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IV Nomenclature 

Nomenclature 

    [m2] Surface of air spring 

    [m2] Effective area of air spring 

  [m/s2] Acceleration dose 

     [-] Difference between estimated vibration dose value and 

vibration dose value 

    [N] Bouc-Wen force 

    [N] Restoring force from the air spring 

    [N] Force coming from the bottom end-stop buffer 

   [N] Damping force 

    [N] Damping force of the passive hydraulic damper in the 

longitudinal seat suspension system 

    [N] Vertical component of damping force 

    [N] Force coming from the front end-stop buffer 

   [N] Gravity force 

    [N] Force coming from the rear end-stop buffer 

    [N] Force coming from the top end-stop buffer 

          [-] Complex fast Fourier transform (FFT) of input signal 

           [-] Complex conjugation of the FFT[i(t)] 

          [-] Complex FFT of output signal 

       [(N·m/s)/Hz] Cross spectral density (CSD) of force and velocity as a 

function of frequency 

       [(m/s2)2/Hz] Power spectral density (PSD) of accelerations at the seat 

base as a function of frequency 

       [(m/s2)2/Hz] PSD of accelerations on the seat cushion as a function of 

frequency 

       [-] PSD of input signal as a function of frequency 

       [-] CSD of input and output signals as a function of frequency 

       [-] PSD of the output signal as a function of frequency 



Nomenclature V 

  [kg·m2] Moment of inertia of mh1z about the connection point 

     [m/s2] Maximum transient vibration value 

        [(N·m/s)/Hz] Absorbed power as a function of frequency 

        [dB/Hz] The ith value on the PSD curve of the accelerations 

obtained from the measurement 

        [dB/Hz] The ith value on the PSD curve of the accelerations 

obtained from the simulation 

  [J/(kg·K)] Gas constant 

   [MPa] Equivalent static compressive stress 

    [MPa] Daily equivalent static compression dose 

      [-] Seat effective amplitude transmissibility (SEAT) in the 

case where the driver does not wear any safety belt 

        [-] Difference between the SEAT values in the case where 

the driver wears a lap belt and in the case where the 

driver does not wear any safety belt 

        [-] Difference between the SEAT values in the case where 

the driver wears a four-point seat harness and in the case 

where the driver does not wear any safety belt 

      [-] SEAT value in the case where the driver wears a lap belt 

        [-] Difference between the SEAT values in the case where 

the driver wears a four-point seat harness and in the case 

where the driver wears a lap belt 

      [-] SEAT value in the case where the driver wears a four-

point seat harness 

  [s] Duration of vibration measurement 

    [K] Temperature in air spring 

   [s] Reference daily exposure duration, 8 h (28800 s) 

   [s] Lower limit of permitted daily exposure duration 

   [s] Upper limit of permitted daily exposure duration 

   [K] Wall temperature of air spring 

      [-] Transfer function in the frequency domain 



VI Nomenclature 

     [m/s1.75] Total vibration dose value 

     [-] Objective function of optimization 

    [m3] Volume of air spring 

    [m/s1.75] Vibration dose value 

     [m/s1.75] VDV of frequency weighted accelerations at the seat base 

     [m/s1.75] VDV of frequency weighted accelerations on the seat 

cushion 

     [m/s1.75] Daily vibration dose value 

     [m/s1.75] VDV of frequency weighted accelerations in the i-direction 

on the seat cushion 

     [m/s1.75] VDV of accelerations obtained from the measurement 

     [m/s1.75] VDV of accelerations obtained from the simulation 

      [m/s1.75] VDV of frequency weighted accelerations on the top of the 

suspension system 

     [-] Vibration dose value ratio 

      [-] VDVR obtained from the measurement 

      [-] VDVR obtained from the simulation 

    [m/s2] Vector sum value 

      [-] Frequency weighting in the i-direction as a function of 

frequency 

  [m] Absolute displacement of seat base in the x-direction 

 ̇ [m/s] Absolute velocity of seat base in the x-direction 

 ̈ [m/s2] Absolute acceleration of seat base in the x-direction 

   [m] Absolute displacement of ms in the x-direction 

  ̇ [m/s] Absolute velocity of ms in the x-direction 

  ̈ [m/s2] Absolute acceleration of ms in the x-direction 

   [m] Absolute displacement of mh0z in the x-direction 

  ̇ [m/s] Absolute velocity of mh0z in the x-direction 

  ̈ [m/s2] Absolute acceleration of mh0z in the x-direction 

  [m] Absolute displacement of seat base in the z-direction 



Nomenclature VII 

 ̇ [m/s] Absolute velocity of seat base in the z-direction 

 ̈ [m/s2] Absolute acceleration of seat base in the z-direction 

   [m] Absolute displacement of ms in the z-direction 

  ̇ [m/s] Absolute velocity of ms in the z-direction 

  ̈ [m/s2] Absolute acceleration of ms in the z-direction 

   [m] Absolute displacement of md1z (or mh0z) in the z-direction 

  ̇ [m/s] Absolute velocity of md1z (or mh0z) in the z-direction 

  ̈ [m/s2] Absolute acceleration of md1z (or mh0z) in the z-direction 

   [m] Absolute displacement of md2z (or mh2z) in the z-direction 

  ̇ [m/s] Absolute velocity of md2z (or mh2z) in the z-direction 

  ̈ [m/s2] Absolute acceleration of md2z (or mh2z) in the z-direction 

  [-] Dimensionless angular frequency ratio 

     [m/s2] Accelerations as a function of frequency 

      [m/s2] The ith acceleration value obtained from the measurement 

      [m/s2] The ith acceleration value obtained from the simulation 

    [m/s2] The ith peak of spine accelerations 

       [m/s2] Acceleration peak caused by the ith end-stop impact in the 

measurement 

       [m/s2] Acceleration peak caused by the ith end-stop impact in the 

simulation 

      [m/s2] Frequency weighted accelerations as a function of time 

       [m/s2] Running RMS values of frequency weighted accelerations 

as a function of time 

 ̃  [m/s2] Root mean square (RMS) of frequency weighted 

accelerations 

 ̃   [m/s2] RMS of frequency weighted accelerations at the seat 

base 

 ̃    [m/s2] RMS value of frequency weighted accelerations in the x-, 

y- or z-direction at the seat backrest; „i‟ represents x, y or 

z  
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 ̃   [m/s2] RMS of frequency weighted accelerations on the seat 

cushion 

 ̃    [m/s2] RMS value of frequency weighted accelerations in the x-, 

y- or z-direction on the feet floor; „i‟ represents x, y or z 

 ̃   [m/s2] RMS value of frequency weighted accelerations in the x-, 

y- or z-direction on the seat cushion; „i‟ represents x, y or 

z 

 ̃    [rad/s2] RMS value of frequency weighted accelerations in the rx-, 

ry- or rz-direction on the seat cushion; „i‟ represents x, y or 

z 

          [m/s2] Accelerations in 1/3 octave band as a function of time 

 ̃      [m/s2] RMS value of accelerations in 1/3 octave band 

   [N·s/m] Critical damping of a single-DOF system without the 

auxiliary spring kd 

    [N·s/m] Linearized damping coefficient of seat cushion in the x-

direction 

    [N·s/m] Linearized damping coefficient of the seat cushion in the 

z-direction 

   [N·s/m] Damping coefficient of the damper 

    [N·s/m] Damping coefficient of the damper in the dummy between 

its lower and upper parts 

      [N·s/m] Damping coefficient of semi-active damper in hard-state 

       [N·s/m] Damping coefficient of the longitudinal semi-active 

damper in the hard-state 

    [N·s/m] Equivalent damping coefficient of the driver model in the 

z-direction 

   [N·s m] Rotational damping coefficient between mh1z and mh0z 

      [N·s/m] Damping coefficient of semi-active damper in soft-state 

       [N·s/m] Damping coefficient of the longitudinal semi-active 

damper in the soft-state 



Nomenclature IX 

    [N·s/m] Damping coefficient of the longitudinal passive hydraulic 

damper at low speeds in the compression stage 

    [N·s/m] Damping coefficient of the longitudinal passive hydraulic 

damper at high speeds in the compression stage 

    [N·s/m] Damping coefficient of the longitudinal passive hydraulic 

damper at low speeds in the extension stage 

    [N·s/m] Damping coefficient of the longitudinal passive hydraulic 

damper at high speeds in the extension stage 

   [N·s/m] Damping coefficient of the passive hydraulic damper at 

low speeds in the compression stage 

   [N·s/m] Damping coefficient of the passive hydraulic damper at 

high speeds in the compression stage 

   [N·s/m] Damping coefficient of the passive hydraulic damper at 

low speeds in the extension stage 

   [N·s/m] Damping coefficient of the passive hydraulic damper at 

high speeds in the extension stage 

    [m] Maximum stroke of longitudinal seat suspension system 

    [m] Maximum stroke of vertical seat suspension system 

      [m] Maximum suspension travel when the semi-active damper 

in the soft-state 

       [m] Maximum suspension travel of the longitudinal seat 

suspension when the semi-active damper in the soft-state 

   [m] Distance between the middle position of the longitudinal 

seat suspension and the front or the rear end-stop buffer 

   [m] Distance between the middle position of the vertical seat 

suspension and the bottom or the top end-stop buffer 

   [m] Amplitude of sinusoidal displacement excitation 

   [N·s/m] Linear damping coefficient 

   [N·(s/m)2] Quadratic damping coefficient 

   [N·(s/m)3] Cubic damping coefficient 



X Nomenclature 

  [m] Distance between the center of gravity of mh1z and the 

connection point 

     [m/s1.75] Estimated vibration dose value 

  [Hz] Frequency of sinusoidal displacement excitation 

    [Hz] Natural frequency of the seat-driver system with the 

longitudinal seat suspension system 

   [m] Initial height of air spring 

  [-] Imaginary unit, (-1)1/2 

    [N/m] Positive stiffness of Bouc-Wen model of hysteresis 

    [N/m] Stiffness coefficient of air spring 

    [N/m] Linear stiffness coefficient of bottom end-stop buffer 

    [N/m2] Quadratic stiffness coefficient of bottom end-stop buffer 

    [N/m3] Cubic stiffness coefficient of bottom end-stop buffer 

    [N/m4] Quartic stiffness coefficient of bottom end-stop buffer 

    [N/m] Linearized stiffness of seat cushion in the x-direction 

    [N/m] Linearized stiffness of seat cushion in the z-direction 

   [N/m] Stiffness of the auxiliary spring in the seat model 

    [N/m] Stiffness of springs in the dummy between its lower and 

upper parts 

    [N/m] Linear stiffness coefficient of front end-stop buffer 

    [N/m3] Cubic stiffness coefficient of front end-stop buffer 

    [N/m] Equivalent stiffness of the driver model in the z-direction 

   [N·m] Rotational stiffness coefficient between mh1z and mh0z 

    [N/m] Linear stiffness coefficient of rear end-stop buffer 

    [N/m3] Cubic stiffness coefficient of rear end-stop buffer 

    [N/m] Linear stiffness coefficient of top end-stop buffer 

    [N/m2] Quadratic stiffness coefficient of top end-stop buffer 

    [N/m3] Cubic stiffness coefficient of top end-stop buffer 

    [N/m4] Quartic stiffness coefficient of top end-stop buffer 

   [N/m] Stiffness of spring in the longitudinal seat suspension 



Nomenclature XI 

   [m] Longitudinal component of the length of the damper 

     [kg] Initial air mass inside air spring 

   [kg] Equivalent mass of a seated driver 

     [kg] Mass of the dummy lower part 

     [kg] Mass of the dummy upper part 

     [kg] Mass of component converting the excitations in the 

vertical direction to the response in the longitudinal 

direction 

     [kg] Equivalent mass of the lower part of a seated person 

     [kg] Equivalent mass of the upper part of a seated person  

   [kg] Mass of the seat sprung part 

  [-] Asymmetry factor, ratio of c3 to c1 

    [Pa] Air pressure inside air spring 

   [-] Asymmetry factor of the longitudinal passive hydraulic 

damper, ratio of cx3 to cx1 

   [Pa] Atmospheric pressure 

      [s] Duration of the ith end-stop impact in the measurement 

      [s] Duration of the ith end-stop impact in the simulation 

   [s] Time of observation (instantaneous time) 

  [m/s] Maximum velocity of the damper 

     [m/s] Velocity as a function of frequency 

   [m/s] Transition velocity of the passive hydraulic damper in the 

compression stage 

    [m/s] Transition velocity of the longitudinal passive hydraulic 

damper in the compression stage  

   [m/s] Transition velocity of the passive hydraulic damper in the 

extension stage 

    [m/s] Transition velocity of the longitudinal passive hydraulic 

damper in the extension stage  

  [rad] Angle that e has with the horizontal when the model is in 

equilibrium 



XII Nomenclature 

    [W/(m2·K)] Overall heat transfer coefficient of an air spring 

  [m-1] Parameter of Bouc-Wen model of hysteresis 

  [m-1] Parameter of Bouc-Wen model of hysteresis 

   [-] Damping reduction factor in the compression stage 

    [-] Damping reduction factor of the longitudinal passive 

hydraulic damper in the compression stage 

   [-] Damping reduction factor in the extension stage 

    [-] Damping reduction factor of the longitudinal passive 

hydraulic damper in the extension stage 

       [-] Coherence between the input and the output signals 

  ̅   [-] Mean value of the relative errors between the PSD curves 

of the simulated and the measured accelerations 

     [-] Difference between simulated VDV and measured VDV 

      [-] Difference between simulated and measured VDVRs 

  ̅ [-] Mean value of the relative errors between the simulated 

and the measured accelerations 

  ̅  [-] Mean value of the relative errors between the simulated 

and the measured acceleration peaks caused by the end-

stop impacts 

    [-] Reduction ratio of air spring 

   [-] Reduction ratio of damper 

  ̅ [-] Mean value of the relative errors between the durations of 

the simulated and the measured end-stop impacts 

  [rad] Angle of rotation of mh1z 

 ̇ [rad/s] Rotational velocity of mh1z 

 ̈ [rad/s2] Rotational acceleration of mh1z 

  [-] Adiabatic coefficient 

   [-] Dimensionless damping ratio 

  [rad] Phase of GFv(f) 

  [s] Integration time for running averaging 



Nomenclature XIII 

  [-] Vector of parameters to be optimized 

  [rad] Angle between the damper and the horizontal direction 

   [rad] Angle between the damper and the horizontal direction 

when the seat in the middle position 

  [rad/s] Angular frequency of the excitations 

   [rad/s] Undamped natural frequency of the suspension seat 



XIV Abbreviations 

Abbreviations 

CF Crest Factor 

CSD Cross Spectral Density 

CWL Compact Wheel Loader 

DOF Degree of Freedom 

DPMI Driving-Point Mechanical Impedance 

FFT Fast Fourier Transform 

GKS Ganzkörperschwingungen 

HGCZ Health Guidance Caution Zone 

ISO International Organization for Standardization 

LBP Low Back Pain 

LPM Lumped-Parameter Model 

MTVV Maximum Transient Vibration Value 

OVTV Overall Vibration Total Value 

PSD Power Spectral Density 

RCB Reduced Comfort Boundary 

RMS Root Mean Square 

RPC Remote Parameter Control 

SEAT Seat Effective Amplitude Transmissibility 

STHT Seat-to-Head Transmissibility 

TVDV Total Vibration Dose Value 

VDV Vibration Dose Value 

VDVR Vibration Dose Value Ratio 

VSV Vector Sum Value 

WBV Whole-Body Vibrations 
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Abstract 

Whole-body vibrations (WBV) have adverse effects on ride comfort and human 

health. Suspension seats have an important influence on the WBV severity. In this 

study, WBV were measured on a medium-sized compact wheel loader (CWL) in its 

typical operations. The effect of short-term exposure to the WBV on the ride comfort 

was evaluated according to ISO 2631-1:1985 and ISO 2631-1:1997. ISO 2631-

1:1997 and ISO 2631-5:2004 were adopted to evaluate the effect of long-term 

exposure to the WBV on the human health. Reasons for the different evaluation 

results obtained according to ISO 2631-1:1997 and ISO 2631-5:2004 were explained 

in this study. The WBV measurements were carried out in cases where the driver 

wore a lap belt or a four-point seat harness and in the case where the driver did not 

wear any safety belt. The seat effective amplitude transmissibility (SEAT) and the 

seat transmissibility in the frequency domain in these three cases were analyzed to 

investigate the effect of a safety belt on the seat transmissibility. Seat tests were 

performed on a multi-axis shaking table in laboratory to study the dynamic behavior 

of a suspension seat under the vibration excitations measured on the CWL. The 

WBV intensity was reduced by optimizing the vertical and the longitudinal seat 

suspension systems with the help of computational simulations. For the optimization 

multi-body models of the seat-dummy system in the laboratory seat tests and the 

seat-driver system in the field vibration measurements were built and validated.  
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Kurzzusammenfassung 

Ganzkörperschwingungen (GKS) haben negative Auswirkungen auf den Fahrkomfort 

und die menschliche Gesundheit. Die Sitzfederungen haben einen hohen Einfluss 

auf die Stärke der GKS. In dieser Forschungsarbeit wurden die GKS auf einem 

mittelgroßen Kompaktradlader gemessen. Die Wirkungen der Kurzzeitbelastungen 

von GKS des Radladers auf den Menschen hinsichtlich des Fahrkomforts wurden 

entsprechend ISO 2631-1:1985 und ISO 2631-1:1997 bewertet. Zur Bewertung der 

Auswirkungen der Langzeitbelastungen von GKS des Radladers auf die Gesundheit 

des Menschen wurden ISO 2631-1:1997 und ISO 2631-5:2004 herangezogen. Dabei 

ergaben sich unterschiedliche Ergebnisse für beide jeweiligen Normen, die im 

Rahmen dieser Arbeit erläutert wurden. Die GKS wurden für drei unterschiedliche 

Szenarien gemessen: ohne Sicherheitsgurt, mit Beckengurt und mit Vierpunktgurt. 

Der Sitzübertragungsfaktor SEAT, sowie die entsprechende Sitzübertragungsfunktion 

in diesen drei Szenarien wurden analysiert, um den Einfluss des Sicherheitsgurts auf 

das Übertragungsverhalten des Sitzes zu untersuchen. Weiterhin wurden auf einem 

Schwingungsprüfstand die Sitzversuche durchgeführt, in denen der Sitz mit den am 

Radlader gemessenen Vibrationen angeregt wurde, um das Übertragungsverhalten 

des Sitzes zu analysieren. Um die Intensität der GKS zu reduzieren wurden die 

Vertikal- und Längssitzfederungen mit Computersimulationen optimiert. Hierfür 

wurden Mehrkörpermodelle des in den Prüfstandsversuchen verwendeten Sitz-

Fahrerdummy-Systems, sowie des in den Feldmessungen benutzten Sitz-Fahrer-

Systems aufgebaut und validiert.  
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Zusammenfassung 

Heutzutage ist eine Vielzahl von Personen einem hohen Niveau von 

Ganzkörperschwingungen (GKS) bei der täglichen Arbeit ausgesetzt, wie z.B. die 

Fahrer von Traktoren, Baumaschinen und Transportfahrzeugen. GKS können akute 

körperliche Reaktionen zur Folge haben, wie z.B. Muskelermüdung, Unbehagen und 

verringerte Leistungsfähigkeit. Darüber hinaus kann es insbesondere langfristig zur 

Beeinträchtigung der Gesundheit kommen, beispielsweise zur Erkrankung der 

Lendenwirbelsäule. Da der Sitz, je nach Auslegung der Sitzfederung mehr oder 

weniger stark die Schwingungen auf den Fahrer überträgt, bietet er das größte 

Reduzierungspotential bezüglich GKS. 

Im Rahmen mehrerer aktueller Forschungsarbeiten wird die Wirkung von 

Langzeitbelastungen auf die menschliche Gesundheit untersucht und bewertet. In 

den meisten Arbeiten wurden diese Bewertungen entsprechend ISO 2631-1:1997 

vorgenommen. Nach der Veröffentlichung der Norm ISO 2631-5:2004 beschäftigten 

sich einige Arbeiten mit der Abschätzung der Gesundheitsrisiken nach ISO 2631-

1:1997 und ISO 2631-5:2004. Beide Normen geben Grenzen für das 

Gesundheitsrisiko an und führen zu unterschiedlichen Ergebnissen, was zu 

Diskussionen über die Höhe der Grenzwerte geführt hat. Bis heute beschäftigen sich 

wenige Forschungsarbeiten mit der Bewertung der kurzfristigen Auswirkung von GKS. 

Für die Bewertung der Kurzzeitbelastungen, sind Verfahren in zwei ISO-Normen 

beschrieben: ISO 2631-1:1985 und ISO 2631-1:1997. Obwohl der Kompaktradlader 

einen großen Marktanteil besitzt, wurde die Intensität der auftretenden GKS nur im 

Rahmen weniger Forschungsaktivitäten untersucht. 

Die Intensität der GKS kann durch die Verbesserung des Übertragungsverhaltens 

der Sitzfederungen, d.h. die Reduktion bzw. Isolation von Schwingungsanregungen, 

reduziert werden. Hier wurde viel Aufwand betrieben, das Übertragungsverhalten des 

gefederten Sitzes zu studieren und die Sitzfederungen zu optimieren. In 

vorangegangenen Forschungsarbeiten wurde der Einfluss des Sitzkissens, der 

Sitzfederung und der Anschläge sowie der dynamischen Eigenschaften des Fahrers 

hinsichtlich des Übertragungsverhaltens des Sitzes untersucht. Der Einfluss des 

Sicherheitsgurts auf das Übertragungsverhalten des Sitzes wurde bisher noch nicht 

erforscht. Viele Arbeiten verwenden Mehrkörpermodelle, um das dynamische 

Verhalten des Sitz-Fahrer-Systems für die vertikale Richtung zu simulieren. Durch 
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die Verwendung entsprechender Optimierungsverfahren innerhalb der 

Computersimulation, lässt sich das Übertragungsverhalten der vertikalen 

Sitzfederung verbessern. Dabei stellte sich heraus, dass die Verwendung eines 

zusätzlichen Luftspeichers oder eine Anpassung der Dämpfungskoeffizienten des 

Dämpfers zu einer Erhöhung der Schwingungsisolierungseigenschaft der vertikalen 

Sitzfederung führen. Darüber hinaus kann die Stärke der durch die Anschläge 

verursachten Schwingungsstöße durch eine Optimierung von deren Kraft-Weg-

Eigenschaften reduziert werden.  

Bei Baumaschinen treten hohe GKS nicht nur für die vertikale-, sondern auch für die 

Längsrichtung auf. Entsprechende Sitze mit Längsfederungen sind bereits auf dem 

Markt verfügbar. Bezüglich der Untersuchung und Verbesserung des 

Übertragungsverhaltens der Längsfederung wurden wenige Forschungsarbeiten 

durchgeführt. Im Rahmen dieser Forschungsarbeiten wurden einfach Fahrermodelle 

vorgestellt und verwendet.  

 

Die drei wichtigsten Aufgaben der vorliegenden Arbeit sind: die Bewertung des 

Einflusses der in einem Kompaktradlader auftretenden GKS, die Untersuchung des 

Einflusses des Sicherheitsgurts auf das Übertragungsverhalten des Sitzes, und die 

Verbesserung der Schwingungsisolierungseigenschaft der Vertikal- und 

Längsfederung des Sitzes.  

Der Einfluss der Kurzzeitbelastungen, die sich bei der Benutzung eines 

Kompaktradladers ergeben, wurde entsprechend ISO 2631-1:1985 und ISO 2631-

1:1997 bewertet. Der Einfluss der Langzeitbelastungen auf die menschliche 

Gesundheit wurde entsprechend ISO 2631-1:1997 und ISO 2631-5:2004 bewertet. 

Zusätzlich wurden die Ergebnisse der beiden Normen verglichen. Die Ursachen der 

unterschiedlichen Ergebnisse für beide Normen wurden erläutert.  

Es wurden Schwingungsmessungen bei Feldversuchen für drei unterschiedliche 

Szenarien durchgeführt: ohne Sicherheitsgurt, mit Beckengurt und mit Vierpunktgurt. 

Der Sitzübertragungsfaktor SEAT, sowie die entsprechende Sitzübertragungsfunktion 

wurden in diesen drei Szenarien analysiert, um den Einfluss des Sicherheitsgurts auf 

das Übertragungsverhalten des Sitzes zu untersuchen. 

Der Sitz des Kompaktradladers hat eine passive, vertikale Sitzfederung. Die 

Sitzversuche wurden auf einem Schwingungsprüfstand durchgeführt, um die 
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dynamischen Eigenschaften der vertikalen Sitzfederung zu erproben. Hierbei wurden 

zur Anregung die Beschleunigungssignale aus dem Kompaktradlader verwendet. 

Das Übertragungsverhalten der vertikalen Sitzfederung wurde durch eine 

Optimierung des passiven hydraulischen Dämpfers und der Anschläge verbessert. 

Weiterhin wurde das Übertragungsverhalten einer semi-aktiven vertikalen 

Sitzfederung verbessert, durch die Optimierung des semi-aktiven Dämpfers, welche 

eine ‚Weich-Hart„ Regelung verwendet. Eine Längssitzfederung wurde entworfen und 

optimiert, um das Übertragungsverhalten des Sitzes in Längsrichtung zu verbessern. 

Die Optimierung einer passiven- und einer semi-aktiven Längssitzfederung wurde 

durchgeführt, ebenso wie die Optimierung der vertikalen Sitzfederung. Das 

verbesserte Übertragungsverhalten der passiven Sitzfederung wurde mit dem der 

semi-aktiven Variante verglichen. 

 

Diese Arbeit trägt einige innovative Untersuchungsergebnisse zur Bewertung von 

Schwingungsbelastungen, sowie der Untersuchung des Sitzübertragungsverhaltens 

und der Optimierung der Sitzfederungen bei. Zuerst zeigt diese Arbeit detaillierte 

Bewertungsergebnisse der GKS auf einem Kompaktradlader. Anhand des Vergleichs 

der unterschiedlichen Ergebnisse für ISO 2631-1:1997 und ISO 2631-5:2004, sowie 

durch die entsprechende Diskussion der Bewertungsmaßnahmen in beiden Normen, 

lassen sich einige Empfehlungen für die Verbesserung der ISO-Normen in der 

Zukunft ableiten. Zweitens wurde der Einfluss des Sicherheitsgurts auf das 

Übertragungsverhalten des Sitzes untersucht. Die Untersuchungsergebnisse helfen 

dem Hersteller bei der Auswahl des optimalen Sicherheitsgurts. Die Optimierung der 

vertikalen- und der Längssitzfederung reduziert die GKS auf dem Kompaktradlader 

signifikant. Das Fahrermodell, welches im Rahmen dieser Arbeit verwendet wird, ist 

in der Lage, das vertikale und longitudinale Schwingungsverhalten des Fahrers unter 

vertikaler Anregung zu simulieren. Mithilfe der in dieser Arbeit beschriebenen 

Optimierungsverfahren und Sitz-Fahrer-Modelle, lassen sich auch die 

Schwingungsisolierungseigenschaften der Sitze in anderen Fahrzeugen verbessern. 
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1 Introduction 

Vibrations became a recognizable environmental stressor in the 1920s and 1930s, at 

the time when mobile machines, such as agricultural tractors, motor vehicles and 

aircraft, were becoming prevalent [1],[2]. Whole-body vibrations (WBV) refer to the 

vibrations transmitted into the entire human body from the physical contact with a 

vibrating source, usually through standing, sitting or reclining on a vibrating surface 

[3]. A large number of people is exposed to WBV throughout the working world. 

Workplaces with high levels of WBV are numerous and mainly include the driver 

seats on agricultural tractors, construction machines and transportation vehicles. It 

has been proven that long-term exposure to WBV is associated with a series of 

health problems, especially in the human back area. Short-term exposure to WBV 

can cause drivers transitory reactions, such as muscle fatigue, loss of balance and 

ride discomfort. These reactions can reduce the driver's ability to control the vehicle 

and could lead to traffic accidents in the worst case.  

Lots of studies have been carried out since the 1930s to investigate the human 

subjective sensations under various vibration excitations. The boundaries of 

excitation magnitudes for different levels of subjective sensations as well as the 

„equal sensation contours‟ were obtained from these studies. They contributed to the 

development of the ISO 2631-1 standards. The current edition of the ISO 2631-1 was 

published in 1997, i.e. ISO 2631-1:1997 [4]. It is widely used all over the world to 

evaluate the effect of WBV on the human health. A procedure for the evaluation of 

the effect of short-term exposure to WBV on the comfort is introduced in ISO 2631-

1:1997 as well. In 2004, part 5 of ISO 2631, ISO 2631-5:2004 [5], was published, in 

which a new evaluation procedure is introduced. This procedure can be used to 

evaluate the effect of WBV containing multiple shocks on the human health. After the 

publication of ISO 2631-5:2004, both ISO 2631-1:1997 and ISO 2631-5:2004 were 

used in research works to predict the health risks simultaneously. However, different 

prediction results were obtained according to these two ISO standards. This caused 

discussions about the boundaries of the health guidance caution zone (HGCZ) in the 

two standards.  

Suspension systems are installed on vehicles to reduce the WBV. The vibration 

attenuation performance of a suspension seat has an important influence on the 

WBV severity. The seat transmissibility is used to evaluate this property. Some 
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studies investigated the effect of seat cushion, seat suspension components and 

end-stop buffers on the seat transmissibility. It is also affected by the dynamic 

behavior of the driver, which is significantly influenced by the kind of fixation to the 

seat. There is no doubt that a safety belt affects the driver dynamic behavior and 

accordingly the seat transmissibility by restricting the movement of the driver. 

Computational simulation is an efficient and economical method to find out the 

optimal configurations of technical systems. This is also true for the seat suspension 

system. Several multi-body models of the suspension seat-driver system were 

developed to simulate the dynamic behavior of this system in the vertical or the 

horizontal directions. With the help of computational simulations, lots of studies were 

carried out for the improvement of the vibration attenuation performance of the 

vertical seat suspension system, which can for example be improved by using an 

additional volume for the air spring, selecting more suitable dampers or optimizing 

the properties of the end-stop buffers. Longitudinal vibrations on construction 

vehicles are also severe. There are also several studies carried out to improve the 

vibration attenuation performance of the longitudinal seat suspension system by 

optimizing the stiffness and damping coefficients.  

Compact wheel loaders (CWLs) have a large market in the world due to their small 

size but ample lift capacity and maneuverability [6]. In order to protect the CWL 

drivers from the health and safety risks caused by WBV, the primary objectives of this 

research work are to thoroughly evaluate effects of WBV arising from a CWL on 

human health and ride comfort; to investigate the effect of a safety belt on the seat 

transmissibility in order to select a proper type of the safety belt for a more 

comfortable working environment for the drivers; and to optimize the longitudinal and 

the vertical seat suspension systems in order to improve the vibration attenuation 

performance of the seat and to reduce the WBV on the seat cushion. To achieve 

these objectives, the tasks carried out in this research work are described as follows: 

In chapter 2 the previous studies on the WBV and the suspension seat dynamics are 

reviewed in the following four aspects: (1). the human subjective sensations under 

various excitations and the human biodynamic response to vibrations; (2). evaluation 

methods of effects of WBV on human health and ride comfort; (3). the human body 

models and the suspension seat models used to simulate the dynamic behavior of 

the suspension seat-driver system; (4). investigation results and optimization 

solutions of the vibration attenuation performance of suspension seats.  
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In chapter 3 motivations of this research work are given on the basis of the literature 

review in chapter 2. 

In chapter 4 the field tests of vibration measurement on a medium-sized CWL are 

introduced. The influence of operational conditions (including driving speed, bucket 

load condition and unevenness of road surface) on the vibration characteristics is 

studied. 

In chapter 5 evaluations of the effects of WBV arising from the CWL on the human 

health and the ride comfort are carried out according to the ISO standards. The 

health evaluation results obtained according to ISO 2631-1:1997 are compared to 

those obtained according to ISO 2631-5:2004. The reasons for the different results 

with the two ISO standards are explained. In addition, the details of the evaluation 

procedures in these two standards (such as frequency weighting filters and spine 

models) are discussed with respect to whether they are suitable for the WBV on this 

CWL.  

In chapter 6 the effect of a safety belt on the seat transmissibility is studied based on 

the analysis of the seat effective amplitude transmissibility (SEAT) and the seat 

transfer function in the following three cases: the driver wearing a lap belt, the driver 

wearing a four-point seat harness and the driver wearing no safety belt.  

Chapter 7 focuses on analyzing the dynamic characteristics of the suspension seat 

used on the CWL and improving the seat vibration attenuation performance. Multi-

body models are built and validated to simulate the dynamic behavior of the seat-

occupant system in the vertical and the longitudinal directions. The vertical and the 

longitudinal seat suspension systems are optimized with the help of these models to 

reduce the WBV on the CWL.  

In chapter 8 short summaries of this research work and recommendations for future 

research work are presented.  
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2 State of the Art 

Exposure to whole-body vibrations (WBV) is a dominant inducement of muscle 

fatigue, ride discomfort, loss of balance and some health problems like 

musculoskeletal disorders. Accordingly, it can result in a decrease of work efficiency 

and has the potential to cause traffic accidents and to lead to occupational disability 

for many working people. Since the 1930s, a large amount of effort has been done to 

investigate the relationship between the WBV exposure and the human subjective 

response, to develop the procedures to evaluate the effects of WBV on the human 

health and the ride comfort, and to reduce the WBV by optimizing suspension 

systems. 

Drivers of vehicles generally take the seated posture in the vehicle driving direction. 

Due to this reason, the literature review in this chapter focuses only on the seated 

persons, whose coordinate system for the measurement and evaluation of WBV is 

illustrated in Fig. 2.1. The x-direction is the longitudinal direction from the back to the 

chest. The y-direction is the lateral direction from the right side to the left side. The z-

direction is the vertical direction from the buttocks to the head. Rotation about the x-, 

y- and z-directions is designated as the roll (rx-), pitch (ry-) and yaw (rz-) directions, 

respectively. 

 

Fig. 2.1: Coordinate system of a seated person for WBV measurement and 

evaluation [4] 
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2.1 Effect of whole-body vibrations on the human being 

Over the past few decades, a large number of studies have been carried out to 

investigate the effects of WBV on the human being. Some of them investigated the 

effect of long-term exposure to WBV on the human health and the effect of short-term 

exposure on the subjective sensation of comfort. Others investigated the human 

biodynamic response to the WBV. 

2.1.1 Effect of whole-body vibrations on human health 

Long-term exposure to WBV has adverse effects on the human musculoskeletal 

system, especially the lumbar spine. It is associated with a series of back problems, 

such as degenerative disorders of the spine, spinal disc disease and failure, and low 

back pain (LBP) [3],[7]. Results from previous epidemiological studies show that the 

LBP is more prevalent with vibration exposed workers than with non-exposed 

workers. For example, Boshuizen et al. investigated in 1990 that the prevalence of 

back pain is about 10% higher with tractor drivers than with workers not exposed to 

WBV [8]. Bovenzi et al. investigated that the prevalence of LBP is higher with 

professional drivers than with workers not exposed to WBV [9],[10]. 

Some authors attempted to find out the relationship between the long-term exposure 

to WBV and the health risks by means of reviewing high-qualified epidemiological 

studies. Based on the review of 19 epidemiological literature sources between 1960 

and 1984 about the effect of long-term exposure to WBV on the human health, 

Hulshof and van Zanten concluded that the long-term exposure to WBV is harmful to 

the spinal system and may result in LBP, early degeneration of the lumbar spinal 

system and herniated disc [11]. Bovenzi and Hulshof reviewed the epidemiological 

studies published between 1986 and 1997 to update the information on the 

epidemiological evidence of adverse health effects of WBV. It was concluded from 

these studies that an occupational exposure to WBV is associated with an increased 

risk of LBP, sciatic pain, and degenerative changes in the spinal system, such as 

lumbar intervertebral disc disorders [12]. Lings and Leboeuf-Yde in 2000 reviewed 24 

epidemiological literature sources published between 1992 and 1999 concerning the 

association between the WBV exposure and the LBP, and concluded that the LBP is 

more frequent in the group exposed to WBV [13]. Kittusamy and Buchholz in 2004 

reviewed 10 studies and concluded that more musculoskeletal symptoms (specifically 
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in the low back area) are observed among the group exposed to WBV than the group 

not exposed to WBV [14]. 

There are enough epidemiological evidences to make a clear conclusion that the 

long-term exposure to WBV is associated with the work-related musculoskeletal 

disorders, especially the symptom of LBP. However, the WBV is not the only factor 

which contributes to the LBP. Prolonged sitting and awkward postures also play an 

important role in the prevalence of the LBP [1],[9],[10],[14],[15]. Additionally, the 

prevalence of musculoskeletal disorders or LBP with professional drivers is affected 

by some ergonomic, psychosocial and physical factors. Unsuitable ergonomic work 

conditions, such as uncomfortable back support, uncomfortable seat and narrow 

space for drivers, result in the increase of risks of LBP [16],[17]. The physical work 

load such as manual handling shows an association with the increase of risks of LBP 

as well [1],[10],[15]. Regular physical activities are helpful to decrease the risks of 

LBP [17],[18]. Moreover, individual factors, such as age and body mass index, are 

proven to have an influence on the risks of LBP also [9],[10],[15]. In the study by 

Alperovitch-Najenson et al., the following psychosocial factors showed significant 

association with the prevalence of LBP with bus drivers: limited rest periods during a 

work day, traffic jams on the bus route, lack of accessibility to the bus stop and 

passengers‟ hostility [17].  

All of the aforementioned factors are combined together with the WBV to affect the 

human health. It is impossible to separate the WBV from other factors to investigate 

the adverse effects of WBV on the human health. This makes it tough to outline a 

clear dose relationship between the WBV exposure and the health risks [3],[11]-[13].  

2.1.2 Effect of whole-body vibrations on comfort 

Short-term exposure to WBV can cause transitory reactions of the human, such as 

increase of heart rate, headache, muscle fatigue, loss of balance and discomfort [3]. 

As a reaction to the environment, comfort is a pleasant sense associated with 

physiological, psychological and physical states [19]-[21]. Unequivocal definitions of 

comfort and discomfort are still not given, as well as the borderline between comfort 

and discomfort [19]. In some research works comfort and discomfort were defined as 

two discrete states, where comfort was simply defined as absence of discomfort and 

vice versa [19],[22],[23]. Many other researchers defined comfort and discomfort as 

two opposites on a continuous rating scale, ranging from extreme discomfort through 
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a neutral state to extreme comfort [19],[21],[24]. Feeling of discomfort is mainly 

associated with pain, tiredness, soreness, and numbness. And feeling of comfort is 

mainly associated with relaxation and well-being [19],[25].  

Studies on the relationship between the subjective sensations and the short-term 

exposure to WBV started in the early 1930s. These studies were carried out based 

on laboratory experiments, where two investigation methods were adopted. In all 

these experiments, the acceleration, either its amplitude or the root mean square 

(RMS) value, was selected as the parameter to evaluate the vibration severity.  

In the first method, tested persons adjusted the amplitudes of vibration excitations 

until their subjective sensations reached the predefined levels [26]-[31]. Or the tested 

persons were exposed to vibration excitations with different amplitudes and judged 

their sensation levels after the exposure [32],[33]. Curves of subjective sensation 

levels obtained in different studies based on this method are shown from Fig. 2.2 to 

Fig. 2.7. 

 

Fig. 2.2: Boundary of ‘Human Vibration Tolerance’ under vertical sinusoidal vibration 

excitations obtained by Ziegenruecker and Magid in 1959 (Tested persons sat on a 

seat with seat back and no cushions on seat and back) [26] 

 

Fig. 2.3: Subjective sensation levels under vertical sinusoidal vibration excitations 

obtained by Chaney in 1964 (Tested persons sat on a cushioned seat with seat back) 

[27] 
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It is obvious from figures 2.2 and 2.3 that the tested persons were most sensitive to 

vertical vibrations at frequencies between 4 Hz and 8 Hz. The boundary of the 

„Human Vibration Tolerance‟ in Fig. 2.2 is higher than that of „Alarming‟ in Fig. 2.3, 

especially at frequencies above 8 Hz. The boundary of „Perceptible‟ in Fig. 2.3 shows 

that the human sensitivity keeps almost constant from 1 Hz to 16 Hz, when the 

excitation amplitude is very small. 

 

Fig. 2.4: Perceptible threshold obtained by Miwa (Tested persons sat on an 

aluminum vibration table without cushions, RMS: root mean square) [28],[29] 

It can be observed in Fig. 2.4 that there is a little difference between the perceptible 

thresholds under sinusoidal excitations and random excitations. In the longitudinal 

direction, the tested persons were more sensitive to the random excitations. In the 

vertical direction, they were more sensitive to the sinusoidal excitations at 

frequencies below 8 Hz, but less sensitive at frequencies between 16 Hz and 64 Hz. 

Fig. 2.4 also shows that in the vertical direction the tested persons were most 

sensitive to vibrations in the range of 2-8 Hz under sinusoidal excitations, but only in 

the range of 4-8 Hz under random excitations. In both excitation modes, they were 

most sensitive to vibrations below 4 Hz in the longitudinal direction. The vertical 

perceptible thresholds in Fig. 2.4 are lower than that in Figure 2.3. 

The human sensitivity in the roll and the pitch directions shown in Fig. 2.5 is the same 

with that in Fig. 2.6 between 2 Hz and 16 Hz, because the same investigation method 

was adopted in the studies [30] and [31]. Fig. 2.6 shows that the human sensitivity 

decreases largely with the increase of the excitation frequency in four directions: 

longitudinal, lateral, roll and pitch directions. The human sensitivity to longitudinal 

vibrations is similar to that to lateral vibrations. The boundary of „Uncomfortable‟ in 

the vertical direction lies between the boundaries of „Perceptible‟ and „Mildly annoying‟ 
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in Fig. 2.3. It varies slightly depending on the excitation frequency, same as the 

boundary of „Perceptible‟ in Fig. 2.3. 

 

Fig. 2.5: ‘Uncomfortable’ boundaries under sinusoidal vibration excitations in the roll 

and the pitch directions obtained by Parsons and Griffin in 1978 (Tested persons sat 

on a wooden plate without cushions.) [30] 

 

Fig. 2.6: ‘Uncomfortable’ boundaries under sinusoidal vibration excitations in five 

directions obtained by Parsons and Griffin in 1978 (Tested persons sat on a wooden 

plate without cushions.) [31] 

The boundary of „Tolerance‟ in the vertical direction in Fig. 2.7 shows that the tested 

persons were most sensitive to vibrations in the range of 4-6 Hz. It is at the same 

level with the boundary of „Uncomfortable‟ in Fig. 2.6 below 8 Hz. In this direction, the 

boundary of „Unpleasantness‟ is at the same level with the boundary of „Perceptible‟ 

in Fig. 2.3. In horizontal directions, the tested persons were most sensitive to 

vibrations at frequencies below 3 Hz. The boundary of „Uncomfortable‟ in Fig. 2.6 is 

between the boundaries of „Tolerance‟ and „Unpleasantness‟ in this figure. 
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Fig. 2.7: Tolerance limits and levels of unpleasantness under sinusoidal vibration 

excitations in the vertical and the horizontal directions with 3 min exposure obtained 

by Miwa in 1968 (sat on an aluminum vibration table without cushions) [32] 

In the second method, tested persons were exposed to a „reference‟ excitation and a 

„test‟ excitation alternately. They adjusted the amplitude of the „test‟ excitation until it 

produced the same sensation level as the „reference‟ excitation [28],[29],[34]-[39]. Or 

the tested persons estimated the intensity level of the „test‟ excitation relative to the 

„reference‟ excitation [40],[41]. With this method „equal sensation contours‟ were 

obtained to express the relationship between subjective sensations and amplitudes 

of vibration excitations at different frequencies. These „equal sensation contours‟ are 

shown in Fig. 2.8 to Fig. 2.12. The values marked on the curves in these figures 

represent the amplitudes of the reference excitations. 

Fig. 2.8 shows that in the vertical direction the tested persons were most sensitive to 

sinusoidal vibrations at around 5 Hz, and below 3 Hz in the longitudinal direction.   

Fig. 2.9 shows that the tested persons were most sensitive to sinusoidal vibrations in 

the range of 4-16 Hz in the vertical direction, and below 5 Hz in the longitudinal 

direction. The comparison of Fig. 2.8 and Fig. 2.9 shows that the tested persons were 

more sensitive to sinusoidal vibrations than to random vibrations at frequencies 

below 12 Hz in the vertical direction and below 5 Hz in the longitudinal direction. 

Fig. 2.10 shows that the tested persons were most sensitive to vertical vibrations at 

around 5 Hz, no matter the gender of them. „Equal sensation contours‟ of women are 

a little lower than those of men. This means that females are more sensitive to 

vertical vibrations than males. 
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Fig. 2.8: ‘Equal sensation contours’ in the vertical and the longitudinal directions 

obtained by Miwa in 1967 (Reference excitation: sinusoidal vibrations at 20 Hz. Test 

excitation: sinusoidal vibrations.) [28] 

 

Fig. 2.9: ‘Equal sensation contours’ in the vertical and the longitudinal directions 

obtained by Miwa in 1969 (Reference excitation: sinusoidal vibrations at 20 Hz. Test 

excitation: 1-octave random vibrations centered at 2, 4, 8, 16, 31.5, 63, 125 Hz.) [29] 

 

Fig. 2.10: ‘Equal sensation contours’ in the vertical direction obtained by Jones and 

Saunders in 1972 (Reference excitation: sinusoidal vibrations at 20 Hz. Test 

excitation: sinusoidal vibrations.) [34] 
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Fig. 2.11: Sensation contours equivalent to 10 Hz vertical sinusoidal vibrations with 

RMS of 0.5 and 1.25 m/s² obtained by Griffin and Parsons et al. in 1982 [35],[36] 

 

Fig. 2.12: ‘Equal sensation contours’ in the vertical direction obtained by Shoen-

berger and Harris in 1971 (Reference excitation: sinusoidal vibrations at 9 Hz) [40] 

Fig. 2.11 shows that the human sensitivity decreases with the increase of the 

excitation frequency up to about 16 Hz in the longitudinal, lateral, roll, pitch and yaw 
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directions. The contours of the human sensation in the vertical direction are relatively 

flat in the frequency domain. The characteristics of the sensation contours in this 

figure are similar to those in Fig. 2.6.  

It can be observed in Fig. 2.12 that the tested persons were most sensitive to 

vibrations at frequencies between 4 Hz and 8 Hz in the vertical direction. Under 

excitations with low magnitudes, the sensation contours are relatively flat between    

4 Hz and 16 Hz like the curves in Fig. 2.3, Fig. 2.6, Fig. 2.7 and Fig. 2.11. Under 

excitations with high magnitudes, the contours have a peak at around 5 Hz.  

2.1.2.1 Subjective sensations under sinusoidal and random excitations 

In most of the above mentioned studies, sinusoidal excitations were adopted to 

investigate the relationship between the subjective sensations and the vibration 

excitations. In a few studies investigations were carried out with random excitations. 

It was observed that subjective sensations under sinusoidal excitations are different 

from those under random excitations with equivalent vibration intensity.  

Miwa studied that human beings were more sensitive to sinusoidal vibrations than to 

one octave random vibrations at frequencies below 12 Hz in the vertical direction and 

below 5 Hz in the longitudinal direction [29]. This can be observed by comparing    

Fig. 2.8 and Fig. 2.9.  

In contrast, Donati et al. investigated that tested persons appeared to be slightly 

more sensitive to random excitations than to sinusoidal excitations in the range of    

1-10 Hz. This difference was observed in all three translational directions and it 

decreased with the increase of the excitation frequency [37]. Additionally, 

investigations by Corbridge and Griffin show that random vibrations produce slightly 

larger discomfort than sinusoidal vibrations in the frequency range of 0.5-5 Hz [41].  

Mistrot et al. did not observe a difference between the averaged sensitivity to 

sinusoidal excitations and one-third octave random vibrations centered at 3.15 Hz 

[39]. 

2.1.2.2 Subjective sensations under excitations in different directions 

Most studies investigated the subjective sensations when the tested persons were 

exposed to excitations in translational directions. Only a small number of studies 

focused on rotational excitations. Some studies attempted to find out the relationship 

between the subjective sensations under excitations in different directions.  
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Miwa investigated in 1967 that the subjective sensations under longitudinal 

sinusoidal vibrations are stronger by 10 dB1 than those under vertical sinusoidal 

vibrations below 5 Hz, as shown in Fig. 2.8 [28],[42]. In 1969 he investigated that in 

terms of random excitations subjective sensations under longitudinal vibrations are 

stronger than those under vertical vibrations below 16 Hz, as shown in Fig. 2.9 [29].  

The analysis in the study by Kirby et al. shows that the discomfort of tested persons 

exposed to multi-axial vibrations cannot be evaluated using vibrations in only one 

direction [43]. Humans are more sensitive to multi-axial random vibrations than to 

single-axial random vibrations. Equivalent comfort curves under multi-axial random 

vibrations are 15-20% lower than those under single-axial vibrations [44]. Studies [45] 

and [46] show that the vector sum value (VSV) of the root mean square (RMS) of the 

vibration accelerations in both axes give an adequate prediction of the subjective 

sensations, when tested persons are exposed to dual-axial vibrations.  

2.1.2.3 Subjective sensations with different exposure durations 

A few studies investigated the effect of exposure durations on the subjective 

sensations. Jones and Saunders obtained the „reduced comfort boundary (RCB)‟ 

when the tested persons were exposed to vertical sinusoidal excitations with different 

durations, as shown in Fig. 2.13 [34].  

 

Fig. 2.13: Reduced comfort boundary (RCB) under the vertical sinusoidal excitations 

obtained by Jones and Saunders [34] 

Miwa obtained in 1968 the tolerance limits and the levels of unpleasantness for a 3 

min exposure, Fig. 2.7. He studied that if the exposure is shorter than 10 min, the 

exposure duration has no effect on the sensations of tolerance and unpleasantness; 

                                            
1
 1 dB=20log10(a/aref); aref=10

-3
g; a is the acceleration RMS values, as the values of curves in Fig. 2.8. 
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if the exposure exceeds 10 min, the sensation-duration relationship is similar to that 

in ISO/TC 108/WG 7/Secr. 6:19662  [32]. Fig. 2.14 shows the diagrams with the 

tolerance limits and the levels of unpleasantness for different durations derived from 

the sensation-duration relationship of Miwa. Demic and Lukic as well obtained a 

series of boundaries of „comfortable ride‟ for persons exposed to longitudinal or 

vertical random excitations with different durations [44]. These boundaries are shown 

in Fig. 2.15.  

 

Fig. 2.14: Tolerance limits and levels of unpleasantness for different durations 

derived from the sensation-duration relationship of Miwa 

                                            
2
 The sensation-duration relationship in ISO/TC 108/WG 7/Secr. 6:1966 is same with that in ISO 2631-

1:1985 [47]. 
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Fig. 2.15: Boundaries of ‘comfortable ride’ under vertical or longitudinal random 

excitations obtained by Demic and Lukic in 2002 [44] 

Fig. 2.13 to Fig. 2.15 show that the comfort decreases with the increase of the 

exposure duration. The RCB curves in Fig. 2.13 are at the same level with the levels 

of unpleasantness in Fig. 2.14. The curves in Fig. 2.15 are a little different from those 

in Fig. 2.13 and Fig. 2.14 at frequencies above 2 Hz, where in the vertical direction 

the peaks occur at around 2.5-3 Hz in Fig. 2.15, but at around 5 Hz in Fig. 2.13 and 

Fig. 2.14. At frequencies from 2 Hz to 3 Hz, the curves in the longitudinal direction in 

Fig. 2.14 are flat, but they rise with the frequency in Fig. 2.15. These differences are 

mainly caused by the different investigation methods in three studies, especially the 

excitation signals. Random vibrations in 1/3 octave bands were used in the study by 

Demic and Lukic, but the sinusoidal vibrations were used in two other studies. The 

study by Demic and Lukic also gives the boundaries of „comfortable ride‟ below 2 Hz 

[44]. It can be observed that the tested persons were most sensitive to vertical and 

longitudinal vibrations below 1 Hz. The authors attributed this to the psychological 

aspects based upon the walking process [44]. 

It is obvious that there are discrepancies existing in the relationship between the 

subjective sensations and the vibration excitations obtained in the studies involved in 

section 2.1.2. They are possibly caused by the following reasons: 1). difference in 

magnitude, frequency and direction of the excitation signals; 2). influence of some 

factors on the subjective sensations, such as noise, posture of tested persons and 

environment of experiment; 3). limited number of tested persons in the experiment. 

However, it is valid to make a conclusion from these studies that the discomfort 

caused by WBV is affected by several factors, such as the frequency and 

acceleration magnitude of the vibration excitations, the excitation directions and the 

exposure durations. Generally, human beings are most sensitive to vibrations in the 



2 State of the Art 17 

range of 4-6 Hz in the vertical direction, and at frequencies below 5 Hz in the 

longitudinal direction. It was investigated in some studies that the human sensitivity to 

lateral vibrations has similar characteristics as that to longitudinal vibrations. In the 

three rotational directions, the human sensitivity decreases with the increase of the 

excitation frequency. There is no doubt that discomfort increases with the excitation 

magnitudes and durations.  

2.1.3 Human biodynamic response to whole-body vibrations 

Four parameters can be used to study the human biodynamic response to WBV: the 

driving-point mechanical impedance (DPMI), the apparent mass, the absorbed power 

and the seat-to-head transmissibility (STHT). To gain the first three parameters, 

accelerations and forces measured at the driving point are needed. The driving point 

is the contact point at the interface between the tested person and the vibrating 

surface. For the seated person, the driving point is on the top surface of the seat 

cushion. For the fourth parameter, accelerations measured at the driving point and at 

the head are needed. The DPMI, the apparent mass and the STHT are defined as 

ratios and are calculated as transfer functions. The transfer function is usually 

calculated based on the cross spectral density (CSD) method as formulated in Eq. 

(2.1). [48]-[50] 
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with 

          Complex fast Fourier transform (FFT) of input signal
 

           Complex conjugation of the FFT[i(t)]
 

          Complex FFT of output signal 

       Power spectral density (PSD) of input signal as a function of frequency 

       CSD of input and output signals as a function of frequency 

      Transfer function in the frequency domain 

 

The input and output signals for the calculation of the DPMI, the apparent mass and 

the STHT are listed in Tab. 2.1. 
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Tab. 2.1: Input and output signals to calculate the DPMI, the apparent mass and the 

STHT 

Calculated 

parameters 
Input signal Output signal 

DPMI Velocity at the driving point Force at the driving point 

Apparent mass Acceleration at the driving point Force at the driving point 

STHT Acceleration at the driving point Acceleration at the head 

 

The velocity at the driving point can be converted from the acceleration at the same 

position using Eq. (2.2) [48].  

f

fa
fv
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)(
)(   (2.2) 

with 

     Acceleration as a function of frequency in m/s
2 

     Velocity as a function of frequency in m/s
 

 

The absorbed power is defined as the product of force and velocity at the driving 

point. The instantaneous vibration power transmitted to the human body is calculated 

as the CSD of force and velocity at the driving point. The real part of the 

instantaneous power represents the power absorbed by the human body. The 

absorbed power can be calculated using Eq. (2.3). [50] 

)(cos)()}(Re{)( ffGfGfP FvFvabs    (2.3) 

with 

       CSD of force and velocity as a function of frequency in (N·m/s)/Hz
 

        Absorbed power as a function of frequency in (N·m/s)/Hz
 

  Phase of GFv(f) in rad
 

 

Frequencies where peaks occur can be observed from curves of these four 

parameters in the frequency domain. These frequencies are the resonance 

frequencies of the human as a mass-spring-damper system. By analyzing these four 

parameters, the human in-line and cross-axial biodynamic response to WBV was 

studied by many researchers. 
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2.1.3.1 Human in-line biodynamic response 

The human in-line biodynamic response in the three translational directions is 

nonlinear and affected by a series of factors, such as the employment of a backrest, 

the excitation magnitude, the posture or the muscle tension of the person, the gender, 

and more. Due to the nonlinearity of the human biodynamic response, the primary 

resonance frequencies of humans were observed in a wide frequency range. In the 

longitudinal direction, the primary resonance frequencies of seated persons were 

observed in the range from 1 Hz to 6 Hz [51]-[54]. In the lateral direction, they lie 

below 2.5 Hz [51]-[54]. In the vertical direction, they were observed in the range from 

4 Hz to 6 Hz [52],[53],[55]-[60]. These frequency ranges are in general consistent 

with the most sensitive frequency ranges reviewed in section 2.1.2.  

In some studies, the secondary resonance frequencies in the lateral direction were 

observed in the range from 5 Hz to 7 Hz [52],[54]. In the vertical direction they were 

observed in the range from 8 Hz to 12 Hz [52],[53],[55]-[60].  

The backrest has a pronounced influence on the human biodynamic response in the 

longitudinal direction, where the employment of a backrest results in a obvious 

increase of the primary resonance frequency of the seated person. In Tab. 2.2, a 

comparison of the primary resonance frequencies in the longitudinal direction with 

and without a backrest is presented.  

 

Tab. 2.2. Primary resonance frequencies of seated persons in the longitudinal 

direction with and without a backrest 

Authors 
Primary resonance frequency 

Without backrest With a rigid backrest 

Nawayseh and Griffin [50] Around 1 Hz In the range of 3-5 Hz 

Fairley and Griffin [51] Around 0.7 Hz Around 3.5 Hz 

Nawayseh and Griffin Below 3 Hz [61] In the range of 2-6 Hz [62] 

Mansfield and Maeda [63] Below 1 Hz In the range of 2-4 Hz 

Qiu and Griffin Below 2 Hz [64] In the range of 3-6 Hz [65] 

 

The influence of the backrest on the primary resonance frequency of the seated 

person in the lateral and the vertical directions is not that significant. Fairley and 

Griffin investigated that the primary resonance frequency of the seated person in the 
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lateral direction shifts from about 0.7 Hz without backrest to about 1.5 Hz with a 

backrest [51]. Mansfield and Maeda investigated that the primary resonance 

frequency of the seated person in the lateral direction is almost constant and less 

than 2 Hz, no matter with or without a backrest [63]. With a backrest, the primary 

resonance frequency of the seated person in the vertical direction increases only a 

little bit [55]. 

The excitation magnitude has a significant influence on the human biodynamic 

response as well. The primary resonance frequency of the seated person decreases 

with the increase of the excitation magnitude. This phenomenon is significant in the 

longitudinal and the vertical directions, of which the variation of the primary 

resonance frequency depending on the excitation magnitude is presented in Tab. 2.3. 

It is negligible in the lateral direction [51],[53],[54]. 

 

Tab. 2.3. Variation of primary resonance frequency of the seated person depending 

on the excitation magnitudes 

Authors  Magnitude of 

excitations  

(m/s2 RMS) 

Primary resonance 

frequency (Hz) 

Direction 

Hinz et al. [53] From 0.25 to 2.0 From 2.94 to 2.18 longitudinal 

Hinz et al. [53] From 0.25 to 2.0 From 5.14 to 4.41 vertical 

Fairley and Griffin [55] From 0.25 to 2.0 From 6 to 4 vertical 

Qiu and Griffin [65] From 0.25 to 1.0 From 4.9 to 3.5 longitudinal 

Qiu and Griffin [65] From 0.25 to 1.0 From 5.9 to 4.7 vertical 

Matsumoto and Griffin [66] From 0.35 to 1.4 From 5.25 to 4.25 3 vertical 

Matsumoto and Griffin [66] From 0.35 to 1.4 From 5.0 to 4.38 4 vertical 

Matsumoto and Griffin [66] From 0.35 to 1.4 From 5.13 to 4.5 5 vertical 

 

In addition to the above mentioned aspects, gender results in different characteristics 

of the human biodynamic response as well. It has been proven that females and 

males have different biodynamic responses to WBV in all three translational 

directions. The difference mainly occurs in the lateral and the vertical directions, 

                                            
3
 with the normal muscle tension 

4
 with the buttocks muscles tensed 

5
 with the abdominal muscles tensed 
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where the secondary resonance frequency is more distinct for the female than for the 

male. [52],[54],[57],[60] 

Additionally, the human biodynamic response is affected by the posture and the 

muscle tension. Compared to the relaxed body posture, the erect posture or the 

tensed muscle results in a higher primary resonance frequency of the seated person 

in the vertical direction. [55],[57],[60] 

In a few studies it was investigated that the location of the feet, the arm angle, and 

the hand position affect the human biodynamic response as well [61],[62],[67]-[69]. 

2.1.3.2 Human cross-axial biodynamic response 

After a sufficient understanding of the human in-line biodynamic response, several 

studies were devoted to the investigation of the human cross-axial biodynamic 

response. It is defined as the human biodynamic response in one direction when the 

human is exposed to the vibrations in another direction. In studies by Nawayseh and 

Griffin it was proven that vibration excitations in the longitudinal direction cause large 

human biodynamic response in the vertical direction and relative small response in 

the lateral direction [61],[62]. Qiu and Griffin investigated that vibration excitations in 

the vertical direction cause large human biodynamic response in the longitudinal 

direction [64],[65]. 

The human cross-axial biodynamic response is also nonlinear and affected by many 

factors, such as the excitation magnitude and the existence of a backrest. It was 

investigated that the primary resonance frequency of the seated person in one 

direction decreases with the increase of the excitation magnitude in the other 

direction under dual-axial (the longitudinal and the vertical directions) excitations. The 

primary resonance frequency of the seated person in the longitudinal direction was 

observed in the range from 3 Hz to 8 Hz under vertical excitations, no matter with or 

without a backrest. Two resonance frequencies of the seated person were observed 

in the vertical direction under longitudinal vibrations without a backrest: one is at 

around 1 Hz; the other is in the range from 3 Hz to 8 Hz. With the backrest the 

resonance frequency at around 1 Hz disappears. [64],[65] 
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2.1.4 Lumped-parameter models of human body 

Lumped-parameter models (LPMs) with different degrees of freedom (DOF) of the 

human body were developed to simulate the human biodynamic response in the 

three translational directions. In the vertical direction, LPMs with single-DOF up to 

four-DOF of the human body were generally utilized in the suspension seat-occupant 

models to simulate the dynamic behavior of the human body. Sometimes, a rigid 

mass was employed to represent the human body. Only a few studies focus on the 

development of a LPM to simulate the human biodynamic response in the 

longitudinal or the lateral direction. Several models consider the human rotational 

movement as well (refer to Fig. 2.19 in 2.1.4.2 and Fig. 2.22 in 2.1.4.4). 

2.1.4.1 Lumped-parameter models in the vertical direction 

In the study by Rakheja et al., two LPMs of the human body (a single-DOF model 

and a two-DOF model) were integrated with a suspension seat model to study the 

dynamic response of the suspension seat-occupant system [70]. The single-DOF 

model was proposed by Coermann and Whittwer [71], and the two-DOF model was 

proposed by Suggs et al. [72]. These two LPMs are illustrated in Fig. 2.16. 

 

Fig. 2.16. Single-DOF (a) and two-DOF (b) LPMs of the human body used in the 

suspension seat-occupant models by Rakheja et al. [70]-[72] 

In the study by Tchernychouk et al., in addition to the two LPMs in Fig. 2.16, a four-

DOF LPM of the human body was integrated with a nonlinear cushion model to 

simulate the dynamic characteristics of the cushion-occupant system [73]. This four-

DOF LPM, which was proposed by Boileau [74], is illustrated in Fig. 2.17. 

In the study by Stein et al., suspension seat-occupant models were developed to 

predict the vibration attenuation performance of a suspension seat. Two three-DOF 

LPMs and a rigid mass were adopted to simulate the dynamic behavior of the driver 

[75]. These two LPMs, which are illustrated in Fig. 2.18, were introduced in ISO 5982 

[76] and DIN 45676 [77] respectively. 
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Fig. 2.17. Four-DOF LPM of the human body proposed by Boileau [74] 

 

Fig. 2.18. Three-DOF LPMs of human body introduced in ISO 5982 and DIN 45676 

[75]-[77] 

2.1.4.2 Lumped-parameter models in the longitudinal direction 

In the study by Fleury et al. two three-DOF lumped-parameter models (LPMs) were 

proposed to simulate the dynamic behavior of the cushion-occupant system in the 

longitudinal direction [78]. These two models are illustrated in Fig. 2.19. The „Model A‟ 

was proposed for the case that there is no connection between driver and seat back. 

The „Model B‟ was proposed for the case that there is connection between driver and 

seat back.  

In the study by Stein et al. a two-DOF LPM of the cushion-occupant system was 

developed to simulate the dynamic behavior of this system in the longitudinal 

direction [79]. Interaction with the steering wheel was taken into consideration in this 

model, as shown in Fig. 2.20.  
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Fig. 2.19. LPMs of cushion-occupant system in the longitudinal direction developed 

by Fleury et al. [78] 

 

Fig. 2.20. Two-DOF LPM of cushion-occupant system in the longitudinal direction 

developed by Stein et al. [79] 

2.1.4.3 Lumped-parameter models in the lateral direction 

Stein et al. also proposed three three-DOF lumped-parameter models (LPMs) of a 

seat back-occupant system, as illustrated in Fig. 2.21, to calculate the apparent mass 

of the human body in the lateral direction [80]. Compared to the „Model D‟, the 

discrepancies between measured and simulated apparent mass with the „Model C‟ or 

the „Model E‟ are much smaller. The „Model C‟ was determined as the best model 

because it has a similar structure as the human torso. 
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Fig. 2.21. Three-DOF LPMs of seat back-occupant system in the lateral direction 

proposed by Stein et al. [80] 

2.1.4.4 A model to simulate the human cross-axial biodynamic response 

The above mentioned lumped-parameter models (LPMs) were proposed to simulate 

the human in-line biodynamic response. The review mentioned in section 2.1.3.2 

shows that the human cross-axial biodynamic response is also obvious. Nawayseh 

and Griffin proposed a LPM to simulate the human in-line (vertical response to 

vertical excitations) and cross-axial (longitudinal response to vertical excitations) 

biodynamic response simultaneously [81]. This model, as shown in Fig. 2.22, is not 

used in other studies for the simulation of the dynamic behavior of a suspension seat-

occupant system. 

 

Fig. 2.22. LPM of cushion-occupant system proposed by Nawayseh and Griffin to 

simulate the human in-line and cross-axial biodynamic response [81] 
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2.2 Evaluation of effect of whole-body vibrations on human being 

The International Organization for Standardization (ISO) publishes the ISO 2631 

standards. In these standards procedures to evaluate the effects of whole-body 

vibrations (WBV) on the human health and the ride comfort are proposed. The 

preparations of the ISO 2631 started in 1966. The norm was first published in 1974 

and then republished in 1978. In the 1978 version, editorial changes were made, 

including corrections of errors in tables and figures. A set of amendments was issued 

in the 1982 version. A combination of the content in the 1978 version and the 

amendments in the 1982 version was republished in 1985 (ISO 2631-1:1985 [47]). A 

complete revision of ISO 2631-1:1985 was published in 1997, i.e. ISO 2631-1:1997 

[4]. [82],[83] Today the ISO 2631-1:1997 is the primary standard to evaluate the 

effects of WBV on the human health and the ride comfort.  

As a general standard for the evaluation of WBV exposure levels, the ISO 2631-

1:1997 makes a reference to ISO 2631 Parts 2 and 4 concerning the WBV in 

buildings (1-80 Hz) and in fixed-guideway transport systems respectively [84],[85]. 

Part 3 of ISO 2631 [86], concerning the vertical WBV in the frequency range of 0.1-

0.63 Hz, was firstly published in 1985 and finally integrated into ISO 2631-1:1997.  

In 2004, Part 5 of ISO 2631, ISO 2631-5:2004 [5], was published, in which a new 

health hazard assessment method is introduced. This method was developed in a 

research program conducted by the United States Army Aeromedical Research 

Laboratory [87]. The ISO 2631-5:2004 is used to evaluate the health effects caused 

by WBV containing multiple shocks.  

Another three standards from Europe, BS 6841:1987 [88], 2002/44/EC [89] and VDI 

2057:2002 [90], are also extensively used to evaluate the effects of WBV on the 

human health. The evaluation procedures in these three standards are roughly 

similar to that in ISO 2631-1:1997. The main difference between BS 6841:1987 and 

ISO 2631-1:1997 is that the frequency weighting filters for the vertical accelerations 

on the seat cushion are different. In addition, in BS 6841:1987 the vibration total 

value of the three translational accelerations on the seat cushion and the longitudinal 

accelerations on the seat backrest is recommended to evaluate the effects of WBV 

on the human health. But in ISO 2631-1:1997 the highest value or the vibration total 

value of the three translational accelerations on the seat cushion is recommended. 

The boundaries of the health guidance caution zone (HGCZ) in ISO 2631-1:1997 and 
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the three European standards are also different. All of these differences have been 

discussed exhaustively in studies by Griffin [82],[91]. 

2.2.1 Evaluation of effect on human health 

Different procedures are given in ISO 2631-1:1997 and ISO 2631-5:2004 to evaluate 

the effects of WBV on the human health. Each procedure includes six steps, as 

described in Tab. 2.4. Detailed specifications in each step of these procedures are 

introduced in the following paragraphs of this section. 

 

Tab. 2.4. General evaluation procedures in ISO 2631-1:1997 and ISO 2631-5:2004 

 ISO 2631-1:1997 ISO 2631-5:2004 

Step 1 Measure and store accelerations in the x-, y- and z-directions on the seat 

cushion. 

Step 2 Calculate the frequency weighted 

accelerations using the frequency weighting 

filters. 

Calculate the spine 

accelerations using the 

spine models. 

Step 3 Calculate the root mean square (RMS) value 

ãw, the vibration dose value (VDV) and the 

maximum transient vibration value (MTVV). 

Identify the acceleration 

peaks. 

 

Step 4 Analyze the values of crest factor (CF), 

MTVV/ãw and VDV/(ãwT1/4) to determine the 

suitable quantification method (T represents the 

duration of vibration measurement in s). 

Calculate the acceleration 

dose D. 

 

Step 5 Select directions for the evaluation. Calculate the equivalent 

static compressive stress Se. 

Step 6 Estimate the daily WBV exposure and compare with the health guidance 

caution zone (HGCZ). 

Calculate the permitted daily exposure duration. 

 

The crest factor (CF) in Tab. 2.4 can be calculated with Eq. (2.4) [4]. 
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with       Frequency weighted accelerations as a function of time in m/s
2 

  ̃  Root mean square (RMS) value of frequency weighted accelerations in m/s
2 



28 2 State of the Art 

2.2.1.1 Evaluation procedure in ISO 2631-1:1997 

In step 2, the frequency weighting filter Wd is used for the accelerations in the x- and 

y-directions. The Wk filter is used for the accelerations in the z-direction. Details of 

the frequency weighting filters are described in ISO 8041 [92], including the 

mathematical expressions and the numerical values. The curves of Wd and Wk are 

illustrated in Fig. 2.23. 

 

Fig. 2.23: Curves of frequency weighting filters Wd and Wk 

In step 3, the RMS value ãw, the VDV and the MTVV of the frequency weighted 

accelerations are calculated with Eq. (2.5)-(2.8). 
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with 

       Running RMS values of frequency weighted accelerations as a function of time in m/s
2 

  Integration time for running averaging in s
 

   Time of observation (instantaneous time) in s
 

 

In step 4, the suitable quantification method is determined depending on the values 

of CF, MTVV/ãw and VDV/(ãwT1/4). If the value of CF does not exceed 9, the RMS 
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method is sufficient to evaluate the effect of WBV. Otherwise, the RMS method has 

the potential to underestimate the effect of WBV. In this case, the MTVV method or 

the VDV method should be used to quantify the WBV. When the value of MTVV/ãw 

exceeds 1.5, the MTVV method should be used. When the value of VDV/(ãwT1/4) 

exceeds 1.75, the VDV method should be used. If the RMS method is sufficient to 

evaluate the effect of WBV, the RMS value should be converted to the estimated 

vibration dose value (eVDV) with Eq. (2.9). 

4/1~4.1 TaeVDV w   (2.9) 

However, it is not specified which method should be used in the case where the CF 

exceeds 9, the value of MTVV/ãw is lower than 1.5 and the value of VDV/(ãwT1/4) is 

smaller than 1.75; or in the case where the CF is smaller than 9, the value of 

MTVV/ãw exceeds 1.5 and the value of VDV/(ãwT1/4) exceeds 1.75. The former case 

has not been observed in the previous literatures, but the latter occurs in this 

research work as discussed later in chapter 5. 

In step 5, two rules are introduced to select the directions for the evaluation of the 

effect of WBV on the human health: 

1) Evaluation of the effect of WBV on the human health shall be made by using 

the highest RMS value or VDV of frequency weighted accelerations in any 

direction on the seat cushion. 

2) When vibrations in two or more directions are comparable, the vibration total 

value on the seat cushion can be used as an additional estimate of the health 

risk. If the RMS method is used, the vibration total value refers to the vector 

sum value (VSV), which is formulated in Eq. (2.10). If the VDV method is used, 

it refers to the total VDV (TVDV), which is formulated in Eq. (2.11). The values 

of the multiplying factors mx, my and mz are 1.4, 1.4 and 1 respectively. 

222222 ~~~
wzzwyywxx amamamVSV    (2.10) 

4/1444444 )( zzyyxx VDVmVDVmVDVmTVDV    (2.11) 

with 

 ̃   RMS value of frequency weighted accelerations in the x-, y- or z-direction on the seat 
cushion in m/s

2
; „i‟ represents x, y or z

 

     VDV of the frequency weighted accelerations in the i-direction on the seat cushion in 
m/s

1.75 
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However, the method to judge whether the vibrations in two directions are 

comparable or not is not specified in ISO 2631-1:1997. This leads to the confusion to 

decide whether the highest value or the vibration total value on the seat cushion 

should be used for the evaluation. 

In step 6, the VDVd represents the daily WBV exposure in ISO 2631-1:1997. The 

VDVd is calculated with Eq. (2.12). 

4/1)(
T

T
VDVVDV d

d    (2.12) 

with 

   Reference daily exposure duration, 8 h
 

     Daily vibration dose value in m/s
1.75 

 

The upper and lower limits of the permitted daily exposure duration, Tu and Tl, are 

calculated with Eq. (2.13) and (2.14). In ISO 2631-1:1997 the upper boundary (UB) of 

the health guidance caution zone (HGCZ) is 17 m/s1.75 and the lower boundary (LB) 

is 8.5 m/s1.75. 
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VDV
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LB
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2.2.1.2 Evaluation procedure in ISO 2631-5:2004 

In step 2, the spine model in the x- and y-directions is a linear single degree of 

freedom (DOF) model, which is shown in Fig. 2.24 (a). In the z-direction, the spine 

model is a non-linear recurrent neural network model, as shown in Fig. 2.24 (b). 

These two spine models have not been epidemiologically validated. 

In step 4, the acceleration dose D in each translational direction is calculated with Eq. 

(2.15). 

  6/16 piaD   (2.15) 

with 

    The i
th
 peak of spine accelerations in m/s

2 

 



2 State of the Art 31 

 

Fig. 2.24: (a). Spine model in the x- and y-directions; (b). Spine model in the z-

direction [87] 

In step 5, the equivalent static compressive stress Se is calculated with Eq. (2.16). 

The values of mx, my and mz are 0.015, 0.035 and 0.032 MPa/(m/s2) respectively. 

  6/1666 )()()( zzyyxxe DmDmDmS    (2.16) 

In step 6, the daily equivalent static compression dose Sed represents the daily WBV 

exposure in this standard. It is calculated with Eq. (2.17). 
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The upper and lower limits of the permitted daily exposure duration, Tu and Tl, are 

calculated with Eq. (2.18) and Eq. (2.19). The upper boundary (UB) and the lower 

boundary (LB) of the HGCZ in ISO 2631-5:2004 are 0.8 MPa and 0.5 MPa 

respectively.  
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2.2.1.3 Application of standardized evaluation procedures 

A large number of studies have been carried out to evaluate the WBV exposure 

levels on different types of machines using the procedure in ISO 2631-1:1997. A part 

of these evaluations are summarized in Tab. 2.5 to Tab. 2.8. Due to the similarity of 

the evaluation procedures in BS 6841:1987, 2002/44/EC, VDI 2057:2002 and ISO 

2631-1:1997, the evaluations carried out according to these three standards are also 

included in the tables. 

 

Tab. 2.5: Investigation of WBV exposure levels on construction vehicles and mining 

equipment (1) 

Year 

Vehicle type 

(Number of 

vehicles) 

Operation tasks in 

measurement 
Standard Method Direction 

6
 

Range of  

RMS (m/s
2
) 

/ VDV (m/s
1.75

) 

/ Sed (MPa) 

2001 

[93] 
Excavator (4) 

Filling trench, 

digging and driving 
ISO 2631-1 RMS (2) 0.17-3.03 

2009 

[94] 
Excavator (7) 

Excavating and 

loading soil/rocks 

into trucks, or 

pushing coal into tip 

ISO 2631-1 VDV (2) 3.88-9.25 

2009 

[94] 
Excavator (7) ISO 2631-5 Sed (1) 0.42-2.32 

2010 

[95] 

Excavator 

(55) 

Drain clearing, weed 

clearing, pouring 

concrete, tracking, 

pile driving or rock 

breaking 

2002/44/EC RMS (2) 0.04-5.81 

2004 

[96] 

Heavy haul 

truck (4) 

Loading, full hauling, 

dumping, empty 

hauling (on ground 

covered with thick 

snow and frozen 

road) 

ISO 2631-1 RMS (1) 0.55-7.10 

2006 

[97] 

Underground 

haul truck (1) 

Loading, full hauling, 

dumping load, 

empty hauling 

ISO 2631-1 RMS (2) 1.20 

2006 

[97] 

Surface haul 

truck (2) 

Up ramp(with a full 

load) and down 

ramp (empty) 

ISO 2631-1 RMS (2) 0.28, 0.37 

 

                                            
6
 Symbol (1) represents the vibration total value of accelerations in three directions on the seat 

cushion; Symbol (2) represents the highest RMS value or VDV in three directions on the seat cushion 
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Tab. 2.6: Investigation of WBV exposure levels on construction vehicles and mining 

equipment (2) 

Year 

Vehicle type 

(Number of 

vehicles) 

Operation tasks in 

measurement 
Standard Method Direction 

7
 

Range of  

RMS (m/s
2
) 

/ VDV (m/s
1.75

) 

/ Sed (MPa) 

2001 

[93] 

Mobile 

crane (2) 
Driving ISO 2631-1 RMS (2) 0.50, 0.67 

2005 

[98] 

Wheel 

loader (9) 

Loading material into 

lorries/crusher 

machines, or 

distributing material 

between different 

sections of a site 

ISO 2631-1 RMS (2) 0.36-0.84 

2006 

[99] 

Track-type 

loader (6) 

Leveling the ground 

with the bucket and 

loading material into 

aggregate lorries 

ISO 2631-1 RMS (2) 0.75-1.12 

2006 

[97] 

Bulldozer 

(1) 

Pushing (surface 

operation) 
ISO 2631-1 RMS (2) 1.96 

2006 

[97] 

Surface 

grader (1) 
Pushing and leveling ISO 2631-1 RMS (2) 0.79 

2006 

[97] 

Load Haul 

Dump (3) 

Loading, full hauling, 

dumping load, empty 

hauling 

ISO 2631-1 RMS (2) 0.67-2.01 

2009 

[94] 

Load Haul 

Dump (10) 
Loading, conveying 

and dumping 

soil/rocks/coal 

ISO 2631-1 VDV (2) 3.35-14.80 

2009 

[94] 

Load Haul 

Dump (10) 
ISO 2631-5 Sed (1) 0.28-1.90 

2006 

[100] 
Scraper (33) 

Loading, full hauling, 

dumping load, empty 

hauling 

ISO 2631-1 RMS (1) 0.55-2.55 

2010 

[95] 

Mini digger 

(13) 

Digging trench on 

tarmac or walkway 

on gravel road 

2002/44/EC RMS (2) 0.28-4.13 

2010 

[95] 
Dumper (9) 

Driving empty on 

gravel or paved road 
2002/44/EC RMS (2) 0.17-0.95 

2010 

[95] 

Mini dumper 

(12) 

Driving with full of 

stone or lifting and 

dumping stone 

2002/44/EC RMS (2) 0.29-1.65 

 

                                            
7
 Same with footnote 6 
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Tab. 2.7: Investigation of WBV exposure levels on agricultural vehicles 

Year 

Vehicle type 

(Number of 

vehicles) 

Operation tasks in 

measurement 
Standard Method Direction 

8
 

Range of  

RMS (m/s
2
) 

/ VDV (m/s
1.75

) 

/ Sed (MPa) 

1998 

[101] 
Tractor (2) 

Real working 

conditions 
ISO 2631-1 RMS (1) 0.426, 0.890 

2001 

[93] 
Tractor (7) 

Driving on tarmac 

roads or a grass field 
ISO 2631-1 RMS (2) 0.54-1.00 

2002 

[102] 
Tractor (5) 

Driving over ISO 

smooth artificial test 

track at 10, 12, 13, 

14, 15, 16, 18, 20, 24 

& 30 km/h 

Driving over ISO 

rough artificial test 

track at 4, 5, 6 & 7 

km/h 

ISO 2631-1 RMS (1) 1.44-4.54 

2010 

[95] 
Tractor (10) 

Driving with trailer on 

grass or stone 

terrains 

2002/44/EC RMS (2) 0.04-0.42 

1998 

[101] 

Head feed 

combine (3) 

Real working 

conditions 

ISO 2631-1 RMS (1) 
0.414, 0.566, 

1.026 

1998 

[101] 

Riding rice 

power (1) 
ISO 2631-1 RMS (1) 0.351 

1998 

[101] 

Transplanter 

(1) 
ISO 2631-1 RMS (1) 0.587 

1998 

[101] 

Farm carrier 

(1) 
ISO 2631-1 RMS (1) 0.999 

1998 

[101] 

Cultivator 

(1) 
ISO 2631-1 RMS (1) 0.541 

2010 

[95] 

Lawnmower 

(19) 

Driving on a grass 

field and cutting 

grass 

2002/44/EC RMS (2) 0.08-1.21 

2010 

[95] 

Chipping 

machine (3) 

Chipping wood on 

gravel terrains 
2002/44/EC RMS (2) 0.76-0.98 

2011 

[103] 

Quad bike 

(~) Real working 

conditions 

2002/44/EC VDV (2) 7.3-33.5 

2011 

[103] 

Quad bike 

(~) 
ISO 2631-5 Sed (1) 0.1-0.8 

 

                                            
8
 Same with footnote 6 
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Tab. 2.8: Investigation of WBV exposure levels on transportation vehicles 

Year 

Vehicle type 

(Number of 

vehicles) 

Operation tasks in 

measurement 
Standard Method Direction 

9
 

Range of  

RMS (m/s
2
) 

/ VDV (m/s
1.75

) 

/ Sed (MPa) 

2001 

[93] 
Car (25) 

Driving on public 

roads 

ISO 2631-1 RMS (2) 0.26-0.75 

2001 

[93] 
Van (9) ISO 2631-1 RMS (2) 0.36-0.57 

2001 

[93] 
Bus (10) ISO 2631-1 RMS (2) 0.38-0.89 

2001 

[93] 

Armoured 

vehicle (4) 
No description ISO 2631-1 RMS (2) 0.29-1.52 

2004 

[104] 

Highway 

transport 

truck (4) 

Driving on highways 

with full of freight 
ISO 2631-1 RMS (1) 0.226-1.536 

2001 

[93] 

Lift truck 

(11) 

Empty/loaded driving 

on tarmac or uneven 

concrete terrain 

ISO 2631-1 RMS (2) 0.53-1.00 

2010 

[95] 
Forklift (6) 

Driving with load of 

stone on concrete 

terrain 

2002/44/EC RMS (2) 0.41-1.00 

2010 

[95] 

Single cab 

pick up (10) 

Driving through town 

or driving in yard 
2002/44/EC RMS (2) 0.31-1.17 

2010 

[95] 

Double cab 

pick up (18) 

Driving through town 

or the National Park, 

or driving in yard 

2002/44/EC RMS (2) 0.2-0.8 

2001 

[93] 
Lorry (16) No description ISO 2631-1 RMS (2) 0.42-1.28 

2010 

[95] 
Lorry (3) 

Driving empty on 

paved road 
2002/44/EC RMS (2) 0.82-0.83 

 

A wide range of WBV exposure levels are observed in these tables. It is mainly 

caused by the operational variations in the measurement. These variations exist in 

vehicle size, driving speed, roughness of road surface, operation task or working 

cycle, driver, seat, tire pressure and so on. Many studies investigated the influence of 

these variations on the WBV exposure levels. It was examined that the WBV 

exposure level increases with the driving speed and the roughness of the road 

surface [102],[105], but decreases with the vehicle size [102],[106]. The working 

                                            
9
 Same with footnote 6 
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places and the operation tasks have also a significant influence on the WBV 

exposure levels [95],[98],[99],[103],[107],[108]. Kumar studied that the gender of the 

driver does not have a significant effect on the WBV exposure levels, but the weight 

is of importance [96]. Milosavljevic et al. investigated that the increased age, the work 

experience and the driving experience are significantly associated with the reduction 

of the daily WBV exposure [103]. Adams et al. proved that the central tire inflation 

system on the agricultural tractors has a large capability to reduce the WBV exposure 

levels [109]. 

2.2.1.4 Comparison of evaluation results obtained according to ISO 2631-1:1997 

and ISO 2631-5:2004 

It can be observed from tables in section 2.2.1.3 that the evaluations of the WBV 

exposure levels in most research works were carried out according to ISO 2631-

1:1997 and 2002/44/EC. After the publication of ISO 2631-5:2004, both ISO 2631-

1:1997 and ISO 2631-5:2004 were used to predict the health risks caused by WBV. 

Different prediction results were obtained according to these two ISO standards.  

In the study by Alem in 2005 [87] over 1000 WBV measurements were carried out on 

United States army vehicles. Forty of them with high shock content were selected to 

predict the health risks using the root mean square (RMS) method, the vibration dose 

value (VDV) method and the equivalent static compressive stress Se method. Health 

risks predicted with the Se method are higher than those predicted with the RMS 

method and the VDV method. Aye predicted the health risks caused by WBV arising 

from various mining machines according to ISO 2631-1:1997 and ISO 2631-5:2004 

[94]. Results showed that the Se method results in higher predicted health risks than 

the VDV method. He in 2009 obtained the same conclusion that higher health risks 

caused by WBV on excavators are predicted with the Se method in ISO 2631-5:2004 

rather than the VDV method in ISO 2631-1:1997 [110].  

A contrary conclusion was obtained in many studies that health risks predicted with 

the VDV method in ISO 2631-1:1997 are higher than those predicted with the Se 

method in ISO 2631-5:2004. For example, compared to the Se method, the VDV 

method results in higher predicted health risks caused by WBV on locomotives [111], 

load-haul-dumps [112], all-terrain vehicles [113] and surface haulage trucks [114]. 
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In the study by Chen et al. health risks caused by WBV on motorcycles predicted with 

the VDV method are similar to those predicted with the Se method [115], as well as 

by WBV arising from forklifts in the study by Deshmukh [116].  

Different health risks predicted according to two ISO standards caused discussions 

about the health guidance caution zone (HGCZ) in these two standards. Alem [87] 

suggested a linear relationship between the daily vibration dose value (VDVd) and the 

daily equivalent static compression dose (Sed) of the WBV on the army vehicles. 

Based on this relationship, the HGCZ in ISO 2631-1:1997 was lowered to 3.5-4.8 

m/s1.75. However, only the WBV measurements with high shock content were used to 

determine the VDVd-Sed relationship. Over 90% WBV measurements were excluded 

from the determination of this relationship, because these measurements have small 

VDVd and Sed values. In other words, the linear VDVd-Sed relationship suggested by 

Alem is only available for the WBV with high shock content on the army vehicles. 

Based on the conclusions in studies [111] and [112], Eger et al. suggested that it 

should be considered to lower the HGCZ in ISO 2631-5:2004 [112].  

2.2.2 Evaluation of effect on comfort 

Procedures to evaluate the effect of WBV on the comfort are introduced in ISO 2631-

1:1985 and ISO 2631-1:1997. According to ISO 2631-1:1985, the evaluation could be 

made independently along each of the three translational directions on the seat 

cushion. In these three directions, a set of reduced comfort boundary (RCB) curves 

from 1 Hz to 80 Hz was defined for different exposure durations. In ISO 2631-1:1997, 

the vector sum value (VSV) of the root mean square (RMS) values of weighted 

accelerations in six directions on the seat cushion as well as in three translational 

directions at the seat backrest and on the cabin floor is recommended for the comfort 

evaluation.  

2.2.2.1 Evaluation procedure in ISO 2631-1:1985 

The procedure in ISO 2631-1:1985 to evaluate the discomfort caused by WBV 

includes three steps, as described in Tab. 2.9. 

 



38 2 State of the Art 

Tab. 2.9. Procedure in ISO 2631-1:1985 for the evaluation of discomfort caused by 

WBV 

Step 1 Measure and store accelerations in three translational directions on the 

seat cushion. 

Step 2 Calculate the RMS value of the accelerations in each 1/3 octave band. 

Step 3 Compare the RMS values with the RCB curves. 

 

In step 2, the RMS value of the accelerations in each 1/3 octave band is calculated 

with Eq. (2.20). 
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          Accelerations in 1/3 octave band as a function of time in m/s
2
 

 ̃      RMS value of accelerations in 1/3 octave band in m/s
2
 

 

The RCB curves in step 3 are illustrated in Fig. 2.25.  

 

 

Fig. 2.25: (a). RCB curves in the x- and y-directions; (b). RCB curves in the z-

direction 
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In Fig. 2.25 (a), the curves represent the RCB for different exposure durations from 1 

Hz to 80 Hz in the x- and y-directions, where the lowest boundaries lie in the range of 

1-2 Hz. In Fig. 2.25 (b), the curves represent the RCB in the z-direction, where the 

lowest boundaries are in the range of 4-8 Hz. 

2.2.2.2 Evaluation procedure in ISO 2631-1:1997 

In ISO 2631-1:1997, similar to the procedure to evaluate the effect of WBV on the 

health, the procedure to evaluate the effect of WBV on the comfort includes six steps 

as well, as described in Tab. 2.4 (p. 27). 

In step 1, in order to evaluate the ride discomfort caused by WBV, accelerations 

should be measured in three translational directions on the seat cushion, at the seat 

backrest and on the feet floor, as well as in three rotational directions on the seat 

cushion. 

In step 2, the frequency weighting filters and the multiplying factors in the above 

mentioned directions are listed in Tab. 2.10.  

 

Tab. 2.10: The frequency weighting filter and the multiplying factor in each direction 

for the evaluation of the discomfort caused by WBV 

Location Direction Frequency weighting filter Multiplying factor 

Seat cushion 

x Wd mx=1 

y Wd my=1 

z Wk mz=1 

rx We mrx=0.63 

ry We mry=0.4 

rz We mrz=0.2 

Seat backrest 

x Wc mbx=0.8 

y Wd mby=0.5 

z Wd mbz=0.4 

Feet floor 

x Wk mfx=0.25 

y Wk mfy=0.25 

z Wk mfz=0.4 
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Curves of frequency weighting filters Wd and Wk are shown in Fig. 2.23 (p. 28). 

Curves of frequency weighting filters We and Wc are illustrated in Fig. 2.26. 

 

Fig. 2.26: Curves of the frequency weighting filters We and Wc 

The step 3 and step 4 are same with those introduced in section 2.2.1.1. In step 5, 

two rules are introduced in ISO 2631-1:1997 to select the directions to evaluate the 

effect of WBV on the ride comfort: 

1) If the weighted value determined in any direction is less than 25% of the 

maximum value at the same point but in another direction, it can be 

excluded. 

2) If the point vibration total value at one point is less than 25% of the 

maximum point vibration total value, it can be excluded. 

In step 6, the „approximate indications of likely reactions to various magnitudes of 

overall vibration total values‟ are listed in Tab. 2.11. Here the overall vibration total 

value (OVTV) can be calculated with Eq. (2.21). For the directions selected for the 

evaluation in step 5, the multiplying factors can adopt the values given in the 

rightmost column of Tab. 2.10. For the directions excluded in step 5, the multiplying 

factors are zero. No boundary of the maximum transient vibration value (MTVV) or 

the vibration dose value (VDV) for the comfort evaluation is recommended in ISO 

2631-1:1997.  
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with  ̃    RMS value of frequency weighted accelerations in the rx-, ry- or rz-direction on 

the seat cushion in rad/s
2
; „i‟ represents x, y or z 

 ̃    RMS value of frequency weighted accelerations in the x-, y- or z-direction at 
the seat backrest in m/s

2
 

 ̃    RMS value of frequency weighted accelerations in the x-, y- or z-direction on 

the feet floor in m/s
2
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Tab. 2.11: The magnitudes of overall vibration total values for the approximate 

indications of likely reactions of comfort 

Overall vibration total value Indications 

Less than 0.315 m/s2 Not uncomfortable 

0.315 m/s2 to 0.63 m/s2 A little uncomfortable 

0.5 m/s2 to 1 m/s2 Fairly uncomfortable 

0.8 m/s2 to 1.6 m/s2 Uncomfortable 

1.25 m/s2 to 2.5 m/s2 Very uncomfortable 

Larger than 2 m/s2 Extremely uncomfortable 

 

2.2.2.3 Correlation between objective prediction and subjective judgment about ride 

discomfort 

The correlation between the objective evaluation with different methods and the 

subjective judgment about the ride discomfort caused by WBV has been investigated 

in several studies.  

In the study by Hansson and Wikström, objective and subjective evaluations of ride 

discomfort caused by WBV on forestry machines were carried out. Tri-axial 

accelerations on the seat cushion were used in the objective evaluation. A total of 

thirteen objective evaluation methods were adopted, including the root mean square 

(RMS) value of weighted accelerations in each 1/3 octave band in each direction, the 

vector sum value (VSV) of RMS values of weighted accelerations in three directions 

in each 1/3 octave band, the RMS value of weighted accelerations from 1 Hz to 80 

Hz in each direction and the VSV of RMS values of weighted accelerations from 1 Hz 

to 80 Hz in all three directions. The results show that the last one has the highest 

correlation with the subjective evaluation. [117] 

In the study by Mistrot et al., twenty two lorry drivers rated the discomfort of sixteen 

different rides. The ride discomfort was predicted using objective methods as well. 

The objective methods include the highest RMS value and the VSV of RMS values of 

weighted accelerations in three translational directions on the seat cushion. The 

correlation between the subjective rating and the objective predictions shows that the 

latter method is the best objective method to predict the discomfort. [39] 
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In the study by Fairley, eleven professional drivers rated the discomfort caused by 

WBV on four different agricultural tractors during sixteen rides. Tri-axial accelerations 

were measured on the cabin floor, on the seat cushion and at the seat backrest. 

Twenty objective methods were used to predict the ride discomfort. Results show that 

the best objective method to predict the discomfort caused by WBV on agricultural 

tractors is again the VSV of RMS values of frequency weighted accelerations in three 

translational directions on the seat cushion. [118] 

The study by Hassan and McManus also proves that the VSV of RMS values of 

frequency weighted accelerations in three translational directions on the seat cushion 

can be used to predict the ride discomfort caused by WBV on heavy vehicles. 

Additionally, it was studied that the subjective reactions to WBV match „the 

approximate indications of likely reactions to various magnitudes of overall vibration 

total values (Tab. 2.11)‟ in ISO 2631-1:1997 very well. [119] 

In the study by Mansfield et al., twenty four persons were exposed to fifteen vertical 

excitations including random vibrations, repeated shocks and combination of random 

vibrations and shocks. The discomfort was objectively evaluated using the RMS 

value, the vibration dose value (VDV), the maximum transient vibration value (MTVV) 

and the absorbed power. The correlation between these objective evaluations and 

the subjective rating was investigated. It shows that the absorbed power is the best 

objective method to predict the discomfort caused by the above mentioned 

excitations. The VDV method is better than the RMS method and the MTVV method 

for the discomfort prediction. Due to the difficulty in measuring the force in the field 

tests to calculate the absorbed power, the VDV method was recommended as the 

most appropriate method to evaluate the discomfort caused by continuous vibrations 

or repeated shocks. The worst prediction result was obtained using the MTVV 

method. [120] However, Jönsson and Johansson studied that the MTVV method is 

better than the VDV method and the RMS method to predict the ride discomfort 

caused by WBV on forklifts [121]. 

In the study by Els, the RMS value of the vertical accelerations on the seat cushion 

was recommended to determine the ride discomfort on a landmine protected military 

vehicle. Investigations in this study show that the „approximate indications of likely 

reactions to various magnitudes of overall vibration total values (Tab. 2.11)‟ in ISO 

2631-1:1997 correspond very well with the subjective comments. [122] 
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2.3 Vibration attenuation performance of suspension seats  

In general, small and medium sized construction vehicles such as compact wheel 

loaders (CWLs) are equipped with three suspensions: tires, rubber elements between 

vehicle frame and cabin, as well as the seat suspension system. Generally no axle 

suspension system is equipped on these vehicles.  

Tires of construction vehicles provide primary isolation of the vibrations generated by 

the unevenness of the ground. These tires are typically large and soft, thus filter out a 

part of vibrations and shocks. If these tires are soft enough, more vibration energy 

can be absorbed. However, in this case, the rolling resistance of the tires is very 

large. This increases the energy consumption. On the other hand, high thermal and 

mechanical stress in the tire material is generated. This increases the wear of the 

tires. In one word, tires on construction vehicles cannot be designed too soft to 

sufficiently isolate vibrations. [123] 

In order to keep the handling stability and the operational safety, rubber elements 

between vehicle frame and cabin are rather stiff. The principal function of these 

rubber elements is to avoid the metal to metal impact. The capability of these rubber 

elements to isolate the vibrations is limited. 

As a main contact component between driver and vehicle, the suspension seat plays 

a significant role in reducing the vibrations transmitted to the driver. Since the mass 

of the driver and the seat is relatively small compared to the entire vehicle, 

modifications of the seat suspension system hardly affect the dynamic behavior of 

the entire vehicle. This leads to the fact that suspension seat modifications are much 

easier to be carried out than modifications of a cabin or an axle suspension system. 

In order to improve the vibration attenuation performance of suspension seats, a lot 

of studies have been carried out to investigate their dynamic characteristics and to 

optimize the seat suspension system. 

2.3.1 Metrics for seat vibration attenuation performance 

The seat transmissibility is used to evaluate the vibration attenuation performance of 

a suspension seat. Two parameters are usually used to investigate the seat 

transmissibility: the seat effective amplitude transmissibility (SEAT) and the seat 

tramsmissibility in the frequency domain derived from the cross spectral density 

(CSD) method. 
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The SEAT value is an objective metric for seat vibration isolation efficiency. It can be 

used to predict the dynamic seat comfort and to select the best seat for a specific 

vibration excitation [124],[125]. The SEAT value represents the ratio of the overall 

weighted accelerations on the seat cushion to the overall weighted accelerations at 

the seat base. Three methods, as formulated from Eq. (2.22) to Eq. (2.24), are widely 

used to calculate the SEAT value [124]-[128]. The first two methods (Eq. (2.22) and 

Eq. (2.23)) are used for the vibrations with a low crest factor (CF), and the third one 

(Eq. (2.24)) is more suitable for the vibrations with a high CF. In general, vibrations 

on construction vehicles have a high CF [94],[129],[130]. This means that the third 

method should be used to calculate the SEAT value of a seat exposed to the 

vibrations on construction vehicles.  
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The seat transmissibility at different frequencies cannot be obtained from the SEAT 

value. The seat transmissibility in the frequency domain can be obtained using the 

CSD method as formulated in Eq. (2.1) (p. 17). Here the input signal is the 

accelerations at the seat base and the output signal is the accelerations on the seat 

cushion. 
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2.3.2 Dynamics of suspension seats 

With the excitation magnitude increasing from zero to a quite high level, the dynamics 

of a suspension seat experience five different states, as shown in Fig. 2.27.  

 

Fig. 2.27: States of dynamics of suspension seat [131] 

The vibration dose value ratio (VDVR) of the suspension system can be calculated 

with Eq. (2.25). [131] 
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      VDV of frequency weighted accelerations on the top of the suspension system in 
m/s
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In State 1, the excitation magnitude is too low to overcome the friction of the 

suspension mechanism. The seat suspension is locked by friction and the seat 

sprung part moves together with the seat base like a rigid seat.  

In State 2, the seat sprung part starts to move relatively to the seat base. The VDVR 

possibly increases in this state, due to the non-linearity of the suspension system, 

such as the friction or gaps between moving parts. [131]  

In these two states, friction of the suspension mechanism has a large influence on 

the seat vibration attenuation performance. It has been investigated that lower friction 

results in improved seat vibration attenuation performance under excitations with low 

and moderate magnitudes [132]. This is due to the fact that the lower friction reduces 

the maximum excitation magnitude of the State 1 (A in Fig. 2.27). For example, it was 

studied that 50% reduction in friction causes the seat to start isolating at an excitation 

magnitude of 0.6 m/s1.75 instead of 1.2 m/s1.75 [132]. The friction of the suspension 

mechanism can be lowered by good lubrication.  
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In State 3, the VDVR is high or low at a constant value depending on the seat natural 

frequency and the frequency of the excitation. If the frequency of the excitation is 

higher than 1.4 times of the seat natural frequency, the vibration excitation is 

attenuated by the seat suspension system and the VDVR is lower than one. 

Otherwise, it is higher than one. It has been proven that the damping coefficient of 

the seat suspension system plays an important role in the seat transmissibility in this 

state. Ma et al. investigated the damping requirement for a suspension seat exposed 

to different vibration excitations. Higher damping is desirable to improve the seat 

vibration attenuation performance, when the seat is exposed to vibrations which 

predominate around the seat resonant frequency, irrespective of the excitation 

magnitudes. When the seat is exposed to vibrations which predominate around a 

relatively higher frequency, a higher damping coefficient leads to a higher SEAT 

value under excitations with moderate magnitudes. [133] This conclusion is 

consistent with that in the study by Gunston, where increasing the damping by 50% 

leads to an increase in SEAT values up to 5%, when the seat is exposed to vibrations 

at 2.5 Hz with moderate magnitudes [132].  

Seat suspension systems on earth-moving vehicles usually have a low stiffness and 

a short free stroke. On the other hand, earth-moving vehicles are exposed to 

vibrations and shocks, which are severe enough to cause the seat suspension 

systems exceeding their free stroke. This leads to the fact that impacts with the end-

stop buffers occur. [131],[134] In this case the seat dynamics are in the State 4. With 

the increase of the excitation magnitude, more end-stop impacts occur and the 

suspension hits the end-stop buffers more heavily. Now the seat dynamics are in the 

State 5. In these two states, end-stop impacts result in the increase of the VDVR. 

Higher damping coefficients of the seat suspension system are desirable to reduce 

the number of end-stop impacts and the vibration severity generated by the end-stop 

impacts [132],[133],[135]. It was investigated that 50% reduction in the damping 

coefficient results in an increase of SEAT value up to 150% under the excitations with 

high magnitudes due to more and severer end-stop impacts [132].  

In addition to selecting a proper suspension damping, optimizing the properties of the 

end-stop buffers (such as the stiffness coefficient, the damping coefficient and the 

length) also contributes to the reduction of the VDVR [134],[136],[137]. In the study 

by Wu and Griffin [136], a suspension seat was tested when it was equipped with 

both top and bottom buffers or when it was equipped with just bottom buffers. The 
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test results show that the acceleration peaks generated by end-stop impacts are 

greatly reduced by using top buffers. In this study, three end-stop buffers with 

different force-deflection characteristics were equipped on the seat in the seat tests. 

The force-deflection characteristics of these three end-stop buffers are shown in Fig. 

2.28. Test results show that the end-stop buffer C results in the lowest VDVR under 

the excitations with high magnitudes. In the study by Rebelle [137], the stiffness 

coefficients, the damping coefficients and the thickness of an end-stop buffer were 

optimized. The optimization results show that a non-linear force-deflection 

relationship coupled with a damping is the best solution to reduce the vibration 

severity generated by the end-stop impacts. 

 

Fig. 2.28: Force-deflection characteristics of three end-stop buffers used in the seat 

tests in study [136] 

In the paragraphs above, the influence of the suspension components on the seat 

dynamic characteristics is introduced. Because seat and driver interact with each 

other, the seat dynamic behavior is affected by the dynamic characteristics of the 

driver as well. It was observed that the nonlinearity of the human body has a 

significant influence on the seat transmissibility [138]. 

In order to reduce risks of being injured in case of an accident, it is recommended by 

local laws or regulations to use a safety belt during the daily operation of earth-

moving machines. The effectiveness of a safety belt is studied especially for the case 

that a car crash occurs [139]-[142]. From the studies by Wyllie and Griffin, it can be 

noticed that the safety belt affects the driver behavior in the vibrational environment 

during normal vehicle operations [143],[144]. There is no doubt that the safety belt 

plays an important role in restricting the movement of the driver. This results in the 

change of the seat-driver dynamics and accordingly the seat transmissibility. 
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However, there is little research analyzing the effect of the safety belt on the seat 

transmissibility. 

2.3.3 Model and optimization of suspension seats 

2.3.3.1 Model for the vertical direction 

In previous studies several methods to build a seat-occupant model with a vertical 

seat suspension system were introduced. The basic method is building a lumped 

parameter model (LPM), as introduced in studies [70], [133] and [145]. The LPMs in 

these three studies have the similar structure as illustrated in Fig. 2.29.  

 

Fig. 2.29: General structure of the LPM of the seat-occupant system with a vertical 

seat suspension system 

To build a LPM, the static and dynamic properties of all seat components need to be 

measured, such as the force-deflection relationship of cushion, spring and end-stop 

buffers, and the force-velocity relationship of cushion, damper and end-stop buffers, 

as well as the friction force of the suspension mechanism. These properties are 

simplified and parameterized in the LPM. The seat cushion can be represented using 

a linear spring with a linear damper. The air spring can be simplified as a linear 

spring for a given load mass. The force-velocity relationship of a passive hydraulic 

damper is usually expressed using a piecewise linear function. End-stop buffers are 

modeled as pure springs with both linear and nonlinear stiffness coefficients.  

In the studies [75] and [145], the nonlinear curve-fitting method was used to identify 

the parameters of a suspension seat model. In these two studies, the parameters of 

the suspension seat model were determined not by static or dynamic tests of the seat 

components, but by the nonlinear curve-fitting in least-squares sense. The seat-

occupant model proposed in the study [75] is illustrated in Fig. 2.30. The seat transfer 

function was obtained from laboratory seat tests and field vibration measurements. 
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The calculated transfer function of the seat was obtained with Eq. (2.26)-(2.30) [75]. 

Parameters of this model, kas, kd and cd, were determined by minimizing the quadratic 

error between the measured and the calculated seat transfer functions. 

 

Fig. 2.30: Seat-occupant model in study [75] 
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with 

  Dimensionless angular frequency ratio 

   Critical damping of a single-DOF system without the auxiliary spring kd in N·s/m 

   Damping coefficient of the damper in N·s/m 

  Imaginary unit, (-1)
1/2

 

    Stiffness coefficient of air spring in N/m 

   Stiffness of the auxiliary spring in the seat model in N/m 

   Equivalent mass of a seated driver in kg 

   Mass of the seat sprung part in kg 

   Dimensionless damping ratio 

  Angular frequency of the excitations in rad/s 

   Undamped natural frequency of the suspension seat in rad/s 

 

In the study [145], the vertical seat suspension system was modeled as a 

combination of a linear spring-damper element and a Bouc-Wen force element, as 

shown in Fig. 2.31. The Bouc-Wen force was used to represent the friction force of 

the suspension mechanism based on the Bouc-Wen model of hysteresis [145], which 
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was proposed by Bouc [146],[147] and extended by Wen [148], and is widely used to 

describe the nonlinear hysteretic behavior of a system [149],[150]. The Bouc-Wen 

model of hysteresis is essentially described with a first-order nonlinear differential 

equation that relates the input displacement to the output restoring force in a 

hysteretic way [150]. In the study [145], the simulated accelerations on the seat 

cushion were obtained by solving the equations of motion of the seat-occupant model. 

Parameters of the seat-occupant model were determined by minimizing the quadratic 

error between the simulated and the measured accelerations on the seat cushion. 

 

Fig. 2.31: Seat-occupant model proposed in study [145] 

In addition, the method to build a model of an air suspension seat based on the 

aerothermodynamics and the fluid dynamics was introduced in studies by 

Maciejewski et al. [151],[152]. The schematic illustration of the seat-occupant model 

is shown in Fig. 2.32. The equations of motion of this model are formulated in Eq. 

(2.31)-(2.40) [151]. 

 

Fig. 2.32: Schematic illustration of an air suspension seat-occupant model [151] 
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with 

    Surface of air spring in m
2
 

    Effective area of air spring in m
2
 

    Bouc-Wen force in N 

    Restoring force from the air spring in N 

    Force coming from the bottom end-stop buffer in N 

   Damping force in N 

    Vertical component of damping force in N 

   Gravity force in N 

    Force coming from the top end-stop buffer in N 

  Gas constant in J/(kg·K) 

    Temperature in air spring in K 

   Wall temperature of air spring in K 

    Volume of air spring in m
3 

  Absolute displacement of seat base in the z-direction in m 

   Absolute displacement of ms in the z-direction in m 

   Linear damping coefficient in N·s/m 
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   Quadratic damping coefficient in N·(s/m)
2
 

   Cubic damping coefficient in N·(s/m)
3 

   Distance between the middle position of the vertical seat suspension system and the 
bottom or the top end-stop buffer in m 

   Initial height of air spring in m 

    Positive stiffness of Bouc-Wen model of hysteresis in N/m 

    Linear stiffness coefficient of bottom end-stop buffer in N/m 

    Cubic stiffness coefficient of bottom end-stop buffer in N/m
3
 

    Linear stiffness coefficient of top end-stop buffer in N/m 

    Cubic stiffness coefficient of top end-stop buffer in N/m
3
 

     Initial air mass inside air spring in kg 

    Air pressure inside air spring in Pa 

   Atmospheric pressure in Pa 

    Overall heat transfer coefficient of an air spring in W/(m
2
·K) 

  Parameter of Bouc-Wen model of hysteresis in m
-1 

  Parameter of Bouc-Wen model of hysteresis in m
-1

 

    Reduction ratio of air spring 

   Reduction ratio of damper 

  Adiabatic coefficient 

 

2.3.3.2 Optimization of the vertical seat suspension system 

Air suspension seats are widely used on modern earth-moving vehicles. The air 

suspension system is generally comprised of an air spring, an inclined passive 

hydraulic damper and end-stop buffers. Improvement of the seat vibration attenuation 

performance can be achieved by optimizing the dynamic properties of the air spring, 

selecting proper damping coefficients of the damper and optimizing the stiffness and 

damping coefficients of the end-stop buffers. Hostens et al. proposed a method to 

improve the vibration attenuation performance of a passive air suspension seat. An 

additional air reservoir was used to lower the natural frequency of the seat. In 

addition, a throttle valve was inserted between the air spring and the additional air 

reservoir to provide variable damping coefficients. The laboratory tests show that the 

new proposed air suspension system provides a better vibration attenuation 

performance for seats on agricultural machinery or other vehicles with similar 

vibration excitations. [153] Maciejewski et al. optimized the volume of the additional 

air reservoir and the throttling critical conductance. Experiment results confirm that 

with the optimized air suspension system the vibration attenuation performance of the 

seat is improved up to 4 Hz, especially with heavier drivers. In addition, seat 

transmissibility at the seat resonance frequency is reduced efficiently under the low 

frequency excitations (such as the vibration input spectral class EM3 in ISO 7096 
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[154]). But reduction of the seat transmissibility is negligible under the high frequency 

excitations (such as the vibration input spectral class EM6 in ISO 7096 [154]). [151] 

In another study by Maciejewski et al., the air flow between the air spring and the 

additional air reservoir was actively controlled to change the air spring force and to 

improve the vibration attenuation performance. The investigation shows that the 

active air suspension system provides a better vibration attenuation performance 

than the passive air suspension system in the frequency range of 0-4 Hz. [155] 

High magnitudes of vibrations and shocks on earth-moving vehicles can cause large 

suspension travel and severe end-stop impacts for suspension seats. It is important 

to keep the suspension travel in a reasonable range in order to provide a stable and 

safe environment to the driver. Ma et al. suggested that a further reduction in the seat 

natural frequency would not be feasible. The vibration attenuation performance of a 

suspension seat could be improved by selecting appropriate suspension damping 

coefficients. [133] Wu et al. proposed a procedure to improve the vibration 

attenuation performance of a passive air suspension seat [156]. This procedure 

includes two stages. In the first stage, the optimal stiffness and damping coefficients 

of the seat suspension system were determined by minimizing the seat effective 

amplitude transmissibility (SEAT) under random excitations with low and moderate 

magnitudes, while limiting the suspension dynamic deflection below the free stroke. 

In the second stage, improvement of the seat performance, under high magnitude 

excitations involving end-stop impacts, was realized by optimizing the force-deflection 

characteristics of end-stop buffers through minimizing the vibration dose value ratio 

(VDVR) of the seat suspension system. In the first stage of the optimization, two 

random excitations standardized in ISO 7096 for tractor scrapers were used. To 

solve the optimization problem in the second stage, two types of excitations with 

varying magnitudes were used: (1). sinusoidal excitations with frequencies in the 

vicinity of the seat resonant frequency and with the root mean square (RMS) value 

ranging from 0.7 to 2.8 m/s2; (2). standardized excitations in ISO 7096 for tractor 

scrapers multiplied by factors of 1.0, 1.5 and 2.0. Wu and Griffin adopted a semi-

active damper with electrorheological fluid to reduce the occurrence and severity of 

end-stop impacts in a suspension seat [157]. After reviewing different control policies 

of the semi-active damper, they proposed a new „soft-hard‟ control policy which is 

formulated in Eq. (2.41).  
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with 

      Damping coefficient of the semi-active damper in the soft-state in N·s/m 

      Damping coefficient of the semi-active damper in the hard-state in N·s/m 

      Maximum suspension travel when the semi-active damper in the soft-state in m 

 

Wu and Griffin investigated the effect of dsoft and chard on the reduction of the VDVR 

in laboratory seat tests. The results show that a shorter dsoft as well as a higher chard 

helps to prevent the occurrence of end-stop impacts and to reduce the vibration 

severity in case of an end-stop impact. In the laboratory seat tests, vibration 

attenuation performance of the suspension seat with this „soft-hard‟ controlled semi-

active damper was evaluated under random excitations with various magnitudes. The 

results show that the new proposed „soft-hard‟ control policy enables the seat 

suspension to achieve a better vibration attenuation performance, irrespective of 

excitation magnitudes. [157] 

2.3.3.3 Model for the longitudinal direction 

Most studies focus on the investigation of the seat dynamics and the improvement of 

the seat vibration attenuation performance in the vertical direction. But during daily 

operation of construction vehicles, drivers are exposed to random multi-axial 

vibrations. The longitudinal vibrations on construction vehicles are also severe. Seats 

with a longitudinal suspension system have been supplied by seat manufacturers 

already. However, only a few studies investigated the dynamic behavior and the 

vibration attenuation performance of a seat with a longitudinal suspension system. 

Models of the longitudinal seat suspension system were quite simple in these limited 

studies. They were generally comprised of a spring, a damper, a friction force 

element and two end-stop buffers, as shown in Fig. 2.33 [78],[158],[159].  

 

Fig. 2.33: Seat-occupant model with a longitudinal suspension system [158],[159] 
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2.3.3.4 Optimization of the longitudinal seat suspension system 

In the study by Fleury and Mistrot, a longitudinal seat suspension system was 

optimized by satisfying the following four constraints [78]: 

1) Transmissibility between the lower body of the driver and the excitation point 

should be lower than 1. 

2) Transmissibility between the upper body of the driver and the excitation point 

should be lower than 1. 

3) Suspension travel should be shorter than the suspension free stroke to ensure 

that no end-stop impact occurs. 

4) Interaction force between the driver‟s back and the seat backrest should be 

lower than a preset value of 100 N. 

The authors developed two cushion-occupant models to calculate the transmissibility 

and the interaction force between the driver and the excitation points. These models 

are illustrated in Fig. 2.19 (p. 24). The original and the optimal parameters of the 

longitudinal seat suspension system are presented in Tab. 2.12. With the optimized 

longitudinal seat suspension system, the SEAT value decreases by about 50%. [78] 

 

Tab. 2.12: Parameters of the original and the optimized longitudinal seat suspension 

system [78] 

 Stiffness coefficient (N/m) Damping (N·s/m) Free stroke (mm) 

Original 1000 600 ± 13 

Optimal  3400 600 ± 20 

 

The seat-occupant model in the studies by Stein et al. on the optimization of the 

longitudinal seat suspension system is illustrated in Fig. 2.33. [158],[159] 

In the study [158], the damper was supposed to work at low velocities with a constant 

damping coefficient. Firstly, the authors used the „fminsearch‟ function in MATLAB to 

search the optimal stiffness and damping coefficients for the minimum seat effective 

amplitude transmissibility (SEAT). This function finds the minimum of a function of 

several variables in the neighborhood of an initially chosen point. However, the 

optimal stiffness and damping coefficients determined by this method are extremely 

low. Taking into consideration the ergonomic and psychological reasons, the results 
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were not accepted by the authors. Secondly, the authors investigated the variation of 

the SEAT value depending on the damping coefficient and determined the optimal 

damping coefficient, while the stiffness coefficient was kept unchanged. With the 

optimal damping coefficient, the SEAT value in the longitudinal direction could be 

reduced by about 10%. 

In the study [159], the damping coefficients of the longitudinal seat suspension 

system were optimized when the seat was exposed to two types of excitations: the 

terrain excitation and the impulse excitation. The terrain excitation was measured 

when a wheel loader was driven on rough terrain, and the impulse excitation was 

measured during a bucket loading operation of the wheel loader [78]. Under these 

two excitations, the damper works not only at low speeds but also at high speeds. In 

this case, the force-velocity relationship of the damper is nonlinear, as shown by the 

solid line in Fig. 2.34. Different optimal damping coefficients were obtained under the 

above mentioned two excitations, as shown by two dash lines in Fig. 2.34. Compared 

to the damping coefficients optimized under the impulse excitation, they optimized 

under the terrain excitation provide a better suspension vibration attenuation 

performance for both excitations.  

 

Fig. 2.34: Comparison between the original (solid line) and the optimized (dash line) 

force-velocity curves of damper (a). with the optimization result under the terrain 

excitation, (b). with the optimization result under the impulse excitation [159] 
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3 Motivation 

People with long-term exposure to whole-body vibrations (WBV), such as the 

occupational drivers of earth-moving vehicles, suffer health-related consequences of 

WBV. Absence from work and disability pension due to WBV-related health problems 

lead to time consuming and economic losses for both employers and employees. The 

temporary reactions of drivers caused by the short-term exposure to WBV, such as 

muscle fatigue, ride discomfort and loss of balance, can affect the drivers‟ ability to 

control the vehicle, reduce the work efficiency and even can cause safety problems. 

In Europe the directive 2002/44/EC [89] lays down the minimum requirement on the 

daily vibration exposure for the member states. To protect drivers from health and 

safety risks caused by WBV, the WBV exposure levels on the vehicles need to be 

evaluated at first. If the minimum requirement is not satisfied, technical and 

organizational methods should be implemented to reduce the exposure levels. 

Accordingly, the first main objective of this research work is to propose improvements 

for the current evaluation procedures and use them to evaluate the WBV exposure 

levels. The second main objective is to reduce the WBV exposure levels by 

optimizing the vehicle suspension systems and by improving the driver‟s sitting 

situations.  

To achieve the first main objective, the tasks needed to be carried out are described 

as follows: 

A large effort has been made in previous studies to evaluate the WBV exposure 

levels on various vehicles in different work tasks and at different work places. 

Compact wheel loaders (CWLs) are widely used in construction activities, due to their 

small size but still ample lift capacity and maneuverability. However, only a few 

investigations on the WBV exposure levels arising from CWLs were carried out. 

Accordingly, the first task in this research work is to evaluate the WBV exposure 

levels on a CWL. In this part of work, the permitted daily exposure durations will be 

calculated, and the health risks caused by WBV will be predicted. For the health 

evaluation, two different procedures are introduced in two ISO standards: ISO 2631-

1:1997 and ISO 2631-5:2004. It is confusing to decide which of these two standards 

should be chosen for the evaluation of WBV from the CWL, because no application 

condition is clearly defined in these standards. Therefore, both of them are used to 

fulfill the first task.  
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Several studies also adopted these two standards to predict the health risks caused 

by WBV from different types of vehicles. Some of these studies found out that the 

evaluation procedure in ISO 2631-1:1997 is more stringent and the boundaries of the 

health guidance caution zone (HGCZ) in this standard should be increased. Other 

studies obtained a contrary conclusion. Taking this research state into account, the 

second task in this work is to compare the evaluation results obtained according to 

ISO 2631-1:1997 and ISO 2631-5:2004, as well as to find out the reasons for the 

different evaluation results. In this part of work, it will be discussed whether the 

HGCZ boundaries in these two standards are equal. If not, the equal boundaries of 

the HGCZ need to be found out. With the equal boundaries, the permitted daily 

exposure durations should be calculated again to study whether there are any other 

reasons for the different evaluation results.  

Several details of the evaluation procedure in ISO 2631-1:1997 are obscure, such as 

how to select the suitable quantification method and the vibration directions for the 

evaluation. It is clearly explained in ISO 2631-5:2004 that the given evaluation 

procedure has not been validated. Therefore, the third task in this work is to discuss 

whether the details of the procedures in both standards are suitable or not to 

evaluate the WBV arising from the CWL. This task aims to propose suggestions on 

the improvement of these details for the standard revision in the future.  

There is still no study carried out to evaluate the effect of short-term exposure to 

WBV on the ride comfort of the CWLs. ISO 2631-1:1997 and ISO 2631-1:1985 

introduce the procedures for the ride comfort evaluation. With the procedure in ISO 

2631-1:1997, the levels of the ride discomfort can be obtained by calculating the 

vector sum values (VSV) of root mean square (RMS) values of accelerations in 

different directions. With the procedure in ISO 2631-1:1985, the exposure durations 

for reduced comfort can be obtained by comparing the RMS values of accelerations 

in 1/3 octave band with the reduced comfort boundary (RCB) curves. The fourth task 

in the thesis is to evaluate the ride discomfort caused by WBV on the CWL using 

both ISO 2631-1:1997 and ISO 2631-1:1985. This part of work gives the levels of the 

ride discomfort as well as the exposure durations for the reduced comfort on the 

CWL.  

To achieve the second main objective, the tasks needed to be carried out are 

described as follows: 
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In general, small-sized construction vehicles are not equipped with axle and cabin 

suspension systems. Consequently, the influence of the suspension seat on the WBV 

exposure levels becomes significantly important. Lots of studies analyzed the 

influence of seat cushion and seat suspension components on the seat 

transmissibility. The driver‟s dynamic behavior affects the seat transmissibility as well, 

because the driver and the seat interact with each other. The safety belt restricts the 

movement of the driver and accordingly affects the seat transmissibility. In previous 

studies the effectiveness of a safety belt was studied only for the case that a car 

collision occurs. No study was carried out to investigate the effect of a safety belt on 

the seat transmissibility. This investigation will be carried out as the fifth task in this 

work based on the analysis of the seat effective amplitude transmissibility (SEAT) 

and the seat tramsmissibility in the frequency domain. The purpose of this part of 

work is to find out the proper configuration of the safety belt for a more comfortable 

sitting situation. 

Due to the variety of operational conditions, suspension seats on construction 

vehicles are exposed to vibrations with a wide range of magnitudes. As reviewed in 

section 2.3.2, under excitations with different magnitudes, dynamic characteristics of 

a suspension seat are in different states, and different suspension configurations are 

required to effectively attenuate vibrations. The range of the magnitude of seat 

excitations and the seat dynamic characteristics under these excitations should be 

taken into consideration to determine the optimal suspension configuration. In 

previous studies the seat suspension system was optimized under the standardized 

excitation signals from ISO 7096 [154] multiplied by different factors. These 

excitations cannot reflect the range of the magnitude of seat excitations in real 

operations. It means that the optimal suspension configuration determined under 

these excitations may be not the best one under the real operational conditions. The 

sixth task in this thesis therefore is to find out an optimization solution for the seat 

suspension system based on the investigation of the excitations measured in various 

CWL operations and the analysis of the dynamic characteristics of the suspension 

seat under these excitations.  

For seats exposed to vibrations with a wide range of magnitudes, their vibration 

attenuation performance can be efficiently improved by optimizing a passive 

hydraulic damper or a semi-active damper controlled depending on the suspension 

dynamic deflections. But no study compares the improvement of the vibration 
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attenuation performance achieved by the optimization of these two types of dampers. 

This comparison will be carried out as the seventh task in this work in order to select 

the optimal damper for the seat suspension system. 

Most of the previous studies concentrated on investigation and improvement of the 

vibration attenuation performance of the vertical seat suspension system. Although 

longitudinal vibrations on construction vehicles are also severe, only a few studies 

optimized the longitudinal seat suspension system. In these studies human models 

are too simple to accurately simulate the human dynamic behavior. This possibly 

leads to incorrect optimization results. As the eighth task of this research work the 

optimization of the longitudinal seat suspension system will be carried out. For this, a 

human model with which the human dynamic behavior can be accurately simulated 

needs to be employed.  
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4 Measurement and Analysis of Vibrations 

4.1 Vibration measurement 

In order to analyze the characteristics of vibrations in different typical operations of 

compact wheel loaders (CWLs), to evaluate the effects of whole-body vibrations 

(WBV) arising from CWLs on the human health and the ride comfort, to study the 

effect of a safety belt on the seat transmissibility, as well as to obtain the excitation 

signals for the seat tests in laboratory, field tests of vibration measurement on a CWL 

were carried out. The detailed description of the field tests is presented in this 

chapter. 

4.1.1 Test vehicle 

The vibration accelerations were measured on a medium-sized CWL. The weight of 

the CWL is around 6400 kg when the bucket is empty and around 7900 kg when the 

bucket is full of gravels. The transmission has two gears. The highest speed in the 

first gear is around 6.9 km/h and about 19.8 km/h in the second gear. The CWL is not 

equipped with axle suspension system. Four rubber elements are installed between 

the vehicle frame and the cabin as a suspension system. The seat on the CWL does 

not have any suspension system in the longitudinal and the lateral directions. It is 

supported on a scissors linkage mechanism in the vertical direction. The vertical seat 

suspension system is comprised of a passive air spring and an inclined passive 

hydraulic damper. The free stroke of the vertical seat suspension system is 88 mm. 

When it is exceeded, the impact against the top or the bottom end-stop buffer occurs. 

The seat height is adjustable with the help of a build-in air compressor. The seat also 

provides adjustment of the inclination of backrest and seat cushion.  

The vibration accelerations were measured in three cases. Case A is that the driver 

did not wear a safety belt. Case B is that the driver wore an automatic lap belt, as 

shown in Fig. 4.1 (a). The automatic lap belt is the original safety belt provided by the 

seat manufacturer. It is activated and locked up when vibrations are severe. In case 

B, the movement of the driver is restricted only when the lap belt is locked up. Case 

C is that the driver wore a four-point seat harness, as shown in Fig. 4.1 (b). In this 

case, the movement of the driver is highly restricted. 
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                                             (a)                                      (b) 
Fig. 4.1: (a). Schematic drawing of the case that the driver wears a lap belt; (b). 

Schematic drawing of the case that the driver wears a four-point seat harness 

4.1.2 Test operations 

The accelerations were measured in ten different typical CWL operations with the 

same experienced driver. The test operations and the measurement durations are 

listed in Tab. 4.1. The driver‟s weight is 80 kg, and his height is 1.75 m. The vibration 

measurements were carried out in all ten operations in cases B and C. Due to the 

limited testing time, the measurements in case A were carried out only in operations 

OP-1.3, OP-2.1, OP-2.3, OP-3.1 and OP-4.  

 

Tab. 4.1: Operations of the CWL in the field tests and the measurement durations 

 Test operations
10

 
Speed 

(km/h) 
Repetition 

Duration 

(s) 

Distance 

(m) 

G
ro

u
p

 (
G

r.
) 

1
 OP-1.1 

Driving on a 

loop with 

different 

types of road 

(1) 6.9 3 360 681 

OP-1.2 (2) 6.9 3 360 679 

OP-1.3 (1) 19.8 3 126 684 

OP-1.4 (2) 19.8 3 126 687 

G
r.

 2
 

OP-2.1 Driving over 

two 

alternating 

obstacles 

(1) 6.9 4 44 82 

OP-2.2 (2) 6.9 4 44 82 

OP-2.3 (1) 19.8 4 44 240 

G
r.

 3
 OP-3.1 Driving over 

two inline 

obstacles 

(1) 6.9 4 44 81 

OP-3.2 (2) 6.9 4 44 80 

G
r.

 4
 

OP-4 V-cycle - 9 305 322 

                                            
10

 Symbol (1) represents the empty bucket and symbol (2) represents the bucket with full of gravels. 



4 Measurement and Analysis of Vibrations 63 

The first group of operations, OP-1.1 to OP-1.4, deals with driving on a test loop with 

different types of road, which is shown in Fig. 4.2. It is comprised of asphalt and 

concrete road with smooth surface, compacted soil road and gravel road with rough 

surface, and short slopes.  

 

Fig. 4.2: The loop with different types of road for driving 

The second operation group, OP-2.1 to OP-2.3, refers to the driving over two 

alternating obstacles, while the third group, OP-3.1 and OP-3.2, involves the driving 

over two inline obstacles. 

The layout of the operation with two alternating obstacles is shown in Fig. 4.3, and 

that with two inline obstacles is shown in Fig. 4.4. The obstacles were fixed on a 

smooth concrete road. Each operation in the second and the third groups can be 

divided into the following three steps. In the first step, the CWL was driven about     

25 m of distance on the concrete road to stabilize the vehicle speed; in the second 

step, it was driven over the obstacles at a constant speed; in the third step, after the 

obstacles it was driven about 50 m of distance on the concrete road and then turned 

by about 180 degrees. This procedure in each operation was repeated four times. 

The vibration signal in each repetition was selected from 1 s before the first obstacle 

until 10 s after the first obstacle for the analysis.  

The two obstacles on both sides have the same dimensions. The height of each 

obstacle is 0.08 m, the width is 0.5 m, and the length is 1 m, as shown in Fig. 4.5. 
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Fig. 4.3: Top and front views of the layout of the operation with two alternating 

obstacles 

 

Fig. 4.4: Top and front views of the layout of the operation with two inline obstacles 

 

Fig. 4.5: Front and side views of the obstacle 
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The fourth operation group OP-4 deals with the V-cycle. It is a typical operation of 

CWLs and includes six steps, as shown in Fig. 4.6 (a). In step (1), the CWL is driven 

forward from the starting location to the material stack; in step (2), the bucket is filled 

with the material; in step (3), the CWL is driven backward to the starting location and 

turned by approximately 90 degrees to the right to face the dumping place; in step (4), 

it is driven forward from the starting location to the dumping place; in step (5), it 

dumps the material at the dumping place; in step (6), it is driven backward from the 

dumping place to the starting location. [160] The material stack used for the 

measurements is shown in Fig. 4.6 (b). 

 

Fig. 4.6: (a). V-cycle; (b). Material stack for the V-cycle 

4.1.3 Data acquisition equipment 

The whole data acquisition equipment used in the field tests includes eight tri-axial 

accelerometers (PCB PIEZOTRONICS ICP 356A16), two tri-axial seat pad 

accelerometers (a PCB PIEZOTRONICS ICP 356B41 and an Endevco Model 2560), 

a gyroscope (3DM-GX3-25), an imcTM Cronos-PL-16 chassis and a laptop.  

Four tri-axial accelerometers were fixed at the four corners on the vehicle frame just 

below the four rubber elements, which act as a suspension for the cabin. Another 

four tri-axial accelerometers were fixed at the four corners on the cabin floor just 

upon the four rubber elements. These eight tri-axial accelerometers can measure 

accelerations ranging from 0.5 Hz to 4500 Hz in three translational directions. One 

tri-axial seat pad accelerometer (PCB PIEZOTRONICS ICP 356B41) was fixed on 

the top surface of the seat cushion and the other (Endevco Model 2560) was fixed on 
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the seat backrest. These two seat pad accelerometers can measure three 

translational accelerations ranging from 0.5 Hz to 1000 Hz. The gyroscope was fixed 

at the seat base (approximately in the middle of the cabin floor). It can measure three 

translational accelerations and three angular velocities. Locations of all sensors on 

the CWL are illustrated in Fig. 4.7.  

 

Fig. 4.7: Locations of sensors on the CWL (marked using red color) 

All ten accelerometers were connected to the imcTM chassis, which converts the 

analog signals to the digital ones, stores and transmits the data to the laptop. The 

software imc DEVICES 2.6 in the laptop was used to display the signals, to control 

the chassis and to store the data coming from the chassis. The gyroscope was 

connected to the laptop through a USB port. Using a Labview program, the signals 

picked up by the gyroscope were converted to digital signals and stored in the laptop. 

The battery of the CWL provided power for the whole acquisition equipment.  

The sampling frequency of the signals picked up by the accelerometers was set to 

10,000 Hz. It was set to 1000 Hz for the signals picked up by the gyroscope.  
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4.2 Analysis of vibration characteristics 

4.2.1 Purpose and method of analysis 

The purpose of this analysis is to study the characteristics of vibration excitations 

under the seat on the CWL, as well as the influence of the operational conditions, 

such as the driving speed, the bucket load condition and the unevenness of road 

surface, on the vibrations of the CWL. To achieve this purpose, signals measured on 

the cabin floor or the frame should be analyzed. Because these signals have 

negligible differences, especially at low frequencies, only the analysis of vibrations 

measured at the middle of the cabin floor (at the seat base) is discussed in this 

section.  

For the analysis the root mean square (RMS) value of the accelerations in each 1/3 

octave band (ã1/3ob) is used, which was calculated with Eq. (2.20) (p. 38). Due to the 

following four reasons, only the vibrations in three translational directions were 

analyzed. 

1) The characteristics of vibrations at the seat base are analyzed for the 

optimization of seat suspension systems later in chapter 7. Because the seat is 

equipped with suspension systems only in translational directions, rotational 

excitations are not needed to be taken into account for the optimization.  

2) The influence of the operational conditions on the CWL vibrations is studied with 

the purpose to reduce the WBV at their source by selecting proper operational 

conditions, accordingly to reduce the health risks and the ride discomfort. Only 

the translational vibrations are desired to evaluate the effects of WBV on human 

health and ride comfort.  

3) Because the seat base position is at about 0.9 m above the roll and the pitch 

axes of the CWL, the rotational movement of the CWL affects the magnitudes of 

the translational vibrations at the seat base. The variation of the rotational 

movement can be studied by analyzing the translational vibrations.  

4) Angular velocities were picked up by the gyroscope, rather than the rotational 

accelerations. Analysis of the rotational accelerations derived from the angular 

velocities may lead to inaccurate results.  
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4.2.2 Analysis results 

4.2.2.1 Influence of driving speed 

In Fig. 4.8 to Fig. 4.10, the values of the ã1/3ob in the three translational directions at 

the seat base when the CWL was driven at the lower speed of 6.9 km/h (slow) are 

compared with those at the higher speed of 19.8 km/h (fast). It can be observed that 

the driving speed has a large influence on the vibration intensity. The corresponding 

driving operations are those that were carried out at both speeds, i.e.: 

 unloaded driving on the loop (OP-1.1 and OP-1.3) 

 loaded driving on the loop (OP-1.2 and OP-1.4) 

 unloaded driving over alternating obstacles (OP-2.1 and OP-2.3) 

Fig. 4.8 shows the comparison of the longitudinal vibrations.  

 

 

 
Fig. 4.8: Comparison of longitudinal vibrations at the seat base in the slow and the 

fast driving 
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In Fig. 4.8 (a) and (c) it can be observed that the maximum RMS value occurs at 

about 2 Hz during the unloaded driving on the loop and over the alternating obstacles. 

It shifts to lower frequencies in Fig. 4.8 (b) during the loaded driving on the loop. The 

shift of the frequency at which the maximum RMS value occurs is caused by the 

change of the bucket load condition and hardly affected by the driving speed. The 

longitudinal vibrations are strongly affected by the pitch movement of the CWL, which 

means it highly depends on the pitch dynamic properties of the CWL. The bucket 

load condition has a large influence on the pitch dynamic properties, such as the 

natural frequency in the pitch direction. 

 

 

 
Fig. 4.9: Comparison of lateral vibrations at the seat base in the slow and the fast 

driving 

Fig. 4.9 shows the comparison of the lateral vibrations. In Fig. 4.9 (a) and (b) it can 

be observed that for slow driving on the loop the maximum RMS value occurs at 

about 1.6 Hz and 1.25 Hz respectively, but shifts to 3.15 Hz while fast driving. In Fig. 
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4.9 (c), it is shown that the maximum RMS value also occurs at about 1.25 Hz with 

slow driving over the alternating obstacles, but shifts to 5 Hz while fast driving. It can 

be concluded that in the lateral direction the frequency where the maximum RMS 

value occurs increases with the driving speed, and that the bucket load has a minor 

influence. The lateral vibrations are mainly caused by the vehicle roll movement, 

which is generated by the relative height of the road unevenness on the left and the 

right wheel paths. The frequency of the excitations for the roll movement increases 

with the vehicle speed. It brings the result that the roll movement and accordingly the 

lateral vibrations shift to higher frequencies at a higher driving speed.  

 

 

 
Fig. 4.10: Comparison of vertical vibrations at the seat base in the slow and the fast 

driving 

Fig. 4.10 shows the comparison of the vertical vibration results. The maximum RMS 

values occur between 2 and 3.15 Hz. In this direction the driving speed has a small 

influence on the frequency where the maximum RMS value occurs. The vertical 
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vibration characteristics is mainly depended on the vertical dynamic properties of the 

CWL. The frequency where the maximum RMS value occurs is the natural frequency 

of the CWL in the vertical direction. 

4.2.2.2 Influence of bucket load condition and unevenness of road surface 

In this section, at first the influence of the bucket load condition on the vibrations of 

the CWL is discussed. The RMS values of the accelerations in 1/3 octave band 

(ã1/3ob) in the three translational directions at the seat base when the CWL was driven 

with the empty bucket (unloaded driving) are compared with those when the CWL 

was driven with the bucket full of gravels (loaded driving). The comparison results are 

illustrated in Fig. 4.11 to Fig. 4.13. The corresponding operations are those that were 

carried out with both bucket load conditions, i.e.: 

 slow driving on the loop (OP-1.1 and OP-1.2) 

 fast driving on the loop (OP-1.3 and OP-1.4) 

 slow driving over alternating obstacles (OP-2.1 and OP-2.2) 

 slow driving over inline obstacles (OP-3.1 and OP-3.2) 

Fig. 4.11 shows the comparison of the longitudinal vibrations. It can be observed that 

the influence of the bucket load condition is only obvious at frequencies between 1 

Hz and 5 Hz. The RMS values during loaded driving are smaller than those during 

unloaded driving in the frequency range of 1.6-5 Hz, and slightly bigger between 0.5 

and 1.6 Hz. The maximum RMS value in the longitudinal direction occurs at 2 Hz 

during the unloaded driving, and shifts to 1.25 Hz or 1.6 Hz during the loaded driving. 

The difference of longitudinal vibrations between loaded and unloaded driving is due 

to the fact that the heavier vehicle weight leads to the decrease of the vehicle‟s 

natural frequency in the pitch direction. 

Fig. 4.12 shows the comparison of the lateral vibrations. It can be observed that the 

influence of bucket load condition on the lateral vibrations is negligible, especially at 

frequencies higher than 4 Hz.  

Fig. 4.13 shows the comparison of the vertical vibrations. It can be noticed that the 

influence of bucket load condition on the vertical vibrations is also quite small. The 

RMS values in the loaded driving are smaller than those in the unloaded driving in 

the range of 2.5-6.3 Hz, but a little larger in the range of 1-2 Hz. This is also due to 
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the fact that a heavier vehicle weight leads to a lower vehicle‟s natural frequency in 

the vertical direction. 

 

(a) 

 
(b) 

 

(c) 

 

(d) 

Fig. 4.11: Comparison of longitudinal vibrations at the seat base in unloaded and 

loaded driving 
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(a) 

 

(b) 

 
(c) 

 

(d) 

Fig. 4.12: Comparison of lateral vibrations at the seat base in unloaded and loaded 

driving 
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(a) 

 

(b) 

 

(c) 

 
(d) 

Fig. 4.13: Comparison of vertical vibrations at the seat base in unloaded and loaded 

driving 
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The influence of unevenness of road surface can be studied by comparing the values 

of ã1/3ob in driving over alternating obstacles ((c) in Fig. 4.11-Fig. 4.13) with those in 

driving over inline obstacles ((d) in Fig. 4.11-Fig. 4.13). 

By comparing Fig. 4.11 (c) and (d) it can be observed that the frequency where the 

maximum RMS value occurs during driving over the inline obstacles is the same as 

that while during driving over the alternating obstacles. The longitudinal vibrations 

during driving over the inline obstacles are larger than those during driving over the 

alternating obstacles in the whole frequency range. The same conclusion can be 

obtained for the vertical vibrations by comparing Fig. 4.13 (c) and (d). 

By comparing Fig. 4.12 (c) and (d) it can be noticed that the lateral vibrations during 

driving over alternating obstacles are much larger than those during the driving over 

inline obstacles. In the driving operations with alternating obstacles, the height 

difference of the tracks on which the left and the right wheels are driven at the same 

time is larger than that in the operations with inline obstacles. It generates a large roll 

movement of the vehicle and accordingly causes large lateral vibrations.  

4.2.2.3 Vibrations during the V-cycle 

The vibration characteristics during all driving operations with a constant speed are 

discussed in sections 4.2.2.1 and 4.2.2.2. Here the vibration characteristics during 

the V-cycle are analyzed. The RMS values of accelerations in 1/3 octave band (ã1/3ob) 

in the operation of V-cycle are illustrated in Fig. 4.14. 

 

Fig. 4.14: The RMS values of accelerations in 1/3 octave band in three translational 

directions on the cabin floor during the V-cycle 

It can be observed that during the V-cycle the RMS values in the longitudinal 

direction vary in a small range at frequencies below 6.3 Hz. The longitudinal 

vibrations are mainly generated when stopping and accelerating the vehicle, as well 

as when loading the materials. The RMS values in the lateral direction are almost 
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constant at frequencies between 1 Hz and 4 Hz. The lateral vibrations are principally 

generated during the turning of the vehicle. In the vertical direction, there is a clear 

peak of the RMS values at 2.5 Hz. In this direction, vibrations are generated by the 

unevenness of the road during driving and by the bucket shaking when dumping the 

materials. 

4.3 Conclusion 

In this chapter field tests of vibration measurements on a medium-sized compact 

wheel loader (CWL) in ten operations are introduced. The vibration characteristics on 

the CWL in the frequency domain are obtained from the analysis of the root mean 

square (RMS) values of accelerations in 1/3 octave band. In the longitudinal direction 

the maximum RMS values occur in the range of 1.25-2 Hz. In the lateral direction 

they occur in the range of 1.25-1.6 Hz in the slow driving and in the range of 3.15-5 

Hz in the fast driving. In the vertical direction the maximum RMS values occur mainly 

in the frequency range of 2-3.15 Hz. 

The influence of the driving speed, the bucket load condition and the unevenness of 

road surface on the vibration characteristics at the middle of the cabin floor (at the 

seat base) is discussed as well. The driving speed has a large influence on the 

vibration intensity on the CWL. On the other hand, the increase of driving speed 

results in a large increase of the frequency at which the maximum RMS value occurs 

in the lateral direction. The unevenness of the road surface has a significant 

influence on the vibration intensity as well. When the left and the right wheels are 

driven over bumps with the same dimension at the same time, the bumps cause high 

magnitudes for the longitudinal and the vertical vibrations. When they are driven over 

bumps with different heights, a large roll movement is generated. This leads to high 

magnitudes for lateral vibrations. The bucket load condition has a quite small 

influence on the vibration intensity on the CWL. 
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5 Evaluation of Whole-Body Vibrations 

Several procedures are introduced in the ISO standards to evaluate the effects of 

whole-body vibrations (WBV) on the human health and the ride comfort. In order to 

have a complete understanding of the effects of WBV arising from the compact wheel 

loader (CWL), all of these procedures are utilized. The effect of WBV arising from the 

CWL on the human health is evaluated using procedures in ISO 2631-1:1997 and 

ISO 2631-5:2004. That on the ride comfort is evaluated using procedures in ISO 

2631-1:1985 and ISO 2631-1:1997. The vibrational accelerations measured when 

the driver wore the lap belt (originally installed on the seat) are used for the 

evaluation in this chapter.  

5.1 Evaluation of effect on human health 

Different procedures are described in ISO 2631-1:1997 and ISO 2631-5:2004 to 

evaluate the effect of WBV on the human health. Both ISO standards are used in this 

section for the evaluation of WBV arising from the CWL. The evaluation results 

obtained according to these two standards are compared. In addition, it is discussed 

whether the detailed specifications in these procedures are suitable to evaluate the 

WBV arising from the CWL or not.  

5.1.1 Evaluation result according to ISO 2631-1:1997 

According to ISO 2631-1:1997, the suitable quantification method as well as the 

directions of WBV for the evaluation should be determined at the beginning of the 

evaluation. 

5.1.1.1 Determination of the suitable quantification method 

According to ISO 2631-1:1997, in order to determine the suitable quantification 

method to evaluate the effect of WBV on the human health, the values of crest factor 

(CF, Eq. (2.4), p. 27), MTVV/ãw and VDV/(ãwT1/4) should be calculated and compared 

with the critical values specified in the standard. The MTVV and VDV represent 

maximum transient vibration value (Eq. (2.6) and (2.7), p. 28) and vibration dose 

value (Eq. (2.8), p. 28) respectively. The ãw (Eq. (2.5), p. 28) is the root mean square 

(RMS) value of frequency weighted accelerations and T represents the measurement 
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duration. The values of CF, MTVV/ãw and VDV/(ãwT1/4) of the three translational 

accelerations on the seat cushion in all test operations are presented in Fig. 5.1. 

 

Fig. 5.1: Values of crest factor, VDV/(ãwT1/4) and MTVV/ãw of accelerations in three 

translational directions on the seat cushion in all test operations (ten operations 

repeated three or four times) 

As shown in Fig. 5.1 (a), all values of the CF are below the critical limit value 9. Fig. 

5.1 (b) displays that a part of the VDV/(ãwT1/4) values exceed the critical limit value 

1.75. As shown in Fig. 5.1 (c), all values of MTVV/ãw exceed the critical limit value 

1.5. The values of CF in Fig. 5.1 (a) show that the RMS method is in principle 

sufficient to evaluate the effect of WBV arising from the CWL. However, the values of 

VDV/(ãwT1/4) and MTVV/ãw in Fig. 5.1 (b) and (c) show that the RMS method has the 

potential to underestimate the effect of WBV, and the VDV method or the MTVV 

method should be used for the evaluation. In summary, the suitable quantification 
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method cannot be determined from the analysis of the values of CF, MTVV/ãw and 

VDV/(ãwT1/4) according to ISO 2631-1:1997. Three questions remain unsolved: 

1) Does the RMS method underestimate the effect of WBV arising from the CWL 

on the human health? 

2) Which method should be used to quantify the WBV on the CWL? 

3) How should the critical values of CF, MTVV/ãw and VDV/(ãwT1/4) be modified to 

determine a suitable quantification method for the WBV on the CWL? 

In order to answer these three questions, in this research work the difference 

between the estimated vibration dose value (eVDV, Eq. (2.9), p. 29) and the VDV is 

calculated as the value of Diff with Eq. (5.1) and analyzed. 

%100*
eVDV

eVDVVDV
Diff


   (5.1) 

In Fig. 5.2, the values of CF, MTVV/ãw and VDV/(ãwT1/4) are divided into three groups 

according to the Diff value: 

1) The VDV is considerably larger than the eVDV (Diff≥10%) (marked with green 

square points). In this case, the RMS method underestimates the effect of WBV. 

The VDV method should be used for the evaluation. 

2) The VDV is larger than the eVDV, but the difference between both values is not 

large (0≤Diff<10%) (marked with black triangle points). In this case, both the 

RMS method and the VDV method can be used for the evaluation. 

3) The VDV is smaller than the eVDV (Diff<0) (marked with blue round points). In 

this study, no Diff value is less than -10%. If -10%≤Diff<0, both the RMS method 

and the VDV method can be used for the evaluation. 

As shown in Fig. 5.2 the VDV is larger than the eVDV in most of the test operations 

(green square and black triangle points). And in more than half of these operations, 

the difference between VDV and eVDV exceeds 10% (green square points). For 

these test operations the RMS method underestimates the effect of WBV arising from 

the CWL on the human health. Therefore, the VDV method is adopted to evaluate 

the effect of WBV in this research work. 

In Fig. 5.2 (a), there is a clear boundary (CF=4.5) between the case where the Diff 

exceeds 10% and the case where it stays below 10%. So, if the value of CF is larger 

than 4.5, the VDV is larger than eVDV and the difference between both values 

exceeds 10%. It means that the eVDV (or the RMS method) has the potential to 
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underestimate the health risks. In this situation, the VDV method should be used. 

From this research it is proposed to modify the critical value for the CF from 9 to 4.5, 

in order to harmonize the crest factor precondition of the ISO 2631-1:1997 with the 

Diff precondition. In Fig. 5.2 (b) and (c), clear boundaries for VDV/(ãwT1/4) and 

MTVV/ãw are observed between the case where the Diff exceeds 10% and the case 

where it stays below 10%. This boundary for VDV/(ãwT1/4) is 1.54 and for MTVV/ãw is 

2. In this research work the critical values of VDV/(ãwT1/4) and MTVV/ãw are proposed 

to be modified from 1.75 and 1.5 to 1.54 and 2 respectively, in order to harmonize the 

precondition given in ISO 2631-1:1997 with the Diff precondition. 

 

Fig. 5.2: Modification of critical values for (a) Crest Factor, (b) VDV/(ãwT1/4) and (c) 

MTVV/ãw 

With the modified critical values of CF, VDV/(ãwT1/4) and MTVV/ãw it is possible to 

select the suitable quantification method for vibrations which have similar 

characteristics to those on the CWL. The Diff value can be used to select the suitable 
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quantification method for all types of vibrations. If the Diff value exceeds 10%, the 

RMS method has the potential to underestimate the vibration effects. In this case, the 

VDV method should be used to evaluate the vibration effects on the human health. If 

the Diff value is less than -10%, the RMS method should be used to evaluate the 

vibration effects. In the case where |Diff| does not exceed 10%, both RMS method 

and VDV method can be used for the evaluation. 

5.1.1.2 Selection of directions for evaluation 

In order to select the WBV directions for the evaluation, it is necessary to compare 

the VDVs in the three translational directions on the seat cushion. The three VDVs 

and the total vibration dose value (TVDV, Eq. (2.11), p. 29) in each test operation are 

listed in Tab. 5.1, where the maximum VDV in each operation is marked with red 

color. 

 

Tab. 5.1: VDVs in three translational directions and the TVDVs on the seat cushion in 

all test operations 

Operation 
VDV (m/s1.75) TVDV 

(m/s1.75) 

(TVDV-MaxVDV)/MaxVDV*100 

(%) 11 x y z 

OP-1.1 10.57 14.98 10.78 16.63 10.95 

OP-1.2 10.57 13.59 9.56 15.31 12.67 

OP-1.3 39.99 30.96 37.55 48.35 20.91 

OP-1.4 45.30 39.66 36.78 54.02 19.24 

OP-2.1 21.86 34.11 13.46 35.65 4.51 

OP-2.2 22.65 26.39 12.46 29.64 12.32 

OP-2.3 47.52 27.37 40.35 53.69 12.99 

OP-3.1 43.29 14.83 25.58 44.69 3.23 

OP-3.2 45.69 10.28 29.75 47.64 4.28 

OP-4 23.18 17.17 16.81 25.98 12.08 

 

As shown in Tab. 5.1, in some operations the difference between the VDVs in two or 

three directions is not large. For example, in operations OP-1.1 to OP-1.4 and OP-4 

the VDVs in three directions have a similar magnitude. In the operation OP-2.2 the 

                                            
11

 MaxVDV is the maximum VDV in three directions. 
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VDVs in the x- and y-directions have a similar magnitude. In the operation OP-2.3 the 

VDVs in the x- and z-directions have a similar magnitude. According to ISO 2631-

1:1997 the TVDV should be used to evaluate the effect of WBV in the operations OP-

1.1 to OP-1.4, OP-2.2, OP-2.3 and OP-4.  

There is no criterion in ISO 2631-1:1997 to judge whether two VDVs are at the same 

level or not. From the VDVs in Tab. 5.1, it is hard to make a conclusion whether the 

VDVs in two directions at the same level or not in some operations, such as the 

VDVs in the x- and y-directions in the operation OP-2.1, as well as the VDVs in the x- 

and z-directions in operations OP-3.1 and OP-3.2. For these operations, it cannot be 

decided which value should be used for the evaluation, the maximum VDV or the 

TVDV. In order to solve this problem, the differences between the TVDVs and the 

maximum VDVs are analyzed, as shown in the first column from the right in Tab. 5.1. 

It can be observed that the differences between the TVDVs and the maximum VDVs 

are quite small in the test operations OP-2.1, OP-3.1 and OP-3.2. In this case, both 

of the TVDV and the maximum VDV can be used to evaluate the effect of WBV on 

the human health.  

Based on the analysis above, the TVDV is select in this research work to evaluate 

the effect of WBV arising from the CWL on the human health.  

5.1.1.3 Evaluation result 

In reality, the CWL does not execute any one of the operations in Tab. 5.1 exclusively 

during the whole day. In other words, each of the operations in Tab. 5.1 cannot be 

separately used to represent the daily work of the CWL. So, typical scenarios are to 

be defined by suitable mix of the operations. The main task of the CWL is to move 

materials from one location to another. The CWL mainly executes V-cycle like 

operation OP-4 and material transportation over short distances. In order to represent 

the daily work of the CWL, seven scenarios were proposed. These scenarios are 

comprised of operations OP-4, OP-1.1 and OP-1.2 respectively OP-4, OP-1.3 and 

OP-1.4. The repetition numbers of operations OP-1.1 and OP-1.2 or operations OP-

1.3 and OP-1.4 are different in these scenarios. They represent the different 

transportation distances between two V-cycles. A detailed description of these 

scenarios is presented in Tab. 5.2. Because operations OP-1.1 to OP-1.4 include 

driving over several short slopes, the operations of driving over obstacles are not 
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included in the proposed scenarios. All of these scenarios were used to estimate the 

daily WBV exposure and the permitted daily exposure durations.  

Based on the conclusions in sections 5.1.1.1 and 5.1.1.2, the total vibration dose 

value (TVDV) on the seat cushion is selected to evaluate the effect of WBV arising 

from the CWL on the human health. The TVDVs and the durations of all scenarios 

repeated nine times are presented in Tab. 5.3.  

 

Tab. 5.2: Description of the proposed operational scenarios for the CWL 

Scenario Number of OP-4 
Number of driving operations 

OP-1.1 OP-1.2 OP-1.3 OP-1.4 

S1 1 0 0 0 0 

S2-Slow 1 3 3 0 0 

S3-Slow 1 6 6 0 0 

S4-Slow 1 9 9 0 0 

S2-Fast 1 0 0 3 3 

S3-Fast 1 0 0 6 6 

S4-Fast 1 0 0 9 9 

 

Tab. 5.3: TVDVs and the durations for all scenarios repeated nine times 

Scenario TVDV (m/s1.75) Duration (s) 

S1 8.333 305 

S2-Slow 9.936 2465 

S3-Slow 11.006 4625 

S4-Slow 11.8315 6785 

S2-Fast 20.8319 1061 

S3-Fast 24.694 1817 

S4-Fast 27.299 2573 

 

The permitted daily exposure durations for all scenarios were calculated using Eq. 

(2.13) and (2.14) at page 30. The results are presented in Fig. 5.3. The blue line 

indicates the 8 h duration representing a work day.  
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As shown in Fig. 5.3, only for the scenario S4-Slow, the permitted daily exposure 

duration can reach 8 h. They hardly reach 8 h for another two scenarios (S2-Slow 

and S3-Slow). For the scenario of pure V-cycle (S1), the permitted daily exposure 

duration just reaches 1.5 h. Considering the health risks caused by WBV on the CWL, 

the driver should not be exposed to the vibrations in scenarios comprised of V-cycle 

and fast driving (S2-Fast to S4-Fast) longer than 8 minutes.  

 

Fig. 5.3: The permitted daily exposure durations for all scenarios estimated according 

to ISO 2631-1:1997 

5.1.2 Evaluation result according to ISO 2631-5:2004 

According to the procedure in ISO 2631-5:2004, the equivalent static compressive 

stress Se is to be used for the evaluation of the WBV effects on the human health. 

This standard has no other option of the evaluation method and requires vibrations in 

all three translational directions on the seat cushion for the evaluation, so that no 

evaluation method and vibration direction have to be selected contrary to ISO 2631-

1:1997. The Se values for all scenarios repeated nine times were calculated using Eq. 

(2.16) at page 31 and are presented in Tab. 5.4.  

The permitted daily exposure durations of all scenarios were calculated with Eq. 

(2.18) and (2.19) at page 31 and are illustrated in Fig. 5.4. The blue line still indicates 

the 8 h duration representing a work day. The red line indicates the 24 h of a whole 

day. The permitted daily exposure durations for the scenario of pure V-cycle and the 

scenarios comprised of V-cycle and slow driving can reach 8 hours. According to ISO 
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2631-5:2004, exposure to the vibrations in the scenarios comprised of V-cycle and 

fast driving can cause health risks, even when it lasts only 1.5 minutes. 

 

Tab. 5.4: Se values for all operational scenarios repeated nine times 

Scenario Se (MPa) 

S1 0.342 

S2-Slow 0.377 

S3-Slow 0.401 

S4-Slow 0.419 

S2-Fast 1.204 

S3-Fast 1.352 

S4-Fast 1.446 

 

 

Fig. 5.4: The permitted daily exposure durations for all scenarios estimated according 

to ISO 2631-5:2004 

5.1.3 Comparison of results of both ISO standards 

In ISO 2631-1:1997 and ISO 2631-5:2004 the daily WBV exposure is represented 

using the daily vibration dose value (VDVd, Eq. (2.12), p. 30) and the daily equivalent 

static compression dose Sed (Eq. (2.17), p. 31), respectively. The VDVd, Sed and the 

predicted health risks according to ISO 2631-1:1997 and ISO 2631-5:2004 are listed 

in Tab. 5.5. As shown in this table, health risks predicted according to ISO 2631-
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5:2004 are lower than those predicted according to ISO 2631-1:1997 for three 

scenarios (S1, S2-Slow and S3-Slow). The same health risks were predicted 

according to these two ISO standards for the other four scenarios. 

 

Tab. 5.5: Daily WBV exposure and predicted health risks according to ISO 2631-

1:1997 and ISO 2631-5:2004 

Scenario 
ISO 2631-1:1997 ISO 2631-5:2004 

VDVd (m/s1.75) Health risks Sed (MPa) Health risks 

S1 25.976 High  0.729 Moderate 

S2-Slow 18.370 High  0.568 Moderate 

S3-Slow 17.386 High  0.544 Moderate 

S4-Slow 16.982 Moderate 0.533 Moderate 

S2-Fast 47.550 High  2.088 High  

S3-Fast 49.272 High  2.143 High  

S4-Fast 49.933 High  2.163 High  

 

From Fig. 5.3, Fig. 5.4 and Tab. 5.5 it can be noticed that the evaluation results 

obtained according to ISO 2631-1:1997 and ISO 2631-5:2004 are different. It can be 

possibly caused by one or both of the following two reasons: 

1) The boundaries of the health guidance caution zone (HGCZ) in the two 

standards may be unequal; 

2) The vibration intensities quantified using the vibration dose value (VDV) 

method in ISO 2631-1:1997 and the equivalent static compressive stress (Se) 

method in ISO 2631-5:2004 may be at different levels.  

In order to identify the reasons, the following tasks need to be carried out. At first it 

needs to be studied whether the boundaries of the HGCZ in the two standards are 

equal. If yes, then the difference of evaluation results with two ISO standards is not 

caused by the HGCZ but by the quantification methods in both standards. If not, the 

equivalent boundaries of the HGCZ need to be found out and the permitted daily 

exposure durations need to be calculated using these equivalent boundaries. In this 

case, if the permitted daily exposure durations calculated according to the VDV 

methods and the Se method are the same, the reason for the different evaluation 

results with two ISO standards can be identified as the unequal boundaries of the 
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HGCZ in both standards. Otherwise, the reason can be identified as both the unequal 

boundaries and the quantification methods in two standards. 

The VDVd and Sed values of the WBV measured in all ten test operations (OP-1.1 to 

OP-4 in Tab. 4.1) are illustrated in Fig. 5.5. Here the WBV in all the ten operations 

were used only for the purpose to include more types of WBV into the analysis. It can 

be observed that there are two VDVd values within the HGCZ and eight above the 

HGCZ in ISO 2631-1:1997 represented by two blue lines. There is one Sed value 

below the HGCZ, three within the HGCZ and six above the HGCZ in ISO 2631-

5:2004 represented by two red lines. This means that the HGCZ in ISO 2631-5:2004 

is generally higher than that in ISO 2631-1:1997. The same conclusion can also be 

obtained from the Tab. 5.5. This proves that the HGCZ boundaries in ISO 2631-

1:1997 are not equivalent to those in ISO 2631-5:2004 for the evaluation of the effect 

of WBV on the human health. In the next step, the equivalent boundaries need to be 

found out.  

   

Fig. 5.5: The VDVd and Sed values of the WBV measured on the CWL in all ten test 

operations 

The boundaries of VDVd equivalent to those of Sed can be found out by analyzing the 

relationship between the VDVd and Sed values. A polynomial relationship between 

lg(VDVd) and lg(Sed) was observed and is expressed by Eq. (5.2). With this equation, 

the boundaries of Sed equivalent to those of VDVd in ISO 2631-1:1997 could be 

calculated as 0.34 and 0.52 MPa. The boundaries of VDVd equivalent to those of Sed 

in ISO 2631-5:2004 could be calculated as 16.1 and 29.3 m/s1.75. 

5587.1)lg(*8446.0)][lg(*0756.1)lg( 2  ededd SSVDV   (5.2) 

After the equivalent boundaries of VDVd and Sed are obtained, in the next step, the 

permitted daily exposure durations need to be calculated with the equivalent 
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boundaries, in order to determine the reasons for the different evaluation results 

obtained according to the two ISO standards. The permitted daily exposure durations 

of seven scenarios calculated using two sets of equivalent boundaries are shown in 

Fig. 5.6. 

 

Fig. 5.6: (a). The permitted daily exposure durations estimated using the old HGCZ in 

ISO 2631-1:1997 and the new HGCZ in ISO 2631-5:2004; (b). The permitted daily 

exposure durations estimated using the new HGCZ in ISO 2631-1:1997 and the old 

HGCZ in ISO 2631-5:2004 

It can be observed in Fig. 5.6 that for the scenario of pure V-cycle (S1) and the 

scenarios comprised of V-cycle and slow driving (S2-Slow to S4-Slow), similar 

permitted daily exposure durations were obtained using two sets of equivalent 

boundaries. It means that for these scenarios the different permitted daily exposure 
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durations in Fig. 5.3 and Fig. 5.4 are caused by the unequal boundaries of the HGCZ 

in ISO 2631-1:1997 and ISO 2631-5:2004.  

For scenarios comprised of V-cycle and fast driving (S2-Fast to S4-Fast), shorter 

permitted daily exposure durations are always estimated by the Se method in ISO 

2631-5:2004. It means that for these scenarios the different permitted daily exposure 

durations in Fig. 5.3 and Fig. 5.4 are caused not only by the unequal boundaries of 

the HGCZ but also by the quantification methods in two standards and the WBV 

types. The VDV method in ISO 2631-1:1997 calculates the total value of the 

frequency weighted accelerations, however, the Se method in ISO 2631-5:2004 only 

picks up the peaks of the spine accelerations. The vibrations when the CWL is driven 

at a high speed are severe and contain a lot of shocks with high amplitudes. 

Therefore, higher vibration intensity is estimated with the Se method. On the other 

hand, the Se method uses the sixth power instead of the fourth power of the VDV 

method. It makes the Se method more sensitive to the peaks. All of these reasons 

bring the result that the Se method in ISO 2631-5:2004 is more stringent than the 

VDV method in ISO 2631-1:1997 for the WBV in the scenarios comprised of V-cycle 

and fast driving. 

The ISO 2631-1:1997 was found underestimating the health risks caused by some 

types of WBV. A more stringent evaluation procedure is needed. This is the 

motivation to develop the ISO 2631-5:2004. [87] In this study for the WBV in 

scenarios S1 and S2-Slow to S4-Slow, the health risks predicted by ISO 2631-5:2004 

are lower than by ISO 2631-1:1997. This is contradictory to the motivation for 

developing the ISO 2631-5:2004. It means that ISO 2631-5:2004 is not suitable to 

predict the health risks caused by the WBV in scenarios S1 and S2-Slow to S4-Slow. 

This requires that in the revision of ISO 2631-5:2004 the preconditions of using this 

standard need to be included.  

For scenarios S1 and S2-Slow to S4-Slow the same health risks can be predicted 

using ISO 2631-5:2004 and ISO 2631-1:1997, when the HGCZ in ISO 2631-5:2004 

is lowered. No matter the original or the lowered HGCZ in ISO 2631-5:2004 is used, 

for WBV in scenarios S2-Fast to S4-Fast ISO 2631-5:2004 is always more stringent 

than ISO 2631-1:1997. This is in accord with the motivation to develop the ISO 2631-

5:2004. In future studies it should be validated whether the original or the lowered 

HGCZ in ISO 2631-5:2004 should be used to predict the health risks. 
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5.1.4 Other detailed specifications in two ISO standards 

Both procedures in ISO 2631-1:1997 and ISO 2631-5:2004 to evaluate the effect of 

WBV on the human health consist of several detailed specifications. These 

specifications include the quantification methods, the vibration locations and 

directions for the evaluation, the frequency weighting filters or the spine models, the 

multiplying factors and the health guidance caution zone (HGCZ).  

In section 5.1.1 to 5.1.3 some of these specifications are discussed, including the 

determination of the suitable quantification method and the selection of the desired 

vibration directions in ISO 2631-1:1997, as well as the quantification methods and 

the boundaries of HGCZ in two ISO standards. There are other specifications in 

these two standards which need to be discussed in this research work, such as the 

frequency weighting filters in ISO 2631-1:1997 and the spine models in ISO 2631-

5:2004, as well as the multiplying factors in both ISO standards. Several questions 

about these specifications are left unanswered. For example: 1). is it correct using 

the same frequency weighting filter or the same spine model to realize the human 

biodynamic response in the x- and y-directions? 2). are the frequency weighting 

filters and the spine models sufficient to realize the human biodynamic response? 3). 

is the human subjective sensitivity to vibrations in each direction equally weighted in 

both ISO standards? These questions are discussed in the following paragraphs. The 

discussion is based on the investigation results presented in the previous literatures. 

5.1.4.1 Frequency weighting filters and spine models 

According to ISO 2631-1:1997, frequency weighting filters (Fig. 2.23 (p. 28)) are 

adopted to reflect the human subjective sensitivity to WBV in the frequency domain. 

In ISO 2631-5:2004 two spine models (Fig. 2.24 (p. 31)) are introduced to simulate 

the human biodynamic response to WBV. In this research work the spine 

transmissibility is used to analyze the characteristics of the human biodynamic 

response simulated by the spine models. The spine transmissibility in the frequency 

domain was calculated using Eq. (2.1) (p. 17). To calculate the spine transmissibility, 

the input signals are the accelerations measured on the seat cushion. The output 

signals are the spine accelerations calculated using the spine models. 

In ISO 2631-1:1997 the same frequency weighting filter Wd is used for the 

accelerations in the x- and y-directions on the seat cushion. The curve of Wd in the 

frequency domain is presented in Fig. 2.23 (p. 28). It can be observed that it has high 
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weighting factors in the frequency range of 0.5-2 Hz. The transmissibility of the spine 

model in the x- and y-directions in ISO 2631-5:2004 is shown in Fig. 5.7. Because 

this spine model is a linear single degree of freedom (DOF) model, the spine 

transmissibility in these two directions is not affected by the input signals. The figure 

shows the resonance frequency of the spine model in the x- and y-directions at 2.125 

Hz. 

Contrary to that, as stated in section 2.1.3.1, the human biodynamic response in the 

x- and y-directions is nonlinear and affected by many factors, such as the 

employment of a backrest, the excitation magnitude and the human gender. The 

principal resonance frequency of the seated person in the x-direction was observed 

by many researchers in a wide range from 1 Hz to 6 Hz. It in the y-direction was 

observed at frequencies lower than 2 Hz.  

There is no doubt that the linear single-DOF spine model in ISO 2631-5:2004 cannot 

simulate the nonlinear human biodynamic response in the x- and y-directions 

properly. The filter Wd in ISO 2631-1:1997 weights vibrations in the range of 0.5-2 Hz 

with comparably high factors. Therefore it seems to be suitable to be used to reflect 

the characteristics of human subjective sensitivity in the y-direction. The principal 

resonance frequency of the seated person in the x-direction is at frequencies below 2 

Hz without a backrest. In this case, the Wd seems to be suitable to reflect the 

characteristics of the human subjective sensitivity in the x-direction. However, when a 

backrest is used, the principal resonance frequency of the seated person in the x-

direction occurs in the range of 2-6 Hz. In this case, the Wd is not adequate to reflect 

the characteristics of the human subjective sensitivity in this direction. 

   

Fig. 5.7: Transmissibility of the spine model in the x- and y-directions in ISO 2631-

5:2004 

Curves of transmissibility of the spine model in the z-direction are presented in Fig. 

5.8. Because this spine model is a nonlinear model, the spine transmissibility is 
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affected by the input signal. In other words, curves of the transmissibility are different 

when the input signals are obtained from different CWL operations. In Fig. 5.8 it can 

be noticed that the human biodynamic response simulated by the spine model in the 

z-direction has a large variation, when the driver is exposed to the WBV in different 

CWL operations. It can be observed that the spine transmissibility has the first peak 

at frequencies ranging from 4 Hz to 5 Hz in all operations. This is consistent with the 

investigation results in previous studies that the principal resonance frequency of the 

seated person in the z-direction occurs in the range of 4-6 Hz, as reviewed in section 

2.1.3.1.  

 

Fig. 5.8: Transmissibility of spine model in the z-direction in ISO 2631-5:2004 
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Under excitations with high magnitudes (OP-1.3, OP-1.4, OP-2.3, OP-3.1 and OP-

3.2), the second peaks can be observed at around 8 Hz. But they do not appear in 

the transmissibility under excitations with low and medium magnitudes (OP-1.1, OP-

1.2, OP-2.1, OP-2.2 and OP-4). This is inconsistent with the investigation results in 

previous studies. For example, in the study by Matsumoto and Griffin [56], the 

second peak was observed only on the curve of the transmissibility between the seat 

and the fifth lumbar vertebrae, but not on curves of the transmissibility between the 

seat and the first or the third lumbar vertebrae. In the study by Mansfield and Griffin 

[59], the second peaks of the seat to lumbar spine transmissibility were always 

observed at frequencies between 8 Hz to 10 Hz when the RMS values of the 

excitations range from 0.25 to 2.5 m/s2. Due to the above mentioned discussion, the 

spine model in the z-direction in ISO 2631-5:2004 still needs to be validated or 

improved at least for the persons exposed to the CWL vibrations.  

In ISO 2631-1:1997, the filter Wk is used for weighting the vertical accelerations on 

the seat cushion. Curve of Wk in Fig. 2.23 (p. 28) shows that seated persons are 

most sensitive to vertical vibrations in a wide range of 4-12.5 Hz, where the first and 

the second resonance frequencies of seated persons were observed in the previous 

studies. It means that the Wk seems to be suitable to be used to reflect the 

characteristics of the human subjective sensitivity to vibrations in the z-direction. 

5.1.4.2 Human subjective sensitivity in different directions 

Both ISO 2631-1:1997 and ISO 2631-5:2004 adopt multiplying factors to reflect the 

relative human subjective sensitivity to vibrations in different directions. Multiplying 

factors in the x-, y- and z-directions in ISO 2631-5:2004 are 0.015, 0.035 and 0.032 

respectively. This means that a person has a similar sensitivity to vibrations in the y- 

and z-directions, but is less sensitive to vibrations in the x-direction. In the ISO 2631-

1:1997 multiplying factors in the x-, y- and z-directions are 1.4, 1.4 and 1. Different 

from the other standard, here the person has a similar sensitivity to vibrations in the 

x- and y-directions but is less sensitive to vibrations in the z-direction. It can be 

concluded that the human subjective sensitivity to vibrations in different directions is 

inconsistent in these two ISO standards. 
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5.2 Evaluation of effect on ride comfort 

Procedures to evaluate the effect of WBV on ride comfort are introduced in two ISO 

standards: ISO 2631-1:1985 and ISO 2631-1:1997. According to the ISO 2631-

1:1997, the overall vibration total value (OVTV) (Eq. (2.21), p. 40) should be 

calculated and compared with the boundaries for the approximate indications of likely 

reactions of comfort (Tab. 2.11, p. 41). The OVTV is a numerical value, which cannot 

be used to analyze the vibration characteristics depending on the frequency and the 

exposure duration. This analysis can be carried out by calculating the root mean 

square (RMS) value of accelerations in each 1/3 octave band (ã1/3ob, Eq. (2.20), p. 38) 

and comparing it to the reduced comfort boundary (RCB, Fig. 2.25, p. 38) according 

to the ISO 2631-1:1985. Therefore, although ISO 2631-1:1985 has been replaced by 

its successor ISO 2631-1:1997, it is still used for the ride comfort evaluation in this 

research work.  

5.2.1 Evaluation result according to ISO 2631-1:1985 

According to the evaluation procedure in ISO 2631-1:1985, the RMS values of 

accelerations in the 1/3 octave band (ã1/3ob) in the three translational directions on the 

seat cushion in the seven scenarios (Tab. 5.2, p. 83) were calculated using Eq. (2.20) 

(p. 38) and compared with the RCB curves given in this standard. The comparison 

results are illustrated in Fig. 5.9 to Fig. 5.11. The differences of RMS values in 

scenarios S2-Fast, S3-Fast and S4-Fast are very small. The RMS values in the 

scenario S3-Fast are not given in these figures, because it is very hard to recognize 

them from the RMS values in scenarios S2-Fast and S4-Fast. In fact they are 

between the RMS values in scenarios S2-Fast and S4-Fast.  

As shown in Fig. 5.9, in the scenario of pure V-cycle and the scenarios comprised of 

V-cycle and slow driving, the maximum RMS value in the x-direction occurs at 2 Hz. 

It occurs at 1.6 Hz in three scenarios comprised of V-cycle and fast driving. The 

longitudinal vibrations are mainly caused by the pitch movement of the vehicle during 

driving, as well as by stopping and accelerating the vehicle during V-cycle. As 

observed in Fig. 4.8 (p. 68), the shift of the frequency at which the maximum RMS 

value at the seat base occurs is hardly affected by the driving speed. Therefore, in 

Fig. 5.9 on the seat cushion the frequency at which the maximum RMS value occurs 

shifts to a lower frequency with the increase of the vehicle speed can be attributed to 

the nonlinearity of the longitudinal dynamics of the seat-driver system.  
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In Fig. 5.10 the maximum RMS value in the y-direction occurs at 1.25 Hz in the 

scenario of pure V-cycle and the scenarios comprised of V-cycle and slow driving. It 

occurs at 2.5 Hz in the scenarios comprised of V-cycle and fast driving. The lateral 

vibrations are mainly generated by the roll movement of the vehicle during driving, as 

well as by the turning of the vehicle during V-cycle. The excitation frequency for the 

roll movement increases as the vehicle speed. Accordingly, the roll movement as well 

as the lateral vibrations shifts to a higher frequency range, when the vehicle speed 

increases.  

In Fig. 5.11 the maximum RMS value in the z-direction occurs at 2.5 Hz in all 

scenarios. The vertical vibrations are mainly generated by the unevenness of the 

road surface and largely affected by the whole vehicle dynamics.  

 

Fig. 5.9: Comparison of RMS values and RCB in the x-direction 

 

Fig. 5.10: Comparison of RMS values and RCB in the y-direction 
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Fig. 5.11: Comparison of RMS values and RCB in the z-direction 

It can be noticed that in scenarios comprised of V-cycle and slow driving (S2-Slow to 

S4-Slow) accelerations in the x-, y- and z-directions are at the same level. In the 

other scenarios (S1, S2-Fast to S4-Fast) the acceleration levels in the x- and z-

directions are higher than those in the y-direction. During the V-cycle, the longitudinal 

vibrations caused by the decelerating and accelerating of the vehicle, and the vertical 

vibrations caused by the road unevenness and by the loading and dumping of 

materials, are larger than the lateral vibrations caused by the turning of the vehicle. 

During the fast driving, the pitch and the vertical movements are severer than the roll 

movement. Therefore the longitudinal and the vertical vibrations are larger than the 

lateral vibrations.  

The permitted exposure durations for all scenarios are taken from Fig. 5.9 to Fig. 

5.11 and summarized in Tab. 5.6. It can be concluded that the permitted exposure 

durations for ride comfort estimated by the WBV in the x- and z-directions are equal 

to or shorter than those estimated by the WBV in the y-direction. For the scenarios 

comprised of V-cycle and slow driving, the permitted exposure durations for ride 

comfort can reach 1 h. If the exposure duration in the scenario of pure V-cycle 

exceeds 16 min, the WBV on the CWL will lead to ride discomfort. In consideration of 

ride comfort, the CWL should not be driven on an uneven road surface at a speed as 

high as 19.8 km/h.  
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Tab. 5.6: Permitted exposure durations for ride comfort estimated according to ISO 

2631-1:1985 

Scenario 
Permitted exposure durations 

x-direction y-direction z-direction 

S1 16 min 25 min 16 min 

S2-Slow 1 h 1 h 1 h 

S3-Slow 1 h 1 h 1 h 

S4-Slow 1 h 1 h 1 h 

S2-Fast < 1 min 16 min < 1 min 

S3-Fast < 1 min 16 min < 1 min 

S4-Fast < 1 min 16 min < 1 min 

 

5.2.2 Evaluation result according to ISO 2631-1:1997 

Similar to the evaluation of WBV effect on the human health according to ISO 2631-

1:1997, the suitable quantification method and the vibration directions should be 

determined at the beginning of the evaluation of the WBV effect on the ride comfort 

according to this standard. 

Three quantification methods are described in ISO 2631-1:1997. However, 

boundaries of vibration dose value (VDV) and maximum transient vibration value 

(MTVV) for different levels of ride discomfort are not given in this standard. Therefore, 

only the RMS method can be used to determine the levels of ride discomfort caused 

by WBV on the compact wheel loader (CWL).  

There is still debate about the vibration directions needed for the evaluation of the 

WBV effect on ride comfort. It is defined in ISO 2631-1:1997 that the WBV in three 

translational directions on the seat cushion, on the seat backrest and at the feet as 

well as WBV in three rotational directions on the seat cushion should be used to 

evaluate the effect of WBV on the ride comfort. It means that vibrations on the seat 

backrest and at the feet lead to a decrease in the ride comfort compared to that 

evaluated only using the vibrations on the seat cushion. This is contrary to the 

investigation by Wyllie and Griffin that vibrations at the feet lead to an increase of ride 

comfort when the feet are supported [143]. On the other hand, as reviewed in section 

2.2.2.3, it has been proven that there is a high coherence between the objective 
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prediction and the subjective judgment about the ride comfort, if the vector sum value 

(VSV) of the RMS values of frequency weighted accelerations in the three 

translational directions on the seat cushion is used as the objective method 

[39],[117]-[119]. In view of the above, the accelerations measured in three 

translational directions on the seat cushion are used to evaluate the effect of WBV on 

the ride comfort in this research work. 

The VSVs on the seat cushion in all scenarios were calculated with Eq. (2.10) (p. 29). 

A comparison between the VSVs and the boundaries for different levels of ride 

discomfort given in ISO 2631-1:1997 (Tab. 2.11, p. 41) is presented in Fig. 5.12. 

It can be observed that VSVs in all scenarios exceed the boundary for the level of 

„Uncomfortable‟. The VSVs in the scenarios comprised of V-cycle and fast driving 

even exceed the boundary for the level of „Extremely Uncomfortable‟ a little.  

From the evaluation results according to ISO 2631-1:1985 and ISO 2631-1:1997, it 

can be summarized that the WBV on the CWL can cause ride discomfort. In order to 

protect the driver from the ride discomfort, the CWL should not be operated at high 

speeds on a rough road surface.  

 

Fig. 5.12: VSVs on the seat cushion in all scenarios and the boundaries for levels of 

‘Uncomfortable’ and ‘Extremely Uncomfortable’ in ISO 2631-1:1997 

5.3 Conclusion 

The main conclusions obtained based on the analysis in this chapter are as follows: 

1) Several specifications in the ISO 2631-1:1997 standard are ambiguous when 

they are used to evaluate the effect of WBV on the human health. Amendments 

are proposed in this research work for these specifications. At first, the critical 
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values of crest factor (CF), MTVV/ãw and VDV/(ãwT1/4) in the standard are not 

sufficient to determine the suitable quantification method for the WBV on the 

compact wheel loader (CWL). They are proposed to be modified from 9, 1.5 and 

1.75 to 4.5, 2 and 1.54. The modified critical values can be used to determine 

the suitable quantification method for the WBV which have the same 

characteristics as those on the CWL. The difference between the estimated 

vibration dose value (eVDV) and the vibration dose value (VDV) is represented 

as the Diff value in this study. It can be used to determine the suitable 

quantification method for all types of WBV. Secondly, it is not clearly defined in 

ISO 2631-1:1997 how to select the vibration directions for the evaluation. Based 

on the analysis, this study suggests that VDVs in all three translational 

directions on the seat cushion should be used in combination to evaluate the 

effect of WBV arising from the CWL on the human health. 

2) Some specifications in ISO 2631-1:1997 and ISO 2631-5:2004 are doubtful for 

the evaluation of WBV on a CWL, such as the frequency weighting filter Wd in 

ISO 2631-1:1997 for the longitudinal vibrations, both spine models in ISO 2631-

5:2004 and the multiplying factors in both ISO standards. More investigations 

on the relationship between the human response and the WBV exposure are 

still needed to validate or improve these specifications.  

3) Different health evaluation results were obtained according to ISO 2631-1:1997 

and ISO 2631-5:2004. They are caused by the unequal boundaries of the health 

guidance caution zone (HGCZ) in both standards, as well as the quantification 

methods and the properties of the WBV on the CWL. For the WBV arising from 

the CWL, the boundaries of the HGCZ in ISO 2631-5:2004 are higher than 

those in ISO 2631-1:1997. The relationship between the daily vibration dose 

values (VDVd) and the daily equivalent static compression dose values (Sed) of 

the WBV on the CWL was obtained. Based on this relationship, two sets of 

equivalent HGCZ boundaries for Sed and VDVd were obtained. Using these two 

sets of equivalent boundaries, similar permitted daily exposure durations were 

obtained for the scenario of pure V-cycle or the scenarios comprised of V-cycle 

and slow driving. For the scenarios comprised of V-cycle and fast driving, the 

permitted daily exposure durations estimated using the equivalent static 

compressive stress (Se) method are much shorter than those estimated using 

the VDV method. This is because the Se method is more stringent than the VDV 
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method for the WBV containing a lot of shocks, such as the WBV measured on 

the CWL during fast driving. 

4) The evaluation results in this study show that long-term exposure to the WBV 

arising from the CWL has the potential to cause health risks, and short-term 

exposure can lead to ride discomfort. This indicates that there is a necessity to 

reduce the WBV on the CWL. It can be achieved by optimizing suspension 

systems on the CWL and by improving the driver sitting situations. The driver 

sitting situation can be improved by selecting a proper type of safety belt for the 

driver. Optimization of the cabin and axle suspension systems is relatively 

complicated, because the limited space and the whole vehicle dynamics need 

to be taken into account. Employment of a cabin or axle suspension system can 

also increase the cost of the vehicle. In contrast, optimization of the seat 

suspension system is much easier and more economical. It can be taken as the 

first step for the improvement of suspension systems and for the reduction of 

WBV on the CWL. 



6 Effect of Safety Belt on Seat Transmissibility 101 

6 Effect of Safety Belt on Seat Transmissibility 

Because seat and driver interact with each other, the seat transmissibility is affected 

by the dynamic characteristics of the driver. In addition, the safety belt constrains the 

movement of the driver and affects his or her dynamic characteristics. Therefore, the 

safety belt has an effect on the seat transmissibility.  

In the field tests of vibration measurement, accelerations on the seat cushion and at 

the seat base were measured in three cases of safety belt wearing: the driver did not 

wear a safety belt (case A), the driver wore an automatic lap belt (case B) and the 

driver wore a four-point seat harness (case C). According to previous literatures, two 

parameters can be used to study the seat transmissibility: the seat effective 

amplitude transmissibility (SEAT) (Eq. (2.24), p. 44) and the seat transmissibility in 

the frequency domain derived from the cross spectral density (CSD) method (Eq. 

(2.1), p. 17). In this chapter these two parameters are analyzed to investigate the 

effect of different safety belts on the seat transmissibility. Additionally, comments on 

the comfort made by the driver are used as an aspect to evaluate the effect of a 

safety belt on the ride comfort. 

6.1 Lap belt (case B) vs. no belt (case A) 

To study the effect of a lap belt on the seat transmissibility, SEAT values and seat 

transmissibility in the frequency domain in case B are compared with those in case A. 

This comparison involves five operations (OP-1.3, OP-2.1, OP-2.3, OP-3.1 and OP-

4), those in which the vibration measurements in case A were carried out.  

6.1.1 Comparison of seat effective amplitude transmissibility (SEAT) 

The SEAT values in the three translational directions in cases A and B are given in 

Tab. 6.1, where these values are classified into the following three groups: 

1) The SEAT value exceeds 1 (marked with red color). This means that the 

vibration intensity is amplified by the seat-driver system.  

2) The SEAT value is lower than 1 (marked with black color). In this situation, 

vibrations from the seat base are attenuated by the seat-driver system.  

3)  The SEAT value is equal to 1 (marked with green color). The vibration intensity 

on the seat cushion is equal to that at the seat base. 
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Tab. 6.1: SEAT values in cases A and B 

Test operation Direction 
SEAT value 

case A case B 

OP-1.3 

x 1.64 1.63 

y 1.22 1.10 

z 1.00 0.93 

OP-2.1 

x 1.62 1.46 

y 1.11 1.08 

z 0.95 0.93 

OP-2.3 

x 1.48 1.65 

y 1.36 1.16 

z 1.15 0.90 

OP-3.1 

x 1.55 1.48 

y 1.37 1.49 

z 1.28 0.93 

OP-4 

x 1.08 1.12 

y 1.02 1.07 

z 0.87 0.84 

 

In Tab. 6.1, the SEAT values in the x-direction are larger than those in the y- and z-

directions. All SEAT values in the x- and y-directions exceed 1. It means that the 

longitudinal and the lateral vibrations from the seat base are amplified by the seat-

driver system. The lowest SEAT values occur in the z-direction. In case B, the SEAT 

values in the z-direction in all five operations are less than 1. It means that in these 

operations the vertical vibrations from the seat base are attenuated by the seat-driver 

system when the lap belt is used. The differences between the SEAT values in cases 

A and B were calculated with Eq. (6.1) and are illustrated in Fig. 6.1.  
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SEAT

SEATSEAT
SEAT


   (6.1) 

with 

      SEAT value in the case where the driver does not wear any safety belt 

        Difference between the SEAT values in the case where the driver wears a lap belt and 
in the case where the driver does not wear any safety belt 

      SEAT value in the case where the driver wears a lap belt 
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The positive SEATAB% value means that the lap belt causes an increase of the SEAT 

value. Fewer vibrations are attenuated by the seat-lap belt-driver configuration than 

the seat-no belt-driver configuration. The negative value means that the lap belt 

causes a decrease of the SEAT value. More vibrations are attenuated by the seat-lap 

belt-driver configuration. 

In Fig. 6.1, in the x- and y-directions most SEATAB% values are in the range from -10% 

to 10%. This means that the differences between the SEAT values in cases A and B 

are quite small. In the x-direction, two positive SEATAB% values occur in operations 

OP-2.3 and OP-4. In the y-direction, two positive values occur in operations OP-3.1 

and OP-4, and negative values can be observed especially in operations OP-1.3 and 

OP-2.3. In the z-direction, all SEATAB% values are negative. It indicates that the lap 

belt causes a decrease of SEAT values in the z-direction in these operations. The 

decrease is significant in operations with a high level of vibrations, such as 

operations OP-2.3 and OP-3.1.  

 

Fig. 6.1: Differences between the SEAT values in cases A and B 

6.1.2 Comparison of seat transmissibility in the frequency domain 

The curves of seat transmissibility in the frequency range of 0.5-16 Hz in case B are 

compared with those in case A in Fig. 6.2.  

It can be noticed that in the x-direction the lap belt causes an increase of the seat 

transmissibility at frequencies lower than 3 Hz in operations OP-2.3 and OP-4. This is 

the reason for two positive SEATAB% values in Fig. 6.1. It also causes a decrease of 

the seat transmissibility at frequencies above 6 Hz, especially in operations OP-2.1 

and OP-3.1. This is the reason for the negative SEATAB% values.  

In the y-direction, the lap belt causes an increase of the seat transmissibility at 

frequencies lower than 2.5 Hz. The increase is obvious in operations OP-2.3, OP-3.1 
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and OP-4. This leads to the positive SEATAB% values in Fig. 6.1. It can also be 

observed that the lap belt causes a decrease of the seat transmissibility at 

frequencies ranging from 2.5 Hz to 5 Hz in the operation OP-3.1 and at frequencies 

above 4 Hz in another four operations, especially in the operation OP-2.3. This is the 

reason for the negative SEATAB% values. 

 

Fig. 6.2: Comparison of the seat transmissibility in cases A and B 
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In the z-direction, the lap belt causes a decrease of the seat transmissibility at 

frequencies higher than 4 Hz, especially in operations OP-2.1, OP-2.3 and OP-3.1. It 

can also be observed that in some operations the lap belt causes a decrease of the 

seat transmissibility at frequencies below 1.5 Hz and a very small increase between 

1.5 Hz and 4 Hz.  

The comparison of the SEAT values in cases A and B shows that the lap belt causes 

an increase of the SEAT value in the x- and y-directions in some operations. It 

causes a decrease of the SEAT value in the z-direction in all operations. When the 

driver does not wear a safety belt, he can adjust his posture and move freely to 

attenuate a part of vibrations. The lap belt restricts the movement of the driver. This 

brings the result that fewer vibrations are attenuated by the driver‟s movement. Like a 

mass-spring-damper system with a lower damping ratio, this causes the increase of 

the seat transmissibility at frequencies below 3 Hz in the x-direction, below 2.5 Hz in 

the y-direction and between 1.5 Hz and 4 Hz in the z-direction. It also leads to the 

decrease of the seat transmissibility at frequencies between 2.5 Hz and 4 Hz in the y-

direction and at frequencies below 1.5 Hz in the z-direction. When vibrations are 

severe, the lap belt is activated and locked up. This avoids the driver leaving and 

impacting the seat and reduces the vibrations generated by the impacts between the 

driver and the seat. Due to this reason, the lap belt causes the decrease of the seat 

transmissibility at frequencies above 4 Hz in all three directions. 

6.2 Four-point seat harness (case C) vs. no belt (case A) 

In order to investigate the effect of a four-point seat harness on the seat 

transmissibility, the seat effective amplitude transmissibility (SEAT) values and the 

seat transmissibility in the frequency domain in case C are firstly compared with 

those in case A.  

6.2.1 Comparison of seat effective amplitude transmissibility (SEAT) 

The SEAT values in the three translational directions in cases A and C are given in 

Tab. 6.2, where these values are also classified into three groups as described in 

section 6.1.1. In Tab. 6.2 most of the SEAT values exceed 1. In all five operations the 

highest SEAT values occur in the x-direction, and the lowest occur in the z-direction. 
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The differences between the SEAT values in these two cases were calculated with 

Eq. (6.2) and are illustrated in Fig. 6.3.  

Tab. 6.2: SEAT values in cases A and C 

Test operation Direction 
SEAT value 

case A case C 

OP-1.3 

x 1.64 1.77 

y12   

z 1.00 1.03 

OP-2.1 

x 1.62 1.58 

y 1.11 1.15 

z 0.95 0.93 

OP-2.3 

x 1.48 1.80 

y 1.36 1.18 

z 1.15 1.00 

OP-3.1 

x 1.55 1.48 

y 1.37 1.41 

z 1.28 1.01 

OP-4 

x 1.08 1.16 

y 1.02 1.09 

z 0.87 0.90 
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        Difference between SEAT values in the case where the driver wears a four-point seat 
harness and in the case where the driver does not wear any safety belt 

      SEAT value in the case where the driver wears a four-point seat harness 

 

It can be observed in Fig. 6.3 that most of the SEATAC% values are in the range from 

-10% to 10%, which means that in general the differences between the SEAT values 

in cases A and C are very small. In the x-direction, three SEATAC% values are 

positive and one exceeds 10%. This means that the four-point seat harness causes 

                                            
12

 The signal in case C is defective. 
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an increase of the SEAT value in the x-direction. Fewer longitudinal vibrations are 

attenuated by the seat-harness-driver configuration than the seat-no belt-driver 

configuration. Only one negative SEATAC% value can be observed in the y-direction. 

In the z-direction three negative SEATAC% values can be observed, especially in 

operations OP-2.3 and OP-3.1. The negative value means that the four-point seat 

harness causes a decrease of the SEAT value and more vibrations are attenuated by 

the seat-harness-driver configuration. 

 

Fig. 6.3: Differences between the SEAT values in cases A and C 

6.2.2 Comparison of seat transmissibility in the frequency domain 

The curves of seat transmissibility in the frequency range of 0.5-16 Hz in case C are 

compared with those in case A in Fig. 6.4.  

In Fig. 6.4 it can be noticed that in the x-direction the seat transmissibility in case C is 

a little larger than that in case A at frequencies lower than 3 Hz, especially in 

operations OP-2.3 and OP-4. This is the reason for the positive SEATAC% values in 

Fig. 6.3. In addition, the four-point seat harness causes a decrease of the seat 

transmissibility at frequencies above 4 Hz in this direction.  

In the y-direction, in all four operations the seat transmissibility in case C is larger 

than that in case A at frequencies below 2 Hz, and smaller at frequencies in the 

range from 2 Hz to 8 Hz, especially in operations OP-2.3 and OP-3.1.  

In the z-direction, the seat transmissibility in case C is a little larger than that in case 

A in the frequency range from 1.5 Hz to 4 Hz, and smaller at frequencies higher than 

4 Hz. It can be observed that in some operations the four-point seat harness also 

causes a decrease of the seat transmissibility at frequencies below 1.5 Hz. 



108 6 Effect of Safety Belt on Seat Transmissibility 

 

Fig. 6.4: Comparison of the seat transmissibility in cases A and C 

The comparison of the SEAT values in cases A and C shows that the four-point seat 

harness can cause an increase of the SEAT value in all three directions, especially in 

the x- and y-directions. It can cause a decrease of the SEAT value in the z-direction 

in operations with a high level of vibrations. The comparison of the seat 

transmissibility in the frequency domain shows that the four-point seat harness 
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causes the increase of the seat transmissibility at frequencies lower than 3 Hz in the 

x-direction, at frequencies lower than 2 Hz in the y-direction, and also in the 

frequency range of 1.5-4 Hz in the z-direction. This is because the four-point seat 

harness restricts the movement of the driver and reduces the vibrations attenuated 

by the driver‟s movement. On the other hand, the four-point seat harness causes the 

decrease of the seat transmissibility in all three directions at frequencies higher than 

4 Hz. This is because the four-point seat harness avoids the driver leaving and 

impacting the seat and reduces the vibrations generated by the impacts between the 

driver and the seat.  

6.3 Four-point seat harness (case C) vs. lap belt (case B) 

The vibration measurements were carried out in all ten operations described in Tab. 

4.1 (p. 62) in both of cases B and C. In this section, these ten operations are divided 

into two groups depending on the vibration severity. The first group includes 

operations with a low level of vibrations, such as OP-1.1, OP-1.2, OP-2.1, OP-2.2 

and OP-4. The second group includes operations with a high level of vibrations, such 

as OP-1.3, OP-1.4, OP-2.3, OP-3.1 and OP-3.2. 

6.3.1 Comparison of seat effective amplitude transmissibility (SEAT) 

The SEAT values in the three translational directions in cases B and C are given in 

Tab. 6.3 and Tab. 6.4. They are also divided into three groups as in section 6.1.1. 

The differences between the SEAT values in these two cases were calculated with 

Eq. (6.3) and are illustrated in Fig. 6.5 and Fig. 6.6. 
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        Difference between the SEAT values in the case where the driver wears a four-point 
seat harness and in the case where the driver wears a lap belt 

 

In Tab. 6.3 the SEAT values in cases B and C in operations with a low level of 

vibrations are presented. It can be noticed that the highest SEAT values occur in the 

x-direction, and the lowest occur in the z-direction. All SEAT values in the x- and y-

directions exceed 1. In the z-direction the SEAT values in operations OP-1.1 and OP-
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1.2 exceed 1 as well. And they are less than 1 in the other three operations, except 

for the case B in the operation OP-2.2, where the SEAT value exceeds 1 only a little 

bit. It can be concluded that whether the vertical vibrations are attenuated or 

amplified by the seat-driver system depends on the vehicle operations.  

 

Tab. 6.3: SEAT values in cases B and C in operations with a low level of vibrations 

Test operation Direction 
SEAT 

case B case C 

OP-1.1 

x 1.39 1.45 

y 1.05 1.22 

z 1.21 1.22 

OP-1.2 

x 1.32 1.38 

y 1.03 1.17 

z 1.24 1.23 

OP-2.1 

x 1.46 1.58 

y 1.08 1.15 

z 0.93 0.93 

OP-2.2 

x 1.32 1.41 

y 1.06 1.38 

z 1.02 0.95 

OP-4 

x 1.12 1.16 

y 1.07 1.09 

z 0.84 0.90 

 

In Fig. 6.5 the differences between the SEAT values in cases B and C in operations 

with a low level of vibrations are presented. All SEATBC% values in the x- and y-

directions are positive, which means that the SEAT values increase when the driver 

wears a four-point seat harness instead of a lap belt. The increase is quite small in 

the x-direction (smaller than 10%) and large in the y-direction. In the z-direction, the 

differences between cases B and C are smaller than 8%. 
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Fig. 6.5: Differences between the SEAT values in cases B and C in operations with a 

low level of vibrations 

Tab. 6.4: SEAT values in cases B and C in operations with a high level of vibrations 

Test operation Direction 
SEAT 

case B case C 

OP-1.3 

x 1.63 1.77 

y13   

z 0.93 1.03 

OP-1.4 

x 1.73 2.30 

y 1.14 1.04 

z 0.92 1.08 

OP-2.3 

x 1.65 1.80 

y 1.16 1.18 

z 0.90 1.00 

OP-3.1 

x 1.48 1.48 

y 1.49 1.41 

z 0.93 1.01 

OP-3.2 

x 1.46 1.61 

y14   

z 0.95 1.03 

 

In Tab. 6.4 the SEAT values in cases B and C during the operations with a high level 

of vibrations are presented. It can be noticed that the highest SEAT values occur in 

the x-direction, and the lowest occur in the z-direction. All SEAT values in the x- and 

                                            
13

 The signal in case C is defective. 
14

 Same with Footnote 13. 
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y-directions exceed 1. The SEAT values in the x-direction in Tab. 6.4 are much larger 

than those in Tab. 6.3 with the operations that cause low vibrational excitations. In 

the z-direction, all SEAT values in case B are less than 1, while in case C all SEAT 

values exceed 1 a little bit. In other words, in operations with a high level of vibrations 

the vertical vibrations are attenuated by the seat-driver system when a lap belt is 

used, but amplified when a four-point seat harness is used. 

In Fig. 6.6 the differences between the SEAT values in cases B and C in operations 

with a high level of vibrations are presented. All SEATBC% values in the x- and z-

directions are positive, which means that the SEAT values in these two directions 

increase when the driver wears a four-point seat harness instead of a lap belt. There 

is a very small decrease of the SEAT value in the y-direction when the driver wears a 

four-point seat harness instead of a lap belt.  

 

Fig. 6.6: Differences between the SEAT values in cases B and C in operations with a 

high level of vibrations 

6.3.2 Comparison of seat transmissibility in the frequency domain 

The curves of seat transmissibility in the frequency range of 0.5-16 Hz in case C are 

compared with those in case B in Fig. 6.7 and Fig. 6.8.  

In Fig. 6.7 the comparison of the seat transmissibility in cases B and C during the 

operations with a low level of vibrations is presented. In the x- and z-directions, the 

differences between the seat transmissibility in cases B and C are very small, except 

for the operation OP-1.1. Only in this operation, the seat transmissibility with the four-

point seat harness is much lower than that with the lap belt at frequencies above 3 

Hz in all three directions. This phenomenon is possibly caused by the disturbance or 

the noise in the signals. It can be observed that in the x-direction the seat 

transmissibility increases slightly at frequencies lower than about 3 Hz and decreases 
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a little bit only in operations OP-1.2 and OP-4 between 4 Hz and 8 Hz, when the 

driver wears a four-point seat harness instead of a lap belt. In the y-direction, it is 

visible that the seat transmissibility increases at frequencies lower than about 2 Hz 

and decreases slightly between 2 Hz and 4 Hz when the driver wears a four-point 

seat harness instead of a lap belt. 

 

Fig. 6.7: Comparison of the seat transmissibility in cases B and C in operations with a 

low level of vibrations 
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Fig. 6.8: Comparison of the seat transmissibility in cases B and C in operations with a 

high level of vibrations 

In Fig. 6.8 the comparison of the seat transmissibility in cases B and C in operations 

with a high level of vibrations is presented. When the driver wears a four-point seat 

harness instead of a lap belt, the seat transmissibility increases a little bit at 

frequencies lower than about 3 Hz in the x-direction, and decreases largely only at 
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frequencies above 3 Hz in the operation OP-1.3. In the y-direction it increases a little 

at frequencies lower than 2 Hz and decreases slightly in the frequency range of 2-4 

Hz. Moreover, in the z-direction it decreases a little at frequencies lower than 1.5 Hz 

and increases very slightly in the frequency range of 1.5-4 Hz. 

The comparison of the SEAT values in cases B and C shows that in operations with a 

low level of vibrations the SEAT values in the x- and y-directions increase when the 

driver wears a four-point seat harness instead of a lap belt. In operations with a high 

level of vibrations, the SEAT values in the x- and z-direction increases a little when 

the driver wears a four-point seat harness instead of a lap belt. From the comparison 

of the seat transmissibility in the frequency domain in cases B and C, it can be 

concluded that, when the driver wears a four-point seat harness instead of a lap belt, 

in the x-direction there is a small increase of the seat transmissibility at frequencies 

lower than 3 Hz; in the y-direction the seat transmissibility increases at frequencies 

lower than 2 Hz and decreases slightly between 2 Hz and 4 Hz; and it increases at 

frequencies ranging from 1.5 Hz to 4 Hz in the z-direction in operations with a high 

level of vibrations. This is due to the fact that the four-point seat harness restricts the 

movement of the driver more largely than the lap belt. This leads to fewer vibrations 

attenuated by the movement of the driver and causes the increase of the seat 

transmissibility. 

6.4 Subjective comments on ride comfort 

After each field test, comments on the ride comfort with different safety belts were 

collected from the driver. From the subjective comments it can be concluded that:  

1) In all operations, the driver did not have any negative feeling when he wore the 

lap belt. The driver still can move his upper body freely. There was no obvious 

difference of the feeling between cases A and B;  

2) Compared with the lap belt, the four-point seat harness did not cause more 

discomfort in operations with a low level of vibrations. But in operations with a 

high level of vibrations, the four-point seat harness generated more discomfort 

than the lap belt, because it restricted the movement of the driver and also 

transmitted more vibrations from the backrest and the harness to the driver‟s 

upper body by fixing it with the backrest. The driver commented that a large 

stress on shoulders was caused by the four-point seat harness. 
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6.5 Conclusion 

In all operations the highest seat effective amplitude transmissibility (SEAT) values 

occur in the x-direction and the lowest occur in the z-direction. All SEAT values in the 

x- and y-directions exceed 1. It means that the seat-driver system amplifies the 

vibrations in both directions. There is a potential to reduce the SEAT values in these 

two directions by employing the seat suspension system, especially for the x-

direction. 

Compared to the case that the driver does not wear a safety belt, the lap belt and the 

four-point seat harness play a role in reducing the SEAT value, especially in the z-

direction. They cause a decrease of the seat transmissibility at frequencies above 4 

Hz in all three directions. This is due to the fact that the lap belt and the four-point 

seat harness prevent the driver from leaving and impacting the seat and reduce the 

vibrations generated by these impacts. The lap belt and the four-point seat harness 

also cause an increase of the seat transmissibility in the x-direction at frequencies 

below 3 Hz and in the y-direction at frequencies below 2 Hz and also in the z-

direction at frequencies ranging from 1.5 Hz to 4 Hz. This is because both safety 

belts restrict the movement of the driver and reduce the vibrations attenuated by the 

driver‟s movement. Due to the increase of the seat transmissibility in the x- and y-

directions, a small increase of the SEAT value in these two directions occurs in some 

operations.  

Generally, compared to the lap belt, the four-point seat harness causes an increase 

of the SEAT value. It leads to an increase of the seat transmissibility in the x-direction 

at frequencies below 3 Hz and in the y-direction at frequencies below 2 Hz and also 

in the z-direction in the frequency range of 1.5-4 Hz. This is because the four-point 

seat harness restricts the driver‟s movement more strongly than the lap belt.  

According to the comments from the driver, the lap belt does not cause a 

deterioration of the comfort. Compared to it, the four-point seat harness does not lead 

to more discomfort in operations with a low level of vibrations, but leads to more 

discomfort in operations with a high level of vibrations. The four-point seat harness 

transmits more vibrations through the backrest and the harness to the driver. 

Additionally, the four-point seat harness generates a large stress on the shoulders. 

In summary, it is concluded that the lap belt is the favorable safety belt to wear on a 

compact wheel loader.  
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7 Optimization of Seat Suspension System 

The evaluation results in chapter 5 show that the whole-body vibrations (WBV) 

measured on a compact wheel loader (CWL) are severe. The short-term exposure to 

the WBV leads to strong ride discomfort, and the long-term exposure can cause 

health risks. Consequently, there is a necessity to reduce the WBV on the CWL.  

Because the seat is the principal contact component between the driver and the 

vehicle, its vibration attenuation performance has a significant influence on the WBV 

intensity. The seat effective amplitude transmissibility (SEAT) values in chapter 6 

show that the longitudinal and the lateral vibrations are amplified largely by the seat-

driver system. The vertical vibration intensity is reduced slightly and the reduction 

only occurs in some operations. It means that the vibration attenuation performance 

of the suspension seat needs to be improved. On the other hand, the dynamics of the 

seat-driver system hardly affects the dynamics of the whole vehicle, because its 

mass is much smaller than the vehicle mass. It means that consideration should 

rather be given at first to the improvement of the seat suspension systems instead of 

changing the cabin and the axle suspension systems, if it comes to improve the ride 

comfort and reduce the health risks.  

The original seat on the CWL involved in this research work is equipped with a 

vertical suspension system. At first dynamic characteristics of this suspension system 

should be investigated. If necessary, it should be optimized to improve the vibration 

attenuation performance of the seat in the vertical direction. It can be observed from 

Tab. 5.1 (p. 81) that the WBV in the horizontal directions on the CWL are severe, 

especially in the longitudinal direction. From chapter 6 it can be noticed that the 

largest SEAT value always occurs in the longitudinal direction. To really reduce the 

WBV it seems to be necessary that a longitudinal seat suspension system with 

optimal dynamic properties has to be introduced as well.  

7.1 Investigation of dynamics of vertical seat suspension system 

The optimization strategy of a seat suspension system should be developed based 

on the sufficient understanding of the suspension dynamic characteristics. As 

introduced in section 2.3.2, the dynamics of a seat suspension system can be divided 

into five states depending on the vibration dose value ratio (VDVR, Eq. (2.25), p. 45) 

of the suspension system and the occurrence of end-stop impacts. In this study, seat 
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tests were carried out in laboratory with the aim of determining the dynamic states of 

the vertical seat suspension system when the seat is exposed to the vibrations 

measured on the CWL in all test operations in Tab. 4.1 (p. 62). The detailed 

description of the laboratory seat tests and the analysis results are presented in the 

following paragraphs. 

7.1.1 Laboratory seat tests 

In the laboratory seat tests, the seat was fixed on a multi-axis shaking table, which 

provides the seat excitations. The excitation signals are the accelerations measured 

at the seat base on the compact wheel loader (CWL) in the field tests. A dummy was 

employed to represent the tested persons. In the seat tests accelerations were 

measured at the seat base, above the vertical seat suspension system and on the 

seat cushion. The end-stop impacts were monitored as well. The vibration dose value 

ratio (VDVR) of the vertical seat suspension system and the times of end-stop impact 

were analyzed to determine the dynamic states of this suspension system.  

7.1.1.1 Multi-axis shaking table 

The multi-axis shaking table is actuated by three hydraulic cylinders, as shown in Fig. 

7.1. It has three degrees of freedom (DOF) respectively in the longitudinal, the 

vertical and also the pitch directions. In this research work, it was only actuated in the 

vertical direction using two vertical cylinders. 

 

Fig. 7.1: Multi-axis shaking table used in the laboratory seat tests 

Periodic excitation signals, such as sinusoidal force or displacement signals, can be 

directly defined in the software of the cylinder controller. To reproduce random 
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acceleration signals, an additional software named Remote Parameter Control (RPC) 

is needed, which is provided by the supplier of the cylinder system, the MTS Systems 

Corporation. With the help of this software, the transfer function between the 

displacement of the cylinders and the random acceleration signals is obtained and 

used to produce a displacement based drive file, which is used in the software of the 

cylinder controller to actuate the shaking table. 

7.1.1.2 Tested seat 

The tested seat is the same type as that in the compact wheel loader (CWL). It 

employs a scissors linkage mechanism in the vertical direction with an air spring and 

an inclined passive hydraulic damper, as shown in Fig. 7.2. The seat height is 

adjustable with the help of a build-in air compressor. The vertical suspension system 

provides a free stroke of 88 mm between the top and the bottom rubber end-stop 

buffers. The top end-stop buffer is hidden in the suspension frame but its location is 

marked in Fig. 7.2. In the laboratory, the seat tests were carried out when the seat 

was adjusted in the middle position. 

 

Fig. 7.2: Structure of the vertical seat suspension system 

7.1.1.3 Excitation signals 

The vertical accelerations at the seat base in the CWL measured in the ten 

operations (Tab. 4.1, p. 62) in the field tests were used as the excitation signals in the 

laboratory seat tests. A 0.5-50 Hz band-pass filter was applied on these signals 

before they were reproduced in the RPC software.  

7.1.1.4 Seat test dummy 

In order to avoid vibration exposure and health risks for the human during the seat 

tests, a seat test dummy was used. The utilization of a seat test dummy also helps to 
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reduce the statistical variance of the test results. The seat test dummy is a passive 

mass-spring-damper system including two masses, a set of coil springs and a 

hydraulic damper. The structure of the dummy is illustrated in Fig. 7.3. It is comprised 

of a wooden base shaped like the buttocks of a person, a metal base frame and a 

metal load frame with a load platform. The base and the base frame represent the 

lower body of a seated person. The load frame is attached to the base frame through 

a pivot arm and supported by the hydraulic damper and the springs. The load 

platform is designed to hold different masses to represent the upper body of seated 

persons with a weight of 55 kg, 75 kg or 98 kg. It has been proven that this dummy is 

reliable to simulate the dynamic response of seated persons in the vertical direction. 

[161] 

 

Fig. 7.3. Structure of the dummy used in the laboratory seat tests 

7.1.1.5 Data acquisition equipment 

The entire data acquisition equipment included two parts: one part acquired the 

acceleration signals and the other part acquired the signals of end-stop impact.  

The equipment acquiring acceleration signals was comprised of two tri-axial 

accelerometers (PCB PIEZOTRONICS ICP 356A16), a tri-axial seat pad 

accelerometer (PCB PIEZOTRONICS ICP 356B41), two 8-Channel Dynamic Signal 

Acquisition modules (NI PXI 4472B) in a chassis (NI PXI 1000B), as well as a laptop. 

One tri-axial accelerometer was fixed under the seat cushion and above the vertical 

seat suspension system. The other was fixed at the seat base. The tri-axial seat pad 

accelerometer was fixed on the top surface of the seat cushion. Locations of these 

three accelerometers are shown in Fig. 7.4. These accelerometers were connected 

to the NI PXI 4472B modules in the NI PXI chassis. With the help of NI-DAQ 
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Assistant in a Labview program in the laptop, the NI PXI 4472B modules converted 

the analog signals from the accelerometers to the digital ones and transmitted them 

to the laptop via the NI PXI chassis.  

 

Fig. 7.4: Locations of accelerometers on the seat in laboratory seat tests 

The equipment acquiring the end-stop impact signals was comprised of two micro 

switches, a direct current power supply, an analog input module (NI 9205) in a 

chassis (NI cDAQ-9172) and a laptop. All of these devices comprised a circuit, as 

illustrated in Fig. 7.5.  

 

Fig. 7.5: Circuit to pick up and store the signals of end-stop impact 

Two micro switches were employed to monitor the top and the bottom end-stop 

impacts respectively. When the end-stop impact occurred, the micro switches were 

pressed downward to close the circuit. In this case, a voltage difference was 

generated between A1 and B1 or between A2 and B2 in Fig. 7.5. The NI 9205 

module picked up the voltage difference signals, converted them to digital signals 
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with the help of NI-DAQ Assistant in the Labview program in the laptop, and 

transmitted them to the laptop via the NI cDAQ-9172 chassis. The Labview program 

in the laptop was used to display the signals and to store the measurement data as 

well. The sampling frequency of all signals was set to 1000 Hz. 

7.1.2 Analysis of dynamics of the vertical seat suspension system 

In order to study the dynamic characteristics of the vertical seat suspension system, 

two parameters were analyzed: the suspension vibration dose value ratio (VDVR, Eq. 

(2.25), p. 45) and the times of end-stop impact. In Fig. 7.6 the VDVRs and times of 

end-stop impact when the seat is exposed to the vibrations measured on the CWL in 

ten operations are presented. The round points represent the VDVRs. The numbers 

above these points are the times of top end-stop impact. The numbers below these 

points are the times of bottom end-stop impact. The ten test operations are arranged 

in principle in the ascending order of the root mean square (RMS) value of the 

excitations, while taking the level of the VDVR and the times of end-stop impact into 

consideration.  

 

Fig. 7.6: VDVRs of the vertical seat suspension system and times of end-stop impact 

in ten CWL operations 
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The variation tendency of the VDVR in Fig. 7.6 is consistent with that in Fig. 2.27 (p. 

45). The minimum VDVR can be observed in the operation OP-4 with only one top 

end-stop impact monitored. Because the end-stop impact lasts less than 1 s, it hardly 

affects the suspension dynamics in the whole operation duration of 305 s. 

Accordingly, the dynamics of the vertical seat suspension system in the operation 

OP-4 is classified into state 3. 

The excitation magnitudes in operations OP-1.1, OP-1.2, OP-2.1 and OP-2.2 are 

lower than that in the operation OP-4, as seen from the RMS values in Fig. 7.6. And 

the VDVRs in these four operations are larger than that in the operation OP-4. This is 

consistent with the variation tendency of the VDVR in state 2 in Fig. 2.27. Accordingly, 

the suspension dynamics in these four operations are classified into state 2.  

The suspension dynamics in the operation OP-3.1 is classified into state 2 as well 

due to the fact that the VDVR in this operation is larger than that in the operation OP-

4, as well as that no end-stop impact occurs. These characteristics seem to be 

similar to OP-1.1, OP-1.2, OP-2.1 and OP-2.2. In Fig. 2.27 the excitation magnitude 

in state 2 should be lower than that in state 3. But the RMS of the excitation in the 

operation OP-3.1 (state 2) is larger than that in the operation OP-4 (state 3). This 

problem can be explained by analyzing the excitation signal in the operation OP-3.1 

in the time domain. This signal includes two levels of vibrations, as shown in Fig. 7.7. 

The vibrations with high magnitudes result in a larger RMS value than that in the 

operation OP-4. But under the vibration excitations with low magnitudes, the 

nonlinearity of the suspension mechanism has a large influence on the suspension 

dynamics. This keeps the suspension dynamics staying in state 2 and causes a 

larger VDVR than that in the operation OP-4.  

 

Fig. 7.7: Part of the excitation signal in the operation OP-3.1 
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The suspension dynamics in operations OP-2.3 and OP-3.2 are classified into state 4, 

because in these two operations top end-stop impacts occur frequently. The 

suspension dynamics in operations OP-1.3 and OP-1.4 are classified into state 5, 

because the frequency of the top end-stop impacts increases significantly.  

The curves of transmissibility of the vertical seat suspension system in ten CWL 

operations are illustrated in Fig. 7.8. These ten test operations are classified 

according to the state of the suspension dynamics and the characteristics of the 

suspension transmissibility. 

 

Fig. 7.8: Transmissibility of the vertical seat suspension system in ten operations 
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In Fig. 7.8, it can be observed that the vertical seat suspension system attenuates the 

vibrations at frequencies higher than 2 Hz. As shown in Fig. 7.6, there was no bottom 

end-stop impact in all operations. But many top end-stop impacts were monitored in 

operations OP-1.3, OP-1.4, OP-2.3 and OP-3.2. In these four operations, the 

suspension transmissibility becomes larger than one in the frequency range of 4-17 

Hz, as shown in Fig. 7.8 (c) and (d). It means that the top end-stop impacts generate 

the shocks above the vertical suspension system in the frequency range of 4-17 Hz. 

This brings the result that the VDVRs in these operations are larger than 1. 

7.2 Optimization of vertical seat suspension system 

As shown in Fig. 7.6, most vibration dose value ratios (VDVRs) of the vertical seat 

suspension system are larger than 0.8. The VDVRs are even larger than 1 under 

excitations with high magnitudes due to the end-stop impacts. This means that the 

vibration attenuation performance of the vertical seat suspension system is poor and 

leaves potential for optimization.  

From Fig. 7.8 it can be noticed that the vertical seat suspension system attenuates 

vibrations at frequencies above 2 Hz. In chapter 4 it is analyzed that the maximum 

root mean square (RMS) value of the vertical accelerations in 1/3 octave band at the 

seat base occurs in the frequency range of 2-3.15 Hz. The energy of the vertical 

vibration excitations is mainly distributed at frequencies above 2 Hz. It means that the 

stiffness of the vertical seat suspension system is low enough to attenuate the 

vertical vibrations. So the improvement of the vibration attenuation performance in 

this research work only focuses on the selection of the proper damping 

characteristics of the damper and the optimization of the force-deflection 

characteristics of the end-stop buffers. 

7.2.1 Seat-dummy model 

To obtain the proper damping of the damper and the optimal force-deflection 

characteristics of the end-stop buffers, the multi-body simulation method was used. A 

suitable model is needed to simulate the dynamic response of the seat-dummy 

system used in the laboratory seat tests. The principle to build this model is that it is 

not too complex and can simulate the dynamic response of the seat-dummy system 

with high accuracy. Furthermore, the properties of the seat components, which need 
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to be optimized, should be precisely built in the model, such as the force-velocity 

relationship of the damper and the force-deflection relationship of the end-stop 

buffers. Other components can be simplified in the model, such as the seat cushion, 

the air spring and the friction force of the suspension mechanism.  

According to these principles, the vertical seat suspension system was modeled as a 

combination of a linear spring, an inclined damper and a Bouc-Wen force element. 

The top and the bottom end-stop buffers were included in the suspension model 

when the free stroke exceeded. The seat cushion was simplified as a combination of 

a linear spring and a linear damper. The dummy was modeled as a single degree of 

freedom (DOF) mass-spring-damper system, like its mechanical structure. The entire 

seat-dummy model is illustrated in Fig. 7.9. The equations of motion of this model are 

formulated in Eq. (7.1).  

 

Fig. 7.9: Seat-dummy model in the vertical direction 
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  (7.1) 

with 

    Bouc-Wen force in N 

    Restoring force from the air spring in N 

    Force coming from the bottom end-stop buffer in N 

   Damping force in N 

    Vertical component of the damping force in N 

    Force coming from the top end-stop buffer in N 
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  Absolute displacement of seat base in the z-direction in m 

   Absolute displacement of ms in the z-direction in m 

  ̇ Absolute velocity of ms in the z-direction in m/s 

  ̈ Absolute acceleration of ms in the z-direction in m/s
2
 

   Absolute displacement of md1z in the z-direction in m 

  ̇ Absolute velocity of md1z in the z-direction in m/s 

  ̈ Absolute acceleration of md1z in the z-direction in m/s
2
 

   Absolute displacement of md2z in the z-direction in m 

  ̇ Absolute velocity of md2z in the z-direction in m/s 

  ̈ Absolute acceleration of md2z in the z-direction in m/s
2
 

    Linearized damping coefficient of the seat cushion in the z-direction in N·s/m 

    Damping coefficient of the damper in the dummy between its lower and upper parts in 
N·s/m 

    Linearized stiffness of the seat cushion in the z-direction in N/m 

    Stiffness of springs in the dummy between its lower and upper parts in N/m 

     Mass of the dummy lower part in kg 

     Mass of the dummy upper part in kg 

   Mass of the seat sprung part in kg 

   Angle between the damper and the horizontal direction when the seat in the middle 
position in rad 

 

The air spring was simplified as a linear spring with stiffness coefficient kas. The 

restoring force from the air spring is formulated in Eq. (7.2). The Bouc-Wen force was 

used to simulate the hysteresis caused by the friction of the suspension mechanism 

and the damping of the air spring. It is formulated in Eq. (7.3).  

)(* ZZkF sasas    (7.2) 

BWsBWssasBWBW FZZFZZZZkkF *)(***)(*)(


    (7.3) 

with 

 ̇ Absolute velocity of seat base in the z-direction in m/s 

    Positive stiffness of the Bouc-Wen model of hysteresis in N/m 

    Stiffness coefficient of air spring in N/m 

  Parameter of Bouc-Wen model of hysteresis in m
-1

 

  Parameter of Bouc-Wen model of hysteresis in m
-1

 

 

The passive hydraulic damper is generally designed to yield an asymmetric damping 

force in the compression and the extension stages. The damping force also varies 

with the piston velocity in a nonlinear manner. The force-velocity relationship of a 

passive hydraulic damper can be characterized in terms of damping coefficients at 

low and high speeds in the compression and the extension stages, as shown in Fig. 
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7.10 [133]. This force-velocity relationship can be formulated in Eq. (7.4). In the 

vertical seat suspension system used in this research work the damper is inclined. 

The vertical component of the damping force is formulated in Eq. (7.5) and Eq. (7.6). 

 

Fig. 7.10: Force-velocity curve of a passive hydraulic damper 
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  (7.5) 

  xs lZZ /tanarctan 0     (7.6) 

with 

   Damping coefficient of the passive hydraulic damper at low speeds in the compression 
stage in N·s/m 

   Damping coefficient of the passive hydraulic damper at high speeds in the 
compression stage in N·s/m 
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   Damping coefficient of the passive hydraulic damper at low speeds in the extension 
stage in N·s/m 

   Damping coefficient of the passive hydraulic damper at high speeds in the extension 
stage in N·s/m 

   Longitudinal component of the length of the damper in m 

  Asymmetry factor, ratio of c3 to c1 

   Transition velocity of the passive hydraulic damper in the compression stage in m/s 

   Transition velocity of the passive hydraulic damper in the extension stage in m/s 

   Damping reduction factor in the compression stage, ratio of c2 to c1 

   Damping reduction factor in the extension stage, ratio of c4 to c3 

  Angle between the damper and the horizontal direction in rad 

 

The top and the bottom end-stop buffers were modeled as pure nonlinear springs. 

Force-deflection relationships of them can be formulated in polynomial expressions, 

as the Eq. (7.7) and Eq. (7.8). 
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with 

   Distance between the middle position of the vertical seat suspension system and the 
bottom or the top end-stop buffer in m 

    Linear stiffness coefficient of the bottom end-stop buffer in N/m 

    Quadratic stiffness coefficient of the bottom end-stop buffer in N/m
2
 

    Cubic stiffness coefficient of the bottom end-stop buffer in N/m
3
 

    Quartic stiffness coefficient of the bottom end-stop buffer in N/m
4
 

    Linear stiffness coefficient of the top end-stop buffer in N/m 

    Quadratic stiffness coefficient of the top end-stop buffer in N/m
2
 

    Cubic stiffness coefficient of the top end-stop buffer in N/m
3
 

    Quartic stiffness coefficient of the top end-stop buffer in N/m
4
 

 

These differential equations of motion of the seat-dummy model can be solved with 

the help of the ordinary differential equation solver in MATLAB named ODE45 based 

on the explicit Runge-Kutta method.  

7.2.2 Parameter identification 

Some parameters of the seat-dummy model need to be optimized in order to improve 

the vibration attenuation performance of the vertical seat suspension system, such as 

the damping coefficients of the hydraulic damper and the stiffness coefficients of the 
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end-stop buffers. These parameters were derived from static or dynamic tests 

performed in the laboratory. Other parameters were not included in the optimization, 

such as the stiffness and damping coefficients of the seat cushion and parameters of 

the Bouc-Wen force. These parameters were determined using the nonlinear curve-

fitting in least-squares sense by fitting the multi-body simulation results to the 

corresponding measurement signals.  

In order to derive the stiffness coefficient of the air spring, quasi-static force-

displacement tests of the seat were carried out, when the seat cushion and the 

hydraulic damper were removed. The force-displacement curve over the free stroke 

of the vertical suspension system is illustrated in Fig. 7.11. It can be noticed that the 

curves in both of the compression and the extension stages are nearly linear. The 

stiffness coefficient of the air spring was estimated as the mean value of the 

gradients of the force-displacement curves in compression and extension stages. 

The loop enclosed by these two curves indicate the hysteresis due to the friction of 

the suspension mechanism and the damping of the air spring. 

 

Fig. 7.11: Force-displacement curve of the air suspension seat without seat cushion 

and damper 

The parameters of the hydraulic damper in Fig. 7.10 (p. 128) were derived from its 

force-velocity curve. In order to obtain the force-velocity curve, a set of dynamic 

force-displacement tests were performed. The damping forces were measured when 

the damper was excited by sinusoidal displacement signals with an amplitude of       

± 12.5 mm and different frequencies in the range of 0.1-2 Hz. The force-displacement 

curves obtained at four excitation frequencies are taken as examples and presented 

in Fig. 7.12. The maximum and the minimum damping forces occur at the time when 

the compression or the extension velocity reaches its maximum. The maximum 
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velocity can be calculated from the displacement amplitude and the excitation 

frequency with Eq. (7.9). The force-velocity curve was obtained by analyzing the 

maximum and minimum forces and the maximum velocities at different frequencies of 

the displacement excitations.  

0***2 dfv    (7.9) 

with 

   Amplitude of sinusoidal displacement excitation in m 

  Frequency of sinusoidal displacement excitation in Hz 

  Maximum velocity of the damper in m/s 

 

 

Fig. 7.12: The force-displacement curves of the damper obtained under sinusoidal 

displacement excitations at four frequencies 

The force-deflection curves of the end-stop buffers were obtained from static force-

deflection tests and are shown in Fig. 7.13. The coefficients of polynomials in Eq. (7.7) 

and Eq. (7.8) were determined by applying the curve fitting to the measured curves.  

 

Fig. 7.13: Force-deflection curves of end-stop buffers: (a). top end-stop buffer; (b). 

bottom end-stop buffer 
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The above mentioned parameters derived from the tests are summarized in Tab. 7.1. 

 

Tab. 7.1: Parameters of the seat-dummy model derived from static or dynamic tests 

Parameters of air spring for Eq. (7.2) 

kas (N/m) 6863   

Parameters of hydraulic damper for Fig. 7.10 and Eq. (7.4) 

c1 (N·s/m) 6799 c2 (N·s/m) 5943 

c3 (N·s/m) 3480 c4 (N·s/m) 1427 

vc (m/s) 0.09 ve (m/s) -0.09 

Parameters of bottom end-stop buffer for Eq. (7.7)  

kb1 (N/m) -1.41*103 kb3 (N/m3) -2.99*109 

kb2 (N/m2) 2.37*107 kb4 (N/m4) 1.95*1011 

Parameters of top end-stop buffer for Eq. (7.8) 

kt1 (N/m) -2.28*103 kt3 (N/m3) -6.30*1010 

kt2 (N/m2) 2.33*108 kt4 (N/m4) 6.56*1012 

 

The parameters of the dummy model representing the seated persons with different 

weights are summarized in Tab. 7.2. 

 

Tab. 7.2: Parameters of the dummy model to simulate the dynamic response of 

seated persons with different weights [161] 

Weight of seated person: 55 kg 

md1z (kg) 13.9 kdz (N/m) 42000 

md2z (kg) 42.9 cdz (N·s/m) 1100 

Weight of seated person: 75 kg 

md1z (kg) 13.9 kdz (N/m) 42000 

md2z (kg) 47.9 cdz (N·s/m) 1100 

Weight of seated person: 98 kg 

md1z (kg) 18.9 kdz (N/m) 55000 

md2z (kg) 59.9 cdz (N·s/m) 1100 
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In order to determine the parameters of the cushion model (kcz and ccz) using the 

nonlinear curve-fitting in least-squares sense, the cushion-dummy model in Fig. 7.14 

was used. The input signal of this model is the accelerations of the seat sprung part, 

which were measured above the vertical seat suspension system by accelerometer 

(1) in Fig. 7.4 (p. 121). The output signal is the accelerations on the seat cushion.  

To determine the parameters of the Bouc-Wen force (kBW, γ and β) using the 

nonlinear curve-fitting in least-squares sense, the entire seat-dummy model in Fig. 

7.9 (p. 126) was used. The input signal is the accelerations at the seat base, which 

were measured by accelerometer (2) in Fig. 7.4. The output signal is the 

accelerations above the vertical seat suspension system.  

The parameters of the cushion model and the Bouc-Wen force were determined by 

minimizing the quadratic error between the fast Fourier transform (FFT) of the 

measured and the simulated output signals. The MATLAB function „lsqcurvefit‟ was 

used, which searches the values for the variables of a function in a given range until 

the quadratic error between the reference and the calculated function values reaches 

the minimum.  

 

Fig. 7.14: Cushion-dummy model in the vertical direction 

7.2.3 Model validation 

After the parameters of the seat-dummy model were determined, the simulated 

signals need to be compared with the measured signals with the purpose of 

evaluating the quality of the model. Five operations (OP-1.1 to OP-1.4 and OP-4) 

were used in this chapter for the model validation and the suspension optimization, 

because these five operations cover almost all states of the dynamics of the 

suspension seat. In addition, they comprise all seven scenarios representing the daily 

operation of the compact wheel loader (CWL) proposed in Chapter 5. The following 

simulation results were compared with those from the laboratory seat tests to judge 

whether the model is reliable to simulate the dynamic behavior of the vertical seat 

suspension system:  
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1) Vibration dose value ratio (VDVR) of the vertical seat suspension system: the 

δVDVR, as defined by Eq. (7.10), was used to indicate the difference between 

the simulated VDVR and the measured VDVR. 

%100*
m

ms
VDVR

VDVR

VDVRVDVR 
   (7.10) 

with 

      VDVR obtained from the measurement 

      VDVR obtained from the simulation 

      Difference between the simulated VDVR and the measured VDVR 

 

2) Accelerations above the vertical seat suspension system in the time domain: 

the mean value of the relative errors, as defined by Eq. (7.11), can be used to 

give an indication of the difference between the simulated and the measured 

acceleration signals in the time domain. 
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with 

      The i
th
 acceleration value obtained from the measurement in m/s
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      The i
th
 acceleration value obtained from the simulation in m/s

2 

  ̅ Mean value of the relative errors between the simulated and the measured 
accelerations 

 

3) Power spectral density (PSD) of accelerations above the vertical seat 

suspension system: the mean value of the relative errors was also used here 

to give an indication of the difference between the PSD of the simulated and 

the measured accelerations. Here the mean value of the relative error is 

defined by Eq. (7.12). 
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        The i
th
 value on the PSD curve of the accelerations obtained from the 

measurement in dB/Hz 

        The i
th
 value on the PSD curve of the accelerations obtained from the 

simulation in dB/Hz 

  ̅   Mean value of the relative errors between the PSD curves of the simulated 
and the measured accelerations 
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4) Occurrence of the end-stop impacts: the mean value of the relative errors 

between the durations of the end-stop impacts occurring in simulations and 

measurements, as defined by Eq. (7.13), was used to indicate the difference 

between the end-stop impacts. 
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with 

      Duration of the i
th
 end-stop impact in the measurement in s 

      Duration of the i
th
 end-stop impact in the simulation in s 

  ̅ Mean value of the relative errors between the durations of the simulated and 
the measured end-stop impacts 

 

5) Acceleration peaks above the vertical seat suspension system caused by end-

stop impacts: the mean value of the relative errors used here to indicate the 

difference between the acceleration peaks generated by end-stop impacts in 

simulations and measurements is defined by Eq. (7.14). 
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th
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2
 

       Acceleration peak caused by the i
th
 end-stop impact in simulations in m/s

2
 

  ̅  Mean value of the relative errors between the simulated and the measured 

acceleration peaks caused by the end-stop impacts 

 

The simulated and the measured VDVRs are presented in Tab. 7.3. From the δVDVR 

values it can be observed that the differences between both VDVRs are quite small.  

 

Tab. 7.3: VDVRs of the vertical seat suspension system obtained from simulations 

and measurements 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

VDVRm 0.8198 0.8700 0.7845 1.2119 1.0754 

VDVRs 0.7801 0.8436 0.7278 1.1139 1.0115 

      (%) -4.8450 -3.0419 -7.2316 -8.0862 -5.937 
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The simulated and the measured accelerations above the vertical seat suspension 

system in the case where no end-stop impact occurs are presented in Fig. 7.15. It 

can be noticed that the simulated acceleration signals match very well with those 

obtained from measurements. The mean values of the relative errors between the 

simulated and the measured accelerations, the   ̅, are presented in Tab. 7.4. It can 

be noticed that the relative errors of the accelerations in the range of 0.5-4 Hz are 

very small, but for the accelerations in the range of 0.5-20 Hz are at a little higher 

level. This is because in the high frequency range the noise is included in the 

measurement signals, which is hard to be simulated.  

        

 

Fig. 7.15: Comparison of measured and simulated accelerations above the vertical 

seat suspension system in the time domain when no end-stop impact occurs 

 

Tab. 7.4: Mean value of relative errors between measured and simulated 

accelerations above the vertical seat suspension system in the case where no end-

stop impact occurs 

 ̅  OP-1.1 OP-1.2 

0.5-4 Hz 0.0946 0.0800 

0.5-20 Hz 0.2723 0.2364 

 

The simulated and the measured acceleration signals above the vertical seat 

suspension system in the case where end-stop impacts occur are compared in Fig. 

7.16, as well as the end-stop impacts monitored in simulations and measurements. In 

Tab. 7.5 mean values of the relative errors of the accelerations in the time domain   ̅, 
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of the acceleration peaks caused by end-stop impacts   ̅  and of the durations of 

end-stop impacts   ̅ are presented. From the values of   ̅ it can be noticed that the 

differences between the simulated and the measured accelerations in the low 

frequency range are quite small. The same conclusion can also be observed from Fig. 

7.16, where the simulated accelerations match very well with those obtained from the 

laboratory seat tests. In Fig. 7.16 it can be observed that the occurrence of end-stop 

impacts is consistent in simulations and measurements. The values of   ̅ and   ̅  in 

Tab. 7.5 also show that the differences between the characteristics of end-stop 

impacts obtained from simulations and measurements are insignificant.  

        

        

        

 

Fig. 7.16: Acceleration signals above the vertical seat suspension system in the case 

where end-stop occurs as well as the occurrence of end-stop impacts obtained from 

simulations and measurements 
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Tab. 7.5: Mean values of the relative errors of the accelerations above the vertical 

seat suspension system in the time domain, of the acceleration peaks caused by 

end-stop impacts and of the durations of end-stop impacts 

 OP-1.3 OP-1.4 OP-4 

  ̅ (0.5-4 Hz) 0.1081 0.0991 0.0991 

  ̅ (0.5-20 Hz) 0.3365 0.2975 0.2666 

  ̅  0.0849 0.0748 0.0731 

  ̅ 0.0781 0.1071 0.0909 

 

The comparison of the PSD curves of the simulated and the measured accelerations 

above the vertical seat suspension system is presented in Fig. 7.17. It can be 

observed that the differences between two PSD curves mainly occur at frequencies 

above 4 Hz, especially in the frequency range of 4-6 Hz. Accelerations in this range 

are important for the human sensitivity, but their differences in this range have a 

small influence on the difference of the total vibration intensity because the vibration 

magnitudes in this range are very small. The vibration magnitudes are quite high in 

the frequency range of 0.5-4 Hz, where the differences between two PSD curves are 

insignificant. This can also be noticed from the mean values of the relative errors 

between two PSD curves in the frequency range of 0.5-4 Hz in Tab. 7.6.  

 

Tab. 7.6: Mean values of the relative errors between the PSD of the accelerations 

above the vertical seat suspension system in the frequency range of 0.5-4 Hz 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

  ̅   (0.5-4 Hz) 0.0556 0.0610 0.0869 0.1091 0.1330 

 

The differences between the simulated and the measured signals are caused by the 

simplification of the seat-dummy model, such as the linearization of the seat cushion 

model. From the comparison presented in Tab. 7.3 to Tab. 7.6 and in Fig. 7.15 to Fig. 

7.17, it can be concluded that the differences between the simulated and the 

measured accelerations are not large, especially in the frequency range of 0.5-4 Hz. 
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The seat-dummy model is acceptable to simulate the dynamic behavior of the vertical 

seat suspension system.  

 

 

 

Fig. 7.17: Comparison of PSD curves of measured and simulated accelerations 

above the vertical seat suspension system 

7.2.4 Suspension system optimization 

The seat suspension system has different damping requirements under excitations 

with different magnitudes [133]. A low damping is desirable to improve the vibration 

attenuation performance under excitations with low or moderate magnitudes. But a 

high damping is required to reduce the occurrence and the severity of end-stop 

impacts under excitations with high magnitudes. For a seat exposed to various levels 

of vibrations, a compromise should be reached between the improvement of vibration 

attenuation performance under excitations with low or moderate magnitudes and the 

reduction of occurrence and severity of end-stop impacts under excitations with high 
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magnitudes. This compromise can be achieved by selecting proper damping 

coefficients of the passive damper and optimizing the force-deflection characteristics 

of end-stop buffers in a passive seat suspension system.  

Another method to reach this compromise is employing a semi-active damper 

controlled by a „soft-hard‟ policy (Eq. (2.41), p. 54) to replace the passive damper. 

This compromise can be achieved by selecting proper damping coefficients of the 

semi-active damper in the soft-state and the hard-state.  

7.2.4.1 Optimization of passive vertical seat suspension system 

The optimization of the passive vertical seat suspension system was carried out in 

the following two steps: 

1) Under excitations with moderate magnitudes, the damping coefficients of the 

passive damper were optimized to minimize the vibration dose value ratio 

(VDVR) of the vertical seat suspension system. It was supposed that end-stop 

impact does not occur under these excitations. In other words, in the 

optimization the suspension travel was constrained to the free stroke. The 

objective function in this step can be expressed by Eq. (7.15). 
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with 

     Objective function of the optimization 

  Vector of parameters to be optimized 

   Damping coefficients refer to Fig. 7.10 (p. 128) 

 

If the excitation magnitude is quite low, such as the vibration excitations 

measured in operations OP-1.1 and OP-1.2, small damping coefficients are 

required to satisfy Eq. (7.15). They bring the result that end-stop impacts occur 

frequently and severely under excitations with high magnitudes, for example, 

under the vibration excitations measured in operations OP-1.3 and OP-1.4. In 

these operations, large damping coefficients are required to satisfy Eq. (7.15). 

They result in the deterioration of the suspension vibration attenuation 

performance under excitations with low magnitudes. 

In order to reach the compromise between better suspension vibration 

attenuation performance under excitations with low magnitudes and less and 
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gentler end-stop impacts under excitations with high magnitudes, the optimal 

damping coefficients should be determined under an excitation with moderate 

magnitudes. The vibration excitation measured in the operation OP-4 seems 

to be suitable for the optimization in this step.  

2) With the optimal damping coefficients determined in step 1), end-stop impacts 

occur under excitations with high magnitudes. In this case, the force-deflection 

characteristics of the end-stop buffers should be optimized to minimize the 

VDVR of the vertical seat suspension system. In this step, the suspension 

travel was constrained to the maximum stroke, which is the total suspension 

travel when top and bottom end-stop buffers are compressed completely. It is 

the sum of suspension free stroke and maximum compression deflections of 

end-stop buffers. The objective function in this step can be expressed by Eq. 

(7.16). 
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with 

    Maximum stroke of the vertical seat suspension system in m 

        stiffness coefficients refer to Eq. (7.7) and Eq. (7.8) (p. 129) 

 

Due to the requirement of operational safety and the limited space in the cabin on 

construction vehicles, the maximum stroke of the vertical seat suspension system is 

generally designed in a small range. In this study, it was set to ± 50 mm. The 

influence of the suspension free stroke (or the maximum compression deflections of 

the end-stop buffers) on the suspension vibration attenuation performance was also 

studied. The optimization of the passive seat suspension system was carried out 

when the free stroke was set to ± 30 mm, ± 35 mm, ± 40 mm and ± 45 mm 

respectively. Accordingly, the maximum compression deflections of the top and the 

bottom end-stop buffers are 20 mm, 15 mm, 10 mm and 5 mm. The MATLAB 

function „fmincon‟ was used to determine the optimal damping coefficients of the 

damper. With this function the values of variables can be found out for the minimum 

of a nonlinear multivariable function. The vibration excitations measured in operations 

OP-1.1, OP-1.2, OP-1.3, OP-1.4 and OP-4 were used in the optimization, because 

these operations comprise the scenarios proposed in chapter 5, and the suspension 
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dynamics in these operations distributes in different states. The optimization results 

in the first step are presented in Tab. 7.7.  

 

Tab. 7.7: Optimal damping coefficients of the vertical seat suspension system with 

different free strokes determined under the excitation in the operation OP-4 

Free stroke 

(mm) 

Optimal damping coefficients (N·s/m) 

c1 c2 c3 c4 

± 30 1345.7 5217.3 2366.1 4023.9 

± 35 748 3537 1346 3526 

± 40 600 2243 740 3033 

± 45 600 1062 600 2304 

 

In Tab. 7.7, it can be observed that the optimal damping coefficients decrease with 

the increase of the suspension free stroke. This is because smaller damping 

coefficients are required to satisfy Eq. (7.15) when the free stroke is larger. The 

VDVRs of the vertical seat suspension system with these four groups of optimal 

damping coefficients are presented in Tab. 7.8. End-stop impacts occurred only 

under excitations in operations OP-1.3 and OP-1.4. The times of end-stop impact 

under these two excitations are presented in Tab. 7.9.  

 

Tab. 7.8: VDVRs of the vertical seat suspension system with four groups of optimal 

damping coefficients under different excitations 

Free stroke 

(mm) 

VDVR 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 30 0.7247 0.7753 0.5601 0.8220 0.7366 

± 35 0.7303 0.7748 0.5107 1.1186 0.7792 

± 40 0.7379 0.7765 0.4781 1.2206 0.9631 

± 45 0.7360 0.7745 0.4592 1.4353 1.3395 

Original suspension 0.7801 0.8436 0.7278 1.1139 1.0115 
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Tab. 7.9: Times of end-stop impact with four groups of optimal damping coefficients 

under excitations in operations OP-1.3 and OP-1.4 

Free stroke 

(mm) 

Times of end-stop impact 

OP-1.3 OP-1.4 

Top Bottom Top Bottom 

± 30 8 13 10 18 

± 35 4 11 5 15 

± 40 3 10 4 13 

± 45 2 10 2 15 

 

As shown in Tab. 7.8, compared to the VDVR of the original vertical seat suspension 

system, the VDVRs of the vertical seat suspension system with the optimal damping 

coefficients decrease largely under the excitation in the operation OP-4. Under this 

excitation, there is a little decrease of the VDVR with the increase of the free stroke. 

This is due to the fact that the optimal damping coefficients are smaller when the free 

stroke is larger.  

Under excitations in operations OP-1.1 and OP-1.2, the optimal damping coefficients 

result in a small decrease of the VDVR. Under these two excitations, the suspension 

free stroke has a negligible influence on the variation of the VDVR.  

Under excitations in operations OP-1.3 and OP-1.4, the optimal damping coefficients 

lead to the increase of the VDVR in some cases. This is because the optimized 

damper is softer than the original one and it causes severer end-stop impacts. The 

free stroke has a large influence on the VDVR under these two excitations. The 

VDVRs increase with the increase of the suspension free stroke. This is because the 

optimal damping coefficients are smaller when the free stroke is larger and a softer 

damper results in severer end-stop impacts.  

In Tab. 7.9, it can be observed that the times of end-stop impact increase with the 

decrease of the free stroke. This is due to the fact that the suspension travel exceeds 

the free stroke more easily if the free stroke is smaller. It can also be noticed that 

bottom end-stop impacts occur more frequently than top end-stop impacts. This is 

because the optimal damping coefficients in the extension stage are larger than 



144 7 Optimization of Seat Suspension System 

those in the compression stage. In order to solve this problem, it was proposed that 

the damper should have the same force-velocity relationship in the extension and the 

compression stages. It means that the damping coefficient c1 should be equal to c3, 

and c2 should be equal to c4. Based on this proposal, damping coefficients of the 

damper were optimized again. The optimal damping coefficients of the vertical seat 

suspension system with different free strokes are presented in Tab. 7.10.  

The VDVRs of the vertical seat suspension system with these four groups of optimal 

damping coefficients and the occurrence of end-stop impacts under different 

excitations were recalculated and are presented in Tab. 7.11 and Tab. 7.12 

respectively. 

 

Tab. 7.10: Optimal damping coefficients of the vertical seat suspension system with 

different free strokes determined under the excitation in the operation OP-4. 

Free stroke 

(mm) 

Optimal damping coefficients (N·s/m) 

c1 = c3 c2 = c4 

± 30 1627 5748.4 

± 35 1048.6 4110 

± 40 687.3 3139 

± 45 600 2328.4 

 

Tab. 7.11: VDVRs of the vertical seat suspension system with the optimal damping 

coefficients in Tab. 7.10 under different excitations 

Free stroke 

(mm) 

VDVR 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 30 0.7265 0.7798 0.5859 0.7418 0.7869 

± 35 0.7328 0.7813 0.5322 0.7855 0.6504 

± 40 0.7410 0.7821 0.4965 0.7253 0.6004 

± 45 0.7375 0.7777 0.4711 0.7408 0.5243 

Original suspension 0.7801 0.8436 0.7278 1.1139 1.0115 
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Tab. 7.12: Times of end-stop impact with the optimal damping coefficients in Tab. 

7.10 under excitations in operations OP-1.3 and OP-1.4 

Free stroke 

(mm) 

Times of end-stop impact 

OP-1.3 OP-1.4 

Top Bottom Top Bottom 

± 30 6 7 9 9 

± 35 3 7 5 5 

± 40 2 3 5 3 

± 45 2 3 3 1 

 

Under the excitations in operations OP-1.1 and OP-1.2, the differences between the 

VDVRs in Tab. 7.11 and Tab. 7.8 are very small. Under the excitation in the 

operation OP-4, VDVRs in Tab. 7.11 are a little larger than those in Tab. 7.8. This is 

because the damper with damping coefficients in Tab. 7.10 is harder than that with 

damping coefficients in Tab. 7.7. Under the excitations in operations OP-1.3 and OP-

1.4, the VDVRs in Tab. 7.11 are much smaller than those in Tab. 7.8. Comparing the 

times of end-stop impact in Tab. 7.12 and Tab. 7.9, less bottom end-stop impacts 

occur with the damping coefficients in Tab. 7.10 than with the damping coefficients in 

Tab. 7.7. This leads to the smaller VDVRs in Tab. 7.11 than in Tab. 7.8 under 

excitations in operations OP-1.3 and OP-1.4.  

In the next step, the force-deflection characteristics of the end-stop buffers were 

optimized. It was supposed that the bottom end-stop buffer has the same force-

deflection characteristics as the top end-stop buffer. It was also supposed that the 

optimal force-deflection curve of the end-stop buffers is comprised of a linear part 

and a cubic nonlinear part, which means that the parameters kt2, kt4, kb2 and kb4 are 

zero. The parameters needed to be optimized are kt1, kt3, kb1 and kb3 and the 

optimization results are presented in Tab. 7.13. Because the damping coefficients 

obtained in step 1) for the free stroke of  ± 30 mm is large enough, with this free 

stroke the suspension travel does not exceed the maximum stroke of ± 50 mm under 

all excitations, even when there is no end-stop buffer.  
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Tab. 7.13: Optimal linear and cubic stiffness coefficients of end-stop buffers for 

suspension with different free strokes 

Free stroke (mm) kt1 = kb1 (N/m) kt3 = kb3 (N/m3) 

± 35 100 9*107 

± 40 5*104 1*108 

± 45 9.1*105 1*109 

 

In Tab. 7.13, the linear and cubic stiffness coefficients of the end-stop buffers largely 

increase with the suspension free stroke. Because the suspension maximum stroke 

is constant, the larger free stroke means that the maximum compression deflection of 

the end-stop buffers has to be smaller. On the other hand, the optimal damping 

coefficients of the damper are smaller when the free stroke is larger, as shown in Tab. 

7.10. Therefore, when the free stroke is larger, the end-stop buffers should be stiffer 

to avoid the suspension travel exceeding its maximum stroke.  

The VDVRs of the vertical seat suspension system with the optimal damping 

coefficients in Tab. 7.10 and the optimal force-deflection characteristics of end-stop 

buffers in Tab. 7.13 are presented in Tab. 7.14.  

 

Tab. 7.14: VDVRs of vertical seat suspension system with the optimized passive 

damper and end-stop buffers under all five excitations 

Free stroke 

(mm) 

VDVR 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 30 0.7265 0.7798 0.5859 0.6854 0.6909 

± 35 0.7328 0.7813 0.5322 0.6035 0.6032 

± 40 0.7410 0.7821 0.4965 0.6737 0.5596 

± 45 0.7375 0.7777 0.4711 0.8995 0.6491 

Original suspension 0.7801 0.8436 0.7278 1.1139 1.0115 
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The end-stop impacts only occur under the excitations in operations OP-1.3 and OP-

1.4, where the optimized end-stop buffers cause the VDVRs in Tab. 7.14 different 

from those in Tab. 7.11 with the original buffers. In these two operations, for the 

suspension free strokes smaller than ± 45 mm, the VDVRs in Tab. 7.14 are lower 

than those in Tab. 7.11. This is because with these free strokes, the optimized end-

stop buffers are softer than the original ones. This leads to gentler end-stop impacts.  

When the suspension free stroke is set to ± 45 mm, the VDVRs in Tab. 7.14 are 

larger than those in Tab. 7.11. This is because the optimized end-stop buffers are 

stiffer than the original ones in order to avoid the suspension travel exceeding the 

maximum stroke. The stiffer optimized end-stop buffers lead to severer end-stop 

impacts.  

The VDVRs Tab. 7.14 show that the optimized passive vertical seat suspension 

system has the best vibration attenuation performance when the free stroke is set to 

a value between ± 35 mm and ± 40 mm.  

7.2.4.2 Optimization of semi-active vertical seat suspension system 

For the seat suspension system with a semi-active damper controlled by the “soft-

hard” policy defined by Eq. (2.41) (p. 54), the free stroke is defined as the maximum 

suspension travel with the damper in the soft-state. The vertical component of the 

damping force is formulated in Eq. (7.17). Under excitations with low or moderate 

magnitudes, the suspension travel does not exceed the free stroke and the damper is 

always in the soft-state. In this case, it generates a small damping force. Under 

excitations with high magnitudes, the suspension travel exceeds the free stroke. In 

this case, the damper has to be in the hard-state and generates a large damping 

force to avoid the suspension travel exceeding the maximum stroke.  
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with 

      Damping coefficient of the semi-active damper in the soft-state in N·s/m 

      Damping coefficient of the semi-active damper in the hard-state in N·s/m 

      Maximum suspension travel when the semi-active damper in the soft-state in m 
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The optimization of the semi-active vertical seat suspension system was also carried 

out in two steps, which are described as follows: 

1) Under an excitation with moderate magnitudes, the damping coefficient in the 

soft-state of the semi-active damper was optimized to minimize the vibration 

dose value ratio (VDVR) of the vertical seat suspension system. The 

suspension travel was constrained to the free stroke. The objective function in 

this step is formulated in Eq. (7.18). Equal to the first step of the passive seat 

suspension optimization, the vibration excitation in the operation OP-4 was 

selected to determine the optimal damping coefficient in the soft-state in this 

step. 

softssoft dZZVDVRcU  )min()(   (7.18) 

2) With the optimal damping coefficient in the soft-state determined in step 1), the 

suspension travel exceeds the free stroke under excitations with high 

magnitudes, for example, under excitations in operations OP-1.3 and OP-1.4. 

In this case, the semi-active damper is in the hard-state. The damping 

coefficient in this state then was optimized not only to achieve a minimum 

VDVR, but also to avoid the suspension travel exceeding the maximum stroke. 

The objective function in this step can be expressed by Eq. (7.19). Excitations 

in operations OP-1.3 and OP-1.4 were used to optimize the damping 

coefficient in the hard-state. The larger damping coefficient was selected as 

the optimal one of the semi-active damper in this state. 

mzshard dZZVDVRcU  )min()(   (7.19) 

Equal to the passive vertical seat suspension system, the maximum stroke of the 

semi-active vertical seat suspension system was also set to ± 50 mm, and the 

optimization was carried out when the free stroke was set to ± 30 mm, ± 35 mm,       

± 40 mm and ± 45 mm. The MATLAB function „fmincon‟ was also used here to 

determine the optimal damping coefficients of the semi-active damper. The optimal 

damping coefficients determined for the suspension system with different free strokes 

are presented in Tab. 7.15.  

The optimal damping coefficients in the soft-state decrease with the increase of the 

suspension free stroke. This is due to the fact that a smaller damping coefficient is 

required to satisfy Eq. (7.18) when the suspension free stroke is larger. The optimal 

damping coefficients in the hard-state increase largely with the suspension free 
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stroke from ± 35 mm. This is because the damping coefficient in the soft-state and 

the available suspension travel in the hard-state are smaller when the suspension 

has a larger free stroke.  

 

Tab. 7.15: Optimal damping coefficients of the semi-active damper determined for the 

vertical seat suspension system with different free strokes 

Free stroke 

(mm) 

Optimal damping coefficients 

(N·s/m) 

csoft chard 

± 30 3375 4222.4 

± 35 2610 3719.2 

± 40 2055.8 11623 

± 45 1627.9 46851 

 

The VDVRs of the vertical seat suspension system with the optimal damping 

coefficients in Tab. 7.15 and different free strokes are presented in Tab. 7.16. 

 

Tab. 7.16: VDVRs of the vertical seat suspension system with different free strokes 

and optimized semi-active damper under different excitations 

Free stroke 

(mm) 

VDVR 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 30 0.7315 0.7905 0.6100 0.5415 0.5929 

± 35 0.7234 0.7768 0.5689 0.4814 0.5271 

± 40 0.7203 0.7693 0.5365 0.6023 0.5852 

± 45 0.7205 0.7636 0.5103 0.9211 0.7491 

Original suspension 0.7801 0.8436 0.7278 1.1139 1.0115 
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As shown in Tab. 7.16, the VDVRs increase with the decrease of the suspension free 

stroke under excitations in operations OP-1.1, OP-1.2 and OP-4. Under these 

excitations the semi-active damper is always in the soft-state, where the optimal 

damping coefficient increases with the decrease of the suspension free stroke, as 

shown in Tab. 7.15. This leads to the increase of the suspension VDVR.  

Under excitations in operations OP-1.3 and OP-1.4, the minimum VDVR occurs when 

the suspension free stroke is set to ± 35 mm. The VDVR of the suspension system 

with free stroke of ± 30 mm is larger than that with free stroke of ± 35 mm, because 

the optimal damping coefficients are larger when the free stroke is ± 30 mm. Under 

these two excitations, as the free stroke increases from ± 35 mm to ± 45 mm, the 

VDVRs increase significantly. This is because the damping coefficient in the hard-

state is much larger than that in the soft-state when the free stroke exceeds ± 40 mm. 

In this case, when the suspension travel exceeds the free stroke, the damping force 

becomes very large abruptly. The large difference between the damping forces in the 

hard-state and the soft-state leads to vibration shocks and causes the increase of the 

suspension VDVR.  

From the VDVRs in Tab. 7.16 it can be concluded that the optimized semi-active 

vertical seat suspension system has the best vibration attenuation performance when 

the free stroke is set to ± 35 mm. 

7.2.4.3 Comparison of optimized passive and semi-active vertical seat suspensions 

In section 7.2.4.1 it is concluded that for the optimized passive seat suspension 

system, the vibration attenuation performance is best when the free stroke is set to a 

value in the range from ± 35 mm to ± 40 mm. In section 7.2.4.2 it is concluded that 

for the optimized semi-active seat suspension system, the vibration attenuation 

performance is best when the free stroke is set to ± 35 mm. By comparing the 

VDVRs with these three configurations in Tab. 7.14 and Tab. 7.16, it can be noticed 

that the passive suspension system has a better vibration attenuation performance 

than the semi-active one under the excitation in the operation OP-4. But the latter 

has a much better vibration attenuation performance than the former under 

excitations in operations OP-1.3 and OP-1.4, and a little better performance under 

excitations in operations OP-1.1 and OP-1.2. Considering the improvement of the 

vibration attenuation performance of the vertical seat suspension system in all 

operations, the optimized semi-active seat suspension system with free stroke of      
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± 35 mm is selected as the vertical seat suspension system with the best 

performance. The VDVRs of the optimal vertical seat suspension system are 

compared with those of the original one in Tab. 7.17.  

 

Tab. 7.17: Comparison of VDVRs of the original and the optimal vertical seat 

suspension systems 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

VDVRoriginal 0.7801 0.8436 0.7278 1.1139 1.0115 

VDVRoptimal 0.7234 0.7768 0.5689 0.4814 0.5271 

∆ (%) -7.27 -7.92 -21.83 -56.78 -47.89 

 

With the optimal suspension configuration, the VDVR of the vertical seat suspension 

system is reduced by about 7.5% under excitations in operations OP-1.1 and OP-1.2, 

by about 20% under the excitation in the operation OP-4, and by about 50% under 

excitations in operations OP-1.3 and OP-1.4. It can be concluded that the original 

vertical seat suspension system bears a big potential of optimization. 

7.3 Optimization of longitudinal seat suspension system 

7.3.1 Seat-driver model 

The investigation of the dynamics of the seat-driver system in the longitudinal 

direction was rather poor in the previous studies in literatures, as well as the 

improvement of vibration attenuation performance in this direction. Also only simple 

human models were used to simulate the human inline biodynamic response in the 

longitudinal direction. Some studies show that the human cross-axial biodynamic 

response is also significant [61],[62],[64],[65]. In this research work, it was observed 

that the vertical excitations have a large influence on the longitudinal dynamic 

response of the seat-driver system. The coherence between the input and the output 

signals of a system, formulated in Eq. (7.20), was used to study the relationship 

between the vertical/longitudinal vibration excitations and the longitudinal dynamic 

response of the seat-driver system.  
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with 

       Power spectral density (PSD) of the output signal as a function of frequency 

       Coherence between the input and the output signals as a function of frequency 

 

The longitudinal accelerations on the seat cushion were selected as the output signal 

of the seat-driver system in the longitudinal direction. This signal is affected not only 

by the dynamic characteristics of the seat cushion but also by the dynamic response 

of the driver. Taking only the human inline biodynamic response in the longitudinal 

direction into consideration, for the seat-driver system, the excitation signal is the 

longitudinal accelerations at the seat base. Taking the operation OP-1.2 as an 

example, the coherence between the longitudinal accelerations at the seat base and 

on the seat cushion is presented in Fig. 7.18. Here the coherence is quite high in the 

frequency range of 0.5-2 Hz and becomes rather low at frequencies higher than 2 Hz. 

It means that the longitudinal excitations at the seat base have a large influence on 

the dynamic response of the seat-driver system in the longitudinal direction in the low 

frequency range of 0.5-2 Hz.  

 

Fig. 7.18: Coherence between the longitudinal accelerations at the seat base and on 

the seat cushion in the operation OP-1.2 

Taking only the human cross-axial biodynamic response (longitudinal response to 

vertical excitations) into consideration, the excitation signal for the human is the 

vertical accelerations on the seat cushion. Taking the operation OP-1.2 as an 

example as well, the coherence between the vertical and the longitudinal 

accelerations on the seat cushion is presented in Fig. 7.19. Here the coherence is 

quite high in the frequency range from 2 Hz to 3 Hz and pretty low at frequencies out 

of this range. It means that the vertical excitations on the seat cushion have a large 

influence on the dynamic response of the seat-driver system in the longitudinal 
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direction in the frequency range from 2 Hz to 3 Hz due to the human cross-axial 

biodynamic response. 

 

Fig. 7.19: Coherence between the vertical and the longitudinal accelerations on the 

seat cushion in the operation OP-1.2 

In summary, the dynamic response of the seat-driver system in the longitudinal 

direction is affected not only by the longitudinal excitations but also by the vertical 

excitations. It means that the simple human models, which only simulate the human 

inline biodynamic response in the longitudinal direction, are insufficient to simulate 

the biodynamic response of the human exposed to both the longitudinal and the 

vertical vibrations. The cushion-seated person model developed by Nawayseh and 

Griffin [81], as shown in Fig. 7.20, was validated to simulate the vertical and the 

longitudinal dynamic response of the cushion-seated person system under vertical 

excitations. This model was adopted in this research work as the seat-driver model in 

the longitudinal direction without a longitudinal seat suspension system. The 

equations of motion of this model are formulated in Eq. (7.21). 

 

Fig. 7.20: Seat-driver model in the longitudinal direction without a longitudinal seat 

suspension system [81] 
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with 

  Moment of inertia of mh1z about the connection point in kg·m² 

  Absolute displacement of the seat base in the x-direction in m 

 ̇ Absolute velocity of the seat base in the x-direction in m/s 

 ̈ Absolute acceleration of the seat base in the x-direction in m/s
2
 

   Absolute displacement of mh0z in the x-direction in m 

  ̇ Absolute velocity of mh0z in the x-direction in m/s 

  ̈ Absolute acceleration of mh0z in the x-direction in m/s
2
 

   Absolute displacement of mh0z in the z-direction in m 

  ̇ Absolute velocity of mh0z in the z-direction in m/s 

  ̈ Absolute acceleration of mh0z in the z-direction in m/s
2
 

    Linearized damping coefficient of seat cushion in the x-direction in N·s/m 

    Equivalent damping coefficient of the driver model in the z-direction in N·s/m 

   Rotational damping coefficient between mh1z and mh0z in N·s·m 

  Distance between the center of gravity of mh1z and the connection point in m 

    Linearized stiffness coefficient of seat cushion in the x-direction in N/m 

    Equivalent stiffness coefficient of the driver model in the z-direction in N/m 

   Rotational stiffness coefficient between mh1z and mh0z in N·m 

     Mass of component converting the excitations in the vertical direction to the response 
in the longitudinal direction in kg 

     Equivalent mass of the lower part of a seated person in kg 

     Equivalent mass of the upper part of a seated person in kg 

  Angle that e has with the horizontal when the model is in equilibrium in rad 

  Angle of rotation of mh1z in rad 

 ̇ Rotational velocity of mh1z in rad/s 

 ̈ Rotational acceleration of mh1z in rad/s
2
 

 

7.3.2 Parameter identification 

The human cross-axial biodynamic response is affected by the human physical 

characteristics and the vibration excitations. As two principal parameters in the seat-

driver model determining the human cross-axial biodynamic response, the rotational 

stiffness coefficient kr and the rotational damping coefficient cr are affected by the 

human physical characteristics and the vibration excitations. In the seat-driver model 
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in the longitudinal direction, the seat cushion was simplified as a linear spring-damper 

element. It is difficult to obtain the linearized stiffness coefficient kcx and damping 

coefficient ccx of the seat cushion from laboratory tests. Therefore, the nonlinear 

curve-fitting in least-squares sense was used to identify the above mentioned four 

parameters. They were determined by minimizing the quadratic error between the 

fast Fourier transform (FFT) of the simulated and the measured longitudinal 

accelerations on the seat cushion. The measured accelerations were obtained from 

the field tests of vibration measurement. Other parameters in this seat-driver model 

are summarized in Tab. 7.18. They were estimated from the values presented in the 

studies by Nawayseh and Griffin [81] and by Riedel [161].  

 

Tab. 7.18: A part of parameters of the seat-driver model in the longitudinal direction 

mh0z (kg) 0 J (kg·m²) 0.5 

mh1z (kg) 20 e (m) 0.11 

mh2z (kg) 40 α (rad) 1.12 

khz (N/m) 42000 chz (N·s/m) 1100 

 

7.3.3 Model validation 

After the parameters were determined in section 7.3.2, the seat-driver model in Fig. 

7.20 was used to simulate the dynamic behavior of the seat-driver system in the 

longitudinal direction. In order to evaluate the quality of this seat-driver model, the 

following three simulation results were compared with those obtained from the field 

measurements: 

1) Vibration dose value (VDV) of the frequency weighted accelerations in the 

longitudinal direction on the seat cushion: the δVDV, as defined by Eq. (7.22), 

was used to indicate the difference between the simulated VDV and the 

measured VDV. 

%100*
m

ms
VDV

VDV

VDVVDV 
   (7.22) 

with 

     Difference between the simulated VDV and the measured VDV 
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     VDV of accelerations obtained from the measurement in m/s
1.75 

     VDV of accelerations obtained from the simulation in m/s
1.75

 

 

2) Accelerations in the longitudinal direction on the seat cushion in the time 

domain: the mean value of the relative errors of accelerations, as defined by 

Eq. (7.11) (p. 134), was used here to give an indication of the difference 

between the simulated and the measured accelerations in the time domain. 

3) Power spectral density (PSD) curve of the accelerations in the longitudinal 

direction on the seat cushion: the mean value of the relative errors of PSD 

defined by Eq. (7.12) (p. 134) was used to indicate the difference between the 

PSD curves of the simulated and the measured accelerations.  

The VDVs obtained from simulations and measurements are compared in Tab. 7.19. 

It can be observed that the differences between both VDVs are smaller than 10%.  

 

Tab. 7.19: VDVs of frequency weighted accelerations in the longitudinal direction on 

the seat cushion obtained from simulations and measurements 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

VDVm (m/s1.75) 2.5134 2.5057 5.2663 7.3404 8.341 

VDVs (m/s1.75) 2.4638 2.6358 5.7495 7.1291 8.0292 

     (%) -1.9725 5.194 9.1750 -2.8782 -3.7387 

 

The simulated and the measured acceleration signals in the longitudinal direction on 

the seat cushion in the time domain are compared in Fig. 7.21. The mean values of 

the relative errors between both signals, the   ̅, are presented in Tab. 7.20. From the 

comparison in Fig. 7.21 and the values in Tab. 7.20 it can be concluded that the 

acceleration signals in the low frequency range obtained from simulations match 

those from field measurements very well in the time domain.  
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Fig. 7.21: Comparison of measured and simulated accelerations in the longitudinal 

direction on the seat cushion in the time domain 

 

Tab. 7.20: Mean values of the relative errors between the simulated and the 

measured accelerations in the longitudinal direction on the seat cushion 

 ̅  OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

0.5-4 Hz 0.1011 0.1082 0.0995 0.0562 0.0984 

0.5-20 Hz 0.3884 0.3270 0.3329 0.2669 0.3421 

 

The comparison of PSD curves is presented in Fig. 7.22. It can be observed that the 

differences between both PSD curves mainly occur at frequencies higher than 4 Hz, 
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where the vibration magnitudes are very low. At frequencies higher than 4 Hz, noise 

is included in the measurement signals which cannot be simulated. Therefore, the 

simulated accelerations have lower magnitudes than the measured ones in this 

frequency range. The differences between the PSD curves are quite small in the 

frequency range from 0.5 Hz to 4 Hz, where the vibration magnitudes are quite high 

and vibration excitations have the predominant influence on the dynamic response of 

the seat-driver system in the longitudinal direction. These quite small differences can 

also be observed from the mean values of the relative errors between the PSD 

curves in Tab. 7.21.  

 

 

 

Fig. 7.22: Comparison of PSD of measured and simulated accelerations in the 

longitudinal direction on the seat cushion 
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Tab. 7.21: Mean values of the relative errors between the PSD curve of the simulated 

and the measured longitudinal accelerations in the frequency range of 0.5-4 Hz 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

  ̅   (0.5-4 Hz) 0.0587 0.0451 0.1090 0.0434 0.0403 

 

From the comparison in this section it can be concluded that the seat-driver model 

can simulate the dynamic behavior of the seat-driver system in the longitudinal 

direction quite well. 

7.3.4 Suspension system optimization 

No longitudinal suspension system is equipped in the original seat on the compact 

wheel loader (CWL) analyzed in this work. In order to improve the vibration 

attenuation performance of the seat in this direction as well, a longitudinal seat 

suspension system should be designed and optimized. In this section, the 

optimization of two types of longitudinal seat suspension systems is introduced: a 

passive one and a semi-active one. The passive suspension is comprised of a linear 

spring, a passive hydraulic damper and two end-stop buffers. The force-velocity 

characteristics of the passive hydraulic damper can be described by Fig. 7.10 (p. 128) 

as well. The two end-stop buffers were suppose to have the same force-deflection 

relationship, which is characterized in terms of a linear stiffness coefficient with a 

cubic stiffness coefficient. The corresponding seat-driver model is illustrated in Fig. 

7.23. The equations of motion of this model are formulated in Eq. (7.23). 

 

Fig. 7.23: Seat-driver model with a passive longitudinal seat suspension system 
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with 

    Damping force of the passive damper in the longitudinal seat suspension system in N 

    Force coming from the front end-stop buffer in N 

    Force coming from the rear end-stop buffer in N 

   Absolute displacement of ms in the x-direction in m 

  ̇ Absolute velocity of ms in the x-direction in m/s 

  ̈ Absolute acceleration of ms in the x-direction in m/s
2
 

   Stiffness of the spring in the longitudinal seat suspension system in N/m 

 

For the passive hydraulic damper the damping force Fdx is formulated in Eq. (7.24). 

The forces coming from the end-stop buffers, Ffx and Frx, are formulated in Eq. (7.25) 

and Eq. (7.26) respectively.  
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    xsxsfxsffx dXXdXXkdXXkF 
3

31 )(*)(*   (7.25) 

    xsxsrxsrrx dXXdXXkdXXkF 
3

31 )(*)(*   (7.26) 

with 

    Damping coefficient of the longitudinal passive hydraulic damper at low speeds in the 
compression stage in N·s/m 

    Damping coefficient of the longitudinal passive hydraulic damper at high speeds in the 
compression stage in N·s/m 

    Damping coefficient of the longitudinal passive hydraulic damper at low speeds in the 
extension stage in N·s/m 
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    Damping coefficient of the longitudinal passive hydraulic damper at high speeds in the 
extension stage in N·s/m 

   Distance between the middle position of the longitudinal seat suspension system and 
the front or the rear end-stop buffer in m 

    Linear stiffness coefficient of the front end-stop buffer in N/m 

    Cubic stiffness coefficient of the front end-stop buffer in N/m
3
 

    Linear stiffness coefficient of the rear end-stop buffer in N/m 

    Cubic stiffness coefficient of the rear end-stop buffer in N/m
3
 

   Asymmetry factor of the longitudinal passive hydraulic damper, ratio of cx3 to cx1 

    Transition velocity of the longitudinal passive damper in the compression stage in m/s 

    Transition velocity of the longitudinal passive damper in the extension stage in m/s 

    Damping reduction factor of the longitudinal passive hydraulic damper in the 
compression stage, ratio of cx2 to cx1 

    Damping reduction factor of the longitudinal passive hydraulic damper in the 
extension stage, ratio of cx4 to cx3 

 

The semi-active suspension system is comprised of a linear spring and a semi-active 

damper. Equal to that in the vertical seat suspension system, the semi-active damper 

is also controlled by the „soft-hard‟ policy (refer to Eq. (2.41)). The corresponding 

seat-driver model is illustrated in Fig. 7.24. The equations of motion of this model are 

formulated in Eq. (7.27). 

 

Fig. 7.24: Seat-driver model with a semi-active longitudinal seat suspension system 
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For the semi-active damper the damping force Fdx is formulated in Eq. (7.28). 
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with 

       Damping coefficient of the longitudinal semi-active damper in the soft-state in N·s/m 

       Damping coefficient of the longitudinal semi-active damper in the hard-state in N·s/m 

       Maximum suspension travel of the longitudinal seat suspension system when the 

semi-active damper in the soft-state in m 

    Maximum stroke of the longitudinal seat suspension system in m 

 

Due to the limited space in the cabin on construction vehicles and in order to satisfy 

the requirement in operational safety, the maximum stroke of the longitudinal seat 

suspension system should also be kept in a small range. In this work, it was set to    

± 25 mm. The optimization of the longitudinal seat suspension system was carried 

out when the free stroke was set to ± 10 mm, ± 15 mm and ± 20 mm.  

As analyzed in chapter 4, the predominant components of the longitudinal vibration 

excitations at the seat base are in the frequency range from 1.25 Hz to 2 Hz. In order 

to attenuate these vibrations, the natural frequency of the seat-driver system with the 

longitudinal seat suspension system should not exceed 1.25/ 2 Hz. The range of the 

stiffness coefficient kx determined according to Eq. (7.29) is limited to kx≤2467 N/m. 

On the other hand, the stiffness coefficient kx should be large enough to comply with 

the requirement of operational safety. Accordingly, the value 2467 N/m was set as 

the optimal stiffness coefficient of the longitudinal seat suspension system. 
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with 

    Natural frequency of the seat-driver system with longitudinal suspension system in Hz 

 

7.3.4.1 Optimization of passive longitudinal seat suspension system 

The excitations in operations OP-1.1, OP-1.2, OP-1.3, OP-1.4 and OP-4, which were 

already used in section 7.2.4 to optimize the vertical seat suspension system, were 

used in this section to optimize the longitudinal seat suspension system as well.  

The vibration attenuation performance of the passive longitudinal seat suspension 

system is improved by optimizing the damping coefficients of the hydraulic damper 

and the stiffness coefficients of the end-stop buffers. The optimization was carried out 

in the following two steps: 

1) Under the excitations with moderate magnitudes, the damping coefficients of 

the passive damper were optimized to minimize the vibration dose value (VDV) 

of the frequency weighted longitudinal accelerations on the seat cushion. The 

suspension travel was constrained to the free stroke. The objective function in 

this step is formulated in Eq. (7.30). Here the minimum VDV was taken as an 

alternative optimization objective, and during the optimization it was noticed 

that the same optimization results were obtained when taking both the 

minimum VDV and the minimum vibration dose value ratio (VDVR) as the 

optimization objectives.  
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The excitation signals in the time domain show that the excitations have low 

magnitudes in the operation OP-1.1 and moderate magnitudes in the 

operation OP-1.2. They have high magnitudes in operations OP-1.3, OP-1.4 

and OP-4. Accordingly, the optimal damping coefficients were determined 

under the excitation in the operation OP-1.2. It was supposed that the damper 

has the same force-velocity relationship in the extension and the compression 

stages, which means that the damping coefficient cx1 equals cx3, and cx2 

equals cx4. 



164 7 Optimization of Seat Suspension System 

2) With the optimal damping coefficients determined in step 1), the suspension 

travel possibly exceeds the maximum stroke under excitations with high 

magnitudes. The end-stop buffers are needed to avoid the suspension travel 

exceeding the maximum stroke. Their force-deflection characteristics should 

be optimized to minimize the VDV of the frequency weighted longitudinal 

accelerations on the seat cushion. The objective function in this step is 

formulated in Eq. (7.31).  
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The optimization results in the first step are presented in Tab. 7.22. With these 

optimal damping coefficients, the VDVs of the frequency weighted longitudinal 

accelerations on the seat cushion are presented in Tab. 7.23.  

 

Tab. 7.22: Optimal damping coefficients of the longitudinal seat suspension system 

with different free strokes determined under the excitation in the operation OP-1.2 

Free stroke 

(mm) 

Optimal damping coefficient (N·s/m) 

cx1 = cx3 cx2 = cx4 

± 10 2950.6 2585.4 

± 15 1643.8 2233 

± 20 1125.9 1483.3 

 

Tab. 7.23: VDVs of frequency weighted longitudinal accelerations on the seat 

cushion with the optimal damping coefficients 

Free stroke 

(mm) 

VDV (m/s1.75) 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 10 2.3012 2.5055 5.3190 6.3588 7.4244 

± 15 2.1848 2.4450 5.1396 5.9367 7.2586 

± 20 2.0963 2.4047 4.9536 5.5197 7.0829 

Original seat 2.4638 2.6358 5.7495 7.1291 8.0292 
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As already found out for the vertical seat suspension system, when the suspension 

free stroke is smaller, the optimal damping coefficients are larger, as shown in Tab. 

7.22. Larger damping coefficients lead to larger VDVs, as shown in Tab. 7.23. 

From the simulation results it was noticed that the suspension travel does not exceed 

the maximum stroke under all excitations, when the free stroke is set to ± 10 mm. 

This is same as the vertical suspension system with free stroke of ± 30 mm. The 

reason is that the large damping coefficients obtained in step 1) for this free stroke 

cause small suspension deflections. When the free stroke exceeds ± 15 mm, the 

suspension travel exceeds the maximum stroke under excitations in operations OP-4, 

OP-1.3 and OP-1.4. Under these three excitations, the stiffness coefficients of the 

front and the rear end-stop buffers were optimized. The stiffest end-stop buffer was 

selected as the optimal one and its stiffness coefficients are presented in Tab. 7.24.  

 

Tab. 7.24: Optimal linear and cubic stiffness coefficients of end-stop buffers in the 

longitudinal seat suspension system with different free strokes 

Free stroke (mm) kf1 = kr1 (N/m) kf3 = kr3 (N/m3) 

± 15 3.5*105 9*1010 

± 20 1*106 1*1011 

 

With the optimal damping coefficients of the passive damper in Tab. 7.22 and the 

optimal stiffness coefficients of the end-stop buffers in Tab. 7.24, the VDVs of the 

frequency weighted longitudinal accelerations on the seat cushion under excitations 

in all five operations are presented in Tab. 7.25. 

 

Tab. 7.25: VDVs of frequency weighted longitudinal accelerations on the seat 

cushion with the optimized damper and end-stop buffers 

Free stroke 

(mm) 

VDV (m/s1.75) 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 10 2.3012 2.5055 5.3190 6.3588 7.4244 

± 15 2.1848 2.4450 5.1901 5.8940 7.0747 

± 20 2.0963 2.4047 5.1794 5.5951 6.9494 

Original seat 2.4638 2.6358 5.7495 7.1291 8.0292 
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These VDVs show that the suspension free stroke has a large influence on the 

vibration attenuation performance of the seat in the longitudinal direction. The 

optimized passive longitudinal seat suspension system has the best vibration 

attenuation performance when the free stroke is set to ± 20 mm. 

7.3.4.2 Optimization of semi-active longitudinal seat suspension system 

The vibration attenuation performance of the semi-active longitudinal seat 

suspension system can be improved by optimizing the damping coefficients of the 

semi-active damper in both the soft-state and the hard-state. The optimization was 

performed according to the following two steps: 

1) Under the excitation in the operation OP-1.2, the damping coefficient of the 

semi-active damper in the soft-state was optimized to minimize the VDV of the 

frequency weighted longitudinal accelerations on the seat cushion. The 

suspension travel was constrained to the free stroke of the semi-active 

suspension. The objective function in this step is formulated in Eq. (7.32). 

softxssoftx dXXVDVcU  )min()(   (7.32) 

2) With the optimal damping coefficient in the soft-state determined in the step 1), 

the suspension travel exceeds the free stroke under excitations with high 

magnitudes. In this case, the semi-active damper has to be put in the hard-

state, where the damping coefficient should be optimized to minimize the VDV 

of the frequency weighted longitudinal accelerations on the seat cushion, as 

well as to avoid the suspension travel exceeding the maximum stroke. The 

objective function in this step is formulated in Eq. (7.33). In this step, 

excitations in operations OP-4, OP-1.3 and OP-1.4 were used to optimize the 

damping coefficient. The highest one was determined as the optimal damping 

coefficient in the hard-state. 

mxshardx dXXVDVcU  )min()(   (7.33) 

The optimal damping coefficients in both the soft-state and the hard-state of the 

semi-active damper in the longitudinal seat suspension system with different free 

strokes are presented in Tab. 7.26. 
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Tab. 7.26: Optimal damping coefficients of the semi-active damper in the longitudinal 

seat suspension system with different free strokes 

Free stroke 

(mm) 

Optimal damping coefficient (N·s/m) 

csoftx chardx 

± 10 2963.4 3545.7 

± 15 1833.3 5336 

± 20 1301.2 8564.9 

 

With the optimal damping coefficients in Tab. 7.26, the VDVs of the frequency 

weighted accelerations in the longitudinal direction on the seat cushion are presented 

in Tab. 7.27. They show that the optimized semi-active longitudinal seat suspension 

system has the best vibration attenuation performance when the free stroke is set to 

± 20 mm. 

 

Tab. 7.27: VDVs of the frequency weighted longitudinal accelerations on the seat 

cushion with the optimized semi-active longitudinal seat suspension system 

Free stroke 

(mm) 

VDV (m/s1.75) 

OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

± 10 2.3019 2.5058 5.3509 6.3784 7.4350 

± 15 2.2087 2.4492 5.2266 5.9380 7.1771 

± 20 2.1270 2.4047 5.1919 5.5424 6.9678 

Original seat 2.4638 2.6358 5.7495 7.1291 8.0292 

 

7.3.4.3 Comparison of optimized passive and semi-active longitudinal seat 

suspensions 

In sections 7.3.4.1 and 7.3.4.2, it is concluded that the optimized passive and semi-

active longitudinal seat suspension systems have the best vibration attenuation 

performance when the free stroke is set to ± 20 mm. By comparing the VDVs in Tab. 
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7.25 and Tab. 7.27 with these two optimal suspension systems, it can be noticed that 

the differences of the VDVs between the optimal passive longitudinal seat 

suspension system and the semi-active one are very small. Due to the lower cost and 

easier usage of the passive hydraulic damper, the passive suspension system with 

the free stroke of ± 20 mm is recommended as the optimal longitudinal seat 

suspension system.  

In the final step, the VDVs of the frequency weighted longitudinal accelerations on 

the seat cushion with the optimal longitudinal seat suspension system are compared 

with those on the original seat in Tab. 7.28.  

 

Tab. 7.28: Comparison between the VDVs of the frequency weighted longitudinal 

accelerations on the seat cushion on the original seat and the VDVs on the seat 

cushion with the optimal longitudinal seat suspension system 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

VDVoriginal (m/s1.75) 2.4638 2.6358 5.7495 7.1291 8.0292 

VDVoptimal (m/s1.75) 2.0963 2.4047 5.1794 5.5951 6.9494 

∆ (%) -14.92 -9.38 -9.92 -21.52 -13.45 

 

7.4 Combined seat-driver model in the x- and z-directions 

Now the vertical seat suspension model from section 7.2 and the seat-driver model 

from section 7.3 are combined together to simulate the dynamic behavior of the seat-

driver system in the longitudinal and the vertical directions simultaneously. The 

combined seat-driver model with the optimal longitudinal and vertical seat suspension 

systems is illustrated in Fig. 7.25. The equations of motion of this combined model 

are expressed in Eq. (7.34). 
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Fig. 7.25: Combined seat-driver model with optimal seat suspension systems 
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  (7.34) 

To examine the reliability of this model, the following simulation results were 

compared with those from the field measurements: 
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1) Vibration dose value (VDV) of the frequency weighted accelerations in the 

longitudinal direction on the seat cushion 

2) VDV of the frequency weighted accelerations in the vertical direction on the 

seat cushion 

The δVDV defined by Eq. (7.22) (p. 155) was used to indicate the difference between 

the simulated VDV and the measured VDV. 

3) Longitudinal accelerations on the seat cushion in the time domain 

4) Vertical accelerations on the seat cushion in the time domain 

The mean value of the relative errors of accelerations   ̅, as defined by Eq. (7.11) (p. 

134), was used here to give an indication of the difference between the simulated 

and the measured accelerations in the time domain. 

5) Power spectral density (PSD) of the longitudinal accelerations on the seat 

cushion 

6) PSD of the vertical accelerations on the seat cushion 

The mean value of the relative errors of PSD   ̅  , defined by Eq. (7.12) (p. 134), 

was used to indicate the difference between the PSD curves of the simulated and the 

measured accelerations. 

The comparison of the VDVs obtained from simulations and field measurements is 

presented in Tab. 7.29. The values of δVDV show that all differences between the 

simulated and the measured VDVs are less than 10%. 

 

Tab. 7.29: Comparison of measured and simulated VDVs 

 OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

x-direction 

VDVm (m/s1.75) 2.5134 2.5057 5.2663 7.3404 8.3410 

VDVs (m/s1.75) 2.3777 2.5026 5.7191 6.8488 7.6185 

δVDV (%) -5.3988 -0.1224 8.5992 -6.6965 -8.6626 

z-direction 

VDVm (m/s1.75) 3.5868 3.1520 5.3040 9.6091 9.3368 

VDVs (m/s1.75) 3.4352 2.9322 5.2028 9.4928 9.1875 

δVDV (%) -4.2263 -6.9731 -1.9076 -1.2103 -1.5990 
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The comparison of the simulated and the measured longitudinal accelerations in the 

time domain is illustrated in Fig. 7.26. In Fig. 7.27 the comparison of the simulated 

and the measured vertical accelerations in the time domain is presented. The mean 

values of the relative errors of the accelerations in both the longitudinal and the 

vertical directions, the   ̅, are given in Tab. 7.30. The comparison in Fig. 7.26 and Fig. 

7.27 and the   ̅ values in Tab. 7.30 show that the simulated accelerations match the 

measured accelerations very well, especially in the low frequency range. 

 

 

 

Fig. 7.26: Comparison of measured and simulated accelerations in the longitudinal 

direction on the seat cushion in the time domain 
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Fig. 7.27: Comparison of measured and simulated accelerations in the vertical 

direction on the seat cushion in the time domain 

 

Tab. 7.30: Mean values of the relative errors between the simulated and the 

measured accelerations in both the longitudinal and the vertical directions 

Direction  ̅  OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

x 
0.5-4 Hz 0.1169 0.1150 0.0978 0.0797 0.0974 

0.5-20 Hz 0.4180 0.3593 0.3376 0.3715 0.3316 

z 
0.5-4 Hz 0.1064 0.1042 0.0835 0.0939 0.1012 

0.5-20 Hz 0.3148 0.3082 0.3403 0.2632 0.2867 
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The comparison of PSD curves of the simulated and the measured longitudinal 

accelerations is shown in Fig. 7.28. And the comparison of PSD curves of the vertical 

accelerations is shown in Fig. 7.29. As shown in these two figures, the accelerations 

in both the longitudinal and the vertical directions have large amplitudes in the 

frequency range from 0.5 Hz to 4 Hz. In this frequency range, the differences 

between the PSD curves of the simulated and the measured accelerations are very 

small. These small differences can be also observed from the mean values of the 

relative errors between the simulated and the measured PSD curves, the   ̅   values, 

in Tab. 7.31. 

 

 

 

Fig. 7.28: Comparison of PSD curves of measured and simulated accelerations in the 

longitudinal direction on the seat cushion 
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Fig. 7.29: Comparison of PSD curves of measured and simulated accelerations in the 

vertical direction on the seat cushion 

 

Tab. 7.31: Mean values of the relative errors between the simulated and the 

measured PSD curves in both the longitudinal and the vertical directions 

 Direction OP-1.1 OP-1.2 OP-4 OP-1.3 OP-1.4 

  ̅   (0.5-4 Hz) 
x 0.0644 0.0849 0.1390 0.0765 0.1074 

z 0.0690 0.0413 0.0919 0.0998 0.1324 

 

The accelerations in the longitudinal and the vertical directions have small amplitudes 

at frequencies higher than 4 Hz, where the differences between the PSD curves of 
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the simulated and the measured accelerations are large. This is because in this 

frequency range the noise which is very large in the measured acceleration signals 

cannot be simulated. 

From the above mentioned comparison results it can be concluded that the 

differences between the simulated and the measured acceleration signals are in an 

acceptable range, especially for the accelerations in the frequency range of 0.5-4 Hz. 

The combined model can be used to simulate the dynamic behavior of the seat-driver 

system. 

The optimal vertical and longitudinal seat suspension systems are determined in 

sections 7.2.4 and 7.3.4 respectively. Here the reduction of the WBV intensity with 

these optimal seat suspension systems is investigated using the simulation of the 

combined seat-driver model. While the optimization of the lateral seat suspension 

system is not taken into consideration, the simulated VDVs in this direction on the 

seat cushion are supposed to be same with the measured VDVs.  

The simulated daily vibration dose value (VDVd) of seven scenarios with the original 

or the optimal seat suspension systems are presented in Tab. 7.32. 

 

Tab. 7.32: VDVd of seven scenarios with the original or the optimal seat suspensions  

Scenario 

VDVd (m/s1.75) 
∆ (%) 

Original seat Optimized seat 

S1 27.16 24.01 -11.60 

S2-Slow 18.67 17.23 -7.71 

S3-Slow 17.49 16.39 -6.29 

S4-Slow 16.99 16.04 -5.59 

S2-Fast 45.67 39.09 -14.40 

S3-Fast 47.26 40.43 -14.45 

S4-Fast 47.87 40.94 -14.48 

 

As shown in Tab. 7.32, for the scenario of the pure V-cycle the VDVd is reduced by 

11.6% with the optimal seat suspension systems. They result in a relatively large 
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reduction of VDVd (14.4%) for the scenarios comprised of V-cycle and fast driving. 

For the scenarios comprised of V-cycle and slow driving, a relatively small reduction 

of VDVd (5%-8%) is caused by the optimal seat suspension systems.  

The permitted daily exposure durations of the seven scenarios with the original or the 

optimal seat suspension systems were calculated according to the procedure in ISO 

2631-1:1997. The extensions of the permitted daily exposure durations contributed 

by the optimal seat suspension systems are presented in Tab. 7.33.  

For the scenarios comprised of V-cycle and slow driving, the permitted daily 

exposure durations are extended by about two hours with the optimized seat 

suspension systems, and it is extended by almost one hour for the scenario of the 

pure V-cycle. For the scenarios comprised of V-cycle and fast driving, the extension 

reaches 86%. However, because the vibration excitations have very large 

magnitudes in fast driving, the permitted daily exposure durations are still very short 

even when the seat suspension systems are optimized. 

 

Tab. 7.33: Extension of permitted daily exposure durations contributed by the optimal 

seat suspension systems 

Scenario 
Extension of permitted 

daily exposure durations 

S1 47 min (63.87%) 

S2-Slow 2.07 h (37.68%) 

S3-Slow 2.12 h (29.73%) 

S4-Slow 2.07 h (25.88%) 

S2-Fast 7.95 min (86.20%) 

S3-Fast 6.97 min (86.67%) 

S4-Fast 6.63 min (86.82%) 

7.5 Conclusion 

This chapter starts from analyzing the dynamic characteristics of the vertical seat 

suspension system based on laboratory seat tests. Analysis results show that there is 
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a potential to improve the vibration attenuation performance of the vertical seat 

suspension system, especially when the seat is exposed to vibrations with high 

magnitudes.  

Two solutions were chosen to improve the suspension vibration attenuation 

performance and a method was developed to identify the optimal suspension 

configuration. The first solution is optimizing a passive seat suspension system. The 

second one is optimizing a semi-active seat suspension system with a damper 

controlled by a “soft-hard” policy. The optimal configuration of the suspension 

systems was determined in the first step by optimizing the damping coefficients of the 

passive damper or the damping coefficient of the semi-active damper in the soft-state 

under excitations with moderate magnitudes, and in the second step by optimizing 

the stiffness coefficients of the end-stop buffers for the passive suspension system or 

the damping coefficient of the semi-active damper in the hard-state. 

The optimization results show that the suspension free stroke has a large influence 

on the vibration attenuation performance. The semi-active suspension system with 

the optimized damping coefficients and the free stroke of ± 35 mm was 

recommended as the optimal vertical seat suspension system. The optimal 

longitudinal seat suspension system was proposed as a passive suspension with 

optimized damper and end-stop buffers, as well as with the free stroke of ± 20 mm.  

A model of the seat-dummy system in the laboratory seat tests was built and 

validated for the optimization of the vertical seat suspension system. The seat-driver 

system in the field tests was modeled for the optimization of the longitudinal seat 

suspension system. The driver model adopted in this research work can simulate the 

human inline biodynamic response in the longitudinal and the vertical directions, as 

well as the human cross-axial biodynamic response (longitudinal response to vertical 

excitations). At last, a seat-driver model with the optimized vertical and longitudinal 

seat suspension systems is introduced to simulate the dynamic behavior of the seat-

driver system in the longitudinal and the vertical directions simultaneously. With the 

simulation of this model, the reduction of the WBV intensity in seven scenarios, as 

well as the extension of the permitted daily exposure durations, due to the optimized 

seat suspension systems according to ISO 2631-1:1997 are shown.  
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8 Summary and Outlook 

This dissertation was carried out with the first purpose of evaluating effects of whole-

body vibrations (WBV) arising from a compact wheel loader (CWL) on the human 

health and the ride comfort. The second purpose of this dissertation is to propose 

improvements for the evaluation procedures by analyzing the evaluation results 

obtained according to different procedures and by reviewing the investigations on the 

human sensitivity to vibrations in the previous literatures. The third purpose is to 

select a proper type of safety belt for a more comfortable sitting environment by 

investigating the effect of a safety belt on the seat transmissibility. And with the fourth 

purpose this dissertation was carried out to reduce the WBV exposure levels by 

optimizing the seat suspension system.  

In order to achieve these purposes, tri-axial translational accelerations were 

measured on a medium-sized CWL in ten different typical operations. Using these 

operations, seven different scenarios, comprised of the V-cycle and the driving over 

different distances at a low (6.9 km/h) or a high (19.8 km/h) speed, were proposed to 

represent the daily work of a CWL. 

The influence of the operational conditions, including the vehicle speed, the bucket 

load condition and the roughness of the road surface, on the vibration intensity was 

analyzed. The results show that vibrations on the CWL can be reduced significantly 

by reducing the vehicle speed and the unevenness of the road surface.  

Health risks caused by the long-term exposure to WBV were predicted according to 

ISO 2631-1:1997 and ISO 2631-5:2004. Results show that WBV on the CWL can 

cause moderate or high health risks. According to ISO 2631-1:1997, the permitted 

daily exposure duration just reaches 1.5 h for the scenario of the pure V-cycle. It 

increases with the distance between the loading and the dumping places when 

driving at 6.9 km/h (slow driving), and can reach 8 h if the distance exceeds 460 m. 

For the scenarios comprised of V-cycle and driving at 19.8 km/h (fast driving) WBV 

can cause health risks, when the daily exposure duration exceeds 8 minutes.  

Different evaluation results were obtained according to ISO 2631-5:2004 and ISO 

2631-1:1997. The permitted daily exposure durations obtained with ISO 2631-5:2004 

are longer than those with ISO 2631-1:1997 for the scenarios comprised of pure V-

cycle or comprised of V-cycle and slow driving, but shorter for the scenarios 

comprised of V-cycle and fast driving. For the scenarios comprised of pure V-cycle or 
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V-cycle and slow driving, the different results are caused by the unequal boundaries 

of the health guidance caution zone (HGCZ) in the two standards. The boundaries for 

the daily equivalent static compression dose Sed in ISO 2631-5:2004 are higher than 

those for the daily vibration dose value (VDVd) in ISO 2631-1:1997. In this research 

work equivalent boundaries for both values were obtained, based on the investigation 

of the relationship between VDVd and Sed of WBV on the CWL. For the scenarios 

comprised of V-cycle and fast driving, in addition to the unequal HGCZ boundaries, 

the quantification methods in the two standards and the properties of WBV on the 

CWL are two further reasons for the different evaluation results. The equivalent static 

compressive stress (Se) method in ISO 2631-5:2004 is more sensitive than the 

vibration dose value (VDV) method in ISO 2631-1:1997 to WBV with multiple high 

magnitude shocks, such as the WBV measured on the CWL during the fast driving. 

Based on the analysis in this research work, improvements were proposed for two 

details of the evaluation procedure in ISO 2631-1:1997. At first, the critical values of 

the crest factor (CF), the ratio between maximum transient vibration value (MTVV) 

and root mean square (RMS, ãw) value of the frequency weighted accelerations 

(MTVV/ãw), and the ratio beween VDV and ãwT1/4 (VDV/(ãwT1/4)) in ISO 2631-1:1997 

are not sufficient to determine the suitable quantification method for the WBV on the 

CWL. New critical values of CF, MTVV/ãw and VDV/(ãwT1/4) are proposed in this work 

based on the analysis of the difference between the estimated vibration dose value 

(eVDV) and the VDV. Secondly, it is not clearly defined in ISO 2631-1:1997 how to 

select the vibration directions for the evaluation. Based on analyzing the difference 

between the maximum VDV and the total vibration dose value (TVDV) on the seat 

cushion, in this work it is suggested to use accelerations in all three translational 

directions on the seat cushion to evaluate the effect of WBV from the CWL on the 

human health.  

On the basis of a literature review, in this work it is discussed whether the frequency 

weighting filters and the spine models are sufficient to reflect the characteristics of 

the human response to vibrations. The filters Wd and Wk seem to be suitable to 

weight the lateral and the vertical vibrations on the seat cushion respectively. The 

filter Wd seems to be suitable for weighting the longitudinal vibrations in the case 

when no seat backrest is employed, but is inadequate when employing a seat 

backrest. The spine models in ISO 2631-5:2004 still need to be validated and 

improved in the future. The human sensitivities in three translational directions 



180 8 Summary and Outlook 

weighted by the multiplying factors in ISO 2631-1:1997 are inconsistent with those 

weighted by the multiplying factors in ISO 2631-5:2004. 

The procedures in ISO 2631-1:1985 and ISO 2631-1:1997 were used to evaluate the 

effect of short-term exposure to WBV from the CWL on the ride comfort. According to 

ISO 2631-1:1985, the RMS values of accelerations in 1/3 octave band were 

calculated and compared with the curves of reduced comfort boundary (RCB). The 

exposure durations for the reduced comfort are 1 h and 16 min respectively for the 

scenarios comprised of V-cycle and slow driving and the scenario of pure V-cycle. To 

protect drivers from ride discomfort, the CWL should not be driven on an uneven road 

at a speed as high as 19.8 km/h. Using the procedure in ISO 2631-1:1997, the vector 

sum values (VSVs) of RMS values of accelerations in three translational directions on 

the seat cushion were calculated and compared with the boundaries for different 

levels of discomfort. The VSVs in all seven scenarios exceed the boundary of 

„Uncomfortable‟. They exceed the boundary of „Extremely Uncomfortable‟ a little bit in 

the scenarios comprised of V-cycle and fast driving.  

Due to the high levels of WBV arising from the CWL, methods were developed to 

improve the work environment for the driver, including suggesting the proper safety 

belt and optimizing the seat suspension systems. 

In field tests accelerations were measured in cases where the driver wore a lap belt 

or a four-point seat harness and in the case where the driver did not wear any safety 

belt. By analyzing the seat effective amplitude transmissibility (SEAT) value and the 

seat transmissibility in the frequency domain in these three cases, the effect of a 

safety belt on the seat transmissibility was analyzed. The analysis results show that 

the lap belt can provide a more comfortable working environment for drivers. 

With the help of laboratory seat tests, dynamic characteristics of the suspension seat 

under the excitations measured on the CWL were analyzed. Based on this analysis 

two optimization solutions were developed to improve the vibration attenuation 

performance of the vertical seat suspension system. One solution is optimizing the 

damping coefficients of a passive hydraulic damper and the stiffness coefficients of 

end-stop buffers in a passive suspension system. The other solution is optimizing the 

damping coefficients of a semi-active damper controlled by the “soft-hard” policy in a 

semi-active suspension system. These two solutions were also used to optimize the 

longitudinal seat suspension system. Optimizations of the seat suspension system 

were carried out when the suspension free stroke was set to different values. With 
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the optimized seat suspension systems, permitted daily exposure duration is 

extended by 47 min for the scenario of pure V-cycle, by about 2 h for the scenarios 

comprised of V-cycle and slow driving, and by 7 min for the scenarios comprised of 

V-cycle and fast driving.  

The vibration attenuation performance of the optimal passive seat suspension system 

was compared with that of the optimal semi-active seat suspension system. The 

latter can reach a better vibration attenuation performance in the vertical direction, 

especially under excitations with moderate and high magnitudes. Two types of 

suspension systems reach the same level of vibration attenuation performance in the 

longitudinal direction. Therefore, in this work it is proposed to use a semi-active 

damper in the vertical direction and a passive damper in the longitudinal direction. 

To optimize the vertical seat suspension system, a multi-body model of the seat-

dummy system used in the laboratory seat tests was build. Although several 

simplifications were made, this model is acceptable to simulate the dynamic behavior 

of the vertical seat suspension system. For the optimization of the longitudinal seat 

suspension system, a multi-body model of the seat-driver system in the field tests 

was built. It was observed in this research work that the longitudinal accelerations on 

the seat cushion are affected by the vertical accelerations. This is due to the cross-

axial biodynamic response of the driver. Therefore, a driver model which can 

simulate the human cross-axial biodynamic response (longitudinal response to 

vertical excitations) was employed in the seat-driver model. It was validated that this 

model is acceptable to simulate the dynamic behavior of the seat-driver system in the 

longitudinal direction. It was combined with the vertical seat suspension model to 

simulate the dynamic behavior of the seat-driver system in the longitudinal and the 

vertical directions simultaneously. The methods of modeling the seat-occupant 

system and the solutions of optimizing the seat suspension system introduced in this 

research work can also be used for other types of construction vehicles.  

 

Efforts which should be done in the future are described as follows: 

At first, in this research work new critical values of CF, MTVV/ãw and VDV/(ãwT1/4) 

are proposed to determine the suitable quantification method for WBV on the CWL. 

In this work it is also suggested to select the accelerations in all three translational 

directions on the seat cushion for the health evaluation. This suggestion and the new 
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critical values need to be validated for WBV arising from other types of construction 

vehicles.  

Secondly, in this research work it is found out that some details in procedures in ISO 

2631-1:1997 and ISO 2631-5:2004 are doubtful for the evaluation of WBV on 

construction vehicles, for example, the frequency weighting filter Wd for longitudinal 

vibrations, two spine models and the multiplying factors. To validate or improve these 

details, the human subjective sensitivity and the human biodynamic response to 

vibrations need to be investigated based on a huge number of experiments. These 

experiments are not carried out in this research work due to the limited time and 

experiment conditions. They need to be carried out in the future to propose 

amendments for these details.  

Thirdly, the seat cushion model should be improved in the future based on the 

accurate description of the static and dynamic properties of the cushion. This will lead 

to more accurate simulation results of the dynamic behavior of the cushion-driver 

system. In addition, an optimization of the air spring should be considered in the 

future to provide a better vibration attenuation performance for the suspension seat. 

This research work focuses on the investigation and the improvement of the vibration 

attenuation performance of seat suspension systems. However, the seat suspension 

system cannot isolate all vibrations from the vehicle. In order to reduce more WBV 

and provide a more comfortable and safer environment for drivers, improvement of 

the cabin and the axle suspension systems should be carried out, especially on the 

large-sized construction vehicles. 
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