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Kurzfassung

Antarktische Schelfeise sind ein bedeutender Bestandteil des weltweiten Klimahaus-
halts. Die bis zu 500 m dicken schwimmenden Eisplatten sind das Bindeglied zwi-
schen gegründetem Inlandeis und dem Ozean. Umgeben von Wasser auf der einen
und Luft auf der anderen Seite, sind Schelfeise klimatischen Veränderungen direkt
ausgesetzt. Studien der letzten Jahrzehnte zeigen, dass speziell die Schelfeise ent-
lang der Antarktischen Halbinsel instabil werden und schließlich teilweise oder auch
komplett zerbrechen.
Das Zerbrechen schwimmender Schelfeisteile oder ganzer Schelfeise trägt nicht di-
rekt zu einer Erhöhung des Meeresspiegels bei. Studien von Rott et al. (2002),
De Angelis (2003) und Scambos (2004) zeigen jedoch, dass mit Zerbrechen des
Larsen B Schelfeises, die Fließgeschwindigkeiten der dahinter liegenden Gletscher
erheblich zunahm und somit verstärkt Eis aus dem Inland dem Ozean zugeführt
wird. Für den sehr pessimistischen Fall eines komplett eisfreien Antarktischen
Kontinents prognostizieren Fretwell et al. (2013) einen weltweiten Anstieg des
Meeresspiegels um 58m. Jedoch wird auch ein Anstieg des Meeresspiegels um
nur wenige Meter, wie z.B. durch das Kollabieren des Westantarktischen Eisschilds
(Bamber et al., 2009b), weitreichende Konsequenzen auf die Infrastruktur entlang
der Küsten haben. Es ist daher wichtig die Zusammenhänge zu verstehen, welche
zu verstärktem Zerbrechen der Schelfeise führen.

Im Rahmen einer bruchmechanischen Finite Elemente Analyse untersucht diese Ar-
beit daher verschiedene Risssituationen in Antarktischen Schelfeisen. Basierend auf
Messungen von Rist et al. (2002), werden die Materialeigenschaften des Eises für
die kurze Zeitdauer des Bruchvorgangs als linear elastische angenommen. Der Last-
eintrag erfolgt quasi-statisch über verschiedene Arten von Randbedingungen und
Volumenkräfte. Die Bewertung der Risssituationen erfolgt über die Berechnung
von Konfigurationskräften, basierend auf der grundlegenden Arbeit von Eshelby
(1951). Im Zusammenspiel mit Finiten Elementen ist die Verwendung von Konfigu-
rationskräften eine effektive und flexible Methode für die Berechnung von Energie-
freisetzungsraten. Diese können dann in die im Ingenieurwesen für die Bewertung
von Rissen üblichen Spannungsintensitätsfaktoren umgerechnet werden. Die Unter-
scheidung, ob ein Riss wächst oder nicht, erfolgt für Modus I Belastungen durch Ver-
gleich mit gemessenen kritischen Werten für Spannungsintensitätsfaktoren welche
zum Beispiel in Rist et al. (2002) und Christmann et al. (2015) zu finden sind.

Die Lösung des zweidimensionalen linear elastischen Randwertproblems erfolgt
unter Einsatz des kommerziellen Finite Elemente Programms COMSOL. Die Kon-
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figurationskräfte werden in Postprocessing Routinen in MATLAB berechnet. Durch
die Verwendung von Dreieckselementen mit quadratischen Ansatzfunktionen kön-
nen die erwarteten Spannungssingularitäten an Rissspitzen nicht korrekt abge-
bildet werden. Die gerne zur Rissbewertung herangezogene diskrete Konfigura-
tionskraft an der Rissspitze stellt die tatsächlich vorhandene Energiefreisetzungsrate
daher nur ungenau dar. Eine erhebliche Verbesserung des Ergebnisses kann durch
in Denzer et al. (2003) vorgeschlagenes Aufsummieren der diskreten Knotenkon-
figurationskräfte in einem Bereich um die Rissspitze erzeugt werden. Bei Proble-
men mit Volumenkräften, belasteten Rissflanken, räumlich verteilten Materialpa-
rametern oder unsymmetrischen Geometrien und Belastungen führt die Summa-
tion jedoch zu weiteren Fehlern, welche das Ergebnis verfälschen. Nur durch die
Berechnung weiterer Flächenintegrale zur Berücksichtigung von Volumenkräften
und räumlich verteilten Materialparametern sowie zusätzlicher Linienintegrale ent-
lang der Flanken zur Einbeziehung von Druckspannungen im Inneren des Risses
und gemischten Belastungsmodi, können hohe Genauigkeiten bei der Berechnung
der Energiefreisetzungsrate erzielt werden. Mit dieser Implementierung wird der re-
lative Fehler der berechneten Energiefreisetzungsrate im Vergleich zu analytischen
Beispielen auf weniger als ein Promille reduziert.

Die implementierten Algorithmen werden zunächst für die Analyse der Span-
nungsintensitätsfaktoren vertikaler trockener Einzelrisse in Schelfeisen verwen-
det. Die Datengrundlage hierfür liefern Satellitenbilder verschiedener Auf-
bruchereignisse am Wilkins Schelfeis. Die Untersuchung des Einflusses der
geometrischen Parameter Länge und Mächtigkeit der betrachteten idealisierten
Schelfeisgeometrie sowie des Rissöffnungswinkels auf die Spannungsintensitätsfak-
toren an der jeweiligen Risstiefe steht in direktem Zusammenhang mit der Be-
trachtung verschiedener Randbedingungen für die Belastung der vertikalen Ränder,
sowie der Abbildung des tiefenabhängigen Wasserdrucks an der Schelfeisunterseite.
Hierbei zeigt sich, dass die in bisherigen semi-analytischen Studien von z.B. Van
Der Veen (1998a) oder Rist et al. (2002) gerne verwendeten Spannungsrandbe-
dingungen entlang der vertikalen Ränder zumindest für geringe Risstiefen ähnliche
Resultate liefern, wie die in dieser Arbeit bevorzugten Verschiebungsrandbedingun-
gen. Besonders hervorzuheben ist der Einfluss des Rissöffnungswinkels, welcher
bei bisherigen Veröffentlichungen zu Rissen in Schelfeisen komplett vernachläs-
sigt wurde. Weitere Untersuchungen mit verschiedenen Dichteprofilen, dickenab-
hängigem Elastizitätsmodul und verschiedenen konstanten Werten für die Querkon-
traktionszahl zeigen, dass speziell die für schnelle Bruchvorgänge berechtigte An-
nahme kompressiblen Materialverhaltens (Schulson and Duval, 2009) zu deutlichen
tieferen Rissen führt als das in der überwiegenden Anzahl bisheriger Studien ver-
wendete inkompressible Materialverhalten.
Im Folgenden wird die Analyse vertikaler Einzelrisse auf wassergefüllte Spalten
ausgedehnt. Dabei werden sowohl von Schmelzwasser oder Brine gefüllte Spal-
ten an der Eisoberfläche, als auch die von Meerwasser gefüllten Bodenspalten be-
trachtet. Der zusätzliche Wasserdruck auf den Rissflanken sorgt bei gleicher Last
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an den äußeren Rändern für wesentlich tiefer wachsende Risse als in den bisheri-
gen Rechnungen mit unbelasteten Rissflanken. Dies führt, je nach äußerer Last,
und unter Annahme von kompressiblem Materialverhalten, zu einem vollständigen
Durchreißen ursprünglich stabiler Risse bei einem Wasserstand von etwa der hal-
ben Risstiefe. Frühere Studien mit inkompressiblem Materialverhalten von z.B. Van
Der Veen (1998a) benötigen nahezu komplett gefüllte Spalten, um vollständiges
Durchreißen zu erzeugen.
Ein größerer, mit einem Temperatursturz einher gehender Aufbruchvorgang am
Wilkins Schelfeis, motiviert die Betrachtung von Frostsprengung als möglichen Aus-
löser. Für die bruchmechanische Modellierung von Frostsprengung werden zunächst
mit einer thermodynamischen Simulation mögliche Eisdicken auf der Wasserober-
fläche einer mit Schmelzwasser gefüllten Spalte berechnet. Der durch Phasentrans-
formation im abgeschlossenen Spalteninneren entstehende Druck dient dann als
Last für die bruchmechanische Auswertung. Die Simulationen zeigen, dass unter
Voraussetzung einer abgeschlossenen Spalte, realistische Eisdicken zu einem voll-
ständigen Durchreißen ursprünglich stabiler wassergefüllter Spalten führen.

Mit einem auf Konfigurationskräfte basierenden Algorithmus zur Ermittlung der
wahrscheinlichsten Rissausbreitungsrichtung untersucht die vorliegende Arbeit
auch horizontal wachsende Risse in Schelfeisen. Anders als im vorherigen Fall wer-
den dafür die Belastungen im kompletten Schelfeis, oder zumindest in großräumi-
gen Teilen um die betrachteten Risse benötigt. Mit einem neuen Ansatz, aufbauend
auf Gleichgewichtsüberlegungen für ein viskoelastisches Fluid, werden daher die
aus gemessenen Geschwindigkeitsfeldern berechneten viskosen Fliessspannungen
in so genannte viskose Volumenkräfte überführt. Diese dienen dann als Last für die
bruchmechanische Simulation. Angewendet auf Risswachstum in der Pine Island
Gletscherzunge und im Wilkins Schelfeis liefert der verwendete Algorithmus gute
Übereinstimmung im Vergleich zu beobachteten Rissverläufen. Die Ergebnisse sind
bemerkenswert, da keine Informationen über die räumliche Verteilung der Materi-
aleigenschaften des Eises benötigt werden. Ein Nachteil der Methode ist die starke
Abhängigkeit der Ergebnisse von der Qualität des gemessenen Geschwindigkeits-
feldes sowie den teilweise nur unzulänglich bekannten Randbedingungen. Im Fall
von hoch aufgelösten Geschwindigkeitsfeldern können aus der Berechnung der
viskosen Volumenkräfte aktive Risse als Stellen mit extremen Spannungsgradienten
ermittelt werden. Bei bekanntem Rissverlauf ist es darüber hinaus auch möglich,
aus den Simulationsergebnissen Rückschlüsse auf mögliche Randbedingungen zu
ziehen, welche dann in weiteren Analysen verwendet werden können.

Für zukünftige Modellierungen von Rissen in Schelfeisen ist die Ausweitung der
Algorithmen auf viskoelastisches Materialverhalten möglich. Auch eine Kopplung
von Bruchmechanik und eisdynamischen Simulationen ist wünschenswert. Für eine
bessere Unterscheidung von vertikal wachsenden Oberflächenspalten und horizon-
tal wachsenden Rissen ist darüber hinaus eine Simulation des drei-dimensionalen
Problems denkbar.
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Abstract

Antarctic ice shelves are important elements of the climate system. As link between
the grounded ice sheet and the ocean, the up to 500m thick floating plates are sur-
rounded by water, on one side and by the atmosphere on the other side. These
conditions make ice shelves very vulnerable to climate change. Recent publications
indicate that, especially along the Western Antarctic Peninsula, ice shelves become
unstable and eventually disintegrate.
The disintegration of floating ice shelf parts or entire ice shelves does not directly
contribute to sea level rise. However, studies of Rott et al. (2002), De Angelis (2003)
and Scambos (2004) show, that the disintegration of the Larsen B Ice Shelf consid-
erably accelerated the flow velocities of the inflowing glaciers. This results in an
increased drainage of grounded ice into the ocean. In the very pessimistic scenario
of a completely ice-free Antarctic continent, Fretwell et al. (2013) predict a global
sea level rise of about 58 m. However, a sea level rise of only a few meters, as fore-
cast by Bamber et al. (2009b) for the collapse of the West Antarctic Ice Sheet, also
leads to serious consequences for the infrastructure along the continental coasts.
Therefore it is of major importance to understand the processes that lead to an ac-
celerated disintegration of ice shelves.

The presented work analyses different failure scenarios in Antarctic ice shelves using
fracture mechanical concepts together with finite element simulations. According to
the study of Rist et al. (2002), linear elastic material behavior during the short frac-
turing process is applied. Neglecting concepts of dynamic crack propagation, the
loading conditions are quasi-static using different types of boundary conditions and
volume forces.
The estimation of crack criticality is based on the computation of configurational
forces following the approach of Eshelby (1951). In conjunction with finite ele-
ments, configurational forces are an effective and flexible method for the evaluation
of energy release rates, which are then transformed into stress intensity factors, a
common measure for crack criticality in engineering. The comparison of computed
stress intensity factors to measured values of critical stress intensity factors allows
to determine whether crack growth continues. Critical stress intensity factors for
mode I opening can be found in Rist et al. (2002) or Christmann et al. (2015).
The two-dimensional linear elastic boundary value problem is solved in the com-
mercial finite element program COMSOL . The computation of the configurational
forces follows in postprocessing routines in MATLAB . By applying triangular finite
elements with standard quadratic shape functions, the expected stress singularities
at the crack tip cannot be mapped. Therefore, the discrete configurational force at

v



the crack tip node, frequently used to compute the energy release rate, only provides
an inaccurate measure for crack criticality. Denzer et al. (2003) therefore propose
the summation of all nodal configurational forces in a region around the crack tip
to considerably enhance the result. However, in the case of applied volume forces,
spatially distributed elastic parameters, loaded crack faces or mixed crack open-
ing modes, the inclusion of nodal configurational forces around the crack tip leads
to further errors. Only by computing additional area integrals for applied volume
forces and inhomogeneous material parameters, as well as additional line integrals
along the crack faces to incorporate crack face loads and mixed opening modes, very
accurate results can be achieved. The presented algorithm shows a relative error of
less than one per-mil in comparison to analytical computations.

The fracture mechanical simulations first concentrate on the computation of stress
intensity factors for dry single surface cracks in the ice shelf bulk. The input data
for the simulations is based on satellite imagery of different fracture scenarios in the
Wilkins Ice Shelf. The analysis of the influence of the geometric parameters length
and thickness of the idealized ice shelf geometry, as well as of the crack opening an-
gle is closely connected to the study of different boundary conditions for the remote
loading along the vertical lateral boundaries on the one hand and for the mapping
of the depth-dependent buoyancy force at the ice shelf bottom on the other hand. It
appears that, at least for shallow cracks, former semi-analytical studies of e.g. Van
Der Veen (1998a) or Rist et al. (2002) with stress boundary conditions along the
vertical lateral boundaries are in good agreement with the results presented here,
which are predominantly computed using displacement boundary conditions. The
most influencing geometric parameter is the crack opening angle, which has been
completely ignored in previous studies of cracks in ice shelves. Further simulations
with various density profiles, depth-dependent Young’s moduli and different con-
stant Poisson’s ratios show that the assumption of compressible material behavior,
as motivated by e.g. Schulson and Duval (2009) for short-term fracture processes,
leads to considerably deeper cracks than the use of incompressible material behav-
ior, which is predominantly used in previous studies.
In a next step, the examination of vertical single cracks is expanded to surface
crevasses, filled by meltwater or brine, as well as to cracks at the ice shelf bot-
tom. For equal lateral loading, the simulations with additional water pressure on
the crack flanks lead to significantly deeper cracks than the previous studies without
crack face loads. Without additional lateral loading and under assumption of com-
pressible material behavior, a water filling of about half of the crack depth results
in a complete penetration of initially stable crevasses. Previous studies with incom-
pressible material behavior (Van Der Veen, 1998a) and equal external loading need
almost completely filled crevasses for a total penetration.
A break-up event at the Wilkins Ice Shelf that coincided with a major temperature
drop motivates the consideration of frost wedging as triggering mechanism for ice
shelf disintegration. Prior to the fracture mechanical analysis of frost wedging, a
thermodynamic simulation investigates possible ice lid thicknesses that can form on
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a water-filled crevasse due to given external temperatures. The additional pressure
resulting from the phase transformation within the sealed crevasse then serves as
loading for the fracture mechanical simulation. The analyses show, that reasonable
ice lid thicknesses can lead to a complete penetration of an initially stable water-
filled crevasse.

An algorithm for the evaluation of the most probable crack propagation direction,
based on configurational forces, is used to analyze the horizontal propagation of rifts
in ice shelves. Unlike in the previous models, now the stress state in the complete
ice shelf or at least in an extended area around the rifts is needed for the simulation.
Using equilibrium considerations for a viscoelastic fluid, a new method is introduced
to compute so-called viscous volume forces from viscous surface stresses. The vis-
cous surface stresses are evaluated using measured ice shelf velocities from satellite
imagery. The resulting viscous volume forces then serve as loading for the fracture
mechanical analysis. Applied to rifts in the Pine Island Glacier tongue and at Wilkins
Ice Shelf, the resulting crack paths agree well to observed crack patterns. This is re-
markable, as no information on e.g. the spatial distribution of ice parameters is
needed. A disadvantage of the method is the strong dependence on the quality and
the resolution of the measured velocity field, as well as on the boundary conditions,
which for the most part are insufficiently known. If high-resolution velocity fields
are provided, the locations of active rifts, as regions with strong stress gradients,
follow as by-product of the evaluation of the viscous volume forces. Furthermore,
if the final crack path is known from satellite data, the simulations can be used to
deduce likely boundary conditions for further studies.

For future simulations of cracks in ice shelves, the linear elastic model could be ex-
tended to viscoelastic material behavior. A coupling of the fracture mechanical anal-
ysis to ice dynamical simulations is also desired. Furthermore, a three-dimensional
model could help to better distinguish between vertically growing surface cracks
and horizontally growing rifts.
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1 Introduction

1.1 Motivation and background

Antarctica is the fifth largest continent on Earth. Approximately 98 percent of the
landmass is covered with ice. New measurements by Fretwell et al. (2013) show,
that the total volume of ice in Antarctica is about 27 Mio km3 which corresponds
to 70 percent of the worlds fresh water. The Transantarctic Mountains divide the
continent into a larger eastern side and a smaller western side including the Antarc-
tic Peninsula. The predominant part of the ice masses is concentrated in East Antarc-
tica, where the ice thickness reaches more than 4000 m. The ice masses covering
West Antarctica are comparably small. Nonetheless, especially the Antarctic Penin-
sula is of great scientific interest. It is the region extending furthest north from

Figure 1.1: Overview of the Antarctic continent with distinction between ice shelves (red)
and grounded ice (blue) applying the ALBMAP masks (Le Brocq et al., 2010) overlaid on a
hillshade of the surface digital elevation model of Bamber et al. (2009a) with the help of
Quantarctica as provided by the Norwegian Polar Institute
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1 Introduction

the pole with a climate that is considerably influenced by the warming ocean and
hence comparatively mild. Glaciologists assume that with ongoing climate warm-
ing, the processes observable now along the Antarctic Peninsula will sooner or later
affect the West Antarctic Ice Sheet (Joughin and Alley, 2011) and possibly the entire
Antarctic continent.
An illustrative number to grasp the amount of ice in Antarctica is the potential sea
level rise of 58m associated with the collapse of the entire Antarctic Ice Sheet as pub-
lished by Fretwell et al. (2013). The amount of eustatic sea level rise resulting from
a collapse of only the West Antarctic Ice Sheet is given by Bamber et al. (2009b).
With 3.3m their value is considerably lower than the value by Fretwell et al. (2013)
for the entire Antarctic Ice Sheet. In both cases, not only smaller flat islands, but
also a considerable amount of the world’s continental coastlines would be covered
with water. Therefore, it is of great importance to understand the mechanisms that
influence glaciological processes in Antarctica and to be able to correctly interpret
signs that indicate an acceleration of the mass loss (Rignot et al., 2011b).
The Antarctic Ice Sheet gains new ice mass by snow accumulation. Ice loss occurs
due to ablation and, for the main part, due to drainage through the many glaciers
across the grounding line into the ocean. When the glaciers reach the open water,
the ice masses start to float and build so called ice shelves (Fig. 1.1). Larger ice
shelves are fed by several glaciers and can reach up to several 100 000km2 in size.
The most prominent large ice shelves are the Ross Ice Shelf in the Ross Sea with
an area of even 487 000km2 and the Filchner-Ronne Ice Shelf in the Weddell Sea
with an area of 430000 km2. Smaller ice shelves can be found along the complete
Antarctic coastline. The total number of ice shelves in Antarctica listed by Rignot
et al. (2013) is 66, from which some already partly or fully collapsed.
Since ice shelves are floating on the water, their melting or collapse does not di-
rectly contribute to sea level rise. Nevertheless, ice shelves play an important role
as buttressing barriers that decelerate the glacier flow and hence the drainage of ice
from the Antarctic Ice Sheet into the ocean. Rott et al. (2002), De Angelis (2003)
and Scambos (2004) report considerable thinning and increase of the velocities of
the tributary glaciers after the collapse of the Larsen B Ice Shelf. Since eight of
twelve ice shelves along the Antarctic Peninsula retreated or disintegrated in the
past decades (Braun et al., 2009; Cook and Vaughan, 2010), it is essential to gain a
better understanding of the mechanisms that lead to ice shelf collapse.

Fracturing of weakened polycrystalline ice is the governing process for all calving or
break-up events in ice shelves. The term calving denotes the continuous breaking
of smaller ice fragments from ice shelves or glaciers (small scale calving), as well as
the braking of large tabular icebergs from ice shelves. Both processes are substantial
parts of the mass balance of an ice sheet. Break-up or disintegration events, on the
other hand, describe the collapse of ice shelf parts or entire ice shelves into many
small fragments. Prominent examples are the complete disintegration of the Larsen
B Ice Shelf (Glasser and Scambos, 2008) or the break-up events at the Wilkins Ice
Shelf (Braun et al., 2009). Break-up or disintegration events are most likely linked
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1.1 Motivation and background

to climate warming.
Initial cracks, as basis for all fracture events in ice shelves, form due to tensile bend-
ing stresses at the surface, originate at shear margins or result from large tensile
flow stresses e.g. downstream of ice rises (Van Der Veen, 2002). With ongoing
flowing of the ice shelf, some of these cracks might stabilize or close. Due to ad-
ditional load or changes in the boundary condition, others can become critical and
eventually penetrate the ice shelf, either vertically or horizontally. Several authors
(Glasser and Scambos, 2008; Scambos et al., 2009; Banwell et al., 2014) argue, that
increased surface melt due to a general warming of the atmosphere results in a large
number of melt ponds and water-filled surface crevasses. The additional load of the
water pressure inside the crevasse then leads to the penetration of initially stable
cracks and eventually to larger break-up events.
One major difficulty for the analysis of cracks in ice shelves is the determination
of appropriate geometric scales, material parameters and boundary conditions for
the finite element (FE) simulation. The remoteness of the area of study, together
with the extreme climatic conditions make measurements of the ice properties and
observations of crack growth very difficult or even impossible. Most knowledge on
geometry and boundary conditions is therefore obtained from satellite data. Satel-
lite images recorded in visible light give information on the real surface structure.
Unfortunately, since the study area lies close to the poles, visible light is only avail-
able during half of the year. Coverage by clouds also reduces the applicability of
this kind of data. Further space borne instruments use Synthetic Aperture Radar
(SAR) to resolve the surface structure of ice shelves. The big advantage of SAR
data lies in the independence of daylight and cloud coverage, as well as in the high
resolution of the image products. Disadvantages can be found in the more complex
post-processing and the expertise needed to analyze and interpret the data.
High-resolution satellite images document the horizontal extent of surface
crevasses. The lengths of the crevasses reach up to several 10s of kilometers. The
crevasse width is more difficult to determine as it often covers only very few pixels.
Possible crevasse widths therefore range from 10s of centimeters to 10s of meters.
The crevasse depths remain unknown, which makes it difficult to clearly distinguish
between vertically propagating surface crevasses and horizontally propagating rifts.
With additional processing of the satellite images, the position of the grounding line,
and hence the horizontal extent of the ice shelf, as well as surface velocities with
the resulting surface stresses, are available. However, it is difficult to obtain precise
information on the boundary conditions. Even though the position of features with
rather constrained boundaries, such as the grounding line and ice rises, can be eval-
uated to some extent, the type of constraint and the degree of restriction can only
be anticipated.
Knowledge on material parameters is obtained from ice cores that are drilled during
expeditions. The huge amount of resources (fuel, manpower, money) needed for
drilling expeditions only allows for data acquisition at few locations. The material
parameters in other regions therefore have to be evaluated using interpolation based
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1 Introduction

on measurable environmental parameters. For these reasons, a meaningful fracture
mechanical analysis of cracks in ice shelves should depend only on few parameters
whose influence on the simulation results can be evaluated for a relevant range of
values.
Ice, on the long time scale, behaves as viscous fluid. However, fracture in ice hap-
pens on a very short time scale during which ice can be regarded as a brittle solid
(Rist et al., 2002). Although the qualification of a linear elastic model to describe
the ice rheology for fracture mechanical purposes is still the subject of discussion
and controversy within the glaciological community, linear elastic fracture mechan-
ics (LEFM) is well established and widely used for the analysis of vertically, as well
as horizontally propagating cracks (Weertman, 1973; Van Der Veen, 1998a; Rist
et al., 2002; Larour et al., 2004a).

Fracture mechanical methods can be used to investigate crack criticality by, for ex-
ample, determining the stress intensity factor KI at the crack tip and comparing it
with critical values of KI c, obtained experimentally (Rist et al., 2002; Christmann
et al., 2015). A well-established and comfortable method for the computation of
KI in the context of a FE simulation is the use of configurational forces, which goes
back to the work of Eshelby (1951). Configurational forces can be used as indicator
for crack criticality and crack propagation direction for a wide range of material be-
havior, for static and dynamic crack propagation, small and large deformations and
also in combination with mesh refinement or multi scale material simulations (Näser
et al., 2009; Kuhn et al., 2015; Gurtin and Shvartsman, 1997; Müller and Maugin,
2002; Khalaquzzaman et al., 2012). However, publications on configurational forces
in combination with volume forces, loaded crack faces or spatially distributed mate-
rial parameters are rare, especially in combination with the computation of resulting
configurational forces as introduced by Denzer et al. (2003). The presented algo-
rithm for fracture analysis in linear elastic materials therefore extends the standard
implementation for the evaluation of configurational forces towards problems with
volume forces, loaded crack faces and depth-dependent Young’s moduli. Addition-
ally, a method is shown to allow the computation of resulting configurational forces
also for mixed mode loading situations without loss of accuracy, depending on the
area of influence. The simulations are restricted to static loading. Crack initiation is
excluded from the analysis by assuming the existence of starter cracks.

The work at hand analyses vertical cracks in ice shelves using parameters that mimic
the conditions in the Wilkins Ice Shelf (WIS). Due to its partial disintegration since
1991 (Braun et al., 2009; Cook and Vaughan, 2010) with the collapse of the ice
shelf bridge in 2009 (Humbert et al., 2010), surface changes on the WIS are very
well captured by satellite imagery. High-resolution images of WIS after the break-
up event in 1998 or 1999, as shown in Braun et al. (2009), reveal a considerable
amount of surface crevasses and rifts and motivate the presented analysis. Recent
publications on surface cracks in ice shelves link larger break-up and disintegration
events to surface water that fills existing crevasses and triggers crack propagation
(Scambos et al., 2009). The correlation of the observed break-up event with a mea-
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1.2 Overview

sured surface temperature drop at research stations close to the WIS motivates the
analysis of a more complex frost wedging scenario as possible reason for the par-
tial disintegration in February 2009. Therefore, also the coupled thermodynamics
- fluid flow problem with phase transition is analyzed to estimate the possible ice
layer thickness in a water-filled crevasse that builds due to a severe temperature
drop. In a following step, the fracture process with ice layer is simulated.
Horizontally propagating rifts are analyzed at the floating tongue of Pine Island
Glacier (PIG) and at WIS. A new method is introduced to transfer the viscous sur-
face stresses of the entire ice shelf, evaluated using measured ice shelf velocities,
into an appropriate loading for the LEFM analysis. Previous approaches by e.g.
Hulbe et al. (2010) or Larour et al. (2004a,b) were either restricted to small ice
shelf excerpts or did not explicitly solve the linear elastic problem.
PIG is only constrained along the lateral margins, without further boundaries due
to ice rises acting as pinning points. Additionally, the number of active and hence
propagating rifts is usually small. This and the well captured repeatedly occurring
major calving events make PIG an interesting first subject for the analysis of rift
propagation. A more complex situation is found at WIS. Clamped between several
islands and pinned by an extraordinary large number of ice rises, the stress state in
the WIS is much more complex. As a result, considerably more active rifts or cracks
can be seen leading to ongoing calving of larger ice shelf parts. For the analysis of
rift propagation in the WIS therefore also crack merging and calving processes are
included in the simulation.

1.2 Overview

The thesis is composed of seven chapters. Fundamental kinematics and balance
equations of continuum mechanics, which are relevant for the fracture mechanical
analysis of ice, are briefly summarized in the next chapter.

Basic principles of linear elastic fracture mechanics with a focus on energy crite-
ria for crack propagation leading to the concept of configurational forces follow in
chapter 3. Special attention is paid to the expansion of the well-established config-
urational force approach to problems with volume forces, material inhomogeneities
and loaded crack faces. Different strategies for the evaluation of the most probable
direction of crack propagation are introduced.

Chapter 4 covers the implementation of the presented methods within the frame-
work of the finite element software COMSOL1 together with post-processing rou-
tines in MATLAB2. Besides the standard numerical integration within the element,
additional routines for the computation of configurational forces due to pressurized
crack faces and mixed mode loading along the crack faces are introduced. This
allows a more precise computation of the resulting configurational crack tip force,

1www.comsol.com
2www.mathworks.com
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1 Introduction

which is the sum of all nodal configurational forces within a defined region. More-
over, this chapter introduces the crack propagation algorithm under mixed mode
loading, later used for the evaluation of horizontal rift paths. Six benchmark ex-
amples are used to compare the performance of the implemented algorithms to
semi-analytical results or literature values. The examples consider the type and the
refinement of the mesh around the crack tip, loaded crack faces, problems with
volume forces, inhomogeneous Young’s moduli and various combinations of mixed
mode loading with a static crack tip, as well as the crack propagation algorithm with
one and two cracks.

In chapter 5, the presented methods are applied for the analysis of stress intensity
factors for vertical single cracks in ice shelves. The situation found at the WIS in
2008 is used to identify a set of meaningful parameters. First concentrating on dry
single cracks emerging from the ice shelf surface, the impact of the geometric model
scales and boundary conditions, as well as the influence of the density, Young’s mod-
ulus and Poisson’s ratio are analyzed. In order to compare the presented approach
to the study of Rist et al. (2002), the simulation is also run with input data from
Ronne Ice Shelf. The focus is then shifted towards different setups of water-filled
single cracks, emerging from the top or from the bottom of the ice shelf. The chapter
closes with a thorough analysis of a possible frost wedging process at the WIS. To
this end, the growth of an ice lid in a water-filled crevasse is first modeled using
a coupled thermodynamic-fluid flow simulation. Therefore, the built-in COMSOL
module is extended for the computation of phase transition, using the heat capacity
method as presented by Ogoh and Groulx (2010). The resulting ice lid thicknesses
are then applied to a fracture mechanical analysis of a frost wedging process.

Chapter 6 analyses the propagation of horizontal rifts in ice shelves. Unlike in the
previous chapter, where only a small cutout of the ice shelf is considered, now the
spatial distribution of the stresses in the entire ice shelf is needed. Instead of us-
ing a cumbersome time-dependent viscoelastic simulation to capture ice shelf flow
and crack propagation, a method is presented that transforms the viscous surface
stresses into in-plane loads for the linear elastic fracture mechanical analysis. The
viscous surface stresses are computed using ice shelf velocities resulting from satel-
lite imagery. The performance of the method is first shown for an idealized ice shelf
with simulated velocities. Then, two velocity fields of PIG are used to simulate the
rift propagation that led to the 2013 calving event. Finally, the method is applied
to simulate the horizontal propagation of cracks in the WIS using a velocity field of
autumn 2008. Therefore, a method is presented to reduce unphysically high stresses
resulting from jumps in the velocity field of various origins.

Chapter 7 gives a short conclusion and an outlook on future work.
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2 Continuum mechanics

The aim of the following introduction to linear elasticity, as well as ice dynamics, is
to set a common basis necessary for the understanding of the implemented models
and the consequent fracture mechanical evaluation. For more detailed information
on continuum mechanics, as well as the application to ice shelf flow, several good
books are available. Without claim of completeness, the reader is referred to Becker
and Gross (2002) or Sadd (2005) for details on elasticity, to Altenbach (2012) or
Holzapfel (2000) for a general overview on continuum mechanics and to Greve and
Blatter (2009) for application to ice dynamics.

2.1 Kinematics

The motion of a deformable continuous bodyB from its reference configuration R0

at time t0 to the current configuration R at time t is described by the smooth and
invertible mapping χ . The position x of a material point in the current configuration
is given by x = χ(X , t) at each time t, where X denotes the position of the material
point in the reference configuration. The displacement vector

u = x − X (2.1)

is defined as the connecting vector between a material point and its map in the
reference and in the actual configuration, respectively. The displacement field
can be written as a function of the material point in the reference configuration
u = u(X , t) = χ(X , t)− X which is called the Lagrangian description. This formula-
tion is commonly used in solid mechanics and will be used for the fracture mechani-
cal analysis. For the characterization of fluids, e.g. glacier flow, a formulation in the
current configuration, called Eulerian description is often more appropriate. Here
the displacement is formulated as u = u(x , t).
The deformation gradient F, defined as

F=
∂ x
∂ X

or FiJ =
∂ x i

∂ X J
, (2.2)

in index notation, maps a line element dX in the reference configuration to the
respective line element dx = FdX in the current configuration. The indices i = 1,2, 3
and J = 1,2, 3 indicate Cartesian components of vectors or tensors in the current or
reference configuration, respectively.
Invertibility of the motion as well as preservation of orientation at all times implies

7



2 Continuum mechanics
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Figure 2.1: Mapping χ between reference configuration R0 and current configuration R

that J = detF> 0. Insertion of x = X + u in Eq. (2.2) yields

F=
∂ (X + u)
∂ X

= 1+H

where 1 denotes the second-rank identity tensor and H the displacement gradient
defined as

H=
∂ u
∂ X

. (2.3)

A common symmetric deformation measure is the Green-Lagrange strain tensor,
which can be given in terms of the displacement gradient as

E=
1
2

�

H+HT +HT H
�

. (2.4)

It describes the difference between the squares of the length of line elements dS and
ds in reference and current configuration, respectively, in Lagrangian formulation.
In the case of small displacement gradients, as will be assumed in the following, the
reference and the current configuration coincide and

|HiJ |=
�

�

�

�

∂ ui

∂ X J

�

�

�

�

=

�

�

�

�

∂ ui

∂ x j

�

�

�

�

� 1. (2.5)
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2.2 Balance Equation and Stress Measures

Hence, the quadratic terms in H become negligibly small and the Green-Lagrange
strain tensor can be simplified, yielding the linearized strain tensor

ε =
1
2

�

H+HT
�

or εi j =
1
2

�

∂ ui

∂ x j
+
∂ u j

∂ x i

�

(2.6)

in index notation. No further distinction between X and x is necessary.

The velocity field, in the Eulerian description is defined as

v = v(x , t) =
dx (X , t)

dt
, (2.7)

where d( )/dt denotes the material time derivative. The velocity gradient or strain-
rate tensor

L=
∂ v(x , t)
∂ x

(2.8)

is the spatial derivative of the velocity field. It can be additively decomposed into a
symmetric and an antisymmetric part

D=
1
2
(L+ LT ) and W=

1
2
(L− LT ). (2.9)

An important quantity in the modeling of the material behavior of flowing ice is the
square root of the second invariant of the symmetric strain-rate tensor,

de =
p

I ID =

√

√1
2
[tr (D2)− (trD)2], (2.10)

also called effective strain rate.

2.2 Balance Equation and Stress Measures

a) t ∗

t ∗
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Figure 2.2: a) A body in equilibrium; b) internal forces in an arbitrary cut; c) elements of
the Cauchy stress tensor in Cartesian coordinates
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2 Continuum mechanics

The balance of linear momentum indicates that a body is in equilibrium if
∫

∂ V

t ∗dA+

∫

V

f dV = 0, (2.11)

with t ∗ representing external loads acting on the surface A of the body (Fig. 2.2 a)
and f representing the loads per volume element dV . These external forces cause
internal stresses t , which can be inferred by an arbitrary fictitious cut through the
body (Fig. 2.2 b). The stress vector t depends on the direction of the cut re-
presented by the outward pointing unit normal vector n. The component of t in
direction of n, σ = t · n, is called the normal stress, the component vertical to n,
τ =

p
t2 −σ2, is called shear stress. If the body is cut along planes orthogonal to

the axis of the Cartesian coordinate system (Fig. 2.2 c), the components of the
resulting three stress vectors t x , t y , t z constitute the elements of the symmetric
Cauchy stress tensor σ,

σ =





t x

t y

t z



=





σx x σx y σxz

σy x σy y σyz

σzx σz y σzz



 . (2.12)

The first index of the stress components σi j points to the direction of the cut, the
second index indicates the direction of the components of t x , t y and t z, respectively.
Balance of angular momentum for the volume element in Fig. 2.2 c) reveals the
symmetry of the Cauchy stress tensor, hence σi j = σ ji. With the use of Cauchy’s
theorem, σn = t , integration by parts and the divergence theorem, Eq. (2.11) can
be rewritten in the local form as

divσ + f = 0 or σi j, j + fi = 0. (2.13)

2.2.1 Linear elasticity

For the short-term fracture mechanical analysis, the generally complex material be-
havior of ice is assumed as linear elastic. The relation between the Cauchy stress
tensor σ and the linearized strain tensor ε therefore reads

σ =Cε, (2.14)

where C is the fourth-rank stiffness-tensor. In case of isotropic material behavior,
the components of C can be given in terms of the Lamé-constants λ and µ and
Eq. (2.14) is rewritten as

σ = λtr(ε)1+ 2µε or σi j = λεkkδi j + 2µεi j, (2.15)

with the use of Kronecker’s delta stating δi j = 1 for i = j and δi j = 0 for i 6= j.
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2.2 Balance Equation and Stress Measures

An important quantity for the successive fracture mechanical analysis is the work per
unit volume W done during the deformation from the undeformed configuration to
the actual state with the strain ε,

W =

ε
∫

0

σdε̃. (2.16)

In an elastic body, W , also called strain energy density or specific elastic potential,
only depends on ε and is independent of the deformation path. Hence, the incre-
ment

dW = σi jdεi j =
∂W
∂ εi j

dεi j

is a total differential and the stress can be computed via

σi j =
∂W
∂ εi j

. (2.17)

In case of quasi-static loading, the potential of internal work results from the strain
energy density

Πi =

∫

V

WdV, (2.18)

and the potential of conservative external loads reads

Πe = −
∫

V

f · u dV −
∫

∂ V

t ∗ · u dA. (2.19)

The total potential then follows as

Π= Πi +Πe. (2.20)

Plane stress, plane strain

The dimensions of an ice shelf (80-500m thickness, several hundreds of kilometers
in length and width) motivate two-dimensional approaches of the general three-
dimensional system. Figure 2.3 a) illustrates crack propagation in the (x , y-plane),
where the equations of the plane stress state yield a good approximation of the
problem. Common mechanical applications for a plane stress analysis are plates,
whose thickness is much smaller than the in-plane dimensions and which only sup-
port in-plane loads. In this case the components σzz, σxz and σyz of the Cauchy
stress tensor, as well as the components εxz and εyz of the linearized strain tensor
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z y

b)

x

z y

Figure 2.3: a) Horizontal crack propagation, plane stress conditions; b) vertical crack prop-
agation, plane strain conditions

vanish and the remaining components are independent of z. Using the relations

λ=
Eν

(1+ ν)(1− 2ν)
and µ=

E
2(1+ ν)

, (2.21)

with Young’s modulus E and Poisson’s ratio ν, Eq. (2.15) reduces to

σx x =
E

1− ν2
εx x +

Eν
1− ν2

εy y ,

σy y =
Eν

1− ν2
εx x +

E
1− ν2

εy y , (2.22)

σx y =
E

1+ ν
εx y .

Independence of depth for the in-plane components of the stress and strain tensor
is a valid assumption for ice shelves, whereas the extinction of σzz does not match
reality, where in general, the compression due to gravity plays an important role.
However, the influence of σzz can be neglected for the analysis of in-plane processes.
Vertical crack propagation (Fig. 2.3 b) demands for an analysis of the processes in
the vertical ice-shelf plane, the x , z-plane. The problem can be approximated by the
equations of the plane strain state, which hold for situations where the displace-
ments in one direction (here the y-direction) vanish. The applicability to vertical
cracks in ice shelves follows from the presumption of an infinite extent of the ice
shelf in y-direction, justified by the mentioned ice-shelf dimensions. In case of
plane strain, Eq. (2.15) can be written as

σx x =
E(1− ν)

(1+ ν)(1− 2ν)
εx x +

Eν
(1+ ν)(1− 2ν)

εy y ,

σy y =
Eν

(1+ ν)(1− 2ν)
εx x +

E(1− ν)
(1+ ν)(1− 2ν)

εy y , (2.23)

σx y =
E

1+ ν
εx y .
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2.2 Balance Equation and Stress Measures

2.2.2 Glen’s Flow Law

Shear experiments of polycrystalline ice indicate a complex nonlinear relation be-
tween the shear angle γxz and time (Fig. 2.4), (Glen, 1958). Whereas elastic de-
formation characterizes the short-term behavior of ice, the long-term properties are
dominated by viscous creep. The secondary creep regime with a constant shear
rate γ̇ appropriately describes glacier and ice shelf flow (Greve and Blatter, 2009;
Cuffey and Paterson, 2010).

γx y

elastic deformation

primary creep

secondary creep

acceleration

tertiary creep

time, t
τ b)

y

x

st
ra

in
,γ

x
y

a)

τ

Figure 2.4: a) Simple shear experiment; b) nonlinear shear angle vs. time behavior of ice,
(Greve and Blatter, 2009)

The relation between γ̇ and the shear stress τ for secondary creep is best described
by a non-linear viscous fluid,

γ̇=
1

η(T, p, |τ|)
τ, (2.24)

where the viscosity η is a function of the temperature T , the pressure p and the
absolute shear stress |τ|. Regarding the long term flow behavior, ice can be idealized
as incompressible and dρ/dt = 0. Therefore, the conservation of mass,

∂ ρ

∂ t
+ (∇ρ) · v +ρdiv v = 0 with

∂ ρ

∂ t
+ (∇ρ) · v =

dρ
dt

, (2.25)

reduces to
div v = trL= trD= 0. (2.26)

In addition it can be shown for polycrystalline ice, that the strain rate is a function
of the stress deviator σD

f defined as

σD
f = σ f + p1 with p = −

1
3

tr(σ f ), (2.27)
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2 Continuum mechanics

with σ f being the viscous Cauchy stress (subscript f indicates flow). This leads to
the expression for the stress - strain rate - relation in tensorial form

D=
1

2η(T, p,σD
e )
σD

f . (2.28)

As a result, the strain rate tensor D is also deviatoric. The fluidity, 1/η, can be
rewritten as

1
η(T, p,σD

e )
= 2 A(T, p) (σD

e )
n−1 (2.29)

with the Arrhenius-type rate factor A(T, p) and the effective deviatoric stress

σD
e =

q

I IσD
f
=

√

√1
2

�

tr(σD
f

2)− (trσD
f )2
�

=

√

√1
2

tr (σD
f

2), (2.30)

since the trace of a deviatoric tensor equals zero. Following Cuffey and Paterson
(2010), the power exponent n is usually set to n = 3. Solving Eq. (2.28) for the
stress leads to the inverse flow law and consequently to a constitutive equation for
the deviatoric stress

σD
f = A(T, p)−1/nd

− n−1
n

e D. (2.31)

Usually, the shear stresses σ f x y and σ f yz are considerably smaller than the vertical
normal stress σ f zz and can be neglected in the vertical momentum balance (Greve
and Blatter, 2009). Therefore, σ f zz can directly be computed yielding

σ f zz = −ρI g(H − z), (2.32)

with a upward pointing z-coordinate starting at the bottom of an ice shelf with the
thickness H and the constant ice density ρI . The deviatoric vertical normal flow
stress is then expressed as

σD
f zz = −ρI g(H − z) + p. (2.33)

With this and the trace of the deviatoric flow stress, which by definition equals zero,
the pressure p can be redefined as

p = p− 0= p−σD
f x x −σ

D
f y y −σ

D
f zz (2.34)

= ρI g(H − z)−σD
f x x −σ

D
f y y . (2.35)

The resulting equations for components of the flow stress tensor therefore read

σ f x x = Bd
1−n

n
e (2Dx x + Dy y)−ρI g(H − z),

σ f y y = Bd
1−n

n
e (Dx x + 2Dy y)−ρI g(H − z), (2.36)

σ f x y = Bd
1−n

n
e Dx y ,
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2.2 Balance Equation and Stress Measures

where B = A(T, p)−1/n. The surface stresses are computed for z = H hence the last
summand in Eq. (2.36) vanishes.

2.2.3 Principal stresses and their directions

Since fracture in ice shelves predominantly occurs perpendicular to the direction
of the principal flow stress, principal stresses and the corresponding principal di-
rections are introduced in the following. Principal directions denote a particular
orthogonal coordinate system, characterized by the fact that cuts perpendicular to
the principal directions feature only normal stresses σ, and no shear stresses occur.
In other words, the stress vector in those cuts has the same direction as the nor-
mal vector, hence t = σn. The latter property together with Cauchy’s theorem can
be used to compute the principal stresses. With σn = σn, the formulation of an
eigenvalue problem follows:

(σ −σ1)n = 0. (2.37)

The three eigenvalues σi, called principal stresses, are the nontrivial solutions of the
characteristic polynomial

σ3 − Iσσ
2 − IIσσ− IIIσ = 0 (2.38)

where Iσ, IIσ and IIIσ denote the invariants

Iσ = trσ, IIσ =
1
2

�

tr (σ2)− (trσ)2
�

and IIIσ = detσ. (2.39)

The corresponding eigenvectors form the principal directions n i. In the two-
dimensional case, Eqs. (2.38) and (2.39) simplify and the principal stresses (here in
case of the Cauchy stress tensor) can be computed using the equation

σ1,2 =
σx x +σy y

2
±

√

√

√

�

σx x +σy y

2

�2

+σx y (2.40)

with σ1 ≥ σ2. The angles of the principal directions follow from

tan2ϕ∗ =
2σx y

σx x −σy y
and ϕ∗∗ = ϕ∗ ±

π

2
. (2.41)

The maximum shear stress,

τmax =

√

√

√

�

σx x +σy y

2

�2

+σx y , (2.42)

occurs in cuts rotated by 45◦ to the principal directions.
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3 Linear elastic fracture
mechanics

Classical failure criteria have a long tradition in the evaluation of calving and break-
up situations in glaciers and ice shelves. The most common failure criteria compare
an effective stress to an ice specific yield stress (Nye, 1955). These methods ap-
peal with simplicity and yield a good approximation for many situations. However,
they cannot be applied at locations with stress singularities, as are e.g. the tips of
crevasses. Here, classical fracture mechanics comes into play.
Ice is a polycrystalline material for which micro cracks initiate and propagate along
lattice planes of the crystals or along grain boundaries. These characteristics lead
to brittle failure on the macro scale (Rist et al., 1999, 2002). For brittle materials,
the amount of inelastic deformations before failure is negligible. As micro mechan-
ical processes leading to crack nucleation are not covered by the theory of classical
fracture mechanics, the material is regarded as pre-damaged or interspersed with
micro cracks. The single crystal on the micro scale is anisotropic. Nevertheless, the
polycrystalline continuum on the macro scale will be treated as isotropic.
Once a crack is initiated, crack growth can occur unstable or stable, depending first
of all on the geometry and boundary conditions (stress boundary conditions versus
displacement boundary conditions), secondary on material properties. Stable crack
growth is characterized by the need for additional load for the crack to grow further,
while unstable crack growth occurs spontaneously without additional loads.
Cracks can grow with a speed up to the sonic velocity of the material, designated as
fast crack growth. This behavior has also been reported for cracks in ice shelves. The
opposite behavior, called slow or subcritical crack growth is predominantly found
for cyclic loading, leading to crack growth velocities of one mm per second or less.
Though subcritical crack growth has been discussed as mechanism for iceberg calv-
ing (Weiss, 2004) it will be ignored for the present analysis. Also inertia effects will
be excluded, hence the loading and crack growth occur quasi-static.
For further reading on failure criteria, micro mechanical effects and crack growth
the reader is referred to the textbooks of e.g. Gross and Seelig (2002) and Kuna
(2008) which are the foundation of the following introduction into linear elastic
fracture mechanics.
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3 Linear elastic fracture mechanics

Crack faceCrack face

Crack front Crack tip

Figure 3.1: Nomenclature for 3D and 2D cracks

3.1 Model assumptions

From the continuum point of view, a crack is an ideally sharp cut into a body, either
emanating from the boundary of the body or located inside. The dimension of a
crack is one dimension lower than the dimension of the body. Hence, in a three-
dimensional body, a crack is formed by two surfaces and ends in one or two lines
representing the crack front. In a two-dimensional setting, the crack surfaces reduce
to lines and the crack front to a point, the crack tip. The opposite surfaces (3D) or
lines (2D) are called crack faces or crack flanks. The opening of a crack can be

Mode I Mode II Mode III

Figure 3.2: Crack opening modes

distinguished into three opening modes as illustrated in Fig. 3.2. Mode I describes
a symmetric opening of the crack normal to the crack faces. It is the most common
opening mode in practical applications and will predominantly be used in the con-
text of ice shelf fractures. Mode II describes tangential sliding of crack faces towards
and away from the crack front. The tearing mode III describes the tangential sliding
of the crack faces parallel to the crack front. All modes can occur separately or in
various combinations.
The concept of linear elastic fracture mechanics requires linear elastic material be-
havior in the fractured body. Hence, the so called inelastic process zone in which
the complex and generally nonlinear micro-mechanical processes leading to crack
growth take place has to be negligibly small in comparison to the geometric scale of
the examined body. This is the case for most brittle materials and thus applies for
cracks in ice in the examined scope.
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3.2 Stress intensity factors and configurational forces

3.2 Stress intensity factors and configurational
forces

3.2.1 K-concept

y

rp

x

r

ϕ

R

Figure 3.3: Near-tip field

While the singularities at the crack tip do not influence the stress field in a sufficient
distance from the tip, the stresses close to the tip are dominated by the near-tip field,
defined as a small area of radius R around the crack tip. Since nonlinear processes
in direct vicinity of the tip are not covered by the near-tip equations, R has to be
significantly larger than the process zone (radius rp). For simplified geometries and
boundary conditions, the stresses of the near-tip field can be resolved in an analyti-
cal or semi-analytical procedure using the complex potential method introduced by
Kolosov (1909) and refined by Muskhelishvili (1975). The order of the stress sin-
gularity at the crack tip depends on the crack opening angle α, depicted in Fig. 3.4.
Without further derivation, the eigenvalue problem for the evaluation of the order
of singularity in case of mode I and mode II opening modes reads

sin(λe2β) = ±λe sin(2β), (3.1)

with β = π−α. The dominant stress state at the crack tip shows singularities of the
form σi j ∼ rλe−1. Figure 3.4 b) illustrates the resulting eigenvalues λe with respect
to β . For the valuation of the singularity, the smaller eigenvalue (dashed line) has
to be considered. It can be seen that for the ideally sharp crack (α = 0), also called
Griffith crack, λe = 1/2 hence σi j ∼ 1/

p
r. The resulting stresses for the different

loading modes read

Mode I:






σx

σy

τx y







=
KIp
2πr

cos(ϕ/2)







1− sin(ϕ/2) sin(3ϕ/2)
1+ sin(ϕ/2) sin(3ϕ/2)

sin(ϕ/2) cos(3ϕ/2)







, (3.2)
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3 Linear elastic fracture mechanics
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Figure 3.4: a) Crack opening angle α; b) order of singularity λe for different β(α)

Mode II:






σx

σy

τx y







=
KI Ip
2πr







− sin(ϕ/2) [2+ cos(ϕ/2) cos(3ϕ/2)]
sin(ϕ/2) cos(ϕ/2) cos(3ϕ/2)

cos(ϕ/2) [1− sin(ϕ/2) sin(3ϕ/2)]







. (3.3)

For small opening angles 0 < α < π/10, the change in the order of the singularity
is negligible and the results for the ideally sharp crack meet the requirements. It
is important to notice that the presented concepts only hold for sharp cracks and
notches. If the tip is rounded, stress concentrations instead of stress singularities
have to be considered.
The quantities KI and KI I in Eqs. (3.2) and (3.3) are the so called stress intensity
factors, introduced by Irwin (1957). Depending only on the geometry of the body
and the crack, as well as on the applied load, the stress intensity factors quantify
the intensity of the stress singularity at the crack tip. They can be used to establish
fracture criteria and to evaluate if a crack will propagate once a material specific
critical value Kc is reached. The fracture criteria read

KI = KI c, and KI I = KI I c (3.4)

for the different pure modes I and I I , respectively. For mixed loading, the fracture
criterion takes the more general form

f (KI , KI I) = 0. (3.5)

Loading cases including a mode III opening demand for a three-dimensional analysis
and will not be considered in the presented scope.
Depending on the model geometry and the applied load, there exist analytical or
semi-analytical formulas for the evaluation of KI and KI I . Figure 3.5 shows the load,
the geometry and the resulting KI and KI I as presented in Tada et al. (1973) for two
exemplary situations, which will be used as benchmarks in the following studies.
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3.2 Stress intensity factors and configurational forces
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Figure 3.5: a) Straight crack of length 2a in an infinite plate under uniaxial remote stress σ
and/or remote shear stress τ; b) single edge crack of length a in infinitely long plate of
width b under uniaxial remote stress σ

3.2.2 Energy balance - the Griffith criterion

For simplified geometries and loading conditions, semi-analytical values for KI

and KI I can be computed to analyze the criticality of a crack. However, complex
geometries, boundary conditions and loads, require the application of more ad-
vanced concepts for the analysis of the cracked body. The experiment in Fig. 3.6
illustrates the energy release −∆Π resulting from a crack growth of an increment
∆a. A pre-cracked body (crack length a) is loaded by a point displacement û. The

û

−∆Π
a ∆aa

Fa(û)

Fa+∆a(û)

F(û)
û û

Figure 3.6: Energy release for crack growth

resulting reaction force F(û) at the loading point is plotted with respect to the load.
The experiment is repeated with an enlarged crack length of a +∆a. The compari-
son of the plotted reaction force yields a lower slope for a larger crack length. The
difference −∆Π = Πa −Πa+∆a yields the energy release of the system due to a crack
growth of the increment ∆a. Reducing the increment ∆a to an infinitesimal crack

21



3 Linear elastic fracture mechanics

growth increment da leads to the definition of the energy release rate

G = −
dΠ
da

, (3.6)

with the dimension force per unit thickness. Other names for G , referring to the
physical dimension, are crack extension force or crack driving force. For straight
growing cracks, the crack driving force can be used to compute stress intensity fac-
tors using the relation

G =
K2

I + K2
I I

E′
, (3.7)

where E′ = E in the case of plane stress and E′ = E/(1−ν2) in the 3D case and under
plane strain assumptions.
For pure loading modes a fracture criterion equivalent to Eq. (3.4) can be set up
yielding

G = Gc. (3.8)

This energy based fracture criterion, proposed by Griffith (1920) in a slightly mod-
ified form, states that a crack propagates if the energy release during crack growth
equals the required energy. However, Griffith formulated his original criterion for
crack initiation and not for its evolution.

3.2.3 J-integral and configurational forces

dsdy

y

xda

dx

Γ f 2

P

Γ f 1

∂P

Γ1
Γ2

a)

t ∗ f

∂Pface x

P

y

b)

Figure 3.7: a) Contour around crack tip for evolution of J-integral; b) loaded crack faces

A well-established method for the computation of the energy release rate is the
evaluation of the J-integral. In an elastic material, the J-integral computed for a
straight crack along the x-axis of a two-dimensional homogeneous body without
body loads and crack face tractions is defined as

J =

∫

Γ2

Wdy − t ·
∂ u
∂ x

ds (3.9)

and was independently introduced by Rice (1968) and Cherepanov (1967). The
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3.2 Stress intensity factors and configurational forces

equivalence to G holds for infinitesimal crack growth increments ∆a→ 0,

J = lim
∆a→0

−
∆Π

∆a
= −

dΠ
da
= G . (3.10)

It can be shown that under the mentioned presumptions, the J-integral of any closed
curve (Fig. 3.7 a) without enclosed singularity equals zero, hence

J =

∫

∂P

[ ] =

∫

Γ1

[ ] +

∫

Γ f 1

[ ] +

∫

Γ2

[ ] +

∫

Γ f 2

[ ] = 0 (3.11)

with [ ] = Wdy − t ·
∂ u
∂ x

ds. Since dy = 0 on Γ f 1 and Γ f 2, in case of straight and

traction free crack faces Eq. (3.11) can be reformulated to
∫

Γ1

[ ] = −
∫

Γ2

[ ], (3.12)

and path independence of Eq. (3.9) is demonstrated. Following Gradin (1985) and
Wilson and Yu (1979), path independence for loaded crack faces and applied body
loads (Fig. 3.7 b) can be preserved by including the crack face integrals and adding
an extra area integral yielding

J =

∫

Γ2

Wdy − t ·
∂ u
∂ x

ds−
∫

Γ f 1+Γ f 2

t ·
∂ u
∂ x

ds−
∫

P

f ·
∂ u
∂ x

dA. (3.13)

Knowles and Sternberg (1972) introduce a more general form of Eq. (3.9) resulting
in the components of the J-integral vector

Jk =

∫

Γ2

(Wδk j −σi jui,k)n jds. (3.14)

For problems without volume forces or loaded crack faces, the component J1 equals
the just introduced path independent J-integral. The component J2 is zero in case
of a straight crack under pure mode I and pure mode II loading. For mixed mode
loading or curved cracks J2 is non-zero and always path dependent. It can be eval-
uated by contracting the contour Γ2 to the crack tip or by including the crack face
integrals into the computation.
The link between J1, J2 and the previously presented stress intensity factors KI

and KI I can be found in Bergez (1974) reading

J1 =
1− ν2

E
(K2

I + K2
I I) and J2 = −

2(1− ν2)
E

(KI KI I) (3.15)
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3 Linear elastic fracture mechanics

in case of plane strain.
The integral in Eq. (3.9) can be computed on a path in sufficient distance from the
crack tip, not taking into account the difficult computation of the field variables
close to the tip. Limited to straight cracks under pure mode loading in absence of
volume forces and crack face loading, Eq. (3.9) therefore provides a comfortable
way to compute stress intensity factors in the context of numerical methods. With-
out the mentioned prerequisites, extra effort is needed for the computation or Γ2 has
to be contracted to the crack tip to fulfill Eq. (3.10) and the just mentioned benefits
do no longer hold.

A popular method linked to J-integrals is the concept of configurational or material
forces. It was introduced by Eshelby (1951) as a way to compute the ”in a sense
fictitious” forces acting on a singularity. Material or configurational forces must not
be confused with physical forces but can rather be understood as a measure for en-
ergy changes in a system due to a change in the singularity. A multitude of different
approaches exist for the computation of configurational forces. Examples can be
found in the textbooks of Maugin (1993), Kienzler and Herrmann (2000), Müller
(2006), Steinmann and Maugin (2010) and Maugin (2010). The method presented
here follows an adaption of Eshelby’s original procedure by Kuhn (2013). The basis
of this approach is the computation of the gradient of the energy density, W,x . In
this case, W = W̃ (ε, x , x tip) is regarded as a function of the linearized strain tensor ε,
the coordinate x and the position of the crack tip x tip. The explicit dependence on x
is necessary to account for possible inhomogeneities in the material. The gradient
is computed by using the chain rule of differentiation,

W,x =
∂ W̃
∂ ε
ε,x +

∂ W̃
∂ x

�

�

�

�

expl.

+
∂ W̃
∂ x tip

(x tip),x ,

or in index notation

W,k=
∂ W̃
∂ εi j

εi j,k +
∂ W̃
∂ xk

�

�

�

�

expl.

+
∂ W̃

∂ x tip
i

(x tip
i ),k . (3.16)

With the use of Eq. (2.17), the symmetry of the Cauchy stress tensor, the symmetry
of second derivatives and the product rule of differentiation, the first summand of
Eq. (3.16) takes the form

∂ W̃
∂ εi j

εi j,k = σi jui, jk = σi jui,k j = (σi jui,k), j −σi j, jui,k. (3.17)

Exchanging the stress divergence σi j, j in Eq.(3.17) with volume loads using the local
balance law (Eq. 2.13) and insertion of Eq. (3.17) into Eq. (3.16) leads to

W,k= (σi jui,k), j + fiui,k +
∂ W̃
∂ xk

�

�

�

�

expl.

+
∂ W̃

∂ x tip
i

(x tip
i ),k . (3.18)
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3.2 Stress intensity factors and configurational forces

Rearrangement yields

(Wδ jk −σi jui,k), j − fiui,k −
∂ W̃
∂ xk

�

�

�

�

expl.

−
∂ W̃

∂ x tip
i

(x tip
i ),k= 0, (3.19)

where the term in brackets forms a second order tensor,

Σk j =Wδ jk −σi jui,k, (3.20)

commonly named Eshelby stress tensor, which already appeared in Eq. (3.14). The
remaining terms of Eq. (3.19) form the so called configurational volume force

gk = − fiui,k −
∂ W̃
∂ xk

�

�

�

�

expl.

−
∂ W̃

∂ x tip
i

(x tip
i ),k= gvol

k + g inhom
k + g tip

k . (3.21)

In analogy to the physical force balance (Eq. 2.13), the so called material or
configurational force balance can now be deduced from Eq. (3.19) reading

Σk j, j + gk = 0 or divΣ+ g = 0. (3.22)

Special attention is given to the summands of the configurational volume force.
Here, the first term accounts for physical volume forces, the second term includes
possible material inhomogeneities. Since the only inhomogeneities considered in
the following are spatial dependencies of the stiffness tensor, g inhom

k can be written
as

g inhom
k = −

∂ W̃
∂ xk

�

�

�

�

expl.

= −
1
2
εi j

∂Ci jnm

∂ xk
εnm. (3.23)

The last contribution to Eq. (3.21) represents a volume force, concentrated at the
crack tip.
The integral of g tip

k over any control volume P including the crack tip but no further
singular points yields the point force acting on the tip,

Gtip
k =

∫

P
g tip

k dA= −
∫

P

∂ W̃

∂ x tip
i

(x tip
i ),k dA. (3.24)

Since a direct computation of Eq. (3.24) is rather complicated, Eqs. (3.21) and
(3.22) are solved for g tip

k reading

g tip
k = −Σk j, j − gvol

k − g inhom
k . (3.25)

Hence

Gtip
k =

∫

P

�

−Σk j, j + fiui,k +
∂ W̃
∂ xk

�

�

�

�

expl.

�

dA (3.26)

provides a comfortable way for the evaluation of the configurational crack tip force,
which can be embedded in commonly used numerical schemes for the solution of
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3 Linear elastic fracture mechanics

the displacement field. In case of loaded crack faces, curved cracks or mixed mode
loading, the region of integration P has either to be shrunk to the crack tip or a
correction term including the crack face contributions has to be added. The latter
leads to the form

Gtip
k =

∫

P

�

−Σk j, j + fiui,k +
∂ W̃
∂ xk

�

�

�

�

expl.

�

dA−
∫

∂Pface

�

W nk − t iui,k

�

ds (3.27)

for the computation of the configurational crack tip load.
The link to the previously introduced J-integral and energy release rate follows
through the scalar multiplication of Gtip with the crack tangential vector e x reading

J = − Gtipe x . (3.28)

In comparison to the J-integral method, the configurational force approach for the
evaluation of crack criticality strikes not only by the straightforward incorporation
into finite element routines, but also by the adaptability to problems with body loads
and inhomogeneous material constants. Furthermore, the use of configurational
forces exceeds the application to fracture mechanical problems as the method is
used for mesh refinement, motion of phase boundaries, as well as for the analysis of
various types of inclusions and defects (Müller et al., 2002; Gross et al., 2003; Müller
et al., 2004; Miehe et al., 2007) and can be expanded to diverse material laws and
dynamical problems (Gurtin and Podio-Guidugli, 1996; Kolling and Müller, 2004).

3.3 Crack growth direction for mixed loading
situations

So far, the cracks considered were aligned horizontally and a local crack tip co-
ordinate system, with the crack normal and the crack tangential vector as basis,
coincided with the illustrated x , y-coordinate system. In the following, cracks point-
ing in arbitrary directions under mixed mode loading will be considered. Therefore,
a local crack tip coordinate system as illustrated in Fig. 3.8 with e1 pointing in the
crack tangential direction and e2 pointing in the crack normal direction is intro-
duced.
Concentrating on the superposition of mode I and mode II loading, a mixed mode
fracture criterion follows Eq. 3.5.
Depending on the material and the microscopic failure mechanisms, a multitude of
different functions f (KI , KI I) exist to match experimental results. In addition, cracks
can propagate at an angle θ to the tangential direction of the crack tip, in the fol-
lowing called crack deflection angle.
A popular principle for the evaluation of crack criticality under mixed loading is the
criterion of maximum circumferential stress by Erdogan and Sih (1963). With the
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3.3 Crack growth direction for mixed loading situations

circumferential stress given as

σϕ =
1

4
p

2πrc

�

KI

�

3cos
ϕ

2
+ cos

3ϕ
2

�

− KI I

�

3 sin
ϕ

2
+ 3 sin

3ϕ
2

��

, (3.29)

it postulates that the crack propagates in the direction θ such that σϕ is maximized.
Crack advance happens if σϕ,max in a distance rc from the crack tip equals the critical
stress for mode I loading,

σϕ,max = σϕ(θ ) =
KI c

p

2πrc

. (3.30)

This results in the equations

KI sinθ + KI I(3cosθ − 1) = 0 (3.31)

KI

�

3 cos
θ

2
+ cos

3θ
2

�

− KI I

�

3 sin
θ

2
+ 3sin

3θ
2

�

= 4KI c (3.32)

for the computation of θ and the subsequent evaluation whether the crack growths
or not. Another principle by Sih (1973b), called S-criterion, motivates to use the
strength S of the strain energy density W (r,ϕ) for the computation of the crack
angle θ and for the evaluation whether crack growth occurs. With

S(ϕ) = W r = a11K2
I + 2a12KI KI I + a22K2

I I ,

a12 = (1+ cosϕ)(κ− cosϕ)/(16πµ),

a11 = sinϕ(2 cosϕ − κ+ 1)/(16πµ),

a22 = ((κ+ 1)(1− cosϕ) + (1+ cosϕ)(3 cosϕ − 1))/(16πµ),

and κ = 3− 4ν in case of plane strain, the deflection angle θ is computed using the
relations

dS
dϕ

�

�

�

�

ϕ=θ

= 0 and
d2S
dϕ2

�

�

�

�

ϕ=θ

> 0. (3.33)

Further methods use the direction of the maximum energy release rate (Cotterell,
1965; Hussain et al., 1974; Ichikawa and Tanaka, 1982; Lo, 1978; Nuismer, 1975)
or the maximum dissipated energy (Gurtin and Podio-Guidugli, 1998). A compara-
tive overview of the different approaches can be found in Richard et al. (2005).
An alternative technique for the evaluation of the crack path under mixed mode
loading follows by the use of the direction of the generalized J-integral vector, which
can be deduced from the components of the configurational force vector Gtip. The
crack deflection angle can then be computed using θJ = arctan J2

J1
. A popular bench-

mark example for mixed mode loading with known analytic solution is the straight
crack in an infinite domain under mixed loading. Figure 3.5 a) illustrates the load-
ing conditions and resulting analytic stress intensity factors. With σ = k · τ and
hence KI = k · KI I , the components of the J-integral vector, J1 and J2, follow using
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3 Linear elastic fracture mechanics

Eqs. (3.15) and read

J1 =
(k2 + 1)(1− ν2)

E
σ2πa and J2 =

k(1− ν2)
E

σ2πa (3.34)

in case of plane strain. Figure 3.8 compares the crack deflection angles resulting
from the circumferential stress criterion, as well as the S-criterion with the one re-
sulting from the direction of J for different values of k. It shows, that for KI/KI I > 2
the three criteria match very well. For KI/KI I < 1 the direction of J is not suitable as
indicator crack deflection. However, benchmark examples in Sec. 4.6.5 show, that
a step-wise computation of J with consequent crack growth by small increments in
the direction of J leads to an overall crack growth direction that coincides with the
deflection angle computed according to Eq. (3.32) after very few steps.
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Figure 3.8: a) Global x − y-coordinate system and local crack tip coordinate system (e1,e2),
distinction between Gtip

x and Gtip
y , as well as J1 and J2; b) crack deflection angle θ for straight

crack in an infinite domain under mixed mode loading using different criteria
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4 Finite element implementation

The linear elastic boundary value problem is solved using the commercial finite
element code COMSOL. The nodal displacements and the mesh are exported to
MATLAB, where the evaluation of the configurational forces follows in postprocess-
ing routines. Information on changes of the geometry due to crack growth is then
given back to COMSOL, where the new problem is solved. To facilitate automatic
remeshing by the COMSOL mesh generator independent of the complexity of the
ice shelf geometries, triangular elements are used. For brevity, the following sum-
mary is constricted to the implementation of discrete configurational forces. Details
on the implementation of the elastic boundary value problem can be found in var-
ious textbooks as e.g. Wriggers (2008), Zienkiewicz and Taylor (2000) or Hughes
(2000).

4.1 Weak form

For simplicity, the following derivations are performed in index notation where in
the 3D case the indices j and k run from 1 to 3. The basis for the computation of
discrete configurational forces is the weak form of the configurational force balance.
Therefore, Eq. (3.22) is multiplied with an arbitrary vectorial virtual test function
µk. Integration over the domain Ω leads to

∫

Ω

�

Σ jk, j + gk

�

µk dV =

∫

Ω

�

Σ jk, jµk + gkµk

�

dV = 0 ∀µk. (4.1)

Application of the product rule of differentiation to the first summand in Eq. 4.1
yields

Σ jk, jµk =
�

Σ jkµk

�

, j
−Σ jkµk, j. (4.2)

Insertion of Eq. (4.2) into Eq. (4.1) and application of the Gaußian theorem yields
∫

Ω

�

�

Σ jkµk

�

, j
−Σ jkµk, j + gkµk

�

dV =

∫

∂Ω

Σ jkµkn jdA−
∫

Ω

�

Σ jkµk, j − gkµk

�

dV = 0. (4.3)

Most literature on the implementation of configurational forces uses virtual test
functions that vanish on the complete boundary ∂Ω. In order to consider loaded
crack faces and mixed mode loading, the present formulation splits ∂Ω into an
area with prescribed displacements ∂Ωu and an area with prescribed stresses ∂Ωt .
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4 Finite element implementation

Only on ∂Ωu, the test functions vanish. The right hand side of Eq. (4.3) can be
transformed to

∫

∂Ωt

(Wδ jk −σi jui,k)n jµkdA−
∫

Ω

�

Σ jkµk, j − gkµk

�

dV = 0, (4.4)

∫

∂Ωt

W nkµkdA−
∫

∂Ωt

t∗i ui,kµkdA−
∫

Ω

�

Σ jkµk, j − gkµk

�

dV = 0 ∀µk. (4.5)

4.2 Discretization

The evaluation of discrete configurational forces is implemented for 2D geometries.
The lower case indices, referring to the component of a variable, now run from 1 to
2 whereas capital indices refer to the global or local node number. In addition, the
integration with respect to the volume dV reduces to an integration over the area dA
and the integration over area elements in 3D reduces to an integration along line
elements ds. Within the framework of the FE method, the virtual test functions and
their gradients can be approximated using the interpolations

µk ≈ µh
k =

N
∑

I=1

µI
kN I and µh

k, j =
N
∑

I=1

µI
kN I, j (4.6)

with the scalar shape functions N I and the nodal values µI
k. The summation is per-

formed for all N nodes of the FE mesh. Here and in the following, the superscript h
is used to identify approximated quantities. Insertion of Eq. (4.6) into Eq. (4.5) and
exchanging summation and integration yields

N
∑

I=1

∫

∂Ωt

�

W nk − ui,k t∗i
�

µI
kN Ids−

M
∑

I=1

∫

Ω

�

Σ jkµ
I
kN I, j − gkµ

I
kN I

�

dA = 0

N
∑

I=1

µI
k





∫

∂Ωt

�

W nk − ui,k t∗i
�

N Ids−
∫

Ω

�

Σ jkN I, j − gkN I
�

dA



 = 0 ∀µI
k,

exploiting the independence of the nodal values of the test functions µI
k of the spatial

coordinates x and y. Arbitrariness of the nodal values µI
k of the virtual test functions

leads to the discretized form of the configurational force balance,
∫

∂Ωt

�

W nk − ui,k t∗i
�

N Ids−
∫

Ω

�

Σ jkN I, j − gkN I
�

dA= 0.
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4.2 Discretization

Substitution of the configurational volume force with its components in Equ. (3.21)
and solution for the crack tip force yields

G I ,tip
k =

∫

Ω

g tip
k N IdA

=

∫

Ω

�

Σ jkN I, j − gvol
k N I − g inhom

k N I
�

dA−
∫

∂Ωt

�

W nk − ui,k t∗i
�

N Ids. (4.7)

The vector Gtip
k comprises the crack tip contribution to the configurational force for

every node in the FE mesh. It is obvious that only for crack tip nodes or nodes in the
proximity of crack tips the force can be interpreted as discrete crack driving force.
For all other nodes in the bulk, Gtip

k is a measure for the inhomogeneity introduced
by the discretization and should be very small compared to the result at the crack
tip. Values for Gtip

k of intermediate amount can be found at boundary nodes, as
boundaries represent a strong discontinuity in the system. However, these configu-
rational boundary forces are considerably smaller than those at the tip of a loaded
crack.

Exploiting the benefits of the isoparametric concept, the test functions, the displace-
ment field and the global coordinates are approximated by the same element shape
functions N I , defined within the element e, and the element nodal values µI

k, uI
k

3

2

3

4

6

Ω�

η

1

2

3

4

5

6

Ωe

y

ξ x

5

a) b)
1

1

a)

c) -1 0 1
ζ

1 2

1

Figure 4.1: a) Isoparametric 2D reference element with local coordinates ξ and η; b) de-
formed 2D element with global coordinates, c) 1D reference line/edge element with the
local coordinate ζ
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4 Finite element implementation

and x I
k. The approximations read

µk ≈ µh
k =

M
∑

I=1

µI
kN I , uk ≈ uh

k =
M
∑

I=1

uI
kN I and xk ≈ xh

k =
M
∑

I=1

x I
kN I , (4.8)

where M indicates the number of nodes per element.

Following the notation in Wriggers (2008), isoparametric quadratic shape func-
tions N I for triangular elements as depicted in Fig. 4.1 a) and b) are defined as

N 1 = λ(2λ− 1) N 4 = 4ξλ

N 2 = ξ(2ξ− 1) N 5 = 4ξη (4.9)

N 3 = η(2η− 1) N 6 = 4ηλ

using the local coordinates ξ, η and λ = 1− ξ− η. The relation between points on
the edges of the 2D reference element in ξ − η-coordinates and the reference line
element as shown in Fig. 4.1 c) follows in a similar manner,

ξ≈ ξh =
P
∑

I=1

ξI Ñ I and η≈ ηh =
P
∑

I=1

ηI Ñ I (4.10)

with the quadratic shape functions

Ñ 1 =
1
2
(ζ− 1)ζ, Ñ 2 = 1− ζ2 and Ñ 3 =

1
2
(ζ+ 1)ζ. (4.11)

The derivatives of N I with respect to the global coordinates x and y follow using
chain rule differentiation for the derivatives of N I with respect to the local coordi-
nates ξ and η,

∂ N I(ξ,η)
∂ ξ

=
∂ N I(ξ,η)
∂ x

∂ x
∂ ξ
+
∂ N I(ξ,η)
∂ y

∂ y
∂ ξ

∂ N I(ξ,η)
∂ η

=
∂ N I(ξ,η)
∂ x

∂ x
∂ η
+
∂ N I(ξ,η)
∂ y

∂ y
∂ η

,

or short
�

N I,ξ
N I,η

�

=

�

x ,ξ y,ξ
x ,η y,η

�

︸ ︷︷ ︸

J e

�

N I,x

N I, y

�

. (4.12)

The derivatives in J e are computed by use of the isoparametric approximation of the
global coordinates,

xk, j ≈ xh
k, j =

M
∑

I=1

x I
kN I, j. (4.13)
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4.2 Discretization

Solving Eq. (4.12) for the unknown N I,x yields

�

N I,x

N I, y

�

=
1

det J e

�

y,η −y,ξ
−x ,η x ,ξ

�

�

N I,ξ
N I,η

�

. (4.14)

Using Eq. (4.14), the gradient of uk can be approximated by

uh
k, j =

M
∑

I=1

uI
kN I, j. (4.15)

This leads to the approximate expression for the linearized strain tensor,

εh
k j =

1
2

M
∑

I=1

�

uI
kN I, j + uI

jN
I,k

�

, (4.16)

which is necessary for the computation of the Cauchy stress tensor, the strain energy,
and the Eshelby stress tensor as defined in Eqs. (2.15), (2.16) and (3.20).
Insertion of Eqs. (4.15) and (4.16) into Eq. (4.7) and separation of the individual
summands yields the element contributions to the nodal configurational crack tip
force

G I ,elast
k,e =

∫

Ωe

Σh
jkN I, jdA (4.17)

G I ,vol
k,e = −

∫

Ωe

gvol
k N IdA=

∫

Ωe

fiu
h
i,kN IdA, (4.18)

G I ,inhom
k,e = −

∫

Ωe

g inhom
k N IdA=

∫

Ωe

1
2
εh

i j

∂Ci jnm

∂ xk
εh

nmN IdA, (4.19)

and

G I ,boun
k,e = −

∫

∂Ωt

�

W hnk − uh
i,k t∗i

�

N Ids, (4.20)

hence
G I ,tip

k,e = G I ,elast
k,e + G I ,vol

k,e + G I ,inhom
k,e + G I ,boun

k,e . (4.21)

It should to be noted that Eq. (4.20) is only computed for element edges along the
crack face. The contribution of the boundary stress is evaluated by using the applied
stress t ∗, not the resulting stress t = σn.
The crack tip load of a six-node element e with the nodes I = 1, . . . , 6 is formed by
the shares of the respective element nodes,

Gtip
k,e =

�

G1,tip
k,e G2,tip

k,e G3,tip
k,e G4,tip

k,e G5,tip
k,e G6,tip

k,e

�T
. (4.22)
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4 Finite element implementation

The assembly
⋃

of all ne elements leads to

Gtip
k =

ne
⋃

e=1

Gtip
k,e =

�

G1,tip
k G2,tip

k . . . GN ,tip
k

�T
, (4.23)

the global discrete crack tip force, with ne being the total number of elements.
Herein, the global crack tip force of a specific node I is formed by summation of the
corresponding element nodal forces of elements adjacent to the node I .

4.3 Gauß quadrature

The integrals in Eq. (4.19) of the form
∫

Ωe

f (x , y) dA and

∫

∂Ωe

f (x , y) ds

will be approximated using a Gaußian quadrature scheme where the integration
points, also called Gauß points, and weights are given for the reference elements in
Fig. 4.1 a) and c), respectively. The evaluation of Eqs. (4.19) on the 2D reference
element necessitates a coordinate transformation reading

∫

Ωe

f (x , y)dA=

1
∫

0

1−ξ
∫

0

f̃ (ξ,η)detJedξdη (4.24)

with J e being the Jacobian as introduced in Eq. (4.12). The transformed integral is
approximated by

1
∫

0

1−ξ
∫

0

f (ξ,η)detJedξdη≈
nint
∑

p=1

f (ξp,ηp)detJe(ξp,ηp)wp (4.25)

with ξp, ηp and wp being the coordinates of the Gauß points and the weights, re-
spectively. The following simulations use triangular elements with three internal
Gauß points. The corresponding coordinates and weights for the reference element
in Fig. 4.2 a) take the values given in Fig. 4.2 b). This approximation enables an
exact integration of polynomials ξqηr with q+ r ≤ 2.
The domain edge integral is transformed and approximated reading

∫

∂Ωe

f (x , y) ds =

1
∫

−1

f
�

ξ(ζ),η(ζ)
� l

2
dζ≈

nint
∑

p=1

f
�

ξ(ζp),η(ζp)
� l

2
wp (4.26)
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4.4 Evaluation of a resulting configurational crack tip force

η

1

1
Ω�

ξ
a)

p ξp ηp wp

1 1/6 1/6 1/6
2 2/3 1/6 1/6
3 1/6 2/3 1/6.

b)

Figure 4.2: a) Location of Gauß points in isoparametric reference element; b) associated
Gauß point coordinates and weights

with the length of the edge element l. For the computation of the integral, two Gauß
points are needed. The corresponding coordinates and weights for the reference
element in Fig. 4.1 c) are

p ζp wp

1 −1/
p

3 1
2 1/

p
3 1

enabling an exact integration of polynomials ζq with q ≤ 3.

4.4 Evaluation of a resulting configurational crack
tip force

Triangular elements with quadratic shape functions are not able to fully represent
the singular stress field at the crack tip. Hence, the computation of the configura-
tional crack tip force by only taking into account the crack tip node underestimates
the correct solution, despite any kind of mesh refinement. Denzer et al. (2003) mo-
tivate the summation of the discrete configurational crack tip contributions within
a small region, called influence area, enclosing the crack tip to considerably emend
the outcome of the computation. The area can be defined in a geometric sense,
e.g. comprising all nodes inside a circle of radius ri around the crack tip, or, as
presented here, by hierarchical considerations, following the original approach by
Denzer et al. (2003). Figure 4.3 shows the hierarchical levels used to compute the
crack tip configurational force. The index m = 1 indicates that the nodes in the
elements adjacent to the crack tip (yellow area) are summed to compute the crack
tip contribution. The next level, m = 2, sums the nodes of elements in the yellow
and in the orange area. Level three appends the nodes in the red area and so on.
If m = 0 only the configurational force at the crack tip node (green dot) is consid-
ered. The equation for the computation of the resulting configurational crack tip
load therefore reads

Gtip
k =

m
∑

i=1

ni
⋃

e=1

Gtip
k,e. (4.27)
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4 Finite element implementation

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

Figure 4.3: Summation levels for the computation of the crack tip configurational force

Denzer et al. (2003) only consider mode I loading and exclude the discussion about
the path dependence of J2. The here presented evaluation of J1 and J2 includes
the crack surface contributions and therefore allows using resulting configurational
forces also for the computation of J2 in cases of mixed mode loading. The only
restriction to the influence area is that it must not include further inhomogeneities
as could be kinks in the crack faces or external boundaries. Inhomogeneous but
smoothly varying material parameters are allowed due to the comprehension of
spatially dependent material parameters in Eq. (4.19). The convergence of J1 and J2

or Gtip
x and Gtip

y with respect to growing level index m is shown in the benchmark
examples following Sec. 4.5.

4.5 Crack propagation algorithm for mixed mode
loading

Several publications describe the use of configurational forces for crack path pre-
diction. A first qualitative result for a linear elastic material is shown by Müller
and Maugin (2002), where the reverse direction of the configurational crack tip
force at the crack tip node is used as indicator for the direction of crack propaga-
tion. The onset is set by a constant factor. Miehe and Gürses (2007) and Miehe
et al. (2007) show a configurational force based crack growth implementation with
a r-adaptive crack segment reorientation scheme. For this approach the initial mesh
has to be sufficiently fine within the expected crack propagation area since no new
elements are added at the new crack tip. The method is implemented for geomet-
ric linear and non-linear elasticity and compared to standard benchmark tests for
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4.5 Crack propagation algorithm for mixed mode loading

mixed mode loading, showing good results for fine meshes. Since the nodal config-
urational force at the crack tip shows rather unstable deflections, the application of
an resultant configurational force as sum over all nodal configurational forces within
an influence domain of radius ri around the crack tip following Denzer et al. (2003)
is discussed. The resulting configurational force is compared to the nodal crack tip
force for mode I load cases. Zimmermann (2008) connects a configurational force
driven crack propagation scheme to h-adaptive mesh refinement techniques. Again,
the crack tip propagation follows the direction of a resulting configurational force
based on an influence domain around the crack tip. No limitations are made to the
integration domain with regard to mixed mode loading cases and the consequent
path dependence of J2. The hitherto presented methods use constant crack prop-
agation increments. In order to be able to reproduce benchmark examples, these
increments have to be very small. Hence, many increments are needed to form a
complete crack path. Schütte (2009) and Schütte (2010) demonstrate an innovative
predictor corrector scheme based on configurational forces together with spline type
increments for crack propagation of curved cracks. This allows using larger crack
growth increments and therefore less propagation steps. For the computation of the
crack normal configurational force J2, the use of an influence domain is investigated.
Schütte (2009) further analyzes the trend of J2(ri) and motivates an extrapolation
scheme of J2(ri > 0) towards ri = 0 resulting in a sufficiently accurate limit value for
J2(ri = 0). The resulting crack path is compared to the popular benchmark example
of Bittencourt et al. (1996).
The here presented implementation of the crack propagation algorithm follows the
flowchart sketched in Fig. 4.4 and is similar to the algorithm proposed by Zimmer-
mann (2008). Parameters to be set are the maximum element length at the crack
tip, ∆xel, the radius of the influence area ri, the threshold Gc and the crack prop-
agation parameters ∆λt and ∆λn. Zimmermann (2008) chooses a constant value
1/2∆λt = ∆λn = 0.025hmax with hmax being the maximum element edge length of
the mesh. However, this results in a rather inadequate local crack opening angle at
the tip and might cause incorrect values of Gtip. The algorithm in Fig. 4.4 sets ∆λt

depending on the change of the crack direction ∆θ in the form

∆λt =



















∆λmax, if ∆θ < θ1

a1∆λmax, if θ1 ≤∆θ < θ2

. . .

an∆λmax, if ∆θ ≥ θn.

(4.28)

The number of differentiations, the constants a1 to an and the limit angles θ1 to θn

have to be chosen with respect to the simulated problem. The constant crack width
is 2∆λn with ∆λn =

1
25 min(∆λt) =

1
400∆λmax. The parameter ∆λmax has to be set

with respect to the characteristic length scales of the problem, accounting for the
geometry a well as inhomogeneities. In the finite element program COMSOL, the
maximum element edge length along the crack faces is bound by the distance be-
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4 Finite element implementation

split old crack tip pcf,n(1/2) = pct,o ±∆λnn̄ct,n

update ∗∗,o = ∗∗,n

stop algorithm/

increase load

set up geometry with initial crack

solve linear elastic boundary value problem divσ + f = 0

evaluate Gtip

sum over influence area⇒ Gtip

compute absolute value G = ‖Gtip‖

set new direction nct,n = [−Gtip
x /G ,−Gtip

y /G ]

set direction perpendicular to nct,n, n̄ct,n

build mesh with maximum element edge length ∆xel at crack tip

if G ≤ Gc if G > Gc

set new crack tip location pct,n = pct,o +∆λtnct,n

compute change of direction ∆θ = arccos(nct,o · nct,n)

(crack tip location pct,o, normalized crack direction at tip nct,o)

build new geometry

Figure 4.4: Flowchart of propagation algorithm for a single crack in a 2D setup

tween points on the polygon that defines the crack. Large deflection angles result
in small crack growth increments and hence fine meshes that remain even if the
crack tip has propagated several further steps. Zimmermann (2008) introduces an
algorithm, which deletes old crack face nodes if the length of crack face segments
falls below a certain threshold. The here presented algorithm also aims to reduce
the overall number of elements by deleting polygon points along the crack face. The
decision whether points are deleted or not however depends on the actual deflection
angle and the change of the deflection angle compared to the previous step. The
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4.6 Benchmarks

nc t,o

−Gtip

influence area

p c t,o

pct,n

∆θ

nct,n

pcf,n2

pcf,n1

Figure 4.5: Update of crack geometry with left, the old crack tip (subscript o) with the re-
sulting configurational crack tip force and right, the new inserted crack tip and the doubling
of the old crack tip node into two new crack face nodes (subscript n)

pseudo code of the algorithm reads

if ∆θ i < 2◦ AND ∆θ i−1 > 2◦ ⇒ delete p i−1
c f ,n

else ⇒ keep p i−1
c f ,n

with the superscript i indicating the actual step and i − 1 the previous step. This
results in a considerably reduced number of elements after several crack growth
increments in comparison to a propagation simulation without crack face point re-
moval. Since strongly curved parts of the crack with successive small increments
remain untouched by the algorithm, changes in the overall crack path are negligibly
small.

4.6 Benchmarks

4.6.1 Benchmark a: mesh characteristics and size

The appropriate mesh size with respect to the size of the geometry is evaluated
by comparing the simulation results for a standard single edge notch tension test
with results from Tada et al. (1973). Figure 4.6 shows the model geometry with
the applied boundary conditions. The variables a, b and L denote the crack depth,
the thickness of the specimen and its length, respectively. The model is loaded by
a uniform tensile stress σ at the vertical boundary. For symmetric geometries and
loads it suffices to simulate only one part and apply symmetry boundary conditions
along the line of symmetry, visualized by the dashed line. Special attention is
needed for the computation of the discrete configurational forces for nodes along
the line of symmetry. Here, the components of the discrete configurational force
in the direction of the dashed line have to be doubled, those perpendicular to the
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4 Finite element implementation

L

σ b

a L = 1000m

b = 250 m

a = 100 m

σ = 1E5 Pa

Figure 4.6: Model geometry for single edge notch tension test

dashed line have to be erased. This correction results from the missing assembly
of the symmetric counterpart. Figure 4.7 shows different meshing strategies for
the crack tip region. The mesh in Fig. 4.7 a) is built by placing squares over and
under the crack tip (indicated by the red dot). Then these squares are meshed
using quadrilateral elements and a defined number of elements n per square edge.
In a next step the quadrilateral elements are split yielding the required triangular
mesh inside the squares. The remaining geometry is freely meshed with triangular
elements. The mesh in Fig. 4.7 b) differs from the one in a) by the orientation of
the inserted triangles. For the mesh in Fig. 4.7 c), the quadrilateral mesh is split
by two diagonals. The mesh in Fig. 4.7 d) uses a defined maximum element edge
length ∆x at the crack tip. This is induced by placing an additional point, indicated
by the black dot, at the desired distance from the crack tip.
Figures 4.8 b) and c) show resulting stress intensity factors relative to the semi-
analytical result of Tada et al. (1973) for different mesh refinements (parameter n),
mesh types (line style) and summation levels (line color) for the problem as
depicted in Fig. 4.6. Tada et al. (1973) presents several formulas with differing
accuracy for the computation of the stress intensity factors KI for the single edge
notch tension test. The formula used as reference for the mesh size evaluation
(Fig. 3.5 b) has an accuracy > 0.5% for any value of a/b and L/b > 1. Figures 4.8 b)
and c) show converging results for finer discretizations for all mesh cases as well as
summation levels. Crack tip meshes based on the mapped mesh show a smoother
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d)
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1

n
m

Figure 4.7: a) Mapped mesh with standard diagonal; b) mapped mesh with switched diago-
nal; c) mapped mesh with two diagonals; d) free mesh with additional point to define mesh
size at crack tip
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Figure 4.8: a) Summation levels for the computation of the crack tip configurational force;
b) relative stress intensity factors for different mesh types, discretizations and summation
levels; c) zoom into dashed box in b)

performance than the free triangular mesh, constrained by the additional point. An
even stronger influence on the accuracy of the computed stress intensity factors
results from the different summation levels. Whereas the computations without
summation yield two to three percent deviation at their best and nine percent
deviation for the most unfavorable mesh type, the inclusion of only one summation
level yields less than one percent deviation for all mesh types and refinements.
For six summation levels (green lines), the difference between the mesh cases
is negligibly small. Furthermore, Fig. 4.8 c) shows, that the approximation for-
mula of Tada et al. (1973) slightly underestimates the outcome of the FE simulation.

4.6.2 Benchmark b: loaded crack faces

σ

σ

σ

+

σ

σ

σ=L

2a

L
KI = 0

(1) (3)(2)

Figure 4.9: Superposition for evaluation of stress intensity factor for straight crack in infinite
domain with pressurized crack faces

In case of linear elasticity, the superposition scheme illustrated in Fig. 4.9 serves to
demonstrate that the stress intensity factor for a straight crack in an infinite domain
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4 Finite element implementation

m 0 1 2 3 4 5 6
a) Ḡtip 0.8788 1.0054 1.0002 1.0005 1.0006 1.0006 1.0006
b) Ḡtip 0.8788 1.0054 1.0002 1.0005 1.0005 1.0005 1.0006

Ḡelast. 0.8307 0.8131 0.7265 0.6600 0.5998 0.5431 0.4886
Ḡboun. t∗ 0.0482 0.1925 0.2740 0.3407 0.4010 0.4577 0.5122
Ḡboun. W −0.0001 −0.0002 −0.0002 −0.0003 −0.0003 −0.0003 −0.0003

Table 4.1: Resulting contributions Ḡ∗ = G∗/Ganalyt. to the normalized configurational crack
tip force for different summation levels m

with pressurized crack faces in test (3) equals those of the straight crack in an infi-
nite domain under uniaxial loading in test (1). Before verifying the implementation
for test (3), the results of the FE simulation of test (1) are compared to the known
analytical solution, −Ganalyt. = J1,analyt. = σ2πa(1 − ν2)/E as shown in Fig. 3.5 a)
for different values of the domain length L. Figure 4.10 a) shows the contribu-
tions of elastic and boundary components to the normalized total configurational
crack tip load for different summation levels and ratios a/L. It shows that a too
large ratio a/L (dotted line) overestimates the analytic result for the infinite plane.
The dashed line and the solid line overlap and lead to sufficiently accurate results.
Therefore, a/L ≤ 0.025 will be used in the following studies. As to be expected for
test (1), the contributions of the crack face integrals to the configurational crack
tip load, represented by the pink and the green line, vanish, also in case of m ≥ 0,
hence Gtip = Gelast.. The first line in Tab. 4.1 shows that with m = 0, the computed
value for Gtip strongly underestimates the analytical result. Two additional summa-
tion levels (m= 2) suffice to compute configurational crack tip loads with a relative
error of less than one per mil.
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Figure 4.10: Contributions of elastic and boundary components to the normalized total con-
figurational crack tip load versus summation levels for a straight crack in an approximated
infinite domain under a) uniaxial loading and b) an equivalent normal pressure on the crack
faces. The line style indicates the ratio a/L with a/L = 0.1 for the dotted lines, a/L = 0.025
for the solid lines and a/L = 0.0125 for the dashed lines.

42



4.6 Benchmarks

The contributions to the configurational crack tip load in case of loaded crack faces
are illustrated in Fig. 4.10 b). The elastic contribution to Gtip

x (blue line) now
strongly depends on the area of integration and reduces for growing m. The contri-
bution of the crack face load (pink line) is also path-dependent and increases with
growing m. Since the crack is not ideally sharp (α≈ 0.06◦) small contributions of W
on the crack faces have to be considered to get a total configurational crack tip load
equivalent to case a). The individual contributions for different summation levels m
are listed in Tab. 4.1. It is important to note that even for m = 0, the error due to a
negligence of Gboun. t∗ is considerable (≈ 10%). This emphasizes that the consider-
ation of the crack face integrals in case of loaded crack faces is important. Again it
shows that m= 2 suffices to compute very accurate results.

4.6.3 Benchmark c: volume forces

σσ

f vol
= +L

L

a

f vol

KI = σ
p
πa KI = 0 if ν= 0

Figure 4.11: Superposition of uniaxial tension test and loading due to volume forces and
resulting KI for ν= 0

Due to the lack of analytical solutions, as well as published results in case of applied
volume forces, a rather scientific setup as illustrated in Fig. 4.11 has to serve as
benchmark for the implementation of the volume force contribution to the configu-
rational crack tip force. Similar to the previous example, superposition can be used
to split the problem into one with only uniaxial loading and the known resulting
configurational crack tip load from the previous example and one with only volume
forces acting on the domain. For ν = 0, transverse deformation is suppressed
and the influence of the volume forces on stress concentrations at the crack tip
disappears. In this case, the evaluation of the complete problem must result in the
same configurational crack tip force as the problem with uniaxial loading. The plot
in 4.12 a) illustrates the individual contributions to Gtip for a/L = 0.025. In the
present example, the volume forces increase the elastic contribution to Gtip with
growing summation levels. By adding the direct share due to volume forces Gvol,
the total configurational crack tip force converges and independence on the size of
the domain is preserved. The numbers in Tab. 4.2 indicate, that only one additional
circle of elements suffices to compute configurational crack tip loads with a relative
error of less than one per mil.
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Figure 4.12: a) Resulting contributions to the normalized configurational crack tip force for
different summation levels m and ν = 0; b) contributions to the configurational crack tip
force for different m and ν= 0.3

Also in case of ν 6= 0 the total configurational crack tip force converges for
increasing m. Figure 4.12 b) shows the individual contributions to Gtip for ν = 0.3,
σ = 100kPa and fvol = ρg for g = 10 m/s2 and ρ = 1000 kg/m3. Unlike for ν = 0, it
appears that the contribution of the volume force correction is very small, even for
larger m. Further simulations indicate that this trend is independent of the intensity
of the volume force. As in the previous examples, m = 0 underestimates the correct
result whereas m = 2 suffices to evaluate Gtip with a relative error of less than one
per mil in comparison to the result for m= 10.

m 0 1 2 3 4 5 6
Ḡtip 0.8834 1.0001 1.0001 1.0005 1.0005 1.0006 1.0006

Ḡelast. 0.8834 1.0055 1.0187 1.0418 1.0775 1.1305 1.2034
Ḡ fvol. −0.0000 −0.0053 −0.0186 −0.0413 −0.0770 −0.1299 −0.2028

Table 4.2: Resulting contributions Ḡ∗ = G∗/Ganalyt. to the crack tip configurational force for
different summation levels m and ν= 0

4.6.4 Benchmark d: inhomogeneous Young’s moduli

There exists a multitude of papers on the analysis of stress intensity factors for func-
tionally graded materials (FGMs). Erdogan (1995) and Erdogan and Wu (1997)
present a semi-analytical approach for the computation of KI in a functionally
graded beam with single edge crack under different loading situations. The results
are verified by Kim and Paulino (2002) who show different FE strategies for the
evaluation of KI such as a J-integral computation. Mahnken (2008) implemented
a material force approach with different meshing strategies for the computation of
KI for a/b = 1/2 and compared the results to those of Kim and Paulino (2002). In
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the present study, only loading by an uniaxial tensile stress will be considered as
illustrated in Fig. 4.13. In analogy to the mentioned publications, L/b = 4 will be
used. The variance of material parameters is constricted to Young’s modulus which
takes the form

E(z) = E0 e− z/b lnκE (4.29)

with κE = E(z = −b)/E0. Herein, z is the vertical coordinate with the origin located
at the upper side of the domain. Resulting distributions of E(z)/E0 are shown in
Fig. 4.14 a).

σ

E(z)

L

z

a

b

Figure 4.13: Setup with depth-
dependent Young’s modulus

Figure 4.14 b) compares own values of normal-
ized KI with a summation level of m = 2 to the
findings in the mentioned publications. It appears
that the J-integral approach, the material force
approach by Mahnken (2008) and the presented
evaluation of KI via configurational forces lead to
very similar results. The semi-analytical values
of Erdogan and Wu (1997) are in good agree-
ment for the most part of the analyzed setups.
Only small κE and deep cracks lead to slightly
higher KI for the semi-analytical evaluation. Fig-
ure 4.14 b) does not indicate a clear trend for KI

versus growing or decreasing E with depth. Only for deeper cracks, a trend towards
higher KI for decreasing E with depth and lower KI for increasing E is evident.
Not only the ratio between E0 and E(z = −b) but also the characteristic trend of E(z)
considerably influences the resulting normalized KI . Figure 4.15 b) illustrates result-
ing normalized KI for κE = 0.1,1 and 10 as well as for different characteristic trends
as plotted in Fig. 4.15 a). In comparison to Fig. 4.14 b) it appears that the dif-
ferences in KI due to the slope of E(z) for equal κE are within the same order of
magnitude as the differences due to different κE.
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Figure 4.14: a) Normalized Young’s modulus versus depth for different κE; b) resulting
normalized KI for single edge tension test in comparison to literature findings
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Figure 4.15: a) Normalized Young’s modulus versus depth for different κE and characteristic
trends; b) resulting normalized KI versus normalized crack depth; normalized elastic (c) and
inhom. (d) contribution to configurational crack tip force for different summation levels,
characteristic trends and κE

The influence of the summation level m on the different contributions to the con-
figurational crack tip force is illustrated in Fig. 4.15 c) and d). The results are
normalized using the respective configurational crack tip force for m = 10. As in
previous benchmarks, the relative error of Gtip with respect to an optimum value
for m = 10 becomes small for m ≥ 2. The error invoked by only taking the elas-
tic contribution to Gtip is smaller than in the previous examples. Nevertheless a
clear trend towards larger differences between Gtip and Gelast. for stronger gradients
in E(z) appears. Hence, the results in Fig. 4.15 d) correspond well to Eq. (4.19),
where the contribution of inhomogeneities in the material parameters is introduced
as a function of the spatial derivative of the stiffness tensor.

4.6.5 Benchmark e: mixed mode loading, static crack tip

In order to demonstrate the good agreement of the numerically computed resulting
configurational force vector with the analytically evaluated J-integral vector, the
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benchmark example of the straight crack in an infinite domain under mixed mode
loading (Sec. 3.3) will be used. Since the previous benchmarks showed the very
good agreement between numerically computed values of J1 and analytic results
depending on m, the focus is now directed on the performance of J2 with respect
to m. The solid lines in Fig. 4.16 a) show corrected values of the different contri-
butions to the configurational crack tip force (Gelast.

y ,Gboun.,W
y ) as well as the resulting

configurational crack tip force Gtip
y for different sizes of the influence area specified

by the summation levels m for σ = τ, hence KI = KI I and J1 = J2. Corrected in
this sense means, that contributions to Gboun.,W

y of nodes on edge elements adjacent
to the crack tip and of the crack tip itself are ignored. The dashed and the dotted
lines illustrate results for Gboun.,W

y and Gtip
y comprising all nodes, or ignoring only the

crack tip node, respectively. Unlike in the previous examples, where the contribu-
tion of Gboun.,W

x was negligibly small independent on the size of the influence area,
Fig. 4.16 a) now illustrates the importance to include crack face contributions if
resulting configurational forces are computed for mixed mode loading. In addition,
the difference between a summation of nodal configurational forces within at least
one element ring around the crack tip and solely taking the crack tip nodal config-
urational force appears even more pronounced than in previous benchmarks with
mode I loading. Since the area covered by a certain number of element rings is
related to the mesh size around the crack tip, the error by only taking Gelast. versus
summation levels m reduces for finer discretizations. In Fig. 4.16 b), the numeri-
cally computed deflection angle θ = atan(J2/J1) is compared to the analytical result
for different values of KI/K2. Both lines are in very good agreement. However, the
illustrated precision of the numerical results can only be achieved with a very fine
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Figure 4.16: a) Contributions to resulting configurational crack tip force and total config-
urational crack tip force versus different summation levels m for straight crack in infinite
domain under mixed loading (τ = σ), Gboun.,W without correction (dotted line), ignoring
crack tip node contribution (dashed line), ignoring nodes on crack adjacent element edge
(solid line); b) crack deflection angle θ resulting from analytic and numerical computation
of J1 and J2 for varying KI/K2
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Figure 4.17: a) Setup of inclined straight crack in infinite domain under uniaxial tension
following Kienzler et al. (2010); b) analytic and FE-based resulting normalized J1 and J2 for
different inclination angles ϑ

and uniform mesh around the crack tip.

Thus far, mixed mode conditions were forced by external loading while the crack
was oriented in horizontal direction. The sketch in Fig. 4.17 a) illustrates the setup
of a benchmark with an inclined straight crack in an infinite domain under uniaxial
tension as published by Kienzler et al. (2010). Resulting normalized values J̄1 and J̄2

with
J̄i =

Ji E
πaσ2(1− ν2)

are plotted in Fig. 4.17 b). The analytic components of the generalized J-integral
are computed using

KI = σ
p
πa sin2(π/2− ϑ) and KI I = σ

p
πa sin(π/2− ϑ) cos(π/2− ϑ). (4.30)

A fine and uniform mesh at the crack tip provided, the numerical findings are in
very good agreement with analytical results.

4.6.6 Benchmark f: mixed mode loading, crack propagation

A very demanding and often employed benchmark for crack propagation algorithms
has been proposed by Bittencourt et al. (1996). As visualized in Fig. 4.18 a) the
geometry consists of a two-dimensional homogeneous block with three holes and
an initial crack at the lower left boundary. The bearing and the load are consistent
with those of a three point bending test. Figures 4.18 b) and c) show digitized pho-
tographs of experimental crack trajectories found by Bittencourt et al. (1996) for
two setups with a = 5m and b = 1.5m (in b) and a = 6m and b = 1m (in c). A
replication of the crack path in Fig. 4.18 c) can easily be achieved and is relatively
insensitive with respect to changes in the maximum crack propagation increment or
the minimum mesh size. The simulation follows the work flow in Fig. 4.4 without
checking if a threshold for crack propagation is reached. The results are plotted
in Fig. 4.19 b) together with the digitized crack trajectory of the experiment by
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Fig. 8. Digitized photographs of observed crack trajectory: (a) Example 1, (b) Example 2. 

Results for Example I 
A comparison between the observed and predicted crack trajectories for Example 1 is first 

presented. As mentioned earlier, the crack increment is the only arbitrary parameter in the 
simulation. The convergence of the procedure with respect to the crack increment is illustrated 
in Fig. 9(a). Improvement in matching experimental results is achieved when the step size is 
reduced from 1.0 in. to 0.5 in. and 0.3 in. Further improvement is achieved when the increment 
is reduced in the regions where the ratio of K./K~ is relatively high, where "high" here means 
absolute value greater than zero and less than about one-tenth. These regions are near both holes. 
Using a variable increment from 0.3 in. to 0.05 in., it was possible to match very accurately the 
crack path in the region where the experimental results show the crack intersecting the hole 
[Fig. 9(b)]. 

Results for Example 2 
The crack trajectory was also predicted for Example 2 with a different initial notch 

configuration. A comparison between observed and predicted crack trajectories is presented in 
Fig. 10. In this case the influence of the upper hole and the direction of approach of the crack 
are such that a relatively large increment still yields very good results. 

Effects of method for computing stress intensities and trajectory 
The quasi-automatic procedure can be used to compute stress intensity factor histories. In 

addition, the effects on crack trajectory of the different stress intensity factor calculation methods 
and the different mixed-mode theories can be assessed. Such assessments were performed for 
Example 1. 

Use of the three mixed-mode interaction theories, with a consistent use of the modified crack 
closure integral technique, resulted in crack paths with no significant differences, as shown in 
Fig. 11. 

b) c)

Figure 4.18: a) Setup for the benchmark test by Bittencourt et al. (1996) with length scales
in [m]; b+c) digitized photographs of experimental crack trajectory taken from Bittencourt
et al. (1996) with a = 5m and b = 1.5m (in b) and a = 6m and b = 1m (in c)

Bittencourt et al. (1996). As to be expected, small values of ∆λmax are better able
to reproduce the experimental result. Nevertheless also large ∆λmax lead to the
crack growing into the second hole with only 15 propagation steps, as visualized
by the red line. The crack path in Fig. 4.18 b) is much more difficult to reproduce
and imposes higher demands on ∆λmax as well as on the maximum mesh size. Fig-
ure 4.19 a) illustrates modeled crack paths for varying∆λmax. If the maximum crack
growth increment is chosen too large, the crack passes the second hole on the right
side and propagates towards the centre of the upper boundary where the load is
introduced (light blue curve, overlapped by dark blue curve). Intermediate values
of ∆λmax can by chance be able to reproduce the crack path with a comparatively
low number of steps required (green and red curve, overlapped by purple curve)
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Figure 4.19: Simulated crack path in comparison to experimental result by Bittencourt et al.
(1996) for different maximum crack propagation increments ∆λmax using a) a = 5m and
b = 1.5m or b) a = 6m and b = 1m

49



4 Finite element implementation

but may also fail if the new crack tip is set outside of what might be called an area
of convergence around the correct solution (dark blue curve). If ∆λmax is below a
certain threshold, all cracks hit the second hole from the right side as requested by
the experimental results. The illustrated paths have been evaluated using

∆λt =



























∆λmax, if ∆θ < 0.5◦

1
2∆λmax, if 0.5◦ ≤∆θ < 1◦

1
4∆λmax, if 1◦ ≤∆θ < 2◦

1
8∆λmax, if 2◦ ≤∆θ < 3◦

1
16∆λmax, if ∆θ ≥ 3◦.

(4.31)

The resulting number of steps is considerably larger than the number needed
by Schütte (2010) using curved crack path increments and a predictor corrector
scheme. However, this is acceptable regarding the simplicity of the applied algo-
rithm.

In order to demonstrate the behavior of the algorithm for multiple cracks, a bench-
mark first published by Bouchard et al. (2003) is used. The setup with two holes
as visualized in Fig. 4.20 is symmetric to the center of the domain and comprises
two cracks originating from the lateral boundaries. The horizontal boundaries are
clamped and shifted by a constant displacement ∆uyn in vertical direction. As pro-
posed by Bouchard et al. (2003), the crack deflection angle and the propagation in-
crement for both crack tips is evaluated for every propagation step, hence the cracks
grow simultaneously. In his paper, Bouchard et al. (2003) compared different cri-
teria for the evaluation of the crack deflection angle (the maximum circumferential
stress criterion, the maximum strain energy release rate criterion and the maximum
strain energy density criterion) in combination with a mesh refinement algorithm.
He showed that for the presented problem, the criteria used led to similar general
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Figure 4.20: Setup for benchmark test following Bouchard et al. (2003) with length scales
in [m]
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Figure 4.21: Simulated crack paths for the benchmark example of Bouchard et al. (2003) a)
using different maximum crack propagation increments and ∆λn = 1/400∆λmax, b) using
∆λn = 1/32∆λmax

crack paths. Both cracks are first attracted by the neighboring hole then realign
to grow towards the hole in front. After about two fifth of the domain length the
cracks start approaching each other, but do not coalesce along the shortest path.
The crack tips run around each other and would merge after some distance if they
were not drawn by the holes which they eventually penetrate. This pattern is very
well reproduced by the simulated crack paths for a wide range of crack propagation
increments as shown in Fig. 4.21 a). A sensitivity due to larger opening angles at
the tip invoked by taking ∆λn = 1/32∆λmax instead of ∆λn = 1/400∆λmax as in the
previous plot is shown in Fig. 4.21 b), where the upper crack propagates towards
the lower crack instead of penetrating the hole. By using smaller crack propagation
increments, this misdirection can be remedied.
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Figure 4.22: Crack propagation direction for straight crack in infinite domain for the first
15 propagation steps using a) pure mode II loading and b) mixed-mode loading with
KI/KI I = 0.5, initial crack tip marked in red
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Figure 3.8 b) demonstrates that the direction of the generalized J-integral vector is
not suitable to predict the crack deflection angle unless KI � KI I . Figure 4.16 b)
shows that the configurational force approach is able to very accurately compute
the components of J for wide range of the ratio KI I/KI .
In a last setup it will therefore be shown that the presented implementation of the
configurational force approach is able to approximate the crack deflection angle
predicted by the S-criterion for ν = 0.3 and the maximum circumferential stress
criterion (MCS-cirterion) also for KI I � KI by application of an incremental crack
propagation algorithm after very few crack propagation steps. Therefore, the bench-
mark example of the straight crack in an infinite domain under mixed mode loading
will once more be used. Figure 4.22 a) illustrates, that only five crack propagation
steps are needed to approach the deflection angle θ ≈ 83.6◦ of the S-criterion for
pure mode II loading with less than 2% error. For the following steps, θ stabilizes
at approximately 76◦ which lies between the result for the S-criterion and the MCS-
criterion. Figure 4.22 b) shows the crack path and the resulting direction of crack
propagation for KI/KI I = 0.5. In this example only three steps are needed to obtain
results between those of the S-criterion and the MCS-criterion. Both simulations
were performed with a/L = 0.0125 and constant crack propagation increments with
∆λ/a = 1/150.
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5 Analysis of vertical cracks in ice
shelves

The vertical propagation of crevasses in glaciers and ice shelves has been a subject of
investigation for more than 50 years. Nye (1955) argued that crevasses propagate
vertically to the point where the cryostatic pressure neutralizes the flow induced
tensile stresses. Weertman (1973) was the first to assume elastic material behavior
for the analysis of vertical crevasses in glaciers. He evaluated the characteristics
of dry and water-filled single crevasses by using dislocation distribution functions.
Methods of linear elastic fracture mechanics for the evaluation of stress intensity
factors (SIF) of dry and water filled surface cracks in ice shelves were first applied
by Smith (1976). He used a simplified crack geometry and boundary conditions to
facilitate the application of tabulated values gained from semi-analytical methods
by Tada et al. (1973) and Sih (1973a). His method was adapted and extended by
Van Der Veen (1998a,b), who discussed the importance of depth-dependent density
profiles and Rist et al. (2002) who additionally analyzed depth-dependent tensile
stresses. The approach by Rist et al. (2002) has been repeatedly used for the analysis
of bottom and subsurface crevasses, e.g. by Nath and Vaughan (2003) and Luckman
et al. (2012), and will be used here as a benchmark for the implemented finite
element model.

In this chapter, several types of vertical crevasses are considered as visualized in
Fig. 5.1. A valid model geometry for surface cracks in a sufficient distance from
the grounding line, the ice front and singular points as ice rises or ice rumples is
presented in Sec. 5.1. The influence of geometric dimensions is discussed. In
Sec. 5.2 several boundary conditions are presented to demonstrate their influence

grounding line

metersice shelf

surface crevasse

bottom crevasse

ice riseice front

ice sheet

hundreds of kilometers

hundreds of

Figure 5.1: Simplified ice shelf model for vertical crack propagation
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on the crack criticality. The influence of different elastic material parameters as
well as the density is presented in Sec. 5.3. The results on dry surface cracks are
compared to the findings of Rist et al. (2002) in Sec. 5.4 before shifting the focus
to water-filled surface and bottom cracks in Sec. 5.5. In Sec. 5.6 the simulation
of water-filled surface crevasses is extended towards the analysis of frost wedging
processes.

5.1 Model setup and geometric dimension

In order to simulate cracks in a specific stress state, the geometric dimensions of
the model have to be chosen carefully. Vertical single cracks are local small-scale
phenomena, e.g. the crack depth and the crack opening are small in comparison
to the lateral extent of ice shelf. For this reason, the length of the model domain
has to be sufficiently long to prevent influencing interactions between the vertical
boundaries and the crack tip, on the other hand it has to be small in comparison to
the characteristic length of the ice shelf.
Fractures tend to align perpendicular to the direction of the first principal stress.
This direction is shear-free, hence in-plane shear stresses, leading to a mode II crack
opening are neglected for the analysis of vertical crack propagation. Effects as crack
closure and contact problems due to compressive stresses will not be considered ei-
ther.
Figure 5.2 a) shows smoothed flow velocities of the eastern part of the WIS result-
ing from satellite measurements published in Braun et al. (2009). The resulting

a) 0 20 40 60 80 100 120 140 160 [m/a] b) −150 −100 −50 0 50 100 150 200 [kPa]

Figure 5.2: a) Horizontal ice flow velocity in [m/a] of the south-western tributaries of the
WIS as published in Braun et al. (2009) basing on ERS-1/2 SAR overpasses of March 1994
and March 1996; b) resulting first viscous principal surface stress in [kPa]; background:
MOA image from 2003/04 ( c©NSIDC, Haran et al. 2005)
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5.1 Model setup and geometric dimension

first principal surface stress, evaluated using the equations in Sec. 2.2.2 with n = 3
and A−1/n ≈ 7.4 · 107Pa s1/3, is illustrated in Fig. 5.2 b). The value for A−1/n is com-
puted following Greve and Blatter (2009) for an isothermal ice shelf with T ≈ −3◦C.
The relevant tensile stresses range from 0 Pa to 200kPa, whereupon high stresses
only occur at the grounding line or in proximity of ice rises. In freely floating areas,
tensile stresses do not exceed 100 kPa. Regions with approximately constant tensile
stresses extend only few kilometers.
Braun et al. (2009) published ice shelf thicknesses ranging from 50 m in the North
of the WIS to 300 m in the South. This information together with an approximate
guess of reasonable domain lengths according to Fig. 5.2 b) motivates an investi-
gation into the influence of the geometric parameters length L and thickness H on
crack criticality with respect to the crack depth C D. A third important geometric
parameter is the crack opening angle α. Satellite images show crack openings up
to several meters, whereupon the associated crack depth and crack geometry are
unknown. The variation of the crack opening angle in Sec. 3.2.1 showed negligible
differences in the singularity order λ for α < π/10. Since reasonable crack open-
ing angles are difficult to guess, a wide range of 0 < α < 1/36π will be simulated.
For the two-dimensional FE simulation of vertical single cracks under plane strain
conditions, a geometric setup as presented in Fig. 5.3 is used. Computation time is
saved by only simulating the symmetric half domain of the problem in analogy to
Sec. 4.6.1.
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α

pb

g

E, ν, ρI

x

z

∆ux

E = 9GPa

ν= 0.3

ρI = 910 kg/m3

ρSW = 1024 kg/m3

g = 9.81 m/s2

∆ux =̂ σ f = 100kPa

pB = −ρSW g(z + uz)

250 m< L < 8000m

50 m< H < 300 m

0< α < 1/36π

Figure 5.3: Model geometry and boundary conditions for the simulation of dry vertical crack
growth; constant material parameters used for the geometric length scale parameter studies

Ice shelves are subjected to gravity and buoyancy forces in the vertical direction.
Also the simplified model geometry is loaded by gravity. Buoyancy is realized by
a Robin-type pressure boundary condition pB as a function of the seawater den-
sity ρSW , the gravity constant g, the vertical position z and the vertical displace-
ment uz at the bottom of the domain.
The horizontal velocities and displacements in a sufficient distance from the ice shelf
boundaries are depth-independent, a property widely used in the so-called shallow-
shelf-approximation for ice dynamical simulations (Greve and Blatter, 2009). In
order to meet this constraint, the vertical boundary is loaded by a prescribed depth-
independent displacement ∆ux . For the uncracked homogeneous body, ∆ux can
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5 Analysis of vertical cracks in ice shelves

be related to the horizontal tensile flow stress σ f using Hooke’s law, σ = E′ε,
with E′ = E for plane stress and E′ = E/(1 − ν2) in the case of plane strain, which
will be assumed in the following simulations. Hence

∆ux = εL =
σ f (1− ν2)

E
L. (5.1)

Unless differently stated, the material parameters E, ν, ρI and ρSW , as well as the
remote stress σ f are kept constant at the values assigned in Fig. 5.3.
In order to make statements about a possible crack depth for given parameter setups,
a range of crack depths is simulated and the respective SIF KI are evaluated from
the absolute value of the resulting configurational force using the relation

KI =

√

√ G E
1− ν2

(5.2)

derived from Eq. (3.7) for mode I loading. Special attention is needed for the inter-
pretation of negative SIFs. With KI being a function of the square root of the com-
puted configurational forces, which do not distinguish between tensile and compres-
sive stress concentrations, the sign of KI is determined by an additional evaluation
of the relative displacement of the crack faces towards each other in proximity of
the crack tip. Hence, negative SIFs represent crack closure. Zero and positive SIFs
indicate a potential crack at the respective depth, whereas KI exceeding the critical
SIF KI c suggests potential crack growth. Rist et al. (2002) published measurements
for KI c ranging from 50kPa

p
m up to 400kPa

p
m with very little variation due to a

depth increasing density. The region within these limits will in the following be re-
presented by a grey background, a change of sign will be indicated by a black dotted
line.

5.1.1 Length L of the model domain
Figure 5.4 a) shows a significant dependence of KI(C D) on the length L of the model
domain regarding a large set of possible crack depths. Zooming into the relevant
area of positive SIFs, indicated by the red box in Fig. 5.4 a) however reveals no con-
siderable change in the resulting SIFs for L > 2000m as shown in Fig. 5.4 b). Higher
external loads in Fig. 5.4 c) lead to deeper cracks and the influence of the model
length on KI(C D) increases, whereupon the differences for L > 2000 m remain negli-
gible. Following simulations will be performed with a domain length of L = 2000m.
For setups resulting in deep cracks, different values for L may be considered.

5.1.2 Influence of the ice shelf thickness H

Figure 5.5 a) shows KI(C D) for different ice thicknesses H in the relevant region of
positive SIF. Solid and dashed lined represent a displacement load ∆u equivalent
to σ f = 100kPa and σ f = 200 kPa, respectively. Relevant differences in KI(C D) can
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Figure 5.4: a) SIF versus crack depth for different domain lengths L, H = 250m, α = 0◦

and ∆ux =̂ σ f = 100kPa; b) zoom into relevant region with positive SIF; c) setup of a)
with ∆ux =̂ σ f = 200kPa

be observed for both black and blue curves, as well as for the red and the cyan
dashed curves. For these setups, positive SIFs exist down to considerably more
than one third of the ice shelf thickness. For cases where max(C D) < 1/3H, the
dependence on the thickness is smaller. Standard literature in fracture mechanics
usually presents KI as a function of the ratio C D/H in order to use nondimensional-
ized quantities. By application of body loads, as in the presented case, however the
SIF explicitly depends on the crack depth C D and the thickness H as illustrated in
Fig. 5.5 b).

−1 0 1 2 3 4

0

50

100

KI

�

MPa
p

m
�

C
D
[m
]

H = 50 m
H = 100 m
H = 150 m
H = 200 m
H = 250 m
H = 300 m
H = 400 m

a)
−1 0 1 2

0

0.2

0.4

0.6

0.8

1

KI

�

MPa
p

m
�

C
D
/
H

b)

Figure 5.5: a) SIF versus crack depth for different ice shelf thicknesses H, L = 2000 m and
α = 0◦; drawn trough lines represent ∆ux =̂ σ f = 100 kPa, dashed lines represent ∆ux =̂
σ f = 200kPa; b) SIF versus ratio C D/H for ∆ux =̂ σ f = 100kPa and different ice shelf
thicknesses H
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5 Analysis of vertical cracks in ice shelves

5.1.3 From sharp crack to cracked notch, the influence of α

Several techniques exist to identify cracks in ice shelves. The most nearby method is
the analysis of satellite imagery. Depending on the satellite and the mode used, the
resolution of the images ranges from 1/2m in high-resolution mode (e.g. Terrarar-X
spotlight) to several tens of meters. Hence, cracks with openings spanning several
pixels on satellite images need to have a crack width of at least several meters.
Figure 5.6 a) shows simulated crack top displacements ∆uxC e.g. the visible crack
width of initially ideally sharp cracks (α = 0◦) for varying crack depths C D with
boundary conditions as introduced in Fig. 5.3 using two different loads. It is ob-
vious that the resulting crack top displacement ∆uxC of less than one centimeter
cannot explain visible crack openings of several meters. For this reason, open cracks
with α > 0◦ have to be considered whereupon the processes leading to the opening,
such as creep or melting, will not be addressed.
Though the existence of a multitude of different crack profiles is possible, only trian-
gular geometries and cracks shaped by quadratic polynomials will be considered in
the following. Figure 5.6 b) illustrates the visible crack width ∆xC due to different
opening angles α for triangular cracks. As in the example with α = 0◦, the resulting
displacement at the crack opening is insignificant, hence ∆xC only comprises the
geometric opening for varying crack depths C D following the equation

∆xC = 2C D tanα. (5.3)

By simulating the single edge tension test example illustrated in Fig. 3.5 b) with
varying opening angles α it can be shown that in this case the influence of α on KI

is negligible within the considered range of α≤ 5◦. Only for opening angles α≥ 10◦

the resulting normalized SIFs considerably decrease as illustrated in Fig. 5.7 a).
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Figure 5.6: a) Total crack top displacement ∆uC versus crack depth for an ideally sharp
crack and two different loads; b) geometric crack opening at crack top due to opening angle
α versus crack depth; c) SIF versus crack depth for different α, ∆ux =̂ σ f = 100 kPa (solid
line) and ∆ux =̂ σ f = 200kPa (dashed line)
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5.1 Model setup and geometric dimension

Stress intensity factors for the cracked ice shelf domain with applied body loads
and opening angles corresponding to those in Fig. 5.6 b) are shown in Fig. 5.6 c).
The influence of even small α is remarkable. Cracks, which under a given loading
of ∆ux =̂ σ f = 100kPa arrive at a maximum crack depth of C D = 45m in the α= 0◦

setup reach down to a crack depth of about 175m if α= 5◦. The corresponding crack
width for C D = 175m is ∆xC = 30.6 m. The α= 1◦ opened crack with ∆xC = 1.75 m
yields a maximum depth of C D = 50 m. As expected, the influence of α becomes
even more apparent for higher loads.
In order to get a better understanding of the influence of the crack profile, a crack
geometry modeled with a quadratic polynomial, as illustrated in Fig. 5.7 b), is used.
The maximum opening of the spline at the crack top, ∆xC , is defined by the opening
angle αS and the crack depth C D according to Eq. (5.3). The blue area AS of the
spline shaped crack is calculated, as well as the resulting SIF. In a next step a new
opening angle αT of a triangular crack is evaluated to satisfy the condition AT = AS.
This new problem is then simulated to get the associated SIF. Figure 5.7 c) illus-
trates the computed SIFs for the spline shaped, as well as the triangular shaped
crack for σ f = 100 kPa and σ f = 200kPa. Whereas Fig. 5.6 c) showed a strong
difference between the SIF for α = 3◦ and α = 5◦ the differences in the present plot
for αT ≈ 2.56◦ and αS = 5◦ are hardly visible for the 100kPa loading and very small
for ∆ux =̂ σ f = 200kPa.
This motivates the conclusion, that not the opening angle α itself is the important
parameter, but the associated cut out ice mass over the crack tip, whose weight in
the case of α= 0◦ helps to stabilize the crack.
As even small opening angles result in deeper cracks for the given ice shelf thickness
of H = 250m, the influence of the domain length L and the thickness H will once
more be addressed. Figure 5.8 a) shows KI(C D) for α= 5◦ and ∆ux =̂ σ f = 100kPa
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Figure 5.7: a) Resulting normalized SIFs versus opening angle for single edge crack tension
test with a/b = 1/2; b) quadratic polynomial shaped crack geometry (blue) and associated
triangular crack geometry (red); c) resulting SIF versus crack depth for ∆ux =̂ σ f = 100kPa
(solid line) and ∆ux =̂ σ f = 200 kPa (dashed line)
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Figure 5.8: SIF versus crack depth for αT = 5◦ and a) ∆ux =̂ σ f = 100 kPa;
b) ∆ux =̂ σ f = 0Pa

using different domain sizes. Starting from the black solid curve with H = 250m
and L = 2000m, it shows, that a growing domain length L with fixed thickness H
leads to increasing SIF. However, the change in the maximum crack depth is com-
paratively small and limited by the ice shelf thickness. Going back to the black solid
curve and increasing the thickness to H = 400m results in a considerably lower max-
imum crack depth (black dashed curve). Doubling the domain length to L = 4000 m
reveals the interesting phenomenon of two separated areas of positive SIF at differ-
ent depth.
The question may arise if a large opening angle without any tensile remote stress can
lead to considerably deep cracks. The answer is YES. For an opening angle of α= 5◦,
an ice shelf thickness H = 250m and a domain length of L = 8000m or L = 16000 m
positive SIFs occur for crack depths 155m < C D < 175 m or 145m < C D < 190 m,
respectively, as shown in Fig. 5.8 b). The geometric parameters leading to this result
might be of rather scientific interest, however they reveal the theoretical possibility
of very deep reaching cracks in thick ice shelves under little or zero remote loading
and sensitize for the fact that the first stable crack depth must not be mistaken as
the maximum possible crack depth.

5.1.4 Summary of the geometric parameter study

In general it can be said, that the influence of the domain length L and the thick-
ness H on KI(C D) are small as long as the cracks are shallow, e.g. C D/H < 1/3. Thin
ice shelves tend to be more sensitive to crack growth than thick ones. The most in-
fluential geometric parameter is the crack opening angle α, or more precisely, the
crack geometry with the associated removed mass over the crack tip. The thick-
ness H of an ice shelf is the only geometric parameter that can be determined to a
satisfying extend depending on the global location of the crack situation of interest.
The crack geometry and crack depth are hardly known but would be of great value
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5.2 Differences in the choice of boundary conditions

for the validation of the method and the interpretation of the simulation results. The
domain length L must remain a parameter of choice, founded on the mentioned es-
timations for the chosen boundary conditions. Possible other choices for the lateral
boundary conditions will therefore be addressed in the following section.

5.2 Differences in the choice of boundary
conditions

The majority of previous studies on crack criticality in ice treated the material as
incompressible (ν = 0.5). The application of a constant or depth-dependent tensile
normal stress superimposed by the cryostatic pressure of the ice as vertical bound-
ary condition was widely used. This approach allowed the use of semi-analytical
methods for the computation of KI(C D). Prominent representatives following this
approach are Weertman (1973), Van Der Veen (1998a) and Rist et al. (2002). How-
ever, this method is restricted to ideally sharp cracks and constant elastic material
parameters. Moreover, the applicability of stress boundary conditions for cracks in
the ice shelf bulk can be questioned. A variation of the SIFs according to differ-
ent boundary conditions can be expected and will therefore be investigated in the
following section.

5.2.1 Single edge crack tension test

Before applying various boundary conditions to the simplified ice shelf geometry,
the general difference between stress and displacement boundary conditions for
cracked domains will be shown for the single edge crack tension test. The simula-
tions are performed without additional gravity or bottom pressure in order to ensure
compatibility to semi-analytical results. Figure 5.9 shows sketches of the modeled
domains with stress, as well as displacement boundary conditions and the resulting
deformed shapes with the surface color illustrating the first principal stresses in the
domain. Note, that for both cases, the load is equivalent following Eq. (5.1) for the

σ

C D

H

L

0 Pa
tens. comp.

∆ux H

L

C D

Figure 5.9: Boundary conditions for the single edge crack tension test with stress bound-
ary condition (left) and equivalent displacement boundary condition (right); respective de-
formed shapes (scale factor 1000) of complete cracked specimen with qualitative values for
first principal stress in the middle
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Figure 5.10: a) Averaged reaction stress σx x at constrained boundary versus C D/H for dif-
ferent domain length L; b) SIF versus C D/H for stress boundary conditions (black line)
and displacement boundary conditions (dashed lines) for different domain length L in com-
parison to semi-analytical results for stress boundary conditions (red dots) following the
equations in Fig. 3.5 b)

uncracked domain. The resulting deflections, as well as the principal stresses close
to the crack tip are much higher for stress boundary conditions than for the loading
by displacements. The difference in the deflections is caused by the fact that bound-
aries loaded by constrained displacements carry bending moments, which reduce
the internal moment in the specimen. The internal moment is related to the bend-
ing stress in the domain. Hence, a lower bending moment is one factor causing a
reduced stress in the middle of the specimen, where the crack is initiated.
The second factor follows by looking at Fig. 5.10 a) where for the case of constrained
displacements, the vertical average of the normal stress at the loaded boundary is
plotted versus the normalized crack depth. The initial average stress for the un-
cracked domain equals the remote stress σ f = 100kPa, used for the computation
of ∆ux . For growing crack depths, the averaged stress considerably decreases or
in other words, crack growth under displacement boundary conditions leads to a
softer overall behavior, an effect also known as crack compliance. Increasing the do-
main length L considerably reduces the influence of the compliance. Figure 5.10 b)
presents the resulting SIFs for different boundary conditions and varying domain
lengths L. In case of loading by stress boundary conditions, different L yield no
deviation in the resulting SIFs, once a minimum length in the order of twice the
domain thickness is reached. Therefore, only the results for L = 2 km (black line)
are plotted. It shows that this length is sufficient to reproduce semi-analytical re-
sults for the single edge crack tension test (red dots), which assumes infinitely long
domains. In the case of constrained displacements (dashed lines), the influence of
the boundary condition reduces with increasing L. Decrescent SIFs for deep cracks
result from the just mentioned compliance effect. For L ∞, KI(C D/H) converges
to the solution of the problem with stress boundary conditions. Again it appears
that for rather shallow cracks (C D < H/3) the influence of the boundary conditions
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5.2 Differences in the choice of boundary conditions

and the domain length on KI(C D/H) is very small whereas their influence on deeper
cracks has to be considered.

5.2.2 Stress and displacement boundary conditions for
vertical cracks in ice shelves

The application of displacement boundary conditions on the ice shelf model does not
differ from the previous example where ∆ux is computed from the remote stress σ f

for the uncracked situation. However, the loading by stresses needs some additional
care. In the case of incompressible material behavior (ν = 0.5), the horizontal
normal stress can be computed using σ(z) = σ f +ρI gz with an upward pointing
z-coordinate originating at the ice surface (see Fig. 5.11 for coordinate system).
For compressible material behavior, the stress state is not hydrostatic. Hence, the
cryostatic pressure acting in vertical direction is not completely transferred to the
horizontal direction. In the case of plane strain, the required correction follows from
Eq. (2.24) using σy y = ρI gz and εx x = 0. The resulting equation for the boundary
stress therefore reads

σ(z) = σ f +
ν

1− ν
ρI gz. (5.4)

The influence of different values for ν on the resulting SIFs shall be further em-
phasized in Sec. 5.3.2. The applied boundary conditions are illustrated in Fig. 5.11
together with the parameters used for the simulations unless differently stated.
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Figure 5.11: Boundary conditions for the ice shelf model with prescribed displacements
(left) or equivalent stresses as superposition of the tensile remote stress and an adapted
cryostatic pressure (middle); right: parameters used for the simulations

The equations in Fig. 3.5 indicate a linear relation between KI and the external
load σ. This is confirmed by Fig. 5.12 a), where KI is plotted versus the applied
remote stress σ f for both boundary conditions (indicated by the line color) and at
different crack depth (indicated by the line style). Also ”unphysical” negative SIFs
are shown in order to present the linearity for a wide range of crack depths. As to be
expected, differences in the results for stress and displacement boundary conditions
predominantly occur for deep cracks. This outcome is supported by Fig. 5.12 b),
which shows KI(C D) for both boundary conditions and a broad spectrum of remote
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Figure 5.12: a) Linear relation between σ f and resulting SIFs for both boundary conditions,
L = 2km, C D = 20m (dashed), C D = 100 m (solid), and C D = 200m (dotted); b) SIF
versus crack depth for stress boundary conditions (dashed lines) and displacement boundary
conditions (solid line), L = 2 km and different remote stresses

stresses, concentrating on physical and therefore positive KI . It appears that in the
case of deep cracks, the stress boundary conditions lead to higher KI(C D) than the
equivalent displacement boundary conditions.
The previous chapters show a strong dependence of KI(C D) on the domain length
for deep cracks. In order to verify the influence of the different boundary condi-
tions with respect to the domain length, the set of parameters resulting in the green
curves in Fig. 5.12 b) is modeled again with varying L. The simulation results
in Fig. 5.13 a) confirm the findings of the single edge crack tension test with both
boundary conditions and varying length. Short domain lengths lead to pronounced
differences in the resulting KI . Increasing L reduces the differences between stress
boundary conditions and displacement boundary conditions. Not only higher re-
mote stresses but also opening angles of α > 0 lead to deeper cracks. Therefore, the
differences between stress and displacement boundary conditions are again evalu-
ated for σ f = 100kPa (dark blue curves in Fig. 5.12 b), α= 5◦, and different domain
lengths. The results are illustrated in Fig. 5.13 b). Again it shows, that an increasing
domain length considerably reduces the variance in KI(C D) due to different bound-
ary conditions. The effect of the opening angle together with different boundary
conditions however is relevant and has to be taken into account for the choice of a
valid boundary condition.
It is appeasing to see, that for the preponderant part of the ice shelf with rather
small remote stresses and small opening angles, the choice of the lateral boundary
condition has only negligible influence on the resulting KI . Nevertheless it is impor-
tant to understand the differences of the boundary condition in order to be able to
choose the adequate one in cases where deviations in the results are to be expected.
Here, the outcome of both cases with an appropriate domain length and opening
angle can be valuable as an upper and lower estimate for the true result. As previ-
ously stated, depth-independent horizontal velocities and hence displacements are
a key assumption in many ice shelf models. In addition, the crack compliance, only
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Figure 5.13: SIF versus crack depth for stress (dashed lines) and displacement (solid
lines) boundary conditions with a) σ f = 300 kPa, α = 0◦ and different domain lengths
L; b) σ f = 100kPa ,α= 0◦ and 5◦, L = 2km and 8km

resulting from the application of displacement boundary conditions, is a reasonable
feature of the model. Especially in ice dynamical simulations, fractured regions are
often implemented as softer domains, in order to be able to reproduce the lower
flow stresses in those areas. Hence, unless stated differently, the following simula-
tions of vertical cracks in ice shelves will be performed using displacement boundary
conditions in spite of possible dependencies of KI(C D) on the domain length in the
case of deeper cracks.

5.2.3 Neumann or Robin-type boundary condition for the
simulation of buoyancy forces

Ice shelves are huge plates that float on the ocean. In order to apply a valid bottom
water pressure and to fulfill the vertical equilibrium, two approaches are considered:

pb1 =

∫

Ω

ρI(z)gdV

Lx L y
, pb2 = ρSW g(z + uz). (5.5)

For pb1 the possibly depth-dependent ice density ρI(z) and the gravity are inte-
grated over the ice shelf domain and divided by the bottom area (domain length Lx

times domain width L y), which in the two-dimensional case reduces to the domain
length L. The vertical equilibrium is fulfilled globally. In the case of varying opening
angles and a depth-dependent density, the volume integral has to be evaluated for
every crack depth before the solution of the boundary value problem can be started.
This additional effort seems unfavorable. However, since the equations to solve are
still linear, the integration is quickly carried out within the FE program COMSOL
and the overall numerical effort is small.
The Robin-type approach (pb2) fulfills the vertical equilibrium on a rather local scope
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Figure 5.14: SIF versus crack depth for different bottom pressures pb1 (dashed lines), pb2
(solid lines) and domain length L for a) varying opening angle α using ∆ux =̂ σ f = 100kPa
and b) varying remote stress σ f for the evaluation of ∆ux and α= 0◦

and is more physically based. This results in a nonlinear system of equations, which
will be solved using Newton’s method. Fortunately, the increase in computation time
is small. An additional benefit of the latter method is the evaluation of the freeboard,
which follows as result and can be used as plausibility check for the problem posed.
For both boundary conditions, the resulting KI(C D) are plotted in Fig. 5.14 a) for
varying domain lengths and opening angles and in Fig. 5.14 b) for different domain
lengths and remote stresses. As already indicated for the vertical boundary con-
ditions in the previous chapter, the type of the boundary condition has no relevant
influence on the resulting SIFs for shallow cracks (overlapping blue and black lines).
Considerable differences only appear in the case of opening angles α > 0◦, where an
increasing domain length L leads to even more pronounced deviations in the result-
ing KI(C D) (Fig. 5.14 a), red and green curves). If deeper cracks result from larger
remote stresses, only little influence on the type of bottom boundary condition can
be observed, even for longer domain lengths as shown in Fig. 5.14 b).

Figure 5.15: Deformed surface plot (first principal stress, scale factor 200) of model loaded
by Robin-type bottom pressure pb2; red arrows illustrate pb2 − pb1.

The reason for the strong influence of the opening angle follows by looking at
Fig. 5.15, where the deformed configuration and the difference between the ap-
plied bottom pressures pb1 and pb2 are illustrated. The missing weight of the ice
around the crack due to the opening angle results in a local imbalance of vertical
forces. This leads to larger displacements in positive z-direction around the crack,
the crack is opened and larger SIFs occur. The Robin-type bottom pressure as a
function of the vertical displacements attenuates this effect (indicated by the red
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5.3 The influence of the density and elastic constants

arrows). A longer domain length increases the bending moment resulting from the
force imbalance around the crack, hence, the stronger the imbalance, the higher is
the influence of the domain length.

5.2.4 Summary of the study of different boundary conditions

The influence of the examined boundary conditions on KI(C D) is strongly related to
the geometric parameters domain length L and opening angle α. Whereas shallow
cracks in general are insensitive to the type of vertical, as well as horizontal bound-
ary conditions, the influence of different boundary conditions on deeper cracks has
to be considered. An opening angle of α > 0◦ significantly increases the variance due
to different vertical and horizontal boundary conditions. Especially striking is the
influence of the domain length L: an increasing L results in decreasing differences
for changing vertical boundary conditions but in stronger variances in the case of di-
verse applied bottom pressures. Changing boundary conditions and applied volume
forces do not change the linear relation between KI(C D) and the applied remote
stress or equivalent displacement. Unless differently stated, the following simu-
lations are performed using remote displacements at the vertical boundary and a
Robin-type boundary condition at the ice shelf bottom.

5.3 The influence of the density and elastic
constants

5.3.1 Depth-dependent density profiles

The previous simulations with considerable opening angles showed that the weight
of the ice has a strong influence on the resulting SIFs. For this reason it seems
obvious to examine the influence of the ice density, the one parameter apart from
geometric scales that controls the weight. Rist et al. (2002), Van Der Veen (1998a),
Scambos et al. (2000) and Scambos et al. (2009) motivate the application of depth-
dependent density profiles for the fracture mechanical analysis of cracks in ice
shelves. The WIS experiences regular surface melting, hence, a rather constant den-
sity with respect to the depth can be assumed (Braun et al. (2009), Doake (1984)).
Nevertheless, in order to study the influence of the density on KI(C D) in a more
general scope, different constant and depth-dependent density profiles are investi-
gated.
Firn densification in the upper ice shelf is dominated by grain settling and packing,
depending on the surface temperature and the accumulation rate. Until the density
reaches values of 550kg/m3, air cavities within the ice are still connected. Further
down, densification is driven by grain growth and sintering. Closed off air bub-
bles start to form until full pore closure is reached at densities of 820− 840 kg/m3.
The processes in this regime are not well understood, though the ice temperature
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5 Analysis of vertical cracks in ice shelves

is assumed to be the dominant parameter. Below pore closure, further densification
follows by compression of the bubbles.
Firn densification takes place in about the upper 0 − 80m of the ice column. The
”bubbly” ice in deeper layers is called meteoric ice. Older layers of meteoric ice
might origin from the continental ice sheet. Depending on the location of the ice
shelf, the meteoric ice layer can be followed by a layer of clear and bubble-free ma-
rine ice formed by freezing of ocean water. The existence of marine ice in the WIS
has not been reported (Braun et al., 2009).
One approach, taking into account the different mechanism of densification con-
trolling the density in the depth ranges under consideration here, is the commonly
used firn densification model of Herron and Langway (1980). The two-stage model
is based on an Arrhenius relation using a time-independent accumulation rate and
surface temperature as input. Due to a lack of in-situ measurements of mean sur-
face temperatures and accumulation rates for the WIS, upper and lower bounds are
used. Morris and Vaughan (2003) propose the mean annual surface temperature of
the WIS to be −8◦C. Seasonal melting and refreezing might increase the mean firn
temperature. A drill hole temperature of −2.5◦C at 5.5 m depth has been reported
by Swithinbank (1988) and will be used as an upper bound. Since the bottom tem-
perature of an ice shelf is limited by the temperature of the ocean (≈ −2◦C), the
WIS can be regarded as isothermal. Vaughan et al. (1993) reports an accumulation
rate of as = 0.5 m/a water equivalent (WE) based on a stake measurement over a
short time period. This value will be used as a lower bound. As upper estimate,
as = 1 m/a will be applied. Figure 5.16 a) presents exponential fits of the density
profiles estimated using the method of Herron and Langway (1980). Two additional
constant profiles with ρI = 910kg/m3 (used in previous simulations) and the mean
density ρI = 855kg/m3 of the exponential profile represented by the red solid line
are applied in order to compare the results to the findings with constant density.
The corresponding SIFs are plotted in Fig. 5.16 b). It shows, that KI(C D) resulting
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Figure 5.16: a) Applied depth-dependent and constant density profiles; b) resulting SIF
versus crack depth for L = 2000m, αT = 0◦, ∆ux =̂ σ f = 100kPa, E = 9 GPa and ν= 0.3
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from different depth-dependent density profiles hardly varies. A slight trend indi-
cates that a density profile with lower curvature ρI(T = 264K, as = 1 m/a WE) and
hence less ice mass in the upper regime leads to higher KI(C D) than the profile with
the highest curvature ρI(T = 270 K, as = 0.5 m/a WE). The applied constant pro-
files lead to considerably lower SIFs. By comparing the black curve with a constant
density equivalent to the mean density of the profile ρI(T = 264 K, as = 0.5m/a WE)
with the results of the associated depth-dependent profile, it appears that not the
mean density but the density distribution with respect to the depth has the largest
influence on the resulting SIFs. Hence, a lower density in the upper regime leads to
less ice overburden pressure at the crack tip and therefore to higher tensile stresses
resulting in higher KI . The presented results reveal the question, how the influ-
ence of depth-dependent density profiles interacts with the effects due to different
opening angles. The simulation results (not plotted) indicate, that the influence of
constant versus depth-dependent density profiles is higher for shallow cracks but
declines for deeper cracks.
Rist et al. (2002) and Scambos et al. (2009) suggest density-dependent criti-
cal stress intensity factors KI c ranging from KI c = 50 kPa

p
m for low-density firn

to KI c = 400kPa
p

m for meteoric ice. More recent measurements of SIFs in ice with a
density ranging from 845 to 870 kg/m3 and resulting mean value of KI c = 95kPa

p
m

are published in Christmann et al. (2015). Since the limits of KI c lead to consid-
erably smaller changes in the consequent crack depth than the different applied
density profiles, elastic parameters or opening angles, depth or density-dependent
critical SIF will not be considered.
In the following simulations with varying elastic parameters, a constant density of
ρI = 910kg/m3 is applied. For the study of water-filled cracks, a penetrable up-
per ice layer together with a distinct pore closure depth is assumed and a depth-
dependent density profile will be used.

5.3.2 On the influence of Poisson’s ratio

As previously stated, fracture mechanical studies of cracks in ice shelves are often
performed using stress boundary conditions instead of volume forces and prescribed
displacements. The advantage of this approach follows by the fact that stress bound-
ary value problems and the resulting SIFs are independent on the choice of the elas-
tic parameters E and ν. For this reason, considerations on valid intervals for the
elastic parameters in the glaciological community are rare. However, most studies
on cracks in ice shelves make an implicit statement via the applied stress boundary
condition where the ice overburden pressure is superimposed on a viscous surface
stress. Without the application of a correction, as presented in Sec. 5.2, this proce-
dure is only valid for an incompressible material (ν = 0.5). Prominent voices sug-
gesting brittle compressible short time behavior for ice are e.g. Rist et al. (1999),
Schulson and Duval (2009), and Hulbe et al. (2010) who use a review of the me-
chanical properties of snow by Mellor (1975) and Mellor (1977) achieved using
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Figure 5.17: a) Horizontal stress σx x in a constrained uncracked domain under body
loads using different Poisson’s ratios, hydrostatic pressure (black dots) as reference; b)
SIF versus crack depth for different values of Poisson’s ratio, α = 0◦, L = 2000m and
∆ux =̂ σ f = 100 kPa

wave propagation data. The resulting Poisson’s ratios range between 0.2 < ν < 0.4.
More recent results using ν = 0.33 in the context of viscoelastic modeling of crack
initiation at glacier fronts can be found in Koehn and Sachau (2012). Without
taking part in the cumbersome discussion on whether, from the fracture mechani-
cal prospective, ice should be treated as solid or viscous fluid, as compressible or
incompressible, the aim of the following study with different Poisson’s ratios is to
sensitize for the huge influence, this material parameter has on the resulting KI(C D).
In addition it should be clarified, that compressibility must not be confused with the
durability of a material. The extremely durable diamond with a rather low Poisson’s
ratio of ν= 0.2 serves as a demonstrative example.
Figure 5.17 a) shows the normal stress σx x versus the depth z in an isotropic homo-
geneous body, constrained as illustrated and loaded solely by gravity for different
values of Poisson’s ratio ν. Additional black dots indicate the ice overburden pres-
sure at the respective depth, σzz = ρI gz, which is independent of Poisson’s ratio.
Due to a lack of reliable information on depth or density dependence of Poisson’s
ratio, only constant values will be used. It shows that only for ν ≈ 0.5, the horizon-
tal normal stress equals the cryostatic pressure. The value ν = 0.499 is used as an
approximation of the incompressible case (ν = 0.5), which cannot be treated with
the applied constitutive law as ν = 0.5 yields an infinite bulk modulus and hence a
singular stiffness matrix. For decreasing ν, the horizontal normal stress increases.
For ν = 0 (Poisson’s ratio of e.g. cork, used for the analytical study in Sec. 4.6.3)
the horizontal normal stress disappears. The horizontal and the vertical stress are
linked by a constant depending on Poisson’s ratio, which in case of plane strain
yields σx x =

ν
1−νσzz, the relation used in Eq. (5.4).

Figure 5.17 b) shows the resulting stress intensity factors KI(C D) for a displacement
load of ∆ux =̂ σ f = 100kPa and a constant density. Note that Poisson’s ratio is in-
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5.3 The influence of the density and elastic constants

cluded in the calculation of the displacement boundary condition. As to be expected,
KI(C D) considerably varies for the applied ν leading to a maximum crack depth of
C D ≈ 20m for ν ≈ 0.5 and C D ≈ 80 m for ν = 0.2, a change by a factor 4. Lower
values for ν (not shown here) lead to even larger KI(C D). The strong variance solely
results from the differences in the horizontal stress, induced by the transformation
of the cryostatic pressure.

5.3.3 Differences due to depth-dependent Young’s moduli

Section 4.6.4 showed a dependence of SIFs on gradients in the elastic material pa-
rameters for the single edge crack tension test. The aim for this study is to analyze
the influence of depth-dependent Young’s moduli on KI(C D) for the cracked ice shelf
model. Rist et al. (2002) and Schulson and Duval (2009) motivate a density related
Young’s modulus in ice shelf ice ranging from E ≈ 5GPa in the upper firn layers
to E ≈ 10 GPa for meteoric ice. According to the exponential fit of the density profile
in Fig. 5.16, an exponentially shaped profile for the Young’s modulus

E(z) =
�

10− 5 ez/20
�

GPa (5.6)

as visualized in the subplot of Fig. 5.18 a) will be applied. In order to compare
the results to the previous findings, two constant values, corresponding to the
maximum and the minimum value of the exponential profile, E = 5GPa and
E = 10 GPa, will additionally be used. Though a depth-dependent density causes
a depth-dependent Young’s modulus, the presented work refrains from a coupled
analysis. This approach serves to identify the influence of each parameter sepa-
rately. Therefore, a constant density of ρI = 910 kg/m3 and Poisson’s ratio ν = 0.3
are used.
The hitherto constant Young’s modulus was used to compute the displacement load
according to Eq. (5.1). As equivalent methods for the evaluation of ∆ux in the case
of depth-dependent E, two suggestions seem reasonable. The differences between
the approaches are visualized in Fig. 5.18 a) by plotting the horizontal normal
stress resulting from a simulation of the uncracked domain without applied volume
forces. In the subsequent simulations of the cracked specimen, the gravity-induced
pressure will naturally be applied.
The first approach regards the surface flow stress resulting from the measured
velocity field as given and set. Hence, Young’s modulus at the surface, E(z = 0),
has to be used for the computation of ∆ux . At the ice shelf surface, the resulting
horizontal normal stress (black dashed line) equals the remote stress. Considerably
higher tensile stresses appear at lower depth.
In the second approach, ∆ux is chosen such that the averaged horizontal normal
stress of the uncracked domain without body forces equals the given surface flow
stress. This results in the black solid line in Fig. 5.18 a), where the tensile stress in
the upper layers are much lower than the remote stress of σ f = 100 kPa.
In order to demonstrate the influence of a depth-dependent Young’s modulus on
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Figure 5.18: a) Horizontal normal stress resulting from simulation of uncracked domain
without applied gravity using different boundary conditions and an exponentially shaped
Young’s modulus (subplot); b) resulting SIF versus crack depth for cracked domain with
applied gravity; both plots use L = 2000m, α= 0◦ and σ f = 100kPa

KI(C D) separated from its influence on the displacement boundary condition, the
stress boundary condition, as introduced in Eq. (5.4), will be used for comparison.
The associated constant normal stress resulting from the simulation without volume
forces is illustrated in Fig. 5.18 a) by the solid red line. The horizontal normal
stresses resulting from simulations with different constant Young’s moduli and
displacement or stress boundary conditions (green and blue lines, pink dots) equal
the normal stress presented by the solid red line and are not shown in Fig. 5.18 a).
In Fig. 5.18 b), the solid green and the overlapping blue dashed lines show, that
different constant Young’s moduli do not change the outcome of the simulation as
long as the boundary displacement ∆ux are adapted. In case of an exponentially
shaped Young’s modulus the influence on the applied boundary displacement leads
to pronounced differences in the resulting KI(C D). As to be expected, the first
approach (dashed black line) with higher tensile stresses leads to considerably
higher KI . The second approach (solid black line) with the lowest stress in the
upper range of the ice shelf yields the lowest SIFs.
Also in case of stress boundary conditions, variances due to the gradient in E appear.
A comparison of the SIFs resulting from a depth-dependent Young’s modulus (red
solid line) and those with constant E (pink dots) illustrates the direct influence
of E(z) on KI(C D). It shows, that for the chosen profile, the variance in Young’s
modulus reduces the resulting SIFs to some extend.

5.3.4 Summary of the studies with different material
parameters

The variation of the density, Poisson’s ratio, as well as Young’s modulus showed a
considerable influence on the resulting SIFs. Whereas the consideration of a reason-
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able depth-dependent density leads to increasing KI(C D), the influence of a depth-
dependent Young’s modulus is linked to the applied boundary condition and needs
a more differentiated interpretation. Different constant Poisson’s ratios show the
strongest influence on the resulting KI(C D). The decisions about the most reason-
able value for ice should be left to experimentalists. Overall it can be said, that
under the given load and ice shelf thickness, none of the simulated setups leads to
deep or completely penetrating cracks.

5.4 Comparison to the study of Rist et al. (2002)

Now, as the influence of the geometry, the different boundary conditions and the
material parameters are well understood, the FE model is compared to the model
of Rist et al. (2002). In order to compute SIFs for single surface cracks in the 422m
thick Ronne Ice Shelf, the authors introduce a semi-analytical approach. Therefore,
the crack flanks are loaded by a depth-dependent normal stress. Using balance
equations, as introduced by Weertman (1957), which include the common power
law for the ice flow following Glen (1958), the equation for the crack flank load
reads

σtot.(z) =
B

∫ s

b
Bdz

¨

g

∫ s

b

∫ s

z

ρI(z̃)dz̃dz −
g

2ρsw

�∫ s

b

ρI(z)dz

�2«

− g

∫ s

z

ρI(z̃)dz̃. (5.7)

Herein, the depth-dependent density ρ(z) based on measurements of ice cores is
parameterized by

ρI(z) =
�

918− 539e
z−h
32.5

�

kg/m3. (5.8)

Note, that with the z-coordinate now originating at sea level, h describes the extent
of the freeboard. The letters s and b denote the top and the bottom of the ice shelf,
respectively. The seawater density is ρsw = 1028kg/m3. For further information
on the temperature and depth-dependent rate factor B(z), the applied temperature
profiles, and experimental measurements of critical SIFs, the reader is referred to
the detailed information in Rist et al. (2002). Figure 5.19 a) illustrates the total
horizontal normal stress (black line), as well as its tensile and compressive contri-
butions in red and blue, respectively.
For the evaluation of KI(C D), Rist et al. (2002) apply the weight function method.
This approach has been introduced by Bueckner (1970) and was transferred to the
problem of a single edge crack in a finite plate using a higher order power shaped
load on the crack flanks by Fett et al. (1990). For the application of this method to
the presented problem, the exponentially shaped load σtot.(z) is recast into a poly-
nomial equation of order n reading

σp(a/H) =
∑

n

Cn

� a
H

�n
, (5.9)
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Figure 5.19: a) Applied depth-dependent total stress and the contributing components re-
sulting from the ice shelf flow and the cryostatic pressure; b) resulting KI(C D) using the
weight function method and two different FE setups

with the distance from the top surface of the ice shelf, a, and the coefficients Cn.
The SIFs are then computed using

KI =
p

C Dπ
∑

n

CnFn

�

C D
H

�n

. (5.10)

Therein the coefficients Fn are a set of weighting factors and can be found in Rist
et al. (2002) or Fett et al. (1990). Figure 5.19 b) shows the resulting KI(C D)
for n = 5 (red line) together with the FE solution of the identical mechanical
problem (blue line). Small differences between the semi-analytical method and the
FE simulation result from numerical inaccuracies of both methods. The black line
shows the results from a FE simulation applying a depth-independent displacement
boundary condition, ∆ux , that is computed by use of the tensile stress at the top
surface σ f (z = 0) = 315kPa. Additionally, gravity with the depth-dependent density
profile of Eq. (5.8) and ν = 0.499 are applied. The deviation from the previous
findings results from the differences in the models, especially in the depth-varying
flow stress σ f (z), which has not been considered in the latter simulation.
The FE simulation with body loads and displacement boundary conditions is in good
agreement with results shown by Rist et al. (2002). Additionally it appears, that the
computationally fast semi-analytical approach yields very satisfying results for the
presented problem. With some further effort, the semi-analytical method could as
well be expanded to depth-dependent Young’s moduli and compressible material
behavior. However, the comprehension of more complex geometries (influence of
the opening angle), multiple cracks in a finite geometry, and arbitrary load fields is
reserved to numerical methods, e.g. the finite element method, which together with
the concept of configurational forces yields promising results.
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5.5 Water-filled cracks

5.5 Water-filled cracks

The previous sections showed that changing material parameters and loading have
a strong influence on the criticality at the crack tip. Nevertheless, dry cracks are
very unlikely to penetrate to the bottom of an ice shelf under the given loading,
since the weight of the ice tends to close the crevasses at an early stage. Only large
opening angles or considerably high remote stresses lead to very deep or even pen-
etrating cracks. However, completely penetrating crevasses in ice shelves have been
observed. Therefore, it seems reasonable to consider some additional loading for
example due to water of different origin inside the crevasse. This suggestion has
first been analyzed by Weertman (1973), was revived by Smith (1976), extended to
depth-dependent ice densities by Van Der Veen (1998a) and Rist et al. (2002) and
later on applied by e.g. Scambos et al. (2000), Van Der Veen (2007) or Scambos
et al. (2009), just to mention a few. All mentioned studies treated ice as incom-
pressible (ν= 0.5), overestimating the influence of the crack closing ice overburden
pressure σzz, as shown in Sec. 5.3.2. Van Der Veen (2007) stated that the water
level inside a crevasse must remain near the ice surface to yield deep penetration.
The aim of the following study is to show that for ν= 0.3, much less water is needed
for deep penetration. In addition, the influence of the opening angle α will again
be emphasized. First, the study concentrates on water-filled surface cracks, distin-
guishing between a filling by meltwater or by brine. In a next step, water-filled
bottom cracks are discussed.

5.5.1 Surface cracks
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Figure 5.20: Illustration of the additional pressure boundary condition on the crack faces
due to a filling of a) meltwater and b) brine

In order to simulate water-filled surface cracks, a geometry equivalent to Fig. 5.3
with an additional pressure at the crack faces (illustrated in Fig. 5.20 a and b)
will be used. A depth-dependent density profile with Ts = 264 K and as = 0.5 m/a
(Fig. 5.16 a) and pore closure at approximately zpc = −50 m is applied.
The first setup considers the filling by meltwater. Therefore, the crack depth is kept
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5 Analysis of vertical cracks in ice shelves

constant at the depth for which the SIFs of the unfilled crack changed sign. Different
reference situations without water filling using prescribed boundary displacements
equivalent to σ f = 100kPa and opening angles of α = 0◦, 0.1◦, 0.5◦, 1◦ and 2◦ are
considered. The associated maximum crack depths are listed in Tab. 5.1.

α 0◦ 0.1◦ 0.5◦ 1◦ 2◦

C Dmax 66m 67m 70 m 73 m 85m

Table 5.1: Maximum crack depth for dry cracks with prescribed boundary displacement
∆ux =̂ σ f = 100 kPa, different opening angles α using ν = 0.3 and a depth-dependent den-
sity profile ρI(Ts = 264 K, as = 0.5m/a). The maximum crack depth C Dmax is reached when
KI(C D)< 0 for all C D > C Dmax.

The previously stable cracks are simulated with respect to different water levels W
up to a maximum level where the water surface reaches pore closure. It is assumed
that further meltwater supply disperses through the permeable firn and therefore
does not increase the water column inside the cracks. The equation for the depth-
dependent additional water pressure inside the crack reads

pWm(z) = ρW g(W − C D− z) for z < −C D+W, (5.11)

with the density of fresh water, ρW = 1000 kg/m3. Figure 5.21 a) illustrates result-
ing SIFs with respect to the vertical position of the water surface for an increasing
water column inside the crack using different opening angles α. It appears that only
a small amount of water is needed to gain SIFs within the range of critical SIFs. A
water column of W ≈ 10 to 12m results in SIFs beyond typical critical values and
leads to further crack growth.
Figure 5.21 b) demonstrates how deep an ideally sharp crack with varying max-
imum water supply can grow before a stable situation is reached. Basis for the
simulation is a dry, 66m deep crack, filled by meltwater. The water level within the
crack is on the one hand constrained by pore closure at 50 m depth, on the other
hand by a limited water supply in terms of a maximum water column inside the
crack. The blue solid line shows resulting KI(C D) for unlimited supply. It appears
that this condition leads to a complete penetration of the crevasse. If the water
supply is limited at a maximum height of Wmax = 50 or 100m, the crack propagates
considerably deeper than for the unfilled setup. However, the water pressure is not
sufficient to result in a complete breaking through of the crevasse. The remaining
setup with Wmax = 150 m was simulated with ∆ux =̂ σ f = 100kPa (solid line) and
∆ux = 0 m (dashed line). Though it can be argued how a crack is supposed to grow
deeper than 50m without any external loading before it is eventually filled by melt-
water, the plot clearly indicates that also limited water supply can lead to a complete
breaking through of a crevasse even in absence of additional external loading. The
value Wmax = 3/5H which leads to a complete collapse in the presented scope is con-
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Figure 5.21: a) Resulting SIFs versus position of the water surface zW = −C D + W for
different initially dry starter cracks; b) KI(C D) for crack growth of an initially 66 m deep
crack filled by meltwater up to defined maximum water levels Wmax; solid lines result from
∆ux =̂ σ f = 100 kPa, the dashed line from ∆ux =̂ σ f = 0kPa

siderably lower than required water levels predicted by Van Der Veen (1998a) and
Smith (1976). The reason for this difference is mainly based on the different choice
of Poisson’s ratio as illustrated in Fig. 5.22 a). Here, KI(C D) is plotted with respect
to the water level W within a 240 m deep crack for constrained lateral boundaries
(∆ux =̂ σ f = 0 kPa) and compressible (blue line), as well as nearly incompressible
material behavior (red line). Whereas the red line supports the general finding by
Van Der Veen (1998a), the blue line indicates that the assumption of compressibility
results in considerably less water needed for a complete penetration of the crack. A
limited water level due to permeable firn above pore closure is ignored in this scope.
It should be noted that in the case of an opening angle α > 0◦, a virtually infinite
water supply is available since the crack propagates ideally sharp, and very little
water volume is required for a complete fill of the freshly created space.
The second setup analyses crack growth of a single crevasse in areas where brine
infiltration occurs. Whereas brine infiltration can usually be found close to the ice
front, where seawater drains through the permeable firn layer of the ice shelf, Braun
et al. (2009) and Vaughan et al. (1993) report comprehensive brine infiltration at
the WIS. Figure 5.20 b) illustrates the boundary conditions used for the simula-
tion. All cracks are filled up to sea level, once the respective crack depth is reached.
However, for crack face segments between pore closure and sea level, the pres-
sure of brine inside the ice shelf, as well as on the crack faces compensates and
does not increase the stress intensity at the crack tip. The load on the crack faces
therefore rises linearly from pWb(z = zpc) = ρWb g(−h− zpc) with the freeboard h to
pWb(z = −C D) = ρWb gW . Scambos et al. (2009) gives the density of brine in equi-
librium with ice at a temperature of TI = −8◦ to be ρWb = 1084 kg/m3 which will be
used in the following computation.
Figure 5.22 b) illustrates resulting SIFs versus crack depth for different Poisson’s
ratios and prescribed lateral displacements. For C D < −zpc, the resulting SIFs are
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Figure 5.22: a) SIFs versus water level W for ideally sharp crack with C D = 240m,
∆ux =̂ σ f = 0 kPa using ν = 0.3 (blue line) or ν ≈ 0.5 (red line); arrows indicate mini-
mum water level needed to keep the crack open; b) SIFs versus crack depth resulting from
the simulation of brine infiltration; line color indicates value for Poisson’s ratio, the solid
lines represent a constrained boundary displacement ∆ux =̂ σ f = 100kPa and α = 0◦, the
dashed lines ∆ux =̂ σ f = 0kPa and α= 0◦, the dotted lines ∆ux =̂ σ f = 100 kPa and α= 5◦

equal to those of the dry setup. Once the cracks passes this internal boundary, the
influence of the water pressure becomes apparent. The previous results indicated,
that surface cracks filled by brine will lead to a breaking through of the crevasse,
once the crack tip reaches pore closure. The illustrated SIFs support this suggestion,
at least for Poisson’s ratio ν = 0.3, indicated by the blue lines. For incompressible
material behavior, shown by the red lines, larger external loading, a considerable
amount of water or larger opening angles (red dotted line) are needed to result in
a breaking through of the crevasse.

5.5.2 Bottom cracks

The first study on the propagation of bottom crevasses in ice can be found in Weert-
man (1973) and Weertman (1980). A more advanced linear elastic fracture me-
chanics approach with depth-dependent density was published by Van Der Veen
(1998b). Using edge dislocation functions for the semi-infinite domain, Weertman
(1980) approximates the depth of a water-filled bottom crevasse in a floating ice
shelf with

C Dbottom ≈ πH/4. (5.12)

Therefore, he evaluates the average value of the remote flow stress σ f = ∆ρgH/2
applying hydrostatic equilibrium for an incompressible ice shelf. The factor ∆ρ is
the difference between the water and the ice density, whereof the latter is assumed
to be constant with depth. Applied to the H = 250m thick ice shelf with an assumed
constant density of ρI = 910 kg/m3 this results in σ f ≈ 110kPa and C Dbottom ≈ 196m.
This very simple crevasse depth model will now be compared to the FE simulation

78



5.5 Water-filled cracks

pb

− z

α

x

H
C D

a)
0 20 40

0

100

200

KI

�

MPa
p

m
�

C
D
[m
]

ν= 0.3
ν≈ 0.5

b)

Figure 5.23: a) Pressure boundary conditions for water-filled bottom crack; b) SIFs as a
function of the crack depth for water-filled bottom crack, line color indicates value for
Poisson’s ratio, line style illustrates constrained boundary displacement ∆ux =̂ σ f = 100kPa
with α= 0◦ (solid lines),∆ux =̂ σ f = 0 kPa with α= 0◦(dashed lines) or∆ux =̂ σ f = 100kPa
with α= 5◦ (dotted lines)

using a upside down version of the geometry in Fig. 5.3 with pressure boundary
conditions at the ice bottom and the crack faces as illustrated in Fig. 5.23 a). Re-
sulting SIFs as a function of the crack depth are shown in Fig. 5.23 b) for com-
pressible, as well as incompressible material behavior using∆ux =̂ σ f = 100kPa and
∆ux =̂ σ f = 0kPa. It appears that the approximated solution by Weertman (1980)
agrees very well to the FE solution for ν ≈ 0.5 and ∆ux =̂ σ f = 100 kPa, leading to
crack closure at approximately C D = 200 m. In addition Fig. 5.23 b) shows, that the
incompressible setup without external loading does not result in crack opening at
all.
Applying compressible material parameters considerably changes the outcome of
the simulation. Independent on the external loading, the crack reaches the upper
surface of the ice shelf. This could only be avoided by assumption of a remote back-
stress, hence applying a compressive remote loading. This was first suggested by
Thomas (1973), applied to crevasse penetration by Jezek (1984), and later on used
by Van Der Veen (1998b) and Rist et al. (2002).
Previous simulations with dry cracks showed a considerable influence of the crack
opening angle α. In order to analyze the impact of the crack opening on bottom
cracks, the setup with ν ≈ 0.5 and ∆ux =̂ σ f = 100kPa is simulated using α = 5◦.
The associated dotted red line in Fig. 5.23 b) indicates, that this rather pronounced
opening angle leads to a small increase of the resulting crack depth but does not
affect the overall result.

5.5.3 Discussion on crack healing due to freezing

The previous section showed, that by assuming a compressible material behavior,
bottom cracks lead to a complete collapse of the crevasse unless considerable com-
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5 Analysis of vertical cracks in ice shelves

pression on the remote boundaries is applied. Nevertheless, several publications
document the existence of stable bottom crevasses that do not reach the surface,
e.g. Clough (1974), Jezek et al. (1979), Weeks and Mellor (1978) or more re-
cently Nath and Vaughan (2003) and Luckman et al. (2012). This arises the ques-
tion, which processes can possibly lead to crack arrest. Weertman (1980) and Van
Der Veen (2007) suggest to consider freezing of the water at the faces of a crevasse,
which does not only prevent a further penetration of the crack, but eventually might
even lead to crack healing. This suggestion is all the more valid if the propagating
crack is considered to be ideally sharp and the space between the newly built faces
and therefore the water layer in-between very thin. Following Van Der Veen (2007),
the thickness dI with respect to time of a layer of frozen water on an ice surface with
the initial temperature T0 can approximately be computed using

dI = 2
cp(Tm − T0)
p
πLh

√

√

√
k
ρI cp

t. (5.13)

With the melting temperature of water Tm = 0◦, an approximated initial temper-
ature of the surrounding ice T0 = −3◦, the specific heat of ice cp = 2100 J/(kgK),
a latent heat of L = 334000 J/kg, the conductivity of ice k = 2.1 W/(mK), and
the density ρI = 910 kg/m3, the layer grows approximately 0.2mm within the first
minute or 1.3 mm within an hour. These values are negligibly small if opening an-
gles of α > 1◦ are considered as supposed by Van Der Veen (2007) who assumes
crevasse widths of 10 m. Furthermore, Van Der Veen (2007) argues that freezing
might be compensated by viscous dissipation. If, in addition, the crack is assumed
to propagate very fast, freezing processes might be too slow to dominate. On the
other hand, Weertman (1980) argues that ideally sharp crevasses, only opened by
elastic deformation, freeze shut after few minutes. Therefore, he considered addi-
tional creep opening of the crevasse, which, depending on the thickness of the ice
shelf and the temperature difference between the water and the ice, might lead to
crevasses with a stable depth.

5.5.4 Summary of the studies on water-filled cracks

The simulation of water-filled cracks demonstrated the considerable impact of the
additional load at the crack faces on the resulting SIFs. For the ice shelf without
compressive remote stress, with the given geometry, density and compressible ma-
terial behavior this resulted in a complete penetration of former stable surface crack
once the water level W inside the crack exceeded half the ice thickness. Also bottom
cracks proved to be highly unstable. The most influencing parameter was Poisson’s
ratio. For ideally sharp cracks, the possibility of crack arrest due to freezing can be
considered but was not further analyzed at this point.
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5.6 Frost wedging as reason for ice shelf disintegration

5.6 Frost wedging as reason for ice shelf
disintegration

In a glaciological context the term "disintegration" is commonly used for the abrupt
collapse of larger ice shelf parts. Well known incidents are the collapse of the
Larsen A ice shelf, the disintegration of large parts of Larsen B ice shelf(Glasser
and Scambos, 2008), as well as the collapse of parts of the WIS. The initiation of
these events is usually linked to meltwater, supra-glacial lakes and a general thin-
ning of the ice shelf. Several ideas exist to explain the sudden collapses such as the
suggestion of MacAyeal et al. (2003) and MacAyeal et al. (2009), who link disinte-
gration to a chain reaction of tipping over of thin icebergs and resulting glaciogenic
tsunamis. The previous chapter showed the influence of meltwater on crack criti-
cality and confirmed the possibility of water filling in cracks as reason for ice shelf
collapse. In addition, it hinted towards the influence of freezing processes within
the water-filled crevasse on crack criticality. The direct link between meltwater
and disintegration events is confined to events that happened during the melting
season in the Antarctic summer. Braun et al. (2009) and Scambos et al. (2009)
published very thorough observations of the March 2008 disintegration event at the
WIS bridge. Happening at the end of the melt season, Scambos et al. (2009) links
this event to meltwater induced propagation of crevasses that opened due to bend-
ing of the ice shelf front. Taking into account measured surface temperatures of the
corresponding days however reveals the possibility of a more complex frost wedging
mechanism.
Figure 5.24 a) shows the WIS. The red box marks the location of the ice shelf bridge.
In Fig. 5.24 b), the red area indicates the region before the collapse. The remaining
part of the bridge and the floating bridge fragments are shown in Fig. 5.24 c). Fur-
ther satellite images of lower quality, and hence not shown here, confine the break-
up event to the evening of the 28th of February 2008. The solid line in Fig. 5.24 d)
(top graph) shows measured dry bulb temperatures at the British research station
Fossil Bluff. The location of the station in approximately 240km distance from the
ice shelf bridge is indicated by a red star in Fig. 5.24 a). The pronounced tempera-
ture drop at the end of February coincides with the break-up event. Further temper-
ature data from Rothera research station in approximately 420km distance from the
WIS bridge confirms a temperature drop for the respective period but shows consid-
erably larger mean temperatures. Measurements of the wind speed at both stations
as illustrated in Fig. 5.24 d) (lower graph) indicate moderate winds during that
time. The temperature and weather conditions at the WIS bridge in lower altitude
and closer to the open water then Fossil Bluff and less shielded than both stations
might differ from the plotted ones, the overall trend, however, can be assumed to
be similar.
Since the WIS is known for surface meltwater, the prerequisites for frost wedging
as disintegration cause are given and the thermodynamic and mechanical processes
involved will be investigated in the following.
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Figure 5.24: a) WIS with ice shelf bridge marked in red (MOA 2003/04, c©NSIDC), red
star indicates position of Fossil Bluff station; b) ice shelf bridge, 30.07.2007, (ALOS PAL-
SAR, c©TPMO), red area marks zone before collapse; c) ice shelf bridge after collapse,
07.03.2008, (ENVISAT ASAR c©ESA); d) dry bulb temperatures and wind speed at Fossil
Bluff Station and Rothera Station, source: BAS, red area marks period of collapse

The general idea of the mechanism is sketched in Fig. 5.25 where a stable dry crack
is filled by meltwater during a warm period to an extend that does not cause a
breaking through of the crevasse. In a following temperature drop as indicated by
Fig. 5.24 d), ice crystals start to grow in the water-filled crevasse. They rise to the
water surface due to their lower density and eventually form a closed lid sealing
the remaining water. Continuing freezing inside the crevasse now displaces the re-
maining water, which cannot escape through the closed lid. Hence an additional
pressure builds aiming to open the crack, which then leads to further growth of the
previously stable crevasse.
Before introducing a fracture mechanical frost wedging model, a thermodynamic in-
vestigation including phase transformation is used to estimate the possible ice layer
that can form in a water-filled crevasse due to temperatures within the range of
those illustrated in Fig. 5.24 d).
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Figure 5.25: Illustration of frost wedging process with a) stable crevasse filled by meltwater
during a warm period with estimated flow within the crevasse; b) evolution of an ice lid
due to ice crystals rising to the surface; c) crack propagation due to an additional phase
transition pressure within the crack

5.6.1 The Stefan problem

Analytic approach

A first special solution of the heat equation with phase transition considering only
conduction and neglecting convection goes back to Stefan (1891). He used the
resulting equation to describe a growing ice layer on the Polar Sea. Further special
solutions of the problem, also less restrictive than the original approach by Stefan
(1891), have been found by several authors. An overview of the approaches can be
found in Baehr and Stephan (2008). The analytical solution of the one-dimensional
two-phase Stefan problem following the paper of Boucíguez et al. (2007) will be
used to verify the numerical simulation by COMSOL.
In case of a one-phase Stefan problem, the domain is initially at the phase transition
or melt temperature TM and only shows temperature gradation on one side of the
phase boundary. The two-phase Stefan problem deals with temperature gradation
on both sides of the phase boundary. The equations to solve are the heat equation
for the solid phase (index S)

∂ TS(x , t)
∂ t

= αS
∂ 2TS(x , t)
∂ 2 x

with αS =
kS

ρcS
for 0< x < X (t), t > 0, (5.14)

the heat equation for the liquid phase (index L)

∂ TL(x , t)
∂ t

= αL
∂ 2TL(x , t)
∂ 2 x

with αL =
kL

ρcL
for X (t)< x <∞, t > 0, (5.15)

and the equation for the phase transition

ρLH
∂ X (t)
∂ t

= −kL
∂ TL(X (t)+, t)

∂ x
+ kS

∂ TS(X (t)−, t)
∂ x

. (5.16)
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Figure 5.26: Sketch of the one-dimensional semi-infinite domain with applied boundary
conditions

Herein the temperature T is dependent on the time t and the coordinate x . The
density ρ is assumed as independent of the temperature and the phase. The specific
heat capacities cS and cL, as well as the heat conductivity kS and kL are constant
within the phases but different for each. The position of the phase boundary is
denoted by X (t), the latent heat by LH . Provided that the domain is semi-infinite and
TS0
(t) = const. or TS0

(t)∼
p

t the problem can be solved using the initial conditions

X (t = 0) = 0 and TL(x , 0) = Tinit > Tm for 0≤ x ≤∞ (5.17)

the boundary conditions

TS(0, t) = TS0
< Tm for t > 0 and

∂ TL(∞, t)
∂ x

= 0, (5.18)

and the transition condition

TS(X (t), t) = TL(X (t), t) = Tm. (5.19)

By choosing an ansatz of the form TS,L(x , t) = PS,L(ξ) and substituting ξ = x/
p

t for
both phases, the derivatives in Eqs. (5.14), (5.15) and (5.16) are transformed to

∂ T (x , t)
∂ t

=
∂ P
∂ ξ

∂ ξ

∂ t
= −

x

2
p

t3

∂ P
∂ ξ

,

∂ T (x , t)
∂ x

=
∂ P
∂ ξ

∂ ξ

∂ x
=

1
p

t
∂ P
∂ ξ

,

∂ 2T (x , t)
∂ x2

=
1
p

t
∂

∂ x

�

∂ P
∂ ξ

�

=
1
p

t
∂

∂ ξ

�

∂ P
∂ ξ

∂ ξ

∂ x

�

=
1
t
∂ 2P
∂ ξ2

.

Insertion into Eqs. (5.14) and (5.15) yields

−
x

2
p

t3

∂ PS,L

∂ ξ
= αS,L

1
t

∂ 2PS,L

∂ ξ2
,

−
x

2
p

t

∂ PS,L

∂ ξ
= αS,L

∂ 2PS,L

∂ ξ2
and with ξ=

x
p

t

−
ξ

2

∂ PS,L

∂ ξ
= αS,L

∂ 2PS,L

∂ ξ2
, (5.20)
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an equation of the form P ′′ = f (ξ, P ′) which can be solved using substitution.
With Q(ξ) = P ′(ξ), Eq. (5.20) transforms to

Q′S,L(ξ) = −
ξ

2αS,L
QS,L(ξ), (5.21)

which can be solved using separation of variables. Since in the following integra-
tions similar steps have to be performed for the solid, as well as the liquid phase
using different constants of integration, a side-by-side format will be used for a
clear arrangement. The first integration yields

∫ QS(ξ)

QS0

1

Q̃(y)
dQ̃ = −

1
2αS

∫ ξ

0

ξ̃ dξ̃,

ln
QS(ξ)
QS0

= −
1

4αS
ξ2,

→QS(ξ) =QS0
e
− 1

4αS
ξ2

,

∫

1
Q L(ξ)

dQ L = −
1

2αL

∫

ξ dξ,

lnQ L(ξ) +Q∗ = −
1

4αL
ξ2 + ξ∗,

→Q L(ξ) = c∗ e−
1

4αL
ξ2

. (5.22)

Further integration of Eqs. (5.22) leads to

PS(ξ) = PS0
+QS0

∫ ξ

0

e
− 1

4αS
ξ̃2

dξ̃, PL(ξ) = PL∞ − c∗
∫ ∞

ξ

e−
1

4αL
ξ̃2

dξ̃. (5.23)

By substitution of Θ2 = 1
4α ξ̃

2 with dξ̃= 2
p
αdΘ and the limits Θ(0) = 0, Θ(ξ) = ξ

2
p
αL

and limξ→∞Θ =∞, Eqs. (5.23) transform to

PS(ξ) =QS0
+ zS0

2
p

αS

∫ Θ(ξ)

0

e−Θ̃dΘ̃, PL(ξ) = PL∞ − c∗2
p
αL

∫ ∞

Θ(ξ)

e−Θ̃dΘ̃. (5.24)

With the definition of the error function and the complementary error function

erf (x) =
2
p
π

∫ x

0

e−t2
dt and erfc (x) =

2
p
π

∫ ∞

x

e−t2
dt

Eqs. (5.24) take the form

PS(ξ) = PS0
+QS0

p

αSπ erf

�

ξ

2
p
αS

�

, PL(ξ) = PL∞ − c∗
p
αLπ erfc

�

ξ

2
p
αL

�

.

Application of the boundary conditions PS0
= PS(ξ = 0) = TS(x = 0, t) = TS0

and
PL∞ = PL(ξ→∞) = T (x →∞, t) = T (x , t → 0) = Tinit leads to

TS(x , t) = TS0
+QS0

p

αSπ erf
�

x
2
p
αS t

�

, TL(x , t) = Tinit − c∗
p
αLπ erfc

�

x
2
p
αL t

�

.

The remaining unknowns QS0
and c∗ can be obtained using the transition condition
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TS (X (t), t) = TL (X (t), t) = TM = 0 (in case of fresh water ice) yielding

QS0
= −

TS0p
αSπ

1

erf
�

X (t)
2
p
αS t

� and c∗ =
Tinitp
αLπ

1

erfc
�

X (t)
2
p
αL t

� .

The equations for the temperature in both phases hence read

TS(x , t) = TS0
− TS0

erf
�

x
2
p
αS t

�

erf
�

X (t)
2
p
αS t

� , TL(x , t) = Tinit − Tinit

erfc
�

x
2
p
αL t

�

erfc
�

X (t)
2
p
αL t

� , (5.25)

with the last remaining unknown X (t). By defining ς =
X (t)

2
p
αL t

or X (t) = 2ς
p
αL t

and φ =
p

αL/αS, Eqs. (5.25) can be rewritten as

TS(x , t) = TS0









1−
erf
�

x
2
p
αS t

�

erf (φς)









, TL(x , t) = Tinit









1−
erfc

�

x
2
p
αL t

�

erfc (ς)









. (5.26)

For the evaluation of ς, Eqs. (5.26) are inserted into Eq. (5.16). With

∂ X (t)
∂ t

= ς
s

αL

t
,

∂ TS(x , t)
∂ x

�

�

�

�

X (t)

= −
TS0

erf (νλ)
e−ς

2φ2

p
παS t

, and

∂ TL(x , t)
∂ x

�

�

�

�

X (t)

=
Tinit

erfc (ς)
e−ς

2

p
παL t

,

the equation for the phase transition can be transformed to

−ς
p
π=

TinitcL

LH

1
eς2 erfc (ς)

+
TS0

cS

LH

1
φ

1
eφ2ς2 erf (φς)

,

a nonlinear equation in ς which can be solved numerically using Newton’s method.

Numerical approach

A straightforward implementation of the two-dimensional two-phase Stefan prob-
lem into COMSOL for paraffin wax is presented in Ogoh and Groulx (2010). The
authors use the so-called heat capacity method for the simulation of the phase shift,
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where the specific heat capacity during melting or freezing is

cpm
=

LH

∆Tm
+ cp. (5.27)

The heat capacity cp, as well as the heat conductivity k of paraffin wax, shows only
little deviation within and between the different phases, enabling the authors to
use cpS

= cpL
and kS = kL. Cuffey and Paterson (2010) give temperature-dependent

functions for the specific heat capacity and the conductivity of ice reading

cS(T ) =
�

152.5+ 7.122
T
K

�

J
kg K

,

kS(T ) = 9.828 e−0.0057T/K W
mK

,

for T in Kelvin. Material parameters for liquid water at different temperatures and
atmospheric pressure can be taken from VDI-Wärmeatlas (2006). For simplicity rea-
sons we refrain from including temperature dependencies of the thermal constants
within the phases. The deviation between the phases in case of water and ice though
is to strong to be neglected. Unless differently stated, the following simulations will
be performed using the thermal constants in Tab. 5.2.

ρ[ kg
m3 ] cp[

J
kg K] k[ W

m K] LH[
J

kg]

ice, solid 910 2100 2.1 334000
water, fluid 1000 4200 0.56 −

Table 5.2: Thermal material parameters for ice and water at T ≈ 0◦C and atmospheric
pressure; rounded values of the parameters found in Cuffey and Paterson (2010) and VDI-
Wärmeatlas (2006)

Unlike in the analytical case, where the phase shift happens at a distinct temper-
ature, the numerical implementation needs a temperature interval ∆Tm in which
melting or freezing occurs. While Ogoh and Groulx (2010) use the smoothly differ-
entiable COMSOL function flc2hs for the implementation of cp(T ), we use

cp(T ) =







cS +
LH

2∆Tm
[tanh(κc[T − Tm +∆Tm]) + 1] if T <= Tm −

∆Tm
2

cL −
�

LH
2∆Tm

+ cS−cL
2

�

[tanh(κc[T − Tm])− 1] if T > Tm −
∆Tm

2

(5.28)

for a smooth transition between cL, cm and cs. The plot in Fig. 5.27 a) shows cp(T )
for water and ice following Eq. (5.28) using a temperature interval of ∆Tm = 2◦C
and two different values of the constant κc. A comparison of the analyti-
cal evaluation and solutions of the FE simulation using different values for κc

and ∆Tm is shown in Fig. 5.27 b). Since the analytical method requires a con-
stant density, ρS = ρL = 1000 kg/m3 is applied. Furthermore, as a phase-dependent
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conductivity imposes an additional discontinuity for the numerical simulation,
kS = kL = 2.1W/(mK) is used in this first comparison. The two-dimensional FE
simulation is performed using a 1m long and 0.02 m thick geometry in analogy
to Fig. 5.26. The domain is meshed using mapped elements, 500 elements in x-
direction and 10 elements across the thickness. The boundary conditions and the
initial condition follow the sketch in Fig. 5.26 using Tinit = 5◦C and TS0

= const. =
−10◦C with additional adiabatic insolation at the long horizontal edges of the do-
main.
The simulations show that the heat capacity method is able to reproduce the gen-
eral trend of the analytical solution (black lines) for different points in time very
well. A zoom into the red box reveals the inaccuracies due to the smearing of the
phase transformation. Simulations with small intervals ∆Tm (green and dark blue
lines) show a better approximation of the analytic solution than the larger interval
∆Tm = 2◦C. Unfortunately, bisecting ∆Tm for unchanged κc leads to higher discon-
tinuities and results in approximately doubled computation times. The factor κc

influences the curvature of the smoothed step function. A smaller value for κc (red
and dark blue lines) attenuates the discontinuity and reduces the computation time
with only negligible influence on the accuracy of the simulation result.
In a next step the influence of diverse constant thermal material parameters in the
different phases is evaluated. Therefore, κc = 10/K and ∆Tm = 1◦C are used. For a
smooth transition between the phases, the heat conductivity now follows the equa-
tion

k(T ) = kS +
kL − kS

2

�

tanh
�

κk

�

T − Tm +
∆Tm

2

��

+ 1
�

, (5.29)

with κk = 7/K in order to confine the predominant part of the step to the in-
terval −1◦C < T < 0◦C. The phase-dependent density is implemented accord-
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Figure 5.27: a) Temperature-dependent heat capacity for different values of the constant
κc; b) resulting temperatures in comparison to the analytical solution (black lines) for dif-
ferent phase-shift-temperature intervals ∆Tm and constants κc; varying line styles indicate
different points in time
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Figure 5.28: Temperatures in the solid and liquid phase due to varying material parameters
at different points in time: 1h (solid line), 10h (dashed line), 20h (densely dotted line).
Parameters in labels in SI-units according to Tab. 5.2; a) varying k and cp; b) varying ρ
and LH

ing to Eq. (5.29) using ρS and ρL from Tab. 5.2. Figure 5.28 a) shows the
temperature in both phases for different points in time using a constant density
ρS = ρL = 1000 kg/m3 and LH = 334000J/kg. The parameters for the heat capacity,
as well as the conductivity in the different phases vary. Different line styles represent
different points in time as are t = 1 h (solid line), t = 10h (dashed line) and t = 20 h
(densely dotted line). The brown curves describe the most complex parameter setup
with different values for cP and k in both phases. The labels of the subsequent lines
show variations from this setup. The brown curves are overlapped by the green lines
with cS = cL = 4200J/(kgK). Hence, changing the heat capacity of the solid phase
does not change the temperatures in this scope. Reducing cL (black lines) results in
decreasing temperatures in the liquid phase but does not change the position of the
phase transition, nor the temperatures in the solid phase. An even stronger decrease
of the temperatures in the liquid phase results from a larger kL (red lines). However,
the temperatures in the solid phase, as well as X (t) remain unchanged. The only
influence on the position of the phase transition and the temperatures in the solid
phase appears for the blue lines, where the heat conductivity in the solid phase, kS,
has been reduced.
The influence of a phase-dependent density and varying latent heat is shown in
Fig. 5.28 b). A comparison of the black and the red line with constant and phase-
dependent density indicates no relevant difference. A different latent heat as de-
picted by the blue line on the other hand not only shows a considerable influence
on the resulting temperatures in the solid, as well as in the liquid phase but also
shifts the position of the phase transition for the different points in time.
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5 Analysis of vertical cracks in ice shelves

Application to water-filled surface crevasses

The presented model is now extended to the more complex geometry of a
water filled surface crack as shown in Fig. 5.29. Since the model is sup-
posed to represent a water-filled single crevasse far from the external bound-
aries of the shelf, at first, the geometric parameters H and L have to be iden-
tified large enough for different values of Text, Tinit,S and Tinit,L such that their
influence on the temperatures within the liquid phase and especially the po-
sition of the melting front is reduced. Reasonable values of the external di-
mensions are also dependent on the amount of water inside the crack. In or-
der to limit the free parameters to a practicable number, the water level is set
to W = 5m and the opening angle is limited to α ≤ 5◦ in the following simulations.

H

Tinit,S

L

continuity

Tinit,L

q(t)

isolation

αW

C D

Figure 5.29: Sketch of the two-
dimensional water-filled crevasse
with the geometric parameters and
the applied boundary conditions.

Tedesco et al. (2012) published measurements
of the water temperature in two different supra-
glacial lakes in western Greenland for June 2010
and June 2011. The measurements were per-
formed at different depth below the water sur-
face. The maximum measured temperatures did
not exceed 1.5◦C. Since the ratio between the
air-water interface and the water-ice-interface
is much bigger for supra-glacial lakes than for
water-filled surface cracks, the maximum wa-
ter temperature in cracks is most likely lower
than 1.5◦C. However, in order to include ex-
treme cases, the maximum initial water temper-
ature is set to Tinit,L = 2◦C. Since the simulation
neglects the possibility of supercooled water in-
side the crack, the minimum initial water tem-

perature is set to Tinit,L = 0◦C. In order to reduce the amount of discontinuities,
the ice-air and the water-air-interface are subjected to a time-dependent heat flux
following the equation

q(t) =

¨

0 W
m2 if t < 1d

100
1d (t − 1 d) (Text − T ) W

m2 if t ≥ 1d,
(5.30)

with Text = −5 ◦C or Text = −10 ◦C. The approach gives time to first smooth out the
temperature jump at the ice-water interface before, after one day, the heat flux co-
efficient increases. This results in a much better convergence than constraining the
respective boundaries by a time-dependent temperature.
In the following, different parameter setups are considered. Therefore, step func-
tions for the heat capacity and the thermal conductivity with the parameters for the
solid and liquid phase as presented in Tab. 5.2 and κc = 10/K and κk = 7/K are
used. Since the previous simulation indicated negligible influence due to a constant
or phase dependent density, ρS = ρW = 1000kg/m3 is applied.
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Figure 5.30: Influence of the geometric parameter C D−W and the external temperature for
different points in time; a) temperatures along horizontal line 1m below the water surface;
b) temperatures along line of symmetry

First, the influence of the freeboard, C D−W , together with different values for Text

is analyzed after one hour, one day and ten days using α = 1◦, L = 3m, Tinit,L = 0 ◦C
and Tinit,S = −3 ◦C. The resulting temperatures along a horizontal and a vertical
intersection are illustrated in Figs. 5.30 a) and b), respectively. Due to symmetry
of the resulting temperature profile, the horizontal section only comprises the right
half of the domain. The vertical section follows the line of symmetry. Differences in
the external temperature are indicated by the line style, varying values for C D −W
by the line color. The light blue background marks the temperature interval during
which the phase shift occurs. The passing of the colder limit of the temperature
interval, associated with phase transition, will in the following be referred to as the
position of the phase shift.
The resulting graphs show, that the freeboard has no influence on the temperatures
in the system as long as no external heat flux is applied. After t = 10 d, differ-
ences due to the freeboard and due to the external temperatures appear. Especially,
the horizontal section illustrates the influence of the freeboard on the temperatures
within the solid phase. For C D −W > 1 m the differences vanish. Neither the free-
board nor the external temperatures influence the position of the phase bound-
ary along the crack faces as shown by the enlarged view of the lines in vicinity of
T = −1 ◦C. Considerable freezing independent of C D −W or Text appears at the
crack tip. The ice layer growth at the former water surface is much slower. The
zoom in the red box indicates pronounced differences in the thickness of the ice lid
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Figure 5.31: Influence of the opening angle α and the initial water temperature on the
temperatures along the horizontal (a) and vertical (b) sections in the crevassed domain as
indicated in Fig. 5.30 at different points in time

due to Text after ten days. The influence of C D−W on the lid thickness is compara-
tively small.
It must be assumed that the influence of the freeboard on the ice-lid thickness is
considerably larger for real crevasses, where the heat transfer coefficient is strongly
dependent on the air flow within the crevasse and hence on the crevasse spacing,
the wind speed and the orientation of the crevasse with respect to the wind direc-
tion.
In a next step, the influence of the opening angle and the initial temperature of
the water on the resulting temperatures along the sections are analyzed. Therefore,
C D −W = 3 m, Text = −5 ◦C, L = 3m and Tinit,S = −3 ◦C are used. The dashed and
the solid lines in Fig. 5.31 a) illustrate the temperatures along the horizontal section
for Tinit,L = 2 ◦C and Tinit,L = 0 ◦C, respectively. Differences in the opening angle are
referred to by the line color. Already after t = 1 h it appears that the narrow crack
with α = 1◦ is considerably less able to keep the warmer temperatures in the water
than cracks with larger opening angles. This finding is supported by the results after
t = 1d. However, after t = 10 d, the deviations due to different initial water temper-
atures almost vanish for all opening angles used. Furthermore, for the illustrated
points in time, the initial water temperature has no influence on the position of the
phase transition.
The prescribed opening angle affects the initial position of the phase boundary at
the crack flanks. This can by seen in the plots of the temperatures along the horizon-
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Figure 5.32: Influence of the domain length L and the initial ice temperature on the tem-
peratures in the crevassed domain at different points in time; therefore C D −W = 3m,
H − C D = 3m and Tbdy = −5◦C; a) temperatures along horizontal line 1m below the water
surface; b) temperatures along line of symmetry

tal section, where vertical, thin, densely dashed lines point out the corresponding
initial phase boundary one meter below the water surface. The temperatures along
the vertical section are therefore more appropriate to demonstrate the influence of
the opening angle on the evolution of the phase shift position. After one hour, only
the very tip of the crack is frozen. The deviations due to the opening angle in the
resulting solid phase and in the transition zone are very small. Stronger differences
due to opening angle and initial water temperature can be seen in the remaining liq-
uid phase. After t = 1d the deviations due to the initial water temperature decrease
and stronger differences due to the opening angle in the solid phase and transition
zone appear. These differences become even more pronounced after t = 10 d. Here,
the impact of the initial water temperature becomes negligibly small, especially for
sharper opening angles. The deviation in the lid thickness due to the opening an-
gles and initial water temperatures after t = 10 d comprises only few centimeters as
illustrated in the enlarged view of the phase boundary position.
Next, the influence of the domain length L and the initial ice temperature Tinit,S is
analyzed using C D −W = 3m, α = 1◦, Text = −5 ◦C and Tinit,L = 0 ◦C. The resulting
temperatures along the introduced sections are illustrated in Figs. 5.32 a) and b)
where the line color represents different Tinit,S, the line style different L.
The plots show that significant differences due to varying Tinit,S along the horizon-
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Figure 5.33: Influence of the width of the phase transition interval and the curvature pa-
rameter kc on the resulting temperatures along the horizontal (a) and vertical (b) section
after t = 10 d

tal section 4m below the water surface are restricted to the initially solid area,
right from the vertical, densely dotted line which indicates the initial position of the
phase boundary. Also differences due to the length of the domain only appear in
major distance of the water-ice interface and after a considerable amount of time.
It shows that the length L ≥ 2m is sufficient to represent the surrounding ice mass
for α = 1◦. The previous plot with different opening angles indicated that L = 3m
is long enough for the considered larger opening angles up to α = 5◦. The temper-
atures along the vertical section in Fig. 5.32 b) are completely independent on the
domain length L but show variances due to different Tinit,S around the crack tip. The
resulting lid thickness is nearly independent on the initial ice temperature as shown
by the enlarged view in the red box where the differences in the vertical position
are within the range of millimeters.
Figure 5.27 b) showed that the influence of the size of the temperature interval for
the phase shift, as well as the curvature parameter κc on the temperatures in the
one-dimensional setup was very small. In order to check whether this trend can be
transferred to freezing within a water-filled crack, the model domain in Fig. 5.29
is simulated using C D −W = 3 m, L = 3m, α = 1◦, Text = −5 ◦C, Tinit,L = 0 ◦C and
Tinit,S = −3 ◦C with different values for ∆T and κc. The resulting temperatures along
the horizontal and the vertical section after t = 10d are illustrated in Figs. 5.33 a)
and b), respectively. Changes in ∆T are indicated by the line color, variations in
κc by the line style. The light red background hints towards the phase transition
interval for ∆T = 0.5 ◦C. Whereas the differences due to diverse κc are negligible,
a considerable influence of the ∆T on the resulting temperatures appears. How-
ever, a closer look at the associated phase shift positions reveals, that the influence
of ∆T on the lid thickness is negligibly small. Stronger differences in the result-
ing phase shift position appear along the crack faces, where the smaller value for
∆T displaces the phase boundary by approximately 4cm inwards. In general it can
therefore be said, that the application of a phase transition zone slightly underesti-
mates the freezing process.
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The enlarged views of the phase boundaries along the vertical sections after t = 10d
for all tested setups indicate that the extent of the developed ice layer at the sur-
face spans only few tens of centimeters whereas the ice growth at the crack tip is
considerably larger. Influence within the range of centimeters could be seen due to
different opening angles. Stronger deviations only occurred due to different exter-
nal temperatures. Since the model ignores the influence of convection, the transport
of colder and less dense water from the tip to the top is disabled, leading to an over-
estimate ice growth at the crack tip and an underrated lid growth at the surface.

The influence of convection

Thus far, heat transport due to fluid movement has been excluded in the simulations.
However, Taylor (2004) stated for melt ponds in sea ice, that even small tempera-
ture differences lead to turbulent flow. An influence of convective heat transfer
within the crevasse must therefore be assumed. In case of natural convection, the
flow regime can be characterized by the Grashof number, which describes the ratio
between the time scales for viscous diffusion and internal buoyancy forces in the
fluid. It is defined as

GrL =
gαT (Twall − Tfluid)L3

(η/ρ)2
, (5.31)

with the coefficient of thermal expansion αT and the characteristic length of the
problem L. For a setup as illustrated in Fig. 5.34, the material parameters are evalu-
ated at (Tfluid−Twall)/2= 2◦C and read αT = −0.0324 ·10−3 1/K, η= 1730.9 ·10−6 Pa s
and ρ = 999.94kg/m3. With L = 0.1 m the Grashof number yields GrL = 4.2430 ·105.
This value is much lower than the critical value of GrL = 109 which denotes the tran-
sition between laminar and turbulent flow in case of free convection, hence laminar
flow behavior can be assumed. A FE simulation of the simple setup illustrated in
Fig. 5.34 supports this finding. Within the FE program COMSOL, the built-in mod-
ules for laminar or turbulent flow are coupled with a heat transfer in fluids module
using the multiphysics node. Following the notation in the COMSOL user manual,
the temperature T results from the solution of the heat transfer equation

ρcp

�

∂ T
∂ t
+ (v · ∇)T )

�

= −(∇ · q) +σ : L−
T
ρ

∂ ρ

∂ t

�

�

�

�

p

�

∂ p
∂ t
+ (v · ∇)p

�

+Q, (5.32)

with the given velocity v , the velocity gradient L, the conductive heat flux vector q
and the pressure p. The scalar Q contains heat sources other than viscous dissipa-
tion. The viscous stress in case of a Newtonian fluid takes the form

σ = 2ηL−
2
3
η(∇ · v)1. (5.33)

The temperature is transferred to the fluid flow module to compute the temperature-
dependent material parameters such as the density, the viscosity, the conductivity
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and the specific heat capacity. In the fluid flow module the Navier-Stokes equations

∂ ρ

∂ t
+∇ · (ρv) = 0 (5.34)

ρ
∂ v
∂ t
+ρ(v · ∇)v =∇ · (−p1+σ) + f (5.35)

are solved for the velocity v and the pressure p.
By application of turbulent flow approximations using the common K − ε-model,
Eq. (5.35) is transformed to

ρ
∂ v
∂ t
+ρ(v ·∇)v =∇·

�

−p1+ 2(η+ηT )L −
2
3
(η+ηT )(∇ · v)1−

2
3
ρK1

�

+ f (5.36)

and two additional transport equations have to be introduced for the turbulent ki-
netic energy, K, and the turbulent dissipation rate, ε, reading

ρ
∂ K
∂ t
+ρv · ∇K =∇ ·

��

η+
ηt

cK

�

∇K
�

+ PK −ρε, (5.37)

with the production term

PK = ηT

�

2∇v : L−
2
3
(∇ · v)2

�

−
2
3
ρK∇ · v (5.38)

and

ρ
∂ ε

∂ t
+ρv · ∇ε=∇ ·

��

η+
ηt

cε

�

∇ε
�

+ cε1
ε

K
PK − cε2ρ

ε2

K
, (5.39)

respectively. Herein, ηT = ρcηK2/ε is the turbulent viscosity. The constants cK = 1,
cε = 1.3, cε1 = 1.44, cε2 = 1.92 and cη = 0.09 are literature values, determined from
experimental data, fitting a wide range of turbulent flows. The resulting velocity
field is given back to the heat transfer module. All equations are solved fully cou-
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Figure 5.34: Geometric setup with initial values, boundary conditions and material param-
eters for the evaluation of the appropriate flow model
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pled.
Figure 5.34 illustrates the quadratic domain used for the determination of the ap-
propriate flow regime. The initial temperature of the water is set to Tinit = 4◦C, the
water is at rest and the initial pressure equals the hydrostatic pressure. Free slip is
enabled at all boundaries. For a well-posed problem, the pressure has to be fixed
at one point. The domain is loaded by gravity using the illustrated temperature-
dependent density profile. The right lateral boundary is continuously cooled using
the time-dependent temperature profile

TB(t) =
�

Tinit − 4 K sin
� t

3600s
π

2

��

(t ≤ 3600s) + (Tinit − 4 K)(t > 3600s) (5.40)

as illustrated in Fig. 5.34. The remaining boundaries are isolated. Temperature-
dependent built-in COMSOL functions for liquid water are used for all material
parameters but the density, which follows a polynomial fit of literature values

ρ(T ) = −0.007471(T − Tm)
2 kg

m3 K2
+ 0.05953(T − Tm)

kg
m3 K

+ 999.85
kg
m3

∀ T > Tm,

(5.41)
in order to represent the negative thermal expansion of water below 4◦C. Average
values of the remaining material parameters in the indicated temperature interval
are shown in Fig. 5.34. The laminar, as well as the turbulent study are performed
with the same mesh consisting of approximately 28300 elements with considerable
refinement along the boundaries.
Figures 5.35 a) and b) show isothermal contours of both simulations at distinct
points in time. The general temperature distribution appears to be very similar.

a)

b)

Figure 5.35: Isocontours of the resulting temperature for a) a laminar flow model and b) a
turbulent flow model
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5 Analysis of vertical cracks in ice shelves

After t = 1800s the contours of the turbulent flow simulations seem slightly more
sorted than those of the laminar simulation. The maximum and minimum tem-
peratures are about the same. A considerably larger difference in the maximum
temperature appears after t = 4500 s, the structure of the isolines however is very
similar. At t = 7200 s, the differences in the maximum temperature reduce.
It appears that the application of a turbulent flow model results in a faster mixing
of the fluid and hence lower maximum temperatures after two hours. It has to be
noted that for a larger domain, e.g. a real crevasse, the characteristic length, which
is set by the water level inside the crevasse, can be much higher than the simulated
10cm. Hence, the Grashof number most likely exceeds the critical value of 109 and
turbulent flow has to be assumed. Since on the other hand, turbulent flow leads to
a rapid mixing of the fluid, the temperature difference will decrease very fast which
eventually results in GrL < 109, allowing to use the computationally much less ex-
pensive laminar model for the simulation of the phase transition.

In a next step, the phase transition process using the heat capacity method is in-
cluded into the coupled heat transfer - laminar flow - simulation. Due to the
complexity of the problem, a downsized version of the geometry in Fig. 5.29 with
W = 0.5m, H = 1.8m, C D−W = 0.3 m, L = 1.5 m and α= 5◦ is used. For comparabil-
ity to previous results the heat flux following Eq. (5.30) with Text = −5 ◦C is applied.
Within the initially liquid phase now the coupled system of Navier-Stokes equations
and heat transfer equations is solved. In order to save computation time, only the
heat transfer equation is solved in the initially solid phase, hence the domain re-
mains solid even if temperatures exceed T = −1 ◦C. The heat capacity is evaluated
using Eq. (5.28), the conductivity follows Eq. (5.29) with κk = 7/K. Other than in
previous simulations with phase transition, now also the equations for the density
and the viscosity have to meet the jump at the phase boundary and therefore read

ρ(T ) =







ρS +
ρTm
−ρS

2

�

tanh
�

κρ

�

(T − Tm) +
∆Tm

2

��

+ 1
�

∀ T < Tm

−0.007471(T − Tm)2
kg

m3 K2 + 0.05953(T − Tm)
kg

m3 K + 999.85 kg
m3 ∀ T ≥ Tm

with ρs = 910 kg
m3 and

ρTm
=
ρs(tanh(κρ∆Tm)− 1) + 2 · 999.85

1+ tanh(κρ∆Tm)

to ensure a smooth transition between both temperature intervals, as well as

η(T ) = ηS +
ηL −ηS

2

�

tanh
�

κη [(T − Tm) +∆Tshift]
�

+ 1
�

with ηS = 5000Pa s, ηL = 2 ·10−3 Pa s. In order to yield convergence, the viscosity for
the solid phase, ηS, is chosen extremely low in comparison to measured viscosities
of ice, which are about eleven to thirteen orders of magnitude higher. However,
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Figure 5.36: Temperature-dependent material parameters for ∆T = 1 ◦C and
κρ = κc = κη = 10/K

the simulation shows negligibly small velocities in the solid phase and considerably
larger velocities in the liquid phase, hence this rather daring guess can be accepted.
If a larger jump in the viscosity is desired, a different approach with separated solid
and liquid phases and a moving boundary in between can be used.

Resulting plots of the density, the heat capacity and the viscosity for ∆T = 1 ◦C,
∆Tshift = 0.5 ◦C and κρ = κc = κη = 10/K are shown in Fig. 5.36. Figures 5.37 a) and
b) show graphs of the normalized relevant material parameters for different ∆Tm to
illustrate their location along the temperature axis with respect to the phase transi-
tion interval. The associated temperatures along the vertical section after t = 5 d are
shown in Figs. 5.37 c). The solution of the heat transfer equation with phase shift,
in the following abbreviated with HT are visualized by red lines, the solution of the
coupled problem of heat transfer and laminar flow also known as non-isothermal
flow (NITF) are illustrated in blue. For ∆T = 1 ◦C, no relevant differences between
HT and NITF appear. By using ∆T = 0.5 ◦C, κρ = κη = 30/K and κη = 10/K, the
resulting temperatures for NITF are slightly changed such that the lid thickness is
increased and freezing at the crack tip is reduced.
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Figure 5.37: Normalized material parameters for a)∆T = 1 ◦C and κρ = κc = κη = 10/K,
as well as b) ∆T = 0.5 ◦C and κρ = κη = 30/K and κη = 10/K using ∆Tshift = ∆T/2; c)
resulting temperatures after t = 5d along vertical section for HT and NITF
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Figure 5.38: Normalized material parameters for a)∆T = 1 ◦C, ∆Tshift = 0.9 ◦C and
κρ = κc = κη = 10/K, as well as b) ∆T = 0.5 ◦C, ∆Tshift = 0.4 ◦C and κρ = κη = 30/K and
κη = 10/K; c) resulting temperatures after t = 5d along vertical section for HT and NITF

The reason for this unexpectedly little difference between HT and NITF follows by
a closer look at the material parameters in Figs. 5.37 a) and b). The flow in the
crack is solely forced by buoyancy, which is triggered by gradients in the density.
Since the predominant part of the density transition coincides with an already con-
siderably increased viscosity, the expected transport of "ice crystals" to the surface is
hindered.
In a next step the parameter ∆Tshift in the equation for η(T ) is varied such that
∆Tshift = 0.9 ◦C for ∆Tm = 1 ◦C and ∆Tshift = 0.4 ◦C for ∆Tm = 0.5 ◦C. Plots of the re-
sulting normalized material parameters with respect to the temperature are shown
in Figs. 5.38 a) and b). The consequent temperatures along the vertical section are
illustrated in 5.38 c). It appears that the shifted viscosity profile considerably re-
duces freezing at the crack tip and increases the lid growth at the surface. A more
physical value for ∆Tshift could be found by fitting the simulation to experimental
results.
The presented model shows that the simulation of phase transition within a water-
filled crevasse by only modeling conductive heat transfer overestimates freezing at
the tip and underestimates the resulting lid thickness. Nevertheless, also the se-
tups including the influence of convection only lead to small lid thicknesses in the
considered period of time.

5.6.2 A frost wedging model

The previous section gave a rough estimate of possible lid thicknesses due to freez-
ing. Now, the fracture mechanical frost wedging process itself is modeled. Start-
ing point for the simulation is a crevasse, opened by the angle α and the re-
mote loading ∆ux =̂ σ f = 100 kPa. The remaining parameters and boundary con-
dition are equivalent to the setup of the crack filled by meltwater presented in
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1. 4.3.2.
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Figure 5.39: Illustration of frost wedging process with 1. a stable dry crack opened due to
the opening angle α and external loading; 2. still stable crevasse filled by meltwater during
a warm period, 3. evolution of an ice lid due to ice crystals rising to the surface, 4. crack
propagation due to additional phase transition pressure within the crack

Sec. 5.5 using L = 2000 m, H = 250 m and E = 9 GPa. The simulations only con-
sider compressible behavior for ice applying ν = 0.3. A depth-dependent den-
sity profile as shown by the solid red line in Fig. 5.16 a) is assumed. This leads
to maximum stable depths C D of the dry cracks with respect to the opening an-
gle as presented in Tab. 5.1. The crack is filled by meltwater up to a level W
that results in KI below the critical value of KI c = 400kPa

p
m used in this con-

text. The area of water filling A0 inside the crack is evaluated with respect to
the deformed shape of the domain. Next, the first lid increment is inserted.

a) b)

Figure 5.40: Qualitative countour
plots of first principal stress in
cracked domain with scaled defor-
mation with a) loading by water
pressure, unloaded lid due to eigen-
strain; b) additional loading by
phase transition pressure, load also
carried by the lid

The lid is supposed to grow within a crevasse that
is already deformed by the external loading and
the water filling, bearing only the additional load
due to the phase transition pressure acting on the
crack faces. Two approaches were made to cap-
ture this process. In a first attempt, the lid area
was not explicitly included into the simulation.
The effect of the lid however was approximated
by constraining the horizontal displacements of
the fictitious crack face - lid - interface at the val-
ues resulting from the simulation of the water-
filled crack. This resulted in a very rigid repre-
sentation of the lid and therefore in an exagger-
ated shielding of the crack tip from the additional
load due to the phase transition pressure.
In the second attempt, the ice lid is modeled ex-
plicitly. In order to have the lid bear only the
additional load due to freezing, it is subjected to
an eigenstrain εeig

x x fulfilling the equation

σav = av
�

σlid
x x(ε

eig
x x , pPT = 0)

�

= 0. (5.42)

Herein, av (. . .) denotes the evaluation of the average stress in the lid area carried
out in COMSOL. Equation (5.42) is solved numerically using a Newton’s iteration
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5 Analysis of vertical cracks in ice shelves

scheme. This approach needs more computational effort for the solution but yields a
more accurate representation of the overall process. A qualitative plot of the loaded
crack with relaxed first lid increment is shown in Fig. 5.40 a).
In a next step, the deformed area AI of the inserted lid increment and the resulting
required area of the remaining water under the lid

AW = A0 − AI
ρI

ρW
(5.43)

can be computed. The phase transition pressure pPT then follows by solving

AWsim.
(pPT) = AW (5.44)

employing once more Newton’s iteration scheme. The surface plot in Fig. 5.40 b)
illustrates the first principal stress within the deformed geometry. The red arrows
indicate the depth-dependent water pressure, the blue arrows the additional phase
transition pressure. Considerable stresses now appear in the lid increment. If the av-
erage horizontal stress in the lid, which now is a function of the applied eigenstrain
and the phase transition pressure, exceeds a given threshold σmax

av , the lid breaks.
Weeks and Mellor (1978) report a tensile strength of about 2 MPa for small intact
laboratory freshwater ice specimens. Reeh (1968) states that the tensile strength
of glacier ice must be considerably smaller due to inhomogeneities in the bulk and
assumes a value of less than 1 MPa to be reasonable. In addition, he argues that
the tensile strength depends on the strain rate, as well as on the temperature. This
is confirmed by a study of Wilhelms et al. (2007) who measured the force needed
to break ice cores at different depth and temperatures. For temperatures around
T = −5 ◦C the resulting tensile strength was approximately 1MPa.
If the lid breaks, the phase transition pressure is set back to zero and the surplus
water spills through the lid and freezes at the surface. The resulting increased lid
thickness follows the equation

AI(dI ,ε
eig
x x ) =

ρW

ρI
(A0 − Asim(pPT = 0)), (5.45)

which is solved using Newton’s iteration scheme. A configuration with subcritical
lid stress is then used to compute the configurational force and the resulting SIF at
the crack tip. If the resulting KI exceed the critical value, the crack is allowed to
grow. The crack growth increment is set with respect to the value of KI such that the
number of growth steps is reduced without resulting in configurations with negative
KI . For every growth step, the pressure pPT has to be evaluated. If the resulting KI

falls below the critical limit, the lid thickness is increased by the increment ∆dI .
Since the new lid part is supposed to grow within the already stretched crevasse,
the eigenstrain as evaluated from Eq. (5.42) has to be adapted. For simplicity, we
refrain from the computation of a depth-dependent eigenstrain but state, that the
resulting force transmitted by the crack face - lid - interface is supposed to be equal
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5.6 Frost wedging as reason for ice shelf disintegration

before and after the lid growth. This can be approximated by using

σav

�

εeig,new
x x , pold

PT

�

= σav

�

εeig, old
x x , pold

PT

� dold
I

dold
I +∆dI

, (5.46)

which is solved for εeig,new
x x applying Newton’s iteration scheme. The phase transition

pressure used for the iteration is the one computed for the last crack growth step.
Hence the inserted increment is still assumed to be part of the water area. The part
of former crack face area that is now covered by the new lid increment is not loaded
any more. Next, the new deformed lid area and the required area of remaining
water are computed, followed by a new evaluation of the phase transition pressure.
During this iterative sequence of crack growth and lid growth, the situation can oc-
cur that the new area due to the chosen crack growth AWsim.

even without additional
phase transition pressure is larger than the required area. Then the maximum crack
for which AWsim.

= AW for pPT = 0 is determined. If a new crack depth can be found
and KI < KI c, the ice lid will grow. If KI > KI c, the crack is will to grow further, al-
lowing for an air-filled gap between the water surface and the bottom of the ice lid.
Since for α > 0◦ the available water is considerably larger than the water needed
to fill the space between the newly created crack flanks, this situation leads to a
complete penetration of the crack. A sketch of the complete crack growth algorithm
can be found in Fig. 5.41.
Figure 5.42 illustrates the phase transition pressure, the average lid stress, the stress
intensity factor and the resulting crack depth for a growing ice lid thickness using
α= 2◦ and lid growth increments of ∆dI = 0.05 m. Application of a maximum aver-
age lid stress of σmax

av = 2MPa in Fig. 5.42 a) as indicated by the red dashed line in
the graph of the resulting average lid stress results in breaking of the lid for the first
two lid growth steps. For these instances, the stress intensity factor is set to zero
and the ice lid thickness comprising the surplus water is computed. Every simula-
tion step directly following a breaking of the lid leads to resulting stress intensity
factors with respect to the adapted ice lid thickness, the newly computed eigen-
strain εeig,new

x x , pPT = 0Pa and σav ≈ 0 Pa. With the addition of a third lid increment,
the resulting phase transition pressure does not break the ice lid but leads to crack
growth due to which the phase transition pressure and the resulting stress intensity
factors are reduced until eventually the stress intensity factors fall below the critical
value of KI c = 400 kPa

p
m as indicated by the red dashed line. With the insertion of

another lid increment the phase transition pressure and the resulting KI rise again
leading to further crack growth. Thus far, crack growth led to a decreasing phase
transition pressure and decreasing KI . At a crack depth of approximately 97 m, a
turning point is reached. Now, further crack growth leads to increasing stress in-
tensity factors even without additional phase transition pressure. Since the opening
angle of α = 2◦ offers a quasi-infinite water supply to fill the geometrically ideally
sharp crack, the fissure will propagate to the bottom of the ice shelf. After few me-
ters of crack propagation, the critical stress in the lid is reached again. This however
is ignored in the ongoing simulations as a breaking of the lid at this stage would
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Newton’s iteration to find pPT fulfilling AWsim
(pPT) = AW

if σold
av > σ

max
avif σold

av ≤ σ
max
av

simulate water filled crack with pseudo lid increment

evaluate A0 and AI in deformed shape

compute required area of remaining water under lid: AW = A0 − AIρI/ρW

evaluate σold
av = av (σlid

x x(ε
eig
x x , pPT))

σnew
av (ε

eig
x x , pold

PT ) =
dI

dI+∆dI
σold

av

set dI = dI +∆dI

Newton’s iteration to find εeig
x x with

if pPT 6= 0 if pPT = 0

set C D = C D+∆C D

set pPT = 0

compute AWsim
(pPT = 0)

set C D = C D+∆C D

Newton’s iteration to find W

with AWsim
(W ) = AW

if KI ≤ KI c

if AWsim
< AW if AWsim

≥ AW

if KI > KI c

surplus water exits through lid

⇒ pPT = 0

evaluate KI

AI(dI ,ε
eig
x x ) =

ρW
ρI
(A0 − Asim(pPT = 0))

Newton’s iteration to find dI fulfilling

Newton’s iteration to find εeig
x x fulfilling av (σlid

x x(ε
eig
x x )) = 0

Figure 5.41: Workflow for simulation of freezing-induced crack propagation
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Figure 5.42: Lid thickness and resulting phase transition pressure, average lid stress, stress
intensity factor and crack depth with respect to simulation step of frost wedging process for
α= 2◦ using different values for the water level or the maximum average lid stress

only increase the stress at the crack tip and therefore accelerate crack propagation.
The simulation with equal water level but reduced maximum average tensile stress
as shown in Fig. 5.42 b) needs several more lid growth steps before a stable lid ge-
ometry is reached. The results in Fig. 5.42 c) show, that the same lid growth incre-
ments of ∆dI = 0.05 m as in the previous simulations lead to a considerably higher
phase transition pressure and resulting average lid stress if a reduced water level
of W = 5m is used. A lower water level slightly reduces the amount of dispersed
water for equal lid increment thickness. However, since a lower water level implies
a smaller ice water interface, which can move to make room for the dispersed water,
the displacements along the interfaces have to be considerably larger and hence a
higher phase transition pressure is needed. With dI ≈ 0.55m, a stable lid geometry
is reached and crack propagation starts. A lid thickness of dI ≈ 0.8m leads to a
complete penetration of the crack. Further simulations with α = 2◦, W = 5m and
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5 Analysis of vertical cracks in ice shelves

σmax
av = 2MPa (results not plotted) show crack propagation with dI ≈ 0.214 m and

lead to a complete penetration of the crack with dI ≈ 0.41 m.
The plots in Figs. 5.43 and 5.44 show the results for comparable setups using α= 1◦

and α= 0.5◦. Since a smaller opening angle considerably reduces the dispersed wa-
ter per lid growth increment, the resulting phase transition pressure and the average
lid stress decrease. In the case of W = 10 m, where the stress intensity factors of the
water-filled crack without ice lid are close to the critical level, less lid increments
are needed for a stable lid configuration, hence the lid thickness which eventually
leads to a complete penetration of the crevasse also decreases. This trend cannot
be observed for W = 5m where a decreasing opening angle leads to an equal or
even increasing lid thickness needed for a complete penetration of the crevasse. In
further simulations not presented here with α= 0.1◦ and ∆dI = 0.05 m the resulting
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Figure 5.43: Lid thickness and resulting phase transition pressure, average lid stress, stress
intensity factor and crack depth with respect to simulation step of frost wedging process for
α= 1◦ using different values for the water level or the maximum average lid stress

106



5.6 Frost wedging as reason for ice shelf disintegration

0
10
20
30

p P
T
[k

Pa
] pressure PT

0

0.1

0.2

d I
[m
]

α= 0.5◦, W = 10m
σmax

av = 2MPa

lid thickness

0
2
4
6

σ
av
[M

Pa
] av. lid stress

0
0.5

1
1.5

K
I

�

M
Pa
p

m
�

SIF

10 20
70
80
90

100
110

Simulation steps

C
D
[m
] crack depth

a)

0
10
20
30

0

0.1

0.2

α= 0.5◦, W = 10m
σmax

av = 1MPa

0

5

10

0

1

2

10 20

80

100

120

Simulation stepsb)

0
0.5

1
1.5

0
0.5

1
1.5

10 30 50 70 90 110

80

100

120

Simulation steps

0
50

100
150

0

0.5

1

α= 0.5◦, W = 5 m
σmax

av = 1MPa

c)

Figure 5.44: Lid thickness and resulting phase transition pressure, average lid stress, stress
intensity factor and crack depth with respect to simulation step of frost wedging process for
α= 0.5◦ using different values for the water level or the maximum average lid stress

average stress in the lid did does not exceed 1MPa. Nevertheless, water-filled cracks
with small opening angles need considerably more lid growth steps until the crack
penetrates to the bottom of the ice shelf. Ideally sharp cracks completely freeze
before the crack tip reaches the bottom of the shelf since the water supply is very
small.
Although freezing in a crack is a continuous process, all presented simulations were
performed with incremental lid growth, accepting that the results consequently also
depend on the growth increment ∆dI . Simulations with ∆dI = 0.02m show, that
smaller increments considerably reduce the ice lid thickness needed for a complete
penetration of the crack. Exemplarily for σmax

av = 1MPa, dI ≈ 0.16m is needed for
α = 2◦ and W = 10 m, dI ≈ 0.1 m suffices for α = 1◦ and W = 10m and also the
lid thickness needed for the crack with α = 2◦ and W = 5m can be reduced from
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5 Analysis of vertical cracks in ice shelves

a) b) c)

Figure 5.45: Snapshot of the stress component σx x for a) a rounded tip due to freezing at
the crack tip, b) a rounded ice lid with the associated colorbar with units in Pa in c)

dI ≈ 0.8m for ∆dI = 0.05m to dI ≈ 0.57m using ∆dI = 0.02m. Since even these
small increments lead to a breaking of the lid in the first few steps, the results still
present a upper limit of the ice lid thickness needed for complete penetration.

The simulations of the phase transition process indicated considerable freezing at
the crack tip. Figure 5.45 shows qualitative plots of the stress component σx x at
a rounded crack tip and a rounded lid for α = 2◦ and W = 10m. The crack tip
is rounded such that freezing of the first meter of water at the tip is represented
whereas freezing from the crack faces is ignored. The red line in Fig. 5.45 a) illus-
trates the former crack face. The lid - crack face - interface is rounded in order to
prevent stress concentrations at unphysical edges. It appears that even at a rounded
crack tip, the stress component σx x is higher than the measured tensile strength for
ice. Hence the initiation of a new crack can be expected. The stresses in the lid are
considerably smaller.

5.6.3 Summary of the simulation of frost wedging processes

The analysis of the phase transition process within a water-filled crevasse revealed
that only small ice lid thicknesses ranging from dI = 10cm to dI = 20 cm can be
expected for the applied external temperatures, geometries and the considered time
span. The most influencing parameter on the resulting lid thickness is the external
temperature. Considerable freezing at the crack tip could be observed. The consid-
eration of fluid movement inside the crevasse reduced the freezing at the tip and
increased the lid thickness. The consequent simulation of the frost wedging process
showed that for situations where without additional freezing the stress concentra-
tion at the tip of the water-filled crack is close to the critical value, the lid thicknesses
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5.6 Frost wedging as reason for ice shelf disintegration

resulting from the thermodynamical model suffice to let the crack penetrate the ice
shelf. Also freezing at the tip cannot prevent high stresses due to the phase transi-
tion pressure that eventually lead to new crack initiation. In case of crevasses where
the stress intensity due to the water is far below the critical level or in case of very
sharp cracks, crevasse penetration due to frost wedging is unlikely since lid thick-
nesses of more than 50cm are needed. If the crevasse is ideally sharp, the crack can
only propagate few meters before it completely freezes.
Many prerequisites are needed to start a frost wedging process: very cold exter-
nal temperatures, water-filled crevasses that have not penetrated by only the water
load, complete sealing of the crevasses due to the ice lid and a crack propagation
speed that is faster then freezing processes at the tip that might lead to crack heal-
ing. Therefore, it is daring to assume that all disintegration events that coincide with
a drop of the external temperatures considerably below 0 ◦C are triggered by frost
wedging. Nevertheless the simulations show that the presented process is possible.
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propagation in ice shelves

Besides the analysis of vertical crack propagation for the estimation of crack depths,
the availability of high-resolution images of crevassed ice shelf surfaces also revealed
the interest to study the propagation of rifts. The term "rift" in this context is com-
monly used for horizontally propagating cracks that are assumed to penetrate the
complete thickness of the ice shelf. Hence, the faces of the rift below the water level
are suspect to water pressure. In satellite pictures, the water surface within larger
rifts is often covered with ice gravel or sea ice.
The analysis of rift propagation is of high scientific interest since the direction of the
rift, the speed of the propagation and also potential rift arrest reveal information on
the structure of the ice shelf. Furthermore, the analysis of rift propagation can be
used to predict the iceberg size resulting from large calving events. Apart from the
purely scientific interest, the estimation of a most probable rift propagation direc-
tion helps to plan routes for field campaigns in the respective region.
First descriptions of rifts in Antarctic ice shelves are based on areal photography.
This method for capturing surface structures in Antarctica dates back to the begin-
ning of the 20th century (Roscoe, 1956). Examples can be found in Rignot (2002)
for PIG or in Neuburg et al. (1959) who describe the Grand Chasm, a major rift in
the Filchner-Ronne Ice Shelf whose final propagation in 1986 resulted in an iceberg
with an area of 11500 km2 (Van Der Veen, 2002). With the development of space
borne measurement tools in the 1970’s, ice shelves could be monitored on a regular
base, enabling scientists to describe rift propagation. Rignot (2002) describes the
calving front, the grounding line and two major calving events with the preceding
rifts of PIG for the 1947 - 2000. His observations are complemented by MacGregor
and Catania (2012) who describe rifting and ice front retreat in the Amundsen Sea
Embayment between 1972 and 2011. Fricker (2005), Bassis (2005), Bassis et al.
(2007) and Bassis et al. (2008) published a thorough analysis of the growth of a
single rift in the Amery Ice Shelf from 2002 to 2006 with the aim to identify the
major forces that drive rift propagation. Further rift propagation eventually leading
to calving of larger ice shelf parts is documented for e.g. the Ronne Ice Shelf (Larour
et al., 2004a,b), the Brunt Ice Shelf (Khazendar et al., 2009) and the WIS (Braun
et al., 2009). An overview of ice shelves with past or present rift propagation can
be found in Walker et al. (2013).
Different approaches have been followed in order to simulate rifted ice shelves. On
the one hand models were built to predict the location of crevasses and rifts based
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on the flow stress resulting from simulated or measured ice shelf velocities. Exam-
ples can be found in Rist et al. (1999) where LEFM is used to connect principal
flow stresses and the critical fracture toughness. An extra variable for fractured or
rifted zones depending on the shear stress and influencing the velocity field was
introduced by Sandhäger (2003) and further developed by Sandhäger et al. (2005).
Weis et al. (1999) implemented a comparable approach, using a so-called enhance-
ment factor to increase the velocities in rifted zones. Both models were applied
for the Brunt Ice Shelf and the results compared to measured surface velocities in
Humbert et al. (2009). The approaches of Rist et al. (1999) and Sandhäger et al.
(2005) were combined by Jansen et al. (2010). Albrecht and Levermann (2012)
introduced a new field variable, the fracture density field, which allows for crack
initiation, crack transportation and crack healing.
The thus far mentioned methods describe fractured or rifted areas as weak zones
within the ice shelf continuum. This is different in the approaches of Larour et al.
(2004a) and Larour et al. (2004b), as well as Hulbe et al. (2010), where rifts in the
ice shelf are treated as geometric features. Both, Larour et al. (2004a) and Hulbe
et al. (2010) analyze rift propagation using small excerpts of the complete ice shelf.
Hulbe et al. (2010) assumes rift propagation to happen on a linear elastic time scale
and therefore solves the elastic boundary value problem of the excerpt domain using
the Boundary Element Method. The required stress boundary conditions are taken
from the viscous surface stress computed from measured ice shelf velocities. Crack
propagation is evaluated using the maximum circumferential stress criterion. Also
Larour et al. (2004a) uses linear elastic fracture mechanics to evaluate whether the
rift propagates. However, the direct solution of the elastic boundary value problem
is omitted and the crack propagation velocity is computed directly from the crack
opening rate evaluated from the ice dynamical simulation. In Larour et al. (2004b)
this method is transferred to a simulation of the entire Ronne Ice Shelf using differ-
ent assumptions on the filling of the rifts, as are water or ice mélange of which the
latter helps to prevent further crack growth.
The modest number of models explicitly describing the horizontal propagation of ge-
ometric rifts in flowing ice shelves is symbolic for the difficulties that arise when the
stresses of the dynamic simulation, solving for the ice velocity, have to be transferred
to a linear elastic model that is based on displacement fields. A comprehensive solu-
tion of the full problem could only be achieved by application of a viscoelastic mate-
rial law with a transient simulation of the problem. Depending on the complexity of
the ice shelf, a satisfying solution of only the steady state velocities already requires
extensive knowledge on the geometry in three dimensions, the boundary conditions
and the material parameters of the domain in combination with further external
parameters as e.g. the accumulation and melting rate, as well as the air and ocean
temperatures. Therefore, a complete viscoelastic solution of the problem will be
omitted. Instead, the following section proposes a new method to relate the viscous
answer of the ice shelf to an adequate forcing for the linear elastic model, which is
then used for the analysis of horizontal rift propagation. The performance of the

112



6.1 From viscous flow to elastic fracture by means of viscous volume forces

approach is first demonstrated for a simplified box-like geometry with constructed
velocity fields before it is applied to rifts at PIG and WIS.

6.1 From viscous flow to elastic fracture by
means of viscous volume forces

A suitable viscoelastic model to describe the rheology of ice is that of a viscoelastic
fluid. The one-dimensional representation of the most elementary viscoelastic fluid,
the Maxwell model, consists of a spring and a dashpot in series connection as illus-
trated in Fig. 6.1 a). In order to meet the specifications known for ice, the spring
symbolizes linear elastic material behavior, while the dashpot represents the highly
nonlinear flow behavior of ice using Glen’s flow law as introduced in Sec. 2.2.2.
Simple equilibrium considerations show, that the stresses in the spring, as well as in
the dashpot have to be equal. The respective strains on the other hand sum up to a
total strain. Hence, assuming an external stress σ yields σe = σv = σ and εve = εe+εv

with the subscripts referring to the elastic and the viscous contribution, respectively.
Previous publications on rift propagation (Larour et al., 2004a) indicate, that even
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Figure 6.1: a) One-dimensional representation of a Maxwell model; b) schematic sketch of
a crack in a Maxwell material

though viscous creep dominates the overall behavior of ice shelves on the longer
time scale, rift growth can be assumed to happen on a short time scale enabling the
use of linear elastic fracture mechanics also for the analysis of horizontally propa-
gating cracks. The general idea of the fracture process is sketched in Fig. 6.1 b).
The material, experiencing an external load F , deforms on the long time scale with
a resulting viscoelastic strain εve. If now, due to a sudden incident a crack initiates,
the external load is distributed on a smaller area and the consequent increase in
strain is predominantly generated by the elastic part, yielding higher stresses that
lead to further fracture.
The extension of the stress to three dimensions results in

σe = σv and hence div σe − div σv = 0. (6.1)

The definition,
f v = −div σv, (6.2)
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6 Simulation of horizontal rift propagation in ice shelves

yields a so called viscous volume force f v which can then be used as load for the
linear elastic simulation solving

div σe + f v = 0, (6.3)

for the displacement field.
In case of measured velocity fields as input for the computation of the viscous vol-
ume force, the exact boundary condition (e.g. inflow from glaciers, friction at the
bedrock along the grounding line), the material parameters, as well as the geome-
try can not be completely distinguished. For this reason, also without the insertion
of starter cracks, the resulting elastic stresses for an approximated geometry with
estimated stress or displacement boundary conditions can not equal the previously
computed viscous stresses. This violates the assumptions made in Equ. (6.1). Nev-
ertheless, qualitative features such as regions with tensile or compressive stresses
and shear bands can be resolved. This is all the more important as no predictions on
the certainly existing spatial distribution of the material parameters in the ice have
to be made.
Figure 6.2 a) shows the sketch (not to scale) of a simplified quadratic ice shelf
ramp with the horizontal extend L = 100km. The thickness varies from H = 300m
at x = 0m and y = L/2 to H = 150m at x = L and y = −L/2. The velocities
along the grounding line (x = 0) are constrained. Along the lateral boundaries
at y = −L/2 and y = L/2, only the velocities in normal direction are hindered.
An idealized ice rise (blue) is inserted in the lower part of the ramp. The veloc-
ities along the boundaries of the ice rise are fixed. This constraint overestimates
the decelerating effect of real ice rises and is used for simplicity. The ice domain
is loaded by gravity. The two-dimensional Stokes equations are solved for the ice
shelf velocities using the shallow shelf approximations with the parameters n = 3
and A−1/n = 7.6 · 107 Pa s1/3. For further information on the solution of ice dynamical
problems, the reader is referred to e.g. Greve and Blatter (2009) or Schmitt (2011).
In a first simulation, the ice rise is ignored. The resulting horizontal velocities are
illustrated in Fig. 6.2 b). The first principal viscous surface stress with the resulting
viscous volume forces is shown in Fig. 6.2 c). The viscous stresses, as well as the vis-
cous volume forces are computed using difference quotients in MATLAB. The elas-
tic boundary value problem is solved for the horizontal two-dimensional ice shelf
plane using the plane stress approximation as introduced in Sec. 2.2.1. The spatial
variability of the ice shelf thickness hurts the assumptions made for a plane stress
simulation but can be accepted due to the dimensions of the domain, where changes
in the thickness of several meters occur on a horizontal scale of several kilometers.
Figure 6.2 d) illustrates the first principal elastic stress resulting from the linear
elastic simulation forced by the viscous volume forces. Since the geometry and the
boundary conditions correspond to those of the ice dynamical simulation, the re-
sulting viscous and elastic stresses almost match. Small differences are of numerical
origin.
The first principal elastic stress after the insertion of the initial cracks with the re-
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Figure 6.2: a) Sketch of idealized ice shelf ramp with ice rise (not to scale); b) ice shelf
speed (color) and direction (black arrows) resulting from ice dynamical simulation without
ice rise; c) resulting first principal viscous surface stresses (color) and viscous volume forces
(black arrows); d) first principal elastic stress due to application of viscous volume forces in
a linear elastic simulation without initial cracks; e) first principal elastic stress after inser-
tion of initial cracks (green lines) and resulting configurational forces at the crack tips (red
arrows, scaled); f)-h) crack path after 20 and 40 and 67 growth steps

sulting configurational crack tip forces is demonstrated in Fig. 6.2 e). Even though
the maximum stresses at the crack tips exceed 1000kPa, the color range is fixed at
the values indicated by the color bar to point out spatial changes in the stresses.
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6 Simulation of horizontal rift propagation in ice shelves

The resulting crack paths after 20, 40 and 67 crack growth steps are illustrated in
Fig. 6.2 f) to h). Unlike in the benchmark example after Bouchard et al. (2003)
in Sec. 4.6.6, where both cracks are allowed to grow at the same time, now only
the crack with the highest value of J propagates by a defined increment depending
on the change of the crack direction angle ∆θ . No threshold for crack initiation is
applied.
In a next step, the ice shelf ramp with ice rise is simulated. Figure 6.3 a) shows the
resulting horizontal velocities. As to be expected, the ice rise not only considerably
decelerates the ice velocities in the lower part of the ice shelf but also reduces the
maximum velocity, which now appears at the upper right corner of Fig. 6.3 a). The
first principal viscous and elastic stresses, as well as the viscous volume forces are
illustrated in Figs. 6.3 b) and c). Strong tensile viscous stresses now appear down-
stream of the ice rise. This characteristic is also well captured by the first principal
elastic stress. The viscous volume forces show considerable fluctuations around the

|v | [m/a]a) σv1[kPa]b) σe1[kPa]c)

σe1[kPa]d) σe1[kPa]e) σe1[kPa]f)

Figure 6.3: a) Ice shelf speed and direction resulting from ice dynamical simulation with
ice rise; b) resulting first principal viscous surface stresses and viscous volume forces (black
arrows); c) first principal elastic stress due to application of viscous volume forces in a
linear elastic simulation without initial cracks; d)-f) first principal elastic stress and crack
path for initial configuration and after 40 and 85 growth steps, scaled red arrows show
configurational crack tip force
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σe1[kPa]a) σe1[kPa]b) σe1[kPa]c)

Figure 6.4: First principal elastic stress, configurational crack tip force and crack path for
viscous volume force resulting from ice dynamical simulation with ice rise applied to fracture
mechanical model without ice rise; a) initial setup; b) crack path after 40 steps; c) crack
path after 79 steps

ice rise. This is caused by the successive derivatives using difference quotients that
are needed for the computation. Slight discontinuities or stronger gradients in the
velocity profile hence amplify with each derivative and lead to the demonstrated
result. The viscous volume forces in some distance from the ice rise are similar to
those in Fig. 6.2 c). Figures 6.3 d) to f) show the crack path and the resulting con-
figurational forces at the crack tip for the initial state and after 40 and 85 iterations.
Unlike in the previous example without ice rise, now the crack in the ice shelf bulk
shows the strongest criticality and propagates first towards the closer boundary, then
towards the upper right corner.
In order to demonstrate the influence of an accordance between the geometry and
boundary conditions used for the evaluation of the velocity profile and those ap-
plied for the fracture mechanical problem, the viscous volume forces resulting from

σe1[kPa]a) σe1[kPa]b) σe1[kPa]c)

Figure 6.5: First principal elastic stress, configurational crack tip force and crack path for
viscous volume force resulting from ice dynamical simulation without ice rise applied to
fracture mechanical model with ice rise; a) initial setup; b) crack path after 40 steps; c)
crack path after 85 steps
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6 Simulation of horizontal rift propagation in ice shelves

the ice dynamical simulation with ice rise are applied to the linear elastic model
without ice rise. The resulting crack path as shown in Figs. 6.4 a) to c) completely
differs from the previous two simulations. If on the other hand, the viscous vol-
ume forces of the simulation without ice rise are applied to the fracture mechanical
model with ice rise (results shown in Fig. 6.5), only slight variations in the resulting
crack path appear in comparison to the example with compatible volume forces.
Hence, the crack path in an ice shelf model, loaded by viscous volume forces, is
influenced by the overall trend of the volume forces and by the geometry with the
associated boundary conditions. Local trends in the viscous volume forces only play
a secondary role but can tip the scale if several crack tips show similar criticality as
can be seen by comparing Fig. 6.2 e) and Fig. 6.4 a).

6.2 Rift propagation at Pine Island Glacier

Pine Island Glacier is one of the longest and fastest flowing glacier of Antarctica
(Rignot et al., 2011b). It is located in the Amundsen Sea embayment in Western
Antarctica as indicated by the red box in Fig. 6.6 a). The floating part of the glacier
is divided into a northern, a central and a southern ice shelf (Rignot, 2002) from
which only the central part will be considered in the following study. The ice shelf is
known to produce large tabular icebergs with a surface area of several hundreds of
km2 on a quasi-regular base. The rift propagation leading to the most recent calving
event was first observed autumn 2011 and documented by Howat et al. (2012). The
rift is illustrated in Fig. 6.6 b). The final iceberg break-off occurred in autumn 2013.
The availability of high resolution satellite data from the ice shelf prior and after the

a) b)

Figure 6.6: a) Landsat Image Mosaic of Western Antarctica in polarstereographic projection;
red box indicates location and extend of following images of PIG; b) TerraSAR-X image of
PIG taken on October 13th in 2011 with coordinates (in meters) in Universal Transverse
Mercator (UTM) projection using zone 14S; the crack highlighted in purple leads to the
2013 calving event
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6.2 Rift propagation at Pine Island Glacier

crack growth motivated the presented fracture mechanical analysis of horizontal rift
propagation in ice shelves.
Rignot (2002) documented the position of the calving front, as well as several calv-
ing events of PIG from 1947 to 2000. A detailed analysis of the 2001 calving event
is published in Bindschadler and Rignot (2001). Further information on e.g. the
calving fronts in the Amundsen Sea embayment from 1972 to 2011 can be found in
MacGregor and Catania (2012).
Figure 6.7 illustrates the position of the calving front and the initial cracks, which
eventually propagate leading to iceberg break-off and the resulting calving event
from January 2004 to November 2013. Shaded lines illustrate crack or calving front

Figure 6.7: Series of annual calving front positions and rift paths that eventually lead to
major calving events superimposed on associated MODIS image (Scambos et al., 2015);
coverage and axes equivalent to Fig. 6.6 b)
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a) b)

Figure 6.8: a) Calving front positions associated with major rift propagation leading to the
last three calving events in 2013, 2007 and 2001 superimposed on MODIS image of PIG
front in February 2015 (Scambos et al., 2015) with associated calving front; b) point plot of
velocity field grid data generated by Ian Joughin using ALOS Palsar images of 2006 and 2008
superimposed on MODIS image of October 2008; red line shows geometry used for fracture
mechanical simulation; black lines illustrate DInSAR grounding line data (Rignot et al.,
2011a); initial cracks, generated from MODIS images, are indicated in blue and purple; the
purple initial crack led to the 2011 rift propagation and the consequent 2013 calving event;
gray box indicates extent of rifted ice shelf margin in Fig. 6.11

positions from previous points in time. The timespan between the shaded lines is
approximately one year. Several authors, e.g. Rignot (2008) and Joughin et al.
(2010) describe the continuous thinning and acceleration of PIG in the recent years.
Especially the latter can be observed by looking at the annual advance of the calving
front in the images of January 2013 and March 2007 presented in Fig. 6.7. It shows
that the distance between the annual snapshots of the calving front in January 2013
is considerably larger than in the image of March 2007. Figure 6.8 a) illustrates
the position of the calving front at the time of rift propagation for the last three
calving events superimposed on the most recent image in visible mode of PIG from
February 2015. It appears that the position of the front associated with rift prop-
agation hardly changes. Rignot (2002) reports one further advance of the calving
front to the indicated position in 1966. If this advance was directly followed by a
calving event is not known. One further small calving event in 1992 happened with
a calving front considerably further upstream. The last three calving events indicate
a slightly increasing iceberg size.
The solid purple line in Fig. 6.8 a) illustrates the calving front in February 2015.
Even though the terminus associated with calving for the last events is by far not
reached, the calving front shows signs of ongoing smaller scale calving resulting in
the somewhat frayed appearance of the front.
At the beginning of the presented analysis of rift propagation, the amount of up
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|v |[m/a]a) σv1[kPa]b)

Figure 6.9: a) Raster plot of smoothed ice shelf speed (color) with flow direction indicated
by black arrows; b) resulting first principal viscous surface stress with zoom into smaller ice
shelf part to show direction of normalized viscous volume forces pointing from tensile to
compressive areas

to date velocity fields of PIG was very limited. The following analysis is therefore
based on measured velocities of Ian Joughin (personal communication) resulting
from ALOS Palsar images from 2006 and 2008 and confined to the geometry of Oc-
tober 2008. Taking into account the large time interval used with one major calving
event happening in 2007, the resulting velocity field must be considered as rather
rough indicator for the real velocities in October 2008.
The dotted field in Fig. 6.8 b) illustrates the resolution and coverage of the applied
original velocity data projected in the required UTM coordinate system together with
the geometry and the initial cracks used for the fracture mechanical simulation. The
initial crack paths are picked from a MODIS image of October 2008. The purple
initial crack eventually propagated in 2011 and led to the 2013 calving event.
The original velocity data contains strong gradients resulting from the coarse res-
olution, from the tracking process used to build the velocity field or from natural
origin. Due to the use of difference quotients these strong gradients lead to jumps
in the viscous stresses and especially in the resulting viscous volume forces. In order
to reduce the jumps, the velocity field is smoothed in MATLAB using the NaN pre-
serving filtering algorithm ndnanfilter by Carlos Aguilera. The resulting smoothed
ice shelf speed is shown in Fig. 6.9 a). Black arrows indicate the flow direction. The
consequent first principal viscous surface stress in shown is Fig. 6.9 b). A zoom into
the northwestern part of the ice shelf illustrates normalized viscous volume forces.
As to be expected, the volume forces point from regions with tensile stresses to those
with compressive stresses.
Before the viscous volume forces can be used as load for the fracture mechanical
analysis, suitable boundary conditions have to be found. The fast flowing central
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σe1[kPa]a) σe1[kPa]b)

Figure 6.10: First principal elastic stress for a) an ice shelf domain completely constrained
along both lateral margins and along the inflow without initial cracks and b) the ice shelf
after some crack propagation steps

ice shelf is connected to the considerably slower flowing northern and southern ice
shelf along the lateral margins. Especially along the northern margin, ice rises and
grounded ice shelf parts influence the ice shelf velocities. A gray box in Fig. 6.8 b)
highlights the part of the grounding line (black line) that is responsible for most ini-
tial rifts. The ice flow along the lateral margins is neither free, nor fully constrained
but might be best described by a contact and friction boundary condition where the
friction coefficient depends on the location. However, for the sake of simplicity, as
well as due to a lack of knowledge about the spatial distribution and the value of
suitable friction coefficients, this rather sophisticated approach is dismissed in favor
of four different setups with free or fully constrained boundary conditions. A com-
parison of the resulting first principal elastic stress without initial cracks to the first
principal viscous stress in Fig. 6.9 b) is used to evaluate the plausibility of the setup.
Therefore, the color range of the following plots without initial crack is fixed at the
limits used in Fig. 6.9 b) even though much higher and lower stresses, depending on
the boundary conditions, will locally be reached. Also for the following plots with
inserted cracks, the color range is fixed to point out the influence of the different
boundary conditions.
In a first simulation, the displacements along all boundaries but the calving front
are constrained in x and in y direction, as indicated by the red line in Fig. 6.10 a).
The resulting distribution of areas with lower or higher stresses coincides very well
with the internal structure of stresses in Fig. 6.9 b), the stress values however are
too small. The resulting crack paths after few simulation steps with the associated
configurational crack tip forces are shown in Fig. 6.10 b). As in the previous exam-
ple with the artificial velocity field, only the crack with the largest configurational
crack tip force is allowed to grow per simulation step. No threshold for crack prop-
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6.2 Rift propagation at Pine Island Glacier

agation is applied. The propagation algorithm was stopped after the merging of
crack 2 and 3 (counted from left to right) since a new geometry without the cut
out ice shelf fragment in between both cracks needs to be inserted to continue the
simulation.
The kinking of the cracks towards the ice shelf inflow is not an unphysical pro-
cess. Figure 6.11 shows a close up of the strongly rifted area downstream of the
grounding line indicated in Fig. 6.8 b). The kinks first appeared in December
2004 during a period where the water in front of PIG was covered with sea ice.

Figure 6.11: Crack kinking along
strongly rifted and debris-filled ice
shelf margin in December 2006;
LandSat image provided by USGS

It can be assumed that also the rifts were filled
with sea ice or ice mélange and hence at least
partly frozen to the northern ice shelf part. The
boundary conditions along the northern margin
might have been similar to the simulated setup.
No kinking however can be seen for the cracks
along the northern margin in 2008 hence com-
pletely fixed displacements along both margins
seem unlikely.
Next, only the displacements along the bound-
ary representing the inflow are constrained. The
resulting first principal elastic stress without and
with initial cracks is shown in Fig. 6.12 a) and b).
Again, the constrained boundary is marked in
red. Due to the resulting bending of the ice shelf,
exaggerated tensile and compressive stresses ap-
pear at the northern and southern part of the constrained boundary, respectively.

σe1[kPa]a) σe1[kPa]b)

Figure 6.12: First principal elastic stress for a) an ice shelf domain only constrained along
the inflow boundary without initial cracks; b) the ice shelf after complete penetration of
crack 5
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σe1[kPa]a) σe1[kPa]b)

Figure 6.13: First principal elastic stress for a) an ice shelf domain partly constrained along
the northern lateral boundary and completely constrained along the inflow and the southern
lateral boundary without initial cracks; b) the ice shelf after complete penetration of crack
5 towards the calving front

The setup somewhat captures the stress distribution in the last third of the ice shelf
(regarded from inflow to the front) with stronger compressive stressed along the
southern lateral boundary. Even though one more initial crack further upstream, as
well as one considerably longer crack at the ice front exists, the fifth crack (counted
from the left) starts to propagate and eventually crosses the entire ice shelf from
north to south. In view of the timespan used to compute the velocity field, this is in
good agreement with observed propagating rift, which is one crack further left. The
crack path however does not seem reasonable in comparison to observable calving
events.
The following two setups aim to approximate the less constrained rifted margin
downstream of the grounding line (compare to Fig. 6.11). Therefore, the displace-
ments along the grounded area, the boundaries further upstream, as well as the
inflow boundary are constrained, the calving front, as well as the boundaries in the
rifted margin are free. In a first try, the displacements along the southern lateral
boundary are fully constrained. The resulting first principal elastic stress without
initial crack as illustrated in Fig. 6.13 a) shows a better fit to the illustrated viscous
surface stress than the previous setups. Now, considerable tensile stresses along the
northern margin downstream of the grounded area appear. The tensile stresses in
the remaining ice shelf bulk however are still too small. As in the previous setup
with the completely free northern lateral boundary, the fifth crack starts to propa-
gate. Since the southern boundary is constrained, the crack propagates towards the
closest free boundary, the ice front. This result agrees well with common knowl-
edge about crack propagation, however it does not fit the observed crack paths.
Therefore, it must be assumed that also the southern lateral boundary is only partly
constrained. This is realized in the last setup as visualized by the red highlighted
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σe1[kPa]a) σe1[kPa]b)

Figure 6.14: First principal elastic stress for a) an ice shelf domain partly constrained along
the northern and the southern lateral boundary and completely constrained along the inflow
without initial cracks; b) the ice shelf after complete penetration of crack 5 towards the
southern lateral boundary

boundaries in Fig. 6.14. Again, the largest tensile stresses in the setup without initial
crack appear at the transition from free boundary conditions to constrained bound-
ary conditions along the northern lateral boundary. The stresses in the ice shelf bulk
are slightly higher than in the previous example and hence show the best fit to the
viscous stresses. Also the resulting crack path in Fig. 6.14 b) represents the best
approximation of the observed crack path, which leads to the 2013 calving event.
A closer look at the calving events in Fig. 6.7 demonstrates that a complete sepa-
ration of the iceberg only occurs when the crack reaches the unconstrained section
of the southern lateral boundary, hence open water. This state however cannot be
modeled with the given velocity profile and the associated geometry. The boundary
conditions of the last setup therefore represent a good approximation of the real
situation.

In 2012, more up to date velocity fields of PIG were produced. Unfortunately, most
fields contain huge gaps, which cannot be filled by the speckle-tracking algorithm
used. Fig. 6.15 a) illustrates the only available velocity field prior to the rift opening
in 2011 provided by Dana Floricioiu from DLR Earth Observation Centre. The field is
computed using TerraSar-X images of 19.05.2011 and 30.05.2011. Considerable in-
terpolation and smoothing is needed to obtain the filled velocity field in Fig. 6.15 b).
In addition, the field is slightly shifted towards the upper left to fit the TerraSar-X
image produced five month later (02.10.2011), which is used for the generation
of the geometry and the initial cracks. The overall image of the smoothed velocity
field seems reasonable. However, a look at the resulting first principal viscous stress
in Fig. 6.16 a) reveals localized areas of tensile and compressive stresses in the ice
shelf bulk that most likely result from the interpolation and smoothing algorithm.
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6 Simulation of horizontal rift propagation in ice shelves

Figure 6.16 b) illustrates the geometry and the initial cracks used for the fracture

|v |[m/a]a) |v |[m/a]b)

Figure 6.15: a) Plot of original flow speed data in May 2011; b) raster plot of interpolated
and smoothed ice shelf speed (color), black arrows indicate the flow direction

σv1[kPa]a) σv1[kPa]b)

Figure 6.16: a) First principal viscous stress (color) with black arrow indicating the resulting
viscous volume forces; b) model geometry with initial cracks superimposed on viscous stress;
red and blue lines indicate fixed and free boundaries; the purple arrow marks the initial
crack which leads to the 2013 calving event
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6.2 Rift propagation at Pine Island Glacier

mechanical simulation. The purple arrow points towards the initial crack that even-
tually led to the 2013 calving event.
Neither the velocity field, nor the resulting viscous stresses give a strong implication
for why the purple crack propagates five month later and not any of the surrounding
cracks. Only slightly higher tensile stresses along the crack faces in comparison to
the direct neighbors can be observed. Considerably higher tensile stresses however
appear further downstream. Several setups with different fixed and free boundary
conditions are used for the simulation of the rift propagation. The only setup leading
to the propagation of the purple initial crack without any adjustment of the initial
crack length is illustrated in Fig. 6.16 b) where the red and the blue lines indicate
fixed and free boundaries, respectively. The zone of compressive stresses, upstream
of the purple crack, motivates this setup. A comparison of the satellite images from
the 02.10.2011 and 13.10.2011, hence right prior and after rift propagation, how-
ever shows no implication for a constrained boundary along this rifted area, since
movement of the ice masses can be observed. The resulting crack path is shown in
Fig. 6.17 a) in comparison to the rift path (purple dashed line) that was observed
on 13.10.2011.
Slight adjustment of the length of the black initial crack is sufficient to yield crack
propagation at the desired location without the previous strong requirements on the
boundary conditions. Figure 6.17 b) illustrates the original initial crack (solid black
line), the adjusted crack path (pink tip), as well as the constrained boundaries used

σe1[kPa]a) σe1[kPa]b)

Figure 6.17: Resulting crack path in comparison to observed rift for a) original initial cracks
as observed on the TerraSar-X image of 02.10.2011 and constrained boundary upstream of
black initial crack; b) slightly elongated initial crack (black with pink tip) and less restrictive
boundary conditions
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6 Simulation of horizontal rift propagation in ice shelves

for the new simulation. The therewith obtained crack path shows a slightly better
fit to the observed rift illustrated by the dashed purple line.
The presented results leave several potential reasons for the propagation of the pur-
ple crack. It is possible that the velocity field considerably changed during the aus-
tral summer of 2011. Also a sudden change in the boundary conditions can be
responsible for the propagation of the rift. Local changes in the ice thickness that
are not captured by the velocity field can also serve as reason for crack propagation
at the specific location. Furthermore, different initial crack lengths than observed on
the satellite image of 02.10.2011 or frozen ice mélange in the longer crack further
downstream can serve as reason for the propagation of the purple crack. A last and
rather daring option is that the purple crack propagated earlier, closed again and
left a zone of weaker ice, which opened for good in 2011. The latter suggestion is
supported by the previous simulation with the 2008 geometry and velocities, where
an initial crack next to the purple one propagates for different sets of boundary
conditions.

6.3 Rift propagation at Wilkins Ice Shelf

Wilkins Ice Shelf is located at the western side at the Antarctic Peninsula as shown
in Fig. 6.18 a). With a surface area of formally 16200km2 and average surface veloc-

a) b)

Figure 6.18: a) Landsat Image Mosaic of Western Antarctica; red box indicates location and
extend of the following images of WIS; b) Envisat ASAR image of WIS in August 2008 with
names of important landmarks, red lines indicate boundary of floating ice shelf part (pro-
vided by Melanie Rankl), black dots point out locations of ice rises (provided by Angelika
Humbert), coordinates in kilometers
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ities of 30−90 m/a (Vaughan et al., 1993), the WIS is one of the lager and very slow
moving ice shelves of the Antarctic Peninsula. The ice shelf gained special attention
within the glaciological community due to major break-up events discovered since
1991 (Braun et al., 2009; Cook and Vaughan, 2010) with the collapse of the ice
shelf bridge in 2009 (Humbert et al., 2010) as thus far last major break-up. This
event reduced the ice shelf area to a total of 11100km2. A special feature of the WIS
is the large number of small ice rises (173) as indicated in Fig. 6.18 b) that pin the
ice shelf. Braun et al. (2009) state that although ice rises are generally regarded as
stabilizing elements of ice shelves, they play an important role in the past break-up
record of WIS. Braun et al. (2009) observe that after all major break-up events, con-
siderable rift growth occurred, mostly extending from smaller cracks downstream of
ice rises. The WIS therefore represents an interesting candidate for the application
of the viscous volume forces approach to the fracture mechanical analysis of rift
propagation.
Despite the availability of a large number of satellite images of WIS within the last
decade, the generation of high-resolution velocity fields covering the whole area
of interest prior to the bridge collapse proved to be a difficult task. Especially the
sometimes larger time interval between the images available, as well as considerable
surface melt during austral summers, hindered the application of interferometric
methods for the computation of the surface velocities by remote sensing specialists.
In spite of the mentioned difficulties a high-resolution snapshot of the velocities of
the whole WIS for autumn 2008 could be provided by Melanie Rankl (Friedrich-
Alexander-Universität, Erlangen-Nürnberg).

|v |[m/a]a) |v |[m/a]b)

Figure 6.19: a) Raster plot of the assembled original velocity fields; black arrows indicate
the suture zone between the individual pictures; red arrows indicate jumps in the velocities
due to crack opening; b) assembled, filled and smoothed ice shelf speed (color) with black
arrows indicating the flow direction
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Figure 6.19 a) illustrates the original velocity data with a spatial resolution of 100m
in x and y direction. Dark points, visible as noise especially in the bridge part of
the field, result from NaNs in the original data. Black arrows indicate sharp bands
that traverse the image from the upper left to the lower right. These stripes indicate
unnatural jumps in the velocity field, which arise due to the assembling of the data
using satellite images of two different orbits from different time intervals. The lower
left field results from ALOS Palsar pictures taken on 28.09.2008 and 23.11.2008, the
upper right field from pictures taken on 22.10.2008 and 07.12.2008. Differences
between the velocities of the individual fields at locations within the suture zone
are up to 150 m/a. The field in Fig. 6.19 a) uses the mean value of the individual
fields within the suture zone. Further high jumps in the velocities appear due to
opening cracks close to the calving fronts as indicated by red arrows in Fig. 6.19 a).
Even though resulting from natural origin (unlike the discontinuities at the suture
zone) also these jumps need special care during the evaluation of the viscous vol-
ume forces. The previously applied order of filling and smoothing of the velocities
with ensuing computation of the viscous stresses and volume forces would result in
smeared jumps in the velocities and hence extended regions of high stresses. How-
ever, since the velocity jumps result from crack opening, high stresses across the
crack faces are unphysical, whereas high stresses at the crack tips are likely to ap-
pear.
Several sequences of NaN filling, smoothing with and without structure preserva-
tion, differentiation, and assembling of the individual fields have been tested. The
most promising order will be described in the following.
First, unphysical high or low values are removed from the individual velocity fields
and filled with NaNs. Then the NaNs are filled applying the MATLAB routine ndnan-
filter already used for PIG. All not-NaN data is preserved. In a next step, the structure

σv1[kPa]a) | f v |[N/m3]b) σv1[kPa]c)

Figure 6.20: Enlarged view of box marked in Fig. 6.21 a) with a) first principal viscous
surface stress with exaggerated stresses across crack faced and suture zones; b) absolute
value of viscous volume force resulting from non-smoothed viscous stresses; c) smoothed
first principal viscous surface stress after elimination and filling of unphysical values; ice
rises are indicated in black
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preserving bilateral MATLAB filter bfilter2 implemented by Douglas Lanman and in-
spired by the work of Tomasi and Manduchi (1998) is used to smooth the velocities
in the ice shelf bulk, preserving the sharp jumps across the crack flanks. Only then,
the two individual fields are assembled. As for the original velocities in Fig. 6.19 a),
the mean values of both fields are used in the suture zone. Figure 6.19 b) illustrates
the smoothed ice shelf speed with black arrows indicating the flow direction. The
assembled velocity field is then used to compute the viscous surface stresses.
As to be expected, the jumps in the velocity field across the crack faces and the su-
ture zone result in sharp lines of high stresses as shown in the enlarged view of the
area between the Petrie ice rises and the ice shelf bridge in Fig. 6.20 a). Further
differentiation yields the resulting viscous volume forces whose absolute value | f v|,
as illustrated in Fig. 6.20 b), is an even better indicator for locations of unphysical
stresses. In combination with the associated satellite picture, | f v| can be used to
find active rifts that are likely to propagate further.
In order to remove unphysical stresses, NaNs are included into all stress components
at those locations where | f v| exceeds a certain threshold. In a further step the NaNs
are filled and the field is slightly smoothed by another application of ndnanfilter.
The resulting first principal viscous surface stress is shown in Fig. 6.20 c). The com-
ponents of the viscous stress tensor are then used to compute the viscous volume
forces, which are applied to the fracture mechanical simulation.

Figure 6.21 a) illustrates the first principal viscous surface stress in the complete ice
shelf, as well as the direction of the viscous volume forces indicated by black arrows

σe1[kPa]a) σv1[kPa]b)

Figure 6.21: a) First principal viscous surfaces stress with normalized viscous volume forces
in enlarged view; b) geometry for fracture mechanical simulation with initial cracks in white
and ice rises, as well as constrained boundaries in red
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in the enlarged view. Striking features are the long stripes, predominantly appearing
between Latady Island, Lewis Snowfield and the Petrie Ice Rises but also in different
orientation along the bridge. Similar features have not been observed at other ice
shelves. Since the stripes already appear in the original data, it can be assumed that
they result from the image capturing process itself or from the successive processing
to obtain the velocity data. As the undulations across the stripes are within the same
order of magnitude as the variation of the stresses from natural origin, an influence
on the resulting crack path in the fracture mechanical simulation must be assumed.
Unfortunately, remote sensing specialists have not found ways to remove or reduce
the stripes up to now.
Larger rifts in the WIS are predominantly found in the upper left of a line, crossing
the ice shelf from Latady Island to Dorsey Island. In order to reduce the computation
time, therefore only the upper left part of the ice shelf, as illustrated in Fig. 6.21 b),
is used for the fracture mechanical simulation. Red lines indicate the grounding
line and the section through the ice shelf where the displacements are fixed. In
a first simulation also the displacements along the boundaries of the ice rises are

σe1[kPa]a) σe1[kPa]b) σe1[kPa]c)
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Figure 6.22: Resulting crack path and configurational crack tip forces at the WIS using
constrained boundaries at the ice rises a) for the initial configuration; b) after 60 iterations;
c) after 80 iterations; d) after 102 iterations; e) observed cracks during collapse of the
bridge in April 2009; f) crack path and configurational crack tip force after 50 iterations
with unconstrained boundaries at the ice rises
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constrained. All remaining boundaries, as well as the flanks of the initial cracks
as indicated by white lines, are free. The lengths and the locations of the initial
cracks results from the plot of | f v| in combination with an ALOS Palsar image of
28.09.2008.
Figure 6.22 a) illustrates the configurational crack tip forces after the first compu-
tation step. As in the previous example only the crack tip with the highest value
of J is allowed to grow. After several growth steps, first one, then the other of the
most critical crack tips in Fig. 6.22 a) reaches the front and the first block calves
off. Figure 6.22 b) illustrates the situation after 60 iterations. At this stage, the rift
emerging from the bridge, as well as the rift farthest away from the calving front
grow by turns and eventually merge into the rift to the left as shown in Fig. 6.22 c).
The left tip of the left rift then propagates towards the calving front and one further
block detaches from the ice shelf. Figure 6.22 d) demonstrates the situation after
102 steps. The two remaining rifts merge and the right one penetrates the ice front,
detaching the bridge from the ice shelf.
The resulting crack patterns are in good agreement with the real crack paths, which
can be seen on a satellite image of August 2009 after the collapse of the bridge as
illustrated in Fig. 6.22 e). Especially the turning of the rift emerging from the bridge
towards the lower left of the picture is very well captured. Even better results can
be expected by application of more physical boundary conditions along the ground-
ing line along Latady Island. Here, the completely fixed boundary imposes a very
restrictive constraint and deflects the crack propagation towards the ice front.
One further simulation is performed with free displacements along the boundaries of
the ice rises. The resulting crack path after 50 iterations is illustrated in Fig. 6.22 f).
Unlike in the previous simulation, the crack emerging from the bridge does not turn
towards the lower left but directly propagates inwards the ice shelf. This is not in
agreement with the observed crack paths and therefore once more emphasizes the
influence of the applied boundary conditions.

6.4 Summary and outlook for the simulation of
horizontal rift propagation

Viscous volume forces as means to transfer the viscous surfaces stresses in the ice
shelf into a forcing for the fracture mechanical simulation prove to be a very com-
fortable approach with promising results in comparison to actual fracture patterns.
The most important feature of the approach is that no information on the spatial
distribution of the material parameters or the ice shelf thickness are needed. Fur-
thermore, if the resolution of the measured velocity data is sufficient, information
on the location and length of active rifts results as by-product of the evaluation of
the viscous volume forces.
The applicability of the method is limited by the quality and resolution of the
velocity fields, as well as by the knowledge and applicability of the appropriate
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boundary conditions. Furthermore, the method is thus far only able to simulate
likely crack paths but does not tell if and under which conditions a crack will prop-
agate. In order to gain this information, simulations of a three-dimensional cracked
specimen with the associated boundary conditions are needed. Also a thorough
comparison of satellite data to aerial photography or field observations of cracks
will help to distinguish between those cracks visible in satellite pictures that are ac-
tual rifts and those that are only surface cracks.
The simulations of rifts in the WIS motivate to also consider criteria for crack initi-
ation. High tensile stresses in the bulge of the bridge hint towards the evolution of
new cracks in this area, which also appear on satellite pictures prior to the complete
collapse of the bridge.
Criteria for crack initiation are also needed for a viscoelastic simulation of rift prop-
agation, which can be a future project for the analysis of the regular calving events
at PIG. Due to the fast flow speed it is likely that the velocities in the last third of
the glacier, close to the calving front, continuously change as the lateral boundaries
become less constrained. A combination of viscous flow simulation and fracture me-
chanical analysis might be able to capture the ongoing small rifting at the transition
of clamped to free boundary and possibly can be capable to indicate after which
distance or time an initial rift may lead to a major calving event.
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The aim of this work was the analysis of different fracture scenarios in Antarctic ice
shelves using the concept of configurational forces in conjunction with FE simula-
tions.

The evaluation of configurational forces is based on field variables that are com-
puted in the course of the FE simulation of a boundary value problem. Algorithms
for the computation of configurational forces can therefore be included into stan-
dard FE procedures as a post-processing step, without much additional effort. In
the presented work, the linear elastic boundary value problem was solved using the
commercial FE program COMSOL. The evaluation of the configurational forces fol-
lowed in post-processing routines in MATLAB.

Since volume forces, pressurized crack faces, spatially distributed material param-
eters, as well as mixed mode loading situations characterize the various fracture
situations in Antarctic ice shelves, the main focus of this work was the implemen-
tation of a configurational force approach that enables a precise computation of G
without the limitations of path dependence. The developed two-dimensional algo-
rithm therefore computes resulting configurational crack tip forces using additional
area integrals to eliminate the error invoked by volume forces and spatially dis-
tributed material parameters, as well as additional line integrals along the crack
faces to exclude inaccuracies due to pressurized crack faces and mixed mode load-
ing. The computed resulting configurational crack tip forces showed less than 0.1%
error in comparison to analytical and semi-analytical results, as well as literature
values. Also the implemented algorithm for crack path prediction based on the re-
sulting configurational forces proved a very good agreement to standard benchmark
tests as e.g. by Bittencourt et al. (1996) or Bouchard et al. (2003).

The algorithm was applied for the study of vertical dry cracks emerging from the
ice shelf surface using an idealized two-dimensional ice shelf domain with a cen-
tered single crack. Different values of geometric and material parameters, as well
as several types of boundary conditions were analyzed. The most important geo-
metric parameter was the crack opening angle α. With the same external loading,
an opening of α = 5◦ led to 400% deeper cracks in comparison to the ideally sharp
crack setup. The influence of α has been completely ignored in previous studies.
The influence of stress versus displacement boundary conditions along the lateral
boundaries representing the remaining ice shelf bulk was small and only relevant
for deep reaching cracks. Significant differences due to stress boundary conditions
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versus Robin-type boundary conditions to represent buoyancy forces along the bot-
tom boundary were only observed for large opening angles α.
As shown in previous studies by e.g. Rist et al. (2002), the application of a depth-
dependent density profile considerably increased the resulting crack depth in com-
parison to the application of a constant mean density. Even more pronounced was
the influence of Poisson’s ratio, resulting in considerably deeper cracks for the com-
pressible case with ν = 0.3 than for the application of incompressible material be-
havior with ν = 0.5. This is all the more important as many publications treat ice
as incompressible, also for fracture mechanical analyses even though compressible
behavior for ice on the short time scale has been repeatedly reported (Schulson and
Duval, 2009).
The study of the criticality of vertical cracks was extended towards water-filled
cracks emerging from the top, as well as from the bottom of the ice shelf. As shown
in previous studies, e.g. Van Der Veen (1998a,b) the additional water pressure on
the crack faces considerably increased the resulting crack depth and could result
in the complete penetration of an initially stable crack. As in the previous studies
of dry cracks, the choice of Poisson’s ratio strongly influenced the outcome of the
simulations.
The study of vertical cracks was completed by a simulation of possible frost wedging
processes within a water-filled crevasse. A coupled simulation of fluid flow and heat
transfer with phase shift yielded possible ice lid thicknesses on the water depending
on the external temperature applied. The resulting ice lid thicknesses were used for
the fracture mechanical analysis with additional phase transition pressure along the
crack - water interface. It was shown, that reasonable ice lid thicknesses could result
in the complete penetration of an initially stable water-filled crevasse, depending on
the opening angle α.

The crack path prediction algorithm based on configurational forces was applied for
the propagation of horizontal rifts in ice shelves. A new approach of transferring
the viscous surface stresses resulting from measurements of the ice shelf speed into
an adequate loading for the fracture mechanical analysis via viscous volume forces
was introduced. The resulting crack paths agreed well with observed crack paths
from satellite imagery. This is remarkable, as no information on the spatial distribu-
tion of the ice properties was needed. However, the approach strongly depends on
the quality and resolution of the applied measured velocity fields, as well as on the
knowledge of adequate boundary conditions for the fracture mechanical analysis.

In summary, the configurational force approach along with FE simulations proved
to be a very robust and flexible tool for the evaluation of crack criticality and crack
propagation directions in various fracture scenarios of Antarctic ice shelves. How-
ever, the computational effort especially due to the generation of a new mesh with
every crack growth step is a drawback of this method. In the presented quasi static
simulations where each configuration was independent of the previous step, re-
peated remeshing functioned well. Nevertheless, the existence of more elegant
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mesh adaption techniques also in collaboration with configurational forces (Miehe
and Gürses, 2007) should be mentioned.

Future analyses of vertical crack growth and large scale calving events might use
time-dependent viscoelastic material laws with large deformations for which more
advanced remeshing strategies have to be applied. Especially projection algorithms
for history variables on the newly inserted mesh nodes will be needed. Also the cou-
pling of fracture mechanics to the ice dynamical simulations is desired. A possible
framework to cover large deformations due to ice shelf flow, a changing topology
and fractures could be the particle finite element method as described in Oñate et al.
(2004). Also the switch to a continuous formulation of cracks as e.g. the applica-
tion of a phase field model for fracture, presented in Bourdin et al. (2000), can be
considered.

For a better differentiation between surface crevasses and rifts, a three-dimensional
analysis of fractures in ice shelves will be needed. This will also help to find a
valid critical stress intensity factor for the two-dimensional horizontal analysis of
rift propagation.

Further field measurements of crevasse depth and elastic material parameters, as
e.g. an averaged Young’s modulus over a larger ice shelf region, as well as Poisson’s
ratio under steady state loading, could help to solidify the parameter basis for the
fracture mechanical simulations.
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