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Zusammenfassung

In dieser Arbeit wird Formoptimierung mit Isogeometrischer Analysis (iga) kombiniert
und insbesondere ein abstrakter Rahmen im optimize first–discretize then Ansatz
entwickelt. Für die Diskretisierung der Zustandsgleichung verwenden wir iga und für
den Kontrollraum bzw. für die zulässigen Formen benützen wir ebenso b-splines oder
nurbs. Dies bietet uns eine große Klasse von Funktionen, um optimale Designs zu
repräsentieren. Für Gradienten-basierte Optimierungsmethoden brauchen wir soge-
nannte Formgradienten, die sowohl als Abbruchskriterien als auch Suchrichtungen
dienen und isogeometrisch bestimmt werden. Die numerische Behandlung erfordert
dafür Löser für die partiellen Differentialgleichungen der Zustandsgleichung und Algo-
rithmen zur Optimierung, wodurch Diskretisierungsfehler entstehen. Daher liegt unser
Hauptaugenmerk auf dem abstrakten Rahmen für isogeometrische Formoptimierung
für die spätere Implementierung und Fehleranalyse. Die enge Verbindung zwischen iga
und Geometriedarstellungen erlaubt es uns, Geometrie- und Simulation gleichermaßen
mit b-splines zu diskretisieren und zu verfeinern. Numerische Beispiele belegen dann,
dass dieser Ansatz auch praktisch funktioniert und Fallstudien zeigen die Verwendung
von lokaler Verfeinerung.

Abstract
In this thesis we develop a shape optimization framework for isogeometric analysis in
the optimize first–discretize then setting. For the discretization we use isogeometric
analysis (iga) to solve the state equation, and search optimal designs in a space of
admissible b-spline or nurbs combinations. Thus a quite general class of functions for
representing optimal shapes is available. For the gradient-descent method, the shape
derivatives indicate both stopping criteria and search directions and are determined
isogeometrically. The numerical treatment requires solvers for partial differential
equations and optimization methods, which introduces numerical errors. The tight
connection between iga and geometry representation offers new ways of refining the
geometry and analysis discretization by the same means. Therefore, our main concern
is to develop the optimize first framework for isogeometric shape optimization as
ground work for both implementation and an error analysis. Numerical examples show
that this ansatz is practical and case studies indicate that it allows local refinement.
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Nothing is lost, everything is transformed.
– Antoine Lavoisier
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1
Introduction

An aerospace company advertises on its web page the efficiency of their airplane which
consumes 20 percent less fuel than similar sized planes, [Boeing, 2015]. Talking about a
fuel consumption of roughly 850 liters per 100 km on transatlantic flights, a huge saving
is thus achieved by advanced aerodynamics, better turbine designs and a lightweight
structure. In short, it is the very prototype of industrial shape optimization, whose
aim is a shape or domain, like the profile of an airplane wing, which optimizes a given
objective, like the uplift of the airfoil. Rich in real life examples, shape optimization
has high industrial relevance because its ultimate goal is better performance: less
material, more stability, lower failure rates, or higher output. Applications comprise
designing wings of airplanes with more lift [Schmidt et al., 2011], stronger ship hulls
to resist waves [Ginnis et al., 2013], and stabler bridges [Bendsøe and Sigmund, 2003].
The cost or objective under consideration depends on a shape and also on the solution
of a partial differential equation (pde). The solution to that pde is called state and
depends itself on the shape: Changing the wing profile results in a change of uplift.
Thus, the shape is a control which is coupled to the state in the pde, what makes
shape optimization a special kind of optimal control problem.
Since for most partial differential equations we do not have a closed-form solution,

we solve them numerically. Likewise, one may show that a solution to an optimization
problem exists, but often has to employ computer algorithms to find it. Hence, to solve
shape optimization problems, both the pde and shape space are discretized, and an
optimization method is used to find an optimal shape iteratively. One method of solving
pdes numerically is isogeometric analysis (iga) which has tight links to computer
aided geometric design (cagd) and therefore seems destined for shape optimization:
iga solves the pde on the given cagd model where in contrast finite elements use
a polygonal approximation. Thus there is a conversion between the two geometry
modells back and forth, in the worst case introducing a consistency error. Since the
optimization process is very delicate, an advantage of iga in shape optimization is
that it eliminates this discrepancy. In this work we develop an isogeometric framework
for shape optimization problems (sops) with partial differential equations

min J(Ω, u) s.t. e(Ω, u) = 0 , Ω ∈ Oad (1.1)

where J is a real valued cost functional depending on a domain Ω from a set of
admissible shapes Oad and the solution u of a linear elliptic pde on Ω, which is given
by the term e(Ω, u) = 0.

Isogeometric shape optimization is a relatively new combination; the first publication
appeared in 2008. Therefore, it seems worthwhile to evaluate existing sop approaches in
the light of iga to be able to compare their theoretical and practical performance with
classical fem shape optimization. Theoretical studies, such as a convergence analysis,
use the infinite-dimensional problem, and concepts from optimal control to analyze
the sop. For iga we develop a similar formulation in this thesis: Isogeometric analysis
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transforms the pde to a parameter domain before finding approximate solutions. This
key idea is utilized in our abstract framework to state also the sops over this fixed
parameter domain, and search for optimal transformations instead. In particular,
we derive optimality conditions by considering the infinite-dimensional, transformed
problem. Then, our formulation makes an isogeometric discretization of state and
control directly applicable and exposes its influence on the error analysis. We compare
this approach to a second one, which first discretizes (1.1) with isogeometric analysis
and only then derives the optimality conditions. Eventually, we turn both approaches
into a mutual, comprehensive isogeometric shape optimization algorithm where we
also address practical questions like domain updates.
In the following, we comment on the different tasks adressed and retrieve the

structure for this thesis.

Isogeometric analysis iga is a Galerkin method to approximate a pde e(Ω, u) = 0.
It was introduced in the seminal paper [Hughes et al., 2005] to avoid the tedious task
of fitting forms from computer aided design to traditional finite element meshes by
working with the same geometry model throughout. In particular, it combines the
fundamental idea of the finite element method (fem) with spline techniques from
cagd for a common description of the domain and the projection space: The cagd
representation of the design is given by a b-spline or nurbs parameterization. This is
used to transform the pde to a parameter domain. In addition to such an isoparametric
scheme, the simulation space is discretized by the (same) b-spline or nurbs basis
functions. In [Beirão da Veiga et al., 2014] an analysis of iga with error estimates is
provided, and in [Vuong et al., 2011] a means for local adaptive refinement is presented.

Shape optimization The challenging trait of shape optimization problems is that
the space of designs is not a normed vector space. Therefore, tools to detect op-
tima from analysis like distance, convergence, continuity and differentiation are not
available. A way to furnish the set of shapes with these structures is the perturba-
tion of identity method from [Murat and Simon, 1976a], or the speed method from
[Sokolowski and Zolésio, 1992]. In these cases, the local shape variations are given
as perturbations of the current domain from a function space which induces the
desired properties. Then, the sop resembles a standard optimal control problem over
a function space instead of over a set of domains. Therefore, one can proceed to
derive optimality criteria involving the gradients of cost function and pde w.r.t. to
the perturbations.

Shape calculus As in standard analysis, solutions to optimal control problems or
shape optimization problems respectively are stationary points of the cost functional
J , meaning that the gradient of J vanishes at optimal controls or domains. Shape
calculus is the tool with which gradients w.r.t. domains can be defined, for instance
by perturbation of identity. There are also other angles from which shape gradients
can be viewed, e.g. from a Riemannian perspective [Schulz, 2014]. In the case of
perturbation of identity this shape gradient is identified as the Fréchet-derivative of J
at a perturbation.
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Optimal control The sop in (1.1) is an optimal control problem. However, opti-
mal control theory is not directly applicable because of the aforementioned lack of
vector space structures of the shape space. Shape optimization methods do use its
concepts, though, to tackle sops and therefore knowledge from this area of research, for
instance from [Tröltzsch, 2010] or [Hinze et al., 2009], provides helpful insight to the
treatment of sops. A number of publications also deal with embedding sops into the
standard control theoretic frame by transforming the shape optimization problem on a
fixed reference domain and optimizing over transformations, i.e. functions, instead of
shapes, e.g. [Eppler et al., 2007], [Ito et al., 2008] and [Brandenburg et al., 2009], and
[Kiniger, 2015]. With these settings questions on existence, uniqueness, convergence
and a priori error estimates can be answered. The transformation approach seems
attractive for isogeometric analysis, as there a parameterization of the physical domain
pulls the pde back to a parameter domain anyway.

Discretization Usually, iterative, numerical optimization methods are employed
to find the optimal perturbation or shape respectively. For that, both the function
space for the pdes and the space of perturbations have to be discretized to obtain a
finite-dimensional problem. Basically, there are two approaches to discretize optimal
control problems [Hinze et al., 2009] which is reflected in shape optimization: Either,
one first uses shape calculus to derive the optimality system for the infinite-dimensional
problem and then discretizes all function spaces and operators. This is the optimize
first–discretize then approach. Or, in the second way discretize first–optimize then,
one reverses the order of optimization and discretization which means the optimality
system is derived for a finite-dimensional problem. Since there is quite a gap between
the two communities using optimize first and discretize first, the question of their
differences in isogeometric shape optimization arises.

Optimization methods To find a minimum numerically, a gradient-based opti-
mization method is applied to a finite-dimensional nonlinear optimization problem
resulting from either the optimize first or the discretize first approach. Hence, the
shape gradient obtained by shape calculus serves two purposes, namely to give a first
order optimality condition and furthermore, to indicate descent directions for the opti-
mization routine. Several such black box solvers are applicable in shape optimization
to receive update information based upon the gradients. However, a domain update
from large deformations may lead to an infeasible mesh when a piece of boundary
is moved into the inside of the domain. This is one of the practical bottlenecks of
shape optimization, not only with iga but also for classical approaches. The treatment
is problem dependent and comprises techniques for instance from flow problems or
r-adaptivity, [Budd et al., 2009].

Combining iga and shape optimization The combination of iga and sops is
applied to a number of applications such as
• shells, [Kiendl et al., 2014],
• electrostatics, [Nguyen et al., 2012], [Bandara et al., 2015],
• fluid mechanics, [Nørtoft and Gravesen, 2013],

3
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• solid mechanics, [Wall et al., 2008], [Qian, 2010], [Blanchard et al., 2013],
[Fußeder et al., 2015], [Fußeder and Simeon, 2015],

• vibrating membranes, [Nguyen et al., 2011].
These publications show that iga is suitable for shape optimization. Arguments for
this combination are that b-spline and nurbs theory in cagd puts a lot of effort
into representing shapes exactly with just a finite number of points. However, often
fem destroys this effort by using piecewise linear approximations of the designs for
analysis. In contrast, all occurring approximation spaces in iga can be covered by one
common description, namely b-splines or nurbs, without discarding information of
the initial cagd geometry model. Moreover, the set of admissible domains represented
by b-splines/nurbs is larger than a space of polygons and regularity assumptions
on the geometry can be more easily met. To the best of our knowledge, the opti-
mize first–discretize then ansatz is only considered in [Blanchard et al., 2013] and
[Bandara et al., 2015], where not the method itself is subject of investigation but its
application to a particular sop. Moreover, for [Bandara et al., 2015] an isogeometric
boundary element method is used. This means that a more general investigation of
the important optimize first–discretize then approach for iga is still missing.

Contributions The aim of this thesis is to develop an abstract shape optimization
framework in the optimize first–discretize then setting with a transformation approach
which then is discretized by b-splines or nurbs and therefore comes natural to
isogeometric analysis; one aspect is how to incorporate nurbs with variable weights
in it. We compare this scheme to a discretize first–optimize then method to settle the
question if they differ for isogeometric shape optimization and our class of problems.
To complete the comprehensive view of iga in shape optimization we present an
algorithm which also takes into account the practical issues. With some examplary
applications we fortify the developed theory.
We close this introduction with the structure of this thesis as follows.

Structure of the thesis

The two building blocks of shape optimization are linear elliptic partial differential
equations and optimal control concepts. In Chapter 2 we introduce the mathematical
models for the state equations in this thesis together with their variational formula-
tions. We transform them to a reference domain for iga and for the abstract shape
optimization framework. Important techniques and results from optimization with
pdes are summarized. Altogether this chapter provides the mathematical background
for this thesis.
We then construct a continuous shape optimization framework in Chapter 3. In

particular, we review the perturbation of identity method. This general framework is
then considered under geometry transformations which ultimately aims at isogeometric
discretization in the next chapter:
For the numerical treatment we discretize the control and state with isogeometric

analysis. This means that Chapter 4 combines discrete versions of Chapters 2 and
3. b-splines and nurbs are at its core and after a brief introduction we use them to
obtain cagd models for iga. Subsequently, they also serve as test functions for the

4



Galerkin projection of the transported problem and for the shape optimization i.e. we
search for optimal shapes also in this mutual b-spline/nurbs space.
Chapter 5 deals with practical aspects in the shape optimization process like the

choice of optimization methods and mesh update strategies to avoid infeasible meshes.
Moreover, we partly unravel the tight link of geometry, simulation, and optimization
by using different b-spline spaces for each. This eventually also makes local adaptive
refinement for the simulation possible.
Applications in Chapter 6 finally illustrate the theory of isogeometric shape opti-

mization. First, all previous computational aspects are summarized in an isogeometric
shape optimization algorithm. Then secondly, we concentrate on particular problems,
considering Poisson and linear elasticity state equations, to show the influence of
discretization parameters and the decoupling of simulation and optimization meshes.
In particular, local adaptive refinement for solving the state equation is realized.
Moreover, we also treat rational b-spline optimization in the optimize first setting.
We conclude this thesis in Chapter 7 where we summarize the results and also

give an outlook on possible future steps.
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2
Mathematical Modeling with PDEs

This chapter provides the foundation to formulate and solve shape optimization
problems: A vital part of sops are partial differential equations whose solutions
frequently enter the cost functionals in (1.1). For our sops, we consider linear elliptic
equations of second order given by the state equation e(Ω, u) = 0, which we introduce
in this chapter. In particular, we formulate in Section 2.2 the equations for our
applications later on in Chapter 6. To find their numerical solution by either finite
elements or isogeometric analysis we also express them in their variational form in
Section 2.3. Therefore, these formulations are the basis for Galerkin discretization in
Chapter 4.3. Since for all shapes in our sop the state equation must be satisfied, it poses
a constraint for the optimization problem. Thus we need the theory of optimization
with pdes, given in Section 2.4, to derive the shape optimization framework in
Chapter 3.
However, we begin this chapter with Section 2.1 of basic notations.

2.1 Preliminaries

In this section we fix the notation for the functional analysis background of this thesis.
Particularly, we start with the notation for standard differential operators and quickly
move on to a collection of important function spaces in which our sops are posed.

2.1.1 Basic definitions and notations

We begin with the usual abbreviation for total and partial derivatives for scalar
functions φ(t), φ(x) and φ(x, t) where t ∈ R and x ∈ Rd, d > 0, with components xi
for i = 1, . . . , d,

dtφ := dφ
dt , ∂ tφ := ∂φ

∂t
, ∂ iφ := ∂φ

∂xi
, ∇φ := (∂1φ, . . . , ∂dφ)T etc. (2.1)

The derivative in a direction ν ∈ Rd is denoted by ∂νφ and is ∂νφ = ∇φ · ν if φ
is differentiable, where the dot notation · stands for the standard scalar product in
Rd. The differential operator D acts on vector valued functions φ : Rd → Rm with
φ(x) = (φ1, . . . , φm)T and each φi := φi(x) over x ∈ Rd like

(i) m = 1: Dφ = (∇φ)T the transpose of the gradient,

(ii) m ≥ 1: Dφ =


∂φ1
∂x1

. . . ∂φ1
∂xd...
...

∂φm
∂x1

. . . ∂φm
∂xd

 = Jφ , the Jacobian,
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(iii) m = s× d: Dφ =
{
∂1φ, . . . , ∂dφ

}
. It shall act on a vector v ∈ Rd as a series of

matrix-vector operations and yields a matrix of directional derivatives

Dφ · v =
(
∂1φ · v, . . . , ∂dφ · v

)
∈ Rs×d .

Usually we mean by |.| the Euclidean norm in Rd. For a metric space (X,d) with
metric d we denote by BX(x, r) := {y ∈ X : d(x, y) < r} the open ball of radius r > 0
around x.

2.1.2 Function space preliminaries

In this section we introduce the function spaces for linear elliptic pdes of second
order, in particular Sobolev spaces, the habitat of weak solutions. For that, we
require the notion of weak derivatives and Lebesgue spaces. A basic reference is for
instance [Adams and Fournier, 2003]. The smoothness of domains co-determines the
regularity of weak solutions and typically the domains have to fulfill some regularity
considerations, for instance having a boundary parameterization that is Lipschitz
continuous. For the description of such domains and also for shape calculus later on,
we introduce Hölder spaces.

Continuous functions

Differential operators ∂α= ∂α1
1 · · · ∂αdd are specified by multi-index α := (α1, . . . , αd).

Definition 2.1. On an open subset Ω ⊂ Rd with boundary ∂Ω and closure Ω̄ all
real-valued functions u on Ω which are continuous up to their m-th partial derivatives
∂αu for 0 ≤ |α| ≤ m form the space of continuously differentiable functions Cm(Ω),
with the special case m = 0 for continuous functions C(Ω) := C0(Ω).

For m =∞ we get the space of infinitely differentiable functions:
Definition 2.2. C∞(Ω) := ⋂∞

m=0 Cm(Ω), and Cm0 (Ω) contains all functions u in Cm(Ω)
with compact support in Ω, i.e. if supp(u) :={x ∈ Ω: u(x) 6= 0} is contained in Ω and
compact.
Sometimes we also make use of the notation Ck(Ω;Y ) for vector smooth functions

from Ω to Y ⊂ Rm where m ≥ 1. In a next step, we define the Hölder spaces Cm,λ(Ω̄)
with the help of the previously introduced space of continuous functions:
Definition 2.3. For 0 < λ ≤ 1 a Hölder space is given by

Cm,λ(Ω̄) := {u ∈ Cm(Ω̄) : |∂αu(x)− ∂αu(y)| ≤ C|x− y|λ ∀x, y ∈ Ω and |α| = m}
for some constant C. For m = 0, λ = 1, C0,1(Ω̄) becomes the space of Lipschitz
continuous functions.

The space of continuous functions with the supremum norm ‖u‖∞ := supx∈Ω|u(x)|
is a Banach space. We can also provide C(Ω̄) with a scalar product (u, v) :=

∫
Ω uv dx.

The induced norm ‖u‖L2(Ω) :=
√

(u, u) is, however, not equivalent to the infinity norm
and therefore C(Ω̄) is not complete under the L2-norm, [Alt, 2012, p. 2 ff.]. Thus,
not every Cauchy sequences must converge to elements in C(Ω̄), and not every pde
solution we construct belongs to this space [Evans, 2010, p. 241]. As a completion of
C(Ω̄) under the L2-norm we introduce next the Lebesgue spaces.
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Lebesgue spaces

We now introduce the spaces of (Lebesgue-) integrable functions which have a norm
and are complete: The Lebesgue spaces are defined as

Lp(Ω) :=

u : Ω→ R̄

∣∣∣∣∣
∫
Ω

|u(x)|p dx <∞
 , 1 ≤ p <∞, R̄ = R ∪ {±∞} (2.2)

where we identify u = v ⇔ ∫
Ω|u(x)− v(x)|p dx = 0. Thus, its norm

‖u‖Lp(Ω) :=

∫
Ω

|u(x)|p dx

1/p

(2.3)

is well-defined. The vector space of essentially bounded functions on Ω is denoted by

L∞(Ω) :=
{
u : Ω→ R̄

∣∣∣∣∣ ess sup|u(x)| <∞
}

with its norm (2.4)

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)| := inf
M

sup
x∈Ω\M

|u(x)| with null sets M ⊂ Ω . (2.5)

Lebesgue spaces allow to introduce the notion of weak derivatives.

Definition 2.4. For u ∈ L1(Ω) we call w ∈ L1(Ω) a weak derivative of u if∫
Ω

vw dx = (−1)|α|
∫
Ω

u ∂αv dx ∀v ∈ C∞0 (Ω) .

With this generalization of classical derivatives we finally obtain a wider class than
Ck-functions in which to solve our pdes.

Sobolev spaces

Sobolev spaces are vitally important for the analysis of pdes because with them we
obtain their variational formulation and weak solution.

Definition 2.5. For a nonnegative integer k and 0 ≤ p ≤ ∞ Sobolev spaces

W k,p(Ω) :=
{
u : Lp(Ω)

∣∣∣∣∣ ∂αu ∈ Lp(Ω) for 0 ≤ |α| ≤ k
}

(2.6)

are linear subspaces of Lp(Ω) with weak derivatives ∂α from Definition 2.4.

For p ≤ ∞, the functional

‖u‖Wk,p(Ω) :=

 ∑
|α|≤k
‖∂αu‖pLp(Ω)

1/p

, (2.7)

and for p =∞, the functional

‖u‖Wk,p(Ω) := max
0≤|α|≤k

‖∂αu‖L∞(Ω) . (2.8)

9



Chapter 2 Mathematical Modeling with PDEs

define norms in W k,p(Ω). We mainly move in the Hilbert spaces Hk(Ω) := W k,2(Ω) in
which functions and all their k-th weak derivatives are square-integrable. Furthermore,
for vector valued problems like linear elasticity in Problems 2 and 3 in the next section
we consider the product space Hk(Ω)m which is the direct sum of Hk(Ω) spaces, and
its norm

‖u‖Hk(Ω)m =
(

m∑
i=1
‖ui‖2Hk(Ω)

)1/2

. (2.9)

Analogously, define W k,p(Ω)m. Frequently, the Sobolev semi-norms

|u|Wk,p(Ω) =

 ∑
|α|=k
‖∂αu‖pLp(Ω)

1/p

(2.10)

are in use. Sobolev spaces with vanishing boundary values are given by

W k,p
0 (Ω) := {u ∈W k,p(Ω): ∃uj ∈ C∞0 (Ω) s.t. ‖u−uj‖Wk,p → 0 for j →∞} , (2.11)

for instance in [Alt, 2012, 1.29, p. 68]. For smooth boundaries we can understand
W k,p

0 (Ω) as functions u ∈W 1,p(Ω) with ∂αu = 0 on ∂Ω for |α| ≤ k − 1 in the sense of
a trace operator. Again, we use Hk

0 (Ω) to denote W k,2
0 (Ω). A definition of boundary

smoothness is given next.

Classification of domains

It often is useful if the solution of the variational equation of a pde has a higher
regularity, for instance in a posteriori error estimation for fem, and in shape opti-
mization to represent a shape gradient simpler. The regularity depends among other
factors on the smoothness of the domain over which the pde is posed. We follow
[Hinze et al., 2009, p. 19] to classify bounded domains.

Definition 2.6. Let Ω be a domain, i.e. a nonempty, open, bounded, connected set in
Rd with boundary Γ. Further, let m ≥ 0 or m =∞ and λ ∈ [0, 1]. Then Ω is of class
Cm,λ if for any x ∈ Γ there exists r > 0, σ ∈ {−1,+1}, l ∈ {1, . . . , d} and a function
γ ∈ Cm,λ(Rd−1) such that for the open ball BΩ(x, r) := {y ∈ Ω: |x− y| < r}

Ω ∩BΩ(x, r) = {y ∈ BΩ(x, r) : σyl < γ(y1, . . . , γl−1, yl+1, . . . , γd)} holds.

For γ ∈ C0,1(Rd−1) we also call Γ Lipschitz boundary and Ω Lipschitz domain.

This definition means that for every x ∈ Γ there exists a neighborhood of x whose
intersection with Γ is the graph of a Cm,λ-function. For Lipschitz domains, the outward
pointing unit normal n ∈ Rd exists almost everywhere on Γ.
We now have the requisites to formulate our model pde problems.
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2.2 Model Problems
In this section we introduce the mathematical description for physical phenomena and
engineering applications with pdes which we consider for the rest of this thesis as
working models. In particular, we restrict ourselves to linear elliptic partial differential
equations of second order and start by giving a general notation. Subsequently, we
narrow them down to Poisson’s equation and linear elasticity.

Definition 2.7. A general linear elliptic partial differential operator of second order,
[Evans, 2010, p. 295], acting on a function u : Rd → R is denoted by

Lu = −
d∑

i,j=1
ai,j(x)∂iju+

d∑
i=1

bi(x)∂iu+ c(x)u (2.12)

with coefficients ai,j , bi, ci. We assume that L is uniformly elliptic: There exists a
constant α > 0 such that

d∑
i,j=1

ai,jξiξj > α‖ξ‖2 for a.e. x ∈ Ω, ∀ξ ∈ Rd . (2.13)

The notation can also be extended to vector-valued solutions u : Rd → Rm with partial
derivatives of the components

∂ijuk, ∂iuk, for i, j = 1, . . . , d, and k = 1, . . . ,m . (2.14)

A boundary value problem is thus given in the strong form by

Lu = f in an open bounded set Ω (2.15)

together with appropriate boundary conditions on the boundary Γ = ∂Ω

u = gD on a Dirichlet boundary ΓD ⊂ ∂Ω, (2.16)
∂nu = gN on a Neumann boundary ΓN ⊂ ∂Ω (2.17)

where ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ. The formulation (2.15)–(2.17) covers our
model problem for m = 1, the Poisson equation. The latter describes several physical
processes, e.g. steady-state heat conduction, electrostatics, or deformation of a thin
elastic membrane, see also [Atkinson and Han, 2001, pp. 328].
Problem 1 (Poisson).
Let Lu = div(∇u) = ∑d

i=1 ∂ iiu =: ∆u be the Laplace operator acting on u, then the
Poisson equation is given by

−∆u = f in Ω ,
u = gD on ΓD ,

∂nu = gN on ΓN .
(2.18)

On the boundary ∂Ω may govern Dirichlet conditions on ΓD or Neumann conditions
on ΓN . We call u a classical solution if it satisfies (2.18) pointwise and is an element
of C2(Ω) ∩ C1(Ω̄). In case of Γ = ΓD, a classical solution is a member of C2(Ω) ∩ C(Ω̄).

11



Chapter 2 Mathematical Modeling with PDEs

Contrary to Problem 1, the linear elasticity equation is an example of a vector
valued boundary value problem (2.15)–(2.17) of dimension m = 2 or 3. It models
deformations of an elastic body of St. Venant-Kirchhoff material under the influence
of external forces like traction or gravity, [Gekeler, 2010, p. 417].
Problem 2 (Linear Elasticity).
For d-dimensional bodies Ω ⊂ Rd, d = 2, 3, let φ : Ω × [0, τ ] → Rd denote the
deformation of the reference domain Ω which maps (x, t) 7→ x(t) := x + u(x, t).
We refer to x ∈ Ω as material or Eulerian coordinates, whereas x(t) are space or
Lagrangian coordinates. This deformation is defined in terms of the displacement
u : Ω× [0, τ ]→ Rd. In the stationary case, the displacement is characterized by the
linear elasticity equation

−div σ(u) = f in Ω ,
u = gD on ΓD ,

σ(u)n = gN on ΓN ,
σ(u)n = 0 on Γ

(2.19)

with ∂Ω = ΓN ∪ ΓD ∪ Γ. This strong form arises from a linear material law for the
strain

ε(u) = 1
2(∇u+∇uT) (2.20)

and Hooke’s law for the strain-stress relationship

σ(u) = 2µε(u) + λ(tr ε(u))I (2.21)

where tr denotes the trace operator. The Lamé parameters

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) (2.22)

are related to constants ν and E. Those are the material properties, Young’s modulus
E, measuring axial stiffness, and Poisson number ν, measuring lateral contraction,
[Atkinson and Han, 2001, Ch. 8.5]. In formulation (2.19), σ is a stress tensor for
which the i-th component is (div σ)i = ∑m

j=1 ∂ jσij. Due to symmetry reasons, we often
also use the Voigt notation. That is, instead of considering the m×m sized tensors σ
and ε we use a vector notation, here for m = 3 = d, σ = (σ11, σ22, σ33, σ12, σ13, σ23)T

and ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)T, (2.21) yielding σ = Cε with

C = E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2(1− 2ν) 0 0
0 0 0 0 1

2(1− 2ν) 0
0 0 0 0 0 1

2(1− 2ν)


.

A variant of linear elasticity in two dimensions is given for very thin plates in
Problem 3 where we only view the cross section Ω in two dimensions:
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2.3 Variational Formulation of Elliptic PDEs

Problem 3 (Plane Stress).
In a plane stress setting, forces can only act into in the plane of the cross section and
not into a third direction, [Gekeler, 2010, p. 420]. For m = 2 = d, we consider the
strong form (2.19) with

λ = νE

1− ν2 , µ = E

2(1 + ν) and C = E

1− ν2

1 ν 0
ν 1 0
0 0 1

2(1− ν)

 . (2.23)

Remark 2.8. For ease of notation we mostly assume homogeneous Dirichlet boundary
conditions in Problems 1–3, i.e. gD = 0. For a formulation with non-homogeneous
Dirichlet boundary conditions we refer to standard literature such as the above or
[Atkinson and Han, 2001].

Operator notation Finally, we say that e(Ω, u) = 0 means that the boundary
value problem (2.15) is fulfilled on Ω, i.e. that Lu − f = 0 on Ω, u = 0 on ΓD and
∂nu − gN = 0 on ΓN . The domain and range spaces will be specified later. For the
moment we assume that Ω is fixed and U , Z are real Banach spaces of functions
defined over Ω. Then let u ∈ U and e(Ω, ·) : U → Z. Note, that in this thesis we
consider only stationary problems, although this operator notation would allow time
dependend problems as well.

To solve our problems numerically, the starting point is their variational form which
we introduce next.

2.3 Variational Formulation of Elliptic PDEs

Seemingly, a C2-function space seems attractive for second order pdes from Section
2.2 due to providing second derivatives. However, it usually is easier to find solutions
and prove their existence and uniqueness in a space with less smoothness. For that
we introduce weak solutions in appropriate Sobolev spaces and state existence and
uniqueness results following from the Lax-Milgram Lemma. In particular, such weak
solutions solve a variational formulation of the pde. In that form, it needs not
satisfy the pde pointwise anymore but weakly in an integral over multiplications
with test functions. The variational equation is also the starting point for numerical
discretization by finite element methods or isogeometric analysis in Section 4.3. In iga,
however, we first reformulate the variational equation over a parameter domain. There,
we have a transformation map between the parameter domain and the domain of the
pde which is used in a change of variables in the integrations. Similarly, also shape
calculus uses a change of variables in integrals to obtain derivatives w.r.t. domains in
Chapter 3.
We proceed by first introducing the weak form for the pdes given by e(Ω, u) = 0

from Section 2.2. Second, we state the Lax-Milgram Lemma, and third, a change of
variables for variational equations.

2.3.1 Weak formulation of PDEs

In this section we obtain the variational formulation of pdes that then allow us to
make statements about existence and uniqueness of solutions in the next Section 2.3.2.

13



Chapter 2 Mathematical Modeling with PDEs

The weak forms also serve as starting point for the discretization process in Chapter 4.
We say that u in a Hilbert space V is a weak solution of the pde e(Ω, u) = 0 and

thus of (2.15)–(2.17), if

u ∈ V : a(u, v) = l(v) ∀v ∈ V , (2.24)

with bilinear form a : V × V → R

a(u, v) :=
∫
Ω

 d∑
i,j=1

ai,j∂iu∂jv +
d∑
i=1

bi ∂ iuv + cuv

 dΩ (2.25)

and linear form

l(v) :=
∫
Ω

fv dΩ +
∫

ΓN

gNv dΓ . (2.26)

The coefficients ai,j , bi, and c correspond to those of L. For vector valued functions we
again consider components aik,j`∂iuk∂jv` etc, as in (2.14) as well as scalar products
f · v and gN · v in (2.26). Homogeneous Dirichlet boundary conditions are realized
directly in the test function space V.
We make some further assumptions and introduce properties of the bilinear form

that we need for showing that the variational equation has a solution.

Assumption 2.9. Assume that the coefficients ai,j , bi, and c are bounded in L∞(Ω).
Let ∂Ω = ΓD ∪ΓN . The function space V usually is the Hilbert space V := H1

ΓD(Ω)m :=
{v = (v1, . . . , vm) ∈ H1(Ω)m : v|ΓD = 0} . We presume sufficient regularity of the
domain, e.g., Ω is polygonal and convex, or a Lipschitz domain (Definition 2.6), or has
a C2-boundary. Finally, let f ∈ L2(Ω)m and gN ∈ L2(ΓN)m.

Definition 2.10. A bilinear form a : V ×V → R on Hilbert spaces V with norm ‖·‖ is
• bounded if there exists a constant M <∞ such that a(u, v) ≤M‖u‖‖v‖ ∀u, v
∈ V.

• V-elliptic if there exists a constant α > 0 such that a(v, v) ≥ α‖v‖ ∀v ∈ V.
• symmetric if a(u, v) = a(v, u) ∀u, v ∈ V.

Remark 2.11. For bi = 0, i = 1, . . . , d, and c = 0 it follows directly that the bilinear
form in (2.25) is bounded and V-elliptic under Assumption 2.9. Else, additional
restrictions have to be imposed on the coefficients, see [Atkinson and Han, 2001, p.
345].

From classical to variational formulation We obtain the weak form (2.24) of a
problem (2.15) by multiplying the strong form with test functions from V and using
integration by parts.

Operator notation Commonly in optimal control and shape optimization, the
testing is expressed in an operator notation. Consider the weak solution u ∈ V of
e(Ω, u) = 0 where the domain Ω is fixed. Then we can say that e(Ω, u) : V → R defines
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for any u ∈ V a linear and continuous functional and by testing with functions from V
obtain the variational form (2.24) in operator notation

〈e(Ω, u), v〉V∗,V = 0 ∀v ∈ V . (2.27)

To see this we write e(Ω, u) = l(·)− a(u, ·) and note that l(·) and a(u, ·) are linear and
continuous by definition. The notation can be found e.g. in [Hinze et al., 2009].

Our next step is to make sure under which conditions we have unique weak solutions.

2.3.2 Existence of solutions

The Lax-Milgram Lemma is central to show if elliptic partial differential equations
can be solved uniquely.
Theorem 2.12 (Lax-Milgram Lemma).
For a Hilbert space V, a bounded, V-elliptic bilinear form a : V × V → R and a linear
functional l ∈ V∗ there exists a unique solution of

u ∈ V : a(u, v) = l(v) ∀v ∈ V . (2.28)

Proof. See [Atkinson and Han, 2001, Th. 8.3.4, p. 336].

In case of a symmetric bilinear form the variational equation (2.28) is equivalent to
a minimizing problem:
Theorem 2.13.
Assume that all assumptions of Lax-Milgram Theorem 2.12 are fulfilled, Y is a non-
empty, closed, convex subset of V, and a is symmetric. Then there exists a unique
u ∈ Y that is a minimizer of

J(v) := 1
2a(v, v)− l(v) , ∀v ∈ Y , (2.29)

i.e. J(u) = inf
v∈Y

J(v) .

Proof. See [Atkinson and Han, 2001, p. 336].

With Theorem 2.12 and Remark 2.11 we directly conclude that Problem 1 with
homogeneous Dirichlet boundary conditions ∂Ω = ΓD and gD = 0 has under Assumption
2.9 a unique solution. In case of Neumann boundary conditions additional assumptions
are necessary. For linear elasticity Problems 2 and 3 the V-ellipticity of the bilinear
form is verified with Korn’s inequality and thus also uniquely solvable, see for instance
[Atkinson and Han, 2001, Th. 8.5.1, p. 352].
We next consider the existence result for equations under transformations.

2.3.3 Change of variables

The two topics of this thesis, iga and shape optimization, use a change of variables
in the integration terms to pose their respective problems over a reference domain
instead of a physical domain:
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• In iga there is a transformation of a parameter domain Ω̂ to the domain Ω over
which a pde is posed. With the help of this parameterization, the pde is solved
over Ω̂ instead and afterwards transported to the solution over Ω.

• In shape optimization, variations of a domain Ω are given by transforming it to
slightly perturbed domains. The shapes appear as domains of integration and to
move them to the integrand, a change of variables is applied.

Since a change of variables is so central to the two topics of this thesis, we take a
closer look when it holds for our integrals and pdes.
Remark 2.14. Before starting on the change of variables we make a concession to
the suggestive use of terms pull back and push forward. It is common in iga, see for
instance [Bazilevs et al., 2006], that the composition with a map G−1 : Ω→ Ω̂ between
two manifolds itself as well as the push-forward of the Jacobian are both called the
push-forward, and its inverse G pull-back, respectively. Therefore, an isogeometric
map G between manifolds can pull back something to the parameter domain Ω̂ or
push it forward onto the physical domain Ω. We use this vocabulary intuitively for
other transformations as well.
We start with a corollary of a more general theorem in [Varberg, 1971] concerning

the applicability of the transformation formula for integrals.

Lemma 2.15. Let T : U → Rd be differentiable (or Lipschitz continuous) on an open
set U ⊂ Rd. If T is one-to-one on a subset of U whose complement in U has measure
0, then the change of variables formula∫

T (Ω0)

φ(x) dx =
∫

Ω0

φ ◦ T (x̂)|det JT (x̂)|dx̂ (2.30)

where JT is the Jacobian of T , holds for each measurable subset Ω0 ⊂ U and φ ∈
L1(T (Ω0)

)
.

We next answer the question of change of variables in integrals for two important
transformation classes, diffeomorphisms and bi-Lipschitz maps.

Transformations with diffeomorphisms Let T denote a C1-diffeomorphism from
a domain Ω0 ⊂ Rd onto the domain Ω ⊂ Rd with bounded derivatives, i.e. for k > 0
there are real constants c, C such that

T : Ω0 → Ω, where T ∈ Ck(Ω0), T−1 ∈ Ck(Ω) and 0 < c ≤ |det JT | ≤ C (2.31)

with Jacobian JT := (∂Ti/ ∂x̂j)ij . Then a transformation between Sobolev spaces
holds:
Theorem 2.16.
Let T satisfy (2.31) for open domains Ω0 and Ω, 1 ≤ p ≤ ∞, then T transforms the
Sobolev space W s,p(Ω0) boundedly onto W s,p(Ω) and has a bounded inverse, i.e. if
φ ∈W s,p(Ω) then φ ◦ T ∈W s,p(Ω0). For s = 1 the chain rule for the weak derivatives
of φ ◦ T is

∂ i(φ ◦ T ) =
d∑
j=1

(∂ jφ) ◦ T ∂ iGj .
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2.3 Variational Formulation of Elliptic PDEs

Proof. A proof can be found in [Adams and Fournier, 2003, Theorem 3.41, p. 78]. The
chain rule is proved in [Alt, 2012, Ch. 2, Th. 2.26].

This result also holds for Sobolev spaces that include Dirichlet boundary conditions.

Transformations with bi-Lipschitz homeomorphisms Let T denote a bi-Lip-
schitz one-to-one mapping from a domain Ω0 ⊂ Rd onto the domain Ω ⊂ Rd, i.e.

T : Ω0 → Ω, where T ∈ C0,1(Ω̄0), and T−1 ∈ C0,1(Ω̄) . (2.32)

The next theorem mimics Theorem 2.16 for a change of variables in integrations with
these transformations.
Theorem 2.17.
Let T satisfy (2.32) for bounded, open sets Ω0, Ω and 1 ≤ p <∞ then T transforms
Lp(Ω0) onto Lp(Ω) boundedly, i.e. if φ ∈ Lp(Ω) then φ ◦ T ∈ Lp(Ω0). This also holds
for φ in Sobolev spaces W 1,p(Ω).

Proof. The results for the bounded transformation for Lp and W 1,p can be found
as Lemma 3.1 and 3.2 in [Nečas, 2012, p. 60]. We only note here that the line of
argumentation follows not the one of Theorem 2.16.

Application to isogeometric analysis and shape optimization On the one
hand, we have in iga a transformation G between a parameter domain Ω̂ and the
domain over which the pde is posed, Ω. The parameterization G of Ω in iga is exploited
to pull back the variational equation of the pde to the parameter domain and solve it
there. In particular, also the function spaces of the variational form are transformed.
Afterwards, the solution from the parameter setting is pushed forward to obtain the
solution of the original problem. On the other hand, in shape optimization a domain
Ω is perturbed or changed by mapping it to a new domain τ(Ω). Shape sensitivities
are obtained by considering again the pull back integrals to Ω by a change of variables.
Then, the perturbation occurs in the integral kernel and can be differentiated.

In the following, we therefore show that under typical transformations from isogeo-
metric analysis or shape optimization a change of variables is applicable and the two
problems –original and transformed– are equivalent. We formulate the transformed
variational equation.

Corollary 2.18. Let T be a transformation that satisfies (2.31). For û := u ◦ T ∈
V̂ := H1

Γ̂D
(Ω0)m a change of basis yields equivalent weak formulations (2.24) for the

state equation, the pde e(Ω, u) = 0:

u ∈ V : a(u, v) = l(v) ∀v ∈ V (2.33)
⇔ û ∈ V̂ : â(T )(û, v̂) = l̂(T )(v̂) ∀v̂ ∈ V̂ , (2.34)
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where the transformed bilinear and linear forms are given by

â(T )(û, v̂) :=
∫

Ω0

 d∑
i,j=1

m∑
k,`=1

aik,j` ◦ T (Dû JT )k,i(Dv̂ JT )`,j+ (2.35)

m∑
k,`=1

bk` ◦ T ûkv̂` + c ◦ T û · v̂
 |det JT |dΩ0 , (2.36)

l̂(T )(v̂) :=
∫

Ω0

f ◦ T · v̂|det JT | dΩ0 +
∫

Γ̂N

gN ◦ T · v̂|J− T
T n̂||det JT | dΓ̂ (2.37)

with outer normal n̂ to the boundary Γ̂N = T−1(ΓN) in the reference domain.

Proof. As a consequence from Lemma 2.15 for φ ∈ L1(Ω) the change of variables
(2.30) holds for T∫

Ω

φ(x) dx =
∫
Ω̂

(φ ◦ T )(x̂)| det JT (x̂)| dΩ̂ (2.38)

and therefore for the forms a(·, ·) and l(·). Theorem 2.16 ensures that the coefficients
aik,j` and bk` are still bounded. The chain rule yields for a composite function û = u◦T

Dû =
(
(Du) ◦ T )DT = ((Du) ◦ T ) JT . (2.39)

with differential operator D and Jacobian JG as in Theorem 2.16, see also Appendix A
for details to differentiation in multi-dimensions. Likewise, this theorem ensures then
that if a solution û of the transported problem exists then û = u ◦ T . By assumption,
the Jacobian is bounded, therefore the operators of the transformed bilinear and linear
form are still bounded and V̂-elliptic. Thus, the transformed problem (2.34) has a
unique solution by Lax-Milgram, too.

Remark 2.19. Above theorem holds true also for bi-Lipschitz transformations (2.32)
since their derivatives are bounded by the Lipschitz condition and Theorem 2.17
substitutes for Theorem 2.16 in the proof.
We comment on our notation:

Remark 2.20. The notation a(u, v) versus â(T )(û, v̂) emphasizes that in the variational
form (2.33), the function spaces V = H1

ΓD(Ω)m depend on Ω = T (Ω̂) and thus on T in
contrast to (2.34) where the dependency on T is moved to the operators in the bilinear
and linear form.
In isogeometric analysis the reference domain is called parameter domain Ω̂ and

is the unit hypercube in Rd for which the outer unit normal n̂ is just a standard
unit vector save for different signs. We from now on use the convention, that a hat
ˆ indicates that something is defined on the parameter domain Ω̂. The isogeometric
transformation is here denoted by a geometry function G which satisfies either (2.31)
or (2.32).
We illustrate an isogeometric transformation in the following example.
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2.4 Optimization with PDEs

Example 2.1. Let e(Ω, u) = 0 denote Poisson’s equation with variational form

u ∈ H1
0 (Ω):

∫
Ω

∇u∇v dx =
∫
Ω

fv dx ∀v ∈ H1
0 (Ω) . (2.40)

Because of a change of variables, the chain rule and bounded derivatives of G, equation
(2.40) is equivalent to û = u ◦G ∈ H1

0 (Ω̂) :∫
Ω̂

∇û J−1
G J− T

G ∇v̂|det JG| dx̂ =
∫
Ω̂

f ◦Gv̂|det JG|dx̂ ∀v̂ ∈ H1
0 (Ω̂) . (2.41)

To sum up so far, we have introduced the model state equations for our sops in the
previous Section 2.2. Then, in this section, we derived their weak formulation and,
important for iga discretization as well as for shape calculus, the change of variables
in integrals for these variational equations was reviewed. Since shape optimization
is a special case of optimization with pdes and of optimal control in particular, we
continue with some of its main concepts which occur in shape optimization later.

2.4 Optimization with PDEs
Shape optimization problems are a special kind of optimal control problems for which
we need techniques from optimization with pdes. To handle sops they are brought
from the general form in (1.1) to an optimal control frame, for instance with the
perturbation of identity method. In Chapter 3 we also go that way and argue from an
optimal control point of view the existence and optimality criteria for such problems.
Therefore, this chapter is a road map for the abstract shape optimization treatment
and provides notation, concepts and results for later.

After we introduce nonlinear optimal control problems, we briefly study under which
conditions an existence of optimal controls is guaranteed. Then we state first order
necessary optimality conditions and show how to derive them. These problems are
posed in infinite-dimensional vector spaces, just like the shape optimization problems,
therefore, the methodologies reflect this infinite nature. The differentiation in function
spaces makes it necessary to draw to Fréchet-derivatives for which we state the
notation and some useful results in Appendix B. Our exposition here follows primarily
[Hinze et al., 2009].

2.4.1 Optimal Control Problems

Let the state be the solution u of the state equation e(q, u) = 0 which denotes a pde
depending on controls q from the control space Q. Assume that u is from a suitable
function space U , for instance for the following equation{

−div(q∇u) = f in Ω,
u = 0 on ΓD = ∂Ω .

(2.42)

Furthermore, let J : Q× U → R define an objective or cost functional, e.g.

J(q, u) =
∫
Ω

f(x)u(x) dx (2.43)
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Chapter 2 Mathematical Modeling with PDEs

where the state u depends on the control u(x) = u(q)(x). A general optimal control
problem then has the structure

min
(q,u)∈Q×U

J(q, u) s.t. e(q, u) = 0 , and q ∈ Qad ⊂ Q (2.44)

see for instance [Hinze et al., 2009, p. 2]. In Qad additional restrictions on the control
can be made, an example follows shortly. To stay in the context of shape optimization,
consider a sizing problem from [Hinze et al., 2009, p. 9].

Example 2.2. A very thin elastic membrane spanned over the domain Ω ⊂ R2 is
clamped at its boundary. Given a vertical force distribution f : Ω→ R acting from
below, the displacement is denoted by u : Ω → R and given by (2.42). The design
goal of this sop is to find an optimal thickness q such that the membrane is as stiff
as possible, which means that the compliance (2.43) is minimized. Furthermore, the
thickness is restricted within a(x) ≤ q ≤ b(x) for x ∈ Ω, and we enforce a volume
constraint

∫
Ω q(x) dx ≤ V0 for a constant V0 ≥ 0.

In this form it is a “usual” optimal control problem and does not require special
treatment from shape optimization like transformation to a reference domain because
in its variational equation the space V is independent of q.

Since (2.44) is posed in infinite-dimensional spaces some concepts like compactness
and convergence have to be reconsidered, see Appendix B.2 for details. With this in
mind existence of optimal controls for problem (2.44) can be shown.

2.4.2 Existence of Optimal Controls

Consider the general problem (2.44). We assume that the state equation allows a
unique solution for each control which is noted by the following operator.

Definition 2.21. A control-to-state operator is defined by

S: Q → U , q 7→ u(q)

if for all q ∈ Q the state equation e(q, u) = 0 admits a unique solution u.

The existence of such an operator is typically shown with the Lax-Milgram Lemma
2.12. We denote the admissible or feasible set by

Wad = {(q, u) ∈ Q× U : q ∈ Qad and e(q, u) = 0} (2.45)

and say that (2.44) has a global solution (q?, u?) if

(q?, u?) ∈ Wad and J(q?, u?) ≤ J(q, u) ∀(q, u) ∈ Wad . (2.46)

Under some assumptions such an optimal pair exists.
Theorem 2.22.
Let Z, U , Q be Banach spaces, Q and U are reflexive (definition in Appendix B.2.2,
(vi)). Consider the optimal control problem (2.44) where J : Q×U → R and e : Q×U →
Z are continuous. Under the assumptions
(A1) Qad ⊂ Q is convex, bounded and closed,
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2.4 Optimization with PDEs

(A2) U is convex and closed such that (2.44) has a feasible point,
(A3) the state equation e(q, u) = 0 has a bounded solution operator S: q 7→ u(q),
(A4) (q, u) ∈ Q× U 7→ e(q, u) ∈ Z is continuous under weak convergence,
(A5) J is sequentially weakly lower semicontinuous (Definition B.11),

the optimal control problem (2.44) has an optimal solution in Qad × U .

Proof. We state and comment on [Hinze et al., 2009, Theorem 1.48, p. 55]. We need
here results of weak convergence which are stated in the Appendix B.2.4.
From (A2 ) we know Wad 6= ∅ and

J? := inf
(q,u)∈Wad

J(q, u) exists.

There is a minimizing sequence (qn, un) ⊂ Wad

lim
n→∞ J(qn, un) = J? .

Because of (A1 ) the sequence (qn) is bounded; because of (A3 ) also (un) is bounded.
In infinite spaces, the Weierstraß theorem to obtain a convergent subsequence is not
applicable. However, by (A1 ) Qad is weakly sequentially compact, and by (A2 ) U is
weakly sequentially closed. Therefore we can extract a weakly convergent subsequence

(qnk , unk) ⇀ (q?, u?) ∈ Q× U for k →∞ .

Since Qad × U is closed and convex by assumption, Wad is closed and convex. From
(A4 ) it follows that Wad is sequentially weakly closed, hence (q?, u?) ∈ Wad. For a
weakly lower semicontinuous J in a reflexive Banach space, (A5 ), it holds

(qnk , unk) ⇀ (q?, u?)⇒ lim
k→∞

inf J(qnk , unk) ≥ J(q?, u?) .

In particular we have

J? = lim
k→∞

J(qnk , unk) ≥ J(q?, u?) and

J? ≤ J(q?, u?) from definition of J? .

The proof exposes the inherent traits of optimization with pdes in infinite-dimen-
sional function spaces, which carry over to shape optimization. In Section B.2.3 a
short discussion on the difference to finite-dimensional optimization can be found.
Remark 2.23. Often, the objective function J has the form

J(q, u) =
∫
Ω

j1(q, u) dx+
∫
Γ

j2(q, u) ds+ α

2 ‖q‖
2
Q

where j1 and j2 are integrable functions. The third summand is a regularization or
cost of control term with whom compactness assumptions on Qad in Theorem 2.22,
and thus for well-posedness of the problem, can be shown.
Next, a first order condition for optimal pairs is established.
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Chapter 2 Mathematical Modeling with PDEs

2.4.3 Optimality System

Our aim is to characterize solutions of optimal control problems of type (2.44) by a
necessary first order optimality condition which will be given by the Karush-Kuhn-
Tucker (kkt) system. As motivation we look at a finite-dimensional optimization
problem.

Example 2.3. Consider the minimization problem

min
x∈RN

φ(x, g) subject to F
(
x, g(x)

)
= 0

with smooth enough functions φ and F : RN ×RN → R. We try to find a function g
that satisfies the implicit function F

(
x, g(x)

)
= 0 and minimizes φ. At a minimum we

have a stationary point (x?, y?) of φ with y? = g(x?) and the chain rule

0 != dxφ(x?, y?) = ∂xφ(x?, y?) + ∂yφ(x?, y?) ∂xg(x?)

holds. Furthermore, by the implicit function theorem the derivative of g follows as

∂xg(x?) = −(∂yF (x?, y?)
)−1

∂xF (x?, y?)

and thus it is the solution to a linear system.

A similar derivation is given for optimal control problems where the pde constraint
e(q, u) = 0 also is an implicit function. The strategy of this section is to

1. first state the chain rule for J(q, u) where u depends on the control, corresponding
to dxφ(x?, y?) in the above finite-dimensional example. For that we have to
differentiate a solution operator S(q) analogously to ∂xg(x?). Eventually, we
obtain sensitivities, or directional derivatives, of the state equation and finally
of the cost functional.

2. This requires, just as in the finite-dimensional example, solving a linear equation
for each control variation. For the pde and the finite-dimensional example as
well, there is a more efficient way which incorporates that we ultimately aim not
for ∂xg but for the product ∂yφ(x?, y?) ∂xg(x?).

3. This leads to the adjoint approach which is equivalent to pursuing an optimality
system by a Lagrange function. That means, the objective function and constraint
are coupled in a Lagrange function where the constraint is in this case the state
equation.

4. An optimal solution of (2.44) is then a stationary point of this Lagrangian,
i.e. its gradient vanishes at an optimum. This gradient condition describes the
Karush-Kuhn-Tucker optimality system, in which also the state equation and
the adjoint equation are satisfied.

We begin with the first step from the list above.

Sensitivities

Our goal in this part is to differentiate the cost functional J . This shows us how
susceptible the state u and costs J are towards a change in the control q. The
derivatives of u and J are therefore also called sensitivities. We follow the outline of
the finite-dimensional problem; before doing so we state the notation for differentiation
in Banach spaces.
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2.4 Optimization with PDEs

Differentiation in Banach spaces In a functional space we need a generalized
concept of differentiability, we summarize here from Appendix B.3. Let j : Q → R be
a real-valued functional defined over a Banach space Q.
• If it exists, we denote its directional derivative at q in direction of δq by

dj(q; δq) = lim
t→0+

1
t (j(q + tδq)− j(q)) = dtJ(u+ th)

∣∣∣
t=0

• If it exists, we denote its Fréchet-derivative at q by j′(q) and its Fréchet-differential
in a direction δq by dj(q; δq) = j′(q)δq.

• We speak of its gradient if Q is a Hilbert space with inner product (·, ·) as the
element ∇j ∈ Q: (∇j, δq) = dj(q; δq) for all δq ∈ Q.

• For functionals e : Q× U over two function spaces, e′q denotes the partial deriva-
tives and dqe the partial differentials, as in Definition B.19.

We now proceed with the to-do list from above.

Assumptions Requiring smooth enough functions φ and g in the finite-dimensional
example is expressed in the optimal control case with following assumptions.
Assumption 2.24. Let Q, U , Z denote Banach spaces and suppose
(A1 ) J : Q× U → R and e : Q× U → Z are continuously Fréchet-differentiable,
(A2 ) there exists a solution operator which assigns to each q ∈ Q a unique state

S: q 7→ u(q) ∈ U (with Theorem 2.12, Lax-Milgram Lemma),
(A3 ) e′u(q,S(q)) ∈ L(U ,Z) is continuously invertible.
See [Hinze et al., 2009, p. 52] for the following handy implication of Assumption

2.24 and the Implicit Function Theorem B.21.
Corollary 2.25. From Assumption 2.24 it follows that the solution operator S is
continuously Fréchet-differentiable.

If a solution operator exists, we can consider the reduced cost functional.
Definition 2.26. For a solution operator S define the reduced cost functional j : Q → R

as j(q) = J
(
q,S(q)

)
.

It is well-defined since S exists for all controls by assumption (A2 ). Then the optimal
control problem (2.44) is equivalent to

min j(q), q ∈ Qad . (2.47)

Differentiation of state equations We need to differentiate j w.r.t. q to find
candidates for an optimum. To get the derivative of the state u = S(q) we apply the
chain rule B.20 for Fréchet-derivatives to the state equation which is allowed because
of (A1 ) in Assumption 2.24 and Corollary 2.25

0 = e′(q,S(q)) = e′q
(
q,S(q)

)
+ e′u

(
q,S(q)

)
S′(q) ∈ L(Q,Z) . (2.48)

For a direction δq ∈ Q, denote the Fréchet-differential dS(q; δq) = S′(q)δq =: δqu. Then
the differential δqu of the state u is the solution of

e′u(q, u)δqu = − e′q(q, u)(δq) . (2.49)
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Chapter 2 Mathematical Modeling with PDEs

Differentiation of reduced cost functionals Having obtained the derivative of
the solution operator, the derivative of the reduced cost functional can be computed
as j′(q) ∈ L(Q,R) = Q∗. Applying the chain rule to J we get that

j′(q) = J ′q
(
q,S(q)

)
+ J ′u

(
q,S(q)

)
S′(q) . (2.50)

Therefore, the Fréchet-differential of j at q in a direction δq ∈ Q is given by

dj(q; δq) = 〈j′(q), δq〉Q∗,Q = (2.51)
(2.50)= 〈J ′u(q,S(q)),S′(q)δq〉U∗,U + 〈J ′q(q,S(q)), δq〉Q∗,Q = (2.52)
(2.49)= 〈J ′u(q, u), δqu〉U∗,U + 〈J ′q(q, u), δq〉Q∗,Q . (2.53)

We move on to step two and three of the list on page 22 to obtain the optimality
system.

Adjoint approach

For each direction δq ∈ Q, the derivative of the reduced cost functional dj(q; δq)
requires solving (2.49) to get the sensitivity δqu of the state for (2.53). However, the
term of interest is not really δqu but 〈J ′u(q, u), δqu〉U∗,U which can be written as

〈J ′u(q, u), δqu〉U∗,U = 〈J ′u(q,S(q)), S′(q)δq〉U∗,U =
= 〈(S′(q))∗J ′u(q,S(q)

)
, δq〉Q∗,Q ,

(2.54)

introducing the adjoint solution operator S∗ : Q∗ → U∗. Now we use (A3 ) in Assump-
tion 2.24 together with (2.48) to deduce

− e′u(q,S(q))−1 e′q(q,S(q)) = S′(q) . (2.55)

Hence, we have for the desired term in (2.54)(
S′(q)

)∗
J ′u
(
q,S(q)

)
= − e′q

(
q,S(q)

)∗ e′u
(
q,S(q)

)−∗
J ′u
(
q,S(q)

)︸ ︷︷ ︸
−z

. (2.56)

The function z ∈ Z∗ called adjoint state and is the solution of the adjoint equation

e′u
(
q,S(q)

)∗
z = −J ′u

(
q,S(q)

)
. (2.57)

We solve this equation once, and then need to only evaluate 〈e′q
(
q,S(q)

)∗
z, δq〉Q∗,Q.

We are now ready to perform the last step of our list and formulate the Karush-
Kuhn-Tucker optimality system, which identifies candidates of optimal solutions for
the optimal control problem (2.44).

Karush-Kuhn-Tucker optimality system

In the final to-do item of the list on page 22 we derive an optimality system for
problem (2.44). Up to now the state equation e(q, u) = 0 has represented a strong
formulation of a pde. However, for numerics later we want to use its variational form
instead. Therefore, we state the Karush-Kuhn-Tucker system in both strong and weak
formulation and finally tailor it towards our needs.
We use the Lagrange approach where the cost functional and state equation are

coupled in the Lagrange functional:
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Definition 2.27. Let the Lagrange functional for (2.44) be given by

L : Q× U × Z∗ → R

L(q, u, z) = J(q, u) + 〈z, e(q, u)〉Z∗,Z .
(2.58)

Since we have constraints on the control we might have a strict inclusion Qad ( Q
and we adjust Assumption 2.24 therefor.

Assumption 2.28. Q, U , Z Banach spaces and Qad ⊂ Q nonempty, convex, and
closed.
(A1 ) J : Q× U → R, e : Q× U → Z continuously Fréchet-differentiable
(A2 ) ∀q ∈ V , V ⊂ Q neighborhood of Qad, the state equation has a unique solution

u = u(q) ∈ U
(A3 ) e′u(q,S(q)) ∈ L(Q,Z) has a bounded inverse for all q ∈ V ⊃ Qad.

Karush-Kuhn-Tucker system in strong form First order optimality conditions
for control-constrained problems of type (2.44) are given by the Karush-Kuhn-Tucker
system which we reference from [Hinze et al., 2009, Corollary 1.3, p. 73].
Theorem 2.29.
Let (q?, u?) be an optimal solution of (2.44) and Assumption 2.28 holds. Then there
exists an adjoint state z? ∈ Z∗ such that the following optimality conditions hold.

• State equation: L′z(q?, u?, z?) = 0, i.e. e(q, u) = 0

• Adjoint equation (2.57): L′u(q?, u?, z?) = 0, i.e. e′u(q?, u?)∗z? = −J ′u(q?, u?)

• Optimality condition: q? ∈ Qad, 〈L′q(q?, u?, z?), q − q?〉Q∗,Q ≥ 0 ∀q ∈ Qad, or
L′q(q?, u?, z?) = 0 if Qad = Q

Remark 2.30. The adjoint z? can also be interpreted as Lagrange multiplier, however,
we do not pursue this line of thinking here. More information can be found for instance
in [Hinze et al., 2009] and [Ito and Kunisch, 2008].

Karush-Kuhn-Tucker system in variational form The kkt system in Theorem
2.29 can be equivalently written in a variational form with dual pairings:

• State equation: 〈e(q?, u?), δz〉Z,Z∗ = 0 ∀δz ∈ Z∗.

• Adjoint equation: 〈e′u(q?, u?)∗z?, δu〉U∗,U = −〈J ′u(q?, u?), δu〉U∗,U ∀δu ∈ U .

• Optimality condition: q? ∈ Qad, 〈L′q(q?, u?, z?), δq − q?〉Q∗,Q ≥ 0 ∀δq ∈ Q.

In our cases we consider states u described by linear elliptic second order pdes in their
weak form for which we give the kkt system next.
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kkt system for our model problems We assume that u is a weak solution of
e(q, u), an elliptic, 2nd order pde defined over the Hilbert space U = V. Since Hilbert
spaces can be identified with their dual, Theorem B.3, we have V = V∗ = Z = Z∗. To
note the dependence on the control, we introduce operators A and F corresponding to
the bilinear and linear form. I.e., we have e(q, u) = F(q)−A(q, u) where we say that
an operator A: Q × V → V∗ yields for each control a bilinear form 〈A(q, u), v〉V∗,V
according to the operator notation (2.27). The existence of such operators is ensured
by Lemma B.5. For instance the example pde in (2.42) yields for all v ∈ V = H1

0 (Ω):

〈A(q, u), v〉V∗,V =
∫
Ω

∇u · ∇v −∇q · ∇uv dx =
∫
Ω

fv dx = l(v) = 〈F(q), v〉V∗,V .

The Lagrange functional is with Definition 2.27 given by the sum of cost functional J
from (2.43) and the pde in our example as

L(q, u, z) =
∫
Ω

f(x)u(x) dx+
∫
Ω

fz dx−
∫
Ω

∇u · ∇z −∇q · ∇uz dx

or in general by

L(q, u, z) = J(q, u) + 〈F(q), z〉V∗,V − 〈A(q, u), z〉V∗,V . (2.59)

Then the sensitivity calculation

• state dzL(q, u, z; δz) =
∫

Ω fδz dx− ∫Ω∇u · ∇δz −∇q · ∇uδz dx,

• adjoint duL(q, u, z; δu) =
∫
Ω f(x)δu(x) dx− ∫Ω∇δu · ∇z −∇q · ∇δuz dx,

• optimality condition dqL(q, u, z; δq) =
∫

Ω∇δq · ∇uz dx.

and Lagrangian approach yield the kkt system for Example 2.2. In the general case
for linear elliptic second order pdes the kkt system in the variational form is given
next by a corollary of Theorem 2.29.

Corollary 2.31. Let (q?, u?) be an optimal solution of (2.44) and Assumption 2.28
holds. Then there exists an adjoint state z? ∈ V such that the following optimality
system holds.

• The state equation holds. For u? ∈ V :

〈F(q?), δz〉V∗,V = 〈A(q?, u?), δz〉V∗,V ∀δz ∈ V .

• The adjoint equation holds. For z? ∈ V :

〈F′u(q?)(z?)−A′u(q?, u?)(z?), δu〉V∗,V = −〈J ′u(q?, u?), δu〉V∗,V ∀δu ∈ V .

• The first order necessary optimality condition holds. For q? ∈ Qad :

〈L′q(q?, u?, z?), δq − q?〉Q∗,Q ≥ 0 ∀δq ∈ Q .
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The last corollary provides the basis for the transformation approach in shape
optimization later. In particular the last item, the optimality condition, is the way to
obtain a shape derivative: In the Lagrange functional the variables are independent.
Therefore, they are independent in the cost term J appearing in L and we do not
consider that the state u depends on the control q, the chain rule is taken care of with
the adjoint z. In the end, we use that

〈L′q(q?, u?, z?), δq − q?〉Q∗,Q = 〈J ′q(q?, u?), δq − q?〉Q∗,Q ∀δq ∈ Q .

Remark 2.32. Homogeneous Dirichlet boundary conditions are a bit delicate in this
approach because when using V = H1

0 (Ω) its dual is V∗ = H−1(Ω).

Impact on shape optimization We flash forward to the next chapter and shape
optimization: Basically, we translate shape optimization problems with perturbation
of identity to the optimal control problem (2.44). Since without further ado a set of
domains O forms no Banach space for which we have the results above, one considers
instead a space of diffeomorphisms τ = id+ q with q from a Banach space Q, whose
images yield the very set of domains O = {τ(Ω) = (id+ q)(Ω), q ∈ Q}. Eventually,
the control space Q is identified with the space of transformations and the operators
A(q, u) and F(q) are the transformed bilinear and linear forms â(τ)(û, v̂) and l̂(τ)(v̂)
in (2.35)–(2.37) from Section 2.3.3 due to a change of variables.
The Lagrangian approach which leads to the kkt system plays a significant role

because in this system and especially in the partial derivative L′q in Theorem 2.29 and
following, the derivative δqu of the state u does not occur anymore. However, usually
the differentiability of the state is assumed. In contrast to that, [Ito and Kunisch, 2008]
showed that the approach is also applicable to optimization problems where the state
variable cannot be differentiated w.r.t. the control. Especially for shape optimization
this means that even though the state is not differentiable with respect to the shape
we can obtain the shape derivative of the cost functional, i.e. the kkt system.
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3
Abstract Shape Optimization

Framework

In this chapter we study the shape optimization problems (1.1) and how to derive
first-order optimality conditions for them. This yields in particular a shape gradient
that can be used as descent direction in a numerical optimization of our applica-
tions in Chapter 6. As one of the basic references in shape optimization we refer
to [Murat and Simon, 1976a], [Pironneau, 1983], [Sokolowski and Zolésio, 1992] and
[Haslinger and Mäkinen, 2003]. Additionally, we point to [Allaire and Jouve, 2005]
and [Bendsøe and Sigmund, 2003] for the homogenization approach and topology
optimization.

Since shape optimization is a special case in optimal control, it leans on Chapter 2.4.
As usual in optimal control, sops are posed in infinite-dimensional function spaces.
Likewise, we are compelled to decide for the numerical realization later if we derive
optimality conditions before or after the discretization. We compare both variants in
Chapter 4 for iga, however, the foundation for optimizing first is given in this chapter.

The analysis of the infinite-dimensional problem matters because it can give more
information than a discrete version: In [Haslinger and Mäkinen, 2003, p. 11 ff.] and
also in [Allaire and Henrot, 2001], as an example, a finite-dimensional problem may
have a solution when the original (i.e. the infinite) has none.

Our targeted optimality system and shape gradient do not carry information about
numerical discretization like meshes and geometry parameterization yet. However, in
view of isogeometric shape optimization later we propose a formulation which already
considers that in iga all domains are parameterizations over a fixed parameter domain.
These transformations are then discretized by b-splines or nurbs in Chapter 4. We
discuss our abstract frame in the light of similar transformation approaches such as
[Eppler et al., 2007], [Ito et al., 2008], [Brandenburg et al., 2009], and [Kiniger, 2015].

The chapter is organized as follows. In Section 3.1 we first introduce shape
optimization problems over a set of domains O to fix the notation and highlight the
challenges arising for these problems. Subsequently, we use the classical perturbation
of identity approach from [Murat and Simon, 1976b] to construct a metric on O in
Section 3.2 and provide a differential structure with which first specimen of shape
derivatives are shown. This is as much a guideline as a basis to our framework: We use
this method in Section 3.3 to reformulate the general shape optimization problem
over a fixed parameter domain. This point of view absorbs isogeometric analysis and
results in a scheme to obtain iga-typical shape derivatives. Finally, we can give the
optimality system for the sop in its optimal control form in an isogeometric analysis
suitable way Section 3.4.
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3.1 Shape Optimization Problems

In this section we add some amendments like necessary function spaces to the formu-
lation of shape optimization problems (1.1) in the introduction to this thesis to make
them well-defined. Moreover, we briefly touch on the question of existence of optimal
shapes.

Problem formulation

From the manifold of applications also arise different classes of shape optimization
problems—only a fraction of which is treated in this work. First of all, we exclude
topology optimization. That is, we do not allow the generation of new holes during the
optimization process, for a comparison see Figure 3.1. Topology optimization requires
different techniques and does not indicate to benefit from tensor-product structured
discretizations inherent to iga.

Ω

(a) Initial domain
Ω

(b) Geometric optimization
Ω

(c) Topology optimization

Figure 3.1: Difference of geometric and topological optimization on an initial design:
Topological optimization allows new holes.

We recall the shape optimization problem (1.1) from the introduction

min J(Ω, u) s.t. e(Ω, u) = 0 and Ω ∈ Oad , (3.1)

for admissible domains Ω ∈ Oad ⊂ P(Rd), d = 2, 3, under a constraint in form of
a second order linear elliptic pde e(Ω, u) = 0 from Section 2.2. We say that P(S)
is the power set of a set S, i.e. it contains all subsets of S. Such problems cannot
be analyzed immediately because the usual tools like continuity and differentiation
are, at first, not available on P(Rd). Here, we fix the notation of shape optimization
problems to tackle shape continuity and differentiation in the next section.
To say that we solve a pde over various domains, we state the pde operator e(·, ·)

more precisely.

Definition 3.1. Let Oad denote a set of bounded domains in Rd. For any Ω ∈ Oad
let U(Ω) and Z(Ω) define Banach spaces of functions over Ω. Then

e : {(Ω, u) : Ω ∈ Oad, u ∈ U(Ω)} → {z ∈ Z(Ω),Ω ∈ Oad} (3.2)

is an operator between them where e(Ω, u) = 0 solves a pde posed over Ω as in Section
2.2. The spaces U(Ω) and Z(Ω) must be chosen carefully for it to be well-defined. For
fixed domains, the pde operator notation is explained on page 13.
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Consistent data In order to make pde data in e(·, ·) like Lu− f = 0 well defined
for all Ω we assume that there is a holding-all D ⊂ Rd for which Ω ⊂ D for all Ω ∈ O.
For instance let then f be defined over D and in Lu− f = 0 we actually consider f
restricted to Ω. We can now better specify an sop.

Definition 3.2. For a holding-all D ⊂ Rd, a bounded domain, let Oad ⊂ O ⊂P(D)
be a set of bounded, admissible domains Ω ⊂ D, and denote by U(Ω) and Z(Ω) Banach
spaces over Ω ∈ Oad. In Oad additional constraints can be formulated. The functional
J is the real valued objective function defined over

J : {(Ω, u) : Ω ∈ Oad, u ∈ U(Ω)} → R ,

and the operator e(·, ·) is given by Definition 3.1. Then an abstract sop (3.1) over a
set of domains takes the form{

find Ω? ∈ Oad such that
J(Ω?, u(Ω?)) ≤ J(Ω, u(Ω)) and e(Ω, u) = 0 .

(P)

The notation in Definition 3.1 stems from [Brandenburg, 2011] and is motivated by
optimal control problems (2.44). There, O is replaced by a control space Q and q ∈ Q
is for instance a parameter in the pde. A comparison between such standard optimal
control problems and sops (P) immediately reveals the crux in shape optimization: In
(2.44) e(·, ·) is defined over Qad × U to Z, where typically Ω is fixed and thus are the
Banach spaces U and Z, unlike in (3.2), where {U(Ω), Ω ∈ O} and {Z(Ω), Ω ∈ O}
are families of function spaces.

The existence of optimal shapes in the problem formulation over a set of domains is
studied next.

Existence of optimal shapes

Suppose O is a complete, metric space, i.e. for a sequence of domains {Ωn} ⊂ O the
convergence Ωn → Ω to an element Ω ∈ O makes sense.

Assumption 3.3. We assume that
(A1 ) Oad ⊂ O is compact.
(A2 ) The problem (P) has a feasible point.
(A3 ) To each Ω ∈ O exists a unique solution u(Ω) ∈ U(Ω) of the state equation.
(A4 ) The solutions u(Ω) of the state equation depend continuously on Ω ∈ Oad, i.e.

Ωn → Ω⇒ un → u with some sort of convergence for un ∈ U(Ωn) across different
function spaces to u ∈ U(Ω).

(A5 ) J is sequentially weakly lower semicontinuous.

Denote the feasible set of (P) as

Wad := {(Ω, u) : Ω ∈ Oad, u = u(Ω) solves the state equation} . (3.3)

Then [Haslinger and Mäkinen, 2003] boils the existence of optimal domains for (P)
down to fulfilling the above assumptions.
Theorem 3.4.
Under Assumption 3.3 the shape optimization problem (P) has at least one solution.
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Proof. We state and comment on [Haslinger and Mäkinen, 2003, Theorem 2.10, p. 47].
From (A2 ) we know Wad 6= ∅ and

J? := inf
(Ω,u)∈Wad

J(Ω, u) exists.

There is a minimizing sequence (Ωn, un) ⊂ Wad such that lim
n→∞ J(Ωn, un) = J? . Since

Oad is compact, (A1 ), we can extract a subsequence {Ωnk} and Ω? ∈ Oad such that

Ωnk → Ω?, k →∞ .

Therefore, (A4 ) ensures that also u(Ωnk)→ u(Ω?), k →∞ , and because of (A5 )

lim inf
k→∞

J(Ωnk , u(Ωnk)) ≥ J(Ω?, u(Ω?))

which concludes the proof by definition of J?.

Note, that we structured the assumptions to match those for the standard optimal
control case in Theorem 2.22 where similar concepts are used. The existence result
for sops from [Haslinger and Mäkinen, 2003] is kept very general, however, a metric
on O is established with perturbation of identity next. Checking (A1 ) and (A4 ) in
Assumption 3.3 is not trivial; the continuity across function space families is realized
with extending un from Ωn to the holding all D and then convergence in the Lebesgue-
norm via characteristic functions is shown. For the compactness of the shape “space”
[Haslinger and Mäkinen, 2003] use functions for the boundary to characterize a shape.
Under uniform convergence of these, the Arzelà-Ascoli theorem yields compactness.
The next section provides a vector space structure for the set of shapes in which

domains are “points”, and a differential structure to calculate shape sensitivities.

3.2 Perturbation of Identity Method

We follow [Murat and Simon, 1976b] or their summary [Murat and Simon, 1976a] to
introduce the method of perturbation of identity. A particularly helpful overview of
the method is given in [Brandenburg, 2011, Lindemann, 2012].
To set the course of this section, we pretend for a moment that Ω is a point, i.e.

Ω ∈ Rd, and consider the usual definition of a functional J : O → R continuous at Ω
and its linearization with its derivative for ‖δΩ‖ → 0

lim
Ω′→Ω

J(Ω) = J(Ω) and J(Ω + δΩ) = J(Ω) + J ′(Ω)δΩ + o(‖δΩ‖) .

So for shape continuity of J we need a notion of convergence Ω′ → Ω which is given in
case there is a metric d on O

Ω′ → Ω⇔ d(Ω′,Ω)→ 0 in R .

Moreover, the derivative necessitates a linear space structure with an addition Ω + δΩ
and a norm on O. All shape optimization methods somehow have to provide these
structures; we use the well-known perturbation ansatz from [Murat and Simon, 1976a].
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3.2 Perturbation of Identity Method

To find a metric, a suitable space of transformations C is used to express the shapes
O ⊂ {Ω = τ(Ω0) : τ ∈ C } and the metric from this space induces the one on O.
To take control over domain variations, the transformations are used to perturb the
current domain. The differential structure can then be induced on O through the
perturbations. Thus, by considering variations of functions, the sop is shifted to an
optimal control setting and concepts from Section 2.4 can be used to assert existence
results and more importantly to derive optimality conditions.
In this section we proceed as follows. First we introduce a metric on the set of

domains by considering domains resulting from transformations τ ∈ C of a reference
domain. This allows to define a sort of shape continuity of functions φ(Ωn)→ φ(Ω)
if Ωn → Ω for n → ∞ by considering τn → τ . Next, a notion of differentiability is
established, i.e. instead of ∂ΩJ we use ∂τJ .

3.2.1 Metric structure

For a positive integer k define the space of transformation of regularity k

V k :=
{
τ : Rd → Rd with τ = id+ q, where q ∈W k,∞(Rd)d

}
(3.4)

and denote a set of perturbations of identity by

C k :=
{
τ : Rd → Rd bijection, τ, τ−1 ∈ V k

}
. (3.5)

Then let Ω0 ⊂ Rd be an open, connected reference domain and denote by

Dk
Ω0 := {Ω ⊂ Rd : Ω = τ(Ω0) with τ ∈ C k} (3.6)

the set of all domains resulting from transformations under C k. For a fixed k > 0
and norm ‖.‖ = ‖.‖Wk,∞(Rd)d the map d̃ on Dk

Ω0 ×Dk
Ω0 defined by

d̃(Ω1,Ω2) = inf
τ(Ω1)=Ω2,
τ∈C k

{‖τ − id‖+ ‖τ−1 − id‖} (3.7)

is a pseudo-distance on Dk
Ω0 as the triangle inequality does not hold. However, with

the following statement from [Murat and Simon, 1976a, Theorem 1, p. 56] this can be
mended.
Theorem 3.5.
For fixed k > 0 there exists a constant η > 0 such that

d(Ω1,Ω2) := inf{
√

d̃, η} (3.8)

defines a metric on Dk
Ω0 and (Dk

Ω0 ,d) is a complete, metric space.
A perturbation τ ∈ C k has the form τ = id+ q where q ∈W k,∞(Rd)d. So basically,

the desired distance between two shapes in Theorem 3.5 is induced by the norm of the
space of domain variations, i.e. by the vector space W k,∞(Rd)d which contains the
perturbations q.
The next lemma asserts that Ωn → Ω if qn → q.
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Lemma 3.6. Let Ω ∈ Dk
Ω0 and k > 0, Ω0 open in Rd. Then for r > 0 small enough,

q 7→ (id+ q)(Ω) transforms a neighborhood of 0 ∈W k,∞(Rd)d given by the open ball
BWk,∞(Rd)d(0, r) to a neighborhood of Ω given by the open ball BDkΩ0

(Ω, r) = {Ω′ ∈
Dk

Ω0 : d(Ω,Ω′) < r}.
Proof. Proof in [Murat and Simon, 1976b, Lemma 3.1, p. III-2 ].

Remark 3.7. Typically, we do not consider the convergence of Ωk anymore from now
on but of qk or τk instead. Moreover, we note that Ω0 served to define the shape space
Dk

Ω0 and its metric. In the perturbation of identity method, it has no special position
furthermore.

3.2.2 Differential structure

We now define a notion of derivatives w.r.t. domains. As done for the distance function
the question is recast in the space of perturbations. Instead of maps defined over a set
of domains, like J : O × {U(Ω), Ω ∈ O} → R, consider functionals over the space of
perturbations V k from (3.5) which yield O. The Sobolev spaceW k,∞(Rd)d has already
the desired linear structure and so has the affine space V k. We use this to define
shape differentiability by extending the notion of Gâteaux- and Fréchet derivatives to
sets (domains) as [Murat and Simon, 1976a, Def. 3.1, p. III-3].

Definition 3.8. Let X denote a Banach space and φ a map from an open set O ⊂ Dk
Ω0

where k > 0 with values in X, φ : O → X. We say φ is (shape) differentiable at Ω ∈ O
if in a neighborhood of 0 in W k,∞(Rd)d the map

φ̃ : q 7→ φ
(
(id+ q)(Ω)

)
(3.9)

is defined and is Fréchet-differentiable at 0. Then, the (shape) derivative of φ is defined
by

φ′(Ω) := φ̃′(0) ∈ L
(
W k,∞(Rd)d, X

)
. (3.10)

Note that this means also for the differential at Ω in direction of δq ∈W k,∞(Rd)d

dφ(Ω; δq) := dφ̃(0; δq) = φ′(Ω)δq . (3.11)

In Definition 3.8 of shape derivatives it was possible to require Gâteaux-differentiability
of φ instead of Fréchet, however, then the chain rule for composite functions does not
hold anymore, which is important though for deriving necessary optimality conditions,
see [Delfour and Zolésio, 2011, p. 458] or [Murat and Simon, 1976a, Remark 3.2]. It
is especially vital for isogeometric shape optimization where we always consider
compositions with parameterizations G of the current domain Ω. Therefore the chain
rule for perturbations of identity is very important for shape optimization with iga.

Lemma 3.9. Let φ : O → X be a shape functional with values in a Banach space X
where O ⊂ Dk

Ω0 with k > 0. Further denote by F : Y → O a map from a Banach space
Y onto the shape space. If F is differentiable at y and if φ is differentiable at Ω = F (y)
in the sense of Definition 3.8 then φ ◦ F is differentiable from Y to X at y and

(φ ◦ F )′(y)δy = φ′(Ω)
(
F ′(y)δy

)
.
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3.2 Perturbation of Identity Method

Proof. Proof in [Murat and Simon, 1976a, Prop. 3.3, p. III-11].

Fréchet-differentiable functions are also directionally differentiable, see also Definition
B.16. For practical purposes that is the derivative we evaluate and for which we now
introduce the notation.

Directional shape derivatives Let φ(Ω) be a given shape functional, then the
shape derivative at Ω or at q = 0 respectively in direction of δq is defined with
perturbation of identity in Definition 3.8 as

dφ(Ω; δq) := dφ̃(0; δq) .

For directional derivatives at Ω and q = 0 respectively, we look at domain variations
in a fixed direction δq ∈W k,∞(Rd)d with parameter t ≥ 0 and

τt := id+ tδq, Ωt := τt(Ω), τ0 = id . (3.12)

Then we have an equivalent formulation for the directional derivatives at Ω

dφ(Ω; δq) = dtφ
(
τt(Ω)

)∣∣∣
t=0

= lim
t↓→0

1
t

(
φ
(
τt(Ω)

)− φ(τ0(Ω)
))

= lim
t↓0

1
t

(
φ(Ωt)− φ(Ω)

)
or

= dtφ̃(tδq)
∣∣
t=0 .

(3.13)

We apply the definition of shape derivatives to some important shape functionals in
the following.

3.2.3 Shape derivatives

In this section we state some shape derivatives of functions of interest obtained with
perturbation of identity. Note, that they coincide with those obtained by the speed
method in [Sokolowski and Zolésio, 1992]. We also state the result from there for the
sake of completeness. Before considering differentiating cost functionals in full, we
state some properties of the perturbations of identity.

Lemma 3.10. Let τ ∈ C k for k > 0. It holds:

(i) φ(τ) := |det Jτ | is differentiable from V k to W k−1,∞(Rd). Moreover, we have
for τ = τ(q) = id+ q that φ̃(q) := φ ◦ τ(q) is differentiable with the chain rule:
For all δq ∈W k,∞(Rd)d

dφ̃(q; δq) = dφ
(
τ(q); dτ(q; δq)

)
=

= |det Jτ |(div(δq ◦ τ−1)) ◦ τ = |det Jτ | tr(Jδq J−1
τ ) .

(3.14)

(ii) The map to the inverse Jacobian of the perturbation φ(τ) := J−1
τ is differentiable

from V k to W k−1,∞(Rd,2d). With the chain rule we have that for all δq ∈
W k,∞(Rd)d the differential of φ̃(q) = φ(τ(q)) is

dφ̃(q; δq) = − J−1
τ Jδq J−1

τ . (3.15)
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Proof. The lemma summarizes Lemma 4.2 and 4.3 from [Murat and Simon, 1976b].

Note, that τ = id + q is the identity for q = 0. Therefore, with perturbation of
identity, the directional derivative in Lemma 3.10

(i) for φ̃(q) = |det Jτ(q)| is given as dφ̃(0; δq) = div δq ,

(ii) for φ̃(q) = J−1
τ(q) is given as dφ̃(q; δq) = − Jδq .

The determinant of the Jacobian appears from a change of variables in integrals and
has to be differentiated to obtain the shape sensitivities of such domain or boundary
integrals next.

Shape derivatives of domain integrals

In this section we study shape functionals where the domain of integration is the
variable

J(Ω) =
∫
Ω

φ(Ω)(x) dx . (3.16)

We assume that φ is defined over Dk
Ω0 for k > 0 and that it is integrable, φ(Ω) ∈ L1(Ω).

As in (3.9) consider the transported function φ̃(q) = φ
(
(id + q)(Ω)

) ◦ (id + q) for a
fixed Ω which is also in L1(Ω) by a change of variables, and especially φ̃(0) = φ(Ω).
Assume that φ̃(q) is Fréchet-differentiable from W k,∞(Rd)d to L1(Ω). Then we have
the shape derivative defined by (3.9) in direction of δq ∈W k,∞(Rd)d at q = 0 or at Ω
respectively

dJ(Ω; δq) =
∫
Ω

φ(Ω) div δq + dφ̃(0; δq) dx . (3.17)

Proof. For q ∈W k,∞(Rd)d in a neighborhood of 0 set τ(q) = id+ q and consider that

J
(
(id+ q)(Ω)

)
=

∫
τ(q)(Ω)

φ
(
τ(q)(Ω)

)
(x) dx . (3.18)

In a neighborhood of 0 these perturbations of identity τ ∈ C k behave like diffeomor-
phisms in the sense that a change of variables holds due to Theorem 2.17

J̃(q) :=
∫
Ω

φ
(
τ(q)(Ω)

)(
τ(q)(x)

)|det Jτ(q)| dx =
∫
Ω

φ̃(q)|det Jτ(q)| dx . (3.19)

Since φ̃ is differentiable by assumption and |det Jτ | by Lemma 3.10, so is J̃ with

dJ̃(q; δq) =
∫
Ω

(
dφ̃(q; δq) + div(δq ◦ τ(q)−1) ◦ τ(q)

)
|det Jτ(q)|dx (3.20)

and at q = 0 we have the shape derivative dJ(Ω; δq) which yields (3.17), because
then τ(0) = id = τ(0)−1 and det Jτ(0) = 1. We refer to [Murat and Simon, 1976b],
Theorem 4.1, for the original proof.

36



3.2 Perturbation of Identity Method

Example 3.1. Assume in (3.17) that the dependence of a function φ ∈W 1,1(Rd) to
the shapes is given only by its restriction to Ω,

φ(Ω) = φ|Ω .

Then φ̃(q) = φ ◦ (id+ q) over Ω and it is differentiable at 0 from W k,∞(Rd)d to L1(Ω)
with dφ̃(0; δq) = ∇φ · δq. In particular, this leads to the explicit representation

dJ(Ω; δq) =
∫
Ω

φ div δq +∇φ · δq dx =
∫
Ω

div(φδq) dx (3.21)

where the latter results from identity (A.1) in the Appendix for the divergence operator.

Remark 3.11. We note here that the chain rule and directional derivative lead to the
derivative of φ̃(q): dφ̃(0; δq) = dtφ ◦ (id + tδq)|t=0 = ∇φ · δq. The more demanding
Fréchet-differentiability is proved in [Murat and Simon, 1976b].
Similarly to the above, we next state the shape derivatives of boundary integrals.

Shape derivatives of boundary integrals

In case of shape functionals depending on the integrals over the boundary of a domain

J(Ω) =
∫
∂Ω

φ(Ω)(s) ds (3.22)

where Ω ∈ Dk
Ω0 we state the result from [Murat and Simon, 1976a, Thm. 4.3, p. IV-39]:

Let Ω0 be a open, bounded subset of Rd with a boundary that is locally Lipschitz and
k > 1 such that φ(Ω) ∈ L1(∂Ω). If for Ω ∈ O ⊂ Dk

Ω0 the functional

φ̃(q) = φ
(
(id+ q)(Ω)

) ◦ (id+ q)

is differentiable, then we have for all directions δq ∈W k,∞(Rd)d

dJ(Ω; δq) =
∫
∂Ω

dφ̃(0; δq) + φ(Ω)(div δq − nT JT
δq n) ds . (3.23)

Shape derivatives of state equation

In both cost functionals (3.16) and (3.22) the integrand φ is fairly general and can be
in some cases just a restriction to Ω as in Example 3.1. However, in the presence of
terms like a state u = u(Ω) as solution from e(Ω, u) = 0 the derivative dφ̃(0; δq) needs
more attention. It requires the derivative of u, i.e. of the control-to-state operator
S(q) = u(id+ q) ◦ (id+ q), which is obtained as for usual optimal control problems by
using the implicit function theorem. Therefore, by (2.49) the derivative is given as
solution to

e′u(Ω, u)δqu = − e′q(Ω, u)(δq) ,

where δqu = dS(q; δq) = S′(q)δq is the sensitivity of the state w.r.t. changes in the
shape. However, to find e′q and e′u one has to use the variational forms since the
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control occurs in the domains of integrations. We do not state the shape derivatives
here because we circumvent them with the Lagrange formalism in the next section.
They can be found for the perturbation of identity method in Chapters 5 and 6 of
[Murat and Simon, 1976a] for Poisson problems with Neumann or inhomogeneous
Dirichlet boundary conditions, though.

Shape gradients

Up to now we have considered only shape derivatives in the direction of some variations
like dJ(Ω; δq) in Example 3.1. Since it is defined as Fréchet-derivative of J̃(q) and
is real-valued we get the shape gradient similarly with the gradient definition from
Appendix B.3 item (iv) for X ⊂W k,∞(Rd)d

〈∇J, δq〉X∗,X = dJ̃(q; δq) ∀δq ∈ X . (3.24)

Shape derivatives with the speed method

The speed method is another scheme to introduce shape calculus. It is described
in [Sokolowski and Zolésio, 1992] and uses similar ideas to perturbation of identity
method. We mention it because it is also one of the fundamental concepts of shape
optimization and the reference above holds examples of shape derivatives for many
problems. To be able to use shape derivatives from either one of these methods, we use
[Delfour and Zolésio, 2011] where it is shown that under mild assumptions both yield
the same derivatives. We briefly introduce the speed method to state the important
Hadamard boundary representation for shape derivatives.

Speed method The speed method differs from perturbations of identity id+ q in
the transformations τ(q) which also accept non-autonomous perturbations:

Definition 3.12. Let Ω be a bounded domain in Rd with a piecewise smooth boundary
∂Ω of class Ck, k > 0, and material points x ∈ Ω, where we suppose that the normal field
n(x) exists almost everywhere on the boundary (see also the remark in classifications
of domains on page 10). For a vector field q ∈ C([0, ε); Ck(Ω̄;Rd)

)
which satisfies

• q(t, x) · n(x) = 0 for a.e. x ∈ ∂Ω,
• q(t, x) = 0 at points x of ∂Ω, where n(x) is undefined,

the transformation τ is given as solution to the ordinary differential equation

dtτ(t, x) = q
(
t, τ(t, x)

)
, τ(0, x) = x . (3.25)

This definition of “perturbations” by the speed method can be found in Definition
2.17, [Sokolowski and Zolésio, 1992], where the authors also show that then there
exists 0 < δ ≤ ε such that τ(t, ·) is one-to-one for each t < δ.

They introduce the Eularian derivative of shape functionals J(Ω) in the direction of
a vector field q from Definition 3.12 as

dJ(Ω; q) := lim
t↓0

1
t

(
J
(
τ(t,Ω)

)− J(Ω)
)
. (3.26)
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Definition 3.13. Shape functionals J are shape differentiable if the Eularian derivative
exists for all directions q and the mapping q → dJ(Ω; q) is linear and continuous from
C([0, ε); Ck(Ω̄;Rd)

)
into R.

Therefore, after a comparison with Definition 3.8 and (3.13) of the shape derivative
from perturbation of identity, we draw the conclusion that the vector fields q(·, x)
responsible for a local variation of the current domain Ω need not to be affine-
linear anymore. However, in case of autonomous q the speed method compared to
perturbation of identity requires only Gateaux- instead of Fréchet-differentiability.
A major emphasis of the speed method lies on the representation of the shape

derivatives in a boundary form – a result of the Hadamard structure theorem.

Hadamard Structure Theorem In Example 3.1 let Ω be also bounded and locally
Lipschitz, then the divergence theorem holds and we have a boundary representation
of the shape derivative obtained by perturbation of identity

dJ(Ω; δq) =
∫
Ω

div(φδq) dx =
∫
∂Ω

n · δqφ . (3.27)

This is expressed more generally by the Hadamard structure theorem which is derived
with the speed method and stated in [Delfour and Zolésio, 2011, Ch. 9 Thm. 3.6]. In
principle, it says that the gradient of J can be expressed as boundary representation,
i.e. that the Gauß’ divergence theorem holds.
Theorem 3.14 (Hadamard Structure Theorem).
Let J(·) be a shape functional which is shape differentiable after the speed method
fashion at every domain Ω of class Ck, Ω a subset of the holding-all D. There exists a
scalar distribution g such that for a specific class of shape functionals it is an integrable
function on ∂Ω. If this is the case then

dJ(Ω; δq) =
∫
∂Ω

gδq(0, s) · n(s) ds . (3.28)

Moreover, g is related to the shape gradient ∇J in (3.24) by a trace operator on ∂Ω.
The boundary representation is favorable for two reasons:
• If the structure theorem holds, we often have for the derivative of J(Ω) =∫

Ω φ(Ω) dx a simpler structure

dJ(Ω; δq) =
∫
Ω

div
(
φ(Ω)(x)δq(x)

)
dx =

∫
∂Ω

φ(Ω)δq(s) · n(s) ds .

Then we do not have to compute any derivatives of φ(Ω) for div
(
φ(Ω)(x)δq(x)

)
anymore and it may be more easily implemented.
• The boundary integral may be more efficiently evaluated than the domain
integral, for instance needing less quadrature points.

However, there also is a drawback:
Remark 3.15. It has been observed, [Delfour and Zolésio, 2011, Chapter 10, Remark
2.3], that the boundary representation of the shape derivatives is often numerically
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unreliable because the finite element solution of the state equation does not yield the
smoothness necessary for the Hadamard structure theorem, i.e. g may not be in L1

then.
The last remark can be seen as an argument for isogeometric analysis as it can

often raise the continuity of geometry and solution representations by using smoother
b-splines.
Remark 3.16. Note, that in perturbation of identity the perturbations q are elements
from W k,∞(Rd)d whereas in the speed method they are from Ck(Ω̄). With Lemma
B.15 functions in W 1,∞(Ω)d can be identified with continuous versions, which relates
the two vector fields from speed and perturbation method.
We now move on to already regard iga traits and use a transformation approach

to express the sop over a reference domain of fixed shape. This leads finally to
the Lagrange approach to obtain first order optimality conditions suitable for an
isogeometric discretization later in Chapter 4.

3.3 Transformation Approach for Isogeometric Shape
Optimization

This is the essential part of this chapter and important to the thesis, so we summarize
the previous sections and motivate the next steps before going into details.

Previously In the sections before we introduced perturbation of identity as a means
to define derivatives w.r.t. shapes. We assumed that it yields the same sensitivities
as the speed method, briefly sketched there, too. Then a notion of differentiability
was established by locally varying the current domain Ω ∈ O using perturbations
of identity τ = id + q where q ∈ W k,∞(Rd)d is the vector field affecting the change
in the domain. The metric induced by W k,∞(Rd)d plays a minor role from now on.
Significant, though, is that the shape derivatives are displayed in terms of each current
domain Ω, e.g. in the Hadamard structure

dJ(Ω; δq) =
∫
∂Ω

φ(Ω)δq(s) · n(s) ds . (3.29)

Since our aim is to tailor perturbation of identity towards iga we filter important
characteristics for our next steps.

Next steps In iga we have a parameterization of the current domain Ω = G(Ω̂) over
the fixed parameter domain Ω̂. This leads to a shape derivative recipe for isogeometric
analysis

1. Analyze the infinite-dimensional problem, e.g. answer if it is well-posed and obtain
the shape derivative for the infinite-dimensional problem from perturbation of
identity or the speed method in the boundary representation (3.29).

2. Apply a change of variables in the integral of the shape derivative with the
isogeometric parameterization of the domain or the boundary

dJ(Ω; δq) =
∫
∂Ω̂

(
φ(Ω)(s)δq(s) · n(s)

) ◦G(ŝ)|det JG| dŝ . (3.30)
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In the publications on iga shape optimization using the optimize first–discretize then
approach, [Blanchard et al., 2013, Bandara et al., 2015], this method is used. As it
stands, it means that
• the current domain Ω is disturbed to (id+ q)(Ω),
• all sop terms are pulled back to Ω by a change of variables to derive the shape

derivatives,
• then iga is applied which means another change of variables to pull back all

terms to the parameter domain Ω̂.
It implies the assumption that each domain Ω ∈ O can be given by a b-spline represen-
tation G. Our aim is to combine the two change of variables into one transformation
to state the kkt optimality conditions for a parameter problem. This emphasizes a
discretization of state and control through iga and the assumption that there are such
geometry representations is more pronounced.
We first review the recipe to see where iga enters and to motivate the proposed

transformation approach which we introduce subsequently. Finally, on this basis,
we formulate the kkt optimality system which is discretized in Chapter 4 with
isogeometric analysis.

3.3.1 Isogeometric shape sensitivities

We study the “recipe” of calculating shape sensitivities in iga using pre-calculated
shape derivatives from perturbation of identity or from the speed method. This
approach shows where isogeometric discretization assumptions enter and what it
signifies for our abstract frame. It is based on our results in [Fußeder et al., 2015].

For isogeometric analysis we assume that the domain Ω = G(Ω̂) is parameterized by
a geometry function G over the parameter domain Ω̂ = (0, 1)d, the unit hypercube.
The geometry function is supposed to satisfy either (2.31) or (2.32), i.e. it is a C1-
diffeomorphism or bi-Lipschitz homeomorphism. We set Q̂ := W 1,∞(Ω̂)d

Lemma 3.17. For a shape functional J with j1(u) ∈ L1(Ω) and j2(u) ∈ L1(Γ),

J(Ω, u) =
∫
Ω

j1(u)(x) dx+
∫

Γ⊂∂Ω

j2(u)(s) ds , (3.31)

we obtain the isogeometric shape sensitivities in direction δq̂ ∈ Q̂ as

dJ(G; δq̂) =
∫
Ω̂

(∇j1 ◦G · δq̂ + j1 ◦G tr(J−1
G Dδq̂

)| det JG | dx̂ (3.32)

+
∫
Γ̂

(
∇j2 ◦G · δq̂|J− T

G n̂|+ j2 ◦G tr(J−1
G Dδq̂)

−j2 ◦G
n̂T J−1

G J− T
G Dδq̂T J− T

G n̂

|J− T
G n̂|

)
|det JG| dŝ . (3.33)

Proof using perturbation of identity and transformation rule. One considers the clas-
sical shape derivatives given in (3.21) and (3.23)

dJ(Ω; δq) =
∫
Ω

∇j1 · δq + j1 div δq dx+
∫
∂Ω

∇j2 · δq + j2(div δq − nT JT
δq n) ds
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and applies the transformation rule for Ω = G(Ω̂). From Corollary 2.18 and Remark
2.19 we know that all δq ∈W 1,∞(Rd)d are transported to Q̂ = W 1,∞(Ω̂)d. Therefore
we set δq ◦G =: δq̂. Furthermore, (div δq) ◦G = tr(J−1

G Dδq̂) and n ◦G = J−T
G n̂

|J−T
G n̂| .

The advantage of this view is that we can immediately reuse existing shape derivatives
from the optimize first approach for perturbation of identity or the speed method. For
shape derivatives in the Hadamard structure (3.28) it is especially beneficiary. Then
all one has to do is to apply the isogeometric transformation on the boundary. This is
done for iga in [Bandara et al., 2015] and [Blanchard et al., 2013].
However, to be able to use the Hadamard structure theorem in the first place, the

state needs a higher regularity. With Remark 3.15, it is therefore often computationally
better to use domain integral representations of the shape gradient. This in turn
implies for iga the calculation of derivatives in the bilinear and linear form, which
might prove more difficult to execute explicitly. Therefore, we propose a more direct
route, i.e. combining the change of variables from perturbation of identity and from
iga.
Lemma 3.17 invokes the isogeometric paradigm for the shape variations when we

chose δq as the push-forward of the parameter domain version δq = δq̂ ◦G−1 and the
perturbation of identity is transformed to

τ(Ω) = (id+ tδq)(Ω) = (id+ tδq)
(
G(Ω̂)

)
= (G+ tδq ◦G)(Ω̂) . (3.34)

All in all, we learn that O andW 1,∞(Rd)d are approximated by splines, and a variation
of the domain Ω is in iga just a variation of the geometry function G as is illustrated
in Figure 3.2.

Ω̂ Ω

Ωt

G

G+ tδq̂ id+ tδq

Figure 3.2: Perturbation of identity with iga where δq̂ = δq ◦G

We take this last remark as a guidance for our transformation approach.

3.3.2 Transformed shape optimization problem

This section’s aim is a shape optimization problem formulated over a fixed reference
domain and fixed function spaces for the pde, with the help of a transformation
approach. We discuss our approach in connection with similar methods at the end of
this section.

Transformed problem

In Definition 3.2 of abstract sops over a set of domains we have

J : {(Ω, u) : Ω ∈ Oad, u ∈ U(Ω)} → R

e : {(Ω, u) : Ω ∈ Oad, u ∈ U(Ω)} → {z ∈ Z(Ω), Ω ∈ Oad}
(3.35)
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3.3 Transformation Approach for Isogeometric Shape Optimization

Let Q̂ = {q̂ : Ω̂→ Rd} = W k,∞(Ω̂)d with Ω̂ = (0, 1)d be a Banach space with subsets
G, Gad ⊂ Q̂ where

Gad ⊂ G = {G ∈ Q̂ : G is one-to-one from Ω̂ to G(Ω̂) and satisfies (2.31)} . (3.36)

Alternatively, let G ∈ G satisfy (2.32). This means, the transformations in G can
send the variational state equation from Ω to an equivalent formulation over the unit
hypercube. Assume that the admissible shapes Oad are generated by G

O = {Ω = G(Ω̂) : G ∈ G} and Oad = {Ω = G(Ω̂) : G ∈ Gad} . (3.37)

Then we can substitute G(Ω̂) for Ω in (3.35) and further formulate an sop on Gad by
using U(G) := U(G(Ω̂)

)
= U(Ω) and Z(G) := Z(G(Ω̂)

)
in

J : {(G, u) : G ∈ Gad, u ∈ U(G)} → R ,

e : {(G, u) : G ∈ Gad, u ∈ U(G)} → {z ∈ Z(G), G ∈ Gad} .
(3.38)

We spared ourself the task of defining extra J and e(·, ·) over Gad instead of Oad.
However, now we pull back J and e(·, ·) to the parameter domain Ω̂ by a change of
variables. For that, we fix the Banach spaces Û := U(Ω̂), Ẑ := Z(Ω̂) and finally, define
new operators and function spaces over the parameter domain

Ĵ : {(G, û) ∈ Gad × Û} → R ,

ê : {(G, û) ∈ Gad × Û} → Ẑ .
(3.39)

In order to link (3.39) to (3.38) and thus to the original (3.35) let ê(·, ·) be such that
for all G ∈ Gad the following holds

ê(G, ûG) = 0 ⇔ e(G, uG) = e(G(Ω̂), uG) = 0 (3.40)

with ûG ∈ Û , uG ∈ U(G) and ûG = uG ◦ G. Then the abstract sop over a set of
domains from Definition 3.2 takes a form similar to an optimal control problem on a
parameter domain with fixed function spaces in the following definition.

Definition 3.18. A transformed shape optimization problem on a parameter domain
is given by{

find G? ∈ Gad such that
Ĵ(G?, û?) ≤ Ĵ(G, û) ∀G ∈ Gad and ê(G, û) = 0 .

(P̂)

Assumption (3.36) can be met with perturbation of identity: If we have a parame-
terization of the domain which generates the shapes Dk

Ω0 in perturbation of identity,
G0 : Ω̂→ Ω0, and G0 satisfies (2.31) then G = {τ ◦G0 = G0 + q ◦G0 : τ ∈ C k}.

Other transformation approaches

We remark on similar transformation approaches:
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• Our notation above follows [Brandenburg et al., 2009] and [Lindemann, 2012]
who defined the transformations as perturbations of identity id + q over the
reference domain Ω0. That is an extension of the original perturbation of identity
method by [Murat and Simon, 1976a], where Ω0 was “only” used to generate the
shapes O ⊂ Dk

Ω0 in (3.6) and to obtain a metric. For the isogeometric frame we
proceed similar to it, however, our perturbations are defined over the parameter
domain, and they perturb the parameterization G instead of the identity id.
Moreover, as remarked in [Brandenburg et al., 2009, Chapter 4.9], fem solvers
still work for formulations over the physical domains. Therefore, the derivations
from the transformed problem are pushed forward again from the reference Ω0 to
the physical domain Ω. In contrast, iga solvers work only for formulations over
the parameter domain which makes the transformation approaches particularly
attractive.

• In [Eppler et al., 2007] and [Kiniger and Vexler, 2013, Kiniger, 2015] a domain
is identified by a function q describing the boundary. Whereas convergence rates
are the focus of [Eppler et al., 2007], in [Kiniger and Vexler, 2013, Kiniger, 2015]
the aim are a priori error estimates for shape optimization problems. A wavelet
boundary element method is used in [Eppler et al., 2007] to solve the state equa-
tion and to decouple state and control discretization for the convergence analysis.
The approach from [Kiniger and Vexler, 2013, Kiniger, 2015] uses another pde
problem to obtain a geometry from the boundary description q. It would be
interesting for a future investigation whether an iga solver could substitute the
wavelet solver, and an iga geometry generation fulfill the domain pde, thus
recovering the convergence rates and a priori error estimates.

• The approach from [Ito et al., 2008] plays a role in our Lagrange formulation in
the coming Section 3.4.

The embedding of shape optimization in an optimal control frame is useful because
then standard arguments for existence and convergence can be used directly. Especially
(A4 ) in Assumptions 3.3 for the existence result is less elusive, because the shape
continuity is not tracked over varying function spaces.

We next consider how to obtain the transformed problem (P̂) for given functionals
with transformations in G.

3.3.3 Transformed shape functionals

Let Ω be a domain in O. Since by our assumption O is generated by the transformations
in G there is a G ∈ G such that Ω = G(Ω̂), and (2.31) is satisfied.

Simple shape functionals Let X be a Banach space and φ : O → X a shape
functional. We consider transformed shape functionals φ̂ : G → X̂. If φ(Ω) = φ(x)|Ω is
just the restriction to Ω then the transformed shape functional is simply φ̂ = φ ◦G.
In cases involving integrals over Ω or Γ ⊂ ∂Ω with j1 ∈ L1(Ω) and j2 ∈ L1(Γ)

φ(Ω) =
∫
Ω

j1(x) dx+
∫

Γ⊂∂Ω

j2(s) ds (3.41)
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we apply a change of variables to obtain the transformed shape functional

φ̂(G) =
∫
Ω̂

j1 ◦G|det JG|dx̂+
∫
Γ̂

j2 ◦G|J− T
G n̂||det JG|dŝ. (3.42)

State equations Let u ∈ Z(Ω) be the weak solution of e(Ω, u) = 0 which means it
solves

〈e(Ω, u), v〉Z(Ω)∗,Z(Ω) = 0 ∀v ∈ Z(Ω) , (3.43)

or equally for our stationary model problems from Section 2.2 switching to the notation
from (2.27) in a suitable Hilbert space V(Ω)

a(u, v) = l(v) ∀v ∈ V(Ω) . (3.44)

A change of variables is applicable for transformations G satisfying (2.31). Hence,
with Corollary 2.18 the variational equation (3.44) is equivalent to

û ∈ V̂ : â(G)(û, v̂) = l̂(G)(v̂) ∀v̂ ∈ V̂ , (3.45)

where V̂ = V(Ω̂) and û = u ◦G. By Lemma B.5 in the Appendix we can retrieve a
pde operator ê for (P̂) from V̂ → V̂∗.

Cost functionals Similarly, a cost functional can be transformed with G ∈ G so
that J(Ω, u) = Ĵ(G, û). Let the original cost have the form (3.31)

J(Ω, u) =
∫
Ω

j1(u)(x) dx+
∫

Γ⊂∂Ω

j2(u)(s) ds (3.46)

where j1(u) ∈ L1(Ω) and j2(u) ∈ L1(∂Ω). Then the cost functional is transformed
under G from Ω to Ω̂

J(Ω, u) = Ĵ(G, û) :=

=
∫
Ω̂

̂1(û)|det JG|dx̂+
∫
Γ̂

̂2(û)|J− T
G n̂||det JG| dŝ . (3.47)

Note that in case the functions j1 and j2 contain a differential operator D applied to
u, we additionally have to consider the transformation Du ◦G = D(u ◦G) DG−1, as
in the case for bilinear and linear forms in equation (2.35)–(2.37). To take this into
account we introduce the notations ̂i = ji ◦G, i = 1, 2 in (3.47).

3.3.4 Sensitivity analysis

We proceed like in Section 3.2 for perturbation of identity, the difference being that a
perturbation has not the form τ = id+ q with q ∈ W k,∞(Rd)d anymore, but G+ q̂
with G ∈ G and q̂ ∈ Q̂ = W k,∞(Ω̂)d.
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Definition 3.19. Let X be a Banach space and φ : O → X a shape functional. Then
we define the isogeometric shape derivative of the transformed functional φ̂ at G ∈ G
as the Fréchet-derivative of the map

φ̌ : Q̂ → X, φ̌(q̂) := φ̂(G+ q̂)

at 0. That is, φ̂′(G) := φ̌′(0) and we evaluate the derivatives in the direction δq̂ ∈ Q̂ as

dφ̂(G; δq̂) = dtφ̂(G+ tδq̂)|t=0 . (3.48)

Note, that we introduced the additional notation φ̌ in Definition 3.19 to mimick
perturbation of identity and because G ∈ G ⊂ Q̂ but q̂ ∈ Q̂ might not be an element
in G.

As a sidetrack, we check the connection to classical perturbation of identity deriva-
tives.

Connection to perturbation of identity The connection to perturbation of
identity is given by the next lemma.

Lemma 3.20. Let X be a Banach space and φ : O → X a shape functional with its
transformed counter part φ̂ : G → X with φ̂(G) = φ(G(Ω̂)) and O = {Ω = G(Ω̂) : G ∈
G}. Then we have at G ∈ G with G(Ω̂) = Ω ∈ O for all δq̂ ∈ Q̂

φ̂′(G)δq̂ = φ′(Ω)(δq̂ ◦G−1) . (3.49)

Proof. Let F : G → O with F (G) := G(Ω̂) = Ω denote a mapping from an isogeometric
transformation to a physical domain. Then we have from the chain rule in Lemma 3.9
for shape derivatives by perturbation of identity that

(φ ◦ F )′(G)δq̂ = φ′(Ω)
(
F ′(G)δq̂

)
.

Furthermore, φ ◦ F (G) = φ̂(G) and F ′(G)δq̂ = δq̂(Ω̂). Using the identity Ω̂ 3 x̂ =
G−1(x) for x ∈ Ω completes the proof as then

φ̂′(G)δq̂(x̂) = φ′(Ω)
(
δq̂(x̂)

)
= φ′(Ω)

(
δq̂ ◦G−1(x)

)
.

As in Section 3.2.3 on perturbation of identity we provide our shape derivatives for
some important cases.

Shape sensitivities in the transformation approach We establish the shape
derivatives for terms due to a change of variables in integrals with isogeometric
perturbations.

Lemma 3.21. In the following we give the shape derivatives of terms due to the
transformation. We define the isogeometric perturbation of G ∈ G in a fixed direction
as Gt = G+ tδq̂ for a variation δq̂ ∈ Q̂. Then it holds at G in direction δq̂:

(i) G′δq̂ = δq̂.
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(ii) φ̂(G) := JG is differentiable with dφ̂(G; δq̂) = Jδq̂ .

(iii) φ̂(G) := |det JG| is differentiable with dφ̂(G; δq̂) = |det JG| tr(J−1
G Jδq̂) .

(iv) The map to the inverse Jacobian of the perturbation φ̂(G) := J−1
G is differentiable

with dφ̂(G; δq̂) = − J−1
G Jδq̂ J−1

G .

(v) The transformation term φ̂(G) := J−1
G J− T

G occuring for instance in bilinear forms
is differentiable with dφ̂(G; δq̂) = − J−1

G (Jδq̂ J−1
G + J− T

G JT
δq̂) J− T

G

Proof. In the following, we use the notation φ′(t) = dtφ(t).

(i) dtGt|t=0 = δq̂

(ii) dt JGt |t=0 = dt(JG +t Jδq̂)|t=0 = Jδq̂

(iii) We use the directional derivative of the Jacobian in point (ii) above and the
following derivatives
• dt detφ(t)|t=0 = detφ(0) tr

(
φ−1(0)φ′(0)

)
• dt|φ(t)|

∣∣
t=0= sign

(
φ(0)

)
φ′(0)

together with the chain rule to differentiate

dt|det JGt |
∣∣
t=0= sign(det JG) det JG tr(J−1

G Jδq̂) = |det JG| tr(J−1
G Jδq̂) .

(iv) 0 = dtI = dt(J−1
Gt

JGt)|t=0 = dt J−1
Gt
|t=0 JG + J−1

G dt JGt |t=0
(ii)=

= dt J−1
Gt
|t=0 JG + J−1

G Jδq̂ .

(v) dt(J−1
Gt

J− T
Gt

)|t=0 = dt J−1
Gt
|t=0 J− T

G + J−1
G dt J− T

Gt
|t=0

(iv)=

= − J−1
G Jδq̂ J−1

G J− T
G − J−1

G J− T
G JT

δq̂ J− T
G

With the recurrent derivatives above we are able to give the directional derivatives
of shape functionals in the transformed shape optimization problem (P̂):

Lemma 3.22. The isogeometric shape derivatives at G ∈ G in a direction of δq̂ ∈ Q̂
of the integrals in (3.42) is given by

dĴ(G; δq̂) =
∫
Ω̂

(∇j1 ◦G · δq̂ + j1 ◦G tr(J−1
G Jδq̂

)| det JG | dx̂ (3.50)

+
∫
Γ̂

(
∇j2 ◦G · δq̂|J− T

G n̂|+ j2 ◦G tr(J−1
G Jδq̂)

−j2 ◦G
n̂T J−1

G J− T
G JT

δq̂ J− T
G n̂

|J− T
G n̂|

)
|det JG| dŝ. (3.51)
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Proof. We use the chain rule to differentiate j1 ◦G, j2 ◦G, and utilize Lemma 3.21 to
find the directional derivatives of |det JG|. We note furthermore that for φ : R→ Rd,
φ(t) =

(
φ1 . . . φd

)T
∈ H1(R)d we have |φ(t)| =

√∑d
i=1 φi(t)2 and

dt|φ(t)| =
∑d
i=1 φi(t) dtφi(t)
|φ(t)| = φ(t) · dtφ(t)

|φ(t)| .

Thus, setting φ(t) = J− T
Gt

n̂ we find with Lemma 3.21 (iv)

dt|J− T
Gt

n̂|
∣∣∣∣
t=0

=
JG n̂ · (− J− T

G JT
δq̂ J− T

G )n̂
|J− T
Gt

n̂| .

Remark 3.23. In case ji, i = 1, 2, depend on the state u and thus implicitly on a
domain Ω, we have that u ◦G = û. We use then the notation ̂i from (3.3.3) and in
the presence of differential operators acting on u, the transformation ̂i = ji(u) ◦G
contains operations with G like the inverse Jacobian. This has to be differentiated
then, too.

We use these sensitivities to derive the kkt optimality system in the next section.

3.4 Lagrange Formalism for Isogeometric Shape
Optimization

In this section we introduce a Lagrange formalism for shape optimization considering
isogeometric analysis traits to obtain an isogeometric suitable optimality system.
Instead of problem (P) we formulate the optimality system for the parameter problem
(P̂).

We consider the Lagrangian

L : Gad × V̂ × V̂ → R

L(G, û, ẑ) = Ĵ(G, û) + l̂(G)(ẑ)− â(G)(û, ẑ)
(3.52)

and with it, get an optimality system since stationary points of L are candidates of
local minimums of the shape optimization problem. The kkt system from Theorem
2.29 uses in the case of an sop over parameter spaces the following isogeometric
sensitivities:

• dẑL(G, û, ẑ; δ̂z) = l̂(G)(δ̂z)− â(G)(û, δ̂z)

• dûL(G, û, ẑ; δû) = 〈Ĵ ′û(q, û)− â′û(G)(û, ẑ), δû〉V̂∗,V̂

• dq̂L(G, û, ẑ; δq̂) = 〈Ĵ ′q̂(G, û) + l̂′q̂(G)(ẑ)− â′q̂(G)(û, ẑ), δq̂〉Q̂∗,Q̂

Since in the Lagrangian the variables are independend, we find the derivative of Ĵ
without considering the implicit dependence of the state on the control:
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3.4 Lagrange Formalism for Isogeometric Shape Optimization

Lemma 3.24. For a shape functional J as in (3.31) or in (3.46), we obtain the
isogeometric shape sensitivities in direction δq̂ ∈ Q̂ as

dĴ(G; δq̂) =
∫
Ω̂

(∇j1 ◦G · δq̂ + j1 ◦G tr(J−1
G Dδq̂

)| det JG | dx̂ (3.53)

+
∫
Γ̂

(
∇j2 ◦G · δq̂|J− T

G n̂|+ j2 ◦G tr(J−1
G Dδq̂)

−j2 ◦G
n̂T J−1

G J− T
G Dδq̂T J− T

G n̂

|J− T
G n̂|

)
|det JG| dŝ. (3.54)

Proof using isogeometric perturbations. We directly use the directional derivative on
the transported shape functional (3.47)

J(Ωt, ut) = Ĵ(Gt, ût) =
∫
Ω̂

̂1(û)(x̂)|det JGt |dx̂+
∫
Γ̂

̂2(û)(x̂)|J− T
Gt

n̂||det JGt | dŝ

with ̂1 = j1 ◦Gt and ̂2 = j2 ◦Gt. We now differentiate w.r.t. the parameter t and
evaluate at t = 0: We note d̂i(0; δq̂) = dtji ◦Gt|t=0 = ∇ji ◦G0 dtGt|t=0 = ∇ji ◦G · δq̂
for i = 1, 2 if there is no differential operator acting on û. Otherwise, ̂i also depends
on Gt, then denote ̂i,t and use the chain rule. We utilize Lemma 3.21 from which
follows the rest.

The derivatives of the transported forms â(·) and l̂(·) defined over G follow by the
same means. If we compare the shape derivatives in Lemma 3.24 to those obtained from
using the transformation formula on pre-calculated ones, we see that they formally are
equivalent. However, here we have obtained them by differentiating the transformed,
infinite-dimensional shape optimization problem and can discretize now the control
space Q̂ by b-splines, nurbs, and nurbs with variable weights in the optimality
system:

Lemma 3.25. The first order necessary optimality system in isogeometric shape
optimization translates to

â(G)(û, δ̂v) = l̂(G)(δ̂v) ∀δ̂v ∈ V̂ state equation, (3.55)
dûĴ(G, û; δû) = â(G)(δû, ẑ) ∀δû ∈ V̂ adjoint equation, (3.56)

with dûĴ(G, û; δû) = dtĴ(G, û+ tδû)|t=0. The shape gradient is formed by directional
derivatives

dq̂L(G, û, v̂; δq̂) = dq̂Ĵ(G, û; δq̂) + dq̂ l̂(v̂; δq̂)− dq̂â(û, v̂; δq̂) (3.57)

with dq̂Ĵ(G, û; δq̂) given by Lemma 3.24,

dq̂l̂(v̂; δq̂) = dt l̂(G+ tδq̂)(v̂)|t=0 and dq̂â(G)(û, v̂; δq̂) = dtâ(G+ tδq̂)(û, v̂)|t=0.

A Lagrange approach to shape optimization is by no means a feature of isogeometric
analysis solely, and we have to consider the same as does classical shape optimization:
As noted on page 27 the Lagrange approach circumvents the derivative of the state w.r.t.
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Chapter 3 Abstract Shape Optimization Framework

the control. While [Allaire, 2007, p. 151] cautions that this method is a convenient
albeit formal one, because it presumes shape differentiability of the state, the more
recent monograph on the Lagrange method [Ito and Kunisch, 2008] shows that shape
differentiability of the state u can often be waived. The Lagrange method is applicable
then, and not only formal, if either

• shape differentiablility in the classical sense, including that of the state, can be
shown, or

• if the (mild) assumptions given in [Ito and Kunisch, 2008] hold.
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4
Discretization in Isogeometric Analysis
b-splines and nurbs are at the heart of isogeometric analysis, be it as basis for

designing geometries, approximating simulation results, or controlling shapes in op-
timization. They allow for a quick evaluation due to a polynomial character, and
flexibility because of a piecewise definition. We introduce b-splines together with
some relevant properties in Section 4.1 and use them in the subsequent sections
to show their use for modeling, analysis and shape calculus. So, b-spline spaces are
approximation spaces for geometries in Section 4.2, serve as ansatz spaces for pdes
in Section 4.3 and furthermore define perturbations of domains in Section 4.4.

4.1 B-splines, NURBS and Polynomial Spaces

This section introduces b-splines and nurbs as special piecewise and piecewise, ra-
tional polynomials respectively. The focus lies on fixing the notation and properties
for their later destiny for geometry representations, pde solutions, and shape gra-
dients. In particular the tensor product splines are the building blocks of two- and
three-dimensional bodies, and their piecewise support hands us the analogy to fem
triangulations. As locally defined test functions they constitute the isogeometric finite
elements. Form optimization in iga then draws on both geometric and function space
concepts to define gradients with respect to shapes. For more background and features
of b-splines we refer to various sources like [Schumaker, 1981, De Boor, 2001]. Also, a
more elaborate treatment of nurbs and especially numerical algorithms for computing
points on a geometry, efficient evaluations of basis functions, etc., are left out in our
introduction, but can be found in the monograph [Piegl and Tiller, 1995].

We begin this section with piecewise polynomials because they characterize b-splines
and, moreover, they define finite elements in Section 4.3.1. From there, we move to
b-splines and in a second step to their rational versions nurbs. After recapitulating
some important properties, we review how to obtain refined or compatible spaces:
The refinement is needed to catch features of geometries and approximate solutions of
pdes better. We introduce a compatibility criterion for two different spline spaces in
order to realize computationally the separate discretization of shapes and of the state
in shape optimization later.

4.1.1 Polynomial Spaces

We follow [De Boor, 2001, p. 1] to say that a polynomial of degree p is given by
π(x) = a0 + a1x+ . . .+ apx

p. It has p+ 1 degrees of freedom, its coefficients ai, and
therefore is of order (p+ 1). We call Pp(Ω) the space of all polynomials on Ω ⊂ R of
degree less than or equal to p.

Multivariate polynomials are defined as products of univariate polynomials. That is
for Ω ⊂ Rd where d ≥ 1 we have in the multi-index notation, α = (α1, . . . , αd), the
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following examples of multivariate polynomials of degree p

PT ,p(Ω) :=

π(x) =
∑
|α|≤p

aαx
α =

∑
|α|≤p

aα1···αdx
α1
1 · · ·xαdd for x ∈ Ω

 (4.1)

and dimPT ,p(Ω) =
(d+p
p

)
. Similarly, we need the polynomial space

PQ,p(Ω) :=

π(x) =
∑

αi≤p, 1≤i≤d
aα1···αdx

α1
1 · · ·xαdd for x ∈ Ω

 (4.2)

for a local finite element basis with dimPQ,p(Ω) = (p+ 1)d. We have the inclusion
PT ,p ⊂ PQ,p ⊂ PT ,dp, [Ciarlet, 1979, p. 56].
We now define the piecewise polynomials.

Definition 4.1. On a sequence of N break points Ξ := (υ1, . . . , υN ) with strictly
increasing points υj ∈ R we denote Qj := (υj , υj+1) and set Ω = ∪Q̄j . A piecewise
polynomial π of degree p is characterized by π|Qj =: πj with πj ∈ Pp(Qj) for all
j = 1, . . . , N − 1.

For such a π to be globally k-times continuously differentiable, π ∈ Ck(Ω̄), we make
it first available at the boundary break points. That is, we extrapolate π(υ1) := π1(υ1)
and π(υN ) := πN−1(υN ). Second, the derivatives dlπ must exist for all l = 0, . . . , k
also at the break points.

In [Schumaker, 1981, p. 5] polynomial splines of degree p are p−1 times continuously
differentiable piecewise polynomials π of degree p, which we pursue next.

4.1.2 B-splines

b-splines are piecewise polynomials with a local nature which allow a quick evaluation.
They are also flexible since changes in one parameter affects only a part and not the
whole of the b-spline. Here, we define them via the Cox-DeBoor recursive formula.

Definition 4.2. Given a knot vector Ξ := (ξ1, . . . , ξn+p+1) with knots ξi ∈ [0, 1] and
ξi ≤ ξi+1, a b-spline function of degree p is defined recursively

for p = 0: Ni,0(x̂) =
{

1 if ξi ≤ x̂ < ξi+1

0 otherwise
(4.3)

for p > 0: Ni,p(x̂) = x̂− ξi
ξi+p − ξi

Ni,p−1(x̂) + ξi+p+1 − x̂
ξi+p+1 − ξi+1

Ni+1,p−1(x̂) (4.4)

for an x̂ ∈ [0, 1] and i = 1, . . . , n, with the convention 0/0 to be zero. The recurrence
formula is modified such that Nn,p is defined also for x̂ = ξn+1 to allow for a definition
of b-splines over the full interval of [0, 1] instead of only [0, 1). We call the interval
between two successive knots (ξi, ξi+1) the i-th knot span. The order of Ni,p is p+ 1.

Remark 4.3. In [Piegl and Tiller, 1995, p. 50] the recurrence formula is defined for
knots in R. We restricted them to the interval [0, 1] for our isogeometric purposes
later.
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4.1 B-splines, NURBS and Polynomial Spaces

These univariate b-splines are linearly independent for i = 1, . . . , n and form a basis
B(Ξ, p) := {Ni,p : i = 1, . . . , n} which generates the univariate spline space

S(Ξ, p) := spanB(Ξ, p). (4.5)

If we confine ourselves to Ξ := (0, . . . , 0, ξp+2, . . . , ξn, 1, . . . , 1), that is we use only
open knot vectors where the first and last knot each occur p + 1 times, we enforce
N1,p(0) = 1 = Nn,p(1). An example of such a basis is shown in Figure 4.1 where we
have n = 8 b-spline basis functions of degree p = 2 from an open knot vector with 11
knots.
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Figure 4.1: b-spline basis for knot vector Ξ = (0, 0, 0, 1
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Next, we extend the spline space to multiple dimensions.

Definition 4.4. For d open knot vectors Ξi, i = 1, . . . , d, and corresponding spline
spaces Si := S(Ξi, pi) we form the tensor product spline space S(Ξ1, p1; . . . ; Ξd, pd) like
[Schumaker, 1981], where

S(Ξ1, p1; . . . ; Ξd, pd) :=
d⊗
i=1
Si with

n basis functions Ni(x̂) = N
(1)
i1,p1(x̂1) · · ·N (d)

id,pd
(x̂d)

(4.6)

over x̂ ∈ [0, 1]d. Let ni be the dimension of the univariate spline space Si, then
the tensor product space S(Ξ1, p1; . . . ; Ξd, pd) has dimension n = ∏d

i=1 ni and a basis
B := {Ni = ∏d

j=1N
(j)
ij ,pj

(x̂j) : N (j)
ij ,pj
∈ B(Ξj , pj)}.

Although b-splines can represent a large number of curves important types like
circles are excluded. Therefore, we next extend the theory to rational piecewise
polynomials which are better suited to conics.

4.1.3 nurbs

nurbs is an acronym that stands for “Non-Uniform Rational B-Splines” and describes
weighted b-splines over non-uniformly spaced knot vectors. They are attractive to iga
because they contain rational polynomials which allows to design important geometries
like disks and spheres. We give their definition and properties according to Chapter 5
in [Piegl and Tiller, 1995].

Definition 4.5. Given a univariate b-spline basis B(Ξ, p) := {Ni,p : i = 1, . . . , n} and
a fixed weight vector W = (ωi)i=1,...,n, ωi > 0, let

w(x̂) :=
n∑
i=1

Ni,p(x̂)ωi (4.7)
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denote a positive weight function from [0, 1]d → R+ from which we obtain a nurbs
basis

B(W,Ξ, p) :=
{
Ri,p = ωi

w
Ni,p : Ni,p ∈ B

}
(4.8)

and the univariate nurbs space

S(W,Ξ, p) := spanB(W,Ξ, p) . (4.9)

We proceed similar to Section 4.1.2 to obtain multivariate nurbs.

Definition 4.6. For d open knot vectors Ξi, corresponding b-spline basis Bi :=
B(Ξi, pi) with ni basis functions, and fixed weight vectors Wi, i = 1, . . . , d, we first
form a scalar weight function

w(x̂) :=
n1∑
i1=1

. . .
nd∑
id=1

ω
(1)
i1 N

(1)
i1,p1(x̂1) · · ·ω(d)

id
N

(d)
id,pd

(x̂d) , (4.10)

where ω(j)
ij
∈Wj and N (j)

ij ,pj
∈ Bj . Then we have the d-variate nurbs basis

B(W1,Ξ1, p1; . . . ,Wd,Ξd, pd) :=Ri(x̂) :=

d∏
j=1

ω
(j)
ij
N

(j)
ij ,pj

(x̂j)

w(x̂) for all ij = 1, . . . , nj , j = 1, . . . , d


(4.11)

and the tensor product like nurbs space is given by

S(W1,Ξ1, p1; . . . ;Wd,Ξd, pd) := spanB(W1,Ξ1, p1; . . . ,Wd,Ξd, pd) . (4.12)

Remark 4.7. Due to the weight function w, a nurbs space is not a tensor product
space anymore. However, we go with iga literature and call it tensor product like.

Remark 4.8. If the polynomial degree p of the b-splines is clear from the context,
we omit it in the index of the basis functions to simplify the notation. For instance
in (4.6) and (4.11) we dropped it for the basis functions of the multivariate spline
spaces. Also, we assume that the univariate factors Nij ,pj for each space dimension
j = 1, . . . , d are ordered through the tensor product (like) structure lexicographically
and hence the counting index i of Ni and Ri of multivariate basis functions should
be understood as the natural number resulting from this order. If we emphasize the
vector space character of b-splines or nurbs to use their common properties we denote
these spaces (uni- or multivariate) by S. In this case, since univariate are but a special
case of multivariate basis functions we do not distinguish them, i.e. we drop the degree
index also in the univariate case and write then Ni and Ri instead of Ni,p and Ri,p.
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4.1 B-splines, NURBS and Polynomial Spaces

4.1.4 Properties of b-splines and nurbs

We summarize some of the valuable properties of b-splines and nurbs for isogeometric
analysis.

Definition 4.9. If a knot span (ξj , ξj+1) of an open knot vector Ξ = (ξ1, . . . , ξn+p+1)
is not empty, i.e. ξj 6= ξj+1, it is called element. Define Υ := (υ1, . . . , υN ) as the
sequence of distinct knots from Ξ, where N ≤ n + p + 1. Then, each knot interval
Qj := (υj , υj+1) for 1 ≤ j < N is an element. A knot υj has multiplicity µj > 0 if
it occurs µj times in Ξ. The unique knots Υ correspond to the break points of a
piecewise polynomial space.

It will be convenient at times to use Υ as set which we do not denote extra.

Lemma 4.10. With these additional definitions one observes the following properties
for b-splines Ni,p or nurbs Ri,p from an open knot vector Ξ = (ξ1, . . . , ξn+p+1).

(i) Partition of unity: For an arbitrary knot span [ξi, ξi+1), ∑i
j=i−pNj,p = 1. There-

fore, the weight function reduces to w(x̂) = 1 in Definition 4.5 if all weights
are set to a constant ωi = a 6= 0, and the rational nurbs basis turns into a
non-rational b-spline basis.

(ii) Local support: supp(Ni,p) =[ξi, ξi+p+1)= [ξi, ξi+p+1].

(iii) Local enumeration: On the j-th knot span (ξj , ξj+1) live p + 1 b-splines Ni,p

with i = j − p, . . . , j. Set τj := j − p on this knot span, then we have a local
enumeration of these b-splines Ni,p = Nτj+k,p for k = 0, . . . , p. Correspondingly
note, that therefore a basis function Ni,p has local number k = i− τj on its knot
spans j = i, . . . , i+ p+ 1.

(iv) Continuity: For a b-spline function φ of S(Ξ, p) it holds that φ ∈ C∞(Qj) for
all elements j = 1, . . . , N − 1, where N is the number of unique knots in Υ. At
element interfaces x̂ = υj ∈ Υ the continuity is determined by the multiplicity
µj, φ ∈ Cp−µj (x̂); in case of no repeated knots besides first and last, we say φ
has maximal global continuity Cp−1. We refer again to Figure 4.1 on page 53
where a repeated knot introduces a cusp in an otherwise C1 basis.

Because of the partition of unity property (i), b-splines are special cases of nurbs and
properties (ii)–(iv) above hold also for nurbs.

Proof. We comment shortly on the proofs for the properties because they illuminate
the nature of b-splines and nurbs; they can be found in [Piegl and Tiller, 1995].

(i) Property P2.4 in [Piegl and Tiller, 1995]. Note, that actually w = a, however, it
cancels with the weights in the numerator.

(ii) Proof by induction over p. At p = 0, supp(Ni,p) 6= 0 on [ξi, ξi+1], for p+ 1 we
use the recurrence formula (4.4) which gives us supp(Ni,p+1) = supp(Ni,p) ∪
supp(Ni+1,p).

(iii) From the previous point we know supp(Nτj+k,p) = [ξτj+k, ξτj+k+p+1]. Since
τj + k ≤ j and similarly, τj + k + p + 1 ≥ j + 1 for all possible k, [ξj , ξj+1] is
contained in the support.
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(iv) Since the b-spline φ is a piecewise polynomial inside an element it is infinitely
often differentiable. At element interfaces, i.e. at knots of multiplicity µ, the Cp−µ
continuity is inherited from the b-spline continuity: At a knot with multiplicity
µ the b-spline basis Ni,p is p − µ times continuously differentiable, properties
P2.5 and P4.11 in [Piegl and Tiller, 1995].

The higher regularity of basis functions across break points or element board-
ers given by (iv) benefits simulation results for instance in eigenvalue problems,
[Hughes et al., 2006]. The local support from (ii) makes an element-wise assembly
of system matrices similar to fem possible, e.g. in the tutorial [Vuong et al., 2010].
Moreover due to (ii), we can change a spline geometry locally which is exploited in
the design process with cagd.
To capture such local features, or on a global scale, to compare the approximation

power of different splines we discuss the relation between two spline spaces next.

4.1.5 Nested and compatible spline spaces

This section is motivated by the following question. Can we modify a given spline space
such that it has better approximation qualities? The answer will be helpful when it
comes to refining geometries and ansatz spaces in simulation for better approximations.
We also introduce compatible spaces for formulations that contain two different spline
spaces: If they are compatible an implementation is straight-forward.

Definition 4.11. Two spaces X, Y are nested if X ⊂ Y . Especially two univariate
spline spaces are nested, if for knot vectors Ξ, Ξ′ and degrees p, p′ the spline spaces
satisfy

S(Ξ, p) ⊂ S(Ξ′, p′) . (4.13)

The spline space S(Ξ′, p′) is larger and thus called finer, whereas S(Ξ, p) is smaller or
coarser. This can be naturally extended to multivariate spline spaces.

There are two important methods to obtain nested, finer spline spaces. In the first,
we increase the number of basis functions by inserting new distinct knots. The second
way increases the multiplicity of knots to raise the polynomial degree of the b-spline
basis.

Knot insertion

A natural way to get more basis functions is to supply more break points. That yields
nested spaces which is shown with the b-spline recursion:

Lemma 4.12. Let B(Ξ, p) denote a univariate b-spline basis given by an open knot
vector Ξ := (ξ1, . . . , ξn+p+1) and degree p. Assume a second knot vector Ξ′ which
differs from Ξ only in a single knot ξ′ ∈ [ξj , ξj+1) for 1 ≤ j < n + p + 1, i.e.
Ξ′ = (ξ1, . . . , ξj , ξ′, ξj+1, . . . , ξn+p+1). Then, S(Ξ, p) ⊂ S(Ξ′, p).
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Proof. A b-spline basis Ni,p ∈ B(Ξ, p) can be expressed in B(Ξ′, p) by

Ni,p = λiMi,p + (1− λi+1)Mi+1,p, i = 1, . . . , n, Mi,p ∈ B(Ξ′, p) , (4.14)

with coefficients λi =


1 i = 1, . . . , j − p
ξ′−ξ′i

ξ′i+p+1−ξ′i
i = j − p+ 1, . . . , j

0 i = j + 1, . . . , n+ 1
. (4.15)

These coefficients are given in [Piegl and Tiller, 1995, Ch. 5.2, 142 f.], the proof therein
is referenced to [De Boor, 2001].

The proof is constructive and can be repeated to several different knots. In particular,
we say that B(Ξ, p) in Lemma 4.12 is once globally h-refined, if in each nonempty
knot span (ξj , ξj+1) a new know is inserted at its center ξj+1+ξj

2 . An example of an
h-refinement of the basis from Figure 4.1 on page 53 is given in Figure 4.2.
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Figure 4.2: Global h-refinement of the basis from Figure 4.1 with the h-refined knot
vector Ξ′ = (0, 0, 0, 1
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With h-refinement, the number of basis functions is increased by the number of new
knots but the degree of the b-splines/nurbs as well as the global continuity stays the
same. In a global h-refinement step also the length of the knot spans is decreased by
half. In contrast, we introduce now a refinement method where the unique knot spans
do not change and the b-spline degree is raised.

Order elevation

We elevate the order or degree of the b-spline basis such that the global continuity is
preserved. The latter is important to model a geometry from a lower order space also
in the raised order space and preserve its class of continuity.

Lemma 4.13. Again, let Ξ := (ξ1, . . . , ξn+p+1) be an open knot vector with degree p
and υj its unique knots collected in Υ. Let µj denote the multiplicity of υj in Ξ. Then,
for a knot vector Ξ′, with same Υ, which has knot multiplicity µj + ` for all unique
knots υj in Υ, the spline spaces S(Ξ, p) ⊂ S(Ξ′, p+ `) are nested.

Proof. For ` = 0 the statement is trivial. Set ` = 1, then a b-spline basis Ni,p ∈ B(Ξ, p)
can be expressed in B(Ξ′, p+ 1), [Piegl and Tiller, 1995, Ch. 5.5, p. 188 ff.].

The result of Lemma 4.13 is a spline space with raised degree which yields a higher
polynomial degree within each element. However, at knots the basis still has the
continuity of the original basis which is illustrated in Figure 4.3. We call this process
of raising the degree order elevation or p-refinement.
Remark 4.14. Knot insertion and order elevation works also for multivariate b-splines
and nurbs in a canonical way due to the tensor product (like) structure.
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Figure 4.3: A p-refinement of the basis from Figure 4.1 with the new knot vector
Ξ′ = (0, 0, 0, 0, 1
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Both refinement methods lead to nested spline spaces. This is of course important,
because we want to be able to represent a given coarse geometry also in the refined
spaces, for instance before applying local changes. However, if we want to compare
the influence of the global smoothness of the basis functions on the analysis result
we cannot use order elevation because it maintains the global regularity of the coarse
space by increasing the knot multiplicities. We therefore construct next a space with
higher polynomial degree but which has the same unique knots for the sake of practical
implementation.

Compatible spaces

We later frequently have computations involving two different spline spaces, for instance
having mixed finite element formulations or when we integrate over nurbs geometries
with nurbs from a different spline space as integrand. For that, it is computationally
efficient and practical if the support of nurbs basis functions from different spaces can
be expressed exploiting the tensor product (like) structure. We therefore introduce in
this thesis the following characterization of meshes:

Definition 4.15. We call two univariate nurbs spaces S := S(W,Ξ, p) and S ′ :=
S(W ′,Ξ′, p′) compatible if one set of unique knots, Definition 4.9, contains the other.
That is,

Υ ⊆ Υ′ or Υ ⊇ Υ′ . (4.16)

This can be extended to multivariate spaces S := S(W1,Ξ1, p1; . . . ;Wd,Ξd, pd) and
S ′ := S(W ′1,Ξ′1, p′1; . . . ;W ′d,Ξ′d, p′d) if Υi and Υ′i satisfy (4.16) for each i = 1, . . . , d.

In Figure 4.4 we show an example of an arbitrary mesh compatible to the one from
Figure 4.1. The h- and p-refinement discussed before both yield compatible meshes.
Order elevation in Lemma 4.13 preserves the continuity of the spline basis at the

knots. Sometimes, however, we want to have spline spaces with a higher order and
maximal global continuity, for instance to observe the influence of continuity on
solutions of pdes or in shape optimization. Therefore, we increase the order of a space
in a way that yields a compatible mesh and has increased global continuity.

Lemma 4.16. We enhance an open knot vector Ξ := (ξ1, . . . , ξn+p+1) with degree p by
repeating the first and the last knot ` times, that is, Ξ′ := (0, . . . , 0︸ ︷︷ ︸

`

,Ξ, 1, . . . , 1︸ ︷︷ ︸
`

). Then,

S(Ξ, p) is compatible to S(Ξ′, p+ `).

Proof. By construction Υ = Υ′ .
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Figure 4.4: Two compatible spline spaces, the basis on the top is the same as in
Figure 4.1, the basis on the bottom results from Ξ = (0, 0, 0, 0, 1
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p = 3.

In Figure 4.5, enhancing the basis of Figure 4.1 at front and end leads to a basis
with higher continuity across knots than using order elevation in Figure 4.3. However,
the meshes are compatible and the size of the knot spans does not change.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

ξ

N1,3

N2,3 N3,3 N4,3 N5,3 N6,3
N7,3

N8,3

N9,3

Figure 4.5: Enhancing the knot vector from Figure 4.1 by a 0 at the front and a 1
at the end leads to Ξ′ = (0, 0, 0, 0, 1
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5 , 1, 1, 1, 1) and a compatible mesh.

Next, we characterize a local support relation of nurbs basis functions on compatible
spaces.

Lemma 4.17. Let S, S ′ with basis B := B(W,Ξ, p), B′ := B(W ′,Ξ′, p′) be two
compatible spaces with Υ ∩ Υ′ = Υ. On each element Q′j = (υ′j , υ′j+1) with unique
knots υ′j ∈ Υ′ live p′ + 1 basis functions from B′ and p+ 1 basis functions from B.

Proof. Denote an element Q′j = (υ′j , υ′j+1) with unique knots υ′j ∈ Υ′ and Qj =
(υj , υj+1) with unique knots υj ∈ Υ. From property (iii) in Lemma 4.10 follows that
on each element Q′j live p′ + 1 basis functions from B′ and on each Qj live p+ 1 from
B. We show that there is Qk = (υk, υk+1) such that Q′j ⊂ Qk which proves the lemma:
Since Ξ, Ξ′ are both open 0 = υ1 ≤ υ′j . Hence, there is υk ∈ Υ with υk ≤ υ′j . Choose
υk = max{υ ∈ Υ: υ ≤ υ′j}. Since υk ≤ υ′j < υ′j+1 ≤ 1, there exists a unique knot
υk+1 ∈ Υ such that υk < υk+1 ≤ 1. From Υ ∩Υ′ = Υ we deduce υ′j+1 ≤ υk+1.

We use the definitions from this section to model geometries in the following.
Afterwards, we apply them as test functions for the numerical solution of pdes.
Finally, they serve also as variables for shape optimization.
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Chapter 4 Discretization in Isogeometric Analysis

4.2 Geometries in Isogeometric Analysis

In iga and cagd, a domain Ω ⊂ Rd can be represented by a geometry map on the
unit hypercube Ω̂ = (0, 1)d̂ which is a linear combination of n nurbs or b-splines

G : Ω̂→ Ω, x̂ 7→
n∑
i=1

d∑
k=1

Xi,kNi(x̂)ek , (4.17)

where we have the b-splines or nurbs Ni : Ω̂ → R and control points Xi :=
(Xi,k)k=1,...,d in Rd with standard unit vectors ek of Rd.
Remark 4.18. Usually in our applications, Ω̂ = (0, 1)d, i.e. d̂ = d. However, this is
not mandatory, as for instance shells typically are 2-dimensional manifolds in R3 with
d̂ = 2 < 3 = d.
More specifically, the geometry map G is generated as follows.

4.2.1 Domain representations

To obtain domains suitable for analysis in iga, we restrict the domains to a sub-
space of Sd containing all C1-diffeomorphisms with bounded derivatives, where Sd :=
span{Niek : Ni ∈ B, k = 1, . . . , d} is the direct sum of a tensor product (like) nurbs
space S of dimension n over basis B. Alternatively, [Beirão da Veiga et al., 2014, As-
sumption 3.1] restrict the geometries to b-spline or nurbs representations that satisfy
the Lipschitz conditions (2.32). We have abused the notation and should write Ri
when using nurbs. In the following, we denote by α = (i, k) an index tuple such that
Nα := Niek and Xα := Xi,k.
Remark 4.19. Sd is isomorphic to Rnd, hence one can also represent a geometry by
the vector of coefficients of the linear combination G = XTN(x̂) with X := (Xα)α ∈
Rnd, N = (Nα)α.

Assumption on boundary

To enforce boundary conditions of pdes with isogeometric analysis, or to move a
boundary segment for shape optimization we want to loop over the basis functions
with support on the parametric boundary. Therefore, the boundary of the physical
domain needs to be a parameterization over the parametric boundary.

Let the boundary of a domain Ω be given by ∂Ω = Γ∪ΓN ∪ΓD, where Γ signifies the
moving boundary, ΓN a boundary with Neumann and ΓD one with Dirichlet conditions.
In the following, we assume that the moving boundary Γ has a preimage

Γ̂ = {x̂ ∈ ∂Ω̂ : G(x̂) ∈ Γ}. (4.18)

Furthermore, we require for Γ̂ that either (0, 1)d−1×{ŝ} ⊂ Γ̂ or (0, 1)d−1×{ŝ}∩ Γ̂ = ∅
for ŝ = 0 or 1. The same must apply to ΓD and ΓN . This means that for each boundary
segment Γ, ΓN and ΓD, there is a b-spline or nurbs parameterization over a union of
sides of the parameter domain in Sd−1. We illustrate this for a 2-dimensional example
in Figure 4.6. This setting makes sure that an “interesting” boundary segment like a
Dirichlet boundary or a moving boundary can always be represented by a union of full
faces in the parameter boundary.
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4.2 Geometries in Isogeometric Analysis

Γ̂D Γ̂D

Ω̂

Γ̂N

Γ̂

Ω
ΓDG

ΓN

ΓD

Γ

Figure 4.6: We assume that all boundary segments Γ,
ΓN and ΓD can be mapped by a geometry function G as
images of the union of codimension-1 manifolds of the form
[0, 1]d−1 × {0} and [0, 1]d−1 × {1}.

Homogeneous coordinates

The above statements are valid for both, B-splines and nurbs. Note however, that
this is only so because the weights are assumed to be fixed. In shape optimization later
on in Section 4.4.1 the weights as well as the control points can vary. Furthermore,
for the sensitivity analysis we also need the parameterization space Sd to be a linear
space. For that we employ an alternative representation of nurbs geometries using
homogeneous coordinates and a perspective map, see [Piegl and Tiller, 1995].

Definition 4.20. A homogeneous coordinate vector X̃ in Rd+1, with X̃ := (Xw, Xd+1)
and Xw ∈ Rd, is projected to Rd by the perspective map

H(X̃) =
{
Xw/Xd+1, Xd+1 6= 0 ,
Xw/|Xw|, else .

(4.19)

We observe that the weight function w := ∑n
i=1Ni,pωi from (4.7) is a positive

combination of b-splines

w ∈ S+(Ξ, p) := posB(Ξ, p) ⊂ S(Ξ, p), (4.20)

and a set of nurbs with free weights is given by

N (Ξ, p) := S(Ξ, p)× S+(Ξ, p). (4.21)

Unfortunately, it is not directly obvious how N (Ξ, p) turns into a vector space because
any free weight nurbs function (s, w) := s

w in N (Ξ, p) is nonlinear w.r.t. the weight
functions w, (s, w1) + (s, w2) 6= s

w1+w2
. This also reflects that the rational functions

1
x−a and 1

x−b are linearly independent for a 6= b. In order to restore linearity we resort
to homogeneous coordinates and a perspective map.

Free weight nurbs space Given a b-spline space Sd as in Section 4.2, a rational
space N of free weights is obtained by the direct sum Sd ⊕ S and the perspective
map H in (4.19). More specifically, the vector valued function (Gw, w) ∈ Sd+1, with
Gw ∈ Sd, is mapped from Sd+1 → Sd, which yields a rational d-manifold

(Gw, w) 7→
{
G := Gw/w if w 6= 0 ,
G := Gw/|Gw| if w = 0 .

(4.22)

By definition of the weight function, the case where w = 0 cannot happen in iga.
Finally, Sd ⊕ S has a basis {Niek : Ni ∈ S, i = 1, . . . , n, k = 1, . . . , d + 1} and is a
linear space which is isomorphic to Rnd ×Rd.
Definition 4.21. Then, the desired nurbs space with free weights N is obtained as

N = {H(G̃) : G̃ = (Gw, w) ∈ Sd ⊕ S} . (4.23)
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Chapter 4 Discretization in Isogeometric Analysis

Applying above definition constructs a rational representation from a given geometry
in N . Conversely, we obtain a homogeneous representation from a given rational
geometry in the next example.
Example 4.1. Let G be a rational nurbs geometry with multivariate nurbs basis
functions from Definition 4.6,

Ri(x̂) :=

d∏
j=1

ω
(j)
ij
N

(j)
ij ,pj

(x̂j)

w(x̂) . (4.24)

We abbreviate ωi :=
d∏
j=1

ω
(j)
ij

and Ni :=
d∏
j=1

N
(j)
ij ,pj

(x̂j) then

G =
n∑
i=1

d∑
k=1

Xi,kRi(x̂)ek =
n∑
i=1

d∑
k=1

Xi,kωi
Ni(x̂)
w(x̂) ek . (4.25)

This geometry has a representation G̃ := (Gw, w) ∈ N with weight function w,
modified control points Xw

i,k := Xi,kωi, and

Gw :=
n∑
i=1

d∑
k=1

Xw
i,kNi(x̂)ek . (4.26)

Applying the perspective map H gives back G = H(G̃).

Control polygon

The control points Xi ∈ Rd are a linear approximation to the geometric object. We
follow [Beirão da Veiga et al., 2014]:
Definition 4.22. To each b-spline basis function Ni,p ∈ B(Ξ, p) with knot vector
Ξ = (ξ1, . . . , ξn+p+1) we associate a Greville point

γi := ξi+1 + · · · ξi+p
p

for i = 1, . . . , n . (4.27)

These points are the coefficients of identity x̂ = ∑n
i=1 γiNi,p(x̂). For d-variate b-splines

the Greville points are calculated for each direction and collected in γi := (γi1 , . . . , γid).
Furthermore, denote by ϕi the standard linear hat functions at Greville points γj

ϕi(γj) := δi,j (4.28)
with Kronecker delta δi,j . Then, the control polygon is defined as the piecewise linear
interpolation

CX(x̂) :=
n∑
i=1

Xiϕi(x̂) (4.29)

and under knot insertion and degree elevation the control polygon converges towards
the geometry. An important property of nurbs geometries is the strong convex hull
property. For positive weights ω the nurbs geometry Ω = G(Ω̂) is contained in the
convex hull of its control points, [Piegl and Tiller, 1995, Property P4.25]. This is
illustrated in Figure 4.7. The strong property states that x ∈ Ω lies in the convex hull
of local control points.
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4.2 Geometries in Isogeometric Analysis

Figure 4.7: A disk representation with nurbs of degree p = 2 and its
corresponding control points according to the data in Table C.3

Multipatch geometries

Several geometries Ωi ∈ Rd can be fit together to build one domain Ω. Each part of
such a multipatch geometry is defined separately over unit hypercubes (0, 1)d̂. Then
all these parts or patches are “glued” together at their mutual faces. That way,
complicated geometries can be designed. Say we have n patches, then each patch is
described by a geometry function Ωi = Gi(Ω̂i) and Ω̄ = ⋃n

i=1 Ω̄i . We now define the
global geometry function G piecewise as

Ω = G

(
n⋃
i=1

Ω̂i

)
and Ωi = G|Ω̂i = Gi.

The glue between patches is the condition that the interface between two patches
Ii,j := Ω̄i ∩ Ω̄j is an image of the geometry function Ii,j = G(Îij) with Îij := ¯̂Ωi ∩ ¯̂Ωj .
However, we do not consider multipatches for shape optimization in this work.

4.2.2 Regularity of geometries

The continuity of a spline space S determines the smoothness of geometry parame-
terizations. Specifically, the geometry function is k-times continuously differentiable,
G ∈ Ck(Ω̂,Rd) where k ≥ min(pi)− 1 in each component i = 1, . . . , d. However, from
Lemma 4.10 we knot that multiple knots diminish the continuity. But also coinciding
control points can reduce the continuity by introducing “visual discontinuities” as
is shown in properties P3.11 and P3.25 in [Piegl and Tiller, 1995]. Thus, not all
important nurbs domains satisfy the conditions in (2.31), they are then for instance
not globally one-to-one, which happens e.g. when mapping to triangles or disks.

Example 4.2 (Triangular domain). From the geometry data in Appendix C, Table
C.2 we obtain the geometry function

G(x̂) =
(
x̂1 − x̂1x̂2 + x̂2

x̂2

)

of degree 1 which maps the unit square to a right triangle. Clearly, det JG = 0 for
(x̂1, 1) and all x̂1 ∈ [0, 1], which is due to multiple appearing control points.

Example 4.3. The disk in Figure 4.7, page 63, has four singularities at the interpola-
tory control points, for this and different, though also singular, representations see
[Cohen et al., 2010].

Treatment of such parameterizations is on-going work e.g. [Takacs and Jüttler, 2012].
Numerical experiments, however, show that the assumptions may be slackened, as for
instance in the case of Example 5.1 of our applications. For our purposes we assume
that G fulfills our requirements and ignore a discrepancy in some practical examples.
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Chapter 4 Discretization in Isogeometric Analysis

4.3 Galerkin Projection in Isogeometric Analysis

In this section we describe how to obtain solutions to the pde problems from Section
2.2 with isogeometric analysis. Basically, iga uses a change of variables to transform
the pde to a fixed parameter domain paired with an isoparametric Galerkin ansatz. A
key feature is that both, the transformation and the test function space, are composed
of the same b-splines or nurbs.
In the first part we briefly state main concepts from fem to be able to compare it

to iga in the second part.

4.3.1 Finite element methods

To solve the pdes from Section 2.2 numerically, Galerkin methods start from their
variational form (2.24)

u ∈ V : a(u, v) = l(v) ∀v ∈ V (4.30)

other than for instance some collocation methods, [Quarteroni and Valli, 2008], which
use the strong form. Typically for linear elliptic second order pdes, the test function
space is V = H1(Ω)m over a domain Ω ⊂ Rd, where m is the dimension of the solution
u. Conforming finite element methods take a subspace which has a finite-dimensional
basis

Vh := span{ϕi : i = 1, . . . , n} ⊂ V

to approximate the solution uh ≈ u, where n is the dimension of Vh. Since Vh ⊂ V,
equation (4.30) is valid for all test functions vh ∈ Vh. Any function in Vh has a basis
representation and in particular uh = ∑n

i=1 uiϕi with coefficients ui ∈ R. Therefore,
the finite-dimensional variational equation is equivalent to a linear system

uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh ⇔ Au = F (4.31)

where q = (u1, . . . ,un)T is the vector of solution coefficients, A is the stiffness or system
matrix with entries Ai,j = a(ϕi, ϕj) for all i, j = 1, . . . , n and Fi = l(ϕi) is the load
vector or right hand side. The choice of the projection space Vh determines the finite
element method where we use in this thesis only conforming spaces Vh ⊂ V . Moreover,
the solution uh is always an element of the test function space Vh and in our examples
a(·, ·) is symmetric and positive definite which makes (4.31) a conforming Ritz-Galerkin
discretization. A recent overview on fem can be found in [Nochetto et al., 2009]; a
classic is [Ciarlet, 1979].

Existence and uniqueness Since we use a conforming Galerkin ansatz, the as-
sumptions for the Lax-Milgram Lemma, Theorem 2.12, are also fulfilled for (4.31)
which directly implicates the existence of a unique solution in Vh. For a more general
result see also [Nochetto et al., 2009, Thm. 4].
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4.3 Galerkin Projection in Isogeometric Analysis

Best approximation property The quality of solutions to the discretized problem
is determined by the best approximation property given by Céa’s Lemma for coercive
bilinear forms. That is, among all functions of the approximation space Vh it is the
solution to (4.30) that comes closest to the real solution. Hence, the error u− uh is
determined by the approximation power of Vh.
Theorem 4.23 (Céa’s Lemma).
Let the assumptions in Theorem 2.12 be satisfied with continuity constant M and
coercivity constant α from Definition 2.24. Furthermore, let u ∈ V denote the solution
of (4.30) and uh ∈ Vh its finite element approximation in (4.31). Then we have that

‖u− uh‖V ≤
M

α
min
vh∈Vh

‖u− vh‖V .

Proof. See [Brenner and Scott, 2008] and the references therein.

Construction of finite element spaces

The approximation space Vh should be chosen such that costs of evaluating terms in
the variational form (4.31) and the solution of the linear equation system are little,
[Nochetto et al., 2009, p. 31]. Therefore, a basis of locally supported functions is
attractive because then it is clear that a(ϕi, ϕj) = 0 for most i 6= j, and the linear
system is sparse. This is achieved by partitioning Ω into small subsets—the elements or
cells K—and by building Vh from the union of local function spaces over these elements.
Typically, the elements are simplices like triangles or quadrilaterals in 2 dimensions,
and tetrahedrons or hexahedrons in 3 dimensions. “Bent” elements, can be found in
isoparametric fem. The following excerpts [Brenner and Scott, 2008, Ciarlet, 1979]
and we refer to them for a more comprehensive introduction to fem. For the moment,
fix the dimension of the solution to m = 1 for sake of better readability.

Subdivision of the domain into elements We call a nonempty open domain
K ⊂ Ω an element if it has a piecewise smooth boundary. A finite set Kh of elements
K ⊂ Ω is an admissible mesh or triangulation of Ω if
• it covers Ω completely, Ω̄ = ⋃

K∈Kh K̄,
• two distinct elements K, K ′ ∈ Kh do not overlap, K ∩K ′ = ∅,
• there are no hanging nodes, and adjacent elements K, K ′ ∈ Kh share either a
vertex or face: if K̄ ∩ K̄ ′ 6= ∅ ⇒ K̄ ∩ K̄ ′ = {x} or K̄ ∩ K̄ ′ = E where x is a
vertex and E an edge or face of K and K ′.

In case of quadrilateral or triangular cells, we need a polygonal domain Ω to fulfill the
first point. If the domain is curved we use a polygonal approximation of it instead. We
point to Figure 4.8 for an example of a triangulation approximating a curved domain.

Local nodal basis functions On each element K ∈ Kh, we define a suit of basis
functions ϕi for i = 1, . . . , dim which form a local function space P (K) = span{ϕi : i =
1, . . . , dim}. These shall be polynomial spaces and each π ∈ P (K) is determined by
nodal values: There is a set of linear functionals Ψ = {ψi : P (K)→ R, i = 1, . . . , dim},
such that each basis ϕj is uniquely determined by appointing ψi(ϕj) = δij . This justifies
in hindsight the hat function notation for the basis elements. The triple (K,P (K),Ψ)
is called a finite element. We give some examples from [Brenner and Scott, 2008].
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Ω

Kh

K

Figure 4.8: Example of a standard fem triangulation of a disk

Example 4.4. Some common examples of nodal basis functions in R2 are the following
finite elements corresponding to Figure 4.9, which should be understood this way: At
nodes evaluate the gradient and at evaluate the function.

• Let K denote a triangle with vertices z1, z2 and z3 and the local function space
be P (K) = P1(K) from (4.1), see Figure 4.9a for the position of the nodes. Then
ψi(φ) := φ(zi) determines the local basis {ϕ1, ϕ2, ϕ3} uniquely.

• Let K denote a triangle with vertices z1, z2, z3. The node z4 is at the barycenter
and the local function space be P (K) = P3(K). Then the nodal values as given
in Figure 4.9b determine the local basis.

• LetK denote a quadrilateral with vertices and midpoints zi, i = 1, . . . , 9 as shown
in Figure 4.9c and P (K) = PQ,2(K) from (4.2). Again consider ψi(φ) := φ(zi)
which determines the basis {ϕi, i = 1, . . . 9}.

(a) Linear Lagrange (b) Cubic Hermite (c) Bi-quadratic Lagrange

Figure 4.9: Finite element examples of triangular and quadrilateral shapes where
the marked vertices and midpoints are nodes, see Example 4.4 for the meaning of
different colored nodes

Global function space To obtain the approximation space Vh, we stitch together
the locally defined finite elements. For a triangulation Kh with finite elements
(K,P (K),Ψ) for each K ∈ Kh the finite element space is specified by

Vh = {vh : Ω→ Rm, vh|K ∈ P (K) ∀K ∈ Kh} .

To consider Dirichlet boundary conditions we insert in above definition

Vh = {vh : Ω→ Rm, vh|K ∈ P (K) ∀K ∈ Kh and vh|ΓD = 0}

which we write simply as Vh = {vh : Ω → Rm, vh|K ∈ P (K) ∀K ∈ Kh} ∩ V . The
finite element spaces resulting from Example 4.4 are conforming spaces as shown in
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[Brenner and Scott, 2008]. We collect the evaluation points z of all elements in Nh;
each such node corresponds to a basis function ϕ. The global dimension n of Vh is
defined by the number of basis functions.

Definition 4.24. Let hK denote the diameter of an element K, then the largest
element size

h := max
K∈Kh

hK (4.32)

is the discretization parameter and gives meaning to the index of Vh.

We always assume triangulations where the cells are not “distorted much”:

Definition 4.25. A triangulation is shape-regular if there exists c > 0 such that
hK
ρK
≤ c for all K ∈ Kh where ρK denotes the radius of the in-circle in K.

Convergence and error analysis Consider Lagrange elements where the evalu-
ation points z1, . . ., zdim are the vertices of an element K. Due to the nodal basis
condition ϕi(zj) = δij , we can define a local interpolator

iKh : C(K)→ P (K), iKh φ =
dim∑
i=1

φ(zi)ϕi . (4.33)

For all K in Kh we join them together to obtain a global interpolator with ihφ|K = iKh φ
and nodes zi ∈ Nh:

ih : C(Ω̄)→ Vh, ihφ =
n∑
i=1

φ(zi)ϕi . (4.34)

For a weak solution u ∈ V of (4.30) and its finite element approximation uh ∈ Vh from
(4.31), we have a convergence result ‖u− uh‖V → 0 as h approaches 0. Furthermore,
with Céa’s Lemma 4.23 the interpolation error of a solution u with finite elements
gives an estimate of the approximation quality of the finite dimensional solution uh. If
u ∈ Hk+1(Ω) the following error estimate holds

‖u− uh‖H1(Ω) ≤ chk|u|Hk+1(Ω) . (4.35)

With an Aubin-Nitsche trick also an estimate optimal in L2 can be obtained

‖u− uh‖L2(Ω) ≤ chk+1|u|Hk+1(Ω) . (4.36)

The two results are for instance shown as Theorem 10.4.1 and equation (10.4.11) in
[Atkinson and Han, 2001] where also the domain smoothness plays an important role
for u having higher regularity.
Remark 4.26. In particular, the proofs are based on the nodal interpolation as ‖u−
uh‖H1(Ω) ≤ c‖u − ihu‖H1(Ω) and ‖u − ihu‖H1(Ω) ≤ c(∑K∈Kh‖u − iKh u‖H1(K))1/2.
Therefore, the element-wise estimates ‖u− iKh u‖H1(K) are needed. Usually, they are
obtained by looking for this property on a reference element K̂ with the Bramble-
Hilbert lemma and then scaled to the physical elements.
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Reference element Assume there is a reference element K̂ with dim nodes ẑi,
i = 1, . . . , dim, which defines a finite element (K̂, P̂ , Ψ̂). Furthermore, let ψ̂ ∈ Ψ̂
describe Lagrange elements, i.e. evaluate ψ̂i(π̂) = π̂(ẑi) for π̂ ∈ P̂ . Given a one-to-one
mapping

σ : K̂ → Rd such that each space component σi ∈ P̂ for 1 ≤ i ≤ d , (4.37)

we get physical elements (K,P,Ψ) by the transformation

K = σ(K̂), P = {π = π̂◦σ−1 : π̂ ∈ P̂}, Ψ = {ψi(π) = π
(
σ(ẑi)

)
, π ∈ P} . (4.38)

With this rule we kill two birds with one stone. First, for affine transformations
σ = Bx̂+ b the computation of the variational terms is pulled back to the reference
domain K̂ which makes the assembly of stiffness matrix and load vector easier to
implement and less costly. Then, secondly, one can use the two estimates

|v̂|Wk,p(K̂) ≤ C‖B‖r|detB|−
1
p |v|W r,p(K) ∀v ∈W r,p(K) (4.39)

|v|W r,p(K) ≤ C‖B−1‖r|detB|
1
p |v̂|Wk,p(K̂) ∀v̂ ∈W r,p(K̂) (4.40)

as scaling argument in the convergence analysis for fem in Remark 4.26. The inequal-
ities above can be found in [Ciarlet, 1979, Thm. 3.1.2, p. 117] and are consequences
of Theorem 2.16 and the formula of change of variables in integrals. Third, if σ is
more complicated, it leads to isoparametric finite element which allows elements with
curved boundaries.

Isoparametric fem The name “isoparametric” element alludes to the fact that P̂
is used for the local function space and also for the construction of the transformation
σ in equation (4.37). We do not go into details of constructing such elements and
only point towards Chapter 4.4 in [Ciarlet, 1979] where examples can also be found.
However, we do quote from there the observation that “an isoparametric element is
not directly determined by a mapping” σ but again by the nodes

σ : x̂ ∈ K̂ 7→ σ(x̂) =
dim∑
i=1

π̂(x̂)σ(ẑi) ,

thus still having a local character. Isoparametric fem is the namesake of isogeometric
analysis where the same principles are applied. Nevertheless, iga does have a globally
determined mapping σ contrary to the quote above and, moreover, is not based on a
nodal basis.

4.3.2 Isogeometric analysis

Having established conforming Ritz-Galerkin methods and the isoparametric concept,
we are not far from isogeometric analysis, the main difference being the choice of basis
functions as b-splines or nurbs. We recall that the starting point is the discretization
of the variational equation (2.33)

u ∈ V : a(u, v) = l(v) ∀v ∈ V , (4.41)
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where V = H1
0 (Ω)m, Ω ⊂ Rd, and m the dimension of the solution u. We know from

Theorem 2.16 that a change of variables holds for a C1-diffeomorphism G : Ω̂ → Ω
with bounded derivatives, alternatively satisfying (2.32), and we obtain the equivalent,
transported, variational equation (2.34):

û ∈ V̂ : â(G)(û, v̂) = l̂(G)(v̂) ∀v̂ ∈ V̂ , (4.42)

with û = u ◦ G and V̂ = H1
0 (Ω̂)m. The key to iga is that the diffeomorphism G

is a b-spline or nurbs representation from Section 4.2. We next describe, how the
projection space is discretized by using the same basis functions for V as for the
geometry G. By doing so, an analogy to fem meshes and elements can be established.

Projection space in iga

The fundamental idea in iga is that the domain is given by a b-spline or nurbs
representation G and uses therefore a finite-dimensional subspace

Vh := {N ◦G−1 : N ∈ S}m ∩ V = Sm ◦G−1 ∩H1
ΓD(Ω)m (4.43)

for the discrete Galerkin formulation uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh. Practically,
iga uses equation (4.42) and solves for ûh ∈ V̂h := Sm ∩ V̂ :

â(G)(ûh, v̂) = l̂(G)(v̂) ∀v̂ ∈ V̂h. (4.44)

As above, the hat notation ˆ indicates that a function is defined over the parameter
space Ω̂ = (0, 1)d or that a variable is from Ω̂.
Remark 4.27. In fact we could use any G that satisfies (2.31) or (2.32) and are not
restricted by theory to use a parameterization from a spline space, let alone the same
one as the test functions. But particularly, given two different spline spaces, nurbs or
b-splines, Sgeo and Ssim, we could choose G from Sdgeo and V̂h = Smsim ∩H1

ΓD(Ω̂)m and
(4.44) still yields a legitimate solution ûh = uh ◦G−1, with ûh ∈ V̂h.

All in all, isogeometric analysis has the following two main ingredients:

• A geometry function G ∈ Sdgeo with tensor product spline space Sgeo with basis
Bgeo

G : Ω̂→ Ω, x̂ 7→
∑

α=(i,k),
i=1,...,ngeo,
k=1,...,d

XαNα (4.45)

with ngeo = dimSgeo, Nα = Niek ∈ Rd and Ni ∈ Bgeo and

• a Galerkin projection to the space V̂h = Smsim with tensor product spline space
Ssim with basis Bsim, i.e.

ûh =
∑

α=(i,k),
i=1,...,nsim,
k=1,...,m

qαMα (4.46)

with nsim = dimSsim, Mα = Niek ∈ Rm and Ni ∈ Bsim.
Remark 4.28. Above, substitute Ni by Ri for a notation with rational b-splines.
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Mesh and elements

In the underlying parameter domain, the knot vectors form a grid which allows to
speak of elements and the geometry function projects them to physical elements.

Isogeometric mesh Let Ξi denote knot vectors for i = 1, . . . , d with knots ξij .
Then, the cross product of the knot vectors Ξ1 × · · · × Ξd forms a grid of elements Q
defined by the knot span products

Qj1,...,jd = (ξ1
j1 , ξ

1
j1+1)× · · · × (ξdjd , ξ

d
jd+1). (4.47)

We call the set of all nonempty elements due to Ξi, i = 1, . . . , d the isogeometric mesh
or grid

K̂h = {Qj1,...,jd 6= ∅ : ji = 1, . . . , ni + pi and i = 1, . . . , d}. (4.48)
The size of each element is expressed by its diameter hQ. Again we define a global
mesh parameter h similar to (4.32) by

h = max
Q∈K̂h

hQ . (4.49)

Since nurbs are defined over several knot spans, let N denote a basis function of the
tensor product spline space S from Definition 4.4, then

Π̂
h

(N) := {Q ∈ K̂h : Q ⊂ supp(N)} (4.50)

gives the elements in the support of N . Note, that for h-refined knot vectors Ξ′i we
obtain a mesh K̂h′ with a new mesh parameter h′ ≤ h. Given N on the coarse mesh
K̂h we can still evaluate Π̂h′(N) since ⋃{Q ∈ Π̂h′(N)} = ⋃{Q ∈ Π̂h(N)}. However,
for a refined basis function N defined over K̂h′ it makes no sense to search for coarse
elements in the support Π̂h(N).

Physical mesh The geometry function maps the parameter elements to a physical
“triangulation”

Kh = {K ⊂ Ω: K = G(Q) for Q ∈ K̂h} . (4.51)
As in fem we favor homogeneous sized elements, therefore we assume shape regularity
which implies that hK ' hQ, see also [Beirão da Veiga et al., 2014, Assumption 3.1].

Convergence and error analysis

We proceed as in the convergence analysis for fem and go back to the interpolant in
(4.33). There, we have the following:
• On page 65, a nodal basis is defined from a dual basis ψ, ψi(ϕj) = δij and in

particular ψi(φ) = φ(zi) for a function φ.

• The relation to a reference element is given by a mapping of the reference nodes
zi = σ(ẑi) in (4.38).

From this summary we see that the interpolant in (4.34) has the representation

ihφ(x) =
n∑
i=1

ψi(φ)ϕi(x) =
n∑
i=1

φ(zi)ϕi(x) . (4.52)
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Interpolation on the parameter domain In iga the basis functions are not
interpolatory which means that although we can use a dual basis with ψi(ϕj) = δij it
does not have the nodal property ψi(φ) = φ(zi). Instead, [Beirão da Veiga et al., 2014]
introduces a multivariate quasi-interpolation operator from a suffiently regular function
space over the parameter domain to a multivariate b-spline space S of dimension n,
for instance,

ı̂h : L2(Ω̂)→ S, ı̂hφ̂(x̂) =
n∑
i=1

Λi(φ̂)Ni(x̂) . (4.53)

that satisfies on the parameter domain Λi(Nj) = δij for b-spline Nj and

Λi(φ̂) =
∫

suppNj

φ̂(x̂)gi(x̂) dx̂ . (4.54)

Here, gi is a functional involving the derivative of a transition function from a b-spline
basis Ni. Both gi and Λi depend on the univariate spline spaces which build the
tensor product (like) space S. Since we do not use the properties of the dual basis
Λi and neither need its exact construction in the following, we refer the reader to
[Beirão da Veiga et al., 2014] and the reference to [Schumaker, 1981, Theorem 4.37]
therein. Note, that for functions φ̂ in Hk+1(Ω̂) a different operator is needed to
quasi-interpolate it with b-splines. It also is expressed with an L2 projection as above
in (4.54) under the assumption that the degree of the b-spline is p ≥ 2k + 1. For our
purposes it is enough to know that there are such interpolators in iga and make no
difference in notation for ı̂h : Hk+1(Ω̂)→ S.

Interpolation on the physical domain From the quasi-interpolator on the pa-
rameter domain, we arrive at a projector for functions in X on the physical domain by
first transforming it with the geometry function to the parameter domain, interpolate
it there and then project it back to the physical domain by the inverse of the geometry
function. Let X be a space of functions with sufficient regularity, e.g. X = L2(Ω) or
Hk+1(Ω) for instance, then

ih : X → Vh, ihφ = ı̂h(φ ◦G) ◦G−1 . (4.55)

Note, that for nurbs we insert the weight function in between

ih : X → Vh, ihφ =
ı̂h
(
w(φ ◦G)

)
w

◦G−1 . (4.56)

In tune with Remark 4.27 this projector also supports a non-isoparametric approach
as noted in [Beirão da Veiga et al., 2014, Rem. 3.4]: The geometry function G may
be from a different nurbs space than the interpolator ı̂h although the authors there
state this only for two differently refined spaces.

Error analysis With the interpolators we state now the error analysis as for fem.
We start with the estimates in the parameter spaces and then give those over the
physical domain.
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Lemma 4.29. Let S := S(W1,Ξ1, p1; . . . ;Wd,Ξd, pd) denote the tensor product (like)
spline approximation space for û ∈ Hs(Ω̂). Assume that it has the same polynomial
degree in each univariate component pi = p, i = 1, . . . , d and that the knot multiplicity
of each knot in knot vector Ξi is µi. Then the basis functions have regularity p− µi
across the ith space coordinate. Therefore, let p+1 ≥ k ≥ d+∑d

i=1(p−µi). Furthermore,
let 0 ≤ s ≤ min

i=1,...d
{p− µi}+ 1 then for an element Q ∈ K̂h the local estimate holds

|û− ı̂hû|Hs(Q) ≤ Chk−sQ |û|Hk(Q) . (4.57)

Proof. The local estimate is given in [Beirão da Veiga et al., 2014], Proposition 4.14
and Corollary 4.15.

Lemma 4.30. We have the local estimate for u ∈ Hk(K), where K is a transformed
element in the physical domain given by G(Q) for Q ∈ K̂h. There, the isogeometric
interpolant ih maps from Hs(Ω) to Vh by means of (4.56), which yields

|u− ihu|Hs(K) ≤ Chk−s‖u‖Hk(K) (4.58)

and the same for the whole domain Ω if u ∈ Hk(Ω).

Proof. The above lemma is given in [Beirão da Veiga et al., 2014] as Theorems 4.23
and 4.24.

Remark 4.31. Note, that for s = 0 we obtain the same estimate as in the L2 norm in
(4.36) for fem. An estimate for b-splines of maximum smoothness is discussed in the
preprint [Takacs and Takacs, 2015].

4.4 Shape Calculus in Isogeometric Analysis
With the shape optimization theory from Chapter 3 and the b-spline and nurbs
spaces from this chapter we have now the tools at hand to formulate isogeometric
discretizations for shape optimization. We recall that to solve a shape optimization
problem (1.1) numerically, we have two options: We can either (i) use the necessary
optimality conditions for the infinite-dimensional problem in Section 3.4 and then
discretize both controls and state. Or (ii) we first discretize both control and state
variables in the sop (1.1), and then formulate optimality conditions for the resulting
finite-dimensional problem. Either way we then have a nonlinear finite-dimensional
optimization problem for which we use numerical methods like a gradient descent
method to find an optimal shape.

Basically in a gradient descent method a sequence of domains {Ωk}k=0,1,... is gener-
ated by an update rule

Ωk+1 = (id+ tsk)(Ωk) (4.59)

where sk is a descent direction, typically sk = −∇Ωk J(Ωk), and t a step size. The
update rule of equation (4.59) employs a descent direction resp. gradient from a real
vector space for scheme (ii) while in case (i) the descent direction is an element of a
function space. In [Haslinger and Mäkinen, 2003], the discretize first point of view is
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described for fem, whereas in [Delfour and Zolésio, 2011] the optimize first approach
in the form of Lagrange multipliers can be found, for instance. Chapter 3 discussed
the use of these approaches in iga, namely,
• [Wall et al., 2008], [Qian, 2010], [Nguyen, 2012], [Kiendl et al., 2014] for the dis-
cretize first, and

• [Blanchard et al., 2013], [Bandara et al., 2015] for the optimize first ansatz.
Of special interest is [Qian, 2010] where sensitivities for a structural design problem
with iga in the discretize first setting are developed also w.r.t. nurbs weights. As
we focus more on the optimize first scheme, an important result of this chapter is
a formulation for weight optimization of nurbs geometries in this setting, and a
comparison of discretize first and optimize first for iga.
In the following, we formulate the optimize first–discretize then scheme (i) for iga

which uses the abstract framework from Section 3.4. In particular, we derive the
sensitivities w.r.t. nurbs weights also in this framework. Thereafter, the contrary case
(ii) discretize first–optimize then is treated. Subsequently, we show that both methods
eventually lead to the same discrete system for our class of problems.

4.4.1 Optimize first, discretize then

In this case, we discretize the Karush-Kuhn-Tucker system from Section 3.4. Recall
that we couple cost functional and state equation in the Lagrange function

L(Ω, u, v) := J(u,Ω) + l(v)− a(u, v), (4.60)

or in the isogeometric version with a parameterization Gt = G+ tq̂,

L(Gt, ût, v̂) := Ĵ(Gt, ût) + l̂(Gt)(v̂)− â(Gt)(û, v̂) (4.61)

where all variables q̂, û and v̂ are independent. Under the assumption that the state u
and thus û = u ◦G, is shape differentiable, the necessary optimality conditions are
given by the kkt system ∇L = 0, i.e., at an optimum (û, ẑ, G) it holds

dv̂L(G, û, ẑ; δ̂v) = 0 ∀δ̂v ∈ V̂, (4.62)
dûL(G, û, ẑ; δû) = 0 ∀δû ∈ V̂, (4.63)
dq̂L(G, û, ẑ; δq̂) = 0 ∀δq̂ ∈ Q̂ . (4.64)

Explicitly, the kkt system in iga is given from Lemma 3.25 which we restate here.
Lemma 4.32. The first order necessary optimality system of using (4.62)–(4.64) in
isogeometric shape optimization is

â(G)(û, δ̂v) = l̂(G)(δ̂v) ∀δ̂v ∈ V̂ state equation, (4.65)
dûĴ(G, û; δû) = â(G)(δû, ẑ) ∀δû ∈ V̂ adjoint equation, (4.66)

with dûĴ(G, û; δû) = dtĴ(G, û+ tδû)|t=0. The shape gradient is formed by directional
derivatives

dq̂L(G, û, v̂; δq̂) = dq̂Ĵ(G, û; δq̂) + dq̂ l̂(v̂; δq̂)− dq̂â(û, v̂; δq̂) (4.67)

with dq̂Ĵ(G, û; δq̂) given by expression (3.53) in Lemma 3.24,

dq̂l̂(v̂; δq̂) = dt l̂(G+ tδq̂)(v̂)|t=0 and dq̂â(G)(û, v̂; δq̂) = dtâ(G+ tδq̂)(û, v̂)|t=0.
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This systems turns fully discrete by projecting V̂ onto V̂h and by choosing Q̂ ⊂ Sd
which means G ∈ Sd as well.

Shape sensitivities for optimal weights

In [Qian, 2010], shape optimization simultaneously over control points and weights has
been performed for an example of linear elasticity, based on the discretize first ansatz.
Together with the framework of Section 3.4, we now extend weight optimization to
general elliptic pdes for the optimize first scheme. In Section 4.2 we introduced
B-spline and nurbs spaces. For the latter we assumed a fixed vector of weights W , see
Remark 4.1.3. In shape optimization, however, weights might be another instrument
of fine-tuning. But, if W is not fixed, a much larger space than S of (4.6) is available
in order to search for the best shape. Different to the notation of Remark 4.1.3, we
have free weights. Therefore we use the alternative representation in Definition 4.21
in the following sensitivity formula.

Lemma 4.33. For a shape functional J as in (3.31), we obtain the isogeometric shape
sensitivities in direction θ̃ ∈ N for G = H ◦G̃ and δq̂ = H ◦θ̃ as

dĴ(G; δq̂)

=
∫
Ω̂

(∇j1 ◦G ·DH ◦G̃θ̃ + j1 ◦G tr(J−1
G Ḋ)

)|det JG|dx̂ (4.68)

+
∫
Γ̂

(
∇j2 ◦G ·DH ◦G̃θ̃| J− T

G n̂|+ j2 ◦G|J− T
G n̂| tr(J−1

G Ḋ)+ (4.69)

−j2 ◦G
J− T
G ḊT J− T

G

|J− T
G n̂|

)
|det JG| dx̂ (4.70)

with Ḋ := dtD(H ◦ G̃t)|t=0.

Proof. Since we use homogeneous coordinates for G̃ and the perspective map H, this
implies that by the substitution of variables in the shape functional we have

Ĵ(G) =
∫
Ω̂

j1 ◦ (H ◦G̃)| det(D(H ◦G̃))|dx̂

+
∫
Γ̂

j2 ◦ (H ◦G̃)|D(H ◦G̃)−1n̂||det(D(H ◦G̃))| dx̂.

For the limit dtJ(Gt)|t=0 with Gt = H ◦(G̃+ tθ̃) we need the transformations

JG = DG = D(H ◦G̃) = DH ◦G̃DG̃ and (4.71)

DH ◦G̃ = 1
w

(
Id, −G

)
, (4.72)

with identity matrix Id ∈ Rd×d and assuming positive weights. Therefore, it holds for
G̃t := G̃+ tθ̃

Ḋ = dt D(H ◦G̃t)|t=0 = D2H ◦G̃� θ̃DG̃+ DH ◦G̃Dθ̃, (4.73)
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where D2H(x)� v := (dx1 DH v, . . . ,dxd+1 DH v) ∈ Rd×d+1 for x and v ∈ Rd+1. With
this notation we get explicitly

D2H ◦G̃� θ̃ =

= 1
w2

(
(0d,−e1)θ̃, . . . , (0d,−ed)θ̃, (−Id, 2G)θ̃

)
(4.74)

=


1
w2

(
0d, −δq̂w

)
, if θ̃d+1 = 0

−θ̃d+1
w2

(
Id,

1
θ̃d+1

δq̂w − 2G
)

, if θ̃d+1 6= 0 .
(4.75)

From the implicit function theorem we obtain

0 = dtId = dt
(
D(H ◦G̃t)−1 D(H ◦G̃t)

)|t=0

= dt
(
D(H ◦G̃t)−1)|t=0 D(H ◦G̃) + D(H ◦G̃)−1Ḋ .

Hence,

dt
(
D(H ◦G̃t)−1)|t=0 = − J−1

G Ḋ J−1
G ,

which completes the proof.

4.4.2 Discretize first, optimize then

Spline spaces are isomorphic to real vector spaces, which means that Sd ∼= Rnd and
Vh ∼= Rnm in our setting. So, discretizing the control by b-splines or nurbs means
that any Ω = G(Ω̂) can be expressed as Ω(X) where X ∈ Rnd a coefficient vector of a
b-spline parameterization. In other words, any domain is represented by a vector of
control points, corresponding to the classical design variables.
The Galerkin discretization yields a discrete state uh = ∑

uiNi ◦ G−1 where the
coefficients ui are given by the linear equation Au = F derived from the projected
weak form (4.44). In terms of X and u and with the discrete cost function Jh(X,u) :=
J(û,Ω(X)), we formulate the discrete isogeometric optimization problem as

min Jh(X,u) subject to Au = F. (4.76)

For an optimal pair (X,u) the necessary first order optimality conditions are

(i) State equation: Au = F,

(ii) Stationary point: ∇X Jh(X,u) = 0.

Because u depends on X implicitly, we have to take the derivative ∂Xu for the
stationary point condition into account. For this purpose we introduce the index pair
α = (i, k) where i = 1, . . . , n runs over the control points and k = 1, . . . , d over their
components. By dα := dXα and ∂α := ∂Xα we denote the derivatives with respect to
component k of control point Xi. Then by the chain rule

dαJh(X,u) = ∂αJh + ∂uJh · ∂αu (4.77)

where the shape derivative of u respectively uh is given by

A ∂αu = ∂αF− ∂αAu. (4.78)
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We introduce the adjoint p as the solution of ATp = ∂uJh and obtain

dαJh(X,u) = ∂αJh + pT(∂αF− ∂αAu). (4.79)

Summing up, we have the necessary optimality conditions for an optimal pair (X,u):
For all tuples α = (i, k)

Au = F, (4.80)
ATp = ∂uJh, (4.81)

dαJh(X,u) = ∂αJh + pT(∂αF− ∂αAu) = 0. (4.82)

4.4.3 Two discretization concepts

Since we claim that the fully discrete systems are equivalent for both the approaches,
what makes the difference? First of all, from a theoretical point of view, to show
existence and uniqueness of, and convergence to optimal solutions, we need the
continuous case, i.e., the optimize first part. From a practical angle, some problems
require a different ansatz space for the adjoint in (4.63) than V̂ , see [Hinze et al., 2009],
which also is in favor of optimize first. Thus it appears that optimize first is more
general. However, for more complicated problems the sensitivities in the Fréchet-sense
might not exist and only have numerical interpretations. So both approaches are
important, but since we are more interested in the properties of iga shape optimization,
we concentrate here on the optimize first ansatz.

Comparison of the two discretization schemes in iga

Whichever ansatz one prefers, eventually it yields the same discrete optimality system
in iga for our class of problems. For finite-dimensional Banach spaces the directional
derivative of ji in direction hα = Ni ◦G−1ek is just the partial derivative ∂αji ◦G−1.
That is why for Galerkin methods it does not matter if we use a discretize first–
optimize then or optimize first–discretize then ansatz. We present this result from our
publication [Fußeder et al., 2015] in the following theorem.
Theorem 4.34.
Assume that G satisfies (2.31) with Ω = G(Ω̂) and that the discretization space for the
adjoint in equation (4.63) is V̂h. Then, the partial derivatives w.r.t. shape obtained
in the discretize first–optimize then and those from the optimize first–discretize then
ansatz are equal in iga.

Proof. Equation (3.55) yields the discrete state equation Au = F of (4.80) and
equation (3.56) the discrete adjoint ATp = ∂uJh in (4.81).
Consider a shape functional without implicit dependency on the domain

J(Ω) =
∫
Ω

φ(x) dx, φ : Ω→ R,

=
∫
Ω̂

φ ◦G|det JG|dx̂.
(4.83)
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In iga we set ∂Xα =: ∂α for an arbitrary control point Xα for some α = (i, k),
i = 1, . . . , n and k = 1, . . . , d. Then,

∂αJh(X) =
∫
Ω̂

(
(∇φ) ◦G · ∂αG+ φ ◦G tr(J−1

G ∂α JG)
)
|det JG |dx̂ (4.84)

from the chain rule on the transported shape function in (4.83). On the other hand,
with h = Nα ◦G−1 and Lemma 3.24 we have

dJ(G;Nα) =
∫
Ω̂

(
(∇φ) ◦G ·Nα + φ ◦G tr(J−1

G DNα)
)
| det JG | dx̂. (4.85)

From direct calculation it can be seen that ∂αG = ∂α
∑
XαiNαi = Nα and ∂α JG =

DNα, hence dJ(G;Nα) = ∂XαJh(X).
Because in l̂(G)(v̂) as well as â(G)(û, v̂) functions û, v̂ are independent of G, the

same arguments as for equations (4.84) and (4.85) apply component-wise:

∂αFαi = d l̂G(Nαi ;Nα)

and

∂αAαi,αj = daG(Nαi , Nαj ;Nα).

Therefore,

dαJh(X) = ∂αJh + pT(∂αF− ∂αAu),
dJ(Ω;Nα) = ∂αJh +

∑
j

pj ∂αFj −
∑
i,j

ui ∂αAijpj ,

and the discrete systems are equivalent.

Simple 1D test

In the following shape optimization problem without pde we use a nurbs space for
optimization. The problem is simple enough to differentiate directly w.r.t. the weights
and control points. We compare these directly obtained shape gradients to the ones
using homogeneous coordinates from above.

Example 4.5 (One-dimensional test case). Let φ = 1
1+x be a function which we would

like to track with a nurbs curve on [0, 1], i.e. we consider the cost functional

J(G) = ‖φ−G‖2L1(0,1) =
1∫

0

(φ−G)2 dx, (4.86)

where the geometry is a nurbs curve given by

G = X0ω0N0 +X1ω1N1
ω0N0 + ω1N1

, (4.87)

with positive weights. The latter can be enforced in the optimization routine with

inequality constraints g =
(
−ω0
−ω1

)
< 0.
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The approximation space for G is N = {H(G̃) : G̃ = (Gw, w) ∈ S1 ⊕ S} with a
b-spline basis B(Ξ, 1) = {N0 = 1− x̂, N1 = x̂} on the knot vector Ξ = (0, 0, 1, 1) for the
spline space S = spanB. One can check directly that ω0 = 1, ω1 = 2, X0 = 1, X1 = 0.5
is the exact solution of Example 4.5, or in other words Ω? = φ. The shape sensitivities
are formed by

∇0 J
∇1 J
∇2 J
∇3 J

 :=


dJ(H(G̃);N0e1)
dJ(H(G̃);N0e2)
dJ(H(G̃);N1e1)
dJ(H(G̃);N1e2)

 ?=


∂X0J
∂ω0J
∂X1J
∂ω1J


and should correspond to the gradient obtained by directly differentiating J . Exemplary
we give the derivative w.r.t. weight ω0

∂ω0J(G) =
1∫

0

−2(φ−G)(X0N0
w
− G

w
N0) (4.88)

dJ(G;N0e2) =
1∫

0

−2(φ−G)(−G
w
N0). (4.89)

The missing term in shape derivative (4.89) is compensated by a different update rule.
Namely, compare updating with direct gradient

Gnew = (X0 + ∂X0J)(ω0 + ∂ω0J)N0 + (X1 + ∂X1J)(ω1 + ∂ω1J)N1
(ω0 + ∂ω0J)N0 + (ω1 + ∂ω1J)N1

(4.90)

and with shape gradient

G̃new =
(
X0ω0 +∇0 J
ω0 +∇1 J

)
N0 +

(
X1ω1 +∇2 J
ω1 +∇3 J

)
N1 ⇒

Gnew = (X0ω0 +∇0 J)N0 + (X1ω1 +∇2 J)N1
(ω0 +∇1 J)N0 + (ω1 +∇3 J)N1

(4.91)

As expected, if we approximate φ with piecewise linear functions, that is we use no
weights in Example 4.5, the error ε = J(G)−J(Ω?) = J(G) is large, ε ≈ 10−4, compared
to a G obtained with simultaneous weight optimization, which is ε ≈ 7× 10−15 in
Figure 4.10.

Comparison reviewed from the optimal control point of view

In [Hinze et al., 2009, Ch. 3] the two discretization approaches are compared for usual
optimal control problems like (2.44). The result is similar, namely that they lead
to the same discrete systems for Galerkin methods if the finite-dimensional function
spaces of state and adjoint are the same in optimize first.

It seems that the shape optimization community is split into two camps about these
approaches. Moreover, the different groups are further divided by computing the shape
gradients also by finite differences schemes or automatic differentiation. Of course, each
method has its own advantage; comparisons for structural design sensitivities are for

78



4.4 Shape Calculus in Isogeometric Analysis

0 0.2 0.4 0.6 0.8 1
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φ
G, rational
G, non-rational

Figure 4.10: Optimization with b-splines
and nurbs in Example 4.5: With b-splines
the optimal control points are X0 = 0.9315,
X1 = 0.4548, whereas for nurbs we get
optimal weights and control points up to
errors εω0 = 0, εω1 = 1.292× 10−6, εX0 =
1.74× 10−7 and εX1 = 7.4× 10−8, with
starting points X0 = 0 = X1 and ω0 =
1 = ω1.

instance found in [van Keulen et al., 2005] and [Neittaanmäki and Salmenjoki, 1989].
One main point of argumentation from the discretize first side is that due to discretiza-
tion errors the shape gradient from an optimize first view does not fit the numerical
optimization problem that is actually solved. In [Berggren, 2010], this discrepancy
is addressed with the result that for smooth enough state and adjoint variables the
differences can vanish under some assumptions. Though being a common statement
in optimal control theory for Galerkin methods, the equivalence is often not even
considered in shape optimization. This indifference towards alternative formulations
probably roots in the two extremes found in shape optimization: at one end industrial
relevant problems where shape optimization theory is not applicable in full rigor, and
on the other side mathematical theory of shape calculus, existence, uniqueness and
convergence for often only academic problems.
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5
Shape Optimization Methods

In Chapter 3 the foundation of shape optimization was laid and in Chapter 4 a
discretization of it was discussed. However, for a successful implementation this is
not enough yet. Up to now a particular optimization routine is missing that gives
us a descent direction based upon information from the (shape) gradient. Since we
have constraints on the control in all of our examples we need a solver for constrained
nonlinear optimization problems. Due to the constraints, a simple gradient-descent
together with a line search for the step size, like the Armijo rule, does not do the
job in our cases. Hence, we discuss our choices of optimization solvers in Section
5.1. Another point, irrelevant in the theoretical discussion of sops, is the construction
of new geometries after an optimization step. Such updates of a geometry with a
descent direction are something of a bottleneck in shape optimization which deserves
a careful investigation. In Section 5.3 we therefore sketch the problem of infeasible
parameterizations and how we try to avoid them in our examples. A global answer
to this is out of scope for this thesis; we content ourselves with heuristic approaches.
Another important topic in shape optimization is of course the influence of discretization
errors. In particular, the well-studied error of pde approximations enters the sop
solution. Specifically in isogeometric analysis we have the same discretization parameter
for optimization and for simulation since control and state space are equal. In order
to separate (and thus control) the two sources of discretization errors we loosen the
tight relation between geometry, control and state in Section 5.4, and show that two
different spline spaces for optimization and simulation are supported by our theory.

5.1 Nonlinear Optimization Programs

To solve shape optimization problems like (1.1) after discretization by either discretize
first or optimize first leads to a finite-dimensional problem looking like

min
x∈RN

f(x) subject to g(x) ≤ 0, h(x) = 0 (5.1)

with M (nonlinear) inequality constraints g : RN → RM and P (nonlinear) equality
constraints h : RN → RP . In the shape optimization context, the cost function f
corresponds to a discrete version of J(Ω, u), g and h supply constraints on the control
Ω, for instance constant volumes. In order to accommodate the restrictions on x
in an optimization method the Lagrange function is employed, as in the infinite
dimensional problems. Again, optimal x? satisfy a Karush-Kuhn-Tucker system
of optimality criteria, and optimization methods iteratively optimize the Lagrange
function. An overview on numerical minimization methods for shape optimization is
given for instance in [Haslinger and Mäkinen, 2003], general optimization algorithms
are treated in [Nocedal and Write, 2006] and we follow [Ulbrich and Ulbrich, 2012] in
our exposition.



Chapter 5 Shape Optimization Methods

5.1.1 Optimality criteria

Before we state the kkt system for problem (5.1) we introduce some notation. In the
following we assume that f , g and h are continuously differentiable and x ∈ RN is
feasible if it satisfies the constraints. Furthermore, we denote the index set of active
inequality constraints by

A(x) := {i : 1 ≤ i ≤M, gi(x) = 0} . (5.2)

A vector v ∈ RM is reduced to its active entries by the notation vA(x) = (vi)i∈A(x).
At an optimal point a so called constraint qualification must be satisfied. There are
several equivalent conditions to ensure that and here we pick the linear independence
constraint qualification.

Definition 5.1. A feasible x ∈ RN is called regular point if the columns of the matrix
(∇gA(x),∇h) are linearly independent. This regularity condition is also called linear
independence constraint qualification for an optimal point x?.

For other, especially weaker, constraint qualifications we refer to literature. To
formulate the kkt optimality system for the finite-dimensional problem (5.1) we need
(as in the infinite case) couple the objective and constraints in the Lagrange function.

Definition 5.2. For problem (5.1) the Lagrange function is defined as

L(x, λ, µ) := f(x) + λTg(x) + µTh(x) (5.3)

where λ ∈ RM and µ ∈ RP .

We now state from [Ulbrich and Ulbrich, 2012, p. 94] a necessary first order opti-
mality condition for constrained nonlinear optimization problems.
Theorem 5.3 (Necessary optimality criteria of first order).
Let x? ∈ Rn be a local solution to the finite-dimensional optimization problem (5.1)
where a constraint qualification is fulfilled. Then the Karush-Kuhn-Tucker conditions
are true: There exist Lagrange multipliers λ? and µ? such that
(i) ∇x L(x?, λ?, µ?) = 0,
(ii) ∇µ L(x?, λ?, µ?) = h(x?) = 0,
(iii) ∇λ L(x?, λ?, µ?) = g(x?) ≤ 0, λ? ≥ 0, λ?Tg(x?) = 0.

5.1.2 Nonlinear Programming Algorithms

For the finite-dimensional nonlinear optimization problem (5.1) we use gradient-based
methods. In particular, we use sequential quadratic programming, method of moving
asymptotes, and an interior point method to solve the applications in Chapter 6.
Although all of them use the gradient for updating and checking optimality criteria,
they differ in their strategies. Among many others, [Nocedal and Write, 2006] offers
an extensive treatment of numerical optimization methods.
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Iterative optimization methods

Iterative optimization methods for (5.1) produce a sequence of updates

xk+1 = xk + tksk (5.4)

where in the kth step sk is a descent direction and tk a step size. To begin the iteration
one has to chose a starting point x0 as initialization.

Unconstrained optimization

We look at unconstrained minimization problems to motivate the different descent
methods.

Steepest descent A standard steepest descent method sets the descent direction to
sk = −∇f(xk) and the step size tk is determined for instance by an Armijo rule: For
a γ ∈ (0, 1)

test for t = 2−`, ` = 0, 1, 2, . . . whether f(xk+tsk)−f(xk) ≤ tγ∇f(xk)Tsk . (5.5)

Set tk to the largest such t. This can be rather slow with only linear convergence to
an x?, i.e. there is a constant 0 < C < 1 and N ≥ 0 with

‖xk+1 − x?‖
‖xk − x?‖

≤ C ∀k ≥ N . (5.6)

Newton method In contrast, Newton methods converge faster by using information
of second derivatives. If f is twice continuously differentiable then a Taylor expansion
yields f(xk + s) = f(xk) +∇f(xk)Ts+ 1

2s
T∇2f(xk)s+ o(‖s‖2). Therefore, to minimize

f we minimize f(xk + s) w.r.t. s which is the same as finding the minimum sk to the
quadratic term F (s) := ∇f(xk)Ts+ 1

2s
T∇2f(xk)s. The first order necessary optimality

condition for F , i.e. ∇F (sk) = 0, leads to the Newton equation for ∇F = ∇2f and
thus to a linear system for the descent direction

∇2f(xk)sk = −∇f(xk) (5.7)

and tk = 1. Under appropriate conditions the Newton method converges

superlinearly: ‖xk+1 − x?‖
‖xk − x?‖

→ 0 for k →∞ , or even (5.8)

quadratically: ‖xk+1 − x?‖
‖xk − x?‖2

≤ C ∀k ≥ 0 . (5.9)

Constrained optimization

We infer the motivation from the unconstrained case above also to the constrained
optimization.
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Chapter 5 Shape Optimization Methods

Sequential Quadratic Programming (sqp) methods are one of the most efficient
optimization methods [Ulbrich and Ulbrich, 2012, p. 120]. They compute the descent
direction for the update formula (5.4) by solving the following quadratic sub problems
where Hk ≈ ∇2

xx L(xk, λk, µk)

min
s∈Rn

∇f(xk)Ts+ 1
2s

THks s.t.

g(xk) +∇g(xk)Ts ≤ 0 ,
h(xk) +∇h(xk)Ts = 0 .

(5.10)

Under appropriate conditions the sqp algorithm converges q-superlinearly or even
q-quadratic if Hk = ∇2

xx L(xk, λk, µk). Without second derivative information one
uses so called quasi-Newton–updates to approximate Hk. For such updates we refer to
[Ulbrich and Ulbrich, 2012] and others, but remark that even with these approxima-
tions we can achieve better convergence rates than linear ones.

Method of Moving Asymptotes (mma) is an optimization method which was
developed for shape optimization, particularly in structural mechanics and is attractive
for problems with a large number of design variables. The rough idea is to replace f , g
and h in each iteration by a linearization through a Taylor expansion around a cleverly
chosen point. This expansion point is adjusted by parameters, the moving asymptotes,
which are the new optimization variables. Thus one ends up with dual sub problems
which are much cheaper to solve than the primal problem. For the formulation of these
sub problems and a proof of convergence we refer to the inventor [Svanberg, 2002].
However, let us remark that mma does not support equality constraints and that sqp
typically has a faster convergence rate.

Interior Point Method These methods handle large-scale nonlinear problems with
inequality constraints. They reformulate the problem by adding a logarithmic barrier
to f(x) that penalizes movements towards the boundary of the feasible set

min
x∈RN

fµ := f(x)− µ
N∑
i=1

ln(xi) . (5.11)

We substitute fµ for f in (5.1) and the method in [Wächter and Biegler, 2006] solves
this barrier problem for a fixed µ and then decreases the barrier parameter successively.
We refer to [Nocedal and Write, 2006] for an introduction or, for details to the IPOPT
implementation, to [Wächter and Biegler, 2006].

5.2 Sobolev Smoothing
Though both interpretations of directional derivatives, optimize first and discretize first,
lead to the same system for the directional derivative, in the functional space setting
the gradient is a member of a Hilbert space and thus depending on the underlying
scalar product (·, ·). For a Fréchet-differentiable real-valued function J , the gradient
denoted by ∇J ∈ H is according to (3.24) the solution to

(∇J, θ) = dJ(G; θ) ∀θ ∈ H . (5.12)
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This leaves some freedom in choosing the inner product (·, ·) and hence the regularity of
∇J . According to [Protas et al., 2004] and [Schmidt et al., 2011] such a regularization
has the effect of preconditioning the optimization process. As yet we have not used
this Sobolev-smoothing of the gradient in any of the model problems. However, in
[Blanchard et al., 2013] an iga example can be found that combines regularization
with mesh movement from Section 5.3.

5.3 Mesh Update Strategies

Large deformation at the boundary of a geometry due to updates by shape gradients
frequently leads to infeasible parameterizations, for instance, when the control polygon
overlaps with inner control lines, as in Figure 5.1b. Such tangled meshes also are
a curse of time evolving domains as in flow problems with moving boundaries, and
likewise in shape optimization. The measures to avoid them depend on the “nature
and magnitude” of the desired changes, [Johnson and Tezduyar, 1994], a last resort
is completely remeshing the new domain. The latter is no option for isogeometric
shape optimization because there is no simple isogeometric mesh generator yet. In
fact, obtaining analysis suitable volume models from surface parameterizations is an
ongoin research process, [Jüttler et al., 2014]. However, not all deformations have this
fatal flaw: small deformations or those in direction of the mesh structure are more
benign. So, we adapt our measures as situation demands. Since it is a purely discrete
problem we first formulate it as such in a general way, to be filled later with meaning
by identified update strategies. After commenting on methods already employed in
isogeometric shape optimization, we describe the ones we pick for this work.

Γ̂
(a) Initial parameterization with mov-
ing boundary Γ̂

Γ̂t

(b) Overlapping parameterization af-
ter moving only the boundary

Figure 5.1: Moving only the boundary can cause irregular parameterizations.

5.3.1 General mesh movement

We write here very generally that a mesh movement function Φ: Rndes → Rnd propa-
gates a descent direction s to all control points, where s results from the sensitivity
analysis and has the size ndes corresponding to the number of design variables. The
focus is here on an algorithmic framework for shape optimization, therefore we do not
specify Φ now or for our shape optimization algorithm. However, we discuss subse-
quently some option how to fill Φ with meaning. This general approach is justified
because in the end an update in iga is carried out by changing the control points.
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We say that a function Φ(s) = y ∈ Rnd propagates the descent direction to all
control points, respecting fixed boundaries and the movement on the optimization
boundary, i.e.

{
y` = s` if Ni`ek` is design variable
y` = 0 if Ni`ek` is on fixed boundary .

(5.13)

Existing mesh movement methods comprise techniques from different fields like flow
problems [Johnson and Tezduyar, 1994] and r-adaptivity [Budd et al., 2009], but are
also taylored towards shape optimization [Hicken and Zingg, 2008]. However, they
seem to be problem specific in any case.

5.3.2 Mesh update in isogeometric shape optimization

In iga shape optimization mainly two methods have been used so far to move inner
control points, solving another optimization problem, or using linear elasticity. We
comment our options.

Mesh movement by solving another optimization problem

For an electromagnetic shape optimization in [Nguyen et al., 2012], the movement of
inner control points is realized by minimizing the Winslow functional which aims for a
positive determinant of the Jacobian of G. However, solving an additional optimization
problem can become quite expensive, therefore the authors suggest a linearized version.
Closely related to this method are the analysis-aware iga meshes in [Xu et al., 2013].
There, the authors improve the position of inner control points such that the error in
pde analysis decreases. This is done by formulating the problem as an sop and as
such also optimizes the spread of the magnitude of the determinant of the Jacobian of
G. However, for this technique a good error estimator is needed.

Mesh movement with pdes

In general, finding a mesh movement vector field Φ can be formulated as another pde
as shows [Blanchard et al., 2013], where a mesh deformation is realized by solving
a linear elasticity problem with the displacement of control points on the moving
boundary as Neumann boundary condition. This is especially attractive in linear
elasticity state equations since then the system matrix of the state can be used in the
mesh deformation problem as well. Note however, that the resulting mesh movement
depends then on the parameters of the elasticity equation. Then, a “small” shape
gradient might effect little or no mesh movement for rigid materials.

For a Poisson state equation we show with a simple example that a mesh update by
the Poisson stiffness matrix can fail if the step size in an optimization loop is too large
and leads to non-convex domains. We construct a toy example: We use the Poisson
equation with inhomogeneous Dirichlet boundary conditions to move the mesh

−∆ Φ = 0 in (0, 1)2, Φ = ft(x) on [0, 1]×{0}, and Φ = 0 else on ∂(0, 1)2 (5.14)
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where for t ∈ [0, 1) the deformed boundary is given as

ft(x) =
{
tx x ≤ 0.5 ,
1− tx x > 0.5 .

This yields irregular parameterizations for larger step sizes as shown in Figure 5.2.

(a) t = 0 (b) t = 0.5 (c) t = 0.8

Figure 5.2: We show with a minimal example that moving the inner control points
by solving a Poisson equation may yield irregular parameterizations if changes to
the domain are too large and non-convex. We use the knot vector Ξ = (0, 0, 0.5, 1, 1)
in both directions for b-splines of degree p = 1 and variable second control point
(0.5, t)T with 0 ≤ t < 1. The initial configuration is given at t = 0. For t = 0.5 we
have an admissible step size, t = 0.8 is already too large.

Mesh movement based on the distance to the boundary

Another alternative is to use a relative positioning of inner control points which is
quite easy to implement in iga due to the tensor product space structure: In d = 2
dimensions, let the boundaries of Ω be given by functions γN , γS , γW and γE which
are b-spline or nurbs parameterizations. For instance γS = G(x̂1, 0), γN = G(x̂1, 1),
x̂1 ∈ (0, 1), and so forth. Then

T (x̂1, x̂2) = id+
(
γW (x̂2)(1− x̂1)− x̂1(1− γE(x̂2))
γS(x̂1)(1− x̂2)− x̂2(1− γN (x̂1))

)
(5.15)

transforms Ω̂ to Ω. In particular, we get equidistantly spaced control points by mapping
the intersecting grid points of Ω̂ by means of T to Ω. The method works if control
points only move up and down, examplary the movement from Figure 5.1 results with
this method in Figure 5.3. However, it works only to some extent if control points
move diagonally as in Figure 5.4.

5.4 Decoupling of State and Control Discretization
Consider Remark 4.27 where we assumed two spline spaces S1, S2: one for the geometry
representation and one for the projection space. Since optimization is very costly
for each design variable we want to keep the number of design variables as low as
design considerations allow. However, the interpolation error of the state equation
directly plays a role in evaluating the objective function J and also in the accuracy
of its gradient, which in turn influences the optimization. As an intuitive example,
suppose we solve the Poisson equation on the unit square with homogeneous Dirichlet
boundary conditions with only two linear basis functions per direction, then uh = 0,
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Γ̂t

(a) Overlapping parameterization af-
ter moving only the boundary

(b) Parameterization by relative posi-
tioning of inner control points

Figure 5.3: Adjusting inner control points by relative positioning to avoid mesh
tangling: Instead of moving only the boundary, we use transformation T of (5.15) to
obtain an equidistant parameterization

(a) Deformed boundaries (b) Relative positioning works
here for moving inner control
points

(c) Relative positioning fails

Figure 5.4: An example where relative positioning of inner control points works in
non-convex domains and one where it does not

which leaves not much scope for the optimizer. Hence, a good approximation of the
state is vital. For detailed studies on the influence of the error u− uh, see for instance
[Kiniger and Vexler, 2013, Eppler et al., 2007].
Of course, the interpolation error of design also influences the accuracy of the

optimization outcome. Hence using two separate meshes makes it possible to control
the sources of discretization errors in design and analysis separately as well.

Both schemes, optimize first–discretize then and discretize first–optimize then allow
for this scenario of two spline spaces. In the Karush-Kuhn-Tucker system (3.55)–(3.57)
the variations δ̂v and δû are taken from V̂ = Sm2 ∩ W 1

0 (Ω̂)m, whereas for domain
perturbations one selects δq̂ ∈ Sd1 . In the discretize first system (4.80)–(4.82) the shape
derivatives ∂Xα refer to control points of G ∈ Sd1 .

5.5 Local Refinement

With the evolution of iga to an established pde solver the ability for adaptive refinement
is a crucial step to play in the liga of classic fem solvers. However, due to the tensor
product structure of the b-spline space a local refinement in one dimension propagates
the refinement in the other components, see Figure 5.5. There are several variants
of b-splines capable of local refinement. In this work we use hierarchical b-splines
which were developed in [Vuong et al., 2011] and [Vuong, 2012]. The properties and
implementation aspects of hierarchical b-splines can be found in the references above.
We summarize from there, how to construct a hierarchy of b-splines and how to address
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5.5 Local Refinement

the structure of the corresponding mesh. Finally, we give an example of a locally
refined simulation.

Figure 5.5: Propagation of local refinement: Consider a bivariate b-spline space
resulting from knot vector Ξ = (0, 0, 0.25, 0.5, 0.75, 1, 1) for both directions, resulting
in the mesh on the left. Inserting a new not at 0.625 in the first direction and at 0.375
in the second propagates the refinement throughout the tensor structure, visible in
the mesh in the middle. Opposed to this is a refinement of only one element given by
the right mesh, breaking up the tensor product structure.

5.5.1 Construction of hierarchical basis

The aim of this section is to construct a set of linearly independent b-spline basis
functions which preserve the tensor product structure and can represent local details
of geometries or of pde solutions. The latter can be achieved by classical hierarchical
b-splines from [Forsey and Bartels, 1988]. However, the basis functions may not be
linearly independent in this approach, so we need the method from [Vuong et al., 2011]
to overcome this. We first define a hierarchy of b-spline spaces and then give a recursion
to collect a linearly independent basis from them.
Let L > 0 be a finite number of levels and for all ` = 1, . . . , L define a bivariate

b-spline basis B` = B(Ξ`1, p1; Ξ`2, p2) as in Definition 4.4. We assume that the degree
stays the same for all levels and that the knot vectors are nested: For all 1 ≤ ` < L it
holds{

Ξ`1 ⊂ Ξ`+1
1 and Ξ`2 ⊂ Ξ`+1

2 ,

µ` ≤ µ`+1 for the multiplicity µ of any knot in Ξ` .
(5.16)

Furthermore, assume there is a sequence of bounded closed sets (Ω̂`)`=1,...,L with

Ω̂L ⊂ Ω̂L−1 ⊂ . . . ⊂ Ω̂1 = ¯̂Ω (5.17)

which define the refinement regions. Then we can give a definition of classical,
hierarchical b-splines.

Definition 5.4. For L > 0, the sequence of nested b-spline spaces (S`)`=1,...,L defined
over the parameter domain Ω̂ and spanned by the basis B`

S1 ⊂ S2 ⊂ . . . ⊂ SL (5.18)
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together with the sequence of refinement regions (Ω̂`)`=1,...,L define hierarchical b-
splines B: From each level ` the basis functions from B` with support in Ω̂` are selected
for the classical hierarchical basis:

B :=
L⋃
`=1
{N ∈ B` : suppN ⊂ Ω̂`} . (5.19)

Note that we are guilty of an abuse of notation since B from Definition 5.4 is not
a basis; the b-splines in B are not linearly independent. In the next step we fix this
according to [Vuong, 2012, p. 85 ff.] to define hierarchical b-splines for isogeometric
analysis. This is done by removing basis functions from B which can be expressed by
those from the next levels.

Definition 5.5. From the sequences (S`)`=1,...,L and (Ω̂`)`=1,...,L from Definition 5.4
initialize B1 := B1. Then construct the next level from the current one by the recursion
for ` = 1, . . . , L− 1

B`+1 = (B` \B	` ) ∪B⊕`+1 , (5.20)

where

B	` = {N ∈ B` : suppN ⊂ Ω̂`+1} , (5.21)
B⊕`+1 = {N ∈ B`+1 : suppN ⊂ Ω̂`+1} . (5.22)

In the end, set B := BL.

In Chapter 5 of [Vuong, 2012] the linear independence of hierarchical basis from
Definition 5.5 is proven, therefore we can define:

Definition 5.6. We define the hierarchical b-spline space as Shb := spanB .

With an example also from above reference, we illustrate the difference between
classical, hierarchical b-splines and hierarchical b-splines for isogeometric analysis in
Figure 5.6. Furthermore from this figure, it is visible that not only the basis is locally
refined but also the elements or knot spans. In Figure 5.6d are 2 coarse elements on
level 1 and 6 refined elements on level 2. A general structure of hierarchical elements
is pursued in the next section.

5.5.2 Structure of hierarchical mesh

In the section about isogeometric meshes on page 70 we related b-spline basis functions
to elements in the parameter domain by the nonempty knot spans of their corresponding
knot vectors. Analogously to adaptive refinement in finite element methods we want
to single out elements for local refinement.
We assume that we have L > 0 nested spline spaces S` as in Definition 5.4. Then

there is for all spline spaces S`, ` = 1, . . . , L, an isogeometric mesh K̂h` . From these L
meshes we select elements Q ∈ K̂h` and form a new mesh K̂hb.
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(b) Level 2 univariate b-spline basis B2
of degree p = 2 where each knot span has
been subdivided by knot insertion
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(c) Classical, hierarchical b-splines with
linearly depended spline functions in B
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(d) Hierarchical b-splines for isogeometric
analysis with linearly independent basis
B

Figure 5.6: Classical and isogeometric hierarchical b-splines from Definition 5.4 and
Definition 5.5

Definition 5.7. We call K̂hb ⊂
⋃L
`=1 K̂h` a hierarchical isogeometric mesh ifQ ∩Q′ = ∅ for all pairwise different Q, Q′ ∈ K̂hb ,⋃{Q̄ ∈ K̂hb} = ¯̂Ω .

(5.23)

An element Q ∈ K̂hb is called active element and K̂hb,` = K̂hb∩K̂` is the set of all active
elements on level `. The active elements in K̂hb,` cover the region U` := ⋃{Q̄ ∈ K̂hb,`}
in the closure of the parameter domain ¯̂Ω.

From active elements we obtain active basis functions:

Definition 5.8. Let N ∈ B` be a basis function from level `. Then it is active if

suppN ⊂
L⋃
k=`

Uk and suppN *
L⋃

k=`+1
Uk . (5.24)

The authors in [Vuong, 2012] show that the set of all active basis functions from
Definition 5.8 give a hierarchical basis B from Definition 5.5 with refined regions
Ω̂` = ⋃L

k=` Uk.
Next, we give an example of simulation with hierarchical b-spline that resolves the

local region of interest with the help of an error indicator.

5.5.3 Example of local refinement

The next example problem modifies the one in our paper [Vuong and Fußeder, 2013]
originally from [Prudhomme and Oden, 1999] to apply local adaptive refinement to a
pde defined over a disk.
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Example 5.1. We solve the pde Problem 1, the Poisson equation −∆u = f in
Ω with homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. The right hand
side f is chosen such that the equation is fulfilled for u = −5

(
(x− 1)2 + (y − 1)2 −

1
)
(e10x2 −1)(exp10y2 −1). The domain Ω = {(x, y) ∈ R2 : (x− 1)2 + (y − 1)2 ≤ 1} is a

disk of radius 1 around the center (1, 1), for which we have a nurbs representation
with the data C.3 in the Appendix. Since the data there is for a disk around the origin,
we use a translation by adding (1, 1) to all control points.

We see from the contour plot of the exact solution in Figure 5.7a that the problem
has highly local features which can be reproduced by isogeometric analysis using
adaptive refinement in Figure 5.7b. The adaptive refinement with a multilevel error
indicator leads to the refined mesh shown in Figures 5.7c and 5.7d with 7 different
levels of refinement. Besides local refinement, Example 5.1 exhibits a geometry map
with 4 singularities discussed already in Section 4.2.2, Figure 4.7. The sensible results
indicate that the regularity conditions on a geometry map may be relaxed as foretold.

(a) Contour plot of exact solution (b) Numerical solution and its contours by local
refinement

(c) Mesh of physical domain showing 7 levels
of refinement

(d) Zooming in of refined mesh

Figure 5.7: Simulation for Example 5.1 with local refinement by hierarchical b-splines
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6
Computational Framework and

Applications
Finally, in this chapter we tie together the theory and experience from all previous

chapters and put it into practice. A gradient-based optimization method is employed
to solve the discretized version (5.1) of the minimization problem (1.1) with a black
box optimization program, described in Section 5.1.
Using such a black box gradient-based optimization routine we illustrate the steps

towards an optimal shape in Algorithm 1.

Algorithm 1 Basic Shape Optimization Algorithm
Require: Initial geometry Ω
Require: Pde(Ω) . PDE solver on Ω which yields solution uh
Require: Objective(Ω, uh) . evaluate objective function J(Ω, u) for domains Ω
Require: Constraints(Ω). evaluate constraint functions g(Ω), h(Ω) for domains Ω
Require: Shape Grad(Ω, uh) . compute shape gradient ∇J , ∇g, ∇h
Require: Update(Ω, s). update geometry “Ωnew = Ω + s” with descent direction s
Black Box Optimization
1: repeat
2: uh ←Pde(Ω)
3: J ← Objective(Ω, uh)
4: (g, h)←Constraints(Ω)
5: (∇J,∇g,∇h)←Shape Grad(Ω, uh)
6: if Ω is not optimal, i.e. does not satisfy a stopping criteria then
7: compute a descent direction s involving ∇J , ∇g, ∇h
8: Ω← Update(Ω, s)
9: end if

10: until Ω is optimal

This algorithmic aspect of isogeometric shape optimization is in the focus of our
publication [Fußeder and Simeon, 2015]. Algorithm 1 provides the structure for Sec-
tion 6.1: We apply the theory from the previous sections to obtain the required
procedures in Algorithm 1 for the abstract shape optimization problem, and state them
explicitly for some model examples. The implementation heavily relies on powerful
third party libraries, thankfully acknowledged in this section. We finalize this part
with the numerical solution of model problems in Section 6.2.

6.1 Isogeometric Shape Optimization Algorithms
On the basis of Algorithm 1 we discuss algorithmic aspects of shape optimization
with iga. In particular, we connect the procedures Pde and Shape Grad to the
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shape optimization framework in Chapter 3 and to its discretization with isogeometric
analysis from Chapter 4. We briefly describe the third party software we use, especially
the optimization solvers, and give credit to the isogeometric pde solver from my
predecessor. With the step-by-step process before us, we try to assess the merit of iga
in shape optimization newly.

6.1.1 PDE solver

Going back to the basic shape optimization Algorithm 1, the procedure Pde(Ω) in line
2 solves the variational form of the state equation of the shape optimization problem,
the pde e(Ω, u) = 0, numerically.
That is done by the means of isogeometric analysis from Section 4.3 which corre-

sponds to assembling and solving the transformed state equation (4.44) where the
domain Ω is given by a b-spline or nurbs representation G.

This procedure already acknowledges two discretizations, Sdgeo for the geometry and
Smsim for the pde as developed in (4.45) and (4.46). It finally leads to a linear system

Au = F, Ail,jk := â(G)(Miel,Mjek), Fil := l̂(G)(Miel) (6.1)

for the model problems with stiffness matrix A, right hand side F and coefficients of
the solution ûh = ∑n

i=1
∑m
l=1 uilMiel . We assume that the coefficients uil ∈ R can be

ordered lexicographically in a solution vector u, for instance like

u =
(
u11 u12 . . . u1m . . . unsimm

)T

and in the same breath we write all coefficients belonging to the same spline basis as
components of a control point of the solution

ui =
(
ui1 . . . uim

)T
.

Hence, for any admissible domain Ω given by a b-spline/nurbs parameterization
G = ∑ngeo

i=1 XiNi ∈ Sdgeo and a test function space of b-spline/nurbs Smsim the procedure
Pde(Ω) is given by Algorithm 2. Note, that the assembly can be done element-wise
due to the local support of the basis functions, properties (ii) and (iii) in Lemma 4.10
and that the solution u is approximated by uh = ûh ◦G−1.

Algorithm 2 Pde(Ω)
1: for all basis functions Miel ∈ Smsim do
2: for all basis functions Mjek ∈ Smsim do
3: Ail,jk ← â(G)(Miel,Mjek)
4: end for
5: Fil ← l̂(G)(Miel)
6: end for
7: Apply boundary conditions of state to A and F
8: Solve Au = F
9: ûh ←

∑nsim
i=1 uiMi.
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6.1.2 Shape gradient computation

In this section we bring the shape gradient calculation from Section 4.4 in an algorithmic
form. Moreover, we summarize the practical considerations from Chapter 5, Sobolev
smoothing, mesh update and decoupled meshes, in one procedure for Algorithm 1.

Here, we make use of compatible meshes from Definition 4.15 in Section 4.1.5: When
using two meshes – simulation mesh and optimization mesh – shape sensitivities like
dGâ(G)(Miel,Mjek;Nres) occur which involve integrals over basis functions Miel and
Mjek from the simulation space and Nres from the geometry space, to vary the domain.
Therefore, the domain of integration is the mutual support supp(Nr) ∩ supp(Mi) ∩
supp(Mj). For an easy implementation, it is favorable when the meshes match, i.e. if
they are compatible in the sense of our Definition 4.15. We then can assemble over
the elements from the finer mesh and the mutual support is found straight forwardly
as shown in Lemma 4.17. Algorithm 3 exploits this procedure to calculate the shape
gradient.

Algorithm 3 Shape Grad(Ω, u)

Shape gradient of objective function . compute terms in (3.57) for
objective function

1: for all basis functions Miel do . assemble right hand side of adjoint equation
2: Bi,l ← duĴ(G,Miel)
3: end for
4: Solve ATp = B: adjoint state ẑh = ∑d

i=1 piMi . solve adjoint
5: for all design variables Nres do . directional derivatives of objective function
6: ∇Jr,s ← dq̂Ĵ(G, ûh;Nres) + dq̂l̂(G)(ẑh;Nres)− dq̂â(G)(ûh, ẑh;Nres)
7: end for

Shape gradient of constraint functions
8: for all design variables Nres do . directional derivatives of constraints
9: ∇gr,s ← dĝ(G;Nres) . derived from equations (3.53)–(3.54)

10: ∇hr,s ← dĥ(G;Nres)
11: end for

Sobolev smoothing . if needed
12: for all design variables Nkel do . assemble system matrix
13: for all design variables Nres do
14: Rklrs ← (Nkel, Nres) with scalar product (·, ·) of Hilbert space H of wanted

regularity, see Section 5.2
15: end for
16: end for
17: Solve Ry = ∇J , ∇J ← y
18: Solve Ry = ∇g, ∇g ← y
19: Solve Ry = ∇h, ∇h← y
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6.1.3 Computation of new geometry

Here, we give the procedure for updating a geometry in Algorithm 1. The descent
direction s depends on what the (black box) optimization routine returns on the
basis of the gradients ∇J , ∇h and ∇g but it is up to the user how to update the
geometry with it and possibly to move the mesh. We summarize the whole procedure
in Algorithm 4. As demonstrated with Example 4.5, the update rules differ for nurbs
with variable weights in the discretize first and optimize first ansatz; for a comparison
with Algorithm 4 line 6 and onwards, we state the update rule of discretize first in the
following code snippet
Xi ← Xi + (si,1, . . . , si,d)T

ωi ← ωi + si,d+1 .

Hence, for Si := (si,1, . . . , si,d)T and Wi := si,d+1 an update rule with homogeneous
coordinates results in a geometry

Gnew =
n∑
i=1

(Xiωi + Si)
Ni∑n

j=1(ωj +Wj)Nj
(6.2)

as opposed to the new geometry from the discretize first approach

Gnew =
n∑
i=1

(Xi + Si)(ωi +Wi)
Ni∑n

j=1(ωj +Wj)Nj
. (6.3)

We summarize the update of a geometry in Algorithm 4.

Algorithm 4 Update(Ω, s)
Require: stiffness matrix A of mesh moving problem
Require: geometry function G of initial domain Ω0
Require: descent direction s from black-box gradient descent optimizer

1: apply mesh movement function y = Φ(s) to propagate the change also to the inside
control points, s← y

2: if G is a B-spline geometry or a nurbs geometry with fixed weights then
3: for all geometry basis functions Ni do
4: Xi ← Xi + (si,1, . . . , si,d)T

5: end for
6: else G is a nurbs geometry with variable weights
7: for all geometry basis functions Ni do
8: Xi ← Xi + (si,1, . . . , si,d)T/si,d+1
9: ωi ← ωi + si,d+1

10: end for
11: end if

6.1.4 Isogeometric shape optimization loop

In this section we evaluate the isogeometric shape optimization process from two
–related– points of view. The first one considers actual software decisions for imple-
mentation. The second stays on a more abstract level and reconsiders the whole
optimization loop for iga compared to classical fem shape optimization.
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Implementation

In [Dubois, 2005, in B. Meyer], the benefits of third party libraries are praised as less
bug prone due to extensive testing by lots of users, not to mention the time saving.
We also profit that way by using software from others which we gratefully acknowledge
here.

Most importantly, this work is built upon the isogeometric analysis solvers of A. -V.
Vuong. We refer to his book [Vuong, 2012] for all implementation aspects around the
pde solver like element-wise assembly, boundary conditions in isogeometric analysis
and also for local adaptive refinement by means of hierarchical b-splines. We extended
his work to serve shape optimization problems:
• For the C++ sparse linear algebra we now rely on the software package Trilinos,

[Sala et al., 2004], where sparse direct and indirect solvers for linear systems are
particularly important to us.

• For this thesis we implemented a C++ optimization class with interfaces to the
optimization packages from [Johnson, 2014] and [Wächter and Biegler, 2006].
Therefore, there are different optimization methods available to us, from which
we use sqp and mma from NLOPT and the interior point method in IPOPT.

• Some of the applications also make use of the MATLAB version of the iga solver
and the optimization routines from [MATLAB, 2012].

Now we want to address practical implementation aspects for the optimization loop.
These are often organized by calling subroutines for the cost function and constraint
evaluations. In shape optimization, costs, and often the constraints, depend on the
solution of a pde. Thus, we need a communication between an optimizer like mma
or sqp and a pde solver for the state equation, see Figure 6.1. The calling sequence
is controlled by the optimization method. Therefore, our optimization problem class
stores the previous computations, like basis function evaluations, for the next iteration
on Ωk+1.

OPTIMIZER SOLVER

J(Ωk), ∇J(Ωk),
h, g, ∇h, ∇g

Ωk+1
Figure 6.1: Communication between simula-
tion and optimization

The optimization loop revisited

The communication between optimizer and pde solver from Figure 6.1 is very critical
to the success of shape optimization in a numerical sense: The descent direction from
the shape gradients needs to fit to the optimization problem; due to discretization this
agreement might be destroyed and a successful optimization thwarted. Let us address
in the following three objects of discretization,
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• geometry approximations,
• shape gradient approximations,
• quadrature approximations.

Geometry approximations Due to the good design properties of b-splines for
surfaces and bodies, they are also used in classical finite element shape optimization for
boundary representations, for instance in major applications of engineering disciplines
like airfoil optimization [Schulz and Borzì, 2012, Chapter 7.2], or in biomedical engi-
neering modeling cardiovascular stents [Clune et al., 2014]. This means for a shape
optimization with traditional finite element methods that the domains for the pde
solver are approximated as presented in Section 4.3.1 and depicted for instance in
Figure 4.8. It affects the optimization because one looks for an optimal b-spline control
point using information from a polygonal domain. This is not consistent, though in
the limit of infinitely refined fem triangulation, the difference should vanish. Since we
use in iga the original geometry this inconsistency falls away in the optimization loop
in Figure 6.2.

cagd
model

make fem
suitable
geometry

inconsistent

solve state
equation

optimization
loop

update fem
model

costs
decreased?

update cagd
model inconsistent

no

yes
cagd

model

solve state
equation

optimization
loop

costs
decreased?

update cagd
model

no

yes

Figure 6.2: Pattern of an optimization loop for fem (left) and iga (right): Finite
element shape optimization in connection with b-spline geometry models may intro-
duce inconsistencies when approximating the shapes with a triangulation for the pde
solver. This is not the case in iga which works on the original geometry model for
optimization and simulation.

Shape gradient approximations Although we can remove the inconsistent ge-
ometry models with iga the situation might be different for the shape gradient
approximation. In fem shape optimization the split between optimize first and dis-
cretize first is sometimes motivated by the experience that the gradients from the
discretize first approach seem to fit better to the discrete problem out of consistency
reasons (same as in the previous paragraph). In literature, this effect is observed for
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instance in [Carnarius et al., 2010] and to our knowledge, it is more pronounced for
such time-dependent problems.

With the result from our comparison of the two approaches for iga in Section 4.4.3,
namely that discretization and optimization commutes for linear elliptic second order
pde state equations, we can exclude for our problem class this consideration.
That leaves the last item in our list:

Quadrature approximations Up to now we always assumed that we can solve
occurring integrals analytically. Of course, this is not the case and we use Gauß
quadrature to approximate the cost functional, constraints, linear and bilinear forms,
etc. Again, this is well-known to pose an inconsistency between the shape gradients
derived for the mother problem and the discretized problem treated with numerical
quadrature. This is not a feature of optimize first but can happen to discretize first
as well. Unfortunately, this situation is not improved by using iga and we keep it in
mind for our applications.

6.2 Shape Optimization Applications
In this section we apply the complete shape optimization process given by Algorithm
1 with the procedures in lines 2–8 to some model problems. These examples illustrate
the isogeometric shape optimization process and moreover, expose possible weaknesses,
which have to be considered. We treat three optimization problems: maximizing an
area, tracking a state and increasing stiffness. The first one involves no pde, but
demonstrates the influence of quadrature errors in optimizing weights and control points
simultaneously. The second example tracks a given heat distribution, hence involving
a Poisson equation. Its simple form is especially suited to portray the structure of
isogeometric transformation and shape sensitivities when pdes are involved. The
third problem is well known in shape optimization and has been treated already with
isogeometric analysis. We include it here, for two reasons. Firstly, it is mainly posed
in the discretize first setting in iga literature, so here we view it also in the optimize
first picture. Secondly, in this example we plead for the use of two separate meshes to
obtain good results.

6.2.1 Maximizing an area

In this section we review the ancient isoperimetric problem of Dido under isogeometric
shape optimization. That is, we want to maximize the area of a domain Ω such that
the length of its perimeter stays invariant. We choose this example to demonstrate
the combination of shape optimization with nurbs and b-splines. It also serves
as simple case for an iga shape gradient derivation. We presented the sensitivity
computation and for this example in [Fußeder et al., 2015] for b-splines and for the
weight optimization in [Fußeder and Simeon, 2015].
Problem 4 (Area Maximization).
For Ω ⊂ R2 we consider the shape optimization problem

min J(Ω) := −
∫
Ω

dx, s.t.
∫
∂Ω

dΓ = P0. (6.4)
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The optimal shape then is a circular domain with radius r = P0
2π .

To use the optimize first approach we first pull the problem back onto the parameter
domain, then we obtain the sensitivities for a b-spline case and afterwards for the nurbs
case with variable weights as well. We then describe the set-up of the optimization
process, present our results and report on the hurdles towards the optimal disk.

Transported problem and sensitivity calculation

Suppose we have a b-spline or nurbs tensor product (like) space with fixed weights
S2 = span{Ni,k = Niek, i = 1, . . . , n, Ni ∈ S, k = 1, 2} and a geometry function

G ∈ S2 therein: G =
n∑
i=1

2∑
k=1

Xi,kNiek = ∑
α=(i,k)

XαNα with control points Xα ∈ R as

defined on page 60. The transported cost functional reads then on the parameter
domain Ω̂ = (0, 1)2

min Ĵ(G) := −
∫
Ω̂

| det JG | dΩ̂ . (6.5)

For the length constraint ĥ(G) = 0 we have from the four parameter boundary faces

ĥ(G) :=
1∫

0

|dŝG(ŝ, 0)|+ |dŝG(ŝ, 1)|+ |dŝG(0, ŝ)|+ |dŝG(1, ŝ)|dŝ− P0 , (6.6)

because J− T
G n̂ det JG = dŝG(γ(ŝ)), γ(ŝ) ∈ {(0, ŝ), (1, ŝ), (ŝ, 0), (ŝ, 1)}. We use the

transported equations to derive the shape sensitivities for the b-spline case next.

Sensitivities Lemma 3.24 yields the shape derivatives for θ = Nα ∈ S2

dĴ(G;Nα) = −
∫

(0,1)d

tr(J−1
G DNα)|det JG| dΩ̂, (6.7)

dĥ(G;Nα) =
1∫

0

dŝG(ŝ, 0) · dŝNα(ŝ, 0)
|dŝG(ŝ, 0)| + dŝG(ŝ, 1) · dŝNα(ŝ, 1)

| dŝG(ŝ, 1)| +

+ dŝG(0, ŝ) · dŝNα(0, ŝ)
| dŝG(0, ŝ)| + dŝG(1, ŝ) · dŝNα(1, ŝ)

|dŝG(1, ŝ)| dŝ.

(6.8)

To be able to optimize also the weights in case of a nurbs geometry, we consider the
rational sensitivities which are obtained in the following.

Rational sensitivities We suppose that the geometry is given in a nurbs space N
with free weights. It is constructed from the non-rational b-splines S with homogeneous
coordinates as defined in Section 4.2.1. Lemma 4.33 yields the shape derivatives in
the direction θ = Nα ∈ N for the cost and constraint terms

dĴ(G;Nα) = −
∫

(0,1)d

tr(J−1
G Ḋ)

)|det JG| dx̂ , (6.9)
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dĥ(G;Nα) =
∫
Γ̂

(
|J− T
G n̂| tr(J−1

G Ḋ)− J− T
G ḊT J− T

G

|J− T
G n̂|

)
|det JG|dx̂ , (6.10)

where the shape derivative of the variation in homogeneous representation is

Ḋ = 1
w2


(
02 −Nα

)
α = (i, k = 1, 2)(

I2 −2G
)

α = (i, 3)


(

DGw
Dw

)
+ 1
w

(
I2 −G

) (
DNα

)
. (6.11)

We hand these directional derivatives to the optimization method to get the descent
directions. In the following we discuss the results of the numerical optimization with
and without weights and how to obtain them.

Optimization methods

We performed the optimization with the sqp algorithm of MATLAB’s constrained
minimization function fmincon, which uses the shape gradient information to update
a quasi-Newton approximation of the Hessian of the discrete Lagrangian function L
of the cost functional and the constraint on the control. For this example, L(λ,G) =
Ĵ(G) + λĥ(G) with Lagrange multiplier λ. We proceed first with the non-rational
b-spline case and upgrade to rational, weight optimization afterwards.

Results for non-rational optimization

We examined both, the influence of the degree p of our b-spline basis and of the
discretization parameter h corresponding to a refinement by knot insertion. Starting
with an initial parameterization given in Appendix C, Table C.5 for p = 1, the order
is increased through repeating the first and last knot, as in Lemma 4.16.

Convergence The convergence plot in Figure 6.3 reveals two things. First, we see
that non-rational b-splines behave as one expects: Since higher degree b-splines can
approximate (conics) better, they should perform better, i.e. giving smaller errors than
lower degree approximations. Second, one anticipates h-convergence for a fixed degree
on the same grounds. For p = 4 the flat behaviour after two refinements is due to
reaching machine precision.
From Figure 6.4 we see that for a higher polynomial degree p, the sqp optimizer

in fmincon needs significantly less iterations or number of function calls respectively.
Intuitively this is what one expects, since the approximation power of b-spline curves
to sufficiently smooth functions f goes like max(Qf − f) ≤ Chp+1 for the b-spline
interpolation Qf of f , see [De Boor, 2001, Jackson type estimate]. We conclude that
a higher degree p of our b-spline basis speeds up convergence.

Mesh movement Choosing an initial b-spline representation such as in Figure 6.5a
will yield an irregular parameterization for some step sizes, as indicated in Figure
6.5b. Therefore, to use this configuration for shape optimization, in Example 4 one
of the moving mesh algorithms has to be applied. Applying for instance the relative
positioning (5.15), again convergence of the optimization algorithm can be observed,
compare Figure 6.5c.
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scheme. For a better comparison we scale the error by the starting error which is the
area of the optimal disk minus area of initial square. Moreover, for each p we also
norm the degrees of freedom n by their starting number of degrees of freedom n0.
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Figure 6.4: Error in terms of computational costs for Example 4, where the costs
are expressed as number of function calls by the MATLAB optimization method. The
number of function calls is closely related to the number of iterations of the optimizer.

Results for rational optimization

A first guess would assign the same behavior to rational b-splines, even expect a much
lower error for p = 2 already, because the disk has a representation in this space. We
use again the knot vectors (0, 0, 0, 1, 1, 1) in both space directions with 3× 3 rational
b-spline functions and 9 weights, all equal to 1; control points are such that we have
the same initial square as above. Since rational b-splines are rational polynomials we
have to take quadrature errors into account. We pursue this in the following before
starting optimization with nurbs.
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(a) Initial mesh (b) Mesh tangling (c) Relative positioning

Figure 6.5: Example 4 with an arbitrary initial parameterization leads to mesh
tangling in some iterations of the sqp optimizer, and therefore to no convergence.
However, convergence can be achieved if the moving mesh method (5.15) is applied.

Influence of quadrature errors When picking efficient quadrature rules for the
assembly of â(G) and l̂(G) in iga, transformation terms det JG and J− T

G are neglected
in this search by [Hughes et al., 2010] on the basis that these terms change slowly in
comparison to other factors. This is in general valid since the geometry is fixed at a
coarse level with degree p0 and mesh size parameter h0; for analysis a (several times)
p- and h-refined version is used. Hence, G is a polynomial with degree p ≥ p0, and is
almost constant on elements of sizes h� h0. This carries over to the transformation
terms. However, this assumption does not hold anymore when the geometry G has
the same refinement level or worse, for cost functionals or for constraints on Ω without
state, as for instance a volume constraint in the form of h(Ω) =

∫
Ω 1 dx. In iga, this

yields h(G) =
∫

Ω̂ | det JG | dx̂ . Using rational b-splines, this simple constraint already
exhibits a need for different or higher order quadrature rules. Different quadrature
rules could mean Gauß-type rules integrating (some) rational polynomials exactly
[Gautschi, 1993]. However, we found it sufficient for our test case to pursue higher
order quadrature rules. That is, if we enforce the volume constraint by a tolerance
smaller than 10−6 in the optimization routine, Table 6.1 shows that we need at least
more than 5 quadrature points in each direction to get rid of dominating integration
errors.

Quadrature errors
#quadrature points 5 9 15
volume ≈ 8× 10−6 ≈ 3× 10−11 ≈ 1× 10−15

perimeter ≈ 9× 10−7 ≈ 2× 10−12 ≈ 9× 10−16

Table 6.1: Influence of quadrature errors in Problem 4 for volume and perimeter
calculation for disk with radius 1

Convergence For Problem 4 with nurbs of degree p = 2 and variable weights the
exact disk Ω? is in this nurbs space, so we expect an error J(Ω?)−J(G?(Ω̂)) dominated
by quadrature errors and optimization parameters. In Figure 6.6 a visually good
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result is obtained for the following setting. A Gauß quadrature with 10 quadrature
points in each space direction is used. The perimeter constraint is enforce within
a tolerance of 10−8 and as stopping criteria for the sqp optimizer in the package
NLOPT [Johnson, 2014] the same tolerance is chosen. In Figure 6.6 no difference between
exact and numerical optimum can be detected. In fact, the true error in the cost
functional is |J(Ω?)− J(G?(Ω̂))| ≈ 2.1× 10−10 after 34 function calls, i.e. iterations.
For an even smaller error we increase the quadrature rule to 15 points in each direction
and require that the perimeter may not deviate more than 10−12 from P0 = 8 and
as stopping tolerance we give 10−9. Then, the error |J(Ω?) − J(G?(Ω̂))| drops to
≈ 8.9 · 10−15 after 34 function calls. It is unreasonable to expect anything less since
from Table 6.1 we learn that the error in the objective is then dominated by quadrature
errors. In Table 6.1 are volume and perimeter values for a disk modeled by above
nurbs. In particular, we computed these values using Gauß quadrature with different
number of quadrature points.

(a) Optimal numerical shape (plotted as
evaluation grid from iga geometry on half
disk) is a nurbs approximation of a disk
(exact disk plotted as boundary circle)
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Figure 6.6: Result for Problem 4 with the unit square as initial domain

Shape sensitivity validation To validate the shape sensitivities, we have double-
checked the shape gradients of Ĵ and ĥ for both, optimization with and without weights
in the optimize first setting, with MATLAB central finite difference test for gradients
where dĴ(G;Niek) ≈ 1

2ε
(
J((G+ εNiek)(Ω̂))− J((G− εNiek)(Ω̂))

)
. These values agree

up to the default tolerance in fmincon which means a relative error of less than 10−6

in each component of the gradient, but typically we even observed a relative error
of less than 10−13. Using nurbs the higher quadrature rules have to be taken into
account and the default tolerance in the gradient test has to be modified to get a
difference unpolluted by quadrature errors.

Comparison of rational and non-rational shape optimization We compare
the results from rational and non-rational b-spline optimization and how many design
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variables we need in both cases for an error in the cost functional of order 10−15.
In case of nurbs with weight optimization we have 9 control points with 8 of them
corresponding to basis functions with support on the boundary. Since they have two
components, we end up with 16 optimization variables plus 8 weights for each basis,
amounting to 24 design variables in total. In case of b-splines without weights Figure
6.3 shows that for the desired error we need b-splines of degree p = 4 which have
been h-refined at least twice. This leaves us with 64 degrees of freedom of which
32 are nonzero at the boundary. Thus, considering that each control point has two
components we have 64 design variables in total.
Although we need less design variables using nurbs we pay for it by using higher

quadrature rules. Moreover, from the case p = 4 for b-splines we have seen the fast
convergence in Figure 6.4. Together with a pde constraint it might therefore be
computationally more efficient to use b-splines of higher degrees even if the optimal
shape is expected to be conic. In the following problems we use therefore only
b-splines.

6.2.2 Tracking type stationary heat equation

The next example tracks a prescribed state in its objective function. First published
in [Kiniger and Vexler, 2013] it is of special interest because the authors provide an a
priori error analysis for a finite element discretization of this problem. We first discuss
its features and then use it to illustrate local refinement with hierarchical b-splines for
the simulation.
Problem 5 (Tracking type problem).
The task is to find a state u, for instance a heat distribution, that satisfies a Poisson
equation (the pde Problem 1)

u ∈ V = H1
0 (Ω):

{
−∆u = f in Ω

u = 0 on ∂Ω (6.12)

such that the difference to a prescribed state ‖u−ud‖2L2(Ω) is minimized. This prescribed
solution also yields the right hand side f(x) = −∆ud to the state equation. Moreover,
the domains Ω are controlled by q : (0, 1)→ R which describes the moving boundary
Γ, see Figure 6.7 for the set-up. We modify the original cost functional and add a
constraint on the domain: We minimize

J(Ω, u) := 1
2‖u− ud‖

2
L2(Ω) , (6.13)

where furthermore a volume constraint must not be violated, i.e. we have the control
constraint∫

Ω

dx = V0 const . (6.14)

We discuss the shape of an optimal domain.
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Ω0

q

Ωq

q?

Ω?

Figure 6.7: Initial domain Ω0, domains with moving boundary Ωq and optimal
shapes Ω? for the tracking type Problem 5 with prescribed solution from (6.15)

Optimal domains Suppose the moving boundary Γ = {(x, y) ∈ R2 : x ∈ (0, 1), y =
q(x)} ⊂ ∂Ω is a level set of the prescribed solution ud(x, y) = 0 for (x, y) ∈ Γ then
u = ud almost everywhere and the cost functional J attains its minimum at 0. We
track the prescribed state

ud = (x− x2)(1− y)
(
y + 10x(1− x)(0.5− x)

)
(6.15)

which leads to an optimal control (optimal function describing the boundary) q? =
−10x(1− x)(0.5− x) depicted in Figure 6.7. Hence, the optimal shape is an element
of a b-spline space of degree p ≥ 3.

To treat the problem with a gradient-based optimization method, we next calculate
the isogeometric shape sensitivities.

Shape derivatives

We now compute the shape derivatives obtained with the transformation approach
from Chapter 3. For comparison we first state the standard shape derivative for this
kind of problem given in [Sokolowski and Zolésio, 1992, p. 124].
The standard shape derivative of the cost functional in the Hadamard structure is

given by

dJ(Ω, u; δq) =
∫
Γ

(−∇u · ∇z + 0.5(u− ud)2)δq · n ds ,

with adjoint z satisfying −∆ z = u− ud in Ω and z = 0 on Γ.

Lemma 6.1. The isogeometric shape derivative obtained with our transformation
approach is given by

dĴ(G, û, ẑ; δq̂) =
∫
Ω̂

(û− ud ◦G)(−∇ud ◦G) · δq̂+

+∇f ◦G · δq̂ẑ −∇û J−1
G J− T

G ∇ẑ|det JG| dx̂ .
(6.16)
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Proof. We show this by considering the transformed terms

Ĵ(G, û) = 1
2

∫
Ω̂

(û− ud ◦G)2|det JG|dx̂ , (6.17)

l̂(G)(v̂) =
∫
Ω̂

f ◦Gv̂|det JG|dx̂ , (6.18)

â(G)(û, v̂) =
∫
Ω̂

∇û · J−1
G J− T

G ∇v̂|det JG| dx̂ , (6.19)

which form the Lagrangian

L(G, û, ẑ) = Ĵ(G, û) + l̂(G)(ẑ)− â(G)(û, ẑ) . (6.20)

In the Lagrange functional the variables are independent and we obtain the directional
derivatives by Lemma 3.21

Ĵ ′q̂(G, û)(δq̂) =
∫
Ω̂

(
(û− ud ◦G)(−∇ud ◦G · δq̂)

+ 1
2(û− ud ◦G)2 tr(J−1

G Jδq̂)
)
|det JG| dx̂ ,

(6.21)

Ĵ ′û(G, û)(δû) =
∫
Ω̂

(û− ud ◦G)δû|det JG|dx̂ , (6.22)

l̂′q̂(G)(δq̂, ẑ) =
∫
Ω̂

(
∇f ◦G · δq̂ẑ + f ◦Gẑ tr(J−1

G Jδq̂)
)
|det JG|dx̂ , (6.23)

â′q̂(G)(δq̂, û, ẑ) =
∫
Ω̂

(
−∇û · J−1

G (Jδq̂ J−1
G + J− T

G JT
δq̂) J− T

G δq̂∇ẑ

+∇û · J−1
G J− T

G ∇ẑ tr(J−1
G Jδq̂)

)
|det JG|dx̂ .

(6.24)

The adjoint ẑ ∈ V̂ is given as solution of the variational equation dûL(G, û, ẑ; δû) = 0
for all δû ∈ V̂. A comparison with the classical shape derivative given above reveals
that

Ĵ ′û(G, û)(δû) = â(G)(δû, ẑ) ∀δû ∈ H1
0 (Ω̂)

is just its transformed weak form.

In the following, we discuss the set-up of our isogeometric shape optimization and
the use of adaptive refinement for the simulation.
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Results

We test with Problem 5 adaptively refined simulation meshes with hierarchical b-spline
introduced in Section 5.5. We implemented this scenario using the MATLAB optimizer
fmincon together with its finite difference options to compute the gradients of J .
For the volume constraint we use the analytical shape gradients from the optimize
first method. If we view the shape in the xy-plane, the design variables are the
y-components of the control points at the moving boundary, or equivalently, in the
optimize first setting, the b-spline basis functions Ni with support at the boundary in
the second space direction, Nie2. The mesh is adjusted by relative positioning, compare
(5.15), since we only move up and down. The optimizer converged to the shape in
Figure 6.8 which indicates that shape optimization behaves well with hierarchically
refined simulation meshes. The refinement is steered with a multilevel error indicator
described in the author’s conference paper [Vuong and Fußeder, 2013].

Figure 6.8: Optimization results for Problem 5 with b-splines of degree p = 2:
numerical optimal parameterization (left), optimal geometry (middle) and adaptively
refined simulation mesh in an intermediate step (right)

Hierarchical b-splines suggest further directions for investigation.

Outlook on adaptive refinement Our example demonstrates isogeometric shape
optimization can be extended to adaptive refinement in the simulation process. This
raises the question if we can also refine the optimization mesh for instance using
a geometry basis which is resolved finer at the moving boundary as in Figure 6.9a.
From [Giannelli et al., 2012] we know that hierarchical b-splines or their extension to
truncated hierarchical b-splines can capture local features of a 2-dimensional manifold
in R3. This suggests that they are ideal for optimizing surface changes orthogonal to
the tangent space. For our problem at hand locally refined geometry meshes are more
complicated because we have to devise a new mesh movement algorithm: If there is a
change on the locally refined region, meshes from different levels may overlap as in
Figure 6.9b. A criterion for moving hierarchical meshes for optimization, taking the
polynomial degrees into account, is an open question and seems intricate.
We return to the Problem 5 and consider the set-up in [Kiniger and Vexler, 2013].

Outlook on error estimation In its original form in [Kiniger and Vexler, 2013]
Problem 5 has a cost functional with a Tikhonov type regularization term instead of
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(a) Initial mesh, locally refined on the boundary (b) Overlapping levels of refinement

Figure 6.9: Locally refined geometry mesh with 3 different levels: Moving level
control points from level 3 causes an overlap with the two coarser meshes. The coarser
control polygons cannot be adjusted, or not adjusted easily, to yield a feasible mesh.

our volume constraint,

Jorig(Ω, u) :=
∫
Ω

1
2(u− ud)2 dx+ α

2 ‖q
′′‖2L2(0,1) . (6.25)

and a prescribed solution

ud,orig := sin 2πx(1− y)(y + 1
2 sin 2πx) . (6.26)

Regularization terms are a frequently used tool in optimal control (Remark 2.23)
and the authors showed, using the regularization and a transformation approach, the
following a priori error estimate: Let hsim be the discretization parameter of the finite
element method and hgeo that of the control, then the error between the numerical
optimal control q?hsim,hgeo an an analytical, local solution is estimated as

‖q? − q?hsim,hgeo‖H2(Γ) ≤ c(h2
sim + h2

geo) . (6.27)

The predicted rates were realized with cubic Hermite finite elements (Figure 4.9b).
For us, this result is significant because we would like to match the estimate (6.27)

for iga theoretically, and possibly extend it to consider the higher continuity and
polynomial degree of b-splines (more than cubic). Moreover, due to the presence of
Dirichlet boundary conditions the Lagrangian function has to be modified for that
(Remark 2.32 for optimal control). Our abstract framework can serve as a starting
point for these theoretical investigations.
Practically, the result in (6.27) gives a means to compare iga and fem shape

optimization. For a successful implementation with iga there are two challenges:
Transported sine functions occur due to ud,orig◦G in the shape derivatives (6.16) of Jorig
and in the adjoint state equation, which is integrated in iga by static Gauß quadrature.
Therefore, one has to anticipate quadrature errors. (That is the reason we changed our
cost functional to the polynomial version.) The second challenge is the cost control
term α

2 ‖q′′‖2L2(0,1): For an α > 0 that ensures convergence, it is so prohibitive that
the optimal domain is again the initial square, [Kiniger and Vexler, 2013]. Therefore,
the regularization term could be so influential that a convergence for an iga shape
optimization is not meaningful, if there are no theoretical rates for comparison as in
(6.27).
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6.2.3 Compliance minimization in linear elasticity

One of the classical shape optimization problems is minimizing the compliance in a
plane stress linear elasticity setting, pde Problem 3,

−div σ(u) = 0 in Ω
u = 0 on ΓD

σ(u) · n = gN on ΓN
(6.28)

with strain ε(u) = 1
2(∇u+∇uT) and stress σ(u) = 2µε(u) + λ(∇·u)id.

A specific problem is the plate with circular hole: Given a plate Ω with hole, one tries
to find the shape of the hole such that the deformation work through external forces,
the compliance, is minimized, hence the stiffness of the plate increases. This problem
has already been been treated by means of IGA in [Qian, 2010, Wall et al., 2008] for
the discretize first ansatz and in [Blanchard et al., 2013] also for the optimize first
method.
Problem 6 (Compliance Minimization).
We seek to minimize the compliance min J(Ω, u) :=

∫
ΓN g · udΓ where u solves (6.28)

under an additional volume constraint on the control,
∫

Ω dΩ = V0 = const. Because
the problem is symmetric, we use only a quarter of the plate with symmetric boundary
conditions on ΓS.
Existence of optimal shapes for this example has been shown, for instance, in

[Haslinger and Mäkinen, 2003]. Typically, one expects a circular hole as optimal
solution from calculations in [Timoshenko and Goodier, 1951, p. 88 ff] if the ratio of
the length of the hole side to the length of the plate sides is small than 1 : 4. The
problem set-up of [Wall et al., 2008, Qian, 2010, Blanchard et al., 2013] is displayed
in Figure 6.10. We used a Poisson ratio ν = 0.3 and E = 105 which are comparable to
steel, cf. in Table C.1 in the Appendix C.

ΓN , σ = 2.5

Γ N
,
σ

=
2.

5

Γ S

ΓS

Γ

(a) Boundary conditions

initial hole

optimal hole

(b) Initial and optimal shapes

Figure 6.10: Configuration of state equation of Problem 6, as well as initial and
optimal shapes

Standard shape gradients The shape gradient in Hadamard structure is given by
directional derivatives

dJ(Ω;h) =
∫

ΓN

[
2µ|ε(u)|2 + λ|div u|2

]
h · n dΓ (6.29)
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since the compliance minimization is self-adjoint, u = z.

Isogeometric shape gradients For isogeometric analysis we change the basis to
obtain a weak formulation on function spaces over the parameter domain like (4.44).
Problem 6 thus has the bilinear form

â(G)(Nα1 , Nα2) =
∫
Ω̂

ε̂G(Nα1)CTε̂G(Nα2)|det JG| dx̂ (6.30)

in isogeometric analysis where the strain in Voigt notation

ε̂G(v̂) = ε(v)◦G =

 dx0v0
dx1v1

dx1v0 + dx0v1.

◦G =

 (J− T
G ∇v)1,1

(J− T
G ∇v)2,2

(J− T
G ∇v)1,2 + (J− T

G ∇v)2,1

 . (6.31)
Assume constant Neumann boundary conditions gN , then we have for an isogeometric
shape gradient in domain representation

dĴ(G;Nα) =
∫
Ω̂

ε̂G(û)TCε̂G(û) tr(J−1
G DNα)|det JG| dx̂+ (6.32)

−
∫
Ω̂

( ˙̂εG(û)TCε̂G(û) + ε̂G(û)TC ˙̂εG(û)
)|det JG| dx̂ (6.33)

with the strain shape sensitivities in the direction of Nα

˙̂εG(û) = dtε(u) ◦ (G+ tNα)|t=0 =

 ( ˙J− T
G ∇v)1,1

( ˙J− T
G ∇v)2,2

( ˙J− T
G ∇v)1,2 + ( ˙J− T

G ∇v)2,1

 , (6.34)

where

˙J− T
G = dt J− T

G+tNα = − J− T
G (dt JG+tNα |t=0)T J− T

G = −(J−1
G DNα J−1

G

)T (6.35)

from the implicit function theorem.

Mesh movement In this example, the mesh movement of inner control points is
realized by means of the linear elasticity operator instead of a Laplacian or relative
positioning. Since we have calculated the stiffness matrix for solving the linear elasticity
equation anyway, we can recycle it for the mesh movement: the shape gradient yields
the right hand side, and also different boundary conditions must be applied, but the
bulk of expense from assembling the stiffness matrix has been paid before.

Results

In Section 5.4 we argued that it is possible to use two representations, one for solving
the state equation and one for optimization. However, here we claim that it is even
necessary: for the compliance, an error in the state u directly influences the cost
functional. Suppose u is the exact solution on a domain Ω and uh its numerical
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approximation and ε = u− uh the error. Then the influence of the error with respect
to the state in the objective reads

J(Ω, u)− J(Ω, uh) =
∫

ΓN

gN · udx−
∫

ΓN

gN · uh dx =
∫

ΓN

gNε, (6.36)

which also has an impact on the shape gradient of J . See Figure 6.11 for a behavior
of the compliance for the optimal domain under h-refinement.
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Figure 6.11: Influence of the numerical er-
ror in the pde on the objective function for
Problem 6: As the error in the state u−uh de-
creases, the compliance, too, is approximated
better.

For the geometry data of the initial parameterizations we used a one p-refined
version of the data in the Appendix, Table C.4. In Figure 6.12b we show the initial
parameterizations and in Figure 6.12c the results for an optimization run, where we
use a coarse optimization and a once h-refined analysis mesh. Although the optimizer
converges towards a minimum there still is a certain difference to the circular hole as
is illustrated in Figure 6.12a. As long as the mesh for solving the state equation is not
fine enough, the optimizer will not be able to further enhance the optimal shape. On
the other hand, starting the optimization with an already refined geometry is more
costly than it needs to be. To support this point, we treat now the scenario of the
same coarse optimization mesh and a simulation mesh which is 3 times h-refined, see
Figure 6.13a for initial parameterizations. Figure 6.13b shows that indeed with this
refined analysis mesh the optimizer is now able to resolve a better approximation to a
quarter circle. Note, that it can never be exactly circular, since we use only b-splines
here. For both optimization runs we used the sqp solver from the optimization library
[Johnson, 2014]. The volume constraint was realized as equality constraint enforced
with a tolerance of 10−6 and the relative stopping criteria was also set to this tolerance.

(a) Deviation from the exact optimal shape –a circular hole– with coarse analysis mesh
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(b) Initial parameterizations of optimization mesh (left) and analysis mesh(right)

(c) Final parameterizations (left: optimization, middle: analysis) and stress analysis

Figure 6.12: Problem 6 with a once refined analysis mesh

(a) Initial parameterizations of optimization mesh (left) and analysis mesh(right)

(b) Final parameterizations (left: optimization, middle: analysis) and stress analysis

Figure 6.13: Problem 6 with a 3-times refined analysis mesh
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7
Conclusion

Finally, we wrap this thesis up with a summary of the main points and a conclusion
on the use of isogeometric analysis for shape optimization.

We have provided a theoretical framework for shape optimization with isogeometric
analysis based on the infinite-dimensional shape optimization problem. In particular,
we used a Lagrange formalism to obtain optimality conditions and shape gradients
for gradient-based optimization methods. To absorb isogeometric analysis we used a
transformation approach to restate the shape optimization problem over a parameter
domain and search for optimal transformations instead of optimal shapes. In this
way, isogeometric shape optimization is the discretization of the state space (the
function space for the pde) and the control space (the function space for the shapes)
by b-splines or nurbs. We pursued this abstract approach for two reasons.

In the first place, only from the infinite-dimensional problem can existence of optimal
solutions be shown. In this light, using our transformation approach and interpreting
isogeometric shape optimization as discretization scheme shows the influence of errors
from spline approximations more clearly. Therefore, this approach can be a starting
point for a convergence study with iga in future.

Secondly, this optimize first–discretize then method offers conceptual insight to shape
optimization for instance from optimal control. Thus from this general viewpoint,
also techniques in other approaches can be understood. This is especially true for our
framework, in which the discretize first–optimize then way in iga is only a different
interpretation of derivatives than in optimize first–discretize then: We have shown that
for linear elliptic partial differential equations of second order the discrete systems of
discretize first and optimize first are equivalent for a discretization with b-splines and
fixed weight nurbs. Hence, the abstract framework provides a unified approach to
the combination of isogeometric analysis and shape optimization.

Our scheme also covers the discretization by nurbs with variable weights for which
we have to use homogeneous coordinates to obtain a feasible set-up. However, then
the discrete systems from optimize first and discretize first differ and have different
domain update rules. In order to separate the errors of state and control we showed
that using different b-splines/nurbs is supported as well. This therefore also embraces
local refinement for the simulation.
From this framework we distilled a step-by-step shape optimization routine for

iga and showed the practical realization of optimize first by some examples. For a
successful shape optimization process, the interplay of simulation and optimization
is crucial. We therefore benefit from this practical framework because it exposes the
tuning parameters of the shape optimization procedure: In order for the (black-box)
optimization program to converge, the quality of numerical computations must meet
its stopping tolerance.
Our example implies that this means for optimizing weights of a nurbs geometry

that quadrature errors have to be taken seriously. Being rational polynomials, the
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integration error of nurbs in a volume constraint or cost functional is more pronounced
than for b-splines and has to be pushed below the tolerance of the optimization program.
We have demonstrated that increasing the number of Gauß points deals with this issue
successfully in our example.
Another error source is the discretization error of the pde which has a dramatic

effect on the outcome of a shape optimization. In order to keep the number of degrees
of freedom for optimization as low as possible while simultaneously achieving better
simulation results, we separated the state and control discretization in the compliance
minimization example. In a second step, we explored the use of adaptively refined
meshes for the pde in a tracking type example. Based on our framework, a thorough
error analysis is possible and can be improved by comparing the results with the ones
from traditional methods like fem.
To sum up, isogeometric analysis is very suitable for shape optimization. Since,

however, the optimization process and the interplay between simulation and opti-
mization solver is very delicate, the theoretical and practical framework is useful to
understand the individual steps within the whole. In the end, we conclude that there
is a huge potential of isogeometric analysis for shape optimization due to the mutual
discretization of geometries and pde solutions with b-splines or nurbs.
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A
Useful Identities

A.1 Vector Calculus

A.1.1 Divergence operator

The divergence operator div is defined for a vector field v ∈ Rd as div v = ∑d
i=1 ∂ ivi.

For a scalar field φ : Rd → R we have the following useful identity

div(φv) = v · ∇φ+ φ div v = ∇φ · v + φ tr Jv . (A.1)

A.1.2 Determinants

Let A = A(t) ∈ Rd×d define an invertible matrix where each of its entries is a
differentiable function of t. We denote A′ = (dtAij)ij the derivative of A at t. Then
the derivative of its determinant can be obtained with the Leibniz formula which
eventually leads to

dt detA = detA tr(A−1A′) . (A.2)

A.1.3 Chain rule

Let Ω and Ω̂ ⊂ Rd. We build the composition of a function u : Ω→ R, x 7→ u(x) with
a geometry function

G : Ω̂→ Ω, ξ 7→ G(ξ) =
(
G1(ξ) · · · Gd(ξ)

)T

which we mark with a hat û := u ◦G, û : Ω̂→ R .

Chain rules: 1. derivative

For any composite function û = u ◦G the chain rule yields

D(u ◦G) =
(
(Du) ◦G)DG = Ju(G) JG = Ju◦G . (A.3)

For scalar functions u and û this yields ∇û = (Dû)T = JT
G(∇u) ◦G.

Chain rules: 2. derivative

The second partial derivatives of a composite function are collected in the Hessian
which yields

H(û) = D(Dû)T = D
(
JT
G(∇u) ◦G) = D(JT

G) · (∇u) ◦G+ JT
G ·D((∇u) ◦G) =

= H(G) · (∇u) ◦G+ JT
G H(u) ◦G JG .

(A.4)
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Important notation for isogeometric analysis

More important in iga, though, is firstly

(Du) ◦G = Ju(G) = (Dû) J−1
G ⇔ (∇u) ◦G = J− T

G ∇û. (A.5)

Secondly, H(u) ◦G = J− T
G

(
H(û)−H(G) · (∇u) ◦G) J−1

G which is

(A.5)= J− T
G

(
H(û)−H(G) · J− T

G ∇û
)

J−1
G . (A.6)

Hence,

∆u(G) ≡ (∆u) ◦G = tr(H(u) ◦G) = tr
[
J− T
G

(
H(û)−H(G) · J− T

G ∇û
)

J−1
G

]
. (A.7)
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B
Analytical Background

B.1 Compact Subsets

The following definitions can be found in [Alt, 2012, Ch. 2].

Definition B.1. A subset A of a metric space (X, d) is called compact

(i) if A is sequentially compact, that is, if each sequence in A has a convergent
subsequence with limit in A, or equivalently,

(ii) if (A, d) is complete and A precompact, that is, for all ε > 0 exists a finite cover
of open ε-balls.

Definition B.2. A family of continuous functions A ⊂ C(S;Y ) from S ⊂ Rd compact
to a finite-dimensional space (Y, d) is equicontinuous if

(i) sup
f∈A

sup
x∈S
|f(x)| <∞

(ii) sup
f∈A
|f(x)− f(y)| → 0 for x, y ∈ S : |x− y| → 0 .

B.2 Linear Functional Analysis

B.2.1 Banach and Hilbert spaces

(i) A Banach space is a normed space X which is complete, i.e. all Cauchy sequences
converge in X.

(ii) Let X denote a real vector space with norm ‖·‖X . It is called Hilbert space if it
is complete and has an inner product (·, ·) : X ×X → R.

B.2.2 Linear operators

The definitions and properties of linear operators can be found in any functional
analysis textbook, we follow [Ambrosetti and Prodi, 1993] if not stated otherwise.

(i) X, Y normed real vector spaces with norms ‖·‖X and ‖·‖Y . A mapping A : X →
Y is called linear if it satisfies A(λa+ µb) = λAa+ µAb ∀a, b ∈ X, λ, µ ∈ R.

(ii) L(X,Y ) denotes the space of all such linear operators that are bounded in the
sense that

‖A‖X,Y := sup
‖x‖X=1

‖Ax‖Y <∞.

Here and in the following we often write Ax instead of A(x).
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(iii) A is continuous if xn → x for n→∞ implies Axn → Ax for n→∞.

(iv) For linear operators, the compatibility property ‖Ax‖Y ≤ ‖A‖X,Y ‖x‖X holds
which implies the equivalence of boundedness and continuity.

(v) On a Banach space X, we call f ∈ L(X,R) a bounded linear functional on X
and

(vi) X∗ := L(X,R) dual space of X.

(vii) The dual pairing of X∗ and X is given by the notation 〈·, ·〉X∗,X , where

〈f, x〉X∗,X := f(x).

(viii) A Banach space X is reflexive if X ' X∗∗.

(ix) Let X, Y be Banach spaces. Then for an operator A ∈ L(X,Y ) the dual operator
A∗ ∈ L(Y ∗, X∗) is defined by

〈A∗y, x〉X∗,X = 〈y,Ax〉Y ∗,Y ∀y ∈ Y ∗, x ∈ X

and 〈A∗y, x〉X∗,X =: 〈x,A∗y〉X,X∗ .

Theorem B.3 (Riesz representation theorem).
Let X be a real Hilbert space and f ∈ X∗. Then there is a unique y ∈ X for which

〈f, x〉X∗,X = (y, x)∀x ∈ X .

Proof. We have stated the theorem according to [Atkinson and Han, 2001, Thm. 2.5.8,
p. 82], the proof can be found there, too.

Lemma B.4. A linear operator A : X → Y between normed spaces X, Y is continuous
on X ⇔ if it is bounded on X.

Lemma B.5. Between a linear continuous operator A : X → X∗ and continuous bilin-
ear forms a : X×X → R on a real Banach space X exists a one-to-one correspondence
given by the dual pairing

〈Au, v〉X∗,X = a(u, v) ∀u, v ∈ X , (B.1)

e.g. [Atkinson and Han, 2001, Thm. 8.3.1 p. 334].

B.2.3 Compactness in infinite-dimensional spaces

In Rd the theorem of Bolzano-Weierstraß assures that each bounded sequence has
a convergent subsequence. With that, one typically shows for finite-dimensional
optimization problems min J(x) for x ∈ A ⊂ Rd that there is a minimizing sequence
x→ x? converging to an element in the feasible set A. However, this does not hold
for infinite spaces, instead, one considers only weak convergence. More precisely, we
compare the finite-dimensional argument to the one in infinite spaces.
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B.2 Linear Functional Analysis

Compactness in finite dimensions In finite dimensions we can extract from any
sequence in a compact space X a subsequence convergent to an element in X. A
characterization of compactness for X = RN , N < ∞, is that it is compact if it is
bounded and closed, due to Heine-Borel.

Compactness in infinite dimensions In infinite spaces that is not enough any-
more. Instead, consider a reflexive Banach space X (see Section B.2.2, (vi)). If A ⊂ X
is bounded, closed, and convex then it is weakly sequentially compact. That means,
that from any sequence in A we can extract a subsequence that weakly converges to
an element in A, see Definition B.6.

B.2.4 Weak Convergence

Definition B.6 (Weak convergence). Let X denote a Banach space and {uk} ⊂ X a
sequence. The sequence converges weakly to u ∈ X

uk ⇀ u in X if f(uk)→ f(u) ∀f ∈ X∗ .

Lemma B.7. Each weakly convergent sequence is bounded.

Lemma B.8. A closed convex subset of C ⊂ X is weakly sequentially closed. I.e. if
xk ⇀ x for xk ∈ C then the limit is also an element in C.

Lemma B.9. Let X denote a reflexive Banach space (X ' X∗∗) and uk ⊂ X a
bounded sequence. Then there exists a weakly convergent subsequence.

Definition B.10 (Weakly continuous). Let X denote a Banach space. A functional
f : X → R is weakly continuous if

uk ⇀ u in X ⇒ f(uk)→ f(u)

for each weakly convergent sequence {uk} ⊂ X.

Definition B.11 (Weakly lower semicontinuous). Let X denote a Banach space. A
functional f : X → R is weakly lower semicontinuous if

uk ⇀ u in X ⇒ lim inf
k→∞

f(uk) ≥ f(u)

for each weakly convergent sequence {uk} ⊂ X.

B.2.5 Embedding Theorems

For two Banach spaces X and Y a continuous embedding is denoted by X ↪→ Y . We
have the following results, e.g. from [Alt, 2012, Th. 8.6, Th. 8.9].

Lemma B.12. Let Ω ⊂ Rd be open and bounded, 0 ≤ λ1, λ2 ≤ 1 and k1, k2 ≥ 0. If
Ω is Lipschitz for k1 > 0 and k1 + λ1 > k2 + λ2, the embedding

Ck1,λ1(Ω̄) ↪→ Ck2,λ2(Ω̄) is compact.
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Lemma B.13. Let Ω ⊂ Rd be open, bounded and Lipschitz. Given integers k1, k2 ≥ 0
and 1 ≤ p1, p2 <∞, then

(i) if k1 − d
p1
≥ k2 − d

p2
, k1 ≥ k2

W k1,p1(Ω) ↪→W k2,p2(Ω)

(ii) if k1 − d
p1
> k2 − d

p2
, k1 > k2 the embedding is also compact.

This holds also if W k1,p1, W k,p2 are replaced by W k1,p1
0 and W k2,p2

0 , respectively.

Embedding theorem 8.13 in [Alt, 2012] yields

Lemma B.14. Let Ω ⊂ Rd be open and bounded with Lipschitz boundary. We have
that for integers k ≥ 1, m ≥ 0 and 1 ≤ p <∞, λ ∈ [0, 1]

(i) if k − d
p = m+ λ, λ 6= 0, 1

W k,p(Ω) ↪→ Cm,λ(Ω̄)

(ii) if k − d
p > m+ λ,

W k,p(Ω) ↪→ Cm,λ(Ω̄) compactly

For any open and bounded set Ω the results hold for W k,p
0 (Ω) instead of W k,p(Ω).

A function in W 1,p(Ω) can be identified with a continuous version in C(Ω̄):

Lemma B.15 (Morrey’s inequality). Assume d < p ≤ ∞. Then there exists a constant
C depending only on d and p such that for λ := 1− n

p

‖u‖C0,λ(Rd) ≤ C‖u‖W 1,p(Rd) ∀u ∈ C1(Rd) . (B.2)

In case of an open, bounded domain Ω ⊂ Rd with a C1-boundary, an element u ∈
W 1,p(Ω) has a version u? ∈ C0,λ(Ω̄) with

‖u?‖C0,λ(Ω̄) ≤ C‖u‖W 1,p(Rd) where C depends only on p, n,Ω . (B.3)

Proof. Theorem 4 and 5 in [Evans, 2010] in Chapter 5.6 on page 266 and following.

B.3 Gâteaux- and Fréchet Differentiability
Definition B.16. Let X, Y be Banach spaces and U a nonempty open subset of X.
Consider the map F : U ⊂ X → Y .

(i) F is directionally differentiable at u ∈ U if the limit

dF (u;h) = lim
t→0+

1
t
(F (u+ th)− F (u))

exists for all h ∈ X. In that case, dF (u;h) is called directional derivative of F
at u in the direction of h. For a functional J : U → R the directional derivative
reduces to

dJ(u;h) = dtJ(u+ th)
∣∣∣
t=0

.
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B.3 Gâteaux- and Fréchet Differentiability

(ii) F is called Gâteaux-differentiable at u ∈ U if F is directionally differentiable at
u and there is A ∈ L(X,Y ) such that

dF (u;h) = Ah for all h ∈ X .

The map F ′ : u 7→ F ′(u) = A is the Gâteaux-derivative, and we say that
dF (u;h) = F ′(u)h is the Gâteaux-differential of F at u along h.

(iii) F is Fréchet-differentiable at u ∈ U if there exists a linear operator A ∈ L(X,Y )
such that

‖F (u+ h)− F (u)−A(h)‖Y = o(‖h‖X) ,

i.e. ‖F (u+h)−F (u)−A(h)‖Y
‖h‖X → 0 for ‖h‖X → 0. If A exists it is uniquely determined

and A = F ′(u). The map F ′ : U → L(X,Y ), F ′ : u 7→ F ′(u) is called Fréchet-
derivative of F . The quantity dF (u;h) = F ′(u)h is called the Fréchet-differential
of F at u along h.

(iv) Given a Fréchet-differentiable functional J : U → R the gradient ∇J of J at u is
the element of the dual space X∗ = L(X,R) defined by

〈∇J(u), h〉X∗,X = dJ(u;h), ∀h ∈ X .

If X = H is an Hilbert space the Riesz representation theorem B.3 identifies
J ′(u) ∈ H∗ with an element of H

(∇J, h) = dJ(u;h), ∀h ∈ H .

Remark B.17. Fréchet-differentiability Definition B.16, (iii) can also be stated as

F (u+ h) = F (u) + F ′(u)h+ o(‖h‖X) .

A useful characterization of Fréchet-differentiability is the following
Theorem B.18.
If F : U → Y is Gâteaux-differentiable in U and the Gâteaux-derivative

F ′G : U → L(X,Y ), u 7→ F ′G(u)

is continuous at u∗, then F is Fréchet-differentiable at u∗ and F ′(u∗) = F ′G(u∗).

Proof. See [Ambrosetti and Prodi, 1993].

For both types of derivatives, Fréchet and Gâteaux, partial derivatives are defined
as follows.

Definition B.19. Let X, Y , Z be Banach spaces and Q an open subset of X × Y ,
F : Q → Z. If for a fixed (u?, v?) ∈ Q, the map F (u, v?) : X → Z is Fréchet-
differentiable at u? w.r.t. u, the linear map F ′u(u?, v?) is called partial derivative of
F at (u?, v?). Correspondingly, we denote the partial Fréchet-differential at (u?, v?)
along h ∈ X by duF (u?, v?;h) = F ′u(u?, v?)h.
Similarly define partial derivatives for v and fixed u? and for Gâteaux-derivatives.

123



Appendix B Analytical Background

Lemma B.20 (Chain rule). For U and V open subsets of X and Y , respectively, let
F : U → Y and G : V → Z with F (U) ⊂ V . If F is Fréchet-differentiable at u ∈ U
and G at v := F (u) ∈ V then the composite map H = G ◦ F is Fréchet-differentiable
at u and for h ∈ U

H ′(u)h = G′(v)
(
F ′(u)h

)
or equally dH(u;h) = dG

(
v; dF (u;h)

)
.

Proof. See [Ambrosetti and Prodi, 1993, Prop. 1.4, p. 11].

Theorem B.21 (Implicit Function Theorem).
Let X, Y , Z be Banach spaces and let F : G→ Z be a continuous Fréchet-differentiable
map from an open set G ⊂ X × Y to Z. Let (x?, y?) ∈ G be such that F (x?, y?) = 0
and that F ′y(x?, y?) ∈ L(Y,Z) has a bounded inverse. Then there exists an open
neighborhood UX(x?) × UY (y?) ⊂ G of (x?, y?) and a unique continuous function
w : UX(x?)→ Y such that

(i) w(x?) = y?

(ii) For all x ∈ UX(x?) there exists exactly one y ∈ UY (y?) with F (x, y) = 0, namely
y = w(x).

(iii) The mapping w is continuously Fréchet-differentiable with derivative w′(x) =
F ′y
(
x,w(x)

)−1
F ′x
(
(x,w(x)

)
.

Proof. This form of the implicit function theorem is stated in [Hinze et al., 2009,
Theorem 1.41]. It can also be found in for instance in [Ambrosetti and Prodi, 1993,
Theorem 2.3] together with a proof.
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C
Geometry and Material Data

C.1 Material

The material properties in Table C.1 have been obtained from [MatWeb, 2015], where
we converted them to the unit GPa and calculated the required parameters using

• 1N/m2 = 1Pa,

• λ = K − 2
3µ with bulk modulus K and shear modulus µ or as in (2.22),

• µ = 3
2(K − λ).

The parameters are given in units [GPa] common in engineering, differently to those
in [Ciarlet, 1988, p. 129] where [kg/cm2] is used. For our computations we take the
values according to the reference [Ciarlet, 1988], however, if one multiplies the values
given there with the standard gravitation g = 9.8m/s2, they are in the range of Table
C.1.

material E ν λ µ database name
[GPa] [GPa] [GPa]

steel 200 0.29 106.7 80 AISI 1005 Low Carbon Steel
aluminum 68 0.36 64.3 25 Aluminum, Al

Table C.1: Parameters for different elastic materials from [MatWeb, 2015]

C.2 Surfaces

knot vector Ξ0
(
0, 0, 1, 1

)
knot vector Ξ1

(
0, 0, 1, 1

)
degree p0 1
degree p1 1

control points (Xi)i
(

0 1 1 1
0 0 1 1

)
weights (ωi)i = 1
number of basis functions n0 2
number of basis functions n1 2

Table C.2: Right triangle
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knot vector Ξ0
(
0, 0, 0, 1, 1, 1

)
knot vector Ξ1

(
0, 0, 0, 1, 1, 1

)
degree p0 2
degree p1 2

control points (Xi)i
(
−1 −1 0 −1 0 1 0 1 1
0 −1 −1 1 0 −1 1 1 0

)
weights (ωi)i

(
1
√

2
2 1

√
2

2 1
√

2
2 1

√
2

2 1
)

number of basis functions n0 3
number of basis functions n1 3

Table C.3: Circle at origin with radius 1

knot vector Ξ0 0, 0, 0.5, 1, 1
knot vector Ξ1 0, 0, 1, 1
degree p0 1
degree p1 1

control points (Xi)i
(
−1 −0.5 0 −4 −4 0
0 0.5 1 0 4 4

)
weights (ωi)i = 1
number of basis functions n0 3
number of basis functions n1 2

Table C.4: A quarter of the plate with hole

knot vector Ξ0
(
0, 0, 1, 1

)
knot vector Ξ1

(
0, 0, 1, 1

)
degree p0 1
degree p1 1

control points (Xi)i
(

0 1 0 1
0 0 1 1

)
weights (ωi)i = 1
number of basis functions n0 2
number of basis functions n1 2

Table C.5: Square
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