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Abstract. We discuss the problem of evaluating a robust solution. To
this end, we first give a short primer on how to apply robustification ap-
proaches to uncertain optimization problems using the assignment prob-
lem and the knapsack problem as illustrative examples. As it is not im-
mediately clear in practice which such robustness approach is suitable
for the problem at hand, we present current approaches for evaluating
and comparing robustness from the literature, and introduce the new
concept of a scenario curve. Using the methods presented in this paper,
an easy guide is given to the decision maker to find, solve and compare
the best robust optimization method for his purposes.

1 Introduction

Assume you have to solve a real-world optimization problem, which can be mod-
eled, e.g., by an integer linear program. However, an optimal solution to this
model might perform quite poorly in practice, as this first modeling approach
neglects uncertainty in the problem parameters. Thus, some optimization tool
that includes uncertain data is required. You have quite a range of methods
to choose from: Stochastic optimization [12], fuzzy programming [14], interval
programming [19], or robust optimization.

Assume you have chosen the last option. Again, there is a wide range of robust
optimization concepts you may select: classic (strict) robustness [7], absolute or
relative regret [23], adjustable robustness [6], recoverable robustness [25], light
robustness [16], soft robustness [3], lexicographic α-robustness [21], recovery-to-
optimality [17], or similarity-based robustness [13], to name some.

How to decide which of these approaches is appropriate for the problem at
hand? Furthermore, most approaches are connected with some kind of “robust
objective function” that decides on the degree of robustness. That is, every ap-
proach uses a different measure to decide which solution should be called robust,
and which not. Also, many robust optimization approaches have parameters that
control their ”degree of robustness”, but it is unclear in advance how to set them.
To decide which one should actually be put into practice, you need some possibil-
ity to compare the robust solutions of each of these parameters and approaches.
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In this paper, we aim at shedding light on this problem of evaluating a robust
solution from a bird’s eye, or meta-perspective. We define a range of frameworks
that allow to compare the performance of different robust solutions.

This work is not intended as a survey on robust optimization, for which we
refer to [18, 4, 1] and [9]. Instead, having introduced some necessary notation in
Section 2, we present a walk-through on the application of some of the most
popular robust optimization approaches using an uncertain assignment problem
as an example in Section 3. We discuss ways to evaluate a robust solution in
Section 4, using an additional uncertain knapsack problem as an example. These
evaluation frameworks are then illustrated using experimental data in Section 5.

2 Notations and Definitions

We first introduce the notation we use in this paper to denote a general opti-
mization problem. Additionally, we present two academic test problems we use to
apply and to compare different robustness concepts. It is a common approach to
use well studied academic test problems to compare new algorithms or concepts.
On the one hand, these problems have an easy structure and are, therefore, easy
to understand. On the other hand, it turns out that many real world problems
are closely related variants of these problems.

2.1 General Notation

Consider the general minimization problem

min f(x)

s.t. g(x) ≤ 0

x ∈ X .

In robust optimization it is assumed that the parameters ξ that describe the
objective function or the constraints of the problem are not known exactly;
instead, one assumes to know only a set U to which the parameters must belong
to. These sets are called uncertainty sets.

We informally write the uncertain problem as

“min”f(x, ξ)

s.t. “g(x, ξ) ≤ 0”

x ∈ X .

As there exists no unique interpretation of the uncertain objective function and
the uncertain constraints, it is not obvious how the robust problem should be
solved. Different interpretations have been made, resulting in different robustness
concepts. Some of these concepts are presented in Section 3.

The uncertainty set U can either be a finite list of different scenarios, which
is denoted by finite uncertainty set, or a continuous sets. Continuous uncertainty
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sets are typically hyper-boxes, polytopes, or ellipsoids. A hyper-box uncertainty
set is also called interval uncertainty set as it defines intervals for the different
parameter values. We focus in this paper mainly on finite and interval uncertainty
sets. For the discussion of more advanced uncertainty sets we refer to [18].

We use the following notation for the uncertainty sets. Finite uncertainty sets
are given by a list of scenarios UF = {ξ1, ξ2, . . . , ξN} and interval uncertainty

sets are stated as UI =
{
ξ : ξj ∈ [ξ

j
, ξj ]

}
.

2.2 The Uncertain Assignment Problem

The assignment problem is defined by a complete bipartite graph with node sets
V and W , |V | = |W | = n, and edge costs cij for all i, j ∈ [n] := {1, . . . , n}. A
feasible assignment is a subset of edges such that every node from V is connected
to exactly one node from W (and vice versa). The problem is to find a feasible
assignment that minimizes the sum of edge costs.

Written as an integer linear program (IP), the assignment problem can be
stated as:

(P) min
∑
i∈[n]

∑
j∈[n]

cijxij (1)

s.t.
∑
i∈[n]

xij = 1 ∀j ∈ [n] (2)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (3)

xij ∈ {0, 1} ∀i, j ∈ [n] (4)

Variable xij equals to 1 if and only if edge (i, j) is part of the assignment.
Constraints (2) and (3) ensure that the assignment is feasible. That means that
every element from V must be mapped to exactly one element of W , and vice
versa. As the constraint matrix is totally unimodular, the integrality constraint
(4) is equivalent to its relaxed version xij ∈ [0, 1] ∀i, j ∈ [n]. The resulting
problem is a linear program (LP). Thus, problem (P) can be solved in polynomial
time.

In the uncertain optimization problem the exact knowledge of all edge costs
cij is not given. Instead, we assume that these values are the result of some
uncertain process. The set of all possible outcomes of c define the uncertainty
set U . As in Section 2.1, we use the following notation for finite and interval
uncertainty sets: UF = {c1, . . . , cN}, and UI =×i,j∈[n][cij , cij ]. The midpoint of
UI is denoted by ĉ = 0.5(c+c). We write P(c) to denote the assignment problem
with respect to the costs c ∈ U .

Note that in this problem only the objective function is affected by uncer-
tainty. If an assignment is feasible, it is feasible for all possible scenarios that
might occur. This does not hold for the uncertain knapsack problem, which we
explain in the following.
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2.3 The Uncertain Knapsack problem

The knapsack problem is defined by a set I of n items and a fixed budget B.
Each item i ∈ I is described by a positive weight wi and a profit pi. A packing
is a subset of all items. A packing is feasible if the sum of weights of all items
contained in this packing does not exceed the budget B. The problem is to find
a feasible packing that maximizes the sum of all the profits, and can be stated
as an integer program (IP):

max
∑
i∈[n]

pixi (5)

s.t.
∑
i∈[n]

wixi ≤ B (6)

xi ∈ {0, 1} ∀i ∈ [n] (7)

Variable xi equals to 1 if and only if item i is part of the packing. Constraint
(6) ensures that the budget capacity B is not exceeded. Being NP-complete,
the computational complexity of this problem is harder than for the assignment
problem (for a general survey on the knapsack problem, see [22]).

In the uncertain version of this problem we assume that both item weights
and item profits are affected by uncertainty. The uncertainty set U contains all
possible combinations of weights and profits (p, w). We use the following notation
for finite and interval scenarios sets: UF = {(p1, w1), (p2, w2), . . . (pN , wN )} and
UI = (×i[pi, pi])× (×i[wi, wi]).

Note that in this problem not only the objective function but also the con-
straints are affected by uncertainty. Hence, it is possible that packings are only
feasible for some but not for all scenarios.

3 Approaches to Robust Optimization

In this section we present different robustness concepts that are compared in
Section 4. The concrete solution of a robustness concepts needs the solution of a
robust counterpart. The structure and the complexity of the robust counterpart
depend greatly on the underlying uncertainty set that is used to describe the
uncertainty. We use the assignment problem to illustrate the different concepts
and the corresponding counterparts.

3.1 Strict Robustness

Also called min-max robustness or classical robustness, this is the most conser-
vative way to solve an uncertain optimization problem (see [4]). This concepts
asks for a solution that is feasible under all possible scenarios and gives the best
performance guarantee, i.e. it optimizes the performance of the worst scenario
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for the chosen solution. This yields the following interpretation of the general
robust optimization problem

min max
ξ∈U

f(x, ξ)

s.t. g(x, ξ) ≤ 0 ∀ξ ∈ U
x ∈ X .

Finite Uncertainty. In the case of a finite uncertainty set UF , the general
optimization problem attains the form

min max
k∈[N ]

f(x, ξk)

s.t. g(x, ξk) ≤ 0 ∀k ∈ [N ]

x ∈ X .

It turns out that this uncertainty can lead to very difficult robust counterparts.
Several negative complexity results are shown even if U consists of only two
scenarios and the underlying problems are very basic [1]. Nevertheless, the robust
counterpart can be formulated in most cases as a mixed integer programming
(MIP) problem. We showcase this in the following for the assignment problem.

min z (8)

s.t.
∑
i∈[n]

∑
j∈[n]

ckijxij ≤ z ∀k ∈ [N ] (9)

∑
i∈[n]

xij = 1 ∀j ∈ [n] (10)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (11)

xij ∈ {0, 1} ∀i, j ∈ [n] (12)

z ≥ 0 (13)

Constraint (9) ensures that variable z is equal to the worst performance of solu-
tion x for all possible scenarios c1, . . . , cN in an optimal solution. This additional
constraints destroys the total unimodularity of the constraint matrix. Hence, one
cannot relax the integrality constraints anymore; in fact, one can show that this
problem is NP-complete already for two scenarios [23].

Interval Uncertainty. In the case of interval uncertainty UI the robust coun-
terpart can be stated as a semi-infinite program, which is an optimization prob-
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lem with finitely many variables and infinitely many constraints.

min z

s.t. f(x, ξ) ≤ z ∀ξ ∈ UI
g(x, ξ) ≤ 0 ∀ξ ∈ UI
x ∈ X .

In special cases this problem can be greatly simplified. If x is always positive and
the objective function has the form f(x, ξ) = ξtx, the infinitely many constraints
describing the objective function can be replaced by one. It suffices to consider
f(x, ξ) ≤ z, as the worst scenario that might happen for any solution is scenario
ξ.

The presented assignment problem fulfills these properties. In the worst case
scenario the edge costs are given by c. Hence, the robust counterpart reduces
to the problem P(c). As this problem has the structure of the original, certain
problem, it can be solved with the same algorithms in polynomial time.

The following two approaches rely on the idea to reduce the size of the
uncertainty sets. An illustration of both approaches is given in Figure 1.
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Fig. 1. Cutting unlikely corners. The rectangle represents the complete interval uncer-
tainty set. The bounded uncertainty (see Section 3.2) set is shown as the blue polytope,
the ellipsoidal uncertainty set (see Section 3.3) is represented by the green ellipsoid.
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3.2 Bounded Uncertainty

This approach was introduced by Bertsimas and Sim [11]. They motivate their
approach with the observation that the strict robustness concept with interval
uncertainty is very pessimistic, as it assumes that all parameters attain their
worst possible value at the same time. As this seems to be an unrealistic as-
sumption for many real-world situations, they suggest to introduce another un-
certainty set that bounds the deviation of the parameters.

We present this idea using the the assignment problem. For integral values
of Γ , the resulting uncertainty set for the assignment problem has the following
form:

UI(Γ ) = {c ∈ UI : |{(i, j) : cij > ĉij}| ≤ Γ}

i.e., the number of coefficients that are larger than in the midpoint scenario is
bounded by the parameter Γ . The concept can also be generalized to non-integral
Γ values.

Using this uncertainty set the robust counterpart of the assignment problem
is given by the following mixed integer program (MIP).

min
∑
i∈[n]

∑
j∈[n]

ĉijxij + Γπ +
∑
i∈[n]

ρij (14)

s.t.
∑
i∈[n]

xij = 1 ∀j ∈ [n] (15)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (16)

π + ρij ≥ (cij − ĉij)xij ∀i, j ∈ [n] (17)

xij ∈ {0, 1} ∀i, j ∈ [n] (18)

ρi ≥ 0 ∀i ∈ [n] (19)

π ≥ 0 (20)

Additional to x, variables π and ρ are introduced. If Γ is chosen as large as the
number of x-variables (i.e., Γ = n2), then π is equal to 0 in an optimal solution.
In this case ρij is equal to (cij − ĉij)xij , which is guaranteed by Inequality (17).
Replacing ρij accordingly in the objective function, only ctx remains, i.e. the
worst case objective function. This was expected as for such a large value of Γ
the bounded uncertainty set is equal to the original uncertainty set, hence, the
model reduces to the strict robust counterpart.

Contrary, if Γ is set to 0, π can be made arbitrary large in an optimal
solution. Inequality (17) is superfluous and ρij can be set to 0. The objective
function reduces to ĉtx. Also this was expected, as for Γ equal to 0, only ĉtx is
contained in the bounded uncertainty set. In [10, 11] it is explained in detail how
this formulation can be derived. There, it is also shown that the resulting robust
problem is solvable in polynomial time. Note that this concept is also applicable
if constraints are affected by uncertainty.
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3.3 Ellipsoidal Uncertainty

The use of ellipsoidal uncertainty sets can be motivated from two different
reasons. The first one is that many uncertainty sets are already ellipsoidal in
practice, e.g., when stemming from a normal data distribution. The second one
follows the idea of bounded uncertainty. Even if you have given an interval un-
certainty set it can be a good idea to use an ellipsoidal uncertainty set to cut off
unlikely corners.

For more information about ellipsoidal uncertainty sets we refer to the papers
of Ben-Tal and Nemirovski [5, 8]. We use again the assignment problem to present
the resulting robust counter part if an ellipsoidal uncertainty set is used to cut
off unlikely corners of the interval uncertainty set UI . As before, the midpoint
of UI is denoted by ĉ.

min
∑
i∈[n]

∑
j∈[n]

cijxij −
∑
i,j∈[n]

(cij − ĉij)pij +Ωq (21)

s.t.
∑
i,j∈[n]

(cij − ĉij)2p2ij ≤ q2 (22)

0 ≤ pij ≤ xij ∀i, j ∈ [n] (23)

0 ≤ q (24)∑
i∈[n]

xij = 1 ∀j ∈ [n] (25)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (26)

xij ∈ {0, 1} ∀i, j ∈ [n] (27)

Ben-Tal and Nemirovski explain in [8] how to derive this problem formulation.
The parameter Ω controls the size of the ellipsoid that is used to approximate UI .
If Ω is set to 0 the ellipsoid consists of the single point ĉ. In this case the robust
counterpart reduces to P (ĉ). On the other hand, if Ω is large enough, the problem
becomes the strict robust problem P (c). Note that the problem formulation
contains a quadratic constraint. Therefore, it can not be solved anymore using
mixed integer programming. Nevertheless, if the integer constraints are relaxed
one obtains a convex program that can be solved efficiently.

3.4 Regret Robustness

To apply the regret robustness concept it is assumed that only the objective
function is affected by uncertainty and the constraints are certain. In strict
robustness the evaluation of a solution depends solely on the performance under
one special scenario. It is neglected that this special scenario might also be
bad for all other possible solutions. Hence, it could be meaningful to take into
account the best possible performance that could be achieved for this special
scenario. This idea is used in regret robustness. For a fixed scenario, the regret
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of a solution is computed using both the objective function of the solution and
the best possible objective value. There exist different methods to compute the
regret of a solution. We present three in the following.

Absolute Regret. In absolute regret robustness, one adds some normalization
to the robust objective value, so that taking the maximum over all scenarios
becomes “more fair”. Specifically, we consider the robust objective function

reg(x) = max
ξ∈U

f(x, ξ)− opt(ξ)

where opt(ξ) denotes the best possible objective value for the problem that is
described by parameter ξ.

This objective function yields to a different interpretation of the general
robust optimization problem.

min max
ξ∈U

f(x, ξ)− opt(ξ)

s.t. g(x) ≤ 0

x ∈ X .

Finite and interval uncertainty sets lead again to different robust counterparts.
We present this with the assignment problem.

For a finite set of scenarios UF of polynomial size, the optimal objective values
can be precomputed in polynomial time. The resulting robust counterpart is very
similar to the strict robust counterpart:

min z (28)

s.t.
∑
i∈[n]

∑
j∈[n]

ckijxij − opt(ck) ≤ z ∀k ∈ [N ] (29)

∑
i∈[n]

xij = 1 ∀j ∈ [n] (30)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (31)

xij ∈ {0, 1} ∀i, j ∈ [n] (32)

z ≥ 0 (33)

Again, variable z is introduced to monitor the robust objective function. Con-
straint (29) ensures that z equals to the maximum regret in an optimal solution.
Specialized algorithms such as branch and bound algorithms can be applied to
this problem formulation. However, this is quite different for interval-uncertainty
sets, where it is not possible to compute all values opt(c) in advance. Neverthe-
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less, it is possible to formulate the resulting robust counterpart as:

min
∑
i∈[n]

∑
j∈[n]

cijxij −
∑
i∈[n]

(αi + βi) (34)

s.t. αi + βj ≤ cij + (cij − cij)xij ∀i, j ∈ [n] (35)∑
i∈[n]

xij = 1 ∀j ∈ [n] (36)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (37)

αi, βi ≷ 0 ∀i ∈ [n] (38)

xij ∈ {0, 1} ∀i, j ∈ [n] (39)

where x, α, and β are variables. To derive this problem formulation it is used
that the scenario that maximizes the regret of a solution is described by the
following rule: All elements that are chosen by the solution x are as expensive as
possible, and all other elements as cheap as possible. The recipe that was used
to derive this MIP formulation can be applied to any combinatorial optimization
problem with uncertainty in the costs, and for which the nominal problem (P)
can be solved by using its linear relaxation. For more information about the
derivation of the robust counterpart that arises from the absolute regret concept
we refer to [27].

Relative Regret. The previous absolute regret approach aims at a normal-
ization of objective values by using the difference to the best possible objective
value in any scenario. However, this normalization may not be appropriate for
some applications. The relative regret normalizes the absolute regret by dividing
it with the best possible objective function under a scenario. The relative regret
objective function has the following form for a general optimization problem.

rreg(x) = max
ξ∈U

f(x, ξ)− opt(ξ)
opt(ξ)

The relative regret concept breaks down to the absolute regret concept for finite
uncertainty sets with a different scaling of scenarios. But for interval uncertainty
sets this does not hold. For this case, we present a possible formulation of the
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relative regret robust counterpart for the assignment problem.

min µ (40)

s.t.
∑
i∈[n]

∑
j∈[n]

cijxij ≤
∑
i∈[n]

(αi + βi) (41)

αi + βj ≤ µcij + (cij − cij)xij ∀i, j ∈ [n] (42)∑
i∈[n]

xij = 1 ∀j ∈ [n] (43)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (44)

xij ∈ {0, 1} ∀i, j ∈ [n] (45)

α, β, µ ≷ 0 (46)

Deriving this formulation of the problem is more involved than in the case of
absolute regret, but solving it seems to be almost of the same computational
complexity. An additional variable µ is introduced that represents the ratio of
objective function and optimal objective value. In [2] one can find the detailed
derivation of this problem formulation.

Alpha Regret. For discrete uncertainty sets there exist another approach to
interpret how the regret of a solution should be calculated. The alpha regret
concept is similar to the concept of absolute regret, but extends it by the notion
of anonymization. The idea is to compare the realized solution not with the
optimal solution that could be realized in the same scenario. Instead, the vector
of solution values V (x) =

(
f(x, ξ1), f(x, ξ2), . . . , f(x, ξN )

)
and the vector of

optimal solution values V ∗ =
(
opt(ξ1), opt(ξ2), . . . , opt(ξN )

)
are both sorted and

then compared in each component. The maximum difference is called the alpha
regret. By comparing the solution of the kth best scenario with the kth best
optimal solution, the scenarios are made anonymous. This is plausible if it is
not known in advance, which scenario will happen or is more likely to happen.
Formally, the alpha regret of a solution can be computed as

αreg(x) = min
π∈σ(N)

max
i∈[N ]

f(x, ξi)− opt(ξπ(i)),

where σ(N) denotes the set of all permutations of the set [N ]. Hence, the result-
ing formulation for the general optimization problem looks as follows

min z

s.t. f(x, ξi)− f∗(ξπ(i)) ≤ z ∀i ∈ [N ]

g(x) ≤ 0

x ∈ X
π ∈ σ(U)
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To give a concrete example we use again the assignment problem.

min z (47)

s.t.
∑
i∈[n]

∑
j∈[n]

c`ijxij −
N∑
k=1

pk`opt(c
k) ≤ z ∀` ∈ [N ] (48)

∑
k∈[N ]

pk` = 1 ∀` ∈ [N ] (49)

∑
`∈[N ]

pk` = 1 ∀k ∈ [N ] (50)

∑
i∈[n]

xij = 1 ∀j ∈ [n] (51)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (52)

xij ∈ {0, 1} ∀i, j ∈ [n] (53)

pk` ∈ {0, 1} ∀k, ` ∈ [N ] (54)

The variables pk` are used to represent the possible permutations of the scenarios.
Variable pk` is set to 1 if the kth scenario is sorted to position `, i.e. if π(k) = `.
The alpha regret concept is introduced in [21].

3.5 Recoverable Robustness

In the previous approaches, we are interested in finding a single solution, that is
supposed to perform well under all possible scenario outcomes. It is not possible
to modify this solution, once the actual scenario becomes known. In two-stage
approaches to robust optimization (see also the approach of adjustable robust-
ness), this possibility is included in the model. Once the scenario is revealed, we
can do some modifications to our solutions. Naturally, if we could change the
complete solution, we could simply recover to an optimal solution in any sce-
nario. Thus, the amount of modifications that we can perform is usually bounded.
Typically, one considers the min-max objective over all scenarios in this setting;
however, any other objective function such as absolute or relative regret would
also be conceivable. For the general uncertain optimization problem this yields
an infinite program with infinitely many variables and constraints.

min z

s.t. f(xξ, ξ) ≤ z ∀ξ ∈ U
g(xξ, ξ) ≤ 0 ∀ξ ∈ U
dist(x, xξ) ≤ D ∀ξ ∈ U
xξ ∈ X
x ∈ X
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The solution to the recovery robust problem is given by x. For each possible
scenario ξ a variable xξ is introduced. Each solution xξ must itself be feasible
and close to the solution x. The function dist is used to measure how close two
solutions are. The maximum allowed distance is given by parameter D.

For the assignment problem with finite uncertainty sets the problem can be
written as a MIP. We assume that we are allowed to modify up to 2K variables
xij once the scenario is known, i.e. we can remove K choices, and add K new
choices to our solution. The resulting problem is given as

min z (55)

s.t.
∑
i∈[n]

∑
j∈[n]

ckijx
k
ij ≤ z ∀k ∈ [N ] (56)

∑
i∈[n]

xij = 1 ∀j ∈ [n] (57)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (58)

∑
i∈[n]

xkij = 1 ∀j ∈ [n], k ∈ [N ] (59)

∑
j∈[n]

xkij = 1 ∀i ∈ [n], k ∈ [N ] (60)

− ykij ≤ xij − xkij ≤ ykij ∀i, j ∈ [n], k ∈ [N ] (61)∑
i∈[n]

∑
j∈[n]

ykij ≤ 2K ∀k ∈ [N ] (62)

xij ∈ {0, 1} ∀i, j ∈ [n] (63)

xkij ∈ {0, 1} ∀i, j ∈ [n], k ∈ [N ] (64)

ykij ∈ {0, 1} ∀i, j ∈ [n], k ∈ [N ] (65)

We use variables x to model the first-stage solution, and variables xk for every
scenario k ∈ [N ], to model the second-stage (adapted) solutions. The auxil-
iary variables yk are used to measure the difference between x and xk. In Con-
straints (57) and (58), we ensure that our first-stage solution x is a feasible
assignment, while Constraints (59) and (60) ensure the same for each scenario.
Constraints (61) and (62) bound the difference between first- and second-stage
solutions. More about recovery robust optimization can be found in [25].

3.6 Summary

We discussed numerous different concepts for robust optimization – still, the
presented list of concepts is not exhaustive. Other interesting concepts can be
found for example in [18], and in Section 1 of this paper.

In this section we provide a short overview about all presented concepts. In
Table 1 we highlight under which uncertainty contexts the different concepts are
applicable.
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Cons & Obj Obj
UF UI UF UI

Strict Robustness X X X X
Bounded Uncertainty − X − X
Ellipsoid Uncertainty a) X a) X
Regret Robustness

Absolute Regret − − X X
Relative Regret − − b) X
Alpha Regret − − X −

Recoverable Robustness X X X X

Table 1. This table shows under which uncertainty context the different robustness
concepts are applicable. The columns with the label Cons & Obj refer to the case
where both the constraints and the objective function are affected by uncertainty.
The columns with the label Obj refer to the case where only the objective function
is affected by uncertainty. a) An ellipsoid can be computed that contains all point
from the discrete set. This will guarantee a safe approximation of the original problem.
b) The concept of relative regret reduces to the concept of absolute regret for finite
uncertainty sets.

4 Frameworks to Evaluate Robust Solutions

Every robustness concept is motivated from a different perspective and has its
own benefits and drawbacks. Therefore, it is unclear how these different concepts
perform in comparison to each other. To make two concepts comparable one has
to define a framework in which the quality of the solutions that are produced
by the different concepts can be measured. In this section we give a short in-
troduction to some of these frameworks. We discuss them in more detail in the
experimental Section 5.

Two robustness concepts can only be compared if the used uncertainty con-
text is applicable for both (see Table 1). Hence we define different kind of frame-
works for different uncertainty contexts.

For some frameworks we assume the knowledge of an average case scenario,
also called nominal scenario. The performance of the solution under the nominal
scenario is an important indication for the overall quality of the solution.

If we want to speak about feasibility probability we have to make assumptions
on the underlying probability structure of the problem.

What is assumed to be known for the different frameworks is given in Table 2.

4.1 The Price of Robustness

This framework is applicable if constraints are affected by uncertainty. Stemming
from the seminal paper carrying the same name [11], the price of robustness
(PoR) is defined as “the tradeoff between the probability of violation and the
effect to the objective function of the nominal problem”. This idea can be used
to measure the quality of a solution. First, all solutions that have to be compared
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Framework Nominal scenario Probability distribution

Price of Robustness X X
AC-WC Curve X −
Scenario Curve − −
Sampled Scenario Curve − X
Scenario Curve with Recovery X −

Table 2. Assumptions for the different frameworks.

are evaluated with respect to their nominal performance. Next, simulation can
be used to compute the probability of violation. The solutions are compared by
drawing them into a two dimensional coordinate system. The y−axis defines the
nominal performance of a solution and the x−axis gives the violation probability.

We note that the term ”price of robustness” is also used differently, see, e.g.,
[26].

4.2 The AC-WC Curve

This framework is only applicable if the the objective function is affected by
uncertainty. If constraints are not affected by uncertainty, solutions are feasible
for all scenarios; hence, it is not meaningful any more to speak about probability
of violation. Instead, one can use the performance in the worst case to compare
solutions. Solutions that need to be compared are drawn into a two dimensional
coordinate system. The x−axis gives the nominal performance guarantee of a
solution and the y−axis gives the performance in the worst case scenario.

We call a solution non-dominated if there exist no other solution that has
both a better average and worst case performance. The set of all non-dominated
solutions is defined as the AC-WC curve. The AC-WC curve can be computed
effectively if the feasibility set of the problem is convex and some further technical
assumptions are fulfilled. For more information about the AC-WC curve we refer
to [15].

4.3 The Scenario Curve

For this framework it is assumed that the objective function is affected by un-
certainty and the uncertainty set is finite. As the uncertainty set is finite the
performance of a solution can be evaluated for each possible scenario to obtain
the vector F (x) =

(
f(x, ξ1), . . . , f(x, ξN )

)
. Next we use the idea of anonymiza-

tion: Similar to the concept of alpha regret, the vector F (x) is sorted from good
to bad performance. The sorted version of F (x) is denoted by Fs(x). To com-
pare two different solutions x and x′ the vectors Fs(x) and Fs(x

′) are drawn
into a two dimensional coordinate system. The kth component of vector Fs(x)
is represented by the point (k, (Fs(x))k). The leftmost point corresponds to the
performance under the best scenario and the rightmost point corresponds to
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the performance under the worst scenario. The sorting of the different solutions
leads to a better visualization of the solution quality.

Additionally, the vector F ∗ =
(
opt(ξ1), . . . , opt(ξN )

)
can be computed and

the sorted version of this vector is drawn into the same plot. This creates an
optimal benchmark curve, that can be used for comparison.

4.4 The Sampled Scenario Curve

Using a sampling procedure the concept of the scenario curve can be trans-
ferred to arbitrary uncertainty sets. One needs to be able to sample a set

S =
{
ξ̃1, . . . , ξ̃K

}
of possible parameter realizations. The sampled scenarios

are then used to draw the sampled scenario curve.
If a solution is infeasible for a certain scenario, a ”bad” value is assigned to

this solution. This value must be considerably worse than the worst value of all
feasible solutions (e.g., a profit of 0 for the knapsack problem).

4.5 The Scenario Curve with Recovery

We now discuss a second extension of the scenario curve approach from Sec-
tion 4.3 to optimization problems with uncertainty in the constraints. To this
end, we use the uncertain knapsack problem as an illustrative example again.

In these circumstances, it may happen that the robust solution we would like
to evaluate is not feasible for some scenarios. We therefore assume that a recovery
action is available: By changing up to K many items, we can manipulate our
solution for every scenario. For every such recovery distance K, we can calculate
a scenario curve as before, which results in a 2-dimensional scenario curve overall.

More precisely, we suggest the following approach to evaluate a solution x.
We calculate optimal objective values for every scenario in the uncertainty set
and sort these values. For every possible recovery distance K = 1, . . . ,Kmax we
do the following: We calculate the best possible objective value of x for every
scenario after the recovery action. Next we sort these values and normalize them
using the sorted vector of optimal solutions. In this way we generate Kmax

scenario curves for solution x. We plot all these curves in one plot using a heat
map.

On the horizontal axis is the recovery distance, and on the vertical axis are
the sorted scenarios. Bright colors mean that the solution is close to the optimal
solution after the recovery. A black field means that the solution could not be
recovered to a feasible solution in this scenario for the given recovery budget.

5 Experiments

In this last section we use the uncertain assignment problem and the uncertain
knapsack problem to illustrate the different frameworks. We use two different
uncertainty setups for the assignment problem and four for the knapsack prob-
lem. We consider finite and interval uncertainty for the assignment problem and
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for the knapsack problem. For the knapsack problem we consider either profit
uncertainty or profit and weight uncertainty.

Please keep in mind that all figures show the performance of the different
concepts only for specific instances. Therefore, we avoid to make general state-
ments about the different concepts. Instead, we want to explain how the different
frameworks can be used to chose the best solution for the specific instances. Be-
side the different robustness concepts, we also compute the naive solution of
the nominal scenario for comparison. This solution is called the average case
solution.

5.1 Assignment Problem

We use an assignment instance with 40 nodes, 20 nodes on each side. For the
finite uncertainty set we sample 10 different costs for each edge. The costs of
an edge are chosen uniformly at random from the interval [50, 150] for each
scenario. The nominal scenario is chosen to be the average of the 10 sampled
scenarios. In the case of interval uncertainty the midpoint of each interval is
chosen uniformly at random from the interval [100, 150] and the length of the
interval is also chosen randomly such that edges that are cheap on average tend
to have longer intervals.

Finite Uncertainty. We apply the following robustness concepts for this set-
ting: Strict robustness, absolute/relative/alpha regret, and recoverable robust-
ness. The recovery budget for recoverable robustness was set to 2. We present
the scenarios curve in Figure 2.

On the left side, the worst scenario for all solutions is compared, and on the
right side, the best one (as this is a minimization problem, smaller values indicate
better performance). As expected, strict robustness generates the solution that
performs at best if the worst may happen. The other robustness concepts perform
relatively similar in their worst scenario.

Let us compare the performance of the strict robust solution and the average
case solution in more detail to highlight some aspects of robust optimization.
The performance of the strict solution shows only little deviation among the
different scenarios, whereas the average case solution has the largest performance
deviation of all compared solutions. The average case solution is better in all but
one scenario compared to the strict robust solution. If one is willing to accept
the risk of bad performance in few scenarios, the average case solution may be
an appropriate choice. But if this risk cannot be taken, one should rely on a
robust solution.

For this instance, an interesting alternative to the strict robust solution is
given by the alpha regret solution. It performs better in all but the worst scenario.
Further, the performance in the worst scenario is still relatively close to the
performance of the strict robust solution.
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Fig. 2. Scenario curve of an assignment instance with 40 nodes an 10 cost scenarios.

Interval Uncertainty. We apply the following robustness concepts for this
setting: Strict robustness, bounded uncertainty, ellipsoidal uncertainty, absolute
and relative regret. The parameter Γ describing the bounded uncertainty con-
cept is chosen from the set {1, 2, . . . , 10}. The parameter Ω defining the size of
the ellipsoid used in the ellipsoidal uncertainty concept is chosen from the set
{0.5, 1.0, 1.5, 2.0}. Figure 3 shows the AC-WC curve of the instance.

For this instance strict robustness, absolute and relative regret generate the
same solution. Nevertheless, it is interesting to compare the solutions of bounded
and ellipsoidal uncertainty for different parameter choices. Small values of Γ resp.
Ω produce solutions that are closer to the average case solution and larger values
lead to solutions close to the strict solution. The AC-WC curve enables us to
visualize the exact trade-off for moving from average to worst case optimization.
For this instance, the bounded uncertainty concept generates solutions that are
often dominated by solutions from the ellipsoidal uncertainty concept.

5.2 Knapsack Problem

The capacity of the knapsack is set to 500 in all instances. The following setup is
used for finite uncertainty. If both weights and profits are affected by uncertainty,
we use an instance with 50 items. For each scenario, the profit of an item is chosen
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Fig. 3. The AC-WC curve of an assignment instance with 40 nodes and interval un-
certainty. The solution of the Strict Robustness, Absolute and Relative regret concept
coincide.

uniformly at random from the interval [50, 150] and the weight from the interval
[15, 25]. If only the profits are affected by uncertainty, we use an instance with
200 items, where the weight of each item is chosen uniformly at random from the
interval [15, 25]. The profits are generated as before. In both cases, we sample
10 scenarios.

For interval uncertainty we use 500 items. In this case we sample the average
profit of an item uniformly from the interval [60, 140] and the average weight from
the interval [12, 28]. The length of the intervals is chosen randomly proportional
to the midpoint of the interval. If the weights are not affected by uncertainty,
the interval length is set to 0.

Finite Profit Uncertainty. We apply the following robustness concepts for
this setting: Strict robustness, absolute/relative/alpha regret, and recoverable
robustness. The recovery budget is set to 2. The scenario curve is shown in
Figure 4.

Again the performance in the worst scenario is shown on the left and the
performance in the best on the right (as this is a maximization problem, larger
values indicate better performance). As expected, the strict robust solution is
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Fig. 4. The scenario curve of an knapsack problem with 200 items and 10 profit sce-
narios.

the best in the worst case. Interestingly, this is not only true for the worst
but also for the three worst scenarios, for this instance. Again the average case
solution shows the largest performance deviation of all solutions. If we compare
the absolute and the relative regret solution, none of them is clearly preferable.
The absolute regret solution is preferable for good scenarios and the relative
regret solution is preferable for bad scenarios. It is interesting to note that the
strict robust solution performs unexpectedly well for its best scenario.

Finite Uncertainty. We apply the following robustness concepts for this set-
ting: Strict robustness and recoverable robustness. The recovery budget is set to
10. The scenario curves with recovery are shown in Figure 5 for both solutions.
Values are normalized with respect to the optimal benchmark curve, where yel-
low indicates good performance, and darker colors indicate worse performance.

The strict robust solution is ensured to be feasible for all scenarios. Hence, no
black boxes can occur in the left figure. The recovery robust solution only guar-
antees feasibility within the recovery budget that was used for the computation.
In this case we used a recovery budget of 10. This means that black boxes may
occur in columns 0 to 9, which is indeed the case on the right figure. Note that
the recovery robust solution is not feasible for a single scenario if recovery is not
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Fig. 5. The scenario curve with recovery of an knapsack problem with 50 items and
10 profit and weight scenarios. The left figure represents the strict robust solution, the
right figure the solution generated by the recovery robust concept.

allowed. But, if a recovery budget of 10 is allowed, the recovery robust solution
performs considerably better as the worst case solution in the worst case. This
can be seen by comparing row 1 of both figures. If the allowed recovery budget
is large enough, the originally chosen solution becomes irrelevant as recovery to
the optimal solution is possible for each scenario. This explains the bright right
side of both figures. Observe that the strict robust solution optimizes purely the
worst case without recovery. Therefore this solution has the best value in the
field corresponding to scenario 1 and a recovery budget of 0 compared to all
other solutions. Whereas the recovery robust solution optimizes the worst case
performance if a recovery budget of 10 is allowed. Hence, it has the best value in
the field corresponding to scenario 1 and a recovery budget of 10 in comparison
with all other solutions.

Interval Profit Uncertainty. We apply the following robustness concepts for
this setting: Strict robustness, bounded uncertainty and ellipsoidal uncertainty.
We chose Γ = 15 and Ω = 4. We use this instance to present the sampled
scenario curve. We sampled 1000 scenarios. Remember that the profits of the
items are defined by intervals. In each scenario that we sample the profit of an
item is equally likely one of the endpoints of the interval. The sampled scenario
curve is shown in Figure 6.

We also show the “optimal curve” that can be used for comparison. We
separately solve each of the 1000 sampled scenarios. The resulting vector of
performances is sorted and plotted in the figure. It is clear that no solution can
generate a point that lies above the optimal curve. The sampled scenario curve
visualizes the conservatism of the strict robust solution for interval uncertainty.
For all sampled scenarios the solutions from the bounded and the ellipsoidal
uncertainty concept perform better. Only the average case solution performs
worse for some scenarios. The sampled scenario curve shows clearly the benefit
of the bounded and ellipsoidal uncertainty approach, as very unlikely scenarios
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Fig. 6. The sampled scenario curve of an knapsack instance with 200 items and interval
profit uncertainty. To generate the scenario curve, 1000 scenarios are sampled.

that will never happen in practice are ignored. It is interesting to note how similar
the solutions generated by the bounded and ellipsoid uncertainty concept are, if
the describing parameters are chosen accordingly.

Interval Uncertainty. We apply the following robustness concepts for this
setting: Strict robustness, bounded uncertainty and ellipsoidal uncertainty. The
parameter Γ describing the bounded uncertainty concept is chosen from the
set {1, 2, . . . , 10}. The parameter Ω defining the size of the ellipsoid used in
the ellipsoidal uncertainty concept is chosen from the set {0.5, 1.0, 1.5, 2.0}. We
present the price of robustness in Figure 7 and the sampled scenario curve in
Figure 8.

We first consider Figure 7. The strict robust solution is calculated under the
assumption that every item has it highest possible weight. Hence, this solution is
feasible for all possible parameter realizations, i.e. with 100%. The average case
solution, on the other hand, assumes that every item attains its average weight.
Therefore, in almost 50% of all parameter realizations the average case solution
is infeasible, as the budget constraint is violated. Again, similar to the AC-
WC curve the bounded and ellipsoidal uncertainty concepts generate interesting
compromise solutions between worst and average case. The indicated curve is
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Fig. 7. Price of robustness for a knapsack problem with 200 items and interval uncer-
tainty for profits and weights.

steep near the strict robust solution, which shows the fact that a small relaxation
of the feasibility requirement can lead to a big improvement in the average case
performance.

We now consider Figure 8. For clarity we only show two solutions of the
bounded and ellipsoidal uncertainty set, one for the smallest and one for the
largest parameter used in the computation. The performance of an infeasible so-
lution is set to 0. The first look at the average case solution reveals directly that
the solution is feasible for about 50% of the parameter realizations. Allowing
infeasibility for few scenarios yields a significant improvement for all most all
scenarios if the bounded or ellipsoidal uncertainty concept is used. If the param-
eter values of these concepts are chosen small, solutions are found that perform
similar as the average case solution, but are feasible for more scenarios.
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