3) and

Γ(x3a+b(t)) = xa+b(t), and we have t3 = t for all t ∈ F3. Moreover, from Lemma 11.13 it
follows that Γ(ha(−1)) = hb(−1), which coincides with ha(−1) modulo R.

Let us now determine the conjugacy classes of the quotient NG(R)/R, where R is as
in Proposition 12.7. Information on these will allow us to understand the action of Γ on
the irreducible characters of NG(R)/R in the case that 3 | q.

Lemma 12.10. Assume that 3 | q and let q ≡ 3 mod 8. Moreover, let R ∼= 21+4
+ be as in

Proposition 12.7 and assume the notation of Lemma 12.9. Then the conjugacy classes of
NG(R)/R are given by

Cs,t := {((s, t), 1), ((−s,−t), 1)}, s, t ∈ F3, and

C? := {((u, v), z) | u, v ∈ F3, z 6= 1},

where Cs,t = Cs′,t′ if and only if (s, t) = (s′, t′) or (s, t) = (−s′,−t′).
In particular, the quotient NG(R)/R has 6 pairwise distinct conjugacy classes, given

by C0,0, C0,1, C1,0, C1,1, C1,−1 and C?.

Proof. This follows by easy computations.

Lemma 12.11. Assume that 3 | q and let q ≡ 3 mod 8. Moreover, suppose that R ∼= 21+4
+

is as in Proposition 12.7. Then the character table of the quotient group NG(R)/R is given
by:

C0,0 C? C0,1 C1,0 C1,1 C1,−1

χ0,0 1 1 1 1 1 1

χ? 1 −1 1 1 1 1

χ0,1 2 · 2 −1 −1 −1

χ1,0 2 · −1 2 −1 −1

χ1,1 2 · −1 −1 2 −1

χ1,−1 2 · −1 −1 −1 2

Proof. According to Lemma 12.6 it holds that NG(R)/R ∼= (C3 × C3) o C2, where the
non-trivial element of C2 acts on C3×C3 by inversion. This group has identifier [18, 4] in
the SmallGroups Library [Bre12] provided by GAP, whence the GAP-command

gap> Display(CharacterTable(SmallGroup([18,4])));

provides the character table of NG(R)/R as given above.

Proposition 12.12. Assume that 3 | q and let q ≡ 3 mod 8. Moreover, let R ∼= 21+4
+ be

as in Proposition 12.7 such we have that Irr(NG(R)/R) = {χ0,0, χ∗, χ0,1, χ1,0, χ1,1, χ1,−1}
as in Lemma 12.11. Then the automorphism Γ interchanges χ0,1 and χ1,0 but leaves the
remaining irreducible characters of NG(R)/R invariant.

Proof. By Lemma 12.9 and Lemma 12.10 we have Γ(C0,1) = C1,0, while the remaining
conjugacy classes are left invariant by Γ. Hence, the claim follows immediately upon
comparison with the character table of NG(R)/R given in Lemma 12.11.
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For now this completes our study of the groups 21+4
+ . The second type of 2-groups we

examine now are those isomorphic to 21+2
+ ◦D(q2−1)2

, the central product of an extraspecial

group 21+2
+ of order 8 and plus type with a dihedral group D(q2−1)2

of order (q2 − 1)2.

Lemma 12.13. Suppose that q ≡ 1 mod 8. Then any two subgroups of SO+
4 (q) that are

isomorphic to 21+2
+ ◦D(q2−1)2

are conjugate in CO+
4 (q).

Moreover, any subgroup R 6 SO+
4 (q) isomorphic to 21+2

+ ◦ D(q2−1)2
is 2-radical in

SO+
4 (q) with NSO+

4 (q)(R)/R ∼= S3.

Proof. For the first statement we note that both groups 21+2
+ and D(q2−1)2

may be em-

bedded into GO+
2 (q) (e.g. by [An93, (1G)(b)] and the fact that D(q2−1)2

is isomorphic to a

Sylow 2-subgroup of GO+
2 (q) by [KL90, Prop. 2.9.1(iii)]). Now [An93, p. 176] states that

the image of 21+2
+ ◦D(q2−1)2

under the embedding

21+2
+ ◦D(q2−1)2

↪−→ GO+
2 (q) ◦GO+

2 (q) ↪−→ GO+
4 (q)

is “determined uniquely [...] up to conjugacy”. We strongly suspect that this is saying
that there is only one conjugacy class of such subgroups in GO+

4 (q). This would imply the
first claim but unfortunately it is not entirely clear what exactly is meant here. However,
the representation theory of dihedral groups is well-known and one easily verifies that any
faithful absolutely irreducible Fq-representation of 21+2

+ ◦ D(q2−1)2
is 4-dimensional, and

that, moreover, up to GL4(q)-conjugation the images in GL4(q) of all faithful irreducible
4-dimensional Fq-representations of 21+2

+ ◦ D(q2−1)2
agree. Thus, any two subgroups of

SO+
4 (q) that are isomorphic to 21+2

+ ◦D(q2−1)2
must be conjugate in GL4(q), whence from

[KL90, Cor. 2.10.4(iii)] it follows that they must even be conjugate in CO+
4 (q) as claimed.

Now, if R1, R2 6 SO+
4 (q) with R1, R2

∼= 21+2
+ ◦D(q2−1)2

, then

NSO+
4 (q)(R1)/R1

∼= NSO+
4 (q)(R2)/R2

by the first part, so it suffices to know that there exists at least one radical 2-subgroup of
SO+

4 (q) isomorphic to 21+2
+ ◦D(q2−1)2

. This, as well as the statement on the normalizer of

R in SO+
4 (q), holds by [An94a, (2B)].

Lemma 12.14. Suppose that q ≡ 1 mod 8. The groups

Ra+b := 〈na+b(1), n3a+b(1), hb(−1), ha+b(t) | t ∈ F×q , t(q−1)2 = 1〉 6 G,

R3a+b := 〈na+b(1), n3a+b(1), ha(−1), h3a+b(t) | t ∈ F×q , t(q−1)2 = 1〉 6 G

are isomorphic to 21+2
+ ◦D(q2−1)2

and 2-radical in G. Moreover, Ra+b and R3a+b are not
conjugate in G.

Proof. Let us first show that Ra+b and R3a+b are isomorphic to 21+2
+ ◦D(q2−1)2

. We have
y = ha(−1)hb(−1) = ha+b(−1) ∈ Ra+b, so in particular also ha(−1) ∈ Ra+b. Using the
relations given in Theorem 4.25 one can show that ha(−1)na+b(1) has order 2 and acts on
〈ha+b(t) | t ∈ F×q , t(q−1)2 = 1〉 by inversion. Moreover, ha(−1)n3a+b(1) has order 2 and
acts on 〈ha(−1)ha+b(i)〉 by inversion, where i ∈ F×q denotes an element of order 4 (which
exists by assumption). Now the subgroups

〈ha+b(t) | t ∈ F×q , t(q−1)2 = 1〉o 〈ha(−1)na+b(1)〉 ∼= D(q2−1)2

132



12.2. Action on the Weights of G2(q)

and

〈ha(−1)ha+b(i)〉o 〈ha(−1)n3a+b(1)〉 ∼= D8
∼= 21+2

+

of Ra+b commute with each other (following Lemma 11.4), both have center 〈ha+b(−1)〉,
and together they generate Ra+b. We conclude that Ra+b

∼= 21+2
+ ◦D(q2−1)2

. Analogously,

one can also show that R3a+b
∼= 21+2

+ ◦D(q2−1)2
.

Since y = ha(−1)hb(−1) = ha+b(−1) = h3a+b(−1) as observed before, it is contained
in both groups, and in fact both groups have center generated by y. Hence,

Ra+b, R3a+b ⊆ CG(y) ∼= SO+
4 (q),

and from Lemma 12.13 we deduce that Ra+b and R3a+b are 2-radical in CG(y). Moreover,
since Z(Ra+b) = Z(R3a+b) = 〈y〉, also

NG(Ra+b), NG(R3a+b) ⊆ CG(y) ∼= SO+
4 (q).

Hence, Ra+b and R3a+b are 2-radical in G with NG(Ra+b)/Ra+b and NG(R3a+b)/R3a+b

isomorphic to S3 following Lemma 12.13.
Now suppose there is g ∈ G such that R3a+b = (Ra+b)

g. Since commutator subgroups
are characteristic, we then have [R3a+b, R3a+b] = [Ra+b, Ra+b]

g as well. Easy calculations
under consideration of Theorem 4.25 yield

[Ra+b, Ra+b] = 〈ha+b(t
2) | t ∈ F×q , t(q−1)2 = 1〉,

[R3a+b, R3a+b] = 〈h3a+b(t
2) | t ∈ F×q , t(q−1)2 = 1〉.

Now let t ∈ F×q be of order (q−1)2. Then there must exist another element z ∈ F×q of order

(q − 1)2 such that h3a+b(t
2) = ha+b(z

2)g. It is well-known that all elements of T+ = TF

which are conjugate in G must be conjugate by an element of the Weyl group W (see, for
instance, [Car85, Prop. 3.7.1]), which equals

W = 〈T, nr(1) | r ∈ Σ〉/T

according to Proposition 4.27. Moreover, by Theorem 4.25(x) we have

nr(1)hs(z
2)nr(1)−1 = hωr(s)(z

2)

for all r, s ∈ Σ, and ωr(s) is a short root if and only if s is short, so there must exist a
short root s such that h3a+b(t

2) = hs(z
2). From [GLS98, Th. 1.9.5(d)] it follows that

t2〈3a+b, r〉 = z2〈s, r〉

for all r ∈ Σ (note that one has to be careful here since the definition of 〈 , 〉 in [GLS98]
differs from the one used here in the way that the roles of the two arguments are inter-
changed). For r = a+ b we have

〈3a+ b, r〉 = 2
(3a+ b, a+ b)

(3a+ b, 3a+ b)
= 0

since a+ b and 3a+ b are orthogonal roots. Hence, z2〈s, a+b〉 = 1. Now, being a short root,
s is contained in {±a, ±(a + b), ±(2a + b)} and we deduce that 〈s, a + b〉 ∈ {±1, ±2}
following Lemma 11.9. We conclude that z4 = 1, which contradicts the assumption that
z has order (q − 1)2 and q ≡ 1 mod 8.
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Proposition 12.15. Let q ≡ 1 mod 8. The groups Ra+b and R3a+b from Lemma 12.14 are
stabilized by the field automorphism Fp. If 3 | q, the graph automorphism Γ interchanges
Ra+b and R3a+b.

Proof. The first statement is obvious. The second claim follows from Lemma 11.13 and
the fact that ρ : Σ −→ Σ interchanges a+ b and 3a+ b, as well as a and b.

We are now ready to describe the action of Aut(G) on the 2-weights of G. This will be
accomplished by a case-by-case analysis of the different types of 2-blocks of G of non-cyclic
defect. Following [An94a, p. 36] or Section B.3.1 these are the 2-blocks B0, B3 (if 3 - q),
and the 2-blocks of types B1a, B1b, B2a, B2b, BX1 and BX2 .

12.2.1.1 The Principal Block B0

The 2-weights of G belonging to the principal 2-block B0 have been described by J. An in
[An94a] as follows:

Proposition 12.16. Suppose that B = B0 is the principal 2-block of G. Then |W(B)| = 7.
Moreover, if (R,ϕ) is a B-weight of G, then up to G-conjugation one of the following holds:

(i) R ∼= (C2)3, an elementary abelian group of order 8, NG(R)/R ∼= GL3(2), and ϕ is
the inflation of the Steinberg character of NG(R)/R ∼= GL3(2). There exists exactly
one G-conjugacy class of such B-weights in G.

(ii) R ∼G 〈O2(Tε), v2〉, NG(R)/R ∼= S3, and ϕ is the inflation of the unique irreducible
character of NG(R)/R ∼= S3 of degree 2. There exists exactly one G-conjugacy class
of such B-weights in G.

(iii) R ∈ Syl2(G) is a Sylow 2-subgroup of G, NG(R) = R, and ϕ is the trivial character
of NG(R). There exists exactly one G-conjugacy class of such B-weights in G.

(iv) q ≡ ±1 mod 8, R ∼= 21+2
+ ◦D(q2−1)2

, the central product of an extraspecial 2-group of
order 8 and plus type with a dihedral group of order (q2 − 1)2, NG(R)/R ∼= S3, and
ϕ is the inflation of the unique irreducible character of NG(R)/R ∼= S3 of degree 2.
There exist exactly two G-conjugacy classes of such B-weights in G.

(v) q ≡ ±1 mod 8, R ∼= 21+4
+ , an extraspecial 2-group of order 21+4 and plus type,

NG(R)/R ∼= S3 × S3, and ϕ is the inflation of the unique irreducible character of
NG(R)/R ∼= S3 × S3 of degree 4. There exist exactly two G-conjugacy classes of
such B-weights in G.

(vi) q ≡ ±3 mod 8, R ∼= 21+4
+ , NG(R)/R ∼= (C3 × C3) o C2 with the action of the non-

trivial element of C2 on C3 × C3 given by inversion, and ϕ is the inflation of one
of the four irreducible characters of NG(R)/R of degree 2. There exists exactly one
G-conjugacy class of such R in G.

Proof. This follows from [An94a, (3C)] and the proof of [An94a, (3H)].

The action of Aut(G) on the B0-weights of G is given as follows:

Proposition 12.17. Let B = B0 be the principal 2-block of G and suppose that (R,ϕ) is
a B-weight of G. The following statements hold:

(i) If R is as in (i), (ii) or (iii) of Proposition 12.16, then up to G-conjugation (R,ϕ)
is invariant under Aut(G).
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(ii) If q ≡ ±1 mod 8 and R ∼= 21+2
+ ◦D(q2−1)2

, then Fp stabilizes the G-conjugacy class
of (R,ϕ), while Γ (if existent, i.e., if 3 | q) interchanges the two G-conjugacy classes
of type (R,ϕ).

(iii) If q ≡ ±1 mod 8 and R ∼= 21+4
+ , then up to G-conjugation (R,ϕ) is invariant under

Aut(G).

(iv) If q ≡ ±3 mod 8 and R ∼= 21+4
+ , then Fp stabilizes the G-conjugacy class of (R,ϕ).

By Proposition 12.16(vi) the weight character ϕ is the inflation of one of the four
irreducible characters of NG(R)/R of degree 2. If 3 | q, then two of these characters
are stabilized by Γ, the remaining two are interchanged.

Proof. (i) This is clear since in cases (i), (ii) or (iii) of Proposition 12.16 the character ϕ is
uniquely determined by R and there exists a unique G-conjugacy class of B-weights with
first component isomorphic to R.

For (ii) we observe that in consequence of Lemma 12.14 we may assume that up to
G-conjugation R is one of Ra+b or R3a+b. Since Ra+b and R3a+b are not G-conjugate by
Lemma 12.14, it follows from Proposition 12.15 that the claim holds if q ≡ 1 mod 8. Now
suppose that q ≡ −1 mod 8. Then we have q = pf for odd f and p 6= 3. Hence, the
automorphism Γ does not exist, and Fp has odd order f on G. Consequently, Fp must
stabilize both G-conjugacy classes of type (R,ϕ).

(iii) According to Proposition 12.16(v) there exist exactly two G-conjugacy classes of
B-weights of type (R,ϕ) with ϕ uniquely determined by R, and at least one of these has a
representative with first component lying in G2(p), so both classes are stabilized by Fp. If
p = 3, then the automorphism Γ also acts on G2(p), which contains exactly one conjugacy
class of such R by Proposition 12.16(vi). Hence, Γ stabilizes both G-conjugacy classes of
R that exist in G = G2(q), so in particular, the G-conjugacy class of (R,ϕ) is stabilized.

For (iv) we observe that by Proposition 12.16(vi) there exists a unique G-conjugacy
class of B-weights of type (R,ϕ) in G, and this has a representative with first component
contained in G2(p), so assume that R 6 G2(p). Moreover, q ≡ ±3 mod 8 implies that also
p ≡ ±3 mod 8, so by the same proposition

NG(R)/R ∼= NG2(p)(R)/R,

and hence NG(R) = NG2(p)(R). We deduce that Fp stabilizes all characters of NG(R)/R, so
in particular (R,ϕ) is stabilized. For p = 3 we may assume that R is as in Proposition 12.7,
whence the action of Γ on the irreducible characters of NG(R)/R of degree two is described
in Proposition 12.12.

12.2.1.2 The Block B3

Note that this 2-block does only exist if 3 - q (cf. Section B.3.1), and that the outer
automorphism group of G2(q) is generated by the field automorphism Fp in this case.

Proposition 12.18. Let B = B3. Then |W(B)| = 3. Moreover, if (R1, ϕ1) and (R2, ϕ2)
are B-weights of G that are not G-conjugate, then R1 and R2 are not isomorphic.

Proof. This follows immediately from the proof of [An94a, (3I)].

In consequence, we may easily derive the following observation about the action of the
automorphism group Aut(G) on the B3-weights of G:

Corollary 12.19. Let B = B3. Then Aut(G)B = Aut(G) acts trivially on W(B).

Proof. This follows from Proposition 12.18 since Aut(G)B = Aut(G) and any automor-
phism of G clearly preserves the isomorphism type of R for a B-weight (R,ϕ) of G.
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12.2.1.3 The Blocks of Types B1a, B1b, B2a and B2b

Let B be a 2-block of G. If B is of type Bc for some c ∈ {1a, 1b, 2a, 2b}, then we write
B ∈ {B1a, B1b, B2a, B2b}. See Section B.3.1 for further information on such 2-blocks. Let
us recall for the following statement that ε ∈ {±1} was chosen to satisfy q ≡ ε mod 4.

Proposition 12.20. Let B ∈ {B1a, B1b, B2a, B2b} be a 2-block of G. Then |W(B)| = 2.
Moreover, for a B-weight (R,ϕ) the following statements hold:

(i) If B ∈ {B1a, B1b} and ε = 1 or if B ∈ {B2a, B2b} and ε = −1, then we either have
R ∼= 21+2

+ ◦ C(q−ε)2
, the central product of 21+2

+ with C(q−ε)2
, or R ∼= C(q−ε)2

o C2,
the wreath product of C(q−ε)2

by C2, and ϕ is uniquely determined by R and B.
Moreover, for each such R there exists exactly one G-conjugacy class of B-weights
of type (R,ϕ) in G.

(ii) If B ∈ {B1a, B1b} and ε = −1 or if B ∈ {B2a, B2b} and ε = 1, then we either
have R ∼= 21+2

− or R ∼= S2(q2−1)2
, a semidihedral group of order 2(q2 − 1)2, and ϕ is

uniquely determined by R and B. Moreover, for each such R there exists exactly one
G-conjugacy class of B-weights of type (R,ϕ) in G.

Proof. This follows from the proof of [An94a, (3I)].

The above description implies the following action of automorphisms of G on the 2-
weights associated to 2-blocks of G of types B1a, B1b, B2a or B2b:

Corollary 12.21. Suppose that B ∈ {B1a, B1b, B2a, B2b} is a 2-block of G. Then Aut(G)B
acts trivially on W(B).

Proof. According to Proposition 12.20 the G-conjugacy class of any B-weight (R,ϕ) is
uniquely determined by B and the isomorphism type of R. Hence, since for any automor-
phism a ∈ Aut(G)B the 2-weight (R,ϕ)a = (Ra, ϕa) belongs to B and Ra ∼= R, it follows
that Aut(G)B stabilizes the G-conjugacy class of (R,ϕ).

Remark 12.22. In the situation of Proposition 12.20(i) a defect group of the 2-block B is
given by C(q−ε)2

o C2, while in (ii) B has S2(q2−1)2
as a defect group (cf. [An94a, (3I)]).

12.2.1.4 The Blocks of Types BX1 and BX2

In this section we examine the 2-blocks B of G that are of type BX1 or BX2 (compare
Section B.3.1 in Appendix B). We use the notation B ∈ {BX1 , BX2} in this situation.

Proposition 12.23. Suppose that B ∈ {BX1 , BX2} is a 2-block of G. Then |W(B)| = 1.

Proof. This is [An94a, (3I)(a)].

Corollary 12.24. Suppose that B ∈ {BX1 , BX2} is a 2-block of G. Then Aut(G)B acts
trivially on W(B).

Proof. This result follows directly from Proposition 12.23 since G possesses exactly one
G-conjugacy class of B-weights.
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12.2.2 The Case ` = 3

Throughout this section we let ` = 3 and suppose that 3 - q. Recall that we also allow q < 5
here. Let us define ε ∈ {±1} to be such that q ≡ ε mod 3. Now we recall from Section 11.2
the notation F+ = F and F− = v2F , the definition Gε = GFε and the fact that G+ and
G− are conjugate in G by Corollary 4.35. For convenience we will mainly work with the
group Gε throughout this section since it provides a particularly nice description for the
maximal torus Tε = TFε (see Table 11.1). According to [An94a, (1E)] we have

NGε(Tε)/Tε
∼= D12.

Thus, since we also have NGε(T)/TFε ∼= WFε ∼= D12 by Proposition 4.40 and Table 11.1
with NGε(T) ⊆ NGε(Tε), it follows that

NGε(Tε) = NGε(T) = 〈Tε, nr(1) | r ∈ Σ〉

in this case (cf. also Proposition 4.27 and Lemma 11.7).

Let us now consider the group

L := 〈xb(t), x−b(t), x3a+b(t), x−(3a+b)(t) | t ∈ F〉 6 G = G2(F).

This group satisfies L ∼= SL3(F) via

xb(t) 7−→

1 t 0
0 1 0
0 0 1

 , x3a+b(t) 7−→

1 0 0
0 1 t
0 0 1

 ,
x−b(t) 7−→

1 0 0
t 1 0
0 0 1

 , x−(3a+b)(t) 7−→

1 0 0
0 1 0
0 t 1

 .
Moreover, the group L is stable under both F+ and F− (cf. Lemma 11.7), and we set

L+ := LF+ ∼= SL3(q),

L− := LF− ∼= SU3(q) =: SL3(−q),

where SU3(q) denotes the special unitary group of degree 3 over Fq. In addition, we set
Kε := 〈Lε, v2〉 6 Gε. This yields the semidirect product Kε = Lε o 〈v2〉 with v2 acting
on Lε as the transpose-inverse automorphism does on SL3(εq) (compare Lemma 11.7).
Clearly, the field automorphism Fp of Gε acts on both Lε and Kε, and Fp(v2) = v2.

Remark 12.25. Note that in [An94a] the group Kε is defined in a different way, with Lε
defined as a subgroup of Kε of index 2, such that Lε ∼= SL3(εq), and Kε is obtained from
Lε by extending by an involutory outer automorphism (compare [An94a, p. 24]). However,
up to Gε-conjugation this definition of Kε agrees with the one given here:

The group SL3(εq) has a non-trivial center of order 3, i.e., it centralizes an element
of order 3. In Gε there exists only one conjugacy class of non-trivial elements that have
centralizer order divisible by | SL3(εq)|. This conjugacy class is represented by the element
k3 = h(ω, ω, ω) with ω ∈ F× of order 3, which has centralizer order exactly | SL3(εq)|
(compare Table B.1). Note that k3 is contained in Lε as in our definition, so in fact
Lε = CGε(k3), and we conclude that the groups arising from the two definitions for Lε are
conjugate inGε. Moreover, the element v2 acts on Lε as an involutory outer automorphism.
If ι1, ι2 ∈ Gε\Lε both act on Lε as involutory outer automorphisms, then kι13 = k−1

3 = kι23 ,
such that ι1ι

−1
2 ∈ CGε(k3) = Lε, and hence 〈Lε, ι1〉 = 〈Lε, ι2〉. We conclude that the group

Kε is unique up to Gε-conjugation.
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Considerable information on the defect groups of 3-blocks of Gε is given by the subse-
quent result, part of which is due to G. Hiß and J. Shamash, who determined the 3-blocks
and corresponding Brauer characters of G2(q) for q not divisible by 3 in [HS90]:

Proposition 12.26. Let B be a 3-block of Gε. Then

(i) B has maximal defect if and only if B is the principal 3-block of Gε,

(ii) B has abelian defect groups if and only if B is non-principal, and

(iii) if B has non-cyclic abelian defect groups, then O3(Tε) is a defect group of B. In this
case we have

CGε(O3(Tε)) = Tε

and NGε(O3(Tε)) = NGε(Tε),

with NGε(Tε)/Tε
∼= D12.

Proof. The statements on the defect groups of B hold by [HS90, Sec. 2.2, 2.3]. For the
normalizer and centralizer in (iii) see, for instance, [An94a, (1D)].

Hence, if B is a non-principal 3-block of Gε that has non-cyclic defect groups, then up
to Gε-conjugation all B-weights of Gε derive from the radical 3-subgroup R = O3(Tε) of
Gε. According to Construction 2.10 the irreducible characters of RCGε(R) = Tε play a
major role in this case. Let us hence fix a parametrization for Irr(Tε):

Notation 12.27 (Parametrization of Irr(Tε)). Let us first recall from Table 11.1 that we
have a parametrization of the maximal torus Tε = TFε given by

TFε = {h(z1, z2, z3) | zi ∈ F×, zq−εi = 1, z1z2z3 = 1}.

Now let z ∈ F× be of order q − ε and denote by θ0 the irreducible character of 〈z〉 given
by θ0(z) = exp((2πi)/(q− ε)). Then the irreducible characters of Tε may be parametrized
as

Irr(Tε) = {θi0 × θ
j
0 × 1 | 0 6 i, j < q − ε},

where (θi0 × θ
j
0 × 1)(h(z1, z2, z3)) = θi0(z1)θj0(z2). We shall fix this parametrization until

the end of this section.

Let us now examine how the normalizer of Tε in Gε acts on Irr(Tε). At the beginning
of the present section we observed that NGε(Tε) = 〈Tε, nr(1) | r ∈ Σ〉, whence it suffices
to understand the action of nr(1), r ∈ Σ, on Irr(Tε).

Lemma 12.28. Let θ ∈ Irr(Tε) and 0 6 i, j < q − ε be such that θ = θi0 × θ
j
0 × 1. Then

the following statements hold:

(i) θna(1) = θi0 × θi−j0 × 1,

(ii) θnb(1) = θj0 × θi0 × 1,

(iii) θna+b(1) = θj−i0 × θj0 × 1,

(iv) θn2a+b(1) = θ−j0 × θ−i0 × 1,

(v) θn3a+b(1) = θi−j0 × θ−j0 × 1,

(vi) θn3a+2b(1) = θ−i0 × θj−i0 × 1,

(vii) θv2 = θ−i0 × θ−j0 × 1.

138



12.2. Action on the Weights of G2(q)

Proof. This is a direct consequence of Lemma 11.4 and Lemma 11.6.

Corollary 12.29. Let θ ∈ Irr(Tε) be such that NGε(Tε)θ/Tε
∼= C2. Then up to NGε(Tε)-

conjugation it holds that

θ = θi0 × θi0 × 1 or θ = θi0 × θ−i0 × 1

for a suitable 0 < i < q − ε.

Proof. As observed above, the group NGε(Tε)/Tε = 〈Tε, nr(1) | r ∈ Σ〉/Tε is dihedral
of order 12, and as such it contains exactly seven involutions (check, e.g., with GAP).
These must given by the elements nr(1)Tε, r ∈ Σ a positive root, and v2Tε since these
seven involutions act pairwise distinctly on Tε according to Lemma 11.4 and Lemma 11.6,
whence they must be pairwise distinct. They correspond to the six reflections along the
hyperplanes orthogonal to r, r ∈ Σ, and the involution mapping r ∈ Σ to −r, which may
be imagined as the reflection through the intersection point in Figure 11.1. Now suppose
that θ = θi0 × θj0 × 1 for some 0 6 i, j < q − ε. Then one of the following occurs in
consequence of Lemma 12.28:

i ≡ 2j mod q − ε,
i = j,

j ≡ 2i mod q − ε,
i ≡ −j mod q − ε,
j = 0,

i = 0.

If i ≡ 2j mod q − ε or j ≡ 2i mod q − ε, then one verifies by help of Lemma 12.28 that θ
is conjugate to θj0× θ

−j
0 × 1 or θi0× θ

−i
0 × 1 via v6 = v2v3 or v2

3, respectively. It then holds
that j > 0 or i > 0, respectively, since θ is non-trivial.

Similarly, for j = 0 or i = 0 one shows that θ is conjugate to θi0 × θi0 × 1 or θj0 × θ
j
0 × 1

via na(1) or na+b(1), respectively, with i > 0 or j > 0, accordingly.

Let us now come to the examination of the B-weights for 3-blocks B of Gε of non-cyclic
defect. Following [An94a, p. 36] or Section B.3.2 these are the 3-blocks B1, B2 (if q is odd)
and the 3-blocks of types Bδa, Bδb and BXδ , where δ = 1 if ε = 1 and δ = 2 if ε = −1.

12.2.2.1 The Principal Block B0

Before we turn to the 3-weights of the principal 3-block of Gε, let us consider the following
proposition, which provides information on the local properties of extraspecial 3-subgroups
of Gε of order 31+2 and exponent 3. As we will observe below, along with the Sylow 3-
subgroups of Gε these groups give rise to the 3-weights for the principal 3-block B0.

Proposition 12.30. For R 6 Gε an extraspecial group of order 31+2 and exponent 3 the
following statements hold:

(i) Up to Gε-conjugation we have R 6 Lε and NGε(R) 6 Kε.

(ii) If R is contained in Lε, then we have

NLε(R)/R ∼=

{
Q8 if (q2 − 1)3 = 3,

Sp2(3) if (q2 − 1)3 > 3.

Moreover, Lε contains exactly one Lε-conjugacy class of subgroups isomorphic to R
if (q2 − 1)3 = 3, and three such Lε-conjugacy classes if (q2 − 1)3 > 3.
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(iii) (1) If (q2 − 1)3 = 3, then R ∈ Syl3(G), so Gε contains exactly one Gε-conjugacy
class of subgroups isomorphic to R, and we have NGε(R) = 〈NLε(R), ρ〉 for some
ρ ∈ Kε \ Lε.

(2) If (q2 − 1)3 > 3, then Gε contains two Gε-conjugacy classes of subgroups iso-
morphic to R. One of these has NGε(R) = NLε(R), the other one satisfies
NGε(R) = 〈NLε(R), ρ〉 for some ρ ∈ Kε \ Lε.

Proof. This is proven in [An94a, (1E)] and [An94a, (1G)].

Proposition 12.31. For B = B0 the principal 3-block of Gε we have |W(B)| = 7. More-
over, if (R,ϕ) is a B-weight of Gε, then up to Gε-conjugation one of the following holds:

(i) (q2 − 1)3 = 3, R ∈ Syl3(Gε) is an extraspecial group of order 31+2 and exponent 3,
and ϕ is the inflation of one of the seven irreducible characters of NGε(R)/R.

(ii) (q2− 1)3 > 3, R ∈ Syl3(Gε) is a Sylow 3-subgroup of Gε, NGε(R)/R ∼= C2×C2, and
ϕ is the inflation of one of the four linear characters of NGε(R)/R.

(iii) (q2−1)3 > 3, R 6 Lε is an extraspecial group of order 31+2 and exponent 3 such that
NGε(R) = NKε(R), |NKε(R) : NLε(R)| = 2, and ϕ is the inflation of one of the two
extensions of the Steinberg character of NLε(R)/R ∼= Sp2(3) to NGε(R)/R. There
exists exactly one Gε-conjugacy class of such R in Gε.

(iv) (q2 − 1)3 > 3, R 6 Lε is an extraspecial group of order 31+2 and exponent 3 where
it holds that NGε(R) = NLε(R), and ϕ is the inflation of the Steinberg character of
NGε(R)/R ∼= Sp2(3). There exists exactly one Gε-conjugacy class of such R in Gε.

Proof. This follows from the proof of [An94a, (3A)] and Proposition 12.30.

Proposition 12.32. Suppose that B = B0 is the principal 3-block of Gε. Then the action
of Aut(Gε)B = Aut(Gε) on W(B) is trivial.

Proof. Since 3 - q, it is known from Proposition 11.14 that Out(Gε) is generated by the field
automorphism Fp, so it suffices to prove that this automorphism stabilizes any conjugacy
class of B-weights in Gε. We go through the cases listed in Proposition 12.31.

Let (R,ϕ) be as Proposition 12.31(i). Then (q2 − 1)3 = 3, R is a Sylow 3-subgroup of
G2(q), and by Proposition 12.30 we have |NG2(q)(R)/R | = 2|Q8| = 16. Now we consider
the group G2(p). Since p 6= 3, this has

|G2(p)|3 = 3(p2 − 1)2
3 > 33 = |R| = |G2(q)|3

in consequence of Lemma 11.1. But G2(p) is a subgroup of G2(q), so we conclude that
|G2(p)|3 = |R|, and by changing to a G2(q)-conjugate we may thus assume that R 6 G2(p).
Again by Proposition 12.30 it follows that also |NG2(p)(R)/R | = 2|Q8| = 16, whence we
must have

NG2(q)(R) = NG2(p)(R).

In particular, the field automorphism Fp acts trivially on R and NG2(q)(R), and thus leaves
(R,ϕ) invariant.

Now suppose that we are in the situation of Proposition 12.31(ii), such that we have
(q2−1)3 > 3 and R ∈ Syl3(Gε). Following the proof of [An94a, (1E)] we may assume that

R = 〈O3(Tε), v3〉
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such that NGε(R)Tε = NGε(Tε), NGε(R) ∩ Tε = O3(Tε) and NGε(R)/R ∼= C2 × C2. More-
over, one easily verifies that 〈Tε, v2, v3, nb(1)〉/Tε ∼= D12, for instance by application of
Lemma 11.4, so it follows that

NGε(Tε) = 〈Tε, v2, v3, nb(1)〉.

Hence, we have
NGε(R) = 〈O3(Tε), v3, sv2, tnb(1)〉

for suitable torus elements s, t ∈ Tε and NGε(R)/R = 〈sv2〉 × 〈tnb(1)〉, where we denote
by : NGε(R)� NGε(R)/R the natural epimorphism. We prove that Fp acts trivially on
NGε(R)/R.

Suppose that Fp(sv2) = tnb(1). Since v2 and nb(1) do not coincide modulo Tε and v3

has order 3 by Lemma 11.6, we must have Fp(sv2) = spv2 = tnb(1)xvi3 for some x ∈ O3(Tε)
and i ∈ {1, 2}. Hence, modulo Tε the elements v2 and nb(1)vi3 coincide. Now following
Lemma 11.4 and Lemma 11.6 we have

h(z1, z2, z3)v2 = h(z−1
1 , z−1

2 , z−1
3 )

but

h(z1, z2, z3)nb(1)v3 = h(z3, z2, z1),

h(z1, z2, z3)nb(1)v2
3 = h(z1, z3, z2)

for any z1, z2, z3 ∈ F× with z1z2z3 = 1. In particular, since 3 | (q− ε), we may always find
z1, z2, z3 ∈ F× such that h(z1, z2, z3) ∈ Tε and

h(z1, z2, z3)v2 6∈ {h(z1, z2, z3)nb(1)v3 , h(z1, z2, z3)nb(1)v2
3},

so Fp(sv2) = tnb(1) is impossible.

Similarly, if we assume that Fp(sv2) = sv2 · tnb(1), then Fp(sv2) = spv2 = sv2tnb(1)xvi3
for some x ∈ O3(Tε) and i ∈ {1, 2}. We deduce that modulo Tε the elements nb(1)vi3 and
1 coincide, which contradicts the above observation on the action of nb(1)vi3 on Tε. Hence,
sv2 must be left invariant by Fp.

Finally, suppose Fp(tnb(1)) = sv2 · tnb(1). Then Fp(tnb(1)) = tpnb(1) = xvi3sv2tnb(1)
for some x ∈ O3(Tε) and i ∈ {1, 2}. Accordingly, modulo Tε the elements vi3v2 and 1
agree, in contradiction to the fact that v2 has order 2 modulo Tε while v3 has order 3.
Hence, also tnb(1) is stabilized by Fp. We conclude that Fp stabilizes R and acts trivially
on NGε(R)/R, and thus on any B-weight (R,ϕ).

Let now (q2 − 1)3 > 3 and R be an extraspecial group of order 31+2 and exponent 3
as in (iii) or (iv) of Proposition 12.31. By Proposition 12.30 we may assume that R 6 Lε
and NGε(R) 6 Kε, with NLε(R)/R ∼= Sp2(3). Let ω ∈ F× be of order 3. We consider the
group

R′ :=

〈ω 0 0
0 ω−1 0
0 0 1

 ,
0 0 1

1 0 0
0 1 0

〉 6 SL3(εq),

which is an extraspecial group of order 31+2 and exponent 3 (cf. the proof of [An94a,
(1G)]). Recall that by Proposition 12.30 there exist exactly three Lε-conjugacy classes of
subgroups isomorphic to R in Lε ∼= SL3(εq), two of which are conjugate under Gε, and the
other one having a representative that is stabilized by v2 respectively by the transpose-
inverse automorphism (cf. also the proof of [An94a, (1G)]). It is easy to check that the

141



Chapter 12. Action of Automorphisms

transpose-inverse automorphism fixes R′, so if R is as in (iii) then we may suppose that R
corresponds to the group R′ in SL3(εq) ∼= Lε and NGε(R) = 〈NLε(R), v2〉. In particular, R
is stabilized by Fp. Let St± ∈ Irr(NGε(R)/R) denote the two extensions of the Steinberg
character St of

NLε(R)/R ∼= Sp2(3)

to 〈NLε(R), v2〉/R. Then by Gallagher’s theorem, Theorem 1.21, we have

St−(v2) = −St+(v2).

By Lemma 11.6 it holds that v2
2 = 1. Moreover, St+(1) = 3 since St has degree 3 being

the Steinberg character of Sp2(3). Hence, the character value St+(v2) is the sum of three
square roots of unity, so St+(v2) ∈ {±1,±3}. In particular, we have St+(v2), St−(v2) 6= 0.
Now, since Fp fixes v2, we have

(St+)Fp(v2) = St+(v2) 6= 0,

(St−)Fp(v2) = St−(v2) 6= 0.

Moreover, being the unique irreducible character of NGε(R)/R of degree 3, the Steinberg
character St is left invariant by Fp, so

((St±)Fp)|NLε (R)/R = StFp = St,

and we conclude by application of Corollary 1.22 that Fp leaves both St+ and St− invariant.
Hence, it follows that Fp fixes the Gε-conjugacy class of any B-weight (R,ϕ) as ϕ is the
inflation of one of St+ or St−.

Finally, suppose that (R,ϕ) is as in (iv). Then up to Gε-conjugation R is uniquely
determined in Gε by its normalizer NGε(R), and ϕ is uniquely determined by R, so the
Gε-conjugacy class of (R,ϕ) is stabilized by Aut(Gε). This completes the proof.

12.2.2.2 The Block B2

In this section we examine the 3-weights of Gε associated to the 3-block B2. Note that
this 3-block only exists if q is odd (cf. Section B.3.2 of Appendix B).

Proposition 12.33. Let B = B2. Then |W(B)| = 4. Moreover, if (R,ϕ) is a B-weight
of Gε, then up to Gε-conjugation it holds that R = O3(Tε) with NGε(R) = NGε(Tε) and
CGε(R) = Tε, and if a linear character θ ∈ Irr(Tε) is an irreducible constituent of ϕ|Tε,
then θ2 = 1Tε 6= θ and

NGε(R)θ/Tε ∼= C2 × C2.

Furthermore, the set Irr(NGε(R)θ | θ) consists of four distinct extensions of θ and it holds
that ϕ = ψNGε (Tε) for some ψ ∈ Irr(NGε(R)θ | θ).

Proof. This statement follows from Proposition 12.26 and the proof of [An94a, (3B)].

Proposition 12.34. Let B = B2. Then Aut(Gε)B = Aut(Gε) acts trivially on W(B).

Proof. As before, it suffices to check invariance under the action of Fp. We let (R,ϕ) be
a B-weight of Gε. Following Proposition 12.33 we may assume that R = O3(Tε) with
RCGε(R) = Tε and NGε(R) = NGε(Tε). Let θ be an irreducible constituent of ϕ|Tε . Then
according to Proposition 12.33 the linear character θ has order 2, so in the parametrization
of Notation 12.27 it follows that θ is one of

θ
q−ε

2
0 × θ

q−ε
2

0 × 1, θ
q−ε

2
0 × 1× 1, 1× θ

q−ε
2

0 × 1.
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The latter two characters are conjugate to the first via na(1) and na+b(1), respectively
(cf. Lemma 12.28), so since by Clifford theory, Theorem 1.15, all irreducible constituents
of ϕ|Tε are NGε(Tε)-conjugate, we may assume that

θ = θ
q−ε

2
0 × θ

q−ε
2

0 × 1,

which is left invariant by nb(1), n2a+b(1) and v2 = nb(1)n2a+b(1)−1 following Lemma 12.28.
By Proposition 12.33 we have NGε(R)θ/Tε ∼= C2×C2, so in fact NGε(R)θ = 〈Tε, nb(1), v2〉.
Since Fp acts trivially on both nb(1) and v2, it follows that Fp stabilizes NGε(R)θ and we
have

(ψFp)NGε (R) = (ψNGε (R))Fp

for all ψ ∈ NGε(R)θ. Thus, we only need to check that any extension of θ to NGε(R)θ
stays invariant under Fp. But this follows from Corollary 1.22 since θ is linear,

(ψFp)|Tε = θFp = θp = θ = ψ|Tε ,

ψFp(nb(1)) = ψ(nb(1)) 6= 0 and ψFp(v2) = ψ(v2) 6= 0 for any ψ ∈ NGε(R)θ.

Remark 12.35. By Proposition 12.33 for the 3-block B = B2, a B-weight (O3(Tε), ϕ) and
an irreducible constituent θ ∈ Irr(Tε) of ϕ|Tε we have θ2 = 1Tε , θ 6= 1Tε , and θ extends
to its stabilizer NGε(Tε)θ in NGε(Tε). This is stated in [An94a, (3B)] but the proof of the
extendibility of θ given there is not very precise. For later use it will be convenient to
reprove it here in more detail. As in the proof of Proposition 12.34 we may assume that

θ = θ
q−ε

2
0 × θ

q−ε
2

0 × 1

and NGε(Tε)θ = 〈Tε, nb(1), v2〉. By definition we have v2 = nb(1)n−(2a+b)(1). We claim
that nb(1) and v2 commute. Then by Proposition 1.20(i) there exists an extension η of
θ to 〈Tε, nb(1)〉, and since [nb(1), v2] = 1, nb(1)2 ∈ Tε and v2 normalizes 〈Tε, nb(1)〉 and
stabilizes θ, we have

ηv2(tnb(1)) = η(v2tv
−1
2 nb(1)) = η(v2tv

−1
2 )η(nb(1))

= θ(v2tv
−1
2 )η(nb(1)) = θ(t)η(nb(1))

= η(t)η(nb(1)) = η(tnb(1))

for all t ∈ Tε, so v2 leaves η invariant. Again it follows by Proposition 1.20(i) that η has
an extension η′ to NGε(Tε)θ = 〈Tε, nb(1), v2〉 since 〈Tε, nb(1), v2〉/〈Tε, nb(1)〉 ∼= C2 is cyclic.
Then η′ is an extension of θ to NGε(Tε)θ as claimed.

Let us hence show that [nb(1), v2] = 1. For this it suffices to prove that nb(1) and
n−(2a+b)(1) commute. Following Theorem 4.25(ix) we have

nb(1)n−(2a+b)(1)nb(1)−1 = nωb(−(2a+b))(ηb,−(2a+b)).

Now b and −(2a+ b) are orthogonal roots, so ωb(−(2a+ b)) = −(2a+ b), and by Propo-
sition 11.5 we may suppose that ηb,−(2a+b) = 1. This proves the claim.

12.2.2.3 The Blocks of Types B1a, B1b, B2a and B2b

As usual we are only interested in 3-blocks of non-cyclic defect. The 3-blocks of types B1a,
B1b, B2a and B2b are described in Section B.3.2, and we have
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• B1a, B1b have non-cyclic defect if and only if ε = +1, and

• B2a, B2b have non-cyclic defect if and only if ε = −1.

In the following we consider only these cases and set

Ba :=

{
B1a if ε = +1,

B2a if ε = −1,
Bb :=

{
B1b if ε = +1,

B2b if ε = −1,

so if a 3-block B is of type Ba or Bb, then it possesses non-cyclic defect groups. We shall
write B ∈ {Ba, Bb} in this case. According to Proposition 12.26 the defect groups of B
are abelian and Gε-conjugate to O3(Tε). Hence, from Lemma 2.11 we deduce that R is
Gε-conjugate to O3(Tε) whenever (R,ϕ) is a B-weight for some ϕ, and there is no loss in
generality in assuming that R = O3(Tε) in this case.

Proposition 12.36. Suppose that B ∈ {Ba, Bb} is a 3-block of Gε. Then |W(B)| = 2.
Moreover, if (R,ϕ) is a B-weight of Gε, then up to Gε-conjugation it holds that R = O3(Tε)
with NGε(R) = NGε(Tε) and CGε(R) = Tε, and for any irreducible constituent θ ∈ Irr(Tε)
of ϕ|Tε we have

NGε(R)θ/Tε ∼= C2

and ϕ = ψNGε (R) for one of the two extensions ψ ∈ Irr(NGε(Tε)θ | θ) of θ.

Proof. This follows from Proposition 12.26 and the proof of [An94a, (3B)].

Let us now examine the action of automorphisms of Gε on 3-weights of Gε associated
to 3-blocks of type Ba or Bb.

Proposition 12.37. Suppose that B ∈ {Ba, Bb} is a 3-block of Gε. Then Aut(Gε)B acts
trivially on W(B).

Proof. Let (R,ϕ) be a B-weight of Gε. Following Proposition 12.36 we may assume that
R = O3(Tε) with NGε(R) = NGε(Tε), and that, moreover, NGε(R)θ/Tε ∼= C2 if θ ∈ Irr(Tε)
is an irreducible constituent of ϕ|Tε . Since by Clifford theory, Theorem 1.15, all irreducible
constituents of ϕ|Tε are NGε(Tε)-conjugate, in consequence of Corollary 12.29 we may
assume that

θ = θi0 × θi0 × 1 or θ = θi0 × θ−i0 × 1

for a suitable 0 < i < q − ε, whence by Lemma 12.28 we have

NGε(R)θ =

{
〈Tε, nb(1)〉 if θ = θi0 × θi0 × 1,

〈Tε, n2a+b(1)〉 if θ = θi0 × θ
−i
0 × 1.

For this one should note that v2 6∈ NGε(R)θ as otherwise θ would be as in the proof of
Proposition 12.34 with NGε(R)θ ∼= C2 × C2. In particular, i 6= (q − ε)/2.

Let us now suppose that a ∈ Aut(Gε)B. Since any inner automorphism of Gε stabilizes
B, we may assume that a = F kp for some k ∈ N (cf. Proposition 11.14), so that

(R,ϕ)a = (R,ϕ)F
k
p = (R,ϕF

k
p )

and we need to prove that ϕ is left invariant by F kp . Due to the fact that Fp, and hence

also a = F kp , acts on Tε, we have that θa is an irreducible character of Tε. Since (R,ϕ) is
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a B-weight, it follows from Construction 2.10 that bl(θ)Gε = B, and from the fact that a
stabilizes B in conjunction with Proposition 1.3 we may deduce that

bl(θa)Gε = (bl(θ)a)Gε = (bl(θ)Gε)a = Ba = B,

that is, bl(θa) induces to B. But B has defect group O3(Tε) by Proposition 12.26, just
like any 3-block of Tε in consequence of Lemma 1.13, so the extended first main theorem
of Brauer, Theorem 1.7, implies that θa and θ, the canonical characters of bl(θa) and
bl(θ), respectively, are conjugate under NGε(Tε). Now Lemma 12.28 yields the following
NGε(Tε)-conjugates of θ in the case θ = θi0 × θi0 × 1:

θi0 × θi0 × 1, θi0 × 1× 1, 1× θi0 × 1, θ−i0 × θ
−i
0 × 1, 1× θ−i0 × 1, θ−i0 × 1× 1.

These are pairwise distinct as i 6= (q− ε)/2, so since |NGε(Tε) : NGε(Tε)θ| = 6, these must
indeed be all NGε(Tε)-conjugates of θ in this case. Similarly, for θ = θi0 × θ

−i
0 × 1 the

NGε(Tε)-conjugates of θ are given by

θi0 × θ−i0 × 1, θi0 × θ2i
0 × 1, θ−i0 × θ

i
0 × 1, θ−2i

0 × θ−i0 × 1, θ2i
0 × θi0 × 1, θ−i0 × θ

−2i
0 × 1.

Note that these characters are pairwise distinct as i 6= (q− ε)/2 and 2i 6≡ −i mod (q− ε),
where the latter holds since otherwise θ would be of order 3, which is not possible since
O3(Tε) ⊆ ker(θ). Now a = F kp acts on Irr(Tε) by raising the linear characters of Tε to

their pk-th power, that is,

θa =

{
θip

k

0 × θip
k

0 × 1 if θ = θi0 × θi0 × 1,

θip
k

0 × θ−ip
k

0 × 1 if θ = θi0 × θ
−i
0 × 1.

Hence, since θa and θ are NGε(Tε)-conjugate, the above observations on the shapes of the
NGε(Tε)-conjugates of θ imply that θa ∈ {θ, θ−1}. According to Lemma 12.28 we have

θ−1 =

{
θn2a+b(1) if θ = θi0 × θi0 × 1,

θnb(1) if θ = θi0 × θ
−i
0 × 1.

Let us now recall the notation cx, x ∈ Gε, for the automorphism of the group Gε defined
by cx(g) = xgx−1 for all g ∈ Gε, and set

a′ :=


a = F kp if θa = θ,

acn2a+b(1) = F kp cn2a+b(1) if θa = θ−1 and θ = θi0 × θi0 × 1,

acnb(1) = F kp cnb(1) if θa = θ−1 and θ = θi0 × θ
−i
0 × 1.

Then θa
′

= θ and ϕ is left invariant by a = F kp if and only if it is stabilized by a′ since
n2a+b(1), nb(1) ∈ NGε(Tε) = NGε(R). Moreover, in consequence of Theorem 4.25(ix) and
Proposition 11.5 we have [n2a+b(1), nb(1)] = 1, whence it follows that a′ stabilizes both
nb(1) and n2a+b(1). Now following Proposition 12.36 there is ψ ∈ Irr(NGε(Tε)θ | θ) such
that ϕ = ψNGε (Tε) and hence

ϕa
′

= (ψNGε (Tε))a
′

= (ψa
′
)NGε (Tε),

where ψa
′ ∈ Irr(NGε(Tε)θ | θ) since a′ stabilizes Tε, nb(1), n2a+b(1) and θ. We prove that

ψa
′

= ψ. It holds that (ψa
′
)|Tε = θ = ψ|Tε . Moreover, we have NGε(Tε)θ = 〈Tε, n〉, where

n equals nb(1) or n2a+b(1) depending on θ, and n is left invariant by a′. Hence, since ψ is
linear, we conclude that

ψa
′
(n) = ψ(n) 6= 0,

implying in accordance with Corollary 1.22 that ψa
′

= ψ. Thus, we have ϕa = ϕa
′

= ϕ as
claimed, which concludes the proof.
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12.2.2.4 The Blocks of Types BX1 and BX2

Finally, we consider the 3-blocks ofGε of types BX1 and BX2 . According to Section B.3.2 of
Appendix B a 3-block of type BX1 has non-cyclic defect groups if and only if q ≡ 1 mod 3,
while a 3-block of type BX2 is of non-cyclic defect if and only if q ≡ −1 mod 3.

Proposition 12.38. Let B ∈ {BX1 , BX2} be a 3-block of Gε with non-cyclic defect groups.
Then |W(B)| = 1.

Proof. This is [An94a, (3B)].

We may immediately conclude the following:

Corollary 12.39. Let B ∈ {BX1 , BX2} be a 3-block of Gε with non-cyclic defect groups.
Then Aut(Gε)B acts trivially on W(B).

Proof. This follows directly from Proposition 12.38 as there exists only one Gε-conjugacy
class of B-weights in Gε.
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Partitions and Equivariant
Bijections

This chapter is aimed at establishing parts (i) and (ii) of the inductive blockwise Alperin
weight condition in Definition 3.2 for every `-block B of G = G2(q), q > 5, of non-cyclic
defect, where ` ∈ {2, 3}. Following Proposition 11.2 the group G is its own universal
covering group, whence as for the special linear groups SL3(q) in the previous part of this
thesis, our objective is to prove the following statements for every ` ∈ {2, 3} and every
`-block B of G of non-cyclic defect:

(i) There exist subsets IBr(B | Q) ⊆ IBr(B) for Q ∈ Rad`(G) with the following
properties:

(1) IBr(B | Q)a = IBr(B | Qa) for every Q ∈ Rad`(G), a ∈ Aut(G)B,

(2) IBr(B) =
⋃̇
Q∈Rad`(G)/∼G IBr(B | Q).

(ii) For every Q ∈ Rad`(G) there exists a bijection

ΩG
Q : IBr(B | Q) −→ dz(NG(Q)/Q, B)

such that ΩG
Q(φ)a = ΩG

Qa(φa) for every φ ∈ IBr(B | Q) and a ∈ Aut(G)B.

This will be proven similarly as for the special linear groups in Proposition 8.1. During
our previous observations we discovered that, unless B is the principal 2-block of G, the
action of Aut(G)B on both the G-conjugacy classes of B-weights and the set of irreducible
Brauer characters in B is trivial, which allows us to easily derive the following result:

Proposition 13.1. Let ` ∈ {2, 3} and let B be an `-block of G of non-cyclic defect. Then
conditions (i) and (ii) of Definition 3.2 are satisfied for B.

Proof. Following [An94a, p. 36] or Sections B.3.1 and B.3.2 the 2-blocks of G of non-cyclic
defect are the 2-blocks B0, B3 (if 3 - q), and the 2-blocks of types B1a, B1b, B2a, B2b,
BX1 and BX2 , while the 3-blocks of G of non-cyclic defect are given by B0, B2 (if 2 - q),
and the 3-blocks of types Bδa, Bδb and BXδ , where δ = 1 if q ≡ 1 mod 3 and δ = 2 if
q ≡ −1 mod 3.
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We assume first that B is not the principal 2-block of G. Following the results of
[An94a], which we summarized in Propositions 12.18, 12.20, 12.23, 12.31, 12.33, 12.36 and
12.38, the blockwise Alperin weight conjecture holds forB, that is, | IBr(B)| = |W(B)|. We
may hence choose a bijection ΩB : IBr(B) −→W(B). In consequence of Propositions 12.1
and 12.2 the action of Aut(G)B on IBr(B) is trivial, and moreover, by the results of
Sections 12.2.1 and 12.2.2, also W(B) is stabilized pointwise by Aut(G)B. In particular,
ΩB is trivially Aut(G)B-equivariant, whence according to Lemma 3.8 it is possible to
define subsets IBr(B | Q) ⊆ IBr(B) and bijections ΩG

Q : IBr(B | Q) −→ dz(NG(Q)/Q, B)
for every radical `-subgroup Q ∈ Rad`(G) such that conditions (i) and (ii) of Definition 3.2
are satisfied for B.

Let us now assume that B is the principal 2-block of G. By [An94a] (cf. Proposi-
tion 12.16 and Section B.3.1) we have | IBr(B)| = |W(B)| = 7. If we can find an Aut(G)B-
equivariant bijection ΩB : IBr(B) −→ W(B), then by the same arguments as above the
claim follows. According to Propositions 12.1 and 12.17 the action of Aut(G)B = Aut(G)
is trivial on both IBr(B) and W(B) if 3 - q as in this case Aut(G) = 〈G,Fp〉 by Propo-
sition 11.14, so there is nothing to prove in this situation. Assume hence that 3 | q, in
which case Proposition 11.14 gives Aut(G) = 〈G,Γ〉. We proved in Proposition 12.1 that
Γ interchanges exactly two of the seven irreducible Brauer characters in B and leaves
the remaining ones invariant. Moreover, as a result of Proposition 12.17 we know that Γ
interchanges two of the seven G-conjugacy classes of B-weights and acts trivially on the
remaining five classes. Thus, since inner automorphisms of G leave the elements of IBr(B)
andW(B) invariant, an Aut(G)-equivariant bijection ΩB : IBr(B) −→W(B) exists, so as
above the claim follows as a consequence of Lemma 3.8.
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The Main Result for G2(q)

Our objective was to establish the inductive blockwise Alperin weight condition for the
Chevalley groups G2(q) with q > 5. Thanks to the fact that these groups possess cyclic
outer automorphism groups, we do not need to concern ourselves with the normally em-
bedded conditions in part (iii) of Definition 3.2 (cf. Proposition 3.12). In fact, the results
we have obtained so far suffice to prove the desired statement:

Theorem 14.1. Let q > 5 be a prime power. Then the inductive blockwise Alperin
weight condition (cf. Definition 3.3) holds for the group G2(q) and every prime `
dividing its order.

Proof. According to Proposition 11.2 the simple group G = G2(q) is its own universal
covering group if q > 5. Moreover, as seen in Proposition 11.14 the outer automorphism
group of G is cyclic. Thus, following Proposition 3.12 we need to verify conditions (i) and
(ii) of Definition 3.2 for every `-block B of X = G for every prime ` dividing |G|.

If ` = p, then the claim holds by Proposition 3.11, so let us assume that ` 6= p. By
Lemma 11.1 the order of G is given by

|G2(q)| = q6Φ1(q)2Φ2(q)2Φ3(q)Φ6(q),

so ` divides at least one of the factors Φ1(q), Φ2(q), Φ3(q) and Φ6(q). Similarly as in the
proof of Lemma 5.2 one can show that

gcd(Φ1(q),Φ6(q)) = gcd(Φ2(q),Φ3(q)) = gcd(Φ3(q),Φ6(q)) = 1,

gcd(Φ1(q),Φ3(q)) =

{
3 if q ≡ 1 mod 3,

1 else,

gcd(Φ2(q),Φ6(q)) =

{
3 if q ≡ −1 mod 3,

1 else.

Hence, if ` > 5, then it divides exactly one of Φ1(q), Φ2(q), Φ3(q) or Φ6(q). Suppose that
5 6 ` | Φ3(q)Φ6(q). Then a Sylow `-subgroup of G is contained in a maximal torus of G of
type T3 or T6 depending on whether ` divides Φ3(q) or Φ6(q), so in particular the Sylow
`-subgroups of G are cyclic in this case (cf. Table 11.1), whence the (iBAW) conditions
holds for G and ` by Proposition 3.9.
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Let us now assume that 5 6 ` | Φ1(q)Φ2(q). Then the `-blocks of G have either cyclic
or maximal defect (see [Sha89a, Prop. 3.1, 4.1] and [Sha92, p. 1379]). For the `-blocks of
cyclic defect the (iBAW) condition holds again by Proposition 3.9, while it has been proven
to hold for 3-blocks of maximal defect by Cabanes–Späth in [CS13, Cor. 7.6]. Hence, the
inductive blockwise Alperin weight condition holds for G and ` > 5 dividing |G|.

It remains to consider the non-cyclic `-blocks of G in the case ` ∈ {2, 3}. This has been
done throughout the previous chapters, and as a result we obtained in Proposition 13.1
that every `-block of G of non-cyclic defect satisfies conditions (i) and (ii) of Definition 3.2.
In summary, the (iBAW) condition holds for G = G2(q) and every prime ` dividing its
order. This concludes the proof.
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Part IV

The Steinberg Triality Groups
3D4(q)





Chapter 15

Properties of 3D4(q)

This chapter provides an introduction to the groups 3D4(q), Steinberg’s triality groups as
they are commonly known. These are finite groups of Lie type and may be constructed as
fixed point groups of universal Chevalley groups of type D4 under a certain endomorphism
deriving from an exceptional symmetry of order 3 of the associated Dynkin diagram of
type D4.

The results described here do not present any new findings, but rather they are meant
to provide an overview over important properties of the groups 3D4(q) that have been
well-known for a long time. Our main references are Carter [Car89], Deriziotis–Michler
[DM87], Gorenstein–Lyons–Solomon [GLS98] and Steinberg [Ste68].

15.1 Construction of 3D4(q)

We start the construction of the groups 3D4(q) by considering a root system Σ of type D4

over the field R of real numbers, i.e.,

Σ = {±ei ± ej | 1 6 i < j 6 4},

where e1, e2, e3, e4 form an orthonormal basis of R4. Inside Σ we fix a base for this root
system given by

Π = {e1 − e2, e2 − e3, e3 − e4, e3 + e4},

whose elements we denote by r1 := e1 − e2, r2 := e2 − e3, r3 := e3 − e4 and r4 := e3 + e4.
The Dynkin diagram associated to Σ is given in Figure 15.1 below:

r2r1

r3

r4

Figure 15.1: Dynkin diagram of type D4
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Now we fix a prime number p and denote by F an algebraic closure of the finite field Fp
consisting of p elements. Then let G = D4(F) be a universal Chevalley group of type D4

over F. For q = pf , f ∈ N>0, let Fq be the unique subfield of F consisting of q elements.
The field automorphism F −→ F, a 7−→ aq, induces a Frobenius endomorphism Fq of G
via its action on the Steinberg generators xr(t), r ∈ Σ, t ∈ F, of G, that is,

Fq : G −→ G, xr(t) 7−→ xr(t
q), r ∈ Σ, t ∈ F.

Another endomorphism of G is obtained as follows. We consider the symmetry ρ of the
Dynkin diagram of type D4 given by

ρ : Π −→ Π, r1 7−→ r3 7−→ r4 7−→ r1, ρ(r2) = r2.

Then ρ has order 3, whence it is called a triality. Its action on the Dynkin diagram is
illustrated in Figure 15.2 below:

r2r1

r3

r4

ρ

Figure 15.2: Symmetry ρ of the Dynkin diagram of type D4

There exists a unique isometry of R4 = RΣ which maps each r ∈ Π to its image ρ(r)
under ρ (cf. [Car89, p. 217]). We denote this isometry by ρ as well. According to [Car89,
Prop. 12.2.2] it holds that ρ is a linear transformation of R4 satisfying ρ(Σ) = Σ, so ρ may
be regarded as a permutation of the root system Σ of G. Following [Car89, Prop. 12.2.3
and Lemma 13.6.2] by choosing a suitable Chevalley basis for the simple Lie algebra of
type D4 underlying G we may assume that ρ induces an automorphism τ of G given by

τ : G −→ G, xr(t) 7−→ xρ(r)(t), r ∈ Σ, t ∈ F.

This satisfies τ(nr(t)) = nρ(r)(t) and τ(hr(t)) = hρ(r)(t) for r ∈ Σ, t ∈ F×, since for r ∈ Σ
it holds that ρ(−r) = −ρ(r). Arising from a symmetry of the Dynkin diagram of type D4,
the automorphism τ is classified as a graph automorphism. Note that τ commutes with
Fq and has order 3 as an automorphism of G.

We let the endomorphism F of G be the product τFq = Fqτ . Then F 3 = τ3F 3
q = F 3

q ,
so F is a Steinberg endomorphism of G. The group 3D4(q) is defined as the group

G := 3D4(q) := GF = {g ∈ G | F (g) = g}

of fixed points of G under F . Since F 3 = F 3
q , it follows that the finite group G is contained

in the group D4(q3) := D4(Fq3) = GF 3
q .
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Lemma 15.1. The order of the finite group 3D4(q) is given by∣∣3D4(q)
∣∣ = q12(q − 1)2(q + 1)2(q2 + q + 1)2(q2 − q + 1)2(q4 − q2 + 1)

= q12Φ1(q)2Φ2(q)2Φ3(q)2Φ6(q)2Φ12(q).

Proof. See, for instance, [Car89, Thm. 14.3.2].

Let us once more consider the isometry ρ of R4 = RΣ defined above. For a root r ∈ Σ
we let

r̃ :=
1

3
(r + ρ(r) + ρ2(r))

denote the orthogonal projection of r onto the subspace of RΣ invariant under ρ. If we set
Σ̃ := {r̃ | r ∈ Σ}, then Σ̃ forms a root system of type G2 by [Ste68, Thm. 32 and example
afterwards]. For S ∈ Σ̃ we define Σ(S) := {r ∈ Σ | r̃ = S} to be the preimage of S in Σ
under the orthogonal projection induced by ρ. Hence,

Σ(S) =

{
{r} if S = r̃ for some r ∈ Σ with ρ(r) = r,

{r, ρ(r), ρ2(r)} if S = r̃ for some r ∈ Σ with ρ(r) 6= r,

for S ∈ Σ̃. Then by [Ste68, Corollary of Thm. 32] for each S ∈ Σ̃ the set Σ(S) is the
positive system of roots of a root system of type A1 or A3

1.

Analogously to the root subgroups Xr := {xr(t) | t ∈ F}, r ∈ Σ, which generate the
group G, we define for S ∈ Σ̃ the group

XS := 〈xr(t) | r ∈ Σ(S), t ∈ F〉 6 G .

Moreover, for S ∈ Σ̃, r ∈ Σ with r̃ = S, and t ∈ Fq3 we set

xS(t) =

{
xr(t) if Σ(S) has type A1,

xr(t)xρ(r)(t
q)xρ2(r)(t

q2
) if Σ(S) has type A3

1.

Then by [Ste68, Lemma 63] for S ∈ Σ̃ we have

XF
S =

{
{xS(t) | t ∈ Fq} if Σ(S) has type A1,

{xS(t) | t ∈ Fq3} if Σ(S) has type A3
1,

and since G is universal, according to [Ste68, Lemma 64] our group G = GF is generated
by the fixed point groups XF

S with S ∈ Σ̃.

Concerning simplicity and universal coverings of Steinberg’s triality groups 3D4(q) the
following statement is well-known:

Proposition 15.2. For any prime power q the finite group 3D4(q) is simple and constitutes
its own universal covering group.

Proof. See, for instance, [MT11, Table 24.2, Thm. 24.17 and Rmk. 24.19].
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15.2 Weyl Group and Maximal Tori of 3D4(q)

In this section we give a brief overview over the maximal tori existing in G. Moreover, we
examine the Weyl group action on the maximal tori of G. We denote by T the F -stable
maximal torus of G generated by all elements hr(t), r ∈ Σ, t ∈ F×, as in Proposition 4.36
and let W = NG(T)/T be the corresponding Weyl group. Then F acts on W, and by
Proposition 4.40 there is a one-to-one correspondence between the F -conjugacy classes
of W and the G-conjugacy classes of F -stable maximal tori of G, such that, up to F -
conjugacy, for each F -stable maximal torus T′ of G there exists a unique w ∈ W such
that the maximal torus T′F of G is G-conjugate to TwF . By Proposition 4.27 the Weyl
group W is isomorphic to 〈ωr | r ∈ Σ〉 via nr(1) T 7→ ωr, so we may identify those two
groups in the following.

Now we denote by ω0 the longest element of W and by r∗ the highest root of Σ. Then
ω0 = −1 by [GLS98, Rmk. 1.8.9] and one easily verifies that the root e1+e2 ∈ Σ has height
5 with respect to the chosen base Π, which makes it the highest root of Σ. Moreover, we
use the short notation

h(z1, z2, z3, z4) := hr1(z1)hr2(z2)hr3(z3)hr4(z4)

for z1, z2, z3, z4 ∈ F×. There exist seven G-conjugacy classes of maximal tori in G, whose
representatives in G are given in Table 15.1 below (see, for instance, [DM87, p. 42] and
[Kle88a, Table I]).

w ∈W TwF WwF

1
T+ = {h(z1, z2, z

q
1, z

q2

1 ) | zq
3−1

1 = zq−1
2 = 1}

∼= Cq3−1 × Cq−1

D12

ω1,+ := ωr∗
T1,+ = {h(z, z1−q3

, zq
4
, zq

2
) | z(q3−1)(q+1) = 1}

∼= C(q3−1)(q+1)

C2 × C2

ω1,− := ω0ω1,+
T1,− = {h(z, z1+q3

, zq
4
, zq

2
) | z(q3+1)(q−1) = 1}

∼= C(q3+1)(q−1)

C2 × C2

ω2,+ := ωr∗ωr2
T2,+ = {h(z1, z2, z

q
1z2, (z

−1
1 z2)q+1) | zq

2+q+1
1 = zq

2+q+1
2 = 1}

∼= Cq2+q+1 × Cq2+q+1

SL2(3)

ω2,− := ω0ω2,+
T2,− = {h(z1, z2, z

−q
1 z2, (z1z

−1
2 )q−1) | zq

2−q+1
1 = zq

2−q+1
2 = 1}

∼= Cq2−q+1 × Cq2−q+1

SL2(3)

ω3 := ωr1ωr2
T3 = {h(z, z1+q3

, zq, zq
2
) | zq4−q2+1 = 1}

∼= Cq4−q2+1

C4

ω0
T− = {h(z1, z2, z

−q
1 , zq

2

1 ) | zq
3+1

1 = zq+1
2 = 1}

∼= Cq3+1 × Cq+1

D12

Table 15.1: Maximal tori of 3D4(q)

As for the past two series of groups we have studied, for the further course of this last
part of the thesis it will be important to understand the action of the Weyl group W on
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the maximal torus T. Since for the Weyl group we have

W ∼= 〈ωr | r ∈ Σ〉 = 〈ωr | r ∈ Π〉,

it suffices to consider the action of its generators ωr, r ∈ Π, on T.

Lemma 15.3. The generators ωr, r ∈ Π, of the Weyl group W of G act on the maximal
torus T as follows:

ωr1h(t1, t2, t3, t4)ω−1
r1 = h(t−1

1 t2, t2, t3, t4),

ωr2h(t1, t2, t3, t4)ω−1
r2 = h(t1, t1t

−1
2 t3t4, t3, t4),

ωr3h(t1, t2, t3, t4)ω−1
r3 = h(t1, t2, t2t

−1
3 , t4),

ωr4h(t1, t2, t3, t4)ω−1
r4 = h(t1, t2, t3, t2t

−1
4 )

for all choices of t1, t2, t3, t4 ∈ F×.

Proof. The element ωr, r ∈ Π, is identified with nr(1) T ∈W, so by Theorem 4.25(x) we
have

ωrhs(t)ω
−1
r = hωr(s)(t)

for t ∈ F×, s ∈ Σ. Hence, for r = r1 it holds that ωr1 leaves hr3(t) and hr4(t) invariant for
all t ∈ F× as r1 is orthogonal to both r3 and r4. Moreover, it follows from Theorem 4.25(v)
that ωr1hr1(t)ω−1

r1 = h−r1(t) = hr1(t−1) for all t ∈ F×. Now

ωr1(r2) = r2 − 2
(r1, r2)

(r1, r1)
r1

= e2 − e3 − (e1 − e2, e2 − e3)(e1 − e2)

= e2 − e3 − (−1)(e1 − e2)

= r1 + r2.

Thus, again by Theorem 4.25(v) we conclude that ωr1hr2(t)ω−1
r1 = hr1+r2(t) = hr1(t)hr2(t)

for all t ∈ F×. Combining these results we obtain

ωr1h(t1, t2, t3, t4)ω−1
r1 = hr1(t−1

1 )hr1(t2)hr2(t2)hr3(t3)hr4(t4)

= hr1(t−1
1 t2)hr2(t2)hr3(t3)hr4(t4)

= h(t−1
1 t2, t2, t3, t4)

as claimed. The remaining three statements are proven similarly.

Let us now take a closer look at the Weyl groups associated to the maximal tori of
types T+ and T−. These maximal tori will occur most frequently in the following and a
good understanding of their Weyl groups will prove useful.

Lemma 15.4. Let w ∈ {1, ω0}. Then the elements ωr2 and ωr1ωr3ωr4 are fixed points of
W under wF .

Proof. Since w ∈ Z(W), it suffices to show that ωr2 and ωr1ωr3ωr4 are fixed under the
action of F . The element ωr2 is identified with nr2(1) T and we have

F (nr2(1)) = nρ(r2)(1
q) = nr2(1)
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by definition of F , so clearly ωr2 ∈WwF . Again by definition of F we moreover have

F (nr1(1)nr3(1)nr4(1)) = nρ(r1)(1)nρ(r3)(1)nρ(r4)(1)

= nr3(1)nr4(1)nr1(1).

Now the roots r1, r3 and r4 are pairwise perpendicular, whence the corresponding reflec-
tions commute, i.e., nr3(1)nr4(1)nr1(1) and nr1(1)nr3(1)nr4(1) agree modulo T. Conse-
quently, ωr1ωr3ωr4 is fixed by F , and hence by wF , as claimed.

Lemma 15.5. The element ωr1ωr3ωr4ωr2 has order 6 in W.

Proof. These are direct calculations, e.g., using the relations in Lemma 15.3 or GAP.

Corollary 15.6. Let w ∈ {1, ω0}. Then WwF = 〈ωr2 , ωr1ωr3ωr4〉.

Proof. Following Lemma 15.4 we have ωr2 , ωr1ωr3ωr4 ∈WwF . Moreover, by Lemma 15.5
the element ω̄ := ωr1ωr3ωr4ωr2 ∈ WwF has order 6, and, naturally, the order of the
reflection ωr2 in WwF is 2. Now direct calculations show that ωr2 acts on 〈w̄〉 by inversion.
Hence, the claim follows since by Table 15.1 the group WwF is dihedral of order 12.

Remark 15.7. In the situation of Lemma 15.4 suppose that q is even. For r, s ∈ Σ it
follows from Theorem 4.25(ix) that

nr(1)ns(1)nr(1)−1 = nωr(s)(1)

since the sign ηr,s has to equal 1 in this case. In particular, the elements nr1(1)nr3(1)nr4(1)
and nr3(1)nr4(1)nr1(1) agree (not only modulo T as in the proof of Lemma 15.4), and
for r = s it follows that nr(1) = n−r(1). Moreover, by Theorem 4.25(xi) we have
nr(1)2 = hr(−1) = hr(1) = 1. Following Proposition 4.27 we may choose a preimage
n0 := nri1 (1) · · ·nrik (1) ∈ NG(T) of ω0 with ri1 , . . . , rik ∈ Σ, k ∈ N. Since ω0 acts on Σ
by sending a root r ∈ Σ to −r, it follows that

n0nr(1)n−1
0 = n−r(1) = nr(1),

so n0 commutes with all nr(1), r ∈ Σ. Under consideration of the proof of Lemma 15.4
we conclude that nr2(1) and nr1(1)nr3(1)nr4(1) are fixed points of G under both F and
n0F if q is even. In particular, we have

NGF (T) = 〈TF , nr2(1), nr1(1)nr3(1)nr4(1)〉,
NGn0F (T) = 〈Tn0F , nr2(1), nr1(1)nr3(1)nr4(1)〉 = 〈Tω0F , nr2(1), nr1(1)nr3(1)nr4(1)〉

in consequence of Corollary 15.6 (cf. also Propositions 4.27 and 4.40).

15.3 Automorphisms of 3D4(q)

The automorphism group of the triality group G = 3D4(q) is particularly easy to describe.
As usual we define the field automorphism Fp of G as follows:

Definition 15.8. By [Ste68, p. 158] the field automorphism F −→ F, a 7−→ ap, induces
an automorphism Fp of the group G = D4(F) via

Fp : G −→ G, xr(t) 7−→ xr(t
p), r ∈ Σ, t ∈ F.

Since Fp clearly commutes with F , it also induces an automorphism of G = GF , which
will be called the field automorphism Fp of G. Note that its order in Aut(G) is given by
3f , where q = pf , since G 6 D4(q3) as observed before.
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Having defined the field automorphism of G we may already give the following state-
ment on the shape of the automorphism group of G:

Proposition 15.9. For G = 3D4(q) with q = pf , f ∈ N>0, we have

Aut(G) = Go 〈Fp〉.

In particular, the outer automorphism group of G is cyclic.

Proof. This is a well-known statement, which may, for instance, be derived from [MT11,
Table 22.1] together with [GLS98, Th. 2.5.12(a),(d),(f)].

Remark 15.10. Let q be even and suppose the notation of Remark 15.7. Since the field
automorphism Fp commutes with n0F , it is an automorphism of Gn0F and we have

Aut(Gn0F ) = 〈Gn0F , Fp〉.

Clearly, Fp also acts on TF and Tn0F = Tω0F , and since by Remark 15.7 we have

NGF (T) = 〈TF , nr2(1), nr1(1)nr3(1)nr4(1)〉,
NGn0F (T) = 〈Tω0F , nr2(1), nr1(1)nr3(1)nr4(1)〉,

we conclude that Fp acts trivially on the quotients NGF (T)/TF and NGn0F (T)/Tω0F .

15.4 Special Subgroups of 3D4(q)

Let us now introduce certain subgroups of 3D4(q) which will play a role in the description
and examination of the weights of 3D4(q).

15.4.1 G2(q) as a Maximal Subgroup of 3D4(q)

As shown in [Kle88a] the group G = 3D4(q) contains maximal subgroups isomorphic to
the Chevalley group G2(q), all of which are conjugate under G.

Proposition 15.11. For G = 3D4(q) we denote by G̃ := Gτ (= GFq) the subgroup of fixed
points of G under τ (or equivalently under Fq). Then G̃ ∼= G2(q).

Proof. This is well-known and in the notation of Section 15.1 it follows from the fact that
G is generated by the groups XF

S , S ∈ Σ̃, with

(XF
S )Fq = {xS(t) | t ∈ Fq},

and the generators xS(t), S ∈ Σ̃, t ∈ Fq, satisfy the same relations as for type G2 (cf.,
e.g., [GLS98, Thm. 1.12.1, Table 2.4, Thm. 2.4.5 and Thm. 2.4.7]).

Corollary 15.12. Let G̃ ∼= G2(q) be as in Proposition 15.11. Then the field automorphism
Fp of G acts on G̃ as the field automorphism of G2(q) in Definition 11.10.

Proof. This follows immediately from the proof of the previous proposition since for S ∈ Σ̃,
t ∈ Fq, we have Fp(xS(t)) = xS(tp), i.e., the operation of Fp on the generators xS(t) is as
for type G2 (cf. Definition 11.10).
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15.4.2 Other Subgroups of 3D4(q)

In the previous section we observed that G contains maximal subgroups of isomorphism
type G2(q). For further use we now define a few more subgroups, some of which we have
already encountered as subgroups of G2(q) in Part III of this thesis. We will stick to the
notation used in [An95].

The first subgroups of G that we introduce here are the groups denoted Kδ and Lδ.
These groups already appeared in Section 12.2.2 as subgroups of G2(q).

Definition 15.13. We fix a maximal subgroup G̃ ∼= G2(q) of G. Then following [An95,
p. 275] for δ ∈ {±1} there exist maximal subgroups Kδ of G̃ such that these contain
subgroups

Lδ ∼= SL3(δq) =

{
SL3(q) if δ = +1,

SU3(q) if δ = −1,

and Kδ is the extension of Lδ by an involutory outer automorphism. Compare also Sec-
tion 12.2.2 for the construction of Kδ, Lδ as subgroups of G2(q).

Later on two further subgroups will play a role in the examination of 3-weights of G.
For the definition of these we need the classification of semisimple elements of G given in
Section C.1 of Appendix C, where we define a semisimple element s ∈ G to be of type si,
i ∈ {1, . . . , 15}, if s belongs to the equivalence class [si] of semisimple elements of G (see
Table C.1 for the distinct equivalence classes).

Definition 15.14. Let δ ∈ {±1} be such that q ≡ δ mod 3. Moreover, let s ∈ G be
a semisimple element of type s4 if δ = +1 or of type s9 if δ = −1. Then as in [An95,
pp. 274/275] we set Mδ := NG(〈s〉) and Hδ := CG(s).

Remark 15.15. By [An95, p. 275] it holds that Mδ/Hδ
∼= C2. Moreover, as done in [An95]

we may assume that the semisimple element s in the previous definition is chosen such
that Kδ 6 Mδ and Lδ 6 Hδ. This is possible by choosing 1 6= s ∈ Z(Lδ), which then
necessarily is of the desired type (cf. [DM87, Tables 2.2a and 2.2b]).
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Chapter 16

Action of Automorphisms

In this chapter we examine the action of the automorphisms of the group G on its irre-
ducible Brauer characters as well as on its `-weights for the primes ` = 2 and ` = 3 in the
case where ` - q. By similar reasons as for the Chevalley groups G2(q) we do not need to
consider primes ` > 5 here as will become apparent in the proof of Theorem 18.1.

According to Proposition 15.9 the outer automorphism group of G is cyclic, generated
by the field automorphism Fp, whence in order to understand the action of Aut(G) on
the Brauer characters and G-conjugacy classes of weights of G it is enough to study their
behaviour under the action of Fp.

16.1 Action on the Brauer Characters of 3D4(q)

For an `-block B of G we wish to understand the action of the automorphisms in Aut(G)B
on the irreducible Brauer characters belonging to B. In order to meet this purpose we use
the information on the `-decomposition numbers of G provided by Geck, Himstedt–Huang
and Himstedt in [Gec91], [HH13] and [Him07], respectively. We refer to Section C.3 of
Appendix C for a short summary of their results. The basic setting of their work is as
follows:

For (G∗, F ∗) dual to (G, F ) (cf., e.g., [CE04, Sec. 8.2]) there exists an isomorphism
between G∗ := G∗F

∗
and G = GF . Hence, the classification of semisimple elements of

G described in Appendix C.1 may be applied to the semisimple elements of G∗, so any
semisimple element in G∗ may be uniquely assigned to one of the types s1, . . . , s15.

For semisimple elements s ∈ G∗ there are Lusztig series E(G, s) ⊂ Irr(G) of irreducible
characters of G corresponding to s (cf. [CE04, Def. 8.23]) such that by [CE04, Thm. 8.24]
we have a disjoint union

Irr(G) =
⋃
s

E(G, s),

where the union is indexed by a complete system of representatives for the G∗-conjugacy
classes of semisimple elements in G∗. Moreover, if s ∈ G∗ is a semisimple `′-element, then
the set

E`(G, s) :=
⋃
t

E(G, st),

where the union runs over all elements t ∈ CG∗(s) of `-power order, is a union of `-blocks
of G (see, e.g., [CE04, Thm. 9.12]). Furthermore, if s ∈ G∗ is a semisimple `′-element with
s 6= 1 if ` = 2, then the set E(G, s) forms a basic set for E`(G, s) (see [Gec91, p. 3258,
p. 3267] and [HH13, p. 2]). For s = 1 and ` = 2 the set

E(G, 1) = {1G, [ε1], [ε2], St, ρ1, ρ2,
3D4[−1], 3D4[1]}
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of unipotent characters of G (cf. Section C.2) is not a basic set for E2(G, 1). However, the
set E(G, 1)\{3D4[−1]} forms a basic set for E2(G, 1) according to [Gec91, p. 3267]. Hence,
to understand the `-decomposition numbers for a union E`(G, s) of `-blocks of G it suffices
to describe the `-decomposition numbers for the characters in the Lusztig series E(G, s)
(or in E(G, 1) \ {3D4[−1]} if ` = 2 and s = 1).

In the publications specified above, Geck, Himstedt–Huang and Himstedt provide de-
composition numbers for the basic sets E(G, s) (or E(G, 1) \ {3D4[−1]} if ` = 2 and s = 1)
of E`(G, s) for semisimple elements s of all possible types (cf. Section C.3 in Appendix C).

16.1.1 The Case ` = 2

Let us first suppose that ` = 2. Since we are only interested in the case of non-defining
characteristic, we assume moreover that q is odd.

Proposition 16.1. Let B be a 2-block of G. Then any Brauer character in IBr(B) is left
invariant by Aut(G)B.

Proof. As described above, there exists a semisimple element s ∈ G∗ of odd order such
that Irr(B) is contained in the union E2(G, s) of 2-blocks.

If s is of type si for some i ∈ {6, 8, 11, 12, 13, 14, 15}, then by Section C.3.1 the set
E2(G, s) has only one irreducible Brauer character associated to it, so in particular we
have Irr(B) = E2(G, s), and IBr(B) trivially stays invariant under the action of Aut(G)B.

Suppose that s = 1. Then by the proof of [An95, (3G)] we have Irr(B) = E2(G, s) and
B is the principal 2-block of G. Moreover, the unipotent characters 1G, [ε1], 3D4[1], ρ1,
ρ2, [ε2] and St of G yield a basic set for B, see Section C.3.1. Since Aut(G) acts on the
set of unipotent characters of G and the degrees of these characters are pairwise distinct
by Table C.2, we conclude that Aut(G)B fixes each unipotent character in B. From this
observation and the fact that the decomposition matrix with respect to the basic set
given above can be arranged to be unitriangular following Section C.3.1, it follows from
Lemma 1.27 that IBr(B) is stabilized pointwise by Aut(G)B.

If s is of type si for some i ∈ {3, 5, 7, 10}, then from the decomposition numbers for
E2(G, s) in Section C.3.1 we deduce that E2(G, s) is a single block, so Irr(B) = E2(G, s),
and that, moreover, B contains exactly two irreducible Brauer characters, which have
distinct degrees since q is odd, thus greater than 2. Hence, these are left invariant by
Aut(G)B.

If s is of type s4, then from the decomposition numbers for E2(G, s) in Section C.3.1
and the description of the irreducible characters of G in Table C.2 it follows that there
are three irreducible Brauer characters associated to E2(G, s), and these have degrees

A,

q(q + 1)A,

(q3 − 1)A,

where A is some positive integer depending on q. Clearly, these are pairwise distinct for
any prime power q, whence we conclude that Aut(G)B acts trivially on IBr(B).

If s is of type s9, then there are exactly three irreducible Brauer characters associated
to E2(G, s), which have degrees

A,

q(q − 1)A,

(q3 − cq(q − 1)− 1)A,
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16.1. Action on the Brauer Characters of 3D4(q)

for c ∈ {1, 2} and some A ∈ Z>0 depending on q by Table C.2 and Section C.3.1. Easy
calculations show that these are pairwise distinct for any prime power q. Hence, it follows
again that the action of Aut(G)B on IBr(B) is trivial.

Since s has to have odd order, it cannot be of type s2. Thus, we have regarded all
possible situations, which completes the proof.

16.1.2 The Case ` = 3

Assume now that ` = 3 and q is not a power of 3.

Proposition 16.2. Let B be a 3-block of G. Then any Brauer character in IBr(B) is left
invariant by Aut(G)B.

Proof. Similarly as in the proof of Proposition 16.1 above, we let s ∈ G∗ be a semisimple
3′-element such that Irr(B) is contained in E3(G, s).

If s is of type s2, then q must be odd, and following Table C.2 and Section C.3.2 there
exists some A ∈ Z>0 depending on q such that the character degrees of the irreducible
Brauer characters in E3(G, s) are given by

A,
q3A,
qA,
q4A,

or

A,
(q3 − 1)A,
(q − 1)A,

(q − 1)(q3 − 1)A,

for q ≡ 1 mod 3 or q ≡ −1 mod 3, respectively. Since q is odd, so in particular q > 2,
these are pairwise distinct, and hence left invariant by Aut(G)B.

Suppose that s is of type si with i ∈ {6, 8, 11, 12, 13, 14, 15}. Then from Section C.3.2
it follows that | IBr(B)| = 1, so Aut(G)B clearly acts trivially on IBr(B).

Assume now that s is of type si with i ∈ {3, 5, 7, 10}. Then |E(G, s)| = 2. By Table C.2
and Section C.3.2 the two irreducible Brauer characters belonging to 3-blocks contained
in E3(G, s) have pairwise distinct degrees if q ≡ 1 mod 3 and are hence left invariant by
Aut(G)B. If q ≡ −1 mod 3, then there exists A ∈ Z>0 depending on q such that the
irreducible Brauer characters associated to E3(G, s) have degrees

A,
(q3 − 1)A,

or
A,

(q − 1)A,

for i ∈ {3, 7} or i ∈ {5, 10}, respectively. Hence, for i ∈ {3, 7} their degrees are distinct,
so the action of Aut(G)B on IBr(B) is trivial also for q ≡ −1 mod 3. For i ∈ {5, 10} the
degrees of the irreducible Brauer characters in E3(G, s) are distinct if and only if q > 2.
However, following Table C.1 for q = 2 there do not exist any semisimple elements of
type s5, and the semisimple elements of type s10 are of order 9 in this case, hence no
3′-elements. Consequently, this situation cannot occur. We conclude that also in the
case q ≡ −1 mod 3 the action of Aut(G)B on IBr(B) is trivial due to pairwise distinct
irreducible character degrees.

For s of type s4 the character values provided by Table C.2 and the 3-decomposition
numbers for E3(G, s) given in Section C.3.2 show that there are exactly three irreducible
Brauer characters associated to E3(G, s), which have degrees

A,
(q(q + 1)− 1)A,

(q3 − q(q + 1) + 1)A,
or

A,
q(q + 1)A,
(q3 − 1)A,
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for q ≡ 1 mod 3 and q ≡ −1 mod 3, respectively, where A ∈ Z>0 depends on q. These
are pairwise distinct for any prime power q, as one easily verifies. Hence, the action of
Aut(G)B on IBr(B) is trivial.

Similarly, for s of type s9 one has three irreducible Brauer characters associated to
E3(G, s), and these have pairwise distinct degrees for any prime power q ≡ 1 mod 3. For
q ≡ −1 mod 3 there exists A ∈ Z>0 depending on q such that the degrees of the irreducible
Brauer characters belonging to E3(G, s) have degrees

A,
q(q − 1)A,

(q3 − eq(q − 1)− 1)A,

for some integer e > 0. One easily shows that these are pairwise distinct whenever q > 2.
For q = 2 Table C.1 shows that any semisimple element of type s9 is of order 3, so this
situation cannot occur. Thus, Aut(G)B acts trivially on IBr(B) also in this case.

Let now s = 1. Following Section C.3.2 the unipotent characters of G form a basic set
for E3(G, 1), and the decomposition matrix with respect to these characters is unitriangu-
lar. Since the unipotent characters of G have pairwise distinct degrees by Table C.2, they
are left invariant by Aut(G) as in the proof of Proposition 16.1. Then by unitriangularity
of the decomposition matrix corresponding to the unipotent characters of G it follows from
Lemma 1.27 that Aut(G)B stabilizes IBr(B) pointwise.

16.2 Action on the Weights of 3D4(q)

In this section we study the action of the automorphisms of G on the G-conjugacy classes of
its `-weights for ` ∈ {2, 3}. This examination is conducted blockwise, the main distinction
being made between `-blocks of abelian defect and `-blocks of non-abelian defect.

16.2.1 The Case ` = 2

Here we assume once more that ` = 2 and q is odd. Moreover, we let ε ∈ {±1} be defined
such that q ≡ ε mod 4.

16.2.1.1 Blocks of Non-Abelian Defect

The 2-weights of G for the principal 2-block B0 have been described by J. An in [An95]
as in Proposition 16.3 below. Note that there are significant parallels to the situation of
the principal 2-block of G2(q) (cf. Proposition 12.16).

Proposition 16.3. Suppose that B = B0 is the principal 2-block of G. Then |W(B)| = 7.
Moreover, if (R,ϕ) is a B-weight of G, then up to G-conjugation one of the following
holds:

(i) R ∼= (C2)3, an elementary abelian group of order 8, NG(R)/R ∼= GL3(2), and ϕ is
the inflation of the Steinberg character of NG(R)/R ∼= GL3(2). There exists exactly
one G-conjugacy class of such B-weights in G.

(ii) R = 〈O2(Tε), ρ〉 for some involution ρ ∈ NG(Tε), NG(R)/R ∼= S3, and ϕ is the
inflation of the unique irreducible character of NG(R)/R ∼= S3 of degree 2. There
exists exactly one G-conjugacy class of such B-weights in G.

(iii) R ∈ Syl2(G) is a Sylow 2-subgroup of G, NG(R) = R, and ϕ is the trivial character
of NG(R). There exists exactly one G-conjugacy class of such B-weights in G.
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16.2. Action on the Weights of 3D4(q)

(iv) q ≡ ±1 mod 8, R ∼= 21+2
+ ◦D(q2−1)2

, the central product of an extraspecial 2-group of
order 8 and plus type with a dihedral group of order (q2 − 1)2, NG(R)/R ∼= S3, and
ϕ is the inflation of the unique irreducible character of NG(R)/R ∼= S3 of degree 2.
There exist exactly two G-conjugacy classes of such B-weights in G.

(v) q ≡ ±1 mod 8, R ∼= 21+4
+ , an extraspecial 2-group of order 21+4 and plus type,

NG(R)/R ∼= S3 × S3, and ϕ is the inflation of the unique irreducible character of
NG(R)/R ∼= S3 × S3 of degree 4. There exist exactly two G-conjugacy classes of
such B-weights in G.

(vi) q ≡ ±3 mod 8, R ∼= 21+4
+ , NG(R)/R ∼= (C3 × C3) o C2 with the action of the non-

trivial element of C2 on C3 × C3 given by inversion, and ϕ is the inflation of one
of the four irreducible characters of NG(R)/R of degree 2. There exists exactly one
G-conjugacy class of such R in G.

Proof. This is a consequence of [An95, (2B)–(2D), (3C)] and the proofs of [An95, (3G)]
and [An94a, (3H)].

Remark 16.4. If (R,ϕ) is a B0-weight for G with R as in (iv), (v) or (vi) of Proposition 16.3,
then as in the proof of [An95, (3C)] we may assume that R is contained in a maximal
subgroup G̃ of G isomorphic to G2(q) such that

N
G̃

(R) 6 N
G̃

(Z(R)) = C
G̃

(Z(R)) ∼= SO+
4 (q)

and R is 2-radical in C
G̃

(Z(R)) ∼= SO+
4 (q) with N

G̃
(R)/R ∼= NG(R)/R by [An94a, (2B)].

Thus, we observe that the normalizer NG(R) is already contained in G̃.

Proposition 16.5. Let B = B0 be the principal 2-block of G. Then Aut(G)B = Aut(G)
acts trivially on W(B).

Proof. Let (R,ϕ) be a B-weight. If R is as in Proposition 16.3(i), (ii) or (iii), then the
G-conjugacy class of (R,ϕ) is uniquely determined by the isomorphism type of R. Hence,
it stays invariant under Aut(G).

Suppose now that R is as in (iv), (v) or (vi) of Proposition 16.3. Following Remark 16.4
we may assume that NG(R) is contained in the subgroup G̃ ∼= G2(q), where G̃ is as in
Proposition 15.11. According to Proposition 15.9 we have Aut(G) = 〈G,Fp〉 with Fp
stabilizing G̃ and acting on it as a field automorphism of G2(q) by Corollary 15.12. Now
let a be an element of Aut(G). Since we are only interested in the action of automorphisms
of G on the G-conjugacy classes of B-weights, inner automorphisms of G do not play a
role and we may assume that a = F ip for some i ∈ N. Now

R 6 NG(R) 6 G̃,

so we may regard (R,ϕ) as a 2-weight for G̃ and a = F ip as a power of the field automor-
phism of G̃. Hence, in consequence of Proposition 12.17 the 2-weight (R,ϕ) is stabilized
by a up to G̃-conjugation, so in particular the G-conjugacy class of (R,ϕ) is left invariant
by a, and thus by all of Aut(G) as claimed.

For the non-principal 2-blocks of G of non-abelian defect J. An showed the following:
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Proposition 16.6. Let B be a non-principal 2-block of G with non-abelian defect groups.
Then one of the following situations occurs:

(i) It holds that |W(B)| = 3, and moreover, if (R1, ϕ1) and (R2, ϕ2) are non-conjugate
B-weights, then one has R1 6∼= R2.

(ii) It holds that |W(B)| = 2, and moreover, if (R1, ϕ1) and (R2, ϕ2) are non-conjugate
B-weights, then one has R1 6∼= R2.

Proof. This follows from the proof of [An95, (3G)].

Proposition 16.7. Let B be a non-principal 2-block of G with non-abelian defect groups.
Then Aut(G)B acts trivially on W(B).

Proof. Let (R,ϕ) be a B-weight of G and a ∈ Aut(G)B. Then (R,ϕ)a = (Ra, ϕa) is a
B-weight with Ra ∼= R. Hence, Proposition 16.6 implies that the B-weights (R,ϕ) and
(R,ϕ)a are G-conjugate.

16.2.1.2 Blocks of Abelian Defect

In this section we study the action of automorphisms of G on the 2-weights associated
to 2-blocks with non-cyclic abelian defect groups. Recall that the case of cyclic defect is
covered by Koshitani–Späth [KS14, KS15].

Proposition 16.8. Suppose that B is a 2-block of G which has a non-cyclic abelian defect
group D. Then the following statements hold:

(i) The centralizer CG(D) =: T is a maximal torus of G of type Tε, D = O2(T ) and
NG(D) = NG(T ) with NG(T )/T ∼= D12. In particular, in G there exists only one
G-conjugacy class of subgroups isomorphic to D.

(ii) Consider Irr(T ) as an abelian group and fix an isomorphism ˆ: T −→ Irr(T ). Then
up to G-conjugation there exists a unique 2′-element s ∈ T and a 2-block b ∈ Bl2(T )
of T = CG(D) with bG = B such that the linear character θ := ŝ ∈ Irr(T ) is the
canonical character of b.

(iii) For θ and s as in (ii) we have NG(T )θ/T ∼= CW (T )(s), where W (T ) := NG(T )/T .

Proof. For (i) we observe that according to [DM87, Prop. 5.8] the centralizer CG(D) =: T
is a maximal torus of G such that D = O2(T ). Since maximal tori of G of types T1,±
and T3 are cyclic and maximal tori of types T2,± have odd order, it follows that T must
be of type Tδ for some δ ∈ {±1}. But by [An95, (2D)(a)] the centralizer of O2(Tδ) in
G is a maximal torus if and only if δ = ε, so T must be of type Tε. Moreover, by the
same reference it follows that NG(D) = NG(T ) with NG(T )/T ∼= D12. Since D is the
unique Sylow 2-subgroup of the maximal torus T , there exists only one G-conjugacy class
of subgroups of G isomorphic to D.

Finally, the statements given in (ii) and (iii) can be found as parts (b) and (c) of
Proposition 5.8 in [DM87].

Proposition 16.9. Let B be a 2-block of G of non-cyclic abelian defect. Then Aut(G)B
acts trivially on W(B).
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Proof. Suppose that (R,ϕ) is a B-weight. Since B has abelian defect, it follows from
Lemma 2.11 that R is a defect group of B. Hence, due to Proposition 16.8(i) we have
R = O2(T ) for some maximal torus T of G of type Tε and NG(R) = NG(T ). Let s ∈ T ,
θ = ŝ and b ∈ Bl2(T ) be as in Proposition 16.8(ii) such that NG(T )θ/T ∼= CW (T )(s) for
W (T ) = NG(T )/T .

Since B is non-principal and s is of odd order, it follows that s2 6= 1. Hence, according
to [DM87, Table 3.4] up to isomorphism we have CW (T )(s) ∈ {{1}, C2,S3}. However, b

has defect group R, and since B = bG has defect group R as well, Theorem 1.10 implies
that the index |NG(T )θ : T | is prime to 2. We conclude that NG(T )θ = T .

Following Construction 2.10 we hence have ϕ = θNG(T ), so ϕ is uniquely determined
by R and B. If a ∈ Aut(G)B, then as above the first component Ra of the B-weight
(R,ϕ)a must be a defect group of B, so in particular it is G-conjugate to R. In summary,
we conclude that the G-conjugacy class of (R,ϕ) is left invariant by Aut(G)B.

16.2.2 The Case ` = 3

Here we study the action of Aut(G) on the 3-weights of G. Throughout this section we
assume that 3 - q and denote by ε the unique element in {±1} with q ≡ ε mod 3.

If T is a maximal torus of G of type Tε, then in consequence of [An95, (1A)] it holds
that NG(T )/T ∼= D12. We let G̃ ∼= G2(q) be as in Proposition 15.11 and assume that T
is such that T̃ := T ∩ G̃ is a maximal torus of G̃ isomorphic to Cq−ε × Cq−ε. Then as in

Section 12.2.2 it also holds that N
G̃

(T̃ )/T̃ ∼= D12. This allows us to prove the following
two statements:

Lemma 16.10. Let q > 5. Suppose that G̃ ∼= G2(q) is as in Proposition 15.11 and let T
be a maximal torus of G of type Tε such that T̃ := T ∩ G̃ is a maximal torus of G̃ with
T̃ ∼= Cq−ε × Cq−ε. Then it holds that CG(T̃ ) = T .

Proof. Clearly, T ⊆ CG(T̃ ). Moreover, CG(T̃ ) ⊆ CG(x) for every x ∈ T̃ . If T̃ contains a
regular element g of T , i.e., an element g such that CG(g) = T , then CG(T̃ ) ⊆ CG(g) = T ,
so the claim follows. Since q ≡ ε mod 3, it follows that q − ε > 6, whence according to
Table 15.1 the torus T contains elements represented by h(z, z−1, z, z) with z ∈ F× of
order q − ε (these are of type s6 or s15 for ε = +1 and ε = −1, respectively), and by
[Kle88a, Table II] these elements are regular. Since for an element x ∈ T we have x ∈ T̃
if and only if xq−ε = 1, elements of T represented by such h(z, z−1, z, z) already lie in T̃ .
Hence, T̃ contains regular elements of T , which proves the claim.

Proposition 16.11. In the situation of Lemma 16.10 we have NG(T ) = N
G̃

(T̃ )T .

Proof. We prove that N
G̃

(T̃ ) normalizes T . Then N
G̃

(T̃ )T ⊆ NG(T ), and since NG(T )/T

and N
G̃

(T̃ )/T̃ are isomorphic to D12 and

N
G̃

(T̃ )T/T ∼= N
G̃

(T̃ )/(N
G̃

(T̃ ) ∩ T ) = N
G̃

(T̃ )/T̃ ∼= D12,

we obtain equality. By Lemma 16.10 we have CG(T̃ ) = T , so every element of G which
normalizes T̃ stabilizes CG(T̃ ) = T . In particular, N

G̃
(T̃ ) ⊆ NG(T ) as claimed.
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16.2.2.1 Blocks of Non-Abelian Defect

As for the case ` = 2, we first consider the 3-blocks of G with non-abelian defect groups.
For the principal 3-block B0 the following has been shown to hold by J. An:

Proposition 16.12. Suppose that B = B0 is the principal 3-block of G. Then |W(B)| = 7.
Moreover, if (R,ϕ) is a B-weight of G, then up to G-conjugation one of the following holds:

(i) R is an extraspecial group of order 31+2 and exponent 3 such that R 6 Lε 6 Hε,
CG(R) = Z(Hε) ∼= Cq2+εq+1, NG(R) = NMε(R), NHε(R)/RCG(R) ∼= Sp2(3), and
|NG(R) : NHε(R)| = 2.
The character ϕ is the inflation of one of the two extensions of the Steinberg character
of NHε(R)/RCG(R) ∼= Sp2(3) to NG(R)/RCG(R).
There exists exactly one G-conjugacy class of such R in G.

(ii) R ∈ Syl3(G), CG(R) ∼= Cq2+εq+1, NG(R)/RCG(R) ∼= C2×C2, and ϕ is the inflation
of one of the four irreducible characters of NG(R)/RCG(R).

(iii) R = O3(T ) for a maximal torus T of G of type T2,ε, NG(R)/RCG(R) ∼= Sp2(3) with
CG(R) = T , and ϕ is the inflation of the Steinberg character of NG(R)/RCG(R).
There exists exactly one G-conjugacy class of such B-weights in G.

Proof. This follows from [An95, (1A)] and the proof of [An95, (3B)].

In order to understand the action of Aut(G) on the 3-weights associated to the principal
3-block of G we need the following two observations:

Lemma 16.13. Let R 6 G be an extraspecial group of order 31+2 and exponent 3. Then
there exists exactly one G-conjugacy class of subgroups of G isomorphic to R. Moreover,
if R 6 Lε 6 Kε 6Mε, then

NG(R)/RCG(R) ∼= Sp2(3)o 〈ρ〉

for some involution ρ ∈ Kε \ Lε such that Mε = 〈Hε, ρ〉.

Proof. This is [An95, (1C)].

For the proof of Lemma 16.14 below we recall the following notation: If x ∈ G, then
we denote by cx ∈ Aut(G) the inner automorphism of G given by conjugation with x,
i.e., cx(g) = xgx−1 for all g ∈ G.

Lemma 16.14. Let T be a maximal torus of G of type Tε. Then there exists an automor-
phism a ∈ Aut(G)T with Out(G) = 〈a Inn(G)〉 which acts trivially on NG(T )/T .

Proof. First of all we note that if the claim holds for one fixed T , then it also holds for all
its G-conjugates, and hence for any maximal torus of G of type Tε.

Suppose first that q < 5, that is, q ∈ {2, 4} since q ≡ ε mod 3. (The following proof
does in fact work for any even q as we will see. However, we only need it for q ∈ {2, 4}
as we have a different proof for arbitrary q > 5 relying on Lemma 16.10.) Let F+ := F if
ε = 1 and F− := n0F if ε = −1, where n0 is as in Remark 15.7. As observed above we
have NG(T )/T ∼= D12, and since

NG(T ) ∼= NGFε (T
Fε) > NGFε (T)
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with NGFε (T)/TFε ∼= D12 by Table 15.1, it follows that NGFε (T) = NGFε (T
Fε) here. In

particular, we have

NGFε (T
Fε) = 〈TFε , nr2(1), nr1(1)nr3(1)nr4(1)〉

by Remark 15.7 with the field automorphism Fp stabilizing TFε and acting trivially on
the quotient NGFε (T

Fε)/TFε following Remark 15.10. Since Fp generates the outer au-
tomorphism group of the group GFε , which is G-conjugate to G by Corollary 4.35, the
claim follows in this case.

Now suppose that q > 5 and let G̃ ∼= G2(q) be as in Proposition 15.11. If necessary,
after replacing T by a G-conjugate we may assume that T̃ := T ∩ G̃ is a maximal torus
of G̃ isomorphic to Cq−ε×Cq−ε. In consequence of Remark 11.15 in conjunction with the

observations at the beginning of Section 12.2.2, and possibly after G̃-conjugation, there
exists an automorphism ã of G̃ (e.g. the field automorphism of G̃) such that

• Out(G̃) = 〈ã Inn(G̃)〉,

• ã(T̃ ) = T̃ , and

• every element of N
G̃

(T̃ ) can be written in the form nt with t ∈ T̃ and n ∈ N
G̃

(T̃ )
such that ã(n) = n.

Now the field automorphism Fp acts on G̃ and hence, since Out(G̃) = 〈ã Inn(G̃)〉, there is

some k ∈ N and g ∈ G̃ such that Fp acts as ãkcg on G̃. Then a := Fpcg−1 fixes G̃ and T̃ ,

and hence T since T = CG(T̃ ) by Lemma 16.10. Moreover, Out(G) = 〈a Inn(G)〉.
Now let x ∈ NG(T ). Following Proposition 16.11 it holds that NG(T ) = N

G̃
(T̃ )T , and

hence x = ms for some m ∈ N
G̃

(T̃ ) and s ∈ T . Now we have m = nt for suitable elements
n ∈ N

G̃
(T̃ ) such that ã(n) = n and t ∈ T̃ . But then x = nts ∈ nT and

a(x) = a(nts) = ãk(n)a(ts) = na(ts) ∈ nT,

so a(x) and x coincide modulo T , i.e., a acts trivially on NG(T )/T .

Proposition 16.15. Let B = B0 be the principal 3-block of G. Then Aut(G)B = Aut(G)
acts trivially on W(B).

Proof. We prove this claim by going through the distinct cases in Proposition 16.12. Let
(R,ϕ) be a B-weight of G. If R = O3(T ) for a maximal torus T of G of type T2,ε, then
by Proposition 16.12(iii) the G-conjugacy class of (R,ϕ) is uniquely determined by B and
the isomorphism type of R. Hence, it stays invariant under Aut(G).

Suppose now that R is an extraspecial group of order 31+2 and exponent 3 as in
Proposition 16.12(i). Then by Lemma 16.13 the group R is uniquely determined up to
G-conjugation. Hence, we may assume that R is contained in the maximal subgroup of
G isomorphic to G2(q) as in Proposition 15.11 and has the same form as in the proof of
Proposition 12.32 for case (iii). Then as in that proof, the element ρ in Lemma 16.13 can
be chosen such that ρ ∈ NKε(R) and Fp acts trivially on ρ. Moreover, R is stabilized
by Fp. According to Proposition 16.12(i) the character ϕ corresponds to one of the two
extensions of the Steinberg character of NHε /RCG(R) ∼= Sp2(3) to NG(R)/RCG(R). Let
us denote these two extensions by St+ and St−. By Proposition 16.12(i) and Lemma 16.13
we have NG(R) = 〈NHε(R), ρ〉, so

St−(ρRCG(R)) = −St+(ρRCG(R))
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by Gallagher’s theorem, Theorem 1.21. Now (R,ϕ)Fp = (R,ϕFp) is again a B-weight, so
from Proposition 16.12 it follows that ϕFp corresponds to one of St+ and St−. It holds that
St±(ρRCG(R)) 6= 0 since St± is of degree three and ρ has order two, so St±(ρRCG(R))
is the sum of three square roots of unity, i.e., St±(ρRCG(R)) ∈ {±1,±3}. But then

(St+)Fp(ρRCG(R)) = St+(ρRCG(R)) 6= −St+(ρRCG(R)) = St−(ρRCG(R)),

so we conclude that ϕFp = ϕ, and hence (R,ϕ) stays invariant under the action of Fp. In
particular, the G-conjugacy class of (R,ϕ) is fixed by Aut(G).

Finally, we suppose that R ∈ Syl3(G). Then from Proposition 16.12 it is known that

NG(R)/RCG(R) ∼= C2 × C2.

We prove that there exists an automorphism a ∈ Aut(G)R which acts trivially on the
quotient group NG(R)/RCG(R) and which generates the outer automorphisms of G, i.e.,
Out(G) = 〈a Inn(G)〉. If this is the case, then the claim follows: Let θ be an irreducible con-
stituent of ϕ|RCG(R). Then by Construction 2.10 we have bl(θ)G = B0, so by Theorem 1.9
it follows that θ must be the trivial character of RCG(R). Moreover, by Construction 2.10
and Gallagher’s theorem it holds that ϕ is one of the four extensions of θ to NG(R), i.e.,

ϕ ∈ Irr(NG(R) | θ) = {1NG(R) · β | β ∈ Irr(NG(R)/RCG(R))}.

Hence, since the character 1NG(R) is clearly left invariant by Aut(G)R, the claim follows if
an automorphism a ∈ Aut(G)R as above exists.

Following the proof of [An95, (1A)] we may assume that NG(R) is contained in NG(T )
for some maximal torus T of type Tε, and where in addition NG(T ) = 〈T, ρ, τ, σ〉 for
suitable ρ, τ, σ ∈ G such that R = 〈O3(T ), σ〉, σ has order 3 modulo T , ρT generates the
center of NG(T )/T ∼= D12, and τ−1στ coincides with σ−1 modulo T . Moreover, by the
same reference CG(R) ⊆ T , NG(R) = 〈RCG(R), ρ, τ〉, and we have

NG(R)/RCG(R) = 〈ρRCG(R)〉 × 〈τRCG(R)〉.

By Lemma 16.14 there is an automorphism ã ∈ Aut(G)T such that Out(G) = 〈ã Inn(G)〉
and ã acts trivially on NG(T )/T . Since Rã 6 NG(T ) and R is a Sylow 3-subgroup of G
and hence of NG(T ), there exists y ∈ NG(T ) such that Rãy = R, i.e., the automorphism
a := ãcy ∈ Aut(G) stabilizes R, so in particular it acts on NG(R)/RCG(R). Moreover, it
holds that

〈a Inn(G)〉 = 〈ã Inn(G)〉 = Out(G).

Since NG(T ) = 〈T, ρ, τ, σ〉 and ρ, τ, σ ∈ NG(R), we may assume that y ∈ T . We prove
that a acts trivially on NG(R)/RCG(R). Since ρ, τ ∈ NG(T ), we have

cy(ρ) = yρy−1 = ρρ−1yρy−1 ∈ ρT,

and analogously cy(τ) ∈ τT . Hence, it follows that a(ρ) ∈ ρT and a(τ) ∈ τT since ã acts
trivially on NG(T )/T .

Let us suppose that a(ρRCG(R)) = τRCG(R). Then a(ρ) = τxσi for some x ∈ T and
i ∈ {0, 1, 2} since R = 〈O3(T ), σ〉 and CG(R) ⊆ T . It follows that ρ ≡ a(ρ) ≡ τσi mod T,
i.e., τ ≡ ρσ−i mod T . Since ρT ∈ Z(NG(T )/T ), we conclude that

σ−1 ≡ τ−1στ ≡ σiρ−1σρσ−i ≡ σ mod T

in contradiction to the fact that σ has order 3 modulo T .
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Assume now that a(ρRCG(R)) = ρτRCG(R). Then a(ρ) = ρτxσi for some x ∈ T and
i ∈ {0, 1, 2}, so ρ ≡ a(ρ) ≡ ρτσi mod T , hence τ ≡ σ−i mod T . But then

σ−1 ≡ τ−1στ ≡ σ mod T,

a contradiction. Thus, we conclude that ρRCG(R) is left invariant by a.
Similarly, one checks that τRCG(R) and ρτRCG(R) are invariant under a, so a acts

trivially on NG(R)/RCG(R), and hence on the weight (R,ϕ). Since 〈a Inn(G)〉 = Out(G),
we conclude that Aut(G) stabilizes the G-conjugacy class of (R,ϕ).

Let us now turn towards the case of non-principal 3-blocks of G with non-abelian defect
groups. For these J. An showed the following:

Proposition 16.16. Let B be a non-principal 3-block of G with non-abelian defect groups.
Then |W(B)| = 3. Moreover, if (R,ϕ) is a B-weight of G and θ is an irreducible con-
stituent of ϕ|RCG(R), then θ is a linear character and up to G-conjugation one of the
following holds:

(i) R is an extraspecial group of order 31+2 and exponent 3 such that R 6 Lε 6 Hε,
CG(R) = Z(Hε) ∼= Cq2+εq+1, NG(R) = NMε(R), NHε(R)/RCG(R) ∼= Sp2(3), and
|NG(R) : NHε(R)| = 2. Moreover, NG(R)θ = NHε(R) and

ϕ = (θ̃ · St)NG(R),

where St denotes the inflation of the Steinberg character of NHε(R)/RCG(R) and θ̃
is an extension of θ to NG(R)θ. The character ϕ is uniquely determined by R and
B, and there exists exactly one G-conjugacy class of such B-weights in G.

(ii) R ∈ Syl3(G) with R 6 Hε, CG(R) = Z(Hε) ∼= Cq2+εq+1, NHε(R)/RCG(R) ∼= C2,
NG(R)/RCG(R) ∼= C2 × C2, NG(R)θ = NHε(R), and

ϕ = (θ̃ · ξ)NG(R),

where ξ ∈ Irr(NG(R)θ/RCG(R)) and θ̃ is an extension of θ to NG(R)θ.

Proof. This follows from [An95, (1A)] and the proof of [An95, (3B)].

In order to understand the action of Aut(G) on the 3-weights of G described in Propo-
sition 16.16 above we need the following lemma:

Lemma 16.17. Let R be as in Proposition 16.16(ii). Then Hε = U × Z(Hε)3′ for some
subgroup U 6 Hε such that NHε(R) = NU (R)× Z(Hε)3′. More precisely,

NHε(R) = 〈R, x〉 × Z(Hε)3′

for some x ∈ U with x2 ∈ R.

Proof. By the proof of [An95, (3B)] there exists a subgroup U 6 Hε such that we have
Hε = U ×Z(Hε)3′ and NHε(R) = NU (R)×Z(Hε)3′ . Now by Proposition 16.16(ii) it holds
that CHε(R) = Z(Hε) and NHε(R)/RCHε(R) ∼= C2. Since R is a Sylow 3-subgroup of G
and hence of Hε, we have Z(Hε)3 6 R. Thus, RCHε(R) = RZ(Hε) = R× Z(Hε)3′ , so

NU (R)/R ∼= NHε(R)/RCHε(R) ∼= C2,

which proves the claim.

171



Chapter 16. Action of Automorphisms

Proposition 16.18. Suppose that B is a non-principal 3-block of G of non-abelian defect.
Then Aut(G)B acts trivially on W(B).

Proof. Let (R,ϕ) be a B-weight of G. We go through the cases in Proposition 16.16. If
R is an extraspecial group of order 31+2 and exponent 3, then by Proposition 16.16(i) the
character ϕ is uniquely determined by R and B, and there exists only one G-conjugacy
class of B-weights with first component isomorphic to R. Hence, Aut(G)B stabilizes the
G-conjugacy class of (R,ϕ).

Suppose now that R ∈ Syl3(G) such that R 6 Hε and let θ be an irreducible constituent
of ϕ|RCG(R). Then by Proposition 16.16(ii) the character ϕ is of the form ηNG(R) for some
extension η of θ to Nθ. Let a ∈ Aut(G) such that Ra = R and Ba = B. Moreover, let b
be the 3-block of RCG(R) containing θ. Then b has defect group R ∈ Syl3(G), and hence
by Lemma 1.1 also B ∈ Bl3(G | R). Since a fixes B, it follows from Proposition 1.3 that
ba induces to B, so the 3-blocks b and ba of RCG(R) must be conjugate under NG(R)
by Brauer’s extended first main theorem, Theorem 1.7, and hence also their canonical
characters θ and θa are NG(R)-conjugate.

Let x ∈ Hε be as in Lemma 16.17, i.e., such that NHε(R) = 〈R, x〉 × Z(Hε)3′ and
x2 ∈ R. According to Proposition 16.16(ii) we have

NG(R)/RCG(R) ∼= C2 × C2.

Hence, there exist y ∈ G such that NG(R) = 〈RCG(R), x, y〉 with [x, y] ∈ RCG(R). Now
the orbit of θ under the conjugation action of NG(R) is given by the set {θ, θx, θy, θxy}.
From Proposition 16.16(ii) it follows that NG(R)θ = NHε(R), so in fact θx = θ, and we
conclude that θa ∈ {θ, θy}. Since NG(R)θ has index two in NG(R), it is a normal subgroup
of NG(R), and hence NG(R)θy = (NG(R)θ)

y = NG(R)θ. Thus,

NG(R)θa = NG(R)θ = 〈R, x〉 × Z(Hε)3′ .

Clearly, a−1(x) = xa ∈ (NG(R)θ)
a = NG(R)θa = 〈R, x〉 × Z(Hε)3′ . Suppose xa = v · z for

some v ∈ 〈R, x〉 and z ∈ Z(Hε)3′ . Then

v2 · z2 = (xa)2 = (x2)a ∈ Ra = R.

Since v2 ∈ R, we also have z2 ∈ R. But as Z(Hε) ∼= Cq2+εq+1 (cf. Proposition 16.16(ii)), it
follows that Z(Hε)3′ has odd order. Hence, we conclude that z2 can only be contained in
the 3-group R if z = 1. Thus, xa ∈ 〈R, x〉, so a−1 and a act on 〈R, x〉, and we may write
a(x) = rx for some r ∈ R.

Now there exist exactly two extensions of θ to NG(R)θ, say θ+ and θ− such that
θ+(x) = 1 and θ−(x) = −1 (for this recall that x2 ∈ R and θ is a linear character
of RCG(R) with R in its kernel, so θ±(x)2 = θ±(x2) = 1). We write θ±(x) = ±1.
Analogously, we denote by (θy)± the two extensions of θy to NG(R)θy = NG(R)θ with
(θy)±(x) = ±1. It holds that

(θ±)a(c) = θ±(a(c)) = θ(a(c)) = θa(c)

for all c ∈ RCG(R) since a acts on RCG(R), so (θ±)a are extensions of θa to NG(R)θ.
Moreover,

(θ±)a(x) = θ±(a(x)) = θ±(rx) = θ±(r)θ±(x) = θ±(x) = ±1,

so we have (θ±)a = (θa)±. Denote by ψ+ and ψ− the induced characters (θ+)NG(R)

and (θ−)NG(R), respectively. Then ϕ ∈ {ψ+, ψ−}. We recall that NG(R)θ is normal in
NG(R) = 〈NG(R)θ, y〉, so by Clifford theory, Theorem 1.15, we have

ψ±|NG(R)θ
= θ± + (θ±)y.
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Since NG(R)θ = NHε(R) E NG(R), we have yxy−1 ∈ NHε(R) = 〈R, x〉 × Z(Hε)3′ , so we
write yxy−1 = v · z for some v ∈ 〈R, x〉 and z ∈ Z(Hε)3′ . Then

v2 · z2 = (yxy−1)2 = yx2y−1 ∈ R

since x2 ∈ R and y ∈ NG(R). As above we conclude that z2 ∈ R and hence z = 1, so we
may write yxy−1 = sx for some s ∈ R. Then

(θ±)y(x) = θ±(yxy−1) = θ±(sx) = θ±(s)θ±(x) = θ±(x) = ±1.

Since (θ±)y are extensions of θy, we conclude that (θ±)y = (θy)±. Then

ψ±|NG(R)θ
= θ± + (θy)±,

and by Frobenius reciprocity, Proposition 1.18, and the fact that (ψ±)a = ((θ±)a)NG(R) it
follows that

〈(ψ±)a, ψ±〉NG(R) = 〈(θ±)a, ψ±|NG(R)θ
〉NG(R)θ = 〈(θa)±, θ± + (θy)±〉NG(R)θ = 1

since θ±, (θy)± are distinct, irreducible, and θa ∈ {θ, θy}. Thus, (ψ±)a = ψ±, and hence
we conclude that (R,ϕ)a = (R,ϕ). Since for any automorphism σ ∈ Aut(G)B we have
Rσ ∈ Syl3(G), there always exists g ∈ G such that Rσg = R. Clearly, we also have
σcg ∈ Aut(G)B. By the previous considerations we know that (R,ϕ)σg = (R,ϕ), so

(R,ϕ)σ = (R,ϕ)g
−1

is G-conjugate to (R,ϕ) as claimed.

16.2.2.2 Blocks of Abelian Defect

In this section we study the behaviour of B-weights under automorphisms of G for 3-blocks
B of non-cyclic abelian defect. For such a 3-block the following statements hold by results
of D. I. Deriziotis and G. O. Michler [DM87] and J. An [An95]:

Proposition 16.19. Let B be a 3-block of G with a non-cyclic abelian defect group D.
Then the following statements hold:

(i) The centralizer CG(D) =: T is a maximal torus of G of type Tε or T2,ε, D = O3(T )
and NG(D) = NG(T ). In particular, in G there exists only one G-conjugacy class of
subgroups isomorphic to D.

(ii) Consider Irr(T ) as an abelian group and fix an isomorphism ˆ: T −→ Irr(T ). Then
up to G-conjugation there exists a unique 3′-element s ∈ T and a 3-block b ∈ Bl3(T )
of T = CG(D) with bG = B such that the linear character θ := ŝ ∈ Irr(T ) is the
canonical character of b.

(iii) For θ and s as in (ii) we have NG(T )θ/T ∼= CW (T )(s), where W (T ) := NG(T )/T .

Proof. Part (i) follows from [An95, (1A)] since being a defect group of B the 3-group D is
radical in G (cf. Example 2.6). Statements (ii) and (iii) are part of [DM87, Prop. 5.8].

Blocks with Defect Groups O3(T2,ε)
Let us first treat the case of 3-blocks of G with defect group O3(T ) for a maximal torus T
of G of type T2,ε. Similarly as for the case of 2-blocks of G with non-cyclic abelian defect
groups we can prove the following:
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Proposition 16.20. Let B be a 3-block of G with defect group O3(T ) for a maximal torus
T of G of type T2,ε. Then Aut(G)B acts trivially on W(B).

Proof. Suppose that (R,ϕ) is a B-weight. In consequence of Lemma 2.11 we may assume
that R = O3(T ) with NG(R) = NG(T ) by Proposition 16.19(i). Let s ∈ T , θ = ŝ and
b ∈ Bl3(T ) be as in Proposition 16.19(ii), so NG(T )θ/T ∼= CW (T )(s) for W (T ) = NG(T )/T .
Since B is non-principal, we have s 6= 1. Then by [DM87, Lemma 3.4] up to isomorphism
it holds that CW (T )(s) ∈ {{1}, C3}.

Now both 3-blocks b and B = bG have defect group R, so Theorem 1.10 implies that
the index |NG(T )θ : T | is not divisible by 3. It follows that NG(T )θ = T , and hence by
Construction 2.10 we have ϕ = θNG(T ). Consequently, ϕ is uniquely determined by R
and B, and since Ra is G-conjugate to R for any a ∈ Aut(G)B, we conclude that the
G-conjugacy class of (R,ϕ) is left invariant by Aut(G)B.

Blocks with Defect Groups O3(Tε)
In the following we concentrate on the case of 3-blocks of G that have a defect group O3(T )
for a maximal torus T of G of type Tε. For q large enough we wish to reduce this case to
a question on 3-weights of G2(q). However, this requires the application of Lemma 16.10,
whence we have to treat the case of q < 5 separately:

Proposition 16.21. Suppose that q ∈ {2, 4} (or, more generally, that q is even). Let B
be a 3-block of G with defect group O3(T ) for a maximal torus T of G of type Tε. Then
Aut(G)B acts trivially on W(B).

Proof. Let (R,ϕ) be a B-weight. As in the proof of Proposition 16.20 we may assume
that R = O3(T ) such that NG(R) = NG(T ) by Proposition 16.19, and we let s ∈ T ,
θ = ŝ and b ∈ Bl3(T ) be as in Proposition 16.19(ii), so NG(T )θ/T ∼= CW (T )(s), where
W (T ) = NG(T )/T . Since B is non-principal, we have s 6= 1, and since q is even, it follows
that s cannot be of order 2. Hence, from [DM87, Lemma 3.4] we obtain that

CW (T )(s) ∈ {{1}, C2,S3, SL3(2)}

up to isomorphism. As in the proof of Proposition 16.20 the index |NG(T )θ : T | must be
coprime to 3, whence in fact CW (T )(s) ∈ {{1}, C2} up to isomorphism.

If NG(T )θ = T , then Construction 2.10 yields ϕ = θNG(T ), such that (R,ϕ) is uniquely
determined by R and B, hence left invariant by Aut(G)B up to G-conjugation in conse-
quence of Proposition 16.19(i).

Suppose now that NG(T )θ/T ∼= C2. Then from Construction 2.10 it follows that

ϕ = θ̃NG(T ),

where θ̃ denotes one of the two extensions of θ to NG(T )θ, which exist by Proposition 1.20.
If a ∈ Aut(G)B, then up to G-conjugation a stabilizes T , so we may without loss of general-
ity assume that T a = T and hence Ra = R. Moreover, as in the proof of Proposition 12.37
it follows that θa and θ are NG(T )-conjugate, so by multiplication of a with a suitable
inner automorphism we may assume that a leaves θ invariant. In particular, a stabilizes
NG(T )θ by Lemma 1.25. We prove that θ̃a = θ̃. Then

ϕa = (θ̃NG(T ))a = (θ̃a)NG(T ) = θ̃NG(T ) = ϕ,

and the claim follows. In consequence of Corollary 1.22 it suffices to show that

θ̃a(n) = θ̃(n) 6= 0,
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where n ∈ NG(T ) with n2 ∈ T is such that NG(T )θ = 〈T, n〉. Clearly, both values are
non-zero since the character θ̃ is linear. Now we have a(n) ∈ NG(T )θ \ T , so there exists
t ∈ T such that a(n) = tn, and we have

θ̃a(n) = θ̃(tn) = θ̃(t)θ̃(n).

Since n2 ∈ T and θ̃a(s) = θ̃(s) = θ(s) for all s ∈ T , it follows that

θ̃(n)2 = θ̃(n2) = θ̃a(n2) = θ̃a(n)2 = θ̃(t)2θ̃(n)2,

and hence θ̃(t)2 = 1. Now q is even, so in particular T does not contain elements of even
order. It follows that θ̃(t) = 1, and hence we have θ̃a(n) = θ̃(n) as claimed.

Let us now consider the situation that q > 5. We reduce this case to a question on
3-weights of G2(q). For this purpose we fix some notation:

Recall that ε ∈ {±1} was chosen such that q ≡ ε mod 3. We let G̃ = GFq ∼= G2(q) be
a maximal subgroup of G as in Proposition 15.11. In addition, we fix a maximal torus T
of G of type Tε such that T̃ := T ∩ G̃ is a maximal torus of G̃ isomorphic to Cq−ε×Cq−ε.
As observed at the beginning of Section 16.2.2, we have

NG(T )/T ∼= N
G̃

(T̃ )/T̃ ∼= D12,

such that by Proposition 16.11 it holds that NG(T ) = N
G̃

(T̃ )T for q > 5. This equality
will be used frequently throughout the rest of this section.

Furthermore, we define R := O3(T ) and R̃ := O3(T̃ ) to be the Sylow 3-subgroups of
T and T̃ , respectively. Now let B be a 3-block of G with defect group R. Since B has
abelian defect, it follows from Lemma 2.11 that a 3-subgroup Q 6 G is G-conjugate to R
whenever there exists a B-weight with first component Q.

If (R,ϕ) is a B-weight of G and θ ∈ Irr(T ) is an irreducible constituent of the restriction
ϕ|T of ϕ to RCG(R) = T , then B = bl(θ)G following Construction 2.10. We may draw
the following diagram of inclusions:

G

G̃

NG(T ) = N
G̃

(T̃ )T ϕ

ϕ|N
G̃

(T̃ )
N
G̃

(T̃ )

T θ

θ|T̃ T̃

R

R̃

Let us set B̃ := bl(θ|T̃ )G̃. Our objective is to relate the B-weight (R,ϕ) of G to a (set
of) B̃-weight(s) of G̃. To this end we examine the restriction of the weight character ϕ to
N
G̃

(T̃ ). In this connection the irreducible characters of T will play a key role, whence we
fix the following parametrization for Irr(T ) to allow a convenient handling:
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Notation 16.22 (Parametrization of Irr(T )). Being of type Tε the maximal torus T of G
satisfies T ∼= Cq3−ε ×Cq−ε according to Table 15.1. We identify Cq3−ε and Cq−ε with the
unique subgroups of the cyclic group F×

q6 of orders q3−ε and q−ε, respectively. Moreover,
we fix a generator of Cq3−ε, that is, an element z ∈ F×

q6 of order q3 − ε. Then the linear
map defined by

θ0 : Cq3−ε −→ C×, z 7−→ exp

(
2πi

q3 − ε

)
,

generates the character group of Cq3−ε, i.e., we have

Irr(Cq3−ε) = {θi0 | 0 6 i < q3 − ε}.

Now Cq−ε is generated by zq
2+εq+1. Every irreducible character of Cq−ε may be extended to

Cq3−ε by Proposition 1.20(i), and conversely, every restriction of a character in Irr(Cq3−ε)
to Cq−ε yields an irreducible character of Cq−ε. Moreover, for 0 6 i, j < q3 − ε we have

θi0|Cq−ε = θj0|Cq−ε if and only if i ≡ j mod q − ε. Hence, by abuse of notation (that is,

writing θ0 instead of θ0|Cq−ε) we obtain

Irr(Cq−ε) = {θi0 | 0 6 i < q − ε}

with θi0 6= θj0 for 0 6 i, j < q − ε if i 6= j. Combination of these two parametrizations for
the characters of Cq3−ε and Cq−ε yields a parametrization for Irr(T ) given by

Irr(T ) = {θi0 × θ
j
0 | 0 6 i < q3 − ε, 0 6 j < q − ε},

where we have

(θi0 × θ
j
0)(h(t1, t2, t

εq
1 , t

q2

1 )) = θi0(t1)θj0(t2)

for an element of T represented by h(t1, t2, t
εq
1 , t

q2

1 ) with t1, t2 ∈ F× such that tq
3−ε

1 = 1
and tq−ε2 = 1.

We now prove a series of lemmata which will eventually allow us to handle all situations
which may occur when restricting a weight character ϕ coming from a B-weight (R,ϕ) of
G to N

G̃
(T̃ ).

Lemma 16.23. Suppose that θ ∈ Irr(T ). Then T̃ is contained in the kernel of θ if and
only if the index |NG(T )θ : T | is divisible by 3.

Proof. We consider the element ω̄ in the Weyl group W (T ) = NG(T )/T of T corresponding
to the reflection ωr1ωr3ωr4ωr2 . Note that such an element exists in W (T ) as a result of
Lemma 15.4, and ω̄ has order 6 in W (T ) by Lemma 15.5. We set ω := ω̄2, which is hence
of order 3. Then for an element of T represented by h(t1, t2, t

εq
1 , t

q2

1 ) with t1, t2 ∈ F× such
that tq

3−ε
1 = tq−ε2 = 1 we have

ωh(t1, t2, t
εq
1 , t

q2

1 )ω−1 = h(t1t
−1
2 , tq

2+εq+1
1 t−2

2 , tεq1 t
−1
2 , tq

2

1 t
−1
2 )

by application of Lemma 15.3. Suppose that T̃ ⊆ ker(θ). Then we may write θ = θ
i(q−ε)
0 ×1
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for some 0 6 i < q2 + εq + 1. Hence,

θω(h(t1, t2, t
εq
1 , t

q2

1 )) = θ(ωh(t1, t2, t
εq
1 , t

q2

1 )ω−1)

= θ(h(t1t
−1
2 , tq

2+εq+1
1 t−2

2 , tεq1 t
−1
2 , tq

2

1 t
−1
2 ))

= θ
i(q−ε)
0 (t1t

−1
2 )

= θ0(t
i(q−ε)
1 t

−i(q−ε)
2 )

= θ0(t
i(q−ε)
1 )

= θ
i(q−ε)
0 (t1)

= θ(h(t1, t2, t
εq
1 , t

q2

1 ))

for any t1, t2 ∈ F× such that tq
3−ε

1 = tq−ε2 = 1, so ω ∈ W (T )θ = NG(T )θ/T . This shows
that 3 divides |NG(T )θ : T |.

Let us now suppose that 3 divides the index |NG(T )θ : T |. Since NG(T )/T ∼= D12

contains exactly two elements of order 3, it follows that ω and ω−1 must stabilize θ. Let

t1, t2 ∈ F× be such that tq
3−ε

1 = tq−ε2 = 1. We write θ = θi0 × θ
j
0 for suitable 0 ≤ i < q3 − ε

and 0 6 j < q − ε. Then similarly as above we obtain

θω(h(t1, t2, t
εq
1 , t

q2

1 )) = θ(h(t1t
−1
2 , tq

2+εq+1
1 t−2

2 , tεq1 t
−1
2 , tq

2

1 t
−1
2 ))

= θi0(t1t
−1
2 )θj0(tq

2+εq+1
1 t−2

2 )

= θ
i+j(q2+εq+1)
0 (t1)θ−i−2j

0 (t2)

= (θ
i+j(q2+εq+1)
0 × θ−i−2j

0 )(h(t1, t2, t
εq
1 , t

q2

1 )).

Since θω = θ, it follows that

i ≡ i+ j(q2 + εq + 1) mod q3 − ε,(16.1)

j ≡ −i− 2j mod q − ε.(16.2)

Condition (16.1) is fulfilled exactly if j(q2 + εq+ 1) ≡ 0 mod q3− ε, or, equivalently, if we
have j ≡ 0 mod q − ε, whence condition (16.2) reduces to

i ≡ 0 mod q − ε.(16.2’)

Hence, T̃ ⊆ ker(θ). This proves the claim.

Lemma 16.24. Let B be a 3-block of G with abelian defect group O3(T ) and suppose that
θ ∈ Irr(T ) is the canonical character of a 3-block b ∈ Bl3(T ) such that bG = B. Moreover,
set θ̃ := θ|T̃ ∈ Irr(T̃ ). Then (at least) one of the following situations occurs:

(i) NG(T )θ = T ,

(ii) NG(T )θ = NG(T )
θ̃
,

(iii) NG(T )θ/T ∼= C2 and |NG(T )
θ̃

: NG(T )θ | = 2.

Proof. Suppose that neither (i) nor (ii) hold. We show that (iii) holds in this case. The
3-block b has defect group O3(T ), whence it follows from Theorem 1.10 that 3 does not
divide |NG(T )θ : T |. In particular, up to isomorphism we have

NG(T )θ/T ∈ {C2, C2 × C2}
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since NG(T )/T ∼= D12.
The group NG(T )/T ∼= D12 contains exactly two elements of order 3, which are given

by ω and ω−1, where ω is as in the proof of Lemma 16.23. We prove first that ω 6∈ NG(T )
θ̃
.

To this end we assume the contrary, i.e., ω ∈ NG(T )
θ̃
. Suppose that θ = θi0×θ

j
0 for suitable

parameters i and j. Then similarly as in the proof of Lemma 16.23 we have

(θi0 × θ
j
0)|T̃ = (θ

i+j(q2+εq+1)
0 × θ−i−2j

0 )|T̃ ,

which is equivalent to the conditions

i ≡ i+ j(q2 + εq + 1) mod q − ε,(16.3)

j ≡ −i− 2j mod q − ε.(16.4)

These are fulfilled if and only if 3j ≡ 0 mod q − ε and i ≡ 0 mod q − ε. But θ is the
canonical character of the 3-block b, whence in particular we have (q − ε)3 | j, so in fact
it also holds that j ≡ 0 mod q − ε. Hence, T̃ ⊆ ker(θ) and Lemma 16.23 implies that 3
divides the index |NG(T )θ : T |, a contradiction. Thus, |NG(T )

θ̃
: T | divides 4.

In particular, if we had NG(T )θ/T ∼= C2 ×C2, then this would imply that we also had
NG(T )

θ̃
/T ∼= C2 × C2 since NG(T )θ ⊆ NG(T )

θ̃
, so NG(T )

θ̃
= NG(T )θ in this case. Hence,

we must have NG(T )θ/T ∼= C2 and NG(T )
θ̃
/T ∼= C2 × C2 as claimed.

Let us now go through the three cases specified in Lemma 16.24. Case (i) may be
treated very quickly:

Proposition 16.25. Let B be a 3-block of G with abelian defect group O3(T ) and suppose
that θ ∈ Irr(T ) is the canonical character of a 3-block b ∈ Bl3(T ) such that bG = B and
NG(T )θ = T . Then |W(B)| = 1.

Proof. This follows immediately from Construction 2.10 and Lemma 2.11, which imply
that up to G-conjugation for any B-weight (Q,ϕ) we have Q = O3(T ) and ϕ = θNG(T ).

Corollary 16.26. Let B be a 3-block of G with abelian defect group O3(T ) and suppose
that θ ∈ Irr(T ) is the canonical character of a 3-block b ∈ Bl3(T ) such that bG = B and
NG(T )θ = T . Then Aut(G)B acts trivially on W(B).

Proof. This is clear since by Proposition 16.25 we have |W(B)| = 1.

We now turn towards cases (ii) and (iii) of Lemma 16.24.

Lemma 16.27. Suppose that q > 5. Let B be a 3-block of G with abelian defect group
O3(T ) and suppose that θ ∈ Irr(T ) is the canonical character of a 3-block b ∈ Bl3(T ) such
that bG = B. Set θ̃ := θ|T̃ ∈ Irr(T̃ ).

(i) If NG(T )θ = NG(T )
θ̃
, then we also have N

G̃
(T̃ )θ = N

G̃
(T̃ )

θ̃
.

(ii) If NG(T )θ/T ∼= C2 and |NG(T )
θ̃

: NG(T )θ| = 2, then we also have N
G̃

(T̃ )θ/T̃ ∼= C2

and |N
G̃

(T̃ )
θ̃

: N
G̃

(T̃ )θ| = 2.

Proof. This follows easily from the fact that NG(T ) = T N
G̃

(T̃ ) by Proposition 16.11 and

T stabilizes both θ and θ̃, whence NG(T )θ = T N
G̃

(T̃ )θ and NG(T )
θ̃

= T N
G̃

(T̃ )
θ̃
.

Lemma 16.28. Suppose that q > 5. Let B be a 3-block of G with defect group O3(T ) and
let θ ∈ Irr(T ) be the canonical character of a 3-block b ∈ Bl3(T ) with bG = B. Then θ
extends to NG(T )θ. In particular, the set Irr(NG(T )θ | θ) only consists of extensions of θ.
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Proof. Clearly, the stabilizer of b in NG(T ) is given by NG(T )θ. The 3-block b has defect
group O3(T ) ∈ Syl3(T ), and since by assumption bG = B has defect group O3(T ) as well,
for the stabilizer NG(T )θ of b in NG(T ) we have |NG(T )θ : T |3 = 1 in consequence of
Theorem 1.10. Hence, NG(T )θ/T is isomorphic to one of the 3′-subgroups

{1}, C2 and C2 × C2

of D12. If NG(T )θ/T = {1} or NG(T )θ/T ∼= C2, then θ extends to NG(T )θ by Proposi-
tion 1.20(i). Thus, we suppose that NG(T )θ/T is a Klein four-group C2 × C2:

By Proposition 16.19 the canonical character θ of b corresponds via an isomorphism be-
tween Irr(T ) and T to a semisimple 3′-element s ∈ T and we have NG(T )θ/T ∼= CW (T )(s).
By [DM87, Table 3.4] from CW (T )(s) ∼= C2 × C2 it follows that s, and hence θ, has order
2, so θ = θ−1. (Note that this follows from the fact that θ is stabilized by the non-trivial
element of the center of NG(T )/T , which acts on T and Irr(T ) by inversion.) According
to Lemma 16.24 we have

NG(T )θ = NG(T )
θ̃
,

where θ̃ = θ|T̃ , and from Lemma 16.23 we know that θ̃ is not the trivial character of T̃ , so
θ̃ is of order 2 as well. Then by Remark 12.35 there exist n1, n2 ∈ N

G̃
(T̃ ) with [n1, n2] = 1

and n2
1, n

2
2 ∈ T̃ such that N

G̃
(T̃ )

θ̃
= 〈T̃ , n1, n2〉. But then

NG(T )θ = NG(T )
θ̃

= T N
G̃

(T̃ )
θ̃

= 〈T, n1, n2〉

in consequence of Proposition 16.11. By Proposition 1.20(i) there exists an extension η of
θ to 〈T, n1〉, and since [n1, n2] = 1 and n2 normalizes T and 〈T, n1〉, we have

ηn2(tn1) = η(n2tn
−1
2 n1) = η(n2tn

−1
2 )η(n1) = θn2(t)η(n1) = θ(t)η(n1) = η(tn1)

for all t ∈ T . Hence, η is invariant under n2, so by Proposition 1.20(i) we may extend it to
NG(T )θ = 〈T, n1, n2〉 since 〈T, n1, n2〉/〈T, n1〉 is cyclic of order 2. This extension is then
an extension of θ to NG(T )θ as claimed.

Now since NG(T )θ/T is abelian in any case, it follows by the theorem of Gallagher,
Theorem 1.21, that Irr(NG(T )θ | θ) only consists of extensions of θ, which concludes the
proof.

Lemma 16.29. Suppose that q > 5. Let B be a 3-block of G with abelian defect group
O3(T ) and suppose that θ ∈ Irr(T ) is the canonical character of a 3-block b ∈ Bl3(T )
satisfying bG = B. Moreover, set θ̃ := θ|T̃ ∈ Irr(T̃ ) and assume that NG(T )θ/T ∼= C2 and

|NG(T )
θ̃

: NG(T )θ| = 2. Then

(i) Irr(N
G̃

(T̃ )
θ̃
| θ̃) only consists of extensions of θ̃, and

(ii) any element of Irr(N
G̃

(T̃ )θ | θ̃) can be obtained as the restriction of a character in

Irr(N
G̃

(T̃ )
θ̃
| θ̃) to N

G̃
(T̃ )θ.

In particular, the characters in Irr(N
G̃

(T̃ )θ | θ̃) are invariant under N
G̃

(T̃ )
θ̃
-conjugation.

Proof. (i) It holds that NG(T )
θ̃
/T ∼= C2 × C2, and hence also N

G̃
(T̃ )

θ̃
/T̃ ∼= C2 × C2. In

particular, θ̃ is stabilized by the generator of Z(N
G̃

(T̃ )/T̃ ), which acts on Irr(T̃ ) by in-
version, so it follows that θ̃−1 = θ̃ 6= 1

T̃
. Thus, in Remark 12.35 we have already proven

that θ̃ extends to N
G̃

(T̃ )
θ̃
, whence the claim now follows from Gallagher’s theorem, The-

orem 1.21, and the fact that N
G̃

(T̃ )
θ̃
/T̃ ∼= C2 × C2 is abelian.
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(ii) Let χ ∈ Irr(N
G̃

(T̃ )
θ̃
| θ̃) be an extension of θ̃. By Theorem 1.21 we have

Irr(N
G̃

(T̃ )
θ̃
| θ̃) = {χ · β | β ∈ Irr(N

G̃
(T̃ )

θ̃
/T̃ )}.

Now χ|N
G̃

(T̃ )θ
is an extension of θ̃ to N

G̃
(T̃ )θ, so again by Theorem 1.21 it holds that

Irr(N
G̃

(T̃ )θ | θ̃) = {χ|N
G̃

(T̃ )θ
· η | η ∈ Irr(N

G̃
(T̃ )θ/T̃ )}.

Since N
G̃

(T̃ )θ/T̃ ∼= C2 is normal in N
G̃

(T̃ )
θ̃
/T̃ due to the fact that |N

G̃
(T̃ )

θ̃
: N

G̃
(T̃ )θ| = 2

by Lemma 16.27(ii), it follows that N
G̃

(T̃ )
θ̃
/T̃ acts on Irr(N

G̃
(T̃ )θ/T̃ ). This set consists

of exactly two irreducible characters since N
G̃

(T̃ )θ/T̃ ∼= C2, so these are clearly stabilized

by N
G̃

(T̃ )
θ̃
/T̃ . Hence, for every η ∈ Irr(N

G̃
(T̃ )θ/T̃ ) there exists β ∈ Irr(N

G̃
(T̃ )

θ̃
/T̃ ) which

extends η, so the claim follows.

Lemma 16.30. Suppose that q > 5. Let ϕ ∈ Irr(NG(T )) and θ ∈ Irr(T ) be an irreducible
constituent of ϕ|T . If ψ ∈ Irr(N

G̃
(T̃ )) is an irreducible constituent of ϕ|N

G̃
(T̃ )

, then ψ lies

above θ̃ := θ|T̃ ∈ Irr(T̃ ).
In particular, if O3(T ) ⊆ ker(θ), then O3(T̃ ) is contained in the kernel of ψ.

Proof. Let r ∈ N>0, ei ∈ Z>0 and ψi ∈ Irr(N
G̃

(T̃ )) for i ∈ {1, . . . , r} with ψi 6= ψj if i 6= j
be such that

ϕ|N
G̃

(T̃ )
=

r∑
i=1

eiψi.

By Clifford theory, Theorem 1.15, we may write

ϕ|T = f ·
t∑

j=1

θj

for some f ∈ N>0, t = |NG(T ) : NG(T )θ | and θ1 = θ, θ2, . . . , θt the NG(T )-conjugates of
θ. Now let i ∈ {1, . . . , r} be such that ψ = ψi. The restricted character ψ|T̃ is a summand

of ϕ|T̃ = (ϕ|T )|T̃ , so θj |T̃ is a constituent of ψ|T̃ for some j. Since

NG(T ) = N
G̃

(T̃ )T

by Proposition 16.11, the character θj is in fact conjugate to θ via an element of N
G̃

(T̃ ),

so in particular it follows that (θj)|T̃ and θ̃ = θ|T̃ are N
G̃

(T̃ )-conjugate. Hence, by Clifford

theory the character θ̃ is a constituent of ψ|T̃ as claimed.

If now O3(T ) ⊆ ker(θ), then also O3(T̃ ) ⊆ ker(θ̃), and since O3(T̃ ) is normal in N
G̃

(T̃ ),

it lies in the kernel of each N
G̃

(T̃ )-conjugate of θ̃, which proves the claim.

Proposition 16.31. Suppose that q > 5. Let B be a 3-block of G with abelian defect
group R = O3(T ) and suppose that (R,ϕ) is a B-weight. Moreover, denote by θ ∈ Irr(T )
an irreducible constituent of ϕ|T and define θ̃ := θ|T̃ ∈ Irr(T̃ ) and ϕ̃ := ϕ|N

G̃
(T̃ )

.

(i) If NG(T )θ = NG(T )
θ̃
, then ϕ̃ is irreducible.

(ii) If NG(T )θ/T ∼= C2 and |NG(T )
θ̃

: NG(T )θ | = 2, then ϕ̃ is the sum of two distinct

irreducible characters of N
G̃

(T̃ ) of the same degree.
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In particular, if χ is an irreducible constituent of ϕ̃, then (R̃, χ) is a B̃-weight for G̃, where

B̃ = bl(θ̃)G̃ with defect group R̃ = O3(T̃ ).

Proof. Let r ∈ N>0, ei ∈ Z>0 and ψi ∈ Irr(N
G̃

(T̃ )) for i ∈ {1, . . . , r} with ψi 6= ψj if i 6= j
be such that

ϕ̃ =
r∑
i=1

eiψi.

By Construction 2.10 it holds that ϕ = ψNG(T ) for some ψ ∈ Irr(NG(T )θ | θ) satisfying
ψ(1)3 = |NG(T )θ : T |3, and the 3-block bl(θ) with bl(θ)G = B has canonical character θ.
By Lemma 16.28 the set Irr(NG(T )θ | θ) only consists of extensions of θ. In particular,
ψ(1) = 1, and thus

ϕ(1) = |NG(T ) : NG(T )θ |.

On the other hand, consider the restriction ψi|T̃ for i ∈ {1, . . . , r}. By Lemma 16.30 all
characters ψi lie above θ̃, so by Clifford theory, Theorem 1.15, there exist fi ∈ Z>0 such
that

ψi|T̃ = fi

t∑
j=1

θ̃j ,

where t = |N
G̃

(T̃ ) : N
G̃

(T̃ )
θ̃
| and θ̃1 = θ̃, . . . , θ̃t are the N

G̃
(T̃ )-conjugates of θ̃. Using this

decomposition the degree of ϕ is given by

ϕ(1) = ϕ̃(1) =
r∑
i=1

eiψi(1) =
r∑
i=1

eifi

t∑
j=1

θ̃j(1) = |N
G̃

(T̃ ) : N
G̃

(T̃ )
θ̃
|
r∑
i=1

eifi.

If NG(T )θ = NG(T )
θ̃
, then it follows easily that |NG(T ) : NG(T )θ | and |N

G̃
(T̃ ) : N

G̃
(T̃ )

θ̃
|

coincide, so comparison of the two formulae for the degree of ϕ yields

r∑
i=1

eifi = 1,

that is, r = 1 and e1 = f1 = 1. Hence, ϕ̃ = ψ1 is irreducible as claimed in (i).

Suppose hence that NG(T )θ/T ∼= C2 and |NG(T )
θ̃

: NG(T )θ | = 2 as in (ii). It follows
that

|NG(T ) : NG(T )θ | = 2 |N
G̃

(T̃ ) : N
G̃

(T̃ )
θ̃
|,

so in this case we have
r∑
i=1

eifi = 2, whence ϕ̃ must be the sum of at most two irreducible
constituents.

Let us go into more detail. As observed above, it holds that ϕ = ψNG(T ) for some linear
extension ψ ∈ Irr(NG(T )θ | θ) of θ. By Proposition 16.11 we have NG(T ) = NG(T )θ N

G̃
(T̃ ),

so Mackey’s theorem, Theorem 1.17, implies that

ϕ̃ = Res
NG(T )

N
G̃

(T̃ )
(Ind

NG(T )
NG(T )θ

(ψ)) = Ind
N
G̃

(T̃ )

N
G̃

(T̃ )θ
(Res

NG(T )θ

N
G̃

(T̃ )θ
(ψ))

since NG(T )θ ∩N
G̃

(T̃ ) = N
G̃

(T̃ )θ. Moreover, since NG(T )θ � NG(T )
θ̃
� NG(T ), we have

ϕ̃ = Ind
N
G̃

(T̃ )

N
G̃

(T̃ )
θ̃

(Ind
N
G̃

(T̃ )
θ̃

N
G̃

(T̃ )θ
(Res

NG(T )θ

N
G̃

(T̃ )θ
(ψ))).
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We examine the character Υ := Ind
N
G̃

(T̃ )
θ̃

N
G̃

(T̃ )θ
(Res

NG(T )θ

N
G̃

(T̃ )θ
(ψ)). By definition it holds that

Υ(x) =
1

|N
G̃

(T̃ )θ |

∑
n∈N

G̃
(T̃ )

θ̃

ψ̇(nxn−1)

for x ∈ N
G̃

(T̃ )
θ̃
, where we have ψ̇(h) = ψ(h) if h ∈ N

G̃
(T̃ )θ and ψ̇(h) = 0 else. Now for

x ∈ T̃ it follows that

ψ̇(nxn−1) = θ̃(nxn−1) = θ̃n(x) = θ̃(x)

for all n ∈ N
G̃

(T̃ )
θ̃
, so

Υ|T̃ =
|N

G̃
(T̃ )

θ̃
|

|N
G̃

(T̃ )θ|
θ̃ = 2θ̃

by Lemma 16.27(ii). From this we deduce that any irreducible constituent of Υ lies above θ̃,
so in particular any such irreducible constituent is linear in consequence of Lemma 16.29(i).
Since Υ has degree 2, it follows that it is the sum of exactly two linear constituents lying
above θ̃, say

Υ = χ1 + χ2

for χ1, χ2 ∈ Irr(N
G̃

(T̃ )
θ̃
| θ̃). Since N

G̃
(T̃ )θ has index 2 in N

G̃
(T̃ )

θ̃
, it is normal in N

G̃
(T̃ )

θ̃
.

In particular, for x, n ∈ N
G̃

(T̃ )
θ̃

we have

nxn−1 ∈ N
G̃

(T̃ )θ if and only if x ∈ N
G̃

(T̃ )θ.

Thus, Υ(x) = 0 whenever x ∈ N
G̃

(T̃ )
θ̃
\ N

G̃
(T̃ )θ. But Υ is the sum of the two linear

characters χ1 and χ2, so Υ(x) = 0 is only possible if χ1 6= χ2. We conclude that

ϕ̃ = ΥN
G̃

(T̃ ) = (χ1 + χ2)N
G̃

(T̃ ) = (χ1)N
G̃

(T̃ ) + (χ2)N
G̃

(T̃ ).

Now χ1, χ2 ∈ Irr(N
G̃

(T̃ )
θ̃
| θ̃) are distinct, and following Clifford correspondence, Theo-

rem 1.16, the map

Irr(N
G̃

(T̃ )
θ̃
| θ̃) −→ Irr(N

G̃
(T̃ ) | θ̃), ϑ 7−→ Ind

N
G̃

(T̃ )

N
G̃

(T̃ )
θ̃

(ϑ),

is a bijection. Thus, also (χ1)N
G̃

(T̃ ) and (χ2)N
G̃

(T̃ ) must be distinct, irreducible, and clearly
both of the same degree, as claimed.

For the last statement, suppose that χ is an irreducible constituent of ϕ̃. We have
shown that

χ(1)3 = ϕ(1)3 = |NG(R)/R |3,

and since

|NG(R)/R |3 = 3 = |N
G̃

(R̃)/R̃ |3

and R̃ ⊆ ker(χ) by Lemma 16.30, it follows that (R̃, χ) is a 3-weight for G̃. Moreover,
since by Lemma 16.30 the character χ lies above θ̃, we conclude that the 3-weight (R̃, ϕ̃)

belongs to B̃ = bl(θ̃)G̃ in consequence of Construction 2.10. We observed in the proof
of Lemma 16.24 that |NG(T )

θ̃
: T |, and hence also |N

G̃
(T̃ )

θ̃
: T̃ |, is a divisor of 4. Since

bl(θ̃) has defect group R̃ = O3(T ), Theorem 1.10 implies that also B̃ = bl(θ̃)G̃ must have
defect group R̃. This finishes the proof.
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Proposition 16.32. Suppose that q > 5. Let B be a 3-block of G with abelian defect group
R = O3(T ) and suppose that (R,ϕ1) and (R,ϕ2) are B-weights. Then the characters
ϕ1|N

G̃
(T̃ )

and ϕ2|N
G̃

(T̃ )
have a common irreducible constituent if and only if ϕ1 = ϕ2.

Proof. Let θ1, θ2 ∈ Irr(T ) be irreducible constituents of ϕ1|T and ϕ2|T , respectively. Fol-
lowing Construction 2.10 we have bl(θ1)G = bl(θ2)G = B, whence by the extended first
main theorem of Brauer, Theorem 1.7, the 3-blocks bl(θ1) and bl(θ2) are conjugate under
NG(R) = NG(T ), so in particular their canonical characters θ1 and θ2 are conjugate under
NG(T ). According to Clifford, Theorem 1.15, all NG(T )-conjugates of θ1 occur with the
same multiplicity as irreducible constituents of ϕ1|T , so without loss of generality we may
assume that θ := θ1 = θ2.

In consequence of Proposition 16.25 the claim is trivially true if NG(T )θ = T , so let us
assume from now that NG(T )θ � T . In particular, from Lemma 16.24 we deduce that for
θ̃ := θ|T̃ ∈ Irr(T̃ ) one of the following holds:

(i) NG(T )θ = NG(T )
θ̃
,

(ii) NG(T )θ/T ∼= C2 and |NG(T )
θ̃

: NG(T )θ| = 2.

Following Construction 2.10 there exist ψ1, ψ2 ∈ Irr(NG(T )θ | θ) such that

ϕ1 = Ind
NG(T )
NG(T )θ

(ψ1) and ϕ2 = Ind
NG(T )
NG(T )θ

(ψ2).

Hence, if we set ϕ̃1 := ϕ1|N
G̃

(T̃ )
and ϕ̃2 := ϕ2|N

G̃
(T̃ )

, then we have

ϕ̃i = Res
NG(T )

N
G̃

(T̃ )
Ind

NG(T )
NG(T )θ

(ψi)

for i = 1, 2. Since NG(T ) = N
G̃

(T̃ )T by Proposition 16.11 and T ⊆ NG(T )θ, we have
NG(T ) = NG(T )θ N

G̃
(T̃ ). Thus, as in the proof of Proposition 16.31, by Mackey’s formula,

Theorem 1.17, it follows that

ϕ̃i = Ind
N
G̃

(T̃ )

N
G̃

(T̃ )θ
Res

NG(T )θ

N
G̃

(T̃ )θ
(ψi)

for i = 1, 2. Let us suppose first that NG(T )θ = NG(T )
θ̃

as in (i) above. In particular, ϕ̃1

and ϕ̃2 are irreducible as shown in Proposition 16.31. As in the proof of Proposition 16.31
we consider the bijection

Irr(N
G̃

(T̃ )
θ̃
| θ̃) −→ Irr(N

G̃
(T̃ ) | θ̃), ϑ 7−→ Ind

N
G̃

(T̃ )

N
G̃

(T̃ )
θ̃

(ϑ).

Since NG(T )θ = NG(T )
θ̃
, we also have N

G̃
(T̃ )θ = N

G̃
(T̃ )

θ̃
by Lemma 16.27(i), whence the

above bijection is the same as

Irr(N
G̃

(T̃ )θ | θ̃) −→ Irr(N
G̃

(T̃ ) | θ̃), ϑ 7−→ Ind
N
G̃

(T̃ )

N
G̃

(T̃ )θ
(ϑ).

By Lemma 16.28 the characters ψ1 and ψ2 are extensions of θ. In particular, Res
NG(T )θ

N
G̃

(T̃ )θ
(ψi)

is irreducible for i = 1, 2 and lies above θ̃. Hence, it follows that

ϕ̃1 = ϕ̃2 if and only if Res
NG(T )θ

N
G̃

(T̃ )θ
(ψ1) = Res

NG(T )θ

N
G̃

(T̃ )θ
(ψ2).
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Both the characters ψ1 and ψ2 are extensions of θ to NG(T )θ, so according to Gallagher,
Theorem 1.21, there exists η ∈ Irr(NG(T )θ/T ) such that ψ2 = ψ1 · η. Now suppose that

Res
NG(T )θ

N
G̃

(T̃ )θ
(ψ1) = Res

NG(T )θ

N
G̃

(T̃ )θ
(ψ2)

and let n ∈ NG(T )θ. Since NG(T )θ = T N
G̃

(T̃ )θ, there exist t ∈ T and m ∈ N
G̃

(T̃ )θ such
that n = tm. It follows that

θ(t)ψ1(m)η(nT ) = ψ1(n)η(nT ) = ψ2(n) = θ(t)ψ2(m) = θ(t)ψ1(m),

and since ψ1 and θ are linear, we have ψ1(m), θ(t) 6= 0, so η(nT ) = 1, that is, η = 1NG(T )θ/T

in this case. Hence, ψ1 and ψ2 agree, and thus ϕ1 = ϕ2 as claimed.

Let us finally suppose that NG(T )θ/T ∼= C2 and |NG(T )
θ̃

: NG(T )θ | = 2 as in case
(ii) above. In the proof of Proposition 16.31 we observed that there exist linear characters
χ11, χ12, χ21, χ22 ∈ Irr(N

G̃
(T̃ )

θ̃
| θ̃) with χ11 6= χ12 and χ21 6= χ22 such that

ϕ̃i = (χi1)N
G̃

(T̃ ) + (χi2)N
G̃

(T̃ )

with (χij)
N
G̃

(T̃ ) = (χi′j′)
N
G̃

(T̃ ) if and only if χij = χi′j′ for i, i′, j, j′ ∈ {1, 2}, and moreover

Υi := Ind
N
G̃

(T̃ )
θ̃

N
G̃

(T̃ )θ
(Res

NG(T )θ

N
G̃

(T̃ )θ
(ψi)) = χi1 + χi2

for i = 1, 2. Now the restriction of ψi to N
G̃

(T̃ )θ is an extension of θ̃ to N
G̃

(T̃ )θ for i = 1, 2.

Hence, by Lemma 16.29 it is invariant under the conjugation action of N
G̃

(T̃ )
θ̃
. Thus, for

x ∈ N
G̃

(T̃ )θ we have

Υi(x) =
1

|N
G̃

(T̃ )θ |

∑
n∈N

G̃
(T̃ )

θ̃

ψ̇i(nxn
−1) =

1

|N
G̃

(T̃ )θ |

∑
n∈N

G̃
(T̃ )

θ̃

ψi(x) = 2ψi(x),

that is,
Υi|N

G̃
(T̃ )θ

= 2ψi|N
G̃

(T̃ )θ
,

and hence
χi1|N

G̃
(T̃ )θ

= χi2|N
G̃

(T̃ )θ
= ψi|N

G̃
(T̃ )θ

for i = 1, 2. Now suppose that ϕ̃1 and ϕ̃2 have a common irreducible constituent. Then

there exist j, j′ ∈ {1, 2} such that (χ1j)
N
G̃

(T̃ ) = (χ2j′)
N
G̃

(T̃ ), and thus χ1j = χ2j′ . By the
observation above it follows that

ψ1|N
G̃

(T̃ )θ
= χ1j |N

G̃
(T̃ )θ

= χ2j′ |N
G̃

(T̃ )θ
= ψ2|N

G̃
(T̃ )θ

.

Now the same argumentation as for case (i) yields that ψ1 = ψ2, whence also ϕ1 = ϕ2.
This completes the proof.

Let us pause for a moment and summarize what we have proven so far: If q > 5 and B
is a 3-block of G with abelian defect group R = O3(T ), then either |W(B)| = 1, in which
case Aut(G)B clearly acts trivially on W(B), or |W(B)| > 1 and for a B-weight (R,ϕ)
the set

{(R̃, ψ) | ψ irreducible constituent of ϕ|N
G̃

(T̃ )
},
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where R̃ = O3(T̃ ), consists of pairwise distinct B̃-weights of G̃, where B̃ = bl(θ̃)G̃ with
θ̃ := θ|T̃ ∈ Irr(T̃ ) for some irreducible constituent θ ∈ Irr(T ) of ϕ|T . Moreover, two such

sets corresponding to distinct B-weights (R,ϕ1) and (R,ϕ2) are disjoint. Based on this
information we may now reduce the question of the behaviour ofW(B) under Aut(G)B to
a question of the behaviour of B̃-weights of G̃ under Aut(G)

B,G̃
, which has already been

answered in Part III of this thesis. To this end we introduce the following notation:

Notation 16.33. Suppose that q > 5. We keep the notation R = O3(T ) and R̃ = O3(T̃ ).
Moreover we recall that for a 3-weight (R,ϕ) of G we denote by [(R,ϕ)]G its G-conjugacy
class, and similarly, if (R̃, ψ) is a 3-weight of G̃, then we denote its G̃-conjugacy class by
[(R̃, ψ)]

G̃
.

Now let B be a 3-block of G with abelian defect group R such that NG(T )θ � T if
θ ∈ Irr(T ) is the canonical character of a root of B. Note that every G-conjugacy class of
B-weights of G has exactly one representative whose first component is given by R. We
set

W̃(B) :=
{
{[(R̃, ψ)]

G̃
| ψ irreducible constituent of ϕ|N

G̃
(T̃ )
}
∣∣∣ [(R,ϕ)]G ∈ W(B)

}
.

Remark 16.34. In the notation above, if (R,ϕ) is a B-weight of G, then ϕ lies above θ by
Construction 2.10. Hence, following Lemma 16.24 and Proposition 16.31 every element
of W̃(B) is a set consisting of either one or two G̃-conjugacy classes of B̃-weights, where

B̃ = bl(θ̃)G̃ for θ̃ := θ|T̃ ∈ Irr(T̃ ). Moreover, any two such sets in W̃(B) are disjoint by
Proposition 16.32.

Proposition 16.35. Suppose that q > 5. Let B be a 3-block of G with abelian defect
group R = O3(T ) such that NG(T )θ � T if θ ∈ Irr(T ) is the canonical character of a root
of B. The map

Λ: W(B) −→ W̃(B),

[(R,ϕ)]G 7−→ {[(R̃, ψ)]
G̃
| ψ irreducible constituent of ϕ|N

G̃
(T̃ )
},

is a bijection.

Proof. Surjectivity is obvious by construction of W̃(B), while injectivity follows as a direct
consequence of Proposition 16.32.

Our next aim is to prove that Λ is equivariant under the action of Aut(G)
B,G̃

. For this
we first verify that Aut(G)

B,G̃
does indeed act on W̃(B):

Lemma 16.36. Suppose that q > 5 and let a ∈ Aut(G̃). If R̃a = R̃, then Ra = R.

Proof. By Lemma 16.10 we have CG(T̃ ) = T . Moreover, T̃ = C
G̃

(R̃) by Proposition 12.26,

so T = CG(C
G̃

(R̃)). Hence, a stabilizes T . But R is the unique Sylow 3-subgroup of T ,
so also Ra = R.

Proposition 16.37. Suppose that q > 5. Let B be a 3-block of G with abelian defect
group R = O3(T ) such that NG(T )θ � T if θ ∈ Irr(T ) is the canonical character of a root

of B. Then the group Aut(G)
B,G̃

acts on W̃(B).
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Proof. Let [(R,ϕ)]G ∈ W(B) and denote by ϕ̃ the restriction of ϕ to N
G̃

(T̃ ). Moreover,

let a ∈ Aut(G)
B,G̃

. Since R̃ is the unique Sylow 3-subgroup of the maximal torus T̃ of G̃,

there exists an element g ∈ G̃ such that

R̃a = R̃g,

so for every irreducible constituent ψ of ϕ̃ we have

[(R̃, ψ)]a
G̃

= [(R̃a, ψa)]
G̃

= [(R̃, ψag
−1

)]
G̃
.

By Lemma 16.36 we have Rag
−1

= R, whence in particular (R,ϕag
−1

) is a B-weight for G
with irreducible constituents of ϕag

−1

|N
G̃

(T̃ )
given by the set

{ψag−1 | ψ irreducible constituent of ϕ̃}.

Hence,

{[(R̃, ψ)]
G̃
| ψ irreducible constituent of ϕ̃}a

= {[(R̃, ψag−1
)]
G̃
| ψ irreducible constituent of ϕ̃}

= {[(R̃, χ)]
G̃
| χ irreducible constituent of ϕag

−1

|N
G̃

(T̃ )
} ∈ W̃(B),

so Aut(G)
B,G̃

acts on W̃(B) as claimed.

Theorem 16.38. The bijection Λ in Proposition 16.35 is Aut(G)
B,G̃

-equivariant.

Proof. Let a ∈ Aut(G)
B,G̃

and [(R,ϕ)]G ∈ W(B). Moreover, let g ∈ G̃ be such that

R̃a = R̃g. Then by Lemma 16.36 also Ra = Rg, and as in the proof of Proposition 16.37
we have

Λ([(R,ϕ)]G)a = {[(R̃, ψ)]
G̃
| ψ irreducible constituent of ϕ|N

G̃
(T̃ )
}a

= {[(R̃, ψ)]a
G̃
| ψ irreducible constituent of ϕ|N

G̃
(T̃ )
}

= {[(R̃, χ)]
G̃
| χ irreducible constituent of ϕag

−1

|N
G̃

(T̃ )
}

= Λ([(R,ϕag
−1

)]G)

= Λ([(Ra, ϕa)]G)

= Λ([(R,ϕ)]aG).

Hence, Λ is equivariant under the action of Aut(G)
B,G̃

as claimed.

We are finally able to prove the following result on the behaviour of B-weights under
the action of Aut(G)B:

Corollary 16.39. Suppose that q > 5. Let B be a 3-block of G with abelian defect group
R = O3(T ) such that NG(T )θ � T if θ ∈ Irr(T ) is the canonical character of a root of B.
Then Aut(G)B acts trivially on W(B).

Proof. Let a ∈ Aut(G)B. Since all maximal subgroups of G isomorphic to G2(q) are G-
conjugate to each other and inner automorphisms of G do not play a role, we may without
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loss of generality assume that a stabilizes G̃, i.e., a ∈ Aut(G)
B,G̃

. Let [(R,ϕ)]G ∈ W(B).
By Theorem 16.38 we have

[(R,ϕ)]aG = Λ−1(Λ([(R,ϕ)]G)a),

where Λ denotes the bijection of Proposition 16.35. Since 3 - q, in consequence of the
results obtained in Chapter 12 every G̃-conjugacy class of 3-weights in G̃ belonging to a
3-block of G̃ of non-cyclic defect is left invariant by any automorphism of G̃. In particular,
it follows that

Λ([(R,ϕ)]G)a = Λ([(R,ϕ)]G)

since for any irreducible constituent χ of the restriction of ϕ to N
G̃

(T̃ ) the 3-weight (R̃, χ)

belongs to a 3-block of G̃ with non-cyclic abelian defect group given by R̃ according to
Proposition 16.31. Thus,

[(R,ϕ)]aG = Λ−1(Λ([(R,ϕ)]G)) = [(R,ϕ)]G,

which completes the proof.
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Chapter 17

Partitions and Equivariant
Bijections

In this chapter we establish parts (i) and (ii) of the inductive blockwise Alperin weight
condition in Definition 3.2 for every `-block B of G = 3D4(q) of non-cyclic defect, where
` ∈ {2, 3}. As it was the case for the previous two series of finite groups we studied here,
the group G is its own universal covering group following Proposition 15.2. In particular,
once more we aim to prove the following statements for every ` ∈ {2, 3} and every `-block
B of G of non-cyclic defect:

(i) There exist subsets IBr(B | Q) ⊆ IBr(B) for Q ∈ Rad`(G) with the following
properties:

(1) IBr(B | Q)a = IBr(B | Qa) for every Q ∈ Rad`(G), a ∈ Aut(G)B,

(2) IBr(B) =
⋃̇
Q∈Rad`(G)/∼G IBr(B | Q).

(ii) For every Q ∈ Rad`(G) there exists a bijection

ΩG
Q : IBr(B | Q) −→ dz(NG(Q)/Q, B)

such that ΩG
Q(φ)a = ΩG

Qa(φa) for every φ ∈ IBr(B | Q) and a ∈ Aut(G)B.

This will be proven in the same way as for the special linear groups, exploiting the
fact that Aut(G)B acts trivially on both IBr(B) and the set W(B) of G-conjugacy classes
of B-weights in G for every such `-block B.

Proposition 17.1. Let ` ∈ {2, 3} and let B be an `-block of G of non-cyclic defect. Then
conditions (i) and (ii) of Definition 3.2 are satisfied for B.

Proof. In [An95, Rmk. 1, (3B), (3G)] J. An showed that the blockwise Alperin weight con-
jecture is true for B. Consequently, we may choose a bijection ΩB : IBr(B) −→W(B). In
Propositions 16.1, 16.2, 16.5, 16.7, 16.9, 16.15, 16.18, 16.20 and 16.21 and Corollaries 16.26
and 16.39 we proved that the group Aut(G)B acts trivially on both IBr(B) and W(B).
Accordingly, ΩB is Aut(G)B-equivariant. Hence, following Lemma 3.8 it is possible to con-
struct subsets IBr(B | Q) ⊆ IBr(B) and bijections ΩG

Q : IBr(B | Q) −→ dz(NG(Q)/Q, B)
for every Q ∈ Rad`(G) such that conditions (i) and (ii) of Definition 3.2 are satisfied for
the `-block B. This concludes the proof.
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The Main Result for 3D4(q)

As for the Chevalley groups G2(q), our aim of establishing the inductive blockwise Alperin
weight condition for Steinberg’s triality groups 3D4(q) is simplified by the fact that these
groups possess cyclic outer automorphism groups, whence we do not need to deal with
the normally embedded conditions in part (iii) of Definition 3.2 (cf. Proposition 3.12).
Applying the results we have obtained so far we may already prove the following:

Theorem 18.1. Let q be a prime power. Then the inductive blockwise Alperin weight
condition (cf. Definition 3.3) holds for the group 3D4(q) and every prime ` dividing its
order.

Proof. We saw in Proposition 15.2 that the simple group G = 3D4(q) is its own universal
covering group, and moreover the outer automorphism group of G is cyclic by Proposi-
tion 15.9. Consequently, following Proposition 3.12 to prove the claim it suffices to verify
conditions (i) and (ii) of Definition 3.2 for every `-block B of X = G for every prime `
dividing |G|.

As usual, if ` = p, then the inductive blockwise Alperin weight condition holds by
Proposition 3.11, so we assume that ` 6= p. Following Lemma 15.1 the order of G is given
by ∣∣3D4(q)

∣∣ = q12Φ1(q)2Φ2(q)2Φ3(q)2Φ6(q)2Φ12(q),

so ` divides at least one of the factors Φ1(q), Φ2(q), Φ3(q), Φ6(q) and Φ12(q). As stated
in the proof of Theorem 14.1, one can show that

gcd(Φ1(q),Φ6(q)) = gcd(Φ2(q),Φ3(q)) = gcd(Φ3(q),Φ6(q)) = 1,

gcd(Φ1(q),Φ3(q)) =

{
3 if q ≡ 1 mod 3,

1 else,

gcd(Φ2(q),Φ6(q)) =

{
3 if q ≡ −1 mod 3,

1 else,

and moreover, as one easily verifies by application of the arguments employed in the proof
of Lemma 5.2, it also holds that

gcd(Φn(q),Φ12(q)) = 1
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for all n ∈ {1, 2, 3, 6}. Thus, if ` > 5, then it divides exactly one of Φ1(q), Φ2(q), Φ3(q),
Φ6(q) or Φ12(q). Suppose that 5 6 ` | Φ12(q). Then a Sylow `-subgroup of G is contained
in a maximal torus of G of type T3, so it follows that the Sylow `-subgroups of G are cyclic
in this case (cf. Table 15.1). In particular, the (iBAW) conditions holds for G and ` by
Proposition 3.9.

Let now 5 6 ` | Φ1(q)Φ2(q)Φ3(q)Φ6(q). Then according to [DM87, Lemma 5.2] the `-
blocks of G have either cyclic or maximal defect. In the case of cyclic `-blocks the (iBAW)
condition holds again by Proposition 3.9, while it has been proven to hold for 3-blocks of
maximal defect by Cabanes–Späth in [CS13, Cor. 7.6]. We conclude that the inductive
blockwise Alperin weight condition holds for G and ` > 5.

We are only left with the case of non-cyclic `-blocks of G for ` ∈ {2, 3}. This case has
been considered in the course of the previous chapters. In Proposition 17.1 we proved that
every such `-block of G of non-cyclic defect satisfies conditions (i) and (ii) of Definition 3.2.
In conclusion, the (iBAW) condition holds for G = 3D4(q) and every prime ` dividing its
order, which finishes the proof.
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Appendix A

Appendix for SL3(q)

A.1 Characters of SL3(q), 3 - (q − 1)

The character table of the special linear group SL3(q) was determined by W. A. Simpson
and J. S. Frame in [FS73]. We should note that the character table they present contains
some mistakes. However, these can be detected and corrected by comparison with the
generic character table of SL3(q) provided by Chevie [GHL+96]. For the case q 6≡ 1 mod 3
the Chevie commands

> GenCharTab(‘SL3.n1‘);

> PrintVal(‘SL3.n1‘);

together with [FS73, Table 2] yield the following character table for SL3(q), in which for
an irreducible character χ the notation (u) = (u′) mod x for x ∈ Z>1, 1 6 u < x and
u′ ∈ Z indicates that χ(u) = χ(u′′), where 0 6 u′′ < x is such that u′ ≡ u′′ mod x.

Characters χ1 χqΦ2 χq3 χ
(u)
Φ3

χ
(u)
qΦ3

Parameters − − − 1 6 u < q−1 1 6 u < q−1

C1 1 q(q + 1) q3 q2 + q + 1 q(q2 + q + 1)

C2 1 q · q + 1 q

C3 1 · · 1 ·

C
(a)
4 1 q + 1 q (q + 1)εua + ε−2ua (q + 1)εua + qε−2ua

C
(a)
5 1 1 · εua + ε−2ua εua

C
(a,b)
6 1 2 1 εua + εub + ε−u(a+b) εua + εub + ε−u(a+b)

C
(a)
7 1 · −1 εua −εua

C
(a)
8 1 −1 1 · ·

Table A.1: Character table of SL3(q), q 6≡ 1 mod 3
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Characters χ
(u,v)
Φ2Φ3

χ
(u)
Φ1Φ3

χ
(u)

Φ2
1Φ2

Parameters
1 6 u < v < q − 1,
∃ v < w 6 q − 1 with

u+ v + w ≡ 0 mod q − 1

1 6 u < q2 − 1,
u 6≡ 0 mod q + 1,

(u) = (uq) mod q2 − 1

1 6 u < q2 + q + 1,

u 6≡ 0 mod q2 + q + 1,

(u) = (uq) = (uq2)

mod q2 − 1

C1 (q + 1)(q2 + q + 1) (q − 1)(q2 + q + 1) (q − 1)2(q + 1)

C2 2q + 1 −1 −(q − 1)

C3 1 −1 1

C
(a)
4 (q + 1)A(u,v),a (q − 1)εua ·

C
(a)
5 A(u,v),a −εua ·

C
(a,b)
6 B(u,v),(a,b) · ·

C
(a)
7 · −η−ua − η−uaq ·

C
(a)
8 · · γua + γuaq + γuaq

2

Table A.1: Character table of SL3(q), q 6≡ 1 mod 3 (continued)

For a description of the conjugacy classes of SL3(q), q 6≡ 1 mod 3, we refer to Section 6.1.1.
Moreover, as in Section 6.2 we adhere to the notation

ε := exp((2πi)/(q − 1)),

η := exp((2πi)/(q2 − 1)),

γ := exp((2πi)/(q2 + q + 1)),

A(u,v),a := εua−2va + εva−2ua + εua+va,

B(u,v),(a,b) := εva+ub + εvb+ua + ε−v(a+b)+ua + εva−u(a+b) + ε−v(a+b)+ub + εvb−u(a+b).

Remark A.1. In Chevie the value of a character χ
(u)
Φ1Φ3

on elements of the conjugacy class
C

(a)
7 was stated to be −ηua − ηuaq. We corrected it to −η−ua − η−uaq. This inconsistency

became apparent while determining the distribution of the irreducible characters of SL3(q)
into `-blocks in the case that 2 6= ` | (q + 1). More precisely, we detected it during the
attempt of deciding in which case characters of types χΦ1Φ3 and χΦ3 (cf. Remark A.2
below) belong to the same `-block. Note that our results in this matter are not part of
this thesis since the consideration of the case 2 6= ` | (q + 1) has become obsolete after
Koshitani–Späth’s progress in [KS14] for blocks with cyclic defect groups.

Remark A.2. If χ is an irreducible character of SL3(q), q 6≡ 1 mod 3, such that χ = χ
(u)
γ

or χ = χ
(u,v)
γ for suitable parameters u, v ∈ Z and γ ∈ {Φ3, qΦ3,Φ2Φ3,Φ1Φ3,Φ

2
1Φ2}, then

we say that χ is of type χγ .

Moreover, extending the parametrization given in Table A.1 the characters of type χγ
may be parametrized by (tuples of) integers subject to the following conditions:
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γ ∈ {Φ3, qΦ3}: Parameters u ∈ Z with u 6≡ 0 mod q − 1, and χ
(u)
γ = χ

(u′)
γ if and only if

u ≡ u′ mod q − 1.

γ = Φ2Φ3: Parameters u, v ∈ Z with u, v, u − v, 2u + v, 2v + u 6≡ 0 mod q − 1, and it

holds that χ
(u,v)
γ = χ

(u′,v′)
γ if and only if in the notation of Notation 6.7 we have

(u′, v′) ∈ mod (q−1) {(u, v), (v, u), (−u, v − u), (v − u,−u), (u− v,−v), (−v, u− v)}.

γ = Φ1Φ3: Parameters u ∈ Z satisfying u 6≡ 0 mod q + 1, and χ
(u)
γ = χ

(u′)
γ if and only if

u ≡ u′ mod q + 1 or u ≡ u′q mod q + 1.

γ = Φ2
1Φ2: Parameters u ∈ Z satisfying u 6≡ 0 mod q2 + q+ 1, and χ

(u)
γ = χ

(u′)
γ if and only

if u ≡ u′ mod q2 + q + 1 or u ≡ u′q mod q2 + q + 1 or u ≡ u′q2 mod q2 + q + 1.

A.2 Central Characters of SL3(q), 3 - (q − 1)

For the purpose of determining the `-blocks of SL3(q) for certain primes ` in Chapter 6 we
use information on the central characters ωχ corresponding to the irreducible characters
χ of SL3(q). We obtain their values by means of the Omega-command provided by Chevie.
In the notation of the previous section the sequence of Chevie-commands

> GenCharTab(‘SL3.n1‘);

> Copy(‘SL3.n1‘,cen,[],[]);

> Omega(‘SL3.n1‘,cen);

> PrintVal(cen);

yields the following central characters for SL3(q) in the case that q 6≡ 1 mod 3:

C1 C2 C3 C
(a)
4

ωχ1 1 (q3 − 1)(q + 1) q(q2 − 1)(q3 − 1) q2(q2 + q + 1)

ωχqΦ2
1 q3 − 1 · q(q2 + q + 1)

ωχq3 1 · · q2 + q + 1

ω
χ

(u)
Φ3

1 (q + 1)2(q − 1) q(q − 1)2(q + 1) q2((q + 1)εua + ε−2ua)

ω
χ

(u)
qΦ3

1 q2 − 1 · q((q + 1)εua + qε−2ua)

ω
χ

(u,v)
Φ2Φ3

1 (2q + 1)(q − 1) q(q − 1)2 q2A(u,v),a

ω
χ

(u)
Φ1Φ3

1 −(q + 1) −q(q2 − 1) q2εua

ω
χ

(u)

Φ2
1Φ3

1 −(q2 + q + 1) q(q2 + q + 1) ·

Table A.2: Central characters of SL3(q), q 6≡ 1 mod 3
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C
(a)
5 C

(a,b)
6

ωχ1 q2(q + 1)(q3 − 1) q3(q + 1)(q2 + q + 1)

ωχqΦ2
q(q3 − 1) 2q2(q2 + q + 1)

ωχq3 · (q + 1)(q2 + q + 1)

ω
χ

(u)
Φ3

q2(q2 − 1)(εua + ε−2ua) q3(q + 1)(εua + εub + ε−u(a+b))

ω
χ

(u)
qΦ3

q(q2 − 1)εua q2(q + 1)(εua + εub + ε−u(a+b))

ω
χ

(u,v)
Φ2Φ3

q2(q − 1)A(u,v),a q3B(u,v),(a,b)

ω
χ

(u)
Φ1Φ3

−q2(q + 1)εua ·

ω
χ

(u)

Φ2
1Φ3

· ·

Table A.2: Central characters of SL3(q), q 6≡ 1 mod 3 (continued)

C
(a)
7 C

(a)
8

ωχ1 q3(q3 − 1) q3(q − 1)2(q + 1)

ωχqΦ2
· −q2(q − 1)2

ωχq3 −(q3 − 1) (q − 1)2(q + 1)

ω
χ

(u)
Φ3

q3(q − 1)εua ·

ω
χ

(u)
qΦ3

−q2(q − 1)εua ·

ω
χ

(u,v)
Φ2Φ3

· ·

ω
χ

(u)
Φ1Φ3

−q3(η−ua − η−uaq) ·

ω
χ

(u)

Φ2
1Φ3

· q3(γua + γuaq + γuaq
2
)

Table A.2: Central characters of SL3(q), q 6≡ 1 mod 3 (continued)
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Appendix for G2(q)

B.1 Conjugacy Classes of G2(q)

Let q = pf for a prime p and a natural number f ∈ N>0. For the purposes of our study we
do not require detailed information on the conjugacy classes of G2(q) in most instances.
Hence, we just give a brief overview of the conjugacy classes of G2(q) here, and we present
explicit information only where necessary.

A complete set of representatives for the conjugacy classes of G = G2(q) is given in
Table B.1 below, where for each conjugacy class we provide notation for a representative
of this class and the corresponding centralizer order. In addition, we give explicit repre-
sentatives for certain of the conjugacy classes. For more detailed information we refer the
reader to [Eno70, Tables 1, 2] (for p = 2, 3) and [Cha68] (for p > 5). The notation we
use here is adopted from [CR74] and [Hiß90] (except that we interchanged the roles of a
and b in h1a(i), h1b(i), h1a,1(i), h1b,1(i)). In the case that 3 - q we denote by ε the unique
element in {±1} satisfying q ≡ ε mod 3.

g Representative Remark |CG(g)|

1 identity − |G|

u1 x3a+2b(1) − q6Φ1(q)Φ2(q)

u2 x2a+b(1) −

{
q6Φ1(q)Φ2(q) if p = 2, 3,

q4Φ1(q)Φ2(q) if p > 5,

}

u3 omitted −

{
6q4 if p 6= 3

q6 if p = 3,

}
u4 omitted − 2q4

u5 omitted −

{
3q4 if p 6= 3

2q4 if p = 3,

}

u6 omitted −

{
pq2 if p = 2, 3,

3q4 if p > 5,

}
Table B.1: Conjugacy classes of G2(q)
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g Representative Remark |CG(g)|

u7 omitted only for p = 2, 3 pq2

u8 omitted only for p = 3 pq2

k2 h(−1,−1, 1) only for p 6= 2 q2Φ1(q)2Φ2(q)2

k2,1 omitted only for p 6= 2 q2Φ1(q)Φ2(q)

k2,2 omitted only for p 6= 2 q2Φ1(q)Φ2(q)

k2,3 omitted only for p 6= 2 2q2

k2,4 omitted only for p 6= 2 2q2

k3 h(ω, ω, ω)
only for p 6= 3,

1 6= ω ∈ F×, ω3 = 1
q3Φ1(q)Φ2(q)(q3 − ε)

k3,1 omitted only for p 6= 3 q3(q − ε)

k3,2 omitted only for p 6= 3 3q2

k3,3,1 omitted only for p 6= 3 3q2

k3,3,2 omitted only for p 6= 3 3q2

h1a(i) h(zi, z−2i, zi)

{
o(z) = Φ1(q),

z2i, z3i 6= 1

}
qΦ1(q)2Φ2(q)

h1a,1(i) omitted − qΦ1(q)

h1b(i) h(zi, z−i, 1)

{
o(z) = Φ1(q),

z2i 6= 1

}
qΦ1(q)2Φ2(q)

h1b,1(i) omitted − qΦ1(q)

h1(i, j) h(zi, zj , z−(i+j))


o(z) = Φ1(q),

ziz±j 6= 1,

ziz±(i+j) 6= 1,

zjz±(i+j) 6= 1

 Φ1(q)2

h2a(i) h(zi, z−2i, zi)

{
o(z) = Φ2(q),

z2i, z3i 6= 1

}
qΦ1(q)Φ2(q)2

h2a,1(i) omitted − qΦ2(q)

h2b(i) h(zi, z−i, 1)

{
o(z) = Φ2(q),

z2i 6= 1

}
qΦ1(q)Φ2(q)2

h2b,1(i) omitted − qΦ2(q)

h2(i, j) h(zi, zj , z−(i+j))


o(z) = Φ2(q),

ziz±j 6= 1,

ziz±(i+j) 6= 1,

zjz±(i+j) 6= 1

 Φ2(q)2

Table B.1: Conjugacy classes of G2(q) (continued)
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g Representative Remark |CG(g)|

ha(i) h(ziq, z−i(q−1), z−i)

{
o(z) = q2 − 1,

zi(q±1) 6= 1

}
Φ1(q)Φ2(q)

hb(i) h(zi, ziq, z−i(q+1))

{
o(z) = q2 − 1,

zi(q±1) 6= 1

}
Φ1(q)Φ2(q)

h3(i) h(zi, ziq, ziq
2
)

{
o(z) = Φ3(q),

z3i 6= 1

}
Φ3(q)

h6(i) h(zi, z−iq, ziq
2
)

{
o(z) = Φ6(q),

z3i 6= 1

}
Φ6(q)

Table B.1 Conjugacy classes of G2(q) (continued)

Remark B.1. (i) Note that in the case that p > 5 the representatives u1 and u2 pro-
vided by [CR74] are given by xb(1) and xa(1), respectively. However, it is clear that
xb(1) is conjugate in G2(q) to x3a+2b(1), e.g., by conjugation with n3a+b(1) (cf. The-
orem 4.25(viii) and Proposition 11.5), and similarly xa(1) is conjugate in G2(q) to
x2a+b(1) by conjugation with na+b(1).

(ii) For an explanation concerning the parametrization of the conjugacy classes labelled
by parameters (i) or (i, j) in Table B.1 we refer to [Hiß90], [EY86] and [Eno76]. We
restrain from going into details here since our computations do not involve any of
these classes.

B.2 Characters of G2(q)

In this section we give a brief overview of the irreducible characters of G2(q). To be more
precise, we provide the degrees of all irreducible characters of G2(q), and for certain char-
acters we also present their character values (this is done in Tables B.3 and B.4 for the
characters X13 and X14, and for the characters X23 and X24, respectively).

The characters of G2(q) have been determined by B. Chang and R. Ree [CR74] in 1974
for p > 5, by H. Enomoto [Eno76] in 1976 for 3 | q, and by H. Enomoto and H. Yamada
[EY86] in 1986 for 2 | q. An explicit description of the character table of G2(q) for p > 5
has been provided by G. Hiß [Hiß90] in 1990. The notations for the characters employed
in each of these papers differ considerably from each other. In order to have a uniform
description of the irreducible characters of G2(q) we adopted the notation of Chang–Ree
for all cases. As above, in the case that 3 - q we let ε ∈ {±1} be such that q ≡ ε mod 3.
Moreover, for odd q we let δ ∈ {±1} satisfy q ≡ δ mod 4. For any q the degrees of the irre-
ducible characters of G2(q) are given by Table B.2 (compare [CR74], [Eno76] and [EY86]).

Remark B.2. As indicated in Table B.2, some of the irreducible characters of G2(q) depend
on certain parameters (k) or (k, l). These, however, do not play a role throughout this
thesis, whence we omit an explicit explanation here but rather refer to [Hiß90], [EY86]
and [Eno76] for more details.
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Character Degree Remark Notation in [EY86], [Eno76]

X11 1 - θ0, θ0

X12 q6 - θ5, θ5

X13
1
3qΦ3(q)Φ6(q) - θ3, θ3

X14
1
3qΦ3(q)Φ6(q) - θ4, θ4

X15
1
2qΦ2(q)2Φ6(q) - θ2, θ2

X16
1
6qΦ2(q)2Φ3(q) - θ1, θ1

X17
1
2qΦ1(q)2Φ3(q) - θ′2, θ11

X18
1
6qΦ1(q)2Φ6(q) - θ′1, θ10

X19,1
1
3qΦ1(q)2Φ2(q)2 - θ9(1), θ12(1)

X19,2
1
3qΦ1(q)2Φ2(q)2 - θ9(2), θ12(−1)

X31 q3(q + ε)Φ6(εq) only for 3 - q θ7, -

X32 (q + ε)Φ6(εq) only for 3 - q θ6, -

X33 q(q + ε)2Φ6(εq) only for 3 - q θ8, -

X21 q2Φ3(q)Φ6(q) only for 2 - q - , θ7

X22 Φ3(q)Φ6(q) only for 2 - q - , θ6

X23 qΦ3(q)Φ6(q) only for 2 - q - , θ8

X24 qΦ3(q)Φ6(q) only for 2 - q - , θ9

X1a(k) qΦ2(q)Φ3(q)Φ6(q) - χ2, χ2

X ′1a(k) Φ2(q)Φ3(q)Φ6(q) - χ1, χ1

X1b(k) qΦ2(q)Φ3(q)Φ6(q) - χ4, χ4

X ′1b(k) Φ2(q)Φ3(q)Φ6(q) - χ3, χ3

X2a(k) qΦ1(q)Φ3(q)Φ6(q) - χ′4, χ8

X ′2a(k) Φ1(q)Φ3(q)Φ6(q) - χ′3, χ7

X2b(k) qΦ1(q)Φ3(q)Φ6(q) - χ′2, χ6

X ′2b(k) Φ1(q)Φ3(q)Φ6(q) - χ′1, χ5

X1(k, l) Φ2(q)2Φ3(q)Φ6(q) - χ5, χ9

X2(k, l) Φ1(q)2Φ3(q)Φ6(q) - χ′5, χ12

Xa(k) q6 − 1 - χ6, χ10

Xb(k) q6 − 1 - χ′6, χ11

X3(k) Φ1(q)2Φ2(q)2Φ6(q) - χ7, χ13

X6(k) Φ1(q)2Φ2(q)2Φ3(q) - χ′7, χ14

Table B.2: Irreducible characters of G2(q)
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X13 (for 3 - q) X14 (for 3 - q) X13 (for 3 | q) X14 (for 3 | q)

1 1
3qΦ3(q)Φ6(q) 1

3qΦ3(q)Φ6(q) 1
3qΦ3(q)Φ6(q) 1

3qΦ3(q)Φ6(q)

u1 −1
3q(q

2 − 1) 1
3q(2q

2 + 1) −1
3q(q

2 − 1) 1
3q(2q

2 + 1)

u2 q · 1
3q(2q

2 + 1) −1
3q(q

2 − 1)

u3
1
3q(εq + 5) 1

3q(εq − 1) 1
3q

1
3q

u4 −1
3q(εq − 1) −1

3q(εq − 1) 1
3q(q + 1) 1

3q(q + 1)

u5
1
3q(εq − 1) 1

3q(εq + 2) −1
3q(q − 1) −1

3q(q − 1)

u6 · · −2
3q −2

3q

u7 (p < 5) · · 1
3q

1
3q

u8 (p = 3) · · 1
3q

1
3q

k2 (p 6= 2) q q q q

k2,1 (p 6= 2) · q · q

k2,2 (p 6= 2) q · q ·

k2,3 (p 6= 2) · · · ·

k2,4 (p 6= 2) · · · ·

k3 (p 6= 3) 1
3(2q − ε)Φ3(εq) −1

3(q − 2ε)Φ3(εq) − −

k3,1 (p 6= 3) 1
3(q − ε) 1

3(q + 2ε) − −

k3,2 (p 6= 3) −1
3(2q + ε) −2

3(q − ε) − −

k3,3,1 (p 6= 3) 1
3(q − ε) 1

3(q + 2ε) − −

k3,3,2 (p 6= 3) 1
3(q − ε) 1

3(q + 2ε) − −

h1a(i) q 1 q 1

h1a,1(i) · 1 · 1

h1b(i) 1 q 1 q

h1b,1(i) 1 · 1 ·

h2a(i) q −1 q −1

h2a,1(i) · −1 · −1

h2b(i) −1 q −1 q

h2b,1(i) −1 · −1 ·

h1(i, j) 1 1 1 1

h2(i, j) −1 −1 −1 −1

ha(i) 1 −1 1 −1

hb(i) −1 1 −1 1

h3(i) · · · ·

h6(i) · · · ·

Table B.3: Characters X13 and X14 of G2(q)
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X23 (for 2, 3 - q) X24 (for 2, 3 - q)

1 qΦ3(q)Φ6(q) qΦ3(q)Φ6(q)

u1 q(q2 + 1) q

u2 q 2q

u3 q 3q

u4 q q

u5 q ·

u6 · ·

k2 q2δ + q + δ q2δ + q + δ

k2,1 q + δ δ

k2,2 δ q + δ

k2,3 δ δ

k2,4 δ δ

k3 εΦ3(εq) qΦ3(εq)

k3,1 q + ε q

k3,2 ε ·

k3,3,1 ε ·

k3,3,2 ε ·

h1a(i) (−1)i(q + 1) + 1 q + (−1)i(q + 1)

h1a,1(i) (−1)i + 1 (−1)i

h1b(i) q + (−1)i(q + 1) (−1)i(q + 1) + 1

h1b,1(i) (−1)i (−1)i + 1

h2a(i) (−1)i(q − 1)− 1 q + (−1)i(q − 1)

h2a,1(i) −1− (−1)i −(−1)i

h2b(i) q + (−1)i(q − 1) (−1)i(q − 1)− 1

h2b,1(i) −(−1)i −1− (−1)i

h1(i) (−1)i+j + (−1)i + (−1)j (−1)i+j + (−1)i + (−1)j

h2(i) −(−1)i+j − (−1)i − (−1)j −(−1)i+j − (−1)i − (−1)j

ha(i) −(−1)i (−1)i

hb(i) (−1)i −(−1)i

h3(i) · ·

h6(i) · ·

Table B.4: Characters X23 and X24 of G2(q) for 2, 3 - q
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B.3 Blocks and Decomposition Numbers of G2(q)

The `-blocks and `-decomposition numbers of G2(q) have been described by G. Hiß and
J. Shamash in a series of papers for various primes ` (see [Sha89a], [Sha89b], [Hiß89],
[Hiß90], [HS90], [Sha92], [HS92]). Below, we give a brief summary of their results obtained
for the cases ` = 2 and ` = 3.

B.3.1 The Case ` = 2

In this section we briefly describe the decomposition numbers for 2-blocks of G2(q), where
we assume that q is odd. For a more detailed description we refer the reader to [HS92].
The 2-blocks of G2(q) may be divided into the following classes of 2-blocks:

• the principal 2-block B0,

• the 2-block B3 (only for 3 - q),

• the 2-blocks of types B1a, B1b, B2a, B2b,

• the 2-blocks of types BX1 , BX2 , BXa , BXb ,

• the 2-blocks of 2-defect zero.

By the results of [HS92] the 2-decomposition matrix of G2(q) is lower unitriangular with
respect to a suitable ordering of the irreducible ordinary and Brauer characters. Below
we present for each type of 2-block B of G2(q) not of 2-defect zero a unitriangular square
submatrix of size l(B) = | IBr(B)| of the decomposition matrix associated to B, which we
obtain from [HS92, Sec. 2]. The irreducible Brauer characters of B may then be derived
from the 2-decomposition numbers given in this matrix.

The Principal 2-Block B0: The principal 2-block B0 of G2(q) contains exactly seven
irreducible Brauer characters. The corresponding 2-decomposition numbers may be
derived from the following matrix, where 0 6 α 6 2q with α 6 q − 1 if 3 - q, and
0 6 β 6 1

3(q + 2):

ϕ11 ϕ17 ϕ18 ϕ13 ϕ14 ϕ15 ϕ12

X11 1 · · · · · ·

X17 · 1 · · · · ·

X18 · · 1 · · · ·

X13 1 · · 1 · · ·

X14 1 · · · 1 · ·

X15 · 1 · · · 1 ·

X12 1 α β 1 1 · 1

The 2-Block B3: The 2-block B3 does only exist if 3 - q. It contains exactly three irre-
ducible Brauer characters and the 2-decomposition matrix for B3 has a unitriangular
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submatrix of the following form, where 1 6 γ 6 1
3(q + 1) with γ = 1 if q ≡ 1 mod 4:

q ≡ 1 mod 3 ϕ32 ϕ33 ϕ31

X32 1 · ·

X33 · 1 ·

X31 1 · 1

q ≡ −1 mod 3 ϕ32 ϕ33 ϕ31

X32 1 · ·

X33 · 1 ·

X31 1 γ 1

Following [HS92, Sec. 2.2, 2.3] and the proof of [An94a, (3I)] the 2-block B3 has
non-cyclic defect groups.

The 2-Blocks of Types B1a, B1b, B2a, B2b: Let B be a 2-block of G2(q) of type BI for
some I ∈ {1a, 1b, 2a, 2b}. Then | IBr(B)| = 2, and the 2-decomposition numbers for
B are given by:

ϕ′I ϕI

X ′I 1 ·

XI 1 1

Following [HS92, Sec. 2.2, 2.3] and the proof of [An94a, (3I)] such 2-blocks of G have
non-cyclic defect groups.

The 2-Blocks of Types BX1, BX2, BXa, BXb: If B is a 2-block of G2(q) of type BXI
for some I ∈ {1, 2, a, b}, then | IBr(B)| = 1 and the 2-decomposition matrix for B
contains a submatrix of the following form:

ϕI

XI 1

Note that by [An94a, (3.3) and Rmk. after (3D)] a 2-block of G of type BXI has
non-cyclic defect groups if and only if I ∈ {1, 2}.

B.3.2 The Case ` = 3

Let us now describe the decomposition numbers for 3-blocks of G2(q) in the case that 3 - q.
For a more detailed description we refer the reader to [HS90]. The 3-blocks of G2(q) may
be divided into the following classes of 3-blocks:

• the principal 3-block B0,

• the 3-block B2 (only for 2 - q),

• the 3-blocks of types B1a, B1b, B2a, B2b,

• the 3-blocks of types BX1 , BX3 , BXa , BXb (for q ≡ 1 mod 3),

• the 3-blocks of types BX2 , BX6 , BXa , BXb (for q ≡ −1 mod 3),

• the 3-blocks of 3-defect zero.
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As for the case ` = 2, by the results of Hiß–Shamash [HS90] the 3-decomposition matrix of
G2(q) is lower unitriangular with respect to a suitable ordering of the irreducible ordinary
and Brauer characters. Again we present for each type of 3-block B of G2(q) not of 3-
defect zero a unitriangular square submatrix of size l(B) = | IBr(B)| of the decomposition
matrix associated to B, from which the irreducible Brauer characters of B may then be
derived. The decomposition numbers we present here may be found in [HS90, Sec. 2,
Sec. 3] for the principal 3-block and [Hiß89, Sec. 2] for the remaining 3-blocks (note that
by [HS90, pp. 371/372] the non-principal 3-blocks of G2(q) have abelian defect and their
3-decomposition matrices coincide with those of the corresponding `-blocks of G2(q) in the
case ` > 3, which are given in [Hiß89]). In the case of a 3-block having cyclic defect groups,
[HS90] presents the associated Brauer tree, from which we read of the corresponding 3-
decomposition numbers.

The Principal 3-Block B0: The principal 3-block B0 of G2(q) contains exactly seven
irreducible Brauer characters. In the case of q ≡ 1 mod 3 the corresponding de-
composition numbers may be derived from the following matrix, where 0 6 α 6 1,
0 6 β 6 q − 2, and 1 6 γ 6 q + 1, with α = β = 0 if 2 | q:

q ≡ 1 mod 3 ϕ11 ϕ18 ϕ19 ϕ14 ϕ15 ϕ16 ϕ12

X11 1 · · · · · ·

X18 · 1 · · · · ·

X19,1 · · 1 · · · ·

X14 · α+ 1 · 1 · · ·

X15 1 · · · 1 · ·

X16 · α · 1 · 1 ·

X12 · β γ · 1 · 1

In the case that q ≡ −1 mod 3 the 3-decomposition matrix of B0 has a submatrix of
the following form, where 1 6 α 6 q + 1, 1 6 β 6 q − 1, and 1 6 γ 6 1

2q:

q ≡ −1 mod 3 ϕ11 ϕ18 ϕ19 ϕ14 ϕ17 ϕ16 ϕ12

X11 1 · · · · · ·

X18 · 1 · · · · ·

X19,1 · · 1 · · · ·

X14 1 1 · 1 · · ·

X17 · · · · 1 · ·

X16 2 · · 1 · 1 ·

X12 1 α β 1 γ 1 1

Remark B.3. In both cases the character X19,1 may be replaced by X19,2 without
changing the decomposition matrix. In particular, we have ϕ19 = X0

19,1 = X0
19,2.
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The 3-Block B2: The 3-block B2 does only exist in the case that 2 - q. It contains
exactly four irreducible Brauer characters, and the 3-decomposition matrix for B2

has a unitriangular submatrix of the following form:

q ≡ 1 mod 3 ϕ21 ϕ22 ϕ23 ϕ24

X21 1 · · ·

X22 · 1 · ·

X23 · · 1 ·

X24 · · · 1

q ≡ −1 mod 3 ϕ22 ϕ23 ϕ24 ϕ21

X22 1 · · ·

X23 1 1 · ·

X24 1 · 1 ·

X21 1 1 1 1

According to [HS90] this 3-block has defect group O3(T ) for a maximal torus T of
G2(q) of type Tε, where ε ∈ {±1} is such that q ≡ ε mod 3.

The 3-Blocks of Types B1a, B1b, B2a, B2b: Let B be a 3-block of G2(q) of type BI for
I ∈ {1a, 1b, 2a, 2b}. Then | IBr(B)| = 2, and the 3-decomposition numbers for B are
given by the matrix below:

q ≡ 1 mod 3 ϕ′I ϕI

X ′I 1 ·

XI · 1

q ≡ −1 mod 3 ϕ′I ϕI

X ′I 1 ·

XI 1 1

Note that by [HS90, Sec. 2] the 3-blocks of types B1a or B1b are of cyclic defect if
and only if q ≡ −1 mod 3, while the 3-blocks of types B2a or B2b are of cyclic defect
if and only if q ≡ 1 mod 3.

The 3-Blocks of Types BX1, BX3, BXa, BXb for q ≡ 1 mod 3: Suppose q ≡ 1 mod 3.
If B is a 3-block of G2(q) of type BXI for some I ∈ {1, 3, a, b}, then | IBr(B)| = 1
and the 3-decomposition matrix for B contains a submatrix of the following form:

ϕI

XI 1

Following [HS90, Sec. 2] the 3-block B has cyclic defect groups if and only if I 6= 1.

The 3-Blocks of Types BX2, BX6, BXa, BXb for q ≡ −1 mod 3: For q ≡ −1 mod 3 let
B be a 3-block of G2(q) of type BXI for some I ∈ {2, 6, a, b}. Then | IBr(B)| = 1
and the 3-decomposition matrix for B contains a submatrix of the following form:

ϕI

XI 1

Following [HS90, Sec. 2] the 3-block B has cyclic defect groups if and only if I 6= 2.
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Appendix C

Appendix for 3D4(q)

C.1 Semisimple Classes of 3D4(q)

The semisimple elements of the group G = 3D4(q) play an important role, in particular for
the description of the irreducible characters and blocks of G. On the set of all G-conjugacy
classes of semisimple elements of G one may define the following equivalence relation:

Let s1, s2 ∈ G be semisimple. The corresponding G-conjugacy classes [s1]G and [s2]G
are defined to be equivalent if and only if the centralizers CG(s1) and CG(s1) are G-
conjugate. We simply write [s] for the equivalence classes of the G-conjugacy class of a
semisimple element s ∈ G. There are 14 equivalence classes of semisimple elements in G
if q is even, denoted [s1], [s3], . . . [s15], while for odd q there exist 15 equivalence classes,
denoted [s1], . . . [s15]. If a semisimple element s ∈ G belongs to the equivalence class [si],
i ∈ {1, . . . , 15}, then we call s of type si. For the representatives of these equivalence
classes presented in Table C.1 below we refer to [DM87, Table 2.1]. However, we remark
that in the table given in [DM87] some constraints on the parameters t1 and t2 are miss-
ing for the semisimple classes of types s6, s12, s13 and s15 (for instance the condition
that t1 6= 1 for types s6 and s15). Easy calculations, which we omit here, show that the
parameters have to satisfy the conditions we present in Table C.1.

Class Representative, q even Representative, q odd

[s1] h(1, 1, 1, 1) h(1, 1, 1, 1)

[s2] − h(−1, 1,−1,−1)

[s3]
h(t, t2, t, t),

tq−1 = 1; t 6= 1

h(t, t2, t, t),

tq−1 = 1; t2 6= 1

[s4]
h(t, 1, tq, tq

2
),

tq
2+q+1 = 1; t 6= 1

h(t, 1, tq, tq
2
),

tq
2+q+1 = 1; t 6= 1

[s5]
h(t, 1, tq, tq

2
),

tq
3−1 = 1; tq

2+q+1 6= 1

h(t, 1, tq, tq
2
),

tq
3−1 = 1; tq

2+q+1 6= 1; t2 6= 1

Table C.1: Semisimple classes of 3D4(q)
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Class Representative, q even Representative, q odd

[s6]

h(t1, t2, t
q
1, t

q2

1 ),

tq
3−1

1 = tq−1
2 = 1; t1, t2 6= 1;

t2 6= t1, t
2
1; tq

2+q+1
1 6= t2, t

2
2

h(t1, t2, t
q
1, t

q2

1 ),

tq
3−1

1 = tq−1
2 = 1; t1, t2 6= 1;

t2 6= t1, t
2
1; tq

2+q+1
1 6= t2, t

2
2

[s7]
h(t, t2, t, t),

tq+1 = 1; t 6= 1

h(t, t2, t, t),

tq+1 = 1; t2 6= 1

[s8]
h(t, t−q

3+1, tq
4
, tq

2
),

t(q
3−1)(q+1) = 1; tq

3−1 6= 1 6= tq+1

h(t, t−q
3+1, tq

4
, tq

2
),

t(q
3−1)(q+1) = 1; tq

3−1 6= 1 6= tq+1

[s9]
h(t, 1, t−q, tq−1),

tq
2−q+1 = 1; t 6= 1

h(t, 1, t−q, tq−1),

tq
2−q+1 = 1; t 6= 1

[s10]
h(t, 1, t−q, tq

2
),

tq
3+1 = 1; tq

2−q+1 6= 1

h(t, 1, t−q, tq
2
),

tq
3+1 = 1; tq

2−q+1 6= 1; t2 6= 1

[s11]
h(t, tq

3+1, tq
4
, tq

2
),

t(q
3+1)(q−1) = 1; tq

3+1 6= 1 6= tq−1

h(t, tq
3+1, tq

4
, tq

2
),

t(q
3+1)(q−1) = 1; tq

3+1 6= 1 6= tq−1

[s12]

h(t1, t2, t
q
1t2, t

−q−1
1 tq+1

2 ),

tq
2+q+1

1 = tq
2+q+1

2 = 1; t1−q
2

2 6= t21;

t2 6= 1, t21, t
−2q
1

h(t1, t2, t
q
1t2, t

−q−1
1 tq+1

2 ),

tq
2+q+1

1 = tq
2+q+1

2 = 1; t1−q
2

2 6= t21;

t2 6= 1, t21, t
−2q
1

[s13]

h(t1, t2, t
−q
1 t2, t

q−1
1 t−q+1

2 ),

tq
2−q+1

1 = tq
2−q+1

2 = 1; t1−q
2

2 6= t21;

t2 6= 1, t21, t
2q
1

h(t1, t2, t
−q
1 t2, t

q−1
1 t−q+1

2 ),

tq
2−q+1

1 = tq
2−q+1

2 = 1; t1−q
2

2 6= t21;

t2 6= 1, t21, t
2q
1

[s14]
h(t, tq

3+1, tq, tq
2
),

tq
4−q2+1 = 1; t 6= 1

h(t, tq
3+1, tq, tq

2
),

tq
4−q2+1 = 1; t 6= 1

[s15]

h(t1, t2, t
−q
1 , tq

2

1 ),

tq
3+1

1 = tq+1
2 = 1; t1, t2 6= 1;

t2 6= t1, t
2
1; tq

2−q+1
1 6= t2, t

2
2

h(t1, t2, t
−q
1 , tq

2

1 ),

tq
3+1

1 = tq+1
2 = 1; t1, t2 6= 1;

t2 6= t1, t
2
1; tq

2−q+1
1 6= t2, t

2
2

Table C.1: Semisimple classes of 3D4(q) (continued)

C.2 Characters of 3D4(q)

The irreducible ordinary characters of Steinberg’s triality groups 3D4(q) have been deter-
mined by N. Spaltenstein, who gives the values of the unipotent characters of 3D4(q) in
[Spa82], and by D. I. Deriziotis and G. O. Michler, who provide the remaining irreducible
characters in [DM87]. For our purposes it suffices to know the degrees of the irreducible
characters of 3D4(q), which we present in Table C.2 below. All information in the table
is taken from [DM87, Table 4.4], and we adopt the notation for the irreducible characters
used there. The first eight characters

1G, [ε1], [ε2], St, ρ1, ρ2, 3D4[−1] and 3D4[1]

are exactly the unipotent characters of 3D4(q), and there exists exactly one irreducible
character of each of these types.
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C.2. Characters of 3D4(q)

The notation for the non-unipotent irreducible characters of 3D4(q) derives from the
Jordan decomposition of characters of reductive groups over finite fields introduced by
Lusztig in [Lus84]. According to [DM87, pp. 49/50] in our case this yields a bijection
between the irreducible characters of G = 3D4(q) and pairs ([s]G, ψ), where [s]G denotes
the conjugacy class of a semisimple element s ∈ G and ψ is a unipotent character of the
centralizer of s in G. We write ([s]G, ∅) if s is a regular element. Then the notation for a
non-unipotent irreducible character χ is as follows:

If χ corresponds to a pair ([s]G, ∅), where s is of type si, 2 6 i 6 15, such that s is
regular, then we write χ = χi. Else, if χ corresponds to ([s]G, ψ), where s is of type si,
2 6 i 6 15, with s non-regular, then χ is denoted by χi,aψ , where aψ is an expression rep-
resenting the unipotent character ψ. (Note that, in general, there exist several characters
of the same type χi or χi,aψ if i > 2, while for i = 2 there exists only one (or none if 2 | q)
G-conjugacy class of semisimple elements of type s2.)

Character Degree Remark

1G 1 -

[ε1] q(q4 − q2 + 1) -

[ε2] q7(q4 − q2 + 1) -

St q12 -

ρ1
1
2q

3(q3 + 1)2 -

ρ2
1
2q

3(q + 1)2(q4 − q2 + 1) -

3D4[−1] 1
2q

3(q3 − 1)2 -

3D4[1] 1
2q

3(q − 1)2(q4 − q2 + 1) -

χ2,1 (q8 + q4 + 1) only for 2 - q

χ2,St q3(q8 + q4 + 1) only for 2 - q

χ2,St′ q(q8 + q4 + 1) only for 2 - q

χ2,St St′ q4(q8 + q4 + 1) only for 2 - q

χ3,1 (q + 1)(q8 + q4 + 1) only for q > 3

χ3,St q3(q + 1)(q8 + q4 + 1) only for q > 3

χ4,1 (q + 1)(q2 − q + 1)2(q4 − q2 + 1) -

χ4,St q3(q + 1)(q2 − q + 1)2(q4 − q2 + 1) -

χ4,qs q(q + 1)2(q2 − q + 1)2(q4 − q2 + 1) -

χ5,1 (q3 + 1)(q8 + q4 + 1) -

χ5,St q(q3 + 1)(q8 + q4 + 1) -

χ6 (q + 1)(q3 + 1)(q8 + q4 + 1) -

χ7,1 (q − 1)(q8 + q4 + 1) -

Table C.2: Irreducible characters of 3D4(q)
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Character Degree Remark

χ7,St q3(q − 1)(q8 + q4 + 1) -

χ8 (q − 1)(q3 + 1)(q8 + q4 + 1) -

χ9,1 (q − 1)(q2 + q + 1)2(q4 − q2 + 1) -

χ9,St q3(q − 1)(q2 + q + 1)2(q4 − q2 + 1) -

χ9,qs′ q(q − 1)2(q2 + q + 1)2(q4 − q2 + 1) -

χ10,1 (q3 − 1)(q8 + q4 + 1) -

χ10,St q(q3 − 1)(q8 + q4 + 1) -

χ11 (q + 1)(q3 − 1)(q8 + q4 + 1) -

χ12 (q − 1)2(q3 + 1)2(q4 − q2 + 1) -

χ13 (q + 1)2(q3 − 1)2(q4 − q2 + 1) -

χ14 (q6 − 1)2 -

χ15 (q − 1)(q3 − 1)(q8 + q4 + 1) -

Table C.2: Irreducible characters of 3D4(q) (continued)

C.3 Blocks and Decomposition Numbers of 3D4(q)

The `-decomposition numbers for the groups 3D4(q), where ` - q, have been determined by
Geck in [Gec91], Himstedt–Huang in [HH13] and Himstedt in [Him07]. We present here
a summary of their results for the primes ` = 2 and ` = 3, where we use the notation
introduced at the beginning of Section 16.1.

C.3.1 The Case ` = 2

The results obtained by Himstedt in [Him07, Thm. 3.1] for the 2-decomposition numbers
of G = 3D4(q), 2 - q, are summarized below.

E2(G, 1): For the set E2(G, 1) there exist seven irreducible Brauer characters ϕ1, . . . , ϕ7,
with the following corresponding 2-decomposition matrix for suitable 0 6 a, b 6 q:

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

1G 1 · · · · · ·

[ε1] 1 1 · · · · ·
3D4[1] · · 1 · · · ·

ρ1 · · 1 1 · · ·

ρ2 · · · 1 1 · ·

[ε2] 1 · · · · 1 ·

St 1 1 a · b 1 1
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E2(G, si), i ∈ {3, 5, 7, 10}: Given a 2′-element s ∈ G∗ of type si, i ∈ {3, 5, 7, 10}, such that
one has E(G, s) = {χi,1, χi,St}, there are exactly two Brauer characters ϕi,1, ϕi,2
associated to E2(G, s), and the 2-decomposition numbers for E(G, s) are as follows:

ϕi,1 ϕi,2

χi,1 1 ·

χi,St 1 1

E2(G, s4) : For a 2′-element s ∈ G∗ of type s4 such that E(G, s) = {χ4,1, χ4,qs, χ4,St}, there
are exactly three irreducible Brauer characters ϕ4,1, ϕ4,2, ϕ4,3 associated to the set
E2(G, s), and we have the following 2-decomposition matrix:

ϕ4,1 ϕ4,2 ϕ4,3

χ4,1 1 · ·

χ4,qs · 1 ·

χ4,St 1 · 1

E2(G, s9) : For a 2′-element s ∈ G∗ of type s9 with E(G, s) = {χ9,1, χ9,qs′ , χ9,St}, there
are exactly three irreducible Brauer characters ϕ9,1, ϕ9,2, ϕ9,3 associated to the set
E2(G, s), and the 2-decomposition numbers are as follows, where c = 1 if q ≡ 1 mod 4
and c = 2 if q ≡ −1 mod 4:

ϕ9,1 ϕ9,2 ϕ9,3

χ9,1 1 · ·

χ9,qs′ · 1 ·

χ9,St 1 c 1

E2(G, si), i ∈ {6, 8, 11, 12, 13, 14, 15}: If s ∈ G∗ is a 2′-element of type si for a parameter
i ∈ {6, 8, 11, 12, 13, 14, 15} such that E(G, s) = {χi}, then E2(G, s) has exactly one
irreducible Brauer character ϕi,1 associated to it, and the 2-decomposition matrix
for E(G, s) is as follows:

ϕi,1

χi 1

C.3.2 The Case ` = 3

The 3-modular decomposition numbers for 3D4(q), 3 - q, have been determined by Geck
in [Gec91] for the case that q is odd, and by Himstedt–Huang in [HH13] for even q. We
give here a summary of their results. Note that in most situations one has to distinguish
between the cases q ≡ 1 mod 3 and q ≡ −1 mod 3.

E3(G, 1): For the set E3(G, 1) there exist eight irreducible Brauer characters ϕ1, . . . , ϕ8.
If q ≡ 1 mod 3, then the corresponding 3-decomposition matrix is as follows for
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suitable integers a, c > 1, b > 0:

q ≡ 1 mod 3 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

1G 1 · · · · · · ·

[ε1] · 1 · · · · · ·

ρ1 · 1 1 · · · · ·

ρ2 1 · · 1 · · · ·
3D4[−1] · · · · 1 · · ·
3D4[1] · · · · · 1 · ·

[ε2] · · 1 · · a 1 ·

St · · · 1 · b c 1

In this case, the character 3D4[−1] has 3-defect zero.

If q ≡ −1 mod 3, then there are integers a > 0, b > a+ 1, c > 1, d > 1 such that the
3-decomposition matrix for E(G, 1) is the following:

q ≡ −1 mod 3 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

1G 1 · · · · · · ·

[ε1] 1 1 · · · · · ·

ρ1 · · 1 · · · · ·

ρ2 2 1 · 1 · · · ·
3D4[−1] · · · · 1 · · ·
3D4[1] · · · · · 1 · ·

[ε2] 1 · · 1 a · 1 ·

St 1 1 · 1 b c d 1

In this case, the character ρ1 has 3-defect zero.

E3(G, s2): If s ∈ G∗ is of type s2 with E(G, s) = {χ2,1, χ2,St, χ2,St′ , χ2,St St′}, then there
are exactly four Brauer characters ϕ2,1, . . . , ϕ2,4 associated to E3(G, s), and the 3-
decomposition numbers for E(G, s) are as follows:

q ≡ 1 mod 3 ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4

χ2,1 1 · · ·

χ2,St · 1 · ·

χ2,St′ · · 1 ·

χ2,St St′ · · · 1

q ≡ −1 mod 3 ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4

χ2,1 1 · · ·

χ2,St 1 1 · ·

χ2,St′ 1 · 1 ·

χ2,St St′ 1 1 1 1
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E3(G, si), i ∈ {3, 5, 7, 10}: Given a 3′-element s ∈ G∗ of type si, i ∈ {3, 5, 7, 10}, such that
one has E(G, s) = {χi,1, χi,St}, there are exactly two Brauer characters ϕi,1, ϕi,2
associated to E3(G, s), and the 3-decomposition numbers for E(G, s) are as follows:

q ≡ 1 mod 3 ϕi,1 ϕi,2

χi,1 1 ·

χi,St · 1

q ≡ −1 mod 3 ϕi,1 ϕi,2

χi,1 1 ·

χi,St 1 1

E3(G, s4) : For a 3′-element s ∈ G∗ of type s4 such that E(G, s) = {χ4,1, χ4,qs, χ4,St}, there
are exactly three irreducible Brauer characters ϕ4,1, ϕ4,2, ϕ4,3 associated to the set
E3(G, s), and we have the following 3-decomposition matrix:

q ≡ 1 mod 3 ϕ4,1 ϕ4,2 ϕ4,3

χ4,1 1 · ·

χ4,qs 1 1 ·

χ4,St · 1 1

q ≡ −1 mod 3 ϕ4,1 ϕ4,2 ϕ4,3

χ4,1 1 · ·

χ4,qs · 1 ·

χ4,St 1 · 1

E3(G, s9) : For a 3′-element s ∈ G∗ of type s9 with E(G, s) = {χ9,1, χ9,qs′ , χ9,St}, there
are exactly three irreducible Brauer characters ϕ9,1, ϕ9,2, ϕ9,3 associated to the set
E3(G, s), and the 3-decomposition numbers are as follows for some integer e > 0:

q ≡ 1 mod 3 ϕ9,1 ϕ9,2 ϕ9,3

χ9,1 1 · ·

χ9,qs′ · 1 ·

χ9,St · · 1

q ≡ −1 mod 3 ϕ9,1 ϕ9,2 ϕ9,3

χ9,1 1 · ·

χ9,qs′ · 1 ·

χ9,St 1 e 1

E3(G, si), i ∈ {6, 8, 11, 12, 13, 14, 15}: If s ∈ G∗ is a 3′-element of type si for a parameter
i ∈ {6, 8, 11, 12, 13, 14, 15} such that E(G, s) = {χi}, then E3(G, s) has exactly one
irreducible Brauer character ϕi,1 associated to it, and the 3-decomposition matrix
for E(G, s) is as follows:

ϕi,1

χi 1
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