
Advantage of Filtering for Portfolio
Optimization in Financial Markets

with Partial Information

Vom Fachbereich Mathematik der Technischen Universität
Kaiserslautern

zur Verleihung des akademischen Grades Doktor der
Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.)
genehmigte Dissertation

vorgelegt von

Leonie Maria Ruderer

Die Arbeit wurde angeleitet von Prof. Dr. Jörn Sass, TU Kaiserslautern, und
zudem begutachtet von Prof. Dr. Ralf Wunderlich, BTU Cottbus-Senftenberg.

Datum der Disputation: 4.12.2015

Fachbereich Mathematik

D 386





This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. Noncommercial uses are thus permitted
without any further permission from the copyright owner.
See https://creativecommons.org/licenses/by-nc-sa/4.0 for more information
on what that means.



Abstract

In a financial market we consider three types of investors trading with a finite
time horizon with access to a bank account as well as multliple stocks: the
fully informed investor, the partially informed investor whose only source of
information are the stock prices and an investor who does not use this infor-
mation. The drift is modeled either as following linear Gaussian dynamics
or as being a continuous time Markov chain with finite state space. The
optimization problem is to maximize expected utility of terminal wealth.
The case of partial information is based on the use of filtering techniques.
Conditions to ensure boundedness of the expected value of the filters are
developed, in the Markov case also for positivity. For the Markov modulated
drift, boundedness of the expected value of the filter relates strongly to port-
folio optimization: effects are studied and quantified. The derivation of an
equivalent, less dimensional market is presented next. It is a type of Mutual
Fund Theorem that is shown here.
Gains and losses eminating from the use of filtering are then discussed in
detail for different market parameters: For infrequent trading we find that
both filters need to comply with the boundedness conditions to be an advan-
tage for the investor. Losses are minimal in case the filters are advantageous.
At an increasing number of stocks, again boundedness conditions need to be
met. Losses in this case depend strongly on the added stocks. The relation
of boundedness and portfolio optimization in the Markov model leads here to
increasing losses for the investor if the boundedness condition is to hold for
all numbers of stocks. In the Markov case, the losses for different numbers
of states are negligible in case more states are assumed then were originally
present. Assuming less states leads to high losses. Again for the Markov
model, a simplification of the complex optimal trading strategy for power
utility in the partial information setting is shown to cause only minor losses.
If the market parameters are such that shortselling and borrowing constraints
are in effect, these constraints may lead to big losses depending on how much
effect the constraints have. They can though also be an advantage for the
investor in case the expected value of the filters does not meet the conditions
for boundedness.
All results are implemented and illustrated with the corresponding numerical
findings.



Zusammenfassung
Wir betrachten drei Arten von Investoren, die in einem Markt mit stochas-
tischer Drift, zum einen einer Markov Kette oder einer linear Gaußschen
Dynamik, handeln. Der eine Investor ist voll informiert, einem partiell in-
formierten sind nur die Aktienpreise bekannt und ein dritter nutzt diese In-
formation nicht. Sie haben die Wahl zwischen mehreren Aktien und einer
risikofreien Anlage und ihr Ziel ist es den erwarteten Nutzen des optimalen
finalen Portfoliowerts zu maximieren.
Bei partieller Information kommt Filtern zum Einsatz. Dazu werden zunächst
Bedingungen an den Erwartungswert der Filter hergeleitet, um zum Beispiel
Beschränktheit des Diskretisierungsschemas zu gewährleisten. Der Markov-
Filter muss zusätzlich auch positiv sein. Für diesen wird eine weitgehende
Verbindung zur Portfoliooptimierung hergeleitet. Deren Effekte werden un-
tersucht und quantifiziert. Diese Überlegungen führen zu einem äquivalenten
Markt niedrigerer Dimension. Eine Art Mututal Fund Theorem wird dort
bewiesen.
Im Anschluss werden Gewinne und Verluste durch Filtern in verschiedenen
Marktsituationen behandelt. Handelt der Investor nur selten, so ist das Fil-
tern von Vorteil, falls die Bedingungen an die Beschränktheit erfüllt sind.
Dann verursacht seltenes Handeln aber nur geringe Verluste. Auch für stei-
gende Anzahlen an Aktien im Portfolio muss die Beschränktheit beachtet
werden. Der Zusammenhang zwischen Beschränktheit und Portfoliooptimie-
rung im Markovmodell führt hier zu hohen Verlusten, falls die Beschränktheit
für alle Aktienanzahlen gegeben sein soll. Im Markovmodell treten nur sehr
geringe Verluste auf, wenn mehr Zustände für die Markovkette angenommen
werden, als im tatsächlichen Modell vorhanden waren. Werden allerdings
weniger Zustände angenommmen, so kommt es zu hohen Verlusten. Auch
wird im Markovmodell die Auswirkung einer Vereinfachung der komplexen
Gestalt der optimalen Handelsstrategie für partielle Information und Power-
Nutzenfunktion untersucht: Es kommt nur zu vernachlässigbaren Verlusten.
Gibt es Beschränkungen der Strategie, so kann es zu sehr hohen Verlusten
kommen. Dies hängt davon ab, wie oft und stark die Beschränkungen zu
Veränderungen der Strategie führen. Solche Beschränkungen können auch
von Vorteil sein, falls zum Beispiel der Erwartungswert der Filter nicht be-
schränkt ist.
Alle Resultate sind implementiert und werden mit numerischen Ergebnissen
illustriert.
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tionszeit ohne Pause kompromisslos beigestanden: Meinen Eltern und Groß-
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1 Introduction

In this work we consider an investor trading in the stock market with given
initial capital. He has access to a bank account as well as a number of stocks
and can trade up to some finite time. His goal is to maximize the expected
utility of terminal wealth.

The drift is modeled either as following linear Gaussian dynamics or as being
a continuous time Markov chain with finite state space. Apart from the fully
informed investor we also consider one whose only source of information are
the stock prices, which is a quite natural assumption, and the one who has
no information at all. The investor with only access to stock prices is called
partially informed. This lack of information is reflected in a smaller filtration
and the necessary quantities are expressed by filters, especially those for the
drift.
Throughout this work we address the issue of bankruptcy and the circum-
stances where it occurs.

The general topic of portfolio optimization under partial information has
already been studied in detail for different models for the drift.
Lakner considered a stochastic drift and studied the optimal portfolio as well
as the optimal trading strategy in his work [17] and especially for a Gaussian
drift in [18]. The filter for the drift in this model is the well known Kalman
filter.
The case of partial information with the drift modeled as a Markov chain
leads to a Hidden Markov Model. Bäuerle and Rieder used a Markov mod-
ulated unobservable drift in [21] and solved the corresponding Hamilton-
Jacobi- Bellman equation. In [24] the drift is also modeled with a Markov
chain by Sass and Haussmann, but the martingale method is being applied
and the optimal trading strategy computed.
The case of the Markov modulated drift uses the Wonham filter and filters
introduced by Elliott in [10] which were then robustified following Clark’s
work [6] and discretized by James, Krishnamurthy and Le Gland in [14].

In the case of partial information parameters are unknown and can be esti-
mated with an algorithm described by Elliott and Krishnamurthy in [11] for
the Gaussian case and the algorithm proposed by [24] for the Markov drift
which is based on a work by Dembo and Zeitouni [8].
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These filters intuitively lead to a result for the partially informed investor
somewhere inbetween the fully informed investor and the investor without
information: if it were no better than the case without information it would
be an unnecessary computational effort and the result with full information
cannot be reached with less information. Nevertheless there are market sit-
uations in which filtering in fact does not contribute valuable information as
well as those where the partially informed investor reaches a distinctively bet-
ter result than in others when compared to the fully informed investor. Such
situations will be discussed in detail, the different market settings include
infrequent trading, a varying number of stocks and shortselling constraints.
During this discussion the topic of filter performance plays a central role:
the expected value of the filter should be bounded and in the HMM case
also preserve positivity to be a useful approximation of the drift. We show
that this is not always given, especially when considering infrequent trading.
It also depends on the number of stocks and the nature of the stocks involved.

These results on filter performance are then put into relation with portfolio
optimization. It becomes apparent that these two issues are closely related,
mostly steered by the same matrix in the Hidden Markov Model.
This diagonalization of this matrix then leads us to a market reduction which
is a formulation of a type of Mutual Fund Theorem in this Hidden Markov
Model. It describes time independent funds in which the trader invests in-
stead of the higher number of stocks that were in the original portfolio with
the same expected utility of optimal terminal wealth. A more general Mutual
Fund Theorem can be found in [25], but that fund is then time dependent.

The basic question in the final part of the work is how much money a not
fully informed investor needs to invest to reach a terminal wealth comparable
to the fully informed investor’s. Since we usually regard the expected utility
of the optimal terminal wealth, the difference in the initial capital is called
the loss in utility. The idea of computing the loss in utility was brought up
by Rogers in [22], although he did not consider the models that are studied
here. Brendle developed this idea further for Gaussian drift in [5].
This not fully informed investor comes in various degrees: first we consider
the partially informed investor from before. In this framework we then apply
the definition of the loss in utility for the first time and present the compu-
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tations and results.
Then this not fully informed investor is relaxed, i.e. he trades infrequently.
In [22], the relaxed investor is treated as well and the idea was translated
into the partial information setting by Bäuerle, Urban and Veraart in [3].
The next issue is the number of stocks available to the investor. We discuss
among others the influence of the number of stocks on the variance in the
portfolio and the behaviour of the loss. High dimensional portfolios were also
the topic of Gandy and Veraart in [12] although they did not consider the
problem under the aspect of loss and not in the two models that are used
here.
Due to the complex nature of the expressions for the optimal trading strategy
we then consider the loss that arises if the trading strategy is approximated
by much simpler terms.
For the Markov modulated drift we also observe the effect of a varying num-
ber of states in the case of partial information.
Finally we discuss the consequences of shortselling and borrowing constraints.
This requires a second method to compute the loss that includes the trad-
ing strategy. For the computation of the constrained trading strategy we
apply known methods for models with only one stock and models with mul-
tiple stocks with logarithmic utility and extend the multidimensional case
to power utility. A condition on the parameters used in computations such
that the constraints come into effect is also included. The topic of trading
infrequently under shortselling and borrowing constraints is being discussed
as well. In [3] constraints on shortselling and borrowing were also included.
These constraints were introduced by Cvitanic and Karatzas in [7] and ap-
plied to the Markov model using the martingale method by Sass in [23].

All these considerations are illustrated in detail by numerical results includ-
ing parameter estimation and its difficulties in the different settings.

This work is structured as follows. In chapter two we start with the pre-
sentation of the market model, the models for the drift and the general
guidelines we used for numerical evaluations. The optimization problem is
being discussed in chapter three where we derive the explicit expressions for
the optimal terminal wealth and the trading strategy. In that chapter the
topic of bankruptcy is introduced and then comes up with regard to the var-
ious changes in the model in chapters four and five. The filter performance
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and its connection to portfolio optimization are the topic of chapter four
which also contains the discussion of the filter in various market settings and
the market reduction. The loss in utility is then defined in the fifth chapter
and it is being computed for various changes in the market parameters as
well. The first case is the one of partial information, followed by infrequent
trading. With this relaxed investor we analyze difficulties in the bounded-
ness and positivity of the filter. Next an increase in the number of stocks
is considered, leading to a discussion of the variance in the portfolio and of
the general shape of the loss. We continue with an approximation of the
optimal fraction of wealth invested in the stocks. An increase in the number
of states is being regarded, naturally only for the Markov modulated drift.
The subject is to determine the loss if the number of states in the estimation
for partial information is unknown. Finally shortselling and borrowing con-
straints are treated and the parameters determined where such restrictions
come into effect. We also consider trading infrequently with constraints.
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2 Market Model

In a complete probability space (Ω,A, P ) we have a filtration F = (Ft)t∈[0,T ]
in A satisfying the usual conditions.
We then consider a financial market consisting of one riskless and n risky
assets. The riskless asset is called bond and a risky asset is a stock.
We have a finite time horizon T > 0 and the bond S0 and the stocks
(S1, · · · , Sn)T follow the dynamics

dS0
t = rS0

t dt, S
0
0 = 1

dSt = µt diag(St)dt+ σ diag(St)dWt, S0 = s0 > 0

where r ≥ 0 is the interest rate of the riskless asset. σ is the constant
and nonsingular n × n-dimensional volatility matrix and W = (Wt)t∈[0,T ]
is an n-dimensional Brownian Motion with respect to F . (µt)t∈[0,T ] is the
progressively measurable n-dimensional drift vector.
βt = e−rt, t ∈ [0, T ] denotes the corresponding discount factor and we define
the return process R = (Rt)t∈[0,T ] as

dRt = (diag(St))
−1dSt = µtdt+ σdWt

and the corresponding excess return process R̃ = (R̃t)t∈[0,T ] as

dR̃t = dRt − r1ndt.

Using the above, one can write the excess return as

R̃t =

∫ t

0

(µs − r1n) ds+

∫ t

0

σ dWt.

The filtration reflects information, for example the knowledge of the investor.
In the case where the filtration is the one already introduced, F = (Ft)0≤t≤T ,
we will speak of full information since the Brownian motion as well as the
drift are observable.
In a second scenario, the investor will only be able to observe the prices which
we call the case of partial information. To reflect this realistic assumption
of only knowing the stock prices, we introduce a new filtration which is only
based on this knowledge:

FS = (FSt )0≤t≤T , FSt = σ(Ss : 0 ≤ s ≤ t) .
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2.1 Model for the drift

Two different models for the drift will be considered: a Gaussian drift and
then the case where the drift is modeled as a Markov chain.

Markov modulated drift Let Y = (Yt)t∈[0,T ] be a stationary, continuous
and irreducible Markov chain independent of the Brownian motion W . Its
state space are the unit vectors {e1, . . . , ed} and we introduce a correspond-
ing n× d-dimensional state matrix B. In this case we will then assume that
µt = BYt, i.e. the drift is a Markov chain with the state matrix B.

The Markov chain Yt will be characterized by its rate matrix Q.

Gaussian drift We will assume the drift process is the solution to the
following stochastic differential equation

dµt = α(δ − µt) dt+ β dW
(2)
t , µ0 ∼ N (m0, γ0)

where W 2
t is a Brownian motion with respect to our filtration F and inde-

pendent of Wt driving the prices. α and β are real n × n-matrices with β
invertible and δ is a real n-dimensional vector. m0 and γ0 are known.
Furthermore, the parameters are chosen such that in addition to being pro-
gressively measurable, the condition

(2.1)

∫ T

0

‖µs‖2 ds <∞, a.s.,

where ‖ · ‖ is the Euclidean norm, holds.
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2.2 Numerical Setup

The numerical setup presented here will be used as the default, changes to
it will be marked and introduced at occurence.
Our investor’s bank account grants interest rates of r = 0 for all numerical
purposes. This is not a limitation of the model, it is simply a shift.
The investor can additionally choose between two risky assets in our compu-
tations.

The volatility matrix will be

σ =

(
0.2 0.12
0.1 0.18

)
and for future reference

σσT =

(
0.0544 0.0416
0.0416 0.0424

)
with an approximate correlation coefficient of 0.87.

The Markov chain has three states reflecting a very good market situation,
a mediocre one and a negative one.

Markov parameter sets:

B =

(
1.2 0.1 −1
1 0.1 −0.8

)
(MP1)

Q =

 −60 25 35
15 −30 15
35 25 −60


This parameter set will be referred to as (MP1). This parameter set contains
extreme states with frequent changes of states which allows us to observe
properties of the market distinctively. We have to tolerate a high standard
deviation though.
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In addition we will therefore introduce a second parameter set denoted by
(MP2), which has more realistic states, does not show effects as clearly and
has a much lower deviation of the results.

B =
(

0.2 0.05 −0.1
)

(MP2)

Q =

 −25 15 10
5 −10 5
10 15 −25


Gaussian parameter set:

α =

(
0.7 0.1
0.1 0.7

)
(GP1)

β =

(
0.3 0.1
0.1 0.4

)

δ =

(
0
0

)
This set will accordingly be referred to as (GP1).
We will usually list and display numerical results as the mean from one
hundred runs of the algorithms.
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3 Framework

3.1 Optimization Problem

In this section we will describe the general optimization problem that will
be studied from different angles throughout this work. But first we need to
introduce the basic instruments.

Trading Strategy

3.1 Definition (trading strategy). A trading strategy π = (πt)t∈[0,T ] is an
n-dimensional FS-progressively measurable process which satisfies∫ T
0
||πt||2 dt <∞ a.s.

A trading strategy is the wealth invested in an asset, more precisely πit is the
wealth invested in the i-th asset at time t.
The fraction of wealth will be denoted by ft = 1

Xπ
t
πt, t ∈ [0, T ].

The investor’s wealth is a process (Xπ
t )t, t ∈ [0, T ] following

dXπ
t = πTt (µt dt+ σ dWt) + (Xt − 1Tnπt)r dt, Xπ

0 = x0

where πt is a trading strategy, 1n is the n-dimensional vector of ones and
x0 > 0 is the investor’s initial capital.

A trading strategy π is called admissible, if
P (Xπ

t ≥ K for all t ∈ [0, T ]) = 1 for some constant K > −∞. The set of all
admissible trading strategies will be denoted by A = {π|π admissible}.

Utility Function

3.2 Definition (utility function). A function u with u : [0,∞)→ R∪{−∞},
will be called utility function if it is strictly increasing, strictly concave, twice
continuously differentiable on (0,∞) and its derivative u′ satisfies
limx→∞ u

′(x) = 0 and limx→0+ u
′(x) =∞. The inverse function of u′ will be

denoted by I : (0,∞)→ (0,∞).
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We will consider logarithmic and power utility during this work:

u1(x) = log(x), u′1(x) =
1

x
, I1(y) =

1

y

u2(x) =
xκ

κ
, u′2(x) = xκ−1, I2(y) = x

1
κ−1

with κ 6= 0 and κ < 1. In our numerical considerations we will usually use
three different values for κ: -10 ,-1 and 0.1, in Figure 3.1 the utility functions
are illustrated.

Figure 3.1: Utility functions

Risk Neutral Measure For the later optimization we will first change to
the risk neutral measure P̃.
The density process Z = (Zt)t∈[0,T ] is defined by

Zt = exp

(
−
∫ t

0

σ−1(µs − r1n)T dWs −
1

2

∫ t

0

‖σ−1(µs − r1n)‖2 ds
)

.
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Z is a martingale and the new measure P̃ is then given by dP̃
dP = ZT .

By Girsanov’s Theorem a Brownian motion under the new measure can be
defined as

W̃t = Wt +

∫ t

0

σ−1(µs − r1n) ds .

The process Z−1 = (Zt)
−1
t∈[0,T ] is then a P̃-martingale.

The expectation operator under the new measure P̃ will be denoted by Ẽ.

3.3 Remark. The excess return process dR̃t = (µt − r1n)dt + σdWt can
be expressed in terms of the new measure P̃ as dR̃t = σdW̃t and is also a
Brownian motion under the new measure.

We now can use the P-martingale Z, but to do calculations in the case of
partial information, we need to be able to operate in FS. Therefore we
introduce the projection of Z

ζt = E[Zt|FSt ] ,

the conditional density process.

Optimization Problem With the previous definitions and results we can
now state the optimization problem:

sup
π∈A

E[u(Xπ
T )] .

The trading strategy maximizing this expected value will then be the op-
timal trading strategy and denoted by π∗ with the corresponding optimal
fraction of wealth invested in stocks f ∗. The terminal wealth affiliated with
the optimal trading strategy is the optimal terminal wealth X∗T .

[2] provide explicit expressions for the optimal trading strategy in the case
of full information in the Markov case for logarithmic and power utility

π∗t,log = (σσT )−1(µt − r1n) X∗t

π∗t,power =
1

1− κ
(σσT )−1(µt − r1n) X∗t .

Corresponding results for the Gaussian case are provided in [4].
Now we want to take a look at the case of partial information and we will
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start with translating some of the quantities we defined for full information
into the partial information setting.

In the case of partial information we cannot observe the drift directly, but
only the process R̃t =

∫ t
0
(µs − r1n) ds +

∫ t
0
σ dWt. We therefore are for the

Markov model in the situation of a Hidden Markov Model where Y is the
signal and R̃ the observation. For the Gaussian drift we are faced with a
Kalman filtering problem.
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3.2 Filtering in Hidden Markov Models

If one cannot observe the Markov chain itself, a simple approximation is its
stationary distribution. It uses no informatin from observations and a definite
improvement is a filter based on the observations that will be introduced next
for Hidden Markov Models following [24]:

3.4 Definition. We define the normalized filter η = (ηt)t∈[0,T ] for Y as
ηt = E[Yt|FSt ].
In addition to that, the unnormalized filter ρt = (ρt)t∈[0,T ] is defined by

ρt = Ẽ[Z−1T Yt|FSt ].

The filter is the projection of the drift to the filtration with the information
we have access to, namely FS. We will now derive an explicit representation
of this filter following [10].

Explicit representation of the filter The rate matrix of a Markov chain
satisfies

dpt
dt

= ptQ

where pt is the probability distribution pt = (p1t , . . . , p
d
t )
T with pit = P(Yt =

ei), i = 1, . . . d. The probability of jumping from state i to state j, i, j =
1, . . . , d, if the chain jumps, is given by Pi,j, the entry in position i, j of the
transition matrix P . The transition matrix P belonging to this Markov chain
can then be computed from the rate matrix:

P(t,s) = exp(Q(t− s)), s ≤ t .

We then have that

d

dt
P(t,s) = P(t,s)Q .

Yt is a Markov chain and Yt ⊂ Ft where Yt is the filtration generated by the
Markov chain. Then for s ≤ t

E
[
Yt|Fs

]
= E

[
Yt|Ys

]
= P T

(t,s)Ys

which leads to the following martingale

Mt = Yt − Y0 −
∫ t

0

QTYu du

13



due to

E
[
Mt −Ms|Fs

]
= E

[
Yt − Ys −

∫ t

s

QTYr dr|Ys
]

= P T
(t,s)Ys − Ys −

∫ t

s

QTP(r,s)Ys dr = 0 .

Simply rearranging the results in the semimartingale representation of the
Markov chain leads to

Yt = Y0 +

∫ t

0

QTYu du+Mt .

For the complete representation we now need to perform the filtering into
the filtration FS and find out what Mt really is. This transition into the case
of partial information will include the innovations process Vt.

3.5 Definition. The innovation process is given by V = (Vt)t∈[0,T ], dVt =

dW̃t − σ−1Bηt dt.

3.6 Proposition. The innovation process is an FS- Brownian motion under
P.

Proof. This has been shown in a variety of books on the matter, see for
example Propostion 2.30 in [1].

3.7 Remark. The excess return process was discussed before as being dR̃t =
σdW̃t. In terms of the innovation process we now have dR̃t = Bηtdt+ σdVt.
Under the filtration FS this definition contains only observable quantities,
thus with the help of the innovations process this definition relates to the full
information setting. This conversion leads to valid results since the filtrations
generated by the return and by the stock prices contain the same information
and therefore results are optimal with regard to either.

Let us now use the following theorem from [9] to learn more about the mar-
tingale.

3.8 Theorem. Suppose {Mt}, M0 = 0 is a square integrable P-martingale
with respect to the filtration Ft. Then there is an Ft predictable process γt
such that ∫ t

0

E
[
|γt|2

]
dt < ∞
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and

Mt =

∫ t

0

γs dVs a.s.

Proof. This is Theorem 16.22 from [9].

We will denote processes with respect to the filtration FS by ˆ and have now
reached the following form of the filter:

Ŷt = Ŷ0 +

∫ t

0

QT Ŷu du+

∫ t

0

γs dVs .

The next task is therefore to find the form of the process γt. This repre-
sentation should ensure that representing it with respect to Vt in FS and
representing it with respect to Wt and then projecting it onto FS leads to
the same result. There is one process of which we already know that such a
transition exists, namely the return:

dRt = µtdt+ σdWt = σdW̃t = Bηtdt+ σdVt .

We will now use that knowledge to compute γ by computing the product
with this process in both situations and identify γ by ensuring equality.

d(RtYt) = RtQ
TYtdt+ Ytµtdt+ YtσdWt +RtMt +MtσdWt

d̂(RtYt) = RtQ
T Ŷtdt+ Ŷtµtdt+ ŶtσdWt + R̂tMt + M̂tσdWt

and the second procedure

d(R̂tŶt) = R̂tQ
T Ŷtdt+ ŶtBηtdt+ ŶtσdVt + R̂tγtdVt + γtσdt .

The martingale from the unfiltered expression translates into the integral
with respect to Vt.

The term Ŷtµt = ŶtBYt and since the Markov chain is twice in the same
state, we can transform this into the sum of Diag(gi)Ŷt, where gi is the cor-
responding entry in the product of the inverse of the volatility matrix σ−1

and the state matrix B̃.
In one term the normalized filter ηt already appears, its definition was ηt =
E
[
Yt|FS

]
, so this is the projection of the Markov chain into partial informa-

tion, which is exactly what we denoted by Ŷt in this derivation.
All these ingredients now accumulate to an expression for γt.

γt = Diag(gi)ηt − (gTi ηt)ηt

15



and the normalized filter will be given by

ηt = E[Y0] +

∫ t

0

QTηsds+
n∑
i=1

∫ t

0

(
Diag(gi)ηs − (gTi ηs)ηs

)
dV i

s .

Now we will turn towards the unnormalized filter and first establish its con-
nection to the normalized filter by Bayes’ law.

ρt = Ẽ[Z−1T Yt|FSt ] =
E
[
ZTZ

−1
T Yt|FSt

]
E [ZT |FSt ]

=
E
[
Yt|FSt

]
ζt

= ζ−1t ηt

Computing this product on the right hand side provides us with an explicit
characterization of ρ:

ρt = E[Y0] +

∫ t

0

QTρs ds+

∫ t

0

diag(ρs)B̃
T (σσT )−1 dR̃s ,

where B̃ = B − r1n.
For all numerical computations we need a discretized version of this unnor-
malized filter and we wish for it to be robust.
If the filter is then Lipschitz continuous, it cannot react strongly since no
jumps are possible. Thus we design filters that are locally Lipschitz contin-
uous regarding the observation and call them robust. These robust versions
were first introduced in [6] and then discretized in [14].
The first step in robustification is to find a process, that eliminates stochastic
integrals in the filter if multiplied with it. For the unnormalized filter this
would be

Φt = Diag(φt) where

φjt = exp{
∫ t

0

B̃j
T

(σσT )−1 dR̃s −
1

2

∫ t

0

B̃j
T

(σσT )−1B̃j ds}

with j = 1, . . . , d and B̃j being the j-th column of B̃.
Next we define

ρ̄t = Φ−1t ρt .

First we will take a closer look at this product with Ito and find out that Φt

was chosen such that we get the simple relation

d(ρ̄t) = Φ−1t QTΦtρ̄tdt .
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This version ρ̄t is locally Lipschitz and thus of the desired form. It also leads
to a robust version of the normalized filter which preserves the filter itself

ηt =
Φtρ̄t

1Td Φtρ̄t

since

ηt = ρtζt =
ρt

1Td ρt
.

This equation can now be discretized with the help of an Euler scheme

ρ̄tk ≈ ρ̄tk−1
+ ∆tΦ−1tk−1

QTΦtk−1
ρ̄tk−1

where k = 1, . . . , t/∆t.
It appears in nicer form by introducing the process ψtk = ΦtkΦ

−1
tk−1

as

ρtk = ψtk
(
Id+ ∆tQT

)
ρtk−1

.(3.1)

17



3.3 Kalman Filtering

In the Gaussian model the drift is described as the solution of the stochastic
differential equation

dµt = α(δ − µt) dt+ β dWt

with starting value µ0 following an n-dimensional normal distribution with
mean vector m0 and covariance matrix γ0 which are assumed to be known.
The observation is the return process again and we are searching for the
optimal filtering of these. This situation has been studied thoroughly already
and was treated in several publications, among these are [1] and [20]. The aim
in filtering is as always to find the normalized conditional distribution which
can be gained by using the Kallianpur-Striebel formula on the unnormalized
conditional distribution in form of the Zakai equation which then leads to the
well known Kushner- Stratonovich equation for the normalized conditional
distribution πt as in πtϕ = E[ϕ|FSt ].

πt(ϕ) =π0(ϕ) +

∫ t

0

πs(Aϕ)ds

+

∫ t

0

(
πs(ϕh

T )− πs(hT )πs(ϕ)
)

(dRs − πs(h)ds)

where A is the generator of the signal, D(A) its domain and ϕ ∈ D(A). The
quantity h in this general equation is the factor of the drift in the observation
process. Since the observation is the return here, this is just the identity. The
signal on the other hand is µ and its generator for the one dimensional drift
is

Af(x) = α(δ − x)f ′(x) +
σ2

2
f ′′(x) .

The first valuable observation on the conditional distribution is then the
following lemma.

3.9 Lemma. The conditional distribution is also Gaussian and therefore
determined by conditional mean vector and covariance matrix.

The quantities to be determined are thus

mt = E[µt|FSt ] and

γt = E[(µt −mt)(µt −mt)
T |FSt ] .
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Following from the Kushner-Stratonovich equation and the usage of the gen-
erator, they are given by the Kalman-Bucy filter as in [18]:

dmt = [−α− γt(σσT )−1]mt dt+ γt(σσ
T )−1 dRt + αδdt ,

dγt = −γt(σσT )−1γt − αγt − γtαT + ββT

with initial condition (m0, γ0) from above.

In [18] an additional useful equation is provided for the filter using the process
φ which is the solution of

φ′(t) = [−α− γ(t)(σσT )−1]φ(t)

with the initial condition that φ(0) is the identity matrix. This representation
then reads

mt = φ(t)
[
m0 +

∫ t

0

φ−1(s)γs(σσ
T )−1 dRs +

∫ t

0

φ−1(s) ds αδ
]

.

Unfortunately we cannot use this representation in our computations though,
the process φ then goes either to zero or diverges and thus the usage of this
representation (or its inverse) leads to unstable results.

The deterministic equation for the conditional covariance is an example of
the well known Ricatti equation. In the one dimensional model this equation
has an explicit solution, but unfortunately not in higher dimensions. The
equation in the one dimensional model then reads

dγt = −γ
2
t

σ2
− 2αγt + β2

and has the solution

γt =
√
C
C1 exp

(
2
√
C
σ
t
)

+ C2

C1 exp
(

2
√
C
σ
t
)
− C2

− ασ2 where

C = α2σ2 + β2

C1 =
√
Cσ + γ0 + ασ2

C2 = −
√
Cσ + γ0 + ασ2 .
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In this case the process φ also has an explicit solution

φt = exp

(
−αt− 1

σ2

∫ t

0

γs ds

)
and with this version the filter then reads

mt = φt

[
m0 +

1

σ2

∫ t

0

γs
φs

dRs + αδ

∫ t

0

1

φs ds

]
.

The filters for the drift in both models are applicable in the case of partial
information provided we know the parameters: B and Q for the Markovian
version and α, β and δ for the Gaussian. In the case of partial information,
we will thus perform parameter estimations for these that will be described
in Section 3.7.
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3.4 Expected Utility of the Optimal Terminal Wealth

In [17] an explicit expression for the expected utility of the terminal wealth
was derived that we will now introduce for both models.
With the above filters we can now state explicit representations for the con-
ditional density process ζt from [24] and [18] respectively.
For the Markov chain drift we use a representation of ζ−1t = Ẽ[Z−1t |FSt ] which
is an FS-martingale with respect to P̃. We know from Bayes’ Theorem that
ρt = ζ−1t ηt and by definition of the normalized filter 1Tnηt = 1. Therefore
we also have 1Td ρt = ζ−1t . Remembering that 1TdQ

T = 0, we get this explicit
representation of the inverse of the density process straight from the filter
equation of the unnormalized filter:

ζ−1t = 1 +

∫ t

0

(B̃ρs)
T (σσT )−1 dR̃s .

In the second case, the Gaussian drift, we have the representation

ζ−1t = 1 +

∫ t

0

ζ−1s (ms − r1n)T (σσT )−1 dR̃s .

3.10 Remark. These two definitions for the process ζt are of the same struc-
ture: We keep in mind that the normalized filter ηt in the HMM is the equiva-
lent to the Kalman filter in the Gaussian model and that the normalized filter
is given by ρtζt.

3.11 Remark. Under the measure P̃, the expected value of ζT is one given
L2-integrability of the integrand since the return process R̃ is a Brownian
motion, see Remark 3.3.

With these preparations we are now able to compute the optimal terminal
wealth both for the fully and partially informed investor with the help of the
following theorem. Quantities relating to an optimal solution are denoted by
∗.

3.12 Theorem. For every constant x ∈ (0,∞), suppose that Ẽ[βT I(xβT ζT )] <
∞. The optimal terminal wealth is then given by X∗T = I(yβT ζT ) where y is
a constant determined by Ẽ[βT I(yβT ζT )] = x0.
The process X∗ and the optimal trading strategy π∗ are determined by

βtX
∗
t = Ẽ[βTX

∗
T |FSt ] = x0 +

∫ t

0

βsπ
∗
s
Tσ dW̃s .
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Proof. This is Lemma 6.5. and Theorem 6.6. from [17].
I is the inverse function of the derivative of the utility function and is there-
fore continuous and strictly decreasing on (0,∞). Then Ẽ[βT I(xβT ζT )] as
a function of x is as well for every constant x ∈ (0,∞). We know from the
definition that limx→∞ u

′(x) = 0 and limx→0+ u
′(x) =∞ and therefore

limx→∞ Ẽ[βT I(xβT ζT )] = 0 and limx→0+ Ẽ[βT I(xβT ζT )] = ∞. x0 is positive
and thus we have the existence of a y such that Ẽ[βT I(yβT ζT )] = x0.

Let us consider an arbitrary random variable R that is FSt -measurable and
also fulfills Ẽ[R] = x0. The conditional expected value Ẽ[R|FSt ] is then a
martingale and can be represented as Mt = M0 +

∫ t
0
βsπs

Tσ dW̃s.
From the definition of the wealth process

dXπ
t = (Xπ

t r + πt(µt − r))dt+ πtσdWt), X
π
0 = x0

we also know that

βtX
π
t = x0 +

∫ t

0

βsπ
T
s σ dWs +

∫ t

0

βsπs(µt − r1n) ds

= x0 +

∫ t

0

βsπ
T
s σ dW̃s

and thus there exists a trading strategy such that the wealth process Xπ

represents I(yβT ζT ).
In addition, the integral in the martingale representation is a supermartin-
gale and thus for every admissible portfolio process π we have Ẽ[Xπ

T ] ≤ x0.
Thus we found a representation for the optimal terminal wealth, it remains
to show is that π from the above equation is a tradings strategy and its op-
timality.

Let now another candidate X◦ be defined by X◦T = I(y◦βT ζT ). We then
have Ẽ[βTX

◦
T ] = x0 ≥ Ẽ[Xπ(T )].

u is a utility function, in particular it is concave. Thus for a c such that
E[u−(c)] < ∞ with u− = −u in case u < 0 and u− = 0 otherwise,
we have that u(I(x)) ≥ u(c) + xI(x) − xc. Setting x = y◦βT ζT , we get
u(X◦T ) ≥ u(c) − y◦βT ζT c and thus u−(X◦) ≤ u−(c) − y◦βT ζT c. From this
we get that π◦ satisfies E[u−(X◦π

◦
(T ))] < ∞. Thus it is a candidate for a

trading strategy.
Let π be arbitrary satisfying the previous equation. By the first inequality,
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again with x = y◦βT ζT and c = X◦π
◦
(T ), we get

u(X◦T ) ≥ u(Xπ(T )) + y◦βT ζTXT − y◦βT ζTXπ(T ) and thus the desired result
that π◦ is in fact optimal.

3.13 Example. In the case of power utility we have

u2(x) =
xκ

κ
, u′2(x) = xκ−1, I2(y) = x

1
κ−1

and thus
X∗T,power = (ŷβT ζT )

1
κ−1

with
ŷ

1
κ−1 =

x0

E[(βT ζT )
κ
κ−1 ]

.

For the optimal terminal wealth we then get

E[u2(X
∗
T )] = E[

1

κ
(ŷβT ζT )

κ
κ−1 ] =

xκ0
κ

E[(βT ζT )
κ
κ−1 ]1−κ .
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3.5 Optimal Trading Strategy for Partial Information

Next we want to study the optimal trading strategy in the case of partial
information. Its existence was shown in Theorem 3.12, now we aim to find
an explicit expression.

Markov Model We will start with the Markov Model and will denote
quantities in partial information by .̂
The optimal trading strategy with logarithmic utility can be computed from
Theorem 3.12 by comparing

βtX
∗
t = x0 +

∫ t

0

βs(π
∗
s)
Tσ dW̃s

and

X∗t = x0ζ
−1
t = x0 + x0

∫ t

0

(Bρs)
T (σσT )−1 dR̃s

resulting in
π̂∗t,log = x0(σσ

T )−1B̃ρtβ
−1
t .

The corresponding optimal fraction invested in the stocks is then given by

f̂ ∗t,log = (σσT )−1B̃ηt .

The case of logarithmic utility has once again an easy, straight forward so-
lution which is not given for other utility functions, especially not for power
utility. For these we will need some basics of the computation of Malliavin
derivatives.

Malliavin Derivative In this paragraph we will introduce and present
results on the Malliavin derivative as can be found in [15].

3.14 Definition. Let C∞b (Rm) be the set of C∞-functions f : Rm → R that
are bounded and have bounded derivatives of all orders. Additionally, let F
be random variables of the form F = f(Wt1 , . . . ,Wtk), where (t1, . . . , tn) ∈
[0, T ]n and f(x11, . . . , xd1, . . . , x1n, . . . , xdn) belongs to C∞b (Rdn). These ran-
dom variables build the class of smooth functionals S.
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The Malliavin derivative DF = (D1F, . . . , DnF )T is then defined as a
(L2([0, T ]))d-valued random variable given by

DiFt =
k∑
l=1

∂

∂xli
f(Wt1 , . . . ,Wtk)1[0,tl](t), i = 1, . . . , n .

3.15 Definition. Denote by Dp,1 the Banach space which is the closure of S
under ‖ · ‖p,1 with

‖F‖p,1 = ‖F‖p + ‖ ‖DF‖L2 ‖p .

3.16 Remark. [26] shows that DF is well defined on Dp,1 by closure for any
p ≥ 1.

We can now introduce Clark’s formula in this setting, again quoting from
[15].

3.17 Theorem. For every F ∈ D1,1 we have

F = E[F ] +

∫ T

0

E[(DtF )T |Ft]dWt.

Another result from [13] as it was presented in [24] is needed regarding Malli-
avin derivatives.

3.18 Theorem. For d ∈ N we consider the d-dimensional SDE

dXt = fµ(t,Xt) dt+ fσ(t,Xt) dWt, t ∈ [0, T ], X0 = x0,(3.2)

assuming that x0 ∈ Rd, fµ and fσ are measurable R and Rd×n-valued func-
tions which are continuously differentiable and satisfy

sup
t∈[0,T ],x∈Rd

(
| ∂
∂xk

fµi (t, x)|+ | ∂
∂xk

fσij(t, x)|
)

< ∞,

sup
t∈[0,T ]

(
|fµi (t, 0)|+ |fσij(t, 0)|

)
< ∞

for i, k = 1, . . . , d, j = 1, . . . , n. Then (3.2) has a unique continuous solution
(Xt)t∈[0,T ] which satisfies Xk

s ∈ D, k = 1, . . . , d,

DtXs = (fσ(t,Xt))
T +

∫ s

t

DtXu(∂xf
µ(u,Xu))

T du

+

∫ s

t

DtXu

n∑
j=1

(∂xf
σ
·j(u,Xu))

T dWu
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for t ∈ [0, s] and DtXs = 0 for t ∈ (s, T ]. Here ∂x denotes the Jacobi matrix,
i.e. (∂xf

µ)ij = ∂
∂xj
fµi and fσ·j is the j-th column of fσ.

Application of this last theorem then leads to the Malliavin derivative of the
unnormalized filter

Dtρu = σ−1B̃ diag(ρt) +

∫ u

t

(Dtρs)Q ds+

∫ u

t

(Dtρs) diag(B̃T (σσT )−1 dR̃s)

for all u ∈ [0, T ] and with Dtρu = 0 for t ∈ (u, T ]. More details on this can
be found in [24].
This derivative can now be robustly discretized as we did with the unnor-
malized filter following again [24] leading to the recursion

(Dtρu)tk = ψtk−1

(
Idd −∆tQT

)
(Dtρu)tk−1

with k = 1, . . . , t/∆t.
We will also need the Malliavin derivative of the density process ζt and its
inverse.
We know already that ζ−1T = 1Td ρT and therefore Dtζ

−1
T = (DtρT )1d. The

Malliavin derivative of the unnormalized filter was already established and
keeping in mind that Q1d = 0, we get from [24]

Dtζ
−1
T = σB̃ρt +

∫ T

t

(Dtρs)B̃
T (σσT )−1 dR̃s .

Using the chain rule, the result then is

DtζT = −(ζT )2Dtζ
−1
T

and

Dtζ̃T = −β−1T (ζ̃T )2Dtζ
−1
T .

With these preparations we can now prove Theorem 4.5 in [24] which will
then allow us to compute the optimal trading strategy.

3.19 Theorem. If ŷ is the unique number which satisfies Ẽ[βT I(ŷζ̃T )] = x0,
if Ẽ[βT I(xζ̃T )] <∞ for all x ∈ (0,∞) and if I(ŷζ̃T ) ∈ Lq(P̃) for some q > 1,
then X∗T = I(ŷζ̃T ) and the optimal trading strategy (π∗t )t∈[0,T ] is given by

π∗t =
β−1t
ŷ

(σσT )−1
(
B̃ρtẼ[ψ(ŷζ̃T )|FSt ](3.3)

+ Ẽ[ψ(ŷζ̃T )

∫ T

t

(σDtρs)B̃
T (σσT )−1dR̃s|FSt ]

)
(3.4)

where ψ(y) = −y2I ′(y).
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Proof. (Sketch)
Using Clark’s formula from the paragraph on Malliavin derivatives leads to

βTX
∗
T = x0 +

∫ T

0

Ẽ[(Dt(βTX
∗
T ))T |FSt ] dW̃t .

We also know from Theorem 3.12 that βTX
∗
T = βT I(ŷζ̃T ) and applying the

Chain rule leads to

Dt(βTX
∗
T ) = ŷβT I

′(ŷζ̃T )Dtζ̃T .

Comparing the two representations of the optimal terminal wealth we get

βtσ
Tπ∗t = Ẽ[Dt(βTX

∗
T )|FSt ] .

This Malliavin derivative was already computed and with it we have

βtσ
Tπ∗t = Ẽ

[
ŷ(ζ̃T )2I ′(ŷζ̃T )Dt(ζ

−1
T )|FSt

]
.

With the Malliavin derivative of the inverse of ζT and the definition of ψ this
is the desired result.

Application of this theorem then leads to

π̂∗t,power =
x0β

−1
t (σσT )−1

(1− κ)Ẽ[βT ζ
1

κ−1

T ]

{
B̃ρtẼ[βT ζ

κ
κ−1

T |FSt ]

+ Ẽ[βT ζ
κ
κ−1

T

∫ T

t

(σDtρs)B̃
T (σσT )−1 dR̃s|FSt ]

}
.

Gaussian Model In the Gaussian Model we find in [18] the following
equations for the optimal trading strategy in partial information. For the
investor with logarithmic utility we use

π̂∗t,log = x0β
−1
t (σσT )−1

1

ζt
(mt − r1n) .

It can be computed in much the same way by using 3.12. The optimal trading
strategy for power utility presents itself to be much more complicated in this
case as well

π̂∗t,power =
x0β

−1
t (σσT )−1

1− κ
1

ζt
(mt − r1n) +Gt ,(3.5)
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where

Gt =y
1

κ−1
1

1− κ
exp

(
rt+

rTκ

1− κ

)
1

ζt
(σσT )−1γ(t)(φt)

−1

× E
[
ζ

κ
κ−1

T

∫ T

t

φT (u)(σT )−1 dW̃u|FSt
]

and φ is the solution of

φ′(t) = [−α− γ(t)(σσT )−1]φ(t)

with the initial condition that φ(0) is the identity matrix.
The computation follows also [18] and the same path we presented for the
Markov case. We compute the Malliavin derivative of the drift by first trans-
forming it into a more suitable form

mu = φu

[
m0 + αδ

∫ t

0

φ−1s ds+

∫ u

0

φ−1s γs(σ
T )−1dw̃s

+ r

(∫ u

0

φ−1s γs ds

)
(σσT )−11n

]
and then determine its Malliavin derivative

Dtmu = σ−1γt(φ
T
t )−1φu1t≤u .

Again we also need the Malliavin derivative of the density ζ which is given
by

DtζT = ζT

[
−
∫ T

t

(Dtmu)(σ
T )−1dw̃u − σ−1(mt − r1n)

+

∫ T

t

(Dtmu)(σσ
T )−1(mu − r1n) du

]
.

The last ingredient needed is

DtI(xζT ) = xI ′(xζT )DtζT

and we can apply Clark’s formula again to the relation

βtX
∗
t = x0 +

∫ t

0

βs(π
∗
s)
Tσ dW̃s

and use the Malliavin derivatives to achieve the above representation of the
optimal trading strategy in partial information for power utility.
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3.6 Bankruptcy

Whenever the investor’s wealth diminishes to zero for the first time in an
investment period, the investor is bankrupt.
In this case, the utility of this wealth is set by definition to −∞ (except for
power utility with κ ∈ (0, 1)).
If this situation arises, the whole numerical experiment cannot be successful
since we usually consider the empirical expected value of the utility which is
then of course also −∞ regardless of other possibly positive outcomes.

Occurrence of bankruptcy Using the characterization of the optimal
wealth process from Theorem 3.12 and the bankruptcy requirement of it
being less than zero, we get the following condition for logarithmic utility in
both models

X∗t =
x0
ζtβt

> 0 .

The process ζt is an exponential martingale and thus in theory it is always
positive and bankruptcy cannot occur. In computations we use a different
representation though which we introduced earlier that can very well become
negative due to approximation and discretization.
For power utility the optimal wealth can be computed again by using Theo-
rem 3.12 as

X∗t =
xκ0
κ
E
[
(βtζt)

κ
κ−1

]1−κ
> 0 .

The initial capital x0 is positive by definition and thus bankruptcy will again
not be possible if ζt is positive as it should be by definition. If it were
computed as a negative number, the terminal wealth would not even be
defined though.
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3.7 Parameter Estimation

In both models a version of the EM algorithm will be used. They are both
based on the work by [8] where a general version of the EM algorithm for
parameter estimation is introduced as follows. The first step is to establish an
equivalent measure regarding the observation, i.e. the measure under which
the observation was most probable. The Radon-Nikodym derivative for this
change will then lead to the maximum likelihood estimator of the parameters
by maximizing its logarithm.

HMM Parameter estimation The estimation in the Markov Model, i.e.
estimation of the state and rate matrix, can be done using the EM algorithm
in case σσT is known. We can compute an estimate for σσT based on the
observations because of the relation σσT = 1

t
[R̃]t. Only knowing σσT and

not σ itself suffices for the use of the EM algorithm.

With the EM algorithm we aim to estimate the parameters of the Markov
chain. These will be described by the occupation time Ok

t in state ek at time
t, the number of jumps Nkl

t from state ek to state el with k 6= l and the level
integrals G given by

Ok
t =

∫ t

0

Y k
s ds

Nkl
t =

∫ t

0

Y k
s− dY

l
s

Gk
t =

∫ t

0

Y k
s (σσT )−1 dR̃s .

The Likelihood functions LBt and LQt for B and Q are expressed in terms of
these quantities. Maximizing E

[
log(Lt)|FSt

]
then leads to updates Q′ and
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B′ of the estimates where

LQt L
B
t = Lt =

dP ′

dP
|Ft

LQt = exp

∫ t

0

d∑
k,l=1
k 6=l

(Qkl −Q′kl)Y k
s ds

 d∏
k,l=1
k 6=l

(
Q′kl
Qkl

Nkl
t

)

LBt = exp

(∫ t

0

((B̃′ − B̃)Ys)
T (σσT )−1(dR̃s − B̃Ys ds)

−1

2

∫ t

0

((B̃′ − B̃)Ys)
T (σσT )−1((B̃′ − B̃)Ys) ds

)
Q′kl =

Ẽ[Z−1t Nkl
t |FSt ]

Ẽ[Z−1t Ok
t |FSt ]

B′·k = (σσT )−1
Ẽ[Z−1t Gk

t |FSt ]

Ẽ[Z−1t Ok
t |FSt ]

.

In the expectation step the filters of the above quantities are computed in
the same fashion as the unnormalized filter for the Markov chain itself.

For a more detailed description of the algorithms we refer to [24].

3.20 Example. The following Figures 3.2, 3.3, 3.4 and matrices show the
results of one hundred estimations from one hundred data sets with our usual
data for estimation with T = 10 years. The trading frequency in the simula-
tions is again once per trading day, ∆t = 0.004. Each estimation consists of
one application of the EM algorithm described above with the true values as
starting values. The topic of different starting values will be discussed in the
next example. We observe that all estimations lead to very satisfying results.
The results for (MP1) were:

(σ̂σT ) =

(
0.0571 0.0437
0.0437 0.0440

)
.

B̂ =

(
1.095 0.1016 −0.8914
0.9165 0.1029 −0.7082

)

31



Q̂ =

 −60.8522 25.5257 35.3264
14.7691 −29.5273 14.7582
35.3946 25.5440 −60.9386


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Figure 3.2: EM algorithm parameter estimation rate matrix Q, (MP1)

Figure 3.3: EM algorithm parameter estimation state matrix B, (MP1)
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Figure 3.4: Parameter estimation volatility matrix σ

The above estimations were all done with the true parameters as starting
values for the algorithm. That will be the case for all later applications due
to the otherwise needed computational effort. If the starting values were not
the true parameters, there is a risk of the algorithm terminating within a
local extrema that is not a good approximation. To minimize that risk, one
uses a grid of starting values and observes the estimations to choose the best
fit. This results however in the mentioned noticeable computational effort.
Nevertheless we want to present an example with guessed starting values
next.

3.21 Example. In this example the starting value for the EM algorithm
will be a vector filled with ones. The true values are (15, −30, 15), the
middle row of the rate matrix, and are displayed in red in Figure 3.5. The
starting values differ quite much from the true values to be estimated and
the algorithm cannot cover such a distance in one run. Therefore one uses
the result of one run as starting value for the next and thus the estimates
change step by step although the data does not change. We did that 1000
times. This was an experiment not hitting a local extremum but converging
to the true values. There is still some distance between the estimation and
the true values, the displayed blue line is a mean of estimations and thus
includes some deviations.
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Figure 3.5: EM algorithm parameter estimation with arbitrary starting value
for the second row of the rate matrix of (MP1)

Parameter estimation in linear Gaussian models We applied the al-
gorithm from [11] for discrete time models, again based on the EM algorithm.
To apply this algorithm, δ needs to be known and constant. We have set it
to contain only zeros in (GP1) here. Other known and constant values would
also be possible.

Left to estimate are the matrices α, β and σ. The algorithm will estimate
ββT and σσT though. This suffices for later computations, one can compute
a matrix square root if necessary with suitable parameters. All estimates will
again be maximum likelihood estimates. The log- likelihood function is here
given by

Lθt =− T log(|β|)− (T + 1) log(σ)

− 1

2
E
[ T∑
l=1

(µl − αµl−1)T (ββT )−1(µl − αµl−1)|FST
]

− 1

2
E
[ T∑
l=0

(Rl − µl)T (σσT )−1(Rl − µl)|FST
]

+ E[Rθ̂|F
S
T ]

where θ is the vector of parameters to be estimated and the remaining term
Rθ̂ that does not depend on θ (these are terms that vanish when differenti-
ating for the maximization step). In the maximization step the argmax of
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this function will be computed resulting in updates of estimates following

αj+1 = E
[ T∑
l=1

µlµ
T
l−1|FST

]
×

(
E
[ T∑
l=1

µlµ
T
l−1|FST

])−1

ββTj+1 =
1

T
E
[ T∑
l=1

µl − αj+1µl−1 × (µl − αj+1µl−1)
T |FST

]
σσTj+1 =

1

T + 1
E
[ T∑
l=0

Rl − µl × (Rl − µl)T |FST
]

.

The parameter estimation for the Gaussian parameters does not work as
nicely. The following matrices and Figures (3.6, 3.7, 3.8) show results from
one hundred runs and with one hundred data sets from (GP1), results are
much more volatile as the plots show:

α̂ =

(
0.41 0.14
0.14 0.65

)

β̂ =

(
0.62 −0.38
−0.38 0.39

)

σ̂ =

(
0.66 −0.22
−0.22 0.34

)
.
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Figure 3.6: Parameter estimation matrix α, (GP1)

Figure 3.7: Parameter estimation matrix β, (GP1)
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Figure 3.8: Parameter estimation volatility matrix
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Utility of the Optimal Terminal Wealth with Parameter Estima-
tion We will now first compare the optimal terminal wealth for the fully
and the partially informed investor with and without parameter estimation.
The comparison will consider four different cases: The first will be the fully
informed investor, the second is about the investor who does not know the
parameters but is apart from that fully informed, the third is for the partially
informed investor who does know the parameters and the last deals with the
partially informed investor without knowledge of the parameters.
We observe the expected difference in results: The fully informed investor is
in a clear advantage compared to the partially informed. Also the parameter
estimation leads to a slightly lesser terminal wealth.
The values for the expected utility of the optimal terminal wealth for (MP1)
are displayed in Tables 3.1 and 3.2. They are once again the mean of one
hundred estimations

utility full information full information
function true parameters est. parameters

log E[u(X∗T )] 6.69 4.90
std 0.39 0.34

power, κ = 0.1 E[u(X∗T )] 21.04 17.26
std 0.85 0.60

power, κ = −1 E[u(X∗T )] -0.35 -0.09
std 0.03 0.05

power, κ = −10 E[u(X∗T )] -777.66 -97878.73
std 7757.06 96590.47

Table 3.1: Expected utility of the optimal terminal wealth of a fully informed
investor (MP1)

The results for power utility with κ = −10 might seem unusual at first glance:
These high standard deviations stem from the very steep increase of the util-
ity functions on the interval (0, 1). Minor deviations in the wealth then lead
to huge differences in the utility.
It is also possible to compute an exact value for the expected utility of the
optimal terminal wealth for the fully informed investor with parameter knowl-
edge. With the help of the later introduced formulas from the proof of Propo-
sition 4.14 numbered (4.1) and (4.3) for logarithmic utility we get an exact
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value of 6.27 for parameter set (MP1). Let us now compare the partially
informed investors.

utility partial info partial info
function true parameters est. parameters

log E[u(X∗T )] 0.69 0.51
std 0.03 0.02

power, κ = 0.1 E[u(X∗T )] 10.73 10.53
std 0.035 0.027

power, κ = −1 E[u(X∗T )] -0.51 -0.61
std 0.014 0.013

power, κ = −10 E[u(X∗T )] -0.0001 -0.0008
std 0.00004 0.0001

Table 3.2: Expected utility of the optimal terminal wealth of a partially
informed investor (MP1)

Less extreme values can be reached with a more moderate parameter set.
Therefore we also include the results for parameter set (MP2).

utility full information full information
function true parameters est. parameters

log E[u(X∗T )] 0.15 0.23
std 0.06 0.06

power, κ = 0.1 E[u(X∗T )] 10.17 10.26
std 0.06 0.06

power, κ = −1 E[u(X∗T )] -0.93 -0.89
std 0.06 0.05

power, κ = −10 E[u(X∗T )] -0.11 -0.1
std 0.07 0.08

Table 3.3: Expected utility of the optimal terminal wealth of a fully informed
investor (MP2)

With this more moderate parameter set, we also do not detect these huge
deviations for power utility with κ = −10 anymore. But they are still big in
comparison.
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utility partial info partial info
function true parameters est. parameters

log E[u(X∗T )] 0.028 -0.07
std 0.022 0.05

power, κ = 0.1 E[u(X∗T )] 10.03 9.94
std 0.022 0.052

power, κ = −1 E[u(X∗T )] -0.98 -1.1
std 0.022 0.07

power, κ = −10 E[u(X∗T )] -0.98 -1
std 0.022 1.57

Table 3.4: Expected utility of the optimal terminal wealth of a partially
informed investor (MP2)

For the Gaussian drift with (GP1) we observe generally the same structure
regarding the success of the investors in Tables 3.5 and 3.6.

utility full information full information
function true parameters est. parameters

log E[u(X∗T )] 5.01 0.88
std 0.59 0.17

power, κ = 0.1 E[u(X∗T )] 28.3 11.11
std 21 0.23

power, κ = −1 E[u(X∗T )] -0.2 -0.69
std 0.00 0.1

power, κ = −10 E[u(X∗T )] -916.7 -1.02
median -0.0001 -0.03
std 76348 6.77

Table 3.5: Expected utility of the optimal terminal wealth of a fully informed
investor (GP1)
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utility partial info partial info
function true parameters est. parameters

log E[u(X∗T )] 0.21 0.01
std 0.01 0.001

power, κ = 0.1 E[u(X∗T )] 10.21 10.01
std 0.01 0.001

power, κ = −1 E[u(X∗T )] -0.81 -0.99
std 0.01 0.001

power, κ = −10 E[u(X∗T )] -0.01 -0.09
std 0.001 0.001

Table 3.6: Expected utility of the optimal terminal wealth of a partially
informed investor (GP1)
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4 Advantage of Filtering

As briefly mentioned in the introduction to filtering, the filter is an improve-
ment of the approximation of the drift that is just the starting value or the
stationary distribution. The investor who filters is therefore intuitively in
a better position than the one who assumes the starting value. This will
be quantified in the following including a discussion of the prerequisites for
such an advantage. The next chapter will also cover different views on this
advantage in different market situations. In applications we usually consider
the scheme for the unnormalized filter and we will now discuss when using
it might be an advantage.

4.1 Filtering Advantage in the HMM

We will discuss for which market parameters the scheme for the unnormal-
ized filter is bounded. If it were not bounded, then it is obviously not a good
approximation and thus of no advantage.

The scheme for the unnormalized filter is given by

ρtk = ψtk(Id+ ∆tQT )ρtk−1
= (

k∏
i=1

ψti(Id+ ∆tQT ))ρ0

with k = 1, . . . , t/∆t as it was introduced in Section 3.2, Formula (3.1).
For simplicity, let ρk := ρtk be the scheme for the unnormalized filter at
discretized time tk. This is then a product of the process ψ, that depends
on time, and two time independent factors: the starting value and (Id +
∆tQT ) that appears in every step of the recursion. The starting value is
the stationary distribution of the Markov chain, it is constant and does not
influence the boundedness of the scheme of the unnormalized filter. The term
boundedness will be properly introduced with the following two propositions,
first for the risk neutral measure P̃ and then for the real world measure P.

4.1 Lemma. The process ψ is componentwise of mean one under the risk
neutral measure,

Ẽ[ψjk] = 1 .
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Proof. The process ψ is defined by ψk = ΦkΦ
−1
k−1 with

Φk = Diag(φk) where

φjk = exp

{∫ k

0

B̃j
T

(σσT )−1 dR̃s −
1

2

∫ k

0

B̃j
T

(σσT )−1B̃j ds

}
.

We can then use the mutliplicativity of the exponential function to write ψ
componentwise as

ψjk = exp

{∫ k

k−1
B̃j

T
(σσT )−1 dR̃s −

1

2

∫ k

k−1
B̃j

T
(σσT )−1B̃j ds

}
.

The excess return can be written as σW̃ and W̃ is a Brownian motion under
the measure P̃. Thus ψ can be represented as an exponential P̃-martingale
componentwise for j = 1, . . . , d

ψjk = 1 +

∫ k

k−1
(B̃j)T (σσT )−1dR̃s .

This process is of mean one under P̃.

Under the real world measure this is not true which is why we discuss the
expected value of the scheme for the unnormalized filter in two separate
propositions.

4.2 Proposition. Under the risk neutral measure P̃, the expected value of
the scheme for the unnormalized filter is bounded by a finite bound M <∞,∥∥Ẽ[ρk]

∥∥ < M

with k = 1, . . . , t/∆t, if ∥∥(Id +∆tQT )
∥∥k < M

‖ν‖

with a submultiplicative norm
∥∥ · ∥∥ and the stationary distribution of the

Markov chain ν as starting value of the filter ρ0.

Proof. The expected value of the scheme for the unnormalized filter under
the risk neutral measure is given by

Ẽ
[
ρk
]

= Ẽ
[ k∏
i=1

ψi(Id +∆tQT )ν
]

.
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The factors ψi are independent and of expected value equal to one under
this measure. We will apply the norm now and use its submultiplicativity
resulting in ∥∥∥E[ρk]∥∥∥ ≤ ∥∥(Id +∆tQT )

∥∥k · ‖ν‖ .

The norm of the initial distribution of the Markov chain is constant and
introducing the bound M <∞ then leads to the desired inequality∥∥(Id +∆tQT )

∥∥k < M

‖ν‖
.

Let us first study another vital aspect to the advantage of filtering in the
HMM, namely positivity. It will be needed for the result on boundedness
under the real world measure. In the HMM model, the unnormalized filter
is positive at all times. Unfortunately, this might not necessarily be true for
the scheme for the filter.

4.3 Definition. The robust discretized version of the unnormalized filter ρtk
is said to preserve positivity if it is positive for all times tk ∈ [0, T ] and
k = 1, . . . , T/∆t.

Again, this effect is closely related to the choice of the discretization step ∆t
and also the parameters. The following Lemma describes this relation.

4.4 Proposition. The scheme preserves positivity if (Id +∆t QT ) has only
positive entries.

Proof. This follows directly from the numerical representation. The process
ψ is exponential and thus always positive as is the stationary distribution.

4.5 Remark. This is a very strict requirement and it might very well happen
in a simulation, that the scheme preserves positivity even if it is not met. But
to avoid negative values in one run at one time, which would destroy the whole
simulation study, this requirement is very useful.

Now we can state and prove the boundedness result under the real world
measure.
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4.6 Proposition. Let (Id +∆t QT ) have only positive entries. Under the real
world measure and for a submultiplicative norm

∥∥ · ∥∥, the expected value of
the scheme for the unnormalized filter is bounded by a finite bound M <∞,∥∥E[ρk]

∥∥ < M

with k = 1, . . . , t/∆t, if

max
j

(
exp

{
Ajj∆t k

})
·
∥∥ Id +∆tQT

∥∥k < M

‖ν‖
,

where A = BT (σσT )−1B.

Proof. The expected value of the scheme for the unnormalized filter is

E
[
ρk
]

= E
[ k∏
i=1

ψi(Id +∆tQT )ν
]

.

The scheme is independent of the Markov chain, thus conditioning this ex-
pected value to the filtration induced by the Markov chain FYT leaves us
with

E
[
ρk
]

= E
[
E
[
ρk
∣∣FYT ]] = E

[
E
[ k∏
i=1

ψi(Id +∆tQT )ν
∣∣FYT ]] .

We know that the ψi, i = 1, . . . , k are independent given FYT . Let us thus
have a closer look at the factors ψi and represent them again componentwise
as in Lemma 4.1.

ψjk = exp

{∫ k

k−1
B̃j

T
(σσT )−1 dR̃s −

1

2

∫ k

k−1
B̃j

T
(σσT )−1B̃j ds

}
= exp

{∫ k

k−1
B̃j

T
(σσT )−1B̃Ys ds

}
· exp

{∫ k

k−1
(σ−1B̃j)

T
dWt −

1

2

∫ k

k−1
B̃j

T
(σσT )−1B̃j ds}

}
.

Given Y , the last factor is a martingale with mean one and thus by indepen-
dence of W and Y

E
[
ψjk|F

Y
T

]
= exp

{∫ k

k−1
B̃j

T
(σσT )−1B̃Ys ds

}
.
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Let us then denote

cjk := exp

{∫ k

k−1
B̃j

T
(σσT )−1B̃Ys ds

}
and ck = diag(cjk). Applying this to the expected value of the scheme leads
by the tower property of conditional expectation to

E
[
ρk
]

= E
[( k∏

i=1

ci(Id +∆tQT )
)
ν
]

.

By positivity of Id +∆tQT we get

E
[
ρk
]
≤ max

j

(
exp

{
Ajj∆t k

})
· E
[( k∏

i=1

(Id +∆tQT )
)
ν
]

since

cjk ≤ max
i,j

(
exp

{
(Bj)T (σσT )−1Bi∆t k

})
≤ max

j

(
exp

{
(Bj)T (σσT )−1Bj∆t k

})
= max

j

(
exp

{
Ajj∆t k

})
.

For a submultiplicative norm ‖ · ‖ we then have

‖E
[
ρk
]∥∥ = max

j

(
exp

{
Ajj∆t k

})
·
∥∥ Id +∆tQT

∥∥k · ‖ν‖
where A = BT (σσT )−1B.
Introducing the finite bound M < ∞ and dividing by the constant norm of
the stationary distribution ‖ν‖ then leads to the claim.

4.7 Remark. The scheme for the unnormalized filter

ρk = ψk(Id+ ∆tQT )ρk−1 = (
k∏
i=1

ψi(Id+ ∆tQT ))ν

will be bounded by one if ‖ν‖ ≤ 1 and
maxj

(
exp

{
Ajj∆t

})
·
∥∥ Id +∆tQT

∥∥ ≤ 1.
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Boundedness of the term ‖(Id+ ∆tQT )k‖ depends on the trading frequency
∆t. In case the rate matrix is diagonalizable, this diagonalization enables us
to compute this ∆t explicitly in a nice fashion.

4.8 Lemma. For a diagonalizable rate matrix QT with QT = TQT
diagT

−1,

the term ‖(Id+ ∆tQT )k‖ is bounded if

‖Id+ ∆tQT
diag‖ ≤ 1

with a submultiplicative norm ‖ · ‖.

Proof. With the norm being submultiplicative we have

‖(Id+ ∆tQT )k‖ = ‖(Id+ ∆tTQT
diagT

−1)k‖ = ‖T (Id+ ∆tQT
diag)

kT−1‖
≤ ‖T‖ · ‖(Id+ ∆tQT

diag)
k‖ · ‖T−1‖ .

This will be bounded if

‖(Id+ ∆tQT
diag)‖ ≤ 1 .

There is another factor influencing the boundedness, the process ψ. Its mean
might be unbounded and in that case the scheme is unbounded as well.
Figure 4.1 displays one simulation of the process ψ with increased mean. The
figure is simulated with a parameter set with a diagonal volatility matrix to
show this increased mean. The other parameters are taken from (MP1) and
the usual simulation parameters were applied.
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Figure 4.1: ψ at 25 stocks and diagonal volatility

In Proposition 4.6 this mean appears in the bound as the term
‖maxj(expAjj∆tk)‖. Therefore controlling this term depends on the ma-
trix A = BT (σσT )−1B. This matrix will appear in various of the following
paragraphs and its relation to filtering will be discussed in detail now.

Filtering and the matrix A We have now discussed all factors included
in the scheme for the unnormalized filter and can thus ensure the bounded-
ness and positivity of the filter by following the above rules.

Having the advantage of filtering is then only possible if all above criteria
are met, which depends, apart from the choice of ∆t, i.e. the trading fre-
quency, mainly on the matrix A = BT (σσT )−1B. To illustrate this further,
we will now observe how changes in this matrix influence the filter. More in-
fluences of such a change besides on the filter will be discussed in Section 4.3.

To simulate such a change we first increased the values in the volatility
matrix and simulated the scheme for the unnormalized filter 1000 times with
the usual simulation parameters and (MP1) except for the volatility. In Fig-
ure 4.2 we can observe a decreasing mean of the sum of the entries of the
unnormalized filter at terminal time at a decreasing biggest eigenvalue of the
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matrix A. With the parameters used, the maximal eigenvalue ist approx-
imately the same value as the trace of the matrix: one large eigenvalue is
again paired with two negligibly small ones.

Figure 4.2: Sum of the entries of the unnormalized filter at terminal time
with decreasing maximal eigenvalues of the matrix A caused by manipulation
of σ

We can observe that with a decrease in the maximal eigenvalue of the ma-
trix the sum of the entries of the unnormalized filter decreases as well, thus
leading to more volatile results.
This effect occurs as well when manipulating the values of the state matrix
instead of the volatility matrix.
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4.2 Advantage in the Gaussian Model

In the Gaussian model positivity is of no importance, both the drift and
hence the filter are very likely negative by definition at some point in time.
Boundedness is still to be considered though and will be studied next.

Depending on the parameters we can observe that already the expected value
of the drift itself might not be bounded.

4.9 Lemma. The drift in this model is given by

dµt = α(δ − µt) dt+ β dW 2
t , µ0 ∼ N (m0, γ0) .

Then ht = E[µt] satisfies

dht = α(δ − ht)dt, h0 ∼ N (m0, γ0)

with t ∈ [0, T ].

Proof. The last summand in µt is of mean zero after applying Fubini’s The-
orem.

This process has to be bounded for the expected value of the drift to be
bounded by a given bound at time t. We get the following condition on the
boundedness of the process ht.

4.10 Lemma. The process ht is bounded for all t ∈ [0, T ], T → ∞ if the
matrix α is diagonalizable and positive semidefinite.

Proof. The vector δ is constant thus the critical term to be controlled is the
process Ht given by

dHt = −αHtdt, h0 ∼ N (m0, γ0) .

Its solution can be determined with help of the matrix exponential

Ht = expm (−αt)h0 .

This matrix exponential is bounded for diagonalizable, positive semidefinite
matrices α.
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Kalman Filtering Now that the drift is bounded, we aim to find a similar
condition for the filter. The filter is given by

mt = φ(t)
[
m0 +

∫ t

0

φ−1(s)γs(σσ
T )−1 dRs +

∫ t

0

φ−1(s) ds αδ
]

and
φ′(t) = [−α− γ(t)(σσT )−1]φ(t)

with the initial condition that φ(0) is the identity matrix and

dγt = −γt(σσT )−1γt − αγt − γtαT + ββT

with initial condition (m0, γ0).
It is crucial for the boundedness of the filter that the process γt is bounded.
Extensive work has been done in the study of this Ricatti equation and the
convergence of its solutions: [16] proves when such a limit exists and shows
of what form it is.

4.11 Lemma. Let γt converge to a constant γ∞. Then the filter is bounded if
the matrix α is diagonalizable and positive semidefinite, as well as the matrix
α + γt(σσ

T )−1.

Proof. Discussing boundedness of the filter is a discussion of the boundedness
of the process φ. That will be bounded by the same argument as in Lemma
4.10 if α + γt(σσ

T )−1 is positive semidefinite and γ∞ exists.

4.12 Remark. The condition for the filter is not equivalent to the one for
the drift. We can therefore encounter situations where the filter is bounded
but the drift is not (example 4.13).

4.13 Example. Let α be 0.7 on the diagonal and −0.3 elsewhere for all
numbers of stocks. If we consider three stocks, both the filter and the drift will
be bounded, but with the fourth, the matrix α has eigenvalues −0.2 and 1 and
thus the drift is not bounded. Using the volatility from (GP1), the eigenvalues
of −α−γt(σσT )−1 are −0.2 and −6.4214 which fulfills the required conditions
and the filter is bounded. This changes then with the fifth stock: both filter
and drift are not bounded.
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4.3 Portfolio Optimization with Filtering in the HMM

The matrix A = BT (σσT )−1B is present in considerations on the bounded-
ness of the scheme for the unnormalized filter as we just saw and as well in
computations on the expected utility of the terminal wealth:
In Proposition 4.6 we saw its close relation to the growth rate of the mean
of the process ψ. It is thus part of the scheme for the unnormalized filter. It
also appears in the optimal terminal wealth that was introduced in Theorem
3.12 as

X∗t = x0 +

∫ t

0

π∗s
T dR̃s

= x0 + x0

∫ t

0

(Bρs)
T (σσT )−1BYs ds+ x0

∫ t

0

(Bρs)
T (σσT )−1σ dW̃s

= x0 + x0

∫ t

0

ρTs AYs ds+ x0

∫ t

0

ρTs (A
1
2 )T dW̃s

with A = A
1
2 (A

1
2 )T , A

1
2 = (σ−1B)T and logarithmic utility.

The entries of this matrix will thus have effects in both considerations: opti-
mization and filtering. We saw that the scheme for the unnormalized filter is
closer to unboundedness the bigger the eigenvalues of the matrix A are. To
ensure an advantage due to filtering, the investor might therefore be inter-
ested in controlling these eigenvalues towards low values. The next section
will show, that to maximize the expected value of the terminal wealth, his
interest might just be the opposite.

To gain some first intuition, we repeat the simulations from Figure 4.2, but
this time with only 100 runs and with respect to observing the optimal ter-
minal wealth. Figure 4.2 was due to the higher number of runs smoother
than the following figures. Theoretical results regarding the findings will be
presented subsequently.
Figure 4.3 displays the expected utility of the terminal wealth under logarith-
mic utility for a decrease in the maximal eigenvalue of the matrix A caused
by manipulation of the volatility. This utility decreases with the decrease
in the eigenvalue which leads to the conclusion that this situation should be
avoided in optimization of the expected utility. At the same time, Figure 4.4
shows that the distance of the normalized filter and the stationary distribu-
tion also decreases over the same decrease in the maximal eigenvalue leading
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to more stable results. This distance is given by E[(ηt− ν)T (ηt− ν)], we will
denote this by mean squared distance (MSD).

Figure 4.3: Expected utility at decreasing max eigenvalue of A caused by
manipulating σ

Figure 4.4: MSD of the normalized filter and the stationary distribution at
decreasing max eigenvalue of A caused by manipulating σ

We also simulated the similar experiment where the matrix B is changed to
decrease the maximal eigenvalue of A which again lead to similar results in
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Figures 4.5 and 4.6.

Figure 4.5: Expected utility at decreasing max eigenvalue of A caused by
manipulating B

The above figures all indicate that the matrix A influences both filtering
and portfolio optimization. The influence on filtering was already quanti-
fied previously, as for example in Lemma 4.6. Next we will also quantify its
connection to portfolio optimization.

4.14 Proposition. A lower bound for the expected logarithmic utility of the
optimal terminal wealth is given by

E[logX∗T ] ≥ T

2

(
d∑
i=1

νiAii − λmax(A)

)
+
λmax(A)

2

∫ T

0

E[ηTt ηt] dt .

Proof. The optimal trading strategy for logarithmic utility in the partial
information case is given by

π∗t = (σσT )−1Bηt

and the wealth with initial wealth x0 = 1 is then

X∗T = exp

(∫ T

0

π∗tBYt −
1

2
π∗t (σσ

T )π∗t ds+

∫ T

0

π∗t σdWt

)
.
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Figure 4.6: MSD of the normalized filter and the stationary distribution at
decreasing max eigenvalue of A caused by manipulating B

The expected utility of the optimal terminal wealth will then be

E log(X∗T ) =
1

2
E
∫ T

0

ηTt B
T (σσT )−1Bηt dt(4.1)

=
1

2

∫ T

0

E
[
ηTt Aηt

]
dt .(4.2)

Of expected value E
[
ηTt Aηt

]
we know

E
[
(Yt − ηt)TA(Yt − ηt)

]
= E

[
Y T
t AYt

]
− E

[
ηTt Aηt

]
⇔ E

[
ηTt Aηt

]
= E

[
Y T
t AYt

]
− E

[
(Yt − ηt)TA(Yt − ηt)

]
.

The Markov chain operates on the unit vectors and its expected value is ν.
With that we get

E
[
Y T
t AYt

]
=

d∑
i=1

νiAii .(4.3)

Now we can determine a lower bound for the optimal terminal wealth via the
matrix A by first approximating

E
[
(Yt − ηt)TA(Yt − ηt)

]
≤ λmax(A)E

[
(Yt − ηt)T (Yt − ηt)

]
,
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where λmax(A) is the biggest eigenvalue of A. It is also known that

E
[
(Yt − ηt)T (Yt − ηt)

]
= E[Y T

t Yt]− E[ηTt ηt] = 1− E[ηTt ηt]

and the desired bound is then given by

1

2

∫ T

0

E
[
ηTt Aηt

]
dt ≥ 1

2

∫ T

0

d∑
i=1

νiAii − λmax(A)(1− E[ηTt ηt]) dt

=
T

2

(
d∑
i=1

νiAii − λmax(A)

)
+
λmax(A)

2

∫ T

0

E[ηTt ηt] dt .

4.15 Remark. Equality is given for equal eigenvalues of A. This is not a
very natural model though and will be discussed later.

This bound does not necessarily lead to valuable information, it might very
well be smaller than the value reached by the investor who has no informa-
tion and does then not contribute any knowledge. It does provide us with
information if its value at terminal time is bigger than what we compute
without having any information at all, i.e. using the stationary distribution
instead of the filter:

1

2

∫ T

0

E
[
νTAν

]
dt =

1

2
TνTAν .

4.16 Lemma. The bound is bigger than the value reached by the investor
without information if

−
∑d

i=1 νiAii − νTAν
λmax(A)

+ 1 < E[ηTT ηT ] .

Proof. For the bound to grow beyond the value that can be reached without
information, it has to increase more rapidly with time than T

2
νTAν since its

starting value is zero. Therefore to determine whether there is a terminal
time T for which the bound provides information, we study the derivative of
the bound and determine for which parameters it is positive.
Let therefore

f(T ) =
T

2

(
d∑
i=1

νiAii − λmax(A)

)
+
λmax(A)

2

∫ T

0

E[ηTt ηt] dt
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be the function to be studied with

f ′(T ) =
1

2

(
d∑
i=1

νiAii − λmax(A)(1− E[ηTT ηT ])

)
.

This is bigger than 1
2
νTAν if

1

2

(
d∑
i=1

νiAii − λmax(A)(1− E[ηTT ηT ])

)
>

1

2
νTAν

⇔ −
∑d

i=1 νiAii − νTAν
λmax(A)

+ 1 < E[ηTT ηT ] .

Hence if this is given, then the bound will contribute valuable information
for some T from which onwards the bound is higher than the value computed
without information.

Next we will have a look at factors influencing the quality of the bound.
The steeper it increases, the higher is its value and thus the higher is the

quality. Therefore we aim to maximize
−

∑d
i=1 νiAii−νTAν
λmax(A)

+1 which is equivalent

to minimizing
∑d
i=1 νiAii+ν

TAν

λmax(A)
. Hence, the bound gains quality for bigger

maximal eigenvalues and also for smaller sums
∑d

i=1 νiAii + νTAν.

4.17 Remark. All eigenvalues are nonnegative since the matrix A is positive
semidefinite. In our usual model with two stocks and three states, at least one
eigenvalue will always be zero since the state matrix has a nontrivial kernel in
this case. If we now use the structure from previous examples where all stocks
are represented by the same states, then there is only one positive eigenvalue.
In general, stocks will of course not be represented by exactly the same states,
but they will typically be similar which results in one large eigenvalue and
several very small ones. This is due to the Implicit Function Theorem, from
which follows that the coefficients of a polynomial are mapped continuously
to its zeros as long as that zero is not an extremum.
Eigenvalues of value zero can only occur if either we have less stocks than
states, which is often used in theoretical discussions but not very realistic for
multi-asset portfolios, or if there are stocks with linearly dependent paramters.
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There exists another representation of the term we used in the proof of Propo-
sition 4.14 with help of the diagonalization of the matrix A = SDST :

E
[
(Yt − ηt)TA(Yt − ηt)

]
= E

[
d∑
i=1

λi(S
T (Yt − ηt))2i

]
.

If we only regard the maximal eigenvalue and omit the terms belonging to
others, then that is smaller than the above term, thus leading to another
bound.

4.18 Proposition. A lower bound for the expected log-utility of the optimal
terminal wealth is given by

E[log(X∗T )] ≥ 1

2

∫ T

0

d∑
i=1

νiAii − E[λmax(S
T
max(Yt − ηt))2] dt

where λmax is the maximal eigenvalue of the matrix A and the diagonalization
of A is given by SDST with STmax being the eigenvector corresponding to the
maximal eigenvalue.

Proof.

E[log(X∗T )] =
1

2

∫ T

0

d∑
i=0

νiAii − E[(Yt − ηt)TA(Yt − ηt)] dt

≥ 1

2

∫ T

0

d∑
i=0

νiAii − E[λmax(S
T
max(Yt − ηt))2i ] dt .

In our usual models with all eigenvalues equal to zero or close to zero except
for one large eigenvalue, these small eigenvalues will then be omitted in the
computation leading to an approximation of a simpler nature.
In the case where there is only one positive eigenvalue, say in state k, we can
compute the optimal terminal wealth using the diagonalization of the matrix
A:

E
[
(Yt − ηt)TA(Yt − ηt)

]
= E

[
(Yt − ηt)TSDST (Yt − ηt)

]
= E

[
(ST (Yt − ηt))2kλk(A)

]
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and

E[log(X∗T )] =
1

2

∫ T

0

d∑
i=1

νiAii − E
[
(ST (Yt − ηt))2kλk(A)

]
dt .

This computation includes still the possibly added error from omitted eigen-
values in case there are one large and otherwise very small eigenvalues. Then
we do not have an equivalent representation but rather another approxima-
tion. In addition to that, we face a discretization error from the filter with
this computation. The following examples illustrate the difference between
the approximations.

In these examples we used a rate matrix with very small entries. This means
that there occur few jumps which leads to a smaller discretization error in
the expected value of the normalized filter. Otherwise this error may be very
large. The rate matrix and its stationary distribution that will be used in
the following examples are given by

Q =

−5 3 2
1 −2 1
4 1 −5

 , ν =
(
0.2727 0.5152 0.2121

)
.

In the figures we will use the notation bound 1 for the display of the bound
from Proposition 4.14 and bound 2 corresponds to the bound in Proposition
4.18.

4.19 Example. We will first examine a case with 2 stocks and 3 states. To
model the existence of only one eigenvalue of the matrix A, the state and
volatility matrices are given by

B =

(
3 0.1 −3
3 0.1 −3

)
, σ =

(
0.2 0.1
0.1 0.2

)
.

The maximal eigenvalue of A is then 400.2222, both other eigenvalues are
zero. The following Figure 4.7 shows in blue the expected utility of the op-
timal terminal wealth, in red the version for only one eigenvalue with the
before mentioned second approximation. These values are supposed to be
equal since there is only one positive eigenvalue, but due to simulation there
appear small deviations. The bound which contains information in this case
from Proposition 4.14 is in black and the wealth we reach without having any
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information, i.e. using the stationary distribution instead of the filter, is dis-
played in green.

Figure 4.7: Expected utility of the optimal terminal wealth, bounds and
terminal wealth without information

To improve the bound in black from Proposition 4.14 we will now have to
choose parameters that lead to a larger maximal eigenvalue, i.e. larger en-
tries in the state matrix and/or smaller ones in the volatility. We chose the
latter with

σ =

(
0.15 0.08
0.08 0.15

)
leading to an eigenvalue 680.9074 and the results in Figure 4.8 which are
displayed in the same fashion as before.
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Figure 4.8: Optimal terminal wealth, bounds and expected utility of the
terminal wealth without information

4.20 Example. Next we will have a look at a model with three stocks and
three states with the parameters

B =

2.8 −0.1 −2.8
0.8 0.08 −1.2
1.7 −0.1 −1

 , σ =

 0.2 0.12 0.1
0.11 0.18 0.09
0.11 0.09 0.21

 .

With these parameters the matrix A has the eigenvalues 623.9941, 27.2268
and 0.148, so we have one large eigenvalue paired with two comparably small
ones.
In Figure 4.9 we can then observe that the bound 1 is still containing in-
formation, but the red line for the model with only one eigenvalue has more
distance to the expected utility of the optimal terminal wealth. In addition to
the simulation deviation, we omitted the two albeit small eigenvalues that are
not zero.
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Figure 4.9: Expected utility of the optimal terminal wealth, bounds and
expected utility of the terminal wealth without information

4.21 Example. As mentioned before, if we have three equal eigenvalues,
then we have equality for the bound 1 and it is equal to the expected utility
of the optimal terminal wealth. We will now show an example for this with
figure 4.10, although the parameters used are not realistic.

B =

3 0 0
0 2.8 0
0 0 3.2

 , σ =

0.2 0 0
0 0.18 0
0 0 0.21

 .
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Figure 4.10: Expected utility of the optimal terminal wealth, bound and
expected utility of the terminal wealth without information

The two approximations have shown a different behaviour depending on the
size of the eigenvalues: If we have one large eigenvalue accompanied by several
small ones, the second approximation from Proposition 4.18 leads to better
results. The first version from Proposition 4.14 though is at its best if the
eigenvalues are all equal.

4.22 Remark. For an increase in the number of stocks, we discussed earlier,
that the matrix A should have a decreasing maximal eigenvalue for the filter
to remain stable. This goes hand in hand with a lower expected utility of the
optimal terminal wealth and we can now add that the bound 1 is also of less
quality the more stocks are involved if this decrease over an increase in the
number of stocks is given.

If we now performed the same computations as in Proposition 4.14, but with
the minimal eigenvalue of A instead of the maximal, we would get an upper
bound for the expected utility of the optimal terminal wealth accordingly.

4.23 Lemma. An upper bound for the expected utility of the optimal terminal

64



wealth is given by

E[logX∗T ] ≤ 1

2

∫ T

0

d∑
i=1

νiAii − λmin(A)(1− E[ηTt ηt]) dt .

Proof. This can be computed much the same way as was the bound in Propo-
sition 4.14.

In this case the two bounds often coincide since the minimal eigenvalue is
often equal or close to zero and thus only the term νiAii remains to be inte-
grated.

4.24 Example. The following Figure 4.11 was computed with the same pa-
rameters we used in the Example 4.20 above, just with the minimal eigenvalue
instead of the maximal. With these parameters, the smallest eigenvalue is not
equal to zero, but close to, and the bounds are nearly indistinguishable.

Figure 4.11: Expected utility of the optimal terminal wealth, bound and
expected utility of the terminal wealth without information
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4.25 Remark. The lower bound for the optimal terminal wealth was very
sensitive towards an increase in the number of stocks since the maximal eigen-
value is smaller with each additional stock. This is not the case for this upper
bound, the smallest possible eigenvalue is zero since the matrix A is positive
semidefinite and thus does not decrease with an increase in the number of
stocks.

Let us now assume, we have a decrease in the maximal eigenvalue in the
matrix A in a model with two stocks. For optimization results, this was
not desirable though. Therefore an investor might try to assume a bigger
maximal eigenvalue than there actually is. He should expect more risk, but
also a possibly higher gain. To model that, we increase the maximal eigen-
value in computations by changing the parameters in the model. With these
constructed parameters we compute the matrix A and its eigenvalues as well
as the trading strategy based on no information and the one using the filter.
We will then study the trading strategy for the first stock and observe the
outcome in Figure 4.12. The trading strategy with the increased eigenvalue
leads to larger long positions and finally invests even less in the stocks than
the investor without information. Not very surprisingly, this is not a solid
method, it might lead to better results for small increases, though.
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Figure 4.12: Trading strategy for stock 1 with no information and with the
filter from the model with increased maximal eigenvalue

4.26 Remark. The results from this and the previous section allow us to
state a more general rule as to when it makes sense to perform portfolio
optimization with one’s filter at all. First we now know that the scheme for
the unnormalized filter is required to be bounded and preserving positivity.
Secondly, if the filter is too close to the stationary distribution, it is not
worth the effort in comparison to the investor who has no information at all.
This can be measured with the lower bound for the optimal terminal wealth
from Proposition 4.14 which ensures

E [log(X∗T )] >
1

2
TνTAν

if it contributes information.

If this inequality does not hold true, the investor does not need to apply
filtering techniques. Unfortunately, he then faces a bad optimization result,
we saw before that the investor without information reaches a much lower
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expected utility of the terminal wealth. In order to apply filtering to his
advantage he might thus add or replace stocks in his portfolio.

4.27 Remark. In conclusion of the previous thoughts the investor pursuits
market parameters where the filter is close to being not bounded, but still
bounded, to maximize his terminal wealth and stay as far away from the
lower limit given by the investor without information as possible.
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4.4 Market Reduction in the HMM

Next we want to study another aspect of portfolio optimization with special
respect to the matrix A. In order to do so let us start with recalling the
expected log-utility of the optimal terminal wealth given as

E[log(X∗T )] = E
[1

2

∫ T

0

ηTt B
T (σσT )−1Bηt dt

]
= E

[1

2

∫ T

0

ηTt Aηt dt
]

.

Let us then again diagonalize the matrix A as A = SDST . The terminal
wealth then reads

E[log(X∗T )] = E
[1

2

∫ T

0

ηTt SDS
Tηt dt

]
.

This new version can be interpreted as a lesser dimensional market with some
rather nice properties which we will observe and study more closely in the
following. Roughly speaking, the matrix S will be the translation for the
states and the matrix D for the inverse of the volatility squared.
All quantities in this new market will be denoted by ◦. Identifying the
parameters by comparing these two versions of the expected utility of the
optimal terminal wealth leads to the following representations in the diagonal
market.

f ◦t = DSTηt

dW ◦
t = D−

1
2STBT (σ−1)T dWt

dR◦t = STYt dt+D−
1
2dW ◦

t

dρ◦t = QTρ◦t dt+ diag(ρ◦t )SD dR◦t

The matrix D is unfortunately not invertible in case A has eigenvalues of
value zero. For now, we assume therefore that the matrix A is of full rank.

4.28 Lemma. If rank(A) = d, W ◦
t is a Brownian motion.

Proof. Computing the quadratic covariance of the new quantity W ◦
t results

in

d[W ◦]t = Idd dt

and thus we have by Lévy’s characterization Theorem a Brownian motion in
this new market.
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4.29 Remark. As you may have noticed, quantities depending on the number
of stocks are not of the same dimension as the original ones anymore: where
we had n stocks and thus an n-dimensional Brownian motion, we now have
a d-dimensional one. This leads to the before mentioned new properties. We
are now able to represent an n-dimensional portfolio with only d funds. This
is desirable in case there are more stocks than states. These d funds would
of course have to act as exactly the combination of the n stocks that leads
to the optimal terminal wealth and is described in the diagonalisation of the
matrix A. In the portfolio we would now have funds as assets rather than
single stocks. The composition of these funds, namely the linear combination
of stocks in the fund, is independent of time, the amount invested in them is
not.

The introduction to this section covered logarithmic utility only and can be
performed in much the same way for power utility as well: the filter does
not need another translation, it does not depend on the utility. The strategy
does though and will be discussed in Corollary 4.34.
We will show the equivalence of the original and the diagonal market for
arbitrary utility next, but will need a preliminary result for the proof.

4.30 Lemma. Let rank(A) = d. Then the term BT (σσT )−1 dRt is equal to
SD dR◦t .

Proof.

BT (σσT )−1 dRt

= BT (σσT )−1BYt dt+BT (σσT )−1σ dWt

= AYt dt+BT (σσT )−1σ dWt

= SDSTYt dt+BT (σσT )−1σ dWt

= SDSTYt dt+ SDD−1STBT (σσT )−1σ dWt

= SD(STYt dt+D−1STBT (σσT )−1σ dWt)

= SD(STYt dt+D−
1
2 dW ◦

t )

= SD dR◦t .

With this in mind we can now prove the following theorem.
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4.31 Theorem. Let rank(A) = d. The original market and the newly in-
troduced diagonal market lead to the same optimal terminal wealth and the
filters coincide.

Proof. To see that the filters are in fact the same, we apply Lemma 4.30 with
the result

dρt = QTρt dt+ diag(ρt)B
T (σσT )−1 dRt

= QTρt dt+ diag(ρt)SD dR◦t .

The SDE for the scheme of the unnormalized filter in the new market reads

dρ◦t = QTρ◦t dt+ diag(ρ◦t )SD dR◦t .

With the same initial value ρ0 = ρ◦0 = ν, the solution of the linear SDE is
unique.
Showing the equality of the optimal terminal wealth can be done indepen-
dently of the utility by using the definition from Theorem 3.12

X∗T = I(yζT )

where y is a constant given by Ẽ[I(yζT )] = x0. The density ζ can be trans-
lated analogously to the filter using Lemma 4.30 leading to

ζ◦T
−1 = 1 +

∫ T

0

ρ◦s
TSD dR◦s .

The optimal terminal wealth translates then to

X∗T = I(yζT ) = I(y◦ζ◦T ) = X◦T
∗ .

Following Theorem 4.31 one may call the original market with return R and
the new market with R◦ equivalent.

For our usual logarithmic and power utility functions we compute the ex-
pected utility of the optimal terminal wealth in the diagonal markets ex-
plicitly in the following corollary. But first we will translate the necessary
Malliavin derivative using the product in which it is going to appear in the
proof, namely BTσT

−1
Dtρu.
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4.32 Lemma. Let rank(A) = d and F ◦u := D−
1
2STBTσT

−1
Dtρu. Then F ◦u

is a translation of the Malliavin derivative of the unnormalized filter into the
diagonal market.

Proof. The Malliavin derivative is given by

Dtρu = σ−1B diag(ρt) +

∫ u

t

(Dtρs)Q ds+

∫ u

t

(Dtρs) diag(BT (σσT )−1 dRs)

and then BTσT
−1
Dtρu is with the use of Lemma 4.30

BTσT
−1
Dtρu = A diag(ρt) +

∫ u

t

(BTσT
−1
Dtρs)Q ds

+

∫ u

t

(BTσT
−1
Dtρs) diag(SD dR◦s) .

If we now multiply this also with D−
1
2ST we get

D−
1
2STBTσT

−1
Dtρu =D

1
2ST diag(ρt) +

∫ u

t

(D−
1
2STBTσT

−1
Dtρs)Q ds

+

∫ u

t

(D−
1
2STBTσT

−1
Dtρs) diag(SD dR◦s) .

We denote F ◦u := D−
1
2STBTσT

−1
Dtρu. The starting value of F ◦u is now the

direct translation of the original Malliavin derivative’s starting value into the
diagonal market. The dynamics of F ◦u are the same as the dynamics of the
Malliavin derivative of the unnormalized filter

dF ◦u = F ◦uQ du+ F ◦u diag(SD dR◦u)

= F ◦uQ du+ F ◦u diag(BT (σσT )−1 dRu) .

4.33 Remark. This Lemma allows us to translate the product BTσT
−1
Dtρu

into SD
1
2F ◦u in the diagonal market.

4.34 Corollary. For logarithmic and power utility the expected utility of the
optimal terminal wealth in the diagonal market is given by

E[log(X◦∗T )] = E
[1

2

∫ T

0

ηTt SDS
Tηt dt

]
,

E
[1

κ
(X◦∗T )κ

]
=
x0
κ

+ E
[ ∫ T

0

(X∗s )κ−1(π◦∗s
TSTη◦s +

κ− 1

2
π◦∗s

TD−1π◦∗s ) ds
]

.
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Proof. The expected utility of the optimal terminal wealth for logarithmic
utility can be computed straight forward as

E[log(X∗T )] = E
[1

2

∫ T

0

ηTt B
T (σσT )−1Bηt

]
dt

= E
[1

2

∫ T

0

ηTt Aηt dt
]

= E
[1

2

∫ T

0

ηTt SDS
Tηt dt

]
= E[log(X◦∗T )] .

Let us now turn to power utility. The expected utility in the original market
was given by

E
[1

κ
(X∗T )κ

]
=
x0
κ

+ E
[ ∫ T

0

(X∗s )κ−1(π∗s
TBηs +

κ− 1

2
π∗s

T (σσT )π∗s) ds
]

with

π∗t =
x0(σσ

T )−1

(1− κ)Ẽ[ζ
1

κ−1

T ]

{
BρtẼ[ζ

κ
κ−1

T |FSt ]

+ Ẽ[ζ
κ
κ−1

T

∫ T

t

(σDtρs)B
T (σσT )−1 dRs|FSt ]

}
.
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Inserting this leads with some rearranging to

E
[1

κ
(X∗T )κ

]
=
x0
κ

+ E

[∫ T

0

(X∗s )κ−1

 x0Ẽ[ζ
κ
κ−1

T |FSt ]

(1− κ)Ẽ[ζ
1

κ−1

T ]
ρTs B

T (σσT )−1Bηs

+
x0

(1− κ)Ẽ[ζ
1

κ−1

T ]
ηTs B

T (σσT )−1Ẽ
[
ζ

κ
κ−1

T

∫ T

t

(σDtρs)B
T (σσT )−1 dRs|FSt

]

+
x20(κ− 1)Ẽ[ζ

κ
κ−1

T |FSt ]2

2(1− κ)2Ẽ[ζ
1

κ−1

T ]2
ρTs B

T (σσT )−1Bρs

+
x20(κ− 1)Ẽ[ζ

κ
κ−1

T |FSt ]

(1− κ)2Ẽ[ζ
1

κ−1

T ]2
ρTs B

T (σσT )−1Ẽ
[
ζ

κ
κ−1

T

∫ T

t

(σDtρs)B
T (σσT )−1 dRs|FSt

]
+
x20(κ− 1)(σσT )−1

2(1− κ)2Ẽ[ζ
1

κ−1

T ]2
Ẽ
[
ζ

κ
κ−1

T

∫ T

t

(σDtρs)B
T (σσT )−1 dRs|FSt

]T
· Ẽ
[
ζ

κ
κ−1

T

∫ T

t

(
σDtρs

)
BT (σσT )−1 dRs|FSt

])
ds

]
.

Applying Lemma 4.30 and the fact that the process ζ translates into the
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diagonal market with the same argument leave us with

=
x0
κ

+ E

[∫ T

0

(X∗s )κ−1

(
x0Ẽ[ζ◦T

κ
κ−1 |FSt ]

(1− κ)Ẽ[ζ◦T
1

κ−1 ]
ρ◦s
TSDSTη◦s

+
x0

(1− κ)Ẽ[ζ◦T
1

κ−1 ]
η◦s
TBT (σT )−1Ẽ

[
ζ◦T

κ
κ−1

∫ T

t

(Dtρs)SD dR◦s|FSt
]

+
x20(κ− 1)Ẽ[ζ◦T

κ
κ−1 |FSt ]2

2(1− κ)2Ẽ[ζ◦T
1

κ−1 ]2
ρ◦s
TSDSTρ◦s

+
x20(κ− 1)Ẽ[ζ◦T

κ
κ−1 |FSt ]

(1− κ)2Ẽ[ζ◦T
1

κ−1 ]2
ρ◦s
TBT (σT )−1Ẽ

[
ζ◦T

κ
κ−1

∫ T

t

(Dtρs)SD dR◦s|FSt
]

+
x20(κ− 1)

2(1− κ)2Ẽ[ζ◦T
1

κ−1 ]2
Ẽ
[
ζ◦T

κ
κ−1

∫ T

t

(Dtρs)SD dR◦s|FSt
]T

· Ẽ
[
ζ◦T

κ
κ−1

∫ T

t

(
Dtρs

)
SD dR◦s|FSt

])
ds

]
.

The translation of the Malliavin derivative from Lemma 4.32 will be applied
now and also a direct translation of the Malliavin derivative analogously to
the filter leading to
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=
x0
κ

+ E

[∫ T

0

(X∗s )κ−1

(
x0Ẽ[ζ◦T

κ
κ−1 |FSt ]

(1− κ)Ẽ[ζ◦T
1

κ−1 ]
ρ◦s
TSDSTη◦s

+
x0

(1− κ)Ẽ[ζ◦T
1

κ−1 ]
η◦s
TSD

1
2 Ẽ
[
ζ◦T

κ
κ−1

∫ T

t

F ◦s SD dR◦s|FSt
]

+
x20(κ− 1)Ẽ[ζ◦T

κ
κ−1 |FSt ]2

2(1− κ)2Ẽ[ζ◦T
1

κ−1 ]2
ρ◦s
TSDSTρ◦s

+
x20(κ− 1)Ẽ[ζ◦T

κ
κ−1 |FSt ]

(1− κ)2Ẽ[ζ◦T
1

κ−1 ]2
ρ◦s
TSD

1
2 Ẽ
[
ζ◦T

κ
κ−1

∫ T

t

F ◦s SD dR◦s|FSt
]

+
x20(κ− 1)

2(1− κ)2Ẽ[ζ◦T
1

κ−1 ]2
Ẽ
[
ζ◦T

κ
κ−1

∫ T

t

(Dtρ
◦
s)SD dR◦s|FSt

]T
· Ẽ
[
ζ◦T

κ
κ−1

∫ T

t

(
Dtρ

◦
s

)
SD dR◦s|FSt

])
ds

]

=
x0
κ

+ E
[ ∫ T

0

(X∗s )κ−1(π◦∗s
TSTη ◦s +

κ− 1

2
π◦∗s

TD−1π◦∗s ) ds
]

= E
[1

κ
(X◦∗T )κ

]
.

4.35 Remark. This theorem describes how an investor trades only in the
riskless asset and funds of risky assets, a linear combination of the risky
assets in the market, and reaches the same expected utility of the optimal
terminal wealth. This is a version of the Mutual Fund Theorem for this
model. General applicability of the Mutual Fund Theorem was discussed in
[25] for all utility functions under some completeness condition. Although in
that work, the mutual fund depends on time and there is only one fund of
risky assets next to the riskfree bond. Here we have as many funds as states,
but their composition does not change with time, only the amount invested
in each.

In more detail, let us assume the Markov chain is in state i, Yt = ei. Then
the investor will invest only in fund i with return dR◦t = ST ei dt+D−

1
2 dW ◦

t

if the filter is equal to the corresponding eigenvector. If the filter were equal
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to a unit vector, the investor would invest in a linear combination of the
funds:

f ◦∗t = DSTηt =

{
λiei if ηt = Si∑d

i=1 λiS
i
kei if ηt = ek.

.

The case rank(A)<d Let us now turn to the discussion of the case where
the matrix A is not of full rank, but has eigenvalues that are zero. That
might either be the case if there are less stocks than states or if there are
stocks with linearly dependent parameters. Both cases are not very impor-
tant in application, but especially the one with less stocks than states often
appears in the literature.
For that special case another transformation will be performed. Let the diag-
onalization be as beforeA = SDST , then the matrixD will have rows/columns
consisting only of zeros. Eliminate these rows and columns and the corre-
sponding eigenvectors in the matrix S. Then the matrix D shrinks then to
dimension p× p where p is the number of eigenvalues different from zero and
the rest of S has dimension d× p. Quantities in this new lesser dimensional
model will be denoted by p.
The trading strategy can be represented this way with p entries as in

fpt
∗ = DpSpTηt .

For the Brownian motion we get

dW p
t = (Dp)−

1
2SpTBT (σσT )−1σ dWt

which has again the right quadratic variation. The return in p dimensions is
then

dRp
t = SpTYt dt+ (Dp)−

1
2 dW p

t .

For the filter, unfortunately, the translation is not as straight forward. We
attempt a reduce of the dimension to less than the number of the states, but
the filter is of course exactly of that dimension and that will not change. If
we were to translate naively without consideration of this, the result would
be

dρpt = QTρpt dt+ diag(ρpt )S
pDp dRp

t .
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This is not equivalent to the filter of the original market though, translating
the summand with the return as was done in Lemma 4.30 shows why. It
includes the separation of the matrix S into the part belonging to the p
positive eigenvalues Sp and the eigenvectors belonging to the eigenvalues
that are zero Sd−p.

BT (σσT )−1 dRt

= AYt dt+BT (σT )−1 dWt

= AYt dt+ SSTBT (σT )−1 dWt

= SpDpSpTYt dt+ (SpSpT + Sd−pSd−p
T

)BT (σT )−1 dWt

= SpDpSpTYt dt+ SpDp(Dp)−1SpTBT (σT )−1 dWt

+ Sd−pSd−p
T
BT (σT )−1 dWt

= SpDp dRp
t + Sd−pSd−p

T
BT (σT )−1 dWt

The two terms s1 = SpSpTBT (σT )−1 dWt and s2 = Sd−pSd−p
T
BT (σT )−1 dWt

are independent

Cov(s1, s2) = SpSpTBT (σT )−1tIdnσ
−1BSd−pSd−p

T
= 0 .

When reducing the dimension to p we therefore have an additional noise
term appearing. Without it, the drift and with it the terminal wealth are
not optimal. This noise is necessary to be optimal, without it the filter
does not move away from the invariant distribution as easily, it may even be
reduced to be a mere oscillation around the invariant distribution. In this
case, it does not contain information anymore.
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4.5 Advantage in the Standard Market Model

The special knowledge available to the investor who filters can be an advan-
tage. In this and the following sections we will discuss this possible advantage
and we will distinguish the investor with full information who can observe
the Markov chain directly, the investor with partial information who filters
and the investor with no information who uses the stationary distribution of
the Markov chain as its approximation.

Let us first observe the advantage in the standard market model numeri-
cally by comparing the expected utility of the terminal wealth that can be
reached with full, partial or no information using (MP2) in Table 4.1. As
expected, the investor with full information gains the most, whereas without
information there is no gain and the filter improves that position without
reaching the full information possibilities.

(MP2) log utility power κ = 0.1 κ = −1 κ = −10

full info 1.4 10.2 -0.91 -0.08
partial info 1.06 10.03 -0.99 -0.099
no info 1 10 -1 -0.1

Table 4.1: Filtering Advantage with (MP2)

The investor with no information uses the stationary distribution which has
a sum of all entries of one by definition. The density ζ is given at any time-
point as the inverse of the sum of the entries of the unnormalized filter and
thus equal to one at all times for this investor. The computation of the ex-
pected utility of the optimal terminal wealth has only one time dependent
parameter, namely ζ. Hence for the investor without information the ex-
pected utility of the optimal terminal wealth does not change with time and
is given by the values displayed in Table 4.1 above for all times t.
For the Gaussian investor, this case of no information does also only depend
on ζ and is identical to the Markovian case.
The difference between partially and fully informed investor is comparable
to the Markovian case as well, for numerical results we refer to the Tables
3.5 and 3.6.

79



4.6 Filtering Advantage at Infrequent Trading

First we will discuss at which trading frequencies this advantage exists. Intu-
itively, very infrequent trading will obliterate the advantage, especially with
the knowledge from the beginning of this chapter on the unboundedness of
the scheme for the unnormalized filter for infrequent trading. In the following
example the frequencies will be computed where the filter is not bounded and
thus certainly no advantage in the HMM based on Lemma 4.8. The same
consideration for the Gaussian Model will be presented subsequently.

4.36 Example. Let us consider (MP1):

QT =

−60 15 35
25 −30 25
35 15 −60


=

−1 1 3
0 −2 5
1 1 3

−95 0 0
0 −55 0
0 0 0

−1
2

0 1
2

5
22
− 3

11
5
22

1
11

1
11

1
11


and therefore need to find the largest solution of the equations

|1−∆t95| < 1 and |1−∆t55| < 1

leading to the result ∆t < 2
95
≈ 0.021. Figures 4.13 and 4.14 show the norm∥∥(Id +∆tQT )

∥∥k plotted against k at trading frequencies smaller and bigger
than 0.021.
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Figure 4.13: Behaviour of the norm
∥∥(Id +∆tQT )

∥∥k for ∆t = 0.022

Figure 4.14: Behaviour of the norm
∥∥(Id +∆tQT )

∥∥k for ∆t = 0.021

The following Figures display the unnormalized filter, again at frequencies
smaller and bigger than 0.021, Figures 4.15 and 4.16.
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Figure 4.15: Unnormalized filter for 25 trades per year

Figure 4.16: Unnormalized filter for 100 trades per year

Filter quality is also essential for the quality of parameter estimation if
needed. The EM algorithm we use to estimate parameters depends among
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other similar filters on the one for the Markov chain. Therefore we expect
the estimation to improve with a growing number of tradings. In Figures
4.17, 4.18 and 4.19 we can especially observe the significance of the earlier
computed frequency from which onward the scheme for the unnormalized fil-
ter is bounded and preserving positivity for complete estimations at different
trading frequencies.

Figure 4.17: Estimation of the state matrix
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Figure 4.18: Estimation of the rate matrix

Figure 4.19: Estimation of the volatility matrix

In the Gaussian Model a similar behaviour of the filter occurs and again the
∆t where the filter is bounded for all smaller stepsizes can be computed.

84



Figures 4.20 and 4.21 illustrate the filter at higher and lower frequencies. In
this model the filter increases very rapidly for the bigger ∆t, so much, that
the simulation aborts after a short time.

Figure 4.20: Filter for (GP1) at ∆t = 0.05

Figure 4.21: Filter for (GP1) at ∆t = 0.08
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4.37 Example. For (GP1) we use

σ =

(
0.2 0.12
0.1 0.18

)
.

and

γ0 =

(
0.1 0.1
0.1 0.1

)
.

The condition
‖∆t(σσT )−1γ0‖ ≤ 1

is then fulfilled if

∆t ≤ 1

‖(σσT )−1γ0‖
= 0.0637

Figures 4.22 and 4.23 illustrate this result.

Figure 4.22: Behaviour of the norm ‖∆t(σσT )−1γ0‖ for ∆t = 0.064
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Figure 4.23: Behaviour of the norm ‖∆t(σσT )−1γ0‖ for ∆t = 0.063

Parameter estimation in this model does also depends on the Kalman filter
and will be studied next for infrequent trading. We find the same difficulties
with parameter estimation when trading less frequent than the boundary
for the filter to be bounded: Figure 4.24 illustrates that the algorithm does
not produce estimates at all in the case of that rare trading until the before
computed frequency. Displayed is the estimation of σσT , but the estimation
of the other two parameters shows the same behaviour.

Figure 4.24: Estimation of σσT
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4.7 Advantage with an Increasing Number of Stocks

At an increase in the number of stocks, the dimension of the matrix A does
not change, but its values do since both the states and the volatility grow in
dimension. The driving Markov chain does not change, it depends only on
the number of states.
The following example shows why the mean of the process ψ plays a partic-
ularly big role in the case of many stocks.

4.38 Example. We consider 25 independent stocks with parameters

B1 = 1 · 125

B2 = 0.1 · 125

B3 = −1 · 125

σij = 0.2 for i = j and 0 for i 6= j, i = 1, . . . , 25

and the rate matrix from (MP1).
Following Proposition 4.6 the growth rate of the mean of the process ψ is
given by ∆t(Bj)T (σσT )−1Bν with j = 1, . . . , d.
This growth rate is with the above parameters for a general number of stocks
n in the first state given by

0.004 · 1n · 25 · 1Tn ·

(1 0.1 −1
)0.2727

0.4545
0.2727


= 0.004545 · 1n · 1Tn
= n · 0.004545 .

This value increases unboundedly with an increase in the number of stocks.
The experiment will lead to an unbounded robust scheme for the unnormal-
ized filter whenever the value is close to one which will happen eventually due
to the increase. Figure 4.25 displays the unnormalized filter from the above
situation.
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Figure 4.25: Unnormalized filter at 25 stocks with a diagonal volatility matrix

Parameter estimation is then either not possible at all or at least not leading
to valuable results.

We will now adjust the state matrix such that the mean is a lot smaller and
repeat the experiment.
The volatility matrix will not be changed, the states used will be 0.05, 0.01
and -0.05.
With these parameters, 20 stocks and one year simulation time, the scheme
for the unnormalized filter was bounded and we got the following satisfying
parameter estimation results for the rate matrix displayed in Figure 4.26.
The estimates are again the mean of one hundred runs of the EM algorithm
with one hundred data sets produced from the same parameters.
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Figure 4.26: Estimation of the rate matrix with independent stocks

Unfortunately, we cannot observe the desired decrease of the standard de-
viation in Figure 4.27. These figures imply that although the scheme for
the unnormalized filter is bounded and positive in this experiment and the
parameter estimation works well enough, this will not be true for larger num-
bers of stocks.

90



Figure 4.27: Standard deviation in the estimation of the rate matrix with
independent stocks

The reason is again what we computed in the previous example: The gen-
eral structure we computed in the example as (n · number) is still valid and
therefore the mean is still increasing with the number of stocks. Hence the
mean will eventually pass the limit from which on the scheme for the unnor-
malized filter is not bounded anymore and the parameter estimation will not
be satisfying.

4.39 Remark. We saw before that with lowering the values of the states,
the filter stays bounded and positive for some higher numbers of stocks, but
not eventually. By increasing the trading frequency, i.e. using a smaller ∆t,
a similar effect would appear: The filter would be bounded and positive for
higher numbers of stocks, but the increase in n would still have more weight.

To break this pattern of unboundedness for higher numbers of stocks, we
introduce another volatility matrix that has nonzero offdiagonal elements.

4.40 Example. We used the following volatility matrix and did not change
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the state and rate matrices:

σi,j =

{
0.2, if i = j

0.1, if i 6= j

for i, j = 1, . . . , n .

We will now compute the growth rate of the mean of the process ψ with these
parameters for a general number of stocks n for the first state.

0.004 · 1n · (σσT )−1 · 1Tn ·

(1 0.1 −1
)0.2727

0.4545
0.2727


= 0.0001818 · 1n · (σσT )−1 · 1Tn

= 0.0001818 ·
n∑
i=1

n∑
j=1

(σσT )−1ij

This sum is strictly decreasing since the sequence
∑n

i=1

∑n
j=1(σσ

T )−1ij is monotonously
decreasing with limit zero for increasing n.
Parameter estimation is then as expected very well.

Figure 4.28: Estimation of the rate matrix
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Figure 4.29: Standard deviation in the estimation of the rate matrix

4.41 Remark. We have now seen two examples for the computation of the
growth rate of the mean of the process ψ under the real world measure. Under
the risk neutral measure, this expected value is equal to one (see Lemma 4.1),
but under this measure the investor cannot gain anything. His objective is
thus that the real world and the risk neutral measure differ. In this situation
this would imply that the mean of the process ψ is as far from one as possi-
ble. But then we encounter problems with boundedness and positivity as was
discussed earlier.

4.42 Remark. From the above considerations we can conclude that

∆t(Bj)T (σσT )−1Bν

has to be positive, smaller than one and not increasing for the growth rate to
be bounded with the increase in the number of stocks for all j = 1, . . . , d .

4.43 Example. The parameter estimation algorithm for the HMM model
depends heavily on filters including the filter we observed here. Now if this
unnormalized filter is close to the stationary distribution, one could use the
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stationary distribution instead of the unnormalized filter and save some com-
putation time. All other filters would still be computed according to their
definitions, though. The results of such an experiment can be seen in Figure
4.30 where the estimation with the stationary distribution is displayed in red
and blue shows the results for the original EM algorithm.

Figure 4.30: Estimation of the rate matrix with the stationary distribution

4.44 Remark. If ∆t(Bj)T (σσT )−1Bν were negative and decreasing we would
not encounter a problem with boundedness or positivity, but the filter would
be close to approaching zero which is not desirable either since there is no
information to be gained from it then. This same problem appears if the term
is bigger than one and increasing. In Figure 4.31 we included an example
where the scheme for the unnormalized filter is bounded, but still not of de-
sirable shape since it is nearing zero.
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Figure 4.31: Unnormalized filter at 200 stocks, 3750 trading days

We now know all requirements for the scheme for the unnormalized filter to
be bounded and preserving positivity at large numbers of stocks, but we can
also observe that the normalized filter still changes over an increase in the
number of stocks.
As a measure for the filter performance we will again use the MSD as

E[(ν − ηt)T (ν − ηt)] = E[(ν − ρtζt)T (ν − ρtζt)]

and observe it at terminal time T for the increasing number of stocks as well
as for all t ≤ T for different numbers of stocks.

4.45 Remark. Since both the stationary distribution and the normalized
filter have only positive entries that sum up to one (at each time step in the
case of the normalized filter), the MSD is contained in the unit interval [0, 1].

If we now compare the normalized filter with the stationary distribution of
the Markov chain over all timesteps t ≤ T , we will see that with an increase
in the number of stocks, the size of the error lessens. Figure 4.32 displays
the MSD for the normalized filter in all three states and for three different
numbers of stocks: 1, 10 and 25. This relates to the earlier discussed result
that the MSD decreases with a decrease in the matrix A = BT (σσT )−1B
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Figure 4.32: MSD of the normalized filter over time

which is naturally given in this model with the increase in the number of
stocks.

4.46 Remark. In Figure 4.32 we cannot only detect a decrease of the mean
of the error, but also in the variance.

The decrease in the MSD over an increase in the number of stocks will be our
next subject of interest. Therefore we will not regard the increase over all
timesteps any longer, but concentrate on the effect of the number of stocks
by computing the MSD at terminal time T .
Figure 4.33 displays the results of the computation of the MSD of the filters
and the stationary distribution at terminal time T over an increase in the
number of stocks up to 25. As expected, the error lessens.
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Figure 4.33: MSD of the normalized filter at terminal time

4.47 Remark. Given an increasing number of stocks, the scheme for the
unnnormalized filter ρt will eventually be near the stationary distribution of
the Markov chain if the scheme is bounded for all numbers of stocks and is
not nearing zero.

This numerical observation relates to the result in [19] on the convergence
of the unnormalized filter and the stationary distribution. To illustrate this
result, we show a comparison of the unnormalized filter in the onedimen-
sional model (Figure 4.34) and the one generated with 25 stocks (Figure
4.35) with the previous parameters. The initial distribution is in this case
(0.2727 0.4545 0.2727) and the unnormalized filter is much closer to it with
25 stocks.
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Figure 4.34: Unnormalized filter for one stock

Figure 4.35: Unnormalized filter for 25 stocks
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We turn to the study of the density ζ.

4.48 Remark. The density ζt is given by

ζ−1t = 1Td ρt .

Therefore it is close to one if the filter is close to the stationary distribution
since the entries in the stationary distribution always sum up to one.

Figure 4.36 presents an overview over the behaviour of the density ζ over our
usual 250 trading days in one year for different numbers of stocks. One can
observe that the process stays closer to one the more stocks are involved.

Figure 4.36: ζt for 1, 10 and 25 stocks
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4.49 Remark. We have now observed the process ζt in the situation of an
increase in the number of stocks and found conditions under which it is pos-
itive while technically we were analyzing the MSD.
It does have another positive side effect though: By ensuring ζt to be positive,
bankruptcy is excluded.

With the parameters used in this chapter for a bounded and positive scheme
for the unnormalized filter at all numbers of stocks, we get an appearance of
the process ζT for 50 stocks as in Figure 4.37 which comes as usually from
100 computations.

Figure 4.37: Process ζ at terminal time for up to 50 stocks

With the earlier stated changes that occur with an increasing number of
stocks, we can also find that the variance in the portfolio reduces.

4.50 Lemma. With the utility function u(x) = log(x), the variance of the
utility of the optimal terminal wealth will reduce if B̃T

j (σσT )−1B̃ν decreases
towards zero for all j = 1, . . . , d at an increase in the number of stocks.
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Proof. (Sketch)

Var (u(X∗T )) =Var(log(X∗T )) = Var(log(x0/ζT )) = Var(log(ζT ))

=E
[

log (ζT )2
]
− E

[
log (ζT )

]2
The function log2(x) attains its minimum zero for x = 1. Since ζT is ap-
proaching one, log(ζT ) approaches zero and this leads to a decrease in the
variance of the portfolio.

If we consider power utility, the argument will not be as nice since we are a
lot further away from actually computing the variance from it, but it is still
valid.

4.51 Lemma. With the utility function u(x) = 1
κ
xκ, κ < 0, the variance

of the utility of the optimal terminal wealth will reduce if B̃T
j (σσT )−1B̃ν de-

creases for all j = 1, . . . , d over an increase in the number of stocks.

Proof. With the same argument as before about the process ζT and a similar
computation of the variance, the variance decreases.

With these considerations we are now in a position to discuss the choice of
the boundary M from Proposition 4.6.

The bound M restricts the expected value of the scheme for the unnormalized
filter ∥∥∥E[ρt]∥∥∥ < M .

Until now we have not made any comment on how to choose M other than
that it should be greater than one and finite.
We know that ζ−1t =

∑d
j=1 ρt. If we now use the L1 norm in the inequality

we get ∥∥∥E[ρt]∥∥∥ =
d∑
j=1

E
[
ρt
]

= E
[
ζ−1t
]
< M

which then in turn gives us a bound on the expected utility of the optimal
terminal wealth. We will continue with logarithmic utility and apply Jensen’s
inequality:

E
[

log(x0ζ
−1
T )
]
≤ log(x0) + log(E

[
ζ−1T
]
) < log(x0M) .
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From this relation, the investor’s interest would be to choose M as large as
possible. On the other hand side the variance is a quantity usually desired
to be as small as possible. Using Lemma 4.50 the variance is linked to the
bound M in the following way

Var[log(X∗T )] = Var[log(ζ−1T )] = 2E[log(ζ−1T )]−
(
E[log(ζ−1T )]

)2
≤ 2 log

(
E[ζ−1T ]

)
−
(
log(E[ζ−1T ])

)2
< 2 log(M)− log(M)2 .

With this relation the investor would be advised to choose M as small as
possible to reduce the variance in the portfolio.

Gaussian Model In the Gaussian Model the requirements of Lemma 4.10
need to be met for the drift to be bounded.

4.52 Example. We construct the parameters uniformly, in this case α is set
to be 0.7 on the diagonal and 0.1 elsewhere. Then its eigenvalues are positive
for all numbers of stocks. If we now replace all values 0.1 with 1.1, this will
only be true for one stock and we get results as in Figure 4.38 where the drift
does not comply with our required boundedness conditions.
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Figure 4.38: Drift at 25 stocks

With the results on the boundedness of the filter in mind, we will now once
again observe the MSD of drift and filter where both processes are bounded.
Figure 4.39 shows that the MSD does not decrease visibly over the number
of stocks that increases to fifty in this figure.

Figure 4.39: MSD of drift and filter
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Let us now turn to the study of the process ζ in this model.

4.53 Remark. The density ζt will be tending towards zero if it is bounded.
Let us recall the definition of ζt as

ζt =
1

1 +
∫ t
0

1
ζu

(mu − r1n)T (σσT )−1 dR̃u

.

It is obvious, that the convergence depends on the behaviour of the stochastic
integral. If the integral is positive and increasing, the density will go to zero.
If the integral is smaller than one, the density will take on negative values.
In case the integral comes close to -1, we get problems with boundedness.
Due to the factor 1

ζu
, the stochastic integral only reacts to large changes in

the value of the integral
∫ t
0

1
ζu

(mu − r1n)T (σσT )−1µu du. If this integral is
about the same for an interval, the stochastic integral will be close to zero.
This deterministic integral in turn follows the process (mu−r1n)T (σσT )−1µu.
Thus the process ζt will not be close to zero if (mu − r1n)T (σσT )−1µu alters
only with very small deviation in which case we do not have boundedness.

If the process (mu − r1n)Tµu is not volatile, the stochastic integral will take
on values around zero which leaves the process ζt with the possibility of being
negative, taking on too large values or even being unbounded.

4.54 Example. In Figure 4.40 we can observe the situation discussed in the
previous lemma. The matrix α was 0.7 on the diagonal and 0.1 elsewhere,
β was 0.3 on the diagonal and -0.1 elsewhere and the volatility was set to be
0.2 on the diagonal and 0.1 elsewhere.

104



Figure 4.40: Process ζ at terminal time

4.55 Remark. The process (mu − r1n)Tµu will be more volatile with an
increase in the number of stocks if the parameters α and β have an increasing
sum of absolute values of column or row elements respectively.
The term accounting for deviation in the drift is β dWt and thus the deviation
will increase if the sum of row elements does.
The drift is also present in the filter through the return process. In addition,
the deterministic part will produce higher values in absolute value if the matrix
α increases its sum of column elements in absolute value.

The possibility that ζt might be negative came up in this paragraph. This
means that the investor goes bankrupt and depending on the parameters,
this might be a frequent event in this scenario. But we also discovered that
this happens less the more stocks are involved, i.e. the more stocks the in-
vestor has in his portfolio, the less frequent he will go bankrupt.

The algorithm for parameter estimation does not deal well with an increase
in the number of stocks. The algorithm is based on an iterative recursive
method to approximate the finite dimensional filters for linear dynamic sys-
tems as given here and was introduced by [11]. The Kalman filter for the drift
is a special case of these filters, but as in the HMM, more quantities need
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to be filtered for parameter estimation. The parameter estimates are then
given as fractions of such recursive finite dimensional filters. These filters are
called finite dimensional because they can be expressed by a finite number
of sufficient statistics and these statistics can then be computed recursively.
In numerical implementations though, these recursions may attain very large
values during computation which would in theory cancel out, but lead to a
termination of computations without results. Figure 4.41 illustrates this by
means of one of the statistics (a0) and the comparison between one and four
stocks.

Figure 4.41: Statistic in the model with one stock (left) and four stocks
(right)
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5 Loss in Utility at Different Market Param-

eters

When the partially and fully informed investors start with the same initial
capital, we have already seen that the partially informed investor is at a
disadvantage. The question we want to answer in this section is now how
much more initial capital the partially informed investor needs to reach a
comparable terminal wealth at different market parameters. If not otherwise
stated, we only consider market situations where filtering is an advantage
according to the previous chapter, for example the trading frequency and
number of stocks will be chosen accordingly.

5.1 A Measure for the Loss in Utility

With this approach we follow an idea from [5] who introduces the difference
in the initial capital as a measure for the loss in utility. The measure will
be based on the earlier introduced method to compute the optimal terminal
wealth:
For u(x) = xκ

κ
we know from Theorem 3.12 how to compute the optimal

terminal wealth in the case of full information:

X∗T = (ŷβTZT )
1

κ−1

with
ŷ

1
κ−1 =

x0

E[(βTZT )
κ
κ−1 ]

.

To measure the loss, we need to find x̂0 so that the partial investor has the
same expected utility of the terminal wealth as the fully informed investor.

E[u(X̂∗T )]
!

= E[u(X∗T )]

From this we then get the desired expression for the initial capital

x̂0 =
x0 E[(βT ζT )

κ
κ−1 ]

κ−1
κ

E[(βTZT )
κ
κ−1 ]

κ−1
κ

.

For logarithmic utility we follow the same principle to get

x̂0 = x0 exp

(
E
[
log

(
ζT
ZT

)])
.
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The loss is then as described above the difference between the initial capitals

loss = x̂0 − x0 .

Numerical results We use this measure for the loss to observe the loss
for the fully informed investor who knows the parameters and the one who
estimates parameters (marked as fi -,fi PE in Table 5.1).
The same quantities for the partially informed investors with and without
knowledge of the parameters are denoted by under pi -,pi PE.
Additionally the differences fi -, pi - (full information without parameter es-
timation and partial information without parameter estimation) and fi -, pi
PE (full information without parameter estimation and partial information
with parameter estimation) are listed.

As the tables on the terminal wealth already indicated, the loss that occurs
due to partial information is much bigger than the loss caused by parameter
estimation.

Markov Model The results for the first parameter set in the Markov
Model are displayed in Table 5.1. Once again, they stem from one hun-
dred samples.

parameter set (MP1) fi -,fi PE pi -,pi PE fi -,pi - fi - ,pi PE

mean log 6.13 0.20 434.50 524.04
std log 4.84 0.59 181.35 209.32

mean power κ = 0.1 7.67 0.21 905.25 1094.41
std power κ = 0.1 6.37 0.02 373.40 453.61

mean power κ = −1 3.01 0.19 21.88 26.31
std power κ = −1 4.87 0.02 16.56 19.85

mean power κ = −10 3.63 0.18 3.90 4.81
std power κ = −10 10.72 0.02 5.16 6.12

Table 5.1: loss in utility for (MP1)
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Next we will assume worse estimation results to see how much influence bad
parameter estimation can have. We display next the loss in initial capital
for partial information with true parameters and a set of state matrices with
different values. The values in these state matrices centre around the true
values and deviate to smaller and higher values to the right and left respec-
tively. Figure 5.1 serves mainly to show the possible extreme losses, more
details can be observed in Figure 5.2.

Figure 5.1: Loss due to bad parameter estimation

We can see here, that with a bad parameter estimation result, we may face
a major loss. If we now zoom into the figure and take a closer look at a
more reasonable range for the error in the estimation, we can see in Figure
5.2 that the loss due to partial information is more severe than the loss due
to parameter estimation if we assume reasonable quality in the parameter
estimation.
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Figure 5.2: Loss due to bad parameter estimation

Gaussian Drift The method we introduced in the previous paragraph was
based on a theorem that is valid for both models. Therefore we will follow the
same approach with the Gaussian drift and state only the numerical results
in Table 5.2.
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parameter set (GP1) fi -,fi PE pi -,pi PE fi -,pi - fi - ,pi PE

mean log 75.55 0.22 146.07 179.01
median 55.67 0.22 117.49 143.68
std log 57.31 0.01 108.63 133.06

mean power κ = 0.1 3.6 · 1010 0.223 9.6 · 1010 1.12 · 1011

median 156.62 0.222 366.51 451.07
std 3.6 · 1011 0.01 9.5 · 1011 1.12 · 1012

mean power κ = −1 n.a. 0.221 n.a. n.a.
median 2.5 0.221 3.4 4.4
std n.a. 0.01 n.a. n.a.

mean power κ = −10 n.a. 0.22 n.a. n.a.
median 0.7 0.22 0.6 0.9
std n.a. 0.01 n.a. n.a.

Table 5.2: loss in utility for (GP1)

Due to the high volatility in the model, we deal with extreme values in this
case. These may be too extreme for numerical evaluation in some cases,
therefore the median was computed as well. The numerical evaluation fails
due to the shape of the utility functions in this case: very slight changes in
the wealth cause a huge difference in utility whenever the wealth is smaller
than one. Add to that the possible larger changes due to the volatility in
the model and numerical evaluation fails. Nevertheless, we can observe in
this model as well, that the loss due to parameter estimation is much smaller
than the one due to partial information.
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5.2 Infrequent Trading

Usually our investor trades once a day on two hundred and fifty days per
year. Now we want to determine what effect less frequent trading has on the
loss in expected utility due to partial information.
All computations will be based on the same theoretical basis we introduced
before. For the data to be consistent, we generate all data for the smallest
∆t, i.e. the largest number of tradings, but only use the data at the time
points we wish to examine.
But before we compare the optimal terminal wealth, please recall that the
trading frequency cannot be chosen freely. Lemma 4.8 showed that the filter
is not bounded for too infrequent trading. In fact, if we now observe the loss
due to parameter estimation in partial information (Figure 5.3) at different
trading frequencies, we will see that it does not lead to big losses in case the
filter complies with the boundedness and positivity assumptions. It does not
make sense to observe at frequencies where the filter is neither bounded nor
preserving positivity, but after that the loss stays at about the same level
we already computed before. That is consistent with our previous results
on parameter estimation at different trading frequencies: The estimation at
infrequent trading is rather poor, but from the before computed timepoint
onward it is very good and and it then causes only minor losses. One may
expect smoother outcomes in Figure 5.3, but the lack of smoothness is mainly
due to the small range on the y-axis. In fact, the difference between data
points is very small.

112



Figure 5.3: Loss in utility due to parameter estimation at infrequent trading,
partial information, (MP2)

Figure 5.4 displays the loss due to partial information in comparison to full
information without parameter estimation. As expected, the loss due to
partial information increases with the number of tradings.

Figure 5.4: Loss in utility due to partial information at infrequent trading,
(MP2)
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An observation of the loss at different market parameters was also accom-
plished by [22], although for a different model. There was a constant drift
in consideration leading to the reverse result of higher losses due to param-
eter uncertainty than due to infrequent portfolio rebalancing in the classical
Merton model. There infrequent trading does not have large effects if the
proportion invested is close to the Merton proportion, whereas straying from
this proportion due to parameter uncertainty leads to higher losses.

5.1 Remark. If the filter is not bounded, then the process ζt will not be either
since it depends on the filter. In this case bankruptcy cannot be ruled out. In
fact it will occur frequently.

114



5.3 Increasing Number of Stocks

We will now take a closer look at the loss in utility for an increasing number
of stocks. This model was already discussed in the previous chapter and we
will now apply some of the results to discuss the loss.
In both the Markov and the Gaussian Model, the process ζ was analyzed
closely for increasing number of stocks in Section 4.7. For a filter that is sta-
ble for all numbers of stocks, this density decreases towards one as in Figure
4.37 and zero in Figure 4.40 respectively.
To determine the loss, we now compare the investor who only trades in one
stock with the investor with many stocks in his portfolio, starting with two
and increasing by one in each iteration. Let us assume that all stocks depend
on the same parameters for this first experiment. Since the loss then only
depends on the density for one stock and the one for more stocks which de-
creases in each iteration, the loss itself increases for each additional stock. It
does not increase unboundedly, since in both models the densities decrease
boundedly.

If we now do not require similarity of the stocks, the properties of a sin-
gle stock gain influence. As illustration we will now consider ten different
stocks with the state matrix

B =



1.2 0.1 −1.0
1.0 0.1 −0.8
0.9 −0.1 −1.1
1.1 0.2 −1.2
1.2 0.05 −1.1
1 0.1 −1.5

1.5 0.3 −0.7
1 0.1 −1.1

1.2 −0.1 −1
1.2 0.2 −0.9


.
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The estimation of this matrix in the mean is very well:

B̃ =



1.18 0.1 −0.99
1.02 0.13 −0.77
0.91 −0.09 −1.06
1.08 0.16 −1.19
1.18 0.01 −1.12
1.00 0.08 −1.38
1.47 0.29 −0.73
1.03 0.12 −0.97
1.16 −0.1 −0.99
1.15 0.13 −0.92


The estimation of the volatility matrix works as nicely and for the rate matrix
we can see, that the estimation converges as for the standard stocks we had
before in Figure 5.5.

Figure 5.5: Estimation of the rate matrix

The loss that the investor who only invests in one stock has in relation to
the one who has two to ten stocks is displayed in Figure 5.6. The influence

116



of the very good stock number seven can be clearly seen, the loss does jump
at that point.

Figure 5.6: Loss at an increasing number of stocks
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5.4 Increasing Number of States

This section will naturally only contain results regarding the Markov model.
We will examine the loss in utility for a different number of states in the
estimation of the Markov chain. To do that, we will consider the case of full
information exactly as we did before, with three states according to (MP1).
For the parameter estimation and the case of partial information though,
we will consider an increasing number of states, i.e. we will apply the EM
algorithm assuming the data was generated with different numbers of states.
The loss in utility originating from the comparison of the optimal utility of
the terminal wealth in full information and the case of full information with
estimated parameters for a number of states increasing from one to ten is
displayed in Figure 5.7. The same considerations for partial information can
be observed in Figure 5.8.

Figure 5.7: Loss due to a different number of states in parameter estimation
at full information
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Figure 5.8: Loss due to a different number of states in parameter estimation
at partial information

We can conclude that assuming less states than were originally used in the
model is punished gravely whereas assuming more will cost some computa-
tion time, but not lead to higher losses.

If we were now to increase the number of states used in the original model,
we can represent the market in more detail, but also face more computa-
tional effort. Especially due to the rising size of the matrices involved. For
example, let us consider 10 states (which is already a very large number)

B =

(
1.2 0.1 −1 0.5 −0.8 −0.1 −0.9 0.8
1 0.1 −0.8 −0.6 0.7 −0.1 1 −0.9

)
.

The first consideration will be the parameter estimation, but the estimator
for the state matrix B is absolutely satisfying:

B̂ =

(
1.07 0.07 −0.9 0.23 −0.51 −0.08 −0.62 0.43
0.93 0.11 −0.7 −0.5 0.53 −0.05 0.74 −0.76

)
.

The rate matrix also changes in dimension and we chose the entries so that
the product of rate matrix and stationary distribution of the Markov chain
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stays roughly the same.
We observe that the EM algorithm also deals well with this estimation:

Q =



−80 30 10 10 10 10 5 5
20 −60 10 5 5 5 5 10
20 5 −50 5 5 5 5 5
10 5 5 −40 5 5 5 5
10 5 5 5 −40 5 5 5
10 5 10 5 10 −50 5 5
20 10 5 10 5 5 −60 5
30 10 5 10 5 10 10 −80


And the corresponding estimator from one estimation was

Q̂ =

−75.84 31.08 10.56 8.24 7.76 10.42 3.82 3.95
19.53 −53.56 10.02 3.96 3.74 5 3.68 7.63
20.08 5.07 −45.54 3.99 3.8 5.04 3.74 3.83
12.78 6.67 6.81 −48.03 5.25 6.7 5.17 4.64
15.56 7.88 7.80 6.71 −57.2 7.84 4.86 6.55
9.84 5.01 9.98 3.97 7.47 −43.77 3.68 3.82
32.23 16.38 8.15 13.9 5.19 8.17 −90.82 6.79
41.91 14.68 7.6 10.84 5.85 14.8 11.52 −107.21


The estimation of the volatility does not require any input that depends on
the number of states and is therefore equally good for all numbers of states.
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5.5 Loss due to the Approximation of the Trading Strat-
egy

In both models, the optimal trading strategy in the case of partial informa-
tion and power utility is a very complicated expression containing Malliavin
derivatives, they are given as Formulas 3.3 and 3.5 respectively. In the case
of logarithmic utility, it was much simpler: Exchanging the drift for the filter
did the trick. We want to examine now what losses occur if the investor
assumed this simple method also worked for power utility.

Method The previously applied method to determine losses in expected
utility did not use the trading strategy and thus we will now introduce an-
other way to determine the difference in the initial capital. It will be based
on another representation of the terminal wealth that was introduced in The-
orem 3.12

βtXt = x0 +

∫ t

0

βsπ
T
s σ dW̃s .

We are again interested in comparing the expected utility of the optimal
terminal wealth, i.e.:

E[log(X∗T )] and E[log(X̃∗T )]

as well as

E
[1

κ
(X∗T )κ

]
and E

[1

κ
(X̃∗T )κ

]
.

In the case of logarithmic utility, we could simply compute the logarithm of
the optimal terminal wealth and then compare both sides.

x̃0 = x0 exp

(
E
[ ∫ T

0

(fTs − f̃Ts )βsσ dWs

+

∫ T

0

(fTs − f̃Ts )βsµs −
1

2
(fTs − f̃Ts )Tβs(σσ)T (fTs − f̃Ts )βs ds

])
.

But we are for now interested in the case of power utility where a little more
work is necessary since it is not as easy to extract x0 after applying Ito’s
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Lemma:

E
[1

κ
(X∗T )κ

]
=
xκ0
κ

+ E

[∫ T

0

(X∗s )κfTs βsσ dWs +

∫ T

0

(X∗s )κfTs βsµs ds

+
1

2
(κ− 1)

∫ T

0

(X∗s )κfTs βs(σσ
T )fsβs ds

]
.

x0 is in this case still present in the terms (X∗s )κ. To enable extraction, we
use the representation of (X∗s )κ from Theorem 3.12 leading to

xκ0
κ

+ E

[∫ T

0

 x0(βTZT )
1

κ−1

E
[
(βTZT )

κ
κ−1

]
κ

fTs βsσ dWs

+

∫ T

0

 x0(βTZT )
1

κ−1

E
[
(βTZT )

κ
κ−1

]
κ

fTs βsµs ds

+
1

2
(κ− 1)

∫ T

0

 x0(βTZT )
1

κ−1

E
[
(βTZT )

κ
κ−1

]
κ

fTs βs(σσ
T )fsβs ds

]
.

In this term we can now isolate x0 and perform the desired comparison.

x̃κ0 = xκ0 ·

E

[
1

κ
+

 (βTZT )
1

κ−1

E
[
(βTZT )

κ
κ−1

]
κ

·

(∫ T

0

fTs βsσ dWs +

∫ T

0

fTs βsµs ds+
1

2
(κ− 1)

∫ T

0

fTs βs(σσ
T )fsβs ds

)]
·

E

[
1

κ
+

 (βTZT )
1

κ−1

E
[
(βTZT )

κ
κ−1

]
κ

·

(∫ T

0

f̃Ts βsσ dWs +

∫ T

0

f̃Ts βsµs ds+
1

2
(κ− 1)

∫ T

0

f̃Ts βs(σσ
T )f̃sβs ds

)]−1

122



The loss The loss due to the approximation of the trading strategy is very
small, not even distinguishable from its standard deviation as can be seen in
Figure 5.9 and Table 5.3 which were simulated using (MP1) and one hundred
runs.

Figure 5.9: Loss due to the approximation of the trading strategy

loss κ = 0.1 κ = −1 κ = −10
mean -0.0114 -0.0049 -0.001
std 0.0394 0.0190 0.0030

Table 5.3: Loss due to the approximation of the trading strategy with (MP1)
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In the Gaussian case the loss due to the approximation of the trading strat-
egy is very small, but we detect a much higher standard deviation in this
model: Figure 5.10 and Table 5.4. The outlier is the result of run 49 and
increases the loss to size 106, the scales belonging to the other two utility
functions are much smaller.

Figure 5.10: Loss due to the approximation of the trading strategy

loss κ = 0.1 κ = −1 κ = −10
mean 3.73 106 n.a. n.a.
median 0.55 -0.03 -0.001
std 3.44 105 n.a. n.a.

Table 5.4: Loss due to the approximation of the trading strategy with (GP1)
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5.6 Shortselling and Borrowing Constraints in the one-
dimensional Model

We will now discuss the effect of shortselling and borrowing constraints on
the loss. For a onedimensional model it suffices to limit the optimal fractions
of wealth invested in a stock to the boundaries [0, 1] to exclude shortselling
and borrowing. E.g. in the Markov model for logarithmic utility f ∗t = µt−r

σ2

has to be limited to [0, 1].

5.2 Remark. Depending on the matrix A, shortselling constraints might
not be influential. If its values are small enough, then no shortselling can
occur and constraints are unnecessary. Borrowing cannot be prevented by
manipulating A though, the matrix is positive definite and does not influence
the sign of the trading strategy.

Numerical results We will be using (MP1), but only the first stock, and
compare the constrained investor to the unconstrained in Table 5.5.

E[u(X∗T )] E[u(X∗,nssT )] E[u(X̂∗T )] E[u(X̂∗,nssT )]

log mean 5.02 0.35 0.54 0.1
std 0.41 0.02 0.11 0.02

power κ = 0.1 mean 16.58 10.36 10.6 10.08
std 0 0.024 1.03 0.16

power κ = −1 mean -0.07 -0.72 -1 -1
std 0.02 0.014 0.032 0.001

power κ = −10 mean -0.001 -0.01 -0.1 -0.1
std 0.001 0.002 0.0007 0.0007

Table 5.5: Optimal utility for the constrained and unconstrained investor
with (MP1)

The results for partial information with power utility and κ = −1 or κ = −10
indicate that there is nearly no investment in stocks, up to the standard de-
viation. We may expect high losses thus, losses are displayed in Table 5.6.
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loss full info loss partial info

log mean 210.21 0.38
power κ = 0.1 mean 840.43 2.5
power κ = −1 mean 0.26 1.17
power κ = −10 mean -0.004 0.0000

Table 5.6: Loss due to no shortselling/borrowing with (MP1)

Short selling is more attractive depending on the parameters: with (MP2),
the constrained investor is much more successful in comparison as can be
seen in Table 5.7.

E[u(X∗T )] E[u(X∗,nssT )] E[u(X̂∗T )] E[u(X̂∗,nssT )]

log mean 0.09 0.05 0.02 0.02
std 0.04 0.21 0.021 0.02

power κ = 0.1 mean 10.1 10.05 10 9.99
std 0.05 0.2 0.28 0.22

power κ = −1 mean -0.96 -0.97 -1 -1
std 0.02 0.013 0.001 0.001

power κ = −10 mean -0.09 -0.1 -0.1 -0.1
std 0.004 0.003 0.0002 0.0002

Table 5.7: Optimal utility for the constrained and unconstrained investor
with (MP2)
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We also include table 5.8 displaying the loss. As expected, these values are
very small especially in comparison to the ones in Table 5.6.

loss full info loss partial info

log mean 0.075 0.0000
std 0.03 0.0000

power κ = 0.1 mean 0.06 0.1
std 0.06 0.39

power κ = −1 mean 0.009 -0.006
std 0.02 0.15

power κ = −10 mean 0.002 0.002
std 0.005 0.02

Table 5.8: Loss due to no shortselling/borrowing with (MP2)

Based on the same method, we also provide the numbers for (GP1) in Table
5.9.

E[u(X∗T )] E[u(X∗,nssT )] E[u(X̂∗T )] E[u(X̂∗,nssT )]

log mean 4.76 0.3 0.6 0.09
std 1.83 0.05 0.13 0.02

power κ = 0.1 mean NaN 10.32 10.2 10.08
std NaN 0.05 2.62 0.19

power κ = −1 mean -0.4 -0.8 0.0003 -0.95
std 0.05 0.03 0.003 0.20

power κ = −10 mean -0.03 -0.07 −8.99 · 1012 -0.12
std 0.06 0.006 −8.99 · 1013 0.10

Table 5.9: Optimal utility for the constrained and unconstrained investor
with (GP1)
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These results are again accompanied by the results for the loss in Table 5.10.

loss full info loss partial info

log mean 252.01 0.78
std 222.48 0.22

power κ = 0.1 mean 2.31 · 1010 12.69
std 2.28 · 1011 59.09

power κ = −1 mean -1.13 -0.02
std 5.69 0.14

power κ = −10 mean -0.05 0.0000
std 0.11 0.0000

Table 5.10: Loss due to no shortselling/borrowing with (MP2)

5.3 Remark. With the parameter sets (MP1) and (GP1) big long and short
positions occur. If we now compute the terminal wealth using the trading
strategy instead of following Theorem 3.12, the results are thus much more
volatile. Therefore the unconstrained investor goes bankrupt much more often
and in the case of power utility with κ = 0.1 and (GP1) even in every exper-
iment. Not allowing for shortselling and borrowing excludes these positions
and leads to stable results. Thus even if the value of the portfolio is much
lower with these strategies, bankruptcy does not occur and these strategies are
worth a consideration.

Choice of parameters With (MP1), the constraints on the optimal trad-
ing strategy in partial information came to effect in every run, changing half
of all the values in these runs. Now with the smaller values in the param-
eter set (MP2), the trading strategy lies inside the boundaries much more
often, only two thirds of the runs contained changes at all. In these runs,
only one fifth of the values were limited. This leads to similar results for the
constrained and unconstrained investor, but effected by the randomness in
the equation for the terminal wealth. Thus the constrained investor might
sometimes even outperform the unrestricted one numerically.
The question arises which choice of parameters results in limitations for the
constrained investor and which does not. The following Lemma describes
such a choice for the full information case in the Markov model, similar con-
siderations lead to results for the Gaussian model and partial information in
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both models.

5.4 Lemma. For n = 1 and in the case of full information, no limitations
occur if the entries in the state matrix are not smaller than the interest rate
and no greater than σ2 plus interest rate for logarithmic utility or (1− κ)σ2

plus interest rate for power utility respectively.

Proof. The optimal fractions are given by

f ∗t,power =
BYt − r

(1− κ)σ2

f ∗t,log =
BYt − r
σ2

.

No limitations occur if these are inside the interval [0, 1]. The Markov chain
Yt acts on the unit vectors and these inequalitys follow

0 ≤ BYt − r
σ2

≤ 1

⇔ 0 ≤ BYt − r ≤ σ2

and

0 ≤ BYt − r
(1− κ)σ2

≤ 1

⇔ 0 ≤ BYt − r ≤ (1− κ)σ2 .

Adding the interest rate in both inequalitys leads to the claim.

These bounds present a strong constraint on the choice of parameters, so we
will usually see an effect of the no shortselling or borrowing rule.

5.5 Example. Let us consider (MP2) with

B =
(

0.2 0.05 −0.1
)
,

r = 0 and σ = 0.25. The condition is then fulfilled for the second state
only leading to changes due to the constraints for the other two states for
logarithmic utility. For power utility, no effects occur in the first states if
κ < −2.2 while the third state still violates the no borrowing constraint.
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Trading infrequently with constraints Trading in the Markov model
leads to large long and short positions with parameter set (MP1) and is there-
fore risky when trading infrequently. Therefore the constrained strategy can
perform better in this situation, but it always will be outperformed by the
unconstrained investor when increasing the number of tradings. In Figure
5.11, we can observe this increase in the loss with an increase in the fre-
quency for full information. For partial information only higher frequencies
are displayed since the filter is not bounded and preserving positivity other-
wise. That does only influence the data for the unconstrained case though,
the constrained strategy still leads to results, but a comparison via the loss
is not possible.

Figure 5.11: Loss due to constraints, (MP1)
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Again the computation was also done in the Gaussian model leading to a
similar picture 5.12 but with the usual higher deviation. Due to this not

Figure 5.12: Loss due to constraints, (GP1)

possible comparison via the loss, we include tables containing the utility of
the expected terminal wealth for low frequencies. Tables 5.11, 5.12, 5.13 and
5.14 show the results for (MP1), Tables 5.15, 5.16, 5.17 and 5.18 for (GP1).

log ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean 3.2513 4.6711 5.7242 5.6331
std 0.1377 0.2239 0.2844 0.3234

E[X∗Tnss ] mean 0.2527 0.2980 0.3298 0.3403
std 0.0240 0.0220 0.0201 0.0196

E[X̂∗Tnss ] mean 0.1626 1.1447 3.2152 0.1301
std 0.0751 0.0940 0.1861 0.0206

Table 5.11: Trading infrequently with constraints, log utility,(MP1)

131



power κ = 0.1 ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean 14.2931 16.8751 19.3762 18.9980
std 0.2391 0.3742 0.6392 0.8032

E[X∗Tnss ] mean 10.2599 10.3066 10.3396 10.3447
std 0.0250 0.0232 0.0249 0.0241

E[X̂∗Tnss ] mean 10.1947 10.2375 NaN 10.1301
std 0.2205 0.7639 NaN 0.0271

Table 5.12: Trading infrequently with constraints, power utility 0.1,(MP1)

power κ = −1 ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean -0.4091 -0.1092 -0.1026 -0.0850
std 2.0517 0.2069 0.3039 0.1325

E[X∗Tnss ] mean -0.8018 -0.7640640 -0.7392 -0.7295
std 0.0148 0.0167 0.0150 0.0133

E[X̂∗Tnss ] mean -1.5370 -0.3890 -1.4039 -0.8984
std 7.6730 2.8229 9.8097 0.0228

Table 5.13: Trading infrequently with constraints, power -1,(MP1)

power κ = −10 ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean -0.0091 -0.0035 -0.0011 -0.0009
std 0.0047 0.0043 0.0011 0.0008

E[X∗Tnss ] mean -0.0360 -0.0214 -0.0137 -0.0114
std 0.0042 0.0036 0.0028 0.0020

E[X̂∗Tnss ] mean −1.6355 · 1016 −1.1085 · 1013 NaN -0.0798
std 1.6352 · 1017 7.4362 · 1013 NaN 0.0190

Table 5.14: Trading infrequently with constraints, power -10,(MP1)
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log ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean 2.9470 3.9724 4.4278 4.0522
std 0.2901 0.4600 0.7098 0.7025

E[X∗Tnss ] mean 0.2291 0.2705 0.2918 0.3033
std 0.0377 0.0431 0.0470 0.0467

E[X̂∗Tnss ] mean 0.0799 0.0833 0.0878 0.0859
std 0.0213 0.0203 0.0192 0.0192

Table 5.15: Trading infrequently with constraints, log utility,(GP1)

power κ = 0.1 ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean 14.4101 17.8518 24.1558 31.2979
std 0.4855 1.3215 5.2302 44.4137

E[X∗Tnss ] mean 10.2358 10.2795 10.3110 10.3202
std 0.0392 0.0446 0.0517 0.0507

E[X̂∗Tnss ] mean 10.0575 10.0543 10.0517 10.0523
std 0.0205 0.0214 0.0240 0.0216

Table 5.16: Trading infrequently with constraints, power utility 0.1,(GP1)

power κ = −1 ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean -0.4523 -0.5229 -0.4081 -1.1473
std 0.1639 1.0928 0.0577 7.5285

E[X∗Tnss ] mean -0.8406 -0.8227 -0.8105 -0.8081
std 0.0253 0.0271 0.0282 0.0291

E[X̂∗Tnss ] mean -0.9613 -0.9643 -0.9687 -0.9729
std 0.0158 0.0178 0.0190 0.0195

Table 5.17: Trading infrequently with constraints, power -1,(GP1)
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power κ = −10 ∆t 0.2 0.1 0.04 0.02

E[X∗T ] mean -0.0331 -0.0307 -0.0296 -0.0304
std 0.0067 0.0060 0.0061 0.0064

E[X∗Tnss ] mean -0.0661 -0.0655 -0.0648 -0.0647
std 0.0057 0.0074 0.0056 0.0058

E[X̂∗Tnss ] mean -0.1716 -0.2003 -0.2653 -0.2025
std 0.1988 0.1859 0.3609 0.1277

Table 5.18: Trading infrequently with constraints, power -10,(GP1)

5.6 Remark. These shortselling and borrowing constraints naturally hinder
bankruptcy.
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5.7 Constraints in the Multidimensional Model

We are basically going to follow the onedimensional case, except for the
computation of the optimal trading strategy in the constrained case. Here
just limiting to the boundaries does not suffice anymore: The fraction of
wealth is now a vector that has to consist of entries in [0, 1], but they also
have to add up to a result smaller or equal to one. For logarithmic utility,
[3] suggested the following method:

Logarithmic utility We have for logarithmic utility

Jf (x) = E[log(Xf
T )] = log(x) + E[

∫ T

0

(r + fTs (µ̂s − r1)− 1

2
fTs Σfsds)]

and
f ∗t = Σ−1(µ̂t − r1) .

So to maximize the first equation without shortselling, we have to solve a
quadratic optimization problem:

max
a

(aT µ̂t −
1

2
aTΣa)

s.t. a ∈ [0, 1]d

aT1 ≤ 1

Transfer to power utility The basic problem is the same as before except
for the nonvanishing stochastic integral:

E
[(Xf

T )κ

κ

]
=
xκ

κ
E
[1

κ
exp{κ

∫ T

0

r+fTs (µ̂s−r1)− 1

2
fTs Σfsds+κ

∫ T

0

fTs σdVs}
]

where Vs is the innovations process with

dVs = σ−1(dZs − µ̂sds)

and Zs = µs + σWs. Remember that the innovations process (Vs) is an Fs-
Brownian motion under P.
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5.7 Proposition. In the case of power utility with a constant drift we have
to solve the optimization problem

max
a

(κaT µ̂t −
1

2
κ(1− κ)aTΣa)

s.t. a ∈ [0, 1]d

aT1 ≤ 1 .

Proof. We need again to locate f ∗ that maximizes the basic problem. An-
other change of measure will take care of the nonvanishing stochastic integral.

xκ

κ
E
[1

κ
exp{κ

∫ T

0

r + fTs (µ̂s − r1)− 1

2
fTs Σfsds+ κ

∫ T

0

fTs σdVs}
]

=
xκ

κ
E
[1

κ
exp{κ

∫ T

0

fTs σdVs −
1

2
κ2
∫ T

0

fTs Σfsds

+ κ

∫ T

0

r + fTs (µ̂s − r1)− 1

2
fTs Σfsds+

1

2
κ2
∫ T

0

fTs Σfsds}
]

=
xκ

κ
E
[1

κ
exp{κ

∫ T

0

fTs σdVs −
1

2
κ2
∫ T

0

fTs Σfsds}

exp{κ
∫ T

0

r + fTs (µ̂s − r1)− 1

2
fTs Σfsds+

1

2
κ2
∫ T

0

fTs Σfsds)}
]

Now we first have to show, that the first exponential term is a martingale to
proceed with the change of measure:
Let Xt := κ

∫ t
0
fTs σdVs, the Doléans exponential of Xt is then given by

ε(X)t = exp{κ
∫ t

0

fTs σdVs −
1

2
κ2
∫ T

0

fTs Σfsds}

which is the process we are examining. For that to be a martingale we have
to verify Novikov’s condition, i.e.

E
[

exp{1

2
κ2
∫ t

0

fTs Σfsds}
]
<∞ .
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But we know already by definition that∫ t

0

‖fs‖2ds <∞ .

The expected value of this exponential is then equal to one since it is a
supermartingale by Fatou’s Lemma.
Now we can perform the change of measure following Girsanov’s Theorem
to a new measure Pκ with the martingale ε(X)T and the Radon-Nikodym
derivative

dPκ
dP

∣∣∣∣
Ft

= ε(X)T

In this new measure, we now have the optimization problem of maximizing

E
[(Xf

T )κ

κ

]
=
xκ

κ
Eκ
[1

κ
exp{

∫ T

0

κ((r + fTs (µ̂s − r1))− 1

2
κ(1− κ)fTs Σfsds}

]
which we can then reduce as we also did in the logarithmic case:

max
a

(κaT µ̂t −
1

2
κ(1− κ)aTΣa)

s.t. a ∈ [0, 1]d

aT1 ≤ 1

If we now return to our stochastic drift and use the above result despite the
condition of a constant drift, optimality is not given anymore.

Numerical results We will now display the results of the computations
corresponding to the two methods we introduced in the previous paragraphs,
first for (MP1) in Table 5.19.
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E[u(X∗T )] E[u(X∗,nssT )] E[u(X̂∗T )] E[u(X̂∗,nssT )]

log mean 5.75 0.36 0.77 0.11
std 0.33 0.02 0.08 0.02

power κ = 0.1 mean 20.74 10.36 10.56 10.11
std 9.49 0 0.06 0.02

power κ = −1 mean -0.05 -1.33 -1 -1
std 0.96 0.02 1.2 0

power κ = −10 mean -0.0004 -3.64 -0.07 -0.1
std 0.96 0.75 0.01 0

Table 5.19: Optimal terminal wealth with (MP1) for the constrained and
unconstrained investor

It can clearly be seen, that the investor who is not allowed to short sell and
borrow has a disadvantage compared to the one who does in the case of full
information. This is in line with the results in [3] and we also have a gap
between the infrequent trader who is not allowed to short sell and borrow
and the continuous investor who is.
This is also reflected in the loss as displayed in 5.20.

loss full info loss partial info

log mean 537.97 0.56
std 184.45 0.14

power κ = 0.1 mean 4185.8 -0.25
std 1921.7 0.28

power κ = −1 mean 0.18 0.001
std 0.7 0.06

power κ = −10 mean 0.06 0.0000
std 0.07 0.0000

Table 5.20: Loss due to no shortselling/borrowing (MP1)

Next we will turn to our second model and compare the results for (GP1) in
Table 5.21. We will observe very high standard deviations due to the use of
the trading strategy which has even more effect in this model.
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E[u(X∗T )] E[u(X∗,nssT )] E[u(X̂∗T )] E[u(X̂∗,nssT )]

log mean 37.5 0.5 30.07 0.36
std 6.43 0.05 3.41 0.03

power κ = 0.1 mean NaN 10.53 NaN 9.76
std NaN 0.05 NaN 0.06

power κ = −1 mean -0.04 -2.01 -0.001 -1
std 0.018 0.14 0.027 0

power κ = −10 mean -0.0019 −6.64 · 108 −2.55 · 108 -0.1
std 0.002 5.23 · 109 2.55 · 109 0

Table 5.21: Optimal terminal wealth with (GP1) for the constrained and
unconstrained investor

We also computed the loss with the results in Table 5.22.

loss full info loss partial info

log mean 3.14 · 1028 4.31 · 1015

std 3.14 · 1029 2.07 · 1016

power κ = 0.1 mean 1.07 · 1021 NaN
std 6.01 · 1021 NaN

power κ = −1 mean -0.66 NaN
std 2.71 NaN

power κ = −10 mean 0.001 NaN
std 0.008 NaN

Table 5.22: Loss due to no shortselling/borrowing (GP1)
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6 Conclusions

We will now shortly recapitulate the central topics of this work.

When do we filter? If the expected value of the filter is unbounded, there
will be no information to be gained from it, filtering is then of no avail. For
the HMM filter, this means ∥∥Ẽ[ρk]

∥∥ < M

is only given if∥∥max
j

(
exp

{
Ajj∆t k

})∥∥ · ∥∥ Id +∆tQT
∥∥k < M

‖ν‖
.

For a diagonalizable rate matrixQ the frequency ∆t for which
∥∥(Id +∆tQT )k

∥∥
is bounded can be computed nicely as

‖Id+ ∆tQT
diag‖ ≤ 1 .

In this model positivity is another criterion that has to be met since the
Markov chain operates on the unit vectors and is positive at all times.

(Id +∆t QT )

needs to be positive for the scheme to preserve positivity.
A similar bound was given for the Kalman filter for the drift following linear
Gaussian dynamics: the expected value of the filter is bounded if the matrix α
is diagonalizable and positive semidefinite, as well as the matrix α+γ(σσT )−1.
In addition, γt needs to approach a constant γ∞.

Why do we filter? The partially informed investor generally achieves
a lower expected utility of the optimal terminal wealth in comparison to
the fully informed investor and a higher one in comparison to the investor
without information. The following bounds allow a closer observation of the
advantage in comparison to the investor without information.
A lower bound for the expected utility of the optimal terminal wealth for
logarithmic utility was computed to be

E[logX∗T ] ≥ T

2

(
d∑
i=1

νiAii − λmax(A)

)
+
λmax(A)

2

∫ T

0

E[ηTt ηt] dt .
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This bound can though only contribute information if

−
∑d

i=1 νiAii − νTAν
λmax(A)

+ 1 < E[ηTT ηT ] .

The corresponding upper bound is then given by

E[logX∗T ] ≤ 1

2

∫ T

0

d∑
i=1

νiAii − λmin(A)(1− E[ηTt ηt]) dt .

This bound works best for equally large eigenvalues, another bound was
introduced that is more precise the smaller the eigenvalues are except for one
large one:

E[log(X∗T )] ≥ 1

2

∫ T

0

d∑
i=0

νiAii − E[λmax(S
T
max(Yt − ηt))2] dt

where the diagonalization of A is given by SDST , λmax is the maximal eigen-
value of the matrix A and STmax is the corresponding eigenvector.

Where do we use the filter? The filter and the corresponding expected
utility optimal terminal wealth were introduced in a model with n stocks
and d states. In case there are more stocks than states, it is more efficient to
filter and invest in a model with d Mutual Funds in the HMM. It was shown
that this market with d Mutual Funds leads to the same expected utility of
the optimal terminal wealth and the filters in this market and the original
one coincide.

What is the quality of filtering at different market parameters?
At infrequent trading, the above mentioned criteria for boundedness and
positivity have to be met. The trading frequency for which this is given,
can be computed explicitly and for more frequent trading, filtering is of good
quality.
For an increasing number of stocks, the mean of the process ψ changes and
has to be observed with regard to boundedness. If the mean is bounded,
then filtering is again of good quality and the market can be reduced to the
Mutual Fund version.
The quality of the filter does also depend on the investor’s choices: The
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filter contains no information if it is close to the stationary distribution and
leads to a bad optimization result. If the filter is unbounded, he faces bad
optimization results again, but near the border to unboundedness, the best
result can be reached, although with high risk. The dilemma is thus to
maximize the expected utility of optimal terminal wealth while ensuring good
filter quality.

What loss is to be expected at these different market parameters?
For the above mentioned scenarios infrequent trading and increasing number
of stocks, the loss is negligible if the filter quality is good. For an increasing
number of stocks, it naturally depends on the quality of the added stocks.
In the HMM, we also observed the loss for different numbers of states with
the result that assuming less states than were orginially present in the model
is punished with big losses, whereas assuming more is not.
In the case of partial information with power utility, the optimal trading
strategy is of complex appearance. Simplifying it appropriately leads to
nearly the optimal result, only very small losses occur.
Under shortselling and borrowing constraints, the losses depend first and
foremost on the parameters. If the parameters are such that big long and
short positions occur, then constraints lead to big losses. Constraining can on
the other hand lead to an advantage if without constraints strategies would
be so extreme that with a high probability they lead to bankruptcy.

There exists an essential connection between filtering and portfolio optimiza-
tion and the partially informed investor gains with advantageous filters in all
observed market situations compared to the investor not using information.
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