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Abstract

Typically software engineers implement their software according to the design of the software
structure. Relations between classes and interfaces such as method-call relations and inheritance
relations are essential parts of a software structure. Accordingly, analyzing several types of
relations will benefit the static analysis process of the software structure. The tasks of this
analysis include but not limited to: understanding of (legacy) software, checking guidelines,
improving product lines, finding structure, or re-engineering of existing software. Graphs with
multi-type edges are possible representation for these relations considering them as edges, while
nodes represent classes and interfaces of software. Then, this multiple type edges graph can
be mapped to visualizations. However, the visualizations should deal with the multiplicity of
relations types and scalability, and they should enable the software engineers to recognize visual
patterns at the same time.

To advance the usage of visualizations for analyzing the static structure of software systems,
I tracked different development phases of the interactive multi-matrix visualization (IMMV)
showing an extended user study at the end. Visual structures were determined and classified
systematically using IMMV compared to PNLV in the extended user study as four categories:
High degree, Within-package edges, Cross-package edges, No edges. In addition to these struc-
tures that were found in these handy tools, other structures that look interesting for software
engineers such as cycles and hierarchical structures need additional visualizations to display
them and to investigate them. Therefore, an extended approach for graph layout was pre-
sented that improves the quality of the decomposition and the drawing of directed graphs
according to their topology based on rigorous definitions. The extension involves describing
and analyzing the algorithms for decomposition and drawing in detail giving polynomial time
complexity and space complexity. Finally, I handled visualizing graphs with multi-type edges
using small-multiples, where each tile is dedicated to one edge-type utilizing the topological
graph layout to highlight non-trivial cycles, trees, and DAGs for showing and analyzing the
static structure of software. Finally, I applied this approach to four software systems to show
its usefulness.
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Chapter 1

Introduction

With the rapid development of computer hardware and software systems in the last decade,
a large amount of information immerses the experts of many application domains. To benefit
from this information, the experts need advanced analysis tools that support them in per-
forming their tasks. In software engineering, the software structure keeps growing. Therefore,
managing and analyzing the ever increasing amount of related information gets more and more
difficult. To understand, develop, and maintain software systems, analyzing the static struc-
ture of these software systems is one very important task. This task is supported by tools
that represent this software structure visually. Usually there are differences between the real
structure of the implementation and the designed one. To examine if the real structure of the
implementation conforms to the designed one, the real structure is induced from the source
code and visualization is used to show the structure making it possible to find deviations and
to resolve them.

Approches for displaying software architectures were described in the Software Visualization
book of Diehl [42] who defines software visualization as “the visualization of artifacts related to
software and its development process“. Moreover, a classification for visualization approaches
that display software static characteristics was provided by the survey of Caserta et al. [40]. The
static software structure is commonly modeled using graphs with nodes representing artifacts
such as classes or interfaces, and with edges representing relations such as method-call and
inheritance. Taking into consideration several types of relations such as inheritance and method-
call will support the software engineers in their analysis tasks. Therefore, I focus in this thesis
on graphs that represent the static structure of software. Especially, graphs are considered
whose nodes are packages, classes, interfaces, and whose edges can be of multiple different
types.

Although visualization can show a considerable amount of information, issues such as di-
versity of relation types and scalability need to be addressed when visualizing the software
structure for analysis. This motivates me to enhance the essential visualizations that can deal
with these issues. For example, the initial design study of Zeckzer [101] and the approach of
Abuthawabeh [7] visualized this kind of graph using a multi-matrix visualization. The visual-
ization presented different visual structures that can help software engineers in their analysis
tasks. In addition, node-link visualizations were employed for visualizing this kind of graph in
the literature showing different visual structures. Determining the visual structures in current
visualizations and how they can help software engineers in their analysis tasks still needs more
exploration as few attempts were made in this direction. Showing additional structures that
may not be determined using the current visualizations requires introducing new visualizations
considering the previously raised issues.

In this thesis, I follow an exploartive approach similar the one followed by van Ham in
his thesis [53] where he explored representative solutions considering graph data and general

1



2 Chapter 1. Introduction

application areas. However, I focus on specific graphs, namely those with multiple edge types
and I target the software engineering application area.

The goals of this thesis are:

1. Supporting the analysis of software structure by providing advanced visual analysis tools

2. Expanding the use of visualizations of multiple type relations for analyzing the static
structure of software

The research question addressed in this thesis is stated as follows: “Given a multiple edge
types graph modeling several types of relations between classes and interfaces of the static struc-
ture of software, how to advance the usages of visualizations of multiple type relations for ana-
lyzing the static structure of software?”

The main contributions of this thesis are:

• enhancing the interactive multi-matrix visualization (IMMV)

• presenting an extended user study that determines the visual patterns for this approach
in comparison to the approach of Beck et al. [26]

• presenting algorithms for the topological decomposition of directed graphs together with
a complexity analysis of these algorithms

• presenting algorithms for drawing directed graphs based on this topological decomposition

• showing additional four use cases using the small-multiples node-link approach (SMNLV)
for visualizing the relations of the software structure based on their topological drawing

This thesis consists of four parts: Part I discusses different development phases of the
interactive multi-matrix visualization (IMMV) showing an extended user study at the end
(Chapter 5) for determining visual patterns using this tool. Appendix A describes two pretests
that were performed in this study. The new approach for visualizing graphs with multiple
edges, is based on a new graph layout for the node-link representation of graphs for the sake
of displaying additional visual structures that are interesting for software engineers. The new
graph layout is presented in Part II. It improves the decomposition and drawing process for
achieving an optimal topological visualization of directed graphs. Combining this graph layout
with small-multiples provides the small-multiples node-link visualization SMNLV presented in
Part III. Finally, Part IV concludes the thesis. Figure 1.1 shows an overview of this thesis.



3

Figure 1.1: Thesis Overview
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The Multi-Matrix Visualization
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Chapter 2

Introduction

This part discusses different development phases of the interactive multi-matrix visualization
(IMMV) showing an extended user study at the end of Chapter 5 for determining visual patterns
using this tool. The enhanced approach, called IMMV describes a tool that was built by
Abuthawabeh and Zeckzer [9] based on the initial design study of Zeckzer [101] and the approach
of Abuthawabeh [7] that added visual elements and interaction. These initial approaches are
described in Chapter 3 and form the basis of the enhanced approach (Chapter 4), which is in
turn the basis for the pattern determination (Chapter 5).

Improving the quality of software systems requires analyzing their structures. For analyzing
the structure of software system, this structure is modeled as a graph by considering classes
(and interfaces) as nodes and relations between classes as edges. Considering several types
of relations such as inheritance and method-call and different types of nodes such as classes
and interfaces contribute to the analysis process. Using visual representations of the graph for
the analysis, different issues such as multiple different types of relations and scalability should
be considered beforehand. The initial approach by Zeckzer [101] introduced the multi-matrix
visualization (Chapter 3), which can represent multiple relations types of software systems in
a compact way allows visually comparing the relations while being scalable to large systems.

After this proof of concept, Abuthawabeh developed a prototype adding interaction and
further visual elements to the multi-matrix visualization [7] (Chapter 3). To foster the analysis
of the static structure of software systems, the IMMV tool was derived from the two approaches
afterward as an extended version of Abuthawabeh [7] enhancing it with additional features
including source code modifications, enhancements of the visualization, and enhancement of
the interaction (Chapter 4).

In addition to the multi-matrix approach of Zeckzer [101], graphs with multiple edge types
were represented using the parallel node-link visualization (PNLV) of Beck et al. [26]. Using
IMMV and PNLV for visually analyzing and comparing relations between classes (and inter-
faces), different visual patterns can be found. This leads to the questions, which pattern can be
found, what do the pattern represent, and how can the pattern be used by software engineers,
e.g., to understand or to improve the structure of software systems. In order to determine
the visual patterns that can be shown using IMMV in contrast with the parallel node-link
visualization (PNLV) [26], an extended version of the explorative user study [8] is presented
in Chapter 5. PNLV and IMMV have been used to visualize these relationships for several
software systems. A counterbalanced within-subject design was used to evaluate these two
visualizations.

7
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Chapter 3

Initial Approaches

3.1 Introduction

Figuring out the structure of software systems is essential for determining its quality. “The
entities of these systems–classes and interfaces–have many different types of relations. There-
fore, discerning multiple types of edges is important for analyzing the graph having the entities
as nodes and the relations as edges.” [9] In this chapter, the two multi-matrix visualization ap-
proaches that were proposed by Dirk Zeckzer [101] and by Ala Abuthawabeh [7] are described
following the descriptions given in [8, 9]. In these approaches, matrix visualization is applied
to the software engineering domain to support analyzing multiple types of relations between
the classes and interfaces of a system. These classes and interfaces have “relations such as
inheritance, aggregation, implementation, method-call, parameter, return-Type, and throws.”
These “are complementary to each other, revealing multiple aspects of the same software sys-
tem. Hence, approaches for analyzing graphs benefit from discerning instead of aggregating
different types of edges.” [8]

3.2 Multi-Matrix Visualization First Approach

In the first multi-matrix visualization (MMV) approach [101] as shown in Figure 3.1(b), Dirk
Zeckzer “visualizes the classes and interfaces of the software system and the relations between
them using an adjacency matrix representation of the underlying graph.” [9] “Every cell of the
matrix is divided into sub-cells, each sub-cell representing a different edge type. A colored sub-
cell appears in the matrix if an edge of the respective type from the vertex in the current row to
the vertex in the current column exits. To be able to distinguish the types more clearly, a different
color is used for each type.” [9] A simple color legend is shown in Table 3.1. “As an illustrating
example, Figure 3.1 presents a small sample software system consisting of one package that
includes five classes. The classes are connected by two types of coupling: inheritance and
method-call. The system is modeled as a graph: the classes (and interfaces) of the system form
the vertices and the different types of couplings are mapped to different types of edges. Figure 3.1
shows two variants of visualizing this sample dataset: Figure 3.1(a) depicts a standard node-link
representation and Figure 3.1(b) represents the dataset in MMV.” [8] With regard to visualizing
the package hierarchy of the classes, he used and explored three ideas for that. These ideas are:

• using line styles

• using line thickness

• using the border of the matrix to add the full name of packages or to add bar charts and
using the length of the bar to represent the depth of the class in the hierarchy

9
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Figure 3.1: An example of MMV showing different relations represented as edges; yellow:
inheritance relation; cyan: method-call relation.

Relation Row Column Color

Parameter 1 1 yellow
Return-Type 1 2 red

Throws 1 3 purple
Method-Call 2 1 blue
Aggregation 2 3 brown

Implementation 3 2 green
Inheritance 3 3 cyan

Table 3.1: The color legend [101]

3.3 Multi-Matrix Visualization Second Approach

In the second multi-matrix visualization (MMV) approach [7] as shown in Figure 3.2(b), Ala
Abuthawabeh extended the matrix visualization approach of Dirk Zeckzer [101] for increasing
scalability in visually discerning multi-type edges in graphs.

In the visualization part of (MMV) [7] as shown in Figure 3.2(b), “ two icicle plots are
attached to the left (source) and the top (destination) of the matrix visualization to display
the package hierarchies.” [9] “Relation summaries were added to the icicle plots to provide an
overview over the relations. The relation summaries of the rows are placed inside the leaf cells
of the left icicle plot, while the relation summaries of the columns are placed inside the leaf
cells of the top icicle plot. The cells representing the packages contain relation summaries of
their children.” [9] A simple color legend (see Figure 3.2(c)) was placed on the right side of the
matrix.

As a demonstrating example, Figure 3.2(a) depicts a standard node-link representation and
Figure 3.2(b) represents the dataset in MMV using the same example graph as in Figure 3.1.
The new color legend is shown in Figure 3.2(c). The interaction was enhanced. The names
of packages, classes, and interfaces can be retrieved on demand as tooltips when selecting an
element of the icicle plot (Figure 3.3).

“Scanning selected rows, columns and cells can be performed easily using highlighting. A row
in the matrix visualization is highlighted, if a class/interface or a package in the left icicle plot is
selected. All sides of the selected cell of a class/interface or a package in the left icicle plot and
the row in the matrix visualization are painted with black. A column in the matrix visualization
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(a) Standard node-link representation [8]

(b) The MMV adapted from [8] (c) The color legend [7]

Figure 3.2: Demonstrating example for visualizing a software system with several types of
relations formed as a graph with multi-type edges; orange: inheritance relations; blue: method-
call relations.

is highlighted analogously. Both row and column are highlighted with a black border, if a cell in
the matrix visualization is selected.” [9]

The highlighting is also reflected on the coordinate tree view in the same way. Scrolling is
also possible when the matrix is large. Finally, folding and unfolding interactions are used to
interact with the package hierarchies and the matrix visualization. Folding implies aggregating
all relations in the matrix subcells after selecting a package in the icicle plot, while unfolding
restores the relations. To discern the cell of a folded package from the unfolded packages’ cells,
the color saturation of the cell in the icicle plot is changed (Figure 3.4).

Definition 1. Let G � tN,Eu be a graph with a set of nodes N and a set of edges E. Let
n � |N | denote the number of nodes and let e � |E| denote the number of edges. Further, let d
be the depth of the package hierarchy and c be the number of edge types.

The time and space complexity of the folding and unfolding algorithms is given in Table 3.2.

Algorithm Time complexity Space complexity
Folding algorithm Opd � c � n2q Opc � n2q

Unfolding algorithm Opd2 � c � n2 � d � eq Opc � n2 � eq

Table 3.2: Time and space complexity analysis for the folding and unfolding algorithms [7]
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Figure 3.3: Showing the names associated with packages, classes, and interfaces in icicle plots
utilizing tooltips [7]
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Figure 3.4: Using the color saturation to discern the cell of the collapsed package from the
expanded packages’ cells. [7]
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Chapter 4

Enhanced Approach

4.1 Introduction

The initial approaches were applied to different software systems, presented at conferences,
and discussed with other researchers. Thereby, several useful extensions were identified. This
resulted in an enhanced version of MMV called IMMV, with the following modifications and
enhancements compared to MMV:

• MMV’s Source Code modifications

– Importing and parsing graphml files (Section 4.2.1)

– Compressing tree paths (Section 4.2.2)

– Using a bipartite graph for the underlying data structure (Section 4.2.3)

– Involving additional relation types (Section 4.2.4)

• Enhancements of the Visualization

– Showing labels partially in the icicle plots (Section 4.3.1)

– Improving the color legend (Section 4.3.2)

– Showing levels of icicle plots (Section 4.3.3)

• Enhancement of the Interaction

– Additional Folding and Unfolding Options (Section 4.4.1)

– Opening data source of classes (Section 4.4.2)

– Interacting with the enhanced color legend (Section 4.4.3)

First, I give two definitions.

Definition 2. A Bipartite Graph is “a graph whose vertex-set V can be portioned into two
subsets U and W , such that each edge of G has one endpoint in U and one endpoint in W .
The pair U , W is called a (vertex) bipartition of G, and U and W are called the bipartition
subsets”. [60]

Definition 3. An inner node is “any node except the root and the leaf nodes.” [7]

15
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Algorithm 4.1 Parsing GraphML and preprocessing data Algorithm

1: Parse GraphML file data to tree and graph{Adapted from [101]}
2: Call graph.compressGraph1(root){Path compression (Algorithm 4.2)}
3: Call graph.addDestinationClusters(){Duplicating the nodes in the graph (Algorithm 4.3)}
4: Call graph.transformGraphToBipartit(){Identifying the new source and destination nodes

for each edge in the graph (Algorithm 4.4)}

4.2 MMV’s Source Code modifications

To involve more features, the Java source code from [101, 7] was extended. “A GraphML
data importer and three preprocessing steps were added” [9] as shown by Algorithm 4.1 (Sec-
tions 4.2.1- 4.2.3). Further, additional relation types were added (Section 4.2.4).

4.2.1 Importing and parsing GraphML files

“A new importer was added for reading and parsing GraphML [5] files and for inspecting its
attributes.” [9]

4.2.2 Compressing tree paths

Package structures might contain sub-paths, where each package contains exactly one sub-
package and not classes, especially at the beginning of the path. This part can be combined,
such that the number of levels in the icicle plot gets reduced. This gives more space to the
remaining levels and thus improves the representation of the package hierarchy. This reduction
is achieved by applying the path compression Algorithm 4.2. The compressing is stopped, if the
node is a leaf node (Line 2). If the node has exactly one child, there are two cases: if the node
is the root node, call compress with the child node (Lines 3-5), otherwise if the node is an inner
node with only one child, the node is removed from the path as follows: the child’s grandfather
is set as the parent of the child. Then, this child is added to its grandfather’s children and
the child is deleted from its parent’s children. After that, the node is removed from the graph.
Finally, compressing is called with the child node (Line 6-12). If the node has more than one
child, compressing is called with all child nodes (Line 13-16).

4.2.3 Using a bipartite graph for the underlying data structure

The initial graph is turned into a bipartite graph by replicating the graph nodes (Algorithm 4.3)
to determine the origin and target nodes for each edge (Algorithm 4.4, Figure 4.1). A hashtable
was added to the graph class, namely: allDestinationClusters. To duplicate the nodes, the
duplicating algorithm (Algorithm 4.3) is performed. All the nodes in the initial graph are
copied and stored in the allDestinationClusters hashtable (Line 1-3). The old nodes have
become the source nodes and the new copied nodes have become the destination nodes. For
each non root node in the initial graph (the node has a parent), its copied node is added to the
children list of its copied parent and the copied parent is set to this node as parent (Line 5-7).
If the node in the initial graph has no parent, its copied node is set as root (Line 9).

The identifying algorithm (Algorithm 4.4) is implemented to identify the source node and
new destination node for each edge in the graph. To change the end node for each outgoing edge
of each source node, a new end node is set for the outgoing edge from the destination nodes, the
edge is added to the incoming edges of the destination node, the graph is updated by replacing
the old outgoing edge with the modified outgoing edge in the graph (Line 2-6). The incoming
edges list of the source node is cleared (Line 7). To change the end node for each self-referencing
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Algorithm 4.2 Path Compression Algorithm

1: if the node is leaf node then
2: Stop
3: else if the node has #children � 1 then
4: if the node is root then
5: Call compressGraph1(child)
6: else
7: Set the parent of this child node its grandfather
8: Add this child to its grandfather’children
9: Delete the node from its parent’children

10: Remove the node from the graph
11: Call compressGraph1(child)
12: end if
13: else
14: for all children of the node do
15: Call compressGraph1(child)
16: end for
17: end if

Algorithm 4.3 Duplicating the nodes in the graph Algorithm

1: for all the nodes in the graph do
2: Add a copy of the node in allDestinationClusters hashtable {The old nodes became the

source nodes and the new copied nodes became the destination nodes.}
3: end for
4: for all the nodes in the graph do
5: if node has parent then
6: Add the copied node to the children list of its copied parent in allDestinationClusters
7: Set the copied parent to the copied node as a parent
8: else
9: Set the copied node in allDestinationClusters as root

10: end if
11: end for
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edge of each source node, a new end node is set for the edge from the destination nodes, the
edge is added to the outgoing edges of the source node, the edge is added to the incoming edges
of the destination node, the graph is updated by replacing the old self-referencing edge with
the modified edge in the graph (Line 8-13). The self-referencing edges list of the source node is
cleared (Line 14). Finally, the folding and unfolding algorithms from [7] were adapted to deal
with the bipartite graph by taking into account these new changes.

Algorithm 4.4 Identifying the new source and destination nodes for each edges in the graph
Algorithm

1: for all the source nodes in the initial graph do
2: for all outgoing edges of the current source node do
3: Replace the end node of the current outgoing edge with its copied node from

allDestinationClusters hashtable updating edge id
4: Add the modified outgoing edge as a new incoming edge of the copied node
5: Replace the old outgoing edge with the modified outgoing edge in the graph{Update

the graph}
6: end for
7: Clear the incoming edges list of the source node
8: for all self-referencing edges of the node do
9: Replace the end node of the current edge with its copied node from

allDestinationClusters hashtable updating edge id
10: Add the edge to the outgoing edges of the source node
11: Add the edge to the incoming edges of the new end node
12: Replace the self-referencing edge with the modified edge in graph{Update the graph}
13: end for
14: Clear the self-referencing edges list of the source node
15: end for

4.2.4 Involving additional relation types

Additional relation types were added using the list of code couplings introduced by Beck and
Diehl [29].

Definition 4. Code Coupling: a relationship between classes in software systems.

The code couplings used and implemented are [8]:

• “inheritance (extend and implement dependencies)”

• “aggregation (usage of another type as a class attribute)”

• “usage (structural dependencies on method level)”

• “evolutionary coupling (files that were changed together frequently in the past)”

• “code clones (files that are reasonably covered by the same code clones)”

• “semantic similarity (similar vocabulary used in identifiers and comments)”



4.3. Enhancements of the Visualization 19

Package 1

Class 
43

Class 
47

Class 
48

Class 
57

Class 
54

(a) Graph

        Package 1 

Class 
43 

C
la

ss
 

4
3

 

Pa
ck

ag
e 

1
 

Source 

Destination 

Class 
47 

Class 
48 

Class  
54 

Class 
57 

C
la

ss
 

4
7

 
C

la
ss

 
4

8
 

C
la

ss
 

5
4

 
C

la
ss

 
5

7
 

(b) Bipartite Graph

Figure 4.1: Turning a graph into bipartite graph

4.3 Enhancements of the Visualization

The updated visualization and the modified graphical interface were applied to JHotDraw [62].
Figure 4.2 shows the structure of JHotDraw using IMMV. The enhancements include highlight-
ing the main diagonal using a gray background of the cells. Further, labels are partially shown
in the icicle plots, the color legend was improved, and levels in the icicle plots are shown.
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Figure 4.2: The improved MMV, which visualizes relations from the JHotDraw software system.

4.3.1 Labels

“Inside the icicle plots, nodes have labels, if enough screen space is available.” Additionally,
the user can use tool tips to show the label by moving the mouse over the cell (Figure 4.2). [9]

4.3.2 Enhanced Color Legend

“The color legend is used to show the color mapping of the code couplings and their positions
inside the matrix cells. The default color mapping assigns the bright colors to the corner subcells
and the darker colors to the other subcells (Figure 4.2).” [9]

4.3.3 Levels in Icicle Plots

“Each level in the top and in the left icicle plot is represented with a white circle in the upper
left corner (Figure 4.2).” [9]

4.4 Enhancement of the Interaction

4.4.1 Additional Folding and Unfolding Options

Many additional folding and unfolding options were added:

• “In the matrix, the background color of the folded package column and row are highlighted
with gray.” [9]

• Packages in the top icicle and in the left icicle can be folded separately or together by
selecting the radio button on the right (Figure 4.3).

• The folded packages can be unfolded for one level or to the previous state by selecting
the radio button on the right (Figure 4.3).
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Figure 4.3: Using radio buttons (right) to choose whether to fold source and destination pack-
ages separately or together

• Each level in the icicle plot can be folded by mouse double clicking on its respective white
circle in the upper left corner. After that, the folded level can be unfolded by mouse
double clicking on its respective black circle in the upper left corner (Figure 4.3).

4.4.2 Opening Data Source

The user can open an editor with the source code of a class by double clicking on the cell
representing the class in the icicle plot. This enables to directly explore and verify the underlying
source code behind the discovered visual structures (Figure 4.4).

4.4.3 Color Legend Interaction

Using the enhanced color legend, the user can change the relations color mapping in the matrix
cells by choosing different colors. Also, the sub-cell positions of the couplings can be changed
by selecting the coupling from the list (Figure 4.5).
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Figure 4.4: Using the data source editor

Figure 4.5: Interacting with the enhanced color legend



Chapter 5

Determination of Pattern in the
interactive Multi-Matrix Visualization

5.1 Preamble

This chapter is the extended version of the explorative user study [8] that was conducted
with interactive versions of the parallel node-link visualization (PNLV) [26] and the interactive
multi-matrix approach (IMMV) [101, 7, 9], and Chapter 4. It focuses on a realistic application
scenario. The study was performed as cooperation of the TU Kaiserslautern and of the Uni-
versity of Trier. Please note, that a summary of this study was included by the dissertation
of Fabian Beck [27]— a co-author of this study. The core purpose of this qualitative study
is to explore visual structures that are formed by visualizing relationships between classes as
inheritance and aggregation in software systems. PNLV and IMMV have been used to visualize
these relationships in different datasets. A counterbalanced within-subject design was used to
evaluate these two visualizations.

This extended version added Section 5.4 as new part, which covers the two pretests of the
explorative user study. Additionally, the introduction section (Section 5.2) was modified. The
other Sections, Section 5.3, Section 5.5, Section 5.6, Section 5.7, Section 5.8, and Section 5.9
are taken from the paper.

5.2 Introduction

Directed and undirected graphs are widely used to model and to understand the relations be-
tween entities that together form a software system. In software systems, different types of
couplings exist between classes and interfaces such as inheritance, aggregation, usage, code
clones, evolutionary (co-change) coupling, or semantic similarity. These couplings are com-
plementary to each other, revealing multiple aspects of the same software system. Hence,
approaches for analyzing graphs benefit from discerning instead of aggregating different types
of edges.

Much research has concentrated on using visual approaches for analyzing graphs in a scalable
way [98], but, only recently, some approaches focused specifically on discerning and comparing
multiple types of edges [26, 46, 52, 53, 101]. In this work, two complementary approaches were
selected and evaluated in a software engineering scenario. The first approach, called parallel
node-link visualization (PNLV) [26], depicts multiple types of edges in separate, parallel node-
link diagrams that are placed side by side. The second approach, called interactive multi-matrix
visualization (IMMV) [101, 7, 9] (Chapter 3 and 4), uses an adjacency matrix for visually
representing the graph with multiple types of edges in each cell. These were the only approaches

23



24 Chapter 5. Determination of Pattern in IMMV

Figure 5.1: JFtp project with multiple types of couplings visualized by the parallel node-link
visualization (PNLV) of [26]

that provide the required scalability (with respect to the number of nodes, edges, and types
of edges) to represent coupling graphs of real-world software systems having several types of
coupling. Figure 5.1 and Figure 5.2 contrasts the two approaches used, visualizing the JFtp
project.

The specific research question is: “What higher-level coupling structures users are able to
retrieve and compare with the help of these visualizations?” Further, it was investigated how the
detected and compared structures can be used for tasks in the context of software engineering.
The main contributions of this study are the following:

• The evaluation of the utility of two recent visual approaches [26, 101, 9] for comparing
multiple types of edges in a realistic software engineering scenario.

• The identification of visual structures and the general graph structures that users find
with these visualizations.

• The study of the strategies that the participants applied for comparing several types of
edges.

• The exploration of software engineering problems that can be addressed with these visu-
alizations.

For graphs with only edges of a single type, researchers have already conducted comparison
studies between node-link and matrix graph visualizations based on predetermined, low-level
tasks [57, 58, 69]. These studies suggest that matrix visualizations are often more suitable for
analyzing larger and denser graphs. The study extends these evaluations to multi-type edges
and to more complex, higher-level tasks. A realistic application scenario was designed and
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Figure 5.2: JFtp project with multiple types of couplings visualized by the interactive multi-
matrix visualization (IMMV) of [101, 7] (Chapter 4)

eight software engineers were asked to gain an understanding of previously unknown software
systems. The observations show which specific software engineering problems can be solved
with the two visualization approaches. In contrast to the expectations and previous results
on low-level tasks, the two approaches showed very similar characteristics though following
contrary visualization paradigms.

The remainder of the work is structured as follows: In Section 5.3, the two evaluated in-
teractive visualization approaches are presented in detail. In Section 5.4.1, the first pretest of
this study is presented, while the follow-up pretest is described in Section 5.4.2. The experi-
mental design of the study is described by Section 5.5. Further, Section 5.6 reports the results
of the study by analyzing visual structures, their interactive exploration by the participants,
and the participants’ feedback. The results are discussed in a broader context in Section 5.7.
Related work on visually discerning multiple types of edges as well as on comparing node-link
and matrix visualizations is presented in Section 5.8. Finally, Section 5.9 concludes the paper.
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Figure 5.3: Illustrating example for visualizing a software system with different types of code
couplings modeled as a graph with multiple types of edges; orange: inheritance couplings; blue:
usage couplings (except PNLV where colors are used for highlighting).

5.3 Visualization Approaches

In this study, we target two related visualization approaches that are briefly introduced in the
following: the parallel node-link visualization (PNLV, Section 5.3.1) and the interactive multi-
matrix visualization (IMMV, Section 5.3.2). As an illustrating example, Figure 5.3 presents a
small sample software system consisting of one package that includes five classes. These classes
are connected by two types of code coupling: inheritance and usage. The system is modeled as
a graph—while the classes (and interfaces) of the system form vertices, the different types of
code couplings are mapped to different types of edges. Moreover, the package structure is used
to hierarchically organize the vertices. Figure 5.3 shows three variants of visualizing this sample
data set: Figure 5.3(a) depicts a standard node-link representation, Figure 5.3(b) sketches the
diagram in PNLV, and Figure 5.3(c) represents the data set in IMMV.

5.3.1 Parallel Node-Link Visualization (PNLV)

In the parallel node-link visualization (PNLV) [26] as shown in Figure 5.3(b), multiple node-link
diagrams are juxtaposed as columns side by side. In each column, the nodes representing the
classes and interfaces are placed above each other on a vertical axis. Each node is split and
has one port for all its outgoing edges and one port for all its incoming edges; these ports are
aligned horizontally. The edges are directed from the outgoing ports on the left to the incoming
ports on the right. Each of the juxtaposed diagrams represents a different type of edges.

A layered icicle plot is attached to the left side of the diagram to show the hierarchy of the
software system. The horizontal lines in the icicle plot between boxes that represent packages
are extended through the whole visualization. The vertical separators between the juxtaposed
node-link diagrams repeat the leaf level of cells in the icicle plot. Inside the icicle plot, nodes
display labels if possible or on demand when hovered by the mouse. The visualization is adapted
to the window size so that all data is always completely visible.

Highlighting by color is used for discerning a set of selected nodes from non-selected ones
as well as for marking their outgoing and incoming edges. Edges starting at selected nodes are
colored green, those ending at selected nodes are colored red, and those starting and ending
at selected nodes are colored brownish-green; a light blue color is used for the other edges. A
single node is highlighted by clicking on one of its visual representation in the diagram while a
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set of nodes contained in a package is selected by clicking on the package. The participant can
open the source code of a class or interface by double-clicking.

5.3.2 Interactive Multi-Matrix Visualization (IMMV)

In the interactive multi-matrix visualization (IMMV) [101, 9] as shown in Figure 5.3(c), the
classes of a software system and the code couplings between them are visualized using an
adjacency matrix representation of the underlying graph. Every cell of the matrix is divided
into sub-cells, each sub-cell representing a different edge type (code coupling). A colored sub-
cell appears in the matrix if there exists an edge of the respective type from the vertex in
the current row to the vertex in the current column. To more clearly distinguish the types, a
different color is used for each type; a color legend is attached to the matrix.

Analogous to PNLV, IMMV is combined with layered icicle plots to display the package
structure of the software system [9]. A copy of the same icicle plot is placed at the left as well
as on the top of the matrix. Packages are labeled and the names of classes and interfaces can
be retrieved on demand as tooltips. Further, summaries of the code couplings are integrated
into the icicle plots aggregating all couplings of a row or column respectively; these summaries
are aggregated on package level and displayed in the package representations. If the matrix is
larger than the window, the participant can scroll to explore the complete matrix.

A set of classes and interfaces or packages can be selected by clicking for highlighting them
in the icicle plots and in the matrix: the rows and columns of all selected entities become
surrounded by a strong black border line. It is further possible to select a cell of the matrix—
both respective row and column are highlighted. Again, the participant can open the source
code of a class by double-clicking.

5.4 Pretests

Two pretest were performed to refine the experiment design and to avoid mistakes. Section 5.4.1
describes the first pretest, while Section 5.4.2 describes the second pretest.

5.4.1 First Pretest

In this pretest experiment, one participant was involved. He is a PhD computer science student
from the University of Trier. The primary task of the participant is to find which visual
structures can be displayed by each tool.

5.4.1.1 Experiment Setup

The participant used a PC with an LCD 23” screen with full HD resolution, mouse, and
keyboard. The operating system was Windows 7. The two tools were implemented using the
Java programming language. The format of the datasets was the GraphML File Format. A3
papers were used for the visualizations on paper. The data was loaded into the PNLV tool
using batch files (jar files) to decrease the preparation time. The data was loaded into the
IMMV tool manually. The source code files of the datasets were displayed in Notepad++ [45]
on demand.

5.4.1.2 Sample Description

There was one participant in this pretest. He is a PhD computer science student from the
University of Trier. His age is 29 years and his gender is male. He has 10 years of experience in
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Coupling types JFtp JUnit JHotDraw
P N E P N E P N E

Inheritance 8 78 40 26 119 63 9 82 10
Aggregation 8 78 66 26 119 35 9 82 17

Usage 8 78 38 26 119 251 9 82 56
Evolutionary 8 78 380 26 119 76 9 82 71
Code-Clone 8 78 22 26 119 40 9 82 50

Semantic Similarity 8 78 62 26 119 236 9 82 132

Table 5.1: Statistics on the software systems used as datasets in the first pretest with P: number
of packages, N: number of nodes, and E: number of edges.

programming. He regularly uses the Java language for projects with 51-100 classes and less than
three developers. He regularly uses UML for software development as visual representation.

5.4.1.3 Dataset Description

Six different types of couplings were considered: Inheritance, Aggregation, Usage, Evolution,
Code Clones, and Semantic Similarity. Three datasets were used:

• JFtp, a Java file transfer client.

• JUnit, an open source Java unit-testing framework.

• JHotDraw, a Java GUI framework.

The statistics of these datasets are given in Table 5.1.

5.4.1.4 Experiment Protocol

Two persons are responsible for managing the experiment: a moderator and an observer. The
observer takes notes. The sequence of the experiment followed these steps:

1. The data tutorial was presented and read for the participant by the moderator. Then,
the experiment was performed according to the combination in Table 5.2.

Pretest number Presentation order
1 JUnit + IMMV Ñ JFtp + PNLV

Table 5.2: The combinations of tools and datasets

2. (a) The participant followed the tool tutorial for IMMV, which was read by the mod-
erator. After the tutorial, the participant was free to ask his own questions to the
moderator.

(b) The participant performed a trial for IMMV to see if he understands the tool. The
tasks of the trial were described by the moderator. The JHotDraw dataset was used
in this trial. The participant was free to ask his own questions during the trial.

(c) The participant performed the paper test for IMMV using the JUnit dataset. The
experiment question was:

• What interesting visual structures do you find in IMMV? Please mark and de-
scribe them?
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(d) The participant performed the interactive test for IMMV using the JUnit dataset.
The experiment questions were:

• Select the three visual structures, which are significantly different from each
other and which hint at an interesting phenomenon. Please use the interactive
visualization to explore them. Explain your findings.

• Why did you select these visual structures?

3. (a) The participant followed the tool tutorial for the PNLV, which was read by the
moderator. After the tutorial, the participant was free to ask his own questions to
the moderator.

(b) The participant performed a trial for the PNLV to see if he understands the tool.
The tasks of this trial were described by the moderator. Also, the JHotDraw dataset
was used in this trial. The participant was free to ask his own questions during the
trial.

(c) The participant performed the paper test for PNLV using the JFtp dataset. The
experiment question was:

• What interesting visual structures do you find in PNLV? Please mark and de-
scribe them?

(d) The participant performed the interactive test for PNLV using the JFtp dataset.
The experiment questions were

• Select the three visual structures, which are significantly different from each
other and which hint at an interesting phenomenon. Please use the interactive
visualization to explore them. Explain your findings.

• Why did you select these visual structures?

4. The participant performed a color blindness test.

5. The participant was provided with the general questionnaire, which consists of closed
questions, open questions, and statements, and the final questionnaire, which consists of
closed questions, and five-level Likert scale, open questions, and statements.

5.4.1.5 Results

In this pretest, the participant was asked to mark visual structures in the printed visualiza-
tions. The user identified fan visual structures and one cross beam visual structure in the
PNLV paper test, and he identified lines visual structures, clusters off the main-diagonal, and
clusters on the main-diagonal in IMMV paper test (Table 5.11 shows the classification of the
identified visual structures). After that, the participant explored three of the identified visual
structures using the respective interactive tool. In PNLV, he selected two fan and one cross
beam visual structures. For IMMV, he selected line, main-diagonal cluster, and off-diagonal
cluster. By exploring the two fans (PNLV) and the line (IMMV), he connected them to find
a central class/interface. By exploring the cross beam (PNLV), and main-diagonal cluster
and off-diagonal cluster (IMMV), he connected them to understand a package related software
engineering task. Also, he used highlighting and opening the source code editor to interact
with both tools. In the questionnaire of this pretest, he preferred PNLV for analyzing software
projects because of the separated relation views (columns). Hence, the focus would be on single
relation type. In comparison, he recommended IMMV for larger projects because PNLV could
get messy when displaying too many edges. With respect of usefulness, both tools received the
same answers (PNLV: 2; IMMV 2; scale from strongly agree (1) to strongly disagree (5) that it
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Step Table Number
IMMV trial using the JHotDraw dataset Table A.1
PNLV trial using the JHotDraw dataset Table A.2

IMMV paper test using the JUnit dataset Table A.3
The interactive IMMV test using the JUnit dataset Table A.5

PNLV paper test using JFtp dataset Table A.4
The interactive PNLV test using JFtp dataset Table A.6

The general questionnaire Table A.7
The final questionnaire Table A.8

Table 5.3: The results for each step in the first pretest

No Step Sub step Start End Time
1 Data Tutorial 15:28 15:35 0:07
2.1 IMMV Tutorial 15:36 15:43 0:07
2.2 Trial 15:43 15:55 0:12
2.3 Paper 15:55 16:07 0:12
2.4 Tool 16:10 16:24 0:14
3.1 PNLV Tutorial 16:26 16:30 0:04
3.2 Trial 16:31 16:38 0:07
3.3 Paper 16:38 16:45 0:07
3.4 Tool 16:46 16:57 0:11
4 Color Blindness 16:58 16:59 0:01
5 Questionnaire 17:00 17:30 0:30

Total 1:52

Table 5.4: Experiment protocol and time per step in the first pretest

is useful). The participant saw the main area of application of the two tools in improving the
architecture or design of software systems.

Appendix A lists all the results for each step as shown in Table 5.3.
The recorded times for each steps in the pretest experiment are shown in the Table 5.4.

Many steps exceeded the time limit for each step because of the following reasons:

• The data tutorial was too long and complicated.

• The matrix and the node-link tutorials were too long and they had redundancy.

• The trials and questionnaires were too long.

• The labels of the matrix on paper were not clear.

• The tooltips took too much time to appear in the matrix tool.

5.4.1.6 Results Analysis

In the PNLV paper test, the participant looked at separate couplings (columns) to find visual
structures. The participant looked mainly at fan visual structures. With larger dataset, it
could be hard to find such visual structure because of visual clutter in PNLV.

In IMMV paper test, the participant looked at the combination of multi-types couplings to
find visual structures in the matrix. The existence of different combinations could explain why
the participant spent more time to find them.
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5.4.1.7 Problems and Modification

Many problems appeared in the pretest and a lot of feedback was provided by the participant.
Decreasing the total time of the experiment from 112 minutes to 90 minutes was the first issue.
To decrease the total time:

• The data tutorial was reduced by removing details such as the thresholds used in the
datasets and by more focusing on the concepts.

• The two tool tutorials were shortened by removing the redundancy and their screenshots
were changed to show the JHotDraw dataset instead of the JFtp dataset.

• The trial questions, the general, and the final questionnaires were shortened by removing
and merging questions according to the feedback from the participant.

• The question “Why did you select these visual structures?” was removed from the exper-
iment questions.

Additionally, it was hard to record the use of interactions on-the-fly by taking notes dur-
ing the interactive tests, so recording screen and voices and then extracting the sequence of
interactions manually later were considered for the final experiment.

Moreover, IMMV was enhanced on paper by:

• Enlarging the font size of the labels and modifying the alignment of vertical labels

• Improving the current color legend

• Using a larger paper size for the matrix visualization

Also, the interactive tool for IMMV was enhanced by including the following features ac-
cording to the feedback:

• Displaying the label using the tooltips by moving the mouse over the cell in the matrix

• Adding the batch files to load data in the matrix tool

• Opening the source code using mouse double click

• Not collapsing packages with single classes (path compression)

It was hard to vary among dataset sizes for the participant because it was expected that
he would consume too much time. The JFtp and the JUnit datasets, which were used in the
experiment, have different sizes (JUnit is larger than JFtp). The JFtp dataset was used with
the PNLV tool and the JUnit dataset was used with the IMMV. In the final questionnaire,
the user indicated that he preferred using PNLV over IMMV for small projects because of the
separated relation views. He also indicated that he preferred using IMMV for large projects
because PNLV can get messy when displaying too many edges. To make sure that the dataset
size dose not bias the decision of the participants in the final experiment, using two similar
sized datasets is recommended.

5.4.2 Second Pretest

In this pretest experiment, one participant was involved. He is a PhD computer science student
from the University of Trier. The primary task of the participant is to find which visual
structures can be displayed by each tool.
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Couplings types Stripes Checkstyle JHotDraw
P N E P N E P N E

Inheritance 20 238 143 22 261 207 9 82 10
Aggregation 20 238 131 22 261 69 9 82 17

Usage 20 238 614 22 261 479 9 82 56
Evolutionary 20 238 262 22 261 586 9 82 71
Code-clone 20 238 296 22 261 440 9 82 50

Semantic similarity 20 238 462 22 261 1014 9 82 132

Table 5.5: Statistics on the software systems used as datasets in the second pretest with P:
number of packages, N: number of nodes, and E: number of edges.

5.4.2.1 Experiment Setup

The participant used a PC with an LCD 23” screen with full HD resolution, mouse, and
keyboard. The operating system was Windows 7. The two tools were implemented using the
Java programming language. The format of the datasets was the GraphML File Format. A1
paper was used for IMMV and A2 paper was used for PNLV on the paper. The data was
loaded into the PNLV tool using batch files (jar files) to decrease the preparation time. The
data was loaded into the matrix tool manually instead of using batch files because the previous
improvement did not work properly. The source code files of the datasets were displayed in
Notepad++ [45] on demand. Screen and voice were recorded with Camtasia Studio [91].

5.4.2.2 Sample Description

There was one participant in this pretest. He is a PhD computer science student from the
University of Trier. His age is 29 years and his gender is male. He has 15 years of experience
in programming. He regularly uses the Java language for projects with 51-100 classes alone.

5.4.2.3 Dataset Description

Six different types of couplings were considered: Inheritance, Aggregation, Usage, Evolutionary,
Code Clones, and Semantic Similarity. Three datasets were used:

• JHotDraw, a Java GUI framework.

• Stripes, an open source framework for developing web applications.

• Checkstyle, a tool for enforcing coding standard.

The statistics of these datasets are given in Table 5.5.

5.4.2.4 Experiment Protocol

Two persons are responsible for managing the experiment: a moderator and observer. The
observer takes notes. The sequence of the experiment followed these steps:

1. The data tutorial was presented and read for the participant by the moderator. Then,
the experiment was performed according to the combination in Table 5.6.

2. (a) The participant followed the tool tutorial for PNLV, which was read by the mod-
erator. After the tutorial, the participant was free to ask his own questions to the
moderator.
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Pretest number Presentation order
2 Checkstyle + PNLV Ñ Stripes + IMMV

Table 5.6: The combinations of tools and datasets

(b) The participant performed a trial for PNLV to see if he understands the tool. The
tasks of the trial were described by the moderator. The JHotDraw dataset was used
in this trial. The participant was free to ask his own questions during the trial.

(c) The participant performed the paper test for PNLV using the Checkstyle dataset,
his voice was recorded. The experiment question was:

• What interesting visual structures do you find in PNLV? Please mark and de-
scribe them?

(d) The participant performed the interactive test for PNLV using the Checkstyle dataset,
the screen was recorded. The experiment question was:

• Select the three visual structures, which are significantly different from each
other and which hint at an interesting phenomenon. Please use the interactive
visualization to explore them. Explain your findings.

3. (a) The participant followed the tool tutorial for IMMV, which was read by the mod-
erator. After the tutorial, the participant was free to ask his own questions to the
moderator.

(b) The participant performed a trial for IMMV to see if he understands the tool. The
tasks of this trial were described by the moderator. The JHotDraw dataset was used
in this trial. The participant was free to ask his own questions during the trial.

(c) The participant performed the paper test for IMMV using the Stripes dataset, his
voice was recorded. The experiment question was:

• What interesting visual structures do you find in IMMV? Please mark and de-
scribe them?

(d) The participant performed the interactive test for IMMV using the Stripes dataset,
the screen was recorded. The experiment question was:

• Select the three visual structures, which are significantly different from each
other and which hint at an interesting phenomenon. Please use the interactive
visualization to explore them. Explain your findings.

4. The participant performed a color blindness test.

5. The participant was provided with the general questionnaire, which consists of closed
questions, open questions, and statements and the final questionnaire, which consists of
closed questions, and five-level Likert scale open questions and statements.

5.4.2.5 Results

In this pretest, the participant was asked to mark visual structures in the printed visualizations.
The user identified fans, gaps, beam, and cross beam visual structures in the PNLV paper test,
and he identified line, off-diagonal clusters, and main-diagonal clusters in the IMMV paper test
(Table 5.11 shows the classification of the identified visual structures). After that, the partici-
pant explored three of the identified visual structures using the respective interactive tool. In
PNLV, he selected one fan and two beams visual structures. For IMMV, he selected one line,
one off-diagonal cluster, and main-diagonal cluster visual structures. By exploring the beams
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Step Table Number
IMMV trial using the JHotDraw dataset Table B.2
PNLV trial using the JHotDraw dataset Table B.1

IMMV paper test using the Stripes dataset Table B.3
The interactive IMMV test using the Stripes dataset Table B.5

PNLV paper test using the Checkstyle dataset Table B.4
The interactive PNLV test using the Checkstyle dataset Table B.6

The The general questionnaire Table B.7
The final questionnaire Table B.8

Table 5.7: The results for each step in the second pretest

No Step Sub step Start End Time
1 Data Tutorial 14:00 14:05 0:05
2.1 MMV Tutorial 14:54 14:59 0:05
2.2 Trial 14:59 15:07 0:12
2.3 Paper 15:09 15:21 0:12
2.4 Tool 15:22 15:41 0:19
3.1 PNLV Tutorial 14:06 14:12 0:06
3.2 Trial 14:13 14:20 0:07
3.3 Paper 14:21 14:32 0:11
3.4 Tool 14:35 14:51 0:16
4 Color Blindness 15:41 15:42 0:01
5 Questionnaire 15:42 16:28 0:46

Total 2:20

Table 5.8: Experiment protocol and time per step in the second pretest

(PNLV), one off-diagonal cluster (IMMV), and one main-diagonal cluster (IMMV) visual struc-
ture, he connected them to understand a package related software engineering task. By explor-
ing the fan (PNLV) and the line (IMMV), he connected them to find a central class/interface.
Also, he used highlighting and opened the source code editor to interact with both tools. In the
questionnaire of this pretest, he preferred PNLV for analyzing software projects because he had
the feeling that it is more intuitive and that it provides good overview but he was not sure if it
works for larger projects. For the matrix, he had a much steeper learning curve. With respect
of usefulness, the tools received the answers (PNLV: 2; IMMV 3; scale from strongly agree (1)
to strongly disagree (5) that it is useful). The participant saw the main area of application of
the two tools in program comprehension and improving the architecture or design of software
systems. In addition, he saw debugging/bug fixing as possible application area of the PNLV
tool.

Appendix B lists all the results for each step as shown in Table 5.7.
The recorded times for each step in the pretest experiment are shown in the Table 5.8.

Many steps exceeded the time limit for each step because of the following reasons:

• The trial questions were long.

• The final questionnaire was too long.

• The tooltips took too much time to appear in the matrix tool (the previous improvement
did not work properly).



5.4. Pretests 35

5.4.2.6 Results Analyses

The participant was interested in general phenomena. He used the source code editor only a
few times. In the PNLV paper test, the participant looked at separate couplings to find visual
structures. The participant looked mainly at the fan visual structure. Also, he looked at the
cross visual structure and the empty spaces in PNLV.

In the IMMV paper test, the participant looked at the combination of couplings to find
visual structures in the matrix. The existence of different combinations could explain why the
participant spent more time to find them.

5.4.2.7 Problems and Modification

Many problems appeared in the second pretest and a lot of feedback was provided by the
participant. Decreasing the total time of the experiment from 140 minutes was the first issue.
The time increased from the first pretest because the participant spent too much time to fill
the final questionnaire and to use the matrix interactive tool. To decrease the total time:

• The data tutorial was reduced again by shortening details about some code couplings.

• The trial questions were rephrased.

• The general and the final questionnaires were shortened again by removing and merging
their questions according to the feedback from the participant.

The participant missed the overview of the matrix on the paper because the paper size was
too large (A1). Accordingly, the matrix visualization was enhanced on paper by:

• The papers of both tools are printed using A2 paper size.

• The color of the hierarchies’ borders of the matrix is now darker on paper.

Also, the interactive matrix visualization was enhanced by including the following features
according to the feedback:

• The tooltips show the source class and the destination class when moving the mouse over
the matrix cells.

• The color legend is not interactive anymore.

• The thickness of the highlighting lines was decreased.

• The participant can highlight many classes and many packages at the same time by
pressing   control � C ¡ on the keyboard.

• The participant can remove the highlighting by pressing   control�A ¡ on the keyboard.

The participant said that “he felt boring after the first tool tests because the test needed
too much time”. Also, he tried to find different phenomenas using the second tool because
he assumed using the same dataset. To counterbalance for biases such as learning and tiring
effects in the final experiment, using two similar sized datasets is recommended. Additionally,
the participant should know that he is using different datasets during the experiment.
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5.5 Final Experiment Design

While carefully designing the experiment, we discussed quantitative as well as qualitative ap-
proaches but finally decided to conduct a mostly qualitative study in order to explore how
users—provided with a very general task—work naturally with the complex visualization ap-
proaches. Ellis and Dix [50] argue that explorative studies such as ours are most suitable for
understanding the utility of information visualizations. Lam et al. [71] surveyed and classified
empirical research in information visualization; with respect to their taxonomy of seven sce-
narios, our approach falls into the category of evaluating visual data analysis and reasoning
(VDAR)—field studies and partially controlled experiments are typical and appropriate for
this kind of research investigating how visualization supports data exploration and knowledge
discovery.

5.5.1 Research Goal

The specific research question that we want to answer is: “What higher-level coupling structures
users are able to retrieve and compare with the help of these visualizations?” Hence, the core
purpose of our study is to determine which visual structures the participants are able to identify
and to interpret in the two presented visualizations in a realistic software engineering context.
We define a visual structure as any set of visual elements that are perceptually grouped. On
a basic level, perceptual grouping is described by the Gestalt Laws [70]. A visual structure
can be, for example, a fan of links (PNLV), a group of equally colored cells (IMMV), or the
co-occurrence of types of edges as links in different columns (PNLV) or as colored sub-cells
(IMMV).

Working with the visualizations, identifying structures like these is a first step towards
making sense of the presented information. As a next step, the visual structures need to be
connected to specific graph structures such as vertices having a high degree or strongly coupled
clusters of vertices. These graph structures can be embedded into the domain-specific context
to finally draw conclusions from the visualization. Our study intends to cover this process of
interpretation as summarized in Figure 5.4 as a whole.

visual 
structures 

graph 
structures 

domain-specific 
insights 

visualization 
 

PNLV/IMMV 

infer identify interpret 

software engineering 

Figure 5.4: Interpretation process for deriving domain-specific insights from a graph visualiza-
tion.

Finally, we analyzed which strategies the participants applied for comparing different edge
types.

5.5.2 Experiment Setup

The study was performed as a lab experiment following a counterbalanced, within-subject
design: each participant worked with both visualizations. Two people were responsible for
managing the experiment: a moderator explaining and leading the experiment and an observer
taking notes. The visualizations were first shown to the participants printed in color on A2
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JFtp JUnit Stripes Checkst.

category small small medium medium
# package 8 26 20 22
# nodes 78 119 238 261

# edges

inheritance 40 63 143 207
aggregation 66 35 131 69

usage 38 251 614 479
evolutionary coupling 380 76 262 586

code clones 22 40 296 440
semantic similarity 62 236 462 1014

Table 5.9: Statistics on the software systems used as datasets in the experiment.

paper. In the course of the experiment, the participants also used the interactive versions of
the visualizations on a Windows 7 PC with a 23” LCD screen with full HD resolution, a mouse,
and a keyboard. The source code files of the data sets were displayed in Notepad++ [45] on
demand. Screen and voice were recorded with Camtasia Studio [91].

5.5.3 Participants

Eight participants, seven males and one female, volunteered for the experiment. They were
between 26 and 45 years old; a color deficiency test showed that they did not have any color
vision restrictions. All of them had at least a Master/Diploma degree in Computer Science
or Mathematics, as well as programming experience between 3 and 30 years with a median
of 11 years. Seven of them used the Java programming language regularly. The largest sizes
of teams they developed software together were between two developers and more than ten
developers. Two of them regularly worked with visual representations for software development
such as VisDB or UML diagrams. Four participants were professional software developers from
industry, the other four from academia.

5.5.4 Datasets

Adopted from a study on code coupling [29], six different types of couplings were considered:

• inheritance: extend and implement dependencies

• aggregation: usage of another class as the type of a class attribute

• usage: structural dependencies on method level

• evolutionary coupling: files that were changed together frequently in the past

• code clones: files that are reasonably covered by the same code clones

• semantic similarity: similar vocabulary used in identifiers and comments

These couplings were retrieved for a set of open source Java projects. Table 5.9 provides
statistics on the sizes of the projects that the participants analyzed: JFtp and JUnit represent
small projects, while Stripes and Checkstyle represent medium-size ones. The two small and the
two medium-size projects were employed together pairwise in the experiment. An additional
data set, JHotDraw, was used as a sample for tutorials and trials.
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Order Condition Step Avg Time

1st tutorial 4 min

2nd + 3rd

PNLV

tutorial 4 min
trial 5 min
paper test 9 min
tool test 12 min

30 min

IMMV

tutorial 4 min
trial 4 min
paper test 8 min
tool test 10 min

26 min
4th questionnaire 18 min

total time 82 min

Table 5.10: Experiment protocol and average time per step in the experiment.

5.5.5 Experiment Protocol

The experiment followed the protocol outlined in Table 5.10, which is a within-subject design
with two experimental conditions: using PNLV and using IMMV. To counterbalance for biases
such as learning and tiring effects, the order of the conditions was varied systematically across
all participants (i.e., four participants began with PNLV and four with IMMV). Moreover,
different data sets were used in the two conditions: half of the participants used the two small
projects (JFtp and JUnit; four participants) and half of the participants used the two medium-
size ones (Checkstyle and Stripes; four participants). The order of the data sets was also
systematically varied.

At the beginning of the experiment, the moderator introduced the data sets and the different
types of code couplings in a short tutorial using a slide show (average: 4 min). Then, the par-
ticipants analyzed two different software projects of the same size in two different experimental
conditions (PNLV: 30 min; IMMV: 26 min). The software projects and the visualizations were
combined in a counter-balanced design, both for the combination of software systems and tools
and their order of presentation. Allowing the participants to take as much time as they need
for the tasks (like in a realistic scenario) resulted in different average times. Finally, the par-
ticipants were asked to fill in a questionnaire consisting of general demographic questions and
specific questions on the two visualizations (18 min). In total, the experiment took 82 minutes
on average, including short breaks for switching, for instance, between paper test and tool test.

Each of the experimental conditions started with a training of the participants. First, a brief
oral tutorial (power point slides) was given about the respective visualization technique (4 min).
Then, the participants were asked to solve two simple tasks with the interactive visualization to
familiarize themselves with the tool (PNLV: 5 min; IMMV: 4 min). The JHotDraw data set was
used for the tutorials. After the training, the participant performed the first experimental task
as a paper-based test (PNLV: 9 min; IMMV: 8 min): “What interesting visual structures do
you find in the visualization? Please mark them in the visualization, give them a number, and
orally describe them.” Afterward, we switched to the interactive visualization of the same data
set and the participants proceeded with the following task (PNLV: 12 min; IMMV: 10 min):
“Select three of the numbered visual structures, which appear to be interesting. For each
selected structure, please use the interactive visualization to explore the structure. Explain
your findings orally.”

The execution of the tasks was recorded using Camtasia Studio [91]. Both screen and voice
were recorded to allow for a more detailed analysis.

At any time, the participants were allowed to ask questions. If a participant obviously had
problems with a task or visualization, the moderator or observer provided help. No hard time



5.6. Results 39

limits were enforced in any step. To implement a thinking-aloud approach, the participants were
asked and occasionally reminded to orally explain their thoughts and findings. The described
experimental protocol was evaluated and improved with two additional test participants before
the actual experiment was conducted.

5.6 Results

Following the outline of our study also for describing the results, we first present visual struc-
tures that were identified in the paper tests (Section 5.6.1); then, we report how the participants
explored these structures in the interactive tool tests (Section 5.6.2), and finally analyze the
answers provided in the questionnaires (Section 5.6.3).

5.6.1 Visual Structures (Paper Test)

The participants were asked to mark visual structures in the printed visualizations. We catego-
rized these structures and found four different repeatedly used categories of structures for each
visualization approach that almost all of the obtained visual structures can be classified into.
In case of PNLV, these categories of visual structures match categories derived theoretically
by Burch et al. [38] for a related visualization technique: fan, beam, cross beam, and gap. For
IMMV, we named the four categories—according to their visual appearance—line, diagonal
cluster, off-diagonal cluster, and empty area. Connecting these categories of visual structures
to graph structures, we observed that they are encoding pairwise the same graph information.
While Table 5.11 provides an overview of the outlined classification scheme, details on the graph
structures and related visual structures are discussed in the following; an example detected by
the participants illustrates each structure.

1. High degree: Vertices in the graph having a high degree of edges.

PNLV: In PNLV, they appear as fan-like structures of links, either on the left side for
outgoing edges or, more typically for a software project, on the right side for incoming
edges.

IMMV: In IMMV, the same graph structures are reflected in horizontal or vertical lines
of equally colored sub-cells.

For example, four of four participants who analyzed JFtp (two participants used PNLV,
two others IMMV) detected a high in-degree for a small set of entities in the framework

package for inheritance as well as aggregation (PNLV: 2/2, IMMV: 2/2). Though located
in the same package, a closer investigation revealed that these were different entities with
respect to inheritance than with respect to aggregation.

2. Within-package edges: Groups of edges connecting vertices of the same package were also
observed in both visualizations.

PNLV: In PNLV, the participants marked edges forming a beam or an x-shape where
the source and destination classes of these edges are included in the same package.

IMMV: In IMMV, equivalent structures appear as blocks of cells on the main diagonal
of the matrix, which have the same or a similar combination of sub-cells.
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Graph Structure
Visual Structure

PNLV IMMV

high degree
fan (7) line (8)

within-package edges
beam (8) diagonal cluster (8)

cross-package edges
cross beam (6) off-diagonal cluster (7)

no edges
gap (2) empty area (2)

Table 5.11: Mapping of visual structures to graph structures; numbers of participants in paren-
theses who identified the visual structure using the respective visualization.
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A typical example of a set of within-package edges which was detected by the participants
is the tag package in Stripes: many entities are connected by code clone couplings to other
entities of the same package (PNLV: 2/2, IMMV: 2/2).

3. Cross-package edges: If a group of edges does not connect the vertices of the same package
but of two different packages in the same direction.

PNLV: PNLV shows a beam or an x-shaped structure that crosses the borders of pack-
ages.

IMMV: In IMMV, these structures can be detected as blocks of cells not located on the
main diagonal.

For instance, based on evolutionary coupling, the theories package of JUnit is connected
by a number of cross-package edges to one of the runners packages (PNLV: 2/2, IMMV:
0/2).

4. No edges: Vertices that do not have any outgoing or incoming edges (to all or a subset
of other vertices) form another graph structure.

PNLV: In PNLV, these vertices are represented as nodes on the left or right side of a
diagram that do not have any links attached (in a specific range) and form kinds of
gaps in the linear list of nodes.

IMMV: In IMMV, empty areas that do not contain any colored cells (in general or with
respect to a specific color) hint at the same graph structure.

Entities without edges can be found frequently, but were only rarely marked by the
participants as distinct structures. For instance, one participant detected a larger set of
entities within the coding package with PNLV; another participant found with IMMV
that the framework package of JFtp lacks within-package edges in general.

Table 5.11 also summarizes how many participants identified the respective visual structures
in PNLV and in IMMV. Contrasting the two visual structures of each pair, it shows that both
were identified by approximately the same number of participants in the two visualizations.
A large number of participants identified a vertices with a high degree (PNLV: 7, IMMV:
8), groups of within-package edges (PNLV: 8, IMMV: 8), and groups of cross-package edges
(PNLV: 6, IMMV: 7), while only few marked the visual structures classified as no edges (PNLV:
2, IMMV: 2).

Since the visualizations discern between multiple types of edges, the identification of visual
structures is also related to visually comparing the different types. In PNLV, these types
are viewed side by side; hence, participants needed to mark similar structures across different
columns to indicate a comparison: three participants linked fan structures, two participants
beam structures, and one participant contrasted a beam structure to a gap structure. In
contrast, the comparison of types of edges is inherent in IMMV because the different types are
shown within the same cells and can neither be perceived nor marked independently of each
other. Hence not surprising, more participants identified those multi-type structures in IMMV
than in PNLV; in particular, eight participants marked diagonal clusters consisting of multiple
types, six participants line structures, and three off-diagonal clusters.

The participants identified the visual structures in a specific sequence. In order to analyze
trends, we split the sequence into half (similar to a median split) based on the sequential number
that was assigned in the experiments (in cases of an odd number of identified structures,
we excluded the one in the middle). Figure 5.5 reports the results of this analysis split by
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Figure 5.5: Numbers of visual structures identified by the participants in the first and second
half of their sequence of structures split by visualization and graph structure.

visualization and graph structure. While we do not observe any fundamental differences, a few
trends are notable: vertices with a high degree tend to be more frequently found in the first
half than in the second in PNLV while it is the other way around for IMMV; within-package
and cross-package structures, in contrast, were found earlier by trend with IMMV than PNLV.
These trends might be connected to small differences in difficulties for finding certain structures,
to training and experience required, or effects of reading order.

5.6.2 Interactive Exploration (Tool Test)

After analyzing the visualizations on paper, the participants explored three of the identified
visual structures using the respective interactive tool. The insights they were able to gain
identify specific tasks related to software engineering that can be targeted with the help of the
visualizations. We were able to categorize each interactive exploration of a visual structure as
one of three software engineering tasks and connected these tasks to analyzed visual structures
and applied high-level interaction techniques. Please note that multiple structures or interac-
tions were assigned to a single instance of an interactive exploration (in two cases we were not
able to unambiguously assign a visual structure). Moreover, we recorded whether a participant
compared different types of couplings during the interactive exploration. Split by the identified
software engineering tasks, the results of this classification process are summarized in Table 5.12
and reported in the following.

Find a central class/interface: This task, most frequently investigated by the participants
(PNLV: 11; IMMV: 9), is closely related to code entities having a high in-degree for
structural dependencies such as inheritance, aggregation, and usage. As discussed above
and confirmed by Table 5.12, these can be detected by looking for fan-in structures in
PNLV (11 of 11 cases) or vertical lines in IMMV (8 of 9 cases). The interaction strategy
typically applied was to first select the respective class (PNLV: 11 of 11 cases; IMMV: 8
of 9 cases) and then to open and read the source code of the class (PNLV: 7 of 11 cases;
IMMV: 7 of 9 cases); in some instances, interpreting the names of the related classes and
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Task PNLV Freq. IMMV Freq. Total

find a central
class/interface

structure: fan (11) 11 [8] structure: line (8) 9 [3] 20 [11]

interaction: select class
(11), read source code (7),
interpret names (4)

interaction: select class
(8), read source code (7),
interpret names (4)

understand a package structure: beam (8), cross
beam (2)

10 [8] structure: diagonal clus-
ter (7), empty area (2)

7 [6] 17 [14]

interaction: read source
code (7), select class (6),
select package (5), inter-
pret names (5), compare
source code (4)

interaction: interpret the
names (5), read source
code (4), select package
(3), select class (2), com-
pare source code (2)

identify a high-level cou-
pling

structure: cross beam (2) 2 [1] structure: off-diagonal
cluster (4), empty area
(2)

7 [7] 9 [8]

interaction: read source
code (2)

interaction: read source
code (5), interpret names
(4), select cell (3), select
class (2), select package
(2)

Table 5.12: Software engineering tasks addressed by the participants through the use of the
interactive visualization tools; frequency values refer to the number of investigated structures
summed for all participants, in square brackets the frequency involving the comparison of
multiple types of couplings; structures and interactions are listed if they occurred at least two
times, the exact frequency is provided in parentheses.

interfaces was even already sufficient or made opening the editor superfluous (PNLV: 4
of 11 cases; IMMV: 4 of 9 cases). Depending on the type of coupling, the role of the
central class is different: a high inheritance in-degree hints at a central code entity in the
inheritance hierarchy while a high usage could identify an important data class. In 11 of
the 20 cases, the participants also compared different types of couplings for the selected
code entity.

Understand a package: Another frequent task that the participants addressed was trying to
understand the purpose and characteristics of a particular package (PNLV: 10; IMMV:
7). Often, a set of within-package edges hinted at a particularly interesting package
(PNLV: 8 of 10 cases; IMMV: 7 of 7 cases), but also other visual structures occasionally
provided a starting point for exploring a package (PNLV: cross beam, IMMV: empty
area). The interactions for exploring a package were diverse: in at least half of the cases,
the participants read the source code (PNLV and IMMV), interpreted the names of the
code entities (PNLV and IMMV), or selected a class or package (PNLV). Sometimes, also
source code files were directly compared by quickly switching between the tabs of the
editor (PNLV: 4 of 10 cases; IMMV: 2 of 7 cases). Understanding a package typically
involved analyzing multiple types of coupling (14 of 17 cases).

Identify a high-level coupling: As the least frequent task among the three, the participants
analyzed groups of couplings that are similar and together form a kind of high-level
coupling, usually between two different packages (PNLV: 2; IMMV 7). Cross-beams
(PNLV: 2 of 2 cases) or off-diagonal clusters (IMMV: 4 of 7 cases) usually served as a
visual indicator for noteworthy high-level couplings. To further explore these structures,
the participants often studied the source code of the connected code entities (PNLV: 2
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Figure 5.6: Percentage of explored visual structures that involve the comparison of multiple
types of edges.

of 2 cases; IMMV: 5 of 7 cases) and applied other high-level interactions in IMMV. The
detected high-level couplings were usually impacted by two or more different types of
couplings (8 of 9 cases).

In general, the experiment shows that the participants frequently used the possibility to
compare different types of edges: As Figure 5.6 reports, for 72% of the analyzed structures, the
participants compared two or more different types of edges; this also includes structures that
were only marked in one type of coupling in the paper test, but extended to multiple types in the
interactive test. Contrasting the two visualization approaches again does not reveal any larger
difference: the percentage of cases that involved comparing multiple types is similar (PNLV:
74%; IMMV: 70%). This clearly relativizes that we found less visual structures including
a comparison of types based on the paper test in PNVL than in IMMV and is remarkable
because, as discussed above, it requires an extra effort to do a visual comparison in PNLV.

5.6.3 Questionnaire

Asked for their preference and the usefulness of the visualization, PNLV and IMMV were rated
about equal: While four participants preferred IMMV, three liked PNLV more (one participant
could not decide). Moreover, with respect to usefulness, both tools received nearly the same
average answers (PNLV: 2.75; IMMV 2.88; scale from strongly agree (1) to strongly disagree (5)
that it is useful). Motivating their decision on the preference, the participants provided diverse
reasons such as good overview in PNLV and IMMV, familiarity with the node-link paradigm,
but also problems with visual clutter in PNLV. For example, one participant stated that “PNLV
has good overview with respect to different dependency types and IMMV has good overview
with respect to the package structure”. Another participant used PNLV and IMMV on small
data sets. He preferred PNLV: “Based on presented examples it seems to be better organized,
easier to navigate, or is visually more appealing”. However, using different data set sizes in our
experiment decreases such effects that are based on the size.

Regarding software engineering, the participants see the main area of application of the
two tools in program comprehension (PNLV: 4 times; IMMV: 4 times) and improving the
architecture or design of software systems (PNLV: 4 times, IMMV: 3 times). For PNLV, the
participants listed finding central classes as the most interesting insight they gained from the
visualization (4 times). For IMMV, the picture is not as clear: participants mentioned different
insights, none more than once. When asked if they would like to use the visualizations in their
daily software development work, only three participants gave positive feedback for PNLV and
one for IMMV. Explaining their reluctance, the participants provided different reasons, among
them that the visualizations do not show the right information, that the implementations are
not yet ready for practical application, and that the participants themselves are unfamiliar with
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visualization. Possibly related, only two of the participants declared that they regularly use
visual representations for software development.

The participants also had the possibility to propose enhancement for the two tools: For the
PNLV tool, the most frequently mentioned missing feature was zooming (4 times)—the original
tool actually had a zooming functionality, but it was deactivated for the experiment to make
the comparison fair because zooming was not implemented for the IMMV tool. With respect
to the IMMV tool, zooming was only mentioned once; improving the selection mechanism and
filtering types of edges was proposed by two participants each (the latter was also already
implemented but deactivated in the experiment).

5.7 Discussion

The limitations of the explorative study as well as implications of the results on visualization
and on software engineering are discussed in the following.

5.7.1 Threats to Validity

By systematically varying the order of the visualizations and data sets, we counterbalanced for
possible biases such as learning and tiring effects. We also tried to adjust the two approaches
as far as possible by optimizing the readability of both, by deactivating features that were
not implemented in one of the approaches, and by using paper versions in parts of the exper-
iment to counterbalance for different interaction techniques. But still, the design or the tool
implementations might introduce a bias towards one of the two visualization approaches.

The within-subject design allowed the participants to review and contrast the two visual-
ization approaches in the questionnaire, which provided valuable feedback. But, at the same
time, this design biases participants—no matter which visualizations they saw first—to look
for similar things in the second visualization. We tried to circumvent parts of the problem by
providing different, nevertheless, nearly equally sized, data sets for the two visualizations; but
still, the participants might be influenced by this previous experience. The effect could be that
the two visualizations showed some more similarities in this study than they would have shown
in an equivalent between-subject study.

The quantitative parts of the results have to be interpreted with care because they rely
on a small number of participants and are not backed by inference statistics—random effects
might have reasonably influenced the numbers. Despite we did not interpret small differences,
also our results based on larger difference or similarities in numbers should only be treated as
preliminary results that need further quantitative evaluation. Moreover, our study design did
not allow for measuring time and accuracy of the analyses the participants performed with the
visualizations; the visualization approaches, however, might have shown relevant differences on
this level.

Although the transferability of the results is limited by the narrow area of application and
the specific data sets, some features of the study also foster transferability: Through considering
multiple types of code coupling, the data set includes edge types with different characteristics
such as directed and undirected types, or dense and sparse types. For instance, structural
dependencies are usually scale-free networks [77]. In contrast, evolutionary couplings usually
form denser graphs having many cliques. Moreover, the visual structures relate to general graph
structures, hence, are independent of the application domain.
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5.7.2 Implications on Visualization

Matrix and node-link are two very different metaphors for representing graphs. Also the vi-
sual comparison as realized in the two studied visualization approaches is reasonably different:
applying the taxonomy of Gleicher et al. [59], PNLV is based on juxtaposition, while IMMV
employs a form of superposition (i.e., overlay). But despite those fundamental differences in the
visualization approach, both techniques seem to be similarly suitable for investigating multiple
types of edges in graphs:

• A comparable number of participants identified the same graph structures (Table 5.11).

• The participants were able to address the same task in the interactive exploration and
applied similar interaction strategies (Table 5.12).

• A comparable number of interactively explored structures involved the comparison of
multiple types of edges (Figure 5.6).

• In the questionnaire, the participants rated both approaches as equally useful and their
personal preference was balanced.

Only small differences are observed between the approaches: In the paper-based test, par-
ticipants more frequently marked multi-type visual structures in IMMV—maybe due to the
superposition approach to visual comparison. In the interactive versions, the selection mech-
anism seemed to be more important in PNLV. And in the questionnaire, the participants
criticized edge clutter in PNLV.

5.7.3 Implications on Software Engineering

The identified task that the participants mainly addressed (Table 5.12) can all be considered
as belonging to the application of program comprehension, that is, understanding a software
system as required for being able to extend, test, or maintain the system. This matches with
the opinion of the participants captured in the questionnaire. Some participants propose also
to use the visualizations for improving the architecture or design of systems—this application
is not directly reflected in the recorded interactive usage scenarios and will only be possible to
capture if the participants already know the analyzed system in detail before the experiment.

The visual distinction of multiple types of couplings seems to add value to solving these
tasks: First, similar visual structures for different types of edges refer to different software
engineering concepts. Second, the participants frequently applied a visual comparison between
two or more types and gained interesting insights from these comparisons—this appears to be
particularly important for understanding packages and identifying high-level dependencies.

The connection to the code, that is, the raw data in this experiment, turned out to be
very important and was frequently used: while the visualization served as an instrument to
navigate, to raise hypotheses, and to answer simple questions, the source code needed to be
studied to gain a deeper knowledge about the system, to understand certain couplings, to check
the hypotheses, and to answer more complex questions. One participant opened several source
documents in Notepad++ [45] to compare these documents. A mechanism for directly opening
additional documents in adjacent views would be benefical for supporting these comparisons.
This holds, e.g., for source code related to the different classes connected by an undirected
relation (e.g., code clone).
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5.8 Related Work

The scalable visualization of graphs is an established area of research [98]; within this area,
some approaches—like the studied PNLV and IMMV—particularly focus on visually discerning
multiple types of edges: Based on node-link diagrams, for instance, Erdemir et al. [52] provided
a visualization that uses visual attributes of the links (e.g., color, style, strength) to reflect
different attributes of edges; when there exist multiple types of edges between two nodes, only
the link having the highest priority is shown. Pretorius and van Wijk [80] introduce special
nodes for representing different types of edges—a link goes from the source node through
the edge-type node to the target node. Also related are node-link-based graph comparison
visualizations where two or more graphs are juxtaposed [13], stacked [34], or contrasted as a
visual diff [16]. In a matrix-based representation, an alternative to splitting the cells is only
using colors for discerning different types of edges [53, 28, 30], which, however, only scales to a
very limited number of edge types.

Related to discerning multiple types of edges, dynamic graphs discern multiple points in
time for vertices as well as for edges. Hence, visualizing dynamic graphs is similar to visu-
ally comparing different types of edges. Animated node-link diagrams [43, 54], the standard
approach to dynamic graph visualization, however, only allow for comparing edges in directly
consecutive time steps. In contrast, recent timeline-based approaches support the comparison
of edges across larger time spans: For instance, the Parallel Edge Splatting technique [38] uses
juxtaposed node-link diagrams and can be considered as a variant of PNLV. But also matrices
are used in this context such as the Pixel Oriented Matrix [86], which splits matrix cells into
sub-cells similar to IMMV.

Node-link and matrix graph visualization have been already contrasted to each other, but
only for single types of edges: Ghoniem et al. [57, 58] evaluated these using seven simple,
generic tasks as well as different sizes and different densities of random undirected graphs.
Their results indicate that node-link diagrams are more suitable for most tasks for smaller
graphs while matrix visualizations are more readable for large ones. An exception forms the
task of finding paths where node-link diagrams perform better or at least comparable. Keller et
al. [69] extended this work by performing a similar study, still with simple, domain-independent
tasks but on non-random data: they largely confirmed the previous results but pointed out
that “depending on the model, and even on personal preference, either representation can be
advantageous”.

In contrast to these studies, we addressed a more specific visualization scenario in a more
complex, realistic application also including the distinction of multiple types of edges. The
results of our study extend the previous studies, in particular, with respect to performing higher-
level tasks such as finding graph structures: although low-level tasks showed quite different
characteristics for node-link and matrix, the high-level tasks we studied did not provide any
considerable differences between the contrasted approaches.

5.9 Conclusions

The conducted explorative user study evaluated two approaches for comparing different types
of edges in graph diagrams. In a realistic scenario, eight participants analyzed code couplings
of software systems both based on static images as well as on interactive visualizations in a 82
minutes (on average) within-subject lab experiment. The choice between the two visualization
approaches in this application mainly seems to be a matter of personal preference as the two
approaches—though based on opposing paradigms—did not show any basic differences in our
study: the participants were able to identify equivalent structures in the presented graphs,
addressed the same software engineering tasks with the interactive tools, and rated the use-
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fulness of the approaches alike. In particular, vertices with a high degree, groups of similar
edges within packages and between different packages were detected by most participants with
both approaches. With respect to the targeted area of application in software engineering, the
visualizations seem to be most suitable for program comprehension, namely, for finding central
classes and interfaces, for understanding packages, and for identifying high-level dependencies—
comparing multiple types of couplings seems to have helped the participants in these tasks.



Chapter 6

Conclusion

This part described the development of IMMV and the determination of pattern in IMMV
compared to PNLV using an explorative user study. As IMMV and PNLV produce visual
patterns that can be meaningful by contrasting multiple types of edges (relations) in the view
of software engineers, four categories of visual patterns in IMMV compared to PNLV were
determined using real data sets in the extended version of the explorative user study [8] using
a counterbalanced within-subject design. The categories of determined structures included:
High degree, Within-package edges, Cross-package edges, No edges. Additionally, the two tools
tend to be beneficial for software comprehension. Based on class views, finding differences and
similarities between multiple relations types seems to be the shared mechanism followed in
general for visual comparison in the two tools.
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Part II

Topological Visualization of Directed
Graphs
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Chapter 7

Preamble

Visual structures formed by IMMV and PNLV visualizations were determined and classified in
the previous part as four categories: High degree, Within-package edges, Cross-package edges,
No edges. In addition to these structures, other structures that are interesting for software en-
gineers as cycles and hierarchical structures need additional visualizations to determine them
and to investigate them. This part covers the extended version of the work introduced by
Abuthawabeh and Zeckzer [10]. Their work focuses on enhancing the decomposition and draw-
ing process of directed graphs using topological visualization. This approach was used to
visualize the JFtp software data set [29] and was compared with two existing approaches.

The extended version enriched the introduction (Chapter 8) and the background and prob-
lem statement(Chapter 9) with additional illustrating examples. It shows the images of the
previous work summarized in Chapter 10. Introducing new algorithms chapter (Chapter 14),
it adds the complete algorithms of the decomposition and hierarchy construction process to
Section 14.1 and presents the complete algorithms of the drawing process to Section 14.2 ex-
plaining them using additional examples and showing Class diagrams and Call graphs of all
algorithms used. Chapter 14 includes data structures and their time complexity that were used
in implementation (Section 14.3), time complexity and space complexity of the decomposition
algorithms (Section 14.4) and drawing algorithms (Section 14.5). Chapter 13 is also modified
by adding Section 13.1, Section 13.2, and Section 13.3.
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Chapter 8

Introduction

Important information in application areas like Software Engineering or Bio-Informatics and
Biology is encoded in directed graphs. Typically, these are represented using node-link diagrams
(Figure 8.1). Finding important information necessitates an appropriate visualization of these
graphs. Many approaches exist for special sub-problems of directed as well as of undirected
graphs as summarized in the “Handbook of Graph Drawing and Visualization” [89] and outlined
in the previous work chapter.

Figure 8.1: Call Graph (#nodes=38, #edges=58), (figure courtesy of [56]).

For arbitrary directed graphs, two approaches are described by the Handbook of Graph
Drawing and Visualization [89]. The first uses the Sugiyama algorithm for directed acyclic
graphs [87] (Figure 8.2(a)). If the graph is cyclic a minimal number of edges is reversed to make
it acyclic. Then, a layered layout of the graph is determined using the Sugiyama algorithm.
In the final drawing, reversed edges are again drawn in their original direction. The second
approach proposed by Bachmaier et al. [22] uses a cyclic layout with cyclically arranged layers
instead (Figure 8.2(b)). However, even acyclic parts are drawn cyclically in this approach.
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(a) Sugiyama layout example [87] , (figure courtesy of [89]

(b) Cyclic level layout example [22], (figure courtesy of [89]

Figure 8.2: Two examples of graph drawing approaches for arbitrary directed graphs

In the aforementioned application areas, it is important to distinguish between cyclic and
acyclic (parts of) directed graphs. In software engineering, cyclic parts might be critical due
to unwanted cyclic dependencies while acyclic parts describe ‘normal’ dependencies. In Bio-
Informatics and Biology on the other hand, cycles are important structural features that need
to be easily recognizable. In these domains, several approaches try to handle this problem by
drawing cycles using a circular layout, adding edges as straight lines inside circles, which may
cause many crossing, and by applying different layouts for other features [31, 32, 44, 72].

Dividing the graph into cyclic and acyclic parts improves its understandability by domain
experts like Software Engineers and Bio-Informaticians. Therefore, a topological approach is
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proposed whose goal is to divide the directed graph into three parts: cycles, directed acyclic
graphs (DAGs), and trees. These are then drawn using an area-aware version of the improved
Walker’s algorithm for layouting trees [37], an area-aware version of the Sugiyama algorithm for
layouting DAGs [87], and Bachmaier’s cyclic layout [22]. The approach is similar to the ones
proposed by Archambault et al. [17] for undirected graphs and by AlTarawneh et al. [12] based
on strongly connected components for directed graphs. However, the notion of cycle differs from
the definition of strongly connected components as used by AlTarawneh et al. [12]. Moreover,
some restrictions of the latter approach are overcome. Applying the algorithm to large graphs,
constructs a topology-based, two-level hierarchy that allows to interactively handle large graphs
similar to the approach by Archambault et al. [19].

Figure 8.3: Topological visualization for undirected graphs, (figures courtesy of [17]).

The contributions presented in this part are:

• A new decomposition process for directed graphs including

– an algorithm for finding maximal non-trivial cyclic subgraphs, and

– an algorithm for detecting trees and DAGs that are connected to these maximal
non-trivial cyclic subgraphs.
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Chapter 9

Background and Problem Statement

9.1 Background

In this study, directed graphs are considered.

Let V � tv1, . . . , vnu be a finite set of n vertices. Let E � V �V be a finite set of e directed
edges, i.e., @vi, vj P V : pvi, vjq P E ^ pvj, viq P E Ñ pvi, vjq � pvj, viq. Then, a directed graph
is defined as the tuple G � pV,Eq. The in-degree of a vertex v P V is the number of distinct
edges pvi, vq P E. Analogously, the out-degree of a vertex v P V is the number of distinct edges
pv, vjq P E. The directed graph G1 � pV 1, E 1q, V 1 � V , E 1 � EXpV 1�V 1q is called subgraph of
G. If E 1 � E X pV 1 � V 1q, then G1 is called the subgraph of G induced by V 1. A path in G is a
sequence on m different vertices pv1, . . . , vmq, vi P V , such that @v1, . . . , vm�1 P P : pvi, vi�1q P E.
We identify the sequence of edges pe1 � pv1, v2q, . . . , em�1 � pvm�1, vmqq with the path P and
say that these edges belong to P . A path P is called a cycle iff vm � v1. A graph without
cycles is called acyclic or more precisely directed acyclic graph (DAG). Let H be the hierarchy
associated with a graph G such that the leaves of H are the vertices V of G. A level in the
hierarchy contains all elements of the hierarchy having the same distance to the root in the
hierarchy.

A connected component of an undirected graph is defined as a maximal subgraph pV 1, E 1q
of an undirected graph such that @vi, vj P V 1DP � pvi, . . . , vjq. That means, there is a path
between each pair of nodes in the subgraph. Please note, that all edges are undirected and thus,
there is a path from vi to vj iff these is a path from vj to vi. A weakly-connected component
(wCC) of a directed graph is the subgraph induced by the vertices of the connected component
of the undirected graph obtained by ‘forgetting’ the direction of the edges of the original directed
graph. That is, first all edges of the directed graph are considered to be undirected. Then,
duplicates are removed (each double edge in the directed graph is represented by a single edge
in the undirected graph). The resulting undirected graph is split into connected components.
The vertices of these connected components then induce a subgraph of the original directed
graph, each: the weakly-connected components of the directed graph.

The approach presented here is based on defining the notion of non-trivial cyclic subgraphs
(ntCS). This is motivated by the following observation. Strongly connected components (SCC)
are defined as a subgraph S � pVS, ESq of G induced by VS � V , such that each vertex is
reachable by each other vertex by a path P : @vi, vj P VS : vi � vj Ñ DP � pvi, . . . vjq. However,
in application areas like software engineering, a distinction between trivial cycles and non-trivial
cyclic subgraphs is appropriate. Trivial cycles are cycles between two vertices. Let v1, v2 P V
be two vertices in G and e1 � pv1, v2q, e2 � pv2, v1q P E the edges between them. We call e2 a
back edge of e1 and the pair pe1, e2q a double edge. Then, the subgraph G1 � ptv1, v2u, te1, e2uq
is a strongly connected component, and the paths pv1, v2, v1q and pv2, v1, v2q are trivial cycles.
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Figure 9.1: Trivial Cycle.
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Figure 9.2: Three examples of non-trivial cyclic subgraphs (ntCSs)

We call these cycles trivial, as in a node-link diagram they can by depicted by a line with two
arrows (Figure 9.1). No cyclic depiction is necessary.

Non-trivial cyclic subgraphs (ntCS) are defined as follows. For each strongly connected
component, all double edges pe1, e2q are removed, if e1 and e2 are only belonging to trivial
cycles, respectively. The remaining isolated subgraphs are still strongly connected, as only the
‘bridges’ between them were removed. These subgraphs are the non-trivial cyclic subgraphs.
All examples in Figure 9.2 are SCCs. At the same time, they are all ntCSs, except the one shown
in Figure 9.2(c), which can be split into two ntCSs (induced by the vertex sets V1 � t0, 1, 2, 3u
and V2 � t4, 5, 6, 7u and a non-trivial tree (see below) consisting of two nodes V3 � t0, 4u and
the double edge pp0, 4q, p4, 0qq. The non-trivial tree connects the two ntCSs. Please note if we
take this double edge (non-trivial tree) and we remove one of its edges then cycle breaks. While
if we take any of the other double edges and we remove one of its edges then cycle remains.
Considering call graphs in software engineering, trivial cycles are common: two classes can both
call methods of the other class, respectively. However, ntCSs are unwanted in general, as they
make understanding of the behavior of a program more difficult [75].

The introduction of ntCSs makes it necessary to adapt the definition of trees and DAGs.
We define (trivial, non-trivial) DAGs and (trivial, non-trivial) (up, down) trees as follows.
A connected subgraph V 1 is a trivial down tree, if it does not contain any double edges or
cycles, and if it contains only one node with in-degree 0 called root node vr or simply root, and
@vi P V 1 : vi � vr Ñ DP � pvr, . . . , viq, and P is unique (Figure 9.3(a)). A subgraph is a non-
trivial down tree, if it does not contain ntCSs, and it can be transformed into a trivial down tree
by removing all back edges of double edges.Figure 9.3(b) shows an example. The graph consists
of one strongly connected component without ntCSs and three double edges. Removing the
back edges tp1, 0q, p2, 1q, p3, 1qu from the graph yields a subgraph that is a trivial down tree. A
down tree is either a trivial or a non-trivial down tree. A subgraph is a (trivial, non-trivial) up
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(a) Trivial down-tree (b) Non-trivial down-
tree

(c) Trivial up-tree (d) Non-trivial up-
tree

Figure 9.3: The different types of trees considered.

(a) Trivial DAG (b) Non-trivial DAG

Figure 9.4: The different types of DAGs considered.

tree, if after reversing all edges, it is a (trivial, non-trivial) down tree. A (trivial, non-trivial)
tree is either a (trivial, non-trivial) up tree or a (trivial, non-trivial) down tree (Figure 9.3).
Accordingly, a subgraph is a trivial DAG, if it does not contain any double edges or cycles, and
is not a trivial tree (Figure 9.4(a)). Accordingly, a subgraph is a non-trivial DAG, if it does not
contain ntCSs and it is neither a non-trivial down tree nor a non-trivial up tree (Figure 9.4(b)).
A DAG is either a trivial DAG or a non-trivial DAG. The difference between trivial and non-
trivial tree and DAGs, the non-trivial contains double edges. These definitions do not always
yield unique structures. Removing other back edges in the example given in Figure 9.3(b)
would yield other non-trivial down trees, up trees, or DAGs.

9.2 Problem Statement

The problem addressed in this paper is stated as follows:

Given a directed graph, find all non-trivial cyclic subgraphs and draw them in an
area-aware cyclic node-link diagram. Additionally, find all directed acyclic graphs
and all trees attached to one, or connecting two or more non-trivial cyclic subgraphs,
and draw them in a hierarchical node-link diagram using optimized area-aware
layout algorithms.
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Chapter 10

Previous Work

10.1 Topology-Based Graph Drawing

Karp et al. [66] introduced Grasper-CL, a commercial Graph Management System for layouting
graphs using a divide-and-conquer method. Graphs are drawn based on topological embedded
features over multiple levels. Archambault et al. [17, 18, 19] introduced a method for drawing
undirected graphs by deriving a hierarchy of topological features from the original graph and
using graph drawing algorithms adapted to each feature. Further, they introduced additional
ideas for drawing undirected graphs and for interacting with the hierarchy obtained from the
topological decomposition of these undirected graphs (Figure 10.1). Lately, AlTarawneh et
al. [12] introduced a general framework adapting this idea to directed graphs in a work-in-
progress report. However, their approach is based on arbitrary splits of strongly connected
components that are then classified into different features. Neither of these features is formally
defined and no examples of the final layout or visualization was provided. Our method proposes
a rigorous definition of the underlying graph theoretical concepts. Further, we find maximal
non-trivial cyclic subgraphs of the weakly connected components of a given directed graph.
Based on these, the remaining subgraphs are then classified as (up, down) trees and DAGs
according to the definitions given in Section 9.1. All these subgraphs are then drawn using
optimal algorithms and combined in a topological drawing of the directed graph.

10.2 Graph Drawing of Structures in Bio-Informatics

and Biology

In bio-informatics and biology, several approaches were proposed for drawing the cyclic parts of
directed graphs. Karp et al. [67] follow steps similar to their previous paper [66] to find circular,
branched, linear, and complex topologies using layout algorithms mainly from the Grasper-CL
toolbox [66] (Figure 10.2). Becker et al. [31] draw directed graphs using circular, hierarchical,
and force-directed algorithms and try to handle edge crossing using rotation (Figure 10.3).
Bourqui et al. [32] present MetaViz to draw the complete metabolic network, which is a mixed
graph modeled as bipartite graph, without duplicating nodes to show network topology taking
into account the application domain conventions (Figure 10.4). Gabouje and Zimányi [44]
presented the C2GL algorithm to draw biochemical graphs (directed graphs) by defining three
types of containers (metanodes) (Figure 10.6). Recently, Lambert et al. [72] extended the work
of Bourqui at al. [32] and Rohrschneider at al. [83] to draw the complete metabolic network
using a pseudo-orthogonal visualization (Figure 10.5). All four approaches [31, 32, 44, 72] draw
cycles using a circular layout adding edges as straight lines inside circle, which may cause many
crossing, while applying different layouts for the other features. Many other authors [84, 100]
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Figure 10.1: Multilevel drawing of undirected graphs using a hierarchy of topological decom-
posed components, (figure courtesy of [17]).

Figure 10.2: Drawing a tree pathway using the Grasper-CL toolbox [66], (figure courtesy of [67]).

worked on the same topic, too. Our approach differs, as it is the first to extract the non-
trivial cyclic subgraphs and to draw them in an optimal way using the algorithm proposed by
Bachmaier et al. [22] together with DAGs and trees, while allowing to build hierarchies that
can be used for the interactive analysis of the directed graphs.
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Figure 10.3: The output of using the drawing approach of Becker and Rojas [31] for a metabolic
pathway, (figure courtesy of [31]).

10.3 Creation of Hierarchies

Some attempts try to use graph metrics to cluster subgraphs and to build hierarchies based
on these clusters. Most of these approaches address undirected graphs, however. Batagelj
et al. [25] proposed an interactive hierarchical visualization of undirected graphs using Visual
Hybrid (X, Y)-clustering (Figure 10.7). Bourqui et al.[33] proposed a clustering algorithm for
dynamic undirected graphs (Figure 10.8). We address directed graphs instead.

Elmqvist et al. [51] proposed an interactive large-scale graph visualization based on a matrix
representation (Figure 10.9). In this paper, we focus on the topological visualization of directed
graphs using (near-)optimal node-link representations.

10.4 Cyclic Drawings of Graphs

Recently, Bachmaier et al. [22, 20, 21] extended the Brandes and Köpf algorithm [35] for
cyclic level drawing by showing cycles in 2D as closed poly-spiral curves surrounding a center
(Figure 10.10).

We use it for drawing the non-trivial cyclic subgraphs, only. Further, we separate non-cyclic
subgraphs, drawing them using a hierarchical layout.

10.5 Finding Cycles in Software Systems

Laval et al. [75] presented a linear algorithm to find short package cycles, which are the main
interest cycles for developers instead of all cycles. In addition, they proposed new undesirability
metrics for ranking cycles.
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Figure 10.4: Visualizing pathways using a method introduced by Bourqui et al. [32], (figure
courtesy of [32]).

Our approach detects non-trivial cyclic subgraphs, instead. Moreover, we propose a com-
plete methodology for the topological decomposition of graphs combined with an optimal draw-
ing of the found components.
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Figure 10.5: Applying the approach of Lambert et al. [72] for drawing metabolic network,
(figure courtesy of [72]).

Figure 10.6: Layouting a cycle subgraph using the approach of Skhiri dit Gabouje and Zimi-
anyi [44], (figure courtesy of [44]).
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Figure 10.7: Drawing undirected graphs using Visual Hybrid (X, Y)-clustering where one cluster
unfolded, (figure courtesy of [25]).

Figure 10.8: An example of decomposed graph using a clustering algorithm for dynamic undi-
rected graphs, (figure courtesy of [33]).
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Figure 10.9: An example showing large protein data using an interactive matrix visualization,
(figure courtesy of [51]).

Figure 10.10: Drawing directed graph using cyclic layout, (figure courtesy of [20, 21]).
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Chapter 11

Overview of the Process

Creating a topological visualization of directed graphs follows a process that was adapted
from the one presented by Archambault et al. [17] for undirected graphs. The general idea
in both approaches is to detect topological subgraphs for which optimized layout algorithms
exist, followed by drawing the subgraphs using the optimized algorithms and combining the
subgraphs to obtain the final layout of the graph.

In our approach, we aim at decomposing the directed graph into sub-graphs representing
non-trivial cyclic subgraphs (ntCS), down-trees, up-trees, and DAGs according to the definitions
presented in Chapter 9. These will then be drawn using optimized layout algorithms. The
overall process and the sub-processes for decomposing and for drawing the directed graph are
shown in Figure 12.1. The main process consists of three steps:

1. Taking a directed graph as input, its weakly-connected components (wCCs) are computed.

2. The wCCs are decomposed and a two-level hierarchy is built (Chapter 12)

(a) Each wCC is decomposed into its topological subgraphs.

(b) Each subgraph is represented by a meta-node. The meta-nodes are connected by
meta-edges that are computed as the union of the edges between two connected
topological components. This yields a coarser meta-graph.

(c) The meta-graph is classified as DAG or tree, as no ntCSs can occur. This is due to
the construction of the meta-graph.

3. The graph is drawn (Chapter 13).

wCCs
Two-level 
hierarchy

Decompose wCCs
& build meta graph

ntCSs
Trees & 
DAGs

wCCs
after Split

Detect 
ntCSs

Split
Detect Trees 

and DAGs

Compute 
wCCs

Directed 
Graph

Draw

Final 
drawing

Compute size of 
all meta nodes

Meta nodes 
and their sizes

Compute 
final layout

Figure 11.1: Overall process for drawing directed graphs, the sub-process for decomposing
wCCs and the sub-process for drawing.
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Chapter 12

Decomposition and Hierarchy
Construction

12.1 Overview of Decomposition Process

The decomposition of the directed graph constructs topological subgraphs (ntCSs, DAGs, and
trees) from each wCC based on our algorithms using the following sub-process (Figure 12.1):

1. A new algorithm to detect ntCSs is performed (Section 12.2).

2. The split (Section 12.3) performs two steps

(a) All edges belonging to ntCSs are removed.

(b) Starting at the ntCS nodes, for each edge, wCCs are computed using depth first
search. Many wCCs might belong to one ntCS node.

3. Each of the computed wCCs is classified as up-tree, down-tree, or DAG (Section 12.4).

4. The meta-graph is built (Section 12.5).

Figure 12.1: Decomposition sub process. Each wCC is decomposed into its topological sub-
graphs.

12.2 Cycle-Detection

Following the requirements of the application areas, we propose a detection algorithm for non-
trivial cyclic subgraphs (ntCSs). In particular, we are not interested in detecting or enumerating
all cycles [90, 65, 92, 88] (all algorithms are implemented in JGraphT [24]). Also, our definition
is different from strongly connected components.

Algorithm 14.1 uses backtracking and depth first search to find all ntCSs traversing all
edges in the graph exactly once. To visualize and to draw ntCSs later in an optimized way,
the algorithm considers cycles of length two (double edge) as a special, bi-directional edge and
considers shared cycles (cycles with shared nodes) as one ntCS. The sub-figures of Figure 12.2
show different cases that are considered by the algorithm. Except for Figure 12.2(c), they
represent one ntCS, each:
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a) A single cycle that does not share any nodes or edges with other cycles (Figure 12.2(a)).
This case can be handled by checking if a current node was visited using the same current
traversed path.

b) Two cycles sharing one node will be combined into one cycle (Figure 12.2(b)). After
finding each cycle individually as in the previous case, the two cycles will be merged into
one cycle.

c) Two cycles, which are connected by one double edge (Figure 12.2(c)). This case is handled
by removing length two cyclic parts from the path while checking if the path is (part of)
a cycle.

d) Two cycles sharing one edge will be combined (Figure 12.2(d)). After finding each cycle
individually, the two cycles will be merged into one cycle.

e) Two cycles sharing more than one edge will be combined (partial cycle) (Figure 12.2(e)).
First, one cycle is detected. Then, the current path is checked for two nodes of the current
path being contained in the same ntCS. If this is the case, then the intermediate nodes
of the path between those nodes are added to the ntCS.

f) Single cycle with two double edges (Figure 12.2(f)). Let the nodes visiting sequence be
� 1, 2, 3, 2, 1. Following this sequence will not result in cycle C1 at the end. To handle
this situation, back edges (in this case edge 3 Ñ 2) are considered after all other edges of
a node.

g) All other cases can be considered being a combination of the previous cases. For example,
two cycles with double edges sharing one edge will be combined (Figure 12.2(g)) by
applying cases e) and f). Additional examples are shown in Figure 12.3.
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Figure 12.2: Potential Cycle Cases
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Figure 12.3: Additional examples for combining the previous cycle cases (Figure 12.2)
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(a) Layout of Figure 12.2(a) (b) Layout of Figure 12.2(b) (c) Layout of Fig-
ure 12.2(c)

(d) Layout of Figure 12.2(d) (e) Layout of Figure 12.2(e) (f) Layout of Figure 12.2(f)

(g) Layout of Figure 12.2(g)

Figure 12.4: Layout of cycle cases in Figure 12.2
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(a) Layout of Fig-
ure 12.3(a)

(b) Layout of Fig-
ure 12.3(b)

(c) Layout of Fig-
ure 12.3(c)

(d) Layout of Figure 12.3(d) (e) Layout of Figure 12.3(e) (f) Layout of Figure 12.3(f)

(g) Layout of Figure 12.3(g) (h) Layout of Figure 12.3(h) (i) Layout of Figure 12.3(i)

(j) Layout of Figure 12.3(j) (k) Layout of Fig-
ure 12.3(k)

(l) Layout of Figure 12.3(l)

Figure 12.5: Layout of cycle cases in Figure 12.3
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12.3 Split

After detecting all ntCSs and before finding trees and DAGs, all edges belonging to the ntCSs
found are deleted and the obtained graph is split into wCCs at the nodes of the ntCSs. Fig-
ure 12.6 shows an example. The graph was decomposed into four ntCSs after applying the cycle
detection. If we remove all edges belonging to the ntCSs found, we are left with one wCC. The
left part connects cycle 1 to cycle 2 and 3 via a DAG, and the right part connects cycle 1 to
cycle 4 via a tree. Therefore, we split the wCC into two wCCs at node 2. Using only the latter
would make the structure less clear, especially in more complex cases. Therefore, we chose to
implement a method that splits the wCC in these cases at the nodes of the ntCSs.

Figure 12.6: Split step example

Starting at a ntCS node nc1, for each edge e P tpnc1, vq|v P V u Y tpv, nc1q|v P V u, the node
v of this edge is used as the start of a depth first search for computing the wCCs. The search
stops, if the current node has no unvisited edges or if it is a node of a ntCS. All edges of the
found wCCs are deleted before handling the next edge. After all edges of the current ntCS
node are addressed, the next ntCS node is examined, until all ntCS nodes of this wCC were
addressed. This algorithm has complexity Opn� eq as each node and edge is only used once.

12.4 Detect DAGs and Trees

The wCCs found in the previous step are classified into up-trees (UT), down-trees (DT), and
DAGs using depth first search. The Algorithm 14.16 detects graph types based on the four main
conditions shown in Table 12.1. To visualize and to draw trees and DAGs later in an optimal
way, the algorithm considers cycles of length two (double edges) as one edge. Figure 12.7
shows examples for the four potential tree and DAG cases according to the conditions given
in Table 12.1. Case i implies immediately, that a DAG that is detected as a down-tree can
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Case Condition Result
i I ¥ 2 and O ¥ 2 DAG
ii I   2 and O ¥ 2 down-tree or DAG
iii I ¥ 2 and O   2 up-tree or DAG
iv I   2 and O   2 down-tree, up-tree, DAG

Table 12.1: Conditions used for detecting down-trees, up-trees, and DAGs. Examples are given
in Figure 12.7

.

have at most one node with in-degree 0, and an up-tree can have at most one node with out-
degree 0 (Figure 12.7(a)). Case ii implies, that the subgraph is a down-tree if a down-tree
can be constructed, otherwise, the subgraph is a DAG (Figures 12.7(b), 12.7(c), and 12.7(d)).
Case iii implies, that the subgraph is an up-tree if an up-tree can be constructed, otherwise,
the subgraph is a DAG (Figures 12.7(e), 12.7(f), and 12.7(g)). In Case iv, first it attempts to
construct a down-tree as in Case ii. If no down-tree can be constructed, then it attempts to
construct an up-tree as in Case iii. If no up-tree can be constructed, the subgraph is a DAG
(Figures 12.7(k), 12.7(l), 12.7(h) 12.7(n), 12.7(j), 12.7(m), and 12.7(i)). The topological
drawing of the examples given by Figure 12.7 are shown in Figure 12.8.

Figure 12.9 shows an example of the final decomposition for one wCC. The wCC is decom-
posed into four ntCSs (0, 3, 4, 5), one tree (1), and one DAG (2). Each subgraph is represented
by a meta-node.
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Figure 12.7: Examples for down-trees, up-trees, and DAGs. Classification according to the
cases listed in Table 12.1
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(a) Layout
of Fig-
ure 12.7(a)
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of Fig-
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Figure 12.8: Layout of trees and DAGs cases in Figure 12.7
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Figure 12.9: Final Decomposition example.
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12.5 Hierarchy Construction

After the directed graph was decomposed into its topological subgraphs, a new graph is con-
structed. Therefore, each subgraph is represented by a meta-node. These meta-nodes are
connected by meta-edges. This yields a coarser meta-graph.

Each meta-edge connects a ntCS and a DAG or a tree. There are five types of meta-edges:

• single outgoing edge (ÝÑ)

• single incoming edge (ÐÝ)

• double edge (ÐÑ),

• blocking edge (ÑÐ),

• double path edge (à).

The type of the meta-edge depends on how the ntCS is connected to DAGs and trees. If
the ntCS is connected to DAGs and trees with only one edge, then the edge type is determined
as follows:

• A single outgoing edge is used, if a path can be constructed such that:

– the first node belongs to the ntCS,

– the first edge is an outgoing edge,

– each node of the path except the first and the last has only one incoming and one
outgoing edge,

– and the last node of the path is either a node of another ntCS or a node without
outgoing edges or a node with more than two incoming or outgoing edges.

Please notice, that the path can not end at the same ntCS as this would be a partial
cycle.

• A single incoming edge is used, if the same conditions hold as for the single outgoing edge,
except that the first edge is an incoming edge and the last node of the path is either a
node of another ntCS or a node without incoming edges or a node with more than two
incoming or outgoing edges.

• A double edge is used, if the same conditions hold as for the single outgoing edge, except
that the path consists only of double edges. In this case, each inner node of the path has
exactly two incoming and two outgoing edges.

• A blocking edge is used, if a path similiar to the one for single outgoing edges can be
constructed where the last node of the path has two incoming edges. In this case, no
path from the ntCS to any other ntCS can be constructed; the path is blocked. It is also
used if the path consists of incoming edges with the last node having two outgoing edges.
Again, no path to this ntCS from another ntCS can be constructed.

• A double path edge requires two edges of the DAG or tree being connected to a ntCS (see
below).
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(a) Outgoing meta-edge (b) Blocking meta-edge

Figure 12.10: Examples for meta-edges

Type 1 Type 2 Type 3 Type 4 Result
ÐÝ ÐÝ
ÐÝ ÑÐ ÐÝ
ÝÑ ÝÑ
ÝÑ ÑÐ ÝÑ
ÑÐ ÑÐ
ÝÑ ÐÝ à

ÝÑ ÐÝ ÑÐ à

ÐÑ ÐÑ
ÝÑ ÐÑ ÐÑ
ÐÝ ÐÑ ÐÑ
ÑÐ ÐÑ ÐÑ
ÝÑ ÐÝ ÐÑ ÐÑ
ÝÑ ÑÐ ÐÑ ÐÑ
ÐÝ ÑÐ ÐÑ ÐÑ
ÝÑ ÐÝ ÑÐ ÐÑ ÐÑ

Table 12.2: Combination of edge types.

Examples of determining single outgoing edge and blocking edge are shown in Figure 12.10.
The path ends at a node with more than one outgoing edge resulting in a single outgoing meta-
edge (Figure 12.10(a)). However, if this path ends at a node with more than one incoming edge
a blocking meta-edge is obtained (Figure 12.10(b)).

If the ntCS is connected to the DAG or the tree with two or more edges, then the meta-edge
type is determined by determining the individual edge types and combining them as shown in
Table 12.2. Each of the types combined to form the result appears at least once.

As all ntCSs are already found in the decomposition of the original graph, the meta-graph
can only be a DAG or a tree. This DAG or tree is detected and constructed using breadth first
search instead of depth first search. The edge types “double path edge” and “blocking edge” are
treated similar to double edges. Breadth first search is used to avoid cyclic dependencies that
otherwise could occur in meta-graph. Figure 12.11 shows a meta-graph and a two-level hierarchy
that was derived from the final decomposition example in Figure 12.9. In Figure 12.11(b), the
root node of the hierarchy represents the down-tree detected in the meta-graph and the leaf
nodes represent nodes of the meta-graph in Figure 12.11(a), respectively.
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(a) Meta-graph de-
rived from example in
Figure 12.9.

(b) Two-level hierarchy formed by meta-graph in 12.11(a)

Figure 12.11: Building two-level hierarchy example
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Chapter 13

Drawing

13.1 Overview of Drawing

We can draw the complete directed graph, the meta-graph only, or the meta-graph with some
meta-nodes replaced by the subgraphs that they are representing.

Drawing the Complete Graph

The sub-process for drawing the complete graph is shown in Figure 13.1. For each meta-node,
its accumulated area is computed (Section 13.2). The algorithms used for drawing the meta-
graph depending on its type are:

• Trees: An area-aware version of the improved Walker’s algorithm for layouting trees [37].

• DAGs: An area-aware version of the Sugiyama algorithm for layouting DAGs [87].

The subgraph represented by a meta-node is drawn inside the area associated to its meta-node
(Section 13.3).

Figure 13.1: The steps used for layouting the original graph.

Drawing the Meta-Graph

Ignoring layouting all lower level subgraphs and using a constant size for each meta-node will
lay out only the elements of the meta-graph. The example in Figure 13.2 shows a graph having
only one wCC that is broken down into four ntCSs, one tree, and one DAG. The down-tree
meta-graph is built from these components considering them as meta-nodes and connecting
them by meta-edges. The layout shows the nodes and edges of the meta-graph using blue
color, while using black color for all elements of the original graph. Figure 13.3 shows the
two-level hierarchy that was derived from the example in Figure 13.2.

87
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Figure 13.2: Example showing the layout of directed graphs.

Figure 13.3: The two-level hierarchy of the example in Figure 13.2

13.2 Compute Size of all Meta Nodes

Algorithm 14.39 computes the size of the final area by first calculating the area size for each
meta-node in level one, and then the accumulated area of the meta-node in level two is deter-
mined. First, the subgraph of the original graph represented by each meta-node in level one is
drawn individually depending on its type using the following algorithms:

• Non-trivial cyclic subgraphs: Bachmaier’s algorithm for cyclic graphs [22].

• Trees: The improved Walker’s algorithm for drawing trees [37].
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• DAGs: The Sugiyama algorithm for drawing DAGs [87].

13.3 Final Drawing

The final drawing step involves drawing each subgraph contained in the original graph and
represented by a meta-node in level one within the area of its meta-node. This is performed
in Algorithm 14.49, where the size for each meta-node and its associated sub-graph layout
computed previously using Algorithm 14.39 are used.

The nodes of the original graph are drawn as black points labeled with their names. Each
edge of a tree or a DAG is drawn as a black line; each edge of a ntCS is drawn as a black
arc. Arrows on one end for single edges and on both ends for double edges show the direction
of the respective edge. In addition, nodes shared between two topological components are
duplicated and connected using a cyan line (Algorithm 14.58, Section 14.2.2.2). The meta-nodes
are represented by drawing bounding blue circles around ntCSs and bounding blue rectangles
around trees and DAGs. The meta-edges are also drawn in blue using the shapes (Section 12.5).
The final drawing is optimized by rotating the cyclic subgraphs similar to the approach of
Archambault et al. [17] (Algorithm 14.57, Section 14.2.2.1). This step reduces the overall
distance between duplicated nodes.
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Chapter 14

Algorithms

14.1 Decomposition and Hierarchy Construction Algo-

rithms

14.1.1 Algorithms of Cycle Detection

The class diagram in Figure 14.1 shows an overview of the cycles detection implementation
part. All global data attributes (variables) and data structures which are related to cycles
detection are listed in all these diagrams. The Cycles class on the left of Figure 14.1 is the
main class containing all methods for implementing the detection of ntCS s. All other classes
in Figure 14.1 are container classes holding the data for the respective entities.

The global data attributes and data structures of the Cycles class are:

• graph: contains the input directed graph.

• finallistOfallCyclesNodes: a hashtable (Table 14.2) containing all cycles.

• combinedCycles: a Cycle object containing a copy of all cycle nodes (as a Hashset,
Table 14.4) used during deleting the edges of all cycle nodes after detecting all cycles
(pre-processing the graph for the next step).

Figure 14.1: Class Diagram for Cycles-Detection part.

91



92 Chapter 14. Algorithms

Figure 14.2: Call graph for all algorithms provided by the Cycles class (Figure 14.1).

• cycleEdges: a hashtable (Table 14.2), which contains all edges of all cycle nodes used
during deleting the edges of all cycle nodes after detecting all cycles.

• maxNodeV alue: an integer number, which is the maximum node id value (id is repre-
sented by an integer number) in the graph.

• marked: an array of boolean values indicating if a node was visited, where the indexes
of the array are node ids.

• counterPath: a counter, which represents the current path number.

• counterCycle: a counter, which represents the number of currently found cycles.

• nodeToCycle: a HashMap (Table 14.2), which maps node objects to their cycles.

• backEdges: a hashtable (Table 14.2) that stores all back edges of nodes represented by
the node id as key and the node back edges hashset (Table 14.4) as value. During visiting
not visited outgoing edges of a node, an outgoing edge represents a ’back edge’ if it is a
reverse edge of an already visited edge.

A call graph of all algorithms provided by the Cycles class (Figure 14.1) is shown in Fig-
ure 14.2.

The ntCS detection algorithm is split into ten algorithms handling different cases of potential
cycles:

• FindingAllCycle (Algorithm 14.1)

– it marks all edges as not visited (Lines 1-3).

– it marks all nodes as not visited (Lines 4-6), and

– to detect all cycles, it calls Algorithm 14.2 for all not visited nodes (Lines 7-11).
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• FindCyclesStart (Algorithm 14.2)

The local data attributes and data structures are:

– node: the starting node.

– listOfAllCycles: a list (Table 14.1) of all cycles found.

– pathNodes: a list (Table 14.1) containing path nodes.

– pathEdges: a hashtable (Table 14.2) containing path edge ids that are linked to
their position during visiting them.

Algorithm 14.2 initializes the list containing all cycles, the path nodes list, and the path
edges hash table (Lines 1-3). Then, three steps are performed:

– The current (first) node is added to the path (path nodes list, line 4)

– counterPath is incremented (path length, line 5)

– The algorithm for finding cycles is called with all previously initialized data struc-
tures (line 6).

– Finally, the list of the path nodes and the hash table of path edges are cleared.

• Find Cycle (Algorithm 14.3)

The local data attributes and data structures are:

– lastNodeInPath: numeric value of last node in path (current node)

– isCycle: boolean value indicating if a cycle is found.

– outgoingEdge: current outgoing edge of current node.

– allNodeBackEdges: a hashset (Table 14.4) containing all back edges of all nodes.

– newNodeBackEdges: a hashset (Table 14.4) containing all back edges of the current
node.

– targetNodeOfOutgoingEdge: the target node of the current outgoing edge.

– incomingEdge: the current incoming edge of the current node.

– backEdge: the current back edge of the current node.

It performs the following steps:

– if a node is already in the path (marked with counterPath), it checks if a cycle was
found by calling Algorithm 14.5 (Lines 1-4).

– it marks current node with counterPath (Line 5).

– For all outgoing edges of the current node that are not yet visited (Lines 7-18):

∗ if the current edge is the reverse edge of an already visited edge (called ’back
edge’) then store it in the hash set of all back edges (line 10-12)

∗ otherwise, it handles the current edge by calling Algorithm 14.4 (Line 14-15).

– Back edges should not be handled until all incoming edges of the node are visited
(Line 19).

– If the current node has back edges, all of them are handled (Lines 20-28).

∗ If the back edge was not visited, it is handled by calling Algorithm 14.4 (Line
25).
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• Recursive find cycle call (Algorithm 14.4)

The following steps are performed:

– Mark outgoing edge as visited (Line 1).

– Add the target node and the outgoing edge to the corresponding paths (Lines 2-3).

– Then, call Algorithm 14.3 (Line 4). Algorithm 14.3 and Algorithm 14.4 together
implement the depth first search on the graph handling all nodes and edges in a way
that allows to find all cycles.

– Finally, backtracking is performed by removing target node and outgoing edge from
their paths (Lines 5-6).

• Check Cycles (Algorithm 14.5)

The local data attributes and data structures are:

– pathSize: the length (size) of the path.

– lastNodeInPath: the last node in path nodes.

– lastNodeOccurneceinPathNodes: the position (index) of the last node in path
nodes.

– firstNodeOccurrenceinPathNodes: the position of the first node occurrence (of
the last node) in path nodes (in backward direction).

– nodeLastCycle: the cycle containing the last node in path nodes.

– nodeIndex: the position of the current node in path nodes.

– node 1Cycle: the cycle containing a node at the position before the last node in
path nodes.

– oneCycleEdges: a hashset (Table 14.4) containing the edges of the cycle.

– nodesCycleList: a list (Table 14.1) containing nodes to be added to a new cycle.

– cycle: a new cycle instance.

For a recently visited node, Algorithm 14.5 checks if a part of the path is a cycle:

– It finds the first node occurrence (of the last node) in PathNodes going over each
node in PathNodes from end node to start node (in backward direction) and check-
ing if the node equals the last node (Lines 1-11).

– If the difference between the last node position and its first occurrence position in
path equals two, an edge of length two (double edge) was found and it returns false
(Lines 12-14).

– If last two nodes in path belong to same cycle, it returns false (Lines 15-17).

– If first occurrence of node is between 0 and pathNodeSize� 1 in Path Nodes (Line
18):

∗ It calls computeReducedPath Algorithm 14.7 to remove length two edges part,
which does not belong to cycle from the path starting from first node occurrence
(Line 19).

∗ It creates cycle instance from reduced path and adds the new cycle to the list of
all cycles Algorithm 14.8 (Lines 21-23). Figure 12.2(a) shows cycle C1, which
has three nodes t0, 1, 2u.
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∗ It merges the found cycle with other cycles if it shares nodes with them (Algo-
rithm 14.11, Figure 12.2(b)) and it returns true (Lines 24-25).

– If recent node (last node in path) is not in the current path (but it was visited
before):

∗ It calls partialCycle Algorithm 14.10 (Figure 12.2(e)) to find, if a part of the
path is a part of a cycle and return true if a partial cycle is found (Line 28).

• isBackEdge (Algorithm 14.6)

The local data attributes and data structures are:

– pathEdges: a hashtable (Table 14.2) containing path edge ids that are linked to
their position during visiting them.

– edge: an edge.

The following steps are performed:

– Get the reverse id of the edge.

– Check if pathEdges contains the reversed id.

• ComputeReducedPath (Algorithm 14.7)

The local data attributes and data structures are:

– pathSize: the length (size) of the path nodes.

– potentialCycleNodesList: the list (Table 14.1) containing all intermediate nodes.

– intermediateNode: an intermediate node.

– finalCycleNodeSet: the linkedhashset (Table 14.4) containing all final cycle nodes.

– finalCycleNodelist: the list (Table 14.1) containing all final cycle nodes.

– indexIntermediateNode: the position of the intermediate node in potentialCycle
NodesList.

– testEdge: the reverse edge id of the current intermediate node and the next node in
potentialCycleNodesList.

– endEdgePosition: the position of testEdge in pathEdges.

– nodeSource: the intermediate node id in finalCycleNodelist.

– nodeTarget: the next node id of the node after the intermediate node in finalCycle
Nodelist.

– cycleEdge: a cycle edge id, which is formed from nodeSource and nodeTarget.

– finalExtractedNodeslist: the list (Table 14.1) containing the final cycle nodes set.

Algorithm 14.7 reduces a part of the path from the potential cycle through searching over
edges in edges path:

– It creates a list containing all intermediate nodes between last node in pathNodes
and its last occurrence in pathNodes (Lines 2-5).

– It goes over all nodes in the list (Lines 10-20):

∗ Linking between the current node and next node in the list as an edge (Line 11)

∗ Adding current node to final cycle node Set (Line 12)
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∗ For the edge of linked two nodes, find a position of its reverse edge in the edges
path (Line 13)

∗ Changing the position where it should continue going over the remaining nodes
in list to this found position (Shifting to this position in the for loop) (Lines
14-19)

– It returns a list containing the final cycle nodes Set

In Figure 12.2(c), edges p0, 4q and p4, 0q are an example of this case showing two separated
cycles tC1, C2u.

• SubCycle (Algorithm 14.8)

Algorithm 14.8 searches over all cycles in the list and checks if the cycle is a sub cycle
(Lines 1-5). If no, it adds the cycle to the list (Line 6).

• addToCycle (Algorithm 14.9)

The local data attributes and data structures are:

– indexIntermediateNode: the position of the intermediate node in path nodes.

– intermediateNode: the intermediate node.

Algorithm 14.9 adds to a cycle an intermediate node in a path if the node is not contained
in the cycle.

• PartialCycle (Algorithm 14.10)

The local data attributes and data structures are:

– cycle: a cycle containing the last node of pathNodes.

– nodeIndex: the a position in path nodes.

– currentNode: the node at position (nodeIndex) in path nodes.

– cyclePathNode: the cycle containing currentNode.

Algorithm 14.10 searches over all nodes in path nodes in backward direction finding the
node, which is contained in the same cycle as the last node in the path nodes (Lines
3-13) and adds all intermediate nodes to the cycle (Line 8). Then merge cycles (Algo-
rithm 14.11) is called Line (9). In Figure 12.2(e), the algorithm finds cycle C1 having
four nodes t0, 1, 2, 3u. Then, it finds the partial part t4, 5u merging them with cycle C1
at the end.

• merge Cycles (Algorithm 14.11)

The local data attributes and data structures are:

– listOfUncombinedCycles: the list (Deque, Table 14.3) containing all unmerged
cycles.

– tempFinallistOfallCycles: a copy of final cycles hashtable (Table 14.2) (to remove
repetition).

– cycle: a cycle instance.

– cycleRepeat: a cycle instance.

– tmpListOfUncombinedCycles: the temporary list (Deque, Table 14.3) of uncom-
bined cycles.
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– combinedCycle: a cycle instance.

– combined: boolean variable.

– cycle1: the first cycle instance in listOfUncombinedCycles.

– cycle2: the cycle instance after cycle1 in listOfUncombinedCycles.

– tmpCycle: a temporary cycle instance composed of combinedCycle and cycle2.

– oldNode: a node in combinedCycle.

Algorithm 14.11 goes through all cycles in the list of all cycles and combines cycles with
shared nodes. In Figure 12.2(b), the algorithm finds cycle C1 having nodes t0, 1, 2, 3u.
Next, it find nodes t2, 4, 5, 6u combing them with C1 because of shared node 2.

Algorithm 14.1 FindingAllCycle

Description: Finding all cycles
Input: G � pN,Eq
Output: counterCycle

1: for all edge PEdges do
2: Mark edge as not visited
3: end for
4: for all Nodes do
5: Mark node as not visited with value -1
6: end for
7: for all All nodes do
8: if node is not visited then
9: Call findCyclesStartpnodeq (Algorithm 14.2)

10: end if
11: end for

Algorithm 14.2 findCyclesStart

Description: Start find cycles
Input: node
Output: listOfAllCycles

1: Create new list of all cycles
2: Create new list of path nodes
3: Create new hash table of path edges
4: Add node into path nodes list
5: Increment counterPath by 1
6: Call find Cycle (list of all cycles, path nodes list, path edges table, node) (Algorithm 14.3)
7: Clear the list of the path nodes
8: Clear the hash table of path edges
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Algorithm 14.3 find Cycle

Description: Find all nodes of cycles in the graph using DFS
Input: listOfAllCycles, pathNodes, pathEdges, lastNodeInPath
Output: listOfAllCycles

1: Increment lastNodeInPath.iEdgeCounter by one
2: if lastNodeInPath is marked with value � counterPath then
3: isCycleÐ Check Cycles (listOfAllCycles, pathNodes, pathEdges) Algorithm 14.5
4: end if
5: Mark lastNodeInPath with counterPath
6: Get allNodeBackEdges Hashset of lastNodeInPath if it was created before
7: for all outgoingEdge P outgoing edges of lastNodeInPath do
8: if outgoingEdge is marked as not VISITED then
9: if isBackEdgeppathEdges, outgoingEdgeq (Algorithm 14.6) then

10: If allNodeBackEdges was not created before, create new one
11: Add outgoingEdge into allNodeBackEdges
12: Put current node as key and allNodeBackEdges as value in backEdges hashtable
13: else
14: targetNodeOfOutgoingEdgeÐ target node of outgoingEdge
15: Call recursive find cycle call (outgoingEdge, pathNodes,

targetNodeOfOutgoingEdge, pathEdges, listOfAllCycles, lastNodeInPath) (Al-
gorithm 14.4)

16: end if
17: end if
18: end for
19: if lastNodeInPath.iEdgeCounter ¡ lastNodeInPath number of incoming edges then
20: if allNodebackEdges � null then
21: for all backEdge P allNodebackEdges do
22: if backEdge edge is marked as not VISITED then
23: targetNodeOfOutgoingEdgeÐ target node of backEdge
24: outgoingEdgeÐ backEdge
25: Call recursive find cycle call (outgoingEdge, pathNodes,

targetNodeOfOutgoingEdge, pathEdges, listOfAllCycles, lastNodeInPath) Algo-
rithm 14.4

26: end if
27: end for
28: end if
29: end if
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Algorithm 14.4 recursive find cycle call

Description: Recursively call find cycle
Input: outgoingEdge, pathNodes, targetNodeOfOutgoingEdge, pathEdges,
listOfAllCycles, nodeNumber
Output: listOfAllCycles

1: Mark outgoingEdge as VISITED
2: Add targetNodeOfOutgoingEdge to pathNodes
3: Put the outgoingEdge key and the position of the target node in pathEdges
4: Call find Cycle (listOfAllCycles, pathNodes, pathEdges, targetNodeOfOutgoingEdge)

recursively (Algorithm 14.3)
5: Remove last occurrence of targetNodeOfOutgoingEdge from pathNodes
6: Remove the outgoingEdge from pathEdges
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Algorithm 14.5 Check Cycles

Description: Check if a part of the path is a cycle
Input: listOfAllCycles, pathNodes, pathEdges
Output: true iff cycle was found

1: pathSizeÐ size of pathNodes
2: lastNodeInPathÐ last node in pathNodes
3: lastNodeOccurrenceinPathNodesÐ pathSize� 1
4: firstNodeOccurrenceinPathNodesÐ -1
5: nodeLastCycleÐ the cycle containing lastNodeInPath

{Store in firstNodeOccurrenceinPathNodes the first position of node occurrence for
(lastNodeInPath) in pathNodes from end}

6: for nodeIndexÐ pathSize� 2 down to 0 do
7: if node having index nodeIndex equals lastNodeInPath then
8: firstNodeOccurrenceinPathNodesÐ nodeIndex
9: Break

10: end if
11: end for
12: if lastNodeOccurrenceinPathNodes� firstNodeOccurrenceinPathNodes � 2 then

{path = double edge}
13: return false
14: end if
15: node 1CycleÐ cycle containing node having index pathSize� 2
16: if node 1Cycle � null ^ nodeLastCycle � null ^ node 1Cycle � nodeLastCycle then

{Two sequence nodes in same cycle}
17: return false
18: else if firstNodeOccurneceinPathNodes ¡ �1 ^ firstNodeOccurrenceinPathNodes  

pathSize �1 then
19: nodesCycleList Ð call Compute ReducedPath (pathNodes, pathEdges,

firstNodeOccurrenceinPathNodes, oneCycleEdges) (Algorithm 14.7)
20: if nodesCycleList � null then

{Make a copy of found cycle}
21: Create new cycle cycle
22: Add into cycle all nodes and edges of nodesCycleList

{To check if the cycle is not in the list of all cycles yet}
23: Call subCycle (listOfAllCycles, cycle) (Algorithm 14.8)
24: Call merge Cycles (listOfAllCycles) (Algorithm 14.11)
25: Return true
26: end if
27: else if nodeLastCycle � null then
28: return partialCycle (pathNodes, listOfAllCycles, lastNodeInPath) (Algorithm 14.10)
29: end if
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Algorithm 14.6 isBackEdge

Description: Check if edge is a back edge
Input: pathEdges , edge
Output: true iff edge is a back edge

1: Create testEdge as reverse edge of start and end nodes
2: Get the position of testEdge from pathEdges and store it in endEdgePosition
3: if endEdgePosition � null then
4: return True
5: else
6: return False
7: end if

Algorithm 14.7 compute ReducedPath

Description: Reduce a part of the path from the potential cycle through searching
over edges in edges path
Input: pathNodes, pathEdges, startNode, oneCycleEdges
Output: finalExtractedNodeslist

1: pathSizeÐ size of pathNodes
2: Create potentialCycleNodesList as new list for potential cycle nodes
3: for indexIntermediateNodeÐ startNode to pathSize do
4: Add to potentialCycleNodesList a node having index indexIntermediateNode in

pathNodes
5: end for
6: Create finalCycleNodeSet
7: if Second node in potentialCycleNodesList equals a node having index pathSize � 2 in

pathNodes^ first node in potentialCycleNodesList equals last node in pathNodes then
{Start and end edge are reverse to each other.}
{No cycle, reduced path is empty}

8: Return null
9: else

10: for indexIntermediateNodeÐ 0 to size of potentialCycleNodesList� 1 do
11: testEdge Ð linking ids of two nodes in potentialCycleNodesList having an index

indexIntermediateNode� 1 and an index indexIntermediateNode respectively
12: Add a node having an index indexIntermediateNode in potentialCycleNodesList to

finalCycleNodeSet
13: endEdgePositionÐ get the position of testEdge in pathEdges
14: if endEdgePosition �� null then
15: endEdgePositionÐ endEdgePosition� startNode
16: end if
17: if endEdgePosition �� null ^ endEdgePosition ¡ indexIntermediateNode then
18: indexIntermediateNodeÐ endEdgePosition
19: end if
20: end for
21: end if
22: Create finalExtractedNodeslist as new list for finalCycleNodeSet
23: return finalExtractedNodeslist
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Algorithm 14.8 subCycle

Description: Add the cycle to listOfAllCycles if it was not added
Input: listOfAllCycles, cycle
Output: listOfAllCycles

1: for all tmpCycle P listOfAllCycles do
2: if tmpCycle contains all nodes of input cycle then
3: return
4: end if
5: end for
6: Add cycle into list of all cycles
7: Increment counterCycle by 1

Algorithm 14.9 addToCycle

Description: Add to a cycle an intermediate node in a path if the node is not
contained in the cycle
Input: indexCurrentNode, pathNodes, foundCycle, lastNodeInPath
Output: Add intermediate nodes to foundCycle

1: for indexIntermediateNodeÐ indexCurrentNode� 1 to size of pathNodes do
2: intermediateNode Ð Retrieve the node having indexIntermediateNode index from

pathNodes
3: if foundCycle does not contain intermediateNode then
4: Add intermediateNode to foundCycle
5: Put intermediateNode and foundCycle as key and value in nodeToCycle hashmap
6: end if
7: end for
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Algorithm 14.10 partialCycle

Description: Search over all nodes in path nodes in backward direction finding the
node, which is contained in the same cycle as the last node in the path nodes and
adds all intermediate nodes to the cycle
Input: pathNodes, listOfAllCycles, lastNodeInPath
Output: true iff a Path is part of a cycle

1: cycleÐ Retrieve the cycle having lastNodeInPath node from nodeToCycle
2: if cycle �� null then
3: for nodeIndexÐ pathSize� 2 down to 0 do
4: currentNodeÐ node having nodeIndex in pathNodes
5: if currentNode � lastNodeInPath then
6: cyclePathNodeÐ Retrieve the cycle having current node from nodeToCycle
7: if cyclePathNode �� null ^ cycle � cyclePathNode then
8: Call addToCycle (indexCurrentNode, pathNodes, cyclePathNode,

lastNodeInPath) (Algorithm 14.9)
9: Call merge Cycles (listOfAllCycles) (Algorithm 14.11)

10: Return true
11: end if
12: end if
13: end for
14: end if
15: Return false
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Algorithm 14.11 merge Cycles

Description: Combine cycles with shared nodes
Input: listOfAllCycles
Output: merging shared cycles in listOfAllCycles

1: for all repeatedCycle P finallistOfallCyclesNodes Hashtable do
2: for all cycle P listOfAllCycles do
3: if repeatedCycle contains cycle nodes then

{before merging, remove repeated cycles in final hashtable}
4: remove repeatedCycle from finallistOfallCyclesNodes Hashtable
5: end if
6: end for
7: end for
8: Create listOfUncombinedCycles initializing it by list of all cycles
9: Initialize combined flag to false

10: while Size of listOfUncombinedCycles ¡ 0 do
11: Remove first cycle from listOfUncombinedCycles
12: Store removed cycle in cycle1
13: Create combinedCycle cycle initialized by cycle1
14: Change combined flag to true
15: while combined do
16: Create tmpListOfUncombinedCycles
17: Change combined flag to false
18: while listOfUncombinedCycles is not empty do
19: Remove first cycle from listOfUncombinedCycles
20: Store removed cycle in cycle2
21: Create temporary cycle tmpCycle initializing it by combinedCycle
22: Add all nodes of cycle2 into tmpCycle
23: if Nodes size of tmpCycle   nodes size of combinedCycle� nodes size of cycle2

then
24: Change combined flag to true
25: Add all nodes and edges of cycle2 into combinedCycle
26: else
27: Add cycle2 to tmpListOfUncombinedCycles
28: end if
29: end while
30: Store tmpListOfUncombinedCycles in listOfUncombinedCycles
31: end while
32: Put combinedCycle in finallistOfallCyclesNodes Hashtable
33: for all node P combinedCycle nodes do
34: Put key node having combinedCycle as value in nodeToCycle
35: end for
36: end while
37: Clear listOfAllCycles
38: Add all cycles in finallistOfallCyclesNodes to listOfAllCycles
39: for all cycles in finallistOfallCyclesNodes do
40: Add all cycle nodes in one hashtable
41: end for
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14.1.2 Algorithms of Split

The class diagram in Figure 14.3 shows an overview of the SplitConnectedComponentAt-
CyclePoint class. All global data attributes (variables) and data structures, which are related
to split are listed in this diagram. The SplitConnectedComponentAtCyclePoint class on the
left side of the Figure 14.3 lists the names of all algorithms (operations) used to split wCCs
at nodes of ntCSs while for the other classes no algorithms are shown because they have only
utilities operations like gets and sets.

The global data attributes and data structures of the class SplitConnectedComponentAt-
CyclePoint are:

• parentGraph: contains the input directed graph.

• cyclesNodes: is a HashMap (Table 14.2) containing cycle nodes mapped to their cycles.

• marked: is a hashtable (Table 14.2) containing the ids of all marked nodes.

• allWCC: is an ArrayList (Table 14.1) of all subgraphs of all wCCs after split.

A call graph of all algorithms provided by SplitConnectedComponentAtCyclePoint is
shown in Figure 14.4.

The split algorithm consists of four parts:

• SplitConnectedComponentAtCyclePoint (Algorithm 14.12)

It marks all nodes as not visited (Lines 1-3) and it calls check Start (Algorithm 14.13)
for all cyclesNodes that have edges (Lines 4-8).

• check Start (Algorithm 14.13)

The local data attributes and data structures are:

– listOfCyclesNodes: a HashSet (Table 14.4) of all cycles found.

– listOfAllNodes: a HashSet (Table 14.4) of current path nodes.

– allEdges: a HashSet (Table 14.4) of edges of a cycle node.

– wcc: a graph.

Figure 14.3: Class Diagram for Split
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Figure 14.4: Call graph for all algorithms provided by the
SplitConnectedComponentAtCyclePoint class (Figure 14.3).

It initializes listOfCyclesNodes and allEdges (Lines 1-3). After that, it goes over
all nodes reachable by unvisited edges of cycleNode (Lines 4-25) calling check (Algo-
rithm 14.14) (Line 22). Then, it calls create Graph (Algorithm 14.15) to create a sub-
gragh from listOfAll-Nodes (Line 26).

• check (Algorithm 14.14)

The local data attributes and data structures are:

– allEdges: a HashSet (Table 14.4) of edges of a non cycle node.

If a non cycle node is not visited, it goes over all edges of current non cycle node (Lines
4-23). If the edge is not visited (Line 5):

– Mark edge as visited (Line 6).

– Then, if end node of current edge is a cycle node, add it to listOfCyclesNodes
(Lines 17-18).

– Otherwise, call check (Algorithm 14.14) for end node of current edge recursively
(Line 20).

• create Graph (Algorithm 14.15)

The local data attributes and data structures are:

– wcc: a graph.

– listOfAllNodesKey: a HashSet (Table 14.4) containing ids of all nodes in listOfAll
Nodes.

It creates a subgraph consisting of all nodes from listOfAllNodes set and edges contained
in graph without cycles edges (Lines 1-20).
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Algorithm 14.12 SplitConnectedComponentAtCyclePoint

Description: Split wCCs at nodes of ntCSs
Input: parentGraph, cyclesNodes
Output: Split wCCs

1: for all node P parentGraph nodes do
2: Put in marked hashtable id of node having value False
3: end for
4: for all cycleNode P cyclesNodes do
5: if # Neighbors of cycleNode ¡ 0 then
6: Call check StartpcycleNodeq Algorithm 14.13
7: end if
8: end for

Algorithm 14.13 check Start

Description: Start check
Input: cycleNode
Output: allWCC

1: Create listOfCyclesNodes set
2: Add cycleNode to listOfCyclesNodes
3: Add all edges of cycleNode to allEdges set
4: for all edge P allEdges do
5: if edge is marked as not visited then
6: Mark edge as visited
7: if end node of edge � cycleNode then
8: node2 Ðend node of edge
9: else

10: node2 Ðstart node of edge
11: end if
12: reverseEdgeÐ get reverse edge from graph edges
13: if reverseEdge � null then
14: Mark reverseEdge as visited
15: end if
16: Create listOfAllNodes set
17: Add cycleNode to listOfAllNodes
18: Add node2 to listOfAllNodes
19: if node2 P cyclesNodes then
20: Add node2 to listOfCyclesNodes
21: else
22: Call checkpnode2, listOfCyclesNodes, listOfAllNodesq Algorithm 14.14
23: end if
24: end if
25: end for
26: wcc Ð a splited subgraph created out of listOfAllNodes by calling

create Graph(listOfCyclesNodes, listOfAllNodes) Algorithm 14.15
27: if # nodes of wcc ¡ 0 then
28: Add wcc to allWCC list of all subgraphs
29: end if
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Algorithm 14.14 check

Description: Go over all nodes reachable by unvisited edges of cycle node
Input: nonCycleNode, listOfCyclesNodes, listOfAllNodes
Output: listOfAllNodes, listOfCyclesNodes

1: if nonCycleNode is not marked then
2: Mark nonCycleNode
3: Add all edges of nonCycleNode to allEdges set
4: for all edge P allEdges do
5: if edge is marked as not visited then
6: Mark edge as visited
7: if end node of edge � nonCycleNode then
8: node2 Ðend node of edge
9: else

10: node2 Ðstart node of edge
11: end if
12: reverseEdgeÐ get reverse edge from graph edges
13: if reverseEdge � null then
14: Mark reverseEdge as visited
15: end if
16: Add node2 to listOfAllNodes list
17: if node2 P cyclesNodes then
18: Add node2 to listOfCyclesNodes list
19: else
20: Call checkpnode2, listOfCyclesNodes, listOfAllNodesq Algorithm 14.14
21: end if
22: end if
23: end for
24: end if
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Algorithm 14.15 create Graph

Description: Create graph
Input: listOfCyclesNodes, listOfAllNodes
Output: WCC

1: Create wcc an empty subgraph
2: for all node P listOfAllNodes do
3: n1 Ð a node having same id of node in original graph parentGraph
4: if n1 � null then
5: Put n1 in wcc
6: end if
7: end for
8: for all node P listOfAllNodes do
9: n1 Ð a node having same id of node in original graph parentGraph

10: if n1 � null then
11: for all edge P incoming edges of n1 do
12: sourceÐ a node having same id of edge start node in wcc
13: targetÐ a node having same id of edge end node in wcc
14: if source � null ^ target � null then
15: Create an edge me having source and target as start and end nodes respectively
16: Put me in wcc
17: end if
18: end for
19: end if
20: end for
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14.1.3 Algorithms of Detect DAGs and Trees

The class diagram in Figure 14.5 shows an overview of the classes for decomposing wCCs into
ntCSs, trees, and DAGs in addition to constructing the hierarchy (Section 12.5). The class
“Cycle” was discussed in Section 12.2, while the hierarchy construction will be discussed in
Section 12.5. All global data attributes (variables) and data structures that are related to trees
and DAGs detection are listed in these diagrams. Decomposition, Trees, and DAGs classes
show the names of the algorithms (operations) used to detect trees and DAGs.

The global data attributes and data structures of the class “Tree” are:

• id: the id of a tree.

• root: the root node of the tree.

• finallistOfallT reesNodes: a hashtable (Table 14.2) containing all nodes of the tree.

• flag: a numeric variable to mark the tree as down-tree (1) or up-tree (2).

The global data attributes and data structures of the class “Trees” are:

• finallistOfallT reesNodes: a hashtable (Table 14.2) containing trees.

• counterPath: a counter for paths.

Figure 14.5: Class Diagram for detecting trees and DAGs.
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• marked: an array for marking traversed nodes with path counter.

The global data attributes and data structures of the class “DAGs” are:

• finallistOfallDAGNodes: a hashtable (Table 14.2) containing DAGs.

• marked: an array for marking traversed nodes with path counter.

The global data attributes and data structures of the class “DAG” are:

• id: an id for the DAG.

• finallistOfallDAGNodes: a hashtable (Table 14.2) containing all nodes of the DAG.

• backEdges: a hashtable (Table 14.2) containing all back edges of the DAG.

• listOfallDAGStartNodes: a hashtable (Table 14.2) containing all start nodes of the
DAG (roots).

The global data attributes and data structures of the class “Decomposition” are:

• graph: a directed graph.

• trees: all trees

• dags: all DAGs

• inDegreeZeroNodesList: an ArrayList (Table 14.1) containing all nodes with in-degree
0.

• outDegreeZeroNodesList: an ArrayList (Table 14.1) containing all nodes with out-
degree 0.

• oneDoubleNodesList: an ArrayList (Table 14.1) containing all nodes with one double
edge.

• potentialDoubleRoots: an ArrayList (Table 14.1) containing all potential root nodes
having only double edges.

• potentialDownRoots: an ArrayList (Table 14.1) containing all potential root nodes hav-
ing only outgoing edges ignoring double edges (in-degree 0 by forgetting double edges).

• potentialUpRoots: an ArrayList (Table 14.1) containing all potential root nodes having
only incoming edges ignoring double edges (out-degree 0 by forgetting double edges).

• DAG: constant (0).

• DOWN TREE: constant (1).

• UP TREE: constant (2).

• collapsedGraph: a graph containing meta-nodes and meta-edges representing the decom-
posed subgraphs from this wCC and edges between them, respectively (related to build
two-level hierarchy in Section 12.5).

A call graph of the primary algorithms provided by the “Trees” and “DAGs” classes and
detectDAGsTrees (Algorithm 14.16) provided by the class “Decomposition” (Figure 14.5) is
shown in Figure 14.6.

The detectDAGsTrees algorithm consists of several parts handling different cases of poten-
tial graph types:
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Figure 14.6: Call graph for the primary trees and DAGs detection algorithms.

• detectDAGsTrees (Algorithm 14.16)

The local data attributes and data structures are:

– ccGraph: a weakly connected component graph.

It checks if the graph is a down-tree, an up-tree, or a DAG. It starts counting all nodes
with in-degree 0, out-degree 0, only double edges, only outgoing edges, and only incoming
edges (Lines 1-17). Then, check DownTreeStart (Algorithm 14.17), check UpTreeStart
(Algorithm 14.20), or check DoubleEdges (Algorithm 14.23) are called based on the
counter values according to the logic shown in Table 12.1 (Lines 18-29).

• check DownTreeStart (Algorithm 14.17)

The local data attributes and data structures are:

– pathNodes: an ArrayList (Table 14.1) containing path nodes.

– node: the first node of inDegreeZeroNodesList.

– root: the root node of the tree.

– result: a boolean variable, true iff down-tree.

It checks if the graph is a down-tree or a DAG. If the counter of in-degree 0 nodes equals
one, then it marks all nodes as not visited storing the node with in-degree 0 as root,
adding the node to the path nodes list, and calling check DownTree (Algorithm 14.18)
to check if the graph is a down-tree. Then, it calls createDownTree (Algorithm 14.24)
to create a down-tree instance if one is found and it returns down-tree. Otherwise, it
returns DAG (Lines 3-16). If the counter of in-degree 0 nodes does not equal one, it goes
over all potential root nodes marking all nodes as not visited, clearing the path nodes
list, storing the current node as root, adding the node to the path nodes list, and calling
check DownTree (Algorithm 14.18) to check if the graph is down-tree. Then, it calls
createDownTree (Algorithm 14.24) to create down-tree instance if one is found and it
returns down-tree. Finally, it returns DAG, if no down-tree is found (Lines 17-35).

• check DownTree (Algorithm 14.18)

The local data attributes and data structures are:

– result: a boolean variable, true iff down-tree.

– outgoingEdge: outgoing edge.
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For the current node, it returns DAG if it is marked with counterPath (Lines 1-3).
Then, for early termination, it checks if the incoming edges number of the current node
(excluding double edges and incoming edge from its parent) is greater than 0 by calling
Algorithm 14.19 (Lines 4-6). After marking the node with counterPath, it goes over all
outgoing edges of the node (applying depth first search) adding the target node to the
path nodes list, calling check DownTree Algorithm 14.18, and removing the target node
from path nodes list (Lines 9-22).

• countOneDirectionIncomingEdges (Algorithm 14.19)

The local data attributes and data structures are:

– count: numeric variable storing the number of one direction incoming edges for a
node.

– incomingEdge: incoming edge.

It counts the incoming edges (excluding double edges and incoming edge from its parent)
of current node.

• createDownTree (Algorithm 14.24)

The local data attributes and data structures are:

– root: the root of the tree.

– nodes: the list of tree nodes.

– htableDownTree: a hashtable (Table 14.2) containing all tree nodes.

– downTree: Tree instance.

It creates a down-tree instance storing all nodes as a hashtable.

• check UpTreeStart (Algorithm 14.20)

The local data attributes and data structures are:

– pathNodes: an ArrayList (Table 14.1) containing path nodes.

– node: the first node of outDegreeZeroNodesList.

– root: the root node of the tree.

– result: a boolean variable, true iff up-tree.

It checks if the graph is an up-tree or a DAG analogously to check DownTreeStart
(Algorithm 14.17). If the counter of nodes with out-degree 0 equals one, then it marks
all nodes as not visited storing the node with out-degree 0 as root, adding the node to
the path nodes list, and calling check UpTree (Algorithm 14.21) to check if the graph is
an up-tree. Then, it calls createUpTree (Algorithm 14.25) to create an up-tree instance
if one is found and it returns up-tree. Otherwise, it returns DAG (Lines 3-16).

If the counter of nodes with out-degree 0 does not equal one, it goes over all potential
root nodes marking all nodes as not visited, clearing the path nodes list, storing the
current node as root, adding the node to the path nodes list, and calling check UpTree
(Algorithm 14.21) to check if the graph is up-tree. Then, it calls createUpTree (Algo-
rithm 14.25) to create up-tree instance if one is found and it returns up-tree. Finally, it
returns DAG, if no up-tree is found (Lines 17-35).
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• check UpTree (Algorithm 14.21)

The local data attributes and data structures are:

– result: a boolean variable, true iff up-tree.

– incomingEdge: an incoming edge.

Analogously to check DownTree (Algorithm 14.18), for the current node, it returns DAG
if it is marked with counterPath (Lines 1-3). Then, for early termination, it checks if
the Outgoing edges number of the current node (excluding double edges and Outgoing
edge from its parent) is greater than 0 by calling Algorithm 14.22 (Lines 4-6). After
marking the node with counterPath, it goes over all Incoming edges of the node (applying
depth first search) adding the source node to the path nodes list, calling check UpTree
Algorithm 14.21, and removing the source node from path nodes list (Lines 9-22).

• countOneDirectionOutgoingEdges (Algorithm 14.22)

The local data attributes and data structures are:

– count: a numeric variable storing the number of one direction outgoing edges for a
node.

– outgoingEdge: an outgoing edge.

It counts the Outgoing edges (excluding double edges and Outgoing edge from its parent)
of current node.

• createUpTree (Algorithm 14.25)

The local data attributes and data structures are:

– root: the root of the tree.

– nodes: the list of tree nodes.

– htableUpTree: a hashtable (Table 14.2) containing all tree nodes.

– upTree: Tree instance.

It creates an up-tree instance storing all nodes as hashtable.

• check DoubleEdges (Algorithm 14.23)

The local data attributes and data structures are:

– result: a number giving the graph type.

It calls check DownTreeStart (Algorithm 14.17) to check if the graph is a down-tree or
a DAG. If a DAG is found, it calls check UpTreeStart (Algorithm 14.20) to finally check
if the graph is an up-tree or a DAG.

• createDAG (Algorithm 14.26)

The local data attributes and data structures are:

– htableDAG: a hashtable (Table 14.2) containing all DAG nodes.

– dag: a DAG instance.

– htableStartRootNodesDAG: a hashtable (Table 14.2) containing all roots of the
DAG.

It creates a DAG instance storing all DAG nodes in a hashtable.
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Algorithm 14.16 detectDAGsTrees

Description: detect DAGs Trees Algorithm
Input: ccGraph weakly connected component
Output: Determine type of wCC (up-tree, down-tree, DAG)

1: for all node P all nodes of ccGraph having in-degree 0 do
2: Increment inDegreeZeroNumber by 1
3: Add node to inDegreeZeroNodesList ArrayList
4: end for
5: for all node P all nodes of ccGraph having out-degree 0 do
6: Increment outDegreeZeroNumber by 1
7: Add node to outDegreeZeroNodesList ArrayList
8: end for
9: for all node P all nodes of ccGraph having only double edges do

10: Add node to potentialDoubleRoots ArrayList
11: end for
12: for all node P all nodes of ccGraph having only outgoing edges do
13: Add node to potentialDownRoots ArrayList
14: end for
15: for all node P all nodes of ccGraph having only incoming edges do
16: Add node to potentialUpRoots ArrayList
17: end for
18: if inDegreeZeroNumber ¡� 2^ outDegreeZeroNumber ¡� 2 then
19: Mark result as DAG
20: else if inDegreeZeroNumber   2^ outDegreeZeroNumber ¡� 2 then
21: resultÐ check DownTreeStart (ccGraph) (Algorithm 14.17)
22: else if inDegreeZeroNumber ¡� 2^ outDegreeZeroNumber   2 then
23: resultÐ check UpTreeStart(ccGraph) (Algorithm 14.20)
24: else if inDegreeZeroNumber   2^ outDegreeZeroNumber   2 then
25: resultÐ check DoubleEdges(ccGraph) (Algorithm 14.23)
26: end if
27: if result � DAG then
28: Call createDAG(ccGraph)(Algorithm 14.26)
29: end if
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Algorithm 14.17 check DownTreeStart

Description: Start check down tree
Input: graph
Output: 1 iff DOWN TREE , 0 iff DAG

1: Increment counterPath by 1
2: Create pathNodes list
3: if inDegreeZeroNumber �� 1 then
4: for all node P graph do
5: Mark node as not visited with value �1
6: end for
7: nodeÐ first node of inDegreeZeroNumber
8: rootÐ node
9: Add node to pathNodes

10: resultÐ check DownTreeppathNodes, node,markedq (Algorithm 14.18)
11: if result then
12: Call createDownTreeproot, nodesq (Algorithm 14.24)
13: return DOWN TREE
14: else
15: return DAG
16: end if
17: else
18: add inDegreeZeroNodesList to potentialOrderedRootsNodesList
19: add potentialDownRoots at end of potentialOrderedRootsNodesList
20: add potentialDoubleRoots at end of potentialOrderedRootsNodesList
21: for all node P potentialOrderedRootsNodesList do
22: for all node P graph do
23: Mark node as not visited with value �1
24: end for
25: Clear pathNodes
26: rootÐ current node
27: Add node to pathNodes
28: resultÐ check DownTreeppathNodes, node,markedq (Algorithm 14.18)
29: if result then
30: Call createDownTreeproot, nodesq (Algorithm 14.24)
31: return DOWN TREE
32: end if
33: end for
34: return DAG
35: end if
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Algorithm 14.18 check DownTree

Description: Check down-tree
Input: pathNodes, node, marked
Output: True iff DOWN TREE, False iff DAG

1: if node is marked with counterPath flag then
2: return False {DAG}
3: end if

{For early termination, it checks if node has many Incoming edges (excluding double
edges and Incoming edge from its parent)}

4: if size of pathNodes ¡ 1^ countOneDirectionIncomingEdgespnode, parentnode) ¡ 0
(Algorithm 14.19) then

5: return False {DAG}
6: end if
7: Mark node with value equal to counterPath flag
8: resultÐ True
9: for all outgoingEdge P Outgoing edges of node do

10: targetNodeOfOutgoingEdgeÐ target node of outgoingEdge
11: Add the target node of outgoingEdge to pathNodes
12: firstÐ the first occurrence position (index) for last node in the path
13: lastÐ the last occurrence position (index) for last node in the path
14: if first ¡ �1^ last ¡ �1^ last� first � 2 then{Ignore double edge}
15: continue
16: end if
17: result Ð check DownTree (pathNodes, the target node of outgoingEdge, marked)

(Algorithm 14.18)
18: Remove last occurrence of the target node of outgoingEdge from pathNodes
19: if  result then
20: return False {DAG}
21: end if
22: end for
23: return True

Algorithm 14.19 countOneDirectionIncomingEdges

Description: Count one direction incoming edges
Input: node, parentNode
Output: one direction incoming Edges number of node

1: countÐ 0
2: for all incomingEdge P all incoming edges of node do
3: if start node of incomingEdge � parentNode^ node P all In Neighbors of start node

of incomingEdge then
4: Increment count by 1
5: end if
6: end for
7: return count
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Algorithm 14.20 check UpTreeStart

Description: Start check up-tree
Input: graph
Output: 1 iff UP TREE , 0 iff DAG

1: Increment counterPath by 1
2: Create pathNodes
3: if outDegreeZeroNumber �� 1 then
4: for all node P graph do
5: Mark node as not visited with value �1
6: end for
7: nodeÐ first node of outDegreeZeroNumber
8: rootÐ node
9: Add node to pathNodes

10: resultÐ check UpTreeppathNodes, node,markedq (Algorithm 14.21)
11: if result then
12: Call createUpTreeproot, nodesq (Algorithm 14.25)
13: return UP TREE
14: else
15: return DAG
16: end if
17: else
18: add outDegreeZeroNodesList to potentialOrderedRootsNodesList
19: add potentialUpRoots at end of potentialOrderedRootsNodesList
20: add potentialDoubleRoots at end of potentialOrderedRootsNodesList
21: for all node P potentialOrderedRootsNodesList do
22: for all node P graph do
23: Mark node as not visited with value �1
24: end for
25: Clear pathNodes
26: rootÐ node
27: Add node to pathNodes
28: resultÐ check UpTreeppathNodes, node,markedq (Algorithm 14.21)
29: if result then
30: Call createUpTreeproot, nodesq (Algorithm 14.25)
31: return UP TREE
32: end if
33: end for
34: return DAG
35: end if
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Algorithm 14.21 check UpTree

Description: Check up-tree
Input: pathNodes, node, marked
Output: True iff UP TREE, False iff DAG

1: if node is marked with counterPath flag then
2: return False {DAG}
3: end if

{For early termination, it checks if node has many Outgoing edges (excluding double
edges and Outgoing edge to its parent)}

4: if size of pathNodes ¡ 1^ countOneDirectionOutgoingEdgespnode, parentnode ) ¡
0(Algorithm 14.22) then

5: return False {DAG}
6: end if
7: Mark node with value equal to counterPath flag
8: resultÐ True
9: for all incomingEdge P Incoming edges of node do

10: sourceNodeOfIncomingEdgeÐ source node of incomingEdge
11: Add the source node of incomingEdge to pathNodes
12: firstÐ the first occurrence position (index) for last node in the path
13: lastÐ the last occurrence position (index) for last node in the path
14: if first ¡ �1^ last ¡ �1^ last� first � 2 then {Ignore Double Edge}
15: continue
16: end if
17: result Ð check UpTree (pathNodes, the source node of incomingEdge, marked) (Al-

gorithm 14.21)
18: Remove last occurrence of the source node of incoming edge from pathNodes
19: if  result then
20: return False {DAG}
21: end if
22: end for
23: return True

Algorithm 14.22 countOneDirectionOutgoingEdges

Description: Count one direction outgoing edges
Input: node, parentNode
Output: one direction outgoing Edges number of node

1: countÐ 0
2: for all outgoingEdge P all outgoing edges of node do
3: if end node of outgoingEdge � parentNode ^  node P all Out Neighbors of end node

of outgoingEdge then
4: Increment count by 1
5: end if
6: end for
7: return count
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Algorithm 14.23 check DoubleEdges

Description: Check double edges
Input: graph
Output: return graph type (up-tree, down-tree, DAG)

1: resultÐ check DownTreeStart (graph) (Algorithm 14.17)
2: if result � DAG then
3: resultÐ check UpTreeStart (graph) (Algorithm 14.20)
4: end if
5: return result

Algorithm 14.24 createDownTree

Description: Create down-tree
Input: root, nodes
Output: down-tree

1: Initialize htableDownTree hash table
2: Add tree nodes to htableDownTree
3: Create downTree Tree instance
4: Put downTree in finallistOfallT reesNodes

Algorithm 14.25 createUpTree

Description: Create up-tree
Input: root, nodes
Output: up-tree

1: Initialize htableUpTree hash table
2: Add tree nodes to htableUpTree
3: Create upTree instance
4: Put upTree in finallistOfallT reesNodes

Algorithm 14.26 createDAG

Description: Create DAG
Input: dagGraph
Output: DAG

1: Initialize htableDAG hash table
2: Add the nodes of dagGraph to htableDAG
3: Create DAG instance
4: Put DAG in finallistOfallDAGNodes
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14.1.4 Algorithms of Hierarchy Construction

The class diagram in Figure 14.7 shows an overview of the implementation part of the hierar-
chy construction. The Decomposition, Trees, and DAGs classes list the names of algorithms
(operations) used to build two-level hierarchy.

The call graph of the primary algorithms to create meta-nodes and meta-edges provided by
the class Decomposition is shown in Figure 14.8.

A call graph of primary algorithms to decompose the meta-graph using breadth first search
is shown in Figure 14.9.

The algorithm consists of several parts:

• startCreateMetaNodes (Algorithm 14.27)

The local data attributes and data structures are:

– allCycles: a hashtable (Table 14.2) containing all cycles.

– allT rees: a hashtable (Table 14.2) containing all trees.

– allDAGs: a hashtable (Table 14.2) containing all DAGs.

– notCollapsedGraph: a graph containing the original nodes and edges.

– newUpperLevelCollapsedFeatureGraph: a graph for storing all collapsed compo-
nents nodes.

It starts creating a meta-node for each decomposed subgraph.

– if the graph has cycles, it will call createMetaNodesByBFS Algorithm 14.28 to
start collapsing components.

– otherwise, if it has one tree or DAG, it will create only one meta-node.

• createMetaNodesByBFS (Algorithm 14.28)

The local data attributes and data structures are:

Figure 14.7: Class diagram for two-level hierarchy construction.



124 Chapter 14. Algorithms

(a) Call graph for creating meta-nodes

(b) Call graph for creating meta-edges

Figure 14.8: Call graphs for creating meta-graph

Figure 14.9: Call graph for detecting tree and DAG using breadth first search.

– newUpperLevelCollapsedFeatureGraph: a graph for storing all collapsed compo-
nents nodes.

– notCollapsedGraph: a graph containing the original nodes and edges.

– key: the key of a component.

– q: a Deque (Table 14.3) containing keys of components.

– connections: all decomposed subgraphs sharing nodes with a specific decomposed
subgraph.

– connectedTo: a hashtable (Table 14.2) containing a pair of decomposed subgraphs
sharing nodes.

– visited: a hashset (Table 14.4) of visited nodes.

– nodeCounter: a counter of the meta-nodes that were created.
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It performs breadth first search over connections (shared nodes with other topological
components) of topological components.

– it will add the current topological component to q (Line 6).

– it goes over all component keys removing its elements until it becomes empty (Lines
8-41).

∗ if the current topological component is cycle, it will get current cycle connections,
it will create a new meta-node adding it to newUpperLevelCollapsedFeature
Graph.

∗ if the current topological component is tree, it will get current tree connections, it
will create a new meta-node adding it to newUpperLevelCollapsedFeatureGraph.

∗ if the current topological component is DAG, it will get current DAG connec-
tions, it will create a new meta-node adding it to newUpperLevelCollapsedFeature
Graph.

∗ if current topological component has connections, it will visit them adding them
to q.

• startCreateMetaEdges (Algorithm 14.29)

The local data attributes and data structures are:

– newUpperLevelCollapsedFeatureGraph: a graph containing the collapsed compo-
nents as meta-nodes but it still has no meta-edges.

– notCollapsedGraph: a graph containing the original nodes and edges.

It starts creating meta-edges between meta-nodes.

– it goes over all nodes of newUpperLevelCollapsedFeatureGraph (Lines 1-6).

– if the current topological component is a tree or a DAG, it will call createMetaEdges
(Algorithm 14.30) to construct new meta-edges (Lines 3-5).

• createMetaEdges (Algorithm 14.30)

The local data attributes and data structures are:

– key: the key of a component.

– notCollapsedGraph: a graph containing the original nodes and edges.

– newUpperLevelCollapsedFeatureGraph: a graph containing the collapsed compo-
nents as nodes without edges.

– treeOrDAGCollapsedNode: a collapsed node of a tree or DAG component.

– listOfConnectionsKeys: a Deque (Table 14.3) containing the tree or DAG nodes
shared by cycles.

– incomingEdges: a hashtable (Table 14.2) to store single incoming edges.

– outgoingEdges: a hashtable (Table 14.2) to store single outgoing edges.

– doubleEdgesType1: a hashtable (Table 14.2) to store double edges (type 1).

– doubleEdgesType2 3: a hashtable (Table 14.2) to store double edges representing
two different direction paths between DAG and cycle (type2) and blocking edges
(type3).

It creates new meta-edges of the collapsed component.
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– it performs depth first search using listOfConnectionsKeys of component (Lines
10-29).

∗ for each node of tree component (DAG) shared by a certain cycle, it calls
startCheckCycleNodeEdges (Algorithm 14.31) to check edges of current node
(Lines 20-27).

∗ it considers different combination for found edges by calling combineDiffEdges
Types (Algorithm 14.32) (Line 28).

• startCheckCycleNodeEdges (Algorithm 14.31)

The local data attributes and data structures are:

– nodeConnCycle: a node of a tree or DAG component shared by cycle.

– treeOrDAGCollapsedNode: a collapsed node of a tree or DAG component.

– cycleCollapsedNode: a meta-node representing a cycle.

– tmpoutgoingEdges: a temporary hashtable (Table 14.2) to store single outgoing
edges.

– tmpincomingEdges: a temporary hashtable (Table 14.2) to store single incoming
edges.

– doubleEdgesType1: a hashtable (Table 14.2) to store double edges (type 1).

– doubleEdgesType2 3: a hashtable (Table 14.2) to store double edges representing
two different direction paths between DAG and cycle (type2) and blocking edge
(type3).

It checks edges of current node.

– It goes over all outgoing edges calling check CycleNodeOutgoingEdgesInDAGorTree
Algorithm 14.33 (Lines 2-11).

– It goes over all incoming edges calling check CycleNodeIncomingEdgesInDAGorTree
Algorithm 14.34 (Lines 14-23).

• check CycleNodeOutgoingEdgesInDAGorTree (Algorithm 14.33)

The local data attributes and data structures are:

– firstNode: first node (node shared by component and cycle).

– currentNode: current node along a path in component.

– treeOrDAGCollapsedNode: a collapsed node of component.

– cycleCollapsedNode: a collapsed node of cycle component.

– tmpoutgoingEdges: a temporary hashtable (Table 14.2) to store single outgoing
edges.

– doubleEdgesType2 3: a hashtable (Table 14.2) to store double edges representing
two different direction paths between component and cycle (type2) and blocking
edges (type3).

It checks the outgoing edges starting from firstNode to determine the type of the meta-
edge connected to DAGs and trees, if it is outgoing edge or blocking edge.

– if currentNode has out-degree ¡ 1 or is cycle node or out-degree � 0 and in-degree
� 1, it returns outgoing edge (Lines 1-5).
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– if currentNode has in-degree ¡� 2, it returns block edge if out-degree � 0 and it
returns outgoing edge if out-degree ¡ 0 (Lines 6-16).

– if currentNode has out-degree � 1 and in-degree � 1, it continues (Lines 17-21).

• check CycleNodeIncomingEdgesInDAGorTree (Algorithm 14.34)

The local data attributes and data structures are:

– firstNode: first node (node shared by component and cycle).

– currentNode: current node along a path in component.

– treeOrDAGCollapsedNode: a collapsed node of DAG component.

– cycleCollapsedNode: a collapsed node of cycle component.

– tmpincomingEdges: a temporary hashtable (Table 14.2) to store single incoming
edges.

– doubleEdgesType2 3: a hashtable (Table 14.2) to store double edges representing
two different direction paths between component and cycle (type2) and blocking
edges (type3).

It checks the incoming edges starting from firstNode to determine the type of the meta-
edge connected to DAGs and trees, if it is incoming edge or blocking edge.

– if currentNode has in-degree ¡ 1 or is cycle node or in-degree� 0 and out-degree� 1,
it returns incoming edge.

– if currentNode has out-degree ¡� 2, it returns block edge if in-degree � 0 and it
returns incoming edge if in-degree ¡ 0.

– if currentNode has out-degree � 1 and in-degree � 1, it continues.

• combineDiffEdgesTypes (Algorithm 14.32)

The local data attributes and data structures are:

– tmpoutgoingEdges: a temporary hashtable (Table 14.2) to store single outgoing
edges.

– tmpincomingEdges: a temporary hashtable (Table 14.2) to store single incoming
edges.

– doubleEdgesType1: a hashtable (Table 14.2) to store double edges (type 1).

– doubleEdgesType2 3: a hashtable (Table 14.2) to store double edges representing
two different direction paths between DAG and cycle (type2) and blocking edges
(type3).

– newUpperLevelCollapsedFeatureGraph: a graph containing the collapsed compo-
nents as nodes without edges.

It considers different combinations for found edges.

– It creates double edge, if number of double edges in doubleEdgesType1 is larger than
zero (Lines 4-6).

– If the number of tmpincomingEdges is larger than zero

∗ it creates double path edge, if the number of tmpoutgoingEdges is larger than
zero (Lines 8-10).
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∗ it creates incoming edge, otherwise (Lines 11-13).

– It creates outgoing edge, if number of edges in tmpoutgoingEdges is larger than zero
(Lines 15-17).

– Otherwise, it creates blocking edge (Lines 18-20).

The detection of tree and DAG in level two is similar to level one except it follows breadth
first search instead of depth first search with the following modifications in the detection algo-
rithm.

• check DownTreeByBFSLevelsAlgorithm (Algorithm 14.35)

The local data attributes and data structures are:

– pathEdges: a hashtable (Table 14.2) to store visited edges.

– htableStartRootNodes: a hashtable (Table 14.2) to store root nodes.

– graph: the directed graph to be checked.

– visited: a hashset (Table 14.4) containing the visited nodes.

– potentialOrderedRootsNodesList: an Arraylist (Table 14.1) containing potential
root nodes.

It checks if a component is a down-tree using breadth first search (Lines 4-29):

– if there is only one node having in-degree equals zero, than call
check DownTreePotentialRootNodeByBFS (Algorithm 14.36) using this node as
root (Lines 4-12).

– otherwise call check DownTreePotentialRootNodeByBFS (Algorithm 14.36) for
all nodes of potentialOrderedRootsNodesList (Lines 14-29).

• check DownTreePotentialRootNodeByBFS (Algorithm 14.36)

The local data attributes and data structures are:

– potentialRootNode: a potential root node.

– pathEdges: a hashtable (Table 14.2) to store visited edges.

– visited: a hashset (Table 14.4) containing visited nodes.

– prevLevel: a hashtable (Table 14.2) storing visited nodes of previous level.

– nextLevelV isited: a hashtable (Table 14.2) storing visited nodes of current level.

It performs breadth first search starting from potentialRootNode to check if a current
node is visited.

– it adds potentialRootNode to prevLevel (Line 2).

– while prevLevel has elements:

∗ it creates new nextLevelV isited (Line 5).

∗ while prevLevel has elements:

· it removes one node from prevLevel (Line 8).

· it goes through all unvisited outgoing edges of current node (Line 9-25).

· if target node of current node is visited, it return false (Lines 16-17).

· otherwise it adds target node to visited and nextLevelV isited (Lines 18-22).
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∗ prevLevel is assigned nextLevelV isited (Line 27).

– it returns true (Line 29).

• setAllEdgesAsNotV isited (Algorithm 14.37)

The local data attributes and data structures are:

– graph:the directed graph to be changed.

It sets all edges in the graph as visited.

Algorithm 14.27 startCreateMetaNodes

Description: Start creating meta-nodes of meta-graph
Input: notCollapsedGraph
Output: Collapsed topological components as meta-nodes

1: allCyclesÐ hashtable of all cycles
2: allT reesÐhashtable of all trees
3: allDAGsÐ hashtable of all DAGs
4: newUpperLevelCollapsedComponentGraphÐ an empty Graph
5: if # of allCycles elements ¡ 0 then
6: key Ð first cycle key
7: Call createMetaNodesByBFSpnewUpperLevelCollapsedComponentGraph,

notCollapsedGraph, key, nullq (Algorithm 14.28)
8: else
9: # elements of allT rees_ allDAGs � 1

10: Create one node parentNode
11: if # elements of allT rees � 1 then
12: for all childNode P all nodes of tree do
13: add childNode as child for parentNode
14: end for
15: else if # elements of allDAGs � 1 then
16: for all childNode P all nodes of DAG do
17: add childNode as child for parentNode
18: end for
19: end if
20: end if
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Algorithm 14.28 createMetaNodesByBFS

Description: Create meta-nodes by BFS
Input: newUpperLevelCollapsedFeatureGraph, notCollapsedGraph, key
Output: Collapsed topological components as meta-nodes in
newUpperLevelCollapsedFeatureGraph

1: connectionsÐ null
2: connectedToÐ a hashtable
3: q Ð a deque
4: visitedÐ a hashset
5: nodeCounter � �1
6: add key to q
7: add key to visited
8: while q is not empty do
9: key Ð remove first element from q

10: if key is cycle then
11: connectionsÐ the cycle nodes shared by trees and DAGs
12: Create one meta-node parentNode
13: for all childNode P all nodes of cycle do
14: add childNode as child for parentNode
15: end for
16: else if key is tree then
17: connectionsÐ the tree nodes shared by cycles
18: Create one meta-node parentNode
19: for all childNode P all nodes of tree do
20: add childNode as child for parentNode
21: end for
22: else if key is DAG then
23: connectionsÐ the DAG nodes shared by cycles
24: Create one meta-node parentNode
25: for all childNode P all nodes of DAG do
26: add childNode as child for parentNode
27: end for
28: end if
29: add parentNode to newUpperLevelCollapsedFeatureGraph
30: if connections is not null then
31: for all childKey P connections do
32: if childKey R visited then
33: add childKey to visited
34: add childKey to q
35: add childKey and key to connectedTo
36: else
37: add childKey and key to connectedTo
38: end if
39: end for
40: end if
41: end while
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Algorithm 14.29 startCreateMetaEdges

Description: Start creating meta-edges
Input: newUpperLevelCollapsedFeatureGraph, notCollapsedGraph
Output: newUpperLevelCollapsedFeatureGraph with new meta-edges

1: for all currentCollapsedNode P newUpperLevelCollapsedFeatureGraph do
2: key Ð key of currentCollapsedNode
3: if key is tree _ DAG then
4: call createMetaEdgespkey, notCollapsedGraph, newUpperLevelCollapsedFeatureGraph,

currentCollapsedNodeq Algorithm 14.30
5: end if
6: end for
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Algorithm 14.30 createMetaEdges

Description: Create meta-edges of tree component (DAG)
Input: key, notCollapsedGraph, newUpperLevelCollapsedFeatureGraph,
treeOrDAGCollapsedNode
Output: newUpperLevelCollapsedFeatureGraph with meta-edges

1: if key is tree then
2: connectionsÐ the tree nodes shared by cycles
3: currentTreeÐ the tree of key
4: else if key is DAG then
5: connectionsÐ the DAG nodes shared by cycles
6: currentDAGÐ the DAG of key
7: end if
8: if connections is not null ^# elements of connections ¡ 0 then
9: listOfConnectionsKeysÐ all keys of connections

10: while listOfConnectionsKeys not empty do
11: incomingEdgesÐ all single incoming edges (still empty)
12: outgoingEdgesÐ all single outgoing edges (still empty)
13: doubleEdgesType1 Ð double edges type 1 (still empty)
14: doubleEdgesType2 3 Ð double edges type 2 and blocking edges type 3 (still empty)
15: connKey Ð remove first element from listOfConnectionsKeys
16: connÐ the tree component (DAG) nodes shared by cycle of key connKey
17: cycleCollapsedNode Ð a node with key connKey in

newUpperLevelCollapsedFeatureGraph
18: tmpincomingEdgesÐ all potential incoming edges (still empty)
19: tmpoutgoingEdgesÐ all potential outgoing edges (still empty)
20: for all nodeConn P conn do
21: if key is tree then
22: nodeConnCycleÐ get from currentTree nodes the node of nodeConn
23: else if key is DAG then
24: nodeConnCycleÐ get from currentDAG nodes the node of nodeConn
25: end if
26: Call startCheckCycleNodeEdges (nodeConnCycle, treeOrDAGCollapsedNode,

cycleCollapsedNode, tmpoutgoingEdges, doubleEdgesType2 3, tmpincomingEdges) (Al-
gorithm 14.31)

27: end for
28: Call combineDiffEdgesTypes (tmpoutgoingEdges, tmpincomingEdges,

doubleEdgesType1, doubleEdgesType2 3, newUpperLevelCollapsedFeatureGraph)
(Algorithm 14.32)

29: end while
30: end if
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Algorithm 14.31 startCheckCycleNodeEdges

Description: Start check cycle node edges
Input: nodeConnCycle, treeOrDAGCollapsedNode, cycleCollapsedNode,
tmpoutgoingEdges, tmpincomingEdges, doubleEdgesType1, doubleEdgesType2 3
Output: tmpoutgoingEdges, tmpincomingEdges, doubleEdgesType1, doubleEdgesType2 3

1: if out-degree of nodeConnCycle ¡ 0 then
2: for all outEdge P outgoing edges of nodeConnCycle do
3: isDoubleEdgeÐ Call isBackEdge(incoming edges of nodeConnCycle, outEdge) (Al-

gorithm 14.38)
4: if isDoubleEdge is true then
5: Create double edge (doubleTyp1)
6: Add the double edge to doubleEdgesType1
7: else
8: targetNodeÐ end node of outEdge
9: check CycleNodeOutgoingEdgesInDAGorTree(nodeConnCycle, targetNode,

treeOrDAGCollapsedNode, cycleCollapsedNode, tmpoutgoingEdges,
doubleEdgesType2 3q (Algorithm 14.33)

10: end if
11: end for
12: end if
13: if in-degree of nodeConnCycle ¡ 0 then
14: for all inEdge P incoming edges of nodeConnCycle do
15: isDoubleEdge Ð Call isBackEdge(outgoing edges of nodeConnCycle, inEdge) (Al-

gorithm 14.38)
16: if isDoubleEdge is true then
17: Create double edge (doubleTyp1)
18: Add the double edge to doubleEdgesType1
19: else
20: sourceNodeÐ start node of inEdge
21: check CycleNodeIncomingEdgesInDAGorTreepnodeConnCycle, sourceNode,

treeOrDAGCollapsedNode, cycleCollapsedNode, tmpincomingEdges,
doubleEdgesType2 3q (Algorithm 14.34)

22: end if
23: end for
24: end if
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Algorithm 14.32 combineDiffEdgesType

Description: Combine different edge types
Input: tmpoutgoingEdges, tmpincomingEdges, doubleEdgesType1, doubleEdgesType2 3,
newUpperLevelCollapsedFeatureGraph
Output: combined edge added to newUpperLevelCollapsedFeatureGraph

1: numberOfDoubleEdgesType1 Ð number of double edges in doubleEdgesType1
2: numberOfOutgoingEdgesÐ number of outgoing edges in tmpoutgoingEdges
3: numberOfIncomingEdgesÐ number of incoming edges in tmpincomingEdges
4: if numberOfDoubleEdgesType1 ¡ 0 then
5: Get double edge from doubleEdgesType1
6: Add the double edge to newUpperLevelCollapsedFeatureGraph
7: else if numberOfIncomingEdges ¡ 0 then
8: if numberOfOutgoingEdges ¡ 0 then
9: Create double path edge

10: Add the double path edge to newUpperLevelCollapsedFeatureGraph
11: else
12: Get incoming edge from tmpincomingEdges
13: Add the incoming edge to newUpperLevelCollapsedFeatureGraph
14: end if
15: else if numberOfOutgoingEdges ¡ 0 then
16: Get outgoing edge from tmpoutgoingEdges
17: Add the outgoing edge to newUpperLevelCollapsedFeatureGraph
18: else
19: Get blocking edge from doubleEdgesType2 3
20: Add the blocking edge to newUpperLevelCollapsedFeatureGraph
21: end if
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Algorithm 14.33 check CycleNodeOutgoingEdgesInDAGorTree

Description: Check cycle node outgoing edges in DAG or tree component
Input: firstNode, currentNode, treeOrDAGCollapsedNode, cycleCollapsedNode,
tmpoutgoingEdges, doubleEdgesType2 3
Output: tmpoutgoingEdges, doubleEdgesType2 3

1: if out-degree of currentNode ¡ 1 _ currentNode P cycles nodes _ (out-degree of
currentNode � 0^ in-degree of currentNode � 1) then

2: Create outgoing edge newOutgoingEdge having cycleCollapsedNode and
treeOrDAGCollapsedNode as start and end nodes

3: Add newOutgoingEdge to tmpoutgoingEdges
4: Return
5: end if
6: if in-degree of currentNode ¡� 2 then
7: if out-degree of currentNode � 0 then
8: Create blocking edge (doubleTyp3)
9: Add the blocking edge to doubleEdgesType2 3

10: Return
11: else if out-degree of currentNode ¡ 0 then
12: Create outgoing edge newOutgoingEdge
13: Add newOutgoingEdge to tmpoutgoingEdges
14: Return
15: end if
16: end if
17: if in-degree of currentNode � out-degree of currentNode^ out-degree of currentNode � 1

then
18: outEdgeÐ outgoing edges of currentNode
19: targetNodeÐ target node of outEdge
20: Call check CycleNodeOutgoingEdgesInDAGorTreepfirstNode, targetNode,

treeOrDAGCollapsedNode, cycleCollapsedNode, tmpoutgoingEdges,
doubleEdgesType2 3q (Algorithm 14.33)

21: end if

Algorithm 14.34 check CycleNodeIncomingEdgesInDAGorTree

Description: Check cycle node incoming edges in DAG or tree component
Input: firstNode, currentNode, treeOrDAGCollapsedNode, cycleCollapsedNode,
tmpincomingEdges, doubleEdgesType2 3
Output: tmpincomingEdges, doubleEdgesType2 3

1: {This algorithm works analogously to Algorithm 14.33}
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Algorithm 14.35 check DownTreeByBFSLevels

Description: Check down-tree by BFS levels
Input: pathEdges, htableStartRootNodes, graph
Output: htableStartRootNodes, return True iff graph is Down Tree

1: componentSizeÐ # of graph nodes
2: visitedÐ new HashSet
3: resultÐ true
4: if # of nodes of in-degree zero � 1 then
5: Clear htableStartRootNodes
6: Add the node of in-degree zero to htableStartRootNodes as root
7: Add the root node to visited
8: Call setAllEdgesAsNotV isitedpgraphq (Algorithm 14.37)
9: resultÐ Call check DownTreePotintialRootNodeByBFS(node, pathEdges, visited)

10: if result^# nodes in visited � componentSize then
11: Return true
12: end if
13: else
14: potentialOrderedRootsNodesListÐ all nodes of in-degree zero
15: Add all nodes having # one direction incoming edges � zero at the end of

potentialOrderedRootsNodesList
16: Add all nodes having only double edges at the end of potentialOrderedRootsNodesList
17: for all node P potentialOrderedRootsNodesList do
18: Clear htableStartRootNodes
19: Clear visited
20: Clear pathEdges
21: Add node id to visited
22: Call setAllEdgesAsNotV isitedpgraphq (Algorithm 14.37)
23: Add node to htableStartRootNodes
24: result Ð Call check DownTreePotentialRootNodeByBFS(node, pathEdges,

visited)
25: if result^# nodes in visited � componentSize then
26: Return true
27: end if
28: end for
29: end if
30: Return false
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Algorithm 14.36 check DownTreePotentialRootNodeByBFS

Description: Check down-tree potential root node by BFS
Input: potentialRootNode, pathEdges, visited
Output: visited, return True iff down-tree

1: prevLevel new Hashtable
2: Add potentialRootNode to prevLevel
3: currentNode �null
4: while #nodes of prevLevel ¡ 0 do
5: nextLevelV isited new Hashtable
6: while #nodes of prevLevel ¡ 0 do
7: currentNodeÐ a node P prevLevel
8: Remove currentNode from prevLevel
9: for all outgoingEdge P all outgoing edges of currentNode do

10: if outgoingEdge is not visited then
11: Set outgoingEdge as visited
12: sourceNodeOfOutgoingEdgeÐ source node of outgoingEdge
13: targetNodeOfOutgoingEdgeÐ target node of outgoingEdge
14: outgoingEdgeIdÐ id of outgoingEdge
15: if Call isBackEdge(pathEdges, outgoingEdge) (Algorithm 14.38) then
16: if id of targetNodeOfOutgoingEdge P visited then
17: Return false
18: else
19: Add id of targetNodeOfOutgoingEdge to visited
20: Add targetNodeOfOutgoingEdge to nextLevelV isited
21: Add outgoingEdge to pathEdges
22: end if
23: end if
24: end if
25: end for
26: end while
27: prevLevel Ð nextLevelV isited
28: end while
29: Return true

Algorithm 14.37 setAllEdgesAsNotV isited

Description: Sets all edges of graph as not visited
Input: graph
Output: graph with all edges marked as visited

1: for all node P graph do
2: edgesÐ new Hashset containing incoming edges of node
3: for all edge P edges do
4: Set edge as not visited
5: end for
6: end for
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Algorithm 14.38 isBackEdge

Description: Check if an edge is back edge
Input: pathEdges, edge
Output: true iff edge is a back edge of another edge

1: testEdgeÐ reverse id of edge
2: mÐ an edge P pathEdges having id testEdge
3: if m �null then
4: Return true
5: else
6: Return false
7: end if
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14.2 Drawing Algorithms

14.2.1 Algorithms of Computing Size of all Meta Nodes

From the layouts computed, their bounding box (tree, DAG) or bounding sphere (ntCS) is
computed. Knowing the area size for each meta-node in level one, the drawings are stored
to be used later for drawing the final layout. Then, the tree or the DAG composed of the
meta-nodes in level one, which is represented by a meta-node in level two, is drawn using the
area-aware versions of the tree or the DAG drawing algorithms, respectively, based on the area
size of each meta-node in level one. Finally, the total area of the drawing is determined and
the drawing is stored to be used for drawing the final layout.

The class diagram in Figure 14.10 gives an overview over the class structure for computing
the size of all meta nodes. All global data attributes (variables) and data structures that are
related to computing the area size are listed in this diagram. The “TwoLevelGraphDrawing-
Panel” class contains the names of the algorithms (operations) used to compute the area size
of all meta-nodes.

The global data attributes and data structures of TwoLevelGraphDrawingPanel class are:

• startPosition: an initial point that used to start drawing.

Figure 14.10: Class diagram for computing the size of all meta nodes
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Figure 14.11: Call graph for the algorithms for computing meta-node sizes and for drawing
subgraphs of the original graph provided by the TwoLevelGraphDrawingPanel class in Fig-
ure 14.10.

• finalWCCsDrawElements: an object from Class ComponentsWCCsDrawElementsPanel
that contains final graphic elements.

• rootAllWCCs: a root meta-node (virtual meta-node) of all two-levels hierarchies

• twoLevelsDecompositions: an array of LinkedList (Deque, Table 14.3), where each list
contains decompositions of one wCC (original graph) and its meta-graph.

• twoLevelsGraph: an array of LinkedList (Deque, Table 14.3), where each list contains
one wCC (original graph) and its meta-graph.

• wccNumber: number of current wCC

A call graph of algorithms used for computing the area size of all meta-nodes is shown in
Figure 14.11. The algorithm consists of several parts:

• computeSizeMetaNodesAllLevels (Algorithm 14.39)

The local data attributes and data structures are:

– twoLevelsDecompositions: an array of LinkedList (Deque, Table 14.3), where each
list contains decompositions of one wCC (original graph) and its meta-graph.

– wccNumber: number of current wCC

– twoLevelsGraph: an array of LinkedList (Deque, Table 14.3), where each list con-
tains one wCC (original graph) and its meta-graph.

– dummyRootHierarchy: dummy root meta-node of two-levels hierarchy for current
wCC

The algorithm finds the size of meta-nodes in level one first, then it accumulates them in
level two.

– For each level, it calls startComputeSizeMetaNodesOneLevel (Algorithm 14.40)
to compute area size of all meta-nodes (Lines 1-3).

• startComputeSizeMetaNodesOneLevel (Algorithm 14.40)

The local data attributes and data structures are:

– decomposition: a decomposition of current level

– nonEmptyGraph: a graph of current level
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– level index: number of current level

– dummyRootHierarchy: a dummy root meta-node of two-level hierarchy

– allCycles: a hashtable (Table 14.2) containing all ntCS

– allT rees: a hashtable (Table 14.2) containing all trees

– allDAGs: a hashtable (Table 14.2) containing all DAGs

– tree: a Tree

– dag: a DAG

The algorithm computes the sizes of meta-nodes in a single level and drawing of the
subgraphs of the original graph.

– For each meta-node, it calls Algorithm 14.41 for cycle meta-nodes (Line 5), Algo-
rithm 14.46 for DAG meta-nodes (Line 8), and Algorithm 14.43 for tree meta-nodes
(Line 11).

• computeAreaSizeCycleMetaNode (Algorithm 14.41)

The local data attributes and data structures are:

– cycle: a Cycle

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– dummyRootHierarchy: a dummy root meta-node of the two-level hierarchy

– level index: number of the current level

Please note that decomposition and nonEmptyGraph provide information for internally
use in the algorithm. The algorithm draws a subgraph representing a cycle and finds the
radius of the smallest circle bounding it.

– Draw ntCS using Algorithm 14.42 (Line 3).

– Call Algorithm 14.48 to find the meta-node representing the ntCS in the two-level
hierarchy (Line 4).

– If the meta-node is folded, use a fixed value for the size of the meta-node (Lines 5-6).

– Otherwise, get the radius of the cyclic drawing and use its radius as size of the
meta-node including a border area (Lines 7-9).

– Store the size of the meta-node and the cyclic drawing in the meta-node (Lines
10-12).

• computeAreaSizeTreeMetaNode (Algorithm 14.43)

The local data attributes and data structures are:

– tree: a Tree

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– dummyRootHierarchy: a dummy root meta-node of the two-level hierarchy

– level index: number of current level
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Please note that decomposition and nonEmptyGraph provide information for internally
use in the algorithm. The algorithm draws a subgraph representing a tree and finds the
height and the width of the smallest rectangle surrounding it.

– Draw down-tree (up-tree) component using Algorithm 14.44 (Algorithm 14.45) (Lines
6-10).

– Call Algorithm 14.48 to find the meta-node representing the tree in the two-level
hierarchy (Line 11).

– If the meta-node is folded, use a fixed value for the size of the meta-node (Lines
12-14).

– Otherwise, get the width and the height of the tree drawing and use them as size of
the meta-node including a border area (Lines 15-20).

– Store the size of the meta-node and the tree drawing in the meta-node (Lines 21-23).

• computeAreaSizeDAGMetaNode (Algorithm 14.46)

The local data attributes and data structures are:

– dag: a DAG

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– dummyRootHierarchy: a dummy root meta-node of the two-level hierarchy

– level index: number of current level

Please note that decomposition and nonEmptyGraph provide information for internally
use in the algorithm. The algorithm draws a subgraph representing a DAG and finds the
height and the width of the smallest rectangle surrounding it.

– Draw DAG component using Algorithm 14.47 (Line 6).

– Call Algorithm 14.48 to find the meta-node representing the DAG in the two-level
hierarchy (Line 7).

– If the meta-node is folded, use a fixed value for the size of the meta-node (Lines
8-10).

– Otherwise, get the width and the height of the DAG drawing and use them as size
of the meta-node including a border area (Lines 11-16).

– Store the size of the meta-node and the DAG drawing in the meta-node (Lines
17-19).

• findMetaNode (Algorithm 14.48)

The local data attributes and data structures are:

– root: a meta-node representing a subtree of the meta-node hierarchy

– id: the id of a meta-node

The algorithm searches for the meta-node having an id that equals the value of id.

– If root is the wanted meta-node, return it (Lines 1-2).

– Otherwise for each child of root, call findMetaNode (Algorithm 14.48) (Lines 3-7).



14.2. Drawing Algorithms 143

• drawOneIsolatedCycle (Algorithm 14.42)

The local data attributes and data structures are:

– cycle: a Cycle

– startPoint: a start point for the drawing

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– color: a color for the drawing

The algorithm calls Bachmaier’s algorithm [22] implemented in the Gravisto Toolkit [23]
to draw cycle.

• drawOneIsolatedDAG (Algorithm 14.47)

The local data attributes and data structures are:

– dag: a DAG.

– startPoint: a start point for the drawing

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– color: a color for the drawing

The algorithm uses the implementation of the Sugiyama algorithm [87] in the NetBeans
Visual Library [79] to draw dag.

• drawOneIsolatedDTTree (Algorithm 14.44)

The local data attributes and data structures are:

– tree: a Down Tree

– startPoint: a start point for the drawing

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– color: a color for the drawing

The algorithm uses the implementation of the improved Walker’s algorithm [37] in the
abego library TreeLayout [6] to draw down tree.

• drawOneIsolatedUPTree (Algorithm 14.45)

The local data attributes and data structures are:

– tree: an Up Tree

– startPoint: a start point for the drawing

– nonEmptyGraph: a graph of the current level

– decomposition: a decomposition of the current level

– color: a color for the drawing

The algorithm uses the implementation of the improved Walker’s algorithm [37] in abego
TreeLayout [6] to draw up tree.
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Algorithm 14.39 computeSizeMetaNodesAllLevels

Description: Compute the sizes of meta-nodes in all levels of the hierarchy
Input: twoLevelDecompositions, wccNumber, twoLevelGraph, dummyRootHierarchy
Output: All sizes of the meta-nodes in the hierarchy and the individual drawings
of the subgraphs

1: for level indexÐ 0, level index   size of twoLevelDecompositionsrwccNumbers do
2: Call startComputeSizeMetaNodesOneLevel(twoLevelDecompositionsrwccNumbers.get
plevel indexq, twoLevelGraphrwccNumbers.getplevel indexq, level index,
dummyRootHierarchy) (Algorithm 14.40)

3: end for

Algorithm 14.40 startComputeSizeMetaNodesOneLevel

Description: Compute size of meta-nodes in a level and drawing of the subgraphs
of the original graph
Input: decomposition, nonEmptyGraph, level index, dummyRootHierarchy
Output: The sizes of the meta-nodes in a level

1: allCyclesÐ get from decomposition a hashtable of all cycles
2: allT reesÐ get from decomposition a hashtable of all trees
3: allDAGsÐ get from decomposition a hashtable of all DAGs
4: for all cycle P allCycles do
5: Call computeAreaSizeCycleMetaNode(cycle, nonEmptyGraph, decomposition,

dummyRootHierarchy, level index) (Algorithm 14.41)
6: end for
7: for all dag P allDAGs do
8: Call computeAreaSizeDAGMetaNode(dag, nonEmptyGraph, decomposition,

dummyRootHierarchy, level index) (Algorithm 14.46)
9: end for

10: for all tree P allT rees do
11: Call computeAreaSizeTreeMetaNode(tree, nonEmptyGraph, decomposition,

dummyRootHierarchy, level index) (Algorithm 14.43)
12: end for
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Algorithm 14.41 computeAreaSizeCycleMetaNode

Description: Compute a drawing of a cycle represented by a meta-node and the
cycle’s size
Input: cycle, nonEmptyGraph, decomposition, dummyRootHierarchy, level index
Output: drawing of a cycle and the cycle’s size

1: startPointÐ a point with (0,0) coordinates
2: color Ð BLACK
3: cyclicSugiyamaP lotÐ call drawOneIsolatedCycle (cycle, startPoint, nonEmptyGraph,

decomposition, color) (Algorithm 14.42)
4: metaNode Ð call findMetaNode(dummyRootHierarchy, id of cycle) (Algorithm 14.48)

to find the meta-node representing the cycle in the hierarchy
5: if metaNode is folded then
6: radiusBoundingCircleÐ 5
7: else
8: radiusBoundingCircleÐ radius of cyclicSugiyamaP lot
9: end if

10: Store radiusBoundingCircle � 2 as height of metaNode in hierarchy and the graph of
decomposition

11: Store radiusBoundingCircle � 2 as width of metaNode in hierarchy and the graph of
decomposition

12: Store cyclicSugiyamaP lot in metaNode

Algorithm 14.42 drawOneIsolatedCycle

Description: Draws a cycle using Bachmaier’s algorithm [22]
Input: cycle, startPoint, nonEmptyGraph, decomposition, color
Output: a cyclic drawing

1: call Bachmaier’s algorithm [22] implemented in the Gravisto Toolkit [23] to draw cycle
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Algorithm 14.43 computeAreaSizeTreeMetaNode

Description: Compute a drawing of a tree represented by a meta-node and the
tree’s size.
Input: tree, nonEmptyGraph, decomposition, dummyRootHierarchy, level index
Output: drawing of a tree and the tree’s size

1: startPointÐ a point with (0,0) coordinate
2: color Ð blue
3: if level index � 0 then
4: color Ð black
5: end if
6: if tree is down-tree then
7: treeLayout Ð call drawOneIsolatedDTTree (tree, startPoint, nonEmptyGraph,

decomposition, color) (Algorithm 14.44)
8: else if tree is up-tree then
9: treeLayout Ð call drawOneIsolatedUPTree (tree, startPoint, nonEmptyGraph,

decomposition, color) (Algorithm 14.45)
10: end if
11: metaNode Ð call findMetaNode(dummyRootHierarchy, id of tree) (Algorithm 14.48)

to find the meta-node representing the tree in the hierarchy
12: if metaNode is folded then
13: heightBoundingTreeÐ 5
14: widthBoundingTreeÐ 5
15: else
16: heightBoundingTreeÐ height of treeLayout
17: widthBoundingTreeÐ width of treeLayout
18: Add 25 to heightBoundingTree
19: Add 40 to widthBoundingTree
20: end if
21: Store heightBoundingTree as height of metaNode in hierarchy and the graph of

decomposition
22: Store widthBoundingTree as width of metaNode in hierarchy and the graph of

decomposition
23: Store treeLayout in metaNode

Algorithm 14.44 drawOneIsolatedDTTree

Description: Draw a down-tree using the improved Walker’s algorithm [37]
Input: tree, startPoint, nonEmptyGraph, decomposition, color
Output: a Down-tree drawing

1: call the improved Walker’s algorithm [37] implemented in the abego library TreeLayout [6]
to draw tree
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Algorithm 14.45 drawOneIsolatedUPTree

Description: Draw an up-tree using the improved Walker’s algorithm [37]
Input: tree, startPoint, nonEmptyGraph, decomposition, color
Output: an Up-tree drawing

1: call the improved Walker’s algorithm [37] implemented in the abego library TreeLayout [6]
to draw tree

Algorithm 14.46 computeAreaSizeDAGMetaNode

Description: Compute a drawing of a DAG represented by a meta-node and the
DAG’s size
Input: dag, nonEmptyGraph, decomposition, dummyRootHierarchy, level index
Output: a drawing of a DAG and the DAG’s size

1: startPointÐ a point with (0,0) coordinate
2: color Ð blue
3: if level index � 0 then
4: color Ð black
5: end if
6: dagLayout Ð call drawOneIsolatedDAG (dag, startPoint, nonEmptyGraph,

decomposition, color) (Algorithm 14.47)
7: metaNodeÐ call findMetaNode(dummyRootHierarchy, id of dag) (Algorithm 14.48) to

find the meta-node representing the DAG in the hierarchy
8: if metaNode is folded then
9: heightBoundingDAGÐ 5

10: widthBoundingDAGÐ 5
11: else
12: heightBoundingDAGÐ height of dagLayout
13: widthBoundingDAGÐ width of dagLayout
14: Add 25 to heightBoundingDAG
15: Add 40 to widthBoundingDAG
16: end if
17: Set heightBoundingDAG as height of metaNode in hierarchy and the graph of

decomposition
18: Set widthBoundingDAG as width of metaNode in hierarchy and the graph of

decomposition
19: Store dagLayout in metaNode

Algorithm 14.47 drawOneIsolatedDAG

Description: Draw a DAG using the Sugiyama algorithm [87]
Input: dag, startPoint, nonEmptyGraph, decomposition, color
Output: a DAG drawing

1: Call Sugiyama algorithm [87] implemented in the NetBeans Visual Library [79] to draw dag
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Algorithm 14.48 findMetaNode

Description: Retrieve (Find) meta-node by its id
Input: root, id
Output: the (meta-)node having id id

1: if id � id of root then
2: Return root
3: else
4: for all child P all children of root do
5: Call findMetaNode(child, id) (Algorithm 14.48)
6: end for
7: end if
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14.2.2 Algorithms of Final Drawing

The class diagram in Figure 14.12 shows an overview of the implementation part for the final
drawing. All global data attributes (variables) and data structures that are related to drawing
the final layout are listed in these diagrams. The call graph of the algorithms used for the final
drawing is shown in Figure 14.13.
The Algorithm consists of several parts to perform the final drawing:

• drawTwoLevelsAreaAwareHierarchy (Algorithm 14.49)

The local data attributes and data structures are:

– twoLevelsDecompositions: a LinkedList (Deque, Table 14.3) containing decompo-
sitions of the original graph and the meta-graph

– wccNumber: number of wCC

– startPoint: a drawing start point

– twoLevelsGraph: a LinkedList (Deque, Table 14.3) containing the original graph
and the meta-graph

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements for the final drawing

Figure 14.12: Class diagram for final drawing
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Figure 14.13: Call graph for final drawing algorithms provided by TwoLevelGraphDrawingPanel
class in Figure 14.12.

– parentMetaNode: parent meta-node in two-levels hierarchy

– showCycleLeavesLevel: boolean variable to show cycle drawing elements iff true

Starting from the meta-node belonging to level two in the hierarchy, the algorithm places
the area-aware layout representing the meta-graph horizontally. Then, it translates each
layout representing a subgraph of the original graph associated with the child meta-node
in level one to its dedicated area in the area-aware layout.

Let us assume, that the hierarchy has additionally a virtual root with a predetermined
start position. Moreover, the virtual root has virtual children representing one WCC each
considered as a parent of the meta-node in level two. If there are more than one WCC,
the width of the current area-aware layout will be added to the start position of the next
area-aware layout.

– For each child meta-node of parent meta-node.

∗ If the meta-node is in level one, it calls drawLevelOneMetaNodes (Algorithm
14.50) (Lines 4-5).

∗ If the meta-node is in level two, it calls drawLevelTwoMetaNodes (Algo-
rithm 14.54) and calls drawTwoLevelsAreaAwareHierarchy (Algorithm 14.49),
recursively (Lines 7-10).

• drawLevelOneMetaNodes (Algorithm 14.50)

The local data attributes and data structures are:

– key: id of child meta-node

– childMetaNode: child meta-node

– showCycleLeavesLevel: boolean variable to show cycle drawing elements iff true

– startPoint: a drawing start point

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements (arrows, curves, and points)
for the final drawing

– currentIndex: level number of child meta-node

The algorithm works as follows:

– If key represents the id of cycle, it calls Algorithm 14.51 (Lines 1-2).

– If key represents the id of DAG, it calls Algorithm 14.52 (Lines 3-4).

– If key represents the id of Tree, it calls Algorithm 14.53 (Lines 5-7).
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• drawLevelOneCycleMetaNode (Algorithm 14.51)

The local data attributes and data structures are:

– childMetaNode: child meta-node

– showCycleLeavesLevel: boolean variable to show cycle drawing elements iff true

– startPoint: a drawing start point

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements for the final drawing

– currentIndex: level number of child meta-node

The algorithm works as follows:

– It translates its associated cyclic layout to the dedicated area inside the area-aware
layout of the parent meta-node (Line 7)

– and adds its drawing elements to the final drawing (Lines 8-13).

• drawLevelOneDAGMetaNode (Algorithm 14.52)

The local data attributes and data structures are:

– childMetaNode: child meta-node

– showCycleLeavesLevel: boolean variable to show cycle drawing elements iff true

– startPoint: a drawing start point

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements for the final drawing

– currentIndex: level number of child meta-node

The algorithm works as follows:

– It translates its associated DAG layout to the dedicated area inside the area-aware
layout of the parent meta-node (Line 7)

– and adds its drawing elements to the final drawing (Lines 8-10).

• drawLevelOneTreeMetaNode (Algorithm 14.53)

The local data attributes and data structures are:

– childMetaNode: child meta-node

– showCycleLeavesLevel: boolean variable to show cycle drawing elements iff true

– startPoint: a drawing start point

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
that contains a temporary list of drawing elements for the final drawing

– currentIndex: level number of child meta-node

The algorithm works as follows:

– It translates its associated tree layout to the dedicated area inside the area-aware
layout of the parent meta-node (Line 7)

– and adds its drawing elements to the final drawing (Lines 8-10).
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• drawLevelTwoMetaNodes (Algorithm 14.54)

The local data attributes and data structures are:

– currentIndex: level number of child meta-node

– key: id of child meta-node

– childMetaNode: child meta-node

– startPoint: a drawing start point

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements for the final drawing

– twoLevelsDecompositions: a LinkedList (Deque, Table 14.3) containing decompo-
sitions of the original graph and the meta-graph

– wccNumber: number of wCC

– twoLevelsGraph: a LinkedList (Deque, Table 14.3) containing the original graph
and the meta-graph

– showCycleLeavesLevel: boolean variable to show cycle drawing elements iff true

The algorithm works as follows:

– If key represents the id of DAG, it calls drawLevelTwoDAGMetaNode (Algo-
rithm 14.55) (Lines 1-2).

– If key represents the id of tree, it calls drawLevelTwoTreeMetaNode (Algorithm
14.56) (Lines 3-5).

• drawLevelTwoDAGMetaNode (Algorithm 14.55)

The local data attributes and data structures are:

– childMetaNode: child meta-node

– startPoint: a drawing start point

– currentIndex: level number of the child meta-node

– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements for the final drawing

The algorithm works as follows:

– It translates its associated DAG area-aware layout to the predetermined total area
(Line 7),

– then it associates the position for each node in the layout with the respective meta-
node in level one (Lines 8-11)

– and adds the drawing elements of the area-aware layout to the final drawing (Line
12).

• drawLevelTwoTreeMetaNode (Algorithm 14.56)

The local data attributes and data structures are:

– childMetaNode: child meta-node

– startPoint: a drawing start point

– currentIndex: level number of child meta-node
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– tmpWCCsDrawElements: an object from Class ComponentsWCCsDrawElements
Panel that contains a temporary list of drawing elements for the final drawing

The algorithm works as follows:

– It translates its associated tree area-aware layout to the predetermined total area
(Line 7),

– then it associates the position for each node in the layout with the respective meta-
node in level one (Lines 8-11)

– and adds the drawing elements of the area-aware layout to the final drawing (Line
12).

Algorithm 14.49 drawTwoLevelsAreaAwareHierarchy

Description: Draw two-levels area-aware hierarchy
Input: twoLevelsDecompositions, wccNumber, startPoint, twoLevelsGraph,
tmpWCCsDrawElements, parentMetaNode, showCycleLeavesLevel
Output: drawing for a meta-graph that contains edges

1: for all childMetaNode P all children of parentMetaNode do
2: key � id of childMetaNode
3: currentIndexÐ level of childMetaNode
4: if currentIndex � 0 then
5: Call drawLevelOneMetaNodes (key, childMetaNode, showCycleLeavesLevel,
6: startPoint, tmpWCCsDrawElements, currentIndex)
7: else
8: Call drawLevelTwoMetaNodes (currentIndex, key, childMetaNode, startPoint,

tmpWCCsDrawElements, twoLevelsDecompositions, wccNumber, twoLevelsGraph,
showCycleLeavesLevel)

9: Call drawTwoLevelsAreaAwareHierarchy (twoLevelsDecompositions,
wccNumber, startPoint, twoLevelsGraph, tmpWCCsDrawElements, childMetaNode,
showCycleLeavesLevel)

10: end if
11: end for
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Algorithm 14.50 drawLevelOneMetaNodes

Description: Draw level one meta-nodes
Input: key, childMetaNode, showCycleLeavesLevel, startPoint,
tmpWCCsDrawElements, currentIndex
Output: drawing for a meta-graph that contains no edges

1: if key is an id of cycle then
2: Call drawLevelOneCycleMetaNode (childMetaNode, showCycleLeavesLevel,

startPoint, tmpWCCsDrawElements, currentIndex)
3: else if key is an id of DAG then
4: Call drawLevelOneDAGMetaNode (childMetaNode, showCycleLeavesLevel,

startPoint, tmpWCCsDrawElements, currentIndex)
5: else if key is an id of tree then
6: Call drawLevelOneTreeMetaNode (childMetaNode, showCycleLeavesLevel,

startPoint, tmpWCCsDrawElements, currentIndex)
7: end if

Algorithm 14.51 drawLevelOneCycleMetaNode

Description: Draw level one cycle meta-node
Input: childMetaNode, showCycleLeavesLevel, startPoint, tmpWCCsDrawElements,
currentIndex
Output: drawing of cyclic sub-graph associated with meta-node

1: cyclicSugiyamaP lotÐ layout of cycle
2: if showCycleLeavesLevel then
3: coordinates of metaPointÐ summation of childMetaNode and startPoint coordinates

increased by half of width and height childMetaNode
4: else
5: coordinates of metaPoint Ð coordinates of childMetaNode increased by half of width

and height childMetaNode
6: end if
7: translate drawing elements of cyclicSugiyamaP lot toward metaPoint
8: if showCycleLeavesLevel ^ childMetaNode is not folded then
9: Store drawing elements of childMetaNode in tmpWCCsDrawElements

10: Store final coordinates of upper left point and bottom right point in childMetaNode
adding startPoint coordinates to them

11: else
12: Store final coordinates of upper left point and bottom right point in childMetaNode
13: end if
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Algorithm 14.52 drawLevelOneDAGMetaNode

Description: Draw level one DAG meta-node
Input: childMetaNode, showCycleLeavesLevel, startPoint, tmpWCCsDrawElements,
currentIndex
Output: drawing DAG sub-graph associated with meta-node

1: dagLayoutÐ layout of DAG
2: if showCycleLeavesLevel then
3: coordinates of metaPointÐ summation of childMetaNode and startPoint coordinates

increased by half of width and height childMetaNode
4: else
5: coordinates of metaPoint Ð coordinates of childMetaNode increased by half of width

and height childMetaNode
6: end if
7: translate drawing elements of dagLayout toward metaPoint
8: if childMetaNode is not folded then
9: Store drawing elements of childMetaNode in tmpWCCsDrawElements

10: end if
11: if showCycleLeavesLevel ^ childMetaNode is not folded then
12: Store final coordinates of upper left point and bottom right point in childMetaNode

adding startPoint coordinates to them
13: else
14: Store final coordinates of upper left point and bottom right point in childMetaNode
15: end if

Algorithm 14.53 drawLevelOneTreeMetaNode

Description: Draw level one tree meta-node
Input: childMetaNode, showCycleLeavesLevel, startPoint, tmpWCCsDrawElements,
currentIndex
Output: drawing tree sub-graph associated with meta-node

1: treeLayoutÐ layout of tree
2: if showCycleLeavesLevel then
3: coordinates of metaPointÐ summation of childMetaNode and startPoint coordinates

increased by half of width and height childMetaNode
4: else
5: coordinates of metaPoint Ð coordinates of childMetaNode increased by half of width

and height childMetaNode
6: end if
7: translate drawing elements of treeLayout towards metaPoint
8: if childMetaNode is not folded then
9: Store drawing elements of childMetaNode in tmpWCCsDrawElements

10: end if
11: if showCycleLeavesLevel ^ childMetaNode is not folded then
12: Store final coordinates of upper left point and bottom right in childMetaNode adding

startPoint coordinates to them
13: else
14: Store final coordinates of upper left point and bottom right in childMetaNode
15: end if
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Algorithm 14.54 drawLevelTwoMetaNodes

Description: Draw level two meta-nodes
Input: currentIndex, key, childMetaNode, startPoint, tmpWCCsDrawElements,
twoLevelsDecompositions, wccNumber, twoLevelsGraph, showCycleLeavesLevel
Output: drawing a meta-graph that contains edges

1: if key is an id of DAG then
2: Call drawLevelTwoDAGMetaNode (childMetaNode, startPoint, currentIndex,

tmpWCCsDrawElements)
3: else if key is an id of tree then
4: Call drawLevelTwoTreeMetaNode (childMetaNode, startPoint, currentIndex,

tmpWCCsDrawElements)
5: end if

Algorithm 14.55 drawLevelTwoDAGMetaNode

Description: Draw level two DAG meta-node
Input: childMetaNode, startPoint, currentIndex, tmpWCCsDrawElements
Output: drawing a DAG meta-graph

1: dagLayoutÐ area-aware layout of DAG
2: x coordinate of metaPointÐ x coordinates summation of childMetaNode and startPoint

increased by half of width childMetaNode
3: y coordinate of metaPoint: analogue to x
4: distanceÐ a distance between metaPoint and center of dagLayout
5: dirxÐ difference between x coordinates of metaPoint and center of dagLayout divided by

distance
6: diry Ð difference between y coordinates of metaPoint and center of dagLayout divided by

distance
7: translate drawing elements of dagLayout in dirx and diry directions and distance value
8: for all nodeCurrentLevel P dagLayout do
9: metaNodeLevelOneÐ get child of childMetaNode having id of nodeCurrentLevel

10: The position of metaNodeLevelOneÐ the position of nodeCurrentLevel in dagLayout
11: end for
12: Store drawing elements of childMetaNode in tmpWCCsDrawElements
13: Store final x and y coordinates of upper left point and bottom right point in childMetaNode

adding startPoint coordinates to them
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Algorithm 14.56 drawLevelTwoTreeMetaNode

Description: Draw level two tree meta-node
Input: childMetaNode, startPoint, currentIndex, tmpWCCsDrawElements
Output: drawing a tree meta-graph

1: treeLayoutÐ area-aware layout of tree
2: x coordinate of metaPointÐ x coordinates summation of childMetaNode and startPoint

increased by half of width childMetaNode
3: y coordinate of metaPoint: analogue to x
4: distanceÐ a distance between metaPoint and center of treeLayout
5: dirx Ð difference between x coordinates of metaPoint and center of treeLayout divided

by distance
6: diry Ð difference between y coordinates of metaPoint and center of treeLayout divided

by distance
7: translate drawing elements of treeLayout in dirx and diry directions and distance value
8: for all nodeCurrentLevel P treeLayout do
9: metaNodeLevelOneÐ gets child of childMetaNode having id of nodeCurrentLevel

10: The position of metaNodeLevelOneÐ the position of nodeCurrentLevel in treeLayout
11: end for
12: Store drawing elements of childMetaNode in tmpWCCsDrawElements
13: Store final x and y coordinates of upper left point and bottom right point in childMetaNode

adding startPoint coordinates to them
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14.2.2.1 Rotating the cyclic subgraphs

For rotating ntCSs and minimizing the length of cyan lines connecting shared nodes, the final
graph layout is enhanced as in Algorithm 14.57. The algorithm rotates the cyclic subgraphs
similar to the approach of Archambault et al. [17] reducing the overall distance between dupli-
cated nodes. The Algorithm consists of one part to perform the rotation of ntCSs:

• rotateCycleByTorque (Algorithm 14.57)

The local data attributes and data structures are:

• twoLevelsDecompositions: a LinkedList (Deque, Table 14.3) containing decompositions
of the original graph and the meta-graph

• wccNumber: number of wCC

• startPoint: a drawing start point

• twoLevelsGraph: a LinkedList (Deque, Table 14.3) containing the original graph and the
meta-graph

• tmpWCCsDrawElements: an object of the Class ComponentsWCCsDrawElementsPanel
that contains a temporary list of drawing elements for the final drawing

• parentMetaNode: parent meta-node in two-levels hierarchy

Algorithm 14.57 rotateCycleByTorque

Description: Rotate cyclic subgraphs similar to the approach of Archambault et
al. [17]
Input: twoLevelsDecompositions, wccNumber, startPoint, twoLevelsGraph,
tmpWCCsDrawElements, parentMetaNode, color
Output: tmpWCCsDrawElements with rotated cyclic drawing

1: The algorithm rotates the cyclic subgraphs similar to the approach of Archambault et
al. [17] reducing the overall distance between duplicated nodes.

14.2.2.2 Drawing lines between duplicated nodes

Having nodes that belong to more than one topological component, each topological component
has its own copy of such a node. The copies are linked by a cyan line between two topological
components. Algorithm 14.58 draws lines between duplicated nodes in two topological compo-
nents by traversing the hierarchy. These duplicated nodes of each topological component were
found previously in the decomposition process. The algorithm draws lines between duplicated
nodes in two topological components by traversing the hierarchy. The Algorithm consists of
one part to perform the lines drawing of duplicated nodes:

• drawLinesConnectDuplicatedNodes (Algorithm 14.58)

The local data attributes and data structures are:

• twoLevelsDecompositions: a LinkedList (Deque, Table 14.3) containing decompositions
of the original graph and of the meta-graph
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• wccNumber: number of current wCC

• startPoint: a drawing start point

• twoLevelsGraph: a LinkedList (Deque, Table 14.3) containing the original graph and the
meta-graph

• tmpWCCsDrawElements: an object of the Class ComponentsWCCsDrawElements that
contains a temporary list of drawing elements for the final drawing

• parentMetaNode: parent meta-node in two-levels hierarchy

• color: an intended color of all lines

• key: id of a child meta-node

• currentIndex: level of a child meta-node

• connLineElements: an empty ArrayDeque (Table 14.5) to store cyan lines

The algorithm works as follows:

• For each child meta-node of parent meta-node.

– If the meta-node is in level one and is not folded, based on the type of the subgraph
associated with the meta-node, go over each shared node that is duplicated in the
other subgraph and draw a line connecting them (Lines 4-22).

– Otherwise, it calls drawLinesConnectDuplicatedNodes Algorithm recursively over
all child meta-nodes (Line 24).
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Algorithm 14.58 drawLinesConnectDuplicatedNodes

Description: Draw cyan lines between duplicated nodes in components
Input: twoLevelsDecompositions, wccNumber, startPoint, twoLevelsGraph,
tmpWCCsDrawElements, parentMetaNode, color
Output: tmpWCCsDrawElements with cyan lines between duplicated nodes

1: for all childMetaNode P all children of parentMetaNode do
2: key Ð id of childMetaNode
3: currentIndexÐ level of childMetaNode
4: if currentIndex � 0^ childMetaNode is not folded then
5: if key is an id of cycle then
6: cyclicSugiyamaP lotÐ layout of cycle associated with childMetaNode
7: connLineElements an empty ArrayDeque to store cycan lines
8: for all cycleConnPointID P all shared nodes ids of cyclicSugiyamaP lot with other

components do
9: treeConnPoint Ð get a point from a hashtable in tmpWCCsDrawElements

with cycleConnPointID as id {a node of a tree layout shared by the tree and
cyclicSugiyamaP lot}

10: if treeConnPoint is not null then
11: cycleConnPoint Ð get a point from a HashMap in cyclicSugiyamaP lot with

cycleConnPointID as id
12: lineÐ create a cyan line from cycleConnPoint to treeConnPoint
13: Add line to connLineElements
14: end if
15: dagConnPoint Ð get a point from a hashtable in tmpWCCsDrawElements

with cycleConnPointID as id {a node of a DAG layout shared by the DAG and
cyclicSugiyamaP lot)}

16: if dagConnPoint is not null then
17: cycleConnPoint Ð get a point from a HashMap in cyclicSugiyamaP lot with

cycleConnPointID as id
18: lineÐ create a cyan line from cycleConnPoint to dagConnPoint
19: Add line to connLineElements
20: end if
21: end for
22: Add connLineElements to tmpWCCsDrawElements
23: else
24: Call drawLinesConnectDuplicatedNodes (twoLevelsDecompositions,wccNumber,

startPoint,twoLevelsGraph,tmpWCCsDrawElements,childMetaNode,color)
25: end if
26: end if
27: end for
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14.3 Data Structures and Their Time Complexity

The algorithms in Chapter 14 use different data structures provided by Java programing lan-
guage. Tables 14.1, 14.2, 14.3, 14.4, and 14.5 show these data structures and their time com-
plexity.

Operation Time Complexity

add amortized constant time
remove Opnq
clear Opnq

contains Opnq

Table 14.1: The time complexity of the ArrayList operations

Operation Time Complexity

put Op1q
get Op1q

remove Op1q
clear Opnq

Table 14.2: The time complexity of the Hashtable and HashMap operations

Operation Time Complexity

Insert/delete at beginning/end Op1q
Insert/delete in middle Opnq

Searching Opnq

Table 14.3: The time complexity of the LinkedList operations (an implementation of list and
Deque)
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Operation Time Complexity

add Op1q
remove Op1q
contains Op1q

containsAll Opnq
clear Opnq

Table 14.4: The time complexity of the HashSet and LinkedHashSet operations

Most operations amortized constant time
Bulk operations Opnq

Remove Opnq
RemoveFirstOccurrence Opnq
RemoveLastOccurrence Opnq

Contains Opnq

Table 14.5: The time complexity of the ArrayDeque operations (Deque and Array implemen-
tation)
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14.4 Complexity Analysis of Decomposition and Hierar-

chy Construction

14.4.1 Complexity Analysis of Cycle Detection Algorithms

The time complexity of the FindingAllCycle (Algorithm 14.1) is Opc3 � n2 � pn � eqq and the
space complexity is Opc3 � n2 � pn� eqq (Table 14.6).

Line Time complexity Space complexity Comments
1 Opeq ArrayList iterator
4 Opnq ArrayList iterator
7 Opnq Opnq ArrayList iterator
9 Opc3 � n � pn� eqq Opc3 � n � pn� eqq Algorithm 14.2
7-11 Opc3 � n2 � pn � eqq Opc3 � n2 � pn � eqq ArrayList iterator
Overall Opc3 � n2 � pn� eqq Opc3 � n2 � pn� eqq

Table 14.6: Complexity analysis of FindingAllCycle (Algorithm 14.1)

The time complexity of the findCyclesStart (Algorithm 14.2) is Opc3 � n � pn� eqq and the
space complexity is Opc3 � n � pn� eqq (Table 14.7).

Line Time complexity Space complexity Comments
1 Op1q Op1q ArrayList create
2 Op1q Op1q ArrayList create
3 Op1q Op1q Hashtable create
4 Op1q Op1q ArrayList add
6 Opc3 � n � pn� eqq Opc3 � n � pn� eqq Algorithm 14.3
7 Opnq ArrayList clear
8 Opnq Hashtable clear
Overall Opc3 � n � pn� eqq Opc3 � n � pn� eqq

Table 14.7: Complexity analysis of findCyclesStart (Algorithm 14.2)
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The time complexity of the find cycle (Algorithm 14.3) is Opc3 � n � pn� eqq and the space
complexity is Opc3 � n � pn� eqq (Table 14.8).

Line Time complexity Space complexity Comments
3 Opc3 � n � pn� eqq Opc3 � n � pn� eqq Algorithm 14.5
6 Op1q Hashtable get
7 Opeq Opeq Hashtable iterator
9 Op1q Algorithm 14.6
10 Op1q Op1q HashSet create
11 Op1q Op1q HashSet add
12 Op1q Op1q Hashtable add
15 Op1q Algorithm 14.4
7-18 Opeq Opeq Hashtable iterator
21 Opeq Hashtable iterator
25 Op1q Algorithm 14.4
21-27 Opeq Hashtable iterator
Overall Opc3 � n � pn� eqq Opc3 � n � pn� eqq

Table 14.8: Complexity analysis of find cycle (Algorithm 14.3)

The time complexity of the recursive find cycle call is Opeq and the space complexity is
Op1q (Table 14.9).

Line Time complexity Space complexity Comments
2 Op1q Op1q ArrayList add
3 Op1q Op1q Hashtable add
4 Op1q Algorithm 14.3
5 Op1q ArrayList remove
6 Op1q Hashtable remove
Overall Op1q Op1q

Table 14.9: Complexity analysis of recursive find cycle call (Algorithm 14.4)

The time complexity of the Check Cycles is Opc3 � n � pn� eqq and the space complexity is
Opc3 � n � pn� eqq (Table 14.10).

Line Time complexity Space complexity Comments
5 Op1q Hashmap get
6 Opnq ArrayList iterate
15 Op1q Hashmap get
19 Opnq Opnq Algorithm 14.7 get
22 Opn� eq Opn� eq HashSet add nodes and edges of one cycle
23 Opnq Op1q Algorithm 14.8 get
24 Opc3 � pn� eqq Opc3 � pn� eqq Algorithm 14.11 get
28 Opc3 � n � pn� eqq Opc3 � n � pn� eqq Algorithm 14.10 get
Overall Opc3 � n � pn� eqq Opc3 � n � pn� eqq

Table 14.10: Complexity analysis of Check Cycles (Algorithm 14.5)
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The time complexity of the isBackEdge is Op1q (Table 14.11).

Line Time complexity Space complexity Comments
2 Op1q Hashtable get
Overall Op1q

Table 14.11: Complexity analysis of isBackEdge (Algorithm 14.6)

The time complexity of the computeReducedPathComplexity is Opnq and the space com-
plexity is Opnq (Table 14.12).

Line Time complexity Space complexity Comments
2 Op1q Op1q ArrayList create
3 Opnq Opnq ArrayList iterate
4 Op1q Op1q ArrayList add
3-5 Opnq Opnq ArrayList iterate, add
6 Op1q Op1q LinkedHashSet create
10 Opnq Opnq ArrayList iterate
11 Op1q ArrayList get using index
12 Op1q Op1q ArrayList add
13 Op1q Hashtable get
10-20 Opnq Opnq ArrayList iterate, get, add
22 Opnq Opnq ArrayList create initialized by LinkedHashSet
Overall Opnq Opnq

Table 14.12: Complexity analysis of compute ReducedPath (Algorithm 14.7)

The time complexity of the subCycle (Algorithm 14.8) is Opnq and the space complexity is
Op1q (Table 14.13).

Line Time complexity Space complexity Comments
1 Opcq ArrayList iterate
2 Opn

c
q HashSet containAll

1-5 Opc � n
c
q iterate, containAll

6 Op1q Op1q ArrayList add
Overall Opc � n

c
q � Opnq Op1q

Table 14.13: Complexity analysis of subCycle (Algorithm 14.8)
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The time complexity of the addToCycle (Algorithm 14.9) is Opnq and the space complexity
is Opnq (Table 14.14).

Line Time complexity Space complexity Comments
1 Opnq Opnq ArrayList iterate
2 Op1q ArrayList get using index
3 Op1q Hashset contains
4 Op1q Op1q Hashset add
5 Op1q Hashmap add
1-5 Opnq Opnq ArrayList iterate, get, contains, add, add
Overall Opnq Opnq

Table 14.14: Complexity analysis of addToCycle (Algorithm 14.9)

The time complexity of the partialCycle (Algorithm 14.10) is Opc3 � n � pn � eqq and the
space complexity is Opc3 � n � pn� eqq (Table 14.15).

Line Time complexity Space complexity Comments
1 Op1q Hashmap get
3 Opnq Opnq ArrayList iterate
4 Op1q ArrayList get using index
6 Op1q Hashmap get
8 Opnq Opnq Algorithm 14.9
9 Opc3 � pn� eqq Opc3 � pn� eqq Algorithm 14.11
3-13 Opc3 � n � pn � eqq Opc3 � n � pn � eqq ArrayList iterate, get, get, Algorithm 14.9,

Algorithm 14.11
Overall Opc3 � n � pn� eqq Opc3 � n � pn� eqq

Table 14.15: Complexity analysis of partialCycle (Algorithm 14.10)
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The time complexity of the merge Cycles (Algorithm 14.11) is Opc3 � pn� eqq and the space
complexity is Opc3 � pn� eqq (Table 14.16).

Line Time complexity Space complexity Comments
1 Opcq Hashtable iterate
2 Opcq ArrayList iterate
3 Opnq HashSet containsAll
4 Op1q Hashtable remove
1-7 Opc2 � nq Hashtable iterate, iterate, remove
8 Opcq Opcq LinkedList create
10 Opcq LinkedList iterate
11 Op1q LinkedList remove first
13 Opn� eq Opn� eq HashSet add nodes and edges of one cycle
15 Opcq Opcq while loop
16 Op1q Op1q LinkedList create
18 Opcq LinkedList iterate
19 Op1q LinkedList remove first
20 Opnq Opnq HashSet add nodes
21 Opn� eq Opn� eq
22 Opnq Opnq
25 Opn� eq Opn� eq HashSet add nodes and edges of one cycle
27 Op1q Op1q LinkedList add
30 Op1q LinkedList assign
32 Op1q Op1q Hashtable add
33 Opnq HashSet iterate
10-36 Opc3 � pn � eqq Opc3 � pn � eqq
37 Opcq LinkedList clear
38 Opcq Opcq LinkedList add all
39 Opcq Hashtable iterate
40 Opnq Opnq HashSet add nodes
39-41 Opc � nq Opc � nq
Overall Opc3 � pn� eqq Opc3 � pn� eqq

Table 14.16: Complexity analysis of merge Cycles (Algorithm 14.11)
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14.4.2 Complexity Analysis of Split Algorithms

The actual time complexity of the SplitConnectedComponentAtCyclePoint (Algorithm 14.12)
is Opn�eq and the space complexity is Opn�eq, in contrast with the quadratic time complexity
and the quadratic space complexity shown in Table 14.17. The reason for the difference in
the time complexity and space complexity is that lines 4-8 consider all wCCs as separated
subgraphs, where wCCi � pNi,Eiq, ni � |Ni|, and ei � |Ei|. The time and the space needed
for each wCCi is Opni � eiq. As

°
ni ¤ n and

°
ei ¤ e, the time complexity of all wCCis is

given by the following summation.

¸
Opni, eiq ¤ Opn� eq (14.1)

Line Time complexity Space complexity Comments
1 Opnq ArrayList iterator
2 Op1q Op1q Hashtable Add
4 Opnq Opnq HashMap iterator
6 Opn �md2q Ope � n �mdq Algorithm 14.13
4-8 Opn2 �md2q HashMap iterator, Algorithm 14.13
Overall Opn2 �md2q Ope � n2 �mdq

Table 14.17: Complexity analysis of SplitConnectedComponentAtCyclePoint (Algo-
rithm 14.12), with md �max degree (node)

The time complexity of the check Start (Algorithm 14.13) is Opn � md2q and the space
complexity is Ope � n �mdq (Table 14.18). The time complexity is dominated by calling Algo-
rithm 14.14.

Line Time complexity Space complexity Comments
1 Op1q HashSet Create
2 Op1q Op1q HashSet Add
3 Opmdq Opeq HashSet Create
4 Opmdq Opmdq HashSet Iterator
12 Op1q Hashtable get
16 Op1q Op1q HashSet Create
17 Op1q Op1q HashSet Add
18 Op1q Op1q HashSet Add
19 Op1q HashSet containsKey (get)
20 Op1q Op1q HashSet add
22 Opn �mdq Ope � nq Algorithm 14.14
4-25 Opn �md2q Ope � n �mdq HashSet Iterator, get create, add, add,

containsKey, add, Algorithm 14.14
26 Opn �mdq Opn �mdq Algorithm 14.15
28 Op1q ArrayList Add
Overall Opn �md2q Ope � n �mdq

Table 14.18: Complexity analysis of check Start (Algorithm 14.13), with md �max degree
(node)
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The time complexity of the check (Algorithm 14.14) is Opn �mdq and the space complexity
is Opn � eq (Table 14.19).

Line Time complexity Space complexity Comments
3 Opmdq Opeq HashSet Create
4 Opmdq HashSet iterator
12 Op1q Hashtable get
16 Op1q Op1q HashSet Add
17 Op1q HashSet containsKey (get)
18 Op1q Op1q HashSet Add
20 Opmdq Algorithm 14.14
4-23 Opmd � nq Opn � eq HashSet iterator, get, add,

containsKey, add, Alg 14.14
Overall Opn �mdq Opn � eq

Table 14.19: Complexity analysis of check (Algorithm 14.14), with md �max degree (node)

The time complexity of the createGraph (Algorithm 14.15) is Opn � mdq and the space
complexity is Opn �mdq (Table 14.20).

Line Time complexity Space complexity Comments
1 Op1q Op1q Graph create
2 Opnq Opnq HashSet Iterate
3 Op1q Hashtable get
5 Op1q Op1q Hashtable add
8 Opnq Opnq HashSet Iterate
9 Op1q Hashtable get
11 Opmdq Opmdq Hashtable Iterator
12 Op1q Hashtable get
13 Op1q Hashtable get
16 Op1q Op1q Hashtable add
8-20 Opn �mdq Opn �mdq HashSet Iterate, get, Iterator, get, get, add
Overall Opn �mdq Opn �mdq

Table 14.20: Complexity analysis of createGraph (Algorithm 14.15), with md �max degree
(node)



14.4. Complexity Analysis of Decomposition and Hierarchy Construction 173

14.4.3 Complexity Analysis of Detect DAGs and Trees Algorithms

The time complexity of the detectDAGsTrees (Algorithm 14.16) is Opn2 � md � eq and the
space complexity is Opn2 �md� eq (Table 14.21).

Line Time complexity Space complexity Comments
1 Opnq Opnq ArrayList Iterator
3 Op1q Op1q ArrayList add
5 Opnq Opnq ArrayList Iterator
7 Op1q Op1q ArrayList add
9 Opn� eq Opn� eq ArrayList Iterator
10 Op1q Op1q ArrayList add
12 Opnq Opnq ArrayList Iterator
13 Op1q Op1q ArrayList add
15 Opnq Opnq ArrayList Iterator
16 Op1q Op1q ArrayList add
21 Opn2 �md� eq Opn2 �md� eq Algorithm 14.17
23 Opn2 �md� eq Opn2 �md� eq Algorithm 14.20
25 Opn2 �md� eq Opn2 �md� eq Algorithm 14.23
28 Opn� eq Opn� eq Algorithm 14.26
Overall Opn2 �md� eq Opn2 �md� eq

Table 14.21: Complexity analysis of detectDAGsTrees (Algorithm 14.16)

The time complexity of the check DownTreeStart (Algorithm 14.17) is Opn2 �md� eq and
the space complexity is Opn2 �md� eq (Table 14.22).

Line Time complexity Space complexity Comments
2 Op1q Op1q ArrayList Create
4 Opnq ArrayList Iterator
7 Op1q ArrayList get
9 Op1q Op1q ArrayList add
10 Opn �mdq Opn �mdq Algorithm 14.18
12 Opn� eq Opn� eq Algorithm 14.24
18 Opnq Opnq ArrayList add
19 Opnq Opnq ArrayList add at end
20 Opnq Opnq ArrayList add at end
21 Opnq Opnq ArrayList Iterator
22 Opnq ArrayList Iterator
25 Opnq ArrayList clear
27 Op1q Op1q ArrayList add
28 Opn �mdq Opn �mdq Algorithm 14.18
30 Opn� eq Opn� eq Algorithm 14.24
21-33 Opn2 �md � eq Opn2 �md � eq iterate, clear, add,

Algorithm 14.18, Algorithm 14.24
Overall Opn2 �md� eq Opn2 �md� eq

Table 14.22: Complexity analysis of check DownTreeStart (Algorithm 14.17)

The time complexity of the check DownTree (Algorithm 14.18) is Opn �mdq and the space
complexity is Opn �mdq (Table 14.23).
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Line Time complexity Space complexity Comments
4 Opmdq Algorithm 14.19
9 Opmdq Opmdq HashSet Iterator
11 Op1q Op1q ArrayList Add
12 Opnq ArrayList indexOf
13 Opnq ArrayList lastIndexOf
17 Opnq Opnq Algorithm 14.18
18 Opnq ArrayList lastIndexOf
9-22 Opn �mdq Opn �mdq iterate, add, indexOf, lastIndexOf,

Algorithm 14.18
Overall Opn �mdq Opn �mdq

Table 14.23: Complexity analysis of check DownTree (Algorithm 14.18)

The time complexity of the countOneDirectionIncomingEdges (Algorithm 14.19) is Opmdq
(Table 14.24).

Line Time complexity Space complexity Comments
2 Opmdq HashSet Iterator
3 Op1q HashSet contains
Overall Opmdq

Table 14.24: Complexity analysis of countOneDirectionIncomingEdges (Algorithm 14.19)

The time complexity of the check UpTreeStart (Algorithm 14.20) is Opn2 �md�eq and the
space complexity is Opn2 �md� eq (Table 14.25).

Line Time complexity Space complexity Comments
2 Op1q ArrayList Create
4 Opnq Opnq ArrayList Iterator
7 Op1q ArrayList get
9 Op1q Op1q ArrayList add
10 Opn �mdq Opn �mdq Algorithm 14.21
12 Opn� eq Opn� eq Algorithm 14.25
18 Opnq Opnq ArrayList add
19 Opnq Opnq ArrayList add at end
20 Opnq Opnq ArrayList add at end
21 Opnq Opnq ArrayList Iterator
22 Opnq ArrayList Iterator
25 Opnq ArrayList clear
27 Op1q Op1q ArrayList add
28 Opn �mdq Opn �mdq Algorithm 14.21
30 Opn� eq Opn� eq Algorithm 14.25
21-33 Opn2 �md � eq Opn2 �md � eq iterate, clear, add,

Algorithm 14.21, Algorithm 14.25
Overall Opn2 �md� eq Opn2 �md� eq

Table 14.25: Complexity analysis of check UpTreeStart (Algorithm 14.20)

The time complexity of the check UpTree (Algorithm 14.21) is Opn � mdq and the space
complexity is Opn �mdq (Table 14.26).
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Line Time complexity Space complexity Comments
4 Opmdq Algorithm 14.22
9 Opmdq Opmdq HashSet Iterator
11 Op1q Op1q ArrayList add
12 Opnq ArrayList indexOf
13 Opnq ArrayList lastIndexOf
17 Opnq Opnq Algorithm 14.21
18 Opnq ArrayList lastIndexOf
9-22 Opn �mdq Opn �mdq iterate, add, indexOf, lastIndexOf,

Algorithm 14.21
Overall Opn �mdq Opn �mdq

Table 14.26: Complexity analysis of check UpTree (Algorithm 14.21)

The time complexity of the countOneDirectionOutgoingEdges (Algorithm 14.22) is Opmdq
(Table 14.27).

Line Time complexity Space complexity Comments
2 Opmdq HashSet Iterator
3 Op1q HashSet contains
Overall Opmdq

Table 14.27: Complexity analysis of countOneDirectionOutgoingEdges (Algorithm 14.22)

The time complexity of the check DoubleEdges (Algorithm 14.23) is Opn �md� eq and the
space complexity is Opn �md� eq (Table 14.28).

Line Time complexity Space complexity Comments
1 Opn �md� eq Opn �md� eq Algorithm 14.17
3 Opn �md� eq Opn �md� eq Algorithm 14.20
Overall Opn �md� eq Opn �md� eq

Table 14.28: Complexity analysis of check DoubleEdges (Algorithm 14.23)

The time complexity of the createDownTree (Algorithm 14.24) is Opn � eq and the space
complexity is Opn� eq (Table 14.29).

Line Time complexity Space complexity Comments
1 Op1q Op1q Hashtable Create
2 Opnq Opnq Hashtable Add
4 Op1q Op1q Hashtable Add
Overall Opn� eq Opn� eq

Table 14.29: Complexity analysis of createDownTree (Algorithm 14.24)
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The time complexity of the createUpTree (Algorithm 14.25) is Opn � eq and the space
complexity is Opn� eq (Table 14.30).

Line Time complexity Space complexity Comments
1 Op1q Op1q Hashtable Create
2 Opnq Opnq Hashtable Add
4 Op1q Op1q Hashtable Add
Overall Opn� eq Opn� eq

Table 14.30: Complexity analysis of createUpTree (Algorithm 14.25)

The time complexity of the createDAG (Algorithm 14.26) is Opn� eq and the space com-
plexity is Opn� eq (Table 14.31).

Line Time complexity Space complexity Comments
1 Op1q Op1q Hashtable Create
2 Opnq Opnq Hashtable Add
4 Op1q Op1q Hashtable Add
Overall Opn� eq Opn� eq

Table 14.31: Complexity analysis of createDAG (Algorithm 14.26)
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14.4.4 Complexity Analysis of Hierarchy Construction Algorithms

For one weakly connected component, the time complexity of the startCreateMetaNodes
(Algorithm 14.27) is Opn1 � n � n1q and the space complexity is Opn1 � n � n1q (Table 14.32).
Because there are many weakly connected components, the time complexity is Opw �n1 �n�w �n1q
and the space complexity is Opw � n1 � n� w � n1q.

Line Time complexity Space complexity Comments
1 Op1q Op1q Hashtable create
2 Op1q Op1q Hashtable create
3 Op1q Op1q Hashtable create
7 Opn1 � n� n1q Opn1 � n� n1q Algorithm 14.28
12 Opn1q Opn1q ArrayList add
13 Op1q Op1q Hashset add
16 Opn1q Opn1q ArrayList add
17 Op1q Op1q Hashset add
Overall Opn1 � n� n1q Opn1 � n� n1q

Table 14.32: Complexity analysis of startCreateMetaNodes (Algorithm 14.27),with n1 � #
meta-nodes P Two-level hierarchy
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The time complexity of the createMetaNodesByBFS algorithm (Algorithm 14.28) is Opn1 �
n� n1q and the space complexity is Opn1 � n� n1q (Table 14.33).

Line Time complexity Space complexity Comments
2 Op1q Op1q Hashtable create
3 Op1q Op1q LinkedList create
4 Op1q Op1q HashSet create
6 Op1q Op1q LinkedList add
7 Op1q Op1q HashSet add
8 Opn1q Opn1q LinkedList Iterator
9 Op1q LinkedList remove first
10 Op1q
11 Op1q Hashtable get
13 Opnq Opnq Hashset Iterator
14 Op1q Op1q ArrayList add
16 Op1q
17 Op1q Hashtable get
19 Opnq Opnq Hashset Iterator
20 Op1q Op1q ArrayList add
22 Op1q
23 Op1q Hashtable get
25 Opnq Opnq Hashset Iterator
26 Op1q Op1q ArrayList add
29 Op1q Op1q Hashset add
31 Opn1q Opn1q Hashtable Iterator
32 Op1q Hashset contains
33 Op1q Op1q Hashset add
34 Op1q Op1q LinkedList add
35 Op1q Op1q Hashtable add
37 Op1q Op1q Hashtable add
31-39 Opn1q Opn1q iterate, contains, add, add, add, add
8-41 Opn1 � n � n1q Opn1 � n � n1q
Overall Opn1 � n� n1q Opn1 � n� n1q

Table 14.33: Complexity analysis of createMetaNodesByBFS algorithm (Algorithm 14.28),
with n1 � # meta-nodes P Two-level hierarchy

The time complexity of the startCreateMetaEdges (Algorithm 14.29) is Opn1 � n3 � md1q
and the space complexity is Opn1 � n3 �md1q (Table 14.34).

Line Time complexity Space complexity Comments
2 Opn1q Opn1q Hashtable get
3 Op1q Op1q
4 Opn1 � n3 �md1q Opn1 � n3 �md1q Algorithm 14.30
Overall Opn1 � n3 �md1q Opn1 � n3 �md1q

Table 14.34: Complexity analysis of startCreateMetaEdges (Algorithm 14.29), with n1 � #
meta-nodes P Two-level hierarchy
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The time complexity of the createMetaEdges (Algorithm 14.30) is Opn3 � md1q and the
space complexity is Opn3 �md1q (Table 14.35).

Line Time complexity Space complexity Comments
1 Op1q
2 Op1q Hashtable get
3 Op1q Hashtable get
4 Op1q
5 Op1q Hashtable get
6 Op1q Hashtable get
9 Opnq Opnq LinkedList add all
10 Opnq Opnq LinkedList Iterator
11 Op1q Op1q Hashtable create
12 Op1q Op1q Hashtable create
13 Op1q Op1q Hashtable create
14 Op1q Op1q Hashtable create
15 Op1q LinkedList remove first
16 Op1q Hashtable get
17 Op1q Hashtable get
18 Op1q Op1q Hashtable create
19 Op1q Op1q Hashtable create
20 Opnq Opnq Hashtable iterate
21 Op1q Hashtable get
22 Op1q Hashtable get
23 Op1q
24 Op1q Hashtable get
26 Opn �md1q Opn �md1q Algorithm 14.31
20-27 Opn2 �md1q Opn2 �md1q iterate, get, get, get, Algorithm 14.31
28 Op1q Op1q Algorithm 14.32
10-29 Opn3 �md1q Opn3 �md1q
Overall Opn3 �md1q Opn3 �md1q

Table 14.35: Complexity analysis of createMetaEdges (Algorithm 14.30)
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The time complexity of the startCheckCycleNodeEdges (Algorithm 14.31) is Opn � md1q
and the space complexity is Opn �md1q (Table 14.36).

Line Time complexity Space complexity Comments
2 Opmd1q Opmd1q Hashtable Iterator
3 Op1q Op1q Algorithm 14.38
6 Op1q Op1q Hashtable add
9 Opnq Op1q Algorithm 14.33
2-11 Opn �md1q Opn �md1q iterate, Algorithm 14.38, add,

Algorithm 14.33
14 Opmd1q Opmd1q Hashtable Iterator
15 Op1q Op1q Algorithm 14.38
18 Op1q Op1q Hashtable add
21 Opnq Op1q Algorithm 14.34
14-23 Opn �md1q Opn �md1q iterate, Algorithm 14.38, add,

Algorithm 14.34
Overall Opn �md1q Opn �md1q

Table 14.36: Complexity analysis of startCheckCycleNodeEdges (Algorithm 14.31), with
md1 � max degree (node) for wCC

The time complexity of the combineDiffEdgesType (Algorithm 14.32) is Op1q and the
space complexity is Op1q (Table 14.37).

Line Time complexity Space complexity Comments
6 Op1q Op1q Hashtable add
10 Op1q Op1q Hashtable add
13 Op1q Op1q Hashtable add
17 Op1q Op1q Hashtable add
20 Op1q Op1q Hashtable add
Overall Op1q Op1q

Table 14.37: Complexity analysis of combineDiffEdgesType (Algorithm 14.32)

The time complexity of the check CycleNodeOutgoingEdgesInDAGorTree (Algorithm 14.33)
is Opnq and the space complexity is Op1q (Table 14.38).

Line Time complexity Space complexity Comments
1 Op1q Hashmap get
3 Op1q Op1q Hashtable add
9 Op1q Op1q Hashtable add
13 Op1q Op1q Hashtable add
20 Opnq Algorithm 14.33
Overall Opnq Op1q

Table 14.38: Complexity analysis of check CycleNodeOutgoingEdgesInDAGorTree (Algo-
rithm 14.33)
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The time complexity of the check CycleNodeIncomingEdgesInDAGorTree (Algorithm 14.34)
is Opnq and the space complexity is Op1q (Table 14.39).

Line Time complexity Space complexity Comments
Overall Opnq Op1q Algorithm 14.34 is analogous to Algorithm 14.33

Table 14.39: Complexity analysis of check CycleNodeIncomingEdgesInDAGorTree (Algo-
rithm 14.34)

The time complexity of the check DownTreeByBFSLevels (Algorithm 14.35) is Opn2 �
md1 � n � eq and the space complexity is Opn2q (Table 14.40).

Line Time complexity Space complexity Comments
2 Op1q Op1q Hashset Create
5 Opnq Hashtable clear
6 Op1q Op1q Hashtable add
7 Op1q Op1q Hashtable add
8 Ope1q Algorithm 14.37
9 Opn �mdq Algorithm 14.36
14 Opnq Opnq ArrayList add all
15 Opnq Opnq ArrayList add all at end
16 Opnq Opnq ArrayList add all at end
17 Opnq ArrayList Iterator
18 Opnq Hashtable clear
19 Opnq Hashset clear
20 Opnq Hashtable clear
21 Op1q Op1q Hashset add
22 Ope1q Algorithm 14.37
23 Opnq Hashset add
24 Opn �md1q Opnq Algorithm 14.36
17-28 Opn2 �md1 � n � eq Opn2q ArrayList Iterator
Overall Opn2 �md1 � n � eq Opn2q

Table 14.40: Complexity analysis of check DownTreeByBFSLevels (Algorithm 14.35)
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The time complexity of the check DownTreePotentialRootNodeByBFS (Algorithm 14.36)
is Opn �md1q and the space complexity is Opnq (Table 14.41).

Line Time complexity Space complexity Comments
1 Op1q Op1q Hashtable Create
2 Op1q Op1q Hashtable Add
4 Opnq Hashtable iterate
5 Op1q Op1q Hashtable Create
6 Opnq Hashtable iterate
8 Op1q Hashtable remove
9 Opmd1q Hashtable iterate
15 Op1q Op1q Algorithm 14.38
16 Op1q Hashset contains
19 Op1q Op1q Hashset add
20 Op1q Op1q Hashtable add
21 Op1q Op1q Hashtable add
27 Op1q
4-28 Opnq iterate, Create, iterate, remove, iterate,

Algorithm 14.38, contains, add, add, add
Overall Opn �md1q Opnq

Table 14.41: Complexity analysis of check DownTreePotentialRootNodeByBFS (Algo-
rithm 14.36)

The time complexity of the setAllEdgesAsNotV isited (Algorithm 14.37) is Ope1q and the
space complexity is Ope1q (Table 14.42).

Line Time complexity Space complexity Comments
2 Ope1q Ope1q HashSet Create
3 Ope1q HashSet Iterator
Overall Ope1q Ope1q

Table 14.42: Complexity analysis of setAllEdgesAsNotV isited (Algorithm 14.37), with e1 � #
edges of meta-graph

The time complexity of the isBackEdge (Algorithm 14.38) is Op1q and the space complexity
is Op1q (Table 14.43).

Line Time complexity Space complexity Comments
1 Op1q Op1q Hashtable get
Overall Op1q Op1q

Table 14.43: Complexity analysis of isBackEdge (Algorithm 14.38)
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14.5 Complexity Analysis of Drawing

14.5.1 Complexity Analysis of Computing Size of all Meta Nodes

The time complexity and the space complexity of the drawOneIsolatedCycle (Algorithm 14.42)
and the drawOneIsolatedDAG (Algorithm 14.47) depend on approximation algorithms used
by Bachmaier’s algorithm [22] and Sugiyama framework [87]. As these two algorithms spread
to other algorithms in this part, we keep the complexity analysis of this part opened.

14.5.2 Complexity Analysis of Final Drawing

The time complexity of the drawTwoLevelsAreaAwareHierarchy (Algorithm 14.49) is Opn1 �
pn� eqq (Table 14.44).

Line Time complexity Space complexity Comments
1 Opn1q Two-level Hierarchy (tree) iterate
5 Opn� eq Algorithm 14.50
8 Opn� eq Algorithm 14.54
10 Op1q Algorithm 14.49
1-11 Opn1q Two-level Hierarchy (tree) iterate,

Algorithm 14.50, Algorithm 14.54
Overall Opn1 � pn� eqq

Table 14.44: Complexity analysis of drawTwoLevelsAreaAwareHierarchy (Algorithm 14.49),
with n1 � # meta-nodes P Two-level hierarchy

The time complexity of the drawLevelOneMetaNodes (Algorithm 14.50) is Opn� eq (Ta-
ble 14.45).

Line Time complexity Space complexity Comments
2 Opn� eq Algorithm 14.51
4 Opn� eq Algorithm 14.52
6 Opn� eq Algorithm 14.53
Overall Opn� eq

Table 14.45: Complexity analysis of drawLevelOneMetaNodes (Algorithm 14.50)

The time complexity of the drawLevelOneCycleMetaNode (Algorithm 14.51) is Opn � eq
(Table 14.46).

Line Time complexity Space complexity Comments
7 Opn� eq translate all elements of the tree
9 Opn� eq ArrayDeque add all elements of the tree
Overall Opn� eq

Table 14.46: Complexity analysis of drawLevelOneCycleMetaNode (Algorithm 14.51)
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The time complexity of the drawLevelOneDAGMetaNode (Algorithm 14.52) is Opn � eq
(Table 14.47).

Line Time complexity Space complexity Comments
7 Opn� eq translate all elements of the tree
9 Opn� eq ArrayDeque add all elements of the tree
Overall Opn� eq

Table 14.47: Complexity analysis of drawLevelOneDAGMetaNode (Algorithm 14.52)

The time complexity of the drawLevelOneTreeMetaNode (Algorithm 14.53) is Opn � eq
(Table 14.48).

Line Time complexity Space complexity Comments
7 Opn� eq translate all elements of the tree
9 Opn� eq ArrayDeque add all elements of the tree
Overall Opn� eq

Table 14.48: Complexity analysis of drawLevelOneTreeMetaNode (Algorithm 14.53)

The time complexity of the drawLevelTwoMetaNodes (Algorithm 14.54) is Opn� eq (Ta-
ble 14.49).

Line Time complexity Space complexity Comments
2 Opn� eq Algorithm 14.55
4 Opn� eq Algorithm 14.56
Overall Opn� eq

Table 14.49: Complexity analysis of drawLevelTwoMetaNodes (Algorithm 14.54)
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The time complexity of the drawLevelTwoDAGMetaNode (Algorithm 14.55) is Opn � eq
(Table 14.50).

Line Time complexity Space complexity Comments
7 Opn� eq translate all elements of the DAG
8 Opnq ArrayList iterate
9 Op1q Hashtable get
12 Opn� eq ArrayDeque add all elements of the DAG
Overall Opn� eq

Table 14.50: Complexity analysis of drawLevelTwoDAGMetaNode (Algorithm 14.55)

The time complexity of the drawLevelTwoTreeMetaNode (Algorithm 14.56) is Opn � eq
(Table 14.51).

Line Time complexity Space complexity Comments
7 Opn� eq translate all elements of the tree
8 Opnq ArrayList iterate
9 Op1q Hashtable get
12 Opn� eq ArrayDeque add all elements of the tree
Overall Opn� eq

Table 14.51: Complexity analysis of drawLevelTwoTreeMetaNode (Algorithm 14.56)

The time complexity of the rotateCycleByTorque (Algorithm 14.57) is Opn1 � eq (Ta-
ble 14.52).

Line Time complexity Space complexity Comments
Overall Opn1 � eq rotate the cyclic subgraphs similar to

the approach of Archambault et al. [17]

Table 14.52: Complexity analysis of rotateCycleByTorque (Algorithm 14.57), with n1 � #
cyclic subgraphs P Two-level hierarchy
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The time complexity of the drawLinesConnectDuplicatedNodes (Algorithm 14.58) is Opn �
n1q (Table 14.53).

Line Time complexity Space complexity Comments
1 Opn1q Hashtable iterate
7 Op1q Op1q ArrayDeque create
8 Opnq Hashmap iterate
9 Op1q Hashtable get
11 Op1q Hashmap get
13 Op1q ArrayDeque add
15 Op1q Hashtable get
17 Op1q Hashmap get
19 Op1q ArrayDeque add
8-21 Opn � 1q create, iterate, get, get, add, get, get, add,

add all, Algorithm 14.58
22 Opnq ArrayDeque add all
24 Opnq Algorithm 14.58
Overall Opn � n1q

Table 14.53: Complexity analysis of drawLinesConnectDuplicatedNodes (Algorithm 14.58),
with n1 � # meta-nodes P Two-level hierarchy
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Results

We tested our approach on many small, medium, large, and very large data sets. Table 15.1
shows the properties of the two examples presented. We describe the results of the synthetic
data set used to explain split and the usage dependencies of the JFtp software data set [29] in
detail. We will describe more examples in next part (Chapter 22).

Synthetic data set

The graph of the synthetic data set (Figure 15.1(a)) consists of 26 nodes and 34 edges in one
wCC that is decomposed into six subgraphs: four ntCSs, one tree, and one DAG. Representing
each of these subgraphs by a meta-node and computing the meta-edges between these meta-
nodes yields the meta-graph shown in Figure 15.1(b). This meta-graph is classified as down-
tree. The resulting graph hierarchy is then used as input of the drawing stage leading to the
layout shown in Figure 15.1(c). Both the overall down-tree structure of the meta-graph and
the structure of the lowest level can be seen. The blue shapes surrounding the topological
components of the initial graph represent the meta-nodes of the down-tree. Additionally, the
meta-edges are displayed in blue, too.

Usage dependencies of the JFtp software data set

The graph of the usage dependencies of the JFtp software data set [29] consists of 78 nodes
and 38 edges in 45 single nodes and four wCCs: two trees, one DAG, and one mixed wCCs.
The mixed wCC is decomposed into four subgraphs: one ntCS, two trees, and one DAG.
Representing each of these subgraphs by a meta-node, and computing the meta-edges between
these meta-nodes yields the meta-graph shown in Figure 15.2(a). The meta-graph is classified
as trivial up-tree. The resulting graph hierarchy is then used as input of the drawing stage
leading to the layout shown in Figure 15.2(b). On the lowest level, the cyclic drawing of the
ntCS can be seen, which shares some nodes with the other subgraphs (cyan lines).

From a software engineering point of view, the design of JFtp is clear. Three components—
the two trees and the DAG—are separated from the remaining code. In general, cyclic de-
pendencies in software systems are unwanted [75]. Although the central component contains a

#nodes #edges Figure Example
26 34 15.1 synthetic example

(split)
78 38 15.1 usage dependencies

of the JFtp software

Table 15.1: Examples.
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cycle, the cycle is rather small. The layout shows the cyclic dependency between four classes
that can be investigated by a software engineer who should decide, whether this design is
tolerable according to software engineering guidelines and soft requirements like runtime.

As can be seen from the figures, neither the cyclic layout of Bachmaier et al. [22] (Figure
15.2(c)) nor the hierachical Sugiyama layout [87] (Figure 15.2(d)) show the structure of the
wCCs that is revealed by our approach (Figure 15.2(b)).
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Figure 15.1: Synthetic example showing the layout of directed graphs.
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(a)

(b) New topological layout

(c) Cyclic layout which is produced by Gravisto Toolkit [23]
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(d) Sugiyama layout which is produced by Gravisto Toolkit [23]

Figure 15.1: Layout of the directed graph encoding the usage dependencies of JFtp software
(wCCs only, without single nodes). 15.2(a) Meta-Graph of the mixed wCC
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Chapter 16

Conclusion

We proposed a new approach for drawing directed graphs based on a hierarchical, topological
decomposition into cyclic and acyclic subgraphs. This allows to show cyclic and acyclic struc-
tures more clearly than previous approaches, thus enhancing its usefulness for applications in
Bio-Informatics, Biology, and Software Engineering. The approach is based on a rigorous def-
inition of the extracted subgraphs and enhanced algorithms for their detection. It overcomes
many problems inherent in using the Sugiyama layout or the cyclic layout only, and improves
on using circular layouts for non-trivial cyclic subgraphs.

Applying methods for computing hierarchies of arbitrary graphs can help to manage topo-
logical components that are still very large after decomposition. Further, adding techniques
from Information Visualization to interact with the hierarchy producing arbitrary cuts will
enhance the support for analyzing very large graphs.
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Part III

The Small-Multiples Node-Link
Visualization
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Chapter 17

Preamble

Part I targeted developing IMMV visualizing software structures containing multiple types of
relations. Further, in a user study, it was determined which visual patterns can be observed
using IMMV and PNLV. Based on class views, these two approaches support finding similarities
and differences between different edge types. Primarily, local structures such as nodes having
many incoming or outgoing edges can be identified using these approaches. However, global
structures involving paths from one node to other nodes like non-trivial cyclic subgraphs or
hierarchical structures are not readily identified using these approaches. Therefore, Part II
provided the topological approach for drawing directed graphs separating it into non-trivial
cyclic subgraphs, trees, and DAGs and using drawing algorithms that fit each of them.

This part describes the extended version of the small-multiples node-link visualization
(SMNLV) that was introduced by Abuthawabeh and Zeckzer [11]. They propose visualiz-
ing multiple edge types of directed graphs using small-multiples, where each tile is dedicated to
one edge-type graphs. For each of these graphs, the topological approach of Abuthawabeh and
Zeckzer [10] is used to highlight non-trivial cycles, trees, and DAGs showing global structures.
They showed one use case, that analyzes the structure of their tool implementation by itself.

The extended version expanded the related work (Chapter 19) with additional related work
summarized in Section 19.2 and Section 19.3. Moreover, Chapter 21 was added to describe
other approaches to display several relation types in more detail. Chapter 22 was extended by
showing four additional use cases.
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Chapter 18

Introduction

Software engineering tasks like understanding of (legacy) software, checking guidelines, improv-
ing product lines, finding structure, or re-engineering of existing software require the analysis
of the static software structure [42]. Often, the actual structure of the implementation is dif-
ferent from the designed one. Therefore, the actual structure is extracted from the code and
visualization is used to display the actual structure, sometimes comparing it to the planned
one [78].

The optimal visualization of the structure depends on the task at hand. In general, the
software structure is mapped to a graph and graph drawing is used for display [42]. The task
of drawing these graphs becomes more involved if not only one type of relations, e.g., method
calls, but many relation types should be analyzed at the same time. We restrict our discussion
to object-oriented programming using Java as example.

Our contributions in this part are:

• Small-multiples node-link visualization (SMNLV): each relation type is shown in a sepa-
rate node-link view.

• Using drawing algorithms that are optimized for each type of relationship while displaying
multiple relationships simultaneously.

• Using highlighting and coordinated views to link the individual views.

• Providing five use cases analyzing the structures of SMNLV itself, JUnit 4.12 [4], JFtp
1.59 [2], Stripes 1.5.7 [1], and Checkstyle 6.5 [3].
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Chapter 19

Related Work

In the following, work related to recent visualization approaches for analyzing multiple re-
lations between software artifacts (Section 19.1), to small-multiples visualizations in general
(Section 19.2), and to the use of small-multiples visualizations for dynamic data (Section 19.3)
is presented.

19.1 Visualization Approaches for Analyzing Multiple

Relations Between Software Artifacts

There exist several visualization approaches for analyzing multiple relations between software
artifacts based on node-link and matrix representations of graphs. The closest to our approach
are the following representations. First of all, Gutwenger et al. [61], Eichelberger [47], and Ei-
glsperger et al. [49, 48]—among others—presented optimized layouts of UML diagrams showing
inheritance and, e.g., aggregation at the same time. However, their approaches are limited to
a small number of specific relation types. Our approach allows users to select those relation
types that they find most useful for their analysis. Moreover, their constraints on the layout
focus on the inheritance relationship leaving less degrees of freedom for other relations. Our
approach puts focus on each relation type separately.

The Software Architecture Visualization and Evaluation (SAVE) tool [78] shows different
relationships between classes. The relationships can be bundled showing only one edge or un-
bundled showing all different types of relationships, one per edge. In both cases, the edges are
considered as single edge when computing the layout using one of the available algorithms. In
contrast, our approach separates the different edge types, which allows to optimize the layout
and to discover structures, e.g., cycles, in one relation graph that are not present in others and
thus might be hidden, if all relations are combined in one graph.

The parallel node link visualization (PNLV) introduced by Beck et al. [26] uses parallel axes
and links between these axes. Each axis represents the classes in the same order. Each pair of
axis is connected by links of one specific type. For example, the links between the first two axes
could show the call relationships, while the links between the second pair of axes could display
code clones. Abuthawabeh and Zeckzer [9] introduced an interactive multi-matrix visualization
(IMMV) for showing up to nine different edge types. Each row and column of the matrix
represents one class. Each cell in the matrix is subdivided into 9 sub-cells. These sub-cells
show one relation each. Additionally, each edge type has its own color. An evaluation was
performed to assess which structures can be found using PNLV and IMMV [8]. It showed, that
mostly local structures are found, e.g., nodes with high in- or out-degree, that is, classes that
are connected to many other classes. Our approach on the other hand reveals global structures
that are difficult to find with the previous two approaches due to needing to follow links.
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Other node-link based visualizations include the approach of Erdemir et al. [52] that uses
a force-directed layout with a focus on metrics. Juxtaposition of nodes connected by links is
also used by the approach of Ducasse and Lanza [46]. Both approaches have a different focus
compared to ours.

Matrix-based Visualizations were also used by Beck and Diehl [30] who compared package
structures, and by van Ham [53] who focused on call graphs. Both approaches focus on one
specific relation, only, while we consider several relations simultaneously.

Laval et al. [73, 74] used detailed views in a matrix representation of dependencies between
packages. These detailed views are small-multiples arranged inside the matrix. They show
summary statistics of the relations between the classes of the two packages whose relation is
represented by the cell using a node-link and a bar representation. However, they show all
relations between these two packages in one graph, while we split the relations into several
graphs.

Other approaches using small-multiples for displaying graphs can be found in other ap-
plication areas. Tominski et al. [93] provided an interactive system for coordinated graph
visualization combining different views. Bremm et al. [36] used small-multiples to compare
several trees simultaneously. Their goal was to identify global and local structure similarities
focusing on biological applications, while we focus on software engineering tasks.

We describe UML, SAVE, and the approaches of Beck et al. and Abuthawabeh and Zeckzer
as representatives of the different methods in more detail in Section 21.

19.2 Small-Multiples Visualizations

In 1983, Tufte [94] described small-multiples and showed some examples. In 1990, he men-
tioned [95], that “At the heart of quantitative reasoning is a single question: Compared to
what? Small multiple designs, multivariate and data bountiful, answer directly by visually en-
forcing comparisons of changes, of the differences among objects, of the scope of alternatives.
For a wide range of problems in data presentation, small multiples are the best design solution.”
In 2006 [96], he states, that “comparison must take place within the eyespan”.

Baldonado et al. [99] proposed guidelines when using multiple views over single views is
helpful. Gleicher et al. [59] proposed a taxonomy where small-multiples are considered as a type
of juxtaposition. Javed and Elmqvist [63] explored the design space of composite visualization
and show five visual design patters. Kehrer et al. [68] compared categories of small-multiples
using a formal model.

Van den Elzenet et al. [97] proposed analyzing multi-dimensional data using small-multiples
for selecting interesting dimensions that were then shown as one large single. Switching between
small-multiples and large singles allowed to interactively explore the data.

Stasko et al. [85] described Jigsaw, a system for visualizing and analyzing connections be-
tween document entities using multiple coordinated views.

Cottrell et al. [41] introduced Guido, a tool showing the commonalities and differences
between different source codes using multiple coordinated views. Reniers et al. [81] described
the Solid* Toolset for program comprehension taking advantage of using coordinated multiple
views.

Finally, in 2007, Roberts [82] explored the state of art of coordinated multiple views for
exploratory visualization.
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19.3 Small-Multiples Visualizations for Analyzing Dy-

namic Data

To visualize dynamic data, several kinds of visualizations such as graph layouts and flow maps
were combined using small-multiples. Fuchs et al. [55] conducted a comparative study to assess
the performance of different glyphs representing time series which are embedded in small-
multiples.

Archambault et al. [15] compared the influence of preserving the mental map of dynamic
graphs while using animation and small-multiples. They found, that small-multiples provide
faster performance, while animation is more accurate in determining node or edge tasks in a
specific snapshot of a graph. Later, Archambault and Purchase [14] extended the previous study
investigating the relation between mental map preservation and memorability of evolving graph
sequences. They found, that considering mental map preservation aids mental comparisons
and visualizing differences in several data views. Moreover, preserving the mental map is not
always helpful with respect to performance (response time and errors rate), while qualitatively it
facilitates memorability based on user perception. Burch and Weiskopf [39] use small-multiples
showing sequences of dynamic graphs combined with flip-book interaction as a kind of animation
to increase scalability.
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Chapter 20

Small-Multiples Node-Link
Visualization for Displaying Several
Relation Types

20.1 Visualization

20.1.1 Small-Multiples Node-Link Visualization

The principal idea of the small-multiples node-link visualization (SMNLV) approach for dis-
playing several relation types is to subdivide the available screen space (Fig. 20.1). An initial
subdivision into 3�3 tiles is chosen displaying up to 9 different types of relations. This is moti-
vated by the paper of Abuthawabeh and Zeckzer [9], where the same subdivision was used. In
each tile, a graph representing the structure for one relation type is drawn using the optimized
topological layout for directed graphs introduced by Abuthawabeh and Zeckzer [10]. Table 20.1
shows the arrangement of the tiles, while Table 20.2 lists the entities that are mapped to nodes
and edges for each of these graphs. An exception is the last tile. Here, a combination of the
inheritance and implementation relations is shown using a 2.5D approach. Using two planes in
a 3D space, one plane represents the inheritance of the classes while the other represents the in-
heritance of the interfaces. Links from the classes to the interfaces represent the implementation
relationship.

On a standard full HD display, the available space for each of the graphs becomes quite
small. However, the approach easily scales to tiled displays, using one complete full HD display
for each of the tiles. Moreover, each tile can be displayed on a second screen in an enlarged
version (Section 20.2). Please note, that using additional displays is only an optional extension
for SMNLV.

An information view can be displayed on demand on the right side of the small-multiples
view. Further, the source code of a selected class can be opened in an editor for further
inspections.

package structure aggregation method-call
parameter return-type throws
inheritance implementation inheritance & implementation

Table 20.1: Arrangement of the graphs

205



206 Chapter 20. SMNLV for Displaying Several Relation Types

Figure 20.1: Small-Multiples Node-Link Visualization of SMNLV
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relationship type graph type nodes edges
package structure tree packages &

classes & in-
terfaces

package A belongs to package B &
class/interface C belongs to a pack-
age D

aggregation directed graph classes class A uses class B as type for class
variable

method-call directed graph classes methods of class A call methods of
class B

parameter directed graph classes methods of class A use class B as type
of parameter

return-type directed graph classes methods of class A use class B as re-
turn type

throws bipartite directed
graph

classes methods of class A throw exceptions
of type class B

inheritance tree classes class A inherits from (extends) class
B

implementation bipartite directed
graph

classes & in-
terfaces

class A implements interface B

inheritance & im-
plementation

tree & bipartite di-
rected graph

classes & in-
terfaces

implementation & inheritance

Table 20.2: Mapping of software entities to graph objects; A: source, B: destination of an edge

20.1.2 Graph Layout

The graph of each tile (except the last one) is drawn using the optimized topological layout
for directed graphs proposed by Abuthawabeh and Zeckzer [10]. The process is outlined in
Fig. 20.2. First, the graph is decomposed into weakly connected components (wCC ). Each of
the wCCs is then decomposed into non-trivial cyclic sub-graphs, trees, and DAGs. Each of the
sub-graphs is represented by a meta-node. Computing meta-edges between these meta-nodes
from the edges of the original graph yields a meta-graph. This two-level hierarchy is then used
for drawing each wCC.

Figure 20.2: Process of the topological visualization of directed graphs [10]

Nodes of the original graph are represented by black filled circles. Edges of the original
graph are drawn in black. Edges in trees and DAGs are represented by lines with arrows
showing the direction. If two edges with reverse direction exist between two nodes, a line with
two arrows is used. The edges of the non-trivial cyclic sub-graphs are represented by curves
with arrows showing the direction. If two edges with reverse direction exist between two nodes,
a curve with two arrows is used.

Unfolded meta-nodes are represented using blue rectangles for trees and DAGs and blue
circles for non-trivial cyclic sub-graphs surrounding the respective sub-graph. Folded meta-
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Sub-graph
type

Unfolded Meta-Node Folded Meta-Node

non-
trivial
cyclic
sub-graph

DAG

Down
Tree

Up Tree

Table 20.3: Mapping of sub-graph types to meta-nodes

nodes are represented by small red circles for folded non-trivial cyclic sub-graphs, by small red
triangles for folded non-trivial trees, and by small red rectangles for folded non-trivial DAGs
(Table 20.3). For down-trees, the base of the triangle is down, while for up-trees, the base of
the triangle is up. All meta-edges are represented by blue color. Besides one-directional and
double meta-edges, two more meta-edge types are used to convey the connection between the
sub-graphs [10]. Double path edges (à) show, that there is an outgoing connection to one and
an incoming connection from another component. Blocking edges (ÑÐ) represent connections,
where an outgoing edge is followed by an incoming edge in a path or vice versa.

For the final drawing, it is further distinguished, if the wCC or the meta-graph contain edges
or not. All wCCs that do not contain edges (only one node) are arranged in a matrix. Similarly,
all meta-graphs that do not contain edges are arranged in a matrix, too. Then, horizontally
from left to right, meta-graphs with edges, the matrix of meta-graphs without edges, and the
matrix of wCCs without edges are drawn. Drawing all one node wCCs (meta-graphs) in a
matrix allows for a compact representation of the graph. The annotated tile (top-middle) of
Fig. 20.1 illustrates an example of the final drawing of the aggregation relations.

The drawing of each meta-graph and of each sub-graph uses optimal drawing algorithms
depending on the type of the (sub-)graph: trees are drawn using the improved Walker’s algo-
rithm [37], directed acyclic graphs (DAGs) are drawn using the Sugiyama algorithm [87], and
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non-trivial cyclic sub-graphs are drawn using Bachmaier’s algorithm [22, 20, 21]. Further, all
algorithms for the meta-graph are area-aware.

If the complete graph is drawn, nodes that belong to two or more sub-graphs are cloned
and placed in each of the sub-graphs [10]. Cyan lines are used to connect the clones.

To avoid clutter, no information is displayed next to the nodes. Interaction (Section 20.2)
is provided to select nodes and to display additional information for each node.

20.1.3 Information View

An information view to the right of the small-multiples node-link visualization shows context
information about nodes and meta-nodes. It either shows the information associated to a node
of the original graph, or it shows the information about all nodes contained in the sub-graph
of a meta-node in a table (Fig. 20.1, right side).

20.2 Interaction

A video supporting the explanations of the interaction capabilities can be provided upon re-
quest.

20.2.1 Large view

Each tile of the small-multiples view can be displayed using a separate window, e.g., full screen
on an additional display, by clicking the right button of the mouse.

20.2.2 Zooming and Panning

Each view supports standard zooming and panning functionality to adjust the view to the focus
of the analysis.

20.2.3 Highlighting

Selecting a node of the original graph in any tile highlights it by drawing a red rectangle
around it in all tiles of the small-multiples view. If the node is contained in a folded meta-node
(hidden), the meta-node will be highlighted. Additionally, the full name of the node will be
shown in the information view. Please note, that cloned nodes (shared nodes between two
topological sub-graphs) will also be highlighted. Clicking in the free area, deselects the nodes
and removes the highlighting. Selecting a meta-node of the meta-graph highlights it by drawing
a red rectangle around it only in its tile. Additionally, the information about all nodes of the
sub-graph associated to this meta-node is listed in a table in the information view.

20.2.4 Folding and unfolding

The user can display the lowest level of the two-level hierarchy—the original graph—and the
meta-graph. Additionally, each meta-node can be opened or closed individually, allowing to
reduce large structures to a single node while examining details in other sub-graphs.

Each meta-node can be folded by double clicking inside the blue boundary surrounding it.
Then, the enclosed sub-graph disappears and the meta-node is displayed as small red circle for
folded non-trivial cyclic sub-graphs, as small red triangle for folded non-trivial trees, and as
small red rectangle for folded non-trivial DAGs (Table 20.3). The meta-node can be unfolded
by double clicking the red circle, triangle, or rectangle.
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20.2.5 Opening source code

Showing the source code file of any class is possible by <shift>+<left mouse button> click on
the node representing the class. Currently, Notepad++ [45] is used to present the source code.

20.3 Implementation

The relationships were extracted from the class files using jclassinfo [64]. The resulting informa-
tion was post-processed using customized UNIX scripts to obtain the complete graph (classes,
interfaces, and their relationships) in graphml format. The package hierarchy is computed from
the qualified class and interface names by the tool itself. The tool is implemented using Java 8
using the Gravisto Toolkit [23] for drawing non-trivial cyclic sub-graphs, the abego TreeLay-
out [6] for drawing trees, and the NetBeans Visual Library [79] (undocumented Hierarchical
Layout) for drawing DAGs.
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Other Approaches to Display Several
Relation Types

In this section, four alternative approaches for displaying multiple relation types simultaneously
are described, representing one category, each.

21.1 UML-Style

An approach for drawing optimized UML diagrams was presented by Gutwenger et al. [61]. Us-
ing the so-called GoVisual layout of the diagram, classes are represented by boxes that contain
the class description according to the UML specification. The edge types shown are inheritance
in class hierarchies (generalizations) and associations (e.g., aggregation and composition). Sim-
ilar approaches include the ones by Eichelberger [47] and Eiglsperger et al. [49, 48]. However,
all approaches are limited to the relations shown in UML diagrams.

21.2 SAVE

In the Software Architecture Visualization and Evaluation (SAVE) tool [78], classes and in-
terfaces are represented by boxes containing annotations, metrics, and additional information.
Bundled edges are drawn as straight lines and represent all relations between two classes or
interfaces. This allows using available layout algorithms as long as the size of the boxes is taken
into account. The edges can be unbundled. Unbundling does not change the overall layout,
but splits each bundled edge into the original edges that are then represented by one polyline
per edge type. Color is used to distinguish between different edge types. A hierarchical layout
is used for drawing the graph. Manual post-processing of the layout is provided to enhance the
initial automatic drawing.

21.3 PNLV

In the parallel node-link visualization (PNLV) approach [26], the nodes of the graph represent
classes and interfaces of a software system. Fig. 22.23 represents eight relations for Checkstyle
6.5 [3]. The nodes are mapped to boxes that are laid out above each other in the first column.
PNLV uses icicle plots to show the package structure of the classes on the left of the classes
and interfaces. The nodes are arranged according to the associated packages at the leaf level
of the icicle plot. For each edge type except the package hierarchy, one additional copy of the
column of node boxes is added to the right. Edges originate from the classes and interfaces in
the left column and end at classes and interfaces in the respective right column.
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21.4 IMMV

In the interactive multi-matrix view (IMMV) approach [9], an adjacency matrix is used to
represent graphs having multiple edges with different types. Fig. 22.21 represents eight relations
for Checkstyle 6.5 [3]. Similar to the PNLV approach, icicle plots are used for representing the
package structure. A cell represents the relations between the classes and interfaces of the
row to the classes and interfaces of the column. Each cell is subdivided into nine tiles. The
remaining seven relations are mapped to one tile of each cell and additionally color coded.



Chapter 22

Results

In Section 22.1, we show the structure of SMNLV using IMMV and SMNLV itself. Then,
we show the structure of JUnit 4.12 [4], JFtp 1.59 [2], and Stripes 1.5.7 [1] using IMMV and
SMNLV in Section 22.2, Section 22.3, and Section 22.4, respectively. The relations provided are
package containment, aggregation, method-call, parameter, return-type, throws, inheritance,
and implementation. As standard UML layouts do not consider all relations, they were not
included in the comparison. The SAVE tool is not publicly available and therefore was also not
included.

Additionally, in Section 22.5, we show the structure of Checkstyle 6.5 [3] using three different
approaches: IMMV (Section 21.4, Fig. 22.21), PNLV (Section 21.3, Fig. 22.23), and SMNLV
(Section 20, Fig. 22.24). The statistics of SMNLV, JUnit, JFtp, Stripes, and Checkstyle are
shown in Table 22.1.
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relationship type N E # wCC # single nodes # cycles # trees # DAGs

package structure 314 313 1 1
aggregation 282 246 96 89 1 35 1
method-call 282 595 98 94 4 59 4
parameter 282 378 60 54 1 27 2
return-type 282 136 190 184 1 26 3
throws 282 282 282
inheritance 282 31 251 245 6
implementation 282 35 247 235 12
total 282 1421 1224 1183 7 165 10
package structure 286 285 1 1
aggregation 258 109 165 151 11 3
method-call 258 306 64 59 1 5 2
parameter 258 297 89 84 4 1
return-type 258 87 185 180 3 2
throws 258 31 227 220 6 1
inheritance 258 90 168 147 21
implementation 258 33 227 216 10 1
total 258 953 1125 1057 1 60 10
package structure 181 180 1 1
aggregation 162 146 64 54 1 9 1
method-call 162 376 32 30 1 10 1
parameter 162 69 95 83 10 2
return-type 162 24 143 138 1 8 1
throws 162 0 162 162
inheritance 162 37 125 120 5
implementation 162 20 143 138 3 2
total 162 672 764 725 3 45 7
package structure 325 324 1 1
aggregation 301 177 154 147 5 2
method-call 301 620 81 76 3 9 1
parameter 301 155 185 173 7 5
return-type 301 128 201 188 9 4
throws 301 34 268 261 6 1
inheritance 301 79 222 206 16
implementation 301 71 230 204 25 1
total 301 1264 1341 1255 3 77 14
package structure 499 498 1 1
aggregation 473 116 369 346 16 7
method-call 473 763 76 71 1 5 2
parameter 473 581 91 75 13 3
return-type 473 826 301 289 2 7 5
throws 473 11 462 461 1
inheritance 473 235 238 229 9
implementation 473 32 441 422 19
total 473 2564 1677 1893 3 70 17

Table 22.1: Extracted information from and decomposition of SMNLV, JUnit 4.12 [4], JFtp
1.59 [2], Stripes 1.5.7 [1], and Checkstyle 6.5 [3] shown from top to bottom, respectively with
N : number of nodes and E: number of edges
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22.1 SMNLV

For SMNLV, the results using IMMV and SMNLV itself are presented.
Fig. 22.1 shows the relations of SMNLV using IMMV revealing distinct visual structures such

as the small stripes along the diagonal or the off-diagonal clusters on the right. The upper left
corner shows green dots, red dots, and blue dots representing method-call relations, parameter
relations, and aggregation relations shaping one vertical stripe. This shows that methods of
many different classes call the methods of only one class, use the same class as parameter
type, and use the same class as type for class variable. Also, a vertical line is parallel to the
previous stripe, that is formed by only green dots. Similar stripes appear in the middle along
the diagonal. Further, the purple dots compose a vertical line in the middle representing the
inheritance relations. This shows that several classes inherits from (extends) only one class.
The brown dots along diagonal represent the return-type relations. This shows that several
classes are used as return type by their methods. At right side, relatively many dots having
different colors form an off-diagonal cluster representing mixture of relations. This implies that
several classes, that belong to different packages use classes associated to two packages (model
and modelVis).

To assess the suitability of SMNLV for analyzing static software structure, we analyzed the
structure of SMNLV by itself. SMNLV contains 282 classes (nodes) and 1421 relations (edges,
without package structure, Table 22.1). The largest graph is the method-call graph containing
595 edges between 188 nodes and 94 single nodes. Starting SMNLV and loading the data set
results in a visualization of each relation type showing the respective meta-graph. We focused
on cyclic dependencies to assess if there are unwanted ones. We find one cyclic dependency for
the aggregation relation, four for the method-call relation, one for the parameter relation, and
one for the return-type relation. Being interested in the cyclic dependencies of the method-
call relation, we opened it in a single, full-screen window in Fig. 22.2. Opening one of the
cyclic dependencies of the method-call relation results in the visualization shown in Fig. 20.1,
upper right corner. It is a small cyclic dependency with six classes and ten edges. Consulting
the table in the information view revealed, that three classes belong to the layout package
and that three more classes belong to the grand-parent package of the layout package. Cyclic
structures over package borders are to be avoided. Thus, we had a closer look at the relations
using the editing facility. We found, that the class MultiLevelGraphDrawing is calling the
class MultiViewGraphView directly instead of the class SmallMultView and fixed this issue.
Moreover, we found, that the cycle itself is due to reciprocal method calls of classes and that
the structure of this cycle is fine.
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Figure 22.1: Interactive multi-matrix view (IMMV) [9] of SMNLV
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Figure 22.2: Small-Multiples Node-Link Visualization (SMNLV) of SMNLV itself: method-call
relation, enlarged view, one meta-node unfolded
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22.2 JUnit

For JUnit 4.12 [4], the results for IMMV and SMNLV are presented.
Fig. 22.3 displays the relations of JUnit 4.12 using IMMV showing characteristic structures

like the small stripes along the diagonal or the small stripes in the left or top Icicle plots inside
their last level cells. Having a close look at the square in the lower right corner reveals, that it
consists of several vertical and horizontal lines structures along the diagonal (Fig. 22.4). The
green dots in the middle shape a horizontal line representing the method-call relations. This
shows that methods of only one class call methods of several different classes. The red dots
combined by green dots form a vertical line along diagonal representing the parameter and the
method-call relations. This implies that several classes use only one class as parameter type
and they call the methods of the same class. Further, the red dots combined by blue dots form
a vertical line along diagonal representing the parameter and the aggregation relations. This
implies that several classes use only one class as parameter type and they use the same class
as type for class variable. The purple dots form a vertical line along diagonal representing the
inheritance relations. This shows that several classes inherits from (extends) only one class.
The brown dots along diagonal represent the return-type relations. This shows that several
classes are used as return type by their methods.

Fig. 22.5 shows the meta-graphs of all relations examined. JUnit 4.12 contains 258 classes
(nodes) and 953 relations (edges, without package structure, Table 22.1). The largest graph
is the method-call graph containing 306 edges between 199 nodes and 59 single nodes. The
package hierarchy is a single down-tree. Overall, only one non-trivial cyclic sub-graph is found
(in method-call). Inheritance only forms tree structures (21), five of them being unfolded.
Aggregation forms mostly tree structures (11) and 3 DAG structures. The same holds for
implementation with 10 trees and 1 DAG, throws with 6 trees and 1 DAG, parameter with 4
trees and 1 DAG, and return-type with 3 trees and 2 DAGs. Expanding the non-trivial cyclic
sub-graph of the meta-graph of the method-call relation shows, that it contains four classes and
one double edge. Also, one tree and one DAG are unfolded in this weakly connected component,
showing simple structures. The software engineer can accept the non-trivial cyclic sub-graph
or try to resolve the cyclic dependencies.

Opening the DAG of the second trivial meta-graph of the return-type relation shows, that
the DAG has four levels, and that three classes in levels three and four are dominantly used as
return-type by the methods of many classes, while one class in level one targets many classes
in level two.

Unfolding the DAG of the first trivial meta-graph of the throw relation shows, that the
DAG has only two levels and that three classes are used by all other classes.

Unfolding the DAG of the first trivial meta-graph of the parameter relation shows, that
the DAG is rather deep ending in only two classes with several cross relations between the big
sub-DAGs on the left and on the right. This needs investigations from the software engineer
to check why these classes are tightly coupled and if they belong to the same package or few
packages, or not.

Unfolding the up-trees of the first five trivial meta-graphs of the inheritance relation shows,
that the first four trees are shallow with one or two levels of inheritance while the last tree is
relatively deep with up to three levels of inheritance.

Finally, unfolding the only DAG of the weakly connected components of the implementation
relation graph (the first trivial meta-graph) shows, that two interfaces on the lower level were
implemented by all three classes on upper level. The software engineer might be interested to
investigate whether combining both interfaces into one interface enhances the design or not.
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Figure 22.3: Interactive multi-matrix view (IMMV) [9] of JUnit 4.12

Figure 22.4: IMMV [9] of JUnit 4.12: small square in the lower right corner (close view)
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Figure 22.5: Small-multiples node-link visualization (SMNLV) of JUnit 4.12
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22.3 Jftp

For JFtp 1.59 [2], the results for IMMV and SMNLV are presented.
Fig. 22.6 shows the relations of JFtp using IMMV distinguishing visual structures such

as off-diagonal clusters or vertical stripes. In the middle, the green dots, red dots, and blue
dots represent method-call relations, parameter relations, and aggregation relations as one
combination forming a single line along diagonal. This shows that methods of many different
classes call the methods of only one class, use the same class as parameter type, and use the
same class as type for class variable. Further, the green dots and blue dots form an off-diagonal
cluster in the middle as one combination. This shows that methods of many different classes call
the methods of several classes and several classes use several classes as type for class variable.
The purple dots form a vertical line in the middle representing the inheritance relations. This
shows that several classes inherits from (extends) only one class.

Fig. 22.7 shows the meta-graphs of all relations examined. JFtp 1.59 contains 162 classes
(nodes) and 672 relations (edges, without package structure, Table 22.1). The largest graph
is the method-call graph containing 376 edges between 132 nodes and 30 single nodes. The
package hierarchy is a single down-tree. None of the weakly connected components of the
throws, the parameter, the inheritance, and the implementation relationships contains cycles.
However, the aggregation, the method-call, and the return-type relations have one, respectively
three weakly connected components that contain cyclic sub-graphs.

Having a close look at the type of the weakly connected components, we find that inheri-
tance relation only forms tree structures (5). The implementation relation forms mostly tree
structures (3) and 2 DAG structures. The same holds for the parameter relation forms mostly
tree structures (10) and 2 DAG structures.

Opening the non-trivial cyclic sub-graph of the method-call relation reveals, that the cycle
is relatively large containing nineteen nodes (Fig. 22.8).

Opening the non-trivial cyclic sub-graph of the aggregation relation reveals, that the cycle
is rather small containing three nodes (Fig. 22.9). While unfolding the DAG shows four-level
DAG with many classes use several classes as type for class variable in the second and the last
levels.

Further, unfolding the non-trivial cyclic sub-graph of the return-type relation reveals, that
the cycle is rather small containing three nodes (Fig. 22.10). While unfolding the tree and the
DAG meta-nodes shows simple structures.

Unfolding the DAG of the parameter relation (Fig. 22.11) shows four-level DAG with many
different methods of several classes use several classes as parameter type.

Unfolding the two trees of the inheritance relation (Fig. 22.12) shows a four-level tree and
two-level tree.
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Figure 22.6: Interactive multi-matrix view (IMMV) [9] of JFtp 1.59
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Figure 22.7: Small-multiples node-link visualization (SMNLV) of JFtp 1.59
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Figure 22.8: Small-multiples node-link visualization (SMNLV) of JFtp 1.59: method-call rela-
tion, enlarged view, one meta-node unfolded

Figure 22.9: Small-multiples node-link visualization (SMNLV) of JFtp 1.59: aggregation rela-
tion, enlarged view, two meta-nodes unfolded
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Figure 22.10: Small-multiples node-link visualization (SMNLV) of JFtp 1.59: return-type rela-
tion, enlarged view, six meta-nodes unfolded

Figure 22.11: Small-multiples node-link visualization (SMNLV) of JFtp 1.59: parameter rela-
tion, enlarged view, one meta-nodes unfolded

Figure 22.12: Small-multiples node-link visualization (SMNLV) of JFtp 1.59: inheritance rela-
tion, enlarged view, two meta-nodes unfolded
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22.4 Stripes

For Stripes 1.5.7 [1], the results for IMMV and SMNLV are presented.
Fig. 22.13 shows the relations of Stripes 1.5.7 using IMMV discerning visual structures such

as a long stripe and many short stripes. At right, a long lines shaped by a combination of green
and blue dots can be easily noticed. This shows that methods of many different classes call the
methods of only one class and and several classes use the same class as type for class variable.
In the upper left corner (Fig. 22.14), the brown dots representing return-type relations form a
short vertical line. This shows that several classes are used as return type by methods of only
one class. Also, other brown dots form a line along diagonal. This shows that several classes
are used as return type by methods of the same classes. Further, the green dots and red dots
representing method-call relations and parameter relations, respectively form a short vertical
line. This implies that methods of many different classes call the methods of only one class and
the classes use the same class as parameter type.

Fig. 22.15 shows the meta-graphs of all relations examined. Stripes 1.5.7 contains 301 classes
(nodes) and 1264 relations (edges, without package structure, Table 22.1). The largest graph
is the method-call graph containing 620 edges between 225 nodes and 76 single nodes. The
package hierarchy is a single down-tree. Overall, three non-trivial cyclic sub-graphs are found
(in method-call). Inheritance only forms tree structures (16). Aggregation forms mostly tree
structures (5) and 2 DAG structures. The same holds for implementation with 25 trees and
1 DAG, throws with 6 trees and 1 DAG, parameter with 7 trees and 5 DAG, and return-type
with 9 trees and 4 DAGs.

Opening the three non-trivial cyclic sub-graphs of the method-call relation reveals, that the
cycles are relatively small (Fig. 22.16).

Unfolding the DAG of the aggregation relation (Fig. 22.17) shows, that the DAG has five
levels and that two classes (level five) are used by several classes. Also, one class (level one)
use several classes (level two).

Unfolding the DAG of the parameter relation (Fig. 22.18) shows, that the DAG has six
levels and that five classes are used by several classes.

Unfolding the first DAG of the return-type relation (Fig. 22.19) shows, that the DAG has
four levels and that three classes are used by several classes. While unfolding the second DAG
shows, that two classes use all other classes.

Unfolding the DAG of the implementation relation (Fig. 22.20) shows, that the DAG has
two levels and that one class is used by several classes. While unfolding the tree shows, that
several classes use one class.
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Figure 22.13: Interactive multi-matrix view (IMMV) [9] of Stripes 1.5.7
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Figure 22.14: IMMV [9] of Stripes 1.5.7: square in the upper left corner (close view)
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Figure 22.15: Small-multiples node-link visualization (SMNLV) of Stripes 1.5.7
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Figure 22.16: Small-multiples node-link visualization (SMNLV) of Stripes 1.5.7: method-call
relation, enlarged view, two meta-nodes unfolded

Figure 22.17: Small-multiples node-link visualization (SMNLV) of Stripes 1.5.7: aggregation
relation, enlarged view, two meta-nodes unfolded
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Figure 22.18: Small-multiples node-link visualization (SMNLV) of Stripes 1.5.7: parameter
relation, enlarged view, two meta-nodes unfolded

Figure 22.19: Small-multiples node-link visualization (SMNLV) of Stripes 1.5.7: return-type
relation, enlarged view, two meta-nodes unfolded

Figure 22.20: Small-multiples node-link visualization (SMNLV) of Stripes 1.5.7: implementa-
tion relation, enlarged view, two meta-nodes unfolded
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22.5 Checkstyle

Showing the relationships of Checkstyle 6.5 [3] in IMMV creates a rather large view (Fig. 22.21).
Interaction can be used to focus the analysis on specific parts of the graph or on higher, more
abstract (package) levels. However, even in this view, characteristic structures are visible like
the square in the lower right corner, the long stripes on the left, or the small stripes along the
diagonal. Having a close look at the square in the lower right corner reveals, that it consists of
four sub-structures (Fig. 22.22). Four types of these visual structures were distinguished based
on their shape in Abuthawabeh et al. [8]: line, diagonal cluster, off-diagonal cluster, and empty
area. The green dots to the right form a double line representing the method-call relations.
This shows that methods of many different classes call methods of only two classes. The red
dots on the bottom form a double line, too, representing the parameter relations. However,
here two classes extensively use many other classes as parameter type. The brown dots forming
a diagonal cluster represent the return-type relation. This shows that several classes are used
as return type by methods of many classes. These relations occur between classes associated
to same package as they are displayed along the diagonal.

The PNLV also shows characteristic pattern. Five categories of these visual structures were
introduced by Burch et al. [38]: fan, beam, cross beam, hour glass, and gap. The inheritance
and the throws relation are both limited to a small number of target classes, Classes having a
high fan-in and fan-out can also easily be spotted, e.g., in the grammars.javadoc sub-package
for the relations method-call, parameter, and return-type (Fig. 22.23). Also the differences can
be clearly seen, e.g., in the upper part, where method-call and return-type originate in many
different classes while parameter originates only in few, and where parameter and return-type
end in many different classes while method-call only in two. The interaction provided by the
tool allows to perform additional investigations that are beyond the scope of this paper.

While the previous approaches (PNLV and IMMV) provide class centric views focusing on
similarities and differences between edge types wrt. classes and interfaces, the SMNLV approach
focuses on the structure of each individual type of relation between entities. In Fig. 22.24, the
meta-graphs for all relation types are shown (see also Section 20.1).

Checkstyle 6.5 contains 473 classes (nodes) and 2564 relations (edges, without package struc-
ture, Table 22.1). The largest graph is the return-type graph containing 826 edges between 184
nodes and 289 single nodes. As expected the package hierarchy is a single down-tree. Also,
none of the weakly connected components of the throws, the inheritance, and the implemen-
tation relationships contains cycles. While this seems to be obvious, it is a good quality check
for both the extraction process and the decomposition algorithm. In both the aggregation and
the parameter relations, no cyclic dependencies are found. However, both the method-call and
the return-type relations have one, respectively two weakly connected components that contain
cyclic sub-graphs. For software engineers it might be interesting to find out, how large these
cycles are (see also below and Fig. 22.25 and Fig. 22.26) and if a refactoring is necessary to
remove (parts of) these cycles.

Having a close look at the type of the weakly connected components, we find that the throws,
inheritance, and implementation relations only form tree structures. The parameter relation
forms mostly tree structures (13) and 3 DAG structures. The same holds for the aggregation
relation with 16 tree structures and 7 DAG structures.

The UML and SAVE approaches described in the related work Chapter 19 would not convey
such information. The UML drawings are optimized for showing the inheritance relation, while
the multi-edge connection of entities in SAVE prevents the differentiation of relation type
specific cyclic and non-cyclic sub-graphs.

Opening the non-trivial cyclic sub-graph and the two tree meta-nodes of the method-call
relation reveals, that the cycle is rather simple containing three nodes (Fig. 22.25). The trees
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are even more simple. However, it also shows that two classes from the cyclic structure call
each other (double edge on the lower left of the cycle).

Unfolding the DAG of the second meta-graph of the return-type relation (Fig. 22.26) shows,
that the DAG is shallow having three levels and that two classes are dominantly used as return-
type.

Finally, unfolding two DAGs and one tree meta-node in the parameter relation (Fig. 22.27)
shows one two-level DAG with the methods of two classes using a large number of different
classes as parameter types, while the other DAG and the tree have a comparatively simple
structure.
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Figure 22.21: Interactive multi-matrix view (IMMV) [9] of Checkstyle 6.5
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Figure 22.22: IMMV [9] of Checkstyle 6.5: large square in the lower right corner (close view)
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Figure 22.23: Parallel node-link visualization (PNLV) [26] of Checkstyle 6.5

Figure 22.24: Small-multiples node-link visualization (SMNLV) of Checkstyle 6.5
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Figure 22.25: Small-multiples node-link visualization (SMNLV) of Checkstyle 6.5: method-call
relation, enlarged view, three meta-nodes unfolded

Figure 22.26: Small-multiples node-link visualization (SMNLV) of Checkstyle 6.5: return-type
relation, enlarged view, one DAG meta-node unfolded

Figure 22.27: Small-multiples node-link visualization (SMNLV) of Checkstyle 6.5: parameter
relation, enlarged view, two DAGs and one tree meta-nodes unfolded
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Chapter 23

Conclusion

We presented a small-multiples node-link visualization supporting the analysis of the static
structure of software systems based on multiple relations between classes and interfaces. Five
use cases were explored showing the possibility to enrich the analysis by more insightful in-
formation. It complements previous approaches known from literature and benefits especially
global analysis tasks. Future work should focus on which approaches fit to which task, and
which combinations of the approaches would be beneficial. While evaluations would provide
further insight, the space for these evaluations is definitely rather large. Therefore, a series
of controlled experiments [76] is needed to assess differences of the approaches wrt. tasks,
audience, and other parameters.
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Part IV

Conclusion
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Chapter 24

Conclusion

I developed and presented two different new approaches for visualizing directed graphs with
multiple edge types for the analysis of static software structure. Additionally, I developed
and analyzed a new topological decomposition and drawing algorithm that is geared towards
showing topological structures for static software analysis.

Therefore, I described the development of IMMV and the determination of pattern in IMMV
compared to PNLV using an explorative user study. Four categories of visual patterns in IMMV
compared to PNLV were determined in the extended user study. The two tools are likely to
support software comprehension.

In addition, I presented and analyzed algorithms that are used for the topological decompo-
sition of the graphs into cyclic and acyclic subgraphs, and for building a two level hierarchy from
these subgraphs for the purpose of drawing directed graphs topologically. This graph layout
handles the drawbacks of the uniform drawing style when applying the Sugiyama method or
the cyclic method only. The time and space complexity of the decomposition and the drawing
algorithms are polynomial.

Approaches for extracting hierarchies from very large graphs may moderate the size of the
decomposed subgraphs that remain large. Moreover, using interaction techniques together with
the extracted hierarchies will facilitate dealing with large graphs.

Finally, I described a small-multiples node-link visualization (SMNLV) aiding the analysis
of the static structure of software systems generated from multiple relations between classes and
interfaces. This approach continues filling the space left by previous approaches known from
literature and supports global analysis tasks in particular. Finally, five systems were visualized
and analyzed. Future work should consider the most suitable match between the approches
and their appropriate tasks, and which combinations of the approaches would be beneficial. As
evaluations would enrich our insight, systematical evaluations of these visualization should be
performed.
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Abbreviations

Symbol Description
DAG Directed Acyclic Graph
DT Down Tree
IMMV Interactive multi-matrix visualization
MMV multi-matrix visualization
ntCS Non-trivial cyclic subgraphs
PNLV parallel node-link visualization
SCC Strongly Connected Component
SMLNV Small-Multiples Node-Link Visualization
wCC Weakly Connected Component
UT Up Tree
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Appendix A

First Pretest

No Question Participant An-
swer

Correct Answer Result

1 Which classes or interfaces are in-
cluded in the package
(org.jhotdraw.gui.datatransfer)?

AWTClipboared,
Abstract-
Clipboared,
AbstractTrans-
ferable

AWTClipboared,
Abstract-
Clipboared,
Abstract-
Transferable,
ClipboaredUtil,
CompositTrans-
ferable, Image-
Transferable,
InputStream-
Transferable

wrong

2 Which different types of depen-
dencies exist from
(org.jhotdraw.gui.datatransfer.
AWTClipboard)
to (org.jhotdraw.gui.datatransfer.
AbstractClipboard)? please con-
sider the direction.

method-call
(Usage), ag-
gregation,
code-clone,
semantic

method-call
(Usage), ag-
gregation,
code-clone,
semantic

correct

3 Is there any code clone de-
pendency between the files of
packages
(org.jhotdraw.gui.datatransfer)
and (org.jhotdraw.gui.plaf) in
any direction?

(from data-
transfer to
palatte: no;
from pallete to
datatransfer:
yes)

(from data-
transfer to
palatte: no;
from pallete to
datatransfer:
yes)

correct

4 Please choose an aggre-
gation dependency of
(org.jhotdraw.gui.fontchooser.
FontFamilyNode) and retrieve
the fields that create this depen-
dency in the source code?

line 29: pri-
vate FontCol-
lectionNode
parent;

line 29: pri-
vate FontCol-
lectionNode
parent;

correct

Table A.1: Trial results for IMMV using the JHotDraw dataset
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No Question Participant An-
swer

Correct Answer Result

1 Which classes or interfaces
are included in package
(org.jhotdraw.gui.datatransfer)?

GenericListner,
SheetEvent,
SheetListner

GenericListner,
SheetEvent,
SheetListner

correct

2 Which different types of
dependencies exist from
(org.jhotdraw.gui.
datatransfer.AWTClipboard) to
(org.jhotdraw.gui.datatransfer.
AbstractClipboard) please con-
sider the direction?

Inheritance,
Evolutionary,
Semantic

Inheritance,
Evolutionary,
Semantic

correct

3 Is there any code clone depen-
dency between the files of package
(org.jhotdraw.gui.datatransfer)
and (org.jhotdraw.gui.plaf) in
any direction?

No

4 Please choose an aggregation
dependency of (org.jhotdraw.gui.
fontchooser.FontFaceNode) and
retrieve the fields that create this
dependency in the source code?

Line 28: pri-
vate FontFami-
lyNode parent;

Line 28: pri-
vate FontFami-
lyNode parent;

correct

Table A.2: Trial results for PNLV using the JHotDraw dataset

Dataset ID IMMV Explanation

JUnit 1 Many edges in the builder package edited at the same time. Many
semantic similarity couplings exist.

2 Blocks of evolutionary couplings exist between packages model and
runners and within the model package.

3 Nearly all classes of the builder package inherit from the model package
classes and from the statements package classes.

4 Semantic similarity couplings exist within theories package.
5 Code clones and semantic similarity couplings exist between top level

(junit package) and the other packages.
6 Many types of couplings exist off the diagonal.

Table A.3: Results of the IMMV paper test

Dataset ID PNLV Explanation

JFtp 1 Many inheritance edges directed from gui package to framework pack-
age (most of them directed to the same class).

2 A strong connection of parts of the gui package to the framework pack-
age (with gaps).

3 A class in the net package is used from different packages.
4 Large fan-in evolutionary couplings exists for some classes.
5 Code clone couplings exist between different packages.
6 Many classes have semantic similarity couplings, but no inheritance,

aggregation, or usage couplings.

Table A.4: Results of the PNLV paper test
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ID & Time Reason Exploration Process Finding

3
Start 16:10
End 16:14

There are
inheritance
edges.

Finding an abstract class
Runners Builder. Opening
different files. Finding an
outlier. Finding abstract
class statement. ExceptEx-
ception has inheritance and
aggregation.

A set of classes for doing
similar things.

4
Start 16:14
End 16:20

There are a
lot of rela-
tions.

Opening the two respective
classes. looking at the the
source code.

Inheritance perhaps leads
to semantic matching even
smaller than before (see 3).

5
Start 16:20
End 16:24

The block
exists
off the
diagonal

Comparing two files to find
the clones

Two comparison classes in
different packages. Some-
thing are different. Hint:
create a superclass for these
or rename them.

Table A.5: Results of the interactive IMMV test

ID & Time Reason Exploration Process Finding

1
Start 16:46
End 16:49

The first
one is in-
heritance.

Highlighting the target There are different variants
of dialogs Ñ Basic GUI
class.

6
Start 16:49
End 16:53

Highlighting the connected
classes. Checking the as-
sumption that there are
no structural dependencies.
Opening files

Importing the same pack-
ages that do similar things.
Making the dependency ex-
plicit.

4
Start 16:53
End 16:57

Highlighting all respective
entities. Comparing to
other graphs. Opening
classes (the first was the
wrong ones).

Using the logger instead
(the logger is not used).

Table A.6: Results of the interactive PNLV test
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No Question Answer

1 Gender Male
2 Age 29
3 Your highest degree obtained up to now Master
4 Your major subject computer science
5 Number of Software Engineering courses you attended 0
6 Years of experience in Programming 10
7 Programming languages you use regularly Java
8 Number of classes/ files that were in the largest project

you worked on:
51-100 classes/files

9 Size of team/group you usually develop software to-
gether:

¤ 3 developers

10.a Are you familiar with the term ”design pattern”? Yes
10.b b. If yes, what kind of design patterns do you use regu-

larly
None

11 Visual representations you regularly use for software de-
velopment:

UML, Sketches

Table A.7: Results of the general questionnaire
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No Question Answer

1 Which visualization technique do you
prefer for analyzing software projects?
Why?

PNLV, because focusing on single rela-
tion type is easier using the separated
relation views (columns) . For larger
projects, i’d probably prefer IMMV be-
cause PNLV can get messy when dis-
playing too many edges.

2 The visualization is useful for analyzing
software projects

(IMMV: agree; PNLV: agree).

3 To enhance the tool, which interaction
features should be added?

(IMMV: showing class names with-
out selecting classes, when selecting a
square in the IMMV both names should
be visible, zooming , folding / unfold-
ing, when selecting/ hovering over sum-
mary pixels highlight related classes,
smaller borders for selection frame
; PNLV: zooming, folding/unfolding)

4 What would you suggest for improv-
ing the underlying visualization ap-
proaches?

PNLV: edges-bundling

5 Which visualization technique is easier
to understand? Why?

PNLV: it is easier to follow the edges.

6 Did you have any problems under-
standing particular aspects of the vi-
sualizations?

No

7 Which are the most interesting insights
into the software system you found?

(IMMV: two similar classes (3); PNLV:
semantic similarities, but no relations
in the code itself (6), logging available
but not used(5)).

8 Which of the insights of (7) would you
have with other tools or without tool
support?

IMMV: diffTool (Input of two classes
with the same name). In general hard
to discover.

9 Which representation do you think is
more convenient to read? why?

PNLV: see (5)

10 Did you have any problems reading the
visualization due to some form of visual
impairment (color blindness, blurred
vision, etc.) If yes , please specify?

No

11 Would you like to use the tool in the
future for your daily software develop-
ment work?

(PNLV: yes, to improve my code, pack-
age structure, etc. ;IMMV: No, for
smaller projects PNLV is easier to use
and sufficient).

12 In your opinion, what is the most
promising area of application for the vi-
sualization techniques?

(PNLV: improving the architec-
ture/design, IMMV: improving the
architecture/design).

13 Did you use similar visualization tools
in your work? Please state them?

No

Table A.8: Results of the final questionnaire
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Appendix B

Second Pretest

No Question Participant An-
swer

Correct Answer Result

1 Which different types of depen-
dencies exist from
(org.jhotdraw.gui.datatransfer.
AWTClipboard) to
(org.jhotdraw.gui.
datatransfer.AbstractClipboard)?
please consider the direction.

Inheritance,
semantic, and
evolution

Inheritance,
semantic, and
evolution

correct

2 Is there any code clone depen-
dency between the files of package
(org.jhotdraw.gui.datatransfer)
and (org.jhotdraw.gui.plaf) in
any direction?

No No correct

Table B.1: Trial results for the PNLV using the JHotDraw dataset

No Question Participant An-
swer

Correct Answer Result

1 Which different types of
dependencies exist from
(org.jhotdraw.gui.
fontchooser.FontFamilyNode) to
(org.jhotdraw.gui. fontchooser.
FontCollectionNode)? please
consider the direction.

Usage, aggrega-
tion, code-clone,
semantic

Usage, aggrega-
tion, code-clone,
semantic

correct

2 Is there any evolutionary
coupling between the classes
or interfaces of package
(org.jhotdraw.gui.datatransfer)
and (org.jhotdraw.gui.event) in
any direction?

No No correct

Table B.2: Trial results for the IMMV using the JHotDraw dataset
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Dataset ID IMMV Explanation

Stripes 1 There are clusters within tag package. They have different couplings
such as code clones, semantic similarity, usage, and evolutionary.

2 Classes have only code clones with few exceptions.
3 There is cluster within the layout package. It has semantic similarity

and evolutionary couplings.
4 There are clusters within the bean package. They have evolutionary

couplings but also with other packages controls and config.
5 There is vertical line with respect to util package. It has usage and

aggregation.

Table B.3: Results of the IMMV paper test

Dataset ID PNLV Explanation

Checkstyle 1 Many classes from the API package are extended by others.
2 API classes are aggregated similarly.
3 API classes are used similarly.
4 There is high semantic similarity in the indentation package.
5 There is high semantic similarity.
6 There is similar structure to 4 and 5 for evolutionary coupling.
7 There are few incoming inheritance edges for many classes.
8 There is x shape visual structure in code coupling and semantic

similarity.
9 There is difference between code coupling and semantic similarity.
10 API package co-changes with others.
11 All of the are in general not very helpful.
12 Semantic similarity is similar to evolutionary coupling.

Table B.4: Results of the PNLV paper test

ID & Time Exploration Process Finding

4
Start 15:22
End 15:28

Selecting bean package There is some evolutionary cou-
pling in the bean package for ev-
ery classes. This confirms previous
hypothesis (no explanation).

1
Start 15:29
End 15:39

Selecting different classes There are similar names of the
classes but there are no inheritance
couplings within the packages.

5
Start 15:39
End 15:41

Selecting the util package then se-
lecting class log

log class is used all over the project.
There are usage and aggregation
couplings.

Table B.5: Results of the interactive IMMV test
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ID & Time Exploration Process Finding

1
Start 16:46
End 16:38

Selecting classes with high fan-in.
Looking at the colored lines

APICheck and AbstractFile-
SetCheck are important classes.

9
Start 16:39
End 16:46

Highlighting the coding package.
Selecting a class that is connected
to others by code clone but not by
semantic similarity . Opening two
files in editor. He cannot find code
clone. The vocabularies are not
similar.

There are more code clones within
the package than semantic simi-
larity couplings. There are un-
usual, critical different vocabular-
ies in clones.

6
Start 16:47
End 16:51

Selecting indentation package and
naming package

Indentation package is indepen-
dent with respect to development.
Classes are also similar. Refactor-
ing is needed. Similar for naming
package but more code clone cou-
plings to other packages

Table B.6: Results of the interactive PNLV test

No Question Answer

1 Gender Male
2 Age 29
3 Your highest degree obtained up to now Master
4 Your major subject Computer science
5 Number of Software Engineering courses you attended 5
6 Years of experience in Programming 15
7 Programming languages you use regularly Java
8 Number of classes/ files that were in the largest project

you worked on:
51-100 classes/files

9 Size of team/group you usually develop software to-
gether:

Alone

10 Which visual representations or visualization tools do
you regularly use for software development:

None

11 Did you have any problems reading the visualization
due to some form of visual impairment (color blindness,
blurred vision, etc.) if yes, please specify.

No

Table B.7: Results of the general questionnaire
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No Question Answer

1 What do you like and don’t you like in
both visualizations?

(IMMV) multiple dependencies (in one di-
rection) can be seen in one cell, difficult
to find the dependences into the other di-
rection, needs a lot of spaces (scrollbars),
strongly needs color legend. if you select a
single class you get a quick overview about
other dependencies classes with multiple
dependencies types. (PNLV) easier to ex-
plore correlations between the dependency
types. different dependency directions can
be seen very fast.. in detail if is difficult to
check if several classes with the same de-
pendency type also have other dependen-
cies to each other. selecting single classes
is hard(very small rectangles)

2 Which visualization technique do you pre-
fer for analyzing software projects? Why?

(PNLV) I had the feeling that it is more
intuitive for the IMMV vis . I had a much
steeper learning curve . I don’t know if the
node links vis also works in larger projects
but in every moment i thought that i had
a good overview of the project.

3 The visualization is useful for analyzing
software projects:

(IMMV) Neutral. (PNLV) Agree.

4 To enhance the tool, which interaction fea-
tures should be added?

(IMMV) if you select cell a Ñ b, b Ñ
also should slightly be selected. Don’t
use tooltips, they are to slow. selecting
packages horizontally and vertically at the
same time. (PNLV) merge different depen-
dency graphs.

5 What would you suggest for improving the
underlying visualization approaches?

(IMMV) perhaps it would be helpful to
hide on demand the upper or lower trian-
gle to reduce redundant information.

6 Which visualization technique is easier to
understand? Why?

(PNLV) because the dependency direction
follows the reading direction and in the
IMMV vis. it is confusing that you have
redundant information because of the du-
plicated hierarchy.

7 Which are the most interesting insights
into the software system you found?

(IMMV) core packages which have many
dependencies to other packages. code
clones and semantic similarity similar frag-
ment don’t correlate much. (PNLV) core
packages which have many dependencies
to other packages. a package which could
outsourced. a package which could be
refactored.
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8 Would you like to use the tool in the future
for your daily software development work?

(PNLV) yes, I was surprised about some
assumptions I have found . it would be
interesting to use this on code I know.
(IMMV) No, I only use visualization very
rarely and thus an self-explaining tool
would be better to me. this visualization
has a steep learning curve.

9 In your opinion, what is the most promis-
ing area of application for the visualization
techniques?

(PNLV) program comprehension, debug-
ging/bug fixing, and improving the archi-
tecture. (IMMV) program comprehension
and improving the architecture.

Table B.8: Results of the final questionnaire
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