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Abstract

The recently established technologies in the areas of distributed measurement and in-

telligent information processing systems, e.g., Cyber Physical Systems (CPS), Ambi-

ent Intelligence/Ambient Assisted Living systems (AmI/AAL), the Internet of Things

(IoT), and Industry 4.0 have increased the demand for the development of intelligent

integrated multi-sensory systems as to serve rapid growing markets [1, 2]. These in-

crease the significance of complex measurement systems, that incorporate numerous ad-

vanced methodological implementations including electronics circuit, signal processing,

and multi-sensory information fusion. In particular, in multi-sensory cognition applica-

tions, to design such systems, the skill-required tasks, e.g., method selection, parameter-

ization, model analysis, and processing chain construction are elaborated with immense

effort, which conventionally are done manually by the expert designer. Moreover, the

strong technological competition imposes even more complicated design problems with

multiple constraints, e.g., cost, speed, power consumption, flexibility, and reliability.

Thus, the conventional human expert based design approach may not be able to cope

with the increasing demand in numbers, complexity, and diversity. To alleviate the issue,

the design automation approach has been the topic for numerous research works [3–14]

and has been commercialized to several products [15–18]. Additionally, the dynamic

adaptation of intelligent multi-sensor systems is the potential solution for developing

dependable and robust systems. Intrinsic evolution approach and self-x properties [19],

which include self-monitoring, -calibrating/trimming, and -healing/repairing, are among

the best candidates for the issue. Motivated from the ongoing research trends and based

on the background of our research work [12, 13] among the pioneers in this topic, the

research work of the thesis contributes to the design automation of intelligent integrated

multi-sensor systems.

In this research work, the Design Automation for Intelligent COgnitive system with self-

X properties, the DAICOX, architecture is presented with the aim of tackling the design

effort and to providing high quality and robust solutions for multi-sensor intelligent

systems. Therefore, the DAICOX architecture is conceived with the defined goals as

listed below.

� Perform front to back complete processing chain design with automated method

selection and parameterization

� Provide a rich choice of pattern recognition methods to the design method pool

� Associate design information via interactive user interface and visualization along

with intuitive visual programming
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� Deliver high quality solutions outperforming conventional approaches by using

multi-objective optimization

� Gain the adaptability, reliability and robustness of designed solutions with self-x

properties

Derived from the goals, several scientific methodological developments and implemen-

tations, particularly in the areas of pattern recognition and computational intelligence,

will be pursued as part of the DAICOX architecture in the research work of this thesis.

The method pool is aimed to contain a rich choice of methods and algorithms covering

data acquisition and sensor configuration, signal processing and feature computation,

dimensionality reduction, and classification. These methods will be selected and param-

eterized automatically by the DAICOX design optimization to construct a multi-sensory

cognition processing chain. A collection of non-parametric feature quality assessment

functions for the purpose of Dimensionality Reduction (DR) process will be presented.

In addition, to standard DR methods, the variations of feature selection method, in

particular, feature weighting will be proposed. Three different classification categories

shall be incorporated in the method pool. Hierarchical classification approach will be

proposed and developed to serve as a multi-sensor fusion architecture at the decision

level. Beside multi-class classification, one-class classification methods, e.g., One-Class

SVM and NOVCLASS will be presented to extend functionality of the solutions, in par-

ticular, anomaly and novelty detection. DAICOX is conceived to effectively handle the

problem of method selection and parameter setting for a particular application yield-

ing high performance solutions. The processing chain construction tasks will be carried

out by meta-heuristic optimization methods, e.g., Genetic Algorithms (GA) and Parti-

cle Swarm Optimization (PSO), with multi-objective optimization approach and model

analysis for robust solutions. In addition, to the automated system design mechanisms,

DAICOX will facilitate the design tasks with intuitive visual programming and various

options of visualization. Design database concept of DAICOX is aimed to allow the

reusability and extensibility of the designed solutions gained from previous knowledge.

Thus, the cooperative design of machine and knowledge from the design expert can also

be utilized for obtaining fully enhanced solutions. In particular, the integration of self-x

properties as well as intrinsic optimization into the system is proposed to gain endur-

ing reliability and robustness. Hence, DAICOX will allow the inclusion of dynamically

reconfigurable hardware instances to the designed solutions in order to realize intrinsic

optimization and self-x properties.

As a result from the research work in this thesis, a comprehensive intelligent multi-

sensor system design architecture with automated method selection, parameterization,

and model analysis is developed with compliance to open-source multi-platform software.
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It is integrated with an intuitive design environment, which includes visual programming

concept and design information visualizations. Thus, the design effort is minimized as

investigated in three case studies of different application background, e.g., food analysis

(LoX), driving assistance (DeCaDrive), and magnetic localization. Moreover, DAICOX

achieved better quality of the solutions compared to the manual approach in all cases,

where the classification rate was increased by 5.4%, 0.06%, and 11.4% in the LoX,

DeCaDrive, and magnetic localization case, respectively. The design time was reduced

by 81.87% compared to the conventional approach by using DAICOX in the LoX case

study. At the current state of development, a number of novel contributions of the thesis

are outlined below.

� Automated processing chain construction and parameterization for the design of

signal processing and feature computation.

� Novel dimensionality reduction methods, e.g., GA and PSO based feature selection

and feature weighting with multi-objective feature quality assessment.

� A modification of non-parametric compactness measure for feature space quality

assessment.

� Decision level sensor fusion architecture based on proposed hierarchical classifica-

tion approach using, i.e., H-SVM.

� A collection of one-class classification methods and a novel variation, i.e.,

NOVCLASS-R.

� Automated design toolboxes supporting front to back design with automated

model selection and information visualization.

In this research work, due to the complexity of the task, neither all of the identified goals

have been comprehensively reached yet nor has the complete architecture definition been

fully implemented. Based on the currently implemented tools and frameworks, ongoing

development of DAICOX is pursuing towards the complete architecture. The potential

future improvements are the extension of method pool with a richer choice of methods

and algorithms, processing chain breeding via graph based evolution approach, incorpo-

ration of intrinsic optimization, and the integration of self-x properties. According to

these features, DAICOX will improve its aptness in designing advanced systems to serve

the increasingly growing technologies of distributed intelligent measurement systems, in

particular, CPS and Industrie 4.0.
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Kurzfassung

Neuere Technologien in den Bereichen verteilter Messsysteme und intelligenter Infor-

mationsverarbeitung, wie beispielsweise Cyber-Physical-Systems (CPS), Ambient Intel-

ligence/Ambient Assisted Living (AmI/AAL), dem Internet of Things (IoT) und Indu-

strie 4.0, erfordern die Entwicklung intelligenter integrierter Multi-Sensor-Systeme [1,

2]. Diese Systeme heben die Bedeutung hervor, welche komplexen Messsystemen mit

verschiedenen fortschrittlichen Methoden zuteil wird, darunter elektronische Schaltun-

gen, Signalverarbeitung und die Zusammenführung multisensorischer Informationen.

Der Entwurf solcher Systeme, besonders der kognitiver Multi-Sensoranwendungen mit

Teilbereichen wie Methodenselektion, Parametrisierung, Modellanalyse oder Entwick-

lung der Prozesskette, ist mit immensem Aufwand verbunden und wird in der Re-

gel von Experten manuell durchgeführt. Zudem verursacht technologischer Wettbewerb

zusätzliche Zwänge hinsichtlich Kosten, Zeit, Leistungsaufnahme, Flexibilität und Zu-

verlässigkeit. Daher kann der konventionelle, auf menschlichen Experten beruhende An-

satz, möglicherweise nicht den steigenden Anforderungen in Anzahl, Komplexität und

Diversität genügen. Zur Lösung dieser Schwierigkeiten ist der automatisierte Entwurf

Gegenstand zahlreicher Forschungsarbeiten [3–14] und schlägt sich bereits in kommerzi-

ellen Produkten nieder [15–18]. Zusätzlich bietet die dynamische Anpassungsfähigkeit in-

telligenter Multi-Sensorsysteme potentielle Lösungsansätze für den Entwurf zuverlässiger

und robuster Systeme. Die Ansätze der intrinsischen Evolution und Self-x-Eigenschaften

[19], wie Self-Überwachung, -Kalibrierung und –Reparatur/Heilung, sind dabei mitunter

die besten Herangehensweisen. Motiviert durch den andauernden Trend und basierend

auf dem Hintergrund früherer Aktivitäten [12, 13] in diesem Gebiet, liegt der Schwer-

punkt der vorliegenden Forschungsarbeit im automatisierten Entwurf intelligenter inte-

grierter Multi-Sensorsysteme mit Self-x-Eigenschaften.

In dieser Arbeit wird das System DAICOX (Design Automation for Intelligent COgni-

tive systems with self-X properties) vorgestellt. Die Architektur dieses Systems zielt

darauf ab, den Entwicklungsaufwand zu reduzieren und dabei qualitativ hochwertige

sowie robuste Lösungen für intelligente Multi-Sensorsysteme zu liefern. Die Zielsetzung

der DAICOX-Architektur umfasst folgende Punkte:

� Vollständiger Front-to-Back Entwurf der Prozesskette mit automatisierter Metho-

denselektion und Parametrisierung

� Verfügbarkeit zahlreicher Methoden der Mustererkennung

� Verbindung der Entwurfsinformationen mittels interaktiver Benutzerschnittstelle

und Visualisierung in Kombination mit intuitiver visueller Programmierung
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� Bereitstellung hochqualitativer Lösungen, welche konventionelle Ansätze durch

Mehrzieloptimierung übertreffen

� Anpassungsfähigkeit, Zuverlässigkeit und Robustheit entwickelter Lösungen durch

Self-x-Eigenschaften

Abgeleitet aus diesen Zielen werden verschiedene wissenschaftliche methodische Ent-

wicklungen und Implementierungen, besonders in den Bereichen Mustererkennung und

Computational Intelligence, als Teil der DAICOX-Architektur verfolgt. Die Methoden-

sammlung strebt eine vielfältige Auswahl an Methoden und Algorithmen an, um Da-

tenerfassung, Sensorkonfiguration, Signalverarbeitung und Merkmalberechnung, Dimen-

sionsreduzierung sowie Klassifizierung abzudecken. Diese Methoden werden durch die

DAICOX Entwurfsoptimierung automatisch ausgewählt und parametrisiert, um eine

multi-sensorische kognitive Prozesskette zu entwerfen. Es wird eine Sammlung zur qua-

litativen Erfassung nicht-parametrischer Merkmale mit dem Zweck der Dimensions-

Reduktion (DR) vorgestellt. Zusätzlich zu üblichen DR-Methoden werden Varianten

vorgeschlagen, insbesondere die Gewichtung von Merkmalen. Der Methoden-Pool soll

drei verschiedene Klassifizierungs-Kategorien beinhalten. Der Ansatz der hierarchischen

Klassifizierung wird vorgeschlagen und auf der Entscheidungs-Ebene als Multi-Sensor-

Fusion Architektur entwickelt. Neben der Multi-Klassen-Klassifizierung werden Metho-

den der Ein-Klassen-Klassifizierung, beispielsweise Ein-Klassen SVM und NOVCLASS

vorgestellt, um die Funktionalität der Lösungen zu erweitern, speziell zur Anomalien-

und Neuheitserkennung. DAICOX zielt zum Erhalten leistungsfähiger Lösungen auf ei-

ne effektive Handhabung des Problems der Methodenselektion und Parametereinstel-

lung für spezielle Anwendungen ab. Die Aufgaben des Prozesskettenentwurfs werden

durch meta-heuristische Optimierungsmethoden durchgeführt, wie zum Beispiel Gene-

tische Algorithmen (GA), Partikel-Schwarm-Optimierung (PSO) mit Mehrzieloptimie-

rungsansätzen und Modellanalysen für robuste Lösungen. Zusätzlich zu den automati-

sierten Entwurfsmechanismen, erleichtert DAICOX die Entwurfsaufgaben mit intuitiver

visueller Programmierung und zahlreichen Visualisierungsmöglichkeiten. Das Konzept

der DAICOX Entwurfsdatenbank erlaubt die Wiederverwendung und Erweiterung von

Lösungen basierend auf bereits erworbenem Kenntnisstand. Daher kann der gemein-

schaftliche Entwurf von Maschine und Expertenwissen zum Erhalt erweiterter Lösungen

genutzt werden. Insbesondere führen die Integration von Self-x-Eigenschaften sowie in-

trinsischer Optimierung zu Zuverlässigkeit und Robustheit. DAICOX erlaubt daher die

Inklusion dynamisch rekonfigurierbarer Hardware zur Umsetzung der intrinsischen Opti-

mierung und Self-x-Eigenschaften. Als Ergebnis dieser Forschungsarbeit wird eine intui-

tiv zugänglich, intelligente Multi-Sensorsystem-Entwurfsarchitektur entwickelt mit auto-

matisierter Methodenselektion, Parametrisierung und Modellanalyse, realisiert auf einer

Open-Source Multiplattform-Software. Sie enthält eine intuitive Entwicklungsumgebung
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mit visueller Programmierung und die Visualisierung von Entwurfsinformationen. Der

Entwurfsaufwand wird dadurch minimiert, was in drei unterschiedlichen Applikations-

szenarien demonstriert wird: Lebensmittelanalyse (LoX), Fahrerassistenz (DeCaDrive)

und magnetische Lokalisierung. DAICOX erzielte in allen Fällen eine bessere Ergebnis-

qualität als der manuelle Ansatz. Die Klassifizierungsrate wurde um 4,4% (LoX), 0,06%

(DeCaDrive) und 11,4% (magnetische Lokalisierung) verbessert. Die Entwicklungszeit

wurde im Vergleich zur konventionellen Herangehensweise um 81,87% reduziert. Die neu-

artigen Beiträge dieser Arbeit zum aktuellen Stand der Entwicklung sind im Folgenden

aufgeführt:

� Automatisierter Prozesskettenentwurf und Parametrisierung für den Entwurf von

Signalverarbeitung und Merkmalberechnung

� Neuartige Methoden zur Dimensionsreduzierung, beispielsweise GA und PSO

basierte Merkmalselektion und –gewichtung mit multi-objektiver Bewertung der

Merkmalqualität

� Modifikation eines Maßes nicht-parametrischer Kompaktheit zur effizienteren Un-

tersuchung der Merkmalraumqualität

� Sensor-Fusion-Architektur auf Entscheidungsebene, basierend auf dem vorgeschla-

genen Ansatz der hierarchischen Klassifizierung unter Benutzung von beispielswei-

se H-SVM

� Sammlung von Ein-Klassen-Klassifizierungsmethoden und die neue Variante

NOVCLASS-R

� Toolbox für den automatisierten Entwurf, mit Unterstützung des Front-to-Back

Entwurfs, mit automatisierter Modellselektion und Informationsvisualisierung
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Aufgrund der Komplexität der Aufgabenstellung wurden in dieser Arbeit noch nicht alle

der identifizierten Ziele bereits erreicht und auch die komplette Architektur noch nicht

vollständig implementiert. Basierend auf aktuell implementierten Programm-Modulen

und Framework wird jedoch die Entwicklung von DAICOX zur vollständigen Architek-

tur verfolgt. Potentielle Verbesserungen umfassen die Erweiterung des Methoden-Pools

mit zahlreichen Methoden und Algorithmen, Prozesskettenentwicklung mittels Graphba-

siertem evolutionärem Ansatz, Einbeziehung intrinsischer Optimierung und Integration

von Self-x-Eigenschaften. Mittels dieser Eigenschaften eignet sich DAICOX zum Ent-

wurf fortschrittlicher Systeme, um der wachsenden Technologie verteilter intelligenter

Messsysteme zu dienen, insbesondere in den Feldern CPS und Industrie 4.0.
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Chapter 1

Introduction

The significant growth of commercial interest and research activities in Cyber Physical

Systems (CPS) [20], Ambient Intelligence/Ambient Assisted Living systems (AmI/AAL),

the Internet of Things (IoT) [21], and Industry 4.0 [22] boosts enormous developments

and the advance of microtechnologies, both for integrated electronics and for integrated

sensors. The global production of mobile sensors is predicted by the Tsensor summit

society to be at trillion units per years by 2022 as a result from the growing demands

in smart sensing technologies [1]. Yole Développement has envisioned the potential fu-

ture sensing generation to be integrated sensors, expecting that by 2020 as shown in

Fig. 1 these will be the solution for the majority of IoT [2]. The sensor market revenue

development was estimated to be increased four percent in the third quarter of 2015

by the members of the AMA association1, which will also increase the revenue to be

gained over 140% from 2010. These are in accordance to micro-technology development

in increasing new functions to be embedded as reported in the ITRS road map [23] and

the More-than-Moore direction [24].

1http://www.ama-sensorik.de/en/press/press-releases-2015/

1
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Figure 1: (a) IoT development trends forecast [2], (b) 2015 Germany sensor market
revenue

According to these technological forecasts and road maps, the demands of intelligent in-

tegrated autonomous measurement systems with small, low cost, low-power, flexible, and

reliable features will be tremendously increased and will be the main challenges for the

design [20]. In particular, as to serve the increasing desires and needs on delicate features

and extensive functionalities for up-to-date devices, intelligent sensory system integra-

tion become essential in broad applications, e.g., smart environments with autonomous

measurement devices [25, 26], advanced driver assistance systems [27], and intelligent

condition monitoring and inspection [28, 29]. However, in many complex applications,

intelligent solutions with single sensor utilization approach, may be insufficient to de-

rive trivial information in achieving desiderata in potentially complex applications with

cost constraint. Therefore, multi-sensor approach accompanied with intelligent capabil-

ities is the potential solution to provide high performance measurement systems at low

cost [30, 31, 81].

Intelligent systems for potentially complex pattern recognition tasks with multi-sensory

context are composed of a number of processing methods and algorithms ranging from

conventional signal processing to advanced computational intelligence. Fig. 2 depicts

the standard processing structure of an intelligent multi-sensor system comprised of

sensors or a sensor array and corresponding sensor electronics, data acquisition, signal

processing, dimensionality reduction, and decision making.

Signal Processing
and

Feature Computation

Sensors 
or

Sensor Arrays

Sensor 
Electronics

Dimensionality 
Reduction

Decision
Making

Hardware Domain Computational Domain

Result
Data

Acquisition

Figure 2: Block diagram of typical intelligent multi-sensor system
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The developing of such systems involve a number of scientific and technological design

procedures, however, at present, the majority of the process is still done manually by

expert designers, which are costly and potentially lack availability. In addition, human

centered design process tends to produce specialized and singular solutions, i.e., human

bias as given in [32], which may not allow flexibility and the quality strongly depends

on knowledge and experience of the designer. Moreover, the increasing demands in com-

plex functionality impose multiple design constraints to human-expert centered design

approach, that may lead to the delay of design time and extra cost. The challenges in

the design of an intelligent multi-sensor system can be summarized into two cases: the

first is to increase capability, feature, performance, and robustness of the target system,

where the other is to achieve a rapid, flexible and efficient design process. Thus, to

pursue the challenges, an autonomous design approach can be a promising solution to

comply with those requirements and desiderata, while accelerating the design time and

providing good quality solutions at as minimal as possible cost and effort.

1.1 Challenges and Open Issues

The aim of this thesis is motivated from the prior ISE2 research focusing on design

assistance and design automation of intelligent sensor systems concepts and the need

of practical industrial applications. Previous design tool implementation, i.e., propri-

etary QuickCog [13] with rapid prototyping and visual programming has been used in

numerous intelligent multi-sensor applications and research topics. Stefanie Peters [12]

presented advanced automatic design framework of image processing systems for visual

inspection applications. Extending from image information to generic heterogeneous

sensory context, Kuncup Iswandy proposed concepts, methodologies, and frameworks

for automated design of intelligent multi-sensor systems including multi-objective op-

timization [30, 33]. Machine-in-the-loop learning concept has been proposed in [34]

to manipulate dynamic perturbations in real-time industrial manufacturing situations.

These well established tools, concepts, and methodologies navigate the direction and

draw the baseline of this thesis for further implementations and extensions.

In the same research direction, several research topics have been pursued contributing to

the design automation of intelligent multi-sensor systems. Several research works have

proposed automated methods for sensors configuration [35, 36], which is an important

part for some application like gas sensing [37]. The reduction of data dimension are

getting broad range of emerging automated methods of discovering best feature subset

or their transformations [38–41]. The design of classification process has been the topic

of research for automated methods selection and parameterization [42, 43]. However,

2Institute of Integrated Sensor Systems
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these studies focus on a particular part or partial process of the pattern recognition

system. The comprehensive integration framework of pattern recognition system design

have been the subject of several research works. In [44], the authors proposed component

based framework for data mining system design. The authors in [45], proposed assistance

environment for pattern recognition system based on meta-learning with meta-feature

selection. Software tools for assisting the design process have been developed in a grow-

ing number of software libraries [6–8] and software suites [10, 14, 17]. The commercial

companies also pay significant interest in this area as can be seen from several released

products, e.g., Freescale Sensor Fusion [18], BASELABS [15], and nVision [17].

In addition to the well establish design tools, the fast growing demands of complex func-

tionality are often extended beyond the extent of the current developed system ability.

Therefore, systems, which are not adequately sustainable or without adaptive capability

will be obsolete within a short time. In particular, the maintenance of deployed systems

impose cost, time, and operation interruptions, whereas a system can be attractive when

it comes with higher degree of independence or self-sustainable in order to cope with

dynamic influences or deviations. This issue has been emphasized as a requirement in

the NAMUR road map [46] for industrial sensor applications. These gain more and

more significance of the dynamically adaptivity integration to intelligent multi-sensor

systems. Dynamic reconfiguration capabilities and optimization on run-time platform,

i.e., intrinsic optimization, offer flexible adaptation and adjustments during operation

time. Thus, self-x properties [19], e.g., self-monitoring [47] , -calibrating/trimming [48],

and -healing/repairing [49], are among the key features of longterm, dependable, and

robust systems. Intensive investigation will be carried out in more detail in chapter 2

and 3.

Concluding from the addressed activities and topics, open issues and research gaps, that

will be the potential issues to be tackled can be summarized as follows:

� A number of the investigated works are based on homogeneous sensor information,

e.g., image processing.

� Back-end processing approach solely focused, e.g., knowledge discovery or data

mining.

� Comprehensive processing chain construction (as shown in Fig. 2) design systems

are rarely found.

� Design optimization, in particular, meta-heuristic with multiple objectives and

constraints optimization are sparsely integrated.

� The dynamic adaptation of hardware instances, e.g., self-x properties and intrinsic

optimization issues are almost untouched.
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These gaps and open issues are regarded as the aims and goals of the thesis discussed

in the following section.

1.2 Aims of the Thesis

This thesis proposes on advanced design automation of multi-sensor technical cogni-

tion systems based on methods and algorithms in the areas of sensor signal processing,

multi-sensor fusion, and computational intelligence. Design Automation for Intelligent

COgnitive system with self-x properties, DAICOX, architecture is conceived with the

aim of reducing design effort and to providing high quality, flexible, and robust solutions.

DAICOX will consist of multi-objective design optimization for the design of cognition

application processing chains from available processing components in the method pool.

Design support of DAICOX shall cover the complete standard building blocks consisting

of sensor configuration and data acquisition, signal processing and feature computation,

dimensionality reduction, and classification. DAICOX will be elaborated to effectively

handle the problem of method selection and parameter tuning for yielding high perfor-

mance solutions with less design effort. DAICOX is aimed to carry out the design tasks

by using meta-heuristic searching approach, e.g., Genetic Algorithm or Particle Swarm

Optimization, with multi-objective optimization approach. Moreover, visualization and

visual programming will be the features of DAICOX design environment to facilitate

design activity and designer interaction. In particular, the integration of self-x proper-

ties as well as intrinsic optimization into its platform to gain reliability and robustness

are the main goals of the DAICOX architecture. In Fig. 3, the overview structure of

the proposed design process, including extrinsic and intrinsic optimization schemes, is

illustrated. According to the conceived architecture, the aims of this thesis pursuing

towards the highlighted challenges, research gaps, and open issues are formulated as

listed below:

� Contribute to the development of design automation architecture for intelligent

integrated multi-sensor systems providing high quality solutions with as minimum

as possible design time and effort.

� Automated complete processing chain construction from rich choice of methods

including data acquisition, signal processing and feature computation, dimension-

ality reduction, and classification.

� Development of advanced pattern recognition methods, e.g., hierarchical classifi-

cation approach and One-Class Classification (OCC).

� Overall systematic software integration of the proposed methodologies with intu-

itive graphic user interface, visualization, and visual programming.
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� Meta-heuristic based optimization integration along with multi-objective optimiza-

tion from choices of assessment function.

� In-the-Loop learning capability with intrinsic optimization concept.

� Dynamic reconfiguration capability implementation on hardware instance with

self-x properties to improve robustness and to provide fault tolerance systems.

Design
Platform 

Run-time
machine 

Optimized
Design 
Solution

● Performance
● Stability
● Reliability
● Adaptability/Flexibility
● Power Consumption
● Real-Time
● Measurement Time
● Design Time
● Cost
● …..

Constraints

Observation
(Intrinsic)

Optimization
objectives

Initial designs
from expert or 

prior knowledge

● Signal Processing
● Feature Computation
● Feature Selection
● Classification
● Regression

Method Pool 

Choice of 
methods

Self-X Properties

Reconfigurable
Electronics Reconfiguration

Self-Trimming
Self-Diagnose
Self-Repair
Self-Optimization

 Extrinsic Optimization 

Intrinsic Optimization (hardware in-the-loop)

Solution

Figure 3: Architecture overview of proposed design optimization
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1.3 Organization of the Thesis

The content of the thesis is structured as listed below:

� Chapter 2: The principles and background of intelligent multi-sensor system are

described. The fundamentals of multi-sensor measurement and signal processing

as well as multi-sensor data fusion techniques are provided.

� Chapter 3: State of the art survey of research works and technologies related to

design automation of intelligent integrated multi-sensor systems is presented.

� Chapter 4: DAICOX architecture is proposed and elaborated. The methodologies

and techniques of the method pool are discussed in detail.

� Chapter 5: The current implementation of the DAICOX architecture are explained

along with preliminary studies and experiments.

� Chapter 6: The selected case-studies are presented as well as experiments. The

results and discussions are described.

� Chapter 7: The thesis is concluded and discussed on the potential extensions and

improvements.



Chapter 2

Intelligent and Integrated

Multi-Sensor Systems

Trends in modern measurement and instrumentation technologies are evolving towards

the increase in sensing performance and information reliability. Further, the increas-

ing requirements in perception improvement is being beyond the extent of conventional

measurement systems with single sensor. One potential approach is the combination

of multiple sensors with advanced electronics and intelligent capability. Figure 4 shows

the structure of an autonomous multi-sensor measurement system on an embedded plat-

form. A variety of sensing elements or transducers transform physical properties, e.g.,

mechanical, thermal, optical, magnetic, and biochemical stimulations to electrical rep-

resentations, e.g., voltage or current. Sensing elements are predominately passive com-

ponents, which produce weak amount of electrical signal vulnerable to influences, e.g.,

noise and drift. Thus, analog treatments such as amplification, offsetting, and filter-

ing enhance the sensor signals before the conversion to digital domain using single or

multi-channel Analog to Digital Converter (ADC). Digital Signal Processing (DSP) tech-

niques process digital representations of converted signals enhancing quality of the data

as well as to extract new information. An embedded processor, e.g., Microcontroller,

DSP processor, FPGA, or Application Specific Integrated Circuit (ASIC), is commonly

used for handling such tasks. Advanced procedures for calibration or compensation

can be conducted involving controlled excitation elements, i.e., actuators. For exam-

ple, a temperature sensor can be calibrated from relative heat changes generated by

a controlled heating element. Complex intelligence measurement systems, e.g., sensor

networks, push more significance on the communication part for transferring sensory

context to externally interconnected systems.

8
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Figure 4: Structure of modern embedded multi-sensor measurement system

Although the architecture may seem efficient and dependable to some degree, however,

some challenging issues are still open, e.g., performance improvement or robustness. In-

telligence and integration approaches play an important role to fill the gap by extending

the architecture with advanced flexible electronics and powerful computational intelli-

gence algorithms. The scope of the system can be divided into two fields of integrated

sensor systems related to advanced hardware integration and intelligent sensor systems

related to sensory context computations. This chapter begins with state of the art survey

of ongoing research and technological development activities of intelligent measurement

systems. Afterwards, the principles of the methods techniques and algorithms are given

before the discussion section summarizes the details of this chapter.

2.1 Intelligent and Integrated Multi-Sensor Systems

The fast development of micro technology is emerging more and more miniaturized sen-

sors and complex integrated circuits. As the fact that a micro scale sensor may produce

signal proportional to its dimensions, miniaturized sensors without integration of sig-

nal enhancing unit may susceptible to influences. According to that, sensing systems

become more and more integrated solution, i.e., realization of several sensing elements,

electronic as well as processing components in a single device, e.g, sensor modules in 3D

package or MEMs sensors [50]. Moreover, the need of intelligent characteristics of mea-

surement systems are introduced by the increasing requirements on precision, reliability,

and stability of complex tasks. Thus, integrated sensor and intelligent sensor concepts

play the key roles in the development of measurement technologies.
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2.1.1 Integrated Sensors

Complex sensor measurement system integrations have been traditionally done by single

and multilayer rigid or flexible boards [51]. However, increasing demand on miniatur-

izing size, low-cost, and rapid design impose sheer constraints to the solutions. Rapid

developments of micro technology and packaging production offer potential integration

methodologies in several scales and fashions including System-on-Package [52], 3D In-

tegrated Packaging [53], Sensor on a Chip [54] as well as Lab-on-Chip [55]. These

technological concepts have been focused in a growing number of research topics in ad-

vanced sensor and intelligent measurement area. Wafer level multi-functional integrated

sensor [56] comprises of temperature, humidity, pressure, air speed, chemical gas, mag-

netic field, and acceleration sensing elements on a single 2×2 mm chip for mobile device

in an environmental awareness application. In [57], an optical sensor system composed

of an embedded photodetector imaging array and an analog front-end, a mixed-signal

processor, and an integrated optical interferometric waveguide were encapsulated in a

System-on-Chip SOC package for aqueous and gaseous sensing applications. Thermal

tilt sensors, piezoresistive compass and accelerometers, and digital signal processor are

integrated in a single chip for orientation determination system [58] using monolithic

CMOS technology. In [59], a magnetic field based indoor localization system was pro-

posed with 3D AMR sensors integrated with analog front-end in Active-Multi-Layer

(AML) technology, which allows complex integration with low-cost and fast manufac-

turing time. As the common aim, these technologies combine several components and

functions into a single device to realize effective system level solutions for compact size,

low cost, and high performance. The other potential advantages incorporate the ex-

pansion of functionality and reduction of energy consumption. Intelligent capability,

reconfiguration ability, and built-in testing and calibration methodologies will be the

advanced features of dependable and robust integrated sensor systems.

2.1.2 Intelligent Sensors

Sustainable and dependable multi-sensor systems rely on the basis of learning and adap-

tation capabilities, i.e., intelligence. Within the last decades, intelligent sensor termi-

nology has been inferred in diverse ways. Intelligent sensors deliver advantages such

as integration of diagnosis and reconfigurability [60]. An intelligent sensor is expected

to demonstrate multi-channel sensing and fusion, be able to make decisions based on

information or current situations, and adapt or adjust itself regarding to the changing

conditions context [61]. Self-diagnose, on-line reconfiguration increase reliability, which

is the key factor of intelligent sensors [47]. Self-calibration has been addressed as an

important function of intelligent sensors [62]. Intelligent sensors should demonstrate
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robustness, dependability, and ability to self-calibrate [63]. In safety applications, in-

telligent sensors are the vital building blocks for reliable and dependable systems [64].

Concluding from the investigations, important functions and characteristics of intelligent

sensors are outlined as follows:

Processing functionality: The ability to provide relevant information in an efficient

representation derived from signal processing, data reduction and fusion, context

classification, and decision making procedures.

Adaptation capability: The ability to change operational configurations as the re-

action to encountering situations by using dynamically reconfigurable techniques

such as measurement error correction, self-tuning/adjustment and

self-calibration/trimming.

Dependability: addresses the capacity of awareness in erroneous or critical conditions

and be able to decide relevant actions to recover healthy status. This character

includes self-monitoring, self-repair/healing and fault tolerance system.

Clearly, the design of such systems requires knowledge and experience in diverse fields

ranging from conventional signal processing to complex machine learning. In other

word, computing tasks consisting of feature computation, pattern recognition and de-

cision making are expected to be embedded in intelligent sensor systems. In addition,

reconfigurable sensor electronics are essential to support full flexibility and adaptation

of intelligent sensor systems.

Concluding from the investigations, the development of intelligent integrated multi-

sensors lays on advances in hardware integration technologies and advances in software

algorithms. Key technologies transferring to the design of intelligent integrated multi-

sensors systems are depicted in Fig. 5.

MEMS/Microelectronics
Wireless Communication

& Networking

Embedded / ASIC / SoC

3D-Integration / SiP

Computational Intelligence

Self-X

Intelligent Integrated
Multi-Sensor Systems 

Figure 5: Key technologies contributing to intelligent integrated multi-sensor systems
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2.2 Multi-Sensor Measurement Systems

This section provides background of measurement systems with multiple sensors. A

combination of multiple sensing elements is generally applied to complement or increase

sensing capability when singular sensor measurement reaches limitations or faces difficult

situations [65]. Multiple sensors provide the ability to enhance signal estimation [66],

increase the accuracy of system performance [67], and result in new and robust infor-

mation [81]. Multi-sensor measurement systems are comprised of a group of sensors,

multi-channel or single-channel with multiplexer analog electronics and data conver-

sions, and a processing units. The group of sensors typically are a number of sensing

elements, which can be of identical operating principle, i.e, homogeneous, or a combi-

nation of various physical quantities, i.e., heterogeneous. Figure 6 shows a taxonomy

of sensor categories based on a formation of sensing element. This section provides the

fundamentals of the categorized multiple sensor measurement systems. Advance topolo-

gies like sensor networks and virtual sensors are also provided as they can contribute to

multi-sensor systems as well.

Sensor

Multiple ElementsSingle Element

Homogeneous Heterogeneous

1-D Array 2-D Array

Figure 6: Taxonomy of sensors by their organization and architecture

2.2.1 Heterogeneous Sensor Systems

Heterogeneous sensor systems are composed of two or more different types of sens-

ing element delivering a variety of physical representations in order to compensate or

enhance perception quality, for instance, pH sensing compensated by temperature of

measuring objects [68]. Cooperative operations also utilize heterogeneous sensory infor-

mation by deriving original representations to provide new information, for instance,

the localization system fusing information from gyroscopic and acceleration sensors

as well as vision data [69]. Acquired information of a heterogeneous sensor system

represents in form of multi-variable signal of dimension K, the number of observed

sensor elements. Each observation in discrete time domain results in a vector x =
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{x1(n), x2(n), ..., xK(n)} , n = 1, 2, ..., N where N is the number of samples. The realiza-

tion of the heterogeneous sensor system data acquisition conducts several components

overlapping in analog signal and digital data area, i.e., mixed-signal processing. Start-

ing from the analog signal conditioning delivers refined sensor signals to a multi-channel

ADC. Then, the computation parts take place to utilize the converted data with effective

signal processing methods. The overview structure of heterogeneous sensor system is

illustrated in Fig. 7.
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2

Mixed-Signal
Processing

xlight(t)

xhumid(t)

xtemp(t)

xCO2(t)

{ xtemp (n), xlight(n), xhumid (n) , xCO2(n) }

Observation 
output

Continuous-Time Domain

Observation 
output

Discrete-Time Domain

Figure 7: Multi-Sensor signal representation transformation

2.2.2 Sensor Array

Sensor array is a configuration type of homogeneous sensing elements or sensing cells in

a certain geometry pattern aimed to increase spatial coverage of physical properties. A

sensor array consists of a group of homogeneous sensors arranged in both one dimension

(1-D) linear array or two dimensional (2-D) grid. The placement of sensing cell is usually

in a fixed pitch or known positions, whereas each sensing element may be configured with

different properties. For example, a multi-color sensor with different dielectric spectral

filters [70] applied in each photo diode of its corresponding spectrum as well as in gas

sensor application [71]. Sensor arrays and pattern recognition techniques have been

the subject of numerous application areas such as biomedical [72], acoustic vision [73],

temperature sensing [74], and tactile sensing [75, 76]. At each observation, the data

acquisition of sensor array returns a vector for 1-D array or a matrix for 2-D array

whose number of elements is equal to number of sensing cells. In Fig. 8 illustrates a

2-D array of i rows and j columns, which produces data matrix X with size of i × j
elements. Using sensor array provides numerous advantages such as increasing spatial

coverage and obtaining redundant information. However, the computational complexity

and measurement time of a sensor array increases quadratically by its dimensions, which

are the issues to be tackled for a system design with real-time constraint. Sensor selection

and dimensionality reduction techniques are essentially to be considered during the

design to obtain efficient and powerful array based sensor systems [77].
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2.2.3 Wireless Sensor Networks

The communication technologies of distributed measurement systems have been widely

developed from wired connections to radio networks or even globally connected scheme,

e.g., Machine to Machine (M2M), CPS, and IoT. Nowadays, Wireless Sensor Networks

(WSNs) are applied in numerous domains, e.g., smart home, biomedical, agricultural

and industrial automation. WSNs node, a mobile sensor device, comprises of sensing

unit, embedded processor, communication radio and power management. The radio

unit provides wireless communication channels exchanging information within a net-

work, which generally employs IEEE 802.15.4, ZigBee, Bluetooth or WiFi. Self-powered

ability harvesting energy from the environment [78] is the salient feature providing de-

pendability for sensor nodes in term of prolonging operational life-time. As a sensor node

is equipped with a dedicated processing unit, extension of adaptive electronics and effec-

tive algorithms can realize intelligent integrated multi-sensor systems based on WSNs

architecture. Attractive features of WSNs including node localization, self-organizing

network and energy harvesting are desirable as well.

2.2.4 Virtual Sensor

A multi-sensor system can be constructed by a number of logical sensor inputs more

than the number actual physical sensors by using software created sensors or virtual

sensors [79]. Virtual sensors consist of transformation operators, which can be based on

deterministic modeling algorithms or statistical analysis techniques. It may give predic-

tions of upcoming data, estimates missing values, and validate measured data. Several

virtual sensors can be different in the parameters and configuration of their processing
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methods, whereas share the same physical data source. A virtual sensor contains paired

variables of the independent input variable from data source (single sensor) and the

dependent output variable. For instance, virtual sensors perform data mapping of inde-

pendent input vector x to new dependent data value y by using transformation function

f .

y = f(x) (2.1)

Transformation functions can be model based, i.e., deterministic software sensors or

data driven, i.e., black-box or statistical software sensors. The input vector contains

a number of components regarded to the size of independent data to be transformed

x = {x1, x2, ..., xd} , where d is the number of independent samples. An implementation

of temporal sampling based virtual sensor concept has been proposed in [80], where ad-

ditional sensor inputs were used to compensate the normalization parameters to achieve

generalization of the estimation models of the virtual sensors. Statistical virtual sensors

have been proposed in [59] by remapping original information using RBF networks and

support vector regression techniques.

2.3 Multi-Sensor Fusion

When a number of sensors are connected to a system, appropriate and efficient methods

for multi-sensor information combination are essentially important to fully utilizing the

capability of multiple sensors. Multi-sensor data fusion [31] is the field, that has been ac-

tive since decades and is still a dominant part in most research and applications related

to intelligent multi-sensor. The authors in [81] addressed the desired outcomes of sensor

fusion, that are robustness, extended spatial and temporal coverage, increased confi-

dence, reduced ambiguity, and system performance characteristics, e.g., representation,

certainty, accuracy and completeness can be improved by multi-sensor data fusion [31].

Sensor fusion can be described as the process of combining multiple observations taken

from sensor sources. Another benefit of multi-sensor fusion is that it can compensate

the cross-sensitivity of cheap sensors, thus, high performance and robust measurement

systems can be achieved at low-cost. In an observation, sensor related information are

encapsulated in a common representation O [31]. The information in a sensor observa-

tion may include:

E: The entity of physical property being measured by the sensor.

u : The spatial location of the sensor, i.e., the geometrical location of the sensor or the

position of the measured physical property.

t: The time instant at the point that physical property is measured.
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y: The measured value(s) of the physical property, i.e., sensor measurement.

∆y: The errors in y, e.g., measurement, environment, and calibration error.

All information contained in an observation can be used in the fusion procedures. In a

multi-sensor system, the measurement results in multiple sensor observation with regard

to the number of observed sensors. For example, multi-sensor system with K sensors,

each sensor observation contains a five element tuple of sensor information.

Oi = 〈Ei,ui, ti, yi,∆yi〉 , i ∈ {1, 2, ...,K} (2.2)

As illustrated 9, showing basic operation idea of multi-sensor fusion, a fusion operator

or fusion node takes sensor observations from K sources to reproduce a new data rep-

resentation output R, which can be represented by observations, features, or decisions

depending on fusion structure.

Fusion
Operator

o
1

o
2

o
i

. 
. .

              R
Sensor(s)

O = {o
1
,o2,...,oi,}

Figure 9: Multi-sensor fusion

Multi-Sensor fusion can be classified into three different objectives based on sensor con-

figurations [65]:

Complementary approach takes data from sensor sources at the same time and location

to ensure the consistency of observed ones.

Competitive approach acquires homogeneous observation from two or more identical

sensors and decide the best one to give output.

Cooperative approach combines two or more physically different sensors to derive new

information, which can not be obtained from either of the sensors.

In many cases, a combination of several fusion nodes is applied in a multi-level fusion

scheme. Hence, multi-sensor fusion can be categorized into a three-level hierarchy [81]:

data level, feature level, and decision level fusion. Data level fusion is the first level in

sensor fusion architecture, that combines several sources of original raw data producing

new refined data with identical representation or to extract new features. Feature level

fusion combines a set of extracted features, for instance, mean, variance, color, textures,
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or positions into new feature vector or decision information, i.e., classification. Decision

level fusion is the highest level that combines multiple decisions’ information to judge the

final decision output. The details and method examples of each level in a multi-sensor

fusion hierarchy are given in Table 1. An additional subcategory defined by fusion node

input and output configurations [81] is introduced and combined with the three-level

fusion model to avoid ambiguity in categorization. Figure 10 illustrates the relation

between the three-level categorization and its I/O based sub category.

Table 1: Description of each level of multi-sensor fusion hierarchy

Fusion Level Description and Example

Data :
Generate new data by
modifying/enhancing input data set

Data smoothing, zooming,
resampling, filtering,
estimation, remapping,
and pixels calibration of
segmented image

Feature :
Extract new feature registration from
sensor data and provide fused information
to decision level

Model fitting, Object detection,
Texture analysis Feature extraction,
Feature selection, Classification,
Multi-Dimensional Scaling

Decision :
Combined transformed information

Rule-induction, Classification Tree,
Fuzzy rule, Ensemble Classification
Hierarchical Classification
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Figure 10: Multi-sensor fusion categories based on input and output configurations
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2.3.1 Architectures for Sensor Fusion

In general, a multi-sensor fusion system consists of multiple fusion nodes, which can be

organized in three types of network arrangement or architecture [31, 81]:

Single Fusion Node: The simplest way of dealing with a multi-sensor fusion problems

is to combine all observations into a single fusion node as shown in Fig. 11. It is

also called centralized fusion.

Sensor(s) Fusion
Node

Raw 
Observations

Processed Data or 
Transformed Features

O R

Figure 11: Single fusion network

Parallel Fusion Network : A number of fusion nodes are composed in this architecture.

Each node separately processes its own sensor observations, resulting in fused

information, which are connected to the central fusion node as input channels for

the final level fusion node as depicted in Fig. 12.
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Raw 
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Figure 12: Parallel fusion network

Serial Fusion Network : The fusion nodes are constructed in a cascade connection

arrangement as illustrated in Fig. 13. Each node dependently processes with one

or more information from another nodes. The entire operation of the network

exhibits a sequential scheme. The first node in the sequence is independent from

any nodes output while others require information from their precedent sequences.
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Figure 13: Serial fusion network

2.4 Measurement Deviation

High quality intelligent measurement systems are required to provide high accuracy [82]

with high repeatability [83] of measured information. However, measurement uncertainty

is the major challenge of the requirement, that reflects the lack of exact knowledge of the

value of the measurand [84]. Deviations in measurement systems are among the major

causes of measurement uncertainty, which are the common phenomena of sensors and

sensor electronics operations. Source of the deviations can be manufacturing tolerance

and environmental influences. Deviations can be categorized as given below [30, 34, 85,

86]:

Static Deviation: During the hardware components manufacturing, static deviations

are introduced due to industrial process tolerances. For example, deviation of the

transistor dimensions and thickness of the layers. By individually analyzing a de-

vice, static deviations can be determined and later be compensated or eliminated.

Trimming techniques can be manually employed to minimize the errors affected

from static deviations during deployment phase, however, this technique is time

consuming and costly operations.

Dynamic Deviation: Dynamic deviations are usually caused by environmental dy-

namics at different time and locations. The source of variations may be in the form

of heat, vibration, and illumination as well as electrical influences, e.g., noise and

induced magnetic field. These quantities stochastically disturb the systems and

are difficult to anticipate during the design phase, which will degrade performance

of the systems. Dynamic reconfiguration capability on hardware instance is the

solution to cope with this issue.
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Figure 14: Deviations in each phase of sensor system design process [30, 34]

As depicted in Fig. 14, once a design is finished the deployment of prototypes con-

ducts the adjustment of parameters and configurations compensating to the static and

dynamic deviations. Thereafter, the tuned prototype will be used as a mold for high

volume productions for the real products. However, the operations of the final products

are still vulnerable to unanticipated dynamic deviations at different installation sites

and run-time, that will ultimately deteriorate the performance. More over, additional

requirements will lead to the necessity of adjusting deployed hardware instances. Of

cause, re-adjustments are needed at every unit and in some case redesigns may have

to be considered. These are costly and time consuming tasks. Therefore flexible and

adaptable sensor systems with reconfiguration capability show the potential ability to

tackle the issues to maintain performance at different operating situations.

2.5 Self-X Properties of Intelligent Integrated Multi-Sensor

Systems

Intelligent multi-sensor systems face the challenges of increasing demand for robustness

as well as fault tolerance on system integrations as to maintain quality over operation life-

time. The main challenge is to deal with the aforementioned deviations, that inevitably

decrease system performance from the designed specifications. In addition, supporting

rapid prototype design with adaptation capability on hardware instances is also a key

issue for reducing time to market. Thus, situation awareness together with responding

actions over self-reconfiguration capabilities are the potential approaches to cope with

dynamic influences, improve overall performance, and reduce time and effort in the

development. Figure 15 depicts the overview structure of intelligent sensor systems,

where the left pane is a conventional reconfiguration approach while the other one is

integrated with self-x concept. Both share the same common procedures. First, received
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commands will be interpreted into sensor measurement actions. The prior database of

static deviations can be used to configure sensors and sensor electronics. Second, the

sensor signals, which are compensated from static deviations, will be transfered to the

sensor fusion process for giving the final result. However, dynamic deviations still may

occur during the measurements and cause unpredictable errors. By adding observation

and assessment units for optimization on the device, i.e., intrinsic optimization, the

dynamic influences can be reduced or eliminated, thus, retaining high quality of the

final result.
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Figure 15: Comparison between conventional reconfiguration and self-reconfiguration
on intelligent integrated sensor

Self-X features for intelligent multi-sensor are categorized as follows.

Self-Reconfigurable Sensors: Self-Reconfigurable sensors are integrated with dy-

namic software and hardware capabilities. Software is flexible by its nature,

however, reconfigurable software require additional programmable memory space

to store dynamic functions and parameters. Generic dynamic hardware architec-

ture [87] based on reconfigurable analog electronics is comprised of digital control

switches to select a variety of passive components and programmable gain am-

plifiers. Advanced integrated configurable mixed-signal electronics concept was

proposed to enable self-x properties [85]. The block diagrams of self-x supported

mixed-signal reconfigurable sensor electronics are depicted in Fig. 16.
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Figure 16: Conceptual diagram of self-x mixed-signal SSCE with reconfiguration and
actuation resources [86]

Self-Monitoring: or self-diagnosis is the ability of determining current states of sys-

tem performance and health status and detect occurred faults as well as predicting

the sensor failure and maintenance supervision requirement. This is also denoted

by other different names, e.g., self-validation or self-checking [47], where the func-

tionality is almost identical. When sensors are not in acceptable conditions, self-

calibrations task should be engaged.

Self-Calibration/Trimming: is the ability of a sensor system, that autonomously

re-adjusts calibration parameters [48]. Evaluation results from self-diagnosis pro-

cedures trigger self-calibration to perform. This function requires action operators,

i.e., controlled micro actuators and switching devices to provide reference physical

quantities for compensation process. Self-Trimming is the advanced level of self-

calibration, where hardware adjustments using reconfigurable electronics will take

place to recover sensor signals.

Self-Repair/Healing: In some situations, self-calibration may not be able to retain

deteriorated performance, which can be defined as fault state [47, 61]. Thus,

faults recovery procedure must be taken place. Self-repair or self-healing [49] are

capable to determine the actions maneuvering the erroneous situations to recover

sensor status. Redundant hardware is the common implementation of this feature

including additional switching matrix, spare circuit areas or cells, or identical

copies of sensor electronics.
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2.5.1 Evolvable Sensors and Sensor Electronics

The term evolvable sensor and sensor electronics denotes the cooperation of reconfig-

urable electronics and evolutionary optimization operators with the aim to let the sensor

adapt itself not only to sustain undesirable situations but also to improve quality [88].

Reconfigurable electronics can be carried out with different scale of programmable plat-

forms ranging from transistor level to integrated analog array and digital logic blocks on

FPGA [89]. Comprehensive integration has been developed to cope with mixed signal

scenarios on Field Programmable Mixed-Signal Array FPMA [89].

Evolutionary Computation (EC) [90] is the main background of the optimization tasks.

Optimization algorithms based on EC mimics biological mechanisms for instance Genetic

Algorithms (GA) [91] or Particle Swarm Optimization (PSO) [92] The process can be

done on a real platform or done in a simulator or design platform, i.e., intrinsic and

extrinsic evolution respectively. The optimal solution will be then interpreted to the

configurations of the reconfigurable electronics or programmable devices.

The integration of evolvable sensor concept as started with DAICOX is a promising

solution for longterm dependable intelligent multi-sensor systems.

2.6 Discussion

Multi sensor systems have numerous advantages through the integration of redundant

and diverse sensory information. Integration technologies create more and more minia-

turized yet powerful sensors and electronics enabling an intelligent multi-sensor solution

in a single device. Intelligent multi-sensor systems can be integrated with advanced in-

formation processing and multi-sensor fusion to exploit sensor performance beyond the

extent of single sensor approach. Self-X properties and the evolvable sensor concepts can

provide higher reliability and stability to the systems, leading to longterm dependable

and fault tolerant systems. These will realize longterm and stable measurement system

solutions for intelligent integrated multi-sensor system application. Despite the delicate

features, in fact, the design of complex intelligent measurement systems requires knowl-

edge and experience of the designer for intensive elaboration in all parts of the systems.

Moreover, design goals and requirements are usually restricted by multiple constraints,

that impose additional burden onto the design. As depicted in Fig. 17, designing tasks

handle a number of design procedures ranging from sensor electronics to complex multi-

sensor fusion. The design process is expected to achieve all given requirements, however,

compromising and trading-off may be taken place due to difficult constraints. As a re-

sult, the best solution demands huge effort, cost, and time. To tackle with the caveats

of human-based design, the potential approach is to automate the design process by
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using advanced optimization techniques to find the best methods and parameters for a

particular design case, where self-x concept will provide well trailered solution for each

hardware instance. Thus, potentially good quality solutions can be obtained by taking

as least as possible effort and knowledge requirements from the designer, thus, affordable

cost and time.
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Figure 17: Summarized design steps and environments for intelligent multi-sensor
applications



Chapter 3

Design Automation of Intelligent

Multi-Sensor Systems

Due to fast technology development and strong market competition more and more

complex applications of intelligent integrated multi-sensor systems have to be tackled

at less development time. Due to the increasing complexity, a solution, that satisfies

desired requirements and objectives, becomes highly difficult to obtain. A designer of

such systems is expected to having expert skills in several areas ranging from complex

hardware design to intelligent computation software programming. Even with highly

skilled and experienced persons, it is often the case, that many designs consume time and

cost and sometimes yield suboptimal results. An autonomous design process approach

for intelligent multi-sensor systems is the main motivation of this work with the aim to

yield high quality and rapid solutions with diminished requirement of designer’s expertise

and effort. In this chapter, recent research and technological development activities

related in the field of design automation for intelligent integrated multi-sensor systems

are investigated to derive the concept and system architecture proposed in this thesis.

25
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3.1 Motivation

In general, an intelligent sensory system or product design starts from target func-

tionality and specifications requested from users or customers. These requirements are

forwarded to a (human) designer for creating a design prototype from the designer’s ex-

perience or prior knowledge. Once the first prototype blue print is approved, evaluation

tasks take place afterwards to asses the performance regarding to the desired speci-

fications. Frequently, the target functionality and the performance may not achieve

the commitments or satisfaction, thus, revisions and adjustments of the prototype are

needed. For tuning and tracking the performance, an optimization procedure is the main

task of finding the best solution to achieve such problems. Once the prototype imple-

ments all the desired specifications, then it will be used as a final design solution, i.e.,

template, for the deployment or production. In some scenarios, an exceptional decision

making can be made by a human supervisor if part of goals can not be satisfied due to

constraints or limitations. The typical system design flow with prototype optimization

can be summarized as shown in Fig. 18. In conventional designs, the flow predominately

occupies experienced designers at each designing step. In an intelligent multi-sensor

application, the design involves numerous tasks in several disciplines including sensors

and electronics, signal processing, dimensionality reduction, and decision making as il-

lustrated in Fig. 19. The design of such a system addresses the problem of method

selection and it relevant configurations at every processing block, which is an extremely

high dimensional search problem especially in applications involving complex function-

alities. Human based manual design approach may not be able to effectively handle such

intricate search problems with reasonable time, effort, workload, and cost requirements

and may involve errors and failures.
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Figure 19: Traditional design of intelligent multi-sensor system

These emphasize inefficacious aspects of manual and human based designs, that pave

the way of the thesis motivation in contributing to the design automation of intelligent

multi-sensor systems with the aims to provide high quality measurement and decision

making systems while minimizing design effort and time. Automated design, computer

aided and designer assistance frameworks, have been the subjects predominately in the

field of semiconductor circuit design automation. Several groups pursue the similar

approach in data mining [3, 4, 9] and computer vision [10, 93] applications. But, the

multi-sensor measurement area seems to be rarely visited from the contribution towards

the design automation. For this reason, we will discuss here the concept, that fills

the gap by contributing to the design automation of intelligent multi-sensor systems.

Recently, the methodology and tool implementations of intelligent multi-sensor system
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design automation have been established at ISE [12, 13, 30], which define the research

direction and the development in this thesis. To elaborate an extension from the ISE

earlier works, a number of the recently related research and technological works have

been investigated and given in detail in the following sections. The investigation is split

into two main parts. The first focuses on the works, that attempt to assist or automate

the design of the system using methodologies and technologies related to intelligent

integrated multi-sensor systems. The latter provides the information and reviews the

existing frameworks and software tools.

3.2 Overview of System Design Automation

The investigations in this section are grouped into five fields of study categorized by

the essential processing components, i.e., building blocks, of the intelligent integrated

multi-sensor system architecture.

3.2.1 Sensor Selection and Configuration

Sensor configuration is an essential step in the design of multi-sensor systems, that

should be carefully considered at the beginning of the design. Increasingly emerging

sensors expand the number of choices for selection, that make this task more and more

tedious, in particular, in multi-sensor applications. The task of selecting a relevant

set of sensors for a measurement application is predominately manual and done by

exposing the sensors to the real stimuli, which is extremely time consuming, costly,

and error prone. Moreover, lack of knowledge of the designer may result inconsistency

of sensor information, that degrades system performance or lead to failures. These

intensify the development and research in assisting and automating sensor selection as

well as configuration tasks. Performance of application specific systems, for instance,

gas sensing depends on proper selection of sensing elements in the sensor array [37] to

target compounds, that can significantly improve classification rate [94]. Identifying

noisy sensors to be omitted from measurement can increase the degree of confidence and

reliability of multi-sensor fusion systems [95]. Frequency range or bandwidth selection

is also another aspect of sensor selection for impedance measurement applications [96],

which can improve accuracy and reduce the amount of data to be processed as well as

measurement time. Along with sensor selection, sensor parameters setting should be

performed consistently with the set of selected sensors. In [97], the authors proposed an

automated sensor parameter setting method by using Receiver Operating Characteristic

(ROC) information over sensor fusion operators. The method requires only two user-

defined parameters regardless of the number of connected sensors. Considering the
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robustness issue, information reliability [98] is a significant factor used in sensor selection

stage of dependable sensor system design.

3.2.2 Sensor Electronics

Sensor electronics are the front-end parts responsible for conditioning electrical sensor

signals. Proper configurations of sensor electronics ensure full exploitation of dynamic

range and resolution of the data in the digital domain. In [99], it is suggested that each

sensor application requires an individual optimization of signal conditioning circuitry

configurations to attain the highest resolution at the lowest noise level. Analog filter

plays a major role in sensor conditioning to improve the selectivity of desired signals

and eliminate noise. Automated analog filter compiler [100] derives the transfer function

approximation and prototype synthesis from given specifications to generate the filter

elements of selected network structure. By using a genetic algorithm for optimization, an

automated analog circuit design system [101] was developed and demonstrated with three

analog filter and amplifier design configurations. The results from generated circuits

achieved all specifications without effort or knowledge taken from the designer. Modular

concept of the design and configurations of sensor analog front-end architecture [102]

provides a flexible way to build a complete sensor platform out of configurable block

schematics.

3.2.3 Signal Processing

The signal processing part of an intelligent sensor typically involves statical calculations,

digital filters, and signal estimators. A well-known computer aid tool for digital filter

design is the commercial Digital Signal Processing (DSP) System Toolbox in MATLAB1,

which provides an extensive library for filter design, analysis, and implementation. In the

similar fashion, SciPy [103] provides signal processing libraries facilitating digital filter

design, which are free open-source and based on Python2 language. These tools, how-

ever, are manual design approach with numerous sensitive parameters and the quality of

a result depends on the knowledge and experience of the designer. The combination of

an optimization algorithm to the design of digital filters is usually applied to obtain the

best filter performance by automatically adjusting relevant parameters, hence, reducing

the design effort. A gradient search algorithm was adapted to a filter model selection

and parameterization framework in [104]. The framework roughly initializes the pa-

rameters by using the least-square method prior to optimization procedures, that have

proven to provide better result quality with reduced resource consumptions compared to

1The MathWorks, Inc. www.mathworks.com
2Python Software Foundation www.python.org

www.mathworks.com
www.python.org
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traditional approach. Typically, the search landscape of a digital filter design problem

is generally non-linear and multi-modal, thus, meta-heuristic search algorithms are the

favorable choices in order to avoid local minima. Particle Swarm Optimization (PSO) is

applied in [105] to autonomously search for a filter coefficient vector, that gives minimum

error and also preserve stability of the designed filter. The approach provided better

performance of designed filters compared to the DSP System Toolbox tool in MATLAB.

3.2.4 Dimensionality Reduction

Reducing data dimension can diminish unnecessary computation load and can improve

correct prediction rate [106]. Dimensionality reduction techniques attempt to find a

smaller subset selected from the original input space with similar or even better infor-

mation quality. Automated Features Selection (AFS) [107] automatically forms the best

subset justified by certain measures associated with recognition performance. Alterna-

tively, Automated Feature Weighting (AFW) [41] approach applies a weight factor to

a feature, that can provide finer resolution of the feature subset quality. Exhaustive

search approach, that enumerates all possible feature subset construction can ensure

the discovery of the optimal subset. However, it imposes a computational burden with

the complexity of O(2N ) where N is the number of features, which may impractical for

multi-sensor applications with high dimensional data. To reduce the cost of computation,

AFS methods are usually implemented in heuristic forms, i.e., sequential selection [38],

sequential floating [40], and oscillation scheme [108]. In fact, these methods may suffer

from being trapped in local optima, which can be tackle by stochastic search approaches,

such as, e.g., GA [109] and PSO [110]. In addition to focusing solely on recognition

performance, multi-objective optimization approaches for feature selection [111], which

takes feature cost of acquisition into account providing high recognition quality feature

subsets with reasonable measurement cost, i.e., computational load, measurement time,

and power consumption.

3.2.5 Classification Design

Due to numerous emerging algorithms and methodologies for classification, choosing

a suitable one to a specific application is becoming a tedious part of designing multi-

sensor cognition applications. A constructive classification operator should consist of

a proper classifier algorithm with relevant parameter settings. Several approaches es-

tablished towards the effort in automatically select algorithms, models, and parameters

for classification tasks. Classifier selection toolbox [112] is a system for learning algo-

rithm evaluation and selection based on meta-features, i.e., the statistical information
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of a data set, to advise designer in the design of classification applications. By us-

ing estimators, which describe the best relevant classifier for a specific type of sensor

from a given multi-sensory dataset, the classifier combination framework [113] increases

the reliability and accuracy of the measurements. Evolutionary algorithms are usually

employed for solving classifier design problems, which typically are high dimensional

search space [3, 114, 115]. Particle Swarm Model Selection (PSMS) [3] is a technique for

the selection of effective (individual) classification models as well as parameters through

Particle Swarm Optimization (PSO) algorithm. GA based classification design with clas-

sifier ensemble approach [115] has been developed for multi-sensor pattern recognition

systems by using weighted meta-features for enhancing the classification performance.

Concluding from the investigations, the common aim of these works is to reduce effort,

knowledge requirement, and time of a design process as well as to provide superior per-

formance outperforming the manual design approach. Taken these as ambitions, several

software frameworks, libraries, and toolboxes have emerged, contributing to the automa-

tion of the design process for intelligent multi-sensor systems. The recent development

of the software is investigated in the following section.

3.3 Multi-Sensor System Design Automation Software

This section focuses on the current state of existing frameworks and software tools

related to the design automation for intelligence multi-sensor systems. The investigation

is composed of three groups, first, the concept and framework group, which points out

on proposed ideas, second, the surveys on available libraries or toolboxes, and the third

is the collection of design automation software.

3.3.1 Concepts and Frameworks

The investigation provided here are the conceptual approaches of several research works,

that provide architecture of automated design process in the field related to multi-sensor

cognition system.

Full Model Selection

Full Model Selection (FMS) [3], developed by the INAOE3 institute, is a framework

for pattern recognition system design aiming in increase classification performance with

less time spending on designing, developing and optimizing. By giving a data set and

requirements, FMS is capable of designing a viable recognition system by searching

through the method pool containing pre-processing methods, feature selection agents,

and learning algorithms as well as their parameters. Ensemble classification approach

3the National Institute of Astrophysics, Optics and Electronics
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was employed to accomplish generalization of the best solution by increasing the di-

versity of the individual models. Hyperparameter optimization is proposed to account

optimization control parameters in the search procedure using PSO. The software is

open-source and multi-platform developed in MATLAB.

Intelligent Discovery Assistant

Bernstein et al. of University of Zurich developed Intelligent Discovery Assistant (IDA) [4],

the tool that aims to support the design of Knowledge Discovery (KD) processes. The

Knowledge Discovery structure in IDA, by taking the background of pattern recog-

nition, consists of automated data pre-processing, rule-induction algorithms, and post-

processing of models as shown in Fig. 20. The IDA assists its users in choosing processes

to execute, for example, by ranking the process (heuristically) based on given tasks, data,

and goals from the user. The decision of selecting the final solution can be made only by

the user. The final selected solution can be exported for external execution in run-time

but no option of reconfiguration on generated solutions available.

Selection Target
Data

Preprocessing
Preprocessed

Data
Induction
Algorithm

Data
Model/
Pattern

Post-processing
Knowledge 

output 

Figure 20: Block diagrams of KD process implemented in IDA (adapted from [4])

Self-Tuning of Teachless Process Monitoring Systems

The researchers of IFW4 university of Hannover [5] developed a Self-tuning Process

Monitoring System (SPMS) based on multi-criteria sensor signal evaluation. The aim of

the work is to reduce manual parameterization tasks and to improve process monitoring

performance and reliability by using proposed self-tuning approach to the framework.

The criteria consist of overall assessment, sensitivity and robustness of the monitored

process, which are used in the parameter optimization. The processing of the frame

work consists of heterogeneous sensor data acquisitions and choice of feature extraction

methods. The optimization of the system employs GA to adjust parameters of process

control as well as features’ computation parameters.

4Institute of Production Engineering and Machine Tools http://www.ifw.uni-hannover.de/

das-ifw.html?&L=1

http://www.ifw.uni-hannover.de/das-ifw.html?&L=1
http://www.ifw.uni-hannover.de/das-ifw.html?&L=1
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3.3.2 Software Libraries

Several concepts and frameworks have been implemented in the form of software plug-in

or library. Using this kind of software usually requires another software or compiler, e.g.,

MATLAB or Python in order to execute as well as interact with users. The libraries are

either open-source free-license or commercially available.

CRN

Bannach and Lukowicz at University of Passau have developed the Context toolkit [6] to

reduce effort in the design of context-aware applications. The tool contains a collection of

signal processing and pattern recognition algorithms. The information handling operator

of the toolbox is designed to support distributed wireless sensor networks including

time based synchronization of data streams. The reusable and parameterizable building

blocks concept yields flexibility of the designed and configured software components when

deployed in different target platforms. CRN facilitates the design process by providing

graphical programming plug-in as shown in Fig. 20. The software is open-source and

runs on MATLAB.

Figure 21: Design process of CRN toolbox on MATLAB [6]

CCS

Context Classification System [7] is a software for context aware system application de-

sign developed by the IRB5 research group. The system consists of multi-sensor data

acquisition, feature extraction, data mapping, and fuzzy classification depicted in Fig. 22.

The software facilitates in training data manipulation, however, parameters of the pro-

cessing algorithms have to be adjusted manually. The framework was developed on

Python and C language and implemented on mobile phone platforms using information

from standard equipped sensors.

J-Sens

In [8] the authors developed an Application Program Interface (API) of the hardware

5The Institute of Operating Systems and Computer Networks https://www.ibr.cs.tu-bs.de/

https://www.ibr.cs.tu-bs.de/
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abstraction layer for wireless sensor nodes over Java6 Integrated Development Environ-

ment (IDE) platform. The abstraction hardware representation offers the designer a

transparent access of all sensor and actuator control functions to design an application

with the least knowledge requirement in the hardware domain. The API supports mod-

ular design over IDE-based centralized development cycle with real-time debugging of

a particular sensor environment, that allows the designer to prototype applications in

hardware independent fashion.
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Java APICompound
Management

Virtual Sensors/Actuators

Plug-in
1

Plug-in
2 . . .

Actual Sensors/Actuators

Plug-in
1

Plug-in
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Target Platform
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JSense Platform Specific Framework
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Sensors and

Actuators

Wireless
Sensor
Nodes

Figure 23: Sensor abstraction and target platform framework concept block diagram
adapted from [8]

PREn

Pattern Recognition Engineering (PREn) [9] from a research group of the DFKI7 is a

toolbox, that runs over RapidMiner8, a data mining software. It provides automated

model construction and system evaluation for pattern recognition system design helping

a user to analyze data sets with choices of classifier to find a relevant classifier for a given

data set as depicted in Fig. 24. The predicted accuracy of the available classifiers will

6Java www.oracle.com/java
7Multimedia Analysis and Data Mining Competence Center http://madm.dfki.de/
8RapidMiner, Inc. www.rapidminer.com

www.oracle.com/java
http://madm.dfki.de/
www.rapidminer.com
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be displayed to the user for manual selection, which are generated by support vector

machine for regression by using meta-features generated from the data set [45]. The

selected classifiers are parameterized with an exhaustive grid search optimization. The

experiments done by repository benchmark data sets show that the toolbox helped in

reducing knowledge requirement and time for pattern recognition applications design.

Automatic System Evaluation

Data set 1
Data set 2
Data set 3
Data set 4

.

.

.
Data set n

Iterate

Parameter Optimization Result 1
Result 2
Result 3
Result 4

.

.

.
Result n

Cross Validation

ClassifierPreprocessing

User Command

Figure 24: Automated system evaluation schematic proposed in PREn
(adapted from [9])

BASELABS

BASELABS [15] is a software tool for rapid prototyping of system design and the pa-

rameterization for Advanced Driver Assistant Systems(ADASs) [116]. The software is

associated with a library of ready-to-use sensor components for geometrical sensing and

positioning, that provides assistance in sensor utilization and interfacing. Several phys-

ical sensor interfacing standards are supported, e.g., USB, CAN, FireWire, etc. The

pattern recognition components of the software are based on probabilistic tracking al-

gorithms, e.g., Kalman, Bayesian and particle filter. The software has been used to

implement an example of a camera-based vehicle tracking system as a case study. The

libraries used in the software are developed in Microsoft Visual Studio9 suit.

Figure 25: Design space of vehicle tracking application design using BASELABS [116]

9Microsoft Visual Studio www.visualstudio.com

www.visualstudio.com
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Common Vision Blox

Common Vision Blox (CVB)10 [16] is an open architecture, hardware independent toolkit

for imaging applications. The Image Manager in CVB offers hardware and platform flex-

ibility by providing hardware independent acquisition API and the specific versions for

both Windows and Linux operating system. A number of signal processing and fea-

ture computation libraries are provided to facilitate complex image classification tasks.

These properties allow the change between different hardware without extensive re-

development. A change of hardware during the design phase is possible at any time

without increasing development time and losing low level control.

Figure 26: Image manager structure of the CVB toolkit [16]

GENESIS

Stefanie Peters at ISE TU-Kaiserslautern has proposed GENESIS [12], a comprehensive

architecture for design automation of image processing systems. In this work, numerous

texture analysis operators have been established including choice of signal processing,

feature computation, and classification. In particular, Non-Linear and Oriented Kernels

(NLOK), a novel method, that combines both first and second order statistics for feature

segmentation, has been presented. These method are subject to optimization by GA and

PSO to their optimum setting and parameters. Evolutionary strategy approach, e.g.,

genetic programming, has been adopted to optimize the processing chain, i.e., graph-

based method breeding.

10STEMMER IMAGING GmbH http://www.commonvisionblox.com/en/elements/fundamentals

http://www.commonvisionblox.com/en/elements/fundamentals
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3.3.3 Software Suites

Investigation of software aided design tools is provided, which is composed of a collec-

tion of methods and algorithm libraries orchestrated by a central user interface software.

Beside the main features in designing intelligent multi-sensor systems, visual and mod-

ular based system development environment, point-and-click, and drag and drop for the

creation of processing flows are also considered in the investigation. These features are

becoming common in modern computer-aided software, that simplify the creation of

work-flow and reduce time and effort in the design process.

Freescale Sensor Fusion

Freescale Sensor Fusion [18] is a free library package designed for inertial and magnetic

sensor families from Freescale11. It comes with a GUI software for design, analysis

and signal representation visualization providing an intuitive environment for multi-

sensor fusion application design. User define tasks and specifications are used to derive

a suitable code template and its configurations, that will be programmed to the target

hardware. For an extensive analysis, the library package provides a plug-in to MATLAB

for complex simulations and parameterizations. The software supports both Android and

Windows operating systems, however, many advanced signal processing algorithms and

visualization features are available only in the latter.

Native Sensor
on Mobile Device

Remote Sensor
Interface

Freescale
Sensor

Prototype Board

Best

Better

OK

Bad

Worst

Algorithm SelectionSensor Selection

Output

Figure 27: Sensor and algorithm selection flow of freescale sensor fusion adapted
from [18]

RAPTOR

Rapid Application Prototyping Tool for Object Recognition (RAPTOR) [93] is a devel-

opment environment software, that aims to support the design of image pattern recog-

nition systems based on template matching technique. The application development

process in the software is comprised of sensor data acquisition, data manipulation, pre-

processing, and filter design. The software provides a hardware simulation of a design

11Freescale Semiconductor, Inc www.freescale.com

www.freescale.com
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for performance analysis and solution tuning before being exported to the real platform.

This feature reduces effort, time, and cost of hardware implementation during the de-

ployment. However, the flexibility of of the deployed solution was not considered in this

software.

Charon and Tuchulcha

The HCI12 research group in the University of Heidelberg has developed Charon [10] an

open-source framework for computer vision prototyping based on C++. The approach

targets on implementing computer vision applications in a modular fashion. Each part

of the computer vision algorithm constructed in a workspace is called a module, that can

be visually connected to other algorithm modules on a design space of the tool named

Tuchulcha responsible for GUI work-flow configuration application. Reusable work-flow

is an interesting feature of the software helping to simplify the deployment in various

target platforms from a single design center. Charon provides a collection of modules

for optical flow estimation, 3D reconstruction and general image processing algorithms.

Figure 28: Screenshot of Tuchulcha with Charon modules in the design workspace [10]

KEEL

Knowledge Extraction based on Evolutionary Learning KEEL13 [11] is an open source

Java software, that features knowledge extraction capabilities to assist the design of

pattern recognition systems. The software employs an evolutionary algorithm to predict

a model consisting of pre-processing, feature selection and post-processing for a given

task. A set of statistical analysis methods is included for the analysis of the characteris-

tics of a given data and the performance of algorithm candidates. Fuzzy rules learning

approach is used to trade-off the accuracy with the interpretability of a designed model.

12Heidelberg Collaboratory for Image Processing http://hci.iwr.uni-heidelberg.de/
13 KEEL: Knowledge Extraction based on Evolutionary Learning http://www.keel.es/

http://hci.iwr.uni-heidelberg.de/
http://www.keel.es/
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QuickCog

QuickCog [13] is a fast and transparent automated design environment of multi-sensor

cognition systems with self-learning capability. The main aim of the software is to ac-

celerate the design process from the key features including data acquisition, visual pro-

gramming, interactive data manipulation, feature space visualization, automatic feature

selection, and pattern recognition. These features enable rapid prototype and reusable

of designed solutions, which alleviate the need of expert knowledge and reduces design

time for potentially complex multi-sensory cognition system applications. The software

has been used in a broad range of automated visual inspection applications, e.g., medical

laboratory process control [34] and semiconductor manufacturing inspection [117], while

being also inherently suitable for general pattern recognition applications.

Data Acquisition Visual Programming Visualization

Figure 29: Rapid-prototyping feature of QuickCog [13]

nvision

nVision14 [17] is a development environment for industrial image processing. The main

system architecture consists of nVision Designer and nVision Run-Time. An image

processing task can be designed via graphical programs over nVision Designer including

performance analysis and visualization. Once the final solution is approved, the compiled

design will be downloaded to target platforms, that have been installed with nVision

run-time software. This concept helps in facilitating the deployment phase especially in

the case of different hardware platforms.

14Impuls Imaging GmbH www.impuls-imaging.com

www.impuls-imaging.com
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Figure 30: Example of machine vision application designed by visual programming
on nVision [17]

Orange

Demsar et al. of the Bioinformatics Lab at the University of Ljubljana have developed

Orange [14], a machine learning and data mining suite for data analysis through visual

programming and Python scripting. Various useful data manipulation pre-processing

and classification toolboxes, called Widgets, are provided. To design a pattern recog-

nition task, a user can simply drag and drop the widgets and connect them with each

other, creating a relevant processing flow. As it is fully open-source and non-commercial,

Orange is an attractive choice for the development of additional functions, features, and

effective methods of computational intelligence extended from its standard available

modules.

Hierarchical SVM 

Figure 31: Example of a live classification workspace and feature space visualizations
in Orange
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3.4 Discussion

In this chapter, the techniques methods and algorithms, that contribute to the design

automation of every processing component in the intelligent multi-sensor system have

been surveyed and presented. Numerous software tools and libraries emerged serving in

the trend of automating the design of system architecture were selected for the investi-

gation. The similar objective of the investigated works is to provide effective solutions to

the design process, that reduce effort, cost, time, and error while increasing quality and

performance outperforming the human-based manual approach. The summary and fea-

tures comparison of the surveyed works are given in Table 2 and 3. Visual programming

and modular based design flow have become the important features in modern computer-

aided design software. The design optimization is essential for the design automation of

potentially complex intelligent multi-sensor systems. Evolutionary computation based

meta-heuristic search algorithms have proven their applicability and efficacy in several

investigated works. The capability of reusing the same designed solution in different

installation sites or run-time platforms can significantly reduce effort and cost of set-up

and deployment and revision during operations.

1995 2000 2005 2010 2015

QuickCog
1998

KEEL
2009

nVision
2015

Orange
2009

Charon
2009

RAPTOR
1997

Frescale
Sensor Fusion

2014

Genesis
2010

CVB
2009

BASELAB
2012

PREn
2010

J-Sense
2006

CSS
2010

CRN
2008

SPMS
2014

IDA
2006

FMS
2010

Industrie 4.0CPS

IoT

Figure 32: Technological time-line of state of the art
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In contrast to the intensive development in this field, some salient features are apparently

neglected. Complete processing chain design as well as flexibility and adaptability of

the designed system on the hardware level can only be found in a few examples. The

incorporation of self-x properties in dealing with reliability and robustness issue was

rarely regarded. Intrinsic evolution and advanced multi-objective optimization approach

seems to have been overlooked in the studied works.

Concluding from the recent development, the contribution of the thesis is to provide

intuitive rapid and flexible design environment for intelligent multi-sensor systems via

visual programming and informative visualization. To attain high performance and

robustness solutions, advanced multi-objective optimization techniques together with

the reconfigurable capability are considered to enable self-x properties and intrinsic

evolution of the solutions. These features are the baseline of the development and

elaboration of this thesis for conceiving an automated system design architecture, which

will be described in the following chapters.



Table 2: State of the art comparison of automated design systems for intelligent multi-sensor applications

SoA.
Sensor Type and

Interface Type
Sensory Data

Format
Dimensionality

Reduction
Data Analysis

and Mining
Decision Making

Optimization/
Learning

Knowledge Rule
Import/Export

FMS [3]
N/A

Load From Database
Feature Selection/

Ranking, PCA
X

Automated
(Based on k-fold CV)

PSO Based
Single-Objective

N/A

IDA [4]
N/A

Load From Database
Feature Selection X

Manual
(select by user)

N/A
Export

(executable selected model)

SPMS [5]
Machinery Sensors

Analog
Heterogeneous,
Multi-Channel

Feature Extraction N/A N/A
GA Based

multi-objective
N/A

CRN [6] Sensor Modules
Heterogeneous,
Multi-Channel

N/A X N/A N/A X

CSS [7]
Mobile Phone

Sensors
Heterogeneous,
Multi-Channel

Feature extraction X N/A N/A X

J-Sense [8]
Sensor Node

Generic Sensors
Heterogeneous,
Multi-Channel

N/A N/A
Manual

(select by user)
N/A N/A

PREn [9]
N/A

Load From Database
N/A N/A X

Manual
(select by user)

Exhaustive N/A

BASELABS [15]
Automotive
CAN Bus

Heterogeneous,
Multi-Channel

N/A X
Manual

(select by user)
N/A N/A

CVB [16]
Machine Vision
FireWire, USB

Image Data Feature Extraction X
Manual

(select by user)
N/A X

GENESIS [12]
Machine Vision

(standard camera interface)
Image Data Feature Extraction X X

GA&PSO Based
multi-objective

X

FSF [18]
Inertial Sensors
I2C, SPI, USB

Heterogeneous,
Multi-Channel

N/A N/A
Manual

(select by user)
N/A X

RAPTOR [93]
Machine Vision

(standard camera interface)
Image Data Feature Extraction N/A

Manual
(select by user)

N/A X

Charon [10]
Machine Vision

(standard camera interface)
Image Data Feature Extraction N/A

Manual
(select by user)

Gradient based
Yes

Import &Export

KEEL [11]
N/A

Load From Database
N/A

Feature Selection
Feature Extraction

X Automated EA based N/A

QuickCog [13]
Generic Sensors
USB, FireWire

Heterogeneous,
Multi-Channel

Feature Selection
Feature Extraction

X Automated N/A N/A

nVision [17]
Machine Vision
USB, FireWire

Image Data Feature Extraction X Automated N/A X

Orange [14]
N/A

Load From Database
Feature Selection

Feature Extraction
X Automated N/A N/A
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Table 3: State of the art comparison cont.

SoA.
Operating Platform*/

Dependent Tool
License

GUI and
Visualization

Graphical
Programming

Extendable Library
/Programming Language

Reusable/
Executable Solution

Self-X

FMS [3]
WIN,MAC,Linux

with Matlab
Open-Source N/A N/A

Yes
Matlab scripts

N/A N/A

IDA [4]
WIN,MAC,Linux
with Weka/Java

Non-Public Only GUI N/A N/A
X

one-time

code generation

N/A

SPMS [5]
WIN,MAC,Linux

with Matlab
Non-Public N/A N/A N/A N/A Self-Tuning

CRN [6]
WIN,MAC,Linux

with Matlab
Open-Source

X
Signal Analysis

X
X

C++
X N/A

CSS [7] WIN,MAC,Linux Open-Source
X

Signal Analysis
X

X
C++

X N/A

J-Sense [8]
WIN,MAC,Linux
with Java IDE

Open-Source Only GUI N/A
X

Java
X N/A

PREn [9]
WIN,MAC,Linux
over RapidMiner

Open-Source Only GUI
X

on RapidMiner

X
Java

N/A N/A

BASELABS [15]
WIN

MS-Visual Studio
Commercial

X
Signal Analysis

X
X

C++
X N/A

CVB [16] WIN,Linux Commercial
X

Signal Analysis
N/A

X
C++

X N/A

GENESIS [12] WIN -
X

Image Analysis
N/A

X
C++

X N/A

FSF [18]
WIN

Android
Free

X
Signal Analysis

N/A
X

C++, Python
X N/A

RAPTOR [93] WIN Commercial
X

Signal Analysis
N/A N/A N/A N/A

Charon [10] WIN,MAC,Linux Open-Source
X

Image Analysis

X
(via Tuchulcha)

X
C++

X N/A

KEEL [11]
WIN,MAC,Linux

with Weka
Open-Source Only GUI N/A

X
Java

N/A N/A

QuickCog [13] WIN Commercial
X

Feature Space, Image Analysis
X N/A X N/A

nVision [17] WIN Commercial
X

Image Analysis
X N/A X N/A

Orange [14]
WIN,MAC,Linux

with Python
Open-Source

X
Feature Space Analysis

X
X

Python/C++
N/A N/A
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Chapter 4

Architecture of an Automated

Intelligent Integrated

Multi-Sensor Systems with Self-X

Capabilities Design Framework

Intelligent Integrated Multi-Sensor Systems (IIMSS) for complex recognition tasks are

composed of advanced methods and algorithms with numerous parameters. Design-

ing such systems involves exacting tasks, such as method selection, combination, and

parameterization, which together require tremendous design effort. For this reason, we

establish the Design Automation for Intelligent COgnitive system with self-X properties,

DAICOX, architecture. The architecture tackles the design effort reduction by adopting

design automation concepts emerged in other domains, e.g., integrated circuit design

and machine vision. DAICOX contrives an IIMSS by automatically selecting process-

ing components from the method and algorithm pool and adjusting their parameters

to achieve desired requirements. In particular, multi-objective optimization is the key

function of the architecture ensuring the highest quality of the solution and achieving

all constraints. More important, it is incorporated with self-x properties to enable the

intrinsic evolution capability on run-time platforms. Visualization and intuitive visual

programming offer the efficient interaction between the DAICOX and its users. Finally,

the DAICOX architecture shall provide a fast and transparent design environment, that

potentially yields high performance and adaptive multi-sensory measurement solutions.
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This chapter is organized as follows. The next section describes the details of the

DAICOX architecture. The following four sections (4.2, 4.3, 4.4, and 4.5) explain meth-

ods and algorithms used for the realization of the design building blocks in DAICOX.

Section 4.6 explains quality assessment measures for the design evaluation. The details

of model evaluation and selection mechanism are provided in Section 4.7. Section 4.8

gives the details of the optimization algorithms and techniques for multi-objective and

dynamic environment optimization. Finally, the summary is given in Section 4.9 along

with the recommended parameter settings of the presented methods.

4.1 Concept and System Architecture of DAICOX

DAICOX is a Computational Intelligence (CI) based systematic design architecture for

IIMSS. The architecture inherits the concept and methodology from state of the art and

our1 previous research attempting to automate the design process of complex multi-

sensory measurement systems. DAICOX stands in the overlap field of Computer-Aided

Design (CAD) and Computer-Aided Engineering (CAE), where the first is the use of

software in creation, modification and optimization and the latter is the assistance in en-

gineering analysis tasks. CI and machine learning are the main background of DAICOX

as means of automatically generating and optimizing IIMSS. One of ISE early works

on the design automation has been carried out in the field of industrial machine vision

systems [12]. The similar concept has been extended to general sensor applications in

the work of Iswandy et al. [30] with multi-objective optimization and the introduction of

self-x concept. Visual programming and choice of interactive visualizations in QuickCog

provide fast and transparent automated design of general recognition systems. These are

the baselines, that constitute functionality as well as features of the DAICOX architec-

ture. In particular, the extension of flexibility and adaptability at hardware level with

self-x properties is the strong focus point advancing the current tools and methodologies.

Thus, the main objectives of the DAICOX are to:

� Provide rich information via interactive user interface and visualization along with

intuitive visual programming and transparent design environment,

� Deliver high quality solutions outperforming human-manual based designs by using

multi-objective optimization,

� Speed up the design process by rapid prototyping, and

� Gain the adaptability, reliability and robustness of designed solutions with self-x

properties.

1Institute of Integrated Sensor Systems
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These are the properties and key features consolidated in the architecture of DAICOX

system, which is elucidated in Fig. 33.
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Figure 33: Automated intelligent multi-sensor system design architecture

Here, the brief discussion on the concept of DAICOX architecture is given before specific

detail explanations in the following subsections. The blocks at the top of architecture

are dynamically reconfigurable hardware platforms for supporting intrinsic optimiza-

tion as well as self-x properties. The functionality of the platform is constructed from

the DAICOX’s standard building blocks. The building blocks of IIMSS represent the

processing components of multi-sensory cognition tasks.

Common design and optimization tasks comprise method selection from available meth-

ods and parameters tuning. In particular in sensory recognition system design optimiza-

tion, three possible data sources can be used, including deterministic sensor models, that

simulate the signal representation of the sensors, recorded measurements stored in the

database, and live measurements by using multi-channel data acquisition modules.

The entire design process of DAICOX is performed in three layers as illustrated in Fig. 34.

In the user-interaction layer, the designer is provided with user-friendly interaction to

the design process, e.g, obtain ongoing design quality via visualization or create an initial

design by using visual programming. This feature is useful especially in early stage of the

design. The DAICOX design-time automation layer consists of the core procedures of the

design automation process including advanced multi-objective optimization, standard
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building blocks, method pools, and design database. For intrinsic optimization, a design

solution can be transferred to the DAICOX run-time platform to evaluating the quality

and performance at each evolution. Thus, a well-tailored design solution of an individual

run-time platform is obtained. With self-x properties, the optimization tasks can be

realized dedicatedly on the run-time platform, that realizes the concept of machine-

in-the-loop evolution, which potentially gains reliability and robustness to its run-time

operations.
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Figure 34: Three designing layers in DAICOX

4.1.1 Design Building Blocks

DAICOX constructs a processing chain of IIMSS based on the generic building blocks as

illustrated in Fig. 35. Graph-based structures cooperating of multiple methods can be

employed inside a particular block. Automatic method selection and parameter setting

procedures are carried out by a meta-heuristic searching algorithm with multiple as-

sessment criteria (multi-objective optimization). The method pool contains elaborated

methods and functions in terms of specialized scientific software modules and libraries.

Beside advanced methods available in the building block, DAICOX also provides seam-

less links between blocks to exchanging information without complicated reformatting.

Adding or editing algorithms and methods can be achieved simply by accessing the

method pool via DAICOX user interface. The precise details of the methods and algo-

rithms as highlighted in Fig. 35 are given in Section 4.2 for sensor and sensor electronic



Chapter 4. Intelligent Integrated Multi-Sensor System Design Architecture 49

configuration, Section 4.3 for signal processing and feature computation, Section 4.4 for

dimensionality reduction, and classification in Section 4.5.

DAICOX Multi-Objective Design Tasks
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Figure 35: The generic building block model and corresponding tasks of IIMSS design
in DAICOX

4.1.2 DAICOX Design Optimization

Design Time Automation (DTA) is the core operation of the DAICOX architecture.

DAICOX optimization unit is the major part of DTA, that aims to reduce time and

effort in designing IIMSS as well as to provide high quality and robustness solutions.

The DAICOX optimization unit is elaborated with the key features as listed below.

� Method selection, parameter, and building block structural optimization.

� Multi-scale optimization scheme, e.g., local and global optimization.

� Inclusion of physical hardware devices or run-time platforms in optimization loop

(machine-in-the-loop optimization)

� Multi-objective optimization

� Choice of flexible and expendable evaluation functions

� Supervised(monitored), semi-supervised, unsupervised optimization

� Adaptive optimization for lowering the effort in configuring optimizers

� Robust solutions, e.g, dynamic environment optimization

Global and Local Optimization: Due to high complexity of IIMSS design problems,

the concurrent design of building blocks, i.e, global optimization, may require substan-

tially huge computational resource, which is impractical in most scenarios. Thus, a

distributed approach mimicking the divide-and-conquer paradigm, i.e., Local Optimiza-

tion (LO) [12] is proposed. As a result, a global optimization problem is transformed
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into a set of smaller design problems with reduced search space. LO recursively decom-

poses a design problem of the complete generic building block structure presented earlier

into sub-problems of a particular block, i.e, local block. Therefore, local performance

assessment is used for optimization process. At each block, performance assessment is

given by information depending on functionality, for example, feature subset quality of

the dimensionality reduction block. LO sequentially evolves a system by taking the best

result from the neighborings as input, at every block with two choices of directions;

bottom-up and top-down. Typically, the bottom-up scheme is common as a design usu-

ally starts from given desired sensory contexts, that leads to the selection of physical

sensors/sensor array at first, whereas the top-down, for instance, starts a design with

a specific classifier. The hybrid approach by including assessments from other building

blocks, e.g., classification accuracy, where parameters or configurations of the particular

designing block are only subject to change from the optimization procedure. Figure 36

displays an example of LO procedure at the signal conditioning block.

Multi-Objective

Optimizer

Local Assessments
e.g.
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● THD
● Dynamic range
● Offset
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Re-
Configuration

Output signal of the best solution
to next design component

Signal
Conditioning

Input from
Previous

Step

Additional Assessments, e.g, 
Feature Quality or Classification Accuracy

Successive
Blocks

Figure 36: An example of local optimization at the signal conditioning design step

Intrinsic and Extrinsic Evolution: Typical design optimization problems are based

on extrinsic evolution approach, i.e, evaluate design solutions by behavioral, determin-

istic, or computational models. These require precise analytical expressions, that are

expected to include all possible variation factors in order to assure the stability system

performance in operation time. In real-world situations, as shown in Fig. 37, static and

dynamic deviations, drift phenomena and environmental perturbations occur inevitably

after the deployment phase, that potentially deteriorate the system performance. For

this reason, the inclusion of an actual hardware instance into the optimization loop,

denoted as intrinsic evolution as shown on top of Fig. 33, is a promising means to cope

with dynamic influences. Involving a real hardware instance into the evolution process

allows the exploitation of parameter adaptation to compensate deficiencies of the extrin-

sic approach providing robust and time-independent performance. The realization of

intrinsic evolution can be extended to self-x properties, i.e., self-monitoring/assessment
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and self-optimization, as they share the same background of dynamically reconfigurable

hardware system.

Commonly, optimization tasks rely on the learning-from-examples concept, one of many

machine learning paradigms, which requires data or supervised information, i.e., class

affiliation. In an intrinsic optimization, which a priori knowledge may be unavailable or

no explicit goals or targets, these informations still can be made available during run-

time by adding reference actors, e.g., heater or illumination. But, for some applications

like gas sensing or liquid analysis, this approach may be infeasible or too expensive.

A potential candidate for this issue is the unsupervised optimization approach, that

performs local adaptation, a similar mechanism of auto encoding technique in neural

networks.
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Figure 37: Three-Phase system design and deviations in each phase.

4.1.3 Self-X Properties of DAICOX Designed Solutions

Adaptiveness and flexibility are the essence in achieving longterm reliability, robust-

ness and sustainability. Organic computing [19] is a recent research area consisting

of autonomous and cooperating subsystems, that mimics organic mechanisms of living

creatures on computing machines, i.e., self-x properties [118–120]. As design robustness

is among the important design objectives of DAICOX, thus, the ability of embedding

self-x properties into designed solutions is conceived. DAICOX is proposed with the

capabilities, that encapsulate the properties of self-x to IIMSS as listed below:

� Self-Monitoring/Diagnose

� Self-Calibration/Trimming

� Self-Healing/Repairing
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� Self-Optimization

The functionality of self-x properties are composed of dynamically reconfigurable and

efficient adaption mechanisms. Thus, for IIMSS applications, the essential components

are dynamically reconfigurable hardware, e.g., sensors electronics on run-time platforms.

Several scales of implementation including, functional level via programmable analog ICs

or digital sensors to microscopic level via integrated reconfigurable analog arrays.

In addition, most of the adaptive operations in self-x process are composed of several

complex computation tasks. Hence, choices of high performance embedded processors,

e.g, High-Speed Microcontrollers, Digital Signal Processors (DSPs) or Application Spe-

cific Integrated Circuits (ASICs) can be chosen based upon the functional complexity of

property and application. For instance, self-optimization usually comes with arithmeti-

cal burden and large routines, that DSPs may be the good candidate in implementation.

The realization of these properties, in particular to IIMSS, requires a cooperative struc-

ture of several complex components as depicted in Fig. 38.
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Figure 38: Architecture of self-x properties integration in DAICOX.
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Proposed self-x properties are the potential aspects of providing rapid-prototyping, flex-

ible and computational effective solutions with robustness and dependable characteristic

at low cost, effort, and short design as well as maintenance time.

4.1.4 Design Interaction

Design interaction of the DAICOX architecture consists of four main parts as illustrated

at the top layer of Fig. 34. The aim of this layer is to provide the designer with intimate

links to the automated design activities in order to navigate and reinforce the ongoing

design process. Features and functionality of DAICOX design interaction layer are

explained as follows.

Visual Programming

The up to date trend in software development framework is graphical-based program-

ming. This allows programming with visual expressions consisting of modular elements,

which each represents a particular function. A processing flow or graph, usually as an

initial design, can be simply created over drag-and-drop and signal connecting actions.

This fashion provides an intuitive and fast track for system development as well as re-

quires no expert skill in designing a system. The ability of returning information to

preceding modules or blocks, i.e, feedback graph, would be a desirable feature, that

allows advanced functionality over the system.

User Interface

DAICOX provides full access to all design steps via its intuitive User Interface (UI).

Configurations and parameters of a design module can be observed and defined in its

corresponding UI. In prototyping or debugging stage, operational characteristics and

performance of a system can be observed and analyzed by the designer over real-time

signals monitoring. Meaningful information can also be given to the designer in terms

of the design guideline or wizard.

Interactive Visualization

Perceptive and associative capabilities of humans are powerful tools to solve complex

problems like hidden knowledge extraction or non-obvious correlations identification. To

exploit this, DAICOX provides supportive information using appropriate visual repre-

sentations, e.g., feature space observation. However, most of the informations relating

to the design of IIMSS are high-dimensional, thus, an effective feature transformation

is needed to reduce the information into a human perceptible data space i.e., 2D or 3D.

To do this, multivariate projection methods, e.g, Linear Discriminant Analysis (LDA)

or Multi-Dimensional-Scaling (MDS) are choices to be incorporated with interactive

visualization.



Chapter 4. Intelligent Integrated Multi-Sensor System Design Architecture 54

Design Space Exploration

In an optimization problem, the efficient procedure, that governs the search operator to

focus in an attaining search region is a salient task to provide promising outcomes at

reasonable time and resource consumption. Design Space Exploration (DSE) is the ac-

tivity to let the designer explore design alternatives before engaging the full scale search

operation with constrained or limited feasible search landscape. Choice of visualizations

can be chosen in cooperation with the proposed visualization part. UI and visualization

are also required in order to establish bidirectional interaction between the designer and

DSE.

Expert Driven Design and Design Database

Starting a design from scratch for an IIMSS is laborious and time-consuming. In partic-

ular, due to lack of knowledge and experience designers may return deceptive solutions,

which potentially are sub-optimal. The efficient way is to initialize the design with a

design seed or information from the Design Database (DD). This approach results signif-

icantly compact search space, that potentially embrace the optimum. The information

stored in DD are in two possible forms; the initial design given by the designer, i.e., Ex-

pert Driven and the a priori knowledge or experience of previous designs’ best solutions.

The latter case significantly reduces design effort in contrast to starting a design from

scratch. Flexibility and extensibility of the design template are necessary in order to

support changes in functionality or improvement.

4.2 Sensor Configuration

For a measurement system, setting relevant sensor parameters and configurations is an

essential task to obtain high consistency between measuring physical properties and ac-

quired sensory data. Flexibility is required in two domains involved for automating this

process, i.e., the setting of parameters governing operational characteristics of physical

sensors and the configuration of sensor electronics. Reconfigurable electronics, that en-

able dynamic adjustment on hardware level, play major role in realizing the automation

process of sensor configuration.

4.2.1 Sensing Element Configuration

Possible physical sensor parameters, that can be reconfigured dynamically may account

the selection of sensor elements to be operated or mechanical configurations, e.g, cam-

era angle or focus position. In some applications, an action of controlling environmental

properties at measurement time of a sensor using actuators can be a kind of sensor
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configuration, for instance, heating or illumination. In contrast to conventional heat-

ing element, micro peltier is an advanced cooling/heating technology with high power

density, e.g., thermo-harvester from Micropelt [121]. For magnetic measurement ap-

plications, using AMR sensor, e.g., AFF755 from Sensitec [122], in particular, offset

caused from manufacturing tolerances can be canceled by driving current to an inte-

grated metal layer to select sensitive orientation, i.e., flipping [59, 123]. Sensor selection

can be implemented on software level by excluding the data of deselected sensors. But

this approach is ineffective because excluded sensors still consume energy and measure-

ment time and cost. An efficient choice is to use controllable analog switches, e.g.,

CMOS analog switches or multiplexers as well as MEM switches. The utilization of

sensor electronics can also be improved when a single sensor front-end is connected with

multiple sensors elements.

4.2.2 Sensor Electronics Configuration

This task adjusts sensor electronic parameters with the aim to effectively enriching sensor

signals before delivering them to further processing components. Thus the adjustments

are mainly related to sensor signal conditioning domain. Dynamically reconfigurable

electronic devices are the essentials for enabling flexibility of the circuits. In functional

level, numerous modern digital sensors and analog electronic devices provide access via

digital interface to control or adjust their operational parameters such as gain, offset

compensation, cut-off frequency, etc. This level provides flexibility only at some de-

gree due to limited availability of adjustable functions on a particular device or sensor.

Higher flexibility can be obtained in programmable level, which applies changes to inter-

nal analog circuit structures, e.g, transistors in Field Programmable Transistor Array

(FPTA). However, the price tag for this solution is the lack of utilization due to re-

dundant areas and switching components. The trade-off solution for the issue is the

Field Programmable Medium-granular mixed signal Array (FPMA) [85], that provide

considerably high flexibility with efficient resource requirement.

4.2.3 Automated Sensor Configuration

The operation of autonomous sensor configuration task consists of a hardware setting

generation, a configuration assessment, and a search operator. The acquired measure-

ments are used to evaluate the performance of present sensor settings in configuration

assessment procedure. Several signal characteristics can be considered together in the

evaluation and configuration searching, which is multi-objective optimization, for in-

stance DC offset level, Signal-to-Noise Ratio (SNR), Total Harmonic Distortion (THD),

and Dynamic Range. A search procedure is responsible for generating a set of sensor
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settings and evaluate them to find the best configuration candidate. Meta-heuristic algo-

rithms given in Section 4.8 can be employed. The processing steps of automated sensor

configuration in DAICOX are illustrated in Fig. 39. Typically, these procedures perform

on a dedicated design platform, i.e., PC or High-Performance embedded computer, with

an communication interface to the sensor run-time platform in order to exchange op-

timization information, thus, the intrinsic evolution is already obtained. However, this

approach is still vulnerable to dynamic deviations, whereas the sustainable approach

combines all the procedures on the run-time platform, i.e., machine-in-the-loop [34].
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Figure 39: Operation of automated sensor configuration



Chapter 4. Intelligent Integrated Multi-Sensor System Design Architecture 57

4.3 Signal Processing and Feature Computation

Sensory data usually need some treatments at a very first stage of pattern recognition

tasks such as noise removal, drift compensation, dynamic enhancement, shaping, and

scaling. Signal Processing (SP)2 helps condition sensor signals by signal to signal trans-

formation and manipulation. SP methods predominately are data preserving, i.e., the

feature vector of an output data is identical to its input one, whereas some methods

create new information space extracted from input data, e.g., frequency, distribution,

projection analysis, which are denoted as feature computation in this thesis. Feature

computation extracts and condenses information by heuristic techniques using transfor-

mations.

The term Feature Computation (FC) is frequently interchangeable with Feature Ex-

traction (FE) in several literatures. Two common aims of FC and FE are to create

new information correlated to the original data and to compress the original data into

a smaller dimensions space. Therefore, to avoid ambiguity between the terms, in this

thesis we denote FC as the group of methods, that produce new information and denote

FE as the group of methods for dimensionality reduction, which is explained in the next

section.

In complex multi-sensor pattern recognition systems, both SP and FC are employed.

Therefore, a joining process of two data spaces, i.e, concatenation, is needed to form a

single data space being used for further processing steps. The overview of SP and FC

processing flow is illustrated in Fig. 40. Several SP and FC methods [124] commonly

used in multi-sensor related applications are summarized in Table 4.

Feature Computation
Feature Computation

Signal Processing

Input Data Space Transformed vector = X
~

 Processed Data
Input vector = X

To Dimensionality 
Reduction

Feature Computation(s)or

 Processed Data

Raw Data

Figure 40: Operational flow of signal processing and feature computation

2In this thesis, all SP methods are of digital signal domain
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Table 4: Description of basic signal processing methods [124]

Method Description Type

Arithmetic Common arithmetical operations, usually used for

signal reshaping including : addition, subtraction,

multiplication, and division.

SP

Blending A linear combination between signals commonly used for

signal mixing, noise canceling, or compensating.
SP

Normalization The conversion all sensor values to a common scale.

For multi-sensor data, each feature is normalized individually.
SP

Digital

Filtering

Remove unwanted signals from input data. Finite Impulse

Response (FIR) and Infinite Impulse Response (IIR) filter

are the common choices, where the first has better stability

and linear response while the latter behave more closely to

analog filter.

SP

Correlation Generate the value of similarity between two signals,

i.e., cross correlation. Auto correlation uses single signal

by using temporal shift.

FC

Data

Statistics

Basic statistical information of data, e.g., minimum,

maximum, mean, median, standard deviation,

and variance

FC

Statistical

Moments

Extract properties of similarity in statistics or geometric

commonly applied in computer vision applications, e.g.,

Moment Invariant, Gabor filters and wavelets, and

Fractal Analysis

FC

Frequency

Analysis

Generate frequency spectrum from time-domain data, e.g.,

Discrete-Fourier-Transformation (DFT). For non-stationary

time-signals, Short-Time-Fourier-Transformation (STFT)

or Wavelet Transform are generally used.

FC

Distribution

Analysis

Similar concept to frequency analysis but by means of

frequency of occurrence, e.g., Histogram, Density estimation,

and Multi-Level Thresholding (MLT)

FC
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4.4 Dimensionality Reduction

Due to the growing number of emerged sensors as well as their ability in providing

multiple information, e.g., multi-spectrum color sensors, thus, the data of multi-sensor

measurement systems are becoming more and more high dimensional. Although, a

beneficial aspect of using multiple sensors is to improve recognition performance, how-

ever, some sensor information or features may be redundant and can deteriorate the

performance in some cases. The term to address this paradigm is curse of dimensional-

ity [125], which implies the augmentation of additional features over a certain size can

cause degradation instead of improvement in performance. The assumption of curse of

dimensionality effect is illustrated in Fig 41.
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Figure 41: Illustration of curse of dimensionality paradigm

There are several reasons supporting the necessity to perform DR in a pattern recognition

task as listed below.

� The reduction in bandwidth of the data. (improvement in measurement speed)

� The relevant set of features. (improvement in recognition performance)

� The modest set of feature. (improvement in economically computation)

� The visualization purpose. (two or three dimensions data representation)

In general pattern recognition literature, two approaches are defined in DR, Feature

Selection (FS) and Feature Extraction (FE), based on their underling mechanisms. FS

constructs a subset by including or excluding features of the original input vector space

without modification on information of the selected features., i.e, data preserving ap-

proach. FE, transforms all features in the original input vector space, usually by using

a linear or non-linear combination, to generate new lower dimensional features. An in-

tuitive principle comparison of the approaches is depicted in Fig. 42. The descriptions

of these approaches are given in the following subsections.
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Figure 42: Basic processing principle of FS and FE

4.4.1 Feature Extraction

Feature Extraction (FE) finds a set of transformations for generating a new feature

space, i.e., transformed space, in a lower dimension from the initial space. Thus, the

aim is to replace the original data variables by a smaller set of variables, that carries as

similar information as the original one. A linear or non-linear combination are typically

used in transformations and can be either supervised or unsupervised. Maximum class

separability is the criterion of finding the transformation in a supervised case, i.e., class

labels are required. An unsupervised case uses underlying statistical characteristics, e.g,

maximum variance, of the data themselves for judging the quality. The optimization

problem of FE is performed focusing on the set of allowable transformations, A, to find

the best transformation Ã of an given input matrix X, that satisfies

J(Ã) = max
A∈A

J(A(X)) (4.1)

where J is the criterion function [117, 126]. Therefore, the new feature vector, i.e,

transformed vector, can be obtained from Y = Ã(X).

Several approaches based on subspace projection methods are widely used such as Prin-

cipal Component Analysis (PCA) [127] and Linear Discriminant Analysis (LDA) [127].

PCA attempts to find k projections axes, which are orthogonal to each other, of which

providing maximum variance (principle axes), where k < |X|. PCA is a signal-representation

technique meaning that it does not use class label information, i.e, unsupervised.

LDA, in contrast, tries to find a k-dimensional subspace based on maximum class sep-

arability, which requires class label information (> 2 classes), i.e., supervised, thus, the

maximum transformation allowance for LDA is limited at k ≤ C − 1, where C is the

number of classes in a given data.
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These methods, however, are linear transformation, which basically may not be able

to cope with data, that is not linearly separable. Kernel PCA can solve non-linear

problems by mapping an initial feature vector into a higher dimensional space then

perform the original PCA. Non-linear subspaces projection methods, e.g, Self-Organizing

Maps (SOM) [127], or Multi-Dimensional Scaling (MDS) [128], are specifically designed

to deal with non-linear data characteristic.

SOM constructs a k-neuron network, whose inputs are connected to all features on the

initial data, where k is the target dimensions of mapped space. The training process

in SOM adjusts the weight vector, that tries to preserve as much information as in the

input vector, also called the topology-preserving approach.

MDS non-linearly maps high dimension data into a low-dimensional sub space (typically

2 or 3 dimensions), which brings it a popular DR for visualization purpose. The MDS

process accompanied with a criterion with regard to the scaling dissimilarities, which is

the stress function, that can be Sammon [129] or Kruskal’s [130] stress.

Fractal Analysis (FA) [131] assessing fractal characteristics of patterns in two dimen-

sions. It has been mainly used in image analysis applications for texture segmentation

and feature extraction. An intuitive explanation of FA is that it tries to find a repeat

pattern (fractal dimension) in different geometrical scales. The processing consists of

central projection and wavelet transformation. The first attempts to transform an orig-

inal pattern to one-dimension pattern, where the latter generates a sub-patterns, i.e.,

extracted features.

4.4.2 Feature Selection

Feature Selection (FS) performs a binary selection of every feature in an initial feature

space to remove irrelevant and redundant features. FS has a significant advantage on

its results that they can be directly transferred to the physical level, i.e., activating

sensors in respect of the optimal feature subset. To autonomously perform an FS task,

denoted as Automated Feature Selection (AFS), two important processes are involved;

feature set construction, and feature set quality assessment. The general procedure of

AFS takes a given original feature vector X = {xi|i = 1, ...,M} , X ∈ X of M features

. The optimization problem of FS, as formulated in Eq. 4.2 [117, 126], searches for the

best feature subset X̃ from the set of all possible subset formations X , where J is the

assessment function with some criterion. The cardinality,
∣∣∣X̃∣∣∣ ≤ d, of the new feature

vector is expected as d� n.

J(X̃) = max
X′∈X

J(X ′) (4.2)



Chapter 4. Intelligent Integrated Multi-Sensor System Design Architecture 62

4.4.2.1 Optimal Methods

Optimal methods for feature selection, e.g., exhaustive search, guarantee the discovery of

the best feature subset as it explores all members in X . This method may be impractical

for multi-sensor applications due to its computational burden with O(2n) complexity.

Branch and Bound (B&B) [132] claims to deliver the optimal within the maximum

bound at Θ(n2) complexity, by neglecting the searching paths with less contribution

to assessment criteria. However, the discovery of the optimal is certain only under the

monotonic circumstance.

4.4.2.2 Heuristic Methods

Sub-Optimal or heuristic methods are the alternatives from optimal ones, that aim to

reduce computational complexity of the search procedure. Sequential Search is one of

the simplest and widely used method, that follows only one path of the complete search

tree. Two variations are affiliated: Sequential Forward Search (SFS) and Sequential

Backward Search (SBS) where the first starts from an empty feature set then adds a

feature at every search step and the latter starts from the full initial feature vector then

excludes a feature at every step. These methods are faster compare to B&B with O(n2)

complexity, however, they suffer from being trapped in a nested search tree. By applying

a stopping criterion, the searching time can be reduced, where d < n is the number of

features of at the stopping point.

It is clear that the reduction in computation comes with the price of taking risk of the

nested feature subset problem. The solution mitigating this issue is to add a dynamic

direction mechanism to the search procedure, i.e, the combination of forward and back-

ward movement. This approach will give a chance for the search procedure to revisit an

ongoing search path rather than constantly move toward one direction.

”plus l-take away r”, also called l-r [133], performs successive augmentation and

segregation process. Two parameters, l and r, control the number of features in the

incremental and removal step respectively. The limitation of this method is the lack

in theoretical explanation to determine the appropriate settings of l and r, i.e., often

arbitrarily set as ad-hoc.

Sequential Floating [40] inherits the plus l-r method with no control parameters.

The procedure consists of both SFS and SBS, where the beginning of the search can be

performed by either of them. At each search step, both SFS and SBS are performed

but the searching direction will maintain in one way as long as the assessment result

is better than the other, otherwise reverse the searching direction. The performance of

this method is considered as good as B&B with much less computational time [133]. It



Chapter 4. Intelligent Integrated Multi-Sensor System Design Architecture 63

is possible that search processes may face an endless cycle, i.e, forever loop, which can

be prevented by applying book-keeping.

Oscillating Search [134] tries to optimize a feature subset of a desired cardinality d.

The search starts with d dimensions subset, which can be initialized by using SFS/SBS

or random generation, then performs oscillations. The oscillation procedure applies SFS

to add features until reaching the upper bound d + ∆ then perform SBS toward the

lower bound d − ∆, where ∆ is a user defined parameter. The search will stop when

the current feature size reaching back at d dimensions with an improvement in feature

quality. Setting higher ∆ value results in more thorough searches but costs longer time

to complete the process. This method has been reported to overcome the ”nesting

problem” and outperform SFFS/SBFS [134].

4.4.2.3 Meta-Heuristic Methods

Sequential mechanism of heuristic methods is naive and greedy behavior, that may be

prone to local optima. Even with several variations previously mentioned to alleviating

the problem, considerably high computational complexity is the price tag.

Meta-heuristic approach is different to sequential method in the way that it uses stochas-

tic mechanisms. The simplest way to explain this is that a set feature vectors are ran-

domly generated by a search procedure. The main advantages of using meta-heuristic

for feature selection are listed below:

� Invulnerable to the ”nested feature subsets” problem.

� Does not require the monotonicity assumption.

� An optimum can be reached without completely exploring solution space.

� Ability to parallelize search procedure (population based in GA or PSO).

� Well-suited for multiple criteria assessment.

Evolutionary computation based algorithms have been widely adapted to the feature se-

lection purpose, e.g., Simulated Annealing (SA) [135] or Genetic Algorithms (GA) [136].

SA is based on the annealing process of thermal systems and performs a stochastic

search. While SA searches the optimal on a single solution, GA, a population based

algorithm, performs search with multiple solutions concurrently.

Genetic Algorithm (GA) [136] comprises of three main components: the individual

representation, individual modification, and assessment evaluation. More details of GA

are given in Section 4.8.1.1. Each individual represents a n−bit binary pattern, where n

is set to equal the initial feature set dimension. The evaluation process uses the binary
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pattern to construct a feature subset before giving to an assessment function with respect

to some criteria. Search procedures of GA consist of selection, reproduction, mutation,

and crossover procedures, together modify the individuals at every iteration to find the

best solution.

Particle Swarm Optimization [110] is a population based algorithm, which searches

for an optimal by moving individuals over the search space. This means that each

individual has a location, that is coordinated by a number of dimensions, which is equal

to the initial features size. The individuals move towards two locations, own best (local)

and population best (global) positions with regard to the feature subset quality. PSO

for feature selection outperforms heuristic methods as well as its counterparts, e.g. GA,

as reported in [110]. Concise details of PSO are given in Section 4.8.1.2.

Table 5 shows comparisons of the addressed feature selection methods. O refers to the

tight computational complexity, Θ refers to the maximum computational complexity if

the upper bound is unknown, and i is the maximum number of iterations.

Table 5: Comparison of feature selection methods

Method Optimal Computational monotonicity Requied

Complexity independent parameters

Exhaustive Optimal O(2n) yes -

B&B Optimal Θ(2n) no -

SFS/SBS Sub-Optimal O(n2) no -

l-r Sub-Optimal O(n2) no l and r

SFFS/SBFS Sub-Optimal Θ(2n) no -

Oscillating Near-Optimal Θ(2n) no d and ∆

Meta-Heuristic Near-Optimal O(p× i) yes Algorithm based

(see 4.8)

4.4.2.4 Filter and Wrapper Evaluation Approaches

Feature subset assessment can be categorized into two approaches based on the classi-

fier dependency of assessment function. Filter approach is independent from classifier,

that evaluates a feature subset by intrinsic properties of the data. The computation

in assessment functions based on filter approach uses direct information from the data

such as distance, variance, dependency, and consistency. Several assessment methods

and algorithms for the filter approach are given in Section 4.6. Wrapper Approach uses

a predetermined learning algorithm to assess a feature subset. The proper implemen-

tation of the wrapper approach is relatively complex since it involves classifier training,
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parameter tuning and validation. The wrapper approach usually achieves higher recog-

nition performance due to the fact that the feature subset is used to model and tune

the classifier. Computationally expensive and the risk of overfitting are the drawbacks

of this approach. The filter approach is significantly the faster in searching and better

in generalization performance, however it tends to selecting the full-feature set for the

optimal solution, thus, a certain dimension cut-off should be given to avoid the aggres-

sive growing of feature subset. Figure 43 and 44 summarize the general concepts of the

filter and wrapper approaches respectively.
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Figure 43: Filter approach feature selection
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Figure 44: Wrapper approach feature selection

4.4.3 Feature Weighting

An advanced variant of feature selection is to replace the binary selection procedure by

real value linear combination, i.e., Feature Weighting (FW) [41]. An FS problem can

be described as a linear combination between an initial feature vector X and a selection

vector AS as formulated in Eq. 4.3. Where wn is either 0 or 1 in FS case ,while a

real number interval wn ∈ [0, 1] is applied in the FW case. The construction of feature

subset X̃ excludes all elements with zero value or smaller than a defined threshold,
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finally |X̃| < |X|.
X AS X̃
x1

x2
...

xn

 ·

w1 0 0 0

0 w2 0 0
...

...

0 0 0 wn

 =


x̃1

x̃2
...

x̃n


(4.3)

Automated Feature Weighting (AFW) comprises as similar procedures as AFS, where

the search problem is much larger since it has more choices to be selected for each

feature. The search problem of AFW can be illustrated as a parameter tuning task by

varying weights (parameters) within the interval. The step size controls the resolution

of solutions, which of course exponentially increases computational complexity of the

search problem.

Thus, this leads to the complexity of O(ln) where l is the number of weight steps. Para-

metric weight setting [137] can help realize AFW with computationally feasible, however,

the performance depends on the model prediction and fine weight setting is difficult to

achieve by this approach. Meta-Heuristic methods are the potential candidates to realize

of AFW with good quality results under reasonable computational cost.

4.5 Classification

Classification is the problem of identifying which group (class label) the given observation

(data vector) belongs to based on the pattern lies on the data, i.e., pattern recognition.

Several effective classification algorithms and techniques categorized into three groups,

i.e.,multi-class classification, one-class, and hierarchical classification, are given in this

section.

4.5.1 Multi-Class Classification

Multi-Class Classification (MCC) problem deals with the identification of an unknown

pattern to a group of classes. A multi-class classifier judges a given M features data

vector X = {xm|m = 1, ...,M}, also denoted as unknown pattern, to a member of an L

classes class label vector Ω = {ω1, ωl, ..., ωL}. The vast majority of classification methods

are multi-class classification. While some methods are able to directly handle problems

with more than two classes, e.g, k-NN, many can deal only with two-class problems,

i.e. binary classifications. To use a binary classification method for a multi-class (more

than three classes) problem, a mechanism, that decompose a multi-class problem into a

number of binary classification problems is required.
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One-Against-One (OAO) and One-Against-All (OAA) are commonly used approaches

for constructing a structure of multiple binary classifiers in MCC problems. The OAA

approach creates a binary classifier for each class, which is trained to distinguish the

patterns of the corresponding class from the patterns of all other classes. Instead of a

symbolic or logical result, each classifier outputs the probability of a given pattern to

its corresponding class, i.e., decision or confident value. For a given unknown pattern,

the binary classifiers compute decision values for the final decision, that justifies and

outputs the final class value associated with the maximum probable classifier.

OAO, also known as pairwise coupling, constructs a binary classifier for each pair of

classes. This means that a problem with L classes, the total number of L(L − 1)/2

classifiers will be trained to separate the patterns of one class to another. A voting

process of all classifier results decides, which class a given unknown pattern belongs. The

illustration of the classification structures of both OAO and OAA approach are given in

Fig. 45. OAA requires O(N) classifiers while OAO, instead, requires O(N2), however,

in problems with high number of data instances and if the training time increases non-

linearly respect to the number of data vectors, then OAO is the faster choice. In the

following, widely used classification algorithms are explained.
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Figure 45: Classification structure of OAA and OAO approaches

Nearest Neighbor Methods

(k-NN) is considered among the classic non-parametric classification algorithms and is

a multi-class classification algorithm by nature. To classify an unknown pattern, the

distance (e.g. Euclidean) from that pattern to each of prototype example (from training

data) is measured. The group of k nearest neighbors are identified, then classification

can be performed by using either the voting approach, that makes a decision based

on the frequency of class occurrence, or, the volumetric approach, which is based on
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actual distance weighting of each neighbors contribution. The value of k can be either

user defined or automatically determined using a dedicated data set and a validation

technique [138]. Some variations of k-NN attempt to reduced the number of prototypes

to increase generalization performance and reduce computational load. Reduced Nearest

Neighbor (RNN) [139] is proposed by extending the early reference vector reduction

mechanism, i.e., Condensed Nearest Neighbor (CNN) [140], to tackle the drawback of

CNN that it may select some vectors that are far from the decision boundary. RNN

incorporates a post processing step to revise selected reference vectors by heuristically

removing a vector and if no miss-classification resulted from the removal then the vector

will be deleted. This mechanism results in slightly smaller subset of selected reference

vectors compare to one obtained by CNN.

Support Vector Machine

Support Vector Machines (SVMs) [141] are among the most robust and successful clas-

sification algorithms. SVMs, inherent binary classifiers, provide a good generalization

performance and independent of the distributions of the patterns. A principle of the

basic linear version of SVMs tries to maximize the margin of a linear hyperplane, which

separates two classes data vectors. The soft-margin [141] concept is introduced for non-

separable data vectors by penalizing some error points with the slack variable. The sum

of the slack variables is associated with the parameter C of the optimum hyperplane de-

termination process, i.e., establishing support vectors. For large C the higher tolerance

of error points is admitted, whereas the lower C tends to minimize the margin. The

appropriate setting range of the parameter C is [1,10000] [142].

SVMs can be extended to deal with non-linear problems by employing the feature space

transformation technique, i.e., kernel trick [143]. Kernel function K(xi,x) transforms

an original feature space into a higher dimension space where a linear hyperplane can

be applied. Choice of kernel functions are given in Table 6. The Gaussian Radial Basis

Function (RBF) kernel is one the most effective and frequently used approaches. The

parameter γ should be set within [0.00001,10] range [142].

Table 6: Support vector machine kernel functions

Function Transformation K(xi,x)

Linear xix

Polynomial (x′ix + 1)d

Gaussian RBF exp(−γ|x′i − x|)
Exponential RBF exp(−γ(x′i − x)2)

Sigmoid tanh(ax′ix− δ)
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4.5.2 One-Class Classification

The Multi-Class Classification (MCC) paradigm aims to classify an unknown pattern

into one of pre-defined classes (minimum two). Using a multi-class classifier with un-

known patterns which do not belong to any of those classes will return misleading results.

One-Class Classification (OCC) is an approach to create a classifier, that accepts the

patterns of target (positive) class and rejects others (negative or outliers). To create an

OCC classifier, the aim is to build a model, that maximizes the correction in acceptance

of positive patterns (True Positive) while minimizing the chance of accepting the negative

patterns (False Positive) and vice versa for the rejection mechanism. The challenge in

designing OCC classifiers is that in the case of only data of positive target are available.

The motivation for OCC is in broadening scenarios, e.g., monitoring faults in a machine,

where only the information of the normal condition is available. Another interesting

capability of OCC is the extension for novelty detection or anomaly detection, which

can identify unknown patterns, that do not exist in the training data set or database.

For these reasons, a number of methods and algorithms have been proposed to solve the

OCC problem, which are explained in the following.

Nearest Neighbor Based OCC

Nearest Neighbor Description (NN-D) was proposed in [144] by applying the local density

computation. An unknown pattern z is accepted to the positive class if the local density

to its nearest prototype NN tr is less than the local density of the NN tr to its nearest

prototype NN tr
k (see Fig. 46 where k = 1). The threshold value ρ can be varied (typically

set at 1.0) to adjust the sensitivity of th detection. For high dimensional data, this

method should be performed with a mapped subspace [144]. Due to classification model

of this method relies on the individual position of the prototypes, high number of training

samples may be required to avoid the overfitting problem.
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Figure 46: Rejection mechanism of the nearest neighbor description

One-Class Support Vector Machines

Support Vector Machine has been adapted to solve OCC problems in [145] by creating

a hyper-sphere covering the positive class data vectors in a mapped feature space, i.e.,

Support Vector Data Description (SVDD). SVDD is suggested that using the Gaussian
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RBF kernel will produce well fit descriptions, but higher number of data vectors is

required to support the flexibility of the boundary. Instead of using a hyper-sphere,

in [146], a method, that uses a hyper-plane as in the original SVM was proposed. This

approach is based on ν-support SVM (ν-SVM) [147], which is the variation from the

original C-support SVM. The modification of ν-SVM for one-class problems exploits

the parameter ν to control the boundary of the outliers fraction (upper bound) and the

support vectors of the target class fraction (lower bound). These bounds are the margin

of the separating hyperplane, which any pattern drops in this area is classified as outliers.

The setting of ν is in the range of [0,1], where it is suggested to be set at 0.05 [146].

Both methods have proposed techniques for generating artificial negative data vectors

that help improve performance of the model when outliers data are unavailable. Several

SVM based OCC techniques investigated in [148] have reported that when the Gaussian

RBF is used the performance of the classifier is highly sensitive to the kernel width

setting (γ).

Novelty Classifier

Novelty Classifier (NOVCLASS) [149] is a novelty detection method taking account the

concept of Background Classification (BC) and OCC. The classifier model is based on hy-

perspherical classification method, which is a special case of the Restricted Coulomb En-

ergy (RCE) [150] network. The classification model of NOVCLASS represents a network

of prototypes tj constructed from an N samples training data set, t = {tj | j = 1, ..., N}.
In the feature space, each prototype from a hypersphere that locates at its center tj with

radius Rj .

NOVCLASS incorporates the BC concept by assigning a given feature space (of all

classes) into the target class, i.e., selected background, whereas the area outside the fea-

ture space is defined as rejection region. An unknown pattern x activates a hypersphere

j if S(‖x− tj‖ < Rj) indicating that the pattern is inside the target class region, thus,

classified as positive or Normal pattern. Any patterns that are outside the target class

region are classified as Anomaly or Novel. Using the hypersphere approach in BC and

OCC requires an additional determination process of hyperspheres’ radii due to unavail-

ability of negative class data samples. In NOVCLASS, all hyperspheres are constructed

with uniform radii, Rj = Rmax ∀j, which is determined according to the maximum 1-NN

distance of every instance in the training data (see. Eq. 4.4).

Rmax =
N

max
j=1

(
N

min
i=1,i 6=j

‖xi − xj‖) (4.4)

Thus, the novelty classification process of an unknown pattern x is computed as the

following steps:
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1. Search the nearest prototype tNN of x by:

find tNN from : dtNN =
N

min
j=1

dtj (4.5)

where dtj = ‖x− tj‖

2. Then classify the pattern x by:

y = f(x) =

{
normal for : ‖x− tNN‖ < Rmax

novel for : ‖x− tNN‖ ≥ Rmax
(4.6)

In the training phase, a scaling factor η can be applied to η × Rmax to control the

denseness of the classifier model. In case the prototype selection is applied, a large η

produces a coarse model with a small number of prototypes, whereas η < 1 produces a

fine and compact normal class region with larger number of prototypes.

4.5.3 Hierarchical Classification

Conventional classification approaches process input data from a complete feature space

(after pre-processing and DR). In a multi-sensor system, especially heterogeneous one,

it may be the case that the classification flexibility on a particular sensor channel is

required. For example, different sensor channels may influence the classification perfor-

mance differently, e.g., different in signal precision or robustness, thus, a local optimiza-

tion should be performed with regard to a particular sensor.

Hierarchical Classification (HC) is proposed to tackle the issue by adapting the ensemble

classification approach. The HC consists of structured multiple classifiers in multi-level

scheme and a hierarchical decision making process, thus, multi-sensor fusion at the de-

cision level is performed here. The similar approach have already presented using Prob-

abilistic Neural Network (PNN) [34] and Support Vector Machine [151]. Each classifier

is dedicated to a feature subspace associated to a particular sensor channel or a user

defined subspace. Thus, the optimizations problems are solved locally by determining

optimum parameters, that fit to a particular subspace. The proposed prototype of the

HC is heuristically based on multi-class SVM as the first stage of study. The concept of

the proposed HC using the SVM (H-SVM) approach is elucidated in Fig. 47.

Assuming a given data obtained from S sensors, at the first processing stage, a data

splitter separates the complete feature space into S subspaces. Thus, S classifiers

are created and trained for each subspace in the first level classification. The out-

put from those classifiers are vectors containing class probability estimates, denoted as

pclass. Consider the One-Against-One approach solving an L-class problem at each

subspace, the total number of binary SVM classifiers generated by H-SVM is k =
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Figure 47: Proposed hierarchical SVM classification

L(L − 1)/2, which each is used to compute pairwise class probability estimates for

pclass = {pij | j, i = 1, ..., L and j 6= i}. Therefore, a set of pclass vectors are created in

the first level classification. The estimation of pairwise class probabilities for an L-class

problem of a given pattern X from ith and j th classes is formulated as follows.

Given data with L classes, to classify an unknown pattern X, a classification estimates:

pi ≈ P(y = i | X), i = 1, ..., L. (4.7)

Considering one-against-one approach, pairwise class probabilities rij can be estimated

as:

rij ≈ P(y = i | y = i or j , X)

where rij ≈ 1

1+eAf̂ +B
,

(4.8)

f̂ is the decision value of trained SVM classifier model, and the estimates A and B are

obtained by minimizing the negative log-likelihood of the training data [152]. In the

training procedure, H-SVM figures f̂ , A and B and performs the optimization of the

SVM parameter C and the RBF Gaussian kernel γ to a particular sensory channel. A

concatenation operator joins all pclass vectors to form a global class probability vector

pglobal. The global decision making is computed from an SVM classifier at the final

level classification, which is trained by using the pglobal as input. At this level of the

classification hierarchy, the final level classifier can also serve as an information fusion

node at the decision level. A discrete classification result, i.e., class label, is given at

this level.

4.6 Quality Assessment Measures

Designing a pattern recognition system one may focus on maximizing classification rate

alone, but this poses the requirement on relevant model and parameters settings as well

as expensive computation. Several processing components can be designed by assessing
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some criteria other than classification accuracy. For example, up to the design building

block of signal processing and feature computation, some signal related criteria, e.g.,

MSE or SNR, can be used. In particular to the designing of dimensionality reduction

methods, numerous assessments, that analyze underlying statistical properties of data,

e.g., nonparametric compactness, and overlap of class region, are good in generalization

and are computationally cheap relative to using classification models. Regarding these

reasons, robust measures with a few or entirely free of parameters, model assumptions,

and intricate training requirements are presented in this section.

4.6.1 Density Based Methods

A number of information measures rely on data distribution characteristic by using prob-

abilistic modelings. The computation of these methods generally involves the estimation

of class conditional probability density functions (pdf’s) by using an available training

set under assumptions of normal distribution. Joint Entropy method, which measures

the uncertainty associated with a set of classes by determining the overlapping region of

distributions. Extended from the entropy concept, Mutual Information (MI) [153] takes

into account both individual and joint distributions. The use of MI for feature quality

assessment is in a pairwise scheme, that determines the mutual uncertainty of between

classes with respect to the certainty of a particular class. MI accounts for high-order

statistics, however, it involves numerical integration of complex functions, which leads to

expensive computation especially when the number of dimensions is large. In particular,

in pattern recognition applications, a pdf is typically estimated from the histogram of a

data set, which requires a relevant setting of the bin size as well as a appropriate estima-

tion method in order to achieve an appropriate pdf that describes the true distribution

of the data.

4.6.2 Distance Based Methods

In contrast to obtaining distribution functions, distance metric based methods assess

feature space quality by using dissimilarity between patterns, i.e., distance, directly

from vectors of measurement. These approaches also have advantage over classifier

based approaches as they do not depend on the model of decision making and have less

or no parameters to set. These methods comprise of a distance measure function d,

i.e., metric, between two pattern vectors Xj , Xi ∈ X of |X| dimensions resulting in a
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distance value, which satisfies the following conditions.

d(Xi, Xj) ≥ 0

d(Xi, Xj) = 0 iff Xi = Xj

d(Xi, Xj) = d(Xj , Xi)

d(Xi, Xj) ≤ d(Xi, Xk), d(Xj , Xk)

(4.9)

Table 7 lists a number of the common distance measures and their formulations [133].

The choice of a particular metric usually depends on application. The consideration

may take into account of the number of features (dimension), the requirement of shape

of the contour around the class mean (rotational equality), and cost of computation.

Table 7: Dissimilarity measures for two data vectors Xj and Xi where xi,m ∈ Xi and
xi,m ∈ Xj

Metric Denoted as Formulation

Euclidean de ‖Xj −Xi‖e =

√√√√ |X|∑
m=1

(xi,m − xj,m)2

City-Block dCB ‖Xj −Xi‖CB =

|X|∑
m=1

|xi,m − xj,m|

Canberra dCa ‖Xj −Xi‖Cr =

|X|∑
m=1

|xi,m − xj,m|
|xi,m|+ |xj,m|

Chebyshev dC ‖Xj −Xi‖C =
|X|

max
m=1

(|xi,m − xj,m|)

Euclidean metric de measures distance in the most natural manner among others. The

square root of the total sum in de can be neglected (denoted as squared euclidean) with-

out loosing the monotonicity on the dissimilarity function but it will not anymore be a

metric. City-block metric dCB, also called Manhattan, costs a little cheaper computa-

tion than the de, that can be a choice if the speed is important. Canberra metric dCa,

which is the weighted version of dCB, is suitable for calculations taking non-negative

and bounded values, however, a zero values in any vectors requires special attention in

implementation. Chebyshev dC is the cheapest and is often used in cases where the

execution speed is so critical.
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By taking into account the distances of dissimilarity, several nonparametric feature space

quality measures have been proposed for a particular analysis on characteristics of the

feature space scatter in multi dimensions, e.g., class region overlapping or constriction.

Class Overlapping Region

Based on the k-NN principle, class overlapping region measure qOV [154] is a numeric

nonparametric quality criterion measuring between classes overlapping areas in feature

space. The concept is motivated by the idea of nonparametric distance matrix and the

edited nearest neighbor [155] approach. qOV indicates the degree of discriminant between

classes in feature space, where the highest quality (1.0) refers to the nonexistence of

overlapping class regions within the range of k neighbors from all data instances. The

increasing number of different class neighbors at an instances, i.e., overlapping of class

regions as depicted in Fig. 48, proportionally decreases the quality towards zero. Given

an N instances data set affiliated to a L-class label vector Ω = {ω1, ω2, ..., ωN} where

∀ω ∈ {lc : lc = 1, 2, ..., L} , the calculation of qOV is formulated in Eq. 4.10.

qOV =
1

L

L∑
c=1

1

Nc

Nc∑
j=1

k∑
i=1

qNNi +

k∑
i=1

ni

2

k∑
i=1

ni

(4.10)

where

ni = 1− dNNji

dNNjk
(4.11)

and

qNNi =

{
ni : ωi = ωj

−ni : ωi 6= ωj
(4.12)

ni is the weighting factor for ith nearest neighbor NNji, dNNji is the distance from the

instance i to NNji and in the same hold for dNNjk where NNjk is the farthest distance

neighbor within k members. The distance calculation can be one of the approaches given

in Table 7 but generally euclidean distance is employed. The top level summation can be

omitted if the number of instances affiliated to each class are equal. Only one parameter,

k, needs to be defined by a user, which typically is set at 5 to 10 for computational reason

as suggested in [154]. Automatic determination of k can be made straightforward by

taking the number of instances per class but should not be exceeded the suggestion. qOV

provides a very fine-grained value range and and, thus, is well suited for optimization

schemes.
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Figure 48: Illustration of overlapping measure computation with k = 5 at xi instance
of two-class data

Compactness Measure

Inspired by linear and non-linear discriminant analysis, nonparametric compactness mea-

sure qc [107] is proposed to measure the quality of within class (intra-class) compactness

and between classes (inter-class) separability in a feature space as illustrated in Fig. 49.

Thus, in qc, two numeric measures are part of the calculation; qC−intra and qC−inter. The

necessity of qc may arise in the case that qOV reaches the maximum quality (no overlap)

yet improvements can be further perceived in terms of intra-class regions contraction or

inter-class regions repulsion. In such case, using qC−intra and qC−inter as complementary

measures delivers feature subsets with highest possible quality. Due to the fact that qc

performs the concurrent determination of qC−intra and qC−inter, thus, an optimization

using qc is already multi-objective.
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x i
x i

d ji :ωi=ω j=1
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Class 1

Class 2

Inter-Class DistanceIntra-Class Distance

Figure 49: Illustration of intra-class distance and inter-class distance at instance i
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The calculations of qC−intra, qC−inter, and qc are describes as:

qC−intra =
1

L

L∑
c=1

2

Nc(Nc − 1)

N−1∑
i=1

N∑
j=i+1

δ(ωi, ωj)δ(ωi, ωc)di,j , (4.13)

qC−inter =
1

NB

N−1∑
i=1

N∑
j=i+1

(1− δ(ωi, ωj))di,j , (4.14)

and

qc = w(1− qC−intra) + (1− w)qC−inter , (4.15)

where

NB =

N−1∑
i=1

N∑
j=i+1

1− δ(ωi, ωj) ,

and

δ(ωi, ωj) =

{
1 : ωi = ωj

0 : ωi 6= ωj
.

The numerical values of qC−intra and qC−inter are unbounded in contrast to qOV , there-

fore an additional normalization step for each selection or configuration should be per-

formed. The final combination for qc, which is similar to the agglomerative multi-

objective optimization approach, also requires a user defined weighting factor w, typi-

cally is 0.5.

Separability Measure

Separability measure qS [107] exploits the RNN-classifier to obtain the selected reference

vectors TRNN from the iterative training procedure [139] which removes the redundant

reference vectors from the original classification model (k-NN). The number of selected

prototype depends on the separability of the feature space. qS is determined by

qS =
1

L

L∑
i=1

Ni − (TRNNi − 1)

Ni
, (4.16)

where TRNNi is the number of selected reference vectors, Ni denotes the number of

patterns affiliated to class ωi, and L is total number of classes. In the linearly sepa-

rable feature space, which means only one reference vector is selected for each class,

qS returns its optimum value (1.0). The computation of qS is O(N) complexity, the

fastest compared to previously presented measures. However, the coarse resolution is

the drawback.
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4.7 Model Analysis

The generalization capability of a pattern recognition method relates to its performance

on independent data, i.e., test data. Model performance analysis is essentially important

as it navigates the choice of methods, models, and parameters to find a finally chosen

model by some measure criteria. Choosing the optimum complexity of any chosen model

depends on the quantity and the quality of the data creating the model, i.e, training

data. The well-known paradigm is the overfitting problem, which refers to a very com-

plex model, that performs well or best on the training data but, when coping with

independent data the performance will be deteriorated. However, reducing complexity

too much may result in a model that inadequately describes structure in the data. This

dilemma requires a strategic procedure for model assessment, that balances between the

goodness of fit and the capability of maintaining performance on independent data.

In this section, a number of methods aiming in maximizing generalization performance

of a pattern recognition model are explained. In addition, interesting issues relating to

model quality in terms of reliability, robustness and stability also given in this section.

4.7.1 Data Set Separation

The common and appropriate approach for attaining both fitness and generalization

performance is to randomly divide an initial data set X into three parts: a training set,

a validation set, and a test set. The training set Xtrain is used to generate or fit the

models; the validation set Xvalidation is used to evaluated the models for model selection;

and finally the test set Xtest is used to assess the generalization performance of the final

selected model. These procedures are elucidated in Fig. 50.

Training Data Testing DataValidation Data

Model 1

Model n

Model 2 Validation
Generalization
Assessment

Best Model 

Model Generation

Xtrain Xvalid Xtest

Figure 50: Model generation and evaluation process with three-group data separation

A systematic data separation method is required here in order to appropriately divide

data into several sub groups. In particular, the mechanism, that constructs a number of
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variations of training data and validation data plays the vital role in achieving the goal

of generalization performance. Thus, several methods have been established to serve

these reasons as explained in Table 8 [31].

Table 8: Description of data set separation methods

Method Description

k-Fold

Cross Validation

(k-CV)

CV divides the available instances into k disjoint subsets (folds).

The model selection runs k iterations of the ith fold validation

of a model generated from the remainder folds. The setting of k

is generally recommended between 5 to 10.

Holdout An initial data set is randomly separated into two folds with size

proportion to a ratio rH , where rH = 0.5 is identical to 2-fold CV.

If the available data size is large, the holdout can provide

adequately good results with cheapest computation cost.

Random sampling is the common technique for selecting data

instances to each fold.

Leave-One-Out

Cross Validation

(LOOCV)

The same hold as in the k-CV approach, where k is equal the

number of data instances N . Each iteration, a model generated

from N − 1 instances is validated by the left over instance. LOOCV

is said to provide low biased models, but contains a

large variance [31]. The computational effort is also considerably

high due to a large number of observations as well as the largest

data for model generation among others.

Bootstrap Create a number of bootstrap subsets of size N by sampling Ns from

X with Nr replacements, where Nr +Ns = N . Bootstrap can provide

lower variance compare to LOOCV while having high number of

possible subsets, which is useful for a small size data set.

It has been broadly noticed that, the model selection k-fold cross validation could lead

to choose a model with low chance of over-fitting. The optimum k setting is still an open

issue to date, whereas the commonly used value in literatures is 10, 5, or 3. LOOCV and

Bootstrap have powerful potential with regard to their finer variation of subsets. They

should be the first choice when dealing a problem with little data. Automatic determi-

nation of k in k-CV is an interesting issue to find a rational k setting independently by

analyzing statistical information of data.
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4.7.2 Selection Stability

Stability of a model is an indicator of its tolerance capacity when facing with independent

data or situations. In dimensionality reduction domain, a selection stability has been

proposed in [156] to measure the stability of the selected subset by adapting the Leave-

One-Out validation with distribution analysis. For a given data set X of N instances,

the LOO procedure is used to validate N variations of feature vectors each designed by

N − 1 instances data via an FS method. The frequency of appearance of each feature

ρi, i ∈ {1, 2, ..., |X|} is recorded in this process and is used for the final selection. The

final subset can be constructed by ranking approach or by a certain threshold a in range

[0,1}, where features with ρi/n ≥ a will be selected. The selection stability of overall

validation process is calculated as:

Sfs =
(ρmax − ρmin)

|X|
· 2
|X|∑
i=1

|ρi − ρ̄| (4.17)

where ρmax, ρmin, and ρ̄ is maximum, minimum, and average frequency of occurrence

respectively. Sfs is normalized in range [0,1] where 1 indicates the highest stability. The

instability of the selection decreases Sfs towards zero. The indication of an inappropriate

selection is expressed by low value of Sfs, that reflects low contrast of feature subset

variation as the information of all features is needed.

A stability measure for classifier model assessment based on 0-1-loss function has been

proposed in [157]. Stability Cost (S(g)) is an estimation of stability of the predictor

g, which is a chosen classifier model with tuned parameters. The estimation of S is

formulated as:

S(g) =
1

n

n∑
i=1

δ {gXtrain
(xtest,i) 6= gXtest(xtest,i)} (4.18)

where δ is the 0-1-loss function of classification results, gXtrain
and gXtest is the learned

classifier from the separated train and test data respectively. S(g) is 0 in the perfect

stability case, whereas large value represents significant instability. In the case that g is

obtained by the empirical risk minimization approach, the stability cost yields an upper

bound on the generalization classification performance of g.
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4.8 Design Optimization

Up to this point, it is obvious that the design of a multi sensor intelligent system from

front to back consists numerous tasks of model and method selection and parameter

tuning, which lead to more and more complex optimization problems. A number of

available performance measures pose the requirement of multiple-objective optimiza-

tion. To obtain a system with high robustness in real world situations, the optimization

task should take into account dynamic effects from environment. These reasons have

summed up the foundation of the design optimization process in DAICOX. Taxonomy

of optimization algorithms categorized by searching mechanism is illustrated in Fig. 51.

Thus, this section presents the details of design optimization procedures, which take

into account meta-heuristic algorithms, multi-objective optimization approaches, and

techniques for optimization in dynamic environment.

Optimization Technique

Non-DeterministicDeterministic

Heuristic Gradient Based Stochastic Meta-Heuristic

SFS/SBS

SFFS/SBFS

Gradient Descent

Hill Climbing

B&B

Stochastic Approximation

Random Search

Simulated Annealing

Harmony Search

Ant Colony

Exhaustive

Grid Search

Genetic Algorithm

Particle Swarm Optimization

Figure 51: Taxonomy of commonly used optimization algorithms

4.8.1 Computational Intelligence Based Optimization Algorithms

Computational Intelligence (CI) have been adopted in several optimization algorithms.

Two bio-inspired families for optimization are established in part of CI: swarm intel-

ligence and evolutionary algorithm. These methods are also referred as meta-heuristic

approaches, which combine stochastic and strategic characteristics to the search proce-

dure. The concept of swarm intelligence is inspired from the behavior of a population,

i.e., swarm, and the social interaction between its individuals, while evolutionary algo-

rithm mimics the natural evolution process based on the Darwinian evolution idea.
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4.8.1.1 Genetic Algorithms

Genetic Algorithms (GA) [158], an evolutionary algorithm based approach, represents

problem or design variables to its population in the chromosome form. Each individual

in the population contains a string of genes whose dimension is the number of design

variables. The evolutionary process in GA, i.e., generation, comprises the manipulation

of chromosomes (design solutions) through these operations:

� Initialization: create a set of population for the first generation. Population ini-

tialization is a vital part of GA for achieving good solution within reasonable

time. The diversity of population is the common consideration to ensure the full

exploration over the search space. Some applications may have a specific way

for initialization such as in feature selection, some individuals can be obtained by

using a heuristic method, e.g., SFS/SBS.

� Selection: select some individuals as the parents for creating offspring by the

recombination process for the next generation. The standard selection methods

are based on uniform random, roulette-wheel, or tournament selection [158]. For

uniform selection, the probability of selection is controlled by parameter Ps, which

is typically set at 0.5 meaning that half of the population will be selected for

recombination.

� Crossover: a recombination process, that creates offspring from the selected par-

ents. Every offspring contains a modified chromosome of its parents created

from the crossover procedure. One or more random cutting point can be used

to crossover a part of chromosome between the parents as illustrated in Fig. 52 for

binary representation. In case of real number representation, arithmetic crossover

can be used to generate two offspring using the following equation:

xoffspring1 = α · xparent1 + (1− α) · xparent2
xoffspring2 = (1− α) · xparent1 + α · xparent2

(4.19)

where xparent1 and xparent2 are the genes from the first and second parent, respec-

tively, and α is a random number from the interval [0,1].
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(a) One-Point Crossover

(b) Two-Point Crossover

Figure 52: Two types of crossover procedure of GA

� Mutation: Random mutations alter some genes of selected chromosomes. For bi-

nary value encoded genes, the bit-flipping operation is used. For real value genes,

the current value will be replaced by the random value based on a Gaussian distri-

bution. The selection probability is controlled by the mutation rate µ parameter,

which is suggested to set at 0.2 [158], that means 20% of the population will be

mutated. Typically, the best chromosome is not included in the mutation proce-

dure.

� Reproduction: The selection of individuals among the previous generation and

current offspring is needed in order to maintain the population size before starting

the next generation. The removal process can be based on individual age or fitness

ranking.

The block diagram illustrated in Fig. 53 shows the basic operation of GA. After the

population is initialized, selection, crossover, mutation, and reproduction are performed

inside the generation loop. This loop is the evolutionary process, which keeps continuing

until some criteria are fulfilled or the maximum number of generations is reached.

Initialize
Population

Stopping Criteria
Fulfilled ?

Selection
Recombination

(Crossover)
Mutation 

Reproduction
Population

Fitness Evaluation

Generation Return The Best
Individual

Start

Yes

No

terminate

Figure 53: Operations of Genetic Algorithms
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4.8.1.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is inspired by the individual and social behavior of

creatures such as bird flocking, fish schooling and bee swarming. PSO is a population

based optimization method similar to GA but each individual represents its location in

the search space instead of chromosome. Design variables are encoded to an individual

in terms of coordination in multi-dimensional space. The population update procedure

of PSO consists of one operation, which moves individuals (particles) throughout the

search space. The movement of a particle is the combination of its current position and

its velocity. The new velocity of each particle is the attraction from particle’s best pb

and population best gb positions associated with inertial weight w, and individual C1

and social C2 learning ratio. The velocity vt and position xt update of a particle are

formulated as in Eq. 4.20 where rand() is a random number generator of the interval

[0,1]. The optimization process of PSO is elucidated in Fig. 54.

vt = wvt−1 + C1rand()(pb − xt−1) + C2rand()(gb − xt−1)

xt = xt−1 + vt
(4.20)
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Swarm (Population)
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Update 
Particle Best pb 

and
Population Best gb Positions   

Update Particle
Positions

Population
Fitness Evaluation

Iteration
Return The Best

Individual  gb

Start
Yes

No

terminate

Figure 54: Operations of Particle Swarm Optimization

Due to the simplicity, the calculations of the position and velocity may lead to some

undesirable behaviors of particle dynamic. Thus, additional control mechanisms are

suggested to be incorporated to ensure appropriate movements of every particle as well

as to increase the performance of PSO.

� Position Confinement: Ensures that the new position is still inside the search space

boundaries before evaluating individual’s fitness. This is due to the majority of

design variables are constrained within limited extent, hence, individuals contain-

ing some infeasible values should not be valid. The treatment for the individuals

ventured outside the boundaries can be the discarding of the individual or the

relocation of the individuals by random, absorbing or reflecting mechanism [159].
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� Weight Decay: To obtain better result resolution, the inertia weight w should be

decreased over time (iteration) in order to gain the finer movements of particles.

As suggested in [160] the empirical relevant range of w is [0.4,0.9] and the inertia

weight at ith iteration can be obtained by:

wi = wmax −
i

imax
(wmax − wmin) (4.21)

where [wmax, wmin] can be user defined otherwise use the suggested values and

imax is the maximum number of iterations.

� Maximum Velocity: Restrict the velocity before updating the position in order

to prevent violation in the movement of a particle. Maximum velocity setting

vmax can be determined from the position boundary of each dimension: xmax,d

and xmin,d where d ∈ {1, 2, ..., D} is the dimensional index of a D dimensions

problem. Thus, the maximum velocity of dimension d is computed as: vmax,d =

η(xmax,d − xmin,d) where 0.0 < η ≤ 1.0 is the scaling factor, which is typically

set in the interval [0.2,0.5].

� Population Size: The optimum number of individual np is still an open issues to

date. One can assumes that an appropriate choice of np is equal to the number

of dimension of the design variable. It is practical only in problems with low-

dimensional design variable. For high dimension problems, np can be set to 10 +

2
√
D, which is a common formulation in literatures.

Another importance issue of PSO is the representation modification. Naturally, a parti-

cle moves in a real number representation search space, which means that the changing

in a design variable can only be of continuous value. Therefore, in case of a design

variable contains discrete values, the proper conversion is needed in order to interpret

the current particle position into the correct format of the design variable before an

evaluation.

For the binary representation, the new position can be updated by using a probability

threshold of the velocity [161]. The new position of particle is updated by:

xt,d =

{
1 if s(vt,d) > rand()

0 if s(xt,d) < rand()
(4.22)

where s is the sigmoid function. For the integer representation, the computed velocity

must be rounded prior to the position update procedure. Thus, the new particle position

in integer format is updated as: xt,d = xt−1,d + round(vt−1,d).
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4.8.2 Multi Objectives Optimization

In real world engineering application design problems, multiple goals, specifications and

constraints are involved, which is the typical scenario in the design of intelligent multi-

sensor systems. Thus, the design is Multi-Objective Optimization (MOO). MOO con-

siders more than one objective functions to be optimized simultaneously with an ap-

propriate handling procedure. An MOO problem with n objectives can be described

as:

min or max y = f(x) = {f1(x), f2(x), ..., fn(x)}

subject to x = {x1, x2, ..., xd} ∈ X

y = {y1, y2, ..., yn} ∈ Y

(4.23)

where f is the objective or fitness function vector, y is the objective value vector in the

objective space Y and x is design vector containing d elements of the design parameters

(or design variables). Clearly, MOO finds the best design vectors, that satisfies all

criteria in f , which is the main challenge of MOO problems. Constrained optimization

problems are the major practice of MOO. For example, given a feature selection task

with limited number of features as a constraint, the cardinality of the feature vector

will be taken account into the optimization process as an additional assessment. In

advanced cases, information from other processing blocks can also be used to constrain

the optimization process, e.g., measurement time, signal quality, power consumption,

classification accuracy, model sensitivity, etc. This will keep the search procedure in the

potential landscape of feasible solutions matching those (soft) constraints and nullify

ones that fail to cope with the constraints, i.e., infeasible solutions.

Two common approaches in handing MOO problems, i.e., weighted agglomeration ap-

proach and Pareto method are explained.

Weighted Agglomeration Approach

Weighted Agglomeration (WA) approach, which is also called weighted-sum, transforms

multiple objectives into an aggregated scalar objective function fsum. Each objective

value yn is multiplied by a weight factor wn as expressed in Eq. 4.24, then the optimiza-

tion process takes ysum as an assessment value of x for every evolution.

ysum = fsum(x) =
N∑
n=1

wnfn(x) (4.24)

where
N∑
n=1

wn = 1
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WA is among the most convenient approaches due to its simplicity, that requires only

few extra calculation steps. However, the appropriate procedure to set the weights is

an open issue. In addition, the summation is satisfied under the assumption on convex

circumstance. Therefore, variations of WA have been the subject in dealing with the

problems. Adaptive weight setting [162] has been proposed to gain the ability of WA

in dealing with the non-convex optimization problem. In [163], the weight vector is

part of the evolutionary process, thus, a set of design solutions and weight settings are

dynamically adapted to a particular problem simultaneously.

Pareto Approach

In the concept of Pareto optimality, a set of solutions of a multi-objective optimization

problem cannot improve any dimension in the objective vector without degradation in

another. Assume a maximization problem and consider two design vectors a and b

where a, b ∈ X. Then a dominates b iff:

∀i ∈ {1, 2, .., n} : fi(a) ≥ fi(b) ∧

∃j ∈ {1, 2, .., n} : fj(a) > fj(b)
(4.25)

f
1

f
2

Pareto-optimal front

Feasible region

Non-dominated Solution

Dominated Solution

Figure 55: Illustration of Pareto approach of two objective optimization problem

By this notion, the set of nondominated design vectors, which are not dominated from

any candidates, is the Pareto front [164] as lllustrated in Fig. 55. The goal of Pareto

based MOO is to collect as many of nondominated design vectors as possible. Thus, the

selection of the final solution among others in a Pareto front is an important issue.

Ranking is applied in [165], where the optimization starts by collecting all nondominated

individuals to create a subpopulation and remove it from the population before repeating

the process until all individuals are classified. The ranking is based on the size of the

subpopulation.
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Nondominated Sorting (NS) [166] ranks individuals in the same manner as the previous

method. A set of nondominated individuals is assigned by a dummy fitness value instead

of explicit ranking. The fitness value is then degraded by the share factor, which is

calculated from the distance of each solution to its two closest neighbors in the design

space. By using this technique, optimization process actually searches within Pareto-

optimum regions.

4.8.3 Intrinsic Design Optimization

A well-tailored solution of a multi-sensor cognition application can be obtained by con-

currently adjusting hardware configurations as design variables of the optimization pro-

cess. In particular, in robustness issues, the process modelling are commonly rather

based on stationary model. Ultimately, the deployed model or system solution will fail

after some time without on-site adaptation when dealing with non-stationary situations.

These together strongly increase the importance of intrinsic optimization. The design

optimization problems dealing with dynamic deviations are categorized in the hierarchy

listed below.

� Extrinsic nominal design assumes stationary process in the design model. Solutions

are identical during deployment.

� Extrinsic design with predicting process statistics, drift, aging, etc., to compensate

solutions’ parameters during deployment.

� Intrinsic (static) design incorporates the instance in the design loop from a host

which requires an observer to compute performance metrics and optimize (basic

self-x properties).

� Intrinsic (dynamic) implements performance metrics and optimization on the in-

stance (complete self-x functionality). The design repeated or cyclical with infor-

mation observed by itself from basic to complex level of information processing.

The integration of intrinsic optimization can be in two approaches; instance adaptation

which performs optimization on the design platform, and dynamic adaptation which

embeds optimization process in run-time machines. The first allows fine-tuning of a

solution with regard to a hardware instance in order to cope with deviations, e.g., man-

ufacturing tolerances, during deployment phase while the latter is more superior that

it is capable to recover from deviations during operation time. To realize this feature,

DAICOX allows the inclusion of a hardware instance in design optimization loops to pro-

vide intrinsic evolution of a designed solution. The operation mechanism of the instance

adaptation approach incorporates communication between an optimization operator and
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a hardware instance as depicted in Fig. 56. To enable hardware instance adaptation

capability, digital reconfiguration, e.g., using FPGA, is the typical approach, but in par-

ticular, analog/mixed-signal adaptation is more attractive for intelligent multi-sensor

applications, thus, advanced reconfigurable devices are considered including FPTA and

FPMA. The hardware instance optimizer tunes hardware configurations with regard to

some criteria which can be based on signal representation of the hardware instance,

e.g., MSE, SNR, or THD or based on information in data domain, e.g., classification

accuracy or feature quality measure. In particular, the design of the standard build-

ing blocks may provide some design constraints to the hardware optimization process.

The live measurements acquired from the hardware instance can be included in the data

source for standard building blocks optimization. For the dynamic adaptation approach,

the challenge is that entire process is carried out by the run-time platform in order to

obtaining longterm robustness of the optimized solution.

Standard Building Blocks
Design

Optimization

Hardware Instance
Optimization

Assessments from  Processing Chain

Recorded
Data Base

Hardware 
Configurations

Design 
Data Input

Dynamically Reconfigurable
Hardware  Instance

(Master Device)

Comm. Bus DAQ Module

Constraints

Design Platform

Figure 56: Proposed intrinsic optimization process

4.8.4 Optimization in Dynamic Environments

A conventional engineering system design assumes static environment, which expects a

system to provide constant performance at any operation time. In reality, environmental

uncertainties occur over time resulting deviations in the performance. This issue is the

motivation of self-x properties in IIMSS, because run-time operations will have to face

environmental perturbations. In particular to dynamic deviation issues, dynamically

adaptive optimization techniques, that adjust system configurations and parameters

respect to changes are salient.

When environmental changes occur, assessment value of a particular design vector can

be varied in each evaluation [167], thus, the peaks in the search space of each generations
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may also be moved. The typical suggestion to tackle this issue is to find the set of robust

solutions, which are diverse and as close as possible to the optima. For these reasons,

several optimization techniques aiming to tackle dynamic environmental problems are

established, which can be categorized by the mechanisms given in the following.

Increasing Diversity

Diversity can be increased by enforcing the population resetting over a certain period

of time or as soon as changes are detected [168], where the sign of change can be, e.g., a

reduction in the best assessment values, or re-evaluation of old solutions. This approach

is the simplest, however, the knowledge gained from the past evolutions is completely

ignored that may not be an economically good choice.

Maintain Diversity

This approach contains no explicit action to react to changes. Instead, it maintains

the diversity of population and concurrently avoid the convergence of a large number

of individuals over time. This mechanism guarantees that the population may not be

trapped in local optima when changes occur. Charged Particle Swarms CPSO [169]

applies the repulsion mechanism to prevent particles get too close to each other. Com-

pound PSO [170] deviates particles from their original locations proportional to the

velocity reductions in each particles, which is an implicit indication of convergence. The

advantage of maintaining diversity is that it may be effective for dynamic problems with

severe changes and occur intermittently.

Memory Based

The main focus of this approach is to reuse the information gained in the past, which can

be the locations of previously found optima. In some types of changes in environment,

the optima may be moved to the vicinity of their previous locations if the changes

are periodic or recurrent, which is the situation the approach performs best. Memory

enhanced model [171] divides the population into two groups, where the first exchanges

individual information with an external memory while the other keeps searching for

new peaks and stores data to the memory if new peaks are found. Instead of directly

modifying the information in memory, Dynamic Memory Model [172] updates stored

information by slightly moving all individuals in the memory towards newly found peaks.

Multi-Population

This approach divides the whole population into multiple sub populations in order to

handle several areas within the search space simultaneously. Diversity can be maintained

by re-allocating, splitting, and merging to avoid the overlap between sub populations.

Shifting Balance GA [173] constructs a population consisting of a number of a small

size subpopulations for exploring the search space. Once a new peak is found, it will be

tracked by some the remainder individuals. Anti-convergence mechanism was introduced
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in Multi-swarm PSO (mPSO) to ensure one free swarm to continue exploring the search

space while the rest keep tracking discovered peaks.

4.9 Discussion

In this chapter, the DAICOX architecture is presented with the aim of tackling the de-

sign effort and to providing high quality and robust solution for intelligent multi-sensor

systems. The DAICOX architecture consists of multi-objective design optimization to

designing a system from available processing components in the method pool. Numerous

methods and algorithms to be included to the method pool ranging from sensor configu-

ration to classification are explained in this chapter. Sensor configuration part configures

physical settings of sensing elements and electronics to enhance the signal quality. Signal

processing and feature computation improve the quality of acquired data and also create

new information. Feature weighting is proposed as a potential candidate for dimension-

ality reduction providing a finer scale of selection. Beside multi-class classification,

presented one-class classification methods, e.g., One-Class SVM and NOVCLASS show

the desirable ability for some advanced tasks, e.g., anomaly and novelty detection. The

design tasks of these methods are carried out by presented meta-heuristic optimization

methods, e.g., GA or PSO, with multi-objective optimization approach. DAICOX is

conceived to effectively handle the problem of method selection and parameter setting

for a particular application yielding high performance solutions. In particular, DAICOX

will integrate self-x properties as well as in-the-loop dynamic environments optimization

into its platforms to gain reliability and robustness of the performance. These con-

cepts, techniques, ideas, and methods constitute the aims and goals for the DAICOX

architecture implementations, which is presented in the next chapter.

4.9.1 Overview of Parameter Settings

Several methods and algorithms presented and explained in this chapter require pre-

defined parameters for their operations. The recommended parameter settings, which

typically are empirically derived from experiments or case studies, for each method are

summarized in Tab 9. The values are given in terms of proper range or specific number,

where two numeric types are given: integer(int.) number and real number. More detail

in parameter setting of a particular method can be found in its corresponding text in

this chapter.
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Table 9: Recommended parameter settings

Method Parameter Type Description

Feature Selection

plus l -take away r l and r int. 1,2,..., no. of features×0.25

Oscillating d int. no. of features×0.5

∆ int. 0.1× d
Feature Extraction

PCA d int. 1,2,..., no. of input features

LDA d int 1,..., no. of classes-1

SOM η real < 0.01

Classification

k-NN k int. 1,2,..., no. of instances per class

SVM C real [1,10000]

(RBF kernel) γ real [0.00001,10]

NN-D k int. 1

ρ real <1.0

SVDD C real >1.0

C real nSV × C < 1.0 (when outliers data available)

γ real [1,25]

Oneclass-SVM ν real [0.01,0.9] (recommended at 0.05)

NOVCLASS η real [0.1,2]

Feature Quality Measure

Overlap qOV k int. [5,10]

Compactness qc w real {0,1.0] (typical at 0.5)

Model Analysis

Holdout rH real {0,1.0] (typical at 0.25,0.5 or 0.75)

k-CV k int. 5 or 10

Optimization

GA Pm real 0.2

Pc real [0.5,1.0]

PSO C1 real 1.149

C2 real 1.149

w real [0.4,1.2] (or time dependent within the range)

vmax real 0.25(xmax − xmin)

p int. 10 + 2
√
d



Chapter 5

Implementation of the DAICOX

Architecture

The presented motivation, background, and ongoing research stimulate the increasing

implementation of tools and methods for the design automation of intelligent multi-

sensor systems. Thus, the contribution to the comprehensive framework, which is de-

rived from the DAICOX architecture proposed in the previous chapter, is presented in

this chapter. This chapter presents the current status on the implementation and instan-

tiation of methods and system applications. The overview of the established framework

is elucidated in Fig. 57. The design process is done in one direction based on bottom-

up approach, where the optimization process performs sequentially block by block. In

particular, the implementation of effective optimization techniques strongly focused on

meta-heuristic approach along with multi-objective optimization concepts are incorpo-

rated to the design optimization part of the framework. At each design step, the opti-

mization process is performed in the local approach, whereas the inclusion of additional

assessments or fitness functions from other blocks is also possible by multi-objective

optimization, for instance, designing a feature selection task by taking account of clas-

sification performance.

All implemented methods discussed in this chapter are developed in form of method

library for DAICOX architecture, i.e., DAICOX software library. The implementation

of DAICOX software library is conceived with the aim of:

� Open source and multi-platform,

� Flexibility and modularity,

� Extendable in both creating new libraries or modify/upgrade present ones, and

� Support inclusion/extension from external libraries.

93
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DAICOX software is mainly developed in Python programming language. Designing a

system using the DAICOX can be done in two manners; Python scripting or visual pro-

graming. The first requires insight understanding of the DAICOX library structure and

programming, where the latter represents software abstraction via graphical modules,

i.e., Widgets. Visual programming in DAICOX provides a convenient and intuitive way

for developing sensory technical cognition applications.

Several methods implemented in the framework are given in detail as well as their

preliminary experimental results. In the following subsections, implemented methods’

groups categorized by the standard building blocks are explained. Then, in Section 5.4

the design optimization mechanism for the implemented framework is described. The

information on software structure and environment is given in Section 5.5.
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Figure 57: Overview of DAICOX framework implementation in computational intel-
ligence domain

5.1 Signal Processing and Feature Computation

The current implementation of Signal Processing (SP) and Feature Computation (FC)

comprises methods from self-developed and external standard available libraries, e.g.,

Scipy and Orange. For each included external library, a library wrapper is used to as-

sociating data, control, and parameters between native library and DAICOX software

environment. The standard method interface for SP and FC is depicted as software

flow block diagram in Fig. 58. The common interface descriptions are manifested by
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the DAICOX library interface, which is described in Section 5.5.1. The DAICOX li-

brary interface ensures the proper operation of external libraries, when using together

with other methods in a processing chain. In particular, to some methods with free

parameters, the inclusion of these parameters into DAICOX design optimization is also

applicable. The currently available SP and FC methods, ranging from basic arithmetic

to signal transformation, are given in Table 10. These methods are employed in part of

the experiments and case studies given in the next chapter. Introducing a new process-

ing method from existing library can be achieved by creating a wrapper script, which

transforms input and output data formats as well as required parameters.

Processed/Transformed Features 
Data Table

Signal ProcessingSignal Processing
oror

Feature ComputationFeature Computation
MethodMethod

Parameter(s)

Initial Data
Set

Initial Data Table 

Export

Figure 58: Signal processing and feature computation software flow

Table 10: Signal processing and feature computation in DAICOX

Method Group Functions Source

Statistic Basic statistical information of data DAICOX

Normalization
Data matrix normalization with

reusable coefficients
DAICOX

Smoothing
Signal smoothing function, e.g.,

Gaussian filter, Moving average
DAICOX

Function Approximation Polynomial curve fitting Scikit

Filtering Digital IIR filter Scikit

Convolution/Cross-Correlation
Data matrices convolution/

cross-correlation
DAICOX

FFT/STFT Frequency domain transformation Scikit

PCA Transform Feature Space (Unsupervised) Orange

LDA Transform Feature Space (Supervised) Scikit

5.2 Dimensionality Reduction

The implementation of Dimensionality Reduction (DR) process in DAICOX follows the

software structure illustrated in Fig. 59. Three main DR categories are proposed includ-

ing Automated Feature Selection (AFS), Automated Feature Weighting (AFW), and
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Feature Extraction. For feature extraction, two methods are included in the method

pool by using external library, e.g., PCA from Orange library and LDA from Scipy

library. The proposed DR process takes account of several feature quality assessment

functions and the capability of multi-objective optimization using weighted agglomera-

tive approach. The model analysis part employs Hold-out Random Sampling (HRS) and

k-fold Cross Validation (k−CV) . The consideration of solution stability and acquisition

cost can be incorporated in the decision making process to select the high quality with

high robustness feature subset.

Method
Pool

Assessment 

qoverlap

qinterclass

qintraclass

Search 

SFS/SBS

SFFS/SBFS

Exhaustive

GA-FS

Extraction

LDA

PCA

PSO-FS

Initial
Feature 
Space Feature Subset

Selection

Feature
Extraction Reduced

Feature 
Space

Feature
Quality

Decision
Making

Best
Quality

Features 

Select New Features

Adjust Parameters

Reconstruction Evaluation

Selection 
Criteria

Accuracy

Stability

Acquisition Cost

Feature 
Weighting

qseparability User Supervised
(via Visualization)

Automated

Figure 59: Dimensionality reduction architecture

5.2.1 Choice of Feature Subset Assessment Functions

A number of feature quality assessment functions are available in the DAICOX library

with the main purpose for dimensionality reduction tasks. Non-parametric feature space

measures are selected in the implementation in order to provide better generalization

performance rather than classifier based measure (wrapper approach). The list of cur-

rently available assessment functions is given in brief details in Table 11, where precise

information of each method can be found in Section 4.6.2.
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Table 11: Description of feature subset assessment functions in DAICOX

Assessment Indication Output Parameters

Overlap

qOV

Class overlapping region
Normalized

[0, 1]
k

Compactness

qC

Within-Class region compactness (qC−intra)

Between-Class region separation (qC−inter)
Unnormalized -

Separability

qS

Class regions separation quality

(Linearly separable)

Normalized

[0, 1]
-

As mentioned in the previous chapter, the calculation of the compactness measure qC

suffers from non-normalized distance metrics, which results in unbounded assessment

values. In an optimization task, this can cause problems and mislead to irrelevant evo-

lutions especially in stochastic approaches. The way to solve this is to compute qC−intra

normalized by the value of the original set (full-feature), qC−intra0 , at the beginning of

a search. The calculation of the relative q′C−intra is given as:

q′C−intra = 1.0− qC−intra/qC−intra0 , (5.1)

where qC−intra0 is the measure of the full-feature data set. The improvement of class

region compactness increases the value towards 1.0, which is an ideal case, where all

points of the same class lay at a location in feature space (zero variance). However,

negative value is still unbounded, but, it indicates the deteriorated quality from the

original set, thus, a clipping technique is suggested.

Table 12 shows the sensitivity characteristics of each implemented feature quality mea-

sure methods in different simulated scenarios from artificially generated data sets. At

the first step, an initial feature space of 3-class data set, each class has 350 data samples,

is given with some overlap areas between classes. qC−intra0 is computed in this step. All

class clusters depart away from each other by some distance in step 2 simulating the

smaller overlap regions compared to step 1, thus, qOV and qS increases indicating the

better quality of the feature space. qC−inter is also sensitive in this case as the mean of

each cluster is shifted, while q′C−intra is insensitive in this case as the formation of each

cluster remains unchanged (q′C−intra = qC−intra0). Step 3 repeats the same action by

moving each cluster further until no overlap area remains. qoverlap and qS are saturated,

whereas qC−inter still sensitive to the improvement (increasing space between class clus-

ters) in this situation. The sensitivity of q′C−intra can be seen in step 4 where the class 2

cluster (in green squared shape) is shrunk indicating the improvement (compacting) of

the cluster. The change occurs only in q′C−intra of class 2 while q′C−intra of other classes

remain unchanged until step 5 where all clusters are compacted.
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Table 12: Sensitivity characteristics of feature assessment functions

Step Feature Space q′C−intra qC−inter
q′C−intra
(per class)

qOV qS

1 0.000∼ 0.425∼
class 1:
class 2:
class 3:

0.000∼
0.000∼
0.000∼

0.768∼ 0.705∼

2 0.000∼ 0.518↑
class 1:
class 2:
class 3:

0.000∼
0.000∼
0.000∼

0.941↑ 0.905↑

3 0.000∼ 0.609↑
class 1:
class 2:
class 3:

0.000∼
0.000∼
0.000∼

1.000↑ 1.000↑

4 0.161↑ 0.666↑
class 1:
class 2:
class 3:

0.000∼
0.595↑
0.000∼

1.000↑ 1.000↑

5 0.665↑ 0.764↑
class 1:
class 2:
class 3:

0.669↑
0.595∼
0.711↑

1.000↑ 1.000↑

↑ refers to expected increasing and ∼ refers to expected similarity of the assessment value compared to the
previous step.
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5.2.2 Automated Feature Selection

Automated Feature Selection (AFS) is the main feature of DR process in currently im-

plemented DAICOX architecture. By taking the concept of methods already available

in QuickCog as a baseline, several AFS methods have been implemented and presented

here. A number of extensions with advanced searching topology, in particular, meta-

heuristic approaches, have been elaborated as well. In addition, the novel feature weight-

ing method proposed in Chapter 4 Section 4.4.3 is also implemented as an alternative

choice for DR process. Aforementioned feature subset assessment functions are used in

evaluation phase of searching procedures, i.e., filter approach.

Sequential Methods Four sequential based feature selection methods are imple-

mented in DAICOX including SFS, SBS, SFFS, and SBFS. These methods are among

the simplest search procedures of DR tasks. They are considerably fast when dealing

with low-dimensional data, but, they may be prone to sub-optima if there exists non-

monotonicity. The other advantage is that they require no parameter. SFS and SBS

are the most simplest and fastest methods while SFFS and SBFS take higher number of

iterations to complete a search but are less susceptible to sub-optima. All AFS methods

are implemented in modular scheme as illustrated in the software flow block diagram,

Fig. 60. The scheme provides high flexibility in designing DR process as well as facil-

itates future inclusion of new methods. For feature selection case, a method module

requires an input data table in supported formats, e.g., Python Array, NIF, and Orange

Data Table and an assessment function object. The combination of multiple assessment

functions for multi-objective optimization is also possible and can be configured in the

assessment function module. A feature selection module outputs two types of its best

result; data table of the selected feature subset and the feature subset descriptor. The

first is useful during the design and the latter will be used as selection template for

operational purpose.

Selected Features Data Table
SequentialSequential

Feature SelectionFeature Selection
MethodMethod

Assessment Assessment 
Function (s)Function (s)

Parameter(s)

Initial Data
Set

Initial Data Table (Full Features)

Assessment 
Function Object

Export

Features Subset
Descriptor

Figure 60: Software flow block diagram of sequential AFS method
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Table 13: Parameter settings for meta-heuristic AFS methods

Method Parameters and Settings

GA-FS
Population Size = 10 + 2

√
d , Max. Iteration = 50, Selection Rate = 0.5,

Mutation Rate = 0.2

PSO-FS Population Size = 10 + 2
√
d, Max. Iteration = 50, C1=2.0, C2=2.0, w=1.2

d is the number of features of initial data.

Meta-Heuristic Methods Two methods based on meta-heuristic are implemented,

GA-FS and PSO-FS, using Genetic Algorithms and Particle Swarm Optimization, re-

spectively. In both cases, the searching procedure employs the general purpose opti-

mization module implemented in DAICOX library. The modules can be used in several

purposes covering all design steps in DAICOX standard building blocks. In particular,

in DR tasks, the meta-heuristic optimization, e.g., GA or PSO and their correspond-

ing DAICOX modules, can also serve to improve DR quality in visualization, replacing

gradient decent techniques applied in the standard approach. The software flow of im-

plemented Meta-Heuristic AFS using general purpose optimization module is illustrated

in Fig. 61. The modularity of this structure facilitates the implementation of method

variations by just replacing the optimization module with a new method. Two addi-

tional components are used in this flow; the feature selector module that applies a given

feature subset descriptor to create a feature subset data, and, the object method caller

that computes the assessment value from a given function object and data table. The

optimization procedure consists of the feature subset generation and modification with

regard to assessment results. The best feature subset data table and descriptor will

be returned when the optimization task is finished. Using meta-heuristic algorithms

requires proper parameter settings in order to ensure the discovery of good quality, or

even optimal, solutions. Parameter setting has been the topic in several references and

the majority of suggestions are from empirical studies. In our implementation parame-

ters are predefined as given in Table 13, which follow the suggestions given in [109] for

GA-FS and in [160] for PSO-FS.

Object Method CallerObject Method CallerOptimizationOptimization
Method ModuleMethod Module

FeatureFeature
SelectorSelector

Assessment Assessment 
Function (s)Function (s)

Parameter(s)

Initial Data
Set

Initial Data Table (Full Features)

Assessment 
Function Object

Parameter(s)

Design Variables (Binary Feature Selection)

Selected Features 
Data Table

Selected Features List from the Best Solution  

Assessment Value 

Export

Figure 61: Software flow block diagram of meta-heuristic AFS method
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For operational investigation, the implemented methods were tested with real-world

data sets of conventional classification problems taken from the UCI repository [174].

Table 14 provides information of the data sets. The objective of this investigation is

to instantiate a design of dimensionality reduction process using implemented DAICOX

framework, that helps the designer to select relevant feature selection methods for a

particular application as well as to analyze newly implemented methods. New methods

can be included by simply adding new method processing blocks into the software flow

depicted in Fig. 62. The module processing block represents the software flow shown

in Fig. 61 and Fig. 60 for a particular implemented method. Four assessment functions

including qOV , qS , q′C−intra, qC−inter are combined. In order to indicate the recognition

performance with good generalization, 10-fold cross validation is employed on training

data set, which is sampled by Hold-out Random Sampling (HRS) method with the size

of 50% of the complete data. The data are uniformly sampled from the original data

set to form two data subsets with the same class proportion of the original data. Thus,

the recognition performance results are evaluated on the remaining data, i.e., testing

data set. The results are visualized in the box plots showing in Fig. 63 to 68 comparing

different searching methods by each assessment criterion. Feature space visualization

is applicable for this set-up, which will be used in the experiments and cases studies

described in the next chapter.

Sequential methods can provide considerably good performance in several cases out-

performed meta heuristic approaches in some data sets. However, the number of used

iterations grew by the feature size as can be observed in Table 15 while fixed (by setting)

in meta-heuristic approaches. This shows an advantage of meta heuristic approaches,

when dealing with high dimensionality data, where sequential methods may not be

practical. The better results for meta-heuristic approaches can be achieved by increas-

ing number of searching candidates, constrain search space, and extending maximum

number of iteration.
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Table 14: Real-world data set descriptions

Data Set
iris wine ionosphere wdbc yeast mechatronic

Instances 150 178 351 569 186 1,775
Features 4 13 33 20 79 24
Classes 3 3 2 2 3 4
Examples/Class 50-50-50 59-71-48 225-126 212-357 35-30-121 250-500-850-175

Model AnalysisModel Analysis
ModuleModule
With With 

HRS and HRS and kk-fold CV-fold CV

Initial Data
Set

Initial Data Table 
(Full Features)

Export

SFS ProcessingSFS Processing
BlocksBlocks

SBS ProcessingSBS Processing
BlocksBlocks

SFFS ProcessingSFFS Processing
BlocksBlocks

SFBS ProcessingSFBS Processing
BlocksBlocks

GA-FS ProcessingGA-FS Processing
BlocksBlocks

GA-FS ProcessingGA-FS Processing
BlocksBlocks

PSO-FS ProcessingPSO-FS Processing
BlocksBlocks

Assessment Values (from q
OV 

,q'
C-intra

,q'
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,q
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Figure 62: Operation of meta-heuristic AFS method modules investigation
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Figure 63: AFS performance comparison of the ”iris” data set
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Figure 64: AFS performance comparison of the ”wine” data set

S
FS

S
B

S

S
FF

S

S
B

FS

G
A

-F
S

P
S
O

-F
S0.10

0.05

0.00

0.05

0.10

0.15

0.20

q′
C
−
in
tr
a

S
FS

S
B

S

S
FF

S

S
B

FS

G
A

-F
S

P
S
O

-F
S0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

q′
C
−
in
te
r

S
FS

S
B

S

S
FF

S

S
B

FS

G
A

-F
S

P
S
O

-F
S0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

q O
V

S
FS

S
B

S

S
FF

S

S
B

FS

G
A

-F
S

P
S
O

-F
S0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

q S

Figure 65: AFS performance comparison of the ”wdbc” data set
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Figure 66: AFS performance comparison of the ”ionosphere” data set
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Figure 67: AFS performance comparison of the ”yeast” data set
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Table 15: Average number of iterations used in the AFS methods investigation

Data Set
Method

SFS SBS SFFS SBFS GA-FS PSO-FS

iris 12(0.0) 12(0.0) 40.20(0.2) 38.60(0.2) 100(0.0) 100(0.0)
wine 156(0.0) 156(0.0) 229.4(3.7) 242.3(1.1) 100(0.0) 100(0.0)
ionosphere 1,056(0.0) 1,056(0.0) 1,179(14) 1,092(14) 100(0.0) 100(0.0)
wdbc 380(0.0) 380(0.0) 548.1(8.0) 566.8(5.6) 100(0.0) 100(0.0)
yeast 6,162(0.0) 6,162(0.0) 7,089(22) 6,986(14) 100(0.0) 100(0.0)
mechatronic 552(0.0) 552(0.0) 593.2(8.2) 612.4(11) 100(0.0) 100(0.0)
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Figure 68: AFS performance comparison of the ”Mechatronic” data set

Automated Feature Weighting Automated Feature Weighting (AFW) [41] is an

alternative method for DR process in DAICOX, that provides a finer scale of selection

compared to the binary selection approach. The implementation of AFW method em-

ploys meta heuristic search approach due to potentially large search space as mentioned

earlier in Chapter 4, Section 4.4.3. The implementation of AFW is illustrated by software

flow structure in Fig. 69. At present, PSO or GA can be selected at the optimization

module to perform the search procedure responsible for weight adjustment task. The

extension of currently implemented AFW with alternative optimization methods can be

made by only introducing new optimization modules into the proposed flow while the

rest of the process remains the same. A normalized data set is required in order to

obtain commensurate assessment of weighted data. Thus, normalization coefficients are

vital information for further uses of the designed AFW module, e.g., in operation time,

which can be applied later using the implemented normalization module. The weight

data module applies a given weight vector generated from the optimizer to create a

weighted data table before being evaluated by selected assessment criteria in the object

method caller module. The best solution will be exported in form of weight vector along

with normalization coefficients. A reduction scheme is also implemented by using a pre-

defined threshold value, that eliminates features associated with weight value below the

threshold assuming low contribution to feature space quality. The threshold can also be



Chapter 5. Implementation of the DAICOX Architecture 105

included into the optimization loop allowing concurrent evolution together with feature

weights.

Object Method CallerObject Method CallerOptimizationOptimization
Method ModuleMethod Module

Weight DataWeight Data

Assessment Assessment 
Function (s)Function (s)

Parameter(s)

Initial Data
Set

Initial Data Table 
(Full Features)

Assessment 
Function Object

Parameter(s)

Design Variables (Feature Weights)
Weighted Data Table

Selected Features List from the Best Solution  

Assessment Value 

NormalizationNormalization

Normalized
Initial Data Table 

Normalization Coefficients

Export

Export

Figure 69: Operation of the AFW method module in DAICOX

Table 16: Parameter settings for stochastic AFW methods

Method Parameters and Settings

GA-FW
Population Size = 10 + 2

√
d , Max. Iteration = 50, Selection Rate = 0.5,

Mutation Rate = 0.2, Weight Threshold = 0.1

PSO-FW
Population Size = 10 + 2

√
d, Max. Iteration = 50, C1=1.2, C2=1.2, w=1.0,

Weight Threshold = 0.1

d is the number of features of initial data.

5.3 Classification

The DAICOX architecture provides a number of classification methods implemented in

three categories; multi-class classification, one-class classification, and hierarchical classi-

fication. For SVM based methods, the implementation extended from the LIBSVM [175]

open-source library. The overview of implemented classification method taxonomy is de-

picted in Fig. 70. All methods are provided in form of a modular library and compatible

with the DAICOX library interface. Therefore, the combination of classification task

with other processing parts, e.g., signal processing, and dimensionality reduction can

be made with small effort. In particular, the optimization of parameter settings can be

effectively performed by DAICOX design optimization with choice of available optimiza-

tion modules.



Chapter 5. Implementation of the DAICOX Architecture 106

Multi-Class
Classification
Multi-Class

Classification
One-Class

Classification
One-Class

Classification
Hierarchical

Classification
Hierarchical

Classification

Implemented Classification MethodsImplemented Classification Methods

● NND
● One-Class SVM 
● NOVCLASS
● NOVCLASS-R

● NND
● One-Class SVM 
● NOVCLASS
● NOVCLASS-R

● SVM based● SVM based● C-Support SVM
● K-NN
● RNN

● C-Support SVM
● K-NN
● RNN

Figure 70: Implemented classification methods

5.3.1 Multi-Class Classification

To solve multi-class classification problems, DAICOX provides standard classifier mod-

ules from existing libraries with capability of inclusion to DAICOX design optimization.

A number of Python-based classification libraries, e.g., Scikit-learn or Orange can be

easily added to the method pool by using library wrapper. A library wrapper manages

data format translation between DAICOX supported data format (Orange data table)

and the format of an external library. Parameter optimization can be performed by

available optimization method modules by describing parameter information in the pa-

rameter descriptor, whose more detail can be found in Section 5.4.1. Currently available

multi-class classification methods are k-NN, RNN, and C-SVM. The choices of kernel

function for C-SVM includes linear, polynomial, and Gaussian RBF kernel, which can

also be incorporated to the optimization process for selection.

A generic automated classification design is based on software flow block diagram il-

lustrated in Fig. 71, which is the baseline for classifier design in experiments and case

studies presented in the next chapter. An input data set is split into 2 subsets for train-

ing and testing processes by using hold-out random sampling technique. The training

data set is again split into k subsets by using k-fold cross validation for model analysis in

order to obtain high generalization performance. At every optimization iteration, clas-

sifier parameters generated from employed optimizer will be applied to create classifier

objects, each uses data from selected fold. The best performance classification object

will be exported at the end of optimization process for run-time uses. Parameter search-

ing ranges for optimization process are given in Tab 17. The ranges can be adjusted by

the designer in order to constrain optimization in a potential search space.
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Table 17: Detail of parameters and searching range for classification optimization

Method

k−NN and RNN C-SVM

Parameters

k ∈ 1, 2, 3, ..., N − 1

where N is the number of

training example per class

C ∈ [1, 10000]

γ ∈ [1e−5, 10]

(100 discrete steps for

Grid Search)

OptimizationOptimization
Method ModuleMethod Module

Multi-ClassMulti-Class
ClassificationClassification

ModuleModule

Hold-Out RandomHold-Out Random
SamplingSampling

 Input
Data Set

Data Table 

  kk-fold CV-fold CV

ClassificationClassification
EvaluationEvaluation

Export
Best Performance Classifier Object

  

Design Variables (Classifier Parameters)

Select Fold

Parameter(s)

Testing Data

Training Data

Selected Fold Data

Trained
Classifier Object

Classification Performance from All Folds

Figure 71: Classification implementation in DAICOX framework

5.3.2 One-Class Classification

Four methods are selected and implemented for One-Class Classification (OCC); NN-D,

One-Class SVM (OC-SVM), NOVCLASS, and its variation NOVCLASS-R. All methods

are implemented in DAICOX classification module with similar software flow to multi-

class classification as depicted in Fig. 71 except that a given data set for training will be

regarded as a single positive class and a classification result is in boolean format. Thus,

to classify a specific class from a multi-class data set the training data should be filtered

into sub-data sets of a particular class. Class specific data filtering function is supported

DAICOX to facilitate OCC application designs. OC-SVM uses the ν-SVM model from

the LIBSVM library for implementation.

A variation of NOVCLASS is proposed by incorporating part of iterative training mech-

anism [149] to reduce the required number of the prototypes and dynamically adjust

their radii. The additional training steps extended to the original NOVCLASS are de-

scribed in algorithm 1. This variation is denoted as NOVCLASS-R, where R refers to

the prototype reduction mechanism.

The preliminary study of the implemented one-class classification methods has been con-

ducted with artificial data sets. To investigate performance in several data characteristic,



Chapter 5. Implementation of the DAICOX Architecture 108

Algorithm 1: NOVCLASS-R Training Process

Given N samples training data set Xtrain;
Randomly chose a sample x from Xtrain as the first Ref. vector. t1;
Compute distance matrix D of Xtrain;
r1 = max. distance of 1-NN of all samples in Xtrain;
R = {r1};
T = {t1};
for xn ∈ Xtrain do

for ti ∈ T do
if d(xn, ti) > ri then

add xn to T as ti+1;
ri+1 = d(xn, ti);

end

end

end

four data sets are created based on general paradigms of information distribution, which

are frequently found on real-world situations. The information of the data sets are ex-

plained in Table 18 as well as the visualization of their feature space. Further, real-world

data sets are also used to investigate the classification performance of the implemented

methods.

The classification performance of OCC method can be evaluated and optimized by using

Receiver-Operating-Characteristic (ROC) [176] analysis techniques. The ROC curve of

a one-class classifier model indicates the classification characteristic within an interval

of threshold value θ. The threshold interval starts from the value where all patterns

are accepted and ends at the value where all patterns are rejected. Soft classification

output, which is the probability estimation of a pattern to the positive or normal class,

is used to compute an ROC curve. A perfect classifier represents a rectangle shape of

ROC curve, which refers to 100% correct acceptance rate, i.e., True Positive (TP ) with

100% correct rejection rate, i.e., True Negative (TN) as indicated at the top right corner

of Fig. 72. The Area Under Curve (AUC) is used to measure the quality of a classifier,

where in the perfect case the area is equal to 1.0. The smaller number of AUC indicates

higher number of misclassification. Given a test data set X with N positive patterns

Xpos and M negative patterns Xneg, the TP rate and the TN rate are computed as in

Eq. 5.2 and Eq. 5.3 respectively, where the function I returns integer 1 for true case or

0 for false case. Practically, some negative patterns or outliers will be accepted and vice

versa for positive patterns as represented in the blue curve in Fig. 72.

TP =
1

N

N∑
i=1

I(p(xi) > θ), xi ∈ Xpos (5.2)
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Figure 72: ROC analysis for one-class classification method

Figure 73: Computed ROC curves of the ”moon” data set

TN =
1

M

M∑
i=1

I(p(xi) < θ), xi ∈ Xneg (5.3)

The ROC analysis can also be used to find an optimum threshold value in case a trade-

off between TP and TN is necessary. The best threshold value is where the ROC curve

has -45 degree slope indicating the optimal trade-off between TP and TN , which has

minimum structural risk of the model. An example of determined threshold values,

which are selected by considering the slope on curve, AUC, TP , and TN , is illustrated

in Fig. 73.

For the synthetic data experiments, the classification performance results are given in

Table 19 and the computational performance are given in Table 20. Table 21 contains
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classification results from the real-world data set. All results value are an average of

ten runs. At each run, 5-fold cross validation was employed for model analysis and

selection. The ROC plots of the results from all data set also given in Fig. 74 to Fig. 79.

For OC-SVM method, the parameter ν was set to 0.5 and the parameter γ was set to

0.01 in all cases. The scaling factor parameter η for NOVCLASS and NOVCLASS-R

was set to 1.0 in all cases. NOVCLASS-R has significantly reduced number of reference

prototypes compared to the original NOVCLASS as shown in Table 20 indicating the

effectiveness of the proposed prototype reduction mechanism.

Table 18: Synthetic data sets description. In the feature space plots, the blue dots are
the positive class instances, the red dots are outliers. The boundaries between positive
clusters and outliers are equal to the maximum 1-NN distance of the positive instances.
All data sets contain 500 samples of positive class and 1,000 samples of negative class.

Feature Space Data Set Name Description

GausNorm
Single data cluster with normal distribution,
a unit covariance matrix is used.

GausMulti
Multi-Modal of Gauss-Normal model.
This mimics the scenario of a multi-class data
are affiliated into a single positive class

Elliptic
Simulates data with different variance in
each feature.

Moon

The more complex case than the Elliptic.
Data is uniformly distributed
in a half circle with normal distribution
representing non-convexity.
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Table 19: Classification performance comparison of implemented OCC methods

Performance
Classification
Method

Data Set
GausNorm GausMulti Elliptic Moon

AUC

NN-D 0.842(0.012) 0.955(0.031) 0.927(0.022) 0.900(0.009)

OC-SVM 0.993(0.089) 0.560(0.203) 0.946(0.051) 0.987(0.012)

NOVCLASS-R 0.961(0.020) 0.976(0.066) 0.972(0.034) 0.943(0.086)

NOVCLASS 0.976(0.042) 0.984(0.081) 0.981(0.100) 0.978(0.075)

TP rate

NN-D 0.800(0.032) 0.949(0.046) 0.931(0.019) 0.925(0.023)

OC-SVM 0.955(0.045) 0.960(0.026) 0.941(0.068) 0.979(0.076)

NOVCLASS-R 0.984(0.076) 0.971(0.075) 0.984(0.022) 0.899(0.040)

NOVCLASS 0.976(0.009) 0.987(0.015) 0.984(0.025) 0.955(0.092)

TN rate

NN-D 0.799(0.100) 0.828(0.064) 0.623(0.071) 0.736(0.030)

OC-SVM 0.965(0.099) 0.328(0.087) 0.851(0.064) 0.917(0.132)

NOVCLASS-R 0.867(0.019) 0.904(0.087) 0.893(0.49) 0.881(0.050)

NOVCLASS 0.915(0.076) 0.932(0.058) 0.923(0.041) 0.915(0.030)

Table 20: Computation performance comparison

Performance
Classification
Method

Data Set
GausNorm GausMulti Elliptic Moon

ttrain [s]

NN-D 6.384(0.1) 6.654(0.1) 6.698(0.2) 7.067(0.1)

OC-SVM 5.491(0.9) 5.73(0.8) 5.744(0.9) 6.107(0.7)

NOVCLASS-R 3.233(0.1) 2.99(0.1) 3.167(0.2) 3.348(0.1)

NOVCLASS 3.346(0.0) 3.410(0.0) 3.487(0.0) 3.698(0.0)

t̄class [µs]

NN-D 448.0(0.1) 418.7(0.1) 373.3(0.0) 416.0(0.1)

OC-SVM 64.00(2.1) 69.33(3.0) 64.00(3.7) 69.33(1.5)

NOVCLASS-R 90.67(18.8) 125.3(24.0) 101.3(29.2) 117.3(32.1)

NOVCLASS 233.1(120) 230.5(90.1) 238.0(143) 228.0(101)

Stored
Prototypes

NN-D 125(0.0) 125(0.0) 125(0.0) 125(0.0)

OC-SVM 4.2(0.5) 52.1(1.2) 52.5(1.7) 28.4(0.9)

NOVCLASS-R 8.7(0.6) 17.1(1.3) 9.0(0.9) 13.7(1.4)

NOVCLASS 125(0.0) 125(0.0) 125(0.0) 125(0.0)

Table 21: Real-World data set results

Data Set
Class Classification Rate (TP, TN)

NN-D OC-SVM NOVCLASS-R NOVCLASS

iris
1 (1.00, 1.00) (1.00, 1.00) (1.00,1.00) (1.00,1.00)
2 (0.56, 0.94) (1.00, 0.90) (1.00, 0.94) (0.96, 0.90)
3 (0.96, 0.56) (0.92, 0.98) (0.92, 0.86) (0.88, 0.90)

wine
1 (0.73, 0.90) (1.00, 1.00) (0.93, 0.90) (0.90, 0.88)
2 (0.49, 0.72) (0.91, 0.78) (0.91, 0.59) (0.94, 0.46)
3 (0.75, 0.69) (0.96, 0.97) (1.00, 0.42) (0.92, 0.60)

ionosphere
1 (0.79, 0.66) (0.74, 0.89) (0.96, 0.70) (0.24, 0.96)
2 (0.88, 0.87) (0.89, 0.94) (0.99, 0.64) (0.93, 0.88)

wdbc
1 (0.75, 0.62) (0.94, 0.87) (0.84, 0.89) (0.89, 0.89)
2 (0.11, 0.95) (0.00, 1.00) (0.16, 0.95) (0.13, 1.00)

yeast
1 (0.94, 0.25) (0.94, 0.97) (0.94, 0.99) (0.89, 1.00)
2 (1.00, 1.00) (1.00, 0.94) (1.00, 0.97) (1.00, 1.00)
3 (1.00, 1.00) (0.98, 1.00) (0.98, 1.00) (1.00, 1.00)

mechatronic

1 (1.00, 0.99) (1.00, 0.99) (1.00, 0.99) (1.00, 1.00)
2 (0.91, 0.78) (0.92, 0.93) (0.67, 0.84) (0.90, 0.83)
3 (0.98, 0.85) (0.97, 0.97) (0.99, 0.84) (0.86, 0.95)
4 (1.00, 1.00) (1.00, 0.98) (0.99, 0.99) (0.99, 0.99)



Chapter 5. Implementation of the DAICOX Architecture 112

Figure 74: Computed ROC curves of the ”iris” data set

Figure 75: Computed ROC curves of the ”wine” data set

Figure 76: Computed ROC curves of the ”ionosphere” data set

Figure 77: Computed ROC curves of the ”wdbc” data set
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Figure 78: Computed ROC curves of the ”yeast” data set

Figure 79: Computed ROC curves of the ”mechatronic” data set

All implemented methods have performed with considerably good performance in the

synthetic data set except only one case of OC-SVM with ”GausMulti” data set. This

is due to the fact that SVM may face a problem when handling data with multiple

clusters. However, OC-SVM outperformed other methods in several cases with fastest

classification time in all cases. The proposed NOVCLASS-R has close performance to

its original, in contrast, providing light weight classifier model with significantly reduced

number of stored prototypes as well as faster classification time. Considering design-

ing time, the NOVCLASS family is the least training time consumption method. The

fastest was achieved by NOVCLASS-R. This may contradict to what was reported for

NN-D that it takes no training time. But in practice, when creating a classifier, the

model analysis should be performed. In these experiments 10-fold cross validation was

employed in the training process. Thus, a number of classifications of each model was

performed for evaluation. NN-D takes longest classification time in almost all cases,

which also causes the longest training process among the others. This is due to its clas-

sification procedure, which has to compare all stored prototypes to each given unknown

pattern to find the nearest neighbor. In contrast, NOVCLASS sequentially observes each

prototype and classifies an unknown pattern as positive if it is inside the prototype’s

radius. Thus, the maximum bound of the classification time is equal to NN-D in the
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case of a given pattern is negative, but, faster in dealing with positive patterns. The

results from the real-world data sets have proven applicability and effectiveness of the

implemented methods in practical scenarios with perfect classification in several cases.

This will guarantee the potential capability of using the implemented OCC methods for

real applications given in the next chapter.

5.3.3 Hierarchical Classification

From the proposed background elaborated in the previous chapter in 4.5, the Hierarchi-

cal Classification (HC) approach has been implemented in DAICOX based on C-SVM

algorithm. The proposed hierarchical classifier is a multi-sensor fusion architecture at

the decision level. It consists of multiple classifier and operator modules as illustrated

in Fig. 80 instantiating a 3 sensory channels HC structure using C-SVM (H-SVM). In

contrast to the complexity of the flow, the constructed modules operate and represent

as a single multi-class classification module, thus, taking as similar design effort as a

conventional flat classification approach. Each classifier in the first level generates a

soft-classification output, which is a vector of probability estimations of a given pattern

to each class. The final classifier performs multi-sensor fusion at decision level from a

concatenated soft-classification vector predicting a class associated with the vector, i.e.,

class label. Any classifier methods, which are able to generate soft-classification output,

can be used in the proposed HC by replacing the classifier modules in Fig. 80. Model

selection and optimization can be conducted during the design by using the same setup

used for the multi-class design problem given in Fig. 71. The uses as well as performance

discussion of the proposed HC are given in the experiment and case-studies in the next

chapter.
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ChannelChannel
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Data Table 

Parameters of All Employed Classifiers (Individual)

Multi-ClassMulti-Class
ClassificationClassification
Module (SVM)Module (SVM)

Multi-ClassMulti-Class
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ClassificationClassification
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Data Table 
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ModuleModule

Native-Classification
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Soft-Classification
Output

Concatenated Soft-
Classification Data Table

Figure 80: Implementation of hierarchical classification module
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5.4 DAICOX Design Optimization

As already mentioned in previous sections, the DAICOX architecture provides choice of

optimization methods in designing of every standard building block. In this section, the

details of optimization software structure are explained along with the concept of flexi-

ble optimization interface, which enables applicability of any implemented optimization

methods in all design procedures. The DAICOX design optimization is elaborated with

meta-heuristic optimization approaches and multi-objective assessment capability. Cur-

rently implemented optimization methods comprise simple Exhaustive (Grid Search),

Genetic Algorithms (GA), and Particle Swarm Optimization (PSO). With the modu-

lar method concept, DAICOX allows and facilitates the inclusion of new optimization

method implementation. The DAICOX library interface also utilizes the full exploitation

of a method as it can be used in all design of the standard building blocks.

5.4.1 Flexible Design Variable Evaluation

Usually, an implementation of optimization is task specific and the optimization proce-

dure is integrated in part of the processing method. The complication arises when one

wants to reuse the implemented optimization routine for other design problems, which

may ultimately lead to tedious and redundant tasks. For this reason, the modular

optimization method concept is proposed with flexible interface between optimization

routine and a particular design problem using the DAICOX library interface. The main

role of this concept is the transformation layer depicted in Fig. 83, which associates

information exchange between method module of a design problem and optimization

operator. A method module reports information about its available parameters, preci-

sion types, and value ranges using the design variable descriptor, the common format

of design variable representation as shown in Fig. 82. The transformer is in charge of

converting and scaling each given optimization design variable from the optimization

operator using the precision and value range of the parameters it is associated with. An

employed optimization procedure is allowed to modify the values of the ”Params” vector

during search procedure. The method module applies the parameters at every change

in the ”Params” vector to generate a method object, which will be used for an evalua-

tion process. Evaluation result of each given design variable returns to the optimization

operator (normalized real value in the interval of [0,1]) as the information to modifying

the solution candidates for next iteration. As a result, an implemented optimization

algorithm can be utilized to several design tasks without modification effort.
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Figure 81: Flexible design optimization interface

“Params” : 100.0 0.01 2

“real” “real” “int”
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“Prec” :

“Range” :
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“C” “gamma” “kernel”“Names” :

Parameter Descriptor Object

Figure 82: Example of design variable descriptor of the C-SVM module

5.5 DAICOX Software Environment

Software development for DAICOX architecture is based on Python programming lan-

guage as to support the aims of open-source and multi-platform software. Core compu-

tation of each processing method represents as a python module script, thus, denoted

as method module. DAICOX library is a collection of the available method modules

structured in Python standard name space, i.e., Python package. DAICOX toolboxes

comprise the linked methods from the DAICOX library by using widget wrappers for

visual programming environment in the Orange Canvas software. The widget wrappers

are scripts, that load method modules and mask the interface and signal control into vi-

sual programming workspace for the purpose of intuitive design activity. In addition, the

use of the DAICOX library is independent from the Orange Canvas a designer can also

design a processing chain manually using Python script. This also allows the creation

of an executable script of a designed processing chain using visual programming. The

overview of the DAICOX library and toolbox software structure is shown in Fig. 83.

Some library developed in other languages, e.g., C or C++, can also be included to

the DAICOX library by using a library converter, for C/C++ cases, BOOST [177] is
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employed. The BOOST library converter is a interpreter between C++ source codes

and the Python programming language, which allows the integration of ISE’s previous

C/C++ based works into DAICOX architecture.

DAICOX Design Environment 

 
 

OpenCV 
(future extension) 

Orange Canvas  

Python Packages, 
Modules or Objects 

Toolbox 
Script 

Library converter 

C/C++, 
Matlab 

Toolbox 
Script  

Toolbox 
Script  

Python Packages, 
Modules or Objects 

                     Orange Module Interface 

                    DAICOX Library Interface 

User interface 
Visualization 
Optimization 
 

DAICOX Libraries 

Figure 83: DAICOX software library and visual programing toolbox interface

5.5.1 DAICOX Library Interface

The proposed modular software requires consistent information exchange for every pair

of interconnected modules in order to provide seamless operations in a processing chain.

DAICOX Library Interface (LI) is a unified mechanism, that governs information ex-

changes between method modules. Major aim of the interface is to ensure relevant

inter-module communications and facilitate the extension of each new library module.
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Two attributes are described for each method module including the Input field, which

provides required input information and the Output field, which provides the type of

possible output information. The descriptions of LI for all method types are given in

Table 22. Proper operation can be ensured for the development of new method module

by regarding the DAICOX library interface.

Table 22: DAICOX library interface descriptions

Module Type Input Output

Data Acquisition
Parameters,

Commands
Orange Data Table

Signal Processing
Orange Data Table,

Parameters

Method OBJ,

Parameter Descriptor

Assessment Function Parameters Measure OBJ

Feature Selection
Orange Data Table,

Measure OBJ

Selected Orange Data Table,

Selected Feature List

Classification
Orange Data Table,

Parameters

Method OBJ,

Parameter Descriptor

Designer Method OBJ(s)
Designed Method OBJ,

Visualization

Optimization

Method OBJ,

Parameter Descriptor,

Measure OBJ

Optimized Method OBJ

*all OBJ are referred as a Python object.

5.5.2 Choice of Visualization

DAICOX provides a number of visualization features in several representations, e.g.,

signal, feature space, and performance statistic. The signal representation visualization

takes direct information from data table to visualize in corresponding domain, e.g., time

signal, frequency domain, and symbolic data. For heterogeneous multi-sensor informa-

tion, palette visualization concept proposed in [123] is an intuitive choice for multiple

signal representations. DAICOX is integrated with feature space visualization of multi-

dimensional data. Mapping methods are required to transform high-dimensional data

into a 2D visualization space. Several approaches are available to be selected includ-

ing linear method using PCA and LDA or the more powerful non-linear MDS based

on distance-preserving using Sammon Mapping is the preferable choice, which can be

incorporated with the available DAICOX optimization modules. These methods are

included in the standard library of Orange. In design optimization, performance infor-

mation visualization, e.g., assessment versus evolution plot, can be used to analyze the
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quality of designed solution and further improvement or fine-tuning can be conducted

by the designer.

5.5.3 DAICOX Application Design Flow

Figure 84 illustrates the overall design flow for a cognition application using DAICOX

architecture. The flow represents standard procedures in the design of multi-sensor

cognition application from front to back, which is the baseline for the designs in ex-

periments and case studies given in the next chapter. Requirements or specifications

are used to derive an initial design, which can be created by using Orange Canvas a

visual programming software by selecting method module and connect their signal to

form a processing chain, i.e., workspace. It is also possible to create a processing flow

using Python script. A set of previous design solutions stored in the design database

can be reused as a template, when starting a new application design of similar task,

hence, gaining the knowledge from previous experience and significantly saving design

time and effort. Design optimizations take place after all method modules are prop-

erly given with their required input, then sequential evolutions will be conducted. The

sensory database provide recorded data as data source for the design optimization in

off-line mode. A hardware instance, e.g., data acquisition can also be used to provide

fresh measurements as data source for design optimization. Reconfigurable capability of

the hardware instance can realize the intrinsic optimization, which will be pursued next.

The designer can perceive information of the design process via choice of visualizations

to analyze the design solutions for making a decision on the final output solution. The

final solution will be used to generate a Python executable script, which performs the

optimized processing tasks independently without requirement of the Orange Canvas.

The main purpose for Python executable script generation is the integration of the de-

signed solution with Graphic User Interface (GUI). The more detail on GUI integration

in several application cases will be given in the next chapter. The final solution will also

be stored in the design database for amendment purpose of current version and for new

application design.
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Figure 84: Application design steps using DAICOX architecture

5.6 Discussion

A number of processing methods have been implemented in this chapter to contribute

to the proposed DAXICOX architecture. Modular software library concepts have been

proposed to provide high degree of flexibility in both usage and development. The

implemented methods serve all functions in the standard building blocks including, sig-

nal processing and feature computation, dimensionality reduction, and classification.

In particular, four one-class classification methods for novelty/anomaly detection have

been implemented and tested with considerably good performance. All implemented

methods can be optimized by the proposed DAICOX design optimization with choice of

optimization algorithms and multi-objective optimization capability. Software environ-

ments of DAICOX provides intuitive link to the designer with design database, visual

programming, and choices of visualization. The complete processing chain can be ex-

ported into a single executable file for run-time purpose and user interface integration.

All the features and currently available methods of DAICOX architecture support the

design of intelligent multi-sensor system with reduced effort and design time. The com-

prehensive experiments and case studies are given in the next chapter to quantitatively

demonstrate capability and effectiveness of the current DAICOX architecture in generic

real-world sensor application designs.
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Realization of DAICOX Design

and Integration: Case Studies

and Applications

The currently implemented DAICOX architecture has been utilized in three advanced

application design scenarios presented in this chapter. The main aim of each application

design task is to demonstrate the capabilities as well as performance of automating the

design process and delivering good quality solutions with less design effort than the hu-

man designer. The design process and design optimization have been performed by using

implemented DAICOX libraries, toolboxes, and frameworks presented in the previous

chapters. The first application design case study deals with basic food analysis applica-

tion employing an autonomous multi-sensor device and an advanced pattern recognition

processing chain. Driving assistance system is the focus area of the second case study,

where heterogeneous multi-rate sensor information are fused for on-line identification of

driver drowsiness status. The last case study employed DAICOX in assisting the design

of pattern recognition based edge detection for timebase self-synchronization mechanism

of wireless sensor nodes in a magnetic localization system.

121



Chapter 6. Application Realization Using DAICOX 122

6.1 Automated Application Design of LoX

The interest in food analysis has been growing significantly as a result of numerous

situations of food scamming, contamination and adulteration. This motivates the devel-

opment of Lab-on-X (LoX) [26, 178] devices to serve in several applications related to

living assistance system, interactive health care, and food quality/authenticity checking.

The LoX devices are autonomous intelligent multi-sensor data acquisition units for the E-

Taster [179] assistance system, an intelligent environment for on-line cooking assistance.

Thus, the information processing architecture as shown in Fig. 85, which comprises of

data acquisition, sensory database, and pattern recognition tasks, e.g., dimensionality

reduction and classification, is conceived. Therefore, the design of a processing chain

for the E-Taster application involves a number of complex, knowledge requiring, and

time consuming tasks. To facilitate the E-Taster application design tasks, the currently

implemented DAICOX architecture has been used in this case study with the main focus

in food substance classification applications. The LoX technical cognition application

design steps using DAICOX are illustrated in Fig. 86. The beginning step is the data

collecting procedure, where the data sets used during the design can be obtained from

two sources; sensory database of previous recorded data sets and fresh measurements

from a connected LoX device. The latter case also allows on-line preliminary data anal-

ysis before committing the new data into the sensory database as well as performance

analysis of a complete processing chain. The implementation, and experimentation in

all steps of the design flow are explained in detail in the following subsections.
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Figure 85: LoX device based application operational architecture
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Figure 86: LoX food ingredients recognition application design overview

6.1.1 Data Acquisition

LoX devices are realized as embedded autonomous measurement units for delivering

multi-sensory context to a soft-computing host machine. The hardware block dia-

gram of the currently implemented LoX is depicted in Fig. 87. The current sensor

palette includes a pt 10k temperature sensor with a custom calibrated front-end, a

MAZeT MMCS6 [180] multi-color sensor with a configurable transimpedance amplifier

MCDC04 [181] and active illumination, and the AD5933 [182] embedded network ana-

lyzer for impedance spectroscopy measurement applied with gold-plated electrodes. The

impedance spectroscopy requires a standard analog front-end (AFE) for low- as well as

high impedance measurements wide variety of measurable types of liquid. Figure 88

shows examples of acquired impedance information of the SoyVine data set in both

magnitude and phase curves. The multi-sensory information of a liquid acquired by a

LoX device represents a signature, which can be identified by using a pattern recog-

nition process. Measurement readout and control and host communication are in the
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responsibility of an Arduino MCU board. Two communication options, wired via USB

port and wireless via IEEE802.15.4 standard using XBee module, are available. The

hardware configurations and parameters of current LoX devices are given in Table 23.

Calibration can be intuitively achieved by clamping an external reference resistor to

the measurement electrodes or by using reference liquid. The current development of

self-x properties integration is pursuing towards dynamic reconfiguration capability of

the LoX hardware instance. This integration will allow complex functions in dealing

with sustainability and robustness issues, e.g., self-monitoring, self-calibration, and self-

trimming, thus, maintaining long-term quality and performance.

The information of a measurement acquired by a LoX device results in 1,040 features for

the currently implemented LoX devices, which will be denoted later as MS-LoX. In the

previous development of LoX, the color data were obtained from an RGB sensor, thus,

resulting in 1,027 features. The design sensory database is the collection of recorded

data sets from several food classification scenarios as described in Table 24. In the

experiments, the data sets are split into training and testing subset with 1:2 ratio using

hold-out random sampling method. This results in 10 instances of training data and

20 instances of testing data. 5-fold cross validation was employed for model analysis in

both data subsets in all experiment cases.
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Figure 87: Hardware block diagram of LoX device
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Table 23: Parameters of the LoX device configuration

IS frequency range 10kHz to 100kHz
IS impedance range 1kΩ-10MΩ
IS frequency resolution 0.1Hz
IS gain 1 or 2
IS excitation voltage 0.2, 0.4, 1.0, or 2.0 Volt
IS RFB 2.2kΩ
ADC configurations Arduino AD5933 MCDC04
ADC input 10-bit 12-bit 16-bit
ADC bit-resolution 3.22 mV /LSB 4.93 µV /LSB 20fA/LSB
ADC span 3.3V 2.0 V 3.3V
ADC sampling rate 15ks/Sec 1 Ms/Sec. 400ks/Sec.
Transimpedance amp. Rref = 500 kΩ.
Sensor information Temp., 16 wave lengths multi-color (MS-LoX) or RGB-

color sensor, 1024 points of Magnitude and Phase

Figure 88: Impedance magnitude and phase spectrum plots of the SoyVine data set

Table 24: LoX data set descriptions

Data set

Name

No. of

(class; sample)

DAQ

Device
Description

UsedOil 2; 60 LoS Fresh and used cooking oil

Oil 3; 90 LoS 3 types of cooking oil

Beer 4; 120 LoS 4 brands of beer

7Wine 7; 210 LoS 7 different kinds of wine

SoyVine 3; 90 MS-LoS Soy, Vinegar, and Tap water

WineGly 11; 330 MS-LoS Contamination analysis of wine

Milk 4; 120 MS-LoS Degradation analysis of milk

Salt 3; 90 MS-LoF Salt and salt adulterated with chalk powder

Powder 9; 270 MS-LoF 9 powder and granular ingredients
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6.1.1.1 Preliminary Investigation of Self-X Properties Integration

The improvement of the hardware instance architecture by dynamic reconfiguration and

self-x features based on switching devices and reconfigurable electronic front-ends as il-

lustrated in Fig. 89 is currently pursued. Self-calibration of the IS can be performed by

connecting external reference resistors to the inputs, where analog CMOS switches or

DC-MEMS switches [119] can be the switching devices. In addition to using dedicated

reference resistors, a standard liquid, oils of different color, with reference characteris-

tics obtained form laboratory instruments can be used for the calibration process, which

can serve a broader range of sensors type, e.g., color, pH, and viscosity just form single

reference source. The calibration coefficients of the hardware instance will be updated

from the acquired data to compensate measurement errors using reference information,

i.e., deterministic models of the calibration resisters. Two-Point, multi-point, or piece-

wise [82] calibration approach can be employed here. The procedures follow the diagrams

given in Fig. 90. The processing of the procedure can be conducted at a design platform

using bi-directional communication, i.e., intrinsic (static), or at the run-time platform,

i.e., intrinsic (dynamic), depending on computational resource requirement.

However, in an extreme situation, the calibration approach alone may not be able to

cope with large deviations. Thus, trimmings of the hardware instance configurations and

parameters are required, which are conventionally done by hand. These tasks can be

performed automatically, i.e., self-trimming, by incorporating additional reconfigurable

electronics to adjust circuit characterizations, e.g., gain and offset. Advanced analog

front-end ICs, e.g., AD5933 and MCDC04, provide reconfiguration capability to adjust

their internal parameters as given in Table 25. They can be the trimming parameters,

thus, the scope of adjustments is broaden and more levels of deviation can be tackled.

Further, these ICs are usually integrated with operational condition related sensors,

e.g., temperature sensor, which can be used as a source of self-compensation process

to eliminate influences from environment. As a result, a potentially robust hardware

instance will be obtained. The combination of self-calibration with self-trimming will

offer a solution for longterm dependable measurement systems.
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Table 25: Possible integrated reconfiguration capabilities for self-trimming process

Device Parameters

AD5933
Gain, Excitation voltage, ADC settling time,
Start and stop sweeping frequency
Number of sweeping points

MCDC04 Gain, Reference voltage
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6.1.2 Conventional Application Design Approach

The conventional and manual designs of LoX technical cognition applications have been

conducted as first cut designs, where automation was less involved in, thus, the design

effort was at the ceiling amount compared to the proposed automated design approach.

This creates criteria of assessment purpose in terms of design work load as well as

solution quality when using DAICOX in the same applications. The conventional design

approach uses standard existing toolboxes and few extra self-developed modules, which

has been used as standard framework for early experiments in [26, 183, 184]. Table 52

shows the results obtained by using the conventional framework from the data sets

discussed in Table 24 with the same training and testing data size as used throughout

the entire experiment using DAICOX. The design procedures follow the flowchart given

in Fig. 91, where partially automated process can be conducted in some parts, e.g.,

DR design or classifier parametrization. These, however, are based on trial-and-error

together with the rule of thumb approach, which is time consuming and requires a lot

of effort.

The most of the design time is at the repetitions of reconfigurations of both DR and

classification design processes, which depends upon experience of the designer and also

the complexity and difficulty of the design problems. Therefore, DAICOX takes over

the complete design process of the flowchart by requiring almost no task specific config-

urations or settings, which will be explained in detail with experimental results in the

next following sections.

Select AFS Method  and Perform DR Process

Quality is Satisfactory
or 

Reached 
Time Constraint 

No

Yes

Observe Feature Subset Quality 
(Non-Parametric Measures or Visualization)

Return Best Solution

Initial Data Set

Change method
or adjust parameters

Select a Classifier Method

Performance
 is Satisfactory or 

Reached 
Time Constraint 

No

Adjust Parameters and Observe Performance

Change method
or 
adjust parameters

Classification design iterations

Dimensionality reduction 
design iterations

Construct Processing Chain from Obtained Solutions

Figure 91: A conventional design workspace for LoX application
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6.1.3 Automated Design Using DAICOX

The currently implemented DAICOX architecture provides design automation of the

complete processing chain of an LoX application. At the beginning of a design task, the

dimensionality reduction process is performed with choices of method as well as result

analysis and visualization. The best quality feature subset will be selected automatically

based on performance and will be forwarded to the classification design tasks. Auto-

matic parameter optimization of the classification task is performed using the DAICOX

classifier design toolbox. The best performance classifier will be selected automatically

and embedded into the final processing chain solution. The explanation and experiments

of automated LoX application design using DAICOX at each processing block are given

in the following sub sections.

6.1.3.1 Automated Dimensionality Reduction Design

Dimensionality Reduction (DR) is an essential design task for LoX applications due to

the high dimensional data provided from the LoX device. As pointed out in the pre-

vious chapter in Section 5.2.2 that the meta-heuristic approaches can find considerably

good quality solutions within reasonable number of iterations. Thus, the dimensional-

ity reduction design tasks for LoX application employ the implemented meta-heuristic

feature selection and feature weighting approaches, e.g., GA-FS, PSO-FS, GA-FW and

PSO-FW. The visual programming workspace illustrated in Fig. 92 was used to perform

the experiments and to obtain the results in both table and graphical representations.

The parameter settings of all methods are given in Table 26 for GA-FS and PSO-FS and

Table 16 for GA-FW and PSO-FW in the previous chapter. The search procedures of all

methods are performed with a multi-objective assessment function, which is composed

of several feature space quality assessments, e.g., qOV , q′C−intra, qC−inter, and qS . In

this work, all criteria are combined by using the weighted agglomeration approach with

weight-averaged scheme as given in Eq. 6.1.

qoverall =
qOV + q′C−intra + qC−inter + qS

4
(6.1)

The results of DR tasks for LoX application are given in Table 28 as well as bar plots

in Fig. 94. The dimensional reduction capability d is provided in the result table, which

indicates the size of the best feature subset dimensionality in percent compared to full

feature. tsearch is the time used in searching for one given data fold. All given values

are averaged values from 5-fold cross validation applied to the testing data subset and

the smaller numbers in parentheses are the corresponding standard deviations. The

initial value of qoverall assessments, which are measured from full features of a particular
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Table 26: Parameter settings for AFS methods used in the LoX case study

Method Parameters and Settings

GA-FS
Population Size = 10 + 2

√
d , Max. Iteration = 100, Selection Rate = 0.5,
Mutation Rate = 0.2

PSO-FS Population Size = 10 + 2
√
d, Max. Iteration = 100, C1=2.0, C2=2.0, w=1.2

d is the number of feature of initial data.

data set, are given in Table 27 for comparison with the results of the DR methods. An

intuitive methods’ comparison is visualized in the radar plot given in Fig. 93 representing

the methods’ ranking of a particular characteristics, where the highest rank is in the

outermost. For the classification time, the first rank is the fastest searching method.

This representation helps to analyze the methods and provides the overview perspective

for method selection. The best feature subset quality of each reduction scheme was

selected for classification design task explained in the following section.

All conducted DR methods discovered significantly better feature assessments in all data

sets compared to the conventional ones. Genetic algorithms have shown their capability

in searching for better solutions, than those, which are discovered by PSO in both feature

selection and feature weighting schemes. Comparing between the two schemes, feature

weighting outperformed feature selection in all cases, of course, with the price tag of a

higher computational cost. GA also performed the fastest in all feature selection cases,

which is due to their searching mechanism, that is effective for binary selection problems.

The classification results of classification design experiments can be used to confirm the

quality of the selected feature subset. It can be noted that GA based DR methods

are good choices concluded by this application instance. However, in general, method

comparison and analysis are still necessary, which is already facilitated by DAICOX.
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Figure 92: Visual programming workspace of dimensionality reduction experiments
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Table 27: Multi-objective quality measure of full-feature

UsedOil Oil Beer 7Wine SoyVine Milk WineGly Powder Salt

0.667 0.588 0.528 0.505 0.636 0.540 0.477 0.580 0.625

Table 28: Overall result of dimensionality reduction tasks

Data Set
GA-FS PSO-FS

qoverall d tsearch[s] qoverall d tsearch[s]
UsedOil 0.660(0.065) 56.6%(23.3%) 15.63(5.06) 0.586(0.039) 50.0%(2.5%) 24.35(0.25)

Oil 0.714(0.055) 53.8%(8.0%) 18.65(2.06) 0.662(0.044) 39.2%(16.5%) 28.06(2.00)

Beer 0.751(0.014) 40.8%(2.7%) 18.10(1.03) 0.732(0.019) 40.3%(5.8%) 33.28(1.24)

7Wine 0.654(0.020) 30.5%(6.7%) 26.50(3.74) 0.669(0.016) 45.8%(2.7%) 55.66(0.67)

SoyVine 0.817(0.014) 45.3%(20.4%) 17.03(5.35) 0.802(0.011) 44.1%(10.7%) 28.65(1.31)

Milk 0.652(0.015) 52.1%(15.5%) 27.03(6.00) 0.672(0.021) 47.2%(4.4%) 40.54(1.17)

WineGly 0.536(0.018) 58.5%(17.0%) 76.64(17.07) 0.556(0.020) 48.7%(1.4%) 98.99(1.22)

Powder 0.727(0.007) 55.2%(19.3%) 34.21(9.12) 0.718(0.019) 48.6%(2.3%) 48.35(0.54)

Salt 0.815(0.002) 48.1%(16.8%) 16.86(4.43) 0.817(0.004) 46.6%(4.5%) 29.12(0.61)

Data Set
GA-FW PSO-FW

qoverall d tsearch[s] qoverall d tsearch[s]
UsedOil 0.761(0.039) 78.2%(6.9%) 35.94(0.74) 0.700(0.041) 59.2%(22.1%) 63.24(1.98)

Oil 0.787(0.041) 62.9%(23.9%) 30.24(2.17) 0.730(0.020) 26.0%(14.7%) 65.91(0.22)

Beer 0.756(0.008) 17.4%(7.4%) 24.69(1.91) 0.742(0.007) 11.7%(7.4%) 114.0(0.98)

7Wine 0.684(0.008) 73.7%(18.3%) 93.21(3.88) 0.657(0.015) 34.2%(7.5%) 155.1(4.31)

SoyVine 0.796(0.011) 37.3%(25.9%) 22.68(2.14) 0.798(0.011) 21.6%(10.7%) 66.75(0.33)

Milk 0.734(0.008) 79.7%(12.2%) 49.77(2.09) 0.709(0.031) 41.1%(25.3%) 91.65(0.43)

WineGly 0.616(0.024) 74.9%(17.9%) 126.69(3.06) 0.603(0.025) 55.0%(11.9%) 205.65(1.03)

Powder 0.683(0.010) 76.3%(18.1%) 60.99(1.48) 0.705(0.031) 49.3%(17.9%) 107.1(0.50)

Salt 0.840(0.002) 59.3%(5.4%) 30.15(1.07) 0.839(0.007) 25.2%(9.4%) 66.03(0.11)

Results obtained with fixed random seed number = 12081983
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Figure 94: Bar plots comparison of DR methods for LoX data sets
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6.1.3.2 Classification

Classification is a key processing component of the E-Taster system in terms of pro-

viding a final decision output for food ingredients recognition. In practical uses, both

accuracy and robustness of a classifier are the primary consideration aspects in or-

der to ensure the correctness of prediction results in operations with fresh measured

data, i.e., live classification. Thus, the classification design experiments were conducted

and demonstrated using toolboxes and libraries of the currently implemented DAICOX

architecture for automating parameterization and model analysis procedures. Three

classification approaches have been conducted in the experiments, e.g., multi-class clas-

sification, hierarchical-classification, and one-class classification. SVM-C classification

was used in the multi-class classification case to serve as a conventional classification

method design with an extension of parameter optimization using GA and PSO.

The more complex classification approach was performed in multi-level scheme using

the proposed hierarchical-classification approach. For LoX data, three classifiers have

been established in the first classification level, each for an individual sensory channel,

corresponding to physical data sources, which are color, magnitude of impedance, and

phase of impedance spectrum. The processing flow of the hierarchical classification for

LoX data is depicted in Fig. 95. The dimensionality reduction was performed locally

at each sensory channel by employing the methods discussed in the previous section.

The first level classifiers create class probability vectors, i.e., soft-output, from a given

input instance. These vectors will be concatenated and given to the final classifier in

the decision making fusion level. The visualization of the concatenated class probability

vectors obtain from multiple input instances can be used to evaluate and analyze the

performance of the first level classifiers. The scatter plots of the generated class proba-

bility vectors compare to original data for each data set are given in Fig. 99 to Fig. 107.

The plots are generated by using the Multi-Dimensional Scaling (MDS) technique with

Sammon’s stress mapping approach.

The latter case of classification design is based on One-Class Classification (OCC) ap-

proach using the implemented methods addressed in the previous chapter. The majority

of classification problems of the E-Taster system are given with a specific target class,

i.e., authenticity checking and anomaly detection. In the case of encountering with data,

that do not belong to the sensory database, i.e., novel or abnormal data, OCC approach

is capable to reject the data or report novelty of the data for further actions. In such

case, using multi-class classification approach may return surprising and unsuitable gen-

eralization due to the lack of sufficient training data for negative cases. The design

process for an OCC classifier requires an additional step of single class data separation

for the creation of the classifier model while the evaluation process uses multi-class data
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Figure 96: Visual programming workspace of multi-class classification design experi-
ments

to observe both correct acceptance and correct rejection performance. Figure 97 illus-

trates the visual programming workspace of the OCC design used in the experiments.

In all classification design experiments, the data sets are applied with three variations of

feature subsets obtained from the previous step including full-feature, AFS and AFW.

In multi-class classification scenarios, the experiments were performed by using visual

programming workspace as shown in Fig. 96. For SVM based classification methods, the

parameter C and γ are obtained by an optimization procedure employing GA and PSO
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Figure 97: Visual programming workspace of one-class classification design experi-
ments

to tune and search for the best classifier. In every design case, the best performance clas-

sifier is selected based on the model analysis results using 5-fold cross validation in order

to ensure the generalization and robustness of the selected solution. The parameters of

the employed optimization methods are given in Table 29.

Table 29: Parameter settings for classifier optimization methods

Method Parameters and Settings

GA
Population Size = 20 , Max. Iteration = 50, Selection Rate = 0.5,

Mutation Rate = 0.2

PSO Population Size = 20, Max. Iteration = 50, C1=1.2, C2=1.2, w=1.0,

The experimental results for multi-class and hierarchical classification cases are given in

Table 32. All given numbers are averaged values from 5-fold cross validation applied to

the testing data subset and the smaller numbers in parentheses are standard deviation.

Figure 108 to 110 show classification performance results of OCC based classification

tasks. The classification accuracy for the OCC based classification is the average of true

positive and true negative rates of a particular method. The number of stored reference

vectors of all experiments are given in Figures 111 to 113, which indicate computational

cost of a particular case.

Classifications results from all experiments cases show the considerably good perfor-

mance of the implemented classification methods in dealing with real world scenarios.

100 percent classification rate has been achieved in several cases. Proposed hierarchical

classification approach provided better classification performance compared to standard

SVM-C. The feature space plots of class probability matrices generated from the first

level classification for each data set indicate significant improvement in feature space

quality. In some cases, the scatter plots show linearly separable data meaning that
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the final classifiers may not need to be complex and, thus, better generalization perfor-

mance can be achieved. The trade-off is the high computational cost, which reflects long

classification and training time.

In OCC cases, the proposed NOVCLASS classification outperformed both NN-D and

OC-SVM in several cases. The classification results of OCC methods are comparable

to the conventional multi-class cases except in the case of the UsedOil data set. Based

on the results obtained in all experiments, the rankings of the OCC methods are given

in Fig. 98 where ”Best TP” and ”Best TN” is the number of highest true positive

and true negative classification respectively, ”NetSize” is the number of stored reference

vector, ttrain is the training duration, and tclass is the classification duration. As already

investigated in the previous chapter, NOVCLASS-R stored the least number of reference

vectors but still returned high classification rate and even outperformed the standard

NOVCLASS algorithm in some cases. This indicates the effectiveness of the proposed

NOVCLASS method in terms of classification performance and computational cost. The

OCC results have also confirmed the potential usage of one-class classification approaches

in LoX application for novelty/anomaly detection with high classification rate.

Table 30 gives the design complexities of the conducted multi-class classification design

experiments. The design complexities in this case study are expressed in terms of design

effort and design duration. The design effort is evaluated by the number of design steps,

that require designer interactions, for instance, sensory data base access and assignment,

data set separation, parameter setting, classification model generation, validation, and

model selection, where all the tasks have to be manipulated manually by the designer.

In contrast, DAICOX requires only two user activities of assigning data set to perform

and define optimization parameter settings only at one time at the beginning of a design

process. More important, the design effort increases by the number of design problems,

in this case by the number of data sets, for the conventional design approach, whereas

DAICOX requires no additional effort from the increased number of problems. The te-

dious and knowledge requiring tasks of decision making can be automatically executed

by DAICOX, while the better results were also achieved. The shorter design time is

reflected by the reduced design effort and it should be noted that manual decision mak-

ings will aggravate further the already much slower design process compared to using

DAICOX. This indicates 81.87% reduction in terms of human(expert) resource con-

sumption. The computation time is the duration, where automated processes take part,

that depends on the processing speed of the design platform, e.g., PC. The classification

accuracies have been improved in all cases by using DAICOX, in particular, by using

H-SVM approach, whereas computational cost is the price tag of the enhanced solutions,

which can be practically tackled by using powerful distributed computing units.



Chapter 6. Application Realization Using DAICOX 137

Table 30: Tentative design complexity comparison

Conventional/Manual DAICOX
No. of design steps
(per data set)

19 2

No. of design steps
(9 data sets)

171 2

No. of decisions (by designer)
(per data set)

6 0

No. of decisions (by designer)
(9 data sets)

54 0

Design Time [s]
(per data set)

120 (approx.) 15 (approx.)

Design Time [s]
(9 data sets)

1,080 (approx.) 15 (approx.)

Average Computation Time [s]
(9 data sets)

248.5
225.8 3,178.8

(SVM-C) (H-SVM)

Total Design Time [s]
(9 data sets)

1328.5
240.8 3,193.8

(SVM-C) (H-SVM)

Average Classification Accuracy
(9 data sets)

93.41%
97.74% 98.81%
(SVM-C) (H-SVM)

*The experiments were performed on a PC with Intel Core i7 CPU at 2.8 GHz and 6 GB RAM

Table 31: Classification performance obtained from flat SVM classifiers designed by
conventional approach

Data Set
UsedOil Oil Beer 7Wine SoyVine WineGly Milk Salt Powder
90.00% 96.67% 92.50% 92.99% 93.33% 78.18% 97.00% 100.00% 100.00%

Table 32: Multi-Class classification results

Data Set
SVM-C

Full AFS AFW

UsedOil 92.50%(1.10%) 75.00%(2.96%) 92.50%(1.10%)

Oil 100.00%(0.00%) 95.00%(0.61%) 100.00%(0.00%)

Beer 98.75%(0.14%) 98.75%(0.14%) 100.00%(0.00%)

7Wine 95.71%(0.35%) 95.00%(0.40%) 97.14%(0.23%)

SoyVine 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

Milk 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

WineGly 90.00%(0.61%) 88.18%(0.70%) 87.73%(0.73%)

Powder 100.00%(0.00%) 98.33%(0.15%) 99.17%(0.08%)

Salt 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

Data Set
H-SVM

Full AFS AFW

UsedOil 100.00%(0.00%) 100.00%(0.00%) 95.00%(0.75%)

Oil 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

Beer 98.75%(0.14%) 100.00%(0.00%) 100.00%(0.00%)

7Wine 99.29%(0.06%) 97.86%(0.18%) 99.29%(0.06%)

SoyVine 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

WineGly 90.00%(0.61%) 87.27%(0.75%) 90.00%(0.61%)

Milk 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

Powder 100.00%(0.00%) 100.00%(0.00%) 100.00%(0.00%)

Salt 98.33%(0.21%) 100.00%(0.00%) 100.00%(0.00%)

Results obtained with fixed random seed number = 12081983
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Figure 99: Feature space projection of the ”UsedOil” data set and its class probability
vectors for hierarchical classification
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Figure 100: Feature space projection of the ”Oil” data set and its class probability
vectors for hierarchical classification
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Figure 101: Feature space projection of the ”Beer” data set and its class probability
vectors for hierarchical classification
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Figure 102: Feature space projection of the ”7Wine” data set and its class probability
vectors for hierarchical classification
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Figure 103: Feature space projection of the ”Milk” data set and its class probability
vectors for hierarchical classification
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Figure 104: Feature space projection of the ”WineGly” data set and its class proba-
bility vectors for hierarchical classification
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Figure 105: Feature space projection of the ”SoyVine” data set and its class proba-
bility vectors for hierarchical classification
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Figure 106: Feature space projection of the ”Salt” data set and its class probability
vectors for hierarchical classification
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Figure 107: Feature space projection of the ”Powder” data set and its class probability
vectors for hierarchical classification
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Figure 108: Average classification accuracy of OCC methods using LoX data sets
with full features
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Figure 109: Average classification accuracy of OCC methods using LoX data sets
with AFS
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Figure 110: Average classification accuracy of OCC methods using LoX data sets
with AFW
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Figure 111: Average number of stored reference vectors of OCC methods using LoX
data sets with full features
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Figure 112: Average number of stored reference vectors of OCC methods using LoX
data sets with AFS
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Figure 113: Average number of stored reference vectors of OCC methods using LoX
data sets with AWS
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A complete processing chain, comprising of data acquisition, dimensionality reduction,

and classification, design can be performed in a single design workspace as illustrated

in Fig. 114. This design scheme is useful especially at the beginning of an application,

i.e., starting from scratch, in particular, with a non expert designer. The entire process

evolves sequentially from the beginning building block, e.g., data acquisition, to a consec-

utive block until the final processing task, e.g., classification. Once an optimized instance

of a complete processing chain is selected (automatically or manually by the designer),

the refined workspace of the chain can be stored in the design database as a template

for new application design (with constrained optimization). Additionally, the processing

chain itself can be bred or fine tuned within constrained search space and additional data

and information. Breeding techniques, e.g., genetic algorithms or evolutionary strategies

are potential candidates for this approach. By this concept, the complete intrinsic op-

timization can be realized by embedding the processing chain workspace and DAICOX

library to a run-time platform. The selected final complete solution, i.e., a designed

processing chain comprised of data acquisition and sensor configurations, dimensional-

ity reduction, and classification, can be exported into a standard DAICOX executable

object for the purpose of further system integration, e.g., live-classification application

with GUI, as has been integrated to the current E-Taster software environment.
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Figure 114: Complete processing chain of a LoX application in an automated design
and run-time workspace

All experiment cases starting from dimensionality reduction to classification have shown

the capability of currently implemented DAICOX architecture in terms of speed-up and

facilitate the design process. The summarizing comparisons of the overall design process

using conventional approach and DAICOX based on the information and results from

the experiments are given in Table 33 with the graphical overview in radar plot as given

in Fig. 117. Clearly, DAICOX has significant advantages over manual or conventional

approach in all comparing aspects. Figure 115 summarizes the complete design steps,

where the designer interactions can take place in addition to the complete design au-

tomation flow. Comparing to the conventional flow as have already shown in Fig. 91,

the entire design process can be handled by the DAICOX design environment, which

reduces significant amount of design effort. The design space complexity of the complete

processing chain design for a LoX application with AFW and H-SVM is illustrated in

Fig. 116, which is based on sequential evolution scheme and constrained local optimiza-

tion approach. Also, information of design process status and the intuitive reports of

results’ quality were given to the designer for design process analysis. Thus, total appli-

cation design effort and time can be reduced due to a number of automated procedures
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and the designer may be involved only in decision making of the final complete solution,

which can also be decided autonomously.
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Optimized Processing Chain

Complete 
Design
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with Designer Supervision

Figure 115: Back-end automated design flowchart of DAICOX
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Figure 116: An example of reduced design space complexity for the complete LoX ap-
plication design process with constrained design space regarding the parameter settings

given in Table 17
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Figure 117: Summary of the design aptness of DAICOX compared to conventional
design approach
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Table 33: Overall design process comparison between conventional approach and
DAICOX

Classification

Manual DAICOX

- The solution quality depends heavily on

the designer’s experience in performing

method selection and parameterization.

- In all experiments, the total number of

351 parameters need to be adjusted by

hand in manual design approach.

- Model analysis may imposes huge effort

as it multiplies the design procedure,

e.g., k ∗ (k − 1) repetitions in k-fold

cross validation case.

+ Design optimization discovered good quality

solutions without need of designer’s knowledge.

The experienced designer can also help in guiding

the search for even better solutions by

constraining search space.

+ Achieved 5.4% better classification accuracy

in average compared to manual approach

(see Table 30)

+ Seven optimization parameters (see Table 29)

were set covering all experiments, where some can be

set automatically based on type of searching problems.

+ All design cases carried out by employing the

appropriate data set separation method with model

analysis using k-fold cross validation technique

with automated best method selection.

+ Reduced design time by 81.87% (see Table 30)

+ Design effort does not increase

by the size of the design problems (see Table 30)

Processing Chain

Manual DAICOX

- Manual scripting is usually used to create

a processing chain of a design solution.

- Adjusting the designed solution requires

effort in and programming knowledge.

+ Automatically generated an optimized solution in

both script or visual programming workspace.

+ Designed solution can be adjusted or reconfigured

via visualization programming.
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6.2 DAICOX Automated Design Support for DeCaDrive

System

In this section, the DAICOX architecture was used to facilitate the multi-sensory cog-

nition system design for driving assistance applications. This case study stems from a

collaboration with the PhD research project conducted by Li, the DeCaDrive [27, 185],

an embedded multi-sensor driver assistance system. IR-depth, vision, vehicle data, e.g.,

steering wheel sensor information, as well as biomedical information of the driver, e.g.,

pulse rate or skin impedance, are collected and collaboratively processed for drowsiness

detection. In this case study, DAICOX serves as an alternative design platform to the

existing solution, which is based on MATLAB and Microsoft Visual Studio by moving to

the Orange multi-platform open-access environment and Python programming language.

The integration of DAICOX designed solutions into intuitive and informative graphic

user interface software environment and the on-line classification are the main focus.

The DeCaDrive processing chain is comprised of data acquisition, multi-rate signal pro-

cessing and feature computation, dimensionality reduction, and classification, which all

can be designed by the current DAICOX architecture. Thus, designing the entire pro-

cess requires a number of complex tasks as shown in Fig. 119, which are facilitated by

DAICOX as described in the next subsections.
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USB Interface

Driving Simulation Subsystem

Pulse Rate Sensor
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Executable Solution 

Sensing and Soft-Computing System
(DAICOX Run-Time Platform) DeCaDrive Demonstrator 

Figure 118: DeCaDrive system

6.2.1 Data Acquisition

The DeCaDrive framework has been realized based on a standard PC based driving

simulation, sensing, and soft computing subsystems [185]. This comprises a IR-depth
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Figure 119: Design flow block diagram of DeCaDrive processing chain

camera, using Kinect sensor, for eye finding and facial features, which has been extended

to an intelligent multi-sensor system incorporating sensor signal processing as well as

diversified embedded sensor interfaces, e.g., pulse rate sensor, steering angle and related

driving behavior sensors, and, in particular, impedance spectroscopy which has been

reported in [27] with significant contribution to recognition performance improvement.

As illustrated in Fig. 124, data links of heterogeneous sensors on steering wheel are

connected to the microcontroller based front-end of the multi-sensor interfaces sub-

system. The IR-depth camera, as a key component of the image sensing subsystem

is connected to PC-based back-end directly via USB interface. The driving simulation

subsystem, which is run on a dedicated PC, is used for data collection and for performing

a chain of pattern recognition methods for on-line classification. In the current multi-

sensory information processing architecture, a data set is collected from depth vision,

steering angle, brake and throttle level, driver pulse rate, and impedance spectrum from

skin measurement, then, fused at the feature level. The data sets are obtained from five

test subjects each conducted by 60 minutes driving simulation on the DeCaDrive system,
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where the concise information of physical conditions and simulated driving situations

can be found in [27]. Data sets of complementary sensors are synchronized on the same

timebase information before being conveyed to feature computation by using re-sampling

and interpolation techniques based of time stamps information of each sensory data.

6.2.2 Feature Computation

The synchronized multi-sensor data streams are used to compute a set of features listed

in Table 34. Facial information features are computed from preprocessed Kinect data,

which includes locations of head, eyebrows, mouth, nose, and other facial components in

three dimensions. Eyelid blinking activity information are obtained from object track-

ing process proposed in [186]. Driving behavioral features are computed from steering

wheel sensor resulting in statistical and frequency domain information of steering wheel

activities. The feature computation methods, e.g., FFT and function estimation, employ

the DAICOX feature computation libraries adapted from the standard Scikit toolbox.

Driver state features are health related information of the driver obtained from pulse

sensor for heart rate and from impedance spectroscopy for driver’s skin impedance.

Based on the outcome of feature computation process, these features are fused on the

feature level to construct input vectors for pattern classification process explained in the

following subsection.

Table 34: Descriptions of the computed features of DeCaDrive data

Feature Sensor Index Description

Facial Kinect

1-3 Head position in x,y and z coordinates
4-6 Head orientation in x,y and z coordinates
7,8 Translation and rotation head velocity
9 Mean Eyebrow position

10,11 Eye lid closing freq. and duration

Driving
Behavior

Steering Wheel

12,13 Steering activity in 1 ◦ and 3 ◦

14 Standard deviation of steering activity
15 Percentage of minimum steering activity
16 Mean of absolute position
17 Steering velocity
18 Center of FFT-band of steering wheel position

Driver
State

Pulse Sensor
19,20 HF LF ratio of pulse freq. and Pulse freq.
21,22 Mean and std. deviation

23 Coefficient a (slope) after linear fitting

IS Sensor

24 Coefficient a after exponential fitting
25-27 Coefficient a, b and c after polynomial fitting

28 Coefficient a (slope) after linear fitting
29-31 Coefficient a, b and c after polynomial fitting
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6.2.3 Dimensionality Reduction

The discussed feature computation processes result in 31 features for each timebase

synchronized processing window. In early work [185], sequential forward search (SFS)

has been used to obtain a feature subset of 8 dimensions applied to the Kinect features

performed on QuickCog platform using the qOV measure. In this case study, more

variations of the DR process for DeCaDrive are implemented by employing all available

feature reduction methods of the current DAICOX architecture. Particularly, the richer

choice of feature assessment function is incorporated for the search procedure. The multi-

objective assessment function is identical to the previously discussed LoX design cases

(see Eq. 6.1). In addition to automated solution selection, the intuitive result reporting

via box plot illustrated in Fig. 120 will help the designer in choosing a relevant DR

method for a processing chain. The randomly sampled 10% of the data set was used

for training procedures, while the remaining was used for generalization procedure. 5-

fold cross validation was employed for model analysis and model selection. In this

design instance, the sequential methods have shown their efficacy when dealing with

moderate dimensionality data. Feature map plots shown in Fig. 121 to 123 can also be

used to investigated the performance of the DR process. The SFFS discovered the best

quality feature subset with regard to the employed multi-objective criteria, however, the

standard deviation was also the highest, whereas feature weighting approaches provided

relatively better average result with small deviation. The best feature subset discovered

for each approach was selected to being used in the classification design process explained

in the next section.

Table 35: DR process results of DeCaDrive data

Method Feature Quality qoverall Reduction Rate (%) tsearch[sec.]

Feature Selection

SFS 0.547(0.031) 27.7%(7.5%) 41.78(1.95)

SBS 0.501(0.018) 56.8%(25.4%) 54.49(5.46)

SFFS 0.520(0.038) 20.6%(1.6%) 66.92(5.55)

SBFS 0.488(0.012) 67.1%(11.8%) 89.35(4.51)

GA-FS 0.489(0.019) 67.7%(14.7%) 35.86(2.05)

PSO-FS 0.461(0.005) 56.8%(12.0%) 39.96(0.20)

Feature Weighting
GA-FW 0.518(0.022) 94.2%(2.4%) 43.49(0.60)

PSO-FW 0.512(0.015) 61.3%(18.1%) 64.94(4.68)

Results obtained with fixed random seed number = 12081983
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Figure 120: Overall feature quality results of the DR design process for the DeCaDrive
data set

6.2.4 Classification

Classification is the vital process of the DeCaDrive system, that fuses the computed

multi-sensory information to predict the driver’s drowsiness state. Three drowsiness

levels are defined; Active, Transition, and Drowsy state, which were used to label every

recorded data instance. The current DAICOX architecture can serve in automating the

classification design process with less effort and experience requirement. The classifier

used in the conventional work [27] was built upon a multilayer perceptron (MLP) with

manual model selection and parameterization. In this case study, four classification

methods were selected to the automated classification design process with parameter

optimization and automated model selection. The list of selected classifier consists of

kNN, RNN, SVM-C and H-SVM, where the parameter optimization tasks employ GA

and PSO. The data set separation and model analysis have the same configuration as

used in the DR design process.

The average classification accuracy results are given in Table 36, where the average

classification time results are given in Table 37. All classification designs were performed

in both manual and automated design approach by using advanced DAICOX design

concept. The experimental results in this case study are obtained by the classifiers

trained with only 2.5% of the amount of data used in the previous work [27] which

applied 8 out from 10 folds for training. The reduced number of training samples reflects

better generalization performance while the accuracy may have to be traded-off but the

classifier will be robust to large deviations. The classification performance and the

general result validity of the DeCaDrive case study is strongly influenced by the rather

limited database and the somewhat subjective ’Ground truth’ definition of the data.
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Figure 121: Feature map of the the DeCaDrive data set with full features

Figure 122: Feature map of the the DeCaDrive data set with AFS features

Figure 123: Feature map of the the DeCaDrive data set with AFW features
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DAICOX outperformed the conventional manual design approach [27] in all cases in

terms of classification performance and design effort. The highest classification accu-

racy was achieved by the H-SVM with applied AFS. The classification time is also an

important issue, as the aim of the project is to classify driver state of drowsiness in real-

time. Thus, prototype based classifiers may store substantially large number of reference

vectors as to get the best fit model. The time used for a classification depend mainly on

method’s computations and the number of stored prototypes as can be seen if Table 37.

The highest classification time method is k-NN due to all training samples are stored to

the classification model, whereas the fastest classifier is SVM. RNN significantly reduced

the classification time, while improving the classification performance compared to k-

NN. Concluding from the obtained results, the standard SVM can be a good candidate

for real-time classification purpose. The extension of the H-SVM approach by using

distributed computation will result in better classification accuracy with the same speed

as the conventional SVM.
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Figure 124: Processing structure of DeCaDrive system with hierarchical classification

Table 38 contains classification results obtained from the classifiers generated from the

same training data size in accordance with the early work [27] as to investigate the

performance comparison of automated design approach and the manual design. The

optimized processing chain for the drowsiness detection system has been obtained using

the DAICOX automated design environment and encapsulated in a DAICOX run-time

executable file. The on-line pattern recognition process of the DeCaDrive incorporates

an optimized solution into a comprehensive software environment structures as shown

in Fig. 125. In the design optimization layer, a processing chain, e.g., graph based in

visual programming, can be given from scratch by a designer or chosen from previous

design solutions. The design optimization of DAICOX sequentially evolves the chain by

automatically adjusting method parameters and selecting the best performance method

of each building block. Then the optimized processing chain can be exported into a
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Table 36: DeCaDrive classification results of reduced training data

Conventional DAICOX

Method
Feature Set

Full Full AFS AFW

kNN 72.34%(0.25%) k = 5 76.39%(0.28%) k = 18 88.72%(0.14%) k = 20 75.72%(0.28%) k = 20

RNN 69.84%(0.37%) k = 5 71.43%(0.31%) k = 24 85.13%(0.19%) k = 11 67.61%(0.33%) k = 21

SVM 77.51%(0.44%) 80.35%(0.24%) 85.53%(0.19%) 80.45%(0.24%)

H-SVM - 86.60%(0.18%) 89.21%(0.15%) 84.18%(0.20%)

Table 37: DeCaDrive classification time in [µs]

Conventional DAICOX

Method
Feature Set

Full Full AFS AFW

kNN 351.75(11.42) 353.15(13.22) 225.87(8.66) 200.23(7.57)

RNN 166.61(6.09) 163.64(5.90) 55.24(2.84) 68.76(2.30)

SVM 32.71(3.14) 32.63(3.21) 10.72(1.55) 7.23(0.47)

H-SVM - 330.76(9.20) 163.83(2.33) 138.34(4.77)

Results obtained with fixed random seed number = 12081983

Table 38: Comparison of the solution obtained by DAICOX and the manual approach
from the early work

Full AFS AFW

Li’s approach [27] (Manual) 99.22% 99.60% no report
DAICOX (used 8 of 10 data folds for trainig) 99.48% 99.66% 99.66%

DAICOX run-time executable file, which can be later utilized and integrated as a multi-

sensory cognition processing part of a practical software system. In the DeCaDrive

project, a designed solution was integrated to a real-time graphic user interface software

for live-classification demonstration purpose. An additional part of the software is the

library linker, adapted by using BOOST [187] for Python, which associates the Kinect

data acquisition part developed using on C++ to the provide real-time data streams for

the processing chain. Thus, this is an instance of the flexibility and seamless operation

of DAICOX solution integration with multiple platform/programming languages.
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Figure 125: Block diagram of DAICOX solution integration for the on-line DeCaDrive
system

Solutions of improved performance have been obtained by using DAICOX. Classification

results of 99.48% for the full data and 99.66% for the AFS case are the outcomes from

effective meta-heuristic optimization under the identical conditions to Li’s work [27]. It

should also be noted that, the same amount of work and effort of configuring and finding

parameters in Li’s works [27, 185], which took months to complete, using DAICOX to

automatically design the same problem, the design effort minimized to few lines of

Python script and small number of steps on the visual programming, which can be

done approximately within an hour, and let the design optimization searching for the

solution. The searching time in the optimization is the only main time consuming

part of the design, which can be reduced by using more powerful computation units or

distributed computing machines. Thus, DAICOX has proven itself in this case study as

a fast and effort-reduced yet productive and well-performing intelligent system design

environment.
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6.3 DAICOX Automated Design Support for Magnetic Lo-

calization System

In this last case study, the DAICOX architecture has been used to facilitate a design

problem of ISE’s indoor magnetic localization system [59]. In contrast to common in-

door localization techniques, e.g., radio signal based using Received Signal Strength

Indicator (RSSI), the system uses artificially generated magnetic fields from fixed po-

sition copper wound coils. The inspiration for this approach is to serve the operation

in industrially relevant scenarios, in particular, the localization of submerged sensory

nodes in stainless-steel fermentation tanks in brewery industry, where radio signal based

approaches may be impractical due to high signal absorption in liquid media, which can

be alleviated by using very low frequency or even DC magnetic field. The currently

developed system consists of a central soft-computing and control unit, a electronic coil

switching controller and a high current power supply, magnetic field generation coils

fixed in reference positions of the measurement chamber, and autonomous multi-sensor

wireless sensor nodes as illustrated in Fig. 126. The generated quasi-DC magnetic field

of a certain pulse width, i.e., DC plateau, is acquired by 3-axis AMR sensors equipped on

the sensor node. The distance between the source (coil) of the field and the sensor node

is estimated from the received magnetic field strength. Combining the distance infor-

mation from several known-position coils, a 3-dimensional position can be determined

by using triangulation or multi-lateration techniques. Advanced mapping approaches

have been presented in [59], which significantly improved the accuracy and robustness

of the localization mechanism. The comprehensive operation details as well as imple-

mented computational techniques can be found in [59, 123]. Hardware settings and

configurations are repeated in Table 39.

Data Acquisition/Logging,Data Acquisition/Logging,
Soft-Computing,Soft-Computing,
Coil Switching Control,Coil Switching Control,
Visualization, and Visualization, and 
Graphic User InterfaceGraphic User Interface

Coil Switching Control SequencesCoil Switching Control Sequences

Coil Switching Drivers and Power UnitCoil Switching Drivers and Power Unit

Measurement ChamberMeasurement Chamber Central Computing/ControllerCentral Computing/Controller

Wireless    NetworksWireless    Networks

Multi-SensorMulti-Sensor
Wireless NodeWireless Node

To Coils To Coils 

Figure 126: Block diagram of the magnetic localization systems
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Table 39: Technical details of magnetic localization demonstrator used in this case
study

dimensions [cm] R12xH60 sensor type AFF755
number of coils 6 DAQ system XMEGA 256A3
coil diameter [cm] 12 ADC resolution 12 bit
number of windings 120 No. of readout/plateau 128
coil current [A] 3 No. of positions 44
coil placement spherical num. of coil rings 2

Expected Measurement Window at 
Wireless Sensor Node

Coil Current Supply Duration

Coil 1
Forward Current 

Idle 
Gap

Coil 1
Reverse Current 

Coil 2
Forward Current 

Idle 
Gap

Repeat The Sequence 
until Coil 6 

Figure 127: Coil switching logic sequence of the first two coils.

6.3.1 Timebase Synchronization for Magnetic Localization based on

Pattern Recognition Approach

The discussed distributed sensor node magnetic localization system crucially depends

on the knowledge of the timing of each coil’s activation on each wireless sensor node.

As the coils are sequentially driven in a standard defined pattern, the sensor read-

out timing has to be matched with the coil activation time windows (see Fig. 127). A

misaligned read-out timing can result in erroneous signal interpretation and a significant

deviation in estimated sensor positions, thus, on-line independent synchronization, i.e.,

self-synchronization is required.

In the recent development of the localization system, we presented a classification based

synchronization system as an alternative to conventional approaches [188]. The design

task involved in pattern recognition design process, which DAICOX came in to facili-

tate the design. The main function of the synchronization process is to determine the

temporal occurrence of the first coil sequence by detecting the edge shape signal of the

generated magnetic field mimicking the same principle applied in magnetic recording

application [189]. By this, we adapted pattern recognition techniques to detect edges

in a certain processing window size, and, if an edge is detected, estimated timing from
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the window position will be used to adjust the sensors’ clock for next measurements.

The overview of proposed on-line synchronization mechanism is elucidated in Fig. 128.

The raw input data is represented by 2,500 ADC samples, i.e., processing window, with

100-sample sliding step. The window size setting was determined from a preliminary

study of classification performance over the processing window size as shown in Fig. 130,

where it is the point that classification rate begins to stable. Every new 100 samples,

the edge detection is performed, which consists of a feature computation task and a one-

class classification. The window position will be used to estimate the temporal position

of a detected edge and then update the measurement timing.

6.3.2 Dimensionality Reduction

At every processing window, the processing of a raw ADC data stream will be performed

by selected Signal Processing (SP) and Feature Computation (FC) methods as listed in

Table 40. Several methods can be combined in a processing chain, which was obtained

by using the automated SP and FC design toolbox, where a set of selected method

combination and optimized parameters were acquired with reduced design effort. The

method selection procedure was performed by using GA as search operators and the

same feature quality assessment used in the previous case studies measures qoverall (see

Eq. 6.1) as an assessment function. The optimized processing chain and parameters are

given in Table 41 where the average values from 10 runs of all design variable (method

selection and parameterization) were used to determine the final solution. Numerous

variations of processing chain formation and parameter setting have been discovered

from the design optimization process. The final selected method combination was chosen

based the highest number of occurrences, thus, LDA and PCA were selected to construct

the optimized processing chain for signal precessing and feature computation.

Table 40: List of available signal processing and feature computation methods

Method Description Parameter Range

Stat
Data Statistics, including mean, median, std.,
and variance.

-

Polyfit Compute polynomial function coefficients [1,8]

HIST Histogram bin [2,20]

GausSmooth Gaussian filter smoothing function order [0,3], σ [0,10]

FFT
Time to frequency domain
transformation

-

PCA PCA feature computation No. of PC [1,20]

LDA LDA feature computation No. of projections [1]
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Table 41: Average of the best design solutions of 10 runs

Method Parameters
PCA No. of PC = 20
LDA No. of projections = 1

Table 42: Feature space quality comparison

Original Features
Raw ADC Stream

All Methods Selected
manual parameterization

DAICOX
optimized processing chain

qoverall 0.623 0.450 0.778
Results obtained with fixed random seed number = 12081983

6.3.3 Edge Classification Design

Four one-class classification methods have been employed for edge recognition task. The

training procedure of classification model generation was performed with a supervised

and labeled data set, which contains 40 samples of actual edge signal and 68 samples

recorded without coil activations. The first are affiliated as “Active” and the latter are

affiliated as “Idle” where the “Active” class instances are used to create classification

model, i.e., target or normal class. The mapped feature space plot of the data is shown

in Fig. 129, which indicates better separation in the computed feature information. The

classification performance of the design phase of all methods are given in Table 43. The

results are obtained by using 3-fold cross validation. The “Idle” instances were used

to evaluate the rejection performance. Automated classifier threshold determination

proposed in Section 5.3.2 was performed by using AUC information to find an optimal

decision threshold for a particular classifier.
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Figure 128: Processing structure of classification based edged detection system for
measurement synchronization.
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Figure 129: Feature space plot of the labeled data set for training procedure. The
blue dots are the data collected from ”Idle” state and the red dots are the data collected

from ”Active” state.

Table 43: Classification performance in the design phase

Method True Positive (%) True Negative (%)

NN-D 98.0 (2.0) 78.0 (1.0)

OC-SVM 99.0 (5.0) 90.0 (3.0)

NOVCLASS-R 100.0 (0.0) 97.0 (4.0)

NOVCLASS 100.0 (0.0) 96.0 (4.0)

6.3.4 Simulated Real-Time Edge Classification

The results in Table 43 represent the preliminary investigations of the capability of the

OCC methods in detecting edge signal within the labeled data set. In the next step,

elaborated experiments were performed by simulating the real-time operation of the

proposed edge detection system. Three recorded AMR sensor data streams of 160,000
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Figure 131: Simulated real-time edge classification results of recorded data stream at
a position near a corner of the test chamber
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Figure 132: Simulated real-time edge classification results of recorded data stream at
the center of the test chamber

samples and each were used as simulated real-time signal feed into the processing win-

dows. The edge detection system performed at every new 100 ADC samples, therefore,

1,575 classifications were performed in each data stream. 72 actual edges are contained

in the data streams and are associated with recorded coil switching signal in a separated

channel, which is used as ground truth for performance evaluation. Figure 131 and 132

illustrate a plot of the first section of the AMR sensor data stream in the top strip

with edge detection results in the lower strip, where the markers show dection results

of employed OCC methods. The coil switching signal curves can be used as a reference

to determine miss detection, i.e., false negative, and the timing error of the estimation.

The summarized detection performance are given in Table 44.
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Table 44: Edge detection performance of the simulated real-time scenarios

Method 72 Actual Edges Timing Error

[µs]
Detected Edges Missed Edges

Spurious

Detections

NN-D 43 29 5 176.5

OC-SVM 52 20 8 194.4

NOVCLASS-R 41 31 2 162.8

NOVCLASS 50 22 1 142.2

In Fig. 131 the data was obtained at a position close to the first coil’s pulse, which

produced the clear edge shape signal as represented in the first two pulses in the data

curves. All recorded data streams contain a level of background noise and spurious

pulses, which is shown in Fig. 132 for a more extreme case. The robustness of the edge

detection system can be proven in this circumstance. The overall results indicate the

potential capability of using classification based edge detection system in part of on-line

synchronization mechanism. The timing error of the estimated edge location compared

to the actual coil switching signal can be an important issue for future development,

where a remapping approach can be employed to compensate multiple edges themselves.

The discovery of the first edge is also necessary for re-adjusting sensors’ clock. An

undetected first edge leads to incomplete timing information especially when the last

pulses are also undetected. The different pulse width or pulse gap can be defined as an

identity of a particular coil so that the timing between two consecutive edges can be

used to identify a coil in the sequence. Then, by this piece of information, the temporal

position of the first pulse can be consistently estimated for appropriately resynchronizing

the measurement timing.

The design effort in this case study was determined just by the selection and labeling

of the training data set, which is common in typical classification design tasks. The pa-

rameter tuning tasks were done by DAICOX as well as the model analysis for selecting

an optimized classifier of each method. Table 45 compares overall classifications results

of the solution obtained manually and by using DAICOX in the simulated real-time

scenario. The manual design approach was performed without classification threshold

tuning and model analysis. It is clear that all design cases performed by DAICOX

produced better performance solutions. This is due to the fact that the generalization

performance of OCC methods strongly depends on a decision threshold, which is dra-

matically different in the OC-SVM case. In DAICOX, an automatic determination of a

relevant and generalized threshold setting is supported.
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Table 45: Comparison of generalization edge detection results by using DAICOX
compared to manual approach

Manual [59] DAICOX

CA (%)
Timing Error

[µs]
CA (%)

Timing Error

[µs]

NN-D 91.01 239.8 97.65 176.5

OC-SVM 72.43 361.84 98.98 194.4

NOVCLASS-R 91.24 182.4 98.85 162.8

NOVCLASS 94.32 157.9 99.23 142.2

The investigation of pattern recognition based timebase synchronization system has

proven the feasibility of DAICOX, where high detection performance was achieved.

DAICOX has been used to automatically design the pattern recognition methods through-

out the complete processing chain and find the best suited one. The applicability of using

DAICOX for this application instance can be listed below.

� The design effort has been significantly reduced in comparison to the previous

work [59], that was manually developed on MATLAB platform [59].

� The dependence of achievable solution quality and performance on the designer’s

knowledge and expertise has been reduced.

� Visualizations of DAICOX provide better understanding to the designer in order

to enhance the solution obtained from automated process.

Summarizing from the highlighted advantages, in accordance with the previous case

studies, the outcomes in this case study emphasize the aptness and advantage of using

DAICOX in broad applications.
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6.4 Discussion

DAICOX was successfully applied to three real-world practical application case stud-

ies and results equal or superior to the existing manually designed solutions could be

demonstrated. The presented experiments have been conducted with the automated

design process features of DAICOX given in the following.

� Automated method optimization of a complete processing chain

� Automated method selection and processing chain combination

� Optimization of feature computation and signal processing methods’ parameters

and automated method combination

� Design optimization from choices of methods with multi-objective optimization

� Design performance visualization and visual programming

The reported results indicate the significance of employing DACOX for automatically

design intelligent multi-sensor systems in delivering good quality solutions. The design

effort has been reduced in several cases as a result from the automated design process,

design optimization, visual programming, and information visualization features. The

design assistance environment of DAICOX help accelerate technical cognition applica-

tion designs with less knowledge requirements from the designer. These achievements

partially fulfill the goals of the complete DAICOX architecture, where numerous im-

provements will be in the next steps of developments. In particular, intrinsic optimiza-

tion concept and self-x properties will be in the focus to obtain well tailored and fully

robust solutions for multi-sensor cognition applications. In addition, open issues for on-

going and future development, e.g., graph-based processing chain breeding optimization

will also be pursued next.
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Summary and Conclusion

The emerging intelligent and distributed technologies, e.g., IoT/IIoT, AAL/AmI, In-

dustrie 4.0, and CPS/CPPS have a strong and increasing need for integrated intelligent

multi-sensory cognition systems in rich diversity and rapid availability [1, 2]. However,

the majority of design approaches of such systems are human expert based, which is

prone to suboptimal results, time consuming, and costly. To tackle these issues, the

design automation for intelligent integrated multi-sensor systems has been pursued and

presented in the thesis.

The Design Automation for Intelligent COgnitive system with self-X properties: DAICOX

architecture has been conceived with the aim to reduce the design effort and provide high

quality and robust solutions. The goal of the proposed DAICOX architecture consists of

multi-objective design optimization algorithms, a collection of pattern recognition meth-

ods, intuitive design environment for fast and transparent application developments. In

particular, dynamic reconfiguration, intrinsic evolution, and self-x properties concepts

are aimed on to be integrated into hardware instances for providing dependable and

robust measurement system solutions.

Summarizing from the outcomes of the research work, due to the complexity of the task

in the research work, neither all of the established goals have been achieved yet nor

has the complete architecture definition been fully implemented. From the developed

tool, framework, and conducted real-world application case studies, the outcomes and

the novel contributions are listed in the following outlines. Together, according to the

investigated state of the art research and tools in the same area of the thesis interest,

Table 46 and 47 show the features of the currently implemented DAICOX architecture

outlined by the same criteria of the survey as presented in Chapter 3 (see Table 2 and

Table 3), where the highlighted cells indicate better features compared to the best feature

available in the state of the art. In Section 7.1, the key results and novelties will be

summarized, and in Section 7.2, the potential future improvements and open issues of

166
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the developed framework and tool are discussed.

7.1 Outcomes and Novel Contributions

� A comprehensive intelligent multi-sensor system design architecture with auto-

mated method selection, parameterization, and model analysis was developed.

� The design automation is incorporated with multi-objective meta-heuristic design

optimization, that provided high performance solutions and outperformed stan-

dard conventional design results as listed below.

– 5.4% better classification rate in average in the LoX application designs.

– Outperformed classification rate (99.66%) of the early system (99.60%) in the

DeCaDrive case study.

– 11.4% classification rate improvement in the magnetic localization case study.

– Reduced human (expert) resource consumption by 81.8% compared to conventional

approach in the LoX case study.

� A number of developed methods and variations have been presented including:

– Automated processing chain construction and parameterization for signal processing

and feature computation.

– Advanced dimensionality reduction methods, e.g., feature weighting based on GA

and PSO with multi objective feature quality assessment.

– A novel modification of a non-parametric compactness measure for feature space

quality assessment.

– Decision level sensor fusion architecture based on hierarchical classification approach

using SVM, i.e., H-SVM.

– A collection of one-class classification methods and a novel algorithm variation, i.e.,

NOVCLASS-R, for resource reduction.

– Automated design toolboxes supporting front to back design with automated model

selection and information visualization.

� An intuitive design environment for multi-sensor cognition applications is devel-

oped, which includes visual programming concept and design visualizations.

� Knowledge base and reuse of previously designed solutions for further elaboration

and extension, as well as serving as seed solutions to speed-up the design of new

applications.

� Extendable modular method libraries and toolboxes developed in complying with

open-source multi-platform software.



Table 46: DAICOX features with regard to the criteria investigated in the state of the art survey

Sensor Type and
Interface Type

Sensory Data
Format

Dimensionality
Reduction

Data Analysis
and Mining

Decision Making /
Learning

Optimization/
Learning

Knowledge Rule
Import/Export

DAICOX

Generic Multi-Sensor
DAQ, Sensor Networks

and
Load From Database

Heterogeneous,
Multi-Channel

Feature Computation/
Feature Selection/
Feature Weighting

X
H-SVM and OCC

Automated
(Based on k-fold CV)

GA and PSO Based
Multi-Objective

Import/Export

Best of
SoA

Sensor Node
Generic Sensors [8]

Heterogeneous,
Multi-Channel

[5–8, 15]

Feature Selection
Feature Extraction

[3, 13, 14]

X
Multi-Class Classification

[3, 4, 6, 7]
[9, 12–15]

Automated
(Based on k-fold CV)

[3, 12]

GA and PSO Based
Multi-Objective

[12]

Import/Export
[10]

Table 47: DAICOX features with regard to the criteria investigated in the state of the art surveycont.

Operating Platform/
Dependent Tool

License Visualization
Graphical

Programming
Expendable Library

/Programming Language
Reusable/

Executable Solution
self-x

DAICOX
WIN,MAC,Linux

with Python
Open-Source

Signal and Feature Space
Visualization

X
(via Orange Canvas)

X
Python/C++

X
Executable Python Script
and GUI integration

In prototype

Best of
SoA

WIN,MAC,Linux
with Python

[14]

Open-Source
[3, 6–8]

[9, 10, 14]

X
Feature Space

Image Analysis

[13, 14]

X
[6, 7, 9, 15]
[10, 13, 14]

X
Python/C++

[14]

X
[6–8, 15]

[10, 12, 13]

Self-Tuning
[5]
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7.2 Future Improvements of DAICOX

The current state of the research work of the thesis is being pursued towards the complete

DAICOX architecture concept, where the currently implemented tool and framework can

serve as a development vehicle. The list of potential future improvements is given in the

following.

� Extension to a richer choice of methods and algorithms of the method pool, in

particular, signal processing and feature computation.

� Graph-based processing chain breeding and optimization approach.

� Intrinsic optimization in both static and dynamic approach.

� Complete self-x functionalities integration with dynamically reconfigurable elec-

tronics of hardware instances.

� Extension to support industrial applications, in particular, automated intelligent

condition monitoring system design [28, 29, 190] in compliance to the Industrial

Internet of Things (IIoT) and Cyber Physical Production Systems (CPPS) tech-

nologies.

These objectives will consolidate the DAICOX architecture for further contributions to

advanced sensing and measurement technologies, in particular, CPPS, Industrie 4.0, and

IIoT. Based on ISE previous research works, pursued within the last two decades, ongo-

ing enhancements of this thesis, and future improvements, DAICOX has the potential

to become an EDA system for complex applications in diverse application domains, e.g.,

meeting the postulated design support demands of Industrie 4.0, CPS/CPPS, IoT/IIoT,

and general distributed intelligent measurement systems.
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Figure 133: Technological time-line of the state of the art and the commencement of
DAICOX



List of Abbreviations

ADC Analog to Digital converter

AFE Analog Front-End

AFS Automated Features Selection

AFW Automated FeaturesWeighting

AmI/AAL Ambient Intelligence/Ambient Assisted Living systems

ASIC Application Specic Integrated Circuit

AUC Area Under Curve

CA Classification Accuracy

CI Computational Intelligence

CPS Cyber Physical Systems

CPPS Cyber Physical Production Systems

DR Dimensionality Reduction

EC Evolutionary Computation

FC Feature Computation

FE Feature Extraction

GA Genetic Algorithm

GUI Graphic User Interface

HC Hierarchical Classification

IIMSS Intelligent Integrated Multi-Sensor Systems

IoT Internet of Things

IIoT Industrial Internet of Things

k-CV k-Fold Cross Validation

k-NN k-Nearest Neighbor Classification

LDA Linear Discriminant Analysis

LoX/LoS/LoF Lab-on-X/Spoon/Fork

MDS Multi-Dimensional-Scaling

MOO Multi-Objective Optimization

NN-D Nearest Neighbor Description

NOVCLASS Novelty Classifier

OCC One-Class Classification

PCA Principal Component Analysis
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List of Abbreviations 172

PSO Particle Swarm Optimization

RBF Radial Basis Function

RNN Reduced Nearest Neighbor

ROC Receiver Operating Characteristic

SFS/SBS Sequential Forward/Backward Search

SFFS/SBFS Sequential Forward/Backward Floating Search

SP Signal Processing

SVDD Support Vector Data Description

SVM Support Vector Machines

TP True Positive

TN True Negative



List of Symbols

Global definitions, unless otherwise defined

X or x Input data vector

X Input data matrix (data set)

X Possible feature subsets of X

L Number of classes

M Number of Features

N Number of Instances

A Feature transformation function

A Possible set of transformations

J Feature assessment criteria

|X| = d cardinality of X

O Computational complexity

K Kernel function

Support Vector Machine

C Penalty control parameter of SVM [175]

ν Boundary control parameter of SVM

γ Kernel width of RBF kernel function

NOVCLASS

t Reference vector (prototype)

R Radius of reference vector

η Scaling factor

Distance metric

d Distance or dissimilarity function value
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List of Symbols 174

None parametric quality measure

q quality assessment function

dNN Distance of nearest neighbor

ω Class label

δ kronecker delta function

Optimization

x Design variable vector

D Design variable dimensions

f Fitness functions

GA:

Ps Selection rate

µ Mutation rate

PSO:

v Particle velocity

pb Particle best

gb Population best

C1 Social learning factors

C2 Individual learning factors

w Inertia weight



Appendix A

DAICOX Software Toolboxes and

Libraries

This appendix provides technical information for the purpose of practical uses and the

extensions of the developed software of the currently implemented DAICOX. Figure 134

shows the taxonomy of the implemented DAICOX software structure categorized by its

functionality. Each implemented method is provided in form of both Python script and

Orange widget toolbox for visual programming. Using method widgets, the interface

information required by each method are provided in Tab. 50 and Tab 51.
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Table 50: DAICOX toolbox interface

Type/
Widget Interface

Input Interface
Output Interface

Toolboxes
(Named Widgets)

Feature Computation &
Signal Processing Method

Input
� -
Output
� Method Object

- Stats
- Polyfit
- HIST
- FFT
- Normalize
- GausSmooth
- LDA
- PCA

Feature Computation &
Signal Processing Designer

Input
� Training Data
� Data
� Method Object (Multiple)

� Optimization Object
Output
� Processed Data
� Transformed Data

- SP&FC Designer

Feature Selection &
Feature Weighting Method

Input
� Data
� Assessment Object
Output
� Selected Feature Data
� Selected Feature Domain
� Method Object

- SFS
- SBS
- SFFS
- SFBS
- PSO-FS
- GA-FS
- PSO-FW
- GA-FW

Feature Assessment Function
Input
� -
Output
� Assessment Object

- Overlap
- Compactness
- Separability

Multi-Objective Agent
Input
� Assessment Object(Multiple)

Output
� Assessment Object

- Multi-Objective Agent
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Table 51: DAICOX toolbox interface cont.

Type/
Widget Interface

Input Interface
Output Interface

Toolboxes
(Named Widgets)

Dimentionality Reduction
Designer

Input
� Data (Multiple)

� Method Object (Multiple)

� Assessment Object
Output
� Best Solution Data Table
� Best Solution Object

- DR Designer

One-Class Classification
Method Object Input

� -
Output
� Method Object

- NN-D
- OC-SVM
- NOVCLASS

One-Class Classification
Designer Input

� Data Table
� Method Object (Multiple)

Output
� Optimized Method Object

- OCC Designer

Multi-Class Classification
Method Object Input

� -
Output
� Method Object

- kNN
- RNN
- HSVM

Multi-Class Classification
Designer

Input
� Data Table
� Method Object (Multiple)

� Optimization Object
Output
� Optimized Method Object

- Multi-Class Designer

Designed Solution
Recaller Input

� Data Table
� Solution Object
Output
� -

- SPFC Solution Recall
- DR Solution Recall
- Classification Solution

Recall



Appendix B

Parameter Settings

This appendix provides the obtained parameter settings of all conducted experiments.

Table 52: Experimental results and parameter settings of flat SVM for LoX and
DeCaDrive data sets

Data set Flat SVM (full features) Flat SVM with AFS Flat SVM with AFW

C γ C γ C γ

UsedOil 3.45e+03 1e-05 4.83e+03 9.99 3.45e+03 1e-05

Oil 3.45e+03 1e-05 8.21e+03 0.0615 3.45e+03 1e-05

Beer 4.74e+03 10.0 3.28e+03 1e-05 4.74e+03 10.0

7Wine 8.89e+03 7.56 3.45e+03 1e-05 3.45e+03 1e-05

SoyVine 3.45e+03 1e-05 3.45e+03 1e-05 3.45e+03 1e-05

Milk 8.89e+03 7.56 9.56e+03 0.0101 3.45e+03 1e-05

WineGly 5.49e+03 0.0501 3.14e+03 1e-05 3.86e+03 1e-05

Salt 9.45e+03 1.17 9.48e+03 0.54 8.77e+03 1.29

Powder 1.0 1e-05 2.69e+03 0.326 9.96e+03 0.196

DeCaDrive 3640.777 6.015 3433.727 8.650 2640.986 9.353
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Table 53: Hierarchical SVM parameter settings for LoX and DeCaDrive data sets.

LoX case study
Data set Ccolor γcolor Cmag γmag Cphase γphase Cglobal γglobal

Full
Feature

UsedOil 7.71e3 5.45 9.19e3 4.72 4.64e3 8.39 3.22e2 2.7
Oil 7.56e3 9.76 9.91e3 7.56 8.73e3 8.16 7.56e3 7.56
Beer 1.0 1e−5 7.07e2 1e−5 1.0 1.9 1.0 1.6
7Wine 3.35e3 3.03 2.13e3 0.0867 2.92e3 0.589 8.77e2 0.149
WineGly 5.05e3 2.71 6.63e2 1e−5 4.64e3 1e−5 3.14e2 0.0391
SoyVine 3.16e2 2.73 1.02e3 5.89 2.04e3 4.95 9.54e3 2.75
Milk 3.59e2 7.37 2.28e3 0.0188 2.6e3 0.00284 1.08e3 0.138
Salt 4.5e2 7.36 3.11e3 1e−5 3.48e3 1e−5 1.47e3 0.184
Powder 7.9e3 7.56 7.56e3 7.56 7.56e3 8.45 7.56e3 8.32

DeCaDrive case study
CKinect γKinect CDrBhv γDrBhv CDrState γDrState Cglobal γglobal

DeCaDrive Full 5.88e3 9.11 0.1 4.59 1.09e4 2.98 2.78e3 0.857

LoX case study
Data set Ccolor γcolor Cmag γmag Cphase γphase Cglobal γglobal

AFS

UsedOil 4.5e2 7.36 3.11e3 1e−5 3.48e3 1e−5 1.47e3 0.184
Oil 4.68e3 2.66 84.0 9.43 1.95e3 4.27 1.2e2 1.67
Beer 1.0 1e−5 2.12e3 1e−5 1.0 1e−5 1.0 4.81
7Wine 2.91e2 4.58 1.94e3 0.0136 2.16e3 1e−5 3.19e3 0.115
WineGly 5.01e2 2.67 2.38e3 0.0386 2.95e3 0.146 1.1e3 0.153
SoyVine 3.16e2 2.73 1.02e3 5.89 2.04e3 4.95 9.54e3 2.75
Milk 1.47e3 5.54 6.37e3 0.409 4.11e3 1e−5 1.29e3 0.227
Salt 4.5e2 7.36 3.11e3 1e−5 3.48e3 1e−5 1.47e3 0.184
Powder 1.36e3 1e−5 9.32e2 1e−5 1.0 1e−5 1.0 8.17

DeCaDrive case study
CKinect γKinect CDrBhv γDrBhv CDrState γDrState Cglobal γglobal

DeCaDrive AFS 2.7e3 0.356 2.42e4 0.0256 1.32e4 1.45 5.58e2 0.203

LoX case study
Data set Ccolor γcolor Cmag γmag Cphase γphase Cglobal γglobal

AFW

UsedOil 6.73e3 1e−5 4.07e2 8.73 1.0 1e−5 1.0 0.354
Oil 3.16e2 2.73 1.02e3 5.89 2.04e3 4.95 9.54e3 2.75
Beer 8.23e3 8.12 8.75e3 0.143 7.5e3 7.58 7.5e3 0.0709
7Wine 1.94e3 1.59 2.41e3 2.08 2.58e3 1e−5 1.09e3 0.284
WineGly 2.99e2 3.56 1.65e3 0.00327 3.11e3 1e−5 8.64e2 0.137
SoyVine 9.3e3 0.582 4.74e2 0.208 1.17e3 8.24 8.53e3 0.926
Milk 1.0 1e−5 1.0 6.01 3.64e3 1e−5 1.0 1.12
Salt 3.16e2 2.73 1.02e3 5.89 2.04e3 4.95 9.54e3 2.75
Powder 5.18e3 3.88 3.44e3 0.0946 4.15e3 6.41 1.45e3 0.481

DeCaDrive case study
CKinect γKinect CDrBhv γDrBhv CDrState γDrState Cglobal γglobal

DeCaDrive AFW 5.72e3 1.72 1.65e4 6.48 1.22e4 4.1 1.26e4 3.55
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